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Chapitre 1

Introduction

1.1 Contexte

La géométrie est omniprésente dans le monde physique dans lequel nous vivons et, de ce fait,
les modèles géométriques et le calcul géométrique sont présents dans beaucoup de domaines
scientifiques et technologiques, comme la conception assistée par ordinateur, la production,
l’infographie, la robotique, la biologie moléculaire, lessystèmes d’information géographique,
l’astrophysique, la vision par ordinateur, la métrologie ainsi que beaucoup d’autres.

Depuis les années 70, la recherche en géométrie algorithmique s’est appliquée à fournir une
base solide pour l’étude des algorithmes géométriques, quel que soit le domaine d’application.
Traditionnellement, la communauté de géométrie algorithmique s’est intéressée aux objets li-
néaires comme les droites, les segments, les polygones dansle plan, et les points et polyèdres
en dimension trois et plus. Un savoir-faire énorme à été acquit sur les algorithmes géométriques
au cours de ces trente dernières années.

Pour beaucoup d’applications, en particulier dans les domaines de l’infographie et de la
modélisation géométrique, il est nécessaire de manipuler des objets plus généraux comme des
surfaces données sous forme implicite ou paramétrique. Typiquement, de tels objets sont gérés
en les approximant par des objets élémentaires comme des triangles. Cette approche est extrê-
mement importante et elle a été utilisée dans presque tous les logiciels utilisables qui existent
dans l’industrie et la recherche aujourd’hui. Cette approche a cependant quelques inconvénients.
Premièrement, l’utilisation d’une forme approchée à la place de la géométrie exacte originelle
crée des disparités géométriques qui peuvent être source deproblèmes (comme la célèbre faille
entre l’aile et le corps de l’avion). Une source de problème provient du fait que des milliers si
ce n’est des centaines de milliers de triangles sont généralement nécessaires pour approcher de
façon adéquate des objets courbes. Il faut également noter que les objets courbes qu’il est né-
cessaire de manipuler dans les algorithmes géométriques nesont pas nécessairement des objets
tridimensionnels concrets, mais également des objets mathématiques abstraits qui ne sont pas li-
néaires et qui peuvent être définis en dimension supérieure.Par exemple, l’ensemble des droites
en dimension trois qui sont tangentes à trois polyèdres, un objet central dans les problèmes de
visibilité, défini une surface quadratique réglée ; également, les droites tangentes à une sphère
en trois dimensions correspondent, dans l’espace projectif en cinq dimensions, à l’intersection
de deux hyper-surfaces quadratiques.

3
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La géométrie algorithmique classique a peu à offrir lorsqu’il s’agit de manipuler la géomé-
trie exacte d’objets courbes. Les difficultés liées au calcul géométrique sur les objets courbes
sont, la généralisation (ou, plus généralement, une complète refonte) des algorithmes et struc-
tures de données les plus fondamentales (comme les diagrammes de Voronoï, les algorithmes
de balayage, et les arrangements), l’intrusion de problèmes algébriques et donc le besoin de
logiciels algébriques efficaces, l’explosion du nombre de cas dégénérés (dans les applications
géométriques, ils sont souvent la norme et non l’exception)et donc une difficulté accrue pour
produire des logiciels robustes, et le besoin d’incorporerdans l’analyse de complexité la com-
plexité arithmétique, l’hypothèse du modèle «real RAM» que les opérations prennent un temps
constant n’étant pas approprié dans ce contexte.

1.2 Survol et méthodologie

Au cours des dernières années, j’ai centré mes activités de recherches sur la géométrie algo-
rithmique effective dédiée aux objets non linéaires. Les objets courbes considérés ne sont pas
nécessairement des objets tridimensionnels concrets, mais également des objets mathématiques
abstraits. Mes contributions sur ce sujet sont centrées, premièrement, sur les propriétés structu-
relles, combinatoires, et algorithmiques de structures géométriques sur les droites et segments
de droite en trois dimensions dans le contexte des problèmesde visibilité tridimensionnelle
et, deuxièmement, sur l’algorithmique des objets géométriques courbes et, en particulier, les
quadriques.

Concernant les problèmes algorithmiques, je me concentre sur les algorithmes qui prennent
en compte la géométrie exacte des objets, en particulier lorsqu’ils sont courbes. En outre, l’ef-
fectivité des algorithmes est un point clé. Les algorithmeseffectifs doivent être robustes et
efficaces. Un algorithme est robuste s’il termine quelles que soient les entrées, en particulier
si elles sont dégénérées, et qui reporte des résultats topologiquement cohérents. Un algorithme
efficace est un algorithme qui termine raisonnablement rapidement sur des données réalistes où
le temps d’exécution est évalué à la fois expérimentalementet théoriquement.

Répondre à ces objectifs algorithmiques exige des outils mathématiques qui sont à la fois
géométriques et algébriques. En particulier, nous avons besoin de davantage de connaissance de
base sur la géométrie des droites et des surfaces dans une variété d’espaces et de dimensions.
Nous avons également besoin d’adapter des méthodes algébriques sophistiquées, souvent prohi-
bitives en temps de calcul dans un contexte général, pour un usage spécifique sur des problèmes
géométriques.

Je présente dans ce document mes contributions principalessur les sujets de la visibilité
tridimensionnelle et des droites de l’espace et sur le calcul géométrique avec des surfaces algé-
briques de faible degré et en particulier les quadriques.

Il faut noter que ces deux directions de recherche sont fortement liées. Une illustration prag-
matique de ce fait est que, dans plusieurs de mes contributions à la visibilité tridimensionnelle
et propriétés des droites de l’espace, la méthodologie et les techniques de preuve sont forte-
ment basées sur l’utilisation de surface algébrique de faible degré et, en particulier, sur les qua-
driques (voir chapitres 5, 6, 7, 13, et 18). Plus concrètement, les liens entre ces deux sujets de
recherches sont bien illustrés par les deux exemples suivants. D’abord, les droites transversales
à trois droites dans l’espace définissent une surface régléequi est quadratique. Par conséquent,
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le calcul des droites transversales à quatre droites, une opération de base dans les problèmes
de visibilité tridimensionnelle, revient, dans un certainsens, à couper deux surfaces quadra-
tiques. Deuxièmement, il est utile dans l’étude des droitesen 3D de les représenter comme des
points d’un certain espace. Malheureusement, la paramétrisation des droites projectives en 3D
ne peut pas être aussi simple que pour des points et des plans :on sait qu’il n’existe pas de
«modèle algébrique» pour l’espace des droites qui est lui-même un espace projectif [PW01, p.
143]. Le mieux que l’on puisse espérer est une paramétrisation des droites par les points d’une
hyper-surface quadratiqueΨ dans l’espace projectif en dimension cinq (la quadrique de Plü-
cker). Maintenant, chaque condition de tangence en trois dimensions à un équivalent dans cet
espace à cinq dimensions : les droites coupant une droite donnée correspondent à l’intersection
d’un hyperplan deP5(R) avecΨ et les droites tangentes à une sphère correspondent à l’inter-
section d’une hyper-surface de degré 2 avecΨ. En ce sens, les problèmes de visibilité dans
P3(R) (ou R3) peuvent être formulés comme des problèmes sur des arrangements de surfaces
de bas degré dansP5(R). Ceci prouve que les problèmes de visibilité 3D sont intrinsèquement
non linéaires, même lorsque les objets initiaux sont polyédriques. Connaissant la difficulté des
problèmes de calcul effectif sur les arrangements de quadriques en trois dimensions, il devient
clair que le développement de calculs de visibilité certifiés et effectifs représente un énorme défi
de recherche.

Je présente dans les sous-sections suivantes une courte description du contexte et de la mé-
thodologie de mes travaux sur les objets courbes, la robustesse, et l’effectivité des calculs. Puis,
dans les chapitres 2 et 3, je présente une description de mes contributions sur, premièrement,
les problèmes de visibilité tridimensionnelle et les propriétés des droites de l’espace et, deuxiè-
mement, sur le calcul géométrique effectif sur les surfacesalgébriques de bas degré et, en par-
ticulier, les quadriques. Les articles correspondants sont présentés dans les parties II et III.

Objets courbes

Confrontées à des objets courbes, la plupart des applications utilisent des approximations
polyédriques de ces objets et appliquent des algorithmes sur ces approximations. Cette approche
mène invariablement à des modèles géométriques de très grande taille ce qui a un impact négatif
sur l’efficacité. En outre, le résultat des calculs est nécessairement approché et la cohérence
topologique ne peut pas être garantie.

La recherche d’algorithmes de plus en plus efficaces pour manipuler ces approximations po-
lyédriques est cruciale du fait de large spectre de cette approche et en raison de l’augmentation
incessante de la taille de ces maillages. Les calculs géométriques peuvent cependant être effec-
tué directement sur les objets courbes. Malheureusement, la géométrie algorithmique fournit
des méthodes efficaces principalement lorsque les modèles sont décrits comme une collection
d’objets linéaires.

La plupart des objets apparaissant en infographie et en modélisation géométrique sont al-
gébriques ou semi algébriques, c’est-à-dire, définis par des équations et des inéquations poly-
nomiales. Ainsi, l’algèbre et le calcul formel jouent un rôle fondamental dans le calcul géomé-
trique non linéaire. Beaucoup d’opérations au coeur des algorithmes traitant d’objets courbes
se ramènent à évaluer, manipuler et résoudre des systèmes d’équations polynomiales.

Le calcul formel et le calcul symbolique fournissent une approche possible à la réalisation
de ces opérations. Des outils bien connus comme les résultants, les bases de Gröbner et les sé-
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quences de Sturm se sont avéré être un moyen fiable pour résoudre des problèmes géométriques
simples. Chaque problème peut être formulé algébriquement de différentes manières et il est
connu en calcul formel que le choix de la formulation algébrique d’un problème peut avoir un
impact crucial sur le temps de calcul et rendre, ou non, le calcul possible en pratique. En outre,
la traduction algébrique d’un problème tend à obscurcir l’information de nature géométrique.
Trouver des formulations qui ont à la fois un sens géométrique et qui se prêtent bien aux ma-
nipulations symboliques est toujours un problème difficile. Néanmoins, les avancés récentes en
calcul formel ont ouvert de nouvelles possibilités pour le calcul géométrique sur des surfaces
courbes. En effet, l’efficacité des systèmes de calcul formel a été nettement améliorée au cours
de ces dernières années et des problèmes géométriques non triviaux peuvent maintenant être ré-
solus (voir, par exemple, le chapitre 18 sur les diagrammes de Voronoï de droites). Cependant,
exécuter des calculs algébriques efficacement tient plus d’un art que d’une science et l’utilisa-
tion de ces outils devrait entrer seulement en fin de processus, une fois que le problème a été
complètement étudié d’un point de vue géométrique, comme lemontre l’exemple suivant.

Considérerons le problème de décider si quatre sphères données admettent un nombre infini
de tangentes communes (réelles). Ce problème peut être directement traduit en système po-
lynomial (de degré douze) qui peut être résolu, ou, en utilisant la caractérisation géométrique
du chapitre 5, on peut vérifier si les quatre sphères ont leurscentres alignés et, si oui, vérifier
si elles admettent une tangente commune (ce qui peut être testé avec un prédicat de bas de-
gré). Il devrait être clair que la deuxième approche est beaucoup plus efficace que la première.
Cet exemple est significatif, mais l’intuition nous dit également que plus le degré des surfaces
considérées est petit, plus les algorithmes peuvent tirer profit de la géométrie.

En général, les difficultés inhérentes à la généralisation des approches de la géométrie al-
gorithmique aux objets courbes sont de plusieurs natures etmaîtriser ce défi implique de dé-
velopper une recherche multidisciplinaire impliquantgéométrie algorithmique, calcul formel,
mathématiques des courbes et surfaces, et géométrie algébrique réelle et complexe.

En effet, comparé aux objets linéaires, la manipulation desobjets courbes même les plus
simples est un défi sérieux et l’intrusion des mathématiqueset du calcul formel est souvent mas-
sif (voir le chapitre 5 sur la caractérisation des dégénérescences des droites tangentes à quatre
sphères, les chapitres 14, 15, 16 sur l’intersection de deuxquadriques, et le chapitre 18 sur les
diagrammes de Voronoï de droites). De plus, les algorithmesde base doivent être reconsidérés
et parfois entièrement repensés pour s’adapter aux objets courbes (voir, encore le travail sur les
quadriques, et chapitre 9 sur le calcul des droites et segments de droites tangents à quatre parmi
k polytopes). Les problèmes de robustesse et de dégénérescence sont également plus difficile à
gérer lorsque l’on manipule des objets courbes que des objets linéaire et ils nécessitent souvent
des outils multidisciplinaires (voir les chapitres 5 et 6 sur la caractérisation des dégénérescences
des droites tangentes à quatre sphères ou transversales à plusieurs segments, le chapitre 9 sur
les droites tangentes à des polytopes arbitraires, et les chapitres 15 et 16 sur les intersections
dégénérées de deux quadriques).

Robustesse

Les algorithmes géométriques sont souvent décrits sous deux hypothèses très fortes qui
ne sont pas réalistes dans la pratique. Il s’ensuit que les implantations de ces algorithmes sont
fréquemment non robustes c’est-à-dire que, dans la pratique, les solutions produites sont parfois



1.2. SURVOL ET MÉTHODOLOGIE 7

FIG. 1.1 – Jeu d’échec modélisé uniquement avec des quadriques (SGDL Systems, Inc.).

franchement erronées ou que, à l’occasion, les calculs bouclent à l’infinie ou ne terminent pas
suite à une erreur fatale.

La première hypothèse classique est que les données sont supposées en position générique,
c’est-à-dire qu’elles évitent des positions dégénérées pour lesquelles l’algorithme n’est pas
conçu. Ces hypothèses sont souvent spécifiques, en particulier dans les cas raisonnablement
simples : par exemple, un ensemble de points est souvent supposé tel qu’aucun triplet de points
ne soient alignés. Ces hypothèses sont généralement considérées pour rendre la lecture (et la
rédaction) des articles plus aisées, mais il arrive fréquemment que la généralisation de tels
algorithmes aux cas dégénérées soit loin d’être trivial. Les hypothèses de généricité sont éga-
lement souvent très générales et ne donnent pas de contraintes réalistes : par exemple, des
données sont parfois supposées algébriquement génériques, c’est-à-dire qu’elles ne satisfont
aucune contrainte algébrique ; il s’ensuit, en particulier, que les données numériques sont toutes
transcendantes, hypothèse non réaliste. De plus, les hypothèses de position générique sont très
contraignantes en pratique car, dans des applications géométriques, les dégénérescences sont
souvent la norme, pas l’exception. C’est particulièrement vrai en infographie et en modélisation
géométrique. L’exemple de la figure 1.1 illustre ce point. Tandis que l’intersection générique de
deux quadriques en position générique est une courbe gauchede degré quatre, il est clair que
la plupart, si ce n’est tous les arcs de courbes décrivant le bord du cavalier sont planaires. En
d’autres termes, ces courbes sont des exemples d’intersections dégénérées de quadriques. Enfin,
il faut noter que, même dans les cas où les hypothèses de position générique sont très spéci-
fiques, les algorithmes ne sont pas nécessairement aptes à déterminer si les données rentrent
dans ce cadre ; en effet, déterminer si des données sont en position dégénérée revient, en gé-
néral, à déterminer si une, ou plusieurs, expressions algébriques sont nulles, ce qui n’est pas
faisable, a priori, lorsqu’une arithmétique flottante de précision fixe est utilisée.

La deuxième hypothèse classique est que le modèle de calcul considéré est le modèle «real
RAM». Ce modèle n’est pas réaliste, en particulier pour les algorithmes géométriques, et, dans
la pratique, si une arithmétique flottante de précision fixe est utilisée, les algorithmes géomé-
triques peuvent produire des solutions franchement erronées, boucler à l’infinie ou ne pas ter-
miner suite à une erreur fatale. Ces erreurs se produisent généralement lorsque les données sont
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en position dégénérée (non détectée comme telle), mais peuvent également se produire dès que
les données sont proches de situations dégénérées.

Le concept de robustesse pour les algorithmes géométriquesest très lié à ces deux notions
de dégénérescence et de modèle de calcul. En effet, les algorithmes, qui sont théoriquement
corrects sous des hypothèses de position générique et un modèle de calcul «real RAM», ne sont
généralement guère utilisables dans la pratique, en particulier s’ils sont implantés naïvement
avec une arithmétique flottante de précision fixe.

Rappelons qu’un objet géométrique a plusieurs structures. L’une est numérique, générale-
ment algébrique, et décrit le plongement de l’objet dans l’espace. Les autres sont généralement
topologiques, décrivant la topologie de l’objet, et combinatoires, encodant, par exemple, les in-
cidences entre les éléments constituant l’objet. Lorsque les calculs numériques sont approchés,
ces approximations peuvent créer des incohérences entre les informations contenues dans les
structures combinatoires/topologiques et numériques. Cesincohérences sont à la source de la
quasi-totalité des problèmes de robustesse des algorithmes géométriques.

Formellement, la définition la plus acceptée pour la notion de robustesse des algorithmes
géométriques est la suivante. Un algorithme est ditrobustesi, sous un modèle de calcul réaliste,
généralement une arithmétique flottante de précision finie,l’algorithme calcule une solution
qui est la solution exacte pour un jeu de données proche de celui effectivement donné ; de plus,
suivant le contexte, par exemple si l’algorithme calcule une structure géométrique, il est généra-
lement accepté que la partie numérique de la solution puisseseulement être une approximation
de la solution exacte (d’un jeu d’entrées proche de celui effectivement donné). Par exemple,
pour le calcul d’enveloppe convexe de points du plan, un algorithme qui calcule l’enveloppe
convexe de points, chacun dans un voisinage des points donnés, sera dit robuste alors même
que, lorsque trois points d’entrée sont alignés (ou presquealignés), l’enveloppe convexe calcu-
lée peut ne pas contenir le point milieu. Un autre exemple estcelui d’un algorithme de calcul
d’intersection de deux objets ; si l’intersection calculéeest une approximation de l’intersection
d’une instance perturbée des deux objets donnés, l’algorithme sera dit robuste même si la to-
pologie de l’intersection calculée peut être fausse (par exemple, l’ensemble vide au lieu d’une
courbe).

Une notion clef reliée à la robustesse est leparadigme du calcul géométrique exact. Dans
ce paradigme, les calculs sont effectués de manière à ce que les branchements des algorithmes
soient effectués correctement et donc que les structures topologiques et combinatoires calculées
soient mathématiquement exactes ; les quantités numériques calculées peuvent être approchées,
mais doivent être cohérentes avec les structures topologiques et combinatoires associées. Les
algorithmes développés dans ce cadre sont généralement ditscertifiéset ils sont nécessairement
robustes. Bien entendu, ce paradigme n’a d’intérêt qu’avec un modèle de calcul réaliste, par
exemple avec une arithmétique flottante de précision arbitraire, puisque avec le modèle «real
RAM», tous les calculs sont exacts et donc nécessairement corrects.

Les décisions effectuées dans un algorithme géométrique sont encapsulées dans une notion
deprédicat. L’évaluation d’un prédicat géométrique est équivalente àdéterminer, dans l’espace
des configurations, la cellule d’un arrangement de surfacesqui contient le point correspondant à
la configuration donnée. En d’autres termes, l’évaluation d’un prédicat géométrique peut se ra-
mener à l’évaluation des signes d’un ensemble d’expressions, généralement polynomiales voire
algébrique, en les quantités numériques d’entrées. Un exemple simple est celui qui consiste
à déterminer si un point donné est à droite, à gauche, ou sur une droite orientée donnée. Le
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paradigme du calcul géométrique exact exige que les prédicats soient évalués correctement,
ce qui assure que les branchements effectués durant l’algorithme soient corrects et ainsi que
les structures combinatoires et topologiques du résultat soient exactes. Rappelons que ce pa-
radigme n’exige pas que les quantités numériques du résultat soient exactes. Il faut noter, que
l’évaluation du signe d’une expression polynomiale ou algébrique est un problème à part entière
dans un modèle de calcul réaliste, utilisant, par exemple, une arithmétique flottante de précision
arbitraire.

De manière générale, la résolution d’un problème géométrique dans ce paradigme revient à
– caractériser les dégénérescences, lesquelles peuvent être intrinsèques ou algorith-

miques ;
– traduire chaque décision géométrique (et branchement de l’algorithme) en la détermi-

nation des signes d’expressions algébriques ;
– déterminer exactement et efficacement le signe de ces expressions algébriques.

Caractériser les situations dégénérées est crucial car des configurations dégénérées non dé-
tectées résultent, en général, en des erreurs d’exécution fatales ou des résultats erronés (lesquels
peuvent être très éloignés du résultat correct). Les dégénérescences sont essentiellement de deux
types différents : les dégénérescences peuvent être intrinsèques, c’est-à-dire inhérentes au pro-
blème et doivent être gérées par tout algorithme qui prévoitde résoudre le problème de façon
robuste, ou algorithmiques, c’est-à-dire induit par des choix algorithmiques. Décrire complè-
tement et correctement les dégénérescences apparaissant dans un problème ou un algorithme
géométrique est souvent un problème délicat, mais l’efficacité pratique d’un logiciel est sou-
vent liée à leurs traitements. Une étude soigneuse des dégénérescences intrinsèques peut mener
à des algorithmes très efficaces, comme nous l’avons montré par nos travaux sur l’intersection
de quadriques (voir les chapitres 14 à 17). Une analyse fine des dégénérescences algorithmiques
(et non intrinsèques) peut également suggérer des modifications structurelles des algorithmes
qui mènent a des améliorations de performance, comme l’a montré le travail de P. Angelier sur
les complexes de visibilité 2D [Ang02].

Il faut cependant noter que la gestion des dégénérescences augmente de façon importante
le nombre de cas à traiter et donc le nombre de procédures dédiées du logiciel. Théorique-
ment, une solution alternative pour éviter ce problème est de perturber symboliquement les
données pour éloigner les configurations géométriques des situations dégénérées (voir le sur-
vol par Sugihara [Sug00]). Cette approche intéressante a étéutilisée avec succès pour certains
problèmes, mais son applicabilité est limitée pour plusieurs raisons. Une perturbation symbo-
lique doit transformer toute donnée en position générique,ceci pour toute instance dégénérée,
ou non, du problème. Déterminer une telle perturbation est généralement difficile et nécessite
en premier lieu d’identifier précisément l’ensemble des configurations dégénérées, ce qui est
une partie substantielle du travail requis pour traiter entièrement les dégénérescences. En se-
cond lieu, une perturbation symbolique peut inutilement ralentir le calcul. En effet, résoudre
une instance générique d’un problème implique généralement des calculs arithmétiques plus
coûteux que pour des instances dégénérées. Les travaux sur les intersections de quadriques ont
montré précisément cela (voir le chapitre 17). Dans la mesure où les données géométriques sont
souvent dégénérées de par leur conception (primitives alignés, objets au contact, etc.), ceci peut
avoir un impact important sur l’efficacité globale des algorithmes. Enfin, lorsque les données
sont dégénérées, un algorithme appliquant une perturbation symbolique ne résout pas, a priori,
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le problème donné. En effet, la solution est obtenue comme limite de solutions du problème
perturbé ; cette limite peut être structurellement différente de la solution réelle de l’instance
donnée. Par exemple, lors du calcul d’intersection de deux objets qui sont tangents en un point,
si la perturbation les rend strictement disjoints, la limite de l’intersection de l’instance perturbée
sera l’ensemble vide au lieu d’un point. Pour des applications où l’exactitude est importante,
cette approche peut s’avérer inacceptable.

Une fois qu’un prédicat géométrique a été identifié, il faut le traduire en l’évaluation de
signes d’expressions algébriques. Ce problème, s’il est relativement simple pour des problèmes
géométriques élémentaires, peut s’avérer très délicat pour des primitives géométriques même
assez simples. L’exemple suivant illustre bien ce fait. Considérons un ensemble de sphères
tridimensionnelles de rayons arbitraires. Du point de vue de la visibilité 3D, caractériser les
dégénérescences exige de détecter les quadruplets de sphères qui admettent un nombre infini
de tangentes communes. Si l’on peut se satisfaire d’une telle description haut niveau, la condi-
tion pour quatre sphères d’avoir un nombre infini de tangentes communes ne se traduit pas a
priori simplement en l’évaluation de signes d’expressionsalgébriques. Récemment, nous avons
prouvé (à l’aide d’outils de géométrie projective complexe) que les instances dégénérées de
quadruplets de sphères sont ceux dont les centres sont alignés et qui admettent au moins une
tangente commune (voir le chapitre 5). Cette condition est beaucoup plus précise que la simple
contrainte d’avoir un nombre infini de tangentes communes etelle peut être simplement traduite
en l’évaluation de signes d’expressions polynomiales de bas degré et être évalué efficacement.

Il faut noter, cependant, que résoudre un prédicat n’exige pas nécessairement l’évaluation
du signe d’expressions algébriques. En effet, considéronsle problème du calcul du nombre de
racines réelles d’un polynôme univarié (sans carré).Ceci peut être fait par l’évaluation de poly-
nômes pré-calculés, comme ceux d’une séquence Sturm, ou pardichotomie, en utilisant la règle
de Descartes et l’algorithme d’Uspensky [RZ04]. Il est connuque la seconde méthode est plus
efficace que la première, en particulier pour des polynômes de haut degré. Néanmoins, la plupart
des prédicats géométriques simples sont habituellement résolus par l’évaluation d’expressions
algébriques et la détermination de leurs signes.

Une fois qu’un prédicat géométrique a été identifié et traduit en l’évaluation de signes d’ex-
pressions algébriques, les signes ne peuvent pas, en général, être évalués en utilisant une arith-
métique flottante de précision fixe : si une instance de problème est presque dégénérée, la valeur
d’une expression dont le signe doit être évalué peut être plus petite que l’erreur d’arrondi dans
l’évaluation de l’expression en arithmétique flottante à précision fixe. Par conséquent l’évalua-
tion du signe de l’expression peut être incorrecte et amenerultérieurement à des erreurs d’exé-
cution fatales ou des résultats totalement erronés. L’évaluation exacte et efficace des prédicats
géométriques est habituellement effectuée en utilisant une arithmétique exacte avec précision
arbitraire et des filtres. Quand la valeur de l’expression évaluée est suffisamment éloignée de
zéro, un filtre peut calculer le signe exact de l’expression sans calculer sa valeur exacte ; ty-
piquement un filtre emploie une arithmétique d’intervalle sur des nombres flottants avec une
précision fixe ; lorsque l’intervalle calculé ne contient pas zéro le signe de l’expression est ce-
lui des bornes de l’intervalle. Autrement, lorsque la valeur de l’expression est proche de zéro,
c’est-à-dire lorsque le filtre échoue (typiquement lorsquel’intervalle calculé contient zéro),
l’expression est calculée exactement si elle est polynomiale à coefficients entiers (ou ration-
nels). Sinon, l’expression est généralement évaluée avec une arithmétique d’intervalle sur des
nombres flottants d’une précision fixe mais suffisante pour atteindre les bornes de séparation
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ce qui assure que si l’intervalle contient zéro alors l’expression est nulle [BFM+01, LPY04].
Cette dernière approche, développée dans les bibliothèquesde programmation CORE [COR]
et LEDA [LED], a le grand mérite de permettre aux utilisateurs de manipuler simplement des
expressions algébriques et donc de pouvoir accélérer les temps de développement de program-
mation. Cependant les bornes de séparation sont généralement très pessimistes et, en termes
d’efficacité de calcul, il est plus efficace de traduire l’évaluation des prédicats géométriques en
la détermination de signes d’expressions polynomiales à coefficients entiers.

Le degré des polynômes (à coefficients entiers) exprimant des prédicats géométriques est
une mesure directe du nombre de bits requis pour l’évaluation exacte de ces polynômes. Le
degré est ainsi une mesure d’efficacité algorithmique : plusle degré est élevé, plus les filtres
échoueront souvent et plus coûteuse sera l’évaluation exacte. Traduire des décisions géomé-
triques en des prédicats de bas degré permet donc de limiter le coût arithmétique des évaluations
et donc d’améliorer les performances algorithmiques. Cependant, la mesure de l’efficacité al-
gorithmique de l’évaluation d’un prédicat par le degré des polynômes impliqués est un modèle
qui semble approprié seulement pour des prédicats simples.En effet, l’exemple mentionné pré-
cédemment sur la détermination du nombre de racines réellesd’un polynôme montre les limites
de tels modèles. En conclusion, il convient noter que décider si une stratégie d’évaluation d’un
prédicat géométrique est de degré minimal, ou non, semble être, en général, un problème très
difficile.

Mes travaux rentrent dans le cadre du paradigme du calcul géométrique exact et, de ce
fait, mon approche des problèmes géométriques inclut une caractérisation systématique des
dégénérescences (voir les chapitres 5, 6, 8, 9, 15, 16, et 17)et la conception de prédicats de
bas degré pour répondre aux décisions géométriques correspondantes (voir les chapitres 5 et
8). Je ne travaille cependant pas sur la conception de filtresarithmétiques qui est un champ de
recherche indépendant ; j’utilise par contre les réalisations existantes de tels filtres comme ceux
qui sont développés dans le noyau de la bibliothèque d’algorithmes géométriques CGAL.

Performances

En géométrie algorithmique, la performance d’un algorithme a été historiquement mesurée
en termes de complexité (temporelle) asymptotique dans le pire cas et dans le modèle de calcul
«real RAM». Dans ce modèle, des algorithmes optimaux en temps(et en espace) sont souvent
le but. Si les algorithmes optimaux dans les pires cas sont clairement importants, ils ne sont pas
toujours les plus efficaces dans la pratique ; par exemple, l’algorithme «quicksort» est reconnu
comme l’algorithme de tri le plus rapide dans la pratique alors qu’il est implanté en utilisant la
version de l’algorithme de complexitéΘ(n2) dans le cas le pire plutôt que la version de com-
plexitéΘ(nlogn) qui est optimale dans le cas pire. De plus les algorithmes optimaux peuvent
être affreusement compliqués ; l’algorithme linéaire de Chazelle pour trianguler un polygone
simple [Cha91] est unanimement considéré comme inimplantable [Ski97, pp. 355-357]. Néan-
moins, l’étude de la complexité d’algorithmes dans le cas lepire reste cruciale, ne serait-ce que
parce que cela fournit un point de départ pour des analyses plus fines.

Si la taille du résultat d’un algorithme peut changer sensiblement, le but est alors de conce-
voir des algorithmes qui optimisent la complexité expriméeen termes de deux paramètres, la
taille de l’entrée et la taille de la sortie ; ces algorithmessont ditssensibles à la sortie. Ceci
peut être illustré pour le calcul de l’enveloppe convexe de points en deux dimensions. Bien que
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l’enveloppe convexe puisse contenir tous les points d’entrée, elle peut également n’en contenir
que trois. Un algorithme optimal dans le cas le pire calcule l’enveloppe convexe den points en
tempsΘ(nlogn) alors que l’on peut aussi calculer l’enveloppe convexe en tempsΘ(nlogh) où
h est la taille de la sortie [CSY97]. Clairement, l’avantage d’un algorithme sensible à la sor-
tie est encore plus important lorsque la taille de la sortie peut être grande ; c’est par exemple
le cas lorsque l’on calcule l’ensemble des droites tangentes à quatre parmin objets en trois
dimensions, ensemble qui peut compter jusqu’àΘ(n4) droites.

La complexité dans le cas le pire d’algorithmes géométriques, en particulier en trois di-
mensions et plus, est souvent peu significative de par l’existence d’exemples pathologiques qui
n’apparaissent jamais en pratique. Un exemple typique est celui de données qui induisent un
temps de calcul exponentiel dans l’algorithme du simplexe en programmation linéaire. Lorsque
l’analyse de complexité dans le cas le pire est inappropriée, une autre option est de faire une
analyse probabiliste de l’algorithme dans lequel on suppose une distribution sur les entrées et
l’on en déduit une complexité moyenne. Cette approche est souvent très difficile même pour
des cas simples comme les distributions uniformes (voir, par exemple, le chapitre 11). Bien
que de telles distributions simples puissent être considérées comme non pertinentes puisque les
données réelles ne sont généralement pas distribuées uniformément, une analyse probabiliste
donne malgré tout une information pertinente sur la performance de l’algorithme ; on peut en
effet argumenter que si les distributions uniformes ne sontpas réalistes, les distributions dans le
cas le pire ne le sont guère plus.

Un algorithme randomisé est un algorithme qui fait des choixaléatoires. Une analyse de
la complexité d’un algorithme randomisé donne une borne de complexité moyenne qui s’ap-
plique à toute donnée ; aucune hypothèse sur la distributiondes données n’est faite. L’algo-
rithme «quicksort» randomisé est l’exemple classique. Lesalgorithmes randomisés ont eu un
succès énorme dans la communauté de géométrie algorithmique parce qu’ils sont généralement
très simples à mettre en application et qu’ils sont performants [Sei91]. Bien que les algorithmes
randomisés ne devraient vraisemblablement pas être employés dans les applications de temps
réel critique (comme l’atterrissage d’un avion), la randomisation est une bonne approche, en
général.

La performance des algorithmes peut souvent être amélioréeen appliquant d’abord un algo-
rithme simple si les données présentent certaines caractéristiques spéciales. Une illustration de
ce fait est, encore, donnée par nos travaux sur l’intersection de quadriques ; les cas dégénérés
sont reconnus et gérés par des algorithmes spécialisés plusrapides (voir les chapitres 15 à 17).

Un choix judicieux des structures de données peut avoir un impact énorme sur l’effica-
cité d’un algorithme. Des décompositions hiérarchiques del’espace comme les octrees est un
exemple classique en infographie. Quand le problème implique de répondre à un nombre im-
portant de requêtes, ceci peut être facilité par un prétraitement des données dans une structure
de données. Évidemment, l’espace mémoire utilisé est un paramètre important.

Quand l’analyse théorique d’un algorithme prouve qu’il estasymptotiquement efficace ou
quand nous ne sommes pas capable d’obtenir une analyse fine, l’étape suivante est d’implanter
l’algorithme et d’analyser sa complexité pratique (en temps et espace mémoire) sur des données
aléatoires et réelles. Cette étape a posé beaucoup de problèmes dans la communauté de géo-
métrie algorithmique en partie en raison des problèmes de robustesse discutés dans la section
précédente. Beaucoup, si ce n’est la plupart, des algorithmes géométriques publiés considèrent
seulement des données non dégénérées. Si la généralisationde ces algorithmes à des données
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dégénérées ne pose souvent pas de problème théorique majeur, il n’en reste pas moins que le tra-
vail requis est souvent substantiel, voire délicat. De plus, comme la plupart des scènes typiques,
en particulier en infographie, contiennent des dégénérescences, il est nécessaire, pour tester les
algorithmes sur des données réalistes, de développer ces algorithmes pour qu’ils acceptent tout
type de données.

Pour récapituler, l’objectif est de concevoir et d’implanter des algorithmes, corrects sur tout
type de données, qui requièrent une quantité raisonnable d’espace mémoire et dont le temps
de calcul est raisonnable sur des données réalistes. La complexité devra également être étudiée
théoriquement et expérimentalement.
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Chapitre 2

Propriétés des droites et segments deR3 et
problèmes de visibilité tridimensionnelle

2.1 Introduction

Les problèmes informatiques de visibilité tridimensionnelles sont apparus il y a une tren-
taine d’années avec l’arrivée de la visualisation des objets 3D. En trois décennies, le décalage
entre la théorie et la pratique s’est agrandi et les performances du matériel informatique ont
graduellement complété le manque de compréhension théorique. Les calculs de visibilité sont
centraux dans les problèmes en informatique graphique et beaucoup de problèmes sont souvent
considérés résolus dans la pratique, bien qu’ils n’aient pas nécessairement de solutions satis-
faisantes. Par exemple, le calcul des limites d’ombre et de pénombre induite par une source
lumineuse non ponctuelle et le calcul de l’ensemble des obstacles visuels entre deux polygones
quelconques sont des exemples typiques de problèmes de visibilité qui sont essentiels pour le
rendu réaliste des scènes 3D et qui n’ont aucune solution satisfaisante : ces problèmes sont,
dans la pratique, approchés par beaucoup de requêtes de visibilité de point à point. Pour déve-
lopper de nouvelles solutions algorithmiques pour ces questions, il est nécessaire d’améliorer la
compréhension des phénomènes de visibilité tridimensionnelle.

Il faut noter que, pour résoudre la plupart des problèmes de visibilité, la communauté d’in-
fographie s’est orientée, il y a des décennies, vers des solutions matérielles dédiées comme
lesz-buffers ou, plus récemment, les GPUs (Graphics ProcessingUnits). Cependant, ces solu-
tions sont principalement employées pour calculer des images 2D et très rarement pour calculer
des simulations de transfert de lumière dans des scènes 3D. La raison en est que les solu-
tions matérielles sont appropriées pour traiter des ensembles bidimensionnels de rayons (par
exemple, unz-buffer peut être utilisé pour calculer efficacement la vue d’un point) mais ne sont
pas appropriées pour les questions générales de visibilitéqui traitent, par essence, d’ensembles
quadridimensionnels de rayons (les droites en 3D ont quatredegrés de liberté).

Mes objectifs de recherches concernant la visibilité 3D sont principalement la conception
et l’implantation de solutionsalgorithmiquespour des problèmes de visibilité 3D. Plus préci-
sément, je m’intéresse à deux défis principaux qui sont (i) calculer les limites d’ombre et de
pénombre induites par une source lumineuse non ponctuelle et (ii) résoudre les problèmes de
visibilité de surface à surface, c’est-à-dire de répondre àdes requêtes du type : deux éléments

15
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de surfaces sont-ils mutuellement (partiellement) visibles ?
Pour atteindre ces objectifs, nous avons d’abord besoin d’une meilleure compréhension des

propriétés des ensembles de droites et de segments qui sont tangents ou transversaux à des objets
dans une scène tridimensionnelle. Cette direction de recherche fondamentale est intéressante
indépendamment de toute application directe et a été le centre de mes activités de recherches
sur le sujet depuis 2000. En particulier, la majeure partie des travaux que je présente ici est
centrée sur les propriétés structurelles et combinatoiresdes ensembles de droites et segments de
droite en trois dimensions dans le contexte de problèmes de visibilité.

Ces travaux mènent également à des solutions algorithmiquespour des problèmes de visi-
bilité tridimensionnelle. En particulier, l’étude de l’ensemble des segments libres et tangents à
quatre parmik polytopes mène à un algorithme pour le calcul de tels segments (voir le cha-
pitre 9) ; une brève description d’une implantation d’une version préliminaire de cet algorithme
est donnée dans le chapitre 10. Plus généralement, ces travaux devraient également mener à un
algorithme pour calculer le squelette de visibilité, une structure de données qui code des infor-
mations de visibilité [DDP97]. Il est également à noter que les travaux sur la caractérisation des
configurations dégénérées de droites tangentes à des polytopes (voir les chapitres 6 et 9) et les
travaux sur les prédicats pour le calcul de telles droites (voir chapitre 8) est critique pour n’im-
porte quelle implantation robuste de tels algorithmes. En conclusion, il faut mentionner que les
travaux présentés dans le chapitre 9 sur les propriétés des droites tangentes à des polytopes a
également mené à de nouveaux résultats combinatoires sur lacomplexité de l’ombre induite,
sur un plan, par des sources lumineuses polygonales en présence d’obstacles polyédriques (voir
le chapitre 13). Ces résultats sont critiques pour la compréhension de la structure de l’ombre et
de la pénombre induite par des sources lumineuses non triviales et devraient, à terme, avoir un
impact sur les techniques pour calculer de tels objets exactement et efficacement.

Je présente maintenant un panorama sur la visibilité 3D et, dans la section 2.2, un résumé
de mes contributions sur le sujet.

Survol

Dans une scène donnée, deux points se voient si le segment de droite les joignant ne coupe
aucun obstacle de la scène. Ainsi, l’étude de la visibilité est essentiellement l’étude des seg-
ments de droite libres dans une scène donnée. L’ensemble dessegments libres est borné par
des segments qui sont tangents à des obstacles de la scène ; entrois dimensions, une droite est
tangente à quatre objets, au plus, en position générale. Ditautrement, si l’on considère un point
de vue mobile dans une scène 3D, la vue changera quand un nouvel objet apparaît (ou dispa-
raît) derrière un obstacle ; quand ceci se produit, il y a une droite passant par le point de vue,
tangente à l’obstacle et tangente également au nouvel objet. Il est ainsi impératif de comprendre
les propriétés de tangence entre les droites et des obstacles afin de répondre à des questions de
visibilité.

Comme mentionné ci-dessus, deux défis principaux en visibilité 3D sont (i) le calcul des
limites d’ombre et de pénombre induites par une source lumineuse non ponctuelle et (ii) la ré-
solution de problèmes de visibilité de surface à surface, c’est-à-dire de répondre à des requêtes
du type : deux éléments de surfaces sont-ils mutuellement (partiellement) visibles ? Les struc-
tures de donnée classiques basées sur une décomposition spatiale, comme les octrees ou les
partitions binaires (binary space partition) aident peu à cet égard. Ces structures sont, en effet,
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conçues pour répondre à des requêtes de visibilité point à point ou à des lancés de rayon, c’est-
à-dire des problèmes qui sont intrinsèquement de dimensiondeux (la dimension de l’ensemble
de droites passant par un point). Ces structures sont très efficaces pour répondre à ce type de
requêtes mais ne sont pas adéquates pour des problèmes de visibilité de surface à surface, les-
quels impliquent des ensembles de droites coupant deux surfaces, c’est-à-dire des ensembles de
dimension quatre.

Une structure de données qui a été proposée pour coder des informations de visibilité 3D
est complexe de visibilité, qui, grossièrement, est une partition de l’espace des segments de
droite non obstrués et maximaux en des cellules connexes de segments qui sont tangents exac-
tement aux mêmes objets. La structure a été présentée par Pocchiola et Vegter en deux dimen-
sions [PV96b] et par Durand, Drettakis, et Puech en trois dimensions [Dur99,DDP02]. En deux
dimensions, le complexe de visibilité a été étudié en détail[PV96a,Riv97,HH02,AP03b] ainsi
que ses applications en rendu réaliste [ORDP96,CF99]. En trois dimensions, dû au fait que cette
structure a des cellules de dimension jusqu’à quatre, Durand et al. ont présenté, pour des raisons
pratiques, le squelette de visibilité, la structure définiepar les cellules de dimension zéro et un
du complexe de visibilité [DDP97]. Ils ont proposé une implantation montrant que l’utilisation
du squelette mène à des images de meilleures qualités pour des simulations lumineuses ainsi
qu’une amélioration du temps de calcul, comparé aux algorithmes antérieurs [DDP99].

En dépit de ces résultats positifs leur approche pilote a souffert de deux problèmes ma-
jeurs : premièrement, la faible performance de leur algorithme, basée sur une énumération sys-
tématique de toutes les possibilités menant à une complexité dans le pire cas deΘ(n5) et une
complexité observée deΘ(n2.5) grâce a l’utilisation d’heuristiques [Dur99] et, deuxièmement,
au manque de robustesse de leur implantation qui exige des interventions manuelles coûteuses
pour enlever les dégénérescences des scènes données. En conséquence, la plus grande scène
qu’ils ont été en mesure de gérer n’excède pas 1.500 triangles [DDP99].

Quelques années plus tard, Duguet et Drettakis ont proposé un algorithme robuste en pra-
tique pour calculer une section bidimensionnelle du squelette de visibilité dans laquelle les
droites contenant des segments libres maximaux sont supposées être toutes concurrentes (éven-
tuellement à l’infini) [DD02]. Leur implantation a géré avecsuccès des scènes de plus de
100.000 polygones montrant que, dans le contexte restreintde sources lumineuses ponctuelles
ou de sources lumineuses à l’infini, cette approche mène à desimages de meilleure qualité en
simulation d’éclairage ainsi qu’à des améliorations de temps de calcul comparé aux algorithmes
précédents.

Il y a deux raisons pour lesquelles peu de recherche a été faite sur les problèmes de visibi-
lité 3D exacte. D’une part, ces problèmes sont extrêmement difficiles en particulier parce que,
comme mentionné précédemment, ces problèmes sont intrinsèquement non linéaires, même
lorsque traitant de données polyédriques, et sont de dimension relativement élevée puisque
l’espace des droites en 3D est de dimension quatre. L’autre raison est que l’espace mémoire
requis pour des structures de données de visibilité a toujours été considéré énorme en raison
des bornes de complexité théorique : la taille du squelette de visibilité estΘ(n4) dans le pire
cas pourn triangles. Durand [Dur99] a observé une taille empirique deΘ(n2.4), qui est mal-
heureusement toujours trop grande pour des applications pratiques sur des grosses scènes d’in-
fographie. Cependant la petite taille des scènes considérées diminue sérieusement la validité
de cette complexité asymptotique expérimentale puisqu’iln’est pas clair qu’elle corresponde
au comportement asymptotique. Je présente également, dansla prochaine section, des résultats
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théoriques qui soutiennent l’idée que ces limites sont, en effet, excessivement pessimistes pour
des applications pratiques.

2.2 Résumé des contributions

2.2.1 Introduction

En premier lieu, je présente brièvement mes contributions,et leur pertinence, sur les pro-
blèmes de visibilité 3D et les propriétés des droites de l’espace. Je présente alors, dans les
sections 2.2.2 à 2.2.9, une description plus détaillée, bien que concise, de ces résultats.

Je présente premièrement quelques résultats sur lespropriétés structurelles des droites qui
sont tangentes ou transversales à quatre primitivesen trois dimensions. Chapitre 5 présente
d’abord une caractérisation des configurations de quatre sphères en 3D qui admettent un nombre
infini de tangentes communes. Cette caractérisation est complète et élémentaire : les sphères
doivent avoir leurs centres alignés et avoir au moins une tangente commune. Cette élégante
caractérisation résout une conjecture de T. Theobald et conclue une série de (sept) papiers qui
étudient des variantes de ce problème où les sphères sont congruentes ou certaines des sphères
sont remplacées par des droites.

Chapitre 6 présente ensuite une caractérisation de l’ensemble des droites transversales à
quatre (et, plus généralement,n) segments en trois dimensions. Nous montrons, en particu-
lier, que quatre segments en 3D admettent au plus 4 composantes connexes de transversales
communes et possiblement exactement 4 transversales. Ce résultat est fondamental et étonnant
puisque quatre droites en 3D admettent au plus 2 composantesconnexes de transversales com-
munes.

Dans le chapitre 7, nous étudions le nombre de tangentes communes à quatre triangles (une
droite est tangente à un triangle si elle coupe son bord). Nous prouvons que le nombre de telles
tangentes communes peut être, étonnamment, aussi élevé que62. La construction correspon-
dante est composée de triangles très fins, mais nous avons également procédé à des expériences
sur cinq millions de quadruplets de triangles aléatoires ; nous avons obtenu plusieurs quadru-
plets de triangles qui admettent 40 tangentes communes et nous avons observé que les quadru-
plets qui ont des tangentes communes admettent au moins 16 tangentes avec une probabilité
d’au moins 15%. Nous montrons également une limite supérieure de 162 qui est valide égale-
ment pour toute configuration arbitraire de triangles où chaque droite tangente peut devenir une
composante connexe de droites tangentes. Il faut enfin noterque, si la limite inférieure de 62
est déjà étonnamment grande, l’écart entre les bornes inférieure et supérieure (dans le pire cas)
reste grand.

Relié à ces problèmes, le chapitre 8 présente une étude de divers prédicats sur les droites
transversales à des droites et des segments en 3D. En particulier, nous calculons les degrés des
méthodes standard d’évaluation de ces prédicats. Nous prouvons que les degrés de certaines
de ces méthodes sont étonnamment hauts (jusqu’à 168), ce quipeut expliquer pourquoi les
calculs impliquant des droites transversales en arithmétique flottante avec précision fixe sont
enclins à des erreurs. Nos résultats suggèrent également lanécessité d’explorer des approches
alternatives aux méthodes standard de calcul de ces quantités. En effet, des prédicats efficaces
pour résoudre de telles requêtes élémentaires sont importants pour développer des solutions
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algorithmiques robustes et efficaces pour les problèmes de visibilité tridimensionnelle.

Je présente ensuite plusieurs résultats sur lespropriétés combinatoires des structures géo-
métriquesdans le contexte de la visibilité tridimensionnelle. Chapitres 9 et 11 portent sur la
complexité du complexe de visibilité, une structure de données qui codent l’information de vi-
sibilité, qui est, grossièrement, une partition de l’espace des segments de droite non obstrués
et maximaux en des cellules connexes de segments qui sont tangents aux mêmes objets. Cha-
pitre 12 se concentre sur la taille des silhouettes de polyèdres et chapitre 13 sur la complexité
de l’ombre et de la pénombre induite par des sources lumineuses non ponctuelles.

Chapitre 9 présente de nouvelles bornes combinatoires sur l’ensemble des droites et seg-
ments non obstrués qui sont tangents à des polyèdres convexes arbitraires qui peuvent se cou-
per. En particulier, nous montrons quek tels polytopes avecn arêtes au total admettent, dans le
pire cas,Θ(n2k2) composantes connexes de droites et segments libres maximaux tangents à au
moins quatre de ces polytopes. Ceci améliore significativement les résultats précédents c’est-à-
dire la borne triviale deO(n4) et la même borne deO(n2k2) pour le cas considérablement plus
simple de polyèdres convexes disjoints en position générale algébrique [EGHHZ00,BDD+02].
Ce résultat implique également que le complexe de visibilitéadmetΘ(n2k2) sommets, dans le
cas le pire. Plus généralement, cette borne est également valide pour la taille du complexe de
visibilité dans sa totalité mais, si la preuve est triviale pour des polytopes en position générique,
elle est plus subtile (et non publiée) pour des polytopes en position arbitraire.

Chapitre 11 porte sur la taille du complexe de visibilité pourdes objets uniformément dis-
tribués. Nous montrons que, parmin boules de rayon unité uniformément distribuées dansR3,
le nombre moyen de segments non obstrués, maximaux, et tangents à quatre boules est linéaire.
Ce résultat se généralise dans diverses directions. En particulier, cette borne s’applique égale-
ment à la taille moyenne de l’ensemble du complexe de visibilité de boules unités uniformément
distribuées. Ceci mène également à une borne deO(n2) sur la taille moyenne du complexe de
visibilité de polyèdres ou polygones aléatoires de complexité totaleO(n) et de rapport d’as-
pect borné. Ces résultats améliorent de manière significative la borne précédemment connue de
O(n8/3) pour des boules unités [DDP02].

Les résultats des chapitres 9 et 11 montrent que la prise en compte de la structure fonda-
mentale d’une scène peut fournir de nouvelles informationsde complexité sur les structures de
données en visibilité 3D. En outre, ces résultats montrent que les limites précédemment connues
(mentionnées dans la section précédente) étaient, en effet, pessimiste et que le coût en espace
mémoire pour ces structures de données n’est pas nécessairement prohibitif. Il y a donc espoir
que ces structures puissent s’avérer utiles dans des applications réalistes d’infographie.

Chapitre 12 fournit une base théorique au phénomène largement observé que, pour une
grande classe des objets, la taille de la silhouette d’un polyèdre est beaucoup plus petite que
la taille du polyèdre entier. Nous montrons que la silhouette d’un polyèdre qui approxime une
surface d’une manière raisonnable a une taille moyenne deO(

√
n) où la moyenne est prise sur

l’ensemble des points de vue etn est la complexité du polyèdre ; les surfaces peuvent être non
convexes et non différentiable et elles peut avoir des bords. Il faut bien noter que la moyenne
est prise sur l’ensemble des points de vue pour une surface donnée, et non pas prise sur un
ensemble de surfaces. Ceci confirme une croyance largement admise en infographie et est le
premier résultat de complexité pour des silhouettes de polyèdres non convexes.

Finalement, le chapitre 13 présente des résultats combinatoires sur la taille de l’ombre et



20 CHAPITRE 2. DROITES DE L’ESPACE ET VISIBILITÉ 3D

de la pénombre induite par des sources lumineuses non triviales. Un point est dans l’ombre s’il
ne voit aucune source lumineuse même partiellement ; un point est en pleine lumière s’il voit
entièrement toutes les sources lumineuses ; autrement, il est dans la pénombre. Tandis que la
frontière entre la pénombre et la pleine lumière est relativement bien comprise, moins est connu
sur le bord de l’ombre et le calcul de telles frontières est unproblème difficile dans le cas de
sources lumineuses non ponctuelles. Nous présentons plusieurs limites inférieures étonnantes.
En particulier, une source lumineuse en forme de segment peut induire sur un plan, en présence
de deux triangles, jusqu’à quatre composantes connexes d’ombre ; également, les deux triangles
peuvent être remplacé par deux polytopes disjoint non «fin» (de rapport d’aspect borné) et de
taille totalen pour induireΘ(n) composantes connexes d’ombre dans le cas le pire. Pour des
sources lumineuses polygonales dans une scène formée park polytopes de complexité totale
n, nous prouvons que l’ombre peut admettreΩ(n2k3 + nk5) composantes connexes et a com-
plexitéO(n3k3). Ces résultats sont les premières bornes non triviales sur lataille de l’ombre et
montrent que l’ombre peut être étonnamment compliquée, même en présence de «gros» obs-
tacles disjoints. Plus généralement, ces travaux améliorent la compréhension de la structure de
l’ombre pour des sources lumineuses non ponctuelles et il est possible d’espérer que cela mène
à de nouveaux algorithmes pour les calculer exactement et efficacement.

Les résultats ci-dessus se concentrent sur les propriétés structurelles et combinatoires d’en-
sembles de droites ou de segments de droite qui sont tangentsou transverses à des primitives.
Certains de ces résultats sont également critiques pour le développement d’algorithmes robustes
et efficacespour la visibilité 3D. En particulier, dans le chapitre 9, l’étude de l’ensemble des
segments libres tangents à quatre parmik polytopes mène à un algorithme pour calculer de tels
segments (voir section 9.5). Chapitre 10 présente une vidéo qui décrit une implantation d’une
version préliminaire de cet algorithme. Plus généralement, cet algorithme peut également calcu-
ler le squelette de visibilité dans son entier pour des polytopes disjoints, mais sa généralisation
à des polytopes qui peuvent se couper ou des polyèdres disjoints mais non convexes est un sujet
futur de recherche. Il est également à noter que les travaux sur la caractérisation des configura-
tions dégénérées de droites tangentes à des polytopes (voirchapitres 6 et 9) et les travaux sur les
prédicats pour le calcul de telles droites (voir chapitre 8)sont critiques pour toute implantation
robuste de tels algorithmes.

En conclusion, je mentionne quelques autres résultats sur des problèmes de visibilité 3D
et 2D que je n’ai pas inclu dans ce document car ils sont d’une nature relativement différente
des résultats que j’ai mentionné jusqu’ici. D’abord, dans un contexte de prototypage rapide par
couches, nous avons proposé une solution pratique, par approximation, au problème du calcul
d’une stratégie de découpage en tranches optimales et de direction optimale de découpe pour
réduire au minimum le volume des régions qui sont inaccessibles à une fraiseuse à deux degrés
de liberté et demi pendant le processus de fabrication [LLB04, Lau05]. Cette stratégie a été
testée avec succès et est maintenant employée par le CIRTES1, une entreprise de recherche en
prototypage rapide. Nous avons également présenté des résultats préliminaires sur le problème
du calcul effectif de graphes de visibilité de sphères [MDC05] et nous avons résolu plusieurs
problèmes de visibilité en deux dimensions. En particulier, nous avons montré des bornes théo-
riques et fait une évaluation expérimentale de la taille du complexe de visibilité d’objets dis-

1http://www.cirtes.fr .
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tribués aléatoirement dans le plan [ELPZ07] et présenté un algorithme pour le lancé de rayons
paraboliques [CEK+07].

Je présente maintenant une description plus détaillée de ces résultats.

2.2.2 Tangentes communes à des sphères dansR3

Les droites tangentes à des sphères ont été étudiées de manière récurrente ces dernières
années. Macdonald al. [MPT01] ont montré que quatre sphèresunités ont, au plus, 12 tangentes
communes en général, et un nombre infini si et seulement si lescentres sont alignés. La borne de
12 a été indépendamment obtenue par Devillers et al. [DMPT03]. Dans le cas fini, cette borne
est fine [DMPT03, MPT01] et dans le cas particulier où les sphères unités ont leurs centres
coplanaires mais non alignés, cette borne descend à 8 [Meg01]. Cependant, la borne supérieure
de 12 reste valide lorsque les sphères ont des rayons arbitraires. Sottile et Theobald [ST02] ont
montré qu’il y a 3·2n−1 tangentes communes complexes à 2n−2 sphères de rayons arbitraires
dansRn et qu’il existe des exemples de telles sphères avec toutes leurs tangentes communes
réelles.

Récemment, des progrès ont également été accomplis dans la compréhension des variétés
de tangentes communes à des sphères et transversales à des droites. Theobald [The02] décrit les
configurations de trois droites et une sphère ayant un nombreinfini de tangentes/transversales
communes. Megyesi et al. [MST03] ont ensuite caractérisé les familles de deux droites et deux
quadriques deP3(C) ayant un nombre infini de tangentes/transversales, et appliqué leurs ré-
sultats au cas de deux droites et de deux sphères deR3. Enfin, Megyesi et Sottile [MS05]
ont classifié les familles d’une droite et trois sphères deR3 ayant un nombre infini de tan-
gentes/transversales.

Le problème de la caractérisation des configurations de quatre sphères de rayons quel-
conques ayant un nombre infini de tangentes communes est resté ouvert. Citant Theobald [The02] :
«We conjecture that there does not exist any configuration withfour balls of arbitrary radii,
non-collinear centers and infinitely many common tangent lines.»2 Dans le chapitre 5, nous
confirmons cette conjecture et prouvons le résultat suivant.

Theorem 2.1. Quatre sphères distinctes deR3 ont un nombre infini de tangentes réelles com-
munes si et seulement si elles ont des centres alignés et au moins une tangente réelle commune.

Plus précisément, nous montrons que quatre sphères ayant unnombre infini de tangentes
(réelles) communes soit eu un cercle en commun (possiblement dégénéré en un point), soit
chaque sphère a un cercle de tangence avec une unique quadrique de révolution ayant pour
axe de symétrie la droite passant par tous les centres (voir figure 2.1) ; une telle quadrique est
unique et peut être un cône, un cylindre ou un hyperboloïde à une nappe. En outre, les tangentes
communes aux quatre sphères sont exactement les tangentes communes à trois d’entre elles.

L’idée de la preuve est la suivante. Considérant une droite paramétrée par un pointp et
une directionv, nous caractérisons d’abord les droites tangentes à quatresphères comme les
solutions de trois équations enp et v. Nous éliminons ensuitep de ce système d’équations.

2Nous conjecturons qu’il n’existe pas de configuration de quatre boules de rayons arbitraires, de centres non
alignés, et ayant un nombre infini de tangentes communes.
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FIG. 2.1 – Deux exemples de quatre sphères ayant un nombre infini de tangentes communes.

Ceci donne deux courbes1 dans l’espace projectif 2D des directions, dont l’intersection contient
toutes les directions pour lesquelles une droite tangente aux quatre sphères existe. Nous prou-
vons alors que ces deux courbes se coupent en un nombre fini de points.

L’idée principale de cette preuve est que si les deux courbes, considérées comme courbes
projectives complexes, ont une composante commune de dimension positive, cette composante
coupe, dans l’espace complexe, la conique imaginaire|v|2 = 0 et nous prouvons que ce n’est
pas le cas.

2.2.3 Transversales à des segments de droite en trois dimensions

Nous posons, dans le chapitre 6, la question élémentaire suivante : Quelle est la taille de l’en-
semble des transversales à un ensemble arbitraire den segments de droite dansR3 ? Ici, un seg-
ment peut être ouvert, semi-ouvert, ou fermé, et il peut êtredégénéré en un point ; les segments
peuvent se couper ou même se chevaucher. Puisqu’une droite dansR3 a quatre degrés de liberté,
elle peut couper au plus quatre droites ou segments en position générique. Réciproquement, il
est bien connu que quatre droites en position générique admettent zéro ou deux transversales ;
de plus, quatre droites arbitraires dansR3 admettent zéro, une, deux, ou un nombre infini de
transversales [HCV52, p. 164]. Nos résultats montrent, au contraire, que quatre segments de
droite arbitraires admettent jusqu’à quatre transversales ou un nombre infini.

Nous décrivons entièrement la structure des composantes connexes des transversales à un
ensemble den segments de droite dansR3. Génériquement, l’ensemble des transversales à
quatre segments se compose de zéro, une, ou deux droites. Nous cataloguons les cas non gé-
nériques et prouvons quen > 3 segments arbitraires dansR3 admettent au plusn composantes
connexes de droites transversales et que cette borne peut être réalisée dans certaines configura-
tions quand les segments sont coplanaires, ou quand ils appartiennent à un hyperboloïde à une
nappe (voir la figure 2.2). Ceci implique également une borne supérieure fine den sur le nombre
de permutations géométriques de segments de droite dansR3.

Plus précisément, nos résultats sont les suivants. Deux transversales à un ensemble de seg-
ments sont dites dans la même composante connexe si et seulement si l’une des transversales
peut être déplacée continûment en l’autre transversale tout restant une transversale deR3 à l’en-
semble des segments. (Pour les ensembles de droites transversales considérés ici, les notions de
connexe et connexe par arc sont équivalentes puisque tous les ensembles sont semi algébriques.)

1Une cubique et une quartique si les centres sont affinement indépendant et une conique et une sextique si les
centres sont coplanaires sans trois alignés.



2.2. RÉSUMÉ DES CONTRIBUTIONS 23

FIG. 2.2 – Deux vues d’un hyperboloïde à une nappe contenant quatre segments et les quatre
composantes connexes de leur transversales (correspondant aux régions grisées). Les quatre
segments sont symétriques par rotation autour de l’axe de l’hyperboloïde.

D’une manière équivalente, les deux points dans l’espace des droites (par exemple, dans l’es-
pace de Plücker [PW01]) correspondant aux deux transversales sont dans la même composante
connexe de l’ensemble des points correspondant à toutes lestransversales à l’ensemble des
segments.

Notre résultat principal est le théorème suivant.

Theorem 2.2. Un ensemble de n> 3 segments de droite arbitraires dansR3 admettent tout
nombre de 0 à n de composantes connexes de droites transversales. Plus précisément, l’en-
semble des droites transversales est composé d’au plus deuxdroites isolées sauf si les segments
sont dans l’une des trois configurations suivantes :

1. les n segments sont contenus dans une famille de générateur de (a) un paraboloïde hy-
perbolique ou (b) un hyperboloïde à une nappe, ou

2. ils sont tous concourants, ou

3. ils sont tous dans un plan, à la possible exception d’un groupe de un ou plusieurs segments
qui coupent le plan en un même point.

Dans les cas 1(a) et 2, les transversales forment au plus une composante connexe. Dans les
cas 1(b) et 3, les transversales peuvent avoir n’importe quel nombre de 0 à n de composantes
connexes. De plus, dans le cas 3, si tous les segments ne sont pas coplanaires, ce nombre est au
plus n−1.

Dans les cas 1–3, chaque composante connexe peut être formé d’un nombre infini de droites
transversales ou être réduit à une droite isolée. Par exemple, trois segments formant un triangle
et un quatrième segment coupant l’intérieur du triangle en un point ont exactement trois trans-
versales (figure 2.3 montre un exemple similaire avec un nombre infini de transversales). En
outre, les quatre segments dans la figure 2.2 peuvent être raccourcis de sorte que les quatre
composantes connexes de transversales se réduisent à quatre transversales isolées.

Nous montrons également qu’une conséquence simple de notrethéorème est la borne sui-
vante sur le nombre de permutations géométriques den segments dansR3.

Corollary 2.3. Un ensemble de n> 3 segments disjoints deux à deux dansR3 admet au plus n
permutations géométriques et cette borne est fine.
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FIG. 2.3 – Quatre segments ayant trois composantes connexes de transversales.

Enfin, nous montrons également qu’un algorithme de complexité temporelleO(nlogn) pour
calculer les transversales àn segments découle directement de la preuve du théorème ci-dessus.

L’idée de la preuve est comme suit. Nous considérons d’abordles droites supports des seg-
ments, c’est-à-dire, les droites contenant les segments donnés (définie verticale si le segment
correspondant est un point). Nous prouvons théorème 2.2 en étudiant l’ensemble des droites
transversales à trois segments dans les trois cas différents suivants, qui couvrent toutes les pos-
sibilités, mais ne sont pas exclusifs : (i) trois droites supports sont deux à deux non coplanaires,
(ii) deux droites supports sont coplanaires, et (iii) tous les segments sont coplanaires.

Par exemple, dans le premier cas et si, en outre, toutes lesn > 3 droites supports sont dans
une famille de générateur d’un hyperboloïde à une nappe (voir figure 2.2), les droites transver-
sales sont les droites de la seconde famille de générateur etelles peuvent être paramétrées par
des points sur une ellipse, par exemple, par leur points d’intersection avec une ellipse contenue
dans l’hyperboloïde à une nappe. Ainsi, l’ensemble des transversales auxn segments corres-
pond à l’intersection den intervalles sur cette ellipse. Cette intersection peut avoir tout nombre
de composantes connexes de zéro jusqu’àn, et n’importe laquelle de ces composantes connexes
peut être réduite à un point sur l’ellipse. L’ensemble des transversales peut ainsi avoir tout
nombre de composantes connexes de zéro jusqu’àn, et n’importe laquelle de ces composantes
connexes peut être réduite à une transversale isolée. Figure 2.2 montre deux vues d’une confi-
guration avecn = 4 segments et quatre composantes connexes de transversales.

2.2.4 Droites tangentes à quatre triangles en trois dimensions

Nous étudions dans chapitre 7 la question élémentaire suivante : Quel est le nombre de
tangentes communes à quatre triangles ? Nous établissons des bornes supérieures et inférieures
sur ce nombre. Nous prouvons en particulier que ce nombre peut être, étonnamment, aussi élevé
que 62.

Une droite est dite tangente à un triangle si elle coupe le bord du triangle. Soitn(t1, t2, t3, t4)
le nombre de droites tangentes à quatre trianglest1, t2, t3, et t4 dansR3. Ce nombre peut être
infini si les droites supports des bords des triangles ne sontpas en position générale.

Notre première étape est de considérer la relaxation algébrique de ce problème géométrique
dans lequel nous remplaçons chaque bord d’un triangle par ladroite dansP3(R) le contenant,
et étudions l’ensemble des droites deP3(C) qui coupent une droite support de chaque triangle.
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(a)

t1

t2

t3t4

(b)

FIG. 2.4 – Quatre triangles ayant (a) 40 et (b) 62 tangentes communes.

Puisqu’il y a de 34 = 81 tels quadruplets de droites supports, ceci est la disjonction de 81 ins-
tances du problème classique du calcul des transversales à quatre droites données dansP3(C).
Comme il y a deux telles transversales à quatre droites données en position générale, nous
pouvons escompter que cette relaxation algébrique a 162 solutions. Nous disons que quatre tri-
anglest1, t2, t3, t4 sont en position générale (algébrique) si chacun des 81 quadruplets de droites
supports ont deux transversales dansP3(C) et les 162 transversales sont deux à deux distinctes.
Soit T l’espace des configurations de tous les quadruplets de triangles dansR3 et T ⊂ T l’en-
semble des quadruplets de triangles en position générale. Ainsi si (t1, t2, t3, t4) ∈ T, le nombre
n(t1, t2, t3, t4) est fini et est au plus 162.

Nous nous intéressons en premier lieu au nombre

N := max{n(t1, t2, t3, t4) | (t1, t2, t3, t4) ∈ T} .

Nos résultats concernant ce nombre sont doubles. D’abord, nous prouvons queN > 62.

Theorem 2.4. Il existe quatre triangles disjoints dans T qui admettent62 tangentes communes.

L’idée est de perturber une configuration de quatre droites dansR3 avec deux transversales
réelles. Les triangles dans notre construction sont très fins : le plus petit angle a une mesure
d’environ 10−11 degrés (voir figure 2.4(b)). Nous avons également procédé à des expériences
sur cinq millions de quadruplets de triangles aléatoires (en six mois de temps CPU). Il apparaît
que des quadruplets aléatoires ont fréquemment un nombre substantiel de tangentes communes.
Nous avons obtenu plusieurs quadruplets de triangles qui admettent 40 tangentes communes
(voir figure 2.4(a)) et nous avons observé que les quadruplets qui ont des tangentes communes
admettent au moins 16 tangentes communes avec une probabilité d’au moins 15%.

Nous pouvons améliorer la borne supérieure surN quand les triangles sont disjoints.

Theorem 2.5. Quatre triangles dans T admettent au plus162 tangentes communes distinctes
et au plus156si les triangles sont disjoints.

Nous croyons, cependant, que les bornes supérieures que nous présentons sont loin d’être
optimales. Quand les quatre triangles ne sont pas en position générale, le nombre de droites
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tangentes peut être infini. Dans ce cas, nous pouvons regrouper ces tangentes par composantes
connexes : deux tangentes sont dans la même composante si on peut déplacer continûment une
droite en l’autre tout en restant tangent aux quatre triangles. Chaque quadruplet de bords des
triangles peut induire jusqu’à quatre composantes de tangentes communes (voir le chapitre 6),
donnant une borne supérieure triviale de 324. Ceci peut être amélioré.

Theorem 2.6.Quatre triangles ont au plus162composantes connexes de tangentes communes
et au plus156si les triangles sont disjoints.

Enfin, nous prouvons également un résultat sur la parité du nombre de tangentes.

Theorem 2.7.Si (t1, t2, t3, t4) ∈ T, alors n(t1, t2, t3, t4) est pair.

Ce résultat peut ne pas sembler étonnant dans la mesure où les transversales à des droites
viennent par paires. Cependant, cet argument usuel ne s’applique pas ici car nous cherchons
des tangentes aux triangles et non des transversales aux droites supports. Fréquemment, seule-
ment l’une des deux transversales réelles à un quadruplet dedroites supports est tangente aux
triangles.

2.2.5 Prédicats pour des droites transversales en trois dimensions

Le calcul de droites transversales à des droites ou segmentsest une opération importante
dans les problèmes de visibilité tridimensionnelle ; voir les chapitres 7, 9, 13 et [DD02,DDP97,
DDP02, EGHHZ00, PD90]. Dans le chapitre 8, nous étudions divers prédicats et leurs degrés
dans le contexte des droites transversales à droites et segments en trois dimensions.

Un prédicat est une fonction qui renvoie une valeur d’un ensemble discret. Typiquement,
les prédicats géométriques répondent à des questions du type « un point est-il à l’intérieur, à
l’extérieur, ou sur le bord d’un ensemble ?». Nous considérons les prédicats qui sont évalués
près des fonctions booléennes de prédicats élémentaires, ces dernier étant des fonctions qui
renvoient le signe (−, 0 ou +) d’un polynôme multivarié dont les arguments sont un sous-
ensemble des paramètres d’entrée du problème donné (voir, par exemple, [BP00]). Le degré
d’une procédure pour évaluer un prédicat est le degré maximum, en les paramètres d’entrée,
parmi tous les polynômes impliqués dans l’évaluation du prédicat par la procédure. Dans ce qui
suit nous parlons, par abus de langage, de cette mesure commedu degré du prédicat. Le degré
d’un prédicat est un concept intéressant parce qu’il fournit une mesure du nombre de bits requis
pour une évaluation exacte du prédicat quand les paramètresd’entrée sont des nombres entiers
ou des nombres en arithmétique flottante ; le nombre de bits exigés est alors, grossièrement, le
produit du degré avec le nombre maximum de bits utilisés pourreprésenter chaque paramètre
d’entrée.

Dans le chapitre 8, nous étudions tout d’abord le degré des prédicats standard pour le calcul
du nombre de droites transversales à quatre droites ou à quatre segments en trois dimensions ;
rappelons que quatre droites deR3 admettent 0, 1, 2 ou un nombre infini de droites transversales
et que quatre segments admettent jusqu’à 4 ou un nombre infinide droites transversales (voir le
chapitre 6). Nous considérons également le prédicat pour déterminer si un segment transversal à
quatre droites et de longueur minimale est obstrué, ou non, par un triangle. Enfin, nous étudions
le prédicat pour comparer deux plans définis par deux points donnés et chacun contenant un
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troisième point (rationnel) ou une droite transversale à quatre droites ou segments. Ce prédicat
apparaît dans l’algorithme par balayage d’un plan autour d’une droite pour calculer l’ensemble
des segments libres minimaux tangents à quatre parmik polyèdres convexes en 3D (voir les
chapitres 9 et 10).

Notre étude montre que les procédures standard pour résoudre ces prédicats ont un degré
élevé. En particulier, nous montrons que déterminer si un segment minimal transversal à quatre
segments est obstrué, ou non, par un triangle peut être évalué par un prédicat de degré 90 en
les coordonnées des points définissant les quatre segments et le triangle. En outre, le prédicat
pour comparer deux plans, dans un algorithme par balayage autour d’une droite, chaque plan
défini par l’axe de rotation et par une droite transversale, peut être évalué par une procédure de
degré 168 en les coordonnées des points définissant les droites d’entrée. Ces degrés très élevés
peuvent aider à comprendre pourquoi les algorithmes pour résoudre les problèmes de visibilité
3D sont sujets à des erreurs lorsque l’on utilise une arithmétique flottante de précision fixe.

2.2.6 Droites et segments libres tangents à des polyèdres convexes arbi-
traires en trois dimensions

Nous étudions dans les chapitres 9 et 10 la complexité et le calcul d’ensembles de droites
et de segments de droite tangents à des polyèdres dans une scène tridimensionnelle constituée
de polyèdres convexes. Nous présentons, dans le chapitre 9,deux types de résultats. D’abord
nous présentons de nouvelles bornes combinatoires sur le nombre de droites ou segments libres
tangents à quatre polytopes. Nous présentons ensuite un algorithme pour calculer ces segments
libres. Dans le chapitre 10, nous présentons une brève description d’une vidéo illustrant notre
algorithme et son implantation dans le cas de polytopes disjoints. Je détaille maintenant ces
résultats.

Bornes combinatoires.Nous montrons que parmik polytopes, de complexité totalen, qui peuvent
se couper, le nombre de droites tangentes à n’importe quel choix de quatre polytopes est dans
le pire cas infini ouΘ(n2k2). L’aspect le plus étonnant de ce résultat est que cette borne(qui est
fine) est la même que les polytopes se coupent ou non. Ceci est encontraste avec la situation en
deux dimensions où nombre de tangentes à deux polygones convexes est toujours quatre s’ils
sont disjoints, et peut être linéaire en la taille des polygones s’ils se coupent. Notre résultat est
également valide pour des polytopes en position arbitraire: nous ne faisons aucune hypothèse de
position générale. Les polytopes peuvent se couper de n’importe quelle façon ; ils peuvent se re-
couvrir ou coïncider. Ils peuvent être dégénérés en des polygones, des segments, voir même des
points. Tandis que quatre polytopes en position générale (comme définie dans [BDD+02]) ad-
mettent un nombre fini de tangentes communes, quatre polytopes en position arbitraire peuvent
admettre un nombre infini de tangentes communes ; nous considérons alors les composantes
connexes (définie dans l’espace des droites) de cet ensemblede tangentes.

Nos résultats principaux sont, précisément, les suivants.

Theorem 2.8. Étant donné k polytopes dansR3 avec n arêtes au total, il existe dans le cas le
pire Θ(n2k2) composantes connexes de segments libres maximaux tangentsà au moins quatre
de ces polytopes. Cette borne s’applique également au nombrede composantes connexes de
droites, possiblement obstruées, tangentes à au moins quatre de ces polytopes.
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FIG. 2.5 – Une droite tangente àk polytopes en des sommets.

Ce résultat améliore significativement les bornes précédemment connues c’est-à-dire la
borne triviale deO(n4) et la même borne supérieure deO(n2k2) pour le cas considérable-
ment plus simple de polyèdres convexes disjoints en position générale algébrique [EGHHZ00,
BDD+02]. Il est à noter que, lorsquek > 4, aucun des deux résultats énoncés dans le théo-
rème 2.8 n’implique l’autre puisqu’une droite tangente à aumoins quatre parmik polytopes
peut contenir plusieurs segments libres maximaux tangentsà quatre polytopes mais peut égale-
ment n’en contenir aucun.

Lorsquek = 4, le théorème 2.8 implique qu’il y aΘ(n2) composantes connexes de droites
tangentes aux quatre polytopes, ce qui améliore la borne précédemment connue deO(n3 logn)
qui découle de la même borne sur la complexité de l’ensemble des droites transversales à un
ensemble de polyèdres (ici quatre) avecn arêtes au total [Aga94]. Nous prouvons, de plus, une
borne plus fine quand l’un des quatre polytopes a peu d’arêtes.

Theorem 2.9.Étant donné3 polytopes avec n arêtes au total et un polytope avec m arêtes,il y
a dans le cas le pireΘ(mn) composantes connexes de droites tangentes à ces quatre polytopes.

Nous montrons également le résultat suivant qui est plus puissant, bien que plus technique,
que le théorème 2.8. Alors que le théorème 2.8 borne le nombrede composantes connexes de
tangentes, le théorème 2.10 borne le nombre de tangentes isolées avec une notion de multipli-
cité. Par exemple, une droite passant park sommets et tangente auxk polytopes correspondants
(voir figure 2.5) est comptée

(k
2

)

fois, ce qui est le nombre d’ensembles minimaux de sommets
qui admettent cette droite comme transversale isolée. Bien qu’aucun de ces théorèmes n’im-
plique l’autre, nous montrerons que la borne supérieure du théorème 2.8 se déduit facilement
du théorème 2.10.

Theorem 2.10.Étant donné k polytopes deR3 avec n arêtes au total, il existe dans le cas le
pire Θ(n2k2) ensembles minimaux d’arêtes (ouvertes) et de sommets, prisparmi les polytopes,
qui admettent une transversale isolée, possiblement obstruée, tangente à ces polytopes.

Algorithme.Nous portons à présent notre attention sur le calcul des segments libres qui sont des
transversales isolées de leurs sommets et arêtes supports et qui sont tangents aux polytopes cor-
respondants. Durand et al. [DDP02] ont proposé un algorithme pour ce problème de complexité
temporelleO((n3 + p) logn) dans le pire cas, oùp est la taille de la sortie ; cet algorithme, basé
sur un double balayage, est avéré difficile à mettre en application. Durand et al. ont également
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présenté un algorithme de complexitéΘ(n5) dans le pire cas qui utilise des heuristiques inté-
ressantes qui induisent une complexité raisonnable deΘ(n2.5) dans la pratique [DDP97]. Nous
présentons un algorithme de complexité temporelleO(n2k2 logn) et spatialeO(nk2), dans le cas
le pire, qui est aisément implantable et emploie seulement des structures de données simples ;
les polytopes peuvent se couper et être en position arbitraire. Il est à noter que Hornus [Hor06] a
récemment montré comment le complexe de visibilité de polyèdres convexes disjoints peut être
entièrement calculé avec cet algorithme comme point de départ. Une version préliminaire de cet
algorithme a été décrite pour des polyèdres convexes disjoints dans la thèse de Goaoc [Goa04]
et implantée par Zhang ; le chapitre 10 présente une brève description d’une vidéo illustrant cet
algorithme et son implantation.

Theorem 2.11.Étant donné k polytopes deR3 avec n arêtes au total, nous pouvons calculer,
en temps O(n2k2 logn) et espace O(nk), toutes les droites (possiblement obstruées) qui sont des
transversales isolées de leur ensemble de supports (arêteset sommets) et qui sont tangentes aux
polytopes correspondants. Nous pouvons également calculer, en temps O(n2k2 logn) et espace
O(nk2), tous les segments libres minimaux qui sont des transversales isolées de leurs supports
et qui sont tangents aux polytopes correspondants.

Il convient de noter que notre algorithme ne fournit pas les points extrémaux (possiblement à
l’infini) des segments libres maximaux. Le calcul de ces points extrémaux pour chaque segment
peut être fait en lançant des rayons en tempsO(log2n) par rayon avec un prétraitement de
complexité temporelle et spatialeO((nk)2+ε) [AS96]. De telles structures de données pour le
lancer de rayons ne sont cependant pas aisément implantables. Une solution alternative peut
être d’effectuer des lancés de rayons en tempsO(k logn) par rayon en utilisant la structure
hiérarchique de Dobkin-Kirkpatrick sur chaque polytope, ce qui nécessite un prétraitement de
complexité totale temporelleO(nlogn) et spatialeO(n) [DK83].

Pour souligner l’importance de considérer des polytopes pouvant se couper, on peut observer
que les scènes, par exemple en infographie, contiennent généralement des objets non convexes.
Ces objets peuvent être décomposés en ensembles de polyèdresconvexes. Il faut cependant
noter que simplement décomposer ces objets en polyèdres convexes d’intérieurs disjoints peut
induire une scène d’une complexité beaucoup plus élevée qu’une décomposition en polytopes
qui se coupent. D’ailleurs, la décomposition d’un polyèdreen polytopes d’intérieurs disjoints
peut présenter de nouvelles tangentes qui n’étaient pas présentes dans la scène originale ; en
effet une droite tangente à deux polytopes le long d’une facecommune n’est pas tangente à leur
union.

L’importance de considérer des polytopes en position arbitraire vient du fait que les scènes,
par exemple en infographie, sont généralement pleines de dégénérescences dans la mesure ou
quatre polytopes admettent fréquemment (en pratique) un nombre infini de tangentes communes
et également car les polytopes partagent souvent des arêtesou des faces. Il peut également y
avoir plus de composantes connexes de tangentes quand les objets sont en position dégénérée ;
c’est, par exemple, le cas pour des segments de droites (voirchapitre 6). Il faut de plus noter que
nous n’avons pas pu trouver un argument de perturbation garantissant la préservation de toutes
(ou au moins une fraction constante) les composantes connexes de tangentes et nous avons la
conviction que trouver une telle perturbation n’est pas chose facile.
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Pire cas Cas moyen

droites libres & un polyèdre Θ(n4) (trivial)
droites libres & terrain polyédrique O(n32c

√
logn) [HS94,Pel94]

droites libres & polytopes homothètes disjoints Ω(n3) [dBEG98]
droites libres & boules unités Ω(n2) [§11], O(n3+ε) [AAS04] Θ(n) [§11]

droites libres & boules Ω(n3) [Gli07], O(n4)

segments libre max. & terrain polyédrique Θ(n4) [CS89b]
segments libres isolés maximaux
& k polytopes arbitraire

Θ(n2k2) [§9]

segments libres maximaux & boules unités Θ(n4) [Gli07] Θ(n) [§11]

TAB . 2.1 – Bornes sur la complexité de l’ensemble des droites libres ou segments libres maxi-
maux en présence d’objets de complexité totalen. Les complexités moyennes sont données pour
une distribution uniforme des centres des boules.

2.2.7 Le nombre moyen d’évènements visuels est linéaire

Le complexe de visibilité, une partition de l’ensemble des segments libres maximaux, a
été proposé comme structure de données unifiée codant des informations de visibilité dans une
scène [PV96b] et a été employée dans des applications de rendu réaliste [DDP02]. D’autres
structures de données ont été introduites, notamment la structure de lancé de rayon de Pelle-
grini [Pel93], le graphe d’aspect [PD90] et les enveloppes visuelles [Lau94] ; voir [Dur00] pour
un récent survol.

Un problème avec ce type de structures de données qui peut empêcher leurs applications pra-
tiques est leur taille potentiellement énorme ; la taille ducomplexe de visibilité d’un ensemble
n triangles deR3 estΘ(n4) dans le cas le pire [DDP02], ce qui est prohibitif même pour des
scènes de taille relativement modeste. Les exemples de cas le pire sont cependant artificiels et,
en effet, Durand, Drettakis et Puech [DDP97] fournissent une preuve empirique indiquant que
ces bornes supérieures pires cas sont en grande partie pessimiste dans des situations pratiques ;
ils observent un taux de croissance quadratique, quoique pour des scènes assez petites. En 2D,
alors que la complexité dans le pire cas du complexe de visibilité est quadratique, les résultats
expérimentaux suggèrent fortement que la taille du complexe de visibilité d’un ensemble de
triangles dispersés est linéaire [CF99].

Notre but est de fournir des arguments théoriques pour soutenir ces observations. Dans ce
but, nous étudions la taillemoyennedu complexe de visibilité ou, d’une manière équivalente,
le nombre moyen d’événements visuels, pour des scènes deR3. Un événement visuel est un
changement combinatoire dans la vue depuis un point de vu mobile ; un tel événement se pro-
duit quand la direction de vu devient tangente à quelques objets. Pour des ensembles d’objets
convexes en position générale dansR3, la direction de vu peut être tangente à au plus quatre ob-
jets. Les événements visuels correspondent ainsi des segments de droite non obstrués et tangents
à au plus quatre objets ; les événements visuels combinatoirement différents correspondent à des
faces distinctes du complexe de visibilité.

Dans le chapitre 11, nous montrons que le nombre moyen de segments libres maximaux et
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tangents à quatre boules parmin boules unités uniformément distribuées dansR3, est linéaire.
Ceci améliore la borne supérieure deO(n8/3) par Durand et al. qui découle de la borne de
O(n8/3) sur le nombre moyen de droites (possiblement obstrué) tangentes à quatre boules pour
le même modèle [DDP02].

L’idée de notre preuve est que, étant donné un segment tangent à quatre boules, la proba-
bilité que ce segment ne soit obstrué par aucune autre boule est la probabilité que le volume
cylindrique de rayon 1 autour du segment ne contienne aucun centre des autres boules. Cette
probabilité diminue grossièrement de manière exponentielle avec la longueur du segment, ce
qui induit le résultat. Nous montrons alors une borne linéaire sur la taille moyenne du complexe
de visibilité den boules unités uniformément distribuées dansR3. Un calcul simple nous donne
également le même résultat pour la distribution de Poisson.

Nos résultats généralisent des manières suivantes. Nous montrons que, pour certains types
d’événements visuels, la borne linéaire s’applique également à des boules de rayons quel-
conques mais bornés, à des objets polyédriques, chacun inclu entre deux boules concentriques
de rayons fixes, et même à des objets fins tels que des polygones, chacun inclu entre deux cercles
concentriques de rayons fixes et dont les centres et les normales sont uniformément distribués.
Pour les autres types d’événements visuels (c’est-à-dire ceux qui se produisent près de la fron-
tière de la scène – voir la section 11.7.3 pour les détails), nous prouvons seulement une borne
deO(n2) qui est tout de même une amélioration par rapport à la précédente borne deO(n8/3)
de Durand et al. [DDP02].

Naturellement, les objets dans les scènes d’infographie sont rarement distribués uniformé-
ment ou selon une distribution de Poisson. Nous avons choisice modèle parce qu’il permet
de mener à bien les preuves de résultats théoriques. Ceci est important dans un contexte où
il y a peu de résultats rigoureux qu’ils soient théoriques ouexpérimentaux. Le même modèle,
quoique avec des hypothèses de simplification significatives, a été également employé pour étu-
dier complexité moyenne du lancé de rayons [SKHBS02,SKM98] et de l’élimination des parties
cachées par objet (occlusion culling) dans des environnements 2D urbains [NFLYCO99]. Il est
intéressant à noter que Szirmay-Kalos et al. [SKHBS02], après avoir établi des bornes sur la
complexité moyenne du lancé de rayons dans des scènes composées de boules unités distri-
buées selon un processus de Poisson, ont testé leurs algorithmes sur un nombre restreint de
scènes réalistes. Les résultats qu’ils obtiennent sont conformes à ceux de leurs bornes théo-
riques fournissant de ce fait une preuve que ce modèle a un sens. Aucun autre modèle n’a été
largement admis la communauté d’infographie et, en fait, produire des scènes aléatoires signi-
ficatives pour tester des algorithmes est un problème important. On peut noter que plutôt que
d’essayer de produire des scènes aléatoires, une approche alternative a été employée pour étu-
dier la complexité moyenne du lancé de rayons où la scène est fixée et ce sont les rayons qui
sont distribués aléatoirement (voir, par exemple, [ABCC02]).

2.2.8 Une borne supérieure sur la taille moyenne des silhouettes

La silhouette d’un polyèdre d’un point de vu donné est, grossièrement, l’ensemble des
arêtes incidentes à une face avant et une face arrière. Les silhouettes apparaissent dans di-
vers problèmes d’infographie comme l’élimination des faces cachées et le calcul d’ombre (voir
[Dug04,DD02,EGHHZ00] pour quelques références récentes)et des algorithmes pour les cal-
culer efficacement ont été largement étudiés (voir le survold’Isenberg et al. [IFH+03]). Les
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silhouettes sont également importantes dans l’identification de forme ; Sander et al. [SGG+00]
affirment que la silhouette est une des informations visuelles les plus significatives de la forme
d’un objet.

C’est un fait largement admis que la silhouette d’un polyèdreest généralement beaucoup
plus petite que le polyèdre entier. Sander et al. [SGG+00], par exemple, énoncent l’affirma-
tion récurrente que la silhouette d’un maillage est souventde tailleΘ(

√
n) où n est le nombre

d’arêtes du maillage. Une étude expérimentale par Kettner et Welzl [KW97] confirme cette af-
firmation pour un ensemble d’objets réalistes. Cette étude expérimentale a été prolongée par
McGuire [McG04] à une plus grande base de données de plus grands objets pour laquelle la
taille observée des silhouettes est approximativementn0.8.

Il y a peu de résultats théoriques soutenant ces observations. Kettner et Welzl [KW97]
montrent qu’un polyèdre convexe qui approche une sphère avec une distance de Hausdorffε
a Θ(1/ε) arêtes, et une projection orthographique aléatoire d’un tel polytope àΘ(1/

√
ε) arêtes

en moyenne. Alt et al. [AGG03] donnent des conditions pour lesquelles il peut être montré
que la silhouette d’un polyèdreconvexede taillen a une taille moyenneO(

√
n) et donnent des

conditions additionnelles pour lesquelles la taille dans le cas le pire est nécessairement sous-
linéaire.

Dans le chapitre 12, nous étudions la taille moyenne des silhouettes de polyèdresnon
convexes. La convexité est une hypothèse très forte qui était cruciale dans les résultats théo-
riques précédents. Ici, nous supposons plutôt que le polyèdre est une bonne approximation
d’une surface fixée mais non nécessairement convexe.

Nous présentons un résultat théorique soutenant l’affirmation que, pour une grande classe
d’objets, la taille moyenne de la silhouette d’un polyèdre est beaucoup plus petite que la taille du
polyèdre entier. Nous montrons que la silhouette d’un polyèdre qui approche une surface d’une
manière raisonnable a une taille moyenne deO(

√
n) où la moyenne est prise sur l’ensemble

des points de vue etn est la complexité du polyèdre ; les surfaces peuvent être nonconvexes,
non différentiables, et elles peuvent avoir des bords. Il faut noter que la moyenne est prise sur
l’ensemble des points de vue pour une surface donnée, et non pas prise sur un ensemble de
surfaces. Ceci confirme une croyance largement admise en infographie et est le premier résultat
de complexité pour des silhouettes de polyèdres non convexes.

2.2.9 Sur la complexité de l’ombre et de la pénombre

Les ombres jouent un rôle central dans la perception humaine[MKK98,Wan92]. Une grande
variété d’approche a été considérée pour simuler et faire durendu d’ombres (voir, par exemple,
les survols [Dur00,WPF90]) et beaucoup de méthodes font une utilisation intensive de matériel
informatique dédié (voir le survol [HLHS03]). Malheureusement, le calcul d’ombres réalistes
est un problème difficile, en particulier dans le cas de sources lumineuses non ponctuelles.
Cette difficulté est en partie due à la structure complexe des ombres. Nous étudions, dans le
chapitre 13, cette structure.

Un point est dit dans l’ombre s’il ne voit aucune source lumineuse même partiellement ; un
point est en pleine lumière s’il voit entièrement toutes lessources lumineuses ; autrement, il est
dans la pénombre. Tandis que la frontière entre la pénombre et la pleine lumière est raisonnable-
ment bien comprise (voir section 13.3), le bord de l’ombre est moins bien compris. Néanmoins,
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Scènes Bornes inférieures Bornes supérieures

Source lumineuse : segment
2 triangles 4 O(1)

2 «gros» polytopes Ω(n) O(n)

k polytopes Ω(nk2 +k4) O(nk3)

Source lumineuse :n-gon
k polytopes Ω(n2k3 +nk5) O(n3k3)

TAB . 2.2 – Bornes inférieures sur le nombre de composantes connexes et bornes supérieures
sur la complexité de l’ombre induite sur un plan en présence de k polytopes de complexité
totaleO(n).

Scène Bornes inférieures Bornes supérieures

k polytopes Ω(nα(k)+km+k2) O(nα(k)+kmα(k)+k2)

TAB . 2.3 – Bornes sur la complexité de la pénombre induite sur un plan par une source lumi-
neuse polygonale de complexitémen présence dek polytopes de complexité totaleO(n).

il y a une littérature étendue sur le sujet du calcul explicite de ces frontières d’ombre ; voir, par
exemple, [DF94,DDP97,DDP99,DDP02,Hec92,NN83,SG94,Tel92].

Dans le chapitre 13, nous prouvons diverses bornes, récapitulées dans les tableaux 2.2 et
2.3, sur la complexité de l’ombre et de la pénombre induite par une source lumineuse segment
ou polygonale sur un plan en présence d’obstacles polyédriques convexes. En particulier, nous
montrons qu’une source lumineuse segment peut induire, en présence de deux triangles, quatre
composantes connexes d’ombre (voir figure 2.6). Nous montrons que l’ombre induite par une
source lumineuse segment et deux «gros» obstacles convexesde complexité totalen peut avoir
Ω(n) composantes connexes dans le cas le pire. Nous prouvons également une borne inférieure
de Ω(nk2 + k4) sur le nombre maximum de composantes connexes de l’ombre et une borne
supérieure deO(nk3) sur sa complexité pour une scène composée d’une source lumineuse seg-
ment etk polytopes disjoints de complexité totalen. Enfin, nous prouvons que l’ombre induite
sur un plan par une (ou plusieurs) source lumineuse polygonale dans une scène constituée dek
polyèdres convexes de complexité totalen peut avoirΩ(n2k3+nk5) composantes connexes et a
une complexité dansO(n3k3). Ces bornes sont les premières sur la taille de l’ombre en termes
dek etn.

Ces résultats sont surprenants, premièrement, car ils montrent que l’ombre induite par une
unique source lumineuse segment peut avoir beaucoup de composantes connexes. Le fait que
l’ombre peut avoir quatre composantes connexes avec seulement deux triangles comme obs-
tacles est une surprise totale. Nos bornes inférieures deΩ(nk2 + k4) et Ω(n2k3 + nk5) compo-
santes connexes, pourk polytopes de complexité totalen sont plutôt pathologiques dans le sens
où la plupart des obstacles sont très longs et minces. Cependant, nous présentons également un
exemple avecΩ(n) composantes connexes en présence de deux «gros» polygones ou polytopes
de complexitéO(n). En ce qui concerne les bornes supérieures deO(nk3) et O(n3k3), même
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FIG. 2.6 – Quatre composantes connexes d’ombre induites sur un plan par une source lumineuse
segment en présence de deux triangles (l’ombre est en gris clair) ; rendu par A. Dietrich.

si l’écart entre ces bornes reste grand, ces bornes améliorent sensiblement les seules bornes
précédemment connues pour ce problème qui sont les bornes triviales deO(n4) et O(n6). Il est
également intéressant à noter que la preuve de la borne supérieure dans le cas de sources lumi-
neuses polygonales utilise comme lemme clef le lemme principal (Main Lemma) du chapitre 9
sur le nombre de droites coupant une droite donnée et tangente à trois polytopes. Enfin, il est
intéressant de préciser que même pour les cas les plus simples de sources lumineuses de non
ponctuelles, obtenir les bornes fines sur la complexité de l’ombre et comprendre sa structure est
un problème très difficile.

Ces résultats montrent que l’ombre, qui est bornée par des arcs de coniques, est intrinsèque-
ment beaucoup plus compliquée que la frontière entre la pénombre et la pleine lumière qui est
bornée par des segments de droites et pour laquelle nous montrons que la complexité dans le
pire cas est dansΩ(nα(k)+km+k2) et O(nα(k)+kmα(k)+k2), oùm est la complexité de la
source lumineuse polygonale.



Chapitre 3

Géométrie algorithmique non linéaire sur
les quadriques en trois dimensions

3.1 Introduction

Les surfaces algébriques réelles de faible degré comme les quadriques présentent un bon
compromis entre la simplicité, la flexibilité, et les capacités de modélisation et elles jouent un
rôle majeur dans la construction de modèles précis d’environnements physiques pour la simu-
lation et le prototypage. Par conséquent, le calcul géométrique avec des surfaces courbes a une
longue et riche histoire. Néanmoins, nos travaux récents sur la paramétrisation exacte et op-
timale de l’intersection de quadriques (voir les chapitres14 à 17) ont prouvé que, même sur
des problèmes bien étudiés, des améliorations étonnantes peuvent être accomplies. De plus, les
avancés récentes dans le calcul exact et l’amélioration constante des outils algébriques dispo-
nibles ont ouvert de nouvelles allées de recherche pour effectuer, dans ce domaine, des calculs
certifiant la topologie. En particulier, les performances des systèmes de calcul algébrique se
sont sans cesse améliorées au cours de ces dernières années et nous pouvons maintenant ré-
soudre des problèmes non triviaux (voir le chapitre 18). Cependant, en dépit de succès récents,
les systèmes de calcul algébrique demeurent coûteux en temps de calcul et mémoire vive et
leur utilisation efficace tient plus d’un art que d’une science. L’expérience a également prouvé
qu’avoir une compréhension géométrique complète des problèmes avant de recourir à de tels
systèmes augmente considérablement les chances de succès.Néanmoins, beaucoup de travail
reste à effectuer pour obtenir des algorithmes géométriques exacts traitant d’objets courbes,
même de faible degré.

Ces dernières années, j’ai focalisé mes activités de recherches sur des problèmes de calcul
certifié et effectif avec des quadriques. J’ai principalement travaillé sur le problème du cal-
cul de l’intersection de deux quadriques et, plus généralement, sur les problèmes de calcul de
complexes quadratiques (c’est-à-dire, des surfaces quadratiques par morceaux) dans le contexte
de l’évaluation du bord d’un solide. J’ai également travaillé sur les diagrammes de Voronoï
d’objets polyédriques. Je présente ci-dessous une description concise de mes contributions sur
l’intersection de quadriques et sur les diagrammes de Voronoï de droites. Je ne discute cepen-
dant pas dans ce document de mes travaux sur le calcul de complexes quadratiques, qui sont
encore en cours et non publiés.

35



36 CHAPITRE 3. GÉOMÉTRIE ALGORITHMIQUE ET QUADRIQUES

3.2 Résumé des contributions

3.2.1 Introduction

Ma réalisation principale a été l’achèvement du premier algorithme et implantation exacts,
complets, quasi optimaux, et utilisables pour paramétrer l’intersection de deux quadriques réelles
dans l’espace projectif tridimensionnel (voir les chapitres 14 à 17). Cet algorithme est une per-
cée sur un problème en suspens de longue date et, s’il reste matière à des améliorations mi-
neures, le problème est maintenant en grande partie clos.

Plus précisément, nous avons présenté (voir le chapitre 15)la première classification de
paires de quadriques basée sur le type de leur intersection dans l’espace projectif réel (par
exemple, une quartique non singulière, une quartique nodale, une cubique et une droite, deux
coniques, etc.). Basé sur cette classification, nous avons présenté le premier algorithme pratique
qui identifie correctement, sépare et calcule une paramétrisation de toutes les composantes al-
gébriques de l’intersection et fournit toute l’information topologique appropriée (voir les cha-
pitres 14 à 16). La paramétrisation est de plus simple dans lesens où (i) la paramétrisation est
rationnelle lorsque une telle paramétrisation existe (autrement l’intersection est une quartique
non singulière et toute paramétrisation implique nécessairement la racine carrée d’un polynôme)
et (ii) le nombre de racines carrées apparaissant dans les coefficients de la paramétrisation est
toujours minimal, excepté dans un nombre restreint de cas bien identifiés, dans lesquels les co-
efficients peuvent impliquer une racine carrée supplémentaire. Nous avons également implanté
cet algorithme en C++ et nous avons montré que notre implantation est extrêmement efficace
dans la pratique, sur des exemples génériques, dégénérés aussi bien que sur des données réelles
(voir le chapitre 17) ; l’implantation typiquement calculedes paramétrisations d’intersection de
quadriques avec des coefficients d’entrée ayant 50 chiffresen moins que 50 millisecondes sur
un PC standard. Notre code peut être téléchargé des sites webdu LORIA et de l’INRIA3 et il
peut également être testé via une interface web4.

J’ai également commencé récemment à travailler sur le problème du calcul de l’axe médian
ou du diagramme de Voronoï de polyèdres en trois dimensions.Un tel diagramme est une par-
tition de l’espace en cellules, chacune comprenant l’ensemble des points les plus proches d’un
objet que de tous les autres. De plus, l’ensemble des points équidistants à deux droites (ou à une
droite et à un point) est une quadrique et l’ensemble des points équidistants à trois droites est
l’intersection de deux quadriques. Le chapitre 18 présenteune caractérisation de la topologie
des diagrammes de Voronoï de trois droites. Nous prouvons que la topologie est invariante pour
des droites en position générale et nous obtenons une propriété de monotonicité sur les arcs du
diagramme. Nous en déduisons un algorithme simple pour ordonner des points le long d’un tel
arc, lequel est vraisemblablement d’un réel intérêt pour defuturs algorithmes efficaces pour le
calcul de l’axe médian d’un polyèdre. La technique de preuve, qui utilise fortement les outils
modernes de calcul formel, est également intrinsèquement intéressante.

Je présente maintenant, dans les sections 3.2.2 et 3.2.3, une description plus détaillée de ces
résultats.

3http://www.loria.fr , http://www.inria.fr
4http://www.loria.fr/equipes/vegas/qi
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3.2.2 Intersection de deux quadriques

Je présente ici une description détaillée, bien que concise, de l’ensemble de mes contri-
butions sur le problème de l’intersection de deux quadriques. Je commence par présenter un
panorama des travaux antérieurs sur le sujet. Puis, après quelques préliminaires, je rappelle
brièvement l’algorithme séminal de Levin pour paramétrer l’intersection de deux quadriques et
explique comment cet algorithme introduit des nombres algébriques de haut degré créant des
problèmes de robustesse. Je présente ensuite mes contributions.

La section 3.2.2.4 présente d’abord une amélioration importante de l’algorithme de Le-
vin qui calcule une paramétrisationquasi optimalede l’intersection de deux quadriques dans
le cas générique, c’est-à-dire quand l’intersection est une quartique non singulière (voir la fi-
gure 3.1) ; la paramétrisation est quasi optimale dans le sens où, quand l’intersection est une
quartique non singulière, le nombre de racines carrées apparaissant dans les coefficients de la
paramétrisation est minimal ou minimal plus un. La section 3.2.2.5 présente ensuite la pre-
mière classification des paires de quadriques basée sur le type de leur intersection dans l’espace
projectif réel (par exemple, quartique non singulière, quartique nodale, cubique et droite, deux
coniques, etc.). Basé sur cette classification, la section 3.2.2.6 présente des algorithmes calcu-
lant des paramétrisations quasi optimales pour tous les types possibles d’intersection singulière
(voir la figure 3.1) ; la paramétrisation est quasi optimale dans le sens où elle est rationnelle
et que le nombre de racines carrées apparaissant dans les coefficients de la paramétrisation est
minimal ou minimal plus un. Ceci induit un algorithme pratique qui identifie, sépare et calcule
des paramétrisations quasi optimales de toutes les composantes algébriques de l’intersection,
pour tout type possible d’intersection. Enfin, la section 3.2.2.7 présente une implantation exacte
et efficace de cet algorithme.

3.2.2.1 Panorama

Les plus simples de toutes les surfaces courbes, les quadriques (c’est-à-dire, les surfaces al-
gébriques de degré deux), sont des objets géométriques fondamentaux qui apparaissent dans des
contextes divers tant en modélisation géométrique, classification statistique, reconnaissance de
formes, et géométrie algorithmique. Le calcul de l’intersection de deux quadriques quelconques
est un problème fondamental et une représentation paramétrique exacte de l’intersection est sou-
vent souhaitable. Par exemple, ces calculs sont à la base d’opérations géométriques complexes
comme le calcul d’enveloppes convexes de morceaux de quadriques [HI95], d’arrangements de
quadriques [BHK+05, MTT05, SW06, Wol02], et de la frontière de solides modelésà base de
quadriques [KCF+04,Sar83].

Jusqu’à récemment, la seule méthode générale connue pour calculer une représentation pa-
ramétrique de l’intersection de deux quadriques quelconques était due à Levin [Lev76,Lev79].
Elle est basée sur une analyse du faisceau défini par les deux quadriques, c’est-à-dire l’ensemble
des combinaisons linéaires des deux quadriques.

Bien que fondamentale, la méthode de Levin a de sérieuses limitations. Quand l’intersection
est singulière ou décomposable, une paramétrisation par des fonctions rationnelles existe, mais
la méthode du faisceau de Levin ne la trouve pas et produit uneparamétrisation qui implique la
racine carrée d’un polynôme. En outre, quand une représentation en arithmétique flottante est
utilisée, la méthode de Levin peut produire des résultats qui sont topologiquement erronés et
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a. b. c.

d. e. f.

g. h. i.

j. k. l.

FIG. 3.1 – Galerie d’intersections de quadriques. a. Quartiquenodale. b. Quartique nodale avec
point singulier isolé. c. Cubique et droite sécantes. d. Cubique et droite tangentes. e. Deux co-
niques sécantes. f. Deux droites doubles. g. Quatre droitesformant un quadrilatère gauche. h.
Deux droites et une droite double. i. Conique et point correspondant à deux droites imaginaires
ne se coupant pas sur la conique. j. Quatre droites concourantes, deux réelles et deux imagi-
naires. k. Deux droites et une droite double, les trois étantconcourantes. l. Conique et droite
double.
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elle peut même échouer à produire une paramétrisation. D’autre part une implantation correcte
basée sur une arithmétique exacte est essentiellement horsde portée parce que la méthode de
Levin introduit des nombres algébriques de degrés assez élevés. Une bonne indication de cette
impraticabilité est que même pour l’exemple générique simple de la section 14.8.2, la paramé-
trisation exacte calculée par l’algorithme de Levin’s (calculé à la main avec Maple) prend plus
de 100 mégaoctets d’espace mémoire !

Au cours des années, le travail séminal de Levin a été prolongé et raffiné dans différentes di-
rections. Wilf et Manor [WM93] utilisent la classification sur C des intersections de quadriques
par la caractéristique de Segre (voir [Bro06]) pour conduirela paramétrisation de l’intersection
par la méthode du faisceau. Récemment, Wang, Goldman et Tu [WGT03] ont amélioré la mé-
thode en rendant possible le calcul d’information structurelle sur l’intersection et ses diverses
composantes connexes et en calculant une paramétrisation par des fonctions rationnelles si elle
existe. La question de savoir si leur algorithme est numériquement robuste est discutable.

Une autre méthode, d’orientation algébrique, a été présentée par Farouki, Neff et O’Con-
nor [FNO89] lorsque l’intersection est dégénérée. Dans de tels cas, en utilisant une combinaison
de concepts classiques (caractéristique de Segre) et d’outils algébriques (factorisation des poly-
nômes multivariés), les auteurs montrent que le type morphologique de la courbe d’intersection
peut être obtenu sûrement. Un intérêt notable de cette méthode est qu’elle peut produire une
paramétrisation exacte de l’intersection dans des cas simples, quand les quadriques d’entrée ont
des coefficients rationnels. Aucune implantation de cet algorithme n’est cependant connue.

Plutôt que de limiter le type de l’intersection, d’autres ont cherché à restreindre le type
des quadriques d’entrée, tirant profit du fait que des informations géométriques peuvent alors
aider à calculer la courbe d’intersection [GM91, Mil87, MG95, SJ92, SJ94]. Des procédures
spécialisées sont conçues pour calculer la courbe d’intersection dans chaque cas particulier.
Même si de telles approches sont numériquement plus stablesque les approches algébriques,
elles sont essentiellement limitées à la classe des quadriques dites naturelles (c’est-à-dire, les
plans, cônes droits, cylindres circulaires et sphères) et des intersections planaires.

Peut-être le plus intéressant des algorithmes connus pour calculer une représentation ex-
plicite de l’intersection de deux quadriques arbitraires est la méthode de Wang, Joe et Gold-
man [WJG02]. Cette méthode algébrique est basée sur une bijection birationnelle entre la courbe
d’intersection et une courbe cubique plane. La cubique est obtenue par projection depuis un
point se trouvant sur l’intersection. La classification et la paramétrisation de l’intersection sont
alors obtenues en utilisant des résultats classiques sur les cubiques planes. Les auteurs affirment
que leur algorithme est le premier à produire une classification topologique complète de l’in-
tersection (singularités, nombre et types de composantes connexes, etc.). Cependant, le calcul
du centre de la projection utilise (une version améliorée de) l’algorithme de Levin ; soit une
arithmétique flottante est employée et le point ne sera en général pas exactement sur la courbe,
ce qui peut mener à une classification incorrecte, soit une arithmétique exacte est employée et
les paramétrisations calculées impliqueront des nombres algébriques de degrés élevés, limitant
de ce fait de leur utilité pratique.

Un problème relié au calcul de l’intersection de deux quadriques est la classification des
faisceaux de quadriques en fonction du type de leur intersection. La classification des faisceaux
de quadriques sur les complexes (c’est-à-dire basé sur le type de l’intersection dansP3(C)) a
été réalisée par Segre au dix-neuvième siècle [Seg83]. Son utilité pratique est cependant limitée
puisque la classification est définie dans l’espace complexe, alors que nous sommes intéressé
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en premier lieu par les parties réelles de l’intersection.
Classifier les faisceaux de quadriques sur les réels, c’est-à-dire basé sur le type de l’inter-

section dansP3(R), est un problème important d’intérêt indépendant du calculde l’intersection.
Une telle classification est également critique pour paramétrer l’intersection de deux quadriques
pour deux raisons. Premièrement, elle donne de l’information structurelle sur la courbe d’inter-
section qui peut être employée pour conduire un algorithme de calcul d’une paramétrisation de
la courbe d’intersection (voir le chapitre 16) ; deuxièmement, c’est un préalable pour prouver
l’optimalité ou la quasi-optimalité des paramétrisationscalculées (voir le chapitre 16). Je rap-
pelle maintenant les travaux antérieurs sur la classification des faisceaux de quadriques sur les
réels.

Dans le contexte de la représentation de la géométrie des combinaisons booléennes de vo-
lumes bornés par des quadriques, Ocken, Schwartz, et Sharir[OSS87] ont montré en 1987 com-
ment deux quadriques peuvent être simultanément diagonalisées en utilisant une transformation
réelle projective et ils ont employé cette diagonalisationpour paramétrer l’intersection de deux
quadriques. L’analyse est cependant incomplète et quelques morphologies d’intersection sont
manquées pouvant mener à des classifications incorrectes. En particulier, les cas lorsque le po-
lynôme caractéristique du faisceau a deux racines doubles,correspondant à des morphologies
entre autres du type droite et cubique ou quatre droites en formant un quadrilatère gauche, sont
manquant.

Le résultat suivant sur la classification des faisceaux de quadriques basées sur le type réel
de l’intersection a été obtenu en 2002 par Tu, Wang, et Wang [TWW02] qui ont classifié les
faisceaux dans le cas générique, c’est-à-dire quand l’intersection est une quartique non singu-
lière (dans l’espace complexe) et dont le nombre de composantes connexes dans l’espace réel
est deux, un, ou zéro. Il est à noter que Wang et Krasauskas [WK04] ont également obtenu
des résultats sur la classification des faisceaux dans le casgénérique sous l’hypothèse addition-
nelle que le faisceau est généré par deux ellipsoïdes de l’espace affine. Reliés a ces résultats,
Wang, Wang, et Kim ont également obtenu des résultats sur la séparation de deux ellipsoïdes
affines [WWK01].

En Septembre 2005, Tu, Wang, Mourrain, et Wang ont publié un rapport de recherche
[TWMW05] présentant une classification des faisceaux très similaire à celle présentée au cha-
pitre 15 (également publié dans la thèse de Dupont en 2004 [Dup04]). Ils utilisent comme outil
mathématique de base le théorème des paires de formes canoniques d’Uhlig et raffinent la clas-
sification des faisceaux de quadriques sur les complexes d’exactement la même manière que
nous. Il y a cependant des différences entre les deux approches. D’abord, nous classifions les
faisceaux en utilisant l’inertie des quadriques aux racines multiples du polynôme caractéristique
du faisceau, excepté dans un nombre restreint de cas où des conditions géométriques simples
permettent de distinguer les cas. En revanche, Tu et al. classifient les faisceaux en utilisant
l’inertie des quadriques entre les racines du polynôme caractéristique (plus le degré du poly-
nôme minimal du polynôme caractéristique dans certains cas) et se base sur des expansions de
Puiseux pour déduire de l’information aux racines (multiples) du polynôme caractéristique. En
second lieu, la classification de Tu et al. est limitée aux faisceaux non dégénérés (c’est-à-dire les
faisceaux dont le polynôme caractéristique n’est pas identiquement nul), tandis que notre clas-
sification couvre tous les cas possibles. Troisièmement, enplus de la classification de tous les
types de morphologie de l’intersection réelle de quadriques, nous présentons également un algo-
rithme pour calculer efficacement ce type morphologique de l’intersection de deux quadriques
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quelconques dans l’espace projectif réel.

3.2.2.2 Préliminaires

La quadrique associée a une matrice réelle symétriqueSde taille 4×4 est l’ensembleQS =
{x ∈ P3 | xTSx = 0}, où Pn = P(R)n dénote l’espace projectif réel de dimensionn. On peut
noter que toute matrice de la formeαS, où α ∈ R \ {0}, représente la même quadriqueQS.
Quand l’espace ambiant estR3 au lieu deP(R)3, la quadrique est simplementQS sans ses
points à l’infini.

Étant donné une matrice réelle symétriqueSde taillen+1, la matrice supérieure gauche de
taille n, dénotéeSu, est appelée lasous matrice principaledeSet son déterminant est appelé le
sous-déterminant principaldeS.

La matriceS étant symétrique, toutes ses valeurs propres sont réelles.Soit σ+ et σ− les
nombres de valeurs propres positives et négatives deS, respectivement. Lerang de S est la
somme deσ+ et σ−. Nous définissons l’inertie de S et QS comme la paire(max(σ+,σ−),
min(σ+,σ−)). (Notons que l’inertie est généralement définie comme la paire (σ+,σ−), mais
notre définition est ici plus appropriée dans le sens oùQS et Q−S sont la même quadrique. Une
matriceSet quadriqueQS sont dites singulières si le déterminant deSest nul ; autrement elles
sont non singulières.

L’inertie d’une quadrique dansP3 est un concept fondamental qui remplace d’une certaine
façon le type usuel d’une quadrique dansR3 ; le tableau 3.1 rappelle la correspondance entre
les inerties dansP3 les types dansR3.

DansP3, toutes les quadriques qui ne sont pas d’inertie(3,1) sont soit des surfaces réglées
soit ne sont pas des surfaces (comme une droite ou un point). De plus, les quadriques d’inertie
(3,1) sont les seules à avoir un déterminant strictement négatif.Les quadriques non singulières
sont celles de rang 4, c’est-à-dire celles d’inertie(4,0),(3,1) et (2,2). Les quadriques d’inertie
(4,0) sont néanmoins vides de points réels. Une quadrique de rang 3est appelée uncône. Un
cône est dit réel si son inertie est(2,1) ; autrement, il est dit imaginaire et ses points réels sont
réduits à son point singulier. Une quadrique de rang 2 est unepaire de plans. Lapaire de plans
est réelle si son inertie est(1,1) ; elle est dite imaginaire si son inertie est(2,0) et ses points
réels sont réduits aux points singuliers, c’est-à-dire la droite d’intersection des deux plans. Une
quadrique d’inertie(1,0) est unplan doubleet est nécessairement réelle.

SoientSet T deux matrices réelles symétriques de même taille etR(λ,µ) = λS+µT. L’en-
semble

{R(λ,µ) | (λ,µ) ∈ P1}

est appelé lefaisceau des matricesengendré parS et T. Par simplicité, nous écrivons parfois
un élément du faisceau commeR(λ) = λS−T, λ ∈ R = R∪ {∞}. Associé au faisceau de
matrices est lefaisceau de quadriques{QR(λ,µ) | (λ,µ) ∈ P1}. Rappelons que l’intersection de
deux quadriques distinctes d’un faisceau est indépendantedu choix de ces deux quadriques.
Enfin, la forme binaire

D(λ,µ) = detR(λ,µ)

est appelé lepolynôme caractéristiquedu faisceau.
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Inertie deQS Inertie deSu Équation canonique Type Euclidien deQS

Euclidienne

(4,0) (3,0) x2 +y2 +z2 +1 /0 (ellipsoïde imaginaire)
(3,1) (3,0) x2 +y2 +z2−1 ellipsoïde

(2,1) x2 +y2−z2 +1 hyperboloïde à deux nappes
(2,0) x2 +y2 +z paraboloïde elliptique

(3,0) (3,0) x2 +y2 +z2 point
(2,0) x2 +y2 +1 /0 (cylindre elliptique imaginaire)

(2,2) (2,1) x2 +y2−z2−1 hyperboloïde à une nappe
(1,1) x2−y2 +z paraboloïde hyperbolique

(2,1) (2,1) x2 +y2−z2 cône
(2,0) x2 +y2−1 cylindre elliptique
(1,1) x2−y2 +1 cylindre hyperbolique
(1,0) x2 +y cylindre parabolique

(2,0) (2,0) x2 +y2 droite
(1,0) x2 +1 /0 (plans parallèles imaginaires)

(1,1) (1,1) x2−y2 plans sécants
(1,0) x2−1 plans parallèles
(0,0) x plan simple

(1,0) (1,0) x2 plan double
(0,0) 1 /0 (plan double à l’infini)

TAB . 3.1 – Correspondance entre l’inertie des quadriques et leurs types Euclidien.

3.2.2.3 La méthode de Levin

L’algorithme d’intersection de quadriques de Levin [Lev76,Lev79] étant séminal dans pres-
que tous les travaux sur l’intersection de quadriques, y compris les nôtres, nous commençons
par rappeler les étapes principales de cet algorithme de calcul d’une représentation paramétrée
de l’intersection de deux quadriques implicites distinctes QS et QT deR3. De cette brève des-
cription, nous identifions où cet algorithme introduit des nombres algébriques de hauts degrés
et pourquoi c’est un problème.

L’idée fondamentale de l’algorithme de Levin est la suivante : si (par exemple)QS est d’un
certain «bon» type, alorsQS admet une paramétrisation qui est linéaire en l’un de ses paramètres
et la substitution de cette paramétrisation dans l’équation implicite deQT induit une équation
de degré 2 en l’un des paramètres (au lieu d’une équation de degré 4) qui peut être facilement
résolu pour obtenir une représentation paramétrique deQS∩QT . Si par contre niQS ni QT n’est
d’un «bon» type, alors on peut trouver dans le faisceau engendré parQS et QT une quadrique
QR d’un «bon» type ce qui nous ramène à la situation précédente en remplaçantQS parQR.

Theorem 3.1 ([Lev76]). Le faisceau engendré par deux quadriques distinctes quelconques
contient au moins une quadrique réglée simple, c’est-à-dire, l’une des quadriques énumérées
dans le tableau 3.2 ou l’ensemble vide.
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quadriques
équation

canonique (a,b > 0)
paramétrisation~X = [x,y,z], u,v∈ R

plan simple x = 0 ~X(u,v) = [0,u,v]
plan double x2 = 0 ~X(u,v) = [0,u,v]

plans parallèles ax2 = 1 ~X(u,v) = [ 1√
a,u,v], ~X(u,v) = [− 1√

a,u,v]

plans sécants ax2−by2 = 0 ~X(u,v) = [ u√
a, u√

b
,v], ~X(u,v) = [ u√

a,− u√
b
,v]

paraboloïde hyperbolique ax2−by2−z= 0 ~X(u,v) = [ u+v
2
√

a, u−v
2
√

b
,uv]

cylindre parabolique ax2−y = 0 ~X(u,v) = [u,au2,v]
cylindre hyperbolique ax2−by2 = 1 ~X(u,v) = [ 1

2
√

a(u+ 1
u), 1

2
√

b
(u+ 1

u),v]

TAB . 3.2 – Paramétrisations des quadriques réglées simples [Lev76].

Plus en détail, la méthode de Levin est la suivante.

1. Déterminer une quadrique réglée simple dans le faisceau{QR(λ)=λS−T | λ ∈ R} engendré
par QS et QT , ou reporter une intersection vide. Puisque les quadriquesréglées simples
ont un sous-déterminant principal nul, ceci peut être réalisé en calculant unλ0 ∈ R tel
que det(Ru(λ0)) = 0 etQR = QR(λ0) soit réglée simple ; d’après le théorème 3.1, une telle
quadrique existe dans le faisceau ou l’intersection est vide. Supposons maintenant que
l’intersection n’est pas vide et queQR et QS sont distincts. Nous avons alorsQS∩QT =
QS∩QR.

2. Déterminer une matrice de transformation orthonormalePu qui envoieRu en forme dia-
gonale en calculant les valeurs propres et les vecteurs propres normalisés deRu. Déduire
une matrice de transformationP qui envoieQR sous forme canonique. Dans le repère
orthonormal dans lequelQR est canonique,QR peut être paramétré par l’une des paramé-
trisations~X du tableau 3.2.

3. Calculer la matriceS′ = PTSP de la quadriqueQS dans le repère canonique deQR et
considérer l’équation

~XTS′~X = a(u)v2 +b(u)v+c(u) = 0, (3.1)

où ~X a été augmenté d’une quatrième coordonnée égale à 1. (Les paramétrisations du
tableau 3.2 sont telles quea(u),b(u) et c(u) sont des polynômes du degré au plus quatre
enu.)
Résoudre (3.1) env en fonction deu et déterminer le domaine de définition deu sur
lequel les solutions sont définies, c’est-à-dire l’ensemble desu tels que∆(u) = b2(u)−
4a(u)c(u) > 0. Substituerv par son expression en termes deu dans~X donne une paramé-
trisation deQS∩QT = QS∩QR dans le repère orthonormal dans lequelQR est canonique.

4. ReporterP~X(u), la paramétrisation deQS∩QT dans le repère initial et le domaine des
u∈ R pour lesquels la paramétrisation est définie surR.

Cette méthode est très élégante et puissante puisqu’elle donne une représentation explicite
de l’intersection de deux quadriques quelconques. Cependant, elle est loin d’être idéale du point
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de vue de la précision et de la robustesse puisqu’elle introduit des nombres non rationnels à di-
vers endroits. Ainsi, si une arithmétique flottante est utilisée pour représenter les nombres, le
résultat peut être erroné (géométriquement et topologiquement) ou, également, le programme
peut ne pas être capable de calculer une paramétrisation (enparticulier dans étape 1 lorsque les
types des quadriquesQR(λ0) ne sont pas calculés correctement). En théorie, une arithmétique
exacte pourrait être utilisé, sauf que cela ralentirait sérieusement les calculs. En pratique, ce-
pendant, une implantation correcte utilisant une arithmétique exacte semble hors de portée en
raison du degré élevé des nombres algébriques impliqués.

Examinons de manière plus approfondie les sources potentielles d’instabilité numérique
dans L’algorithme de Levin.

– Étape 1: λ0 est la racine d’un polynôme de degré trois à coefficients rationnels. Dans le
cas le pire,λ0 est donc exprimée avec des radicaux de profondeur deux (deuxracines car-
rées imbriquées). Puisque déterminer siQR(λ0) est une quadrique réglée simple nécessite
de calculer son type Euclidien (ce qui n’est pas nécessairement une tâche facile dans la
mesure oùQR(λ0−ε) etQR(λ0+ε) peuvent être et sont généralement de type différent), cette
étape est vraisemblablement la plus grande source de problèmes de robustesse.

– Étape 2: PuisqueQR est une quadrique réglée simple, le polynôme caractéristique deRu

est un polynôme de degré trois ayant zéro comme racine et dontles coefficients sont dans
l’extension de corpsQ(λ0). Ainsi, les valeurs propres non nulles deRu peuvent impli-
quer des radicaux imbriqués de profondeur trois. De plus, comme les vecteurs propres
correspondants doivent être normalisés, les coefficients de la matrice de transformation
sont exprimés avec des radicaux imbriqués de profondeur quatre dans le pire des cas.
Les coefficients de la paramétrisation~X de QR étant exprimés avec des racines carrées
des coefficients de l’équation canoniqueQPTRP (voir le tableau 3.2), les coefficients de
la paramétrisation deQS∩QT peuvent impliquer des radicaux imbriqués de profondeur
cinq dans le pire des cas.

– Étape 3: Calculer le domaine sur lequel~X est défini revient à résoudre l’équation de degré
quatre∆(u) = 0 dont les coefficients contiennent des radicaux imbriqués de profondeur
cinq dans le pire des cas.

Il est intéressant de noter que cette description dans le pire des cas est en fait le cas géné-
rique. En effet, étant donné deux quadriques quelconques à coefficients rationnels, le polynôme
det(Ru(λ)) n’a génériquement aucune racine rationnelle (une conséquence du théorème d’irré-
ductibilité de Hilbert).

3.2.2.4 L’algorithme générique

Nous présentons, dans le chapitre 14, une première mais majeure amélioration de la mé-
thode du faisceau de Levin pour calculer des représentations paramétriques de l’intersection de
quadriques. Cet «algorithme générique» évite l’apparitionde la plupart des radicaux apparais-
sant dans l’algorithme de Levin. Nous montrons que cet algorithme produit des paramétrisa-
tions quasi optimales dans le cas générique, c’est-à-dire quand l’intersection est une quartique
non singulière. Ces paramétrisations sont cependant non optimales pour toutes les intersections
singulières et il sera nécessaire de raffiner cet algorithmepour les cas singuliers (voir les cha-
pitres 15 et 16). Cet algorithme est cependant suffisamment simple, robuste et efficace pour être
intéressant en tant que tel. Nous donnons ici une brève description de cet algorithme et des idées
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inertie
deS

équation canonique
(a,b,c,d > 0)

paramétrisation~X = [x,y,z,w]

(4,0) ax2 +by2 +cz2 +dw2 = 0 QS = /0
(3,0) ax2 +by2 +cz2 = 0 QS est un point(0,0,0,1)

(2,2) ax2 +by2−cz2−dw2 = 0 ~X = [ut+avs
a , us−bvt

b , ut−avs√
ac , us+bvt√

bd
], (u,v),(s, t) ∈ P1

(2,1) ax2 +by2−cz2 = 0 ~X = [uv, u2−abv2
2b , u2+abv2

2
√

bc
,s], (u,v,s) ∈ P⋆2

(2,0) ax2 +by2 = 0 ~X = [0,0,u,v], (u,v) ∈ P1

(1,1) ax2−by2 = 0 ~X1 = [u,
√

ab
b u,v,s], ~X2 = [u,−

√
ab
b u,v,s], (u,v,s) ∈ P2

(1,0) ax2 = 0 ~X = [0,u,v,s], (u,v,s) ∈ P2

TAB . 3.3 – Paramétrisation des quadriques projectives d’inertie distinctes de(3,1). Dans la
paramétrisation des cônes projectifs,P⋆2 dénote l’espace réel quasi projectif de dimension deux
défini comme quotient deR3\{0,0,0} par la relation d’équivalence∼ où (x,y,z) ∼ (y1,y2,y3)
si et seulement si∃λ ∈ R\{0} tel que(x,y,z) = (λy1,λy2,λ2y3).

fondamentales à la base de celui-ci.
Nous commençons par présenter le cadre projectif sous-jacent à notre approche et énon-

çons le théorème principal sur lequel l’approche se repose.Dans la suite, toutes les quadriques
d’entrée sont considérées à coefficients rationnels.

Idées clefs. Le premier élément de notre approche est de travailler, non dansR3, mais dans
l’espace projectif réelP3. Rappelons que, dans l’espace projectif, les quadriques sont caracté-
risées par leur inertie (c’est-à-dire, par le nombre de valeurs propres positives et négatives de
la matrice 4×4 associée), tandis que dans l’espace Euclidien elles sont caractérisées par leur
inertie et l’inertie de leur sous-matrice principale (voirle tableau 3.1).

Dans notre algorithme, les quadriques d’inertie différente de(3,1) (i.e., les quadriques ré-
glées) jouent le rôle des quadriques réglées simples dans laméthode de Levin. Dans le ta-
bleau 3.3, nous présentons un nouvel ensemble de paramétrisations propres5 des quadriques
projectives réglées qui sont linéaires en l’un de leurs paramètres et utilisent, dans le pire des
cas, un nombre minimal de racines carrées6.

Un élément clef de notre approche découle du théorème suivant, qui correspond, dans l’en-
vironnement projectif, au théorème de Levin sur l’existence de quadriques réglées simples dans
un faisceau.

Theorem 3.2. Dans un faisceau engendré par deux quadriques distinctes quelconques, l’en-
sembleS des quadriques d’inerties différentes de(3,1) n’est pas vide. De plus, si aucune qua-
drique deS n’est à coefficient rationnel, alors l’intersection des deux quadriques est réduite à
deux points distincts.

5Une paramétrisation est propre s’il y a bijection entre les points de la quadrique et les paramètres.
6Notons qu’il y a une dépendance entre le degré minimal d’une paramétrisation en l’un de ses paramètres et

le degré du corps des coefficients. Par exemple, Wang, Joe et Goldman [WJG97] donnent des paramétrisations de
quadriques qui ont des coefficients rationnels mais qui sontquadratiques en tout de leurs paramètres.
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Ce théorème, que nous prouvons en utilisant les résultats d’Uhlig [Uhl73, Uhl76] sur les
diagonalisations simultanées par bloc de paires de matrices réelles symétriques, généralise le
théorème 3.1. En effet, il assure que les deux quadriques dont nous calculons finalement l’inter-
section ont des coefficients rationnels, excepté dans un castrès spécifique où l’intersection est
réduite à deux points. Ce résultat nous permet donc d’éviter l’apparition de nombreux radicaux
dans l’algorithme.

Le dernier élément sous-jacent à notre approche est l’utilisation de la réduction de Gauss
des formes quadratiques pour diagonaliser une matrice symétrique et calculer une forme ca-
nonique de la quadrique projective associée, au lieu de l’approche traditionnelle par calcul de
valeurs et vecteurs propres employée par Levin. Comme la transformation de Gauss est ration-
nelle (les coefficients de la matriceP qui envoieSsous forme canonique sont rationnels), cette
transformation évite également l’apparition de certains radicaux dans l’algorithme. Il faut noter
que cette transformation ne crée pas de problème lors de la paramétrisation de la quadrique
sous forme canonique (de matrice associéeS′ = PTSP) puisque, d’après la loi de Sylvester sur
l’inertie, SetS′ ont la même inertie [Lam73].

Survol de l’algorithme. Nous pouvons maintenant décrire les étapes générales de notre al-
gorithme générique.

Soit R(λ) = λS−T le faisceau engendré par les quadriquesQS et QT deP3 et soitD(λ) =
det(R(λ)) le polynôme caractéristique du faisceau. Il faut rappeler que si cet algorithme est
valide pour tout type d’intersection, il n’est réellement efficace que dans le cas oùD(λ) n’est
pas identiquement nul et n’a aucune racine multiple. Dans les autres cas, un meilleur algorithme
est décrit dans les chapitres 15 et 16. L’esquisse de l’algorithme d’intersection est comme suit.

1. Calculer une quadriqueQR à coefficients rationnels dans le faisceau, tel que detR> 0 si
c’est possible et detR= 0 sinon. (S’il n’existe pas de telsR, l’intersection est réduite à
deux points, que nous calculons.) Si l’inertie deR est(4,0), nous reportons une intersec-
tion est vide.
Supposons par simplicité queQS 6= QR et donc queQS∩QR = QS∩QT .

2. Si l’inertie deRn’est pas(2,2), appliquer la réduction de Gauss àRet calculer un repère
dans lequelPTRPest diagonal.
Si l’inertie de R est (2,2), sa paramétrisation du tableau 3.3 contient en général deux
racines carrées mais on peut en éviter une de la manière suivante. D’abord, calculer un
point rationnel suffisamment près deQR tel que la quadrique du faisceau passant par ce
point ait la même inertie queQR. RemplacerQR par cette quadrique. Ce point ration-
nel peut être utilisé pour calculer un repère dans lequelPTRP est la matrice diagonale
diag(1,1,−1,−δ), avecδ ∈ Q.
Dans le repère local,QR peut être paramétré par la paramétrisationX du tableau 3.3 en
impliquant au plus une racine carrée. Calculer la paramétrisationPX deQR dans le repère
global.

3. Considérer l’équation
Ω : (P~X)TS(P~X) = 0. (3.2)

L’équationΩ est de degré au plus 2 en (au moins) un des paramètres. RésoudreΩ pour
ce paramètre en termes de l’autre (ou des autres) et calculerle domaine de définition de
la solution.
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FIG. 3.2 – Intersection d’un cylindre elliptique et d’un hyperboloïde à une nappe en une quar-
tique non singulière.

4. Substituer ce paramètre dansP~X donne une paramétrisation de l’intersection deQSetQT .

Exemple. Il est intéressant de noter que quoique notre algorithme produise une paramé-
trisation exacte de l’intersection de deux quadriques, il tend à produire une paramétrisation
«simple». Il est en particulier intéressant de comparer lesparamétrisations exactes produites
par notre algorithme aux paramétrisations approchées produites par d’autres algorithmes. Nous
donnons ici un exemple (voir les chapitres 14 et 17 pour d’autres exemples).

Considérons l’exemple 4 de [WJG02], qui est l’intersection d’un cylindre elliptique et d’un
hyperboloïde à une nappe (voir figure 3.2) d’équations :

{

4x2 +z2−w2 = 0,

x2 +4y2−z2−w2 = 0.

Dans [WJG02], les auteurs trouvent la paramétrisation suivante pour la courbe d’intersec-
tion :

X(u) =









0.0
1131.3708u3−5760.0u2 +10861.1602u−8192.0

−1600.0u3 +10861.1602u2−21504.0u+11585.2375
1600.0u3 +3620.2867u2 +5120.0u+11585.2375









±









−80.0u+1181.0193
0.0
0.0
0.0









√

905.0967u3−3328.0u2 +2896.3094u

(3.3)

avecu dans l’adhérence deR et tel que la racine carrée soit définie. Les auteurs rapportent
une erreur de calcul sur cet exemple (mesurée comme distancemaximale d’un d’échantillon
de points sur la courbe aux quadriques données) de l’ordre deO(10−7). En comparaison, notre
algorithme produit la paramétrisation exacte et simple suivante (en moins 10 ms sur un PC
standard) :

X(u) =









2u3−6u
7u2 +3
10u2−6

2u3 +18u









±









−2
u

2u
2









√

−3u4 +26u2−3.

Conclusion. Cet algorithme représente déjà une amélioration substantielle sur l’algorithme
de Levin et ses améliorations ultérieures. En effet, nous prouvons que, quand l’intersection est
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une quartique non singulière (le cas générique), l’algorithme calcule des paramétrisations qui
sont optimales ou quasi optimales en le nombre de radicaux impliqués ; en d’autres termes, il
y a au plus une racine carrée inutile dans les coefficients desparamétrisations. Nous prouvons
également que décider si cette racine carrée peut être évitée est, en général, hors de portée7 et
que la paramétrisation est optimale dans certains cas. De plus, notre l’algorithme permet, pour
la première fois, de calculer dans la pratique une forme paramétrée exacte de l’intersection de
deux quadriques arbitraires à coefficients rationnels.

Même si cet algorithme se concentre sur le cas générique de l’intersection en une quartique
non singulière, il peut également être employé quand l’intersection est singulière. Malheureu-
sement, ceci ne mène pas toujours à une paramétrisation de l’intersection avec seulement des
fonctions rationnelles (que l’on sait exister pour les intersections singulières car elles sont de
genre zéro). En particulier, quand l’intersectionC est une quartique singulière,Ω est irréduc-
tible puisqueC l’est, et résoudreΩ dans l’une de ses variables induit dans la paramétrisation
une racine carrée d’un polynôme.

Calculer des paramétrisations avec des fonctions rationnelles dans tous les cas d’intersection
singulière nécessite de repenser la base de notre algorithme. Essentiellement, tandis que l’idée
de l’algorithme générique est d’employer une quadrique intermédiaire rationnelleQR de rang
maximumdans le faisceau, l’algorithme raffiné emploiera à la place une quadrique intermédiaire
rationnelle de rangminimum.

Procéder de cette façon aura le double avantage de calculer des paramétrisations les plus
simples possibles et de mieux contrôler la taille de leurs coefficients. Le prix à payer est la
multitude des cas et la nécessité de développer des procédures dédiées pour les différents types
d’intersection dans l’espace projectif réel. Ceci est le sujet des sections 3.2.2.5 et 3.2.2.6 et des
chapitres 15 et 16.

3.2.2.5 Classification des faisceaux

Nous présentons dans le chapitre 15 la première classification des faisceaux de quadriques
basées sur le type de leur intersection dans l’espace projectif réel. Un résumé de cette clas-
sification est présenté dans les tableaux 3.4 et 3.5. Nous montrons également comment cette
classification peut être utilisée pour calculer efficacement le type réel de l’intersection de deux
quadriques du faisceau. En particulier, nous montrons comment des calculs avec des nombres
non rationnels peuvent être évités pour déterminer le type de l’intersection quand les quadriques
d’entrée ont des coefficients rationnels.

Comme nous le verrons dans le chapitre 16, cette classification est critique pour notre al-
gorithme de paramétrisation de l’intersection de deux quadriques. En effet, notre algorithme
détermine d’abord, en utilisant cette classification, le type réel de l’intersection et utilise alors
l’information structurelle associée à la courbe d’intersection pour conduire l’algorithme de cal-
cul d’une paramétrisation.

Il est cependant à noter que, quoique la classification des faisceaux sur les réels soit pré-
sentée ici comme une étape intermédiaire dans un processus plus global (c’est-à-dire de para-
métrisation de l’intersection), cette classification est intéressante intrinsèquement. Elle est par

7En effet, décider à si une racine carrée peut être évitée revient, en général, à décider si une surface de degré 8
contient un point rationnel. De plus, éliminer, le cas échéant, cette racine carrée inutile revient à calculer un point
rationnel sur cette surface de degré 8.
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Segre
racines de

D(λ,µ) dansC

rang ou
inertie de
R(λ1,µ1)

rang ou
inertie de
R(λ2,µ2)

type de
(λ2,µ2)

s type de l’intersection dansP3(R)

[1111] 4 racines simples
quartique lisse ou/0 ; voir [Fin37] &

[TWW02] (ou aussi Th. 14.5 & 14.25)
[112] 1 racine double (3,0) réel point
[112] 1 racine double (2,1) réel − quartique nodale ; noeud isolé
[112] 1 racine double (2,1) réel + quartique nodale ; singularité convexe
[112] 1 racine double rang 3 complexe quartique nodale ; singularité concave

[11(11)] 1 racine double (2,0) réel + /0
[11(11)] 1 racine double (2,0) réel − deux points
[11(11)] 1 racine double (1,1) (2,1) réel − deux coniques non sécantes
[11(11)] 1 racine double (1,1) (3,0) réel − /0
[11(11)] 1 racine double (1,1) réel + deux coniques sécantes ; sing. convexe
[11(11)] 1 racine double rang 2 complexe − conique
[11(11)] 1 racine double rang 2 complexe + deux coniques sécantes ; sing. concave

[13] racine triple rang 3 quartique cuspidale
[1(21)] racine triple (2,0) point double
[1(21)] racine triple (1,1) deux coniques tangentes
[1(111)] racine triple rang 1 (2,1) conique double
[1(111)] racine triple rang 1 (3,0) /0

[4] racine quadruple rang 3 cubique et droite tangente
[(31)] racine quadruple (1,1) − conique

[(31)] racine quadruple (1,1) +
conique et deux droites sécantes

sur la conique
[(22)] racine quadruple (2,0) droite double
[(22)] racine quadruple (1,1) + deux droites simples & une droite double
[(211)] racine quadruple rang 1 − point
[(211)] racine quadruple rang 1 + deux droites double sécante
[(1111)] racine quadruple rang 0 quadrique non singulière du faisceau

[22] 2 racines doubles rang 3 rang 3 réel cubique et droite sécantes
[22] 2 racines doubles rang 3 rang 3 complexe cubique et droite non sécantes

[2(11)] 2 racines doubles (3,0) rang 2 réel point
[2(11)] 2 racines doubles (2,1) rang 2 réel + conique et deux droites sécantes

[(11)(11)] 2 racines doubles (2,0) (2,0) réel /0
[(11)(11)] 2 racines doubles (2,0) (1,1) réel deux points
[(11)(11)] 2 racines doubles (1,1) (2,0) réel deux points
[(11)(11)] 2 racines doubles (1,1) (1,1) réel quatre droites (quadrilatère gauche)
[(11)(11)] 2 racines doubles rang 2 rang 2 complexe deux droites sécantes

TAB . 3.4 – Classification des faisceaux dans le cas oùD(λ,µ) n’est pas identiquement nul.
(λ1,µ1) dénote une racine multiple deD(λ,µ) (si une existe) et(λ2,µ2) une autre racine (non
nécessairement simple). Si(λ1,µ1) est une racine double alorss est le signe dedet(λS+µT)

(µ1λ−λ1µ)2 en

(λ,µ) = (λ1,µ1) ; si (λ1,µ1) est une racine quadruple alorss est le signe de det(λS+µT) pour
tout (λ,µ) 6= (λ1,µ1). Lorsque le polynôme caractéristique à une ou des racines multiples, les
autres racines simples ne sont pas indiquées. La caractéristique de Segre est mentionnée par
clarté, mais n’est pas nécessaire pour la classification.
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Segre
racines de

D3(λ,µ) dansC

rang ou
inertie de
R(λ1,µ1)

inertie de
R(λ2,µ2)

type de
(λ2,µ2)

type de l’intersection dansP3(R)

[1{3}] pas de point
singulier commun

conique et droite double

[111] 3 racines simples (1,1) (1,1) réel quatre droites concurrentes enp
[111] 3 racines simples (2,0) réel point p
[111] 3 racines simples (2,0) réel point p
[111] 3 racines simples complexe deux droites sécantes enp
[12] racine double (1,1) deux droites et une droite double sécantes enp
[12] racine double (2,0) droite double

[1(11)] racine double rang 1 (1,1) deux droites double sécantes enp
[1(11)] racine double rang 1 (2,0) point p

[3] racine triple rang 2 droite et droite triple sécantes enp
[(21)] racine triple rang 1 une droite quadruple
[(111)] racine triple rang 0 quadrique non triviale du faisceau

D3(λ,µ) ≡ 0 idem au tableau 15.3

TAB . 3.5 – Classification des faisceaux dans le cas oùD(λ,µ) est identiquement nul. Dans
la partie inférieure du tableau, les quadriques du faisceauont un point singulierp en commun.
D3(λ,µ) est le déterminant de la matrice 3×3 supérieure gauche deR(λ,µ) après transformation
par une congruence envoyantp sur (0,0,0,1). La conique associée à une racine deD3(λ,µ)
correspond à la matrice 3×3 supérieure gauche deR(λ,µ). (λ1,µ1) dénote la racine multiple
deD3(λ,µ) (si une existe) et(λ2,µ2) une autre racine. LorsqueD3(λ,µ) a une racine multiple,
les autres racines simples ne sont pas indiquées. La caractéristique de Segre est mentionnée par
clarté, mais n’est pas nécessaire pour la classification.

exemple utilisée dans les travaux du chapitre 18 sur la caractérisation de la topologie des dia-
grammes de Voronoï de trois droites. Elle peut également être employé dans un contexte de
détection de collision pour prévoir à quel moment deux objets vont rentrer en collision.

Notre preuve utilise fortement le résultat d’Uhlig sur la diagonalisation simultanée par blocs
de paires de matrices symétriques réelles [Uhl73, Uhl76]. L’idée est la suivante. Pour chaque
type possible (réel ou complexe) et multiplicité des racines du polynôme caractéristique du fais-
ceau, nous calculons, en utilisant le résultat d’Uhlig, la forme canonique des deux quadriques
que nous intersectons. Les formes canoniques de ces deux quadriques sont des quadriques dont
les matrices associées sont diagonales par blocs et qui sontobtenues à partir des deux qua-
driques d’entrées par une même transformation de congruence, laquelle préserve les racines
(valeurs et multiplicités) du polynôme caractéristique dufaisceau. Nous déduisons alors de ces
formes canoniques desformes normalesde ces deux quadriques sur les réels, par translation et
changement d’échelle envoyant les racines du polynôme caractéristique sur des valeurs simples.
Ces formes normales sont dans un sens les «plus simples» paires de quadriques ayant comme
intersection le type donné. Le faisceau normal correspondant est équivalent par une transfor-
mation projective réelle à tout faisceau de quadriques ayant le même type d’intersection réel et
complexe.

Par exemple, quand le polynôme caractéristique du faisceaua une racine double et deux
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racines réelles simples, les deux quadriques, sous leur forme normale, ont comme équations
y2 +az2 +bw2 = 0 etxy+cw2 = 0 aveca,b,c égal à±1. Leur intersection est une quartique
nodale dansP3(C) et, selon les valeurs dea,b,c, l’intersection, dansP3(R), est un point, une
quartique nodale avec un noeud isolé, ou une quartique nodale avec une singularité convexe
(voir le tableau 3.4).

Il convient noter que les transformations projectives réelles qui envoient les quadriques d’en-
trée sous forme normale, si elles préservent le type réel de l’intersection, peuvent impliquer des
nombres irrationnels. Il s’ensuit que ces transformationsne sont pas pratiques pour calculer,
dans les faits, l’intersection de deux quadriques. Cependant, elles servent parfaitement leur ob-
jectif pour classifier les faisceaux de quadriques selon leur intersection.

3.2.2.6 Paramétrisation des intersections singulières

Notre classification des faisceaux de quadriques sur les réels nous permet de déterminer effi-
cacement le type réel de l’intersection de deux quadriques données. Nous pouvons en outre nous
concentrer sur les intersections singulières (c’est-à-dire autre qu’une quartique non singulière)
puisque l’algorithme générique du chapitre 14 produit des paramétrisations quasi optimales
quand l’intersection est non singulière.

Dans le chapitre 16, nous concevons, pour chaque type réel d’intersection singulière, un
algorithme pour calculer une paramétrisation optimale ou quasi optimale, c’est-à-dire une pa-
ramétrisation avec au plus une racine carrée inutile dans les coefficients. Quand une paramé-
trisation est possiblement non optimale, nous montrons quetester si la paramétrisation est non
optimale et, dans ce cas, déterminer une paramétrisation optimale est équivalent à trouver un
point rationnel sur une conique (possiblement à coefficientnon rationnel). Nous donnons éga-
lement, pour chaque type d’intersection réel, des exemplesdans le pire des cas où le nombre
maximum de racines carrées est atteint. Un récapitulatif deces résultats est présenté dans le
tableau 3.6.

La philosophie générale de ces algorithmes raffinés est de modifier l’algorithme générique
de telle façon que nous utilisons comme quadrique intermédiaireQR une quadrique rationnelle
du faisceau de rang minimum (au lieu de rang maximum). Nous verrons, dans le chapitre 16, que
cette philosophie a le double avantage (i) d’éviter l’apparition de racine carrée d’un polynôme
dans les paramétrisations des intersections singulières et (ii) de réduire au maximum le nombre
de radicaux dans les coefficients des paramétrisations. Un avantage additionnel est que cela
permet de réduire la taille des coefficients des paramétrisations (voir le chapitre 17).

3.2.2.7 Une implantation exacte et efficace

Nous présentons, dans le chapitre 17, la première implantation complète et efficace d’un
algorithme de calcul d’une paramétrisation exacte de l’intersection de deux quadriques quel-
conques, données sous forme implicite, à coefficients entiers. (On peut noter que les quadriques
à coefficients rationnels ou nombres flottants peuvent être trivialement décrites avec des coeffi-
cients entiers.) L’algorithme implanté est celui décrit dans les chapitres 14 à 16.

Précisément, notre implantation a les propriétés suivantes :
– elle calcule une forme paramétrée exacte de l’intersection de deux quadriques à coef-

ficients entiers de tailles arbitraires ;
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Segre type réel de l’intersection
pire format

de la paramétrisation
optimalité de la
paramétrisation

[1111] quartique non singulière
Q(

√
δ)[ξ,

√
∆],

∆ ∈ Q(
√

δ)[ξ]

point rationnel sur une
surface de degré 8

[112]
point Q optimal

quartique nodale Q(
√

δ)[ξ] point rationnel sur une conique

[11(11)]

deux points Q(
√

δ) optimal

conique
Q(

√
δ,
√

µ)[ξ],
µ∈ Q(

√
δ)

optimal si
√

δ 6∈ Q

point rationnel
sur une conique

si
√

δ ∈ Q

deux coniques non tangentes Q(
√

δ,
√

δ′)[ξ]
pointQ(

√
δ′)-rationnel

sur uneQ(
√

δ′)-conique
[13] quartique cuspidale Q[ξ] optimal

[1(21)]
point Q optimal

deux coniques tangentes Q(
√

δ)[ξ] optimal
[1(111)] conique double Q(

√
δ)[ξ] point rationnel sur une conique

[4] cubique et droite tangente Q[ξ] optimal

[(31)]
conique Q[ξ] optimal

conique et deux droites
sécantes sur la conique

Q(
√

δ)[ξ] optimal

[(22)]
droite double Q[ξ] optimal

deux droites simple non sécantes
coupant une droite double

Q(
√

δ)[ξ] optimal

[(211)]
point Q optimal

deux droites doubles concurrentes Q(
√

δ)[ξ] optimal
[22] cubique et droite non tangentes Q[ξ] optimal

[2(11)]

point Q optimal
conique et point Q(

√
δ)[ξ] point rationnel sur une conique

conique et deux droites
ne coupant pas la conique

Q(
√

δ)[ξ] point rationnel sur une conique

[(11)(11)]
deux points K[ξ],degree(K) = 4 optimal

deux droites non sécantes K[ξ],degree(K) = 4 optimal
quatre droites (quadrilatère gauche)K[ξ],degree(K) = 4 optimal

[1{3}] conique et droite double Q[ξ] optimal

[111]
point Q optimal

deux droites concurrentes K[ξ],degree(K) = 4 optimal
quatre droites concurrentes K[ξ],degree(K) = 4 optimal

[12]
droite double Q[ξ] optimal

deux droites simples et une droite
double concurrentes

Q(
√

δ)[ξ] optimal

[3]
une droite simple et une
droite triple concurrentes

Q[ξ] optimal

[1(11)]
point Q optimal

deux droites doubles concurrentes Q(
√

δ)[ξ] optimal
[(21)] droite quadruple Q[ξ] optimal

[11] droite quadruple Q[ξ] optimal

TAB . 3.6 – Anneaux de définition des coordonnées projectives de la paramétrisation des com-
posantes de l’intersection et optimalité, dans tous les casoù l’intersection est de dimension zéro
ou un.δ,δ′ ∈ Q.
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– aucune hypothèse n’est faite sur le type des quadriques d’entrée ou le type de leur
intersection ;

– elle identifie de façon certifiée, sépare, et paramétrise toutes les composantes algé-
briques de l’intersection et donne toute l’information topologique appropriée ;

– la paramétrisation est rationnelle quand elle existe ; autrement l’intersection est une
quartique non singulière et la paramétrisation implique laracine carrée d’un poly-
nôme ;

– la paramétrisation est soit optimale en le degré de l’extension de corps, surZ, qui
contient les coefficients de la paramétrisation ou, dans un petit nombre de cas bien
identifiés, implique une racine carrée possiblement inutile ;

– l’implantation est efficace et peut typiquement calculer des paramétrisations de l’in-
tersection de quadriques avec des coefficients d’entrée ayant une cinquantaine de
chiffres en moins de 50 millisecondes sur un PC standard.

Notre code peut être téléchargé sur les sites web du LORIA et del’INRIA 8. L’implantation C++
peut également être testée par l’intermédiaire d’une interface web9.

Nous prouvons également des bornes théoriques sur la tailledes coefficients de sortie et
comparons ces bornes aux valeurs observées. Grossièrement, la taille d’un coefficient de sor-
tie est son logarithme à base le maximum (en valeur absolue) des coefficients des quadriques
d’entrée. Par exemple, nous prouvons que, quand l’intersection est générique, les coefficients
entiers de sortie ont une taille d’au plus 38+50hp où hp est la taille des coordonnées du point
rationnelp choisi près de la quadriqueQR dans l’étape 2 de l’algorithme générique. Nous ob-
servons également que, en pratique, pour des quadriques aléatoires avec des coefficients jusqu’à
10.000 chiffres, la taille des plus grands coefficients de sortie n’excède jamais 36. Ceci découle
partiellement du fait que, dans la pratique, les coordonnées dep sont bornées par une constante
et quehp tend ainsi vers zéro quand la taille des coefficients d’entrée tend vers l’infini. Nous
n’avons cependant aucune explication de pourquoi la limitede 36 est atteinte au lieu de 38.

Nous avons également fait des observations intéressantes sur la taille des coefficients de sor-
tie dans les cas d’intersections singulières qui valident un choix de conception de l’algorithme.
Nous observons, par exemple, que lorsque l’intersection est une cubique et une droite qui sont
tangentes, la taille observée des coefficients de la cubiquetend approximativement vers 8 ou
15 selon que la quadrique intermédiaireQR utilisée dans l’algorithme est choisie avec un rang
minimal ou un rang maximal (c’est-à-dire avec une inertie(2,1) ou (2,2)). Ceci montre que
notre décision de choisir une quadrique intermédiaireQR avec un rang minimal est une bonne
stratégie concernant taille des coefficients de sortie.

Nous présentons également une analyse de performances expérimentales sur des données
aléatoires et réelles. Par exemple, nous montrons que l’intersection de deux quadriques avec
des coefficients aléatoires jusqu’à 50 chiffres prend approximativement 50 millisecondes et que
les intersections des paires de quadriques dans le jeu d’échec de la figure 1.1 prend, en moyenne,
3. 4 millisecondes sur un PC standard.

8http://www.loria.fr , http://www.inria.fr
9http://www.loria.fr/equipes/vegas/qi



54 CHAPITRE 3. GÉOMÉTRIE ALGORITHMIQUE ET QUADRIQUES

3.2.3 Le diagramme de Voronoï de trois droites

Le diagramme de Voronoï d’un ensemble d’objets disjoints est une décomposition de l’es-
pace en cellules, une cellule par objet, telles que la cellule associée à un objet se compose de tous
les points qui sont plus près de cet objet que de tous les autres objets. Nous considérons, dans
le chapitre 18, les diagrammes de Voronoï de droites dansR3 avec une métrique Euclidienne.

Les diagrammes de Voronoï ont été le sujet d’une quantité énorme de travaux de recherche.
Pour des points, ces diagrammes et leurs complexités sont bien compris et des algorithmes opti-
maux aussi bien que des implantations robustes et efficaces existent pour leur calcul en toute di-
mension (voir, par exemple, [Aur91,AK99,BDP+02,BDS+92,CSY97,CS89a,For97,OBSC00,
PT06, Sei81]). Néanmoins, quelques problèmes importants demeurent et ils sont toujours étu-
diés dans des publications récentes. Cette situation est également vraie pour les diagrammes de
Voronoï de segments et polygones en deux dimensions [Kar04].

Pour les droites, segments, et polyèdres en trois dimensions, beaucoup moins est connu. En
particulier, déterminer la complexité combinatoire du diagramme de Voronoï den les droites ou
segments de droites dansR3 est un problème majeur non résolu. La meilleure borne inférieure
connue estΩ(n2) et la meilleure borne supérieure estO(n3+ε) [Sha94]. Il est conjecturé que la
complexité de tels diagrammes est quasiment quadratique. Dans le cas spécifique d’un ensemble
den droites avec un nombre fixéc d’orientations possibles, Koltun et Sharir en ont montré une
borne supérieure deO(n2+ε), pourε > 0 [KS03].

Il y a peu d’algorithmes pour calculer exactement les diagrammes de Voronoï d’objets li-
néaires. La majeure partie de ces travaux a été effectuée dans le contexte du calcul de l’axe
médian d’un polyèdre, c’est-à-dire du diagramme de Voronoïdes faces du polyèdre [Cul00,
Mil93]. Des progrès ont été récemment obtenus sur le problème connexe du calcul d’arrange-
ments de quadriques (chaque cellule du diagramme de Voronoïest une cellule d’un tel arran-
gement) [BHK+05, KKM99, MTT05, SW06, SS97]. Enfin, beaucoup d’articles présentent des
algorithmes calculant des approximations de diagrammes deVoronoï (voir, par exemple, [DZ02,
ER02,HCK+99,TT97]).

Dans le chapitre 18, nous posons le problème fondamental de comprendre la structure du
diagramme de Voronoï de trois droites. Une implantation robuste et efficace de diagrammes
de Voronoï d’objets linéaires tridimensionnels exige un traitement complet des situations de
base, c’est-à-dire des diagrammes de trois et quatre droites, points ou plans. Nous croyons
également que cette étape est nécessaire pour pouvoir accomplir des progrès sur les questions
de complexité, et en particulier pour prouver des bornes fines dans les pires cas. Nous présentons
ici une caractérisation complète de la géométrie et la topologie du diagramme de Voronoï dans
le cas élémentaire mais néanmoins difficile de trois droitesen position générale.

Notre résultat principal, qui confirme une conjecture de Koltun et Sharir [KS03], est le
suivant (voir la figure 3.3).

Theorem 3.3. La topologie du diagramme de Voronoï de trois droites deux à deux non copla-
naires et qui ne sont pas parallèles à un même plan est invariante. Le trisecteur est composé
de quatre branches infinies d’une quartique non singulière10 ou d’une cubique et d’une droite
qui ne se coupent pas dansP3(R). Chaque cellule de dimension deux est composée de deux

10Une quartique non singulière est une courbe irréductible dedegré quatre sans point singulier dansP3(C).
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ℓ1ℓ2ℓ3

(a)

X

Y

(b)

FIG. 3.3 – Diagramme de Voronoï de trois droitesℓ1, ℓ2, etℓ3 en position générale : (a) face de
Voronoï de dimension deux deℓ1 et ℓ2, c’est-à-dire l’ensemble des points équidistants deℓ1 et
ℓ2 et plus proche d’eux que deℓ3. (b) Projection orthogonale d’une face 2D sur un planP muni
d’un repère(X,Y) ; la normale au plan est parallèle à la perpendiculaire commune deℓ1 et ℓ2 et
les axesX etY sont parallèles aux droites bissectrices (dansP) de la projection deℓ1 et ℓ2 sur
P. La face 2D est bornée par quatre arcs d’une quartique non singulière.

composantes connexes sur un paraboloïde hyperbolique qui sont bornées, respectivement, par
trois et une des branches du trisecteur.

La technique de preuve, qui utilise fortement les outils modernes de calcul formel, est inté-
ressante en tant que tel. Nous présentons également une caractérisation géométrique des confi-
gurations de trois droites (qui sont deux à deux non coplanaires et pas toutes parallèles à un
même plan) dont le trisecteur n’est pas générique, c’est-à-dire qui consiste en une cubique et
une droite.

La caractérisation du théorème 3.3 induit quelque propriétés fondamentales du diagramme
de Voronoï de trois droites qui sont susceptibles d’être utiles pour l’analyse de complexité et
le développement d’algorithmes efficaces pour le calcul de diagrammes de Voronoï et axes
médians de droites ou polyèdres. Précisément, nous obtenons les résultats suivants.

Propriété de monotonicité.Étant donné trois droites deux à deux non coplanaires et non pa-
rallèles à un même plan, il existe une direction dans laquelle chacune des quatre branches du
trisecteur est monotone.

Theorem 3.4.Soit p un point qui appartient soit à (i) une cellule de dimension deux soit à (ii) la
cellule de dimension un du diagramme de Voronoï de trois droites deux à deux non coplanaires
et non parallèles à un même plan. Il existe des tests linéaires semi-algébriques pour

(i) décider sur quelle composante connexe de la cellule 2D lepoint p appartient, ou
(ii) décider sur quelle branche du trisecteur le point p appartient.

De plus, si les trois droites sont rationnelles, ces tests linéaires sont rationnels11. Dans ce cas,

11Un test linéaire rationnel signifie que les polynômes (dont les signes déterminent la composante connexe) sont
de degré un en les coordonnées du pointp et ont des coefficients rationnels.
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il existe également un test semi algébrique linéaire pour

(iii) ordonner des points sur chaque branche du trisecteur.

On peut remarquer que les tests (i) et (ii) permettent de répondre à des questions de la forme :
étant donné un point, déterminer dans quelle composante connexe de quelle cellule il se trouve.
Notons également que les tests (ii) et (iii) devraient être utiles pour calculer des diagrammes de
Voronoï den droites puisque cela exige de localiser des points équidistants à quatre droites sur
un arc de Voronoï de trois de ces droites.

L’idée de la preuve du théorème 3.3 est la suivante. Nous considérons trois droites enposi-
tion générale, c’est-à-dire deux à deux non coplanaires et non parallèlesà un même plan. L’idée
est de montrer que la topologie du trisecteur est invariantepar déformation continue sur l’en-
semble de tous les triplets de trois droites en position générale et que cet ensemble est connexe.
Le résultat découle alors de l’analyse de n’importe quel exemple.

Nous prouvons que le trisecteur est toujours homéomorphique à quatre droites deux à deux
non coplanaires. Pour cela, nous prouvons que le trisecteurest toujours non singulier dans
P3(R) et a quatre points simples réels à l’infini. Pour prouver que le trisecteur est toujours non
singulier, nous étudions le type de l’intersection de deux bissecteurs, qui sont des paraboloïdes
hyperboliques.

Nous utilisons le résultat classique que l’intersection dedeux quadriques est une quartique
non singulière (dansP3(C)) sauf lorsque le polynôme caractéristique de leur faisceaua (au
moins) une racine multiple. Afin de déterminer quand cette équation a une racine multiple,
nous déterminons quand son discriminant,∆, est nul.

Ce discriminant a plusieurs facteurs, dont certains sont trivialement toujours strictement
positifs. Nous montrons que le facteur restant, appelé le «gros facteur», est nul (sur les réels)
seulement si un (petit) polynômeF est nul. Nous pressentons deux preuves de ce résultat. Nous
pressentons tout d’abord une preuve simple et élégante, mais qui ne donne aucune intuition
à savoir comment nous avons découvert ce résultat. Nous pressentons ensuite une preuve qui
utilise fortement les outils modernes de calcul formel et qui ne demande aucune compréhension
de la géométrie intrinsèque du problème. Cette preuve nous a initialement permis d’obtenir
le résultat et, en partant de ce résultat, nous avons pu obtenir la preuve directe. Cette preuve
originelle est de plus intéressante en elle-même car elle utilise une technique qui peut être
appliquée à d’autres problèmes.

L’idée de cette preuve est la suivante. Nous montrons que le gros facteur est toujours positif
ou nul en utilisant le package Maple RAGLib [RAG]. Ceci impliquequ’il est nul seulement
quand toutes ses dérivées partielles sont nulles. Nous considérons ainsi le système composé du
gros facteur et de toutes ses dérivées partielles, et calculons sa base de Gröbner. Ceci donne
trois équations de degré six. Nous considérons séparément deux composantes de solutions, une
sur laquelle le polynômeF , mentionné précédemment, est nul et l’autre sur laquelleF 6= 0.

QuandF 6= 0, des manipulations et simplifications, qui sont intéressantes en tant que telles,
induisent une autre base de Gröbner, ayant les mêmes racinesréelles, qui est composée de trois
équations degré quatre. Nous prouvons qu’une de ces équations n’a aucune racine réelle ce qui
implique que le système n’a pas de racine réelle et donc que∆ = 0 n’a pas de racine réelle
sur la composante considérée. Nous pouvons ainsi conclure que, dans ce cas, le trisecteur est
toujours une quartique non singulière dansP3(R). QuandF = 0, nous montrons, en substituant



3.2. RÉSUMÉ DES CONTRIBUTIONS 57

F = 0 dans∆ et en utilisant la classification des intersections de quadriques sur les réels (voir
le tableau 3.4) que le trisecteur est une cubique et une droite qui ne se coupent pas dansP3(R).

Nous pouvons ainsi conclure que le trisecteur est toujours une quartique non singulière ou
une cubique et une droite qui ne se coupent pas dans l’espace réel et que donc le trisecteur est
toujours non singulier dansP3(R).

Nous montrons alors que le trisecteur contient toujours quatre points simples réels à l’infini
et ainsi qu’il est toujours homéomorphique à quatre droitesqui sont deux à deux non copla-
naires. Il s’ensuit que la topologie des diagrammes de Voronoï est invariante par déformation
continue sur tout ensemble connexe de triplets de droites enposition générale. Nous montrons
que l’ensemble des triplets de droites en position généraleest connexe ce qui implique que la
topologie des diagrammes de Voronoï est invariante. Enfin, nous déterminons la topologie du
diagramme pour un triplet (quelconque) de trois droites, cequi donne le résultat.
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Chapitre 4

Conclusion

Je présente, dans ce document, mes travaux récents les plus significatifs sur des problèmes
de géométrie algorithmique non linéaire sur les droites et quadriques en trois dimensions. J’ai
argumenté que l’étude des propriétés fondamentales et de l’algorithmique sur des primitives
géométriques non linéaires est une direction de recherche utile et nécessaire qui est complé-
mentaire à la recherche plus conventionnelle sur le calcul géométrique portant sur des primitives
linéaires discrétisées.

La première partie de ce document présente un ensemble de travaux sur les droites et les
segments de droite qui sont tangents ou transverses à des objets tridimensionnels. Des résul-
tats récents sont présentés sur leurs propriétés structurelles et combinatoires, ainsi que sur l’al-
gorithmique concernant leur calcul. Ces résultats sont appliqués aux problèmes du calcul de
structures de données globales pour les problèmes de visibilité tridimensionnelle, lesquels ont
motivé l’étude de tels ensembles de droites et segments. Ces travaux me mènent à croire que
nous pouvons raisonnablement escompter obtenir des solutions algorithmiques robustes et cer-
tifiées à certains problèmes de visibilité tridimensionnelle difficiles comme le calcul exact et
efficace des limites d’ombre et de pénombre. Il est utile de rappeler à nouveau que de tels algo-
rithmes n’ont pas pour but de concurrencer en vitesse les techniques utilisant du matériel dédié
en infographie, mais plutôt de fournir des solutions robustes et exactes au lieu d’approxima-
tions. Il est en effet utile de savoir, de temps à autre, la réponse correcte certifiée, ne serait-ce
que pour pouvoir valider des méthodes ad-hoc.

Dans la deuxième partie de ce document, je présente des progrès substantiels sur deux pro-
blèmes bien connus de calcul géométrique sur des primitivescourbes simples, à savoir des
quadriques. Les travaux sur l’intersection de deux quadriques, hormis de fournir de nouveaux
résultats théoriques, démontrent qu’une étude soignée de la géométrie mène à des réalisations
efficaces et robustes. Les travaux sur la topologie des diagrammes de Voronoï de trois droites
(une partition de l’espace par des morceaux de quadriques) montre, en outre, que les systèmes
de calcul formel ont atteint un point où ils peuvent être employés efficacement pour prouver des
théorèmes sur des problèmes géométriques non triviaux. Cependant, nous avons vu qu’exécuter
de tels calculs algébriques tient plus d’un art que d’une science, en particulier, parce que, même
pour des problèmes géométriques non linéaires apparemmentsimples, les calculs requis sont
souvent à la limite des possibilités de tels systèmes. Cet ensemble de travaux montre que des
progrès significatifs peuvent être accomplis sur divers problèmes classiques de géométrie algo-
rithmique non linéaire et que des approches non discrétisées peuvent être extrêmement efficaces
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dans la pratique.
En dépit de réels progrès, il reste beaucoup de travail. Concernant les problèmes de visi-

bilité tridimensionnelle, des solutions algorithmiques pour calculer efficacement des structures
de visibilité, comme le squelette de visibilité, sont maintenant en vue. Ceci donne l’espoir de
pouvoir apporter des solutions effectives à des problèmes comme celui du calcul des limites
d’ombre et de pénombre induites par des sources lumineuses non triviales ou comme celui du
calcul de requêtes de visibilité de surface à surface. Ces problèmes restent cependant en grande
partie ouverts. De nombreux problèmes sur le calcul géométrique avec des surfaces algébriques
de bas degré restent également ouverts. Par exemple, il n’y aaucune implantation robuste et
efficace pour calculer des arrangements, ou des morceaux d’arrangements, de quadriques ou
pour le problème connexe du calcul de diagrammes de Voronoï de polyèdres. Les méthodes
actuelles sont loin d’être efficaces et/ou utilisables et, bien que les complexités algorithmiques
et arithmétiques de ces problèmes soient intrinsèquement élevées, il y a certainement beaucoup
de possibilité d’amélioration que ça soit au niveau théorique ou pratique.



Deuxième partie

Propriétés des droites et segments deR3 et
problèmes de visibilité tridimensionnelle
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Chapitre 5

Common tangents to spheres inR3

Cet article a été publié dansDiscrete Computational Geometry[BGLP06] ainsi que dans la thèse de
X. Goaoc [Goa04].

Abstract

We prove that four spheres inR3 have infinitely many real common tangents if and only if they have
aligned centers and at least one real common tangent.

5.1 Introduction
A major issue in geometric computing is to handle degenerateinputs properly in order to design robust algo-

rithms. This often requires recognizing such an input to begin with. In 3D visibility problems, which are ubiquitous
in computer graphics and image synthesis, objects with a setof common tangents of improper dimension constitute
degenerate configurations, as detailed in the survey of Durand [Dur00]. In this paper, we determine all degenerate
configurations of four distinct spheres, that is all configurations of four spheres with infinitely many common
tangents.

The study of real lines tangent to basic geometric objects has been very active in recent years. This topic
includes two closely related directions of research, namely the characterization of degenerate configurations and
the enumeration of lines satisfying geometric constraints. Usually, these problems are approached by studying
the degeneracies and counting the number of solutions of some specific polynomial system. The difficulty often
resides in eliminating imaginary solutions, solutions at infinity, and components of positive dimension of solutions
in order to retain only real affine solutions.

The case of lines tangent to spheres has been persistently investigated. Macdonaldet al. [MPT01] proved that
four unit spheres have at most 12 common tangents in general,and infinitely many common tangents if and only
if the centers are aligned. The bound of 12 was independentlyobtained by Devillerset al. [DMPT03]. Examples
show that, in the finite case, this bound is tight [DMPT03,MPT01], yet, according to Megyesi [Meg01], it drops to
8 in the case of unit spheres with coplanar but non-collinearcenters. However, the upper bound of 12 remains valid
when the spheres have arbitrary radii. Sottile and Theobald[ST02] proved that there are 3·2n−1 complex common
tangent lines to 2n−2 general spheres inRn, and that there exists a choice of spheres with all common tangents
real.

Recently, progress has also been made in understanding the varieties of common tangents to spheres and
transversals to lines. Theobald [The02] described the configurations of three lines and a sphere having infinitely
many common tangents/transversals. Next, Megyesiet al.[MST03] characterized the families of two lines and two
quadrics ofP3(C) with infinitely many tangents/transversals, and applied their results to the case of two lines and
two spheres ofR3. Last, Megyesi and Sottile [MS05] classified the families ofone line and three spheres ofR3

with infinitely many tangents/transversals.
The question of characterizing the positions of four spheres of various radii with infinitely many common

tangents remained open. Quoting Theobald [The02] : “We conjecture that there does not exist any configuration
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with four balls of arbitrary radii, non-collinear centers and infinitely many common tangent lines.” In this paper,
we confirm this expectation and prove

Theorem 5.1. Four distinct spheres inR3 have infinitely many real common tangent lines if and only if they have
aligned centers and at least one real common tangent.

More precisely we prove that four spheres with infinitely many common real tangents either intersect in a
circle, possibly degenerating to a point, or each sphere hasa circle of tangency with one and the same quadric of
revolution with symmetry axis the line through all centers (see Figure 5.1) ; such a quadric isuniqueand can be a
cone, a cylinder or a hyperboloid of one sheet. Furthermore,the common tangents to the four spheres are exactly
the common tangents to any three of them.

FIG. 5.1 –Two examples of quadruples of spheres with infinitely many common tangents.

After introducing some notations and preliminaries in Section 5.2, we treat the case of four spheres with
affinely independent centers in Section 5.3. Next, we handlein Section 5.4 the more intricate case of spheres with
coplanar centers, no three aligned. Section 5.5 ends the proof of Theorem 5.1 with the case of three aligned centers.
We obtain, at the same time, the algebraic and semi-algebraic conditions on radii and mutual distances between
centers, which characterize four spheres with infinitely many common real tangents.

5.2 Preliminaries

Notations

Our proofs use points and vectors fromRn and from the real and complex projective spaces of dimensionn,
Pn(R) andPn(C). We make no distinction between a pointp and the vector from the origin of the frame top. For
more clarity, we denote an element ofRn by (a1, . . . ,an), and an element ofPn(R) or Pn(C) by (a1 : . . . : an+1).

For any two vectorsa, b of Rn, Pn(R), or Pn(C), we denote bya ·b their dot product, bya×b their cross
product, and by|a|2 the dot producta ·a (note that|a|2 is not the square of the norm ofa whena has imaginary
coordinates).

LetSi denote the sphere ofR3 with centerci and radiusr i > 0, for i = 1, . . . ,4, and(e1,e2,e3) be an orthonormal
frame ofR3. Without loss of generality,we assume that c1 is the origin of our frame. Theaxisof a set of spheres
with aligned centers is the line going through these centers.

Tangents to four spheres

We begin by reviewing the description of the common tangent lines to four spheres as solutions of a polynomial
system, as in [MPT01]. We represent a line inR3 by its closest point to the originp∈ R3 and its direction vector
v∈ P2(R). Let M denote the matrix[c2,c3,c4]

T andΦ0 andΦ2(v) be the vectors

Φ0 =





|c2|2 + r2
1− r2

2
|c3|2 + r2

1− r2
3

|c4|2 + r2
1− r2

4



 , Φ2(v) = −





(c2 ·v)2

(c3 ·v)2

(c4 ·v)2



 .
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Lemma 5.2. The lines tangent to the four spheresS1, . . . ,S4 are the common solutions(p,v) in R3×P2(R) of the
equations

p·v = 0, (5.1)

|p|2 = r2
1, (5.2)

2|v|2Mp = Φ2(v)+ |v|2Φ0. (5.3)

Proof. A couple(p,v) ∈ R3×P2(R) represents a line if and only if Equation (5.1) is satisfied. Aline (p,v) is
tangent to sphereSi if and only if its squared distance toci is r2

i that is, if and only if

|(ci − p)×v|2 = r2
i |v|2.

Expanding this equation yields

|ci ×v|2 + |p×v|2−2(ci ×v) · (p×v) = r2
i |v|2. (5.4)

Applying to (ci ×v) · (p×v) the scalar triple product identitya· (b×c) = b· (c×a), then the vector triple product
identitya× (b×c) = (a·c)b− (a·b)c and finally using Equation (5.1) we get

(p×v) · (ci ×v) = ci · (v× (p×v)) = ci · ((v·v) p− (v· p)v) = |v|2ci · p.

Sincep andv are orthogonal,|p×v|2 = |p|2|v|2 and thus Equation (5.4) becomes

2|v|2ci · p = |ci ×v|2 + |v|2(|p|2− r2
i ).

As |ci ×v|2 +(ci ·v)2 = |ci |2|v|2, we finally get that

2|v|2ci · p = −(ci ·v)2 + |v|2
(

|ci |2 + |p|2− r2
i

)

. (5.5)

Equation (5.5) fori = 1 is equivalent to Equation (5.2) sincec1 is the origin of the frame. It follows that the four
equations (5.5) fori = 1, . . . ,4 are equivalent to the two equations (5.2) and (5.3). 2

The approach used to show that infinitely many tangent lines to spheres can only happen when the centers of
the spheres are aligned is as follows. We eliminatep among the equations (5.1)-(5.3), giving two curves1 in the
2D projective space of directions, whose intersection contains all directions along which a common tangent line to
the four spheres is observed. We then prove that, when the centers are non-collinear, the two curves intersect in a
finite number of points.

The key idea behind the proofs of Section 5.3 (affinely independent centers) and Section 5.4 (coplanar centers)
is that if the two curves, envisaged as complex projective curves, had a common component of positive dimension,
this component would intersect the imaginary conic|v|2 = 0 and we show that this is not the case. Intersecting
the curve with|v|2 = 0 is inspired by the relation of the Grassmannian of lines inP3(C) with the(p,v) coordinate
system, well adapted to the representation of lines in the affine partR3 ⊂ P3(R).

It should be stressed that any solution to the problem of characterizing sets of four spheres with infinitely
many tangent lines must be computational to some extent, because while we are interested in real lines, the “native”
system of equations is overC. Any understanding of the system should involve sensitivity to complex degeneracies.
In our proof, computations flow towards revealing such complex degeneracies, but are short-circuited by use of
reality assumptions.

1A cubic and a quartic when the centers are affinely independent, a conic and a sextic when the centers are
coplanar with no three aligned.
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5.3 Affinely independent centers
We first investigate the case of spheres with affinely independent centers.

Proposition 5.3. Four spheres with affinely independent centers have at most twelve common tangent lines.

Proof. First note that matrixM is invertible since the spheres have affinely independent centers. Considering(p,v)
in R3×P2(R), we have|v|2 6= 0 and thus Equations (5.1)-(5.3) are equivalent to the threeequations

p = M−1
(

Φ2(v)
2|v|2 +

1
2

Φ0

)

, (5.6)

(

M−1(Φ2(v)+ |v|2 Φ0
))

·v = 0, (5.7)
∣

∣M−1(Φ2(v)+ |v|2 Φ0
)∣

∣

2
= 4r2

1 |v|4. (5.8)

Equation (5.6) expresses the pointp in terms of the direction vectorv, proving that there is at most one line tangent
to the four spheres with a given direction. The remaining equations are a cubic (5.7) and a quartic (5.8) inv, and
their intersection represents the directionsv∈ P2(R) along which there is a tangent to the four spheres. We want to
prove that the cubic and the quartic intersect in at most 12 points inP2(R). For that purpose we prove this property
in P2(C), by contradiction.

If the cubic and the quartic have inP2(C) a common component of positive dimension, this component inter-
sects the conic|v|2 = 0 ; this is a property of any two curves inP2(C) which does not dispute the fact that the real
solutions of Equations (5.6)-(5.8) satisfy|v|2 6= 0. We now prove that the intersection inP2(C) of the cubic (5.7),
the quartic (5.8) and the conic|v|2 = 0 is empty. This system simplifies to







|v|2 = 0,

(M−1Φ2(v)) ·v = 0,

|M−1Φ2(v)|2 = 0.

The first two equations express the fact thatM−1Φ2(v) is on the tangent atv to the smooth conic|v|2 = 0, and the
last thatM−1Φ2(v) is itself on that conic. It follows thatM−1Φ2(v) andv are one and the same projective point.
Thus there existsµ 6= 0 in C such that

M−1Φ2(v) = µv, that isΦ2(v) = µMv.

Expanding this last equality yields−(ci · v)2 = µci · v, for i = 2, . . . ,4, which implies that every termci · v is 0 or
−µ. This leads to

Mv = −µ





a2

a3

a4



 (5.9)

where eachai is equal to 0 or 1. Leta denote the vector of theai . Pluggingv= µM−1a in the equation of the conic
|v|2 = 0 yields

µ2
∣

∣M−1a
∣

∣

2
= 0.

The vectorM−1a is real, thusµ= 0 ora= 0. In both cases, Equation (5.9) impliesv= 0. Thus there is no common
solution inP2(C) for the system of the conic, the cubic and the quartic, hence the cubic (5.7) and quartic (5.8)
cannot intersect in a curve. By Bezout’s Theorem, they intersect in at most 12 points, and since there is at most one
line tangent to the four spheres with a given direction by Equation (5.6), this completes the proof. 2

5.4 Coplanar centers
We now treat the more intricate case of four spheres whose centers are coplanar but such that no three centers

are aligned.
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Proposition 5.4. Four spheres with coplanar centers, no three aligned, have at most twelve common tangents.

Let (p,v)∈R3×P2(R) represent a line tangent to the four spheresS1, . . . ,S4. By Lemma 5.2,(p,v) is solution
of Equations (5.1)-(5.3). As in Section 5.3, we start by extracting from these equations two equations inv.

Without loss of generality, we may assume that the sphere centers span the plane(e1,e2) :

M =





c21 c22 0
c31 c32 0
c41 c42 0



 .

Let M12 be the 2×2 upper left sub-matrix ofM, which is invertible since no three centers are aligned. Forany
vectora, let a12 be the vector that consists of the first two rows ofa anda3 be its third row.

Let us first assume thatv3 6= 0. It follows from p·v = 0 that

p3 = − p12 ·v12

v3
, (5.10)

andp12 is characterized using Equation (5.3) :

2|v|2p12 = M−1
12

(

(Φ2(v))12+ |v|2 (Φ0)12

)

.

Let Ψ2(v) = M−1
12 (Φ2(v))12 andΨ0 = M−1

12 (Φ0)12. As Φ2(v) andΨ2(v) do not depend onv3, we may write them
asΦ2(v12) andΨ2(v12). Then

2|v|2p12 = Ψ2(v12)+ |v|2Ψ0. (5.11)

Substituting the expression ofp3 from Equation (5.10) in Equation (5.2) gives

|p12|2 +

(

p12 ·v12

v3

)2

− r2
1 = 0.

Then multiplying by 4|v|4v2
3 and substituting 2|v|2p12 by its expression from Equation (5.11) gives the following

sextic equation inv :

v2
3 |Ψ2(v12)+ |v|2Ψ0|2 +((Ψ2(v12)+ |v|2Ψ0) ·v12)

2−4|v|4v2
3 r2

1 = 0. (5.12)

For anyp,q in P3(C), we have, by transposition :

(Mp) ·q = p· (MTq).

Let ω be a non-zero kernel vector ofMT . Then(Mp) ·ω = p· (MTω) = 0. Substituting the expression ofMp from
Equation (5.3), we obtain thatv must be on the following conic :

Φ2(v12) ·ω+ |v|2Φ0 ·ω = 0. (5.13)

Notice that Equations (5.12) and (5.13), obtained forv3 6= 0, are still valid forv3 = 0 by continuity. We thus
get the following lemma.

Lemma 5.5. The direction v∈ P2(R) of a line tangent to the four spheresS1, . . . , S4 satisfies the sextic (5.12) and
the conic (5.13).

Lemma 5.6. If the sextic (5.12) and the conic (5.13) admit a component ofpositive dimension of common solutions
in P2(C), then it intersects the conic|v|2 = 0 and any point v in the intersection satisfies

∃λ ∈ C, Ψ2(v12) = λv12 (5.14)

Φ2(v12) ·ω = 0. (5.15)
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Proof. If Equations (5.12) and (5.13) share a component of positivedimension inP2(C), then this component,
seen as a curve ofP2(C), intersects the conic|v|2 = 0. Letv∈ P2(C) be in this intersection. Then Equation (5.13)
becomes Equation (5.15). Now, it follows from|v|2 = 0 thatv2

3 = −|v12|2, and thus Equation (5.12) becomes

−|v12|2|Ψ2(v12)|2 +(Ψ2(v12) ·v12)
2 = 0.

Since|x|2|y|2− (x · y)2 = det(x,y)2 for anyx,y∈ C2, the equation is equivalent to det(v12,Ψ2(v12)) = 0 which is
equivalent to Equation (5.14) (v is on|v|2 = 0 so we cannot havev12 = 0). 2

In the following we consider the centersc1 = 0,c2,c3,c4 as 2D points (i.e., we forget the third coordinate,
which is 0). For any vectorx∈ R2 we denote byx⊥ its orthogonal vector obtained by a rotation of angleπ/2.

Lemma 5.7. If Equations (5.14) and (5.15) have a common solution v12 in P1(C), it must satisfy v12 = c⊥i and
v12 · (c j −ck) = 0, with {i, j,k} = {2,3,4} (which implies that c1, c2, c3, c4 are the vertices of a trapezoid).

Proof. FromMTω = 0 we get

MTω =

(

MT
12 c4

0 0

)(

ω12

ω3

)

=

(

MT
12ω12+ω3c4

0

)

= 0.

Thusω12 = −ω3(MT
12)

−1c4 andω3 6= 0 (otherwise,ω12 = 0 thusω = 0 contradicting its definition). Now, we can
write Equation (5.15) as(Φ2(v12))12 ·ω12− (c4 ·v12)

2ω3 = 0, and substituting our expression ofω12 yields

−ω3 (Φ2(v12))12 · ((MT
12)

−1c4)− (c4 ·v12)
2ω3 = 0,

which simplifies, by transposition, into

(M−1
12 (Φ2(v12))12) ·c4 +(c4 ·v12)

2 = 0.

Hence, an equivalent expression for Equation (5.15) is :

Ψ2(v12) ·c4 +(c4 ·v12)
2 = 0. (5.16)

SubstitutingΨ2(v12) = λv12 from Equation (5.14) into (5.16) leads to

(c4 ·v12)
2 = −λc4 ·v12.

By a similar reasoning, we can express the conic (5.15) usingc2 or c3 in expressions similar to Equation (5.16),
and the above argument yields that :

(ci ·v12)
2 = −λci ·v12, i = 2,3,4. (5.17)

If ci · v12 6= 0 for i = 2,3, and 4 then(c2− c3) · v12 = (c2− c4) · v12 = 0 and, sincec2, c3 andc4 are not aligned,
v12 = 0 contradictingv12 ∈ P1(C). Hence,v12 must be orthogonal to someci , i ∈ {2,3,4}. Sincev12 ∈ P1(C),
we can assume thatv12 = c⊥i . Since no three centers are aligned,v12 is orthogonal to neitherc j nor ck, with
{i, j,k} = {2,3,4}. Thus Equation (5.17) yields

−λ = c j ·c⊥i = ck ·c⊥i , and so c⊥i · (c j −ck) = 0.

This means that the segmentsc1ci andc jck are parallel and thus the centers of the spheres are the vertices of a
trapezoid. 2

Lemma 5.8. If the sextic (5.12) and the conic (5.13) have a common component of positive dimension inP2(C),
Equations (5.14) and (5.15) have at least two distinct solutions inP1(C).
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Proof. Assume that the sextic (5.12) and the conic (5.13) share a component of positive dimension. Then by
Lemmas 5.6 and 5.7, Equations (5.14) and (5.15) admit a common solutionv12 = c⊥i for i = 2,3, or 4. By relabeling
if necessary, we can assumev12 = c⊥4 . Suppose, for a contradiction, thatc⊥4 is the unique common solution of
Equations (5.14) and (5.15).

By Lemma 5.6, any point in the intersection of the conic|v|2 = 0 and the common component of the sex-
tic (5.12) and the conic (5.13) satisfies Equations (5.14) and (5.15). Thus any such point satisfiesv12 = c⊥4 and
|v|2 = 0, and is equal to one of the two points of coordinates(c⊥4 : ±i|c4|). Hence the common component contains
at least one of these two points.

The common component of the sextic (5.12) and the conic (5.13) is either the conic itself or a line. In the latter
case, the equation of the line is real because otherwise its conjugate is also contained in the conic and in the sextic
(since their equations are real) ; the sextic then contains the conic, which corresponds to the first case. Hence the
equation of the common component is real in both cases. Thus,since the common component contains one of the
two points(c⊥4 : ±i|c4|), it also contains its conjugate, hence the two points.

We now discard the case where the common component is the conic by deriving a contradiction with our
assumption that no three centers are collinear. If the conicis contained in the sextic, it meets|v|2 = 0 in the two
points(c⊥4 : ±i|c4|), which are therefore tangency points. This means that Equation (5.16), which is our conic mod
|v|2 = 0, has a double root atv12 = c⊥4 . Since any degree-two polynomial inv12∈ P1(C) that hasc⊥4 as double root
is proportional to(c4 ·v12)

2, we get that

Ψ2(v12) ·c4 = α(c4 ·v12)
2

for someα ∈ C and allv12 ∈ P1(C). Computing det(M12)M
−1
12 gives the matrix with columns[−c⊥3 c⊥2 ], thus our

equation becomes

Ψ2(v12) ·c4 =
1

det(M12)
[(c⊥3 ·c4)(c2 ·v12)

2− (c⊥2 ·c4)(c3 ·v12)
2] = α(c4 ·v12)

2.

Since the four centers form a trapezoid we havec4 = ν(c2−c3) for someν ∈ R3. Replacingc4 by its expression
and simplifying by factorc⊥3 ·c2 = −c⊥2 ·c3 yields

(c2 ·v12)
2− (c3 ·v12)

2 = κ((c2−c3) ·v12)
2,

for someκ ∈ C. Writing v12 = xc⊥2 +yc⊥3 we obtain

(c2 ·c⊥3 )2(y2−x2−κ(x+y)2) = 0

for all (x,y) ∈ P1(C), which forces the proportionality ofc2 andc3 and their alignment withc1. Thus, if no three
centers are aligned the conic cannot be contained in the sextic.

Now we examine the second alternative, when the common component of the sextic (12) and the conic (13)
is a line. This line contains the two points(c⊥4 : ±i|c4|) and thus contains the point(c⊥4 : v3) for all v3 ∈ C. Thus
all the coefficients of the sextic (5.12) viewed as an equation in v3 with coefficients depending onv12 = c⊥4 must
vanish. In particular the constant and the coefficient ofv2

3 minus|c4|4 times the coefficient ofv6
3 both vanish and

are equal to

Ψ2(c
⊥
4 ) ·c⊥4 + |c4|2Ψ0 ·c⊥4 = 0,

|Ψ2(c
⊥
4 )|2 +2|c4|2Ψ2(c

⊥
4 ) ·Ψ0 = 0.

From the proof of Lemma 5.7, we know thatΨ2(c⊥4 ) = λc⊥4 with λ = −c2 · c⊥4 = −c3 · c⊥4 . Thus, the relations
become

|c4|2(λ+Ψ0 ·c⊥4 ) = 0,

λ|c4|2(λ+2Ψ0 ·c⊥4 ) = 0.

Since no three centers are aligned,λ 6= 0 and|c4|2 6= 0, and these two equations implyλ = 0, a contradiction. 2
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Lemma 5.9. The sextic (5.12) and the conic (5.13) cannot have a component of positive dimension of common
solutions.

Proof. Assume that the sextic (5.12) and the conic (5.13) have a common component of positive dimension. Lem-
mas 5.7 and 5.8 yield that Equations (5.14) and (5.15) then have at least two distinct solutions among{c⊥2 ,c⊥3 ,c⊥4 }.
By relabeling the centers, we may assume these solutions arec⊥2 andc⊥3 . Lemma 5.7 gives that

c⊥2 · (c4−c3) = 0 and c⊥3 · (c4−c2) = 0.

Thus,c2 is proportional toc4−c3, andc3 is proportional toc4−c2. Therefore,c2 +c3 = c4 and the centers form a
parallelogram. By translating our frame to the center of that parallelogram, we may assume that the centers are at
a= (a1,a2,0), b= (b1,b2,0), −a and−b, with corresponding radiir i , i = 1, . . .4. On occasion, we abuse notation,
and allowa andb to stand for(a1,a2), respectively(b1,b2).

Subtracting Equation (5.5) fori = 1 from its expression fori = 3 leads to

4(a· p) = r2
3− r2

1,

and the same operation fori = 2 andi = 4 yields

4(b· p) = r2
4− r2

2.

This shows that the first two coordinatesp12 of p are determined by centers and radii alone, and remain constant.
Thus, all the common tangents to the four spheres meet the line perpendicular to the plane of the centers inp12.

A theorem in the preprint [MS05] addresses a situation of this nature and shows that the common tangents
to three spheres which meet at the same time a fixed line cannotbe infinitely many unless their three centers are
collinear. We give here an independent proof which continues the above line of thought.

Recall that (12) and (13) were obtained from (1)-(3) by eliminating p. Operating “in reverse", it is easy to
see that a one-dimensional component of solutions for (12) and (13) would produce a one-dimensional family of
solutions for (1)-(3). We show now this cannot happen.

Rewriting (5.5) for the centersa andb gives

(a·v)2 = |v|2
(

|a|2 + |p|2− 1
2
(r2

1 + r2
3)

)

, (5.18)

(b·v)2 = |v|2
(

|b|2 + |p|2− 1
2
(r2

2 + r2
4)

)

. (5.19)

Let α = |a|2− 1
2(r2

1 + r2
3) andβ = |b|2− 1

2(r2
2 + r2

4). Subtracting (5.19) from (5.18) gives the conic

((a+b) ·v12) ((a−b) ·v12) = |v|2(α−β). (5.20)

Multiplying (5.18), (5.19), andv2
3 together and dividing by|v|2 gives

(a·v12)
2(β+ |p12|2 + p2

3)v
2
3 = (b·v12)

2(α+ |p12|2 + p2
3)v

2
3,

or equivalently, using (5.10),

(|p12|2v2
3 +(p12 ·v12)

2)((a+b) ·v12)((a−b) ·v12) = v2
3(α(b·v12)

2−β(a·v12)
2). (5.21)

For the conic (5.20) and the quartic (5.21) to have a common one-dimensional component, it is necessary that
equality holds for anyv12 ∈ P1 and some adequate value(s) forv3. Indeed, the projectionv 7→ v12 of the common
component cannot be constant, for with fixedv12 and (already known) fixedp12, equations (5.10) and (5.18) (or
(5.19)) would determine only a finite number of solutionsv3.

Evaluating (5.20) and (5.21) atv12 = (a+b)⊥, we find no possible value forv3, unlessα = β. Returning this
necessary condition into (5.20) impliesv12 = (a±b)⊥ contradicting the fact that (5.20) and (5.21) holds for all
v12 ∈ P1. 2
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We now conclude on the case of spheres with coplanar centers.
Proof of Proposition 5.4. By Lemmas 5.5 and 5.9, there are finitely many directions along which the spheres have
a common tangent. For each such directionv, a line tangent to the four spheres projects onto a plane orthogonal
to v into a point that lies on the common intersection of the four circles obtained as the boundary of the projec-
tion of each sphere. There are thus at most two lines tangent to the four spheres per direction. Hence there are
finitely many lines tangent to the four spheres. Now, the bound of 12 directly follows from the non-coplanar case
(Proposition 5.3) by continuity.

5.5 Collinear centers
We conclude in this section the proof of Theorem 5.1. We first establish the following lemma.

Lemma 5.10. The common tangents to three distinct spheres with collinear centers and no common intersection
are, if any, the ruling(s) of a single quadric of revolution with symmetry axis the line through all centers. This
quadric can be a cone, a cylinder or a hyperboloid of one sheet.

Proof. Suppose that three distinct spheres with collinear centersadmit a common tangent. Such a tangent is not
orthogonal to the axis of the three spheres since they have nocommon intersection. Furthermore, such a tangent
remains tangent after a rotation about this axis. Thus the common tangents to the three spheres are the rulings of
a collectionQ of quadrics of revolution with symmetry axis the line through all centers (see Figure 5.1) ; these
quadrics have to be cylinders, cones, or hyperboloids of onesheet. Assume for a contradiction thatQ consists of
more than one quadric.

We take the line through the centers to be they-axis in some(x,y)-plane. This plane intersects the quadrics of
Q into a collectionC of conics symmetric with respect to they-axis which have equations of the following form :

x2 +Ay2 +By+C = 0, A 6 0, B2−4AC6 0. (5.22)

The(x,y)-plane also intersects the three spheres into three circles, with centers(0,αi) and radiir i , i = 1, ...,3, that
are tangent to the conics ofC. Since these conics and circles are symmetric with respect to they-axis, two of them
are tangent if and only if they intersect in exactly two points with samey-coordinate. Thus a conic (5.22) and a
circle of center(0,αi) and radiusr i are tangent if and only if

(x2 +Ay2 +By+C)− (x2 +(y−αi)
2− r2

i ) = 0

has a double solution iny, i.e. the discriminant vanishes :

δi = (B+2αi)
2−4(A−1)(C+ r2

i −α2
i ) = 0. (5.23)

For the three circles, this gives a system of three equationsin the three indeterminates(A,B,C). This system is
linear inC (with a non-zero coefficient sinceA 6 0) and thus has more than one solution only if the linear system
in (A,B)

{

δ1−δ2 = ((α2
1−α2

2)− (r2
1− r2

2))A+(α1−α2)B+ r2
1− r2

2 = 0
δ1−δ3 = ((α2

1−α2
3)− (r2

1− r2
3))A+(α1−α3)B+ r2

1− r2
3 = 0

does, that is only if the determinant of the coefficients ofA andB, and the determinant of the constant coefficients
and the coefficients ofB both vanish. The sum of these determinants also vanishes andis equal to

∣

∣

∣

∣

α2
1−α2

2 α1−α2

α2
1−α2

3 α1−α3

∣

∣

∣

∣

= (α1−α2)(α1−α3)(α2−α3).

Hence at least two centers are equal which implies that one sphere is strictly contained in another. The three spheres
thus have no common tangent, a contradiction. 2



72 CHAPITRE 5. COMMON TANGENTS TO SPHERES INR3

Remark 5.11. Actually solving the system(5.23), i = 1,2,3, yields, in terms of radii and oriented distances bet-
ween centers di j = α j −αi :

A =
1
D

(r2
1 d23+ r2

2 d31+ r2
3 d12),

B2−4AC=
−1

d23d31d12D
(r1d23+ r2d31+ r3d12)(r1d23+ r2d31− r3d12)

(r1d23− r2d31+ r3d12)(−r1d23+ r2d31+ r3d12),

where D= d23d31d12+ r2
1 d23+ r2

2 d31+ r2
3 d12.

We can now prove Theorem 5.1.
Proof of Theorem 5.1. Consider four distinct spheres with infinitely many real common tangents. By Proposi-
tions 5.3 and 5.4, the centers of at least three of the spheresare aligned.

If these three spheres intersect in a circle, their common tangents are the tangents to that circle in its plane.
To be tangent to infinitely many of these lines, the fourth sphere has to contain that circle (and, if that circle is
degenerate to a point, the four spheres must have the same tangent plane at this point). Thus all four spheres have
aligned centers.

If the three spheres with aligned centers do not have a commonintersection, then by Lemma 5.10 their common
tangents are the rulings of a single quadric having their axis as axis of revolution. To be tangent to infinitely many
lines contained in this quadric, the fourth sphere must haveits center on the axis of the quadric (and adequate
radius as determined below), hence the four spheres have aligned centers.

Conversely, four spheres with aligned centers and at least one common tangent have infinitely many common
tangents, by symmetry of revolution. This concludes the proof of Theorem 5.1 and provides the finer geometric
characterization stated in Section 5.1.

As shown above, four spheres with collinear centers and no common intersection admit infinitely many real
common tangents if and only if there exists a conic (5.22) whose coefficientsA,B,C satisfy Equation (5.23) for
all i = 1, . . . ,4. These four equations admit a solution if and only if the relation obtained by eliminatingA,B,C is
satisfied. One can put the result in the permutation invariant form in terms of the oriented distancesdi j = α j −αi

and the radiirk :
4

∑
k=1

r2
k

∏i 6=k dki
= 0. (5.24)

In order to obtain infinitely manyrealcommon tangents, the coefficientsA,B,C must also satisfy the semi-algebraic
conditions

A 6 0, B2−4AC6 0 (5.25)

noted in (5.22).A andB2−4AC can be obtained in terms of thedi j andrk by solving the system of equations, as
illustrated after Lemma 7.

The case of four spheres intersecting in a common circle or tangent in a common point is a limit case of the
situation above, and thereby subject to the same algebraic and semi-algebraic conditions.

Remark 5.12. When a configuration of four spheres is given in terms of the Cartesian coordinates of the four
centers ci = (xi ,yi ,zi) and the corresponding radii ri , expressing the collinearity of the centers involves quadratic

equations in their coordinates, and, in view of
di j
dik

=
x j−xi
xk−xi

=
y j−yi
yk−yi

=
zj−zi
zk−zi

and d2
i j = (x j −xi)

2 +(y j −yi)
2 +(zj −

zi)
2, testing Conditions(5.24)and(5.25)amounts to evaluating polynomials of degree at most five in the Cartesian

coordinates and radii.

5.6 Conclusion
This paper answers a question left open for several years by characterizing the sets of four spheres of various

radii with infinitely many common tangent lines. This completes the description of degeneracies for common
tangents to spheres inR3.
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Some of our results generalize to the case of quadric surfaces. In a companion paper [BGLP03] we characte-
rize the families of quadrics inP3(C) whose common tangents sweep another quadric surface. The result of the
present paper appears as a particular case obtained by considering real tangents toreal spheres. Extending our
characterization to quadruples of quadrics with infinitelymany real common tangents remains an open problem.

Results of the kind proved in this paper have applications inthe field of 3D visibility. Given a 3D scene, com-
binatorial changes appearing in the view of a moving observer occur when traversing special surfaces known as
visual event surfaces. Such surfaces are swept by lines having prescribed contactwith the objects of the scene.
Various data structures based on visual events, like the visibility complex or the visibility skeleton [Dur00], have
been proposed to speed up visibility computations. The 0-dimensional elements of these structures appear as dis-
crete lines tangent to four objects. Failing to recognize that four objects admit infinitely many tangent lines leads
to errors in the computations of these types of data structures. Hence, recognizing configurations of four objects
with infinitely many tangent lines is crucial to the robustness of visibility computations. Our theorem settles the
case of four spherical objects inR3.





Chapitre 6

Transversals to line segments in
three-dimensional space

Cet article a été publié dansDiscrete Computational Geometry[BEL+05].

Abstract

We completely describe the structure of the connected components of transversals to a collection
of n line segments inR3. Generically, the set of transversal to four segments consist of zero or two
lines. We catalog the non-generic cases and show thatn > 3 arbitrary line segments inR3 admit at
mostn connected components of line transversals, and that this bound can be achieved in certain
configurations when the segments are coplanar, or they all lie on a hyperboloid of one sheet. This
implies a tight upper bound ofn on the number of geometric permutations of line segments inR3.

6.1 Introduction
A k-transversal to a family of convex sets inRd is an affine subspace of dimensionk (e.g. a point, line,

plane, or hyperplane) that intersects every member of the family. Goodman, Pollack, and Wenger [GPW93a] and
Wenger [Wen98] provide two extensive surveys of the rich subject of geometric transversal theory. In this paper,
we are interested in 1-transversals (also called line transversals, or simply transversals) to line segments. InR2, this
question was studied in the 1980’s by Edelsbrunner et al. [EMP+82] : they proved that the set of transversals ton
line segments has total description complexityO(n) and can be computed inO(nlogn) time ; moreover, it follows
from their work that the set of transversals consists of up ton connected components (see Section 6.3.3). Here we
study the subject inR3.

We address the following basic question : What is the cardinality and geometry of the set of transversals to
an arbitrary collection ofn line segments inR3 ? Here a segment may be open, semi-open, or closed, and it may
degenerate to a point ; segments may intersect or even overlap. Since a line inR3 has four degrees of freedom, it
can intersect at most four lines or line segments in generic position. Conversely, it is well-known that four lines
or line segments in generic position admit zero or two transversals ; moreover, four arbitrary lines inR3 admit
zero, one, two, or infinitely many transversals [HCV52, p. 164]. In contrast, our work shows that four arbitrary line
segmentsadmit up to four or infinitely many transversals.

Our interest in line transversals to segments inR3 is motivated by visibility problems. In computer graphics
and robotics, scenes are often represented as unions of not necessarily disjoint polygonal or polyhedral objects.
The objects that can be seen in a particular direction from a moving viewpoint may change when the line of sight
becomes tangent to one or more objects in the scene. Since theline of sight then becomes a transversal to a subset
of the edges of the polygons and polyhedra representing the scene, questions about transversals to segments arise
very naturally in this context.

75
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As an example, the visibility complex [DDP02,PV96b] and itsvisibility skeleton [DDP97] are data structures
that encode visibility information of a scene ; an edge of these structures corresponds to a set of segments lying
in line transversals to somek edges of the scene. Generically inR3, k is equal to three. In degenerate configura-
tions, however,k can be arbitrarily large. Such degenerate configurations can arise, for instance in architectural
scenes, which frequently contain many coplanar edges. It isthus essential for computing these data structures to
characterize and compute the transversals tok segments inR3. Also, to bound the size of the visibility complex
one needs to bound the number of connected components of transversals tok arbitrary line segments. The present
paper establishes the actual bound.

As mentioned above, in the context of 3D visibility, lines tangent to objects are more relevant than transversals ;
lines tangent to a polygon or polyhedron along an edge happento be transversals to this edge. (For bounds on the
space of transversals to convex polyhedra inR3 see [PS92].) The literature related to lines tangent to objects falls
into two categories. The one closest to our work deals with characterizing the degenerate configurations of curved
objects with respect to tangent lines. MacDonald, Pach, andTheobald [MPT01] give a complete description of
the set of lines tangent to four unit balls inR3. Megyesi, Sottile, and Theobald [MST03] describe the set oflines
meeting two lines and tangent to two spheres inR3, or tangent to two quadrics inP3. Megyesi and Sottile [MS05]
describe the set of lines meeting one line and tangent to two or three spheres inR3. A nice survey of these results
can be found in [The97]. Very recently, in an as yet unpublished manuscript, Borcea, Goaoc, Lazard, and Petitjean
completed this study by characterizing the set of lines tangent to four sheres inR3.

The other category of results deals with lines tangent tok amongn objects inR3. For polyhedral objects,
de Berg, Everett, and Guibas [dBEG98] showed aΩ(n3) lower bound on the number of free (i.e., non-occluded
by the interior of any object) lines tangent to four amongn disjoint homothetic convex polyhedra. Brönnimann
et al. [BDD+02] showed that, under a certain general position assumption, the number of lines tangent to four
amongk bounded disjoint convex polyhedra of total complexityn is O(n2k2). For curved objects, Devillers et
al. [DDE+03] presented a simpleΩ(n2) lower bound on the number of free maximal segments tangent tofour
amongn unit balls, and give a bound ofΩ(n3) (due to Devillers and Ramos) forn arbitrarily sized balls. Agarwal,
Aronov, and Sharir [AAS99] showed an upper bound ofO(n3+ε) on the complexity of the space of line transversals
to n balls ; recently, with Koltun, they showed that the same upper bound holds for the complexity of the set of
lines that do not intersectn balls [AAKS05]. Durand et al. [DDP02] showed an upper bound of O(n8/3) on the
expected number of possibly occluded lines tangent to four amongn uniformly distributed unit balls. Under the
same model, Devillers et al. [DDE+03] recently showed a bound ofΘ(n) on the expected number of maximal free
line segments tangent to four amongn balls.

A topic closely related to line transversals is that of geometric permutations. Ageometric permutationof
pairwise disjoint convex objects inRd is an ordering of the objects (or its reverse) such that the objects are met in
that order by a line transversal. Worst-case bounds for general convex objects are known : 2n−2 is tight in two
dimensions [ES90], while in any dimension the best known bounds areΩ(nd−1) [KLL92] and O(n2d−2) [Wen90].
The gap was closed for spheres by Smorodinsky et al. [SMS00],who showed thatn spheres inRd admit up to
Θ(nd−1) geometric permutations, and the same bound was also shown true for “fat” objects [KV01]. Recently,
Cheong et al. [CGN05] improved the known bounds for congruent balls, by showing thatn balls inRd of same
radius admit at most two geometric permutations ifn > 9, and at most three otherwise.

6.2 Our results
We say that two transversals to a collection of line segmentsare in the sameconnected componentif and

only if one of the transversals can be continuously moved into the other while remaining a transversal inR3 to
the collection of line segments. (For the sets of line transversals considered here, the notions of connected and
path-connected components are equivalent since all sets are semi-algebraic.) Equivalently, the two points in line
space (e.g., in Plücker space [PW01]) corresponding to the two transversals are in the same connected component
of the set of points corresponding to all the transversals inR3 to the collection of line segments.

Our main result is the following theorem.

Theorem 6.1. A collection of n> 3 arbitrary line segments inR3 admits any number from 0 to n of connected
components of line transversals. More precisely, the set ofline transversals consists of at most two isolated lines
unless the segments lie in one of the following three configurations :
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1. the n segments are all contained in lines of one ruling of (a) a hyperbolic paraboloid or (b) a hyperboloid
of one sheet, or

2. they are all concurrent, or

3. they all lie in a plane, with the possible exception of a group of one or more segments that all meet that
plane at the same point.

In cases 1(a) and 2, the transversals form at most one connected component. In cases 1(b) and 3, the transversals
can have any number from 0 to n of connected components. Moreover, in case 3, if all segments are not coplanar,
this number is at most n−1.

In cases 1–3, each connected component can consist of infinitely many lines or reduce to an isolated line.
For example, three segments forming a triangle and a fourth segment intersecting the interior of the triangle in one
point have exactly three transversals (Figure 6.2b shows a similar example with infinitely many transversals). Also,
the four segments in Figure 6.1 can be shortened so that the four connected components of transversals reduce to
four isolated transversals.

A simple consequence of our theorem is the following bound onthe number of geometric permutations ofn
segments inR3.

Corollary 6.2. A set of n> 3 pairwise disjoint segments inR3 admits up to n geometric permutations and this
bound is tight.

Proof. By the theorem above,n segments inR3 admit up ton connected components of line transversals. Wi-
thin a connected component, the lines transversals must intersect the segments in the same order. Otherwise by
continuity there would exist a line in that component where two objects would intersect somewhere on that line, a
contradiction. Hence the upper bound. The lower bound is proved by the configuration of Figure 6.1 generalized
to n segments : then geometric permutations are all the permutations of the form(i, i + 1, . . . ,n,1, . . . , i −1) for
1 6 i 6 n. 2

Finally, as discussed in the conclusion, anO(nlogn)-time algorithm for computing the transversals ton seg-
ments follows directly from the proof of Theorem 6.1.

6.3 Proof of Theorem 6.1
Every non-degenerate line segment is contained in itssupporting line. We define the supporting line of a point

to be the vertical line through that point. We prove Theorem 6.1 by considering the following three cases which
cover all possibilities but are not exclusive.

1. Three supporting lines are pairwise skew.

2. Two supporting lines are coplanar.

3. All the segments are coplanar.

We can assume in what follows thatthe supporting lines are pairwise distinct.Indeed, if disjoint segments
have the same supporting lineℓ, thenℓ is the only transversal to those segments, and so the set of transversals is
either empty or consists ofℓ and the theorem is satisfied. If some non-disjoint segments have the same supporting
line, then any transversal must meet the intersection of thesegments. In that case, we can replace these overlapping
segments by their common intersection and the theorem for the smaller collection will imply the result for the
original collection.

6.3.1 Three supporting lines are pairwise skew
Three pairwise skew lines lie on a unique doubly-ruled hyperboloid, namely, a hyperbolic paraboloid or a

hyperboloid of one sheet (see the discussion in [PW01, §3]). Furthermore, they are members of one ruling, say
the “first” ruling, and their transversals are the lines in the “second” ruling that are not parallel to any of the three
given skew lines.
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FIG. 6.1 – Two views of a hyperboloid of one sheet containing four line segments and their four connected
components of transversals (corresponding to the shaded regions). The four segments are symmetric under rotation
about the axis of the hyperboloid.

Consider first the case where there exists a fourth segment whose supporting lineℓ does not lie in the first
ruling. Eitherℓ is not contained in the hyperboloid or it lies in the second ruling. In both cases, there are at most
two transversals to the four supporting lines, which are lines of the second ruling that meet or coincide with
ℓ [HCV52, p. 164]. Thus there are at most two transversals to then line segments.

Now suppose that all then > 3 supporting lines of the segmentssi lie in the first ruling of a hyperbolic
paraboloid. The lines in the second ruling can be parameterized by their intersection points with any liner of the
first ruling. Thus the set of lines in the second ruling that meet a segmentsi corresponds to an interval on liner.
Hence the set of transversals to then segments corresponds to the intersection ofn intervals onr, that is, to one
interval on this line, and so the transversals form one connected component.

Consider finally the case where then > 3 supporting lines lie in the first ruling of a hyperboloid of one sheet
(see Figure 6.1). The lines in the second ruling can be parameterized by points on a circle, for instance, by their
intersection points with a circle lying on the hyperboloid of one sheet. Thus the set of transversals to then segments
corresponds to the intersection ofn intervals on this circle. This intersection can have any number of connected
components from zero up ton, and any of these connected components may consist of an isolated point on the
circle. The set of transversals can thus have any number of connected components from zero up ton, and any of
these connected components may consist of an isolated transversal. Figure 6.1 shows two views of a configuration
with n = 4 line segments having four connected components of transversals.

6.3.2 Two supporting lines are coplanar
Let ℓ1 andℓ2 be two (distinct) coplanar supporting lines in a planeH. First consider the case whereℓ1 andℓ2

are parallel. Then the transversals to then segments all lie inH. If some segment does not intersectH then there
are no transversals ; otherwise, we can replace each segmentby its intersection withH to obtain a set of coplanar
segments, a configuration treated in Section 6.3.3.

Now suppose thatℓ1 andℓ2 intersect at pointp. Consider all the supporting lines not inH. If no such line exists
then all segments are coplanar ; see Section 6.3.3. If such lines exist and any one of them is parallel toH then all
transversals to then segments lie in the plane containingp and that line. We can again replace each segment by its
intersection with that plane to obtain a set of coplanar segments, a configuration treated in Section 6.3.3.

We can now assume that there exists a supporting line not inH. Suppose that all the supporting lines not
in H go throughp. If all the segments lying in these supporting lines containp then we may replace all these
segments by the pointp without changing the set of transversals to then segments. Then all resulting segments are
coplanar, a configuration treated in Section 6.3.3. Now if some segmentsdoes not containp then the only possible
transversal to then segments is the line containings andp.

We can now assume that there exists a supporting lineℓ3 intersectingH in exactly one pointq distinct fromp
(see Figure 6.2(a)). LetK be the plane containingp andℓ3. Any transversal to the linesℓ1, ℓ2, andℓ3 lies inK and
goes throughp, or lies inH and goes throughq.

If there exists a segments that lies neither inH nor in K and goes through neitherp nor q, then there are at
most two transversals to then segments, namely, at most one line inK throughp ands and at most one line inH
throughq ands.
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FIG. 6.2 –(a) Linesℓ1 andℓ2 intersect at pointp, and lineℓ3 intersects planeH in a pointq distinct fromp. (b)
Four segments having three connected components of transversals.

We can thus assume that all segments lie inH or K or go throughp or q. If there exists a segments that goes
through neitherp nor q, it lies in H or K. If it lies in H then all the transversals to then segments lie inH (see
Figure 6.2(b)). Indeed, no line inK throughp intersectssexcept possibly the linepqwhich also lies inH. We can
again replace each segment by its intersection withH to obtain a set of coplanar segments ; see Section 6.3.3. The
case wheres lies inK is similar.

We can now assume that all segments go throughp or q (or both). Letnp be the number of segments not
containingp, andnq be the number of segments not containingq. Note thatnp +nq 6 n.

Among the lines inH throughq, the transversals to then segments are the transversals to thenq segments not
containingq. We can replace thesenq segments by their intersections withH to obtain a set ofnq coplanar segments
in H. The transversals to these segments inH throughq can form up tonq connected components. Indeed, the lines
in H throughq can be parameterized by a point on a circle, for instance, by their polar angle inR/πZ. Thus the
set of lines inH throughq and through a segment inH corresponds to an interval ofR/πZ. Hence the set of
transversals to thenq segments corresponds to the intersection ofnq intervals inR/πZ which can have up tonq

connected components.
Similarly, the lines inK throughp that are transversals to then segments can form up tonp connected com-

ponents. Note furthermore that the linepq is a transversal to all segments and that the connected component of
transversals that contains the linepq is counted twice. Hence there are at mostnp + nq − 1 6 n− 1 connected
components of transversals to then segments.

To see that the bound ofn−1 connected components is reached, first consider⌊n/2⌋ lines inH throughp, but
not throughq. Their transversals throughq are all the lines inH throughq, except for the lines that are parallel
to any of the⌊n/2⌋ given lines. This gives⌊n/2⌋ connected components. Shrinking the⌊n/2⌋ lines to sufficiently
long segments still gives⌊n/2⌋ connected components of transversals inH throughq. The same construction with
⌈n/2⌉ line segments in planeK gives⌈n/2⌉ connected components of transversals inK throughp. This givesn−1
connected components of transversals to then segments since the component containing the linepq is counted
twice. Figure 6.3(a) shows an example of four segments having three connected components of transversals.

6.3.3 All the segments are coplanar
Let H be the plane containing all then segments. There exists a transversal not inH if and only if all segments

are concurrent at a pointp. In this case, the transversals consist of the lines throughp together with the transversals
lying in H. To see that they form only one connected component, notice that any transversal inH can be trans-
lated top while remaining a transversal throughout the translation.We thus can assume in the following that all
transversals lie inH, and we consider the problem inR2.

We consider the usual geometric transform (see e.g. [EMP+82]) where a line inR2 with equationy = ax+b
is mapped to the point(a,b) in the dual space. The transversals to a segment are transformed to a double wedge ;
the double wedge degenerates to a line when the segment is a point. The apex of the double wedge is the dual of
the line containing the segment.
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FIG. 6.3 – (a) Four segments having three connected components of transversals. (b) Four coplanar segments
having four connected components of transversals.

A transversal to then segments is represented in the dual by a point in the intersection of all the double wedges.
There are at mostn+1 connected components of such points [EMP+82] (see also [Ede87a, Lemma 15.3]). Indeed,
each double wedge consists of two wedges separated by the vertical line through the apex. The intersection of all
the double wedges thus consists of at mostn+1 convex regions whose interiors are separated by at mostn vertical
lines.

Notice that if there are exactlyn+1 convex regions then two of these regions are connected at infinity by the
dual of some vertical line, in which case the segments have a vertical transversal. Thus the number of connected
components of transversals is at mostn.

To see that this bound is sharp consider the configuration in Figure 6.3(b) of four segments having four com-
ponents of transversals. Three of the components consist ofisolated lines and one consists of a connected set of
lines throughp (shaded in the figure). Observe that the line segmentab meets the three isolated lines. Thus the
set of transversals to the four initial segments and segmentab consists of the three previously mentioned isolated
transversals, the linepb which is isolated, and a connected set of lines throughp. This may be repeated for any
number of additional segments, giving configurations ofn coplanar line segments withn connected components of
transversals.

6.4 Algorithmic considerations and conclusion
While algorithmic issues have not been the main concern of thepaper, we note that the proof of Theorem 6.1

leads to anO(nlogn)-time algorithm in the real RAM model of computation. First reduce inO(nlogn) time the
set of segments to the case of pairwise distinct supporting lines. Choose any three of these lines. Either they
are pairwise skew or two of them are coplanar. If they are pairwise skew (see Section 6.3.1), their transversals,
and hence the transversals to alln segments, lie in one ruling of a hyperboloid. Any segment that intersects the
hyperboloid in at most two points admits at most two transversals that lie in that ruling. Checking whether these
lines are transversals to then segments can be done in linear time. Consider now the case of asegment that lies
on the hyperboloid. Its set of transversals, lying in the ruling, can be parameterized in constant time by an interval
on a line or a circle depending on the type of the hyperboloid.Computing the transversals to then segments thus
reduces in linear time to intersectingn intervals on a line or on a circle, which can be done inO(nlogn) time.
If two supporting lines are coplanar (see Section 6.3.2), computing the transversals to then segments reduces in
linear time to computing transversals to at mostn segments in one or two planes, which can be done inO(nlogn)
time [EMP+82].

Finally, note that we did not consider in this paper, for simplicity, segments that can extend to lines or half-
lines inR3 although our theorem holds in those situations as well. For example, inR3, the transversals ton > 3
lines of one ruling of a hyperboloid of one sheet are all the lines of the other ruling with the exception of the lines
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parallel to then given lines. Thus, inR3, the transversals formn connected components. Notice however that our
theorem does not hold for lines in projective spaceP3 ; in this case, our proof directly yields that, if a set of lines
admit infinitely many transversals, they form one connectedcomponent.
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Chapitre 7

Lines tangent to four triangles in
three-dimensional space

Cet article a été accepté pour publication dansDiscrete Computational Geometry[BDLS07].

Abstract

We investigate the lines tangent to four triangles inR3. By a construction, there can be as many as
62 tangents. We show that there are at most 162 connected components of tangents, and at most 156
if the triangles are disjoint. In addition, if the trianglesare in (algebraic) general position, then the
number of tangents is finite and it is always even.

7.1 Introduction
Motivated by visibility problems, we investigate lines tangent to four triangles inR3. In computer graphics

and robotics, scenes are often represented as unions of not necessarily disjoint polygonal or polyhedral objects.
The objects that can be seen in a particular direction from a moving viewpoint may change when the line of sight
becomes tangent to one or more objects in the scene. Since this line of sight is tangent to a subset of the edges of
the polygons and polyhedra representing the scene, we are also led to questions about lines tangent to segments
and to polygons. Four polygons will typically have finitely many common tangents, while five or more will have
none and three or fewer will have either none or infinitely many.

This paper follows a series of papers by the authors and theircollaborators investigating such questions.
The paper [BDD+07] investigated the lines of sight tangent to four convex polyhedra in a scene ofk convex
but not necessarily disjoint polyhedral objects, and proved that there could be up to but no more thanΘ(n2k2)
connected components of such lines. The same bound for the considerably easier case of disjoint convex polyhedra
in algebraic general position was proved earlier [EGHHZ00,BDD+02]. The paper [BEL+05] offers a detailed
study of transversals ton line segments inR3 and proved that although there are at most two such transversals for
four segments in (algebraic) general position, there are atmostn such connected components of transversals in
any case. Dealing with curved objects inR3, the paper [BGLP06] studies the tangent lines to four arbitrary spheres
and [DDE+03] shows that there is a linear expected number of maximal non-occluded line segments tangent to
four amongn uniformly distributed unit balls.

Halperin and Sharir [HS94], and Pellegrini [Pel94], provedthat, in a polyhedral terrain, the set of free lines
with n edges has near-cubic complexity. De Berg, Everett and Guibas [dBEG98] showed aΩ(n3) lower bound on
the complexity of the set of free lines (and thus free segments) amongn disjoint homothetic convex polyhedra.
Recently, Agarwal et al. [AAKS05] proved that the set of freelines amongn unit balls has complexityO(n3+ε).
For related books and surveys, see [Ede87b,GPW93b,PW01,Wen98].

In this paper, we consider the case of four triangles inR3, and establish lower and upper bounds on the number
of tangent lines.

83
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FIG. 7.1 –The linesℓ1, ℓ2 andℓ3 span a hyperbolic paraboloidQ which meets lineℓ4 in two points. The two lines
λ1 andλ2 are the transversals to the linesℓ1 ℓ2, ℓ3, andℓ4.

A triangle in R3 is the convex hull of three distinct (and non-collinear) points in R3. A line is tangentto
a triangle if it meets an edge of the triangle. Note that a linetangent to each of four triangles forming a scene
corresponds to an unoccluded line of sight in that scene. If there arek > 4 triangles, then the boundΘ(k4) of
[BDD+07] stands (as the total number of edges isn= 3k and one of the lower bound examples is made of triangles).
We thus investigate the case of four triangles. Letn(t1, t2, t3, t4) be number of lines tangent to four trianglest1, t2,
t3, andt4 in R3. This number may be infinite if the lines supporting the edgesof the different triangles are not in
general position.

Our first step is to consider the algebraic relaxation of thisgeometric problem in which we replace each edge
of a triangle by the line inCP3 supporting it, and then ask for the set of lines inCP3 which meet one supporting
line from each triangle. Since there are 34 = 81 such quadruples of supporting lines, this is the disjunction of 81
instances of the classical problem of transversals to four given lines inCP3. As there are two such transversals to
four given lines in general position, we expect that this algebraic relaxation has 162 solutions. We say that four
trianglest1, t2, t3, t4 are in (algebraic)general positionif each of the 81 quadruples of supporting lines have two
transversals inCP3 and all 162 transversals are distinct. LetT be the configuration space of all quadruples of
triangles inR3 andT ⊂ T consist of those quadruples which are in general position. Thus if (t1, t2, t3, t4) ∈ T, the
numbern(t1, t2, t3, t4) is finite and is at most 162.

Our primary interest is the number

N := max{n(t1, t2, t3, t4) | (t1, t2, t3, t4) ∈ T} .

Our results about this numberN are two-fold. First, we show thatN > 62.

Theorem 7.1. There are four disjoint triangles in T with62common tangent lines.

The idea is to perturb a configuration of four lines inR3 with two real transversals, such as in Figure 7.1. The
triangles in our construction are very ‘thin’—the smallest angle among them measures about 10−11 degrees. We
ran a computer search for ‘fatter’ triangles having many common tangents, checking the number of tangents to 5
million different quadruples of triangles. It appears thatrandom quadruples of realistic triangles often have a fair
number of common tangents. Several had as many as 40 common tangents, and quadruples that admit common
tangents have 16 tangents or more with probability at least 15%. This is discussed in Section 7.5.

We can improve the upper bound onN when the triangles are disjoint.

Theorem 7.2. Four triangles in T admit at most162distinct common tangent lines. This number is at most156 if
the triangles are disjoint.

We believe, however, that the upper bounds we give here are far from optimal. When the four triangles are
not in general position, the number of tangent lines can be infinite. In this case, we may group these tangents by
connected components : two line tangents are in the same component if one may move continuously between the
two lines while staying tangent to the four triangles. Each quadruple of edges may induce up to four components
of tangent lines [BEL+05], giving a trivial upper bound of 324. This may be improved.
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FIG. 7.2 –Configuration in planeπ4.

Theorem 7.3. Four triangles have at most162 connected components of common tangents. If the triangles are
disjoint, then this number is at most156.

We have one more result which we do not prove in this paper, butis proved in the companion research report
[BDLS05] and is relevant to mention here.

Theorem 7.4. If (t1, t2, t3, t4) ∈ T, then n(t1, t2, t3, t4) is even.

This result may not seem surprising as complex roots come in conjugate pairs. However, this usual argument
does not apply because we seek tangents to triangles and not transversals to lines. Frequently, only one of two real
transversals to a quadruple of supporting lines is tangent to the triangles. The main new idea behind Theorem 7.4
is that such tangent lines essentially come in pairs.

In our proof of Theorem 7.4, we consider fourmovingtriangles, and show that common tangents are created
and destroyed in pairs, and so the parity ofn(t1, t2, t3, t4) does not change. There are two cases to consider. The
first is when two real tangents which are transversal to the same four edges coalesce and become a pair of complex
conjugate transversals ; this is the ‘usual’ argument. The second case is when a real transversal to edgese1, e2,
e3, ande4 moves off ofe4 and is thus no longer tangent to the four triangles. In doing so, it must pass through a
vertexv of e4. In this case, there is a real transversal to edgese1, e2, e3, and someotheredgee′4 meetingv which
simultaneously moves off ofe′4, also passing through the vertexv. Theorem 7.4 follows as there are triangles inT
with no common tangents. We give a complete proof in the research report version [BDLS05].

Theorems 7.1, 7.2, and 7.3 are proved in Sections 7.2, 7.3, and 7.4, respectively. Section 7.5 discusses our
search for ‘fat’ triangles with many common tangents.

7.2 A construction with 62 tangents
Consider the four triangles whose vertices are given in Table 7.1.

t1

(−10.5,1,−10.5)

(.5628568345479573470378601,1, .5628568345479573470378601)

(.56285683454726874605620706, .99999999999822994290647247, .56285683454726874605620706)

t2

(−10.5,−1,10.5)

(1.394218989475,−1,−1.394218989475)

(1.3942406911811439954597161,−1.0000237884694881275439271,−1.3942406911811439954597161)

t3

(−9.5,−9.5, .25)

(.685825, .685825, .25)

(.69121730616063647303519136, .69121730616063647303519136, .26069756890079842876805653)

t4

(9.5,0,0)

(−.511,0,0)

(−1.0873912730501133759642956,0,−.51645811088049333541289247)

TAB . 7.1 –Four triangles with 62 common tangents.
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Theorem 7.1′. There are exactly62 lines tangent to the four triangles of Table7.1.

This can be verified by a direct computation. Software is provided on this paper’s web page†. More illumina-
ting perhaps is our construction. The idea is to perturb a configuration of four lines inR3 with two transversals
such as in Figure 7.1. The resulting triangles of Theorem 7.1′ are very thin. In degrees, their smallest angles are

t1 : 6.482×10−12, t2 : 8.103×10−5, t2 : 4.253×10−2, and t4 : 2.793.

The construction. The lines given parametrically by

ℓ1 : (t,1, t) , ℓ2 : (t,−1,−t) , ℓ3 : (t, t, 1
4) , and ℓ4 : (t,0,0) ,

have two transversalsλ1 : (1
2,2t, t) andλ2 : (−1

2,2t,−t).
For eachi = 1,2,3,4, letQi be the hyperboloid spanned by the lines other thanℓi . For example,Q3 has equation

z= xy. The intersection ofQi with a plane containingℓi will be a conic which meetsℓi in two points (corresponding
to the common transversalsλ1 andλ2 at t = ±1

2). We choose the planeπi so that these two points lie in the same
connected component of the conic. Here is one possible choice

π1 : x = z, π2 : x = −z, π3 : x = y, and π4 : y = 0.

For eachi, letCi be the conicπi ∩Qi , shown in the planeπi in Figure 7.3. Here, the horizontal coordinate ist,
the parameter of the lineℓi , while the vertical coordinate isy−1 for π1, y+1 for π2, z−1

4 for π3, andz for π4.
For eachi = 1, . . . ,4, rotate lineℓi in planeπi very slightly about a point that is far from the conicCi , obtaining

a new lineki in πi which also meetsCi in two points. Consider now the transversals toℓi ∪ ki , for i = 1, . . . ,4.
Becauseki is close toℓi and there were two transversals toℓ1, ℓ2, ℓ3, ℓ4, there will be two transversals to each of the
16 quadruples of lines obtained by choosing one ofℓi or ki for i = 1, . . . ,4. By our choice of the point of rotation,
all of these will meetℓi andki in one of the two thin wedges they form. In this wedge, form a triangle by adding a
third side so that the edges onℓi andki contain all the points where the transversals meet the lines. The resulting
triangles will then have at least 32 common tangents. We claim that by carefully choosing the third side (and tuning
the rotations) we are able to get 30 additional tangents.

To begin, look at Figure 7.4 which displays the configurationin π4 given by the four triangles from Table 7.1.
Since the linesℓi and ki for i = 1,2 are extremely close, the four conics given by transversalsto them and to
ℓ3 cannot be resolved in these pictures. The same is true for thefour conics given byk3, so that each of the
apparent two conics are clusters of four nearby conics. The picture on the left is a view of this configuration in the
coordinates forπ4 of Figure 7.3. It includes a secant linem4 to the conics. We choose coordinates on the right so
thatm4 is vertical, but do not change the coordinates onℓ4. The horizontal scale has been accentuated to separate
the two clusters of conics. The three lines,ℓ4, k4, andm4 form the trianglet4. Let its respective edges bee4, f4, and
g4. Each edge meets each of the eight conics in two points and these 48 points of intersection give 48 lines tangent
to the four triangles.

This last assertion that the 16 lines transversal tom4 and toℓi ∪ki for i = 1,2,3 meet the edges of the triangles
t1, t2, andt3 needs justification. Consider for example the transversalsto ℓ1, ℓ2, andℓ3. These form a ruling of the
doubly-ruled quadricQ4 and are parameterized by their point of intersection withℓ1. The intersection ofQ4 with
π4 is the conicC4. Since the intersections of the conicC4 with the segmentg4 supported onm4 lie between its

†http ://www.math.tamu.edu/˜sottile/stories/4triangle s/index.html
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FIG. 7.4 –Configuration in planeπ4.

intersections withℓ4 andk4, the corresponding transversals toℓ1, ℓ2, ℓ3, andg4 meetℓ1 between points ofℓ1 met
by common transversals toℓ4∪ k4 andℓ1, ℓ2, andℓ3. The same argument for the other lines and for all 8 conics
justifies the assertion.

Naïvely, we would expect that this same construction (the third side cutting all eight conics inπi) could work
to select each of the remaining sides of the trianglesg3, g2, andg1, and that this would give four triangles having
32+16+16+16+16 = 96 common tangents. Unfortunately this is not the case. In the earlier conference version
of this paper [BDLS04], we gave a construction that we claimed would yield 88 common tangents. Attempting
that construction using Maple revealed a flaw in the argumentand the current construction of four triangles with
62 common tangents is the best we can accomplish.

In π4, the conics come in two clusters, depending upon whether or not they correspond toℓ3 or tok3. In order
for the edgeg4 to cut all conics, the angle betweenℓ4 andk4 has to be large, in fact significantly larger than the
angle betweenℓ3 andk3. Thus inπ3, the conics corresponding toℓ4 are quite far from the conics corresponding to
k4, and the sideg3 can only be drawn to cut four of the conics, giving eight additional common tangents. Similarly,
g2 can only cut two conics, andg1 only one. In this way, we arrive at four triangles having 32+16+8+4+2 = 62
common tangents, which has been verified by computer.

7.3 Upper bound for disjoint triangles in general position
Four triangles in general position have at most 162 common tangents. If the triangles are disjoint, we slightly

improve this upper bound to 156. Our method will be to show that not all 81= 34 quadruples of edges can
give rise to a common tangent. Our proof follows that for the upper bound on the number of tangents to four
polytopes [BDD+02], limiting the number of configurations for disjoint triangles inR3. We divide the proof into
two lemmas, which do not assume general position. The application of the lemmas to the proof of [BDD+02],
however, requires the general position assumption.

In order for a tangent to meet an edgee, the plane it spans withe must meet one edge from each of the other
triangles. A triple of edges, one from each of the other triangles, iscontributing if there is a plane containinge
which meets the three edges. We say that an edgeestabsa trianglet if its supporting line meets the interior oft.

Lemma 7.5. Let e be an edge of some triangle. If e stabs exactly one of the other triangles, then there are at most
26contributing triples of edges. If e stabs no other triangle,then there are at most25contributing triples.

It is not hard to see that ife stabs at least two of the other triangles, then each of the 27= 33 triples of edges
can be contributing.

Proof.Suppose thate is an edge of some triangle. Letπ(α) be the pencil of planes containinge. (This is paramete-
rized by the angleα.) For each edgef of another trianglet, there is an interval of anglesα for whichπ(α) meetsf .
Figure 7.5 illustrates the two possible configurations for these intervals, which depend upon whether or notestabs
the trianglet. The intervals are labeled 1, 2, and 3 for the three edges oft. Whenestabst, these intervals cover the
entire range ofα and the picture is actually wrapped. Call this astabbing diagram. When the supporting line of
e does not meett, these intervals do not cover the entire range ofα, and there are two endpoints and oneinterior
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3 1 1 2

2 2 3 3
estabst

1 1

2 3
edoes not stabt

FIG. 7.5 –Stabbing and non-stabbing configurations.

3 1 2

2 3
1

2 3
1 1

2 3 2
estabs one triangle

1 1

2 3 2
1

2 3
1 1

2 3 2
estabs no triangle

FIG. 7.6 –Configurations with 26 and 25 contributing triples.

vertexof the diagram. If the supporting line ofe meets an edge oft, then the two endpoints of the non-stabbing
diagram wrap around and coincide. Call either of these last two configurations a non-stabbing diagram.

To count contributing triples, we line up (overlay) diagrams from each of the three triangles not containinge
and count how many of the 27 triples{1,2,3}3, one from each triangle, occur at some value ofα. For example,
Figure 7.6 displays a configuration with 26 contributing triples (whereestabs a single triangle) and a configuration
with 25 contributing triples (e stabs no other triangles). The configuration on the left is missing the triple(2,3,3),
while the configuration on the right is missing the triples(2,2,3) and(3,3,2).

These configurations are the best possible. Indeed, begin with two non-stabbing diagrams in which all 9 pairs
of edges occur. (If only 8 pairs occurred, there would be at most 24 contributing triples.) The unique way to do this
up to relabeling the edges is given by the lower two diagrams in either picture in Figure 7.6. These two diagrams
divide the domain ofα into six intervals (the two at the ends are wrapped). The five pairs involving 1 occur in two
intervals, but four exceptional pairs{(2,2),(2,3),(3,2),(3,3)} occur uniquely in different intervals.

Consider now a third diagram. An exceptional pair extends tothree contributing triples only if all three sides
in the third diagram meet the interval corresponding to thatpair. If the third diagram is stabbing, then one of its
three vertices lies in that interval—thus there is at least one triple which does not contribute. If the third diagram is
non-stabbing, then either the middle vertex or else both endpoints must lie in that interval—thus there are at least
two triples which do not contribute.

Lemma 7.6. At most78quadruples of edges of four disjoint triangles can lead to a common tangent.

Proof. First consider the maximum number of stabbing edges betweentwo triangles. If the triangles are disjoint,
then there are at most three stabbing edges ; one triangle could have three edges stabbing the other. Indeed, if at
least two supporting lines of a trianglet meet another trianglet ′ which is disjoint fromt, thent lies entirely on one
side of the plane supportingt ′, and thus no supporting lines oft ′ can meett. Figure 7.7(a) shows a configuration in
which all three supporting lines oft stabt ′.

Consider now the bipartite graph between 12 nodes representing the edges of the four triangles and 4 nodes
representing the triangles. This graph has an arc between anedgee and a trianglet if the line supportinge stabst.
(We assume thate is not an edge oft.) We just showed that the edges of one trianglet can have at most three arcs
incident on another trianglet ′, and so this graph has at most 18 edges.

Let the weight of a triangle be the number of arcs emanating from its edges in this graph. As the graph has at
most 18 arcs, at least one triangle has weight less than 5. We argue that there is a triangle of weight at most 3. This
is immediate if the graph has 15 or fewer edges. On the other hand, this graph has more structure. If it has 18 edges,
then all pairs of triangles are in the configuration of Figure7.7(a), and so every triangle has weight a multiple of
3, which implies that some triangle has weight at most 3. If the graph has 17 edges, then there is exactly one pair
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t ′

t
(a) (b)

FIG. 7.7 – (a) Two disjoint triangles can have at most 3 stabbing lines.(b) Two intersecting triangles may have
up to four.

of triangles with only two stabbing edges, and so the possible weights less than 5 are 0, 2, and 3. If the graph has
16 edges, then there is one pair with only one edge stabbing, or two pairs with two edges stabbing. There can be at
most two triangles of weight 4, and again we conclude that there is a triangle with weight at most 3.

If a triangle has weight at most three, either all three edgesstab a unique triangle, or else one edge stabs no
triangles and another edge stabs at most one other triangle.We sum the number of contributing triples over the
edges of this triangle. By Lemma 7.5, this sum will be at most 26+26+26=78 if all three edges stab a unique
triangle and at most 27+26+25=78 if not. This proves the lemma.

Remark 7.7. There exist four disjoint triangles whose bipartite graph has exactly 18 edges. Thus the previous
argument cannot be improved without additional ideas. It isconceivable that further restrictions to the bipartite
graph may exist, leading to a smaller upper bound.

Remark 7.8. This proof does not enable us to improve the bound when the triangles are not disjoint. Two inter-
secting triangles can induce up to four arcs (see Figure 7.7(b)) and thus the total number of arcs is bounded above
by 24. The minimal weight of a triangle is then 6, and the edgesof such a triangle could all have degree 2, which
leads to no restrictions.

7.4 Upper bounds on the number of components
Let F andI be the sets of quadruples of edges, one from each of four triangles, whose supporting lines have

finitely and infinitely, respectively, many common transversals. LetnF andnI be the sum over all quadruples of
edges inF andI, respectively, of the numbers of connected components of common transversals to each quadruple
of edges. Note that the number of quadruples inF andI is |F|+ |I| = 81.

Consider a connected componentc of common transversals to a quadruple of edgesq ∈ I. The arguments
of [BEL+05] show thatc contains a line that meets a vertex of one of the four edges. That line is thus transversal
to another quadrupleq′ of edges. Thus, the connected componentc of common transversals toq is connected with
a connected componentc′ of common transversals toq′. If q′ ∈ F we charge the componentc∪c′ to c′. Otherwise
q andq′ are both inI and the componentc∪c′ is counted twice. The number of connected components of tangents
to four triangles is thus at mostnF +nI/2.

Since any four lines admit at most two or infinitely many transversals,nF 6 2|F|. Also, any four segments
admit at most four connected components of common transversals [BEL+05], thusnI 6 4|I|. Hence, the number
of connected components of tangents to four triangles is at most 2|F|+2|I| = 162.

This still may overcount the number of connected componentsof tangents, but further analysis is very delicate.
Such complicated arguments are not warranted as we have already obtained the upper bound of 162 common
tangents to four triangles inT. As in Section 7.3, if the triangles are disjoint, then not all quadruples of edges can
contribute, which lowers this bound to 156.

7.5 Random triangles
We proved Theorem 7.1 by exhibiting four triangles having 62common tangents. We do not know if that is

the best possible. Since the geometric problem of determining the tangents to four triangles is computationally
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Number 0 2 4 6 8 10 12 14

Frequency 1 515 706 331 443 646 150 403 679 637 202 327 159 358 312 238 913

16 18 20 22 24 26 28 30 32 34 36 38 40

253 396 114 046 80 199 44 870 27 726 12 426 5 796 2 016 813 111 30 3 4

TAB . 7.2 –Number of triangles with a given number of tangents, out of 5 000 000 randomly constructed triangles.

Triangle Vertices
t1 (−4,−731,−336) (297,−507,978) (824,−62,−359)
t2 (531,−631,−820) (−24,−716,713) (807,377,177)
t3 (586,−205,952) (861,−774,235) (−450,758,161)
t4 (330,−141,−908) (942,−920,651) (−226,489,968)

TAB . 7.3 –Four triangles with 40 common tangents.

feasible—it is the disjunction of 81 problems with algebraicdegree 2 and simple inequalities on the solutions—we
investigated it experimentally.

For this, we generated 5 000 000 quadruples of triangles whose vertices were points with integral coordinates
chosen uniformly at random from the cube[−1000,1000]3. For each, we computed the number of tangents. The
resulting frequencies are recorded in Table 7.2. This search consumed over six months of CPU time on 1.2GHz
processors at the MSRI and a DEC Alpha machine at the University of Massachusetts in 2004. It is archived on
the web page† accompanying this article.

In this search, we found four different quadruples of triangles with 40 common tangents, and none with more.
Based on thisuiid random model, we find that the probabilty that the four triangles have at least one tangent is
around 69.7%, and that the expected number of tangents is somewhat around 6.325, with a standard deviation of
about 12.93. The vertices of one are given in Table 7.3. Thesetriangles are rather ‘fat’, in that none have very
small angles. Contrast that to the triangles of our construction in Section 7.3. In Figure 7.8 we compare these
two configurations of triangles. On the left is the configuration of triangles from Table 7.3, together with their 40
common tangents, while on the right is the configuration of triangles having 62 common tangents. The triangles
are labeled in the second diagram, as they are hard to distinguish from the lines. As we remarked in Section 7.3,
many of the lines are extremely close and cannot be easily distinguished ; that is why one can only count eight
lines in this picture.

t1

t2

t3t4

FIG. 7.8 –Triangles with many common tangents.

†www.math.tamu.edu/ ∼sottile/stories/4triangles/index.html
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Chapitre 8

Predicates for line transversals in 3D

Cet article a été soumis àComputational Geometry : Theory and Applications[ELL+06]. Une version courte est
parue dans les proceedings de la18th Canadian Conference on Computational Geometry.

Abstract

In this paper we study various geometric predicates for determining the existence of and catego-
rizing the configurations of lines in 3D that are transversalto lines or segments. We compute the
degrees of standard procedures of evaluating these predicates. The degrees of some of these proce-
dures are surprisingly high (up to 168), which may explain why computing line transversals with
finite-precision floating-point arithmetic is prone to error. Our results suggest the need to explore
alternatives to the standard methods of computing these quantities.

8.1 Introduction
Computing line transversals to lines or segments is an important operation in solving 3D visibility problems

arising in computer graphics [BDD+07,DD02,DDP97,DDP02,EGHHZ00,PD90]. In this paper, we study various
predicates and their degrees concerning line transversalsto lines and segments in 3D.

A predicate is a function that returns a value from a discreteset. Typically, geometric predicates answer
questions of the type “Is a point inside, outside or on the boundary of a set ?”. We consider predicates that are
evaluated by boolean functions of more elementary predicates, the latter being functions that return the sign (−, 0
or +) of a multivariate polynomial whose arguments are a subset of the input parameters of the problem instance
(see, for instance [BP00]). Bydegreeof a procedure for evaluating a predicate, we mean the maximum degree
in the input parameters among all polynomials used in the evaluation of the predicate by the procedure. In what
follows we casually refer to this measure as the degree of thepredicate. We are interested in the degree because
it provides a measure of the number of bits required for an exact evaluation of our predicates when the input
parameters are integers or floating-point numbers ; the number of bits required is then roughly the product of the
degree with the number of bits used in representing each input value.

In this paper, we first study the degree of standard procedures for determining the number of line transversals
to four lines or four segments in 3D ; recall that four lines inR3 admit 0, 1, 2 or an infinite number of line
transversals and that four segments admit up to 4 or an infinite number of line transversals [BEL+05]. We also
consider the predicate for determining whether a minimal (i.e., locally shortest) segment transversal to four line
segments is intersected by a triangle. These predicates areubiquitous in 3D visibility problems. The latter predicate,
for instance, can be used for determining whether two triangles see each other in a scene of triangles (that is, for
determining whether there exists a segment joining the two triangles and that does not properly intersect any of the
other triangles). Finally, we study the predicate for ordering planes through two fixed points, each plane containing
a third rational point or a line transversal to four segmentsor lines. This predicate arises in the rotating plane-sweep
algorithm that computes the minimal free segments tangent to four amongk convex polyhedra in 3D [BDD+07].

93
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Our study shows that standard procedures for solving these predicates have high degrees. We study, in particu-
lar, procedures that involve computing the Plücker coordinates of the line transversals involved in the predicates.
Throughout the paper, the points defining input geometric primitives (which can be lines, segments, and triangles)
are, by assumption, given by their Cartesian coordinates and the degrees of the procedures for evaluating predicates
are expressed in these coordinates. We show that, for determining the number of transversals to four lines or four
segments, such standard methods lead to procedures of degree 22 or 36, respectively. For determining whether a
minimal segment transversal to four line segments is intersected by a triangle, we show that these methods lead to
a procedure of degree 78. Also, for ordering, in a rotationalsweep about a line, two planes, each defined by a line
transversal to four lines, such methods lead to a procedure of degree 144. Furthermore, in some implementations,
the Plücker coordinates of the relevant line transversals are computed in a way that the degrees of these procedures
are even higher ; for instance, the procedure for evaluatingthe latter predicate for ordering planes then become
of degree 168 instead of 144. These very high degrees may helpexplain why using fixed-precision floating-point
arithmetic in implementations for solving 3D visibility problems are prone to errors when given real-world data
(see, for instance, [Gla07]).

The degrees we present are tight, that is, they correspond tothe maximum degree of the polynomials to
be evaluated, in the worst case, in the procedures we consider. It should be stressed that these degrees refer to
polynomials used in specific evaluation procedures and we make no claim on the optimality of these procedures.

In the next section we describe a standard method used for computing the line transversals to four lines, which
is common to all our predicates. In Section 8.3 we describe the predicates and their degrees. Some experimental
results are presented in Section 8.4.

8.2 Computing lines through four lines
We describe here a method for computing the line transversals to four lines in real projective spaceP3. This

method is a variant, suggested by Devillers and Hall-Holt [DHH00] and also described in Redburn [Red03], of that
by Hohmeyer and Teller [HT99] ; note that, for evaluating predicates, the latter method is not appropriate because
it uses singular value decomposition for which we only know of numerical methods and thus the line transversals
cannot be computed exactly, when needed.

Each line can be described using Plücker coordinates (see [Sho98], for example, for a review of Plücker
coordinates). If a lineℓ in R3 is represented by a direction vector~u and a pointp in R3 thenℓ can be represented
by the six-tuple(~u,~u×−→

Op) in real projective spaceP5, whereO is any arbitrarily, fixed, origin and× denote the
cross product. The side product⊙ of any two six-tuplesℓ = (a1,a2,a3,a4,a5,a6) andk = (x1,x2,x3,x4,x5,x6) is
ℓ⊙ k = a4x1 + a5x2 + a6x3 + a1x4 + a2x5 + a3x6. The fundamental importance of the side product lies in the fact
that a six-tuplek∈ P5 represents a line in 3D if and only ifk⊙k= 0 ; this defines a quadric inP5 called the Plücker
quadric. More generally, recall that two lines intersect inreal projective spaceP3(R) if and only if the side product
of their Plücker coordinates is zero. Notice that this implies that there is a predicate for determining whether two
lines intersect inP3(R) which is of degree two in the Plücker coordinates of the linesand, if the lines are each
defined by two points, of degree three in the Cartesian coordinates of these points.

Oriented lines ofR3, with direction vector~u and through a pointp, can be represented similarly by a six-tuple
(~u,~u×−→

Op) in real oriented projective space (i.e., the quotient ofR6\{0} by the equivalence relation induced by
positive scaling). The sign (positive or negative) of the side operator of two oriented linesℓ andk then determines
on which “side” ofℓ, k lies ; for instance, ifop andoq are two lines oriented fromo to p and fromo to q andℓ
is an arbitrarily oriented line such thatℓ, p, q, ando are not coplanar, then(ℓ⊙op)(ℓ⊙oq) 6 0 if and only if ℓ
intersects segmentpq (see Figure 8.1(a)).

Given four linesℓ1, . . . , ℓ4, our problem here is to compute all linesk = (x1,x2,x3,x4,x5,x6) ∈ P5 such that
k⊙ ℓi = 0, for 16 i 6 4, which can be written in the following form :









a4 a5 a6 a1 a2 a3

b4 b5 b6 b1 b2 b3

c4 c5 c6 c1 c2 c3

d4 d5 d6 d1 d2 d3

























x1

x2

x3

x4

x5

x6

















=









0
0
0
0









(8.1)
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where the rows of the 4×6 matrix contain the Plücker coordinates of the four lines. This can be rewritten as









a6 a1 a2 a3

b6 b1 b2 b3

c6 c1 c2 c3

d6 d1 d2 d3

















x3

x4

x5

x6









+









a4x1 +a5x2

b4x1 +b5x2

c4x1 +c5x2

d4x1 +d5x2









=









0
0
0
0









. (8.2)

Let δ denote the determinant of the above 4×4 matrix. Assumingδ 6= 0, we can solve the system forx3, x4, x5,
andx6 in terms ofx1 andx2. Applying Cramer’s rule, we get















x3 = −(α1x1 +β1x2)/δ
x4 = −(α2x1 +β2x2)/δ
x5 = −(α3x1 +β3x2)/δ
x6 = −(α4x1 +β4x2)/δ

where αi (respectivelyβi) is the determinantδ with the ith column replaced by(a4,b4,c4,d4)
T (respectively

(a5,b5,c5,d5)
T ). We rewrite this system as































x1 = −uδ
x2 = −vδ
x3 = α1u+β1v
x4 = α2u+β2v
x5 = α3u+β3v
x6 = α4u+β4v

(8.3)

with (u,v) ∈ P1. Sincek is a line, we havek⊙k = 0, which implies

x1x4 +x2x5 +x3x6 = 0.

Substituting in the expressions forx1 . . .x6, we get

Au2 +Buv+Cv2 = 0 (8.4)

where
A = α1α4−α2δ,

B = α1β4 +β1α4−β2δ−α3δ,

C = β1β4−β3δ.

Solving this degree-two equation in(u,v) and replacing in (8.3), we get (assuming thatA 6= 0) that the Plücker
coordinates of the transversal linesk are :



































x1 = Bδ∓ δ
√

B2−4AC
x2 = −2Aδ
x3 = −Bα1 +2Aβ1± α1

√
B2−4AC

x4 = −Bα2 +2Aβ2± α2
√

B2−4AC
x5 = −Bα3 +2Aβ3± α3

√
B2−4AC

x6 = −Bα4 +2Aβ4± α4
√

B2−4AC.

(8.5)

Lemma 8.1. Consider four lines, given by the Cartesian coordinates of pairs of points, that admit finitely many
line transversals inP3(R). If the four lines are not parallel to a common plane, the Plücker coordinates of their
transversals inP3(R) can be written asφi + ϕi

√
∆, i = 1, . . . ,6, whereφi ,ϕi , and∆ are polynomials of degree at

most17, 6, and22, respectively, in the coordinates of the input points. Otherwise, the Plücker coordinates of the
transversals can be written as polynomials of degree at most19. Moreover, these bounds are, in the worst case,
reached for three of the coordinates.
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Proof. The assumption that the four lines admit finitely many transversals inP3(R) ensures that the 4×6 matrix
of Plücker coordinates (in (8.1)) has rank 4. Consider first the case where the four input lines are not all parallel to
a common plane. Then, the 4×3 matrix of the direction vectors of the four lines has rank 3.By the basis extension
theorem, this matrix can be complemented by one of the other columns of the matrix of Plücker coordinates
(of (8.1)) in order to get a 4×4 matrix of rank 4. We can thus assume, without loss of generality, that the 4×4
matrix of (8.2) has rank 4.

Since, by assumption, the four lines admit finitely many transversals inP3(R), A,B, andC in (8.4) are not
all zero. We compute the degree, in the coordinates of the input points, of the various polynomial terms in (8.5).
For each input lineℓi , the first three and last three coordinates of its Plücker representation have degree 1 and 2,
respectively. Henceδ, α1, andβ1 have degree 5 andαi andβi have degree 6 fori = 2,3,4. Hence,A,B, andC have
degree 11 and the bounds on the degrees ofφi ,ϕi , and∆ follow. Note, in particular, that, ifA 6= 0, these bounds are
reached fori = 4,5,6.

Consider now the case where the four input lines are parallelto a common plane. Since the four lines admit
finitely many transversals inP3(R), they are not parallel. It follows that the 4×3 matrix of the direction vectors of
the four lines has rank 2. Two vectors, say(ai ,bi ,ci ,di) for i = 1,2, are thus linearly independent and, by the basis
extension theorem, the corresponding 4×2 matrix can be complemented by two other columns (say,(ai ,bi ,ci ,di)
for i = 4,5) of the matrix of Plücker coordinates (of (8.1)) in order todefine a 4×4 matrix of rank 4. As above, a
straightforward computation gives the Plücker coordinates of the line transversal. We get

x1 = α1u, x2 = α2u, x3 = −uδ, x4 = α3u+β3v, x5 = α4u+β4v, x6 = −vδ

where(u,v) ∈ P1(R) is solution of the equation

A′u2 +B′uv= 0 where A′ = α1α3 +α2α4 and B′ = α1β3 +α2β4 +δ2. (8.6)

δ,α1,α2,β3,β4 have degree 6 andα3,α4 have degree 7 (andβ1 = β2 = 0) thusA′ andB′ have degree 13 and 12,
respectively. Note thatA′ andB′ are not both zero since there are finitely many transversals.The Plücker coordi-
nates of the transversals can thus be written as polynomialsof degree at most 19 and, for one of the transversals
(the one not in the plane at infinity), this bound is reached for three coordinates (namely,x4,x5,x6). 2

Lemma 8.2. Consider four lines, given by the Cartesian coordinates of pairs of points, that admit finitely many line
transversals inP3(R). If the four lines are not parallel to a common plane, we can compute on each transversal two
points whose homogeneous coordinates have the formφi +ϕi

√
∆, i = 1, . . . ,4, whereφi ,ϕi , and∆ are polynomials

of degree at most17, 6, and22, respectively, in the coordinates of the input points. Otherwise, we can compute
on each transversal two points whose homogeneous coordinates are polynomials of degree at most19. Moreover,
these bounds are reached, in the worst case, for some coordinates.

Proof. Denote byw1 (resp.w2) the vector of the first (resp. last) three coordinates of(x1, . . . ,x6), the Plücker coor-
dinates of a linek, and letn denote any vector ofR3. Then, if the four-tuple(w2×n,w1 ·n) is not equal to(0,0,0,0),
it is a point (in homogeneous coordinates) on the linek (by Lagrange’s triple product expansion formula). By consi-
dering the axis unit vectors forn, we get that the four-tuples(0,x6,−x5,x1), (−x6,0,x4,x2), (x5,−x4,0,x3) that
are non-zero are points on the transversal linesk. Either five of the six Plücker coordinates ofk are zero or at least
two of these four-tuples are non-zero and thus are points onk. In the latter case, the result follows from Lemma 8.1.
In the former case, two points with coordinates 0 or 1 can easily be computed on linek since the line is then one
of the axis or a line at infinity defined by the directions orthogonal to one of the axis. 2

Remark 8.3. In some implementations (for instance, the one of [Red03]),the 4× 4 submatrix of the matrix of
Plücker coordinates (see(8.1)) used for computing the line transversals is chosen, by default, as the leftmost sub-
matrix whose determinant has degree 7 in the coordinates of the input points. In this case, the Plücker coordinates
of the line transversals are written asφi +ϕi

√
∆, i = 1, . . . ,6, whereφi ,ϕi , and∆ are polynomials of degree at most

20, 7, and26, respectively, in the coordinates of the input points (and these bounds are reached). Similarly for the
homogeneous coordinates of two points on the transversals.
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8.3 Predicates

8.3.1 Preliminaries
We start by two straightforward lemmas on the degree of predicates for determining the sign of simple alge-

braic numbers. Ifx is a polynomial expression in some variables, we denote by deg(x) the degree ofx in these
variables. This first lemma is trivial and its proof is omitted.

Lemma 8.4. If a,b, and c are polynomial expressions of (input) rational numbers, the sign of a+ b
√

c can be
determined by a predicate of degreemax{2deg(a),2deg(b)+deg(c)}.

Lemma 8.5. If αi ,βi ,δ,µ, i= 1,2, are polynomial expressions of (input) rational numbers, the sign ofα1+β1
√

δ+
(α2 +β2

√
δ)
√

µ can be obtained by a predicate of degree

max{4deg(α1), 4deg(β1)+2deg(δ), 4deg(α2)+2deg(µ), 4deg(β2)+2deg(δ)+2deg(µ),

2deg(α1)+2deg(β1)+deg(δ), 2deg(α2)+2deg(β2)+2deg(µ)+deg(δ)}.

Proof. The predicate is to evaluate the sign of an expression of the form a+ b
√

µ, wherea = α1 + β1
√

δ,
b = α2 + β2

√
δ, andαi ,βi ,µ,δ are rational. This can be done by evaluating the signs ofa, b, anda2−b2µ. The

first two signs can be obtained by directly applying Lemma 8.4. On the other hand,a2−b2µ is equal toA+B
√

δ
with A = α2

1 + β2
1δ−α2

2µ−β2
2µδ andB = 2α1β1−2α2β2µ. The sign ofA+ B

√
δ can be determined by another

application of Lemma 8.4, which gives the result. 2

8.3.2 Transversals to four lines
We consider first the predicate of determining whether four lines admit 0, 1, 2, or infinitely many line transver-

sals inP3(R) (that is lines inP3(R) that intersect, inP3(R), the four input lines). An evaluation of this predicate
directly follows from the algorithm described in Section 8.2 for computing the line transversals. Recall that, in the
sequel, all input points are, by assumption, given by their Cartesian coordinates.

Theorem 8.6. Given four lines defined by pairs of points, there is a predicate of degree22 in the coordinates of
these points to determine whether the four lines admit 0, 1, 2, or infinitely many line transversals inP3(R).

Proof. We consider three cases. First, if the four lines are parallel, which can easily be determined by a predicate
of degree 3, then they admit infinitely many line transversals inP3(R). Second, if the four lines are not parallel but
parallel to a common plane, which can easily be determined bya predicate of degree 3, then the four lines admit
infinitely many transversals if Equation (8.6) is identically zero and, otherwise, 2 line transversals inP3(R) ; this
can thus be determined with a predicate of degree 13 (see the proof of Lemma 8.1). Finally, if the four lines are not
parallel to a common plane, they admit infinitely many transversals if Equation 8.4 is identically zero and, other-
wise, 0, 1, or 2 transversals depending on the sign of∆ (in Lemma 8.1) which is of degree 22 in the coordinates of
the points defining the lines. 2

Note that if the leftmost (instead of the rightmost) 4× 4 submatrix of the matrix of Plücker coordinates
(in (8.1)) is used for computing line transversals (see Remark 8.3) then the procedure described in the above
proof has degree 26 instead of 22.

All line transversals are defined inR3 except in the case where the four input lines are parallel to acommon
plane, in which case the intersection of this plane with the plane at infinity is a line transversal at infinity. Note
also that, determining whether a line transversal inP3(R) is transversal inR3 amounts to determining whether the
transversal is parallel to one of the four input linesℓi , that is if their direction vectors are collinear. This can be
done, by Lemmas 8.1 and 8.4, by a predicate of degree 36 in the Cartesian coordinates of the points defining the
input lines.

Note, however, that if the points defining theℓi have rational coordinates and if the transversal is parallel to
one of theℓi , the Plücker coordinates of the transversal are rational ; indeed, the multiplicative factor of the di-
rection vectors is rational (since one of the coordinates ofthe direction vector of the transversal is rational,e.g.,
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FIG. 8.1 – (a) : Transversalℓ intersects segmentpq only if (ℓ⊙ op) (ℓ⊙ oq) 6 0. (b-c) : An
illustration for the proof of Lemma 8.10.

x2 in (8.5)) and thus all the coordinates of this direction vector are rational, which implies that∆ is a square in
(8.5). Hence, deciding whether a transversal is parallel toone of the input linesℓi can be done by first determining
whether∆ is a square and, if so, testing whether the direction vectorsare collinear. It thus follows from Lemma 8.1
that determining whether a transversal is parallel to one ofthe input linesℓi can be done with a fixed-precision
floating-point arithmetic using a number of bits roughly equal to 22 times the number of bits used in representing
each input value. This should be compared to the degree 36 of the above procedure. In this paper we have restricted
our attention to evaluation procedures for predicates thatconsist entirely of determining the signs of polynomial
expressions in the input parameters. We see here an example of a predicate which may be more effeciently eva-
luated by a procedure which permits other operations, in this case, dertermining whether a rational number is a
square. This provides an interesting example of a geometricpredicate whose algebraic degree does not seem to be
an entirely adequate measure of the number of bits needed forthe computation.

8.3.3 Transversals to four segments
We consider here the predicate of determining how many transversals four segments ofR3 admit. Recall that

four segments may admit up to 4 or infinitely many line transversals [BEL+05]. In this section, we prove the
following theorem.

Theorem 8.7. Given four line segments, there is a predicate of degree 36 inthe coordinates of their endpoints to
determine whether those segments admit 0, 1, 2, 3, 4, or infinitely many line transversals.

Note that if, the leftmost (instead of the rightmost) 4× 4 submatrix of the matrix of Plücker coordinates
(in (8.1)) is used for computing line transversals (see Remark 8.3) then the procedure described below for the
predicate of Theorem 8.7 has degree 42 instead of 36.

We consider, in the following, the supporting lines of the four segments, that is, the lines containing the
segments ; in the case where one (or several) segment is reduced to a point, we consider as supporting line, any
line through this point and parallel to at least another supporting line. We first consider the case where the four
supporting lines admit finitely many transversals inP3 ; this can be determined by a predicate of degree 22, by
Theorem 8.6.

Lemma 8.8. Given four segments inR3 whose supporting lines admit finitely many line transversals inP3, deter-
mining the number of transversals to the four segments can bedone with a predicate of degree 36 in the coordinates
of their endpoints.

Proof. Let ℓ denote an (arbitrarily) oriented line, as well as its Plücker coordinates, that is transversals to the four
lines ;ℓ can be computed as described in Section 8.2. We consider the predicate of determining whetherℓ intersects
each of the four segments, in turn. Letp andq denote the endpoints of one of these segments. For any two distinct
pointsr ands, denote byrs the Plücker coordinates of the liners oriented fromr to s; depending on the context,
rs also denotes the line throughr andsor the segment fromr to s.



8.3. PREDICATES 99

If a pointo does not lie in the plane containing lineℓ and segmentpq (see Figure 8.1(a)), then lineℓ intersects
segmentpq if and only if the oriented lineℓ is on opposite sides of the two oriented lines fromo to p and fromo
to q, that is if(ℓ⊙op) (ℓ⊙oq) 6 0 (recall that⊙ denotes the side operator – see Section 8.2).

On the other hand, pointo lies in a plane containing lineℓ and segmentpq if and only if ℓ intersects (inP3)
both linesop andoq, that is both side operatorsℓ⊙op andℓ⊙oq are zero. By choosing pointo to be for instance
(1,0,0), (0,1,0), (0,0,1), or (1,1,1), we ensure that one of these points will not be coplanar withℓ and segment
pqunless segmentpq lies onℓ.

Hence the predicate follows from the sign of side operators of the line transversal and of a line defined by two
points, one of which with coordinates equal to 0 or 1. The degree of the Plücker coordinates of the line through
these two points is thus 1 (in the coordinates of the input points). Hence, by Lemma 8.1, the predicate can be
computed by determining the sign of polynomials of degree atmost 20 if the input lines are parallel to a common
plane and, otherwise, by determining the sign of expressions of the forma+ b

√
c wherea, b andc have degree

at most 18, 7, and 22, respectively ; moreover, these bounds are reached. By Lemma 8.4, the predicate thus has
degree 36, which concludes the proof. 2

We now consider the case where the four lines admit infinitelymany transversals. Recall that, inP3, four lines
or line segments admit infinitely many transversals only if [BEL+05] :

1. they lie in one ruling of a hyperbolic paraboloid or a hyperboloid of one sheet,

2. they are all concurrent, or

3. they all lie in a plane, with the possible exception of a group of one or more that all meet that plane at
the same point.

We treat the cases independently.

Lemma 8.9. Given four segments inR3 whose supporting lines are pairwise skew and admit infinitely many line
transversals, determining the number of their line transversals can be done with a predicate of degree at most 36
in the coordinates of their endpoints.

Proof. When four lines are pairwise skew, their common transversalscan be parameterized by their points of
intersection with one of the lines ; moreover, the set of common transversals to the four segments corresponds
(through this parameterization) to up to four intervals on that line and the transversals that correspond to the
endpoints of these intervals contain (at least) one endpoint of the segments [BEL+05]. We can compute and order
all these interval endpoints and determine whether there exists a transversal (to the four segments) through each
midpoint of two consecutive distinct interval endpoints. By construction and by [BEL+05], the four segments
admit such a transversal if and only if they admit infinitely many transversals.

The set of interval endpoints, on, say, segments1 is a subset of the endpoints ofs1 and of the intersection
points ofs1 with the planes containings2 and an endpoint ofs3 or s4 and of the intersection points ofs1 with the
planes containings3 and an endpoint ofs2. The coordinates of these points can be trivially computed as rational
expressions of degree 4 in the coordinates of the segment endpoints. The coordinates of the midpoints are thus
rational expressions of degree at most 8.

The transversal to the four lines through (any) one of these midpoints intersects lineℓ2 and lies in the plane
containing lineℓ3 and the considered midpoint ; the coordinates of the intersection point between this plane andℓ2

are rational expressions of degree at most 19. Finally, determining whether a transversal (to the four lines) through
two points whose coordinates are rational expressions of degree 8 and 19 is a transversal to each of the four
segments can be done, as in the proof of Lemma 8.8, using side operators. Hence, we can decide whether the four
segments admit infinitely many transversals with a predicate of degree at most 36 since the Plücker coordinates of
the line transversal are of degree at most 35.

Now, if the four segments admit finitely many transversals, we can determine the number of transversals as
follows. As mentioned above, the set of transversals can be parameterized by intervals on a line and the interval
endpoints correspond to transversals that go through a segment endpoint. A transversal is isolated if and only if
it corresponds to an interval that is reduced to a point. Thus, a transversal is isolated only if it goes through two
distinct segment endpoints (the segments necessarily havedistinct endpoints since, by assumption, their suppor-
ting lines are pairwise skew and thus no segment is reduced toa point). Determining whether the lines through
two distinct endpoints intersect the other segments can easily be done, as described in the proof of Lemma 8.8, by
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computing the sign of side operators which are here of degree3 in the coordinates of the segment endpoints.2

Lemma 8.10. Given four segments inR3 whose supporting lines are not pairwise skew and admit infinitely many
line transversals, determining the number of their line transversals can be done with a predicate of degree 7 in the
coordinates of their endpoints.

Proof. First, note that testing whether two segments intersect canbe done using side operators with a predicate
of degree 3. The four lines containing the segments are not pairwise skew and they admit infinitely many line
transversals. Thus, they are all concurrent or they all lie in a planeH, with the possible exception of a group of one
or more that all meet that plane at the same point [BEL+05]. Four cases may occur :

(i) all four lines lie in a planeH,

(ii) three lines lie in a planeH and the fourth line intersectsH in exactly one point,

(iii) two lines lie in a planeH and two other lines intersectH in exactly one and the same point,

(iv) three lines are concurrent but not coplanar.
Differentiating between these cases can be done by determining whether sets of four segment endpoints are copla-
nar (which is a predicate of degree 3). We study each case in turn.

Case (i). The four segments are coplanar. Any component of transversals contains a line through two distinct
segment endpoints. Hence the four segments have finitely many transversals if and only if any line through two
distinct endpoints that is a transversal to the four segments is an isolated transversal. This only occurs12 (see
Figure 8.1(b)) when the transversal goes through the endpoints of three segments such that the segment, whose
endpoint is in between the two others, lies (inH) on the opposite side of the transversal than the two other segments.
This can be tested by computing the sign of scalar products and side operators between the transversal and the lines
through a pointo not inH and the segment endpoints (see Figure 8.1(b)). This leads toa predicate of degree 4.

Case (ii). Three lines lie in a planeH. Testing whether the fourth segment intersects the planeH can easily be
done by computing the point of intersection betweenH and the line containing the fourth segment, leading to a
predicate of degree 3. If the fourth segment does not intersect planeH, the four segments have no transversal unless
the first three segments are concurrent in which case the foursegments have one or infinitely many transversals
depending on whether the four lines supporting the segmentsare concurrent. Otherwise, letp denote the point
of intersection. We assume that the three segments inH are not concurrent ; otherwise the four segments have
infinitely many transversals. Thus, any component of transversals contains a line throughp and through a segment
endpoint. Hence the four segments have finitely many transversals if and only if any line throughp and a segment
endpoint that is a transversal to the four segments is an isolated transversal. Testing whether such a line is a
transversal to all segments can be done, as in the proof of Lemma 8.8, by computing the sign of side operators of
the line transversal and of lines through a segment endpointand a pointo not in H ; the coordinates of pointp are
rational expressions of degree 4, thus the Plücker coordinates of the transversal have degree at most 6, which leads
to a predicate of degree 7. Such a line transversal is isolated (see Figure 8.1(c)) if and only if13 the transversal
goes through two endpoints of two distinct segments that lieon the same side (in planeH) of the transversal or
not depending whetherp is in between the two endpoints or not. This test can be done bycomputing the sign of
scalar products and side operators between the transversaland the lines through a pointo not inH and the segment
endpoints (see Figure 8.1(c)). This test also leads to a predicate of degree 7. We can thus determine the number of
isolated transversals with a predicate of degree 7.

Case (iii). Two lines lie in a planeH and two other lines intersectH in exactly one and the same point. (Note
that there may be two instances of planeH for a given configuration.) This case can be treated similarly as Case
(ii).

12For simplicity, we do not discuss here the case where the linetransversal contains one of the four segments.
13We assume here for simplicity that the line transversal contains no segment.



8.3. PREDICATES 101

Case (iv). Three lines are concurrent but not coplanar. If none of the three corresponding segments intersect,
they have no common transversal. If only two segments intersect, the three segments have exactly one transversal ;
checking whether that transversal intersects the fourth segment can easily be done with a predicate of degree 3.
Now, if the three segments intersect, then the four segmentshave infinitely many transversals if they are concur-
rent or if their supporting lines are not concurrent. Otherwise, if the four segments are not concurrent but their
supporting lines are, the four segments then have a unique transversal. This can also be checked with a predicate
of degree 3. 2

We can now conclude the proof of Theorem 8.7. By Theorem 8.6, we can determine with a predicate of degree
22 whether the four lines containing the four segments admitfinitely many transversals inP3. If the four lines
admit finitely many transversals, then, by Lemma 8.8, determining the number of transversals to the four segments
can be done with a predicate of degree 36. Assume now that the four lines admit infinitely many transversals.
Note that determining whether the input lines are pairwise skew can easily be done with a predicate of degree 3.
Thus, by Lemmas 8.9 and 8.10, determining whether the four segments admit 0, 1, 2, 3, 4, or infinitely many line
transversals can be done by a predicate of degree at most 36. Hence, we can determine the number of transversals
to four segments with a predicate of degree 36.

8.3.4 Transversals to four segments and a triangle
We consider here the predicate of determining whether a minimal segment transversal to four line segments is

intersected by a triangle. Given a line transversalℓ to a setSof segments, a triangleT occludesℓ if ℓ intersectsT
and if there exist two segments inSwhose intersections withℓ lie on opposite sides ofT. We describe a method for
evaluating the predicate for determining whether a triangle occludes a transversal to a given set of line segments
and establish its degree.

Theorem 8.11. Let ℓ be a line transversal to four line segments that admit finitely many transversals and let T be
a triangle. There is a predicate of degree 78 in the coordinates of the points defining the segments and the triangle
to determine whether T occludesℓ.

Proof. Let ℓ denote an oriented line transversal to segmentss1, . . . ,s4, each defined by two pointsei and fi ,
i = 1, . . . ,4, and letT be a triangle defined by three pointsp,q, andr. The Plücker coordinates ofℓ can be computed
as described in Section 8.2. We only consider the case where the four lines containing segmentssi have finitely
many transversals because, otherwise, since the four segments admit finitely many transversals, each transversal
goes through at least one endpoint of the four segments and itis straightforward that the degree of the predicate is
then much smaller.

We first determine whetherℓ intersectsT by taking the side product ofℓ with each supporting line ofT
(oriented consistently) ;ℓ intersectsT if and only if no two side products have opposite signs (i.e.,±1). Similarly
as in the proof of Lemma 8.8, there is a predicate of degree 38 for determining the sign of these side operators.

Assuming thatℓ intersectsT, we next find the point of intersection. By Lemma 8.2,ℓ can be represented
parametrically in the formπ + ρt. We determine the value oft for which the determinant ofp,q, r,π + ρt is equal
to zero ; denote this value oft by t0. This determinant has the forma0 +b0t0, where, by Lemma 8.2,a0 andb0 are
polynomials of degree 22 ifs1, . . . ,s4 are parallel to a common plane or, otherwise, have the formφ+ϕ

√
∆ where

φ,ϕ, and∆ have degree 20, 9, and 22, respectively, in the coordinates of p,q, r,ei , fi .
Now, for each segmentsi , we compute the point of intersection ofsi with ℓ in terms of the parametert using

the method similar to that of the previous section : choose a point oi not in the plane determined bysi andℓ and
compute the valuet for which the determinant ofei , fi ,oi ,π + ρt equals 0. Denote this value byti . Sinceoi can
be chosen with all coordinates equal to 0 or 1, we get, similarly as in the previous paragraph, that each of these
determinants has the formai + biti whereai and bi are polynomials of degree 21 ifs1, . . . ,s4 are parallel to a
common plane or, otherwise, have the formφ+ϕ

√
∆ whereφ,ϕ, and∆ have degree 19, 8, and 22, respectively.

Determining whetherT occludesℓ is now only a matter of determining whethert0 lies between two of the
valuesti , i = 1, . . . ,4, which requires only that we be able to comparet-values, that is, compute sign(ti − t j). Ob-

serve thatti − t j =
a j bi−aib j

bib j
< 0, so sign(ti − t j) = sign(a jbi −aib j) sign(bi) sign(b j). It follows from the above

characterization of theai andbi that a productaib j is either a polynomial of degree 43 ifs1, . . . ,s4 are parallel
to a common plane or, otherwise, has the formφ + ϕ

√
∆ whereφ,ϕ, and∆ have degree at most 39, 28, and 22,
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respectively (and these bounds are reached in the worst case). Applying Lemma 8.4 yields a predicate of degree
78, which concludes the proof. 2

Note that, if the leftmost (instead of the rightmost) 4× 4 submatrix of the matrix of Plücker coordinates
(in (8.1)) is used for computing line transversals (see Remark 8.3) then the procedure described above for the
predicate of Theorem 8.11 has degree 90 instead of 78.

8.3.5 Ordering planes through two fixed points, each containing a third
(rational) point or a line transversal

Let ℓ be a line defined by two pointsv1 andv2, and~ℓ be the lineℓ oriented in the direction−−→v1v2.
We define an ordering of all the planes containingℓ with respect to the oriented line~ℓ and a reference point

O (not onℓ). Let P0 be the plane containingO andℓ, and letP1 andP2 be two planes containingℓ. We say that
P1 < P2 if and only if P1 is encountered strictly beforeP2 when rotating counterclockwise about~ℓ a plane fromP0

(see Figure 8.2a).
Let pi be any point on planePi but not onℓ, for i = 1,2, and letD(p,q) denote the determinant of the four

points(v1,v2, p,q) given in homogeneous coordinates.

Lemma 8.12. With χ = D(O, p1) ·D(O, p2) ·D(p1, p2), we have :

(a) If χ > 0 then P1 > P2.

(b) If χ < 0 then P1 < P2.

(c) If χ = 0 then

(i) if D(p1, p2) = 0, then P1 = P2,

(ii) else if D(O, p1) = 0, then P1 < P2,

(iii) else P1 > P2.

Proof. Assume first thatD(O, p1) ·D(O, p2) > 0, that is, thatp1 andp2 lie strictly on the same side of the plane
P0 (see Figure 8.2b). Then the order ofP1 andP2 is determined by the orientation of the four points(v1,v2, p1, p2),
that is by the sign ofD(p1, p2). It is then straightforward to notice thatP1 > P2 if and only if D(p1, p2) > 0. Hence,
if χ > 0, thenP1 > P2 and, ifχ < 0, thenP1 < P2.

Suppose now thatD(O, p1) ·D(O, p2) < 0, that is, thatp1 andp2 lie strictly on opposite sides of the planeP0

(see Figure 8.2c). The order ofP1 andP2 is then still determined by the sign ofD(p1, p2). However,P1 > P2 if and
only if D(p1, p2) < 0. Hence, we have in all cases that, ifχ > 0, thenP1 > P2 and, ifχ < 0, thenP1 < P2.

Suppose finally thatχ = 0. If D(p1, p2) = 0, thenp1 andp2 are coplanar, andP1 = P2. Otherwise, ifD(O, p1) =

0, thenP0 = P1 thusP1 is smaller to all other planes (containing~ℓ), and in particularP1 6 P2. Furthermore, since
D(p1, p2) 6= 0, P1 6= P2 and thusP1 < P2. Otherwise,D(O, p2) = 0 and we get similarly thatP2 < P1. 2
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Computing a point on a plane defined byℓ and a line transversal. We want to order planesPi

that are defined by lineℓ and either a rational point not onℓ, or by a line transversal toℓ and three other lines. In
the latter case, we consider a point on the line transversal (which is non-rational, in general ; see Lemma 8.2). The
following lemma tells us that, in general, such a planePi contains no rational points outside ofℓ, and that in the
cases where it does contain such a rational point, the line transversal is then rational. Hence, if the points computed
on the line transversal, as described in Lemma 8.2, are not rational, there is no need to search for simpler points on
the plane (but not onℓ).

Lemma 8.13. The plane P containing a rational lineℓ and a line transversal toℓ and three other segments, each
determined by two rational points, contains in general no rational points except onℓ. Furthermore, if plane P
contains a rational point not onℓ then the line transversal is rational.

Proof. Suppose that the planeP contains a rational pointp not onℓ. Then the plane contains three (non-collinear)
rational points,p and two points onℓ, and thusP is a rational plane. This plane intersects the three other segments
in three points, all of which are rational and lie on the transversal. So the transversal is a rational line which implies
that the discriminantB2−4AC in Equation (8.5) is a square, which is not the case in general. 2

Comparing two planes. We want to order planesPi that are defined by either lineℓ and another (input
rational) point not onℓ, or by lineℓ and a line transversal toℓ and three other lines.

By Lemma 8.12, ordering such planes aboutℓ amounts to computing the sign of determinants of four points
(in homogeneous coordinates). Two of these points are input(affine rational) points onℓ (v1 andv2) and each of
the two other points is either an input (affine rational) point r i , i = 1,2, or is, by Lemma 8.2 (and Lemma 8.13), a
pointui whose homogeneous coordinates have degree at most 19 (in thecoordinates of the input points) or a point
of the formpi +qi

√
∆i , i = 1,2, where the∆i have degree 22 and where thepi andqi are points with homogeneous

coordinates of degree at most 17 and 6, respectively. If the four points are all input points, then the determinant of
the four points has degree 3 in their coordinates.

If only three of the four points are input points, then the determinant of the four points is either a polynomial
of degree 22 or it has the formD(p1, r1)+D(q1, r1)

√
∆1 where the degrees of theD() are 20 and 9, respectively,

in the coordinates of the input points. Hence, by Lemma 8.4, the sign of this expression can be determined with a
predicate of degree 40.

Finally, if only two of the four points are input points, thenthe determinant has one of the following forms
(depending on whether the quadruples of lines defining the transversals are parallel to a common plane) ; the
degrees are given in terms of the coordinates of the input points :

(i) D(u1,u2) which is of degree 40.

(ii) D(u1, p1)+D(u1,q2)
√

∆1 where theD() have degree 38 and 27, respectively.

(iii) D(p1, p2) + D(q1, p2)
√

∆1 + (D(p1,q2) + D(q1,q2)
√

∆1)
√

∆2 where theD() have degree 36, 25,
25, and 14, respectively.

Hence, by Lemma 8.5, the sign of these expressions can be determined with a predicate of degree at most 144 (and
the bound is reached in the worst case). We thus get the following result.

Theorem 8.14. Let ℓ be an oriented line defined by two points, let p0 be a point not onℓ, and let P0 be the plane
determined byℓ and p0. Given two planes P1,P2 containingℓ there is a predicate which determines the relative
order of P1 and P2 aboutℓ with respect to P0 having the following degree in the coordinates of the input points :

(i) degree 3 if Pi , i = 1,2 are each specified by a (input) point pi ;

(ii) degree 40 if P1 is specified by a point p1 and P2 is determined by a line transversal toℓ and three
other linesℓ1, ℓ2, ℓ3, each specified by two (input) points ;

(iii) degree 144 if Pi , i = 1,2are each determined by a line transversal toℓ and three other linesℓi,1, ℓi,2, ℓi,3,
each specified by two (input) points.

Remark 8.15. Similarly as before, note that, if the leftmost (instead of the rightmost)4×4 submatrix of the matrix
of Plücker coordinates (in(8.1)) is used for computing line transversals (see Remark 8.3) then the predicates of
Theorem 8.14 have degree 3, 46, and 168.
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PPPPPPPPPpredicates
ε

10−12 10−10 10−8 10−6 10−4 10−2

degree 168 99.6% 50.4% 7.6% 0.8% 0.08% 0.008%
degree 3 99.5% 8.2% 0.08% 0.001%

TAB . 8.1 – Percentages of failure of the degree 168 and degree 3 predicates using double-
precision floating-point interval-arithmetic, forε varying from 10−12 to 10−2.

8.4 Experiments

In this section, we report the results of experiments that analyze the behavior of the predicate for ordering,
in a rotational sweep about a line, two planes each defined by aline transversal to four lines, that is the predicate
related to Theorem 8.14(iii). The degree of the procedure weuse for evaluating this predicate is 168 because we
use for computing line transversals to four lines the code ofRedburn [Red03], which, as noted in Remarks 8.3 and
8.15, leads to degree 168 instead of 144 as in Theorem 8.14(iii).

The standard approach to comparing two such planes is to firstevaluate the predicate using fixed-precision
interval-arithmetic. This is very efficient but may fail when the sign of an expression cannot be successfully
determined because the result of the evaluation of the expression is an interval that contains zero. If this hap-
pens, the answer to the predicate is then obtained by either evaluating exactly the expression (and thus its sign)
using exact arithmetic or by increasing the precision of theinterval arithmetic until either the result of the eva-
luation of the expression is an interval that does not contain zero or the separation bound is attained (see for
instance [BFM+01, Mig82, Sch00, Yap97]) ; in both approaches the computation is much slower than when using
fixed-precision interval-arithmetic. We are thus interested in determining how often the fixed-precision interval-
arithmetic evaluation of our predicate fails.

To test our predicate, we generate pairs of planes, each defined by two lines, one chosen at random and
common to the two planes, and the other defined as a transversal to the common line and to three other random
lines. We are interested in evaluating our predicate in the case where the two planes are very close together, that is,
when there is significant risk of producing an error when using finite-precision floating-point arithmetic.

We generate two sets of four lines. Each line of the first set isdetermined by two points, all of whose coor-
dinates are double-precision floating-point numbers chosen uniformly at random from the interval[−5000,5000].
The second set of lines is obtained by perturbing the points defining three of the lines of the first set ; the fourth
line is not perturbed and is thus common to the two sets. To perturb a pointp, we translate it to a point chosen
uniformly at random in a sphere centered atp, with radiusε.

We compute, for each of these two sets of four lines, a line transversal. If either set of four lines does not admit
a transversal (which happens roughly 24% of the time), we throw out that data and start again. Otherwise, we
choose a transversal in a consistent way for the two sets of four lines, that is, such that one transversal converges
to the other whenε tends to zero. Each transversal, together with the common line, defines a plane.

For various values ofε, varying from 10−2 to 10−10, we evaluate the predicate using double-precision floating-
point interval arithmetic until we obtain 1000 pairs of planes for which the computation of the predicate fails. We
measure the percentage of time that the computation fails. The results of these experiments are shown in Table 8.1.

We observe, as expected, that whenε is sufficiently small (10−10), that is, when the two planes are often
close enough to each other, the fixed-precision interval-arithmetic predicate fails with high probability and that this
probability decreases asε increases. Whenε = 10−2, the probability of failure is close to zero. Finally, we have
also observed that the predicate fails when the angle between the two planes is less than roughly 10−8 radians,
which is, of course, independent ofε.

Note finally that the percentage of failure of the degree 168 predicate using fixed-precision interval-arithmetic
is, as expected, high compared to lower-degree predicates.Table 8.1 also shows the failure rate for the degree 3
predicate related to Theorem 8.14(i). We use the same experimental scheme as above, that is, we chose at random
three points that define a plane and perturb one of these points by at mostε.

All the experiments were made on a i686 machine with AMD Athlon 1.73 GHz CPU and 1 GB of main
memory using the CGAL interval number type with double-precision floating-point numbers [CGA].
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Lines and free line segments tangent to
arbitrary three-dimensional convex

polyhedra
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Geometry[BDD+04], ceux de la14th Canadian Conference on Computational Geometry[BDD+02], et dans la
thèse de X. Goaoc [Goa04].

Abstract

Motivated by visibility problems in three dimensions, we investigate the complexity and construc-
tion of the set of tangent lines in a scene of three-dimensional polyhedra. We prove that the set of
lines tangent to four possibly intersecting convex polyhedra in R3 with a total ofn edges consists
of Θ(n2) connected components in the worst case. In the generic case,each connected component
is a single line, but our result still holds for arbitrarily degenerate scenes. More generally, we show
that a set ofk possibly intersecting convex polyhedra with a total ofn edges admits, in the worst
case,Θ(n2k2) connected components of maximal free line segments tangentto at least four poly-
topes. Furthermore, these bounds also hold for possibly occluded lines rather than maximal free line
segments.

Finally, we present aO(n2k2 logn) time andO(nk2) space algorithm that, given a scene ofk possibly
intersecting convex polyhedra, computes all theminimal free line segments that are tangent to any
four of the polytopes and are isolated transversals to the set of edges they intersect ; in particular,
we compute at least one line segment per connected componentof tangent lines.

9.1 Introduction
Computing visibility relations in a 3D environment is a problem central to computer graphics and engineering

tasks such as radio propagation simulation and fast prototyping. Examples of visibility computations include de-
termining the view from a given point, and computing the umbra and penumbra cast by a light source. In many
applications, visibility computations are well-known to account for a significant portion of the total computation
cost. Consequently a large body of research is devoted to speeding up visibility computations through the use of
data structures (see [Dur00] for a survey).

One such structure, the visibility complex [DDP02,PV96b],encodes visibility relations by partitioning the set
of maximal free line segments. The size of this partition is intimately related to the number of maximal free line
segments tangent to four objects in the scene ; for a scene ofn triangles inR3, the complex can have sizeΘ(n4) in
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FIG. 9.1 –A terrain of sizen with Ω(n4) maximal free line segments tangent in four points.

the worst case [DDP02], even when the triangles form a terrain (see [CS89b] or Figure 9.1). The complex is thus
potentially enormous, which has hindered its application in practice. However, there is evidence, both theoretical
and practical, that this estimation is pessimistic. The lower bound examples, which are carefully designed to exhibit
the worst-case behavior, are unrealistic in practice. For realistic scenes, Durandet al. [DDP97] observe a quadratic
growth rate, albeit for rather small scenes. For random scenes, Devillerset al. [DDE+03] prove that the expected
size of the visibility complex is much smaller ; for uniformly distributed unit balls the expected size is linear and
for polygons or polyhedra of bounded aspect ratio and similar size it is at most quadratic. Also, in 2D, while the
worst-case complexity of the visibility complex is quadratic, experimental results strongly suggest that the size of
the visibility complex of a scene consisting of scattered triangles is linear [CF99].

While these results are encouraging, most scenes are not random. In fact, most scenes have a lot of structure
which we can exploit ; a scene is typically represented by many triangles which form a much smaller number of
convex patches. In particular, if a scene consists ofk disjointconvex polyhedra with a total ofn edges, then under a
strong general position assumption, the number of maximal free line segments tangent to four of the polyhedra is at
mostO(n2k2) ; this follows directly from the bound proved in [EGHHZ00] onthe number of combinatorial changes
of the silhouette map viewed from a point moving along a straight line, and was also later proved in [BDD+02].
We present in this paper a generalization of these results. After preliminary definitions, we give a detailed account
of our results and then present related previous work.

Preliminary definitions. We consider a scene that consists of a finite number of polytopes, not necessarily dis-
joint, not necessarily fully dimensional, and in arbitraryposition. The definitions below are standard, yet carefully
phrased in a way that remains valid in those situations.

A polytopeis the convex hull of a point set. A plane istangentto a polytope if it intersects the polytope and
bounds a closed half-space that contains the polytope. A face, an edge, or a vertex of a polytope inR3 is the 2, 1 or
0-dimensional intersection of the polytope with a tangent plane. Note that, with this usual definition of polytopes,
edges and faces are closed and they are not subdivided in any way.

A line or segment istangentto a polytope (whether or not the latter is fully dimensional) if it intersects the
polytope and is contained in a tangent plane. In a given plane, a line is tangent to a polygon if it intersects the
polygon and bounds a closed half-plane that contains the polygon. With these definitions, given a polygon in a
planeπ, and a line contained inπ that intersects the relative interior of this polygon, the line is tangent to the
polygon when considered as a polytope inR3, but not tangent to the polygon in the planeπ.

The set of lines inR3 has a natural topological structure, namely, that of Plücker space [Sto91]. The set of
lines tangent to at least four polytopes is a subspace, whoseconnected componentscorrespond to lines that can be
continuously moved one into the other while remaining tangent to at least four polytopes.14 A line or line segment
is free if it is tangent to each polytope that its relative interior intersects ;15 otherwise it isoccluded. A free line
segment is amaximal free line segmentif it is not properly contained into another free line segment. The space of
line segments also has a natural topological structure and theconnected componentsof maximal free line segments
tangent to at least four among thek polytopes are defined similarly as for lines.

14The set of polytopes to which the line is tangent might changeduring the motion.
15When the polytopes are fully dimensional, a segment is free ifit does not intersect the interior of any of

them. Our definition ensures that a segment is free also when it intersects and is coplanar with a two-dimensional
polytope. The endpoints of a free segment may also lie on the boundary of a polytope.
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A support vertexof a line is a polytope vertex that lies on the line. Asupport edgeof a line is a polytope edge
that intersects the line but has no endpoint on it (a support edge intersects the line at only one point of its relative
interior). A supportof a line is one of its support vertices or support edges. The supports of a segment are defined
similarly. Notice that it follows from the definition of polytopes that any line has at most two supports in any given
polytope.

A line is isolated with respect toa set of edges and vertices if the line cannot be moved continuously while
remaining a common transversal to these edges and vertices.Furthermore, we say that a setS of edges and vertices
admits an isolated transversalif these edges and vertices admit a common transversal that is isolated with respect
to S. Finally, a line isisolatedif it is isolated with respect to a set of some, and hence all, of its supports.

Our results. In this paper we present two types of results, combinatorialbounds and algorithms.

Combinatorial bounds.We generalize the result of [BDD+02, EGHHZ00] in two ways. First, we consider poly-
topes that mayintersect. We show that amongk polytopes of total complexityn, the number of lines tangent to
any four of them is in the worst case either infinite orΘ(n2k2). The most surprising aspect of this result is that the
bound (which is tight) is the same whether the polytopes intersect or not. This is in sharp contrast to the 2D case,
where the number of tangents of two convex polygons is always4 if disjoint, and could be linear in the size of
the polygons if they intersect. Second, we consider polytopes inarbitrary position : we drop all general position
assumptions. The polytopes may intersect in any way ; they may overlap or coincide. They may degenerate to poly-
gons, segments or points. While four polytopes in general position (as defined in [BDD+02]) admit a finite number
of common tangents, four polytopes in arbitrary position may admit an infinite number of common tangents which
can be partitioned into connected components.

Our main results are, more precisely, the following.

Theorem 9.1. Given k polytopes inR3 with n edges in total, there are, in the worst case,Θ(n2k2) connected
components of maximal free line segments tangent to at leastfour of the polytopes. This bound also holds for
connected components of possibly occluded lines tangent toat least four of the polytopes.

These results improve the trivial bound ofO(n4). Note that, whenk 6= 4, neither of the two results stated in
Theorem 9.1 implies the other since a line tangent to at leastfour amongk polytopes may contain many, but does
not necessarily contain any, maximal free line segments tangent to four polytopes.

Whenk = 4, Theorem 9.1 implies that there areΘ(n2) connected components of lines tangent to the four
polytopes, an improvement on the previously known upper bound of O(n3 logn) which follows from the same
bound on the complexity of the set of line transversals to a set of polyhedra (here four) withnedges in total [Aga94].
Moreover, we prove a tighter bound when one of the four polytopes has few edges.

Theorem 9.2. Given3 polytopes with n edges in total and one polytope with m edges,there are, in the worst case,
Θ(mn) connected components of lines tangent to the four polytopes.

We also prove the following result which is more powerful, though more technical, than Theorem 9.1. Whe-
reas Theorem 9.1 bounds the number of connected components of tangents, Theorem 9.3 bounds the number of
isolated tangents with some notion of multiplicity. For example, the line in Figure 9.2 is counted

(k
2

)

times which
is the number of minimal sets of vertices that admit that lineas an isolated transversal. Although neither theorem
implies the other, we will prove in Proposition 9.23 that theupper bound of Theorem 9.1 is easily proved using
Theorem 9.3.

Theorem 9.3. Given k polytopes inR3 with n edges in total, there are, in the worst case,Θ(n2k2) minimal sets of
open edges and vertices, chosen from some of the polytopes, that admit a possibly occluded isolated transversal
that is tangent to these polytopes.

Algorithm. We now turn our attention to the computation of all free segments that are isolated transversals to
their set of supports and tangent to the corresponding polytopes. Durandet al. [DDP02] proposed an algorithm
for this problem with worst-case time complexityO((n3 + p) logn) where p is the output size ; this algorithm,
based on a double-sweep, has proven to be difficult to implement. Durandet al.also presented an algorithm with
Θ(n5) worst-case time complexity that incorporates interestingheuristics leading to reasonable performance in
practice [DDP97]. We present an algorithm that uses, in the worst case,O(n2k2 logn) time andO(nk2) space,
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FIG. 9.2 –A line tangent at a vertex of each ofk polytopes.

is readily implementable, and uses only simple data structures. The polytopes may intersect and be in arbitrary
position. A preliminary version of this algorithm was described for disjoint convex polyhedra in X. Goaoc’s Ph.D.
thesis [Goa04].

Theorem 9.4. Given k polytopes inR3 with n edges in total, we can compute, in O(n2k2 logn) time and O(nk)
space, all the possibly occluded lines that are isolated transversals to their set of supports and tangent to the
corresponding polytopes. We can also compute, in O(n2k2 logn) time and O(nk2) space, all the minimal free
segments that are isolated transversals to their set of supports and tangent to the corresponding polytopes.

It should be noted that our algorithm does not provide the endpoints (possibly at infinity) of the maximal free
segments. Computing the endpoints of each such segment can be done by shooting rays inO(log2n) time per
ray usingO((nk)2+ε) preprocessing time and storage [AS96]. Such ray-shooting data structures are not, however,
readily implementable. Alternatively, each ray-shootingquery can be answered inO(k logn) time afterO(nlogn)
preprocessing time and using additionalO(n) space by applying the Dobkin-Kirkpatrick hierarchy on eachpoly-
tope [DK83].

To emphasize the importance of considering intersecting polytopes, observe that computer graphics scenes
often contain non-convex objects. These objects, however,can be decomposed into sets of convex polyhedra.
Notice that simply decomposing these objects into convex polyhedra with disjoint interiors may induce a scene
of much higher complexity than a decomposition into intersecting polytopes. Moreover, the decomposition of a
polyhedron into interior-disjoint polytopes may introduce new tangents which were not present in the original
scene ; indeed a line tangent to two polytopes along a shared face is not tangent to their union.

The importance of considering polytopes in arbitrary position comes from the fact that graphics scenes are
full of degeneracies both in the sense that four polytopes may admit infinitely many tangents and that polytopes
may share edges or faces. There may actually be more connected components of tangents when the objects are
in degenerate position ; this is, for instance, the case for line segments [BEL+05]. Also, we could not find a
perturbation argument that guarantees the preservation ofall (or at least a constant fraction of) the connected
components of tangents and we do not believe that finding sucha perturbation is a simple matter.

Related results.Previous results on this topic include those that bound the complexity of sets of free lines or free
line segments among different sets of objects. They are summarized in Table 9.1.

Recently, Agarwalet al. [AAS04] proved that the set of free lines amongn unit balls has complexityO(n3+ε).
Devillerset al.showed a simple bound ofΩ(n2) [DDE+03] for this problem, and Koltun recently sketched a bound
of Ω(n3) (personal communication, 2004).

The complexity of the set of free line segments amongn balls is triviallyO(n4). Devillers and Ramos showed
that the set of free line segments can have complexityΩ(n3) (personal communication 2001, see also [DDE+03]).
When the balls are unit size, theΩ(n2) lower bound for the set of free lines holds. A lower bound ofΩ(n4) that
applies to either case was recently sketched by Glisse (personal communication, 2004).

We mention two results for polyhedral environments. Halperin and Sharir [HS94] and Pellegrini [Pel94] pro-
ved that, in a polyhedral terrain withn edges, the set of free lines has near-cubic complexity. De Berg, Everett and
Guibas [dBEG98] showed aΩ(n3) lower bound on the complexity of the set of free lines (and thus free segments)
amongn disjoint homothetic convex polyhedra.
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Worst-case Expected

free lines to a polyhedron Θ(n4) (trivial)
free lines above a polyhedral terrain O(n32c

√
logn) [HS94,Pel94]

free lines among disjoint homothetic polytopes Ω(n3) [dBEG98]
free lines among unit balls Ω(n2) [DDE+03], O(n3+ε) [AAS04] Θ(n) [DDE+03]

max. free segments above a polyhedral terrain Θ(n4) [CS89b]
isolated maximal free segments among
k generic disjoint convex polyhedra

Θ(n2k2) [EGHHZ00,BDD+02]

max. free segments among unit balls Ω(n2) [DDE+03], O(n4) Θ(n) [DDE+03]

TAB . 9.1 –Published bounds on the complexity of the set of free lines ormaximal free line segments among
objects of total complexityn. The expected complexities are given for the uniform distribution of the balls centers.

This paper is organized as follows. We prove the upper boundsof Theorems 9.1, 9.2, and 9.3 in Sections 9.2
and 9.3, and the lower bounds in Section 9.4. In section 9.5, we present our algorithm for computing free segments.

9.2 Main lemma
We prove in this section a lemma which is fundamental for the proofs of the upper bounds of Theorems 9.1,

9.2, and 9.3. Consider four polytopesP, Q, R, andS in R3, with p, q, r, ands> 1 edges, respectively, and letebe
an edge ofS.

MAIN LEMMA . There are O(p+q+ r) isolated lines intersecting e and tangent toP, Q, R andS excluding
those that lie in planes that contain e and are tangent to all four polytopes.

The proof of the Main Lemma is rather complicated because it handles polytopes which may intersect as well
as all the degenerate cases. To assist the reader, we first give an overview of the proof. We then state preliminaries
and definitions in Section 9.2.2. In Sections 9.2.3 and 9.2.4, we bound the number of so-called “generic tangent
lines”. In Section 9.2.5, we bound the number of “non-generic tangent lines”. Finally, in Section 9.2.6, we pull
these results together to conclude the proof of the Main Lemma.

9.2.1 Proof overview
The proof is inspired by a method which was, to our knowledge,first used in [BDEG94] (and later in [dB-

HOvK97, EGHHZ00, BDD+02]). We present here an overview of the proof in which we do not address most of
the problems arising from degeneracies. In particular, some definitions and remarks will require more elaboration
in the context of the complete proof.

We sweep the space with a planeΠt rotating about the line containinge. The sweep plane intersects the three
polytopesP, Q, andR in three, possibly degenerate or empty, convex polygons denotedPt , Qt , andRt , respectively
(see Figure 9.3). During the sweep, we track thebitangents, that is, the lines tangent toPt andQt , or toQt andRt ,
in Πt . As the sweep plane rotates, the three polygons deform and the bitangents move accordingly. Every time two
bitangents become aligned during the sweep, the common linethey form is tangent toP, Q, andR.

In any given instance of the sweep planeΠt , we consider the pairs of bitangents (one involvingPt andQt , and
the otherQt andRt ) that share a vertex ofQt (see Figure 9.3). The isolated lines intersectingeand tangent toP, Q,
R andS are isolated transversals with respect to a tuple of supports that consists ofe and the supports of two such
bitangents. We consider allcandidatesuch tuples of supports as the sweep plane rotates.

Such a tuple induced by an instance of the sweep plane changesas the plane rotates only when a support of a
bitangent changes. We definecritical planesin such a way that the supports of the bitangents do not changeas the
sweep plane rotates between two consecutive critical planes. As the sweep plane rotates, the supports of a bitangent
change if a support starts or ceases to be swept, or if, duringits motion, the bitangent becomes tangent to one of
the polygons along an edge of that polygon (see Figure 9.4). In the latter case, this means that the bitangent crosses
a face or contains an edge of one of the polytopes. We thus define two types of critical planes : an instance of the



112 CHAPITRE 9. LINES AND FREE LINE SEGMENT TANGENT TO POLYTOPES

e

le
Q

RΠt

P

Pt

RtQt

FIG. 9.3 –PlaneΠt contains edgeeand intersects polytopesP, Q, andR in polygonsPt , Qt , andRt .
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FIG. 9.4 –A bitangent toPt andQt is tangent toPt along an edge. The planeΠt is F-critical.

sweep plane is critical if it contains a vertex of one of the polytopes, or if it contains a line that lies in the plane
containing a face of one of the polytopes, and is tangent to another of the polytopes (see Figures 9.4 and 9.5). We
will show that the number of critical planes isO(p+q+ r).

When the polytopes intersect there may exist a linear number of bitangents in an instance of the sweep plane
(two intersecting convex polygons may admit a linear numberof bitangents, as is the case for two regularn-gons
where one is a rotation of the other about its center). Thus there can be a linear number of candidate tuples induced
by any instance of the sweep plane, and the linear number of critical planes leads to a quadratic bound on the total
number of distinct candidate tuples. In the detailed proof of the lemma, we amortize the count of candidate tuples
over all the critical planes to get a linear bound on the number of distinct candidate tuples and thus on the number
of isolated lines intersectinge and tangent toP, Q, R andS; this bound will however not hold for those isolated
lines that lie in planes that containe and are tangent to all four polytopes. Indeed, the number of such isolated
tangent lines can be quadratic, in degenerate cases ; for instance, four polytopes such that a plane contains edge
e and a face of linear complexity from each other polytope may admit in this plane a quadratic number of such
isolated tangent lines (one through each of a quadratic number of pairs of vertices).

9.2.2 Preliminaries and definitions
We can assume without loss of generality thatP, Q, R andS havenon-empty interior.Indeed, since the set of

isolated tangent lines to the four polytopes is zero-dimensional, there is always room to extend any polytope with
empty interior in such a way that none of the original isolated tangent lines are lost.
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We say that a lineproperly intersects a polygon if it intersects its relative interior. In the sequel, we use this
definition only when the line and polygon are coplanar. Notice that a line that contains a segment is tangent to the
segment as well as properly intersects it.

Let le be the line containinge and letΠt denote the sweep plane parameterized byt ∈ [0,π] such thatΠt

contains the linele for all t and Π0 = Ππ. Each planeΠt intersects the three polytopesP, Q, andR in three,
possibly degenerate or empty, convex polygons,Pt , Qt , andRt , respectively (see Figure 9.3).

For anyt, a bitangentto polygonsPt andQt is a line tangent toPt andQt in Πt (the line may intersect the
polygonRt in any way, possibly not at all). For anyt, let a(Pt ,Qt)-tuplebe the unordered set of all supports inP
andQ of one of the bitangents to polygonsPt andQt . Note that a support inP may be identical to a support in
Q, in which case the(Pt ,Qt)-tuple does not contain duplicates. Also note that a(Pt ,Qt)-tuple consists of exactly
one support inP and one support inQ (possibly identical) except when the corresponding bitangent is tangent to
P (or Q) along a face (either intersecting the face properly or containing one of its edges) ; then the(Pt ,Qt)-tuple
contains two supports inP (or Q) instead of one. APQ-tuple is a set of edges and vertices that is a(Pt ,Qt)-tuple
for somet. We define similarly the(Qt ,Rt)-tuplesandQR-tuples.

We say that a(Pt ,Qt)-tuple ismaximal for some tif it is not contained in any other(Pt ,Qt)-tuple, for the same
t. Note that a(Pt ,Qt)-tuple is non-maximal for somet if and only if all its supports intersectΠt in one and the
same point, andPt andQt are not equal to one and the same point (see Figure 9.7(b)).

For anyt, let a (Pt ,Qt ,Rt)-tuple be the union of a(Pt ,Qt)-tuple and a(Qt ,Rt)-tuple that share at least one
support inQ. A (Pt ,Qt ,Rt)-tuple is maximal for somet if it is not contained in any other(Pt ,Qt ,Rt)-tuple, for the
samet. A PQR-tuple is a set of edges and vertices that is a(Pt ,Qt ,Rt)-tuple for somet. Note that aPQR-tuple
typically consists of three supports, one from each polytope, and consists, in all cases, of at most two supports in
P, at most three supports inQ, and at most two supports inR.

A line intersectinge and tangent toP, Q, R andS is called ageneric tangent lineif and only if it intersects
S only one and is tangent toPt , Qt , andRt in some planeΠt . Otherwise it is called anon-generic tangent line. A
non-generic tangent line properly intersects a face ofSor properly intersectsPt , Qt , or Rt in some planeΠt . In the
latter casePt , Qt , or Rt is a face or an edge ofP, Q, or R lying in Πt ; thus a non-generic tangent line is (in both
cases) tangent toP, Q, R andS in a plane containing a face or two edges of these polytopes, adegenerate situation.

In the following three subsections, we bound the number of generic and non-generic tangent lines. It is helpful
to keep in mind that, as observed earlier, two convex polygons in a planeΠt (such asPt andQt) may admit a linear
number of tangents if they intersect.

9.2.3 Generic tangent lines

Lemma 9.5. The set of supports inP, Q, andR of a generic tangent line is aPQR-tuple.

Proof. Any generic tangent lineℓ is tangent inΠt to Pt , Qt , andRt for some valuet. Thus the set of supports
of ℓ in P andQ (resp. inQ andR) is a (Pt ,Qt)-tuple (resp. a(Qt ,Rt)-tuple). Moreover the(Pt ,Qt)-tuple and the
(Qt ,Rt)-tuple contain the same supports inQ, and thus their union is a(Pt ,Qt ,Rt)-tuple, hence aPQR-tuple. 2

We now define thecritical planesΠt in such a way that, as we will later prove, the set of(Pt ,Qt ,Rt)-tuples is
invariant fort ranging strictly between two consecutive critical values.We introduce two types of critical planes :
theV-critical andF-critical planes.

A planeΠt is V-critical if it contains a vertex ofP, Q, or R, not on le. (The constraint that the vertex does
not lie on le ensures that the number of V-critical planes is finite even indegenerate configurations.) A planeΠt is
F-critical relative to an ordered pair of polytopes(P,Q) if (see Figure 9.5) it contains a lineℓ such that

(i) ℓ lies in a planeΨ 6= Πt containing a face ofP, and
(ii) ℓ is tangent inΨ to polygonQ∩Ψ or P∩Ψ, at some point not onle.

For simplicity, we do not require thatℓ is tangent toP ; this leads to overestimating the number of common tangents
to P, Q, R, andS but only by an asymptotically negligible amount. Note that not all lines inΨ tangent toQ are
tangent to the polygonQ∩Ψ when that polygon is a face or edge ofQ lying in Ψ. Note also that we defineΠt to
be F-critical whenℓ is tangent toP∩Ψ at some point not onle only for handling the very degenerate case where
Q∩Ψ is an edge ofQ and there exists a line inΨ that properly intersectsQ∩Ψ and is tangent toP∩Ψ along an
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FIG. 9.5 –PlaneΠt is F-critical : it contains a line that lies in a planeΨ containing a face ofP such that the line
is tangent toQ∩Ψ at a point not onle.

edge that has an endpoint onle (see Figure 9.6). Note finally that ifℓ∈ Πt satisfies (i) and is tangent, inΨ, to P∩Ψ
at some point not onle then polytopeQ plays no role and thusΠt is F-critical relative to(P,Q) for all polytopes
Q.

F-critical planes relative to(Q,P), (Q,R), and(R,Q) are defined similarly. A planeΠt is F-critical if it is
F-critical relative to pairs of polytopes(P,Q), (Q,P), (Q,R), or (R,Q).

The values oft corresponding to critical planesΠt are calledcritical values. We callV-critical andF-critical
eventsthe ordered pairs(t,o) wheret is a critical value ando is a vertex or line depending on the type of critical
event. In a V-critical event,o is a vertex ofP, Q, or R that belongs toΠt \ le. In an F-critical event,o is a line lying
in some planeΠt and satisfying Conditions (i-ii) above. Acritical eventis a V-critical or F-critical event.

Lemma 9.6. There are at most23(p+q+ r) V-critical events and83(p+2q+ r) F-critical events.

Proof. The number of V-critical events is at most the total number ofvertices ofP, Q, andR, and hence is less
than two thirds the total number of edges ofP, Q, andR. We now count the number of F-critical events relative
to polytopes(P,Q). Let Ψ be a plane containing a face ofP, and suppose that for some planeΠt , line ℓ = Πt ∩Ψ
satisfies Conditions (i-ii). PlaneΨ does not containle because otherwise bothle andℓ lie in the two distinct planes
Ψ andΠt , soℓ = le but thenℓ cannot satisfy Condition (ii). Furthermoreℓ andle intersect or are parallel since they
both lie inΠt . Thus ifΨ∩ le is a point thenℓ contains it, and otherwiseΨ∩ le = /0 andℓ is parallel tole.

If Ψ∩ le is a point, there are at most four candidates for a lineℓ in planeΨ going throughΨ∩ le and tangent
to Q∩Ψ or P∩Ψ at some point not onle. Likewise, if Ψ∩ le is empty, there are at most four candidates for a line
ℓ in planeΨ that is parallel tole and tangent toQ∩Ψ or P∩Ψ. In either case, each candidate line is contained in a
unique planeΠt , for t ∈ [0,π], sinceℓ 6= le (ℓ contains a point not onle). Hence, a face ofP generates at most four
F-critical events relative to(P,Q). Therefore the number of critical events relative to(P,Q) is at most83 p since the
number of faces of a polytope is at most two thirds the number of its edges. Hence the number of critical events
relative to(P,Q), (Q,P), (Q,R) and(R,Q) is at most83(p+2q+ r). 2

The following lemma states that the critical planes have thedesired property. Letue be the set of supports of
le in P andQ and letu denote some(Pt ,Qt)-tuple.

Lemma 9.7. Let t∗ be the endpoint of a maximal interval16 throughout which u6= ue is a maximal(Pt ,Qt)-tuple.
Then t∗ is a critical value. Moreover, there exists a V-critical event (t∗,v) or a F-critical event(t∗,m) such that u
contains v or an edge with endpoint v, or u is contained in the set of supports of m.

The proof of this lemma is rather long and intricate ; we postpone it to Section 9.2.4. Note that, as stated, this
lemma only applies under the assumptions thatu is maximal and distinct fromue. These assumptions are made in
order to simplify the proof of Lemma 9.7 ; we don’t suggest that the lemma is false without them.

16Such an interval could be open or closed, a single point or an interval of positive length.



9.2. MAIN LEMMA 115

Ψ

m= Πt∗ ∩Ψ

Πt∗+ε ∩Ψ

Πt∗−ε ∩Ψ

edge ofQ in Ψ

face ofP in Πt∗

Πt∗

le

m= Πt∗ ∩Ψ

Qt∗Pt∗

Πt∗−ε

le

Πt∗−ε ∩Ψ

Qt∗−ε

Pt∗−ε

Πt∗+ε

le

Πt∗+ε ∩Ψ

Qt∗+ε
Pt∗+ε

edge ofP
edge ofP

le face ofP in Ψ

FIG. 9.6 –PlaneΠt∗ contains a linem such that (i)m lies in a planeΨ 6= Πt∗ containing a face ofP, and (ii)m is
tangent to polygonP∩Ψ at some point not onle ; howeverm is not tangent toQ∩Ψ. If the definition of F-critical
planes was not considering such planeΠt∗ to be F-critical then Lemma 9.7 would not hold. Indeed the setu of
supports of lineΠt∗−ε ∩Ψ is a maximal(Pt ,Qt)-tuple for some but not allt in any open neighborhood oft∗, and,
althoughΠt∗ is V-critical, there exists no V-critical event(t∗,v) such thatu containsv or an edge with endpointv.

Lemma 9.8. Any edge or vertex ofP or Q is in at most2 PQ-tuples that are maximal(Pt ,Qt)-tuples for all t in
any given non-empty interval16of R/πZ.

Proof. Let t̃ be an element of a non-empty intervalI of R/πZ andx be an edge or vertex ofP or Q. If x does not
intersectΠt̃ then no(P̃t ,Qt̃)-tuple containsx. If x intersectsΠt̃ in one point then there are, in general, at most two
lines inΠt̃ going throughx and tangent toP̃t andQt̃ (see Figure 9.7(a)) ; in all cases there are at most 3(P̃t ,Qt̃)-
tuples containingx (see Figure 9.7(b)), however at most 2 of them are maximal. Ifx intersectsΠt̃ in more than one
point,x is an edge lying inΠt̃ . Then any line inΠt̃ intersectingx and tangent toP̃t andQt̃ contains an endpoint of
x and thusx belongs to no(P̃t ,Qt̃)-tuple.

Hence at most 2PQ-tuples containx and are maximal(Pt ,Qt)-tuples fort = t̃, and thus at most 2PQ-tuples
containx and are maximal(Pt ,Qt)-tuples for allt in I. 2

Lemma 9.9. There are at most O(p+q+ r) PQR-tuples.

Proof. In order to count the number of distinct(Pt ,Qt , Rt)-tuples, we charge each maximal(Pt ,Qt ,Rt)-tuple
to a critical event. We then show that each critical event is charged at most a constant number of times. It then
follows from Lemma 9.6 that there areO(p+ q+ r) distinct maximal(Pt ,Qt ,Rt)-tuples. A maximal(Pt ,Qt ,Rt)-
tuple consists of at most two supports inP, at most three supports inQ, and at most two supports inR, and thus
contains at most(22−1)(23−1)(22−1) distinct subsets with at least one support in each ofP, Q andR. Each
maximal(Pt ,Qt ,Rt)-tuple thus contains at most a constant number of distinct(Pt ,Qt ,Rt)-tuples, which implies the
result.
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FIG. 9.7 –Lines throughx in Πt and tangent toPt andQt .

Let s be a maximal(Pt ,Qt ,Rt)-tuple and letI be any maximal connected subset ofR/πZ such thats is a
maximal(Pt ,Qt ,Rt)-tuple for allt ∈ I. Let u be a maximal(Pt ,Qt)-tuple andu′ a maximal(Qt ,Rt)-tuple such that
the union ofu andu′ is sand such thatu andu′ share at least one support inQ.

First, suppose thatI = R/πZ. Thenu is a maximal(Pt ,Qt)-tuple for all t ∈ R/πZ. Thus each support inu
intersectsΠt for all t ∈ R/πZ and thus intersectsle ; moreover each support inu intersectsΠt only on le for all
t ∈ R/πZ except possibly for one value oft. SinceP andQ have non-empty interior,Pt ∪Qt is not reduced to a
point for all t in some interval of positive length. For allt in such an interval, sinceu is maximal, the union of the
supports inu intersectsΠt in at least two distinct points. These at least two distinct points lie onle for some values
of t by the above argument. Thus, for these values oft, le is the only line inΠt whose set of supports containsu.
Henceu is the set of supports ofle. The same property holds forv and thuss is also the set of supports ofle. We
can thus assume in the following thatI 6= R/πZ, and only count the maximal(Pt ,Qt ,Rt)-tuples that are not the set
of supports ofle.

Interval I is thus a non-empty interval ofR/πZ ; it can be open or closed, a single point or an interval of
positive length. Letw0 andw1 denote the endpoints ofI 6= R/πZ.

If s contains a vertexv, or an edge with endpointv, such thatv lies in Πwi \ le, for i = 0 or 1, then we charges
to the V-critical event(wi ,v). Otherwise, we charges to an F-critical event(wi ,m) wherem is a line inΠwi whose
set of supports containsu or u′. Such a V-critical or F-critical event exists by Lemma 9.7.

We now prove that each critical event is charged by at most a constant number of distinct maximal(Pt ,Qt ,Rt)-
tuples. As mentioned before, that will imply the result.

Consider a V-critical event(t∗,v) that is charged by a maximal(Pt ,Qt ,Rt)-tuples. By the charging scheme,s
contains a supportx that isv or an edge with endpointv, ands is a maximal(Pt ,Qt ,Rt)-tuple for allt in at least one
of three intervals,{t∗} and two open intervals havingt∗ as endpoint ; denote these intervals byI1,I2,I3.

By Lemma 9.8, at most 2PQ-tuples containx and are maximal(Pt ,Qt)-tuples for allt in Ii . Moreover, each of
thesePQ-tuples contains at most 2 supports inQ, and each of these supports belongs to at most 2QR-tuples that
are maximal(Qt ,Rt)-tuples for allt in Ii . Thus at most 8PQR-tuples containx and are maximal(Pt ,Qt ,Rt)-tuples
for all t in Ii , for eachi = 1, . . . ,3. Hence any V-critical event(t∗,v) is charged by at most 24 distinct maximal
(Pt ,Qt ,Rt)-tuples.

Consider now an F-critical event(t∗,m) that is charged by a maximal(Pt ,Qt ,Rt)-tuples, and define as before
u andu′. By the charging scheme, the set of supports ofm containsu or u′ (or both) ; suppose without loss of
generality that it containsu. The set of supports ofm contains at most two supports inP and at most two supports
in Q. Sinceu contains at least one support inP and at least one support inQ, there are at most 32 choices foru.

By the charging scheme,s is a maximal(Pt ,Qt ,Rt)-tuple for all t in at least one of 3 intervals,{t∗} and two
open intervals havingt∗ as endpoint ; denote byI1,I2,I3 these intervals. It follows from Lemma 9.8 that, for each
supportx of Q in u, at most 2QR-tuples containx and are maximal(Qt ,Rt)-tuples for allt in Ii . There are at most
32 choices foru (as shown above), 2 forx, 3 for i and 2 for theQR-tuples containingx. Hence any F-critical event
(t∗,m) is charged by at most 22×33 distinct maximal(Pt ,Qt ,Rt)-tuples.

Therefore each critical event is charged by at most a constant number of distinct maximal(Pt ,Qt ,Rt)-tuples,
which concludes the proof. 2

Corollary 9.10. There are at most O(p+q) PQ-tuples.

Proof. ReplaceR by a copy ofQ in Lemma 9.9. AnyPQ-tuple is also aPQQ-tuple, and there are at most
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O(p+q+q) = O(p+q) of these. 2

Proposition 9.11. There are O(p+q+ r) isolated generic tangent lines.

Proof. A generic tangent line is transversal toe and to the edges and vertices of aPQR-tuple, by definition and
Lemma 9.5. An isolated generic tangent line is thus an isolated transversal with respect to a set of edges and ver-
tices that consists of aPQR-tuple and either edgeeor one or both of its endpoints. The number of such sets is four
times the number ofPQR-tuples, which is inO(p+q+ r) by Lemma 9.9. The result follows since each such set
consists of at most eight edges and vertices (at most two supports from each of the four polytopes) and thus admits
at most eight isolated transversals [BEL+05]. 2

9.2.4 Proof of Lemma 9.7
Recall thatue denotes the set of supports ofle in P andQ, and that Lemma 9.7 states the following.

Let t∗ be the endpoint of a maximal interval throughout which u6= ue is a maximal(Pt ,Qt)-tuple.
Then t∗ is a critical value. Moreover, there exists a V-critical event (t∗,v) or a F-critical event(t∗,m)
such that u contains v or an edge with endpoint v, or u is contained in the set of supports of m.

We can assume thatu contains no vertex v and no edge with endpoint v, such that v lies onΠt∗ \ le because
otherwise(t∗,v) is a V-critical event such thatu containsv or an edge with endpointv, which concludes the proof.

We prove a series of lemmas that yields Lemma 9.7. Indeed, we prove the existence of a linem in Πt∗ whose set
of supports containsu (Lemma 9.14) such that (i)m lies in a planeΨ 6= Πt∗ containing a face ofP (Lemma 9.15),
and (ii) m is tangent inΨ to polygonQ∩Ψ or P∩Ψ, at some point not onle (Lemma 9.16). This proves thatΠt∗

contains a linem whose set of supports containsu and such that(t∗,m) is an F-critical event, which concludes the
proof.

By hypothesis, for any sufficiently small open neighborhoodN of t∗ whose endpoints are denoted byt0 and
t1, u is not a maximal(Pt ,Qt)-tuple for somet ∈ N andu is a maximal(Pt ,Qt)-tuple fort = t∗ or for all t ∈ (t∗, t1)
(or by symmetry for allt ∈ (t0, t∗)).

We only consider in the following supports inP and inQ ; polytopeR plays no role. We start by proving two
preliminary lemmas.

Lemma 9.12. Each support in u intersectsΠt in exactly one point (possibly on le), for all t in any sufficiently small
open neighborhoodN of t∗.

Moreover, the union of all supports in u intersectsΠt in at least two distinct points for all t6= t∗ in N. This
property also holds for t= t∗ if u is a maximal(Pt∗ ,Qt∗)-tuple.

Proof. Sinceu is a(Pt ,Qt)-tuple for somet in every open neighborhood oft∗, each support inu intersectsΠt for
somet in every open neighborhood oft∗. It thus follows from the assumption thatu contains no vertexv and no
edge with endpointv, such thatv lies onΠt∗ \ le, that each support inu intersectsΠt for all t in any sufficiently
small open neighborhoodN of t∗. It follows that each support inu either lies inle or intersectsΠt in exactly one
point for allt ∈N. However, no edge ofu lies in le because otherwise, ifx denotes such an edge of, say,P, then any
line tangent toPt in Πt and intersectingx contains an endpoint ofx which is a vertex ofP ; thus, by definition,u
does not containx but one of its endpoints. Hence each support ofu intersectsΠt in exactly one point for allt ∈N.

We now prove that the union of the supports inu intersectsΠt in at least two distinct points for anyt ∈N such
thatu is a maximal(Pt ,Qt)-tuple. Suppose for a contradiction that the union of the supports inu intersectsΠt in
one single pointv for somet ∈N such thatu is a maximal(Pt ,Qt)-tuple. Then polygonsPt andQt are both reduced
to pointv because otherwiseu is not maximal (otherwise, a line inΠt tangent toPt andQt atv can be rotated about
v until it becomes tangent toPt or Qt at some other points). Thusv = Pt = Qt is a vertex ofP and ofQ because the
polytopes have non-empty interior. Henceu = {v} because each support inu containsv. It follows thatv lies onle
since each support inu intersectsΠt for all t ∈ N. Moreover, sincePt andQt are both reduced to pointv = le∩P =
le∩Q, the setue of supports ofle is u, contradicting the hypotheses of Lemma 9.7.

Thus, ifu is a maximal(Pt ,Qt)-tuple for allt ∈ (t∗, t1), the union of the supports inu intersectsΠt in at least
two distinct points for allt ∈ (t∗, t1) and thus for allt 6= t∗ in any sufficiently small open neighborhood oft∗. Also,
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FIG. 9.8 –Line m is tangent toP along a face in planeΨ 6= Πt∗ .

if u is a maximal(Pt ,Qt)-tuple fort = t∗, the union of the supports inu intersectsΠt in at least two distinct points
for t = t∗ and thus for allt in any sufficiently small open neighborhood oft∗. 2

Lemma 9.13. If u is a maximal(Pt∗ ,Qt∗)-tuple then u consists of at least three supports.

Proof. Note that it follows from Lemma 9.12 thatu contains at least two supports. Suppose for a contradiction
that u consists of only two supports. By Lemma 9.12, they intersectΠt in exactly two distinct points for allt in
any sufficiently small open neighborhoodN of t∗. Thus there exists for allt ∈ N a unique linemt in Πt whose
set of supports containsu ; moreovermt is continuous in terms oft. Sinceu is a maximal(Pt∗ ,Qt∗)-tuple, the set
of supports ofmt∗ is u. Thus, for allt in any sufficiently smallN, the set of supports ofmt is u. Thus the set of
supports ofmt is invariant fort ∈ N and sincemt∗ is tangent toPt∗ andQt∗ , line mt is tangent toPt andQt for all
t ∈ N.

Hence, for allt ∈ N, line mt , whose set of supports isu, is tangent toPt andQt in Πt . Thusu is a maximal
(Pt ,Qt)-tuple for all t ∈ N. Moreover,mt is the unique line inΠt whose set of supports containsu, thusu is a
maximal(Pt ,Qt)-tuple for allt ∈ N, contradicting the hypotheses of the lemma. 2

Lemma 9.14. There exists a line m inΠt∗ whose set of supports contains u that is tangent to Pt∗ and Qt∗ along an
edge of one of them, say of Pt∗ .

Proof. Consider first the case whereu is a maximal(Pt∗ ,Qt∗)-tuple. There exists inΠt∗ a line m tangent toPt∗

andQt∗ whose set of supports isu. By Lemma 9.13, the setu of supports ofmcontains at least three supports, and
hence at least two supports inP (or in Q). Furthermore, the supports ofm in one polytope intersectΠt∗ in distinct
points (by definition of supports). Thusm intersectsPt∗ (or Qt∗) in at least two distinct points and is tangent toPt∗

andQt∗ . The result follows sincePt∗ (andQt∗) is convex.
Consider now the case whereu is a maximal(Pt ,Qt)-tuple for all t ∈ (t∗, t1). Then, for allt ∈ (t∗, t1), there

exists a line inΠt tangent toPt andQt and whose set of supports isu. Moreover, by Lemma 9.12, this line is unique
for eacht ∈ (t∗, t1) and varies continuously in terms oft ∈ (t∗, t1). Whent tends tot∗, the line tends to a linemt∗

in Πt∗ which is tangent toPt∗ andQt∗ and whose set of supports containsu. If its set of supports strictly contains
u thenmt∗ is tangent toPt∗ andQt∗ along an edge of one of them because the polygons are convex, and hence we
can choosem = mt∗ to complete the proof. Otherwise,u is a(Pt∗ ,Qt∗)-tuple.

We can suppose thatu is a non-maximal(Pt∗ ,Qt∗)-tuple since we already treated the case whereu is maximal.
There exists inΠt∗ a line tangent toPt∗ andQt∗ whose set of supports isu. Sinceu is non-maximal this line is
tangent toPt∗ andQt∗ at a shared vertex, and can be rotated about this vertex inΠt∗ until it becomes tangent toPt∗

andQt∗ at some other points, which must occur becauseu is non-maximal ; letmdenote the resulting line. The set
of supports ofmcontainsu andm is tangent toPt∗ andQt∗ along an edge of one of them because the polygons are
convex. 2

Lemma 9.15. Line m lies in a planeΨ 6= Πt∗ containing a face ofP.

Proof. By Lemma 9.14,m contains an edge ofPt∗ ; see Figure 9.8. This edge either intersects the relative interior
of some face ofP in which case we takeΨ to be the plane containing that face, or it is an edge ofP in which case
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FIG. 9.9 –m is tangent toP along a face inΨ and (a) toQ∩Ψ only on le or (b) toQ along a face inΨ.

we takeΨ to be a plane, different fromΠt∗ , containing one of the two faces ofP incident to that edge. 2

Let mt be the lineΨ∩Πt for all t in any sufficiently small open neighborhoodN of t∗ ; line mt is well defined
sinceΨ∩Πt∗ is linem by Lemmas 9.14 and 9.15.

Lemma 9.16. Line m is tangent toP∩Ψ or to Q∩Ψ, at some point not on le.

Proof. We assume for a contradiction that linem does not satisfy the lemma, i.e.,m is not tangent toP∩Ψ or to
Q∩Ψ at any point other than onle. We prove that the set of supports ofm is u and is a maximal(Pt ,Qt)-tuple
for all t in any sufficiently small neighborhood oft∗, contradicting the hypotheses of Lemma 9.7 and thus proving
Lemma 9.16.

Sincem is tangent toQ (by Lemma 9.14),m is tangent toQ∩Ψ only on le (see Figure 9.9(a)), orm properly
intersectsQ∩Ψ which is then a face or an edge ofQ (see Figure 9.9(b))17. Similarly m is tangent toP∩Ψ only
on le, or m properly intersects it ; howeverP∩Ψ is necessarily a face ofP by Lemma 9.15.

The following Lemmas 9.17 and 9.18 imply that the set of supports of mt is invariant and equal tou for all t
in any sufficiently small open neighborhoodN of t∗. Moreover, sincemt varies continuously witht andm= mt∗ is
tangent toPt∗ andQt∗ (by Lemma 9.14), linemt is tangent toPt andQt for all t ∈ N. Henceu is a(Pt ,Qt)-tuple for
all t ∈ N. We now prove thatu is a maximal(Pt ,Qt)-tuple for allt ∈ N.

As we have seen before,m= mt∗ is tangent toP in at least two points (by Lemma 9.14), thusmt∗ intersects its
supports in at least two distinct points. Moreover the set ofsupports ofmt∗ is u. Thus there is a unique line inΠt∗

whose set of supports containsu. Henceu is a maximal(Pt∗ ,Qt∗)-tuple.
By Lemma 9.12,mt is the unique line inΠt whose set of supports containsu for all t 6= t∗ in N. Thusu is a

maximal(Pt ,Qt)-tuple for allt 6= t∗ in N.
Henceu is a maximal(Pt ,Qt)-tuple for allt ∈N, contradicting the hypotheses of Lemma 9.7 and thus conclu-

ding the proof of Lemma 9.16. 2

Lemma 9.17. The set of supports of mt is u for some t in any sufficiently small open neighborhoodN of t∗.

Proof. We first prove that the supports inu are supports ofmt for all t ∈ N. A support vertex inu lies on le by
Lemma 9.12 and thus lies inΠt for all t. A support vertex inu also lies onmby Lemma 9.14 and thus lies in plane
Ψ by Lemma 9.15. Hence, for allt ∈ N, the support vertices inu lie onmt , and thus are supports ofmt .

In order to prove that the support edges inu are supports ofmt , it is sufficient (by Lemma 9.14) to prove that
the support edges ofm are supports ofmt . The support edges ofm in P lie in planeΨ (see Figure 9.9(b)) because
Ψ containsm and a face ofP (indeed ifm intersects an edge ofP not in Ψ thenm contains one of its endpoints,
and thus the edge is not a support). Thus all the support edgesof m lie in Ψ andmcontains none of their endpoints
(by definition). Sincemt lies in Ψ for all t andmt∗ = m, line mt intersects all the support edges ofm and contains
none of their endpoints for allt in any sufficiently small open neighborhoodN of t∗. Hence the support edges ofm
in P are supports ofmt for all t ∈ N.

17Note that in these two situations, two edges of two distinct polytopes are then coplanar (in the first case an
edge ofQ ande are coplanar, and in the later case a face ofP is coplanar with a face or an edge ofQ). Hence
proving this lemma is straightforward under some general position assumption that excludes such situations.
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Consider the case whereQ∩Ψ is a face or an edge ofQ. Similarly as forP, the support edges ofm in Q lie in
planeΨ, and thus are supports ofmt for all t ∈ N.

Consider now the case wherem is tangent toQ∩Ψ only on le at, say, pointv (see Figure 9.9(a)). Thenv lies
in Ψ (sincem⊂ Ψ by Lemma 9.15) and also lies inΠt for all t (sincele ⊂ Πt for all t). Hencemt containsv for
all t ∈ N. Moreover,mt is tangent toQ∩Ψ only atv for all t in any sufficiently small open neighborhoodN of t∗.
Hence the set of supports ofmt in Q is invariant for allt ∈ N.

We have so far proved that the set of supports ofmt containsu for all t ∈ N.
We now prove that the set of supports ofmt is u for somet ∈ N. Consider first the case whereu is a maximal

(Pt∗ ,Qt∗)-tuple. Then, by Lemma 9.12, the union of the supports inu intersectsΠt∗ in at least two distinct points,
thusmt∗ = m is the only line inΠt∗ whose set of supports containsu. Moreover, sinceu is a(Pt∗ ,Qt∗)-tuple, there
exists a line inΠt∗ whose set of supports isu. Hence the set of supports ofmt∗ is u.

Consider now the case whereu is a maximal(Pt ,Qt)-tuple for allt ∈ (t∗, t1). By Lemma 9.12, for allt ∈ (t∗, t1),
the union of the supports inu intersectsΠt in at least two distinct points, thusmt is the only line inΠt whose set
of supports containsu. For all t ∈ (t∗, t1), sinceu is a(Pt ,Qt)-tuple there exists a line inΠt whose set of supports
is u. Hence the set of supports ofmt is u for all t ∈ (t∗, t1). 2

Lemma 9.18. The set of supports of mt is invariant for t ranging in any sufficiently small open neighborhoodN

of t∗.

Proof. First if m= le thenmt = le for all t ∈ N becauseΨ containsm= le (by Lemma 9.15) andΠt containsle for
all t (by definition). Thus the set of supports ofmt is invariant for allt ∈ N. We now assume thatm 6= le.

Line m is tangent to polygonPt∗ along an edge by Lemma 9.14. Thusm is tangent toP in at least two points.
Hence, sinceP∩Ψ is a face ofP andm lies inΨ, eithermproperly intersectsP∩Ψ or m is tangent toP∩Ψ along
one of its edges. In the later case, the edge does not lie inle sincem 6= le, thusm is tangent toP∩Ψ at some point
not onle, contradicting our assumptions. Hencem properly intersects the face ofP in Ψ.

It follows that, ifmcontains a vertex ofP, then this vertex is an endpoint of a support edge ofmt for all t in any
sufficiently small open neighborhood oft∗ (indeedmt lies inΨ and tends tomwhent tends tot∗). By Lemma 9.17,
the set of supports ofmt is u for somet in any sufficiently small open neighborhood oft∗. Hence, ifm contains a
vertex ofP, this vertex is an endpoint of a support edge inu. By assumptionu contains no edge with endpoint on
Πt∗ \ le, thusm contains no vertex ofP except possibly onle (sincem lies in Πt∗). It thus follows that the set of
supports ofmt in P is invariant fort ranging in any sufficiently small open neighborhood oft∗ (sincemt ⊂ Ψ tends
to m whent tends tot∗ and all supports ofm lie in Ψ).

Now consider the case wherem properly intersectsQ∩Ψ which is a face or an edge ofQ. Similarly as forP,
m contains no vertex ofQ except possibly onle and thus the set of supports ofmt in Q is invariant fort ranging in
any sufficiently small open neighborhood oft∗.

Finally, consider the case wherem is tangent toQ∩Ψ only on le. Then, as in the proof of Lemma 9.17, the
set of supports ofmt in Q is invariant for allt ranging in any sufficiently small open neighborhood oft∗, which
concludes the proof. 2

9.2.5 Non-generic tangent lines
We count here the number of non-generic tangent lines. Note that, as mentioned before, there are no such lines

under some adequate general position assumption.

Proposition 9.19. There are at most O(p+q+ r) isolated non-generic tangent lines except possibly for those that
lie in planes that contain e and are tangent to all four polytopes.

Proof. An isolated non-generic tangent line lies in planeΠt for somet and contains (at least) two distinct points,
each of which is a vertex ofP, Q, R, or S, or a point of tangency between the line and one of the polygons Pt , Qt ,
andRt ; indeed, otherwise the line can be moved inΠt while keeping the same supports.

We count first the isolated non-generic tangent lines that contain two distinct points of tangency with two of
the polygonsPt , Qt , andRt in Πt for somet. Consider such a lineℓ tangent to, say,Pt andQt in Πt . Line ℓ is
non-generic and thus properly intersects a face ofS or a face or an edge ofR lying in Πt . If ℓ properly intersects
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a face ofS or a face or an edge ofR lying in Πt but not entirely contained inle, thenΠt is one of the at most
four planes tangent toR or S. There areO(p+q) lines tangent toPt andQt in two distinct points in each of these
planes and thusO(p+q) such lines in total. Otherwise,Πt intersects each ofR andS in an edge contained inle.
The supports ofℓ are thus the union of aPQ-tuple, and of, in each ofR andS, the edge lying inle or one (or
both) of its endpoint. It follows that at most a constant number of such isolated non-generic tangent lines contain
a givenPQ-tuple in its set of supports. Hence the number of such lines is at most the number ofPQ-tuples, which
is in O(p+q) by Corollary 9.10. It follows that there are at mostO(p+q+ r) isolated non-generic tangent lines
that contain two distinct points of tangency with two of the polygonsPt , Qt , andRt in Πt for somet. We obtain
similarly that there are at mostO(p+q+ r) isolated non-generic tangent lines that contain two distinct points of
tangency with only one the polygonsPt , Qt , andRt .

We now count the isolated non-generic tangent lines that contain a unique vertex ofP, Q, R, or Sand a unique
point of tangency with the polygonsPt , Qt , andRt in Πt for somet. Each vertexv of P, Q, R, or S that does not
lie on le is contained in a unique planeΠt and there are, in that plane, at most six lines throughv and tangent toPt ,
Qt , or Rt . There are thusO(p+q+ r) such lines in total. Consider now a lineℓ through a vertexv on le and tangent
to Pt at w 6= v in Πt for somet. We can suppose that each ofQt andRt is either tangent toℓ at w or is properly
intersected byℓ ; indeed otherwiseℓ is tangent to two polygons in two distinct points. IfQt (or Rt ) is a face ofQ
(resp.R) or an edge not contained inle thenΠt is one of the at most two planes tangent toQ (resp.R) and, in each
of these planes, there are at most two lines throughv and tangent toPt . If Qt (or Rt ) is tangent toℓ atw such that the
support edges ofℓ in P and inQ (resp.R) are not collinear thenℓ goes through a vertex ofP, Q, R, or S that lies
on le, and through a vertex of the intersection of two of these polytopes. There are at most eight vertices ofP, Q,
R, andSon le andO(p+q+ r) vertices on the intersection of two of these polytopes. There are thusO(p+q+ r)
such lines in total. Otherwise,Qt (andRt) is an edge contained inle or is tangent toℓ at w such that the support
edges ofℓ in P and inQ (resp.R) are collinear ; thenℓ is not isolated.

We finally bound the number of isolated non-generic tangent lines that contain no point of tangency with the
polygonsPt , Qt , andRt in Πt for anyt (and thus contain at least two vertices ofP, Q, R, andS). Consider such a
line ℓ that lies in planeΠt for somet. Line ℓ is tangent toP, Q, andR and thus properly intersectPt , Qt , andRt in
planeΠt which is tangent toP, Q, andR. If planeΠt is not tangent toS, ℓ goes through an endpoint ofe (sinceℓ is
tangent toS) and there areO(p+q+r) such linesℓ that go through an endpoint ofeand at least another vertex ofP,
Q, orR. If planeΠt is tangent toS, line ℓ lies in a planeΠt tangent toP, Q, R, andS, which concludes the proof.2

Note that there can beΩ(n2) isolated non-generic tangent lines that lie in a plane tangent to all four polytopes.
Consider, for instance, four polytopes that admit a common tangent plane containing edgee, an edgee′ of P, and
two faces ofQ andR of linear complexity such that all the lines through a vertexof each face intersecte ande′.
All these lines are isolated non-generic tangent lines.

9.2.6 Proof of the Main Lemma
Proposition 9.11, which handles the isolated generic tangent lines, and Proposition 9.19, which handles the

isolated non-generic tangent lines, directly yield the Main Lemma.

9.3 Upper bounds
We prove in this section the upper bounds of Theorems 9.1, 9.2, and 9.3. The lower bounds are proved in

Section 9.4. Considerk pairwise distinct polytopesP1,. . . , Pk with n1,. . . , nk edges, respectively, andn edges in
total.

Lemma 9.20. For any edge e ofPi , there are O(n j +nl +nm) sets of open edges, chosen fromPi , P j , Pl , andPm,
that admit an isolated transversal that intersects e and is tangent to these four polytopes.

Proof. Any isolated transversal to a set of edges is isolated with respect to the set of all its supports. It is thus suffi-
cient to bound the number of sets of open edges, chosen fromPi , P j , Pl , andPm, that are intersected by an isolated
line that intersectse and is tangent to these four polytopes. The Main Lemma statesthat there areO(n j +nl +nm)
isolated lines intersectinge and tangent toPi , P j , Pl , andPm, excluding those that lie in planes that containe and
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are tangent to all four polytopes. Any of theseO(n j +nl +nm) isolated lines intersects at most two open edges in
any polytope. Thus there areO(n j +nl +nm) sets of open edges (chosen fromPi , P j , Pl , andPm) that are intersec-
ted by one of these isolated lines. Now consider any isolatedline that lies in a plane that containse and is tangent
to all four polytopes. This plane contains all the open edgesthat are intersected by the isolated line. Thus these
edges (and any subset of them) admit no isolated transversal. 2

Lemma 9.21. A minimal set of open edges and vertices that admit an isolated transversal consists of (i) two
vertices, (ii) one vertex and one or two edges, or (iii) two, three, or four edges.

Proof. Consider a minimal set of open edges and vertices that admitsan isolated transversal. The elements are
necessarily distinct because the set is minimal. If the set contains two vertices, it contains no other element since
the two vertices admit a unique transversal.

Suppose now that the set contains one vertex. None of the openedges contain the vertex because otherwise
such an edge would be redundant. Thus, the vertex and any segment define either a line, and thus admit an isolated
transversal, or they define a plane. If none of the other edgesintersect that plane in a unique point, the vertex and
all open edges admit zero or infinitely many common transversals, a contradiction. Thus there exists an edge that
intersects the plane in a unique point. Hence, the vertex andtwo open edges admit a unique transversal, and the
minimal set contains no other element.

Suppose finally that the set only contains open edges. The characterization of the transversals to a set of line
segments [BEL+05] shows that either two, three or four of these line segments admit at most two transversals, or
that the set of common transversals to all the open line segments can be parameterized by an open set of parameters
in R2, R or R/πZ. In the latter case, the edges admit no isolated transversal, a contradiction. Hence, the minimal
set of edges consists of two, three or four edges. (Note that two or three edges may admit an isolated transversal if
that transversal contains one or two of the edges.) 2

We can now prove the upper bound of Theorem 9.3.

Proposition 9.22. There are O(n2k2) minimal sets of open edges and vertices, chosen from some polytopes, that
admit an isolated transversal that is tangent to these polytopes.

Proof. We bound the number of minimal sets depending of their type according to Lemma 9.21. First, there are
O(n2) pairs of vertices, pairs of edges, and sets of one vertex and one edge. Hence, at mostO(n2) such pairs admit
an isolated transversal.

Consider a minimal set of one vertex and two open edges, chosen from some polytopes, that admit an isolated
transversal that is tangent to these polytopes. The open edges do not contain the vertex because otherwise they
admit no isolated transversal. Thus the vertex and each edgedefine a plane. For each of theO(n2) planes defined
by a vertex and an open edge not containing it, there areO(k) lines in that plane that are tangent to one of the
polytopes at some point other than the vertex. Hence there are O(n2k) sets of one vertex and two edges, chosen
from some polytopes, that admit an isolated transversal that is tangent to these polytopes.

It is straightforward to show that three open edges admit an isolated transversal only if the line containing
one of the edges intersects the two other edges. Since any line intersects at most two open edges in any of thek
polytopes, there areO(nk2) sets of three open edges that admit an isolated transversal.

Consider now the case of four edges, chosen from at most threepolytopes, that admit an isolated transversal
that is tangent to these polytopes. The two edges chosen fromthe same polytope belong to the same face, and the
isolated transversal lies in the plane containing that face. Each of the two other open edges intersects that plane in
one point, because otherwise the four open edges admit zero or infinitely many transversals. For each of theO(n)
planes containing a face of one of the polytopes, and each of theO(n) edges intersecting that plane in exactly one
point, there are at most 2k lines in that plane that contain this point and are tangent toone of thek polytopes at
some other point. Hence there areO(n2k) sets of four open edges, chosen from at most three polytopes,that admit
an isolated transversal that is tangent to these polytopes.

We finally bound the number of sets of four edges, no two chosenfrom the same polytope. By Lemma 9.20
and by summing over alln edgese of the polytopes, the numberT of sets of four open edges, chosen from four
polytopes, that admits an isolated transversal that is tangent to these four polytopes satisfies
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T 6 n ∑
j<l<m

C(n j +nl +nm),

whereC is some constant. Since eachni , 16 i 6 k, appears
(k−1

2

)

times in the sum, it follows that

T 6 Cn ∑
16i6k

ni

(

k−1
2

)

= Cn2
(

k−1
2

)

soT is in O(n2k2) as claimed. 2

The above result implies the following upper bounds and in particular those of Theorem 9.1.

Proposition 9.23. There are O(n2k2) connected components of maximal free line segments tangentto at least four
of the polytopes. This bound also holds for connected components of possibly occluded lines tangent to at least
four of the polytopes. Furthermore, the same bound holds forisolated such segments or lines.

Proof. We prove the proposition for possibly occluded lines tangent to at least four of the polytopes ; the proof
is similar for maximal free line segments. By Proposition 9.22, there areO(n2k2) minimal sets of open edges and
vertices, chosen from some polytopes, that admit an isolated transversal that is tangent to these polytopes. The
bound on the number of connected components thus follows from the fact that any connected component of lines
tangent to four polytopes contains an isolated line. Indeed, any non-isolated line can be moved while keeping the
same set of supports until (at the limit) the line intersectsa new edge or vertex. During the motion, the line remains
tangent to all four polytopes since it keeps the same supports (except at the limit) ; if the line has more than one
degree of freedom, this can be repeated until the line becomes isolated. 2

We now prove the upper bound of Theorem 9.2. We start by two preliminary lemmas.

Lemma 9.24. Four possibly intersecting convex polygons inR2 admit at most a constant number of connected
components of line transversals.

Proof. Consider the usual geometric transform where a line inR2 with equationy = ax+ b is mapped to the
point (−a,b) in the dual space (see e.g. [SA95, §8.2.1]). The transversals to a convex polygon are mapped to a
region bounded from above by a convexx-monotone curve and from below by a concavex-monotone curve ; such
a region is called stabbing region, and the curves are referred to as the upper and lower boundaries of the stabbing
region. The transversals to four polygons are mapped to the intersection of four stabbing regions. There exists no
transversal of a given slope if and only if the lower boundaryof a stabbing region lies above the upper boundary of
another stabbing region at that slope. Two such boundaries intersect in at most two points, and thus the transversals
to four polygons form at most a constant number of connected components of transversals. 2

As in Section 9.2, letP, Q, R, andS be four polytopes inR3, with p, q, r, ands> 1 edges, respectively, and
let ebe a closed edge ofS.

Lemma 9.25. There are O(p+q+ r) connected components of lines intersecting e and tangent toP, Q, R andS.

Proof. As in the proof of Proposition 9.23, any connected componentof lines intersectinge and tangent toP, Q,
R, andScontains an isolated line. The Main Lemma thus yields that there areO(p+q+ r) connected components
of lines intersectinge and tangent toP, Q, R andS except for the components that only contain isolated lines that
lie in planes that containeand are tangent to all four polytopes.

We show that there are at most a constant number of connected components of lines intersectingeand tangent
to P, Q, R andS that lie in planes that containe and are tangent to all four polytopes. There may be infinitely
many such planes that intersectP, Q, R andS only on le but all the lines tangent to the four polytopes in all these
planes belong to the same connected component. Besides these planes there are at most two planes containinge
and tangent to all four polytopes. In any such plane, the lines tangent to the four polytopes are the transversals to
the four polygons that are the faces, edges, or vertices ofP, Q, R, andS lying in the plane. Lemma 9.24 thus yields
the result. 2

We can now prove the upper bound of Theorem 9.2.
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FIG. 9.10 –Lower bound examples for Lemmas 9.27 and 9.28.

Proposition 9.26. Given 3 polytopes with n edges in total and one polytope with m edges,there are O(mn)
connected components of lines tangent to the four polytopes.

Proof. Let S denote the polytope withm edges. First, ifS consists of a single point, it is straightforward to show
that there areO(n) connected components of lines tangent to the four polytopes. Otherwise, by summing over
all the edges ofS, Proposition 9.25 yields that the number of connected components of lines tangent to the four
polytopes isO(mn). 2

9.4 Lower bounds
We provide in this section the lower-bound examples needed for Theorems 9.1, 9.2, and 9.3. The following

proposition proves the lower bound of Theorem 9.2.

Lemma 9.27. There exist four disjoint polytopes of complexity n such that the number of common tangent lines is
finite andΩ(n2). There also exist two polytopes of complexity n and two polytopes of complexity m such that the
number of common tangent lines is finite andΩ(mn).

Proof. We consider four planar regular polygonsP, Q, R, andS, each withn vertices, embedded inR3. P is
centered at the origin and parallel to theyz-plane,Q is obtained fromP by a rotation of angleπn about thex-axis,
andR andS are obtained fromP andQ, respectively, by a translation of length 1 in the positivex-direction (see
Figure 9.10). We transform the polygonsP andQ into the polytopesP andQ by adding a vertex at coordinates
(ε,0,0). Similarly, we transform the polygonsRandSinto the polytopesR andSby adding a vertex at coordinates
(1+ ε,0,0).

For ε sufficiently small, the lines tangent toP, Q, R andS are the lines through a vertex ofP∩Q and a vertex
of R∩S. SinceP∩Q andR∩Shave 2n vertices each, there are 4n2 tangent lines. Now, movingP andS by 2ε in
thex direction ensures the disjointness of the polytopes while preserving the existence of the tangents ifε is small
enough.

ReplacingRandS in the above construction by regular polygons each withmvertices yields theΩ(mn) lower
bound in the case of two polytopes of complexityn and two polytopes of complexitym. 2

We now prove the lower bounds of Theorems 9.1 and 9.3. The following proposition directly yields these
bounds since the number of isolated tangents to any four of the polytopes is less or equal to the number of sets
of open edges and vertices in at most four polytopes that admit an isolated transversal that is tangent to these
polytopes.

Lemma 9.28. There exist k disjoint polytopes of total complexity n such that the number of maximal free line
segments tangent to four of them is finite andΩ(n2k2). Moreover these segments lie in pairwise distinct lines.
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Proof. The lower bound example is similar to the one with four polyhedra. For simplicity suppose thatn andk
are such thatnk and k

4 are integers. We first take ank -regular polygonA1 in the planex = 0. Next we consider a
copy,B0, of A1 scaled by a factor of(1+ ε), and on each edge ofB0 we placek

4 points. PolygonBi , 16 i 6 k
4, is

constructed by taking theith point on each edge ofB0. If ε is small enough, the intersection points ofA1 andBi are
outside the other polygonsB j for 1 6 j 6 k

4 andi 6= j. Now theAi , for 26 i 6 k
4, are constructed as copies ofA1

scaled by a factor 1+ i
kε (see Figure 9.10). For the moment, all polygons lie in planex = 0. We now construct 4

families of k
4 polygons each :

- Pi is a copy ofAi translated byiε in the negativex direction

- Qi is a copy ofBi translated byiε in the positivex direction

- Ri is a copy ofBi translated by 1− iε in the positivex direction

- Si is a copy ofAi translated by 1+ iε in the positivex direction
Any choice of four polygons, one in each familyPi , Q j , Rl and Sm, reproduces the quadratic example of

Lemma 9.27 with polygons of sizenk and thus with total number of tangents larger than
(

k
4

)4
4
(

n
k

)2
= n2k2

4 . Fur-
thermore the lines tangent toPi , Q j , Rl andSm are only occluded byPi′ andSm′ for i′ > i andm′ > m, that is,
beyond the portion of the tangents containing the contact points. Thek polygons can be transformed intok convex
polyhedra as in Lemma 9.27. 2

9.5 Algorithm
Using the sweep-plane algorithm outlined in Section 2.1, wecan compute inO(n2k2 logn) time all minimal

sets of open edges and vertices, chosen from some of the polytopes, that admit a possibly occluded isolated trans-
versal that is tangent to these polytopes. Now, for some of these lines, the segment joining the contact points
with the polytopes is free. We can use standard, but complicated, ray-shooting data structures in order to deter-
mine which of theseO(n2k2) segments are free ; this can be done inO(log2n)-time per query usingO((nk)2+ε)
preprocessing time and storage [AS96].

We present in this section a solution that usesO(n2k2 logn) time andO(nk2) space. We adapt the algorithm
outlined in Section 2.1 to directly compute the minimal setsof edges and vertices admitting an isolated line trans-
versal that contains a free segment tangent to their respective polytopes. Our algorithm has better time and space
complexities than the previously mentioned approach, and is readily implementable. Moreover, the space com-
plexity drops toO(nk) if no occlusion is taken into account. Precisely, we prove the following theorem which is
more powerful, though more technical, than Theorem 9.4 and directly yields it.

Theorem 9.29. Given k polytopes inR3 with n edges in total, we can compute in O(n2k2 logn) time and O(nk)
space all the minimal sets of open edges and vertices, chosenfrom some of the polytopes, that admit an isola-
ted, possibly occluded, line transversal tangent to these polytopes. We can also compute, in O(n2k2 logn) time
and O(nk2) space, all the minimal sets of open edges and vertices that admit an isolated line transversal contai-
ning a maximal free segment that is tangent to these polytopes. Furthermore, the algorithm reports which of the
transversals contains such a free line segment.

For ease of presentation, we describe a simplified version ofthe algorithm in which we assume that the po-
lytopes are in generic position ; see Section 9.5.2 for details. Using the same techniques as in Section 2, it is
straightforward though tedious to generalize the algorithm for arbitrary situations. We also only detail the algo-
rithm for the case of minimal sets of four edges, no two chosenfrom the same polytope ; the other sets of at most
four edges and vertices can be computed similarly.

9.5.1 Algorithm overview and data structures
The input to our algorithm is a set of possibly intersecting polytopes structured in a standard way so that classic

incidence queries can be performed in constant time (see, for instance, [BY98, §9.1]).
We consider each polytope edge,e, in turn and sweep a plane around it between its two incident faces. During

the sweep we create and maintain the following objects.
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Combinatorial polygons.The sweep plane intersects each polytope in a (possibly empty) convex polygon whose
vertices correspond to polytope edges. For each of these polygons, we maintain the set of vertices, each represented
by its corresponding polytope edge, in a data structure thatadmits logarithmic-time vertex insertion, deletion
and look-up operations, as well as ray-shooting queries. This can be done with a balanced binary search tree
(see [O’R98, §7.9.1]).

Combinatorial bitangents.The algorithm keeps track of the lines contained in the sweepplane and tangent to
two polygons. The polytopes properly intersected by such a bitangent between its two supports are itsblockers.
A bitangent is represented by (pointers to) its two supportsand a set of its blockers, ordered by polytope index,
stored in a balanced binary search tree.

Polytope edges.We associate with each polytope edge a list of pointers to thecombinatorial bitangents it supports
in the current sweep plane.

Critical events.The sweep stops at critical events at which time combinatorial polygons and bitangents are updated.
In addition to the V- and F-critical events defined in Section9.2.3, we introduce the following two new types
of events at which the set of blockers of some combinatorial bitangents may change. AT-critical event occurs
whenever three bitangents, supported by aPQR-tuple, become aligned (see Figure 9.11b). AnI-critical event
occurs when the sweep plane contains a point of intersectionbetween an edge and a face of two (distinct) polytopes
(see Figure 9.12).

Each event is represented by a data structure providing pointers to the primitives that define it : a vertex for a
V-event, a bitangent and a face for a F-event, three bitangents for a T-event, and a face and an edge for a I-event.
In addition, for a T-event, we store a bit of information specifying which of the line transversals tole and the three
support edges defines the T-event. Note that the critical value of each critical event can be computed in constant
time from the information associated with the event ; it thusdoes not need to be explicitly stored.

Finally, critical events are sorted in the order in which they appear during the sweep and stored in anevent
queuesupporting insertion and deletion in logarithmic time.

9.5.2 Generic position assumption
Our generic position assumption is thatthe ordered set of events does not change under any arbitrarily small

perturbation of the input polytopes. This assumption corresponds to (i) the events are generic,and (ii) no two
events occur in the same sweep plane, except for F- and I-critical events induced by the same pair of edge and face.
The genericity of the events is ensured by (but not characterized by) the following geometric conditions :

V-critical events :no vertex lies on a line containing another edge,

F-critical events :no two edges in two distinct polytopes are coplanar,

I-critical events :if an edge intersects a face of another polytope, it does so properly and not on a line containing
another edge,

T-critical events :any four lines containing polytope edges admit zero or two transversals.

9.5.3 Initialization
For each new sweep, we initialize the event queue and construct the combinatorial polygons and combinatorial

bitangents as follows.

Combinatorial polygons.Computing the combinatorial polygons in the initial sweep plane can easily be done in
O(n) time.

Combinatorial bitangents.The bitangent lines to two polygonsP andQ in the initial sweep plane through a given
vertex ofP can be computed by a binary search onQ in O(logn) time. The blockers of a given bitangent can be
found using one ray-shooting query per combinatorial polygon, for a total time ofO(k logn). Altogether, theO(nk)
combinatorial bitangents can thus be computed inO(nk2 logn) time.

Event queue.There areO(n) V-critical events andO(nk) I-critical events, since an edge intersects a polytope in
at most two faces. TheO(nk) edge-face intersection points are computed and stored oncebefore the beginning of
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FIG. 9.11 –(a) The sweep plane in which the combinatorial bitangent with support edgese1 ande2 is created. (b)
The sweep plane at a T-critical event induced by the three bitangents with support edges ine1, e2, ande3. (c-d) A
line ℓ that defines an F-critical event. (d) The F-event defined byℓ occurs simultaneously with an I-critical event.

the first sweep ; this computation can be done by using brute force inO(n2) time, and withO(nk) space, since it
is done once for all the sweeps. For each sweep, all the V- and I-critical events can then be inserted inO(nklogn)
time. For each of theO(nk) combinatorial bitangents, we also insert F- and T-criticalevents inO(k logn) time as
explained in Section 9.5.4 (Lemma 9.30). In total, initializing the event queue takesO(nk2 logn) time per sweep.

Thus, initializing all the combinatorial polygons, bitangents, and the event queue can be done inO(nk2 logn)
time per sweep plusO(n2) time overhead for a total ofO(n2k2 logn) time as announced in Theorem 9.29.

9.5.4 Updating the event queue
Every time a new combinatorial bitangent is created, we compute and insert into the queue new F- and T-events

as described below. Lete1 ande2 denote the two support edges of a new combinatorial bitangent. Let Πt0 denote
the critical plane at which the new combinatorial bitangentis created.

New T-critical events.See Figure 9.11a-b. Consider all the bitangents havinge1 as support edge and compute the
set of support edges (distinct frome1 ande2) of all these bitangents. Compute the intersection of this set with the
similar set fore2 ; this can be done inO(k logk) time by ordering the edges by their indices. For each edgee3

in that set, insert a T-event for each line transversal tole, e1,e2, ande3 if the transversal is tangent to the three
polytopes containinge1,e2, ande3 ; this test can be done in constant time. Each of the at mostk insertions into the
event queue takesO(logn). Thus computing and inserting the new T-critical events takesO(k logn) time per new
bitangent.

New F-critical events.Consider in turn each of the four faces incident to one of the two support edges. Lete1 and
f denote the considered edge and face. We compute a candidate F-event, in constant time, as follows. Compute the
line ℓ (if any) that lies in the planeΨ containingf and goes throughle ande2 (see Figure 9.11c). Ifℓ is tangent to
the polytope containinge2, ℓ defines an F-event. We reject this F-event ifℓ does not intersecte1 (in such a case, the
edgee1 does not intersect the sweep plane at the F-event and thus thecombinatorial bitangent toe1 ande2 would
have been deleted at some V-event before the F-event). We also discard this F-event if it occurs at the critical value
t0 where the (considered) bitangent is created (that isΠt0 containsℓ) ; we discard such F-events because when a
bitangent is created at an F-event, we do not re-insert the same F-event into the queue. We thus retain at most four
F-events, at most one for each of the four faces incident to one of the two support edges. If no F-event is retained,
the bitangent will be deleted at a V-critical event and no newF-critical event is created. If more than one F-event
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is retained, we need only keep the first one, since, as we shallsee in Section 9.5.5.2, the combinatorial bitangent
will be deleted at the first of these events.

Again, let f denote the face incident to edgee1 that induces that F-critical event. If the other support edge,e2,
intersects facef (see Figure 9.11d), then this event will be treated as an I-critical event and again we create no new
F-event. Otherwise, we insert the F-event into the queue inO(logn) time. We thus get the following lemma.

Lemma 9.30. Each time a combinatorial bitangent is created, the event queue can be updated in O(k logn) time.

9.5.5 Processing events

9.5.5.1 V-critical events

Let v denote the vertex that induces a V-critical event. As the sweep plane reachesv, all edges incident tov
start or cease to be swept ; we call the formerstarting edges and the latterterminatingedges. LetQ denote the
polytope to whichv belongs and letΠt0 be the sweep plane containingv. When processing a V-event, we perform
the following operations.

Create and delete combinatorial bitangents.Suppose first that the critical plane throughv properly intersectsQ.
Consider in turn each combinatorial bitangent supported bya terminating edge,et , incident tov and leth denote
the other support edge of this bitangent. We check all starting edges incident tov to find the edgees such that the
line in Πt0+ε throughes andh is tangent toQ for ε > 0 arbitrarily small. We create a new combinatorial bitangent
and delete the old one ; in fact, we simply replaceet by es in the combinatorial bitangent, create a pointer from
edgees to the bitangent, and update the event queue. After handlingthe last bitangent supported by edgeet , delete
all the pointers fromet to the bitangents.

The critical plane throughv containsO(k) bitangents throughv, thus, by continuity, at mostO(k) combinatorial
bitangents are deleted and created. Each deletion and creation takes linear time in the degree ofv plusO(k logn)
time for updating the event queue (Lemma 9.30). Hence, sincethe sum of the degrees of the vertices isO(n), this
step takesO(nk2 logn) time in total for all non-extremal V-events.

Suppose now that the critical plane throughv is tangent toQ and that all edges incident tov are starting. For
each edge not incident tov, we can decide in constant time whether it supports a bitangent throughv in the critical
plane throughv. If so, we check, for each edge incident tov, if the line in planeΠt0+ε that goes through these two
edges is tangent toQ for ε > 0 arbitrarily small. If so, we create a new combinatorial bitangent. By continuity,
O(k) bitangents are created in total timeO(n+ kd) whered is the degree ofv. For each of these newly created
bitangents, we compute its set of blockers in (brute force)O(n) time and update the event queue inO(k logn) time
(Lemma 9.30). This takesO(nklogn) time per event, henceO(nk2 logn) time per sweep since there are at most
two sweep planes tangent to any polytope.

Finally, if all edges incident tov are terminating, we delete all theO(k) bitangents supported by these edges ;
for each bitangent, deleting its blockers and the pointer from the edge not incident tov can be done inO(k) time.
Hence, this takesO(k2) time per critical event andO(k3) time per sweep.

Update the combinatorial polygon associated withQ. This takesO(logn) time per polytope edge incident tov,
thusO(nlogn) time in total for all V-events.

Hence, processing all V-events takesO(nk2 logn) time per sweep.

9.5.5.2 F-critical events

We process an F-critical event as follows. Letb and f denote the bitangent and face associated with the event.
Let e1 ande2 denote the two support edges ofb such thate1 is the edge that belong tof (see Figure 9.11c-d). By
construction of F-events (see Section 9.5.4),e2 does not intersect facef (see Figure 9.11c), thus the bitangentb is
deleted and a new combinatorial bitangent is created.

Bitangentb is removed from the lists of bitangents supported bye1 ande2 in O(k) time. The support edges
of the new bitangent aree2 and the edgee′1 6= e1 of f that is intersected by the line in the planeΨ (containing f )
throughle ande2 (see Figure 9.11c). This edgee′1 is also one of the two edges adjacent toe1 in its combinatorial
polygon. Edgee′1 can thus be computed inO(logn) time. As usual, the new bitangent is added to the lists of
bitangents supported bye′1 ande2. We then compute all the blockers of this new bitangent by performing one
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FIG. 9.12 –I-critical event.

ray-shooting query per combinatorial polygon, for a total time of O(k logn). We finally update the event queue in
O(k logn) time (Lemma 9.30).

There areO(k) F-events associated to each polytope face, thusO(nk) F-events per sweep. Hence, the total
time complexity for processing all F-events isO(nk2 logn) per sweep.

9.5.5.3 I-critical events

An I-event is associated with a facef of some polytopeP and an edgee1 of some other polytopeQ. Let
p denote the point of intersection betweenf and e1. The sweep plane,Πt0, that containsp intersects the two
polytopesP andQ in two polygonsPt0 andQt0. See Figure 9.12. Pointp lies on an edge ofPt0 ; the two endpoints
of this edge are the intersection of two edges ofP, saye0 ande2. These two polytope edges can be computed in
O(logn) time using the combinatorial polygon associated withP.

Create or delete combinatorial bitangents.If the two polygonsPt0 andQt0 are tangent atp (see Figure 9.12a), the
two combinatorial bitangents whose pairs of support edges are (e0,e1) and(e1,e2) are either created or deleted at
the I-event. If these bitangents appear in the list of bitangents having edgee1 as support, we remove them from
the list and delete them ; this can be done brute force inO(k) time. Otherwise we create these two combinatorial
bitangents. We compute their set of occluders inO(k logn) time by intersecting the bitangents with all the polytopes
using their associated combinatorial polygons. Finally, we update the event queue inO(k logn) time.

Update sets of blockers.Consider now each of theO(k) bitangents havinge1 as a support edge except for the two
bitangents that might have just been created. We update its set of blockers as follows. First, note that only polytope
P may have to be added to, or removed from, the set of blockers. Two situations occur : either the geometric
bitangent segment joining the two support edges inΠt0 properly intersects polygonPt0, or not. In the first case
(e.g., segmentpq in Figure 9.12), polytopeP was and remains a blocker of the bitangent. In the second case(e.g.,
segmentpr in Figure 9.12),P has to be either removed from, or added to, the set of blockers. This can be done
in O(k logk) time by searching forP in the set (recall that polytopes are ordered by their index in a binary search
tree).

Processing an I-event thus takesO(k logn) time. Since any polytope edge intersects any other polytopein at
most two points, there areO(nk) I-events which can be processed inO(nk2 logn) time in total per sweep.

9.5.5.4 T-critical events

Suppose that on the line transversal toe1, e2, e3 andle (the one associated to the T-event) edgese1, e2, e3 are
met in that order at pointsp1, p2, p3. Let Qi be the polytope containingei , 16 i 6 3.

Update sets of blockers.Update the occluder set for the bitangent with support edgese1 ande3 by either removing
Q2 (if it appears in the set) or addingQ2 (if it does not appear in the set) ; this can be done inO(logn) time.

Output.First determine if the segmentp1p3 is unoccluded by checking if the set of blockers of the bitangent with
support edgese1 ande3 is empty or reduced toQ2. If so and if the segment intersects the reference edgee, then it
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is a free segment transversal to the four edgese,e1,e2,e3. In order to report each such transversal exactly once, we
report it only if the reference edgee is smaller thane2 for some global ordering of all edges. This can be done in
constant time.

There areO(nk2) T-critical events per sweep (see the proof of Proposition 9.22), thus all the T-events can be
processed inO(nk2 logn) time per sweep.

9.5.6 Complexity
Note first that we assume a model of computation in which bounded-degree algebraic polynomials may be

evaluated in constant time. See [ELL+06] for a detailed description of the predicates concerningline transversals
that are used in this algorithm.

In this model of computation, we have described aΘ(n2k2 logn)-time algorithm for computing all the minimal
sets of edges, no two chosen from the same polytope, that admit an isolated line transversal containing a free
segment that is tangent to all these polytopes. As mentionedearlier, the sweep-plane algorithm can be easily
modified to report all types of minimal support sets.

The space used by the algorithm isΘ(nk2) in the worst case. To see this, first notice that storing the combina-
torial polygons and the V-, F- and I-critical events usesO(nk) space. There are alsoO(nk) combinatorial bitangents
in any sweep plane. Storing the combinatorial bitangents thus requiresΘ(nk2) space since, in the worst case,Θ(nk)
of them may be intersected byΘ(k) polytopes. Furthermore, there may beΘ(nk2) T-events in the queue since each
of the Θ(nk) bitangents may share a support withΘ(k) other bitangents. This yields the bounds of Theorem 9.4
for computing minimal free segments.

Notice that, with a slight modification to the algorithm, andno increase in the time complexity, we can reduce
the storage requirement of the T-events toO(nk). To do this we maintain the bitangents sorted by polar angle
around each vertex of the combinatorial polygons, which caneasily be done since the cyclic ordering changes only
at T-critical events or when a bitangent is created or deleted. Since two bitangents become aligned only when they
are neighbors in this cyclic ordering, we only need to maintain the T-events for pairs of consecutive bitangents and
there can only beO(nk) of these at any one time.

Finally, the bounds of Theorem 9.4 that concern the computation of potentially occluded isolated lines tangent
to polytopes are obtained by noticing that we need not maintain the sets of blockers of the bitangents which reduces
the space requirements for the combinatorial bitangents toO(nk).

9.6 Conclusion
We have presented a tight bound on thenumberof (connected components of) lines and maximal free line

segments that are tangent to at least four amongk possibly intersecting polytopes in arbitrary position. A problem
that we leave open is to prove that the same bound holds for thecombinatorial complexityof the set of all maximal
free line segments amongk polytopes.

We have also shown how to compute in near-optimal worst-casetime all theminimal free line segments that
are isolated transversals to their set of supports and tangent to the corresponding polytopes. We believe that our
algorithm can also be made to report all connected sets of minimal free segments that are transversal to the same
set of edges. A problem that we have not solved, however, is tocompute in the same time and space complexities,
respectively, the polytopes supporting the endpoints of the correspondingmaximalfree line segments.



Chapitre 10

Towards an implementation of the 3D
visibility skeleton

Cet article court présentant une vidéo va être publiée dans les proceedings du23th ACM Annual Symposium on
Computational Geometry[ZELW07].

Abstract

In this note we describe the contents of a video illustratingan algorithm for computing the 3D
visibility skeleton of a set of disjoint convex polytopes. The video can be found athttp://www.
cs.mcgill.ca/~lzhang15/video/ with file namesocg07visidemo.mov .

10.1 Introduction
The 3D visibility skeleton is a graph whose vertices correspond to the maximal free line segments that are

transversal to four edges of at least three distinct polytopes and tangent to those polytopes ; its arcs correspond to
sets of maximal free line segments that are tangent to three polytopes [DDP97]. The visibility skeleton has been
used for visibility computations such as computing shadow boundaries [DDP99,DD02].

This video demonstrates a sweep plane algorithm for capturing the vertices of the 3D visibility skeleton of a
set of polytopes in 3D [Goa04,BDD+07].

10.2 The algorithm
The input of the algorithm is a set ofk disjoint convex polytopes in general position withn edges in total.

The output of the algorithm is the set ofO(n2k2) vertices of the 3D visibility skeleton of the input polyhedra. The
algorithm, which runs inO(n2k2 logn) time, can also be used to compute the arcs of the skeleton.

The algorithm performs a rotational plane sweep around eachedgee of each polytope, sweeping from one
incident face of that edge to the other incident face. The sweep plane intersects the polytopes in at mostk disjoint
convex polygons, which change their shape as the sweep planerotates. Figure 10.1(a) shows one position of the
sweep plane, drawn as a faint grid, as it rotates around edgeeof polytopeC. PolytopesA andB are intersected by
the sweep plane. PolytopeC lies above the plane, with edgee in the plane. PolytopeD lies below the plane.
Figure 10.1(b) shows the view inside the sweep plane. The polytopesA and B intersect the plane in convex
polygonsA and B, which support 4 bitangents. Figure 10.2 shows the 2D visibility skeleton corresponding to
Figure 10.1(b). The circular cycle of directed arcs gives the ordering of the 4 bitangents around polygonA ; the
cycle of the remaining directed arcs gives the ordering of the 4 bitangents around polygonB.

During the sweep, the algorithm maintains the 2D visibilityskeleton of the intersected polytopes [PV96a]. The
2D visibility skeleton for the convex polygons in the initial sweep plane is computed and then used to determine
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(a) (b)

FIG. 10.1 –(a) One position of the sweep plane. (b) The view inside the sweep plane.
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FIG. 10.2 –The 2D visibility skeleton for Figure 10.1(b).

the initial queue of critical events that will occur during the sweep. The sweep planes at which these critical
events occur are calledevent planes. At a critical event, the 2D visibility skeleton may change its topology and the
algorithm updates it, as well as the queue of critical events.

There are three types of critical events. AV-eventoccurs when the sweep plane encounters a polytope vertex
that supports one or more bitangents in the sweep plane. AT-eventoccurs when two or three bitangents become
colinear. AnF-eventoccurs when a bitangent becomes colinear with a face of a polytope. There areO(nk2) events
per sweep, and they can be computed and processed inO(nk2 logn) time in the usual sweep algorithm paradigm.

The vertices of the 3D visibility skeleton are captured during the sweep, as they correspond to theV,T,F-
events whose associated bitangents intersect the edgee that the sweep plane is rotating about. After then sweeps,
a description of the arcs of the 3D visibility skeleton can becomputed, although the details are not illustrated in
the video.

10.3 Implementation issues and technical details
Although the algorithm as described in [BDD+07] works for any set of possibly intersecting convex poly-

topes in any configuration, the current implementation requires that the polytopes satisfy certain general position
assumptions18.

18The precise definition of our general position assumptions is straightforward but lengthy. It guarantees, for
example, that each critical event corresponds to a unique position of the sweep plane.
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The key predicate of the sweep algorithm compares two event planes, to order their occurrences in the sweep.
A detailed study of this predicate and its degree is given in [ELL+06].

The algorithm was implemented in C++ using theCGAL [CGA] library. We used theCORElibrary [COR] to
perform exact comparisons of algebraic numbers. To computethe 2D visibility skeleton we used the CGAL-based
package due to Angelier and Pocchiola [AP03a], based on the Greedy Flip Algorithm [AP03b,PV96a].

The graphical output was produced using theGeomviewsoftware [Geo] through the interface provided by the
CGAL library. We took snapshots of the Geomview window display, while rotating the viewpoint to provide a 3D
view of the objects in the display window. Finally, we usediMovie [iMo] to assemble all the snapshots together
into the final video. We used theAudacity[Aud] software for the audio.
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The expected number of 3D visibility
events is linear

Cet article est paru dansSIAM Journal on Computing[DDE+03] ainsi que dans la thèse de X. Goaoc [Goa04].

Abstract

In this paper, we show that, amongstn uniformly distributed unit balls inR3, the expected number of
maximal non-occluded line segments tangent to four balls islinear. Using our techniques we show
a linear bound on the expected size of the visibility complex, a data structure encoding the visibility
information of a scene, providing evidence that the storagerequirement for this data structure is
not necessarily prohibitive. These results significantly improve the best previously known bounds
of O(n8/3) [DDP02].
Our results generalize in various directions. We show that the linear bound on the expected number
of maximal non-occluded line segments that are not too closeto the boundary of the scene and
tangent to four unit balls extends to balls of various but bounded radii, to polyhedra of bounded
aspect ratio, and even to non-fat 3D objects such as polygonsof bounded aspect ratio. We also prove
that our results extend to other distributions such as the Poisson distribution. Finally, we indicate
how our probabilistic analysis provides new insight on the expected size of other global visibility
data structures, notably the aspect graph.

11.1 Introduction
Visibility computations are central in computer graphics applications. Computing the limits of the umbra and

penumbra cast by an area light source, identifying the set ofblockers between any two polygons and determining
the view from a given point are examples of visibility queries that are essential for the realistic rendering of 3D
scenes. In global illumination algorithms, where the flow oflight in a scene is simulated according to the laws of
geometrical optics, visibility computations are excessively costly. In fact, more than half of the overall computation
time can routinely be spent on visibility queries in radiosity simulations [HSD94].

One approach to speeding up rendering is to store global visibility information in a data structure which can
then be efficiently queried. The visibility complex, a partition of the set of maximal free line segments, has been
proposed as a unified data structure encoding the visibilityinformation of a scene [PV96b] and has been used for
rendering purposes [DDP02]. Other related data structuresinclude Pellegrini’s ray-shooting structure [Pel93], the
aspect graph [PD90] and the visual hull [Lau94] ; see [Dur00]for a recent survey.

One problem with these types of data structures which may prevent their application in practice is their po-
tentially enormous size ; the size of the visibility complexof a set ofn triangles inR3 is Θ(n4) in the worst
case [DDP02], which is prohibitive even for scenes of relatively modest size. Worst-case examples are somew-
hat artificial and indeed Durand, Drettakis and Puech [DDP97] provide empirical evidence indicating that these
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Worst-case Expected

possibly occluded lines amongst unit balls Θ(n4) O(n
8
3 ) [DDP02]

free lines amongst unit balls Ω(n2) [⋆], O(n3+ε) [AAS99] Θ(n) [⋆]
free lines amongst disjoint homothetic polytopes Ω(n3) [dBEG98]

free segments amongst unit balls Ω(n2) [⋆], O(n4) Θ(n)[⋆]
free segments amongst arbitrary sized balls Ω(n3) [DR01], O(n4)

visibility complex of unit balls Ω(n2) [⋆], O(n4) Θ(n) [⋆]

TAB . 11.1 –Known bounds on the complexity of the set of lines, free linesor maximal free line segments
tangent to 4 amongstn objects. The expected complexities are calculated for the uniform distribution. The results
referenced by⋆ are established in this paper.

worst-case upper bounds are largely pessimistic in practical situations ; they observe a quadratic growth rate, albeit
for rather small scenes. In 2D, while the worst-case complexity of the visibility complex is quadratic, experimen-
tal results strongly suggest that the size of the visibilitycomplex of a scene consisting of scattered triangles is
linear [CF99].

Our goal is to provide theoretical evidence to support theseobservations. To this end we investigate theexpec-
ted sizeof the visibility complex, or equivalently, the expected number of visibility events, occurring in scenes in
R3. A visibility event is a combinatorial change in the view of amoving observer ; such an event occurs when the
viewing direction becomes tangent to some objects. For setsof convex objects in general position inR3, the vie-
wing direction can be tangent to at most four objects. Visibility events thus correspond to maximal non-occluded
line segments tangent to at most four objects ; combinatorially different visibility events correspond to the faces of
the visibility complex.

In this paper we prove that the expected number of maximal non-occluded line segments tangent to four balls,
amongstn uniformly distributed unit balls inR3, is linear. This improves the previously known upper bound of
O(n8/3) by Durand et al. who proved the more general result that the expected number of (possibly occluded) lines
tangent to four balls isO(n8/3) for the same model [DDP02]. The intuition behind our proof isthat, given a line
segment tangent to four balls, the probability that this segment is not occluded by any other ball is the probability
that a cylinder-like volume of radius 1 about the segment is free from the centers of the other balls. This probability
decays roughly exponentially fast with the length of the segment, yielding the result. Using our techniques we then
show a linear bound on the expected size of the visibility complex of n uniformly distributed unit balls inR3. A
simple computation then provides us with the same result forthe Poisson distribution.

Our results generalize in the following ways. We show that, for certain types of visibility events, the linear
bound also applies to balls of various but bounded radii, to polyhedral objects enclosed between two concentric
balls of fixed radius, and even to non-fat objects such as polygons, enclosed between two concentric circles of fixed
radius, whose centers and normals are uniformly distributed. For the remaining types of visibility events (namely
those occurring close to the boundary of the scene – see Section 11.7.3 for the details), we prove only anO(n2)
bound, which is still an improvement over the bound by Durandet al. [DDP02].

Of course objects in graphics scenes are seldom distributeduniformly or according to a Poisson point process.
We chose this model because it allows tractable proofs of theoretical results. This is important in a context where
there are few rigorous results either theoretical or experimental. The same model, albeit with significant simpli-
fying assumptions, has also been used to study the average complexity of ray shooting [SKHBS02, SKM98] and
occlusion culling for 2D urban scenes [NFLYCO99]. It is interesting to note that Szirmay-Kalos et al. [SKHBS02],
after establishing bounds on the average complexity of ray shooting in scenes consisting of unit balls distributed
according to a Poisson point process, tested their algorithms on a small number of realistic scenes. The results they
obtain are consistent with those predicted by the theoretical results thus providing some evidence that the model is
helpful. No other model has been widely accepted by the graphics community and, in fact, generating meaningful
random scenes usable for testing algorithms is a major problem. (Note that rather than attempting to generate ran-
dom scenes, an alternative approach, which has been used to study the average complexity of ray shooting, is to
fix the scene and randomly distribute the rays ; see, for example, [ABCC02].)

Previous results on this topic include those that bound the number of lines and the number of free (i.e., non-
occluded) lines amongst different sets of objects. They aresummarized in Table 11.1. Agarwal, Aronov and Sha-
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rir [AAS99] showed an upper bound ofO(n3+ε) on the complexity of the space of line transversals ofn balls
by studying the lower envelope of a set of functions. A study of the upper envelope of the same set of functions
yields the same upper bound on the number of free lines tangent to four balls [DR01]. Agarwal et al. [AAS99]
also showed a lower bound on the complexity of the space of line transversals ofn balls ofΩ(n3) for arbitrarily
sized balls andΩ(n2) for unit sized balls. De Berg, Everett and Guibas [dBEG98] showed aΩ(n3) lower bound on
the number of free lines (and thus free segments) tangent to four amongstn disjoint homothetic convex polyhedra.
Recently, Devillers and Ramos [DR01] presented a simpleΩ(n3) lower bound on the number of free segments
tangent to 4 amongstn arbitrarily sized balls, which also holds for non-intersecting balls. We also present a simple
Ω(n2) lower bound on the number of free segments tangent to 4 amongst n unit balls.

In the next section we carefully define the problem and state our main results. In Section 11.3 and Section 11.4
we prove the expected upper and lower linear bounds on the number of free segments tangent to four balls. In
Section 11.5 we extend this result to the visibility complex. We present in Section 11.6 aΩ(n2) worst-case lower
bound. In Section 11.7 we discuss extensions of our results to some other models. We conclude in Section 11.8.

11.2 Our model and results
We first describe our objects and their distribution. Letn ∈ N andµ be a positive constant. A sample scene

consists ofn unit radius ballsB1, . . . ,Bn whose centersp1, . . . , pn are independently chosen from the uniform
distribution over a universal ballU of radiusRcentered atO. Since we distribute the centerspi overU, the ballsBi

may intersect each other and are contained in the ball, denotedU+, whose radius isR+1 and whose center is that
of U.

We define the radiusRof the universal ballU to be a function ofn satisfying

R3 = n/µ. (11.1)

The constantµ reflects the density of the balls in the sense that the expected number of centers lying in any given
solid of volumeV in the universe is3

4π µV. (The model is interesting only ifn is asymptotically proportional to
R3. Indeed, if n

R3 tends to infinity whenn tends to infinity, then the universe gets entirely filled up with balls and
visibility events only occur inU+ \U. Conversely, if n

R3 tends to zero whenn tends to infinity, then the balls get
scattered so far apart that the probability that any four (orthree) balls have a common tangent goes to zero.)

We now define thevisibility complexof a set of objects [PV96b]. Afree or non-occludedsegment is a line
segment that does not intersect the interior of any object. Afree segment is maximal if it is not properly contained
in another one. Thus, the endpoints of a maximal free segmentare either on an object or at infinity. We say that two
maximal free segments are similar if their endpoints lie on the same objects (possibly at infinity). The visibility
complex of a collection of objects is roughly defined as the partition of the space of maximal free segments into
connected components of similar segments19. Its faces have dimension between 0 and 4 ; when the objects are in
adequate general position, ak-dimensional face corresponds to a connected set of similarmaximal non-occluded
line segments tangent to 4−k objects.

In order to bound the total number of faces of the visibility complex, we first bound the number of 0-faces.
To do this, we count theT4-segments, which are the free segments tangent to 4 balls with endpoints on two of
those balls. Since there is a one-to-one correspondence between 0-faces andT4-segments when the objects are in
adequate general position, this yields a bound on the expected number of vertices of the visibility complex. Note
that since the balls are contained inU+, theT4-segments are also contained inU+.

Our main result is the following.

Theorem 11.1. The expected number of T4-segments amongst n uniformly distributed unit balls isΘ(n).

We extend this result to the higher dimensional faces of the complex.

Theorem 11.2. The expected size of the visibility complex of n uniformly distributed unit balls isΘ(n).

19Formally, we consider the space of free segments quotientedby the equivalence relation that is the transitive
and reflexive closure of the inclusion. In other words, two free segments are identified if they are both contained in
the same maximal free segment. This allows the cells of the partition to be connected.
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We also present anΩ(n2) worst-case lower bound on the number ofT4-segments amongstn unit balls inIR3

(see Proposition 11.27). In fact the lower bound holds for the number ofk-faces of the visibility complex, for allk
between 0 and 4.

11.3 The expected number ofT4-segments is at most linear
The general idea behind the proof of the upper bound of Theorem 11.1 is the following. For any ordered choice

of four balls, we bound from above the probability that a lineis tangent to these balls in the given order and is not
occluded in between its contact points with the balls. Then we sum these probabilities over all ordered quadruples
of balls and all potential tangent lines to these balls.

For any two pointsp andq, and positive real numberα, letH(p,q,α) denote the union of all the balls of radius
α centered on the line segmentpq (see Figure 11.1). We first show that a line is tangent to four ballsBi , B j , Bk and
Bl in that order only ifp j andpk are inH (pi , pl ,2). Thus the volume ofH (pi , pl ,2)∩U gives an upper bound on
the probability that a line tangent to the four balls, in the given order, exists.

We next show that a segment tangent to four ballsBi , B j , Bk andBl in that order, at pointsti , t j , tk and tl ,
respectively, is not occluded if and only if the centers of all remaining balls are outside or on the boundary of
H (ti , tl ,1). The volume ofU \H (ti , tl ,1) gives an upper bound on the probability that the tangent segment is not
occluded. Thus, to get an upper bound on that probability, weneed a lower bound on the volume ofH (ti , tl ,1)∩U.

To bound the probability that aT4-segment exists, we integrate over the distance betweenpi andpl , and over
the distance frompi to the boundary of the universeU. This integral is split into three parts covering the cases
where

(i) Bi andBl are close to one another,

(ii) at least one ofBi andBl is entirely inside the universe,

(iii) Bi andBl are not close to one another and both are partially outside the universe.
In each case we over-estimate the volume ofH (pi , pl ,2)∩U and under-estimate the volume ofH (ti , tl ,1) ∩ U. We
apply the same general proof technique in each of the three cases. While Case (ii) illustrates the main idea behind
the proof (Case (i) being a simplified version), extending this idea to Case (iii) is technically challenging because
of the difficulties caused by the boundary of the universe.

11.3.1 Definitions
LetN be the set of ordered 4-tuples(i, j,k, l) chosen from{1,2, . . . ,n} such thati, j,k, l are pairwise distinct. In

our model, the probability that four centers are collinear is zero, so we may assume that any set of four balls admits
at most 12 real common tangent lines [DMPT01,MPT01]. Moreover, the real common tangent lines correspond to
the real solutions of a degree 12 system of equations. For anyset of four balls we order arbitrarily the 12 solutions
of the associated system.

Given four ballsBi , B j , Bk andBl , we denote byLω
i, j,k,l , for ω in {1, . . . ,12}, the event that theωth solution of

the system is real, that the corresponding real tangent lineis tangent to the four ballsBi , B j , Bk andBl in that order,
and thatpi is not closer thanpl to the boundary ofU. WheneverLω

i, j,k,l occurs, we denote the points of tangency of
that line onBi , B j , Bk, Bl by ti , t j , tk, tl , respectively. Letδω

i, j,k,l be the event thatLω
i, j,k,l occurs and the line segment

titl is not occluded. Notice that ifδω
i, j,k,l occurs, the ballsBi ,B j ,Bk,Bl define aT4-segment, and that aT4-segment

corresponds to a uniqueδω
i, j,k,l .

Let xi,l be the random variable representing the distance frompi to pl , andyi (resp.yl ) be the random variable
denoting the distance frompi (resp.pl ) to the boundary of the universe.

In the sequel, a random pointp denotes a point chosen from the uniform distribution overU.

11.3.2 The Proof
There is a one-to-one correspondence between theT4-segments and the eventsδω

i, j,k,l that occur. We thus have
the following straightforward lemma.
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FIG. 11.1 –H (pi , pl ,2) andH (ti , tl ,1) are shown shaded.

Lemma 11.3. The expected number of T4-segments amongst n uniformly distributed unit balls is

∑
(i, j,k,l)∈N

12

∑
ω=1

Pr(δω
i, j,k,l ).

We bound the probability Pr(δω
i, j,k,l ) by integrating over the distancex betweenpi andpl , and over the distance

y from pi to the boundary of the universeU. The integral is split into three parts covering the cases where (i) the
ballsBi andBl are close to one another, (ii)pi is at distance at least 1 from the boundary ofU, and (iii) the balls
Bi andBl are not close to one another andpi is at distance less than 1 from the boundary ofU. Note that in the
last case, ifδω

i, j,k,l occurs, then both ball centerspi andpl are within distance 1 from the boundary ofU. Two balls
are considered close to one another if their centers are closer than some sufficiently large constant ; for technical
reasons which are embedded in the proof of Proposition 11.29, we actually definecloseto mean distance at most 6.

Lemma 11.4. Pr(δω
i, j,k,l ) 6 Ix66 + Iy>1 + Ix>6,y<1, where

Ix≤6 =
Z 6

x=0
Pr(δω

i, j,k,l | xi,l = x) ·Pr(x 6 xi,l < x+dx),

Iy≥1 =
Z 2R

x=0
Pr(δω

i, j,k,l | xi,l = x, yi ≥ 1) ·Pr(x 6 xi,l < x+dx | yi ≥ 1),

Ix>6,y<1 =
Z 2R

x=6

Z 1

y=0
Pr(δω

i, j,k,l | xi,l = x, yi = y, yl 6 yi)

·Pr((x 6 xi,l < x+dx)∩ (yl 6 yi) | yi = y)

·Pr(y 6 yi < y+dy).

Proof. By the Total Probability Theorem (see [Pap91]),

Pr(δω
i, j,k,l ) =

Z 2R

x=0
Pr(δω

i, j,k,l | xi,l = x) ·Pr(x 6 xi,l < x+dx).
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The integral can be split atx = 6, giving Ix≤6. Then applying the Total Probability Theorem on what remains, we
get

Z 2R

x=6

Z R

y=0
Pr(δω

i, j,k,l | xi,l = x, yi = y) ·Pr((x 6 xi,l < x+dx) | yi = y) (11.2)

·Pr(y 6 yi < y+dy)

which can be split aty = 1. The part corresponding toy between 1 andR is equal to
Z 2R

x=6

Z R

y=1
Pr(δω

i, j,k,l | xi,l = x, yi = y, yi ≥ 1)

·Pr((x 6 xi,l < x+dx) | yi = y, yi ≥ 1) ·Pr(y 6 yi < y+dy)

6

Z 2R

x=6

Z R

y=0
Pr(δω

i, j,k,l ∩ (x 6 xi,l < x+dx) | yi = y, yi ≥ 1) ·Pr(y 6 yi < y+dy).

Applying the Total Probability Theorem again, we get
Z 2R

x=6
Pr(δω

i, j,k,l ∩ (x 6 xi,l < x+dx) | yi ≥ 1)

which is less thanIy≥1. Consider now the part of (11.2) fory between 0 and 1. Ifyl > yi thenδω
i, j,k,l does not occur

(by definition ofLω
i, j,k,l ), thus we have

Pr(δω
i, j,k,l | xi,l = x, yi = y) ·Pr((x 6 xi,l < x+dx) | yi = y)

= Pr(δω
i, j,k,l ∩ (x 6 xi,l < x+dx) | yi = y)

= Pr(δω
i, j,k,l ∩ (x 6 xi,l < x+dx)∩ (yl 6 yi) | yi = y)

= Pr(δω
i, j,k,l | xi,l = x, yi = y, yl 6 yi)

·Pr((x 6 xi,l < x+dx)∩ (yl 6 yi) | yi = y).

Thus, the part of (11.2) fory between 0 and 1 is equal toIx>6,y<1. 2

Let Ξ denote any of the following events : (xi,l = x), (xi,l = x, yi > 1), (xi,l = x, yi = y, yl 6 yi). The next three
lemmas are used to bound Pr(δω

i, j,k,l | Ξ) appearing in the three integralsIx≤6, Iy≥1 andIx>6,y<1.

Lemma 11.5. If a line is tangent to four balls Bi ,B j ,Bk,Bl in that order at ti , t j , tk, tl , respectively, then pj , pk ∈
H (pi , pl ,2). Also, the segment titl is not occluded if and only if the interior ofH (ti , tl ,1) does not contain the
center of any other ball.

Proof. Segmenttitl is contained inH (pi , pl ,1). Sincet j and tk belong to that segment,t j and tk are also in
H (pi , pl ,1). Thusp j , pk are both inH (pi , pl ,2). See Figure 11.1 (a).

The segmenttitl is occluded if and only if some ballBγ, γ 6= i, j,k, l , properly intersects it, that is the center of
Bγ lies in the interior ofH (ti , tl ,1). See Figure 11.1 (b). 2

Lemma 11.6. Pr(p∈ H(pi , pl ,2) | Ξ) 6
(3x+8)

R3 .

Proof.

Pr(p∈ H(pi , pl ,2) | Ξ) =
Volume ofH(pi , pl ,2)∩U

Volume ofU
|Ξ 6

Volume ofH(pi , pl ,2)

Volume ofU
|Ξ .

WhenΞ occurs,xi,l = x and the volumes ofH (pi , pl ,2) andU are 4π
3 (3x+8) and 4π

3 R3, respectively. Thus

Pr(p∈ H(pi , pl ,2) | Ξ) 6
3x+8

R3 .

2
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Lemma 11.7. Pr(δω
i, j,k,l | Ξ) 6

(3x+8)2

R6 ·Pr(p 6∈ H(ti , tl ,1) | Lω
i, j,k,l , Ξ)n−4.

Proof. If δω
i, j,k,l occurs, thenLω

i, j,k,l necessarily occurs, thus

Pr(δω
i, j,k,l | Ξ) = Pr(δω

i, j,k,l ∩L
ω
i, j,k,l | Ξ) = Pr(Lω

i, j,k,l | Ξ) ·Pr(δω
i, j,k,l | Lω

i, j,k,l , Ξ).

By Lemma 11.5, Pr(Lω
i, j,k,l | Ξ) is bounded by the probability thatp j and pk belong toH(pi , pl ,2) given Ξ, and

Pr(δω
i, j,k,l |Lω

i, j,k,l ) is equal to the probability that for allγ 6= i, j,k, l , point pγ is outsideH(ti , tl ,1) givenΞ. Since all
the points are independently and identically drawn from theuniform distribution overU, Lemma 11.6 yields the
result. 2

We consider the three integralsIx≤6, Iy≥1 and Ix>6,y<1 in the following subsections, and prove that each is

bounded byO
(

1
n3

)

. This will complete the proof of the upper bound of Theorem 11.1 since, by Lemmas 11.3

and 11.4, the expected number ofT4-segments is less than 12
(n

4

)

(Ix≤6 + Iy≥1 + Ix>6,y<1).

Bi and Bl are close to one another

We prove here thatIx≤6 is O
(

1
n3

)

. WhenBi andBl are close to one another, the probability that there exist

two other balls,B j andBk, defining a line tangent toBi ,B j ,Bk,Bl in that order, is small enough that we do not need
to consider occlusions in order to get the bound we want.

We first bound the term Pr(x≤ xi,l < x+dx) appearing in the integralIx≤6.

Lemma 11.8. Pr(x≤ xi,l < x+dx) 6
3x2

R3 dx.

Proof. When pi is given, pl must belong to a spherical shell between two spheres of center pi and radiix and
x+dx. The probability Pr(x≤ xi,l < x+dx), if pi is known, is exactly the volume of the part of the spherical shell
insideU divided by the volume ofU. The volume of the part of the spherical shell insideU is bounded from above
by the volume of the spherical shell which is 4πx2dx. Since the volume ofU is 4

3πR3 we get the claimed bound.
(The exact value of Pr(x≤ xi,l < x+dx) is actually given in [Mat99, San76] but the above approximate bound is
enough for our purposes.) 2

Proposition 11.9. Ix≤6 is O

(

1
n3

)

.

Proof. Recall that (see Lemma 11.4)

Ix≤6 =

Z 6

x=0
Pr(δω

i, j,k,l | xi,l = x) ·Pr(x 6 xi,l < x+dx).

By Lemma 11.7,

Pr(δω
i, j,k,l | xi,l = x) 6

(3x+8)2

R6 ·Pr(p 6∈ H(ti , tl ,1) | xi,l = x, L
ω
i, j,k,l )

n−4

6
(3x+8)2

R6 .

It thus follows from Lemma 11.8 that

Ix≤6 6

Z 6

x=0

(3x+8)2

R6 · 3x2

R3 dx=
µ3

n3

Z 6

x=0
3x2(3x+8)2dx= O

(

1
n3

)

.

2
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Bi is entirely insideU

For the integralIy≥1, occlusions must be taken into account. To this aim, we boundfrom below the volume of
H(ti , tl ,1)∩U in the following lemma.

Lemma 11.10. WhenLω
i, j,k,l occurs andyi > 1, the volume ofH(ti , tl ,1)∩U is greater thanπ

12xi,l .

Proof. Let K be the ball having diameterpiti . Note thatK andpl are both contained inU and inH(ti , tl ,1). The
convex hull ofpl andK is thus contained inH(ti , tl ,1)∩U, and its volume is larger than half the volume of the
ball K, π

12, plus the volume of a cone of apexpl , of base a disk whose boundary is a great circle ofK, and of height
greater thanxi,l −1. The volume of that cone is at least1

3
π
22 (xi,l −1) = π

12xi,l − π
12. 2

We now bound the probability that a tangent line segmenttitl is not occluded by any of the othern−4 balls,
given that the line segmenttitl exists and the ballBi is entirely contained inU.

Lemma 11.11. Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi ≥ 1, L
ω
i, j,k,l

)n−4
< 55exp

(

−µx
16

)

.

Proof. First notice that

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi ≥ 1, L
ω
i, j,k,l

)

= 1− Volume ofH (ti , tl ,1)∩U

Volume ofU
|xi,l =x, yi≥1, L

ω
i, j,k,l

.

By Lemma 11.10, the volume ofH (ti , tl ,1)∩U is bounded from below byπ12 x. Since the volume ofU is 4
3πR3,

we get

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x,yi ≥ 1, L
ω
i, j,k,l

)n−4
<
(

1− x
16R3

)n−4
.

For any 06 t 6 1, we have(1− t) 6 e−t thus

(1− t)n−4 6 e−t(n−4) = e−tne4t 6 e4e−tn < 55e−tn.

Now 06 x 6 2R andR> 1 sinceBi is entirely insideU. Thus 06 x
16R3 6 1

8R2 6 1 and

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi ≥ 1, L
ω
i, j,k,l

)n−4
< 55exp

(

− nx
16R3

)

= 55exp
(

−µx
16

)

.

2

The following proposition now bounds the integralIy≥1.

Proposition 11.12. Iy≥1 is O

(

1
n3

)

.

Proof. Recall that

Iy≥1 =
Z 2R

x=0
Pr(δω

i, j,k,l | xi,l = x, yi ≥ 1) ·Pr(x 6 xi,l < x+dx | yi ≥ 1).

By Lemmas 11.7 and 11.11 we have

Pr(δω
i, j,k,l | xi,l = x, yi ≥ 1) 6

(3x+8)2

R6 ·55exp
(

−µx
16

)

.

Similarly as in Lemma 11.8 we have

Pr(x≤ xi,l < x+dx | yi ≥ 1) 6
3x2

R3 dx.
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Thus we get

Iy≥1 6

Z 2R

x=0

(3x+8)2

R6 ·55exp
(

−µx
16

)

· 3x2

R3 dx

6
µ3

n3

Z +∞

x=0
3x2(3x+8)2 ·55exp

(

−µx
16

)

dx.

Changingµx
16 by z we get integrals of the kind

Z ∞

0
zr exp(−z)dz

which is bounded by a constant and thusIy≥1 is O
(

1
n3

)

. 2

Bi and Bl are not close to one another and Bi is partially outside U

The only remaining task is to bound the integralIx>6,y<1. As in the previous case, we need to bound from
below the volume ofH(ti , tl ,1)∩U. Here, however, the tangenttitl can be entirely outsideU, so the bound of
Lemma 11.10 does not apply and a more intricate proof is needed. We need to distinguish two cases depending on
the distance of segmenttitl from O, the center ofU.

To this aim, we introduce two new types of events. For anys∈ IR, let Fω
i, j,k,l (s) (resp.Nω

i, j,k,l (s)) be the event
thatLω

i, j,k,l occurs and the line segmenttitl is at distance greater (resp. less) thanR+1−s from O. For reasons that

will become clear in the proof of Lemma 11.15, we considers= y
2
3 .

The next five lemmas are used to bound the first term of the integral Ix>6,y<1.

Lemma 11.13. For any random point p inU, Pr(δω
i, j,k,l | xi,l = x, yi = y, yl 6 yi) is equal to

Pr
(

F
ω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi

)

·Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , F
ω
i, j,k,l (y

2
3 )
)n−4

+Pr
(

N
ω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi

)

·Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , N
ω
i, j,k,l (y

2
3 )
)n−4

.

Proof. δω
i, j,k,l impliesLω

i, j,k,l which can be split intoFω
i, j,k,l (y

2
3 ), Nω

i, j,k,l (y
2
3 ), and the event thatLω

i, j,k,l occurs and

the line segmenttitl is at distance exactlyR+1−y
2
3 from O. This later event occurs with probability 0, thus

Pr(δω
i, j,k,l | xi,l = x, yi = y, yl 6 yi) =

Pr(δω
i, j,k,l ∩F

ω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi)

+Pr(δω
i, j,k,l ∩N

ω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi),

which can be expanded into

Pr(Fω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi)

·Pr(δω
i, j,k,l | xi,l = x, yi = y, yl 6 yi , F

ω
i, j,k,l (y

2
3 ))

+Pr(Nω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi)

·Pr(δω
i, j,k,l | xi,l = x, yi = y, yl 6 yi , N

ω
i, j,k,l (y

2
3 )).

WhenFω
i, j,k,l (y

2
3 ) occurs, the probability

Pr(δω
i, j,k,l | xi,l = x, yi = y, yl 6 yi , F

ω
i, j,k,l (y

2
3 ))
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is the probability that the tangent is not occluded, that is,pγ does not belong toH(ti , tl ,1) for all then−4 values

of γ 6= i, j,k, l . The same argument holds forNω
i, j,k,l (y

2
3 ). Since thepγ are independent, we get the result. 2

In order to bound the two terms in Lemma 11.13,

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , F
ω
i, j,k,l (y

2
3 )
)n−4

and

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , N
ω
i, j,k,l (y

2
3 )
)n−4

,

we need to bound the volume ofH(ti , tl ,1)∩U from below.

Lemma 11.14. Whenxi,l > 6, yl 6 yi 6 1, Lω
i, j,k,l occurs and segment titl is at distance less than R+ 1− s,

0 6 s6 1, from the center ofU, then the volume ofH(ti , tl ,1)∩U is larger than 1
6
√

2
(xi,l −5)s

√
s.

Proof. We give here the idea of the proof ; full details can be found inAppendix A. Lett be the closest point on
segmenttitl from O, andD be a unit radius disk centered att in a plane containingO, the center ofU. We define
a quadrilateral with verticesa,b,a′,b′ such thata anda′ are the closest and the farthest points, respectively, in
D∩U from O, andb andb′ are the points of intersection of∂D and the perpendicular bisector of segmentaa′ (see
Figure 11.2). Letv be equal toR+1 minus the distance fromO to segmenttitl . We prove that the convex hull of
a,b,a′,b′ and pl , which is included inH(ti , tl ,1)∩U, has volume greater than1

6
√

2
(xi,l − 5) min(2

√
2,v

√
v). It

follows that, for any 06 s6 1, if segmenttitl is at distance less thanR+1−s from O, thenv > s and the volume
of H(ti , tl ,1)∩U is greater than 1

6
√

2
(xi,l −5)s

√
s. 2

∂U

t

b b′

a

D

a′

O

v

R+1−v

R

R−v

FIG. 11.2 – For the sketch of the proof of Lemma 11.14 (v∈ (0,1)).

Lemma 11.15. For any random point p inU, x> 6 and0 6 y 6 1,

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , F
ω
i, j,k,l (y

2
3 )
)n−4

< 55exp

(

−µ(x−5)y2

8
√

2π

)

and

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , N
ω
i, j,k,l (y

2
3 )
)n−4

< 55exp

(

−µ(x−5)y

8
√

2π

)

.
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Furthermore, if x> 6
√

R then

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , N
ω
i, j,k,l (y

2
3 )
)n−4

< 55exp

(

−µ(x−5)

8
√

2π

)

.

Proof. Let xi,l = x, yi = y and suppose first that eventFω
i, j,k,l (y

2
3 ) occurs. Sincepi is at distanceR−y from O, the

segmenttitl is at distance less thanR+1−y from O, and thus, by Lemma 11.14, the volume ofH (ti , tl ,1)∩U is
greater than 1

6
√

2
(x−5)y

√
y, which is bigger than 1

6
√

2
(x−5)y2 since 06 y6 1 (we boundy

√
y from below byy2

only so that we can actually compute the integralI1 in the proof of Proposition 11.20). We now follow the proof
of Lemma 11.11, except that the volume ofH (ti , tl ,1)∩U is now bounded from below by1

6
√

2
(x−5)y2 instead of

π
12 x. We get

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , F
ω
i, j,k,l (y

2
3 )
)n−4

< 55exp

(

−µ(x−5)y2

8
√

2π

)

.

WhenNω
i, j,k,l (y

2
3 ) occurs, the segmenttitl is at distance less thanR+1−y

2
3 from O, and thus, by Lemma 11.14,

the volume ofH (ti , tl ,1)∩U is bounded from below by1
6
√

2
(x−5)y

2
3

√

y
2
3 = 1

6
√

2
(x−5)y. Then, as before, we

get

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , N
ω
i, j,k,l (y

2
3 )
)n−4

< 55exp

(

−µ(x−5)y

8
√

2π

)

.

Now, if x> 6
√

R, the length of the tangenttitl is at least 6
√

R−2. Sincex> 6,R> 3 and a simple computation
shows that 6

√
R−2 is bigger than 2

√
2R+1 which is the length of the longest line segment that may entirely lie

insideU+ \U. Thusdist(O, titl ) 6 R= R+1−swith s= 1 and, by Lemma 11.14, the volume ofH(ti , tl ,1)∩U is
greater than 1

6
√

2
(x−5). Then, as before, we get

Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , N
ω
i, j,k,l (y

2
3 )
)n−4

< 55exp

(

−µ(x−5)

8
√

2π

)

.

2

Lemma 11.16. Pr(Nω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi) 6

(3x+8)2

R6 .

Proof. The eventNω
i, j,k,l (y

2
3 ) occurs only ifLω

i, j,k,l occurs. The result thus follows since, by Lemmas 11.5 and 11.6,

Pr(Lω
i, j,k,l | xi,l = x, yi = y, yl 6 yi) 6

(3x+8)2

R6 . 2

Lemma 11.17. If y < 1, then

Pr
(

F
ω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y

)

6 81π2 (x+6)2y2

R6 .
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3

R

R−y

K

FIG. 11.3 –For the sketch of the proof of Lemma 11.17.

Proof. A “far” tangent titl is at distance at leastR+ 1− y
2
3 from the centerO of U. Such a segment also lies in

H(pi , pl ,1). Let E be the part ofH(pi , pl ,1) lying outside of the sphere of radiusR+ 1− y
2
3 and centerO. See

Figure 11.3 (a). Now, bothp j and pk must be in the region insideU and within distance 1 fromE. Denote this
region byK. Then

Pr
(

F
ω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi

)

6

(

Volume ofK
Volume ofU

)2

.

By Proposition 11.32, which we prove in Appendix B, the volume of K is bounded from above by 12π2 (x+
6)y, which yields the result. Here we give the intuition of the proof. Refer to Figure 11.3. First notice that the “leng-

th” of K is at mostx+4. SinceK is enclosed in between a sphere of radiusRand one of radiusR−y
2
3 , its “height”

is at mosty
2
3 . For the “width”, consider Figure 11.3 (b) which shows a cross-section ofK taken with a plane

throughO and perpendicular topi pl . The “width” of K is no more than 2 times the “width” ofE. The “height” of

E can be bounded by some constant timesy
2
3 ; thus its “width” can be bounded by some constant times

√

y
2
3 = y

1
3 .

Thus, intuitively, the volume ofK is smaller than(x+4)y
2
3 y

1
3 = (x+4)y, up to a constant, and the result follows.2

We now bound the two last terms of the integralIx>6,y<1.

Lemma 11.18. Pr(y 6 yi < y+dy) 6
3dy
R

.

Proof. The event(y6 yi < y+dy) occurs only ifpi lies in the spherical shell delimited by the two spheres centered
at O of radii R−y andR−y−dy whose volume is smaller than 4πR2dy. Dividing by the volume ofU proves the
result. 2

Lemma 11.19. For 6 6 x 6 2R and y6 1, we have

Pr((x≤ xi,l < x+dx)∩ (yl 6 yi) | yi = y) 6
6xydx

R3 .

Proof. The probability Pr((x≤ xi,l < x+dx)∩ (yl 6 yi) | yi = y) is equal to the volume of the region (shown in
grey in Figure 11.4) which is the intersection of the region in between the two spheres centered atpi and of radiix
andx+dx, and the region in between the two spheres centered atO and of radiiRandR−y, divided by the volume
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of U. We prove in Proposition 11.37 in Appendix C that the volume of that region is at most 8πxydx. Roughly
speaking, the volume bounded by the four spheres is at most 8πxydxbecause, its “thickness” isdx, its “height” is
y and its “radius” isx. Dividing by the volume ofU proves the result. 2

R

y

x

x+dx

pi

O

FIG. 11.4 – For the proof of Lemma 11.19.

We can now bound the integralIx>6,y<1 of Lemma 11.4.

Proposition 11.20. Ix>6,y<1 is O

(

1
n3

)

.

Proof. Recall that

Ix>6,y<1 =
Z 2R

x=6

Z 1

y=0
Pr(δω

i, j,k,l | xi,l = x, yi = y, yl 6 yi)

·Pr((x 6 xi,l < x+dx)∩ (yl 6 yi) | yi = y)

·Pr(y 6 yi < y+dy).

By Lemmas 11.18 and 11.19, we get

Ix>6,y<1 6

Z 2R

x=6

Z 1

y=0
Pr(δω

i, j,k,l | xi,l = x, yi = y, yl 6 yi) ·
6xydx

R3 · 3dy
R

.

By Lemma 11.13, Pr(δω
i, j,k,l | xi,l = x, yi = y, yl 6 yi) is equal to

Pr
(

F
ω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi

)

·Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , F
ω
i, j,k,l (y

2
3 )
)n−4

+Pr
(

N
ω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi

)

·Pr
(

p 6∈ H(ti , tl ,1) | xi,l = x, yi = y, yl 6 yi , N
ω
i, j,k,l (y

2
3 )
)n−4

.

We split the integral atx = 6
√

R. Whenx > 6
√

R, the distance fromO to the tangenttitl is less thanR (see the
proof of Lemma 11.15), which is less thanR+1−y

2
3 for anyy in (0,1). Thus, for anyx > 6

√
Randy∈ (0,1), the

probability Pr
(

Fω
i, j,k,l (y

2
3 ) | xi,l = x, yi = y, yl 6 yi

)

is equal to 0. It then follows from Lemmas 11.15, 11.16 and
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11.17 thatIx>6,y<1 6 I1 + I2 + I3 with

I1 =
Z 6

√
R

x=6

Z 1

y=0
81π2 (x+6)2y2

R6 ·55exp

(

−µ(x−5)y2

8
√

2π

)

· 6xydx
R3 · 3dy

R
,

I2 =
Z 6

√
R

x=6

Z 1

y=0

(3x+8)2

R6 ·55exp

(

−µ(x−5)y

8
√

2π

)

· 6xydx
R3 · 3dy

R
,

I3 =
Z 2R

x=6
√

R

Z 1

y=0

(3x+8)2

R6 ·55exp

(

−µ(x−5)

8
√

2π

)

· 6xydx
R3 · 3dy

R
.

Changingµ(x−5)

8
√

2π
by z in the three integrals andy2 by y′ in I1, we get

I1 6
K

R10

u=3

∑
u=0

Z c
√

R

z=0

Z 1

y′=0
zuy′ exp(−zy′)dzdy′,

I2 6
K

R10

u=3

∑
u=0

Z c
√

R

z=0

Z 1

y=0
zuy exp(−zy)dzdy,

I3 6
K

R10

u=3

∑
u=0

Z ∞

z=0

Z 1

y=0
zuy exp(−z)dzdy,

whereK andc are some positive constants.
Note first thatI3 is bounded from above byK

R10 ∑u=3
u=0

R ∞
z=0zu exp(−z)dz. These integrals are bounded by a

constant, thusI3 is O
(

1
R10

)

.

To bound the integralsI1 andI2, we now compute the integral

Z A

z=0

Z 1

y=0
zuy exp(−zy)dzdy (11.3)

for u∈ {0, . . . ,3} andA > 0, for example with Maple [Map]. Foru = 0 it is equal to

exp(−A)+A−1
A

. (11.4)

For u = 1, the integral (11.3) is equal to

exp(−A)+ lnA+Ei(1,A)+ γ−1 (11.5)

whereEi(1,A) denotes the exponential integral
R ∞

t=1
exp(−At)

t dt andγ denotes Euler’s constant. Finally, foru = 2
or 3, the integral (11.3) is equal to

exp(−A)P1(A,u−1)+P2(A,u−1) (11.6)

wherePi(A,u−1) denotes a polynomial of degreeu−1 in A.
WhenA tends to∞, (11.4) tends to 1, (11.5) is equivalent to lnA (sinceEi(1,A) tends to 0) and (11.6) is

equivalent to the leading monomial ofP2(A,u−1) which is of degreeu−1 6 2. This guarantees that forA = c
√

R

andu∈ {0, . . . ,3}, the integral (11.3) isO(R). It follows thatI1 andI2 areO
(

1
R9

)

.

SinceR3 = n/µ, we get thatIx>6,y<1 6 I1 + I2 + I3 = O
(

1
R9

)

= O
(

1
n3

)

. 2

We can now conclude the proof that the expected number ofT4-segments isO(n), because, by Lemmas 11.3,
11.4, and Propositions 11.9, 11.12, and 11.20, the expectednumber ofT4-segments is smaller than

∑
(i, j,k,l)∈N

12

∑
ω=1

(

O

(

1
n3

)

+O

(

1
n3

)

+O

(

1
n3

))

= O(n) .
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11.4 The expected number ofT4-segments is at least linear
In this section, we prove that the expected number ofT4-segments amongstn uniformly distributed unit balls

is Ω(n). To do this, we bound from below the probability that four given balls have a givenT4-segment. The key
step is to give a condition on the relative positions of four unit balls that guarantees that they have exactly twelve
common tangent lines. We use here the notation as defined in Section 11.3.1.

Lemma 11.21. Let e be a real number satisfying4
√

2
3 < e< 2 and let the radius R ofU be strictly greater than e.

There exists anε > 0 such that for any point p∈U, there exist three ballsΓ1(p), Γ2(p), Γ3(p) of radiusε contained
in U and satisfying the following conditions :

– p and the centers of theΓi(p) form a regular tetrahedron with edges of length e, and

– for any triple of points(p1, p2, p3), pi taken fromΓi(p), the four unit balls centered at p, p1, p2 and p3

have exactly12distinct tangent lines.

Proof. Macdonald, Pach and Theobald proved [MPT01, Lemma 3] that 4 unit balls centered on the vertices of
a regular tetrahedron with edges of lengthe, 4

√
2

3 < e < 2, have exactly 12 distinct real common tangent lines.
Moreover, these 12 tangent lines correspond to the 12 real roots of a system of equations of degree 12, thus each
tangent line corresponds to asimpleroot of that system of equations. It thus follows that for anysufficiently small
perturbation of the 4 ball centers, the 4 perturbed balls still have 12 real common tangent lines. Letε > 0 be such
that the 4 ball centers can move distanceε in any direction while keeping 12 distinct common tangents.

Now, for any pointp∈ U, consider a regular tetrahedron with edge lengthehavingp as a vertex and such that
the other vertices are at distance at leastε from the boundary ofU ; for example, we can choose the other three
vertices on a plane perpendicular to the segmentOp. Let Γ1(p), Γ2(p), andΓ3(p) be the balls of radiusε centered
at the vertices, distinct fromp, of that tetrahedron. By the previous reasoning, for anyq∈ Γ1(p), r ∈ Γ2(p), and
s∈ Γ3(p), the four unit balls centered atp, q, r andshave exactly twelve tangents. 2

Now, by Lemma 11.3, the expected number ofT4-segments is

∑
(i, j,k,l)∈N

12

∑
ω=1

Pr(δω
i, j,k,l ).

Thus we only need to bound from below the probability that theeventδω
i, j,k,l occurs.

Lemma 11.22. Pr(δω
i, j,k,l ) is Ω

(

1
n3

)

.

Proof. Assume thatn > 8µ so that the radiusR= 3
√

n/µ of U is larger than 2 and letT(p) be the setΓ1(p)×
Γ2(p)×Γ3(p) whereΓi(p) andeare defined as in Lemma 11.21. First, note that

Pr(δω
i, j,k,l ) > Pr(δω

i, j,k,l ∩ (pi , p j , pk) ∈ T(pl ))

= Pr((pi , p j , pk) ∈ T(pl )) ·Pr(δω
i, j,k,l | (pi , p j , pk) ∈ T(pl )).

SinceΓ1(pl ), Γ2(pl ), andΓ3(pl ) are three balls of radiusε entirely contained inU, we have

Pr((pi , p j , pk) ∈ T(pl )) =

(

4
3πε3

4
3πR3

)3

=
µ3ε9

n3 .

By Lemmas 11.5 and 11.21, the event(δω
i, j,k,l | (pi , p j , pk)∈ T(pl )) occurs if and only if the interior ofH (ti , tl ,1)∩

U does not contain the center of any ball. Note that the volume of H (ti , tl ,1)∩U is at most the volume ofH (ti , tl ,1),
which is at most43π+π(2+e+2ε) since the length oftitl is at moste+2+2ε. It follows that

Pr(δω
i, j,k,l | (pi , p j , pk) ∈ T(pl )) >

(

1− π(4
3 +2+e+2ε)
Volume(U)

)n−4

.
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Sincee< 2, we get, after some elementary calculations, that

Pr(δω
i, j,k,l | (pi , p j , pk) ∈ T(pl )) ≥

(

1− (6+2ε)µ
n

)n−4

. (11.7)

We thus have

Pr(δω
i, j,k,l ) ≥

µ3ε9

n3

(

1− (6+2ε)µ
n

)n−4

.

Since
(

1− (6+2ε)µ
n

)n−4
tends toe−(6+2ε)µ whenn tends to infinity, we get

Pr(δω
i, j,k,l ) = Ω

(

1
n3

)

.

2

This completes the proof of the lower bound of Theorem 11.1 since the expected number ofT4-segments
amongstn uniformly distributed unit balls is, by Lemmas 11.3 and 11.22,

∑
(i, j,k,l)∈N

12

∑
ω=1

Pr(δω
i, j,k,l ) = ∑

(i, j,k,l)∈N

12

∑
ω=1

Ω
(

1
n3

)

= Ω(n).

11.5 The expected size of the visibility complex is linear
In this section we prove Theorem 11.2, that the expected sizeof the visibility complex of a set ofn uniformly

distributed unit balls is linear.
We say that the balls are in general position if anyk-dimensional face of the visibility complex is a connected

set of maximal free segments tangent to exactly 4− k balls. We can assume that the balls are in general position
since this occurs with probability 1. We give a bound on the expected number ofk-faces, fork = 0, . . . ,4.

Lemma 11.23. The expected number of0-faces isΘ(n).

Proof. A 0-face of the visibility complex is a maximal free line segment tangent to 4 balls. Each maximal free
line segment tangent to 4 balls contains aT4-segment and eachT4-segment is contained in one maximal free line
segment. Thus, by Theorem 11.1, the expected number of 0-faces is linear. 2

To deal with the faces of dimensionk > 1, we divide them into two classes. Ak-face isopenif it is incident
to at least one(k−1)-face, otherwise it isclosed. When the balls are in general position, the number ofk-faces
incident to a particular(k−1)-face is constant. In the proof of the following lemmas, any constant can be used.
However, for completeness, we will use the exact values, butwithout justifying them.

Lemma 11.24. The expected number of1-faces isΘ(n).

Proof. Note that a 0-face corresponds to a maximal free segment tangent to 4 balls and it is incident to those
1-faces corresponding to free segments tangent to 3 amongstthose 4 balls. So, a 0-face is incident to exactly six
1-faces, which implies that the number of open 1-faces is 6 times the number of 0-faces, and is thusΘ(n) by the
previous lemma.

Proving that the expected number of closed 1-faces isO(n) can be done in a way very similar to the proof of
the upper bound in Theorem 11.1. The difference is that we consider now only three balls and thus in all proofs,
we forget ballBk. We have to consider only

(n
3

)

triples of balls instead of
(n

4

)

quadruples, but we remove from the
integral the probability Pr(pk ∈H(pi , pl ,2)|xi,l = x) 6 3x+8

R3 . Since n
R3 = µ, this amounts to dividing the terms over

which we integrate byµ(3x+8) which does not change the general shape of the integrals (a polynomial multiplied
by an exponential) which are convergent. Notice thatBi , B j , Bl andω now define a set of segmentstitl , rather than
just a single segment. However, those segments define a closed 1-face only if none of them is occluded by one of
then−3 remaining balls. Any particular choice of a tangenttitl in the 1-face will give a relevant cylinderH(ti , tl ,1)
to use in the proofs. 2
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Lemma 11.25. The expected number of2-faces isΘ(n).

Proof. Since a 1-face has five incident 2-faces, the tight linear bound on the number of 1-faces gives a tight li-
near bound on the number of open 2-faces. The closed case is solved similarly to the proof of the upper bound
in Theorem 11.1. We now consider

(n
2

)

pairs of ballsBi ,Bl and we remove from the integrals the probability

Pr(p j , pk ∈ H(pi , pl ,2)|xi,l = x) 6

(

3x+8
R3

)2
which gives anO(n) bound on the number of closed 2-faces. 2

Lemma 11.26. The expected numbers of3-faces and4-faces areΘ(n).

Proof. A 3-face, corresponding to lines tangent to a ball, can only be closed ifn = 1. The number of open 3-faces
is linear by the fact that in general position a 2-face is incident to four 3-faces. The number of 4-faces is linear
since a 3-face is incident to three 4-faces. 2

11.6 Worst-case lower bound
We provide here aΩ(n2) lower bound on the number ofk-faces in the visibility complex. Recall that for the

case ofn arbitrarily sized balls, Devillers and Ramos [DR01] presented a simpleΩ(n3) lower bound on the number
of free segments tangent to 4 balls, which is also the number of vertices in the visibility complex. Their lower bound
(see Figure 11.5) consists of (i)n

3 balls such that the view from the origin consists ofn
3 disjoint disks centered on

a circle, (ii) n
3 balls such that the view from the origin consists ofn

3 disks whose boundaries are concentric circles
intersecting (in projection) all the disks of (i), and (iii)n

3 tiny balls centered around the origin such that from any
point on thesen

3 tiny balls the view of the balls in (i) and (ii) is topologically invariant. Note that finding aΩ(n3)
lower bound on the number of free segments tangent to 4 balls,amongstn balls of bounded radii, is to the best of
our knowledge, open.

FIG. 11.5 – Quadratic view from the origin [DR01].

Proposition 11.27. The number of k-faces in the visibility complex of n disjointunit balls in IR3 is Ω(n2) for all k
between0 and4.

Proof. We first observe that the size of the visibility complex ofn unit balls can trivially be quadratic by having
the balls sparsely distributed in the space such that any pair of balls defines a closed 2-face.

Getting a quadratic number of free lines tangent to four balls amongst a set ofn unit balls can be done by
taking ballsBi centered at(2i,0,0) for 1 6 i 6 n

2 and ballsB′
j centered at(2 j,10,0) for 1 6 j 6 n

2. Then, for
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any i and j, the line through the points(2i + 1,0,1) and(2 j + 1,10,1) is free and can be moved down so that it
comes into contact with the four ballsBi , Bi+1, B′

j andB′
j+1. This argument proves that the number ofk-faces, for

0 6 k 6 2, can be quadratic.
The free segment(2i,1,0)(2 j,9,0) belongs to the 4-face consisting of maximal free segments with endpoints

on Bi andB′
j . Thus there is a quadratic number of 4-faces. The bound also applies to 3-faces by considering lines

tangent toBi and stabbingB′
j .

In the above construction, the balls can be pushed together (they will intersect) so that they fit inside a sphe-
rical universe of radius3

√

n/µ without changing the result. Note also that the above construction can be slightly
perturbed to obtain the same result for a set ofn unit balls, disjoint or not, with no 4 centers coplanar. 2

11.7 Generalizations
In this section we provide several generalizations of our results.

11.7.1 Poisson distribution
Consider a set of unit balls whose centers are drawn by a 3-D Poisson point process of parameterµ in the

universeU. By a Poisson point process of parameter µ inU [GS92], we mean that we generateX random points
insideU so that

Pr(X = k) =
(µ·Volume(U))k ·exp(−µ·Volume(U))

k!
(11.8)

and for any disjoint subsetsM andM′ of U, the number of the points insideM and the number of points insideM′

are independent random variables. Note that Equation (11.8) yields that the expected number of points insideU is
µ·Volume(U) = 4π

3 n.
The following simple argument shows that our results extendto this distribution. LetX be the random variable

representing the number of centers of unit balls generated by a Poisson point process with parameterµ in U, and
let Y be the random variable representing the number ofT4-segments amongst those balls. The expected number
of T4-segments is

E(Y) =
∞

∑
k=0

E(Y|X = k) ·Pr(X = k).

Theorem 11.1 givesE(Y|X = k) = Θ(k) and

Pr(X = k) =
(4

3π n)k ·exp(−4
3π n)

k!
.

Thus

E(Y) = Θ
(

4
3π n exp(−4

3π n) ∑∞
k=1

(
4
3π n)k−1

(k−1)!

)

= Θ(n exp(−4
3π n) exp(4

3π n)) = Θ(n).

Therefore the expected number ofT4-segments amongstn balls whose centers are generated by a Poisson point
process with parameterµ in U is Θ(n). Similarly this bound extends to the expected size of the visibility complex.

We now investigate various models in which we change the shape of the universe or the nature of the objects.

11.7.2 Smooth convex universe
Our results can be generalized to the case where the universeis no longer a ball, but a homothet of a smooth

convex set with homothety factor proportional to3
√

n. This can be achieved by considering the radius of curvature
of the boundary of the universe, instead ofR, in the proofs of the lemmas dealing with tangents outside the universe.
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11.7.3 Other objects
Let rmin andrmax be two strictly positive real constants. In the following, we bound the expected number of

T4-segments amongst balls whose radii vary in the interval[rmin, rmax], amongst polyhedra each enclosed between
two concentric balls of radiirmin andrmax, and amongst polygons each enclosed between two concentriccircles of
radii rmin andrmax. The centers of the concentric balls or circles are called the centers of the polyhedra or polygons,
respectively. In each case aT4-segment is calledouter if the centers of the two extremal objects it is tangent to are
farther apart than 6rmaxand are both at distance less than 2rmax from the boundary ofU. Otherwise theT4-segment
is calledinner.

For these models, the proof of theΩ(n) lower bound on the expected number ofT4-segments (Section 11.4)
generalizes directly because, for the kind of objects we consider, there always exist placements of four of them
such that they admit at least one common tangent line with multiplicity one.

Balls of various radii

We have considered a model where all the balls have the same radius. If we allow the radii to vary in the
interval[rmin, rmax], then the proof of the linear upper bound on the expected number of innerT4-segments genera-
lizes almost immediately by considering the volumesH(pi , pl ,2rmax) andH(ti , tl , rmin) instead ofH(pi , pl ,2) and
H(ti , tl ,1).

Section 11.3.2 generalizes immediately to prove that the expected number ofT4-segments tangent to four balls
Bi , B j , Bk andBl in that order such thatpi andpl are closer to one another than 6rmax is O(n). The only difficult
task for extending Section 11.3.2 is the proof of the following analog of Lemma 11.10.

Lemma 11.28. Whenxi,l > 6rmax, yi > 2rmax andLω
i, j,k,l occurs, the volume ofH(ti , tl , rmin)∩U is greater than

π
24r2

min(xi,l −6rmax).

Proof. The proof is similar to the proof of Lemma 11.10. Refer to Figure 11.6. Letm be the midpoint of segment
titl andK be the sphere of diameterrmin centered on the pointc lying on segmentti pi at distance1

2rmin from ti . The
sphereK is entirely insideH(ti , tl , rmin)∩U, m lies in H(ti , tl , rmin) and a straightforward computation shows that
m is in U sinceti is in U at distance at leastrmax from its boundary andtl is at distance at mostrmax from U. Thus
H(ti , tl , rmin)∩U contains the convex hull ofK andm which contains the cone of apexm, of base a disk whose
boundary is a great circle ofK, and of height the distance fromm to the centerc of K. Now

xi,l = |pi pl | 6 |pic|+ |cm|+ |mtl |+ |tl pl |

6 rmax+ |cm|+ 1
2
|titl |+ rmax

6 2rmax+ |cm|+ 1
2
(xi,l +2rmax).

Thus|cm|> 1
2xi,l −3rmaxand the volume of the cone is at least1

3π( rmin
2 )2(1

2xi,l −3rmax) = π
24r2

min(xi,l −6rmax). 2

ti

pi

mc

tl

pl

K

FIG. 11.6 – For the proof of Lemma 11.28.
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The rest of Section 11.3.2 generalizes easily for proving that the expected number ofT4-segments tangent to
four ballsBi , B j , Bk andBl in that order such thatpi andpl are farther apart than 6rmax andpi is farther than 2rmax

from the boundary ofU, is O(n). Hence the expected number of innerT4-segments isO(n).
Our proof cannot be extended to provide a linear upper bound on the expected number of outerT4-segments.

This is because, if ballsBi andBl are of radiusrmax then a line segmenttitl tangent toBi andBl might be outside
U and at distance greater thanrmin from its boundary. ThenH(ti , tl , rmin) does not intersectU and we cannot
boundH(ti , tl , rmin)∩U from below by a positive constant as in Lemma 11.14, which is crucial for the proof of
Lemma 11.15 and thus for Proposition 11.20.

However, by not taking into account the occlusion in the proof of Proposition 11.20, we get that the expected
number of outerT4-segments isO(n2). Refer to the proof of Proposition 11.20 and considerIx>6rmax,y<2rmax, the
analog ofIx>6,y<1 for this case. The analogs of Lemmas 11.6 and 11.7 yield that

Pr(δω
i, j,k,l | xi,l = x, yi = y, yl 6 yi) 6

(3xr2
max+8r3

max)
2

R6 .

Lemma 11.18 still holds and we can easily prove the analog of Lemma 11.19. Both results imply that

Ix>6rmax,y<2rmax 6

Z 2R

x=6rmax

Z 2rmax

y=0

(3xr2
max+8r3

max)
2

R6 · 6xydx
R3 · 3dy

R

∈ O

(

1
R6

)

= O

(

1
n2

)

.

Hence the expected number of innerT4-segments isO(n) and the expected number of outerT4-segments is
O(n2). This still improves the result of Durand et al. [DDP02] who proved a bound ofO(n8/3) for the same model.

In this section we have assumed that the sphere centers are uniformly distributed but we have made no as-
sumption on the distribution of the radii of the spheres in the interval[rmin, rmax], which are thus assumed to be
worst case. The addition of some hypothesis on the radii distribution may yield better results on the number of
outerT4-segments.

Polyhedra of bounded aspect ratio

Consider polyhedra of constant complexity, each enclosed between two concentric balls of radiirmin andrmax

whose centers are uniformly distributed inU. In such a case, as for balls of various radii, theO(n) bound on the
expected number of innerT4-segments immediately applies as well as theO(n2) bound on the expected number
of outerT4-segments.

Polygons of bounded aspect ratio

Our proof technique can also be generalized to non-fat 3D objects such as polygons. Consider polygons of
constant complexity enclosed between two coplanar concentric circles of radiirmin andrmax, and whose centers and
normals are independently chosen from the uniform distributions overIR3 andS2. Let T1, . . . ,Tn be such polygons
with respective normalsn1, . . . ,nn and centersp1, . . . , pn.

Four polygonsTi , Tj , Tk andTl have a common tangent line that meet them in that order only ifp j andpk lie
in H(pi , pl ,2rmax). This implies, as in Section 11.3.2, that the expected number of T4-segments tangent to four
polygonsTi , Tj , Tk andTl in that order such thatpi andpl are closer to one another than some constant, say 6rmax,
is O(n).

When such a tangent, denotedtitl , exists, it is not occluded only if, for anyγ 6= i, j,k, l , point pγ does not lie
in the interior ofH(ti , tl , rmincosθγ) whereθγ denotes the angle betweennγ and the supporting line oftitl (see
Figure 11.7 (a) and Lemma 11.5). Letγ be an integer distinct fromi, j, k andl . By the Total Probability Theorem,
the probability thatTγ does not occlude the tangent line segmenttitl is bounded from above by

Z π/2

θ=0
Pr
(

pγ 6∈ H(ti , tl , rmincosθγ) | θγ = θ
)

·Pr(θ ≤ θγ < θ+dθ).
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Supporting line oftitl

FIG. 11.7 –Illustration for the case of polygons of bounded aspect ratio.

Similarly as in Lemma 11.28, when the tangenttitl exists,xi,l > 6rmaxandyi > 2rmax, the volume ofH(ti , tl , rmin)∩
U is greater thanπ

24(rmincosθγ)
2(xi,l −6rmax). Thus

Pr
(

pγ 6∈ H(ti , tl , rmincosθγ) | θγ = θ
)

6 1− (rmincosθγ)
2(xi,l −6rmax)

32R3 .

The probability thatθγ is in betweenθ andθ+dθ is sinθdθ, which corresponds to twice the area of the spherical
shell between the latitudesθ andθ+dθ on the unit sphere, divided by the area of the unit sphere (seeFigure 11.7
(b)). Thus whenpi is at distance greater than 6rmax from pl and at distance greater than 2rmax from the boundary
of U, the probability thatTγ does not occlude the tangent line segmenttitl is bounded from above by

Z π/2

θ=0

(

1− (rmincosθγ)
2(xi,l −6rmax)

32R3

)

sinθdθ = 1− r2
min(xi,l −6rmax)

96R3 .

Then, similarly as in Lemma 11.11, the probability that the tangent line segmenttitl is not occluded, whenpi is at
distance greater than 6rmax from pl and at distance greater than 2rmax from the boundary ofU, is at most

55exp

(

−µr2
min(xi,l −6rmax)

96

)

.

We thus get the analog of Proposition 11.12 for the model considered here which implies that the expected number
of T4-segments tangent to four polygonsTi , Tj , Tk andTl in that order such thatpi and pl are farther apart than
6rmax andpi is farther than 2rmax from the boundary ofU is O(n).

We thus get that the expected number of innerT4-segments isO(n). Moreover, as for balls of various radii,
the expected number of outerT4-segments isO(n2).

11.8 Conclusion
In this paper, we proved that the expected number ofT4-segments amongstn uniformly distributed unit balls

in R3 is Θ(n). We also proved that the expected size of the visibility complex of n uniformly distributed unit
balls isΘ(n). Equivalently the expected number of combinatorially different visibility events amongstn uniformly
distributed unit balls isΘ(n). We then proved thatΘ(n) also bounds the expected number ofT4-segments occurring
not too close to the boundary of the universe for various other models such asn uniformly distributed polyhedra,
or polygons, of bounded aspect ratio and constant complexity. For these models, we also provided aO(n2) bound
on the expected number of all theT4-segments.

This paper is an attempt to analyze the average-case behavior of the size of visibility structures. The distribu-
tion models of scene objects investigated here are theoretical in nature since objects in graphics scenes are seldom
distributed uniformly or by a Poisson process. However, ourresults are important in a context where there are
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few rigorous results either theoretical or experimental. They provide theoretical ground to support the empirical
evidence indicating that the worst-case upper bound on the number of visibility events is largely pessimistic in
practical situations. As a consequence, there is reason to believe that an output-sensitive algorithm for computing
all visibility events may work in practice.

Practitioners will be concerned about the size of the constant hidden in theΘ notation. We have calculated (in
the proofs of Section 11.3) this constant to be no larger than216µ3 +231µ+237e−µ/3 (µ2 +1/µ2). Of course this
is shocking. We suppose that the constant is actually much smaller. However estimating it in practice is a difficult
problem which is still to be solved. After solving this problem, an interesting experiment will be to compare
the number of visibility events occurring in a realistic graphic scene with the theoretical bound for uniformly
distributed objects.

The results proved here also provide new insight on the complexity of other visibility structures. Consider
for instance the aspect graph, a partition of viewpoint space into maximal connected regions by surfaces along
which visibility events are observed. As explained in [Pet95], the complexity of the aspect graph is dominated by
δm, whereδ is the degree of the surface corresponding to lines “tangent” to 3 objects andm the dimension of the
viewpoint space. For a scene composed ofn disjoint spheres,δ is trivially O(n3), so the aspect graph hasO(n6)
orthographic views andO(n9) perspective views. However the results of this paper show that the expected value
of δ is Θ(n) since the expected number of families of lines tangent to three objects (related to the 1-faces of the
visibility complex) is linear and the degree of each family is bounded. It would thus be interesting to get a good
bound on the expected value ofδ2 andδ3 which is related to bounding the expected value of the squareand the
cube of the number of combinatorially different visibilityevents. Note that the former would also give the standard
deviation of the expected number of combinatorially different visibility events. Similar observations hold for the
polyhedral case.

11.9 Appendix A. Volume of the intersection of a 3D hippo-
drome with a ball

Recall thatU is a ball of radiusRcentered atO. Let Bi andBl be two unit balls whose centerspi andpl are in
U, within distance 1 from its boundary, and distancex> 6 apart. Lettitl be a line segment tangent toBi andBl at its
endpoints. The section is devoted to the proof of the following proposition which leads directly to Lemma 11.14.

Proposition 11.29. For any0 6 s6 1 such that segment titl is at distance less than R+1−s from O, the volume
of H(ti , tl ,1)∩U is larger than 1

6
√

2
(x−5)s

√
s.

C

pi

pl
Bl

Bi

tl

H(ti , tl ,1)

U

C

pi
pl Bl

Bi

ti
tl

H(ti , tl ,1)

t

U

ti = t

OO

θ

(a) t is not equal toti or tl ; θ = 0. (b) t is equal toti .

FIG. 11.8 –For the definition oft andC (C is shown from the side view).

We proceed as follows. Letv be such that the distance fromO to the segmenttitl is R+1−v, and lett be the
point on segmenttitl closest toO (see Figure 11.8). Assume without loss of generality thatt is closer toti than to
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FIG. 11.9 –For the definition ofa,a′,b,b′.

tl . LetC (resp.D) be the unit radius circle (resp. disk) centered att in the plane, denotedP, containing the vectors−→
Ot and the cross product of

−→
Ot and−→titl . Let θ be the angle between the plane orthogonal totitl andP. We first prove

the following lemma.

Lemma 11.30. The volume ofH(ti , tl ,1)∩U is greater than

1
3

min

(

2,
v
√

v√
2

)

·min

(

x−2
2

,(x−2)cosθ−1

)

.

Proof. Let a denote the closest point onC from O, a′ the farthest point inD∩U from O, andb andb′ the two
points of intersection ofC and the perpendicular bisector of segmentaa′ (see Figure 11.9).

The volume ofH(ti , tl ,1)∩U is greater than the volume of the convex hull ofa,b,a′,b′ and pl because
H(ti , tl ,1)∩U is convex and contains these five points. The volume of this polyhedron is equal to one third of
the area of its base, the quadrilateral with verticesa,b,a′,b′, times its height, the distance frompl to the planeP
containinga,b,a′,b′.

We first compute a lower bound on the area of the quadrilateralwith verticesa,b,a′,b′. If v6 2 (see Figure 11.9
(a) and (b)), then the length ofaa′ is equal tov, and a simple calculation gives that the length ofbb′ is equal to

2
√

v− v2

4 >
√

2v. Thus the area of the quadrilaterala,b,a′,b′ is greater thanv
√

v√
2

. If v > 2 (see Figure 11.9 (c)),

thenC is entirely contained inU and the area of the quadrilaterala,b,a′,b′ is equal to 2. Thus, the area of the
quadrilateral is at least min(2, v

√
v√
2
).

The volume of the polyhedron is thus greater than1
3 min(2, v

√
v√
2
) times the distance frompl to the planeP. We

consider two cases.
First, suppose thatt belongs to the interior of the segmenttitl (see Figure 11.8 (a)). Then, the height is equal to

the distance fromtl to t sincepl anda,b,a′,b′ belong, respectively, to the two planes, orthogonal totitl and passing
throughtl andt, respectively. Sinceti andtl belong toBi andBl , they are at least distancex−2 apart, thust andtl
are at least distancex−2

2 apart. Thus, the height frompl to P is at leastx−2
2 .

Second, suppose thatt = ti (see Figure 11.8 (b)) ;t 6= tl since we assumed thatt is closer toti than totl . Refer
to Figure 11.10. LetA andB be the orthogonal projections ofpl andtl ontoP, respectively. Note that the lengths
of Apl andBtl are the distances frompl andtl to the planeP, respectively.

Considering the triangle△Apl tl and that the distance betweentl and pl is 1, we obtain that|Apl | > |Atl | −
|tl pl | = |Atl | −1, where|ab| denotes the length of segmentab. SinceA ∈ P and the length ofBtl is the distance
from tl to the planeP, the length ofAtl is greater than that ofBtl , thus|Apl | > |Btl |−1.

To bound the length ofBtl , we now consider the triangle△Btl t. The angle∠Btl t is the angle between the
normal of the planeP andtitl , that is, by definition,θ. So the length ofBtl is the length oftitl times cosθ and, since
|titl | is at leastx−2, |Btl | is greater than(x−2)cosθ. Thus the length ofApl is greater than(x−2)cosθ−1.
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FIG. 11.10 – The height frompl to P is greater than|titl |cosθ−1.

Hence the distance frompl to the planeP is greater than min( x−2
2 ,(x−2)cosθ−1) and thus the volume of

H(ti , tl ,1)∩U is greater than13 min(2, v
√

v√
2
) ·min( x−2

2 ,(x−2)cosθ−1). 2

The following lemma bounds cosθ.

Lemma 11.31. The angleθ is such thatcosθ >
√

7
4 .

Proof. Note first that this lemma is intuitively obvious. Indeed (see Figure 11.8 (b)), ifx is sufficiently large and
if ti is the closest point on segmenttitl to O, then the angle between the plane supportingC and the segmenttitl is
necessarily close toπ/2, which implies thatθ is close to 0. We now prove the lemma.

Refer to Figure 11.10 and consider the triangle△Otitl . Let |ab| denote the length of segmentab. Then the law
of cosines yields

|Otl |2 = |Oti |2 + |titl |2−2· |Oti | · |titl | ·cos(π
2 +θ)

= |Oti |2 + |titl |2 +2· |Oti | · |titl | ·sinθ
which gives that

sinθ =
|Otl |2−|Oti |2−|titl |2

2· |Oti | · |titl |
.

The centerspi andpl of ballsBi andBl are distancex > 6 apart and at distance less than 1 from the boundary of
U, so|titl | > 4, |Oti | > R−2 and|Otl | 6 R+1. Hence

sinθ 6
(R+1)2− (R−2)2−42

2· (R−2) ·4 6
6(R−2)

8(R−2)
=

3
4
.

Using cosθ =
√

1− (sinθ)2 proves that cosθ ≥
√

7
4 . 2

We can now conclude the proof of Proposition 11.29. For any 06 s 6 1, if segmenttitl is at distanceR+
1− v 6 R+ 1− s from the center ofU, thenv > s. By Lemma 11.31,(x−2)cosθ−1 > x−5

2 which means that
min( x−2

2 ,(x− 2)cosθ − 1) > x−5
2 . Thus Lemma 11.30 gives that the volume ofH(ti , tl ,1)∩U is greater than

1
6
√

2
(x− 5) min(2

√
2,v

√
v) > 1

6
√

2
(x− 5) min(2

√
2,s

√
s) = 1

6
√

2
s
√

s(x− 5) sinces 6 1. Hence the volume of

H(ti , tl ,1)∩U is greater than 1
6
√

2
s
√

s(x−5).

11.10 Appendix B. Volume ofK
Recall thatU is a ball of radiusR centered atO and letpi and pl be two points inU within distance 1 of its

boundary and distancex apart. Lety be a real number such that 06 y< 1. LetF be the open ball with centerO and
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FIG. 11.11 –The partE of H(pi , pl ,1) outsideF .

radiusR+1−y
2
3 and∂F its frontier. LetE be the part ofH(pi , pl ,1) that is outsideF andK be the intersection of

U with the union of all unit balls centered on points inE (see Figure 11.3). This section is devoted to the proof of
the following proposition used in the proof of Lemma 11.17.

Proposition 11.32. The volume of K is bounded from above by12π2 (x+6)y.

Lemma 11.33. If z∈ U is at distance less than1 from E, then z is at distance less than1 from E∩∂F.

Proof. Let z∈ U andw∈ E be two points at distance less than 1 and refer to Figure 11.11. Let w′ be the point of
intersection of∂F and the ray fromO throughw. For any ballB centered inU, B\F lies in the cone of centerO
and baseB∩ ∂F. ThusE = H(pi , pl ,1) \F lies in the cone of centerO and baseE∩ ∂F. Hence the ray fromO
throughw lies in this cone andw′ ∈ E∩∂F . On the other hand,|zw′|6 |zw| sincez∈ F , w′ ∈ ∂F andw lies outside
F on the ray fromO throughw′. Thus, sincew′ ∈ E∩∂F and|zw|< 1 by hypothesis, the distance fromz to E∩∂F
is less than 1. 2

The above lemma implies thatK is the intersection ofU with the union of all unit balls centered onE∩ ∂F.
To bound the volume ofK, we encloseE∩∂F in a subset of∂F that will be easier to deal with.

Let B(p) denote the ball of unit radius centered atp. Let π(p) be the point that maximizes (under inclusion)
the intersection∂F ∩B(q) for all q on the ray fromO throughp. A simple computation yields that the distance
betweenπ(p) andO is

Ry =

√

(R+1−y
2
3 )2−1.

Thusπ is the orthogonal projection onto the sphere centered atO of radiusRy. Now let π′(p) be the point that
maximizes (under inclusion) the intersection∂F ∩B(q) for all q on the radius ofU throughp (that is the part inside
U of the ray fromO throughp). Similarly, π′ is the orthogonal projection onto the sphere centered atO of radius

R′ = min(R,Ry).

Let G be the union of the spherical caps∂F∩B(π′(p)) for all p on the segment frompi to pl (see Figure 11.12).
Let H denote the points ofU at distance less than or equal to 1 fromG (see Figure 11.13).

Lemma 11.34. K ⊆ H.

Proof. E∩∂F is the union of∂F ∩B(p) for all p on the segmentpi pl . Furthermore, for any suchp, ∂F ∩B(p) ⊆
∂F ∩B(π′(p)) by definition ofπ′ sincep∈ U. ThusE∩∂F is contained inG.

By Lemma 11.33,K is the intersection ofU with the union of all unit balls centered onE∩ ∂F. ThusK is
contained inH, the union of all unit balls centered inG. 2

To bound the volume ofH from above, we first bound the area of its section by planesΠ that containO and
are orthogonal to the plane, denoted(O, pi , pl ), containingO, pi andpl (see Figures 11.13 and 11.14).
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Lemma 11.35. The area ofΠ∩H is less than12πy.

Proof. The section ofG by a planeΠ is a circular arc on∂F . If Π intersects the segmentpi pl , let p denote the
point of intersection, then the circular arc is the intersection of ∂F and the diskB(π′(p))∩Π (refer to Figures 11.12
and 11.14). Otherwise, the circular arc is the intersectionof ∂F and the diskB(π′(pi))∩Π or B(π′(pl ))∩Π (see
Figure 11.12). The disk has radius 1 in the former case and radius less than one in the latter case. In both cases the
center of the disk is at distanceR′ from O. Thus the length of the circular arcG∩Π is maximal if and only ifΠ
intersects the segmentpi pl . Thus the area ofΠ∩H is maximal if and only ifΠ intersects the segmentpi pl . Hence
we can assume thatΠ is such a plane. Letp denote its intersection with segmentpi pl .

Let a andb denote the endpoints ofG∩Π and refer to Figure 11.14. Pointsa andb are the intersection of∂F
and the circle inΠ of radius 1 centered atπ′(p). The lines(Oa) and(Ob) split Π∩H into three parts, a left, a
central and a right part. Symmetries with respect to the lines (Oa) and(Ob) send the left and right parts into the
central one. Hence, the area ofΠ∩H is bounded by 3 times the area of its central part. This part isdelimited by the
two rays fromO througha andb, and the two circles inΠ with centerO and radiiR andR−y

2
3 . So, if α denotes
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a b

∂F

O

R+1−y
2
3

|Xa|

arcsin

(

|Xa|
R+1−y

2
3

)

X

Y

FIG. 11.15 – The length of the circular arcsab.

the length of the circular arcab, the areaA of the central part is

A =
α

2π(R+1−y
2
3 )

·π(R2− (R−y
2
3 )2) = α

2Ry
2
3 −y

4
3

2(R+1−y
2
3 )

6 αy
2
3 .

We now bound the lengthα of the arcab. We choose an orthonormal frame(π′(p),X,Y) in Π such thatO
has coordinates(0,−R′) (see Figure 11.14). Recall thata is one of the intersection points of the circle centered at

π′(p) of radius 1 and the circle centered atO of radiusR+1−y
2
3 . A simple computation yields that the coordinates

(Xa,Ya) of a are equal to

Ya =
(R+1−y

2
3 )2−1−R′2

2R′ , |Xa| =
√

1−Y2
a .

If R′ = R, then

Ya =
y

4
3 +2R−2Ry

2
3 −2y

2
3

2R
= 1−y

2
3 (1+

2−y
2
3

2R
) > 1−2y

2
3

which implies that

|Xa| 6
√

1− (1−2y
2
3 )2 =

√

4y
2
3 −4y

4
3 6 2y

1
3 .

Now if R′ 6= R, then(R+1−y
2
3 )2−1 6 R2 by definition. Expanding this inequality yields

y
4
3 +2R−2Ry

2
3 −2y

2
3 6 0,

y
2
3 >

y
4
3 +2R

2(R+1)
>

R
R+1

>
1
2
.

Thus
√

2y
2
3 > 1 and since|Xa| =

√

1−Y2
a 6 1 we get|Xa| 6

√
2y

1
3 . Hence, in both cases,

|Xa| 6 2y
1
3 .

Thus the length of the circular arcab is (see Figure 11.15)

α = (R+1−y
2
3 ) ·2arcsin

(

|Xa|
R+1−y

2
3

)

6 (R+1−y
2
3 ) ·2arcsin

(

2y
1
3

R+1−y
2
3

)

.

A straightforward computation shows that arcsin(x)−πx 6 0 for anyx∈ [0,1]. Thus

α 6 (R+1−y
2
3 ) ·2π

2y
1
3

R+1−y
2
3

= 4πy
1
3 .
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pi
pl
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olui
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G

H

R+1−y
2
3

R′
R

R−y

∂F
∂U

O
O

Πθi

Πθl

FIG. 11.16 –For the computing a bound on∆θ.

Since the areaA of the middle part is less than or equal toαy
2
3 ,

A 6 4πy
1
3 y

2
3 = 4πy.

This implies that the area ofΠ∩H is less than or equal to 12πy. 2

Lemma 11.36. The volume of H is bounded from above by12π2 (x+6)y.

Proof. We express the volume ofH by an integral using spherical coordinates(r,θ,φ) in an orthogonal frame
(O, X̃,Ỹ, Z̃) such that the plane(O, X̃,Ỹ) containspi andpl (see Figure 11.13). A planeθ = constant contains the
Z̃-axis and thus is a planeΠ. Let 1H(r,θ,φ) denote the indicator function ofH ; 1H(r,θ,φ) is equal to 1 if the point
of coordinates(r,θ,φ) belongs toH and to 0 otherwise. Then

Volume ofH =
Z

φ

Z

r

Z

θ
1H(r,θ,φ) · r2sinφdrdθdφ.

SinceH is insideU, r ·1H(r,θ,φ) 6 R·1H(r,θ,φ). Moreover sinφ 6 1, thus

Volume ofH 6 R
Z

θ

(

Z

φ

Z

r
1H(r,θ,φ) · r drdφ

)

dθ.

The double integral in parentheses is equal to the area of thesection ofH by a planeΠθ : θ = constant. By
Lemma 11.35, this area is less than 12πy, which is independent ofθ. Moreover the area is equal to 0 whenΠθ
does not intersectH. Let ∆θ denote the angle between the two extreme planesΠθ that intersectH. Thus we have

Volume ofH 6 R·12πy·∆θ.

We now bound∆θ. Refer to Figure 11.16. LetΠθi andΠθl be the two extreme planes that intersectH. Let ui

andul be the two points of intersection ofH with Πθi andΠθl , respectively ;ui andul lie on ∂U. Let oi andol be
the two points inG at distance 1 fromui andul , respectively.π′(pi) andπ′(pl ) are at distance 1 fromoi andol ,
respectively.

The angle between the two extreme planesΠθi andΠθl is, as before,

∆θ = 2arcsin
|uiul |/2

R
6 2π

|uiul |/2
R

= π
|uiul |

R
.

Now we bound|uiul | by the length of the polygonal line shown in Figure 11.16.

|uiul | 6 |uioi |+ |oiπ′(pi)|+ |π′(pi)pi |+ |pi pl |+ |pl π′(pl )|+ |π′(pl )ol |+ |ol ul |
= 1+1+ |π′(pi)pi |+x+ |pl π′(pl )|+1+1.
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We show that|π′(pi)pi | and|pl π′(pl )| are less than 1.π′(pi) is insideU at distance less than 1 from∂F which lies
outsideU. Thusπ′(pi) is insideU at distance less than 1 from its frontier. Pointpi is also insideU at distance less
than 1 from its frontier. Sincepi andπ′(pi) are on the same ray starting fromO, they are at distance less than 1
apart. Similarly forπ′(pl ) andpl . Hence

∆θ 6 π
|uiul |

R
6 π

x+6
R

.

Therefore
Volume ofH 6 R·12πy·∆θ 6 12π2y(x+6).

2

Proposition 11.32 follows from Lemmas 11.34 and 11.36.

11.11 Appendix C. Volume of the intersection of two
spherical shells

We prove in this section the following proposition used in the proof of Lemma 11.19.

Proposition 11.37. Let R> 0, x∈ [6,2R], y∈ [0,1] and p be a point at distance R− y from O. The volume of
the intersection of the region in between the two spheres centered at p and of radii x and x+ dx, and the region
in between the two spheres centered at O and of radii R and R− y (see Figure 11.17) is bounded from above by
8πxydx.

R

y
x

x+dx

p

X

X2

X1

Y

B4

B3

B1

B2

O

O

p

X

x

x+dx

B4

B3

B1B2

Y

(a) (b)

A V

V

A

FIG. 11.17 – For the proof of Proposition 11.37.

Proof. Define the ballsB1 with centerO and radiusR, B2 with centerO and radiusR− y, B3 with centerp and
radiusx and finallyB4 with centerp and radiusx+dx. LetV denote the intersection of(B1\B2) and(B4\B3). We
prove that the volume ofV is less than 8πxydx.

Sincedx is infinitesimally small, the volume ofV is Adx whereA is the area of the intersection of the sphere
∂B3 with B1\B2.

Let (p,X,Y,Z) be an orthogonal reference frame whose center isp and whoseX-axis is oriented along
−→
Op

(see Figure 11.17). Notice that all spheres are centered on that axis. LetC1 (resp.C2,C3) denote the circle that is
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√
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√

x2−X2
1

and inner radius
√
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FIG. 11.18 – For the proof of Proposition 11.37, case 1.

the boundary of the intersection ofB1 (resp.B2,B3) and the plane(p,X,Y) in which Figure 11.17 is drawn. The
equations of these circles are, in the frame(p,X,Y),

C1 : (X +R−y)2 +Y2 = R2,

C2 : (X +R−y)2 +Y2 = (R−y)2,

C3 : X2 +Y2 = x2.

SinceC3 is centered at a point onC2 and has radiusx > 6 > 1 > y, C3 intersects or enclosesC1 andC2. In fact,
C3 intersects or enclosesC1 andC2 in one of the three following ways.
Case 1 :If 6 6 x 6 2R−2y thenC3 intersects bothC1 andC2 (see Figure 11.17 (a)).
Case 2 :If 2R−2y < x 6 2R−y thenC3 intersectsC1 and enclosesC2 (see Figure 11.17 (b)).
Case 3 :If 2R−y < x thenC3 encloses bothC1 andC2. In that case,V is empty and the volume is 0.

In the first case, letX1 (resp.X2) be the abcissa of the points of intersection of circlesC1 (resp.C2) andC3.
Note thatX1 > X2 and their values can be computed directly from the equationsof the circlesC1,C2 andC3 :

X1 =
R2−x2− (R−y)2

2R−2y
, X2 =

−x2

2R−2y
.

Using the fact thaty 6 x 6 2R−2y we get

X1−X2 =
y(2R−y)
2R−2y

= y

(

1+
y

2R−2y

)

6 2y,

−X1−X2 =
2x2−y(2R−y)

2R−2y
6 2x

x
2R−2y

6 2x.

We now bound from above the areaA of the surface∂B3 ∩ (B1 \B2) by the area of a larger surface which
depends on the sign ofX1. If X1 > 0, the surface consists of a cylinder of axis theX-axis, of radiusx and height

X1−X2, and of two annuli in the planesX = X1 andX = X2, of inner radius
√

x2−X2
1 and

√

x2−X2
2 , respectively,

and outer radiusx (see Figure 11.18 (a)). IfX1 6 0, the surface consists of a cylinder of axis theX-axis, of radius
√

x2−X2
1 and heightX1−X2, and of an annulus in the planeX = X2, of inner radius

√

x2−X2
2 and outer radius

√

x2−X2
1 (see Figure 11.18 (b)). In both cases that surface is larger than∂B3∩ (B1\B2) by convexity.

If X1 > 0, the area of the cylinder is 2πx(X1−X2) 6 4πxyand the area of the annuli areπx2−π(x2−X2
i ) = πX2

i ,
i = 1,2. SinceX1 > 0, X1 6 y 6 x and thusπX2

1 6 πxy. We also have from the expression ofX1 thatR2−x2− (R−
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y)2 > 0 and thusx2 6 y(2R−y). Thus

πX2
2 = π

x2

2R−2y
x2

2R−2y
6 πx

x
2R−2y

y
2R−y
2R−2y

= πxy
x

2R−2y

(

1+
y

2R−2y

)

.

It thus follows fromy 6 x 6 2R−2y thatπX2
2 6 2πxy. HenceA 6 7πxy.

If X1 6 0, the area of the cylinder is 2π
√

x2−X2
1 (X1−X2) 6 2πx(2y) and the area of the annulus isπ(x2−

X2
1 )−π(x2−X2

2 ) = π(X1−X2)(−X2−X1) 6 4πxy. ThusA 6 8πxy.
Consider now the second case 2R−2y < x 6 2R− y (see Figure 11.17 (b)). For a fixed value ofy, A is the

area of a spherical cap whose perimeter and curvature decreases asx increases. ThusA is a decreasing function of
x. Since the boundA 6 8πxy is valid for x = 2R−2y and 8πxy is an increasing function ofx, A 6 8πxy for any
x > 2R−2y. 2
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Chapitre 12

An upper bound on the average size of
silhouettes

Cet article a été soumis àDiscrete Computational Geometry[GL06]. (Voir également le rapport de
recherche [GL07].) Une version préliminaire à été publiée dans les proceedings du22th ACM Annual Symposium

on Computational Geometry[Gli06].

Abstract

It is a widely observed phenomenon in computer graphics thatthe size of the silhouette of a polyhe-
dron is much smaller than the size of the whole polyhedron. This paper provides, for the first time,
theoretical evidence supporting this for a large class of objects, namely for polyhedra that approxi-
mate surfaces in some reasonable way ; the surfaces may be non-convex and non-differentiable and
they may have boundaries. We prove that such polyhedra have silhouettes of expected sizeO(

√
n)

where the average is taken over all points of view andn is the complexity of the polyhedron.

12.1 Introduction
The silhouette of a polyhedron with respect to a given viewpoint is, roughly speaking, the set of edges incident

to a front and a back face. Silhouettes arise in various problems in computer graphics such as hidden surface
removal and shadow computations (see [Dug04, DD02, EGHHZ00] for some recent references) and algorithms to
compute them efficiently have been well-studied (see the survey by Isenberg et al. [IFH+03]). They are important
in shape recognition ; Sander et al. [SGG+00] claim that the silhouette “is one of the strongest visualcues of the
shape of an object”.

It is a widely accepted fact that the silhouette of a polyhedron is usually much smaller than the whole polyhe-
dron. Sander et al. [SGG+00], for instance, state the largely repeated claim that thesilhouette of a mesh is often
of sizeΘ(

√
n) wheren is the number of faces of the mesh. An experimental study by Kettner and Welzl [KW97]

confirms this for a set of realistic objects. This experimental study was extended by McGuire [McG04] to a larger
database of larger objects for which the observed size of thesilhouette is approximatelyn0.8.

There are few theoretical results supporting these observations. Kettner and Welzl [KW97] prove that a convex
polyhedron that approximates a sphere with Hausdorff distanceε hasΘ(1/ε) edges, and a random orthographic
projection of such a polytope hasΘ(1/

√
ε) silhouette edges. Alt et al. [AGG03] give conditions under which it can

be proved that the average silhouette of aconvexpolyhedron has sizeO(
√

n) and give additional conditions under
which the worst-case size is provably sub-linear.

The goal of this paper is to study the average silhouette sizeof non-convexpolyhedra. Convexity is a very
strong assumption, which was crucial in the previous theoretical results. Here, rather, we assume that the poly-
hedron is a good approximation of some fixed (not necessarilyconvex) surface. Notice that it is very difficult to
guarantee anything on theworst-casecomplexity of the silhouette of a polyhedron unless it approximates a strictly

167
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FIG. 12.1 –A worst-case linear silhouette (left) of a polyhedron approximating a cylinder.

(a) (b) (c)

FIG. 12.2 –Three different notions of silhouettes : (a) outline of a solid, as cast by its shadow, (b) rim of an
opaque object, and (c) rim of a transparent object.

convex surface. Alt et al. [AGG03] give an example of a polyhedral approximation of a section of a cylinder with
worst-case silhouette sizeΘ(n) (see Figure 12.1). Moreover, their example can be modified insuch a way that the
surface is smooth, and its polyhedral approximation is as “nice” as one might hope (for instance, it can be required
that the faces are fat triangles that all have almost the samesize).

In this paper we prove an upper bound on theexpected sizeof the silhouette for random viewpoints. We prove
that the silhouette of a polyhedron that approximates a surface in a reasonable way has expected sizeO(

√
n). Note

that the average is taken over all viewpoints for a given surface, and not on a set of surfaces.
In Section 12.2, we define precisely the notion of silhouettefor polyhedra and general surfaces. We then

present and prove our main result in Section 12.3 and conclude in Section 12.4.

12.2 Definitions
The term silhouette has been used in the literature to represent several different notions, depending on the

application, reflecting such issues as : is the object considered opaque or transparent ? Is occlusion taken into
account ? Is one interested by what the eye perceives,i.e.,a plane curve, or by the space curve which gave birth to
it ? In the area of photography, for instance, a silhouette (also called apparent boundary) is defined as an outline of
a solid object, as cast by its shadow, that appears dark against a light background (Figure 12.2(a)). In the field of
computer vision, by contrast, the silhouette (also called rim, profile or contour generator) is roughly defined as the
curve on the surface that separates front face regions from the back ones, either for opaque (Figure 12.2(b)) or for
transparent (Figure 12.2(c)) objects.

In this paper we prove an upper bound on the size of the transparent silhouette ; since such a silhouette contains
the apparent boundary and the contour, our bounds also applyto all these types of silhouettes. In the rest of the
paper the term silhouette will be used to mean transparent silhouette.
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In the rest of this section we give a formal definition of silhouettes of polyhedra and then provide a definition
for more general surfaces.

12.2.1 Polyhedra
The (transparent)silhouetteof a polyhedron from a viewpoint (possibly at infinity) is theset of edges that are

adjacent to a front face and a back face. A face is considered afront face if the angle between its normal vector
and a vector from a point of the face to the viewpoint is acute,and a back face if that angle is larger thanπ/2. If
the point of view is in the plane containing the face, we referto the definition of silhouettes for the case of general
surfaces. The normal vectors should point outwards, but what really matters is that the orientation is consistent for
the two faces that share this edge, so this definition also applies to non-orientable (necessarily self-intersecting)
polyhedra.

In this paper, we call complexity of a silhouette (of a polyhedron) its number of edges.

12.2.2 General surfaces
Our objective is to bound the size of the silhouette of a polyhedron. To achieve this goal, we need to relate the

silhouette of the polyhedron to the silhouette of the surface it approximates, which means we need a definition of
silhouettes that applies to a larger class of objects. Although this may seem unintuitive, we first define the silhouette
as a set of rays, and then relate this to the more usual conceptof a set of points on the surface.

Let Sbe a compact 2-manifold without boundary. It separatesR3 in two non-empty open regions ; callO and
O

′ their closures (soO ∩O
′ = S andO ∪O

′ = R3). Let V be a viewpoint not onS but possibly at infinity. The
(transparent)silhouetteof S from V is the set of raysR starting fromV that are tangent toS in a non-crossing way
(R may crossS elsewhere). More formally, we require that there exists an open segmentu of R that contains a
connected component ofR∩Sand is contained either inO or O

′.
This definition defines a set of rays. The silhouette can also be seen as the trace of this set of rays on the

surface. More precisely, for each rayR on the silhouette, we consider the closest point toV on each connected
component ofR∩S that satisfies the non-crossing property. This definition isconsistent with the one given for the
particular case of polyhedra, and is the one we will use in this paper.

For a given viewpoint at infinity, we define the (projected)lengthof the silhouette as the length (counted with
multiplicity if several points have the same projection) ofthe projection of the silhouette, along the direction given
by the viewpoint, on an orthogonal plane.

Remark. The definition of the silhouette can be extended to cases whereSis not a 2-manifold, but an immersion of
a compact 2-manifold. More precisely, we have a 2-manifoldS′ and an applicationf : S′ → R3 such thatS= f (S′)
and for any point onS′ there exists a neighborhoodU of that point such thatU and f (U) are homeomorphic. The
local orientation is sufficient to decide whetherR crossesSor not (note that more complicated things can happen
than crossing or being tangent, even with smooth surfaces ; for instance, the surface may ripple an infinite number
of times in the neighborhood of a point, making it impossibleto define on which side ofS Ris near the intersection
point). This remark extends to the whole paper and, in particular, to Theorem 12.1. However, we do not give either
a definition or a proof of this, as it would uselessly make everything more obscure.

12.3 Main results
Let Sbe a compact 2-manifold without boundary whose silhouetteshave finite average length, silh(S), where

the average is taken over all viewpoints at infinity. LetPn be a polyhedron withn triangular faces, that is homeo-
morphic toS through fn : Pn → S, such that :

1. the length of any edge ofPn is at least α√
n and

2. for any pointx on Pn, d(x, fn(x)) < βh(x)√
n whereh(x) is the smallest height of the triangle(s) ofPn that

contain(s)x,

whereα andβ are two arbitrary positive numbers andd() denotes the Euclidean distance.
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Theorem 12.1. The expected complexity of the silhouette of Pn is O(
√

n), where the average is taken over all
viewpoints at infinity. More precisely, for any n, the expected complexity is at most

(

15β+
24
α

silh(S)

)√
n.

Note that the bound is valid for anyn and any polyhedronPn satisfying the above assumptions. Note also that
the bound depends onSonly by the average length of its silhouette.

We first clarify the meaning of the hypotheses onPn and their implications. We then prove Theorem 12.1 in
Section 12.3.2. We finally show in Section 12.3.3 how Theorem12.1 can be generalized to surfaces with boundary
and viewpoints at finite distance. In particular, we prove the following result.

Let S′ be any compact two-manifold with boundary of finite length and whose silhouette has finite average
length (taken over all viewpoints at infinity).

Theorem 12.2. Any mesh Pn with n triangular faces that approximates S′ according to Hypotheses 1 and 2 has a
silhouette of expected complexity O(

√
n) when the viewpoint is chosen uniformly at random in a ball.

12.3.1 Meaning of the hypotheses
Hypothesis 1 is here to avoid short edges. The main idea of theproof is to link the complexity of the silhouette

to its length, and arbitrarily short edges would make this impossible. Now the1√
n factor makes sense : intuitively,

since the polyhedron hasn faces, each face has area of order1
n, which means that the edges have length of order

1√
n.

Hypothesis 2 is rather technical, and we discuss instead themeaning of the following two more intuitive
hypotheses, which, together with Hypothesis 1, imply20 Hypothesis 2.

3. The faces ofPn are fat.

4. For anyx onPn, d(x, fn(x)) < γ
n, whereγ is some positive constant.

Hypothesis 3 is quite natural. Hypothesis 4 ensures thatPn approximatesS. Furthermore, the1n factor is reaso-
nable ; indeed, in 2D, when considering a regular polygon with edge lengthΘ( 1√

n) inscribed in a circle of radius

1, the maximal distance between a point on the polygon and thecircle is Θ(1
n). The situation is the same in 3D.

Basically it means that the error when approximating the surface with a plane is of the second order.
Our hypotheses (1-3-4 or 1-2) ensure that the homeomorphismfn has good properties, that is that, roughly

speaking, the polyhedron can be obtained by only a small perturbation of the surface while keeping the normal vec-
tors in approximately the same directions. This is crucial for our proof since otherwise, for example, a cylinder can
be approximated by a lantern of Schwarz [Sch90] (see Figure 12.3(a)) whose silhouette has expected complexity
Θ(n) and unbounded length.

Notice that the existence of polyhedra with arbitrarily large number of edges that approximate the surface
according to these hypotheses is a constraint on the surface. Not every surface admits such an approximation
(think of the neighborhood of 0 in the surface defined byz= (x2 + y2)1/8 as shown in Figure 12.3(b)). However,
the class of surfaces for which such approximations exist isquite large. It includes, in particular, smooth surfaces
and polyhedra with fat faces.

12.3.2 Proof of Theorem 12.1
We consider a point of view chosen randomly at infinity. We call le the length of an edgee of polyhedronPn

andθe the exterior dihedral angle associated toe (see Figure 12.4).
Let Te denote the union of the two triangles adjacent to edgee (includinge but not the other edges). For any

partR of S, let silh(R) be the average length of the part of the silhouette ofS that lies inR.

20Indeed, for anyx in Pn, Hypotheses 1 and 3 imply thath(x) > δ/
√

n for some positive constantδ ; Hypothesis 2
then follows from Hypothesis 4 sinceh(x)/

√
n > δ/n > δ/γ ·d(x, fn(x)).
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(a) (b)

FIG. 12.3 –(a) Two half lanterns of Schwarz (courtesy of Boris Thibert). (b) A surface that cannot be approxi-
mated with the right properties.

le

e

θe

(a)

θe

θe

(b)

FIG. 12.4 –(a) Length and dihedral angle of an edge ; (b) set of directions for whiche is on the silhouette.
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We first recall a classical formula on the expected size of silhouettes which can also be found, for instance,
in [McG04].

An edgee is on the silhouette if the direction of view is in the dark area of the sphere of directions of Fi-
gure 12.4(b). The angular measure of this region is 4θe, which means that the probability fore to be on the
silhouette isθe/π. The expected number of edges on the silhouette is thus

E =
1
π ∑

edge e
θe.

We now state our main lemma. The general idea of this lemma is that under strong hypotheses (Shas bounded
curvature, the edges have lengthΘ( 1√

n), and Hypotheses 3 and 4 are satisfied), one can prove thatθe 6 C√
n for

some constantC. In cases where this inequality does not hold, edgee is near some kind of edge of the surface,
or at least some feature that will appear quite often on the silhouette and we are going to charge this edge to the
silhouette ofS.

Lemma 12.3. For any edge e on Pn,

θe 6
C√
n

+
8π
le

silh( fn (Te)) with C= 31.3β.

Theorem 12.1 follows from Lemma 12.3. Indeed, sincePn has3n
2 edges, each of length at leastα√

n (by Hypo-
thesis 1), we get that the expected complexity of the silhouette is

E 6
1
π

3n
2

C√
n

+8
√

n
α

3 silh(S),

because ∑
edge e

silh( fn (Te)) = 3 silh(S) since the length of the silhouette ofS that lies in the image (throughfn) of

a triangle is counted three times (once per edge). Hence,

E 6

(

15β+
24
α

silh(S)

)√
n = O

(√
n
)

.

Proof. [Proof of Lemma 12.3] The idea of the proof is as follows. Consider the set of directions for whiche is on
the silhouette. We first construct a subsetΩ of these directions whose measure is a constant timesθe− C√

n (see

Figure 12.5). We then prove a lower bound on the length of the silhouette of fn(Te) for all these directions, and
deduce the result.

Let C be a positive constant, whose value will be defined later (seeEquation 12.2). For any edgee on Pn, we
can assume thatθe− C√

n > 0 since, otherwise,θe 6 C√
n and there is nothing else to prove.

The set of directions for whiche is on the silhouette is the set of directions between the planes defined by the
faces adjacent toe. Rotate each face abouteby an angle of C

2
√

n so that the exterior dihedral angle decreases byC√
n

(see Figure 12.5).Ω is defined to be the set of directions between these two new planes that make an angle larger
thanπ/3 with the line supportinge. The measure of the set of directions between these two planes is 4(θe− C√

n).

Restricting this set of directions to those that make an angle larger thanπ/3 with the line supportinge, we get, by
integrating on the sphere of directions, that the measure ofΩ is 2(θe− C√

n).
The remaining step uses the property, which we prove in Corollary 12.5, that for all the directions inΩ, the

silhouette offn(Te) has length at leastle/4. Assuming this temporarily, we sum this inequality overΩ. The smal-
ler side of the inequality is 2le4 (θe− C√

n). The larger side is the integral of the length of the silhouette of fn(Te)

over all directions inΩ, which is smaller than this same integral over all directions, that is 4πsilh( fn(Te)). Hence
4πsilh( fn(Te)) >

le
2 (θe− C√

n), which concludes the proof. 2

We now state a lemma and its corollary which we used in the proof of Lemma 12.3 under the hypothesis that
θe− C√

n > 0. We can thus assume in the sequel that this property holds.

Let e′ be the segment obtained by clipping frome all the points at distance less thanle
4 from its extremities.

Refer now to Figures 12.6(a)–(b).
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FIG. 12.5 –Construction ofΩ.

(a) Orthogonal projection
along d of e′ and of the
silhouette offn(Te).
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(b) For the definition ofDt .
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Ate
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FIG. 12.6 –For the proofs of Lemma 12.4 and Corollary 12.5.
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Lemma 12.4. Any line with direction d∈ Ω that intersects e′ can be translated in a direction orthogonal to e and
d until it becomes tangent to S in fn(Te).

Corollary 12.5. For any direction d inΩ, the silhouette of fn(Te) has length at leastle4 .

Proof. Consider the projection ofe′ and of the silhouette offn(Te) onto a plane orthogonal tod (see Figure 12.6(a)).
It follows from Lemma 12.4 that, in that plane, each point on the projection ofe′ maps to a point on the projected
silhouette in the direction orthogonal toe′. Hence, the projected silhouette is longer than the projection of e′, which
is at least

√
3

2 times the length ofe′ sinced makes an angle of at leastπ/3 with e′. Thus the silhouette offn(Te) has

length at least
√

3
2

le
2 > le

4 . 2

Proof. [Proof of Lemma 12.4] LetD denote a line with directiond ∈ Ω that intersectse′. Let T1 andT2 denote
the two triangles adjacent toe and leth1 andh2 denote their respective smallest heights. Letχi = βhi/

√
n, χ+ =

max(χ1,χ2), andχ− = min(χ1,χ2). Refer now to Figure 12.6(b). We callDt , t ∈ [−χ−,χ+], the line obtained
by translatingD at distance|t| in a direction orthogonal to the plane defined bye and d ; positive values oft
correspond to lines in the half-space bounded by the plane defined bye andD, and not containingTe ; negative
values oft correspond to lines in the other half-space. For clarity, wedenoteD−χ− by D− andDχ+ by D+.

By construction,D+ is at distanceχ+ from Te. ThusD+ does not intersectfn(Te), by Hypothesis 2. We prove
thatD− intersectsfn(Te) and that no lineDt intersects the boundary offn(Te). This will imply that, sweepingDt

from D+ to D−, the first lineDt0 that intersectsfn(Te) is tangent tofn(Te) at one of its interior point, which will
conclude the proof.

We first prove that no lineDt intersects the boundary offn(Te). In other words, we prove that, for each edge
e∗ on the boundary ofTe, no lineDt intersectsfn(e∗). Let Ti be the triangle (ofTe) containinge∗. By Hypothesis 2,
it is sufficient to prove that the distance betweenDt ande∗ remains greater than or equal toχi for all t.

First notice that it is sufficient to prove that the distance betweenDt ande∗ remains greater than or equal toχi

for all t ∈ [−χ−,0]. Indeed, then, the distance betweenD0 = D ande∗ is at leastχi , and the distance betweenDt

ande∗ increases fort > 0 (see Figure 12.6(b)).
Let Γ be the smallest angled can make with the plane containingTi and refer to Figure 12.6(c). LetAt be

the point of intersection betweenDt and the plane containingTi andvt be the distance betweenAt and the point
on e∗ that realizes the distance betweenDt ande∗. The distance betweenDt ande∗ satisfiesd(Dt ,e∗) > vt sinΓ >

d(At ,e∗)sinΓ. Hence, for proving thatd(Dt ,e∗) > χi for t 6 0, it is sufficient to prove thatd(At ,e∗) >
χi

sinΓ for
t 6 0. We seta = χi

sinΓ to simplify the notation.
We just proved thatd(At ,e∗) > a implies d(Dt ,e∗) > χi (for all t). Conversely, we have thatd(Dt ,e∗) < χi

implies d(At ,e∗) < a. Similarly, for edgee, we get thatd(Dt ,e) < χi implies d(At ,e) < a. By definition ofDt ,
we have thatd(Dt ,e) < χi for t 6 0, thusd(At ,e) < a for t 6 0. Furthermore, the angle betweene and segment
{At | t ∈ [−χ−,χ+]} is at leastπ/3 because this angle is at least the angle between their orthogonal projection on
the plane defined bye andD that is the angle betweene andD since allAt lie in the plane spanned byDt which
projects onD ; the lower bound ofπ/3 follows since the angle betweene andD is at leastπ/3 by definition of
Ω. Hence, the locus of pointsAt , for t 6 0, lies in a region, denotedϒ, shown in dark gray in Figure 12.7(a). For
proving thatd(At ,e∗) > a for t 6 0, it is thus sufficient to prove that this region does not intersect the set, denoted
ϒ′, of points at distance less thana from e∗ (shown in light gray in Figure 12.7(a)).

Referring to Figures 12.7(b)–(c), letp be the endpoint ofe′ the closest toe∗ ands be its projection on the line
supportinge∗. If the two regionsϒ andϒ′ intersect, there exists a pointq in the intersection that is at distance less
than or equal to2√

3
a from p and at distance less than or equal toa from e∗ ; thusd(p,s) 6 d(p,e∗) 6 d(p,q)+

d(q,e∗) 6 (1+ 2√
3
)a. On the other hand,d(p,s) is one fourth of one of the heights of the triangleTi and thus is

at leasthi
4 . Hence, if the two regions intersect, thenhi

4 6

(

1+ 2√
3

)

χi
sinΓ . We postpone to Lemma 12.7 the proof

that, withC = 31.3β, we havehi
4 >

(

1+ 2√
3

)

χi
sinΓ , which implies that the two regionsϒ andϒ′ are disjoint. This

concludes the proof that no lineDt intersects the boundary offn(Te).
We now prove thatD− intersectsfn(Te). Consider a projection,p(), along the directiond onto a plane ortho-

gonal tod. We proved that, for any of the two trianglesTi , ϒ is at distance at leastχi from each edgee∗ 6= e of Ti .
It follows thatϒ lies in triangleTi and thus thatDt intersectsTi for all t 6 0. Therefore,D− intersectsTi and is at
distance at leastχi from each edgee∗ 6= eof Ti , for i = 1,2. Furthermore,D− is at distanceχ− = min(χ1,χ2) from
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FIG. 12.7 –For the proof of Lemma 12.4.

χi

P

FIG. 12.8 –Projection of∂Ti , fn(∂Ti) andD−.

e, by definition. We now consider the triangleTi for whichχi = χ−. It follows thatD− is at distance at leastχi from
all three edges ofTi . ThusD− projects to a pointP = p(D−) inside trianglep(Ti), at distance at leastχi from the
three edges ofp(Ti) (see Figure 12.8).

Roughly speaking, by Hypothesis 2, the curvefn(∂Ti) is at distance less thanχi from ∂Ti (the boundary of
Ti) thus its projectionp( fn(∂Ti)) is at distance less thanχi from the edges ofp(Ti). It is thus intuitively clear that
p(D−) intersectsp( fn(Ti)), and thus thatD− intersectsfn(Ti) (and thusfn(Te)).

More formally, consider the applicationgn from the trianglep(Ti) to the plane containing it such that, for any
point x in Ti , the pointp(x) is sent to the pointgn(p(x)) = p( fn(x)). We first prove that the curvesp(∂Ti) and
gn(p(∂Ti)) are homotopic inR2\P. Consider the continuous application

F : ∂Ti × [0,1] −→ R2

(x,λ) −→ λ p(x)+(1−λ)gn(p(x)) = λ p(x)+(1−λ) p( fn(x)).

F is an homotopy between the curvesp(∂Ti) andgn(p(∂Ti)) in R2. We prove that the image ofF does not contain
P, which yields the result. The triangle inequality gives

d(P,F(x,λ)) > d(P, p(x))−d(F(x,λ), p(x)).

We have already proved that pointP is at distance at leastχi from p(x) for all pointsx in ∂Ti . On the other hand,
the distance betweenp(x) and p( fn(x)) is larger than or equal to the distance betweenp(x) and their barycenter
F(x,λ), for anyλ ∈ [0,1]. Hence

d(P,F(x,λ)) > χi −d(p(x), p( fn(x))).

Finally, sinced(p(x), p( fn(x))) < χi for all x ∈ Ti , by Hypothesis 2, we have thatd(P,F(x,λ)) > 0 for all (x,λ).
Hence, the image ofF does not contain pointP and thus the curvesp(∂Ti) andgn(p(∂Ti)) are homotopic inR2\P.

Now, we can contractp(∂Ti) to a point while remaining inp(Ti). Composing this withgn gives a contraction
of gn(p(∂Ti)) in gn(p(Ti)). On the other hand, there is no contraction ofp(∂Ti) in R2\P (sinceP is in p(Ti)), thus



176 CHAPITRE 12. AN UPPER BOUND ON THE AVERAGE SIZE OF SILHOUETTES

E

E′

O

K
H

Mφ

θ

γ

C

2
√

n

S

P

FIG. 12.9 –For the proof of Lemma 12.6.

there is no contraction of its homotopic curvegn(p(∂Ti)) in R2\P. Hence, there exists a curve that is contractible in
gn(p(Ti)) but not inR2\P. It follows thatgn(p(Ti)) is not included inR2\P. HenceP is in gn(p(Ti)) = p( fn(Ti)).
Therefore,D− intersectsfn(Ti) and thusfn(Te), which concludes the proof.

2

We finally prove the two following simple technical lemmas which complete the proof of Theorem 12.1. Recall
thatΓ is the smallest angle a directiond ∈ Ω can make with the plane containingTi .

Lemma 12.6. sinΓ =
√

3
2 sin C

2
√

n.

Proof. In the following, we identify the sphere of directions with asphereS embedded inR3 ; let O denote its
center. We assume that the embedding preserves directions (i.e., for any directiond, the corresponding pointM on
S is such thatd andOM have the same direction).

Refer to Figure 12.9. Letd be a direction inΩ andM be its corresponding point onS. Consider one of theTi

and letP be the plane containingO and parallel to the plane containingTi . Let H be the orthogonal projection of
M onto planeP. Let E andE′ be the two points onS that correspond to the two (opposite) directions of segment
e. Let K be the orthogonal projection ofM (andH) onto the lineEE′. Finally, letθ be the angle∠MKH, φ be the
angle∠MOK, andγ be the angle∠MOH.

It follows from these definitions that

sinγ =
HM
OM

=
HM
KM

KM
OM

= sinθ sinφ.

Now, the angleγ is also the angle between directiond and the plane that containsTi . ThusΓ = inf
d∈Ω

γ, by

definition ofΓ. The angleθ is the angle between the plane containingTi and the plane containinge andd. It thus
follows from the definition ofΩ that inf

d∈Ω
θ = C

2
√

n (see Figure 12.5(a)). The angleφ is the angle betweend and the

line containinge. It thus also follows from the definition ofΩ that inf
d∈Ω

φ = π
3 . In addition, sinceγ, θ andφ are in

[0, π
2 ], we have

sinΓ = inf
d∈Ω

sinγ, inf
d∈Ω

sinθ = sin
C

2
√

n
and inf

d∈Ω
sinφ = sin

π
3
.

Furthermore, the constraints onθ andφ in the definition ofΩ are independent. Thus, the minima ofθ andφ can be
attained for the same directiond in Ω. It follows that

inf
d∈Ω

(sinθ sinφ) = inf
d∈Ω

sinθ . inf
d∈Ω

sinφ.

We can thus conclude that

sinΓ = inf
d∈Ω

sinγ = inf
d∈Ω

sinθ sinφ = inf
d∈Ω

sinθ inf
d∈Ω

sinφ =

√
3

2
sin

C
2
√

n
.
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2

Lemma 12.7. hi
4 >

(

1+ 2√
3

)

χi
sinΓ with C= 31.3β.

Proof. By Lemma 12.6, replacingχi andΓ by their values in the inequalityhi
4 >

(

1+ 2√
3

)

χi
sinΓ gives

hi

4
>

(

1+
2√
3

) βhi√
n

√
3

2 sin
(

C
2
√

n

)

or equivalently

4β
(

1+
2√
3

)

<
√

n

√
3

2
sin

(

C
2
√

n

)

. (12.1)

Notice first that for large enough values ofn, using the approximation sinx≈ x in the neighborhood of zero,
we derive the sufficient condition

C >
16β√

3

(

1+
2√
3

)

∼ 19.9β.

Now, since we want our result for alln, the computation is more complicated. Recall first that for any strictly
concave functionf , such thatf (0) = 0, f (x) > f (x0)

x0
x for anyx∈ (0,x0). It follows that sinx> 2

π x for anyx∈ (0, π
2).

Since we assumed thatθe− C√
n > 0 and thus that 0< C

2
√

n < θe
2 < π

2 , we get

sin

(

C
2
√

n

)

>
2
π

C
2
√

n
.

To guarantee inequality (12.1), it is thus sufficient to have

4β
(

1+
2√
3

)

6
√

n

√
3

2
2
π

C
2
√

n
.

or equivalently

C >
8
3

(

2+
√

3
)

πβ ∼ 31.27β,

which concludes the proof. Note that we can set

C = 31.3β. (12.2)

in the definition ofΩ (in the proof of Lemma 12.3) since Inequality (12.1) is the only constraint onC. 2

12.3.3 Generalizations
We prove here Theorem 12.2. We first show that Theorem 12.1 generalizes to the case where the viewpoint

is chosen randomly at finite distance. We then show that considering surfaces with boundary does not change the
asymptotic expected complexity of the silhouette.

Point of view at finite distance. We have thus far restricted ourselves to the case where the viewpoint
is chosen uniformly at random at infinity. However, our result applies to any distribution of viewpoints such that
the probability for an edgee to be on the transparent silhouette isO(θe), whereθe is the exterior dihedral angle
associated toe; indeed, the expected number of edges on the silhouette is then ∑

edge e
O(θe) and we get the result

by applying, as before, Lemma 12.3.21 Such a distribution of viewpoints is obtained, in particular, when the point
of view is chosen uniformly at random in a ball. This is also the case ifS delimits a bounded regionO and the
viewpoint is chosen uniformly at random inB\O, for a ballB.

21Note that, in Lemma 12.3, silh( fn(Te)) always refers to an expected length for a viewpoint chosen randomly
at infinity.
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Surfaces with boundary. Let Sbe a 2-manifold with boundaryB. We consider that the boundary is always
on the transparent silhouette and so the definition of the transparent silhouette of a 2-manifoldSwith boundary is
exactly that of a 2-manifold without boundary plus the boundaryB.

The surfaceS is approximated by a triangulated meshPn that satisfies Hypotheses 1 and 2, as in the case
without boundary, except that now the mesh may not be a polyhedron (some edges may have only one adjacent
face rather than two).

To give an upper bound on the number of edges on the silhouetteof the mesh, we consider the boundary edges
and the other (non-boundary) edges separately. For the non-boundary edges, the same reasoning as before still
holds. For the boundary edges, it is easy to see that the length (in 3D) of the boundary ofPn cannot be much larger
than the length ofB. Indeed, the two are homeomorphic, and the hypotheses implythat the image of an edgee, of
lengthle, is a curve whose extremities lie at distance at leastle−2β · le√

n = Ω( 1√
n) apart. This means that the length

of B is at leastΩ( 1√
n) times the number of boundary edges ofPn. Hence, the number of boundary edges ofPn is at

mostO(
√

n) times the length ofB. So, if the length ofB is bounded, the expected complexity of the silhouette of
Pn is O(

√
n).

12.4 Conclusion
This paper gives an idea of why, and when, the usual claim thatthe silhouette of a triangulated mesh has size

O(
√

n) is valid. In particular, we have given a set of conditions such that any triangulated mesh approximating
a surface in a way that satisfies those conditions has a silhouette of expected sizeO(

√
n). Roughly speaking, the

mesh should have no short edges, its faces should be fat, and the distance between it and the surface it approximates
should never be too large. The surface itself is not necessarily everywhere differentiable and may have boundaries.

A natural question to ask is whether meshes satisfying thoseconditions exist. In fact, for smooth surfaces,
the meshes produced by Boissonnat and Oudot [BO05] are one such example. The critical property of the meshes
they compute is that the ratio between the size of the largestand the smallest triangles remains bounded, although
meshes are non-uniform with small triangles in areas of large curvature. However, in order to satisfy our conditions,
non-smooth surfaces with curved sharp edges (such as a flyingsaucer with a sharp equatorial arc) would have to
be approximated by small triangles over the whole surface. Such meshes would have silhouettes of expected size
O(

√
n) but thenn would be much larger than necessary ; it would be reasonable to replace the large number of

triangles used to mesh large flat portions of the surface witha smaller number of large triangles, which would
give a silhouette of size closer to linear. This explains whythe observed expected size of silhouettes, as shown in
[McG04], is larger thanO(

√
n). The fact that non-uniform meshes approximating such surfaces appear, in computer

graphics, to have silhouettes of expected size much smallerthann is thus likely due to additional properties of the
surfaces or the meshes.
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Chapitre 13

Between umbra and penumbra

Une version courte de cet article est parue dans les proceedings de la23rd European Conference on
Computational Geometry[DDE+07].

Abstract

Computing shadow boundaries is a difficult problem in the case of non-point light sources. A point
is in the umbra if it does not see any part of any light source ; it is in full light if it sees entirely all
the light sources ; otherwise, it is in the penumbra. While thecommon boundary of the penumbra
and the full light is well understood, less is known about theboundary of the umbra. In this paper
we prove various bounds on the complexity of the umbra and thepenumbra cast by a segment or
polygonal light source on a plane in the presence of polygon or polytope obstacles.
In particular, we show that a single segment light source maycast on a plane, in the presence of two
triangles, four connected components of umbra and that two fat convex obstacles of total complexity
n can engenderΩ(n) connected components of umbra. In a scene consisting of a segment light
source andk disjoint polytopes of total complexityn, we prove anΩ(nk2 + k4) lower bound on
the maximum number of connected components of the umbra and aO(nk3) upper bound on its
complexity. We also prove that, in the presence ofk disjoint polytopes of total complexityn, some of
which being light sources, the umbra cast on a plane may haveΩ(n2k3+nk5) connected components
and has complexityO(n3k3).
These are the first bounds on the size of the umbra in terms of both k andn. These results prove
that the umbra, which is bounded by arcs of conics, is intrinsically much more intricate than the full
light/penumbra boundary which is bounded by line segments and whose worst-case complexity is
in Ω(nα(k)+ km+ k2) andO(nα(k)+ kmα(k)+ k2), wherem is the complexity of the polygonal
light source.

13.1 Introduction
Shadows play a central role in human perception [MKK98, Wan92]. A wide variety of approaches have been

considered for simulating and rendering shadows (see, for example, the surveys [Dur00, WPF90]) and many me-
thods make extensive use of graphics hardware (see the survey [HLHS03]). Unfortunately, computing realistic
shadows efficiently is a difficult problem, particularly in the case of non-point light sources. A part of this dif-
ficulty arises from the complicated internal structure thatsuch shadows may have. In this paper we study this
structure.

We say that a point is in theumbraif it does not see any part of the light source(s) ; it is infull light if it sees
entirely all the light source(s) ; otherwise, it is in thepenumbra. While the boundary between the penumbra and
the full light is reasonably well-understood (see Section 13.3), less is known about the boundary of the umbra.
Nevertheless, there is an extensive literature concerningthe explicit computation of these shadow boundaries ; see,
for example, [DF94,DDP97,DDP99,DDP02,Hec92,NN83,SG94,Tel92].
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Scene type Lower bounds Upper bounds

Segment light source
2 triangles 4 O(1)

2 fat polytopes Ω(n) O(n)

k polytopes Ω(nk2 +k4) O(nk3)

n-gon light source
k polytopes Ω(n2k3 +nk5) O(n3k3)

TAB . 13.1 –Lower bounds on the number of connected components and upperbounds on the complexity of the
umbra cast on a plane byk polytopes of total complexityO(n).

In this paper we prove various bounds, summarized in Table 13.1, on the complexity of the umbra cast by
a segment or polygonal light source on a plane in the presenceof polygon or polytope (i.e. convex polyhedral)
obstacles. In particular, we show that a single segment light source may cast, in the presence of two triangles, four
connected components of umbra. We prove that the umbra defined by one segment light source and two fat convex
obstacles of total complexityn can haveΩ(n) connected components. We also prove anΩ(nk2 +k4) lower bound
on the maximum number of connected components of the umbra and aO(nk3) upper bound on its complexity in
a scene consisting of a segment light source andk disjoint polytopes of total complexityn. Finally, we prove that
the umbra cast on a plane by a polygonal light source andk convex obstacles can haveΩ(n2k3 + nk5) connected
components and has complexityO(n3k3). These are the first bounds on the size of the umbra in terms of both k
andn.

Our results are surprising in the sense that they show that the umbra cast by a single segment light source may
have many connected components. The fact that the umbra may have four connected components in the case of
two triangle obstacles comes as a total surprise. Our lower bounds ofΩ(nk2 + k4) andΩ(n2k3 + nk5) connected
components, fork polytopes of total complexityn, is rather pathological in the sense that most of the obstacles are
very long and thin. However, we also present a lower bound example ofΩ(n) connected components in the case
of two fat polygons or polytopes of complexityO(n). Concerning our upper bounds ofO(nk3) andO(n3k3), even
though these bounds are not tight, they substantially improve the only previously known bounds for this problem
which were the trivialO(n4) and O(n6) upper bounds. Finally, it is interesting to point out that even for the
simplest case of non-point light sources, obtaining tight bounds on the complexity of the umbra and understanding
its structure is a very challenging problem.

The paper is organized as follows. The next section providesnotation and definitions. We give in Section 13.3
almost tight lower and upper bounds on the complexity of the boundary between full light and penumbra cast on a
plane by a polygonal light source in the presence of polytopeobstacles. We present, in Section 13.4, upper bounds
on the complexity of the umbra, in Section 13.5, lower boundson the maximal number of connected components
of umbra and conclude in Section 13.6.

13.2 Preliminaries
Let sbe a line segment andp a point. We denote by〈s, p〉 the set of line transversals ofs throughp. Similarly,

for any triple of segmentss1, s2 ands3, we denote by〈s1,s2,s3〉 its set of line transversals. It is a well-known fact
that 〈s1,s2,s3〉 consists of lines belonging to the same regulus of a ruled quadric surface (seee.g.[Sal15]). More
precisely, the line transversals lie on a hyperboloid of onesheet when the three segments are pairwise skew and
not all parallel to the same plane. If the segments are pairwise skew and all parallel to the same plane, then the line
transversals lie on a hyperbolic paraboloid. Otherwise, they lie in one or two planes. Hence any set of transversals,
whether〈s, p〉 or 〈s1,s2,s3〉, forms patches of a quadric (possibly degenerating to one ortwo planes). Moreover,
the set of transversals consists of at most three patches, ormore formally, at most three connected components in
line space [BEL+05]. We let〈s, p〉 and〈s1,s2,s3〉 denote not just sets of lines but also the surface patches they
form.
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Let P be a finite set of disjoint convex polygons or polytopes inR3 with L ⊂ P identified as light sources. A
surfaceσ = 〈e,v〉 is called anEV-surfaceif there exist two distinct objectsP,Q∈ P so thate is an edge ofP, v a
vertex ofQ andσ intersects a light source. A surfaceσ = 〈e1,e2,e3〉 is called anEEE-surfaceif there exist three
distinct objectsP,Q,R∈ P so thate1, e2 ande3 are respectively edges ofP, Q andRandσ intersects a light source.

Any planeΠ intersects anEV-surface or anEEE-surface in a set of arcs of a conic (each possibly empty or
possibly a line segment). Hence the intersection betweenΠ andall theEV andEEEsurfaces defines an arrangement
of arcs of conics onΠ.

Here we are interested in the arcs of conics that correspond to shadow boundaries. In particular, we are interes-
ted in arcs resulting from the intersection betweenΠ and maximal free line segments22 that intersect a light source
and are supported by a line which is on anEV or EEE surface. The intersection of these free line segments withΠ
defines an arrangement of arcs of conics onΠ which we call theshadow arrangementon theshadow planeΠ.

A point p is in the umbra if for any pointq on a light source, the segmentpq intersects an object fromP\L.
Similarly, p is in full light if for any point q on a light source, the segmentpq does not intersect any object from
P\L. Otherwise,p is in the penumbra.

We will make extensive use of the fact that the boundary of theumbra and penumbra consists of arcs of the
shadow arrangement (see, for example, [Hec92]). Notice that not all arcs of the shadow arrangement are on the
umbra or penumbra boundaries ; some arcs correspond to otherlighting discontinuities.

Throughout this paper, we consider the regions of umbra and penumbra on a plane cast by a segment light
source or polygonal light source(s) in the presence of convex polygons or polytopes.

13.3 The penumbra boundary
We recall here some straightforward and well-known properties of the penumbra and give bounds on the

complexity of the common boundary of the penumbra and the full light. In this section we refer to the union of the
umbra and penumbra as theshadow region.

PROPERTY1. The shadow region cast by a light source on a plane in the presence of obstacles is the union of all
the shadow regions cast by each obstacle.

PROPERTY2. The shadow region cast on a planeΠ by a polygonal light sourceS in the presence of one polytope
P is the intersection of half-planes inΠ, each of which is defined as the intersection ofΠ with a half-space that
containsP but notS, is bounded by a plane tangent to both of them, and contains anedge of one of them.

Note that these two properties imply that the boundary of theshadow region is only composed of line segments
induced byEV-surfaces.

Theorem 13.1. The complexity of the shadow region cast on a planeΠ by a convex polygonal light source of
complexity m in the presence of k convex polyhedra of total complexity n is, in the worst case, inΩ(nα(k)+km+k2)
and O(nα(k)+kmα(k)+k2), whereα(k) denotes the pseudo-inverse of the Ackermann function.

Proof. By Property 2, the shadow cast on a planeΠ by a polygonal light source in the presence of one polytope isa
convex polygon. Furthermore, if the light source hasmedges and the polyhedron hasni edges, the shadow region in
Π hasO(ni +m) edges. By Property 1, the shadow region in the presence ofk polytopes of total complexityn is thus
the union ofk convex polygons of total complexityO(n+km), which has complexityO((n+km)α(k)+k2) [AS97].

For the proof of the stated lower bound consider the following collection of examples. In all constructions the
shadow planeΠ is the planez= 0.

Ω(k2) example.Refer to Figure 13.1. We consider a point light source at a height z (large enough) and a grid
consisting ofk thin horizontal and parallel rectangles at heightz = 1 together withk other thin horizontal and
parallel rectangles at heightz= 2. They form a grid of shadow on planeΠ which has sizeO(k2).

Ω(kα(k)) example.Refer to Figure 13.2. Again, the light source is a point with large positivez-coordinate. We
consider a set ofk line segments in planez= 1 (with positivey coordinates) having, in that plane, an upper envelope

22A maximal free line segmentis a segment that intersects the interior of no object and whose endpoints lie on
some object or at infinity.
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FIG. 13.1 –Ω(k2) lower bound.

of sizeΩ(kα(k)) [WS88]. We transform each line segment into a trapezoid linking it to its projection on they = 0
line (in planez = 1). We get a set of trapezoids whose shadow, in planez = 0, for a point light source at large
enoughz is basically the upper envelope of the segments. Note that the trapezoids can easily be made disjoint by
placing them in different horizontal planes very close to planez= 1.

Ω(nα(k)) example.Refer to Figure 13.3. First modify the aboveΩ(kα(k)) example such that the left “vertical”
side of each trapezoid has slopeγ and the right “vertical” side has slope−γ, for someγ large enough. Now, by
some suitable scaling, we make all slopes of the vertical walls strictly smaller thankπ

n . Assemblen
k copies of the

previous construction into a large regularn
k -gon where each side is, in fact, akα(k) upper envelope. Finally, this

construction can be seen ask convex 3n
k -gons by connecting all of thenk copies of the same trapezoid by extending

their walls.

This set ofk convex 3n
k -gons, embedded in different horizontal planes close to thez= 1 plane, engender, in

the presence of a point light source at large enoughz, shadows of complexitynα(k).

Ω(mk) example.Refer to Figure 13.4. We use a horizontalm-gon as light source and a thin rectangle as obstacle.
Then the shadow hasΩ(m) size. Using multiple copies of the obstacle such that the different shadows are disjoint
easily gives anΩ(mk) example. 2

There is still a small gap between theΩ(k2 + mk+ nα(k)) lower bound and theO(k2 + mkα(k) + nα(k))
upper bound. In fact we conjecture that the lower bound is tight ; the shadow of the different obstacles have some
similarity with homothetic projections of the light, and the union ofk convex homotheticm-gons isΘ(mk) since
two convex homothetic polygons intersect in at most two points [KLPS86].
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x

z

y
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FIG. 13.2 –Ω(kα(k)) lower bound.
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13.4 Upper bounds

In this section we prove the following two upper bounds on thecomplexity of the umbra cast by a segment
light source or polygonal light source(s) on a plane.

Theorem 13.2. The complexity of the umbra cast on a plane by one segment light source in the presence of k
disjoint polytopes of total complexity n is O(nk3).

Theorem 13.3. The complexity of the umbra cast on a plane by a set of k disjoint polytopes of total complexity n,
some of which are light sources, is O(n3k3).
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13.4.1 The umbra cast by a segment light source
We will actually prove an upper bound on the complexity of theshadow arrangement which yields the same

bound for the complexity of the umbra. Notice that, in the case of a single segment light source, theEEE-surfaces
σ = 〈e1,e2,e3〉 andEV-surfacesσ = 〈e,v〉 that contribute to the shadow arrangement are such that either one ofe,
e1, e2 or e3 is the segment light source andv is one of its endpoints.

We prove Theorem 13.2 by considering a plane rotating about the line supporting the segment light source.
First, if the segment light source,s, is not parallel to the shadow planeΠ, we apply a projective transformation
to the scene, sending to infinity the point of intersection between the line containings and planeΠ ; this does not
change the complexity of the shadow arrangement. We thus assume in the rest of this section that the segment
light source is parallel toΠ. The sweep plane, denotedπ, intersects the shadow plane in a line ; we will say that,
throughout the sweep, this line moves from left to right.

We start with two preliminary lemmas concerning the intersections that one of these sweep planes can have
with the shadow arrangement.

Let α be the conic that is the intersection of the shadow planeΠ and theEEE-surfaceσ = 〈s,s1,s2〉 wheres is
the segment light source,s1 ands2 are two other segments, and letπ be a plane containing the light sources and
intersectingΠ.

Lemma 13.4. If s, s1, and s2 are pairwise skew thenπ intersectsα in at most a single point.

Proof. First, sinces is parallel toΠ, any transversal tos and to a point inα∩π lies in planeπ. If the intersection
betweenπ ands1 or s2 is empty, there exists no line tangent to the three segments in π and thusπ does not crossα.
Otherwise, both segments intersectπ in two pointsp1 andp2. The line defined byp1 andp2 is the only line that
is possibly a transversal to the three segments inπ (it may not intersect the segments). Hence there exists at most
one transversal inπ which defines exactly one point onα. 2

Notice that the preceding lemma implies that the conic arcs are monotonic in the direction of the sweep
(orthogonal tos).

For the rest of the proof we consider an arrangementA of arcs of conics which contains the shadow ar-
rangement. We will establish an upper bound ofO(nk3) on the complexity ofA which will yield the bound of
Theorem 13.2. The arrangementA consists of the intersection ofΠ with (i) those lines that are transversal to the
light sources, and the edgess1 ands2 of two other polytopes and that do not intersect the interiorof these polytopes
(the connected components of these lines form patches ofEEE-surfaces) and (ii) those lines that are transversal to a
vertex and an edge of two polytopes, one of which is the segment light source, and that do not intersect the interior
of these polytopes (the connected components of these linesform patches ofEV-surfaces).

We now count the number of crossings between an instance ofthe sweep planeπ and the arcs inA.

Lemma 13.5. The planeπ properly intersects at most O(k2) arcs of A.

Proof. The arcs ofA are defined as the intersection withΠ of linesℓ which are (i) transversal to the segment light
sources and tangent to two polytopes, (ii) transversal to an endpoint of s and tangent to another polytope, or (iii)
transversal tosand to a polytope vertex.
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An instanceπ of the sweep plane never properly intersects an arc of type (iii) (since such an arc is either
included inπ or does not intersect it). Now, ifπ intersects an arc of one of the other two types, thenπ contains the
corresponding lineℓ, which is tangent to two polygons ofP∩π. SinceP∩π consists of at mostk disjoint convex
polygons, there areO(k2) lines inπ that are tangent to two polygons ofP∩π, hence the result. 2

Proof. [of Theorem 13.2] We consider an orthogonal frame in planeΠ whoseverticalaxis is parallel to the segment
light sources; the other axis is calledhorizontal.

We first show that the number of proper intersection points between arcs ofA is O(k2) times the number of
arcs. It follows from Lemma 13.4 (along with a simple argument in the case that the three segments are not pairwise
skew) that any arc ofA is either horizontally monotone or is a vertical line segment. Consider an arcα0 and its
rightmost endpointp (anyone ifα0 is vertical). We charge toα0 all points of intersection involvingα0 and all arcs
whose rightmost endpoints are strictly to the right ofp. Any arc properly intersectsα0 in at mostO(1) points so the
number of intersection points charged toα0 is bounded by the number of arcs properly intersected by the sweep
plane containingp. By Lemma 13.5, there are at mostO(k2) such arcs. Thus, each arc is charged at mostO(k2)
times.

We now bound the number of arcs (and thus the number of arc endpoints) generatingA. Each arc corresponds
either to a patch of anEV or EEE surface. Consider first theEV-surfaces. Since either the edge or the vertex is on
the light source, there are at mostO(n) such surfaces.

Now consider the arcs generated byEEE-surfaces. Letni be the number of vertices of polytopePi , 1 6 i 6 k.
The number ofEEE-surfaces involving the light source and edges from polytopesPi andPj is O(ni +n j) [BDD+07,
Corollary 2.6] (or [BDD+05, Corollary 9]). Then,∑16i< j6k O(ni +n j) = O(nk).

There are at mostO(nk) arcs generatingA. Since each arc is charged with at mostO(k2) intersection points,
there are at mostO(nk3) intersection points. The total complexity of the shadow arrangement, and thus of the
umbra, is thenO(nk3). 2

13.4.2 The umbra cast by polygonal light sources
To prove Theorem 13.3 we consider an arrangementB of arcs of conics that, as in the previous section,

contains the shadow arrangement. This arrangementB consists of the intersections ofΠ with (i) the lines that are
transversal to a vertex and an edge of two polytopes and that do not intersect the interior of these polytopes (the
connected components of these lines form patches ofEV-surfaces) (ii) the lines that are transversal to edges of
three polytopes and that do not intersect the interior of these polytopes (the connected components of these lines
form patches ofEEE-surfaces). Notice thatB may contain arcs generated by surfaces that do not intersectthe light
source or possibly by surfaces that intersect the interior of other polytopes in the scene. We will establish aO(n3k3)
upper bound on the complexity ofB which yields the same bound for the complexity of the umbra.

Lemma 13.6. Any line L inΠ properly intersects at most O(nk2) arcs of B.

Proof. An intersection point betweenL andB corresponds to a line transversal which belongs to anEV or EEE

surface. Consider firstEV-surfaces. The line transversal lies in a plane which containsL and a vertex, sayv, of one
of the polytopes. There existO(n) such planes and in each of them there are at mostO(k) lines throughv that are
tangent to a polytope (since we only consider proper intersections betweenL and the arcs ofB). Thus there are at
mostO(nk) points onL∩A which correspond to lines inEV-surfaces.

Now we considerEEE-surfaces. Letni be the number of vertices of polytopePi , for 16 i 6 k. The number of
EEE-surfaces generated by three edges of polytopesPi , Pj andPl , not intersecting the interior ofPi , Pj andPl , and
that intersectL is O(ni +n j +nl ) [BDD+05, Main Lemma]. Since∑16i< j<l6k O(ni +n j +nl ) = O(nk2), there are
at mostO(nk+nk2) = O(nk2) arcs ofB which intersect the lineL on Π. 2

Proof. [of Theorem 13.3] Here, we introduce an arbitrary coordinate frameOxy in the planeΠ. We callOx the
horizontal axis andOy the vertical axis.

As in the proof of Theorem 13.2, we first show that the number ofintersection points between arcs ofB is
O(nk2) times the number of conic arcs. We first break all conic arcs into maximal horizontally monotone pieces.
This increases the number of arcs only by a constant factor. Consider a conic arcα0 and its rightmost endpointp
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FIG. 13.5 –Two triangles and a segment light source (viewed from above)that cast 4 connected components of
umbra on the planez= 0.

alongOx (any endpoint if the arc is vertical). We charge toα0 all points of intersection betweenα0 and all conic
arcs whose rightmost endpoints are strictly to the right ofp. Any arc properly intersectsα0 in at mostO(1) points
so the number of intersection points charged toα0 is bounded by the number of arcs that are properly intersected
by a vertical line inΠ and containingp. By Lemma 13.6, there are at mostO(nk2) such arcs. Thus, each arc is
charged at mostO(nk2) times.

We now bound the number of arcs (and thus the number of arc endpoints) generatingB. Let ni be the number
of vertices of polytopePi , 1 6 i 6 k ande an edge. The number ofEEE-surfaces pertinent toB and involvinge
and edges from polytopesPi andPj is O(ni + n j) [BDD+05, Corollary 9]. Thus, for each edgee, there are, at
most,∑16i< j6k O(ni + n j) = O(nk) EEE-surfaces havinge as a generating segment. Furthermore, the number of
EV-surfaces involving edgee or one of its vertices isO(n). Since there existn edges, the total number of arcs inB
is thereforeO(n2k).

In conclusion, there are at mostO(n2k) arcs generatingB, each of them charged with at mostO(nk2) inter-
section points, hence there are at mostO(n3k3) intersection points. The total complexity of theB and, thus of the
umbra, isO(n3k3). 2

13.5 Lower bounds
In this section we present several lower bounds on the complexity of the umbra.

13.5.1 The umbra cast by a segment light source
Here we concentrate on the umbra cast by a segment light source in the presence of various configurations of

obstacles.

Theorem 13.7. A segment light source and two triangles may cast, on a plane,four connected components of
umbra.

Proof. Consider the following scene consisting of a segment light source,s, two triangles,T1 andT2, and a shadow
plane,Π, the horizontal plane of equationz= 0 ; see Figure 13.5 and Figure 13.6.

Figure 13.7 shows a superset of the shadow arrangement generated by this configuration (the arrangement
A defined in Section 13.4). Although it can be shown that the four shaded regions in the figure are exactly the
umbra, we will simply argue here that there are at least four connected components. We do this by illustrating four
segments in the umbra and then arguing that they are each in different connected components.
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FIG. 13.6 –The scene rendered with the ray tracer OpenRT (the umbra is inlight grey) ; courtesy of Andreas
Dietrich.

FIG. 13.7 –Superset of the shadow arrangement on planeΠ. The four shaded regions are the regions of umbra.

The idea is to consider a series of planes rotating about the segment light source and the intersections of those
planes with the two triangles and the shadow plane ; Figure 13.8 shows such a sequence. We then examine the
umbra in those planes by considering the relevant bitangents.

Let P+ be one such plane (containings) and going through the point(0,7,0) andL+ the intersection ofP+ and
Π. Figure 13.8(b) shows the segments, the intersections betweenP+ and the two trianglesT1 andT2, L+ and four
bitangents that together define the umbra onL+. Consider the two segmentsR+

1 andR+
2 as shown in Figure 13.8(b).

It is easy to see, by examining the bitangents, thatR+
1 andR+

2 are in the umbra. Hence there are two segments of
umbra on the lineL+. We obtain two other segments,R−

1 andR−
2 , by taking the symmetric planeP− with respect

to thexz-plane (through point(0,−7,0) and whose intersections with the scene is shown on Figure 13.8(d)).
Now, we show that the four segmentsR+

1 , R−
1 , R+

2 andR−
2 lie in different connected components of umbra.

In order to prove this result, we exhibit two lines onΠ which contain no point in the umbra and separate the four
segments as shown in Figure 13.9.

First consider the planey= 0 containing the light segmentsand orthogonal to the shadow planeΠ. This plane
intersectsΠ in a line,δ1, as shown in Figure 13.9, and separatesR+

1 andR+
2 from R−

1 andR−
2 sinceP+ andP−

are symmetric with the planey = 0. To show thatδ1 contains no point of the umbra, consider the intersection of
they = 0 plane with the segments and the two trianglesT1 andT2 ; see Figure 13.8(c). A study of the bitangents
reveals that no point ofδ1 lies in the umbra.

Now consider the plane orthogonal toΠ, parallel to the two triangle hypotenuses and going throughthe mid-
point ofs. Let δ2 be the intersection of this plane withΠ ; see Figure 13.9. Elementary computations show that the
line δ2 separatesR+

1 andR−
2 from R−

1 andR+
2 . There can be no point of the umbra onδ2 since the plane intersects

the light source but not the triangles (see Figure 13.5). This completes the proof. 2
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FIG. 13.8 –Views in the sweep plane with bitangents that define the umbra. The number of components of umbra
in the intersection of the sweep plane and the planez= 0 is : (a) one (sweep plane through(0,10,0)), (b) two
(sweep planeP+ through(0,7,0)), (c) zero (sweep planey = 0), (d) two (sweep planeP− through(0,−7,0)), (e)
one (sweep plane through(0,−10,0)).

Note that the line supportings and the lines supporting the triangle hypotenuses are pairwise skew and not all
parallel to a same plane. Thus the correspondingEEE-surface is a hyperboloid of one sheet which intersectsΠ in a
hyperbola. We determine the equation of this hyperbolic curve to be 41y2−52xy+928= 0. This curve admits two
asymptotes which contain no point in the umbra and which separate the connected components of umbra. One of
these asymptotes isδ1 and we could have chosen the other to beδ2.

Note also that in our example, the light source is parallel tothe shadow plane, and there are also many sym-
metries. None of this is critical ; the example can be perturbed and the result still holds.

We know prove a lower bound for fat polytopes, polytopes whose aspect ratios are bounded from below by a
positive constant whenn goes to infinity.

Theorem 13.8.The umbra cast on a plane by one segment light source in the presence of two fat disjoint polytopes
of total complexity n can haveΩ(n) connected components.

Proof. Our lower-bound example consists of one segment light sources1, a polytopeQ2 of sizeO(n), and another
polytope,Q3, of constant size. Refer to Figure 13.10.

First we consider three skew linesl1 ⊃ s1, l2 andl3 andσ = 〈s1, l2, l3〉 the quadric patch(es) consisting of the
lines stabbings1, l2 andl3. In the shadow planeΠ, by adding suitable half planesP2 andP3 as obstacles limited by
the linesl2 andl3, we obtainα, a single conic arc ofσ∩Π, bounding the umbra where the umbra is on the concave
side ofα (Figure 13.10-left).

We now considerp1, one of the endpoints ofs1, andα2, α3, the intersections of planesP2, P3 with the cone of
apexp1 and baseα (Figure 13.10-center).
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Next, we reduce the obstaclesP2 and P3 to convex polygonsQ2 and Q3 by limiting them by a polygonal
approximation ofα2 andα3 such thatQ3 remains within (i.e., on the convex side of)α3 andQ2 intersectsα2 n
times (Figure 13.10-right). The umbra cast bys1 on Π in the presence ofQ2 andQ3 then consists ofn connected
components that are the intersection of the concave region outsideα and the convex polygon that is the intersection
of the cone of apexp1 and baseQ2 with the planeΠ.

Note that the polygonsQ2 andQ3 are fat sinceQ2 consists of a segment and of an approximation of a conic
andQ3 is of constant size. Finally, polygonsQ2 andQ3 can be trivially transformed into fat polytopes without
changing the umbra. 2

Theorem 13.9. The umbra cast on a plane by one segment light source in the presence of k disjoint polytopes of
total complexity n can haveΩ(nk2) connected components.

Proof. Consider three non-parallel segmentss1, l2, andl3 all parallel to the shadow planeΠ and planesP2 ⊃ l2 and
P3 ⊃ l3 parallel toΠ, refer to Figure 13.11. The surface〈s1, l2, l3〉 intersectsΠ in a conic arcα.

Now consider the following setup :s1 is the light source ;P2 hask narrow rectangular holes (or slits) parallel
and arbitrary close tol2 ; similarly P3 hask slits parallel and arbitrary close tol3. (A plane withk such slits can
be modelled byO(k) rectangles.) Each pair of slits,s2 from P2 ands3 from P3, together with the light sources1

induce a piece of penumbra inΠ that is essentially a thickened copy of the conic arcα.
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We thus get that the umbra covers the whole planeΠ except fork2 curves of penumbra that are all close toα
(see Figure 13.11-left).

Finally, we trim the two planesP2 andP3, creating ann-sided convex polygon onΠ such that the region out-
side this polygon is in light or penumbra and each edge intersects all thek2 curves. The umbra then consists ofnk2

regions inside the convex polygon and between thek2 conics (see Figure 13.11-right). Note that theO(k) convex
obstacles can each be transformed into a polytope by the addition of a single vertex without changing the umbra.2

Theorem 13.10.The umbra cast on a plane by a segment light source in the presence of k disjoint polytopes can
haveΩ(k4) connected components.

Proof. Refer to Figure 13.12. As in the previous lower-bound example, we createk2 curves of penumbra using
parallel thin holes. Making a second set of thin holes in eachplane, we create a second family of curves of light
and penumbra intersecting the first one. The umbra is now the complement of the union of these two sets of curves
and it consists ofΩ(k4) connected components. 2

13.5.2 The umbra cast by a polygonal light source
Note that the lower bound ofΩ(nk2 +k4) of Section 13.5.1 for a segment light source can easily be modified

into a lower bound ofΩ(nk3 +k6) in the case of a polygonal light source (by adding a third plane with O(k) slits
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FIG. 13.13 –Ω(n2k3) lower bound.
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FIG. 13.14 –Ω(nk5) lower bound.

and a big polygonal light source). We present here a lower bound ofΩ(n2k3+nk5) on the complexity of the umbra
cast by a polygonal light source in the presence ofk polygonal obstacles.

Theorem 13.11.The umbra cast on a plane by one polygonal light source in the presence of k disjoint polytopes
of total complexity n can haveΩ(n2k3) connected components.

Proof. Refer to Figure 13.13. Letp be a point andP1 a smalln-gon light source very close top. Add an-gon
obstacle very close to the light source so that the light source behaves liken point light sources (when viewed from
the correct side).

Now consider a plane obstacle withk thin holes parallel to a linel1. This createsnk parallel thin lines of light
on the shadow plane that can be made arbitrarily close to a line L (by having thek thin holes sufficiently close to
each other and then point light sources sufficiently close to each other). Note that by duplicating this construction
(and thus with two polygonal light sources which behave as 2n point light sources) we get an arrangement of 2nk
lines of light withn2k2 connected components of umbra.

Now consider two linesl2 and l3 that together withL admit a quadric as line transversals. Cut this quadric
by a plane and approximate (a pieceC of) the resulting conic by a convexn-polyline, P2. The set of transversals
to the boundary of this polyline withl2 andl3 defines a curve on the shadow plane that cutsL ordern times. We
define a light source as the convex hull ofP2 and put an obstacle very close to it so that the light source behaves
as if the polylineP2 was the light source (when viewed from the right region). Now, replacingl2 and l3 by two
plane obstacles with orderk thin holes close and parallel tol2 andl3, respectively, we getk2 curves of light, each
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of which intersects ordern times each of thenk lines of light close toL. This giveΩ(n2k3) connected component
of the umbra.

Note that the two light sourcesP1 andP2 can be merged into one by consideringP2 in the same plane asP1, by
noticing that there are enough degrees of freedom onl1 andl2 so that the convex hull ofP1 and an arc of the conic
containsC on its boundary. 2

Theorem 13.12.The umbra cast on a plane by one polygonal light source in the presence of k disjonit polytopes
of total complexity n can haveΩ(nk5) connected components.

Proof. Refer to Figure 13.14. Consider three horizontal pairwise skew linesl1, l2, l3 that lie above a horizontal
planeΠ and letC be the conic intersection of their common transversal withΠ. Replace each of thel i by a plane
obstacle andk thin holes close tol i and place a large (horizontal) light sourceSabove these planes obstacles.

Consider now an-gonP that intersectsC ordern times. Lets4 ands5 be two intersecting horizontal segments.
Let P′ be the symmetric ofP with respect of the point of intersection betweens4 ands5. We considerP′ as a light
source and put an obstacle very close to it so that it behaves as a one-dimensional polygonal light source when
viewed fromC. This induces on the shadow plane a polyline of light that intersectsC ordern times.

Now perturb segmentss4 ands5 so that they do not intersect and replace them by (horizontal) plane obstacles
with k thin holes close and parallel tos4 ands5, respectively. We hence getk2 curves of light, each of which consists
of ordern conic arcs that each intersectsC ; hence each of thesek2 curves of light intersectsC ordern times. By
chosing the holes nearl1, l2 andl3 sufficiently close to each other, respectively, each of thek2 curves of light close
to P intersectsO(n) times each of thek3 curves of light close toC. We hence getnk5 connected components of
umbra. 2

13.6 Conclusion
The purpose of this paper is to establish the complexity of the boundaries between the umbra, penumbra and

fully-lit regions on a plane in a polyhedral scene consisting of k convex objects of total complexityn.
The results presented here constitute a first step toward understanding the intrinsic structure and complexity

of the umbra in this setting. We have proved that if the light is reduced to one line segment, then the umbra may
haveΩ(nk2+k4) connected components andO(nk3) complexity. We have also shown that a polygonal light source
could generate an umbra withΩ(n2k3 +nk5) connected components andO(n3k3) complexity. In both cases these
components of umbra are delimited by arcs of conics. These results prove that the umbra is intrinsically much
more intricate than the boundary between full light and penumbra which is bounded by line segments and has
complexityO(nα(k)+kmα(k)+k2), wherem is the complexity of the light source.

Our upper bounds, in fact, apply to the complexity of the arrangement of the curves where the derivative of
the light intensity is discontinuous. These arrangements clearly include the boundary of the umbra, but also a lot
of curves inside the penumbra that are not relevant to the umbra. Furthermore, our upper bound on the complexity
of these arrangements is tight for a segment light source (see the full paper for details). This perhaps explains why
our bounds on the complexity of the umbra are not tight. Notice, however, that we do have tight bounds for small
k (k = O(1)) and for smalln (n = O(k)).
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Near-optimal parameterization of the
intersection of quadrics : I. The generic

algorithm
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Abstract

We present the first exact and efficient algorithm for computing a parametric representation of the
intersection of two quadrics in three-dimensional real space given by implicit equations with rational
coefficients. The output functions parameterizing the intersection are rational functions whenever it
is possible, which is the case when the intersection is not a smooth quartic (for example, a singular
quartic, a cubic and a line, and two conics). Furthermore, the parameterization is near-optimal in
the sense that the number of square roots appearing in the coefficients of these functions is minimal
except in a small number of cases where there may be an extra square root. In addition, the algo-
rithm is practical : a complete, robust and efficient C++ implementation is described in Lazard et
al. [LPP06].

In Part I, we present an algorithm for computing a parameterization of the intersection of two arbi-
trary quadrics which we prove to be near-optimal in the generic, smooth quartic, case. Parts II and III
treat the singular cases. We present in Part II the first classification of pencils of quadrics according
to the real type of the intersection and we show how this classification can be used to efficiently
determine the type of the real part of the intersection of twoarbitrary quadrics. This classification
is at the core of the design of our algorithms for computing near-optimal parameterizations of the
real part of the intersection in all singular cases. We present these algorithms in Part III and give
examples covering all the possible situations in terms of both the real type of intersection and the
number and depth of square roots appearing in the coefficients.

14.1 Introduction
The simplest of all the curved surfaces, quadrics (i.e., algebraic surfaces of degree two), are fundamental

geometric objects, arising in such diverse contexts as geometric modeling, statistical classification, pattern re-
cognition, and computational geometry. Computing the intersection of two general quadrics is a fundamental
problem and an exact parametric representation of the intersection is often desirable. For instance, it is at the
basis of such complex geometric operations as computing convex hulls of quadric patches [HI95], arrangements
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of sets of quadrics [BHK+05, MTT05, SW06, Wol02], and boundary representations of quadric-based solid mo-
dels [KCF+04,Sar83].

Until recently, the only known general method for computinga parametric representation of the intersection
between two arbitrary quadrics was due to J. Levin [Lev76,Lev79]. It is based on an analysis of the pencil generated
by the two quadrics, i.e. the set of linear combinations of the two quadrics.

Though useful, Levin’s method has serious limitations. Whenthe intersection is singular or reducible, a pa-
rameterization by rational functions is known to exist, butLevin’s pencil method fails to find it and generates a
parameterization that involves the square root of some polynomial. In addition, when a floating point representation
of numbers is used, Levin’s method sometimes outputs results that are topologically wrong and it may even fail to
produce any parameterization at all and crash. On the other hand a correct implementation using exact arithmetic
is essentially out of reach because Levin’s method introduces algebraic numbers of fairly high degree. A good
indication of this impracticality is that even for the simple generic example of Section 14.8.2, an exact parametric
form output by Levin’s algorithm (computed by hand with Maple) fills up over 100 megabytes of space !

Over the years, Levin’s seminal work has been extended and refined in several different directions. Wilf and
Manor [WM93] use a classification of quadric intersections bythe Segre characteristic (see [Bro06]) to drive the
parameterization of the intersection by the pencil method.Recently, Wang, Goldman and Tu [WGT03] further
improved the method by making it capable of computing structural information on the intersection and its various
connected components and able to produce a parameterization by rational functions when it exists. Whether their
refined algorithm is numerically robust is open to question.

Another method of algebraic flavor was introduced by Farouki, Neff and O’Connor [FNO89] when the inter-
section is degenerate. In such cases, using a combination ofclassical concepts (Segre characteristic) and algebraic
tools (factorization of multivariate polynomials), the authors show that explicit information on the morphological
type of the intersection curve can be reliably obtained. A notable feature of this method is that it can output an
exact parameterization of the intersection in simple cases, when the input quadrics have rational coefficients. No
implementation is however reported.

Rather than restricting the type of the intersection, others have sought to restrict the type of the input quadrics,
taking advantage of the fact that geometric insights can then help compute the intersection curve [GM91, Mil87,
MG95,SJ92,SJ94]. Specialized routines are devised to compute the intersection curve in each particular case. Even
though such geometric approaches are numerically more stable than the algebraic ones, they are essentially limited
to the class of so-called natural quadrics (i.e., the planes, right cones, circular cylinders and spheres) and planar
intersections.

Perhaps the most interesting of the previously known algorithms for computing an explicit representation
of the intersection of two arbitrary quadrics is the method of Wang, Joe and Goldman [WJG02]. This algebraic
method is based on a birational mapping between the intersection curve and a plane cubic curve. The cubic curve
is obtained by projection from a point lying on the intersection. Then the classification and parameterization of
the intersection are obtained by invoking classical results on plane cubics. The authors claim that their algorithm
is the first to produce a complete topological classificationof the intersection (singularities, number and types of
connected components, etc.). However, the computation of the center of projection uses (an enhanced version of)
Levin’s algorithm. Either floating point arithmetic is usedand the point will in general not exactly lie on the curve,
leading to possibly incorrect classification, or exact arithmetic is used and the parameterizations computed will
involve algebraic numbers of very high degree, thereby limiting their practical value.

14.1.1 Contributions
In this series of papers, we present the first exact and efficient algorithm for computing a parametric repre-

sentation of the intersection of two quadric surfaces in three-dimensional real space given by implicit equations
with rational coefficients. As a side product of this algorithm, we also obtain the first classification of pencils of
quadrics based on the type of the curve of intersection in real projective space.

Our algorithm (as well as its implementation [LPP06]) has the following main features :
– it computes an exact parameterization of the intersectionof two quadrics with rational coefficients of arbi-

trary size ;
– it places no restriction of any kind on the type of the intersection or the type of the input quadrics ;
– it correctly identifies, separates and parameterizes all the connected components of the intersection and
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gives all the information on the incidence between the components, that is where and how (e.g., tangentially
or not) two components intersect ;

– the parameterization is rational when one exists ; otherwise the intersection is a smooth quartic and the
parameterization involves the square root of a polynomial ;

– the parameterizations are either optimal in the degree of the extension ofQ on which their coefficients are
defined or, in a small number of well-identified cases, involve one extra possibly unnecessary square root.

Note that our complete, robust and efficient C++ implementation [LPP06] of this algorithm, which uses
arbitrary-precision integer arithmetic, can routinely compute parameterizations of the intersection of quadrics with
input integer coefficients having ten digits in less than 40 milliseconds on a mainstream PC.

The above features imply in particular that the output parameterization of the intersection is almost as “simple”
as possible, meaning that the parameterization is rationalif one exists, and that the coefficients appearing in the
parameterization are almost as rational as possible. This “simplicity” is, in itself, a key factor for making the
parameterization process both feasible and efficient (by contrast, an implementation of Levin’s method using exact
arithmetic is essentially out of reach). It is also crucial for the easy and efficient processing of parameterizations in
further applications.

Formally, we prove the following.

Theorem 14.1. In three-dimensional real space, given two quadrics in implicit form with rational coefficients,
our algorithm first computes the type of their intersection in real projective space. If it is a smooth quartic, there
does not exist any rational parameterization of the intersection and our algorithm computes a parameterization
such that, in projective space, each coordinate belongs toK[ξ,

√
∆] (the ring of polynomials inξ and

√
∆ with

coefficients inK), whereξ is the (real) parameter,∆ ∈ K[ξ] is a polynomial inξ, and K is either the field of
the rationals or an extension ofQ by the square root of an integer. If the intersection is not a smooth quartic, our
algorithm computes a rational parameterization of each component of the intersection over a fieldK of coefficients
which isQ or an extension ofQ of degree 2 or 4 ; this means that each projective coordinate of the component of
the intersection is a polynomial inK[ξ].

In all cases, eitherK is a field of smallest possible degree23 over which there exists such a parameterization
or K is an extension of such a smallest field by the square root of aninteger. In the latter situation, testing if this
extra square root is unnecessary and, if so, finding an optimal parameterization are equivalent to finding a rational
point on a curve or a surface (which is computationally hard and can even be undecidable).

14.1.2 Overview
Due to the number of contributions and results of this work, this paper has been broken down into three parts. In

Part I, we present a first and major improvement to Levin’s pencil method and the accompanying theoretical tools.
This simple algorithm, referred to from now on as the “generic algorithm”, outputs a near-optimal parameterization
when the intersection is a smooth quartic, i.e. the generic case. However, the generic algorithm ceases to be optimal
(both from the point of view of the functions used in the parameterizations and the size of their coefficient field)
in several singular situations. Parts II and III refine the generic algorithm by considering in turn all the possible
types of intersection. In Part II, we present our classification of pencils of quadrics based on the type of their
intersection in real projective space. We also show how to use this classification to compute efficiently the type of
the real intersection. In Part III, we present optimal or near-optimal algorithms for each possible type of singular
intersection.

Part I is organized as follows. In Section 14.2, we present basic definitions, notation and useful known results.
Section 14.3 summarizes the ideas on which the pencil methodof Levin for intersecting quadrics is based and
discusses its shortcomings. In Section 14.4 we present our generic algorithm. Among the results of independent
interest presented in this section are the almost always existence of a ruled quadric with rational coefficients in

23Recall that, ifK is a field extension ofQ, thedegreeof the extension is defined as the dimension ofK as a
vector space overQ. For instance, ifQ(ρ) is a field extension ofQ (distinct fromQ), then its degree is 2 since
there is a one-to-one correspondence between any elementx∈ Q(ρ) and(α1,α2) ∈ Q2 such thatx = α1 + α2 ρ.
Similarly, if Q and two field extensionsQ(ρ) andQ(ρ′) are pairwise distinct, then the degree ofQ(ρ,ρ′) is 4
since there is a one-to-one correspondence between any element x ∈ Q(ρ) and (α1,α2,α3,α4) ∈ Q4 such that
x = α1 +α2 ρ+α3 ρ′ +α4 ρ ρ′.
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a pencil (proved in Section 14.5) and new parameterizationsof ruled projective quadrics involving an optimal
number of radicals in the worst case (a fact proved in Section14.6). In Section 14.7, we prove the near-optimality
of the output parameterization in the generic case, that is when the intersection curve is a smooth quartic, and
show that the parameterization is optimal in the worst case,meaning that there are examples in which the possibly
extra square root is indeed needed. Then, in Section 14.8, wegive several examples and show the result of our
implementation on these examples, before concluding.

14.2 Notation and preliminaries
In what follows, all the matrices considered are real squarematrices. Given a real symmetric matrixSof size

n+1, the upper left submatrix of sizen, denotedSu, is called theprincipal submatrixof Sand the determinant of
Su theprincipal subdeterminantof S.

We call aquadricassociated toS the set

QS = {x ∈ Pn | xTSx = 0},

wherePn = P(R)n denotes the real projective space of dimensionn. (Note that every matrix of the formαS, where
α ∈ R \ {0}, represents the same quadricQS.) When the ambient space isRn instead ofP(R)n, the quadric is
simply QS minus its points at infinity.

In the rest of this paper, geometric objects and parameterizations are assumed to live in projective space. For
instance, a point ofP3 has four coordinates. An object (point, line, plane, cone, quadric, etc.) given by its implicit
equation(s) is said to berational over a fieldK if the coefficients of its equation(s) live in the fieldK. Note that,
when talking about parameterizations, some confusion can arise between two different notions : the rationality of
the coefficients and the rationality of the defining functions (a quotient of two polynomial functions is often called
a rational function). The meaning should be clear dependingon the context.

Matrix S being symmetric, all of its eigenvalues are real. Letσ+ and σ− be the numbers of positive and
negative eigenvalues ofS, respectively. Therank of S is the sum ofσ+ andσ−. We define theinertia of SandQS

as the pair
(max(σ+,σ−),min(σ+,σ−)).

(Note that it is more usual to define the inertia as the pair(σ+,σ−), but our definition, in a sense, reflects the fact
thatQS andQ−S are one and the same quadric.) A matrix of inertia(n,0) is calleddefinite. It is positive definiteif
σ− = 0, negative definiteotherwise. MatrixSand quadricQS are calledsingular if the determinant ofS is zero ;
otherwise they are callednonsingular.

The inertia of a quadric inP3 is a fundamental concept which somehow replaces the usual type of a quadric in
R3. For the convenience of the reader we recall in Table 14.1 thecorrespondence between inertias inP3 and types
in R3.

In P3, any quadric not of inertia(3,1) is either a ruled surface or not a surface. Also, the quadricsof inertia
(3,1) are the only ones with a strictly negative determinant. The nonsingular quadrics are those of rank 4, i.e. those
of inertia(4,0),(3,1) and(2,2). Quadrics of inertia(4,0) are however empty of real points. A quadric of rank 3 is
called acone. The cone is said to bereal if its inertia is(2,1). It is said to beimaginaryotherwise, in which case
its real projective locus is limited to its singular point. Aquadric of rank 2 is apair of planes. The pair of planes is
real if its inertia is(1,1). It is called imaginary if its inertia is(2,0), in which case its real projective locus consists
of its singular line, i.e. the line of intersection of the twoplanes. A quadric of inertia(1,0) is called adouble plane
and is necessarily real.

Two real symmetric matricesSandS′ of sizen are said to besimilar if and only if there exists a nonsingular
matrixP such that

S′ = P−1SP.

Note that two similar matrices have the same characteristicpolynomial, and thus the same eigenvalues. Two ma-
trices are said to becongruentor projectively equivalentif and only if there exists a nonsingular matrixP with real
coefficients such that

S′ = PTSP.
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Inertia ofQS Inertia ofSu Euclidean Euclidean type ofQS

canonical equation

(4,0) (3,0) x2 +y2 +z2 +1 /0 (imaginary ellipsoid)
(3,1) (3,0) x2 +y2 +z2−1 ellipsoid

(2,1) x2 +y2−z2 +1 hyperboloid of two sheets
(2,0) x2 +y2 +z elliptic paraboloid

(3,0) (3,0) x2 +y2 +z2 point
(2,0) x2 +y2 +1 /0 (imaginary elliptic cylinder)

(2,2) (2,1) x2 +y2−z2−1 hyperboloid of one sheet
(1,1) x2−y2 +z hyperbolic paraboloid

(2,1) (2,1) x2 +y2−z2 cone
(2,0) x2 +y2−1 elliptic cylinder
(1,1) x2−y2 +1 hyperbolic cylinder
(1,0) x2 +y parabolic cylinder

(2,0) (2,0) x2 +y2 line
(1,0) x2 +1 /0 (imaginary parallel planes)

(1,1) (1,1) x2−y2 intersecting planes
(1,0) x2−1 parallel planes
(0,0) x simple plane

(1,0) (1,0) x2 double plane
(0,0) 1 /0 (double plane at infinity)

TAB . 14.1 –Correspondence between quadric inertias and Euclidean types.

The transformation sendingS to S′ is called acongruencetransformation. Moreover if matrixP has rational co-
efficients, the congruence is said to be rational. Sylvester’s Inertia Law asserts that the inertia is invariant under
a congruence transformation [Lam73], i.e.S andS′ have the same inertia. Note also that the determinant ofS is
invariant by a congruence transformation, up to a square factor (the square of the determinant of the transformation
matrix).

Let SandT be two real symmetric matrices of the same size and letR(λ,µ) = λS+µT. The set

{R(λ,µ) | (λ,µ) ∈ P1}

is called thepencil of matrices generated byS andT. For the sake of simplicity, we sometimes write a member
of the pencilR(λ) = λS−T, λ ∈ R = R∪{∞}. Associated to it is a pencil of quadrics{QR(λ,µ) | (λ,µ) ∈ P1}.
Recall that the intersection of two distinct quadrics of a pencil is independent of the choice of the two quadrics.
We call the binary form

D(λ,µ) = detR(λ,µ)

thecharacteristic polynomialof the pencil.

14.3 Levin’s pencil method
Since our solution to quadric surface intersection builds upon the pencil method of [Lev76, Lev79], we start

by recalling the main steps of his algorithm for computing a parameterized representation of the intersection of
two distinct implicit quadricsQS andQT of R3. Starting from this short description, we then identify where this
algorithm introduces high-degree algebraic numbers and why this is a problem.

The high-level idea behind Levin’s algorithm is this : if (say) QS is of some “good” type, thenQS admits
a parameterization which is linear in one of its parameters and plugging this parameterization in the implicit
equation ofQT yields a degree 2 equation in one of the parameters (instead of a degree 4 equation) which can be
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quadric
canonical

equation (a,b > 0)
parameterizationX = [x,y,z], u,v∈ R

simple plane x = 0 X(u,v) = [0,u,v]
double plane x2 = 0 X(u,v) = [0,u,v]

parallel planes ax2 = 1 X(u,v) = [ 1√
a,u,v], X(u,v) = [− 1√

a,u,v]

intersecting planes ax2−by2 = 0 X(u,v) = [ u√
a, u√

b
,v], X(u,v) = [ u√

a,− u√
b
,v]

hyperbolic paraboloid ax2−by2−z= 0 X(u,v) = [ u+v
2
√

a, u−v
2
√

b
,uv]

parabolic cylinder ax2−y = 0 X(u,v) = [u,au2,v]
hyperbolic cylinder ax2−by2 = 1 X(u,v) = [ 1

2
√

a(u+ 1
u), 1

2
√

b
(u+ 1

u),v]

TAB . 14.2 –Parameterizations of canonical simple ruled quadrics [Lev76].

easily solved to get a parametric representation ofQS∩QT . When neitherQS nor QT has a “good” type, then one
can find a quadricQR of “good” type in the pencil generated byQS andQT , and we are back to the previous case
replacingQS by QR.

The definition of a “good” type is embodied in Levin’s notion of simple ruled quadric24 and the existence of
such a quadricQR is Levin’s key result :

Theorem 14.2( [Lev76]). The pencil generated by any two distinct quadrics contains at least one simple ruled
quadric, i.e., one of the quadrics listed in Table 14.2, or the empty set.

In more details, Levin’s method is as follows.

1. Find a simple ruled quadric in the pencil{QR(λ)=λS−T | λ ∈R} generated byQS andQT , or report an empty
intersection. Since simple ruled quadrics have a vanishingprincipal subdeterminant, this is achieved by
searching for aλ0 ∈ R such that det(Ru(λ0)) = 0 andQR = QR(λ0) is simple ruled ; by Theorem 14.2, such
a quadric exists or the pencil contains the empty set. Assume, for the sake of simplicity, that the intersection
is not empty and thatQR andQS are distinct. ThenQS∩QT = QS∩QR.

2. Determine the orthonormal transformation matrixPu which sendsRu in diagonal form by computing the ei-
genvalues and the normalized eigenvectors ofRu. Deduce the transformation matrixP which sendsQR into
canonical form. In the orthonormal frame in which it is canonical, QR admits one of the parameterizations
X of Table 14.2.

3. Compute the matrixS′ = PTSPof the quadricQS in the canonical frame ofQR and consider the equation

XTS′X = a(u)v2 +b(u)v+c(u) = 0, (14.1)

whereX has been augmented by a fourth coordinate set to 1. (The parameterizations of Table 14.2 are such
thata(u),b(u) andc(u) are polynomials of degree at most four inu.)

Solve (14.1) forv in terms ofu and determine the corresponding domain of validity ofu on which the solu-
tions are defined, i.e., the set ofu such that∆(u) = b2(u)−4a(u)c(u) > 0. Substitutingv by its expression
in terms ofu in X, we have a parameterization ofQS∩QT = QS∩QR in the orthonormal coordinate system
in whichQR is canonical.

4. OutputPX(u), the parameterized equation ofQS∩QT in the global coordinate frame, and the domain of
u∈ R on which it is valid.

This method is very nice and powerful since it gives an explicit representation of the intersection of two general
quadrics. However, it is far from being ideal from the point of view of precision and robustness since it introduces
non-rational numbers at several different places. Thus, ifa floating point representation of numbers is used, the
result may be wrong (geometrically and topologically) or, worse, the program may crash (especially in Step 1

24In [Lev76,Lev79], Levin refers to these quadrics as to nonelliptic paras.
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inertia
of S

canonical equation
(a,b,c,d > 0)

parameterizationX = [x,y,z,w]

(4,0) ax2 +by2 +cz2 +dw2 = 0 QS = /0
(3,0) ax2 +by2 +cz2 = 0 QS is point(0,0,0,1)

(2,2) ax2 +by2−cz2−dw2 = 0 X = [ut+avs
a , us−bvt

b , ut−avs√
ac , us+bvt√

bd
], (u,v),(s, t) ∈ P1

(2,1) ax2 +by2−cz2 = 0 X = [uv, u2−abv2
2b , u2+abv2

2
√

bc
,s], (u,v,s) ∈ P⋆2

(2,0) ax2 +by2 = 0 X = [0,0,u,v], (u,v) ∈ P1

(1,1) ax2−by2 = 0 X1 = [u,
√

ab
b u,v,s], X2 = [u,−

√
ab
b u,v,s], (u,v,s) ∈ P2

(1,0) ax2 = 0 X = [0,u,v,s], (u,v,s) ∈ P2

TAB . 14.3 – Parameterization of projective quadrics of inertia different from (3,1). In the parameteriza-
tion of projective cones,P⋆2 stands for the 2-dimensional real quasi-projective space defined as the quotient
of R3 \ {0,0,0} by the equivalence relation∼ where(x,y,z) ∼ (y1,y2,y3) iff ∃λ ∈ R \ {0} such that(x,y,z) =
(λy1,λy2,λ2y3).

when the type of the quadricsQR(λ0) are incorrectly computed). In theory, exact arithmetic would do, except that it
would highly slow down the computations. In practice, however, a correct implementation using exact arithmetic
seems out of reach because of the high degree of the algebraicnumbers involved.

Let us examine more closely the potential sources of numerical instability in Levin’s algorithm.
– Step 1: λ0 is the root of a third degree polynomial with rational coefficients. In the worst case, it is thus

expressed with nested radicals of depth two. Since determining if QR(λ0) is simple ruled involves computing
its Euclidean type (not an easy task considering thatQR(λ0−ε) andQR(λ0+ε) may be and often are of different
types), this is probably the biggest source of non-robustness.

– Step 2: SinceQR is simple ruled, the characteristic polynomial ofRu is a degree three polynomial having
zero as a root and whose coefficients are in the field extensionQ(λ0). Thus, the nonzero eigenvalues ofRu

may involve nested radicals of depth three. Since the corresponding eigenvectors have to be normalized, the
coefficients of the transformation matrixP are expressed with radicals of nesting depth four in the worst
case.
Since the coefficients of the parameterizationX of QR are expressed as square roots of the coefficients of
the canonical equationQPT RP (as in Table 14.2), the coefficients of the parameterizationof QS∩QT can
involvenested radicals of depth fivein the worst case.

– Step 3: Computing the domain ofX amounts to solving the fourth degree equation∆(u) = 0 whose coeffi-
cients are nested radicals of worst-case depth five inQ.

Note that this worst-case picture is the generic case. Indeed, given two arbitrary quadrics with rational coeffi-
cients, the polynomial det(Ru(λ)) will generically have no rational root (a consequence of Hilbert’s Irreducibility
Theorem).

14.4 Generic algorithm
We now present a first but major improvement to Levin’s pencilmethod for computing parametric representa-

tions of the intersection of quadrics.
This so-called “generic algorithm” removes most of the sources of radicals in Levin’s algorithm. We prove in

Section 14.7 that it is near-optimal in the generic, smooth quartic case. It is however not optimal for all the possible
types of intersection and will need later refinements (see the comments in Section 14.9, and Parts II and III). But it
is sufficiently simple, robust and efficient to be of interestto many.

We start by introducing the projective framework underlying our approach and stating the main theorem on
which the generic approach rests. We then outline our algorithm and detail particular steps in ensuing sections.

From now on, all the input quadrics considered have their coefficients (i.e., the entries of the corresponding
matrices) inQ.
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14.4.1 Key ingredients
The first ingredient of our approach is to work not just overR3 but over the real projective spaceP3. Recall

that, in projective space, quadrics are entirely characterized by their inertia (i.e., two quadrics with the same inertia
are projectively equivalent), while in Euclidean space they are characterized by their inertia and the inertia of their
principal submatrix.

In our algorithm, quadrics of inertia different from(3,1) (i.e., ruled quadrics) play the role of simple ruled
quadrics in Levin’s method. In Table 14.3, we present a new set of parameterizations of ruled projective quadrics
that are both linear in one of their parameters and involve, in the worst case, a minimal number of square roots25,
which we prove in Section 14.6. That these parameterizations are faithful parameterizations of the projective qua-
drics (i.e., there is a one-to-one correspondence between the points of the quadric and the parameters) is proved in
the appendix.

Another key ingredient of our approach is encapsulated in the following theorem, which mirrors, in the pro-
jective setting, Levin’s theorem on the existence of ruled quadrics in a pencil.

Theorem 14.3. In a pencil generated by any two distinct quadrics, the setS of quadrics of inertia different from
(3,1) is not empty. Furthermore, if no quadric inS has rational coefficients, then the intersection of the two initial
quadrics is reduced to two distinct points.

This theorem, which is proved in Section 14.5.2, generalizes Theorem 14.2. Indeed, it ensures that the two
quadrics we end up intersecting have rational coefficients,except in one very specific situation. This is how we
remove the main source of nested radicals in Levin’s algorithm.

The last basic ingredient of our approach is the use of Gauss reduction of quadratic forms for diagonalizing a
symmetric matrix and computing the canonical form of the associated projective quadric, instead of the traditional
eigenvalues/eigenvectors approach used by Levin. Since Gauss transformation is rational (the elements of the
matrixP which sendsS into canonical form are rational), this removes some layersof nested radicals from Levin’s
algorithm. Note, also, that there is no difficulty parameterizing the reduced quadricS′ = PTSPsince, by Sylvester’s
Inertia Law,SandS′ have the same inertia.

14.4.2 Algorithm outline
Armed with these ingredients, we are now in a position to outline our generic algorithm.
Let R(λ) = λS−T be the pencil generated by the quadricsQS andQT of P3 andD(λ) = det(R(λ)) be the

characteristic polynomial of the pencil. Recall that, although working in all cases, our generic algorithm is best
designed whenD(λ) is not identically zero and does not have any multiple root. In the other case, a better algorithm
is described in parts II and III. The outline of our intersection algorithm is as follows (details follow in ensuing
sections) :

1. Find a quadricQR with rational coefficients in the pencil, such that detR > 0 if possible or detR = 0
otherwise. (If no suchR exists, the intersection is reduced to two points, which we output.) If the inertia of
R is (4,0), output empty intersection. Otherwise, proceed.
Assume for the sake of simplicity thatQS 6= QR, in such a way thatQS∩QR = QS∩QT .

2. If the inertia ofR is not(2,2), apply Gauss reduction toRand compute a frame in whichPTRPis diagonal.
If the inertia ofR is (2,2), its parameterization contains in general two square rootsbut one can be eliminated
as follows. First, find a rational point close enough toQR such that the quadric in the pencil through this
point has the same inertia asQR. ReplaceQR by this quadric. Then use that rational point to compute a
frame in whichPTRP is the diagonal matrix diag(1,1,−1,−δ), with δ ∈ Q.
In the local frame,QR can be described by one of the parameterizationsX of Table 14.3. Compute the
parameterizationPX of QR in the global frame.

3. Consider the equation
Ω : (PX)TS(PX) = 0. (14.2)

25Note that there is necessarily a trade-off between the minimal degree of a parameterization in one of its para-
meters and the degree of its coefficient field. For instance, Wang, Joe and Goldman [WJG97] give parameterizations
of quadrics that have rational coefficients but are quadratic in all of their parameters.
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EquationΩ is of degree at most 2 in (at least) one of the parameters. Solve it for this parameter in terms of
the other(s) and compute the domain of the solution.

4. Substitute this parameter inPX, giving a parameterization of the intersection ofQS andQT .

14.4.3 Details of Step 1
The detailed description of Step 1 is as follows. Recall thatD(λ) = det(R(λ)) is the characteristic polynomial

of the pencil.
1. a. IfD(λ) ≡ 0, setR= Sand proceed.

b. Otherwise, compute isolating intervals for the real roots of D(λ) (using for instance a variant of Us-
pensky’s algorithm [RZ04]). Compute a rational numberλ0 in between each of the separating intervals
and, for eachλ0 such thatD(λ0) > 0, compute the inertia of the corresponding quadrics using Gauss
reduction. If one of the inertias is(4,0), outputQS∩QT = /0. Otherwise, one of these inertias is(2,2)
and we proceed with the corresponding quadric.

c. Otherwise (i.e.D(λ) 6≡ 0 andD(λ) 6 0 for all λ), compute the greatest common divisor gcd(λ) of D(λ)
and its derivative with respect toλ. If gcd(λ) has a rational rootλ0, proceed with the corresponding
quadricQR(λ0).

d. Otherwise (i.e.D(λ) has two non-rational double real roots),QS∩QT is reduced to two points. The
quadric corresponding to one of these two roots is of inertia(2,0) (an imaginary pair of planes). The
singular line of this pair of planes is real and can be parameterized easily, even though it is not rational.
Intersecting that line with any of the input quadrics gives the two points.

To assert the correctness of this algorithm, we have severalthings to prove. First, we make clear why, when
looking for a quadric in the pencil(S,T) with inertia different from those ofS andT, the right polynomial to
consider isD(λ) :

Lemma 14.4. The inertia of R(λ) is invariant on any interval ofλ not containing a root ofD(λ).

Proof. It suffices to realize that the eigenvalues ofR(λ) are continuous functions ofλ and that the characteristic
polynomial ofR(λ)

det(R(λ)− lI )

is a polynomial inl whose constant coefficient isD(λ), whereI is the identity matrix of size 4. Thus the eigenva-
lues ofR(λ) may change of signe only at a zero of det(R(λ)). 2

Let us now show that Step 1 of our algorithm always outputs empty intersection whenQS∩QT = /0. This, in
fact, is a direct consequence of Lemma 14.4 and of the following theorem proved in 1936/1937 by the German
mathematician Paul Finsler.

Theorem 14.5( [Fin37]). Assume n> 3 and let S,T be real symmetric matrices of size n. Then QS∩QT = /0 if
and only if the pencil of matrices generated by S and T contains a matrix of inertia(n,0).

In Step 1.d,QS andQT intersect in two points by Theorem 14.3. Furthermore, the quadric corresponding to
one of two roots ofD(λ) is a real line by the proof of Theorem 14.3.

Finally, note that we can further refine Step 1.b by computingthe inertia of the quadricsQR(λ0) with positive
determinant only when the characteristic polynomial has four real roots counted with multiplicities. Indeed, in
view of the following proposition, testing for the presenceof a definite matrix in the pencil needs to be done only
in that case.

Proposition 14.6. Assume n> 3 and let S,T be real symmetric matrices of size n. Then QS∩QT = /0 implies that
det(λS+µT) does not identically vanish and that all its roots are real.

Proof. We use the equivalence provided by Theorem 14.5 of the emptiness of the intersection and the existence of
a definite matrix in the pencil. LetU be a definite matrix of the pencil which we choose positive (a similar proof
goes for negative definite).
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SinceU is positive definite, we can apply to it a Cholesky factorization : U = HHT , whereH is a lower trian-
gular matrix. Consider the matrixC = (H−1)S(H−1)T . SinceC is real symmetric, it hasn pairs of real eigenvalues
and eigenvectors(νi ,xi). Let yi = (H−1)Txi . Then we have

H(Cxi) = H(νixi) =⇒ Syi = νiUyi .

Hence all the roots of the characteristic polynomial ofU−1Sare real, which implies that all the roots of det(λS+
µU) = 0 are real. It follows that all the roots of det(λS+µT) = 0 are also real. 2

14.4.4 Details of Step 2
There are two cases, according to the inertia ofR.

14.4.4.1 The inertia ofR is not (2,2)

When the inertia ofR is different from(2,2), we use Gauss reduction of quadratic forms and parameterize
the resulting quadric, whose associated matrixPTRP is diagonal. In view of Sylvester’s Inertia Law, the reduced
quadricQPT RP has the same inertia asQR. Thus it can be parameterized with at most one square root by one of the
parameterizationsX of Table 14.3. Since Gauss reduction is rational (i.e.P is a matrix with rational coefficients),
the parameterizationPX of QR contains at most one square root.

14.4.4.2 The inertia ofR is (2,2)

When the inertia ofR is (2,2), the coefficients of the parameterization ofQR can live, in the worst case, in an
extensionQ(

√
m,

√
n) of degree 4 ofQ (see Table 14.3). We show here that there exists, in the neighborhood of

QR, a quadricQR′ with rational coefficients such that

QS∩QR′ = QS∩QR = QS∩QT

and the coefficients of the parameterization ofQR′ are inQ(
√

detR′).
First, apply Gauss reduction toQR. If any of

√
ac or

√
bd is rational in the parameterization ofQR (as in

Table 14.3), we are done. Otherwise, compute an arbitrary point p ∈ P3(R) on QR by taking any value of the
parameters like, say,(u,v) = (0,1) and(s, t) = (0,1). Approximatep by a pointp′ ∈ P3(Q) not onQS∩QT . Then
computeλ′

0 ∈ Q such thatp′ belongs to the quadricQR(λ′0)
of the pencil. This is easy to achieve in view of the

following lemma.

Lemma 14.7. In a pencil generated by two quadrics QS,QT with rational coefficients, there is exactly one quadric
going through a given pointp′ that is not on QS∩QT . If p′ is rational, this quadric is rational.

Proof. In the pencil generated byQS andQT , a quadricQR(λ,µ) containsp′ if and only if p′T(λS+µT)p′ = 0, that

is if and only if λ(p′TSp′)+µ(p′TTp′) = 0. If p′ is not onQS∩QT , this equation is linear in(λ,µ) ∈ P1 and thus
admits a unique solution. Moreover, ifp′ is rational, the equation has rational coefficients and thusthe quadric of
the pencil containingp′ is rational. 2

Note thatλ′
0 and theλ0 such thatR= R(λ0) get arbitrarily close to one another asp′ gets close top. Thus ifp′

is close enough top, R′ = R(λ′
0) has the same inertia(2,2) asR, by Lemma 14.4. We refine the approximationp′

of p until R′ has inertia(2,2).
We now have a quadricQR′ of inertia(2,2) and a rational point onQR′ . Consider any rational line throughp′

that is not in the plane tangent toQR′ at p′. This line further intersectsQR′ in another pointp′′. Pointp′′ is rational
because otherwisep′ and p′′ would be conjugate in the field extension ofp′′ (sinceQR′ and the line are both
rational) and thusp′ would not be rational. Compute the rational transformationP sendingp′,p′′ onto(1,±1,0,0).
Apply this transformation toR′ and then apply Gauss reduction of quadratic forms. In the local frame,QR′ has
equation (up to a constant factor)

x2−y2 +αz2 +βw2 = 0, (14.3)
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with αβ < 0. Now consider the linear transformation whose matrix isP′

P′ =
1
2









1+α 0 1−α 0
1−α 0 1+α 0

0 2 0 0
0 0 0 2α









.

Applying P′ to the already reduced quadric of Eq. (14.3) gives the equation

x2 +y2−z2−δw2 = 0, (14.4)

whereδ = −αβ > 0. The quadric of Eq. (14.4) can be parameterized by

X((u,v),(s, t)) =
(

ut+vs,us−vt,ut−vs,
us+vt√

δ

)

,

with (u,v),(s, t) ∈ P1 (see Table 14.3).
The three consecutive transformation matrices have rational coefficients thusQ(

√
δ) = Q(

√
detR′) and the

product of these transformation matrices withX is a polynomial parameterization ofQR′ with coefficients in
Q(

√
δ), δ ∈ Q.

14.4.5 Details of Step 3
Solving Equation (14.2) can be done as follows. Recall that the content in the variablex of a multivariate

polynomial is the gcd of the coefficients of thexi .
Equation (14.2) may be seen as a quadratic equation in one of the parameters. For instance, ifR has inertia

(2,2), Eq. (14.2) is a homogeneous biquadratic equation in the variablesξ = (u,v) and τ = (s, t). Using only
gcd computations, we can factor it in its content inξ (which is a polynomial inτ or a constant), its content inτ,
and a remaining factor. If the content inξ (or in τ) is not constant, solve it inτ (in ξ) ; substituting the obtained
real values inX, we have a parameterization of some components ofQS∩QT = QS∩QR in the frame in which
QR is canonical. If the remaining factor is not constant, solveit in a parameter in which it is linear, if any, or
in τ. Substituting the result inX, we have a parameterization of the last component of the intersection. If the
equation which is solved is not linear, the domain of the parameterization is the set ofξ such that the degree 4
polynomial∆(ξ) = b2(ξ)−4a(ξ)c(ξ) is positive, wherea(ξ),b(ξ) andc(ξ) are the coefficients ofτ2,τ and 1 in
(14.2), respectively.

14.5 Canonical forms and proof of Theorem 14.3
We now prove Theorem 14.3, the key result stated in the previous section. We start by recalling some prelimi-

nary results.

14.5.1 Canonical form for a nonsingular pair of symmetric matrices
We state results, proved by Uhlig [Uhl73, Uhl76], we need forcomputing the canonical form of a pair of real

symmetric matrices. Though only part of this theory is required for the proof of Theorem 14.3 (Section 14.5.2),
we will need its full power in Part II of this paper for characterizing real pencils of quadrics.

Let us start by defining the notion of Jordan blocks.

Definition 14.8. Let M be a square matrix of the form

(ℓ) or









ℓ e 0

e

0 ℓ









.
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If l ∈ R and e= 1, M is called areal Jordan blockassociated withℓ. If

ℓ =

(

a −b
b a

)

, a,b∈ R, b 6= 0, e=

(

1 0
0 1

)

,

M is called acomplex Jordan blockassociated with a+ ib.

Now we can state the real Jordan normal form theorem for real square matrices.

Theorem 14.9(Real Jordan normal form). Every real square matrix A is similar over the reals to a blockdiagonal
matrixdiag(A1, . . . ,Ak), called real Jordan normal form of A, in which each Aj is a (real or complex) Jordan block
associated with an eigenvalue of A.

The Canonical Pair Form Theorem then goes as follows :

Theorem 14.10(Canonical Pair Form). Let S and T be two real symmetric matrices of size n, with S nonsingu-
lar. Let S−1T have real Jordan normal formdiag(J1, . . . ,Jr ,Jr+1, . . . ,Jm), where J1, . . . ,Jr are real Jordan blocks
corresponding to real eigenvalues of S−1T and Jr+1, . . . ,Jm are complex Jordan blocks corresponding to pairs of
complex conjugate eigenvalues of S−1T. Then :

(a) The characteristic polynomial of S−1T anddet(λS−T) have the same rootsλ j with the same (algebraic)
multiplicities mj .

(b) S and T are simultaneously congruent by a real congruencetransformation to

diag(ε1E1, . . . ,εrEr ,Er+1, . . . ,Em)

and
diag(ε1E1J1, . . . ,εrErJr ,Er+1Jr+1, . . . ,EmJm),

respectively, whereεi = ±1 and Ei denotes the square matrix





0 1

1 0





of the same size as Ji for i = 1, . . . ,m. The signsεi are unique (up to permutations) for each set of indices i thatare
associated with a set of identical real Jordan blocks Ji .

(c) The sum of the sizes of the blocks corresponding to one of the λ j is the multiplicity mj if λ j is real or
twice this multiplicity ifλ j is complex. The number of the corresponding blocks (the geometric multiplicity ofλ j )
is t j = n− rank(λ jS−T), and1 6 t j 6 mj .

Note that the canonical pair form of Theorem 14.10 can be considered the finest simultaneous block diagonal
structure that can be obtained by a real congruence transformation for a given pair of real symmetric matrices, in
the sense that it maximizes the number of blocks in the diagonalization ofSandT.

14.5.2 Proof of Theorem 14.3
To prove Theorem 14.3, we consider a pencil of real symmetric4×4 matrices generated by two symmetric

matricesSandT of inertia(3,1). We may suppose that they have the block diagonal form of the above theorem.
If all the blocks had an even size, the determinant ofSwould be positive, contradicting our hypothesis. Thus,

there is a block of odd size in the canonical form ofS. It follows that det(λS−T) has at least one real root and the
matrix of the pencil corresponding to this root has an inertia different from(3,1). This proves the first part.

If det(λS−T) has a simple real root, there is an interval of values forλ for which det(λS−T) > 0, and we
are done with any rational value ofλ in this interval. If det(λS−T) has either a double real root and two complex
roots, two rational double real roots or a quadruple real root, the quadrics corresponding to the real root(s) have
rational coefficients and have inertia different from(3,1).
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Thus we are left with the case where det(λS−T) has two non rational double real roots, which are algebrai-
cally conjugate. In other words,

det(λS−T) = c(λ−λ1)
2(λ−λ2)

2,

with λ1,λ2 ∈ R\Q andλ2 = λ1 its (real algebraic) conjugate. Following the notation of Theorem 14.10, we have
m1 = m2 = 2 and 16 ti 6 2, for i = 1,2. In other words,(t1, t2) ∈ {(1,1),(1,2),(2,1),(2,2)}.

We can quickly get rid of the case(t1, t2) = (1,1). Indeed, in this case the blocks have an even size andS is
not of inertia(3,1). We can also eliminate the cases(t1, t2) ∈ {(1,2),(2,1)}, because the matricesλ1S−T and
λ2S−T are algebraically conjugate, and so must have the same rank and the same number of blocks.

We are thus left with the case(t1, t2) = (2,2). In this situation,SandT have four blocks, i.e., they are diagonal :
{

S= diag(ε1,ε2,ε3,ε4),

T = diag(ε1λ1,ε2λ1,ε3λ2,ε4λ2).

The pencilλS−T is generated by the two quadrics of rank 2
{

S′ = λ1S−T = diag(0,0,ε3(λ1−λ2),ε4(λ1−λ2)),

T ′ = λ2S−T = diag(ε1(λ2−λ1),ε2(λ2−λ1),0,0).

We have that
det(S′ +T ′) = ε1ε2ε3ε4(λ1−λ2)

4

is negative since all the quadrics of the pencil have negative determinant exceptQS′ andQT ′ . Thusε1ε2 andε3ε4

have opposite signs. It follows that one ofS′ andT ′ has inertia(2,0) (sayS′) and the other has inertia(1,1). Thus
QS′ is a straight line, which intersects the real pair of planesQT ′ . SinceQS′ ∩QT ′ is contained in all the quadrics
of the pencil and since the pencil has quadrics of inertia(3,1) (which are not ruled), the lineQS′ is not included
in QT ′ and the intersection is reduced to two real points. Since theequations ofQS′ andQT ′ arez2 + w2 = 0 and
x2−y2 = 0 respectively, the two points have coordinates(1,1,0,0) and(−1,1,0,0). They are thus distinct. 2

Remark 14.11. Pencils generated by two quadrics of inertia(3,1) and having no quadric with rational coefficients
of inertia different from(3,1) do exist. Consider for instance

QS : 2x2−2xz−2yw+z2 +w2 = 0,

QT : 4x2 +2y2−2yw+z2−6xz+3w2 = 0.

Then,det(λS−T) = −(λ2−5)2.

14.6 Optimality of the parameterizations
We now prove that, among the parameterizations of projective quadrics linear in one of the parameters, the

ones of Table 14.3 have, in the worst case, an optimal number of radicals. In other words, for each type of projective
quadric, there are examples of surfaces for which the numberof square roots of the parameterizations of Table 14.3
is required.

More precisely, we prove the following theorem, which will be crucial in asserting the near-optimality of our
algorithm for parameterizing quadric intersections.

Theorem 14.12.In the set of parameterizations linear in one of the parameters, the parameterizations of Table 14.3
are worst-case optimal in the degree of the extension ofQ on which they are defined.

For a quadric Q of equation ax2 +by2− cz2−dw2 = 0 (a,b,c,d > 0), the parameterization of Table 14.3 is
optimal if Q has no rational point, which is the case for some quadrics. Knowing a rational point on Q (if any), we
can compute a rational congruence transformation sending Qinto the quadric of equation x2+y2−z2−abcd w2 =
0, for which the parameterization of Table 14.3 is optimal.

For a quadric Q of equation ax2 +by2−cz2 = 0 (a,b,c > 0), the parameterization of Table 14.3 is optimal if
Q has no rational point other than its singular point(0,0,0,1), which is the case for some quadrics. Knowing such
a rational point on Q (if any), we can compute a rational congruence transformation sending Q into the quadric
of equation x2 +y2−z2 = 0, for which the parameterization of Table 14.3 is rational (and thus optimal).

For the other types of projective quadrics, the parameterizations of Table 14.3 are optimal in all cases.



208 CHAPITRE 14. INTERSECTION OF QUADRICS : I. THE GENERIC ALGORITHM

We prove this theorem by splitting it into four more detailedpropositions : Proposition 14.13 for inertia(1,1),
Proposition 14.14 for inertia(2,1) and Propositions 14.15 and 14.17 for inertia(2,2).

Proposition 14.13.A projective quadric Q of equation ax2−by2 = 0 (a,b> 0) admits a rational parameterization
in Q if and only if it has a rational point outside the singular line x= y = 0, or equivalently iff ab is a square inQ.
If ab is a square inQ, then the parameterization of Table 14.3 is rational.

Proof. A point (x,y,z,w) on Q not on its singular linex = y = 0 is rational if and only ify/x, z/x, andw/x are
rational. Since(y/x)2 = ab

b2 andz andw are not constrained, there exists such a rational point if and only if ab is a
square.

If there exists a parameterization which is rational overQ, then there exists some rational point outside the
line x = y = 0, showinga contrariothat there is no rational parameterization ifab is not a square.

Finally, if ab is the square of a rational number, then the parameterization of Table 14.3 is rational. 2

Proposition 14.14. A projective quadric Q of equation ax2 + by2− cz2 = 0 (a,b,c > 0) admits a rational para-
meterization inQ if and only it contains a rational point other than the singular point (0,0,0,1). Knowing such
a rational point, we can compute a rational congruence transformation P sending Q into the quadric of equa-
tion x2 +y2−z2 = 0 for which the parameterization of Table 14.3 is rational ; lifting this parameterization to the
original space by multiplying by matrix P, we have a rationalparameterization of Q.

On the other hand, there are such quadrics without a rationalpoint and thus without a rational parameteriza-
tion, for example the quadric of equation x2 +y2−3z2 = 0.

Proof. If Q has a rational point other than(x = y = z= 0), any rational line passing through this point and not
included inQcutsQ in another rational point. Compute the rational congruencetransformation sending these points
onto(±1,1,0,0). Applying this transformation toQ gives a quadric of equationx2−y2+r, wherer is a polynomial
of degree at most one inx andy. Thus Gauss reduction algorithm leads to the formx2−y2+dz2 = (X2+Y2−Z2)/d
whereX = (1+d)x/2+(1−d)y/2,Y = dzandZ = (1−d)x/2+(1+d)y/2. The parameterization of Table 14.3
applied to equationX2 +Y2−Z2 is clearly rational. Lifting this parameterization back tothe original space, we
obtain a rational parameterization ofQ.

Reciprocally, ifQ has no rational point, thenQ does not admit a rational parameterization.
Now, suppose for a contradiction that the quadric with equation x2+y2−3z2 = 0 has a rational point(x,y,z,w)

different from(0,0,0,1). By multiplying x,y, andz by a common denominator and dividing them by their gcd,
we obtain another rational point on the quadric for whichx,y andz are integers that are not all even. Note that
x2 is equal, modulo 4, to 0 ifx is even and 1 otherwise (indeed, modulo 4, 02 = 0, 12 = 1, 22 = 0 and 32 = 1).
Thus,x2 + y2 − 3z2 ≡ x2 + y2 + z2 (mod 4) is equal to the number of odd numbers inx,y,z, i.e. 1,2 or 3. Thus
x2 +y2−3z2 6= 0, contradicting the hypothesis that(x,y,z,w) is a point on the quadric. 2

Proposition 14.15. Let Q be the quadric of equation ax2 + by2 − cz2 − dw2 = 0 (a,b,c,d > 0). Any fieldK in
which Q admits a rational parameterization, linear in one ofits parameters, contains

√
abcd.

Proof. Let K be a field in whichQ admits a rational parameterization, linear in the parameter (u,v)∈ P(R). Fixing
the value of the other parameter(s, t) ∈ P(K) defines a rational lineL (in K) contained inQ. L cuts any plane (in
possibly infinitely many points) in projective space. In particular,L cuts the plane of equationz= 0. SinceL ⊆ Q,
L cuts the conic of equationax2 +by2−dw2 = z= 0 in a pointp = (x0,y0,0,1). Moreover,p is rational inK (i.e.,
x0,y0 ∈ K) because it is the intersection of a rational line and the planez= 0.

The plane tangent toQ at p has equationax0x+by0y−dw= 0. We now compute the intersection ofQ with
this plane. Sinceax2

0 + by2
0 = d anda,b,d > 0, x0 or y0 is nonzero ; assume for instance thatx0 6= 0. Squaring

the equation of the tangent plane yields(ax0x)2 = (by0y−dw)2. By eliminatingx2 between this equation and the
equation ofQ, we get

(by0y−dw)2 +ax2
0(by2−cz2−dw2) = 0

or
dw2(d−ax2

0)+by2(ax2
0 +by2

0)−2bdy0yw−acx2
0z2 = 0.
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It follows from ax2
0 +by2

0 = d thatbd(y−y0w)2−acx2
0z2 = 0 or also

b2d2(y−y0w)2−abcd x20z2 = 0. (14.5)

The intersection ofQ and its tangent plane atp contains the lineL which is rational inK. Thus, Equation (14.5)
can be factored overK into two linear terms. Hence,

√
abcdbelongs toK. 2

Remark 14.16. abcd is the discriminant of the quadric, i.e., the determinant of the associated matrix, so it is
invariant by a change of coordinates (up to a square factor).Thus, if R and R′ are two matrices representing the
same quadric in different frames, the fieldsQ(

√
detR) andQ(

√
detR′) are equal.

Proposition 14.17.A projective quadric Q of equation ax2+by2−cz2−dw2 = 0 (a,b,c,d > 0) admits a rational
parameterization inQ(

√
abcd) if and only it contains a rational point. Knowing such a rational point, we can

compute a rational congruence transformation P sending Q into the quadric of equation x2+y2−z2−abcd w2 = 0
for which the parameterization of Table 14.3 is rational over Q(

√
abcd) ; lifting this parameterization to the

original space by multiplying by matrix P, we have a rationalparameterization of Q overQ(
√

abcd).
On the other hand, there are such quadrics with no rational point and thus without a rational parameterization

in Q(
√

abcd), for example the quadric of equation x2 +y2−3z2−11w2 = 0.

Proof. If Q admits a rational parameterization inQ(
√

abcd), then it has infinitely many rational points over this
field. If Q has a point(x,y,z,w) that is rational overQ(

√
abcd), but not rational overQ, we may suppose without

loss of generality thatx = 1, by permuting the variables in order thatx 6= 0 and then by dividing all coordinates
by x. The conjugate point(1,y′,z′,w′) overQ(

√
abcd) belongs also toQ. The line passing through these points is

rational (overQ), as is the point(1,(y+y′)/2,(z+z′)/2,(w+w′)/2). Choose a rational frame transformation such
that this line becomes the linez= w= 0 and this point becomes(1,0,0,0). In this new frame the coordinates of the
conjugate points are(1,±e

√
abcd,0,0) for some rational numbere, and the equation ofQ is abcd e2x2−y2+ r = 0

wherer is a polynomial of degree at most 1 inx andy. Gauss reduction thus provides an equation of the form
abcd e2x2−y2 + f z2−gw2 = 0, and the invariance of the determinant (Remark 14.16) shows that f g is the square
of a rational numberh. Thus(0,0,g,h) is a rational point ofQ overQ.

Now, if Q has a rational point overQ, one may get another rational point as the intersection of the quadric
and any line passing through the point and not tangent to the quadric. One can compute a rational congruence
transformation such that these points become(1,±1,0,0). In this new frame the equation ofQ has the form
x2 − y2 − r wherer is a polynomial of degree at most 1 inx andy. Gauss reduction provides thus an equation
of the formx2− y2 + ez2− f w2 = (X2 +Y2−Z2−e f w2)/e, with X = (1+ e)x/2+(1−e)y/2, Y = ezandZ =
(1−e)x/2+(1+ e)y/2. By the invariance of the determinant,e f = g2abcd for some rational numberg. Putting
W = gw, we get the equationX2+Y2−Z2−abcdW2 = 0 for Q, and the parameterization of Table 14.3 is rational
overQ(

√
abcd).

It follows from this proof that, if a quadric of inertia(2,2) has a rational point, it has a parameterization in
Q(

√
abcd), which is linear in one of the parameters. Conversely, for proving that such a parameterization does not

always exist, it suffices to prove that there are quadrics of inertia(2,2) having no rational point overQ. Let us
consider the quadric of equationx2 +y2−3z2−11w2 = 0. If it has a rational point(x,y,z,w), then by multiplying
x, y, z andw by some common denominator and by dividing them by their gcd,we may suppose thatx, y, z andw
are integers which are not all even. As in the proof of Proposition 14.14,x2 + y2−3z2−11w2 is equal modulo 4
to the number of odd numbers inx,y,z,w. Thus all of them are odd. It is straightforward that the square of an odd
number is equal to 1 modulo 8. It follows thatx2 + y2−3z2−11w2 is equal to 4 modulo 8, a contradiction with
x2 +y2−3z2−11w2 = 0. 2

14.7 Near-optimality in the smooth quartic case
In this section, we prove that the algorithm given in Section14.4 outputs, in the generic (smooth quartic) case,

a parameterization of the intersection that is optimal in the number of radicals up to one possibly unnecessary
square root. We also show that deciding whether this extra square root can be avoided or not is hard. Moreover,
we give examples where the extra square root cannot be eliminated, for the three possible morphologies of a real
smooth quartic.
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14.7.1 Algebraic preliminaries
First recall that, as is well known from the classification ofquadric pencils by invariant factors (see [Bro06]

and Part II for more), the intersection of two quadrics is a nonsingular quartic exactly whenD(λ,µ) = detR(λ,µ)
has no multiple root. Otherwise the intersection is singular. Note that the intersection is nonsingular exactly when
gcd( ∂D

∂λ , ∂D

∂µ ) = 1.
Moreover, when the intersection is nonsingular, the rank ofany quadric in the pencil is at least three ; indeed,

all the roots ofD(λ,µ) are simple and thus, in Theorem 14.10(c),mj = 1, thust j = 1, hence the quadrics associated
with the roots ofD(λ,µ) have rank 3.

Whether the intersection of two quadrics admits a parameterization with rational functions directly follows
from classical results :

Proposition 14.18.The intersection of two quadrics admits a parameterizationwith rational functions if and only
if the intersection is singular.

Proof. First recall that a curve admits a parameterization with rational functions if and only if it has zero ge-
nus [Per95].

Assume first that the intersection of the two quadrics is irreducible. InP3(C), if two algebraic surfaces of
degreed1 andd2 intersect in an irreducible curve, its genus is

1
2

d1d2(d1 +d2−4)+1−
k

∑
i=1

qi(qi −1)

2
,

wherek is the number of singular points andqi,i=1,...,k their respective multiplicity [Nam84]. The intersection curve
has thus genus 1 when it is smooth, 0 otherwise. The result follows.

Assume now that the intersection of the two quadrics is reducible. If the intersection contains only points, lines
and conics, which can parameterized in a classic way by rational functions, we are done. For the remaining case
(cubic and line), we use the following result. InP3(C), if two algebraic surfaces of degreed1 andd2 intersect in
two irreducible curves of degreed andd′ and of genusg andg′, then [Per95]

g′−g =

(

1
2
(d1 +d2)−2

)

(d′−d).

For quadrics,d1 +d2 = 4, so we getg = g′. So the genus of the cubic is that of the line, i.e. 0. 2

Finally consider the equationΩ : XTS′X = 0, obtained in Step 3 of our algorithm, whereX is the parameteri-
zation ofQR andS′ is the matrix ofQS in the canonical frame ofQR. LetCΩ be the curve zero-set ofΩ. Depending
on the projective type ofQR, CΩ is a bidegree(2,2) curve inP1×P1 (inertia(2,2) or (2,0)), a quartic curve inP⋆2

(inertia (2,1)) or a quartic curve inP2 (inertia (1,1) or (1,0)). Let C denote the curve of intersection of the two
given quadricsQS andQT . We have the following classical result.

Fact 14.19. The parameterization of QR defines an isomorphism between C and CΩ. In particular, C and CΩ have
the same genus, irreducibility, and factorization.

14.7.2 Optimality
Assume the intersection is a real nonsingular quartic. ThenD(λ,µ) has no multiple root, and thusQR is

necessarily a quadric of inertia(2,2). After Step 2 of our algorithm,QR has a parameterization inQ(
√

δ) that
is bilinear inξ = (u,v) andτ = (s, t). After resolution ofΩ and substitution inQR, we get a parameterization in
Q(

√
δ)[ξ,

√
∆] with ∆ ∈ Q(

√
δ)[ξ] of degree 4.

Proposition 14.18 implies that it cannot be parameterized by rational functions, so
√

∆ cannot be avoided. The
question now is : can

√
δ be avoided ? The answer is twofold :

1. deciding whether
√

δ can be avoided amounts, in the general case, to finding a rational point on a surface
of degree 8,

2. there are cases in which
√

δ cannot be avoided.

We prove these results in the following two sections.
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14.7.2.1 Optimality test

We first prove two preliminary lemmas.

Lemma 14.20. If the intersection of two given quadrics has a parameterization involving only one square root
(i.e., a parameterization inQ(

√
δ)[ξ] or in Q[ξ,

√
∆] with ∆∈Q[ξ]), there exists a quadric with rational coefficients

in the pencil that contains a rational line.

Proof. In what follows, calldegreeof a point the degree of the smallest field extension ofQ containing the
coordinates of this point.

If the parameterization of the intersection involves only one square root, the intersection contains infinitely
many points of degree at most 2, one for any rational value of the parameters. Now we have several cases according
to the type of points contained in the intersection.

If the intersection contains a pointp of degree 2, it contains also its algebraic conjugatep. The line passing
throughp andp is invariant by conjugation, so is rational. Letq be a rational point on this line. The quadric of the
pencil passing throughq is rational (Lemma 14.7). Since it also containsp andp (the intersection is contained in
any quadric of the pencil), this quadric cuts the line in at least 3 points and thus contains it.

If the intersection contains a regular rational point (i.e.a rational point which is not a singular point of the
intersection), then the line tangent to the intersection atthis point is rational, and is tangent to any quadric of the
pencil. The quadric of the pencil passing through a rationalpoint of this tangent line contains the contact point ;
thus it contains the tangent line.

If the intersection contains a singular rational pointp, then all the quadrics of the pencil which are not singular
at p have the same tangent plane atp. Let us consider the quadric of the pencil passing through a rational pointq
of this tangent plane (or through any rational point, if noneof the quadrics is regular atp). As above, this quadric
contains the rational linepq. 2

Lemma 14.21. If a quadric contains a rational line, its discriminant is a square inQ.

Proof. If the quadric has rank less than 4, its discriminant is zero.We may thus suppose that the discriminant
is not 0 and that the equation of the quadric isax2 + by2 − cz2 − dw2 = 0. Since this quadric contains a ra-
tional line L, and thus a rational point, there is a rational change of frames such that the quadric has equation
x2 + y2 − z2 − abcd w2 = 0, by Proposition 14.17. Cut the quadric by the planez = 0. Since the intersection of
the planez= 0 and the rational lineL is a rational point, the conex2 +y2−abcd w2 = 0 contains a rational point
outside it singular locus. By Proposition 14.14, there is a rational congruence transformationP sending this cone
into the cone of equationx2 +y2−w2 = 0. These two cones can be seen as conics inP2(Q) andP can be seen as
a rational transformation inP2(Q). The discriminant−abcd of the conicx2 + y2−abcd w2 = 0 is thus equal to
(detP)2 times−1, the discriminant of the conicx2 +y2−w2 = 0. Henceabcd is a square inQ. 2

From these two technical results and the results of Section 14.6, we obtain the following equivalence.

Proposition 14.22. When the intersection is a nonsingular quartic, it can be parameterized inQ[ξ,
√

∆] with
∆ ∈ Q[ξ] if and only if there exists a quadric of the pencil with rational coefficients having a nonsingular rational
point and whose discriminant is a square inQ.

Proof. If
√

δ can be avoided, there exists, by Lemma 14.20, a quadric of thepencil with rational coefficients
containing a rational line. By Lemma 14.21, the discriminant of this quadric is thus a square inQ. Moreover, since
the quadrics of the pencil have rank at least three, the rational line is not the singular line of some quadric (see
Table 14.1) and thus contains a nonsingular point.

Conversely, if there exists a quadric of the pencil with rational coefficients having a rational nonsingular point
and whose discriminant is a square, then it has a rational parameterization by Theorem 14.12 and thus

√
δ can be

avoided. 2

Mirroring Proposition 14.22, we can devise a general test for deciding, in the smooth quartic case, whether the
square root

√
δ can be avoided or not. Consider the equation

σ2 = det((xTTx)S− (xTSx)T), x = (x,y,z,c)T , (14.6)
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wherec∈Q is some constant such that planew= c∈Q contains the vertex of no cone (inertia(2,1)) of the pencil.
Note that (14.6) has degree 8 in the worst case.

Theorem 14.23.When the intersection is a nonsingular quartic, it can be parameterized inQ[ξ,
√

∆] with ∆∈Q[ξ]
if and only Equation(14.6)has a rational solution.

Proof. Suppose first that (14.6) has a rational solution(x0,y0,z0,σ0) and letx0 = (x0,y0,z0,c)T and(λ0,µ0) =
(xT

0 Tx0,−xT
0 Sx0). The quadricQ= λ0QS+µ0QT of the pencil has rational coefficients, contains the rational point

x0 = (x0,y0,z0,c)T and its discriminant is a square, equal toσ2
0. Moreover, ifQ has inertia(2,1), thenx0 is not its

apex because, by assumption, the planew = c contains the vertex of no cone of the pencil. It then follows from
Theorem 14.12 that our algorithm produces a rational parameterization ofQ, and thus a parameterization of the
curve of intersection with rational coefficients.

Conversely, if the curve of intersection can be parameterized inQ[ξ,
√

∆] (with ∆ ∈ Q[ξ]) there exists a qua-
dric Q of the pencil with rational coefficients containing a rational line and whose discriminant is a square inQ,
by Lemmas 14.20 and 14.21. The quadricQ contains a line and thus intersects any plane. Consider any plane
w = c∈ Q. Since the intersection of a rational line with a rational plane is (or contains) a rational point, the inter-
section ofQ with planew = c contains a rational pointx = (x,y,z,c)T . The quadric (Q) of the pencil containing
that point has associated matrix(xTTx)S−(xTSx)T and its determinant is a square. Hence Equation (14.6) admits
a rational solution. 2

Unfortunately, the question underlying the above optimality test is not within the range of problems that can
currently been answered by algebraic number theory. Indeed, it is not known whether the general problem of deter-
mining if an algebraic set contains rational points (known,overZ, as Hilbert’s 10th problem) is decidable [Poo01].
It is known that this problem is decidable for genus zero curves and, under certain conditions, for genus one
curves [Poo01], but, for varieties of dimension two or more,very little has been proved on the problem of compu-
ting rational points.

The above theorem thus implies that computing parameterizations of the intersections of two arbitrary quadrics
that are always optimal in the number of radicals is currently out of reach.

However, in some particular cases, we can use the following corollary to Theorem 14.23 to prove that
√

δ
cannot be avoided.

Corollary 14.24. If the intersection C of QS and QT is a nonsingular quartic and the rational hyperelliptic quartic
curveσ2 = det(S+λT) has no rational point, then the parameterization of C inQ(

√
δ)[ξ,

√
∆] with ∆ ∈ Q(

√
δ)[ξ]

is optimal in the number of radicals.

We use this corollary in the next section.

14.7.3 Worst case examples
We prove here that there are pairs of quadrics, intersectingin the different types of real smooth quartic, such

that (14.6) has no rational solution.
In [TWW02], Tu, Wang and Wang proved that a real smooth quartic can be of three different morphologies

according to the number of real roots of the characteristic polynomial. Recall that a set of pointsL of P3 is called
affinely finiteif there exists a projective planeP such thatP∩L = /0 ; L is calledaffinely infiniteotherwise.

Theorem 14.25( [TWW02]). Let QS and QT be two quadrics intersecting inC in a smooth quartic C. C can be
classified as follows :

– If D(λ,µ) has four real roots, then C has either two real affinely finite connected components or is empty.
– If D(λ,µ) has two real roots and two complex roots, then C has one real affinely finite connected component.
– If D(λ,µ) has four complex roots, then C has two real affinely infinite connected components.

Two real affinely finite components

We first look at the case where the quartic has two real affinelyfinite components and start with a preliminary
lemma.



14.7. NEAR-OPTIMALITY IN THE SMOOTH QUARTIC CASE 213

Lemma 14.26. The equation
y2 = ax4 +bx2 +c+d(x3 +x) (14.7)

has no rational solution if a,c≡ 3 (mod 8), b≡ 7 (mod 8) and d≡ 4 (mod 8).

Proof. Assume for a contradiction that(x,y) is a rational solution to (14.7). We can writex = X/Z andy = Y/Z2,
whereX,Y,Z are integers,Z 6= 0 andX,Z are mutually prime (so are not both even).

Consider first the reduction of Equation (14.7) modulo 8 :

Y2 ≡ 3X4 +7X2Z2 +3Z4 +4XZ(X2 +Z2) (mod 8).

If both X andZ are odd,X2 andZ2 are equal to 1(mod 8). Thus 4(X2 +Z2) ≡ 0 (mod 8) andY2 ≡ 3+7+3≡
5 (mod 8), contradicting the fact thatY2 ≡ 0,1 or 4(mod 8), for all integersY.

If X andZ are not both odd, one ofX2 andZ2 is equal to 0(mod 4) and the other is equal to 1(mod 4). The
reduction of Equation (14.7) modulo 4 thus givesY2 ≡ 3 (mod 4), contradicting the fact thatY2 ≡ 0 or 1(mod 4),
for all integersY. 2

Proposition 14.27. Consider the following pair of quadrics intersecting in a smooth quartic with two real affinely
finite components :

QS : 5y2 +6xy+2z2−w2 +6zw= 0,

QT : 3x2 +y2−z2−w2 = 0.

Then the square root
√

δ is necessary to parameterize the curve of intersection.

Proof. The characteristic polynomial has four simple real roots and we find a quadric of inertia(2,2) in each of
the intervals on which it is positive (in factQS andQT are representative quadrics in these intervals). Thus, by
Theorem 14.25, the intersection ofQS andQT is a real smooth quartic with two affinely finite components.

We now apply Corollary 14.24 and show that the square root
√

δ is necessary to parameterize the curve of
intersection. We have :

σ2 = det(S+λT),

= 3λ4 +12λ3−57λ2−156λ+99,

≡ 3λ4 +7λ2 +3+4(λ3 +λ) (mod 8),

which has no rational solution by Lemma 14.26, so
√

δ cannot be avoided. 2

One real affinely finite component

As above, we prove a preliminary lemma.

Lemma 14.28. The equation
y2 = ax4 +bx3 +cx2 +dx+e (14.8)

has no rational solution if a,e≡ 2 (mod 4), b,d ≡ 0 (mod 4) and c≡ 3 (mod 4).

Proof. As before, we assume for a contradiction that (14.8) has a rational solution(x,y) and writex = X/Z and
y = Y/Z2, whereX,Y,Z are integers,Z 6= 0 andX,Z are mutually prime (so are not both even). We consider the
reduction of Equation (14.8) modulo 4 :

Y2 = 2X4 +3X2Z2 +2Z4.

If X andZ are not both odd, thenY2 ≡ 2 (mod 4). If both X andZ are odd, thenY2 ≡ 3 (mod 4). In both cases, we
have a contradiction sinceY2 ≡ 0 or 1(mod 4), for all integersY. 2

We can now prove the following.
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Proposition 14.29. Consider the following pair of quadrics intersecting in a smooth quartic with one real affinely
finite component :

QS : 2x2−2xy+2xz−2xw+y2 +4yz−4yw+2z2−4zw= 0,

QT : x2−2xy+4xz+4xw−y2 +2yz+4yw+4zw−2w2 = 0.

Then the square root
√

δ is necessary to parameterize the curve of intersection.

Proof. The characteristic polynomial has two simple real roots so it is immediate that the intersection ofQS and
QT is a real smooth quartic with one affinely finite component, byTheorem 14.25.

We again apply Corollary 14.24 and show that the square root
√

δ is necessary to parameterize the curve of
intersection. We have :

σ2 = det(S+λT),

= 22λ4 +48λ3−9λ2 +60λ+30,

≡ 2λ4 +3λ2 +2 (mod 4),

which has no rational solution by Lemma 14.28, so
√

δ cannot be avoided. 2

Two real affinely infinite components

We again prove a preliminary result.

Lemma 14.30. The equation
y2 = a(x4 +x+1)+bx3 +cx2 (14.9)

has no rational solution if a≡ 2 (mod 4), b≡ 0 (mod 4) and c≡ 1 (mod 4).

Proof. We proceed as in Lemmas 14.26 and 14.28, and consider the reduction of Equation (14.9) modulo 4 :

Y2 = 2X4 +X2Z2 +2XZ3 +2Z4.

If X is even andZ is odd, the equation reduces toY2 = 2XZ+2≡ 2 (mod 4). If X is odd andZ is even, we also
haveY2 ≡ 2 (mod 4). Finally, if bothX andZ are odd, (14.9) reduces toY2 = 1+2XZ≡ 3 (mod 4). In all cases,
we have a contradiction sinceY2 ≡ 0 or 1(mod 4), for all integersY. 2

This is enough to prove the following.

Proposition 14.31. Consider the following pair of quadrics intersecting in a smooth quartic with two real affinely
infinite components :

QS : x2−2y2 +4zw= 0,

QT : xy+z2 +2zw−w2 = 0.

Then the square root
√

δ is necessary to parameterize the curve of intersection.

Proof. The characteristic polynomial has four simple complex roots so it is immediate that the intersection ofQS

andQT is a real smooth quartic with two affinely infinite components, by Theorem 14.25.
We again apply Corollary 14.24. We have :

σ2 = det(S+λT),

= 2λ4 +4λ3 +5λ2 +2λ+2,

≡ 2λ4 +λ2 +2λ+2 (mod 4),

which has no rational solution by Lemma 14.30, so
√

δ cannot be avoided. 2
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Output 1 Execution trace for Example 1.
>> quadric 1: 6*x*y + 5*y^2 + 2*z^2 + 6*z*w - w^2
>> quadric 2: 3*x^2 + y^2 - z^2 + 11*w^2

>> launching intersection
>> characteristic polynomial: 33*l^4 - 124*l^3*m + 137*l^2 *m^2 - 32*l*m^3 - 11*m^4
>> gcd of derivatives of characteristic polynomial: 1
>> number of real roots: 4
>> intervals: ]-4, 0[, ]0, 1[, ]2/2^1, 3/2^1[, ]3/2^1, 4/2^1 [
>> picked test point 1 at [ -4 1 ], sign > 0 -- inertia [ 2 2 ] found
>> picked test point 2 at [ 1 1 ], sign > 0 -- inertia [ 4 0 ] found
>> complex intersection: smooth quartic
>> real intersection: empty
>> end of intersection

>> time spent: 10 ms

14.8 Examples
We now give several examples of computing a parameterization of the intersection in case the intersection

of two quadrics is a smooth quartic. The examples presented cover the range of morphologies discussed in the
previous section and illustrate all aspects of optimality and near-optimality. For more examples, see [LPP06]. All
parameterizations have been computed with a C++ implementation of our intersection software (see [LPP06]).

14.8.1 Example 1
Our first example consists of the quadrics given in Output 1. The gcd of the partial derivatives of the characte-

ristic polynomial is 1, so the intersection consists of a (possibly complex) smooth quartic. Since the characteristic
polynomial is found to have four real roots, the intersection, over the reals, is either empty or made of two real
affinely finite components (Theorem 14.25). We find a sample quadric in each of the intervals on whichD(λ,µ) is
positive and compute its inertia. In the first interval, we find a quadric of inertia(2,2) so we proceed. In the second
interval, we find a quadric of inertia(4,0). By Theorem 14.5, we conclude the intersection is empty of real points.

14.8.2 Example 2
Our second example is as in Output 2. The gcd of the two partialderivatives of the characteristic polynomial

is 1, so the intersection (overC) is a smooth quartic. The fact that the characteristic polynomial has two real roots
implies that the smooth quartic is real and that it consists of one affinely finite component (Theorem 14.25). Here,
the two input quadrics have inertia(3,1) and a first quadricQR of inertia(2,2) is found in the pencil between the
two roots ofD. A point is taken onQR and then approximated by a point with integer coordinates. It turns out that
the approximation, i.e.(0,0,1,0), also lies onQR. We thus use this quadric to parameterize the intersection.Since
the determinant ofQR is a square, it can be rationally parameterized (Proposition 14.17). The end of the calculation
is as in Section 14.4.

14.8.3 Example 3
Our third example is Example 5 from [WJG02]. It is the intersection of a sphere and an ellipsoid that are

very close to one another. The output of our implementation on that example is shown in Output 3. Since the
characteristic polynomial has four simple real roots, the intersection is either empty or made of two real affinely
finite components (Theorem 14.25). Picking a sample quadricin each of the intervals on which detR(λ,µ) is
positive shows that the pencil contains no quadric of inertia (4,0), so the quartic is real. Here, the determinant of
the quadric of inertia(2,2) used to parameterize the intersection is not a square, so theparameterization of the
quartic contains the square root of some integer. It is thus only near-optimal in the sense that this square root can
possibly be avoided.
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Output 2 Execution trace for Example 2.
>> quadric 1: x^2 - x*y - y^2 - y*w + z^2 + w^2
>> quadric 2: 2*x^2 - x*y + y^2 - y*z + y*w + z^2

>> launching intersection
>> characteristic polynomial: - 6*l^4 - 12*l^3*m + 3*l^2*m^ 2 + 6*l*m^3 - 2*m^4
>> gcd of derivatives of characteristic polynomial: 1
>> complex intersection: smooth quartic
>> real intersection: smooth quartic, one real affinely finite component
>> number of real roots: 2
>> intervals: ]-2, -1[, ]-1, 0[
>> picked test point 1 at [ -1 1 ], sign > 0 -- inertia [ 2 2 ] found
>> quadric (2,2) found: x^2 + 2*y^2 - y*z + 2*y*w - w^2
>> decomposition of its determinant [a,b] (det = a^2*b): [ 2 1 ]
>> a point on the quadric: [ 0 0 1 0 ]
>> param of quadric (2,2): [- s*u + t*v, - 2*s*v, (2*s + 2*t)*u + (- 4*s + 2*t)*v, s*u + t*v]
>> status of smooth quartic param: optimal
>> end of intersection

>> parameterization of smooth quartic, branch 1:
[- 4*u^3 + u^2*v + 6*u*v^2 + 2*v^3 - u*sqrt(Delta), - 6*u^3 - 8* u^2*v - 4*u*v^2, - 4*u^3

+ 2*u^2*v + (2*u + 2*v)*sqrt(Delta), 4*u^3 + 5*u^2*v + 2*u*v^ 2 + 2*v^3 + u*sqrt(Delta)]
>> parameterization of smooth quartic, branch 2:
[- 4*u^3 + u^2*v + 6*u*v^2 + 2*v^3 + u*sqrt(Delta), - 6*u^3 - 8* u^2*v - 4*u*v^2, - 4*u^3

+ 2*u^2*v + (- 2*u - 2*v)*sqrt(Delta), 4*u^3 + 5*u^2*v + 2*u*v ^2 + 2*v^3 - u*sqrt(Delta)]
Delta = - 2*u^4 + 10*u^3*v - 9*u^2*v^2 - 8*u*v^3 - 2*v^4

>> time spent: 10 ms

It turns out that in this particular example it can be avoided. Consider the coneQR corresponding to the rational
root (λ0,µ0) = (−1,21) of the characteristic polynomial :

QR : −QS+21QT = 2x2−y2−w2.

QR contains the obvious rational point(1,1,0,1), which is not its singular point. This implies that it can be ra-
tionally parameterized by Proposition 14.14. Plugging this parameterization in the equation ofQS or QT gives a
simple parameterization for the smooth quartic :

X(u,v) =









u2 +2v2

2uv
u2−2v2

0









±









0
0
0
1









√

2u4 +4u2v2 +8v4.

14.8.4 Example 4
Our last example is the one of Proposition 14.31. The result in shown in Output 4. Here, again, the gcd of the

partial derivatives of the characteristic polynomial is 1,so the intersection curve is, overC, a smooth quartic. But
sinceD(λ,µ) has in fact no real root, we know by Theorem 14.25 that the smooth quartic is real and has two affinely
infinite components. Here, the intermediate quadricQR of inertia (2,2) found (which is in factQT ) is such that
its determinant is not a square. So the parameterization of the quartic contains a square root. Our implementation
cannot decide whether this square root is needed or not, so outputs that the parameterization is near-optimal. In
this particular example, we know in fact that the parameterization is optimal, by Proposition 14.31.

14.9 Conclusion
The generic algorithm introduced in Section 14.4 already represents a substantial improvement over Levin’s

pencil method and its subsequent refinements. Indeed, we proved that, when the intersection is a smooth quartic
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Output 3 Execution trace for Example 3.
>> quadric 1: 19*x^2 + 22*y^2 + 21*z^2 - 20*w^2
>> quadric 2: x^2 + y^2 + z^2 - w^2

>> launching intersection
>> characteristic polynomial: - 175560*l^4 - 34358*l^3*m - 2519*l^2*m^2 - 82*l*m^3 - m^4
>> gcd of derivatives of characteristic polynomial: 1
>> number of real roots: 4
>> intervals: ]-14/2^8, -13/2^8[, ]-26/2^9, -25/2^9[, ]-2 5/2^9, -24/2^9[, ]-3/2^6, -2/2^6[
>> picked test point 1 at [ -13 256 ], sign > 0 -- inertia [ 2 2 ] fou nd
>> picked test point 2 at [ -3 64 ], sign > 0 -- inertia [ 2 2 ] found
>> complex intersection: smooth quartic
>> real intersection: smooth quartic, two real affinely finite components
>> quadric (2,2) found: - 16*x^2 + 5*y^2 - 2*z^2 + 9*w^2
>> decomposition of its determinant [a,b] (det = a^2*b): [ 12 10 ]
>> a point on the quadric: [ 3 0 0 4 ]
>> param of quadric (2,2): [0, - 24*s*u - 24*t*v, 0, 0] + sqrt(1 0)*[3*t*u + 6*s*v, 0,

12*s*u - 12*t*v, - 4*t*u + 8*s*v]
>> status of smooth quartic param: near-optimal
>> end of intersection

>> parameterization of smooth quartic, branch 1:
[(72*u^3 + 4*u*v^2)*sqrt(10) + 3*v*sqrt(10)*sqrt(Delta) , - 340*u^2*v + 10*v^3

- 24*u*sqrt(Delta), (- 118*u^2*v + 5*v^3)*sqrt(10) + 12*u* sqrt(10)*sqrt(Delta),
(96*u^3 - 12*u*v^2)*sqrt(10) - 4*v*sqrt(10)*sqrt(Delta) ]

>> parameterization of smooth quartic, branch 2:
[(72*u^3 + 4*u*v^2)*sqrt(10) - 3*v*sqrt(10)*sqrt(Delta) , - 340*u^2*v + 10*v^3

+ 24*u*sqrt(Delta), (- 118*u^2*v + 5*v^3)*sqrt(10) - 12*u* sqrt(10)*sqrt(Delta),
(96*u^3 - 12*u*v^2)*sqrt(10) + 4*v*sqrt(10)*sqrt(Delta) ]

Delta = 20*u^4 - 140*u^2*v^2 + 5*v^4

>> time spent: 10 ms

(the generic case) our algorithm computes a parameterization which is optimal in the number of radicals involved
up to one possibly unnecessary square root. We also showed that deciding (in all cases) whether this extra square
root can be avoided is out of reach, and that the parameterization is optimal in some cases. Moreover, for the first
time, our algorithms enable to compute in practice an exact form of the parameterization of two arbitrary quadrics
with rational coefficients.

Even though this first part of our paper has focused on the generic, smooth quartic case, this algorithm can also
be used when the intersection is singular. Assume the intermediate quadricQR has inertia(2,2). When the curve of
intersection consists of a cubic and a line, the equationΩ in the parameters has a cubic factor of bidegree(2,1) and
a linear factor of bidegree(0,1), in view of Fact 14.19. Similarly, when the curve of intersection consists of a conic
and two lines,Ω factors in a quadratic factor of bidegree(1,1) and two linear factors of bidegree(1,0) and(0,1).
Thus, assuming we know how to factorΩ, we have a way to parameterize each component of the intersection.

Unfortunately, this does not always lead to a parameterization of the intersection that involves only rational
functions. When the intersectionC is a singular quartic,Ω is irreducible sinceC itself is, and solvingΩ for s
in terms ofu (or the converse) introduces the square root of a polynomial, while we know that there exists a
parameterization ofC with rational functions (the genus of the curve is 0).

Always computing parameterizations with rational functions when such parameterizations are known to exist
will necessitate rethinking the basic philosophy of our algorithm. Essentially, while the idea of the generic algo-
rithm is to use the rational quadric withlargestrank as intermediate quadric for parameterizing the intersection,
the refined method will instead use the rational quadric withsmallestrank as intermediate quadric.

Proceeding that way will have the double benefit of always computing the simplest possible parameterizations
and much better controlling the size of their coefficients. The price we pay is a multiplicity of cases and the need
to write dedicated software for each (real projective) typeof intersection. This is the subject of Parts II and III of
this paper.
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Output 4 Execution trace for Example 4.
>> quadric 1: x^2 - 2*y^2 + 4*z*w
>> quadric 2: x*y + z^2 + 2*z*w - w^2

>> launching intersection
>> characteristic polynomial: 2*l^4 + 4*l^3*m + 5*l^2*m^2 + 2*l*m^3 + 2*m^4
>> gcd of derivatives of characteristic polynomial: 1
>> number of real roots: 0
>> complex intersection: smooth quartic
>> real intersection: smooth quartic, two real affinely infinite components
>> quadric (2,2) found: x*y + z^2 + 2*z*w - w^2
>> decomposition of its determinant [a,b] (det = a^2*b): [ 2 2 ]
>> a point on the quadric: [ 1 0 0 0 ]
>> param of quadric (2,2): [4*t*u, - 2*s*v, s*u + t*v, s*u + t*v ]

+ sqrt(2)*[0, 0, 0, - s*u + t*v]
>> status of smooth quartic param: near-optimal
>> end of intersection

>> parameterization of smooth quartic, branch 1:
[- 4*u*v^2 + 4*v*sqrt(Delta), - 2*u^3 - 8*u*v^2 + 2*u^3*sqrt (2), 4*v^3 - u^2*v*sqrt(2)

+ u*sqrt(Delta), - 2*u^2*v + 4*v^3 + (u^2*v + 4*v^3)*sqrt(2)
+ (u - u*sqrt(2))*sqrt(Delta)]

>> parameterization of smooth quartic, branch 2:
[- 4*u*v^2 - 4*v*sqrt(Delta), - 2*u^3 - 8*u*v^2 + 2*u^3*sqrt (2), 4*v^3 - u^2*v*sqrt(2)

- u*sqrt(Delta), - 2*u^2*v + 4*v^3 + (u^2*v + 4*v^3)*sqrt(2)
- (u - u*sqrt(2))*sqrt(Delta)]

Delta = 2*u^4 + 10*u^2*v^2 - 4*v^4 + (- 2*u^4 - 4*v^4)*sqrt(2)

>> time spent: 10 ms

14.10 Appendix : The parameterizations of Table 14.3 are
faithful

We prove in this section that the parameterizations of Table14.3 are not only faithful parameterizations of the
projective quadrics (in the sense that they define one-to-one correspondences between a dense open subset of the
space of the parameters and a dense open subset of the quadric) but they are bijections between the space of the
parameters and the quadric. The following two lemmas deal with the parameterizations of quadrics of inertia(2,2)
and(2,1). For other types of quadrics, it is straightforward to show that the parameterizations of Table 14.3 are
bijections.

Lemma 14.32.(u,v),(s, t) 7→ (ut+a1vs
a1

, us−a2vt
a2

, ut−a1vs√
a1a3

, us+a2vt√
a2a4

) is a bijection fromP1×P1 onto the surface{(x1,x2,x3,x4)∈
P3 | a1x2

1 +a2x2
2−a3x2

3−a4x2
4 = 0}, where a1,a2,a3,a4 are positive.

Proof. To prove this lemma, we apply the change of coordinates inP3

X =
a1x1 +

√
a1a3x3

2
, Y =

a1x1−
√

a1a3x3

2a1
, Z =

a2x2 +
√

a2a4x4

2
, W =

−a2x2 +
√

a2a4x4

2a2
,

or equivalently

x1 =
X +a1Y

a1
, x3 =

X−a1Y√
a1a3

, x2 =
Z−a2W

a2
, x4 =

Z+a2W√
a2a4

.

In the new frame, the equation of the surface isXY−ZW = 0 and the map becomes

Φ : (u,v),(s, t) 7→ (X,Y,Z,W) = (ut,vs,us,vt).

The mapΦ is clearly a map fromP1 × P1 into P3 becauseΦ((λu,λv),(µs,µt)) = λµΦ((u,v),(s, t)) and
Φ((u,v),(s, t)) = (0,0,0,0) if and only if (u,v) = (0,0) or (s, t) = (0,0). Moreover, the image ofΦ is clearly
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included in the surface of equationXY−ZW = 0. Conversely, if(X,Y,Z,W) is a point of this surface, at least
one of its coordinates is non zero (we are in a projective space), and by symmetry we may suppose thatX 6= 0.
Considering(X,Z,W) = (ut,us,vt), we haveut 6= 0, Z

X = s
t , and W

X = v
u. Thus Z

X uniquely defines(s, t) up to a
constant factor and similarly forWX and(u,v), which shows the injectivity ofΦ. Furthermore,XY−ZW= 0 implies
Y = ZW

X = us vt
ut = vswhich shows thatΦ is surjective. 2

Recall thatP⋆2 denotes the quasi-projective space defined as the quotient of R3 \{0,0,0} by the equivalence
relation∼ where(x1,x2,x3) ∼ (y1,y2,y3) if and only if ∃λ ∈ R\{0} such that(x1,x2,x3) = (λy1,λy2,λ2y3).

Lemma 14.33. (u,v,s) 7→ (uv, u2−a1a2v2

2a2
, u2+a1a2v2

2
√

a2a3
,s) is a bijection fromP⋆2 onto the surface

{(x1,x2,x3,x4) ∈ P3 | a1x2
1 +a2x2

2−a3x2
3 = 0}, where a1,a2,a3 are positive.

Proof. For this lemma, we consider the change of coordinates inP3

X = x1, Y =
√

a2a3x3 +a2x2, Z =

√
a2a3x3−a2x2

a1a2
, W = x4,

or equivalently

x1 = X, x2 =
Y−a1a2Z

2a2
, x3 =

Y +a1a2Z
2
√

a2a3
, x4 = W.

In the new frame, the equation of the surface isX2−YZ= 0 and the map becomes

Ψ : (u,v,s) 7→ (X,Y,Z,W) = (uv,u2,v2,s).

The mapΨ is clearly a map fromP⋆2 intoP3 becauseΨ(λu,λv,λ2s) = λ2Ψ(u,v,s) andΨ(u,v,s) = (0,0,0,0) if
and only if(u,v,s) = (0,0,0). Moreover, the image ofΨ is clearly included in the surface of equationX2−YZ= 0.
Conversely, if(X,Y,Z,W) is a point of this surface, then we have to prove that its preimage consists in exactly one
point ofP⋆2. If Y = Z = 0, we have alsoX = 0 and a point of the preimage should satisfyu = v = 0 ; it is therefore
unique (inP⋆2) an it exists byΨ(0,0,W) = (0,0,0,W).

If Y or Z is nonzero, we may suppose by symmetry thatY 6= 0. Considering(X,Y,W) = (uv,u2,s) we have
u 6= 0, X

Y = v
u andW

Y = s
u2 . ThusX

Y andW
Y uniquely define(u,v,s) ∈ P⋆2 which implies thatΨ is injective. Further-

more,YZ= X2 impliesZ = X2

Y = (uv)2

u2 = v2 which shows thatΨ is surjective. 2

Remark 14.34. Although the statements and the proofs of Lemma 14.32 and 14.33 are very similar, there is a big
difference between the two bijections : the bijection is an isomorphism and a diffeomorpism in Lemma 14.32 but
not in Lemma 14.33 where the space of the parameters is smoothwhile the surface is singular at (0,0,0,1).
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Abstract

While Part I of this paper was devoted mainly to quadrics intersecting in a smooth quartic, we now
focus on singular intersections. To produce optimal or near-optimal parameterizations in all cases,
we first determine the the real type of the intersection before computing the actual parameterization.
In this second part, we present the first classification of pencils of quadrics based on the type of their
intersection in real projective space and we show how this classification can be used to compute
efficiently the type of the real intersection. The near-optimal parameterization algorithms in all
singular cases will be given in Part III.

15.1 Introduction
At the end of Part I, we saw that the generic algorithm we introduced, while being simple and giving optimal

parameterizations in some cases, fails to achieve the stated goal of computing (near-)optimal parameterizations
(both in terms of functions and coefficients) of intersections of arbitrary quadrics.

Unfortunately, it turns out that achieving this goal involves more than simple adaptations to the generic algo-
rithm. Reaching optimality implies looking carefully ateachtype of real intersection and designing a dedicated
algorithm to handle each situation. For this, we need to understand precisely which situations can happen over the
reals and thus classify real pencils of quadrics ofP3(R).

Classifying pencils of quadrics over the complexes was achieved by Segre in the nineteenth century [Seg83].
Its practical value is however limited since its proper interpretation lies in the complex domain (i.e. points on the
intersection might be real or complex), whereas our concernis with real parts of the intersection.

Accordingly, we refine the Segre classification of pencils ofP3(R) by examining the different cases occurring
over the reals. This refinement is, in itself, of partial assistance for the parameterization problem : no more than the
Segre classification can it be “reverse engineered” to construct explicit representations of the various intersection
components. It is however mandatory for the following two reasons : it allows us to obtain structural information
on the intersection curve which we use to drive the algorithmfor computing a near-optimal parameterization of
the intersection curve (Part III) ; it is also a prerequisitefor proving the (near-)optimality of our parameterization
algorithm.
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Contributions. In this second part of our paper, we present a new classification of pencils of quadrics based
on the type of their real projective intersection. A summaryof this classification is given in Tables 15.4 and 15.5.
We then show how to use this classification to compute efficiently the type of the real intersection. In particular we
show how computations with non-rational numbers can be avoided for detecting the type of the intersection when
the input quadrics have rational coefficients.

It should be stressed that, even though the classification ofpencils over the reals is presented here as an
intermediate step in a more global process (i.e., parameterization of the intersection), this classification has an
interest on its own. It could be used for instance in a collision detection context to predict at which time stamps a
collision between two moving objects will happen.

Related work. In the context of the representation of the geometry of Boolean combinations of volumes
bounded by quadric surfaces, J. Ocken, J. T. Schwartz, and M.Sharir showed in 1987 showed how two quadrics
can be simultaneously diagonalized using a real projectivetransformation and used this diagonalization to para-
meterize the intersection of the quadrics. The analysis is however incomplete and some intersection morphologies
are overlooked, leading to possible misclassifications. Inparticular, the cases when the characteristic polynomial
of the pencil has two double roots, corresponding to such morphologies as a cubic and a secant line or four lines
forming a skew quadrilateral, are missing.

The next result on the classification of pencil of quadrics based on the real type of the intersection was obtained
in 2002 by C. Tu, W. Wang, and J. Wang who who classified pencilsin the generic case, that is when the intersection
is a smooth quartic (in complex space) whose number of connected components (in real space) is two, one, or
zero [TWW02]. Note that W. Wang and R. Krasauskas also obtainedresults on the classification of pencils in the
generic case when the pencil is furthermore restricted to begenerated by two ellipsoids in affine space [WK04].
Related results have also been obtained by W. Wang, J. Wang, and M. Kim on the separation of two ellipsoids in
affine space [WWK01].

In September 2005, Tu, Wang, Mourrain, and Wang published a research report [TWMW05] presenting a
classification of pencils very similar to ours. They use the Canonical Pair Form Theorem of F. Uhlig as basic
mathematical tool and refine the classification of pencils ofquadrics over the complexes in exactly the same
way as we do. There are however differences between the two approaches. First, we classify pencils using the
inertia of the quadrics at the multiple roots of the characteristic polynomial, except for a small number of cases
where simple geometric conditions allow to discriminate. By contrast, Tu et al. classify pencils using the inertia
of the quadrics between the roots of the characteristic polynomial (plus the degree of the minimal polynomial
of the characteristic polynomial in some cases), and rely onPuiseux expansion to deduce some information at
the (multiple) roots. Second, the classification of Tu et al.is limited to non-degenerate pencils (i.e. pencils whose
characteristic polynomial does not vanish identically), while ours covers all possible cases. Third, in addition to the
enumeration of all real quadric intersection morphologies, we also provide algorithms for exactly and efficiently
recovering the real projective type of the intersection of two arbitrary given quadrics.

The rest of this part is organized as follows. Section 15.2 reviews the classical Segre classification of pencils of
quadrics over the complexes. We then refine, in Sections 15.3and 15.4, the Segre classification over the reals with a
repeated application of the Canonical Pair Form Theorem forpairs of real symmetric matrices introduced in Part I.
In Section 15.3, we considerregular pencils, i.e., pencils that contain a non-singular quadric, and, in Section 15.4,
singularpencils, i.e., pencils that contain only singular quadrics, or, equivalently, pencils with identically vanishing
characteristic polynomial. In Section 15.5, we use the results of the classification of pencils over the reals to design
an algorithm to quickly and efficiently characterize the complex and real types of the intersection given two input
quadrics. Several examples are detailed in Section 15.6, before concluding.

15.2 Classification of pencils of quadrics over the complexes
In this section, we review classical material on the classification of pencils of quadrics. It will serve as the

starting point for our classification of pencils over the reals in Sections 15.3 and 15.4.
In the rest of the paper all quadrics are considered in real projective spaceP3(R) ; their coefficients as well

as the coefficients of the characteristic polynomials of pencils are thus real. However, we consider the intersection
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of quadrics both inP3(R) and inP3(C). Accordingly, the classification of pencils is considered both over the
complexes and over the reals.

We start in Section 15.2.1 with a proof that the existence of asingularity on the intersection curve is equivalent
either to the existence of a multiple root in the characteristic polynomial or to the fact that the characteristic
polynomial vanishes identically. Then Section 15.2.2 recalls the basic tenets of the classification of pencils over the
complexes. The well-known Segre characteristic is recalled in Section 15.2.2.1 and its relation with the Canonical
Pair Form Theorem for pairs of real symmetric matrices (PartI and [Uhl73, Uhl76]) is thoroughly explained in
Section 15.2.2.2.

15.2.1 Singular intersections and multiple roots
Recall that, given two 4 by 4 real symmetric matricesS and T, the characteristic polynomial,D(λ,µ), of

the pencil generated byS andT is the determinant ofλS+ µT. In the ensuing sections, we use the following
equivalence for classifying the singular intersections through the multiplicities of the roots of the characteristic
polynomialD(λ,µ) and the rank of the corresponding quadrics.

Proposition 15.1. If the intersection of two distinct quadrics QS and QT has a singular pointp, then
– eitherD ≡ 0 and QS and QT are singular atp,
– or D ≡ 0 and there is a unique quadric QR of the pencil that is singular atp,
– or D 6≡ 0, there is a unique quadric QR = λ0QS+µ0QT that is singular atp and(λ0,µ0) is a multiple root

of D.
In the last two cases, all the quadrics of the pencil except QR share a common tangent plane atp.

Proof. First recall that a curveC defined by implicit equationsQS = QT = 0 is singular atp if and only if p is on
C and the rank of the Jacobian matrixJ of C is strictly less than 2 when evaluated atp. J is the matrix of partial
derivatives :

J =

(

∂QS
∂x

∂QS
∂y

∂QS
∂z

∂QS
∂w

∂QT
∂x

∂QT
∂y

∂QT
∂z

∂QT
∂w

)

. (15.1)

Let JS andJT be the first and second rows ofJ.
If all the coefficients ofJ vanish atp, thenp is a singular point of bothQS andQT and thus of all quadrics of

the pencil, implying thatD ≡ 0.
Otherwise,J has rank one and there exists a linear relationship between the rows ofJ evaluated atp :

λ0JS|p +µ0JT |p = 0, (λ0,µ0) ∈ P1(R).

Also, there is av ∈ P3(R) such thatJ|pv is a non-zero multiple ofv. This exactly means that the tangent plane

at p of all the quadrics of the pencil is the planeP of equationv ·
(

x y z w
)T

= 0, except for the quadric
λ0QS+µ0QT . For this last quadric, all the partial derivatives atp vanish, implying that it is singular atp and has
rank at most 3.

Now, we may change the generators of the pencil by takingλ0S+µ0T as first generator in place ofS. This has
the effect of translating(λ0,µ0) to (1,0). If we change of frame in order that the coordinates ofp become(0,0,0,1)
and that the equation ofP becomesx = 0, the matrices of the generators of the pencil become

S′ =









∗ ∗ ∗ 0
∗
∗ A 0

0
0 0 0 0









and T ′ =









∗ ∗ ∗ 1
∗
∗ B 0

0
1 0 0 0









,

whereA andB are 2×2 matrices and the stars denote any element. It follows immediately that

det(λS′ +µT′) = −µ2det(λA+µB).

The case det(λA+µB) ≡ 0 proves the second assertion. The case det(λA+µB) 6≡ 0 proves the last assertion.2
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15.2.2 Classification of pencils by elementary divisors
For the reader’s convenience, we review, in this section, the classical classification of pencils of quadrics as

originally done by the Italian mathematician Segre [Seg83]. More recent and accessible accounts can be found
in [Bro06] or [HP53].

15.2.2.1 Segre characteristic

Assume we are given a pencilR(λ,µ) = λS+µT of symmetric matrices of sizen such thatD(λ,µ) = detR(λ,µ)
is not identically zero. In general,D hasn complex roots to which correspondn complex projective cones of the
pencil. But there can be exceptions to this when a root(λ0,µ0) of D appears with multiplicity larger than 1. It can
also happen that(λ0,µ0) makes not only the determinantD vanish but also all its subdeterminants of ordern−t +1
say,t > 0. This means that the corresponding quadric has as singularset a linear space of dimensiont −1.

Let the (λi ,µi), i = 1, . . . , p, be the roots ofD and themi their respective multiplicities. Indicate bymj
i the

minimum multiplicity with which the root(λi ,µi) appears in the subdeterminants of ordern− j of D. Let ti > 1 be
the smallest integer such thatmti

i = 0. We see thatmj
i > mj+1

i for all j. Define a sequence of indicesej
i as follows :

ej
i = mj−1

i −mj
i , j = 1, . . . , ti ,

with m0
i = mi . The multiplicitymi of (λi ,µi) is the sume1

i + · · ·+e
t j
i . We have therefore :

D(λ,µ) = (λµi −µλi)
mi D

∗(λ,µ) = (λµi −µλi)
e1
i · · ·(λµi −µλi)

e
ti
i D

∗(λ,µ),

whereD∗(λi ,µi) 6= 0.

The factors(λµi −µλi)
ej
i are called theelementary divisorsand the exponentsej

i thecharacteristic numbers,
associated with the root(λi ,µi). Their study goes back to Karl Weierstrass [Wei68]. Segre introduced the following
notation to denote the various characteristic numbers associated with the degenerate quadrics that appear in a
pencil :

σn = [(e1
1, . . . ,e

t1
1 ),(e1

2, . . . ,e
t2
2 ), . . . ,(e1

p, . . . ,e
tp
p )],

with the convention that the parentheses enclosing the characteristic numbers of(λi ,µi) are dropped whenti = 1.
This is known as theSegre characteristicor Segre symbolof the pencil.

The following theorem, essentially due to Weierstrass [Wei68], proves that a pencil of quadrics and the inter-
section it defines are uniquely and entirely characterized,over the complexes, by its Segre symbol.

Theorem 15.2(Characterization by Segre symbol). Consider two pencils of quadrics R(λ1,µ1) = λ1S1 + µ1T1

and R(λ2,µ2) = λ2S2 +µ2T2 in Pn(R). Suppose thatdetR(λ1,µ1) anddetR(λ2,µ2) are not identically zero and let
(λ1,i ,µ1,i) and (λ2,i ,µ2,i) be their respective roots. Then the two pencils are projectively equivalent if and only if
they have the same Segre symbol and there is an automorphism of P1(C) taking(λ1,i ,µ1,i) to (λ2,i ,µ2,i).

With the above definition, we see that(λi ,µi) is a root of all subdeterminants ofR(λ,µ) of ordern−ti +k,k> 0,
but not of any subdeterminant of ordern− ti . In other words, the rankr i of R(λi ,µi) is n− ti . In addition, since
mi = e1

i + · · ·+ eti
i , we have thatn− 1 > r i > n−mi . Enumerating all possible cases for theej

i subject to the
constraints induced by its definition gives rise to all possible types of (complex) intersection and accompanying
Segre symbols. Tables 15.1, 15.2, and 15.3 list the possiblecases for pencils inP3(R). Incidentally, we can see
that the pair(mi , r i) is sufficient to characterize the pencil except in the case(mi , r i) = (4,2).

When the characteristic polynomialD(λ,µ) vanishes identically, i.e., all the quadrics are singular (see Tables 15.2
and 15.3), the above theory does not apply directly. There are two cases, according to whether the quadrics of the
pencil have singular points in common or not :

– When they do not, the pencil can be characterized by a different set of invariants the existence of which was
originally proved by Kronecker. We do not detail here how this set is computed (but see [Bro06, p. 55-60]).
Suffice it to say that the casesn = 4 andn = 3 are characterized each by a single set of such invariants,
designated by the strings[1{3}] and[{3}] respectively. In Section 15.4.1, we carry out the analysis of this
situation whenn = 4 without resorting to these special invariants.
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Segre
characteristicσ4

roots ofD(λ,µ) in C and
rank of associated quadric

type of intersection inP3(C)

[1111] four simple roots smooth quartic
[112] one double root, rank 3 nodal quartic

[11(11)] one double root, rank 2 two secant conics
[13] triple root, rank 3 cuspidal quartic

[1(21)] triple root, rank 2 two tangent conics
[1(111)] triple root, rank 1 double conic

[4] quadruple root, rank 3 cubic and tangent line
[(31)] quadruple root, rank 2 conic and two lines crossing on the conic
[(22)] quadruple root, rank 2 two lines and a double line
[(211)] quadruple root, rank 1 two double lines
[(1111)] quadruple root, rank 0 smooth quadric

[22] two double roots, both rank 3 cubic and secant line
[2(11)] two double roots, ranks 3 and 2conic and two lines not crossing on the conic

[(11)(11)] two double roots, both rank 2 four lines (skew quadrilateral)

TAB . 15.1 –Classification of pencils by Segre symbol in the case whereD(λ,µ) does not identically vanish.
When the characteristic polynomial has multiple roots, the additional simple roots are not indicated : they corres-
pond to rank 3 quadrics.

Segre
characteristicσ3

roots ofD3(λ,µ) in C and
rank of associated conic

type of intersection inP3(C)

[1{3}] no common singular point conic and double line

[111] three simple roots four concurrent lines
[12] double root, rank 2 two lines and a double line

[1(11)] double root, rank 1 two double lines
[3] triple root, rank 2 line and triple line

[(21)] triple root, rank 1 quadruple line
[(111)] triple root, rank 0 cone
[{3}] D3(λ,µ) ≡ 0 see Table 15.3

TAB . 15.2 –Classification of pencils by Segre symbol in the case whereD(λ,µ) ≡ 0. When the quadrics of
the pencil have (at least) one singular pointp in common (bottom part),D3(λ,µ) is the determinant of the 3×3
upper-left matrix ofR(λ,µ) after a congruence transformation sendingp to (0,0,0,1). The conic associated with a
root ofD3(λ,µ) corresponds to the 3×3 upper-left matrix orR(λ,µ).

Segre
characteristicσ2

roots ofD2(λ,µ) in C and
rank of associated matrix

type of intersection inP3(C)

[{3}] no two common singular points line and plane

[11] two simple roots quadruple line
[2] double root, rank 1 plane

[(11)] double root, rank 0 pair of distinct planes
D2(λ,µ) ≡ 0 double plane

TAB . 15.3 –Classification of pencils by Segre symbol in the case whereD(λ,µ) ≡ 0 andD3(λ,µ) ≡ 0. When
the quadrics of the pencil have (at least) two singular pointp andq in common (bottom part),D2(λ,µ) is the
determinant of the 2×2 upper-left matrix ofR(λ,µ) after a congruence transformation sendingp andq to (0,0,0,1)
and(0,0,1,0). The matrix associated with a root ofD2(λ,µ) corresponds to the 2×2 upper-left matrix orR(λ,µ).
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Segre
string

roots of
D(λ,µ) in C

rank or
inertia of
R(λ1,µ1)

rank or
inertia of
R(λ2,µ2)

type of
(λ2,µ2)

s type of intersection inP3(R)

[1111] 4 simple roots
smooth quartic or/0 ; see [Fin37]

& [TWW02] (or also Th. 14.5 & 14.25)
[112] 1 double root (3,0) real point
[112] 1 double root (2,1) real − nodal quartic ; isolated node
[112] 1 double root (2,1) real + nodal quartic ; convex sing.
[112] 1 double root rank 3 complex nodal quartic ; concave sing.

[11(11)] 1 double root (2,0) real + /0
[11(11)] 1 double root (2,0) real − two points
[11(11)] 1 double root (1,1) (2,1) real − two non-secant conics
[11(11)] 1 double root (1,1) (3,0) real − /0
[11(11)] 1 double root (1,1) real + two secant conics ; convex sing.
[11(11)] 1 double root rank 2 complex − conic
[11(11)] 1 double root rank 2 complex + two secant conics ; concave sing.

[13] triple root rank 3 cuspidal quartic
[1(21)] triple root (2,0) double point
[1(21)] triple root (1,1) two tangent conics
[1(111)] triple root rank 1 (2,1) double conic
[1(111)] triple root rank 1 (3,0) /0

[4] quadruple root rank 3 cubic and tangent line
[(31)] quadruple root (1,1) − conic

[(31)] quadruple root (1,1) +
conic and two lines crossing

on the conic
[(22)] quadruple root (2,0) double line
[(22)] quadruple root (1,1) + two single lines & a double line
[(211)] quadruple root rank 1 − point
[(211)] quadruple root rank 1 + two secant double lines
[(1111)] quadruple root rank 0 any smooth quadric of the pencil

[22] 2 double roots rank 3 rank 3 real cubic and secant line
[22] 2 double roots rank 3 rank 3 complex cubic and non-secant line

[2(11)] 2 double roots (3,0) rank 2 real point
[2(11)] 2 double roots (2,1) rank 2 real + conic and two intersecting lines
[2(11)] 2 double roots (2,1) rank 2 real − conic and point

[(11)(11)] 2 double roots (2,0) (2,0) real /0
[(11)(11)] 2 double roots (2,0) (1,1) real two points
[(11)(11)] 2 double roots (1,1) (2,0) real two points
[(11)(11)] 2 double roots (1,1) (1,1) real four lines (skew quadrilateral)
[(11)(11)] 2 double roots rank 2 rank 2 complex two secant lines

TAB . 15.4 –Classification of pencils in the case whereD(λ,µ) does not identically vanish.(λ1,µ1) denotes
a multiple root ofD(λ,µ) (if any) and(λ2,µ2) another root (not necessarily simple). If(λ1,µ1) is a double root

thens denotes the sign ofdet(λS+µT)
(µ1λ−λ1µ)2 at (λ,µ) = (λ1,µ1) ; if (λ1,µ1) is a quadruple root thens denotes the sign of

det(λS+µT) for any(λ,µ) 6= (λ1,µ1). When the characteristic polynomial has multiple roots, theadditional simple
roots are not indicated. The Segre characteristic is mentioned for clarity but is not needed for the classification.
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Segre
string

roots of
D3(λ,µ) in C

rank or
inertia of
R(λ1,µ1)

inertia of
R(λ2,µ2)

type of
(λ2,µ2)

type of intersection inP3(R)

[1{3}] no common
singular point

conic and double line

[111] 3 simple roots (1,1) (1,1) real four concurrent lines meeting atp
[111] 3 simple roots (2,0) real point p
[111] 3 simple roots (2,0) real point p
[111] 3 simple roots complex two lines intersecting atp
[12] double root (1,1) 2 lines and a double line meeting atp
[12] double root (2,0) double line

[1(11)] double root rank 1 (1,1) two double lines meeting atp
[1(11)] double root rank 1 (2,0) point p

[3] triple root rank 2 a line and a triple line meeting atp
[(21)] triple root rank 1 a quadruple line
[(111)] triple root rank 0 any non-trivial quadric of the pencil

D3(λ,µ) ≡ 0 same as in Table 15.3

TAB . 15.5 –Classification of pencils in the case whereD(λ,µ) identically vanishes. In the bottom part, the
quadrics of the pencil have a singular pointp in common.D3(λ,µ) is the determinant of the 3×3 upper-left matrix
of R(λ,µ) after a congruence transformation sendingp to (0,0,0,1). The conic associated with a root ofD3(λ,µ)
corresponds to the 3×3 upper-left matrix orR(λ,µ). (λ1,µ1) denotes the multiple root ofD3(λ,µ) (if any) and
(λ2,µ2) another root. WhenD3(λ,µ) has a multiple root, the additional simple roots are not indicated. The Segre
characteristic is mentioned for clarity but is not needed for the classification.

– When the quadrics do have (at least one) singular point in common, sayp, we may suppose, after a change
of frame, thatp has coordinates(0, . . . ,0,1). In the new frame, the matrices have their last row and column
filled with zeros. To sort out the different types of intersection, we may identify the quadrics with their
upper left(n−1)× (n−1) matrices and classify the restricted pencils by looking at the Segre symbolσn−1

of their characteristic polynomial (of degreen−1). This is what we have done in Table 15.2 for the case of
quadrics inP3(R).

The above process can be repeated by recursing on dimension.

15.2.2.2 From the complexes to the reals

Theorem 15.2 can be used to find a canonical form for a pencil ofquadrics whenD(λ,µ) is not identically
zero (see [HP53]). Consider the pencilR(λ) = λS−T and its characteristic polynomialD(λ), with rootsλi of
multiplicity mi . Let

[(e1
1, . . . ,e

t1
1 ),(e1

2, . . . ,e
t2
2 ), . . . ,(e1

p, . . . ,e
tp
p )]

be the Segre symbol of the pencil. Then there exists a change of coordinates inPn(C) such that, in the new frame,
the pencil writes down asR′(λ) = λS′−T ′, where

S′ = diag(E1
1, . . . ,Et1

1 , . . . ,E1
p, . . . ,E

tp
p ), T ′ = diag(E1

1J1
1, . . . ,Et1

1 Jt1
1 , . . . ,E1

pJ1
p, . . . ,E

tp
p J

tp
p )

are block diagonal matrices with blocks :

Ek
i =







0 1

1 0






and Jk

i =











λi 1 0

1

0 λi










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of sizeek
i . The parentheses in the Segre symbol correspond one-to-oneto the singular quadrics in the pencil. The

root ofD corresponding to a singular quadric of symbol(e1
i , . . . ,e

ti
i ) has multiplicitymi = ∑ti

k=1ek
i .

The parallel between the Canonical Pair Form Theorem introduced in Section 14.5.126 and the decomposition
by Segre symbol should now jump to mind : the first is in a sense areal version of the second, i.e. it gives a
canonical form that is projectively equivalent by areal congruence transformation to the original pencil. In the
real form, complex roots of the characteristic polynomial are somehow combined in complex Jordan blocks so that
quadric pencils are equivalent by a real projective transformation.

When λi is real, theJ j
i are the real Jordan blocks associated withλi . The sum of the sizes of the blocks

corresponding toλi is ∑ti
k=1ek

i = mi and the number of those blocks isti = n− rankR(λi), as in Theorem 14.10.
Whenλi is complex, letλ j be its conjugate. It is intuitively clear thatti = t j in the complex decomposition

and that the associated Jordan blocksJk
i andJk

j have the same sizes, i.e.ek
i = ek

j . When the complex roots and their

blocks are combined, they give rise to complex Jordan blocksof size 2ek
i . In the real canonical form, the number

of these blocks is againti but the sum of their sizes is 2mi .
The Segre symbol can thus serve as a starting point for the study of real pencils using the Canonical Pair

Form Theorem. We illustrate this with two examples concerning pencils inP3(R). Consider first the Segre symbol
[(211)]. The associated pencil has a quadruple root, which is necessarily real (otherwise its conjugate would also
be a root of the characteristic polynomial of the pencil). Inview of the above, the real decomposition of the pencil
has three Jordan blocks, one of size 2 and two of size 1. Now consider the Segre symbol[22]. The associated pencil
has two double roots, which can be either both real or both complex. If they are real, then each of the roots has one
Jordan block of size 2. If they are complex, then the two rootsappear in the same Jordan block of size 4.

15.3 Classification of regular pencils ofP3(R) over the reals
We now turn to the classification of pencils of quadrics ofP3(R) over the reals. A summary of this classification

is given in Tables 15.4 and 15.5.
In what follows, we make heavy use of the Canonical Pair Form Theorem for pairs of real symmetric matrices

(Part I and [Uhl73, Uhl76]). For each possible Segre characteristic, we examine the different cases according to
whether the roots of the characteristic polynomial are realor not and then examine the conditions leading to
different types of intersection over the reals.

In each case, we start by computing the canonical form of the pair (S,T) for a given Segre characteristic and
type (real or complex) of multiple root(s) of the characteristic polynomial. We then deduce from this canonical
form anormal formof the pencil over the reals by rescaling and translating theroots to particularly simple values.
Recall that the congruence transformation in the CanonicalPair Form Theorem preserves the roots (values and
multiplicities) of the characteristic polynomial of the pencil. This normal form is in a sense the “simplest pair” of
quadrics having a given real intersection type. The normal pencil is equivalent by a real projective transformation
to any pencil of quadrics with the same real and complex intersection type.

A word of caution : the projective transformations involvedin the classification of real pencils, if they preserve
the real type of the intersection, may well involve irrational numbers. This fact should be kept to mind when
interpreting the results.

We treat the first case (nodal quartic) in some detail so that the reader gets accustomed to the techniques we
use. For the other cases, we move directly to the normal form without first expliciting the canonical form.

Note that, in the case where the Segre characteristic is[1111], which corresponds to a smooth quartic inP3(C),
the classification on the type of intersection inP3(R) follows from results by Finsler [Fin37] and Tu et al. [TWW02]
(see also Theorems 14.5 and 14.25). Also, the case[(1111)] does not necessitate any further treatment : save for
the quadric corresponding to the quadruple root (which isP3(R)), all the quadrics of the pencil are equal and the
intersection is thus any of those non-trivial quadrics. Finally, the case of a vanishing characteristic polynomial,
detR(λ,µ) ≡ 0, is treated separately in Section 15.4.

Here and in the ensuing sections, a singularity of the intersection will be calledconvexif the branches of the
curve are on the same side of the common tangent plane to the branches at the singularity,concaveotherwise. It
should be stressed that there is a close connection between the type of the singularity and the notion of affine finite-
ness introduced by Tu et al. [TWW02]. Recall that the point set is calledaffinely finiteif it does not intersect some

26When reference is made to a section or result in another part ofthe paper, it is prefixed by the part number.
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projective plane andaffinely infiniteotherwise. As we shall see, a convex singularity corresponds to an affinely
finite intersection, while a concave one corresponds to an affinely infinite intersection. Furthermore, our classifi-
cation directly yields the following theorem which provides a global property on the intersection of two quadrics
from a property of the pencil ; note that this theorem is similar in spirit to the theorem due to Finsler [Fin37] (see
Theorem 14.5) which characterizes when two quadrics have anempty intersection.

Theorem 15.3. If two distinct quadrics have a pencil whose characteristicpolynomial does not identically vanish,
their intersection is affinely finite if and only if there exists a quadric of inertia(3,1) in the pencil.

Proof. Any quadric of inertia(3,1) is affinely finite, thus if the pencil contains such a quadric,the intersection is
affinely finite. Conversely, in the case where the intersection is a smooth quartic (inP3(C)), the property follows
from Tu et al. [TWW02] (see also Theorem 14.25). Otherwise, it follows from our classification that, when there is
no quadric of inertia(3,1) in a pencil generated by two distinct quadrics, the intersection either contains a line (and
therefore is affinely infinite) or is a nodal quartic with a concave singularity or two secant conics with a concave
singularity. In the last two cases, we show below that the intersection is affinely infinite. 2

An additional benefit of the classification of pencils over the reals is the ability to draw pictures of all possible
situations. Such a gallery of intersection cases is given inFigure 15.1. The pictures were made with thesurf
visualization tool [Sur].

15.3.1 Nodal quartic inP3(C), σ4 = [112]
The characteristic polynomial has a double rootλ1, which is necessarily real (otherwise its conjugate would

also be a double root of detR(λ)). Let λ2 andλ3 be the other roots. The Segre characteristic implies that the three
quadricsR(λi) have rank 3 (equal ton− ti ; see Section 15.2.2.1). The Canonical Pair Form Theorem thus implies
that toλ1 corresponds one real Jordan block of size 2.

There are two cases.

λ2 and λ3 are real. R(λ2) andR(λ3) are projective cones. The Canonical Pair Form Theorem givesthatS
andT are simultaneously congruent to the quadrics of equations

{

2ε1xy+ ε2z2 + ε3w2 = 0,

2ε1λ1xy+ ε1y2 + ε2λ2z2 + ε3λ3w2 = 0,
εi = ±1, i = 1,2,3.

λ1S−T andλ2S−T are thus simultaneously congruent to the quadrics of equations

{

−ε1y2 + ε2(λ1−λ2)z2 + ε3(λ1−λ3)w2 = 0,

−ε1y2 +2ε1(λ2−λ1)xy+ ε3(λ2−λ3)w2 = 0.

Let ε = signλ2−λ3
λ1−λ3

(recall thatλ1 6= λ3 andλ2 6= λ3). By multiplying the above two equations by−ε1

∣

∣

∣

λ2−λ3
λ1−λ3

∣

∣

∣
and

−ε1, respectively, we can rewrite them as











∣

∣

∣

λ2−λ3
λ1−λ3

∣

∣

∣y2− εε1ε2
(λ1−λ2)(λ2−λ3)

λ1−λ3
z2− εε1ε3(λ2−λ3)w2 = 0,

√

∣

∣

∣

λ2−λ3
λ1−λ3

∣

∣

∣y

(√

∣

∣

∣

λ1−λ3
λ2−λ3

∣

∣

∣y−2(λ2−λ1)

√

∣

∣

∣

λ1−λ3
λ2−λ3

∣

∣

∣x

)

− ε1ε3(λ2−λ3)w2 = 0.

Now, we apply the following projective transformation :

√

∣

∣

∣

λ1−λ3
λ2−λ3

∣

∣

∣y−2(λ2−λ1)

√

∣

∣

∣

λ1−λ3
λ2−λ3

∣

∣

∣x 7→ x,

√

∣

∣

∣

λ2−λ3
λ1−λ3

∣

∣

∣y 7→ y,

√

∣

∣

∣

(λ1−λ2)(λ2−λ3)
λ1−λ3

∣

∣

∣z 7→ z,
√

|λ2−λ3|w 7→ w.
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a. b. c.

d. e. f.

g. h. i.

j. k. l.

FIG. 15.1 –A gallery of intersections. a. Nodal quartic. b. Nodal quartic with isolated singular point. c. Cubic
and secant line. d. Cubic and tangent line. e. Two secant conics. f. Two double lines. g. Four lines forming a skew
quadrilateral. h. Two lines and a double line. i. Conic and two lines not crossing on the conic, the two lines being
imaginary. j. Four concurrent lines, only two of which are real. k. Two lines and a double line, the three being
concurrent. l. Conic and double line.
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We obtain thatR(λ1) = λ1S−T andR(λ2) = λ2S−T are simultaneously congruent, by a real projective transfor-
mationP, to the quadrics of equations

{

PTR(λ1)P : y2 +az2 +bw2 = 0,

PTR(λ2)P : xy+cw2 = 0,
(15.2)

with a,b,c∈ {−1,1}. One can further assume thatc = 1 by changingx by −x.
From now on we forget about the transformationP and identifyR(λi) with PTR(λi)P, but it should be kept to

mind that things happen in the local frame induced byP.
If a or b is −1, the coneR(λ1) has inertia(2,1) and thus is real. Otherwise (a = b = 1), the coneR(λ1) is

imaginary but for its real apexp = (1,0,0,0). The other coneR(λ2) is always real and contains the apexp of
R(λ1). We distinguish the three following cases.

– a = b = 1. The real part of the nodal quartic is reduced to its node, the apexp of R(λ1).
– Only one ofa andb is 1. Assume for instance thata = 1,b = −1 (the other case is obtained by exchanging

zandw). By substituting the parameterization of the coney2 +z2−w2 = 0 (see Table 14.3)
(

s,uv,
u2−v2

2
,
u2 +v2

2

)

, (u,v,s) ∈ P⋆2(R),

into the other conexy+w2 = 0, and solving ins, we get the parameterization of the nodal quartic

X(u,v) =
(

(u2 +v2)2,−4u2v2,2uv(u2−v2),2uv(u2 +v2)
)T

, (u,v) ∈ P1(R).

The nodal quartic is thus real and its node, corresponding tothe parameters(1,0) and(0,1), is atp. The
plane tangent to the quadricQR(λ2) at the quartic’s nodep is y = 0. In a neighborhood of this node,x =

(u2 + v2)2 > 0 andy = −4u2v2 6 0 (recall thatX(u,v) is projective, so its coordinates are defined up to
a non-zero scalar). We conclude that the two branches lie on the same side of the tangent plane and that
the singularity is convex. As can readily be seen, the planex = 0 does not intersect the quartic, so the
intersection is affinely finite.

– a = −1,b = −1. Parameterizing the nodal quartic as above, we get the parameterization

X(u,v) =
(

−4u2v2,(u2 +v2)2,(u2 +v2)(u2−v2),2uv(u2 +v2)
)T

, (u,v) ∈ P1(R).

It can be checked that the pointp = (1,0,0,0) which is on the intersection is not attained by any real value
of the parameter(u,v) (it is only attained with the complex parameters(1, i) and(i,1)). The nodal quartic
is thus real with an isolated singular point.

We now argue that we can easily distinguish between these three cases. For this, we first prove the following
lemma.

Lemma 15.4. Given any pencil of quadrics generated by S and T whose characteristic polynomialdet(λS+µT) =

0 has a double root(λ1,µ1), the sign ofdet(λS+µT))
(µ1λ−λ1µ)2 at (λ1,µ1) is invariant by a real projective transformation of

the pencil and does not depend on the choice of S and T in the pencil.

Proof. We suppose thatD(λ,µ) = det(λS+ µT) has a double root(λ1,µ1). The lemma claims that for any real
projective transformationP and anya1, . . . ,a4 ∈ R such thata1a4−a2a3 6= 0,

D
′(λ′,µ′) = det(λ′PT(a1S+a2T)P+µ′PT(a3S+a4T)P)

has a double root(λ′
1,µ

′
1) such that D(λ,µ)

(µ1λ−λ1µ)2 at (λ1,µ1) has same sign asD
′(λ′,µ′)

(µ′1λ′−λ′1µ′)2 at (λ′
1,µ

′
1). We have

D
′(λ′,µ′) = (detP)2

D(a1λ′ +a3µ′,a2λ′ +a4µ′).

ThusD′(λ′,µ′) = 0 has a double root(λ′
1,µ

′
1) defined by

{

a1λ′
1 +a3µ′1 = λ1

a2λ′
1 +a4µ′1 = µ1

⇔
{

λ′
1 = a4λ1−a3µ1

a1a4−a2a3

µ′1 = −a2λ1+a1µ1
a1a4−a2a3

.
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It follows that

D′(λ′,µ′)
(µ′1λ′−λ′

1µ′)2 = (detP)2 D(a1λ′ +a3µ′,a2λ′ +a4µ′)
(µ1(a1λ′ +a3µ′)−λ1(a2λ′ +a4µ′))2 (a1a4−a2a3)

2.

Hence D
′(λ′,µ′)

(µ′1λ′−λ′1µ′)2 at (λ′
1,µ

′
1) has same sign asD(λ,µ)

(µ1λ−λ1µ)2 at (λ1,µ1). 2

Proposition 15.5. If the characteristic polynomialdet(λS+ µT) = 0 has two simple real roots and one double
root (λ1,µ1) whose associated matrixλ1S+µ1T has rank three, then the intersection of S and T inC3 is a nodal
quartic whose node is the apex ofλ1S+µ1T.

Moreover, if the inertia ofλ1S+ µ1T is (3,0) then the real part of the nodal quartic is reduced to its node.

Otherwise the nodal quartic is real ; furthermore, ifdet(λS+µT)
(µ1λ−λ1µ)2 is negative for(λ,µ) = (λ1,µ1), the node is isolated

and, otherwise, the singularity is convex.

Proof. The first part of the proposition follows directly from the Segre characteristic (see Section 15.2.2.1 and
Table 15.1).

If the inertia ofλ1S+µ1T is (3,0), thena = b = 1 in (15.2) and the result follows as discussed above. Other-
wise, consideringS′ = PT(λ1S−T)P andT ′ = PT(λ2S−T)P, (15.2) gives that det(λS′+µT′) =−aλ(bλ+µ)µ2/4.

Evaluatingdet(λS′+µT′)
µ2 at (λ,µ) = (1,0), gives by Lemma 15.4 that−ab has same sign asdet(λS+µT)

(µ1λ−λ1µ)2 at (λ1,µ1).

The result then follows from the discussion above dependingon whethera = b = −1 orab= −1. 2

λ2 and λ3 are complex conjugate. The reduction to normal pencil form is slightly more involved in this
case. Letλ2 = α + iβ,λ3 = λ2,β 6= 0. The Canonical Pair Form Theorem gives thatS andT are simultaneously
congruent to the quadrics of equations

{

2εxy+2zw= 0,

2ελ1xy+ εy2 +2αzw+βz2−βw2 = 0,
ε = ±1

Through this congruence transformation,S′ = λ1S−T has equation

0 = −εy2 +β(w2−z2)+2(λ1−α)zw,

= −εy2 +β(w+ξz)

(

w− 1
ξ

z

)

,

= −εy2 +βz′w′,

whereξ is real and positive. Through the congruence transformation and with the above transformation(z,w) 7→
(z′,w′), Shas equation

0 = 2εxy+2zw

= 2εxy+
2

(ξ+ 1
ξ )2

(

1
ξ

z′2−ξw′2 +

(

ξ− 1
ξ

)

z′w′
)

.

Through the above congruence transformations, the quadricof the pencilT ′ = βS−2
ξ− 1

ξ
(ξ+ 1

ξ )2 (λ1S−T) has equation

2εy

(

βx+
ξ− 1

ξ

(ξ+ 1
ξ )2

y

)

+
2β

(ξ+ 1
ξ )2

(

1
ξ

z′2−ξw′2
)

= 0.

Finally, by making a shift onx, rescaling on the four axes, and changing the signs ofx andz, we get that the two
quadrics of the pencilS′ andT ′ are simultaneously congruent to the quadrics of equations

{

y2 +zw= 0,

xy+z2−w2 = 0.
(15.3)
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As before, we now drop reference to the accumulated congruence transformation and work in the local frame.
By substituting the parameterization of the coney2 +zw= 0 (see Table 14.3)

(

s,uv,u2,−v2) , (u,v,s) ∈ P⋆2(R),

into the other quadricxy+z2−w2 = 0, and solving ins, we get the parameterization of the nodal quartic

X(u,v) =
(

v4−u4,u2v2,u3v,−uv3)T
, (u,v) ∈ P1(R).

The nodal quartic is thus real and its node, corresponding tothe parameters(1,0) and(0,1), is atp = (1,0,0,0),
the apex ofS′. The plane tangent to the quadricxy+z2−w2 = 0 at the quartic’s nodep is y= 0. In a neighborhood
of the quartic’s node on the branch corresponding to the parameter(0,1), x = v4−u4 > 0 andy = u2v2 > 0. On
the other branch corresponding to the parameter(1,0), x = v4−u4 < 0 andy = u2v2 > 0. Hence, the two branches
of the quartic are on opposite sides of the tangent planey = 0 in a neighborhood of the node, i.e., the singularity is
concave.

Let us briefly show that the intersection is affinely infinite in this case. Consider the planeℓ1x+ ℓ2y+ ℓ3z+
ℓ4w= 0,(ℓ1, ℓ2, ℓ3, ℓ4)∈P3(R), which we intersect with the nodal quartic under consideration. This yields a quartic
equationE in (u,v). If ℓ1 = 0, E hasv in factor, meaning that the point(1,0,0,0) of parameter(0,1) belongs to
the plane. Ifℓ1 6= 0, the coefficients ofu4 andv4 in E have opposite sign, implying by Descartes’ Sign Rule thatE
has at least one real non-trivial solution. The nodal quartic is thus cut by any plane ofP3(R), implying it is affinely
infinite.

To summarize, we have the following result.

Proposition 15.6. If the characteristic polynomialdet(λS+µT) = 0 has two simple complex conjugate roots and
one double root(λ1,µ1) whose associated matrixλ1S+µ1T has rank three, then the intersection of S and T is a
real nodal quartic with a concave singularity at its node, the apex ofλ1S+µ1T.

15.3.2 Two secant conics inP3(C), σ4 = [11(11)]
The characteristic polynomial has a double rootλ1 and the rank ofR(λ1) is 2.λ1 is necessarily real and there

are two Jordan blocks of size 1 associated with it in the canonical form. Letλ2 andλ3 be the other (simple) roots,
associated with quadrics of rank 3. We have two cases.

λ2 and λ3 are real. λ2 andλ3 appear in real Jordan blocks of size 1. The normal form ofR(λ1) andR(λ2)
is :

{

z2 +aw2 = 0,

x2 +by2 +cw2 = 0,

with a,b,c∈ {−1,1}.
The two planes ofR(λ1) are real if the matrix has inertia(1,1), i.e. if a = −1. The coneR(λ2) is real if its

inertia is(2,1), i.e. if b = −1 orc = −1. The two conics of the intersection are secant over the reals if the singular
line z= w = 0 of the pair of planes meets the cone in real points, i.e. ifb = −1. We have the following cases :

– a = ±1,b = 1,c = 1 : The planes are real or imaginary and the cone is imaginary.The apex of the cone is
not on the planes, so intersection is empty.

– a= 1,b= 1,c=−1 : The planes are imaginary and the cone is real. Their real intersection is the intersection
of the singular linez= w = 0 of the pair of planes with the cone. The real intersection isthus empty.

– a= 1,b=−1,c=±1 : The planes are imaginary and the cone is real. The linez= w= 0 intersects the cone
in two points of coordinates(1,1,0,0) and(−1,1,0,0). The intersection is reduced to these two points.

– a = −1,b = 1,c = −1 : The planes and the cone are real. The linez= w = 0 does not intersect the cone, so
intersection consists of two non-secant conics.

– a = −1,b = −1,c = ±1 : The planes and the cone are real. The linez= w = 0 intersects the conics. The
intersection consists of two conics intersecting in two pointsp± of coordinates(±1,1,0,0). All the quadrics
of the pencil have the same tangent planeP± : x∓y= 0 atp±. The two conics of the intersection are on the
same side ofP±, i.e. the singularity is convex. Whenc = 1, the planey = 0 does not intersect the conics.
The same goes for the planex = 0 whenc = −1. We conclude that the intersection is affinely finite.
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Computing the inertia ofR(λ1) gives a. Also, in normal form, the characteristic polynomial det(λR(λ1)

+µR(λ2)) is equal tobµ2λ(aλ + cµ). Thus, by Lemma 15.4,ab is equal to the sign ofdet(λS+µT)
(µ1λ−λ1µ)2 at (λ1,µ1).

Hence we can easily computea andb. Finally, we need to computec but only in the case wherea=−1 andb= 1.
Thenc= 1 if the inertia ofR(λ2) (or R(λ3)) is (3,0) ; otherwisec=−1 and the inertia ofR(λ2) (or R(λ3)) is (2,1).

λ2 and λ3 are complex conjugate. There are two complex Jordan blocks of size 2 associated withthe
two roots. The pencil normal form is obtained as in Section 15.3.1. The end result is :

{

zw= 0,

x2 +ay2 +z2−w2 = 0,

with a∈ {−1,1}.
The pair of planesR(λ1) is always real. The intersection consists of the two conicsz= x2 +ay2−w2 = 0 and

w = x2 +ay2 +z2 = 0. We have two cases :
– a = 1 : One conic is real, the other is imaginary.
– a=−1 : The two conics are real. They intersect at the pointsp± of coordinates(1,±1,0,0). All the quadrics

of the pencil have the same tangent planeP± : x∓ y = 0 atp±. The two conics of the intersection are on
opposite sides ofP±, i.e. the singularity is concave.
Let us show that the intersection is affinely infinite. Parameterizing the first conic by(u2+v2,u2−v2,0,2uv)
and the second by(u2− v2,u2 + v2,2uv,0), and intersecting with the plane of equationℓ1x+ ℓ2y+ ℓ3z+
ℓ4w = 0,(ℓ1, ℓ2, ℓ3, ℓ4) ∈ P3(R), we obtain two quadratic equations in(u,v). The product of the coefficients
of u2 andv2 is ℓ2

1− ℓ2
2 in one case andℓ2

2− ℓ2
1 in the other case. Therefore, Descartes’ Sign Rule implies

the existence of a real non-trivial solution to at least one of the quadratic equations ifℓ2
1 6= ℓ2

2. If ℓ2
1 = ℓ2

2,
then each of the two quadratic equations has either(u,v) = (0,1) or (1,0) as real non-trivial solution. We
conclude that the intersection is cut by any plane ofP3(R), i.e. it is affinely infinite.

Note finally that, in normal form, the characteristic polynomial det(λR(λ1)+µR(λ2)) is equal to−aµ2(µ2 +

λ2/4). Hencea is opposite to the sign ofdet(λS+µT)
(µ1λ−λ1µ)2 at (λ1,µ1) (by Lemma 15.4).

15.3.3 Cuspidal quartic inP3(C), σ4 = [13]
The characteristic polynomial has a triple rootλ1, which is necessarily real. To it corresponds a real Jordan

block of size 3.R(λ1) has rank 3. Letλ2 be the other root, necessarily real, andR(λ2) the associated cone. The
normal form ofR(λ1) andR(λ2) is :

{

w2 +yz= 0,

y2 +xz= 0.

The intersection consists of a cuspidal quartic which can beparameterized (in the local frame of the normal form)
by

X(u,v) = (v4,u2v2,−u4,u3v), (u,v) ∈ P1(R).

The quartic has a cusp atp = (1,0,0,0) (the vertex of the first cone), which corresponds to(u,v) = (0,1). The
intersection ofR(λ1) with the plane tangent toR(λ2) at p gives the (double) line tangent to the quartic atp, i.e.
z= w2 = 0.

15.3.4 Two tangent conics inP3(C), σ4 = [1(21)]
The characteristic polynomial has a triple rootλ1 and the rank ofR(λ1) is 2. λ1 is necessarily real. Attached

to λ1 are two real Jordan blocks, one of size 2, the other of size 1. Let λ2 be the other simple real root, withR(λ2)
of rank 3. The normal forms ofR(λ1) andR(λ2) are :

{

x2 +aw2 = 0,

xy+z2 = 0,

wherea∈ {−1,1}.
The pair of planesR(λ1) is real when the matrix has inertia(1,1), i.e. whena = −1. The coneR(λ2) is real

since its inertia is(2,1). So we have two cases :
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– a = 1 : The pair of planes is imaginary. Its real part is restricted to the linex = w = 0, which intersects the
cone in the real double point(0,1,0,0). The intersection is reduced to that point.

– a = −1 : The planes are real. The intersection consists of two conics intersecting in the double point
(0,1,0,0) and sharing a common tangent at that point.

15.3.5 Double conic inP3(C), σ4 = [1(111)]

The characteristic polynomial has a real triple rootλ1 and the rank ofR(λ1) is 1. The Jordan normal form of
S−1T contains three blocks of size 1 forλ1. Let λ2 be the other real root, withR(λ2) of rank 3. The normal forms
of R(λ1) andR(λ2) are :

{

w2 = 0,

x2 +ay2 +z2 = 0,

wherea∈ {−1,1}.
The coneR(λ2) is real if its inertia is(2,1), i.e. if a = −1. We have two cases :
– a = −1 : The cone is real. The intersection consists of a double conic lying in the planew = 0.
– a = 1 : The cone is imaginary. Its real apex does not lie on the planew = 0, so the intersection is empty.

15.3.6 Cubic and tangent line inP3(C), σ4 = [4]

The characteristic polynomial has a quadruple rootλ1 and the rank ofR(λ1) is 3. λ1 is necessarily real.
Associated with it is a unique real Jordan block of size 4. Thenormal form ofR(λ1) andS is :

{

z2 +yw= 0,

xw+yz= 0.

The intersection contains the linez= w = 0. The cubic is parameterized by

X(u,v) =
(

u3,−u2v,uv2,v3) , (u,v) ∈ P1(R).

The cubic intersects the line in the point of coordinate(1,0,0,0), corresponding to the parameter(1,0). The cubic
and the line are tangent at that point.

15.3.7 Conic and two lines crossing on the conic inP3(C), σ4 = [(31)]

The characteristic polynomial has a quadruple rootλ1, with R(λ1) of rank 2.λ1 is necessarily real. To it
correspond two real Jordan blocks of size 3 and 1. The normal forms ofR(λ1) andSare :

{

yz= 0,

y2 +xz+aw2,

with a∈ {−1,1}. z= 0 gives two real or imaginary lines.y = 0 gives a real conic. The lines cross on the conic at
the pointp = (1,0,0,0).

Both the pair of planes and the nonsingular quadric are real.We have two cases :
– a = 1 : The lines are imaginary. The intersection is reduced to the conic.
– a = −1 : The lines are real. The intersection consists of a conic and two lines crossing on the conic atp.

The characteristic polynomial in normal form det(λR(λ1)+µS) =−aµ4/4 has a quadruple root and thus is always
non-negative or non-positive. In this case, it is straightforward to show, similarly as in the proof of Lemma 15.4,
that the sign> 0 or6 0 of det(λS+µT) is invariant by real projective transformation and independent of the choice
of S andT in the pencil. Hencea is opposite to the sign of det(λS+µT) for any (λ,µ) that is not the quadruple
root.
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15.3.8 Two lines and a double line inP3(C), σ4 = [(22)]
The characteristic polynomial has a quadruple rootλ1, with R(λ1) of rank 2.λ1 is necessarily real and there

are two real Jordan blocks associated with it, both of size 2.The normal forms ofR(λ1) andSare :

{

y2 +aw2 = 0,

xy+azw= 0,

with a ∈ {−1,1}. The intersection consists of the double liney = w = 0 and two single linesy±
√
−aw= x±√

−az= 0 cutting the double line in the points(∓
√
−a,0,1,0).

The pair of planes is real if its inertia is(1,1), i.e. if a = −1. We have two cases :
– a = 1 : The two single lines are imaginary. The intersection is reduced to the double liney = w = 0.
– a = −1 : The intersection consists of the two single linesy±w = x±z= 0 and the double liney = w = 0.

Note that the characteristic polynomial det(λR(λ1) + µS) is equal in normal form toa2µ4

16 . ThusD(λ,µ) is
positive for any(λ,µ) distinct from the quadruple root.

15.3.9 Two double lines inP3(C), σ4 = [(211)]
The characteristic polynomial has a quadruple rootλ1, with R(λ1) of rank 1.λ1 is real and there are three real

Jordan blocks associated with it, two having size 1 and the last size 2. The normal forms ofR(λ1) andSare :

{

w2 = 0,

x2 +ay2 +zw= 0,

with a∈ {−1,1}. The intersection consists of two double linesw2 = x2 +ay2 = 0.
There are two cases :
– a = 1 : The two double lines are imaginary. The intersection is reduced to their real intersection point, i.e.

(0,0,1,0).
– a = −1 : The two double linesw2 = x− y = 0 andw2 = x+ y = 0 are real so the intersection consists of

these two lines, meeting at(0,0,1,0).
The characteristic polynomial (in normal form) is equal to det(λR(λ1)+µS) = −aλ4/4 thusa is opposite to

the sign of det(λS+µT) for any(λ,µ) that is not a root.

15.3.10 Cubic and secant line inP3(C), σ4 = [22]
The characteristic polynomial has two double rootsλ1 andλ2. The associated quadrics both have rank 3.λ1

andλ2 are either both real or complex conjugate.

λ1 and λ2 are real. There is a real Jordan block of size 2 associated with each root. The normal form of
R(λ1) andR(λ2) is :

{

y2 +zw= 0,

xy+w2 = 0.

The intersection consists of the liney = w = 0 and a cubic. The cubic is parameterized by

X(u,v) =
(

u3,−uv2,−v3,u2v
)

, (u,v) ∈ P1(R).

The line intersects the cubic in the two points of coordinates (1,0,0,0) and(0,0,1,0), corresponding to the para-
meters(1,0) and(0,1).

λ1 and λ2 are complex conjugate. Let λ1 = α + iβ,λ2 = λ1,β 6= 0. There is complex Jordan block of
size 4 associated with the two roots. The normal form ofSandR(α) is :

{

xw+yz= 0,

xz−yw+zw= 0.
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The intersection contains the linez= w = 0. The cubic is parameterized by

X(u,v) =
(

−u2v,uv2,u3 +uv2,u2v+v3) , (u,v) ∈ P1(R).

The cubic intersects the line in the points of coordinates(1, i,0,0) and(1,−i,0,0). Thus, over the reals, the cubic
and the line do not intersect.

15.3.11 Conic and two lines not crossing on the conic inP3(C), σ4 =
[2(11)]

The characteristic polynomial has two double rootsλ1 andλ2, with associated ranks 3 (a projective cone) and
2 (a pair of planes) respectively. The two roots are necessarily real, otherwise the ranks of the quadricsR(λ1) and
R(λ2) would be the same. Associated withλ1 andλ2 are respectively a unique real Jordan block of size 2 and two
real Jordan blocks of size 1. The pencil normal form is :

{

y2 +az2 +bw2 = 0,

xy= 0,

wherea,b ∈ {−1,1}. The planex = 0 contains a conic which is real whena = −1 or b = −1 and imaginary
otherwise. The planey = 0 contains two lines which are real ifab< 0 and imaginary otherwise. The lines cross at
the point(1,0,0,0), the apex ofR(λ1), which is not on the conic.

The pair of planesR(λ2) is always real. The coneR(λ1) is real when its inertia is(2,1), i.e. whena = −1 or
b = −1. We have three cases :

– a = 1,b = 1 : The lines and the conic are imaginary. The intersection isreduced to the real point of inter-
section of the two lines, i.e.(1,0,0,0).

– a = −b : The lines and the conic are real. The intersection consistsof a conic and two intersecting lines,
each cutting the conic in a point (at(0,0,1,1) and(0,0,−1,1)).

– a = −1,b = −1 : The lines are imaginary, the conic is real. The intersection consists of a conic and the
point (1,0,0,0), intersection of the two lines.

To determine in which of the three situations we are, first compute the inertia ofR(λ1). If the inertia is
(3,0), this implies thata = b = 1. Otherwise, we consider as before the characteristic polynomial in normal form

det(λR(λ1)+µR(λ2)) = −abλ2µ2/4. By Lemma 15.4,−ab is equal to the sign ofdet(λS+µT)
(µ1λ−λ1µ)2 at (λ1,µ1). If ab> 0

thena = b = −1, otherwisea = −b.

15.3.12 Four lines forming a skew quadrilateral inP3(C), σ4 = [(11)(11)]
The characteristic polynomial has two double rootsλ1 andλ2, with associated quadrics of rank 2.λ1 andλ2

can be either both real or both complex conjugate.

λ1 and λ2 are real. Each root appears in two real Jordan blocks of size 1. The normal forms ofR(λ1) and
R(λ2) are :

{

z2 +aw2,

x2 +by2,

wherea,b∈ {−1,1}.
The first pair of planes is imaginary ifa = 1. The second pair of planes is imaginary ifb = 1. There are three

cases :
– a = 1,b = 1 : The four lines are imaginary and the intersection is empty.
– a = −b : One pair of planes is real, the other is imaginary. Ifa = 1, the intersection consists of the points

of intersection of the linez = w = 0 with the pair of planesx2 − y2 = 0, i.e. the points(1,1,0,0) and
(−1,1,0,0). Similarly, if b = 1 the intersection is reduced to the two points(0,0,1,1) and(0,0,−1,1).

– a=−1,b=−1 : The four lines are real. The intersection consists of fourlines forming a skew quadrilateral.
The values ofa andb follow from the inertia ofR(λ1) andR(λ2). Note also thatb directly follows froma

because, the characteristic polynomial (in normal form) det(λR(λ1)+µR(λ2)) = abλ2µ2 and it is straightforward
to show thatab is equal to the sign of det(λS+µT) for any(λ,µ) that is not a root.
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λ1 and λ2 are complex conjugate. Let λ1 = a+ ib,λ2 = λ1,b 6= 0. The roots appear in two complex
Jordan blocks of size 2. The normal forms ofSandaS−T are :

{

xy+zw= 0,

x2−y2 +z2−w2 = 0.

The intersection consists of two real lines of equationsx±w = y∓ z = 0 and two imaginary lines of equations
x± iz= y∓ iw = 0.

15.4 Classification of singular pencils ofP3(R) over the reals
We now examine the singular pencils ofP3(R), i.e. those whose characteristic polynomial vanishes identically.
There are two cases according to whether two arbitrary quadrics of the pencil have a singular point in common

or not.

15.4.1 QS and QT have no singular point in common,σ4 = [1{3}]
We first prove the following lemma.

Lemma 15.7. If detR(λ,µ)≡ 0 and QS and QT have no singular point in common, then every quadric of the pencil
has a singular point such that all the other quadrics of the pencil contains this point and share a common tangent
plane at this point.

Proof. Let QR be any quadric of the pencil. First note thatR has rank at most 3, otherwise the characteristic
polynomial would not identically vanish.

If R has rank 1, it is a double plane inP3(C) containing only singular points. Since there is no quadric of
inertia(4,0) in the pencil, the intersection of the double plane with every other quadric of the pencil is not empty
in P3(R) (by Theorem 14.5). HenceQR contains a singular point that belongs to all the quadrics ofthe pencil.

If R has rank 2, it is a pair of planes inP3(C) with a real singular line. By the Segre classification (see
Table 15.2) we know that the intersection inP3(C) contains a conic and a double line. Furthermore, the line is
necessarily real because otherwise its conjugate would also be in the intersection. This line lies in one of the two
planes ofQR and thus cuts any other line in that plane and in particular the singular line of the pair of planes. Hence
QR contains a singular point that belongs to all the quadrics ofthe pencil.

If R has rank 3, we apply a congruence transformation so thatQR has the diagonal formax2 +by2 +cz2 = 0,
with abc 6= 0. We may also change the generators of the pencil, replacingS by R. After these transformations,
the determinantD(λ,µ) becomes the sum ofδabcλ3µ and of other terms of degree at least 2 inµ, whereδ is the
coefficient ofw2 in the equation ofQT . The hypothesis thatD(λ,µ)≡ 0 thus implies thatδ = 0. Hence the singular
point (0,0,0,1) of QR belongs toQT and thus to all the quadrics of the pencil.

Thus, in all cases, every quadric of the pencil has a singularpoint that belongs to all the quadrics of the pencil.
Any such pointp lies on the intersection ofQS andQT and is a singular point of the intersection : sincep is a
singular point of a quadric of the pencil, the rank of the Jacobian matrix (15.1) is less than two. We conclude on
the common tangent plane by applying Proposition 15.1 underthe assumption thatp is not a singular point of both
QS andQT . 2

By Lemma 15.7, there exist a singular points of QS and a singular pointt of QT that belong to all the
quadricsQλS+µT of the pencil. QuadricsQS, QT , andQS+T have rank at most 3 since the characteristic polynomial
identically vanishes, and they are not of inertia(3,0) (see Table 14.1) since they contains andt that are distinct
by assumption. HenceQS, QT , andQS+T are cones or pairs of (possibly complex) planes. Thus, sinces andt are
singular points ofQS andQT , respectively, the linest is entirely contained inQS andQT , and thus is also contained
in QS+T . Moreover,s andt are not singular points ofQS+T because otherwise all the quadrics of the pencil would
be singular at these points, contradicting the hypothesis.It now follows from the fact thatQS+T is a cone or a pair
of planes that its tangent planes ats andt coincide. Therefore, by Lemma 15.7, the tangent plane ofQS at t is the
same as the tangent plane ofQT ats.
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Now we change of frames in such a way thats and t have coordinates(0,0,0,1) and (0,0,1,0) and that
the common tangent plane has equationx = 0. Then the equations ofQS andQT becomexz+ q1(x,y) = 0 and
xw+q2(x,y) = 0, whereq1 andq2 are binary quadratic forms. The two equations can thus be expressed in the form
ay2 +x(by+cx+z) = 0 anda′y2 +x(b′y+c′x+w) = 0. By a new change of frame, we get equations of the form
ay2 +xz= 0 anda′y2 +xw= 0. Replacing the second quadric by a linear combination of the two and applying the
change of coordinatesa′z−aw→ w and a scaling ony, gives as normal form for the pencil :

{

xw= 0,

xz+ay2 = 0,

with a∈ {−1,1}. Furthermore, we can seta = 1 by changingz in −z.
Therefore, the intersection consists of the double linex = y2 = 0 and the conicw = xz−y2 = 0. The line and

the conic meet at(0,0,1,0) in the local frame of the normal form.

15.4.2 QS and QT have a singular point in common
Let p be the common singular point. We proceed as already outlinedin Section 15.2.2. After a rational change

of frame, we may suppose thatp has coordinates(0,0,0,1). In the new frame, the equations of the quadrics are
homogeneous polynomials of degree 2 in three variables. To classify the different types of intersection, we may
identify the quadrics with their upper left 3×3 matrices and look at the multiple roots of the cubic characteristic
polynomial, which we refer to as therestricted characteristic polynomial, and the ranks of the associated matrices.
We thus apply the Canonical Pair Theorem to pairs of conics.

The case[(111)] is trivial and left aside : in that situation, the cubic characteristic polynomial has a (real) triple
root, the associated quadric has rank 0 and all the other quadrics of the pencil are cones. The intersection consists
of any cone of the pencil, that is any quadric of the pencil distinct fromP3(R).

15.4.2.1 Four concurrent lines inP3(C), σ3 = [111]

The restricted characteristic polynomial has three simpleroots. At least one is real : call itλ1. Letλ2 be another
root. To these roots correspond quadrics of rank 2.

If λ2 is real, then the three roots are real. The normal form ofR(λ1) andR(λ2) is :
{

ay2 +z2 = 0,

bx2 +z2 = 0,

with a,b∈ {−1,1}. Note that the equation of the third pair of planes of the pencil is obtained by subtracting the
two equations, givingay2−bx2 = 0. We have two cases :

– a = b = −1 : The intersection consists of four concurrent linesy−ε1z= x−ε2z= 0, with ε1,ε2 ∈ {−1,1},
meeting atp.

– a = b = 1 or a = −b : Whena = b = 1, bothR(λ1) andR(λ2) represent imaginary pairs of planes. When
a = −b, the third pair of planes is imaginary, as well as one of the first two. In both cases, the intersection
is reduced to the pointp.

Botha andb are equal to−1 if and only ifR(λ1) andR(λ2) have inertia(1,1).
If λ2 = α+ iβ is complex,β 6= 0, we obtain the following normal form (proceeding as in Section 15.3.1) :

{

x2 +y2−z2 = 0,

yz= 0.

The intersection consists of two real linesy= x2−z2 = 0, intersecting atp, and two complex linesz= x2+y2 = 0.

15.4.2.2 Two lines and a double line inP3(C), σ3 = [12]

The restricted characteristic polynomial has a double rootλ1, which is real. The Jordan normal form ofS−1T
contains one real Jordan block of size 2. Letλ2 be the other root, also real. The normal forms ofR(λ1) andR(λ2)
are :

{

y2 +az2 = 0,

xy= 0,
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wherea∈ {−1,1}. There are two cases :
– a = −1 : The intersection consists of the double liney = z2 = 0 and the two single linesx = y−z= 0 and

x = y+z= 0. The three lines are concurrent atp.
– a = 1 : The two single lines are imaginary. Their common point is on the double line, so the intersection

consists of this double liney = z2 = 0.
Note that the value ofa follows from the inertia ofR(λ1).

15.4.2.3 Two double lines inP3(C), σ3 = [1(11)]

The restricted characteristic polynomial has a double rootλ1, which is real. The canonical pair form has two
real Jordan blocks of size 1 associated withλ1. Let λ2 be the other root, also real. The normal forms ofR(λ1) and
R(λ2) are :

{

z2 = 0,

x2 +ay2 = 0,

wherea∈ {−1,1}. The pair of planesR(λ2) is real when its inertia is(1,1), i.e. whena=−1. We have two cases :
– a = 1 : The intersection is reduced to the pointp.
– a = −1 : The intersection consists of the two double linesx−y = z2 = 0 andx+y = z2 = 0, meeting atp.

Note that the value ofa follows from the inertia ofR(λ2).

15.4.2.4 Line and triple line inP3(C), σ3 = [3]

The restricted characteristic polynomial has a triple rootλ1, which is real. The Jordan normal form ofS−1T
contains one real Jordan block of size 3. The normal forms ofSandR(λ1) are :

{

xz+y2 = 0,

yz= 0.

The intersection consists of the triple linez= y3 = 0 and the simple linex = y = 0. The two lines cut atp, the
singular point of all the quadrics of the pencil.

15.4.2.5 Quadruple line inP3(C), σ3 = [(21)]

The restricted characteristic polynomial has a real tripleroot λ1. The canonical pair form has two real Jordan
blocks of size 2 and 1. The normal form ofR(λ1) andS is :

{

y2 = 0,

z2 +xy= 0.

The intersection consists of the quadruple liney2 = z2 = 0.

15.4.2.6 σ3 = [{3}] and remaining cases

In this case, the restricted characteristic polynomial identically vanishes. One can easily prove that if the
two conicsS andT have no singular point in common, the pencil can be put in the normal formλxy+ µxz. The
intersection consists of the planex = 0 and the liney = z= 0, which meets the plane atp.

If the two conics have a singular point in common (call itq), we can go from 3× 3 matrices to 2× 2 ma-
trices pretty much as above by sendingq to (0,0,1,0). Consider the new characteristic polynomial, a quadratic
polynomial. The cases are :

– Two simple real roots : The pencil can be put in the normal form λx2 +µy2. The intersection consists of the
quadruple linex2 = y2 = 0 which goes throughp andq.

– Two simple complex roots : A normal form for the pencil isλxy+ µ(x2 − y2), giving the quadruple line
x2 = y2 = 0 for the intersection.

– A double real root, with a real Jordan block of size 2 : The normal form isλxy+ µy2. The intersection
consists of the planey = 0.

– Vanishing quadratic equation : The intersection consistsof a double plane.
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15.5 Classifying degenerate intersections
Our near-optimal algorithm for parameterizing intersections of quadrics works in two stages : first it determines

the real type of the intersection and, second, it computes a parameterization of this intersection. The purpose of this
section is to detail the first stage, called thetype-detectionphase. The second stage, which consists of case-by-case
algorithms for computing (near-)optimal parameterizations of the real part of the intersection, will be presented in
Part III.

The splitting in two stages reflects a key design choice of ourparameterization algorithm, which sums up as :
the sooner you know what is the type of the intersection, the less prone you are of making errors in later stages.
Information obtained in the type-detection phase is used todrive the algorithm and make it efficiently compute
precisely and uniquely what is needed.

Note however that presenting the type detection distinctlyfrom the parameterization is quite an oversimpli-
fication. In the actual implementation, there is no clear cutseparation between the two stages, which are largely
intertwined. Sometimes detecting the type of the intersection is doing a very small step towards parameterization.
And sometimes almost everything takes place in the type-detection phase.

We now turn to a high-level description of the detection phase, which relies heavily on the results of Sec-
tions 15.3 and 15.4 on real pencils of quadrics. We start by presenting some global tools, and then outline the
type-detection algorithm for each of the possible root patterns (vanishing characteristic polynomial, one double
root, one triple root, one quadruple root, two double roots).

15.5.1 Preliminaries
In what follows, we assume that the two input quadricsQS andQT have rational coefficients. We now briefly

describe the basic operations needed for detecting the realtype of the intersectionQS∩QT . They essentially fall
in two categories : linear algebra routines and elementary algebraic manipulations. Most computations involve
rational numbers. We give special attention to the limited number of situations where this is not the case.

Let R(λ,µ) = λS+ µT be the pencil generated byS andT. Computing the coefficients of the characteristic
polynomialD(λ,µ) = detR(λ,µ) involves nothing but computing determinants of rational matrices, so there is
nothing difficult here. Next, we need to compute the inertia and rank of a matrixR0 = R(λ0,µ0) of the pencil,
where(λ0,µ0) is a root ofD or a real rational projective number.

Assume first thatR0 has real and rational coefficients. Letp(ω) = det(R0−ωI), whereI is the identity matrix.
SinceR0 is symmetric, all its eigenvalues are real. We can thus compute the numbere+ of positive eigenvalues and
the numbere− of negative eigenvalues ofR0 by applying Descartes’ Sign Rule top(ω) and p(−ω) respectively.
Then the inertiaI0 of R0 is the pair(e+,e−) and its rankr0 is e+ +e−.

When the coefficients ofR0 are not rational or real, the worst situation that we have to deal with is whenD has
two real or complex conjugate double roots. In both cases, the coefficients ofR0 involve one square root. When
the roots are real conjugate, we could use Descartes’ Sign Rule again, except that we have to evaluate the signs of
coefficients that now involve a square root. In these cases wehowever propose a more efficient approach based on
the rank ofR0 (see Algorithm 6) which only deals with rational numbers. Weshow below how the rank ofR0 can
be computed using only standard linear algebra operations on rational numbers.

Let (λ0,µ0) = (a,b±√
c), where(a,b,c) ∈ P2(Q), c is not a square andc is either> 0 (real conjugate roots)

or < 0 (complex conjugate roots). Form the 8×8 rational matrix

M0 =

(

aS+bT cT
T aS+bT

)

.

If the vectork1 +
√

ck2 is in the kernel ofR0, then the column vector(kT
1 ,kT

2 )T is in the kernel ofM0. But the
vector(ckT

2 ,kT
1 ) also is in the kernel ofM0. It is not too difficult to realize that the kernel ofM0 has twice the

number of elements of the kernel ofR0, i.e. dimkerR0 = 1
2(dimkerM0−1). We can thus conclude that

r0 = 3−dimkerR0 =
1
2
(7−dimkerM0).

Computing the singular space of a quadric with rational coefficients is another operation we need. This only
amounts to computing the kernel of the associated matrix. Also, intersecting the singular spaces of two quadrics is
like computing the intersection between two linear spaces :it is a standard linear algebra operation.



242CHAPITRE 15. INTERSECTION OF QUADRICS : II. A CLASSIFICATION OF PENCILS

Algorithm 1 Main loop for degenerate intersection classification.

Require: a pencil of quadricsR(λ,µ) = λS+µT
1: computeD(λ,µ) := detR(λ,µ)
2: if D ≡ 0 then // vanishing characteristic polynomial
3: execute Algorithm 2
4: else
5: computeH := gcd(∂D/∂λ,∂D/∂µ) and letd := degree(H,{λ,µ})
6: if d = 0 then // no multiple root
7: output:smooth quartic (C) – see Part I
8: else ifd = 1 then // double real root
9: execute Algorithm 3

10: else ifd = 2 then
11: if discriminant(H) = 0 then // triple real root
12: execute Algorithm 4
13: else // two double roots
14: execute Algorithm 6
15: end if
16: else // d = 3 : quadruple real root
17: execute Algorithm 5
18: end if
19: end if

In terms of algebraic computations, we need to be able to compute the gcd of polynomials of degree at most 3
and to isolate the roots of a cubic polynomial (in the four concurrent lines case). This last task can be done using
Uspensky’s algorithm as in Part I or using special methods for comparing the roots of low-degree polynomials
(see [ET04]).

The top level type-detection loop is given in Algorithm 1. Itdoes not necessitate much comment save for the
fact that when the gcdH of the two partial derivatives ofD has degree 2, then either its discriminant vanishes, in
which caseD has a triple root, or it does not vanish andD has two double roots.

15.5.2 D vanishes identically

The type-detection algorithm whenD is identically zero, outlined in Algorithm 2, is little morethan a reprise
of the information contained in Section 15.4. The general idea is : determine if two arbitrary quadrics of the pencil
have a singular pointp in common. If they do, sendp to infinity and work on the pencil of conics living in the plane
w = 0. To actually compute the restricted pencilR3(λ,mu), build the matrix of a real projective transformationP
obtained by puttingp as the last column and completingP so that its columns form a basis ofP3(R). R3(λ,µ) is
then the principal submatrix of the matrixPT(λS+µT)P.

Two comments are in order. First, a multiple root of a cubic form – the characteristic polynomial of the
pencil of conics – is necessarily real (otherwise its complex conjugate would also be a multiple root) and rational
(otherwise its real conjugate would also be a multiple root).

So the only place where we might end up working with non-rational numbers is in the four concurrent lines
case. Indeed, in this situation the restricted characteristic polynomialD3 is a cubic form with three generically
non-rational simple roots. Computing the sign of the discriminant ofD3 can help us distinguish between the cases
when only two lines are real and when the four lines are eitherall real or all imaginary. But this is not enough to
give a complete characterization over the reals. We have thus decided to apply Finsler’s Theorem (Theorem 14.5),
as in the smooth quartic case, after isolating the roots of the cubic. If the restricted pencil contains a conic of inertia
(3,0), then the intersection of conics is empty in the planew = 0 and the intersection of the two initial quadrics is
reduced top.
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Algorithm 2 Classifying the intersection when the characteristic polynomial vanishes.

Require: R(λ,µ) (from Algorithm 1)
1: let γ := singular(QS)∩singular(QT),κ := dimγ
2: if κ = −1 then // conic and double line(C)
3: output:conic and double line
4: else // κ > 0 : at least one common singular pointγ(1)
5: sendγ(1) to the point[0 0 0 1]
6: compute the restricted pencilR3(λ,µ) of upper left 3×3 matrices andD3(λ,µ) := detR3(λ,µ)
7: if D3 ≡ 0 then // vanishing restricted characteristic polynomial
8: eitherσ3 = [{3}] or repeat restriction
9: else // D3 6≡ 0

10: computeH3 := gcd(∂D3/∂λ,∂D3/∂µ) and letd3 := degree(H3,{λ,µ})
11: if d3 = 0 then // no multiple root : four concurrent lines(C)
12: if D3 has only one real rootthen
13: output:two concurrent lines
14: else ifR3(λ,µ) contains a conic of inertia(3,0) then
15: output:point
16: else
17: output:four concurrent lines
18: end if
19: else // one multiple root
20: let (λ0,µ0) be the multiple root ofD3, I0 andr0 the inertia and rank (resp.) ofR(λ0,µ0)
21: if d3 = 1 then // D3 has one double root
22: if r0 = 2 then // two concurrent lines and a double line(C)
23: if I0 = (1,1) then // pair of planesR3(λ0,µ0) is real
24: output:two concurrent lines and a double line
25: else // pair of planesR3(λ0,µ0) is imaginary
26: output:double line
27: end if
28: else // r0 = 1 : two double lines(C)
29: let (λ1,µ1) be the other root ofD3, I1 the inertia ofR(λ1,µ1)
30: if I1 = (1,1) then // pair of planesR3(λ1,µ1) is real
31: output:two double lines
32: else // pair of planesR3(λ1,µ1) is imaginary
33: output:point
34: end if
35: end if
36: else // d3 = 2 : D3 has one triple root
37: if r0 = 2 then // line and triple line(C)
38: output:line and triple line
39: else ifr0 = 1 then // quadruple line(C)
40: output:quadruple line
41: else // r0 = 0 : projective cone(C)
42: if Sor T (in restricted form) has inertia(2,1) then
43: output:cone
44: else
45: output:point
46: end if
47: end if
48: end if
49: end if
50: end if
51: end if
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15.5.3 D has a single multiple root
The type-detection algorithms whenD has a unique multiple root are given in Algorithms 3 (double root), 4

(triple root) and 5 (quadruple root).
First note that whenD has a single multiple root, it is necessarily real and rational, for the same reasons

as above. So the singular quadrics that we deal with all have rational coefficients and their singular set can be
parameterized rationally.

In the double real root case, we use the result of Lemma 15.4 and classify the intersections according (among
others) the sign

s := signE(λ0,µ0), with E(λ,µ) := D(λ,µ)/(µ0λ−λ0µ)2,(λ0,µ0) double root ofD.

The other slight difficulty occurs in the two secant conics case, when the pair of planesR(λ0,µ0) is real ands=−1.
To separate the two subcases (two non-secant conics or emptyset), we can compute the inertia ofR(λ1,µ1), where
(λ1,µ1) is a simple root ofD, when this root is rational. But in the general case, we use again Finsler’s theorem,
looking for a quadric of inertia(4,0) between and outside the two simple roots ofD. If such a quadric is found,
the intersection is empty.

The triple real root case does not necessitate further comment except for noticing that the additional simple
root (λ1,µ1) of D is necessarily real and rational, so the associated quadricR(λ1,µ1) has rational coefficients.

The type detection in the quadruple real root case is pretty straightforward. The only subtlety is that the case of
a quadruple real root(λ0,µ0) with associated quadric of rank 2 corresponds to two different Jordan decompositions,
with Segre symbols[(22)] and[(31)], as already mentioned in Section 15.2.2. To distinguish between the two, we
simply note that in the first situation, the singular line of the pair of planesR(λ0,µ0) is entirely contained in all the
quadrics of the pencil.

15.5.4 D has two double roots
The type-detection algorithm whenD has two double roots is given in Algorithm 6. We distinguish between

two situations in the algorithm : the roots are either real and rational, or they are not. In the first case, computing
the inertia of singular quadrics is easy since computationstake place over the rationals. Also, note that if one of
the singular quadrics has rank 2 and the other has rank 3, thenthe associated roots of the characteristic polynomial
are necessarily rational.

So assume that the roots are not real or not rational. The ranks of the non-rational singular quadrics are
necessarily the same, so we need only compute one of them, in the way indicated above. When this rank is 2
and the roots are real conjugate, we distinguish between theremaining subcases (four real lines forming a skew
quadrilateral or the empty set) by testing whether any quadric of the pencil between the two roots has inertia(4,0)
or not.

15.6 Examples
We now give several examples for which the type of the real part of the intersection is determined using the

type-detection algorithms of the previous section.

15.6.1 Example 1
Consider the following pair of quadrics :

{

QS : −x2−4xy+4xz−6y2 +2yz−4yw+2zw−2w2 = 0,

QT : −x2−6xy+4xz−2xw−6y2−8yw−6w2 = 0.

The characteristic polynomial is

D(λ,µ) = det(λS+µT) = −16(2λ4−10λ3µ−19λ2µ2−16λµ3−5µ4).
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Algorithm 3 Classifying the intersection : the double real root case,d = 1.

Require: R(λ,µ),D (from Algorithm 1)
Require: double real root(λ0,µ0), inertiaI0 and rankr0 of R(λ0,µ0)

1: let s := signE(λ0,µ0) andδ := sign(discriminant(E)), whereE(λ,µ) := D(λ,µ)/(µ0λ−
λ0µ)2

2: if r0 = 3 then // nodal quartic(C)
3: if δ = −1 then // other roots are complex
4: output:nodal quartic, concave singularity

5: else // other roots are real
6: if s= +1 then
7: output:nodal quartic, convex singularity

8: else ifI0 = (2,1) then // coneR(λ0,µ0) is real
9: output:nodal quartic with isolated singular point

10: else // coneR(λ0,µ0) is imaginary
11: output:point

12: end if
13: end if
14: else // r0 = 2 : two secant conics(C)
15: if δ = −1 then // other roots are complex
16: if s= +1 then
17: output:two secant conics, concave singularities

18: else
19: output:one conic

20: end if
21: else // other roots are real
22: if I0 = (1,1) then // pair of planesR(λ0,µ0) is real
23: if s= +1 then
24: output:two secant conics, convex singularities

25: else
26: if R(λ,µ) contains a quadric of inertia(4,0) then
27: output: /0
28: else
29: output:two non-secant conics

30: end if
31: end if
32: else // pair of planesR(λ0,µ0) is imaginary
33: if s= +1 then
34: output: /0
35: else
36: output:two points

37: end if
38: end if
39: end if
40: end if
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Algorithm 4 Classifying the intersection : the triple real root case,d = 2 and discriminant(H) = 0.

Require: R(λ,µ),D (from Algorithm 1)
Require: triple real root(λ0,µ0), inertiaI0 and rankr0 of R(λ0,µ0)
1: if r0 = 3 then // cuspidal quartic(C)
2: output:cuspidal quartic
3: else ifr0 = 2 then // two tangent conics(C)
4: if I0 = (1,1) then // pair of planesR(λ0,µ0) is real
5: output:two tangent conics
6: else // pair of planesR(λ0,µ0) is imaginary
7: output:point
8: end if
9: else // r0 = 1 : double conic(C)

10: let I1 be the inertia ofR(λ1,µ1), (λ1,µ1) the second root ofD
11: if I1 = (2,1) then // coneR(λ1,µ1) is real
12: output:double conic
13: else // coneR(λ1,µ1) is imaginary
14: output: /0
15: end if
16: end if

The gcd of the partial derivatives is equal to 32(λ+µ). So, by Algorithm 1,D has a double real root at(λ0,µ0) =
(1,−1).

We then follow Algorithm 3. LetR0 = λ0S+µ0T. We have :

det(R0−xI) = x4−4x3−8x2.

Descartes’ Sign Rule gives that the inertia ofR0 is I0 = (1,1) and the rank isr0 = 2. The intersection thus consists
of two secant conics over the complexes. We compute

E(λ,µ) =
D(λ,µ)

(µ0λ−λ0µ)2 = −16(2λ2 +6λµ+5µ2).

Soδ = sign(discriminant(E)) = −1 ands= signE(λ0,µ0) = −1. We conclude that the intersection consists, over
the reals, of a single conic.

This conic can be parameterized by (see Part III)

X(u,v) = (2u2−12uv+18v2,−u2 +2uv+3v2,8v2,u2−2uv−3v2), (u,v) ∈ P1(R).

15.6.2 Example 2
Consider the following pair of quadrics :

{

QS : −5x2−2xy−4y2−12yz−6yw−8z2−4zw+w2 = 0,

QT : −2x2−2xy+3y2 +6yz+4z2 +2zw+w2 = 0.

The characteristic polynomial is

D(λ,µ) = det(λS+µT) = −3(16λ4−8λ2µ2 +µ4).

The gcd of the partial derivatives is equal toH = 12(µ2−4λ2). Since the discriminantδ of H is not zero,D has
two double roots, according to Algorithm 1. Further,δ is positive and is a square, soD has two real rational double
roots. These roots are(λ0,µ0) = (−1,−2) and(λ1,µ1) = (−1,2).
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Algorithm 5 Classifying the intersection : the quadruple real root case, d = 3.

Require: R(λ,µ),D (from Algorithm 1)
Require: quadruple real root(λ0,µ0), inertiaI0 and rankr0 of R(λ0,µ0)
1: if r0 = 3 then // cubic and tangent line(C)
2: output:cubic and tangent line
3: else ifr0 = 2 then // conic and two lines crossing or two skew lines and a double line(C)
4: if I0 = (2,0) then // pair of planesR(λ0,µ0) is imaginary
5: output:double line
6: else // pair of planesR(λ0,µ0) is real
7: if s= +1 then
8: let l0 be the singular line ofR(λ0,µ0)
9: if l0 is contained inQS andQT then

10: output:two skew lines and a double line
11: else
12: output:conic and two lines crossing on conic
13: end if
14: else // s= −1
15: output:conic
16: end if
17: end if
18: else ifr0 = 1 then // two double lines(C)
19: if s= +1 then
20: output:two secant double lines
21: else // s= −1
22: output:point
23: end if
24: else // r0 = 0 : smooth quadric(C)
25: if Sor T has inertia(2,2) then
26: output:smooth quadric
27: else
28: output: /0
29: end if
30: end if

We now follow Algorithm 6. LetR0 = λ0S+ µ0T andR1 = λ1S+ µ1T. Applying Descartes’ Sign Rule, we
find thatr0 = r1 = 2. So the intersection, over the complexes, consists of fourlines forming a skew quadrilateral.
SinceD(1,0) < 0, the characteristic polynomial is negative outside the roots, ands=−1. So the intersection, over
the reals, consists of two points.

The two points can be computed with the algorithms of Part III:

(−3,−3,3+
√

3,−3−4
√

3) and (−3,−3,3−
√

3,−3+4
√

3).

15.6.3 Example 3
Consider the following pair of quadrics :

{

QS : −2xy+2xw−y2−z2 +w2,

QT : 4xy−4xw+2y2 +z2−2w2.
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Algorithm 6 Classifying the intersection : the two double roots case,d = 2 and discriminant(H) 6= 0.

Require: R(λ,µ),D,H (from Algorithm 1)
Require: double roots(λ0,µ0) and(λ1,µ1)
1: let δ := discriminant(H) andsbe the sign ofD outside the roots
2: if δ > 0 andδ is a squarethen // double roots are real and rational
3: let r0 andr1 (r0 6 r1) be the ranks ofR(λ0,µ0) andR(λ1,µ1), I1 the inertia of the second
4: if r0 = 3 andr1 = 3 then // cubic and secant line(C)
5: output:cubic and secant line
6: else // r0 = 2
7: if r1 = 3 then // conic and two lines not crossing on conic(C)
8: if I1 = (3,0) then // coneR(λ1,µ1) is imaginary
9: output:point

10: else // coneR(λ1,µ1) is real
11: if s= +1 then
12: output:conic and two lines
13: else
14: output:conic and point
15: end if
16: end if
17: else // r1 = 2 : four lines forming a skew quadrilateral(C)
18: if s= −1 then
19: output:two points
20: else ifR(λ,µ) contains a quadric of inertia(4,0) then
21: output: /0
22: else
23: output:four lines (skew quadrilateral)
24: end if
25: end if
26: end if
27: else // double roots are complex or real non-rational
28: let r0 := 3−dim(singular(QR(λ0,µ0)))
29: if r0 = 2 then // R(λ0,µ0) andR(λ1,µ1) are pairs of planes
30: if δ < 0 then // roots are complex conjugate
31: output:two skew lines
32: else // δ > 0 : roots are real conjugate
33: if s= −1 then
34: output:two points
35: else ifR(λ,µ) contains a quadric of inertia(4,0) then
36: output: /0
37: else
38: output:four lines (skew quadrilateral)
39: end if
40: end if
41: else // r0 = 3 : R(λ0,µ0) andR(λ1,µ1) are cones
42: if δ < 0 then // roots are complex conjugate
43: output:cubic and non-secant line
44: else
45: output:cubic and secant line
46: end if
47: end if
48: end if
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The characteristic polynomial vanishes identically. We then follow Algorithm 2.QS has rank 3, and its singular
point p has coordinates(−1,1,0,1). QT has rank 3, and its singular point is againp. So the dimensionκ of the
intersection of the singular sets ofQS andQT is 0. Let P be the transformation matrix sendingp to (0,0,0,1),
completed as follows :

P =









1 0 0 −1
0 1 0 1
0 0 1 0
0 0 0 1









.

Let S′ = PTSPandT ′ = PTTP, and remove the last line and column of the two matrices. Thisgives :

{

QS′ : −2xy−y2−z2,

QT ′ : 4xy+2y2 +z2.

The restricted characteristic polynomial is then

D3(λ,µ) = λ3−5λ2µ+8λµ2−4µ3.

It has a double root at(λ0,µ0) = (2,1). The associated conicR′
0 = λ0S′ + µ0T ′ has rank 1. So the intersection

consists, over the complexes, of two double lines.D3 has a second root at(λ1,µ1) = (1,1). The associated conic
has inertia(1,1), from which we conclude that the intersection consists, over the reals, of two double lines.

The two lines can easily be parameterized as follows :

X1(u,v) = (v,−u−v,0,u−v) and X2(u,v) = (u,v,0,v), (u,v) ∈ P1(R).

The two lines meet at pointp.

15.7 Conclusion
In this second part of our paper, we have shown how the real type of the intersection of two quadrics can be

determined by extracting simple information from the pencil of the two quadrics, and in particular its characteristic
polynomial. Our type-detection algorithm relies on a classification of real pencils of quadrics ofP3(R), itself
derived from the Canonical Pair Form Theorem for pairs of real symmetric matrices [Uhl73,Uhl76].

In Part III, we will use the structural information gatheredin the type-detection phase to drive the parameteri-
zation process. In each case, we will show that the parameterization computed is near-optimal.





Chapitre 16

Near-optimal parameterization of the
intersection of quadrics :

III. Parameterizing singular intersections

Cet article a été accepté dansJournal of Symbolic Computation[DLLP07c]. (Voir également le rapport de
recherche [DLLP05c].) Une version préliminaire à été publiée dans les proceedings du19th ACM Annual

Symposium on Computational Geometry[DLLP03] et dans la thèse de L. Dupont [Dup04].

Abstract

In Part II, we have shown, using a classification of pencils ofquadrics over the reals, how to deter-
mine quickly and efficiently the real type of the intersection of two given quadrics.
For each real type of intersection, we design, in this third part, an algorithm for computing a near-
optimal parameterization. We also give here examples covering all the possible situations, in terms
of both the real type of intersection and the number and depthof square roots appearing in the
coefficients.

16.1 Introduction
Building on the classification of pencils of quadrics ofP3(R) over the reals achieved in Part II and the type-

detection algorithm that we deduced from this classification, we now are ready to present near-optimal paramete-
rization algorithms for all the possible types of real intersection.

Since the smooth quartic case has already been thoroughly studied in Part I, we focus here on the singular
cases. For each case, we prove the near-optimality of the parameterization and, when there is possibly an extra
square root, we describe the test needed to assert the full optimality which always boils down to finding a rational
point on a (possibly non-rational) conic.

In what follows,QS,QT refer to the initial quadrics andQR (assumed to be distinct fromQS) to the intermediate
quadric used to parameterize the intersectionC of QS andQT . As in Section 14.7.1, denote byΩ the equation in
the parameters :

Ω : XTSX = 0,

whereX is the parameterization ofQR. Denote also byCΩ the curve zero-set ofΩ. Recall that the parameterization
of QR defines an isomorphism betweenC and the plane curveCΩ. WhenC is singular, its genus is 0 so it can be
parameterized by rational functions (i.e.

√
∆ can be avoided).

Our general philosophy is to use forQR the rational quadric of the pencil of smallest rank. This will lead us
to use repeatedly the results of Section 14.6 on the optimality of parameterizations of projective quadrics and to
parameterize cones without a rational point, cones with a rational point, pairs of planes, etc. As will be seen, this
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philosophy has the double advantage of (i) avoiding
√

∆ in all singular cases, and (ii) minimizing the number of
radicals. As an additional benefit, it helps keep the size of the numbers involved in intermediate computations and
in the final parameterizations to a minimum (see [LPP06]).

For every type of real intersection, we give a set of worst-case examples where the maximum number of
square roots is reached, both in the optimal and near-optimal situations (the best-case examples are those given by
the canonical forms of Section 15.3). Examples covering allpossible situations are gathered in Appendix C.

A summary of the results of this part is given in Table 16.1.
The rest of this third part is as follows. Section 16.2 gives near-optimal parameterization algorithms for all

types of real intersection when the pencil is regular. Section 16.3 does the same for singular pencils (i.e., when the
characteristic polynomial vanishes identically). Several examples are detailed in Section 16.4 and it is shown how
our implementation fares on these examples. Finally, we conclude in Section 16.5 and give a few perspectives.

16.2 Parameterizing degenerate intersections : regular
pencils

In this section, we outline parameterization algorithms for all cases of regular pencils, i.e. when the characte-
ristic polynomial does not identically vanish. Information gathered in the type-detection phase (Part II) is used as
input ; see in particular Table 15.4 but also the details of the classification of pencils over the reals. In each case,
we study optimality issues and give worst-case examples.

In the following, we often need to compute the parameterization of the intermediate quadricQR and this is
achieved using the normal form ofQR. Recall that a rational congruence sending a quadric with rational coefficients
into normal form can be computed using Gauss reduction of quadratic forms into sums of squares (see Part I).

Recall also that the discriminant of a quadric is the determinant of the associated matrix. In the following, we
also calldiscriminant of a pair of planes QR the productab whereax2−by2 = 0 is the canonical equation of a
pair of planes obtained fromQR by a real rational congruence transformation ; the discriminant is defined up to a
rational square factor.

16.2.1 Nodal quartic inP3(C), σ4 = [112]
If we parameterizeC using the generic algorithm (see Part I), we will not be able to avoid the appearance of√

∆ becauseCΩ (asC) is irreducible. However, since the intersection curve is singular, we we know that
√

∆ is
avoidable by Proposition 14.18. We thus proceed differently.

16.2.1.1 Algorithms

Let λ1 be the real and rational double root of the characteristic polynomial. Let QR be the rational cone
associated withλ1. As we have found in Section 15.3, there are essentially two cases depending on the real type of
the intersection.

Point. QR is an imaginary cone. The intersection is reduced to a point,which is the apex ofQR. Sinceλ1 is
rational, this apex is rational (otherwise its algebraic conjugate would also be a singular point of the cone). Thus
the intersection in this case is defined inQ.

Real nodal quartic (with or without isolated singularity). Let P be a real rational congruence
transformation sending the apex ofQR to (0,0,0,1). The parameterization

X(u,v,s) = P(x1(u,v),x2(u,v),x3(u,v),s)T ,(u,v,s) ∈ P⋆2

of the cone (see Table 14.3) introduces a square root
√

δ. EquationΩ in the parameters is

as2 +b(u,v)s+c(u,v) = 0,
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Segre string real type of intersection
worst case format

of parameterization
worst-case optimality
of parameterization

[1111] nonsingular quartic (see part I)
Q(

√
δ)[ξ,

√
∆],

∆ ∈ Q(
√

δ)[ξ]

rational point on
degree-8 surface

[112]
point Q optimal

nodal quartic Q(
√

δ)[ξ] rational point on conic
[13] cuspidal quartic Q[ξ] optimal
[22] cubic and non-tangent line Q[ξ] optimal
[4] cubic and tangent line Q[ξ] optimal

[11(11)]

two points Q(
√

δ) optimal

conic
Q(

√
δ,
√

µ)[ξ],
µ∈ Q(

√
δ)

optimal if
√

δ 6∈ Q

rational point
on conic

if
√

δ ∈ Q

two non-tangent conics Q(
√

δ,
√

δ′)[ξ]
Q(

√
δ′)-rational point

onQ(
√

δ′)-conic

[1(21)]
point Q optimal

two tangent conics Q(
√

δ)[ξ] optimal
[1(111)] double conic Q(

√
δ)[ξ] rational point on conic

[2(11)]

point Q optimal
conic and point Q(

√
δ)[ξ] rational point on conic

conic and two lines
not crossing on the conic

Q(
√

δ)[ξ] rational point on conic

[(31)]
conic Q[ξ] optimal

conic and two lines
crossing on the conic

Q(
√

δ)[ξ] optimal

[(11)(11)]
two points K[ξ],degree(K) = 4 optimal

two skew lines K[ξ],degree(K) = 4 optimal
four lines (skew quadrilateral) K[ξ],degree(K) = 4 optimal

[(22)]
double line Q[ξ] optimal

two simple skew lines
cutting a double line

Q(
√

δ)[ξ] optimal

[(211)]
point Q optimal

two double concurrent lines Q(
√

δ)[ξ] optimal

[1{3}] conic and double line Q[ξ] optimal

[111]
point Q optimal

two concurrent lines K[ξ],degree(K) = 4 optimal
four concurrent lines K[ξ],degree(K) = 4 optimal

[12]
double line Q[ξ] optimal

two simple and a double
concurrent lines

Q(
√

δ)[ξ] optimal

[3]
concurrent simple

and triple lines
Q[ξ] optimal

[1(11)]
point Q optimal

two concurrent double lines Q(
√

δ)[ξ] optimal
[(21)] quadruple line Q[ξ] optimal

[11] quadruple line Q[ξ] optimal

TAB . 16.1 –Ring of definition of the projective coordinates of the parameterization of each component of the
intersection and optimality, in all cases where the real part of the intersection is 0- or 1-dimensional.δ,δ′ ∈ Q.
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with a and the coefficients ofb,c defined inQ(
√

δ). The nodal quartic passes through the vertex ofQR and this
point corresponds to the valueu = v = 0 of the parameters. At this points 6= 0 because(u,v,s) ∈ P⋆2. Thusa = 0,
Ω is linear ins and it can be solved rationally fors. This leads to the parameterization of the quartic

X(u,v) = P(b(u,v)x1(u,v),b(u,v)x2(u,v),b(u,v)x3(u,v),−c(u,v))T .

The coefficients ofX(u,v) clearly live inQ(
√

δ)[ξ], whereξ = (u,v).
When the node of the quartic is not isolated, the singularity is now reached by two different values of

(u,v) ∈ P1(R) which are precisely those values such thatb(u,v) = 0. When the node of the quartic is isolated,
the singularity is not reached by(u,v) ∈ P1(R), i.e.b(u,v) = 0 has no real solution. In that situation, the node has
to be added to the output. Since this point is the vertex of theconeQR, it is rational.

16.2.1.2 Optimality

By Proposition 14.14, if the coneQR contains a rational point other than its vertex, it can be parameterized
with rational coefficients and thus the parameterization ofthe nodal quartic is defined overQ[ξ]. Otherwise, ifQR

contains no rational point other than its vertex, then the nodal quartic also contains no rational point other than
its singular point. Hence the nodal quartic admits no parameterization overQ[ξ]. Therefore, testing whether

√
δ

can be avoided in the parameterization of real nodal quartics is akin to deciding whetherQR has a rational point
outside its singular locus ; furthermore, finding a parameterization inQ[ξ] amounts to finding a rational point on
QR outside its singular locus.

There are cases where
√

δ cannot be avoided. Example of these are
{

x2 +y2−3z2 = 0,

xw+z2 = 0

when the singularity is not isolated and
{

x2 +y2−3z2 = 0,

zw+x2 = 0

when the singularity is isolated. In both cases, the projective cone corresponding to the double root of the charac-
teristic polynomial is the first equation. By Proposition 14.14, this cone has no rational point except its singular
point and

√
δ cannot be avoided in the parameterization of the intersection.

16.2.2 Cuspidal quartic inP3(C), σ4 = [13]
The intersection in this case is always a real cuspidal quartic. As above, using the generic algorithm is not

good idea : it would introduce an unnecessary and unwanted
√

∆.
We consider instead the coneQR associated with the real and rational triple root of the characteristic polyno-

mial. The singular point of the quartic is the vertexp of QR. The intersection ofQR with the tangent plane ofQS

at p consists of the double line tangent toC at the cusp. Since it is double, this line is necessarily rational. So we
have a rational cone containing a rational line. By Theorem 14.12, this cone admits a rational parameterization.

So we are left with an equationΩ : as2 +b(u,v)s+c(u,v) = 0 whose coefficients are defined onQ. As above,
the singularity is reached at(u,v) = (0,0) and at this points 6= 0, soa = 0. ThusΩ can be solved rationally fors
and the intersection is inQ[ξ],ξ = (u,v). This is optimal.

16.2.3 Cubic and secant line inP3(C), σ4 = [22]
The real intersection consists of a cubic and a line. The cubic and the line are either secant or skew. Note

that the line of the intersection is necessarily rational, otherwise its algebraic conjugate would also belong to the
intersection.

When the double roots of the characteristic polynomial are real and rational, the pencil contains two rational
conesQR1 andQR2. The line ofC is the rational line joining the vertices ofQR1 andQR2. Also, the vertex ofQR2

is a rational point onQR1, and vice versa, so the two cones can be rationally parameterized (see Theorem 14.12).
Setting upΩ, we have again that it is linear ins, because the line and the cubic intersect at the vertex of thecone,
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corresponding to(u,v) = (0,0). But here the content ofΩ in s is linear in(u,v) and it corresponds to the line ofC.
The cubic is found after dividing by this content and rationally solving for s. The parameterization of the cubic is
defined inQ[ξ].

When the double roots of the characteristic polynomial are either complex conjugate (the cubic and the line
are not secant) or real algebraic conjugate (the cubic and the line are secant), there exists quadrics of inertia(2,2)
in the pencil (by Theorems 14.3 and 14.5). We use the generic algorithm of Part I : first find a quadricQR of inertia
(2,2) of the pencil through a rational point. SinceC contains a rational line, the discriminant of this quadric is a
square by Lemma 14.21 andQR can be rationally parameterized by Theorem 14.12. Now compute the bidegree
(2,2) equationΩ. The line ofC corresponds to a fixed value of one of the parameters and the contents provide
factors of bidegree(1,0) and(1,2) (or (0,1) and(2,1)), which are linear in one of the parameters and thus easy to
solve rationally for getting a parameterization of the intersection. The parameterization ofC is defined inQ[ξ].

16.2.4 Cubic and tangent line inP3(C), σ4 = [4]

The real intersection consists of a cubic and a tangent line.The line is necessarily rational, by the same argu-
ment as above. The characteristic polynomial has a real and rational quadruple root. To it corresponds a real rational
projective cone. Since this cone contains a rational line, it can be rationally parameterized (by Theorem 14.12).
The rest is as in the cubic and secant line case when the two roots are rational. The parameterization of the cubic
is defined inQ[ξ].

16.2.5 Two secant conics inP3(C), σ4 = [11(11)]
In this case, the characteristic polynomial has a double root corresponding to a rational pair of planesQR.

There are several cases depending on the real type of the intersection.

Two points. The pair of planesQR is imaginary. Its rational singular line intersects any other quadric of
the pencil in two points. So parameterize the line and intersect it with any quadric of the pencil having rational
coefficients. A square root is needed to parameterize the twopoints if and only if the equation in the parameters of
the line has irrational roots.

This situation can happen as the following example shows :

{

z2 +w2 = 0,

x2−2y2 +w2 = 0.

Clearly, the two points are defined byz= w = 0 andx2−2y2 = 0 so they live inQ[
√

2].

One conic. In this case, the pair of planes is real, the pencil has no quadric of inertia(2,2) and only one of the
planes ofQR intersects the other quadrics of the pencil.

The algorithm is as follows. First parameterize the pair of planes and separate the two individual planes.
Plugging the parameterization of each plane into the equation of QS gives two equations of conics in parameter
space, with coefficients inQ(

√
δ) whereδ is the discriminant of the pair of planes. The conics in parameter space

correspond to the components of the intersection, thus one of these conics is real and the other is imaginary.
Determine the real conic, that is the one with inertia(2,1), and parameterize it. Substituting this parameterization
into the parameterization of the corresponding plane givesa parameterization of the conic of intersection. The
parameterization is inQ(

√
δ,
√

µ), whereδ is the discriminant of the pair of planesQR and
√

µ is the square root
needed to parameterize the conic in parameter space,µ∈ Q(

√
δ).

If δ is not a square, the parameterization is optimal. Indeed, ifthe intersection had a realQ(
√

δ)-rational
point, the conjugate of that point would be on the conjugate conic which is not real. So such a point does not
exist and the parameterization is optimal. Ifδ is a square, the parameterization is defined inQ(

√
µ)[ξ] with µ∈ Q.

By Proposition 14.14, the parameterization is optimal if and only if the (rational) conic contains no rational point ;
moreover, testing if the parameterization is non-optimal and, if so, finding an optimal parameterization is equivalent
to finding a rational point on this rational conic.
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The situation whereδ is a square but the conic has no rational point (the field of thecoefficients is of degree
two) can be attained for instance with the following pair of quadrics :

{

(x−w)(x−3w) = 0,

x2 +y2 +z2−4w2 = 0.

The two planes of the first quadric are rational. The planex−w = 0 cuts the second quadric in the conicx−
w = y2 + z2−3w2 = 0. By Proposition 14.14, this conic has no rational point, so

√
δ cannot be avoided and the

parameterization of the conic is inQ(
√

3).
A field extension of degree 4 is obtained with the following quadrics :

{

x2−4xw−3w2 = 0,

x2 +y2 +z2−w2 = 0.

The pair of planes is defined onQ(
√

7), so, by the above argument, a field extension of degree 4 is unavoidable.

16.2.5.1 Two (secant or non-secant) conics

By contrast to the one conic case, the pencil now contains quadrics of inertia(2,2). But going through the
generic algorithm and factoringCΩ directly in two curves of bidegree(1,1) can induce nested radicals. So we
proceed as follows. First, find a rational quadricQR of inertia(2,2) through a rational point. This introduces one
square root, say

√
δ. Independently, factor the pair of planes, which introduces another square root

√
δ′. Now plug

the parameterization ofQR in each of the planes. This gives linear equations in the parameters ofQR which can be
solved without introducing nested radicals. The two conicshave a parameterization defined inQ(

√
δ,
√

δ′).
Note that when the two simple roots of the characteristic polynomial are rational, an alternate approach is to

parameterize one of the two rational cones of the pencil instead of a quadric of inertia(2,2), and then proceed as
above.

In terms of optimality,
√

δ′ cannot be avoided if the planes are irrational. As for the other square root, it can
be avoided if and only if the conics contain a point that is rational in Q(

√
δ′) (by Proposition 14.14 in which the

field Q can be replaced byQ(
√

δ′)) ; moreover, testing if this square root can be avoided and, if so, finding a
parameterization avoiding it is equivalent to finding aQ(

√
δ′)-rational point on this conic whose coefficients are

in Q(
√

δ′).
All cases can happen. We illustrate this in the non-secant case. An extension ofQ of degree 4 is needed to

parameterize the intersection of the following pair :

{

x2−33w2 = 0,

y2 +z2−3w2 = 0.

Indeed,
√

δ′ =
√

33 cannot be avoided. In addition, by Proposition 14.17,y2 +z2−3w2−11x2 = 0 has no rational
point onQ(

√
33), thus its intersection with the planex = 0, the conicy2 +z2−3w2 = 0, also has no rational point

onQ(
√

33) ; hence the coney2 +z2−3w2 = 0 has no rational point onQ(
√

33) except for its singular locus.
An extension field of degree 2 can be obtained by having conicswithout rational point, but living in rational

planes, as in this example :
{

x2−w2 = 0,

y2 +z2−3w2 = 0.

It can also be attained by having conics living in non-rational planes but having rational points in the extension of
Q defined by the planes :

{

x2−3w2 = 0,

y2 +z2−3w2 = 0.

As can be seen, the points of coordinates(
√

3,0,±
√

3,1) belong to the intersection. So the conic has a paramete-
rization inQ(

√
3)[ξ].
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16.2.6 Two tangent conics inP3(C), σ4 = [1(21)]
Here, the characteristic polynomial has a real and rationaltriple root, corresponding to a pair of planesQR.

The other (real and rational) root corresponds to a real projective cone. There are two types of intersection over the
reals.

Point. The pair of planes is imaginary and its rational singular line intersects the cone in a double point, which
is the only component of the intersection. This point is necessarily rational, otherwise its conjugate would also be
in the intersection. One way to compute it is to parameterizethe singular line, plug the parameterization in the
rational equation of the cone and solve the resulting equation in the parameters.

Two real tangent conics. The pair of planes is real and each of the planes intersects the cone. The singular
line of QR is tangent to the cone. As above, the point of tangency of the two conics is rational. So, by Proposi-
tion 14.14, the conics have a rational parameterization in the extension ofQ defined by the planes. In other words,
the conics have a parameterization defined inQ(

√
δ)[ξ], whereδ is the discriminant of the pair of planesQR, if

and only ifδ is not a square.
One situation where

√
δ cannot be avoided is the following :

{

x2−2w2 = 0,

xy+z2 = 0.

16.2.7 Double conic inP3(C), σ4 = [1(111)]
The characteristic polynomial has a real rational triple root, corresponding to a double plane. The other root

gives a rational cone. Assume this cone is real (otherwise the intersection is empty).
To obtain the parameterization of the double conic, first parameterize the double plane. Then plug this parame-

terization in the equation of the cone. This gives the rational equation of the conic (in the parameters of the plane).
If the conic has a rational point, then it can be rationally parameterized. Otherwise, one square root is needed.

One worst-case situation where a square root is always needed is the following :

{

x2 = 0,

y2 +z2−3w2 = 0.

By Proposition 14.14, the second quadric (a cone) has no rational point outside its vertex. Thus the conic cannot
be parameterized rationally.

16.2.8 Conic and two lines not crossing on the conic inP3(C), σ4 = [2(11)]
The characteristic polynomial has two double roots, corresponding to a cone and a pair of planes which is

always real. The two roots are necessarily real and rational, otherwise the quadrics associated with them in the
pencil would have the same rank. So both the cone and the pair of planes are rational. Also, the vertex of the cone
falls on the pair of planes outside its singular line. Thus, by Proposition 14.13, the discriminant of the pair of planes
is a square and each individual plane has a rational parameterization.

Over the reals, there are three cases.

Point. The projective cone is imaginary. The intersection is limited to its real vertex. Since the cone is rational,
its vertex is rational.

Point and conic. The cone is now real. One of the planes cuts the cone in a conic living in a rational plane, the
other plane cuts the cone in its vertex. The point of the intersection is this vertex and it is rational. To parameterize
the conic of the intersection, plug the parameterization ofthe plane that does not go through the vertex of the cone.
This gives a rational conic in the parameters of the plane. One square root is possibly needed to parameterize this
conic. It can be avoided if and only if the conic has a rationalpoint.
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One example where the square root cannot be avoided is the following :
{

xw= 0,

y2 +z2−3w2 = 0.

By Proposition 14.14, the projective cone has no rational point other than its vertex(1,0,0,0). So the conicx =
y2 +z2−3w2 = 0 has no rational point.

Two lines and conic. Again, the cone is real and one plane cuts it in a rational nonsingular conic. But now the
second plane, going through the vertex of the cone, further cuts the cone in two lines. The parameterization of the
conic goes as above. To represent the lines, we plug the second plane in the equation of the cone and parameterize.

Note that if the lines are rational, then the cone contains a rational line and can be rationally parameterized.
Since the conic is the intersection of this cone with a rational plane, it has a rational parameterization. So in that
case all three components have parameterizations inQ[ξ]. If the lines are irrational, it can still happen that the
conic has a rational point and thus a rational parameterization.

We give examples for the three situations we just outlined. First, the pair
{

xy= 0,

y2 +z2−w2 = 0

gives birth to the rational linesy= z±w= 0 and the rational conicx= y2+z2−w2 = 0 which contains the rational
point (0,0,1,1) and can be rationally parameterized. Second, the pair of quadrics

{

xy= 0,

2y2 +z2−3w2 = 0

has as intersection the two irrational linesy= z±
√

3w= 0 and the conicx= 2y2+z2−3w2 = 0 which contains the
rational point(0,1,1,1) so can be rationally parameterized. Finally, the lines and the conic making the intersection
of the quadrics

{

xy= 0,

y2 +z2−3w2 = 0

cannot be rationally parameterized. Indeed, by Proposition 14.14, the cone has no rational point outside the vertex
(1,0,0,0), so the conicx = y2 +z2−3w2 = 0 has no rational point.

16.2.9 Conic and two lines crossing on the conic inP3(C), σ4 = [(31)]
The characteristic polynomial has a real pair of planesQR corresponding to a real and rational quadruple root.

The asymmetry in the sizes of the Jordan blocks associated with this root (the two blocks have size 1 and 3) implies
that the individual planes of this pair are rational. The conic of the intersection is always real and the two lines
(real or imaginary) cross on the conic.

There are two types of intersection over the reals.

Conic. The point at which the two lines cross is the double point thatis the intersection of the singular line ofQR

with any other quadric of the pencil. This point is necessarily rational. So the conic can be rationally parameterized
by Proposition 14.14.

Conic and two lines. To parameterize the intersection, first compute the parameterization of the two planes
of QR. Plugging these parameterizations in the equation of any other quadric of the pencil yields a conic on one
side and a pair of lines on the other side. As above, the conic can be rationally parameterized. As for the two lines,
they have a rational parameterization if and only if the discriminant of the pair of lines is a square.

One situation where this discriminant is not a square is as follows :
{

yz= 0,

y2 +xz−2w2 = 0.
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The conic is given byy = xz−2w2 = 0 which contains the rational point(1,0,0,0) and can be rationally parame-
terized. The lines are defined byz= y2−2w2 = 0. But the pair of planesy2−2w2 = 0 has no rational point outside
its singular locus so the lines are defined inQ(

√
2).

16.2.10 Two skew lines and a double line inP3(C), σ4 = [(22)]

The characteristic polynomial has a real and rational quadruple root, which corresponds to a pair of planes.
The singular line of the pair of planes is contained in all thequadrics of the pencil. There are two cases.

Double line. The pair of planes is imaginary. The intersection is reducedto the rational singular line of the
pair of planes. SoC is defined inQ[ξ].

Two simple lines and a double line. The pair of planes is real. We can factor it into simple planes,
parameterize these planes and plug them in any other quadricof the pencil. The two resulting equations in the
parameters of the planes are pairs of lines, each pair containing the double line of the intersection and one of the
simple lines. The simple lines are rational if and only if thediscriminant of the pair of planes is a square.

A situation where the two simple lines are irrational is the following :

{

y2−2w2 = 0,

xy−zw= 0.

16.2.11 Two double lines inP3(C), σ4 = [(211)]

The characteristic polynomial has a real rational quadruple root, which corresponds to a double plane. The
double plane cuts any other quadric of the pencil in two double lines inP3(C). There are two cases.

Point. Except for the double plane, the pencil consists of quadricsof inertia(3,1). The two lines are imaginary.
The intersection is reduced to their rational intersectionpoint, i.e. the point at which the double plane is tangent to
the other quadrics of the pencil.

Two real double lines. Except for the double plane, the pencil consists of quadricsof inertia(2,2). The two
lines are real. To parameterize them, first compute a parameterization of the double plane and then plug it in any
quadric of inertia(2,2) of the pencil. The resulting pair of lines can easily be parameterized. The intersection is
thus parameterized with one square root if and only if the lines are irrational.

One case where the square root cannot be avoided is as follows:

{

w2 = 0,

x2−2y2 +zw= 0.

The linesw= x2−2y2 = 0 have no rational point except for their singular point(0,0,1,0) so their parameterization
is in Q(

√
2)[ξ].

16.2.12 Four lines forming a skew quadrilateral inP3(C), σ4 = [(11)(11)]

We start by describing the algorithms we use in this case. We then prove the optimality of the parameterizations
and conclude the section by giving examples of pairs of rational quadrics for all possible types of real intersections
and extension fields.
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16.2.12.1 Algorithms

In this case the characteristic polynomial has two double roots that correspond to (possibly imaginary) pairs
of planes. It can be written in the form

D(λ,µ) = γ
(

aλ2 +bλµ+cµ2)2
= 0, (16.1)

with γ,a,b, andc in Q.
In order to minimize the number and depth of square roots in the coefficients of the parameterization of

the intersection, we proceed differently depending on the type of the real intersection and the values ofγ and
δ = b2−4ac.

Note that the roots of the characteristic polynomial are defined inQ(
√

δ) and thus the coefficients of the pairs
of planes in the pencil also live inQ(

√
δ). Let d+,d− ∈ Q(

√
δ) be the discriminants of the two pairs of planes,

with d+ > d−. Whend+ > 0 (resp.d− > 0), the corresponding pair of planes is real and can be factored into two
planes that are defined overQ(

√
d+) (resp.Q(

√
d−)). The algorithms in the different cases are as follows.

Two points. In this case one pair of planes of the pencil is real (the one with discriminantd+) and the other is
imaginary. We factor the two real planes and substitute in each a parameterization of the (real) singular line of the
imaginary pair of planes. The singular line is defined inQ(

√
δ) and each of the real planes are defined inQ(

√
d+).

We thus obtain the two points of intersection with coordinates inQ(
√

δ,
√

d+). The two points are thus defined
overQ(

√
d+), d+ ∈ Q(

√
δ), an extension field of degree 4 (in the worst case) with one nested square root.

Two or four lines. Since the intersection is contained in every quadric of the pencil, there are no quadric
of inertia(3,1) in the pencil in this case (such quadrics contain no line) andthusγ > 0. Furthermore all the non-
singular quadrics of the pencil have inertia(2,2) (by Theorem 14.5) and their discriminant is equal toγ, up to
a square factor (by Eq. (16.1)). Hence we can parameterize a quadricQR of inertia (2,2) in the pencil using the
parameterization of Table 14.3 with coefficients inQ(

√γ) (see Part I).
There are three subcases.

√
δ ∈ Q. The roots of the characteristic polynomial are real (sinceδ > 0), thus the intersection consists of

four real lines and the two pairs of planes of the pencil are real (see Table 15.4). We factor the two pairs of planes
into four planes with coefficients inQ(

√
d±) and intersect them pairwise. We thus obtain a parameterization of the

four lines overQ(
√

d+,
√

d−) with d± ∈ Q (sinceδ is a square), an extension field of degree 4 (in the worst case)
with no nested square root.

√
δ 6∈ Q and

√

γδ ∈ Q. Here againδ > 0 thus the intersection consists of four real lines and the two
pairs of planes of the pencil are real. We factor one of these pairs of planes (say the one with discriminantd+) in
two planes with coefficients inQ(

√
d+) ; if the discriminant of one of the pair of planes is a square, we choose

this pair of planes for the factorization. We then substitute the parameterization of the quadricQR into each plane.
This leads to an equation of bidegree(1,1) in the parameters with coefficients inQ(

√
d+,

√γ). This field is equal
to Q(

√
d+) becaused+ ∈ Q(

√
δ) andγδ is a square. We finally obtain each line by factoring the equation in the

parameters into to terms of bidegree(1,0) and (0,1) and by substituting the solutions of these factors into the
parameterization ofQR. We thus obtain a parameterization of the four lines defined over Q(

√
d+), d+ ∈ Q(

√
δ),

an extension field of degree 4 (in the worst case) with one nested square root.

√
δ 6∈ Q and

√

γδ 6∈ Q. In this case we apply the generic algorithm of Part I : we substitute the pa-
rameterization ofQR into the equation of another quadric of the pencil (with rational coefficients). The resulting
equation in the parameters of bidegree(2,2) has coefficients inQ(

√γ). We factor it into two terms of bidegree
(2,0) and(0,2), whose coefficients also live inQ(

√γ). We solve each term separately and each real solution leads
to a real line. At least one of the two factors has two real solutions, which are defined in an extension field of the
form Q(

√

α1 +α2
√γ), αi ∈ Q. If the other factor has real solutions, they are defined inQ(

√

α1−α2
√γ). Thus

in the case where the intersection consists of two real lines, we obtain parameterization defined over an extension
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field Q(
√

α1 +α2
√γ) of degree 4 (in the worst case), with one nested square root. In the case where the inter-

section consists of four real lines, the parameterization of the four lines altogether is defined over an extension
field of degree 8 (in the worst case) but each of the lines is parameterized over an extensionQ(

√

α1 +α2
√γ) or

Q(
√

α1−α2
√γ) of degree 4 (in the worst case), with one nested square root.

16.2.12.2 Optimality

We prove that the algorithms described above output parameterizations that are always optimal in the number
and depth of square roots appearing in their coefficients. This proof needs some considerations of Galois theory
that can be found in Appendix A.

The two input quadrics intersect here in four lines inP3(C). The pencil contains two (possibly complex) pair of
planes and these lines are the intersections between two planes taken in two different pairs of planes. Letp1, . . . ,p4

be their pairwise intersection points of the four lines. These points are the singular points of the intersection. These
points are also the intersections of the singular line of a pair of planes with the other pair of planes, and vice versa.
Let the points be numbered such thatp1 andp3 are on the singular line of one pair of planes of the pencil ;p2 and
p4 are then on the singular line of the other pair of planes of thepencil. The four lines of intersection are thusp1p2,
p2p3, p3p4, andp4p1.

Let K be the field of smallest degree on which the four pointspi are rational. The above algorithms show that
K has degree 1, 2, 4 or 8 (since two rational lines inK intersect in a rational point inK). Let G be its Galois group,
which acts by permutations on the pointspi . It follows thatG is a subgroup of the dihedral groupD4 of order 8 of
the symmetries of the square. This groupD4 acts on the four pointspi and on the lines joining them the way the 8
isometries of a square act on its vertices and edges. We show that the optimal number of square roots needed for
parameterizing the four lines and the way this optimal number is reached only depend onG and on its action on
thepi .

The eight elements ofD4 are the identity, the transpositionsτ13 andτ24 which exchangep1 andp3 or p2 and
p4 (symmetries with respect to the diagonal), the permutationτ12,34 (resp.τ14,23) of order 2 which exchangep1

with p2 andp3 with p4 (resp.p1 with p4 andp2 with p3), the circular permutationsρ andρ−1 of order 4, and the
permutationρ2 = τ13τ24 = τ12,34τ14,23 of order 2.

If G is included in the groupGL of order 4 generated byτ13 andτ24 (symmetries of the lozenge), its action
leaves fixed the pairs{p1,p3} and{p2,p4} and thus also the linesp1p3 andp2p4 and the two singular quadrics
of the pencil (the two pairs of planes). It follows that the roots of the characteristic polynomialD are rational.
Conversely, if these roots are rational, the singular quadrics and their singular lines are invariant under the action
of G, as well as the pairs{p1,p3} and{p2,p4}, which implies thatG is included inGL. A similar argument shows
that G is the identity (resp. is generated byτ13 (or τ24), or containsτ13τ24), if and only if 0 (resp. 1 or 2) of the
singular quadrics consist of irrational planes. Moreover,in the case whereG containsτ13τ24, the group is different
from GL if and only if any element which exchangesp1 andp3 also exchangesp2 andp4, i.e. if and only if the
conjugations exchanging the planes in each singular quadric is the same (implying that the square roots needed for
factoring them are one and the same). As the degree ofK is the order ofG, this shows that the number of square
roots needed in our algorithm is always optimal if the roots of D are rational (i.e.δ is a square).

When the roots ofD are not rational, we consider, in the algorithm, a rational quadricQR passing through a
rational pointp. LetD be the line ofQR passing throughp and intersecting the linesp1p2 andp3p4 in two pointsq1

andq2. If the discriminant ofQR is a square (and its parameterization is rational), thenD is rational and is fixed by
any Galois automorphism. It follows that the linesp1p2 andp3p4 are either fixed or exchanged, which implies that
G is included in the groupGR of order 4 generated byτ12,34 andτ14,23 (symmetries of the rectangle). Conversely,
if G⊂ GR, the linesp1p2 andp3p4 are fixed or exchanged by any Galois automorphism ; the image of D by such
an automorphism isD itself or the other line ofQR passing throughp ; as this image contains the images ofq1 and
q2 which are onp1p2 or p3p4, we may conclude thatD is fixed by any Galois automorphism, and is rational ; this
shows that the discriminant ofQR is a square by Lemma 14.21. Pushing these arguments a little more, it is easy to
see thatG is generated byτ12,34 or τ14,23 (or is the identity) if and only if the roots of either or both of the factors
of bidegree(2,0) and(0,2) of the equationΩ in the parameters are rational.

By similar arguments of invariance, we may also conclude that the groupG is generated by the circular
permutationρ if and only if any Galois automorphism which exchanges the linesp1p3 andp2p4 exchanges also
the lines ofQR passing throughp (and if there is such an automorphism). It follows that this case occurs when the
square root of the discriminant ofQR and the roots ofD generate the same field.
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Finally, G is of order 8 if none of the preceding cases occur.
Optimality in all cases is proved by checking that, for each possible group, the algorithm involves exactly 0, 1

or 2 square roots for parameterizing the lines if the size of the orbit of a line is 1, 2 or 4 respectively.

16.2.12.3 Examples

We now give examples in all the possible cases outlined in Section 16.2.12.1. These examples are obtained
using the following proposition which gives a rational canonical form for pencils having two double roots corres-
ponding to quadrics of rank 2. Its proof is postponed to Appendix B. and needs again elements of Galois theory
that can be found in Appendix A.

Proposition 16.1. Let R(λ,µ) be a rational pencil of quadrics whose characteristic polynomial has two double
roots corresponding to two quadrics of rank 2. Then there is arational change of frame such that the pencil is
generated by quadrics(QS,QT) of equation

{

x2− γy2−2wz= 0,

αx2 +2γxy+αγy2−z2− (α2− γ)w2 = 0,

whereα,γ ∈ Q,δ = α2− γ 6= 0. Moreover, a fieldK of smallest degree on which the four lines of the intersection
are rationally parameterized is generated by the roots of t4−2αt + γ = 0.

The different cases are as follows :

– δ > 0,γ > 0, andα < 0 : the real intersection is empty.

– δ > 0,γ > 0, andα > 0 : the real intersection consists of four lines.

– δ > 0 andγ < 0 : the real intersection consists of two points.

– δ < 0 : the real intersection consists of two lines.

Note that the characteristic polynomial for the reduced pair of quadricsQS andQT is

D(λ,µ) = γ
(

λ2−δµ2)2
= 0.

Its roots are(λ0,µ0) = (±
√

δ,1) and, whenδ > 0, the associated quadrics of the pencil are the pairs of planes of
equations

λ0QS+µ0QT = (α±
√

δ)
(

x+(α∓
√

δ)y
)2

− (z±
√

δw)2 = 0

and of discriminantsd± = α ±
√

δ. Note also that, whenγ > 0, the quadricQS has inertia(2,2) and can be
parameterized, using the parameterization of Table 14.3, by :

X =

(

ut+vs,
ut−vs√γ

,vt,2us

)

, (u,v),(s, t) ∈ P1(R).

PluggingX into the equation ofT gives the following biquadratic equation in the parameters:

Ω :
(

2(α+
√

γ)u2−v2)(2(α−√
γ)s2− t2)= 0.

We can now give examples in all the possible cases outlined cases outlined in Section 16.2.12.1. We start with
the four real lines case :

– δ is a square :
– If (α,γ) = (5,9), then

√
δ = 4, the discriminants of the pairs of planes ared± = 5±4, so

√
d± ∈ Q, and

the four lines are defined inQ.
– If (α,γ) = (3,5), then

√
δ = 2, the discriminants of the pairs of planes ared± = 3±2, so

√
d+ 6∈ Q and√

d− ∈ Q, and the four lines are defined inQ(
√

5).
– If (α,γ) = (5,16), then

√
δ = 3, the discriminants of the pair of planes ared± = 5±3, so

√
d± 6∈ Q but√

d− and
√

d+ generate the same fieldQ(
√

2), and the four lines are defined inQ(
√

2).
– If (α,γ) = (6,20), then

√
δ = 4, the discriminants of the pairs of planes ared± = 6±4, so

√
d± 6∈ Q,√

d+ and
√

d− do not generate the same field and the four lines are defined inQ(
√

2,
√

10).
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– δ is not a square butγδ is a square : let(α,γ) = (2,2), thenδ = 2,
√

δ 6∈Q but
√

γδ = 2∈Q. The discriminant

of the pairs of planes ared± = 2±
√

2, so the four lines are defined inQ(
√

2+
√

2).
– Neitherδ nor γδ are squares :

– If (α,γ) = (3,1), thenδ = γδ = 8 is not a square,
√γ ∈ Q so QR can be rationally parameterized and

the factors of bidegree(2,0) and(0,2) of Ω have rational coefficients. Since 2(α−√γ) = 4 is a square,
one of those factors splits in two rational linear factors. Thus two lines have a rational parameterization.
Since 2(α+

√γ) = 8, the other two lines are defined inQ(
√

8) = Q(
√

2).
– If (α,γ) = (2,1), thenδ = γδ = 3 is not a square,

√γ ∈ Q soQR can be rationally parameterized. Since
2(α +

√γ) = 6 and 2(α−√γ) = 2, two lines have a rational parameterization inQ(
√

2) and the other
two lines have a rational parameterization inQ(

√
6).

– If (α,γ) = (3,3), thenδ = 6 andγδ = 18 are not squares,
√γ 6∈ Q soQR cannot be rationally parameteri-

zed. Two lines are defined inQ(
√

6+2
√

3) and the other two lines are rational inQ(
√

6−2
√

3).
Now we give examples for the two real lines case :
– If (α,γ) = (3,25), thenδ =−16< 0,

√γ = 5 and
√

2(α+
√γ) = 4 are rational, so the two lines are rational.

– If (α,γ) = (1,4), thenδ = −3 < 0,
√γ ∈ Q and

√

2(α+
√γ) =

√
6 6∈ Q, so the two lines are defined in

Q(
√

6).
– If (α,γ) = (1,3), thenδ = −2 < 0,

√γ and
√

2(α+
√γ) are not rational, so the two lines are defined in

Q(
√√

3−1).
Finally, here are examples for the two points case :
– If (α,γ) = (0,−1), then

√
δ = 1 is rational and the discriminantα +

√
δ = 1 of the real pair of planes is a

square, so the two points are inQ.
– If (α,γ) = (1,−3), then

√
δ = 2 is rational but the discriminantα+

√
δ = 3 of the real pair is not a square,

so the two points are inQ(
√

3).

– If (α,γ) = (1,−2), then
√

δ is not rational and the two points are inQ(
√

1+
√

3).

16.3 Parameterizing degenerate intersections : singular
pencils

We now turn to singular pencils. Except when the intersection consists of four concurrent lines, the paramete-
rization algorithms are straightforward and therefore only briefly sketched.

16.3.1 Conic and double line inP3(C), σ4 = [1{3}]
As we have seen in Section 15.4.1, the pencil contains in thiscase one pair of planes. Furthermore each of the

planes is rational by Proposition 14.13 because the pair of planes contains a rational point outside its singular locus
(by Proposition 15.7). One plane is tangent to all the cones of the pencil, giving a rational double line. The other
plane intersects all the cones transversally, giving a conic. The conic contains a rational point (its intersection with
the singular line of the planes), so it can be rationally parameterized.

To actually parameterize the line and the conic, we proceed as follows. If QS is a pair of planes, replaceQS

by QS+QT . Now, QS is a real projective cone whose vertex is onQT . Use this rational vertex to obtain a rational
parameterization ofQT . Plug this parameterization into the equation ofQS. This equation in the parameters factors
in a squared linear factor (corresponding to the double line) and a bilinear factor, corresponding to the conic. It can
rationally be solved. The parameterization ofC is defined inQ[ξ].

16.3.2 Four concurrent lines inP3(C), σ3 = [111]
In this case, and in the three following cases, the two quadricsQS andQT have a singular point in common. So

first compute this singular pointp, which is rational, and compute the rational transformation sending this point to
(0,0,0,1). In this new frame,QS andQT are functions ofx,y,zonly and we can look at the restricted characteristic
polynomial of the 3×3 upper left matrices to determine the real type of the intersection.
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When the restricted characteristic polynomial has three simple roots (inC), there are three types of intersection
over the reals : a point, two concurrent lines, or four concurrent lines (see Table 15.5). In the first case, the four
lines are imaginary and the real part of the intersection consists of their common rational point, i.e. the pointp.

We now look at the two other cases.

16.3.2.1 Algorithm and optimality

The algorithm for computing the lines is as follows. Determine a planex = 0,y = 0,z= 0, orw = 0, that does
not contain the singular pointp. Substitute the equation of that plane (sayx = 0) into the equations ofQS(x,y,z,w)
andQT(x,y,z,w). This gives a system of two non-homogeneous degree-two equations in three variables having
four distinct complex projective solutionsqi . The real lines ofC are then the two or four lines going throughp and
one of theqi with real coordinates,i = 1, . . . ,4.

This algorithm outputs an optimal parameterization ofC. Indeed, since the common singular pointp of QS

andQT is rational and the plane (x = 0) used to cutQS andQT is rational, the lines are rational if and only if their
intersection with the planes (the pointsqi) are rational.

16.3.2.2 Degree of the extension

The following result shows that the roots of any polynomial of degree 4 without multiple root may be needed
to parameterize four real concurrent lines. It uses notionsof Galois theory that can be found in Appendix A.

Proposition 16.2. For any rational univariate polynomial of degree 4 without multiple root, there are rational
pencils of quadrics whose intersection is four (real or imaginary) concurrent lines, such that each of them is
rational on the field generated by one of the roots of the polynomial and is not rational on any smaller field (for
the inclusion and the degree).

Proof. Let us consider a polynomial of degree 4 with rational coefficients and without multiple factors. Let us
consider its four real or complex rootst1, . . . , t4 and the four pointsqi of coordinates(1, ti , t2

i ,0). Let us consider
also two rational pointsr j = (a j ,b j ,c j ,0), j = 1,2. Exactly one conic exists in the planew = 0, which passes
through the four pointsqi and one of ther j . Each of these conics has necessarily a rational equation, because, if it
were not, the conjugate conics (under the action of the Galois group of the field containing the coefficients) would
pass through the same five points. In other words, the equation of the conic is invariant under the Galois group and
is thus rational. Now the rational cones containing these conics and having the point(0,0,0,1) as vertex intersect
in four (real or imaginary) lines passing through this vertex and the pointsqi .

The equations of these conics are easy to compute explicitly. Consider a conic with generic coefficients. Ex-
pressing that it passes through 5 points induces five linear equations in the coefficients of the equation of the conic.
Solving this linear system expresses these coefficients as symmetric functions of theti , and thus as rational func-
tions of the coefficients of the polynomial of degree 4. 2

16.3.2.3 Examples

The proof of Proposition 16.2 gives a way of constructing examples of pencils of quadrics whose intersection
is four concurrent lines for any quarticf without multiple root. Table 16.2 shows an exhaustive list of examples
covering the possible degrees of field extension on which thelines of intersection are defined. We here focus on the
cases wheref has two or four real roots, corresponding, respectively, tothe two and four concurrent lines cases.

When f has four real roots, the degree of the extension ofQ needed to parameterize the four lines together
is the order of the Galois group off , in view of Proposition 16.2 and Appendix A. In other words, this degree is
either 1, 2, 3, 4, 6, 8, 12 or 24. However, each line is defined individually on an extension of degree at most 4. For
instance, when the Galois group is the dihedral groupD4 of order 8, the four lines are collectively defined in an
extension of degree 8 but each line is defined in an extension of degree 4.

When f has two real and two complex roots, the degree of the extension on which the four lines are defined is
again the order of the Galois group off , but the degree of the extension on which the two real lines are collectively
defined is only half the order of the Galois group. This degreeis 1, 2, 3, 4 or 12.
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Every extension degree can be attained by picking the right polynomial f . To build examples in all cases, it is
sufficient to find the equations of two distinct rational cones containing the four pointsqi = (1, ti , t2

i ,0) and having
the same vertex. Assumef is given by :

f = t4 +αt3 +βt2 + γt +δ.

Then the following pair(QS,QT) satisfies the constraints :

{

xz−y2 = 0,

δx2 + γxy+βy2 +αyz+z2 = 0.

Any two distinct quadrics of the pencil generated byQS andQT intersect in four (real or imaginary) concurrent
lines defined collectively on an extension ofQ of degree equal to the order of the Galois group off .

By picking the right polynomial, we can generate pairs of quadrics intersecting in four concurrent lines for all
types of Galois groups of a quartic. For instance, takingf = t4 + t +1, we build the two quadrics

{

xz−y2 = 0,

x2 +xy+z2 = 0.

The four real concurrent lines of the intersection are defined on an extension ofQ of degree 24, since the Galois
group of f is the groupS4 of permutations of four elements (of order 24). Each line is defined in an extension of
degree 4.

16.3.3 Two concurrent lines and a double line inP3(C), σ3 = [12]
In this case, the restricted pencil has a real and rational double root corresponding to a pair of planesQR and

a rational simple root corresponding to another pair of planes. The second pair is always real. There are two cases.

Double line. The pair of planesQR is imaginary. The intersection is reduced to the singular line of this pair,
which is clearly rational.

Double line and two simple lines. The double line is rational (otherwise its conjugate would also be in
the intersection). The two simple lines are contained inQR and go through the common singular pointp of QS and
QT . They are rational if and only ifQR has a rational point outside its singular line, i.e. if the discriminant ofQR is
a square.

A simple example where this is not the case is as follows :
{

xy= 0,

y2−2z2 = 0.

16.3.4 Two double lines inP3(C), σ3 = [1(11)]
The characteristic polynomial has a real and rational double root corresponding to a double planeQR. The

other root corresponds to a (real or imaginary) pair of planes. There are two cases.

Point. The pair of planes is imaginary. The intersection is reducedto the intersection of its singular line with
QR, i.e. the rational pointp.

Two real double lines. The two double lines are conjugate. They contain the rational point p and are rational
if they go through another rational point. This happens whenthe discriminant of the pair of planes is a square.

This situation does not necessarily happen, as the following example shows :
{

z2 = 0,

x2−2y2 = 0.
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16.3.5 Line and triple line in P3(C), σ3 = [3]

The characteristic polynomial has a real and rational triple root corresponding to a real pair of planes. The
intersection consists of the (triple) singular line of thispair of planes, which is clearly rational, and of a single
line which is also rational, otherwise its conjugate would also be in the intersection. The simple line is found by
intersecting one of the planes with any other cone of the pencil.

16.3.6 Quadruple line inP3(C), σ3 = [(21)]
Here, the characteristic polynomial has a real and rationaltriple root, corresponding to a double plane. The

intersection consists of the (quadruple) line of tangency of this double plane with a cone of the pencil. This line is
clearly rational.

16.3.7 Remaining cases
In the remaining cases, that is when the restricted characteristic polynomial identically vanishes, the descrip-

tion of the possibles cases given in Section 15.4.2.6 directly yields algorithms for computing parameterizations of
the intersection overQ[ξ].

16.4 Examples
The algorithm described in this paper for computing a near-optimal parameterization of the intersection of two

arbitrary quadrics with integer coefficients has been fullyimplemented in C++. The implementation details as well
as an analysis of the complexity (i.e., the height) of the integer coefficients appearing in the parameterizations can
be found in [LPP06].

In this section, we illustrate our algorithm with three examples covering different situations. The output given
is the actual output of our implementation, with debug information turned on so as to follow what the algorithm is
doing.

16.4.1 Example 1
Our first example is as shown in Output 5. As explained in Section 15.5, we first determine the type of the

intersection by looking at the multiple roots of the characteristic polynomial and the ranks of the associated qua-
drics. Here, we find two real double roots corresponding to quadrics of rank 3 : Algorithm 6 tells us that the real
type of the intersection is “cubic and secant line”. We have rational roots, so we can parameterize the intersection
using cones. One of the two cones of the pencil is

QR = −2QS+QT = −25wx−30wy−5wz−20xy−30w2−5x2−20y2.

This cone has the point(−2,1,4,0) as vertex and contains the vertex of the second cone, i.e.(−4,1,4,1). The line
of the intersection is the line joining these two points. Here, we have applied a simple reparameterization to the
line by picking two other representative points with smaller “height” than the original two. On the reparameteri-
zed line, a very simple point is(−2,0,0,1) which we use as rational point for parameterizingQR. Plugging the
parameterization ofQR in the second cone and leaving aside the linear factor corresponding to the line gives the
cubic.

16.4.2 Example 2
Our second example is displayed in Output 6. Here, the characteristic polynomial has a double real root

at (λ,µ) = (0,1), the two other simple roots are real (solution ofE(λ,µ) = 4µ2 − λ2 = 0), the singular quadric
R = R(0,1) is a real pair of planes andE(0,1) > 0, so Algorithm 3 tells us that the intersection is two secant
conics, the singularities of the intersection being convex. Here, the two planes ofRare rational :

QR = (w−y+2z)(w−4x+3y−2z).
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Output 5 Execution trace for Example 1.
>> quadric 1: 3*x^2 + 5*x*y + 2*x*z + 13*x*w + 14*y^2 - 4*y*z + 4*y*w + z^2 + 6* z*w + 14*w^2
>> quadric 2: x^2 - 10*x*y + 4*x*z + x*w + 8*y^2 - 8*y*z - 22*y*w + 2*z^2 + 7*z* w - 2*w^2

>> launching intersection
>> characteristic polynomial: 4*l^4 + 12*l^3*m + l^2*m^2 - 1 2*l*m^3 + 4*m^4
>> gcd of derivatives of characteristic polynomial: 2*l^2 + 3*l*m - 2*m^2
>> ranks of singular quadrics: 3 and 3
>> two real rational double roots: [ 1 2 ] and [ -2 1 ]
>> complex intersection: cubic and secant line
>> real intersection: cubic and secant line
>> reparameterization of line
>> singular point of cone: [ -2 1 4 0 ]
>> rational point on cone: [ -2 0 0 1 ]
>> parameterization of cone with rational point
>> cubic and line intersect at [ -4 1 4 1 ] and [ -2 1 4 0 ]
>> status of intersection param: optimal
>> end of intersection

>> parameterization of cubic:
[4*u^3 + u^2*v + 2*v^3, - u^3 - v^3, - 4*u^3 - u^2*v + u*v^2 - 4*v^ 3, - u^3]
>> parameterization of line:
[- 2*u, v, 4*v, u - v]

>> time spent: 10 ms

We can parameterize each of these planes and plug their parameterization in turn in any other quadric of the pencil.
This gives the implicit equations of the two conics which we can parameterize. As explained in Section 16.2.5,
we are here in one of the few situations where we cannot guarantee that what we output is optimal : the square
root in the parameterization of the conics might well be unnecessary. (It turns out that in this particular example it
is necessary.) This explains why the implementation reports that the parameterizations of the two conics are only
near-optimal.

16.4.3 Example 3
Our last example is presented in Output 7. Here, the characteristic polynomial vanishes identically and all the

quadrics of the pencil share a common singular point, with coordinates(1,3,−1,−2). We apply to all the quadrics
of the pencil a projective transformation sending this point to the point(0,0,0,1). The characteristic polynomial of
the pencil restricted to the upper left 3×3 part has a double real root at(−1,1). Corresponding to this double root
is a real pair of planesQR and Algorithm 2 tells us that the real type of the intersection is “two concurrent lines
and a double line”.

As we have seen in Section 16.3.3, the double line of the intersection is the singular line ofQR. To parameterize
the other two lines, we first parameterizeQR and plug the result in the equation of the other pair of planesof the
pencil, corresponding to the second root(3,1) of the restricted characteristic polynomial. The result follows.

16.5 Conclusion
We have presented in Parts I, II, and III of this paper a new algorithm for computing an exact parametric

representation of the intersection of two quadrics in three-dimensional real space given by implicit equations with
rational coefficients. We have shown that our algorithm computes projective parameterizations that are optimal in
terms of the functions used in the sense that they are polynomials whenever it is possible and contain the square root
of some polynomial otherwise. The parameterizations are also near-optimal in the sense that the number of square
roots appearing in the coefficients of these functions is minimal except in a small number of cases (characterized
by the real type of the intersection) where there may be an extra square root (see Table 16.1 for a summary).
Furthermore, we have shown that in the latter cases, testingwhether the extra square root is unnecessary and, if so,
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Output 6 Execution trace for Example 2.
>> quadric 1: 16*x^2 - 12*x*y + 8*x*z + 4*x*w - y^2 - 20*y*z + 2*y*w - 2*z^2 + 3 *w^2
>> quadric 2: 4*x*y - 8*x*z - 4*x*w - 3*y^2 + 8*y*z + 2*y*w - 4*z^2 + w^2

>> launching intersection
>> characteristic polynomial: - l^4 + 4*l^2*m^2
>> gcd of derivatives of characteristic polynomial: l
>> double real root: [ 0 1 ]
>> inertia: [ 1 1 ]
>> parameterization of pair of planes
>> complex intersection: two secant conics
>> real intersection: two secant conics, convex singularities
>> parameterization of rational conic
>> status of conic 1 param: near-optimal
>> parameterization of rational conic
>> status of conic 2 param: near-optimal
>> end of intersection

>> parameterization of conic 1:
[- 3*u^2 - 9*v^2 - 14*u*v*sqrt(2), - 12*u^2 - 36*v^2 + (- 7*u^2 - 14*u*v + 21*v^2)*sqrt(2),
- 2*u^2 - 6*v^2, - 8*u^2 - 24*v^2 + (- 7*u^2 - 14*u*v + 21*v^2)*s qrt(2)]
>> parameterization of conic 2:
[(u^2 - 28*u*v - 42*v^2)*sqrt(2), - 2*u^2 - 84*v^2 - 28*u*v*s qrt(2), - 8*u^2 - 336*v^2
+ (- 6*u^2 + 252*v^2)*sqrt(2), - 10*u^2 - 420*v^2 + (- 8*u^2 - 2 8*u*v + 336*v^2)*sqrt(2)]

>> time spent: 10 ms

finding an optimal parameterization are equivalent to finding a rational point on a curve or a surface. Hence, leaving
for a moment that well-known problem aside, our algorithm closes the problem of finding parameterizations of the
intersection that are optimal in the senses discussed above. It should be emphasized that our algorithm is not only
theoretically powerful but is also practical : a complete, robust and efficient C++ implementation is described
in [LPP06].

For most applications, the near-optimal parameterizations of intersections of quadrics computed by our algo-
rithm are good enough since they are at most one square root away from being optimal. However, there may be
situations where one is interested in fully asserting the optimality of a parameterization and, if a given parameteri-
zation is not optimal, in obtaining one. As we have seen, thisis akin to deciding whether a given curve or surface
has a rational point and to computing such a point. The problem of finding integer (or rational) points on an alge-
braic variety is known to be hard in general, and many instances of the problem are undecidable [Poo01]. When
the intersection is a smooth quartic, deciding whether the extra square root can be avoided amounts to finding a
rational point on a surface of degree 8 (see Section 14.7) andvery little is known about this problem, to the best
of our knowledge. The situation is, however, better for the other near-optimal cases, which boil down to finding a
rational point on a (possibly non-rational) conic. Indeed,when the conic is rational, Cremona and Rusin [CR03]
recently gave an efficient algorithm for solving this problem, which has been implemented in recent releases of
the Magma computational algebra system [Mag]. As an example, this implementation solves the problem for an
equation of the formax2+by2 = cz2, wherea,b andc are 200-digit primes, in less than 2 seconds on a mainstream
PC. In the future, we plan to use this algorithm in our intersection software.

Finally, it should be stressed that the classification, presented in Part II, of pairs of quadrics depending on
the type of their real intersection is of independent interest. For instance, it could be used in a collision detection
context to predict when collisions between two moving quadrics will occur.
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Output 7 Execution trace for Example 3.
>> quadric 1: 17*x^2 - 12*x*y + 14*x*z - 8*x*w - 4*y^2 - 18*y*w + 5*z^2 + 2*z* w - 16*w^2
>> quadric 2: - 3*x^2 + 28*x*y + 30*x*z + 24*x*w - 4*y^2 + 8*y*z - 2*y*w + 9*z^ 2 + 18*z*w

>> launching intersection
>> vanishing 4 x 4 characteristic polynomial
>> dimension of common singular locus: 0
>> common singular point of quadrics: [ 1 3 -1 -2 ]
>> computing matrix sending singular point to [ 0 0 0 1 ]
>> 3 x 3 characteristic polynomial: - l^3 + l^2*m + 5*l*m^2 + 3* m^3
>> gcd of derivatives of 3 x 3 characteristic polynomial: l + m
>> double real root: [ -1 1 ]
>> second root: [ 3 1 ]
>> complex intersection: two concurrent lines and double li ne
>> real intersection: two concurrent lines and double line
>> reparameterization of line
>> parameterization of pair of lines
>> reparameterization of lines
>> the three lines meet at [ 1 3 -1 -2 ]
>> status of intersection param: optimal
>> end of intersection

>> parameterization of double line:
[v, 3*v, - 2*u - v, u - 2*v]
>> parameterization of line 1:
[- 3*u + v, 3*v, u - v, - 2*u - 2*v]
>> parameterization of line 2:
[u - v, 3*u + 6*v, - u + 5*v, - 2*u]

>> time spent: 10 ms

16.6 Appendix A : A primer on Galois theory
Galois theory was introduced in the 19th century for deciding when a polynomial is solvable by radicals. We

give here a brief introduction to this theory, which is especially geared towards geometric objects.
Let K be a finite field extension of the fieldQ of the rational numbers. Its dimension asQ-vector space is

called thedegreeof K. In our context,K is usually the smallest field containing the coefficients of the equations or
of the parameterization of a geometric object such as a point, a line, a curve or a plane. This fieldK may always
be defined asQ(α), whereα is a root of some polynomialf of degreen = degree(K).

Thesplitting field K′ of K is defined as the smallest field containing all the roots off . It may be proved that it
is independent from the choice off andα. TheGalois group Gof K andK′ is the group of the field automorphisms
of K′. It is immediate that the elements ofG permute the roots off , and this allows to identifyG to a subgroup of
the groupSn of all the permutations of then roots of f .

The important fact for geometric considerations is that anyelementg of G acts on any object defined from
the elements ofK by the four field operations (+,−,∗,/) simply by replacing any element ofK appearing in the
definition of the object by its image by the automorphismg, exactly as the complex conjugation acts on any object
defined with complex numbers. The different images of an object under the action of the elements ofG are called
theconjugatesof this object.

If H is a subgroup of the Galois groupG, one may defineK′H , the field of the elements ofK′ such thatg(x) = x
for anyg∈ H. The main result of Galois theory is that the mapH 7→ K′H is a bijection between the subgroups of
G and the subfields ofK′H . Moreover, we have degree

(

K′H) = order(G)/order(H). It follows that an element of
K which hask conjugates lies in a subfield ofK of degreek.

This may be extended to the

Galois principle : Two conjugate objects are isomorphic and any object which has k conjugates
(including itself) may be defined on a field of degree k and may not be defined on a smaller field.

This principle is behind all our proofs of optimality. We describe briefly some other consequences in the
context of intersection of quadrics.
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One of its first consequences is that any object which has no conjugate except itself may be rationally defined.
For example this is the case for the singular point of a singular quartic appearing as the intersection of two rational
quadrics. If the intersection of two quadrics is decomposedin a cubic and a line, both may be rationally defined,
because their conjugates have to be components of the intersection and the conjugate of a line is a line. Similarly,
if the characteristic polynomial of a pencil of quadrics hastwo double roots and if the corresponding singular
quadrics are a cone and a pair of planes, both are rational because they are not isomorphic.

A more involved application of the Galois principle occurs when the intersection of two quadrics consists in
four non concurrent lines. As a conjugate of a line in the intersection may only be another line of the intersection,
each line may be defined on a field of degree 4. Moreover, if a point lies on a line, any conjugate of the point lies
on the corresponding conjugate of the line. Thus the arrangement of the four lines and their four intersection points
is preserved by the action of the Galois group. It follows that the Galois group is included in a group of order 8
which acts on the lines and their intersections as the 8 isometries of a square act on its edges and its vertices. By
looking at the subgroups of this group, the Galois principlesays that the fieldK of definition of any of the lines
has a degree which divides 4, and that if its degree is 4 it has asubfield of degree 2. Therefore each line may be
parameterized with at most 2 square roots. As the splitting field has degree at most 8, it is possibly generated by
another square root. This shows, without any explicit computation, that at most 3 square roots are needed to define
all the four intersection points and the four lines.

16.7 Appendix B : Rational canonical form for the case of
four lines forming a skew quadrilateral

We here give a proof of Proposition 16.1.
Proof. Let K be aQ-extension field of smallest degree on which the four lines ofthe intersection are rationally
parameterized, and letL be the field generated by the roots of the characteristic polynomial. To decompose the
singular quadrics of the pencil in two planes, we have to extract the square roots of two elementsd1 andd2 of L,
which are algebraically conjugate onQ if L is different fromQ. Let t2−2αt +γ be the (rational) polynomial having
d1 andd2 as roots. It is easy to verify thatK is generated by the roots of the biquadratic polynomialt4−2αt2 + γ.

Let the pointspi , i = 1, . . . ,4, be the singular points of the intersection inP3(C) of any two distinct quadrics
of the pencil. Now, let us choose four pointsqi on which the Galois groupG of this polynomial acts in the same
way as on thepi . For instance, take forqi , i = 1, . . . ,4, the points of coordinates(1, ti , t2

i , t3
i ), where theti are the

roots of the biquadratic polynomial, numbered such thatt1 = −t3. It is now easy to compute the equationsH j of
the planes containing all the pointsqi exceptq j . The quadrics of equations

{

H1H3 +H2H4 = 0,
√

α2− γ(H1H3−H2H4) = 0

are rational and their intersection consists in the four (not necessarily real) linesq1q2, q2q3, q3q4, andq4q1. Now,
the change of frame sending theqi to the points of coordinates(ti ,−1/ti , t2

i −α,1) is rational and leads to the
equations

{

x2− γy2−2wz= 0,

αx2 +2γxy+αγy2−z2− (α2− γ)w2 = 0.

There is a unique projective transformation sending the points pi on theqi and leaving fixed some rational
point which is not on any of the planes defined by thepi or by theqi . This transformation is invariant under the
action of the Galois groupG. Thus it is rational, showing the existence of the rational change of frame which is
sought.

We now show how the different types of real intersection follow from the signs ofδ = α2− γ,α, andγ. First
note that the characteristic polynomial for the rational canonical pencil above is

D(λ,µ) = γ
(

λ2−δµ2)2
.

Furthermore, the double roots ofD are(λ0,µ0) = (±
√

δ,1) and, whenδ > 0, the associated pairs of planes have
equations

λ0QS+µ0QT = (α±
√

δ)
(

x+(α∓
√

δ)y
)2

− (z±
√

δw)2.
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The discriminants of the two pairs of planes of the pencil arethusd± = α±
√

δ.
We know from Table 15.4 that, when the real intersection consists of two lines, the double roots are com-

plex, henceδ < 0. In the other cases, the double roots are real and distinct thusδ > 0. Note thatd+d− is then
equal toc. When the real intersection is empty, the inertia of the two pairs of planes is(2,0), henced± < 0 ; thus
d+ +d− = 2α < 0 andd+d− = γ > 0. When the real intersection consists of two points, the discriminants of the
two pairs of planes have opposite signs, thusd+d− = γ < 0. Finally, when the intersection consists of four lines
(forming a skew quadrilateral), the discriminants of the two pairs of planes are both positive, thusd++d− = 2α > 0
andd+d− = γ > 0. This completes the proof since these cases for the signs ofδ, α, andγ are disjoint. 2

16.8 Appendix C : Examples in all cases
Table 16.2 gives an exhaustive list of examples covering allpossible degrees of extension fields on which the

components of the intersection are defined, for all real types of intersection. The next-to-last column gives the
optimal ring of definition on which a parameterization of thegiven example is known to exist (ξ is the parameter
of the parameterization). When the parameterization outputby our algorithm is optimal, the last column gives the
degree of theQ-extension field on which the coefficients of the parameterization of each real component of the
intersection is defined. When our algorithm is only near-optimal, the last column gives both the optimal degree and
the near-optimal one.

TAB . 16.2: Exhaustive list of examples when the intersection is0- or 1-dimensional overC.

complex type real type example field of definition degree

smooth
quartic,

σ4 = [1111]
/0

{

6xy+5y2+2z2+6zw−w2=0

3x2+y2−z2+11w2=0

smooth
quartic, two

affinely finite
components

{

x2+y2−z2−w2=0

xy−2zw=0
quartic inQ[ξ,

√
∆], ∆ ∈ Q[ξ] 1 / 2

{

6xy+5y2+2z2+6zw−w2=0

3x2+y2−z2−w2=0

quartic inQ(
√

δ)[ξ,
√

∆],
∆ ∈ Q(

√
δ)[ξ]

2

smooth
quartic, one

affinely finite
component

{

x2+y2+2zw=0

x2+z2+zw−w2=0
quartic inQ[ξ,

√
∆] 1 / 2











2x2−2xy+2xz−2xw+y2

+4yz−4yw+2z2−4zw=0

x2−2xy+4xz+4xw−y2

+2yz+4yw+4zw−2w2=0

quartic inQ(
√

δ)[ξ,
√

∆],
∆ ∈ Q(

√
δ)[ξ]

2

smooth
quartic, two

affinely
infinite

components

{

xy+zw=0

x2−y2+z2+2zw−w2=0
quartic inQ[ξ,

√
∆], ∆ ∈ Q[ξ] 1 / 2

{

x2−2y2+4zw=0

xy+z2+2zw−w2=0

quartic inQ(
√

δ)[ξ,
√

∆],
∆ ∈ Q(

√
δ)[ξ]

2

nodal quartic,
σ4 = [112]

point

{

y2+z2+w2=0

xy+w2=0
point inQ 1

nodal quartic,
affinely finite

{

y2+z2−w2=0

xy+w2=0
quartic inQ[ξ] 1 / 2
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TAB . 16.2: (continued)

complex type real type example field of definition degree
{

y2+z2−3w2=0

xy+w2=0
quartic inQ(

√
3)[ξ] 2

nodal quartic,
affinely
infinite

{

y2+z2−w2=0

xy+zw=0
quartic inQ[ξ] 1 / 2

{

y2+z2−3w2=0

xy+zw=0
quartic inQ(

√
3)[ξ] 2

nodal quartic
with isolated
singularity

{

y2−z2−w2=0

xy+w2=0

quartic inQ[ξ],
point inQ

1 / 2
1

{

y2+z2−3w2=0

xw+y2=0

quartic inQ(
√

3)[ξ],
point inQ

2
1

cuspidal
quartic,

σ4 = [13]

cuspidal
quartic

{

yz+w2=0

xz+y2=0
quartic inQ[ξ] 1

cubic and
secant line,
σ4 = [22]

cubic and
secant line

{

y2+zw=0

xy+w2=0

cubic inQ[ξ],
line in Q[ξ]

1
1

cubic and
non-secant

line

{

xw+yz=0

xz−yw+zw=0

cubic inQ[ξ],
line in Q[ξ]

1
1

cubic and
tangent line,

σ4 = [4]

cubic and
tangent line

{

yw+z2=0

xw+yz=0

cubic inQ[ξ],
line in Q[ξ]

1
1

two secant
conics,

σ4 = [11(11)]
/0

{

z2−w2=0

x2+y2+w2=0

two points

{

z2+w2=0

x2−y2+w2=0
two points inQ 1

{

z2+w2=0

x2−2y2+w2=0
two points inQ(

√
2) 2

one conic

{

zw=0

x2+y2+z2−w2=0
one conic inQ[ξ] 1 / 2

{

x2−4xw+3w2=0

x2+y2+z2−4w2=0
one conic inQ(

√
3)[ξ] 2

{

x2−4xw−3w2=0

x2+y2+z2−w2=0
one conic inQ(

√

4
√

7−10) 4

two
non-secant

conics

{

x2−w2=0

y2+z2−w2=0
two conics inQ[ξ] 1 / 2

{

x2−w2=0

y2+z2−3w2=0
two conics inQ(

√
3)[ξ] 2

{

x2−3w2=0

y2+z2−3w2=0
two conics inQ(

√
3)[ξ] 2 / 4

{

x2−33w2=0

y2+z2−3w2=0
two conics inQ(

√
3,
√

11)[ξ] 4
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TAB . 16.2: (continued)

complex type real type example field of definition degree

two secant
conics,

affinely finite

{

x2−y2=0

y2+z2−w2=0
two conics inQ[ξ] 1 / 2

{

x2−y2=0

y2+z2−3w2=0
two conics inQ(

√
3)[ξ] 2

{

x2−3y2=0

y2+z2−3w2=0
two conics inQ(

√
3)[ξ] 2 / 4

{

x2−33y2=0

y2+z2−3w2=0
two conics inQ(

√
3,
√

11)[ξ] 4

two secant
conics,
affinely
infinite

{

z2−w2=0

x2−2y2−zw=0
two conics inQ[ξ] 1 / 2

{

zw=0

x2−3y2+z2−11w2=0
two conics inQ(

√
3)[ξ] 2

{

z2−2w2=0

x2−3y2−zw=0
two conics inQ(

√
2)[ξ] 2 / 4

{

z2−4zw−3w2=0

x2−3y2+z2−11w2=0
two conics inQ(

√
3,
√

7)[ξ] 4

two tangent
conics,

σ4 = [1(21)]
point

{

x2+w2=0

xy+z2=0
point inQ 1

two conics

{

x2−w2=0

xy+z2=0
two conics inQ[ξ] 1

{

x2−2w2=0

xy+z2=0
two conics inQ(

√
2)[ξ] 2

double conic,
σ4 = [1(111)]

/0
{

w2=0

x2+y2+z2=0

double conic

{

x2=0

y2+z2−w2=0
conic inQ[ξ] 1 / 2

{

x2=0

y2+z2−3w2=0
conic inQ(

√
3)[ξ] 2

conic and two
lines not
crossing,

σ4 = [2(11)]

point

{

xy=0

y2+z2+w2=0
point inQ 1

conic and
point

{

xw=0

y2+z2−w2=0

point inQ,
conic inQ[ξ]

1
1 / 2

{

xw=0

y2+z2−3w2=0

point inQ,
conic inQ(

√
3)[ξ]

1
2

conic and two
lines

{

xy=0

y2+z2−w2=0

two lines inQ[ξ],
conic inQ[ξ]

1
1

{

xy=0

2y2+z2−3w2=0

two lines inQ(
√

3)[ξ],
conic inQ[ξ]

2
1 / 2

{

xy=0

y2+z2−3w2=0

two lines inQ(
√

3)[ξ],
conic inQ(

√
3)[ξ]

2
2
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TAB . 16.2: (continued)

complex type real type example field of definition degree

conic and two
lines crossing,

σ4 = [(31)]
conic

{

yz=0

xz+y2+w2=0
conic inQ[ξ] 1

conic and two
lines

{

yz=0

xz+y2−w2=0

conic inQ[ξ],
two lines inQ[ξ]

1
1

{

yz=0

xz+y2−2w2=0

conic inQ[ξ],
two lines inQ(

√
2)[ξ]

1
2

four lines
(skew

quadrilateral),
σ4 = [(11)(11)]

/0
{

x2+y2=0

z2+w2=0

two points

{

x2+y2−2zw=0

2xy+z2+w2=0
two points inQ 1

{

x2+3y2−2zw=0

x2−6xy−3y2−z2−4w2=0
two points inQ(

√
3) 2

{

x2+2y2−2zw=0

x2−4xy−2y2−z2−3w2=0
two points inQ(

√

1+
√

3) 4

two skew
lines

{

x2−25y2−2zw=0

3x2+50xy+75y2−z2+16w2=0
two lines inQ[ξ] 1

{

x2−4y2−2zw=0

x2+8xy+4y2−z2+3w2=0
two lines inQ(

√
6)[ξ] 2

{

x2−3y2−2zw=0

x2+6xy+3y2−z2+2w2=0
two lines inQ(

√√
3−1)[ξ] 4

four lines
(skew

quadrilateral)

{

x2−9y2−2zw=0

5x2+18xy+45y2−z2−16w2=0
four lines inQ[ξ] 1

{

x2−y2−2zw=0

3x2+2xy+3y2−z2−8w2=0

two lines inQ[ξ],
two lines inQ(

√
2)[ξ]

1
2

{

x2−16y2−2zw=0

5x2+32xy+80y2−z2−9w2=0
four lines inQ(

√
2)[ξ] 2

{

x2−y2−2zw=0

2x2+2xy+2y2−z2−3w2=0

two lines inQ(
√

2)[ξ],
two lines inQ(

√
6)[ξ]

2
2

{

x2−20y2−2zw=0

6x2+40xy+120y2−z2−16w2=0
four lines inQ(

√
2,
√

10)[ξ] 4
{

x2−2y2−2zw=0

2x2+4xy+4y2−z2−2w2=0
four lines inQ(

√

2+
√

2)[ξ] 4
{

x2−3y2−2zw=0

3x2+6xy+9y2−z2−6w2=0

two lines inQ(
√

3−
√

3)[ξ],

two lines inQ(
√

3+
√

3)[ξ]

4
4

two skew lines
and a double

line,
σ4 = [(22)]

double line

{

y2+w2=0

xy+zw=0
double line inQ[ξ] 1

two skew
lines and a
double line

{

y2−w2=0

xy−zw=0

double line inQ[ξ]

two simple lines inQ[ξ]

1
1

{

y2−2w2=0

xy−zw=0

double line inQ[ξ]

two simple lines inQ(
√

2)[ξ]

1
2
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TAB . 16.2: (continued)

complex type real type example field of definition degree

two concurrent
double lines,
σ4 = [(211)]

point

{

w2=0

x2+y2+zw=0
point inQ 1

two double
lines

{

w2=0

x2−y2+zw=0
two lines inQ[ξ] 1

{

w2=0

x2−2y2+zw=0
two lines inQ(

√
2)[ξ] 2

conic and
double line,
σ4 = [1{3}]

conic and
double line

{

xw=0

xz+y2=0

conic inQ[ξ],
line in Q[ξ]

1
1

four concurrent
lines,

σ3 = [111]
point

{

x2+z2=0

y2+z2=0
point inQ 1

two
concurrent

lines

{

xz−y2=0

−x2+z2=0
two lines inQ[ξ] 1

{

xz−y2=0

−2x2−y2+z2=0
two lines inQ(

√
2)[ξ] 2

{

xz−y2=0

2xy+z2=0

one line inQ[ξ],
one line inK[ξ],degree(K) = 3

1
3

{

xz−y2=0

−3x2+z2=0
two lines inQ(

√

3
√

3)[ξ] 4
{

xz−y2=0

−3x2−3xy+z2=0

one line inK[ξ],degree(K) = 4
one line inK′[ξ],degree(K′) = 4

4
4

four
concurrent

lines

{

xz−y2=0

4x2−5y2+z2=0
four lines inQ[ξ] 1

{

xz−y2=0

2x2−3y2+z2=0

two lines inQ[ξ],
two lines inQ(

√
2)[ξ]

1
2

{

xz−y2=0

−4x2+8xy−4yz+z2=0
four lines inQ(

√
2)[ξ] 2

{

xz−y2=0

xy−3y2+z2=0

one line inQ[ξ],
three linesl i in Ki [ξ],degree(Ki) = 3

1
3

{

xz−y2=0

2x2−4y2+z2=0
four lines inQ(

√

2+
√

2)[ξ] 4
{

xz−y2=0

4x2−10y2+z2=0
four lines inQ(

√
6,
√

14)[ξ] 4
{

xz−y2=0

2x2+10xy+15y2+7yz+z2=0

two lines inQ(
√

2)[ξ],
two lines inQ(

√
5)[ξ]

2
2

{

xz−y2=0

xy−4y2+z2=0

one line inQ[ξ],
three linesl i in Ki [ξ],degree(K) = 3

1
3

{

xz−y2=0

2x2−5y2+z2=0

two lines inQ(
√

5+
√

17)[ξ],

two lines inQ(
√

5−
√

17)[ξ]

4
4

{

xz−y2=0

x2−3xy−7y2+z2=0
four linesl i in Ki [ξ],degree(Ki) = 4 4

{

xz−y2=0

x2+xy+z2=0
four linesl i in Ki [ξ],degree(Ki) = 4 4
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TAB . 16.2: (continued)

complex type real type example field of definition degree

two concurrent
lines and a
double line,
σ3 = [12]

double line

{

xy=0

y2+z2=0
double line inQ[ξ] 1

two
concurrent
lines and a
double line

{

xy=0

y2−z2=0

double line inQ[ξ],
two simple lines inQ[ξ]

1
1

{

xy=0

y2−2z2=0

double line inQ[ξ],
two simple lines inQ(

√
2)[ξ]

1
2

line and triple
line, σ3 = [3]

line and triple
line

{

xz+y2=0

yz=0

simple line inQ[ξ],
triple line inQ[ξ]

1
1

two concurrent
double lines,
σ3 = [1(11)]

point

{

z2=0

x2+y2=0
point inQ 1

two double
lines

{

z2=0

x2−y2=0
two lines inQ[ξ] 1

{

z2=0

x2−2y2=0
two lines inQ(

√
2)[ξ] 2

quadruple line,
σ3 = [(21)]

quadruple
line

{

y2=0

xy+z2=0
line in Q[ξ] 1

quadruple line,
σ2 = [11]

quadruple
line

{

x2=0

y2=0
line in Q[ξ] 1



Chapitre 17

Near-optimal parameterization of the
intersection of quadrics : IV. An efficient

and exact implementation

Cet article est paru dansComputational Geometry : Theory and Applications[LPP06], une “special issue” du
20th ACM Annual Symposium on Computational Geometry[LPP04].

Abstract

We present the first complete, exact, and efficient C++ implementation for parameterizing the inter-
section of two implicit quadrics with integer coefficients of arbitrary size. It is based on the near-
optimal algorithm recently introduced by Dupont et al. [DLLP03] and builds upon Levin’s seminal
work [Lev76].
Unlike existing implementations, it correctly identifies and parameterizes all the connected compo-
nents of the intersection in all cases, returning parameterizations with rational functions whenever
such parameterizations exist. In addition, the coefficientrings of the parameterizations are either
minimal or involve one possibly unneeded square root.
We prove upper bounds on the size of the coefficients of the output parameterizations and compare
these bounds to observed values. We give other experimentalresults and present some examples.

17.1 Introduction
Computing an explicit representation of the intersection of two general quadrics (i.e., quadratic surfaces) is

a fundamental problem in areas such as solid modeling, computational geometry, and computer graphics. The
range of applications covers well-known problems like computing arrangements [MTT03, SW06], boundary eva-
luation [Sar83], and convex hull computation [HI95].

Past work. Until recently, the only known general method for computinga parametric representation of the
intersection between two arbitrary quadrics was that of J. Levin [Lev76]. This method is based on an analysis of
the pencil generated by the two quadrics, i.e., their set of linear combinations.

Though useful for curve tracing, Levin’s method has seriouslimitations. When the intersection is singular
or reducible, a parameterization by rational functions is known to exist, but Levin’s pencil method fails to find it
and generates a parameterization that involves the square root of some polynomial. In addition, since it introduces
algebraic numbers of very high degree (for instance in the computation of eigenvalues and eigenvectors), a correct
implementation using exact arithmetic is essentially out of reach. In addition, when a floating point representation
of numbers is used, the method may output results that are wrong (geometrically and topologically) and it may
even fail to produce any parameterization at all and crash.

277
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Over the years, Levin’s seminal work has been extended and refined in several different directions. Wilf and
Manor [WM93] use a classification of quadric intersections bythe Segre characteristic (see [Bro06]) to drive the
parameterization of the intersection by the pencil method.Recently, Wang, Goldman, and Tu [WGT03] further
improved the method making it capable of computing structural information on the intersection and its various
connected components and able to produce a parameterization by rational functions when such a parameterization
exists. Whether the refined algorithm is numerically robust is open to question.

Another method of algebraic flavor was introduced by Farouki, Neff, and O’Connor [FNO89] for paramete-
rizing the intersection in degenerate situations. In such cases, using a combination of classical concepts (Segre
characteristic) and algebraic tools (factorization of multivariate polynomials), the authors show that explicit in-
formation on the morphological type of the intersection curve can be reliably obtained. A notable feature of this
method is that it can output an exact parameterization of theintersection in simple cases, when the input quadrics
have rational coefficients. No implementation is reported however.

Rather than restricting the type of the intersection, others have sought to restrict the type of the input quadrics,
taking advantage of the fact that geometric insights can then help compute the intersection curve [MG95, SJ94].
Specialized routines are devised to compute the intersection curve in each particular case. Such geometric ap-
proaches are however essentially limited to the class of so-called natural quadrics, i.e., the planes, right cones,
circular cylinders, and spheres.

Apart from [DLLP03], perhaps the most interesting of the known algorithms for computing an explicit repre-
sentation of the intersection of two arbitrary quadrics is the method of Wang, Joe, and Goldman [WJG02]. This
algebraic method is based on a birational mapping between the intersection curve and a plane cubic curve. The
cubic curve is obtained by projection from a point lying on the intersection. Then the classification and paramete-
rization of the intersection are obtained by invoking classical results on plane cubics. The authors claim that their
algorithm is the first to produce a complete topological classification of the intersection (singularities, number, and
types of connected components, etc.). Numerical robustness issues have however not been studied and the intersec-
tion may not be correctly classified. Also, the center of projection is currently computed using Levin’s (enhanced)
method : with floating point arithmetic, the center of projection will in general not exactly lie on the curve, which
is another source of numerical instability.

Contributions. In this paper, we present the first complete, exact, and efficient implementation of an algo-
rithm for parameterizing the intersection of two arbitraryquadrics, given in implicit form, with integer coefficients.
(Note that quadrics with rational or finite floating-point coefficients can be trivially converted to integer form.) This
implementation is based on the parameterization method described in [DLLP03], itself built upon Levin’s pencil
method.

Precisely, our implementation has the following features :

– it computes an exact parameterization of the intersectionof two quadrics with integer coefficients of
arbitrary size ;

– it places no restriction of any kind on the type of the intersection or the type of the input quadrics ;

– it correctly identifies, separates, and parameterizes allthe connected components of the intersection
and gives all the relevant topological information ;

– the parameterization is rational when one exists ; otherwise the intersection is a smooth quartic and the
parameterization involves the square root of a polynomial ;

– the parameterization is either optimal in the degree of theextension ofZ on which its coefficients are
defined or, in a small number of well-identified cases, involves one extra possibly unnecessary square
root ;

– the implementation is carefully designed so that the size of the coefficients is kept small ;

– it is fast and efficient, and can routinely compute parameterizations of the intersection of quadrics with
input coefficients having ten digits in less than 50 milliseconds on a mainstream PC.

Our code can be downloaded from the LORIA and INRIA web sites27. The C++ implementation can also be
queried via a web interface.

The paper is organized as follows. After some preliminaries, we recall in Section 17.3 the main ideas of the

27http://www.loria.fr , http://www.inria.fr



17.2. PRELIMINARIES 279

parameterization algorithm we introduced in [DLLP03]. In Section 17.4, we prove theoretical bounds on the size
of the output coefficients when the intersection is generic and compare those bounds to observed values. A similar
work is carried out in Section 17.5 for singular intersections and the results are used to validate a key design choice
we made in our implementation. After describing our implementation (Section 17.6), we then give experimental
results and performance evaluation in Section 17.7, both onrandom and real data. Finally, we show the output
produced by our implementation for some examples in Section17.8, before concluding.

17.2 Preliminaries
In what follows, all the matrices considered are 4× 4 real matrices, unless otherwise specified. We call a

quadricassociated with a symmetric matrixS the set

QS = {x ∈ P3 | xTSx = 0},

whereP3 = P3(R) denotes the real projective space of dimension 3 (xTSx is quadratic and homogeneous in the
coordinates ofx). In the rest of this paper, points and parameterizations are assumed to live in projective space.
Recall that a point ofP3 has four coordinates.

We define theinertia of SandQS as the pair

σS = (max(σ+,σ−),min(σ+,σ−)),

whereσ+ (resp.σ−) is the number of positive (resp. negative) eigenvalues ofS. Therank of S is the sumσ+ +σ−.
Recall that Sylvester’s Inertia Law asserts that the inertia of S (and thus the rank) is invariant by a real projective
transformation [Lam73].

We call projective cones(or simply cones) the quadrics of rank 3 andpairs of planesthe quadrics of rank
2. For the benefit of the reader, we recall that, in affine real space, quadrics of inertia(4,0) are empty, quadrics
of inertia (3,1) are ellipsoids, hyperboloids of two sheets, or elliptic paraboloids, and quadrics of inertia(2,2)
are hyperboloids of one sheet or hyperbolic paraboloids (see [DLLP03] for a complete characterization of affine
quadrics). Also, quadrics of inertia(2,1) are cones or cylinders. All the quadricsurfacesexcept those of inertia
(3,1) are ruled surfaces, i.e., surfaces that are swept by a one-dimensional family of lines.

Given two matricesSandT, let R(λ,µ) = λS+µT. The set{R(λ,µ) | (λ,µ) ∈ P1(R)} is called thepencilof
matrices generated byS andT. For the sake of simplicity, we sometimes write a member of the pencilR(λ) =
λS−T,λ ∈ R∪{∞}. Associated to a pencil of matrices is a pencil of quadrics{QR(λ,µ) | (λ,µ) ∈ P1}. Recall the
classical result that the intersection of two distinct quadrics of a pencil is independent of the choice of the two
quadrics.

The equation detR(λ,µ) = 0 is called thedeterminantal equationof the pencil. Thesingular quadrics of the
pencil are exactly the quadricsQR(λ,µ) such that detR(λ,µ) = 0. Note that a quadric of the pencil is singular if and
only if it has rank less than or equal to 3.

17.3 Algorithm description
In this section, we give a brief presentation of the basic ideas underpinning our near-optimal parameterization

method [DLLP03].
From now on,SandT are two symmetric 4×4 matrices with entries inZ. By abuse of language, we will often

talk about (and manipulate) objects with rational coefficients, with the understanding that, in projective space, such
coefficients can trivially be converted to integers.

17.3.1 Near-optimal parameterization algorithm
Let {QR(λ,µ) | (λ,µ)∈ P1}, with R(λ,µ) = λS+µT, be a pencil of quadrics. The main idea of existing methods

for parameterizing the intersection of two quadrics based on an analysis of their pencil (Levin’s and derivatives)
is as follows : find a quadricQR of some particularly simple form in the pencil generated byQS andQT (assume
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a. b.

FIG. 17.1 –Examples of intersections (rendered with Surf [Sur]). a. Smooth quartic, with two affinely finite
components. b. Cubic and tangent line.

QR 6= QS), parameterize this quadric, plug the parameterizationX of QR in the equation ofQS, solve the resulting
equationXTSX = 0, and plug the result inX, finally giving the parameterization of the intersection.

The key to making this procedure work in practice is to find a quadric QR that is ruled and thus admits
a parameterization that is linear in one of its parameters sothat the equationXTSX = 0 has degree 2. Levin’s
main result was to prove that a pencil of quadrics always contains at least one“simple” ruled quadric [Lev76].
Furthermore, Levin showed how to compute such a quadric by first finding the zeros of the determinant of the
upper left 3× 3 submatrix ofR(λ,µ), a cubic equation. Since cubic equations have generically no rational root
(by Hilbert’s Irreducibility Theorem), Levin’s algorithmintroduces non-rational numbers at an early stage and, in
practice, floating-point arithmetic has to be used, resulting in numerical robustness problems.

The principal contribution of [DLLP03] was to show that, by acareful choice of the intermediate quadricQR,
the appearance of algebraic numbers can be kept to a minimum.One major result is encapsulated in Theorem 3
of [DLLP03] : except when the intersection is reduced to two real points, the pencil contains at least one ruled
quadric whose coefficients are rational and such a quadric can be easily computed. In addition, thanks to new
worst-case optimal (in the number of square roots) parameterizations of ruled projective quadrics, we can always
find such a rational ruled quadricQR with a parameterization involving only one square root.

Some of the basic ingredients used in our algorithm to infer information about the intersection are the Segre
classification of pencils and its refinement over the reals (the Canonical Form Theorem for pairs of real symmetric
matrices – see [Uhl73]), a projective setting, ad hoc projective transformations to compute the canonical form of a
projective quadric, and Sylvester’s Inertia Law [Lam73].

The basic principles underlying the design of our implementation are as follows :

– compute structural information on the intersection and its various real components as early as possible ;

– use the structural information gathered to drive the parameterization process and make the right choices
so that the output is optimal or near-optimal from the point of view of the degree of the extension ofZ

on which its coefficients are defined.
In our implementation we were interested not just in optimizing the number of square roots in the output but

also in minimizing the size of the output coefficients. For this reason, the basic philosophy is to use as intermediate
ruled quadricQR a quadric with rational coefficients of the smallest rank that we can easily find, the rationale
being, for instance, that the parameterization of a cone involves coefficients of smaller asymptotic size than the
coefficients of the parameterization of a quadric of inertia(2,2). There are essentially two cases : (i)QR has rank
4 ; (ii) QR has rank 3 or less.

Case (i) :QR has rank 4

The main case whereQR has rank 4 is when the intersection is a smooth quartic (Figure 17.1.a). In this
situation, the quartic determinantal equation detR(λ) = 0 has no multiple root. It could well be that at least one
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of its simple roots is rational and that aQR with rank less than 4 could have been used, but checking this via the
Rational Root Theorem can be very time consuming28. Since generically a degree-four equation has no rational
root, we prefer instead to isolate the real zeros of the determinantal equation using an implementation of Uspensky’s
algorithm [RZ04]. We then take (at most two) rational test points λi outside the isolating intervals in the areas
where detR(λ) > 0. If one of the quadricsR(λi) has inertia(4,0), the intersection is empty (it is a complex smooth
quartic), a consequence of Finsler’s Theorem (see [DLLP03]). Otherwise, we proceed.

We now have a quadricR0 = R(λ0) of inertia (2,2) and a range of valuesI = [a,b] such thatλ0 ∈ I and
detR(λ) > 0 for all λ ∈ I . In the worst case, the parameterization ofQR involves two square roots [DLLP03]. We
can improve this situation as follows. First, compute a point p0 on QR0. Approximate this point by a pointp with
integer coordinates (recall thatp is a projective point). Find the quadricQR = QR(λ1) throughp. If p is close enough
to p0, thenλ1 ∈ I and detR> 0. We thus have a quadric of inertia(2,2) containing a point inP3(Z) : such a quadric
can be parameterized with at most one square root [DLLP03].

Plugging the parameterizationX((u,v),(s, t)) of QR, with (u,v),(s, t)∈P1, in the equation of any other quadric
of the pencil gives a bihomogeneous equation that has degreetwo in (u,v) and two in(s, t). Solving this equation
for (s, t) in terms of(u,v) and replugging in the parameterization ofQR gives a parameterization of the smooth
quartic :

X(u,v) = X1(u,v)±X2(u,v)
√

∆(u,v),

whereX1(u,v) (resp.X2(u,v)) is a vector of homogeneous polynomials of degree 3 (resp. 1)and ∆(u,v) is a
homogeneous polynomial of degree 4.∆ and the polynomials ofX1 andX2 have coefficients inZ(

√
detR).

If detR is a square, then all of these polynomials have rational coefficients and the parameterization isoptimal
in terms of the degree of the extension ofZ on which it is defined. If detR is not a square, then we can only
conclude that the parameterization isnear-optimal: it might well be that there exists another quadricQR′ of inertia
(2,2) in the pencil, containing a rational point, such that detR′ is a square, implying that

√
detR could have been

avoided in the output (see Section 17.8.2 for an example). Finding such a quadric however implies, in general,
finding a rational point on a hyperelliptic curve (see [DLLP03]), a problem known to be very hard.

Case (ii) :QR has rank strictly less than 4

Though not generic, the situation whereQR has rank strictly less than 4 happens quite often in practicesince it
covers in particular all the types of intersection corresponding, in the Segre characterization, to the determinantal
equation having a single multiple rootλ0. Indeed, in that case, the multiple root is both real (otherwise its complex
conjugate would also be a multiple root of detR(λ) = 0) and rational (otherwise its algebraic conjugate would also
be a multiple root of detR(λ)). So the associated quadricQR = QR(λ0) has rational coefficients and has rank 3 or
less.

The general philosophy for parameterizing the intersection is to parameterizeQR, plug the parameterization
in any other quadric of the pencil, and solve the resulting equation in the parameters. There are however many
situations in which this procedure can be simplified by the fact that we can find a rational point onQR outside its
singular locus and thus parameterizeQR rationally, and that we know enough information on the intersection to
greatly simplify the solving and factorization of the equation in the parameters.

Let us illustrate this on the example of an intersection consisting of a cubic and a line that are tangent (Fi-
gure 17.1.b). The determinantal equation in this case has a quadruple root corresponding to a coneQR of inertia
(2,1). By the above argument,QR has rational coefficients. So the vertexc of QR has rational coordinates.c is the
point of tangency of the cubic and the line of the intersection. AssumeQR 6= QS. The line of the intersection is
necessarily rational (otherwise its conjugate would be in the intersection). This line can be found by intersecting
the coneQR with the plane tangent toQS atc. Picking any pointp with rational coordinates on this line other than
c gives a non-singular rational point on the cone. A projective cone having a rational pointp other than its singular
locus can be rationally parameterized. Plugging this parameterization inQS gives an equation in the parameters of
the cone which factors into two terms of total degree 1 and 3. Each factor can then be solved rationally for one
parameter in terms of the other. The linear factor yields theline of the intersection and the cubic factor yields the
cubic.

28If however one of the initial quadrics has rank 3, then it should be used to parameterize the intersection. Doing
so results in a parameterization having the same algebraic complexity in the worst case, but of smaller coefficient
size.
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17.4 Height of output coefficients : smooth quartics
In this section and the next, we prove theoretical bounds on the height of the coefficients of the parameteriza-

tions computed by our intersection software. We start by defining the notions of height and asymptotic height.

17.4.1 Definition of height
In what follows, we bound the asymptotic height of the coefficients of the parameterization of the intersection

of two quadricsSandT with respect to the size of the coefficients ofSandT. The height of such a coefficient is
roughly its logarithm with base the maximum of the coefficients ofSandT (in absolute value) ; if such a coefficient
has a polynomial expression in terms of the coefficients ofSandT, its asymptotic height is the (total) degree of
this polynomial. However, a precise definition of the heightof these coefficients needs care for various reasons.
First, we want to compare, and thus define,observed heights(the heights computed for specific values of the input)
andtheoretical asymptotic heights.

We face the following problem for computing theoretical asymptotic heights of the coefficients of the parame-
terizations. Despite being, ultimately, only functions ofthe inputSandT, these coefficients, in the smooth quartic
case, are functions of not justSandT but also of an intermediate rational pointp which depends implicitly (and
not explicitly) onS,T. Since obtaining a bound on the height ofp is very hard, we chose to express the asymptotic
height of the parameterization as a function of the height ofp. As it turns out, the height ofp can, in practice, be
neglected, so it is not really a problem (see the discussion at the end of Section 17.4.2).

In what follows, thesizeof an integere is log10|e| (assuming|e| > 1). The sizeof an algebraic number
e1 +

√
δe2, wheree1,e2,δ are integers and any two factors ofδ are relatively prime, is the maximum of the sizes

of e1,e2, andδ. Thesizeof a vector or matrix, with at most a constant number of entries, is the maximum size of
the entries.

Theheightof an entityE (an integer, a vector, or a matrix) with respect to another entity x (also an integer,
a vector, or a matrix) is the size ofe over the size ofx (assuming that the sizes ofe andx are nonzero) ; note that
if E andx are integers, the height is also equal to log|x| |E|. Theasymptotic heightof a function f (x) with respect
to an integerx is the limit of the height off (x) with respect tox whenx tends to infinity. If a functionf depends
on a setX of variables, theasymptotic heightof f (X) with respect toX is the sum of the asymptotic heights of
f with respect to each of the variables ofX. For instance, iff is a polynomial in a constant number of variables,
the asymptotic height off with respect to these variables is the (total) degree off . Finally, if F(X) is matrix of
functions depending on a set of variablesX, theasymptotic heightof F(X) with respect toX is the maximum of
the asymptotic heights of the entries of the matrix.

We mostly consider in the sequel heights and asymptotic heights with respect toSandT (that is with respect
to the set of coefficients ofSandT). Heightsandasymptotic heightsare thus considered with respect toSandT
unless specified otherwise.

17.4.2 Height of the parameterization in the smooth quartic case
We consider now the case of a smooth quartic. This case is important because it is the generic intersection

situation (given two random quadrics, a non-empty intersection is a smooth quartic with probability 1) and because
it is also the worst case from the point of view of the height ofthe coefficients involved.

Let QR be the quadric of inertia(2,2) used to parameterize the intersection andp a point ofP3(Z) on QR, as
described in Section 17.3.1.

Proposition 17.1. The parameterization of a smooth quartic

X(u,v) = X1(u,v)±X2(u,v)
√

∆(u,v)

is such that
– X1 has asymptotic height at most27+36hp,
– X2 has asymptotic height at most8+11hp,
– ∆(u,v) has asymptotic height at most38+50hp,

where hp is the asymptotic height ofp.
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Proof. We first show how the parameterization ofQR is computed and then bound the height of its coefficients.
Let P be a projective transformation sending the pointp0 = (1,0,0,0)T to the pointp. Let Y denote the

quadric obtained fromR through the projective transformationP : Y = PTRP. It follows from Sylvester’s Inertia
Law [Lam73] thatY has the same inertia asR, i.e.(2,2). Moreover, the pointp0 belongs toQY sincePp0 = p.

Let x denote the vector(x1,x2,x3,x4)
T . Let L be 1/2 times the differential of quadricQY at p0 (one can

trivially show thatL is the first row ofY) and leti be such thatY1,i 6= 0 (such ani necessarily exists). We compute
the polynomial division ofQY = xTYx by Lx with respect to the variablexi . The result of the division is

Y2
1,i (x

TYx) = (Lx)(L′x)+A, (17.1)

where theξ-th coordinate ofL′ is equal toL′
ξ = −Yi,i Y1,ξ +2Y1,i Yi,ξ for ξ = 1, . . . ,4 and

A = c j x
2
j +ck x2

k +2c jk x j xk

where j andk are equal to the two values in{2,3,4} distinct fromi, andc j ,ck, andc jk are coefficients defined as
follows :

cξ = Yξ,ξY2
i,1 +Yi,i Y

2
ξ,1−2Yξ,1Yi,1Yi,ξ, ξ ∈ { j,k},

c jk = Yj,kY2
i,1 +Yj,1Yk,1Yi,i − (Yj,1Yk,i +Yk,1Yj,i)Yi,1.

We assume in the following thatc j 6= 0 (if c j = 0 but ck 6= 0, we exchange the roles ofj andk ; otherwise the
analysis is different but similar and we omit it here). For clarity we denote in the following

c = c j and r = Y1,i .

We consider the projective transformationM such that, in the new projective frame, the quadricQY has equa-
tion (up to a factor)

x′TMTYMx′ = 4x′1x′2 +x′3
2−cx′4

2
.

In accordance with Equation (17.1) we choosex′1 = Lx, x′2 = L′x. We apply Gauss’ decomposition of quadratic
forms into sum of squares toA and setx′3 = cxj + c jk xk andx′4 = xk. Precisely, we defineM such that its adjoint
has its first row equal toL, its second row equal toL′, and the last two rows equal to zero except for the entry(3, j)
equal toc, the entry(3,k) equal toc jk, and the entry(4,k) equal to 1.

Straightforward computations show that the four columns ofM can be simplified by the factorsr c, r, 2r, and
2r2, respectively. We then get

xTMTYMx = r2c(4x1x2 +x2
3−det(Y)x2

4). (17.2)

If i, j,k are equal to 2,3,4 respectively,M is equal to

M =









Y2,2 −c Y2,2Y1,3− rY2,3 M1,4

−2r 0 −rY1,3 M2,4

0 0 r2 M3,4

0 0 0 r c









,

M1,4 = r (Y1,4 (Y2,2Y3,3−Y2
2,3)+Y3,4(rY2,3−Y2,2Y1,3)+Y2,4(Y1,3Y2,3− rY3,3)),

M2,4 = r (Y1,4 (Y1,3Y2,3− rY3,3)+Y1,3(rY3,4−Y1,3Y2,4)),

M3,4 = r (−r2Y3,4−Y2,2Y1,3Y1,4 + r (Y1,3Y2,4 +Y1,4Y2,3)).

We can easily parameterize the quadric of Equation (17.2) and the parameterization of the originalQR is, with
δ = det(Y) and(u,v) and(s, t) in P1(R),

PM
(

ut
√

δ, sv
√

δ, (us− tv)
√

δ, us+ tv
)T

. (17.3)

We now bound the asymptotic height of this parameterizationwith respect toS,T and p. For simplicity,
asymptotic heights are referred to asheightsuntil the end of the proof. First note that the matrixY is equal to
PTRP, whereR is the matrixλ1S+µ1T of the pencil such that(λ1,µ1) ∈ P1 is solution of

pT(λ1S+µ1T)p = 0. (17.4)
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So(λ1,µ1) = (−pTTp,pTSp) has height 1+2hp andR= λ1S+µ1T has height 2+2hp. SincePp0 = p, the first
column ofP has heighthp and the rest ofP has height 0. We can now deduce the heights of the entries ofY = PTRP.
Note first thatY1,1 is zero becausep0 belongs toQY. A straightforward computation thus gives that the first line
and column ofY have height 2+3hp and the other entries have height 2+2hp. Note that it follows thatδ = detY
has height 8+10hp and that, whenδ is a square,

√
δ has height 4+5hp.

It directly follows from the heights of the coefficients ofY andP that the heights of the four columns ofPM
are, respectively,

2+3hp, 6+9hp, 4+6hp, and 8+11hp.

The worst case for the height of the coefficients of the parameterization ofQR happens when
√

δ is a square,
because the height of these coefficients is at least the height of PM which is larger than the height ofδ. We can
thus assume for the rest of the proof that

√
δ is a square. It then follows from (17.3) that the coordinatesof the

parameterization ofQR are polynomials of the form

ρ1ut+ρ2sv+ρ3us+ρ4 tv. (17.5)

The height ofρ1 is the sum of the heights of the first column ofPM and of
√

δ. Similarly, we get that the heights
of ρ1, . . . ,ρ4 are

hρ1 = 6+8hp, hρ2 = 10+14hp, and hρ3 = hρ4 = 8+11hp.

When substituting the parameterization ofQR into the equation of one of the initial quadrics (sayQS), we
obtain an equation which can be written as

as2 +bst+ct2 = 0, (17.6)

wherea, b, andc depend on(u,v) and whose heights are

ha = 1+2max(hρ2, hρ3) = 21+28hp,

hb = 1+max(hρ2,hρ3)+max(hρ1,hρ4) = 19+25hp,

hc = 1+2max(hρ1, hρ4) = 17+22hp.

When substituting the solution(s = 2c, t = −b±
√

b2−4ac) into each coordinate, of the form (17.5), of the
parameterization (17.3) we obtain a parameterization of the smooth quartic in which each coordinate has the form

χ1(u,v)±χ2(u,v)
√

∆(u,v).

The height of the coefficients ofχ1, χ2, and∆ are

hχ1 = max(hρ1 +hb, hρ2 +hc, hρ3 +hc, hρ4 +hb) = 27+36hp,

hχ2 = max(hρ1, hρ4) = 8+11hp,

∆ = max(2hb, ha +hc) = 38+50hp.

which concludes the proof. 2

Figure 17.2 shows how the observed height of the coefficientsof ∆(u,v) evolves as a function of the input size
s for the three variants of our implementation discussed in Section 17.6. For each value ofs in a set of samples
between 0 and 60, we have generated random quadrics with coefficients in the range[−10s,10s], computed the
height of the coefficients of the parameterization of the smooth quartic and averaged the results.

The plots of Figure 17.2 show that the observed height of the coefficients of∆(u,v) converges to 38 when no
gcd computation is performed for simplifying the output parameterization. Since the asymptotic height of∆(u,v)
is at most 38 plus 50 times the height ofp, this suggests that the asymptotic height ofp is zero. Indeed, we
have observed experimentally that the coordinates ofp are integers between−2 and 2 most of the time. Out of
thousands of runs we have encountered no example where the size ofp had a significant impact on the height of
the coefficients of the parameterization.
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FIG. 17.2 –Evolution of the height of∆(u,v) (smooth quartic case) as a function of the size of the input, with the
standard deviation displayed on the simplified plot.

Backing this observation by theoretical results is hard, ifnot out of reach. LetR= R(λ1,µ1) be the quadric
throughp. By Eq. (17.4), the size of the rational pointp is intimately related to the height of(λ1,µ1). It is intuitively
clear that if the size of the interval on which(λ1,µ1) is taken is small, then the size ofp will increase. It thus seems
natural to look for results on the distance between roots of integer polynomials. Various upper and lower bounds
are known as a function of the degree of the polynomial and theheight of its coefficients (see, e.g., [BM04]),
and pathological examples exhibiting root distances almost matching those bounds can be constructed. However,
nothing is known about the average distance between the roots of a polynomial whose coefficients are uniformly
distributed between−handh for some fixed integerh (personal communication with Y. Bugeaud and M. Mignotte).

Figure 17.2 also shows that the observed height of the coefficients of∆(u,v) converges to 36 when gcd com-
putations are performed. We ran experiments with inputs of size up to 10,000 and observed the same limit of 36
on the height of the coefficients when gcd computations are performed. We do not have any explanation as to why
the bound of 38 is not reached in that case.

17.5 Height of output coefficients : singular intersections
In this section, we analyze two different types of situations to validate a key design choice we made, which

is to take the quadric with rational coefficients of lowest possible rank to parameterize the intersection. We first
consider the case when the pencil contains a rational cone and then when it contains a rational pair of planes.
In both cases, we illustrate the fact that better results areobtained than when using a quadric of inertia(2,2) as
intermediate quadric.

Table 17.1 summarizes the asymptotic heights of the parameterizations in many cases of interest.

17.5.1 Preliminaries
Let QR be a singular quadric corresponding to a rational root(λ0,µ0) ∈ P1(Z) of multiplicity d > 1 of the

determinantal equation det(λS+ µT) = 0. Here, we further assume that(λ0,µ0) is a representative of the root in
Z2 such that gcd(λ0,µ0) = 1. We also assume thatQR has rankr (recall that 3> r > 4−d).

Lemma 17.2. The asymptotic height of(λ0,µ0) is at most4
d , and the asymptotic height of R= λ0S+ µ0T is at

most1+ 4
d .

Proof. We have that
det(λS+µT) = C(µ0λ−λ0µ)d(α0λn−d + · · ·+αn−dµn−d).
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real type of intersection height of parameterization inertia ofQR used

smooth quartic 38+50hp (2,2)

nodal quartic 22 (2,1) without rational point
cuspidal quartic 38∗ (2,1) with rational point

cubic and secant line 22 (cubic), 9 (line) (2,1) with rational point∗∗

cubic and tangent line 20 (cubic), 11 (line) (2,1) with rational point
two tangent conics 20+ 1

6 (1,1)

double conic 13+ 2
3 (1,0)

conic and two lines crossing 17+ 1
2 (conic) and 9 (lines) (1,1)

two skew lines and a double line9 (lines) and 4 (double line) (1,1)

two double lines 12 (1,0)

TAB . 17.1 –Asymptotic heights of parameterizations in major cases, when the determinantal equation has a
unique multiple root. In the singular cases, these values should be compared to the bound of 27 for each component
if a quadric of inertia(2,2) had been used, keeping in mind that the result could also contain an unnecessary square
root. Note :(∗) Since 38 is larger than 27, it might seem that using a quadricQR of inertia (2,1) in the cuspidal
quartic case is a bad idea and that a quadric of inertia(2,2) would have given better results. This is in no way
the case : since the intersection curve is irreducible, the equation in the parameters using a quadric of inertia
(2,2) would also have been irreducible, therefore producing a parameterization involving the square root of some
polynomial.(∗∗) We can easily find a rational point onQR here only when the intersection points between the
cubic and the line are rational. Otherwise, we need to use a quadricQR of inertia(2,2).

Since the coefficients of det(λS+ µT) are integers, we can assume that theαi are integers andC ∈ Q. We can
also assume that the gcd of all theαi is one. Recall that an integer polynomial is calledprimitive if the gcd
of all its coefficients is one. Since the product of two primitive polynomials is primitive, by Gauss’s Lemma
(see [DST93, §4.1.2]),C is an integer (equal to the gcd of the coefficients of det(λS+ µT)). Therefore, since the
coefficientCµd

0α0 = detSof λ4 has asymptotic height 4,µ0 has asymptotic height at most4
d , and similarly forλ0.

It directly follows thatR= λ0S+µ0T has asymptotic height at most 1+ 4
d . 2

Lemma 17.3. The singular set of QR contains a basis of points of asymptotic height at most r
(

1+ 4
d

)

.

Proof. Assume first thatR has rank 3, i.e.,QR has a singular point. Finding this singular point amounts tofinding
a pointc∈ P3(Z) in the kernel ofR, i.e., such thatRc = 0. SinceR has rank 3, at least one of its 3×3 minors is
non-zero. Assume that the upper left 3×3 minor has this property. We decomposeR such thatRu is the upper left
3×3 matrix ofR andr4 is the first three coordinates of the last column ofR, andc such thatcu is the first three
coordinates andc4 is the last. Thenc is found by solving

Rucu = −c4r4.

A solution is thusc = (−R∗
ur4,detRu), whereR∗

u is the adjoint ofRu. The asymptotic heights ofR∗
u, r4, and detRu

are the asymptotic height ofR times 2, 1, and 3, respectively. The asymptotic height ofc is thus 3 times the
asymptotic height ofR. Hence,c has asymptotic height at most 3

(

1+ 4
d

)

.
The extension to general rankr is similar :QR contains in this case a linear space of dimension 3− r of singular

points. One can extract a non-singular submatrix ofRof sizer and points in the kernel ofRhave asymptotic height
r with respect to the coefficients of the matrix. The result follows. 2

17.5.2 WhenQR is a cone

17.5.2.1 Parameterization of a cone

Assume now thatQR is a real cone with vertexc containing a rational pointp 6= c. We want to find a rational
parameterization ofQR. First, we apply toR a projective transformationP sending the point(0,0,0,1)T to c and
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the point(0,0,1,0)T to p. We are left with the problem of parameterizing the coneQPT RP with apex(0,0,0,1)T

and going through the point(0,0,1,0)T . Such a cone has equation

a1x2 +a2xy+a3y2 +a4yz+a5xz= 0. (17.7)

A parameterization of this cone is given by

X′(u,v,s) =









a5 0 a4 0
0 a4 a5 0

−a1 −a3 −a2 0
0 0 0 1

















u2

v2

uv
s









, (u,v,s) ∈ P⋆2(R). (17.8)

Here,P⋆2(R) is the real quasi-projective space defined as the quotient ofR3\{0,0,0} by the equivalence relation∼
where(x,y,z) ∼ (x′,y′,z′) if and only if there existsλ ∈ R \ {0} such that(x,y,z) = (λx′,λy′,λ2z′). Lifting the
parameterization to the original space by multiplying by matrix P, we have a parameterization ofQR.

Let hR (resp.hp,hc) denote the asymptotic height ofR (resp. ofp,c). From the above, we can deduce the
following.

Lemma 17.4. The parameterizationX(u,v,s) of QR is such that :

– the asymptotic height of the coefficients of u2,v2,uv is hR+hp ;

– the asymptotic height of the coefficients of s is hc.

Proof. The matrixP has its third column set top and its fourth column set toc. We complete it so that it indeed re-
presents a real projective transformation (i.e., its columns form a basis ofP3). So the first two columns have height
0 in R, p, andc. ComputingPTRP, we see that the height ofa1,a2, anda3 is the height ofR and the asymptotic
height ofa4 anda5 is the sum of the asymptotic heights ofR andp. From this, we see that the asymptotic height
of the coefficients ofu2,v2,uv in X(u,v,s) = PX′(u,v,s) is the sum of the asymptotic heights ofR andp ; also the
height of the coefficients ofs is the height ofc. 2

17.5.2.2 Cubic and tangent line

We now consider the case of an intersection consisting of a cubic and a tangent line. In this case, we can
parameterize the intersection using an intermediate rational quadricQR of inertia either(2,2) or (2,1) : the pencil
contains an instance of both types of quadrics.

We prove the following theoretical bounds on the asymptoticheight of the coefficients of the parameterizations
of the cubic and the line.

Proposition 17.5. When a quadric QR of inertia (2,2) is used to parameterize the intersection, the parameteriza-
tions of the cubic and the line have asymptotic height at most27 plus 36 times the asymptotic height of the point
p ∈ QR used for parameterizing QR.

Proof. The bounds found in the proof of Proposition 17.1 apply here,and in particular, the boundshρ1, . . . ,hρ4,
ha, hb, andhc on the heights of the coefficients of Equations (17.5) and (17.6). Equation (17.6) factors here into
two terms, one of degree 0 and the other of degree 2 in, say,(u,v), and both linear in, say,(s, t) ; Equation (17.6)
can thus be written as

(αs+βt)(α′s+β′t) = as2 +bst+ct2 = 0,

whereα, β are constants andα′, β′ are polynomials in(u,v). Sinceαβ′ + βα′ = b, α and the coefficients ofα′

have asymptotic height at mosthb. Similarly, ββ′ = c thusβ and the coefficients ofβ′ have asymptotic height at
mosthc. Substituting the solutions(s= β, t = −α) and(s= β′, t = −α′) into the parameterization (17.3), we get
parameterizations of the cubic and the line whose coefficients have asymptotic height at most

hc +max(hρ2, hρ3) = hb +max(hρ1, hρ4) = 27+36hp

wherehp is asymptotic height ofp. 2



288 CHAPITRE 17. INTERSECTION OF QUADRICS : IV. IMPLEMENTATION

Proposition 17.6. When a quadric QR of inertia(2,1) is used to parameterize the intersection, then asymptotically
the parameterization of the line has height at most 11, and the parameterization of the cubic has height at most 20.

Proof. We follow the algorithm outline given in Section 17.3.1 to determine the asymptotic height of the output.
Here, the determinantal equation has a quadruple root(λ0,µ0) corresponding to a quadricQR of inertia(2,1).

The asymptotic heighthR of R= λ0S+µ0T is at most 2, by Lemma 17.2. The asymptotic heighthc of the singular
point c of QR is at most 6, by applying Lemma 17.3 withd = 4 andr = 3.

Since the line of the intersection is the (double) intersection of QR and the tangent plane toQS at c, any point
p on this line satisfies

Rp = Sc. (17.9)

(Observe that ifp is a solution, anya1p + a2c is also solution.) The right-hand sideSc of (17.9) has asymptotic
height at most 6+ 1 = 7. As in the proof of Lemma 17.3, one can assume that detRu 6= 0 and there is a unique
point p having zero as last coordinate. Pointp satisfiespu = R∗

u(Sc)u and thus, its asymptotic heighthp is at most
4+7 = 11. Overall, the coefficients of the line(c,p) have height 11.

We can now compute the asymptotic height of the parameterizationX(u,v,s) of QR as defined in Section 17.5.2.1.
By Lemma 17.4, the asymptotic heighthu,v of coefficients ofu2,v2,uv in X(u,v,s) is hR+hp, and the asymptotic
heighths of the coefficient ofs is hc. PluggingX(u,v,s) in the equation of any other quadric of the pencil gives an
equation in the parameters of the form

as2 +b(u,v)s+c(u,v) = 0, (17.10)

whereb(u,v) andc(u,v) have asymptotic heights respectively equal to

1+hu,v +hs = 1+hR+hp +hc, and 1+2hu,v = 1+2(hR+hp).

Observe thata= 0 since the singularity of the cone, which is a point of the intersection, is reached at(u,v) = (0,0)
and at this points 6= 0 necessarily (becauseX(u,v,s) is a faithful parameterization of the cone). We also know that
(17.10) has a linear factor corresponding to the line of the intersection. By construction (see (17.8)), this line(c,p)
is represented in parameter space by the linea5u+a4v = 0, wherea4 anda5 have asymptotic heighthR+hp (see
the proof of Lemma 17.4). So, after factoring out the linear term, (17.10) can be rewritten as

b′(u,v)s+c′(u,v) = 0. (17.11)

The asymptotic heighthb′ of b′(u,v) is 1+hc, the difference of the asymptotic heights ofb(u,v) and of the linear
factor. Similarly, the asymptotic heighthc′ of c′(u,v) is 1+ hR + hp, the difference of the asymptotic heights of
c(u,v) and of the linear factor. We plug the solution of (17.11) ins into the parameterizationX(u,v,s) of QR.
Multiplying by b′(u,v) to clear the denominators, we get a parameterization of the cubic of asymptotic height

max(hu,v +hb′ ,hs+hc′) = 1+hR+hp +hc 6 1+2+11+6 = 20.

2

The difference in the asymptotic heights of the parameterizations underscored in the above two propositions
is vindicated by some experiments we made. Figure 17.3 showsthe observed heights of the coefficients of the
parameterization of the cubic when a quadricQR of inertia(2,2) or (2,1) is used. The plots clearly show that the
coefficients of the cubic are smaller when a cone is used to parameterize the intersection. The fact that the observed
heights are, in the limit, so different from the theoreticalbounds (8 instead of 20 when a cone is used) is most likely
a consequence of the way the random quadrics are generated : it does not reflect a truly random distribution in the
space of quadrics with integer coefficients of given size intersecting in a cubic and a tangent line, as explained in
Section 17.6.3.

Figure 17.4 further reinforces our choice of using a cone : the parameterizations have not only smaller coeffi-
cients, they are also faster to compute.
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FIG. 17.3 –Observed height of the parameterization of the cubic in the cubic and tangent line case.

FIG. 17.4 –Computation time for the cubic and tangent line case.

17.5.3 WhenQR is a pair of planes

17.5.3.1 Parameterization of a pair of planes

We now suppose that the singular quadricQR corresponding to a root of multiplicityd of the determinantal
equation is a pair of planes (i.e., has inertia(1,1)). Let p1 andp2 two distinct points on the singular line ofQR.
Let P be a projective transformation matrix sending the point(0,0,1,0)T to p1 and the point(0,0,0,1)T to p2. We
are left with the problem of parameterizing the pair of planes QPT RP whose singular line contains(0,0,1,0)T and
(0,0,0,1)T . Such a pair of planes has equation

a1x2 +2a2xy+a3y2 = 0,
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and it can be parameterized byM±(u,v,s)T with

M± =









−a2±
√

δ 0 0
a1 0 0
0 1 0
0 0 1









, δ = a2
2−a1a3, (u,v,s) ∈ P2.

Lifting this parameterization to the original space by multiplying by matrixP, we obtain a parameterization ofQR.
Let hR (resp.hp1,hp2) denote the asymptotic height ofR (resp. ofp1,p2). From the above, we deduce the

following.

Lemma 17.7. The asymptotic height of the coefficients ai in M± is hR. Furthermore, ifδ is a square, the parame-
terizationX±(u,v,s) is such that :

– the asymptotic height of the coefficients of u is hR ;
– the asymptotic heights of the coefficients of v and s are hp1 and hp2, respectively.

Proof. In the parameterization of the pair of planes, the first two columns ofP can be completed with 0 and 1 so
that it is a non-singular matrix. A straightforward computation then gives that the height ofa1,a2, anda3 is the
height ofR. Hence, the coefficient ofu in X±(u,v,s) has same asymptotic height asR, and the coefficients ofv and
s have the same heights asp1 andp2, respectively. 2

17.5.3.2 Two tangent conics

We now consider the case of two tangent conics. This time, we have three possibilities forQR : inertia(2,2),
(2,1), or (1,1).

Proposition 17.8. When the intersection consists of two tangent conics, the parameterization of each of the conics
is as follows :

– when QR has inertia(1,1), the parameterization has asymptotic height at most20+ 1
6 ;

– when QR has inertia(2,1), the parameterization has asymptotic height at most30+ 5
6 ;

– when QR has inertia(2,2), the parameterization has asymptotic height at most 27 plus36 times the asymp-
totic height of the point on QR used for parameterizing QR ; moreover the coefficients may contain an
unnecessary square root.

Proof. The determinantal equation in this case has a real rational triple root corresponding to a pair of planes and
a real rational simple root corresponding to a real cone. Thepencil also contains quadrics of inertia(2,2). The
rational point of tangencyp of the two conics is the point of intersection of the singularline of the pair of planes
with any other quadric of the pencil.

Let us first bound the asymptotic heighthp of point p. Let c1,c2 be a basis for the singular set of the pair of
planes of the pencil. By Lemma 17.3, withd = 3 andr = 2, c1 andc2 have asymptotic heighthci at most14

3 . p is
the point of tangency of the line spanned byc1 andc2 with any quadric of the pencil other than the pair of planes.
Let p = α0c1 +β0c2, where(α0,β0) ∈ P1. Then(α0,β0) is the double root of the equation

(α0c1 +β0c2)
TS(α0c1 +β0c2) = 0.

By Lemma 17.2, the asymptotic height of(α0,β0) is at mosthci +
1
2. Thus,hp 6 2hci +

1
2 6 214

3 + 1
2 = 59

6 .

QR has inertia (1,1). We consider the case whereQR is the pair of planes of the pencil. We compute a parame-
terizationX±(u,v,s) = PM± (u,v,s)T of each of the planes ofQR by sending(0,0,1,0)T to c1 and(0,0,0,1)T to
p as in Section 17.5.3.1. Plugging each of theX+(u,v,s) andX−(u,v,s) in the equation ofQS gives a degree-two
homogeneous equation inu, v, ands(i.e.,XT

±(u,v,s)SX±(u,v,s)). This projective conic contains the point(0,0,1)T

sincePM±(0,0,1)T = p by definition ofP andM±. Such a conic has equation

XT
±(u,v,s)SX±(u,v,s) = b1u2 +b2uv+b3v2 +b4vs+b5us= 0 (17.12)
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which can be parameterized, similarly as for (17.7), by

X′(u′,v′,s′) =





b5 0 b4

0 b4 b5

−b1 −b3 −b2









u′2

v′2

u′v′



 , (u′,v′) ∈ P1(R).

PluggingX′(u′,v′,s′) into the parameterization ofQR gives PM±X′(u′,v′,s′), the parameterizations of the two
conics of intersection.

We now compute the asymptotic height of the parameterizationsPM±X′(u′,v′,s′). We assume first thatδ in
M± is a square. Lethbi , denote the asymptotic height ofbi , andha the asymptotic height of{a1,a2,a3} in M±. The
asymptotic height of the three coordinates ofX′(u′,v′,s′) are, respectively,

max(hb4,hb5), max(hb4,hb5), and max(hb1,hb2,hb3).

Thus, the asymptotic height of each of the coordinates ofM±X′(u′,v′,s′) are, respectively,

ha +max(hb4,hb5), ha +max(hb4,hb5), max(hb4,hb5), and max(hb1,hb2,hb3).

The third and fourth columns ofP arec1 andp, andP can be completed with 0 and 1 so that it is a non-singular
matrix. Thus, the asymptotic height ofPM±X′(u′,v′,s′) is the maximum of

ha +max(hb4,hb5), hci +max(hb4,hb5), and hp +max(hb1,hb2,hb3).

Now, the asymptotic height of eachbi is one plus the sum of the asymptotic heights of two of the coefficients ofu,
v, ands in X±(u,v,s) (by Equation (17.12)). Lemma 17.7 yields

hb1 = 1+2hR, hb2 = 1+hR+hci , hb3 = 1+2hci , hb4 = 1+hci +hp, hb5 = 1+hR+hp.

SincehR 6 1+ 4
3 = 7

3 by Lemma 17.2,ha 6 7
3 by Lemma 17.7,hci 6 14

3 , andhp 6 59
6 , we gethb1 6 17

3 , hb2 6
24
3 , hb3 6 31

3 , hb4 6 31
2 , and hb5 6 79

6 . Hence, ifδ is a square, the asymptotic height of the parameterization
PM±X′(u′,v′,s′) of the two conics of intersection is at most

max

(

7
3

+
31
2

,
14
3

+
31
2

,
59
6

+
31
3

)

=
121
6

= 20+
1
6
.

Finally, since this bound is larger than the asymptotic height of δ (which is 2ha 6 14
3 ), the asymptotic height of

PM±X′(u′,v′,s′) can only be less than or equal to 20+ 1
6, even ifδ is not a square.

QR has inertia (2,1). Let nowQR be the cone of the pencil with apexc. By Lemma 17.4, we have a rational para-
meterizationX(u,v,s) of QR whose coefficients inu2,v2,uv have asymptotic heighthR+hp and whose coefficient
in s has asymptotic heighthc. Plugging this parameterization into the equation of any other quadric of the pencil
gives an equation in the parameters of the form

as2 +b(u,v)s+c(u,v) = 0, (17.13)

where the asymptotic heights ofa,b(u,v), andc(u,v) are, respectively,

1+2hc, 1+hc +hR+hp, and 1+2(hR+hp).

We know (17.13) factors in two quadratic factors corresponding to the two conics. Also, by construction (see
(17.8)), the ruling ofQR on whichp lies is represented in parameter space by the linea5u+a4v = 0, wherea4,a5

are as in Section 17.5.2.1. As in the proof of Lemma 17.4, the asymptotic height ofa4 anda5 is hR+hp. Pointp
must be on each conic on intersection, andp corresponds in parameter space to(u,v,s) such thats= a5u+a4v= 0.
So (17.13) rewrites

(α1s+(a5u+a4v)β1(u,v))(α2s+(a5u+a4v)β2(u,v)) = 0,

whereβ1 andβ2 are linear inu,v (possibly defined over an extension ofZ by the square root of the discriminant
of the pair of planes containing the conics). The asymptoticheight ofα1β2 + α2β1 is 1+hc, the difference of the
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asymptotic heights ofb(u,v) and of the linear factor. The asymptotic height ofβ1β2 is 1, the difference of the
asymptotic height ofc(u,v) and of twice the asymptotic height of the linear factor. Hence, the asymptotic height of
eachβi is at most 1, and the height of eachαi is at most 1+hc. Solving each factor rationally forsand plugging the
solution into the parameterizationX(u,v,s) of QR, we get parameterizations of the conics with asymptotic height
1+ hc + hR+ hp. Applying Lemmas 17.2 and 17.3 withr = 3 andd = 1, and the bound onhp found above, the
asymptotic height of the parameterizations of the conics isat most 1+15+5+ 59

6 = 30+ 5
6.

QR has inertia (2,2). When a quadricQR of inertia (2,2) is used, the biquadratic equation (17.6) factors in
two factors of bidegree(1,1) corresponding to the conics. Factoring introduces, as above, the square root of the
discriminant of the pair of planes containing the conics. Proceeding as in the proof of Proposition 17.5, we get
that the height of each factor is at most 27 plus 36 times the asymptotic height of the point onQR used for
parameterizingQR.

Moreover, we might have an extra square root in the result if the determinant ofR is not a square. Consider for
instance

{

QS : x2−2w2 = 0,

QT : xy+z2 = 0.

Here, the determinantal equation is 2λµ3 = 0.
√

2 (i.e., the discriminant of the pair of planes) cannot be avoided in
the result. The pointp = (−1,3,0,0) is contained in the quadric 3QS+ QT of inertia (2,2) and determinant 6. If
this quadric is used to parameterize the intersection, we have an extra square root, namely

√
6. 2

17.6 Implementation
We now move on to a description of the main design choices we made to implement our near-optimal parame-

terization algorithm.

17.6.1 Implementation outline
Our implementation builds upon the LiDIA [LiD] and GMP [GMP]C/C++ libraries. LiDIA was originally

developed for computational number theory purposes, but includes many types of simple parameterized and tem-
plate classes that are useful for our application. Apart from simple linear algebra routines and algebraic operations
on univariate polynomials, we use LiDIA’s number theory package and its ability to manipulate vectors of po-
lynomials, polynomials having other polynomials as coefficients, etc. On top of it, we have added our own data
structures. We have compiled LiDIA so that it uses GMP multiprecision integer arithmetic. From now on, we refer
to the multiprecision integers asbigint s, following the terminology of LiDIA.

Our implementation consists of more than 17,000 lines of source code, which is essentially divided into the
following chapters :

– data structures(1,500 lines) : structures for intersections of quadrics, for components of the intersec-
tion, for homogeneous polynomials withbigint coefficients (coordinates of components), for homo-
geneous polynomials withbigint polynomials as coefficients, and basic operations on these structures,
etc.

– elementary operations(2,000 lines) : computing the inertia of a quadric ofbigint s, the coefficients
of the determinantal equation, the gcd of the derivatives ofthe determinantal equation, the adjoint of a
matrix, the singular space of a quadric, the intersection between two linear spaces, applying Descartes’s
Sign Rule, the Gauss decomposition of a quadratic form into asum of squares, isolating the roots of a
univariate polynomial using Uspensky’s method, etc.

– number theory and simplifications(1,500 lines) : gcd simplifications of thebigint coefficients of
a polynomial, a vector or a matrix, simplifications of the coefficients of pairs and triples of vectors,
reparameterization of lines so that its representative points have small height, . . .

– quadric parameterizations(2,000 lines) : parameterization of a quadric of inertia(2,2) with bigint
coefficients going through a rational point, of a cone (resp.conic), of a cone (resp. conic) with a rational
point, of a pair of planes, etc.
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– intersection parameterizations(9,000 lines) : dedicated procedures for parameterizing the components
of the intersection in all possible cases, i.e., when the determinantal equation has no multiple root (1,500
lines), one multiple root (3,000 lines), two multiple roots(1,500 lines) or when it vanishes identically
(3,000 lines).

– printing and debugging(1,000 lines) : turning on debugging information with theDEBUGpreprocessor
directive, checking whether the computed parameterizations are correct, pretty printing the paramete-
rizations, etc.

17.6.2 Implementation variants
Three variants of our implementation are available and using one rather than the other might depend on the

context or the application (see Section 17.7). They are :

– unsimplified: nothing is done to simplify the coefficients either during the computations or in the
parameterizations computed ;

– mildly simplified: some gcds are performed at an early stage (optimization of the coefficients and of
the roots of the determinantal equation, optimization of the coordinates of singular and rational points,
etc.) to avoid hampering later calculations with unnecessarily big numbers ;

– strongly simplified: mildly simplified, plus extraction of the square factors ofsomebigint s (like in
the smooth quartic case, where

√
detR can be replaced byb

√
a if detR= ab2) and gcd simplifications

of the coefficients of the final parameterizations.
For the extraction of the square factors of an integern, the strongly simplified variant finds all the prime factors

of n up to min(⌈ 3
√

n⌉,MAXFACTOR), whereMAXFACTORis a predefined global variable.
Let us finally mention that we tried a fourth variant of our implementation where the extraction of the square

factors is done by fully factoring the numbers (using the Elliptic Curve Method and the Quadratic Sieve implemen-
ted in LiDIA [LiD]). But this variant is almost of no interest: for small input coefficients, the strongly simplified
variant already finds all the necessary factors, and for medium to large input coefficients, integer factoring becomes
extremely time consuming.

17.6.3 Generating random intersections
Our implementation has been tested both on real and random data (see Section 17.7). Generating random

intersections of a given type, i.e., random pairs of quadrics intersecting along a curve of prescribed topology, is
however difficult. We discuss this issue here.

In the smooth quartic case, random examples can be generatedby taking input quadrics with random coeffi-
cients. Indeed, given two random quadrics, the intersection is a smooth quartic or the empty set with probability
one. (Of course, this does not allow to distinguish between the different morphologies of a real smooth quartic,
i.e., one or two, affinely finite or infinite, components.)

When the desired intersection is not a smooth quartic, one wayto proceed is to start with a canonical pair
of quadrics intersecting in a curve of the prescribed type and apply to this pair a random transformation. More
precisely, given a canonical pairS, T, four random coefficientsr1, r2, r3, r4, with r1r4 − r2r3 6= 0, and a random
projective transformationP, we consider the “random” quadrics with matricesS′ andT ′ :

S′ = PT(r1S+ r2T)P, T ′ = PT(r3S+ r4T)P.

If we take ther i and the coefficients ofP randomly in the range[−⌈ 3
√

10s⌉,⌈ 3
√

10s⌉], then the quadricsS′ andT ′

have asymptotic expected sizes (the size of the canonical pairS,T can be neglected).
The problem here is two-fold. First, since we want the matricesS′ andT ′ to have integer coefficients (because

that is what our implementation takes), we have to assume that the r i and the coefficients ofP are integers. But
then the above procedure certainly does not reflect a truly random distribution in the space of quadrics with integer
coefficients. Indeed, quadricsS′ andT ′ with integer coefficients intersecting in the prescribed curve might exist
withoutP having integer coefficients. Consider for instance the two pairs of quadrics

{

QS : x2−w2 = 0,

QT : xy+z2 = 0,

{

QS′ : x2−2w2 = 0,

QT ′ : xy+z2 = 0.
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FIG. 17.5 –Evolution of execution time in the smooth quartic case as a function of the size of the input for very
large input sizes.

The first pair is a canonical form for the case of an intersection made of two real tangent conics. Both pairs generate
an intersection of the same type. But the second form cannot be generated from the first using a transformation
matrixP with integer coefficients.

As for the second issue, consider the determinantal equation of the pencil generated byS′,T ′ :

detR′(λ,µ) = det(λS′ +µT′) = (detP)2det
(

(λr1 +µr3)S+(λr2 +µr4)T
)

.

In other words, sinceP is now assumed to have integer entries, the coefficients of the determinantal equation
all have a common integer factor,(detP)2. So, after simplification by this common factor, the coefficients have
asymptotic height43, instead of 4, with respect toS′,T ′. This explains why the asymptotic heights are not reached.

Note that the same problems appear when working the reverse way, i.e., start with the canonical parameteriza-
tion X of a required type of intersection, apply a random transformationP, recover the pencil of quadricsR′(λ,µ)
containing the curve parameterized byPX and filter them according to the height of their coefficients.Indeed, in
that case,R′(λ,µ) = PTR(λ,µ)P, whereR(λ,µ) is the pencil of quadrics through the curve parameterized byX.

Effectively generating random pairs of quadrics with a prescribed intersection type is an open problem.

17.7 Experimental results
We now report on some experimental results and findings from our implementation.
The experiments were made on a Dell Precision 360 with a 2.60 GHz Intel Pentium CPU. LiDIA, GMP and

our code were compiled with g++ 3.2.2.

17.7.1 Random data
Let us first discuss the impact of theMAXFACTORvariable (see Section 17.6.2) on the output. Figure 17.5

shows that values of 105 and higher have a dramatic impact on computation time while all values less than 104

are acceptable. We have determined that the best compromisebetween efficiency and complexity of the output is
obtained by settingMAXFACTORto 103, which we assume now.

Figure 17.6 shows the evolution of the aggregate computation time in the smooth quartic case, which is the
most computationally demanding case, with the three variants outlined above. We infer from these plots that the
computation times for the unsimplified and mildly simplifiedvariants are very similar, while we observe (see
Figure 17.2) a dramatic improvement in the height of the output coefficients with the mildly simplified variant for
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FIG. 17.6 –Evolution of execution time in the smooth quartic case as a function of the input size, with the
standard deviation shown on the simplified plot.

reasonably small inputs. This explains our choice of putting the mild simplifications in the form of a preprocessor
directive, not a binary argument : they might as well have been calledmandatory simplifications.

A second lesson to be learned from Figures 17.2 and 17.6 is that for an input with coefficients ranging from
roughly 5 to 60 digits, the computation time is roughly 30% larger for the strongly simplified variant than for the
mildly simplified. At the same time, the height of the output is on average between 20% (input size of 5) and
5% (input size of 60) smaller. For large values of the input size, the difference in computation time between the
mildly simplified and the strongly simplified variants dropsto less than 10% (see the two curves in Figure 17.5
with MAXFACTORequal to 1 and 104), but not much is gained in terms of height of the output (see Figure 17.2).

Another interesting piece of information inferred from Figure 17.2 is that the standard deviation of the height
of the output coefficients is large for small input size in thestrongly simplified variant. This means that in the good
cases the height of the output is dramatically smaller than the height in the mildly simplified case, and in the bad
cases is similar to it.

Deciding to spend time on simplification essentially depends on the application. For most real-world applica-
tions, where the size of the input quadrics is small by construction, we believe simplifying is important : it should
be kept in mind that the computed parameterizations are often the input to a later processing step (like in boundary
evaluation) and limiting the growth of the coefficients at anearly stage makes good sense.

A last comment that can be made looking at Figure 17.5 concerns the efficiency of our implementation. Indeed,
those plots show that we can compute the parameterization ofthe intersection of two quadrics with coefficients
having 400 digits in 1 second and 1,000 digits in 5 seconds (onaverage).

Efficiency can be measured in a different way. In Figure 17.7,we have plotted the total computation time,
with the strongly simplified variant, for a file containing 120 pairs of quadrics covering all intersection situations
over the reals. The “random” quadrics were generated as in Section 17.5.2.2. For an input sizes= 500, the total
computation time is roughly 72 seconds, on average, for the 120 pairs of quadrics, i.e., 0.6 second per intersection.
This should be compared to the 1.7 seconds on average needed to compute the intersection in the smooth quartic
case for the same size of input (Figure 17.5). This difference is simply explained by the fact that very degenerate
intersections (like when the determinantal equation vanishes identically, which represents 36 of the 120 quadrics
in the file) are usually much faster to compute.

Our last word will be on memory consumption. Our implementation consumes very little memory. In the
smooth quartic case, the total memory chunks allocated sum up to less than 64 kilobytes for input sizes up to 20.
It takes input coefficients of more than 700 digits to get to the 1 MB range of used memory.
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FIG. 17.7 –Computation time for 120 pairs of quadrics covering all intersection cases, with standard deviation.

17.7.2 Real data

Our intersection code has also been tested on real solid modelling data. Our three test scenes are the teapot,
the pencil box, and the chess set (Figure 17.8). They were modelled with the SGDL modelling kernel [SGD]. The
chess set was rendered with a radiosity algorithm using the virtual mesh paradigm [ACP+01]. All computations
were made with the strongly simplified variant of our implementation.

The teapot (Figure 17.8.a) is made of 18 distinct quadrics (one hyperboloid of one sheet, one cone, one circular
cylinder, two elliptic cylinders, two ellipsoids, four spheres, and seven pairs of planes). The coefficients of each
input quadric have between 2 and 5 digits. The 153 intersections (i.e., pairs of quadrics) are computed in 450
milliseconds, or 2.9 ms on average per intersection. They consist in 51 real smooth quartics, 31 nodal quartics, 35
cuspidal quartics, 65 conics, 101 lines, and 9 points. The height of the output never exceeds 6 in terms of the input.

The pencil box (Figure 17.8.b) is made of 61 quadrics, most ofwhich are pairs of planes. The input size for
each quadric is between 2 and 5 for most quadrics, with four quadrics having a size of 18. The 1,830 intersections
are computed in 6.25 s, or 3.4 ms per intersection on average.They consist in 65 smooth quartics, 356 nodal
quartics, 119 cubics, 612 conics, 2,797 lines, and 139 points. The height of the output reaches 11 for some smooth
quartics.

In the chess set (Figure 17.8.c), the pawn, the bishop, the knight, the rook, the king, and the queen are res-
pectively made of 12, 14, 20, 18, 19, and 25 quadrics. Most of the quadrics have coefficients with between 2 and
7 digits, except for a small number having 15 digits (the crown of the queen has for instance been generated by
rotations ofπ/10 applied to a sphere). The intersections were computed foreach piece separately. They consist in
86 smooth quartics, 123 nodal quadrics, 360 cuspidal quartics, 284 conics, 484 lines, and 13 points. In total, the
971 intersections were computed in 3.33 s, or 3.4 ms per intersection on average. The height of the output never
exceeds 8.

17.8 Examples

We now give four examples of parameterizations computed by our algorithm. Other examples can be tested
by querying our parameterization server.

Comparing our results with the parameterizations computedwith other methods does not make much sense
since our implementation is the first to output exact parameterizations in all cases. However, for the sake of illus-
tration, our first two examples are taken from the paper describing the plane cubic curve method of Wang, Joe, and
Goldman [WJG02].
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a. b.

c.

FIG. 17.8 –Three CSG models made entirely of quadrics (models courtesyof SGDL Systems, Inc.). a. A teapot.
b. A pencil box. c. A chess set, with a close-up on the knight.

a. b. c.

FIG. 17.9 –Further examples of intersection. a. b. Smooth quartics. c.Four skew lines.

17.8.1 Example 1 : smooth quartic

Our first example is Example 4 from [WJG02]. The two quadrics are a quadric of inertia(2,1) (an elliptic
cylinder) and a quadric of inertia(2,2) (a hyperboloid of one sheet). The curve of intersectionC has implicit
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equation
{

4x2 +z2−w2 = 0,

x2 +4y2−z2−w2 = 0.

A rendering of the intersection is given in Figure 17.9.a.
In [WJG02], the authors find the following parameterization for C :

X(u,v) = X1(u,v)±X2(u,v)
√

∆(u,v), (u,v) ∈ P1(R), (17.14)

with

X1(u,v)=















0.0

1131.3708u3−5760.0u2v+10861.1602uv2−8192.0v3

−1600.0u3+10861.1602u2v−21504.0uv2+11585.2375v3

1600.0u3+3620.2867u2v+5120.0uv2+11585.2375v3















, X2(u,v)=















−80.0u+1181.0193v

0.0

0.0

0.0















,

and∆(u,v) = 905.0967u3v−3328.0u2v2+2896.3094uv3. The authors report a computation error on this example
(measured as the maximum distance from a sequence of sample points on the curve to the input quadrics) of order
O(10−7).

Our implementation outputs the following exact and simple result in less than 10 ms :

X(u,v) =









2u3−6uv2

7u2v+3v3

10u2v−6v3

2u3 +18uv2









±









−2v
u

2u
2v









√

−3u4 +26u2v2−3v4, (u,v) ∈ P1(R).

The polynomials involved in the parameterization are defined in Z[u,v], which means we are in the lucky case
where the intermediate quadric of inertia(2,2) found to parameterize the intersection has a square as determinant.
So the parameterization obtained is optimal (in the extension ofZ on which its coefficients are defined).

17.8.2 Example 2 : smooth quartic
Our second example is Example 5 from [WJG02]. It is the intersection of a sphere and an ellipsoid that are

very similar (see Figure 17.9.b) :
{

19x2 +22y2 +21z2−20w2 = 0,

x2 +y2 +z2−w2 = 0.

In [WJG02], the authors compute the parameterization (17.14) with

X1(u,v) =









−0.72u3−0.72u2v+0.08uv2 +0.08v3

0.0
0.72u3−1.2u2v−0.72uv2−0.08v3

1.0182u3 +0.3394u2v+0.3394uv2 +0.1131v3









, X2(u,v) =









0.0
1.697u+0.5656v

0.0
0.0









,

and∆(u,v) = 0.48u3v−0.32u2v2−0.16uv3.
Our implementation gives the result displayed in Output 8. Since the polynomials ofX(u,v) involve a square

root
√

10, the quadricQR of inertia (2,2) used to parameterize the intersection is such that its determinant is not
a square. As explained in Section 17.3.1, the parameterization is thus only near-optimal in the sense that it is
possible, though not necessary, that the square root can be avoided in the coefficients.

It turns out that in this particular example it can be avoided. Consider the coneQR corresponding to the rational
root (−1,21) of the determinantal equation :

QR : −QS+21QT = 2x2−y2−w2.

QR contains the obvious rational point(1,1,0,1), which is not its singular point. This implies that it can be ratio-
nally parameterized. Plugging this parameterization in the equation ofQS or QT gives a simple parameterization
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QI output 8 Execution trace for Example 2.
>> quadric 1: 19*x^2 + 22*y^2 + 21*z^2 - 20*w^2
>> quadric 2: x^2 + y^2 + z^2 - w^2

>> launching intersection
>> determinantal equation: - 175560*l^4 - 34358*l^3*m - 251 9*l^2*m^2 - 82*l*m^3 - m^4
>> gcd of derivatives of determinantal equation: 1
>> number of real roots: 4
>> intervals: ]-14/2^8, -13/2^8[, ]-26/2^9, -25/2^9[, ]-2 5/2^9, -24/2^9[, ]-3/2^6, -2/2^6[
>> picked test point 1 at [ -13 256 ], sign > 0 -- inertia [ 2 2 ] fou nd
>> picked test point 2 at [ -3 64 ], sign > 0 -- inertia [ 2 2 ] found
>> quadric (2,2) found: - 16*x^2 + 5*y^2 - 2*z^2 + 9*w^2
>> decomposition of its determinant [a,b] (det = a^2*b): [ 12 10 ]
>> a point on the quadric: [ 3 0 0 4 ]
>> param of quadric (2,2): [0, - 24*s*u - 24*t*v, 0, 0] + sqrt(1 0)*[3*t*u + 6*s*v, 0, 12*s*u

- 12*t*v, - 4*t*u + 8*s*v]
>> status of smooth quartic param: near-optimal
>> end of intersection

>> complex intersection: smooth quartic
>> real intersection: smooth quartic, two real bounded components
>> parameterization of smooth quartic, branch 1:

[(72*u^3 + 4*u*v^2)*sqrt(10) + 3*v*sqrt(10)*sqrt(Delta) , - 340*u^2*v + 10*v^3 - 24*u*sqrt(Delta),
(- 118*u^2*v + 5*v^3)*sqrt(10) + 12*u*sqrt(10)*sqrt(Delt a), (96*u^3 - 12*u*v^2)*sqrt(10)
- 4*v*sqrt(10)*sqrt(Delta)]

>> parameterization of smooth quartic, branch 2:
[(72*u^3 + 4*u*v^2)*sqrt(10) - 3*v*sqrt(10)*sqrt(Delta) , - 340*u^2*v + 10*v^3 + 24*u*sqrt(Delta),

(- 118*u^2*v + 5*v^3)*sqrt(10) - 12*u*sqrt(10)*sqrt(Delt a), (96*u^3 - 12*u*v^2)*sqrt(10)
+ 4*v*sqrt(10)*sqrt(Delta)]

>> Delta = 20*u^4 - 140*u^2*v^2 + 5*v^4
>> size of input: 2.3424, height of Delta: 1.3431

>> time spent: < 10 ms

of the intersection :

X(u,v) =









u2 +2v2

2uv
u2−2v2

0









±









0
0
0
1









√

2u4 +4u2v2 +8v4, (u,v) ∈ P1(R).

17.8.3 Example 3 : two tangent conics

Our next two examples illustrate the fact that our implementation is complete in the sense that it computes
parameterizations in all possible cases.

Output 9 shows the execution trace for two quadrics intersecting in two conics that are tangent in one point.
As can be seen, our implementation gives information about the incidence between the different components of
the intersection : for each component, we give the parametervalues (“cut parameters”) at which it intersects the
other components of the intersection.

17.8.4 Example 4 : four skew lines

Our final example concerns an intersection made of four skew lines, as depicted in Figure 17.9.c. Output 10
shows the execution trace for this example, again illustrating the efficiency and completeness of our implementa-
tion.
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QI output 9 Execution trace for Example 3.
>> quadric 1: - 4*x^2 - 56*x*y - 24*x*z - 79*y^2 - 116*y*z + 70*y*w - 85*z^2 - 20*z*w + 9*w^2
>> quadric 2: 6*x^2 + 84*x*y + 36*x*z + 45*y^2 + 160*y*z - 210*y*w + 131*z^2 + 30*z*w - 45*w^2

>> launching intersection
>> determinantal equation: 8*l^4 - 76*l^3*m + 234*l^2*m^2 - 297*l*m^3 + 135*m^4
>> gcd of derivatives of determinantal equation: 4*l^2 - 12* l*m + 9*m^2
>> triple real root: [ -3 -2 ]
>> inertia: [ 1 1 ]
>> rational point on cone: [ 0 0 0 1 ]
>> parameterization of cone with rational point
>> parameterization of pair of planes
>> the two conics are tangent at [ -39 3 6 -5 ]
>> status of intersection param: optimal
>> end of intersection

>> complex intersection: two tangent conics
>> real intersection: two tangent conics
>> parameterization of conic:

[- 39*u^2 + 443*u*v - 7254*v^2, 3*u^2 - 66*u*v + 1388*v^2, 6*u ^2 - 132*u*v + 701*v^2, - 5*u^2
+ 110*u*v - 3005*v^2]

>> cut parameter: (u, v) = [1, 0]
>> size of input: 3.3222, height of output: 1.4631
>> parameterization of conic:

[- 39*u^2 + 443*u*v - 4004*v^2, 3*u^2 - 66*u*v + 1138*v^2, 6*u ^2 - 132*u*v + 201*v^2, - 5*u^2
+ 110*u*v - 1205*v^2]

>> cut parameter: (u, v) = [1, 0]
>> size of input: 3.3222, height of output: 1.3854

>> time spent: 10 ms

17.9 Conclusion
We have presented a C++ implementation of an algorithm for parameterizing intersections of quadrics. The

implementation is exact, efficient and covers all the possible cases of intersection. This implementation is based
on the LiDIA library and uses the multiprecision integer arithmetic of GMP.

Future work will be devoted to understanding the gaps between predicted and observed values for the height
of the coefficients of the parameterizations, to working outpredicates and filters for making the code robust with
floating point data (many classes and data structures have already been templated for a future use with floating
point coefficients) and to porting our code to the CGAL geometry algorithms library [CGA].
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algorithm in MuPAD, Guillaume Hanrot for his C implementation of Uspensky’s algorithm, Daniel Lazard for his
help in designing the parameterization algorithm, and Etienne Petitjean for his NetTask socket management tool
which makes possible the querying of our parameterization software via a web interface.
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QI output 10 Execution trace for Example 4.
>> quadric 1: 199*x^2 - 4*x*y + 830*x*z + 1068*x*w - 55*y^2 - 278*y*z - 528* y*w + 587*z^2

+ 1146*z*w + 360*w^2
>> quadric 2: 41*x^2 - 64*x*y + 92*x*z + 108*x*w + 23*y^2 - 32*y*z - 24*y*w + 80*z^2

+ 174*z*w + 72*w^2

>> launching intersection
>> determinantal equation: 49*l^4 - 84*l^3*m + 22*l^2*m^2 + 12*l*m^3 + m^4
>> gcd of derivatives of determinantal equation: 7*l^2 - 6*l *m - m^2
>> ranks of singular quadrics: 2 and 2
>> two real rational double roots: [ -1 -1 ] and [ -1 7 ]
>> status of intersection param: optimal
>> end of intersection

>> complex intersection: four skew lines
>> real intersection: four skew lines
>> parameterization of line:

[- 42*v, 32*u - 78*v, 28*u, - 25*u + v]
>> cut parameter: (u, v) = [- 19, 8]
>> cut parameter: (u, v) = [- 51, - 22]
>> size of input: 4.0592, height of output: 0.71248
>> parameterization of line:

[48*v, 64*u + 176*v, 68*u + 76*v, - 47*u - 69*v]
>> cut parameter: (u, v) = [0, 1]
>> cut parameter: (u, v) = [59, - 25]
>> size of input: 4.0592, height of output: 0.79955
>> parameterization of line:

[6*u, 6*u - 40*v, - 68*v, - 7*u + 111*v]
>> cut parameter: (u, v) = [49, 4]
>> cut parameter: (u, v) = [22, 3]
>> size of input: 4.0592, height of output: 0.75023
>> parameterization of line:

[- 12*v, 4*u, - 52*u - 60*v, 33*u + 41*v]
>> cut parameter: (u, v) = [67, - 49]
>> cut parameter: (u, v) = [39, - 25]
>> size of input: 4.0592, height of output: 0.68441

>> time spent: 10 ms





Chapitre 18

The Voronoi diagram of three lines

Une version préliminaire de cet article a été publiée dans les proceedings du23th ACM Annual Symposium on
Computational Geometry[ELLD07].

Abstract

We give a complete description of the Voronoi diagram, inR3, of three lines in general position,
that is, that are pairwise skew and not all parallel to a common plane. In particular, we show that
the topology of the Voronoi diagram is invariant for three such lines. The trisector consists of four
unbounded branches of either a non-singular quartic or of a cubic and line that do not intersect
in real space. Each cell of dimension two consists of two connected components on a hyperbolic
paraboloid that are bounded, respectively, by three and oneof the branches of the trisector. We
introduce a proof technique, which relies heavily upon modern tools of computer algebra, and is of
interest in its own right.
This characterization yields some fundamental propertiesof the Voronoi diagram of three lines.
In particular, we present linear semi-algebraic tests for separating the two connected components
of each two-dimensional Voronoi cell and for separating thefour connected components of the
trisector. This enables us to answer queries of the form, given a point, determine in which connected
component of which cell it lies. We also show that the arcs of the trisector are monotonic in some
direction. These properties imply that points on the trisector of three lines can be sorted along each
branch using only linear semi-algebraic tests.

18.1 Introduction
The Voronoi diagram of a set of disjoint objects is a decomposition of the space into cells, one cell per object,

such that the cell associated with an object consists of all points that are closer to that object than to any other
object. In this paper, we consider the Voronoi diagram of lines inR3 under the Euclidean metric.

Voronoi diagrams have been the subject of a tremendous amount of research. For points, these diagrams and
their complexities are well understood and optimal algorithms as well as robust and efficient implementations exist
for computing them in any dimension (see for instance [Aur91, AK99, BDP+02, BDS+92, CSY97, CS89a, For97,
OBSC00, PT06, Sei81]). Nevertheless, some important problems remain and are addressed in recent papers. The
same is true for segments and polygons in two dimensions [Kar04].

For lines, segments, and polyhedra in three dimensions muchless is known. In particular, determining the
combinatorial complexity of the Voronoi diagram ofn lines or line segments inR3 is an outstanding open problem.
The best known lower bound isΩ(n2) and the best upper bound isO(n3+ε) [Sha94]. It is conjectured that the
complexity of such diagrams is near-quadratic. In the restricted case of a set ofn lines with a fixed number,c, of
possible orientations, Koltun and Sharir have shown an upper bound ofO(n2+ε), for anyε > 0 [KS03].

There are few algorithms for computing exactly the Voronoi diagram of linear objects. Most of this work has
been done in the context of computing the medial axis of a polyhedron,i.e., the Voronoi diagram of the faces

303
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ℓ1ℓ2ℓ3

(a)

X

Y

(b)

FIG. 18.1 – Voronoi diagram of 3 linesℓ1, ℓ2, andℓ3 in general position : (a) Voronoi 2D face of
ℓ1 andℓ2, i.e.,set of points equidistant toℓ1 andℓ2 and closer to them than toℓ3. (b) Orthogonal
projection of a 2D face on a planeP with coordinate system(X,Y) ; the plane’s normal is
parallel to the common perpendicular ofℓ1 and ℓ2 and theX andY-axes are parallel to the
two bisector lines (inP) of the projection ofℓ1 andℓ2 on P. The 2D face is bounded by four
branches of a non-singular quartic.

of the polyhedron [Cul00, Mil93]. Recently, some progress has been made on the related problem of computing
arrangements of quadrics (each cell of the Voronoi diagram is a cell of such an arrangement) [BHK+05, KKM99,
MTT05, SW06, SS97]. Finally, there have been many papers reporting algorithms for computing approximations
of the Voronoi diagram (see for instance [DZ02,ER02,HCK+99,TT97]).

In this paper, we address the fundamental problem of understanding the structure of the Voronoi diagram of
three lines. A robust and effective implementation of Voronoi diagrams of three-dimensional linear objects requires
a complete and thorough treatment of the base cases, that is the diagrams of three and four lines, points or planes.
We also believe that this is required in order to make progress on complexity issues, and in particular for proving
tight worst-case bounds. We provide here a full and completecharacterization of the geometry and topology of the
elementary though difficult case of the Voronoi diagram of three lines in general position.

Main results. Our main result, which settles a conjecture of Koltun and Sharir [KS03], is the following (see
Figure 18.1).

Theorem 18.1. The topology of the Voronoi diagram of three pairwise skew lines that are not all parallel to a
common plane is invariant. The trisector consists of four infinite branches of either a non-singular quartic29 or of
a cubic and a line that do not intersect inP3(R). Each cell of dimension two consists of two connected components
on a hyperbolic paraboloid that are bounded, respectively,by three and one of the branches of the trisector.

We introduce, for the proof of Theorem 18.1, a new proof technique which relies heavily upon modern tools
of computer algebra and which is of interest in its own right.We also provide a geometric characterization of the
configurations of three lines in general position whose trisector is not generic, that is, consists of a cubic and a line.

29By non-singular quartic, we mean an irreducible curve of degree four with no singular point inP3(C). Recall
that a pointp∈ P3(C) of a surfaceS is said to be singular if its tangent plane is not defined atp, that is, all partial
derivatives of the square-free polynomial definingSare zero atp. Similarly, a pointp∈ P3(C) of a curveC defined
by the two implicit equationsE1 = E2 = 0 is singular if the rank of the Jacobian matrix ofC (the matrix of partial
derivatives ofE1 andE2) is at most 1 when evaluated atp. (Note that the ideal generated byE1 andE2 should
contain all the polynomials vanishing onC.) A curve is said to be singular if it contains at least a singular point in
P3(C). A curve is said to be singular inP3(R) if it contains at least a singular point inP3(R).
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Theorem 18.2. The trisector of three pairwise skew lines that are not all parallel to a common plane consists of a
cubic and a line if and only if the hyperboloid of one sheet containing the three skew lines is of revolution.

This work enables us to prove some fundamental properties ofthe Voronoi diagram of three lines which are
likely to be critical for the analysis of the complexity and the development of efficient algorithms for computing
Voronoi diagrams and medial axes of lines or polyhedra. In particular, we obtain the following results.

Monotonicity Property Given three pairwise skew lines that are not all parallel to acommon plane, there is a
direction in which all four branches of the trisector are monotonic.

Theorem 18.3. Given a point p that lies on a two-dimensional cell of the Voronoi diagram of three pairwise skew
lines that are not all parallel to a common plane, deciding onwhich connected component of the cell point p lies
can be done by evaluating the sign of linear forms in the coordinates of p ; similarly, if p lies on the trisector.
Furthermore, points on any one branch of the trisector may beordered by comparing the values of a linear form in
the coordinates of the points. Moreover, if the three input lines have rational coefficients, the coefficients of these
linear forms may be chosen rational.

Notice that these tests enable us to answer queries of the form, given a point, determine in which connected
component of which cell it lies. Notice also that these testsshould be useful for computing the Voronoi diagram
of n lines since computing the vertices of such diagrams requires locating the points equidistant to four lines on a
Voronoi arc of three of these lines.

The rest of the paper is organized as follows. We first study, in Section 18.2, the trisector of three lines in
general position. We then present, in Section 18.3, some fundamental properties of the Voronoi diagram of three
lines and prove the Monotonicity Property. We then prove Theorem 18.1 in Section 18.4 and Theorem 18.2 in
Section 18.5. Finally, in Section 18.6, we present algorithms for separating the components of each cell of the
Voronoi diagram and prove Theorem 18.3.

18.2 Structure of the trisector
We consider three lines ingeneral position, that is, pairwise skew and not all parallel to the same plane.

The idea of the proof of Theorem 18.1 is to prove that the topology of the trisector is invariant by continuous
deformation on the set of all triplets of three lines in general position and that this set is connected. The result will
then follow from the analysis of any example.

To prove that the topology of the trisector is invariant by continuous deformation on the set of all triplets of
three lines in general position, we first show, in this section, that the trisector of three lines in general position is
always homeomorphic to four lines that do not pairwise intersect. To prove this, we show that the trisector is always
non-singular inP3(R) and has four simple real points at infinity. To show that the trisector is always non-singular
in P3(R), we study the type of the intersection of two bisectors, which are hyperbolic paraboloids.

We use the classical result that the intersection of two quadrics is a non-singular quartic (inP3(C)) unless the
characteristic equation of their pencil has (at least) a multiple root. In order to determine when this equation has a
multiple root, we determine when its discriminant∆ is zero.

This discriminant has several factors, some of which are trivially always positive. We prove that the remaining,
so-called “gros facteur”, is zero (over the reals) only if a (simple) polynomialF is zero. We provide two proofs
of this result. We first give a short direct proof. Although this proof is elegant, it provides no insight into how
we discovered the result. We also present a second proof which relies heavily upon sophisticated tools of modern
algebra and does not require any detailed understanding of the geometry of the problem. This longer proof is indeed
how we originally obtained Theorems 18.1 and 18.2 and only with the geometric insight gained from this process
were we able to find the shorter proof. We believe this longer proof to be of interest in its own right because it
demonstrates a technique which could be applied to other problems.

This proof goes as follows. We first show that thegros facteuris never negative using the RAGLIB Maple
package [RAG]. This implies that it is zero only when all its partial derivatives are zero. We thus consider the
system that consists of thegros facteurand all its partial derivatives, and compute its Gröbner basis. This gives three
equations of degree six. We consider separately two components of solutions, one for which the aforementioned
polynomialF is zero, the other for whichF 6= 0. WhenF 6= 0, some manipulations and simplifications, which
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Z

ℓ2 :

{

y = −ax
z= −1

ℓ1 :

{

y = ax
z= 1

(x,y,0)
(α,β,1)

ℓ3

X

Y

O

FIG. 18.2 – Three lines in general position.

are interesting in their own right, yield another Gröbner basis, with the same real roots, which consists of three
equations of degree four. We show that one of these equationshas no real root which implies that the system has
no real root and thus that thegros facteuris strictly positive on the considered component. We can thus conclude
that∆ = 0 only if F = 0 and thus that, whenF 6= 0, the trisector is always a non-singular quartic inP3(R).

Then, when the polynomialF = 0, we show, by substitutingF = 0 in ∆ and by using the classification of the
intersection of quadrics over the reals [DLLP07b], that thetrisector is a cubic and a line that do not intersect in
P3(R).

We can thus conclude that the trisector is always a non-singular quartic or a cubic and a line that do not
intersect in real space and thus that the trisector is alwaysnon-singular inP3(R). We then prove that the trisector
always contains four simple real points at infinity and thus that it is always homeomorphic to four lines that do not
pairwise intersect.

18.2.1 Preliminaries
Let ℓ1, ℓ2, andℓ3 be three lines in general position,i.e., that are pairwise skew and not all parallel to a common

plane. Refer to Figure 18.2. Let(X,Y,Z) denote a Cartesian coordinate system. Without loss of generality, we
assume thatℓ1 andℓ2 are both parallel toXY-plane, pass through(0,0,1) and(0,0,−1) respectively, and have
directions that are symmetric with respect to theXZ-plane. More precisely, we assume that the lineℓ1 is defined
by point p1 = (0,0,1) and vectorv1 = (1,a,0), and the lineℓ2 is defined by the pointp2 = (0,0,−1) and vector
v2 = (1,−a,0), a∈ R. Moreover, since the three lines are not all parallel to a common plane,ℓ3 is not parallel to
the planez= 0, and so we can assume that the lineℓ3 is defined by pointp3 = (x,y,0) and vectorv3 = (α,β,1),
x,y,α,β ∈ R.

We denote byHi, j the bisector of linesℓi andℓ j and byVi j the Voronoi cell of linesℓi andℓ j , i.e., the set of
points equidistant toℓi andℓ j and closer to them than toℓk, k 6= i, j. We recall the following well-known elementary
facts. The Voronoi cells are connected and the bisector of two skew lines is a right hyperbolic paraboloid, that is,
has equation of the formZ = γX Y, γ ∈ R⋆, in some coordinate system (see for instance [KS03]) ; for completeness
we present a proof of this fact.

Lemma 18.4. The bisector of two skew lines is a right hyperbolic paraboloid.

Proof. The bisector of two linesℓi andℓ j is the set of pointsp satisfying the equation

‖(p− pi)×vi‖2

‖vi‖2 =
‖(p− p j)×v j‖2

‖v j‖2 . (18.1)

If suffices to prove the lemma for the two linesℓ1 andℓ2. For these lines, the above equation simplifies into the
following equation of a right hyperbolic paraboloid :

Z = − a
1+a2 X Y. (18.2)
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2

The trisector of our three lines is the intersection of two right hyperbolic paraboloids, sayH1,2 andH1,3. The
intersection of two arbitrary hyperbolic paraboloids may be singular ; it may be a nodal or cuspidal quartic, two
secant conics, a cubic and a line that intersect, a conic and two lines crossing on the conic, etc. We show here that
the trisector is always non-singular inP3(R) by studying the characteristic polynomial of the pencil ofH1,2 and
H1,3.

Let Q1,2 andQ1,3 be matrix representations ofH1,2 andH1,3, i.e. the Hessian of the quadratic form associated
with the surface (see, for instance, [DLLP07a]). Thepencilof Q1,2 andQ1,3 is the set of their linear combinations,
that is,P(λ) = {λQ1,2 + Q1,3, ∀λ ∈ R∪ {∞}}. The characteristic polynomialof the pencil is the determinant,
D(λ) = det(P(λ)), which is a degree four polynomial inλ. The intersection of any two quadrics is a non-singular
quartic, inP3(C), if and only if the characteristic equation of the corresponding pencil does not have any multiple
roots (inC) [Seg83] (see also [DLLP07b]). A non-singular quartic ofP3(C) is, in P3(R), either empty or a non-
singular quartic. Thus, since the trisector of our three lines cannot be the empty set inR3, the trisector is a smooth
quartic inP3(R) if and only if the characteristic equation of the pencil doesnot have any multiple roots (inC).

The characteristic polynomial of the pencil is fairly complicated (roughly one page in the format of Eq. (18.3)).
However, by a change of variableλ → 2λ(1+α2 +β2) and by dividing out the positive factor(1+a2)2(1+α2 +
β2)3, the polynomial simplifies, without changing its roots, to the following, which we still denote byD(λ) for
simplicity.

D(λ)=(α2+β2+1)a2λ4−2a(2aβ2+ayβ+aαx−βα+2a+2aα2−βαa2)λ3

+(β2+6a2β2−2βxa3−6βαa3+6yβa2−6aβα−2aβx+6αxa2+y2a2−2aαy+x2a2−2yαa3+6a2α2+a4α2+4a2)λ2

−2(xa−ya2−2βa2−β+2aα+αa3)(xa−y−β+aα)λ+(1+a2)(xa−y−β+aα)2 (18.3)

Let ∆ be the discriminant of the characteristic polynomialD(λ) (with respect toλ). Recall that∆ = 0 if and
only if D(λ) admits a multiple root, that is, if and only if the trisector is not a smooth quartic. The discriminant∆,
computed with Maple [Map], is equal to

16a4 (ax−y−β+aα)2 (y+ax−aα−β)2 (18.4)

times a factor that we refer to as thegros facteurwhich is a rather large polynomial, of degree 18 in 5 variables
with 253 monomials, of which we only show 2 out of 22 lines :

gros_facteur=8a8α4y2+7a4β2x4−4aβ3x+16a8β4x4+32a4α2y2+2a6α2β4x2+38a8α2x2+2y4β2a4α2+44a8α2β2x2

···+22a4y2β2x2+y6a6+α2y6a6−2βxαy5a6+x6a6+10βx3a7α2+2yα3a7x2−32a3α2y2βx+28a3β2x2αy−24a2β3yαx. (18.5)

In the sequel, all polynomials are considered over the reals, that is forλ,a,α,β,x,y in R, unless specified
otherwise.

18.2.2 The Main Lemma
We find in this section simple algebraic constraints that aresatisfied when discriminant∆ is equal to zero.

Precisely, we prove the following lemma.

Main Lemma The discriminant∆ is equal to zero only if y+aα = 0 or ax+β = 0.

Note that the problem is to prove this lemma but also to obtainthese two simple equations which is a difficult
problem since∆ is a fairly large polynomial. As discussed in the overview ofthe proof, we first present a short
direct proof of the Main Lemma.

Proof of the Main Lemma. Note first that the discriminant∆ is equal to zero if and only if thegros facteuris
zero. Indeed, the polynomial (18.4) is not equal to zero under our general position assumption :a= 0 is equivalent
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to saying that linesℓ1 andℓ2 are parallel and the two other factors of (18.4) are equal to the square of det(pi −
p3,vi ,v3), for i = 1,2, and thus are equal to zero if and only ifℓi andℓ3 are coplanar, fori = 1,2.

Now, it can be easily verified (using, for instance, Maple) that thegros facteuris, in fact, the discriminant of
the characteristic polynomial of the 3×3 top-left submatrix of the matrix representation of the quadric containing
ℓ1, ℓ2 and ℓ3 (which is a hyperboloid of one sheet by the general position assumption) ;30 this 3× 3 submatrix
corresponds to the quadratic part of the quadric and thus thediscriminant is zero if and only if two eigenvalues are
equal that is if the hyperboloid is of revolution (since a hyperboloid of one sheet has a canonical equation of the
form X2

δ2
1

+ Y2

δ2
2
− Z2

δ2
3
−1 = 0). This directly proves that thegros facteuris zero if and only if the the hyperboloid

containingℓ1, ℓ2 andℓ3 is of revolution. Furthermore, this is equivalent to the fact that trisector contains a line ;
indeed, if the hyperboloid is of revolution then its axis of revolution is on the trisector and, conversely, if the
trisector contains a line, thegros facteuris zero (since the intersection of the two bisectors is not a non-singular
quartic).

We can now prove the Main Lemma. Notice that if the hyperboloid containingℓ1, ℓ2 andℓ3 is of revolution
then its center of symmetry,O, is equidistant to the three lines. PointO can easily be computed as the intersection
of the three planesP1, P2, andP3 whereP1 is the bisecting plane ofℓ1 and the line parallel toℓ1 and transversal to
ℓ2 andℓ3, andP2 andP3 are defined similarly (note thatO is the center of the parallelepiped shown in Figure 18.3
and thatO can also be easily computed as the point at which the gradientof the equation of the hyperboloid is
zero). The constraint that pointO is equidistant to linesℓ1 andℓ2 then reduces into(y+aα)(ax+β) = 0, which
concludes the proof. �

Note that the above characterization of thegros facteurprovides a direct proof of Lemma 18.5, which essen-
tially states that thegros facteuris non-negative, because it is the discriminant of a polynomial whose roots are
all real (since it is the characteristic polynomial of a realsymmetric matrix). Alternatively, this also implies that
thegros facteuris a sum of squares [Lax98] and thus non-negative. Note that we did not succeed to find even an
approximation of this sum of square using SOSTOOLS [PS03,SOS].

We now present our original proof of the Main Lemma which relies upon modern tools of computer algebra
and does not require any specific insight on the geometric meaning of thegros facteurand of the polynomials that
appear in the Main Lemma.

Lemma 18.5. The discriminant∆ is never negative.

Proof. We prove that the real semi-algebraic setS = {χ = (a,x,y,α,β) ∈ R5 | ∆(χ) < 0} is empty using the
RAGLIB Maple package [RAG] which is based on the algorithm presented in [SED06]. The algorithm computes
at least one point per connected component of such a semi-algebraic set31 and we observe that, in our case, this set
is empty. Before presenting our computation, we first describe the general idea of this algorithm.

Suppose first thatS 6= R6 and letC denote any connected component ofS. We consider here∆ as a function
of all its variablesχ = (a,x,y,α,β) ∈ R6. The algorithm first computes the set of generalized critical values32 of
∆ (see [SED06] for an algorithm computing them). The image by∆ of C is an interval whose endpoints33 are zero
and either a negative generalized critical value or−∞. For anyv in this interval, there is a pointχ0 ∈ C such that
∆(χ0) = v, and the connected component containingχ0 of the hypersurface∆(χ) = v is included in the connected

30The equation of the hyperboloid containingℓ1, ℓ2 andℓ3 can easily be computed by solving a linear system
obtained by writing that three points on each of the three lines lie on the quadric.

31Note that no certified polynomial-time algorithm (in the number of variables) is known for this problem.
32Recall that the (real) critical values of∆ are the values of∆ at its critical pointsχ, i.e., the pointsχ at which

the gradient of∆ is zero. The asymptotic critical values are similarly defined as, roughly speaking, the values
taken by∆ at critical points at infinity, that is, the valuesc ∈ R such that the hyperplanez= c is tangent to the
surfacez= ∆(χ) at infinity (this definition however only holds for two variables, i.e., χ ∈ R2). More formally, the
asymptotic critical values were introduced by Kurdyka et al. [KOS00] as the limits of∆(χk) where(χk)k∈N is a
sequence of points that goes to infinity while‖χk‖ · ‖gradχk

∆(χk)‖ tends to zero. The generalized critical values
are the critical values and asymptotic critical values.The set of generalized critical values contains all the extrema
of functionD, even those that are reached at infinity.

33SinceS 6= R6, the boundary ofC is not empty and consists of pointsχ such thatD(χ) = 0. The image of the
connected setC by the continuous functionD is an interval. Hence, zero is an endpoint of the intervalD(C). The
other endpoint is either an extremum ofD (and thus a generalized critical value) or−∞.
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componentC. Hence, a point inC can be found by computing a point in each connected componentof ∆(χ) = v.
It follows that we can compute at least a point in every connected component of the semi-algebraic setS defined
by ∆(χ) < 0 by computing at least one point in every connected component of the real hypersurface defined by
∆(χ) = v wherev is any value smaller than zero and larger than the largest negative generalized critical value, if
any. Now, whenS = R6, that is,∆(p) < 0 for all p in R6, the above computation returns an empty set of points, so
we choose a random pointp in R6 and return it if∆(p) < 0.

Notice that computing at least one point in every connected component of a hypersurface defined by∆(χ) = v
can be done by computing the critical points of the distance function between the surface and a point, say the
origin, that is, by solving the system∆(χ) = v, χ×grad(∆)(χ) = 0. This conceptually simple approach, developed
in [RRSED00], is, however, not computationally efficient. The efficient algorithm presented in [SED06] computes
instead critical points of projections, combining efficiently the strategies given in [SEDS04] and [SEDS03].

The computation of at least one point in every connected component ofS, using the RAGLIB Maple package,
gives the empty set, implying that∆(χ) > 0 for all χ ∈ R6. It should be noted that these computations are time
consuming on a polynomial of the size of∆ : they take roughly 10 hours of elapsed time on a standard PC.2

We now prove that the zeros of∆ are the singular points34 of thegros facteur.

Lemma 18.6. The discriminant∆ is equal to zero if and only if thegros facteurand all its partial derivatives are
equal to zero.

Proof. As we have seen in the direct proof of the Main Lemma, the discriminant ∆ is equal to zero if and only
if the gros facteuris zero. Furthermore, by Lemma 18.5, thegros facteuris never negative, thus, if there exists a
point where thegros facteurvanishes, it is a local minimum of thegros facteurand thus all its partial derivatives
(with respect to{a,x,y,α,β}) are zero. 2

We now present a simple and direct computational proof of theMain Lemma. As we will see, this proof is,
however, based on some polynomials whose origins are discussed in Section 18.2.3.

Computational proof of the Main Lemma. By Lemma 18.6,∆ is zero if and only if thegros facteurand all its
partial derivatives are zero. We prove below that this implies that(y+aα)(ax+β)(1+α2 +β2)Γ = 0, where

Γ =
(

2a(yα−βx)−a2 +1
)2

+3 (ax+β)2 +3a2 (y+aα)2 +3
(

1+a2)2
. (18.6)

As the two terms(1+ α2 + β2) andΓ clearly do not have any real solutions, this proves the lemma. (We discuss
later how we found these terms.)

Consider the system in the variables{a,x,y,α,β,u,v,w, t} that consists of thegros facteur, its partial deriva-
tives, and the four equations

1−u(y+aα) = 0, 1−v(ax+β) = 0, 1−w(1+α2 +β2) = 0, 1− t Γ = 0. (18.7)

Thegros facteurand its partial derivatives have a common zero (real or complex) such that(y+aα)(ax+β)(1+
α2 +β2)Γ 6= 0 if and only if this system has a solution. This follows immediately from the fact that the equations
(18.7) are linear inu,v,w, t.

The Gröbner basis of our system is reduced to the polynomial 1(see Table 18.1) and thus the system has no
solution (over the complex numbers). This concludes the proof. �

The real difficulty in this proof of the Main Lemma is, of course, to find the equations (18.7) that rule out all
the components of the set of singular points of thegros facteur. Computing these components is the actual key of
the computational proof. We believe that the technique we used can be of some interest to the community as it is
rather generic and could be applied to other problems. We thus describe in Section 18.2.3 how these components
were computed before finishing the study of the algebraic structure of the trisector, in Section 18.2.4.

34Recall that the singular points of a surface are the points where all partial derivatives are zero.
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> Gamma:=(2*a*(y*alpha-x*beta)-(a^2-1))^2+3*(a*x+beta )^2+3*a^2*(y+a*alpha)^2+3*(a^2+1)^2;

Γ := (2a(αy−βx)−a2 +1)2 +3(xa+β)2 +3a2(y+aα)2 +3(1+a2)2

> [gros_fact, op(convert(grad(gros_fact,[a,x,y,alpha,b eta]),list)),
> 1-u*(y+a*alpha), 1-v*(a*x+beta),1-w*(1+alpha^2+beta^ 2),1-t*Gamma)]:
> fgb_gbasis_elim(%,0,[u,v,w,t],[a,x,y,alpha,beta]);

pack_fgb_call_generic: "FGb: 965.76 sec Maple: 975.98 sec "

[1]

TAB . 18.1 – For the proof of the Main Lemma.

18.2.3 About the computational proof of the Main Lemma
We show in this section how we computed, for the proof of the Main Lemma, the equations of (18.7) which

correspond to hypersurfaces containing the zeros of the discriminant.
We proceed as follows. We start from the system of equations consisting of thegros facteurand all its partial

derivatives and use the following techniques to study its set of solutions, or, more precisely, to decompose it into
components defined by prime ideals35. This could theoretically be done by a general algorithm computing such a
decomposition, however, no currently available software is capable of handling our particular problem and this is,
indeed, a significant research challenge in computer algebra.

If the (reduced) Gröbner basis of some system contains a polynomial which has a factor, sayF , the solutions
of the system splits into two components, one of which such that F = 0, the other such thatF 6= 0. We study
separately the two components. One is obtained by adding theequationF to the system and the other is obtained
by adding the equation 1−t F and eliminating the variablet ; indeed, there is a one-to-one correspondence between
the solutions of the initial system such thatF 6= 0 and the solutions of the system augmented by 1−t F . Sometimes,
frequently in our case, the componentF 6= 0 is empty, which corresponds to the situation where the elimination
of t results in the polynomial 1 (inducing the equation 1= 0). Note that in some cases the system contains a
polynomial which is a square, sayF2, thus the component such thatF 6= 0 is obviously empty and we can addF
to the system without changing its set of solutions (this however changes the ideal). This operation of addingF to
the system frequently adds embedded components to the variety of solutions which explains why, later on in the
process, empty components are frequently encountered whensplitting into two components.

Our computations, presented in Table 18.2 in the appendix, are performed in Maple [Map] using the Gröbner
basis package FGb developed by J.-C. Faugère [FGb] . We use two functions,

fgb_gbasis(sys,0,vars1,vars2)andfgb_gbasis_elim(sys,0,var1,var2)36,
that compute Gröbner bases of the systemsys; the first uses a degree reverse lexicographic order (DRL) byblocks
on the variables ofvars1and vars2 (wherevars2 is always the empty set in our computation) and the second
one eliminates the variablevars1and uses a reverse lexicographic order on the variables ofvars2. (The second
parameter of the functions refer to the characteristic of the field, here 0.)

We do not show in Table 18.2 the Gröbner bases which are too large to be useful, except in the case where the
basis is reduced to 1 (when the system has no solution). We instead only report the first operand of each polynomial
of the base ; an operand⋆ means that the polynomial is the product of at least two factors ; an operand ˆ means that
the polynomial is a power of some polynomial ; an operand+ means that the polynomial is a sum of monomials.

Our computation goes as follows. We first simplify our systemby consideringa = 2 because otherwise the
Gröbner basis computations are too slow and use too much memory to be performed successfully. We first see after
computing,bs1, the Gröbner basis of our system, thaty+2α appears as a factor of one polynomial. This splits the
solutions into those such thaty+2α = 0 and the others. We will study separately (in Lemma 18.8) theformer set
of solutions and we only consider here the solutions such that y+2α 6= 0. This is done by adding the polynomial
1−u(y+2α) to the system, whereu is a new variable ; indeed there is a one-to-one correspondence between the
solutions of the initial system such thaty+2α 6= 0 and the solutions of the resulting system.

35An idealI is prime ifPQ∈ I impliesP∈ I or Q∈ I.
36The functiongbasis(sys,DRL(var1,var2),elim)with or without the optional last argumentelimcan also be used

alternatively of these two functions
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The termy+2α corresponds fairly clearly to the polynomialy+aα with a = 2, and because of the symmetry
of our problem we also study separately the solutions such that ax+ β = 0. Since we assumeda = 2, we only
consider here the solutions such that 2x+ β 6= 0, by adding to the system the polynomial 1−v(2,x+ β). Finally,
we also add 1−w(1+ α2 + β2) to the system, without changing its set of real roots ; we do this because the term
1+α2 +β2 appears in the leading coefficient ofD(λ) which suggests that some component of solutions (without
any real point) might be included in 1+ α2 + β2 (it should be noted that adding this polynomial to the system
changes the resulting Gröbner basis, which shows that this indeed removes some imaginary component from the
system). We compute the Gröbner basis,bs2, of that system, eliminating the variablesu,v,w, which gives a system
of four polynomials of degree six.

We then compute the Gröbner basis ofbs2, eliminating the variablex. This gives a basisbs3 which is reduced
to one polynomial of the formP2. We thus addP to the systembs2 (we do not add it tobs3 sincebs3 does not
depend onx). The Gröbner basis,bs4, of the new system contains several polynomials that are products of factors.
We see that if we add to the system the constraint that the third factor of the first polynomial is not zero, the
resulting system has no solution. We thus add this factor to the system and compute its Gröbner basisbs5. We
operate similarly to getbs6. The basisbs6 contains no product or power and we compute its Gröbner basis, bs7,
eliminatingy (eliminatingx gives no interesting basis). The last polynomial ofbs7 is a power and we proceed as
before to getbs8. We proceed similarly until we get to the basisbs12. (Note that the factory+2α reappears inbs10

and is removed similarly as in the beginning of the process.)
The basisbs12 consists of three polynomials of degree four (which is a simplification overbs2 which consists

of four polynomials of degree six). We observe that the last polynomial ofbs12 is

Γ2 = (4yα−4βx−3)2 +3(2x+β)2 +12(y+2α)2 +75,

which is always positive over the reals.
We have thus proved that all the complex solutions, such thata = 2, of the initial system (thegros facteurand

all its partial derivatives) satisfy(1+α2 +β2)(y+2α)(2x+β)Γ2 = 0.
Finally, to get the polynomialΓ of Formula (18.6), we performed the same computation witha = 3 anda = 5

andguessedΓ as an interpolation of the polynomialsΓ2, Γ3, andΓ5.
Note that all the computation for a fixeda takes roughly eight minutes of elapsed time on a regular PC.

Remark 18.7. All the computations from bs2 to bs12 amounts to finding polynomials that have a power which is
a combination of the elements of bs2 (i.e., which are in the radical of the ideal generated by bs2

37). Thus these
computations would be advantageously replaced by a programcomputing the radical of an ideal. Unfortunately,
all available such programs fail on the ideal generated by bs2 either by exhausting the memory or by running
unsuccessfully during several days and ending on an error. It is therefore a challenge to improve these programs
in order to do this computation automatically.

We now present another much faster technique to computebs12, which takes advantage of the structure ofbs2.
Recall thatbs2 is a Gröbner basis consisting in 4 polynomials of degree 6 (see Table 18.2) and refer to

Table 18.3. The Gröbner basis ofbs2 for a block ordering withx in the first block consists of 31 polynomials
of degree at least 2 inx, 32 polynomials linear inx and one polynomial, which is independent ofx. The latter is
a square,P2. Let Q = Rx+ S be the last linear polynomial of the basis. Clearly, any solution of the system is a
common zero ofP andQ. Conversely, one may guess that any common zero ofP andQ for which R 6= 0 is a
solution of the system (see [ALMM99]) and we prove this is effectively the case.

We compute the Gröbner basis eliminatingt in the systemP,Q,1− t R. This basis consists of 3 polynomials
of degree 4, and is equal tobs12. Then we prove that the two systems have the same solutions byshowing that
the elements ofbs2 are in the ideal generated bybs12 and that the square of the elements ofbs12 are in the ideal
generated bybs2. This is done by using the functionnormalf which computes the normal form of a polynomial
with respect to a Gröbner basis. All these computations needless than eight seconds, instead of eight minutes for
the previous method.

Another advantage of this new method is that it shows directly that the ideal generated bybs12 is prime35.
Indeed, for any polynomial, sayF in the ideal, its pseudo-remainder38 by Q (with respect tox) is a multiple ofP

37The radical of an idealI is the ideal{P | Pn ∈ I for somen∈ N}.
38Here, the pseudo-remainder ofF by Q is the numerator of the expression obtained by substitutingx by −S/R

in F .
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(see, for instance, [ALMM99]). IfF is a product, its pseudo-remainder is the product of the pseudo-remainders of
the factors. ThusP, which is irreducible, divides one of them, which shows thatone of the factors ofF is in the
ideal, that is that the ideal is prime.

18.2.4 Structure of the trisector : conclusion
We proved in the Main Lemma that the discriminant∆ is equal to zero only ify+aα = 0 or ax+ β = 0. We

prove in this section that if∆ = 0, the trisector is a cubic and a line that do not intersect. Wethen show that the
trisector always contains four simple real points at infinity and conclude that the trisector is always homeomorphic
to four lines that do not pairwise intersect.

Lemma 18.8. The discriminant∆ is equal to zero if and only if

y = −aα and x=
β(2a2 +1)±2

√

a2 (1+a2)(α2 +β2 +1)

a
, or (18.8)

x = −β
a

and y=
α(2+a2)±2

√

(1+a2)(α2 +β2 +1)

a
. (18.9)

Proof. We refer to Table 18.4, in the appendix, for the computations. By the Main Lemma,∆ = 0 impliesy+aα =
0 orax+β = 0. Substitutingy by−aα in ∆ gives an expression of the formf0 f 2

1 . Similarly, substitutingx by−β/a
in ∆ gives an expression of the formg0g2

1 (recall thata 6= 0 since the lines are not coplanar, by assumption). It
follows that∆ = 0 if and only ify+aα = fi = 0 orax+β = gi = 0, for i = 0 or 1.

The fi andgi are polynomials of degree two inx andy, respectively. Solvingf1 = 0 in terms ofx directly
yields that the system

y+aα = f1 = 0 (18.10)

is equivalent to (18.8). Similarly, solvingg1 = 0 in terms ofy yields that the system

ax+β = g1 = 0 (18.11)

is equivalent to (18.9).
We now show that the solutions ofy+ aα = f0 = 0 are included in the set of solutions of (18.9). The

polynomial f0 is the sum of two squares. It follows thaty+aα = f0 = 0 if and only if

y+aα = a2α2−1+aβx = ax+β = 0. (18.12)

We show below that the polynomials of (18.11) are included inthe ideal generated by the polynomials of (18.12).
This implies that (18.11) is, roughly speaking, less constrained than (18.12) and that the set of solutions of (18.11)
contains the solutions of (18.12). Hence the solutions ofy+aα = f0 = 0 are contained in the set of solutions of
(18.11) and thus in the set of solutions of (18.9).

We prove that the polynomials of (18.11) are included in the ideal generated by the polynomials of (18.12) by
showing that the normal form of every polynomial of (18.11) with respect to the Gröbner basis of the polynomials
of (18.12) is zero. This is done using the the functionnormalf (of Maple) which computes the normal form of a
polynomial with respect to a Gröbner basis..

We prove similarly that the solutions ofax+β = g0 = 0 are included in the set of solutions of (18.10) and
thus of (18.8), which concludes the proof. 2

Remark 18.9. Note that by symmetry with respect to the XY-plane and by changing the sign of a,α, and β,
the set of three input linesℓ1, ℓ2, ℓ3 is invariant, the two components of(18.8) exchange (i.e., the components
corresponding to+2√ and−2√ exchange), and the two components of(18.9)exchange.

Similarly, by exchanging the X and Y-coordinates, x and y,α andβ, and changing a into1/a, the set of three
input lines is also invariant and each component of(18.8)is changed to a component of(18.9), and conversely.

Lemma 18.10. If ∆ = 0, the trisector ofℓ1, ℓ2, andℓ3 consists of a cubic and a line that do not intersect in real
space.
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Proof. By Lemma 18.8,∆ = 0 if and only if System (18.8) or (18.9) is satisfied. By symmetry of the problem (see
Remark 18.9), we only need to consider one of the components of (18.8) and (18.9). Hence, it is sufficient to show
that

y = −aα, x =
β(2a2 +1)

a
+2
√

(1+a2)(α2 +β2 +1) (18.13)

implies that the trisector consists of a cubic and a line thatdo not intersect. We assume in the following that∆ = 0,
that System (18.13) is satisfied. We refer to Table 18.5 for the computations.

We first show that the characteristic polynomial of the pencil generated by the bisectors is always strictly
positive. Note first that the characteristic polynomial is not always negative (see [Lev76]). It is thus sufficient to
prove that it is never zero, or equivalently, that its product with its algebraic conjugate (obtained by changing the
sign of

√

(1+a2)(α2 +β2 +1)) is never zero. This product is a polynomialT in a,α,β,λ which can easily
be factored in the square of a degree-two polynomial inλ ; furthermore, this degree two polynomial has no real
root because its discriminant is the product of a negative term (−(1+ a2)2(1+ α2 + β2)) and a term whose
sum and product with its algebraic conjugate (obtained, as above, by changing the sign of the square root) is
a strictly positive sum of squares. Note that we can also prove thatT is always strictly positive by computing,
similarly as in the proof of Lemma 18.5, at least one point perconnected component of the real semi-algebraic set
{χ = (a,α,β,λ) ∈ R4 | T(χ)− 1

2 < 0} ; the resulting set of points is empty, henceT(χ) is always greater or equal
to 1/2. It thus follows that the characteristic polynomial of thepencil is always strictly positive.

Since the characteristic polynomialD(λ) is always strictly positive and its discriminant∆ is zero,D(λ) admits
two (conjugate) double imaginary roots. Letλ1 andλ2 denote these two roots. Recall thatD(λ) = detP(λ) with
P(λ) = λQ1,2 + Q1,3 whereQi, j is the matrix associated with the hyperbolic paraboloidHi, j . It follows from the
classification of the intersection of quadrics [DLLP07b, Table 4] that either (i)P(λ1) andP(λ2) are of rank 3 and
the trisectorH1,2∩H1,3 consists of a cubic and a line that do not intersect or (ii)P(λ1) andP(λ2) are of rank 2
and the trisector consists of two secant lines.

We now prove thatP(λ1) andP(λ2) are of rank 3. We compute the Gröbner basis of all the 3×3 minors of
P(λ) and of the polynomial 1− tΨ with

Ψ = (1+a2)(1+α2 +β2)(ax−y−β+aα)(y+ax−aα−β).

The basis is equal to 1, thus the 3×3 minors ofP(λ) are not all simultaneously equal to zero whenΨ 6= 0. Further-
more,Ψ 6= 0 for anyx,y,a,α,β in R such that the linesℓ1, ℓ2, andℓ3 are pairwise skew (see (18.4) and the proof of
Lemma 18.6). Thus the rank ofP(λ) is at least 3. The rank ofP(λi), i = 1,2, is thus equal to 3 since detP(λi) = 0.
We can thus conclude that when∆ = 0 the trisector consists of a cubic and a line that do not intersect in real space.
2

We now state a proposition that shows that the trisector admits four asymptotes that are pairwise skew and
gives a geometric characterization of their directions.

Proposition 18.11. The trisector ofℓ1, ℓ2, andℓ3 intersects the plane at infinity in four real simple points. Fur-
thermore, the four corresponding asymptotes are parallel to the four trisector lines of three concurrent lines that
are parallel toℓ1, ℓ2, andℓ3, respectively.

Proof. The trisector is the intersection of two hyperbolic paraboloids. Any hyperbolic paraboloid contains two
lines at infinity. Hence the intersection, at infinity, of anytwo distinct hyperbolic paraboloids is the intersection of
two pairs of lines. The intersection of these two pairs of lines consists of exactly four simple real points unless the
point of intersection of the two lines in one pair lies on one line of the other pair. We show that this cannot happen
under our assumptions.

The intersection with the plane at infinity of the bisector oflines ℓ1 andℓ2 consists of the lines at infinity in
the pair of planes of equationXY = 0 (the homogeneous part of highest degree in Eq. (18.2)). This pair of plane is
the bisector of the two concurrent lines that are parallel toℓ1 andℓ2, respectively. Note that the lines at infinity in
this pair of planes are invariant by translation of the planes. We thus get that the lines at infinity of the bisector of
any two linesℓi andℓ j are the lines at infinity in the pair of planes that is the bisector to any two concurrent lines
that are parallel toℓi andℓ j , respectively.

It follows that the points at infinity on the trisector ofℓ1, ℓ2, andℓ3 are the points at infinity on the trisector
lines (the intersection of bisector planes) of three concurrent lines that are parallel toℓ1, ℓ2, andℓ3, respectively. It
remains to show that this trisector consists of four distinct lines.
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Let ℓ′1, ℓ′2, andℓ′3 be the three concurrent lines through the origin that are parallel toℓ1, ℓ2, andℓ3, respectively,
and suppose, for a contradiction, that their trisector doesnot consist of four distinct lines. This implies that the
line of intersection of the two bisector planes of two lines,sayℓ′1 andℓ′2, is contained in one of the bisector planes
of two other lines, sayℓ′1 andℓ′3. The intersection of the bisector planes ofℓ′1 andℓ′2 is theZ-axis. It follows that
one of the bisector planes ofℓ′1 andℓ′3 is vertical, henceℓ′1 andℓ′3 are symmetric with respect to a vertical plane
and thusℓ′3 is contained in theXY-plane. Therefore,ℓ′1, ℓ′2, andℓ′3 lie in theXY-plane, contradicting the general
position assumption, which concludes the proof. 2

Theorem 18.12. The trisector of three lines in general position consists offour infinite smooth branches of a
non-singular quartic or of a cubic and a line that do not intersect in real space.

Proof. As mentioned in the beginning of Section 18.2.2, the trisector of three lines consists of a smooth quartic
unless the discriminant∆ is zero. Lemma 18.10 and Proposition 18.11 thus yield the result. 2

18.3 Properties of the Voronoi diagram
We present here some fundamental properties of the Voronoi diagram. We will show how the four branches of

the trisector of three lines can be labeled and then present two fundamental properties of the trisector.

18.3.1 Preliminaries
We start with the following important proposition.

Proposition 18.13. The set of triplets of lines in general position is connected.

Proof. We prove this proposition by proving that there is a one-to-one correspondence between the set of ordered
triplets of lines (in general position) and the set of affine frames of positive orientation.

Consider three linesℓ1, ℓ2, andℓ3 in general position and refer to Figure 18.3. For the three choices of pairs
of lines ℓi , ℓ j , consider the plane containingℓi and parallel toℓ j , the plane containingℓ j and parallel toℓi , and
the region bounded by these two parallel planes. The generalposition assumption implies that these regions have
non-empty interiors and that no three planes are parallel. The intersection of these three regions thus defines a
parallelepiped. By construction, each of the linesℓ1, ℓ2, andℓ3 contains an edge of that parallelepiped. These lines
are pairwise skew thus exactly two vertices of the parallelepiped are not on the lines. Each of these two points
induces an affine frame centered at the point and with basis the three edges of the parallelepiped oriented from
the point to the linesℓ1, ℓ2, andℓ3, in this order. One of the point (C on the figure) defines a frame of positive
orientation, the other defines a frame of negative orientation (C′ on the figure). This construction exhibits a one-to-
one correspondence between the set of ordered triplets of lines (in general position) and the set of affine frames of
positive orientation, which concludes the proof. 2

We consider in the following any three linesℓ1, ℓ2, andℓ3 in general position (pairwise skew and not all parallel
to a common plane) and an associated Cartesian coordinate system(X,Y,Z) such that theZ-axis is the common
perpendicular ofℓ1 andℓ2, the origin is the point on theZ-axis equidistant toℓ1 andℓ2, and such that theX and
Y-axes are the two bisector lines, in the plane through the origin and perpendicular to theZ-axis, of the projection
of ℓ1 andℓ2 onto this plane.39 Note that the orientations of the axes are not specified (except for the fact that the

39Note that this setting is slightly different than the one described in Section 18.2.1 since, here, any triplet of three
lines in general position can be moved continuously into another while the associated frame moves continuously ;
however, if the initial and final triplets of lines are in the setting of Section 18.2.1, it is not necessarily possible to
ensure that, during the motion, all triplets of lines remainin this setting. This is, for instance, the case for the two
triplets of lines(y = x,z= 1 ; y = −x,z= −1 ; x = 1,y = 0) and(y = −x,z= 1 ; y = x,z= −1 ; x = 0,y = 1) for
which one triplet can be obtained from the other by a rotationof the frame about theZ-axis (by an angle±π/2)
though the triplets of lines cannot be moved continuously from one configuration to the other while remaining
(pairwise skew) in the setting of Section 18.2.1.
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ℓ2
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C
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v1 v2

v3

FIG. 18.3 – The parallelepiped formed byℓ1, ℓ2, andℓ3 and the associated frame(C,w1,w2,w3)
of positive orientation.

frame has a positive orientation) and that theX andY-axes can be exchanged.

18.3.2 Labeling of the four branches of the trisector
We prove here the following proposition which states two properties, one on the asymptotes of the trisector and

one on the incidence relations between cells, which, together, yield an unambiguous labeling of the components of
the trisector.

Let Vi j denote the two-dimensional Voronoi cell of linesℓi andℓ j and letUi j andTi j denote the connected
components ofVi j that are bounded by one and three arcs of the trisector, respectively (see Figure 18.4(a)).

Proposition 18.14. Exactly one of the four branches of the trisector of three lines in general position admits only
one asymptote. Let C0 denote this branch. Each cell Ui j is bounded by a branch distinct from C0 and every such
branch bounds a cell Ui j . Let Ck, k = 1,2,3, denote the branches of the trisector that bound the component Ui j ,
i, j 6= k. The labeling of the four branches of the trisector by C0, . . . ,C4 is unambiguous.

Note that differentiating betweenC1 andC2 cannot be done, as far as we know, by only looking at the cell
V12 (see Figure 18.4(a)) but can be done by looking at the other cells V13 andV23. More precisely, differentiating
betweenC1 andC2 on Figure 18.4(a) can be done by computing (as described in the proof of Lemma 18.16) a
vertical ordering of the sheets of the componentsUi j andTi j ; the branchCk is then characterized as the branch for
whichUi j appears only on one of its sides (see Figure 18.4(b)).

We prove two lemmas that, together, prove Proposition 18.14.

Lemma 18.15. Exactly one of the four branches of the trisector of three lines in general position admits only one
asymptote.

Proof. By Proposition 18.11, the trisector admits four distinct asymptotes, for all triplets of lines in general posi-
tion. It follows that the property that exactly one of the branches of the trisector has only one asymptote is invariant
by continuous deformation on the set of triplets of lines in general position. The result thus follows from Proposi-
tion 18.13 and from the observation that the property is verified on one particular example. This property can be
observed on Figure 18.4(a) and it can easily be proved as follows. Consider any three lines, in general position,
whose trisector consists in a cubic and a line (three such lines exist by Lemmas 18.8 and 18.10). The line is one
branch of the trisector that admits only one asymptote. On the other hand, since the cubic consists of only one
connected component in projective space and it intersects the plane at infinity in three real simple points (by Pro-
position 18.11), each of its three branches has two asymptotes. 2

We denote byC0 the branch of the trisector that admits only one asymptote (see Figure 18.4(a)).

Lemma 18.16.Each cell Ui j is bounded by a branch of the trisector distinct from C0 and every such branch bounds
a cell Ui j .
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FIG. 18.4 – (a) Projection of the two-dimensional Voronoi cellV12 onto theXY-plane. (b) Verti-
cal ordering of the sheets of the connected components of thetwo-dimensional Voronoi diagram
cells above each region induced by the projection of the trisector and the silhouette curves of the
bisectors ; the ordering over the small cell in the middle isT13 < T13 < T23 < T23 (i.e., a vertical
line over that cell intersects twiceT13 and twiceT23 in that order).

Proof. This property is invariant by continuous deformation on theset of triplets of lines in general position. It is
thus sufficient to prove it for any three given lines in general position,ℓ1, ℓ2, ℓ3, as defined in Section 18.2.1. We
consider in theXY-plane the arrangement of the (orthogonal) projection of the trisector and of the silhouette curves
(viewed from infinity in theZ-direction) of the bisectors (see Figure 18.4(b)) ; these silhouette curves consist of
only two parabolas since the bisector of linesℓ1 andℓ2 has no such silhouette (its equation has the formZ = γX Y
-see Eq.(18.2)- and thus any vertical line intersects it). By construction, for all vertical lines intersecting one given
(open) cell of this arrangement, the number and ordering of the intersection points between the vertical line and all
the pieces of the three bisectors that are bounded by the trisector is invariant. For any point of intersection, we can
easily determine (by computing distances) whether the point lies on a Voronoi cellVi j . We can further determine
whether the point belongs to the componentUi j or Ti j by using the linear separation test described in Section 18.6.
We thus report the ordering of the sheets of the componentsUi j andTi j above each cell of the arrangement in the
XY-plane for a given example ; see Figure 18.4(b).

We can now observe that there is a one-to-one correspondencebetween the three branches of the trisector
distinct fromC0 and the componentsU12, U13, andU23 such that the component appears only on one side of the
corresponding branch40. It follows that each of the branches distinct fromC0 bounds a cellUi j . 2

Proof of Proposition 18.14. Lemmas 18.15 and 18.16 state the first two properties of Proposition 18.14. Fur-
thermore, sinceUi j is, by definition, bounded by only one arc of the trisector, Lemmas 18.15 and 18.16 directly
yield the labeling of the four branches of the trisector byC0, . . . ,C4 is unambiguous. �

18.3.3 Properties of the trisector
We now prove two important properties of trisector of the Voronoi diagram of three lines in general position.

In particular, we prove the Monotonicity Property in Proposition 18.18.

40Namely,U13 (resp.U23 andU12) appears on only one side of the lower-right (resp. upper-right and left-most)
branch.
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Proposition 18.17. The orthogonal projection of the trisector ofℓ1, ℓ2, andℓ3 onto the XY-plane has two asymp-
totes parallel to the X-axis and two asymptotes parallel to the Y-axis.

Proof. By Proposition 18.11, the four asymptotes of the trisector are parallel to the four trisector lines of three
concurrent lines parallel toℓ1, ℓ2, andℓ3. The bisector to two lines through the origin and parallel toℓ1 andℓ2 is the
pair of planes of equationXY = 0. Hence the asymptotes of the trisector are parallel to lines that lie in the pair of
planesXY = 0. The orthogonal projection of the asymptotes on theXY-plane are thus parallel to theX- or Y-axis.
It follows that the number of asymptotes (in projection) that are parallel to theX-axis (resp.Y-axis) is invariant
by continuous deformation on any connected set of triplets of lines in general position. The result follows from
the fact that, on a particular example (see Figure 18.4(a)),there are two asymptotes parallel to theX-axis and two
others parallel to theY-axis and that the set of triplets of lines in general position is connected (Proposition 18.13).
2

We assume in the following thatthe asymptote of C0 is parallel to the YZ-plane(as in Figure 18.4(a)) by
exchanging, if necessary, the role ofX andY.

Proposition 18.18. Every branch of the trisector ofℓ1, ℓ2, andℓ3 is monotonic with respect to the Y-direction (or
every branch is monotonic with respect to the X-direction).

Proof. Let P denote any plane parallel to theXZ-plane. The arcC0 intersects planeP an odd number of times
(counted with multiplicity) sinceC0 has only one asymptote (Proposition 18.14) which is parallel to theYZ-plane.
Furthermore, by Proposition 18.17, the trisector has two other asymptotes parallel to theXZ-plane. Hence planeP
intersects the trisector in two points at infinity andC0 an odd number of times (in affine space). The trisector thus
intersectsP in at least three points in real projective space. There are thus four intersection points (in real projective
space) since there are four intersection points in complex space (since the trisector is of degree four) and if there
was an imaginary point of intersection, its conjugate wouldalso be an intersection point (since the equations of the
plane and quadrics have real coefficients) giving five pointsof intersection.

Therefore the trisector intersects planeP in two points inR3, one of which lies onC0. Since there are an odd
number of intersection points onC0, planeP intersectsC0 exactly once and any other branch exactly once. 2

18.4 Topology of the Voronoi diagram
We prove here that the topology of the Voronoi diagram of three lines in general position is invariant. Theo-

rem 18.1 will thus follow from Theorem 18.12 and from the computation of an example of a two-dimensional cell
of the Voronoi diagram (for instance the one shown in Figure 18.1).

Theorem 18.19.The topology of the Voronoi diagram of three lines in generalposition is constant. More precisely,
given two triplets of lines in general position, there is a continuous path between them (in the space of triplets of
lines in general position) which induces a continuous deformation of every cell of the Voronoi diagram, preserving
the topology of the cells and the incidence relations between them.

Proof. The general idea of the proof is as follows. Consider three lines in general position and a bisector of two of
them. The bisector is a hyperbolic paraboloid which is homeomorphic to a plane. The trisector lies on the bisector
and it is homeomorphic to four lines that do not pairwise intersect, by Theorem 18.12. Hence the topology of the
regions that lie on the bisector and are bounded by the trisector is invariant by continuous deformation on any
connected set of triplets of lines (in general position). The topology of these regions is thus invariant by continuous
deformation on the set of all triplets of lines in general position (by Proposition 18.13). It follows that the topology
of the two-dimensional cells of the Voronoi diagram is invariant by such a continuous deformation. The Voronoi
diagram is defined by the embedding inR3 of its two-dimensional cells, hence its topology is also invariant by
continuous deformation.

To be more precise, we now show that any continuous path, in the space of triplets of lines in general position,
between any two triplets of lines in general position, induces a continuous deformation of every cell of the Voronoi
diagram, preserving the topology of the cells and the incidence relations between them.
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Consider two triplets of lines in general position(ℓ1, ℓ2, ℓ3) and(ℓ′1, ℓ
′
2, ℓ

′
3). Without loss of generality, we may

choose for(ℓ1, ℓ2, ℓ3) the triplet of Figure 18.1. As the space of triplets of lines in general position is connected (Pro-
position 18.13), there is a homotopy between them,i.e., a continuous applicationϕ : t 7→ ϕ(t) = (ℓ1(t), ℓ2(t), ℓ3(t))
of the interval[0,1] into the space of triplets of lines in general position such thatϕ(0) = (ℓ1, ℓ2, ℓ3) andϕ(1) =
(ℓ′1, ℓ

′
2, ℓ

′
3).

Consider now an orthonormal frameF(t) such that theZ-axis is the common perpendicular toℓ1(t) andℓ2(t),
the origin of the frame is the point of theZ-axis equidistant toℓ1(t) andℓ2(t), and theX andY-axes are the bisectors
of the projections ofℓ1(t) andℓ2(t) onto the plane orthogonal to theZ-axis. Note that this coordinate system is, up
to a possible change of orientation of the axes and a possibleexchange of theX andY-axes, the one we considered
in Sections 18.2 and 18.3 and which has been used to draw Figure 18.1. When the parametert of the homotopy
varies from 0 to 1, the lines vary continuously, and thus the frameF(t) can be defined to vary continuously in terms
of t.

By Lemma 18.15 and Propositions 18.17 and 18.18, for anyt in [0,1], each of the branches of the trisector is
monotonic with respect to either theX or theY- direction, but not both. Furthermore, the set oft for which each
branch is monotonic with respect to theX-direction (resp. theY-direction) is closed (since the lines andF(t) vary
continuously in terms oft). Hence, each branch of the trisector is monotonic inX for all t or is monotonic inY
for all t. Therefore, by exchanging, if needed,X andY in all framesF(t), we may suppose that each of the four
branches of the trisector ofℓ1(t), ℓ2(t) andℓ3(t) is monotonic with respect to theY-direction.

In the coordinate systemF(t), the bisector ofℓ1(t) andℓ2(t) has the equationZ = α(t)XY (see the proof of
Lemma 18.4). SubstitutingZ by α(t)XY in the equation of the bisector ofℓ2(t) andℓ3(t) in the coordinate system
F(t), we get an equation of degree 2 in each of the variablesX andY. Solving it in X, we get a parameterization

of the formX = ϒ±(Y, t) with ϒ±(Y, t) =
−P1(Y,t)±

√
P1(Y,t)2−4P0(Y,t)P2(Y,t)

2P2(Y,t) , whereP0, P1 andP2 are polynomials of

degree 2 inY, which depend continuously ont (since the frameF(t) and the equations, in any fixed frame, of the
bisectors depend continuously ont).

Notice first thatP4(Y, t) = P1(Y, t)2 − 4P0(Y, t)P2(Y, t) is always positive. Indeed, it is always non-negative
since one of the branches of the trisector ofℓ1(t), ℓ2(t) andℓ3(t) is defined for allY in F(t) (since each branch is
monotonic inY and one of them has only one asymptote, by Lemma 18.15). It thus follows from the fact that the
trisector has no real singular point (Theorem 18.12) thatP4(Y, t) is always positive. Notice also that, for anyt in
[0,1], P2(Y, t) has two distinct real roots by Proposition 18.17.

SinceP4(Y, t) is always positive, the branchC0(t) of ℓ1(t), ℓ2(t) andℓ3(t) (see Proposition 18.14) is paramete-
rized byX = ϒ−(Y, t) or byX = ϒ+(Y, t) (but not by a combination of both). Thus, by changing, if needed, the signs
of P0, P1 andP2, we may suppose thatC0(0) is parameterized byX = ϒ−(Y,0). This implies, by continuity, that
the branchC0(t) is parameterized, in the frameF(t), by X = ϒ−(Y, t), while the other branches are parameterized
by X = ϒ+(Y, t) and the position ofY with respect to the two roots ofP2(Y, t).

The study of the Voronoi diagram ofℓ1(0), ℓ2(0) andℓ3(0) (see Figures 18.1 and 18.4(a)) thus implies that the
region, denotedR12(t), of the Voronoi diagram consisting in the points which are atthe same distance of the lines
ℓ1(t) andℓ2(t) and closer than toℓ3(t) consists, whent = 0, in two open semi algebraic sets defined inF(0) by (i)
Z = α(0)XY, X < ϒ+(Y,0), andY between the two roots ofP2 and by (ii)Z = α(0)XY, X > ϒ−(Y,0) and, when
Y is outside the two roots ofP2, X < ϒ+(Y,0).

Now, since the objects we are considering depend continuously on t, including the distance from a point to one
of the lines (note that the distance function is defined independently ofF(t)), the Voronoi regionR12(t) is defined,
similarly, by the two open semi algebraic sets defined inF(t) by (i) Z = α(t)XY, X < ϒ+(Y, t), andY between the
two roots ofP2 and by (ii)Z = α(t)XY, X > ϒ−(Y, t) and, whenY is outside the two roots ofP2, X < ϒ+(Y, t).

Note that, in the case where the trisector is decomposed, forsome value oft, into a cubic and a line, nothing
changes in what precedes, the only difference being that thesquare root is a polynomial and that the parameteriza-
tion of C0 simplifies intoX = constant.

We thus get that, whent varies, the two-dimensional cells of the Voronoi diagram which are closer toℓ1(t) and
ℓ2(t) than toℓ3(t) varies continuously, with a constant topology and constantincidence relations with the trisector.
As the same study may be done, replacingℓ1(t) andℓ2(t) by the other pairs of lines, this proves the theorem for all
two-dimensional cells.

Finally, let P be a point of the region ofℓ1(t) (i.e., a point which is closer toℓ1(t) than the other lines) and
Q its orthogonal projection onℓ1(t). Then, any point of the segmentPQ lies also in the region ofℓ1(t). It follows
that the region ofℓ1(t) is homeomorphic to a solid cylinder and has thus a constant topology. As this region va-
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ries continuously witht, as well as the two-dimensional cells of its border, this finishes the proof of the theorem.2

18.5 Configurations of three lines whose trisector contains a
line

We present here a simple geometric proof of Theorem 18.2 which states that the trisector of three pairwise
skew lines that are not all parallel to a common plane consists of a cubic and a line if and only if the hyperboloid
of one sheet containing the three skew lines is of revolution. Note that a computational proof is also given by the
direct proof of the Main Lemma, in which we proved that the trisector contains a line if and only if the hyperboloid
is of revolution, and by Theorem 18.1, which states that the trisector contains a line if and only if it is a cubic and
line.

Consider three linesℓ1, ℓ2 andℓ3 whose trisector includes a lineℓ. Any point p on ℓ is equidistant toℓ1, ℓ2

andℓ3 so p is the center of a sphere that is tangent to all ofℓ1, ℓ2 andℓ3. Consider three distinct such points onℓ
and the three corresponding spheres. If these spheres have acommon intersection, then this common intersection
is a circle (possibly reduced to a point) and all lines tangent to the three spheres lie in the plane of this circle which
contradicts the general position assumption. Otherwise, the set of lines tangent to the three spheres are the ruling(s)
of a single quadric of revolution with symmetry axis the linethrough their centers [BGLP06, Lemma 7]. Note that
this quadric is a hyperboloid of one sheet since it cannot be acone or a cylinder by the general position assumption.

Conversely, if three lines lie on a quadric of revolution, any point on the axis of revolution is equidistant to the
three lines. Thus the trisector of the three lines contains aline and, by Theorem 18.1, the trisector of three lines in
general position is a non-singular quartic or a cubic and a line.

18.6 Algorithms
In this section, we prove Theorem 18.3. We start by presenting an algorithm for determining a plane separating

the two components of any two-dimensional Voronoi cell. Refer to Figure 18.5(a). This plane may be non-rational ;
indeed, as we shall see in Proposition 18.21, it is possible that no rational separating plane exists. We then show
how this algorithm can be modified to produce a rational linear test for this problem when the three input lines are
rational. As we will see, this algorithm leads directly to another rational linear test for separating the four connected
components of the cell of dimension one. Finally, we conclude the proof of Theorem 18.3 by showing how points
on a branch of the trisector can be ordered using a linear formwith rational coefficients.

Linear test for separating the two connected components of atwo-dimensional Voronoi cell.
Input : three linesℓ1, ℓ2, andℓ3 in general position andi 6= j ∈ {1,2,3}.
Output : a half-spaceHi j that strictly containsUi j and whose complement strictly containsTi j .

(i) Determine a Cartesian coordinate system(X,Y,Z) such that theZ-axis is parallel to the common per-
pendicular ofℓi andℓ j and such that theX andY-axes are parallel to the two bisector lines, in a plane
perpendicular to theZ-axis, of the projection ofℓi andℓ j onto that plane.

(ii) In this frame, compute all the critical values of the trisector with respect to theX-axis. If there is no
critical value, exchange theX- andY-axes (and compute the critical values with respect to the new
X-axis).

(iii) Compute theX-values of the two trisector asymptotes that are parallel totheYZ-plane. If the minimum
of these values is smaller than the smaller critical value, then change the orientation of theX-axis.
Denote byX1 the smallest critical value (with respect to theX-axis) of the trisector and byX2 the
smallest of the other critical values and of the two asymptote X-values.

(iv) Pick a value ˜x in (X1,X2). The half-space,Hi j , of equationX < x̃ containsUi j and the half-spaceX > x̃
containsTi j .

Proof of correctness. Assume without loss of generality thati = 1 and j = 2. By Proposition 18.18, the trisector
has no critical point in theY-direction after Step (ii).



320 CHAPITRE 18. THE VORONOI DIAGRAM OF THREE LINES

X

Y

U12

T12

C0

C3

C1

C2

X1 X2

H12

(a)

X

Y

U12

T12

X1 X2

H
′

1
2

∩
H
′′

1
2

Y1

Y2

A

B

C

(b)

FIG. 18.5 – Separating the two components of a two-dimensional Voronoi cell.

First note that the asymptotes of the trisector are never vertical (i.e.,parallel to theZ-axis) because otherwise,
by Proposition 18.11 and sinceℓ1 andℓ2 are horizontal, the lineℓ3 would be horizontal (its direction would be the
symmetric of the one ofℓ1 with respect to a vertical plane), contradicting the general position assumption.

It thus follows, since the directions of the asymptotes, projected on theXY-plane, are parallel to theX orY-axis
(by Proposition 18.17) that the oriented directions of the asymptotes of the branches of the projected trisector are
invariant (in the direction±X or ±Y) by continuous deformation on the set of triplets of lines ingeneral position
(which is connected by Proposition 18.13).

Hence, it follows from the analysis of one configuration (seeFigure 18.5) that the two projected asymptotes
of the branchC3 have the same oriented direction. ThusC3 has (at least) a critical point with respect to this
direction, which isX since there is no critical point with respect to theY-axis. We assume, for now, that the
oriented asymptotic direction of the two branches ofC3 is the−X direction (as in Figure 18.5), by changing, if
necessary, the orientation of the axis. In the sequel of the proof, all the critical points are considered with respect
to theX-axis.

Now, the plane, denotedP, parallel to theYZ-plane through a critical point of the trisector does not intersect
the trisector in any other point inR3 because the intersection at the critical point has multiplicity two, the plane
intersects the trisector in two points at infinity (by Proposition 18.17), and the trisector has degree four (it is the
intersection of two quadrics). It thus follows thatC3 has a unique critical point and that this critical point is strictly
left (i.e.,has smallerX-coordinate) of all the other critical points of the trisector. Furthermore, the planeP through
this leftmost critical point, that is the plane of equationX = X1, separates (strictly, except for the critical point)
the branchC3 from the other branches and leavesC3 on its left. In other words, the half-spaceX < X1 contains
C3 except for its critical point and the half-spaceX > X1 contains the other branches. It then follows from the
definition ofX2 that, for any ˜x∈ (X1,X2), the half-spaceX < x̃ containsC3 and the half-spaceX > x̃ contains the
other branches of the trisector. We thus get that the half-spaceX < x̃ containsU12 becauseU12 is bounded byC3

(by Proposition 18.14) and lies on a hyperbolic paraboloid of equationZ = γX Y, γ ∈ R (see Eq. (18.2)). Similarly,
the half-spaceX > x̃ containsT12.

It remains to show that the orientation of theX-axis obtained in Step (iii) of the algorithm is the same as the
one we have considered so far. Consider the twoX-values of the two trisector asymptotes parallel to theXZ-plane.
We prove that the maximum of these values is larger than the largest critical value. This implies the result since, if
the orientation of theX-axis was not as assumed above, it would have been changed in Step (iii).

As before, by continuity and by analyzing one particular example, we have that two of the asymptotes of
the branches ofC1 andC2 have direction+X (in projection) and the two others have direction+Y and−Y. We
consider here the trisector and its asymptotes in projection on theXY-plane and we refer to vertical, right and left
in a standard way in the(X,Y) frame. Suppose for a contradiction that there exists a critical point onC1∪C2 that is



18.6. ALGORITHMS 321

right of both their vertical asymptote. Then a vertical line, L, through this critical point would intersect the trisector
at this point, with multiplicity two, and at two other pointsat infinity (by Proposition 18.17). However, since the
critical point is right of the vertical asymptote ofC1 andC2, line L intersects the trisector somewhere else (or with
higher multiplicity), which is not possible since the trisector has degree four. �

The algorithm requires computing the critical values of thetrisector with respect to theX andY-directions.
We proved (in Proposition 18.18) that the trisector has no critical values in one of these directions. We show below
that the trisector admits at most four critical values with respect to the other direction. We consider below the
coordinate system obtained after Step (ii) of the algorithmabove.

Lemma 18.20. The trisector has three or four critical values with respectto the X-direction. Moreover, the tri-
sector has one critical point on C3, one on C1 ∪C2, and either two on C0 or C0 is a line perpendicular to the
X-axis.

Proof. We consider here critical points and critical values with respect to theX-direction. First, we proved in the
proof of correctness of the algorithm thatC3 has exactly one critical point. A similar study of the directions of the
branches of asymptotes ofC1∪C2 implies thatC1∪C2 has also exactly one critical point. On the other hand, we
have thatC0 has two identical asymptotes that are perpendicular to theX-axis (by Propositions 18.14, 18.17 and
Step (ii) of the algorithm) and thusC0 contains at least one critical point.

Consider first the case whereC0 is entirely critical. It then projects on theXY-plane to a line perpendicular
to theX-axis. It is planar and thus contained in the intersection ofa plane and a quadric (the bisector of any two
of the input lines).C0 is thus a line or an irreducible conic. The trisector never contains an irreducible conic (by
Theorem 18.1), thusC0 is a line that is perpendicular to theX-axis (since its projection on theXY-plane is). This
concludes the proof in the case where the trisector containsinfinitely many critical points. We assume in the sequel
the trisector has finitely many critical points.

Now, the projection (on theXY-plane) of the trisector is a curve of degree four. Furthermore, it has degree two
in X and degree two inY because the curve intersects any line parallel to theX- orY-axis in at most two points since
there are two other points of intersection at infinity (by Proposition 18.17). The projected curve thus has equation
A(X)Y2 +B(X)Y+C(X) = 0 whereA, B andC are polynomials of degree two inX. The critical points are points
on the curve such that the curve’s partial derivative with respect toY is zero. This partial derivative is of degree
one inY and two inX ; it has equation 2A(X)Y+B(X) = 0. The curve contains no critical point(X0,Y0) such that
A(X0) = 0 because otherwiseA(X0) = B(X0) = C(X0) = 0 and thus the line(X0,Y) is critical, contradicting the
above hypothesis. Hence, eliminatingY in the curve’s equation gives an equation inX of degree four.

SinceC1∪C2∪C3 has exactly two critical points,C0 has either zero or two critical points, counted with mul-
tiplicity. We have shown thatC0 has at least one critical point, thus it has exactly two critical points counted with
multiplicity. Finally, C0 cannot only have one double critical point because its two asymptotes are identical and
vertical. Hence, when the trisector has finitely many critical points, exactly two lie onC0, one onC1∪C2 and one
onC3. 2

The following proposition shows that the separating plane computed in the above algorithm may not be ratio-
nal.

Proposition 18.21.There exist three rational lines for which the two connectedcomponents of any two-dimensional
Voronoi cell cannot be separated by a rational plane.

Proof. Let P denote any plane separatingUi j andTi j . SinceP does not intersectC0, it is necessarily parallel to the
asymptote ofC0 (see Proposition 18.14).

We now exhibit an example of three rational lines such that there exists no rational plane parallel to an asymp-
tote of their trisector, which will conclude the proof. Consider three linesℓ1, ℓ2, andℓ3 in general position that have
direction(1,0,0), (1,1,0), and(2,0,1), respectively. By Proposition 18.11, the four asymptotes of their trisector
are parallel to the four trisector lines of three concurrentlines (say, through the origin) with directions those of
ℓ1, ℓ2, andℓ3 ; let ℓ′1, ℓ

′
2, andℓ′3 denote these lines.

The pair of bisector planes ofl ′1 and l ′2 has a square root of 2 in its coefficient : its equation (see Eq.18.1)
factors into(X − (1+

√
2)Y)(X − (1−

√
2)Y), which is the equation of a pair of conjugate planes overQ(

√
2)

(the field extension ofQ by
√

2). Similarly, the bisector planes ofl ′1 andl ′3 is a pair of conjugate planes overQ(
√

5)
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(it has equation(X− (2+
√

5)Z)(X− (2−
√

5)Z)). It follows that the four lines of intersection of these twopairs
of planes are conjugate overQ(

√
2,
√

5).
Furthermore, these four lines are not all parallel to a common plane because the intersection of the two planes

that are conjugate overQ(
√

2) is theZ-axis, which properly intersects each of the two other conjugate planes ;
thus, on each of these latter conjugate planes, the two linesof intersection properly intersect and thus any plane
parallel to them is parallel to the plane they define ; since the two conjugate planes are not coplanar, no plane is
parallel to the four lines of intersection.

Now, any rational plane that is parallel to one of these four lines is also parallel to the three others (since a
rational plane is invariant by conjugation overQ(

√
2,
√

5)). Since this is not possible, there is no rational plane
that is parallel to the asymptote ofC0, which concludes the proof. 2

We now present an algorithm for determining a rational linear test for separating the two components of any
two-dimensional Voronoi cell of three rational lines. Refer to Figure 18.5(b).

Rational linear test for separating the two connected components of a two-dimensional Voronoi cell.
Input : three rational linesℓ1, ℓ2, andℓ3 in general position in a coordinate system(X̃,Ỹ, Z̃) and i 6= j ∈

{1,2,3}.
Output : two rational half-spacesH ′

i j andH ′′
i j such thatH ′

i j ∩H ′′
i j strictly containsUi j and its complement

strictly containsTi j .

(i-iii) Idem as in the previous algorithm.

(iv) Compute the twoY-values of the two trisector asymptotes that are parallel totheXZ-plane. LetY1 < Y2

denote these two values.

(v) Determine a pointA with rational coordinates in the original(X̃,Ỹ, Z̃)-frame such that itsX-, Y-, andZ-
coordinates in the(X,Y,Z) frame are in(X1,X2), in (Y1,Y2), and equal to 0, respectively ; letXA denote
its X-coordinate in the(X,Y,Z) frame.

(vi) Determine two pointsB andC with rational coordinates in the original(X̃,Ỹ, Z̃)-frame such that their
X-, Y-, andZ-coordinates in the(X,Y,Z)-frame are, forB, in (X1,XA), in (−∞,Y1), and equal to 0,
respectively, and forC, in (X1,XA), in (Y2,+∞), and equal to 0, respectively.

(vii) Let Pi j (resp.P′
i j ) be the plane throughA andB (resp.C) that is parallel to theZ-axis. LetH ′

i j (resp.
H ′′

i j ) be the open half-space bounded planePi j (resp.P′
i j ) that contains the point at infinity in the−X-

direction.

Remark 18.22. Note that the transformation from the(X̃,Ỹ, Z̃)-frame to the(X,Y,Z)-frame is not necessarily
rational since the X- and Y-axes are not necessarily rational in the (X̃,Ỹ, Z̃)-frame. Nonetheless, the rational
coordinates of the points A, B, and C can easily be computed using interval arithmetic. We however did not study
the bit complexity of our algorithm, which requires finding rational values in between roots of constant-degree
polynomials whose coefficients are not rational.

Proof of correctness. We assume without loss of generality thati and j are equal to 1 and 2, respectively. We
have seen in the proof of correctness of the previous algorithm that the componentC3 has exactly one critical value
with respect to theX-axis, no critical value with respect to theY-axis, and two asymptotes in the−Y-direction.
The componentC3 is thus contained in the region defined byX < X1 andY1 < Y < Y2. It follows thatH ′

i j ∩H ′′
i j

containsUi j .
On the other hand, the complement ofH ′

i j ∩H ′′
i j strictly containsTi j because for any value ˜x ∈ (XA,X2), the

half-spaceX > x̃ containsTi j (as proved above) and this half-space is contained in the complement ofH ′
i j ∩H ′′

i j .
Finally, the planePi j is rational sinceA andB and are rational as well as theZ-axis (since it is the common

perpendicular toℓi andℓ j ). Similarly, planeP′
i j is also rational. �

Remark 18.23. Note that, if the three input lines are not rational, the above algorithm remains valid except for
the fact that the output half-spaces are not necessarily rational anymore (since the common perpendicular toℓi

andℓ j is not necessarily rational).

Separation of the four connected components of the trisector of three lines.
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Consider three linesℓ1, ℓ2, andℓ3 and the half-spaceH ′
i j andH ′′

i j obtained by the above algorithm. Proposi-
tion 18.14 (and Remark 18.23) directly yields the followingresult.

Proposition 18.24. For any point p on the trisector ofℓ1, ℓ2, and ℓ3, if p belongs to both half-spaces H′i j and
H ′′

i j for some i6= j ∈ {1,2,3} then p lies on Ck (with k∈ {1,2,3} distinct from i and j), otherwise p lies on C0.
Furthermore, if the three input lines are rational, the coefficients of H′i j and H′′

i j are rational.

We conclude this section by proving Theorem 18.3.

Proof of Theorem 18.3. First, the algorithms of this section and Proposition 18.24present some (rational) linear
tests for separating the connected components of the Voronoi cells of dimensions one and two. Second, we can
compute, as described in Steps (i-ii) of the above algorithms, a direction in which every branch of the trisector is
monotonic, which gives a linear test for ordering points on each trisector.

Now, if the three input lines are rational, the Cartesian coordinate system computed in the above algorithms is
such that theZ-axis is rational and, if theX-axis is irrational, a slight rotation of the frame around theZ-axis gives
a rational frame (i.e., a frame which is defined on the initial frame by a matrix with rational coefficients).

If, as in Figure 4a, there is a critical point on the lower branchC2 (for the projection on theX-axis) and if the
rotation is clockwise, then the projections ofC0, C1 andC2 on the newY-axis are monotonic. If the critical point
is on the upper branchC1 then a counter-clockwise rotation gives the same result. Thus the points on each of these
three branches can be sorted using a linear form with rational coefficients. The same result is obtained forC3 by
doing the same work after a circular permutation of the lines. �

18.7 Conclusion
We presented a complete description of the Voronoi diagram of three lines that are pairwise skew and not

all parallel to a common plane. We also presented some algorithms for determining a rational test for answering
queries of the form, given a point, determine in which connected component of which Voronoi cell it lies. We also
showed that points on a branch of the trisector of three linescan easily be ordered by comparing their coordinates
in a particular direction, which is however not necessarilyrational.

Future work includes the characterization of the topology of the Voronoi diagram of three lines that are not
in general position. Note that, in this case, the topology ofthe Voronoi diagram does indeed change ; for instance,
when three pairwise skew lines are all parallel to a common plane, their bisectors are hyperbolic paraboloids of
the formZ = Fi j (X,Y) and it follows that their trisector consists of two branches(instead of four) as it is the
intersection of one of the bisectors with a hyperbolic cylinder whose axis is parallel to theZ-axis (of equation
F12(X,Y)−F13(X,Y) = 0). Note also that when two of the lines are coplanar their bisector is one or two planes
and the trisector is thus either the intersection of two suchbisectors or the intersection of one such bisector with a
hyperbolic paraboloid.

A challenging problem is to study Voronoi diagrams of up to six lines ; this is of interest for the general case
of n lines because the arcs of such diagrams are defined by five lines. Finally, the two major problems remain the
determination of the complexity of Voronoi diagrams ofn lines and the design of efficient algorithms for computing
Voronoi diagrams of lines, segments, triangles, or polyhedra.
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Appendix : Maple-sheet computations
> sys:=subs(a=2,[gros_fact,op(convert(grad(gros_fact, [a,x,y,alpha,beta]),list))]):

> bs1:=factor(fgb_gbasis(sys,0,[x,y,alpha,beta],[])): map(uu->op(0,uu),%), op(1,bs1[3]);

[+, +, ∗, +, +, +, +, +, +], y+2α
> [op(bs1),1-u*(y+2*alpha), 1-v*(2*x+beta),1-w*(1+alph a^2+beta^2)]:
> bs2:=factor(fgb_gbasis_elim(%,0,[u,v,w],[x,y,alpha, beta])): map(uu->op(0,uu),%),map(degree,%);

[+, +, +, +], [6, 6, 6, 6]

> bs3:=factor(fgb_gbasis_elim(bs2,0,[x],[y,alpha,beta ])):map(uu->op(0,uu),%);

[ˆ]
> bs4:=factor(fgb_gbasis([op(bs2),op(1,bs3[1])],0,[x, y,alpha,beta],[])):map(uu->op(0,uu),%);

[∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, +, +, +, +]

> fgb_gbasis_elim([op(bs4),1-u*op(3,bs4[1])],0,[u],[x ,y,alpha,beta]);

[1]

> bs5:=factor(fgb_gbasis([op(bs4),op(3,bs4[1])],0,[x, y,alpha,beta],[])):map(uu->op(0,uu),%);

[+, +, +, +, +, ∗, +, +, +, +, +, +, ∗, +, +, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, +, +, +, +]

> fgb_gbasis_elim([op(bs5),1-u*op(3,bs5[6])],0,[u],[x ,y,alpha,beta]);

[1]

> bs6:=factor(fgb_gbasis([op(bs5),op(3,bs5[6])],0,[x, y,alpha,beta],[])):map(uu->op(0,uu),%);

[+, +, +, +, +, +, +, +, +, +, +, +, +, +, +, +]

> bs7:=factor(fgb_gbasis_elim(bs6,0,[y],[x,alpha,beta ])):map(uu->op(0,uu),%);

[∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ˆ]
> bs8:=factor(fgb_gbasis([op(bs6),op(1,bs7[nops(bs7)] )],0,[x,y,alpha,beta],[])):map(uu->op(0,uu),%);

[+, +, +, +, +, +, +, +, +, +, · · · , +, +, +, +, +, +, +, +, +, +]
> bs9:=factor(fgb_gbasis_elim(bs8,0,[alpha],[x,y,beta ])):map(uu->op(0,uu),%);

[∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, · · · , ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]
> fgb_gbasis_elim([op(bs9),1-u*op(nops(bs9[1]),bs9[1] )],0,[u],[x,y,alpha,beta]);

[1]
> bs10:=factor(fgb_gbasis([op(bs8),op(nops(bs9[1]),bs 9[1])],0,[x,y,alpha,beta],[])):
> map(uu->op(0,uu),%),op(2,bs10[3]);

[+, +, ∗, +, +, +, +, +, +, ∗, +, +, +, +, +, · · · , +, +, +, +, +], y+2α
> [op(bs10),1-u*(1+alpha^2+beta^2),1-v*(y+2*alpha), 1- w*(2*x+beta)]:
> bs11:=factor(fgb_gbasis_elim(%,0,[u,v,w],[x,y,alpha ,beta])):map(uu->op(0,uu),%);

[+, +, +, ∗, +, +, +, +, +, +, +, +, +, +, +]

> fgb_gbasis_elim([op(bs11),1-u*op(2,bs11[4])],0,[u], [x,y,alpha,beta]);

[1]

> bs12:=factor(fgb_gbasis([op(bs11),op(2,bs11[4])],0, [x,y,alpha,beta],[])):map(uu->op(0,uu),%),map(degre e,%);

[+, +, +], [4, 4, 4]
> bs12[3];
> Gamma2:=(4*y*alpha-4*x*beta-3)^2+3*(2*x+beta)^2+12* (y+2*alpha)^2+75;
> simplify(Gamma2-bs12[3]);

16α2 y2 +84−32βxαy+16β2 x2 +12x2 +12y2 +24yα+48α2 +36βx+3β2

Γ2 := (4yα−4βx−3)2 +3(2x+β)2 +12(y+2α)2 +75

0
> [op(sys),1-u*(1+alpha^2+beta^2),1-v*(y+2*alpha),1-w *(2*x+beta),1-t*Gamma2]
> fgb_gbasis(%,0,[u,v,w,t],[x,y,alpha,beta]);

[1]

TAB . 18.2 – About the proof of the Main Lemma.
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> st := time():
> bs3:=factor(fgb_gbasis(bs2,0,[x],[y,alpha,beta])):
> map(degree,%,x);
> map(uu->op(0,uu),%%);
> nops(bs3);

[4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

[+, +, +, . . . ,+, +, +, ˆ]

64
> fgb_gbasis_elim([op(1,bs3[64]),bs3[63],1-t*coeff(bs 3[63],x)],0,[t],
> [x,y,alpha,beta]):
> print(map(degree,%));
> bs12-%;

[4, 4, 4]

[0, 0, 0]

The elements of bs2 are in the ideal generated by bs12 :
> base12:=gbasis(bs12,DRL([x,y,alpha,beta])):
> map(uu->Gb[normalf](uu,base12),bs2);

[0, 0, 0, 0]

The square of the elements of bs12 are in the ideal generated by bs2 :
> base2:=gbasis(bs2,DRL([x,y,alpha,beta])):
> map(uu->Gb[normalf](uu^2,base2),bs12);

[0, 0, 0]

> print("Total CPU time:",time() - st);

“Total CPU time :”, 17.350

TAB . 18.3 – About the proof of the Main Lemma.
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> factor(subs(y=-a*alpha,big_fact));

(α4a4 +2βxα2a3 +x2a2 +β2x2a2−2a2 α2 +1+β2)

(β2−4a2−4a2 α2−4a4−4a4 α2−2aβx−4βxa3 +x2a2)2

> f0:=collect(op(1,%),x); f1:=collect(op(1,op(2,%%)),x );

f0 := (a2 β2 +a2)x2 +2βxα2a3 +α4a4 +1+β2−2a2 α2

f1 := x2a2 +(−2aβ−4βa3)x+β2−4a2−4a2 α2−4a4−4a4 α2

> factor(subs(x=-beta/a,big_fact));

(β4−2a2 β2 +a4 +a4 α2 +2β2 αay+α2y2a2 +y2a2)

(4+4β2 +4a2 +4a2 β2−a4 α2 +4ayα+2ya3 α−y2a2)2

> g0:=collect(op(1,%),y);g1:=collect(op(1,op(2,%%)),y );

g0 := (a2 α2 +a2)y2 +2β2 αay+β4−2a2 β2 +a4 +a4 α2

g1 := −y2a2 +(4aα+2a3 α)y+4+4β2 +4a2 +4a2 β2−a4 α2

Solutions of f1=0 in x and of g1=0 in y :
> map(uu->factor(uu),[solve(f1,x)]);

[
2a2 β+β+2

√

a2(a2 +1)(β2 +1+α2)

a
,

2a2 β+β−2
√

a2(a2 +1)(β2 +1+α2)

a
]

> map(uu->factor(uu),[solve(g1,y)]);

[
αa2 +2α+2

√

(a2 +1)(β2 +1+α2)

a
,

αa2 +2α−2
√

(a2 +1)(β2 +1+α2)

a
]

f0 is a sum of square :
> (a^2*alpha^2-1+a*beta*x)^2+(a*x+beta)^2;
> simplify(f0-%);

(a2 α2−1+aβx)2 +(xa+β)2

0

a*x+beta and g1 are in the ideal generated by y+a*alpha, x*a+beta, and a^2*alpha^2-1+a*beta*x :
> gbasis([y+a*alpha,x*a+beta,a^2*alpha^2-1+a*beta*x], DRL([a,x,y,alpha,beta])):
> normalf(a*x+beta,%), normalf(g1,%);

0, 0

g0 is a sum of square :
> (a*y*alpha+beta^2-a^2)^2+a^2*(y+a*alpha)^2;
> simplify(g0-%);

(ayα+β2−a2)2 +a2(y+aα)2

0

y+a*alpha and f1 are in the ideal generated by x*a+beta, y+a*alpha, and a^2*alpha^2-1+a*beta*x :
> gbasis([x*a+beta,y+a*alpha,a*y*alpha+beta^2-a^2],DR L([a,x,y,alpha,beta])):
> normalf(y+a*alpha,%), normalf(f1,%);

0, 0

TAB . 18.4 – For the proof of Lemma 18.8.
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> comp1 := [y = -a*alpha, x =
> (2*beta*a^2+beta)/a+2*sqrt((beta^2+1+alpha^2)*(1+a^ 2))];

comp1:= [y = −αa, x =
2βa2 +β

a
+2
√

(1+α2 +β2)(1+a2)]

We prove that the characteristic equation has no real root on this component.
> factor(subs(comp1,Char_eq));
> irrat:=op(2,%):

a2(4−4β2 λ3 +8a2−4λ3 +λ4−8λ−16α2 λa2−8β2 λa2 +8α2 +4β2 +12a2 α2 +12a2 β2 +4a4 +8a4 β2 +4a4 α2−8λa2−16α2 λ

−8β2 λ+8λ2 +4λ2 a2 +8a2 α2 λ2 +4β2 λ2 a2 +8β2 λ2−8βαa3 λ−8βαλa+8βαa3 +8aβα+8α
√

%1−8λa2 α
√

%1+λ4 β2

+λ4 α2 +4λ2 β
√

%1a−8λβ
√

%1a+12α2 λ2−4α2 λ3 +8β
√

%1a+8a2 α
√

%1+8βa3
√

%1−4λ3 α
√

%1+12λ2 α
√

%1−16λα
√

%1)

%1 := (β2 +1+α2)(1+a2)

Consider the product of the characteristic polynomial with its algebraic conjugate :
> T:=expand(irrat*subs(sqrt((1+a^2)*(alpha^2+beta^2+1 ))=-sqrt((1+a^2)*(alpha^2
> +beta^2+1)),irrat)):

The real semi-algebraic set defined by T-1/2<0 is empty :
> sampling_negative(T-1/2,[a,alpha,beta,lambda]);

Pre-process...............
Computing critical values of a polynomial mapping from C^4 t o C
Computing asymptotic critical values of a polynomial mappi ng from C^4 to C
"************************Enter in internal", [alpha,be ta, lambda], [], [], [a]
End of pre-process...............
Computing sampling points in a real hypersurface
Computing Critical Points using FGb (projection on a)
Computing Asymptotic Critical Values of a restricted to a hy persurface
Computing Critical Points using FGb (projection on alpha)
Computing Asymptotic Critical Values of alpha restricted t o a hypersurface
Computing Asymptotic Critical Values of alpha restricted t o a hypersurface
Computing Critical Points using FGb (projection on beta)
Computing Asymptotic Critical Values of beta restricted to a hypersurface
Computing Critical Points using FGb (projection on lambda)
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS

[]

Consider all the 3x3 minors of the matrixP(λ) of the pencil :
> ldet:=NULL:
> for i to 4 do for j from i to 4 do
> ldet:=ldet,det(minor(P,i,j)):
> od od:

The rank ofP(λ) is always 3 or 4 since there is no common zeros of the minors :
> [ldet,1-t*(1+alpha^2+beta^2)*(1+a^2)*(-beta+y+a*x-a *alpha)*(-beta-y+a*x+a*alpha)]:
> fgb_gbasis_elim(%,0,[],[t,a,x,y,alpha,beta,lambda]) ;

[1]

TAB . 18.5 – For the proof of Lemma 18.10.
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