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ZusammenfassungIn dieser Arbeit verbinden wir die Theorie der Quasi-Ordnungen mit der Theorie der Algo-rithmen einiger kombinatorischer Objekte. Zuerst entwickeln wir die Theorie der Wohl-Quasi-Ordnungen, WQO, im Zusammenhang zur maximalen Komplexit�at.Dann geben wir ein allgemeines 0-1-Gesetz f�ur erbliche Eigenschaften, das Auswirkungen f�urdie mittlere Komplexit�at hat. Dieses Ergebnis f�ur mittlere Komplexit�at wird auf die Klasseder endlichen Graphen, versehen mit der Relation \induzierter Subgraph", angewendet. Wirerhalten, da� eine gro�e Klasse von Problemen, welche z.B. Perfektheit umfa�t, Algorithmenmit im Mittel konstanter Laufzeit haben.Dann zeigen wir, indem wir ein Ergebnis von Damaschke f�ur Cographen veralgemeinern,da� die Klassen der endlichen Ordnungen bzw. Graphen mit beschr�anktem Dekompositions-durchmesser bzgl. der Relation \induzierte Subordnung" bzw. \induzierter Subgraph" WQOsind. Dies f�uhrt uns zu linearen Erkennungsalgorithmen f�ur alle erblichen Eigenschaften �uberdiesen Objekten.Unser Hauptresultat ist dann, da� die Menge der endlichen partiellen Ordnungen eine Wohl-Quasi-Ordnung bzgl. einer gewissen Relation � , der sogenannten Ketten-Minor-Relation, ist.Um dies zu beweisen, f�uhren wir eine verwandte Relation auf endlichen formalen Sprachen ein,die die gleiche Eigenschaft hat. Als Folgerung erhalten wir, da� jede Eigenschaft, die erblichbzgl. � ist, einen Test in O�jP jc� Zeit zul�a�t, wobei c von der Eigenschaft abh�angt. DieserTest l�a�t sich leicht parallelisieren. Auf einer parallelen Maschine (CRCW PRAM) kann er soimplementiert werden, da� er konstante Zeit auf O �jP jc� Prozessoren ben�otigt.AbstractIn this work we relate the theory of quasi-orders to the theory of algorithms over some com-binatorial objects. First we develope the theory of well-quasi-orderings, wqo's, and relate it tothe theory of worst-case complexity.Then we give a general 0-1-law for hereditary properties that has implications for average-case complexity. This result on average-case complexity is applied to the class of �nite graphsequipped with the induced subgraph relation. We obtain that a wide class of problems, includinge.g. perfectness, has average constant time algorithms.Then we show, by extending a result of Damaschke on cographs, that the classes of �niteorders resp. graphs with bounded decomposition diameter formwqo's with respect to the inducedsuborder resp. induced subgraph relation. This leads to linear time algorithms for the recognitionof any hereditary property on these objects.Our main result is then that the set of �nite posets is a wqo with respect to a certain relation� , called chain minor relation. To prove this we introduce a similar relation on �nite formal lan-guages that also has this property. As a consequence we obtain that every property which ishereditary with respect to � has a test in O �jP jc� whereas c depends on the property. This testhas an easy parallelization with the same costs. On a parallel machine (CRCW PRAM) it maybe implemented in such a way that it runs in constant time and needs O�jP jc� processors.i



PrefaceAs the title shows, this work tries to combine two di�erent points of view oncombinatorial objects | a structural one and an algorithmical one.The structural approach is the theory of (well-)quasi-orders, i.e., the theory aboutcertain relational structures. The algorithmical one is based on the concept of test-ing properties of objects by looking for smaller objects contained in them, i.e., bylooking for forbidden substructures. The interplay between those two approacheshas been very fruitful in the theory of Graph Minors developed by Robertson andSeymour in the last years, and so it seems legitimate to try to use similar conceptsfor other sorts of structures as well.I hope that my attempt to bring these two di�erent aspects | structure andalgorithms | together did not fail completely and that it might give the reader abetter insight into parts of the theory of combinatorial objects.It certainly would have failed without the kind, patient, and competent supportI received from Prof. R. H. M�ohring who supervised this research and to whom Iowe all my knowlege this work is based upon.Also I like to thank the numerous other people that participated in discussionsabout the subject(s), gave hints or asked the right questions. Finally, special thanksto Karsten Weihe also for proof-reading parts of the manusscript and thus improv-ing style and readability.Berlin July 21, 1992 Jens Gustedt
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CHAPTER IIntroduction1. OverviewIn the last years algorithmic aspects of well quasi orders (wqo) brought greatprogress in algorithmic graph theory. In a series of papers Robertson and Seymour (see [RS83a], [RS86a] ... ) showed that a set of graphs together with the graph minorrelation forms a wqo. This can be used to show existence of polynomial timealgorithms for a wide class of problems. These problems are those, which arehereditary with respect to the graph minor relation.A similar theory for �nite posets was not known until now | i.e., that thetheory of wqo's is used for such a general statement about existence of algorithms.The starting point for this work was to investigate a relation between posetsarising from application in scheduling theory, the so called chain minor relation.We show in section IV.14 that this relation leads to analogous results for �niteposets as the graph minor relation does for graphs. In particular we show that thechain minor relation de�nes a wqo and we give existence proofs for algorithms.But in investigating this special relation we noticed that similar concepts havebeen used in di�erent contexts and di�erent \social strata" of the scienti�c com-munity, namely Discrete Mathematics, Theoretical Computer Science and Opera-tions Research. There seem to be two main motivations for people to study wqo's,or qo's in general: an interest in structural theory (what are we dealing with) andan interest in algorithms and constructivity (how do we obtain what we claim tohave). Since people are often mainly motivated by only one of these, the other halfis often omitted.We think that both sides could pro�t from each other, so we found it worth tocollect some of the di�erent approaches, state them systematically and unify nota-tions. This is done in chapter II. After having given the necessary de�nitions andfacts from a structural point of view in section I.3, we show several consequencesin complexity theory in section II.6 and 7. There are two main consequences, one1



2 I. INTRODUCTIONfor worst-case complexity (sec.6), the other for average-time complexity (sec.7):� The theory of properly encoded wqo is equivalent to (m)any theory ofcomplexity classes.� There is a general 0-1-law for hereditary properties.Most of the results given in this section are not new. Nevertheless many of themhave been used only implicitly by other authors, so they are perhaps stated herefor the �rst time.To exemplify these approaches we discuss �nite graphs equipped with di�erentorder relations. For worst case complexity we try to give a short introduction tothe theory of graph minors that was mentioned above (sec.6.4). Since the articlesneeded for this theory cover several hundreds of pages at the moment, clearly thiscan not be complete in any sense.For graphs equipped with the induced suborder relation we state some resultsconcerning average-time complexity in section 8. In particular, we show that manyproperties have fast average time recognition algorithms. What \fast" means, de-pends on the representation of the graph. It varies from constant running time ifwe have random access to the edges, to quadratic if they are given in one singleunsorted list.The properties that are covered by that approach are those that have a recog-nition algorithm that runs in time 2O(n), n being the number of vertices. Thisincludes not only all properties with polynomial time algorithms but also someNP-complete problems and some for which the complexity status is not yet known,e.g. perfectness of graphs.In Chapter III we revisit four well known quasi-orders: on antichains (sec.9), strings(sec.10), structured trees (sec.11), and special classes of posets (sec.12). We revisitthem for several reasons.The �rst is to explain and extend a certain proof technique, called theminimalbad sequence technique invented by Nash-Williams. Namely we give a techniqueone could call minimal antichain technique. This is done because from an algo-rithmic point of view the set of antichains of a quasi-order contains all informationwe need, and, on the other hand, not much e�ort is needed to show that all quasi-orders in question have no in�nite descending chains.Another reason is that the two main theorems in that �eld, Higman's StringTheorem and Kruskal's Tree Theorem, also have algorithmic consequences thatwe found worth being stated. Indeed, this theory on strings and trees is a niceexample for the tools developed in section 6 where the algorithms are well behavedand practical in the sense that they would be easy to implement.As an application of the theory on structured trees we give an extension of anapproach by Damaschke [Dam90]. He showed that the class of cographs equipped



1. OVERVIEW 3with the induced subgraph relation forms a wqo. We extend his result and prooftechnique to series parallel orders and more general to orders with a boundeddecomposition diameter. Our result then is� In every class of posets with bounded decomposition diameter every prop-erty that is hereditary with respect to the induced suborder relation has alinear time test.Chapter IV is dedicated to the application of the theory developed to two specialclasses of combinatorial objects: formal languages and partially ordered sets.This two kinds of structures are very closely related. The setting of formal lan-guages is the more general one | we started studying it when we wanted to provethings about partially ordered sets. But it developed its own beauty and extendedto an object of study by its own rights. We de�ne a relation on formal languageswe call string minor relation that is very similar to the chain minor relation onposets. The main result for formal languages is� Any in�nite set of formal languages that are �nite and do not use anysymbol in any particular string twice is a wqo.The proof for this result is based on a �nite recursion. First we show that we mayassume that the length of all strings is bounded by a constant, and then how to�nd related languages of length � h+ 1 if we already know how to �nd them forlength = h.Finally we come back to the starting point of this research, namely partiallyordered sets and the chain minor relation. This relation was introduced recentlyby M�ohring and M�uller in [MM92] to generalize certain approaches in the theoryof scheduling stochastic project networks. We show:� The chain minor relation leads to a well-quasi-ordering structure on anyset of �nite partially ordered sets.� Each hereditary property with respect to this relation on partially orderedsets admits a polynomial time test.In contrast to the situation, e.g. for graph minors, the exponent of the polynomialhere strongly depends on the property.Hoping that we will have readers from di�erent �elds, we found it necessarynot only to give the notations from order theory in this chapter, but also to statesome prerequisites from set theory and from complexity theory. The reader whois familiar with one of these theories may easily skip this part. In case of doubtabout the notation she or he should use the index we included at the end.



4 I. INTRODUCTION2. Complexity ClassesIn this section we will introduce the notation used from complexity theory. Thisis not meant be a complete introduction into that �eld.For a set A, the alphabet, and an integer k � 0 a string of length = k over A isa k-tuple of elements in A. For convenience there is a unique string of length = 0over any alphabet, the empty string denoted by ;. An element a 2 A is oftencalled a symbol and identi�ed with the 1-tuple (a).For a set A let A� denote the set of �nite strings over A. An arbitrary subsetL � A� is called a formal language over A. A is then called the alphabet ordomain of L, dom(L).Let V be a set, the set of objects, and A be a �nite set, the set of symbols. Aninjective mapping from V into A� , the set of strings over A, is an encoding of Vw.r.t. A.Let c be an encoding of V . Then the encoding length of an element v 2 V islengthc (v) = length (c(v)).Let E be a function ( or problem) from a set I, the set of instances, to a setO, the output space.General Assumption 2.1. For the following we assume that the encoding forthe elements in I is �xed and that for all encodings the underlying alphabet is thesame.Let then length (i) denote the encoding length for i 2 I.To de�ne complexity classes we need we make some assumptions about themachine model we are dealing with. In the sequel all machines or processors willbe able to perform� all basic logical operations such as ^ , _ or :,� arithmetical operations such as +, � , � , mod or =� comparisons such as <, = or �� control statements such as if or case� loop statements such as while or repeat /until� read and write operations from resp. on a designated input resp. outputdevice� read and write operations from resp. into memoryThese operations and statements are called elementary operations or steps.The operands of these operations will be boolean values or arbitrarily large inte-gers. The memory available will be arbitrarily large.An algorithm on such a machine is a �nite sequence of operations.Definition 2.1. We say that function E is computable, if there is an algo-rithm which



2. COMPLEXITY CLASSES 5� reads an instance i 2 I� halts� and writes E(i).The running time of an algorithm for a speci�c input i is the number ofelementary steps executed by the algorithm when it is given i as input. One of themain issues of the theory of algorithms is making estimations about the runningtime of an algorithm, compared to the length of the input.We are working with the so called unit cost model, i.e., we make the followingassumption:General Assumption 2.2. All elementary operations will require constant timeper operation.This assumption, though generally used in the literature, is somewhat misleadingand inconsistent. Since the minimum amount of space needed to encode an integern is log n this time is also needed to read it into memory or to perform an addition,say. So to read an input consisting of n integers into memory we would need timen log n.Assumption 2.2 is often justi�ed by saying that it is true for any concrete ma-chine. But this is misleading since we want to make theoretical statements aboutall machines executing a certain algorithm.1 Then certainly log n has to be con-sidered as, though slowly, growing function.On the other hand big e�orts are made to avoid extra \log" factors in therunning time of algorithms without making exact statements about the machinemodel that is assumed. We think of that as being inconsistent: on one side countinglog more or less as a constant on the other side investing a lot of work into thesaving of a \log" factor.But when we want to make general statements on, for example, polynomialitywe will not need to make changes to that model for sequential machines here.Just to be honest and to make clear that we are dealing with an abstract machinemodel we reformulate Assumption 2.2 asGeneral Assumption 2.3. To determine the running time of an algorithmall elementary operations are counted as one time unit.Under that assumption we classify problems according to the following de�ni-tion.1It is easy to see that all algorithms considered on a concrete machine that halt, halt even inconstant time.



6 I. INTRODUCTIONDefinition 2.2. We say that E 2 P� if there is an algorithm which calculatesE(i) in time O (length (i)�).We say that E is polynomially solvable, denoted by E 2 P, if there is suchan � with E 2 P�, i.e P = S�2INP�.If not stated otherwise machines will be sequential. When considering parallelmachines the inconsistency mentioned above becomes more important since therunning time here is usually counted in poly-logarithmic time and the cost of aparallel algorithm is then compared with the running time of a sequential one.We suspect some of the problems arising in this �eld being originated by thisinconsistency. For example the discussion if parallel processors may concurrentlyread or write into memory loses importance. If we take into account that theaddressing of memory uses logarithmically many resources, simple regulations fordealing with concurrency con
icts when two processors want to write into the samememory cell can be handled at the same time. With simple regulations we meanhere rules as \processor with higher id wins" or \an arbitrary processor wins".In fact most of the times con
icts occuring in our algorithms will be that severalprocessors try to write the same information into the same memory cell.So when considering a parallel machine model with an arbitrary number pro-cessors we will assume that all of them have parallel random access to a sharedmemory (PRAM) and that this access can be done concurrently for reading andwriting (CRCW) instead of using the CREW (concurrent read exclusive write)model that would be more restrictive.Definition 2.3. We say that E 2 NC� if there are an algorithm on a CRCWPRAM and a constant � depending on the algorithm such that the algorithm calcu-lates E(i) in timeO ��log length (i) ��� and does not use more than O �length (i)��processors.We say E 2 NC if there is such an �, i.e, NC = S�2INNC�.If O = ftrue ; false g E is a decision problem. E is decidable, E 2 DEC,if it is computable.We say that E is in NP if there is a formal language E and a propertyTestE : I� E ! ftrue ; false g(2.1)that ful�lls:(1) If for some i 2 I and e 2 E TestE (i; e) = true then E(i) = true .(2) There is � 2 IN s.t. for all i 2 I with E(i) = true there is ei 2 E s.t.TestE (i; ei) = true and s.t. length (ei) � length (i)� .(3) TestE 2 P



2. COMPLEXITY CLASSES 7Observe that 3 means in particular that TestE is polynomial even if length (i)is considered as relevant input length. Think of E being a set of valid evidencesfor E and of TestE (i; e) as a test if e is an evidence for E(i). For example considerthe following problemProblem 2.1. Non-Repetitive StringInstance: i 2 A�Question: Are two positions in i identical?Then E = IN2 andTestE (i; (v;w)) = true i� positions v and w of i are identical(2.2)would be a good choice.The following de�nition gives a formalism to characterize problems that areat least \as hard" as any problem in NP. A problem E is NP-hard if for everyproblem E 0 2 NP there is a polynomial transformation to E, i.e., there is arealgorithms A and B that ful�ll� A;B 2 P� A gets an instance i0 for E 0 as input and outputs an instance i for E� B gets i0 and an element of the output space for E as input and outputstrue or false .� B(i0; E(i)) () E 0(i0)Notice that for E to be NP-hard it is not necessary that it is a decision problem.E is NP-complete if it is NP-hard and if E 2 NP. So these are the deci-sion problems such that any polynomial algorithm to solve one of them would givesuch an algorithm for every problem in NP.Unlike the other complexity classes de�ned above it is not clear that the nega-tion of an NP-property is in NP, too. The reason for that is the asymmetry ofstatement 1. We say that E is in co-NP if :E is in NP. It is not known whetheror not NP = co-NP, but P �NP \ co-NP.The nameNP comes from the fact that this class �rst was considered as the classof problems which are polynomially solvable on a nondeterministicmachine.Wedo not go into the details of that approach. The book [GJ79] of Garey and Johnsonis the classical reference for an overview over NP.Remark 2.1. If P is one of the classes P, NC, P�, NC�, NP, co-NP, DECthen P is countable.Proof. This is clear because of Assumption 2.1 we only have countably manyalgorithms.



8 I. INTRODUCTIONRemark 2.2. Let P be as above and E1, E2 2 P then �E1 ^ E2� and�E1 _ E2� 2 P.Proof. For P being one of P, NC, P�, NC�, DEC we just have to execute analgorithm for each subproblem E1 and E1 respectively.For NP the set of \evidences" to test E1 ^ E2 is E1 � E2 if Ei is such a set forEi. For E1 _ E2 the disjoint union E1 _[E2 can be used.The analogous statement for the negation of a property in NP is widely sus-pected to be false. See the remarks on co-NP above.3. Order Relations3.1. Posets and Quasi Orders. P = (V;<) is called a partial order, par-tially ordered set, order or poset, if \<" is a transitive ire
exive relation on theset V . P is �nite if V is �nite, write jP j = jV j.Q = �V;� � is called a quasi-order, qo for short, if \�" is transitive andre
exive.Posets and qo's are related very closely | every poset de�nes a qo on its ground-set in a natural way v � w () �(v < w) or (v = w) �(3.1)and every qo induces a poset on the equivalence classes of the relationv �= w () �(v � w) and (v � w) � :(3.2)The notation qo is also sometimes used in the literature for relations which areonly transitive, re
exive and antisymmetric.In the following Q = �V;� � always denotes a qo.A subset C of V is called a chain if every pair v;w 2 C is strictly related, i.e.,v < w or w > v holds. If Q itself is a chain it is also called a total order. Denotewith Ck the chain with k elements.A subset A of V is called an antichain if no pair of elements in A is related, i.efor all v;w 2 A (v � w) =) (v = w) :(3.3)Denote with Ak the antichain with k elements.Chains resp. antichains are called amaximal if they are inclusion maximal withthat property.



3. ORDER RELATIONS 9Let v � w be two elements in Q. We say that w covers v, w is a coveringelement of v, w is a immediate successor of v, w >�v, if v 6�= w and for all uwith v � u � v we have that u �= v or u �= w. The set of all covering elements ofv is denoted with ImSucc(v).A subset I � V is a lower (resp. upper) ideal if w 2 I and v � w (resp.w � v) implies v 2 I. Observe that if I is a lower ideal then V n I is an upperideal. For w 2 V let the initial segment of w, denoted by V w(read V below w),be the lower ideal fv 2 V j v � wg and for W � V de�ne V W as Sw2W V w. We saythat W generates V W and that W is a generating set of V W . The �nal segmentVw is de�ned analogously as upper ideal. A generating set W is called a basis ofVW resp. V W if VW 0 resp. V W 0 is a proper subset of VW resp. V W for all W 0 �W .That means that every w 2 W is essentially needed to build up VW .An order Q = �V;� � is a suborder of an order Q0 = �V 0;�0 � if there is aninjective mapping � : V ! V 0 such that for all v;w 2 Vv � w =) �(v) �0 �(w):(3.4)� is then called an order preserving map.Q is called an induced suborder of Q0 if \=)" can be replaced by \ () " in3.4.If Q is a suborder of Q0 such that � is a bijection, then Q0 is called an extensionof Q. Q is then called a reduction of Q0. Q0 is called a linear extension if it is atotal order. Q and Q0 are isomorphic if there are order preserving maps � : V !V 0 and �0 : V 0 ! V which are inverse to each other, i.e., � ��0 �Q0� � = Q0 and�0 �� �Q� � = Q. In general we will not distinguish between isomorphic objects.It is clear that the relation \is suborder" denoted by �sub de�nes itself a qo onany set of orders. The same holds for the relation \is induced suborder" which wedenote by �ind .It might be a source of confusion for the reader that we deal with relations overrelational structures. To help a little bit we adopt the di�erent uses the terms\poset" and \qo" usually have: In general for our discussions the posets will be�nite and the qo's will be in�nite representing e.g. a set of �nite posets. Therelations in those qo's will be given by existence of certain morphisms betweenthe objects. Sometimes we will speak of ordered structures when we recur tosuch qo's. This is done to emphasize the fact that the machinery we use is anabstraction of several properties of the objects.An important example for an order relation is the subset relation between sets. If



10 I. INTRODUCTIONwe have a set S the set of subsets of S equipped with � is called theBoolean Lat-tice of S, denoted with BS. If S = f1; . . . ; kg we write Bk = BS.Another example for an order relation occurs for sets of intervals on the realline. If ha; bi and hc; di are two such intervals we say ha; bi < hc; di if b < c. Anorder P = (V;<) for that we can �nd a set of intervals �hlv; rviv2V� of intervalssuch that the order relation in P and the one of the intervals coincide is called aninterval order.3.2. Well Quasi Orders. A sequence of elements (vi) in Q is a called a de-scending chain if vi � vj for all i � j. Such a chain is called stationary ifthere is N such that vi �= vj for all i; j � N . Q is called well founded if everydescending chain is stationary.A sequence of elements (vi) in Q is called good if there are i < j such thatvi � vj. It is called bad if it is not good. It is called perfect if vi � vj for all i � j.The reader may easily verify the following theorem. It forms one of the founda-tions of our discussion | mostly we will not mention it explicitly.Theorem 3.1. Let P = (V;�) be a qo. Then the following statements are equiv-alent:(1) P is well founded and every antichain is �nite.(2) Every sequence in P is good.(3) Every sequence has a perfect subsequence.(4) Every upper ideal has a �nite basis.(5) Every suborder P 0 of P has a �nite non-empty set of absolute minima andevery non-maximal element has a �nite, non-empty set of covers.Definition 3.1. A qo which ful�lls one and thus all equivalent statements inTheorem 3.1 is called a well-quasi-order, wqo for short.wqo's have �rst been considered implicitly as those qo's having property 4,which is often called the �nite basis property. For an overview and bibliographyon wqo's we refer to the articles of Milner [Mil85] and Pouzet [Pou85] in [GO85],for an historical overview see e.g. [Kru72].We give some basic examples.(1) All �nite qo's are wqo's.(2) ! = �IN;� �, the natural order on natural numbers is a wqo.(3) IN2 with the componentwise ordering is a wqo.(4) Every order that is a chain and well founded is a wqo.(5) �ZZ;� �, the integers, are not a wqo since they don't have an absoluteminimum.



3. ORDER RELATIONS 11(6) �IR;� �, the real numbers, are not a wqo since no element has a cover.3.3. Substitution Composition.Definition 3.2. Let Q0 = �X;� � be a qo and nQx = �Vx;�x �ox2X be a fam-ily of non-empty qo's with Vx \ Vy = ; if x 6= y. The substitution compositionQ0 hfQxgx2Xi is a qo on the groundset V1 = Sx2X Vx de�ned byv � w () 8>><>>:v �x w for some x 2 Xorv 2 Vx; w 2 Vy for x < y(3.5)It is easy to see that this indeed leads to a qo. We obtainTheorem 3.2. Q0 hfQxgx2Xi is a wqo i� Q0 and all Qx are wqo's.Proof. If Q0 or one of the Qx is not a wqo then clearly Q0 hfQxgx2Xi is notsince they are induced suborders. In the reverse direction we have to show that anysequence (v1; v2; . . . ) in Q0 hfQxgx2Xi is good. By de�nition there are (x1; x2; . . . )such that vi 2 Vxi for all i.First we assume that there is a subsequence �v�(i)� such that x�(i) = x�(j) = xfor all i and j. But then �v�(i)� is a sequence in Qx and good since Qx is a wqo.If there is no such subsequence then there is one such that all x�(i) are pairwisedistinct. But then �x�(i)� must be good so there are i and j with x�(i) < x�(j) andby de�nition we also have v�(i) < v�(j). So our sequence is good.Three special cases of the substitution composition are covered by the followingde�nition.Definition 3.3. Q0 hfQxgx2Xi is called the parallel composition of the Qx ifQ0 is an antichain. It is called the series composition of the Qx if Q0 is a chain.It is called a weak order if it is the series composition of antichains.With these de�nitions we are able to generate some more examples. For this letAi resp. Ci denote the antichain resp. the chain of order i.(1) A2 [f!; !g] the parallel composition of ! with ! is a wqo.(2) ! hfAigi2!i is a wqo. This shows that in a wqo the cardinality of the an-tichains may be unbounded, see Figure 3.1. This is the general situationthe reader should have in mind when we will discuss special wqo relations.There is no hope for these relations to have only antichains of bounded size.



12 I. INTRODUCTION(3) C2 [f!;C1g] is a wqo. This shows that in general there may be in�nitelymany points below another one, see Figure 3.2. Most of the special relationswe will study later will not have that property. tttt ttt tt t ```````````````̀ PPPPPPPPPP PPPPPPPPPP ����������                ����������@@@@����@@@@���� PPPPPPPPPP ����������@@@@���������������@@@@@@@@@@@Figure 3.1. Arbitrary Large Antichainstttt 321Figure 3.2. An in�nite ascending chain with limit4. The Axiom of Choice and Its EquivalentsThe wellfounded chains in Example (4), p.10, are called well-orders, wo forshort. wo's are a possible way to generalize \counting". One wo is smaller thananother one if the �rst is a suborder of the latter. With that de�nition every wohas an immediate successor with respect to �sub that is unique up to isomorphism.A construction for this would be an easy generalization of Example (3), p.12.For that reason wo's are also called ordinals. The chains Ci for i 2 IN representall classes of �nite ordinals, ! is then the least in�nite ordinal.In set theory, see e.g. [Ebb79], the following theorem is shown:Theorem 4.1. On the basis of ZF the following three statements are equivalent:



4. THE AXIOM OF CHOICE AND ITS EQUIVALENTS 13Axiom of Choice: For every set S and every family fSigi2I of non-emptysubsets of S there is a choice function ' : I ! S such that '(i) 2 Sifor all i 2 I.Zorn's Lemma: Let Q = (V;�) be a qo. If every ascending (descending)chain in Q is bounded then there is a maximal (minimal) element in Q.Well-Ordering Theorem: For every set S there is an order relation �such that (S;�) is a wo.Here ZF is the Zermelo-Fraenkel axiom system of set theory including the axiomof foundation. We can not go into the details of that system. We simply remarkthat this axiom system is one of the equivalent axiomatic formulations of the foun-dations of modern set theory. We will use the Axiom of Choice resp. Zorn's Lemmafrequently.4.1. Cartesian Products and Minimal Bad Sequences. For every familyfQigi2I of qo's there is the componentwise ordering on the Cartesian product�i2IQi given by v � w if vi �Qi wi for all v = �i2Ivi, w = �i2Iwi and i 2 I.Lemma 4.1. Let Q = �V;�Q � and R = �W;�R � be a qo. Then Q � R is awqo i� Q and R are wqo's.Proof. \=)" Let v1; v2; . . . be a sequence in Q. Then (v1; w) ; (v2; w) ; . . . forsome w 2 W is a sequence in Q�R, so it is good. So v1; v2; . . . is good, too.\(=" Let (v1; w1) ; (v2; w2) ; . . . be a sequence in Q�R. v1; v2; . . . has a perfectsubsequence v�(1); v�(2); . . . , say. w�(1); w�(2); . . . is good so there are i < j such thatw�(i) � w�(j). But this shows the claim.The following remark is an easy observationRemark 4.1. Let a; b 2 IN and A be an antichain in !�! such that �a; b� 2 A.Then jAj � a+ b.A generalization of this fact to !3, say, does not holdRemark 4.2. Let k 2 IN. Then there is an antichain A in !3 such that �1; 1; 2� 2A and jAj = kSet A = n�i; k � i; 1� j 1 � i � k � 1o [ n�1; 1; 2�o.This means that given one element v 2 V k we will not be able to give a boundon the maximal length of a bad sequence where v is the �rst element.A special case of Cartesian products are sequences where I = ! and Qi = Q0for all i 2 !. Observe that the in�nite Cartesian product Q! with the usual



14 I. INTRODUCTIONcomponentwise ordering does only lead to a wqo if Q is the order on one point.This is because �C2�! is not well founded and �A2�! consists of exactly one in�niteantichain. But we obtain another important property of Q!.Lemma 4.2. Let Q be a well founded but not a wqo. Then there is a minimalbad sequence in Q!.Proof. Let ��vji�i2! �j2! be an arbitrary descending chain in Q! of badsequences in Q i.e(1) for each j 2 ! we have that �vj1; vj2 . . . � is a bad sequence in Q and(2) for each i 2 ! we have that v1i � v2i � . . .Since Q is well founded �vji�j2! is stationary for every i 2 !. Let v1i be theminimum say. The sequence �v1i �i2! is obviously a lower bound for��vji �i2! �j2!(4.1)It is bad since for each pair i1 < i2 there is j 2 ! such that v1i1 = vji1 and v1i2 = vji2.So v1i1 � v1i2 cannot hold since �vji�i2! is bad.So we have shown that every descending chain has a lower bound. Zorn's Lemmagives the claim. 5. Hereditary PropertiesA property E of the elements of a qo Q is hereditary if the subset of elementswith that property forms a lower ideal of Q i.e. if�E(w) ^ (v � w) =) E(v)� :(5.1)Every antichain A de�nes a hereditary property byPropA (v) = : _v02A (vo � v)(5.2)Indeed if v � w and there is v0 with v0 � v then v0 � w holds too. If A = fvgwe simply write Propv.If Q is also well founded we may also assign to each hereditary property E anantichain in Q=�= ObstrE = Min f[v] 2 V=�= j E(v) = false g ;(5.3)



5. HEREDITARY PROPERTIES 15the set of (minimal) obstructions of E.Prop and Obstr are inverse:Lemma 5.1. Let Q be well founded. Then PropObstrE = E and ObstrPropA = A,i.e., Prop and Obstr de�ne a 1-1 correspondence between the set of hereditary prop-erties in Q and the set of antichains of Q=�=.We omit the proof which is just a straightforward calculation.Lemma 5.2. Let Q be well founded and let the set of its antichains be countable.Then Q is a wqo.Proof. If Q is not a wqo it has an in�nite antichain A. All subsets of A areantichains too, so the set of antichains can not be countable.
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CHAPTER IIOrdered Structures and Complexity Classes6. Quasi Orders and Worst-Case Complexity6.1. Proper Encodings. To relate qo's and complexity classes we have to saysomething about encodings and the related encoding length for the objects of agiven qo.Observe that if V has an encoding then jV j is at most countable.Mostly the corresponding encoding of our objects will not be important by itself,so we will simply speak of length (v). The property which is important for us isgiven in the following de�nition.Definition 6.1. An encoding of the qo P = (V;�) is called proper (with resp.to �) if length is hereditary , i.e., ifv < w =) length (v) < length (w)(6.1)All encodings which are commonly used for graphs or posets are proper withrespect to all order relations introduced on these objects. If e.g. we encode a graphG by a list of edges clearly every subgraph or induced subgraph of G has a smalerencoding since it has fewer edges.This justi�esGeneral Assumption 6.1. All qo's in this section will be properly encoded.Lemma 6.1. Every properly encoded qo is well founded.Proof. Let c be the encoding and v1 � v2 � . . . be a descending chain of theqo. lengthc (vi) is a decreasing sequence so there is N such that for all i � Nfollows lengthc (vi) = lengthc (vN) = l1. c is injective so there are at most jAjl1di�erent vi with i � N . So there is an element v0 in the sequence which appearsin�nitely many times. 17



18 II. ORDERED STRUCTURES AND COMPLEXITY CLASSESThis again justi�esGeneral Assumption 6.2. Every qo in this section will be properly encodedand thus countable and well founded.Remark 6.1. Let Q = �V;� � be a properly encoded qo, n 2 IN and Vn =fv 2 V j length (v) = ng then Vn=�= is an antichain in Q=�=.In general this implies also that the cardinality of antichains in our qo's will notbe bounded. This is because for any \reasonable" encoding the number of elementswith an encoding length less than a given number should be a superlinear function.6.2. Well Quasi Orders and Tests for Hereditary Properties.Theorem 6.1. Let P be one of the complexity classes P, NC, P�, NC�, NP,co-NP, DEC and let P = (V;�) be a properly encoded qo then the following twostatements are equivalent:(1) P is a wqo and for every v 2 V Propv 2 P(2) Every hereditary property is in P.Proof. First we show 1 =) 2.Let E be a hereditary property in P . E is characterized by its �nite obstructionset ObstrE, see section 3. Let ObstrE = fv1; . . . ; vkg. For v 2 V we know thatE(v) () : k_i=1 (vi � v) () k̂i=1: (vi � v) () k̂i=1Propvi (v)(6.2)But with Remark 2.2 the right hand side is in P and so is E.Now we show 2 =) 1. The second part of 1 follows easily since Propv is ahereditary property. So we have to show that P is a wqo.Assume that this were not the case. P is properly encoded so it is well founded.So with Lemmas 5.1 and 5.2 there would be more than countably many heredi-tary properties a contradiction to Remark 2.1.Theorem 6.1 should be interpreted very carefully. If we have an interesting prop-erty it gives only evidence for a given input not having that property. Namely itpoints to a forbidden substructure which inhibits the property. This substructurebelongs to a �nite set and there is an algorithm which tests presence of this sub-structure. So it can be easily used to show that the property is in co-NP.In a sense there is no natural evidence why a certain property holds. The factthat the obstruction set for the property is �nite is not constructive in general. Inmost cases it relies on the Axiom of Choice. We will return to that aspect later.



6. QUASI ORDERS AND WORST-CASE COMPLEXITY 196.3. Algorithmically Solvable Problems and Well Quasi Orders. Nowwe want to show that algorithms on wqo's can be taken as a model for manyalgorithmical questions. The reason for that is very simple, we easily can de�nean appropriate qo for any encoded set.Theorem 6.2. Let E0 2 P be a problem de�ned on the encoded set of instancesV . Then there is an order relation � on V such that(1) the encoding is proper,(2) (V;�) is a wqo(3) E0 is hereditary with respect to �(4) every hereditary property E in (V;�) is in P.Proof. De�ne � by(v � w) () ��E0(v) = E0(w)� ^ �length (v) � length (w) � �(6.3)With that 1 and 3 clearly are ful�lled.For 2 it remains to show �niteness of the antichains, since the relation is clearlywell founded. Let A be an antichain. It consists of two partsAt = fv 2 A j E(v) = true gand Af = fv 2 A j E(v) = false g :We show that At is �nite say.There is a value l such that for all v 2 At length (v) = l, since v;w 2 A withdistinct encoding length would be related by the de�nition of �.But since the encoding is injective jAtj must be �nite. A similar argument holdsfor Af so we have 2.For 4 observe that Propv is in P. So Theorem 6.1 together with 2 gives 4.6.4. Graph Minors. The theory of graph minors is the example for the useof the machinery given in this section. It was mainly developed by Robertson andSeymour in series of articles called \Graph Minors". We can not go into details ofthat approach, but we will state the main de�nitions and results that are relevantfor our purposes.Definition 6.2. Let G and G0 be graphs. G is a graph minor of G0, G �min G0,if it can be obtained from G0 by the following three operations:(1) Delete a vertex.(2) Delete an edge.(3) Contract an edge.



20 II. ORDERED STRUCTURES AND COMPLEXITY CLASSESThe main structural result for graph minors is the following theorem that waspreviously known as Wagner's Conjecture.Theorem 6.3. The set of �nite graphs equipped with �min is a wqo.The main step for an algorithmic result for our context is a solution for thefollowing class of problems:Problem 6.1. H-MinorInstance: Graph G = (V;E)Question: Does G contain a minor isomorphic to H?Theorem 6.4. For every graph H there is an algorithm to test H-Minor intime O �jV j3�.The main result is then an easy consequence of the things said above:Theorem 6.5. For every property E on graphs that is hereditary with respectto �min there is an algorithm to test it in time O �jV j3�.Theorem 6.4 can be improved if H is planar:� For every planar graph H there is an algorithm to test H-Minor in timeO �jV j2�.� For every property E on graphs that is hereditary with respect to �min andsuch that there is a planar graph H with :E(H) there is an algorithm totest it in time O �jV j2�.The articles of the Graph Minors Series published in journals until now areGraph Minors I to X. These are [RS83a], [RS86a], [RS83b], [RS90a], [RS86b],[RS86c], [RS88a], [RS90c], [RS90b], [RS91].Until now XI to XVI circulate as manuscripts, these are [RS85b], [RS86d],[RS86e], [RS87], [RS88b], [RS89].This theory can be used to solve several problems algorithmically. Besides givinga uni�ed approach to many problems that have been solved before it gives alsoqualitative improvements on the running time for some of the problems and solvesproblems where the complexity status was not known. Among the problems withimproved running time isProblem 6.2. k-PathwidthInstance: Graph GQuestion: Is there an interval graph G0 such that G is isomorphic to asubgraph of G0 and the clique size ! (G0) < k?



7. AVERAGE TIME COMPLEXITY OF HEREDITARY PROPERTIES 21One of the problems where the complexity status was not known is the following| not even membership in NP has been proven before.Problem 6.3. Linkless EmbeddingInstance: Graph GQuestion: Is there an embedding of G into 3-space such that no pair ofcircles in G forms a link?Up to now no proof for an obstruction set characterization for this property hasbeen given. So we only have an existence proof of an algorithm. This means if weknew that set we had and algorithm.Overviews over Graph Minors are rare and probably not up-to-date, see [RS85a],[RS90d] and [Fel89].Various authors participated with improvements of algorithms and applicationof the theory to particular problems. Among them are e.g. [BK91], [Lag90], [Ree91],[FL88c], [FL88b], [FL85], [FKL88], [FL92], [FL88a] and [FL89].7. Average Time Complexity of Hereditary PropertiesWe want to give a general method to speed up average time complexity ofalgorithms. By \speeding up" an algorithmwe mean the following. Assume we havean algorithm TE to test a certain property E. This algorithm might be expensive.Our aim is to avoid a call to TE by putting a cheaper algorithm SE in front.SE should give one of two possible answers:false The input does not have property E.maybe The input might or might not have property E.As long as the answer \maybe " is rare and the running time of SE is fast, wewill gain something by executing SE �rst and then TE only if necessary. We makethis more precise by the following de�nitions.Let Q = (V;�) be a properly encoded qo andVn = fv 2 V j length (v) = ng :We assume for each n that all v 2 Vn are equally likely, i.e., there is a uniformdistribution P on Vn. So P (fvg) = 1=jVnj for all v 2 Vn.We want to formalize a choice of several independent and small substructures ofof a large object in V . For example we want to chose several independent subgraphsof a certain size from a graph. A sample X for Q is a family of random variablesXn;�;i : Vn ! V� with the following properties for all � 2 IN:(1) Xn;�;i(v) � v(2) There is a non-decreasing function l�(:) such that for each n 2 IN the setof random variables nXn;�;1; . . . ;Xn;�;l�(n)o is independent .



22 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES(3) There is a probability 0 < p� < 1 such that for all n 2 IN, v0 2 V� and all0 < i � l�(n) the random variables Xn;�;i ful�llP �Xn;�;i = v0� � p�We call l� the sample length and p� the sample probability of X. With q�we denote 1 � p�. q� is an upper bound for P �Xn;�;i 6= v0�.The following lemma estimates the probability that a certain obstruction v0appears as substructure of an element v.Lemma 7.1. Let X be a sample on Q, v0 2 V� and v 2 Vn. Then P �v0 6� v� �(q�)l�(n)Proof. This follows directly from the independence of the set of random vari-ables nXn;�;1; . . . ;Xn;�;l�(n)o sinceP (v0 6� v) � P (v0 6= Xn;�;i(v) j i = 1; . . . ; l�(n)) � l�(n)Yi=1 P (v0 6= Xn;�;i(v))(7.1)A property E on Q is called sparse iflimn!1 jfv 2 Vn j E(v) = true gjjVnj = 0:(7.2)It is dense if this fraction tends to 1.The following theorem shows that hereditary properties are sparse in a verygeneral setting.Theorem 7.1. Let Q = (V;�) be properly encoded with sample X such thatthe sample length l�(:) is unbounded for every �. Then every non-trivial heredita-ry property in Q is sparse.Proof. Let E be a hereditary property. Since it is non-trivial there is somev0 2 V� for some � such that :E(v0) holds. Then for all v 2 Vn with E(v) we havethat v0 is not below v, v0 6� v. SoP �E(v) = true � � P �v0 6� v� � (q�)l�(n)(7.3)Since l�(:) is unbounded this shows the claim.



7. AVERAGE TIME COMPLEXITY OF HEREDITARY PROPERTIES 23A sample algorithmAX is an algorithm that incrementally produces a sampleX. We assume that such an algorithm is implemented as two distinct subroutines.The �rst one performs some initialization and the other one is given in such a waythat for all 0 < i � l�(n) the i-th call of this routine outputs Xn;�;i(v).We denote with tinit�;A and tinc�;A the time such an algorithm needs for an initialphase and for each incremental step respectively.Now let E be a hereditary property and v0 2 V� be an obstruction for E, i.e.,E is false on v0. In addition assume we are given an algorithm TE that outputsE(v) with running time tTE(n) if n = length (v).Consider the known test routine TE as being expensive; tTE(n) grows faster thanwe want. Here \growing fast" can mean di�erent things:- super-polynomial,- linear (or low polynomial) with enormous constants of proportionality or- super-polylogarithmic,depending on the setting we want to deal with. The following algorithm imple-ments a strategy to avoid the call to this routine. It simply puts the test whetheror not v0 = Xn;�;i(v) for some i in front of TE.Algorithm 7.1. averageAX ;TE;v0Input: v 2 VOutput: E (v)(1) n := length (v)(2) Initialize AX with v and n(3) for i := 1 to l� (n) do begin(4) Xi := AX(5) if (Xi = v0) then begin(6) Output := false(7) stop(8) end(9) end(10) Output := TE(v)(11) stopLemma 7.2. The average complexity of averageAX ;TE;v0 is inO �tinit�;A + tinc�;A + ql�(n)� � tTE(n)�Proof. The �rst term is obvious. The third term is just the probability that TEis executed multiplied with its running time. For the second term observe that the



24 II. ORDERED STRUCTURES AND COMPLEXITY CLASSESprobability for the i-th execution of the for loop is bounded by qi�1� .So the average time this loop needs isO0@l�(n)Xi=1 qi�1� � tinc�;A(n)1A = O0@tinc�;A(n) � l�(n)Xi=1 qi�1� 1A = O  tinc�;A(n) � 1p�! :(7.4)But p� is a constant depending only on v0 and not on v.We conclude with the following theorem:Theorem 7.2. Let E be a hereditary property on Q = (V;�) and AX be asample algorithm for Q. Suppose there is an algorithm TE to test E that has worstcase running time tT (n) = O ��1=q��l�(n)� for all �. Then E can be tested inaverage time O �tinit�;A + tinc�;A�.Proof. We may assume that E is non-trivial, i.e., it has an obstruction v0 2 V�for some �. Consider the running time of averageAX ;TE;v0.The third term of the complexity given in Lemma 7.2 isO �ql�(n)� � tT (n)� � O �ql�(n)� � �1=q��l�(n)� � O (1) :(7.5)That shows the claim.8. Average Time Complexity of Graph PropertiesWe will exemplify this approach for average time complexity with the set Gindof �nite graphs ordered by the induced subgraph relation �ind.All algorithms for hereditary properties in Gind, for which we found good av-erage time algorithms in the literature, rely on investigations of the propertiesthemselves. They usually test the property on some induced subgraphs | estima-tions of the average running time then are made by estimations about the numberof yes-instances for the property. See e.g. [Wil84] and [PS92b].8.1. Representations of Graphs. We will use the following notation.The vertices of a graph G = (V;E) are denoted with v0; . . . ; vn�1. For an in-dex set fi1; . . . ; ikg we denote with Gfi1;... ;ikg the subgraph induced by the ver-tices fvi1; . . . ; vikg and with G[i;j] the subgraph of G induced by the verticesvi; vi+1; . . . ; vj.There are several di�erent datastructures that are commonly used for graphs.The main di�erences among them are the way we obtain the information whetheror not an edge is present in the graph and the space needed to store the graph.



8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 25We will denote with retr (G; i; j), retrieval time, the time to retrieve the edgefi; jg.(1) We may have random access to the information, i.e., each query costsO (1). This is commonly implemented by using a matrix, the adjacen-cy matrix, to store the particular information. The space needed is thenO (n2).(2) We may have access via lists.(a) For each vertex vi there is a list of its outgoing edges. These typesneed O �n+ jEj� space. The lists may be(i) sorted according to j. Then retr (G; i; j) = O (j).(ii) unsorted. Then retr (G; i; j) = O (n).(b) There is a global list for all edges. These types need O �jEj� space.Here we also may distinguish two types. The list may be(i) sorted according to i and j. Then retr (G; i; j) = O (i � n+ j).(ii) unsorted. Then retr (G; i; j) = O �jEj�.(3) The graph may be given by an oracle, i.e., a routine that gives the infor-mation required. Here we may distinguish analogous types as for lists withthe same retrieval costs, counted in the number of times we need to call ouroracle. Clearly we can not say anything about space needed in that model.The worst case retrieval cost of a graph is denoted with retr (G) = maxi;j retr (G; i; j).We also need some more de�nitions when we want to deal with average timecomplexity of algorithms. We chose the simplest probability model that is in usefor graphs: We consider only graphs G = (V;E) over a �xed set of verticesfvi j 0 � ig. We then have that V = fv0; . . . vn�1g for some n.In particular we will distinguish isomorphic graphs the isomorphism betweenthem does not induce the identity on the vertices.An induced subgraph GS of a graph G is obtained in the following way: IfS = fi0; . . . ; i��1g such that i0 < i1 < . . . < i��1, then GS is the graph withvertices v0; . . . ; v��1 and an edge between vj and vk i� nvij ; viko 2 E(G). SeeFigure 8.1 for an example.Let edgei;j(G) denote the random variable that is true if in G there is an edgebetween vi and vj. Then P �edgei;j(G) = true � = 12. In addition we will assumethat the set of random variables fedgei;j(G) j i < jg is independent.We will denote with the access time, acc (G) asacc (G) = maxi;j retr (G; i; j)minfi; jg+ 1 :(8.1)



26 II. ORDERED STRUCTURES AND COMPLEXITY CLASSESt tt tt t t t tt tt t@@@@SSSSSS ������@@@@ ������ ������@@@@SSSSSS @@@@������1 20 34 0 13 201 23Figure 8.1. Two distinct induced subgraphsThis function is a \normalized" cost function, it measures the access to \small"edges. It depends on the datastructure by which the graph is given. According toour di�erent representations of graphs we obtain.1: G is given as adjacency matrix. Then acc (G) = O (1).2(a)i: G is given as sorted lists of edges. Then acc (G) = O (1), too.2(a)ii: G is given as unsorted lists of edges. Then acc (G) = O (n) sincethen we have to check the whole list to know if there is an edge adjacentto vertex v1.2(b)i: G is given as one sorted list of edges. Then acc (G) = O (n), too.2(b)ii: G is given as one unsorted list of edges or, equivalently, as an oraclethat successively outputs the next edge. Then acc (G) = O (n2).8.2. Average Time Complexity of Induced Graph Properties. Accord-ing to section 7 we want to give a sample algorithm for the set Gind of �nite graphsordered by the induced subgraph relation �ind.With that sample algorithm we will showTheorem 8.1. Let E be a hereditary property on Gind and assume there is analgorithm TE to test E(G) for a graph G = (V;E) with n = jV j in time 2O(n).Then there is an algorithm to test E in average time O (acc (G))The arguments we will give also show the following corollary that gives a O (1)average complexity if we have fast access to \small" edges of the graph. Clearlythis only makes sense if we do not have to read the graph any more, for exampleif we want to use our algorithm as subroutine for other problems.Corollary 8.1. Let E be a hereditary property on Gind and assume there isan algorithm TE to test E(G) for a graph G = (V;E) with n = jV j in time 2O(n).Provided that the input graph G is present either as sorted lists of edges or asadjacency matrix there is an algorithm that needs O (1) time in average.



8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 27From this we will obtain fast average time algorithms for many problems.Corollary 8.2. Let k be a �xed constant. The following properties of a graphG can be calculated in O (acc (G)) average time(1) pw (G) � k(2) tw (G) � k(3) � (G) � k(4) ! (G) � k(5) � (G) � k(6) k (G) � k(7) perfectness of GHerepw (G) is the pathwidth of G, the minimal clique size of an interval graph G0 suchthat G is isomorphic to a subgraph of G0 minus 1, see also k-Pathwidthon p. 20,tw (G) is the treewidth of G, the minimal clique size of a chordal graph G0 suchthat G is isomorphic to a subgraph of G0 minus 1,� (G) is the chromatic number of G, the minimum number of colors needed tocolor G,! (G) is the clique size of G, the maximal size of a clique in G,� (G) is the stability number of G, the maximal size of an independent (stable)set of G,k (G) is is the clique cover number, the minimal number of cliques neeeded tocover G.The proof of this corollary will occupy a whole section, see section 8.4 below.8.3. A Sample Algorithm for Induced Subgraphs. An easy sample algo-rithm for this kind of properties would be to take all subgraphs induced by thevertex sets vi��+1; . . . ; v(i+1)��. But this would only give jn� k induced subgraphsand would thus not be su�cient to prove Theorem 8.1 with help of Theorem 7.2.For that purpose we have to give a sample algorithm such that the correspondingsample length l� dominates c � n for every constant c.Algorithm 8.1. samplerec�, recursive versionInput: A graph G with vertex set fv0; . . . ; vn�1g, n = �k for some k.Output: A sequence �H1; . . . ;Hl�(n)� of induced subgraphs of G all having � ver-tices.(1) m := n=�(2) if (k > 1) then begin



28 II. ORDERED STRUCTURES AND COMPLEXITY CLASSES(3) for i := 0 to �� 1 do begin(4) samplerec� �G[i�m;(i+1)�m�1]�(5) end(6) end(7) for i := 0 to m� 1 do begin(8) Output := Gfi;i+m;i+2m;... ;i+(��1)mg(9) endWe assume that we throw away super�cial vertices if our input graph has anumber of vertices that is not a power of �.Lemma 8.1. The output of samplerec� (G) de�nes a sample X with samplelength l�(n) = k � �k�1 if k = jlog� n k.Proof. We show that the graphs �H1; . . .Hl�(n)� are independent choices. Thisis clear if we restrict ourselves to the set given in loop (7). To see independence ofthe whole set observe that the subgraphs that are given as input to the recursivecall have no edge in common.To see that the sample length l�(n) = k � �k�1 apply induction on k.It is clear that this algorithm can be implemented in such a way that it has atotal running time of O ��2 � k � �k�1� if the adjacency matrix of G is given. Thismeans in particular that we used O (n log n) edges for the subgraphs out of O (n2)that were possible.We need an analysis that is a little more detailed. For that we give an iterativevariant of our algorithm.Algorithm 8.2. sampleiter�, iterative versionInput: A graph G with vertex set fv0; . . . ; vn�1g, n = �k for some k.Output: A sequence �H1; . . .Hl�(n)� of induced subgraphs of G all having � ver-tices.(1) r := 1(2) while (r < n) do begin(3) i0 := 0(4) while (i0 < n) do begin(5) for i := i0 to i0 + r � 1 do begin(6) Output := Gfi;i+r;i+2r;... ;i+(��1)rg(7) end(8) i0 := i0 + � � r



8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 29(9) end(10) r := � � r(11) endThe following is an easy observationRemark 8.1. Both versions of samplerec� take the same set of subsets of [n]to produce the same set of induced subgraphs as output.The reason why we gave the iterative version is the following lemma that wouldnot be true for the recursive one.Lemma 8.2. The iterative version of sampleiter� can be implemented in such away that(1) it needs constant time for initialization(2) it needs time O �� � �i+ �� � acc (G)� to generate the i-th sample subgraphif 0 � i < n=� � 1.(3) it needs time O (�2) to generate each other subgraphs.Proof. Statement 1 is clear.To see 2 observe that the subgraphs in question are those induced by the subsetsfvi��; . . . ; vi��+��1g. We can access all edges adjacent to vertex vi that are neededin time O ��i+ �� � acc (G)�. This shows 2.During the generation of these subgraphs we may build up the adjacency matrixof G since we access all pairs vi, vj with i < j and know whether or not they sharean edge. This shows 3.Proof of Theorem 8.1. We have to revisit the proof of Lemma 7.2, i.e., theestimation of the average time complexity of the algorithm average.The second term of the running time now reads



30 II. ORDERED STRUCTURES AND COMPLEXITY CLASSESO0@l�(n)Xi=1 qi�1� � � � �i+ �� � acc (G)1A= O0@l�(n)Xi=1 i � qi�1� � acc (G)1A= O0B@ acc (G)�1 � q��21CA= O �p�2� � acc (G)�(8.2)This is O (acc (G)) since p� is a constant.The previous proof also gives an indication how the constants of proportionalitylook like. According to the proof of Theorem 7.2 the expensive algorithm TEcontributes only an additive constant to the average time of averagesample�;TE;v0.By making the constant of proportionality in Theorem 8.1 large enough, we canensure that the running time of TE is properly bounded by 2c�n, say. So the averagecontribution of TE to the running time can be universally bounded | the bounddepending only on our speci�c machine model.Corollary 8.3. There is a universal constant C such that for every heredita-ry property E in Gind that has a test algorithm TE as considered in Theorem 8.1and that has an obstruction consisting of � vertices can be tested in average timet(G) with t(G) � 8><>:C � 2(�2) � acc (G) if acc (G) = O (retr (G)).C � 22(�2) � acc (G) if acc (G) = O (retr (G) =n)(8.3)This shows that if we have a fast datastructure to access edges with smallendpoints, we may gain an average time speedup. This speedup implies a growthof the constant of proportionality, which seems to be acceptable when � is small.The proof of this corollary follows directly from what is said above, so we omitit.8.4. Special Properties | Proof of Corollary 8.2. Now we come to Corol-lary 8.2, i.e., we want to show that several graph properties �t into our setting.The properties we investigate are just a small subset of what is possible | thesubset chosen is more or less arbitrary and mainly motivated to give the reader abetter insight.



8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 31Observe that the properties given have very di�erent worst-case complexity. Itvaries from well behaved polynomial, i.e. k not in the exponent, via NP-complete,to problems for which the complexity status is not known.The \easiest" cases are those of pathwidth and treewidth. They are both NP-complete if k is part of the input as was shown by Arnborg, Corneil and Proskurows-ki, see [ACP87], and remain so even if the input graph is very restricted, see e.g.[Gus89].But if k is a �xed constant we have fast algorithms to test whether or nottw (G) � k. The fastest realistic algorithm for tw (G) � k was given in [Ree91].It has a worst case complexity of O (n log n). So it �ts well into our setting if thegraph is given as sorted list of edges, say. We then obtain an average complexityof O (1).For pathwidth, the fastest algorithm to test pw (G) � k is given by the theoryof Robertson and Seymour and runs in O (n2) This is so since there are planargraphs (e.g. trees) with pw (G) > k for every k. A more practical algorithm thatwe could use is one given by a dynamic programming technique in [ACP87]. Butaccording to Theorem 8.1 any such algorithm has O (1) average complexity if weembed it into our setting.Now we consider ! (G) � k. This problem is againNP-complete if k is part of theinput. But in contrast to the two previous problems there is no (even theoretical)algorithm known to solve the problem on �xed k in time O (n�), � not dependingon k.In the following we denote the set f0; . . . ; n� 1g by [n].Algorithm 8.3. T!;kInput: Graph G with n vertices and positive integer kOutput: true if ! (G) � k, false otherwise.(1) for all S : hk + 1i ! [n] do begin(2) if GS = Kk+1 then begin(3) Output := false(4) stop(5) end(6) end(7) Output := trueThis algorithm can be implemented such that the running time is O �nk+1�. SoTheorem 8.1 can be applied easily | averagesamplek ;T!;k ;Kk+1 has the right averagetime complexity, if k is �xed.



32 II. ORDERED STRUCTURES AND COMPLEXITY CLASSESSince this algorithm itself is just looking for the only minimal obstruction Kk+1,we even don't have to apply our sample algorithm. We simply have to warrantthat the enumeration in line (1) is done in the right order.Though � (G) seems to be very similar to ! (G), it is not. As we have seen! (G) � k can be solved in polynomial time if k is a �xed constant. In contrast tothat the problem � (G) � k is NP-complete even is k � 3 is a �xed constant, see[NR87]. It was �rst solved in average time O (1) by Wilf [Wil84], see also [BW85]and [Wil86].Algorithm 8.4. T�;kInput: Graph G with n vertices and positive integer kOutput: true if � (G) � k, false otherwise.(1) for all � : [n] ! hki do begin(2) if � is an admissible coloring of G then begin(3) Output := true(4) stop(5) end(6) end(7) Output := falseThis brute force algorithm has a running time that is O (n2 � kn), so it �ts intoour setting if k is �xed. Clearly nobody would try to attack the problem like this,if she/he would be really interested in the chromatic number of a speci�c graph.It only makes sense, if we investigate many graphs | graphs that we presume asall being randomly chosen, independent of each other.The minimal obstruction we would use is clearly Kk+1 again.The reader may easily give analogous algorithms for � (G) and k (G). The �rstthing that comes in mind is to apply the algorithms above to �G, the complementarygraph of G. But this is not a good idea, since it would destroy the average casecomplexity in general.Now we give an algorithm to test whether or not a graph is perfect. A graph iscalled perfect if � (G0) = ! (G0) for all G0 �ind G. It seems that for this problem nogood average time algorithm has been published before, but that Steger, [Ste92],independently found such an algorithm that relies on the estimation of the numberof perfect graphs that was given in [PS92a], and that we do not need for ourapproach.This problem is chosen as example, for which we need a muchmore sophisticatedalgorithm. The basic idea is to use Lov�asz's Perfect Graph Theorem, namely that



8. AVERAGE TIME COMPLEXITY OF GRAPH PROPERTIES 33G being perfect is equivalent to! (G0) � � (G0) � ���V �G0����(8.4)for allG0 �ind G, see the book of Golumbic [Gol80] for more details and references.Algorithm 8.5. TperfInput: Graph G with n verticesOutput: true if G is perfect, false otherwise.(1) for all G0 �ind G with � 2 vertices do initialize ! [G0] and � [G0](2) for i := 3 to n do begin(3) for all G0 �ind G with i vertices do begin(4) ! [G0] := 0 ; � [G0] := 0(5) allclique := true ; allstable := true(6) for all H �ind G0 with i� 1 vertices do begin(7) if ! [H] 6= i� 1 then allclique := false(8) if � [H] 6= i� 1 then allstable := false(9) ! [G0] := maxf! [H] ; ! [G0]g(10) � [G0] := maxf� [H] ; � [G0]g(11) end(12) if allclique then ! [G0] := i(13) if allstable then � [G0] := i(14) if �! [G0] � � [G0] < i� then begin(15) Output := false(16) stop(17) end(18) end(19) end(20) Output := trueLemma 8.3. Tperf(G) is correct and has running time O (n � 2n).Proof. First we show correctness. It is clear that any induced subgraph G0 ofG is only visited if all its induced subgraphs H have been visited before. Lines (4)to (13) calculate ! (G0) and � (G0). If G0 is a clique or independent set all itsinduced subgraphs H are so. This lets us detect whether or not G0 has such astructure.



34 II. ORDERED STRUCTURES AND COMPLEXITY CLASSESIf it is not a clique or independent set then one of its induced subgraphs Hcontains a maximal clique or a maximal independent set respectively. So we justhave to calculate the maximum over all such subgraphs.Thus we calculate ! (G0) and � (G0) correctly. But if we know both values wecan easily apply Lov�asz's Theorem, and so we have correctness.For the running time observe that the two outer loops together give the factor2n. The inner loop gives O (n), so we have in total O (n � 2n) = O �2logn � 2n� =O �2n+log n� = 2O(n).



CHAPTER IIISome Well Known QO's revisitedNow we revisit four well-known qo's, given by relations on antichains, strings, treesand special classes of posets. We investigate these ordered structures for di�erentreasons. The relation on antichains will be useful to show that certain relationslead to wqo's. The others then are given merely to exemplify some of the toolswe developed until then. We will use the relation on antichains to show that theyare wqo's and then Theorem 6.1 to show existence of algorithms for hereditaryproperties.Then we use these results on trees to show that any class of posets with boundeddecomposition diameter forms a wqo and admits linear time tests for hereditaryproperties.Our approach di�ers from other general approaches known for \tree-like" struc-tures, e.g. those of Arnborg et al. [ALS91] or Courcelle et al. [CM92]. These authorsconstructively give algorithms for problems that can be formulated with certainlogics. This constructiveness is on one side an advantage since, in principle, it ispossible to build a \compiler" that gets a logic formula as input and outputs arecognition algorithm for the corresponding property. The advantage of our ap-proach is that we can show existence of algorithms for problems where constructiveproofs might not exists. 9. A QO on AntichainsWe want to relate the obstruction sets of two properties E1 and E2 where oneimplies the other. The following de�nition is then motivated by the observationthat if a2 is a minimal obstruction for E2 then there is a1 2 Obstr (E1) witha1 � a2. It will give us a comfortable mechanism to prove that some qo are indeedwqo. 35



36 III. SOME WELL KNOWN QO'S REVISITEDDefinition 9.1. Let A1 and A2 be antichains in the qo Q = �V;� �. We write�A1 �anti A2� () ^a22A2 _a12A1 (a1 � a2)(9.1)Notice that �anti is a little bit counter-intuitive since A � A0 implies that A0 �antiA.It seems that a related relation between antichains was �rst used by Dilworthin [Dil58], cf. also [Beh88] or [Reu91]. Indeed it is used for the maximal antichainsof a �nite poset. On these objects the relation given here and the one where wewould exchange the quanti�ers in 9.1 coincide. We will see below that this relationon antichains is equivalent to a relation on lower ideals that was considered beforeby various authors, see e.g. [DPR81] or [LMP85].Lemma 9.1. �anti is a qo relation on the set of antichains.Proof. Re
exivity is clear.�anti is transitive: Let A1 �anti A2 �anti A3. For all a3 2 A3 there is a2 2 A2 and aa1 2 A1 with a1 � a2 � a3. So we have a1 � a3, too. This gives transitivity.�anti is antisymmetric. Suppose we have A1 �anti A2 and A2 �anti A1. We show thatA2 � A1.For all a2 2 A2 there is a1 2 A1 with a1 � a2. There is also a02 2 A2 witha02 � a1. So a02 � a1 � a2. But A2 is an antichain so a02 = a2 = a1. This showsA2 � A1. A1 � A2 follows by symmetry.Lemma 9.2. Let E1 and E2 be hereditary properties in Q = �V;� �, Ai =ObstrEi, Vi = fv 2 V j Ei(v) = true g and �Vi = V n Vi the corresponding lowerand upper ideals. Then the following statements are equivalent.(1) E1 =) E2(2) V1 � V2(3) �V2 � �V1(4) A1 �anti A2Proof. It is clear that 1, 2 and 3 are just reformulations of one another.First we show \1 =) 4 ". Assume we have :�A1 �anti A2� so there is a2 2 A2such that for all a1 2 A2 : (a1 � a2). Since these are the obstructions for E1 thismeans that �E1(a2) = true � =) �E2(a2) = true � , a contradiction to a2 beingan obstruction for E2.



9. A QO ON ANTICHAINS 37Now we show \4 =) 1". Assume A1 �anti A2. Let for v 2 V E2(v) be false. Thenthere is a2 2 A2 with a2 � v. By assumption there is a1 2 A1 with a1 � a2 thusa1 � v holds too. So E1(v) = false . So :E1 =) :E2 and thus E1 =) E2.Another property we will need is given in the following lemma.Lemma 9.3. Let Q = �V;� � be a qo and A1 and A2 be antichains in Q. Thenthere is a unique antichain B which ful�lls B �anti A1 and B �anti A2 and is maximalwith that property.Proof. Clearly B = Min fA1 [A2g the set of minima of the union of A1 andA2 ful�lls all properties desired.An order with a unique lower bound for any arbitrary pair of elements is oftencalled a semi-lattice.We denote the unique maximal lower bound with inf fA1; A2g. Clearly this con-struction leads also to a unique lower bound of any �nite set of antichains. For�nite posets this, and an analogous observation for an upper limit, shows that theset of maximal antichains forms a lattice, see e.g. [Dil58, Reu91].The same construction gives also a unique maximal lower bound for arbitrarycollections of antichains if Q is well founded.Theorem 9.1. Let A be an arbitrary set of antichains of the well founded qoQ = �V;� �. Then there is a unique antichain B which ful�llsB �anti A for all A 2 A(9.2)and is maximal with that property.Proof. Denote with infa2AA, or inf for short, the set of minima of the union ofA 2 A. Because Q is well founded this is well de�ned and ful�lls property 9.2.Let B have property 9.2. We show that B �anti inf.Let a 2 inf. Then there is A 2 A with a 2 A and so there is b 2 B such thatb � a.Lemma 9.4. Let Q = �V;� � be a well founded qo but not a wqo. Then there isa minimal in�nite antichain with respect to �anti.



38 III. SOME WELL KNOWN QO'S REVISITEDProof. Let A1 �anti A2 �anti � � � be a descending chain of in�nite antichains. LetA1 = fv 2 V j there is N 2 IN s.t. v 2 Ai for all i � Ng = infi2INAi(9.3)We show that A1 is in�nite. Assume the contrary. Then there is N0 such thatA1 � Ai for all i � N0. AN0 is in�nite so there is an a0 2 AN0 nA1. By inductivechoices there are ai 2 AN0+i such that a0 � a1 � � � � . All these ai are not in A1since otherwise a0 would be related to an element of A1 which is a subset of AN0.This descending chain in Q is stationary. So there are a1 and N1 such thatai = a1 for all i � N1. But then a1 2 A1 a contradiction.So any descending chain of in�nite antichains has a lower bound that is in�nite,too. Zorn's Lemma gives the claim.Lemma 9.4 does not mean that the set of antichains of Q is well founded withrespect to �anti if Q is not a wqo. For that let fa1; a2; . . .g be a countable antichainof Q. Then Ai = fa1; . . . ; aig for i 2 IN de�nes an in�nite descending chain thatis not stationary.Theorem 9.2. Let Q = �V;� � be well founded but not a wqo, A � V be aminimal in�nite antichain and let V <A = fv 2 V j there is a 2 A with v < ag.Then Q<A = �V <A;� � is a wqo.Proof. Clearly Q<A is also well founded.Now let B � V <A be an arbitrary antichain and inf fA;Bg as given above.inf fA;Bg is an antichain. By de�nition we have also inf fA;Bg �anti A soinf fA;Bg must be �nite.But since B � V <A we have that B � inf fA;Bg. So B is �nite, too.Corollary 9.1. Let Q, A and v 2 V <A be as above. Then the setAkv = fa 2 A j a k vg ;is �nite. 10. StringsNow we revisit a well-known qo given by a relation on strings. We investigatethis ordered structure to exemplify some of the tools we developed until now. Wewill use Theorem 9.2 to show that this is a wqo and then Theorem 6.1 to showexistence of algorithms for hereditary properties.



10. STRINGS 3910.1. Higman's Theorem.Definition 10.1. Let P = (V;�) be a qo and � , � 2 V �, � = (a1; . . . ; ar),� = �b1; . . . ; bs�. Then we say � �? � if there is a mapping � such that ai � b�(i)and that is strictly monotonous. See Figure 10.1.
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����������� ��Figure 10.1.With P � we denote (V �;�? ) which clearly is a qo. It is also clear that \�? " isadmissible for the concatenation of strings. If we have � �? � and 
 �? � then� � 
 �? � � � holds, too. The following theorem is due to Higman [Hig52].Theorem 10.1 (Higman's Theorem). P � = (V �;�? ) is a wqo i� P = �V;� �is a wqo.We give a variation of the proof of Nash-Williams [NW63], see also [Pou85].Proof. \=)" holds since P may be seen as the suborder of P � consisting ofthe one-element strings.\(=" It is easy to see that P � is well founded since in a descending chain�1 �? �2 �? � � � all �i have bounded length.Suppose now P � is not a wqo. With Lemma 9.4 it would have a minimal in�niteantichain A, say.Let Q = �P ��<A be the wqo of elements in P � which are strictly below thatantichain, see Theorem 9.2. The setA0 = f� 2 P � j there is v 2 V such that v� 2 Ag(10.1)is a subset of Q. It must be in�nite so it has a perfect subsequence of pairwisedisjoint elements, (�i)i2! say.



40 III. SOME WELL KNOWN QO'S REVISITEDNow consider the corresponding sequence (vi)i2! in P such that vi�i 2 A. It isgood, so there are i < j with vi � vj. Thus we would also havevi�i �? vj�j(10.2)a contradiction.10.2. Fast Tests for Strings. For the following discussion on algorithms forstrings we will assume that all strings are given by an array. Since we want tohandle strings over arbitrary wqo, we naturally can not say anything about anencoding of the elements in these. Therefore we assume that the elements in sucha wqo are given as pointers and that we have an oracle to test the relation. Intotal, if we want to consider Q� for a wqo Q = (V;�)� size (�) = c �Pli=1 size (ai), where � = a1 � � � al and c is a universal constantnot depending on � and� an algorithm lesseqQ (a; b) to test whether or not a � b is given.We will showTheorem 10.2. Let Q be a qo and P 2 P;P� ;NC;NC� ;NP;DEC, � � 1. Ifevery hereditary property in Q is in P then every hereditary property in Q� is inP, too.First we give an easy algorithm for sequential machines.Algorithm 10.1. scanseqQ (�; �)Input: � = a1 � � � ak and � = b1 � � � blOutput: �1 < � � � < �k such that ai � b�i if it exists or false if not.(1) if k = 0 then return true(2) if k > l then return false(3) for i := 1 to l do ci := bi(4) for i := 1 to k do cl+i := ai(5) j := 1(6) for i := 1 to k do begin(7) while :lesseqQ (ai; cj) do j := j + 1(8) �i := j(9) j := j + 1(10) end(11) if �k > l then return false(12) else return �



10. STRINGS 41The following remark is easy, so we omit the proof.Remark 10.1. scanseq is correct and has a running time of O (k + l) plus O (l)queries to the oracle lesseq.Lemma 10.1. Let Q = (V;�) be a qo such that Propa for �xed a 2 V is in P�for � � 1. Then for every �xed � 2 Q� Prop� is in P� , too.Proof. Let � = a1 � � � ak be �xed. The running time of scanseq without theoracle queries is O (k + l) = O (l) since k is �xed.Let cmax be the maximum of the constants of proportionality for the tests forproperties Propa1; . . .Propak . The running time for the queries is the bounded bycmax � lXi=1 size (bi)� � cmax �  lXi=1 size (bi)!� � cmax � size (�)�(10.3)Now we give a parallel version or our algorithm. It is based on the observationthat the embedding we �nd with scanseq is a very special one. The numbers �i areas small as possible.Algorithm 10.2. scanparQ (�; �)Input: � = a1 � � � ak and � = b1 � � � blOutput: �1 < � � � < �k such that ai � b�(i) if it exists or false if not.(1) if k = 0 then return true(2) if k > l then return false(3) i0 := 0(4) for j := l + 1 to l + k do mj := j(5) for j := 1 to k do begin(6) for i := 1 to l do parallel begin(7) if lesseq (aj; bi) then mi := i(8) else mi := l + i(9) end(10) �j := mini>i0 mi(11) i0 := �j + 1(12) end(13) if �k > l then return false(14) else return �It is clear that scanpar gives the same output as scanseq.



42 III. SOME WELL KNOWN QO'S REVISITEDLemma 10.2. Let Q = (V;�) be a qo such that Propa for �xed a 2 V is in NC�for � � 1. Then for every �xed � 2 Q� Prop� is in NC� , too.Proof. It is clear that the running time for the loop (6) is dominated by thelargest time for the lesseq. The number of processors can be estimated in thesame way as the running time in the sequential case.The calculation of the minimum can be done e�ciently with O (l=log l) pro-cessors in time O (log l) with re-scheduling. Re-scheduling is based on the ideathat, if we have to perform a task log l times such that we need l=2m processorsin step m, we can distribute the work to be done on l= log l processors such thatthe running time increases only by a constant factor. So it is e�cient, too.11. Trees11.1. Structured Trees.Definition 11.1. A rooted tree is a triple �V; r; S� where V is a �nite set,r 2 V , the root, and S is a string of rooted trees such that either �V; r; S� =�frg ; r; ;� or if S = T1 . . .Tk with Ti = �Vi; ri; Si� then(1) V n frg = Si Vi and(2) Vi \ Vj = ; for i 6= j.For T = �V; r; S� and v 2 V de�ne Tv as the unique subtree of T rooted at v.�����> @@@@I������BBBBBB BBBBBB������TkT1 � � �� rFigure 11.1. A rooted treeAn element v 2 V is called a leaf if Tv = �fvg ; v; ;� and it is called a in-ner node if it is not a leaf.Rooted trees can be easily seen as special partial orders. For every such treeT �V; r; S� de�ne r > v for all v 2 V n frg. > is transitive by the recursivede�nition of T .



11. TREES 43For two elements v;w 2 V de�ne the least common ancestor LCAT (v;w) asthe smallest x 2 V such that x � v and x � w. Such an element always exists.The postorder on T is the unique linear extension <post of < which ful�lls(1) if r0 = LCAT (v;w) 62 fv;wg and the subtree of v in Tr0 is left of the subtreeof w then v <post w(2) if v is a node in Tr0 then v <post r0Let T1 = �V1; r1; S1� and T2 = �V2; r2; S2� be rooted trees. T1 is homeomor-phically embeddable into T2, T1 �� T2, if there is an injection � : V1 ! V2 whichrespects <post and LCA. i.e., for all v;w 2 V1 the following conditions are satis�ed.� �LCAT1 (v;w) � = LCAT2 (�(v); �(w))(11.1) v <post w () �(v) <post �(w)(11.2)Now let Q = �W;�Q � be a qo. A structured or weighted tree with weightsin Q is a quadruple Tw = �V; r; S;w� where T = �V; r; S� is a rooted tree andw : V ! W is an arbitrary function.Denote the set of structured trees over Q with TQ.Tw11 is homeomorphically embeddable into Tw22 , Tw11 �� Tw22 , if there is ahomeomorphic embedding � of T1 into T2 which respects the weight functions. i.e.,for all v 2 V1 w1 (v) �� w1 (�(v)) :(11.3)Denote �TQ;�� � with Q�. It is clear that this is a qo.Observe that the postorder for each structured tree de�nes a string over Q ina natural way. Two such strings are related by �? if the corresponding trees arerelated by �� . So the following famous theorem of Kruskal, [Kru60], can be seen asan extension of Higman's Theorem 10.1.Theorem 11.1 (Kruskal's Tree Theorem). Q� is a wqo i� Q is a wqo.Proof. For the proof we follow basically the same ideas as described for Hig-man's Theorem.First it is easy to see that Q� is well founded if Q is so. This is because the car-dinalities of the groundsets of a descending chain of structured trees are bounded.



44 III. SOME WELL KNOWN QO'S REVISITEDAssume now that Q� is not a wqo. Then there is a minimal in�nite antichain A,say. Let Tw = �V; r; S;w� 2 A be with S = �Tw1 ; . . . ; Twk �. For all i we have thenthat Twi �� Q Tw.With Theorem 9.2 we have that T the set of all these subtrees is a wqo. SoHigman's Theorem 10.1 gives that the strings over this wqo T� form a wqo, too.If we denote with S the set of strings S that occur in the de�nition of someT 2 A we have that S � T�. So there is a sequence S1 �? S2 �? � � � such that thecorresponding trees Ti = �Vi; ri; Si;wi� 2 A are pairwise distinct.Now consider the corresponding subsequence of the weights of the roots�wi (ri) �i2! :(11.4)It is good, so there are i < j such thatwi (ri) �Q wj (rj)(11.5)But then we may extend the embedding of Si into Sj such that we achieveTwii �� Twjj ;(11.6)a contradiction.11.2. Algorithms for Structured Trees. We will give test algorithms forstructured trees. For that purpose we proceed analogously as we did for stringsand give a sequential one �rst, and a parallel one afterwards. As we did there,we will also assume that the weights are given by pointers and we have an oraclelesseq.The rooted trees will be given in such a way we have direct access from a vertexv to the string Sv of the subtree Tv.Theorem 11.2. Let Q be a qo and P 2 P;P� ;NC;NC� ;NP;DEC, � � 1. Ifevery hereditary property in Q is in P then every hereditary property in Q� is inP, too.We split the proof of this theorem over several lemmas. By the de�nition itwould be easy to formulate a recursive algorithm to calculate Tw11 �� Tw22 . Wechose an iterative approach that allows a parallelization afterwards.Algorithm 11.1. embedseqQ (Tw11 ; Tw22 )



11. TREES 45Input: Tw11 and Tw22 . The vertices of both trees are given in postorder. Accord-ing to that order they are identi�ed with the numbers 1; . . . ; k and 1; . . . ; lrespectively.Output: Tw11 �� Tw22(1) if k = 0 then return true(2) if k > l then return false(3) for j := 1 to l do begin(4) weightj := f0 < i � k j w1 (i) � w2 (j)g(5) valj := ;(6) end(7) for i := 1 to k do begin(8) for j := 1 to l do begin(9) if �Si1 �? Sj2� ^ (i 2 weightj) then valj := valj [ fig(10) end(11) for j := 1 to l do begin(12) valj := Ss2Sj2 vals(13) end(14) end(15) return (k 2 vall)It is easy to see that this algorithm is correct, since we access the vertices in theright order.Lemma 11.1. If T1 is �xed embedseq can be implemented such that it runs intime O (l) plus the time needed for O (l) queries to the oracle.Proof. All sets val: have a cardinality bounded by k. We may assume that weare given a representation of Bk, the Boolean Lattice on k points. This represen-tation can be chosen such that each of the set operations mentioned needs O (1)time.The critical calculations to consider are the test for �? and the union in line (12).When we access j the necessary information for all s 2 Sj2 is already presentat vertex s. To test �? build two strings in �Bk��; � = fs11g � � � fsmi1 g and � =vals12 � � � valsmj2 , where Si = s11; . . . ; smi1 and Sj = s12; . . . ; smj2 . Now clearly � �? �i� Si1 �? Sj2. So scanseqBk (�; �) does the job. Since every vertex appears in at mostone string Sj2 the time calls to scanseqBk need in total is O (l).An analogous argumentation holds for the union in line (12).



46 III. SOME WELL KNOWN QO'S REVISITEDThe following lemma is an immediate consequence, so we omit the proof.Lemma 11.2. Let Q = (V;�) be a qo such that Propv for �xed v 2 V is in P�for � � 1. Then PropTw11 for every �xed Tw11 2 Q� is in P� , too.Now we are going to parallelize the algorithm embedseq. We use an approachsimilar to the one chosen by Miller and Reif [MR85], see also Abrahamson etal. [ADKP89]. It can be seen as a generalization of the so called list ranking.List ranking is based on the observation that if we have a linked list, such thateach element is connected to its successor and to the successor of the successor,information may be propagated along this list in logarithmically many steps.For this algorithm we will assume that we have values parj2, giving the parentvertex of j in T2 if it exists, and gparj2 = parparj22 , the \grand parent" of j. Setparl2 = l and gparj2 = l if parj2 = l.Algorithm 11.2. embedparQ (Tw11 ; Tw22 )Input: Tw11 and Tw22 . The vertices of both trees are given in postorder. Accord-ing to that order they are identi�ed with the numbers 1; . . . ; k and 1; . . . ; lrespectively.Output: Tw11 �� Tw22(1) if k = 0 then return true(2) if k > l then return false(3) for j := 1 to l do parallel begin(4) weightj := f0 < i � k j w1 (i) � w2 (j)g(5) valj := ;(6) end(7) for i := 1 to k do begin(8) for j := 1 to l do parallel begin(9) okj := �Si1 �? Sj2� ^ (i 2 weightj)(10) end(11) for m := 0 to blog l c do begin(12) for j := 1 to l do parallel begin(13) if okj then begin(14) okparj := true(15) okgparj := true(16) end(17) end(18) end(19) if :okl then return false



12. SPECIAL CLASSES OF POSETS 47(20) for j := 1 to l do parallel begin(21) if okj then valj := valj [ fig(22) end(23) end(24) return trueLemma 11.3. embedpar is correct. Besides the calls to lesseqQ it can be im-plemented in such a way that it has a running time of O (k log l) and needs O (l)processors.Proof. Correctness: We have to show that val always contains the right infor-mation, i.e., i 2 valj if the subtree T j1 of T1 rooted at i can be embedded intothe subtree T j2 of T2 rooted at j. But this is true since if we had j0 such that T i1embeds \directly" then all its parent nodes have the information after O (log l)propagation steps (12).The estimation of the running time and amount of processors needed is straight-forward and thus omitted.Observe that the running time strongly relies on the fact that we are using aCRCW PRAM. The only write con
ict that can occur is that two processors wantto write the same value true into the same place for their common parent resp.grandparent.The algorithm given here is not totally optimal since the product of time andamount of processors needed is O (l � log l) and not O (l). This could be improvedby re-scheduling of loop (12). But the technique would be much more complicatedas for the calculation of a minimum, say.To conclude the proof of Theorem 11.2 we give, without proof,Lemma 11.4. Let Q = (V;�) be a qo such that Propv for �xed v 2 V is in NC�for � � 1. Then PropTw11 for every �xed Tw11 2 Q� is in NC� , too.12. Special Classes of PosetsBecause of their treelike composition rules some classes of posets that are recur-sively composed from small ones give a good example for the theory of structuredtrees. This approach was �rst used by Damaschke in [Dam90] for a certain classof graphs, the cographs.



48 III. SOME WELL KNOWN QO'S REVISITED12.1. Series Parallel Orders and Cographs. We give an application ofTheorem 11.2 to a special class of orders called series parallel orders and to theassociated class of comparability graphs called cographs. See e.g. [M�oh89] for ref-erences for these objects.Definition 12.1. A �nite order is a series parallel order if(1) it is the order on 1 point,(2) it is obtained from series parallel orders by a series composition,(3) it is obtained from series parallel orders by a parallel composition.With Ospind we denote the set of �nite series parallel orders equipped with �ind.This recursive de�nition lets us easily de�ne associated structured trees to se-ries parallel orders:Definition 12.2. Let P be series parallel order. The cotree Tw = �V; r; S;w�of P is either the tree on one node that is labeled l i� P is the order on 1 point,or if P = P0 hfPig1;... ;ki then(1) S = �T1; . . . ; Tk� and Twii are the cotrees of the Pi,(2) w (v) = wi (v) for v 2 Pi(3) w (r) = s if P0 = Ck and(4) w (r) = p if P0 = Ak.So a cotree is a rooted tree weighted over the trivial order Qind = �fl; s; pg ; ;�where l, s and p stand for \leaf", \series" and \parallel" respectively. As we de�nedit here the cotree of a series parallel order is not unique.The following is an easy observation, see e.g. [M�oh89]:Lemma 12.1. Let P = (V;<) be a series parallel order and Tw = �V; r; S;w� acorresponding cotree. Then v < w i� w (LCAT (v;w)) = s and the subtree of v isleft of the subtree of w.An easy corollary out of that isCorollary 12.1. Let P1 = (V1; <1) and P2 = (V2; <2) be series parallel ordersand Twii = �Vi; ri; Si;wi� the corresponding cotrees such that Tw11 �� Tw22 . ThenP1 �ind P2.The following is then a slight extension of a result of Damaschke, [Dam90]Theorem 12.1. Ospind is a wqo and every hereditary property E in Ospind has atest that runs in O (n) sequential time or O (log n) on O (n) processors providedthe cotree of the input is given.



12. SPECIAL CLASSES OF POSETS 49Indeed Damaschke has proven an analogous result for cographs that are thecomparability graphs of series parallel orders.Proof. The wqo-property is an immediate consequence of Kruskal's Tree The-orem together with Corollary 12.1.For the running time observe that the set of vertices of an induced suborder P0of a series parallel order P induces a \subtree" T0 of the cotree T for P that is acotree for P0.But every obstruction P0 for E admits only a �nite number of cotrees. So to testour property we have to test all trees for all obstructions, in total a �nite numberof trees, the number only depending on E, not on the input.So Theorem 11.2 proves the claim.A cotree can be found in O (n+m) sequential time, see [CPS85], resp. inO (log n) on O �n2+mnlogn � processors, see [LO92], where n is the number of pointsand m is the number of m related pairs. So we need these running times if we haveto construct the cotree.12.2. Bounded Decomposition Diameter. We extend what we said aboutOspind to other classes of orders. Therefore let in the following S = �Q1; . . . ; Qk�be a �nite set of �nite orders that is assumed to be �xed in the sequel, and letQi = (Xi; <i) for every i.Definition 12.3. OSind is the set of orders given by the following recursive def-inition equipped with �ind:(1) The order on one point is in OSind.(2) For all i and x 2 Xi if Px 2 OSind then Qi hfPxgx2Xii 2 OSind.This classes of orders have been introduced by Habib and M�ohring, [HM87],where a slightly di�erent de�nition is given.The value maxi njXijo is called the decomposition diameter of the classOSind.If S = fA2; C2g we again obtain the class of series parallel orders.We de�ne a generalized cotree in an analogous way we de�ned the cotree forseries parallel orders. For that purpose we assume that the elements x 2 Xi of theorders Qi 2 S are given in a �xed ordering x1i ; x2i ; . . . . Then we obtain a structuredtree for each P 2 OSind with weights chosen form S [ flg. Again we easily obtainthe following lemma:Lemma 12.2. Let P = (V;<) 2 OSind, Tw = �V; r; s;w� a corresponding cotree,v;w 2 V with w (LCAT (v;w)) = Q0 = (X0; <0) and xv; xw 2 X0 such that v resp.w is the subtree of xv resp. xw. Then v < w i� xv <0 xw.



50 III. SOME WELL KNOWN QO'S REVISITEDAgain an easy corollary out of that isCorollary 12.2. Let P1 = (V1; <1) and P2 = (V2; <2) be in OSind and Twii =�Vi; ri; Si;wi� the corresponding cotrees such that Tw11 �� Tw22 . Then P1 �ind P2.This is so since only such pairs of nodes of the cotrees are mapped for whichthe corresponding elements of S are identical. In particular all such pairs of nodeshave the same degree.Now we obtain an analogous theorem as before, but for much wider classes oforders.Theorem 12.2. OSind is a wqo and every hereditary property E in OSind has atest that runs in O (n) sequential time or O (log n) on O (n) processors providedthe cotree of the input is given.Proof. With what is said above and Kruskal's Theorem OSind clearly is a wqo.We have to show that it admits linear time algorithms for the properties PropP0 ,P0 any �xed order in OSind.We cannot argue the same way as we did for Theorem 12.1 since we have noequivalence in Corollary 12.2. There are to ways to circumvent this problem. Eitherwe may modify our relation on the cotrees to get equivalence or we may give analternative algorithm that computes PropP0. We chose the later one.For that let P0 2 OSind be arbitrary but �xed and P1; . . . ; Pk be an arbitraryenumeration of the induced suborders of P0. Denote the set fPi j i = 0; . . . ; kg [f(;; ;)g with R and the set of subsets of R with 2R.For every Q = (V;<) 2 S with V = fv1; . . . ; v`g and every � = (r1; . . . ; r`) 2(2R)` we calculate the following set in advanceIndu(Q; �) = nP 2 R j 9 si 2 ri s.t. P is induced suborder of Q hfsigi=1;... ;`io(12.1)that is the set of all suborders of P0 that can be constructed from Q by substi-tuting the vertices of Q with orders chosen from particular sets of orders ri.All these sets can be calculated in advance in constant time since S and P0, andthus R, are �xed.But with this information at hand it is easy to modify embed such that forevery cotree Tw of an order P 2 OSind that is given as input the whole setfP 0 j P 0 2 R, P 0 is induced suborder of Pg is computed from the correspondingsets that are calculated for the children of the root of Tw.



CHAPTER IVSpecial Order Relations for Combinatorial Structures13. Formal LanguagesWe introduce now a qo relation on formal languages. We will then apply themachinery of Chapter II, i.e., we will show a wqo-theorem and give algorithms forhereditary properties.The main motivation fo us to study these objects is that in Section 14 we willreduce the problem of posets being related by the so called chain minor relationto a similar problem on languages.13.1. The String Minor Relation for Formal Languages. For � = a1 � � � akand � = b1 � � � bl we say � �$ � if there is a mapping � : f1; . . . ; lg ! f1; . . . ; kgwhich is strictly monotonous and such that a�(1) � � � a�(l) = b1 � � � bl or equivalentlyif � and � are related by �? and if their alphabet forms an antichain.For two formal languages L0; L � A� we say that L0 �$ L if there is some � 2 Lwith � �$ � for all � 2 L0.Observe that for two languages L0 and L to be related by �$ it is necessary thatdom (L0) � dom(L). This restriction is relaxed in the following.A labeling � from A to B is a mapping � : A ! B�1 or equivalently a partialmapping fromA toB. For all a 2 A with �(a) = ; we will say that � is undeclaredfor a. � is the trivial labeling if it is undeclared for all a 2 A.For a labeling � from A to B and � = a1 � � � ak 2 A� �(�) is the concatenation�(a1) � � � �(ak) of strings in B�.For a language L � A� set �(L) = S�2L �(�). We say L0 �lang L if there is a labeling� such that L0 �$ �(L). � is then called a string morphism.13.2. Well Quasi Ordering Finite Languages. One of our applications forour relation on languages we have in mind are the sets of maximal chains of posets.51



52 IV. SPECIAL ORDER RELATIONSThere we will see each maximal chain as string of its elements | the elementsappearing in the string in the same order they appear in the chain.To show a suitable wqo-theorem on languages we do not allow symbols to appearseveral times in a particular string. This �ts well to our application on posets. Sowe will consider languages L that ful�ll:Definition 13.1. A language L such that length (�) = jdom (�)j for all � 2 Lis called non-repetitive or simple.We then are able to showTheorem 13.1. Every set of �nite non-repetitive languages ordered by �lang is awqo.The proof of this theorem depends strongly on De�nition 13.1. We think thatit should hold in the general case, too, but a proof probably will need some newideas.We will be able to prove two other theorems for two other restricted classes oflanguages. The hardest to prove will beTheorem 13.2. Every set of �nite languages S such that there is a constant lSwith length (L) � lS for all L 2 S is a wqo with respect to �lang.With the following lemma Theorem 13.1 will be an immediate consequence ofTheorem 13.2.Lemma 13.1. Every in�nite sequence (Li) of �nite non-repetitive languages suchthat length (Li) is unbounded is good.Proof. We show in particular that there is some j such that L1 �lang Lj . Setl = size (L1) . Construct a string (with repetition of elements) � 2 dom(L1) byconcatenating all � 2 L1 in an arbitrary order. We know that length (�) = l. Let� = b1 � � � bl .Since length (Li) is unbounded there is j such that length (Lj) � l and thusthere is � 0 = b01 � � � b0m 2 Lj with m = jdom (� 0)j = length (� 0) � l .Now de�ne a labeling � from dom (Lj) to dom(L1) by�(b0) = 8<:bi i� b0 = b0i for 1 � i � l; otherwise .(13.1)It is clear that � has all properties desired.The reader may verify that De�nition 13.1 is not needed in its full strength forthat proof. It would be su�cient to assume that jdom(Li)j is increasing.



13. FORMAL LANGUAGES 53Proof of Theorem 13.1. Let S be a set of non-repetitive languages and let�Li�i2! be an arbitrary sequence of elements of S. If �length (Li) �i2! is unboundedapply Lemma 13.1. If it is bounded apply Theorem 13.2.Much easier than the one for Theorem 13.2 will be the proof of the following the-orem that gives the wqo-property for the relation �$ if we consider only languagesover a �xed �nite alphabet. Remember that this relation is much more restrictivethan �lang. The proof is easier since we may apply the machinery of section 9.Theorem 13.3. Let A be �nite. Then every set of �nite formal languages S �A� is a wqo with resp. to �$ .Proof. We proceed analogously to the theorems of Higman and Kruskal.Again it is easy to see that we have a well founded relation. Suppose now thatour assumption is false. Then there would be a minimal in�nite antichain A oflanguages with respect to �anti.For every L 2 A let �L 2 L be an arbitrary string L0 = L n f�Lg and A0 =fL0 j L 2 Ag. Because of Theorem 9.2 A0 is a wqo.Let �Li�i2! be an in�nite sequence such that L01 �$ L02 �$ . . . is perfect. ThenHigman's Theorem shows that (�i)i2! is good so there are i < j with �i �? �j.But then Li �$ Lj , a contradiction.Observe that the statement of this theorem would not hold for in�nite for-mal languages since the relation �$ then is not well founded.13.3. Bounded Length. First we will consider the special case that all stringsin all languages have the same length. For that purpose we will need some furthertechnical de�nitions to characterize common behavior of strings. In particular wewant to classify strings which have certain positions identical and certain othersnot.A type over A will denote a string over A with several positions unde�nedor blanc i.e. Type (A) = �A [ f g ��. Here ' ' is an additional symbol not in A. k =  � � �  | {z }k for k � 0 are the trivial types.It is clear that A� � Type (A).We extend the set operations \\", \n" and \�" to types of strings of samelength in a natural way. For � = a1 � � � ak, � = b1 � � � bk we set � \ � = c1 � � � ck



54 IV. SPECIAL ORDER RELATIONSwhere ci = 8<:ai i� ai = bi otherwise.(13.2)We say � � � if � \ � = �. If � � � then � n � = c1 � � � ck whereci = 8<: if ai 6=  bi otherwise.(13.3)These operations have all properties we would expect | \ commutes and � istransitive and re
exive. So Type (A) forms a qo with resp. to �.In that qo we have initial and �nal segments as usual. For X;Y; T � Type (A)we may de�ne T YX , T between X and Y , byT YX = TX \ TX = f� 2 T j 9x 2 X; y 2 Y x � � � yg :(13.4)� and � are � -independent if � \ � � � .A language L is � -independent if all pairs � 6= � are so. For a language L wedenote by ind (�; L) the maximum cardinality of a � -independent subsetind (�; L) = maxnjL0j j L0 � L ; L0 � -independento(13.5)Looking at sequences of languages the following de�nition handles a situationwhich is ideal for our purposes | there is an isomorphic \sublanguage" in everylanguage in the sequence s.t. the amount of \other" strings gets arbitrary large.Definition 13.2. For a sequence L1; L2 . . . of languages a bottleneck is asequence T1; T2 . . . with Ti � Type (dom (Li)) and which ful�lls the followingproperties:(1) For all i 2 IN and � 2 Li there is �� 2 Ti with �� � �.(2) There is T0 s.t. Ti is isomorphic to T0 for all i 2 IN .(3) For all � 2 T0 either � 2 Li for all i 2 IN or the sequence ind (�; Li) isunbounded and monotonous.We will always assume that t� as required in 1 is maximal with respect to �having that property. For a simple example of a bottleneck see �g. 13.1. Here T0is indicated by the two boxes in every Li. Every string \passes" this boxes.Theorem 13.4. For every sequence �Li� of �nite languages with bounded lengththere is a choice � of a subsequence �L�(i)� that has a bottleneck.
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� � �� � �LiFigure 13.1. An Example of a bottleneckTo show this theorem we will present \algorithms" where the word algorithm isextended in a certain sense. We will consider choices of subsequences as one step.We do this in order to have a comfortable mechanism for recursive choices.First we consider an algorithm freeze which ful�lls the following speci�cations.Algorithm 13.1. freeze��Li� ; �Ti� ; �; T0�Input: sequences �Li� and �Ti�, Ti � Type (Li) s. t. jTij and jdom (Ti)j areglobally bounded.Output: Choice � of subsequence �L�(i)� and T0 s.t. all T�(i) are isomorphic to T0.It is clear that such a choice is possible, since there are only �nitely manyisomorphism types for the Ti .The second algorithm freeze& thaw contains the core of our argument. It con-sists of three phases:� Steps (1) to (5) (\Bottom") are executed at the lowest recursion level. Theyhandle two easy cases. One is that jLij is bounded, the other is that Li isitself its own bottleneck.� Steps (9) to (11) (\Init") initialize on higher recursion levels.� The loop starting at (13) (\Recursion") generates the recursive calls. Foreach possible type of string one such call is executed. Observe that for thosecalls we have �0 � � . Hence the deepest recursion level is bounded by themaximal length.



56 IV. SPECIAL ORDER RELATIONSAlgorithm 13.2. freeze& thaw��0; �Li� ; �; �Ti��Input: Sequence �Li� of languages, type �0 s.t. �0 � � for all i 2 IN and � 2 Li.Output: Choice � of subsequence �L�(i)� with bottleneck T�(i)Bottom:(1) if jLij is bounded then begin(2) freeze��Li� ; �Li� ; �; L0�(3) return � and L�(i)(4) end(5) if ind (�0; Li) is unbounded then begin(6) chose � s.t. ind ��0; L�(i)� is monotonous(7) return � and (�0)i2IN(8) endInit:(9) Let L0i � Li be maximum �0-independent(10) freeze��Li� ; �L0i� ; �; L0� ;(11) for all i 2 IN do Ti := ;(12) S := Type (dom(L0))Recursion:(13) for all � 2 SL0�0 with � 6= �0 do begin(14) for all i do L0i := �Li��(15) freeze& thaw��; �L0�(i)�; �0; �T 0�(i)��(16) � := �0 � � ; Ti := Ti [ T 0i(17) freeze��L�(i)� ; �T�(i)� ; �0; L00�(18) � := �0 � �(19) end ;(20) return � and �Ti�.We give some explanations of this algorithm. Suppose we run our algorithmwith �0 =  k. If ind ( k; :) is unbounded we will �nd a large language with manyindependent strings of length = k. This language then can be used to cover a smalllanguage L0 with length (L0) � k. See �gure 13.2 for an example.If ind is bounded (see �g. 13.3) the groundset of a maximum independent setof strings is bounded and one application of freeze& thaw without the recursivecalls gives a subsequence where all these sublanguages are isomorphic. But if welook carefully at the rest of the languages there may be parts for which we do nothave full control of what happens (indicated by \?"). For those parts we have to
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Figure 13.2. Many independent stringsapply freeze& thaw recursively. This leeds only to a �nite recursion depth sincethe parts for which we apply recursion are \essentially" shorter.A more detailed explanation and a proof of correctness of this algorithm isgiven in the discussion of the following two lemmas. Theorem 13.4 will then be animmediate consequence.Lemma 13.2. Given as input a sequence of languages as required, freeze & thawresults in �nitely many choices of subsequences and thus has a well de�ned output.Proof. Let the input �0 = t1 � � � tl and k = jfi j ti =  gj, the number of unde-�ned positions in �0. We proceed by induction on k.For k = 0 or k = 1 the statement is obvious. Let us suppose we have shown itfor all k0 < k.If freeze& thaw returns before step (9) we are done. If not, we know thatjdom (L0i)j and jL0ij are globally bounded, so step (10). runs correctly.But now jdom(L0)j is �nite, too. So there are only �nitely many � for whichthe loop (13) is executed.All these � are nontrivial and ful�ll �0 � � . The number of unde�ned positionsin � is strictly less than k and we may apply induction on each call in (15).This proves the statement.Lemma 13.3. Given as input a sequence of languages as required, the output offreeze & thaw is a bottleneck.
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Figure 13.3. Subsequence with isomorphic restrictionsProof. To show the bottleneck properties we have to assign a �� to all � 2 L�(i).If freeze& thaw stops before step (9) our choice is unique. Otherwise if there is� 2 T�(i) s.t. � = � we choose this � .If there is no such � we choose �� 2 T�(i) that is maximal with resp. to \�" .Such a �� always exists, since L0i was chosen to be maximum �0-independent.So there must be � 2 L0i with � \ � � �0 . Such a �0 has the appropriate length,since all elements of our languages have the same length. That shows property 1.Property 2. follows from the last execution of step (17).Property 3 holds since � is only put into Ti via step (3) or (5) on the deepestrecursion level. If it is put in by step (3) it was unique, and in step (5) ind ��; L�(i)�is unbounded.Now we give an algorithm bottleneck that gives a bottleneck in the case thatthere are strings of di�erent length and that this value is globally bounded by aconstant, `0 say.Algorithm 13.3. bottleneck`0 ��Li� ; �; �Ti��Input: Sequence �Li� of languages such that length (Li) � `0 for all i 2 IN.Output: Choice � of subsequence �L�(i)� with bottleneck T�(i)(1) � := id(2) for all i 2 IN do Ti := ;(3) for ` := 1 to `0 do begin(4) for all i 2 IN do Lì := f� 2 Li j length (�) = `g(5) freeze& thaw� `; L�̀(i); �0; T�̀(i)�(6) � := �0 � �



13. FORMAL LANGUAGES 59(7) for all i 2 IN do Ti := Ti [ Tì(8) end ;(9) freeze��L�(i)� ; �T�(i)� ; �0; T0�(10) � := �0 � �(11) return � and �Ti�.Lemma 13.4. Given as input a sequence of languages as required, the output ofbottleneck is a bottleneck.Proof. Clearly every call of freeze& thaw guaranties that for every � 2 L�(i)there is � in T�(i) with � � �. Since ���T�(i)��� is globally bounded freeze runs correctlyand so T0 has property 2 in De�nition 13.2.For property 3 observe that for � 2 T0 with length (� ) = l and such thatind ��; Ll�(i)� is unbounded, ind ��; L�(i)� is unbounded, too.13.4. Finding Related Languages.Lemma 13.5. Every sequence �Li� of �nite languages such that length (Li) isbounded is good.Proof. After application of bottleneckwith input �Li� we may assume w.l.o.g.that it has a bottleneck T0. We have to show that there is j s.t. L1 � Lj.Choose j s.t. ind (�; Lj) > size (L1) for all � 2 T0 with � 62 L1. Such a j existsbecause of property 3 of the bottleneck.We now have to �nd a partial mapping � from dom (Lj) to dom(L1).For all v 2 dom (T0) we set �(v) = v.For all � 2 T0 and all � 2 L1 with �� = � we choose inductively � 2 Lj with� � � and such that � is still undeclared for all v 2 dom (� n � ) \ dom (Lj). Thenwe extend � s.t. �(�) = �.This choice can always be done since all � in question have the same length as� and � , and since ind (�; Lj) is su�ciently large:If k the number of unde�ned positions in � and V� = dom(f� n � j � 2 Ljg) wehave that jV� j = k � ind (�; Lj). By construction � cannot use more than size (L1)elements of dom (Lj). So there is always some � left over that we can use.But now � is a partial mapping from dom(Lj) to dom (L1) s.t for every � 2 L1there is � 2 Lj with �(�) = � and thus L1 � Lj.



60 IV. SPECIAL ORDER RELATIONS13.5. Finding a Fixed Language as String Minor. We will show the fol-lowing theorem:Theorem 13.5. Every property of �nite non-repetitive languages which is he-reditary with resp. to � has a decision algorithm which runs in polynomial time.With Theorems 6.1 and 13.1 it will follow immediately fromLemma 13.6. Let L1 and L2 be �nite languages and k = size (L1) � 3. Thenthere is a constant c1 depending only on L1 and an algorithm to decide whether ornot L1 � L2 holds that runs in� c1 � size (L2) � jdom (L2)jk + c1 sequential time� constant time with O �size (L2) � jdom (L2)jk� processors.To prove this lemma we show that there is always a \small" language L0 thatis between L1 and L2 if L1 �lang L2, and that ful�lls L0 �$ L2.Lemma 13.7. Let L1 � L2 be �nite formal languages and k = size (L1) � 3.Then there is a language L0 which ful�lls:(1) L1 � L0(2) L0 �$ L2(3) jL0j � k(4) dom (L0) � k(5) size (L0) � k2.Proof. Let � be a string morphism which gives L1 �lang L2 and let �11; . . . ; �k1 bethe elements of L1 . There are strings �12; . . . ; �k2 in L2 such that �i1 �$ �(�i2). SetL0 = f�i2g and �0 = � ���L0 . L0 and �0 obviously have all properties desired.Proof of Lemma 13.6. First we give an algorithm and then we shortly de-scribe what is does.Algorithm 13.4. TestL1Input: Language L2.Output: true if L1 �lang L2, false otherwise.Prepro:(1) Find all possible L0 according to points 1, 3, and 4 and 5 of Lemma 13.7.Denote the corresponding set of languages with S.(2) ok := false



13. FORMAL LANGUAGES 61Find:(3) for all L0 �$ L2 with 4 do parallel begin(4) for all K0 2 S do parallel begin(5) lang-ok:= true(6) for all � 2 K0 do parallel begin(7) string-ok:= false(8) for all � 2 L0 do parallel begin(9) if scanparAk (�; �) then string-ok:= true(10) end(11) if : string-ok then lang-ok:= false(12) end(13) if lang-ok then ok:= true(14) end(15) end(16) return okL1 � L2 holds i� there is L0 as speci�ed in Lemma 13.7. There are only �nitelymany isomorphism types of such languages, so there are also �nitely many withchosen permutation of the elements. For each such L0 we test whether or notL1 � L0 holds.This preprocessing, Prepro, depends only on L1 .Then we have to test all �jdom(L2)jk � = O�jdom(L2)jk� induced sublanguagesof L2 with at most k symbols. Given a subset of dom(L2) of that size we maycalculate the induced sublanguage L0 of L2 in time O (size (L2)). We may alsoassume that we rename the symbols in dom(L0) to 1; . . . ; jdomL0j. Now we testfor each language K0 in S ifK0 �$ L0. This can be done in timeO �jK0j � size (L0)�.In total we obtain a running time ofO  jSj � jK0j �  jdom(L2)jk ! � size (L0)! � c1 � jdom(L2)jk � size (L2)(13.6)All this can be done e�ciently in parallel.Lemma 13.6 also indicates that the complexity strongly depends on the size ofthe underlying alphabet | the size of the language L2 itself only contributes alinear term.Finally all this gives usTheorem 13.6. Every property of �nite languages over a �xed �nite alphabetwhich is hereditary with resp. to � has a decision algorithm which runs in lineartime.



62 IV. SPECIAL ORDER RELATIONS14. PosetsNow we turn to �nite posets as objects of an ordered structure.14.1. The Chain Minor Relation. Let P = (V;<) and P 0 = (V 0; <0) beposets. We say P is chain minor of P 0, P � P 0, if there is a partial mapping� : V 0 ! V that has the following property:For every chain C in P there is a chain C 0 in P 0 such that � ���C0 isan isomorphism of chains.C 0 is then called a lift of C and � is called a chain morphism.Here � ���C0 denotes the partial mapping induced on P 0 ���C0 , the order restrictedto the groundset of C 0.Observe that every chain morphism is onto and that � de�nes a qo on any setof posets.Figure 14.1 gives a non-trivial example for this relation. vvvv vvvvvvvv vvvv vvvv vPPPPPPPPPPPPP ������� ����� AAAAAQQQQQQQ������������AAAAA QQQQQQQHHHHHHHHH������������������HHHHHHHHH��������������� 54 PP 0 5535251 6 7 8 91 2 3 4 4321 9876
Figure 14.1. A Chain Minor that is No SuborderObserve that in this example P is not a suborder of P 0, and that there is noother poset P 00 between them. So P 0 covers P with respect to �. So in general wecan not have nice descending chains with small intermediate steps from the largerposets to the smaller ones as we had for graph minors for example.14.2. Motivation from Scheduling. The chain minor relation has been in-troduced by M�ohring and M�uller in [MM92], where it is used to generalize certainapproaches in the theory of scheduling stochastic project networks.We will restrict ourselves to precedence constrain scheduling problems, i.e., forus such a problem is given by a poset P = (V;<) where V is a set of jobs andv < w means v must be scheduled before w. A schedule of P is then an assignmentof time intervals hlv; rwi to the jobs that is consistent with < or, equivalently, aninterval extension Q of P . In addition to P side constraints | such as processing



14. POSETS 63times, due dates, resource requirements for individual jobs or groups of jobs |might be given, but we will not go into the details of such specialized problems.See e.g. [MR89] for an overview.Usually there are several distinct parameters of a certain schedule that areconsidered. We will restrict ourselves to the maximum completion time and thenumber of processors or machines. The maximum completion time is the largestinterval endpoint needed (provided all are integers and the smallest one is 0);the number of machines can be de�ned as the width of the correspondinginterval order.Our relation is useful for scheduling problems because, loosely spoken, the chainsare those objects that cause restrictions for the jobs to be scheduled: the processingtimes of a chain leading to a certain job sum up to a lower bound for the beginningof that job.Theorem 14.1. Let P be an arbitrary poset and Q be an interval order. If P isa chain minor of Q then it is suborder, too.Corollary 14.1. Let P � P 0 and Q be a schedule of P 0. Then Q is a scheduleof P , too.Proof. We have P � P 0 � Q and so P � Q by transitivity of �. But thenTheorem 14.1 immediately gives the claim.To prove Theorem 14.1 we need a lemma.Lemma 14.1. Let �0 be a chain morphism from an interval order Q to a posetP = (V;<), and let v0 2 V be minimal with �����10 (v0)��� > 1. Then �0 can be modi�edto a chain morphism � such that ��1(v) � ��10 (v) for all v 2 V and such that�����10 (v0)��� = 1.Proof. Let Q be given by an interval representation hlw; rwi for all w 2 W . Wegive an algorithm to modify �0.Algorithm 14.1.(1) choose w0 2 ��10 (v0) s.t. rw0 is minimal.(2) ��1(v0) := fw0g(3) for all v 2 V n fv0g do begin(4) if v >�v0 then begin(5) for all w 2 ��10 (v) do begin(6) if lw < rw0 then ��10 (v) := ��10 (v) n fwg(7) end



64 IV. SPECIAL ORDER RELATIONS(8) end(9) ��1(v) := ��10 (v)(10) endWe have to show that for each maximal chain C in P there is still some chain C 0in Q that is a lift of C with respect to �. Let C 00 denote the lift of C with respectto �0. If none of the vertices in C 00 is touched by our algorithm there is nothing toshow.C 00 is only involved if it either contains w 2 ��10 (v0) with(1) rw � rw0 , or(2) lw < rw0 for w 2 ��10 (v) with v0�< v.For 1 we simply replace w by w0 in C 00 to obtain a new chain C 0 since rw1 � lw0for all w1 2 ��10 (v1) with v1 < v0. t tt t t ����������� AAAAA���� lw0rw0ww0w00vv0 C 002C 001
C 02

C 03
C2C1C3 Figure 14.2. Pasting ChainsFor 2 we have C1, C2, C 001 , and C 002 such that C = C1vC2 and C 00 = C 001wC 002 , see�gure 14.2.Now let C3 be a chain in P such that C3v0vC2 is maximal. Such a chain alwaysexist, since v covers v0. This chain has a lift C 03w00w0C 02 such that w00 2 ��10 (v0) andw0 2 ��10 (v). Now w0 ful�lls rw0 � lw0 and so it is not eliminated in this iteration.But then C 001w0C 02 is still a valid lift for C.Now we give an algorithm to solve the problem as a whole.



14. POSETS 65Algorithm 14.2.Input: Poset P = (V;<), interval order Q = (W;<) with given interval repre-sentation hlw; rwi for w 2 W , and ��1(v) � W for all v 2 V that de�nes achain morphism � from Q to P .Output: Embedding ' of P into Q.(1) for all v0 2 V in a linear extension of P do begin(2) choose w0 2 ��1(v0) s.t. rw0 is minimal.(3) ��1(v0) := fw0g(4) for all v 2 V s.t. v >�v0 do begin(5) for all w 2 ��1(v) do begin(6) if lw � rw0 then ��1(v) := ��1(v) n fwg(7) end(8) end(9) end(10) for all v 2 V do '(v) := ��1(v)The result of this algorithm when it is applied to the example of Figure 14.1 isshown in Figure 14.3. Here the boxes symbolize time slots for the jobs.
PP 01 2 3452 5351 546 7 89 9 876 5 4321Figure 14.3. Two SchedulesThe proof of Theorem 14.1 is now an immediate consequence of the followinglemma.



66 IV. SPECIAL ORDER RELATIONSLemma 14.2. Algorithm 14.2 is correct. Provided the transitive reduction of P isgiven it can be implemented such that it has a running time O (m+ n+ p) where nis the number of covering relations in P , m = Pv2V �����10 (v)��� and p is the maximaldi�erence between two endpoints of intervals for Q.Proof. For the correctness observe that with Lemma 14.1 at the end of ouralgorithm � is a chain morphism with j��1(v)j = 1 for all v 2 V . So ' is well-de�ned and an embedding.To obtain the running time we have to process the information needed e�ciently.For every v 2 V we assume that we have the values rw for w 2 ��1(v) in doublylinked list that is sorted. Thus we may assume that we always have random accessto the smallest among them to make the choice in (2).In addition we assume that we have the corresponding values lw in a sorted array.Now we can implement loop (5) by incrementally looking at the minimal elementin this array until we �nd one that is � rw0 . So we access all w with lw < rw0 inconstant time per each and can update the list of rw-values accordingly in constanttime per update. Since every w is involved at most once in such an update thetotal time needed for all updates is O (m).To initialize these lists resp. arrays we have to sort all values lw and rw. Thiscan be done in time O (m+ p) with e.g. bucketsort.With Theorem 14.1 we will be able to determine the complexity status for thefollowing problem:Problem 14.1. Chain MinorsInstance: posets P and QQuestion: Is P a chain minor of Q?We achieve the following proposition:Proposition 14.1. Chain Minors is NP-hard.Proof. We give a reduction from the following problem, see problem no. SS9 in[GJ79].Problem 14.2. Precedence Constrained SchedulingInstance: Poset P = (V;<) and values m and l.Question: Is there a scheduling for P in time l on m machines such thatall task v 2 V are performed in 1 time unit?



14. POSETS 67This problem has been shown to be NP-complete by Ullman in [Ull75].We may assume that for this problem m and l are less than n = jV j sinceotherwise the problem is easy to solve. So we may construct the weak order Q =Cl hfAmg1�i�li in time O (n2). P has a l-m-schedule i� P � Q.But now if we are able to decide P � Q, Theorem 14.1 shows that P �sub Q,too.Finally we remark that it is not clear whether or not a given partial mapping isa chain morphism can be tested in polynomial time. That is because the de�nitionmakes a statement about potentially exponentially many objects | the (maximal)chains of P . So it is not even clear if the decision problem for P � Q is in NP.But it is in NP if we restrict ourselves to the class of orders with height notexceeding 3. This is so because then the amount of maximal chains is rough-ly bounded by jP j3. Since Precedence Constrained Scheduling has beenshown by Lenstra and Rinnooy Kan, see [LR78], to be NP-complete if the input lis restricted to l � 3 (and thus P having height at most 3) we obtain the followingcorollary:Corollary 14.2. Chain Minors is NP-complete if the inputs P and Q arerestricted to have height at most 3.14.3. Well Quasi Ordering Finite Posets. Our �rst aim is the followingtheorem.Theorem 14.2. Any set of �nite posets is a wqo with respect to � .Proof. For a poset P every chain de�nes a string in V � in a natural way. LetLmax(P ) be the language given by the maximal chains of P .It is clear that Lmax(P ) � Lmax(P 0) =) P � P 0;(14.1)and that Lmax(P ) is non-repetitive. So Theorem 13.1 proves the claim.14.4. Algorithms for Posets.Theorem 14.3. Every property of �nite posets which is hereditary with resp. to� has a decision algorithm which runs| in sequential polynomial time| in constant time on a CRCW PRAM and uses polynomially many proces-sors.



68 IV. SPECIAL ORDER RELATIONSIn contrast to the argumentation above we can not use Lmax to prove Theo-rem 14.3 since it may be exponentially large compared with the poset. But we canuse similar arguments as we used for formal languages.Lemma 14.3. Let P1 � P2 be posets. Then there is a poset P0 which ful�lls:(1) P1 � P0(2) P0 is induced suborder of P2(3) jP0j � size (Lmax(P1))Proof. Let � be a chain morphism which gives P1 � P2 and let C11 ; . . . ; Ck1 bethe maximal chains of P1 . There are chains C12 ; . . . ; Ck2 in P2 such that � ���Ci2 isan isomorphism of chains for all i. Set V0 = SC i2, P0 = P2 ���V0 and �0 = � ���V0 . P0and �0 obviously have all properties desired.Lemma 14.4. Let P1 and P2 be �nite posets and k = size (Lmax(P1)) � 3. Thenthere is a constant l depending only on P1 and an algorithm to decide whether ornot P1 � P2 holds that runs| in O �k2 � jP2jk + l� sequential time| in O (k2 + l) time on a CRCW PRAM with O �jP2jk� processors.Proof. First we give an algorithm and then we shortly describe what it does.Algorithm 14.3. TestP1Input: Poset P2.Output: true if P1 � P2, false otherwise.Prepro:(1) Find all possible P0 according to Lemma 14.3.(2) Encode them as 0-1-strings.(3) Store them in a binary tree T .Init: Calculate the matrix of the transitive closure of P2.(4) ok := falseFind:(5) for all V0 � V2 with jV0j � k do parallel begin(6) P0 := P2 ���V0(7) if P0 2 T then ok := true(8) end(9) return ok



14. POSETS 69P1 � P2 holds i� there is P0 as speci�ed in Lemma 14.3. There are only �nitelymany isomorphism types of such posets, so there are also �nitely many with chosenpermutation of the elements. For each such P0 we test whether or not P1 � P0holds.We encode each of these posets as matrix of relations { put a 1 at place (i; j) ifxi < xj holds. Each matrix can then be seen as string of 0's and 1's with lengthk2.The set of all these strings can be handled e�ciently with a binary tree of heightk2, such that each string is represented by a path from the root to a leaf.This preprocessing, Prepro, depends only on P1 .Then, in an initialization phase, Init, we calculate the matrix for P2. This canbe done in time O �jP2j2�, but since we may assume k � 2 this makes no problem.Then we have to test all �jP2jk � = O �jP2jk� induced suborders of P2 with at mostk elements. Given a subset of P2 of that size we may calculate its matrix in O (k2)time and then scan the binary tree given above if it is valid or not.Thus each such suborder can be determined in O (k2) time.All this can be done e�ciently in parallel, the only exception is the initializationphase. To do this in constant time we need O �jP2j3� processors.Notice that if we assume a CREW instead of a CRCW PRAM the only thingwhich makes di�culties is the communication of results. To know if any of theposets is of a valid type we need O �log jP2jk� = O �log jP2j� time.Proof of Theorem 14.3. Let E be a property of �nite posets which is he-reditary with resp. to � . By Theorem 14.2 we know that the set of minimalobstructions for E is �nite, fP1; . . . ; Plg say.Set kmax = maxfsize (Lmax(Pi)) ; 3g . With Lemma 14.4 we know that the testfor �P1 � P� _ � � � _ �Pl � P�(14.2)can be done in O �jP jkmax� time resp. in constant time with O �jP jkmax� proces-sors.
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