N
N

N

HAL

open science

Algorithmic Aspects of Ordered Structures
Jens Gustedt

» To cite this version:

Jens Gustedt. Algorithmic Aspects of Ordered Structures. Mathematics [math]. Technische Univer-
sitdt Berlin, 1992. English. NNT: . tel-00549774

HAL Id: tel-00549774
https://theses.hal.science/tel-00549774
Submitted on 22 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00549774
https://hal.archives-ouvertes.fr

ALGORITHMIC ASPECTS OF
ORDERED STRUCTURES

vorgelegt von
Diplom-Mathematiker
Jens Gustedt

Vom Fachbereich 3 — Mathematik
der Technischen Universitit Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuf}:

Vorsitzender: Prof. Dr. rer. nat. Giinter Frank
Berichter: Prof. Dr. rer. nat. Rolf H. M&hring
Berichter: Prof. Dr. rer. nat. Michel Habib

Tag der miindlichen Priifung: 3. Juli 1992

Berlin 1992
D 83

Zusammenfassung

In dieser Arbeit verbinden wir die Theorie der Quasi-Ordnungen mit der Theorie der Algo-
rithmen einiger kombinatorischer Objekte. Zuerst entwickeln wir die Theorie der Wohl-Quasi-
Ordnungen, WQO, im Zusammenhang zur maximalen Komplexitit.

Dann geben wir ein allgemeines 0-1-Gesetz fiir erbliche Eigenschaften, das Auswirkungen fiir
die mittlere Komplexitit hat. Dieses Ergebnis fiir mittlere Komplexitiat wird auf die Klasse
der endlichen Graphen, versehen mit der Relation “induzierter Subgraph”, angewendet. Wir
erhalten, dafl eine grofle Klasse von Problemen, welche z.B. Perfektheit umfafit, Algorithmen
mit im Mittel konstanter Laufzeit haben.

Dann zeigen wir, indem wir ein Ergebnis von Damaschke fiir Cographen veralgemeinern,
da die Klassen der endlichen Ordnungen bzw. Graphen mit beschranktem Dekompositions-
durchmesser bzgl. der Relation “induzierte Subordnung” bzw. “induzierter Subgraph” WQO
sind. Dies fiihrt uns zu linearen Erkennungsalgorithmen fiir alle erblichen Eigenschaften iiber
diesen Objekten.

Unser Hauptresultat ist dann, dafl die Menge der endlichen partiellen Ordnungen eine Wohl-
Quasi-Ordnung bzgl. einer gewissen Relation < | der sogenannten Ketten-Minor-Relation, ist.
Um dies zu beweisen, filhren wir eine verwandte Relation auf endlichen formalen Sprachen ein,
die die gleiche Eigenschaft hat. Als Folgerung erhalten wir, dafl jede Eigenschaft, die erblich

bzgl. < ist, einen Test in O (|P|c) Zeit zuldBt, wobei ¢ von der Eigenschaft abhingt. Dieser
Test 148t sich leicht parallelisieren. Auf einer parallelen Maschine (CRCW PRAM) kann er so

implementiert werden, daf er konstante Zeit auf O (|P|c) Prozessoren bendtigt.

Abstract

In this work we relate the theory of quasi-orders to the theory of algorithms over some com-
binatorial objects. First we develope the theory of well-quasi-orderings, wqo’s, and relate it to
the theory of worst-case complexity.

Then we give a general 0-1-law for hereditary properties that has implications for average-
case complexity. This result on average-case complexity is applied to the class of finite graphs
equipped with the induced subgraph relation. We obtain that a wide class of problems, including
e.g. perfectness, has average constant time algorithms.

Then we show, by extending a result of Damaschke on cographs, that the classes of finite
orders resp. graphs with bounded decomposition diameter form wqo’s with respect to the induced
suborder resp. induced subgraph relation. This leads to linear time algorithms for the recognition
of any hereditary property on these objects.

Our main result is then that the set of finite posets is a wqo with respect to a certain relation
=<, called chain minor relation. To prove this we introduce a similar relation on finite formal lan-
guages that also has this property. As a consequence we obtain that every property which is
hereditary with respect to < has a test in O (|P|c) whereas ¢ depends on the property. This test
has an easy parallelization with the same costs. On a parallel machine (CRCW PRAM) it may

be implemented in such a way that it runs in constant time and needs O (|P|c) processors.

i

Preface

As the title shows, this work tries to combine two different points of view on
combinatorial objects — a structural one and an algorithmical one.

The structural approach is the theory of (well-)quasi-orders, i.e., the theory about
certain relational structures. The algorithmical one is based on the concept of test-
ing properties of objects by looking for smaller objects contained in them, i.e., by
looking for forbidden substructures. The interplay between those two approaches
has been very fruitful in the theory of Graph Minors developed by Robertson and
Seymour in the last years, and so it seems legitimate to try to use similar concepts
for other sorts of structures as well.

I hope that my attempt to bring these two different aspects — structure and
algorithms — together did not fail completely and that it might give the reader a
better insight into parts of the theory of combinatorial objects.

It certainly would have failed without the kind, patient, and competent support
I received from Prof. R. H. M&hring who supervised this research and to whom I
owe all my knowlege this work is based upon.

Also I like to thank the numerous other people that participated in discussions
about the subject(s), gave hints or asked the right questions. Finally, special thanks
to Karsten Weihe also for proof-reading parts of the manusscript and thus improv-
ing style and readability.

Berlin July 21, 1992
Jens Gustedt

i

Contents

Zusammenfassung
Abstract

Preface

Chapter I. Introduction
1. Overview

2. Complexity Classes

3. Order Relations
3.1. Posets and Quasi Orders
3.2. Well Quasi Orders
3.3. Substitution Composition

4. The Axiom of Choice and Its Equivalents
4.1. Cartesian Products and Minimal Bad Sequences

5. Hereditary Properties
Chapter II. Ordered Structures and Complexity Classes

6. Quasi Orders and Worst-Case Complexity
6.1. Proper Encodings
6.2. Well Quasi Orders and Tests for Hereditary Properties
6.3. Algorithmically Solvable Problems and Well Quasi Orders
6.4. Graph Minors

7. Average Time Complexity of Hereditary Properties

11

10
11

12
13

14
17

17
17
18
19
19

21

v CONTENTS

8. Average Time Complexity of Graph Properties
8.1. Representations of Graphs

8.2. Average Time Complexity of Induced Graph Properties

8.3. A Sample Algorithm for Induced Subgraphs
8.4. Special Properties — Proof of Corollary 8.2

Chapter III. Some Well Known QO’s revisited
9. A QO on Antichains

10. Strings
10.1. Higman’s Theorem
10.2. Fast Tests for Strings

11. Trees
11.1. Structured Trees
11.2. Algorithms for Structured Trees

12. Special Classes of Posets
12.1. Series Parallel Orders and Cographs
12.2. Bounded Decomposition Diameter

Chapter IV. Special Order Relations

13. Formal Languages
13.1. The String Minor Relation for Formal Languages
13.2. Well Quasi Ordering Finite Languages
13.3. Bounded Length
13.4. Finding Related Languages
13.5. Finding a Fixed Language as String Minor

14. Posets
14.1. The Chain Minor Relation
14.2. Motivation from Scheduling
14.3. Well Quasi Ordering Finite Posets
14.4. Algorithms for Posets

Index
Bibliography

Lebenslauf

24
24
26
27
30

35
35

38
39
40

42
42
44

47
48
49

51

51
51
51
33
39
60

62
62
62
67
67

70
75
79

CHAPTER I

Introduction

1. Overview

In the last years algorithmic aspects of well quasi orders (wqo) brought great
progress in algorithmic graph theory. In a series of papers Robertson and Seymour (
see [RS83a], [RS86a] ...) showed that a set of graphs together with the graph minor
relation forms a wqo. This can be used to show existence of polynomial time
algorithms for a wide class of problems. These problems are those, which are
hereditary with respect to the graph minor relation.

A similar theory for finite posets was not known until now — i.e., that the
theory of wqo’s is used for such a general statement about existence of algorithms.

The starting point for this work was to investigate a relation between posets
arising from application in scheduling theory, the so called chain minor relation.
We show in section V.14 that this relation leads to analogous results for finite
posets as the graph minor relation does for graphs. In particular we show that the
chain minor relation defines a wqo and we give existence proofs for algorithms.

But in investigating this special relation we noticed that similar concepts have
been used in different contexts and different “social strata” of the scientific com-
munity, namely Discrete Mathematics, Theoretical Computer Science and Opera-
tions Research. There seem to be two main motivations for people to study wqo’s,
or qo’s in general: an interest in structural theory (what are we dealing with) and
an interest in algorithms and constructivity (how do we obtain what we claim to
have). Since people are often mainly motivated by only one of these, the other half
is often omitted.

We think that both sides could profit from each other, so we found it worth to
collect some of the different approaches, state them systematically and unify nota-
tions. This is done in chapter II. After having given the necessary definitions and
facts from a structural point of view in section 1.3, we show several consequences
in complexity theory in section 1.6 and 7. There are two main consequences, one

1

2 I. INTRODUCTION

for worst-case complexity (sec.6), the other for average-time complexity (sec.7):

e The theory of properly encoded wqo is equivalent to (m)any theory of
complexity classes.
o There is a general 0-1-law for hereditary properties.

Most of the results given in this section are not new. Nevertheless many of them
have been used only implicitly by other authors, so they are perhaps stated here
for the first time.

To exemplify these approaches we discuss finite graphs equipped with different
order relations. For worst case complexity we try to give a short introduction to
the theory of graph minors that was mentioned above (sec.6.4). Since the articles
needed for this theory cover several hundreds of pages at the moment, clearly this
can not be complete in any sense.

For graphs equipped with the induced suborder relation we state some results
concerning average-time complexity in section 8. In particular, we show that many
properties have fast average time recognition algorithms. What “fast” means, de-
pends on the representation of the graph. It varies from constant running time if
we have random access to the edges, to quadratic if they are given in one single
unsorted list.

The properties that are covered by that approach are those that have a recog-
nition algorithm that runs in time 2, n being the number of vertices. This
includes not only all properties with polynomial time algorithms but also some
NP-complete problems and some for which the complexity status is not yet known,
e.g. perfectness of graphs.

In Chapter I1I we revisit four well known quasi-orders: on antichains (sec.9), strings
(sec.10), structured trees (sec.11), and special classes of posets (sec.12). We revisit
them for several reasons.

The first is to explain and extend a certain proof technique, called the minimal
bad sequence technique invented by Nash-Williams. Namely we give a technique
one could call minimal antichain technique. This is done because from an algo-
rithmic point of view the set of antichains of a quasi-order contains all information
we need, and, on the other hand, not much effort is needed to show that all quasi-
orders in question have no infinite descending chains.

Another reason is that the two main theorems in that field, Higman’s String
Theorem and Kruskal’s Tree Theorem, also have algorithmic consequences that
we found worth being stated. Indeed, this theory on strings and trees is a nice
example for the tools developed in section 6 where the algorithms are well behaved
and practical in the sense that they would be easy to implement.

As an application of the theory on structured trees we give an extension of an
approach by Damaschke [Dam90]. He showed that the class of cographs equipped

1. OVERVIEW 3

with the induced subgraph relation forms a wqo. We extend his result and proof
technique to series parallel orders and more general to orders with a bounded
decomposition diameter. Our result then is

e In every class of posets with bounded decomposition diameter every prop-
erty that is hereditary with respect to the induced suborder relation has a
linear time test.

Chapter IV is dedicated to the application of the theory developed to two special
classes of combinatorial objects: formal languages and partially ordered sets.

This two kinds of structures are very closely related. The setting of formal lan-
guages is the more general one — we started studying it when we wanted to prove
things about partially ordered sets. But it developed its own beauty and extended
to an object of study by its own rights. We define a relation on formal languages
we call string minor relation that is very similar to the chain minor relation on
posets. The main result for formal languages is

o Any infinite set of formal languages that are finite and do not use any
symbol in any particular string twice is a wqo.

The proof for this result is based on a finite recursion. First we show that we may
assume that the length of all strings is bounded by a constant, and then how to
find related languages of length < h 4 1 if we already know how to find them for
length = h.

Finally we come back to the starting point of this research, namely partially
ordered sets and the chain minor relation. This relation was introduced recently
by Méhring and Miiller in [MM92] to generalize certain approaches in the theory
of scheduling stochastic project networks. We show:

o The chain minor relation leads to a well-quasi-ordering structure on any
set of finite partially ordered sets.

e Each hereditary property with respect to this relation on partially ordered
sets admits a polynomial time test.

In contrast to the situation, e.g. for graph minors, the exponent of the polynomial
here strongly depends on the property.

Hoping that we will have readers from different fields, we found it necessary
not only to give the notations from order theory in this chapter, but also to state
some prerequisites from set theory and from complexity theory. The reader who
is familiar with one of these theories may easily skip this part. In case of doubt
about the notation she or he should use the index we included at the end.

4 I. INTRODUCTION

2. Complexity Classes

In this section we will introduce the notation used from complexity theory. This
is not meant be a complete introduction into that field.

For a set A, the alphabet, and an integer £ > 0 a string of length = k over A is
a k-tuple of elements in A. For convenience there is a unique string of length = 0
over any alphabet, the empty string denoted by §. An element « € A is often
called a symbol and identified with the 1-tuple (a).

For a set A let A* denote the set of finite strings over A. An arbitrary subset
L C A* is called a formal language over A. A is then called the alphabet or
domain of L, dom ().

Let V' be a set, the set of objects, and A be a finite set, the set of symbols. An
injective mapping from V into A* | the set of strings over A, is an encoding of V'
w.r.t. A.

Let ¢ be an encoding of V. Then the encoding length of an element v € V' is
length, (v) = length (¢(v)).

Let F be a function (or problem) from a set J, the set of instances, to a set
9, the output space.

GENERAL ASSUMPTION 2.1. For the following we assume that the encoding for
the elements in J is fired and that for all encodings the underlying alphabet is the
same.

Let then length (i) denote the encoding length for i € J.

To define complexity classes we need we make some assumptions about the
machine model we are dealing with. In the sequel all machines or processors will
be able to perform

all basic logical operations such as A , V or —,
arithmetical operations such as 4+, — , * , mod or /
comparisons such as <, = or <

control statements such as if or case

loop statements such as while or repeat /until

read and write operations from resp. on a designated input resp. output
device

e read and write operations from resp. into memory

These operations and statements are called elementary operations or steps.
The operands of these operations will be boolean values or arbitrarily large inte-
gers. The memory available will be arbitrarily large.

An algorithm on such a machine is a finite sequence of operations.

DEFINITION 2.1. We say that function £ is computable, if there is an algo-
rithm which

2. COMPLEXITY CLASSES 5

e reads an instance i € J
e halts
e and writes E(i).

The running time of an algorithm for a specific input i is the number of
elementary steps executed by the algorithm when it is given i as input. One of the
main issues of the theory of algorithms is making estimations about the running
time of an algorithm, compared to the length of the input.

We are working with the so called unit cost model, i.e., we make the following
assumption:

GENERAL ASSUMPTION 2.2. All elementary operations will require constant time
per operation.

This assumption, though generally used in the literature, is somewhat misleading
and inconsistent. Since the minimum amount of space needed to encode an integer
n is log n this time is also needed to read it into memory or to perform an addition,
say. So to read an input consisting of n integers into memory we would need time
nlogn.

Assumption 2.2 is often justified by saying that it is true for any concrete ma-
chine. But this is misleading since we want to make theoretical statements about
all machines executing a certain algorithm.! Then certainly logn has to be con-
sidered as, though slowly, growing function.

On the other hand big efforts are made to avoid extra “log” factors in the
running time of algorithms without making exact statements about the machine
model that is assumed. We think of that as being inconsistent: on one side counting
log more or less as a constant on the other side investing a lot of work into the
saving of a “log” factor.

But when we want to make general statements on, for example, polynomiality
we will not need to make changes to that model for sequential machines here.
Just to be honest and to make clear that we are dealing with an abstract machine
model we reformulate Assumption 2.2 as

GENERAL ASSUMPTION 2.3. To determine the running time of an algorithm
all elementary operations are counted as one time unit.

Under that assumption we classify problems according to the following defini-
tion.

Tt is easy to see that all algorithms considered on a concrete machine that halt, halt even in
constant time.

6 I. INTRODUCTION

DEFINITION 2.2. We say that £ € P if there is an algorithm which calculates
E(i) in time O (length (1)").

We say that I/ is polynomially solvable, denoted by I € P, if there is such
an a with £ € P?,i.e P = ,ew P°.

If not stated otherwise machines will be sequential. When considering parallel
machines the inconsistency mentioned above becomes more important since the
running time here is usually counted in poly-logarithmic time and the cost of a
parallel algorithm is then compared with the running time of a sequential one.

We suspect some of the problems arising in this field being originated by this
inconsistency. For example the discussion if parallel processors may concurrently
read or write into memory loses importance. If we take into account that the
addressing of memory uses logarithmically many resources, simple regulations for
dealing with concurrency conflicts when two processors want to write into the same
memory cell can be handled at the same time. With simple regulations we mean
here rules as “processor with higher id wins” or “an arbitrary processor wins”.
In fact most of the times conflicts occuring in our algorithms will be that several
processors try to write the same information into the same memory cell.

So when considering a parallel machine model with an arbitrary number pro-
cessors we will assume that all of them have parallel random access to a shared
memory (PRAM) and that this access can be done concurrently for reading and
writing (CRCW) instead of using the CREW (concurrent read exclusive write)
model that would be more restrictive.

DEFINITION 2.3. We say that F# € NC® if there are an algorithm on a CRCW
PRAM and a constant depending on the algorithm such that the algorithm calcu-
lates £(i) in time O ((log length (1))) and does not use more than O (length (i)ﬁ)

Processors.

We say I/ € NC if there is such an «, i.e, NC = J, e NC”.
If © = {true ,false } I is a decision problem. F is decidable, ¥ € DEC,

if it is computable.
We say that E is in NP if there is a formal language € and a property

(2.1) Testp: Jx & — {true ,false }

that fulfills:

(1) If for some i € J and ¢ € € Testy (i,¢) = true then E(i) = true .

(2) There is @ € IN s.t. for all i € J with E(i) = true there is ¢; € € s.t.
Testg (i,¢;) = true and s.t. length (¢;) < length (i) .

(3) Testgp € P

2. COMPLEXITY CLASSES 7

Observe that 3 means in particular that Testg is polynomial even if length (i)
is considered as relevant input length. Think of & being a set of valid evidences
for £ and of Testg (i,¢) as a test if ¢ is an evidence for E(i). For example consider
the following problem

PROBLEM 2.1. NON-REPETITIVE STRING

Instance: i € A~
Question: Are two positions in i identical?

Then ¢ = IN? and
(2.2) Testg (i, (v,w)) = true iff positions v and w of i are identical

would be a good choice.

The following definition gives a formalism to characterize problems that are
at least “as hard” as any problem in NP. A problem FE is NP-hard if for every
problem E’ € NP there is a polynomial transformation to F, i.e., there is are

algorithms A and B that fulfill
e A BeP

e A gets an instance i’ for £’ as input and outputs an instance i for £
e B gets i and an element of the output space for F as input and outputs
true or false .
e B(iI",E(l)) «— FE'(I")
Notice that for £/ to be NP-hard it is not necessary that it is a decision problem.

E is NP-complete if it is NP-hard and if £ € NP. So these are the deci-
sion problems such that any polynomial algorithm to solve one of them would give
such an algorithm for every problem in NP.

Unlike the other complexity classes defined above it is not clear that the nega-
tion of an NP-property is in NP, too. The reason for that is the asymmetry of
statement 1. We say that £ isin co-NP if =F is in NP. It is not known whether
or not NP = co-NP, but P C NP N co-NP.

The name NP comes from the fact that this class first was considered as the class
of problems which are polynomially solvable on a nondeterministic machine. We
do not go into the details of that approach. The book [GJ79] of Garey and Johnson
is the classical reference for an overview over NP.

REMARK 2.1. If P is one of the classes P, NC, P*, NC*, NP, co-NP, DEC
then P is countable.

PRrOOF. This is clear because of Assumption 2.1 we only have countably many
algorithms. O

8 I. INTRODUCTION

REMARK 2.2. Let B be as above and Ey, Fy € P then (El/\Ez) and
(1 v Ey) € P.

PrOOF. For B being one of P, NC, P%, NC®, DEC we just have to execute an
algorithm for each subproblem F; and FEj respectively.

For NP the set of “evidences” to test £, A £y is &; x &, if &; is such a set for
E;. For E; V FE, the disjoint union & U&, can be used. O

The analogous statement for the negation of a property in NP is widely sus-
pected to be false. See the remarks on co-NP above.

3. Order Relations

3.1. Posets and Quasi Orders. P = (V,<) is called a partial order, par-
tially ordered set, order or poset, if “<” is a transitive ireflexive relation on the
set V. P is finite if V is finite, write |P| = |V|.

Q = (V,g) is called a quasi-order, qo for short, if “<” is transitive and
reflexive.

Posets and qo’s are related very closely — every poset defines a qo on its ground-
set in a natural way

(3.1) v<w <= ((v<w)0r(v:w))

and every qo induces a poset on the equivalence classes of the relation

(3.2) vVEw = ((vgw)and(va)).

The notation qo is also sometimes used in the literature for relations which are
only transitive, reflexive and antisymmetric.

In the following @) = (V, <) always denotes a qo.

A subset € of V is called a chain if every pair v, w € (' is strictly related, i.e.,
v < wor w > v holds. If () itself is a chain it is also called a total order. Denote
with (') the chain with & elements.

A subset A of V is called an antichain if no pair of elements in A is related, i.e
for all v,w e A

(3.3) (v<w) = (v=w).

Denote with A, the antichain with £ elements.
Chains resp. antichains are called a maximal if they are inclusion maximal with
that property.

3. ORDER RELATIONS 9

Let v < w be two elements in (). We say that w covers v, w is a covering
element of v, w is a immediate successor of v, w >wv, if v 22 w and for all u
with v < u < v we have that v = v or u = w. The set of all covering elements of
v is denoted with ImSucc (v).

A subset I C V is a lower (resp. upper) ideal if w € [and v < w (resp.
w < v) implies v € [. Observe that if [is a lower ideal then V' \ [is an upper
ideal. For w € V let the initial segment of w, denoted by V*(read V below w),
be the lower ideal {v € V | v < w} and for W C V define VW as U V*. We say

weW
that W generates V' and that W is a generating set of V. The final segment
Vi, is defined analogously as upper ideal. A generating set W is called a basis of
Viv resp. VW if Vigs resp. VW' is a proper subset of Viy resp. VW for all W' C W.

That means that every w € W is essentially needed to build up V.
An order) = (V, <) is a suborder of an order Q' = (V’, §’) if there is an
injective mapping p: V. — V' such that for all v,w e V

(3.4) v <w = p(v) < p(w).

p is then called an order preserving map.

() is called an induced suborder of ()’ if “=-" can be replaced by “ <= " in
3.4.

If @) is a suborder of Q)" such that p is a bijection, then @)’ is called an extension
of Q). @) is then called a reduction of Q)'.)’ is called a linear extension if it is a
total order.) and ()" are isomorphic if there are order preserving maps p: V. —

V' and p': V! — V which are inverse to each other, i.e., p (p’ (Q’)) = @' and

P (p (Q)) = (). In general we will not distinguish between isomorphic objects.
It is clear that the relation “is suborder” denoted by < defines itself a qo on

any set of orders. The same holds for the relation “is indtsluced suborder” which we
denote by jd .

It might be a source of confusion for the reader that we deal with relations over
relational structures. To help a little bit we adopt the different uses the terms
“poset” and “qo” usually have: In general for our discussions the posets will be
finite and the qo’s will be infinite representing e.g. a set of finite posets. The
relations in those qo’s will be given by existence of certain morphisms between
the objects. Sometimes we will speak of ordered structures when we recur to
such qo’s. This is done to emphasize the fact that the machinery we use is an
abstraction of several properties of the objects.

An important example for an order relation is the subset relation between sets. If

10 I. INTRODUCTION

we have a set .S the set of subsets of S equipped with C is called the Boolean Lat-
tice of S, denoted with Bs. If S ={1,...,k} we write By = Bs.

Another example for an order relation occurs for sets of intervals on the real
line. If [a,b] and [c, d] are two such intervals we say [a,b] < [c, d] if b <c. An

order P = (V, <) for that we can find a set of intervals [ZU, rv] o of intervals

such that the order relation in P and the one of the intervals coincide is called an
interval order.

3.2. Well Quasi Orders. A sequence of elements (v;) in @ is a called a de-
scending chain if v; > v; for all « < j. Such a chain is called stationary if
there is IV such that v; = v; for all 2,7 > N. () is called well founded if every
descending chain is stationary.

A sequence of elements (v;) in @ is called good if there are ¢ < j such that
v; < wv;. It is called bad if it is not good. It is called perfect if v; < v; for all 2 < ;.

The reader may easily verify the following theorem. It forms one of the founda-
tions of our discussion — mostly we will not mention it explicitly.

THEOREM 3.1. Let P = (V, <) be a go. Then the following statements are equiv-
alent:
(1 is well founded and every antichain is finite.
very sequence in P is good.
very sequence has a perfect subsequence.
very upper ideal has a finite basis.
Every suborder P' of P has a finite non-empty set of absolute minima and

every non-maximal element has a finite, non-empty set of covers.

) P
(2) £
(3) £
(4) £
(5)

DEFINITION 3.1. A qgo which fulfills one and thus all equivalent statements in
Theorem 3.1 is called a well-quasi-order, wqo for short.

wqo’s have first been considered implicitly as those qo’s having property 4,
which is often called the finite basis property. For an overview and bibliography

on wqo’s we refer to the articles of Milner [Mil85] and Pouzet [Pou85] in [GO85],
for an historical overview see e.g. [Kru72].

We give some basic examples.

)
IN? with the componentwise ordering is a wqo.
p g q
) Every order that is a chain and well founded is a wqo.
)

5 (Z, <), the integers, are not a wqo since they don’t have an absolute
minimum.

3. ORDER RELATIONS 11

(6) (IR, <), the real numbers, are not a wqo since no element has a cover.

3.3. Substitution Composition.

DEFINITION 3.2. Let Qo = (X, <) be a qo and {Qx = (VI7 <,)} x be a fam-
ily of non-empty qo’s with V, NV, = 0 if # y. The substitution composition
Qo [{Qx}xeX] is a qo on the groundset V., = U,cx Vi defined by

v<,w for some z € X

(3.5) v = w = or
veVy,weV, forz<y

It is easy to see that this indeed leads to a qo. We obtain
THEOREM 3.2. (o [{Qx}xeX] is a wqo iff Qo and all Q, are wqo’s.

PRrROOF. If Q) or one of the (), is not a wqo then clearly () [{Qx}xeX] is not
since they are induced suborders. In the reverse direction we have to show that any
sequence (v1,vz,...) in Qg [{Qx}xeX] is good. By definition there are (1, 2,...)
such that v; € V,, for all 7.

First we assume that there is a subsequence (vp(i)) such that z,i) = z,;) =

for all 2 and j. But then (vp(i)) is a sequence in (), and good since (), is a wqo.
If there is no such subsequence then there is one such that all x,;) are pairwise

distinct. But then (l’p(i)) must be good so there are i and j with x,; < x,¢;) and

by definition we also have v,y < v,;). So our sequence is good. 0

Three special cases of the substitution composition are covered by the following
definition.

DEFINITION 3.3. (o [{Qx}xeX] is called the parallel composition of the @), if

(Jo is an antichain. It is called the series composition of the @), if @)y is a chain.
It is called a weak order if it is the series composition of antichains.

With these definitions we are able to generate some more examples. For this let
A; resp. C; denote the antichain resp. the chain of order z.
(1) Az [{w,w}] the parallel composition of w with w is a wqo.

(2) w [{Ai}i@}] is a wqo. This shows that in a wqo the cardinality of the an-
tichains may be unbounded, see Figure 3.1. This is the general situation
the reader should have in mind when we will discuss special wqo relations.
There is no hope for these relations to have only antichains of bounded size.

12 I. INTRODUCTION

(3) O3 [{w,C1}] is a wqo. This shows that in general there may be infinitely
many points below another one, see Figure 3.2. Most of the special relations
we will study later will not have that property.

FIGURE 3.1. Arbitrary Large Antichains

FIGURE 3.2. An infinite ascending chain with limit

4. The Axiom of Choice and Its Equivalents

The wellfounded chains in Example (4), p.10, are called well-orders, wo for
short. wo’s are a possible way to generalize “counting”. One wo is smaller than
another one if the first is a suborder of the latter. With that definition every wo

has an immediate successor with respect to <b that is unique up to isomorphism.
sSu

A construction for this would be an easy generalization of Example (3), p.12.
For that reason wo’s are also called ordinals. The chains C; for ¢ € IN represent
all classes of finite ordinals, w is then the least infinite ordinal.
In set theory, see e.g. [EbbT9], the following theorem is shown:

THEOREM 4.1. On the basis of ZF the following three statements are equivalent:

4. THE AXIOM OF CHOICE AND ITS EQUIVALENTS 13

Axiom of Choice: For every set S and every family {S:},.; of non-empty
subsets of S there is a choice function ¢: I — S such that (i) € S;
for all v € 1.

Zorn’s Lemma: Let Q) = (V, <) be a qo. If every ascending (descending)
chain in Q) is bounded then there is a maximal (minimal) element in Q.

Well-Ordering Theorem: For every set S there is an order relation <
such that (S, <) is a wo.

Here ZF is the Zermelo-Fraenkel axiom system of set theory including the axiom
of foundation. We can not go into the details of that system. We simply remark
that this axiom system is one of the equivalent axiomatic formulations of the foun-
dations of modern set theory. We will use the Axiom of Choice resp. Zorn’s Lemma
frequently.

4.1. Cartesian Products and Minimal Bad Sequences. For every family
{Qi},cr of qo’s there is the componentwise ordering on the Cartesian product
xerQi given by v < w if v; <g, w; for all v = X;epv;, w = Xeyw; and ¢ € 1.

LEMMA 4.1. Let () = (V, §Q) and R = (W, §R) be a go. Then) X R is a
wqo iff Q) and R are wqo’s.

PROOF. “=" Let vy,vq,... be a sequence in Q. Then (vy,w), (vy,w),... for
some w € W is a sequence in () x R, so it is good. So vy, vy,... is good, too.
“—=" Let (vy,wy), (v2,ws),... be a sequence in Q) X R. vy, vs,... has a perfect
subsequence v,(1), Vy(2), - - - , SAY. Wy(1), Wp(2), - - - 18 good so there are 7 < j such that
W) < wpy(;). But this shows the claim. O

The following remark is an easy observation
REMARK 4.1. Leta,b € IN and A be an antichain in wxw such that (a, b) € A
Then |A| < a+b.

A generalization of this fact to w?, say, does not hold

REMARK 4.2. Let k € IN. Then there is an antichain A in w® such that (1, 1, 2) €
A and |A| =k

Set A={(i.k—i1) [1<i<k—1}u{(1,1,2)}.

This means that given one element v € V* we will not be able to give a bound
on the maximal length of a bad sequence where v is the first element.

A special case of Cartesian products are sequences where I = w and); = Qo
for all ¢ € w. Observe that the infinite Cartesian product @ with the usual

14 I. INTRODUCTION

componentwise ordering does only lead to a wqo if () is the order on one point.
This is because (Cz) 1s not well founded and (Ag) consists of exactly one infinite
antichain. But we obtain another important property of Q“.

LEMMA 4.2. Let) be a well founded but not a wqgo. Then there is a minimal
bad sequence in QQ¥.

PROOF. Let ((vf) .) be an arbitrary descending chain in Q¥ of bad
W]eW
sequences in () i.e

(1) for each j € w we have that (v{, v% .) is a bad sequence in () and
(2) for each ¢ € w we have that v} > v? > ...

Since @) is well founded (vf) - is stationary for every ¢ € w. Let v{® be the
JEW

minimum say. The sequence (vfo) is obviously a lower bound for
1EW

(4.1) <(”3)¢ew)jew

It is bad since for each pair 4; < i3 thereis j € w such that v® = vfl and vy = v;,.

12
So vZ® < v’ cannot hold since (vf) . is bad.
So we have shown that every descending chain has a lower bound. Zorn’s Lemma

gives the claim. O

5. Hereditary Properties

A property E of the elements of a qo () is hereditary if the subset of elements
with that property forms a lower ideal of () i.e. if

(5.1) (E(w) A (v < w) = E(v)) .
Every antichain A defines a hereditary property by
(5.2) Prop4 (v) == \/ (v, < v)
erA

Indeed if v < w and there is vy with vy < v then vy < w holds too. If A = {v}
we simply write Prop,.

It @ is also well founded we may also assign to each hereditary property £ an
antichain in @)/~

(5.3) Obstrg = Min{[v] € V/~ | E(v) = false },

5. HEREDITARY PROPERTIES 15

the set of (minimal) obstructions of £.
Prop and Obstr are inverse:

LEMMA 5.1. Let Q) be well founded. Then Propoysiy, = E and Obstrp,,, , = A,
i.e., Prop and Obstr define a 1-1 correspondence between the set of hereditary prop-
erties in () and the set of antichains of Q) /.

We omit the proof which is just a straightforward calculation.
LEMMA 5.2. Let () be well founded and let the set of its antichains be countable.
Then () is a wqo.

PrOOF. If) is not a wqo it has an infinite antichain A. All subsets of A are
antichains too, so the set of antichains can not be countable. 0

16

I. INTRODUCTION

CHAPTER 11

Ordered Structures and Complexity Classes

6. Quasi Orders and Worst-Case Complexity

6.1. Proper Encodings. To relate qo’s and complexity classes we have to say
something about encodings and the related encoding length for the objects of a
given (o.

Observe that if V has an encoding then |V| is at most countable.

Mostly the corresponding encoding of our objects will not be important by itself,
so we will simply speak of length (v). The property which is important for us is
given in the following definition.

DEFINITION 6.1. An encoding of the qo P = (V, <) is called proper (with resp.
to <) if length is hereditary , i.e., if

(6.1) v < w = length (v) < length (w)

All encodings which are commonly used for graphs or posets are proper with
respect to all order relations introduced on these objects. If e.g. we encode a graph
G by a list of edges clearly every subgraph or induced subgraph of G has a smaler
encoding since it has fewer edges.

This justifies

GENERAL ASSUMPTION 6.1. All go’s in this section will be properly encoded.
LEMMA 6.1. Every properly encoded qo is well founded.

PRrROOF. Let ¢ be the encoding and vy > vy > ... be a descending chain of the
qo. length. (v;) is a decreasing sequence so there is N such that for all ¢ > N

follows length. (v;) = length. (vy) = l.. ¢ is injective so there are at most |A|l°°
different v; with ¢ > N. So there is an element vy in the sequence which appears
infinitely many times. O

17

18 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES
This again justifies

GENERAL ASSUMPTION 6.2. FEvery qo in this section will be properly encoded
and thus countable and well founded.

REMARK 6.1. Let () = (V,g) be a properly encoded qo, n € IN and V, =
{v eV | length(v) =n} then V, [/~ is an antichain in Q/=~.

In general this implies also that the cardinality of antichains in our qo’s will not
be bounded. This is because for any “reasonable” encoding the number of elements
with an encoding length less than a given number should be a superlinear function.

6.2. Well Quasi Orders and Tests for Hereditary Properties.

THEOREM 6.1. Let P be one of the complexity classes P, NC, P*, NC*, NP,
co-NP, DEC and let P = (V, <) be a properly encoded qo then the following two
statements are equivalent:

(1) P is a wqo and for every v € V Prop, € P
(2) FEvery hereditary property is in P.

ProOOF. First we show 1 = 2.
Let E be a hereditary property in P. F is characterized by its finite obstruction
set Obstrg, see section 3. Let Obstry = {vy,...,v;}. For v € V we know that

k k k
(6.2) Ew) < - \/ (v, <v) — /\ (v, <) = /\ Prop,, (v)
i=1 i=1 i=1
But with Remark 2.2 the right hand side is in P and so is F.
Now we show 2 = 1. The second part of 1 follows easily since Prop, is a
hereditary property. So we have to show that P is a wqo.
Assume that this were not the case. P is properly encoded so it is well founded.
So with Lemmas 5.1 and 5.2 there would be more than countably many heredi-
tary properties a contradiction to Remark 2.1. 0

Theorem 6.1 should be interpreted very carefully. If we have an interesting prop-
erty it gives only evidence for a given input not having that property. Namely it
points to a forbidden substructure which inhibits the property. This substructure
belongs to a finite set and there is an algorithm which tests presence of this sub-
structure. So it can be easily used to show that the property is in co-NP.

In a sense there is no natural evidence why a certain property holds. The fact
that the obstruction set for the property is finite is not constructive in general. In
most cases it relies on the Axiom of Choice. We will return to that aspect later.

6. QUASI ORDERS AND WORST-CASE COMPLEXITY 19

6.3. Algorithmically Solvable Problems and Well Quasi Orders. Now
we want to show that algorithms on wqo’s can be taken as a model for many
algorithmical questions. The reason for that is very simple, we easily can define
an appropriate qo for any encoded set.

THEOREM 6.2. Let By € P be a problem defined on the encoded set of instances
V. Then there is an order relation < on V such that

(1) the encoding is proper,

(2) (V,<) is a wgo

(3) EO is hereditary with respect to <

(4) every hereditary property F in (V, <) is in P.

PROOF. Define < by

(6.3) (v <w) <= ((Eo(v) = Eo(w)) A (length (v) < length (w)))
With that 1 and 3 clearly are fulfilled.

For 2 it remains to show finiteness of the antichains, since the relation is clearly
well founded. Let A be an antichain. It consists of two parts

Ai={ve A | E(v)=true }

and
Ar={ve A | E(v)=false }.

We show that A; is finite say.

There is a value [such that for all v € A; length (v) = [, since v,w € A with
distinct encoding length would be related by the definition of <.

But since the encoding is injective |A;| must be finite. A similar argument holds
for Ay so we have 2.

For 4 observe that Prop, is in P. So Theorem 6.1 together with 2 gives 4. [

6.4. Graph Minors. The theory of graph minors is the example for the use
of the machinery given in this section. It was mainly developed by Robertson and
Seymour in series of articles called “Graph Minors”. We can not go into details of
that approach, but we will state the main definitions and results that are relevant
for our purposes.

DEFINITION 6.2. Let G and GG’ be graphs. (i is a graph minor of &/, ¢ = G,

min

if it can be obtained from G’ by the following three operations:

(1) Delete a vertex.
(2) Delete an edge.
(3) Contract an edge.

20 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES

The main structural result for graph minors is the following theorem that was
previously known as Wagner’s Conjecture.

THEOREM 6.3. The set of finite graphs equipped with = is a wqo.

The main step for an algorithmic result for our context is a solution for the
following class of problems:

PROBLEM 6.1. H-MINOR
Instance: Graph GG = (V, E)

Question: Does GG contain a minor isomorphic to H?

THEOREM 6.4. For every graph H there is an algorithm to test H-MINOR in
time O (|V|3)

The main result is then an easy consequence of the things said above:

THEOREM 6.5. For every property E on graphs that is hereditary with respect
to =X there is an algorithm to test it in time O (|V|3)

Theorem 6.4 can be improved if H is planar:

o For every planar graph H there is an algorithm to test H-MINOR in time
o(IVl).

e Ior every property I on graphs that is hereditary with respect to < and
such that there is a planar graph H with =E(H) there is an algorﬁﬁm to
test it in time O (|V|2)

The articles of the Graph Minors Series published in journals until now are
Graph Minors 1 to X. These are [RS83a], [RS86a], [RS83b], [RS90a], [RS86b],
[RS86¢], [RS88a], [RS90c], [RSI0b], [RSI1].

Until now XI to XVI circulate as manuscripts, these are [RS85b], [RS86d],
[RS86¢], [RS87], [RS88b], [RS89].

This theory can be used to solve several problems algorithmically. Besides giving
a unified approach to many problems that have been solved before it gives also
qualitative improvements on the running time for some of the problems and solves
problems where the complexity status was not known. Among the problems with
improved running time is

PROBLEM 6.2. k-PATHWIDTH

Instance: Graph ¢
Question: Is there an interval graph G’ such that G is isomorphic to a
subgraph of ' and the clique size w (G") < k?

7. AVERAGE TIME COMPLEXITY OF HEREDITARY PROPERTIES 21

One of the problems where the complexity status was not known is the following
— not even membership in NP has been proven before.

PROBLEM 6.3. LINKLESS EMBEDDING

Instance: Graph ¢
Question: Is there an embedding of G into 3-space such that no pair of
circles in G forms a link?

Up to now no proof for an obstruction set characterization for this property has
been given. So we only have an existence proof of an algorithm. This means if we
knew that set we had and algorithm.

Overviews over Graph Minors are rare and probably not up-to-date, see [RS85a],
[RS90d] and [Fel89].

Various authors participated with improvements of algorithms and application
of the theory to particular problems. Among them are e.g. [BK91], [Lag90], [Ree91],
[FL88c¢], [FL88b], [FL85], [FKL88], [FL92], [FL88a] and [FL89].

7. Average Time Complexity of Hereditary Properties

We want to give a general method to speed up average time complexity of
algorithms. By “speeding up” an algorithm we mean the following. Assume we have
an algorithm Tg to test a certain property K. This algorithm might be expensive.
Our aim is to avoid a call to Tr by putting a cheaper algorithm Sg in front.

Sk should give one of two possible answers:

false The input does not have property E.
maybe The input might or might not have property F.

As long as the answer “maybe ” is rare and the running time of Sg is fast, we

will gain something by executing Sg first and then T only if necessary. We make
this more precise by the following definitions.

Let @ = (V, <) be a properly encoded qo and

Vi, ={v eV | length (v) =n}.
We assume for each n that all v € V), are equally likely, i.e., there is a uniform
distribution P on V,,. So P ({v}) = 1/|V,]| for all v € V,.

We want to formalize a choice of several independent and small substructures of
of a large object in V. For example we want to chose several independent subgraphs
of a certain size from a graph. A sample X for () is a family of random variables
Xppui: Vo — V, with the following properties for all p € IN:

(1) Xppi(v) <o
(2) There is a non-decreasing function [,(.) such that for each n € IN the set
of random variables {Xn%l, e ,Xn%lu(n)} is independent .

22 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES

(3) There is a probability 0 < p, < 1 such that for all n € IN, vg € V}, and all
0 < <1,(n) the random variables X, ,; fulfill

P (X =10) > py

We call [, the sample length and p, the sample probability of X. With ¢,
we denote 1 — p,. g, is an upper bound for P (Xn,w +* vo).

The following lemma estimates the probability that a certain obstruction vy
appears as substructure of an element v.

LEMMA 7.1. Let X be a sample on), vo € V,, and v € V,,. Then P (vo £ v) <
(QM)IM(H)

ProOOF. This follows directly from the independence of the set of random vari-
ables {Xn%l, . ,Xn%lu(n)} since

(7.1)

Lu(n)

P(vo £ 0) S P (vo # Xopi(v) | i= 1. Lu(n)) < JT P (vo # Xopilv))
=1
O
A property E on () is called sparse if
| E(v)=1

(7.2) lim L€ Ve | B(0) = true J|_

It is dense if this fraction tends to 1.
The following theorem shows that hereditary properties are sparse in a very
general setting.

THEOREM 7.1. Let @ = (V, <) be properly encoded with sample X such that
the sample length 1,(.) is unbounded for every . Then every non-trivial heredita-
ry property in () is sparse.

PRrROOF. Let E be a hereditary property. Since it is non-trivial there is some
vg € V,, for some p such that = F(vg) holds. Then for all v € V,, with E(v) we have
that v is not below v, vg £ v. So

(7.3) P (E(v)=true) < P (v £ v) < (q.)""

Since [,(.) is unbounded this shows the claim.]

7. AVERAGE TIME COMPLEXITY OF HEREDITARY PROPERTIES 23

A sample algorithm Ay is an algorithm that incrementally produces a sample
X. We assume that such an algorithm is implemented as two distinct subroutines.
The first one performs some initialization and the other one is given in such a way
that for all 0 < ¢ <1,(n) the i-th call of this routine outputs X, ,;(v).

We denote with t;”j and tfﬁj the time such an algorithm needs for an initial
phase and for each incremental step respectively.

Now let F be a hereditary property and vy € V, be an obstruction for F, i.e.,
FE is false on vg. In addition assume we are given an algorithm Tg that outputs
FE(v) with running time t7,(n) if n = length (v).

Consider the known test routine Ty as being expensive; t7,(n) grows faster than
we want. Here “growing fast” can mean different things:

- super-polynomial,
- linear (or low polynomial) with enormous constants of proportionality or
- super-polylogarithmic,

depending on the setting we want to deal with. The following algorithm imple-
ments a strategy to avoid the call to this routine. It simply puts the test whether
or not vg = X, ,.;(v) for some ¢ in front of Tg.

ALGORITHM 7.1. averages, 7.,

Input: wvevV

Output: FE(v)

n := length (v)

Initialize Ay with v and n

fori:=1 tol,(n) do begin
Xi = AX
if (X; =vo) then begin

Output = false

~~
[u—y

stop
end
end
(Output := Tg(v)

[TNy
— O WO 00~ O O = W o
e g g

~~

stop
LEMMA 7.2. The average complexity of averageas, 1,., 5 in
O (1 + 855+ g™ -ty (w)

PROOF. The first term is obvious. The third term is just the probability that T
is executed multiplied with its running time. For the second term observe that the

24 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES

probability for the :-th execution of the for loop is bounded by qi‘l.
So the average time this loop needs is

o) <o L) =0 ez 1)

But p, is a constant depending only on vy and not on v. 0
We conclude with the following theorem:

THEOREM 7.2. Let E be a hereditary property on @ = (V,<) and Ax be a
sample algorithm for (). Suppose there is an algorithm Ty to test E that has worst

lu(n .
case running time tr(n) = O ((1/%) ()) for all p. Then E can be tested in
average time O (t““ + tmc)

PrOOF. We may assume that F is non-trivial, i.e., it has an obstruction vy € V,,
for some p. Consider the running time of averagea, 7, ,-
The third term of the complexity given in Lemma 7.2 is

That shows the claim. O

8. Average Time Complexity of Graph Properties

We will exemplity this approach for average time complexity with the set &;,,4
of finite graphs ordered by the induced subgraph relation jd.

All algorithms for hereditary properties in &,;,4, for which we found good av-
erage time algorithms in the literature, rely on investigations of the properties
themselves. They usually test the property on some induced subgraphs — estima-
tions of the average running time then are made by estimations about the number

of yes-instances for the property. See e.g. [Wil84] and [PS92b].

8.1. Representations of Graphs. We will use the following notation.

The vertices of a graph G = (V, F) are denoted with vg,... ,v,_1. For an in-
dex set {i1,...,7x} we denote with Gy, .. ;1 the subgraph induced by the ver-
tices {vi,,...,v;, } and with G ;) the subgraph of ' induced by the vertices
Uiy U1y o+ 5 Uy

There are several different datastructures that are commonly used for graphs.
The main differences among them are the way we obtain the information whether
or not an edge is present in the graph and the space needed to store the graph.

8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 25

We will denote with retr (G, ¢,7), retrieval time, the time to retrieve the edge
{1,5}.

(1) We may have random access to the information, i.e., each query costs
O (1). This is commonly implemented by using a matrix, the adjacen-
cy matrix, to store the particular information. The space needed is then
O (n?).

(2) We may have access via lists.

(a) For each vertex v; there is a list of its outgoing edges. These types
need O (n + |E|) space. The lists may be
(i) sorted according to j. Then retr (G,2,5) = O (7).
(ii) unsorted. Then retr (G,2,7) = O (n).
(b) There is a global list for all edges. These types need O (|E|) space.
Here we also may distinguish two types. The list may be
(i) sorted according to ¢ and j. Then retr (G,¢,5) = O (i-n+j).
(ii) unsorted. Then retr (G,1,5) = O (|E|)

(3) The graph may be given by an oracle, i.e., a routine that gives the infor-
mation required. Here we may distinguish analogous types as for lists with
the same retrieval costs, counted in the number of times we need to call our
oracle. Clearly we can not say anything about space needed in that model.

The worst case retrieval cost of a graph is denoted with retr (G') = max retr (G, 1, j).

)

We also need some more definitions when we want to deal with average time
complexity of algorithms. We chose the simplest probability model that is in use
for graphs: We consider only graphs GG = (V, E) over a fixed set of vertices
{vi | 0 <¢}. We then have that V = {vg,...v,_1} for some n.

In particular we will distinguish isomorphic graphs the isomorphism between
them does not induce the identity on the vertices.

An induced subgraph Gg of a graph G is obtained in the following way: If
S = {igy...,i4—1} such that g < ¢7 < ... < i,-1, then G is the graph with
vertices vg,...,v,_; and an edge between v; and vy iff {vij,vik} € E(G). See
Figure 8.1 for an example.

Let edge; ;(G) denote the random variable that is true if in G there is an edge
between v; and v;. Then P (edgei7j(G) = true) = % In addition we will assume
that the set of random variables {edge; ;(G) | ¢ < j} is independent.

We will denote with the access time, acc (() as

(8.1) acc (G) = max M
i min{¢, 7} 41

26 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES

0 1

0 0

FIGURE 8.1. Two distinct induced subgraphs

This function is a “normalized” cost function, it measures the access to “small”
edges. It depends on the datastructure by which the graph is given. According to
our different representations of graphs we obtain.
1: G is given as adjacency matrix. Then acc (G') = O (1).
2(a)i: G is given as sorted lists of edges. Then acc (G) = O (1), too.
2(a)ii: (G is given as unsorted lists of edges. Then acc(G) = O (n) since
then we have to check the whole list to know if there is an edge adjacent
to vertex vy.
2(b)i: G is given as one sorted list of edges. Then acc (G) = O (n), too.
2(b)ii: G is given as one unsorted list of edges or, equivalently, as an oracle
that successively outputs the next edge. Then acc (G) = O (n?).

8.2. Average Time Complexity of Induced Graph Properties. Accord-
ing to section 7 we want to give a sample algorithm for the set &,,4 of finite graphs
ordered by the induced subgraph relation <.

ind

With that sample algorithm we will show

THEOREM 8.1. Let FE be a hereditary property on &;,4 and assume there is an
algorithm Ty to test E(G) for a graph G = (V, E) with n = |V| in time 200,

Then there is an algorithm to test E in average time O (acc(G))

The arguments we will give also show the following corollary that gives a O (1)
average complexity if we have fast access to “small” edges of the graph. Clearly
this only makes sense if we do not have to read the graph any more, for example
if we want to use our algorithm as subroutine for other problems.

COROLLARY 8.1. Let E be a hereditary property on &;,; and assume there is
an algorithm Ty to test E(G) for a graph G = (V, E) with n = |V| in time 200,
Provided that the input graph G is present either as sorted lists of edges or as
adjacency matriz there is an algorithm that needs O (1) time in average.

8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 27

From this we will obtain fast average time algorithms for many problems.

COROLLARY 8.2. Let k be a fixed constant. The following properties of a graph
G can be calculated in O (ace(G)) average time

(1) pw(G) <k

Here

pw (G) is the pathwidth of (G, the minimal clique size of an interval graph G’ such
that G is isomorphic to a subgraph of G' minus 1, see also k-PATHWIDTH
on p. 20,

tw () is the treewidth of (7, the minimal clique size of a chordal graph G’ such
that G is isomorphic to a subgraph of G’ minus 1,

X (G) is the chromatic number of ¢, the minimum number of colors needed to
color G,

w (G) is the clique size of (7, the maximal size of a clique in (,

a () is the stability number of (7, the maximal size of an independent (stable)
set of GG,

k () is is the clique cover number, the minimal number of cliques neeeded to
cover (5.

The proof of this corollary will occupy a whole section, see section 8.4 below.

8.3. A Sample Algorithm for Induced Subgraphs. An easy sample algo-
rithm for this kind of properties would be to take all subgraphs induced by the
vertex sets vi,41,. .. ,V(341),- But this would only give %J induced subgraphs
and would thus not be sufficient to prove Theorem 8.1 with help of Theorem 7.2.

For that purpose we have to give a sample algorithm such that the corresponding
sample length [, dominates ¢ - n for every constant c.

ALGORITHM 8.1. sample™ , recursive version

Input: A graph G with vertex set {vo,... ,v,_1}, n = p* for some k.

Output: A sequence (Hl, . 7H1M(n)) of induced subgraphs of ¢ all having p ver-
tices.

(1) m:=n/p
(2) if (k> 1) then begin

28 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES

3 for ::=0 topu—1 do begin
4 sample™® (G[Z’.m7(i+1).m_1])
end
end

for::=0tom —1 do begin

OUtPUt = G{i,i—l—m,i—I—Qm,...,i—l—(u—l)m}
end

N TN TN TN N N N
© OO -1 Oy Ot
e e N S e N

We assume that we throw away superficial vertices if our input graph has a
number of vertices that is not a power of .

LEMMA 8.1. The output of sample™® (G) defines a sample X with sample
length 1,(n) = k- p*=t if k= UogM nJ

PrOOF. We show that the graphs (Hl, . 'Hlu(n)) are independent choices. This

is clear if we restrict ourselves to the set given in loop (7). To see independence of
the whole set observe that the subgraphs that are given as input to the recursive
call have no edge in common.

To see that the sample length [,(n) = k- z*=! apply induction on . 0

It is clear that this algorithm can be implemented in such a way that it has a
total running time of O (,u2 k- ,uk_l) if the adjacency matrix of G is given. This

means in particular that we used O (nlogn) edges for the subgraphs out of O (n?)
that were possible.

We need an analysis that is a little more detailed. For that we give an iterative
variant of our algorithm.

ALGORITHM 8.2. sampleiterw iterative version

Input: A graph G with vertex set {vo,... ,v,_1}, n = p* for some k.
Output: A sequence (Hl, . Hlu(n)) of induced subgraphs of G all having p ver-

tices.
ri=1
while (r < n) do begin

io =0
while (¢ < n) do begin
for::=1 toig+r—1 do begin
OUtPUt = G{i,i—l—r,i—I—QT,...,i—l—(u—l)r}
end
toi=toF+ p-r

SN TN TN TN TN TN TN N
O =1 O O = W N —
N NI S e

8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 29

(9) end
(10) ri=qper
(11) end

The following is an easy observation

REMARK 8.1. Both versions of sample™* take the same set of subsets of [n]
to produce the same set of induced subgraphs as output.

The reason why we gave the iterative version is the following lemma that would
not be true for the recursive one.

LEMMA 8.2. The iterative version of sample”wﬂ can be implemented in such a
way that

(1) it needs constant time for initialization

(2) it needs time O (,u- (z + ,u) . acc(G)) to generate the i-th sample subgraph
ifo<i<n/p—1.

(3) it needs time O (u?) to generate each other subgraphs.

PROOF. Statement 1 is clear.

To see 2 observe that the subgraphs in question are those induced by the subsets
{Viy -+ s Vipgu—1}. We can access all edges adjacent to vertex v; that are needed

in time O ((@ + ,u) - acc (G)) This shows 2.

During the generation of these subgraphs we may build up the adjacency matrix
of (G since we access all pairs v;, v; with ¢ < 7 and know whether or not they share

an edge. This shows 3. O

PrOOF OF THEOREM 8.1. We have to revisit the proof of Lemma 7.2, i.e., the
estimation of the average time complexity of the algorithm average.

The second term of the running time now reads

30 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES

Lu(n)
:O(z-qu acc(G))
(8.2) i=1
_ o e (G)2
(1-4)
=0 (p;2 -acc (G))
This is O (acc (()) since p, is a constant. O

The previous proof also gives an indication how the constants of proportionality
look like. According to the proof of Theorem 7.2 the expensive algorithm Tg
contributes only an additive constant to the average time of averagesanpie, s,
By making the constant of proportionality in Theorem 8.1 large enough, we can
ensure that the running time of T is properly bounded by 2", say. So the average
contribution of Tx to the running time can be universally bounded — the bound
depending only on our specific machine model.

COROLLARY 8.3. There is a universal constant C' such that for every heredita-
ry property £ in &;,4 that has a test algorithm Ty as considered in Theorem 8.1
and that has an obstruction consisting of p vertices can be tested in average time
HG) with

I

.o
TR (CIER S
C-2"

cace(G) if ace(G) = O (retr(G)).
~ace (G if ace(G) = O (retr(G) /n)

This shows that if we have a fast datastructure to access edges with small
endpoints, we may gain an average time speedup. This speedup implies a growth
of the constant of proportionality, which seems to be acceptable when g is small.

The proof of this corollary follows directly from what is said above, so we omit
it.

8.4. Special Properties — Proof of Corollary 8.2. Now we come to Corol-
lary 8.2, i.e., we want to show that several graph properties fit into our setting.
The properties we investigate are just a small subset of what is possible — the
subset chosen is more or less arbitrary and mainly motivated to give the reader a
better insight.

8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 31

Observe that the properties given have very different worst-case complexity. It
varies from well behaved polynomial, i.e. k£ not in the exponent, via NP-complete,
to problems for which the complexity status is not known.

The “easiest” cases are those of pathwidth and treewidth. They are both NP-
complete if £ is part of the input as was shown by Arnborg, Corneil and Proskurows-
ki, see [ACP8T7], and remain so even if the input graph is very restricted, see e.g.
[Gus89].

But if £ is a fixed constant we have fast algorithms to test whether or not
tw (G) < k. The fastest realistic algorithm for tw (G') < k was given in [Ree91].
It has a worst case complexity of O (nlogn). So it fits well into our setting if the
graph is given as sorted list of edges, say. We then obtain an average complexity
of O(1).

For pathwidth, the fastest algorithm to test pw (G') < k is given by the theory
of Robertson and Seymour and runs in O (n?) This is so since there are planar
graphs (e.g. trees) with pw (G) > k for every k. A more practical algorithm that
we could use is one given by a dynamic programming technique in [ACP87]. But
according to Theorem 8.1 any such algorithm has O (1) average complexity if we
embed it into our setting.

Now we consider w () < k. This problem is again NP-complete if & is part of the
input. But in contrast to the two previous problems there is no (even theoretical)
algorithm known to solve the problem on fixed & in time O (n®), a not depending
on k.

In the following we denote the set {0,... ,n — 1} by [n].

ALGORITHM 8.3. Tk

Input: Graph G with n vertices and positive integer k
Output: true if w(G) <k, false otherwise.

(1) forall S: [k+1| — [n] do begin

)
(2) if Gs = K11 then begin
(3) Output := false
(4) stop
(5) end
(6) end
(7)

Output := true

This algorithm can be implemented such that the running time is O (nk"'l). So

Theorem 8.1 can be applied easily — averagesample, T, ;. Ky has the right average
time complexity, if k is fixed.

32 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES

Since this algorithm itself is just looking for the only minimal obstruction Kj4q,
we even don’t have to apply our sample algorithm. We simply have to warrant
that the enumeration in line (1) is done in the right order.

Though x (G) seems to be very similar to w ((7), it is not. As we have seen
w (G) < k can be solved in polynomial time if & is a fixed constant. In contrast to
that the problem y (G) < k is NP-complete even is k > 3 is a fixed constant, see
[NR8T]. It was first solved in average time O (1) by Wilf [Wil84], see also [BW85]
and [Wil86].

ALGORITHM 8.4. Tk

Input: Graph G with n vertices and positive integer k
Output: true if x (G) <k, false otherwise.

(1) forall ¢: [n] — [k] do begin

(2) if ¢ is an admissible coloring of G then begin
(3) Output := true

(4) stop

(5) end

(6) end

(7) Output := false

This brute force algorithm has a running time that is O (n* - k"), so it fits into
our setting if £ is fixed. Clearly nobody would try to attack the problem like this,
if she/he would be really interested in the chromatic number of a specific graph.
It only makes sense, if we investigate many graphs — graphs that we presume as
all being randomly chosen, independent of each other.

The minimal obstruction we would use is clearly Kjyi again.

The reader may easily give analogous algorithms for a () and k (). The first
thing that comes in mind is to apply the algorithms above to (i, the complementary
graph of . But this is not a good idea, since it would destroy the average case
complexity in general.

Now we give an algorithm to test whether or not a graph is perfect. A graph is
called perfect if v (G') = w (G') for all < (. It seems that for this problem no

good average time algorithm has been pubhshed before, but that Steger, [Ste92],
independently found such an algorithm that relies on the estimation of the number
of perfect graphs that was given in [PS92a], and that we do not need for our
approach.

This problem is chosen as example, for which we need a much more sophisticated
algorithm. The basic idea is to use Lovasz’s Perfect Graph Theorem, namely that

8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 33

(G being perfect is equivalent to

(8.4) w(@)-a(@) = V(&)

for all ' < (G, see the book of Golumbic [Gol80] for more details and references.

ind

ALGORITHM 8.5. Toery

Input: Graph G with n vertices
Output: true if GG is perfect, false otherwise.
for all G/ X G with < 2 vertices do initialize w [G'] and « [(]

ind

~~
[u—y

)
(2) for::=3ton dobegin
(3) for all G/ jd G with ¢ vertices do begin
(4) w[@N:=0;alG']:=0
(5) allclique := true ; allstable := true
(6) for all H jd G’ with ¢ — 1 vertices do begin
(7) ifw[H]#1—1 then allclique := false
(8) if a[H] #¢—1 then allstable := false
(9) W [G'] = max {w [H] 0[]}
(10) a[G'] = max{a[H],a[G']}
(11) end
(12) if alleliqgue then w[G'] :=1
(13) if allstable then o [G'] :=1
(14) if (w [G']-]G] < z) then begin
(15) Output := false
(16) stop
(17) end
(18) end
(19) end
(20) Output := true

LEMMA 8.3. T, ¢(G) is correct and has running time O (n - 2").

PROOF. First we show correctness. It is clear that any induced subgraph G’ of
(¢ is only visited if all its induced subgraphs H have been visited before. Lines (4)
to (13) calculate w(G') and o (G'). If G’ is a clique or independent set all its
induced subgraphs H are so. This lets us detect whether or not ' has such a
structure.

34 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES

If it is not a clique or independent set then one of its induced subgraphs H
contains a maximal clique or a maximal independent set respectively. So we just
have to calculate the maximum over all such subgraphs.

Thus we calculate w (G') and « (G”) correctly. But if we know both values we
can easily apply Lovasz’s Theorem, and so we have correctness.

For the running time observe that the two outer loops together give the factor
2". The inner loop gives O (n), so we have in total O (n-2") = O (ZIOg” . 2”) =

0) (2n+logn) — 20(m) O

CHAPTER III
Some Well Known QO’s revisited

Now we revisit four well-known qo’s, given by relations on antichains, strings, trees
and special classes of posets. We investigate these ordered structures for different
reasons. The relation on antichains will be useful to show that certain relations
lead to wqo’s. The others then are given merely to exemplify some of the tools
we developed until then. We will use the relation on antichains to show that they
are wqo’s and then Theorem 6.1 to show existence of algorithms for hereditary
properties.

Then we use these results on trees to show that any class of posets with bounded
decomposition diameter forms a wqo and admits linear time tests for hereditary
properties.

Our approach differs from other general approaches known for “tree-like” struc-
tures, e.g. those of Arnborg et al. [ALS91] or Courcelle et al. [CM92]. These authors
constructively give algorithms for problems that can be formulated with certain
logics. This constructiveness is on one side an advantage since, in principle, it is
possible to build a “compiler” that gets a logic formula as input and outputs a
recognition algorithm for the corresponding property. The advantage of our ap-
proach is that we can show existence of algorithms for problems where constructive
proofs might not exists.

9. A QO on Antichains

We want to relate the obstruction sets of two properties Fy and FE; where one
implies the other. The following definition is then motivated by the observation
that if ay is a minimal obstruction for F then there is @y € Obstr(F;) with
a1 < ay. It will give us a comfortable mechanism to prove that some qo are indeed
Wqo.

35

36 ITI. SOME WELL KNOWN QO’S REVISITED

DEFINITION 9.1. Let A; and Aj be antichains in the qo @) = (V, <) We write

(9.1) <A1 < Az) = AV (@<a)

antt ay€A> a1 €A

Notice that =< 1is a little bit counter-intuitive since A C A’ implies that A" <
antt antt
A

It seems that a related relation between antichains was first used by Dilworth
in [Dil58], cf. also [Beh88] or [Reu9l]. Indeed it is used for the maximal antichains
of a finite poset. On these objects the relation given here and the one where we
would exchange the quantifiers in 9.1 coincide. We will see below that this relation
on antichains is equivalent to a relation on lower ideals that was considered before

by various authors, see e.g. [DPR&1] or [LMP85].

LEMMA 9.1. < s a qo relation on the set of antichains.

antt

PrOOF. Reflexivity is clear.
< s transitive: Let A7 < Ay < As. For all a5 € As there is a9 € Ay and a

antt . antt antt . . o
ay € Ay with a; < ay < as. So we have ay < as, too. This gives transitivity.

< is antisymmetric. Suppose we have A; < A; and A, < A;. We show that

antt antt antt

A2 g Al.

For all ay € Aj there is a; € A; with a1 < ay. There is also af, € A, with
alb, < ay. So ay, < a; < ay. But Ay is an antichain so @}, = a3 = ay. This shows
Ay C Ay, Ay C A, follows by symmetry. O

LEMMA 9.2. Let Ey and Ey be hereditary properties in () = (V,§), A =
Obstrg,, Vi = {v eV | Ei(v) = true } and V; = V \ Vi the corresponding lower

and upper ideals. Then the following statements are equivalent.

PRrROOF. It is clear that 1, 2 and 3 are just reformulations of one another.

First we show “1 = 4 7. Assume we have — <A1 =< Az) so there is ay € A,

antt

such that for all a; € Ay = (ay < az). Since these are the obstructions for £, this
means that (El(ag) = true) — (Eg(ag) = true) , a contradiction to ay being
an obstruction for Fs.

9. A QO ON ANTICHAINS 37

Now we show “4 = 17. Assume A; =< A,. Let for v € V' F3(v) be false. Then

antt

there is ay € Ay with ay < v. By assumption there is a; € Ay with a1 < a; thus
a; < v holds too. So Fi(v) = false . So =F; = —F, and thus F; = Fs. O

Another property we will need is given in the following lemma.

LEMMA 9.3. Let () = (V, §) be a qo and Ay and As be antichains in (). Then
there is a unique antichain B which fulfills B < Ay and B < Ay and is maximal

antt antt

with that property.

PrOOF. Clearly B = Min {A; U A3} the set of minima of the union of A; and
A, fulfills all properties desired. 0

An order with a unique lower bound for any arbitrary pair of elements is often
called a semi-lattice.

We denote the unique maximal lower bound with inf {A;, A;}. Clearly this con-
struction leads also to a unique lower bound of any finite set of antichains. For
finite posets this, and an analogous observation for an upper limit, shows that the
set of maximal antichains forms a lattice, see e.g. [Dil58, Reu91].

The same construction gives also a unique maximal lower bound for arbitrary
collections of antichains if () is well founded.

THEOREM 9.1. Let A be an arbitrary set of antichains of the well founded qo
Q= (V, <) Then there is a unique antichain B which fulfills

(9.2) B =< Aforall Ae2

antt

and is maximal with that property.

PROOF. Denote with inf,cq A, or inf for short, the set of minima of the union of
A € 2. Because () is well founded this is well defined and fulfills property 9.2.
Let B have property 9.2. We show that B < inf.

antt

Let a € inf. Then there is A € A with @ € A and so there is b € B such that
b <a. O

LEMMA 9.4. Let () = (V, <) be a well founded qo but not a wqo. Then there is

a mintmal infinite antichain with respect to =< .
antt

38 ITI. SOME WELL KNOWN QO’S REVISITED

ProOOF. Let Ay = Ay = --- be a descending chain of infinite antichains. Let

antt antt

(9.3) Ao ={veV | thereis N € INs.t.v € A, foralli > N} = 161(1]11\}142

We show that A, is infinite. Assume the contrary. Then there is Ny such that
Ay C A, for all © > Ny. Ay, is infinite so there is an ag € Ay, \ As. By inductive
choices there are a; € An,4; such that ap > a4 > ---. All these a; are not in A,
since otherwise ay would be related to an element of A., which is a subset of Ay, .

This descending chain in () is stationary. So there are a,, and N; such that
a; = ao Tor all © > N;. But then a, € A a contradiction.

So any descending chain of infinite antichains has a lower bound that is infinite,
too. Zorn’s Lemma gives the claim. O

Lemma 9.4 does not mean that the set of antichains of () is well founded with

respect to = if () is not a wqo. For that let {aq,as,...} be a countable antichain
antt

of Q. Then A; = {ay,... ,a;} for + € IN defines an infinite descending chain that
i1s not stationary.

THEOREM 9.2. Let () = (V,g) be well founded but not a wqgo, A C V be a
minimal infinite antichain and let V<4 = {v € V | there isa € A with v < a}.
Then Q<4 = (V<A, <) is a wqo.

PROOF. Clearly Q<# is also well founded.
Now let B C V<4 be an arbitrary antichain and inf { A, B} as given above.
inf {A, B} is an antichain. By definition we have also inf{A, B} < A so

ante
inf {A, B} must be finite.
But since B C V<4 we have that B C inf {A, B}. So B is finite, too. O

COROLLARY 9.1. Let Q, A and v € V<4 be as above. Then the set
A= {ae A | allv},

is finite.

10. Strings

Now we revisit a well-known qo given by a relation on strings. We investigate
this ordered structure to exemplify some of the tools we developed until now. We
will use Theorem 9.2 to show that this is a wqo and then Theorem 6.1 to show
existence of algorithms for hereditary properties.

10. STRINGS 39

10.1. Higman’s Theorem.
DEFINITION 10.1. Let P = (V,<)be aqoand a , f € V*, a = (a1,... ,q,),
g = (bl, e ,bs). Then we say o < 8 if there is a mapping p such that a; < b,

and that is strictly monotonous. See Figure 10.1.

Ficure 10.1.

With P* we denote (V*, =) which clearly is a qo. It is also clear that “=<” is
* *
admissible for the concatenation of strings. If we have a < # and v < ¢ then

a - =< -6 holds, too. The following theorem is due to Higman [High2].

THEOREM 10.1 (HIGMAN’S THEOREM). P* = (V*, <) is a wgo iff P = (V, <)

15 a wqo.
We give a variation of the proof of Nash-Williams [NW63], see also [Pou85].

PROOF. “=" holds since P may be seen as the suborder of P* consisting of
the one-element strings.
“«<=" It is easy to see that P* is well founded since in a descending chain
a1 = ag = -+ all o; have bounded length.

* *
Suppose now P* is not a wqo. With Lemma 9.4 it would have a minimal infinite

antichain A, say.
A
Let) = (P*)< be the wqo of elements in P* which are strictly below that
antichain, see Theorem 9.2. The set

(10.1) A" ={a € P | there is v € V such that va € A}
is a subset of (). It must be infinite so it has a perfect subsequence of pairwise

disjoint elements, (a;),.,, say.

40 ITI. SOME WELL KNOWN QO’S REVISITED

Now consider the corresponding sequence (vi)iew in P such that v;a; € A. It is
good, so there are 7 < j with v; < v;. Thus we would also have

(102) VO ; V05

a contradiction. O

10.2. Fast Tests for Strings. For the following discussion on algorithms for
strings we will assume that all strings are given by an array. Since we want to
handle strings over arbitrary wqo, we naturally can not say anything about an
encoding of the elements in these. Therefore we assume that the elements in such
a wqo are given as pointers and that we have an oracle to test the relation. In
total, if we want to consider @* for a wqo @ = (V, <)

o size(a) =c- Sk, size (a;), where o = aq - - - a; and ¢ is a universal constant
not depending on « and
e an algorithm lesseqq (a, b) to test whether or not @ < b is given.

We will show

THEOREM 10.2. Let () be a go and P € P, P, NC,NC", NP, DEC, 7 > 1. If
every hereditary property in () is in P then every hereditary property in Q* is in
P, too.

First we give an easy algorithm for sequential machines.

ALGORITHM 10.1. scan®y (a,)

Input: a=a;---a, and G =0by---b
Output: p; <+ < pp such that a; < b, if it exists or false if not.
if t =0 then return true
if £ > then return false
for::=1 to! doc :=b;
for::=1 tok doc¢y;:=a;
7:=1
for::=1 to k do begin
while —lesseqq (a;,¢;) doj:=j+1
pi =]
7 =341
end
if p;, > | then return false
else return p

~~
[u—y

~~

~~
[Sy S [—

D — O O 00~ Oy O = W N
e e e e e e e e e e e e

~~

10. STRINGS 41

The following remark is easy, so we omit the proof.

REMARK 10.1. scan®®? is correct and has a running time of O (k 4 1) plus O (1)
queries to the oracle lessegq.

LEMMA 10.1. Let Q = (V, <) be a qo such that Prop, for fived a € V is in P"
for 7 > 1. Then for every fired o € Q* Prop, is in P", too.

PRrROOF. Let @ = ay---a; be fixed. The running time of scan®**? without the
oracle queries is O (k + 1) = O (1) since k is fixed.

Let ¢4 be the maximum of the constants of proportionality for the tests for
properties Prop,,,...Prop,, . The running time for the queries is the bounded by

! ! T
(10.3) Craz * Z size (b)) < Ciag - (Z size (bl)) < Caz - size ()
=1 =1

O

Now we give a parallel version or our algorithm. It is based on the observation
that the embedding we find with scan®®? is a very special one. The numbers p; are
as small as possible.

ALGORITHM 10.2. scanP* (a,)
Input: a=a;---a,and 3=0b;---b
Output: p; <--- < pi such that a; < b, if it exists or false if not.
if t =0 then return true
if £ > then return false
io =0
forj:=1+1 tol+k dom;:=
for j:=1 to k£ do begin
for : := 1 to [do parallel begin
if lesseq(a;,b;) then m, :=1
else m; :=1+1

~~
[u—y

end
P = IMllys, MYy
to:=p; +1

end
if p;, > | then return false
else return p

e e e e e NN NN
= o N — O O 0 -~ O U = W o
e e e N e e e e e e e e e e’

e,

It is clear that scanP®" gives the same output as scan®®d.

42 ITI. SOME WELL KNOWN QO’S REVISITED

LEMMA 10.2. Let Q = (V, <) be a qo such that Prop, for fited a € V is in NC”
for 7 > 1. Then for every fired a € Q* Prop, is in NC", too.

PROOF. It is clear that the running time for the loop (6) is dominated by the
largest time for the lesseq. The number of processors can be estimated in the
same way as the running time in the sequential case.

The calculation of the minimum can be done efficiently with O (I/log) pro-
cessors in time O (log!) with re-scheduling. Re-scheduling is based on the idea
that, if we have to perform a task log! times such that we need [/2™ processors
in step m, we can distribute the work to be done on [/log! processors such that
the running time increases only by a constant factor. So it is efficient, too. O

11. Trees
11.1. Structured Trees.
DEFINITION 11.1. A rooted tree is a triple (V, r, S) where V' is a finite set,
r € V, the root, and S is a string of rooted trees such that either (V, r, S) =
({r} .7 @) orif S=T1,... T, with T; = (Vi,ri, Si) then

(1) VA {r} =U; Vi and
(2) VinV; =0 for i # j.

For T'= (V, r, S) and v € V define T, as the unique subtree of T rooted at v.

T;

FIGURE 11.1. A rooted tree

An element v € V is called a leaf if T, = ({v},v,@) and it is called a in-
ner node if it is not a leaf.

Rooted trees can be easily seen as special partial orders. For every such tree
T (V, r, S) define r > v for all v € V \ {r}. > is transitive by the recursive
definition of T'.

11. TREES 43

For two elements v,w € V define the least common ancestor LCA7 (v, w) as
the smallest * € V such that * > v and # > w. Such an element always exists.
The postorder on T' is the unique linear extension < of < which fulfills

post

(1) if ro = LCAp (v,w) € {v,w} and the subtree of v in T, is left of the subtree

of w then v < w
post

(2) if v is a node in T,, then v <t ro
pos

Let T} = (Vl,rl,Sl) and 15 = (Vz,rg,Sg) be rooted trees. 177 is homeomor-
phically embeddable into Ty, T7 < T5, if there is an injection p: Vi — V5 which
respects < and LCA. i.e., for all v,w € V] the following conditions are satisfied.

pos

(11.1) p (LCA7, (v,w)) = LCAT, (p(v), p(w))
(11.2) v < w = p(v) < p(w)

Now let () = (Qﬂ, <g) be a qo. A structured or weighted tree with weights
in) is a quadruple T™ = (V, r, S,m) where T' = (V, r, S) is a rooted tree and

w: V. — 2 is an arbitrary function.
Denote the set of structured trees over) with <.
T is homeomorphically embeddable into 7,°2, 1" < T,°?

homeomorphic embedding p of T} into T which respects the weight functions. i.e.,
forallve Vj

, if there is a

(11.3) w1 (v) = w1 (p(v)).

Denote (TQ, =) with Q°. It is clear that this is a qo.

Observe that the postorder for each structured tree defines a string over () in
a natural way. Two such strings are related by < if the corresponding trees are

related by <. So the following famous theorem of Kruskal, [Kru60], can be seen as

an extension of Higman’s Theorem 10.1.

THEOREM 11.1 (KRUSKAL’S TREE THEOREM). Q° is a wqo iff Q is a wqo.

PRrROOF. For the proof we follow basically the same ideas as described for Hig-
man’s Theorem.

First it is easy to see that Q)° is well founded if () is so. This is because the car-
dinalities of the groundsets of a descending chain of structured trees are bounded.

44 ITI. SOME WELL KNOWN QO’S REVISITED

Assume now that ()° is not a wqo. Then there is a minimal infinite antichain A,
say. Let T™ = (V, r, S,m) € A be with S = (Tlm, . .,T,S’). For all 2 we have then
that T)° <Q .

With Theorem 9.2 we have that T the set of all these subtrees is a wqo. So
Higman’s Theorem 10.1 gives that the strings over this wqo * form a wqo, too.

If we denote with & the set of strings S that occur in the definition of some
T € A we have that & C T*. So there is a sequence S; < 53 < -+ such that the
* *

corresponding trees T; = (W, ri, Si, mi) € A are pairwise distinct.
Now consider the corresponding subsequence of the weights of the roots

(11.4) (i (1)),

1€EwW

It is good, so there are ¢ < j such that

(11.5) Wi (ri) <q 1; (7))

But then we may extend the embedding of 5; into S; such that we achieve

i w;
(11.6) LT

a contradiction. O

11.2. Algorithms for Structured Trees. We will give test algorithms for
structured trees. For that purpose we proceed analogously as we did for strings
and give a sequential one first, and a parallel one afterwards. As we did there,
we will also assume that the weights are given by pointers and we have an oracle
lesseq.

The rooted trees will be given in such a way we have direct access from a vertex
v to the string SV of the subtree T,.

THEOREM 11.2. Let () be a go and P € P, P, NC,NC", NP, DEC, 7 > 1. If
every hereditary property in () is in P then every hereditary property in QQ° is in
P, too.

We split the proof of this theorem over several lemmas. By the definition it
would be easy to formulate a recursive algorithm to calculate 77" < T7"2. We

chose an iterative approach that allows a parallelization afterwards.

ALGORITHM 11.1. embed®dg (17", T5?)

11. TREES 45

Input: 7)°' and 73°* . The vertices of both trees are given in postorder. Accord-
ing to that order they are identified with the numbers 1,... . kand 1,... !
respectively.

Output: 717" T,

if £ =0 then return true

~~
[u—y

for::=1 to k do begin
for j:=1 to! do begin

2 if £ > then return false

3) forj:=1 tol do begin

1 weight; == {0 < i < & | 101 (i) < 105 (7))
5 val; := ()

6 end

7

8

Ne)

if (S{ = Sé) A (i € weight;) then val; :=val; U {i}

[i s T e e N N Y

(10 end
(11 for j:=1 to!l do begin
(12 valj = U val;
s€S]
(13 end
(14 end
(15) return (k € val;)

It is easy to see that this algorithm is correct, since we access the vertices in the
right order.

LEMMA 11.1. If T} is fired embed®®? can be implemented such that it runs in
time O (1) plus the time needed for O (1) queries to the oracle.

PrOOF. All sets val have a cardinality bounded by k. We may assume that we
are given a representation of By, the Boolean Lattice on k points. This represen-
tation can be chosen such that each of the set operations mentioned needs O (1)
time.

The critical calculations to consider are the test for < and the union in line (12).
*

When we access j the necessary information for all s € Sg is already present
at vertex s. To test < build two strings in (Bk) ca = {si}---{s{"} and B =
*
valsé : --valS;nJ, where S; = si,... s7" and S; = sl,... 557, Now clearly a é I¢]
iff ¢ < Sg. So scan®®ip, («, 3) does the job. Since every vertex appears in at most
*

one string 53 the time calls to scan®**p, need in total is O (I).

An analogous argumentation holds for the union in line (12). O

46 ITI. SOME WELL KNOWN QO’S REVISITED

The following lemma is an immediate consequence, so we omit the proof.

LEMMA 11.2. Let Q = (V, <) be a qo such that Prop, for fived v € V is in PT
for > 1. Then PropTlml for every fived T{* € Q° is in P7, too.

Now we are going to parallelize the algorithm embed®®?. We use an approach
similar to the one chosen by Miller and Reif [MRS85], see also Abrahamson et
al. [ADKP89]. It can be seen as a generalization of the so called list ranking.
List ranking is based on the observation that if we have a linked list, such that
each element is connected to its successor and to the successor of the successor,
information may be propagated along this list in logarithmically many steps.

For this algorithm we will assume that we have values parj, giving the parent

; ar? .
vertex of j in T if it exists, and gpar) = pary'", the “grand parent” of j. Set
pary =l and gpary = [if pary = 1.

ALGORITHM 11.2. embedP**((17", T5?)

Input: 7)°' and 73°* . The vertices of both trees are given in postorder. Accord-
ing to that order they are identified with the numbers 1,... . kand 1,... !
respectively.

Output: 717" <1,

if £ =0 then return true
if £ > [then return false
for j:=1 to ! do parallel begin
weight; == {0 < i < & | 101 (i) < 105 (7))
val; := ()
end
for::=1 to k do begin
for j:=1 to! do parallel begin
ok;j = (S{ ; Sé) A (i € weight;)
end
for m := 0 to |log/| do begin
for j :=1 to [do parallel begin
if ok; then begin
0kpar; := true
0kypar, 1= true
end
end
end
if —ok; then return false

S
O ~I O U = W b —

Ne)

e e el e e e s e e e
M N N N N N N N N N’ S RN N T N N N N N

N TN TN TN N N o
O 0~ O U= Who — O

12. SPECIAL CLASSES OF POSETS 47

(20) for j:=1 to ! do parallel begin
(21) if ok; then val; :=val; U {i}
(22) end

(23) end

(24) return true

LEMMA 11.3. embed?®” is correct. Besides the calls to lesseqq it can be im-
plemented in such a way that it has a running time of O (klogl) and needs O (1)
PTOCESSOTS.

PRroOOF. Correctness: We have to show that val always contains the right infor-
mation, i.e., ¢ € val; if the subtree T of Tj rooted at ¢ can be embedded into
the subtree T3 of T, rooted at j. But this is true since if we had jo such that T
embeds “directly” then all its parent nodes have the information after O (log!)
propagation steps (12).

The estimation of the running time and amount of processors needed is straight-
forward and thus omitted. O

Observe that the running time strongly relies on the fact that we are using a
CRCW PRAM. The only write conflict that can occur is that two processors want
to write the same value true into the same place for their common parent resp.
grandparent.

The algorithm given here is not totally optimal since the product of time and
amount of processors needed is O (I - log () and not O (/). This could be improved
by re-scheduling of loop (12). But the technique would be much more complicated
as for the calculation of a minimum, say.

To conclude the proof of Theorem 11.2 we give, without proof,

LEMMA 11.4. Let Q = (V, <) be a qo such that Prop, for fited v € V is in NC”
for > 1. Then PropTlml for every fivred T{* € Q° is in NC", too.

12. Special Classes of Posets

Because of their treelike composition rules some classes of posets that are recur-
sively composed from small ones give a good example for the theory of structured
trees. This approach was first used by Damaschke in [Dam90] for a certain class
of graphs, the cographs.

48 ITI. SOME WELL KNOWN QO’S REVISITED

12.1. Series Parallel Orders and Cographs. We give an application of
Theorem 11.2 to a special class of orders called series parallel orders and to the
associated class of comparability graphs called cographs. See e.g. [M6h89] for ref-
erences for these objects.

DEFINITION 12.1. A finite order is a series parallel order if

(1) it is the order on 1 point,

2) it is obtained from series parallel orders by a series composition
p Yy p)

3) it is obtained from series parallel orders by a parallel composition.
p Yy ap p

With O we denote the set of finite series parallel orders equipped with <.

ind

This recursive definition lets us easily define associated structured trees to se-
ries parallel orders:

DEFINITION 12.2. Let P be series parallel order. The cotree T = (V, r, S, m)
of P is either the tree on one node that is labeled [iff P is the order on 1 point,
orif P=F, [{Pl}lk] then

(1) S = (Tl, o ,Tk) and T are the cotrees of the P,
(2) m(v) =w,;(v) forv e P,

(r)=sif Ph = Cy and

(r) =pif Py = Ay.

So a cotree is a rooted tree weighted over the trivial order ;.4 = ({l, s, pt, @)
where [, s and p stand for “leaf”, “series” and “parallel” respectively. As we defined
it here the cotree of a series parallel order is not unique.

The following is an easy observation, see e.g. [M6h89]:

LEMMA 12.1. Let P = (V, <) be a series parallel order and T™ = (V, T, S,m) a
corresponding cotree. Then v < w iff v (LCAy (v,w)) = s and the subtree of v is
left of the subtree of w.

An easy corollary out of that is

COROLLARY 12.1. Let Py = (Vi,<1) and Py = (Va, <3) be series parallel orders
and T = (Vi,ri,&,mi) the corresponding cotrees such that T\°* < T2, Then
P =P, ’

ind

The following is then a slight extension of a result of Damaschke, [Dam90]

THEOREM 12.1. O is a wqo and every hereditary property E in O, has a
test that runs in O (n) sequential time or O (logn) on O (n) processors provided
the cotree of the input is given.

12. SPECIAL CLASSES OF POSETS 49

Indeed Damaschke has proven an analogous result for cographs that are the
comparability graphs of series parallel orders.

PROOF. The wqo-property is an immediate consequence of Kruskal’s Tree The-
orem together with Corollary 12.1.

For the running time observe that the set of vertices of an induced suborder 5
of a series parallel order P induces a “subtree” Ty of the cotree T for P that is a
cotree for F.

But every obstruction Fy for F admits only a finite number of cotrees. So to test
our property we have to test all trees for all obstructions, in total a finite number
of trees, the number only depending on E. not on the input.

So Theorem 11.2 proves the claim. 0
A cotree can be found in O (n+ m) sequential time, see [CPS85], resp. in
O (logn) on O (%) processors, see [LO92], where n is the number of points

and m is the number of m related pairs. So we need these running times if we have
to construct the cotree.

12.2. Bounded Decomposition Diameter. We extend what we said about
P to other classes of orders. Therefore let in the following S = (Ql, . ,Qk)

be a finite set of finite orders that is assumed to be fixed in the sequel, and let

Qi = (X, <;) for every i.

DEFINITION 12.3. O7F , is the set of orders given by the following recursive def-
inition equipped with <:
ind

(1) The order on one point is in OF ..

(2) For all 7 and x € X, if P, € OF , then Q; [{Px}xeXi] €07,

This classes of orders have been introduced by Habib and Mohring, [HMS87],
where a slightly different definition is given.

The value max; {|XZ|} is called the decomposition diameter of the class O3 ;.

If S ={A;, Cy} we again obtain the class of series parallel orders.

We define a generalized cotree in an analogous way we defined the cotree for
series parallel orders. For that purpose we assume that the elements © € X; of the
orders (); € S are given in a fixed ordering z}, z7,.... Then we obtain a structured
tree for each P € 9%, with weights chosen form S U {l/}. Again we easily obtain
the following lemma:

LEMMA 12.2. Let P = (V,<) € O ,, T™ = (V, r,s,m) a corresponding cotree,
v,w €V with w (LCA (v,w)) = Qo = (Xo, <o) and x,, x,, € X such that v resp.
w is the subtree of x, resp. x,,. Then v < w iff v, <g Tw.

50 ITI. SOME WELL KNOWN QO’S REVISITED

Again an easy corollary out of that is

COROLLARY 12.2. Let P, = (Vi,<y) and Py = (Va,<3) be in OF , and T =
(W, rey S, mi) the corresponding cotrees such that T, é T2, Then Py jd P,

This is so since only such pairs of nodes of the cotrees are mapped for which
the corresponding elements of S are identical. In particular all such pairs of nodes
have the same degree.

Now we obtain an analogous theorem as before, but for much wider classes of
orders.

THEOREM 12.2. 973 . is a wqo and every hereditary property E in O, has a
test that runs in O (n) sequential time or O (logn) on O (n) processors provided
the cotree of the input is given.

PROOF. With what is said above and Kruskal’s Theorem 97 , clearly is a wqo.
We have to show that it admits linear time algorithms for the properties Propp,,
Py any fixed order in 97 ,.

We cannot argue the same way as we did for Theorem 12.1 since we have no
equivalence in Corollary 12.2. There are to ways to circumvent this problem. Either
we may modify our relation on the cotrees to get equivalence or we may give an
alternative algorithm that computes Propp,. We chose the later one.

For that let Py, € OF , be arbitrary but fixed and P;,..., P, be an arbitrary
enumeration of the induced suborders of Fy. Denote the set {F; | 1 =0,... ,k}U
{(0,0)} with R and the set of subsets of R with 2%.

For every @ = (V,<) € S with V = {vy,... v} and every p = (r1,... ,10) €
(21)* we calculate the following set in advance

(12.1)
Indu(Q,p) = {P € R | ds; €r;st. Pisinduced suborder of @ [{Si}i:17..%]}

that is the set of all suborders of P, that can be constructed from @) by substi-
tuting the vertices of () with orders chosen from particular sets of orders r;.

All these sets can be calculated in advance in constant time since S and Fy, and
thus R, are fixed.

But with this information at hand it is easy to modify embed such that for
every cotree T™ of an order P € 97 , that is given as input the whole set

{P" | P € R, P"is induced suborder of P} is computed from the corresponding
sets that are calculated for the children of the root of T™. |

CHAPTER 1V

Special Order Relations for Combinatorial Structures

13. Formal Languages

We introduce now a qo relation on formal languages. We will then apply the
machinery of Chapter II, i.e., we will show a wqo-theorem and give algorithms for
hereditary properties.

The main motivation fo us to study these objects is that in Section 14 we will
reduce the problem of posets being related by the so called chain minor relation
to a similar problem on languages.

13.1. The String Minor Relation for Formal Languages. For o = aq - - ay
and 3 =by---b wesay 3 2 o if there is a mapping 7: {1,...,1} — {1,...,k}
which is strictly monotonous and such that ary---a-q) = b1+ b or equivalently
if @ and are related by < and if their alphabet forms an antichain.

*

For two formal languages L', . C A* we say that L' 2 L if there is some o € L
with 3 2 a for all g € L.

Observe that for two languages L’ and L to be related by = it is necessary that
dom (L") C dom (). This restriction is relaxed in the following.

A labeling p from A to B is a mapping p: A — B<! or equivalently a partial
mapping from A to B. For all a € A with p(a) = 0 we will say that p is undeclared
for a. p is the trivial labeling if it is undeclared for all « € A.

For a labeling p from A to B and @ = @y ---a, € A* p(«) is the concatenation
play)---plag) of strings in B*.

For alanguage L C A*set p(L) = U p(a). Wesay L' =< L if there is a labeling

o€l

lang

p such that L' 2 p(L). p is then called a string morphism.

13.2. Well Quasi Ordering Finite Languages. One of our applications for
our relation on languages we have in mind are the sets of maximal chains of posets.

51

52 IV. SPECIAL ORDER RELATIONS

There we will see each maximal chain as string of its elements — the elements
appearing in the string in the same order they appear in the chain.

To show a suitable wqo-theorem on languages we do not allow symbols to appear
several times in a particular string. This fits well to our application on posets. So
we will consider languages L that fulfill:

DEFINITION 13.1. A language L such that length (o) = |dom ()| for all & € L
is called non-repetitive or simple.

We then are able to show

THEOREM 13.1. Every set of finite non-repetitive languages ordered by = is a
lan,

wqo. !

The proof of this theorem depends strongly on Definition 13.1. We think that
it should hold in the general case, too, but a proof probably will need some new
ideas.

We will be able to prove two other theorems for two other restricted classes of
languages. The hardest to prove will be

THEOREM 13.2. Every set of finite languages S such that there is a constant lg
with length (L) < ls for all L € S is a wqo with respect to < .
lang

With the following lemma Theorem 13.1 will be an immediate consequence of

Theorem 13.2.

LEMMA 13.1. Every infinite sequence (L;) of finite non-repetitive languages such
that length (L;) is unbounded is good.

ProoOF. We show in particular that there is some j such that Ly =< L; . Set
lang

[= size(Ly) . Construct a string (with repetition of elements) 3 € dom (L1) by
concatenating all & € Ly in an arbitrary order. We know that length (3) = [. Let
B=bi-b.

Since length (L;) is unbounded there is j such that length (L;) > [and thus
there is 3’ =0, --- b € L; with m = |dom (8’)| = length (8") > [.

Now define a labeling p from dom (L;) to dom (L;) by

b, iff oy =¥ forl <:i<I
13.1 y=<" ¢ - =
() pl) {@ otherwise .
It is clear that p has all properties desired. O

The reader may verify that Definition 13.1 is not needed in its full strength for
that proof. It would be sufficient to assume that |dom (L;)| is increasing.

13. FORMAL LANGUAGES 53

PrOOF OF THEOREM 13.1. Let S be a set of non-repetitive languages and let
(Li) . be an arbitrary sequence of elements of 5. If (length (L;)) - 1s unbounded

apply Lemma 13.1. Tf it is bounded apply Theorem 13.2. O

Much easier than the one for Theorem 13.2 will be the proof of the following the-
orem that gives the wqo-property for the relation 2 if we consider only languages
over a fixed finite alphabet. Remember that this relation is much more restrictive

than = . The proof is easier since we may apply the machinery of section 9.
lang

THEOREM 13.3. Let A be finite. Then every set of finite formal languages S C
A* is a wqo with resp. to 2.

ProOOF. We proceed analogously to the theorems of Higman and Kruskal.
Again it is easy to see that we have a well founded relation. Suppose now that
our assumption is false. Then there would be a minimal infinite antichain 2l of

languages with respect to <.
antt

For every L € A let o, € L be an arbitrary string L' = L\ {ar} and A’ =
{L" | L € A}. Because of Theorem 9.2 2" is a wqo.

Let (LZ) be an infinite sequence such that L = L), 2 ... is perfect. Then

1€EwW

Higman’s Theorem shows that (o) is good so there are ¢ < j with a; < «;.
*

1EW

But then L; = L;, a contradiction. 0

Observe that the statement of this theorem would not hold for infinite for-
mal languages since the relation = then is not well founded.

13.3. Bounded Length. First we will consider the special case that all strings
in all languages have the same length. For that purpose we will need some further
technical definitions to characterize common behavior of strings. In particular we
want to classify strings which have certain positions identical and certain others
not.

A type over A will denote a string over A with several positions undefined
or blanc i.e. Type(A) = (A U {u})* Here ')’ is an additional symbol not in A.
up = u- -y for k>0 are the trivial types.

——

k
It is clear that A* C Type (A).

We extend the set operations “N”, “\” and “C” to types of strings of same
length in a natural way. For « = ay---agp, # = by---bp weset aNG =¢p---¢

54 IV. SPECIAL ORDER RELATIONS

where

(13.2) . = {ai iff a; = b;

, otherwise.

Wesay a C fifanp=a lf a C fthen g\ a=c; ¢ where

(13.3) ¢ = {” if a; #

b; otherwise.

These operations have all properties we would expect — N commutes and C is
transitive and reflexive. So Type (A) forms a qo with resp. to C.

In that qo we have initial and final segments as usual. For X, Y, T C Type (A)
we may define 7%, T' between X and Y, by

(13.4) TY =TxNT X ={reT |IreX,yecY 2CrCy}.

« and f are 7-independent if a N 3 C 7.
A language L is 7-independent if all pairs o # 3 are so. For a language L we
denote by ind (7, L) the maximum cardinality of a 7-independent subset

(13.5) ind (7, L) = maX{|L'| | L'C L, L T—independent}

Looking at sequences of languages the following definition handles a situation
which is ideal for our purposes — there is an isomorphic “sublanguage” in every
language in the sequence s.t. the amount of “other” strings gets arbitrary large.

DEFINITION 13.2. For a sequence Lj, Ly... of languages a bottleneck is a
sequence Ty, Ty... with T; C Type(dom (L;)) and which fulfills the following
properties:

(1) For all i € IN and « € L; there is 7, € T; with 7, C .

(2) There is Ty s.t. T; is isomorphic to Ty for all ¢ € IN .

(3) For all 7 € Ty either 7 € L; for all © € IN or the sequence ind (7, L;) is

unbounded and monotonous.

We will always assume that ¢, as required in 1 is maximal with respect to C
having that property. For a simple example of a bottleneck see fig. 13.1. Here Ty
is indicated by the two boxes in every L;. Every string “passes” this boxes.

THEOREM 13.4. For every sequence (LZ) of finite languages with bounded length
there is a choice p of a subsequence (Lp(i)) that has a bottleneck.

13. FORMAL LANGUAGES 99

Ll L2 L,?) LZ
FIGURE 13.1. An Example of a bottleneck

To show this theorem we will present “algorithms” where the word algorithm is
extended in a certain sense. We will consider choices of subsequences as one step.
We do this in order to have a comfortable mechanism for recursive choices.

First we consider an algorithm freeze which fulfills the following specifications.

ALGORITHM 13.1. freeze ((Lz) , (TZ)) P, To)

Input: sequences (LZ) and (Ti), T, C Type(L;) s. t. |T;| and |dom (T;)| are
globally bounded.
Output: Choice p of subsequence (Lp(i)) and Tp s.t. all T,;) are isomorphic to 7.

It is clear that such a choice is possible, since there are only finitely many
isomorphism types for the T; .

The second algorithm freeze& thaw contains the core of our argument. It con-
sists of three phases:

e Steps (1) to (5) (“Bottom”) are executed at the lowest recursion level. They
handle two easy cases. One is that |L;| is bounded, the other is that L; is
itself its own bottleneck.

e Steps (9) to (11) (“Init”) initialize on higher recursion levels.

e The loop starting at (13) (“Recursion”) generates the recursive calls. For
each possible type of string one such call is executed. Observe that for those
calls we have 7 C 7. Hence the deepest recursion level is bounded by the
maximal length.

56 IV. SPECIAL ORDER RELATIONS
ALGORITHM 13.2. freeze& thaw (7'0, (LZ)) P, (TZ))

Input: Sequence (LZ) of languages, type 79 s.t. 70 C a for all € IN and « € L;.

Output: Choice p of subsequence (Lp(i)) with bottleneck T,
Bottom:

(1
2

if |L;| is bounded then begin
freeze ((Lz) , (LZ)) P, Lo)

return p and L,
end

)
(2)
(3)
(4)
(5) ifind (7, L;) is unbounded then begin
)
)
)

(6 chose p s.t. ind (7’0, Lp(i)) is monotonous
(7 return p and (7).
(8 end
Init
(9) Let L} C L; be maximum 7p-independent
(10) freeze ((Lz) \ (L;) s Py Lo) :
(11) foralli e INdo T;:=1
(12) S :=Type(dom (Lo))
Recursion:
(13) for all 7 € S0 with 7 # 7 do begin

for all i do L := (L)

)
(14)
(15) freeze& thaw (T, (L;(i)) R (Tp/(i)))
(16) pi=pop;Ti:=TUT!
(17) freeze ((Lp(i)) , (Tp(i)) P Lé)

(18) p=pop
(19) end ;
(20) return p and (TZ)

We give some explanations of this algorithm. Suppose we run our algorithm
with 79 = L. If ind (g, .) is unbounded we will find a large language with many
independent strings of length = k. This language then can be used to cover a small
language Lo with length (Lg) < k. See figure 13.2 for an example.

If ¢nd is bounded (see fig. 13.3) the groundset of a maximum independent set
of strings is bounded and one application of freeze& thaw without the recursive
calls gives a subsequence where all these sublanguages are isomorphic. But if we
look carefully at the rest of the languages there may be parts for which we do not
have full control of what happens (indicated by “?”). For those parts we have to

13. FORMAL LANGUAGES 57

)< |
N

m

FIGURE 13.2. Many independent strings

apply freeze& thaw recursively. This leeds only to a finite recursion depth since
the parts for which we apply recursion are “essentially” shorter.

A more detailed explanation and a proof of correctness of this algorithm is
given in the discussion of the following two lemmas. Theorem 13.4 will then be an
immediate consequence.

LEMMA 13.2. Guwen as input a sequence of languages as required, freeze & thaw
results in finitely many choices of subsequences and thus has a well defined output.

PROOF. Let the input 79 = ¢;---¢; and k£ = |{z | t; = L}|, the number of unde-
fined positions in 79. We proceed by induction on k.

For k = 0 or k = 1 the statement is obvious. Let us suppose we have shown it
for all &' < k.

If freeze&thaw returns before step (9) we are done. If not, we know that
|dom (L)] and |L}| are globally bounded, so step (10). runs correctly.

But now |dom (Lg)| is finite, too. So there are only finitely many 7 for which
the loop (13) is executed.

All these 7 are nontrivial and fulfill 7y C 7. The number of undefined positions
in 7 is strictly less than k& and we may apply induction on each call in (15).

This proves the statement. 0

LEMMA 13.3. Guwen as input a sequence of languages as required, the output of
freeze & thaw is a bottleneck.

58 IV. SPECIAL ORDER RELATIONS

LA/ .

7 |

FIGURE 13.3. Subsequence with isomorphic restrictions

PROOF. To show the bottleneck properties we have to assign a 7, to all @ € L.
If freeze&thaw stops before step (9) our choice is unique. Otherwise if there is
7 € T,y s.t. a = 7 we choose this 7.

If there is no such 7 we choose 7, € T),(;) that is maximal with resp. to “C” .

Such a 7, always exists, since L. was chosen to be maximum rp-independent.
So there must be g € L! with a N 3 D 79 . Such a 79 has the appropriate length,
since all elements of our languages have the same length. That shows property 1.

Property 2. follows from the last execution of step (17).

Property 3 holds since 7 is only put into 7T} via step (3) or (5) on the deepest
recursion level. If it is put in by step (3) it was unique, and in step (5) ind (T, Lp(i))
is unbounded. O

Now we give an algorithm bottleneck that gives a bottleneck in the case that
there are strings of different length and that this value is globally bounded by a
constant, (g say.

ALGORITHM 13.3. bottleneck, ((Lz)) P (Tz))

Input: Sequence (LZ) of languages such that length (L;) < {; for all ¢ € IN.
Output: Choice p of subsequence (Lp(i)) with bottleneck T,

(1) p:=1ud
(2) forall:eINdoT;:=10
(3) forl{:=1 to/{, do begin
(4) for alli € IN do L! := {a € L; | length () = (}
¢ ¢
EZ; freez/e& thaw (ug7 Ly 0, Tp(i))
p=pop

13. FORMAL LANGUAGES 59

(7) for alli € INdo T, := T, U T/
(8) end ;
(9) freeze ((Lp(z)) , (Tp(z)) 7/)/, TO)
(10) p=p'op
(11) return p and (TZ)

LEMMA 13.4. Guwen as input a sequence of languages as required, the output of
bottleneck is a bottleneck.

PROOF. Clearly every call of freeze& thaw guaranties that for every a € L,

thereis 7in T); with 7 C a. Since ‘Tp(i)‘ is globally bounded freeze runs correctly
and so Ty has property 2 in Definition 13.2.

For property 3 observe that for 7 € Ty with length (7) = [and such that
ind (T, Llp(i)) is unbounded, ind (T, Lp(i)) is unbounded, too. O

13.4. Finding Related Languages.

LEMMA 13.5. FEvery sequence (LZ) of finite languages such that length (L;) is
bounded is good.

PRrROOF. After application of bottleneck with input (LZ) we may assume w.l.o.g.
that it has a bottleneck T;. We have to show that there is 7 s.t. Ly < L.

Choose j s.t. ind (7, L;) > size(Ly) for all 7 € Ty with 7 & L. Such a j exists
because of property 3 of the bottleneck.

We now have to find a partial mapping p from dom (L;) to dom (L4).

For all v € dom (Tp) we set p(v) = v.

For all 7 € Ty and all « € Ly with 7, = 7 we choose inductively 8 € L; with
7 C 3 and such that p is still undeclared for all v € dom (5 \ 7) Ndom (L;). Then
we extend p s.t. p(f) = a.

This choice can always be done since all § in question have the same length as
a and 7, and since ind (7, L;) is sufficiently large:

If £ the number of undefined positions in 7 and V; = dom ({#\ 7 | § € L;}) we
have that |V;| = k- ind (7, ;). By construction p cannot use more than size (L)
elements of dom (). So there is always some (3 left over that we can use.

But now p is a partial mapping from dom (L;) to dom (Ly) s.t for every o € L4
there is 3 € L; with p(8) = a and thus Ly < L;. O

60 IV. SPECIAL ORDER RELATIONS

13.5. Finding a Fixed Language as String Minor. We will show the fol-
lowing theorem:

THEOREM 13.5. Every property of finite non-repetitive languages which is he-
reditary with resp. to = has a decision algorithm which runs in polynomial time.

With Theorems 6.1 and 13.1 it will follow immediately from
LEMMA 13.6. Let Ly and Ly be finite languages and k = size(L1) > 3. Then

there is a constant ¢ depending only on Ly and an algorithm to decide whether or
not Ly = Ly holds that runs in

o ¢ - size(Ly) - |dom (L2)|k + ¢ sequential time

e constant time with O { size(Ly) - |dom (L2)|k) Processors.

To prove this lemma we show that there is always a “small” language Ly that

is between L; and Lq if L1 < L,, and that fulfills Ly 2 L.

lang

LEMMA 13.7. Let Ly < Ly be finite formal languages and k = size(Ly) > 3.
Then there is a language Lo which fulfills:

(1) Ly = Lo
(2) Lo 2 Ly
(3) Lol <k
(4) dom(Lo) < k
(5) size(Lo) < k2.
PROOF. Let p be a string morphism which gives L; < Ly and let al,... af be
lang
the elements of L; . There are strings ad,... a5 in L, such that af 2 p(a}). Set

Ly = {ozé} and py = p ‘Lo . Lo and pg obviously have all properties desired. O

PrOOF OF LEMMA 13.6. First we give an algorithm and then we shortly de-
scribe what is does.

ALGORITHM 13.4. Testy,

Input: Language L.

Output: true if L1 < L,, false otherwise.
lang

Prepro:
(1) Find all possible Ly according to points 1, 3, and 4 and 5 of Lemma 13.7.
Denote the corresponding set of languages with S.

(2) ok :=false

13. FORMAL LANGUAGES 61

for all Ly 2 L, with 4 do parallel begin
for all Ky € S do parallel begin
lang-ok:= true
for all « € Ky do parallel begin
string-ok:= false
for all 3 € Ly, do parallel begin
if scanP®"4, (o,) then string-ok:= true
end
if = string-ok then lang-ok:= false
end
if lang-ok then ok:= true
end
end
return ok

N e N N e e e N e e e e e e e e

L1 =< Ly holds iff there is Lg as specified in Lemma 13.7. There are only finitely
many isomorphism types of such languages, so there are also finitely many with
chosen permutation of the elements. For each such Lo we test whether or not
Ll j LO holds.

This preprocessing, Prepro, depends only on 14 .

Then we have to test all ('dorf;g(L2)|) =0 <|dom (L2)|k) induced sublanguages

of Ly with at most k& symbols. Given a subset of dom (Lz) of that size we may
calculate the induced sublanguage Lo of Ly in time O (size (L2)). We may also
assume that we rename the symbols in dom (L) to 1,... ,|domLg|. Now we test
for each language Ky in S if Ky 2 Lg. This can be done in time O (|K0| - size (Lo)).
In total we obtain a running time of

d L
(13.6) O (|S| Ko - (' Omk(2)|) : size(Lo)) < ¢ - [dom (Ls)|" - size (L)
All this can be done efficiently in parallel. 0

Lemma 13.6 also indicates that the complexity strongly depends on the size of
the underlying alphabet — the size of the language L itself only contributes a
linear term.

Finally all this gives us

THEOREM 13.6. Every property of finite languages over a fized finite alphabet
which is hereditary with resp. to =< has a decision algorithm which runs in linear
time.

62 IV. SPECIAL ORDER RELATIONS

14. Posets
Now we turn to finite posets as objects of an ordered structure.

14.1. The Chain Minor Relation. Let P = (V,<) and P’ = (V',<’) be
posets. We say P is chain minor of P, P < P’ if there is a partial mapping
p: V' — V that has the following property:

For every chain C in P there is a chain C" in P' such that p ‘C, is
an isomorphism of chains.
(" is then called a lift of C' and p is called a chain morphism.
Here p ‘C, denotes the partial mapping induced on P’ the order restricted

to the groundset of C".
Observe that every chain morphism is onto and that < defines a qo on any set

cro

of posets.
Figure 14.1 gives a non-trivial example for this relation.
6 7 8 9 6 7 8 9
5t 52 57 54 5
1 2 3 4 1 2 3 4
P’ P

FIGURE 14.1. A Chain Minor that is No Suborder

Observe that in this example P is not a suborder of P’, and that there is no
other poset P” between them. So P’ covers P with respect to <. So in general we
can not have nice descending chains with small intermediate steps from the larger
posets to the smaller ones as we had for graph minors for example.

14.2. Motivation from Scheduling. The chain minor relation has been in-
troduced by Mohring and Miiller in [MM92], where it is used to generalize certain
approaches in the theory of scheduling stochastic project networks.

We will restrict ourselves to precedence constrain scheduling problems, i.e., for
us such a problem is given by a poset P = (V, <) where V is a set of jobs and
v < w means v must be scheduled before w. A schedule of P is then an assignment
of time intervals [ZU, rw] to the jobs that is consistent with < or, equivalently, an
interval extension) of P. In addition to P side constraints — such as processing

14. POSETS 63

times, due dates, resource requirements for individual jobs or groups of jobs —
might be given, but we will not go into the details of such specialized problems.
See e.g. [MR89] for an overview.

Usually there are several distinct parameters of a certain schedule that are
considered. We will restrict ourselves to the maximum completion time and the
number of processors or machines. The maximum completion time is the largest
interval endpoint needed (provided all are integers and the smallest one is 0);
the number of machines can be defined as the width of the corresponding
interval order.

Our relation is useful for scheduling problems because, loosely spoken, the chains
are those objects that cause restrictions for the jobs to be scheduled: the processing
times of a chain leading to a certain job sum up to a lower bound for the beginning
of that job.

THEOREM 14.1. Let P be an arbitrary poset and () be an interval order. If P is
a chain minor of) then it is suborder, too.

COROLLARY 14.1. Let P < P" and Q) be a schedule of P'. Then Q) is a schedule
of P, too.

PrOOF. We have P < P < () and so P < @) by transitivity of <. But then
Theorem 14.1 immediately gives the claim. O

To prove Theorem 14.1 we need a lemma.

LEMMA 14.1. Let py be a chain morphism from an interval order () to a poset
P =(V,<), and let vo € V be minimal with ‘pgl(vo)‘ > 1. Then py can be modified
to a chain morphism p such that p~*(v) C py'(v) for all v € V and such that

‘PEI(UO)‘ =1L

PrOOF. Let () be given by an interval representation [lw, rw] for all w € W. We
give an algorithm to modify pg.

ALGORITHM 14.1.

(1) choose wy € py'(vo) s.t. 1y, is minimal.

(2) p~H(vo) := {wo}

(3) forallveV\{v} dobegin

(4) if v >-v; then begin

(5) for all w € py'(v) do begin

(6) i1, <., then oy (v) = pi' (1) {w)
(7) end

64 IV. SPECIAL ORDER RELATIONS

(8) end
(9) P () == pg' (v)
(10) end

We have to show that for each maximal chain €' in P there is still some chain C’
in () that is a lift of C' with respect to p. Let C” denote the lift of C' with respect
to po. If none of the vertices in C” is touched by our algorithm there is nothing to
show.

C" is only involved if it either contains w € py'(vg) with

(1) 7y > 1y, or
(2) Ly, < 1y, for w € pyt(v) with vo—< v.

For 1 we simply replace w by wg in C” to obtain a new chain C” since r,,, <[,

for all w; € pg'(v1) with v < vo.

C, !

"
¢y

Vo,

Ch

cr
Ch Cy

FIGURE 14.2. Pasting Chains

For 2 we have (', Cy, C7, and CJ such that C' = C1vCy and C”" = CYwCY, see
figure 14.2.

Now let ('3 be a chain in P such that C3v9vCy is maximal. Such a chain always
exist, since v covers vg. This chain has a lift Ciw)w'CY such that w), € py!(vo) and
w' € py'(v). Now w’ fulfills 7, < I, and so it is not eliminated in this iteration.

But then C7w'CY is still a valid lift for C'. O

Now we give an algorithm to solve the problem as a whole.

14. POSETS 65

ALGORITHM 14.2.
Input: Poset P = (V, <), interval order @ = (W, <) with given interval repre-
sentation [lw,rw] for w € W, and p~'(v) C W for all v € V that defines a
chain morphism p from @) to P.
Output: Embedding ¢ of P into Q).
(1) for all vy € V in a linear extension of P do begin
) choose wqy € p~*(vp) s.t. 7y, is minimal.
) p~'(vo) == {wo}
) for all v € V s.t. v >y do begin
) for all w € p~'(v) do begin
) if 1, <r,, then p~'(v):=p~'(v)\ {w}
) end
) end
) end
)

(2
(3
(4
(5
(6
(7
(8
(9
10 forallv e V do ¢(v) :=p~*(v)

(

The result of this algorithm when it is applied to the example of Figure 14.1 is
shown in Figure 14.3. Here the boxes symbolize time slots for the jobs.

9 9

6 7 8 6 7 8

5t | 5? 3

52 | 5% | 4 4

1 2 3 1 2 3
P’ P

FIGURE 14.3. Two Schedules

The proot of Theorem 14.1 is now an immediate consequence of the following
lemma.

66 IV. SPECIAL ORDER RELATIONS

LEMMA 14.2. Algorithm 14.2 is correct. Provided the transitive reduction of P is
given it can be implemented such that it has a running time O (m + n + p) where n
is the number of covering relations in P, m =3, cy ‘pal(v)‘ and p is the maximal
difference between two endpoints of intervals for Q).

PRrROOF. For the correctness observe that with Lemma 14.1 at the end of our
algorithm p is a chain morphism with [p™'(v)| = 1 for all v € V. So ¢ is well-
defined and an embedding.

To obtain the running time we have to process the information needed efficiently.
For every v € V we assume that we have the values r,, for w € p~!(v) in doubly
linked list that is sorted. Thus we may assume that we always have random access
to the smallest among them to make the choice in (2).

In addition we assume that we have the corresponding values [,, in a sorted array.
Now we can implement loop (5) by incrementally looking at the minimal element
in this array until we find one that is > r,,. So we access all w with [, < r,, in
constant time per each and can update the list of r,-values accordingly in constant
time per update. Since every w is involved at most once in such an update the
total time needed for all updates is O (m).

To initialize these lists resp. arrays we have to sort all values [,, and r,,. This
can be done in time O (m + p) with e.g. bucketsort. O

With Theorem 14.1 we will be able to determine the complexity status for the
following problem:
PROBLEM 14.1. CHAIN MINORS
Instance: posets P and @)

Question: Is P a chain minor of ()7

We achieve the following proposition:

ProrosiTION 14.1. CHAIN MINORS is NP-hard.

PrOOF. We give a reduction from the following problem, see problem no. SS9 in
[GJT79].

PROBLEM 14.2. PRECEDENCE CONSTRAINED SCHEDULING

Instance: Poset P = (V, <) and values m and /.
Question: Is there a scheduling for P in time [on m machines such that
all task v € V are performed in 1 time unit?

14. POSETS 67

This problem has been shown to be NP-complete by Ullman in [UII75].

We may assume that for this problem m and [are less than n = |V] since
otherwise the problem is easy to solve. So we may construct the weak order () =
C, [{Am}1<i<l] in time O (n?). P has a [-m-schedule iff P < Q.

But now if we are able to decide P < (), Theorem 14.1 shows that P < @),

sub

too. O

Finally we remark that it is not clear whether or not a given partial mapping is
a chain morphism can be tested in polynomial time. That is because the definition
makes a statement about potentially exponentially many objects — the (maximal)
chains of P. So it is not even clear if the decision problem for P < () is in NP.

But it is in NP if we restrict ourselves to the class of orders with height not
exceeding 3. This is so because then the amount of maximal chains is rough-
ly bounded by |P|3. Since PRECEDENCE CONSTRAINED SCHEDULING has been
shown by Lenstra and Rinnooy Kan, see [LR78], to be NP-complete if the input [
is restricted to [< 3 (and thus P having height at most 3) we obtain the following
corollary:

COROLLARY 14.2. CHAIN MINORS is NP-complete if the inputs P and () are
restricted to have height at most 3.

14.3. Well Quasi Ordering Finite Posets. Our first aim is the following
theorem.

THEOREM 14.2. Any set of finite posets is a wqo with respect to < .

PROOF. For a poset P every chain defines a string in V* in a natural way. Let
Lmaz(P) be the language given by the maximal chains of P.
It is clear that

(14.1) Lpaw(P) 2 Lipou(P) = P 2 P,
and that L., (P) is non-repetitive. So Theorem 13.1 proves the claim. O
14.4. Algorithms for Posets.
THEOREM 14.3. Every property of finite posets which is hereditary with resp. to

= has a decision algorithm which runs

— in sequential polynomial time
— in constant time on a CRCW PRAM and uses polynomially many proces-
sors.

68 IV. SPECIAL ORDER RELATIONS

In contrast to the argumentation above we can not use L,,,, to prove Theo-
rem 14.3 since it may be exponentially large compared with the poset. But we can
use similar arguments as we used for formal languages.

LEMMA 14.3. Let Py < P, be posets. Then there is a poset Py which fulfills:

(1) A= Py
(2) Py is induced suborder of Py
(3) |FPo| < size(Limar(P1))

PROOF. Let p be a chain morphism which gives P, < P, and let CL,... CF be

the maximal chains of P, . There are chains Cl,... ,CF in P, such that p is

2
an isomorphism of chains for all 7. Set Vo = U CL, Py = P, ‘Vo and py = p \Vo . Fy
and py obviously have all properties desired. O

LEMMA 14.4. Let Py and Py be finite posets and k = size (Lpaz(P1)) > 3. Then
there is a constant | depending only on Py and an algorithm to decide whether or
not P, < P, holds that runs

— in O (k2 : |P2|k + l) sequential time
— 4n O (k* +1) time on a CRCW PRAM with O (|P2|k) Processors.

PrOOF. First we give an algorithm and then we shortly describe what it does.

ALGORITHM 14.3. Test p,
Input: Poset Ps.

Output: true if P, < P,, false otherwise.
Prepro:

(1) Find all possible Py according to Lemma 14.3.
(2) Encode them as 0-1-strings.
(3) Store them in a binary tree 7.

Init: Calculate the matrix of the transitive closure of Ps.

(4) ok .= false

Find:
(5) for all Vi, C V5 with |Vo| < k do parallel begin
(6) Pyi= P,
(7) if Py € T' then ok := true
(8) end
(9) return ok

14. POSETS 69

P, < P, holds iff there is Fy as specified in Lemma 14.3. There are only finitely
many isomorphism types of such posets, so there are also finitely many with chosen
permutation of the elements. For each such F, we test whether or not P < F,
holds.

We encode each of these posets as matrix of relations — put a 1 at place (7,) if
x; < x; holds. Each matrix can then be seen as string of 0’s and 1’s with length
k2.

The set of all these strings can be handled efficiently with a binary tree of height
k%, such that each string is represented by a path from the root to a leaf.

This preprocessing, Prepro, depends only on P; .

Then, in an initialization phase, Init, we calculate the matrix for P,. This can

be done in time O (|P2|2), but since we may assume k > 2 this makes no problem.

Then we have to test all ('i"') =0 (|P2|k) induced suborders of P, with at most

k elements. Given a subset of P, of that size we may calculate its matrix in O (k?)
time and then scan the binary tree given above if it is valid or not.

Thus each such suborder can be determined in O (k?) time.

All this can be done efficiently in parallel, the only exception is the initialization

phase. To do this in constant time we need O |P2|3) processors. O

Notice that if we assume a CREW instead of a CRCW PRAM the only thing

which makes difficulties is the communication of results. To know if any of the
posets is of a valid type we need O (log |P2|k) =0 (log |P2|) time.

PrROOF OF THEOREM 14.3. Let FE be a property of finite posets which is he-
reditary with resp. to < . By Theorem 14.2 we know that the set of minimal
obstructions for ¥ is finite, { Py, ..., P} say.

Set kpmar = max {size (Lma:(F)),3} . With Lemma 14.4 we know that the test
for

(14.2) (A=xP)v--v(P=2P)

can be done in O (|P|km”) time resp. in constant time with O (|P|km”) proces-
SOTS.]

Index

w, cf. clique size, 21, 27, 27, 31-34

w, cf. natural numbers, 11, 12-14, 40, 44, 53
X, ¢f. chromatic number, 27, 27, 27, 32, 33
«, cf. stability number, 27, 27, 27, 33, 34
u, o4, 54, 56, 58

—, 9, 63-65

2, 51-52, 52, 54, 60, 61

=~ 8-10, 14, 15, 18

<, 43

post
<, 36, 36, 38, 53
anti

<’ 19,1921
2" 10, 25, 26, 33, 48 50
ind

% 52 51-62

lang

<,'39, 39, 40, 4346, 52, 53
< 10, 12, 67

" 43, 43, 44-46, 48, 50
2,1, 11, 59-62, 62, 63, 6769

Ay, ¢f. antichain
ace, 25, 25, 26, 27, 29
access time, 25
adjacency matrix, 25
algorithm, 4
alphabet, 4
ancestor
least common, 43
antichain, 2, 8, 8, 10, 11, 13-15, 18, 19, 35—
39, 44, 51, 53
maximal, 8
average, 23, 23, 24, 29, 30, 32
Axiom of Choice, 13, 12-14, 18, 54-57

B, 10, 10, 46

basis, 9

between, 54

blanc, 53

Boolean Lattice, ¢f. B, 10
bottleneck, 54, 53-59
bottleneck, 58, 53-59

Ch, cf. chain

70

chain, 8, 8, 10-13, 52, 62, 63, 67, 68
descending, 2, 10, 10-11, 14, 17, 38, 39,
43,62
maximal, 8 51, 52, 64, 67, 68
stationary, 10
chain minor, 1, 3, 62, 62, 63
CHAIN MINORS, 66
chain morphism, 62, 62, 63, 6568
choice function, 13
chromatic number, c¢f. v, 27
clique
maximal, 34
clique cover, cf. k
clique cover number, 27
clique size, cf. w, 27
co-NP, 7, 7, 8, 18, 19
completion time, 63
complexity, 1-8, 17, 18, 20, 21, 23-26, 29,
31, 32, 61, 66
componentwise ordering, 13
composition
parallel, 11
series, 11
substitution composition, 11
computable, 4
cotree, 48
generalized, 49
covering element, 9
covers, 9
CRCW, 1, 6, 6, 47, 67-69
CREW, 6, 69

DEC, 6-8, 18, 40, 44
decidable, 6

decision problem, 7
decomposition diameter, 49
dom, 4, 52, 54-57, 59-61

domain, 4

¢, 6-8

embed, 50

embedP?T 46, 46, 47
embed®®d 44-46

embedding

homeomorphic, 43
encoding, 4, 4-8, 17-19, 40

proper, 17, 17-19
encoding length, 4
evidence, 7, 7, 18
extension, 9

linear, 9, 43, 65

finite basis, 10

formal language, 3, 4, 6, 51, 53, 54, 5661,
67, 68

freeze, 55, 53-59

freeze & thaw, 55, 53-5H9

Bindg, 25, 2527, 30

graph, 1, 2, 17, 19-21, 24-34
perfect, 32, 32, 33

graph minor, 1-3, 19, 19-21, 62

H-MiNoR, 20
Higman’s Theorem, 2, 39, 39, 43, 53

ideal, 9, 8-10, 14, 36
lower, 9
upper, 9
immediate successor, 9
ImSuce, 9
ind, 53-5H9
inf, 37
inner node, 42
instance, 4, 5, 19, 24
interval order, 10, 63, 65

k, cf. clique cover, 27,27, 33
k-PATHWIDTH, 20
Kruskal’s Tree Theorem, 2, 43, 43, 53

language, cf. formal language
lattice, 37, 45
LCA, cf least common ancestor, 43, 48, 50
leaf, 42
least common ancestor, ¢f. LC'A
length
encoding, cf. length, 4, 17-19
length, 3,4, 6, 7, 17-19, 21, 23, 39, 52-56,
58, b9

71

lesseq, 40, 40-42, 44, 47

lift, 62, 64

LINKLESS EMBEDDING, 21

list ranking, 46

Lovasz’s Perfect Graph Theorem, 32, 34

machine
nondeterministic, 7
parallel, 6
sequential, 6

machine model, 4

map
order preserving, 9

IN, ¢f natural numbers, 6-7, 11-13, 18, 21,
22, 38, b4, 56, b8, b9

natural numbers, ¢f. IN, c¢f. w

NC, 6, 4-8, 18, 40, 42, 44, 47

non-repetitive, 52, 52, 53, 60

NON-REPETITIVE STRING, 7

NP, 6, 3-8, 18, 21, 31, 32, 40, 44, 66, 67

NP-complete, 7

NP-hard, 7

number of machines, 63

94,6
Obstr, cf. obstruction, 15, 18, 35, 36
obstruction, 15, 14-15, 18, 21-24, 30, 32, 35,
36, 69
operation
elementary, 4
order, 3, 8 8-12, 14, 17, 19, 37, 42, 62, 67
finite, 8
interval, cf. interval order
isomorphic, 9
partial, 8
quasi-
well founded, 10
quasi-order, cf. qo
total, 8
weak, ¢f. weak order
well-quasi-order, ¢f. wqo
ordered structure, 35, 38, 62
ordered structures, 9
ordinal, 12
07 ., 49, 49-50

ind’
O 48, 48-49

ind’

72 INDEX

output space, 4 scan, 40-42
scanP?® 41, 41, 61
P, 6, 4-8, 18, 40, 41, 44, 46 scan®®1 40, 41, 45
P, 21,22 segment
pathwidth, ¢f. pw, 27 final, 9, 54
polynomial transformation, 7 initial, 9, 54
polynomially solvable, 6 semi-lattice, 37
poset, 1, 3, 8, 810, 17, 36, 37, 52, 62, 63, sequence
67-69 bad, 2,10, 13, 14
postorder, 43 good, 10, 7-13, 40, 44, 52, 53, 59
PRAM, i, 6, 6, 47, 67-69 perfect, 10, 10-11, 13, 39, 53
PRECEDENCE CONSTRAINED SCHEDULING, series parallel order, 48, 48-49
66 set
problem, 1, 2, 4, 7, 19, 20, 26, 27, 31, 32, generating, 9
62-64, 66, 67, 69 independent, 33, 34
decision, 6, 67 simple, 52
Prop, 14, 14, 15, 18, 19, 41, 42, 46, 47, 50 size, 40, 41, 52, 5961, 68, 69
property stability number, ¢f. «, 27
dense, 22 step
hereditary, 1, 3, 14, 14-15, 17-20, 22— elementary, 4
24,26, 30, 35, 36, 38, 40, 44, 51, 60, string, 2, 3, 4, 4, 35, 38-40, 42-45, 51, 52,
61, 67, 69 54-56, 58, 60, 67, 69
sparse, 22, 22 empty, 4
pw, cf. pathwidth, 27, 27, 31 string morphism, 51, 60
subgraph, 21, 27-29, 34
qo, 8, 8-11, 13, 14, 17-19, 21, 35-37, 39-44, induced, 24-34
46, 47, 52, b4, 62 suborder, 9, 9, 62, 63, 69
quasi-order, ¢f. qo induced, 2, 9, 11, 62, 68, 69
substitution composition, 11, 11-12, 47-50
R, 11 symbol, 4
random access, 25
random variable 3,43, 44
independent, 21 Test, 6,7, 60, 68
re-scheduling, 42, 47 tree
reduction, 9 rooted, 42
retr, 25, 25, 30 structured, 43
retrieval time, 25 weighted, 43
root, 42 treewidth, cf. tw, 27
running time, 5 trivial, 51, 53
tw, cf. treewidth, 27, 27, 31
sample, 21, 21-24 Type, b4, 54, 55, 56
algorithm, 23, 21-24, 26, 27, 32
length, 22 undeclared, 51
probability, 22 undefined, 53
sample, 30, 32 unit cost model, 5

samplelteT 28 29
sample®™®¢, 27-29 20, 42-44

INDEX

0, 43, 42-48, 50

weak order, 11, 67

well-order, 12, 12-14

Well-Ordering Theorem, 13

well-quasi-order, c¢f. wqo, 10

wo, 12, 12-14

wqo, 1-3, 10, 8-15, 18-20, 35, 3740, 43, 44,
49, 50, 52, b3, 67

Z, 11
ZF 12 13
Zorn’s Lemma, 13, 12-14, 38

73

74

INDEX

[ACPS8T]

[ADKP89)
[ALS91]

[AO8Y]
[APS89)]

[Beh8s]
[BK91]
[BWS5]
[CM92]
[CPS85)
[Dam90]
[Dil58]

[DIL9O]

[DPRS1]

[Ebb79]

Bibliography

Stefan Arnborg, Derek Corneil, and Andrej Proskurowski, Complezity of finding
embeddings in and k-tree, STAM J. Algebraic Discrete Methods 8 (1987), no. 2,
277-284.

K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka, A simple parallel
tree contraction algorithm, J. Algorithms 10 (1989), 287-302.

Stefan Arnborg, Jens Lagergren, and Detlef Seese, Easy problems for tree-
decomposable graphs, J. Algorithms 12 (1991), 308-340.

Algorithms and Order (Ivan Rival, ed.), Kluwer Acad. Publ., Dordrecht, 1989.
Advances in Project Scheduling (R. Slowinski and J. Weglarz, eds.), Elseviers Sci-
ence Pub., Amsterdam, 1989.

G. Behrendt, Mazimal antichains in partially ordered sets, Ars Combin. 25 (1988),
no. C, 149-157.

Hans L. Bodlaender and Ton Kloks, Better algorithms for the pathwidth and
treewidth of graphs, in [ICA91] (1991), 544-555.

E. Bender and Herbert S. Wilf, A theoretical analysis of backtracking in the graph-
coloring case, J. Algorithms 6 (1985), 275-282.

Bruno Courcelle and M. Mosbah, Monadic second-order evaluations on tree-
decomposable graphs, in [WGI1] (1992), 13-24.

D. G. Corneil, Y. Perl, and L. Stewart, A linear recognition algorithm for cographs,
STAM J. Comput. 14 (1985), 926-934.

Peter Damaschke, Induced subgraphs and well-quasi-ordering, J. Graph Theory 14
(1990), no. 4, 427-435.

Robert P. Dilworth, Some combinatorial problems on partially ordered sets, repub-
lished in [DIL90] (1958), 13-18.

The Dilworth Theorems, Selectet Papers of Robert P. Dilworth (IKenneth P. Bogard,
Ralph Freese, and Joseph P. S. Kung, eds.), Birkhduser Verlag, Boston, Basel,
Berlin, 1990.

D. Duffus, M. Pouzet, and 1. Rival, Complete ordered sets with no infinite an-
tichains, Discrete Math. 35 (1981), 39-52.

Heinz-Dieter Ebbinghaus, FEinfiilhrung in die Mengenlehre, Wissenschaftliche
Buchgeselllschaft, Darmstadt, 1979.

75

76

[Fel89]

[FKL88]

[FL85)]

[FL88a]

[FL8Sb]
[FL88c]

[FL89]

[FL92]

[FOCS5]
[FOCS89]
[FOC90]

[GASY)]

[GI79]

[GMY1]

[GO85)
[Gol80]
[Gus89)]
[Gus91]
[Gus92]

[High2]

BIBLIOGRAPHY

Michael R. Fellows, The Robertson-Seymour theorems: a survey of applications, see
[GAR9], 1989, pp. 1-18.

Michael R. Fellows, Nancy G. Kinnersley, and Michael A. Langston, Finite-basis
theorems and a computation-integrated approach to obstruction set isolation, Tech.
report, Washington State University, 1988.

Michael R. Fellows and Michael A. Langston, Nonconstructive advances in
polynomial-time complexity, Inform. Process. Lett. (1985).

Michael R. Fellows and Michael A. Langston, Layout permutation problems and
well-partially-ordered sets, Proceedings of the 5 MIT Conference on Advanced
Research in VLSI (Jonathan Allen and F. Thomson Leighton, eds.), 1988, pp. 315
327.

Michael R. Fellows and Michael A. Langston, Nonconstructive tools for proving
polynomial-time decidability, J. Assoc. Comput. Mach. 35 (1988), no. 3, 727-739.
Michael R. Fellows and Michael A. Langston, On search, decision and the efficiency
of polomial-time algorithms, Washington State University (1988).

Michael R. Fellows and Michael A. Langston, An analogue of the Myhill-Nerode
theorem and ils use in computing finile-basis characterizations, see [FOC89], 1989,
pp- 520-525.

Michael R. Fellows and Michael A. Langston, On well-partial-order theory and
its application to combinatorial problems of VLSI design, STAM J. Disc. Math. 5
(1992), no. 1, 117-126.

26th Annual Symposion On Foundations of Computer Science, IEEE, The Institute
of Electrical and Electronics Engineers, IEEE Computer Society Press, 1985.

30th Annual Symposion On Foundations of Computer Science, IEEE, The Institute
of Electrical and Electronics Engineers, IEEE Computer Society Press, 1989.

31th Annual Symposion On Foundations of Computer Science, IEEE, The Institute
of Electrical and Electronics Engineers, IEEE Computer Society Press, 1990.
Graphs and Algorithms (R. B. Richter, ed.), American Math. Soc., Contemp.
Math., 89, 1989, Proceedings of the AMS-IMS-STAM joint Summer Research Con-
ference 1987.

Michael R. Garey and David S. Johnson, Computers and Intractability, W. H.
Freeman and Company, New York, 1979.

Graph Minors (Neil Robertson and Paul Seymour, eds.), American Math. Soc.,
Providence, RI, 1991, Proceedings of the AMS-IMS-SIAM Joint Summer Research
Conference, Seattle WA June 1991.

Graphs and Orders (Ivan Rival, ed.), D. Reidel Publishing Company, Dordrecht,
1985.

Martin C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

Jens Gustedt, On the pathwidth of chordal graphs, Discrete Appl. Math. (1989),
accepted for publication.

Jens Gustedt, Well-quasi-ordering finite posets and formal languages, Tech. Report
290, Technische Universitdt Berlin, 1991, submitted.

Jens Gustedt, Well-quasi-ordering finite posets, accepted for publication in [GM91]
(1992), extended abstract of [Gus91].

G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc.
2 (1952), 326-336.

[HMS7]

[ICA91]
[Kru60]
[Kru72]
[Lag90]
[LMP85]
[LO92]
[LR78]

[Mil85]
[MM92]

[M&h89]
[MRS5]
[MRS9]
[NRST]
[NW63]
[PFV90]
[Pou8s]
[PS92a]
[PS92b]
[Ree91]
[Reu91]
[RS83a]

[RS83b)

BIBLIOGRAPHY 77

Michel Habib and Rolf H. M&hring, On some complezity properties of N -free posets
and posets with bounded decomposition diameter, Discrete Math. 63 (1987), 157-
182.

Proceedings of the 18’th International Colloquium on Automata, Languages and
Programming, Springer-Verlag, 1991, Lecture Note in Comp. Sc., vol. 510.

J. B. Kruskal, Well quas:t ordering, the tree theorem and Vazsonyi’s conjecture,
Trans. Am. Math. Soc. 95 (1960), 210-225.

J. B. Kruskal, The theory of well-quasi-ordering: a frequently discovered concept, J.
Combin. Theory Ser. A 13 (1972), 297-305.

Jens Lagergren, Efficient parallel algorithms for tree-decomposition and related
problems, see [FOCI0], 1990.

J. D. Lawson, Michael Mislove, and Hilary A. Priestley, Infinite chains in semilat-
tices, Order 2 (1985), 275-290.

R. Lin and S. Olariu, An NC recognition algorithm for cographs, Discrete Appl.
Math. (1992), accepted for publication.

J. K. Lenstra and A. G. H. Rinnooy Khan, Complezity of scheduling under prece-
dence constraints, Operations Res. 26 (1978), 22-35.

E. C. Milner, Basic wgo- and bgo-theory, [GO85], 1985, pp. 487-502.

Rolf H. M&hring and Rudolf Miiller, A combinatorial approach to obtain bounds for
stochastic project neworks, Tech. report, Technische Universitit Berlin, 1992.

Rolf H. M&hring, Computationally tractable classes of ordered sets, [AO89], 1989,
pp- 105-194.

Gary L. Miller and John H. Reif, Parallel tree contraction and its application, in
[FOCS85] (1985), 478-489.

Rolf H. Mohring and Franz J. Radermacher, The order-theoretic approach to
scheduling: The deterministic case, in [APS89] (1989), 29-66.

Jaroslav Nesettil and Vojtéch Rodl, Complezity of diagrams, Order 3 (1987), 321-
330.

C. St. J. A. Nash-Williams, On well-quasi-ordering finite trees, Math. Proc. Cam-
bridge Philos. Soc. 59 (1963), 833-835.

Paths, Flows, and VLSI-Layout (Bernhard Korte, Laszlé Lovasz, Hans Jirgen
Promel, and Alexander Schrijver, eds.), Springer-Verlag, 1990.

M. Pouzet, Applications of well quasi-ordering and belter quasi-ordering, [GO85],
1985, pp. 503-519.

Hans Jiirgen Promel and Angelika Steger, Allmost all Berge graphs are perfect,
Combinatorics, Probability and Computing (1992), accepted for publication.
Hans Jirgen Promel and Angelika Steger, Coloring clique-free graphs wn linear
expected time, Random Structures and Algorithms (1992), accepted for publication.
Bruce A. Reed, Finding approzimate separators and computing tree width quickly,
private communication (1991).

K. Reuter, The jump number and the lattice of mazimal antichains, Discrete Math.
(1991).

Neil Robertson and Paul Seymour, Graph minors I, excluding a forest, J. Combin.
Theory Ser. B 35 (1983), 39-61.

Neil Robertson and Paul Seymour, Graph minors II1, planar tree-width, J. Combin.
Theory Ser. B 36 (1983), 49-64.

78

[RS85a]

[RS85b]
[RS86a]
[RS86b]
[RS86c]
[RS86d]
[RS86e]
[RS87]

[RS88a]
[RS88b]
[RS89]

[RS90a]
[RS90b)]
[RS90C]
[RS90d]
[RS91]

[Ste92]

[Un75)

[WG91]
[Wils4]

[Wil86]

BIBLIOGRAPHY

Neil Robertson and Paul Seymour, Graph minors — a survey, Surveys in Combi-
natorics (Glasgow 1985) (I. Anderson, ed.), Cambridge Univ. Press, Cambridge-
New York, 1985, pp. 153-171.

Neil Robertson and Paul Seymour, Graph minors XI, distance on a surface,
Manuscript (1985).

Neil Robertson and Paul Seymour, Graph minors I, algorithmic aspects of tree-
width, J. Algorithms 7 (1986), 309-322.

Neil Robertson and Paul Seymour, Graph minors V, excluding a planar graph, J.
Combin. Theory Ser. B 41 (1986), 92-114.

Neil Robertson and Paul Seymour, Graph minors VI, disjoint paths across a disc,
J. Combin. Theory Ser. B 41 (1986), 115-138.

Neil Robertson and Paul Seymour, Graph minors XII, excluding a non-planar
graph, Manuscript (1986).

Neil Robertson and Paul Seymour, Graph minors XIII, the disjoint paths problem,
Manuscript (1986).

Neil Robertson and Paul Seymour, Graph minors XIV, taming a vortez, Manuscript
(1987).

Neil Robertson and Paul Seymour, Graph minors VII, disjoint paths on a surface,
J. Combin. Theory Ser. B 45 (1988), 212-254.

Neil Robertson and Paul Seymour, Graph minors XV, Wagner’s conjecture,
Manuscript (1988).

Neil Robertson and Paul Seymour, Graph minors XVI, well-quasi-ordering on a
surface, Manuscript (1989).

Neil Robertson and Paul Seymour, Graph minors 1V, tree-width and well-quasi-
ordering, J. Combin. Theory Ser. B 48 (1990), 227-254.

Neil Robertson and Paul Seymour, Graph minors IX, disjoint crossed paths, J.
Combin. Theory Ser. B 49 (1990), 40-77.

Neil Robertson and Paul Seymour, Graph minors VIII, a Kuratowsk: theorem for
general surfaces, J. Combin. Theory Ser. B 48 (1990), 255-288.

Neil Robertson and Paul Seymour, An outline of a disjoint paths algorithm, [PFV90]
(1990), 267-292.

Neil Robertson and Paul Seymour, Graph minors X, obstructions to tree-
decomposition, J. Combin. Theory Ser. B 52 (1991), 153-190.

Angelika Steger, An O(1) average time algorithm for perfectness, private commu-
nication, 1992.

J. D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (1975),
384-393.

Graph-Theoretic Concepts in Computer Science (G. Schmidt and R. Berghammer,
eds.), Springer-Verlag, 1991, 17th International Workshop WG ’91.

H. S. Wilf, Backtrack: an O(1) expected time algorithm for the graph coloring prob-
lem, Inform. Process. Lett. 18 (1984), 119-121.

Herbert S. Wilf, Algorithms and Complexity, Prentice-Hall International, Inc.,
1986.

10.4. 1960
1965 — 1978

Juni 1978
WS78/79 — WS79/80
2.1. 1980 — 30.4. 1981

WS81/82 — $S87
WS84/85 — $S87

Juli 1987
1.10. 1987 — 31.12. 1990

Sep. 1990
seit 1.1. 1991

Sep. 1991
Nov. 1991

LEBENSLAUF 79

Lebenslauf

geboren in Flensburg

Schulbesuch in Paris, Bonn, Wilhelmshaven und wieder
in Bonn.

Abitur am Helmholtz-Gymnasium, Bonn-Duisdorf.
Chemie-Studium an der Universitat Bonn

Zivildienst am Institut fiir Andsthesiologie der Univer-
sitdt Bonn

Mathematik-Studium an der Universitdt Bonn
Studentische Hilskraft mit Tutorentatigkeit am Institut
fiir Mathematik der Universitat Bonn

Diplom in Mathematik mit Nebenfach Philosophie
wissenschaftlicher Mitarbeiter im Fachbereich Mathe-
matik der Technischen Universitat Berlin
Gastaufenthalt am CRIM, Montpellier, Frankreich
Wissenschaftlicher Mitarbeiter im DFG-Projekt Algo-
rithmische Ordnungstheorie

Gastaufenthalt am LIRMM, Montpellier, Frankreich
Gastaufenthalt Rijksuniversiteit Utrecht

