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1.1 Technical Context

In 1980, Gordon Moore, Engineer at Fairchild Semiconductor, one of the two co-founders of Intel, stated

a law according to which the number of transistors on silicon chips was doubling every eighteen months.

Although it is not a real physical law, this prediction revealed to be incredibly exact. Between 1971 and

2001, the density of transistors actually doubled every 1,96 years. As a consequence, electronic devices

became more and more powerful and less and less costly.

Surprisingly, this evolution was accompanied by a miniaturization quite as continuous. The supercom-

puters of the 1960’s filled in a complete room, weighted several tons, for a computing capacity of only

a few thousands of instructions per second. The ATLAS, for example, was the most powerful computer

in the world in 1964, with two hundred thousands of instructions per second. This order of magnitude

of computing power gradually became the standard for micro-computers, calculators, and more and more

miniature objects which are now part of our daily life.

While it has been possible to envisage a miniaturization of the computers for a long time, very few

people had imagined that the miniaturization would reach such a point. In March 1949, for example, the

magazine “popular mechanics” wrote: “Where a calculator like the ENIAC today is equipped with 18,000

vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps

weigh only 1.5 tons.”.

Today, the specialists in the domain think that nothing should prevent Moore’s law from continuing for

at least the next 10 years. If the current evolution is extrapolated, the size of a transistor should reach the

scale of the atom in the years 2020. It is probable that Moore’s law cease to apply at this point. The speed

of computers will then either stagnate, or leap forward with the arrival of quantum computers.

While the physical limits of miniaturization and computing speed appear to be far from being reached,

other significant limitations are already coming into the picture today. The number of transistors, the size

of the memories, the frequency of the chips grow in an exponential way with time but other parameters are

also growing in the same proportions. For instance, the cost of a micro-electronics factory, the fixed costs

11
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for the manufacture of a chip, and its electric consumption are also growing exponentially with time. This

growth is mainly compensated by the growth of the market, which allows to share the fixed costs between a

larger number of chips, so that the total cost of each of them remains reasonable, but one should not neglect

that the growth of the market cannot be infinite.

Another limitation is the amount of code that the designers are able to write in a reasonable time.

Being able to increase the number of transistors on a chip is really interesting only if one is also able to

write the code which once synthesized, will give the organization of these transistors on the chip. With

traditional techniques, the productivity of the designers increases by only 30% a year, whereas the number

of transistors can increase by 50%. Without major innovation, the difference between the productivity of

the design and the capacity of the chips would thus increase approximately 20% per year. This divergence

is generally referred to as the “design gap”.

New techniques must consequently be set up continuously to fill in this gap. Tools for automatic

synthesis for the Register Transfer Level (RTL) to the gate-level have been a real revolution, but is not

sufficient anymore today.

The repartition of the functionalities between software and hardware solves part of the problems of the

“design gap”. It makes it possible to re-use the same chip in different contexts, thus sharing the fixed costs

between several projects. Programmable generic components, ranging from the entirely generic processor

to the DSP (Digital Signal Processor) and including the micro-controllers, can be used to design the chip. It

is generally admitted that a given functionality is approximately implemented ten times faster in software

than in hardware (but on the other hand, the performances of the software are not as good as ones of

hardware).

A new category of systems has been emerging during the last few years, including one or more proces-

sors, dedicated components and input/output modules, the whole fitting on a single chip. In other words,

current technologies make it possible to implement in a single chip the equivalent of the contents of a

computer motherboard. These systems are called System-on-a-Chip (SoCs).

The design of a System-on-a-Chip is thus a joint development of software and hardware. The hardware

only makes sense with its corresponding embedded software, and the software needs the hardware to run.

The constraints of the market force the development cycle of a chip to remain as short as possible, and

it is not acceptable to wait for the chip to physically exist to start the development of the corresponding

software. The development of the software has therefore to be carried out, or at least started, on a simulator.

A solution would be to use the synthesizable version of the hardware part of the chip as a simulator on

which to develop the embedded software. This approach (RTL simulation) is used in some contexts, but

the slowness of simulation does not allow scaling up. Moreover, this approach does not make it possible

to start the development of the software before the code for the synthesizable version of the hardware is

written.

The reason for which the simulation of the synthesizable model is so slow is that the level of abstraction

used (Register Transfer Level, or RTL) includes too many details of implementation, of protocols, which

are not relevant for the software. This led recently to the introduction of a new level of abstraction, called

Transaction Level Modeling or TLM, in which only what is necessary for the software to run is modeled.

At this level, a platform is a set of modules connected by communication channels. The communication

channels transport transactions, which are an atomic exchange of data between two modules, whose size

can vary, and is in general unrelated to the size of the bus.

The transaction level models must appear early in the design flow of a circuit, and become the reference

models for the following developments. The reliability of these models is thus particularly important. As

many bugs as possible must be found, as soon as possible. The systems considered are usually not “critical”

systems in the sense that the price of each bug is counted in human lives, but are systems for which the

price of a bug is counted in millions of dollars.

1.2 General Objectives for the Thesis

The most general objective of the thesis is to develop methods and tools to increase the reliability of

the chips by using the transactional models. Since TLM to RTL synthesis is believed to be infeasible

automatically and efficiently, the ideal product would be a formal comparison tool for TLM and RTL
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models. Such a tool would be extremely complex to develop both theoretically (to compare two programs

which use different concepts is a very difficult problem) and practically (one would need extraction tools

for both the TLM and the RTL levels).

Within the framework of a thesis (three man.year), it seemed much more reasonable to concentrate on

the transaction level, and to keep the questions of comparisons with lower abstraction levels for possible

future works. The objective of this thesis will thus be to check properties on the transaction level model,

independently of the levels of abstraction into which these models will be refined. Since TLM models

become the reference models for future development and validation, ensuring properties on TLM models

has consequences on the reliability of the final product.

Our idea is to start implementing a set of reusable building blocks, common denominators of any tool

handling the transactional models. A first application of this tool chain will be the formal verification of

transactional models by existing model-checking and abstract interpretation tools, as described in the final

chapter of this document. Other applications could be added thereafter.

1.3 Work Context and Motivations

This document presents the work carried out on the verification of transactional models, as part of a CIFRE

Ph.D (Industrial Conventions of Training by REsearch) between the “System Platform Group” (SPG) team

of STMicroelectronics and the “Synchronous Languages and Reactive Systems” team of the Verimag lab-

oratory, between October 2002 and December 2005.

It was the first thesis in co-operation between these two teams, and the first year of co-operation be-

tween STMicroelectronics and Verimag. The interest was thus not only the scientific contents of the thesis,

but also the creation of links between these two teams, which became one of the basis for a more durable

co-operation between STMicroelectronics and Verimag. Indeed, two other Ph.D students (Claude Helm-

stetter and Jérôme Cornet) joined the project and are working on related subjects. A common laboratory

between Verimag and STMicroelectronics is being created, as well as a Minalogic (a competitiveness center

dedicated to software for micro and nanotechnologies) project called OpenTLM.

The first stage was to understand the principles of the transaction level from a theoretical point of view.

From the point of view of STMicroelectronics, the development infrastructure for transactional models is

mainly guided by the immediate needs of the users. From a “research” point of view, it is important to

make sure that these developments are done on solid theoretical bases. The questionings raised by works

on the tool LUSSY, for example, helped us to understand the concepts of asynchronous execution and time

in SystemC, and contributed to the development of coding directives for the models with a notion of time:

the distinction between the levels “Programmer View” and “Programmer View plus Timing” presented in

the next chapter (section 2.2.2.2).

1.3.1 Motivations in the Industrial Context of STMicroelectronics

For the SPG team of STMicroelectronics, the general objective is to create a complete development envi-

ronment for models at the transaction level, based on SystemC. Before the beginning of the thesis, SystemC

components to model abstract communication channels had already been developed, as well as a prototype

of configuration management and build system to simplify the task of the users. Meanwhile, these tools

evolved. Bridges between various languages and protocols, a finer definition of the various levels of ab-

straction inside the transaction level, the integration of tools and simulators commercial, etc . . . were added.

A number of these improvements are short-term evolutions developed as a response to user requests.

In parallel, a longer-term approach, in co-operation with public laboratories, aims at improving method-

ologies, and anticipating future problems. The co-operation with the Verimag laboratory is a way to have

formal methods applied to concrete problems. One of the motivations for the strong presence of STMicro-

electronics in the region of Grenoble is to benefit from its rich scientific environment.
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1.3.2 Motivations in the Academic Context of Verimag

The Verimag laboratory has both a number of tools and a very good qualification level regarding pro-

gram verification. The laboratory, and the synchronous team in particular, tackles at the same time rather

fundamental research topics and industrial research ones.

A necessary condition to make good quality applied research is the availability of real case studies. One

of the motivations to study the transaction level modeling could be that a publication seems to have more

chance to be accepted if it contains key words like “TLM” or “System-on-a-Chip” for example, than if it

deals only with automata, or Moore or Mealy machines. We do not intend to take a theoretical problem

and try to convert it into an applied research topic by only adding some appreciated keywords that the

industry likes. Our starting point is actually a concrete problem to solve, and the way to do it is to look

for techniques applicable to it. The fundamental research topics make it possible to solve problems from

industrial research, and the case studies give the direction to be followed for the more theoretical questions.

For Verimag, a co-operation with STMicroelectronics is a way to understand the design flow of

Systems-on-a-Chip, from the inside.

1.4 Approach and Technical Choices

One of the characteristics of the problem which we are dealing with here is that we control neither the

language (SystemC is defined by a consortium on which we have only little influence), nor the execution

model (which is part of SystemC).

A solution could have been to study the execution model of SystemC, to redefine it in terms of automata

or another well known formalism, and to work directly and only on this formalism. This solution is not

very satisfying since it does not make it possible to test the approach directly on real case studies in an

automatic way.

A significant part of this work is thus the design and implementation of extraction tools. It is a manda-

tory first step for any formal work exploiting the characteristics of a new language. This extraction is

done in two phases: A “syntactic” extraction, which is a little particular in the case of SystemC, and a

“semantic” extraction. The one first is implemented in the tool PINAPA. It is already re-used in projects of

STMicroelectronics and other external research projects. The second one, implemented in the component

BISE of the tool LUSSY, could also be re-used in future work. The task of BISE can be summarized with

a transformation of the output of PINAPA, which is a strongly decorated syntactic tree representing the

SystemC program, into a simple and well defined structure of automata.

A series of transformations is then applied. Some are generic, others are specific to the models we

analyze. Some are exact transformations, others are abstractions. This is implemented in the component

BIRTH.

The last stage is to generate code for the external tools on which we rely for the proofs themselves.

We can today use all the tool chain of the LUSTRE [BCH+85] language, as well as the tool SMV [McM01,

McM93].

The tool LUSSY was entirely designed and implemented during this thesis. Some parts were carried

out with the assistance of students in second year of engineering school (Cédric Bonnot and Remi Emonet),

and a master thesis student (Muzammil Muhammad Shahbaz).

Our approach is similar to those of traditional compilers, with a front-end part, intermediate transfor-

mations, and a code generator. This approach allows us to have extremely few theoretical limitations, at

the syntactical as well as at the semantic level (in practice, some constructs were not useful for us and were

not implemented, but they could be easily so if necessary).

1.5 Summary of Contributions and Limitations of the Approach

The main contributions of this thesis are:

A method to extract information from a SystemC model and an implementation of this method called

PINAPA. We will see how SystemC is different from traditional languages, and how a SystemC
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front-end should be different from a usual compiler front-end. The approach followed for PINAPA

has no published equivalent to the best of our knowledge.

An executable formal semantics for TLM models written in full SystemC, with an operational transla-

tion tool; The output of this tool is reusable for other purposes.

A way of expressing safety properties in SystemC without the help of a new language;

An intermediate formalism, HPIOM, with a set of transformations and optimizations. This intermediate

representation can, and will probably be used outside LUSSY, as an intermediate format between

some of Verimag tools.

A working connection to several verification tools. This allowed us to prove some properties on small

platforms, and provided an interesting benchmark comparing the verification tools.

The tool LUSSY is still in prototyping phase. Some C++ or SystemC constructs have not yet been taken

into account, by lack of time, but could be added without real theoretical problem. As opposed to this, the

approach followed presents some intrinsic and theoretical limitations that would be much harder to work

around:

Extraction of information from SystemC is a difficult problem, not only to solve, but also do define in

the general case. We will see how, in the case of a program using dynamic data-structure to access

SystemC objects, it doesn’t really make sense to try to find the SystemC object represented by a

given variable. PINAPA uses an approach that avoids most of the limitations present in similar tools,

but can not make the link between variables of the program and SystemC objects in this case.

The HPIOM formalism is limited in terms of expressiveness. We had to take some design decisions and

find the trade-off between expressiveness and possibilities regarding formal and automatic proofs

for this formalism. We have chosen a simple automata formalism. The control structure is fixed,

dynamic process creation is not allowed, and the variables of the automata can not contain com-

plex data-structures. If the source program uses dynamic data-structures, recursive function calls,

etc. then the translation will have to lose some information. This loss of information is done in a

conservative way for safety properties, except in the case of function calls with side effects.

Translation from SystemC into HPIOM also introduces, optionally, a number of approximations preserv-

ing safety. They improve the performance of the proof engine, but prevent some properties from

being proved.

State explosion in the proof engine is actually the main limitation regarding the use of LUSSY for formal

verification. On medium size platforms like EASY presented in section 2.5, LUSSY is able to per-

form the complete translation and can generate either LUSTRE or SMV, but in both case, no property

could be proved. However, LUSSY provides all the building blocks to apply other proof techniques,

such as modular model-checking, that could allow scaling up better.

1.6 Outline of the Document

This document is divided into three parts:

I. An approach for the Verification of Systems-on-a-Chip: This first part gives a general vision of the

concept of transaction level models, and possible formal approaches for their verification. Chapter 2,

“Modeling Systems-on-a-Chip at the Transaction Level in SystemC” introduces the transaction level,

and the SystemC implementation we’re interested in thereafter. Chapter 3, “Overview of LUSSY:

A Toolbox for the Analysis of Systems-on-a-Chip at the Transaction Level” presents our verification

approach as well as the alternatives. One also finds there a short presentation of the tool LUSSY, his

components and the way in which they are organized.
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II. Automatic Extraction of Formal Semantics of SystemC Models: In this second part, the extraction

we used are presented. Chapter 4, “PINAPA: Extracting Architecture and Behavior Information

From SystemC Models” presents the first component, whose role is similar to the one of a com-

piler front-end, for SystemC programs. Chapter 5, “HPIOM: Heterogeneous Parallel Input/Output

Machines”, presents the intermediate structure we use to represent the semantics of SystemC. The

translation itself is detailed in chapter 6, “BISE: Semantics of SystemC and TLM Constructs in Terms

of Automata”, which transforms the output of PINAPA into HPIOM.

III. Using HPIOM for Formal Verification: This part presents the use of the data extracted from the for-

mal checking. Initially, a series of transformations is applied to the generated automata, as pre-

sented in chapter 7, “BIRTH: Back-end Independent Reduction and Transformations of HPIOM”.

Finally, chapter 8, “Back-Ends: Connecting HPIOM to Verification Tools” introduces the genera-

tion of LUSTRE and SMV code, which makes it possible to use model-checkers, abstract interpreters

and SAT solvers to prove properties on the models. A comparison between these various tools is

provided.

Conclusion: The last part is the conclusion, and presents the perspectives.

The attentive reader will notice that no chapter is dedicated to bibliography. Indeed, the topics treated

in the various chapters are different, and we preferred distributing the bibliographical references and re-

lated works in each chapter. Similarly, the implementation of the tool LUSSY is described all along the

document, and not in a dedicated part.
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2.1 Introduction

Quality and productivity constraints in the development tools for the design of embedded systems are

increasing quickly. The physical capacity of chips can usually grow fast enough to satisfy those needs: The

evolution of the number of transistors on a chip has been following Moore’s law (growth of 50% per year)

for decades, and should keep on following it for at least 10 years. But one of the design flow bottlenecks

is the design productivity: with traditional techniques, it grows only by around 30% per year, leaving a

gap, increasing by 20% per year between the capacity of the chips, and the amount of code the designers

are able to write. This problem is often referred to as the design gap. New techniques have to be settled

continuously to be able to fill in this gap.

This chapter will first present today’s design flow, with the different levels of abstraction used to de-

scribe a chip (section 2.2). Then, we will detail the Transaction Level Modeling level of abstraction that will

be studied in this document (section 2.3), and present the way it is implemented in SystemC (section 2.4.3).

The chapter ends with a small case study: The EASY platform, in section 2.5.
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2.2 The Systems-on-a-Chip Design Flow

One of the past technological revolution in the hardware domain has been the introduction of the Register

Transfer Level (RTL) to replace the gate-level as an entry point for the design flow. The gate-level de-

scription uses only the simple logic operators (and, or, not, . . . ) to describe the design, whereas the RTL

level allows the notion of register (one-word memory), and a data-flow description of the transfers between

registers at each clock cycle. Since the translation between RTL and gate-level descriptions can be done

automatically and efficiently, the gate-level description is today mainly an intermediate representation syn-

thesized from the RTL code, used for the chip manufacturing, but seldom written by hand (we can compare

the role of the gate-level description in the chip design flow with the role of the assembly language in the

compilation of software).

2.2.1 Hardware – Software Partitioning

Raising the abstraction level above the gate-level has been a real progress, but is not sufficient to fill in

today’s design gap. It is necessary to maximize the reusability of the chip components, usually called

Intellectual Properties (IPs). This can be achieved by using software components instead of Application

Specific Integrated Circuits (ASIC).

Software components can be easily reused, modified at all steps of the design flow (a bug can be fixed

or a feature can be added even after the device has been sold to the final customer). On the other hand, they

are much less efficient both in terms of computation time and in terms of power consumption.

Therefore, designers need to find the compromise between software and hardware: implement the

performance-critical operations using dedicated hardware components, and the non-critical parts using

software. Deciding which feature will be implemented in software and which one will be implemented

in hardware is called hardware/software partitioning. The result is a mixture of software and hardware,

intermediate between general purpose CPU and ASIC and containing several components executing in

parallel. It is called a System-on-a-Chip.

Since one of the main tasks of the embedded software is to program the hardware components, the

software, or at least its low-level layers, will be highly hardware-dependent, and will not run unmodified

on a standard computer. There are mainly two ways to execute such software: 1) execute it on the physical

chip, and 2) execute it on a simulator.

The first option is not acceptable during the development because of time-to-market constraints: the

software needs to be finished and validated a few weeks after the chip comes out of the factory. Fur-

thermore, developing embedded software can help in finding bugs in the hardware, and the cost of a bug

discovered on the physical chip is several orders of magnitude higher than a bug found before manufactur-

ing the first chip: the first step of the manufacturing is to build the mask that will be used for the lithography

of all chips. Any non trivial bug fix needs a complete rebuild of the mask, which costs around one million

dollars (the cost of masks tends to grow exponentially with time, so we can’t expect this problem to be

solved by itself in the next few years).

The “trivial” way to simulate the hardware part of the chip is to use the RTL description. Unfortu-

nately, due to the highly parallel nature of hardware, simulation of a large RTL design is extremely slow.

It is possible to replace some components of an RTL simulation by a simulator, typically written in C, to

increase the simulation speed. A common technique is to replace the processor by an instruction set simu-

lator (ISS), and the memory by a simple array. This technique, mixing behavioral and RTL components is

called cosimulation.

The next step is to get rid of RTL components and clocks completely. This raises the level of abstraction

above the RTL. An emerging level of abstraction is the Transaction Level Model (TLM), and will be detailed

later.

Hardware devices dedicated to RTL simulation also exist (hardware accelerators, or hardware emulators

based on programmable hardware like FPGA). See for example [GNJ+96]. They are extremely costly and

offer very few or no debugging capabilities. They are usually used to run a large test-bench in batch mode,

but not for interactive debugging.

Figure 2.1 shows the simulation time we get on the same computation with those different techniques.
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2.2.2 Different Levels of Abstraction

This section details one by one the different levels of abstraction used to describe hardware. Ideally, the

design flow should start by the highest level, and refine, either automatically or manually to the lowest level.

Figure 2.2 illustrate the relationship between the different levels of abstraction. On the left are the levels of

abstractions, and on the right are examples of commonly used technologies at this level of abstraction. On

this picture, the ideal design flow starts from the top and refines to the bottom.

The distinction between those levels of abstraction is widely (but not quite universally) accepted. Of

course, some intermediate levels can be added. See for example [Pas02] (written by an STMicroelectronics

employee) or [CG03]. The way to implement them is still subject to discussion, although a standardization

effort is ongoing.

2.2.2.1 Algorithm

The highest level (below the specification) is the algorithm. For multimedia devices, at least part of the al-

gorithm is provided by a norm, and reference implementations often exist. Algorithms are usually designed

in high level programming languages, such as MatlabTM, or in C. At this level, the notion of software or
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hardware components does not exist, and the notion of parallelism is not yet taken into account.

2.2.2.2 Programmer View: PV

Then comes the Transaction Level Model, which actually splits into two flavors: the Programmer View

(PV), and the Programmer View plus Timing (PVT).

At this level, the chip is modeled as a platform made of several modules. Each module shows to the

external world all its functionalities, and only its functionalities. The timing aspects, for example, are not

yet taken into account.

Communication between modules is done through a model of interconnect (the interconnect itself is

the set of channels existing on the chip), made of one or several communication channels, whose role is to

route a piece of data from a module to another one. This exchange of data is called a transaction.

At this level, the size of a transaction is not necessarily related to the data-width of the bus (which is

not necessarily known when the PV platform is written). For an image processing algorithm, for example,

the PV model can decide to transmit the data line by line, block by block, or even image by image.

An important part of the PV level is the system synchronization. At this level of abstraction, we have

no real notion of timing, so the system is mostly asynchronous. A set of independant processes could

hardly give a consistant behavior. For example, when a process needs a piece of data that is the output of

another process, we have to ensure that the value will be produced before being used. The communication

channels are not only usefull to transmit data from one module to another, but can also be used for the

system synchronization. Some channels can also be dedicated to synchronization and transmit no data.

This is the case for the model of an interrupt signal. It can be modeled as a boolean signal (we will observe

the edges of the value, but not the value itself), or even a channel without value.

At this level of abstraction, the model contains all the necessary and only the necessary information to

run the embedded software (thus its name).

The organization of the program is completely different from the one of the algorithmic level. The first

partitioning is done, the algorithms are parallelized, even if the decision of implementing some blocks in

hardware or software is not necessarily taken (since hardware/software partitioning is done based on the

results of performance analysis, and since the PV level does not take performance into account, we still

miss some information). Some tools can help taking partitioning decisions, and some code can be reused,

but an automatic translation from the algorithm level to the PV level can not exist.

2.2.2.3 Programmer View plus Timing: PVT

While TLM was originally created to ease the development of embedded software, it also proved to be

useful for preliminary performance analysis. Since the TLM model contains less details than the RTL, it

can be written faster (it is usually admitted that a PV model can be written ten times faster than its RTL

equivalent), and should be available earlier than the RTL in the life cycle of a chip. It is therefore reasonable

to use it to take decisions about the RTL design (identify the bottlenecks, dimension the modules and

communication channels).

Unfortunately, the PV level does not contain the timing information necessary to perform such analysis.

It is therefore necessary to enrich the PV model with timing information, with some constraints: The

functionality of the PV model must not be modified (the functional equivalence between PV and PVT

must be correct-by-construction as much as possible), and the effort to write the PVT model based on the

PV model must be as low as possible, and in particular, lower than the effort to write a PVT model from

scratch.

At this level, the architecture of the model must correspond to the one of the actual platform. Each

data-transfer in the RTL model must correspond to a transaction of the same size in the PVT model.

By adding timing information on each data treatment or transfer, we get a good approximation of the

timing of the platform. Ideally, it should be cycle-count accurate (one knows how long a transaction takes),

but not cycle-accurate (one doesn’t know exactly what happens at a given clock cycle).

20/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



2.2. The Systems-on-a-Chip Design Flow

2.2.2.4 Cycle-Accurate: CA

The next step increasing the precision of the model is to add the notion of clock. A cycle-accurate model

describes what happens at each clock cycle. It can still abstract some details, but needs to be aware of the

micro-architecture of each component (for example, a model of a processor needs to model the pipeline to

be cycle-accurate).

2.2.2.5 Register Transfer Level: RTL

The Register Transfer Level has been discussed earlier. It is the first level of abstraction to be precise

enough to be synthesizeable automatically and efficiently. It is bit-accurate, cycle-accurate, and describes

all the internal details of each component. Designs at this level of abstraction are usually implemented

using the VHDL (Very large scale integrated circuits Hardware Description Language) or Verilog language.

The difference between RTL and the different flavors of TLM is important. The TLM model does not

contain as much information as the RTL version does, and they use different kinds of description language.

The RTL level is intrinsically highly parallel and data-flow oriented, while the TLM is usually written

in a traditional imperative language, with a lower degree of parallelism. One could imagine an efficient

synthesis tool from “slightly above than RTL” to RTL, but an automatic translation from a real TLM model

to its RTL version is not possible, or at least not possible in a reasonably efficient way.

2.2.2.6 Gate Level, Back-End

The design flow from the RTL design to the factory is well established (although in constant progress). The

gate-level netlist is automatically generated from the RTL, then comes placement and routing to transform

the netlist into a two-dimensional view, that will be used to draw the lithography mask to be sent to the

factory. Synthesis from RTL to gate level is possible efficiently, and is a well established methodology.

2.2.3 Verification, Validation, Test

2.2.3.1 Terminology

Ensuring the reliability of systems is a general problem in all disciplines. The methods may differ, but the

terminology also differs from the hardware community to the software community.

For a software engineer, validation means verifying that software is reliable. Test is one way to achieve

validation, by executing the software and observing its potential failures. Verification is another way to

achieve the same goal, by proving formally that the software is correct.

For a hardware engineer, validation also means verifying that system (hardware and software) is re-

liable. Verification is somewhat synonymous, and doesn’t have the “formal proof” connotation that the

word has for the software community. Test is something completely different, it means verifying that the

physical chip has been correctly manufactured. Finding bugs by executing the description of the hardware

is called simulation.

2.2.3.2 Overview of the Methodologies

Testing a chip is done at the end of manufacturing, for each chip. This is the equivalent of checking that a

CD has been pressed correctly for software. It will not find bugs in the design (like checking data integrity

on a CD will not ensure the software on it is bug-free). Since testing requires stressing internal parts of the

chip, and since the machines used for testing are extremely expensive, a part of the test material is usually

integrated in the chip (this is called BIST, for “built-in self test”). This portion of the chip will be used

only once in the life of the chip. It is usually not modeled at levels higher than RTL, since it would be both

useless and irrelevant.

As explained above, the embedded software is ideally developed on a simulator, and available at the

time the chip is obtained from the factory. However, the final validation can, and has to be done on the

physical chip. In some cases, it is even possible to update the embedded software after distributing it to the

final customer, so, software bugs are problematic, but less so than hardware bugs.
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The main priority is to avoid sending an incorrect design to the factory. Doing so would cost at least

the price of the mask, i.e. millions of dollars. The focus is therefore on the RTL design. Assuming the

synthesis tools are correct, a correct RTL design should lead to a correct chip.

Formal verification is used when applicable (small devices, or well-isolated parts of components, such

as bus protocols management), but simulation is today the main way to verify a design. A typical RTL

test-bench will run during several hundreds of hours, and may need several days even when parallelized on

a large cluster (a common practice is to run regression test-benches every week-end on all the workstations

available). It clearly needs to be completely automated.

Test-bench automation means having an automatic execution environment, and distribution on a cluster

of computers, but it also means the diagnosis must be automated. Manual examination of execution traces

would take millenniums and can not be generalized. Usually, verification by simulation will be done by

comparing the system under test with a reference implementation.

2.2.3.3 Reference Model

Comparison can be done by comparing the state of the memory of the system at the end of the execution

of the test-case (or at some well-defined milestones). If the system contains a processor, then it is possible

to run a piece of embedded software on it. Otherwise, it is possible to build a verification environment

containing a processor, a RAM, and the system under test. This raise a number of technical problems, to be

able to examine the state of the memory, to allow a VHDL system under test to run in the same environment

as a SystemC reference implementation for example. It also requires having relevant test-cases. The last

problem is to have a reference implementation.

For simple designs, the reference implementation could be written in C, but with the growing com-

plexity of Systems-on-a-Chip, writing the reference implementation represents a big amount of work. It

requires taking parallelism into account, having a notion of reusable components, and fast simulation speed.

Actually, those requirements are almost the same as the one of the PV level. A good reference implemen-

tation is the PV model of the platform.

The TLM levels are therefore not only useful for software development and architecture analysis, but

also for design verification. Since the TLM models often become the reference implementation, their

reliability is very important.

2.3 The Transaction Level Model

2.3.1 Example of a TLM platform

Just to get the flavor of what a TLM model is, observe Figure 2.3. It shows a subset of the typical archi-

tecture of a system-on-a-chip, namely the ARM’s PrimeXsys wireless platform. The architecture is made

of components and several kinds of connections. The main initiator module is a processor. High level

communication is done through the data and instruction buses, and interrupts are managed through syn-

chronous signals. A transaction from A to B is the encapsulation of a potentially complex data structure,

being transmitted according to a complex protocol that may involve several low-level information transfers

in both directions (the data sent, the acknowledgement, etc.). This kind of design is mainly asynchronous,

in the sense that the designer cannot rely on a global time scale: a component is developed without knowing

whether the others components will have the same clock, and that is why synchronization between them

involves general protocols.

2.3.2 TLM Concepts and Terminology

[Ghe05] gives a very complete description of the TLM abstraction level, its usage and the way it is imple-

mented on top of SystemC in STMicroelectronics. We will present here the most important concepts.

A component of a TLM platform is called a module. A module usually corresponds to a hardware

component in the corresponding RTL platform. It defines a state and a behavior, modeled by a set of

concurrent processes. A process is typically implemented in a general purpose programming language
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Figure 2.3: An Example TLM design

such as C or C++. Note that a full platform can itself be considered as a module of a larger one. The

interactions between the modules are the system synchronization and data transmission.

Although the implementation of the chip may be synchronous, the communication between the different

modules can not rely on precise timing information. For example, if a component programs the DMA to

write to a given memory zone, it would not be reasonable for another module to read to this memory zone by

just waiting “a sufficient amount of time” and then to read the data. A system must clearly characterize the

causal relation between its different processes in order to ensure proper system behavior. In our example,

the DMA should raise an interrupt and a module requiring the written data should wait for this interrupt.

The execution model of TLM is not so different from the model of distributed systems: in both cases,

the components have no shared variable, and can not rely on a global clock or time scale. Both the com-

munication and the system synchronization have to be made explicit.

The modules communicate with the rest of the platform through ports. They are connected together

using a model of interconnect. This can be a simple bus model, but some recent chip designs also use

much more complex routing mechanisms, replacing buses by so-called Networks-on-a-Chip (NoC). At the

transaction level, we put no restriction on the type of interconnect that will be used in the implementation.

In TLM, data-transmission between modules is done through transactions. A transaction is an atomic

exchange of data between two modules through a communication channel.

The port from which the transaction is triggered is called the initiator port, and the other one the target

port (the literature also uses the terms “master” and “slave” to refer to the same concepts). An initiator

module (resp. target module) is a module containing an initiator port (resp. target port).

The data is not necessarily transmitted from the initiator to the target: in the case of a read in a memory,

for example, the transaction is initiated by an initiator module (typically, a CPU or a DMA), routed to the

memory, which acts as a target module to serve the transaction and return the data to the initiator. This can

be compared to network protocols where the client initiates a request, which is processed by the server.

The protocol can implement a mode for transactions to specify how the transaction should be processed by

the target. It is usually READ, WRITE, or another protocol-specific constant.

In the case of a model of a bus, the address will simply be a n-bits integer value (where n is the width

of the bus), and the data can be any multiple of the bus width, plus some meta-data like the byte-enable

(which byte is relevant in a word or set of words – a byte being the smallest data manageable by the system,

and a word a piece of data of the width of the bus).

2.3.3 Importance of TLM in the Design Flow

The primary goal of TLM was to allow early embedded software development, and to tighten hardware

development and software development in the SoC design flow. However, the same level of abstraction can
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be used for several different tasks.

We have seen in section 2.2.2.3 that with a reasonable effort, a purely functional TLM model (PV) can

be enriched to provide a good approximation of the timed behavior, with a fast simulation speed (PVT).

The decisions taken using this model are crucial for the rest of the design flow. A wrong estimation of the

performance can lead to a complete reorganization of the chip.

As TLM models appear early in the design flow, they also become de facto reference models for the

final chip. The verification of the RTL design will be done mainly by comparing the result of the execution

of TLM model with the execution of its RTL equivalent.

The correctness of the TLM models are therefore critical. The later a bug is found in the design flow,

the more costly it is.

2.4 SystemC and the TLM API

2.4.1 Need for a new “language”

We have defined the TLM level of abstraction. To be applicable in practice, we need a way to write and

execute such models.

The main technical requirements are the following:

Efficient simulation: The main reason to write TLM models instead of RTL models is to gain several

orders of magnitude in terms of simulation speed.

Modular design and code reuse: Classical software paradigms such as genericity, support for abstract

data-type or object oriented programming can be helpful at this level.

Parallel execution semantics: The components must execute their behavior in parallel, synchronize

themselves, and communicate together.

Additionally, one can require interfacing with standard Hardware Description Language (HDL) lan-

guages (VHDL, Verilog), easy debugging, and powerful tools for visualizing execution traces.

It is more than desirable to build the TLM technologies on open standards for several reasons. First

the models written in this language will become crucial in the life cycle of the chip, so, a dependency to

a CAD (Computer Aided Design) vendor would mean a very strong dependency. Furthermore, the code

reuse objective can only be achieved if the modules to be reused are compatible. This means the technology

has to be supported by all the IP providers, which is unlikely to happen for a proprietary technology.

A number of other approaches have been proposed for the description of heterogeneous hard-

ware/software systems with an emphasis on formal analysis. See, for instance, Metropolis [BLP+02].

In this type of approach, the definition of the description language is part of the game. The language can

be defined formally, and tailored to allow easy connections to validation tools.

The need for efficient simulation and the preference for well-known languages lead to consider a C-

based, or C++-based approach. [Arn99], although oriented towards the promotion of a commercial tool,

gives a good overview of the motivations behind this approach. A similar approach is to create a new

language, inspired from C and C++, with the additional required features. This is the approach followed by

SpecC [FN01]. The approach didn’t get a lot of success in the industry, partly because it requires a specific

compiler.

SystemC 2.0 has been designed to meet the above requirements. It is open source and relies on an ISO

standard language: C++. This is crucial for two reasons: first, it guarantees a fast learning-curve for the

engineers of the domain; second, it guarantees that the models of systems developed in SystemC can be

exploited even if the tool that was used to build them is no longer available. SystemC itself is defined by the

Open SystemC Consortium Initiative (OSCI), involving the major actors of the domain. SystemC is now an

IEEE standard (IEEE 1666). It is actually a set of classes for C++, providing modules, signals to model the

low-level communications and synchronizations of the system, and a notion of simulation time. SystemC

designs are made of several processes that run “in parallel”, according to a scheduling policy that is part

of the SystemC library specifications. They are described in full C++ code. Unlike Metropolis, SystemC

has not been defined with formal analysis in mind. Originally, it is mainly a simulation and coordination

language, aiming at accepting all kinds of hardware or software descriptions in a single simulation.
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Developing tools for SystemC is therefore interesting. SoC case-studies written directly in SystemC

can be obtained from industry, and used to validate an analysis approach. The use of any academic formal

language as the core of an analysis tool would imply that any case study is first rewritten into this language,

before analysis can be performed. Then the validity of the results obtained, with respect to the original

system, can be questioned.

2.4.2 The SystemC Library

We give here a brief tutorial of the SystemC library. Complete information can be found in the SystemC

Language Reference Manual [Ope03].

A model written in SystemC is executed in two phases:

Elaboration: The entry point for the execution of the model is the function sc_main() (the SystemC

library itself provides the main() function, which is a very simple wrapper around sc_main()).

This starts the elaboration phase during which the modules will be instantiated in the usual C++ way,

and connected (bound) together. Then, the program calls the function sc_start that will launch

the simulation.

Simulation: After the call to sc_start(), the architecture of the model is fixed. No module can be

instantiated, and the binding can not change. The SystemC kernel will call the member functions of

the modules that have been registered as processes. This is called the simulation phase.

During the simulation, SystemC distinguishes two kinds of processes: SC THREAD and SC METHOD

(plus the semi-deprecated SC CTHREAD). An SC THREAD is an explicit infinite loop. It is a function that

never terminates, but that hands back the control to the scheduler using the wait statement or equiva-

lent. An SC METHOD in a process that executes in zero time, implemented by a C++ function that must

terminate, and that will be called repeatedly by the scheduler.

2.4.2.1 Example of a SystemC Model

Figures 2.4 and 2.5 give an example of a SystemC program. They are not meant to be examples of good

programming practice, but to illustrate the possibilities of SystemC, and later the features and limitations

of our tools.

2.4.2.2 Architecture of a Model

In SystemC, the modules are instances of the class sc module. Each module may contain one or more

processes. Communication internal to a module can be done in several ways (shared variables, events, etc.),

but inter-module communication should be expressed with SystemC communication primitives: ports and

channels.

A module contains ports, which are the interface to the external world. The ports of different modules

are bound together with communication channels to enable communication. SystemC provides a set of

communication interfaces such as sc_signal (synchronous signals), and abstract classes to let the user

derive his own communication channels.

In the pieces of code of Figures 2.4 and 2.5, we have here two definitions of modules, one of which is

instantiated twice. The model is represented graphically in Figure 2.6.

2.4.2.3 Simulation Phase

The elaboration phase ends with a call to the function sc_start() that hands the control back to the

SystemC kernel (line 70 in our example). The last part of the execution is the simulation of the program’s

behavior. The SystemC kernel executes the processes one by one, according to the algorithm presented in

Figure 2.7.

Initially, all processes are eligible. Processes are ran one by one, non-preemptively, and explicitly

suspend themselves when reaching a waiting instruction. There are two kinds of waiting instructions: a
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1 #include "systemc.h"

2 #include <iostream>

3 #include <vector>

4

5 struct module1 : public sc_module {

6 sc_out<bool> port;

7 bool m_val;

8 void code1 () {

9 if (m_val) {

10 port.write(true);

11 }

12 }

13 SC_HAS_PROCESS(module1);

14 module1(sc_module_name name, bool val)

15 : sc_module(name), m_val(val) {

16 // register "void code1()"

17 // as an SC_THREAD

18 SC_THREAD(code1);

19 }

20 };

21

22 struct module2 : public sc_module {

23 sc_in<bool> ports[2];

24 void code2 () {

25 std::cout << "module2.code2"

26 << std::endl;

27 int x = ports[1].read();

28 for(int i = 0; i < 2; i++) {

29 sc_in<bool> & port = ports[i];

30 if (port.read()) {

31 std::cout << "module2.code2: exit"

32 << std::endl;

33 }

34 wait(); // wait with no argument.

35 // Use static sensitivity list.

36 }

37 }

38 SC_HAS_PROCESS(module2);

39 module2(sc_module_name name)

40 : sc_module(name) {

41 // register "void code2()"

42 // as an SC_METHOD

43 SC_METHOD(code2);

44 dont_initialize();

45 // static sensitivity list for code2

46 sensitive << ports[0];

47 sensitive << ports[1];

48 }

49 };

Figure 2.4: Example of SystemC Program: Definition of Modules

26/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



2.4. SystemC and the TLM API

50 int sc_main(int argc, char ** argv) {

51 bool init1 = true;

52 bool init2 = true;

53 if (argc > 2) {

54 init1 = !strcmp(argv[1], "true");

55 init2 = !strcmp(argv[2], "true");

56 }

57 sc_signal<bool> signal1, signal2;

58 // instantiate modules

59 module1 * instance1_1 =

60 new module1("instance1_1", init1);

61 module1 * instance1_2 =

62 new module1("instance1_2", init2);

63 module2 * instance2 =

64 new module2("instance2");

65 // connect the modules

66 instance1_1->port.bind(signal1);

67 instance1_2->port.bind(signal2);

68 instance2->ports[0].bind(signal1);

69 instance2->ports[1].bind(signal2);

70 sc_start(-1);

71 }

Figure 2.5: Example of SystemC Program: Main Function

code1

code1

code2ports[1]

instance1 1

instance1 2
port

port ports[0]

instance2

Figure 2.6: Graphical View of the SystemC Program
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process may wait for some time to elapse, or for an event to occur. While running, it may send events, or

write on signals. These actions are stored in the data structure F, until the update phase, at the end of the

evaluation phase; then they are taken into account one by one: an event awakes the processes that were

waiting for it; a signal write is stored in V for the next reads. When there is no more eligible process at the

end of an update phase, the scheduler lets time elapse, awaking the processes that have the earliest deadline.

Note that this algorithm gives only the simpler cases. Uninitialized processes, instantaneous notification

for example would add particular cases.
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E: the set of eligible processes

S: a set of tuples (P, e) of sleeping processes

waiting for events

T: a set of tuples (P, t) of processes

associated with time events

F: a set of event or signal consequences:

(EV, e) or (SIG, s, v)

V: a set of tuples (s, v) for signal values

E := { all processes, except those on which dont_initialize() has been called.}

loop until the end of simulation

while E 6= ∅ one execution of this loop body is a δ-cycle

// the so-called evaluation phase:

while E 6= ∅

P := one element in E ; E := E − { P }

run P, while filling F and reading signal values in V, until it stops:

if P emits an event e: F := F ∪ { (EV, e) }

if P writes a value v on a signal s: F := F − { (s, ...) } ∪ { (s, v) }

if P stopped on a wait-time (t) T := T ∪ { (P, t) }

if P stopped on a wait-event S := S ∪ { (P, e) }

end

// the so-called update phase:

For each element f in F

if f = (EV, e) then

for each (P, e) in S: E := E ∪ { P }; S := S − { (P, e) }

if f = (SIG, s, v) then V := V − { (s, ...) } ∪ { (s, v) }

F := F - f

end

end

min = minimum value of the ti’s in the set T = { (Pi, ti) } // let time elapse:

for each element x=(Pk, min) in T

T := T - { x } ; E := E ∪ { Pk }

end

end loop

Figure 2.7: The SystemC scheduler algorithm.
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This algorithm may appear strange to someone used to software scheduling. This idea actually comes

from the RTL Hardware Description Languages that use the notion of δ-cycle to approach the synchronous

semantics: for instance, suppose one wants to write a n-bits adder, by composing n one-bit adders, each

containing one process. In the physical execution, the carry will propagate until all signals are stabilized. If

the carry propagation is longer than the clock cycle, then the timing is incorrect. In a digital simulation, we

do not have this notion of physical propagation, but the simulation semantics should be as close as possible

to the physical behavior. If we execute the processes only once in a clock cycle, in an arbitrary order, then,

the result will be dependent on the order of execution. If the least-significant bits are added first, then carry

propagation will occur normally. If most-significant bits are added first, then the carry will be ignored.

One solution is to statically check the causal dependencies and compute an order of execution that

will respect the causal dependencies (this is the approach followed by synchronous languages such as

LUSTRE [BCH+85] or ESTEREL [Ber00]). The other approach, followed by the standard HDLs and

SystemC, is to reschedule the execution of each process until the signals get stabilized. Most actions

(sc_signal value update for example, the notify() function in SystemC being a notable exception)

are actually taken into account after all the scheduled process have finished their execution (at the end of

the so-called δ-cycle). If those actions wake up other processes, then, those processes will be executed

during the next δ-cycle.

2.4.3 TLM in SystemC

2.4.3.1 User-defined Channels in SystemC 2.0

In the version 1.0 of SystemC, the library contained only low-level constructs, and could hardly be used to

model communication at a higher level than RTL.

Starting from version 2.0, SystemC allows user-defined communication channels. The mechanism is

the following:

User−defined class inherits is a template with argument

sc interface

user interface

SystemC class

user implementationuser port

sc port base

sc port<user interface,N>

sc port b<user interface>

Figure 2.8: Inheritance Diagram for User-Defined Communication Channels

SystemC defines the abstract class sc_interface from which the user can derive his own interface,

and implementation. The user-defined interface is a contract between the modules and the channel (see

figure 2.8).

It also defines the classes sc_port_base, sc_port_b<> and sc_port<>, and lets the user derive

his own port from sc_port<user if, N>, user if being the user-defined interface, and N the maximum

number of channels that can be bound to this port. The user-defined port exports some functions to the

module containing it, which are mainly wrappers around the functions of the interface of the channel.

The SystemC primitive channel sc_signal and the corresponding ports are a good exam-

ple of channel built using this mechanism. It defines the interfaces sc_signal_in_if<> and

sc_signal_inout_if<> defining in particular the methods read() for the first one, and in addition

write() for the second one. Those interfaces are implemented among others in sc_signal<>. The
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corresponding ports, sc_in and sc_inout define the same methods, which are trivial wrappers around

the methods of the interface. For example, the sc_in<data_type>::read() method is defined by

const data_type& read() const

{ return (*this)->read(); }

(the operator -> has been overloaded to return the interface bound to the port).

2.4.3.2 The TLM interface

The System Platform Group team of STMicroelectronics proposed a common interface for several TLM

protocols. The interface itself, called tlm_if contains only one function:

virtual tlm_status transport(tlm_transaction& transaction) = 0;

The role of the transport method is to route a transaction from an initiator module to a target

module. The corresponding module tlm_port is defined with the appropriate binding methods.

At this level, a transaction only contains a pointer to the initiator and target ports, a pointer to the data

and one to the meta-data (the data will be used to carry the actual data that will circulate on the bus, the

meta-data will typically be used to carry information about the success or failure of the transaction). Both

the data and the meta-data are empty classes that will be derived in protocol implementation.

This is of course insufficient to actually write a TLM model. This interface, with the associated guide-

lines, give only the common ground. Real protocols will be layered on top of it. The user of the protocols

will only see the protocols, but not the TLM interface itself.

Later, this proposal has been reviewed, improved, and finally standardized by the Open SystemC Con-

sortium Initiative. One of the changes is that the TLM interface is now a template:

template<REQ, RSP>

class tlm_transport_if : public sc_interface {

public:

virtual RSP transport(const REQ&) = 0;

};

In [RSP+05], the standard is presented, and some guidelines are given to build protocols on top of this

interface. The protocols presented below correspond to the former proposal, and are being re-written to

use the version of the OSCI standard.

2.4.3.3 The BASIC protocol

The BASIC protocol was designed as an example of protocol that can be implemented using the TLM

interface. It was implemented by STMicroelectronics and is actually not used for production by any-

one. It defines two modes of transactions: READ and WRITE. The transaction data contains the mode,

an address and a piece of data. The address is of type unsigned long, and the data is an array of

unsigned long (it can contain a block of data instead of a single piece of data).

The transaction is routed according to an address map specified in a separate configuration file. The

BASIC protocol is implemented in two flavors: the basic_router is a highly available channel. Trans-

actions are served as they arrive, in parallel in the case of concurrent accesses. The basic_arbiter,

on the other hand, serializes the transactions and applies a simple arbitration policy to serve the most

prioritized transactions first.

2.4.3.4 The TAC Protocol

The TAC protocol is an extension of the BASIC protocol. Unlike BASIC, it is intended to be used in

production. Its features are a superset of the functionalities of BASIC. It should contain all the necessary,

and only the necessary to model a SoC at the PV level, and therefore enable software development and
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platform verification. It was designed and implemented by the SPG team of STMicroelectronics, and is

widely used internally.

The first addition of TAC compared to BASIC is the fact that TAC channels are C++ templates on the

addresses and data-type. This is mandatory to allow bit-accurate modeling as well as flexibility.

TAC also models some features of some bus protocols that could hardly be built on top of a simple

READ/WRITE interface. It is possible to send LOCK/UNLOCK commands to the channel itself. The seman-

tics is the following:

• When the channel receives a transaction of mode LOCK, it becomes locked;

• When the channel receives a transaction of mode other than LOCK, with the option LOCK ACCESS

set, the channel processes the transaction normally, and becomes locked afterwards.

• When the channel is locked and receives a transaction, the transaction is queued, even if there are no

other transactions pending,

• The channel will be released by the next non-locking transaction.

Another addition of TAC compared to BASIC is the ability to consider only a subset of the bytes of the

transaction. For example, on a 32-bits wide bus, an initiator may want to write a single byte in memory.

This is called byte-enable. In TAC, this is just an additional information in the transaction that can be set

by the initiator, and taken into account by the target.

2.4.3.5 Standardization of a Generic Channel

The TAC protocol relies on open standard, but is not a standard itself. STMicroelectronics whishes it to

become a standard, for at least two reasons:

• We need a standard to be able to exchange IP blocks at the TLM level, without the need for protocol

adapters.

• We prefer the standard to be our proposal, since we are already using it and supporting it. It would

allow us to stay in advance compared to our concurrents.

The standardization process has not begun, yet, but some candidates are already there: the TAC proto-

col, the Generic User Bus from GreenSoCs1, and probably others in the future.

2.4.3.6 Didactic Example of Model Using the TAC Protocol

The following example (see Figure 2.9) will be used later to illustrate the extraction of the semantics of

a SystemC model. It is voluntarily minimalist, and for clarity, we only show the body of the processes,

and the methods called to process transactions in the target modules. The system contains two initiator

modules and two target modules. They are connected through a tac seq channel. The program contains

assertions for some properties we will prove (or falsify) later (chapters 6 and 8).

Take the example of the statement port.write(address, &x) in the module

status_initiator. We are going to follow the transaction sent by this statement step by

step:

2.4.3.6.1 Build the transaction, transmit it to the channel. The process calls the method write on

the port of the module. The port will create a transaction of mode WRITE, with the address address and

the data x. The transaction is then passed to the member function transport of the channel.

2.4.3.6.2 Wait for channel availability. Since the channel is a tac_seq, it will not serve the transac-

tion if it is already either locked or serving another transaction. If the channel is busy, the transaction will

be queued, and it will be woken up when the previous transaction finishes.

2.4.3.6.3 Resolve addresses. The channel has loaded its addressmap from the file CHANNEL.map dur-

ing the elaboration phase. The file contains:

1http://www.greensocs.com/projects-gub.html

32/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



2.5. A Larger Example: The EASY Platform

}
          == false);

if(data == 4322) {
   set_access_error();

status_target

int x = 4321;
int address = 0;
tlm_status s;
while(true) {
   s = port.write(address, &x);
   ASSERT(!s.is_no_response());
   ASSERT(!s.is_error());
}

status_initiator

   ASSERT(in_bool.read()

signal_target

tac_seq

int x;

tlm_status s;
while(true) {

out_bool.write(false);
   s = port.write(addr, &x);
}

signal_initiator

int addr = 8;

boolean
signal

Figure 2.9: An example transactional system

; Module name start address size

status_target.target_port 0x0000 0x0008

signal_target.target_port 0x0008 0x0001

Since we are writting at the address 0, the transaction will be routed to the module status_target.

The module status_target does not overload its transport() method, so, the default one will be

used. For a transaction of mode WRITE, it will call the member function WriteAccess() of the module

(the body of this function is the code shown on the picture).

If a module writes at an unmapped address, then the transport method of the channel returns, and the

status returned is such that status.is_no_response() is true. If a module is mapped at this address,

the status returned is such that status.is_ok() is true, unless the method set_access_error()

has been called during the WriteAccess call.

2.4.3.6.4 Desynchronize. After the function transport() of the target module returns, the channel

executes a wait statement to allow other processes to execute. This is necessary since the SystemC

scheduler is not preemptive, and we want to let other processes execute.

2.5 A Larger Example: The EASY Platform

2.5.1 Description of the Platform

We present here a platform we used to evaluate our approach and tools. The platform, created by ARM,

is called EASY, for Example of AMBA System. It is intermediate between a real-life large platform and a

trivial example: it uses real components and bus protocols. The specification [ARMip] can be downloaded

from ARM’s website.

The platform is represented graphically in Figure 2.10. The components are connected using two

different buses: a high performance bus, the Advanced High-performance Bus (AHB), for the performance-

critical part of the chip, and a low-power bus, the Advanced Peripheral Bus (APB) for low bandwidth

components. The main ones are:

The core processor is an ARM7 processor, with its AMBA wrapper (ARM7TDMI).

The internal memory which, from the behavior point of view, can be considered as a large array of bytes.
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DecoderSMI TIC ResCntl Arbiter
Default

Slave

ARM core

AMBA wrapper
RetrySlave IntMem

MuxM2SMuxS2M

APBif

ARM core

model

ExtRAM

Ticbox

Tube

ExtROM

XBoff−chip

APB
On−chip

FRC

FRC

Timers

MuxP2B

RemPause

IntCntl

Figure 2.10: Example of AMBA System (EASY) Platform

The interrupt controller This is an APB slave, providing a simple software interface to the interrupt

system.

Two timers are gathered in an APB slave. They are Free-Running decrementing Counters: programmed

by software, they count and raise an interrupt when their value reaches zero.

The test interface controller (TIC) provides a state machine stimulating the rest of the chip for testing.

Be warned that the meaning of “testing” here is the one used in the hardware domain (check the

presence of defect in the physical chip), not “simulation”. This component is used only once for

each chip, at the end of the manufacturing.

The retry slave is a minimalist example of a slave module.

Some components are dedicated to communication within the chip, or with the external world. They

are either standalone components or part of the bus.

The static memory interface (SMI) is an interface to the external bus. It is a slave for the internal bus

and a master on the external one.

The decoder is actually a part of the bus. Given an address, it generates the signals to route the accesses

to the corresponding slaves. It can be programmed to change the mapping of the first segment of the

address space, which must be different during the boot phase and during normal behavior.

The reset controller (ResCntl) is used to generate a reset signal from an external input.

The arbiter manages concurrent accesses on the bus.

The default slave is used to respond to transfers that are made to unmapped addresses.

The multiplexor slave to master is used to connect all of the system bus masters to the bus slaves.

The multiplexor master to slave is used to connect the read data and response signals of the bus slaves

to the bus masters.

The AHB to APB bridge receives transfers from the AHB and transmit it to the APB.

The remap and pause controller is programmed through the bus (by software), and can enable the remap

in the decoder, and a low-power “wait for interrupt” mode.

The Multiplexor Peripheral to Bridge is used to connect the read data outputs of the bus slaves to the

bridge module.

2.5.2 A TLM model for EASY

ARM provides the RTL description of the EASY platform, written in VHDL. The SPG Team of STMicro-

electronics wrote a TLM model for this platform in SystemC. It currently uses the PV level of abstraction

(no timing information), and uses the TAC protocol for the transport mechanism. The specifications can be

found in [WS04] (written by STMicroelectronics, but unpublished as of now).

The following components appear in the TLM model of the EASY platform:

One or Several Traffic Generator(s) replace the core processor. Since we would run compiled C code on

the processor anyway, compiling it for an ISS or compiling it as part of the platform doesn’t change
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much.

One TAC Channel that models all the communication in the chip.

One Memory That models both the external and the internal memory.

One Timer Component modeling the two timer sub-components of the actual platform.

One Interrupt Controller similar in behavior and interface to its RTL version.

One Universal Asynchronous Receiver Transmitter (UART) that doesn’t exist in ARM’s version, but

has been added to give an example of I/O component. This makes the TLM EASY a variant and not

exactly a model of the reference version.

In addition to the TAC modeling the communication through the buses, interrupt signals are modeled

using sc signal. Future versions will include a dedicated TLM protocol for interrupts, which is more

efficient than sc signal in terms of simulation speed.

The following components have been omitted from the TLM version, because they have not been

considered relevant at this level of abstraction (some of them can be subject to discussion).

The static memory interface: At the TLM level, we don’t make any differences between internal and

external memory. The SMI is completely transparent from the software point of view.

The decoder, the arbiter, the various multiplexors, the AHB to APB bridge are actually part of the

implementation of the bus protocol, and will be modeled by one single TAC channel.

The reset controller is not modeled in the version of EASY we’re using. It would have to be modeled to

be able to test completely the embedded software, though.

The default slave and the test interface controller have not been considered as being part of the plat-

form’s behavior.

The remap and pause controller are not modeled in the version we are using, but more recent versions

of the TAC channel include remapping capabilities, built in the channel.

It contains 7 modules, 2 SC THREAD processes, 6 SC METHOD processes. It counts 3,500 lines of C++

code (including comments and blank lines). It is illustrated in Figure 2.11.

Generator_Base Generator_N ITC Timer

TAC router

Memory UART

Figure 2.11: TLM model of the EASY platform
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3.1 Introduction

Section 2.3.3 presented the importance of TLM in the design flow of Systems-on-a-Chip. Verification

methods are well established for RTL. Bugs in hardware are known to be extremely costly, and various

techniques are applied to find them as efficiently and as soon as possible.

The introduction of a new abstraction level implies the creation of a complete development environ-

ment, including a programming language, an editor, some debugging, visualization, and verification tools.

The question of verification tools is a key point for the wide adoption of TLM models in the industry, and

is being addressed by a joint project between Verimag and the SPG team of STMicroelectronics.

Several problems appear:

• What does it mean to validate properties at the TLM level? Validation can be either simulation or

formal verification. One of the problems is that the languages used for TLM modeling, such as

SystemC, do not have a formal semantics. Validation of TLM models is essential since they become

the reference model for further verification.

• Since automatic synthesis from TLM to RTL does not exist (and will not exist soon), how can we

compare a TLM reference design and a RTL design that is supposed to implement it, and is partly

written by hand?

• How can we express and validate non-functional properties of SoCs at the TLM level? Non-

functional properties include timing properties, power consumption, and silicon surface.
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In this document, we report on the work done for addressing the first item: how to give a formal

semantics to SystemC and the additional TLM constructs, and then express and verify properties of a TLM

design written in SystemC. We will insist on properties related to the synchronization of the system, but will

not try to prove properties depending on complex algorithms implemented by the platform. We describe

both the principles and the implementation, LUSSY.

This chapter is an overview of the approach we followed to solve this issue. We start by a general intro-

duction about the algorithms used for formal verification in general in section 3.2.1, and in the particular

case of Systems-on-a-Chip in section 3.2.2. Then, we introduce our own approach in section 3.3. The tool

chain is presented component by component in section 3.3.3.

3.2 Techniques and Tools for the Verification of SoCs

3.2.1 Algorithms for Formal Verification

When applicable, formal verification is the ideal case of verification method. It gives either a formal proof

that the program is correct or some hints about the way to falsify the property to prove (usually, a counter-

example, or a superset of possible counter-examples).

Formal verification can be classified into several categories. We present briefly here four of them:

Theorem proving, model-checking, abstract interpretation and SAT solving.

3.2.1.1 Theorem proving

It is well known that the problem of equivalence between two programs or between a program and its

specification is not decidable in the general case. Two solutions can be considered: restrict the languages

to decidable cases, or accept the fact that the problem to solve is not decidable, and design an interactive

tool.

The latter is the approach followed by theorem proving tools like COQ [BC04], ISABELLE [NPW02],

PVS [ORS92], and ATELIER B [AN96]. The last one has successfully been applied on real-life case

studies such as the “Météor” subway in Paris.

The main idea behind the B method is the refinement: Designers start by writing a formal specification

and refine it (in one or several steps) to an implementation. The original ATELIER B uses subsets of C

and Ada as target languages for implementation. Research are carried out to apply the B method to the

development of Systems-on-a-Chip: Instead of refining towards a software-oriented imperative language,

the refinement flow splits between software and hardware, that will use VHDL as a target language. This

is implemented in the tool BHDL [Phi03].

The drawback of the theorem proving approach is that the tool being interactive, it requires an expert

user, and a lot of manpower to prove a reasonable amount of code. This is probably the reason why only

very few industrial successes have been achieved with this class of methods.

3.2.1.2 Model-Checking

Another approach is to restrict the model to study to a finite set. This is the case of any bounded-memory

program, and in particular, the case of finite automata. In this case, many state-space exploration techniques

can be used, and will either prove a property or give a counter-example in finite (but often exponentially

long) time. This set of techniques is called model-checking.

The kind of property that can be proved on a program can be classified in two main categories: safety

and liveness [Lam77] (a theorem says that any property P can be written as P ⇔ Pliveness∧Psafety where

Pliveness is a liveness property and Psafety a safety property). A safety property is a property that can be

falsified by a finite trace (“something wrong won’t happen”). A liveness property is a property that can not

be falsified by a finite trace (“something good will eventually happen”). Liveness properties are both less

useful in practice and harder to prove than safety properties. It is important also to note that the notion of

conservative approximation is not the same for safety and for liveness properties: a conservative abstraction

for safety is an abstraction that only adds behaviors, while a conservative abstraction for liveness can only
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remove behaviors. Proving safety and liveness properties are therefore two different tasks, and we can

hardly do both efficiently at the same time. We will therefore focus on safety properties, which can always

be expressed as a state or transition reachability in an automaton.

The system on which we are trying to prove a property is defined by a set of states, and a transition

function. We note succ(x) the image of x under the transition function. We extend this notation to finite

sets: succ({x1, x2, . . . , xn}) = {succ(x1), succ(x2), . . . , succ(xn)}.

The “simplest” solution to explore the state-space is the enumerative approach. The idea of the algo-

rithm is as follows (we compute the set E of reachable states, also called fixed point of the system being

proved). We’re looking for the smallest set E such that E = E ∪ succ(E), that we can compute iteratively:

E: The set of states to explore

S: The set of states already explored

E := { initial states }

while E 6= ∅

choose x ∈ E

S = S ∪ {x}

E = E - {x} ∪
(

succ(x) ∩ S
)

end loop

The biggest revolution in the domain of model checking has probably been the introduction of symbolic

model checking [DCB+90]. The idea is to find a way to represent a Boolean function in a compact and

canonical form. Sets of states can then be encoded by the characteristic function of the set. We also

need an efficient way to compute the image of a set of states by a function. Binary Decision Diagrams

(BDD) [Bry92] satisfy all those requirements for states represented by valuations of Boolean variables.

The resulting algorithm is as follows:

E: A formula describing the set of states reachable for this step

NE: A formula describing the set of states reachable for next step

E := { initial states }

NE := ∅

while E 6= NE

NE = succ(E)

E = E ∪ NE

end loop

In this case, the complexity of the algorithm does not directly depend on the number of states anymore.

It is still exponential in the worst-case, but can give better results than enumerative methods in practice.

Those methods apply well to small and medium Boolean programs. In particular, it is used success-

fully to verify RTL designs, since an RTL design is actually an encoding of an automaton, in which any

safety property is decidable. Tools widely used in the industry embedding a symbolic model-checker in-

clude RuleBaseTM [BBDEL96] by IBM, Synopsys MagellanTM [HSH+] and FormalCheckTM [Cad99] by

Cadence. In practice, state explosion does not necessarily allow any property to be proved, but considering

the design part by part allows to prove local properties very efficiently.

Exact model-checking quickly becomes hopeless for real-life models. In particular, for a program

containing integers, modeling an n-bits integer with n Boolean variables leads to a state explosion and

irregular BDDs, whose size can be an exponential of the number of variable (this is the behavior of SMV).

If we consider integers to be infinite, then the problem is even undecidable. To be applicable on real
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programs, a model-checker needs therefore to perform some abstractions on the program. Abstractions

must be conservative for safety properties. This means that the abstract program’s set of reachable states

must be a superset of the one of the concrete program. In this case, the answer “true property” of the model

checker is still exact, but the answer “false property” actually means “I didn’t manage to prove the property,

so I don’t know”.

A simple abstraction is to abstract integer values completely. This is a very rough approximation, that

computes a large super-set of the actually reachable states. When the property to verify highly depends on

the data, it is not sufficient. This is, for example, the default behavior of LESAR [HLR92]: it replaces any

condition depending on an integer value by a non-deterministic Boolean variable.

A less brutal abstraction relies on local satisfiability of transition guards, abstracted into convex poly-

hedra. For example, in the automaton of Figure 3.1, the final control point is unreachable, but we could

not have proved it with Boolean analysis only. This is the behavior of LESAR when used with the -poly

option.

(x > 3) ∧ (y > x) ∧ (y < 2)

Figure 3.1: Property Provable With Local Satisfiability

3.2.1.3 Abstract Interpretation

Abstract Interpretation [CC77] goes further and has a global view of the possible values of variables at

each step of the program’s execution. For example, in the automaton of Figure 3.2, the final control point

is not reachable, and abstract interpreters like NBAC [Jea03] are able to prove it: in the leftmost state, any

value may be possible for x, but in the middle state, the only incomming transition has an assignment, so

the only incomming value for x is 42. The intersection of {42} with ]−∞, 0[ is empty, so, we can not take

the next transition. At this point, we have reached the fixed point: no action can provide another value for

x that could allow the automaton to take the last transition.

x := 42 x < 0

Figure 3.2: Property Provable by Abstract Interpretation

3.2.1.4 SAT engines

Another approach for the problem of verification is to encode the behavior of the system and the property

using Boolean formulas, and check for their satisfiability [BCC+99]. The satisfiability problem for a

Boolean formula in conjunctive normal form (also known as clause form) is well known, and called SAT.

Although SAT is NP-complete, many optimization techniques can be applied to make it very efficient in

many cases.

One limitation of this approach is that only finite properties can be encoded: it is not possible to express

“something wrong will never happen”, but we can say “something wrong will not happen in less than n
steps”. We can apply several strategies based on this remark:

Bounded model checking and bug searching: A “naive” approach is to encode the property “something

wrong will not happen in less than n steps” with n sufficiently large, and conclude “If the system is

safe for n steps, it is very unlikely to be unsafe for more than n steps”. Of course, we can not give

a formal meaning to “unlikely” here, which is not very satisfying from the theoretical point of view.

Still, this can be better than testing, which is only able to say “something wrong did not happen for

some simulation of less than n steps”. A less naive approach is to iterate over n, and stop the proof

either when the machine goes out of memory because n is too large or when a bug is found.

Exact model checking: Another approach is to prove that the system must have reached its fixed point

after n steps. This gives a termination condition to the iterative approach given above. The proof
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engine can then either stop saying “the property can not be falsified in less than n steps, and after n
steps, the system will loop anyway, so, the property is true” or “I found a counter example of size

n. Here it is”. In practice, of course, the computation may also be too long or too costly in terms of

memory to finish.

SAT can be extended to manage Presburger arithmetics, and treat numerical data. All of this is im-

plemented in PROVER PLUG-IN
TM for SCADETM [Tec] (unfortunately, this is a commercial tool and the

details of implementation are not published as of now).

3.2.1.5 The Best Strategy. . .

The verification problem is known to be exponential in the worst case. Although some algorithms are

known to be “usually better” than others, any algorithm will therefore have some weaknesses, and may

need millions of years or terabytes of RAM to complete in some cases. The consequence is that the best

strategy is to have several strategies. A clever user may be able to choose the best strategy depending on

the problem he has to solve, but a much simpler approach is to launch several algorithms in parallel, and to

take the result of the first one to complete.

One LUSSY is an open tool: it can already connect to several proof engines, and lets the user choose the

one he wants to use. Other back-ends can be added in the future without breaking the internal architecture

of the tool.

3.2.2 Candidate Tools for the Verification of SoCs

SystemC designs being circuit designs, we could think of using one of the verification tools (model-

checkers, SAT-solvers, etc.) developed for hardware verification, for instance SMV. However, these tools

are tailored for the RTL, exhibiting a clear notion of clock, while we need to deal with heterogeneous

designs. Heterogeneity comes from several places: determinism and non-determinism, synchronous and

asynchronous systems, hardware and software components. Moreover, these tools cannot take general

SystemC as input.

As far as we know, all the work on verification techniques and tools for SystemC designs are lim-

ited to the subset of SystemC that allows to write RTL designs. It cannot be used for real TLM designs

(see [DG03] for instance). [SF02] treats the SpecC language (similar to SystemC): a date of execution is

associated with each instruction of the program, which can then be considered as a dependency graph, on

which synchronization properties can be proved. The approach is very limited: since only one date can be

associated with an instruction, this does not allow to consider general loops (inside which each statement

is executed several times, at different dates).

Now, since SystemC is mainly a C++ library, one could think that we have to face the same problems

as those addressed by general-purpose software model-checking tools. This is not the case: Verifying Sys-

temC designs is, on the one hand simpler, because we do not have to deal with general dynamic data struc-

tures and general algorithms; on the other hand harder, because we have to take parallelism into account,

and to know about the scheduler specification. General software model-checking techniques concentrate

on dynamic data structures and general algorithms. They provide sophisticated tools like invariant extrac-

tion, loop unrolling, etc., but are not directly usable to exploit the particularities of the SystemC constructs

provided as a C++ library. Using these tools for SystemC would need to include the non-deterministic

scheduler specification in the tool. Moreover, they usually do not take parallelism into account. For in-

stance, CBMC [CK03, CKL04] can apply bounded model-checking techniques on pure C models, but

does not deal with parallelism, or with infinite loops. SLAM [BR00] uses clever abstractions and refine-

ment techniques, but also focuses on sequential programs. VeriSoft [God97] can handle parallel processes

written in any language. They are executed as black boxes, communicating via calls to operating system

primitives. These calls are intercepted to build a model of their parallel behavior. We cannot exploit such

a black-box approach, because we need to extract the transaction-level specific constructs of SystemC, and

aim at treating addresses in a specific way (see below). Other works propose improvements for runtime

verification: some by providing tools to check properties during a simulation (for example [RHKR01]),

others by generating sets of test cases with a better code coverage ([BCDM03], [FRS02]). Usually, those
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simulation-based techniques scale up better than formal verification, but give weaker guarantees on the

reliability of the platform.

A close related work is to be found in Java model-checking, since they take a scheduler specification

into account. The first version of the Java Path Finder model-checker [Hav99] used an approach similar

to ours, translating Java into the intermediate representation Promela, and using the model checker SPIN

to prove the properties. Version 2 [HPV00] checks the byte-code directly, using a dedicated JVM with

backtracking capabilities, and lots of other model-checking techniques. However, the techniques dedicated

to Java are not directly applicable, neither to SystemC and its scheduler, nor to the modeling of synchronous

and asynchronous mechanisms.

More recently, in [KS05], an approach very similar to ours was published. Starting from a SystemC

program, the tool also extracts the semantics in terms of automata. Their intermediate formalism is a bit

different. It’s a flattened view of the automata (all variables are shared by default), and each state contains

a set of predicates that hold in this state. This allows some proofs by predicate abstraction [SH97]. This

work focuses on proof techniques, but manages only a very strict subset of SystemC, and in particular,

nothing about the TLM level. They describe abstraction heuristics for combinational threads and clocked

threads, which proved to be very efficient for their case studies, but would not apply on transaction level

models, where we have no clock, and very few combinational threads.

An approach similar to ours is described in [Bak95]. This work is prior to the existence of SystemC,

so it’s obviously not applicable directly here, but provides an interesting overview of existing theories

to express the semantics of a program. It presents the execution models in which this semantics can be

expressed, and how they compare to each other based on several well defined criteria.

3.3 Our Verification Approach

We advocate an approach able to exploit all the particularities of a TLM design written in general SystemC.

The idea is not to express the TLM concepts manually in yet-another-formalism that can be exploited

by verification tools, but to be able to take real SystemC designs into account. We describe a method

implemented in a new dedicated tool called LUSSY: based on compiler front-end techniques, it is able to

extract architecture and synchronization information from a TLM design written in SystemC with very few

abstractions, by exploiting carefully the constructs provided by the library. It builds its own intermediate

representation called HPIOM (for Heterogeneous Parallel Input/Output Machines) made of communicating

parallel machines, able to represent both deterministic and non-deterministic components, synchronous

and asynchronous communication protocols, Boolean and numerical data. This is very much in the spirit

of the action language [Bul00]. For the moment LUSSY connects this intermediate representation to model

checkers, abstract interpreters, and a SAT engine. These tools provide conservative automatic verification

results for safety properties, and may perform their own abstractions on the HPIOM representation, when

needed. The current state of the LUSSY implementation is being applied to case-studies provided by

STMicroelectronics; it accepts a large subset of SystemC.

3.3.1 Expressing Properties

Generic properties do not require the use of a specification language. In LUSSY we can express and check

the following:

• Check that a global dead-lock never occurs. We consider that a global dead-lock occurs when Sys-

temC scheduler enters the “time elapse” phase while no process is waiting for time. In the example

of figure 2.3 page 23, this might happen if the processor is waiting for an interrupt, if the other pro-

cesses are waiting for transactions to process. The particular notion of scheduling of SystemC makes

global dead-lock equivalent to the reachability of a state in an automaton.

• Check that a process never finishes: this should always be the case except for test benches. This

corresponds to the case when a process goes to the “sleeping” state without any wake-up condition,

that is: no next_trigger have been called in SC_METHOD, and the last statement of the function

is never reached for SC_THREAD.
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• Check that a synchronous signal is never written on twice during the same δ-cycle. This is a dan-

gerous situation since the final value on the signal will depend on the order of execution, which is

most probably dependent on the scheduling policy. In the example, if one process of the interrupt

controller raises the interrupt signal while another cancels it, there is a data race.

• Additionally, it would be interesting and relatively easy to check that a TLM master port is not

accessed by two processes at the same time. This is known to produce undefined behavior with at

least TAC ports in their current implementation.

In order to specify and prove user-defined properties of SystemC designs, we need a specification

formalism. The idea in LUSSY is that the user should not have to learn a timed logic language. The

property should be written in the same language as the implementation. We may check that some portions

of code are mutually exclusive. This is slightly intrusive in the source code since the beginnings and ends

of the critical sections have to be specified. Finally the most general safety properties are expressed by

assertions in the source code: ASSERT(condition).

3.3.2 Synchronization Code Vs. Complex Algorithms

A typical TLM design exhibits a clear distinction between the potentially complex algorithmics of some

components, and the code dedicated to synchronization. For instance, a processor may be included in

the design, with SystemC code describing the interpreter of its machine language. In this case, the code

intented to be run on the processor is provided separately.

If a processor is present in the design, this means treating it in a very abstract way. The program it

runs might be checked by other techniques (software model-checking or theorem-proving); the processor

component may then be replaced by a very simple SystemC component describing how it is connected

to the other components, and abstracting all its behavior. The properties that can be checked on such an

abstracted TLM design cannot depend on the details of the algorithms run by the processor, but this is good

design practise, anyway.

3.3.3 The LUSSY Tool Chain

The tool chain is presented in figure 3.3. Starting from a SystemC program’s source code, PINAPA, the

front-end, extracts an abstract representation comprising both the architecture and the syntax related infor-

mation. BISE use the output of PINAPA to generate a representation of the program using the intermediate

representation HPIOM (this is an interpretation of the semantics of SystemC). BIRTH performs some HPIOM

to HPIOM transformations. The translation from HPIOM to any synchronous language is then rather straight-

forward. We currently have a LUSTRE [BCH+85] and an SMV [McM01, McM93] back-end that allows us

to use SMV, LESAR [HLR92], NBAC [Jea03, Jea00] and PROVER PLUG-IN
TM for SCADETM to carry the

actual proof.

LUSSY is the composition of PINAPA, BISE, BIRTH and the different back-ends.

The following gives a short presentation of each element of the tool chain. They will be detailed in the

next chapters.

3.3.3.1 PINAPA: Pinapa Is Not A PArser

PINAPA [MMMC05b] is a SystemC front-end based on GCC and on the SystemC library. Its role is similar

to the one of a compiler front-end for a traditional programming language, but the way it works is very

different since we are not dealing with a real programming language, but with a library built on top of C++.

Chapter 4.3 will detail the role, principle, and implementation of PINAPA.

3.3.3.2 BISE: Back-end Independent Semantic Extractor

BISE [MMMC05a] takes the output of PINAPA as input. It defines the data structure HPIOM (for Het-

erogeneous Parallel Input/Output Machines), an intermediate formalism of communicating, synchronous
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automata. It generates a system of HPIOM automata whose semantics is a conservative abstraction of the

input program, with as few abstractions as possible.

3.3.3.3 BIRTH: Back-end Independent Reductions and Transformations of HPIOM

BIRTH implements some HPIOM to HPIOM transformations: some of them are necessary transformations,

like expression of high-level HPIOM constructs using lower-level constructs to ease the task of the back-

ends. Others are optional abstractions and optimizations, that allow proving larger platforms.

3.3.3.4 LUSTRE and SMV back-ends

The next components in the tool-chain are the back-ends, or code generators. They will transform our

intermediate representation into the input format of the external tools we want to use. We can currently

generate LUSTRE and SMV code to use the related formal verification tools.

3.3.3.5 Visualization back-end

This back-end was mainly written for debugging purpose. From the HPIOM automata, it generates one

dot file for each automaton, and one to represent the connection between automata in the system. The

tool DOTTY from the graphviz package [EGK+03] reads those files, applies a state placement heuristic and

provides an interactive visualization tool. We also implemented an interface to display an automaton at

runtime, from the debugger GDB.

This has been very useful not only for debugging, but also for the manual verification of the correctness

of the translation: the generated SMV or LUSTRE code is not very readable, and it is very hard to make sure

the “shapes” (states and transitions) of the automata are correct, whereas this is almost immediate with a

visualization tool.
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4.1 Introduction

A difference between SystemC and other Hardware Description Language is that SystemC, although often

referred to as a language (including in the name of its reference manual), is not actually a language, but a

library for C++. Execution of a SystemC model is “trivial”, since it can be compiled with any supported

C++ compiler. But simulation is not the only thing one may want to do with a language.

Static extraction of information is useful for example to synthesize a lower-level view of the model

(gate-level synthesis, for example, is possible for a strict subset of SystemC), to visualize it graphically, to

generate some documentation automatically, etc . . .
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A tool like PINAPA is compulsory for anybody who wants to work on realistic SoC designs: it is able to

extract both architecture and behavior information from a piece of SystemC code, with very few limitations.

It is open source and available to public.

In the context of formal verification, we will need to get all the static information on the model. Our

input is a SystemC model in a set of text files. The first step before being able to do anything else is to get

an abstract representation of it.

This part will explain how parsing a SystemC model is different from parsing a program written in a

traditional programming language, and how we solved the different problems it raised.

The first section of this chapter (4.2) will present the related works: some tools with the same goal,

and some tools using similar approach in other domains. Section 4.3 will present the principles of PINAPA,

while section 4.4 presents its implementation. We present our results on the EASY platform in section 4.5,

and conclude in section 4.6.

4.1.1 Static and dynamic information in SystemC

SystemC, like several programming languages or runtime environments, is used for describing: 1) the

architecture of a system and then 2) the activity of the elements in this system. The architecture, although

it is built by the execution of some piece of code (the so called “elaboration” phase), is not really dynamic,

and will not change during the simulation of the program activity. It is described in a general-purpose

programming language because of the expressivity of such languages, compared to the dedicated pseudo-

languages of “configuration files”.

4.1.2 PINAPA: Requirements

We presents PINAPA (for Pinapa Is Not A PArser), our implementation of a SystemC front-end.

PINAPA was developed as the first component of the tool LUSSY, dedicated to formal verification of

SoCs described in SystemC. Our main requirements were the following:

1. As few a priori limitations as possible. We cannot make any assumption about a well-defined subset

of SystemC used in the models we want to analyze. In particular, we don’t want the tool to require

any manual annotation of the source code to be analyzed.

2. The tool must give precise information on all parts of the model: architecture, software parts, hard-

ware parts.Abstractions may be done in the back-end if necessary, but the front-end must not lose

information.

3. Since writing PINAPA was only the first (necessary) step to write a more complex tool, we did not

have sufficient manpower to write a big piece of software from scratch, and needed therefore a

solution maximizing the code reuse, and minimizing the manpower. Code reuse in PINAPA is also

a way to get closer to standard: the C++ front-end of GCC is better than anything we could have

written in reasonable time, and reusing the SystemC library for architecture extraction also helps in

complying with the SystemC specifications.

4. The models we want to manipulate use some high level Transaction Level Modeling constructs,

that are not yet standardized by the SystemC consortium. The tool must be able to manage those

constructs.

4.1.3 Contributions

PINAPA satisfies all the abovementioned requirements. The contributions are the following: 1) a general

principle for building front-ends of “simulation” languages in which part of the system architecture that

has to be extracted statically is actually built by the execution of some piece of code; 2) an open source

implementation of this principle for full SystemC (it has been tested on the TLM model of the EASY

platform in SystemC as described in section 2.5.2, whose complexity is representative of the designs written

in SystemC – although it’s relatively small in terms of size); 3) working connections to analysis tools.
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When fed with a SystemC model, PINAPA executes its elaboration phase, parses it with GCC, and

outputs a data structure useable through GCC and SystemC API, plus some additional PINAPA-specific

functions.

4.2 Related Work

4.2.1 Existing SystemC Tools

Several other tools manipulate SystemC models. Some present themselves as SystemC front-ends, but

none of them meet our requirements.

4.2.1.1 SystemPerl

SystemPerl [Sny] is a perl library containing, among other tools, a netlist extractor for SystemC (a netlist

is a description of the connections between modules). It uses a simple grammar-based parser and will

therefore not be able to deal with complex code in the constructors of the model, and does not extract any

information from the body of the processes. This does not satisfy requirement 2 above.

4.2.1.2 SynopsysTM front-end, SystemCXML

SynopsysTM developed a SystemC front-end that has successfully been included in products like CoCentric

SystemC Compiler and CoCentric System Studio [Syn, syn03]. It parses the constructors and the main

function, as well as the body of the modules with the EDG [Edi] C++ front-end, and infers the structure of

the model from the syntax tree of the constructors. SystemCXML [MBPS] seems to use the same approach,

using doxygen’s [vH] C++ front-end, but the implementation details are not published as of now. Using

this technique, to be able to parse any SystemC model (requirement 1), one must be able to compute the

state of any program at the end of the execution of the constructors knowing their bodies. In other words,

the tool must contain a re-implementation of a C++ interpreter (which does not satisfy requirement 3).

4.2.1.3 SLECTM

SLECTM is a formal equivalence checking tool, developed by Calypto Design Systems. The details of

implementation haven’t been published, but it has requirements similar to ours. It seems they are using

EDG as a front-end.

4.2.1.4 ParSyC, sc2v, KaSCPar

The University of Bremen developed a SystemC front-end called ParSyC [FGC+04]. The approach is

similar to the one of SynopsysTM, except that the grammar is written from scratch (including both SystemC

and C++ constructs) instead of reusing an existing C++ front-end. sc2v [Vil] is also a SystemC synthesizer,

built with the same approach. KaSCPar recently came into the picture, with a grammar-based parser (using

JavaCC), and an XML output. To be complete, this approach needs to include all the C++ syntax (to parse

the model) and semantics (to interpret the constructors).

4.2.1.5 Lint tools

Some lint tools such as AccurateC [Act] also manipulate SystemC code. AccurateC can check rules both

in the code (this is an extension of a C++ lint tool) and in the netlist. However, it does not need the

link between the behavior and the netlist (unfortunately, the internal structure of AccurateC has not been

published at time of writing).
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4.2.1.6 Simulators

Some simulation tools provide an alternative to the reference simulator, with additional features like VHDL

or Verilog cosimulation. These tools do not need information about the body of the processes in uncom-

piled form, so, their requirements are different from ours. One particular case is NC-SystemC [Cad] from

Cadence: it also provides source-level debugging, using the EDG C++ front-end. The approach is therefore

similar to ours, since the tool has to deal with both syntax and architecture information. However, this tool

is focused on debugging, and the front-end is anyway not available to the public.

4.2.2 Other combinations of static and dynamic analyzers

4.2.2.1 Reverse engineering

The combination of static and dynamic information extraction is used in other domains. In particular,

several reverse engineering techniques use a comparable approach: in [HHL02], the dynamic analysis is

used to refine the result of the static analysis and eliminate false positive in design pattern recognition, and

in [RR02], the static and dynamic information are combined to generate UML diagrams. In both cases,

the difference is that the dynamic information extracted relates to the behavior of the model, and not to an

elaboration phase as we are doing in SystemC.

4.2.2.2 Graphical User Interfaces

The most similar works are to be found in the domain of Graphical User Interfaces. Most GUI toolkits have

this notion of elaboration phase where graphical elements are built and displayed, followed by the behavior

of the model which consists in waiting for an event and executing the corresponding action. The difference

with hardware modeling is that GUI elements can be created dynamically. Many tools and Integrated

Development Environments need to deal with the static part of the interface (in particular, to provide

a graphical editor for it). The approach followed by most of them is the one presented in section 4.3.3.2,

defining a dedicated language to describe the interface, and providing a code generator or a dynamic loader.

4.3 PINAPA Principles, Limitations and Uses

The methodology for writing or generating front-ends for various kinds of languages has been studied

extensively (see for example [ASU86]). Such general techniques are used indirectly in our tool since

we are using a general C++ front-end, but are not sufficient to get all the necessary information from a

SystemC model. Typically, they cannot extract the information about the SoC architecture, which is built

by executing the first phase of the SystemC model.

At first, it may appear meaningless to write a front-end for a library, but the case of SystemC is partic-

ular. To understand what we mean by “SystemC front-end”, we need to examine the notion of static and

dynamic aspects of a SystemC model.

4.3.1 Specifications of PINAPA

4.3.1.1 Informal Definition of the Static Information in a SystemC Model

Observe Figure 4.1. On the left are the kinds of information present in a SystemC model. From the point

of view of a C++ front-end, lexicography and syntax are static and used to build the Abstract Syntax Tree

(AST), while the architecture and the behavior are visible during the execution. From PINAPA’s point of

view, the static information extends to include the architecture. The architecture will be present in the

memory at the end of the elaboration phase. The dynamic part is reduced to the simulation phase. The

static part is made of: the AST obtained by reusing a standard C++ front-end on the SystemC model; the

architecture-related information (ELAB) that stays in memory at the end of the elaboration phase.

Figure 4.2 describes the dataflow of PINAPA. The AST is obtained by parsing the program with a

traditional C++ front-end (right hand side of the figure), and ELAB is obtained by compiling and executing

the elaboration phase (left hand side of the figure).
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Note that the source code is parsed by a C++ front-end twice: first, to compile the elaboration phase

(step (1) in Figure 4.2), and then to get the AST,

which, in our case, contains some address offset information (offset of a data-member of a class com-

pared to the address of the class), dependent on the Application Binary Interface (ABI) (step (2)). The

address offsets obtained in both cases must be consistent, so the C++ front-ends of (1) and (2) must be

ABI-compatible, that is, the layout of the data-members of a class must be calculated exactly in the same

way (in particular, they can be the same compiler). We currently use GCC (GNU Compiler Collection)

version 3.4.1 for both. This means that the model will not be parseable by PINAPA if it does not compile

with this precise version of GCC (indeed, any parser has the limitation that a program that does not parse

with it can not be used. The only difference here is that we reuse an existing work).

4.3.1.2 Overview of the Algorithm

The main task of PINAPA is to establish links between the AST and ELAB (last step in Figure 4.2). The

idea behind these links is illustrated by the following: the SystemC processes perform actions of the form

port.write (...), and these instructions are present in the AST. The elaboration phase creates in-

stances of modules and connects ports, building an architecture that is present in ELAB. The relationship

between an instruction port.write (...) in the AST, and the actual data structure describing this

port in ELAB, has to be established by PINAPA. In practice, PINAPA installs pointers in both directions

between the AST and ELAB.

4.3.1.3 Definition of the Output of PINAPA

The information extracted by PINAPA is mainly GCC’s AST, and SystemC’s ELAB. We have chosen to keep

those data-structures as they are: we add information where needed, but do not perform any transformation.

4.3.1.3.1 Decoration Mechanism. A set of template classes are provided in PINAPA to allow a non-

intrusive decoration of GCC and SystemC data structure. The difficulty is to avoid introducing dependen-

cies from the decorated object to the decoration (to avoid dependencies from GCC and SystemC to PINAPA,

and from PINAPA to the back-end). In practice, we add a void * pointer to the structure to decorate, and

wrap it in well-typed decoration primitives. In the case of GCC’s AST, some processing of the code during

the compilation of GCC forbids such addition. Our workaround is to use a hashtable tree → decoration

instead of a pointer in the data structure representing the node of the tree. Actually, the most important

decorations on the AST are not attached to the AST itself: Since a module may be instantiated more than

once, the same element in the AST may refer to several objects in ELAB. However, for a given process, an

element in the AST only corresponds to one object in SystemC. The link is therefore actually a hash table:

(AST, process handler) −→ SystemC object

We call AST instance the pair (AST, process handler). The decoration will therefore be associated to an

AST instance.

For example, the port referred to line 10 in the example page 26, and in the AST of Figure 4.4 below

has two instances, but the pair (AST of the port, process handler for instance1_2->code1) uniquely

identifies the port instance1_2->port.

The decoration can itself be decorated (so that the back-end can add informations to the output of

PINAPA). The result is represented in Figure 4.3.

4.3.1.3.2 SystemC Data-Structure ELAB and link to AST. The state of memory at the end of the elab-

oration phase give the architectural informations about the model to parse. In Figure 2.6, each graphical

element corresponds to an object in ELAB, which contains:

Process handlers. The process handler gives the following information: name of the function, name of

the class containing it, type of process (SC_THREAD or SC_METHOD), and pointer to the executable

code of the function. It also contains the list of events the process may be waiting for by default after
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Figure 4.3: Decoration Mechanism

suspending itself. This list is called the static sensitivity list. The static sensitivity list just provides

a default argument for wait and next_trigger statements, so a process with a static sensitivity

can use wait() (with no argument) or omit the next_trigger statement, but this is mainly a

syntactic sugar.

SystemC Objects. Each SystemC object (ports, modules, . . . ) contain the necessary information about

the binding. In the example above, the port port of instance1_1 contains a pointer to the signal

signal1, which itself gives the list of connected ports (ports[0]).

Since SystemC is optimized for simulation speed, it does not always record all the informations a

back-end would expect:

• On each sc port, we add the list of ports bound to it as a decoration. This is useful in the case

of port-to-port binding (say binding of port A to port B, itself bound to the interface I), because

by default, SystemC “propagates” the binding to the interface without recording anything in the

intermediate port (in our case, A is bound to I, but B is completely bypassed.)

• On each slave module, we add the list of connected interfaces (normally, SystemC keeks the list of

slave modules in the channel, but not the list of channels in the interface).

For each element in ELAB representing a C++ function, we add a pointer to the AST of this function:

• Process handlers are linked to the corresponding function.

• For each sc module, we keep the AST of all the methods read, write (for the BASIC protocol),

ReadAccess and WriteAccess (for the TAC protocol).

4.3.1.3.3 C++ AST. The AST represents the bodies of the processes. For example, the if statement

line 9 in Figure 2.4 would be represented as in Figure 4.4.

We want to link AST and ELAB to each other, as shown in Figure 4.5: each process handler will be

linked to the corresponding AST, and each mention of a SystemC object in the AST will be linked to its

instances (one instance per instance of the process, see below).

The abstract syntax tree of GCC is documented in GCC internal manual [St]. Some additional docu-

mentation can be found in the code itself (files tree.def, cp/cp-tree.def and c-common.def).

The AST is implemented by a pointer to a node. A node contains the type of node (a value in an

enumerated type), an array of pointers to the children, and additional data, depending on the type of the

node. Decorations are added on some node of the tree.
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Figure 4.5: Link between AST and ELAB

56/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



4.3. PINAPA Principles, Limitations and Uses

Type of instruction. The first decoration is the type of instruction. The list of currently supported

instructions is the following:

CPP STANDARD: C++ code unrelated to SystemC

CPP FUNC DECL: C++ function declaration

CPP DATA MEMBER: A variable which is a data-member of a class

SC VARIABLE DECL: Declaration of a variable which is of a SC or TLM primitive time

SCP TYPE: Type. (decoration of TREE TYPE field in the tree)

SC PORT: An object of type sc in, sc out or sc inout

SC WRITE: A function call port.write(value)

SC READ: A function call port.read(value)

SC MODULE: A module in SystemC

SC WAIT: A function call wait(...)

SCP BASIC SEQ WRITE: A function call port.write(value) on a port connected to a

basic seq

SCP BASIC ARBITER WRITE: A function call port.write(value) on a TLM port connected to

a basic arbiter

SCP BASIC SEQ READ: A function call port.read(value) on a TLM port connected to a

basic seq

SCP BASIC ARBITER READ: A function call port.read(value) on a TLM port connected to a

basic arbiter

SCP TAC ROUTER READ: A function call port.read(value) on a TAC port connected to a TAC

router

SCP TAC ARBITER READ: A function call port.read(value) on a TAC port connected to a TAC

arbiter

SCP TAC SEQ READ: A function call port.read(value) on a TAC port connected to a TAC seq

SCP TAC ROUTER WRITE: A function call port.write(value) on a TAC port connected to a

TAC router

SCP TAC ARBITER WRITE: A function call port.write(value) on a TAC port connected to a

TAC arbiter

SCP TAC SEQ WRITE: A function call port.write(value) on a TAC port connected to a TAC

seq

SCP TAC SET ACCESS ERROR: set access error() in a TAC slave method

TLM IS ERROR: The function tlm status::is error()

TLM IS OK: The function tlm status::is ok()

TLM IS OVERLAP: The function tlm status::is overlap()

TLM IS NO RESPONSE: The function tlm status::is no response()

TLM SET OK: The function tlm status::set ok()

TLM SET ERROR: The function tlm status::set error()

SC NOTIFY: Event notification in SystemC

SC NEXT TRIGGER: Call to a next trigger() function in SystemC

Specific types. For AST representing special types, a decoration is also added. The possible values

are:

SCP BASIC ADDRESS TYPE: Type of an address in the basic protocol

SCP BASIC DATA TYPE: Type of a data in the basic protocol

SCP TAC ADDRESS TYPE: Type of an address on a TAC channel

SCP TAC DATA TYPE: Type of a data in the TAC protocol

SCP STANDARD TYPE: C++ standard type

This is usefull for our back-end LUSSY, who does a special treatment on addresses. Note that C++

typing system does not allow the identification of address types in 100% of the cases. In pieces of code

like

GLOBAL_DATA_TYPE x = 42;

int y = 56;
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x = x + y;

it is easy to identify x as being of type address, but y will be of type “plain integer”.

Additional decoration on the AST instance. Additionally, for some instructions, an additional deco-

ration is added:

• For all AST representing an sc object, the pointer to the corresponding object is added,

• For SC EVENT, a pointer to the actual sc event is added (we consider this special case because

sc event does not inherit from sc object),

• For CPP DATA MEMBER, the value of the variable at the end of elaboration is added,

• For SC WAIT, we also add a representation of the list of sensitivity (information saying when the

process will wake up) for this statement, either based on the arguments of the wait, or on the static

sensitivity list for a wait with no argument. In the example of Figure 2.4, the wait statement

line 34 has no argument. The list of sensitivity used is therefore the static list built during elaboration

(lines 46 and 47): PINAPA will attach the list {*ports[0], *ports[1]} to this statement.

4.3.2 Limitations

4.3.2.1 Possible Limitations and Consequences

Unlike other existing approaches, PINAPA has no limitation regarding the complexity of the code of the

constructors used to build the architecture, because it does not interpret them; it compiles and executes

them. For example, a model reading a configuration file or the command line arguments to determine the

number of modules to instantiate can be parsed correctly by PINAPA. In the example of Figure 2.4 page 26,

for instance, the initial values of some data-members depend on command-line arguments, but they will be

extracted correctly by PINAPA (the command line arguments have to be provided to PINAPA).

Moreover PINAPA (like the front-end of SynopsysTM) uses a real C++ front-end and will therefore

correctly parse any code that would have been parsed successfully by the C++ front-end. The limitations

regarding the C++ language itself are therefore minor (limited to “details” such as the export keyword not

managed by GCC). The use of macros in the source code is not a problem: the macros will be expanded by

the C++ preprocessor. Whether the code uses the macro or its expanded version doesn’t have any influence

on PINAPA. For example, whether the user writes

SC_MODULE(name) {...}

or

struct name : public sc_module {...}

does not have any influence on PINAPA (the second form may indeed have to be used in the case of multiple

inheritance). PINAPA would deal as well with user-defined macros. Any tool using a dedicated grammar

for SystemC would have to include all the grammar and typing rules of the C++ standard in the tool to have

a correct parser.

While PINAPA has no limitations (except the ones of GCC) regarding the AST (we use a C++ front-

end) or ELAB (we let a C++ compiled code execute the constructors), it does have limitations due to the

way we establish the links between the AST and ELAB.

4.3.2.2 Dynamic references to SystemC objects

It is not always possible to establish these links. For example, if a process uses a pointer to a SystemC port

or an array of ports, then, the actual object pointed to by this pointer cannot be known statically. This is

the case of port, declared line 29 in Figure 2.4. In some cases, advanced static analysis techniques like

abstract interpretation would allow to get more information statically, but the subset of SystemC managed
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by the tool would be very hard to define. In practice, those constructs are usually not considered as good

programming practice and did not appear in the programs used as input for PINAPA up to now.

PINAPA does simply not manage references and pointers to SystemC objects (the pointers to ports will

appear in the output of PINAPA, both in AST and in ELAB, but the objects in the AST will not be linked to

the corresponding ones in ELAB). For arrays of SystemC objects, if the index is a constant, then, the actual

object is known statically, and PINAPA decorates the AST referring to the port with a pointer to this object

(this is the case in the instruction ports[1] line 27 of the example). Otherwise PINAPA decorates the

AST with the index in the array (which is itself an AST) and a pointer to the first element of the array. In

any case, we could reduce the case of arbitrary array indexes to the case of constant index by transforming

the code to eliminate non-constant indexes, while preserving the semantics of the model. In the example,

the transformation would unroll the for loop or transform ports[i] into

i == 0 ? ports[0] : (i == 1 ? ports[1]

: (abort(),ports[1]))

PINAPA being open-source, such transformation can easily be added if needed.

4.3.3 Other possible approaches

4.3.3.1 Using a C++ Interpreter

An interesting option would be to modify an existing C++ interpreter like UnderC [Don]. A C++ interpreter

contains a C++ front-end, and the environment to execute the elaboration phase. Ideally, the C++ interpreter

should be 100% compliant with the C++ standard, and do the interpretation at the AST level (not on an

intermediate byte-code representation, which is unfortunately the case of UnderC) to ease the link between

the AST and the runtime information. We are not aware of any such interpreter.

4.3.3.2 Avoiding the need for a SystemC front-end

The problem solved by our approach is the expressivity of the language used to describe the model’s

architecture. Another approach would be to eliminate the problem instead of solving it, by using a less

expressive language.

In particular, the SPIRIT [SPI] XML Schema can be used to describe the architecture of the model.

The version 2.0 with a support for TLM constructs is expected for the end of the year 2005. Extracting the

structure of the model would then consist in parsing an XML file, and extracting the body of the processes

would still have to be done with a C++ front-end. Simulation of the model would also be possible, by

generating C++ from XML and compiling it as usual.

This approach is not applicable today since we need to deal with existing SystemC models.

4.3.4 Pinapa: Current and Future Uses

We currently use PINAPA as a front-end for our formal verification tool LUSSY. Starting from the abstract

representation of the model provided by PINAPA, we generate an intermediate representation (a set of

communicating automata) which is itself dumped in a text format used as input for a traditional model-

checker. This will be detailed in the following chapters.

STMicroelectronics is currently developing a visualization tool for SystemC using PINAPA: reading a

SystemC program, it generates another representation usable by a visualization tool (using the dot SPIRIT

format). This is a very simple use of PINAPA since it only use the ELAB part of the information extracted,

but it is being extended to provide more advanced visualization including static information about process

communication and synchronization. Our medium-term plans include the development of a lint tool for

SystemC and our TLM methodology. The tool has to be able to identify both the architectural and the

language constructs, which is exactly the scope of PINAPA.

PINAPA has also successfully been used by a research project for compositional verification of trans-

actional models of Systems-on-a-Chip, led by the POP ART team of INRIA Rhône-Alpes (France) in

co-operation with STMicroelectronics. The tool, called (temporarily) SC2PROM, has been started by Nico-
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las Palix (see [Pal04]), and continued by Yvan Roux (see [Rou05]). Its internal structure is similar to the

one of LUSSY, described in the following chapters.

From the feedback we get on the public mailing list of PINAPA, we can say that PINAPA is at least

used for one project of formal proof in Infineon, and a project of tool to support the platform based design

methodology by Humberto Rocha for which he needs to extract behavioral and structural information from

a SystemC design. I also got a person to person email discussion with someone interested in writing a

simple synthesizer based on PINAPA.

4.4 Implementation of PINAPA

The previous section presented the output, and the limitations on the input of PINAPA. We will present here

the internals of the tool.

The execution of PINAPA can be divided into three main tasks:

1. Get the ELAB information by executing the elaboration phase,

2. Get the AST of the process bodies using GCC,

3. Make the link between the results of phases 1 and 2

Phases 1 and 2 are just software reuse. For phase 1, fortunately, SystemC keeps a list of most objects

in a global variable, it is easy to examine them.

Concretely, PINAPA first launches the elaboration of the model. We use a slightly modified version of

SystemC, in which we redefined in particular the function sc_start() called by the program at the end

of elaboration. Instead of launching the simulation, our version of SystemC launches a C++ front-end. A

few other minor modifications have been necessary. They will be detailed in section 4.4.4.

In phase 2, GCC parses the functions one by one. We actually ignore many of them, since we are only

interested in the body of processes. We get an abstract representation of the source code of the processes

in the form of an Abstract Syntax Tree (AST).

Then, the actual job of PINAPA begins: we have to make the link between this AST and ELAB. Sec-

tions 4.4.1, 4.4.2 and 4.4.2.3 below detail some interesting problems raised by this phase. Section 4.4.3.3

summarizes the architecture of the tool.

4.4.1 Links from ELAB to AST

The first step is to make the link from ELAB to the AST. There is not much to do: for each process handler,

look for the AST of a method with no argument whose class name and function name match the ones in

the process handler, and add a pointer to this AST in it.

In the example page 26, there are two process handlers for module1::code1() (one for each in-

stance of module1()), and each of them points to the AST of function module1::code1() declared

at line 8.

4.4.2 Links from AST to ELAB

The link from the AST to ELAB is a bit more complex. Each instruction in the AST corresponding to a

function or object of the SystemC library must be considered as a SystemC primitive and requires a special

treatment.

4.4.2.1 SystemC Functions

SystemC function calls (in the process bodies) are recognized by their name and list of arguments. We add

a decoration to the tree saying that this function is a SystemC function (and which one it is).

For wait() statements, PINAPA provides the list of sensitivity used for the statement. We defined

a unified data-structure for the possible wait() arguments and static sensitivity list. From the back-end

point of view, there’s no difference between a wait() with no argument (thus, using the static sensitivity

list) and the wait(...) with the equivalent arguments. In practice, we added a callback in SystemC that
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builds the static list of sensitivity during elaboration, and we decorate the wait() AST either with this

list or a list computed from the arguments.

4.4.2.2 SystemC objects

SystemC objects require much more work. In the AST, we get an abstract representation of the classes, but

in ELAB, we have instances of these classes. These instances are built once and for all during elaboration.

Unless the model uses pointers to SystemC objects, a variable containing such object will therefore always

contain the same object.

We describe two methods to get a pointer to an object in ELAB from its AST and process handler, and

how we applied them in the case of GCC. Depending on the information present in the AST, either one

method, the other, or both can be applicable using another C++ front-end, depending on the information

provided by this front-end.

4.4.2.2.1 An Example: SystemC Communication Ports. In the case of GCC, SystemC communica-

tion ports correspond to a situation where the name of the object does not appear in the AST. This is

due to the way GCC represents a member function call in the AST: for example, when the user writes

port.write(x);

in a process body, if port is a member of the current class, this is equivalent to

this->port.write(x);

which is itself converted to

write(this->port, x);

by GCC’s front-end. Now, here is the bad joke: this code is converted to

write(*(this + offset of port), x);

where offset of port is a literal numerical constant. At this point, we are still in GCC’s front-end, but we

have lost an important information: the name of the port.

So, we only have the offset of the port being examined, and we want to get its instance in ELAB. Since

the compiler used for the C++ front-end and the one used to compile the model are ABI-compatible, the

solution is the following: For each instance of the process, we can get a pointer to the instance of the class

containing the process (this information was already in the original SystemC’s process handlers). If we add

the offset we got from the AST to the value of this pointer, we get a pointer to the instance of the port.

4.4.2.2.2 Other objects. The same approach is used for other SystemC objects like sc_event.

4.4.2.3 C++ Classes Data Members

It is often the case that a data member of a class is initialized during elaboration, and we would like PINAPA

to be able to extract this information from the model. PINAPA provides an option to read the value of these

data members at the end of elaboration.

The problem is that in this case, the address offset does not appear in the AST in the output of the front-

end of GCC. The approach of section 4.4.2.2.1 is therefore not applicable. We could compute the offset

from the AST (GCC does this anyway, later in the compilation flow), but we chose a different approach,

that does not require this computation.

Since we have here both the name of the data member and the name of the class it is a member of, we

can write a piece of C++ code that would read the value of this data member. The C++ language is not

flexible enough to execute dynamically this piece of code, but never mind: we can write it in a file, compile

it (run g++ as an external program), load it dynamically (dlopen, dlsym, . . . ), and execute it. It will be

executed in the environment ELAB. Figure 4.6 shows an example of such generated code.

In the current implementation, the return value is converted into an AST representing the value of the

constant, which is attached as a decoration to the AST of the model.

There is a limitation here because the return value of the generated function has the same type as the

data-member that we are examining, which can be any type. To be able to call this function from PINAPA,

we have to know the return type statically. Concretely, this means we need to write a piece of code in

PINAPA for each data-type we want to manage.
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#include "preprocessed_sc_source.cpp"

namespace pinapa {

struct get_value {

static bool

function_to_get_value_0(sc_module * arg) {

return (static_cast<module1 *>(arg))->m_val;

}

[...]

};

[...]

} // namespace pinapa

Figure 4.6: Example of generated code getting the values of data members

In a future version, it would be interesting to implement the conversion from a concrete value to an

AST in the generated code itself. This way, the return value of the function would always be an AST, and

this would remove the above limitation. In other words, code generation can be generic on the type of the

variable, whereas function calling can not.

4.4.3 Architecture of PINAPA

4.4.3.1 Modules, Dependencies, and Link

PINAPA reuses code from GCC and the SystemC library (both of them in a slightly modified version), and

dynamically loads the model to parse.

Some constraints must be satisfied:

• The user’s model must not depend on PINAPA’s code. We do not want to limit ourselves to models

written explicitly for PINAPA.

• The modified versions of GCC and SystemC should not depend on PINAPA itself. This is not a strong

requirement, but simplifies greatly the build system of PINAPA. This allows to compile and install

the modified GCC and SystemC once and for all, and recompile only the heart of PINAPA when some

modifications are done on its code. Furthermore, adding dependencies from GCC to PINAPA would

imply to modify GCC’s build system, which is extremely complex (a “bootstrap” system more than

a simple “build” system actually).

• The back-end must not depend on the front end. We want PINAPA to be a library callable in the

standard way: the writer of the front-end writes a program with a main function, and can call the

main function of the back-end at any time.

The dependency graph must therefore be the one of Figure 4.7.

To achieve this goal, function calls from the modified GCC or from the modified SystemC are done

through callbacks (function pointers in C, functors in C++). The callbacks are declared and used in GCC

and SystemC, and PINAPA is in charge of initializing them.

Another constraint is that we want to let the back-end execute some code before loading the model to

parse (in particular, in LUSSY, the model to parse can be specified from the command line, so, command-

line parsing must be done before being able to load the model). For this reason, loading the model is done

at runtime using the dl library (dlopen to load the library, and dlsym to fetch its sc_main symbol).

The link mechanism is presented in Figure 4.8.
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4.4.3.2 A note on module hierarchy

SystemC provides a notion of hierarchical component. This means that an object (module, port, . . . ) can

be instantiated as a sub-component of another one. While this is essential to organize the design, it has no

influence on the semantics. For completeness, PINAPA keeps a pointer parent in each object, pointing to

the containing object, but other components of LUSSY will not use it.

4.4.3.3 Function Call Graph

The resulting function call graph in PINAPA is somewhat complex (Figure 4.9), but will be made clearer

by the end of this section.
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Figure 4.9: Architecture of PINAPA

In the original version of SystemC, the main function is in the SystemC library itself (it actually does

not do much more than displaying a copyright message and calling the sc_main function). We have

removed it from the library, considering that the main function should be written by the user (i.e., the

programmer of the back-end). This is the item (1) of Figure 4.9. Having the main function in a library can

be acceptable in the case of SystemC, since it is deliberately a library which is very intrusive in the code

using it (which is the reason why there is sometimes a confusion between a language and a library), but

this is not acceptable in the context of a more traditional library, where the user wants to use the library,

not to be constrained by it (in particular, it is not possible to use two libraries containing a main function

at the same time).
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The call to the sc_main function (and therefore the call to the PINAPA’s main function) must not

return, because the elaboration phase may have allocated objects on the stack. We use therefore a callback

mechanism (using a C++ functor), so the main function of the back-end should look like:

int main(int argc, char ** argv) {

// The backend is in my_callback::operator()

pinapa::st_backend *callback = new my_callback();

// ...

pinapa::main(..., callback);

}

From the pinapa::main function (2), we call the function that was originally the main function

in the SystemC kernel (3), which in turn calls the pinapa::main_in_parser function (4), which

dynamically loads and executes the user’s code (5) to elaborate the model. The call to sc_start (6) that

originally started the simulation is bypassed and calls pinapa::parser_start (7).

The elaboration has now been executed. We call the main function of the GCC compiler (8). We

have modified GCC to call the function pinapa_gcc_analyze_function_hook (9) in PINAPA

for each function it parses (passing the AST of this function as an argument). For each function parsed,

pinapa::simcontext_decorate_process (10) searches for the corresponding process handler in

ELAB and pinapa::analyze_function_body (11) runs over the AST to link SystemC primitives

to their corresponding object.

4.4.4 Modifications of GCC and SystemC

4.4.4.1 Modifications of GCC

4.4.4.1.1 C/C++ compatibility. The first modification performed on GCC’s source code was to make

the header files defining the tree data structure compilable in C++.

4.4.4.1.2 Callback to let PINAPA Examine the AST. The most important modification was simply to

add a function call from the code of GCC to PINAPA, taking the AST of the function being processed as

argument. Ideally, we should have extracted the C++ front-end from GCC, and the result would have been

a library with a function to parse the C++ code, returning a list of the AST of the functions of the program.

Unfortunately, in GCC’s architecture, the front-end and the back-end are tightly coupled, and separating

the front-end would represent a huge amount of work. Our solution is to “inhibit” the back-end by setting

the flag syntax-only (the equivalent of the command-line argument -fsyntax-only for the GCC

executable).

4.4.4.1.3 Avoid Garbage Collecting. Although written in C, GCC implements a garbage-collector on its

internal structure. During compilation, some objects were not referenced anymore, except by the annotation

we added in ELAB, which are not taken in account by the garbage-collector. We had therefore to add a

dummy reference to those objects to avoid garbage-collection.

4.4.4.1.4 Inhibit Some Optimizations. Some of GCC’s optimizations lead to loss of information in the

AST (even without enabling the optimizations):

• In a function in which all return statements were returning the same variable, the “named value

optimization” was loosing the AST representing this variable (it was replaced by a NULL pointer in

the AST). We keep a reference to this value before it is deleted.

• During constant propagation, GCC does implicit conversion from boolean to integer. Here

also, we keep a reference on the AST of the boolean type before it is replaced by the integer.
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4.4.4.2 Modifications of SystemC

4.4.4.2.1 Make internal data available. The SystemC library was clearly written for simulation, not to

let the user explore the internal data structure. PINAPA abuses the library to build a SystemC front-end

on it, but we had to make a few modifications to make this possible. Many classes had private members,

accessible only to the simulation kernel. We added friend and public keywords to those classes to

allow PINAPA to access those private data. In addition, some data-structure (like process tables) were

considered internal by SystemC and were declared in .cpp files. We had to move those definitions to the

appropriate header file.

4.4.4.2.2 Code added. During elaboration, PINAPA collects a few more information than the origi-

nal SystemC does. This is the case for example for the construction of sensitivity list described in sec-

tion 4.3.1.3.3, or for port binding described in section 4.3.1.3.2. This is done by adding function calls to

PINAPA function in SystemC.

The macros SC THREAD and SC METHOD have been modified also, to keep the name of the class in

addition to the name of the process and the name of the module’s instance in the process handler.

4.4.5 Practical Considerations

4.4.5.1 Tools used to build PINAPA

PINAPA is written in C++. The choice of the language was rather straightforward: the SystemC library

is written in C++, and makes heavy use of the language’s advanced features (class, multiple-inheritance,

templates, . . . ). Since PINAPA use SystemC, and accesses the internals of the library, the benefit of using a

better language would not compensate the effort needed to write a binding for another language.

We use the autotools1 for the build system. AUTOCONF allows an easy configuration management,

while AUTOMAKE takes care of generating a Makefile with an efficient dependencies management. We

also use LIBTOOL to generate libraries. The project was also used as a pilot project to evaluate the autotools,

and the potential benefits of using them in other projects of the team.

The documentation of PINAPA is generated with doxygen (a C++ equivalent for JavaDoc). We used

both per-functions or per-class documentation and separate pages for more global documentation.

4.4.5.2 Open Source Release

After developing PINAPA internally, for the needs of the back-end LUSSY, we decided to distribute it

publicly under a Free Software [Fre] (mostly synonymous of Open Source Software [Ope]) license.

4.4.5.2.1 Motivations. Our main motivation for this choice was to improve the quality of PINAPA with

a reasonable effort. Making a program open source is a way to increase the number of potential users (and

therefore testers), and the number of potential contributors. Up to now, we received as external contribu-

tions a guide on the way to compile PINAPA on a Windows platform. “Unfortunately”, the author decided

to switch to a Linux platform before completing the windows installation, so, the guide is incomplete, and

we actually can’t estimate the remaining effort for a windows port of PINAPA.

A counter-argument would be that making PINAPA open source makes it harder for STMicroelectronics

to sell it (it’s possible to sell free software, but to sell something that anyone could get for free otherwise,

we would have to provide some added value). The position of STMicroelectronics regarding this is that

selling a SystemC front-end is anyway not the mission of the company, and we estimated that we would

anyway not make money with PINAPA.

4.4.5.2.2 Licensing. Since PINAPA links against GCC, which is licensed under the terms of the GNU

General Public License, and SystemC, whose license is not GPL-compatible, the software as a whole can

not be distributed. However, distribution of separate packages as source code is allowed.

1http://sources.redhat.com/autobook/
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4.5. Parsing the EASY Platform With PINAPA

The GPL does not satisfy us in the context of PINAPA: we would like to be able to distribute some com-

ponents of LUSSY under Non-Disclosure Agreement for example, and we have no hope to have PINAPA

adopted by major CAD companies if we do not allow them to link PINAPA against their commercial and

proprietary tools. We can’t change the license of GCC, but we may have a workaround for it in the fu-

ture (using an intermediate file to transmit the information from GCC to PINAPA). We don’t want to get

locked by the license of PINAPA itself (If external contributions are merged in PINAPA’s mainline, we

won’t be able to change the license without the agreement of all contributors). On the other hand, distribut-

ing PINAPA under a non-copyleft license represents a risk for us: someone could fork PINAPA and make

proprietary software out of it without contributing back to STMicroelectronics.

The GNU Lesser General Public License is a good compromise: it allows proprietary or confidential

software to be dynamically linked to PINAPA, but the core of PINAPA remains protected by the license:

Anyone distributing a modified version of it must distribute the source code under the GNU Lesser General

Public License too.

The license scheme chosen is therefore the following: the patches for GCC and SystemC are distributed

under the terms of the same license as the software they modify (respectively the GNU GPL and the OSCI

license), and the core of PINAPA is distributed under the terms of the GNU Lesser General Public License

(also known as the LGPL).

PINAPA is now part of GreenSoCs (http://www.greensocs.com/), a project to build

an open source infrastructure for SystemC. This gives us more visibility than being a sep-

arate project, and didn’t impose unreasonable constraints. PINAPA is therefore available on

http://greensocs.sourceforge.net/pinapa/. The site provides a download area with a mir-

ror of the main GNU Arch archive, nightly snapshot as compressed tar archives, the generated doxygen

documentation (which is more detailed than this document regarding the implementation details). We also

use sourceforge’s services for the bug tracker and the mailing list.

4.4.5.2.3 Multi-site infrastructure. A practical constraint was the management of different develop-

ment sites. The site of ST being protected by a very restrictive firewall. The solution adopted is the

revision control system BAZAAR (patched to manage SSL and authenticated HTTP proxy), and a Web-

DAV server located in Verimag. This was also used for code sharing between ST and INRIA. The master

archive is hosted on Verimag’s web server, and mirrored periodically on sourceforge by a cron job running

in Verimag.

We use sourceforge’s compilation farm to generate the nightly snapshot and the online documentation.

A cron job runs on the compilation farm every day, gets the latest version from the archive, creates the tar

archives, generates the documentation, and upload them all on the web site.

With this architecture set up, to change the online documentation on sourceforge from either ST or

Verimag, one just has to modify the doxygen comments, commit, and wait for a few hours (even behind

ST’s firewall !).

4.4.5.2.4 Validation. We developed PINAPA incrementally, following our needs for the formal verifica-

tion back-end LUSSY. Each feature added to PINAPA was validated by at least one example, stimulating

both the front-end and the back-end. The correctness of the translation can be ensured by the examina-

tion of the model-checker’s diagnosis compared to the simulation behavior, and by the visualization tools

connected to LUSSY.

4.5 Parsing the EASY Platform With PINAPA

The EASY platform served as a test-case for PINAPA. Since PINAPA isn’t able to parse several files

separately, we moved the code from the .cpp files (C++ bodies) to the corresponding .h files (C++

header). We could also have created one file including the others, or used the -include option of GCC.

No other modification of the code were necessary regarding PINAPA.

As a result, the time spent in PINAPA to parse the EASY platform (less than 20 seconds on a Intel(R)

Pentium(R) 4 CPU 2.80GHz, with GCC compiled in debug mode with all optional type-checking enabled)
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was even smaller than the time to compile it with GCC (more than one minute on the same machine),

because we avoided the overhead due to separate compilation (but also lost its benefits). Note that since

the input of PINAPA includes the compiled form of the platform, the total time to use PINAPA is the parsing

time plus the normal compilation time.

Since the main goal of the Ph.D was to perform formal verification, we didn’t take time to test PINAPA

on larger platforms (remember that PINAPA, without a back-end, is irrelevant, so testing other case-studies

would need to have a working back-end and the way to check the correctness of its output).

4.6 Conclusion

We presented PINAPA, a front-end for SystemC. Unlike traditional compiler front-ends, it executes a part

of the program before parsing it, and the main work presented in this paper is the way to make the link

between the source code representation and the runtime information.

This technique allowed us to write a SystemC front-end with very few limitations, with a minimal

effort. It reuses megabytes of source code from GCC and SystemC, but counts itself less than 4,000 lines

of code. The performances are reasonable: most of the time is spent in GCC, so parsing a model with

PINAPA takes almost the same time as compiling it with GCC. It already manages the TLM TAC and TLM

BASIC extensions of SystemC, and other could be added in the future depending on our needs.

The parser is already operational and used in two formal verification back-ends and a prototype of

visualization tool.

68/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



Chapter 5

HPIOM: Heterogeneous Parallel

Input/Output Machines

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 The Need For an Intermediate Formalism . . . . . . . . . . . . . . . . . . . . . 69

5.1.2 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.3 Contents of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 HPIOM Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Syntax of HPIOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Semantics of HPIOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.3 Non-determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Additional constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Convenience constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Abstract Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Expression of Properties in HPIOM . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Implementation of and Manipulation of HPIOM . . . . . . . . . . . . . . . . . . . . 82

5.5.1 HPIOM Expressions and the Composite Design Pattern . . . . . . . . . . . . . . 82

5.5.2 HPIOM Expressions and the Visitor Design Pattern . . . . . . . . . . . . . . . . 83

5.5.3 On-the-fly Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.4 Future improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Introduction

The previous section presented PINAPA. From the source code of a TLM model, it is able to provide

an abstract representation of the syntax and architecture of the model. At this point, no transformation

involving the semantics of the program has been applied to the model.

5.1.1 The Need For an Intermediate Formalism

To be able to apply any kind of formal methods to the model, we need to transform the output of PINAPA

into a structure with a well-defined, formal semantics.

Starting from the abstract representation of the model provided by PINAPA, our final goal is the con-

nection to a formal verification tool. A direct connection would be possible, but not desirable: first, mixing

the interpretation of the semantics of SystemC and the generation of the target language in the same piece
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of code would lead to complex and unmaintainable code, and most of all, this would require a complete

rewrite for each back-end tool to manage.

We need therefore an intermediate formalism. The requirements are the following:

Well defined formal semantics: The transformation of SystemC into this formalism is a way to give a

semantics to SystemC. It only makes sense if the semantics of the destination language is itself clear;

Powerful enough: The formalism should of course be expressive enough to represent the semantics of the

model;

Simple to manipulate: The idea is to perform as much as possible of the work before the intermediate

formalism in the transformation flow. Any transformation of a complex structure into a simpler one

done before the intermediate representation is done once and for all. Any transformation coming

after it in the flow may have to be re-written for each back-end;

Executable: To get confidence in our algorithms, a good solution is to test the generated code against the

official SystemC execution engine. The formalism being executable is crucial to allow validation

and easy debugging of the generated code;

Provable: Our final goal is to perform formal verification. The proposed formalism should therefore allow

it. This requirement is not very different from the “Well defined formal semantics” one.

For a more general discussion about the expected qualities of a formal language, see appendix B.

5.1.2 Design Choices

5.1.2.1 Reusing an Existing Format

We experimented the IF toolkit [BGO+04], but quickly realized that the effort to learn, and adapt the toolkit

to our needs, was much higher than redeveloping an automata manipulation library from scratch.

We did not find another flexible enough automata library under reasonable license conditions, and

decided to develop our own formalism and manipulation library. This formalism is called HPIOM, for

Heterogeneous Parallel Input/Output Machines. It is inspired from synchronous languages like Es-

terel [Ber00] and Argos [MR01].

5.1.2.2 Expressiveness Choices

The above-mentioned requirements are sometimes contradictory, and some choices have to be made. In

particular, “Provable” is not always compatible with “Powerful enough”. The more expressive a language

is, the less provable it is. For example, proving properties like code reachability and termination on a

Turing-equivalent language is not decidable, while it can be decidable, or even trivial on less expressive

languages. In our context, it would not really make sense to privilege expressiveness: Having a more

expressive intermediate formalism would allow us to translate more source programs with a complete

preservation of the semantics, but would not allow us to prove more properties if the proof engine does not

support those constructs. We have chosen to design HPIOM as a finite automata formalism, without any

dynamic process creation and dynamic data-structures.

5.1.2.3 Limitations of LUSSY due to HPIOM Design

The choice of a limited expressiveness for HPIOM has some consequences on the possibilities of LUSSY.

Since we have no dynamic data-structure in HPIOM, and no easy way to simulate it (we have unbounded

integers on which we can encode anything in theory, but that’s not reasonable in practice), any SystemC

program using dynamic data structure or non-terminal recursive calls will have to be approximated during

the conversion. We’ll manage to perform the approximation in a way that preserves the properties we want

to verify.

5.1.3 Contents of the chapter

This chapter will define an intermediate formalism called HPIOM. It is a simple model of communicat-

ing automata, simple enough to be manipulated easily, and powerful enough to express the semantics of a
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TLM model. We start with a presentation of expressions (section 5.2.1.1), and use it to build automata (sec-

tion 5.2.1.2). Section 5.2.2.3 presents the semantics of a system containing several automata. Section 5.3

adds some constructs that can be reduced to the primitive ones that we’ve added to HPIOM, including the

encoding of addresses into Boolean (section 5.3.2). We describe a simple way to express properties on an

HPIOM system in section 5.4 and section 5.5 presents the implementation.

5.2 HPIOM Basic Concepts

5.2.1 Syntax of HPIOM

HPIOM is a formalism of communicating, parallel automata with a synchronous semantics. An automaton

is a set of control points linked by edges. An edge has a guard, a set of parallel assignments, and a set of

signals emissions. We detail the notion of expression and the notion of condition first, and build the syntax

and semantics of edges and automata based upon it.

One particularity of HPIOM is that it has no concrete textual syntax, and is only available as an abstract

data-structure. We will however use a graphical syntax to make the explanations clearer. The current

implementation of HPIOM can not import such graphics, and is only able to export an incomplete graphical

representation (used for debugging purposes).

5.2.1.1 Expressions and Conditions

HPIOM defines two kinds of “expressions”: HPIOM expressions that can be of any type, and evaluate to a

value of this type, and HPIOM conditions, that can be true or false. Only HPIOM conditions can be used

as guards or condition for a conditional expression, but conversion operators between expressions of type

Boolean and condition are provided. Both expressions and conditions are purely functional (no side effect

is allowed).

5.2.1.1.1 Types. The following types are defined in HPIOM:

Boolean: Boolean expressions can have the value true or false.

Integer: Integer expressions can have any positive or negative value.

Enumerated types: The set of values for an enumerated type is defined statically and finite.

Arrays can be implemented by using n variables of the same type. A type “array” is also provided for

convenience.

5.2.1.1.2 Abstract Grammar. HPIOM expression are defined by a simple grammar. Terminals of the

grammar are variables, unknown values, signals and constants, and are composed using unary and binary,

purely functional operators. An abstract grammar follows. E represents an expression, C represents a

condition, this font is used for terminal symbols while this one is used for non-terminal symbols.

Remark:

The C++ implementation uses prefixes to avoid name clashes in identifiers.

st , for “structure” means “a class designed to be used through a pointer”.

scp , for “SystemC parser” is the prefix used for all identifiers in LUSSY

(this should have been lussy , but the code was here before the name of the

tool. . . ). Those prefixes are usually omitted in this document, for clarity.
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E −→ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conditions

−→ array index(E, int) . . . . . . . . Access to an element of an array

like t[i].

−→ cond expr(C, E, E) . . . . . . . . . . . Equivalent of if in lisp, or

(x ? y : z) in C.

−→ binary operator . . . . . . . . . . . . . . . . plus, minus, mult, etc. . .

−→ lvalue . . . . . . . . . . . . . . . . . . . . . . . . . Left operand of an assignment.

−→ signal . . . . . . . . . . . . . . . . . . . . . . . Value of a signal

−→ unknown . . . . . . . . . . . . . . . . . . . . . Non-deterministic value.

−→ unary map . . . . . . . . . . . . . . . . . . . . . Extension of unary operator to ar-

rays.

−→ binary map . . . . . . . . . . . . . . . . . . . . Extension of binary operator to ar-

rays.

−→ constant . . . . . . . . . . . . . . . . . . . . . . .

constant −→ array value . . . . . . . . . . . . . . . . Constant of a type array, like

[0, 42, 3].

−→ int constant . . . . . . . . . . . . . . . Numerical constants

−→ enum value . . . . . . . . . . . . . . . . . . Constant of an enumerated type.

lvalue −→ variable . . . . . . . . . . . . . . . . . . . .

C −→ binary bool operator . . . . . . . . . . .
−→ unary operator . . . . . . . . . . . . . . . . .
−→ bool constant . . . . . . . . . . . . . .

−→ bool expression(C) . . . . . . . . An expression of type boolean.

−→ bool unknown . . . . . . . . . . . . . . . Non-deterministic boolean value.

−→ comparison . . . . . . . . . . . . . . . . . <, <=, >, =>, =, 6= operators

−→ default cond(state) . . . . . . . . .
Condition true if and only if all con-

ditions on other outgoing edges are

false.

−→ non deterministic choice(state) Choice between several outgoing

edges of a control point.

−→ signal present(signal) . . . . . . . . . . . True if the signal is present.

−→ in state(A, state) . . . . . . . . . . . . True if automaton A is in state

“state”.
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binary bool op. −→ and(C, C) . . . . . . . . . . . . . . . . . . . . .
−→ or(C, C) . . . . . . . . . . . . . . . . . . . . . .
−→ xor(C, C) . . . . . . . . . . . . . . . . . . . . .

unary operator −→ not(C) . . . . . . . . . . . . . . . . . . . . . . . .

Most HPIOM constructs (and, or, not, . . . ) have obvious semantics and will not be detailed here. The

constructs non deterministic choice, in state, arrays, . . . can be reduced to other ones. They

are therefore not essential to the semantics of HPIOM and will be detailed later, in section 5.3.

5.2.1.2 Automata

An automaton A is reactive machine formally defined by a tuple (Q,V, U, q0,V0, qf , T, M) where

• Q is a set of control points,

• V is a set of variables (variables can have an initial value which is an expression, or be uninititialized.

In the later case, the initial value of the variable will be non-deterministic),

• U is a set of unknown values,

• q0 ∈ Q is the initial control point,

• V0 is the initial valuation of variables (a possibly incomplete valuation, since some variables may be

uninitialized),

• qf ∈ Q is the final control point (it is used to define the append operator, but doesn’t have any

influence on the execution semantics),

• T is a set of labeled edges between control points,

• M is a set of signals, either pure (present or not) or valued (absent, or present with a value).

HPIOM automata have no “official” textual syntax (in LUSSY, automata are manipulated as an abstract

data structure using C++ code). We provide a graphical representation to simplify the explanations.

For example, an automaton with control points s1, s2 and s3, with edges t1 = (s1, s2, . . .) and t2 =
(s2, s3, . . .), and with variables v1 and v2 is represented in Figure 5.1.

x : bool
y : int

t2
s3s1

t1 s2

Figure 5.1: Simple HPIOM Automaton

5.2.1.2.1 Edges. An edge t ∈ T is a tuple (qs, qt, G,A, E) where

• qs and qt are the source and target control points.

• G is a condition made of elementary tests on the variables of V and the unknown values of U and

tests on the presence and value of a signal.

• A is a set of parallel assignments in the form v := e.

• E is a list of signals emissions.

Graphically, a guard is denoted by brackets like [x < 42], assignments are denoted by “:=” (“=” is

used for the equality condition).

5.2.1.2.2 Communication. Automata communicate through pure and valued signals. A signal emission

is either a pure signal or a couple (valued signal, value), where value is an expression. A signal can be

emitted only by one automaton, but can be received by any number of automata. A signal can be emitted

on one or several edges. The automaton receiving the signal can either use its value in an expression, or

test its presence in a condition (with the construct signal present).

In practice, it is sometimes useful to have signals emitted by several automata merged together (the

logical “or” for a pure signal, for example). This can be done with what we call combinational automata:
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automata with only one state, and no variable. To perform the “or” of several pure signal, we need two

edges: one emitting a signal, with a guard doing the “or” of all the signals to merge, and the default one, not

emitting any signal. A generic version of this automaton is provided in the HPIOM API. For valued signals,

we defined a variant of this automaton to merge the signals: the output signal will be present when one of

the input signals is present, and will have the value of the present signals. The input signals should be in

mutual exclusion (otherwise, the output value will be chosen non-deterministically among the present input

signals). The implementation has one control point, but has one edge per input signal, plus the default edge.

The guards of the non-default edges are the presence of the corresponding signal, and each edge emits the

corresponding value on the output signal.

Graphically, a pure signal emission is denoted by !signal, and a valued signal emission is written

!signal(value). For instance, the automaton of Figure 5.2, the automaton has guard y > 5 on edge t2
on which it performs an assignment. The pure signal m1 and the valued signal m2 (with value x) are

emitted on edge t1. A condition on the presence of a signal is denoted by ?signal (true if and only if signal

is present).

s3

s3

s2s1
t1

x := y + 1

t2

x : bool

[y > 5]

y : int

t3
[y <= 5]

! m1
! m2(x)

Figure 5.2: HPIOM Automaton with Signal Emission, Guard, and Assignment

5.2.2 Semantics of HPIOM

5.2.2.1 States

A state s = (q,V) of such an automaton is made of a control point q and a valuation of the variables V .

The set of initial states of A is {(q0,V) where V is a valuation of the variables of A where all initialized

variables are associated with their initial value}.

5.2.2.2 Transitions

The set of edges between control points implicitly define the set of transitions between states of the au-

tomaton: given a edge (qs, qt, G,A, E), a valuation U of the unknown values, the corresponding set of

transitions is the set of ((qs,Vs), (qt,Vt), G
′, E′,U) where Vs is a valuation of the variables of the au-

tomaton, U is a valuation of the unknown values of A, and Vt is the valuation obtained by applying the

substitution A to Vs. G′ is the condition obtained by replacing variables (resp. unknown values) of G
by their value in Vs (resp. U). It is therefore a Boolean condition on input signals, and E′ is the set of

signal emissions obtained by replacing variables by their value in Vs in signal values (pure signals are left

unchanged). Section 5.2.2.3.3 will use this notion to define transitions for a system of automata where

those conditions will be replaced by actual values of signals emitted by other automata.
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Remark:

The difference between states and control points, and between transitions

and edges can be somewhat confusing because the literature sometimes uses

“state”, or “explicit state” to refer to what we call “control point” in HPIOM,

but we preferred using different words to make it clearer: intuitively, a “control

point” q is what we represent by a circle when we draw the automaton. It is

a compact representation of a potentially large or infinite number of states. A

“state” (q,V) contains all the information about the state of the automaton: the

control point and the valuation of the variables.

Likewise, “edges” link control points, are represented by arrows on the dia-

grams, and represent sets of “transitions”, whereas “transitions” link “states”.

“state” and “transition” are the vocabulary of explicit state machines, while

“control point” and “edges” are the vocabulary of interpreted automata.

5.2.2.3 Semantics of a System of Automata

5.2.2.3.1 HPIOM systems. A set of automata (A1,A2, . . . ,An) is called an HPIOM system. The product

of automata in HPIOM has a synchronous semantics. This means that a transition of the global system is

made of one and only one step of each component.

5.2.2.3.2 Global state. A state of the HPIOM system (called global state) is a tuple (s0, s1, . . . , sn) =

((q1,V1), (q2,V2), . . . , (qn,Vn)) where ∀i ∈ [1..n], si is a state of Ai (therefore, qi is a control point and

Vi a valuation of the variables of Ai). The set of initial states of the system is the product of the sets of

initial states of its components.

5.2.2.3.3 Global transition. A transition of the HPIOM system (called global transition) is a tuple

((s0, s1, . . . , sn), (s′0, s
′
1, . . . , s

′
n), (E0, E1, . . . , En), (U0,U1, . . . ,Un)). The set of transitions for each

individual automata define the set of transition for the global system: ((s0, s1, . . . , sn), (s′0, s
′
1, . . . , s

′
n),

(E0, E1, . . . , En), (U0,U1, . . . ,Un)) (si and s′i being states of Ai, Ei sets of signals emissions, and Ui

a valuation of the unknown values for Ai), is a transition of the HPIOM system if and only if a tuple of

conditions (G0, G1, . . . , Gn) exist, satisfying the following conditions for all i in [1..n]:
• (si, s

′
i, Gi, Ei,Ui) is a transition of Ai,

• Gi is satisfied given the signal emissions Ej from the other automata and the valuation of unknown

values Ui.

5.2.2.3.4 Validity Condition. HPIOM imposes one condition for the product of automata to be valid:

If (∃i, j|Gi is a function of a signal emitted by Aj), then Gj is not a function of a signal emitted by

Ai. In other words, there is no instantaneous dialog in HPIOM. Since instantaneous dialog is managed

differently in the languages we want to use as back-end (in particular, it is not allowed at all in LUSTRE),

this can considerably simplify the code generation. This is often referred as the “combinational loop”, or

the “causality” problem [Ber00].

We generally avoid designing an intermediate formalism based on particularities of the back-end, and

prefer a back-end independent format, but it would not be reasonable to allow a construct that can not be

translated into the potential target languages.

5.2.2.3.5 Global execution. An execution trace of an HPIOM system is a sequence of global transitions:

((S0,S1,E1,U1), (S1,S2,E2,U2), . . . , (Sn−1,Sn,En,Un))

where

• ∀i ∈ [1..n],Ei = (E0, E1, . . . , En) and Ui = (U0,U1, . . . ,Un)
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• ∀i ∈ [0..n],Si = (s0, s1, . . . , sn),
• S0 is an initial global state of the system,

• ∀i ∈ [1..n], (Sn−1,Sn,En,Un) is a valid global transition for the system.

Remark:

An HPIOM system is a “flat” structure, without any notion of hierarchy (au-

tomaton inside a state of another automaton) or encapsulation (also known as

“hide operator”: make some signals local to a set of automata). The reason

for this choice is that we never felt the need for such constructs. Since we use

HPIOM only through an automatic generator, we can easily achieve the same

result as hierarchy using loops in the generator. Encapsulation is used to al-

low an incremental product of automata and to avoid name clashes. Since we

never build the product, and since the HPIOM API automatically makes names

unique, encapsulation would not be of any use for us.

However, we plan to reuse HPIOM in other tools, as a common intermediate

formalism. In this context, the encapsulation operator can be useful to op-

timize the construction of the product. Adding the encapsulation to HPIOM

is therefore part of Verimag’s plans, but will not be implemented during this

Ph.D.

5.2.3 Non-determinism

Non-determinism in HPIOM can be expressed in two ways:

Implicitly, if the guard of several edges evaluate to true at the same time, then one of the enabled edge is

chosen, non-deterministically.

Explicitly, by using the specific HPIOM constructs unknown value and

non deterministic choice (presented in section 5.3.1.2).

Note that implicit non-determinism can be reduced to explicit non-determinism. LUSSY implements

this transformation to ease the task of the back-ends: LUSTRE and SMV back-ends can safely assume that

implicit non-determinism is never used. Since LUSTRE is a deterministic language, the non-determinism

would anyway have to be made explicit in the LUSTRE back-end.

Unknown values are used like any other HPIOM expression. They can have any type. Their semantics

is that they can take any value at runtime. To simulate this behavior in a deterministic language, unknown

values have to be converted into inputs of the program.

When the writer of HPIOM can ensure the set of outgoing transitions from a state is fully specified (one

and only one transition enabled at a time), he can use set choice safe(true) on this state. Code

generators can use this information to disable the implicit to explicit non-determinism conversion as an

optimization. Note that it is safe not to call set choice safe(true) on a deterministic state, but

unsafe to use it on a state with implicit non-determinism.

5.3 Additional constructs

5.3.1 Convenience constructs

Those constructs do not add any expressive power to HPIOM, but proved to be usefull to avoid systematic

coding of some higher-level constructs.

They are useful for the programmer constructing HPIOM, but can also be used by back-ends to use an

optimized encoding for those high-level constructs (such optimized encoding would otherwise require a

pattern recognition that would be much harder to implement).
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5.3.1.1 Abstracted Type

HPIOM defines the notion of abstracted type. An expression of type “abstracted type” can have no value.

This type is used in the translation from SystemC when our tool encounters a type that could not be encoded

easily in HPIOM (typically, a pointer), and that has to be abstracted away.

The rules to manipulate this type are the following:

• for an expression E = operator(op1, op2, . . . , opn), if the type of E can be deduced from the types

of the operands opi whose type is known, or from the context (for example, if E is the right hand side

of an assignment) and if one of the operands is of type “abstracted type”, then, E has the semantics of

an unknown value (its value is chosen non-deterministically). The same rule applies for right values

of assignments.

• for an assignment L := E, if L is of type “abstracted type”, then the assignment itself has to be

abstracted away. Currently, only variables are supported as left values for assignment. This means

the variable has to be removed from the automaton, and replaced by unknown value wherever it

appeared.

5.3.1.2 Non-deterministic choice

It is possible to specify explicitly a non-deterministic choice between several edges, using the construct

non deterministic choice. The construct is parametrized by a state. The semantics is that one and

only one of the non deterministic choice s attached to a state is true at each instant.

The writer of HPIOM usually wants to ensure that using this construct, one and only one of the outgoing

edges is enabled at a time (this can be easy to do using a default condition), to avoid mixing implicit and

explicit non-determinism.

5.3.1.3 States as condition

It is sometimes useful to express conditions on the current state of another automaton. Intuitively, this could

be described by “take this edge if automaton A was in control point s at the beginning of the transition”.

We added a specific condition in state(s) in HPIOM to specify this case more easily.

This can be reduced to a condition on a pure signal: the automaton A would emit this pure signal on

each outgoing edge from s.

5.3.1.4 Continuous Signal

As a shortcut for a valued signal emitted on each edge with the same expression as a value, HPIOM defines

the construct continuous signal . This is, for example, a way to export a variable to the external

world.

5.3.1.5 Arrays

HPIOM allows the type “array of T of size n” for any type T and any positive integer n. Arrays are simply

sets of values numbered from 0.

5.3.2 Abstract Addresses

In the SystemC models we are dealing with, the addresses are simply int values. If nothing special is done

in the translation, addresses become ordinary variables in HPIOM, and any property related to addresses has

to be transmitted to a verification tool able to deal with ints. However, in the source of the model, we

can distinguish the addresses (with high influence over the control) and the data (with lower influence over

the control). For addresses, we propose an encoding based upon the existence of address maps. Indeed,

in TLM, the significant values of the address variables are given by the address maps used to describe the

connection between components.
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The address space is split into several relevant intervals (the address map of the bus, typically). We

first define the set of relevant values (xj)j∈1..n (we use the notation (Xi)j∈1..n to represent the tuple

(X1, X2, . . . , Xn)). The set of relevant intervals is then II = (R1, . . . , Rn) = ([xj , xj+1[)j∈1..n−1, as

illustrated by figure 5.3.

0 Abstract value of an address:
List of possible intervals

3210

3

Full address range

(intuitively:

”The address is either in

interval 1 or in interval 3” )

Figure 5.3: Abstract Addresses as Sets of Relevant Intervals

To represent the value of an address, we associate a Boolean variable bi to each Ri. An address

variable x is then encoded by a valuation of the vector b1 . . . bn. A constant value k ∈ Ri is encoded into

bi = 1, bj 6=i = 0. As soon as we manipulate addresses, we may lose information, resulting in encodings

where ∃i 6= j|bi = bj = true, meaning the value of x is in range Ri or in range Rj . The worst case is the

case where all the information has been lost about an address: ∀i, bi = true. We note ⊤ (read “top”) this

value.

This is conservative for safety properties. It simplifies the proofs a lot, and has proved to be sufficient

on the examples we tried. Figure 5.4 illustrates the conservativeness of the abstraction. The abstraction

consisting in removing completely addresses from the HPIOM system is trivial: one can replace any con-

dition depending on an abstract address by unknown values, and remove any assignment to a variable of

type address. This corresponds to the set A ∪ B ∪ C ∪ D on figure 5.4. Another abstraction, would be

to compute precisely the addresses, but to replace the addresses by their Boolean encoding when they are

used in a condition. In this abstraction, one and only one of the Boolean variables used in the encoding

can be true at a time. This abstraction is only useful to help understanding our encoding, but it loses infor-

mation without simplifying the proof. There is a loss of information only when the abstract addresses are

compared to a value that is not the bound of an address range. This corresponds to the set A ∪ B.

Our implementation of abstract addresses can be seen as an abstraction of the actual behavior, but also

as a refinement of the most brutal abstraction (which would be equivalent to our abstraction with the value

true for each interval). Any information that allows to “cut” an execution from C to D is safe and can

allow to prove more properties. Any “loss” of information, moving an execution from D to C is also safe

for safety properties, but may prevent the proof of some property. In other words, the value true for the

variable representing an interval in our representation is always safe, but ensuring a false value allows

to prove more properties.

Our goal will therefore be to keep as much information as we can while remaining conservative.

All this could be done without additional constructs in HPIOM, using simply boolean values. It

greatly simplifies the translation to use a specific type and specific operators for the addresses. The expan-

sion into boolean is documented in section 7.3.1.

The HPIOM constructs to manipulate abstract addresses are the following.

5.3.2.1 Extension of the HPIOM Expression Grammar for Abstract Addresses

The grammar for expression given above is extended as follows:

E −→ AA const . . . . . . . . . . . . . . . . . . . . Abstract Address Literal

−→ AA plus N(AA, E) . . . . . . . . . . . . An abstract address plus a constant

integer

−→ AA plus unsigned(AA, (+|-)) An abstract address plus an un-

signed value

78/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



5.3. Additional constructs

A

C

D

B

Actual executions

Possible executions with a complete
abstraction of addresses

our encoding

Execution possible with a perfect

abstraction of addresses using

Possible execution with

our abstract addresses

Figure 5.4: Conservative abstraction using abstract addresses

C −→ AA cmp AA(AA, AA, operator) .

<, <=, >, =>, =, 6= operators.

AA means an expression of type ab-

stract address, and the types of the

operands must match.

−→ AA cmp int(AA, N, operator) . . Comparison of an abstract address

with an integer.

5.3.2.2 Literal

The first thing we need is a representation of abstract addresses literal. They are the equivalent of boolean

arrays whose size is the number of ranges in the address map. To represent a constant address in the source

code, we will therefore use an encoding with one true value, and only one. This corresponds to case B
above. We note literal abstract addresses as follows: AA = (bi)i∈[0,n] = (b1, b2, . . . , bn). They are defined

using the constructor AA const.

5.3.2.3 Binary operators

Addresses can be manipulated, compared to or added with integers. The universal solution would be to

completely abstract those constructs (return an unknown value, or ⊤ if the result must be an address).

This solution will be used if no other solution is available, but our HPIOM implementation provides several

constructs to encode those operations in a more refined way:

Addition/Subtraction of Constant The encoding is the following:

AA plus N

(

(bi)i∈[0,n] , N
)

=
(

∨

{bj |∃n ∈ [xj , xj+1[ with (n + N) ∈ [xi, xi+1[}
)

i∈[0,n]
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0 1 2 3

=

=

+ N

+ 1

+ 1
=

{0} + 1 = {0, 1}

{1} + N = {1, 2, 3}(N ≥ 0)

{0, 3} + 1 = {0, 1, 3}

Figure 5.5: Examples of Abstract Address Operations

Intuitively, if AA can be in interval [xj , xj+1[, then AA plus N(AA,N) can be in [xj + N,xj+1 +
N [, and therefore in [xi, xi+1[ if its intersection with the later is non-empty.

Note that this operation can only be applied to constants. Constants means either a literal in the

program, or any expression for which the value can be computed statically. This operator is currently

applied only in the case of literal constant, but any kind of sophisticated static analysis technique

could be added to use this construct in other cases (in Figure 5.4, this would mean cutting some

behaviors from C to D).

Addition/Subtraction of Unsigned Value: When a non-constant value is added to an abstract address,

and when the sign of this value is known statically, the result is the following:

AA plus unsigned

(

(bi)i∈[0,n] , > 0
)

=





∨

j≥i

bj





i∈[0,n]

AA plus unsigned

(

(bi)i∈[0,n] , < 0
)

=





∨

j≤i

bj





i∈[0,n]

Addition/Subtraction of Arbitrary Value: In the case of arbitrary value, we can’t do better than return-

ing ⊤.

5.3.2.4 Comparisons

There are two kinds of comparisons involving abstract addresses: Comparison of addresses, and compar-

ison between address and concrete value. We give here the examples of > and =. The other traditional

comparison operators (6=, ≤, < and ≥) are documented in the code.
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Remark:

In any case, the value of a condition depending on an abstract address will be

an abstract condition, which means it can evaluate to true when executing the

HPIOM system even if the concrete condition (involving concrete addresses) is

false. The question answered to by those constructs is: “Is there a value for

which the concrete condition is true?”.

5.3.2.4.1 Comparison of Addresses. In this section, we use the notations AA = (bi)i∈[1..n] and AAj =
((bj)i)i∈[1..n].

Equality: Two abstract addresses can be equal if and only if they have at least one interval in common:

AA cmp AA(AA1, AA2, EQ) =
∨

i

{(b1)i ∧ (b2)i}

Greater Than: AA1 can be greater than AA2 if one of the interval of AA1 contains one value greater than

a value of an interval of AA2:

AA cmp AA(AA1, AA2, GT ) =
∨

i







∨

j

{

(b1i ∧ b2j) ∧ ∃a ∈ [xj , xj+1[, b ∈ [xi, xi+1[|a > b
}







5.3.2.4.2 Comparison With a Concrete Value.

Equality: An abstract address can be equal to an integer value if the boolean variable associated to the

interval containing this value is true:

AA cmp int(AA,N, EQ) =
∨

i

{bi ∧ N ∈ [xi, xi+1[}

Greater Than: An abstract address can be greater than an integer value if this integer value is greater than

one of the value of this interval, i.e. if it is smaller than the biggest possible value in this interval (the

upper bound minus one since we work with integer values):

AA cmp int(AA,N, GT ) =
∨

i

{bi ∧ N < xi+1}

When the concrete value is a constant, those expressions can be simplified (they involve comparisons

of constants that can easily be computed statically). We didn’t need to do anything special about those

simplifications in the implementation, since a trivial general constant folding algorithm did it, and more.

5.4 Expression of Properties in HPIOM

We have defined the execution semantics for an HPIOM system. Since our goal is to verify properties on

it, we also need a way to specify properties for the system. We could have used a temporal logic such as

CTL or LTL [Var01] as a specification language, but we have chosen a simpler alternative: since we’re

only interested in safety properties, and since HPIOM has synchronous semantics, it is well known that any

safety property can be encoded as a synchronous observer, and thus reduced to a reachability property.

Reachability of an edge and reachability of a control point are clearly equivalent from the expressiveness

point of view.
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Our choice is to specify a set of pure signals that must never be emitted: An HPIOM property is a set of

pure signals emitted on some edges of the components of the system.

An HPIOM property (m1,m2, . . . ,mk) (where each mi is a pure signal) is said to be satisfied for an

execution ((S0,S1,E1,U1), (S1,S2,E2,U2), . . . , (Sn−1,Sn,En,Un)) if and only if ∀i ∈ [1..n],∀j ∈
[1..k],mj /∈ Ei.

An HPIOM property is said to be satisfied on an HPIOM system if it is satisfied for all possible executions

of the system.

5.5 Implementation of and Manipulation of HPIOM

This section presents the data structures we use to represent an HPIOM system. We also present the tools and

methods available to manipulate this data-structure. The most important uses of the HPIOM manipulation

API are the optimizations and the back-ends (LUSTRE and SMV code generators). They are introduced and

described technically here, but the algorithms will be detailed in the next chapters.

HPIOM expressions are trees, and follow exactly the “Composite Tree” design pattern [GHJV94], and

is manipulated with the “Visitor” design pattern. The following chapters recall briefly the definition of

those design patterns and how they are applied to HPIOM. HPIOM automata are the natural extension of this

pattern, but do not have a tree structure.

5.5.0.5 Other Possible Abstractions for Addresses

The encoding we are using is relatively simple. It is efficient (it uses only Boolean variables) and has the

big advantage of being applicable without modifying the proof engine. It is only an intermediate construct,

and the back-end will see only the Boolean encoding. It is, on the other hand, not extremely expressive.

We have no way to distinguish two addresses that are in the same address range.

We could use abstract interpretation in the prover itself to lose less information. NBAC can already use

an abstract domain based on polyhedra, but this is too costly and does not scale up. An interesting work has

been carried out by Mathias Peron, master student in Verimag on an abstract domain tailored for address

manipulation [Pér05]. It is an extension of the intervals domain, with in addition the notion of equality and

inequality.

5.5.1 HPIOM Expressions and the Composite Design Pattern

5.5.1.1 Principle of the Composite Tree Pattern

The composite design pattern allows one to treat composite and primitive objects the same way. A base

class is common to composite objects and “leafs” (non-composite objects). In HPIOM expressions, the

composite has a tree structure, with one class per kind of tree node. The grammar rules for the tree

correspond to the inheritance diagram for the classes. Figure 5.6 shows an example of a class hierarchy

following the composite tree pattern.

Intermediate abstract node

left

right

LeafLeafConcrete Node

Abstract Node

Figure 5.6: Class Hierarchy for a Composite Tree
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This pattern is easy to implement and pleasant to use for the programmer: the type of children in

function of each node is provided explicitly through the class hierarchy and relies on the host language

(C++) typing mechanism (both static and dynamic). The main benefit will come later, with the use of the

Visitor’s design pattern as an iterator for this structure.

5.5.1.2 HPIOM Expressions Classes

HPIOM expression’s class hierarchy defines the abstract base class st scp expression, and the inter-

mediate abstract class st scp condition. Figures 5.7, shows the inheritance diagram for expressions.

Figures 5.8 and 5.9 show the inheritance diagram for conditions (the hierarchy is truncated for clarity. The

full diagram is available in LUSSY’s documentation). Those diagrams are automatically generated from

the source using doxygen[vH]. They use an UML-like syntax.

st scp expression

st scp AA plus unsigned

st scp AA to int

st scp AA value

st scp array index

st scp binary map

st scp cond expr

st scp condition

st scp constant

st scp homogeneous binary operator

st scp int to AA

st scp lvalue

st scp pair value

st scp typed identifier

st scp unary map

scp printable

Figure 5.7: Class Hierarchy for Expressions

5.5.2 HPIOM Expressions and the Visitor Design Pattern

5.5.2.1 The “Visitor” Pattern

The “Visitor” is often cited as a typical example of a design pattern. It corresponds exactly to our use-case

for expressions, and extends rather naturally to automata.
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st scp condition

st scp AA can be in

st scp binary bool operator

st scp bool constant

st scp bool expression

st scp bool unknown

st scp comparison

st scp default cond

st scp in state

st scp non deterministic choice

st scp signal cond

st scp three value union

st scp three valued logic const

st scp unary operator

st scp expression

Figure 5.8: Class Hierarchy for Conditions

st scp binary bool operator

st scp and st scp or st scp xor

st scp condition

st scp expression

scp printable

Figure 5.9: Class Hierarchy for Binary Boolean Operators
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5.5.2.1.1 Problem solved. The problem to solve is to implement a recursive run on the tree structure.

A function is called on the top of the tree, an action is chosen depending on the type of node (using the

“Composite” pattern, this means depending on the dynamic type of the object), and this action will itself

call this function on its children.

The LUSTRE back-end is a typical example of such an algorithm. Printing the HPIOM expression

plus operator(+, 2,mult operator(∗, x, 3)) which represents the expression 2 + (x ∗ 3) consists

in calling a function on the node +, that will execute

return ”(” + recursive call(left operand) + ” + ” + recursive call(right operand) + ”)”;

The first recursive call will print the constant 2 while the second will display (x ∗ 3) in a way similar to the

algorithm for the + operator. The result will be the string (2 + (x * 3)).

5.5.2.1.2 Solution Without the Visitor Pattern. The natural solution to invoke a different action de-

pending on the dynamic type of an object in C++ is to use virtual functions. To implement the LUSTRE

back-end, we could have a method to lustre in each HPIOM class. The short algorithm presented above

would be the body of the to lustre method for the binary operator class. The recursive call

would be recursive calls to the to lustre methods for the operands of the operator.

This solution is simple to write and simple to understand, but spreads the code of the operation

to lustre in all the HPIOM classes. It also has the drawback of being intrusive in the HPIOM code,

which means it’s not applicable for someone having only read access to the HPIOM library.

5.5.2.1.3 Principle of the Visitor. The Visitor solves this problem by grouping all the methods in a

single class. This class, the “Visitor”, depends on the HPIOM classes, but HPIOM itself has no dependencies

on its visitors. A class diagram is provided in Figure 5.10.

ConcreteElementA

accept(in visitor : Visitor)

ConcreteElementB

accept(in visitor : Visitor)

accept(in visitor : Visitor)

<< interface >>

Element

ConcreteVisitorA

visit(in ConcreteElementA)

visit(in ContreteElementB) visit(in ContreteElementB)

visit(in ConcreteElementA)

<< abstract >>

TemplateVisitorA

ConcreteVisitorB

visit(in ConcreteElementA)

visit(in ContreteElementB)

visit(in ContreteElementB)

visit(in ConcreteElementA)

<< interface >>

Visitor

1
Client

1

Figure 5.10: “Visitor” Design Pattern

The problem is that the choice of the method to execute can not directly rely on C++ virtual method,

since the polymorphism of virtual methods only applies to the object on which the method is called (the

visitor, in our case), and not to its arguments. The trick used by the visitor to simulate polymorphism based

on the argument is to have a method accept in each class to visit, which simply calls the method visit

on its argument:
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void accept(visitor v) {

v->visit(this); // polymorphism takes place here

}

So, the code generating LUSTRE code for the binary operators will look like this

string to lustre visitor::visit(plus operator p) {

return ”(”

+ p->get left operand()->accept(this)

+ ” ” + s + ” ”

+ p->get right operand()->accept(this)

+ ”)”;

}

One big advantage of this solution is that since each operation is implemented in a class, it is possible

to use the object-oriented functionalities of C++ to factorize the code: we can define a hierarchy of visitors,

with base classes providing default implementations for the concrete visitors. Once the base classes are

written, it becomes possible to write a visitor with only a few lines of code.

5.5.2.2 Hierarchy of visitors

We implemented several types of visitors for HPIOM.

5.5.2.2.1 Expression Visitors. expression visitor (Figure 5.11) is limited to expressions. It

provides a default implementation for each HPIOM class, which does a recursive run on the ex-

pression, doing nothing. A visitor to count the number of times true appears in an expression

for example, could be written simply by deriving from expression visitor and overloading

expression visitor::visit(scp true) to increment a counter.

st scp expression visitor

st scp active variables

st scp check integrity visitor

st scp debug expr visitor

st scp expand non det choice

st scp get used unknowns visitor

st scp update tables visitor

Figure 5.11: Class Hierarchy for Expressions Visitor

We implemented 6 such visitors:

active variables: Derives from expression visitor but also implements automata-wide algo-

rithms. Performs active variables detection and optimization. This will be detailed in section 7.3.3.1.
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check integrity visitor: Performs several integrity checks (no null pointers, source and target control

points for an edge belong to the correct automaton, no shared variables between automata, . . . ) on

an automaton. It is used for defensive programming, to help finding bugs, but has no influence on

the functionality.

debug expr visitor: Used to print expressions as a tree. This is used only for debugging and is designed

to be called from GDB.

expand non det choice: Transforms non-deterministic choices between several edges into a choice de-

pending on unknown values. This will be detailed in section 7.3.2.

get used unknowns visitor: Counts the number of unknown values used on each edge, to further opti-

mize this number. This will be detailed in section 7.3.3.2.

update tables visitor: Updates the variables and unknown tables for an automaton: the list of unknown

and variables used by an automaton is kept in the data-structure representing this automaton. Most

operations keep this list consistent, but in some cases, the operations will not. This visitor restores

consistent variables and unknown tables.

5.5.2.2.2 Transformation Visitors. transform visitor allows the easy implementation of recur-

sive functional-style transformations for HPIOM. Each visit method returns an object of the same type

as its operand, or a base class of it. The default implementation for each node applies the following idea:

visit(type object) {

o1, o2, . . . := childs of object;

o′1, o
′
2, . . . := recursive call of the visitor for o1, o2, . . .

if (o1, o2, . . . == o′1, o
′
2, . . .) {

// nothing changed

return o;

} else {

return new type(o′1, o
′
2, . . .);

}

}

A visitor inheriting from transform visitor and not overloading any methods will therefore per-

form a recursive run of the structure, without changing anything. A visitor to change all the foo into bar

in the automata can be written simply by overloading the visit method for the foo object to:

visit(foo f) {

return new bar();

}

Figure 5.12 presents the transformation visitors we have implemented up to now.

process AA: Adds some required conversion nodes for assignments between abstract addresses and inte-

ger values. It only overrides the visit method for the assignment object.

expand AA: Transforms abstract addresses into arrays of boolean, as explained in section 7.3.1.
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st scp transform visitor

st scp expand AA visitor

st scp process AA visitor

st scp remove int visitor

st scp remove too complex visitor

st scp substitute visitor

st scp unknown replacer visitor

st scp variables replacer visitor

Figure 5.12: Class Hierarchy for Transform Visitor

remove int visitor: Abstracts away integer values. The resulting program is a pure boolean program,

where conditions depending on integer values are replaced by non-determinism.

remove too complex visitor: Transforms expressions depending on “abstracted type” into non-

deterministic values.

substitute visitor: Replaces all occurrences of a variable by an expression.

unknown replacer: Used to minimize the number of unknown values in an automaton.

variable replacer: Replaces each variable by its optimized value during live variable detection and opti-

mization algorithm.

5.5.2.2.3 Printable Visitors. The LUSTRE and SMV back-ends are implemented using visitors (Fig-

ure 5.13). This will be detailed in sections 8.3 and 8.4. Each visit method returns a string. For historical

reasons, to lustre visitor is a base class of to smv visitor, but the common code should have

been factored in a separate base class.

st scp printable visitor

st scp to lustre visitor

st scp to smv visitor

Figure 5.13: Class Hierarchy for Printable Visitor

5.5.3 On-the-fly Optimizations

Some optimizations on HPIOM are performed after building the complete system (typically, with the visitors

presented above). Other are simple enough to be performed on-the-fly: instead of optimizing the structure,

we avoid generating the unoptimized version.
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They are implemented using factory functions instead of constructors for some HPIOM nodes. Instead of

creating the new object blindly, the factory function can reuse an existing node, or generate a semantically

equivalent construct, and call the constructor only when needed.

5.5.3.1 Constant Folding

It is often the case, in particular in systematically generated code, to have expression that could be evaluated

statically. For example, x ∗ (40 + 2) could be written x ∗ 42.

In HPIOM, the constructors of most operators are replaced by factory functions that can optionally check

if the operands are constant, and return a constant instead of calling the constructor if it is the case. For

example, the constructor of the or node is replaced by

scp condition st scp or::build or(scp condition left, scp condition right){

if (!scp flags::optimize bool) {

return new st scp or(left, right);

} else if (left->is true()) {

return left;

} else if (left->is false()) {

return right;

} else if (right->is true()) {

return right;

} else if (right->is false()) {

return left;

} else {

return new st scp or(left, right);

}

}

5.5.3.2 Node Sharing

Allocating and initializing many nodes with completely equivalent semantics would be costly in terms of

time and memory. LUSSY is able to share some nodes, such as the boolean constants true and false,

which use the singleton pattern to ensure the uniqueness of the node. The constructor is replaced by the

following factory function:

static scp true build true() {

if (m instance == NULL) m instance = new st scp true();

return m instance;

}
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5.5.4 Future improvements

5.5.4.1 Memory management

The current HPIOM implementation use both heap allocated objects (using new operator) and node sharing.

A reasonable delete operator would therefore need reference counting. Currently, the tree nodes are

never deallocated. This is not a very serious issue since LUSSY is a transformational program, not a

reactive program, so, the memory will anyway be freed at the end of execution of the program, but it’s not

good programming practice anyway1. A better implementation should use smart reference-counted pointer

such as boost::shared ptr<>.

5.5.4.2 Namespace, modularity

LUSSY clearly distinguishes the front-end (PINAPA) from the rest of the code. However, the components

of the back-end (HPIOM structure, BISE, BIRTH, LUSTRE and SMV back-ends) are not separated clearly

enough. Each component should be implemented in its own namespace, with clear (and no unneeded)

dependencies between the components.

In the future, we would like to make a better separation between the HPIOM API and the rest of LUSSY,

to allow other tools to use it either as input or output format. We would like to give it a textual syntax

(probably a semi user-readable like XML will be the right choice).

1The reader may guess I’m an ex Java programmer by examining my coding style . . .
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BISE: Semantics of SystemC and TLM

Constructs in Terms of Automata
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6.1 Introduction

We have presented the intermediate representation HPIOM, and our implementation of it. This chapter will

illustrate the transformation of a SystemC program, parsed by PINAPA, into this intermediate representa-

tion. This is implemented in the component BISE of the tool LUSSY.
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6.1.1 Principles

Producing HPIOM from SystemC source files is a way of giving SystemC a formal reference semantics.

By translating HPIOM into an executable formal language like LUSTRE, this reference semantics becomes

executable.

We could give an abstract semantics to SystemC designs, and obtain an intermediate representation

simpler and easier to analyze than HPIOM, but losing some potentially important information. Our choice

for the LUSSY toolbox is the opposite: the translation into HPIOM does not perform more abstractions than

those implied by the expressiveness of HPIOM compared to that of SystemC (see section 6.1.2). Since most

interesting properties are undecidable on HPIOM, further abstractions will have to be made, but we let them

to specific verification tools connected to HPIOM. Some abstraction that could hardly be carried out by the

prover (like the encoding with abstract addresses presented in 5.3.2) are implemented in LUSSY itself, but

are kept optional.

The translation of SystemC into HPIOM poses the same problems as the one we had for PINAPA (in

section 4.3): what is the difference between SystemC and C++? What is the “static” part of the pro-

gram, and what is the “dynamic” part? Any tool manipulating C++ code statically and formally (like

Polyspace [Deu03]) already has a C++ front-end and translator to a formally-defined representation like

HPIOM. Such tools solve only part of our needs for BISE: first, they do not take parallelism into account

(the SystemC scheduler contains assembly code — or optionally calls to POSIX threads in the version

2.1 — to manage processes, and no static analysis tool will be able to deal with general assembly code

manipulating the program counter and stack pointer). Then, they would be very inefficient to model other

SystemC kernel primitives.

For those reasons, BISE does more than a standard C++ code analyzer. It has its own model of SystemC,

and never parses the SystemC library source code itself. Instead, we describe HPIOM patterns, based on

the SystemC library specifications: there is an automaton pattern for the scheduler, one for each signal, etc.

To generate instances of these patterns, we need the information extracted by PINAPA from the SystemC

design: for instance, the automaton for the scheduler depends on the number of processes in the system,

automata for channels depend on the number of connected modules, etc.

We could also translate SystemC processes taking the scheduler and the synchronization primitives into

account, but not the TLM constructs, which would then be treated as ordinary C++ code. This would lead

us to lose interesting information about the structure and behavior of the design. We have chosen to take

TLM constructs into account during the translation, which means giving a direct HPIOM semantics to TLM

constructs.

An important question is the one of the accuracy of our semantics regarding SystemC. Since the pro-

grams to be analyzed are themselves models of the reality, with some approximations and some abstrac-

tions, we could try to provide another model of the same reality, with different modeling choices. For

example, SystemC has a non-preemptive scheduling policy, which will not be true anymore in the imple-

mentation of the chip. We could have chosen to model a preemptive scheduling in our semantic extraction.

This policy would be a give a super-set of the possible behaviors of SystemC, so, proving a non-preemptive

model correct for some safety properties gives a proof that the system itself is correct for the same prop-

erties. On the other hand, it could exhibit some bugs that can not be found by simulation. For example, if

a program does an access to a shared resource, then it will most probably need a mutual exclusion mecha-

nism, and access it only inside a critical section. But with a non-preemptive scheduler, any portion of code

separated by wait statements is a critical section. So, it is easy to write a program correct with respect to

SystemC semantics, but without a synchronization mechanism that would be necessary in the real chip. The

question is whether such “bug” can be considered interesting. One of the principles of TLM is to model the

architecture and the global behavior of a system, but not its micro-architecture, and the bugs we could find

are precisely the ones in the micro-architecture, since the processes are supposed to de-synchronize (use a

wait statement) on each inter-module communication. The majority of the bugs found with this method

would therefore be irrelevant both for the SystemC model (the faulty behavior will not appear with any

implementation of SystemC) and for the lower-level implementation (at this granularity, the code would be

completely different anyway). Our transformation does therefore take into account the non-preemptiveness

of the SystemC scheduler.

Of course, since SystemC has no official formal semantics, a formal proof of the equivalence between

92/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



6.2. Semantics of process code into HPIOM

a SystemC source file and the corresponding HPIOM representation built by BISE is impossible. HPIOM

being executable means executions can be compared, but it is also of great importance to give a semantics

to SystemC into HPIOM in a simple, well structured and clearly decomposed manner, which we describe

here. This leaves room for optimizations.

The main idea of the algorithm implemented in BISE is the following:

1. Each process in SystemC will be associated with one automaton in HPIOM representing its control

flow, plus one representing its state in the scheduler,

2. The scheduler itself is modeled with one automaton, which communicates with the automata for

the control flow and the state in the scheduler of each process to manage processes eligibility and

execution.

3. the complete HPIOM description of a SystemC design will be made of all these “process” automata,

plus specific automata for SystemC and TLM constructs.

6.1.2 Expressiveness of HPIOM, Abstractions, and Limitations of BISE

Syntactically speaking, LUSSY accepts a very large subset of SystemC, being based on a full C++ front-

end. The limitations related to the front-end have been discussed already in section 4.3.2. The other

restrictions are of semantic nature and appear in BISE : the SystemC code is accepted by LUSSY, but the

semantics is made abstract because the target formalism is less expressive than a general-purpose language.

This occurs for all pieces of code that deal with pointers and dynamic data structures.

HPIOM may be used to encode any statically bounded-memory program. In SystemC, static bounds

are guaranteed if: 1) the program does not perform dynamic memory allocation; 2) there are no calls to

recursive functions (which is acceptable in the context of embedded systems).

The transformation of SystemC into HPIOM abstracts memory allocation primitives and recursive func-

tion calls into new input signals with unknown value. We also do that for not-yet-implemented constructs

of SystemC, to get a working connection to verification tools before full SystemC has been taken into

account by the front-end. These abstractions are clearly conservative for safety properties: the set of be-

haviours a SystemC code may exhibit when considering two complex expressions is a superset of the set

of behaviours it can exhibit when considering the detail of these expressions.

Another abstraction (which is optional) is related to the way addresses are dealt with. The encoding

used for this abstraction was described in section 5.3.2. The abstraction consists in using this encoding for

any variable of type address.

The last abstraction is related to asynchrony. We are using SystemC to model and simulate asyn-

chronous components. Although it provides a construct wait (t) where t is an amount of time, TLM

guidelines specify that this quantitative time t should not be used to enforce synchronization (i.e., the

designer should not assume that two processes that perform the same wait (t) will synchronize when

t has elapsed). Our translation into HPIOM provides an abstraction of the timing which enforces this

guideline, as detailed below ( 6.3.1.3).

6.2 Semantics of process code into HPIOM

Compiling imperative code into automata is a well known problem and there is no semantic difficulty here.

However, the abstract syntax tree for a C++ contains a lot of particular cases, and a lot of them have to

be taken into account if we want to apply our tool to real-world SystemC designs. Hence this part of the

translation represents a significant part of the work (the translation itself represents around 1,500 lines of

C++, and use some operators that have been defined in the HPIOM library for the task).

6.2.1 Simple Operations and Sequence

Simple operations like assignments have a direct equivalent in HPIOM, and can be executed in one transi-

tion. We implemented the transformation of the sequence (“;” in C++) as follows: the automaton corre-

sponding to the process being transformed always has a final control point. This final control point has no

particular semantic for HPIOM, but represents the exit point for the piece of code already translated. Then,
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the code to be transformed in sequence will use this final control point as initial control point (initially, the

automaton has only one control point which is both initial and final).

Concretely, we defined a macro CREATE NEW FINAL STATE that declares and creates a new final

control point and an edge from the former initial control point to this control point. The operations that

need only sequencing in the automaton (no branch, no loop) use only this macro to create control points

and edges.

6.2.2 Control Structures

The translation for the if statement and the while loop are given in figure 6.2 and 6.1 as an example.

[x < 3]

[x >= 3]

x := x + 1

while (x < 3) {

x := x + 1;

}

Figure 6.1: Control flow for a while loop

elsethen

[not condition ]

[ condition ] then [ condition ]

[not condition ]

if (condition) {

...

} else {

...

}

if (condition) {

...

}

Figure 6.2: Control flow for a while loop

We have a model for the main other C++ constructs: all the operators on primitive types (some of them,

like the bitwise operators are abstracted away because they have no equivalent in HPIOM), assignments,

for and do while loops, switch/case statements, etc . . . We currently abstract all standard function

calls. The best way to manage them would be to inline them at the AST level when possible, and to abstract

them otherwise.

In order to accept general SystemC designs before having implemented all the details of C++ code,

some constructs are currently abstracted away. For instance, the expressions that are currently too complex

to be managed by LUSSY are replaced by inputs of the system. For verification purposes, this is equivalent

to considering they have a non-deterministic value, and it is a conservative abstraction. Note that this
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approach assumes that the complex expression has no side-effect. This assumption currently has to be

verified manually, but this should be automated (in a pessimistic way) in the future. These abstractions are

only temporary and we could give exact translations with more work on the tool.

6.3 Semantics of the Synchronization Primitives and the Scheduler

6.3.1 The SystemC Scheduling Mechanism

Expressing the semantics of the scheduler by some synchronizations between the HPIOM automata may be

done in several ways. The global communication scheme is shown in figure 6.3 and will be detailed below.

To get the highest confidence in the correctness of the translation algorithm, we choose a straightforward

translation that may not be the most efficient one and leaves room for optimizations.

wait

model of a process model of a process

automaton signal

scheduler

update

elect

wait

event

wake up

wait
state of

the process

of the process

control structure
elect

notify

wait

control structure

of the process

state of

the process

Figure 6.3: Global view of the communication between the automata in HPIOM

The semantics of the SystemC scheduling policy is modeled by one automaton for the scheduler, plus

two per process. The fist one represents its control structure (as explained above), and the other one

represents its state in the scheduler.

6.3.1.1 State of an SC THREAD in the Scheduler

Figure 6.4 shows how the automaton is generated for an SC THREAD. The process may be either running,

ready to run (eligible), or sleeping. The synchronization between this automaton and the control structure

automaton is such that the last may change control point only if the former is in control point “running”.

6.3.1.2 State of an SC METHOD in the scheduler

The model for an SC METHOD is a slightly different: the wake-up condition is not chosen when leav-

ing the “running” control point (wait statement or equivalent), but while the process is running (by

a next trigger() statement): by default, the static sensitivity list will be used, and each call to

next trigger() will update the condition. We need therefore to have several sub-states for the “run-

ning” control point. This is illustrated by Figure 6.5.

6.3.1.3 The SystemC Scheduler

The scheduler itself is represented by an additional automaton (Figure 6.6). It starts in a control point

“selecting process”. At that moment, all the processes are eligible. The SystemC official definition lets

the choice between the eligible processes unspecified. In our model, the scheduler chooses one process
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Sleeping 1

Eligible Running

?wait 2

?elect

?wait 1

[c1] !wakeup

[c2] !wakeup

Sleeping 2

Synchronizations:

elect: received from the scheduler when the process

is chosen,

wakeup: sent to the control structure,

wait 2: received from the control structure when a

wait statement is reached,

c1 and c2 correspond to the conditions the process is

waiting for in the corresponding “sleeping” control

point.

Figure 6.4: State of an SC THREAD

[c2]

[c3]

?elect

!wakeup

!wakeup

Sleeping

!wakeup

[static sensitivity]

calls to next trigger

Running

Eligible

Figure 6.5: State of an SC METHOD
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non-deterministically. The election corresponds to the edges emitting elect_n on the figure. Then the

scheduler runs the elected process: in the automaton representing the state of the process, this means taking

the edge from “eligible” to “run”. When the process has finished its execution (go to “sleep” control point),

the scheduler selects another one, and so on until there is no more process eligible. Then, the scheduler

goes to the update phase.

! update

!electn

[
W

n
(eligiblen) ]

update delta time elapseprocess running

?waitn

selecting process

[ ¬
W

n
(eligiblen) ]

Synchronizations:

elect n: sent to the corresponding process state automaton and

control structure

wait n: received from the corresponding process state automa-

ton

update: sent to all processes that may have an action to execute

during the update phase

Figure 6.6: Pattern of the SystemC scheduler.

Our model of the SystemC scheduler is non-deterministic in two ways. First, one of the transitions

emitting elect_n is chosen non-deterministically when several processes are eligible. Actually, we had

three options when we took this design decision:

1. Model precisely the behavior of the reference implementation,

2. Choose a deterministic behavior, and model it,

3. Implement a non-deterministic choice.

The first solution is the most complex to implement. The OSCI scheduler is optimized for speed, and

contains, among others, a heap and two FIFOs. Modeling this in HPIOM would not be easy. The second

option is much easier to implement. We can chose any priority policy and apply it to the choice of a

transition. The last one is quite obvious since HPIOM supports non-deterministic choices.

Regarding verification, the last possibility is the only one to be correct. The first may miss bugs that

would appear with a different simulator, or when a completely unrelated process is added to the platform,

and the second one may both miss bugs with the reference scheduler and provide false counter-examples.

The only argument in favor of the two first ones is the fact that they limit the state explosion problem

by making the system more deterministic, so it may help the proof engine. However, an exact model of

the scheduler would have been complex, so the resulting automaton would have less global states, but its

transition function would also have been more complex.

We have therefore chosen the last one. When we prove a property of a SystemC design including this

non-deterministic scheduler, we prove it for any possible implementation.

This may seem to be a detail, but it is actually very important for the reliability of the model. A

scheduler dependency can occur as soon as two processes share a resource such as an event or a variable,

which happens when two processes in the same module access the same data-member, or in the TAC and

BASIC channels (from the architecture point of view, TAC and BASIC channels are separate components,

but the communications occurs with function calls, so the code is executed in the context of the master

module). Such bug did happen in practice in the code developed by the team in STMicroelectronics. A

simpler approach to solve this problem is to replace the unspecified scheduler choice with a randomized

choice. Claude Helmstetter, Ph.D student is working on a more efficient run-time approach to detect

scheduler dependencies.

The second source of non-determinism comes from our management of the time. In the case of wait
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statement with an amount of time as argument, the “time-elapse” phase of the scheduler algorithm (Fig-

ure 2.7) awakes the processes in the order specified by the wait parameters. In our translation, they are

woken-up non-deterministically (encoding non-determinism with oracles). This means that the HPIOM

model has more behaviors than what the SystemC interpreter may exhibit. This conservative abstraction

prevents the designer from relying on the amount of time provided as argument to the wait statement:

if a safety property can be proved on the HPIOM model, then it is true that the wait statements have not

been used to enforce synchronization. Ideally, this abstraction should be optional, and we should also pro-

vide a more accurate mode. However, this would use a numerical variable to model time, and most of the

back-ends we are using would abstract it away. An accurate modeling of time plus a removal of numerical

values would give the same result as our version.

This abstraction is even more important than the non-determinism of the scheduler choice inside a δ-

cycle. Being able to give some flexibility to the timed wait statements allows a better testing of the platform

and software synchronization. Data-race conditions are problematic but uncommon inside a δ-cycle, but

they are all the more common regarding the timed behavior: any shared resource needs to be associated

with a synchronization mechanism, regardless of the communication mechanism used to access it (unless,

off course, the synchronization is included in the communication itself). Testing the software on a simulator

with a fuzzy notion of time can help making the software more reliable and more robust.

6.3.2 Model for the sc event

The low-level synchronization primitive in SystemC is called an sc_event. The operations available for

an sc_event are:

• notify() : the event is triggered immediately,

• notify(SC ZERO TIME) : the event will be triggered at the end of the δ-cycle,

• notify(time) : the event is scheduled to be triggered at some date in the future.

We also build one HPIOM automaton for each sc event, according to the pattern of figure 6.7. It

has one initial control point plus one control point for each kind of delayed notification. The immediate

notification is modeled by a single edge. In any case, the edge going back to the initial control point is

the one triggering the event. It emits a signal that will move processes waiting for that event from the

“sleeping” control point to the “eligible” control point.

?time_elapse

idle

delta

timed

!trigger
?notify_inst

?update
!trigger

!trigger

?notify_zero

?notify_time

Synchronizations:

notify ... signals are received from the control struc-

ture when a notify statement is encountered,

trigger goes to the process state automaton, and will

make the condition to the “eligible” control point true,

update and time elapse both come from the sched-

uler.

Figure 6.7: Pattern for an sc event

6.4 Communication Mechanisms

6.4.1 SystemC Signal

The simplest communication mean in SystemC is the sc signal. It is possible to read, write, or wait

on a port connected to a signal. This is more complex than it seems to be, because a write operation on

a signal is not taken into account instantaneously: an internal variable next_value is updated inside

the signal, and the actual value (the one accessed by the read method) is updated only at the end of the
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δ-cycle (when the signal receives update). At that moment, if the next value is different from the current

value, an event is triggered.

This is illustrated by figure 6.8, which represents a Boolean signal. write(T) comes from the au-

tomaton encoding the body of the process, and update comes from the scheduler. The automaton starts

in one of the two control points where next_value and current_value are equal. When receiving a

write, the automaton changes its control point to reflect the new value of next_value, without chang-

ing current_value. At the end of the delta cycle, the automaton receives the update signal. If it is in

a control point where next_value is different from current_value, then a signal is emitted to wake

up processes that would be waiting for the event at this moment.

Current value

Next value

True

True

False

False

!event

!event

?update

?update

?write(F) ?write(T) ?write(F) ?write(T)

Figure 6.8: Pattern of a SystemC boolean signal

Remark:
The automaton is actually not modeled with four control points, but with one

control point and two Boolean variables. HPIOM would not have allowed hav-

ing two initial control points for one automaton.

6.4.2 Direct Semantics of TLM Constructs

We have seen earlier that TLM constructs needed a special treatment and could not be translated automat-

ically like process code in an efficient way. We currently have a models for one channel with the BASIC

protocol, and one with the TAC protocol.

6.4.2.1 Model of the BASIC Protocol

The first protocol we modeled was the BASIC protocol. It is a simple protocol used mainly as an example

of what can be done with the TLM interface, but is usually not used in real platforms. It was nevertheless

a good exercise to begin with.

Our prototype currently manages the basic protocol in a slightly modified version: the channel used

is a variant of the basic_router in which we replaced the arbitration policy by a non-deterministic

serialization of the transactions. This section presents the idea for the creation of the automata modeling a

basic_seq, but is not meant to be complete.

The processing of a transaction is divided into several phases, carried out by several well synchronized

automata. Most of the time, only one automaton changes its state at a time, and the other ones are blocked

in a loop.
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Remark:

One of the differences between multi-threaded imperative code like SystemC

and automata like HPIOM is that in SystemC, the control flow can move from

one component to another with function calls, while HPIOM’s control flow is

local to an automaton. This strong synchronization simulates a control flow

jumping from one automaton to another. This is possible only when two

threads never execute the same piece of code at the same time.

6.4.2.1.1 Wait for the channel to be available. For each port, we create an automaton in which the

process will wait until the channel becomes available (Figure 6.9). When the transaction starts, a test is

done to see if the channel is available. If not, go to a “waiting” control point, to let other processes execute.

The process will become eligible again when the channel selects this transaction.

init

exec ack

started waiting
access=
addr=
data=

?return status

?elect

!wait ...

? channel is free

?access

! port rdy

Figure 6.9: Wait for channel availability

initial

value, status

?status

access
addr
value

return_value

status

value
addr
access

addr
value
read/write

addr
value

value
status

read/write

value
status

Transition Signal

! start_slave

?port_rdy

w_port

! channel_is_free

w_ans ?answer
! wait

wait

?elect

answer

exec

Figure 6.10: Pattern for a basic seq

6.4.2.1.2 Select transaction and resolve the address. All these automata are connected to another one

that loops in the initial control point until it receives a transaction (Figure 6.10 gives some hints on the
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structure of this automaton). When some transactions are to be executed, this automaton chooses non-

deterministically one of them and go to control point “w port”. A signal is sent to all the slaves, and those

whose address map matches answer. If the channel gets no answer, then, it returns immediately, with a

status is_no_response.

6.4.2.1.3 Simulate a wait to allow other processes to execute. If a slave module answered, then it

simulates a wait statement on time. (control point “wait” on figure 6.10) This is included in the protocol

to allow other processes to execute (which is necessary because the scheduler is not preemptive).

6.4.2.1.4 Execute the corresponding method in the slave module. At the end, we have to execute the

body of the corresponding method in the slave module, and return the status (control point “exec” on

figure 6.10). Note that the schema is a bit simplified here, since the channel has to communicate with

several instances of slave modules.

6.4.2.2 Model of the TAC protocol

The TAC protocol, unlike BASIC, was design to be used in production. It is therefore both essential to

support it in LUSSY and harder to implement. We implemented a model for the tac seq (unlike the

model of the basic seq, we considered the official semantics of the component, and did not modify it to

make it easier to model).

The first difference between TAC and BASIC is that TAC channels are templates on the type of ad-

dresses and data used on the channel. This has been a source of difficulty in the front-end, PINAPA, but

BISE will anyway consider this template arguments to be of type integers (in practice, the TAC components

have anyway been tested only with integer types as argument, but the difference between two instantiations

is their size: short int, int or long int, mainly). For addresses, we will have to encode them

with booleans to be able to prove anything, and for the data, HPIOM will work with mathematical integers

(] − ∞,+∞[), which means we will not detect integer overflows (but this is not in the scope of LUSSY

anyway), but will get the correct semantics as long as there is no such overflow.

The global mechanism is similar to the one of the BASIC protocol. The following details the differences

step by step.

6.4.2.2.1 Wait for the Channel to be Available. The automata for the master ports are very similar to

the ones for the BASIC ports. A model of a master port is given in Figure 6.11.

execinit

waiting

access=
addr=
data=

? return status

! wait ...

? elect

! launch arbitration

t rec

! port rdy

? channel is free

Figure 6.11: Wait Loop for a TAC seq

The difference is that, to be faithful to the semantics, we modeled a real FIFO in HPIOM. It is an n-cells

FIFO, where n is the number of processes able to write on the channel. Each cell is a 2-control points

automaton, with one control point “busy” and one control point “free”. The data itself is stored in variables
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Empty Used

value1

value2

value0

value1 := value0

value2:= value1

e0 u0

e1

e2 u2

u1

[ pop_request and e1]

? push_request

[ push_request and u1 ]

[ push_request and u0 ]

? pop_request

push_request

pop_request

pop_value

! value0
[ e0 and not e1 ]

! value1
[ e1 and not e2 ]

[ e2 ]
! value2

head

? push_request
value0 := push_request

value2:= value1
[ push_request ]

[ push_request ]
value1 := value0

:= push_request
value0

[ pop_request and e2 ]

tail

Figure 6.12: Encoding of a FIFO in HPIOM

of the automaton. When a transaction arrives, a signal is sent to all the cells. The empty cell whose previous

neighbor is occupied receives the data. When a pop request is relieved (when the channel starts processing

the transaction), the occupied cell whose next neighbor is empty is freed. The “head” value is computed by

a separate combinational automaton which emits the value of the occupied cell followed by an empty cell.

Figure 6.12 illustrates this construction.

In practice, since one signal can not be emitted by several modules in HPIOM, we have to merge the

signals coming from the different master ports with another combinational automaton. The resulting data-

flow is shown in Figure 6.13.

6.4.2.2.2 Automaton for the Channel. The automaton for the channel itself is again similar to the

BASIC seq. It has one loop for each process able to access the channel. The steps in this loop are the

same except that the wait statement is executed after the processing of the transaction and not before. See

wait_loop

wait_loop

merge splitmuxlaunch_arbitration

channel_is_free

port_ready

port_ready

channel_is_free

tac seq
ch_start

signalautomaton

Figure 6.13: Data-flow for the Model of a FIFO in HPIOM
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wait_loop

wait_loop

wait_loop start

init

[ no answer ]

exec

fifo

ch_start

channel_is_free

ready

pop_req

! pop_req

! channel_is_free
? ch_start

! channel_is_free

? return_status
! wait(time)

desync
? elect

! start_slave
? port_rdy

! really_start

? answer
acked

Figure 6.14: Model for the TAC seq

Figure 6.14 for details.

The channel waits for a transaction, pops it from the FIFO, sends a signal to the slave and waits for the

answer. If no slave answered, it returns an exit status “no response”, otherwise, it starts the processing of

the transaction, waits for its completion, and simulates a wait statement to let other processes be executed.

One of the difficulties here is to know which process is running to execute the wait statements cor-

rectly. In the SystemC implementation, this corresponds to the context of simulation, which is global for

the simulation, and independent of the position of the control flow. In HPIOM, an automaton other than a

process automaton (for instance, the automaton for the channel) doesn’t know which process it is running.

The wait signal emitted after processing the transaction, for example, is different depending on the pro-

cess that launched this transaction. In this case, it is easy since we have a different loop for each process

able to use the channel. The wait signal emitted in each loop will therefore not be the same. In the pro-

cessing of the slave method, a wait statement is forbidden by coding guidelines and would anyway lead

to undefined behavior with the current implementation of TAC. We assume that this guideline is verified (it

could easily be checked with a lint tool).

6.4.2.2.3 Entry point for the Slave Module. The transaction will be executed in the slave module, but

the communication from the channel to the slave is not direct. We create an intermediate automaton that

will receive the transaction and call either the automaton of the read method or the one of the write method.

The automaton is represented in Figure 6.15.

Remark:
This intermediate automaton has a role similar to what is done in the C++

implementation in the method tac prim slave::transport : receive

a transaction and call the appropriate slave method depending on the type of

transaction.

6.4.2.2.4 Processing of the Transaction in the Slave Module. For the TAC slave module, we build one

automaton for each “slave method” (ReadAccess, WriteAccess, . . . ). The automaton is mainly the

automaton for the body of those methods (as explained in 6.2), encapsulated in a loop (Figure 6.16). The
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run
?write

?read

ackw

ackr

intermediatew

status := OK

!this_is_write

!this_is_read

intermediater

! answer

! answer

status := OK

exe

! return_status(status)

Figure 6.15: Intermediate Between the Channel and the Slave Methods

?(addr, data, access)

!(value,status)

status_var
data_var
addr_var

addr_var = addr
data_var = data
status_var = status

...

Figure 6.16: HPIOM Model for the Slave Method

first transition is triggered by the intermediate automaton presented above, and the automaton returns to its

initial control point at the end of execution. Note that this assumes once again that the method does not

contain any wait statement.

6.4.2.2.5 Return to the Master. When the slave method finishes executing, each automaton will return

the status and data to the previous automaton in the chain from the master to the slave. The master will

eventually receive this signal and continue its execution.

6.4.2.3 Applicability of the Method to Other Protocols

The TAC protocol is actually a relatively simple protocol. It contains the necessary to model all the func-

tional aspects of the communication in the platform, but since it is not meant to be time accurate, it doesn’t

model many of the low-level aspects of a real bus or network-on-a-chip protocol.

For example, the TAC protocol is a blocking protocol in the sense that the master will be blocked in

the call to the read or write statement until the transaction processing is over. The performance of

the silicon implementation of this kind of protocol would of course be unacceptable in many cases. This

is why protocols like the ST-BUS (a network-on-a-chip protocol developed by STMicroelectronics) have

non-blocking communication protocols. Concretely, the transaction is split into a request and a response.
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A non-blocking transaction is therefore equivalent to two blocking transactions, and the approach is not so

different.

Another limitation of our approach is that is does not allow the presence of wait statements in the

slave methods, since only one process can be executing the slave method at a time. This could be worked

around by using n automata for the slave method, where n would be the maximum number of process

being able to execute this portion of code (i.e. the number of processes accessing the channel).

6.4.3 Unmanaged SystemC Constructs

Some SystemC constructs did not appear on the examples on which we tried LUSSY. This is the case for

sc fifo and sc mutex for example. We did not implement a model for those constructs, but this would

be relatively easy to do so (we already have a model of FIFO queue as part of the TAC seq).

6.5 Encoding Properties

Section 3.3.1 gave a list of the kind of properties that LUSSY is able to verify. We can verify generic or

semi-generic properties and C++ assertions in the source code. All of them are safety properties.

We reduce the verification of each of these properties to the reachability of edges in HPIOM (actually,

the emission of a pure signal or a list of pure signals, as presented in 5.4). We add the notion of “error”

to the semantics of SystemC. The question given to the proof engine will be the formal translation of “Is

it possible that an error occurs”, and the translation from SystemC to HPIOM will modify the semantics of

SystemC to change legal actions that violate the property into “an error occurs”. The property is therefore

involved in the component BISE of the tool chain.

The following sections details the encoding of each property. All of them are optional, the user can

select the kind of properties to check with command-line arguments for LUSSY.

6.5.1 Assertions

Assertions are at the same time the simplest and the most expressive way to specify properties. The user

can use the macro ASSERT to check that a particular expression is true. During simulation, the ASSERT

macro will raise a runtime error if the argument is not true, so, providing assertions in the source code en-

ables both runtime and static verification (any good programmer should anyway use this kind of defensive

programming for runtime checking). Technically, the ASSERT macro is defined by:

#define ASSERT(X) if(!(X)){is_this_reachable();}

so the problem of assertion verification is reduced to the problem of code reachability. The translation

into HPIOM of the if statement happens as usual, and is this reachable() is compiled into a two-

control points automaton with one edge emitting an error signal.

6.5.2 Multiple write on a Signal During the Same δ-cycle

To check that an sc signal is never written on twice in a δ-cycle, we turn the semantics of

sc signal::write, which were originally “When two processes or more write on the signal during

the same δ-cycle, the last value is taken into account” into “When two processes or more write on the

signal during the same δ-cycle, raise an error”.

In practice, we add a variable already written to the automaton modeling the signal. This variable

is set to true when the signal is written on, and to false at the beginning of the δ-cycle. If it is true when the

signal receives a write, then raise an error. Figure 6.17 gives an idea of the resulting automaton (although

it is not 100% accurate, since the explicit control points on the picture are actually modeled with variables).
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? update
written := F

? update
written := F

Current value

True

True False

Next value

[ written = T ]

!error

error

False

? write(T)

written := T

!event

written := F

?update

?write(...)

? write (F)

written := F

?update

!event

written := F

?write(T)

written := true
?write(F)

written := true

Figure 6.17: Modified Semantics for an sc signal

6.5.3 Process Termination

Checking that an SC THREAD doesn’t terminate is relatively easy. We can simply add one edge emitting an

error signal in the automaton for the control flow of the process, at the end of the execution of this process.

This is equivalent to adding ASSERT(false) at the end of the process.

6.5.4 Mutual exclusion

Mutual exclusion is not a completely generic property. The user has to specify the portion of code he

wants to be in mutual exclusion. Of course, since SystemC is not preemptive, the property will be

trivially true if those portions of code do not contain any wait statement. Concretely, we provide the

user two functions scp begin critical section and scp end critical section that can

be inserted in the platform’s code. LUSSY will check that a call to scp begin critical section

is always followed by a call to scp end critical section in the same process before the next

scp begin critical section.

BISE adds an automaton to the system that will act as a synchronous observer [HLR93]:

it will receive signals from the processes when a scp begin critical section or a

scp end critical section is executed, and raise an error when the signals appear in the wrong

order. The automaton for the observer is provided in Figure 6.18.

!error

!error

?l2

?l2 or ?l1 or ?u2

?u2

?l2 or ?l1 or ?u1

?u1 ?l1

u: unlock l: lock

Figure 6.18: Automaton for the Mutex Observer
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6.5.5 Concurrent TLM Port Accesses

In the current implementation of the TAC master port does not protect against concurrent accesses, and

lead to undefined behavior when this is the case. An interesting generic property that LUSSY could check

would be the mutual exclusion of the accesses to this port. This has not yet been implemented in LUSSY,

but the implementation would be rather straightforward.

In the automaton of Figure 6.11 page 101, there is one separate loop for each process accessing the

port. We would just have to add an error signal whenever the automaton receives an access signal if the

automaton is not in its initial control point. This can be implemented either in the automaton itself, or in a

separate observer.

6.6 Related Work

6.6.1 Other Formal Semantics for SystemC

We have seen earlier that implementing BISE is a way to specify the formal semantics of SystemC. This

is not the first time SystemC is given a semantics: in [HGR+01], the semantics is expressed in terms of

Abstract State Machines. It only models SystemC 1.0 which was the only available at that time, and has

an inaccurate model of the scheduler: in their model, the processes are executed in parallel whereas the

language reference manual explicitly says “The scheduler is not preemptive. An application can assume

that a method process will execute in its entirety without interruption, and a thread or clocked thread

process will execute the code between two consecutive calls to function wait without interruption.”. Perhaps

this was not the case with SystemC 1.0, but the specifications do not seem to be available anymore today.

[Sal03] does the same with another formalism (denotational semantics). It models only a very strict subset

of SystemC, with explicit limitation both on the kind of processes and on the content of processes (only

wait statements and assignments are modeled, without a notion of control-flow). None of these papers

provide an actual translation from SystemC to their formalism.

The difference with the work presented here is that BISE is not only a theoretical concept. Is as an actual

tool, generating an executable format. This helps getting confident in the semantics we are proposing (we

can compare the concrete executions), and allows automatic further treatments such as model-checking, as

will be detailed below.

6.6.2 SC2PROM

The approach followed by LUSSY lead to a similar work in INRIA Rhône Alpes, in co-operation with

STMicroelectronics: The idea is to apply LUSSY’s approach with a compositional verification tool called

PROMETHEUS [Goe01]. The tool, SC2PROM, reuses our front-end, PINAPA, and generates its own inter-

mediate format, which is based on an asynchronous formalism with priorities. This approach should allow

splitting large proofs into smaller ones, and therefore allow performing larger proofs.

6.6.3 SystemC Translation Into Signal

[TGSG05] describes a general approach to extract a behavioral type from a system using the polychronous

model of computation (using Signal [BGJ89] as a support language). This applies to languages and ex-

ecution models such as Java, SystemC and SpecC. Their starting point is the GNU SSA (static single

assignment) [Pro04] form, which is the intermediate representation in GCC, since version 4.0. Compared

to the AST structure that we are using, SSA is much simpler, and independent of the source language

(complex constructs of the source language have already been broken down into simpler primitives). It has

been chosen in GCC because it is a form on which optimizations can be efficiently performed.

We also considered using SSA as a starting point in LUSSY (at that time, SSA was not included in a sta-

ble version of GCC, but was already available in a development branch). Using it would have considerably

eased the translation of the C++ code into HPIOM (reduced the corresponding code in BISE by a factor 10

probably), but would have made the task much harder, if not impossible, for PINAPA: recognizing a state-

ment such as port.write(true); in the SSA form is very difficult, because the simple function call
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statement has already been broken down into many small operations. The benefit in BISE would probably

not have been worth the trouble since it concerns only the C++ part, whereas most of the effort in BISE is

related to SystemC and TLM constructs.

The interesting property of SSA exploited in the translation into signal is the fact that since a variable

is assigned once only in each block, the transformation performed by each block can be done in one clock

cycle. The translation into a data-flow synchronous language is therefore relatively straightforward. This

translation allows checking properties similar to the ones available in LUSSY: termination, dead-locks,

concurrent write accesses, . . .

[TBS+04] describes an initial version of the application of this method to the case of SystemC. A

surprising aspect of this work is that instead of modeling the SystemC scheduler (with, in particular, the

notion of δ-cycle) using the polychronous framework, it replaces it with the synchronous semantics. Both

approaches achieve the same goal (simulate the physical behavior of a circuit), so the resulting behaviors are

similar, and actually equivalent on a subset of SystemC. However, it is easy to find a counter-example where

the δ-cycles of a SystemC program do not model the fixed-point of a combinational system, and therefore

where the approach does not apply. One is provided in Figure 6.19 (the process side effect::f may

have to be rescheduled several times to compute the fixed-point. If it is executed more than once, then

an error is raised instead of recomputing the output based on the input). It is actually the case for most

processes with a notion of state and side effects. In practice, in most of the cases, a process with side effect

will not be rescheduled several times, and processes relying on δ-cycle to be rescheduled will be purely

combinational. However, components like the TAC arbiter implementing an arbitration policy have to rely

on δ-cycle.

1 SC_MODULE(side_effect) {

2 bool been_there;

3 sc_in<bool> in;

4 sc_out<bool> out;

5 void f(void) {

6 ASSERT(! been_there);

7 been_there = true;

8 out.write(in.read());

9 }

10 SC_CTOR(side_effect) {

11 been_there = false;

12 SC_METHOD(f);

13 }

14 };

Figure 6.19: A module abusing the notion of δ-cycle

In the meantime, some work has been carried out to model more precisely the details of the SystemC

API. Hopefully, the counter-example mentioned above is no longer a counter-example.

Note however that some process do have the fixed-point semantics, and could be managed in an opti-

mized way. Indeed, [KS05] provides sufficient conditions and optimized treatment for some categories of

processes.

6.7 Conclusion

We presented the component BISE of LUSSY that translates SystemC code into HPIOM. BISE also inte-

grates different kind of properties to be verified for the platform into the generated HPIOM. It translates the

C++ code, and has a direct semantics of SystemC constructs. Additionally, we also modeled the TAC and

BASIC protocols that are not yet standardized in SystemC itself.

108/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



Part III

Using HPIOM for Formal Verification

109





Chapter 7

BIRTH: Back-end Independent

Reduction and Transformations of

HPIOM

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Results of BIRTH on Some Examples, Without Optimization . . . . . . . . . . . . . 112

7.3 Semantic Preserving Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.1 Abstract Addresses Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.2 Non-Deterministic Choices Expansion . . . . . . . . . . . . . . . . . . . . . . 113

7.3.3 Reducing the Number of Variables and Inputs . . . . . . . . . . . . . . . . . . 113

7.3.4 Reduce the Number of States by Parallelizing Transitions . . . . . . . . . . . . 117

7.4 An Approximation Conservative for Safety Properties: Abstracting Away Numeri-

cal Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.5 Non-conservative Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.5.1 Initialize variables deterministically . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5.2 Limit the Depth of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5.3 Specify the Initial State Manually . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.1 Introduction

While transforming automata into LUSTRE or SMV code, one of the goals of LUSSY is to generate the

most optimized code possible for a given semantics. Most optimized means for example as few variables

as possible, as few inputs as possible.

Many optimizations can be performed at the time the HPIOM is generated. We have already described

some of them in section 5.5.3. But incorporating too many optimizations in the generation itself would

make the code more complex. Some optimizations are global and could hardly be performed before the

complete system, or at least a complete automaton is generated. We preferred a good separation of the

HPIOM generation and the optimizations. This way, BISE can concentrate on the correctness of the se-

mantics, and another component, will transform the generated HPIOM, focusing on the optimizations them-

selves, independently from the semantics of the source language. In the future, HPIOM may be used outside

LUSSY for purposes other than analyzing SystemC code. With a separate software component for the op-

timizer, any tool generating HPIOM can benefit from the optimizations. The same reasoning applies for the
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back-ends: any optimizations performed prior to the back-ends is done once and for all, while any opti-

mization performed in the back-ends has to be duplicated for each of them. The optimizations presented

here are therefore both independent from the source language (SystemC) and from the target language

(LUSTRE, SMV).

We have therefore implemented optimizations as a separate component, BIRTH, that performs HPIOM

to HPIOM transformations.

Some of the optimizations presented here are usual optimization techniques that have simply been

adapted to our structure (live variable analysis for example). Others are more original, for example, setting

the initial value of an initially inactive variable to a fixed value is exactly the opposite of what a traditional

compiler does after live variable analysis.

The symbolic model-checking techniques that we will use to prove properties on HPIOM systems have

performances that are directly linked with the size of the system. An optimization that reduces the number

of variables and the number of inputs of the system will usually improve the performances (but it is always

possible to find corner-cases where a the prover will find a good variable ordering to make small BDDs

with the unoptimized system, and where the optimized system will have fewer variables, but bigger BDDs).

Our goal will be to reduce the number of variables and the number of inputs. In the results we give, we

also provide the performances of the provers, using the back-ends described in the next chapter, to get an

idea of the impact of the modifications we made on the global tool-chain.

We will give numerical results for the EASY platform that we described in section 2.5.2. Unfortunately,

even with all optimizations enabled, no back-end was able to lead to a successful proof for the generated

HPIOM system (SMV starts iterating but hangs after a few hours of computation). We can therefore give

results only in terms of size of the HPIOM system, but not in terms of proof performance for this platform. In

addition, we give the results for the example platform introduced in section 2.4.3.6, which is much smaller

and allows us to complete the proof with both LUSTRE and SMV back-ends, with or without optimization.

Some of the transformations implemented in BIRTH are not optimizations, but reductions of some

high-level constructs to lower-level constructs (like abstract addresses transformed into Boolean variables,

expansion of non-deterministic choices into unknown values, . . . ).

This chapter will present several transformations: first, the semantic preserving, in section 7.3, then,

the conservative approximations in section 7.4. Section 7.5 will give some examples of non-conservative

approximation.

7.2 Results of BIRTH on Some Examples, Without Optimization

The results for the unoptimized HPIOM system are the following for the EASY platform:

• 137 automata

• 1,074 control points

• 1,789 edges

• 1,105 Boolean variables

• 293 Boolean unknown values

For the smaller example, we get the following:

• 29 automata

• 103 control points

• 197 edges

• 51 Boolean variables

• 13 Boolean unknown values

And following are the resulting performances for the proof engine. Time is in seconds on a dual AMD

Athlon(TM) MP 2000+ with 512Mb of RAM, running Linux. The number of BDD nodes allocated gives

a measurement of the memory usage.

• SMV time: 0.48s

• SMV BDD nodes allocated: 71,595

• LESAR time: 5.04s

The next sections will present the same results, for the optimized system. This evaluates the impact of

our optimizations.
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7.3 Semantic Preserving Transformations

The transformations presented in this section preserve the semantics of the HPIOM system considered. This

means the set of possible executions will be the same for the transformed system and the original one. An

immediate consequence is that all properties are preserved.

7.3.1 Abstract Addresses Expansion

7.3.1.1 Abstract Addresses in LUSSY

In section 5.3.2, we presented an encoding for an abstraction of the address space in HPIOM. This abstrac-

tion uses a dedicated construct in HPIOM in the translation from SystemC to HPIOM, that we will transform

into a pure Boolean encoding.

7.3.1.2 Expanding Abstract Address Into Arrays of Booleans

An HPIOM variable or signal of type abstract address will be replaced by an array of Boolean, of size the

number of intervals in the address range. This transformation is implemented using a transformation visitor

(see section 5.5.2.2.2).

Abstract address literals are encoded straightforwardly: the ith Boolean value is given directly by the

value for the ith interval in the abstract address literal. Abstract address manipulators are a bit harder to

implement, but the algorithms for the constructs we have implemented are derived straightforwardly from

their specifications (sections 5.3.2.3 and 5.3.2.4).

7.3.1.3 Alternative Approach

This transformation could have been done on-the-fly: instead of returning a dedicated HPIOM construct,

the abstract address operators could have returned the encoding directly in terms of Boolean encoding.

Our approach is more flexible since we can do other treatment on the abstract addresses before expanding

them into Boolean. It is on the other hand more intrusive in HPIOM: if we consider HPIOM as a generic

intermediate format for several tools, it would not be acceptable for each tool to add its own “home made”

constructs like we did for abstract addresses.

7.3.2 Non-Deterministic Choices Expansion

When, in an HPIOM automaton, a control point has several outgoing edges, and if the conditions on the

edges can not be guaranteed to be mutually exclusive, the ambiguity has to be removed with a non-

deterministic choice. The HPIOM API automatically adds it for each control point when necessary, unless

specified otherwise (with set choice safe()).

A non-deterministic choice is an HPIOM condition. A non-deterministic link is attached to a control

point, and can link several non-deterministic choices together. The semantics says that one and only one of

the choices can be true at a time.

BIRTH can transform this construct into a Boolean encoding: For a choice between n possibilities, it

will use ⌈log2(n)⌉ Boolean unknown values. This transformation is not mandatory since the SMV back-end

can do a better encoding using SMV enumerated types.

7.3.3 Reducing the Number of Variables and Inputs

The number of variables in the system to verify is known to be important in particular for symbolic model-

checking. It has a direct influence on the size of the BDDs manipulated. The same applies for the number

of inputs.
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7.3.3.1 Live Variables Analysis

Minimizing the number of variables of a program is a very general problem. Any decent compiler will try

to minimize the memory footprint of the generated executable, and will therefore try to reuse the unused

memory as much as possible. To minimize the amount of memory necessary to store the local variables

of a function, the usual approach is to perform a live variable analysis to know where each variable may

be useful, and in a second pass, decide which register and which memory byte will be allocated for each

variable at which point in the code. The general algorithm is presented for example in [BFG99, ASU86].

We use a slightly modified version of the traditional algorithm. The computation of live variables

didn’t change much, but had to be adapted to our model with assignments and guards on automata edges

(as opposed to instructions on nodes of a control-flow graph). The optimization resulting from this analysis

is a bit different from what we see in compilers, since we have no notion of register.

7.3.3.1.1 Live Variable Computation.

Definitions. Intuitively, for a given edge, a live variable is a variable that holds a value that may be

used in the future. This means that the variable may have been assigned a value, and that this value may be

used before the next access to this variable.

The definition of live variables is based on some other definitions. First of all, we define the set of

incoming edges to an edge as the set of incoming edges to the source control point. Similarly, the set of

outgoing edges from an edge is the set of outgoing edges from the target control point.

Each of the following definitions apply for each edge of the automaton:

Defined Variables are variables that appear in the left-hand side of an assignment on an incoming edge to

the current edge. We note def(t) the set of defined variables for edge t.
Used Variables are variables that appear either in the right-hand side of an assignment, in the guard, or in

a valued signal emission in an outgoing edge from the current edge. We note use(t) the set of used

variables for edge t.
Live-In Variables are variables live on an incoming edge to the current edge. We note in(t) the set of

live-in variables for edge t.
Live-Out Variables are variables live on an outgoing edge from the current edge. We note out(t) the set

of live-out variables for the edge t.
Live Variables in a control point are then variables live-out in an incoming edge of the current control

point.

The definition of a live variable is based on the propagation of the notions of used and defined variables

along the edges. Intuitively, defined variables will propagate forward, and used variables will propagate

backward, stopping when encountering an assignment. Live variables are the ones in the intersection of the

result of the propagation for used and defined.

Formally, we define in(t) and out(t) the smallest fixed point of:

in(t) = use(t) ∪ (out(t) − def(t))

out(t) =
⋃

t′∈succ(t)

in(t′)

Iterative Algorithm. The unoptimized algorithm is rather straightforward from the definition. The

following sequence can be proved to be increasing, and therefore converging to their fixed point defined

above.

in0(t) = ∅

out0(t) = ∅

inn+1(t) = use(t) ∪ (outn(t) − def(t))

outn+1(t) =
⋃

t′∈succ(t)

inn(t′)
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This algorithm can be optimized in many ways. An obvious optimization is to group the edges between

two branching control points, and consider basic blocks instead of HPIOM control points and edges. On a

typical automaton obtained from imperative code, this considerably reduces the size of the automaton to

consider. Another common optimization is to order the control points to minimize the number of iterations.

Starting from the final control point and iterating backwards is usually considered as a good heuristic.

Also, using optimized data-structures like bit vectors to represent control points would clearly speed up the

process (we currently use the STL’s set operators).

7.3.3.1.2 Optimization of the Number of Variables. Our problem is a slight variant from the usual

problem compilers solve with live variable analysis. The usual problem is: given a number of registers,

find the way to allocate registers to variables that will minimize the number of variables not allocated to a

register, or better, minimize the number of access to variables that are not allocated to registers.

We can represent the problem by a graph in which each variable is represented by a node, and then,

add one edge between two nodes whenever both of the corresponding variables are live in the same control

point. This is called the conflicts graph. Then, the problem is reduced to the one of graph coloring, which

is a well-known and NP-complete problem. [Cha82] describes some techniques to optimize the register

allocation based on graph coloring algorithms. [Mue93] is a review of the existing algorithms.

Our problem is a bit different: we do not have to do the distinction between registers and memory. The

problem is only to minimize the number of variables.

We use a simple greedy algorithm, that seem to be a good heuristic in practice. The goal is to compute

a set of replacement variables Vrep and a map R : V → Vrep (note: the size of Vrep is not known yet,

but we can consider an infinite ordered set V ′
rep: we will allocate its first variables in priority. Then, at

the end of computation, Vrep will be the set of assigned variables in V ′
rep. Concretely, this means that

Vrep is allocated on demand during the execution of the algorithm). We will use two temporary maps

A : V ′
rep × S → {assigned, unassigned} and U : S → 2V . A represents the role of the variables in

each control point, which are initially assigned to unassigned in each control point. U is the set of original

variables that have not yet been assigned. The algorithm is then as follows:

for s ∈ S loop

for v ∈ U(s) loop

vrep := smallest variable for which

∀s ∈ set of control points where v is live, A(vrep, s) = unassigned

for sa ∈ set of control points where v is live loop

A(vrep, sa) := assigned

U(s) := U(s) − v

R(v) := vrep

end loop

end loop

end loop
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Remark:

We perform this optimization type-by-type, which means that a variable used

to store an array of Boolean, for example, may not be used to store some scalar

Boolean variable in other points of the program. To take full advantage of this

optimization, we should encode as many types of variables as possible into

individual Boolean variables, before performing the live variables analysis.

7.3.3.1.3 Other Optimizations Made Possible by Live Variable Analysis. Live variable analysis also

allows some other optimizations. The first one is based on the fact that the initial value for a variable is never

used if this variable is not active in the initial control point. We can therefore replace non-deterministic

initial values by arbitrary values in this case. This reduces the number of initial global states for the prover,

and also reduces the number of inputs in the case of the LUSTRE back-end.

The second optimization is to remove assignments for variables not live-out on the edge on which the

assignment is performed. This simplifies the transition relation of the automaton.

Another potential optimization, which hasn’t been implemented, would be to reset the variables (assign

them a constant value chosen once and for all) when they leave their live scope. This way, the proof

wouldn’t have to carry different values for the variables when they go out of scope. In Figure 7.1, if x isn’t

used in the rest of the automaton, then it goes out of its live scope after being tested. Without the proposed

optimization, the value of x would not be the same at the end of the upper branch and the end of the lower

branch of the automaton. The resulting BDD would therefore include a condition of x. Our optimization

would consist in adding the assignment x := true to the edges where x is tested and therefore goes out of

scope. The value of x in the joining control point would then always be true.

x := true

[ x == true ]

x := false

[ x == false ]

...

x := true

Figure 7.1: Illustration of the Reset Optimization

7.3.3.1.4 Practical Results. On the HPIOM generated for the EASY platform, the total number of

boolean variables (we don’t consider non-boolean variables since they will be abstracted before the proof

in our case) is decreased from 1,105 to 793. In other words, the number of variables is decreased by 28%.

The number of unknown values is also reduced from 293 to 206 (because we eliminated unused initial val-

ues). On the example platform, the number decreased from 51 to 43 (the gain is 17% in this case), which

changes the time taken for the proofs:

• SMV time: 0.47s (used to be 0.48s)

• SMV BDD nodes allocated: 70,564 (used to be 71,595)

• LESAR time: 1.242s (used to be 5.039s)

We can guess from the results that SMV already did the same kind of optimization (but not exactly the

same, since the number of BDD node slightly decreased). On the other hand, the speedup using LESAR is

impressive.
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x := E1

x := E1

x := E3

y := E2 y := E2[x/E1]
x := E1

x := E3[x/E1]

(a) before parallelization (b) after parallelization

T
S S DD

OT1

OT3

OT1

OT2OT2

OT3

!s(E3) !s(E3[x/E1])

Figure 7.2: Merging Two Sates

7.3.3.2 Reuse unknown values

7.3.3.2.1 The Algorithm. We implemented another trivial but interesting optimization, to minimize the

number of inputs the system needs to model HPIOM unknown values. The idea is that unknown values will

typically be used once only in the automaton, but will, in the unoptimized version, require one input per

unknown value. If two unknown values are not used at the same time, then we can use the same unknown

value for both.

The problem is similar to the minimization of the number of variables described above, but there is

one important difference: since unknown values do not keep a value from one instant to the other, we can

compute the replacement control point per control point, which allows us to compute the optimal solution

(not a heuristic) easily: we keep a list of unknown values used as replacement, globally for the automaton

(initially empty, and filled-in on demand). For each control point, we compute the list of unknown values

used on each outgoing edge and assign them replacements.

7.3.3.2.2 Practical Results. On the EASY platform, this optimization allowed us to reduce the number

of boolean unknown from 293 to 211 (28% gain). On the example platform, the number is decreased only

from 13 to 12, and we get the following performance results:

• SMV time: 0.48s (used to be 0.48s)

• SMV BDD nodes allocated: 71,577 (used to be 71,595)

• LESAR time: 4.8s (used to be 5.039s)

Once again, LESAR benefited of the optimization noticeably, but the results with SMV did not change

much. We can guess that SMV already has a well optimized management of non-deterministic values.

7.3.4 Reduce the Number of States by Parallelizing Transitions

7.3.4.1 The Algorithm

The main problem with model-checking is the state explosion. Any optimization able to reduce the state-

space is therefore appreciable.

We implemented a transformation able to reduce the number of control points and edges in an HPIOM

automaton, by parallelizing independent transitions that would have been executed in sequence. Note

that this transformation does not preserve the semantic of an HPIOM automaton in the general case: since

HPIOM has a synchronous semantics, doing in one step something that should have been done in two does

matter. For processes automata, however, the number of transitions doesn’t matter because of the non

preemptiveness of the scheduler. Reducing the number of transitions is a kind of automatic parallelization.

When a control point has only one outgoing edge, targeting a control point with only one incoming

edge, if the edge emits no signal, then we can merge the control point and its successor. Figure 7.2 illustrates

this transformation.
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The algorithm is as follows: let T be the edge considered, S its source control point, and D its des-

tination control point. Actions of T are “propagated” onto each outgoing edge OTi of D: we copy each

assignment of T on OTi, and the left value is substituted in all existing expressions in OTi. S and D are

“merged” (incoming edges to S are redirected to D and S is deleted).

7.3.4.2 Practical Results

On the EASY platform, applying this algorithm reduces the number of edges from 1,789 to 1,747 (a gain

of 42, i.e. 2.3%), and the number of control points from 1,074 to 1,032 (3.9% gained). On the example,

the optimization were not applicable on any edge (the source code doesn’t contain sequential, independent

actions).

Those results are a bit disappointing. It would be interesting to refine the condition of application of

the transformation and see if we can get better results.

7.4 An Approximation Conservative for Safety Properties: Ab-

stracting Away Numerical Values

Management of numerical values is known to be one of the most difficult problems in model-checking. It

makes the general problem undecidable in the case of unbounded integers, and the subproblems (abstract

interpretation and exact model-checking with bounded integers) costly in terms of performance.

Among the tools we use in the back-end, none can manage integers in a satisfying way for large sys-

tems: SMV encodes integer ranges as a finite set of values. This allows exact model-checking, but a few

32-bits variables will lead to a state explosion. NBAC uses a conservative approximation based on poly-

hedra, which allows to prove some properties on larger systems. However, we quickly gave up trying to

use it on large systems, since NBAC took several hours and thousands of megabytes of memory to prove

properties on a ridiculously small example. LESAR will by default make a complete abstraction of integers.

the -diag option allows cutting some transitions with a local satisfiability analysis. In practice, this means

that removing completely the integers from the HPIOM model will not penalize us: in some cases, it will

not change anything (case of LESAR), and the other cases are the cases when the proof engine was anyway

not able to do anything (NBAC and SMV on non-trivial systems).

It is therefore reasonable to completely get rid of integer values in HPIOM, before entering the back-end.

This is implemented and optional for LUSSY. When using the LUSTRE back-end, and LESAR without the

-poly option, this will actually not change anything. The SMV back-end does not manage integers at all

(this could be added easily, but we have no hope to be able to do anything with it anyway . . . ).

Integer removal is implemented using a transformation visitor. It considers int values and array of

numerical values as numerical values and removes them from the system:

• Numerical variables are removed from each automaton,

• Comparisons (condition depending on numerical variables) are replaced by boolean unknown,

• Valued signal carrying a numerical value are replaced by pure signals. Conditions on their presence

is left unchanged and condition on their value are replaced by non-determinism.

7.5 Non-conservative Approximations

The approximation presented up to now are conservative in the sense that any property true for the approx-

imate model remains true for the exact model. We will present here some non-conservative abstractions.

The set of behaviors of the approximate system is only a subset of the behaviors of the exact system.

In theory, such approximations are useless. First, this means that the validity of a proof can never be

ensured (only the validity of a counter-example is guaranteed, which is much less interesting). Furthermore,

applying an over-approximation in addition to an under-approximation can lead to . . . just any system.

Neither the answer “true” nor the answer “false” from the proof engine can be ensured.

However, experimenting with such kind of approximation can be interesting: the result of the proof

will clearly not be relevant, but the time to get an answer can give an idea af the bottlenecks. If we find
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a non-conservative approximation that allows a real speedup of the proof, this means we have to search a

way to achieve a similar speedup in a conservative way.

7.5.1 Initialize variables deterministically

This approximation can give an idea of the importance of initial values. When an HPIOM variable is created

without initial value, normally, an unknown value is used. This approximation replaces it with a constant

value.

The results are particularly impressive with the example platform: the proof completed with LESAR

in 0.8s (almost 10 times faster). An interesting result is that using live variable analysis in addition does

not increase the performance. It seems the main effect of the live variable analysis on the performance of

LESAR was the removal of unused non-deterministic initial values.

This means that a program that never uses the initial value of an uninitialized variable will be easier to

prove (this is anyway a good coding guideline, and can be checked statically in a pessimistic way). On a

program complying with this rule, live variable optimization is superior to this inexact optimization.

7.5.2 Limit the Depth of the Proof

We will now present two ideas of non-conservative abstractions, that have not been implemented by lack of

time. They are presented here since they are approximations, but would actually have to be implemented

in BISE.

The embedded systems on which formal verification works well are usually systems on which the

diameter (the greatest distance between two control points) of the state-space is small. Commercial tool

demonstration often exhibit proudly a counter-example of size 15 or 20, while we got counter-examples

longer than 100 on relatively small systems. The problem is that if the system has a big diameter, the proof

engine will most probably “blow up” (running indefinitely or requiring more memory than the machine

has) without answering. It is legitimate to prefer an approximate answer to no answer at all1.

A solution is to limit the length of the execution. We can modify the semantics of SystemC to say

for example “at the end of the δ-cycle, the simulation ends successfully”, or “at the end of the nth δ-

cycle, the simulation ends successfully”. A bit more elaborated would be an instruction added in the

SystemC code to say “the simulation ends successfully now”, like ASSERT(false) says “the simulation

ends unsuccessfully now”. This would allow to prove that nothing bad happens before a certain point in

simulation.

Concretely, this would mean adding a sink-control point to the scheduler, send the scheduler to this

control point when the specified condition is met, and make sure no process can be elected while the

scheduler is in this control point.

7.5.3 Specify the Initial State Manually

Another approximation, which hasn’t been implemented either, would be to specify an execution prefix for

the set of executions. In other words, lead the simulation to a certain point, and launch the proof from this

point.

Specifying the path to the initial state could be done either from HPIOM of from SystemC. If done

with SystemC, it would be interesting to specify it with a traditional debugger like GDB. This would mean

extending PINAPA to be able to go beyond the end of elaboration before analyzing the platform, and modify

BISE also to be able to model the initial state correctly based upon the information of PINAPA.

Changing the initial state can reduce the complexity of the proof when the platform’s execution starts

by a relatively deterministic boot phase to which it never goes back. In this case, the boot phase would be

simulated in SystemC, and the actual behavior would be proved for a given boot sequence.

In many cases, however, changing the initial state would not reduce much the depth of the state-space

to perform a successful proof. It could however be used for bug searching: the user would lead the system

1As a reminder, we’re not verifying critical systems on which the goal is “0-bugs”, but systems on which bugs are costly. The goal

is therefore “find as many bugs as possible, and otherwise give relative confidence in the correctness”
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to a state that he suspects close from a bad state using a debugger, and then launch the proof, possibly a

bounded proof as explained in the previous section. The system would then answer either “true property”

(“there’s no bug near where you are. Search somewhere else”) or give a counter example (“here’s how to

reach the buggy state you’re looking for”).

Many variations around this principle can be implemented. Using formal method combined with tra-

ditional debugging can provide very efficient tools and methodologies. See for example [JJGM03] for

how this kind of techniques has been successfully applied to make LUDIC, NBAC and the test generation

LURETTE work well together.

7.6 Conclusion

The results for the HPIOM system with all conservative optimizations enabled are the following for the

EASY platform:

• 137 automata

• 1,032 control points (used to be 1,074)

• 1,748 edges (used to be 1,789)

• 793 boolean variables (used to be 1,105)

• 124 boolean unknown values (used to be 293)

For the smaller example, we get the following:

• 29 automata

• 102 control points (used to be 103)

• 196 edges (used to be 197)

• 43 boolean variables (used to be 51)

• 7 boolean unknown values (used to be 13)

And the resulting performances for the proof engine were:

• SMV time: 0.46 (used to be 0.48s)

• SMV BDD nodes allocated: 70,328 (used to be 71,595)

• LESAR time: 0.93s (used to be 5.04s)

note that some numbers are better than those given previously. This is because the combination of

optimizations can be better that the optimizations taken individually. For a non-trivial platform, the proof

will be much longer than the optimizations. The best strategy is probably to enable all the optimizations

anyway.

The results are rather pleasing for SMV: first, the results of SMV on the unoptimized model are bet-

ter than the results of LESAR on the optimized one. Furthermore, SMV does not benefit from BIRTH’s

optimizations as much as LESAR, which means that SMV probably already has similar optimizations.

However, we can see a slight improvement in the performances. This can be explained by the fact

that our optimizer works on HPIOM, on which we have a clear distinction between control and data, which

makes some optimizations simpler and/or more efficient to implement. For example, live variable analysis

intrinsically rely on the control structure. Automatic parallelization is even worse, since it changes the se-

mantic of an automaton. We can perform this optimization only because we know that the control structure

was built from the one of the C++ code, and that the number of steps to perform an action isn’t relevant.

As a conclusion, the fact that we use an intermediate representation such as HPIOM did not only allow us

a better modularity of the code, but also allowed some optimizations that would hardly have been possible

otherwise.

The HPIOM API is being separated from LUSSY, and will probably become a common intermediate

format for other Verimag tools. The first step is to give it a textual syntax, with import and export tools.

An XML format has been defined by Muhammad Muzammil Shahbaz, and import/export capabilities are

being implemented. The next step will be to implement the basic automata transformations, such as the

product.
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8.1 Introduction

The previous chapter presented the extraction of the semantics of a SystemC programs in our intermediate

representation HPIOM. With the final objective of formal verification, we need one more step to transform

this HPIOM representation into a format exploitable by a model-checker or other proof engines.

We present here the work done to connect LUSSY to the LUSTRE tool chain, and the work done in

co-operation by Muhammad Muzammil Shahbaz [Sha05], Master student at Verimag, to connect to the

SMV model checker.
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The first section (8.2) presents the LUSTRE and SMV tool-chains, in the context of the synchronous

reactive systems. We explain our encoding and code generation for LUSTRE (section 8.3) and SMV (sec-

tion 8.4), and the method we used to validate and debug the implementation (section 8.5). Section 8.6

compare the tools of the SMV and the LUSTRE tool-chain, in terms of input languages and performance of

proof engines, and we conclude on the applicability of our verification approach on real life platforms, in

section 8.7.

The original motivation for this work was to be able to perform formal verification. We have been

able to formally prove properties on small platforms. Unfortunately, we encountered state explosion before

reaching the size of real-life platforms. Model-checking as a back-end for LUSSY has very few chance to

scale up if done on the complete platform. The next step would be to work on a verification component by

component, that would use the current approach of LUSSY to prove each component, but split the proof

into smaller parts before launching the model-checker.

The global proof approach was anyway a very interesting experiment. The framework we developed

allowed us to do some interesting benchmarks that could not have been done otherwise. This resulted in

an interesting comparison of the output languages, and the identification of some weakness of LUSTRE to

model state-machines. The back-ends themselves can be considered as part of the HPIOM API and could

be reused outside LUSSY: any tool manipulating automata can generate HPIOM automata and benefit from

the connection to the LUSTRE and the SMV tool-chain at the same time.

8.2 Presentation of the Verification Tools

8.2.1 The LUSTRE Tool-Chain

8.2.1.1 Reactive Systems

LUSTRE was originally created to implement reactive systems, as opposed to transformational systems. A

transformational system is a system that reads its input, perform a computation, emits an output and then

terminates. A reactive system, on the other hand, is a system that never terminates. It periodically reads

inputs and responds with outputs. Figure 8.1 illustrates the way the system interacts with its environment.

Environment

Reactive System

Outputs:
Inputs:

{I1, I2, . . . , Ii, . . .} {S1, S2, . . . , Si, . . .}

(with memory)

Figure 8.1: Interaction of a Reactive System With its Environment

Each input emitted is a function of the inputs previously received. In other words, it is a function of the

current input and the history kept in the memory of the system.

8.2.1.2 The Synchronous Approach

The synchronous approach proved to be a very efficient model to design critical reactive systems. The

general constraints for such system are the following:

Bounded memory: The system has to be able to run forever, and runs of a physical system on which

memory is finite. To make sure that the system will never go out of memory, we have to make

sure that the system’s memory usage is statically bounded (and make sure this bound is lower than

the physical memory of the machine). The best way to enforce this requirement is to ban dynamic
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memory allocation. This means in particular that the memory of the system can not contain the

whole history, but only a bounded subset of this information.

Parallel description: To allow a component-based approach, a reactive system needs to be able to deal

with parallelism. “A system with two components” means two components executing in parallel, not

one after the other.

Determinism: To validate the implementation of a system, it is desirable to have a deterministic system,

i.e. always get the same sequence of outputs from a given sequence of inputs.

The last two requirements are sometimes conflicting, since parallelism can be a source of non-

determinism. The synchronous approach solves this problem by introducing the notion of logical global

clock: the execution of the system is split into an infinite sequence of instants. At each instant (or clock

tick), the system reads some inputs, update its internal memory (or internal state), and emits some output.

Communication and computation is assumed to be done in zero time.

The different components are logically executed in parallel, and in practice, an order of execution is

computed statically and deterministically, satisfying data dependency. The execution can be fully sequen-

tial although the description is parallel (this mechanism is often referred to as compiled parallelism).

If a system has no memory, then, the output at each instant is a function of the inputs at the same instant.

Such system is called a combinational system. More generally, the computation performed at each clock

tick is called the combinational logic. Computations depending on the value of the memory is called the

sequential logic.

8.2.1.3 LUSTRE: A Synchronous Data-Flow Language

In the middle of the 1980s, the Verimag laboratory developed the synchronous data-flow language LUSTRE.

It was originally developed to suite the needs of control engineers who were used to manipulate systems of

equations on data-flows to describe the behavior of their systems, and had to implement those systems on

sequential machines.

The basic principle of LUSTRE is that the objects manipulated are infinite sequences of data (X =
{x1, x2, . . . , xi, . . .}). Some operators are defined to compose those sequences, and a LUSTRE program is

a set of equations on the sequences in a particular form.

8.2.1.3.1 Combinational Operators. Classical, or combinational operators act on the sequences point

by point. For example, the + operator in LUSTRE is defined as follow:

X + Y = {x1, x2, . . . , xi, . . .} + {y1, y2, . . . , yi, . . .}

= {x1 + y1, x2 + y2, . . . , xi + yi, . . .}

The following operators are defined in the same way:

• Boolean operators: or, and, not, xor and implication =>,

• Usual arithmetic operators: +, -, *, real numbers division /, integer division div and modulo mod,

• Comparison operators on integers and real numbers: =, >=, >, <= and <> (the = operator can also

be used on Boolean),

• Conditional structure: the expression if C then E1 else E2 (where C is a boolean ex-

pression and E1 and E2 are 2 expressions of the same type) describe the flow X such that

∀n. if Cn then Xn = E1n else Xn = E2n.

8.2.1.3.2 Operators on Flows. The combinational operators do not allow the behavior to depend on

history. LUSTRE defines two operators on streams: pre (for “previous”) and “->” (for “followed by”),

defined by:

pre({x1, x2, . . . , xi, . . .}) = {nil, x1, x2, . . . , xi−1, . . .}
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=

pre

+if1
0

x

accumulator

0 ->

edge counter

edge

pre

i

false

->

Figure 8.2: Example of a Graphical LUSTRE Program

The operator pre allows the system to have some memory. The operator -> is the necessary comple-

ment. Since pre leads to a flow whose first element is undefined, we need an operator to define the first

element of the flow:

{x1, x2, . . . , xi, . . .} -> {y1, y2, . . . , yi, . . .} = {x1, y2, . . . , yi, . . .}

Those operators are often used together like in

X− > pre(Y ) = {x1, x2, . . . , xi, . . .} -> pre({y1, y2, . . . , yi, . . .}) = {x1, y1, y2, . . . , yi−1, . . .}

8.2.1.3.3 Equations. A variable v of a LUSTRE program is defined by an equation of the form v =

expr ;. The equation can be recursive like in n = 0 -> (pre(n) + 1), which defines the flow

{0, 1, 2, . . .}.

8.2.1.3.4 Nodes. A LUSTRE node is a set of inputs, a set of outputs, a set of local variables, and a set of

equations. It can be compared to the notion of functions in traditional imperative languages.

8.2.1.3.5 Graphical Syntax. LUSTRE programs can also be defined graphically. The graphical syntax

of LUSTRE is the one used for its commercial version, SCADETM. It also gives an idea of how a LUSTRE

program could be synthesized in hardware. Flows are represented with wires, and operators are “boxes”

connecting those wires. Figure 8.2 gives an example of a graphical LUSTRE program. Figure 8.3 is the

textual form of the same program.

8.2.1.3.6 The EC format. A program in the LUSTRE language can use any number of nodes. Nodes

can be hierarchical. In Figure 8.2, the program is the composition of a node edge, that emits true on

its output whenever the input value changes, and the node accumulator that computes the sum of its

inputs over time. In the composition, the operator if is used to transform the Boolean true/false in

the output of edge into the numerical 0/1 for the input of accumulator. The result is itself a node that

could be encapsulated in a larger program, that counts the number of edges on its input.

A LUSTRE program can be “flattened”: all the internal nodes can be inlined into the main node. In

the graphical representation, this means simply removing the boxes around the operators. In the textual

version, the resulting program contains the union of the equations of the nodes. The resulting format is a

subset of the LUSTRE language, called EC.

EC is a very simple language, easy to parse and to manipulate. Most tools manipulating LUSTRE code

in the Verimag tool chain use it as an intermediate format (i.e. call lus2ec and work on the resulting file).
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1 node edge(i: bool)

2 returns (x: bool)

3 let

4 x = false -> (i <> pre i);

5 tel

6

7 node accumulator(i: int)

8 returns (sum: int)

9 let

10 sum = 0 -> pre(sum) + i;

11 tel

12

13 node edge_counter(i: bool)

14 returns (x: int)

15 var

16 edge_int: int;

17 let

18 x = accumulator(edge_int);

19 edge_int = if (edge(i)) then 1 else 0;

20 tel

Figure 8.3: Textual Version of the Counter Program

1 node edge_counter

2 (i: bool)

3 returns

4 (x: int);

5

6 var

7 V10_edge_int: int;

8

9 let

10 x = (0 -> ((pre x) + V10_edge_int));

11 V10_edge_int = (if (false -> (i <> (pre i))) then 1 else 0);

12 tel.

13

Figure 8.4: EC Version of the Counter Program
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Remark:
We presented here only the single clock flavor of LUSTRE. LUSTRE actually

allows different variables to be computed according to different clocks, but we

won’t use this feature in LUSSY.

8.2.1.4 Model-checking LUSTRE Programs: LESAR, GBAC

The set of equations in a EC file can actually be seen as the definition of a function

(output, next state) = F (inputs, state)

This is exactly the kind of input a model-checker expects.

LESAR is a model checker for LUSTRE developed by Pascal Raymond in the Verimag laboratory. Its

input is a LUSTRE program whose first input (necessary a Boolean) gives the property to prove: the property

will be “The first output remains true forever”. Any safety property can be reduced to this class of property,

but LESAR is not able to prove liveness properties.

LESAR first transforms the LUSTRE program into an EC program. Then it removes all the numerical

variables and replace all conditions depending on Boolean variables by Boolean inputs. The resulting

program is a Boolean, flat program.

This program is then encoded using BDDs (as explained in section 3.2.1.2). LESAR can use either a

symbolic or an enumerative exploration of the state-space. The symbolic exploration can be done either

forward (starting with the set of initial states, iterating until an error state is found or the fixed point is

reached) or backward (starting with the set of error states, applying the inverse of the transition function

until an initial state or the fixed point has been reached).

LESAR can also eliminate some numerically unsatisfiable transition guard: when used with the -poly

option, it will represent the conditions appearing on transitions with polyhedra. If a polyhedra is empty,

then the transition can be deleted. Of course, the programmer is not supposed to write automata with

unsatisfiable transitions, but they often appear when computing the product of several automata.

The tool GBAC, also developed by Pascal Raymond in Verimag is a prototype for the next generation

of LUSTRE model-checkers. It is a symbolic model checker, with several improvements over LESAR, that

usually makes it much more efficient. Since it is a prototype, it still doesn’t have all the functionalities

of LESAR. The main difference between LESAR and GBAC is that LESAR computes the BDD for the

transition function statically whereas GBAC computes the BDD at each step. The resulting BDDs are

therefore simpler, since the possible values of state variables are known at the time the BDD is computed.

GBAC therefore performs many small computations (where LESAR performs fewer costly computations)

which is in practice much faster in most cases.

8.2.1.5 Abstract Interpretation: NBAC

NBAC is part of another family of verification tools: it is an abstract interpreter written by Bertrand Jeannet

during his Ph.D Thesis in Verimag. It has been designed to verify properties depending on numerical

values, and in particular, counters. Local satisfiability would not be of any help in the case of counters: the

value of the counter depends on its previous value at each instant. It is therefore impossible to say anything

about it locally.

NBAC implements dynamic partitioning to compute a set of relevant control points, and associates with

each control point a superset of the possible valuations of the variables. This information propagates from

one control point to another.

Initially, NBAC defines three control points: one representing the set of initial states, one representing

the set of states that we want to prove unreachable, and one for all other states. All transitions are supposed

to be possible.

126/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



8.2. Presentation of the Verification Tools

8.2.2 SMV Language and Model-Checker

8.2.2.1 Introduction

The SMV system is a tool for checking finite state systems against specifications in the temporal logic

CTL. It was originally developed by Ken McMillan and serves as a basis for Cadence formal verification

tools. The native input language of SMV is designed to allow the description of finite state systems that

range from completely synchronous to completely asynchronous, and from the detailed to the abstract. One

can readily specify a system as a synchronous Mealy machine or as an asynchronous network of abstract

non-deterministic processes. Since it is intended to describe finite state machines, the basic data types in

the language are finite scalar types. Static structured data types can also be constructed. A rich class of

temporal properties including safety, liveness, fairness and deadlock freedom, is allowed to be specified in

CTL, in a concise syntax. SMV uses the OBDD based symbolic model checking algorithm to efficiently

determine whether specifications expressed in CTL are satisfied or not.

8.2.2.2 The SMV Language

The primary purpose of the SMV input language is to provide a symbolic description of the transition re-

lation of a finite Kripke structure. Any propositional formula can be used to describe this relation. This

provides a great deal of flexibility, and at the same time a certain danger of inconsistency. For example,

the presence of a logical contradiction can result in a deadlock – a state or set of states with no successor.

This can make some specifications vacuously true, and makes the description unimplementable. While the

model checking process can be used to check for deadlocks, it is better to avoid the problem when possible

by using a restricted description style. The SMV system supports this by providing a parallel assignment

syntax. The semantics of assignment in SMV is similar to that of single assignment data flow languages. A

program can be viewed as a system of simultaneous equations, whose solutions determine the next state. By

checking programs for multiple assignments to the same variable, circular dependencies and type errors,

the compiler insures that a program using only the assignment mechanism is implementable. Consequently,

this fragment of the language can be viewed as a hardware description language, or a programming lan-

guage. The following sections describe its formal semantics in detail.

The SMV language contains all basic ingredients of an input language. It provides basic data types such

as Boolean, Enumeration, subrange types and Arrays. It also supports Vectors and Structural data types, as

well the self explanatory constructs for Conditions, Loops and module instantiations. All basic Arithmetic,

Comparison and Logical operators are of course, included in the language.

8.2.2.2.1 A Trivial Example. Consider the description of a very simple combinational circuit in Fig-

ure 8.5, with some assertion added. This example is written in SMV’s native language.

1 module = main(req1, req2, ack1, ack2)

2 {

3 input req1, req2 : boolean;

4 output ack1, ack2 : boolean;

5

6 ack1 := req1;

7 ack2 := req2 & ˜req1;

8

9 mutex : assert ˜(ack1 & ack2);

10 }

Figure 8.5: Example of an SMV Program: A Trivial 2-bits Arbiter

The example shows most of the basic elements of an SMV module. The module has four parameters,

req1, req2, ack1 and ack2, of which the former two are inputs, and the latter two are outputs. It

contains:
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• Type Declarations: req1, req2, ack1 and ack2 are declared to be type boolean. The ‘input’

and ‘output’ are specialized forms of type declarations.

• Assignments: Giving logical functions to outputs ack1 and ack2 in terms of inputs req1 and

req2.

• Assertions: ‘assert’ statement defines a property mutex to be proved.

The program models a (highly trivial) two bit priority-based arbiter, which could be implemented with

a two-gate circuit. The property mutex says that ack1 and ack2 are not true at the same time. ’&’ stands

for logical “and” and ’˜’ stands for logical “not”.

8.2.2.2.2 From LUSTRE to SMV. We will not detail here all the constructs of the SMV language. Starting

with the language manual [McM99] or the tutorial [McM01] is a much better way to learn the language

anyway. We will present the principles of the language, and insist on the difference with LUSTRE that we

introduced above.

The SMV language is similar to LUSTRE in many way. It is also a data-flow language, with hierarchical

modules (the equivalent of a node in LUSTRE). It has the power of a synchronous language, although it

allows asynchronous modeling: the modules can be executed either using one global clock or using inde-

pendent clocks for each module. Note that modeling asynchrony can be done this way in any synchronous

language ([HB02] gives a general methodology for that), whereas the opposite is not true.

There are a few syntactical differences between LUSTRE and SMV. For example, SMV uses next(x)

:= next(y) + z; init(x) := t; where LUSTRE would use x = t -> (y + pre(z));,

but this doesn’t make a big difference in practice. Note that SMV distinguishes combinational variables

(assigned directly) and state variables (whose next() or init() value is assigned): if a variable x

is used in “x :=” once in the program, then it is stateless and cannot appear in “next(x) :=” or

“init(x) :=”, and vice-versa.

Although it has data-flow semantics, the SMV language allows an imperative style. For example, one

can write

if (x) {

z := y;

t := 1;

} else {

z := 0;

t := y;

}

which would have to be written

z = if x then y else 0;

t = if x then 1 else y;

in LUSTRE.

SMV also provides some higher level constructs that are harder to implement in LUSTRE, and that the

SMV model-checker can use to optimize its encoding. For instance, an SMV program can have intrinsic

non-determinism whereas a LUSTRE program is fully deterministic (but non-determinism can be modeled

by adding inputs to the program). Non-determinism can be achieved either by providing no value for

a combinational variable, or by using the set notation {X, Y, ...}, like in x := {0, 1}. Using

explicit non-determinism, the model-checker may be able to perform some optimizations that couldn’t be

performed on inputs of the program.

SMV has a built-in notion of enumerated types, i.e. a type with a finite and statically known set of

possible values. The value can then be encoded using an efficient data-structure like Numerical Decision

Diagrams (NDD) [KPR+97] or other form of log encoding. The typical usage for enumerated types is

the encoding of discrete automata: each control point of the automaton is represented by a value of an

enumerated type.
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The SMV language has no interpreter and is currently used only as input for the model-checker. This

is sufficient for us to connect LUSSY to the SMV model-checker, but it makes it very hard to debug and

validate: to get confidence in an SMV generated program, one can only read the program, and try to prove

properties on it, but not execute it.

8.2.2.2.3 Temporal Properties. SMV uses Temporal Logic, CTL for specifying properties for verifica-

tion. We will use only a trivially small subset of CTL in LUSSY, since we generate SMV from HPIOM in

which the property is already encoded in the automata (using synchronous observers if necessary). We will

therefore not describe CTL in details here, but only give a short overview:

CTL, like any temporal logic, is an extension of the combinational logic. A CTL property can be either

true or false at each instant t. It can be

E: A boolean expression of the variables of the program (no temporal notion here)

G(E) (the Globally operator): true if E is true at all times t′ > t.

F(E) (the Future operator): true if E is true at some time t′ > t.

E U F (the Until operator): true if F is true at some t′ > t and E is true at all t′′ ∈ [t, t′[.

X(E) (the Next operator): true if E is true at t + 1.

In LUSSY, the property will always be expressed as G(E), where E will be the encoding of “nothing

bad happens at time t” (a non-temporal property).

8.2.2.3 Model-Checking SMV Programs

SMV is a symbolic model checker, based on BDD. A SAT engine also exists, but is not available in the

public release, so we couldn’t test it.

Model Checking by itself is limited to fairly small designs, because it must reach every possible state

that a system can reach. For large designs, especially those including substantial data path components,

the user must break the correctness proof down into parts small enough for SMV to verify. This is known

as compositional verification. SMV provides a number of tools to help the user reduce the verification of

large and complex systems to small finite state problems. These techniques include refinement verification,

symmetry reduction, temporal case splitting, temporal case splitting, data type reduction, and induction.

However, many of the advance concepts are currently out of the scope of thesis. These can be considered

during optimization or during the extended work phase.

SMV manages integers in an exact, and therefore very inefficient way: Integers are provided as ranges

(min..max) in the source program, and SMV will consider the max−min + 1 values possible for this type

(in a way similar to what is done for enumerated types). This approach is interesting for complex properties

depending on small size integers, but even very simple programs containing just one or two 32-bits integers

can lead to a state explosion. For a real-life program containing many integer variables, the user will have

to find a more efficient encoding, or a complete abstraction before writing the SMV input program.

8.3 Encoding in LUSTRE

8.3.1 Encoding State Machines in a Data-Flow Language, the Case of LUSTRE

Encoding state machines into a data-flow language is a very common problem. Most high level languages

have a notion of control-flow, and therefore a notion of explicit state, or control point. Hardware imple-

mentations, on the other hand, are purely data-flow. The problem of hardware synthesis is therefore an

instance of the problem of encoding state machines into a data-flow.

The general scheme is described in Figure 8.6. The machine receives inputs and emits outputs. It

keeps a bounded abstraction of the history in a “state”. In a hardware implementation, the “state” part

of the machine corresponds to a set of registers. In LUSTRE, it corresponds to expressions on which the
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Figure 8.6: General Scheme of a State Machine Encoding

operator pre is called. The combinational logic represents two functions: next state = F (inputs, state)
and outputs = G(inputs, state). In the hardware implementation, it corresponds to wires and gates not

combined to build registers. In LUSTRE, this corresponds to everything but the pre and -> operators.

There are always several data-flow implementations of a given state machine. They are discussed for

example in [JFL97]. It is relatively easy, given the state encoding, to optimize the combinational logic,

and also easy to minimize the number of registers necessary to encode the state. The difficulty is to find

the trade-off to optimize both at the same time. If the machine has n different control points, the simplest

strategies are:

the one-hot encoding: Each control point is represented by a boolean variable. One, and only one of those

variables may be true at a time. In this encoding, the computation of the next control point is simple,

but the encoding of the state itself is costly in terms of number of state variables (or registers).

The logarithmic encoding: In this encoding, the control points are numbered from 0 to n − 1 and each

control point is represented by its binary representation, which needs only ⌈log2(n)⌉ Boolean vari-

ables. This encoding minimizes the number of bits of the state encoding, but makes the combi-

national logic much more complex. In terms of Binary Decision Diagram, this means having less

variables, but also less regular BDDs. The result is that a log-encoding usually makes the proof

harder than the unoptimized version.

A good trade-off is to use the one-hot encoding by default, and when building the product of automata

(which is roughly the concatenation of the equations when the automaton is described in data-flow format),

see if some variables are functions of the others.

We have chosen the one-hot encoding mainly because it was the simplest to implement. Allowing a

logarithmic encoding would not be hard, but hasn’t been implemented by lack of time. We will therefore

declare one variable per control point (actually, a trivial optimization that we implemented is to use n − 1
variables, since the last variable is true when and only when all the other are false).

The variable representing the initial control point is initially true, while all the others are false. After the

initialization, a variable encoding a control point is true when the equation representing one of the edges to

this control is true.

We also declare one variable for each edge. Note that these variables are only here to factor the code:

they never appear inside the scope of a pre, or as input or output of the system, and could be equivalently

replaced by their value wherever they appear. The variable representing a transition is true when the

variable encoding its source state was true the instant before and when the guard is true.

The equation of the variable for a state is therefore of the form

control point foo = false/true ->

(transition x or transition y);

130/188 Verimag/STMicroelectronics — December, 9th 2005 Matthieu Moy



8.4. Encoding in SMV

while the equation of an edge from control point control point foo to state control point bar

is of the form

transition x = false -> (pre(control point foo) and guard);

8.3.2 Encoding Variables

HPIOM variables are just a concise way to express a big, or infinite number of states. It is therefore not

surprising that their encoding can be similar to the one of control points: we use one LUSTRE state variable

for each HPIOM variable. The variable’s value is read with pre(variable) (we define the current state as

a function of the previous state), and its value is defined by an equation of the form

variable = initial value ->

if transition x then value assigned on transition x else

if transition y then value assigned on transition y else

pre(variable); -- keep the previous value.

8.3.3 Encoding HPIOM Communication in LUSTRE

HPIOM pure signals are either present or absent, with no value. This is strictly equivalent to a Boolean

variable, always present, but either true or false. In LUSTRE, we encode this into a Boolean flow.

Valued signal need two LUSTRE flows: one Boolean to encode the presence of the flow, and one of the

type of the signal to encode, to carry its value. The equations for a valued signal in LUSTRE are therefore

of the form

valued signal present = transition x or transition y

valued signal value = any value ->

if transition x then value emitted on transition x else

if transition y then value emitted on transition y else

any value;

any value can be any value of the type of the signal. Concretely, the C++ class representing a type has

a method get a value() that is used to get arbitrary values for any type.

8.3.4 Results of the LUSTRE Generator for the EASY Platform

LUSSY’s LUSTRE code generator worked well on the EASY platform. It generates 11,795 lines of code,

split in 48 files. The corresponding EC file is 16,278 lines long. None of the LUSTRE tools we tried were

able to prove a property on the platform.

8.4 Encoding in SMV

The difference and similarities between the SMV input language and the LUSTRE language have been

described in section 8.2.2.2.2. This section will present the impacts of those differences on the encoding of

HPIOM.

8.4.1 Defining a Sequence: next Vs pre

In LUSTRE, the sequential aspect comes from the construct pre. In other words, we define the value at

each clock tick as a function of the previous values. SMV does the opposite: using the construct next, it

defines the next state as a function of the current state. The encoding follows this principle.
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8.4.2 State Machines

One important difference between LUSTRE and SMV is the presence of enumerated types in SMV. LUSSY

can take advantage of this to avoid encoding the state with Boolean variable, delegating the choice of the

low-level encoding (one hot, logarithmic, . . . ) to the tool SMV itself.

The HPIOM state encoding will therefore use only one variable per automaton, of an enumerated type

having one value for each control point of the automaton to encode. The imperative style of the SMV

language also allows a more readable generated code. In LUSTRE, the variable for a control point was

defined based upon its incoming transitions. In SMV, we will define the next control point based upon the

outgoing transitions of the current one.

Here is a small example of an expression of a simple finite state machine in SMV.

module main()

{

request : boolean;

-- declaring states of the machine

state : {ready, busy};

-- initializing ’state’

init(state) := ready;

-- next state decision box

switch(state) {

-- case when state is ’ready’

ready : {

if(request) {

next(state) := busy;

}

else {

next(state) := ready;

}

}

-- case when state is ’busy’

busy : {

next(state) := {ready, busy};

}

}

}

There are two control points ready and busy and one Boolean variable request. The states of the

machine are expressed by a single variable of enumerated type, state. The initial state is ready. When

request is true, the system changes its state from ready to busy. Otherwise it remains on ready.

Once on busy, the system may either stay here or change its state to ready non-deterministically. The

graphical look of this state machine is given in figure 8.7.
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busyready

[request]

Figure 8.7: Example of a State Machine

8.4.3 Encoding Variables

The encoding of variables in SMV is similar to the LUSTRE encoding. We use one SMV variable per HPIOM

variable. One difference is that we do not have to provide a centralized definition for the variable, but can

spread the encoding of the assignments throughout the SMV code. The generated code is therefore of the

form

variable : type;

state : {s1, s2};

init(state) := s1;

default {

next(variable) := variable;

} in {

switch(state) {

s1 : {

if(condition for this transition) {

next(state) := s1;

next(variable) := value assigned on this transition;

} else {

next(state) := s2;

}

}

[...]

}

}

The default section is necessary to specify that the variable keeps its value by default, and the assign-

ments are encoded one by one in the section corresponding to the transition on which the assignment is

done.

8.4.4 HPIOM Communication in SMV

The encoding of pure and valued signals in SMV are not different from what is done in LUSTRE. We

use stateless variables to describe them. Their value are set in the portion of code corresponding to the

transitions on which they are emitted, in a way similar to what is done for variables, except for the presence

of the next keyword.
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8.4.5 Results of the SMV Generator for the EASY Platform

The SMV code generator is also operational, and can generate the code for the EASY platform. The

generated code counts 17,648 lines of SMV code. Unfortunately, SMV was not able to prove any property

on the platform. After a few hours, the process was taking all the 2Gb of RAM available on our machine.

8.5 Validation and Debugging

8.5.1 Validating one Back-End at a Time

The first approach for the validation of the LUSTRE and SMV back-ends is to try LUSSY with the back-end

to validate, and to manually examine the output. To avoid having to take into account the full LUSSY

tool chain, we implemented a small unit test framework: LUSSY is compiled as a library. The LUSSY

binary is simply a trivial function calling the main function of LUSSY linked against this library, and we

can implement each unit test as a function that calls some functions in LUSSY, and that contains a main

function. Unit tests for SMV and LUSTRE back-ends are functions that builds a simple HPIOM system, and

dumps it into LUSTRE and SMV code.

We followed this approach at the early development stages of both back-ends, but this isn’t reasonable

for integration tests: it would be tedious and inefficient for platforms that generate several thousands of lines

of code (it is very easy to miss a bug by manually reading it, and section B.4.3 page 174 even describes a

case where the most careful manual examination wouldn’t have been sufficient).

Figure 8.8 shows the different steps from SystemC to LUSTRE and SMV, and how they can be compared.

...

SMV

proof

/diagnosis

proof

/diagnosis

execution

SystemC

unit testsHPIOM

LUSSY

answers

match

counter-example

simulation

replayable by

guiding the

give

behaviors

consistant

execution

directly
replayable

counter-example

LUSTRE

Figure 8.8: Testing LUSTRE and SMV back-ends

The first remark is that we can take advantage of the specificities of the target language. Both of

them are provable (that’s why we have chosen them . . . ), and LUSTRE is also executable, and has a good

debugger, LUDIC [MG00].
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8.5.2 Comparing LUSTRE and SMV Code to SystemC

We didn’t implement an HPIOM interpreter, so we can’t directly compare the execution of the generated

LUSTRE with the HPIOM system, but we can compare it with the original SystemC platform. This validates

the full chain (PINAPA + BISE + back-end) at a time, which is both an advantage and an inconvenient:

when the executions are consistent, we ensure the correctness of all the components at a time, but when

the executions are inconsistent, it makes it much harder to identify the origin of the problem. In addition

to execution, proving false properties and trying to replay the counter-example on the SystemC platform is

also very interesting.

Claude Helmstetter, Ph.D student in Verimag and STMicroelectronics, developed RVS, a variation of

SystemC which provides among other features a scheduler instrumented to prompt the user instead of

choosing automatically a process when several processes are eligible during the evaluation phase. This, as-

sociated with GDB to set the values of some variables at runtime if necessary allows to guide the simulation

manually, and to reproduce the counter-example provided by LESAR. When LESAR provides a counter-

example, it should be reproducible in SystemC, and when LESAR proves the property, the SystemC should

never violate an assertion.

8.5.3 Comparing the Back-Ends

Comparing the outputs of both back-ends on the same HPIOM system is a test only for the back-ends and

the HPIOM API. If BISE, for example, introduces a bug in the generated HPIOM, the bug should be present

in the output of both back-ends, and they should still be equivalent.

Historically, the SMV back-end was started after the LUSTRE back-end was finished, and tested. The

LUSTRE back-end could therefore be used as a reference for the SMV one.

8.5.3.1 Comparing Answers

For Boolean programs, the answers from LUSTRE and SMV model-checkers must give the same answer.

The counter-examples may differ, but their length should be at least similar: symbolic model-checkers

(SMV and LESAR if used with the -forward or -backward option) always give the shortest counter-

example, so, the length should be equal. LESAR does by default an enumerative model checking, which

does not guarantee the shortest counter-example. The only guarantee is that LESAR’s counter example can

not be shorter than SMV’s one. Getting a counter-example much longer than the shortest is unlikely to

happen, and in practice, we almost always got the shortest even with the enumerative algorithm.

8.5.3.2 Replaying SMV’s Counter-Example on the LUSTRE Program

Although the counter-examples provided by both model-checkers can be different, each must be replayable

on the other model. Replaying an SMV counter-example in the LUSTRE program does not cause theoretical

problem, since we can execute the LUSTRE program with LUDIC, looking at the SMV counter-example.

It does however cause a practical problem: for a reasonably small SystemC platform, we got a 12,000

lines long SMV counter-example that we thought was incorrect (the length of SMV counter-example was

13 while the LESAR diagnosis had more than 60 transitions, and seemed to be the correct shortest counter-

example when compared to the SystemC source). We tried to manually examine the trace, but quickly gave

up given its size. The graphical user interface VW provided with SMV has not been of a great help: all the

variables of the program were displayed at the same level, it was really hard to get the relevant information

to replay in LUDIC.

A solution would have been to parse the SMV output and to generate a .rif file, that describes the

sequence of inputs of a LUSTRE program, and that can be replayed automatically in LUDIC. The transfor-

mation is feasible but not trivial since the encoding of some constructs is not the same in SMV and LUSTRE

(in particular, the management of non-determinism). We didn’t have time to implement it.

Our solution has been to develop a rudimentary SMV trace explorer in Emacs-lisp. It parses the output

and splits it into one file per state. The command diff -u0 can be used to find the difference between

two states. We defined key bindings to move easily from one state file to the next and the previous one.

A filter can be provided in the form of a regular expression to display only a subset of the variables that
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appear in each state. This tool took only a few hours to develop, and allowed to understand the cause of a

bug in less than a day, after investigating unsuccessfully for several days without an appropriate tool.

8.5.3.3 Replaying LESAR’s Counter-Example on the SMV Program

In theory, the counter-example provided by LESAR should be replayable on the SMV program too. How-

ever, since we have no SMV interpreter, we can’t do it in practice (this is why the “execution” box is dashed

on Figure 8.8). It would, however, be possible to check that the SMV program can replay the counter-

example: we could add a state-machine providing the correct inputs to the program at each step (this would

be a trivial state machine in which each state has one and only one successor). The property should remain

false with this additional constraint. Additionally, we could encode the property “The outputs of the system

are the ones obtained in the LUSTRE counter-example”, that would have to be encoded in a state-machine

similar to the one used to encode the inputs.

8.6 Tools Comparison

The LUSSY tool-chain has several back-ends, and is able to connect to a number of different model-

checkers. It is interesting to compare the results of the different tools for several reasons: first of all, we

obviously want to know which tool is the best as a LUSSY back-end. But there’s something more. If

we use the same parameters for all but the back-end part of LUSSY, we get a way to compare tools that

would hardly be comparable otherwise: to compare model-checkers for LUSTRE and SMV, we could write

a LUSTRE program, test it, and then translate it into SMV, but this is not very satisfying: an automatic

translation would not be able to use all the specificities of SMV (for example, it could not refactor Boolean

encoding into enumerated types), and a manual translation may introduce arbitrary differences. Here, we

start from a common intermediate representation, and generate the code for both languages. Both code

generators can take advantage of the target language specificities. The results presented here are therefore

interesting outside the scope of LUSSY.

8.6.1 Input Languages

A difference between the tools are their input language. The input language is important because it has an

impact on the performance of the prover (a too low-level language would force the user to break down its

higher-level constructs, preventing the prover from taking advantage of those particular constructs) and on

the possible errors of the code generator (the strictest the syntax check is, the easiest it is to find errors in

the generated code).

8.6.1.1 Available Constructs

The main interesting feature of LUSTRE that SMV does not have is the ability to use the pre operator

on any expression. SMV does not use pre, but next, which can only be used on the left value of an

assignment. This is a powerful feature of LUSTRE, but it is not of any use for LUSSY !

SMV, on the other hand, has several interesting constructs that LUSTRE lacks. The presence of enu-

merated types, non-deterministic assignments, imperative-style if-then-else and switch are more

difficult to implement in LUSTRE, and SMV can do some optimizations that LUSTRE tools can hardly

perform: enumerated types can be encoded efficiently, non-deterministic assignments will presumably be

encoded into inputs of the system, but SMV can try to minimize the number of such inputs when it can

guarantee that some assignments are mutually exclusive.

8.6.1.2 Ease of Use

LUSTRE has been designed to be simple, can be learned quickly, and has a very clear semantics. SMV is

much more complex to learn and understand. This has led to several bugs in LUSSY.
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8.6.1.3 Type Checking

SMV has a much weaker type-checking than LUSTRE. The program in Figure 8.9, for example, is accepted

by SMV with only one warning, line 7, saying only “warning: assignment to x may be out of range”.

1 module main ()

2 {

3 x: boolean;

4 y: array 1..12 of boolean;

5 z: 0..100000;

6

7 x := y;

8 y := 1;

9 z := x;

10 }

Figure 8.9: Implicit Conversions Between Boolean and Integers in SMV

There are implicit conversion operators between integers and array of Boolean (an integer being equiv-

alent to its encoding in an array of Boolean), and a Boolean is simply an integer in the range 0..1. Worse

than that: the Boolean operators extends to array elements by elements, whereas the integers operators

extend to array considering the arrays as integers. [0, 1, 0] & [1, 0, 0] is equal to [0 & 1, 1

& 0, 0 & 0], whereas [0, 1, 0] + [1, 0, 0] is equal to 2 + 4 !

As a conclusion, we can say that the SMV language has many features that LUSTRE does not have, but

sometimes too many . . .

8.6.2 Performances of the Proof Engines

8.6.2.1 Quick Reminder of the Tools Available, and the Way we Use Them

A detailed explanation of the mechanisms of the tools we are using has been given earlier. We give here

some precisions on the way we used them, so that the benchmark be reproducible.

8.6.2.1.1 LESAR. LESAR is Verimag’s original LUSTRE model-checker. It was developed by Pascal

Raymond. Its default strategy is the enumerative one, but it also provides a symbolic strategy (forward,

with the option -forward or backward, with the option -backward). We use the current version as of

July 21, 2005.

8.6.2.1.2 GBAC. GBAC is a prototype of model-checker also developed by Pascal Raymond in Verimag.

It uses a better BDD library and better algorithms when used with the -fb (for “Forward Bis”) option. The

key point is the computation of BDDs at each step of verification, which is simpler than computing one big,

generic BDD at the beginning of the proof. The -sift option enables BDD dynamic variable reordering,

which usually fasts up the proof.

It doesn’t use LUSTRE as its input, but the BA format, which is obtained from LUSTRE with the

command lus2ba. The version of GBAC used is the current as of July 21, 2005.

8.6.2.1.3 NBAC. NBAC is the abstract interpreter developed by Bertrand Jeannet. We use the version

current as of January 6, 2004. Some improvements have been made since that time, but are not sufficient

to compete with the Boolean model-checkers for what we try to do anyway, so, we haven’t investigated

further. We use it without any option.
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8.6.2.1.4 SCADETM. SCADETM is the commercial and graphical environment for LUSTRE, devel-

oped by Esterel Technologies. It can be provided with a proof engine called PROVER PLUG-IN
TM for

SCADETM . We use the version provided with SCADETM v5.0. The prover itself is not available as a

separate component to check LUSTRE programs, and has to be used through the integrated development

environment. We used a somewhat dirty hack to import our generated LUSTRE files in SCADETM: first,

the LUSTRE program is compiled into the EC format (flattened LUSTRE). Then, we have to modify it

slightly to conform to the SCADETM syntax. The perl script doing this modification is quite trivial:

s/ˆlet$/let equa well_scade_needs_this_so___[ , ]/;

s/ˆtel.$/tel;/;

We create a template project using SCADETM itself, with a sample program, and the property stating

that the output OK must remain true and save it. The SCADETM project is actually a directory containing

several files, among which the file containing the LUSTRE sample program (Node2.saofd in our case)

plus many annotations in comments. We can simply replace this file with the EC file modified as described

above, and reload the project in SCADETM.

8.6.2.1.5 SMV. SMV is a symbolic model checker, in the same family as LESAR and GBAC, except that

it does not use LUSTRE as an input language. We use the free version, v10-11-02p46, which is limited in

terms of functionalities. For example, it does not provide a SAT engine, whereas the commercial version

does. We used SMV without command-line option.

8.6.2.2 Benchmarking the Tools on a Simple Platform

8.6.2.2.1 The Test Platform. We use a simple SystemC platform to test the performances of the dif-

ferent proof engines. The platform contains one BASIC channel, one master that will simply launch one

transaction on the channel (Figure 8.10), one slave that will raise an error whenever it receives a transi-

tion (Figure 8.12) and a variable number n of transmitter (Figure 8.11). When a transmitter receives a

transaction, the processing of the transaction notifies an event that wakes up a thread that will itself send a

transaction to the next module. The master talks to the first transmitter, the ith transmitter (i < n) talks to

the i + 1th one, and the nth transmitter talks to the slave.

1 void compute(void) {

2 while(true) {

3 initiator_port.write(m_addr, m_data);

4 while(true) {

5 wait(20, SC_NS);

6 }

7 }

8 }

Figure 8.10: Benchmark platform: Master Process

8.6.2.2.2 The Results. The results are given in table 8.1. “NT” means “not tested”, “OM” means the

prover went out of memory before the end of the proof. Results of the form “> X” means the prover was

killed at time “X”, with no success. The bold numbers correspond to the last n for which the proof engine

answered in reasonable time.

The results are given in terms of user time, on a dual AMD Athlon(TM) MP 2000+ with 512Mb of

RAM, running Linux.
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1 tlm_status write(ADDRESS_TYPE addr_in,

2 DATA_TYPE * source,

3 int number,

4 int port_id ,

5 basic_metadata& metadata) {

6 tlm_status response;

7 e.notify();

8 response.set_ok();

9 return response;

10 }

11

12 void compute() {

13 tlm_status status;

14 while(true) {

15 wait();

16 status = initiator_port.write(m_addr, m_data);

17 }

18 }

Figure 8.11: Benchmark platform: Transmitter

1 tlm_status write(ADDRESS_TYPE addr_in,

2 DATA_TYPE * source,

3 int number,

4 int port_id ,

5 basic_metadata& metadata) {

6 ASSERT(false);

7 tlm_status response;

8 response.set_ok();

9 return response;

10 }

Figure 8.12: Benchmark platform: Slave Method
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number of transmitters 1 2 3 4 5 6 7

PROVER time (prove) >2h NT NT NT NT NT NT

NBAC time (no AA) 3.51 81 OM NT NT NT NT

PROVER time (debug) 11.9 2,295 12,797 > 5h NT NT NT

GBAC time 0.13 0.64 4.76 120 > 1h NT NT

NBAC time 1.96 13 76 296 > 1h30 NT NT

LESAR time 0.2 0.4 3.15 105 4,647 NT NT

LESAR -forward time 0.26 0.79 4.63 113 4,783 NT NT

GBAC -fb -sift time 0.2 0.76 1.95 4.4 10.5 36 147

GBAC -fb time 0.2 0.76 1.97 4.4 10.5 36 191

SMV time 0.46 1.46 4.82 16.6 84 360.82 41.5

counterexample size 34 60 86 112 138 164 190

SMV BDD nodes 74,888 138,103 294,448 483,183 977,629 2,588,187 1,183,562

LESAR BDD nodes 20,110 57,576 192,592 722,259 2,633,568 NT NT

number of transmitters 8 9 10 11 12 13

PROVER time (prove) NT NT NT NT NT NT

NBAC time (no AA) NT NT NT NT NT NT

PROVER time (debug) NT NT NT NT NT NT

GBAC time NT NT NT NT NT NT

NBAC time NT NT NT NT NT NT

LESAR time NT NT NT NT NT NT

LESAR -forward time NT NT NT NT NT NT

GBAC -fb -sift time OM OM OM OM NT NT

GBAC -fb time OM OM NT NT NT NT

SMV time 67.75 150.21 697 1,648 8,951 13,691

counterexample size 216 242 268 294 320 246

SMV BDD nodes 1,396,510 1,863,109 2,839,374 4,243,537 7,433,346 14,964,410

LESAR BDD nodes NT NT NT NT NT NT

Table 8.1: Comparison of Proof Engines: Results of the Benchmark
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8.6.2.2.3 Conclusions About the Proof Engines. Let’s first get rid of the hopeless solutions.

PROVER PLUG-IN
TM for SCADETM gives surprisingly bad performances. It is known as a good SAT

solver, and wouldn’t have been chosen by Esterel Technologies if it gave so bad results in the general cases,

but we are clearly in a case where it is awfully bad. In proof mode, we killed it after one hour and a half

for the smallest example on which all other tools answered in less than 4 seconds! In Debug mode, it

gave a few results, but several orders of magnitude worse than all other tools, and it would anyway not

be applicable on correct platforms, since the only termination condition for the debug algorithm is when a

counter-example is found.

When used with the abstract address encoding in LUSSY, NBAC gives bad but acceptable results. Note

that the platform we use does not contain integer values, so, we do not take advantage of NBAC’s strength,

but use it in a case for which hasn’t been optimized. No big surprise, then . . . If we do not use the abstract

addresses encoding, then, NBAC will perform its own abstractions on the addresses. Since the abstraction

used (based on polyhedra) is more precise and more costly than our encoding, the bad results obtained are

not surprising either. This solution is therefore more precise but clearly hopeless in the case of realistic

platforms (even the biggest platform tried in this benchmark, with n = 13, can still be considered as

“small” compared to real-life designs).

Then comes LESAR. The enumerative strategy (the default) give results comparable to the results of

the symbolic forward strategy (-forward option). LESAR allowed us to go further than all the above-

mentioned tools. GBAC, with the -f option, uses algorithms similar to LESAR and gives comparable

results.

Remark:

We didn’t mention the results using lesar -backward since -forward

is obviously better: our HPIOM encoding results in a LUSTRE program with a

small set of initial sets, a huge amount of by-construction unreachable states

(any state where more than one variable encoding a control point is true for

example), and therefore a huge amount of trivially unreachable bad states. The

backward strategy will therefore start with a large set of bad states, and iterate

backward mainly in the set of unreachable states. The forward strategy will

start with a smaller set of states, and iterate forward inside a very constrained

set of reachable states. Even on the smallest example, lesar -backward

doesn’t find the counterexample after running more than an hour, i.e. 15,000

times the time it took for forward verification.

The bad performance for the SAT engine may come from the same problem,

since SAT has a global view of the state-space, and does not necessarily start

from the initial states.

GBAC, when used with the option -fb, gives better results. The fact that BDDs are recalculated at each

step in a simpler way dramatically improves the performances over LESAR and gbac -f. The results in

terms of execution time are satisfying, but it quickly explodes in terms of memory. It would be interesting

check GBAC’s memory usage, to see whether the algorithm actually needs so much memory or GBAC has

a memory leak problem. Using the -sift option slightly improves the performance, but did not allow us

to prove a larger platform.

SMV gives the best results. It is slightly slower than the other tools for small systems, but is able to

find the counter-example with n = 11 in less than one hour, and we even pushed it to n = 12 although

the verification is really long in this case. Looking at the number of BDD nodes allocated, we can see that

SMV seem to manage its BDD in a better way: for n ≥ 3, the number of BDD nodes allocated by LESAR

explodes quickly while SMV manages to keep the progression relatively linear. What’s surprising is that

the problem with n = 7 is solved faster, and allocating less BDD nodes than the one with n = 6.

Globally, we can say that SMV is the most adapted proof engine in our case.
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8.7 Validating Real-Life Platforms

We have seen that none of the tools we tried were able to prove any property on the EASY platform. What’s

unfortunate is that EASY is meant to be an example of platform, and is still very small compared to real-life

platforms. Since the complexity of the proof can be exponential in theory, and is in practice at least much

worse than linear in terms of size of the platform, trying prove a platform ten or hundred times larger than

a platform that we’re not able to handle would require a machine or a proof engine more powerful than the

ones we tried, by many orders of magnitude. This doesn’t seem to be realistic. The only way to complete a

proof with our approach would probably be to perform more abstractions, and get a simpler HPIOM model.

This conclusion may seem very pessimistic. However, this doesn’t call into question the whole ap-

proach, but only means that using LUSSY as-it-is for formal verification of large designs as a whole is not

realistic. Nevertheless, the techniques commonly used to scale up such as component by component veri-

fication, or abstraction techniques, would all need all the components of LUSSY. We implemented global

and formal verification as a first application of the tool chain. To apply LUSSY on real-life platforms, there

is still a lot to do. The next chapter will give more details on the reusable contributions of LUSSY.
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Chapter 9

Conclusion

9.1 Context

We have presented the notion of Transaction Level Modeling (TLM), and the way it is implemented in

SystemC in particular at STMicroelectronics. At this level, the platform is defined by a set of modules

exchanging data through atomic sets called transactions. The details of the bus protocols are not modeled.

TLM models can be written much faster than their Register Transfer Level (RTL) implementations, and

also simulate much faster. They can be used for early development of embedded software, to help architects

take decisions about the partitioning of the system, and as reference models for the validation of lower-level

implementations.

In the design flow promoted by STMicroelectronics, the transaction level is one of the first models in a

refinement flow towards gate level, layout, and finally the physical chip. This new level of abstraction really

makes sense when created before the lower levels. Extracting a TLM model from the RTL implementation

would be possible, although really hard to do efficiently and automatically, but it would not be as useful as

a TLM model written prior to the RTL implementation, since the uses for the TLM model appear before

the availability of the RTL in the design flow. This succession of levels of abstraction is an example of

a model-driven methodology: the most abstract model is written first and gives a system-level view of

the SoC. Implementation details are added afterwards. Comparing the entry point of the design flow (the

algorithms level, or the Programmer View level, which is the most abstract of the flavors of TLM) with the

final design is hardly feasible. There are so many changes in the architecture and the granularity of data

and timing, that the first and the last steps of the design flow do not even seem to talk about the same thing.

On the other hand, a step by step validation is feasible, although hard to do formally and exhaustively.

The notions of model-driven methodology and refinement have a wider range of application than

Systems-on-a-Chip design. The ideas behind TLM (reusable components, abstract communication chan-

nels, early execution, etc.) are relatively new in the context of electronic design, but are extensively used

in other domains of computer science.

TLM is only a concept. To be applicable in practice, this concept needs an implementation. We are

particularly interested in the SystemC infrastructure for TLM, whose main advantage is to be a standard,

built on top of other standard technologies (SystemC is a library for the C++ programming language). It

was already used inside STMicroelectronics (using the abstract communication channels TAC and BASIC)

before the beginning of the Ph.D, and is now used in several important projects inside and outside the

company.

This new level of abstraction and new technologies raised the need for new tools to create a full de-

velopment and verification environment. Among the problems to be solved, are the validation—formal or

not—of transactional models, their test by simulation, and the understanding and formalization of the lev-

els of abstraction. All this is really interesting only if carried out on real programs. The choice of SystemC

allows us to use real case studies. This was the beginning of a co-operation between STMicroelectronics

and the Verimag laboratory. We have laid the cornerstone, and other tools on related problems will come

in the future.
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9.2 Results and Discussion

9.2.1 Contributions of the Thesis

This document presented the works carried out during a Ph.D thesis, started in October 2005, and presented

in December 2005. The thesis being the first one in co-operation between the « System Platform Group »

(SPG) team of STMicroelectronics and the « Synchronous Languages and Reactive Systems » team of

Verimag, an important part of the work has been to understand the context, and to identify a precise subject.

We quickly realized that treating SystemC and the additional TAC and BASIC components to model

abstract communication channels was mandatory to keep up with the industry, and in particular with STMi-

croelectronics developments.

The concrete contribution of this thesis is the toolbox LUSSY, a set of building blocks for the manipu-

lation of transactional models of Systems-on-a-Chip, written in SystemC. With the SMV and the LUSTRE

back-ends, it is able to formally verify properties on a TLM model. LUSSY is the composition of a Sys-

temC front-end (PINAPA), a semantic extractor (BISE), an optimizer (BIRTH) and several code generators

(LUSTRE, SMV, and DOT back-ends). The general approach was presented in the first part of this document.

The next parts presented the components one by one.

The intermediate formalism used in LUSSY, is a simple interpreted automata format called HPIOM,

cornerstone between the extraction part and the back-ends. It was presented in section 5. The key point of

HPIOM is that it is both a formal and an executable formalism. Extracting an HPIOM model from a SystemC

program is therefore a way to give an executable semantics to SystemC. The correctness of the translation

can not be ensured formally since there is no official formal semantics for SystemC, but comparing HPIOM

and SystemC executions allows to get a good confidence in it.

Although HPIOM has been created to answer one precise need (to have an intermediate formalism

between SystemC and the proof engines in LUSSY), it appears to be relatively generic, and benefits from

the expressive power of the synchronous languages. One can design deterministic or non-deterministic

behaviors with HPIOM. It is easy to ensure that an HPIOM automaton is deterministic, and non-determinism

is also easy to express. In any case, it remains executable. Non-deterministic constructs will simply be

converted into inputs of the system.

HPIOM can be used in many other contexts. We have seen in chapter 8 that using a formalism like

HPIOM with a notion of control-flow allows some optimizations that could hardly be done on a completely

data-flow oriented format. HPIOM could therefore be used as an alternative to LUSTRE in some places of the

Verimag tool chain. Any tool using HPIOM can automatically benefit from the optimizations implemented

in BIRTH. Some practical problems are being solved to make HPIOM completely independent from LUSSY,

and give it a textual syntax.

LUSSY is designed to have as few limitations as possible. PINAPA, the front-end, presented in chap-

ter 4, uses a novel approach to extract all the information from the source program. It is based on a real

C++ front-end, which avoids creating a syntax different from the official one. Where some other tools

consider that the architecture information must be “statically known”, we actually execute the elaboration

phase of the model to analyze, using a slightly modified version of the SystemC official library. The link

between the architectural and the syntactical information may be problematic if dynamic data-structures

are used to manipulate SystemC objects during simulation, which is anyway forbidden by most SystemC

coding guidelines. The cases where PINAPA’s approach fails are cases where any other SystemC front-end

would fail. As opposed to this, PINAPA can successfully treat programs with a complex elaboration phase,

where all other SystemC front-ends we are aware of would fail. One contribution of PINAPA is simply a

clarification of the notions of static and dynamic information for SystemC.

BISE, extracting the HPIOM model, presented in chapter 6, has to perform a few abstractions, but does

not abstract more than needed. The abstractions are conservative for safety properties. It provides a model

for the most common C++ and SystemC features, and takes into account the specificities of the SystemC

scheduler (immediate and delayed notifications, notions of δ-cycle and time elapse, . . . ). It also has a model

of TAC and BASIC channels. Other SystemC constructs didn’t appear in the example on which we tried

our tool, but could easily be added.

Specifying properties in BISE does not require a new language. The properties can be directly expressed

in C++, or the user can choose among a set of generic properties built in BISE.
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We implemented some transformations of the generated HPIOM in the component BIRTH, as described

in chapter 7. Most are well-known optimizations available in optimizing compilers, adapted to our automa-

ton formalism. We implemented live variable analysis, minimization of the numbers of inputs necessary

to model non-determinism and a simple automatic parallelization algorithm. Each optimization improved

the performance on the prover side (great improvement when using LESAR as a prover, but less so with

SMV). Other transformations are here to ease the job of the back-ends. For example, we expand abstract

addresses and non-deterministic choices into simpler equivalent. We also make a few experiments with

non-conservative approximations.

Our LUSTRE and SMV back-ends allowed us to prove some properties on small enough platforms, as

discussed in chapter 8. Unfortunately, we encountered state explosion before reaching the size of the EASY

platform, which is representative of the type of code people write in real platforms, but much smaller. It

doesn’t seem to be reasonable to try to formally verify complete real-life platforms as a whole using only

the techniques implemented in LUSSY. The two most common approaches to verify large systems are to

perform more abstractions, or to spit the proof and prove components one by one. In both cases, the first

step is . . . to be able to prove something! In other words, the basic block for a component-oriented prover

or a more elaborated abstract interpreter is exactly what LUSSY does.

Although this was not the initial goal, experimenting with LUSSY and its LUSTRE and SMV back-ends

provided an interesting benchmark for the LUSTRE tool-chain. Verimag’s new model-checker prototype,

GBAC, seems promising and gives much better results than LESAR. However, SMV is the fastest on the

platforms we tried, as soon as the platform is non-trivial.

The components of LUSSY have been designed to be reusable. PINAPA, in particu-

lar, is distributed publicly as a free software, and promoted by the company GreenSoCs (see

http://greensocs.sourceforge.net/pinapa/). It already has several uses inside and out-

side STMicroelectronics. BISE allows traditional formal methods to be applied on a simple model, HPIOM.

HPIOM itself can, and will probably be reused outside the scope of LUSSY. Only the code generators for

LUSTRE and SMV are specific to formal verification by model-checking and abstract interpretation. To-

gether, the components of LUSSY form the basis to build other tools for the analysis of TLM models of

SoCs. They are the foundation for a more durable co-operation between Verimag and STMicroelectronics,

and possibly other partners.

Indeed, since the beginning of the Thesis, two other Ph.D students (Claude Helmstetter and Jérôme Cor-

net) joined the project. One subcontractor (Frédéric Saunier) employed by Silicomp is currently working in

the SPG team of STMicroelectronics to continue developments related to PINAPA. A SPIRIT generator has

been started and already allows the visualization of the architecture of simple platforms. The development

of a lint tool based on PINAPA is planned. The co-operation between Verimag and STMicroelectronics also

involves another project, between different teams, and is being officialized in a joint laboratory. Projects

involving other partners are also being set up. In INRIA Rhône-Alpes (France), a project named SC2PROM

(carried out by Yvan Roux), similar to LUSSY has been started. It reuses PINAPA as a front-end, and

contains a component similar to BISE, targeting a different intermediate formalism. Although no code has

been reused from BISE itself, the publications describing it and some informal advices, based on the ex-

perience of writing BISE, reduced the effort for this project. A pre-competitive RNTL (National Network

of research and innovation in Software Technologies) project has been submitted, aiming at developing

an open-source infrastructure for the development of transaction level models. It involves new partners,

namely Silicomp-AQL and Certess. A Minalogic project is also to be submitted (Minalogic is a competi-

tiveness center dedicated to the development of software for micro and nanotechnologies).

The scientific content of the Ph.D has also been acknowledged externally. Two publications have been

accepted in international ACM conferences ([MMMC05a] and [MMMC05b]). The “formal verification”

section of the book “Transaction-Level Modeling with SystemC. TLM Concepts and Applications for

Embedded Systems” [Ghe05] has also been written as part of this thesis, as well as an article in the “Special

Section on Hardware/Software Codesign and System Synthesis” of the journal “IEEE Transactions on

VLSI Systems”.
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9.2.2 The Choice of SystemC

The choice of SystemC to write TLM platforms seems controversial since frameworks designed with for-

mal methods in mind already exist for the same purpose. Working formally on SystemC gives an interesting

point of view on its qualities and flaws. SystemC has mainly been designed with practical concerns in mind,

and is often criticized regarding its weak theoretical foundation. After three years studying the details of

SystemC mechanisms, and discussing with the developers and the users of TLM components in STMicro-

electronics, it’s time to weigh up the pros and the cons. The two questions we are trying to answer here are:

“As a research institute, did Verimag do the right choice studying SystemC?” and “Did STMicroelectronics

do the right choice with SystemC as an infrastructure to implement transaction-level models?”.

SystemC is based on the C++ language. It is very intrusive in the user’s source code, uses both advanced

features of C++ and preprocessor’s macros in the API. It would therefore hardly be possible to write a

binding for the library for any other language. This means that SystemC forces the use of C++. C++ is a

very powerful language, but it is also a very unsafe language, in the sense that many dangerous constructs

are not forbidden by the language, and give unexpected, or even undefined behavior at run-time1. The C++

language is also very complex and therefore difficult to learn.

SystemC is not a real language. It is a library designed in a way the user has the feeling that he is

programming in a new language. There are very good reasons to design SystemC in such a way, but it also

presents a number of flaws compared to a dedicated language with a dedicated compiler: many verifications

that could be done statically have to be done at run-time, or can not be done at all.

The fact that SystemC is not a language also makes the task harder for people writing analyzers for

it. A parser for a new language could have been written using usual compilation techniques. Writing a

SystemC front-end is a much harder problem. PINAPA solves it in a relatively elegant way, but still has

limitations in some cases. Other approaches have more intrinsic limitations. Research works carried out on

SystemC is therefore also made more difficult, since manipulating programs would clearly be much easier

in a clean and simple language, with only the necessary constructs.

From a theoretical point of view, the approach followed by languages like SpecC, with a new language,

a new grammar, and new tools is therefore much superior. A framework like Metropolis, designed with

formal methods in mind, would seem to be the ideal case. But in practice, the approach followed by

SystemC has much more success in the industry. A naive conclusion would be that the industry made the

wrong choice, but let’s try to go a bit further . . .

Although imperfect, SystemC meets the requirements of the users very well. For software developers,

SystemC enables early execution of the embedded software, by using abstract models of the hardware.

Furthermore, those abstract models are not only fast to write, but also fast to execute. For verification

engineers2, SystemC is a way to write reference models. Tools like Cadence NC-SystemC allows the

execution of an heterogeneous system, comprising both a SystemC part and RTL components. They see in

SystemC (and optionally the SystemC verification library) a cheap replacement for proprietary languages

like the e language from Verisity, allowing them to gain independence from CAD vendors.

The first question when adopting a new technology is “What can I do with it?”. But other issues

are also key points: “How much will it cost?”, “If I write some code today, will I still be able to use

it tomorrow?”, “Which additional services can I get?”. The fact that SystemC is based on open source

technologies and on established standards is crucial regarding these points. The most basic tools (to be

able to write, compile, and execute a model) are provided at no cost. Using open source tools ensures their

durability. If the current maintainers of the SystemC library cease the development, in the worst case, one

can pay another company to continue the maintenance. The C++ language itself and its associated tools is

more than unlikely to disappear in the next 10 or 20 years. Regarding the availability of tools, using C++

is clearly a very good choice. One can find plethora of IDE, compilers, debuggers, profilers, and libraries

available for this language. SystemC itself being standardized and open source allows multiple companies

to provide tools for it without depending of a central authority. Many CAD vendors provide development

tools for SystemC programs today.

1The inquisitive reader can have a look at my collection of buggy C and C++ programs located at

http://www-verimag.imag.fr/˜moy/c collection/ if he isn’t convinced yet!
2the meaning of “verification” in “verification engineer” is the one of the hardware community, without the “formal verification”

connotation of the software community.
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The learning curve is relatively slow, due to the complexity of C++. Even with a good knowledge of

the C language, learning the C++ language and its “best practice” (which are very different from what is

expected from a good C programmer) is still long. On the other hand, many programmers already know

C++, and since this knowledge is reusable outside the SystemC world, many programmers are willing to

learn.

With the experience of several years of development, taking all these factors into account, it appears

that using SystemC to develop transactional models in STMicroelectronics was the only reasonable choice.

We strongly believe that the industry is going in this direction.

From the research point of view, with the preoccupation of performing a real applied research work,

the conclusion is rather obvious: we had to work with the same framework as the industry does. Asking

engineers to throw away their work and learn something new, from scratch, has rarely been a successful

approach in the history of computer science.
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Chapter 10

Perspectives

10.1 Possible Improvements and Uses for LUSSY

One of the best way to scale up using automatic verification techniques is to make a clever use of abstrac-

tions. We already implemented a simple abstraction taking advantage of the particular nature of addresses,

and a complete abstraction of numerical data.

We have seen that abstractions like the one we used for abstract addresses lose some information for

two reasons: the encoding itself can not represent all the information from the source code, and at the time

we perform the abstraction, we may not have all the information to generate the optimal encoding. It would

be interesting to perform a static analysis automaton per automaton, to get as much information as possible

about the possible values of variables, and generate a better encoding based on this information, to ease the

global proof. For example, NBAC can compute an over-approximation of the set of possible values for a

variable of type address (the typical case would be an access to an array, where the index is a loop variable.

The current abstract address encoding can not do much about it, but an abstract interpreter could easily

give the interval of the possible values for the array index).

Another commonly used scaling up technique is the verification component by component. Before be-

ing able to compose the proofs of individual components, it is necessary to be able to perform the individual

proofs, which is what LUSSY does (since SystemC components are hierarchical, there is not much differ-

ence between a component and a platform). To be able to scale up, we need to add a “component” layer to

LUSSY, that would split the platform, either at the SystemC or at the HPIOM level, and that would use the

current features of LUSSY to perform the proofs on the individual components, and then to compose the

results of the proofs.

Interaction between a proof engine and a traditional debugger can lead to very efficient debugging tools.

There are a number of problems to solve to make the output of LUSSY directly replayable on SystemC, or

at least more user-friendly. Another necessary feature would be the ability to provide the initial state for the

proof based on the state of the program at a given point of the simulation. This would allow the integration

of LUSSY in a traditional debugger like GDB. The user would for example start the simulation manually,

and launch a proof to see if he can find a bug starting from the current state, or asking the model-checker

how to go to a particular state. Optionally, he could provide a limit like “in the current δ-cycle” or “before

N processes are executed from now”, to make sure the proof terminates in reasonable time.

The combination of a proof engine with an automatic test environment is another powerful application

of proof techniques. The diagnosis from the proof engine is actually a super-set of the traces leading to a

state violating the property. Similarly to the approach described for debugging, by giving a test objective

as a property to prove, we get a way to guide the program to the test objective. Depending on how precise

the diagnosis and the test objective are, the program may or may not reach it, but is anyway more likely to

do so than it would be with random simulation.
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10.2 Towards a Complete Development Environment for SystemC

The general objective of the co-operation between STMicroelectronics, Verimag, and more recently other

partners such as Silicomp-AQL (through the OpenTLM project) is to provide a complete development and

verification environment for Transaction Level Models written in SystemC. LUSSY provided the building

blocks and an application to formal verification, but the work is far from being finished.

We have experimented with formal verification in LUSSY. As opposed to this, the current validation

techniques used in production are simple executions, with a relatively basic oracle. These run-time methods

could be greatly improved. The works carried out by Claude Helmstetter aim at improving the coverage

of the test-benches while avoiding redundant test as much as possible. It is based on an instrumented

simulation detecting suspicious executions at run-time. The algorithms are currently designed, and are par-

tially implemented, but require an instrumentation of the platform to analyze. This manual instrumentation

could be made automatic with a tool able to parse the platform and insert the necessary pieces of code in

the right places. PINAPA can be a very helpful basis for such automatic instrumentation tool. The run-time

algorithms could also be improved by working in combination with a static code analyzer to reduce false

positive when several processes access a shared resource. The other components of LUSSY can be helpful

for this purpose.

Some work is still to be done to get a better understanding of the timed and untimed layers inside the

TLM level of abstraction, and improve the methodologies to manage timing in TLM platforms accordingly.

Jérôme Cornet started working on the subject in 2004, and already developed abstract models, similar

to timed automata, to represent the possible executions of a timed system. The final goal is to have a

methodology, supported by development and possibly validation tools to add the “timing” layer to a pure

functional model, avoiding modifications of the original functional model, and ensuring that no bugs are

added during the process.

One of the limitations of our approach is that model-checking does not work on very complex code

(typically, code using dynamic data-structures), and other techniques such as abstract interpretation would

not scale up either. The typical example is the case of an instruction set simulator: to execute a simple

statement in the embedded software, an instruction set simulator interprets the machine code which itself

is the result of the compilation, that loses all the structural information from the source code that would

have been crucial for the proof. A platform containing an instruction set simulator can therefore not be

proved directly. The components that are too complex to be modeled have to be abstracted, either by

replacing them by completely non-deterministic ones, or by replacing them by local specifications, such as

a contract. The idea of design by contract was introduced a long time ago by Bertrand Meyer [Mey92] in

the Eiffel programming language.

The first application of the notion of contract is the run-time checking of the validity of the contract.

From this point of view, contracts are simply an organized way to write assertions in the source code.

But contracts can also have applications in static verification. It allows a better partitioning of the proof:

one can prove that each component meets its contract, individually, and then replace some components by

their contract in system-wide proofs. This is comparable to the works of Yvan Roux on SC2PROM, except

that in this case, the local specification is not proved locally, but computed automatically. We have been

contacted by Edmund M. Clarke (Carnegie Mellon University) and started some discussion to build a

bridge between LUSSY and the tools they developed for compositional and incremental verification (see

for example [SCCS05]).

Contracts can also be seen as a non-deterministic abstraction of the actual implementation. It can be

written before the implementation, and is normally much faster to write. By replacing non-determinism

by randomization or additional inputs, this specification can become executable. SystemC and TLM are

already allowing the early execution of a system. A non-deterministic local specification such a contract can

allow going one step forward, and allow the execution of the platform without even having all components

implemented.

HPIOM is a candidate formalism for the expression of local specifications for all kind of components.

It has all the necessary to model hardware components, and can also model software components, as long

as it is acceptable to abstract dynamic constructs.
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Appendix A

Example of translation into HPIOM:

switch and while statement

Contents

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2 The platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.3 C++ constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.3.1 while Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.3.2 switch Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.4 SystemC Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.4.1 Processes and the Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.4.2 Communication: the Example of the sc signal . . . . . . . . . . . . . . . . 165

A.5 Global Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.5.1 Main Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.1 Introduction

Chapter 6 presented the theoretical translation. This section presents the results and the automata produced

on an example to illustrate some details of the translation of SystemC into HPIOM.

The platform used as an example is not meant to be representative of a real platform, even trying to

prove any property on it is irrelevant. It was chosen because the automata generated are readable and are

a good support for the explanation of the translation of SystemC into HPIOM. Note that all the pictures

of automata provided in this section are automatically generated, using our visualization back-end (as

presented in section 3.3.3.5).

This representation is not exhaustive. Assignments and guards, for example are not displayed. Transi-

tions and states have names (which have no influence on the semantics). When a transition is the only one

leaving from a state, it is displayed in bold. Transitions whose guard is a default condition are displayed

dashed.

A.2 The platform

The platform is made of two modules, communicating together with a sc signal. The source code is

provided in Figure A.1.
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Appendix A. Example of translation into HPIOM: switch and while statement

1 #include "systemc.h"

2 #include <iostream>

3 #include "scp-verification.h"

4 using namespace std;

5

6 SC_MODULE(module_switch) {

7 sc_in<bool> in;

8

9 void compute() {

10 bool b1, b2, b3;

11 switch(in.read() == true ? 1 : (b1 ? 2 : 3)) {

12 case 1:

13 next_trigger(20, SC_NS);

14 break;

15 case 2:

16 ASSERT(b1 == true);

17 case 3:

18 b1 = true;

19 break;

20 b2 = false;

21 default:

22 b3 = true;

23 }

24 }

25

26 SC_CTOR(module_switch) {

27 SC_METHOD(compute);

28 sensitive_pos << in;

29 }

30 };

31

32 SC_MODULE(module_while) {

33 sc_out<bool> out;

34

35 void compute() {

36 int x = 0;

37 while (x++ <= 42) {

38 wait (20, SC_NS);

39 if (x != 13)

40 out.write(true);

41 }

42 }

43

44 SC_CTOR(module_while) {

45 SC_THREAD(compute);

46 }

47 };

48

49 int sc_main (int argc, char ** argv) {

50 sc_signal<bool> sig;

51 module_switch mod_switch("switch");

52 module_while mod_while("while");

53 mod_switch.in(sig); mod_while.out(sig);

54 sc_start();

55 }

Figure A.1: Example of SystemC Program: Main Function
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A.3 C++ constructs

A.3.1 while Loop

A.3.1.1 Generated Automaton

The algorithm for the generation of automaton for the while loop has been described in section 6.2.2.

Figure A.2 shows the generated automaton for the process module while::compute declared line 35.

Plain arrows are normal edges. Arrows are bold when they are the only outgoing edge from a control point,

and dashed arrows are for edges whose guard is a default condition.

initial st32 trans ns19

only state st17

trans ns18

while dcompute auto au7

end incr st19

incr tr tr15

wait st21

wait trans tr17

!wait si11

end write st31

exit while tr30

trans ns17

after wait st24

to fin tr21

final st33

end thread tr31

!end sig si17

else start trans tr29

then initial st26

then trans tr23

write trans tr28

!while udport 0 si16(...)

trans ns20

Figure A.2: Translation of a while loop

A.3.1.2 Generated LUSTRE Code

The generated LUSTRE code is provided in Figures A.3, A.4 and A.5. The automaton is transformed into a

LUSTRE node taking as inputs the input signals emitted by other automata (with the suffix siNN and the

unknown values used in this automaton (wu timewhile dcompute un2). The outputs are the output

signals. We declare one statefull variable per state and per HPIOM variables, and one stateless variable per

transition.

The process computes the condition ++x <= 42 on transition incr tr tr15. This incre-

ment appears line 79 in the generated code. Then, the test to choose between entering the loop

(wait trans tr17, line 25) and exiting the loop (exit while tr30, line 35) is performed in state
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1 node while__dcompute_state_au1 (time_elapse_si10: bool;

2 elect_si2: bool;

3 end_sig_si17: bool;

4 wait_si11: bool;

5 wu_timewhile__dcompute_un2: bool)

6 returns (eligible_0_st3, run_0_st5, sleeping_wait_st22, ended_st34: bool;

7 wait_si4: bool);

8 var

9 election_trans_tr1: bool;

10 trans_ns13: bool;

11 trans_ns14: bool;

12 wait_trans_tr18: bool;

13 wake_up_tr19: bool;

14 trans_ns15: bool;

15 trans_ns16: bool;

16 end_trans_tr32: bool;

17

Figure A.3: Generated LUSTRE code for a while loop (header)

end incr st19. The wait statement line 38 corresponds to state wait st21, and the if statement is

executed between state after wait st24 and only state st17.

A.3.1.3 Generated SMV Code

As a comparison, we provide the generated SMV code too. Figure A.6 shows the header of the module,

while Figure A.7 gives the body. The encoding of the state machine is much more straightforward than

the LUSTRE version. The module contains one SMV switch statement, with one case for each control point

of the automaton, and an if - then - else statement to choose between the outgoing transitions of

this state.

HPIOM variables and states are assigned with the next construct (line 30 in Figure A.7 for example),

while signals are instantaneous values emitted on transitions (line 37 for a pure signal, 64 and 65 for a

valued signal). If another automaton needs use the in state conditional on a state, the presence of the

automaton in the state is exported through a boolean SMV variable, like line 30 in the example.

A.3.2 switch Statement

The process module switch::compute declared line 9 is transformed into the automaton of Fig-

ure A.8. We can see the switch statement itself on state only state st35, the case statements in

the states to label stNN. State to break st57 corresponds to the piece of dead code line 20.

A.3.2.1 Generated LUSTRE Code

We won’t give the complete LUSTRE code here, but the portions of Figure A.9 illustrate some interesting

concepts that didn’t appear in the transformation of the while loop:

Lines 9 to 20 show the equations for the outgoing transitions from state only state st35. Since this

state has more than one transition with a non-default condition, it may have been the case that more than one

transition is enabled at a time. LUSSY has therefore added a non-deterministic choice to those transitions to

make this choice unique. The choice has to be done between switch jmp tr65, switch jmp tr62

and switch jmp tr63, and switch jmp tr64 will be taken if none of the other is enabled. To chose

between 3 transitions, we need ⌊log2(3)⌋ = 2 Boolean variables (make choice unique nd11 un16

and make choice unique nd11 un17).
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18 let

19

20 -- Transitions:

21 incr_tr_tr15 = false -> (pre(only_state_st17) and true);

22 -- > end_incr_st19

23 wait_trans_tr17 = false -> (pre(end_incr_st19) and

24 (((pre x_va1_va10) + 1) <= 42)); -- > wait_st21

25 trans_ns17 = false -> (pre(wait_st21) and (not elect_si2));

26 -- > wait_st21

27 to_fin_tr21 = false -> (pre(wait_st21) and elect_si2);

28 -- > after_wait_st24

29 then_trans_tr23 = false -> (pre(after_wait_st24) and

30 ((pre x_va1_va10) <> 13)); -- > then_initial_st26

31 write_trans_tr28 = false -> (pre(then_initial_st26) and true);

32 -- > only_state_st17

33 else_start_trans_tr29 = false -> (pre(after_wait_st24) and

34 (not ((pre x_va1_va10) <> 13))); -- > only_state_st17

35 exit_while_tr30 = false -> (pre(end_incr_st19) and

36 (not (((pre x_va1_va10) + 1) <= 42))); -- > end_write_st31

37 trans_ns18 = false -> (pre(initial_st32) and elect_si2);

38 -- > only_state_st17

39 trans_ns19 = false -> (pre(initial_st32) and (not elect_si2));

40 -- > initial_st32

41 end_thread_tr31 = false -> (pre(end_write_st31) and true);

42 -- > final_st33

43 trans_ns20 = false -> (pre(final_st33) and true);

44 -- > final_st33

45

46 -- States:

47 only_state_st17 = false ->

48 (write_trans_tr28 or else_start_trans_tr29 or trans_ns18);

49 end_incr_st19 = false ->

50 (incr_tr_tr15);

51 wait_st21 = false ->

52 (wait_trans_tr17 or trans_ns17);

53 after_wait_st24 = false ->

54 (to_fin_tr21);

55 then_initial_st26 = false ->

56 (then_trans_tr23);

57 end_write_st31 = false ->

58 (exit_while_tr30);

59 initial_st32 = true ->

60 (trans_ns19);

61 -- final

62 final_st33 = not(only_state_st17 or end_incr_st19 or

63 wait_st21 or after_wait_st24 or

64 then_initial_st26 or end_write_st31 or

65 initial_st32);

Figure A.4: Generated LUSTRE code for a while loop (transitions and states)
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66 -- Pure signals

67 end_sig_si17 = false -> end_thread_tr31;

68 wait_si11 = false -> wait_trans_tr17;

69

70 -- Valued Signals

71 while__udport_0_si16_present = false -> write_trans_tr28;

72 while__udport_0_si16_value = true ->

73 if write_trans_tr28 then true else true;

74

75 -- Continuous signals

76

77 -- Variables

78 x_va1_va10 = 0 -> (

79 if incr_tr_tr15 then (((pre x_va1_va10) + 1)) else

80 pre (x_va1_va10));

81 tel.

Figure A.5: Generated LUSTRE code for a while loop (signals and variables)

1 module while__dcompute_auto_au7(elect_si2, wait_si11, end_sig_si17,

2 while__udport_0_si16_present,

3 while__udport_0_si16_value) {

4 INPUT elect_si2: boolean;

5 OUTPUT wait_si11: boolean;

6 OUTPUT end_sig_si17: boolean;

7 OUTPUT while__udport_0_si16_present: boolean;

8 OUTPUT while__udport_0_si16_value: boolean;

9 -- States:

10 state : {only_state_st17, end_incr_st19, wait_st21,

11 after_wait_st24, then_initial_st26,

12 end_write_st31, initial_st32, final_st33};

13 -- Variables:

14 removed_int_un11 : boolean;

15 removed_int_un12 : boolean;

16 init(state) := initial_st32;

17

18 default {

19 wait_si11 := 0;

20 end_sig_si17 := 0;

21 while__udport_0_si16_present := 0;

22 while__udport_0_si16_value := 0;

23 } in

Figure A.6: Generated SMV code for a while loop
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24 -- States:

25 {

26 switch(state) {

27
28 only_state_st17: {

29 if (1) {

30 next(state) := end_incr_st19;

31 }

32 }

33
34 end_incr_st19: {

35 if (removed_int_un11) {

36 next(state) := wait_st21;

37 wait_si11 := 1;

38 }

39 else {

40 next(state) := end_write_st31;

41 }

42 }

43
44 wait_st21: {

45 if (elect_si2) {

46 next(state) := after_wait_st24;

47 }

48 else {

49 next(state) := wait_st21;

50 }

51 }

52
53 after_wait_st24: {

54 if (removed_int_un12) {

55 next(state) := then_initial_st26;

56 }

57 else {

58 next(state) := only_state_st17;

59 }

60 }

61 then_initial_st26: {

62 if (1) {

63 next(state) := only_state_st17;

64 while__udport_0_si16_present := 1;

65 while__udport_0_si16_value := 1;

66 }

67 }

68
69 end_write_st31: {

70 if (1) {

71 next(state) := final_st33;

72 end_sig_si17 := 1;

73 }

74 }

75
76 initial_st32: {

77 if (elect_si2) {

78 next(state) := only_state_st17;

79 }

80 else {

81 next(state) := initial_st32;

82 }

83 }

84
85 final_st33: {

86 {

87 next(state) := final_st33;

88 }

89 }

90 }

91 }

92 }

Figure A.7: Generated SMV code for a while loop (transitions and states)
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initial st64 trans ns12

only state st35

trans ns11

switch dcompute auto au8

end affect st55

switch jmp tr62

to label st47

switch jmp tr63

to label st61

switch jmp tr64

to label st39

switch jmp tr65

end affect st63

break tr tr55

else start trans tr49 then initial st49

then trans tr46

affect tr61 end trigg st41

next trigger tr38
!next trigger si18

break tr tr42

end thread tr66
!method end si20

trans tr48
!is this emitted si19

to break st57

affect tr57

Figure A.8: Translation of a switch statement

A.3.2.2 Generated SMV Code

We provide the equivalent section in the SMV code for comparison: Figure A.10. The imperative style

makes it a bit more readable, and the boolean log encoding of the choice is replaced by a native SMV

non-deterministic variable, with three values.

A.4 SystemC Constructs

This section will present the generated automata for a few SystemC constructs.

A.4.1 Processes and the Scheduler

A.4.1.1 SystemC SC THREAD s

We have seen that BISE generates one automaton for the control flow of each process, and an addi-

tional one to model the state of each process in the scheduler. The automaton representing the state of

while.compute is given in Figure A.11. The eligible/run/sleep loop appears clearly, and we see the

additional sink state for the process termination.

A.4.1.2 SystemC SC METHOD s

In the case of SC METHOD s, the “running” and “sleep” states are split into several states. The

next trigger functions switches from one state to the other.
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1 node switch__dcompute_auto_au8 ([...]) returns ([...]);

2 var

3

4 [...]

5

6 let

7 -- Transitions:

8 [...]

9 switch_jmp_tr62 = false -> (pre(only_state_st35) and

10 (removed_int_un8 and

11 ((make_choice_unique_nd11_un16 = false) and

12 (make_choice_unique_nd11_un17 = false)))); -- > to_label_st39

13 switch_jmp_tr63 = false -> (pre(only_state_st35) and

14 (removed_int_un9 and

15 ((make_choice_unique_nd11_un16 = true) and

16 (make_choice_unique_nd11_un17 = false)))); -- > end_affect_st55

17 switch_jmp_tr64 = false -> (pre(only_state_st35) and

18 (not [...])); -- > to_label_st61

19 switch_jmp_tr65 = false -> (pre(only_state_st35) and

20 (removed_int_un10 and (not ([...])))); -- > to_label_st47

21

22 [...]

23

24 -- Pure signals

25 next_trigger_si18 = false -> next_trigger_tr38;

26 method_end_si20 = false -> end_thread_tr66;

27 is_this_emitted_si19 = false -> trans_tr48;

28

29 [...]

30

31 tel.

Figure A.9: Portions of the generated LUSTRE code for module switch::compute
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1 make_choice_unique_nd11 : {choose_this_one_nd12, choose_this_one_nd13,

2 choose_this_one_nd14};

3

4 [...]

5

6 only_state_st35: {

7 if ((removed_int_un8 &

8 make_choice_unique_nd11 = choose_this_one_nd12)) {

9 next(state) := to_label_st39;

10 }

11 else if ((removed_int_un9 &

12 make_choice_unique_nd11 = choose_this_one_nd13)) {

13 next(state) := end_affect_st55;

14 }

15 else if ((removed_int_un10 &

16 make_choice_unique_nd11 = choose_this_one_nd14)) {

17 next(state) := to_label_st47;

18 }

19 else {

20 next(state) := to_label_st61;

21 }

22 }

Figure A.10: Portions of the generated LUSTRE code for module switch::compute

eligible 0 st3 trans ns13

run 0 st5

election trans tr1

while dcompute state au1

trans ns14

sleeping wait st22

wait trans tr18

!wait si4

ended st34

end trans tr32

!wait si4

wake up tr19

trans ns15trans ns16

Figure A.11: Process State of an SC THREAD
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A.5. Global Picture

eligible 1 st7 trans ns5

run 1 st9

election trans tr2

switch dcompute state au2

trans ns6

default sleep st10

default end tr3

!wait si7

running st42

next trigger tr67

default wakeup tr4

next trigger tr68

trans ns7

sleep st43

end of meth tr39

!wait si7

wake up meth tr40

Figure A.12: Process State of an SC METHOD with Several next trigger Statements

A.4.1.3 The Scheduler

The automaton for the scheduler is given in Figure A.13. We see the three nested loops: ex-

ecution phase, with the choice of the eligible process from state selecting process st14 to

process running st12, the delta-cycle corresponding to the loop including one evaluation phase

and one update phase (update delta st13, end of update tr7. The time elapse loop is the last

one, including state time elapse state st16.

A.4.2 Communication: the Example of the sc signal

The generated dot automaton for the sc signal is provided in Figure A.14. As it is, it is not very

interesting since it contains only one state: the behavior is only managed with variables of the automaton.

The LUSTRE code is more interesting (Figure A.15). We see one variable for the current value

(curr val va2 va7) and one variable for the next value (next val va3 va8). The current value is

updated on transition write tr24 which is itself triggered by the input signal input si12 present.

The scheduler emits the signal update si9 when entering the update phase. Depending on the equal-

ity of curr val va2 va7 and next val va3 va8, we choose between req up void tr25 and

req up action tr26 (emitting event si13) when we receive this signal.

A.5 Global Picture

The connections between the automata of the system is illustrated by picture A.16.

We can see the scheduler, with a rather central position, the two pairs of automata of the processes, the

signal, plus automata like sig input or au6 whose role is only to perform combinational operations

on signals (a logical or in this case).

A.5.1 Main Files

The main file instantiates the components. Each component is instantiated once and only once. If the

same component appears several times in the system, it will be generated several times. We do not use the

hierarchical possibilities of the target language: the automata can not be nested. Figure A.17 shows the

generated LUSTRE file, and Figure A.18 shows the SMV equivalent. They are very similar.
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selecting process st14 trans ns4

process running st12

elect tr11

!elect si2

elect tr12

!elect si5

scheduler au3

continue running tr13

sel or update st15

wait tr5

go to select tr10

update delta st13

no more process tr6

!update si9

end of update tr7

time elapse state st16

time elapse trans tr8

!time elapse si10

te over tr9

Figure A.13: Automaton for the Scheduler

state st29 trans ns3 write tr24 req up void tr25
req up action tr26

!event si13

sc signal au4

Figure A.14: Automaton for an sc signal
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A.5. Global Picture

1 node sc_signal_au4 (input_si12_present: bool;

2 input_si12_value: bool;

3 update_si9: bool;

4 siginit_sc_signal_au4_un3: bool;

5 make_choice_unique_nd4_un13: bool;

6 make_choice_unique_nd4_un14: bool)

7 returns (state_st29: bool; event_si13: bool;

8 cur_si15_present: bool; cur_si15_value: bool);

9 var

10 next_val_va3_va8 : bool;

11 curr_val_va2_va7 : bool;

12 trans_ns3: bool;

13 write_tr24: bool;

14 req_up_void_tr25: bool;

15 req_up_action_tr26: bool;

16 let

17 -- Transitions:

18 trans_ns3 = false -> (pre(state_st29) and

19 (not [...]); -- > state_st29

20 write_tr24 = false -> (pre(state_st29) and

21 (input_si12_present and

22 ((make_choice_unique_nd4_un13 = false) and

23 (make_choice_unique_nd4_un14 = false)))); -- > state_st29

24 req_up_void_tr25 = false -> (pre(state_st29) and

25 ((update_si9 and

26 ((pre curr_val_va2_va7) = (pre next_val_va3_va8))) and

27 ((make_choice_unique_nd4_un13 = true) and

28 (make_choice_unique_nd4_un14 = false)))); -- > state_st29

29 req_up_action_tr26 = false -> (pre(state_st29) and

30 ((update_si9 and

31 ((pre curr_val_va2_va7) <> (pre next_val_va3_va8))) and

32 (not (((make_choice_unique_nd4_un13 = false) and

33 (make_choice_unique_nd4_un14 = false)) or

34 ((make_choice_unique_nd4_un13 = true) and

35 (make_choice_unique_nd4_un14 = false))))));

36 -- > state_st29

37 -- States:

38 state_st29 = true;

39 -- Pure signals

40 event_si13 = false -> req_up_action_tr26;

41

42 -- Valued Signals

43

44 -- Continuous signals

45 cur_si15_present = true;

46 cur_si15_value = true -> (pre curr_val_va2_va7);

47

48 -- Variables

49 next_val_va3_va8 = siginit_sc_signal_au4_un3 -> (

50 if write_tr24 then (input_si12_value) else

51 pre (next_val_va3_va8));

52 curr_val_va2_va7 = siginit_sc_signal_au4_un3 -> (

53 if req_up_action_tr26 then ((pre next_val_va3_va8)) else

54 pre (curr_val_va2_va7));

55 tel.

Figure A.15: Generated LUSTRE code for an sc signal
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Appendix A. Example of translation into HPIOM: switch and while statement

sig input or au6 input si12

sig merge st28

sc signal au4

while udport 0 si16

event si13

state st29

update si9

siginit sc signal au4 un3

make choice unique nd4 un13

make choice unique nd4 un14

scheduler au3

time elapse si10

elect si2

elect si5

process running st12
update delta st13

selecting process st14
sel or update st15

time elapse state st16

while dcompute state au1while dcompute auto au7

switch dcompute state au2

switch dcompute auto au8

wait si4

wait si7

eligible 1 st7
run 1 st9

default sleep st10
running st42

sleep st43

eligible 0 st3
run 0 st5

sleeping wait st22
ended st34

select proc nd1 un7

no next trigger si8

next trigger si18

method end si20

make choice unique nd8 un15

auto ns8

st st11

is this emitted si19

only state st35
to label st39

end trigg st41
to label st47

then initial st49
end affect st55
to break st57
to label st61

end affect st63
initial st64

cur si15

vi b1 va4 un4

removed int un8

removed int un9

removed int un10

make choice unique nd11 un16

make choice unique nd11 un17

end sig si17

wait si11

wu timewhile dcompute un2

only state st17
end incr st19

wait st21
after wait st24

then initial st26
end write st31

initial st32
final st33

removed int un11

removed int un12

Figure A.16: Global view of the HPIOM system
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A.5. Global Picture

1 include "bool_signal.lus"

2 include "sc_signal.lus"

3 include "scheduler.lus"

4 include "switch__dcompute_auto.lus"

5 include "while__dcompute_auto.lus"

6
7 node main (siginit_sc_signal_au4_un3: bool;

8 make_choice_unique_nd4_un13: bool;

9 make_choice_unique_nd4_un14: bool;

10 select_proc_nd1_un7: bool;

11 make_choice_unique_nd8_un15: bool;

12 vi_b1_va4_un4: bool;

13 removed_int_un8: bool;

14 removed_int_un9: bool;

15 removed_int_un10: bool;

16 make_choice_unique_nd11_un16: bool;

17 make_choice_unique_nd11_un17: bool;

18 wu_timewhile__dcompute_un2: bool;

19 removed_int_un11: bool;

20 removed_int_un12: bool)

21 returns (OK : bool);

22 var

23 sig_merge_st28 : bool;

24 input_si12_present: bool; input_si12_value: bool;

25 [...]

26 while__udport_0_si16_present: bool; while__udport_0_si16_value: bool;

27 let

28 OK = not (is_this_emitted_si19);

29 sig_merge_st28, input_si12_present, input_si12_value =

30 sig_input_or_au6(while__udport_0_si16_present,

31 while__udport_0_si16_value);

32 state_st29, event_si13, cur_si15_present, cur_si15_value =

33 sc_signal_au4(input_si12_present, input_si12_value, update_si9,

34 siginit_sc_signal_au4_un3, make_choice_unique_nd4_un13,

35 make_choice_unique_nd4_un14);

36 process_running_st12, update_delta_st13, selecting_process_st14,

37 sel_or_update_st15, time_elapse_state_st16, time_elapse_si10,

38 elect_si5, update_si9, elect_si2 =

39 scheduler_au3(wait_si4, wait_si7, eligible_1_st7, eligible_0_st3,

40 select_proc_nd1_un7);

41 eligible_1_st7, run_1_st9, default_sleep_st10,

42 running_st42, sleep_st43, wait_si7 =

43 switch__dcompute_state_au2(no_next_trigger_si8, next_trigger_si18,

44 elect_si5, method_end_si20,

45 make_choice_unique_nd8_un15);

46 st_st11, no_next_trigger_si8 = auto_ns8(true);

47 only_state_st35, to_label_st39, end_trigg_st41, to_label_st47,

48 then_initial_st49, end_affect_st55, to_break_st57,

49 to_label_st61, end_affect_st63, initial_st64,

50 next_trigger_si18, method_end_si20, is_this_emitted_si19 =

51 switch__dcompute_auto_au8(cur_si15_present, cur_si15_value, elect_si5,

52 vi_b1_va4_un4, removed_int_un8, removed_int_un9,

53 removed_int_un10, make_choice_unique_nd11_un16,

54 make_choice_unique_nd11_un17);

55 eligible_0_st3, run_0_st5, sleeping_wait_st22, ended_st34, wait_si4 =

56 while__dcompute_state_au1(end_sig_si17, wait_si11, time_elapse_si10,

57 elect_si2, wu_timewhile__dcompute_un2);

58 only_state_st17, end_incr_st19, wait_st21, after_wait_st24, then_initial_st26,

59 end_write_st31, initial_st32, final_st33, end_sig_si17, wait_si11,

60 while__udport_0_si16_present, while__udport_0_si16_value =

61 while__dcompute_auto_au7(elect_si2, removed_int_un11, removed_int_un12);

62 tel.

Figure A.17: Main File For a Generated LUSTRE program
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Appendix A. Example of translation into HPIOM: switch and while statement

1 #include "bool_signal.smv"

2 #include "sc_signal.smv"

3 #include "scheduler.smv"

4 #include "switch__dcompute_auto.smv"

5 #include "while__dcompute_auto.smv"

6

7 MODULE main() {

8 input_si12_present: boolean;

9 input_si12_value: boolean;

10 event_si13: boolean;

11 cur_si15_present: boolean;

12 cur_si15_value: boolean;

13 time_elapse_si10: boolean;

14 elect_si5: boolean;

15 update_si9: boolean;

16 elect_si2: boolean;

17 wait_si7: boolean;

18 eligible_1_st7_sn : boolean;

19 no_next_trigger_si8: boolean;

20 next_trigger_si18: boolean;

21 method_end_si20: boolean;

22 is_this_emitted_si19: boolean;

23 wait_si4: boolean;

24 eligible_0_st3_sn : boolean;

25 end_sig_si17: boolean;

26 wait_si11: boolean;

27 while__udport_0_si16_present: boolean;

28 while__udport_0_si16_value: boolean;

29

30 sig_input_or_au6_inst : sig_input_or_au6

31 (while__udport_0_si16_present, while__udport_0_si16_value,

32 input_si12_present, input_si12_value);

33 sc_signal_au4_inst : sc_signal_au4

34 (input_si12_present, input_si12_value, update_si9,

35 event_si13, cur_si15_present, cur_si15_value);

36 scheduler_au3_inst : scheduler_au3

37 (wait_si4, wait_si7, eligible_1_st7_sn, eligible_0_st3_sn,

38 time_elapse_si10, elect_si5, update_si9, elect_si2);

39 switch__dcompute_state_au2_inst : switch__dcompute_state_au2

40 (no_next_trigger_si8, next_trigger_si18, elect_si5,

41 method_end_si20, wait_si7, eligible_1_st7_sn);

42 auto_ns8_inst : auto_ns8(no_next_trigger_si8);

43 switch__dcompute_auto_au8_inst : switch__dcompute_auto_au8

44 (cur_si15_present, cur_si15_value, elect_si5,

45 next_trigger_si18, method_end_si20, is_this_emitted_si19);

46 while__dcompute_state_au1_inst : while__dcompute_state_au1

47 (end_sig_si17, wait_si11, time_elapse_si10, elect_si2,

48 wait_si4, eligible_0_st3_sn);

49 while__dcompute_auto_au7_inst : while__dcompute_auto_au7

50 (elect_si2, end_sig_si17, wait_si11,

51 while__udport_0_si16_present, while__udport_0_si16_value);

52

53 assert G ( ˜(is_this_emitted_si19) );

54

55 }

Figure A.18: Main File For a Generated SMV program
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B.1 Introduction

This section discusses the expected qualities for a formal language. We take the examples of LUSTRE and

SMV, and compare the drawbacks and advantages of their respective approach. Based on this, we also take

conclusions about HPIOM: although it has no concrete syntax, it is a formalism very close to LUSTRE and

SMV, and some of the design choices for HPIOM were guided by our observations on those languages.

B.1.1 Formal and Informal Languages

A simple-minded approach to the question of formal language may distinguish clearly between two cate-

gories of programming languages: formal languages, and the others, that we will call informal languages.

A formal language can be defined as a language for which a clean semantic theory exists. It can be seen

as the concrete form of a mathematical theory. For example, the simplest flavors of the lisp language are

mainly a concrete syntax for the lambda calculus.

A formal language can, by definition, be manipulated mathematically. Formal proofs can be performed

on it (undecidability can be a limitation, but there are always some cases where a tool can conclude “I’m

100% sure that the program meets its specifications”).

Unfortunately, the distinction between formal and informal languages is not so clear. A well-enough

specified general purpose programming language can be very close to a formal language, and a language

supposed to be formal can actually be informal if there is a hole in its specification.
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Appendix B. Why Formal Languages Should be Simple . . . and Formal

B.1.2 Formal Proof, 100% Safety?

Formal methods are up to now rarely applied to general purpose programs, but proved to be very efficient

and appreciated in domains where bugs are very costly, either in terms of financial costs or in terms of

physical danger (a video game is not validated in the same way as a plane controller). In this case, the goal

is not to eliminate as many bugs as possible, but to eliminate all bugs.

If we trust the hardware, the operating system, the proof engine (both the theory and the implementa-

tion), the compiler, etc . . . then we can trust the result of the proof, in the sense that this result is the correct

answer to a question that has been asked to the prover.

If formal proof was so reliable, then why would famous computer scientists like Donald E. Knuth write

sentences like “Beware of bugs in the above code; I have only proved it correct, not tried it.”?

The open problem is whether the question that was asked the prover was correct. There are a few

good properties that we want any program to verify (no arithmetic overflow, no division by zero, . . . ).

They are necessary but not sufficient conditions for the program’s correctness. For a complete proof of

correctness, we need to give the specifications of the program to the prover. The formal proof will then

consist in comparing two views of the program, either written in the same language (for example, LUSTRE),

or written in two different languages (for example, SMV and CTL). For the proof to be meaningful, we

have to be confident in one of the view representing the expected behavior, and the other representing the

actual behavior. This part of the validation of the software can not be formal, because neither the original

requirements nor the way the program will interact with its physical environment are originally formal. In

other words, formal methods apply to model, and the soundness of the model regarding the physical world

has to be verified informally.

The solution to make this informal verification reliable is to make it trivial enough. It would not be

reasonable, for example, to write 10 pages of equation containing only Greek letters and obscure symbols,

and to say “trust me, this is a model of your car. Now, I will prove that the break-by-wire is correct based

upon that”. This can be a good LATEX benchmark, not a good proof.

B.2 The Rudimentary Approach: LUSTRE

The approach followed by the LUSTRE language is to make the language as simple as possible. The lan-

guage is based on a flow algebra. Most operators are trivial extensions of standard arithmetic operators.

pre and -> are added to be able to describe sequential machines, but their definition is simple and unam-

biguous.

The result is a language very simple to learn and to understand. It has a graphical version SCADETM,

which is also easy to use. The properties are expressed using the same language as the implementation, so,

the user has only one language to learn.

The drawback of this approach is that some constructs are very complex to describe. For example,

adding a “reset” input signal to a LUSTRE program means a complete transformation of the program (the

reset signal has to be added to each node, and a condition on this signal has to be added to each equation).

Describing a state machine in LUSTRE can also lead to complex and error-prone code.

B.3 A Higher Level Language: SMV

SMV follows the opposite approach. It is a very rich, but much more complex language. It mixes data-flow

and imperative style, synchronous and asynchronous semantics, . . . Most of the SMV constructs could be

expressed in a simpler language like LUSTRE, but the syntax of SMV allows to be more concise.

If we keep our naive Manichean view of the world, can we consider SMV as a formal language? The

SMV language reference is a document written in natural English, so SMV can not be considered formal.

However, this is the input language of a formal verifier, and the SMV tool needs a precise and exhaustive

semantics of its input language. We may consider that SMV is formally and exhaustively specified, but that

the specification hasn’t been published.
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B.4. An Example of Problem Using Higher Level Language

B.4 An Example of Problem Using Higher Level Language

B.4.1 The Problem

An example of a construct for which the natural language specification of SMV is not sufficient is the case

when a signal is not assigned. The manual says “each signal may be assigned only once.”, which explicitly

forbids cases where the number of assignments is greater or equal to 2, but isn’t clear about what happens

if the signal is not assigned at all. Another potentially relevant paragraph in the manual says “When a

signal is assigned a value that is not an element of its declared type, the result is to assign the special value

*unknown* to that signal. Unknown values can occur in other circumstances (for example, in the case of a

conditional with no “else” clause). The result of assigning the unknown value to a signal is implementation

dependent. In some cases, it may be desirable to propagate unknown values. In other cases, the unknown

value may be replaced by a nondeterministic choice among the values in the signal’s declared type (see

next section).”. We may be in the case of the “other circumstances”.

The problem doesn’t appear in LUSTRE, since the rule is that each variable has to appear once and only

once on the left hand side of an equation.

The possible semantics in this case are:

1. Reject the program, like LUSTRE does.

2. Use a non-deterministic value for the variable if the variable is not assigned. This is a way to make

default X := {all, possible, values, for, X} in {...} implicit.

3. Keep the previous value for the variable. This would be strange for stateless variables, but makes

sense for variables whose next value can be assigned: it means that a variable doesn’t change its

value unless explicitly requested.

4. Accept the program, and say it’s behavior is an “undefined behavior” (i.e. the complete program may

behave in any way from this point). This is acceptable for a general purpose programming language,

but hardly so for a formal language.

B.4.2 Trying to Understand

Since we didn’t find a satisfying answer in the manual, we can try some experimentation to get an empirical

answer. The first option (reject the program) is immediately eliminated: the program of Figure B.1 is

accepted by SMV.

1 module main ()

2 {

3 v: boolean;

4 i: boolean;

5 init(i) := 1;

6 next(i) := 0;

7

8 if (i) {

9 v := 1;

10 }

11

12 prop2: assert (G v);

13 }

14

Figure B.1: Example of an SMV Program With Non-Assigned Variable

Moreover, SMV gives a counterexample for the property, saying that v can become false at the second

step. In this case, the second rule (non-deterministic value) was applied. But let us not stop here. Consider

the program of Figure B.2.
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1 module main ()

2 {

3 v: boolean;

4 init(v) := 1;

5

6 default {

7

8 } in {

9 if (0) {

10 next(v) := 0;

11 }

12 }

13

14 prop2: assert (G v);

15 }

16

Figure B.2: Example of an SMV Program With Non-Assigned Stateful Variable

It is accepted and proved correct by SMV. So, in this case, the third rule (keep the previous value) seems

to have been applied. At this point, we could conclude “if a variable isn’t assigned, then a non-deterministic

value is used for stateless variables, and the previous value is kept for stateful variables”. But once again,

let’s not stop here. The programs of Figures B.3 and B.4 are accepted by SMV, and there properties are

falsified.

1 module main ()

2 {

3 v: boolean;

4 init(v) := 1;

5

6 default {

7

8 } in {

9

10 }

11 prop2: assert (G v);

12 }

Figure B.3: Never-Assigned Stateful Variables

The behavior therefore depends on the presence of at least one assignment, and on the presence of a

default statement. Whether this is a bug or a feature is left to the appreciation of the reader. Anyway,

the conclusion of this experiment is that we can not rely on the behavior of SMV if a variable is not always

assigned. A reasonable rule is to provide a default value for all variables in the default clause.

B.4.3 Consequence on LUSSY

This strange behavior was the cause of a bug in the SMV back-end of LUSSY: HPIOM variables were

translated into SMV stateful variables, but we didn’t provide a default value for them, and relied on the fact

that they would keep their value by default. In 99% of the cases, we had at least one assignment on the

next value of the variable, and the default statement was generated unconditionally, so, the assumption
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B.5. Executability and Determinism: a Way to Clarify the Semantics of Informal Languages

1 module main ()

2 {

3 v: boolean;

4 init(v) := 1;

5

6 if (0) {

7 next(v) := 0;

8 }

9 prop2: assert (G v);

10 }

11

Figure B.4: With Non-Assigned Stateful Variables, Without default Statement

was verified. As a result, we discovered the bug very late, and spent a hard time identifying it among 3,000

lines of generated SMV code.

The particularity of this bug is that LUSSY was actually doing what we thought was the correct behav-

ior. The problem was not in the algorithm or the implementation of LUSSY, but in our understanding of

the semantics of SMV. We could easily have missed this bug, which is still a real bug from the user point

of view: given a SystemC program, the diagnosis of LUSSY was incorrect.

B.5 Executability and Determinism: a Way to Clarify the Semantics

of Informal Languages

The trial-and-error scenario described above is representative the way many people like to learn and un-

derstand a language. When I’m asked whether a construct is valid in C++, and what it is supposed to do, I

first try it with one or several compilers, and then try to understand the result and whether the compiler is

right, from the specifications.

A problem with the SMV language is that no interpreter or compiler is available. We can prove proper-

ties on a program, but not execute it. To get confidence in his understanding of the specifications, the user

can only try to prove properties. When the property is false, he can look at the counterexample, and when

it’s true, he has no way to know if his explanation of the correctness of the property is the right one.

Executability is therefore a key point for a language in the perspective of formal methods. Determinism

is also very appreciable, since it means that the question “What does the program do in the situation X”

have only one answer for a given X, and this answer can be obtained by execution of the program.

B.6 Conclusion

We discussed the importance of a simple and exhaustive definition for a formal language, and the impor-

tance of executability. Those remarks also apply for an abstract formalism, such as HPIOM. In HPIOM, the

basic constructs are very simple, and others are defined based on the basic ones.

Executability of HPIOM is crucial, not only to help understanding its semantics, but also to allow the

comparison of its execution with SystemC. This is not a formal proof of equivalence, which is anyway not

possible, but increases our confidence in the correctness of the translation.
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Abstract

The work presented in this document deals with the formal verification models of Systems-on-a-Chip

at the transaction level (TLM). We present the transaction level and its variants, and remind how this new

level of abstraction is today necessary in addition to the register transfer level (RTL) to accommodate the

growing constraints of productivity and quality, and how it integrates in the design flow.

We present a new tool, called LUSSY, that allows property-checking on transactional models written

in SystemC. Its structure is similar to the one of a compiler: A front-end, PINAPA, that reads the source

program, a semantic extractor, BISE, into our intermediate formalism HPIOM, a number of optimizations

in the component BIRTH, and code generators for provers like LUSTRE and SMV.

LUSSY has been designed to have as few limitation as possible regarding the way the input program

is written. PINAPA uses a novel approach to extract the information from the SystemC program, and

the semantic extraction implements several TLM constructs that have not been implemented in any other

SystemC verification tool as of now. It doesn’t require any manual annotation. The tool chain is completely

automated.

LUSSY is currently able to prove properties on small platforms. Its components are reusable to build

compositional verification tools, or static code analyzers using techniques other than model-checking that

can scale up more efficiently.

We present the theoretical principles for each step of the transformation, as well as our implementation.

The results are given for small examples, and for a medium size case-study called EASY. Experimenting

with LUSSY allowed us to compare the various tools we used as provers, and to evaluate the effects of the

optimizations we implemented.

ACM Classification: B.6.3, D.2.4, D.3.1, F.4.3, F.3.1

Keywords: System-on-a-Chip, Formal verification, compilation, SystemC, LUSTRE, SMV, model-

checking, semantics, TLM.

Résumé

Les travaux présentés dans ce document portent sur la vérification de modèles de systèmes sur puce,

au niveau transactionnel (TLM). Nous présentons le niveau transactionnel et ses variantes, et rappelons en

quoi ce nouveau niveau d’abstraction est aujourd’hui nécessaire en plus du niveau de transfert de registre

(RTL) pour répondre aux contraintes de productivités et de qualités de plus en plus fortes, et comment il

s’intègre dans le flot de conception.

Nous présentons un nouvel outil, LUSSY, permettant la vérification formelle de modèles transaction-

nels écrits en SystemC. Sa structure interne s’apparente à celle d’un compilateur: Une partie frontale,

PINAPA, qui lit le programme source, une extraction de la sémantique, BISE, dans notre formalisme in-

termédiaire HPIOM, une série d’optimisations dans le composant BIRTH, et des générateurs de code pour

les outils de preuves pour LUSTRE et SMV.

LUSSY est conçu et écrit de manière à avoir aussi peu de limitation que possible sur la forme du code

SystemC accepté en entrée. PINAPA utilise une approche innovante qui lui permet de s’affranchir de la plu-

part des limitations dont souffrent les outils similaires. L’extraction de la sémantique implémente plusieurs

constructions TLM qu’aucun autre outil disponible aujourd’hui ne gère. Il ne demande pas d’annotation

manuelle du code source, toute la chaı̂ne étant entièrement automatisée.

LUSSY est capable de prouver formellement des propriétés sur des modèles de petites taille, et ses

composants sont réutilisables pour des outils de preuve compositionnelle, ou d’analyse de code autre que

le model-checking qui passeront mieux à l’échelle que l’approche actuelle.

Nous présentons les principes de chaque étape de la transformation, ainsi que notre implémentation.

Les résultats sont donnés pour des exemples simples et petits, et pour une étude de cas de taille moyenne,

EASY. Les expérimentations avec LUSSY nous ont permis de comparer les différents outils de preuves que

nous avons utilisés, et d’évaluer l’efficacité des optimisations que nous avons implémentées.

Classification ACM : B.6.3, D.2.4, D.3.1, F.4.3, F.3.1

Mots Clés : Systèmes sur puce, Vérification formelle, compilation, SystemC, LUSTRE, SMV, model-

checking, sémantique, TLM.
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