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Centralized and Distributed Implementations of Correct-by-construction
Component-based Systems by using Source-to-source Transformations in BIP

Abstract

The thesis studies theory and methods for generating automatically centralized and dis-
tributed implementations from a high-level model of an application software in BIP. BIP
(Behavior, Interaction, Priority) is a component framework with formal operational se-
mantics. Coordination between components is achieved by using multiparty interactions
and dynamic priorities for scheduling interactions. A key idea is to use a set of correct
source-to-source transformations preserving the functional properties of a given applica-
tion software. By application of these transformations we can generate a full range of
implementations from centralized to fully distributed.

Centralized Implementation: the implementation method transforms the interactions of
an application software described in BIP and generates a functionally equivalent program.
The method is based on the successive application of three types of source-to-source trans-
formations: flattening of components, flattening of connectors and composition of atomic
components. We shown that the system of the transformations is confluent and terminates.
By exhaustive application of the transformations, any BIP component can be transformed
into an equivalent monolithic component. From this component, efficient standalone C++
code can be generated.

Distributed Implementation: the implementation method transforms an application
software described in BIP for a given partition of its interactions, into a Send/Receive
BIP model. Send/Receive BIP models consist of components coordinated by using asyn-
chronous message passing (Send/Receive primitives). The method leads to 3-layer architec-
tures. The bottom layer includes the components of the application software where atomic
strong synchronization is implemented by sequences of Send/Receive primitives. The sec-
ond layer includes a set of interaction protocols. Each protocol handles the interactions of a
class of the given partition. The third layer implements a conflict resolution protocol used
to resolve conflicts between conflicting interactions of the second layer. Depending on the
given partition, the execution of obtained Send/Receive BIP model range from centralized
(all interactions in the same class) to fully distributed (each class has a single interaction).
From Send/Receive BIP models and a given mapping of their components on a platform
providing Send/Receive primitives, an implementation is automatically generated. For
each class of the partition we generate C++ code implementing the global behavior of its
components.

The transformations have been fully implemented and integrated into BIP tool-set.
The experimental results on non trivial examples and case studies show the novelty and
the efficiency of our approach.

Key words: Component-based modeling, source-to-source transformation, correct-by-
construction, distributed systems, optimization for performance.
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CHAPTER 1

Introduction

Contents

1.1 Challenges in Building Correct Component-based Systems . . 21

1.2 State-of-the-Art of Component-based Systems Design and Im-
plementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Existing component-based frameworks . . . . . . . . . . . . . . . . 24

1.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 28

1.1 Challenges in Building Correct Component-based Sys-
tems

Computer systems are ubiquitous today, they are touching all aspects of human life.
We can find them in different types of applications from automobile, to mundane home
appliances like washing machines and microwave ovens, to aeronautic, military, telecom-
munication, medical etc.

Systems become more and more complex and their adoption is increasing exponentially.
Moreover, the need to prove and to ensure their correctness, efficiency and reliability is an
essential task that is also becoming complex. Although different techniques in software en-
gineering exist for ensuring correctness such as formal verification, simulation, and testing,
building correct and reliable systems is still a time-consuming and hardly predictive task.

21
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Errors still exist in up to 90% of production spreadsheets. Moreover, the time spent in
debugging them is considerably high and sometimes with no satisfying results. As an ex-
ample, the United States has attempted to replace its air traffic control system three times
in the past twenty years, but despite the billions of US dollars spent, no such replacement
has happened.

Component-based Approach The most basic technique to tackle complex and large
problems is to decompose them into smaller ones. As complex systems can be obtained
by assembling components (building blocks), the process design of these complex systems
may be reduced to the study of smaller and simpler ones. Thus, using such frameworks
(called component-based) that allow building systems from predefined given components
would be a great interest.

Component-based system development requires methods and tools supporting different
concepts of architecture which provide a characterization coordination between compo-
nents. An architecture is the structure of a system. It involves components and their
relationship between the externally visible properties. This means that the architecture
describes how components are connected and how they can interact. Consequently, the
global behavior of a system can in principle be inferred from the behavior of its com-
ponents and its architecture. Component-based systems provide logical clear descriptions
which make them a good candidate for a correct-by-construction process. In addition, they
allow sub-systems to be reused as well as their incremental modification without requir-
ing global changes, which may significantly simplify the verification process. Nonetheless,
clarity and expressiveness of component-based systems may be at the detriment of effi-
ciency. Indeed, naive compilation of component-based systems generally results in great
inefficiency as a consequence of the interconnection of components [Lov77].

High-Level Design When designing systems, dealing with their complexity at a high-
level is a great help for the designers. In fact, it would be easier for designers to start
working on the system at a high-level, where they do not have to take into account the
complexity of the system. This modeling phase is beneficial, as designers can abstract away
implementation details and validate the model with respect to a set of intended require-
ments through different techniques such as formal verification, simulation, and testing.

Unfortunately, once the abstract model is validated, deriving correct and efficient im-
plementation from it is always challenging, since adding implementation details involves
many subtleties that can potentially introduce errors into the resulting system.

Implementation Level High-level design is used to prototype and validate new designs.
After this phase, the design is typically translated by hand into code for a system implemen-
tation. However, this translation process is complex and it may reduce the contribution
of the verification and testing done at the high-level model. Therefore, automatic code
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Chapter 1. Introduction

generation is necessary and may provide an important time gain. Nevertheless, the main
drawback of this automatic approach is its efficiency. Indeed, the efficiency of a generated
code depends in general on the target architecture.

Given a high-level model, the implementation generated could be, in general, central-
ized or distributed. This depends both on the topology of the systems and the architecture
on which the system will be deployed. For instance, if we consider a centralized system
with a small amount of computation and a high-level of communications overhead, then a
centralized implementation behaves better than a distributed one. In other cases, we may
have to choose a distributed implementation because the system itself is geographically
distributed, or because deriving more computational power by using multiple processors is
necessary. These kind of systems where distributed implementation is needed, are mainly
used for world-wide-web, network-file server, banking network, peer-to-peer networks, pro-
cess control systems, sensor networks, grid computing, etc.
It is clear the complexity are amplified significantly in the case of deriving distributed imple-
mentation because of inherently concurrent, non-deterministic, and non-atomic structure
of distributed systems, as well as the occurrence of unanticipated physical and computa-
tional events such as faults. Moreover, it is unclear how to transform an abstract model
(where atomicity is assumed through global state semantics and distribution details are
omitted via employing high-level synchronization primitives) into a real distributed imple-
mentation.

int f(...) {

send(a,b);
i++;
....

}

int f(...) {

send(a,b);
i++;
....

}

int f(...) {

send(a,b);
i++;
....

}
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Transformation
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High−level Component−based Design Language

Figure 1.1: High-level component-based design into implementation.
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In this thesis we propose a theory and tools for automatically derives correct and efficient
centralized and distributed implementation in a systematic and ideally automated correct
fashion from a high-level component-based framework. This is achieved, by using correct-
by-construction source-to-source transformations techniques (see Figure 1.1).

The rest of the chapter is organised as follows. First in Section 1.2 we give a brief
description of the current state of the art of component-based systems design and imple-
mentation. Then, in Section 1.3 we present the contribution of the thesis. Finally, we
describe the outline of the thesis in Section 1.4.

1.2 State-of-the-Art of Component-based Systems Design
and Implementation

In this section we summarize a brief description of the current state-of-the-art in
component-based systems.

1.2.1 Existing component-based frameworks

Component-based design techniques are used to cope with the complexity of the sys-
tems. The idea is that complex systems can be obtained by assembling components. This
is essential for the development of large-scale, evolvable systems in a timely and affordable
manner. It offers flexibility in the construction phase of systems by supporting the addi-
tion, removal or modification of components without any or very little impact on other
components. Components are usually characterized by abstractions that ignore implemen-
tation details and describe relevent properties to their composition, e.g. transfer functions,
interfaces. The main feature of component-based design frameworks is allowing composi-
tion. This composition is used to build complex components from simpler ones. It can be
formalized as an operation that takes, as input, a set of components and their integration
constraints and provides, as output, the description of a new more complex component.
This approach allows to cope with the complexity of systems by offering incrementality in
the construction phase. There exists a large body of literature dealing with component-
based design. The following works are related to this approach:

– PtolemyII [DII+99, EJL+03] is a software framework, developed at Electrical Engi-
neering and Computer Sciences (EECS) UC Berkeley University. PtolemyII focuses
on component-based heterogeneous modeling. It advocates an actor-oriented view
of a system, where the basic building block of a system is an actor. A model is a
hierarchical interconnection of actors. Actors are software components that run con-
currently and communicate through interfaces called ports. An actor can be atomic,
in which case it must be at the bottom of the hierarchy. An actor can be composite,
in which case it contains other actors. The semantics of a model is not determined
by the framework, but rather than by a software component in the model called di-
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rector, which implements a model of computation. PtolemyII allows the simulation
of models. However, the verification of models is, currently, not possible. Work is
underway to add this possibility. It allows the generation of code, to do this, each
component must be accompanied by a model (”template”) of C code which will be
completed by the code generator. Moreover, PtolemyII has no intrinsic notion of
mapping between actors or of using declarative specification in the design.

– IF (Intermediate Format) [BGO+04] is a toolset, developed at Verimag. The IF
toolset is a platform for component modeling and validation. It consists of set of
timed automata communicating, either asynchronously by sending signals through
FIFO, or synchronously with rendez on synchronized ports. The IF toolset uses
techniques such as partial order reduction and on-the-fly model checking to explore
the state space of the IF specification, giving access at the semantic level, to the
corresponding labeled transition system (LTS). The latter can be analysed using
the tool suite CADP [FGK+96], including the minimization and comparison tool
Aldebaran based on bisimulation, and the alternating-free -calculus model-checker
Evaluator.

– Fractal [BCS02, BCL+06] is a component model, developed at France Telecom R&D
and INRIA France. Fractal is a general component model for implementing, de-
ploying and managing complex software systems. It can be understood generally as
being composed of a membrane which consists of a set of components (called sub-
components) and one or more interfaces (similar to port in other component models).
Interfaces can be of two kinds: server interfaces for incoming operation invocations,
and client interfaces for outgoing operations invocations. Think [FSLM02, AHJ+09]
is one of the Fractal implementation.
However Fractal and THINK do not provide tools or analysis techniques, whether
for simulation or verification.

– Metropolis [BWH+03] and its successor [DDM+07]. Metropolis is a component-based
framework : atomic component containing behavior (code), composite component
containing other sub-components. Interfaces of components consist of a set of ports
used either for asynchronous communications (send events), or for rendez-vous (syn-
chronization between components). Metro II provides a frontend which produces an
internal representation from the meta-model. This representation can be used for,
generation of C++ code for simulation, or generation model used with the SPIN
model-checker, etc.

Other developments deal, one way or another, with issues related to component-based
modeling:

– Software Design Description Languages [GS04, BFL+04], and Architecture Descrip-
tion Languages focusing on non-functional aspects [VPL99, AVCL02].

– Standardized system modeling languages such as UML [OMG] and associated tools.
– Languages and notations specific to system design tools such as SystemC [Pan01,
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RHG+01], GME [BGK+06], Simulink/Stateow [Mat], Autofocus [HS02].
– Middleware standards such as Corba, Javabeans, .NET
– Software development environments such as PCTE, SWbus, Softbench, Eclipse.
– Coordination language extension of programming languages such as Linda, Javas-

paces [FAH99], TSpaces [FLN+03], Concurrent Fortran, nesC [GLvB+03] and Poly-
phonic C♯ [BCF02].

– Theoretical frameworks based on process algebras e.g., the Pi-Calculus [Mil98] or
based on automata e.g., [RC03].

1.2.2 Discussion

There are different requirements for building efficient and correct implementation for
complex systems.

– Firstly, we need a component framework with the concept of component and associ-
ated composition operators for incremental description and correctness by construc-
tion.

– Secondly, this framework should be expressive enough to directly encompass all types
of coordination, and hence, help designers to formulate their solutions in terms of
tangible, well-founded and organized concepts instead of using dispersed coordination
mechanisms such as semaphores, monitors, message passing, remote call, protocols
etc.

– Thirdly, it also needs to be abstract enough by providing high-level primitives for
modeling behaviors and communications. However, abstraction reduces expressive-
ness. Thus, the first challenge is to find the best compromise between a high level of
abstraction and high expressiveness. All of these requirements lead to design com-
plex systems in an easy and correct manner. Nonetheless, on top of abstraction and
expressiveness, etc., other challenges appear, mainly how to automatically derive a
correct and efficient implementation.

– For this reason, the fourth requirement, for such framework, is to provide a rigorous
but not complex semantics, because complexity limitates abstraction. When having
a rigorous semantics, we can define correct and automatic source-to-source trans-
formation for deriving efficient low-level implementation from the high-level models
in a correct manner. Moreover, a strong theoretical backing can be defined at the
high-level models that allows formal verification of design properties.

Indeed, source-to-source transformations have been considered as a powerful means for
optimizing programs [Lov77, HG06, BMFT07]. In contrast to conventional optimization
techniques, they can be applied for deeper semantics-preserving transformations which are
visible to programmers and subject to their direction and guidance.

In the context of component-based frameworks, we have not seen major work on source-
to-source transformations, since component frameworks such as [BWH+03, DII+99] have
well-defined denotational semantics. Nonetheless, it can be made only at the execution
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level and not at source level. For example, it is not clear how to define component compo-
sition at source level from these semantics.
There also exist many component frameworks without rigorous semantics. This is partic-
ularly absent in the case of modeling, as well as for middleware and software development
standards, like CORBA. They use ad-hoc mechanisms for building systems from compo-
nents and offer syntax level concepts only. In this case, using ad-hoc transformations, may
easily lead to inconsistencies e.g. transformations may not be confluent.
One the other hand, there are other techniques based on source-to-source transforma-
tions applied by language compilers. For example, compilation of synchronous languages
[JHRC08], or optimizing communications in periodic reactive systems [CKL+05, CKL+02]
use transformation techniques for optimization by flattening structure and composing Petri
net behavior. Nonetheless, their underlying models are completely simple with respect to
the communication primitives offered by these languages. For instance, the model con-
sidered in [CKL+05, CKL+02] is an extension of Kahn process networks allowing non-
deterministic waiting on multiple input channels. The communication is binary, through
point-to-point message passing on FIFO channels.

To this end, on exploring the current state of the art we have not seen a component-
framework that meets the requirements above. Generally speaking, we can divide them
into two categories. The first category provides high-level design and modeling, however
it is still unclear how to derive correct and efficient implementation from the high-level
models. In contrast, the second category provides efficient implementation, however the
design process is either based on low-level primitives, or not expressive enough.

1.3 Our Contribution

We present, in this thesis, a methodology to provide automatically efficient and correct-
by-construction centralized and distributed implementations starting from a high-level
model of the software application in BIP. BIP (Behavior, Interaction, Priority) is a component-
based framework with formal and rigorous semantics that rely on multiparty interactions
for synchronizing components and dynamic priorities for scheduling between interactions.

A key idea of our methodology is to use a set of correct source-to-source transformations
which preserve functional properties. Furthermore, they take into account extra-functional
constraints. We propose several types of source-to-source transformations:

1. Transformation for generating centralized implementations: We define a set
of transformations taking BIP models as input and transform them into functionally
equivalent BIP models with different architectures. Such transformations allow in
particular to generate from a hierarchical model an equivalent flat model or a single
component by composing the behavior of the constituent components. From flat
models monolithic C++ code can be generated. This code has been proven optimal
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and much more efficient than the componentized code for implementation on a single-
processor platforms;

2. Transformation for generating distributed implementations: Coordination
in BIP is achieved through multiparty interactions and scheduling by using dynamic
priorities. The associated semantics is defined on a global state model. This makes
reasoning about systems easy. However, it is hard to obtain distributed implemen-
tations where the primitives available for communication and coordination are less
powerful. For this reason, we propose automated transformation of high-level BIP
models (where high atomicity is assumed and distributed coordination is sought by
multi-party synchronization primitives) into distributed implementations in a sys-
tematic and correct fashion. In general, our methodology transforms arbitrary BIP
models into Send/Receive BIP models, directly implementable on distributed execu-
tion platforms. The transformation consists of:
– breaking atomicity of actions in atomic components by replacing strong synchro-

nizations with asynchronous Send/Receive interactions;
– inserting several distributed Engines that coordinate execution of interactions ac-

cording to a user-defined partition;
– augmenting the model with a distributed algorithm for handling conflicts between

Engines.
The obtained Send/Receive BIP models are proven observationally equivalent to the
initial models. Hence, all the functional properties are preserved by construction
in the implementation. Moreover, Send/Receive BIP models can be used to auto-
matically derive distributed implementations. Currently, it is possible to generate
stand-alone C++ implementations using either TCP sockets for conventional com-
munication, or MPI implementation, for the deployment on multi-core platforms.

This approach has been fully implemented and integrated in the BIP framework.

1.4 Organization of the Thesis

The rest of the thesis consists of five chapters. In Chapter 2 we present an overview of
the BIP framework. Then, in Chapter 3 we describe a set of source-to-source transforma-
tions for generating efficient centralized implementation for deployment on single-processor
platforms. In Chapter 4 we present a method using source-to-source transformation for
generating efficient distributed implementation for deployment on multi-core platforms. In
Chapter 5 we present the tool implementing the techniques proposed in this thesis. Finally,
Chapter 6 draws conclusion and future work. The details of all chapters are as follows:

– Chapter 2 presents the basic ideas about component-based methodology, the basic
notions about components, their composition using glue operators, and the necessary
properties for component-based construction of systems. It introduces the BIP com-
ponent framework, describing its architecture, its semantics as well as its properties.
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– Chapter 3 presents a method for generating efficient centralized implementation from
high-level BIP model. The method is based on the successive application of three
types of source-to-source transformations: flattening of components, flattening of
connectors and composition of atomic components. We show that the system of the
transformations is confluent and terminates. By exhaustive application of the trans-
formations, any BIP component can be transformed into an equivalent monolithic
component. From this component, efficient standalone C++ code can be generated.
Applications of the method on two non trivial examples are also described in the
chapter.

– Chapter 4 presents a method for generating efficient distributed implementations
from high-level BIP model. First, in this chapter, we present the main subtitles
of generation distributed implementations. Second, we define set of source-to-source
transformations which transform a high-level BIP model (where atomicity is assumed
through global state semantics and distribution details are omitted via employing
high-level synchronization primitives) into a real distributed implementation that al-
lows parallelism between components as well as parallel execution of interactions.
Moreover, we prove that the defined transformations preserve observational equiva-
lence. Applications of the method on three non trivial examples are also described
in the chapter.

– In Chapter 5 we present a tool which implements the transformations defined in
Chapter 3 and 4. Moreover, we give an overview of the integration of our tool in
the design methodology of BIP for automatically deriving efficient centralized and
distributed implementations from high-level BIP models.

– We conclude the thesis in Chapter 6, with an overview of the work and its future
perspectives.
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BIP (Behavior, Interaction, Priority) is a component framework for modeling hetero-
geneous real-time systems. In the first section, we give notions about component, their
composition and the necessary properties for component-based construction of systems.
Then, in Section 2.2 we present the BIP language. In Section 2.3 we present the execu-
tion platforms implementing the operational semantics of BIP. Then, Section 2.4 we give
an overview of the BIP tool-chain. And we finish this chapter by giving conclusions in
summary.
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2.1 General Overview

BIP is a component framework with a formal operational semantics given in terms of
Labeled Transition Systems and Structural Operational Semantics derivation rules. Indeed,
A component is a behavioral entity, having a well defined interface. It denotes an executable
specification whose runs can be modeled as sequences of discrete actions.
We distinguish two kinds of components: atomic and composite. Atomic components are
the basic elements in the components hierarchy. Their behavior represented as labeled
transition systems

Definition 2.1.1 (Labeled transition system.) A labeled transition system is a triple
B = (Q,Σ,→), where Q is a set of states, Σ is a set of labels, and →⊆ Q×Σ×Q is a set
of labeled transitions.

For any pair of states q, q′ ∈ Q and label a ∈ Σ, we write q
a
→ q′, iff (q, a, q′) ∈ T . If such

q′ does not exist, we write q
a
9.

Composite components are obtained by composing together other components (atomic
or composite) using a glue operator, then, a new component can be derived (see Figure
2.1). Their behavior is the product of behaviors of the inner components, with restriction
implied by the glue.

B3B1 B2

B

Glue

Figure 2.1: Components composition.

Our ultimate goal is to provide a methodology for component description and inte-
gration in a meaningful manner. The methodology must be incremental, i.e., components
can be composed through a meaningful hierarchy of glues. Moreover, in order to ensure
the correctness of composite components, it must provide support for compositinality and
composability. In the following we give a description of these requirements:

– Incrementally a system can be considered as the composition of smaller components
with the ability to the combination of decomposition and flattening (see Figure 2.2).

Decomposition

Flattening

B2 B2B1B1 B3

B3
GlueGlue1

Glue2

Figure 2.2: Incrementality of composition.
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– Compositionality the possibility of inferring a global system properties from the lo-
cal properties of sub-systems (e.g inferring global deadlock-freedom from the deadlock-
freedom of the individual components) (see Figure 2.3).

B2 |= P2 B3 |= P3 B |= P with P = f(P1, P2, P3)

B3B1 B2

B

B1 |= P1

Glue

Figure 2.3: Compositionality of composition.

– Composability the preservation of the main properties of components during the
construction of the system (see Figure 2.4).

B3 |= P3

B2 B3
B3

B1 B2

B1

B2 |= P2

B1 |= P1 B2 |= P2

B3 |= P3B1 |= P1

Glue2

Glue1

Figure 2.4: Composability of composition.

A detailed and fully formalized of these properties are presented in [Bas08]. The BIP
component framework presents the composition of behaviors using two kinds of glue, in-
teractions and priorities. It is shown in [BS08b] that these encompass the universal glue.

2.2 The BIP Language

BIP[Sif05, BBS06] is a component framework for constructing systems by superposing
three layers of modeling (see Figure 2.5): Behavior, Interaction, and Priority. The lowest
layer consists of a set of atomic components represented by transition systems. The second
layer models Interaction between components. Interactions are sets of ports specified by
connectors [BS08a]. Priority, given by a strict partial order on interactions, is used to
enforce scheduling policies applied to interactions of the second layer. The BIP component
framework has a formal operational semantics given in terms of Labeled Transition Systems
and Structural Operational Semantics derivation rules. The BIP language offers primitives
and constructs for modeling and composing complex behavior from atomic components.
Atomic components are communicating Petri net extended with C functions and data.
Transitions are labeled with sets of communication ports. Composite components are
obtained from subcomponents by specifying connectors and priorities.

A component in BIP can also be viewed as a point in a three-dimensional space repre-
sented in Figure 2.6. The dimension Behavior characterizes component behavior and the
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I

E H A V I O RB

Priorities

nteractions

Figure 2.5: Layered component model.

Behavior

system Interaction

architecture

Priority

Figure 2.6: Three-dimentional space construction.

space Interactions × Priorities characterizes the overall structure of the system. In the
following sections, we give a formal description of each of the layers, introduced here.

2.2.1 Ports and Interfaces

Ports are particular names defining communication points for components. As we shall
see later, they are used to establish interactions between components by using connectors.

In BIP, we assume that every port has an associated distinct data variable x. This
variable is used to exchange data with other components, when interactions take place.

A set of ports is called an interface.

Definition 2.2.1 (Port.) A port p[x] is defined by

– p – the port identifier,
– x – the data variable associated with the port.
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2.2.2 Atomic Component

Atomic component is a unit of behavior with an interface consisting of ports, and
behavior encapsulated as a set of transitions. It consists of :

– A set of control states L, denoting locations at which the components await for
synchronization.

– A set of ports P used for synchronization with other components. Ports form the
interface of atomic components. They are instances of predefined port-types, and
may be associated with atom variables.

– A set of variables X used to store (local) data. Basic C types can be used for
variables. Variables may be associated to one or more ports. A variable associated
to a port can be modified as a result of an interaction involving that port.

– A behavior given by the set of transitions modeling atomic computation steps. A
transition represents a step from a set of control states L1 to L2 labeled by a port p,

guard g, function f . A transition is denoted as L1
p,g,f
−→ L2.

Here p is a port through which an interaction is sought, g a pre-condition for interaction
through p, and f is a computation step consisting of local state transformations. g, also
know as the guard of the transition, is a boolean condition on X. The transition can be
executed if the guard is true.

Example 1 Figure 2.7(a) shows an example of an atomic component with two ports p1,
p2, a variable x, and two control states l1, l2. At control state l1, the transition labeled
p1 is enabled. When an interaction through p1 takes place, a random value is assigned for
the variable x. This value is exported through the port p2. From the control state l2, the
transition labeled r1 can occur (the guard is true by default), the variable a is eventually
modified and the value of a is printed.

Definition 2.2.2 (Atomic component.) An atomic component B is defined by
B = (L, P, T, X, {gτ}τ∈T , {fτ}τ∈T ), where,

– (L, P, T ) is a 1-safe Petri net, that is
– L = {l1, l2, . . . , lk} is a set of control states,
– P is a set of ports,
– T ⊆ 2L × P × 2L is a set of transitions,

– X = {x1, . . . , xn} is a set of variables and for each transition τ ∈ T , gτ is a guard
and fτ is an update function that is state transformer defined on X, (fτ (X)).

Hereafter, we use the dot notation to denote the parameters of atomic components. For
example, B.P means the set of ports of the atomic component B.

In order to define the operational semantics for atomic component, let us first introduce
some notations. Given a Petri net N = (L, P, T ) we define the set of 1-safe markings M
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l1

p1

x := random()

[x > 0]
p2

p2

l2

[true]

print(x)

x

p1

(a) Atomic component

port type IntPort(int x)

port type ePort()

atomic type Generator

data int x = 0

export port ePort p1() = p1

export port IntPort p2(x) = p2

place l1,l2

initial to l1 do {}

on p1 provided (true) from l1 to l2

do { x=random(); }

on p2 provided (x>0) from l2 to l1

do { printf("The new value of x is:%d", x); }

end

(b) BIP code of the atomic component in Figure 2.7(a)

Figure 2.7: An example of an atomic component in BIP.

as the set of functions m : L → {0, 1}. Given two markings m1, m2, we define inclusion
m1 ≤ m2 iff for all l ∈ L, m1(l) ≤ m2(l). Also, we define addition m1 + m2 as the marking
m12 such that, for all l ∈ L, m12(l) = m1(l) + m2(l). Given a set of places K ⊂ L, we
define its characteristic marking mK by mK(l) = 1 for all l ∈ K and mK(l) = 0 for all
l ∈ L \K. Moreover, when no confusion is possible from the context, we will simply use K
to denote its characteristic marking mK . Finally, for a given transition τ ∈ T , we define its
pre-set •τ (resp. post-set τ•) as the set of the control states which are direct predecessors
(resp. successors) of this transition.

Definition 2.2.3 (Atomic component semantics.) The semantics of an atomic com-
ponent B = (L, P, T, X, {gτ}τ∈T , {fτ}τ∈T ) is defined as the labeled transition system
SB = (QB,ΣB,−→

B
) where

– QB = M×V is the set of states defined by:
– M = {m : L → {0, 1}} the set of 1-safe markings,
– V = {v : X 7→ D} is the set of valuations of variables X,

– ΣB = P ×D2 is the set of labels,
– −→

B
= QB × ΣB × QB is the set of transitions defined by the following rule:
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τ ∈ T p ∈ P •τ ≤ m gτ (v) = true vup = v(xp)

m′ = m −• τ + τ• v′ = fτ (v[xp 7→ vdn]) vup, vdn ∈ D

(m, v)
p(vup/vdn)

−−−−→
B

(m′, v′)

This rule correspond to the firing of behavior transition. Indeed, a transition can be
taken as soon as they are enabled by the marking and the guard, and update the data
valuation and the marking, according to the net flow and annotations of the transition.
Moreover, it perform an instantaneous data exchange through the port p: the current value
vup is sent and a new value vdn is received for xp, before the update.

2.2.3 Connectors and Interactions

Composition of components allows to build a system as a set of components that interact
by respecting constraints of an interaction model. Connectors are used to specify possible
interaction patterns between the ports of components.

A connector is a set of ports of components which can be involved in an interaction.
The number of interactions of a connector can grow exponentially to the number of ports.
A connector is a macro notation for representing sets of related interactions in a compact
manner.

Two types of port (synchron,trigger) are defined, in order to specify the feasible inter-
actions of a connector. A trigger is an active port, and can initiate an interaction without
synchronizing with other ports. It is represented graphically by a triangle. A synchron
port is passive, hence needs synchronization with other ports, and is denoted by a circle.
A feasible interaction of a connector is a set of its ports such that either it contains some
trigger, or it is maximal, i.e., consisting of all the synchron ports. Example of sets of

(a) (b) (c)

p1 p2 p1 p2 p3p1 p2

γ = {p1p2} γ = {p1, p1p2} γ = {p1, p1p2, p1p3, p1p2p3}

Figure 2.8: Connectors and their interactions.

connectors and their feasible interactions are shown in Figure 2.8. By convention, trian-
gles represent trigger and circles represent synchron ports. In the partially ordered set of
interactions, the shaded nodes denote feasible interactions. In (a), the connector consists
of the ports p1 and p2, both are of type synchron. In this connector, the only feasible
interaction is p1p2. It represents a rendezvous, meaning that both actions are necessary
for the synchronization. In (b), the interaction between p1 and p2 is asymmetric as p1 is
a trigger and can occur alone, even if p2 is not possible. Nevertheless, the occurrence of
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✉ ✉ ✉ ✉

s r1 r2 r3
N ✉ ✉ ✉

s r1 r2 r3

γ = {sr1r2r3} γ = {s, sr1, sr2, sr3, sr1r2, sr2r3, sr1r2r3}
Rendezvous Broadcast
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✉

s r1 r2 r3
N ✉N

✉N

✉

s
r1 r2 s3

γ = {s, sr1r2r3} γ = {s, sr1, sr1r2, sr1r2r3}
Atomic broadcast Causal chain

Figure 2.9: Graphic representation of connectors

p2 requires the occurrence of p1. The feasible interactions are p1 and p1p2. In (c), the
interactions between p1, p2 and p3 are also asymmetric. The interactions p1 can occur
alone or synchronize with either or both p2 and p3.

On the other hand, connectors sometimes need to be structured, i.e., having types
associated to groups of ports. This is necessary to represent some interactions. The
representation of structured connectors require connectors to be treated as expressions with
typing and other operations on groups of connectors. This led to the formalization of the
algebra of connectors defined in [BS07]. The Algebra of Connectors is defined to provide
a compact notation for algebraic representation and manipulation of connectors. The
Algebra of Connectors AC(P), introduced in [BS07], formalizes the concept of connectors
supported by the BIP component model. It extends the notion of connectors to terms
built from a set of ports by using a n-ary fusion operator and a unary typing operator for
triggers and synchrons.

Figure 2.9 shows four different coordination schemes:

– Rendezvous means strong synchronization between port s and all ri. This is specified
by a single interaction involving all the ports. This interaction can occur only if all
the components are in states enabling transitions labeled respectively by s, r1, r2,
r3.

– Broadcast means weak synchronization, that is a synchronization involving s and
any (possibly empty) subset of ri. This is specified by the set of all interactions
containing s.

– Atomic broadcast means that either a message is received by all ri, or by none. Two
interactions are possible: s, when at least one of the receiving ports is not active,
and the interaction s r1 r2 r3, corresponding to strong synchronization.

– Causal chain means that for a message to be received by ri it has to be received at
the same time by all rj , for j < i.

For rendezvous, the priority model is empty. For all other coordination schemes, the
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maximal progress priority model ensures that, whenever several interactions are possible,
the interaction involving a maximal number of ports has higher priority.

An interaction consists of one or more ports of the connector, a guard on the variables
of the ports of the interaction, two methods up{} and down{} realize data transfer between
the ports of the interaction. The method up{} updates the local variables of the connector
based on the values of variables associated with the ports. The method down{} updates the
variables associated with the ports based on the values of the interaction variables. This
structure also allows data transfer in hierarchical connectors.

Example 2 Figure 2.11 gives an example of hierarchical connectors allowing data transfer
in hierarchical manner. Let consider an initial valuation p1.x 7→ 3, p2.x 7→ 5, p3.x 7→ 8,
p5.x 7→ 9 for the bottom ports. During the upward transfer, the value 9 is propagated to v1

and v2, following the upward predicates p1p2 and then p3p4p5. Then, during the downward
transfer the value 9 gets propagated downwards to p1.x, p2.x, p3.x and p5.x following p3p4p5

and then p1p2.

Definition 2.2.4 (Connector.) A connector γ = (p[x], P, A) is defined as follows

– p is the exported port of the connector γ,
– P = {pi[xi]}i∈I is the support set of γ, that is, the set of ports that γ synchronizes,
– A ⊆ 2P is a set of interactions a = {pi}i∈I labeled by G, U,D where,

– G is the guard of γ, an arbitrary predicate G({xi}i∈I),
– U is the upward update function of γ of the form, x := F u({xi}i∈I),
– D is the downward update function of γ of the form, ∪pi

{xi := F d
xi

(x)}.

Hereafter, we use the dot notation to denote the parameters of connectors. For example,
γ.A means the set of interactions of the connector γ.

v1

p2(x)p1(x)

G : (p1.x > 0)&&(p2.x > 0)

U : v1 := Max(p1.x, p2.x)

D : p1.x := p2.x := v1

p(x)

(a) Interaction

connector type Sync2Max(IntPort p1,IntPort p2)

data int v1

define [p1 p2]

on p1 p2 provided (p1.x > 0) && (p2.x > 0)

up {v1 = Max(p1.x,p2.x);}

down {p1.x = p2.x = v1;}

export port IntPort p(v1)

end

(b) BIP code of the interaction in Figure 2.10(a)

Figure 2.10: An example of a connector containing one interaction in BIP.
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Example 3 Figure 2.10(a) shows a connector with two ports p1, p2, and exported port
p3 (allows to define hierarchical connectors). There is one and only one interaction p1p2

feasible by this connector. Synchronization through this interaction involves two steps pro-
viding its guard G : (p1.x > 0)&&(p2.x > 0) is true: 1) The computation of the upward
update function U by assigning to v1 the maximum of the values of p1.x and p2.x; 2) The
computation of the downward update function D by assigning the value of v to p1.x and
p2.x. Figure 2.10(b) presents the corresponding BIP code.

Definition 2.2.5 For a set of connectors Γ = {γj}j∈J , we define the dominance relation
→ on Γ as follows:

γi → γj ≡ γj .p ∈ γi.P

That is, γi dominates γj means that the exported port of γj belongs to the support set of
γi (see Figure 2.11). By definition, we assume that the dominance relation has no cycle.

Let P (Γ) = {p0 | γ = (p0, P, A) ∈ Γ} be the set of their (distinct) exported ports..

Definition 2.2.6 (Interaction tree.) Let Γ = {γj}j∈J a set of connectors, an interac-
tion tree at = (AΓ,→Γ) of Γ is defined as follows:

– AΓ ⊆ ∪{γj .A}j∈J is a set of interactions,
– Let a1, a2 ∈ AΓ, we have a1 →Γ a2 iff ∃γ1, γ2 ∈ Γ such that a1 ∈ γ1, a2 ∈ γ2 and

γ2.p ∈ a1. Moreover, →Γ should satisfy the following conditions:
– at must contains a uniquely defined interaction a0 ∈ AΓ, called top(at) from which

all other interactions are recursively dependent, that is, ∃a0.∀ai ∈ AΓ, a0 →∗ ai,
and a0 is unique.

– at must contains at most one interaction per connector. That is, if ∃ai ∈ AΓ∩γ.A,
then, ∀ak ∈ γ.A \ ai, ak /∈ AΓ.

Let Γ be a set of connectors such that (Γ,→) has no cycle and let at = (AΓ,→Γ) be an
interaction tree of Γ. We denote by:

– At(Γ) = {at
i | at

i is an interaction tree of Γ}, the set of all interaction trees of Γ;
– bottom(at) = {ai | ai ∈ AΓ, ai ∩ P (Γ) = ∅}, the leaf interactions of the tree at;
– support(at) = {p | p ∈ ai, ai ∈ bottom(at)}, the support set of ports for the leaf

interactions of the tree at.

Definition 2.2.7 (Hierarchical connectors semantics.) Let Γ = {γj}j∈J a set of con-
nectors. Executing of interactions in Γ implies an execution of an arbitrary interaction tree
at ∈ At(Γ). Moreover, it involves transfer of data between synchronizing ports. In partic-
ular, let σ0 an initial valuation of bottom(at), σ0 = {p.x → vp | p ∈ support(at)}. The
upward valuation Uat(σ0) is obtained by propagating values from ports in the bottom inter-
actions into the tree at according to upward update functions of the interactions of the tree,
as long as the guard conditions allow them Gat. In a dual manner, we define the downward
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p2(x)

v2

p5(x)

v1

p1(x)

p3(x, y)

γi

γj
p4(x)

G : (p1.x > 0)&&(p2.x > 0)

U : v1 := Max(p1.x, p2.x)

D : p1.x := p2.x := v1

G : true

U : v2 := Max(p3.x, p4.x) + p3.y + p5.x

D : p3.x := p3.y := p4.x := p5.x := v2

Figure 2.11: γi dominates γj .

valuation Dat(σ) obtained by transforming a given valuation σ on ports of interactions of
at according to their downward update functions. More precisely, guards and update func-
tions, Gat, Uat and Dat are defined as follows:

Uat =

{

Ua at = {a},

Uat′ ◦ Ua at′ = at \ {a}, a ∈ bottom(at).

Gat =

{

Ga at = {a},

Gat′ ∧ Ga at′ = at \ {a}, a ∈ bottom(at).

Dat =

{

Da at = {a},

Da ◦ Dat′ at′ = at \ {a}, a ∈ bottom(at).

Definition 2.2.8 (Flat connectors.) Γ is a set of flat connectors, iff no connector dom-
inates another, that is, ∀γi, γj ∈ Γ we have γi 6→ γj.

2.2.4 Priorities

Given a system of interacting components, priorities are used to filter the enabled inter-
actions. They are given by a set of rules, each consisting of an ordered pair of interactions
or connectors. When connectors are specified in a priority, the rules apply between all the
respective interactions of the connectors. Dynamic priorities can be specified by providing
guard condition, which are boolean expression in C on the variables of the components
involved in the interactions. The maximal progress priority is enforced implicitly by the
BIP Engine: if one interaction is contained in another one, the latter has higher priority.
Below is an example of priority expressed in the BIP language.
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priority p1 if(G) c1 < c2

This specifies the priority p1 that, when the boolean condition G is true, interactions of
connector c2 would be preferred to those of c1.

2.2.5 Composite Components

Composite components are defined recursively by composition from atomic components
or other composite components using glue consisting of interaction and priority models.
The interface of a composite component is defined by exporting ports of subcomponents
and connectors.

Definition 2.2.9 (Component.) A composite component (or simply component) C is
defined by the following grammar:

C ::= B|({Ci}i∈I ,Γ, P )

where,

– B is an atomic component,
– {Ci}i∈I is a set of constituent components,
– P = (∪i∈ICi.P ) ∪ (∪j∈J{γj .p}), is the set of ports of the component, that is P con-

tains the ports of the constituent components and the exported ports of the connectors,
– Γ = {γj}j∈J is a set of connectors, such that,

1. (Γ,→) has no cycle,

2. ∪j∈Jγj .P ⊆ P (P is defined above),

3. Each γ ∈ Γ uses at most one port of every constituent component, that is,
∀γ ∈ Γ,∀i ∈ I, |Ci.P ∩ γ.P | ≤ 1.

Notice that a component is either an atomic component B or a composite component
obtained as the composition of a set of constituent components {Ci}i∈I by using a set of
connectors Γ = {γj}j∈J . The restriction 3) is needed to prevent simultaneous firing of
two or more transitions in the same atomic component, because they may affect the same
variables.

Example 4 Figure 2.12(a) shows a compound component consisting of three identical
atomic components described in Figure 2.7, connected by using the connector described
in Figure 2.10. Each atomic component generates an integer. Then it synchronizes with
all the other atomic components. During synchronization the global maximal value is com-
puted and each atomic component receives the maximum of the values generated. Figure
2.12(b) presents the corresponding BIP code.
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p2 p2

p

p

p

p2

comp1 comp2 comp3

conn4

conn5

conn1 conn2 conn3

p1 p1 p1

(a) Composite component

compound type CompoundExample

component Generator comp1

component Generator comp2

component Generator comp3

connector Singelton conn1(comp1.p1)

connector Singelton conn2(comp2.p1)

connector Singelton conn3(comp3.p1)

connector Sync2Max conn4(comp1.p2,comp2.p2)

connector Sync2Max conn5(conn4.p,comp3.p2)

export port IntPort p is conn5.p

end

(b) BIP code of the compound in Figure 2.12(a)

Figure 2.12: An example of compound component in BIP.

Definition 2.2.10 (Flat component.) Composite component C is flat, iff the set of con-
stituent component {Ci}i∈I are atomic components.

The operational semantics of composite components is recursively defined on the com-
ponent structure. For atomic components, their semantics coincides with the semantics
of the underlying behavior. For composition, the semantics is obtained by restricting the
parallel behavior according to the interaction and priority models applied.

Definition 2.2.11 (Component Semantics.) The semantics of component C is a la-
beled transition system SC = (QC ,ΣC ,−→

C
) defined inductively on the structure of C as

follows:

1. C is an atomic component, defined by an atomic behavior B = (L, P, T, X, {gτ}τ∈T ,
{fτ}τ∈T ). Then, SC = SB (see Definition 2.2.3).

2. C is a composite component defined as the ({Ci}i∈I ,Γ, P ), where C is flat. Let SCi
=

(QC ,ΣCi
,−→

Ci

) be the semantics of its atomic components. The labeled transition

system SC = (QC , ΣC ,−→
C

) is defined as:

– QC =
⊗

j∈J QCj
is the of states, the Cartesian product of set of states of sub-

components,
– ΣC = At(Γ) is the set of labels,
– −→

C
⊆ QC × ΣC × QC is the transition relation, defined by the following rule:
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at = (AΓ,→) ∈ At(Γ) support(at) = {pj}j∈J

∀j ∈ J qj

pj(vj/v
′

j)

−−−−→
Cj j

q′j {v
′

j}j∈J = Dat ◦ Uat({vj}j∈J) Gat({vj}j∈J)

vj , v
′
j ∈ D ∀k /∈ J. qk = q′k

q
at

−→
C

q′

3. if C is a composite component defined as the ({Ci}i∈I ,Γ, P ), and C is not flat. Then,
the same principle as above can be defined.

Example 5 Figure 2.13 illustrates an abstract overview of the semantics of composite
component. The composed behavior is shown in the right. It shows the product of the two
behaviors, where the only allowed transitions are the ones with a solid arrow. The dotted
transitions are not legal and shows the maximal behavior allowed by the interactions glue.

p3

l1, l2

l′1, l2

l′1, l
′
2

l1, l
′
2p2

p2

p1

p3

p2

p2

p1

p1p2p1

l′1

l1
l2

l′2 p3

B1 B2

p1

Figure 2.13: Component composition.

2.3 Execution Platform

The operational semantics is implemented by an Engine. In the basic implementation,
the Engine computes the enabled interactions by enumerating over the complete list of
interactions in the model (enumerative Engine). Another implementation is based on
computing boolean representation for components and connectors by using an existing
BDD package (symbolic Engine) 1.

1. The implementation of the boolean functions is made using the BDD package CUDD.
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2.3.1 Enumerative Engine

During the execution, on each iteration of the Engine, the enabled interactions are
selected from the complete list of interactions, based on the current state of the atomic
components. Then, between the enabled interactions, priority rules are applied to eliminate
the ones with low priority. The main loop of the Engine consists of the following steps:

1. Each atomic component sends to the Engine its current state.

2. The Engine enumerates on the list of interactions in the model, selects the enabled
ones based on the current states of the atomic components and eliminates the ones
with low priority.

3. Amongst the enabled interactions, the Engine selects any one and notifies the involved
atoms the transition to take.

The time to compute the enabled interactions by Engine is proportional to the number of
interactions in the model.

2.3.2 Symbolic Engine

In the enumerative BIP Engine [JBB09], for each connector, the Engine needs to com-
pute all the possible interactions, check which ones are enabled in the current global state
of the system, and select a maximal enabled one to be executed. As interactions are sets
of ports, their number is potentially exponential in the number of ports in the connector.
Hence, in the worst case, the performance of this Engine can be extremely poor.

The boolean BIP Engine leverages on representing component behavior, connector
interactions, and priorities as boolean functions. For an atomic component, all ports and
control states are represented by boolean variables. This allows to encode behavior as
a boolean expression of these variables. Similarly, each connector is represented by the
boolean expression on its ports. The global behavior is obtained as a boolean operation
on the expressions representing atomic components, connectors, and priorities.

The choice of an interaction to be executed boils down to evaluating the control states,
substituting their respective boolean variables, and picking a valuation of the port variables
satisfying the boolean expression that represents the global behavior.

The boolean representation of connectors replaces the costly enumeration step by ef-
ficient BDD manipulations. In comparison to the exponential cost of the enumerative
Engine, this renders a more efficient Engine with evaluation that, in practice, remains
linear.

2.4 The BIP Tool-Chain

The BIP tool-chain provides a set of tools for the modeling, the execution, the verifi-
cation and the static transformation of BIP models. The overview of the BIP tool-chain is
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C/C++
Code
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Tools

Engine

Execution Models
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C/C++
Code

compiler
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BIP2BIP & BIP2Dist

Source−to−Source

Figure 2.14: The BIP tool-chain.

shown in Figure 2.14. It includes the following tools:

– An editor, for describing textually a system in BIP language.
– A compiler, for generating a BIP model from BIP description source.
– A code generator, for generating, from a model, C++ code executable on the BIP

Engine. The code-generator can also produce THINK specification [Pou10, PPRS06],
from which the Think tool-chain can generate code to be executed over a choice of
target platforms.

– D-Finder, is a compositional verification tool for component-based systems described
in BIP language [BBNS09, BBSN08].

– Source-to-Source transformations, of which the method and the implementation are
presented in this thesis, allow useful transformations which generate efficient central-
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ized [BJS09] and distributed implementation from a composite component [BBJ+10b,
BBJ+10a].

– An exporter to connect with external tools such as IF toolbox or analysis tools.
– A set of translators from other languages (Lustre, MATLAB/Simulink, AADL, etc.)

to BIP. For example, a Simulink-to-BIP translation [STS+10] from Simulink models
into BIP which allows the validation and implementation of Simulink models. In
particular, compositional and incremental generation of invariants can be applied for
complex Simulink models. These compilation paths are also becoming available for
Simulink models. Moreover, Simulink models can be explored using the compilation
paths of BIP. Other example of translations is AADL-to-BIP translation from Archi-
tecture Analysis & Design Language (AADL) into BIP [CRBS08], allows simulation
of systems specified in AADL and application to these systems of formal verification
techniques developed for BIP, e.g. deadlock detection.

2.5 Summary

Component-based approach is aimed to deal with the complexity of systems. It is
based on the idea of building a complex system by assembling basic components (blocks).
It provides important characteristics for system construction such as reuse, incrementality,
compositionality, etc. It allows not only the reuse of components but also the reuse of
known properties of constituent components.

We have presented BIP, a component-based framework for modeling heterogeneous
systems. The BIP component model is the superposition of three layers: the lower layer
describes the behavior of a component as a transition system; the intermediate layer consists
of the interactions between transitions of the layer underneath; the upper layer describes
the priorities characterizing a set of scheduling policies for interactions. Such a layering
offers a clear separation between components’ behaviors and the structure of the system
(interactions and priorities).

BIP modeling framework allows dealing with complexity of systems by providing in-
cremental composition of heterogeneous components. It also considers correctness-by-
construction for a class of essential properties such as deadlock-freedom [GS05].

The BIP tool-chain has been developed providing automated support for component
integration and generation of glue code meeting given requirements. Efficient model trans-
formations, verification methods have also been studied and implemented in the BIP tool-
chain.

We are now going to present a method for generating efficient centralized implementa-
tions from BIP models. We will also show applications of our method for MPEG4 encoder
and network sorting algorithm described in the BIP language.
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CHAPTER 3

Transformation for Generating Centralized Implementations
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3.1 Problem Statement

Efficient implementation of component-based systems is a non-trivial task. More-
over, clarity of models may be at the detriment of efficiency. Indeed, naive compilation
of component-based systems results in great inefficiency as a consequence of the inter-
connection of components [Lov77]. Nowadays, it is widely admitted that modularity in
component-based development incurs an additional non-negligible overhead for implemen-
tation because of extensive use of interfaces, wrappers and other implementation artifacts.
For instance, the generated BIP code is modular and can be executed on a dedicated plat-
form consisting of an Engine which orchestrates the computation of atomic components

49



Chapter 3. Transformation for Generating Centralized Implementations

by executing their interactions (described in Section 2.3). Hierarchical description allows
incremental reasoning and progressive design of complex systems. Nonetheless, it may
lead to inefficient programs if structure is preserved at run time. Compared to functionally
equivalent monolithic C programs, BIP programs may be more than two times slower. This
overhead is due to the computation of interactions between components by the Engine.

The aim of this chapter is to show that it is possible to synthesize efficient monolithic
code from component-based software described incrementally. We study source-to-source
transformations for BIP allowing the composition of components and thus leading to more
efficient code. These are based on the operational semantics of BIP which allows to compute
the meaning of a composite component as a behaviorally equivalent atomic component.
Thus, we show how by incremental composition of the components contained in a composite
component, a behaviorally equivalent component can be computed. This composition
operation has been implemented in the BIP2BIP tool, by using three types of source-
to-source transformations. A set of interacting components is replaced by a functionally
equivalent component. By successive application of transformations, an atomic component
can be obtained, that is a component with no interactions.

The transformation from a composite component to an atomic one is fully automated
and implemented through three steps:

1. Component flattening which replaces the hierarchy on components by a set of hier-
archically structured connectors applied on atomic components;

2. Connector flattening which computes for each hierarchically structured connector an
equivalent flat connector;

3. Component composition which composes atomic components to get an atomic com-
ponent.

Using such a transformation allows to combine advantages of component-based descriptions
such as clarity and reuse with efficient implementation. The generated code is readable and
by-construction functionally equivalent to the component-based model. We show through
non trivial examples the benefits of this approach.

The rest of the chapter is organised as follows. First in Section 3.2 we define the three
source-to-source transformations. In section 3.4, we provide benchmarks for two examples:
a MPEG encoder and a concurrent sorting program. In Section 3.5, we finish this chapter
by giving conclusions in summary.

3.2 Transformations

In this section, we will define the transformations which successively transform a com-
posite component into atomic components. That is, they eliminate component hierarchy
and the hierarchical connectors by computing the product behavior. The transformation
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from a composite component to an atomic one involves three steps: Component flatten-
ing, Connector flattening, Component composition. In this section, we describe the three
transformations, and we illustrate them on the example shown in Figure 3.1. This example
consists of two composite components (C1 and C2). Each one of these composite compo-
nents consists of three identical atomic components described in Figure 3.1-c, connected
by using the connector described in Figure 3.1-b. Each atomic component generates an in-
teger. Then it synchronizes with all the other atomic components. During synchronization
the global maximal value is computed and each atomic component receives the maximum
of the values generated.

(a)
(c)

(b)

C

t1

C1 C2

γ3

γ2 γ4

γ5

r1 r2 r4 r5

t2 t3 t5

r3 r6

p3 p5

γ1p1

p2 p4

t4

p(x)

t6

l1

[true]
t

x := random()

[x > 0]
r

print(x)

p1(x) p2(x)

r

t

v1

U : v1 := Max(p1.x, p2.x)

G : true

D : p1.x := p2.x := v1

x

l2

Figure 3.1: Example.

3.2.1 Components Flattening

This transformation replaces the hierarchy on components by a set of hierarchically
structured connectors applied on atomic components. Consider a composite component
C, obtained as the composition of a set of components {Ci}i∈I . The purpose of this
transformation is to replace each non atomic component Cj of C by its description. By
successive applications of this transformation, the component C can be modelled as the set
of its atomic components and their hierarchically structured connectors (see Figure 3.2).

Definition 3.2.1 (Component flattening.) Consider a non atomic component
C = ({Ci}i∈I ,Γ, P ) such that there exists a non atomic component Cj ∈ {Ci}i∈I with
Cj = ({Cjk}k∈K ,Γj , Pj). We define C[Cj 7→ Γj ] as the component C = ({Ci}i∈I ∪
{Cjk}k∈K \ {Cj},Γ ∪ Γj , P ). Component flattening is defined by the following function:
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Cj

CC

Figure 3.2: Component flattening.

Fc(C) =

{

C if C is flat

Fc(C[Cj 7→ Γj ]) if C is not flat

Proposition 1 Component flattening is well-defined i.e., Fc is a function which produces
a unique result on every input component, and terminates in a finite number of steps.

Proof Regarding unicity of the result, we can show that, if two constituent components
respectively Cj and Ck can be replaced inside the composite component C, then the re-
placement can be done in any order and the final result is the same. That is, formally we
have C[Cj 7→ Γj ][Ck 7→ Γk] = C[Ck 7→ Γk][Cj 7→ Γj ]. The result follows immediately from
the definition and elementary properties of union on sets.

Regarding termination, every transformation step decreases the overall number of com-
posite components by one, so component flattening eventually terminates when all the
components are atomic.

By applying to Example in Figure 3.1 the transformation C[C1 7→ {γ2, γ3}] then
C[C2 7→ {γ4, γ5}], we obtain the new component in Figure 3.3.
Finally, notice that this transformation never increases the structural complexity of the
transformed component. The transformation does not change the set of atomic compo-
nents as well as the set of the hierarchical connectors. Hence, it preserves the operational
semantics of the original model.

3.2.2 Connectors Flattening

This transformation flattens hierarchical connectors. It takes two connectors γi and γj

with γi → γj (recall that the dominance relation → is given in Definition 2.2.5 in Chapter 2)
and produces an equivalent connector.
We show in Figure 3.4 the composition of two connectors γi and γj . It consists in ”glueing”
them together on the exported port pj . For the composite connector, the update functions
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C

t1

γ3

γ2 γ4

γ5

r1 r2 r4 r5

t2 t3 t5

r3 r6

p3 p5

t4 t6

p1

p2

γ1

Figure 3.3: Component flattening for example in Figure 3.1.

are respectively, the bottom-up composition of the upward update functions, and the top-
down composition of the downward update functions. This implements a general two-phase
protocol for executing hierarchical connectors. First, data is synthesized in a bottom up
fashion by executing upward update functions, as long as guards are true. Second, data is
propagated downwards through downward update functions, from the top to the support
set of the connector.

pj

γj(pj, Pj, Aj)

xi
pi xi

piγ(p, P, A)γi(pi, Pi, Ai)

xj

Figure 3.4: Connector glueing.

Definition 3.2.2 (Connector glueing.) Given connectors γi = (pi[xi], Pi, Ai) and γj =
(pj [xj ], Pj , Aj) such that γi → γj(pj ∈ Pi) we define the composition γi[pj 7→ γj ] as a
connector γ = (p, P, A) where

– p = pi,
– P = Pj ∪ Pi \ {pj},
– A = A1 ∪ A2, where,

– A1 = {ai | ai ∈ Ai, pj /∈ ai},
– A2 = {ai \ {pj} ∪ aj | ai ∈ Ai, pj ∈ ai, aj ∈ Aj}
If a ∈ A1 the guards and data transfer are inherited as such from γi. In the second
case, if a ∈ A2 the guard and the transfer are defined as follows:
– Ga = Gaj

∧ Gai
[Uaj

/xj ],
– Ua = xi := Uai

[Uaj
/xj ],
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– Da = (∪pk∈aj
xk := Daj ,xk

[Dai,xi
/xi]) ∪ (∪pk∈ai\{pj} xk := Dai,xk

).

Intuitively, by composition, two linked connectors are glued together into a single connector.
Their guards, respectively the upward and downward transfer functions are composed.
Consequently, any port valuation obtained by the successive application of the upward
(resp. downward) transfer predicates of the two connectors is equally obtained by the
application of the upward (resp. downward) transfer predicate of the composed connector.

Let us introduce some notations. Let Γ = {γi = (pi[x], Pi, Ai)}i∈I a set of connectors,
and let P = {{pi} ∪ Pi}i∈I the set of all used ports. We call a port pj ∈ P transient in Γ
if it is both exported by some connector γj from Γ and used by another connector γi from
Γ. Obviously, transient ports can be eliminated through connector glueing.
For a transient port pj exported by a connector γj , we will use the notation Γ[pj 7→ γj ]
to denote the new set of connectors obtained by replacing thoroughly pj by its exporting
connector γj , formally: Γ[pj 7→ γj ] = {γ | γ ∈ Γ, pj 6∈ γ.ports, γ 6= γj} ∪ {γ[pj 7→ γj ] | γ ∈
Γ, pj ∈ γ.ports}. That is, all connectors (except γj) without pj in their support set are
kept unchanged, while the others are transformed according to definition 3.2.2.

Definition 3.2.3 (Connector flattening.) Connector flattening is defined by the fol-
lowing function:

Fγ(Γ) =























Γ if Γ is a set of flat connectors

Fγ(Γ[pj 7→ γj ]) if Γ is not a set of flat connectors, pj is a

transient port of Γ

Proposition 2 Connector flattening is well-defined i.e., Fγ produces a unique result for
any set of connectors, and terminates in a finite number of steps.

Proof Regarding unicity of the result, if pj and pk are two transient ports of Γ defined
respectively by connectors γj and γk, then flattening in any order gives the same result,
formally Γ[pj 7→ γj ][pk 7→ γk] = Γ[pk 7→ γk][pj 7→ γj ].

To show this result it is sufficient to show that any connector γ of Γ, different from
γj and γk gets transformed in the same way, independently of the order of application of
the two transformations. This can be shown, case by case, depending on the occurrence of
ports pj and pk in the supports of γ, γj and γk following definition 3.2.2.

Regarding termination, flattening of connectors is applicable as long as there are tran-
sient ports. Moreover, it can be shown that, every flattening step reduces the number of
transient ports by one - the one that is replaced by its definition. Hence, flattening even-
tually terminates when no more transient ports exist, that is, Γ is a set of flat connectors.
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p3
r3

p4

p1[x1] γ1

C

t1

γ3

γ4

γ5

r1 r2 r4 r5

t2 t3 t5

r3 r6

p3 p5

t4 t6

p1

U : x1 := max(max(p3.x, r3.x), p4.x);

D : p3.x := x1; r3.x := x1; p4.x := x1;

G : true

γ1

Figure 3.5: Connector glueing for example in Figure 3.3.

By application of the transformation γ1[p2 7→ γ2] to Example 2 in Figure 3.3, we
obtain the new composite component given in Figure Figure 3.5. If we apply successively,
γ1[p3 7→ γ3], γ1[p4 7→ γ4], γ1[p5 7→ γ5] we obtain the new composite component given in
Figure 3.6.

t1

r1 r2 r4 r5

t2 t3 t5

r3 r6

t4 t6

p1 γ1

C

p1[x1]

r1 r2 r3 r4 r5 r6

U : x1 := max(max(max(r1.x, r2.x), r3.x), max(max(r4.x, r5.x), r6.x));
D : r1.x := x1; r2.x := x1; r3.x := x1; r4.x := x1; r5.x := x1; r6.x := x1;

G : true

Figure 3.6: Connector flattening for example in Figure 3.3.

In a similar way to component flattening, this second transformation does not increase
the structural complexity of the transformed components. The set of atomic components
is preserved as such, whereas, the overall set of connectors is decreasing. However, the
remaining connectors have an increased computational complexity, because they integrate
the guards and the data transfer of the eliminated ones. The operational semantics is also
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preserved. The effect of the eliminated connectors is ”in-lined” in the remaining according
to definition 2.2.7.

3.2.3 Components Composition

We present the third transformation which allows to obtain a single atomic component
from a set of atomic components and a set of flat connectors. This transformation defines
the composition of behaviors.
Intuitively, as shown in Figure 3.7, the composition operation consists in ”glueing” to-
gether transitions from atomic components that are synchronized through the interaction
of some connector (interaction p1p2 for this example). Guards of synchronized transitions
are obtained by conjuncting individual guards and the guard of the connector. Similarly,
actions of synchronized transitions are obtained as the sequential composition of the up-
ward update function followed by the downward update function of the connector, followed
by the actions of the components in an arbitrary order.

Definition 3.2.4 (Component composition.) Consider a component C = ({Bi}i∈I ,Γ, P )
such that ∀i ∈ I Bi is an atomic component and Γ is a set of flat connectors. We define
the composition Γ({Bi}i∈I) as component B = (L, P, T, X, {gτ}τ∈T , {fτ}τ∈T ) defined as
follows:

– the set of control states L = ∪i∈IBi.L,
– the set of ports P = ∪γ∈Γ{γ.p},
– the set of variables X = (∪i∈IBi.X) ∪ (∪γ∈Γγ.p.x),
– each transition in T corresponds to a set of interacting transitions {τ1, . . . , τk} ⊆

∪i∈ITi such that ∪k
i=1τi.p = a (γ ∈ Γ, a ∈ γ.A). We define the transition τ =

(l, γ.p, l′) where,
– l =• τ1 ∪ . . . ∪• τk,
– l′ = τ•

1 ∪ . . . ∪ τ•
k ,

– the guard gτ = ∧k
i=1gτi

∧ a.G,
– the action X := fτ (X) with fτ = a.U ; a.D; (∪k

i=1fτi
).

Figure 3.8 shows the Petri net obtained by composition of the atomic components of Figure
3.6 through the interaction r1r2r3r4r5r6.

In contrast to previous transformations, component composition may lead to an expo-
nential blowup of the number of transitions in the resulting Petri net. This situation may
happen if the same interaction can be realized by combining different transitions from each
one of the involved components. For instance, the interaction p1p2 can give rise to four
transitions in the resulting Petri net if there are two transitions labeled by p1 and p2 in the
synchronizing components. Nevertheless, in practice exponential explosion seldom occurs,
as in atomic components each port labels at most one transition (as in the examples shown
hereafter). In this case, the resulting Petri net has as many transitions as connectors in Γ.
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p1 p2

p

p = p1p2

g12

f12

G12 U12 D12

p1
g1

f1

p2
g2

f2

g12 = G12 ∧ g1 ∧ g2

f12 = U12;D12; (f1 ∪ f2)

Figure 3.7: Component composition.

t1

r = r1r2r3r4r5r6
G : true

a1=rand()
t2
a2=rand() a3=rand() a4=rand() a5=rand() a6=rand()

t6t3 t4 t5

F : U ; D; f

f : print(a1) ∪ print(a2) ∪ print(a3) ∪ print(a4) ∪ print(a5) ∪ print(a6)

D : a1 := x1; a2 := x1; a3 := x1; a4 := x1; a5 := x1; a6 := x1;

U : x1 := max(max(max(a1, a2), a3), max(max(a4, a5), a6));

Figure 3.8: Component composition for example in Figure 3.6.
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3.3 Efficient Sequential Implementation

By exhaustive application of these transformations, an atomic component can be ob-
tained. From the latter, the code-generator can generate efficient standalone C++ code,
which can be run directly without the Engine. In particular, all the remaining non-
determinism in the final atomic component is eliminated at code generation by applying
an implicit priority between transitions.
It should be noted that the transformations also can be applied independently, to obtain
models that respond to a particular user needs. For example, one may decide to eliminate
only partially the hierarchy of components, or to compose only some components.

3.4 Experimental Validation

These transformations have been implemented in the BIP2BIP tool which is currently
integrated in the BIP toolset [BIP]. A detailed description of the BIP2BIP tool is given in
Chapter 5.
For two examples, we compare the execution times of BIP programs before and after
flattening. These examples show that it is possible to generate efficient standalone C++
code from component-based descriptions in BIP.

3.4.1 MPEG Video Encoder

01 0 0 1 0 1 1 1 1 0 0

bitstream
(encoded frame)

. . .

. . .

macroblock

frame

video encoder

MotEst();
DCT();
Quant();
. . .
Coding();input framescamera

Figure 3.9: MPEG4 encoder structure.

In the framework of an industrial project, we have componentized in BIP an MPEG4
encoder written in C by an industrial partner. The aim of this work was to evaluate
gains in scheduling and quality control of the componentized program. The results were
quite positive regarding quality control [CFLS05a, CFLS05b, CFSS07] but the componen-
tized program was almost two times slower than the handwritten C program. We have
used BIP2BIP to generate automatically standalone C++ code from the BIP program as
explained below (see Figure 3.10).

The BIP program consists of 11 atomic components, and 14 connectors. It uses the
data and the functions of the initial handwritten C program. It is composed of two atomic
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c < MAX
c := c + 1

in

grabFrame()

GrabFrame

outputFrame()

Encode OutputFrame

in

in

in

in

in

in

in

out

out

out

out

out

out

out

out

GrabMacroBlock

Coding

Intraprediction

Quant IQuant

IDCT

Reconstruction

DCT

in out

IDCT()

W = width of frame
H = height of frame

MAX = ( W * H ) / 256

reconstruction()
c := 0
c = MAX

MotionEstimation

c := c+1
grabMacroBlock()

c < Max

out

c = Max
c := 0

exit

fin fout

fin fin
fout fin

fout

fout

fin

fout

in1 in2

fin

fout

fout

fin

Figure 3.10: Encode component structure.
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components and one composite component. The atomic component GrabFrame gets a
frame and produces macroblocks (each frame is split into N macroblocks of 256 pixels). The
atomic component OutputFrame produces an encoded frame. The composite component
Encode consists of 9 atomic components and the corresponding connectors. It encodes
macroblocks produced by the component GrabFrame.

Figure 3.11 shows execution times for the initial handwritten C code, for the BIP pro-
gram and the corresponding standalone C++ code generated automatically by using the
presented technique. Notice that the automatically generated C++ code and the hand-
written C code have almost the same execution times. The advantages from the compo-
nentization of the handwritten code are multiple. The BIP program has been rescheduled
as shown in [CFLS05a] so as to meet given timing requirements.
Table 3.1 gives the size of the handwritten C code, the BIP model, as well of the generated
C++ code from the BIP model C(1) and the generated C++ code from the BIP model
after flattening C(2). The time taken by the BIP2BIP tool to generate automatically C(2)

is less than 1sec.

Handwritten BIP C(1) C(2)

loc 600 350 1800 800

Table 3.1: Code size in lines-of-code (loc) for MPEG4 encoder.

3.4.2 Concurrent Sorting

This example is inspired from a network sorting algorithm [AKS83]. We consider 2n

atomic components, each of them containing an array of N values. We want to sort all the
values, so that the elements of the first component are smaller than those of the second
component and so on. We solve the problem by using incremental hierarchical composition
of components with particular connectors.

In Figure 3.12, we give a model for sorting the elements of 4 atomic components. The
components C1 and C2 are identical. The pair (B1, B2) is composed by using two connectors
γ1 and γ2 to form the composite component C1. Each atomic component computes the
minimum and the maximum of the values in its array. These values are then exported on
port p. The connector γ1 is used to compare the maximum value of B1 with the minimum
value of B2, and to permute them if the maximum is bigger than the minimum value.

When the maximum value of B1 is smaller than the minimum value of B2, that is the
components are correctly sorted, then the second connector γ2 is triggered. It is used to
export the minimum value of B1 and the maximum value of B2 to the upper level. At this
level the same principle is applied to sort the values of the composite components C1 and
C2. This pattern can be repeated to obtain arbitrary higher hierarchies (see Figure 3.13).
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Figure 3.11: Execution time for the MPEG4 encoder.
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... ... ......

γ1

p(Min, Max) q(Min, Max)

G : p.Max <= q.Min

U : Min := p.Min; Max := q.Max;

D : p.Min := Min; q.Max := Max;

γ2

r(Min, Max)

q(Min, Max)p(Min, Max)

C2C1

γ1

γ2

B1 B2

D : x := p.Max; p.Max := q.Min; q.Min := x;

U :

G : p.Max > q.Min

Figure 3.12: Concurrent sorting n = 2.

Figure 3.13: Concurrent sorting n = 4.
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n BIP C(1) C(2)

2 loc 112 360 400

3 loc 120 400 620

4 loc 128 440 1100

5 loc 136 480 1850

6 loc 144 520 2850

Table 3.2: Code size in loc for concurrent sorting.

Figure 3.14 shows the execution times for the hierarchically structured BIP program
and for the corresponding standalone C++ code generated automatically by using the
presented technique. Notice the exponentially increasing difference between the execution
time of the component-based BIP program and the corresponding C++ code. In particular,
component flattening and connector flattening do not provide much better performance,
because the hierarchical structure is actually exploited by the BIP Engine to compute en-
abled interactions in an efficient manner. However, these transformations are mandatory
for applying the static composition.
Notice that the overhead is due to many reasons when using the BIP Engine. First, each
atomic components sends to the Engine its current state and the list of enabled ports. Sec-
ond, the Engine enumerates on the list of interactions in the model, identifies all enabled
ones based on the current state of the atomic components, then among them it selects one
for execution and, finally, notifies atoms to take the corresponding transition. This over-
head is partially eliminated in the standalone C++ code generated automatically. Indeed,
the call function between components and the Engine is omitted. The time needed to se-
lect an enabled interaction is drastically reduced. Moreover, control and code optimization
such as guard combination, removal of unnecessary assignments, etc., are applied

Table 3.2 shows the size in lines of code of the BIP model, as well of the generated
C++ generated from the BIP model C(1) and the generated C++ code from the BIP
model after flattening C(2), for 4, 8, 16, 32 and 64 atomic components. The size of the
BIP model changes only linearly with n. However, we notice that for this example, the
size of the generated C++ code from the BIP model is much smaller than the generated
C++ code from the BIP model after flattening. This is due to the use of component
types and component types instantiation. In particular, for this example, the initial BIP
model contains just one component type instantiated, respectively 4, 8, 16, 32, 64 times for
n = 2, 3, 4, 5, 6. However, the BIP model after flattening, contains one component types
with one instance each. The size of the generated code is directly dependent on the number
of component types and not on the number of component types instance.
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Figure 3.14: Execution time for concurrent sorting.
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3.5 Summary

In this chapter we presented a technique for generating efficient centralized implemen-
tation running on a single-core platforms. The technique is based on source-to-source
transformations. We defined three transformations: Component flattening, Connector
flattening, Component composition. The aim of these transformation is to transform a
composite component into a single atomic component. From the latter an efficient code
can be generated.

Moreover, we shown that it is possible to reconcile component-based incremental design
and efficient code generation by applying a paradigm based on the combined use of:

1. a high level modelling notation based on well-defined operational semantics and sup-
porting powerful mechanisms for expressing structured coordination between compo-
nents;

2. semantics-preserving source-to-source transformations that progressively transform
architectural constraints between components into internal computation of product
components.

This paradigm opens the way to the synthesis of efficient monolithic software which is
correct-by-construction by using the design methodology supported by BIP.

We are now going to present a method for generating efficient distributed implemen-
tations from BIP models. We will also show applications of our method on non trivial
example described in the BIP language.
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a1

B1 B2 B4 B5
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p3
p5p1 p2 p4

p7 p8

p6 p9

B3

a4

Figure 4.1: A simple high-level BIP model.

In the previous chapter, we present a method to generate an efficient centralized imple-
mentation from a high-level BIP model. Centralized implementations can be useful when
the target platform consists of a single-processor. However, nowadays, most applications
themselves they can be geographically distributed, on the other hand, most of target plat-
forms are multi-processor boards. Thus, a distributed and parallel implementation should
be derived from the high-level BIP model. In this chapter, we propose a methodology for
producing automatically efficient and correct-by-construction distributed implementations
from a high-level BIP models.

4.1 Problem Statement

Deriving from a high-level model a correct and efficient distributed implementation,
that allows parallelism between components as well as parallel execution between interac-
tions, is a challenging problem. As adding implementation details involves many subtleties
(e.g., inherently concurrent, non-deterministic, and non-atomic structure of distributed
systems) that can potentially introduce errors to the resulting system.

In order to understand the subtleties of transformation from high-level BIP model
to distributed implementations, consider the BIP model in Figure 4.1. In this model,
atomic components B1 · · ·B5 synchronize through four rendezvous interactions a1 · · · a4. In
sequential implementation, interactions are executed atomically by a centralized Engine.
On the contrary, introducing concurrency and distribution (and possibly multiple Engines)
to this model requires dealing with more complex issues:

– (Partial observability) Suppose interaction a1 (and, hence, components B1 · · ·B3) is
being executed. If component B3 completes its computation before B1 and B2, and,
ports p4, p5 are enabled, then interaction a2 is enabled. In such a case, distributed
Engines must be designed so that concurrent execution of interactions does not intro-
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duce behaviors that were not allowed by the high-level model. We address the issue
of partial observability by breaking the atomicity of execution of interactions, so that
a component can execute unobservable actions once a corresponding interaction is
being executed [BBBS08].

– (Resolving conflicts) Suppose interactions a1 and a2 are enabled simultaneously.
Since these interactions share component B3, they cannot be executed concurrently.
We call such interactions conflicting. Obviously, distributed Engines must ensure
that conflicting interactions are mutually exclusive.

– (Performance) On top of correctness issues, a real challenge is to ensure that a
transformation does not add considerable overhead to the implementation. After
all, one crucial goal of developing distributed and parallel systems is to exploit their
computing power.

4.2 Original BIP Model

In this chapter, we consider that the original BIP component consists only of atomic
component and flat connectors. Moreover, each connector defines one and only one in-
teraction (see Figure 4.1). Indeed, these assumptions does not impose any restrictions on
the original model, since we can apply the first two transformation Component Flattening
and Connector Flattening described in Section 3.2. Hence, we obtain a model which meets
these assumptions. Under these assumptions, a composite component C can be denoted
as C = γ(B1, B2, . . . , Bn) where B1, B2, . . . , Bn is a set of atomic components and γ is a
set of interactions.

Recall that an interaction is defined as follows:

Definition 4.2.1 (Interaction.) An interaction a is given by a tuple (P,G, F ) such that:
– P is a set of ports P = {pi[xi]}i∈I ,
– G is a guard (a predicate on the variables xi),
– F is an update function defined on the variables xi .

Furthermore, let B = (L, P, T, {gτ}τ∈T , {fτ}τ∈T ) be an atomic component. Hereafter,
we assume that T ⊆ L×P ×L. That is, the behavior of an atomic component is described
as labeled transition system. For any pair of control states l, l′ ∈ L and a port p ∈ P , we
write l

p
→ l′, iff (l, p, l′) ∈ T . When the communication port is irrelevant, we simply write

l → l′. Similarly, l
p
→ means that there exists l′ ∈ L such that l

p
→ l′.

4.3 Conflicting Interactions

In order to understand what is a conflicting interaction, let us first recall how the
execution of interactions and local code of components in a model are orchestrated by the
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Figure 4.2: Centralized Engine.

centralized Engine (see Figure 4.2):

1. Each atomic component sends to the Engine the set of enabled ports based on the
current state of the atomic components.

2. The Engine enumerates the list of interactions in the model, selects the enabled ones.

3. The Engine selects any one from the enabled ones after eliminating the ones with low
priority.

4. Finally, the Engine notifies the involved atomic components the transition to take
and wait for completion.

The operational semantics of the BIP framework is handled by the centralized Engine.
Nonetheless, introducing concurrency and distribution between interactions by adding mul-
tiple Engines requires dealing with more complex issues. For instance, the system must
respect the global state semantics although it works in a distributed setting where com-
ponents do not have a global view of the system. Moreover, suppose that interaction a1

and a2, in the example in Figure 4.1 are enabled simultaneously. Since these interactions
share the same component B3, they cannot be executed concurrently such as the example
in Figure 4.3. We call such interactions conflicting. Obviously, distributed Engines must
ensure that conflicting interactions are mutually exclusive.

Definition 4.3.1 (Conflict interaction.) Let γ(B1, . . . , Bn) be a BIP component. We
say that two interactions a1, a2 ∈ γ are conflicting iff:
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Figure 4.4: Conflict interactions.

– either, they share a common port p; i.e., p ∈ a1 ∩ a2 (see Figure 4.4-a),
– or, there exist an atomic component Bi = (Li, Pi, Ti, {gτi

}τi∈Ti
, {fτi

}τi∈Ti
), a control

state l ∈ Li, and two ports p1, p2 ∈ Pi such that (1) p1 ∈ a1, (2) p2 ∈ a2, and (3)

l
p1
−→ ∧ l

p2
−→ (see Figure 4.4-b).

Therefore, introducing concurrency by adding multiple Engines requires to resolve con-
flict between conflicting interactions.

The first straightforward solution consists of generation distributed Engines which is
conflict-free by construction. This is done by grouping interactions according to the tran-
sitive closure of the conflict relation in the same Engine. In this case, we do not need
communications in order to safely execute interactions of the high-level model.

However, this solution has a drawback, because grouping conflicting interactions ac-
cording to the transitive closure reduces drastically parallelism between interactions. In
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Figure 4.5: Drawbacks of conflict-free solution.

other words, two interactions which are not in direct conflict cannot run in parallel. For
instance, let us consider the example in the Figure 4.1. Assuming that a1 is conflict only
with a2, and, interaction a2, a3, a4 are pairwise conflict. This situation leads to create
only one centralized Engine handling all the interactions (see Figure 4.5), and then, it is
not possible to run the interaction a1 and a3 in parallel, despite that it is possible without
violating the operational semantics of BIP.

For this reason, we need a solution which solve conflict dynamically by using some
protocols. Indeed, resolving conflicts leads us to solving the committee coordination prob-
lem [CM88], where a set of professors organize themselves in different committees and two
committees that have a professor in common cannot meet simultaneously. The original
distributed solution to the committee coordination problem assigns one manager to each
interaction [CM88]. Conflicts between interactions are resolved by reducing the problem
to the dining or drinking philosophers problems [CM84], where each manager is mapped
onto a philosopher. Bagrodia [Bag87] proposes an algorithm where message counts are
used to solve synchronization and exclusion is ensured by using a circulating token. In a
follow-up paper [Bag89], Bagrodia modifies the solution in [Bag87] by combining the use of
message counts to ensure synchronization and reducing the conflict resolution problem to
dining or drinking philosophers problems. Also, Perez et al [PCT04] propose an approach,
Alpha-Core Protocol, that essentially implements the same idea using a lock-based syn-
chronization mechanism. For instance, if we consider the algorithm proposed by Perez et
al, this leads to embedding the protocol into the high-level BIP model as it is presented in
the Figure 4.6. Notice that, using such methodology the modification of protocol requires
to do a modification in the different layers.

Thus, several distributed algorithms exist in the literature for conflict resolution, more-
over the performance of each of them depends on the type of the application. For this
reason, we need to design our framework, so that it provides appropriate interfaces with
minimal restrictions.
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Figure 4.6: Resolving conflict interactions using alpha-core protocol.

4.4 Proposed Solution

With this motivation we propose a generic framework for transforming high-level BIP
models into a distributed implementation that allow parallelism between components as
well as parallel execution of non-conflicting interactions by embedding a solution to the
committee coordination problem. To the best of our knowledge, this is the first instance
of such a transformation (the related work mentioned above only focus on impossibility
results, abstract algorithms, and in one instance [Bag89] simulation of an algorithm). Our
method utilizes the following sequence of transformations preserving observational equiva-
lence:

1. First, we transform the given BIP model into another BIP model that (1) oper-
ates in partial-state semantics, and (2) expresses multi-party interactions in terms of
asynchronous message passing (Send/Receive primitives). Moreover, the target BIP
model is structured in three layers:

(a) The Atomic Components Layer consists of a transformation of behavioral com-
ponents in the original model.

(b) The Interaction Protocol Layer detects enabledness of interactions of the original
model and executes them after resolving conflicts either locally or by the help
of the third layer. This layer consists of a set of components, each hosting a
user-defined subset of interactions from the original BIP model.

(c) The Conflict Resolution Protocol Layer resolves conflicts requested by the In-
teraction Protocol. The Conflict Resolution Protocol implements a committee
coordination algorithm and our design allows employing any such algorithm.
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Figure 4.7: General overview of the 3-layer architecture.

We, in particular, consider three committee coordination algorithms:

i. a fully centralized algorithm,

ii. a token-based distributed algorithm,

iii. an algorithm based on reduction to distributed dining philosophers.

2. Then, we transform the 3-layer BIP model into C++ code that employs TCP sockets
or MPI for communications.

The BIP composite component generated from the first phase is called Send/Receive
BIP, and it is defined as the following:

Definition 4.4.1 (Send/Receive BIP.) We say that BSR = γSR(BSR
1 , . . . , BSR

n ) is a
Send/Receive BIP composite component iff we can partition the set of ports in BSR into
three sets Ps, Pr, Pu that are respectively the set of send-ports, receive-ports, and unary
interaction ports, such that:

– Each interaction a ∈ γSR, is either a Send/Receive interaction a = (s, r1, r2, . . . , rk)
with s ∈ Ps and ri ∈ Pr, or, a unary interaction a = {p} with p ∈ Pu.

– If s is a port in Ps, then there exists one and only one Send/Receive interaction
(s, r1, r2, . . . , rk) ∈ γSR where all ports r1, . . . , rk are receive-ports. We say that
r1, r2, . . . , rk are the receive-ports associated to s.

– If (s, r1, . . . , rk) is a Send/Receive interaction in γSR and s is enabled at some global
state of BSR, then all its associated receive-ports r1, . . . , rk are also enabled at that
state.
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Figure 4.8: 3-layer Send/Receive BIP model of Figure 4.1.

Notice that the second condition requires that only one component can receive a ”message”
sent by another component. The last condition ensures that every Send/Receive interaction
can take place as soon as the sender is enabled, i.e., the sender can send the message
immediately.

4.5 The 3-Layer Architecture

We design our target BIP model based on the three tasks identified above, where we
incorporate one layer for each task. We use the high-level BIP model in Figure 4.1 as a
running example throughout this section to describe the concepts of our transformation.
We assume that interaction a1 is in conflict with only interaction a2, and, interactions a2,
a3, and a4 are in pairwise conflict. Our 3-layer architecture consists of the following layers.

Atomic Components Layer. Atomic components in the high-level model are placed in
this layer with the following additional ports per component. The send-port o that shares
the list of enabled ports in the component with the upper layer. Also, for each port p in the
original component, we include a receive-port p through which the component is notified
to execute the transition labeled by p once the upper layers resolve conflicts and decide
on which components can execute on what port. The bottom layer in Figure 4.8 includes
components illustrated in Figure 4.1.
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Interaction Protocol Layer. This layer consists of a set of components each hosting a
set of interactions in the high-level model. Conflicts between interactions included in the
same component are resolved by that component locally. For instance, interactions a1 and
a2 (resp. a3 and a4) of Figure 4.1 are grouped into component IP1 (resp. component IP2)
in Figure 4.8. Thus, the conflict between a1 and a2 (resp. a3 and a4) is handled locally
in IP1 (resp. IP2). On the contrary, the conflicts between a2 and either a3 or a4 must be
resolved using an external algorithm that solves the committee coordination problem. Such
an algorithm forms the top layer of our model. The Interaction Protocol also evaluates
the guard of each interaction and executes the code associated with an interaction that is
selected locally or by the upper layer. The interface between this layer and the component
layer provides ports for receiving enabled ports from each component (i.e., port o) and
notifying the components on permitted port for execution.

Conflict Resolution Protocol Layer. This layer accommodates an algorithm that
solves the committee coordination problem. For instance, the external conflicts between
interactions a2 and a3, and, interactions a2 and a4 are resolved by the central component
RP1 in Figure 4.8. We emphasize that the structure of components in this layer solely
depends upon the augmented conflict resolution algorithm. Incorporating a centralized
algorithm results in one component CENT 1 as illustrated in Figure 4.8. Other algorithms
(as will be discussed in 4.6.3), such as ones that use a circulating token [Bag87] or dining
philosophers [CM84, Bag89] result in different structures. The interface between this layer
and the Interaction Protocol involves ports for receiving request to reserve an interaction
(labeled r) and responding by either success (labeled ok) or failure (labeled f).

4.6 Transformations

In this section, we describe our technique for transforming a BIP model into a 3-
layer distributed BIP model in detail. Construction of the three layers are described in
Subsections 4.6.1, 4.6.2, and 4.6.3 respectively. Finally, we describe cross-layer interactions
in Subsection 4.6.4.

4.6.1 Transformation of Atomic Components

We now present how we transform an atomic component B from a given BIP model
into a Send/Receive atomic component BSR that is capable of communicating with the
Interaction Protocol in the 3-layer model. As mentioned in Section 4.5, BSR sends offers
to the Interaction Protocol that are acknowledged by a response. An offer includes the
set of enabled ports of BSR at the current state through which the component is ready to
interact. Enabled ports are specified by a set of Boolean variables. These variables are
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Figure 4.9: Transformation of atomic component.

modified by a port update function. The function evaluates each variable when reaching a
new state. When the upper layers select an interaction involving BSR for execution, BSR

is notified by a response sent on the port chosen. We also include a participation number
variable n in BSR, which counts the number of interactions BSR has participated in.

Since each response triggers an internal computation, following [BBBS08], we split each
state s into two states, namely, s itself and a busy state ⊥s. Intuitively, reaching ⊥s marks
the beginning of an unobservable internal computation. We are now ready to define the
transformation from B into BSR.

Definition 4.6.1 (Transformation of atomic component.) Let B = (L, P, T, X, {gτ}τ∈T ,
{fτ}τ∈T ) be an atomic component. The corresponding Send/Receive atomic component is
BSR = (LSR, P SR, T SR, XSR, {gSR

τ }τ∈TSR , {fSR
τ }τ∈T ) such that:

– LSR = L ∪ L⊥, where L⊥ = {⊥s |s ∈ L}.
– XSR = X ∪ {n} ∪ {xp}p∈P , where xp it is a new boolean variable associated to the

port p, and n is the number of interactions BSR has participated in.
– P SR = P ∪ {o}, where the set of variables XSR are associated to offer port o.
– For each transition τ = (s, p, t) ∈ T , we include the following two transitions in T SR:

τ1 = (⊥s, o, s) and τ2 = (s, p,⊥t). The guards of the transition τ1 and τ2 are true.
Moreover, the transition τ2 triggers the functions fτ followed by the ft. Where the
function ft modifies XSR as follows: it sets xp to true if (t

p
−→)∧ (gτ = true), it sets

it to false otherwise, and increments n.

Figure 4.9 illustrates transformation of the component into its corresponding Send/Re-
ceive component.

4.6.2 The Interaction Protocol

Given a high-level BIP model B = γ(B1 · · ·Bn), one parameter to our transformation is
a partition of interactions γ1, . . . , γm. Partitioning of interactions is a means for the designer
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to enforce load-balancing and improving the performance of the given model when running
in a distributed fashion. It also determines whether or not a conflict between interactions
can be resolved locally. We associate each class γj of interactions to an Interaction Protocol
component IP j that is responsible for (1) detecting enabledness by collecting offers from
the Components Layer, (2) selecting a set of non-conflicting interactions (either locally or
by the help of the Conflict Resolution Protocol), and (3) executing the selected interactions
in γi by notifying the corresponding atomic components. For instance, in Figure 4.8, we
have two classes: γ1 = {a1, a2} (hosted by component IP1) and γ2 = {a3, a4} (hosted by
component IP2).

Since components of the Interaction Protocol deal with interactions of the original
model, they need to be aware of conflicts in the original model as defined in Definition
4.3.1. We distinguish two types of conflicting interactions according to a given partition:

– External: two interactions are externally conflicting if they conflict and they belong
to different classes of the partition. External conflicts are resolved by the Conflict
Resolution Protocol. For instance, in Figure 4.8, interaction a2 is in external conflict
with interactions a3 and a4.

– Internal: two interactions are internally conflicting if they conflict, but they belong
to the same class of the partition. Internal conflicts are resolved by the Interac-
tion Protocol within the component that hosts them. For instance, in Figure 4.8,
interaction a1 is in internal conflict with interaction a2. If component IP1 chooses in-
teraction a1 over a2, no further action is required. Note, however, that if IP1 chooses
a2, then it has to request its reservation from CENT 1, as it is in conflict with a3 and
a4 externally.

For each Interaction Protocol we create the corresponding atomic component. The
behavior of an Interaction Protocol component IP j handling a class γj of interactions is
constructed as follows. We refer to Figure 4.10 as a concrete example for construction of
the atomic component of IP1 in Figure 4.8.

Definition 4.6.2 (Interaction protocol.) Let B = γ(B1 · · ·Bn) be a composite com-
ponent, and γj = {a1 = (P1, F1, G1), . . . , ak = (Pk, Fk, Gk)} a set of interactions. The

corresponding atomic component IP j = (LIPj , P IPj , T IPj , XIPj , {g
IPj
τ }

τ∈T IPj , {f
IPj
τ }τ∈T )

handling γj is defined as follows:
– Control states LIPj . We include three types of places:

– For each component Bi involved in interactions of γj, we include waiting and
received places wi and rcv i, respectively. IP j waits in a waiting place until it re-
ceives an offer from the corresponding component. When an offer from component
Bi is received (along with the fresh values of the Boolean variables associated to the
ports of the sender), IPj moves from wi to rcv i. In Figure 4.10, since components
B1 · · ·B4 are involved in interactions hosted by IP1 (i.e., a1 and a2), we include
waiting places w1 · · ·w4 and received places rcv1 · · · rcv4.
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Figure 4.10: Component IP1 in Figure 4.8.

Verimag - 28 October 2010 79 Mohamad Jaber



Chapter 4. Transformation for Generating Distributed Implementations

– For each port p involved in interactions of γj, we include a sending place sndp. The
response to an offer with xp = true is sent from this place to port p of the component
that has made the offer. In Figure 4.10, places sndp1 · · · sndp5 correspond to ports
p1 · · · p5 respectively, as they form interactions hosted by IP1 (i.e., a1 and a2).

– For each interaction a ∈ γj that is in external conflict with another interaction, we
include an engaged place ea and a free place fra. In Figure 4.10, only interaction
a2 is in external conflict, for which we add places ea2 and fra2

.
– Variables XIPj . For each port p involved in interactions of γj, we include a

Boolean variable xp. The value of this variable is equal to the value of the same
variable in the most recent offer received from the corresponding component. Also,
for each component Bi involved in interactions of γj, we include an integer ni that
stores participation number of Bi, and its own variables.

– Ports P IPj . The set of ports of IP j is the following:
– For each component Bi involved in interactions of γj, we include an offer port oi.

Each port oi updates the values of variables ni, xp and the variable associated for
each port p exported by Bi. In Figure 4.10, ports o1 · · · o4 represent offer ports for
components B1 · · ·B4.

– For each port p involved in interactions of γj, we include a response port p. In
Figure 4.10, ports p1 · · · p5 correspond to the ports that form interactions a1 and
a2.

– For each interaction a = (P,G, F ) ∈ γj that is in external conflict, we include
reservation ports ra, oka, and fa. If P = {pi}i∈I , the port ra is associated to
the variables {ni}i∈I , where I is the set of components involved in interaction a.
In Figure 4.10, ports ra2, oka2, and fa2 represent the external conflict of a2 with
interactions a3 and a4.

– For each interaction a ∈ γj that is not in external conflict, we include a unary port
a. In Figure 4.10, we include unary port a1, as a1 is only in internal conflict with
a2.

– Transitions T IPj . IP j performs two tasks: (1) receiving offers from components
in the lower layer and responding to them, and (2) requesting reservation of an in-
teraction from the Conflict Resolution Protocol in case of an external conflict. The
following set of transitions of IP j performs these two tasks:
– In order to receive offers from a component Bi, we include transition (wi, oi, rcv i).

If Bi participates in an interaction not handled by IP j, we also include transition
(rcv i, oi, rcv i) to receive new offers when Bi takes part in such an interaction.
Transitions labeled by o1 · · · o4 in Figure 4.10 are of this type.

– Requesting reservation of an interaction a = (P,G, F ) ∈ γj that is in external
conflict is accomplished by transition ({rcv i}i∈I ∪{fra}, ra, {rcv i}i∈I ∪{ea}), where
I is the set of components involved in interaction a. This transition is guarded by
the predicate

∧

i∈I xpi
∧G which ensures enabledness of a. Notice that this transition

Thesis 80 Mohamad Jaber



Chapter 4. Transformation for Generating Distributed Implementations

is enabled when the token for each participating component is in its corresponding
receive place rcv i and the guard G of the interaction is true. Execution of this
transition results in moving the token from a free place to an engaged place. In
Figure 4.10, transition ra2 is of this type, and is guarded by xp4 ∧ xp5.

– For the case where the Conflict Resolution Protocol responds positively, we include
the transition ({rcv i}i∈I ∪ {ea}, oka, {sndpi

}i∈I ∪ {fra}). The execution of this
transition triggers the function F of the interaction a, and then, the token from the
engaged place moves to the free place and the tokens from received move to sending
places for informing the corresponding components. Transition oka2 in Figure
4.10 occurs when interaction a2 is successfully reserved by the Conflict Resolution
Protocol.

– For the case where the Conflict Resolution Protocol responds negatively, we include
the transition (ea, fa, fra). Upon execution of this transition, the token moves from
the engaged place to the free place. Transition fa2 in Figure 4.10 occurs when the
Conflict Resolution Protocol fails to reserve interaction a2 for component IP1.

– For each interaction a = {pi}i∈I in γj that has only internal conflicts, let A be the
set of interactions that are in internal conflict with a, but are externally conflicting
with other interactions. We include the transition ({rcv i}i∈I∪{fra′}a′∈A, a, {sndpi

}i∈I∪
{fra′}a′∈A). This transition is guarded by the predicate

∧

i∈I xpi
and moves the to-

kens from receiving to sending places. Tokens from fra′ places ensure that no
internally conflicting interaction requested a reservation. The transition labeled by
a1 in Figure 4.10 falls in this category.

– Finally, for each component Bi exporting p, we include the transitions (sndp, p, wi).
This transition notifies component Bi to execute the transition labeled by port p.
These are transitions labeled by p1 · · · p5 in Figure 4.10.

4.6.3 The Conflict Resolution Protocol

As discussed earlier, the main task of the Conflict Resolution Protocol is to ensure that
externally conflicting interactions are executed mutually exclusive. The Conflict Resolution
Protocol can be implemented using any algorithm that solves the committee coordination
problem. Our design of Conflict Resolution Protocol allows employing any such algorithm
with minimal restrictions.

We adapt a variation of the idea of the message-count technique from [Bag89] as a
minimal restriction to ensure that our design makes progress (see Lemma 2) and it does
not interfere with exclusion algorithms. This technique is based on counting the number
of times that a component interacts. Each component keeps a counter n which indicates
the current number of participations of the component in interactions. The Conflict Res-
olution Protocol ensures that each participation number is used only once. That is, each
component takes part in only one interaction per transition. To this end, in the Conflict
Resolution Protocol, for each component Bi, we keep a variable Ni which stores the latest
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Figure 4.11: A centralized Conflict Resolution Protocol for Figure 4.8.

number of participations of Bi. Whenever a reserve message ra for interaction a = {pi}i∈I

is received by the Conflict Resolution Protocol, the message provides a set of participation
numbers ({na

i }i∈I) for all components involved in a. If for each component Bi, the partic-
ipation number na

i is greater than Ni, then the Conflict Resolution Protocol acknowledges
successful reservation through port oka and the participation numbers in the Conflict Res-
olution Protocol are set to values sent by the Interaction Protocol. On the contrary, if there
exists a component whose participation number is less than or equal to what Conflict Res-
olution Protocol has recorded, then the corresponding component has already participated
for this number and the Conflict Resolution Protocol replies failure via port fa.

Now, since the structure and behavior of the Conflict Resolution Protocol components
depend on the employed algorithm, we only specify an abstract set of minimal restrictions
of this layer as follows:

– For each component Bi, the Conflict Resolution Protocol maintains a variable Ni

indicating the last participation number reserved for Bi.
– For each interaction a = {pi}i∈I handled by the Conflict Resolution Protocol, we

include three ports: ra, oka and fa. The receive-port ra accepts reservation requests
containing fresh values of variables na

i . The send-ports oka and fa accept or reject the
latest reservation request, and Ni variables are updated in case of positive response.

– Each ra message should be acknowledged by exactly one oka or fa message.
– Each component of the Conflict Resolution Protocol should respect the message-

count properties described above.

4.6.3.1 Centralized Implementation

Figure 4.11 shows a centralized Conflict Resolution Protocol for the model in Figure
4.8. In fact, the component in Figure 4.11 is the component CENT 1 in Figure 4.8. A
reservation request, for instance, ra2 , contains fresh variables na2

3 and na2
4 (corresponding

to components B3 and B4). The token representing interaction a2 is then moved from place
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waita2 to place treata2 . From this state, the Conflict Resolution Protocol can still receive a
request for reserving a3 and a4 since waita3 and waita4 still contain a token. This is where
message-counts play their role. The guard of transition oka2 is (na2

3 > N3) ∧ (na2
4 > N4)

where Ni is the last known used participation number for Bi. Note that since execution of
transitions are atomic in BIP, if transition oka2 is fired, it modifies variables Ni atomically
(i.e., before any other transition can take place). We denote this implementation by CENT .

4.6.3.2 Token Ring Implementation

Another example of a Conflict Resolution Protocol is inspired by the token-based al-
gorithm due to Bagrodia [Bag87], where we add one reservation component per externally
conflicting interaction. Figure 4.12 shows the respective components for the model pre-
sented in Figure 4.8. Exclusion is ensured using a circulating token carrying Ni variables;
i.e., the component that owns the token compares the value of the received ni variables
with the Ni variables from the token. If they are greater, an ok message is sent to the
component that handles that interaction and the Ni values on the token are updated.
Otherwise, a fail message is sent. Subsequently, the reservation component releases the
token via port ST , which is received by the next component via port RT . Obviously, this
algorithm allows a better level of distribution at the Conflict Resolution Protocol layer.
We denote this implementation by TR.

4.6.3.3 Implementation Based on Dining Philosophers

A third choice of Conflict Resolution Protocol algorithm is an adaption of the hygienic
solution to the dining philosophers problem presented in [CM88, Bag89]. Its Send/Receive
BIP implementation is presented in Figure 4.13. Similar to token ring, each externally
conflicting interaction is handled by a separate component. If two interactions are conflict-
ing, the two corresponding components share a fork carrying Ni variables corresponding
to the atomic components causing the conflict. In order to positively respond to a reserve,
a component has to fetch all forks shared with its neighbors. Then, it compares partic-
ipation numbers received from the reservation request and from the forks and responds
accordingly. After such a response, the forks become dirty. Finally, the component sends
the forks if it is asked to do so. We denote this implementation by DP .

4.6.4 Cross-Layer Interactions

In this subsection, we define the interactions of our 3-layer model. Following Definition
4.4.1, we construct Send/Receive interactions by specifying which one is the sender. Given
a BIP model γ(B1 · · ·Bn), a partition γ1 · · · γm, and the obtained Send/Receive compo-
nents BSR

1 · · ·BSR
n , Interaction Protocol components IP1 · · · IPm, and Conflict Resolution
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Figure 4.12: Token-based Conflict Resolution Protocol for the BIP models in Figures 4.1
and 4.8.
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Figure 4.13: Dining philosophers-based Conflict Resolution Protocol for the BIP models
in Figures 4.1 and 4.8.
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Protocol components CENT 1 · · ·CENT k, we construct the Send/Receive interactions γSR

according to Definition 4.4.1 as follows:
– For each component Bi, γSR contains a multicast connector formed by all ports oi,

where Bi is the sender.
– For each Interaction Protocol component IP j and port p in IP j , we include a binary

interaction, such that port p of IP j is the sender, and, port p of the corresponding
component in the components layer is the receiver.

– For each interaction a that is in external conflict, γSR contains an interaction between
ra ports, such that the Interaction Protocol is the sender and Conflict Resolution
Protocol is the receiver. Likewise, γSR contains interactions between oka and fa

ports.
Note that the interaction do not depend on the Conflict Resolution Protocol. The

entire model obtained is denoted BSR
CENT

, BSR
TR

or BSR
DP

following the embedded Conflict
Resolution Protocol. The interactions between the three layers of our running example are
presented in Figure 4.8. The send-ports are graphically denoted by triangles and receive-
ports by bullets.

4.7 Correctness

In Subsection 4.7.1, we show that our 3-layer model meets the constraints of the
Send/Receive model specified in Section 4.5. In Subsection 4.7.2, we prove that a BIP
model is observationally equivalent with the BIP model obtained by the transformation of
Section 4.6. Finally, we prove the correctness of models embedding different implementa-
tions of Conflict Resolution Protocol in Subsection 4.7.3.

4.7.1 Compliance with Send/Receive Models

Proposition 3 Given a BIP model B, the model BSR obtained by transformation of Sec-
tion 4.6 meets the constraints of Definition 4.4.1.

Proof The send-ports and receive-ports are clearly determined in subsection 4.6.4 and
respect the syntax presented in the two first points of definition 4.4.1. We now prove the
third point, that is whenever a send-port is enabled, all its associated receive-ports are
enabled.

Between the Interaction Protocol and Conflict Resolution Protocol layers, for reserve,
ok and fail interactions related to a ∈ γ it is sufficient to consider places fra and ea in
the Interaction Protocol layer, waita and treata in the Conflict Resolution Protocol layer.
Initially the configuration is (fra, waita) from which only the send-port ra in Interaction
Protocol might be enabled, and the receive-port ra is enabled. If the ra interaction takes
place, we reach the configuration (ea, treata), in which only send-ports oka and fa in Con-
flict Resolution Protocol might be enabled, and the associated receive-ports in Interaction
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Protocol are enabled. Then if either ok or fail interaction takes place we switch back to
the initial configuration.

Between components and Interaction Protocol layers, for all interactions involving com-
ponent Bi, it is sufficient to consider only the places wi, ri and sp for each port p exported
by Bi in the Interaction Protocol. Whenever one of the places wi or ri is enabled in each
Interaction Protocol component, the property holds for the oi interaction. In this configu-
ration, no place sp might be active since it would require one of the token from a wi or a
ri, thus no send port p is enabled.

If there is an Interaction Protocol component such that the token associated to Bi is
an a place sp, it comes either from an a or an oka labeled-transition. In the first case, no
other interaction involving Bi can take place, otherwise it would be externally conflicting
with a. In the second case according to the Conflict Resolution Protocol, the oka was given
for the current participation number in the component Bi and no other interaction using
this number will be granted. Thus in all cases, there is only one active place sp with p
exported by Bi. The response can then take place and let the components continue their
execution. �

4.7.2 Observational Equivalence between Original and Transformed BIP
Models

In this subsection, our goal is to show that B and BSR are observationally equivalent.
Let us first recall the definition of observational equivalence of two transition systems
A = (QA, P ∪ {β},→A) and B = (QB, P ∪ {β},→B). It is based on the usual definition of
weak bisimilarity [Mil95], where β-transitions are considered unobservable.

Notice that, a state of an atomic components is defined as a pair q = (s, v) where
s ∈ L is the control state, v : X 7→ Data is a valuation of the variables X of the atomic
component. For simplicity of reasoning and clarity about correctness we omit the variables
defined in the original atomic components, hence, functions and guards defined in the
transitions and interactions is not necessary. Moreover, a state of an atomic component q
become the actual control state l. In this case, an interaction can be seen as a set of ports,
and a composite component B = γ(B1, . . . , Bn) is a transition system (Q, γ,→), where
Q =

⊗n
i=1 Qi (Qi = Bi.L) and → is the least set of transitions satisfying the rule:

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi→i q′i ∀i 6∈ I. qi = q′i

(q1, . . . , qn)
a
→ (q′1, . . . , q

′
n)

Definition 4.7.1 (Weak simulation.) A weak simulation over A and B, denoted A ⊂
B, is a relation R ⊆ QA × QB, such that we have ∀(q, r) ∈ R, a ∈ P : q

a
→A q′ =⇒ ∃r′ :

(q′, r′) ∈ R ∧ r
β∗aβ∗

→ B r′ and ∀(q, r) ∈ R : q
β
→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗

→B r′
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A weak bisimulation over A and B is a relation R such that R and R−1 are both weak
simulations. We say that A and B are observationally equivalent and we write A ∼ B if
for each state of A there is a weakly bisimilar state of B and conversely.

We consider the correspondence between actions of B and BSR as follows. For each
interaction a ∈ γ, where γ is the set of interactions of B, we associate either the binary
interaction oka or the unary interaction a, depending upon existence of an external conflict.
All other interactions (offer, response, reserve, fail) are unobservable and denoted β.

We proceed as follows to complete the proof of observational equivalence. Amongst
unobservable actions β, we distinguish between β1 actions, that are communication in-
teractions between the components layer and the Interaction Protocol (namely offer and
response), and β2 actions that are communications between the Interaction Protocol and
and Conflict Resolution Protocol (namely reserve and fail). We denote qSR a state of BSR

and q a state of B. A state of BSR from where no β1 action is possible is called a sta-
ble state, in the sense that any β action from this state does not change the state of the
component layer.

Lemma 1 From any state qSR, there exists a unique stable state [q]SR such that qSR
β∗
1−→

[q]SR.

Proof The state [q]SR exists since each Send/Receive component BSR
i can do at most two

β1 transitions: receive a response and send an offer. Since two β1 transitions involving two
different components are independent (i.e do not change the same variable or the same
place), the ordering of β1 action does not change the final state. Thus [q]SR is unique. �

We now show a property of the participation numbers. Let B.n mean ‘the variable n that
belongs to component B’.

Lemma 2 When BSR is in a stable state, for each couple (i, j), such that Bi is involved
in interactions handled by IP j, we have Bi.ni = IP j .ni > CENT .Ni.

Proof When in stable state, all offers have been sent, thus the participation numbers in
Interaction Protocol correspond to those in components Bi.ni = IPj .ni.

Initially, for each component Bi, CENT .Ni = 0 and BSR
i .ni = 1 thus the property

holds. The Ni variables in Conflict Resolution Protocol are updated on a ok transition,
using values provided by the Interaction Protocol, that is by the components. We show
that after each oka transition, the property still holds. For each component BSR

i partic-
ipant in a, it holds that BSR

i .ni = CENT .Ni after the offer. Then, the response transi-
tions increments participation numbers in components such that in the next stable state
BSR

i .ni > CENT .Ni. For components Bi′ not participating in a, by induction we have
BSR

i .ni′ > CENT .Ni′ and only participation numbers in components can be incremented.
�
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Since we need to take into account participation numbers ni, we introduce an interme-
diate centralized model Bn. This new model is a copy of B that includes in each atomic
component an additional variable ni which is incremented whenever a transition is exe-
cuted. As B and Bn have identical set of states and transitions labeled by the same ports,
they are observationally equivalent. (They are even strongly bisimilar.)

Lemma 3 B ∼ Bn.

Proof We say that two states (q, qn) of B and Bn are equivalent if they have the same
control states. This defines a bisimulation. �

We are now ready to state and prove our central result.

Proposition 4 BSR ∼ Bn.

(b) Point(ii)(a) Point(ii)

a

[q]SR

q

r′SR [r]SR
β∗

1

a

β∗
1 β∗

1

qSR rSR

r

a
qSR [q]SR [q′]SR

q

rSR [r]SR

r

β∗
1β∗

1β∗
1

fail

a

ra oka

Figure 4.14: Proof of observational equivalence.

Proof We define a relation R between the states QSR of BSR and the states Q of Bn as
follows: R = {(qSR, q) | ∀i ∈ I : [q]SR

i = qi} where qi denotes the state of Bn
i at state q and

[q]SR
i denotes the state of BSR

i at state [q]SR. The three next assertions prove that R is a
weak bisimulation:

(i) If (qSR, q) ∈ R and qSR β
−→ rSR then (rSR, q) ∈ R.

(ii) If (qSR, q) ∈ R and qSR a
−→ rSR then ∃r ∈ Q : q

a
−→ r and (rSR, r) ∈ R.

(iii) If (qSR, q) ∈ R and q
a

−→ r then ∃rSR ∈ QSR : qSR β∗a
−→ rSR and (rSR, r) ∈ R.

(i) If qSR β
−→ rSR, either β is a β1 action and [q]SR = [r]SR, either β is a β2 action

which does not change the state of component layer and does not enable any send-port.

(ii) The action a in BSR is either a unary interaction a or a binary interaction oka. In
both cases, a = {pi}i∈I has been detected to be enabled in IPj by the tokens in received
places and the guard of the a or ra transition in Interaction Protocol, with the participation
numbers ni. We show that a is also enabled at state [q]SR:
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– If a has only local conflicts, no move involving Bi can take place in another Interaction
Protocol, and no β1 move involving Bi can take place in IPj since a is enabled.

– If a is externally conflicting, no move involving Bi has taken place in another Inter-
action Protocol (otherwise oka would not have been enabled), nor in IPj since the
fra place is empty.

At stable state [q]SR, the lemma 2 ensures that IPj .ni = BSR
i .ni. Following the defini-

tion of R, we have Bi.ni = BSR
i .ni when Bn is at state q. Thus a is enabled with the same

participation numbers at state q and in IPj at state qSR and [q]SR, which implies q
a

−→.

Since the β1 actions needed to reach the state [q]SR did not interfere with action a, we
can replay them from rSR to reach a state r′SR, as shown on figure 4.14. The state r′SR is
not stable because of response and offers that can take place in each component participant
in Bi. Executing these actions brings the system in state [r′]SR which is clearly equivalent
to r, and by point (i) we have (rSR, r) ∈ R.

(iii) In figure 4.14, we show the different actions and states involved in this part. From
qSR, we reach [q]SR by doing β1 actions. Then we execute all possible fail interactions (that
are β2 actions), so that all fra places are empty, to reach a state [q′]SR. At this state, if a has
only local conflicts, the interaction a is enabled, else the sequence ra oka can be executed
since lemma 2 ensures that guard of oka is true. In both cases, the interaction corresponding
to a brings the system in state rSR. From this state, the responses corresponding to each
port of a are enabled, and the next stable state [r]SR is equivalent to r, thus (rSR, r) ∈ R.
�

4.7.3 Interoperability of Conflict Resolution Protocol

As mentioned in Subsection 4.6.3, the centralized implementation CENT of the Conflict
Resolution Protocol can be seen as a specification. We also proposed two other implemen-
tations, respectively, token-ring TR and dining philosophers DP . However, these imple-
mentations are not observationally equivalent to the centralized implementation. More
precisely, the centralized version defines the most liberal implementation: if two reserva-
tion requests a1 and a2 are received, the protocol may or may not acknowledge them,
in a specific order. This general behavior is not implemented neither by the token ring
nor by the dining philosophers implementations. In the case of token ring, the response
may depend on the order the token travels through the components. In the case of dining
philosophers, the order may depend on places and the current status of forks.

Nevertheless, we can prove an observational equivalence if we consider weaker versions
of the above implementations. More precisely, for the token ring protocol, consider the
weaker version TR(w) which allows to release the token or provide a fail answer regardless
of the values of counters. Likewise, for the dining philosophers protocol, consider the weaker
version DP (w), where forks can always be sent to neighbors, regardless of their status and
the values of counters. Clearly, a weakened Conflict Resolution Protocol is not desirable for
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a concrete implementation since they do not enforce progress. But, they play a technical
role in proving the correctness of our approach. The following proposition establishes the
relation between the different implementations of the Conflict Resolution Protocol.

Proposition 5 (i) CENT ∼ TR(w) ∼ DP (w)

(ii) TR ⊂ TR(w), DP ⊂ DP (w).

Let us denote by BSR
X the 3-layer model obtained from the initial system B and em-

bedding algorithm X in the Conflict Resolution Protocol. Also, let us denote Tr(B) the
set of all possible traces of observable actions allowed by an execution of B. The following
proposition states the correctness of our implementation.

Proposition 6 (i) B ∼ BSR ∼ BSR

TR
(w) ∼ BSR

DP
(w)

(ii) Tr(B) ⊇ Tr(BSR
TR

) and Tr(B) ⊇ Tr(BSR
DP

).

Proof (i) The leftmost equivalence is is a consequence of lemma 3 and proposition 4. The
other equivalences come from proposition 5 and the fact that observational equivalence is
a congruence with respect to parallel composition. (ii) The trace inclusions follows from
the simulations TR ⊂ TR(w) respectively DP ⊂ DP (w)

�

4.8 Transformation from Send/Receive BIP into C++

In this section, we describe how we generate for a Send/Receive BIP component pseudo
C++ code. Notice that since the behavior of these components are formalized as Petri nets,
we only present generation of C++ code for a Petri net whose transitions are labeled by
send-ports, receive-ports, or unary ports (see C++ Pseudo Code 1).

Initially, each component creates a TCP socket and establishes reliable connections
with all components that it needs to interact (Lines 1-2). These interactions and their
corresponding physical connections are determined according to the complete Send/Receive
BIP model and a configuration file. This file specifies the IP address and port number of
all components for final deployment. We assign one Boolean variable to each place of the
given Petri net, which shows whether or not the place contains the token. Thus, the initial
state of the Petri net is determined by an initial assignment of these variables (Line 3).

After initializations, the code enters an infinite loop that executes the transitions of the
Petri net as follows. For each step, the code scans the list of all possible transitions and
gives priority to transitions that are labeled by a send-port (Lines 6-10) or unary ports of
the given Petri net (Lines 11-15). Actual emission of data is performed by an invocation
of the TCP sockets system call send() in Line 7. Once data transmission or an internal
computation is completed, tokens are removed from input places and put to output places
of the corresponding transitions (Lines 8 and 13).
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C++ Pseudo Code 1 Petri net
Input: A Petri net of a Send/Receive BIP component and a configuration file.
Output: C++ code that implements the given Send/Receive Petri net

// Initializations
1: CreateTCPSocket();
2: EstablishConnections();
3: PrepareInitialState();

4: while true do
5: // Handling send-ports and internal computations
6: if there exists an enabled transition labeled by a send-port then
7: send(...);
8: PrepareNextState();
9: continue;

10: end if
11: if there exists an enabled transition labeled by a unary port then
12: DoInternalComputation();
13: PrepareNextState();
14: continue;
15: end if

16: // Handling receiving messages
17: select(...);
18: recv(...);
19: PrepareNextState();
20: end while

Finally, if no send-port is enabled and all internal computations are completed, exe-
cution stops and waits for messages from other components (Line 17). Once one of the
sockets contains a new message, the component resumes its execution and receives the
message (Line 18).

It is straightforward to observe that our code avoids creating deadlocks by giving pri-
ority to send-ports and unary-ports. Moreover, sending messages before doing internal
computation triggers receivers components waiting for a response and increases parallelism.

Note that we also provide the generation of C++ code by using MPI for communi-
cations. Generally speaking, the same principle is applied as above, however, we use the
communication primitives offered by MPI (e.g., MPI Send(), MPI ISend(), MPI Recv(),
etc.) instead of TCP sockets.
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Figure 4.15: The impact of merging components.

4.9 Component Composition

This technique is applied to the intermediate 3-layer Send/Receive model developed
in Section 4.6. It consists in composing some components from the 3-layer Send/Receive
model. For instance, if we consider an Interaction Protocol handling one interaction, in
this case, it is possible to merge it into one of its corresponding components without losing
any parallelism. This method will be also useful in the case when generating MPI code,
since an important overhead will appear due to context switching between processes. For
example, if we consider a platform consisting of two cores, it is preferable to generate
exactly two processes. Thus, we need to merge components from the 3-layer Send/Receive
model to obtain the less number of components and without killing parallelism. Figure 4.15
illustrates an example of merging components. As input we take a set of partitioning of
components and we obtain as output a new equivalent BIP model by merging with respect
to the partition given as input. This can be done by applying the third transformation
(Component Composition) presented in Chapter 3.

4.10 Experimental Validation

In this section, we present the results of our experiments. Recall that, our implementa-
tion automatically generates C++ code from the 3-layer BIP model developed in Sections
4.5 and 4.6, where Send/Receive interactions are implemented by TCP sockets or MPI
primitives. We have implemented and integrated the transformations in the BIP toolset.
The tool takes a composite BIP model in the global state semantics and a network configu-
ration file as input and generates the corresponding C++ executable for each Send/Receive
component for all layers of the intermediate BIP model (e.g, Atomic Component, Interac-
tion Protocol, Conflict Resolution Protocol). Each executable can be run independently
on a different machine or a processor core.

We denote each experiment scenario by (i, X), where i is the number of interaction
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partitions and X is the choice among the three Conflict Resolution Protocols described in
Subsection 4.6.3 (i.e., CENT , TR, or DP). For the case where partitioning of interactions
results in having no external conflicts, hence, requiring no reservation component, we use
the symbol ‘−’ to denote an empty Conflict Resolution Protocol. All experiments in this
section are conducted on quad-Xeon 2.6 GHz machines with 6GB RAM running under
Debian Linux. The machines are connected via a 100Mbps Ethernet network.

For three non trivial examples, Diffusing Computation, Utopar Transportation System
and Bitonic Sorting, described bellow we show that different conflict resolution algorithms
and partitioning may result in significantly different performance depending on the initial
BIP model and the deploying of the distributed implementation over target platforms.

4.10.1 Diffusing Computation

We model a simplified version of Dijkstra-Scholten termination detection algorithm for
diffusing computations [DS80] in BIP. Diffusing computation is the task of propagating
a message across a distributed system; i.e., a wave that starts from an initial node and
diffuses to all processes in a distributed system. Diffusing computation has numerous ap-
plications such as traditional distributed deadlock detection and reprogramming of modern
sensor networks. One challenge in diffusing computation is to detect its termination. In
our version, we consider a torus (wrapped around grid) topology for a set of distributed
processes, where a spanning tree throughout the distributed system already exists; each
process has a unique parent and the root process is its own parent. Termination detection
is achieved in two phases: (1) the root of the spanning tree possesses a message and ini-
tiates a propagation wave, so that each process sends the message to its children, and (2)
once the first wave of messages reaches the leaves of the tree, a completion wave starts,
where a parent is complete once all its children are complete. In this setting, when the
root is complete, termination is detected.

Our BIP model has n×m atomic components (see Figure 4.16 for a partial model). Each
component participates in two types of interactions: (1) four binary rendezvous interactions
(e.g., a0 · · · a3) to propagate the message to its children (as in a torus topology, each
node has four neighbors, hence, potentially four children), and (2) one 5-ary rendezvous
interaction (e.g., a) for the completion wave, as each parent has to wait for all its children
to complete.

Our first set of experiments is on a 4×6 torus. We apply different partitioning scenarios
as illustrated in Figure 4.17. Figure 4.18 shows the time needed for 100 rounds of detecting
termination of diffusing communication for each scenario. In the first two scenarios, the
interactions are partitioned, so that all conflicts are internal and, hence, resolved locally
by the Interaction Protocol. In case of (2,−), all interactions of the propagation wave are
grouped into one component of the Interaction Protocol and all interactions related to the
completion wave are grouped into the second component. Such grouping does not allow
parallel execution of interactions. This is the main reason that the performance of (1,−)
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a1

a

a2

a0

a3

Figure 4.16: Partial BIP model for diffusing computations.

(2, [CENT, TR, DP ])(1,−) (2,−) (24, [CENT, TR, DP ])(4, [CENT, TR, DP ])

Figure 4.17: Different scenarios for diffusing computations.

Verimag - 28 October 2010 95 Mohamad Jaber



Chapter 4. Transformation for Generating Distributed Implementations

and (2,−) are the worst in Figure 4.18.

Next, we group all interactions involved in components 1 · · · 12 into one component
and the rest in a second component of the Interaction Protocol. This constitutes experi-
ments (2,CENT ), (2,TR), and (2,DP). Such partitioning allows more parallelism during
propagation and completion waves, as an interaction in the first partition can be executed
in parallel with an interaction in the second partition 1. This is why the performance of
(2,CENT/TR/DP) is better than (1,−) and (2,−). Now, since almost all propagation
interactions conflict with each other and so do all completion interactions, in case of the
dining philosophers algorithm, the conflict graph is not dense. Hence, a small number of
decisions can be made in a local neighborhood of philosophers. It follows that the perfor-
mance of (2,TR) is quite competitive with (2,DP). It can also be seen that (2,CENT )
performs as good as (2,TR) and (2,DP). This is due to the fact that there exist only two
partitions, which results in a low number of reservation requests.

Figure 4.18 also shows the same type of experiments with 4 and 24 partitions. Similar
to the case of two partitions, the performance of TR and CENT for 4 and 24 partitions
are almost the same. However, CENT and TR outperform DP . This is due to the fact
that in case of DP , each philosopher needs to acquire 4 forks, which requires considerable
communication. On the other hand, TR does not require as much communication, as the
only task it has to do is releasing and acquiring the token. Moreover, the level of parallelism
in DP in case of a 6× 4 torus is not high enough to overcome the communication volume.

In the next experiment, following the lesson learned from the tradeoff between commu-
nication volume and parallelism, we design a scenario where we exploit the fact that each
reservation component in DP resolves conflicts through communicating with its neighbor-
ing components. This is not the case in TR. Thus, we consider a 20 × 20 torus. As can
be seen in Figure 4.19, the performance of DP is significantly better than TR. This is
solely because when we have a large number of components, in TR. The token has to
travel a long way in order to allow parallel execution of interactions. To the contrary,
in DP , the Conflict Resolution Protocol components act in their local neighborhood and
although more communication is needed, it allows better concurrency, hence, higher simul-
taneous execution of interactions. We expect that by increasing the size of the torus, DP
outperforms CENT as well.

We conclude from this example by stating the main lesson learned from our experiments:

Different partitioning schemes and choice of committee coordination algorithm
for distributed conflict resolution suit different topologies and settings although
they serve a common purpose. Designers of distributed applications should have
access to a library of algorithms and choose the best according to parameters of
the application.

1. Execution of each interaction involves 10ms suspension of the corresponding component in the Inter-
action Protocol to perform and I/O command.
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Figure 4.18: Performance of termination detection in diffusing computation in different
scenarios (Torus 4×6).

Verimag - 28 October 2010 97 Mohamad Jaber



Chapter 4. Transformation for Generating Distributed Implementations

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

(1
0
,C

E
N

T
)

(1
0
,T

R
)

(1
0
,D

P
)

T
o
ta

l 
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Scenario

Figure 4.19: Performance of termination detection in diffusing computation in different
scenarios (Torus 20×20).
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calling unit

Central Station

Figure 4.20: Utopar transportation system.

4.10.2 Utopar Transportation System

The second example is Utopar, an industrial case study of the European Integrated
project SPEEDS 2. Utopar is an automated transportation system managing various re-
quests for transportation. The system consists of a set of autonomous vehicles, called
U-cars, a centralized automatic control (Central-Station) and calling units (see Figure
4.20).

We modeled a simplified version of the Utopar Transportation System in BIP. The
overall system architecture is depicted in Figure 4.21. It is a composition of an arbitrary
(but fixed) number of components of three different types: U-Cars, Calling-Units and
Central-Station. The Utopar system interacts with external users, i.e., the passengers. For
sake of completeness, users are also represented in the Figure 1 as components, however,
their behavior is not explicitly modeled.

The overall behavior of the system is obtained by composing the behavior of the inner
components according to the following set of interactions:

– request: handling car requests (made by passengers) at Calling-Units;

2. http://www.speeds.eu.com/
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CentralStation

departurei=1,N

openi=1,N

awakei=1,N

destinationi=1,N

posChangedi=1,N

arrivali=1,N

closei=1,N

enterk,l=1×M,1×M

requestk,l=1×M,1×M

request
enteri=1,N

departure

open

awake

UCar(N)

CallingUnit(M × M)

close

arrival

posChanged

destination

Figure 4.21: High-level BIP model for Utopar system.

– destination: handling destination requests (made by passengers) seating within U-
Cars;

– enter: handling the step on (resp. off) for passengers into U-Cars;
– departure: handling departure commands issued by Central-Station towards the U-

Cars;
– posChanged, arrival: information provided by moving U-Cars towards the Central-

Station;
– open, close: handling the opening/closing of the U-Cars doors, while parked at

Calling-Units.

Our first set of experiments consists of 25 = 5 × 5 calling units and 4 cars. For
each calling unit we group all the interactions connected on it in the same Interaction
Protocol. Moreover, for each car we group all the interactions connecting the car with the
central station in the same Interaction Protocol. Thus, we obtain 29 Interaction Protocol
components. Using this partitioning we generate the corresponding 3-layer Send/Receive
model for the three Conflict Resolution Protocols.

We simulate the target platform as follows. We consider that there exists a machine on
each calling unit. Moreover, each machine is connected to their four neighbours and the
communication between two neighbours machines takes 1ms.

We generate the corresponding C++ executable for each Send/Receive component for
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Figure 4.22: Performance of responding 10 requests per calling unit (25 = 5 × 5 calling
units, and 4 cars).

all layers, and we embedded each C++ executable as follows. We embedded the code cor-
responding to the calling unit with its Interaction Protocol into the machine located on the
calling unit. Furthermore, we embedded the code corresponding to the central station into
the central machine that is located in the center of the calling units. Regarding the Conflict
Resolution Protocol, in the case of CENT the best choice is to embed its corresponding
code into the central machine. Concerning TR and DP algorithm we embedded the code
of each component of this layer in its corresponding Interaction Protocol.

Figure 4.22 shows the time needed for responding 10 requests by each calling unit. It
is clear that the performance of (29,DP) is better than (29,TR) and (29,CENT ). This
is due to the overhead of communications for the case of TR and CENT . More precisely,
regarding CENT the overhead is due to the communication between the components of
Interaction Protocol layer and Conflict Resolution Protocol layer, since the centralized
Conflict Resolution Protocol is placed in the central machine. Regarding TR the overhead
is due to the communications between Conflict Resolution Protocol which depends on the
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Figure 4.23: Performance of responding 10 request per calling unit (49 = 7 × 7 calling
units, and 4 cars).

number of components in this layer. To the contrary, in DP , the Conflict Resolution
Protocol components act in their local neighborhood although more communication is
needed.

Figure 4.23 also shows the same type of experiments by taking 4 cars and 49 = 7 × 7
calling units. The performance becomes worse for TR since the token has to travel a long
way through the components of the Conflict Resolution Protocol layer.

4.10.3 Bitonic Sorting

In the two previous examples, the system itself is geographically distributed, hence
the generation of a distributed implementation is necessary. However, in other case the
generation of a distributed implementation is necessary for deriving more computational
power by using multiple processors (e.g., sorting algorithm, genetic algorithm).

The aim of this example is to show that our methodology assists developers of parallel
and multi-core applications to start developing from high-level BIP models and not get
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Figure 4.24: High-level BIP model for Bitonic Sorting Algorithm.

involved in low-level synchronization details.

Bitonic sorting [Bat68] is one of the fastest sorting algorithms suitable for distributed
implementation in hardware or in parallel processor arrays. A sequence is called bitonic if it
is initially nondecreasing then it is nonincreasing. The first step of the algorithm consists
in constructing a bitonic sequence. Then, by applying a logarithmic number of bitonic
merges, the bitonic sequence is transformed into totally ordered sequence. We provide
an implementation of the bitonic sorting algorithm in BIP using four atomic components,
each one handling one part of the array. These components are connected as shown in
Figure 4.25. The six interactions are non conflicting. Moreover, interactions a1, a2 and
a3 cannot run in parallel. The same holds for interactions a4, a5, a6. Thus, to obtain
maximal parallelism between interactions it sufficient to create only two components for
the Interaction Protocol layer. Where, the first one handles the interactions a1, a2 and
a3 and the second one handles the interactions a4, a5 and a6. Furthermore, since all
interactions are non conflicting, there is no need for the Conflict Resolution Protocol layer
(detected automatically by the tool). In this example each component sends only three
messages, each one containing its own array.

We run experiments for three configurations: 1c, 4c, 4c′. For 1c, we use one single-core
machine, where the four atomic components along with the two IP components. For 4c, we
use two dual-core machines and place each atomic component on a different core. We also
distribute the IP components over two cores, such as to reduce the network communication
overhead. For 4c′, we use the same distribution for components and IP . The results are
reported in Table 4.1 for arrays of size k× 104 elements, and k = 20, 40, 80, 160. As can be
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Figure 4.25: 3-layer Send/Receive BIP model for Bitonic Sorting Algorithm.

k C++/Socket (generated)
1c 4c 4c′

20 96 23 24

40 375 96 100

80 1504 390 397

160 6024 1539 1583

Table 4.1: Performance of Bitonic Sorting Algorithm.

seen in Table 4.1

Table 4.1 shows the performance of the automatically C++ code generated using TCP
sockets. It is clear that if we consider larger arrays, then increasing the number of cores
leads to a proportional performance gain. For example, the execution time for sorting an
array of size 160 × 104, for the configuration 4c is 1539 seconds, and for the configuration
1c is 6024 ≈ 4 × 1539 seconds.

The performance of case 4c (2 computers with two cores each) configuration is shown
in Table 4.2. Observe that the performance of the C++/Socket code is approximately
identical in both cases. This is because socket operations are interrupt-driven. Thus, if
a component is waiting for a message, it does not consume CPU time. On the other
hand, MPI uses active waiting, which results in CPU time consumption when the IP is
waiting. Since we have four cores for six processes, the MPI code generated from the original
Send/Receive model is much slower than the socket code. Nevertheless, as it appears in
the table, reducing the number of components to one per core by merging (see Figure 4.26)
allows the MPI code to reach the same speed as in the C++/socket implementation.
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k S/R BIP Merged S/R BIP
Socket MPI Socket MPI

20 23 63 24 24

40 96 271 96 96

80 390 964 391 394

160 1539 4158 1548 1554

Table 4.2: The impact of component composition on Send/Receive models.

... ......

...

...
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BSR
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BSR
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BSR
2
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3

I3I1 I2 I4 I5 I6

Figure 4.26: Component composition components in Bitonic Sorting 3-layer Send/Receive
BIP model.

4.11 Summary

In this chapter we proposed a methodology for producing automatically efficient and
correct-by-construction distributed implementations by starting from a high-level model of
the application software in BIP. The methodology transforms arbitrary BIP models into
Send/Receive BIP models, directly implementable on distributed execution platforms. The
transformation consists of:

1. breaking atomicity of actions in atomic components by replacing strong synchroniza-
tions with asynchronous Send/Receive interactions;

2. inserting several distributed controllers that coordinate execution of interactions ac-
cording to a user-defined partition;

3. augmenting the model with a distributed algorithm for handling conflicts between
controllers.

We shown that the obtained Send/Receive BIP models are observationally equivalent to
the initial models. Hence, all the functional properties are preserved by construction in
the implementation. Moreover, Send/Receive BIP models can be used to automatically
derive distributed implementations. Currently, it is possible to generate stand-alone C++
implementations using either TCP sockets for conventional communication, or MPI im-
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plementation, for deployment on multi-core platforms. This method is fully implemented.
We report concrete results obtained under different scenarios (i.e., partitioning of the in-
teractions and choice of algorithm for distributed conflict resolution).
In the next chapter, we present the tool which implements the transformations presented
in this thesis. Moreover, we give an overview of the integration of our tool in the design
methodology for BIP for automatically deriving efficient centralized and distributed from
high-level BIP models.
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5.1 BIP into Centralized Implementations Tool-Chain - BIP2BIP

The transformations from BIP into centralized implementations in Chapter 3 have been
implemented in the BIP2BIP tool, which is currently integrated in the BIP toolset [BIP]
as shown in Figure 5.1.

The BIP2BIP tool is written in Java. It allows transformation of parsed models. It
contains the following modules implementing the presented transformations.

– Component flattening : this module transforms a composite component into an equiv-
alent one consisting only of atomic components of the initial model and a set of
connectors.

– Connector flattening : this module transforms an hierarchically structured connector
into an equivalent flat one. By successive applications of this module, we obtain a
new model with flat connectors.

– Component composition : this module transforms a set of atomic components and a
set of flat connectors into an equivalent atomic component. By successive applications
of this module, we obtain a new model consisting of a single atomic component.

107



Chapter 5. Tool-Chain
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Figure 5.1: BIP2BIP toolset: General architecture
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By exhaustive application of these transformations, an atomic component can be ob-
tained. From the latter, the code-generator can generate standalone C++ code, which can
be run directly without the Engine. In particular, all the remaining non-determinism in the
final atomic component is eliminated at code generation by applying an implicit priority
between transitions.
It should be noted that the transformations also can be applied independently, to obtain
models that respond to a particular user needs. For example, one may decide to eliminate
only partially the hierarchy of components, or to compose only some components.
The performance of BIP2BIP is quite satisfactory. For example, when applied to an ar-
tificially complex BIP model, consisting of 256 atomic components, composed by using
509 connectors with 7 levels of hierarchy, it takes less than 15 seconds to generate the
corresponding C++ program.

5.2 BIP into Distributed Implementations Tool-Chain - BIP2Dist

The transformations from BIP into distributed implementations in Chapter 4 have
been implemented in the BIP2Dist tool (see Figure 5.2), which is also integrated in the
BIP toolset.

The BIP2Dist tool is written in Java. It allows the generation of distributed imple-
mentation starting from a high-level BIP model. In the follows, we will describe the design
process for that generation using BIP2Dist tool. We illustrate the process on the example
shown in Figure 5.3.

1. Starting from a high-level BIP model, we flatten the hierarchy of connectors and
components;

2. From the flatten model that only consists of atomic components and flat connectors,
we generate 3-layer Send/Receive BIP model by choosing a partition of interactions
and a Conflict Resolution Protocol;

3. From the 3-layer Send/Receive BIP model, a designer may merge some components
by choosing a partition of component to merge;

4. Finally, from the obtained model we generate C++ code using TCP socket or MPI
for communication according to designer demand. Moreover, this step takes as input
a mapping of the components over a distributed target platform.

5.3 Summary

We have provided an overview on the implementation of the BIP2BIP and BIP2Dist tool
for generating centralized and distributed implementations from BIP models. In the next
chapter, we conclude the thesis with an overview of the work and its future perspectives.
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In this chapter, we conclude the thesis describing the main objectives of the work, the
goals we have achieved, the future work directions and its perspectives.

6.1 Conclusions

The thesis shows that it is possible to reconcile component-based incremental design
and efficient code generation by applying a paradigm based on the combined use of:

1. A high-level modelling language, BIP, based on well-defined operational semantics
and supporting powerful mechanisms for expressing structured coordination between
components. The design methodology using BIP language involves the following
steps:

(a) The system (software) to be designed is decomposed into components. The
decomposition can be represented as a tree which shows how the system can be
obtained as the incremental composition of components. Its root is the system
and its leaves correspond to atomic components;

(b) Description of the behavior of the atomic components;

(c) Description of composite components as the composition of atomic components
by using only connectors and priorities.
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This is possible because BIP is expressive enough for describing any kind of coordi-
nation by using only architectural constraints [BS08b].

Along steps b) and c) it is possible by using the D-Finder tool, to generate and/or
check invariants of the components and validate their properties. The methodology
provides sufficient conditions for preserving the already established properties of the
sub-systems along the construction.

BIP has already successfully been used for the componentization of non trivial sys-
tems such as the controller of the DALA robot [BGL+08]. This allowed building
component-based models for which enhanced analysis and verification is possible by
using tools such as D-Finder [BBNS09, BBSN08] for compositional verification.

2. Semantics-preserving source-to-source transformations that allows to generate auto-
matically efficient centralized or distributed implementations. We have developed
two implementation methods for BIP, sequential and distributed, which target re-
spectively single-processor or multi-processor execution platforms.

– centralized implementations: we defined a set of source-to-source transformations
that progressively transform architectural constraints between components into in-
ternal computation of product components. These transformations include flatten-
ing of hierarchical compositions and hierarchical connectors and also static com-
position of atomic behavior. The aim of these transformation is to transform a
composite component into a single atomic component. From the latter an efficient
C++ code can be generated. We show that these transformations are semantic
preserving and moreover, when used in the implementation flow, they reduce over-
heads in execution time by reducing modularity introduced by the designer when
it is not necessary at implementation level.

– distributed implementations: we defined a set of source-to-source transformations
that generate automatically distributed implementation from the high-level models
specified in BIP. Although BIP provides a rich set of interactions, we only consid-
ered rendezvous interactions, as they play an important role in systems whose
constituents need to synchronize on some event in order to start some computa-
tion. In a distributed setting, implementation of a multi-party rendezvous results
in solving the committee coordination problem [CM88], where a set of professors are
organized in a set of committees and two committees can meet concurrently only
if they have no professor in common; i.e., they are not conflicting. Conflict resolu-
tion is the main obstacle in distributed implementation of multi-party rendezvous
interactions.
Our transformation consists of two steps. First, it takes as input a BIP model in
terms of a set of components glued by rendezvous interactions and generates an-
other BIP model which contains component glued by Send/Receive interactions in
the following three layers: (1) the Atomic Components layer consists of a transfor-
mation of behavioral components in the original model, (2) the Interaction Protocol
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layer detects enabledness of interactions of the original model and executes them
after resolving conflicts either locally or by the help of the third layer, and (3) the
Conflict Resolution Protocol layer resolves conflicts unresolved by the interaction
protocol. The Conflict Resolution Protocol implements a committee coordination
algorithm and our design allows employing any such algorithm. The second step of
our transformation takes the intermediate three-layer BIP model as input and gen-
erates C++ executables using either TCP sockets or MPI for communications. We
conducted several experiments using different algorithms in the Conflict Resolution
Protocol. As predicated, our experiments show that each algorithm is suitable for
a different topology, size of the distributed system, communication load, and of
course the structure of the initial high-level model. Thus, the important lesson
learned from our experiments is that there is no silver bullet to automate code
generation for distributed applications and designers must have access to a formal
framework and a library of algorithms to be able to develop correct and yet efficient
distributed applications.

6.2 Perspectives

For future work, we are considering several research directions.

– According centralized and distributed implementations we plan to take into account
priorities. Concerning centralized implementations, priority rules can be compiled in
the form of restrictions of the guards of components. On the other hand, accord-
ing to distributed implementations, we agree that priorities complicate the problem,
as unlike conflict-resolution, priorities must be applied globally which requires ap-
proaches such computing a global snapshot. The rest of the following future works
are according to distributed implementations;

– Another direction is introducing the notion of time in distributed semantics of BIP.
Providing timing guarantees in a distributed setting has always been a challenge and
BIP is not an exception;

– An important extension to explore is to allow the Conflict Resolution Protocol to in-
corporate different algorithms for conflict resolution simultaneously. This is because
each set of conflicting interactions within the same system may react differently to dif-
ferent algorithms and, hence, it is desirable to handle each set with the algorithm that
performs the best. In this context, we are also planning to develop and implement
other algorithms, such as solutions to distributed graph matching and distributed
independent set. Moreover, we need to have a better understanding of tradoffs be-
tween parallelism within the components layer and the Interaction Protocol, load
balancing, and network traffic;

– Another important line of research is to measure the overhead of our transforma-
tion technique as compared to hand-written code. To this end, we plan to design
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customized techniques and conduct experiments in large sensor networks where com-
munication and computation tradoffs play an important role in efficiency and energy
consumption and the network cannot afford incorporating solutions that add signifi-
cant overhead. Another potential avenue for our work is large peer-to-peer networks;

– Finally, given the recent advances in the multi-core technology, we plan to customize
our transformation for multi-core platforms as well. In these platforms, network com-
munication can be replaced by simple inter-process communication and one can in-
vestigate whether it is possible to devise more effective techniques to achieve correct-
by-construction concurrency and process synchronization.
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