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Orthogonal polynomials with Hermitian matrix argument and associated

semigroups

Abstract

In this work we construct and study families of generalized orthogonal polynomials with her-

mitian matrix argument associated to a family of orthogonal polynomials on R. Different normali-

zations for these polynomials are considered and we obtain some classical formulas for orthogonal

polynomials from the corresponding formulas for the one–dimensional polynomials. We also cons-

truct semigroups of operators associated to the generalized orthogonal polynomials and we give an

expression of the infinitesimal generator of this semigroup and, in the classical cases, we prove that

this semigroup is also Markov.

For d–dimensional Jacobi expansions we study the notions of fractional integral (Riesz poten-

tials), Bessel potentials and fractional derivatives. We present a novel decomposition of the L2 space

associated with the d–dimensional Jacobi measure and obtain an analogous of Meyer’s multiplier

theorem in this setting. Sobolev Jacobi spaces are also studied.

Résumé

Dans ce travail, nous construisons et étudions des familles de polynômes orthogonaux généra-

lisés définis dans l’espace des matrices hermitiennes qui sont associées à une famille de polynômes

orthogonaux sur R. Nous considérons plusieurs normalisations pour ces polynômes, et obtenons

des formules classiques à partir des formules correspondantes pour des polynômes définis sur R.

Nous construisons également des semi-groupes d’opérateurs associés aux polynômes orthogonaux

généralisés, et donnons l’expression du générateur infinitésimal de ce semi-groupe ; nous prouvons

que ce semi-groupe est markovien dans les cas classiques.

En ce qui concerne les expansions d-dimensionnelles de Jacobi nous étudions les notions d’intégrale

fractionnelle (potentiel de Riesz), de potentiel de Bessel et de derivées fractionnelles. Nous don-

nons une nouvelle décomposition de l’espace L2 associé à la mesure de Jacobi d-dimensionnelle, et

obtenons un analogue du théorème du multiplicateur de Meyer dans ce cadre. Nous étudions aussi

les espaces de Jacobi-Sobolev.
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Chapter 1

Introduction

Particular families of generalized orthogonal polynomials have been studied since the mid 1950’s.

The families of generalized Hermite and Laguerre polynomials were introduced by C. Hertz [Her55]

in the context of special functions with matrix argument. Since then there has been an increasing

interest in this branch of mathematics with multiple generalizations and applications. For example,

the generalized Laguerre polynomials were defined in the context of symmetric cones by J. Faraut

and A. Koranyi in [FK94] since they are very useful in the study of Harmonic Analysis on symmetric

cones. These polynomials also have a large number of applications in multivariate statistics as can

be seen in [Mui82].

Let us denote by Hn the space of Hermitian n× n matrices and by Un the group of unitary matri-

ces. We say that the function f : Hn → R is central if it is Un−invariant, that is, if f (UXU−1) = f (X)

for all U ∈ Un; thus, a central function is determined by its restriction to the subspace of diagonal

matrices and this restriction is a symmetric function on Rn. Moreover, a symmetric function on Rn

uniquely determines a central function on Hn.

A generalized polynomial with Hermitian matrix argument is a central function on Hn whose

restriction to the space of diagonal matrices is a symmetric polynomial. Plenty information about a

generalized polynomial can be obtained from the study of associated symmetric polynomial.

Hermite and Laguerre symmetric polynomials associated to the corresponding families of ge-

neralized Hermite and Laguerre polynomials are special cases of generalized Hermite polynomials

for Dunkl operators. These operators, defined by C. Dunkl ([Dun88, Dun89, Dun90]), have been

extensively studied by O. Opdam, ([Opd93, Opd00]) and M. Rösler ([Ros98, Ros99, Ros02]), among

1



Chapter 1: Introduction 2

others.

Dunkl operators are differential–reflection operators on an euclidian space associated with a fi-

nite reflection group. From an analytical point of view these operators extend notions of harmonic

analysis and special functions in a symmetric space associated with a root system. Also, the theory

of stochastic processes has gained considerable interest in the last years, see for example [RV98]. A

comprehensive monograph on this subject is [GRY08], written in an accesible way by the researchers

who have contributed to the development of this theory.

Dunkl operators are also of great interest in mathematical-physics due to its relation to certain

quantum integrable models in physics; these are naturally related with certain Schrodinger opera-

tors for Caloguero-Moser-Sutherland models. The spectral properties of these operators can be de-

termined using the Dunkl formalism, via the generalized Hermite polynomials. These polynomials

are eigenfunctions of the Dunkl harmonic oscillator operator and have been extensively studied, e.g.

[vDV00, Ros98, Ros99, BF97b, BF98].

From a combinatorial point of view, Hermite, Laguerre and Jacobi symmetric polynomials asso-

ciated to the generalized Hermite, Laguerre and Jacobi polynomials with Hermitian matrix argument

are special cases of symmetric orthogonal polynomials associated to the Jack symmetric polynomials

studied by Lassalle in a series of notes [Las91a, Las91b, Las91c]. In these notes Lassalle defines these

families of generalized (in Jack sense) polynomials as eigenfunctions of certain differential operators

on Rn that generalize the Hermite, Laguerre and Jacobi one dimensional operators. In the Schur

polynomials expansion case (parameter α = 1 in this articles), the case we are interested in, he gives

a Berezin–Karpelevich type formula that involves the one dimensional Hermite, Laguerre and Jacobi

polynomials.

Let us recall that F.A. Berezin and F.I. Karpelevich [BK59] expressed the spherical functions on

a complex Grassmann manifold as a quotient of a determinant containing Jacobi functions and a

Vandermonde determinant. K.I. Gross and D.St.P. Richards [GR91, GR93] give similar formulas for

some generalized hypergeometric functions.

The generalized Hermite and Laguerre polynomials in Jack sense introduced by Lassalle are also

studied by T.H. Baker and P.J. Forrester [BF97a] in the context of Caloguero-Moser-Sutherland mo-

dels in physics. For these polynomials they present analogous of classical results such as generating

functions, differentiation and integration formulas and recursion relations.

In this work we construct families of generalized orthogonal polynomials with Hermitian matrix
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argument from a family of orthogonal polynomials on R, obtaining, among others, the generalized

Hermite, Laguerre and Jacobi polynomials. These generalized polynomials are given by a Berezin–

Karpelevich type formula that involves a quotient of a determinant containing the corresponding

orthogonal polynomials on R and a Vandermonde determinant. Alternatively, they can be obtained

by the Gram-Schmidt orthogonalization process from the Schur polynomials.

Another object of interest in this work are the Markov semigroups associated to families of or-

thogonal polynomials. D. Bakry and O. Mazet [BM03] introduce the notion of a Markov generator

sequence for a given family of orthogonal polynomials and characterize the Markov generator se-

quences for the classical orthogonal polynomials on R. A Markov generator sequence for a family of

orthogonal polynomials is equivalent to the existence of a Markov semigroup with spectral decom-

position given by the family of orthogonal polynomials. Markov semigroups are intimately related to

Markov processes, widely known stochastic processes with many applications in physics, economy

and computer science, among many others. Among the Markov semigroups associated to orthog-

onal polynomials we have the Ornstein–Uhlenbeck, Laguerre and Jacobi semigroups. Besides the

theoretical interest of obtaining an operator semigroup associated to the generalized polynomials,

these semigroups are of interest because of their relation with the Dunkl theory. Perhaps the knowl-

edge obtained from the study of these semigroups in this particular setting can help understanding

further the behavior of the semigroups and processes in the Dunkl setting.

In this work we construct semigroups associated to the generalized orthogonal polynomials. For

this, we consider a Markov generator sequence, and therefore a Markov semigroup, for the orthogo-

nal polynomials on R. We give an explicit expression of the infinitesimal generator of this semigroup

and, under the hypothesis of diffusion, we prove that this semigroup on Hn is also Markov. We also

have expressions for the kernels of this semigroup in terms of the one-dimensional kernels and give

a probabilistic interpretation of the corresponding Markov process on Hn.

The behavior of the semigroup associated to a family of orthogonal polynomials is closely related

to the harmonic analysis for the polynomial expansions. Harmonic analysis for expansions in terms

of non-trigonometric orthogonal polynomials have various motivations. In first place, it arises as a

theoretic extension of the known results for Fourier series. In 1965 B. Muckenhoupt and E.M. Stein

[MS65] developed a harmonic analysis for non–trigonometric polynomial expansions in the case of

ultraspherical polynomials. They introduced the notions of Poisson integral, conjugate function,

Riesz potentials and Hp spaces for those expansions.
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Expansions in terms of other classical families of polynomials have also been studied. In [FSU01]

Riesz and Bessel potentials for the gaussian measure, that is, for Hermite expansions, were studied

and, also in this case, in [LU04] fractional derivatives were studied and a characterization of the

Gaussian Sobolev space was obtained. The Laguerre expansion case was treated in [GL+05], were the

authors obtained an analogous of P. A. Meyer’s multiplier theorem for this expansions, introduced

fractional derivatives and fractional integrals in this setting and studied Sobolev spaces and higher–

order Riesz–Laguerre transforms.

Among the semigroups on Rn associated to the classical polynomials, the Jacobi semigroup is the

most complicated and least studied of all. Before studying harmonic analysis properties for genera-

lized orthogonal polynomials expansions on Hn, we study some notions of harmonic analysis for the

d-dimensional Jacobi expansions, considering fractional differentiation and integral differentiation

for these expansions.

In this work we obtain an analogous result of P.A. Meyer’s multiplier theorem [Mey84] for Jacobi

polynomial expansion, by considering an alternative decomposition of the L2 space associated to the

Jacobi measure. We then define study Riesz and Bessel potentials, associated to the d–dimensional

Jacobi operator, proving that they can be extended continuously to Lp. Using fractional derivatives,

we give a characterization of the Sobolev spaces associated to the Jacobi measure. With these results

we complete the study of these notions for the classical families of orthogonal polynomials.

1.1 About the organization of this work

This thesis has four chapters. The present chapter corresponds to the introduction. We have

chosen to include tree more sections in this introduction, sections 1.2, 1.3 and 1.4, that correspond

to chapters 2, 3 and 4, where we shortly describe the results obtained in each one of the chapters.

Each result referred in these sections corresponds to a result in the corresponding chapter. In the last

section of this introduction we preset some open problems.

Chapter 2 includes the published paper [BU08] in which we define and study fractional integra-

tion and fractional differentiation for d–dimensional Jacobi expansions. We consider a novel decom-

position of the L2 space associated to the multidimensional Jacobi measure and obtain an analogue of

Meyer’s multipliers theorem for Jacobi expansions. We also obtain a characterization of the Sobolev

spaces associated to the d–dimensional Jacobi measure.
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Chapter 3 includes the published paper [BGU05]. In this, we construct and study families of

generalized orthogonal polynomials on the space of Hermitian matrices from a family of orthogonal

polynomials in R. We give a Berezin–Karpelevich type formula for these polynomials. We also study

different normalizations and expansions for these polynomials.

Chapter 4 includes the preprint [BGU09] accepted for publication, where we construct operators

semigroups associated to the families of generalized orthogonal polynomials with hermitian matrix

argument. We give an explicit expression of the infinitesimal generator of these semigroups and of

the kernels that define it. Under the hypothesis of diffusions we prove that this semigroup is also

Markov. We obtain some classical formulas for the generalized orthogonal polynomials from the

corresponding formulas for the one–dimensional polynomials.

We have included references for each one of the chapters to facilitate the reading of this work.

General references are also available at the end of the work. We also have included an appendix about

the classical orthogonal polynomials, where properties and basic identities for these polynomials can

be found.

1.2 About Chapter 2

This chapter includes the published paper [BU08] in which we define and study fractional in-

tegration and fractional differentiation for d–dimensional Jacobi expansions. For parameters α =

(α1, α2, . . . , αd) and β = (β1, β2, . . . , βd) in Rd, satisfying αi, βi > −1 and a multi-index κ = (κ1, . . . , κd) ∈

Nd, let ~p α,β
κ be the normalized Jacobi polynomial of order κ in L2([−1, 1]d, µd

α,β), defined on x =

(x1, x2, . . . , xd) ∈ Rd by

~p α,β
κ (x) =

d

∏
i=1

pαi ,βi
κi (xi),

where pα,β
n , for n ∈N and α, β ∈ R, α, β > −1, is the normalized Jacobi polynomial of degree n in R.

The family of Jacobi polynomials {~p α,β
κ } is orthogonal in the space L2([−1, 1]d, µd

α,β), where

µd
α,β(dx) =

d

∏
i=1

{
1

2αi+βi+1 B(αi + 1, βi + 1)
(1− xi)αi(1 + xi)βi dxi

}
,

is the (normalized) d–dimensional Jacobi measure on [−1, 1]d.
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The Jacobi polynomial pα,β
n is an eigenfunction of the d-dimensional Jacobi operator,

Lα,β :=
d

∑
i=1

[
(1− x2

i )
∂2

∂x2
i

+
(

βi − αi − (αi + βi + 2) xi
) ∂

∂xi

]
(1.1)

with eigenvalue −λκ = −∑d
i=1 κi(κi + αi + βi + 1); that is,

Lα,β~p α,β
κ = −λκ~p

α,β
κ .

The d-dimensional Jacobi semigroup {Tα,β
t }t≥0 is defined as the Markov semigroup associated to

the Markov probability kernels

Pα,β(t, x, dy) = ∑
κ∈Nd

e−λκ t~p α,β
κ (x)~p α,β

κ (y)µd
α,β(dy) =: pα,β

d (t, x, y)µd
α,β(dy).

That is,

Tα,β
t f (x) :=

∫
[−1,1]d

f (y) Pα,β(t, x, dy) =
∫

[−1,1]d
f (y) pα,β

d (t, x, y)µd
α,β(dy).

The d-dimensional Jacobi semigroup {Tα,β
t }t≥0 is a Markov diffusion semigroup, strongly continuous

on Lp([−1, 1]d, µd
α,β), with infinitesimal generator −Lα,β. Each of its operators is symmetric and is a

contraction on Lp and has the Jacobi polynomials as eigenfunctions, with eigenvalue e−λκ t, that is

Tα,β
t ~p α,β

κ = e−λκ t~p α,β
κ .

For parameters α = (α1, α2, . . . , αd), β = (β1, β2, . . . , βd) ∈ Rd such that αi, βi ≥ − 1
2 , the Jacobi

semigroup {Tα,β
t }t≥0 is not merely a contraction on Lp([−1, 1]d, µd

α,β), but is hypercontractive, that is

to say, for any 1 < p < ∞ there exists an increasing function q = qα,β : R+ → [p, ∞), with q(0) = p,

such that for every f and all t ≥ 0,

‖Tα,β
t f ‖q(t) ≤ ‖ f ‖p .

The proof of this fact is an indirect one and it is due to the fact that the one–dimensional Jacobi

operator satisfies a curvature–dimension inequality. This was proven by D. Bakry in [Bak96] noting

that an operator on real interval I of the form

f ′′(x)− a(x) f ′(x) (1.2)

satisfies a curvature–dimension inequality with curvature constant ρ and dimension constant n if,

and only if,

a′(x) ≥ ρ +
a2(x)
n− 1
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and expressing the one–dimensional Jacobi operator in the form (1.2) by means of the change of va-

riables x = sin(y), for y ∈ [−π/2, π/2]. As shown in [ABC+02], the curvature–dimension inequality

yields a logarithmic Sobolev inequality for the one–dimensional Jacobi operator and, since this in-

equality is stable under tensorization [ABC+02], the d–dimensional Jacobi operator also satisfies a

logarithmic Sobolev inequality. Using L. Gross’s famous result [Gro75], which states the equivalence

between the hypercontractivity property and the validity of a logarithmic Sobolev inequality, we

have that the d–dimensional Jacobi semigroup is in fact hypercontractive.

For each n ≥ 0, let Cα,β
n be the subspace of L2([−1, 1]d, µd

α,β) generated by linear combinations of

{~p α,β
κ : |κ| = n}, where, as usual for a multi-index κ, |κ| = ∑d

i=1 κi. Then, we have the orthogonal

decomposition

L2([−1, 1]d, µd
α,β) =

∞⊕
n=0

Cα,β
n .

This is the Wiener–Jacobi decomposition of L2([−1, 1]d, µd
α,β), which is analogous to the Wiener de-

composition of L2(Rd, γd) in the Gaussian case. For f ∈ L2([−1, 1]d, µd
α,β), the expansion of f in Jacobi

polynomials is given by

f =
∞

∑
n=0

∑
|κ|=n

f̂ (κ)~p α,β
κ ,

with

f̂ (κ) =
∫

[−1,1]d
f (y)~p α,β

κ (y)µd
α,β(dy),

the Jacobi–Fourier coefficient of f for the multi-index κ. This yields the spectral decomposition

Lα,β f =
∞

∑
n=0

∑
|κ|=n

(−λκ) f̂ (κ)~p α,β
κ .

Unlike in the Gaussian case, the Wiener–Jacobi decomposition of L2([−1, 1]d, µd
α,β) does not gives us

an expression of the action of the Jacobi operator Lα,β in terms of the ortogonal projections on the

subspaces Cα,β
n , as can be seen in the previous formula. This is due to the fact that the eigenvalue λκ

of the Jacobi operator does not depends linearly on |κ|.

In the Gaussian and Laguerre cases and in the one dimensional Jacobi case the expressions of

the action of the operators in terms of the orthogonal projections is crucial, so, in order to obtain an

expression of this type, in Section 2.2 we consider a different decomposition of L2([−1, 1]d, µd
α,β) that

we call modified Wiener–Jacobi decomposition.

With this decomposition in Section 2.3, we are able to obtain results in a similar way to the ones

in the Hermite and Laguerre cases. Our first result is given in Proposition 2.1, where it is shown
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that the orthogonal projections Jα,β
n of the modified Wiener decomposition can be extended conti-

nuously to Lp([−1, 1]d, µd
α,β). This is essentially a consequence of the hypercontractive property Jacobi

semigroup.

In the Hermite expansion case a key result to extend Riesz and Bessel potentials continuously

to Lp is P.A. Meyer’s multiplier theorem. Before defining these potentials in the Jacobi setting, we

establish an analogous result in this case. For any Φ : N → R, the multiplier operator TΦ associated

to Φ is defined for a polynomial f with expansion f = ∑∞
n=0 Jα,β

n f , by

TΦ f :=
∞

∑
n=0

Φ(n)Jα,β
n f .

By Parseval’s inequality it is immediate that TΦ is bounded on L2([−1, 1]d, µd
α,β). After some

technical lemmas, in Theorem 2.1 we give a condition on Φ under which the multiplier TΦ can be

extended to a continuous operator on Lp([−1, 1]d, µd
α,β). This condition is similar to the one given by

P.A. Meyer’s multiplier theorem in the case of Hermite expansions.

Similarly to the classical case of the Laplacian, we define a fractional integral of order γ > 0,

denoted Iα,β
γ , which is called the Riesz potential of order γ, associated to the d-dimensional Jacobi

operator by

Iα,β
γ := (−Lα,β)−γ/2Π0,

where Π0 = I − Jα,β
0 , the orthogonal projection on the orthogonal complement of Gα,β

0 . By applying

Meyer’s multipliers theorem, in Theorem 2.2 we establish that the Riesz potential can be extended

continuously to Lp([−1, 1]d, µd
α,β).

The Bessel potential of order γ > 0 associated to the d-dimensional Jacobi operator, denoted J α,β
γ ,

is defined by

J α,β
γ := (I −Lα,β)−γ/2,

and, again by the Meyer’s multiplier theorem, we prove in Theorem 2.3 that J α,β
γ can be extended

continuously to Lp([−1, 1]d, µd
α,β).

The fractional derivative of order γ > 0, denoted Dα,β
γ , associated to the d-dimensional Jacobi ope-

rator is defined by

Dα,β
γ := (−Lα,β)γ/2

and for 1 < p < ∞, the Jacobi Sobolev spaces (or potential spaces) of orderγ > 0, namely Lp
γ([−1, 1]d, µd

α,β),

is defined as the image of Lp([−1, 1]d, µd
α,β) under the Bessel potential J α,β

γ , that is,

Lp
γ([−1, 1]d, µd

α,β) = J α,β
γ Lp([−1, 1]d, µd

α,β).
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As in the classical case, the Jacobi Sobolev space Lp
γ([−1, 1]d, µd

α,β) can also be defined as the comple-

tion of the set of polynomials with respect to the norm

‖ f ‖p,γ := ‖(I −Lα,β)γ/2 f ‖p.

In Proposition 2.2 we present some inclusion properties among the Jacobi Sobolev spaces.

Let us consider the space

Lγ([−1, 1]d, µd
α,β) =

⋃
p>1

Lp
γ([−1, 1]d, µd

α,β).

Lγ([−1, 1]d, µd
α,β) is the natural domain of Dα,β

γ . We define it on this space as follows. Let f ∈

Lγ([−1, 1]d, µd
α,β); then there is p > 1 such that f ∈ Lp

γ([−1, 1]d, µd
α,β) and a sequence of polynomials

{ fn} such that limn→∞ fn = f in Lp
γ([−1, 1]d, µd

α,β). We define for f ∈ Lγ([−1, 1]d, µd
α,β),

Dα,β
γ f = lim

n→∞
Dα,β

γ fn.

In Theorem 2.4 we shows that Dα,β
γ is well defined. In this theorem we also show that there exist

positive constants Ap,γ and Bp,γ such that

Bp,γ‖ f ‖p,γ ≤ ‖Dα,β
γ f ‖p ≤ Ap,γ‖ f ‖p,γ.

which supplies a characterization of the Sobolev spaces.

Finally, in Proposition 2.3 we give an alternative integral representations for Iα,β
γ , the Riesz poten-

tial, and for Dα,β
γ , the fractional derivative, associated to the d-dimensional Jacobi operator.

1.3 About Chapter 3

This chapter includes the published paper [BGU05] in which we construct and study families of

generalized orthogonal polynomials on the space of Hermitian matrices from a family of orthogonal

polynomials in R. For this we consider a measure µ on R such that the set of all polynomials is dense

in L2(R, µ). By applying the Gram-Schmidt orthogonalization process to the monomials in L2(R, µ)

we obtain a family {pm} of orthogonal polynomials on L2(R, µ).

We will consider a related measure on Rn defined by

µn(dx) = V2(x)µ⊗n(dx) (1.3)
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where x = (x1, . . . , xn) ∈ Rn and V(x) = det(xn−i
j )i,j=1,...,n = ∏1≤i<j≤n(xi − xj) is the Vandermonde

determinant. We will also require the set Pn of all of symmetric polynomials on Rn to be dense on

L2
sym(Rn, µn), the space of all symmetric functions in L2(Rn, µn).

Let λ = (λ1, . . . , λn) be a partition; that is, a non–increasing sequence of non–negative integers.

For a partition λ, the Schur polynomials is defined on Rn as

Sλ(x1, . . . , xn) =
det(xλi+n−i

j )i,j=1,...n

V(x1, . . . , xn)
.

Each Sλ is a symmetric polynomial on Rn and it is well known that the family of Schur polynomials

form an algebraic base of Pn (c.f. [Mac91]).

For a partition λ = (λ1, . . . , λn), we define the following function on Rn,

Pλ(x1, . . . , xn) = cλ

det(pλi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
, (1.4)

where cλis a normalizing constant. In Theorem 3.1 we show that the functions Pλ are symmetric

polynomials orthogonal in L2
sym(Rn, µn) and that they have L2 norm given by

‖Pλ‖2
L2(Rn,µn) = c2

λn!
n

∏
i=1
‖pλi+n−i‖2

L2(R,µ).

Also we have that the family {Pλ} is a Hilbert basis of L2
sym(Rn, µn) that can be obtained by the

Gram–Schmidt orthogonalization process, applied to the Schur polynomials {Sλ}, ordered in the

graded lexicographical order.

Let us denote by Hn the space of n× n hermitian matrices an by Un the group of unitary matrices.

As said in the introduction, a function f : Hn → R is said to be central if f (UXU−1) = f (X) for all

U ∈ Un. Since every hermitian matrix is diagonalizable by an unitary matrix, a central function only

depends on its restriction to the space of diagonal matrices; thus, if f is a central function, then

f̃ (x1, . . . , xn) = f (diag(x1, . . . , xn))

is a symmetric function en Rn.

The Weyl integration formula ([Far06], p.13, [FK94], Th.VI.2.3) allows us to associate the finite

measure µ on Rn to a central measure M on Hn in the following way∫
Hn

f (X)dM(X) =
∫

Rn
f̃ (x1, . . . , xn)V2(x1, . . . , xn)dµ(x1) . . . dµ(xn) =

∫
Rn

f̃ (x)dµn(x), (1.5)

for f a cental function on Hn and where µn is as in (1.3). If we denote by L2
Un

(Hn, M) the space of all

central functions on L2(Hn, M), formula (1.5) shows that this space is isomorphic to L2
sym(Rn, µn).
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For a symmetric polynomial P on Rn, let P̂(X) be the central function on Hn whose restriction

to the diagonal matrices is equal to P(x). The functions P̂ are called (generalized) polynomials of

Hermitian matrix argument.

By the definition of the mesure M on Hn, we have that the family of generalized polynomials

{P̂λ}, associated with the family of symmetric polynomials defined in (1.4), form a Hilbert basis of

L2
Un

(Hn, M) and for each partition λ = (λ1, . . . , λn) and X ∈ Hn

P̂(X) = cλ

det(pλi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
,

where x1, . . . , xn are the eigenvalues of the matrix X. This result is stated in Corollary 3.1

As said before, the constant cλ in the definition of Pλ is a normalizing constant and it depends

on the normalization chosen for Pλ and pm. In propositions 3.2 and 3.3 we give an expression of

this value for two usually considered normalizations conditions for Pλ and pm; namely, when the

polynomials are monic and when the constant term of the polynomial is one.

Now that we have an orthogonal Hilbert basis of L2
Un

(Hn, M), it is useful to have a method to

obtain the expansion of a central function in this basis. In Proposition 3.4 we give the explicit values

of the coefficients in this expansion for functions of the form

det( fi(xj))1≤i,j≤n

V(x1, . . . , xn)

where f1, . . . , fn are one variable functions. The value of this coefficients are given in terms of the

coefficients of the expansion of each one of the functions fi in terms of the basis {pm}. A great

numbers of central functions have this form and this proposition is very useful, as will be seen in

Chapter 4, since it allows us to obtain a generating functions and a Christoffel-Darboux type formula

for the generalized polynomials {P̂λ}.

Finally, in Section 4 we present as examples the families of generalized polynomials associated

to the classical families of orthogonal polynomials; that is to say, the Hermite, Laguerre and Jacobi

polynomials.

1.4 About Chapter 4

Chapter 4 includes the preprint [BGU09] accepted for publication, where we construct operators

semigroups associated to the families of generalized orthogonal polynomials with hermitian matrix
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argument. As in the previous chapter, we begin with a measure µ on the real line such that the set

of polynomials is dense in L2(R, µ) and by applying the Gram–Schmidt ortogonalization process to

the monomials, we obtain a family of orthogonal polynomials {pm} on L2(R, µ). In this chapter we

will fix the normalization ‖pm‖L2(R,µ) = 1 for all m ∈N and pm has positive leading coefficient; thus,

the family of generalized orthogonal polynomials on L2
sym(Rn, µn) associated to {pm} constructed in

Theorem 3.1 are given by

Pλ(x) =
1√
n!

det(pλi+n−i(xj))
V(x)

,

for x = (x1, . . . , xn) ∈ Rn, where

µn(dx) = V2(x1, . . . , xn)µ(dx1) . . . µ(dxn),

the measure on Rn related to µ (c.f. (1.3) in this chapter).

In Section 4.2 we construct an operator semigroup associated to the generalized polynomials

from a Markov generator sequence for the family {pm}. This notion was introduced by D. Bakry and

O. Mazet in [BM03] and a Markov generator sequence for {pm} is equivalent to the existence of a

Markov semigroup with spectral decomposition given by the family of orthogonal polynomials. We

say that {γm} is a Markov generator sequence for the family {pm}, if for every t ≥ 0 there exists a

Markov operator Nt (that is to say, Nt is conservative: Nt1 = 1 and it preserves positivity: Nt f ≥ 0

for all f ≥ 0) on L2(R, µ) such that Nt(pm) = e−γmt pm. It result that each one of the operators Nt is a

contraction with symmetric, and therefore invariant, measure µ.

If we require that ∑m e−2γmt < ∞ for all t ≥ 0, then each operator Nt is a Hilbert–Schmidt operator

and can be represented as

Nt( f )(x) =
∫

f (y)Nt(x, y)dµ(y),

where

Nt(x, y) = ∑
m∈N

e−γmt pm(x)pm(y).

It is not difficult to see that the family of kernels {Nt} satisfies the Chapman–Kolmogorov equations;

that is, ∫
Nt(x, y)Ns(y, z)dµ(y) = Nt+s(x, z);

thus, {Nt} is a Markov semigroup with invariant measure µ and spectral decomposition over the

family of polynomials {pm}. A thoughtful study of the Markov generating sequence for the classical

families of orthogonal polynomials can be found in [BM03].
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From an increasing Markov generator sequence {γm} for {pm}, such that ∑m e−2γmt < ∞ for all

t ≥ 0, we define a family of operators on L2
sym(Rn, µn) related to the generalized polynomials, in the

following way: for f ∈ L2
sym(Rn, µn), let

Tt( f )(x) :=
∫

Rn
f (y)Tt(x, y)µn(dy),

where

Tt(x, y) := ∑
λ

e−t(∑n
j=1 γλj+n−j−∑n

j=1 γn−j)Pλ(x)Pλ(y).

In Theorem 4.1 we prove that the family of operators {Tt} is a conservative semigroup on L2
sym(Rn, µn)

with symmetric and invariant measure µn and that for each partition λ = (λ1, . . . , λn) and each t ≥ 0,

the polinomial Pλ is an eigenfunction of Tt with eigenvalue e−ϕλt, where

ϕλ =
n

∑
j=1

γλj+n−j −
n

∑
j=1

γn−j ≥ 0. (1.6)

Once we have defined a semigroup associated to the polynomials {Pλ} on L2
sym(Rn, µn), we wish

to do the same for the family of associated generalized polynomials on L2
Un

(Hn, M). For an operator

T on L2
sym(Rn, µn), let T̂ be the operator on L2

Un
(Hn, M) such that for every h ∈ L2

Un
(Hn, M),

T̂h
∣∣

Diag = T(h|Diag) = T(h̃),

where Diag stands for the space of all n× n diagonal matrices. This condition determines uniquely

the operator T̂.

Now, if T̂t is the operator on L2
Un

(Hn, M) determined by the operator Tt on L2
sym(Rn, µn), as a

corollary to Theorem 4.1, we have that the family of operators {T̂t} is a conservative semigroup on

L2
Un

(Hn, M) and that for each t ≥ 0, the generalized polynomial P̂λ is an eigenfunction of T̂t with

eigenvalue e−ϕλt, with ϕλ given in (1.6). The measure M is the symmetric and invariant measure for

this semigroup and we have the representation

T̂h(X) =
∫

Hn

h(Y)T̂ (X, Y)dM(Y),

where

T̂ (X, Y) = ∑
λ

e−tϕλ P̂λ(X)P̂λ(Y).

Now that we have defined a semigroup associated to the generalized polynomials we are inter-

ested in characterizing its infinitesimal generator. We deal with this in Section 4.3.
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Let us denote by L the infinitesimal generator of the semigroup {Tt} on L2
sym(Rn, µn); that is,

L f = lim
t→0

Nt f − f
t

,

on a dense subset D(L) of L2(R, µ). Then L(pm) = −γm pm, and thus L is a symmetric operator in

L2(R, µ) with spectral decomposition over the family {pm}. The invariance of the measure µ for {Nt}

can be expressed in terms of the operator L as
∫

L f dµ = 0 for all f in D(L).

Let Lk be the operator on L2(Rn, µn) that acts as L on the k−th coordinate. For example, if L = d
dx ,

then Lk = ∂
∂xk

. For a fixed symmetric polynomial q on Rn, let Dq be the operator on L2
sym(Rn, µn)

defined by

Dq =
1
V

q(L1, . . . , Ln)V.

In Proposition 4.2 we prove that for each partition λ = (λ1, . . . , λn) the polynomial Pλ is an eigen-

function of Dq with eigenvalue q(−γλ1+n−1,−γλ2+n−2, . . . ,−γλn), that is,

DqPλ = q(−γλ1+n−1,−γλ2+n−2, . . . ,−γλn)Pλ.

In particular, we consider the symmetric polynomial

q0(x1, . . . , xn) = x1 + x2 + · · ·+ xn + c

where c = ∑n
j=1 γn−j, a positive constant. Let us denote by

D := Dq0 =
1
V

(L1 + · · ·+ Ln)V + c.

In Theorem 4.2 we show that this operator is the infinitesimal generator of the semigroup {Tt}. This

is a consequence of Proposition 4.2, that tells us that

DPλ = −(
n

∑
j=1

γλj+n−j − c)Pλ = −ϕλPλ, c.f (1.6);

that is, the operator D and the infinitesimal generator of the semigroup {Tt} have the same spec-

tral decomposition. By spectral theory of semigroups and the density of the polynomials Pλ on

L2
sym(Rn, µn), we have that D is indeed the infinitesimal generator of the semigroup {Tt}. It is

straightforward that the associated operator D̂ on L2
Un

(Hn, M) is the infinitesimal generator of the

semigroup {T̂t}.

We started with a Markov semigroup {Nt} on L2(R, µ) associated to the orthogonal polynomials

{pm} and constructed semigroups on L2
sym(Rn, µn) and L2

Un
(Hn, M). We know that these semigroups
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are conservative, but, the question we want to answer now is whether or not they are also Markov

semigroups, that is, if they also preserve positivity. In Section 4.4 we study the positive preser-

ving property for these semigroups, under the hypothesis of diffusion. We use a characterization of

Markov semigroups with invariant measure, given by O. Mazet in [Maz02], that involves the "carré

du champ" operator of the infinitesimal generator of the semigroup.

For the infinitesimal generator L of the semigroup {Nt}, the carré du champ operator of L is the

symmetric bilinear form defined by

Γ( f , g) =
1
2
(L( f g)− f Lg− gL f ), f , g ∈ A,

where A is an "standard algebra" in D(L) (see [ABC+02] or [Bak06]). In our setting we can and will

take A as the algebra of polynomials.

It is known that the carré du champ operator of the infinitesimal generator of a Markov semigroup

is positive, in the sense that Γ( f , f ) ≥ 0 for all f ∈ A. The converse implication is, in general, not

true. But O. Mazet [Maz02] proved that if µ is the invariant measure of the semigroup {Nt}, then the

positivity of the carré du champ operator does implies that the semigroup is Markov. Since this is

our case, we shall use this result.

We consider the case when the infinitesimal generator L of the semigroup {Nt} is a diffusion. In

subsection 4.4.1 we treat the continuous case, that is, when µ is a non–atomic measure. In this case

the operator L takes the form

L = a(x)
d2

dx2 + b(x)
d

dx
,

where a and b are polynomials of degree at most 2 and 1, respectively. It is known that the Markov

semigroup on R such that its infinitesimal generator is a diffusion and that have a family of ortho-

gonal polynomials as eigenfunctions are the Ornstein-Uhlenbeck, Laguerre and Jacobi semigroups,

associated to the Hermite, Laguerre and Jacobi polynomials, respectively (c.f. [Maz97]). This are the

families of polynomials we are considering in this case.

In Proposition 4.3 we obtain an expression of the carré du champ of the operator D on L2
sym(R, µn)

in terms of the carré du champ of L, the infinitesimal generator of the semigroup on L2(R, µ). By

means of Mazet’s result [Maz02], in Theorem 4.3 we show that in this case the semigroup {Tt} on

L2
sym(R, µn) is indeed Markov. Also, in Proposition 4.4 we give an explicit expression of the operator

D that coincides with the operators announced by Lassalle in [Las91a, Las91b, Las91c].

In subsection 4.4.2 we treat the discrete case, that is, when µ is a purely atomic measure. In this

case that the infinitesimal generator of the semigroup {Nt} on L2
sym(R, µn) is a discrete diffusion
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means that

L = σ(x)∆∇+ τ(x)∆, (1.7)

where σ and τ are polynomials of degree at most two one, respectively and ∆,∇ are the difference

operators

∆ f (x) = f (x + 1)− f (x),

∇ f (x) = f (x)− f (x− 1).

In [MSU91] it is proven that the only families of discrete orthogonal polynomials that are eigen-

functions of operators of the form (1.7) are the Charlier, Meixner, Kravchuk and Hahn polynomials.

Using Mazet’s result [Maz02] it is not difficult to prove that the semigroups associated with these

polynomials are Markov; thus, these are the families of polynomials we are considering in this case.

In Proposition 4.6 we give an expression of the carré du champ operator of D and in Theorem 4.4

we show that the semigroup {Tt} on L2
sym(R, µn) in this case is also Markov. In Proposition 4.7 we

give an explicit expression of the operador D.

In Section 4.5 we study the kernels Tt that define the operators of the semigroup {Tt} on L2
sym(Rn, µn).

Using Proposition 3.4 (Chapter 3) we show in Theorem 4.5 that it is possible to express this kernels

in terms of the kernels Nt that define the operators of the semigroup {Nt} on L2(R, µ); explicitly we

have

Tt(x, y) = et ∑n
j=1 γn−j

det(Nt(xj, yi))i,j

n!V(x)V(y)
.

In subsections 4.5.1 and 4.5.2 we give a probabilistic view of the problems we have treated.

In Section 4.6 we obtain some classical formulas of orthogonal polynomials for the generalized

orthogonal polynomials from the corresponding formulas for the polynomials on R. Specifically,

we obtain a Christoffel-Darboux type formula and a generating function for the generalized polyno-

mials. We stress that this formulas are obtained as applications of Proposition 3.4 of Chapter 3.

Finally, in Section 4.7 we present as examples the Markov semigroups associated to the genera-

lized polynomials corresponding to the classical families of orthogonal polynomials on R, both of

continuous and discrete variable.
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1.5 Open problems

The results presented in this thesis open a wide range of research areas for the generalized poly-

nomials such as the systematic study of orthogonal polynomials properties (distribution of zeros,

asymptotic behavior).

A very interesting problem, from our point of view, is the study of expansions in terms of the

generalized polynomials and the extensions of some classical notions of harmonic analysis to this

context, such as maximal functions and singular integrals.

Another interesting question is whether it is possible to obtain a Meyer’s multiplier theorem for

expansions in terms of the generalized polynomials or not. Once a result of this type is known, it

would be natural to study Riesz and Bessel potentials, fractional derivatives and Sobolev spaces in

this context. A key result for the study of these notions in the classical cases on R is the hypercon-

tractive property of the semigroup associated with the orthogonal polynomials. A very interesting

question is if it is possible to obtain the hypercontractive property for the semigroup associated to

the generalized polynomials from the hypercontractivity of the corresponding semigroups on R.
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2.1 Introduction

Let us consider µd
α,β, the (normalized) Jacobi measure on [−1, 1]d with parameters α = (α1, α2, . . . , αd),

β = (β1, β2, . . . , βd) in Rd, satisfying αi, βi > −1. It is defined by

µd
α,β(dx) =

d

∏
i=1

{
1

2αi+βi+1 B(αi + 1, βi + 1)
(1− xi)αi(1 + xi)βi dxi

}
, (2.1)

where B is the Euler beta function. Let us also consider Lα,β, the d-dimensional Jacobi operator,

Lα,β :=
d

∑
i=1

[
(1− x2

i )
∂2

∂x2
i

+
(

βi − αi − (αi + βi + 2) xi
) ∂

∂xi

]
. (2.2)

It is not difficult to see that Lα,β is a formally symmetric operator on the space L2([−1, 1]d, µd
α,β).

For a multi-index κ = (κ1, . . . , κd) ∈ Nd, let ~p α,β
κ be the normalized Jacobi polynomial of order κ

in L2([−1, 1]d, µd
α,β), defined on x = (x1, x2, . . . , xd) ∈ Rd by

~p α,β
κ (x) =

d

∏
i=1

pαi ,βi
κi (xi),

where pα,β
n , for n ∈ N and α, β ∈ R, α, β > −1, is the normalized Jacobi polynomial of degree n in R

that can be defined using the Rodrigues formula [Sz59]. That is,

pα,β
n (x) = cn(1− x)−α(1 + x)−β dn

dxn

{
(1− x)α+n(1 + x)β+n

}
, x ∈ (−1, 1).

Here cn is chosen so that pα,β
n has unit norm in L2(R, µα,β). Since the Jacobi polynomials {pα,β

n }

on R are orthogonal with respect to the Jacobi measure on [−1, 1], the normalized Jacobi polynomials

{~p α,β
κ } are orthonormal with respect to µd

α,β(dx). Moreover, {~p α,β
κ } is an orthonormal basis of the

Hilbert space L2([−1, 1]d, µd
α,β).

It is well known that the Jacobi polynomials are eigenfunctions of the Jacobi operator Lα,β with

eigenvalues −λκ = −∑d
i=1 κi(κi + αi + βi + 1); that is,

Lα,β~p α,β
κ = −λκ~p

α,β
κ . (2.3)

The d-dimensional Jacobi semigroup {Tα,β
t }t≥0 is defined as the Markov semigroup associated to the

Markov probability kernels [Bal06, Bak06]

Pα,β(t, x, dy) = ∑
κ∈Nd

e−λκ t~p α,β
κ (x)~p α,β

κ (y)µd
α,β(dy) =: pα,β

d (t, x, y)µd
α,β(dy).

That is,

Tα,β
t f (x) :=

∫
[−1,1]d

f (y) Pα,β(t, x, dy) =
∫

[−1,1]d
f (y) pα,β

d (t, x, y)µd
α,β(dy).
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Unfortunately, no reasonable representation for the kernel is known, but such a representation will

not be needed in what follows. The d-dimensional Jacobi semigroup {Tα,β
t }t≥0 is a Markov diffusion

semigroup, strongly continuous on Lp([−1, 1]d, µd
α,β), with infinitesimal generator −Lα,β. Each of its

operators is symmetric and is a contraction on Lp. By (2.3), for all t ≥ 0,

Tα,β
t ~p α,β

κ = e−λκ t~p α,β
κ . (2.4)

It can be proved that for α = (α1, α2, . . . , αd), β = (β1, β2, . . . , βd) ∈ Rd with αi, βi ≥ − 1
2 , {Tα,β

t }t≥0

is not merely a contraction on Lp([−1, 1]d, µd
α,β), but is hypercontractive, that is to say, for any 1 < p <

∞ there exists an increasing function q = qα,β : R+ → [p, ∞), with q(0) = p, such that for every f and

all t ≥ 0,

‖Tα,β
t f ‖q(t) ≤ ‖ f ‖p .

The proof of this fact is indirect and is not very well known. It is based on the fact that the one-

dimensional Jacobi operator satisfies a Sobolev inequality, which is proved by checking that it satis-

fies a curvature-dimension inequality. (This result was obtained by D. Bakry [Bak96].) This yields a

logarithmic Sobolev inequality for the one-dimensional Jacobi operator. As this inequality is stable

under tensorization [ABC+02], the d-dimensional Jacobi operator also satisfies a logarithmic Sobolev

inequality; and using L. Gross’s famous result [Gro75], which asserts the equivalence between the

hypercontractivity property and the validity of a logarithmic Sobolev inequality, the result is ob-

tained. All the implications between these functional inequalities and L. Gross’s result can be found

in [ABC+02]. A detailed proof of the hypercontractivity property for the Jacobi semigroup can be

found in [Bal06] (see also [Bak96]).

From now on, we shall consider only the Jacobi semigroups with parameters α = (α1, α2, . . . , αd),

β = (β1, β2, . . . , βd) ∈ Rd satisfying αi, βi ≥ − 1
2 .

For 0 < δ ≤ 1, the generalized d-dimensional Poisson–Jacobi semigroup of order δ, {Pα,β,δ
t }, is

defined by

Pα,β,δ
t f (x) :=

∫ ∞

0
Tα,β

s f (x) µδ
t (ds), (2.5)

where {µδ
t } are the stable measures on [0, ∞) of order δ. The generalized d-dimensional Poisson–

Jacobi semigroup of order δ is a strongly continuous semigroup on Lp([−1, 1]d, µd
α,β) with infinitesi-

mal generator (−Lα,β)δ. By (2.3), we have that

Pα,β,δ
t ~p α,β

κ = e−λδ
κ t~p α,β

κ . (2.6)



Chapter 2: Fractional integration and fractional differentiation for Jacobi expansions 21

In particular, for δ = 1/2 we obtain the d-dimensional Poisson–Jacobi semigroup Pα,β,1/2
t , which will

simply be written as Pα,β
t . We can explicitly compute µ1/2

t , by

µ1/2
t (ds) =

t
2
√

π
e−t2/4ss−3/2ds,

and we have Bochner’s subordination formula,

Pα,β
t f (x) =

1√
π

∫ ∞

0

e−u
√

u
Tα,β

t2/4u f (x) du. (2.7)

Measures and semigroups associated to other classical families of orthogonal polynomials, and to

the corresponding expansions, have been studied previously. In [FSU01], Riesz and Bessel potentials

were studied for the Gaussian measure associated to the family of Hermite polynomials; in [LU04],

fractional derivatives for the Gaussian measure were studied, and a characterizations of the Gaussian

Sobolev spaces was obtained. (See also [Urb98], for an extensive survey of Gaussian harmonic anal-

ysis.) In [GL+05], semigroups associated to Laguerre polynomial expansions were studied, yielding

an analogue for Laguerre expansions of P. A. Meyer’s multiplier theorem. Fractional derivatives

and fractional integrals were introduced in that setting, and various Sobolev spaces associated to

Laguerre expansions, and also higher-order Riesz–Laguerre transforms, were studied.

In this paper, in which we focus on the Jacobi case, we complete the study of these notions related

to the classical families of orthogonal polynomials. The d = 1 case, of univariate Jacobi polynomials,

was treated in [BU07], and in the present article we extend our treatment to higher dimensions (d >

1). Due to the nonlinearity of the eigenvalues of the Jacobi operator, the way of obtaining the d-

dimensional case from the one-dimensional one differs between the Hermite and Laguerre cases on

the one hand, and the Jacobi case on the other.

The paper is organized as follows. In the next section we give an alternative decomposition of the

space L2([−1, 1]d, µd
α,β), which we call a modified Wiener–Jacobi decomposition. In section 2.3, using

that decomposition and the hypercontractivity property of the d-dimensional Jacobi semigroup, we

obtain an analogue for d-dimensional Jacobi expansions of Meyer’s multiplier theorem [Mey84], and

define and study, as in the one-dimensional case [BU07], the fractional derivatives, the fractional

integrals, and the Bessel potentials for the Jacobi operator, and the Sobolev spaces associated to the

Jacobi measure.

To simplify notation, we shall not always make explicit the dependence on the dimension d. As

usual, C will denote a constant; not necessarily the same in each occurrence. The symbol P will

denote the set of polynomials with real coefficients.
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2.2 A modified Wiener–Jacobi decomposition

Let us consider for each n ≥ 0, the closed subspace Cα,β
n of L2([−1, 1]d, µd

α,β) generated by linear

combinations of {~p α,β
κ : |κ| = n}, where, as usual for a multi-index κ, |κ| = ∑d

i=1 κi. Since {~p α,β
κ } is

an orthonormal basis of L2([−1, 1]d, µd
α,β), we have the orthogonal decomposition

L2([−1, 1]d, µd
α,β) =

∞⊕
n=0

Cα,β
n . (2.8)

This is the Wiener–Jacobi decomposition of L2([−1, 1]d, µd
α,β), which is analogous to the Wiener de-

composition of L2(Rd, γd) in the Gaussian case.

For f ∈ L2([−1, 1]d, µd
α,β), the expansion of f in Jacobi polynomials is given by

f =
∞

∑
n=0

∑
|κ|=n

f̂ (κ)~p α,β
κ ,

with f̂ (κ) =
∫

[−1,1]d f (y)~p α,β
κ (y)µd

α,β(dy), the Jacobi–Fourier coefficient of f for the multi-index κ. This

yields the spectral decompositions

Lα,β f =
∞

∑
n=0

∑
|κ|=n

(−λκ) f̂ (κ)~p α,β
κ , Tα,β

t f =
∞

∑
n=0

∑
|κ|=n

e−λκ t f̂ (κ)~p α,β
κ ,

and

Pα,β,δ
t f =

∞

∑
n=0

∑
|κ|=n

e−λδ
κ t f̂ (κ)~p α,β

κ .

As the eigenvalues λκ of the d-dimensional Jacobi operator do not depend linearly on |κ| , we do

not have an expression for the action of Lα,β, Tα,β
t or Pα,β

t on f , in terms of the orthogonal projections

on the subspaces Cα,β
n , as in the one-dimensional case (see [BU07]), or as in the case of d-dimensional

expansions in Hermite or Laguerre polynomials (see [GL+05, LU04]). For this reason, we are going

to consider, in the same spirit as the Wiener–Jacobi decomposition, an alternative decomposition

of L2([−1, 1]d, µd
α,β), so as to obtain expressions for Lα,β f , Tα,β

t f , and Pα,β
t f in terms of orthogonal

projections.

For fixed α = (α1, α2, . . . , αd), β = (β1, β2, . . . , βd) in Rd, such that αi, βi > − 1
2 , consider the set

Rα,β =
{

r ∈ R+ : ∃ (κ1, . . . , κn) ∈Nd, with r =
d

∑
i=1

κi(κi + αi + βi + 1)
}

.

Rα,β is a countable subset of R+, thus it can be written as Rα,β = {rn}∞
n=0 with r0 < r1 < . . . . Let

Aα,β
n =

{
κ = (κ1, . . . , κd) ∈Nd :

d

∑
i=1

κi(κi + αi + βi + 1) = rn

}
.
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Note that Aα,β
0 = {(0, . . . , 0)}, and that if κ ∈ Aα,β

n , then it is the case that λκ = ∑d
i=1 κi(κi + αi + βi +

1) = rn.

Let Gα,β
n denote the closed subspace of L2([−1, 1]d, µd

α,β) generated by the linear combinations

of {~p α,β
κ : κ ∈ Aα,β

n }. By the orthogonality of the Jacobi polynomials with respect to µd
α,β, and the

density of the polynomials, it is not difficult to see that {Gα,β
n } is an orthogonal decomposition of

L2([−1, 1]d, µd
α,β), that is,

L2([−1, 1]d, µd
α,β) =

∞⊕
n=0

Gα,β
n , (2.9)

which we shall call a modified Wiener–Jacobi decomposition.

Let us denote by Jα,β
n the orthogonal projection of L2([−1, 1]d, µd

α,β) onto Gα,β
n . Then, for f ∈

L2([−1, 1]d, µd
α,β) the Jacobi expansion of f can now be written as

f =
∞

∑
n=0

Jα,β
n f , where Jα,β

n f = ∑
κ∈Aα,β

n

f̂ (κ)~p α,β
κ . (2.10)

By (2.3), (2.4), (2.6), we have that for f ∈ L2([−1, 1]d, µd
α,β) with Jacobi expansion f = ∑∞

n=0 Jα,β
n f ,

the actions of Lα,β, Tα,β
t , Pα,β

t on f are

Lα,β f =
∞

∑
n=0

(−rn)Jα,β
n f , Tα,β

t f =
∞

∑
n=0

e−rnt Jα,β
n f Pα,β,δ

t f =
∞

∑
n=0

e−rδ
nt Jα,β

n f .

Thus, using the modified Wiener–Jacobi decomposition (2.9) we are able to obtain expansions of Lα,β,

Tα,β
t and Pα,β,δ

t in terms of the orthogonal projections Jα,β
n . As we have mentioned, this cannot be done

with the usual Wiener–Jacobi decomposition (2.8).

With this decomposition of L2([−1, 1]d, µd
α,β), the proofs of our results are essentially similar to

the ones in the one-dimensional Jacobi case [BU07], taking rn instead of λn, and to the Hermite and

Laguerre cases [LU04, Urb98, GL+05], taking rn instead of n. In order to make this article as self-

contained as possible, in what follows we are going to give complete proofs of the most important

results.

As a consequence of the hypercontractive property of the d-dimensional Jacobi operator, we have

that the orthogonal projections Jα,β
n can be extended continuously to Lp([−1, 1]d, µd

α,β); or more for-

mally, we have

Proposition 2.1 If 1 < p < ∞ then for every n ∈ N, Jα,β
n , restricted to P , can be extended to a continuous

operator on Lp([−1, 1]d, µd
α,β), which will also be denoted by Jα,β

n . That is, there exists Cn,p ∈ R+ such that
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for f ∈ Lp([−1, 1]d, µd
α,β),

‖Jα,β
n f ‖p ≤ Cn,p‖ f ‖p.

Proof First, we note that P is dense in Lp([−1, 1]d, µd
α,β) for any 1 ≤ p < ∞. (See [Sz59, Thm. 1.5.1].)

Now let us consider the case p > 2. Since the Jacobi semigroup is hypercontractive, for the initial

condition q(0) = 2, let t0 be a positive number such that q(t0) = p. Taking f ∈ P , by the hypercon-

tractive property, Parseval’s identity, and Hölder’s inequality, we obtain

‖Tα,β
t0

Jα,β
n f ‖p ≤ ‖Jα,β

n f ‖2 ≤ ‖ f ‖2 ≤ ‖ f ‖p.

Now, since Tα,β
t0

Jα,β
n f = e−t0rn Jα,β

n f we get

‖Jα,β
n f ‖p ≤ Cn,p‖ f ‖p,

with Cn,p = et0rn . The general result now follows by density. Finally, for 1 < p < 2 the result follows

by duality. 2

2.3 The results

For any Φ : N→ R, the multiplier operator TΦ associated to Φ is defined by

TΦ f :=
∞

∑
n=0

Φ(n)Jα,β
n f , for f =

∞

∑
n=0

Jα,β
n f ∈ P . (2.11)

If Φ is a bounded function, then by Parseval’s identity it is immediate that the operator TΦ is bounded

on L2([−1, 1]d, µd
α,β). In the case of Hermite expansions, the multiplier theorem of P. A. Meyer [Mey84]

gives conditions on Φ under which the multiplier TΦ can be extended to a continuous operator on Lp

for p 6= 2. To establish an analogous result in this case, we need some previous results. First we note

that for n ∈ N, rn ≥ n. Then, as a consequence of the Lp continuity of the projections Jα,β
n and of the

hypercontractivity of the d-dimensional Jacobi semigroup, we have

Lemma 2.1 Let 1 < p < ∞. Then, for each m ∈ N there exists a constant Cm such that for f ∈

Lp([−1, 1]d, µd
α,β),

‖Tα,β
t (I − Jα,β

0 − Jα,β
1 − · · · − Jα,β

m−1) f ‖p ≤ Cme−tm‖ f ‖p.

Proof Let p > 2 and for the initial condition q(0) = 2, let t0 be a positive number such that q(t0) = p.
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If t ≤ t0, since Tα,β
t is a contraction, using Proposition 2.1 we get

‖Tα,β
t (I − Jα,β

0 − · · · − Jα,β
m−1) f ‖p ≤ ‖(I − Jα,β

0 − · · · − Jα,β
m−1) f ‖p

≤ ‖ f ‖p +
m−1

∑
n=0
‖Jα,β

n f ‖p ≤ (1 +
m−1

∑
n=0

et0rn)‖ f ‖p.

But since et0rn ≤ et0rm for all 0 ≤ n ≤ m− 1 and rm ≥ m for all m ≥ 1, we get

‖Tα,β
t (I − Jα,β

0 − · · · − Jα,β
m−1) f ‖p ≤ (1 + met0rm)‖ f ‖p ≤ Cme−tm‖ f ‖p,

with Cm = (1 + met0rm)et0m.

Now, suppose t > t0. For f = ∑∞
n=0 Jα,β

n f , by the hypercontractive property,

‖Tα,β
t0

Tα,β
t (I − Jα,β

0 − · · · − Jα,β
m−1) f ‖2

p ≤ ‖T
α,β
t (I − Jα,β

0 − · · · − Jα,β
m−1) f ‖2

2

= ‖
∞

∑
n=m

e−trn Jα,β
n f ‖2

2 =
∞

∑
n=m

e−2trn‖Jα,β
n f ‖2

2 ≤
∞

∑
n=m

e−2tn‖Jα,β
n f ‖2

2,

as rn ≥ n for all n ≥ 1. Then, as m ≤ n,

∞

∑
n=m

e−2tn‖Jα,β
n f ‖2

2 ≤ e−2tm
∞

∑
n=0
‖Jα,β

n f ‖2
2 = e−2tm‖ f ‖2

2 ≤ e−2tm‖ f ‖2
p.

Thus

‖Tα,β
t0

Tα,β
t (I − Jα,β

0 − Jα,β
1 − · · · − Jα,β

m−1) f ‖p ≤ e−tm‖ f ‖p,

and therefore,

‖Tα,β
t (I − Jα,β

0 − · · · − Jα,β
m−1) f ‖p = ‖Tα,β

t0
Tα,β

t−t0
(I − Jα,β

0 − · · · − Jα,β
m−1) f ‖p

≤ e−(t−t0)m‖ f ‖p = Cme−tm‖ f ‖p,

with Cm = et0m. For 1 < p < 2 the result follows by duality. 2

Using (2.5) and Minkowski’s integral inequality, it is not difficult to see an analogous result for

the generalized Poisson–Jacobi semigroup; that is, for 1 < p < ∞ and each m ∈ N, there exists Cm

such that

‖Pα,β,δ
t (I − Jα,β

0 − Jα,β
1 − · · · − Jα,β

m−1) f ‖p ≤ Cme−tmδ‖ f ‖p. (2.12)

From the generalized Poisson–Jacobi semigroup we define a new family of operators {Pα,β
k,δ,m}k∈N by

the formula

Pα,β
k,δ,m f =

1
(k− 1)!

∫ ∞

0
tk−1Pα,β,δ

t (I − Jα,β
0 − Jα,β

1 − · · · − Jα,β
m−1) f dt.
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By the preceding lemma and by Minkowski’s integral inequality, we have the Lp-continuity of Pα,β
k,δ,m

for every m ∈N; that is to say, for 1 < p < ∞ there is a constant Cm such that

‖Pα,β
k,δ,m f ‖p ≤

Cm

mδk ‖ f ‖p. (2.13)

In particular, if we take n ≥ m and κ ∈ Aα,β
n , then

Pα,β,δ
t (I − Jα,β

0 − Jα,β
1 − · · · − Jα,β

m−1)~p
α,β

κ = e−rδ
nt~p α,β

κ .

Thus, for all k ∈N,

Pα,β
k,δ,m~p α,β

κ =
1

rδk
n

~p α,β
κ .

Therefore, for f ∈ L2([−1, 1]d, µd
α,β) and k ∈ Aα,β

n ,

Pα,β
k,δ,m Jα,β

n f =


1

rδk
n

Jα,β
n f , n ≥ m;

0, n < m.
(2.14)

We are now ready to establish the multiplier theorem for d-dimensional Jacobi expansions. Our proof

closely follows Watanabe’s proof in the Hermite case [Wat84].

Theorem 2.1 If for some n0 ∈ N and 0 < δ ≤ 1, Φ(k) = h
(

1
rδ

k

)
, k ≥ n0, with h an analytic function in a

neighborhood of zero, then TΦ, the multiplier operator associated to Φ by (2.11), admits a continuous extension

to Lp([−1, 1]d, µd
α,β).

Proof Let TΦ f = T1
Φ f + T2

Φ f = ∑n0−1
k=0 Φ(k)Jα,β

k f + ∑∞
k=n0

Φ(k)Jα,β
k f . By Lemma 2.1 we have that

‖T1
Φ f ‖p ≤

n0−1

∑
k=0
|Φ(k)| ‖Jα,β

k f ‖p ≤
(

n0−1

∑
k=0
|Φ(k)|Ck

)
‖ f ‖p,

that is, T1
Φ is Lp-continuous. It remains to be shown that T2

Φ is also Lp-continuous. By hypothesis,

h(x) = ∑∞
n=0 anxn, for x in a neighborhood of zero; so,

T2
Φ f =

∞

∑
k=n0

Φ(k)Jα,β
k f =

∞

∑
k=n0

h

(
1
rδ

k

)
Jα,β
k f =

∞

∑
k=n0

∞

∑
n=0

an
1

rδn
k

Jα,β
k f .

But by (2.14), for k ≥ n0, 1
rδn

k
Jα,β
k f = Pα,β

n,δ,n0
Jα,β
k f , so we have

T2
Φ f =

∞

∑
k=n0

∞

∑
n=0

anPα,β
n,δ,n0

Jα,β
k f =

∞

∑
n=0

anPα,β
n,δ,n0

∞

∑
k=0

Jα,β
k f =

∞

∑
n=0

anPα,β
n,δ,n0

f .
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Since by (2.13), Pα,β
n,δ,n0

is Lp-continuous, we obtain

‖T2
Φ f ‖p ≤

∞

∑
n=0
|an| ‖Pα,β

n,δ,n0
f ‖p ≤ Cn0

(
∞

∑
n=0
|an|

1
nδn

0

)
‖ f ‖p = Cn0 h

(
1
nδ

0

)
‖ f ‖p.

Therefore, TΦ is continuous on Lp([−1, 1]d, µd
α,β). 2

Similarly to the classical case of the Laplacian [Zyg59], and to the one-dimensional Jacobi case [BU07],

a fractional integral of order γ > 0, denoted Iα,β
γ , which is called the Riesz potential of order γ, can be

formally defined in terms of the d-dimensional Jacobi operator by

Iα,β
γ := (−Lα,β)−γ/2Π0, (2.15)

where Π0 = I − Jα,β
0 . Here Π0 is applied first, since zero is an eigenvalue of Lα,β and therefore

(−Lα,β)−γ/2 is not defined over all L2([−1, 1]d, µd
α,β). For the Jacobi polynomial of order κ with κ ∈

Aα,β
n , n > 0, we have

Iα,β
γ ~p α,β

κ =
1

λ
γ/2
κ

~p α,β
κ =

1

rγ/2
n

~p α,β
κ . (2.16)

Thus, for f ∈ L2([−1, 1]d, µd
α,β) polynomial with Jacobi expansion ∑∞

n=0 Jα,β
n f ,

Iα,β
γ f =

∞

∑
n=1

1

rγ/2
n

Jα,β
n f .

It is easy to get the following integral representation for the fractional integral of order γ > 0:

Iα,β
γ f =

1
Γ(γ)

∫ ∞

0
tγ−1Pα,β

t f dt, (2.17)

for f polynomial. As in the one-dimensional case, Meyer’s multiplier theorem allows us to extend

Iα,β
γ to a bounded operator on Lp([−1, 1]d, µd

α,β).

Theorem 2.2 The fractional integral of order γ admits a continuous extension to the space Lp([−1, 1]d, µd
α,β),

which will also be denoted by Iα,β
γ .

Proof If γ/2 < 1, then Iα,β
γ is a multiplier with associated function Φ(k) = 1

rγ/2
k

= h
(

1
rγ/2

k

)
, where

h(z) = z, which is analytic in a neighborhood of zero. Then the result follows immediately by

Meyer’s theorem.

Now, if γ/2 ≥ 1, let n ∈ N such that n > γ/2 and δ = γ
2n < 1. Then δn = γ

2 . Let h(z) = zn,

which is analytic in a neighborhood of zero. Then we have h
(

1
rδ

k

)
= 1

rδn
k

= 1
rγ/2

k
= Φ(k). Again the

result follows by applying Meyer’s theorem. 2
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The Bessel potential of order γ > 0 associated to the d-dimensional Jacobi operator, denoted J α,β
γ ,

is formally defined by

J α,β
γ := (I −Lα,β)−γ/2. (2.18)

This means that for a Jacobi polynomial of order κ with κ ∈ Aα,β
n ,

J α,β
γ ~p α,β

κ =
1

(1 + λκ)γ/2~p
α,β

κ =
1

(1 + rn)γ/2~p
α,β

κ ,

and therefore if f ∈ L2([−1, 1]d, µd
α,β) is a polynomial with expansion ∑∞

n=0 Jα,β
n f ,

J α,β
γ f =

∞

∑
n=0

1
(1 + rn)γ/2 Jα,β

n f . (2.19)

As above, Meyer’s theorem allows us to extend Bessel potentials to continuous operators on the

spaces Lp([−1, 1]d, µd
α,β).

Theorem 2.3 The operator J α,β
γ admits a continuous extension to the space Lp([−1, 1]d, µd

α,β), which will

also be denoted by J α,β
γ .

Proof The Bessel potential of order γ is a multiplier operator associated to the function Φ(k) =(
1

1+rk

)γ/2
. Write

(
1

1+rk

)γ/2
=
(

rk
1+rk

)γ/2
1

rγ/2
k

. Now, the result follows by twice applying Meyer’s

theorem, the first time taking the function h(z) =
( 1

1+z

)γ/2
, and the second, taking the function

h(z) = zn for n ∈N such that nδ = γ
2 . Both functions are analytic in a neighborhood of zero. 2

Again using the analogy to the classical Laplacian case [Zyg59], we formally define the fractional

derivative of order γ > 0, denoted Dα,β
γ , in terms of the d-dimensional Jacobi operator by

Dα,β
γ := (−Lα,β)γ/2. (2.20)

This means that for the Jacobi polynomial of order κ with κ ∈ Aα,β
n , we have

Dα,β
γ ~p α,β

κ = λ
γ/2
κ ~p α,β

κ = rγ/2
n ~p α,β

κ . (2.21)

For the fractional derivative of order 0 < γ < 1 we have the integral representation

Dα,β
γ f =

1
cγ

∫ ∞

0
t−γ−1(Pα,β

t f − f ) dt, (2.22)

for f polynomial, where cγ =
∫ ∞

0 s−γ−1(e−s − 1) ds = Γ(−γ), for 0 < γ < 1. This can be seen

by using the change of variable s = λ1/2
κ t, in Dα,β

γ ~p α,β
κ for κ ∈ Aα,β

n . If f is a polynomial, by (2.16)

and (2.21) we then have

Iα,β
γ (Dα,β

γ f ) = Dα,β
γ (Iα,β

γ f ) = Π0 f . (2.23)



Chapter 2: Fractional integration and fractional differentiation for Jacobi expansions 29

Let us now consider the Jacobi Sobolev spaces (or potential spaces). For 1 < p < ∞, the Jacobi

Sobolev space of order γ > 0, namely Lp
γ([−1, 1]d, µd

α,β), is defined as the image of Lp([−1, 1]d, µd
α,β)

under the Bessel potential J α,β
γ , that is,

Lp
γ([−1, 1]d, µd

α,β) = J α,β
γ Lp([−1, 1]d, µd

α,β).

The Jacobi Sobolev space Lp
γ([−1, 1]d, µd

α,β) can also be defined as the completion of the set of polyno-

mials P with respect to the norm

‖ f ‖p,γ := ‖(I −Lα,β)γ/2 f ‖p.

That is to say, f ∈ Lp
γ([−1, 1]d, µd

α,β) if and only if there is a sequence of polynomials { fn} such that

limn→∞ ‖ fn − f ‖p,γ = 0.

The next proposition gives us some inclusion properties among the Jacobi Sobolev spaces.

Proposition 2.2 The Jacobi Sobolev spaces Lp
γ([−1, 1]d, µd

α,β) have the following properties.

(i) If p < q, then Lq
γ([−1, 1]d, µd

α,β) ⊆ Lp
γ([−1, 1]d, µd

α,β), for each γ > 0.

(ii) If 0 < γ < δ, then Lp
δ ([−1, 1]d, µd

α,β) ⊆ Lp
γ([−1, 1]d, µd

α,β),

for each 1 < p < ∞.

Proof (i) For γ fixed, this follows immediately by Hölder’s inequality.

(ii) Let f be a polynomial and let φ = (I − Lα,β)δ/2 f = ∑∞
n=0(1 + rn)δ/2 Jα,β

n f , which is also a

polynomial. Then φ ∈ Lp
δ ([−1, 1]d, µd

α,β), ‖φ‖p = ‖ f ‖p,δ and J α,β
γ−δφ = (I − Lα,β)(γ−δ)/2φ = (I −

Lα,β)γ/2 f , by the Lp-continuity of Bessel potentials,

‖ f ‖p,γ = ‖(I −Lα,β)γ/2 f ‖p = ‖Jγ−δφ‖p ≤ Cp‖ f ‖p,δ.

Now let f ∈ Lp
δ ([−1, 1]d, µd

α,β) and g ∈ Lp([−1, 1]d, µd
α,β) such that f = J α,β

δ g. There is a sequence

of polynomials {gn} in Lp([−1, 1]d, µd
α,β) such that it is the case that limn→∞ ‖gn − g‖p = 0. Set

fn = J α,β
δ gn, then limn→∞ ‖ fn − f ‖p,δ = 0, and

‖ fn − f ‖p,γ = ‖(I −Lα,β)γ/2( fn − f )‖p = ‖(I −Lα,β)γ/2(I −Lα,β)−δ/2(gn − g)‖p

= ‖(I −Lα,β)(γ−δ)/2(gn − g)‖p = ‖Jγ−δ(gn − g)‖p,

by the Lp-continuity of Bessel potentials, limn→∞ ‖ fn − f ‖p,γ = 0.
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Therefore, ‖ f ‖p,γ ≤ ‖ fn − f ‖p,γ + ‖ fn‖p,γ ≤ ‖ fn − f ‖p,γ + ‖ fn‖p,δ. By taking the n→ ∞ limit, we

obtain the result. 2

Let us consider the space

Lγ([−1, 1]d, µd
α,β) =

⋃
p>1

Lp
γ([−1, 1]d, µd

α,β).

Lγ([−1, 1]d, µd
α,β) is the natural domain of Dα,β

γ . We define it on this space as follows. Let f ∈

Lγ([−1, 1]d, µd
α,β); then there is p > 1 such that f ∈ Lp

γ([−1, 1]d, µd
α,β) and a sequence of polynomials

{ fn} such that limn→∞ fn = f in Lp
γ([−1, 1]d, µd

α,β). We define for f ∈ Lγ([−1, 1]d, µd
α,β),

Dα,β
γ f = lim

n→∞
Dα,β

γ fn.

The next theorem shows that Dα,β
γ is well defined; and its inequality (2.24) supplies a characterization

of the Sobolev spaces.

Theorem 2.4 Let γ > 0 and 1 < p, q < ∞.

(i) If { fn} is a sequence of polynomials such that limn→∞ fn = f in the space Lp
γ([−1, 1]d, µd

α,β), then

lim
n→∞

Dα,β
γ fn ∈ Lp([−1, 1]d, µd

α,β),

and the limit does not depend on the choice of the sequence { fn}.

If f ∈ Lp
γ([−1, 1]d, µd

α,β)
⋂

Lq
γ([−1, 1]d, µd

α,β), then the limit does not depend on the choice of p or q.

Thus Dα,β
γ is well defined on Lγ([−1, 1]d, µd

α,β).

(ii) f ∈ Lp
γ([−1, 1]d, µd

α,β) if and only if Dα,β
γ f ∈ Lp([−1, 1]d, µd

α,β). Moreover, there exist positive con-

stants Ap,γ and Bp,γ such that

Bp,γ‖ f ‖p,γ ≤ ‖Dα,β
γ f ‖p ≤ Ap,γ‖ f ‖p,γ. (2.24)

Proof (ii) First, let us note that for f = ∑∞
n=0 Jα,β

n f polynomial,

Dα,β
γ J

α,β
γ f =

∞

∑
n=0

(
rn

1 + rn

)γ/2

Jα,β
n f ,

that is, Dα,β
γ J

α,β
γ is a multiplier with associated function Φ(k) =

(
rk

1+rk

)γ/2
= h( 1

rk
), where h(z) =( 1

z+1

)γ/2
; and therefore by Meyer’s theorem, it is Lp-continuous.



Chapter 2: Fractional integration and fractional differentiation for Jacobi expansions 31

Let f be a polynomial and let φ be a polynomial such that f = J α,β
γ φ. We have that ‖ f ‖p,γ = ‖φ‖p,

and by the continuity of the operator Dα,β
γ J

α,β
γ

‖Dα,β
γ f ‖p = ‖Dα,β

γ J
α,β

γ φ‖p ≤ Ap,γ‖φ‖p = Ap,γ‖ f ‖p,γ.

To prove the converse, let us suppose that f is a polynomial. Then Dα,β
γ f is also a polynomial, and

therefore Dα,β
γ f ∈ Lp([−1, 1]d, µd

α,β). Consider

φ = (I −Lα,β)γ/2 f =
∞

∑
k=0

(1 + rk)γ/2 Jα,β
k f =

∞

∑
k=0

(
1 + rk

rk

)γ/2

Jα,β
k (Dα,β

γ f ).

The mapping g = ∑∞
k=0 Jα,β

k g 7→ ∑∞
k=0

(
1+rk

rk

)γ/2
Jα,β
k g is a multiplier operator with associated function

Φ(k) =
(

1+rk
rk

)γ/2
= h( 1

rk
) where h(z) = (z + 1)γ/2, so it is Lp-continuous by Meyer’s theorem.

Taking g = Dα,β
γ f we have

‖ f ‖p,γ = ‖φ‖p ≤ Bp,γ‖Dα,β
γ f ‖p.

Thus we get (2.24) for polynomials.

For the general case, if f ∈ Lp
γ([−1, 1]d, µd

α,β), there exists g ∈ Lp([−1, 1]d, µd
α,β) such that f =

J α,β
γ g and a sequence {gn} of polynomials such that it is the case that limn→∞ ‖gn − g‖p = 0. Let

fn = J α,β
γ gn, so that limn→∞ ‖ fn − f ‖p,γ = 0. Then, by the continuity of the operator Dα,β

γ J
α,β

γ and

the fact limn→∞ ‖gn − g‖p = 0,

lim
n→∞
‖Dα,β

γ ( fn − f )‖p = lim
n→∞
‖Dα,β

γ J
α,β

γ (gn − g)‖p = 0.

Then, as Bp,γ‖ fn‖p,γ ≤ ‖Dα,β
γ fn‖p ≤ Ap,γ‖ fn‖p,γ, the result follows by taking the limit n → ∞ in this

inequality.

(i) Let { fn} be a sequence of polynomials such that limn→∞ fn = f , in the space Lp
γ([−1, 1]d, µd

α,β).

Then for n, m ∈N, by (2.24)

‖Dα,β
γ fn − Dα,β

γ fm‖p = ‖Dα,β
γ ( fn − fm)‖p ≤ Bp,γ‖ fn − fm‖p,γ,

so {Dα,β
γ fn} is a Cauchy sequence in Lp([−1, 1]d, µd

α,β), and therefore it is the case that limn→∞ Dα,β
γ fn ∈

Lp([−1, 1]d, µd
α,β).

Now, suppose that {qn} is another sequence of polynomials such that lim qn = f in Lp
γ([−1, 1]d, µd

α,β).

Then limn→∞ fn − qn = 0. By (2.24),

Bp,γ‖ fn − qn‖p,γ ≤ ‖Dα,β
γ fn − Dα,β

γ qn‖p ≤ Ap,γ‖ fn − qn‖p,γ,
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and by taking the limit n → ∞ we get that limn→∞ Dα,β
γ fn = limn→∞ Dα,β

γ qn in Lp([−1, 1]d, µd
α,β) and

therefore the limit does not depend on the choice of the approximating sequence.

To finish the proof, let us suppose f ∈ Lp
γ([−1, 1]d, µd

α,β)
⋂

Lq
γ([−1, 1]d, µd

α,β), and without loss of

generality, let us assume that p ≤ q. Then by Proposition 2.2(i), Lq
γ([−1, 1]d, µd

α,β) ⊆ Lp
γ([−1, 1]d, µd

α,β),

and therefore f ∈ Lq
γ([−1, 1]d, µd

α,β). Now, if { fn} is a sequence of polynomials such that limn→∞ fn =

f in Lq
γ([−1, 1]d, µd

α,β) (hence in Lp
γ([−1, 1]d, µd

α,β)), we have

lim
n→∞

Dα,β
γ fn ∈ Lq([−1, 1]d, µd

α,β) = Lp([−1, 1]d, µd
α,β)

⋂
Lq([−1, 1]d, µd

α,β).

Therefore the limit does not depend on the choice of p or q. 2

Finally, we shall give alternative representations of Dα,β
γ and Iα,β

γ , but first we present a techni-

cal lemma, which illuminates the asymptotic behavior of the d-dimensional Poisson–Jacobi semi-

group {Pα,β
t }.

Lemma 2.2 If f ∈ C2([−1, 1]d) then ∣∣∣∣ ∂

∂t
Pα,β

t f (x)
∣∣∣∣ ≤ C f ,α,β,de−d1/2

α,β t, (2.25)

with dα,β = min{αj + β j + 2 : j = 1, . . . , d}.

As a consequence, the Poisson–Jacobi semigroup {Pα,β
t }t≥0 has exponential decay on (Cα,β

0 )⊥ =
⊕∞

n=1 Cα,β
n .

That is, if f ∈ C2([−1, 1]d), has the property that
∫

f (y)µd
α,β(dy) = 0, then

|Pα,β
t f (x)| ≤ C f ,α,β,de−d1/2

α,β t. (2.26)

Proof The proof of (2.25) is analogous to the one given in the Hermite case in [LU04]. Also, it is

contained in the proof of Proposition 4.5 in [NS08].

To prove (2.26), note that ∂
∂t Pα,β

t f (x) = 1√
π

∫ ∞
0

e−u
√

u
t

2uLα,βTα,β
t2/4u f du, thus performing the change of

variable u = dα,βs gives∣∣∣∣ ∂

∂t
Pα,β

t f (x)
∣∣∣∣ ≤ C f ,α,β,d

∫ ∞

0
e−u t

2
√

π
u−3/2e−dα,βt2/4u du

= C f ,α,β,d

∫ ∞

0
e−dα,βs µ1/2

t (ds) = C f ,α,β,de−d1/2
α,β t.

Since
∫

[−1,1]d f (y)µd
α,β(dy) = 0, we have limt→∞ Pα,β

t f (x) = 0, and

∣∣∣Pα,β
t f (x)

∣∣∣ ≤ ∫ ∞

t

∣∣∣∣ ∂

∂s
Pα,β

s f (x)
∣∣∣∣ ds ≤ C f ,α,β,d

∫ ∞

t
e−d1/2

α,β s ds = C f ,α,β,de−d1/2
α,β t.
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2

Now, since {Pα,β
t }t≥0 is a strongly continuous semigroup, we have

lim
t→0+

Pα,β
t f = f , (2.27)

almost everywhere, by a well known result on the maximal function of the semigroup. Let us write

Pα,β
t f (x) =

∫ ∞

0
Tα,β

s f (x) µ1/2
t (ds) =

∫
[−1,1]d

kα,β
d (t, x, y) f (y) µd

α,β(dy),

where kα,β
d (t, x, y) =

∫ ∞
0 pα,β

d (s, x, y) µ1/2
t (ds). Define the operator Qα,β

t by

Qα,β
t f (x) = −t

d
dt

Pα,β
t f (x) =

∫
[−1,1]d

qα,β
d (t, x, y) f (y) µd

α,β(dy), (2.28)

with qα,β
d (t, x, y) = −t d

dt kα,β
d (t, x, y). We can now give the promised alternative representations for

Dα,β
γ and Iα,β

γ .

Proposition 2.3 Suppose that f is differentiable with continuous derivatives up to the second order, and that∫
[−1,1]d f (y)µd

α,β(dy) = 0. Then

−γ Dα,β
γ f =

1
Γ(−γ)

∫ ∞

0
t−γ−1Qα,β

t f dt, 0 < γ < 1, (2.29a)

γ Iα,β
γ f =

1
Γ(γ)

∫ ∞

0
tγ−1Qα,β

t f dt, 0 < γ. (2.29b)

Proof Let us start by proving (2.29a). Integrating by parts in (2.22) we have

Dα,β
γ f =

1
Γ(−γ)

lim
a→0+

b→∞

∫ b

a
t−γ−1(Pα,β

t f − f ) dt = − 1
γ Γ(−γ)

∫ ∞

0
t−γ−1Qα,β

t f dt,

since, by (2.25),

lim
b→∞

∣∣∣∣∣P
α,β
b f (x)− f (x)

bγ

∣∣∣∣∣ ≤ lim
b→∞

1
bγ

∫ b

0

∣∣∣∣ ∂

∂s
Pα,β

s f (x)
∣∣∣∣ ds

≤ C f ,α,β,d lim
b→∞

1− e−d1/2
α,β b

bγ
= 0,

and by (2.27), since 0 < γ < 1, lima→0+
Pα,β

a f− f
aγ = 0.

We can also prove (2.29b). Integrating by parts in (2.17) yields

Iα,β
γ f =

1
Γ(γ)

lim
a→0+

b→∞

∫ b

a
tγ−1Pα,β

t f dt =
1

γ Γ(γ)

∫ ∞

0
tγ−1Qα,β

t f dt,
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since by (2.26),

lim
b→∞

∣∣∣bγPα,β
t f

∣∣∣ ≤ C f ,α,β,d lim
b→∞

bγe−d1/2
α,β b = 0 and lim

a→0+
aγPα,β

a f = 0.

2
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3.1 Introduction

We present first the main object of this paper, the generalized orthogonal polynomials with Hermitian

matrix argument. They are orthogonal with respect to measures constructed in the following way

from measures on R.

Let Hn be the space of Hermitian matices and Un the group of unitary matrices. We say that a

function f : Hn → R is central if f (UXU−1) = f (X) for all U ∈ Un. Similarly, a Borel measure ν on

Hn is called central if it is Un-invariant: ν(UBU−1) = ν(B) for every Borel set B ⊂ Hn and U ∈ Un. If

f is a central function, then f is determined by its restriction to the subspace of real diagonal matrices,

which we denote Dn. Observe that Dn ' Rn.

Let us define f̃ (x1, . . . , xn) = f (diag(x1, . . . , xn)). Then f̃ is a symmetric function in x1, . . . , xn and

the map f 7→ f̃ is a bijection from the space of central functions on Hn to the space of symmetric

functions on Rn.

There is a natural and important way of generating central functions on Hn, starting from a func-

tion F on R by setting

f (diag(x1, . . . , xn)) = F(x1) . . . F(xn)

and then extending f to a central function on Hn. One denotes f = det F.

Let m be the Lebesgue measure on Hn, treated as a real vector space and let f be a positive Borel

central function on Hn. We normalize m in such a way that the Weyl integration formula ([Far06],

p.13, [FK94], Th.VI.2.3) reads∫
Hn

f (X)dm(X) =
∫

Rn
f (diag(x1, . . . , xn))V2(x1, . . . , xn)dx1 . . . dxn (3.1)

where V(x1, . . . , xn) is the Vandermonde determinant. The formula (3.1) implies that if G is a positive

Borel function on R, then∫
Hn

f (X) det G(X)dm(X) =
∫

Rn
f̃ (x1, . . . , xn)V2(x1, . . . , xn) ∏

i
G(xi)dx1 . . . dxn,

hence the measure det G(X)dm(X) on Hn corresponds to the permutation invariant measure on Rn

given by V2(x) ∏i G(xi)dx . Extending this remark by duality, to any Borel measure µ on R we

associate a permutation invariant measure µn on Rn and a central measure M on Hn in the following

way:

µn(dx) = V2(x)µ⊗n(dx); (3.2)∫
Hn

f (X)dM(X) =
∫

Rn f̃ (x1, . . . , xn)V2(x1, . . . , xn)dµ(x1) . . . dµ(xn) (3.3)
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for any positive central function f on Hn.

For a symmetric polynomial P on Rn, let P̂(X) be the central function on Hn whose restriction

to the diagonal matrices is equal to P(x). The functions P̂ are called (generalized) polynomials of

Hermitian matrix argument. In fact, P̂(X) is a symmetric polynomial in the eigenvalues of X.

In this article we construct and study orthogonal bases of generalized polynomials on Hn, with

respect to measures M on Hn, defined in (4.4) for a given measure µ on R. A Berezin–Karpelevich

type formula is given for these multivariate polynomials in Theorem 3.1. The normalization of the

orthogonal polynomials of Hermitian matrix argument and expansions in such polynomials are then

investigated.

Let us recall that Berezin and Karpelevich ([BK59]) expressed the spherical functions on com-

plex Grassmann manifolds U(p, q)/U(p) × U(q) as a quotient of a determinant containing Jacobi

functions and a Vandermonde determinant. The Berezin–Karpelevich formula, studied by Takahashi

([Tak77]), was first proved by Hoogenboom ([Hoo82]). Similar formulas were given for hypergeo-

metric functions of Hermitian matrix argument by Gross and Richards ([GR91], [GR93]).

Our formula in Theorem 3.1 expresses the generalized orthogonal polynomials on Hn as a quo-

tient of a determinant containing corresponding orthogonal polynomials on R and a Vandermonde

determinant.

Generalized Hermite and Laguerre polynomials of matrix argument were introduced and studied

by Herz ([Her55]). In the Hermitian matrix case, they are orthogonal bases in the spaces L2
Un

(Hn, M),

where the measure M is obtained as in (4.4) from the mesure µ(dx) = e−x2
dx in the Hermite case and

µ(dx) = xαe−x1(0,∞)(x)dx in the Laguerre case. The notation L2
Un

stands for central functions in L2.

The space L2
Un

(Hn, M) is isomorphic to the space L2
sym(Rn, µn) of symmetric functions in L2(Rn, µn).

More generally, the Laguerre polynomials on symmetric cones were defined in [FK94]. The gen-

eralized Laguerre polynomials are very useful in harmonic analysis on symmetric cones ([FK94],

[CF04]) and in multivariate statistics ([Mui82]).

Hermite and Laguerre polynomials of matrix argument are special cases of generalized Hermite

polynomials for Dunkl operators (cf. [Ros98] and the references therein). They are also a special

case of symmetric orthogonal polynomials associated to the Jack polynomials, studied by Lassalle

in a series of notes [Las91b], [Las91a] and [Las91c]. In particular, Lassalle gave without proof the

same formula as ours in Theorem 3.1, in the Jacobi, Laguerre and Hermite case, respectively. Our

formula generalizes the formulas of Lassalle to the case of any orthogonal polynomial family on
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Hn, and applies also to the Hermite polynomials generalized in the sense of Chihara, Kravtchouk

polynomials, Charlier, Meixner and Pollaczek polynomials etc.

3.2 Preliminaries

In this section we introduce the needed notations and concepts; main references are [Mac91] and

[DX01]. Let us fix n ∈ N. We will use n-element partitions λ = (λ1, λ2, . . . , λn), i.e. non–increasing

sequences of non–negative integers λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Let the length l(λ) of a partition λ be

the number of λi 6= 0 and its degree |λ| = ∑i λi. Our partitions λ have the length smaller or equal to

n.

We will consider the dominance order between partitions of the same degree. Given two parti-

tions λ = (λ1, λ2, . . . , λn) and κ = (κ1, κ2, . . . , κn) such that |λ| = |κ|, we have λ ≥ κ if

λ1 + . . . + λr ≥ κ1 + . . . + κr

for all 1 ≤ r ≤ n. The dominance order is not total. The graded lexicographic order �gl on partitions

is total and will also appear in the sequel. We say that λ �gl κ if |λ| > |κ| or if |λ| = |κ| and λi > κi

for the first i such that λi 6= κi.

Let Sn be the symmetric group of permutations of n elements. If x1, x2, . . . , xn are real variables,

we will denote mλ(x1, . . . , xn) the monomial symmetric function in n variables

mλ(x1, . . . , xn) = ∑
σ∈Sn

x
λσ(1)
1 . . . x

λσ(n)
n .

The family {mλ}l(λ)≤n is an algebraic basis of the vector space Pn of all symmetric polynomials in n

variables.

Let V(x1, x2, . . . , xn) be the Vandermonde determinant,

V(x1, x2, . . . , xn) = det(xn−i
j )i,j=1,...,n = ∏

1≤i<j≤n
(xi − xj). (3.4)

For each partition λ = (λ1, . . . , λn), set

Sλ(x1, . . . , xn) =
det(xλi+n−i

j )i,j=1,...n

V(x1, x2, . . . , xn)
. (3.5)

Sλ are called the Schur functions and are symmetric polynomials, homogeneous of degree |λ|. The

family {Sλ}l(λ)≤n is an algebraic basis of Pn. Recall that (see [Mac91](7.2))

Sλ = mλ + ∑
µ<λ,|µ|=|λ|

kλµmµ, kλµ ∈ R (3.6)
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so the Schur polynomials are monic, in the sense that they have a dominating term mλ with coefficient

1. Note that λ is dominating both in the dominance order and in the graded lexicographic order.

We end the introduction with the following well known properties of polynomials of n variables.

We have not found a proof in the literature so we include it for the sake of completness.

Proposition 3.1 (a) If a polynomial P(x1, . . . , xn) vanishes when xi = xj, then P(x1, . . . , xn) = (xi −

xj)R(x1, . . . , xn), where R is a polynomial.

(b) If P(x1, . . . , xn) is a polynomial vanishing when xi = xj, for all i, j = 1, . . . , n, i 6= j, then

P(x1, . . . , xn) = V(x1, . . . , xn)R(x1, . . . , xn),

where R is a polynomial.

Proof It is sufficient to consider i = 1 and j = 2. If x2, . . . , xn are fixed, the polynomial P is a polyno-

mial of one variable x1:

P(x1, x2, . . . , xn) = ak(x2, . . . , xn)xk
1 + ak−1(x2, . . . , xn)xk−1

1 +

· · ·+ a1(x2, . . . , xn)x1 + a0(x2, . . . , xn)

where a0, . . . , ak are polynomials in x2, . . . , xn. By hypothesis,

0 = P(x2, x2, . . . , xn) = ak(x2, . . . , xn)xk
2 + ak−1(x2, . . . , xn)xk−1

2 +

· · ·+ a1(x2, . . . , xn)x2 + a0(x2, . . . , xn),

therefore

P(x1, . . . , xn) = (xk
1 − xk

2)ak(x2, . . . , xn) + (xk−1
1 − xk−1

2 )ak−1(x2, . . . , xn) +

· · ·+ (x1 − x2)a1(x2, . . . , xn) = (x1 − x2)R(x1, . . . , xn),

since xp
1 − xp

2 = (x1 − x2)(xp−1
1 + xp−2

1 x2 + · · ·+ xp−1
2 ), for any p ≥ 1. Part (b) follows immediately

from part (a) of the Proposition. 2

3.3 Symmetric orthogonal polynomials

Throughout all this section, we will suppose that µ is a positive Borel measure on R, such that:

(i) The polynomials are a dense subset of L2(R, µ)
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(ii) The symmetric polynomials Pn are dense subset of L2
sym(Rn, µn), where the measure µn =

V2(x1, . . . , xn)µ(dx1) . . . µ(dxn) was introduced in (4.1).

This is always the case when µ has an exponential moment, that is there exists ε > 0 such that∫
R

eε|x|dµ(x) < ∞. In fact, if µ has an exponential moment then so does µn and the density of

polynomials in L2(R, µ) and L2(Rn, µn) is well known, see [BC81] and [DX01] for a short proof. These

references contain much more information on the problem of density of the space of polynomials in

Lp spaces. Note also that by (i), µ must be finite.

Now we are going to construct a family {Pλ}l(λ)≤n of symmetric orthogonal polynomials in n

variables, starting from a family of orthogonal polynomials in one variable {pm}m∈N, where pm has

degree m. This is the main result of this article.

Theorem 3.1 Let µ be a finite positive Borel measure on R veryfing the conditions (i) and (ii) and {pm}m∈N

an orthogonal family of polynomials in L2(R, µ), where pm has degree m. For each partition λ = (λ1, λ2, . . . , λn)

and a normalizing constant cλ 6= 0, let us define

Pλ(x1, . . . , xn) = cλ

det(pλi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
. (3.7)

Then Pλ is a symmetric polynomials, and the family {Pλ} is orthogonal in the Hilbert space L2(Rn, µn), where

µn = V2(x1, . . . , xn)µ(dx1) . . . µ(dxn). The L2–norm of Pλ is equal to

‖Pλ‖2
L2(Rn,µn) = c2

λn!
n

∏
i=1
‖pλi+n−i‖2

L2(R,µ). (3.8)

The family {Pλ}l(λ)≤n is an orthogonal Hilbert basis of L2
sym(Rn, µn), obtained by the Gram–Schmidt orthog-

onalization process, applied to the Schur polynomials family {Sλ}l(λ)≤n, ordered in the graded lexicographic

order.

The normalizing constant cλ depends on the way of normalization of Pλ and pm and will be specified in

Propositions 3.2 and 3.3.

Proof First observe that

det(pλi+n−i(xj))i,j=1,...n =

∣∣∣∣∣∣∣∣∣∣∣∣

pλ1+n−1(x1) pλ1+n−1(x2) · · · pλ1+n−1(xn)

pλ2+n−2(x1) pλ2+n−2(x2) · · · pλ2+n−2(xn)
...

...
...

pλn(x1) pλn(x2) · · · pλn(xn)

∣∣∣∣∣∣∣∣∣∣∣∣
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is a polynomial in n variables, that vanishes for xi = xj, i 6= j. Hence, by Proposition 3.1, it is divisible

by V(x1, . . . , xn). Thus, for each λ, the function Pλ is a polynomial. Moreover Pλ is symmetric, since

if σ ∈ Sn, denoting by x = (x1, . . . , xn) and σ(x) = (xσ(1), xσ(2), . . . , xσ(n)), we get

Pλ(σ(x)) =
det(pλi+n−i(xσ(j)))i,j=1,...,n

det(xn−i
σ(j))i,j=1,...,n

=
ε(σ) det(pλi+n−i(xj))i,j=1,...,n

ε(σ)det(xn−i
j )i,j=1,...,n

= Pλ(x),

where ε(σ) denotes the signature of the permutation σ.

Now let us consider two partitions λ = (λ1, λ2, . . . , λn) and κ = (κ1, κ2, . . . , κn). We have

〈Pλ, Pκ〉L2(Rn,µn) =
∫

Rn
Pλ(x)Pκ(x)dµn(x)

= cλcκ

∫
Rn

det(pλi+n−i(xj))i,j=1,...,n det(pκi+n−i(xj))i,j=1,...,ndµ(x1) . . . dµ(xn)

= cλcκ ∑
σ∈Sn

∑
τ∈Sn

ε(σ)ε(τ)
∫

Rn

n

∏
i=1

pλσ(i)+n−σ(i)(xi)pκτ(i)+n−τ(i)(xi)dµ(x1) . . . dµ(xn)

= cλcκ ∑
σ∈Sn

∑
τ∈Sn

ε(σ)ε(τ)
n

∏
i=1

∫
R

pλσ(i)+n−σ(i)(x)pκτ(i)+n−τ(i)(x)dµ(x)

and since {pm}m∈N is an orthogonal family in L2(R, µ), if a term in the last double sum is non–zero,

we must have

λσ(i) − σ(i) = κτ(i) − τ(i), i = 1, . . . , n.

Setting π = τσ−1, this means that λi − i = κπ(i) − π(i) for all i = 1, . . . , n. It follows that if j > i then

π(j) ≥ π(i). In order to prove this, let us suppose that j > i and π(j) < π(i). We have κπ(j) ≥ κπ(i),

that is λj + π(j)− j ≥ λi + π(i)− i. This implies that λj + π(j) > λi + π(i), which is contradictory

with λj ≤ λi and π(j) < π(i). Thus π(i) ≤ π(j) when i < j, what implies that necessarily π is the

identity permutation. It follows that σ = τ and λ = κ. Therefore,

〈Pλ, Pκ〉L2(Rn,µn) = dλδλκ,

where

dλ = c2
λ ∑

σ∈Sn

n

∏
i=1

∫
R

p2
λσ(i)+n−σ(i)(x)dµ(x) = c2

λ ∑
σ∈Sn

n

∏
i=1
‖pλσ(i)+n−σ(i)‖2

L2(R,µ)

= c2
λn!

n

∏
i=1
‖pλi+n−i‖2

L2(R,µ).

Thus {Pλ : l(λ) ≤ n} is an orthogonal family in Pn and the formula (4.3) follows. Now, pλi+n−i(xj) =

aλi+n−ix
λi+n−i
j + terms of lower degree, aλi+n−i 6= 0, so

Pλ(x) = aSλ(x) + ∑
|κ|<|λ|

bλκmκ(x), (3.9)
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where a = cλ ∏i aλi+n−i 6= 0. By formulas (3.6) and (3.9) it follows that

Vect({Pλ}l(λ)≤n) = Vect({Sλ}l(λ)≤n) = Vect({mλ}l(λ)≤n) = Pn

so, by hypothesis (ii), the family {Pλ}l(λ)≤n is linearly dense in L2
sym(Rn, µn).

In fact, the formula (3.9) implies a stronger fact

Vect({Pµ}µ�glλ) = Vect({Sµ}µ�glλ) (3.10)

for any n-element partition λ. The formula (3.10) may be easily proved observing that Vect({Pµ}µ�glλ) ⊂

Vect({Sµ}µ�glλ) and that the dimensions of the two spaces are equal.

We order the Schur polynomials with respect to the graded lexicographic order. It follows that

the family that one obtains by applying the Gram–Schmidt orthogonalization process to the family

{Sλ} is the family {Pλ}. 2

Let us now extend Theorem 3.1 to polynomials of Hermitian matrix argument.

Corollary 3.1 The generalized polynomials {P̂λ}l(λ)≤n form an orthogonal Hilbert basis of the Hilbert space

L2
Un

(Hn, M), with the measure M defined in (4.4).

Now we will determine the value of the normalizing constant cλ in the definition of Pλ, in relation

with the normalization of the polynomials pm and the required normalization of the polynomials Pλ.

The formula (3.9) implies that in the Schur function decomposition, the polynomials Pλ have the

leading term aSλ, in the sense of the graded lexicographic order. Taking into account (3.6) we get

Pλ = amλ + ∑
µ<λ,|µ|=|λ|

akλµmµ + ∑
|κ|<|λ|

bλκmκ, (3.11)

so, in monomial symmetric polynomial decomposition of Pλ, the leading term is amλ, in the sense of

both the graded lexicographic order and the graded dominance order. Consequently, it is natural to

require that Pλ is monic, that is a = 1. From the formulas (3.9) and (3.11) we deduce the following

Proposition 3.2 If the polynomials pm and Pλ are monic, then cλ = 1.

Another frequently considered type of normalization of orthogonal polynomials consists in re-

quiring the constant term of the polynomials to be equal to 1. It is not always possible (for example

for even Hermite polynomials).
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Proposition 3.3 If we normalize the polynomials pm and Pλ by requiring pm(0) = 1, m ∈N, and Pλ(0) =

1, l(λ) ≤ n, then

cλ =
1

det(c(λi+n−i)
n−j )1≤i,j≤n

,

where c(m)
k are the coefficients of the polynomials pm in the monomial decomposition

pm(x) =
m

∑
k=0

c(m)
k xk.

Proof It is shown in [Far06], p.18 that if

fi(x) =
∞

∑
k=0

c(i)
k xk, i = 1, . . . , n, |x| < r

then

lim
x→0

det( fi(xj))1≤i,j≤n

V(x1, . . . , xn)
= det(c(i)

n−j)1≤i,j≤n.

In our case, taking

fi(x) = pλi+n−i(x) =
λi+n−i

∑
k=0

c(λi+n−i)
k xk,

we have

Pλ(0) = cλ lim
x→0

det( fi(xj))1≤i,j≤n

V(x1, . . . , xn)
= cλ det(c(λi+n−i)

n−j )1≤i,j≤n. (3.12)

2

Remark 3.1 Observe that the property pm(0) 6= 0 for all m ∈ N does not imply Pλ(0) 6= 0. Indeed, by

the formula (3.12), the value of Pλ(0) depends not only on the coefficients c0 = pm(0) appearing in the last

column of the determinant in (3.12). A converse implication is however true: if λ is such that pλi+n−i(0) =

0, i = 1, . . . , n, then Pλ(0) = 0.

We end this section with a result on the expansion of some important central functions on Hn in

the basis {Pλ}.

Proposition 3.4 Given n functions f1, . . . , fn of one variable, with the expansions in the basis {pm}m∈N

fi(x) =
∞

∑
k=0

c(i)
k pk(x), i = 1, . . . , n,

convergent absolutely for |x| < r, we have
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det( fi(xj))1≤i,j≤n = V(x1, . . . , xn) ∑
λ1≥···≥λn≥0

bλPλ(x),

where the series converges for |xj| < r and

bλ =
1
cλ

det(c(i)
λj+n−j)1≤i,j≤n.

Proof We follow the proof of a similar formula for monomials xm instead of pm(x), given in [Far06],

p.17. We have

det ( fi(xj))1≤i,j≤n = ∑
σ∈Sn

ε(σ) f1(xσ(1)) . . . fn(xσ(n))

= ∑
σ∈Sn

ε(σ)

(
∞

∑
k1=0

c(1)
k1

pk1(xσ(1))

)
. . .

(
∞

∑
kn=0

c(n)
kn

pkn(xσ(n))

)

=
∞

∑
k1,...kn=0

c(1)
k1

. . . c(n)
kn ∑

σ∈Sn

ε(σ)pk1(xσ(1)) . . . pkn(xσ(n))

= ∑
k1>···>kn≥0

∑
τ∈Sn

ε(τ)c(1)
kτ(1)

. . . c(n)
kτ(n)

det((pki(xj))1≤i,j≤n)

= ∑
k1>···>kn≥0

det(c(i)
k j

) det((pki(xj))1≤i,j≤n)

Changing the sum indices ki = λi + n− i, we get

det ( fi(xj))1≤i,j≤n = ∑
λ1≥···≥λn≥0

det((c(i)
λj+n−j)1≤i,j≤n) det((pλi+n−i(xj))1≤i,j≤n)

= V(x1, . . . , xn) ∑
λ1≥···≥λn≥0

bλPλ(x1, . . . , xn).

2

We give now an application of the Proposition 3.4. Recall that the Legendre polynomials

Pm(x) =
1

2mm!
dm

dxm (x2 − 1)m

form an orthogonal basis of L2(−1, 1), i.e. µ is the Lebesgue measure restrained to (−1, 1). Denote

by Qm the Legendre functions of second kind. The Heine’s formula ([Erd], 3.10(10), p. 168) says that

for x 6= y, x, y ∈ R

1
y− x

=
∞

∑
k=0

(2k + 1)Pk(x)Qk(y). (3.13)

We will generalize this formula to the Hermitian matrix setting. For a partition λ, let Pλ and Qλ be

the corresponding symmetric functions defined by

Pλ(x1, . . . , xn) =
det(Pλi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
,

Qλ(x1, . . . , xn) =
det(Qλi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
.
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According to the Corollary 3.1, the generalized Legendre polynomials P̂λ form an orthogonal basis

of the space L2
Un

(B(0, 1), m(dx)). The unit ball B(0, 1) is with respect to the norm ‖X‖ of X ∈ Hn

considered as a linear functional on Rn, i.e. ‖X‖ = maxi |xi|, where xi are the eigenvalues of X.

Corollary 3.2 Let x1, . . . , xn, y1, . . . , yn ∈ R be such that xi 6= yj, i, j = 1, . . . , n. Then

n

∏
i,j=1

1
yi − xj

= (−1)
n(n−1)

2 ∑
λ1≥···≥λn≥0

dλPλ(x)Qλ(y)

where

dλ =
n

∏
i=1

(2(λi + n− i) + 1).

Proof We apply the Proposition 3.4 to the functions

fi(x) =
1

yi − x

and we use the expansion (3.13), thus we have c(i)
k = (2k + 1)Qk(yi). We get that

det
(

1
yi − xj

)
i,j

= V(x1, . . . , xn)V(y1, . . . , yn) ∑
λ1≥···≥λn≥0

dλPλ(x)Qλ(y)

with dλ = ∏n
i=1(2(λi + n− i) + 1). By the Cauchy’s determinant formula (see e.g. [Mac91](7.6))

det
(

1
yi − xj

)
i,j

= V(−x)V(y)
n

∏
i,j=1

1
yi − xj

= (−1)
n(n−1)

2 V(x)V(y)
n

∏
i,j=1

1
yi − xj

,

and we get the expansion formula of the Corollary. 2

3.4 Examples

Example 3.1 Hermite polynomials.

Let us consider the family {hm}m∈N of monic Hermite orthogonal polynomials in R. They are orthog-

onal polynomials with respect to the measure γ(dy) = e−y2
dy. According to (3.7) and the Proposition

3.2, we define the monic Hermite polynomials on Hn by

Ĥλ(X) =
det(hλi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)

where x1, . . . , xn are the eigenvalues of the matrix X. They form an orthogonal basis of the space

L2
Un

(Hn, e−tr(X2)dm(X)), cf. the Corollary 3.1. Recall that the condition "Hλ monic" means that

Hλ = ∑
κ�glλ

cκλSλ,
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with cλλ = 1, cf. (3.9), and also that the leading term coefficient in the monomial decomposition

(3.11) of Hλ is equal to 1.

In [Las91b] Lassalle also considered generalized Hermite polynomials, but he used decomposi-

tions in the normalized Schur functions basis S∗λ = Sλ

Sλ(1n) , where 1n = (1, . . . , 1). Let us call H∗λ the

Hermite polynomials in [Las91b]. It follows from [Las91b], (i) p.580 that the family {H∗λ} is obtained

from the Schur polynomials {Sλ} ordered in the graded lexicographic order, by the Gram–Schmidt

orthogonalization process. The same is true for the family {Hλ}. Thus H∗λ and Hλ differ only by a

non–zero factor. If ones requires H∗λ to be monic in the basis S∗λ, we have H∗λ = cλHλ, with cλ = 1
Sλ(1n)

.

In this way we prove the Théorème 6 of [Las91b], communicated by the author without proof.

Also, if h(a)
m are monic Hermite polynomials generalized in the sense of Chihara, i.e. they are

orthogonal with respect to the measure γa(dy) = |y|2ae−y2
dy, a ≥ 0, then the monic Hermite–Chihara

polynomials of Hermitian matrix argument are defined by the formula

Ĥ(a)
λ (X) =

det(h(a)
λi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
,

where x1, . . . , xn are the eigenvalues of the matrix X. By Corollary 3.1, this family forms an ortogonal

basis of the space L2
Un

(Hn, |det X|2ae−tr(X2)dm(X)).

Example 3.2 Laguerre polynomials.

The Laguerre polynomials L(α)
m , α > −1, are orthogonal polynomials on (0, ∞) with respect to the

measure µα(dy) = yαe−y1(0,∞)(y)dy. Let us normalize them by the condition L(α)
m (0) = 1. Then they

have the following explicit representation, see [Sz59](5.1.6) and (5.1.7),

L(α)
m (y) =

m

∑
k=0

(
m
k

)
(−y)k

(α + 1)k
.

The Laguerre polynomials L̂(α)
λ (X) of Hermitian matrix argument are given, according to the

formula (3.7), by

L̂(α)
λ (X) = cλ

det(L(α)
λi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
(3.14)

where x1, . . . , xn are the eigenvalues of the matrix X.

The measure Mα(dX) = (det X)αe−trX ∏i 1(0,∞)(xi)dm(X), corresponding to µα via the formula

(4.4), is supported on the cone H+
n of non–negative definite Hermitian matrices. The polynomials L̂(α)

λ

form an orthogonal basis of L2
Un

(H+
n , Mα). We normalize them by setting Lλ(0) = 1. The constant cλ
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may be determined using Proposition 3.3, for the coefficients c(m)
k = (m

k )
(−1)k

(α+1)k
. We compute

det(c(λi+n−i)
n−j )1≤i,j≤n = det

((
λi + n− i

n− j

)
(−1)n−j

(α + 1)n−j

)
1≤i,j≤n

= det
(

(λi + n− i)!
(λi − i + j)!

)
1≤i,j≤n

n−1

∏
j=0

(−1)j

(α + 1)j j!
.

Set ti = λi + n− i. Then

Rj(ti) :=
(λi + n− i)!
(λi − i + j)!

=
ti!

(ti − n + j)!
= ti(ti − 1) . . . (ti − n + j + 1)

when j < n. For j = n we have Rn = 1. Thus

det
(

(λi + n− i)!
(λi − i + j)!

)
1≤i,j≤n

= det
(

Rj(ti)
)

1≤i,j≤n

where the polynomials Rj have the degree n− j and are monic. Multilinearity properties of determi-

nant imply that det
(

Rj(ti)
)

1≤i,j≤n = det(tn−j
i )1≤i,j≤n, so it is equal to the Vandermonde determinant

in ti,

V(t1, . . . , tn) = ∏
1≤i<j≤n

(ti − tj) = ∏
1≤i<j≤n

(λi − λj − i + j).

Thus we find

cλ = (−1)
(n−1)n

2
∏n−1

j=0 (α + 1)j j!

∏1≤i<j≤n(λi − λj − i + j)

As ∏n−1
j=0 (α + 1)j j! = ∏1≤i<j≤n(α + j− i)i, we can also write

cλ = (−1)
(n−1)n

2 ∏
1≤i<j≤n

(α + j− i)i
λi − λj − i + j

.

The formula (3.14) for generalized symmetric Laguerre polynomials, with cλ given by the last equal-

ity, was announced in [Las91c], Théorème 6, without proof.

Example 3.3 Jacobi polynomials.

For a > −1 and b > −1, the classical Jacobi polynomials P(a,b)
m are orthogonal polynomials on [−1, 1]

with respect to the measure νa,b(dx) = (1− x)a(1 + x)b1[−1,1](x)dx. We will consider a related family

of Jacobi polynomials J(a,b)
m (y) := P(a,b)

m (1− 2y). The polynomials J(a,b)
m (y) are orthogonal on [0, 1],

with respect to the measure µa,b(dx) = ya(1− y)b1[0,1](y)dy. If they are normalized by the condition

J(a,b)
m (0) = 1, then, using [Sz59](4.21.2), they have the monomial representation

J(a,b)
m (y) =

m

∑
k=0

(m + a + b + 1)k

(a + 1)k

(
m
k

)
(−y)k.
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The Jacobi polynomials Ĵ(a,b)
λ (X) of Hermitian matrix argument are given, according to the formula

(3.7), by

Ĵ(α)
λ (X) = cλ

det(J(a,b)
λi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
(3.15)

where x1, . . . , xn are the eigenvalues of the matrix X.

The measure M(a,b)(dX) = (det X)a(det(I − X))b ∏i 1[0,1](xi)dm(X) corresponding to µa,b via the

formula (4.4), is concentrated on the intersection H+
n ∩ B̄(0, 1) of the cone H+

n with the unit ball B̄(0, 1)

in Hn. The polynomials Ĵ(a,b)
λ form an orthogonal basis of L2

Un
(H+

n ∩ B̄(0, 1), M(a,b)). We normalize

them by setting J(a,b)
λ (0) = 1. We apply the Proposition 3.3 in order to compute the constant cλ in

(3.15). The coefficients c(m)
k are equal c(m)

k = (m+a+b+1)k
(a+1)k

(m
k )(−1)k. We obtain

det(c(λi+n−i)
n−j )1≤i,j≤n = det

(
(λi + n− i + a + b + 1)n−j

(a + 1)n−j

(
λi + n− i

n− j

)
(−1)n−j

)
1≤i,j≤n

= det
(

(λi + n− i + a + b + 1)n−j(λi + n− i)!
(λi − i + j)!

)
1≤i,j≤n

n

∏
j=1

(−1)n−j

(a + 1)n−j(n− j)!
.

Setting ti = λi + n− i and A = a + b + 1, the previous determinant can be written as

D := det
(

(ti + A)n−jti!
(ti − n + j)!

)
1≤i,j≤n

= det

(
n−j−1

∏
m=0

(ti + A + m)(ti −m)

)
1≤i,j≤n

.

Taking ti = tj, 1 ≤ i, j ≤ n, this determinant vanishes and therefore it is divisible by ∏1≤i<j≤n(ti − tj).

If we take ti = −tj − A, 1 ≤ i, j ≤ n, the determinant also vanishes, so it is divisible by ∏1≤i<j≤n(ti +

tj + A). Thus

D = [ ∏
1≤i<j≤n

(ti − tj)(ti + tj + A)]R(t1, . . . , tn)

where R is a polynomial. When we fix t2, . . . , tn and consider D as a polynomial of t1, we see that it is

monic and of degree 2n− 2. The same is true for ∏1≤i<j≤n(ti − tj)(ti + tj + A). Thus the polynomial

R does not depend on t1. Repeating this argument for all ti we deduce that R = 1. Finally we get

cλ = (−1)
(n−1)n

2 ∏
1≤i<j≤n

(α + j− i)i
(λi − λj − i + j)(λi + λj + 2n− i− j + a + b + 1)

.

The formula (3.15) for generalized symmetric Jacobi polynomials, with cλ as in the last equality, was

given without proof in [Las91a], Théorème 10.
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polynomials. We give an expression of the infinitesimal generator of this semigroup and under the
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4.1 Introduction

In a previous paper, [BGU05], we defined a family of generalized orthogonal polynomials with Her-

mitian matrix argument in the following way. Let µ be a finite measure on the real line such that the

set of polynomials is dense in L2(R, µ). This condition is satisfied if, for example, µ has an exponen-

tial moment, that is there exists ε > 0 such that
∫

R
eε|x|µ(dx) < ∞ (c.f. [BC81], [DX01]). We consider

the measure µn on Rn defined by

µn(dx) = V2(x1, . . . , xn)µ(dx1) . . . µ(dxn), (4.1)

where

V(x1, . . . , xn) = det(xn−i
j ) = ∏

1≤i<j≤n
(xi − xj)

is the Vandermonde determinant. The measure µn is a permutation invariant measure on Rn. We

will also require the set of symmetric polynomials on Rn to be dense in L2
sym(Rn, µn), the space

of all symmetric functions on L2(Rn, µn). If µ has an exponential moment, then this condition is

guaranteed.

Let {pm}m∈N be a family of orthogonal polynomials in L2(R, µ), with deg(pm) = m. This can

always be found by using the Gram-Schmidt orthogonalization process. Let us denote by Λ the set

of all n-partitions, that is
Λ = {λ = (λ1, . . . , λn) : λi ∈N, λ1 ≥ · · · λn ≥ 0}.

For λ ∈ Λ, in [BGU05] we defined a function on Rn by

Pλ(x1, . . . , xn) := cλ

det(pλi+n−i(xj))
V(x1, . . . , xn)

, (4.2)

where cλ is a normalizing constant that depends on the normalization chosen for the polynomials

pm and Pλ. Sometimes different normalizations of orthogonal polynomials are needed, see [BGU05],

[Las91c]. That is why we maintain in this section the general notation cλ for the normalization con-

stant.

Theorem 3.1 in [BGU05] states that Pλ are symmetric polynomials, orthogonal in the Hilbert space

L2
sym(Rn, µn) with norm

‖Pλ‖2
L2

sym(Rn,µn) = c2
λn!

n

∏
i=1
‖pλi+n−i‖2

L2(R,µ), (4.3)

and the family {Pλ}λ∈Λ, is dense in L2
sym(Rn, µn), thus it forms an orthogonal Hilbert basis of this

space. The polynomials {Pλ}λ∈Λ can be obtained by the Gram–Schmidt orthogonalization process,

applied to the Schur polynomials family {Sλ}λ∈Λ, ordered in the graded lexicographic order �gl .
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Let Hn be the space of Hermitian matrices and let f : Hn → R be a central function on Hn, that

is f (UXU−1) = f (X) for all unitary matrices U. Thus f (X) depends only on the eigenvalues of the

matrix X and therefore f is uniquely determinated by its values over the diagonal matrices. So, if

f is central, the function f̃ : Rn → R defined by f̃ (x1, . . . , xn) = f (diag(x1, . . . , xn)) is a symmetric

function on Rn. Moreover, this map is a bijection from the space of central functions on Hn onto the

space of symmetric functions on Rn.

If P is a symmetric polynomial in Rn, let P̂ be the central function on Hn such that its restriction

to the diagonal matrices is equal to P. We call P̂ a generalized polynomial with Hermitian matrix ar-

gument. Most properties of a generalized polynomial are derived from the corresponding properties

of the associated symmetric polynomial.

To any Borel measure µ on R, using Weyl’s integral formula c.f. [Far06], we associate a measure

M on Hn such that∫
Hn

f (X)dM(X) =
∫

Rn
f (diag(x1, . . . , xn))V2(x1, . . . , xn)dµ(x1) . . . dµ(xn)

=
∫

Rn
f̃ (x)dµn(x) (4.4)

for any positive central function f on Hn. For further reference on the construction of this measure,

see [BGU05].

Let L2
Un

(Hn, M) be the space of all central functions on L2(Hn, M). It is clear that this space is

isomorphic to the space L2
sym(Rn, µn). The main result of [BGU05], Corollary 3.2, states that the

family of generalized polynomials {P̂λ}λ∈Λ associated to the orthogonal polynomials over Rn given

by (4.2) is an orthogonal Hilbert basis of this space. For more details of this construction see [BGU05].

A very useful result given in [BGU05] is Proposition 3.6, that allows us to find the coefficients in

the expansion over the family {Pλ}λ∈Λ of an important class of central functions. Since it is going to

be used repeatedly in what follows, we recall it here.

Proposition 4.1 (Proposition 3.6 of [BGU05]) Given n functions f1, . . . , fn of one variable, with the ex-

pansions in the basis {pm}m∈N

fi(x) =
∞

∑
k=0

c(i)
k pk(x), i = 1, . . . , n,

convergent absolutely for |x| < r, we have

det( fi(xj))1≤i,j≤n = V(x1, . . . , xn) ∑
λ∈Λ

bλPλ(x),
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where the series converges for |xj| < r and

bλ =
1
cλ

det(c(i)
λj+n−j)1≤i,j≤n.

As said before, the normalizing constant cλ in the definition of Pλ given in (4.2) depends on

the normalization chosen for the polynomials pm and Pλ. In this article we are going to fix the fol-

lowing normalizations: ‖pm‖L2(R,µ) = 1 for all m ∈ N and pm has positive leading coefficient and

‖Pλ‖L2
sym(Rn,µn) = 1 for all λ ∈ Λ. Then by (4.3), we have that cλ = 1√

n!
and

Pλ(x) =
1√
n!

det(pλi+n−i(xj))
V(x)

.

The article is organized as follows. In Section 4.2 we define a semigroup associated to the family

of orthogonal polynomials over Hn and we give an expression of the infinitesimal generator of this

semigroup in Section 4.3. In Section 4.4 we see that for the classical families of orthogonal polynomi-

als on R, the associated semigroup is Markov. In order to provide this result we consider separately

the continuous and discrete cases and we use a characterization result of O. Mazet [Maz02]. Then in

Section 4.5 we present an expression of the kernels of the semigroup defined in Section 4.2 in terms of

the kernels of the semigroups associated to the one–dimensional polynomials. Section 4.6 is devoted

to generalize some classical formulas for orthogonal polynomials to this new family of polynomi-

als. Finally, in Section 4.7 we present as examples the families of classical orthogonal polynomial of

continuous and discrete variable, obtaining, in the continuous case, some expressions given without

proof by M. Lassale in [Las91a], [Las91b] and [Las91c] and some new formulas, in the discrete case.

4.2 Semigroup associated to generalized polynomials

Let us begin this section with some preliminaries on semigroups associated to a family of polyno-

mials and Markov semigroups. Let µ be a measure on R as before. We say that an operator S in

L2(R, µ) is Markov, or that satisfies the Markov condition, if S(1) = 1 and S maps positive functions

into positive functions.

If {pm}m∈N is the family of ortogonal polynomials in L2(R, µ), normalized so ‖pm‖L2(R,µ) = 1, as

in [BM03] we say that the sequence of real numbers {cm}m∈N is a Markov sequence for the family of

polynomials {pm}m∈N if there exists a Markov operator S in L2(R, µ) such that S(pm) = cm pm for all

m ∈ N. Then we have that the operator S has the family {pm}m∈N as spectral decomposition and
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it is symmetric in L2(R, µ), or equivalently, that µ is the invariant measure for the operator S. This,

together with the fact that S is conservative, implies that µ is the invariant measure of S, that is∫
S f dµ =

∫
f dµ, ∀ f ∈ L1(R, µ). (4.5)

In consequence, S is a contraction operator in Lp(R, µ) for all 1 ≤ p ≤ ∞ and cα ∈ [−1, 1] for all α.

If {cm}m∈N is square summable, that is ∑m∈N c2
m < ∞, then S is a Hilbert-Schmidt operator. Thus

it can be represented as

S( f )(x) =
∫

f (y)S(x, y)dµ(y)

where

S(x, y) = ∑
m∈N

cm pm(x)pm(y)

is a positive kernel in L2(µ⊗ µ).

We say that the sequence of real numbers {γm}m∈N is a Markov generator sequence for the fam-

ily of polynomials {pm}m∈N if for every t ≥ 0 the sequence {e−γmt}m∈N is a Markov sequence for

{pm}m∈N. Then, there exists a family of Markov operators {Nt}t≥0 such that for each t the operator

Nt is a contraction, Nt(pm) = e−γmt pm and γm ≥ 0 for all m ∈ N. If for each t > 0, we have that

∑ e−2γmt < ∞, as before, we have that each Nt is a Hilbert-Schmidt operator and can be represented

as

Nt( f )(x) =
∫

f (y)Nt(x, y)dµ(y) (4.6)

where

Nt(x, y) = ∑
m∈N

e−γmt pm(x)pm(y) (4.7)

It is not difficult to see that ∫
Nt(x, y)Ns(y, z)dµ(y) = Nt+s(x, z),

thus {Nt}t≥0 is a Markov semigroup with invariant measure µ and spectral decomposition over the

family of polynomials {pm}m∈N.

If L is the infinitesimal generator of the semigroup {Nt}t≥0, that is

L f = lim
t→0

Nt f − f
t

, f ∈ D(L),

with D(L) a dense subset of L2(R, µ), then L(pm) = −γm pm, thus it is a symmetric operator in

L2(R, µ) with spectral decomposition over the family {pm}m∈N. The invariance of the measure µ for

{Nt}t≥0 can be expressed in terms of the operator L as
∫

L f dµ = 0 for all f in D(L).
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A detailed study of the Markov generator sequences associated to the classical families of orthog-

onal polynomials can be found in [BM03].

We start with a Markov generator sequence (and therefore with a Markov semigroup) associated

to the family of orthogonal polynomials {pm}m∈N and define a semigroup with spectral decompo-

sition given by the generalized orthogonal polynomials. Later we will give conditions so that this

semigroup is also Markov.

Theorem 4.1 Let {γm}m∈N be an increasing, square summable Markov generator sequence for the family

{pm}m∈N of orthogonal polynomials on L2(R, µ). Let us define

Tt(x, y) := ∑
λ∈Λ

e−t(∑n
j=1 γλj+n−j−∑n

j=1 γn−j)Pλ(x)Pλ(y), (4.8)

and for f ∈ L2
sym(Rn, µn)

Tt( f )(x) :=
∫

Rn
f (y)Tt(x, y)µn(dy). (4.9)

Then the family of operators {Tt}t≥0 is a semigroup in L2
sym(Rn, µn) with spectral decomposition over {Pλ}λ∈Λ

with eigenvalues e−tϕλ where

ϕλ =
n

∑
j=1

γλj+n−j −
n

∑
j=1

γn−j ≥ 0 (4.10)

and with symmetric measure µn.

We also have that {Tt}t≥0 is a conservative semigroup, that is Tt1 = 1 for all t ≥ 0, where 1 is the constant

function equal to 1 in L2
sym(Rn, µn). Therefore µn is the invariant measure for {Tt}t≥0.

Proof

First note that since for each t ≥ 0 the sequence {e−γmt}m∈N is square summable, then also for

each t ≥ 0 we have that ∑λ∈Λ e−2tϕλ < ∞. Thus, the kernel Tt(x, y) is in L2(µn ⊗ µn) and therefore,

Tt is a bounded operator.

By the orthogonality of the family {Pλ}λ∈Λ on L2
sym(Rn, µn), we have that

∫
Rn
Tt(x, y)Ts(y, z)dµn(y) =

∫
Rn

(
∑

λ∈Λ
e−tϕλ Pλ(x)Pλ(y)

)(
∑

κ∈Λ
e−tϕκ Pκ(y)Pκ(z)

)
dµn(y)

= ∑
λ∈Λ

∑
κ∈Λ

e−tϕλ e−tϕκ Pλ(x)Pκ(z)
∫

Rn
Pλ(y)Pκ(y)dµn(y)

= ∑
λ∈Λ

e−(t+s)ϕλ Pλ(x)Pλ(z) = Tt+s(x, y),
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that is, the family of kernels {Tt}t≥0 satisfy the Chapman–Kolmogorov equation. Thus {Tt}t≥0

satisfies the semigroup property. Moreover, also from the orthogonality of {Pλ}λ∈Λ on L2
sym(Rn, µn)

it is immediate that

Tt(Pλ)(x) = e−tϕλ Pλ(x) (4.11)

that is, Pλ is an eigenfunction of Tt with eigenvalues e−tϕλ .

On the other hand, clearly Tt(x, y) = Tt(y, x) and therefore, Tt is a symmetric operator in L2
sym(Rn, µn).

Or equivalently, µn is the symmetric measure for the semigroup {Tt}t≥0.

It remains to be proven that Tt maps 1 into 1. Because of the normalization chosen for Pλ we have

that P0 = 1√
µn(Rn)

, with 0 the partition 0 = (0, . . . , 0); and also ϕ0 = 0. So by (4.11)

Tt(1) =
√

µn(Rn)Tt(P0) = e−tϕ0

√
µn(Rn)P0 = 1.

2

Now let us define a semigroup in L2
Un

(Hn, M) with spectral decomposition given by the general-

ized polynomials {P̂λ}λ∈Λ. For an operator T on L2
sym(Rn, µn) let T̂ be the operator on L2

Un
(Hn, M)

such that for all h ∈ L2
Un

(Hn, M)

T̂h
∣∣

Diag = T(h|Diag) = T(h̃),

where Diag is the space of all n× n diagonal matrices.

Note that if T = f1(αT1 + βT2) f2 with f1, f2 symmetric functions, T1, T2 operators on L2
sym(Rn, µn)

and α, β constants, then T̂ = f̂1(αT̂1 + βT̂2) f̂2 where f̂i is the central function whose restriction to the

diagonal matrices is equal to fi.

Corollary 4.1 The family of operators {T̂t}t≥0 on L2
Un

(Hn, M) is a conservative semigroup with spectral

decomposition given by the generalized polynomials {P̂λ}λ∈Λ with eigenvalues e−tϕλ with ϕλ given in (4.10).

The measure M is the symmetric and invariant measure for this semigroup. We have the representation

T̂h(X) =
∫

Hn

h(Y)T̂ (X, Y)dM(Y) (4.12)

where

T̂ (X, Y) = ∑
λ∈Λ

e−tϕλ P̂λ(X)P̂λ(Y). (4.13)
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4.3 Infinitesimal Generator

In this Section we are going to find an expression for the infinitesimal generator of the semigroup

{Tt}t≥0 defined in (4.9) in terms of the infinitesimal generator L of the semigroup {Nt}t≥0. Let Lk be

the operator on L2(Rn, µn) that acts as L over the k-th coordinate. For a symmetric polynomial q on

Rn define the operator Dq on L2
sym(Rn, µn) by

Dq =
1
V

q(L1, . . . , Ln)V. (4.14)

Proposition 4.2 For each partition λ ∈ Λ the polynomial Pλ is an eigenfunction of the operator Dq with

associated q(−γλ1+n−1,−γλ2+n−2, . . . ,−γλn), that is

DqPλ = q(−γλ1+n−1,−γλ2+n−2, . . . ,−γλn)Pλ. (4.15)

Proof Since any symmetric polynomial q in Rn can be expressed as a linear combination of monomial

symmetric functions (see [Mac91]), it is enough to verify (4.15) for the operator Dmκ with mκ =

∑τ∈Sn
x

κτ(1)
1 . . . x

κτ(n)
n , the monomial symmetric function associated to a partition κ = (κ1, . . . , κn) ∈ Λ,

(here Sn is the symmetric group of n−permutations). In this case we have that

√
n!V(x)Dmκ Pλ(x) = mκ(L1, . . . , Ln)det(pλi+n−i(xj))

= ∑
τ∈Sn

L
κτ(1)
1 . . . L

κτ(n)
n

(
∑

σ∈Sn

ε(σ)
n

∏
j=1

pλσ(j)+n−σ(j)(xj)

)

= ∑
τ∈Sn

∑
σ∈Sn

ε(σ)
n

∏
j=1

(−γλσ(j)+n−σ(j))
κτ(j) pλσ(j)+n−σ(j)(xj)

= ∑
σ∈Sn

ε(σ)
n

∏
j=1

pλσ(j)+n−σ(j)(xj)

(
∑

τ∈Sn

n

∏
i=1

(−γλσ(i)+n−σ(i))
κτ(i)

)

= ∑
σ∈Sn

ε(σ)
n

∏
j=1

pλσ(j)+n−σ(j)(xj)

(
∑

τ∈Sn

n

∏
i=1

(−γλi+n−i)
κ

τ◦σ−1(j)

)

=

(
∑

ν∈Sn

n

∏
i=1

(−γλi+n−i)κν(i)

)
∑

σ∈Sn

ε(σ)
n

∏
j=1

pλσ(j)+n−σ(j)(xj)

= mκ(−γλ1+n−1, . . . ,−γλn)det(pλi+n−i(xj)),

that is

Dmκ Pλ(x) = mκ(−γλ1+n−1, . . . ,−γλn)Pλ(x),

as wanted. 2
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In what follows we will work with the symmetric polynomial q0(x1, . . . , xn) = x1 + x2 + · · · +

xn + c with c = ∑n
j=1 γn−j, a positive constant. The reason of this choice of c will be clear later. From

now on we will denote by D the operator Dq0 . We have

Theorem 4.2 The operator D on L2
sym(Rn, µn) defined as

D =
1
V

(L1 + · · ·+ Ln)V + c (4.16)

with c = ∑n
j=1 γn−j is the infinitesimal generator of the semigroup {Tt}t≥0.

Proof By Proposition 4.2

DPλ = −(
n

∑
j=1

γλj+n−j − c)Pλ,

that is, in this case the associated eigenvalue is −ϕλ, c.f. (4.10). So, the operator D and the infinitesi-

mal generator of the semigroup {Tt}t≥0 have the same spectral decomposition. By spectral theory of

semigroups (see [EN00], Lemma 1.9) and the density of {Pλ}λ∈Λ in L2
sym(Rn, µn) the result follows.

2

Remark 4.1 Since {Tt}t≥0 is a conservative semigroup, we have that D1 = 0, consequently (L1 + · · · +

Ln)V = −cV and

c = −
n

∑
k=1

LkV
V

. (4.17)

On the cone C = {y ∈ Rn ∩ supp(µ) : y1 > y2 > · · · > yn}, the function V is positive, so (L1 + · · ·+

Ln)V < 0 on this cone. The Vandermonde determinant is a positive superharmonic (excessive) function for

L1 + · · ·+ Ln on C.

For the semigroup associated to the generalized polynomials we have

Corollary 4.2 The operator D̂ on L2
Un

(Hn, M) is the infinitesimal generator of the semigroup {T̂t}t≥0.

4.4 Positivity preserving

We already know that the semigroup {Tt}t≥0 is conservative. Now we are going to see that, in certain

cases, it also preserve positivity and therefore, it satisfy the Markov condition. For this we will use

a characterization of Markov semigroups with invariant measure given in [Maz02] that involves the

"carré du champ" operator associated to the infinitesimal generator of the semigroup.
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For the infinitesimal generator L of the semigroup {Nt}t≥0 on L2(R, µ), the carré du champ oper-

ator of L is the symmetric bilinear form defined by

Γ( f , g) =
1
2
(L( f g)− f Lg− gL f ), f , g ∈ A,

for f , g in A, a "standard algebra" in Dom(L). In our setting we can, and will, take A as the algebra

of polynomials. For more details see [ABC+02] and [Bak06].

It is known that for a Markov semigroup, the associated carré du champ operator is positive for

all f in A in the sense that Γ( f , f ) ≥ 0 for f ∈ A. In [Maz02] it is proven that if µ is the invariant

measure for the semigroup {Nt}t≥0 then the converse implication is also true, that is, the positivity

of the carré du champ operator implies that the semigroup is Markov. We will use this result several

times in what follows.

4.4.1 Continuous case: diffusions

Suppose that the measure µ is non-atomic. We say that an operator T on L2(R, µ) is a diffusion (see

[Maz97] and [ABC+02]) if for polynomials Φ and f

T(Φ( f )) = Φ′′( f )Γ( f , f ) + Φ′( f )T( f ),

where Γ is the carré du champ operator of T.

If the infinitesimal generator L of the semigroup {Nt}t≥0 in L2(R, µ) is a diffusion, as a conse-

quence having the family of orthogonal polynomials {pm}m∈N as eigenfunctions, it can be proven

(see [Maz97]) that L has the form

L = a(x)
d2

dx2 + b(x)
d

dx
, (4.18)

where a and b are polynomials of degree at most 2 and 1, respectively.

It is shown in [Maz97] that the only Markov semigroups on L2(R, µ) with an infinitesimal gen-

erator that is a diffusion and that has a family of orthogonal polynomials as eigenfunctions are the

Ornstein-Uhlenbeck, Laguerre and Jacobi semigroups, associated to the Hermite, Laguerre and Ja-

cobi polynomials, respectively. For more details on these polynomials, see the examples, Section

4.7.

First let us find an expression for the carré du champ operator of the infinitesimal generator D

of the semigroup {Tt}t≥0, given in (4.16). Let A = alg{p0, p1, . . .} the algebra in R generated by
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the polynomials {pm}m∈N and An = alg{Pλ}λ∈Λ the algebra in Rn generated by the polynomials

{Pλ}λ∈Λ. The carré du champ Γ for the infinitesimal generator L of the semigroup {Nt}t≥0 acts over

A. Denote by Γk the bilinear form on An that acts like Γ over the k-th coordinate. Note that in this

case,

Lk = a(xk)
∂2

∂x2
k

+ b(xk)
∂

∂xk
. (4.19)

Proposition 4.3 If L is a diffusion, then the carré du champ operator associated to D, denoted by ΓD, has the

expression

ΓD( f , f ) =
n

∑
k=1

(
1
2

Lk f 2 − f Lk f
)

=
n

∑
k=1

Γk( f , f ). (4.20)

Proof For f ∈ An, we have that

1
V

Lk(V f ) = Lk f + f
LkV
V

+
1
V

2a(xk)
∂

∂xk
V

∂

∂xk
f ,

so, by (4.17)

D f =
n

∑
k=1

Lk(V f )
V

+ c f =
n

∑
k=1

Lk f +
2
V

n

∑
k=1

a(xk)
∂

∂xk
V

∂

∂xk
f . (4.21)

Hence

2ΓD( f , f ) = D f 2 − 2 f D f =
n

∑
k=1

(Lk f 2 − 2 f Lk f ) = 2
n

∑
k=1

Γk( f , f ).

2

Then we have

Theorem 4.3 If the infinitesimal generator L of the Markov semigroup {Nt}t≥0 on L2(R, µ) is a diffusion,

then the semigroup {Tt}t≥0 on L2
sym(Rn, µn) is also Markov.

Proof

Since µn is the invariant measure for {Tt}t≥0, by the result given in [Maz02], we only have to

check that ΓD( f , f ) ≥ 0 for f ∈ An.

If we fix all the variables except xk, by the definition of Pλ(x1, . . . , xn), it is clear that it is in A. So,

if f ∈ An, it is also in A (considering f as a function of xk only).

Now, since {Nt}t≥0 is a Markov semigroup, we have that Γ( f , f ) ≥ 0 for f ∈ A and therefore

Γk( f , f ) ≥ 0 for each k and f ∈ An. The result now follows from the expression of ΓD given in

Proposition 4.3. 2

For the semigroup {T̂t}t≥0 associated to the generalized polynomials we have
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Corollary 4.3 If the infinitesimal generator L of the Markov semigroup {Nt}t≥0 on L2(R, µ) is a diffusion,

then the semigroup {T̂t}t≥0 on L2
Un

(Hn, M) is also Markov.

If we substitute Lk in the expression of D given in (4.27) and to note that

∂

∂xk
V(x) = V(x)

[
n

∑
i=1i 6=k

1
xk − xi

]
,

we have

Proposition 4.4 If L is a diffusion, then

D f =
n

∑
k=1

[
a(xk)

∂2

∂x2
k

f + 2 ∑
i 6=k

a(xk)
xk − xi

∂

∂xk
f + b(xk)

∂

∂xk
f

]
. (4.22)

Remark 4.2 Using this expression for D we can also verify the Markov property in the diffusion case, using

the positive maximum principle (Th. 17.11, p. 321 in [Kal97]), which is a Hille-Yosida-type condition that

characterizes infinitesimal generators of Markov semigroups.

4.4.2 Discrete case: discrete diffusions

Suppose now that the measure µ is purely atomic and that supp(µ) ⊆ N, then L2(R, µ) = l2(N, µ).

Note that when supp(µ) is finite, this space is a finite dimensional vector space and therefore the case

in study simplifies.

Orthogonal polynomials with respect to discrete measures are the subject of the monograph

[MSU91]. Following the notations in [MSU91], we consider the following difference operators

∆ f (x) = f (x + 1)− f (x),

∇ f (x) = f (x)− f (x− 1).

Definition 4.1 We say that an operator T on l2(N, µ) is a discrete diffusion operator if, and only if, for all

polynomials Φ and f in l2(N, ν), it satisfies

T(Φ( f )) = ∆∇Φ( f )Γ( f , f ) + ∆Φ( f )T f , (4.23)

where Γ is the carré du champ operator of T.

In analogy to the continuous case we have
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Proposition 4.5 If the infinitesimal generator L of the semigroup {Nt}t≥0 on L2(R, µ) is a discrete diffusion,

then

L = σ(x)∆∇+ τ(x)∆ (4.24)

where σ and τ are polynomials of degree at most two one, respectively.

Proof Considering Φ = pm and f = x, we get that the relation

L = Γ(x, x)∆∇+ Lx∆

holds for any polynomial.

The fact that Lpm = −γm pm for m = 1, 2 implies that

Γ(x, x) = Ax2 + Bx + C and Lx = ax + b.

Therefore, by the density of the polynomials the result follows. 2

In [MSU91], Ch. 2 it is proven that the only families of discrete orthogonal polynomials that

are eigenfunctions of operators of the form (4.24) are the Charlier, Meixner, Kravchuk and Hahn

polynomials. For more on these polynomials, see Section 4.7 and [MSU91].

Now, if L is of the form (4.24), it is not difficult to see that

Γ( f , f ) =
1
2
[
σ(x)(∇ f )2 + (σ(x) + τ(x))(∆ f )2] . (4.25)

Since in all the abovementioned classical cases σ ≥ 0 and σ + τ ≥ 0, ([MSU91], p. 42 − 44) we

have Γ( f , f ) ≥ 0. Then, again by the characterization given in [Maz02], the semigroups such that its

infinitesimal generator is a discrete diffusion, associated to a family of orthogonal polynomials are

indeed Markov and, by the result proven in [MSU91], the only discrete diffusion Markov semigroups

are the ones associated to the Charlier, Meixner, Kravchuk and Hahn polynomials.

Suppose then that the infinitesimal generator L of the semigroup {Nt}t≥0 on L2(R, µ) is a discrete

diffusion. Using Mazet’s result in [Maz02] we are going to see that in this case the semigroup {Tt}t≥0

is also Markov. As seen in Theorem 4.2, the infinitesimal generator of this semigroup is D = 1
V (L1 +

· · ·+ Ln)V + c where, in this case,

Lk = σ(xk)∆k∇k + τ(xk)∆k,

with

∆k f (x) = f (x + ek)− f (x) and ∇k f (x) = f (x)− f (x− ek),
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and {ek} the canonical basis of Rn. For these operators we have

∆k f (x) =∇k f (x + ek), ∇k f (x) = ∆k f (x− ek),

∆k[ f (x)g(x)] = f (x)∆kg(x) + g(x + ek)∆k f (x),

∇k[ f (x)g(x)] = f (x)∇kg(x) + g(x− ek)∇k f (x),

thus

∆k∇k[ f (x)g(x)] = f (x)∆k∇kg(x) + g(x + ek)∆k∇k f (x) + ∆k f (x)(g(x + ek)− g(x− ek)).

Observe that Γk, the operator on L2
sym(Rn, µn) that acts like Γ in the k-th coordinate, is given by

Γk( f , f ) =
1
2
[
σ(xk)(∇k f )2 + (σ(xk) + τ(xk))(∆k f )2] . (4.26)

Proposition 4.6 If L is a discrete diffusion, then the carré du champ operator associated to D, denoted by ΓD,

has the expression

2ΓD( f , f )(x)=
n

∑
k=1

σ(xk)
V(x− ek)

V(x)
(∇kf (x))2+

n

∑
k=1

(σ(xk) + τ(xk))
V(x + ek)

V(x)
(∆kf (x))2.

Proof By formula (4.26) we have

∆k∇k[V(x) f (x)]= f (x)∆k∇kV(x) + V(x + ek)∆k∇k f (x) +∇k f (x)[V(x + ek)−V(x− ek)].

Together with (4.17) it implies that

D f (x) =
n

∑
k=1

V(x + ek)
V(x)

Lk f (x) +
n

∑
k=1

σ(xk)∇k f (x)
[V(x + ek)−V(x− ek)]

V(x)
. (4.27)

Since ∇k f 2(x) = [ f (x) + f (x− ek)]∇k f (x), we have

2ΓD( f , f )(x) = D f 2(x)− 2 f (x)D f (x) =

=
n

∑
k=1

V(x + ek)
V(x)

2Γk( f , f )(x)−
n

∑
k=1

σ(xk)(∇k f (x))2 [V(x + ek)−V(x− ek)]
V(x)

.

Substituting the expression of Γk given in (4.26) we get the desired result. 2

Theorem 4.4 Suppose that the infinitesimal generator L of the Markov semigroup {Nt}t≥0 on l2(N, µ) is a

discrete diffusion, then the semigroup {Tt}t≥0 on l2
sym(Nn, µn) is also Markov.

Proof

Again, by the result given in [Maz02], it is enough to verify that Γ( f , f ) ≥ 0 for all f ∈ An. Let f

be a symmetric polynomial in l2(Nn, µn), then f , f 2, D f and D f 2 are also symmetric polynomials and
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therefore ΓD( f , f ) = D f 2 − 2 f D f is also a symmetric polynomial. Thus, to verify that ΓD( f , f )(x) ≥

0 for x ∈ Nn, it is enough to prove that ΓD( f , f )(x) ≥ 0 for x ∈ C := {y ∈ Nn : y1 > y2 > · · · > yn},

since, if x ∈Nn, then we can always find a permutation σ ∈ Sn such that σ(x) = (xσ(1), . . . , xσ(n)) ∈ C

and therefore ΓD( f , f )(x) = ΓD( f , f )(σ(x)) ≥ 0.

Now, if x ∈ C, then V(x) > 0, V(x + ek) ≥ 0 and V(x− ek) ≥ 0, which implies, by the expression

of Γ( f , f ) given in Proposition 4.6, that ΓD( f , f )(x) ≥ 0, as wanted.

So, again in this case the semigroup {Tt}t≥0 is Markov. 2

Corollary 4.4 If the infinitesimal generator L of the Markov semigroup {Nt}t≥0 on l2(N, µ) is a discrete

diffusion, then the semigroup {T̂t}t≥0 on L2
Un

(Hn, M) is also Markov.

We can also give an expression of the operator D in terms of the difference operators ∆k and ∇k.

For this it is enough to substitute Lk f in the expression of D f given in (4.27) and to note that

∆k∇k f (x) +∇k f (x) = ∇k[∆k f (x) + f (x)] = ∆k f (x).

Proposition 4.7 If L is a discrete diffusion, then

D f (x) =
n

∑
k=1

(σ(xk) + τ(xk))
V(x + ek)

V(x)
∆k f (x)−

n

∑
k=1

σ(xk)
V(x− ek)

V(x)
∇k f (x).

4.5 Explicit formulas for the kernels Tt(x, y)

Using Proposition 4.1 it is possible to give and expression of the kernels Tt(x, y) defined by (4.8), that

define the operator Tt, in terms of the kernels Nt(x, y) on L2(µ⊗ µ) defined in (4.7).

Theorem 4.5 The kernel Tt can be expressed as

Tt(x, y) = et ∑n
j=1 γn−j

det(Nt(xj, yi))i,j

n!V(x)V(y)
. (4.28)

Proof To verify (4.28), let us consider the functions

fi(t, x) = Nt(x, yi) =
∞

∑
m=0

e−γmt pm(x)pm(yi),

then by Proposition 4.1

det(Nt(xj, yi))i,j = det( fi(t, xj))i,j = V(x) ∑
λ∈Λ

bλ(y)Pλ(x),
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with

bλ(y) =
√

n! det
(

e−tγλj+n−j pλj+n−j(yi)
)

ij
= n!e−∑n

j=1 γλj+n−j Pλ(y)V(y).

Therefore

det(Nt(xj, yi))i,j = n!V(x)V(y) ∑
λ∈Λ

e−∑n
j=1 γλj+n−j Pλ(y)Pλ(x)

= n!e−t ∑n
j=1 γn−j V(x)V(y)Tt(x, y),

obtaining formula (4.28). 2

For the kernel T̂t given by (4.13) associated to the semigroup {T̂t}t≥0 in L2
Un

(Hn, M) we have an

immediate result

Corollary 4.5 The kernel T̂t can be expressed as

T̂t(X, Y) = et ∑n
j=1 γn−j

det(Nt(xj, yi))i,j

n!V(x1, . . . , xn)V(y1, . . . , yn)
(4.29)

where x1, . . . , xn, y1, . . . , yn are the eigenvalues of the matrixes X and Y, respectively.

4.5.1 Probabilistic proof of the positivity preserving

Theorem 4.5 implies that the positivity preserving property of the semigroup {Tt}t≥0 is equivalent to

the positivity of the determinants det(Nt(xi, yj))n
i,j=1 of dimension n× n.

The property of positivity of all the determinants det(Nt(xi, yj))k
i,j=1, k = 1, . . . , n is called total

positivity of the 1-dimensional kernel Nt(x, y). Karlin and McGregor ([KM59], [KM60]) showed by

probabilistic methods that if Nt is the kernel of a continuous diffusion semigroup then it is totally

positive.

In the discrete case, the diffusion property (4.23) corresponds to the fact the the underlying

Markov process Xt on a subset of Z only jumps by +1 or -1. In such cases the total positivity was also

proved ([KM59]).

4.5.2 Probabilistic interpretation of the semigroup Tt

We can also obtain the semigroup {Tt}t≥0 as the semigroup associated to a stochastic process. Con-

sider a 1–dimensional Markov process X = (Xt)t≥0 such that its associated semigroup equals {Nt}t≥0

and take n independent copies X(i), i = 1, . . . , n of this process. The n–dimensional process X =

(X(1), . . . , X(n)) has the generator L1 + . . . + Ln. Kill the process X when leaving the Weyl Chamber
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C = {y ∈ Rn : y1 > y2 > · · · > yn}. To the killed process XC apply the Doob h–transform for h = V,

the Vandermonde determinant. As observed in Remark 4.1, this function h is positive and excessive

for the process XC.

The resulting process Y = (XC)h identifies with the process X conditioned to remain in the Weyl

chamber C. On the other hand, the generator of Y equals D = 1
V (L1 + . . . + Ln)V + c, the constant c

ensuring that D1 = 0. Thus the associated semigroup of this process is {Tt}t≥0.

The n–dimensional stochastic processes conditioned to stay in a Weyl chamber are intensely stud-

ied in recent years (see e.g. [JO06] and references therein).

4.6 Some Classical Formulas for generalized polynomials

4.6.1 Christoffel-Darboux Formula

It is well known that, as a consequence of their three term recursion formula, the family of orthogonal

polynomials {pm}m∈N on L2(R, µ) satisfies the Christoffel-Darboux formula, see [Sz59], §3.2,
m

∑
k=0

pk(x)pk(y)
‖pk‖2

2
=

pm+1(x)pm(y)− pm(x)pm+1(y)
Am‖pm‖2

2(x− y)
, (4.30)

for x 6= y in R where Am = am+1
am

, and am is the leading coefficient of the polynomial pm.

We are going to generalize the Christoffel-Darboux formula for the orthogonal polynomials {Pλ}λ∈Λ,

as an application of Proposition 4.1.

Proposition 4.8 Let x1, . . . , xn, y1, . . . , yn ∈ R be such that xi 6= yj, i, j = 1, . . . , n and m ∈ N such that

m > n− 1. Then

V(x)V(y) ∑
{λ∈Λ:λ1+n−1≤m}

Pλ(x)Pλ(y)

‖Pλ‖2
L2

sym(Rn,µn)
=

n!
An

m‖pm‖2n
L2(R,µ)

×

×det
(

pm+1(xj)pm(yi)− pm(xj)pm+1(yi)
xj − yi

)
i,j

, (4.31)

Proof Let us consider the functions

fi(x) =
pm+1(x)pm(yi)− pm(x)pm+1(yi)

Am‖pm‖2
L2(R,µ)(x− yi)

=
mn

∑
k=0

pk(yi)pk(x)
‖pk‖2L2(R, µ)2 .

Applying Proposition 4.1, for the coefficients

c(i)
k (y) =


pk(yi)

‖pk‖2
L2(R,µ)

if k ≤ m

0 if k ≥ m,
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we obtain

det
(

fi(xj)
)

i,j = V(x) ∑
λ∈Λ

bλ(y)Pλ(x),

where bλ(y) =
√

n! det
(

c(i)
λj+n−j(y)

)
i,j

. Let us study this last determinant more carefully. Call aij =

c(i)
λj+n−j(y). We then have that aij = pk(yi)

‖pk‖2
L2(R,µ)

if, and only if, λj + n− j ≤ m.

Now, if λ1 + n − 1 ≤ m then, for every k ≥ 1 we have λk + n − k ≤ m, as λk ≤ λ1. Then

aik = pk(yi)
‖pk‖2

L2(R,µ)
for all i, k. On the other hand, if λ1 + n− 1 > m, then ai1 = 0 for all i.

This means that

bλ(y) =
√

n! det
(

c(i)
λj+n−j(y)

)
i,j

=


√

n! det
(

pλj+n−j(yi)

‖pλj+n−j‖2
L2(R,µ)

)
i,j

if λ1 + n− 1 ≤ m

0 if λ1 + n− 1 > m.

Therefore, if λ1 + n− 1 ≤ m,

bλ(y) =
√

n! det

(
pλj+n−j(yi)

‖pλj+n−j‖2
L2(R,µ)

)
i,j

=
V(y)

n! ∏n
j=1 ‖pλj+n−j‖2

L2(R,µ)

√
n!

det
(

pλj+n−j(yi)
)

i,j

V(y)
=

=
V(y)

n!‖Pλ‖2
L2(Rn,µn)

Pλ(y),

from where

det
(

fi(xj)
)

i,j = V(x)V(y) ∑
{λ∈Λ:λ1+n−1≤m}

Pλ(x)Pλ(y)

n!‖Pλ‖2
L2(Rn,µn)

.

Also

det
(

fi(xj)
)

i,j = det

(
pm+1(xj)pm(yi)− pm(xj)pm+1(yi)

Am‖pm‖2
L2(R,µ)(xj − yi)

)

=
1

An
m‖pm‖2n

L2(R,µ)
det

(
pm+1(xj)pm(yi)− pm(xj)pm+1(yi)

xj − yi

)
,

thus

V(x)V(y) ∑
{λ∈Λ:λ1+n−1≥m}

Pλ(x)Pλ(y)

‖Pλ‖2
L2(Rn,µn)

=
n!

An
m‖pm‖2n

L2(R,µ)
×

×det
(

pm+1(xj)pm(yi)− pm(xj)pm+1(yi)
xj − yi

)
i,j

.

2

For the generalized polynomials we have an analogous result
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Corollary 4.6 Let X, Y be Hermitian matrices with different eigenvalues x1, . . . xn,

y1, . . . , yn respectively and let m ∈N be such that m > n− 1. Then

V(x1, . . . xn)V(y1, . . . yn) ∑
{λ∈Λ:λ1+n−1≤m}

P̂λ(X)P̂λ(Y)
‖P̂λ‖2

L2
Un (Hn,M)

=
n!

An
m‖pm‖2n

L2(R,µ)
×

×det
(

pm+1(xj)pm(yi)− pm(xj)pm+1(yi)
xj − yi

)
i,j

. (4.32)

4.6.2 Generating Function

Let us assume that the family {pm}m∈N has a generating function

f (x, w) =
∞

∑
m=0

dm pm(x)wm, x ∈ supp{µ}, |w| < r.

We are able to obtain a generating function for the polynomials {Pλ}λ∈Λ, again as an application of

Proposition 4.1,

Proposition 4.9 Let x1, . . . , xn, w1, . . . , wn ∈ R. If f (·, ·) is a generating function of {pm}m∈N, then

det
(

f (xj, wi)
)

ij

V(x)V(w)
= ∑

λ∈Λ
dλPλ(x)Sλ(w), (4.33)

where dλ = ∏n
j=1 dλj+n−j and Sλ is the Schur polynomial associated to the partition λ. That is

det
(

f (xj, wi)
)

ij

V(x)V(w)
(4.34)

is a generating function of {Pλ}λ∈Λ.

Proof Apply Proposition 4.1 to the functions

fi(x) = f (x, wi) =
∞

∑
m=0

dmwm
i pm(x).

Then, for c(i)
m = dmwm

i , we get

det
(

fi(xj)
)

ij = det
(

f (xj, wj)
)

ij = ∑
λ∈Λ

bλ(w)Pλ(x)

with

bλ(w) = det
(

c(i)
λj+n−j

)
ij

= det
(

dλj+n−jw
λj+n−j
i

)
ij

=
n

∏
j=1

dλj+n−jV(w)Sλ(w).
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Thus
det

(
f (xj, wi)

)
ij

V(x)V(w)
= ∑

λ∈Λ
dλPλ(x)Sλ(w).

2

For the generalized polynomials we have

Corollary 4.7 Let X and W be Hermitian matrixes with eigenvalues x1, . . . , xn, w1, . . . , wn respectively, then

det
(

f (xj, wi)
)

ij

V(x1, . . . , xn)V(w1, . . . , wn)
= ∑

λ∈Λ
dλP̂λ(X)Ŝλ(W), (4.35)

where dλ = ∏n
j=1 dλj+n−j and Ŝλ is the central function in L2

Un
(Hn, M) such that its restriction to the diagonal

matrices is the Schur polynomial Sλ.

4.7 Examples

Example 4.1 Hermite polynomials

Let us consider the family {Hm}m∈N of normalized Hermite polynomials on R. The normalized

Hermite polynomial can be defined using the Rodrigues’ formula,

ex2
Hm(x) =

(−1)m

(
√

π2mm!)1/2

dm

dxm ex2
.

They are orthogonal polynomials with respect to the Gauss measure µ(dx) = e−x2
dx and the Her-

mite polynomial Hm is an eigenfunction of the diffusion operator, called Ornstein-Ulenbeck operator,

given by

L =
∂2

∂x2 − 2x
∂

∂x
, (4.36)

with eigenvalue −2m. Then, for the Markov generator sequence for this family, given by γm = 2m,

the Markov semigroup {Nt}t≥0 is the Ornstein-Uhlenbeck semigroup with generator L. By Mehler’s

formula (see [Urb06], (B.12)) the kernels Nt defining this semigroup can be expressed as

Nt(x, y) =
1√

2π(1− e−2t)
exp

(
e−2t(x2 + y2)− 2e−txy

2(1− e−2t)

)
. (4.37)

The normalized generalized Hermite polynomial for λ ∈ Λ is defined by

Ĥλ(X) =
1√
n!

det(Hλi+n−i(xj))
V(x1, . . . , xn)

, (4.38)
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where x1, . . . , xn are the eigenvalues of the Hermitian matrix X. The family of generalized Hermite

polynomials {Ĥλ}λ∈Λ form an orthogonal basis of the space L2
Un

(Hn, e−Tr(X2)dm(X)), where m is the

Lebesgue measure on Hn, treated as a real vector space.

By Corollary 4.1, the generalized polynomial Ĥλ is an eigenfunction of the Markov semigroup

{T̂t}t≥0, with eigenvalues e−tϕλ where ϕλ = 2 ∑n
j=1 λj. and by Corollary 4.5 and equation (4.37),

T̂t(X, Y) =
1

(2π(1− e2t))n/2
e−t(n−1)n/2

n!V(x1, . . . , xn)V(y1, . . . , yn)
× (4.39)

×det

(
exp

e−2t(x2
j + y2

i )− 2e−txiyj

2(1− e−2t)

)
.

By Proposition 4.4, the operator D, that is, the restriction to the space of diagonal matrices of the

infinitesimal generator D̂ of the semigroup {T̂t}t≥0, is given by

D =
n

∑
k=1

∂2

∂x2
k

+
n

∑
k,i=1k 6=i

2
xk − xi

∂

∂xk
−

n

∑
k=1

2xk
∂

∂xk
. (4.40)

This operator coincides with the operator given in [Las91b] for the case of Schur function expansion

(the parameter α = 1 in that article). The constant c in the definition of the operator D (see (4.17)) is

in this case c = ∑n
j=1 γn−j = n(n− 1).

Since the generating function of the one dimensional normalized Hermite polynomials is given

by (see [Sz59], formula (5.5.7))
∞

∑
m=0

dmHm(x)wm = e2xw−w2
,

with dm = 2m√
m!
√

π
, by Corollary 4.7 for X and W Hermitian matrices with eigenvalues x1, . . . , xn and

w1, . . . , wn respectively

∑
λ∈Λ

dλĤλ(X)Ŝλ(W) =
det(e2xjwi−w2

i )
V(x1, . . . , xn)V(w1, . . . , wn)

,

where dλ = π−n/4 ∏n
j=1

2λj+n−j
√

(λj+n−j)!
and Ŝλ is the central function such that its restriction to the space

of diagonal matrices is the Schur polynomial Sλ. By Proposition II 3.2 of [Far06],

∑
λ∈Λ

dλĤλ(X)Ŝλ(W) = 2(n−1)n/2e−Tr(W) ∑
κ∈Λ

n

∏
i=1

1
(κi + n− i)!

Ŝκ(2X)Ŝκ(W). (4.41)

This generating function coincides, up to a constant, with the one given in [BF97a], Proposition 3.1.

Example 4.2 Laguerre polynomials
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For α > −1, let {Lα
m}m∈N be the family of normalized Laguerre polynomials on R. The polynomial

Lα
m can be defined using the Rodrigues’ formula,

e−xxαLα
m(x) =

1√
m!Γ(α + m + 1)

dm

dxm (e−xxα−m).

They are orthogonal with respect to the measure µα(dx) = xαe−x1(0,∞)(x)dx and the Laguerre poly-

nomial Lα
m is an eigenfunction of the Laguerre operator

Lα = x
∂2

∂x2 + (α + 1− x)
∂

∂x
, (4.42)

with eigenvalue −m. Then, for the Markov generator sequence for this family, given by γm = m,

the Markov semigroup {Nα
t }t≥0 is the Laguerre semigroup with generator Lα. By the Hille-Hardy’s

formula (see [Urb06], (B.26)) the kernels N α
t defining this semigroup can be expressed as

N α
t (x, y) =

kα

1− e−t e−
(x+y)e−t

1−e−t (−xye−t)α/2Jα

(
2

√
−xye−t

1− e−t

)
, (4.43)

where Jα is the Bessel function of order α and kα is a constant.

The normalized generalized Laguerre polynomial for λ ∈ Λ is defined by

L̂α
λ(X) =

1√
n!

det(Lα
λi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
, (4.44)

where x1, . . . , xn are the eigenvalues of the Hermitian matrix X. The generalized Laguerre poly-

nomials {L̂α
λ}λ∈Λ are orthogonal basis of the space L2

Un
(H+

n , Mα), where the measure Mα(dX) =

det Xαe−TrX ∏n
i=1 1(0,∞)(xi)dm(X), with m the Lebesgue measure on Hn, supported in the cone H+

n of

non-negative definite Hermitian matrices.

By Corollary 4.1, the generalized polynomial L̂α
λ is an eigenfunction of the Markov semigroup

{T̂α
t }t≥0 on L2

Un
(H+

n , Mα), with eigenvalue e−tϕλ where ϕλ = ∑n
j=1 λj. By Corollary 4.5 and equation

(4.43),

T̂ α
t (X, Y) =

kn
αe

t(n−1)n
2

(1− e−t)n

det

(
e−

(xj+yi)e−t

1−e−t (−xjyie−t)α/2Jα

(
2
√
−xjyie−t

1−e−t

))
n!V(x1, . . . , xn)V(y1, . . . , yn)

. (4.45)

By Proposition 4.4, the operator Dα, that is, the restriction to the space of diagonal matrices of the

infinitesimal generator D̂α of the semigroup {T̂α
t }t≥0, is given by

Dα =
n

∑
k=1

xk
∂2

∂x2
k

+
n

∑
k,i=1k 6=i

2xk

xk − xi

∂

∂xk
+

n

∑
k=1

(α + 1− xk)
∂

∂xk
. (4.46)
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This operator coincides with the operator given in [Las91b] for the case of Schur function expansion

(the parameter α = 1 in that article). The constant c in the definition of the operator D (see (4.17)) is

in this case c = ∑n
j=1 γn−j = n(n−1)

2 .

The generating function for the one dimensional normalized Laguerre polynomials is given by

(see [Sz59], formula (5.1.1))

∞

∑
m=1

dmLα
m(x)wm = (1− w)−α−1e−

xw
1−w ,

with dm = (−1)m
√

m!

√
Γ(m + α + 1) so, by Corollary 4.7 for X and W Hermitian matrices with eigenval-

ues x1, . . . , xn and w1, . . . , wn respectively

∑
λ∈Λ

dλ L̂α
λ(X)Ŝλ(W) =

det((1− wi)−α−1e−
xjwi
1−wi )

V(x1, . . . , xn)V(w1, . . . , wn)
,

where d2
λ = ∏n

j=1
(−1)λj+n−j
√

(λj+n−j)!

√
Γ(λj + n− j + α + 1). Again, by Proposition II 3.2 of [Far06]

∑
λ∈Λ

dλ L̂α
λ(X)Ŝλ(W) = (−1)

(n−1)n
2 det(I −W)−α−n × (4.47)

× ∑
κ∈Λ

n

∏
i=1

1
(κi + n− 1)!

Ŝκ(−X)Ŝκ(W(I −W)−1).

This generating function coincides up to a constant with the one given in [BF97a], Proposition 4.1,

(4.4).

Example 4.3 Jacobi polynomials

For α, β > −1, let {Jα,β
m }m∈N be the family of normalized Jacobi polynomials on R. The normalized

Jacobi polynomial can be defined using the Rodrigues’ formula,

(1− x)α(1 + x)β Jα,β
m (x) = kα,β

m
dm

dxm ((1− x)α+m(1 + x)β+m),

where kα,β
m is a normalizing constant. They are orthogonal with respect to the measure µα,β(dx) =

(1− x)α(1 + x)β1[−1,1](x)dx and the polynomial Jα,β
m is an eigenfunction of the Jacobi operator

Lα,β = (1− x2)
∂2

∂x2 + [β− α− (α + β + 2)x]
∂

∂x
, (4.48)

with eigenvalue −m(m + α + β + 1). For the Markov generator sequence γ
α,β
m = m(m + α + β + 1)

for this family, the semigroup {Nα,β
t }t≥0 is the Jacobi semigroup, with infinitesimal generator Lα,β.

Unfortunately, there is no reasonable explicit expression for the kernel N α,β
t of this semigroup.



Chapter 4: Semigroups and classical formulas for generalized polynomials 77

The normalized generalized Jacobi polynomial for λ ∈ Λ is defined by

Ĵα,β
λ (X) =

1√
n!

det(Jα,β
λi+n−i(xj))i,j=1,...,n

V(x1, . . . , xn)
, (4.49)

where x1, . . . , xn are the eigenvalues of the Hermitian matrix X. The family { Ĵα,β
λ }λ∈Λ forms an or-

thogonal basis of the space L2
Un

(B̄(0, 1), Mα,β) where B̄(0, 1) is the unit ball in Hn and Mα,β(dX) =

det(I − X)α det(I + X)β ∏i 1[−1,1](xi)dm(X), with m the Lebesgue measure on Hn.

By Corollary 4.1, the generalized polynomial Ĵα,β
λ is an eigenfunction of the semigroup {T̂α,β

t }t≥0,

with eigenvalue e−tϕλ where ϕλ = ∑n
j=1[λj(λj + α + β + 1) + 2λj(n − j)] + (α + β + 1) (n−1)n

2 . By

Proposition 4.4, the operator Dα,β, the restriction to the space of diagonal matrices of the infinitesimal

generator D̂α,β of this semigroup, is given by

Dα,β =
n

∑
k=1

(1− x2
k)

∂2

∂x2
k

+
n

∑
k,i=1k 6=i

2(1− x2
k)

xk − xi

∂

∂xk
+ (4.50)

+
n

∑
k=1

[α− β− (α + β + 1)xk]
∂

∂xk
.

This operator coincides with the operator given in [Las91b] for the case of Schur function expansion

(the parameter α = 1 in that article). The constant c in the definition of the operator D (see (4.17)) is

in this case c = ∑n
j=1 γn−j = 2n(n−1)(n−2)

3 + (a + b + 2) n(n−1)
2 .

The generating function for the one dimensional Jacobi polynomials is (see [Sz59], formula (4.4.5))

∞

∑
m=0

dm Jα,β
m (x)wm = 2α+βR−1/2{1− w + R1/2}−α{1 + w + R1/2}−β,

where R = 1− 2xw + w2 and d2
m = 2α+β+1

2m+α+β+1
Γ(m+α+1)Γ(m+β+1)

m!Γ(n+α+β+1) . By Corollary 4.7 for X, W Hermitian

matrices with eigenvalues x1, . . . , xn and w1, . . . , wn respectively,

∑
λ∈Λ

dλ Ĵα,β
λ (X)Ŝλ(W) =

det
(

R−1/2
ij {1− wi + R1/2

ij }−α{1 + wi + R1/2
ij }−β

)
2−n(α+β)V(x1, . . . , xn)V(w1, . . . , wn)

, (4.51)

where d2
λ=2n(α+β+1)∏n

i=1
Γ(λi+n−i+α+1)Γλi+n−i+β+1

(2(λi+n−i)+α+β+1)(λi+n−i)!Γ(λi+n−i+α+β+1) and Ri,j=1− 2xjwj + w2
i .

Example 4.4 Charlier polynomials

For a > 0, let {ca
m}m∈N the family of normalized Charlier polynomials. They are orthogonal with

respect to the Poisson measure µa with atoms at x ∈N, given by

µa({x}) =
e−aax

x!
.
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The polynomial ca
m is an eigenfunction of the discrete diffusion operator

La = x∆∇+ (a− x)∆, (4.52)

with eigenvalue −m, that is, La is the infinitesimal generator of the Markov semigroup {Na
t }t≥0

associated to the Charlier polynomials for the Markov generator sequence γm = m.

The normalized generalized Charlier polynomial for λ ∈ Λ, is defined by

Ĉa
λ(X) =

1√
n!

det(ca
λj+n−j(xi))

V(x1, . . . , xn)
, (4.53)

where x1, . . . , xn are the eigenvalues of the Hermitian matrix X. It is an eigenfunction of the Markov

semigroup {T̂a
t } defined in Corollary 4.1, with eigenvalues e−tϕλ where ϕλ = ∑n

j=1 λj. By Proposition

4.7, the operator Da, the restriction to the space of diagonal matrices of the infinitesimal generator D̂a

of this semigroup, is given by

Da f (x) =
n

∑
k=1

a
V(x + ek)

V(x)
∆k f (x)−

n

∑
k=1

xk
V(x− ek)

V(x)
∇k f (x). (4.54)

The one dimensional Charlier polynomials have generating function given by

∞

∑
m=0

a−m/2
√

m!
ca

m(x)wn = e−w
(

1 +
w
a

)x
,

then, according to Corollary 4.7 for X, W Hermitian matrices with eigenvalues x1, . . . , xn and w1, . . . wn

respectively,

∑
λ∈Λ

dλĈa
λ(X)Ŝλ(W) =

det(e−wi(1 + wi
a )xj)

V(x1, . . . , xn)V(w1, . . . , wn)
,

with dλ = ∏n
i=1

a
λi+n−i

2√
(λi+n−i)!

. Since

det(e−wi(1 +
wi

a
)xj) = e−∑n

i=1 wi det((1 +
wi

a
)xj),

the generating function for the generalized Charlier polynomials is

∑
λ∈Λ

dλĈa(X)Ŝλ(W) = e−TrW det((1 + wi
a )xj)

V(x1, . . . , xn)V(w1, . . . , wn)
. (4.55)

Example 4.5 Meixner polynomials

For a > 0 and 0 < b < 1, the family of normalized Meixner polynomials {ma,b
m }m∈N are orthogo-

nal with respect to the discrete measure µa,b with atoms at x ∈N given by

µa,b({x}) =
bxΓ(a + x)

x!Γ(a)
.
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The polynomial ma,b
m is an eigenfunction of the discrete diffusion operator

La,b = x∆∇+ [ab− x(1− b)]∆, (4.56)

with eigenvalue −m(1 − b), that is, La,b is the infinitesimal generator of the Markov semigroup

{Na,b
t }t≥0 associated to the Meixner polynomials for the Markov generator sequence γa,b

m = m(1− b).

The normalized generalized Meixner for λ ∈ Λ, is defined by

M̂a,b
λ (X) =

1√
n!

det(ma,b
λj+n−j(xi))

V(x1, . . . , xn)
, (4.57)

where x1, . . . , xn are the eigenvalues of the Hermitian matrix X. This generalized polynomial is an

eigenfunction of the Markov semigroup {T̂a,b
t }t≥0 defined in Corollary 4.1, with eigenvalue e−tϕa,b

λ

where ϕa,b
λ = (1 − b) ∑n

j=1 λj. By Proposition 4.7, the operator Da,b, the restriction to the space of

diagonal matrices of the infinitesimal generator D̂a,b of this semigroup, is given by

Da,b f (x) =
n

∑
k=1

b(a + xk)
V(x + ek)

V(x)
∆k f (x)−

n

∑
k=1

xk
V(x− ek)

V(x)
∇k f (x). (4.58)

The generating function for the one dimensional Meixner polynomials is given by

∞

∑
m=0

(−1)m(la,b
m )1/2ma,b

m (x)wn =
(

1− w
b

)x
(1− w)−(a+x),

where la,b
m = (a)m

m!bm/2 . So, according to Corolary 4.7, for X, W ∈ Hn with eigenvalues x1, . . . , xn and

w1, . . . , wn respectively

∑
λ∈Λ

dλM̂a,b
λ (X)Ŝλ(W) =

det(
(
1− wi

b

)xj (1− wi)−(a+xj))
V(x1, . . . , xn)V(w1, . . . , wn)

, (4.59)

where dλ = ∏n
i=1(−1)λ1+n−i

(
(a)λi+n−i

(λi+n−i)!b
λi+n−i

2

)1/2

.

Example 4.6 Kravchuk polynomials

For N ∈ N and 0 ≤ p ≤ 1, the family of normalized Kravchuk polynomials {kp
m}N

m=0 is orthog-

onal in the space l2(N ∩ [0, N], µp), where µp is the binomial measure with atoms at x = 0, . . . , N

given by

µp({x}) =
(

N
x

)
px(1− p)N−x.

The polynomial kp
m is an eigenfunction of the discrete diffusion operator

Lp = x∆∇+
Np− x
1− p

∆
m

1− p
, (4.60)
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with eigenvalue − m
1−p , that is, Lp is the infinitesimal generator of the Markov semigroup {Np

t }t≥0

associated to the Kravchuk polynomials for the Markov generator sequence γ
p
m = m

1−p .

The normalized generalized generalized Kravchuk polynomial, for λ ∈ Λ such that λ1 + n− 1 ≤

N, is defined by

K̂
p
λ(X) =

1√
n!

det(kp
λj+n−j(xi))

V(x1, . . . , xn)
, (4.61)

where x1, . . . , xn are the eigenvalues of X ∈ Hn. Note that the condition λ1 + n − 1 ≤ N for the

partition λ implies that λj + n− j ≤ N, for all 1 ≤ j ≤ n and therefore kp
λj+n−j is always defined. The

family of generalized Kravchuk polynomials is finite. The generalized polynomial K̂
p
λ is an eigen-

function of the Markov semigroup {T̂p
t }t≥0 defined in Corollary 4.1, with eigenvalues e−tϕ

p
λ where

ϕ
p
λ = 1

1−p ∑n
j=1 λj. By Proposition 4.7, the operator Dp, the restriction to the space of diagonal matri-

ces of the infinitesimal generator D̂p of this semigroup, is given by

Dp f (x) =
n

∑
k=1

p
1− p

(1− xk)
V(x + ek)

V(x)
∆k f (x)−

n

∑
k=1

xk
V(x− ek)

V(x)
∇k f (x). (4.62)

The generating function for the one dimensional Kravchuk polynomials is

N

∑
m=0

(
N
m

)m/2

(p(1− p))m/2kp
m(x)wn = (1 + (1− p)w)x(1− pw)N−x.

So, according to Corollary 4.7, for X, W ∈ Hn with eigenvalues x1, . . . , xn and w1, . . . , wn respectively

∑
{λ:λ1+n−1≤N}

dλK̂
p
λ(X)Ŝλ(W) =

det((1 + (1− p)wi)xj(1− pwi)N−xj)
V(x1, . . . , xn)V(w1, . . . , wn)

, (4.63)

where dλ = ∏n
i=1 ( N

λi+n−i)
λi+n−1

2 (p(1− p))
λi+n−1

2 .

Example 4.7 Hahn polynomials

For N ∈ N and α, β > −1, the family of normalized Hahn polynomials {hα,β
m }N

m=0 is orthogonal

in the space l2(N ∩ [0, N], µα,β), where µα,β is the discrete measure with atoms in x = 0, . . . , N given

by

µα,β({x}) =
Γ(N + 1 + α− x)Γ(β + 1 + x)

x!(N − x)!
.

The polynomial hα,β
m is an eigenfunction of the discrete diffusion operator

Lα,β = x(N + 1 + α− x)∆∇+ [(β + 1)N − (α + β + 2)x]∆, (4.64)
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with eigenvalue −m(m + α + β + 2), that is, Lα,β is the infinitesimal generator of the Markov semi-

group {Nα,β
t }t≥0 associated to the Hahn polynomials for the Markov generator sequence γ

α,β
m =

m(m + α + β + 2).

The normalized generalized generalized Hahn polynomial, for λ ∈ Λ such that λ1 + n− 1 ≤ N,

is defined by

Ĥ
α,β
λ (X) =

1√
n!

det(hα,β
λj+n−j(xi))

V(x1, . . . , xn)
, (4.65)

where x1, . . . , xn are the eigenvalues of X ∈ Hn. The family of generalized Hahn polynomials is

also finite. The generalized polynomial Ĥ
α,β
λ is an eigenfunction of the Markov semigroup {T̂α,β

t }t≥0

defined in Corollary 4.1, with eigenvalues e−tϕ
α,β
λ where ϕ

α,β
λ = ∑n

j=1[λj(λj + α + β + 2) + 2λj(n −
j)] + (α + β + 2) (n−1)n

2 . By Proposition 4.7, the operator Dα,β, the restriction to the space of diagonal

matrices of the infinitesimal generator D̂α,β of this semigroup, is given by

Dα,β f (x) =
n

∑
k=1

[(α + β + 1)N − (α + β + 2)xk + α]
V(x + ek)

V(x)
∆k f (x)− (4.66)

−
n

∑
k=1

xk(N + 1 + α− xk)
V(x− ek)

V(x)
∇k f (x).

As an special case of this family, when α = β = 0, we obtain the family of discrete Chebyshev

polynomials {tm}N
m=1.
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Appendix A

Orthogonal polynomials

Let µ be a finite Borel measure on R with finite moments. By applying the Gram–Schmidt orthog-

onalization process on L2(R, µ) to the monomials, we obtain a unique, except for a constant, family

of orthogonal polynomials {pm}m∈N in L2(R, µ). We call this family, the orthogonal polynomials

associated to the measure µ, or with respect to the measure µ.

If µ is a non–atomic measure, we will say that the polynomials pm are of a continuous variable

and if µ is absolutely continuous with respect to the Lebesgue measure on R, that is, if there exists a

function w : R→ R+ such that µ(A) =
∫

A w(x)dx for any Borel set A ⊆ R, then we will refer to the

family {pm}m∈N as the orthogonal polynomials associated to the weight function w.

If µ is a purely atomic measure, then we will say that the polynomials pm are of a discrete variable.

If µ has finite support, let us say, in N, then L2(R, µ) = l2(N, µ). If the support of µ is finite, let us say

{0, 1, . . . , N − 1}, then the functions 1, x, x2, . . . , xN−1 are still linearly independent and by applying

the Gram–Schmidt orthogonalization process we obtain a finite system of orthogonal polynomials

p0, p1, . . . , pN−1, and therefore the L2 space is, in this case, a finite dimensional space.

We are interested in measures µ such that this orthogonal system is complete in L2(R, µ). There

are many conditions over µ that guarantees the density of the polynomials; see for example Th. 1.5.2

in [Sz59] for the absolutely continuous case. A very general condition is that µ has an exponential

moment, that is, there exists ε > 0 such that
∫

R
eε|x|dµ(x) < ∞. The density of the monomials

{xm}m∈N, and therefore of the orthogonal polynomials, in L2(R, µ) is well known (Th. 3.1.18, [DX01]

or [BC81]).

When we apply the Gram–Schmidt orthogonalization process to the monomials, we obtain a

85
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unique system, except for a constant. The system is unique if we fix a condition, for example, if

we ask normality. This is not the only normalization condition that can be asked; indeed, among

the frequently considered type of normalization conditions for orthogonal polynomials we have to

require each polynomial to be monic or to require the constant term of the polynomial to be equal to

one.

By the construction of the family {pm}m∈N by the Gram-Schmidt process, we have that each

polynomial of degree m can be written as a linear combination of p1, . . . , pm and therefore, for each

m ∈N, the polynomial pm is orthogonal in L2(R, µ) to any polynomial of degree k < m; in particular∫
R

pm(x)xkdµ(x) = 0, para todo m = 0, 1, . . . , m− 1. (A.1)

In fact, this condition determines the polynomial pm except for a constant. If we think the coefficients

of the polynomial pm as variables, then equation (A.1) determines a linear system with m equations

and m + 1 variables in which the coefficients are the moments of the measure µ. When we fix a

normalization constant, we are adding one more equation to this system and therefore, when we

solve it, we obtain an unique solution in term of the moments of the measure µ.

The orthogonality property implies a series of important properties for the polynomials. In what

follows we will name some of them. For details we refer to [Sz59], Ch. 3.

For any three consecutive orthogonal polynomials, we have

pm(x) = (Amx + Bm)pm−1 − Cm pm−2, n = 2, 3, . . . , (A.2)

where Am, Bm, Cm are constants, Am = am
am−1

, Cm =
Am‖pm−1‖2

L2(R,µ)

Am−1‖pm−2‖2
L2(R,µ)

and am is the principal coefficient

of the polynomial pm. This formula is known as the three term recurrence relation and it is very

useful both in theory and in practice.

As a consequence of relation we have the Christoffel–Darboux formula: for any m ∈ N and

x, y ∈ R such that x 6= y,

m

∑
k=0

pk(x)pk(y)
‖pk‖2

L2(R,µ)
=

pm+1(x)pm(y)− pm(x)pm+1(y)
Am‖pm‖2

L2(R,µ)(x− y)
, (A.3)

where Am is as before. This identity is very useful in the study of the distribution of the zeros of

orthogonal polynomials.

If the family of orthogonal polynomials has a generating function, that is, a function f (x, w) such

that the m–est coefficient of its development in terms of 1, w1, w2, . . . is, except for a constant, the
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polynomial pm(x)

f (x, w) =
∞

∑
m=0

dm pm(x)wm, |w| < r. (A.4)

This function determines, except for a constant, the family of polynomials {pm}m∈N.

In what follows we will name this and other identities for the families of classical orthogonal

polynomials.

A.1 Classical orthogonal polynomials of a continuous variable

The usually known as classical orthogonal polynomials are the Hermite, Laguerre and Jacobi

polynomials. They have in common that they are solutions of differential equations of the form

a(x)y′′ + b(x)y′ + λy = 0, (A.5)

where a and b are polynomials of degree at most 2 and 1 respectively, and λ is a constant.

Diverse models in atomic, molecular and nuclear physics, electrodynamics and acoustics can be

reduced to an equation of this type. The solutions of this type of equation, among them, the classical

orthogonal polynomials, are extensively used in mathematical physics.

Some of the identities for this classical polynomials are shown bellow.

Hermite polynomials

The Hermite polynomials {Hm}m∈N, are the orthogonal polynomials on R with respect to the

Gaussian measure µ(dx) = e−x2
dx. If we ask for each polynomial Hm to be monic, then they have the

explicit representation

Hm(x)
m!

=
[ m

2 ]

∑
k=0

(−1)k

22kk!
xm−2k

(m− 2k)!
. (A.6)

From this formula we have that for m odd, Hm(0) = 0, and therefore it is not possible to normalize

by requiring the constant term to be equal to one. The norm of this polynomials is given by

‖Hm‖2
L2(R,µ) =

m!√
π

. (A.7)

The Hermite polynomial of degree m is the unique polynomial solutions of the differential equa-

tions of hypergeometric type

y′′ − 2xy′ + 2my = 0. (A.8)
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For each m ∈N the Christoffel–Darboux formula for these polynomials is given by

m

∑
k=0

2k

k!
Hk(x)Hk(y) =

2m

m!
Hm+1(x)Hm(y)−Hm(x)Hm+1(y)

x− y
(A.9)

and their generating function is
∞

∑
m=0

2m

m!
Hm(x)wm = e2xw−w2

. (A.10)

The Rodrigues’ formula for the Hermite polynomials is

ex2
Hm(x) = (−1)m2m dm

dxm ex2
. (A.11)

Laguerre polynomimals

The Laguerre polynomials {Lα
m}m∈N, α > −1, are the orthogonal polynomials on [0, ∞) with

respect to the measure µα(dx) = xαe−x1[0,∞)(x)dx. If we normalize by requiring Lα
m(0) = 1, then we

have the explicit representation

Lα
m(x) =

m

∑
k=0

(
m
k

)
(−x)k

(α + 1)k
. (A.12)

The norm if this polynomials is given by

‖Lα
m‖2

L2(R,µα) = lα
m =

m!Γ2(α + 1)
Γ(α + m + 1)

. (A.13)

The Laguerre polynomial of degree m is the unique polynomial solution of the differential equa-

tions of hypergeometric type

xy′′ + (α + 1− x)y′ + my = 0. (A.14)

For each m ∈N the Christoffel–Darboux formula for these polynomials is given by

m

∑
k=0

(
k + α

k

)
Lα

k (x)Lα
k (y) = (m + 1)

(
m + α + 1

m + 1

)
Lα

m+1(x)Lα
m(y)− Lα

m(x)Lα
m+1(y)

x− y
(A.15)

and their generating function is

∞

∑
m=0

(
m + α

m

)2

Lα
m(x)wm = (1− w)−α−1e−

xw
1−w . (A.16)

The Rodrigues’ formula for the Laguerre polynomials is

e−xxα

(
m + α

m

)
Lα

m(x) =
1

m!
dm

dxm (e−xxm+α). (A.17)
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Jacobi polynomials

For α, β > −1 the Jacobi polynomials {Jα,β
m }m∈N, are the orthogonal polynomials on [−1, 1] with

respect to the measure µα,β(dx) = (1− x)α(1 + x)β1[−1,1](x)dx. For each m ∈ N, the polynomial J
α,β
m

is a solution of the differential equation

(1− x2)y′′ + [β− α− (α + β + 2)x]y′ + m(m + α + β + 1)y = 0. (A.18)

Among some especial cases we have:

(i) Legendre polynomials, for α = β = 0.

(ii) Chebyshev polynomials of the first kind, for α = β = −1/2.

(iii) Chebyshev polynomials of the second kind, for α = β = 1/2.

(iv) Gegenbauer or ultraspherical polynomials, for α = β = λ− 1/2, with λ > 0.

We will also consider a related family of Jacobi polynomials

P
α,β
m (x) := J

α,β
m (1− 2x). (A.19)

The family of Jacobi polynomials {Pα,β
m }m∈N are orthogonal on [0, 1] with respecto to the measure

να,β(dx) = xα(1− x)β1[0,1](x)dx. If we normalize by requiring P
α,β
m (0) = 1, they have the explicit

representation

P
α,β
m (x) =

m

∑
k=0

(m + α + β + 1)k

(α + 1)k

(
m
k

)
(−x)k . (A.20)

The norm of the polynomial P
α,β
m is given by

‖Pα,β
m ‖2

L2(R,µα,β) = hα,β
m =

2α+β+1

2m + α + β + 1
Γ(m + α + 1)Γ(m + β + 1)
Γ(m + 1)Γ(m + α + β + 1)

. (A.21)

For each m ∈N the Christoffel–Darboux formula for these polynomials is given by

m

∑
k=0

1

hα,β
k

P
α,β
k (x)Pα,β

k (y) =
2−α−β−1

2m + α + β + 2
Γ(m + 2)Γ(m + α + β + 2)
Γ(m + α + 1)Γ(m + β + 1)

× (A.22)

×
P

α,β
m+1(x)Pα,β

m (y)− P
α,β
m (x)Pα,β

m+1(y)
y− x

and their generating function is

∞

∑
m=0

P
α,β
m (x)wm = 2α+βR−1/2{1− w + R1/2}−α{1 + w + R1/2}−β, (A.23)

where R = (1− w)2 + 4xw.
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The Rodrigues’ formula for these Jacobi polynomials is

xα(1− x)βP
α,β
m (x) =

1
m!

dm

dxm (xα+m(1− x)β+m). (A.24)

A.2 Classical orthogonal polynomials of a discrete variable

The families of Charlier, Mexnier, Kravchuk and Hahn polynomials, called classical orthogonal

polynomials of a discrete variable in [MSU91], are an important class of special function that arises

naturally in various problems of mathematics, theoretical physics and engineering; this field is in

extensive development. The study of classical orthogonal polynomials of a discrete variable was

initiated by P.L. Chebyshev in the middle of the last century and continued with great interest.

The orthogonal polynomials of a discrete variable can be characterized in terms of the difference

equation of hypergeometric type

σ(x)∆∇y + τ(x)∆y + λy = 0, (A.25)

where σ and τ are polynomials of degree at most 2 and 1 respectively, and the difference operator ∆

and ∇ are given by

∆ f (x)= f (x + 1)− f (x),

∇ f (x)= f (x)− f (x− 1).

The equation (A.25) may be obtained by approximating the differential equation (A.5).

Among one of the few books that address this topic extensively we find [MSU91]. In his mono-

graph we can find a systematic, concise presentation of the theory of classical orthogonal polynomials

of a discrete variable and of its applications.

Charlier polynomials

For a > 0, the family of normalized Charlier polynomials {ca
m}m∈N is orthogonal in the space

l2(N, µa), where the measure µa is the Poisson measure with atoms at x ∈N, given by

µa({x}) =
e−aax

x!
. (A.26)
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For m ∈N, the polynomial ca
m is a solutions of the difference equation

x∆∇y + (a− x)∆y + my = 0. (A.27)

The generating function for this polynomials is given by

∞

∑
m=0

a−m/2
√

m!
ca

m(x)wn = e−w
(

1 +
w
a

)x
. (A.28)

A Rodrigues’s type formula for this polynomials is given by

ca
m(x) =

(−1)ma−m/2

e−a
√

m!
x!
ax∇

m
[

e−aax+m

x!

]
. (A.29)

Mexnier polynomials

For a > 0 and 0 < b < 1, the family of normalized Meixner polynomials {ma,b
m }m∈N is orthogonal

in the space l2(N, µa,b) where µa,b is the discrete measure with atoms at x ∈N given by

µa,b({x}) =
bxΓ(a + x)

x!Γ(a)
. (A.30)

For each m ∈N, the polynomial ma,b
m is a solution of the difference equation

x∆∇y + [ab− x(1− b)]∆y + m(1− b)y = 0. (A.31)

The generating function for this polynomials is given by

∞

∑
m=0

(−1)m(la,b
m )1/2ma,b

m (x)wn =
(

1− w
b

)x
(1− w)−(a+x), (A.32)

where

la,b
m =

(a)m

m!bm/2 . (A.33)

A Rodrigues’s type formula for this polynomials is given by

ma,b
m (x) =

(−1)mb−m/2(1− b)a/2
√

m!(a)1/2
m

x!Γ(a)
bxΓ(a + x)

∇m
[

bx+m Γ(x + a + n)
Γ(a)x!

]
. (A.34)
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Kravchuk polynomials

For N ∈ N and 0 ≤ p ≤ 1, the family of normalized Kravchuk polynomials {kp
m}N

m=0 is orthogo-

nal in the space l2(N∩ [0, N], µp) where µp is the binomial measure with atoms at x = 0, . . . , N given

by

µp({x}) =
(

N
x

)
px(1− p)N−x. (A.35)

They are solution of the difference equation

x∆∇y +
Np− x
1− p

∆y +
m

1− p
y = 0. (A.36)

The generating function for this polynomials is given by
N

∑
m=0

(
N
m

)m/2

(p(1− p))m/2kp
m(x)wn = (1 + (1− p)w)x(1− pw)N−x (A.37)

A Rodrigues’s type formula for kp
m is given by

kp
m(x)=

(−1)m pm/2(1− p)m/2

m!

(
N
m

)1/2(N
x

)−1

p−x(1− p)−N+m+x ×

×∇m
[

N!
x!(N −m− x)!

px+m(1− p)N−m−x
]

. (A.38)

Hahn polynomials

For N ∈ N and α, β > −1, the family of normalized Hahn polynomials {hα,β
m }N

m=0 is orthogonal

in the space l2(N ∩ [0, N], µα,β), where µα,β is the discrete measure with atoms at x = 0, . . . , N given

by

µα,β({x}) =
Γ(N + 1 + α− x)Γ(β + 1 + x)

x!(N − x)!
. (A.39)

They are solution of the difference equation

x(N + 1 + α− x)∆∇y + [(β + 1)N − (α + β + 2)x]∆y + m(m + α + β + 1)y = 0. (A.40)

A Rodrigues’s type formula for hα,β
m is given by

hα,β
m (x)=

(−1)m(dα,β
m )1/2

m!
x!(N − x)!

Γ(N + α− x + 1)Γ(β + x + 1)
×

×∇m
[

Γ(N + α− x + 1)Γ(m + β + x + 1)
x!(N −m− x)!

]
. (A.41)

As a special case of this family, when α = β = 0, we have the discrete Chebyshev polynomials

{tm}N
m=0.
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