Structuration de collections d'images par apprentissage actif crédibiliste - TEL - Thèses en ligne
Theses Year : 2009

Structuration de collections d'images par apprentissage actif crédibiliste

Abstract

Image annotation is an essential task in professional archives exploitation. Archivsits must describe every image in order to make easier future retrieval tasks. The main difficulties are how to interpret the visual contents, how to bring together images whitch can be associated in same categories, and how to deal with the user's subjectivity. In this thesis, we use the principle of active learning in order to help a user who wants organize with accuracy image collections. From the visual content analysis, complementary active learning strategies are proposed to the user to help him to identify and put together images in relevant categories according to his oppinion.We choose to express this image classification problem with active learning by using the Transferable Belief Model (TBM), an elaboration on the Dempster-Shafer theory of evidence. The TBM allows the combination, the revision and the representation of the knowledge which can be extracted from the visual contents and the previously identified categories. Our method proposed in this theoritical framework gives a detailed modeling of the knowledge by representing explicitly cases of multi-labeling, while quantifying uncertainty (related to the semantic gap) and conflict induced by the analysis of the visual content in different modalities (colors, textures). A human-machine interface was developed in order to validate our approach on reference tests, personal images collections and professional photos from the National Audiovisual Institute. An evaluation was driven with professional users and showed very positive results in terms of utility, of usability and satisfaction.
L'indexation des images est une étape indispensable pour valoriser un fond d'archive professionnel ou des collections d'images personnelles. Le "documentaliste" se doit de décrire précisément chaque document collecté dans la perspective de le retrouver. La difficulté est alors d'interpréter les contenus visuels et de les associer entre eux afin de couvrir différentes catégories qui peuvent être souvent très subjectives. Dans ce travail, nous nous inspirons du principe de l'apprentissage actif pour aider un utilisateur dans cette tâche de structuration de collections d'images. A partir de l'analyse des contenus visuels des images, différentes stratégies de sélection active sont développées afin d'aider un utilisateur à identifier et cerner des catégories pertinentes selon son point de vue. Nous proposons d'exprimer ce problème de classification d'images avec apprentissage actif dans le cadre du Modèle des Croyances Transférables (MCT). Ce formalisme facilite la combinaison, la révision et la représentation des connaissances que l'on peut extraire des images et des classes existantes à un moment donné. La méthode proposée dans ce cadre permet ainsi une représentation détaillée de la connaissance, notamment en représentant explicitement les cas d'appartenances à aucune ou à de multiples catégories, tout en quantifiant l'incertitude (liée entre autre au fossé sémantique) et le conflit entrainé par l'analyse des images selon différentes modalités (couleurs, orientations). Une interface homme-machine a été développée afin de valider notre approche sur des jeux de tests de référence, des collections d'images personnelles et des photographies professionnelles issues de l'Institut National de l'Audiovisuel. Une évaluation a été conduite auprès d'utilisateurs professionnels et a montré des résultats très positifs en termes d'utilité, d'utilisabilité et de satisfaction.
Fichier principal
Vignette du fichier
These_Herve_Goeau.pdf (5.72 Mo) Télécharger le fichier
Soutenance_These_Herve_Goeau_25_05_09.pps (7.92 Mo) Télécharger le fichier
Format Other
Loading...

Dates and versions

tel-00410380 , version 1 (20-08-2009)

Identifiers

  • HAL Id : tel-00410380 , version 1

Cite

Hervé Goëau. Structuration de collections d'images par apprentissage actif crédibiliste. Interface homme-machine [cs.HC]. Université Joseph-Fourier - Grenoble I, 2009. Français. ⟨NNT : ⟩. ⟨tel-00410380⟩
313 View
474 Download

Share

More