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1.1 Context
With the rapid development of digital cameras and camera phones, the world is
currently experiencing a digital imaging revolution. Many online photo sharing
websites such as Flickr [Flickr ] or Facebook [Facebook ] have enabled millions of
users to upload and share their photo albums over the Internet. For instance, as of
October 2009, Flickr claimed to host more than 4 billion images [Flickr 2009]. In
April 2009, Facebook announced that it hosted 15 billion photos with a growth rate
of 220 million photos per week [Facebook 2009].

However, accessing these huge repositories remains an open problem. Search
engines like Google Images [Google ], Yahoo! Image Search [Yahoo! ] or Picsearch
[Picsearch ] still rely only on the textual metadata associated with images (e.g. �le
name, title and tags if any) and disregard the most important information: the
image content. There has been a great interest in the last decade in automatic
image annotation, i.e. assigning to an image one or multiple labels based on its
semantic content. Although it is an easy problem for humans, it has proved to be
very di�cult for computers to cope with variations in view, lighting and occlusion
and with typical object and scene variations as illustrated by the cat images in
Figure 1.1.

In the �eld of image annotation, representations based on the bag-of-patches
(BOP) - which describe an image as an unordered set of low-level local feature
vectors - combined with kernel-based learning have become the state-of-the-art.
Kernel-based algorithms require the de�nition of a proper measure of similarity
between BOP representations. The focus of this thesis has been on the de�nition
of probabilistic representations of images based on the BOP assumption and the
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(a) Within-category variations (b) Pose variations

(c) Illumination (d) Viewpoint (e) Clutter (f) Occlusion

Figure 1.1: Sample images for the category "cat" from the PASCAL VOC2007
Dataset.

computation of similarities between such representations with application to kernel
learning of image classi�ers.

1.2 Problems and Contributions
We now list the four problems that we addressed in this thesis with the proposed
solutions.

1.2.1 Modeling Image as Adapted Gaussian Mixture Model
As already mentioned, the most successful image representation to date in
computer vision is certainly the BOP. BOP representations are very sim-
ple, yet e�ective and demonstrated state-of-the-art performance in several eval-
uations [Everingham et al. 2005, Everingham et al. 2006, Everingham et al. 2007,
Everingham et al. 2008, Everingham et al. 2009] although they disregard all infor-
mation about the spatial layout of the feature descriptors. In this thesis, we will
work only with BOP models.

As measuring directly the similarity between BOPs (model-free approaches) is
costly, model-based approaches have been proposed. They consist in (i) modeling
each set of feature vectors as a distribution and (ii) de�ning a measure of similarity
between the vector sets as the similarity between their respective distributions.

There are two leading model-based approaches in the case of the BOP represen-
tation:

• The �rst one, the bag-of-visual-words (BOV), models an image as a discrete
distribution [Sivic & Zisserman 2003, Csurka et al. 2004]. The BOV is based
on an intermediate representation, the visual vocabulary, which is estimated
o�ine on a large set of low-level feature vectors. Each image is characterized
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by a histogram of visual words frequencies. One of the main limitations of
this approach is the assumption that the distribution of feature vectors in any
image can be known a priori.

• The second one models an image as a continuous distribution, gen-
erally a Gaussian Mixture Model (GMM) [Jebara & Kondor 2003,
Jebara et al. 2004, Goldberger et al. 2003, Moreno et al. 2003,
Vasconcelos 2004, Vasconcelos et al. 2004] and measures the similarity
as the Kullback-Leibler divergence (KLD) or the probability product kernel
(PPK) between GMMs. However, these methods have two main shortcom-
ings. First, the robust estimation of the GMM parameters may be di�cult as
the cardinality of the vector set is small. Second, computing the similarity
between two GMMs is expensive.

In chapter 4, we propose a novel GMM-based representation of images which
is based on the maximum a posteriori (MAP) adaptation of a "universal" GMM.
The advantages of this approach are twofold. MAP provides a more accurate esti-
mate of the GMM parameters compared to standard maximum likelihood estimation
(MLE). Moreover, there is a correspondence between the Gaussians of two GMMs
adapted from a common distribution and one can take advantage of this fact to
compute e�ciently the probabilistic similarity. This work presented in chapter 4
was published in CVPR'08 [Liu & Perronnin 2008].

1.2.2 Modeling Images as Mixtures of Reference Images
We then address what we believe is an inherent limitation of traditional measures
of similarity between distributions, such as the KLD or PPK. They give a high
similarity when two distributions match globally but a low similarity when they
match partially. This implies that two GMMs will typically have a high similarity
if all their Gaussians match (at least approximately) but may have a low similarity
because few Gaussians in one of the GMMs match poorly the Gaussians of the other
GMM. If we translate this assertion into the image domain, this means that two
images will have a high similarity if they match completely, e.g. same object in the
same background, but may have a low similarity because they match partially.

In chapter 5 we thus propose to approximate an image, modeled as a GMM, as
a convex combination of K reference image GMMs (later referred to as MOM for
mixture of mixtures) and to characterize this image as a K-dimensional vector of
mixture weights. These mixture weights measure a soft count of matching Gaussian
components between the image to be described and each reference image. Hence,
they encode a similarity which favors local matches (i.e. strong matches of individual
Gaussians) and is therefore fundamentally di�erent from traditional KLD or PPK.
The vector of mixture weights may be used as input to a discriminative classi�er for
categorization.

Although the computation of the mixture weights is a convex optimization prob-
lem, its direct optimization is di�cult. We propose two approximate optimization
algorithms: the �rst one based on traditional sampling methods, the second one
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based on a variational bound approximation of the true objective function. This
work presented in chapter 5 was published in CVPR'09 [Perronnin & Liu 2009].

1.2.3 Contextual Similarity based on MOM
We say that a similarity between two distributions p and q is absolute if it only
depends on p and q. We say that the similarity is contextual in the other case. We
can see that the similarity de�ned between two images in the previous subsection is
contextual as it depends on a set of reference images: the context. However, de�ning
the similarity between two images using an explicit set of context images is both
costly and cumbersome.

In chapter 6, we propose an alternative measure of contextual similarity between
distributions: the similarity between two distributions p and q is measured in the
context of a third distribution u. The similarity is computed following similar ap-
proximate optimization techniques proposed for the MOM approach. Although we
do not observe a signi�cant increase of accuracy, an advantage of the proposed sim-
ilarity is that the context does not depend explicitly on a set of reference images.
An extension, applying ideas proposed in chapter 6 to discrete distribution with
application to image retrieval, was published in CVPR'09 [Perronnin et al. 2009].

1.2.4 Explicit Data Embedding for Large-Scale Learning
We focus on the problem of large-scale kernel learning on BOV representations.
Linear classi�ers are fast to learn and to evaluate but their accuracy is generally
limited. Non-linear classi�ers outperform signi�cantly linear classi�ers on BOV
representations but are di�cult to scale to large training sets.

However, non-linear kernel classi�ers rely on an implicit mapping of the data such
that non-linear classi�cation in the original space corresponds to linear classi�cation
in the new space. It has been proposed to perform an explicit (possibly approximate)
mapping of the data and to learn directly linear classi�ers in the new space.

In chapter 7, we experiment with three approaches to BOV embedding: 1) kernel
PCA (kPCA) [Schölkopf et al. 1998], 2) a modi�ed kPCA we propose for additive
kernels and 3) random projections for shift-invariant kernels [Rahimi & Recht 2007].
An important conclusion is that simply square-rooting BOV vectors - which corre-
sponds to an exact mapping for the Bhattacharyya kernel -already leads to large
improvements, often quite close to the best results obtained with additive kernels.
Another conclusion is that, although it is possible to go beyond additive kernels,
the embedding for non-additive kernels comes at a much higher cost. The work
presented in chapter 7 was published in CVPR'10 [Perronnin et al. 2010].

1.3 Outline of thesis
The structure of this thesis is as follows.

• In chapter 2, we give more detailed reviews of related work, especially on BOP
approaches and the similarity between BOPs.
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• In chapter 3, we introduce the datasets used in this thesis.

• In chapter 4, we describe the estimation of universal and adapted image mod-
els. We present two similarity measures between distributions and explain
how they can be approximated in our case.

• In chapter 5, we show that the vector of mixture weights can be computed
through the optimization of a convex objective function. We compare our
novel image representation with that standard kernel-based classi�er i.e. the
KLK or the PPK proposed in chapter 4 and demonstrate its e�ciency.

• In chapter 6, we propose an alternative measure of contextual similarity be-
tween distributions.

• In chapter 7, we explain explicit data embedding for large-scale learning.

• In chapter 8, we summarize our conclusions and propose future directions.
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Literature Review

Contents
2.1 Patch Detection and Extraction . . . . . . . . . . . . . . . . . 7
2.2 Measuring the Similarity between Bags-of-Patches . . . . . 8

2.2.1 Model-Free Approaches . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Model-Based Approaches: Discrete Distributions . . . . . . . 10
2.2.3 Model-Based Approaches: Continuous Distributions . . . . . 12

2.3 Kernel-Based Learning . . . . . . . . . . . . . . . . . . . . . . 13

In this chapter, we review BOP approaches to image categorization. The litera-
ture review will be split into three parts. In the �rst part, we review very brie�y the
local feature detection and extraction. In the second part, we review the measures of
similarity between BOP representations. In the third part, we review brie�y kernel
based classi�cation.

2.1 Patch Detection and Extraction
There are mainly three strategies for patch detection:

• Interest Points: We just provide a few examples of interest points based meth-
ods. [Lindeberg 1998] developed a scale invariant blob detector, where a blob is
de�ned by a maximum of the normalized Laplacian in scale-space. The orig-
inal Harris corner detector [Harris & Stephens 1998] is invariant to rotation
but is not scale-invariant. Multi-scale Harris by [Mikolajczyk & Schmid 2004]
was adapted to solve this problem by selecting the points in the multi-scale
representation. The Harris-Laplace detector [Mikolajczyk & Schmid 2001] is
invariant to rotation and scale changes. The points are detected by the scale-
adapted Harris function and selected in scale-space by the Laplacian of Gaus-
sian operator. (see [Mikolajczyk et al. 2005] for a detailed overview)

• Random Sampling: [Marée et al. 2005] and [Nowak et al. 2006] showed exper-
imentally that random sampling could outperform interest points detectors.

• Dense Sampling: similarly, [Winn et al. 2005, Fei-Fei & Perona 2005] showed
experimentally that using regular grids to select patches could outperform
interest points detectors as well.
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It is possible to combine di�erent strategies. The winning system of the PAS-
CAL VOC 2007 Challenge which used the combination of interest points detec-
tors and dense sampling was shown to outperform each method taken separately
[Everingham et al. 2007].

One or multiple feature descriptors are computed for each extracted patch. We
provide a few examples among the most well-known descriptors:

• The SIFT [Lowe 2004] descriptor subdivides the patch into a set of regions and
computes a histogram of local oriented gradients in each subregion. Typically,
there are 4 × 4 = 16 subregions and each histogram contains 8 bins which
results in a 128 dimensional descriptor.

• The PCA-SIFT [Ke & Sukthankar 2004] consists in computing the gradient in
horizontal and vertical directions at each pixel of the patch and then reducing
the dimensionality of the resulting representation using Principal Component
Analysis (PCA). This typically results in a 36 dimensional feature.

• The SURF [Bay et al. 2006] descriptor is similar to the SIFT in the sense that
the patch is subdivided regularly into a set of subregions. In each subregion,
four-dimensional features are computed based on Haar wavelets. This results
in a 64 dimensional descriptor.

• Some of the previous descriptors can be extended to color features. This
includes color SIFT features. RGB-SIFT [van de Sande et al. 2010] com-
putes the SIFT feature for each RGB channel independently. HueSIFT
[van de Weijer & Schmid 2006] concatenates the hue histogram with the SIFT
descriptor.

In this thesis, we extract low-level features on regular grids at multiple scales and
make use of two types of low-level features: the �rst features are SIFT descriptors
and the second ones are based on simple RGB statistics.

2.2 Measuring the Similarity between Bags-of-Patches
We �rst review model-free approaches, i.e. the methods that directly compare sets
of patches. We then review model-based approaches which consist in estimating a
model (typically probabilistic) from each BOP representation and then computing
the similarity between BOPs as a similarity between the models. These approaches
can be divided into two sub-classes as a BOP can be modeled with a discrete or
continuous distribution.

2.2.1 Model-Free Approaches
In this section we review those approaches which measure directly the similarity
between two unordered feature sets. We assume that we have two feature sets
X = {xi, i = 1...TX} and Z = {zj , j = 1...TZ}. The simplest approach to de�ning
a measure of similarity between such sets is the sum of the similarities between all
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possible pairs of feature vector. Let k(., .) be a positive semi-de�nite kernel (psd).
The summation kernel [Haussler 1999] is de�ned as

KS(X,Z) =
1

TX

1

TZ

TX∑

i=1

TZ∑

j=1

k(xi, zj). (2.1)

However, its discriminative ability is compromised as all possible matchings between
features are combined with equal weights. The good matchings could be easily
swamped by the bad ones.

[Wallraven et al. 2003] and [Boughhorbed et al. 2004] both proposed a matching
kernel that only considered the similarities of the best matched local features:

KM (X,Z) =
1

2


 1

TX

TX∑

i=1

max
j=1...TZ

k(xi, zj) +
1

TZ

TZ∑

j=1

max
i=1...TX

k(zj , xi)


 . (2.2)

Unfortunately, the "max" operator makes this kernel non-Mercer (not psd).
Lyu [Lyu 2005] proposed a Mercer kernel to quantify the similarities between

feature sets. The kernel is a linear combination of the p-exponentiated kernels
between local features:

K(X,Z) =
1

TX

1

TZ

TX∑

i=1

TZ∑

j=1

[k(xi, zj)]
p. (2.3)

p is the kernel parameter and p > 1 gives more in�uence to good matchings.
The Earth Mover's Distance (EMD) [Rubner et al. 1998] is a measure of simi-

larity between sets of features and aims at �nding an optimal matching that would
be required to transform one set into the other. It is de�ned as

EMD = max
fij

i=1...TX
j=1...TZ

TX∑

i=1

TZ∑

j=1

k(xi, zj)fij , (2.4)

subject to the following constraints:

fij ≥ 0, (2.5)
TZ∑

j=1

fij ≤ 1, (2.6)

TX∑

i=1

fij ≤ 1, (2.7)

TX∑

i=1

TZ∑

j=1

fij = min(TX , TZ). (2.8)

fij is the �ow between xi and zj . The computation of the EMD requires the com-
putation of a similarity between all pairs of components of the two sets and the
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optimization of a transportation problem whose complexity is cubic in the number
of features.

To address the computational issue, [Grauman & Darrell 2005a] makes use of an
embedding of the EMD based on the work of [Indyk & Thaper 2003]. However, the
approximation su�ers from a high error when the feature dimension increases.

All the previous approaches have high computational complexity: typically
O(TXTZ) with TX and TZ varying from a few hundreds to a few thousands.

[Grauman & Darrell 2005b] proposed the Pyramid Match Kernel (PMK) to ad-
dress the computational cost issue. It partitions the feature space in a hierarchical
manner, from �ne to coarse and counts the number of correspondences between two
feature sets at each level of the hierarchy. While the PMK is e�cient for a small
number of dimensions (e.g. 2), its cost grows exponentially with the number of
dimensions.

2.2.2 Model-Based Approaches: Discrete Distributions
In this section, we review the approaches which model an image as a discrete distri-
bution, i.e. bag-of-visual-words representation (BOV). There are three main steps in
a BOV based system: o�ine visual vocabulary generation, histogram computation
and histogram similarity computation.

2.2.2.1 Visual Vocabulary Generation

The visual vocabulary can be obtained o�ine on a set of BOPs by unsupervised or
supervised learning methods.

The k-means [Sivic & Zisserman 2003, Csurka et al. 2004] is an unsupervised
clustering algorithm which proceeds by iterated assignments of points to their closest
cluster centers and re-computation of the cluster centers. The advantage of k-means
is its simple and e�cient implementation. One drawback of k-means is that most
of the centroids will end-up in dense regions which do not necessarily correspond
to discriminative patches. [Jurie & Triggs 2005] proposed a radius-based clustering,
which avoids setting all cluster centers into high density areas and assigns all features
within a �xed radius of similarity r to one cluster, where r is a parameter of the
algorithm. [Wu & Rehg 2009] proposed to use the Histogram Intersection Kernel
(HIK) instead of the popular Euclidean distance to cluster features into visual words.
They also proposed to use the one-class SVM for the clustering and demonstrated
higher accuracy.

In [Farquhar et al. 2005, Zhang et al. 2005], category speci�c vocabularies are
trained and agglomerated into a single vocabulary. Although substantial improve-
ments were obtained, this approach is impractical for a large number of cate-
gories as the size of the agglomerated vocabulary and the histogram represen-
tation grow linearly with the number of categories. Especially when the num-
ber of categories is large, this makes the histogram computation costly and the
classi�er learning challenging. Therefore, a compact visual vocabulary can pro-
vide a lower-dimensional representation and e�ectively avoid these di�culties.
[Winn et al. 2005, Fulkerson et al. 2008, Lazebnik & Raginsky 2009] make use of
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the mutual information between the features and category information to reduce
the number of visual words without sacri�cing the discriminative power of the
vocabulary. [Moosmann et al. 2006] proposed an e�cient alternative, in which
training examples are recursively divided using a randomized decision forest and
where the splits in the decision trees are comparisons of a descriptor dimension
to a threshold. [Perronnin et al. 2006] characterize images using a set of category
speci�c histograms, where each histogram describes whether the content can be
best modeled by the universal vocabulary or by its corresponding category vocabu-
lary. [Yang et al. 2008] proposed to unify the vocabulary construction with classi�er
training, and then to encode an image by a sequence of visual bits that constitute
the semantic vocabulary.

The visual vocabulary generated by the unsupervised approaches is universal i.e.
it is independent of the category set, but its discriminative ability is generally poor as
it ignores label information. While supervised approaches explicitly incorporate the
category information and can be more discriminative, we believe that they are not
scalable. Indeed, every time a category is added to the system all image histograms
have to be recomputed and all classi�ers to be retrained.

2.2.2.2 Histogram Computation

The BOV approach characterizes an image by a histogram of visual word frequencies.
There are two strategies to assign features to visual words: hard assignment and
soft assignment. We assume that we have a set of features extracted from an image
X = {xt, t = 1...T} where T is the number of features.

In hard assignment a feature vector is assigned to the single best representative
visual word. The advantages of hard assignment are the simplicity and the fact that
it leads to sparser histograms compared to soft assignment. The main problem is
that two close patches might be assigned to two di�erent centroids and therefore
lead to two di�erent representations.

There are two approaches to soft assignment. The �rst one consists in mak-
ing the assignment a decreasing function of the Euclidean distance of the de-
scriptor to the centroid. [van Gemert et al. 2008] uses for this purpose the Gaus-
sian kernel. However, this is somewhat heuristic and requires the hand tun-
ing of the bandwidth parameter. A more principled alternative consists in per-
forming probabilistic clustering using typically a Gaussian Mixture Model (GMM)
[Farquhar et al. 2005, Winn et al. 2005, Perronnin et al. 2006]. The soft assignment
is then computed as the posterior probability of the Gaussian knowing the observa-
tions.

Let us call γt(i) the hard/soft assignment of xt to centroid/Gaussian i, then the
BOV is computed as:

1

T

T∑

t=1

γt(i). (2.9)
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2.2.2.3 Similarity Computation
We assume that we have two BOV histograms a = {ai, i = 1...N} and b = {bi, i =
1...N}. Among the most popular kernels are the Bhattacharyya kernel (BHA),
the χ2 kernel (CHI2) and the Intersection kernel (INT), all of which are positive
semi-de�nite kernels (psd):

Kbha(a, b) =
N∑

i=1

√
aibi, (2.10)

Kchi2(a, b) = 2
N∑

i=1

aibi
ai + bi

, (2.11)

Kint(a, b) =
N∑

i=1

min(ai, bi). (2.12)

If K is a psd kernel, exp(γK) with γ > 0 is also guaranteed to be a psd kernel.
Hence, all the previous kernels can be exponentiated as Kexp = exp(γ(K−1)). The
−1 in the kernel is to ensure that the exponentiated kernel values are upper-bounded
by 1. Also it makes these kernels easier to relate to well-known kernels: Kexp

bha is the
rbf kernel on the square-rooted vectors, Kexp

chi2 is a popular kernel used for instance
in [Zhang et al. 2005, Vedaldi et al. 2009], and Kexp

int is the Laplacian kernel:

Kexp
bha(a, b) = exp

(
−γ

2

N∑

i=1

(
√
ai −

√
bi)

2

)
, (2.13)

Kexp
chi2(a, b) = exp

(
−γ

2

N∑

i=1

(ai − bi)
2

ai + bi

)
, (2.14)

Kexp
int (a, b) = exp

(
−γ

N∑

i=1

|ai − bi|
)
. (2.15)

The parameter γ controls the neighborhood size around the training samples and
therefore the non-linearity of the classi�er.

2.2.3 Model-Based Approaches: Continuous Distributions
In this section we review the approaches which model an image as a continuous
distribution.

[Moreno et al. 2003, Farquhar et al. 2005] proposed to model an image with
a single Gaussian with full covariance. However, the monomodal assump-
tion is generally too restrictive. [Goldberger et al. 2003, Vasconcelos 2004,
Vasconcelos et al. 2004] proposed to model an image as a mixture of Gaussians,
generally with diagonal covariance.

2.2.3.1 Similarity Computation
A probabilistic kernel is de�ned between the distributions, such as the Probability
Product Kernel (PPK) and the Kullback-Leibler Kernel (KLK). There is a closed
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form solution for the PPK or the KLK between two Gaussians. However there is
generally no closed form solution for them in the case of GMMs. We only provide
de�nitions of the kernels and will discuss in chapter 4 how these measures can be
approximated in the case of mixture models.

We assume that we have two continuous distributions p and q de�ned on the
space RD (D is the dimensionality of the low-level features). Jebara et al. proposed
the PPK [Jebara & Kondor 2003, Jebara et al. 2004] as a kernel between distribu-
tions:

Kρ
ppk(p, q) =

∫

x∈RD

p(x)ρq(x)ρdx (2.16)

where ρ is a parameter. The PPK is trivially psd and has two special cases. When
ρ = 1, the PPK takes the form of the expectation of one distribution under the
other. This is referred to as the Expected Likelihood Kernel (ELK):

Kelk(p, q) =

∫

x∈RD

p(x)q(x)dx = Ep[q(x)] = Eq[p(x)] (2.17)

When ρ = 1/2, it is known as the Bhattacharyya Kernel (BHA):

Kbha(p, q) =

∫

x∈RD

√
p(x)

√
q(x)dx. (2.18)

This is an upper bound on the Bayesian error.
The Kullback-Leibler Divergence (KLD) [Kullback 1968] is de�ned as follows:

KL(p||q) =
∫

x∈RD

p(x) log
p(x)

q(x)
dx. (2.19)

The symmetric KL is given by:

SKL(p, q) = KL(p||q) +KL(q||p). (2.20)

The KLK [Moreno et al. 2003] can then be de�ned by exponentiating the symmetric
KLD (not necessarily psd):

Kklk = exp(−γSKL(p, q)). (2.21)

where γ > 0 is a kernel parameter.

2.3 Kernel-Based Learning
We assume that we have a set of N labeled training samples {(xi, yi), i = 1...N}
where each xi is an image representation (not to be mistaken for the xi of BOP in
section 2.2.1) and each yi ∈ {−1,+1} is a binary label.

In kernel based classi�cation, the decision function has the form:

f(x) =
N∑

i=1

αiK(x, xi) + β. (2.22)
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with α = [α1, ..., αN ] an N -dimensional vector of parameters, β an o�set parameter
and K(x, xi) the similarity between x and training sample xi.

The most popular kernel classi�er is certainly the Support Vector Machine
(SVM) [Vapnik 1995]. The parameters α and β are learned by minimizing the
following loss function:

1

N

N∑

i=1

`hinge(f(xi), yi) + λ||f ||22 (2.23)

where `hinge(f(xi), yi) = max(0, 1 − f(xi)yi) is the hinge loss and λ is the regular-
ization parameter for penalization. The major advantage of the SVM is that it leads
to a sparse solution in α, thus reducing the cost of classi�cation.

An alternative classi�er is Sparse Logistic Regression (SLR)
[Krishnapruam et al. 2005] which minimizes the following loss function:

1

N

N∑

i=1

`log(f(xi), yi) + λ||α||1 (2.24)

where `log(f(xi), yi) = log(1 + exp(−f(xi)yi)). The L1 regularization leads to a
sparse solution, as is the case of the SVM. Both SVM and SLR lead to similar
results as observed experimentally in [Krishnapruam et al. 2005]. We used SLR in
most of our experiments.
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3.1 PASCAL VOC2007
We used the PASCAL VOC2007 database [Everingham et al. 2007] which contains
a total of 9,963 images: 5,011 images for training and 4,952 for testing. There are 20
di�erent object classes: person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle,
boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa and
tv monitor. Sample images can be seen on Figure 3.1.

3.2 Scene-15
The Scene-15 database provided by several research groups [Oliva & Torralba 2001,
Fei-Fei & Perona 2005, Lazebnik et al. 2006] is composed of 4,485 images falling into
15 categories: bedroom, suburb, industrial, kitchen, living room, coast, forest, high-
way, inside city, mountain, open country, street, tall building, o�ce and store. The
number of images in each category ranges from 200 to 400. The major sources of
the pictures in the dataset include the COREL collection, personal photographs,
and Google image search. Sample images can be seen on Figure 3.2.

3.3 Caltech-256
The Caltech-256 [Gri�n et al. 2007] database has a total of 29,780 images containing
256 categories. Each category contains at least 80 images. We show the taxonomic
tree of all the 256 categories proposed by Greg Gri�n [Gri�n 2007] on Figure 3.3.

3.4 ImageNet
ImageNet is an image database organized according to the WordNet hierarchy and
collects approximately 9.4M images corresponding to almost 15K concepts. Im-
ages of each concept are quality-controlled and human-annotated using the Amazon
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aeroplane bicycle bird boat bottle

bus car cat chair cow

diningtalbe dog horse motorbike person

pottedplant sheep sofa train tvmonitor

Figure 3.1: Sample images from the PASCAL VOC2007 database for all 20 cate-
gories.
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bedroom coast forest highway industrial

insidecity kitchen livingroom mountain o�ce

opencountry store street suburb tallbuilding

Figure 3.2: Sample images from Scene-15 database.
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Figure 3.3: Taxonomic tree for Caltech-256 database taken from [Gri�n 2007].
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Mechanical Turk (AMT:www.mturk.com). The database is publicly available at
http://www.image-net.org.
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In this chapter, we focus on those methods which model im-
ages as continuous distributions (GMMs) [Jebara & Kondor 2003,
Jebara et al. 2004, Goldberger et al. 2003, Moreno et al. 2003, Vasconcelos 2004,
Vasconcelos et al. 2004]. We note that these approaches have two main shortcom-
ings:

• First, the robust estimation of the GMM parameters may be di�cult if the
cardinality of the feature set is small. For instance, the number of features
extracted from an image typically varies from a few hundreds up to a few
thousands. One could increase this number, e.g. by using a denser grid in the
case of regular extraction or by lowering the detection threshold in the case of
interest points detectors, but this would also signi�cantly increase the cost of
the feature extraction and the GMM estimation.

• Second, as there is no closed form solution for the KLK or the PPK between
two GMMs, the cost of traditional approximations is typically quadratic in
the number of Gaussian components.

In this chapter, we present a novel approach to compute the similarity between
two unordered variable-sized vector sets with application to image categorization.
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It consists in representing one image by a GMM obtained through maximum a
posteriori (MAP) adaptation of a common "universal" GMM. This o�ers two main
advantages:

• First, MAP estimation is more accurate than MLE in the challenging case
where the training data is scarce as the universal model provides a priori
information on the location of the parameters in the whole parameter space.
We will show experimentally that this a priori information needs not to be
exact: even if the universal model is learned on a set of images which is not
directly related to the task at hand, excellent performance is obtained.

• Second, if two GMMs are adapted from a common distribution, there is a
one-to-one correspondence between their Gaussians. We make use of this
correspondence to derive approximations of the PPK and KLK with a cost
linear in the number of Gaussians.

Note that the idea of learning visual vocabularies - modeled as GMMs -
through the adaptation of a common universal vocabulary has already been used
in [Perronnin et al. 2006]. However, in [Perronnin et al. 2006] the adapted vocab-
ularies are class-GMMs and images are modeled with histograms of visual-word
occurrences while in this chapter the adapted vocabularies are image-GMMs.

The remainder of this chapter is organized as follows. In section 4.1 we describe
the estimation of universal and adapted GMMs. In section 4.2 we �rst present two
similarity measures between distributions, the PPK and the KLD, review how they
were approximated in the state-of-the-art and then propose our approximations. In
section 4.3 we provide experimental results on three databases: PASCAL VOC2007,
Scene-15 and Caltech-256 and compare to the state-of-the-art. Finally we draw a
brief conclude in section 4.4.

4.1 Image Representation
Let us �rst introduce our notations. The parameters of a GMM are denoted λ =
{wi, µi,Σi, i = 1...N} where wi, µi and Σi are respectively the weight, mean vector
and covariance matrix of Gaussian i and N denotes the number of Gaussians. Let
xt be an observation vector and qt its associated hidden variable, i.e. the variable
indicating which Gaussian emitted xt.

The likelihood that observation xt was generated by the GMM is:

p(xt|λ) =
N∑

i=1

wipi(xt|λ) . (4.1)

where pi(xt|λ) = p(xt|qt = i, λ). Finally, γi(xt) = p(qt = i|xt, λ) is the occupancy
probability, i.e. the probability that observation xt was generated by Gaussian i. It
is computed using Bayes formula:

γi(xt) =
wipi(xt|λ)∑N
j=1wjpj(xt|λ)

. (4.2)

We now describe the training of the universal model and the adapted image models.
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4.1.1 Training the Universal Model

The universal GMM is supposed to describe the content of any image and, there-
fore, it should be trained o�ine on a varied set of images. Let λu denote the
parameters of the universal GMM. Let X = {xt, t = 1...T} be the set of training
vectors. The estimation of λu may be performed by maximizing the log-likelihood
function log p(X|λu). The standard procedure for MLE is the Expectation Maxi-
mization (EM) algorithm [Dempster et al. 1977]. For the E-step, the values γi(xt)
are computed. We provide here for completeness the M-step re-estimation equations
[Bilmes 1998]:

ŵu
i =

1

T

T∑

t=1

γi(xt) , (4.3)

µ̂u
i =

∑T
t=1 γi(xt)xt∑T
t=1 γi(xt)

, (4.4)

Σ̂u
i =

∑T
t=1 γi(xt)xtx

′
t∑T

t=1 γi(xt)
− µ̂u

i µ̂
u
i
′ . (4.5)

4.1.2 Training Adapted Image Models

Our primary motivation for learning the image GMMs through the adaptation of a
universal model is to overcome the scarcity of the training material. Indeed, only a
small number of low-level feature vectors (typically from a few hundreds up to a few
thousands) are extracted from one image. We will observe in section 4.3 that this is
insu�cient to train robustly a mixture with a large number of Gaussians (e.g. 100)
for each image. In the following, λa denotes the parameters of an adapted model.

Let X = {xt, t = 1...T} now denote the set of adaptation samples extracted
from one image. We use the MAP criterion to adapt a GMM. The goal of
MAP estimation is to maximize the posterior probability p(λa|X) or equivalently
log p(X|λa) + log p(λa). Hence, the di�erence with MLE is in the assumption of a
prior distribution p(λa). To perform MAP learning, one has to (i) choose the prior
distribution family and (ii) specify the parameters of the prior distribution.

It was shown in [Gauvain & Lee 1994] that the prior densities for GMM param-
eters could be adequately represented as a product of Dirichlet (prior on weight
parameters) and normal-Wishart densities (prior on Gaussian parameters). When
adapting a universal model with MAP to more speci�c conditions, it is natural to
use the parameters of the universal model as a priori information on the location of
the adapted parameters in the parameter space. As shown in [Gauvain & Lee 1994],
one can also apply the EM procedure for MAP estimation. The M-step re-estimation
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equations are provided here for completeness:

ŵa
i =

∑T
t=1 γi(xt) + τ

T +N × τ
, (4.6)

µ̂a
i =

∑T
t=1 γi(xt)xt + τµu

i∑T
t=1 γi(xt) + τ

, (4.7)

Σ̂a
i =

∑T
t=1 γi(xt)xtx

′
t + τ [Σu

i + µu
i µ

u
i
′]∑T

t=1 γi(xt) + τ
− µ̂a

i µ̂
a
i
′ . (4.8)

The relevance factor τ keeps a balance between the a priori information contained in
the generic model λu and the new evidence contained inX. If a mixture component i
was estimated with a small number of observations

∑T
t=1 γi(xt), then more emphasis

is put on the a priori information. On the other hand, if it was estimated with a large
number of observations, more emphasis is put on the new evidence. Hence MAP
provides a more robust estimate than MLE when little training data is available. The
parameter τ is generally set manually [Gauvain & Lee 1994, Reynolds et al. 2000].

For a given number of Gaussians, the cost of one EM iteration is (almost) iden-
tical for MLE and MAP. The only di�erence is the addition in the M-step of MAP
of the a priori information in the statistics (compare equations 4.3, 4.4 and 4.5 to
4.6, 4.7 and 4.8 resp.) However, as MAP uses some a priori information on the
location of the parameters, it requires a smaller number of EM iterations to reach
an accurate estimate. Therefore, it is signi�cantly faster compared to MLE. This
statement will be veri�ed experimentally.

We �nally note that an adapted model contains the same number of Gaussians
as the universal model from which it is adapted.

4.2 Measures of Similarity of GMMs
In the following, we �rst present two measures of similarity between distributions
and review how they were approximated in state-of-the-art. We then propose our
approximations.

4.2.1 Probability Product Kernel
4.2.1.1 Previous Approximatins
We recall that the probability product kernel (PPK) [Jebara & Kondor 2003] be-
tween probability distributions p and q is de�ned as follows:

Kρ
ppk(p, q) =

∫

x∈RD

p(x)ρq(x)ρdx . (4.9)

There is a closed form solution for the PPK between two Gaussians:

Kρ
ppk(p, q) = (2π)(1−2ρ)D/2 | Σ |1/2| Σp |−ρ/2| Σq |−ρ/2

exp

(
−ρ

2
µ>
p Σ

−1
p µp − ρ

2
µ>
q Σ

−1
q µq +

1

2
µ>Σµ

)
, (4.10)
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where µp,Σp and µq,Σq are respectively the mean and covariance matrix of Gaussian
p and q, Σ = (ρΣ−1

p + ρΣ−1
q )−1, µ = ρ(Σ−1

p µp+Σ−1
q µq) and D is the dimensionality

of the feature vectors.
However there is no closed form solution for the PPK in the case of mixtures of

Gaussians except for the special case ρ = 1 (which led to poor results in preliminary
experiments). In the case of a mixture model, we have p(x) =

∑N
i=1 αipi(x) and

q(x) =
∑M

j=1 βjqj(x). In [Jebara & Kondor 2003] (section 4) the following approxi-
mation is suggested:

Kρ
ppk(p, q) ≈

N∑

i=1

M∑

j=1

αiβjK
ρ
ppk(pi, qj) . (4.11)

When ρ ≤ 1 this approximation corresponds to an upper-bound on the true value
of Kρ

ppk(p, q) and when ρ ≥ 1 it is a lower-bound.
[Hershey & Olsen 2008] proposed a variational bound method to approximate

the Bhattacharyya Kernel (BHA), i.e. when ρ = 1/2 (c.f. formula 2.18). It leads
to the following bound:

Kbha(p, q) ≥
√√√√

N∑

i=1

M∑

j=1

αiβjK2
bha(pi, qj). (4.12)

In all experiments, we used 4.11 as an approximation of Kbha
1.

The evaluation of the PPK between two GMMs which contain respectively M
and N Gaussians requires the computation of M × N PPKs between individual
Gaussians. This cost may be a handicap in the case of large values of M and N.

4.2.1.2 Proposed Approximation

We make use of the fact that two mixtures of Gaussians have been adapted from
the same generic model to speed-up the computation. Indeed, [Reynolds et al. 2000]
�rst noticed that there is a one-to-one correspondence between the i-th Gaussian
of an adapted GMM and the i-th Gaussian of the GMM it is adapted from. By
transitivity, it means that there is a one-to-one correspondence between the i-th
Gaussians of two GMMs adapted from the same GMM (we recall that we necessarily
have M = N in our adaptation framework). Consequently, in our case, the terms
Kρ

ppk(pi, qi) dominate the previous sum and the PPK may be further approximated
as follows:

Kρ
ppk(p, q) ≈

N∑

i=1

αiβiK
ρ
ppk(pi, qi) . (4.13)

This evaluation requires only the computation of N PPKs between individual Gaus-
sians.

1We became aware of [Hershey & Olsen 2008] more than a year after this work was done.
However, we do not believe that 4.12 would lead to signi�cantly better results than 4.11.
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4.2.2 Kullback-Leibler Kernel
4.2.2.1 Previous Approximations
We recall that the Kullback-Leibler Divergence (KLD) between two continuous dis-
tributions is de�ned as follows:

KL(p||q) =
∫

x∈RD

p(x) log
p(x)

q(x)
dx . (4.14)

There is also a closed form solution for the KLD between two Gaussians:

KL(p||q) = 1

2

[
log

| Σq |
| Σp | + Tr(Σ−1

q Σp) + (µp − µq)
TΣ−1

q (µp − µq)−D

]
. (4.15)

However, no closed-form expression exists for the KLD between two GMMs.
[Moreno et al. 2003] and [Vasconcelos et al. 2004] approximate the KLD using

Monte Carlo (MC) sampling:

KL(p||q) = Ep[log
p

q
] ≈ 1

T

T∑

t=1

log
p(xt)

q(xt)
(4.16)

where x1, ..., xT are sampled from p.
[Goldberger et al. 2003] used the unscented transform mechanism to obtain an

approximation for KLD between two GMMs:

KL(p||q) ≈ 1

2d

N∑

i=1

αi

2d∑

k=1

log
p(xi,k)

q(xi,k)
(4.17)

such that:

xi,k = µpi + (
√
dΣpi)k k = 1, ...d, (4.18)

xi,d+k = µpi − (
√
dΣpi)k k = 1, ...d. (4.19)

where d is the number of chosen "sigma" points, µpi is the mean of Gaussian pi
and (

√
Σpi)k is the k-th column of the matrix square root of Σpi . The unscented

transform is similar to the Monte Carlo technique except that the samples are chosen
deterministically. However, the cost of both methods can be prohibitive as one has
to draw a large number of samples to obtain a reasonable estimate.

[Goldberger et al. 2003] and [Vasconcelos 2004] proposed two very similar ap-
proximations of the KLD. They are based on a two-step approach: it �rst consists
in �nding a mapping π from the Gaussians of p to the Gaussians of q as follows:

π(i) = argmin
j

(KL(pi||qj)− log βj) . (4.20)

Then π is used to approximate the KLD:

KL(p||q) ≈
N∑

i=1

αi

(
KL(pi||qπ(i)) + log

αi

βπ(i)

)
. (4.21)
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This approximation is well motivated when Gaussians have little overlap, e.g. when
the dimensionality D of the feature space is high. In our experiments, D = 50 (c.f.
section 4.3.1). If two GMMs contain respectively M and N Gaussians, computing the
mapping function π requires the computation of M ×N KLDs between individual
Gaussians.

[Hershey & Olsen 2007] also proposed a variational approximation for the KLD.
The idea is to write:

KL(p||q) = H(p, q)−H(p, p). (4.22)
where H(p, q) is the cross-entropy between p and q and to compute a variational
bound on H:

H(p, q) ≤ −
N∑

i=1

αi log




M∑

j=1

βj exp(−H(pi, qj))


 . (4.23)

Since this KL approximation is the di�erence of two bounds, it is not a bound.
In our experiments we used 4.20 and 4.21 to approximate the KLD 2.

4.2.2.2 Proposed Approximation
Once again, we can make use of the fact that there is a one-to-one correspondence
between the Gaussians of two GMMs adapted from the same model to perform
the following approximation: π(i) = i. Under this assumption, the KLD can be
rewritten:

KL(p||q) ≈
N∑

i=1

αi

(
KL(pi||qi) + log

αi

βi

)
. (4.24)

Hence, the computation of the KLD requires only N Gaussian computations in our
case. We recall that the Kullback-Leibler Kernel (KLK) is de�ned as:

Kklk = exp(−γ(KL(p||q) +KL(q||p)). (4.25)

4.3 Experiments
We �rst describe our experimental setup. We then report results on three datasets:
the PASCAL VOC2007, Scene-15 and Caltech-256 databases.

4.3.1 Experimental Setup
Low-level feature vectors are extracted on regular grids at multiple scales in our
experiments. There is an average of 1,000 feature vectors extracted per image per
feature type. We make use of two types of low-level features. The �rst features
are based on local histograms of orientations as described in [Lowe 2004] (128 di-
mensional features, later referred to as ORH). The second ones are based on RGB

2Similarly, we became aware of [Hershey & Olsen 2007] more than a year after this work was
done. Again, we do not believe that the variational approximation would lead to signi�cantly
better results.
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statistics (96 dimensional features, later referred to as COL). In both cases, the
dimensionality of the feature vectors is reduced to 50 through Principal Component
Analysis (PCA).

The universal GMM is trained using the following iterative strategy inspired
by HTK [Young et al. 2002]. We �rst train a GMM with a single Gaussian. We
then split it into two by introducing a small perturbation in the mean parameter
and retrain the GMM using several iterations of EM. The process of splitting and
retraining is repeated until the desired number of Gaussians is obtained. To train
the adapted image GMMs with MAP, the default value for the relevance factor is
τ = 10.

For the PPK, we choose ρ = 1/2 (i.e. the Bhattacharyya Kernel) as this value
leads to the best results in preliminary experiments. To set parameter γ for the
KLK (c.f. equation 2.21) we followed [Zhang et al. 2005]: γ is equal to the inverse
of the mean of the symmetric KL divergence SKL(p, q) between two GMMs (c.f.
equation 2.20) as estimated on a subset of the whole training set.

For the classi�cation, we used Sparse Logistic Regression (SLR)
[Krishnapruam et al. 2005] as a discriminative classi�er. One linear classi�er
is trained per class in a one-versus-all manner.

We have two separate systems: one for each feature type. The end result is the
average of the scores of the two systems (later referred to as ORH+COL).

4.3.2 PASCAL VOC2007
During the VOC2007 competition, the accuracy was primarily measured with the
Average Precision (AP). Therefore, we use the mean of AP (averaged over the 20
categories) to make our results easily comparable to the state-of-the-art.

In the following, we start with a comparative evaluation of the proposed ap-
proach. We then proceed with the analysis of the impact of parameter τ . We also
carry out cross-database experiments showing that, even if the universal model is
learned on a di�erent database, the performance does not vary signi�cantly. Finally,
we analyze the computational cost of the proposed method on this database.

4.3.2.1 Results
We compare the performance of the following systems:

(i) A system which learns the image BOVs with χ2 kernel. This system is later
referred to as BOV_CHI2.

(ii) The proposed approach with MAP adaptation and the fast one-to-one mapping
of Gaussian components (c.f. formula (4.13) for PPK and formula (4.24) for
KLK). This system is later referred to as MAP_OTO.

(iii) A system which learns the image GMMs with MLE (using the same itera-
tive strategy which was employed to train the universal model) and the slow
one-to-many mapping of Gaussian components (c.f. formula (4.11) for PPK
and formulae (4.20) and (4.21) for KLK). This system is later referred to as
MLE_OTM.
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(iv) An intermediate system which makes use of MAP adaptation as is the case of
(ii) but which uses the slow one-to-many scoring of (iii). This system is later
referred to as MAP_OTM.

Hence, when comparing (i) and (ii), we can measure the advantage of image
GMMs compared to image BOVs. When comparing (iii) and (iv), we can measure
the bene�t of MAP compared to MLE. When comparing (ii) and (iv) we can measure
the impact on the accuracy of the fast one-to-one scoring versus the slow one-to-
many scoring.

Results are provided on Figure 4.1. We did not represent the performance of
BOV_CHI2 on this �gure because BOV typically requires a larger number of Gaus-
sians. The best results we obtained with BOV_CHI2 was a mean AP of 52.6% with
approximately 4000 Gaussians (for ORH + COL). Then the following conclusions
could be drawn from the �gures.

• First, the proposed method consistently outperforms the BOV_CHI2.

• Second, because of computationally expensive cost of one-to-many scoring for
both MLE and MAP, we only show the performances with 16, 32 and 64
Gaussians. From the results we have shown, we can see that MAP clearly
outperforms MLE for both PPK and KLK. Especially the performance of
the MLE_OTM system starts to drop for more Gaussians while for MAP it
continues to increase. This shows that we can learn robustly a larger number
of Gaussians with MAP than with MLE.

• Third, the accuracy of PPK_OTO is superior to that of PPK_OTM. This
observation came as a surprise as we �rst thought that by dropping terms
in equation 4.11, we would lose information. Our best explanation is that
the bound 4.11 is too coarse an approximation of the PPK. This suggests an
alternative approach for computing the PPK similar to that used for KLK:
�rst �nd a matching between the Gaussians of p and q and then approximate
the PPK as a weighted sum of PPKs between the matched Gaussians (this
approximation might be worth testing in the future).

• Fourth, the accuracy of KLK_OTO is inferior to that of KLK_OTM, but not
signi�cantly so, showing that our one-to-one approximation is a good one.

As we used the standard VOC2007 protocol, our best result is 55.4% which can
be compared to those published in the literature. The best result reported on this
dataset during the challenge was 59.4% (INRIA-genetic) [Marszalek et al. 2007]. We
would like to outline that the cost of training and testing our system is signi�cantly
lower compared to that of the winning system as it made use of 21 �channels� (while
we make use of only 2: ORH + COL) and a sophisticated approach to combine
them.

4.3.2.2 In�uence of Parameters
We now analyze the in�uence of the relevance factor τ . τ impacts two competing
aspects of our system:
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Figure 4.1: Performance on the PASCAL VOC2007 database of the PPK (top) and
KLK (bottom) for a varying number of Gaussian components. The mean AP is
shown for system based on ORH+COL features.
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Figure 4.2: The mean AP based on ORH+COL features with KLK on the VOC2007
database as a function of parameter τ . We used GMMs with 16 Gaussians for this
experiment.

• First τ in�uences the robustness of the estimation. We can consider two ex-
treme cases. When τ = 0, MAP turns into MLE and the parameters are not
estimated robustly as was shown in the previous experiments. When τ = ∞,
the image GMMs remain equal to the universal model. As the distance be-
tween any pair of images is constant no kernel classi�er can be learned. The
best performance will thus be obtained when an intermediate value between
these two extremes is chosen.

• Second τ impacts the proposed fast scoring. Indeed, our fast scoring is only
possible if there is a one-to-one correspondence between the Gaussians of two
adapted GMMs. The strength of the correspondence will depend on τ . If
τ = ∞, the correspondence is maximized and the one-to-one mapping is exact.
When τ = 0, the correspondence is weaker.

Hence, the τ which optimizes the robustness (0 < τ < ∞) is necessarily di�erent
from the τ which optimizes the Gaussian correspondence (τ = ∞).

We present the result in Figure 4.2. This analysis was performed on the 16
Gaussians model using the KLK kernel. We can see that for small values of τ
MAP_OTM outperforms MAP_OTO. This shows that, when τ is small the cor-
respondence between the Gaussian of two adapted models is loose and that our
one-to-one assumption is too naïve. However, as expected, as τ increases to more
reasonable values, the di�erence between the two systems becomes narrower. For
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both systems the best performance is obtained for τ = 10.

4.3.2.3 Cross database experiments
As the estimation of the image models with MAP relies on the a priori information
contained in the universal model, it is important to understand how the performance
of our approach is a�ected when the universal model is learned on another dataset.
The alternate dataset we used to learn the visual vocabulary contains 120,000 unan-
notated images from a printing work�ow of photo albums. We had a look at a small
sample of these images to try to understand whether they were representative of the
20 categories found in the PASCAL VOC2007 database. While this set of images
contains a very large number of photos of persons, it seems to contain very few (if
no) occurrences of the 19 other classes. Hence, we believe that there is a strong mis-
match between this dataset and VOC2007. To learn a universal vocabulary, we took
a random sub-sample of 2,000 images. This experiment was repeated 10 times with
10 di�erent subsamples. We restricted this analysis to the case where we employ
the fast one-to-one scoring.

For the PPK and the KLK kernels, the average precision with the standard
deviation were 0.542±0.002 and 0.538±0.002 respectively. Clearly, the proposed
approach does not seem to be sensitive to the set of images used to train the universal
model. Hence the same universal model can be used across di�erent category sets.
This is a clear advantage when one grows a category set incrementally as one does
not need to relearn the universal GMMs, and thus the image GMMs, every time a
new category is added.

4.3.2.4 Computational Cost
We now perform a brief analysis of the computational cost of the proposed approach.
For this analysis, we considered GMMs containing 128 Gaussians. The following
durations were measured on a 3.1 GHz XeonTMmachine.

The cost of training the GMM of one image with MLE using the iterative strat-
egy of [Young et al. 2002] is approximately 430ms while it is only 15ms for MAP.
We recall that this di�erence is due to the greater number of EM iterations re-
quired for MLE compared to MAP. Note that, instead of the iterative approach of
[Young et al. 2002], we could have used the alternative strategy which consists in
starting from multiple random initializations of the parameters and picking the best
one, i.e. the one which leads to the highest log-likelihood. However, the cost of this
alternative would have been even greater.

We now consider the cost of the kernel computations. On the VOC2007 database,
classifying one image takes approximately 240s for the PPK and 31s for the KLK.
We estimated it would take almost 28 days to run the experiments with the PPK
(128 Gaussians) on this dataset (9,963 images in total). As for the proposed fast
scoring based on the one-to-one correspondence, the classi�cation cost is reduced
to 2.0s for PPK and 0.4s for KLK. These �gures are consistent with the fact that,
for both kernels, we expect the proposed one-to-one scoring to be 128 times faster
than the one-to-many scoring when GMMs contain 128 Gaussians (linear versus
quadratic cost).
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suburb forest mountain kitchen livingroom industrial
(98.5%) (94.1%) (89.9%) (70.0%) (62.5%) (59.7%)

Figure 4.3: Image examples of the best and the worst Scene-15 classes. On the left
the three classes with the best classi�cation rates and on the right those with the
lowest rates.

4.3.3 Scene-15
For the Scene-15, we only consider the ORH features as the database is only available
in grayscale. We choose 100 images per class for training and used the rest for testing
which is the standard evaluation procedure [Lazebnik et al. 2006]. We made use of
128 Gaussians to run our PPK and KLK systems. For the BOV baseline with χ2

kernel, we considered 4096 Gaussians. The �nal result was reported as the mean
and standard deviation of the results from 10 individual runs.

We obtain a 80.4% accuracy (0.7% standard deviation) on the KLK system and
79.0% (0.8% standard deviation) on the PPK system. Both results are better than
that of BOV baseline: 78.4% (0.9% standard deviation). Our proposed systems
are close to the state-of-the-art reported in [Lazebnik et al. 2006] (81.4% with 0.5%
standard deviation) which makes use of the Spatial Pyramid Matching. We do not
use geometric information. Our results can also be compared to the very recent
results of [Zhou et al. 2009]. They report a 75.8% of classi�cation accuracy using
a GMM-based modeling of images and up to 85.2% using additional geometric in-
formation. Figure 4.3 presents the categories with the best and worst classi�cation
rates according to the result of our KLK approach.

4.3.4 Caltech-256
For the Caltech-256, we only considered the ORH features as well because many
works report results only in grayscale. Our results are evaluated by using 10, 20 and
50 images per class respectively for training and 25 images per class for testing. We
consider GMMs containing 128 Gaussian components with our proposed systems
and compare to the baseline BOV_CHI2 (4096 Gaussians). We report the mean
and standard deviation of classi�cation rate over 5 individual runs.

Figure 4.4 shows clearly the advantage of using our PPK approach over the BOV
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Figure 4.4: Classi�cation rate (%) on Caltech-256 database with 128 Gaussian com-
ponents by varying the number of training images.
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Figure 4.5: Image examples of the best and the worst Caltech-256 classes. On the
left the three classes with the best classi�cation rates and on the right those with
the lowest rates.
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baseline. However, the KLK approach gains no improvement over the baseline. We
obtain a 35.4% (0.5% standard deviation) with 50 training images on PPK which is
close to the result reported by Lazebnik et al. (39.0% of accuracy in the challenge
of [Gri�n 2007]). Figure 4.5 shows sample images for the categories with the best
and worst classi�cation rate based on the PPK approach.

4.4 Conclusion
In this chapter, we introduced a novel approach to compute the similarity between
two unordered vector sets. The main contribution was to model each vector set
with a generative model � a GMM in our case � adapted from a common universal
model using MAP. We showed that this adaptation framework o�ers two major
advantages compared to the case where the distributions are trained with MLE. First
MAP provides a more accurate estimate compared to MLE when the cardinality of
the vector sets is small. Second, there is a one-to-one correspondence between
the components of adapted mixture models which may be used for fast scoring.
This correspondence was used to derive e�cient approximations for two kernels on
distributions: the probability product kernel and the Kullback-Leibler kernel.

This approach was applied to the image categorization problem. We showed
that this approach is practical. First, the classi�cation cost is reasonable. Second,
the a priori information contained in the universal model needs not to be perfectly
representative of the category set under consideration to obtain good results.

Future work could consider the use adaptation techniques other than
MAP. Especially, techniques such as maximum likelihood linear regression
(MLLR) [Leggetter & Woodland 1995, Gales 1998], cluster adaptive training (CAT)
[Gales 2000] or �eigenvoices� [Kuhn et al. 2000] have been shown to yield signi�-
cantly better results than MAP in the speech recognition literature when the amount
of adaptation data is extremely scarce. We also note that the PPK outperforms the
KLK on VOC2007 and Caltech-256 and the KLK outperforms the PPK on Scene-
15. This seems to indicate that no kernel always outperforms the other. To avoid
the per-database selection of kernel, we could consider principled combinations of
kernels using Multiple Kernel Learning (e.g. [Varma & Ray 2007]).
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5.1 Introduction
One limitation of previous probabilistic kernels between two GMMs such as the KL
and the PPK is that they measure a global match of distributions. In this chapter,
we propose to approximate an image, modeled as a GMM, as a convex combination
of K reference image GMMs and then to describe the image as the K-dimensional
vector of mixture weights. The computed weights encode a similarity that favors
local matches (i.e. matches of individual Gaussians) and is therefore fundamentally
di�erent from the KL or PPK. The vector of mixture weights may then be used as
input to a discriminative classi�er for categorization.

Our approach is related to dissimilarity-based learning which is an alternative to
traditional kernel-based learning. In [Pekalska et al. 2002], Pekalska et al. propose
to represent an object as a vector of distances with respect to a set of reference
objects. The main di�erence with ours is that in [Pekalska et al. 2002] each reference
object contributes independently to the representation. For instance, if we use the
KL as a measure of distance, the distance-based representation will be plagued with
the limitations of KL. In our case the reference images contribute jointly to the
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Figure 5.1: Comparison of di�erent representations on the semantic axis.

image representation. This results in a measure of similarity which better takes into
account strong matches.

Our approach can also be related to [Quelhas et al. 2005, Bosch et al. 2006,
Rasiwasia et al. 2007, Rasiwasia & Vasconcelos 2008]. While the BOV represents
an image as a vector of posterior visual word probabilities (when using proba-
bilistic vocabularies), these papers propose to represent an image as a vector of
posterior concept probabilities. The assumption is that concepts are more seman-
tically meaningful than visual words. These concepts may be learned in an un-
supervised fashion [Quelhas et al. 2005, Bosch et al. 2006], in which case there is
no guarantee that they are semantically meaningful, or in a supervised manner
[Rasiwasia et al. 2007, Rasiwasia & Vasconcelos 2008] which requires large amounts
of training material. Our work is signi�cantly di�erent from those as we score images
with respect to other images, not reference concepts. Our intuition is that reference
images might be less semantically meaningful than concepts learned in a supervised
manner, but more meaningful than visual words. Figure 5.1 displays this intuition.

The rest of this chapter is organized as follows. In section 5.2, we analyze
the limitations of traditional approaches between GMMs through a toy example.
This leads us to introduce our novel image representation in section 5.3. We show
that the vector of mixture weights can be computed through the optimization of a
convex objective function. As the direct optimization is di�cult, we propose two
possible approximations: the �rst one based on sampling, the second one based on a
variational bound of the objective function. We also discuss convergence issues. In
section 5.4 we provide experimental results showing that the proposed framework
outperforms a standard kernel-based classi�er employing the KLK or the PPK.
Finally, we draw our conclusions in section 5.5.

5.2 Toy Example
Let N (µ, σ) denote the one dimensional Gaussian with mean µ and standard de-
viation σ. Let us consider the following toy example. Let q be a mixture of two
Gaussians:

q =
1

2
N (+2, 1) +

1

2
N (−2, 1). (5.1)
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We will compare the SKL and PPK between q and three distributions:

p1 = N (−2, 1) , (5.2)
p2 = N (2, 1) , (5.3)

p3 =
1

2
N (2 + δ, 1) +

1

2
N (−2− δ, 1). (5.4)

where δ is a non-negative value (c.f. Figure 5.2). To study the limitations of
the SKL (c.f. formula 2.20) and the BHA (c.f. formula 2.18) (and not of their
approximations), we estimated the measures numerically, replacing the integral by
a sum over many tiny intervals.

We have SKL(q, p1) = SKL(q, p2) and BHA(q, p1) = BHA(q, p2) by symme-
try. SKL(q, p3) (resp. BHA(q, p3)) is an increasing (resp. decreasing) function of
δ with SKL(q, p3) = 0 (resp. BHA(q, p3) = 1) if δ = 0. We are interested in the
value δSKL such that SKL(q, p1) = SKL(q, p2) = SKL(q, p3) and δBHA such that
BHA(q, p1) = BHA(q, p2) = BHA(q, p3). We found numerically δSKL ≈ 2.0 and
δBHA ≈ 1.5. The value δSKL was chosen to represent p3 on Figure 5.2. We can
see that with such a value, while q and p3 share a similar shape (bimodal) they
are signi�cantly di�erent. On the other hand p1 and p2 perfectly match one of the
Gaussian components of q but are strongly penalized because they match a single
component.

Let us now try to translate what this toy example means in the image domain.
Even if there is a strong match between the components of two images, e.g. the
two images contain the same object, the SKL (resp. the PPK) might be large (resp.
small) because the object occurs in di�erent backgrounds or because it is occluded
in one of the two images.

5.3 Mixtures of Mixtures
Let q =

∑N
i=1 πiqi be the GMM that models the image we want to describe. N

denotes the number of Gaussian components, πi is the mixture weight for Gaussian
i and qi is the i-th Gaussian component. Let {pk, k = 1...K} be a set of K reference
GMMs, each one modeling a reference image. We write pk =

∑Nk
j=1 πk,jpk,j where

Nk denotes the number of Gaussian components in pk, πk,j is the mixture weight
for Gaussian j and pk,j is the j-th Gaussian component.

Our goal is to approximate q as a convex combination of pk's. Let ωk denote
the mixture weight associated with pk. We choose the optimal ωk's as those which
minimize the KL between q and

∑K
k=1 ωkpk. This is equivalent to maximizing the

following objective function:

E =

∫

x∈RD

q(x) log

(
K∑

k=1

ωkpk(x)

)
dx . (5.5)

under the constraints

ωk ≥ 0 , ∀k and
K∑

k=1

ωk = 1. (5.6)
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Figure 5.2: The SKL between q (black straight line) and p1 or p2 (green and blue
dashed lines respectively) is approximately the same as the SKL between q and p3
(dotted red line).

This is a convex optimization problem which can be solved iteratively using
the Expectation-Maximization (EM) algorithm [Dempster et al. 1977]. The E-step
consists in computing the occupancy probability γk(x) i.e. the probability that
observation x was generated by the k-th reference image:

γk(x) =
ωkpk(x)∑K
j=1 ωjpj(x)

. (5.7)

The M-step leads to the following estimate:

ω̂k =

∫

x∈RD

q(x)γk(x)dx. (5.8)

However, the computation of the previous integral is di�cult as there is no closed
form formula for ratios of GMMs. We consider two possible approximations using:
(i) a sampling method and (ii) a lower-bound method.

5.3.1 Sampling Approximation
Let {X = xt, t = 1...T} be a set of T vectors distributed according to q. This might
be a set of feature vectors drawn from q (Monte-Carlo sampling). This might also
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be the set of low-level feature vectors directly extracted from the image we want to
characterize.

If the number of samples T is large enough, we can use the law of large numbers
and approximate the objective function (5.5) as follows:

E ≈ 1

T

T∑

t=1

log

(
K∑

k=1

ωkpk(xt)

)
. (5.9)

This remains a convex objective function which can be optimized with respect to the
ωk's using the EM algorithm. The E-step consists in computing the values γk(xt)
for each sample xt and each reference GMM pk. The M-step gives the following
estimates:

ω̂k =
1

T

T∑

t=1

γk(xt). (5.10)

We note that we would have obtained the same re-estimation formula if we had
applied the law of large numbers on equation 5.8 directly.

5.3.2 Lower-Bound Approximation
As explained in the previous sub-section, the mixture weights ωk can be estimated
directly from the low-level features extracted from the image to be described as in
a Maximum Likelihood Estimation (MLE) framework the samples used to estimate
q are supposed to be distributed according to q. In such a case there is no need to
estimate q, which might be seen as an advantage of the sampling approximation.
However, we will see that it can be bene�cial to estimate q for two main reasons:

• The �rst reason is a practical one. If we want the approximation (5.9) to
be reasonably good, T should be large enough which can result in a high
computational cost during the E-step at the number of Gaussian computations
grows linearly with T .

• Secondly, one can incorporate a-priori information in the model q. In chapter
4, we proposed to estimate the per-image GMMs through the adaptation of a
�universal� GMM using the Maximum a Posteriori (MAP) criterion. This was
shown to have two advantages. First MAP estimation leads to a more robust
estimate of parameters than MLE in the case of scarce training data. Second,
there is a correspondence between the Gaussians of two GMMs adapted from
a common distribution and one can take advantage of this fact to speed-up
the similarity computation.

We �rst present the estimation of the ωk's in the general case, i.e. whatever the
criterion used to estimate q. We then show how it can be speeded-up using the
framework of chapter 4.

We rewrite the objective function (5.5) as follows:

E =
N∑

i=1

πi

∫

x∈RD

qi(x) log




K∑

k=1

ωk

Nk∑

j=1

πk,jpk,j(x)


 dx. (5.11)
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We use the idea proposed by Hershey and Olsen [Hershey & Olsen 2007] to approx-
imate the KL divergence between two GMMs and introduce a set of variational
parameters γi,k,j which are subject to the constraints:

0 ≤ γi,k,j ≤ 1 and
K∑

k=1

Nk∑

j=1

γi,k,j = 1. (5.12)

The function (5.11) becomes:

E =
∑

i

πi

∫

x∈RD

qi(x) log


∑

k,j

γi,k,j
ωkπk,jpk,j(x)

γi,k,j


 dx. (5.13)

Applying Jensen's inequality to the concave log-function, we obtain the following
lower-bound:

E ≥
∑

i

πi

∫

x∈RD

qi(x)
∑

k,j

γi,k,j log

(
ωkπk,jpk,j(x)

γi,k,j

)
dx . (5.14)

Maximizing the lower-bound with respect to γi,k,j 's leads to the following bound:

E ≥
∑

i

πi log


∑

k,j

ωkπk,j exp(−Hi,k,j)


 . (5.15)

where Hi,k,j is de�ned as follows:

Hi,k,j = H(qi, pk,j) = −
∫

x∈RD

qi(x) log pk,j(x)dx. (5.16)

Hi,k,j is the cross-entropy between qi and pk,j and we recall that it can be computed
in closed form in the case where qi and pk,j are Gaussians.

We propose to compute the set of ωk's which optimize the bound on E rather
than E. One more time, this is a convex optimization problem which can be solved
with an EM-like algorithm. The E-step consists in computing the values γi,k,j that
maximize the bound:

γi,k,j =
ωkπk,j exp(−Hi,k,j)∑
k,j ωkπk,j exp(−Hi,k,j)

(5.17)

Taking the derivative with respect to ωk and equating it to zero leads to the
M-step:

ω̂k =
∑

i,j

πiγi,k,j . (5.18)

This shows that our similarity computation takes into account the cross-entropy
between the individual Gaussians, as is the case of the KL approximation between
two GMMs (c.f. equation 4.23). However, our measure of similarity is fundamentally
di�erent. γi,k,j is a measure of soft-matching between the Gaussian components qi
and pk,j . Hence, the optimal ωk measures the number of soft matches between the
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components of q and the components of pk. This point will be made clearer in the
next subsection.

The cross-entropy computations dominate the cost of the EM algorithm. EM
requires the computation of N × ∑K

k=1Nk cross-entropies which is comparable to
the cost of computing K KL divergences between GMMs. If we make use of the
framework of chapter 4, all GMMs are trained through the adaptation of a common
GMM which contains N Gaussians (Nk = N). In such a case, we can use the fact
that there is a correspondence between the Gaussian components of two GMMs
adapted from the same GMM, i.e. that Hi,k,j is small if i = j and large if i 6= j.
This means that γi,k,j ≈ 0 if i 6= j. The previous approximation reduces the cost to
N ×K cross-entropy computations.

5.3.3 Convergence Issues
Let us go back to our toy example of section 5.2. We want to approximate q as
a convex combination of p1, p2 and p3. As we have q = 1

2p1 + 1
2p2, it is trivial

to see that the optimal weights that maximize the objective function (5.11) are
ω1 = ω2 = 1

2 and ω3 = 0 in the case where δ > 0 (if δ = 0 there is an in�nite
number of solutions). Hence, ω3 = 0 whether δ is very large, meaning that q and
p3 are very di�erent, or δ is very small, meaning that q and p3 are near-identical.
Although the perfect matching of Gaussian components, as is the case of our toy
example, happens seldom, this shows that our objective function might give too
much weight to the near perfect matching of Gaussians, as opposed to SKL or PPK
which give too much weight to a global match. Clearly, the optimal solution is a
balance between global and local matching.

A simple solution that we found to be very e�ective to �nd a middle-ground
between these two extreme situtations is early stopping, i.e. stopping EM after few
iterations. An important fact is that early stopping does not change the ranking
of the ω's (this property was observed empirically and a formal proof is under
investigation). The larger δ, the faster ω3 will converge to zero.

Early stopping solves also the problematic case where q belongs to the reference
distributions. This happens in our image categorization scenario when the reference
images are the set of labeled images. If q = pj , then our objective function (5.5)
is maximized by ωj = 1 and ωi = 0, ∀i 6= j. This undesired e�ect is prevented by
early stopping.

Note that we experimented with more elaborate strategies than early stopping.
For instance, adding a Dirichlet prior on the parameters ω and performing MAP
estimation of the ω's rather than MLE would also avoid the ω's to go to zero.
However, we did not �nd this approach to be more e�ective than early stopping.

5.3.4 Beyond KL
As explained in section 5.3.2, the mixture weights ωk are based on the cross-entropy
between individual Gaussians. It would be interesting to extend this framework to
other measures such as the Bhattacharyya similarity. A heuristic would for instance
consist in replacing exp(−Hi,k,j) by Bi,k,j = Kbha(qi, pk,j) in the E-step (5.17).
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A more principled approach consists in modifying the objective function. Instead
of minimizing the KL between q and

∑K
k=1 ωkpk, we propose to maximize their

Bhattacharyya similarity:

E =

∫

x∈RD

√
q(x)

√√√√
K∑

k=1

ωkpk(x)dx (5.19)

=

∫

x∈RD

√√√√
N∑

i=1

πiqi(x)

K∑

k=1

ωk

Nk∑

j=1

πk,jpk,j(x)dx. (5.20)

This leads to a convex objective function which is di�cult to optimize directly. One
more time, we can optimize a bound on the true objective function rather than the
objective function itself. We apply a �rst time Jensen's inequality and write:

E ≥
∑

i

πi

∫

x∈RD

√
qi(x)

∑

k

ωk

∑

j

πk,jpk,j(x)dx. (5.21)

We then introduce a set of variables γi,k,j which are subject to the constraints:
0 ≤ γi,k,j ≤ 1 and

∑
k,j γi,k,j = 1. The bound becomes:

∑

i

πi

∫

x∈RD

√√√√qi(x)
∑

k,j

γi,k,j
ωkπk,jpk,j(x)

γi,k,j
dx. (5.22)

Applying again Jensen's inequality we obtain the following lower-bound:

E ≥
∑

i

πi
∑

k,j

√
ωkπk,jγi,k,jBi,k,j . (5.23)

where Bi,k,j is the Bhattacharyya similarity between the two Gaussians qi and pk,j .
Computing derivatives with respect to γi,k,j and ωk and equating them to zero

leads respectively to the E- and M-step.
E-step:

γi,k,j =
ωkπk,jB

2
i,k,j∑

k,j ωkπk,jB
2
i,k,j

. (5.24)

M-step:

ω̂k =
(
∑

i πi
∑

j
√
πk,jγi,k,jBi,k,j)

2

∑
k(
∑

i πi
∑

j
√
πk,jγi,k,jBi,k,j)2

. (5.25)

Preliminary experiments showed that the principled computation of weights always
outperformed the heuristic approach.

Again, we use the one-to-one correspondence to speed-up the scoring and set
Bi,k,j = 0 for i 6= j.
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5.4 Experiments
5.4.1 Experimental Setup
We make use of the same experimental setup as in section 4.3.1: including the
extraction of features, dimension reduction through PCA, classi�cation using SLR
classi�er.

We evaluated two baseline systems:

• The method of chapter 4 with the KLK.

• The method of chapter 4 with the Bhattacharyya Kernel (PPK with ρ = 1/2).

For two baselines, a �universal� GMM is �rst estimated with all training images.
Then the per-image GMMs are estimated through MAP adaptation of the universal
GMM. For both the baselines KLK and PPK and the method proposed in this
chapter, we used the one-to-one fast scoring described in chapter 4. For the two
baselines, an image is represented as a vector of similarities/distances to the set of
training images.

5.4.2 PASCAL VOC2007
We compared these two baselines to the three versions of our approach (later referred
to as MOM for mixture of mixtures):

• MOM KL sampling: c.f. section 5.3.1.

• MOM KL lower-bound: c.f. section 5.3.2.

• MOM PPK: c.f. section 5.3.4.

We used as reference images the 5,011 training images. For the three proposed
approaches, we apply SLR classi�er directly to the vectors of mixture weights.

Lower-bound vs sampling. We start with the comparison of the sampling and
lower-bound approximations for MOMKL. For the sampling approximation, we used
directly the low-level features extracted from the image to be described as samples.
Results are shown on Figure 5.3 for the system based on ORH features as a function
of the number of Gaussian components in the per-image GMMs. Similar results were
obtained for the COL features. The lower-bound approximation clearly outperforms
the sampling one. We believe that this di�erence can be explained by the a priori
information incorporated in q in the case of the lower-bound approximation. In the
following, we will not consider the MOM KL sampling approximation anymore.

In�uence of the number of EM iterations. We now study the in�uence of
the number of EM iterations on the performance of our algorithm. This is shown
on Figure 5.4 for the system based on ORH features as a function of the number
of Gaussian components in the per-image GMMs. Similar results were obtained for
MOM PPK or for COL features. In all cases, the best results are obtained for 3 to 5
iterations. With more than 5 iterations, the accuracy decreases quite rapidly. This
demonstrates the importance of early stopping. This shows that the best measure
should not only consider global or local similarity but a mix between the two.
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Figure 5.3: Mean AP for the sampling and lower-bound approximations of MOM
KL for the system based on ORH features only.
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Figure 5.5: Comparison of the proposed algorithms to traditional kernel methods:
MOM PPK versus PPK (top) and MOM KL versus KLK (bottom). The mean
AP is shown as a function of the number of Gaussian components in the per-image
GMMs for the di�erent features (ORH, COL, ORH+COL).
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Figure 5.6: Classi�cation rate (%) on Scene-15 database by varying the number G
of Gaussian components

Comparative evaluation. The results of the comparison of KLK with MOM
KL and PPK with MOM PPK are shown on Figure 5.5 for the di�erent features.

We can see that the proposed method consistently outperforms the baseline for
all feature types, for both KL and PPK and for various numbers of Gaussians.
We note that the di�erence is more pronounced for KL than it is for PPK. We
believe that this is because PPK is more resilient than KLK to the poor matching
of individual Gaussian components (c.f. the toy example in section 5.2).

We note that an alternative to the proposed approach would have been to model
an image, not as vector of similarities/distances to N reference/training images,
but as a vector of K2 ×N similarities/distances between the K components of the
image to be described and the K×N components of the N reference images. Using
our proposed framework of chapter 4 (i.e. taking into account the correspondence
between adapted Gaussians), we can reduce the vector size to K × N . Our initial
intuition was that, since this representation contains K times more information
than the proposed representation, it should perform better. However in practice,
this approach performed worse than the proposed approach. Our best explanation
is the very high dimensionality of the vectors: 640,000 dimensions for N = 5, 000
and K = 128.

5.4.3 Scene-15
With the same experimental setup as in 4.3.3, we evaluate our approaches based on
lower-bound approximation on Scene-15. Figure 5.6 shows the average classi�cation
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rate over 10 individual runs. We compare our results with the two baseline systems
and observe that our lower-bound approximations outperform the baselines. Our
best classi�cation rate is 82.4% (0.6% standard deviation)with the MOM PPK and
it is better than the result reported 81.4% in [Lazebnik et al. 2006] and still below
[Zhou et al. 2009] which makes use of geometric information (85.2%).

5.4.4 Caltech-256
We report the average classi�cation rate over 5 individual runs on Caltech-256
database. Figure 5.7 shows that MOM KL outperforms the baseline KLK and
obtains a 38.4% accuracy (0.4% standard deviation) which is much closer to the
state-of-the-art of Lazebnik et al. (39.0% of accuracy) reported in the challenge
[Gri�n 2007]. We also observe that MOM PPK gives better result than the baseline
PPK when using more training images. In the case of lower-bound approximation,
the MOM KL is better than the MOM PPK.

5.5 Conclusion
We presented in this chapter a novel image representation. The idea was to ap-
proximate an image, modeled by a GMM, as a convex combination of K reference
image GMMs and then to describe the image as the K-dimensional vector of mix-
ture weights. We explained that these mixture weights encode a similarity which
favors strong local matches of Gaussians components rather than a global match of
the distribution, as is the case of traditional distance/similarity measures such as
the SKL or PPK.

We applied this framework to image classi�cation and showed on several
databases a consistent increase for classi�cation accuracy. This increase seems more
important on those datasets where the background in�uence is reduced (e.g. Scene-
15 and Caltech-256). In the next chapter, we discuss the limitations of our previous
work and propose a solution to go beyond those limitations.
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Figure 5.7: Classi�cation rate (%) on Caltech-256 database of the MOM PPK (top)
and MOM KL (bottom) with 128 Gaussian components with di�erent number of
training images.
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6.1 Introduction
In the previous chapter, we modeled images as mixtures of reference images. We
explained that each mixture weight expressed a similarity between the image to be
described and each reference image. We can say that this measure of similarity
is contextual as it depends on the set of reference images: the context. However,
�nding the similarity between two images using such an explicit set of context images
is both costly and cumbersome.

We note that several authors have already proposed contextual measures of
similarity. [Jégou et al. 2007] proposes a contextual measure of distance between
points which consists in symmetrizing the K-NN relationship. The initial distance
is contextualized by adding a multiplicative penalty term which can be computed
iteratively. In e�ect, it downweights those images which are located in a dense re-
gion of the image space. [Zhao et al. 2007] proposes a contextual distance between
data points which is de�ned as the di�erence of their contributions to the integrity
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of the structure of the contextual set (de�ned as the neighboring points). Two mea-
sures of structural integrity were proposed: a geometric one and an informative one
respectively based on the center of gravity and the coding length of the contextual
set.

Of highest interest to us are those measures which were proposed in the infor-
mation retrieval community. [Ponte & Croft 1998] proposed the so-called language
modeling (LM) approach. If p, q and u are respectively a template, a query and a
context multinomial of dimension D, one can measure the dissimilarity of q and p in
the context of u as the Kullback-Leibler (KL) divergence between q and a smoothed
version of p:

D∑

i=1

qi log

(
qi

ωpi + (1− ω)ui

)
. (6.1)

Smoothing has two bene�ts over a standard KL divergence between q and p. First,
it avoids log(0) e�ects in the case of sparse vectors. Second, by rewriting equation
6.1 as:

−
D∑

i=1

qi log

(
1 +

ω

1− ω

pi
ui

)
+ C (6.2)

where C is independent of p, we can see that it downweights the in�uence of frequent
words (indices i with large values ui) as is the case of TF-IDF. A major issue is the
sensitivity to the choice of ω (see e.g. [Zhai & La�erty 2001] for a study of the
impact of ω as well as di�erent smoothing schemes).

In this chapter, we introduce a novel family of contextual measures of similarity
between distributions: the similarity between two distributions q and p is measured
in the context of a third distribution u. In our framework any traditional measure
of similarity/dissimilarity has its contextual counterpart. We show that for two
important families of divergences (Bregman and Csiszár), the contextual similar-
ity computation consists in solving a convex optimization problem. We apply the
contextual similarity to the case of continuous distributions and report the compar-
ison of performance with our previous approach MOM KL in chapter 5 on several
datasets.

This chapter is organized as follows. In section 6.2 we give the de�nition of our
contextual measure and discuss its properties. In our framework any traditional
measure of similarity/dissimilarity has its contextual counterpart. We show that
when the measure to be contextualized belongs to one of two important families of
divergences (Bregman and Csiszár), the contextual similarity computation consists
in solving a convex optimization problem. In section 6.3 we specialize our method
to the case of continuous mixture distributions. The idea is similar in spirit of that
used in chapter 5. We provide in section 6.4 categorization results. Finally, we draw
conclusions in section 6.5.

6.2 Contextual Similarity
We �rst introduce a broad de�nition of contextual similarities which is valid for
discrete or continuous distributions, parametric or non-parametric distributions,
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etc.

6.2.1 De�nition
Let p and q be two distributions to be compared and let u be the distribution that
models the context. Typically, in our case, p and q will be two GMMs describing
two images. Let f be a �traditional� (i.e. non-contextual) measure of similarity
between distributions. We introduce the following function:

φf (ω; q, p, u) = f (q, ωp+ (1− ω)u) . (6.3)

As we are dealing with distributions, φf is de�ned over the interval 0 ≤ ω ≤ 1.
We note that in the case where f(q, p) = Eq[log p], where Eq denotes the expec-
tation under q, φf (ω; q, p, u) is the distance used in the LM approach to retrieval
[Ponte & Croft 1998] (c.f. the introduction).

We de�ne the contextual similarity csf as:

csf (q, p|u) = arg max
0≤ω≤1

φf (ω; q, p, u). (6.4)

csf is ill-de�ned for p = u and we choose the convention csf = 1/2 in such a case.
The intuition behind this measure of similarity is the following one. By maximiz-

ing φf (ω; q, p, u) over ω, we estimate the mixture of p and u that best approximates
q. The weight ω which maximizes φf (ω; q, p, u) re�ects how much p contributes to
the approximation, i.e. whether q is best modeled by the broad domain informa-
tion contained in u or the specialized information contained in p. Our similarity is
fundamentally di�erent from the traditional LM approach. Especially, there is no
parameter tuning required. The di�erence with the contextual similarity de�ned
in the previous chapter 5 is the following one. While in the previous chapter the
similarity depends on an explicit set of reference image, here the similarity depends
only implicitly on the set of reference images through u (the reference images are
used to train u).

By de�nition csf is guaranteed to have values in the interval [0, 1]. We note that
q = p ⇒ csf (ω; q, p, u) = 1 but that the converse does not hold. φf and thus csf
are asymmetric in p and q even if f is symmetric, i.e. csf (q, p|u) 6= csf (p, q|u) in
general. There exist various ways to symmetrize the contextual similarity if needed.
One way is to combine csf (p, q|u) and csf (q, p|u) using for instance a sum or product
rule. Another way is to symmetrize φf , e.g. as follows:

φf (ω; q, p, u) = f (q, ωp+ (1− ω)u)

+ f (p, ωq + (1− ω)u) . (6.5)

In our experiments, we always made us of the symmetric contextual measure.

6.2.2 Choice of the Function f

We have not yet de�ned a similarity measure but a family of similarity measures
parametrized by the particular choice of the function f . csf can thus be understood
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as a contextualized version of f . f can be virtually any measure of similarity between
distributions. Obviously, f can be a dissimilarity instead of a similarity: this just
requires changing the max by a min in (6.4).

Interestingly, not all measures f are good candidates for contextualiza-
tion. A simple counter-example is the Expected Likelihood (EL) kernel
[Jebara & Kondor 2003]: EL(q, p) = Eq[p] = Ep[q]. Except in the case where
Eq[p− u] = 0, it is easy to show that csEL gives binary values (0/1).

It is advantageous to choose φ to be concave (resp. convex) in ω if f is a
similarity (resp. dissimilarity) as one is thus guaranteed to have a unique optimum
which simpli�es the optimization process. In the following, we consider the case of
continuous distributions. We show that when f belongs to one of two important
families of divergences, φf is convex in ω.

Bregman divergences. The Bregman divergence between two distributions x
and y for a convex function h : Ω → R is de�ned as:

Bh(x, y) = h(x)− h(y)− 〈∇h(y), (x− y)〉 (6.6)

where ∇h denotes the gradient vector of h and 〈., .〉 the dot product. Intuitively,
Bh(x, y) can be understood as the di�erence between the value of h at point x and the
value of the �rst-order Taylor expansion of h around y evaluated at x. Special cases
of Bregman divergences include the Euclidean distance, the Mahalanobis distance,
the Kullback-Leibler divergence or the Itakura-Saito divergence.

If φ(ω; q, p, u) = Bh (ωp+ (1− ω)u, q), then φ(ω; q, p, u) is convex in ω. To prove
this assertion, it is su�cient to show that the second order derivative is positive.
We have:

∂2

∂ω2
Bh (ωp+ (1− ω)u, q)

= (p− u)T∇2h (ωp+ (1− ω)u) (p− u)

(6.7)

where ∇2h denotes the Hessian matrix of h and T the transposition. As h is convex,
this quantity is positive by de�nition and thus φ is convex in ω.

We note however that if φ(ω; q, p, u) = Bh (q, ωp+ (1− ω)u), we cannot conclude
on the convexity of φ (the second order derivative with respect to ω includes third
order derivatives of h).

Csiszár divergences. The Csiszár divergence between two distributions x and
y for a convex function h : R→ R is given by:

fh(x, y) =

∫

z∈RD

x(z)h

(
y(z)

x(z)

)
dz. (6.8)

where z is an observation vector. Special cases of Csiszár divergences include the
Manhattan distance, the Kullback-Leibler divergence, the Hellinger distance or the
Rényi divergence.

If φ(ω; q, p, u) = fh (q, ωp+ (1− ω)u), then φ(ω; q, p, u) is convex in ω. One
more time, it is su�cient to show that the second order derivative is positive. We
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have:

∂2

∂ω2
fh (q, ωp+ (1− ω)u)

=

∫

z∈RD

(p(z)− u(z))2

q(z)
h′′

(
ωp(z) + (1− ω)u(z)

q(z)

)
dz

(6.9)

where h′′ is the second order derivative of h. As h is convex, h′′ ≥ 0 and the previous
quantity is positive.

Similarly, if φ(ω; q, p, u) = fh (ωp+ (1− ω)u, q), φ is convex in ω as:

∂2

∂ω2
fh (ωp+ (1− ω)u, q)

=

∫

z∈RD

q2(z)(p(z)− u(z))2

(ωp(z) + (1− ω)u(z))3
h′′

(
q(z)

ωp(z) + (1− ω)u(z)

)
dz

(6.10)

is a positive quantity.

6.3 Continuous Distributions
We now assume that q, p and u are continuous distributions and let z be an obser-
vation vector. In this chapter, we focus on the case of the KL divergence although
we could also apply our framework to the Bhattacharyya similarity.

6.3.1 Kullback Leibler (KL)
By de�nition, we have:

φKL(ω; q, p, u) =

∫

z∈RD

q(z) log

(
q(z)

ωp(z) + (1− ω)u(z)

)
dz. (6.11)

Minimizing the equation 6.11 is equivalent to maximizing:

E =

∫

z∈RD

q(z) log(ωp(z) + (1− ω)u(z))dz. (6.12)

We will focus on the case where q, p and u are mixture models: q =
∑

i πiqi,
p =

∑
j πpjpj and u =

∑
j πujuj where πi, πpj and πuj are respectively the mixture

weight for Gaussian qi, Gaussian pj and Gaussian uj . Using previous lower-bound
approximation proposed in chapter 5, we have the following lower bound:

E ≥
∑

i

πi log


ω

(∑

j

πpj exp(−Hqi,pj )

)
+ (1− ω)

(∑

j

πuj exp(−Hqi,uj )

)
 .

(6.13)
where Hqi,pj and Hqi,uj are de�ned as follows (cross-entropies):

Hqi,pj = −Eqi [log pj ] , (6.14)
Hqi,uj = −Eqi [log uj ]. (6.15)
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In the case where q, p and u are Gaussian mixture models (GMMs), there is a closed-
form formula for Hqi,pj and Hqi,uj . Equation 6.13 can thus be optimized iteratively
using the expectation maximization algorithm. At iteration (k + 1), we have:

E-step:

γ
(k+1)
i,j =

ω(k)πpj exp(−Hqi,pj )

ω(k)πpj exp(−Hqi,pj ) + (1− ω(k))πuj exp(−Hqi,uj )
(6.16)

M-step:
ω(k+1) =

∑

i,j

πiγ
(k+1)
i,j (6.17)

Note that in this case, the cost of the contextual KL is largely dominated by the
cost of computing Hqi,pj and Hqi,uj , and not by the optimization process itself. As
those values also have to be computed in the case of the KL, the added cost of the
contextual KL compared to KL can be neglected. As is the case in the previous
chapter 5, we can speed-up the computation by using the one-to-one correspondence
discussed in chapter 4 and this leads to γ

(k+1)
i,j = 0 if i 6= j.

6.4 Experiments
6.4.1 Experimental Setup
We make use of the same experimental setup as in section 5.4.1: including fea-
ture extraction, PCA reduction, per-image GMMs through MAP adaptation of the
universal GMM and classi�cation using SLR classi�er.

We choose the method of chapter 5 with the lower-bound MOM KL as the
baseline system. We compare the baseline with our symmetric contextual measure
based on the KL (later referred to as CTXT KL).

For the cross-entropy computations, we make use of the one-to-one fast scoring
described in chapter 4 which e�ciently reduces the computational cost. For the
early stopping of EM algorithm, we vary the number of iteration from 1 to 5 and
report the best accuracy. Each image is represented by the vector of similarities
to the set of training images. As opposed to the previous chapter, in general these
weights (similarities) do not sum to 1. We apply the SLR classi�er directly to the
vectors of mixture weights for both systems.

6.4.2 PASCAL VOC2007
We report the mean Average Precision on VOC2007 dataset. From the Figure
6.1, we can see that the CTXT KL approach outperforms the MOM KL for
various numbers of Gaussians. We obtain a 57.1% AP which is comparable to
the performance reported by the leading participants during the challenge (59.4%
[Everingham et al. 2007]).



6.5. Conclusion 57

0 20 40 60 80 100 120 140
0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.565

0.57

Number of Gaussian Components

m
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 

 

CTXT KL
MOM KL

Figure 6.1: The mean AP on the PASCAL VOC2007 of the CTXT KL based on
the ORH+COL features for a varying number of Gaussian components.

6.4.3 Scene-15
With the same experimental setup as in 5.4.3, we report the average classi�cation
rate over 10 individual runs to evaluate the CTXT KL on Scene-15. Figure 6.2 shows
that the CTXT KL obtains more improvement of performance than the MOM KL
baseline with a small number of Gaussians. However, both approaches reach the
same accuracy (81.2%) when the number of Gaussians is 128.

6.4.4 Caltech-256
We report the average classi�cation rate over 5 individual runs on the Caltech-256
database. Figure 6.3 shows that the CTXT KL approach obtains a 39.0% accuracy
(0.4% standard deviation) which gives a very slight improvement over the MOM KL
approach (38.4% with 0.4% standard deviation).

6.5 Conclusion
In this chapter, we presented a novel family of contextual measures of similarity
between distributions. We explained that in our framework any measure of similarity
or dissimilarity had its contextual counterpart. We showed that for two important
families of divergences (Bregman and Csiszár) the contextual similarity computation
is a convex optimization problem. We focused on the case of continuous distribution
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Figure 6.2: Classi�cation rate (%) on Scene-15 database by varying the number of
Gaussian components.
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Figure 6.3: Classi�cation rate (%) on Caltech-256 database with 128 Gaussian com-
ponents by varying the number of training images.
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and explained how to compute in practice the similarity for several well-known
measures.

Note that this contextual similarity is not signi�cantly better than the one intro-
duced in the previous chapter 5 but constitutes an interesting alternative. Especially
the implicit dependence on the set of reference images makes this similarity much
more e�ective for retrieval.

In the future, we intend to focus on the application of this framework to clus-
tering. Indeed, clustering consists in grouping "similar" images where the notion
of similarity depends on the other images contained in the dataset. For instance,
while it might make sense to group images of di�erent breeds of cats in a general
dataset of animal images, it might not in a dataset of cat images. Hence, we believe
that clustering is a problem that could bene�t greatly from the proposed family of
measures.
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7.1 Introduction
Within the computer vision community, annotated data for training and evalu-
ating image categorization algorithms has long been viewed as a scarce resource.
This is because the traditional approach to building such datasets is a time con-
suming process. As a consequence, the datasets which have been (and are still
currently) employed to benchmark image categorization algorithms are fairly mod-
est in size. For instance, Scene-15 [Lazebnik et al. 2006], PASCAL VOC2007
[Everingham et al. 2007] and CalTech-256 [Gri�n et al. 2007], three of the most
popular benchmarks, contain 4,485, 9,963 and 29,780 images respectively.

However, this perception is drastically changing as large quantities of qual-
ity labeled data are becoming available. The ImageNet dataset (www.image-
net.org) is certainly the best example of this trend [Deng et al. 2009]. As a con-
sequence, the problem is shifting from �how to learn a category from a single
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image?� [Fei-Fei et al. 2006] to "how to handle these large quantities of data?"
[Wang et al. 2009, Maji & Berg 2009, Li et al. 2009].

As explained in chapter 2, one of the leading approaches to image cat-
egorization has been to describe images with bag-of-visual-words (BOV) his-
tograms and to classify them using Support Vector Machines (SVM) classi�ers
(see [Csurka et al. 2004, Zhang et al. 2007, Vedaldi et al. 2009] for a few examples).
While non-linear SVMs are perfectly suited to the small datasets which are typ-
ically employed, they do not scale well with the number N of training samples:
between O(N2) and O(N3) . This is to be contrasted with linear SVMs which can
be learned in O(N) using, for instance, a cutting-plane algorithm [Joachims 2006] or
Stochastic Gradient Descent (SGD) [Shalev-Shwartz et al. 2007]. It is even shown
in [Shalev-Shwartz & Srebro 2008] that, to achieve a target loss, the runtime of
the SGD solver PEGASOS [Shalev-Shwartz et al. 2007] decreases with the train-
ing set size (see also section 2 of [Shalev-Shwartz & Srebro 2008] for additional
background on the cost of training non-linear and linear SVMs). This is a very
compelling argument for using linear SVMs. Yet, it has been repeatedly reported
that non-linear SVMs outperform linear SVMs for image categorization (see e.g.
[Maji et al. 2008, Wang et al. 2009, Maji & Berg 2009, Vedaldi et al. 2009]).

However, non-linear kernel classi�ers are linear-classi�ers. Indeed, if K is a pos-
itive semi-de�nite (psd) kernel, there exists an implicit mapping ϕ in a new (possibly
in�nite-dimensional) space such that K(x, z) = ϕ(x)′ϕ(z). Let X = {xi, i = 1...N}
denote the set of training samples. The kernel classi�er f(z) =

∑N
i=1 aiK(z, xi) + b

can be re-written as f(z) =
(∑N

i=1 αiϕ(xi)
)′

ϕ(z) + b which is a linear classi�er
in the new space. Since we know that there exist linear classi�ers which perform
well in this new space, it is extremely tempting to perform an explicit (possibly
approximate) mapping of the data and learn linear classi�ers directly in this new
space.

In previous chapters, we introduced novel image representations and similar-
ity measures between such representations. In this chapter, our goal is somewhat
di�erent, yet related. Given an image representation (the BOV) and a kernel, the
question is how to transform the representation such that the dot product in the new
space is equivalent to the kernel similarity in the original space. Several approaches
have been proposed along this line. Kernel Principal Component Analysis (kPCA)
[Schölkopf et al. 1998], which was successfully applied in [Williams & Seeger 2001],
can be employed with any kernel. [Rahimi & Recht 2007] proposed an embed-
ding based on random projections (RPs) for shift-invariant kernels. Recently,
[Maji & Berg 2009] proposed an embedding for the intersection kernel. We note
that the accuracy of an embedding approach depends directly on the accuracy of
the kernel which is approximated: good kernels lead to good embeddings as veri�ed
in our experiments.

In this chapter we explore several approaches to performing explicit embedding
on various kernels. More precisely, our contributions are the following ones:

• We show that square-rooting BOV vectors, which corresponds to an exact
mapping in the case of the Bhattacharyya kernel, already leads to large im-
provements.
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• To go beyond this simple strategy, we propose addkPCA: a novel kPCA-based
embedding for additive kernels. We demonstrate that it leads to additional
improvements at a very a�ordable cost.

• We go one step further and experiment with embedding for non-additive ker-
nels. We show that the fairly small gain in classi�cation accuracy over additive
kernels is obtained at the expense of a very signi�cant increase of the compu-
tational cost.

• Using ImageNet data, we show experimentally that we continuously improve
the classi�cation accuracy using up to 10,000 training images per class. This
clearly justi�es the use of very large training sets.

The remainder of this chapter is organized as follows. In section 7.2, we discuss
the choice of kernels for BOV histograms (i.e. multinomials). In section 7.3, we
brie�y review kPCA. In section 7.4, we show how to adapt this framework to
additive kernels. In section 7.5, we review embedding with RPs for shift-invariant
kernels. In section 7.6.2, we present experimental results on datasets: PASCAL
VOC2007 and ImageNet. We also give a very brief introduction to the SGD solver
we use in our experiments in Appendix A.1. The remainder of the relevant literature
will be reviewed throughout the chapter 1.

7.2 Kernels for BOV Histograms
7.2.1 Additive Kernels
Additive kernels can be written as K(x, z) =

∑D
d=1 k(x(d), z(d)) where x(d) denotes

the d-th dimension of vector x. They have gained considerable popularity since
[Maji et al. 2008] showed that the classi�cation of a sample by an additive kernel
SVM can be done approximately at a cost which is independent of the number of
support vectors. This is because the classi�cation function f(z) =

∑N
i=1 aiK(z, xi)+

b can be rewritten as f(z) =
∑D

d=1 fd(z(d))+b with fd(z(d)) =
∑N

i=1 aik(z(d), xi(d))
and each of the 1-D fd functions can be approximated by piecewise-constant or -
linear functions. The most popular additive kernels are the Bhattacharyya kernel,
the χ2 kernel and the intersection kernel (c.f. equations 2.10, 2.11 and 2.12).

While the Bhattacharyya kernel has been successfully applied to continuous
distributions [Jebara & Kondor 2003, Farquhar et al. 2005] in our experience, it re-
mains under-exploited in the case of BOV histograms. Kbha can be directly related
to Kchi2. Indeed, we have the following bounds (c.f. Appendix A.2):

Kchi2(x, z) ≤ Kbha(x, z) ≤ 1

2
(1 +Kchi2(x, z)) (7.1)

and if x ≈ z,Kbha(x, z) ≈ 1
2(1+Kchi2(x, z)). Now, going back to our data embedding

problem, we see that in the case of Kbha the mapping is trivial: ϕ(z) = √
z (where

1While in the previous chapters we used SLR for linear classi�cation, we switched to linear
SVMs in this chapter. This is because our SLR code did not scale to the large amounts of images
employed in section 7.6.2 (up to 140k) as opposed to the SGD code of [Bottou ] which dealt easily
with such large quantities of data.
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the square-root of a vector should be understood as a term-by-term operation).
Hence, in the case of Kbha the mapping can be done exactly at (almost) zero cost,
simply by square-rooting the BOV vectors.

7.2.2 Exponential Kernels
All the previous additive kernels can be exponentiated and their exponential ver-
sions are also guaranteed to be psd kernels (c.f. equations 2.13, 2.14 and 2.15).
Recently, [Vedaldi et al. 2009] reported on an object segmentation task that Kexp

chi2

outperformed Kchi2. In section 7.6.2, we systematically compare the accuracy of the
additive kernels with their exponential counterparts and con�rm the superiority of
exponential kernels.

7.3 Embedding with Kernel PCA
We just provide a brief introduction to embedding with kPCA. For more background
on kPCA, please refer to [Schölkopf et al. 1998]. Let {xi, i = 1 . . .M} be a set of
samples in RD provided to learn the embedding. Given a kernel K : RD ×RD → R,
we seek a mapping ϕ : RD → RE such that K(xi, xj) ≈ ϕ(xi)

′ϕ(xj), ∀(i, j). A
possible criterion to �nd an optimal ϕ is to minimize:

∑M
i=1

∑M
j=1 (K(xi, xj)− ϕ(xi)

′ϕ(xj))
2 (7.2)

under
∑M

i=1 ϕe(xi)ϕf (xi) = 0 for e 6= f (7.3)

where ϕe(xi) denotes the e-th dimension of ϕ(xi). The constraints (7.3) translate
the fact that we want the dimensions of ϕ to be uncorrelated. Let K be the M ×M
kernel matrix and φe = [ϕe(x1), . . . , ϕe(xM )]. We write φe = σeψe where σe is the
L2 norm of φe (and consequently ψe is the L2-normalized version of φe). Taking the
derivatives of the equation 7.2 with respect to the ϕe(xi)'s leads to:

Kψe = σ2
eψe for e = 1 . . . E. (7.4)

This is a standard eigenvalue problem. The solution to minimizing the equation 7.2
is to take the E eigenvectors ψe corresponding to the E largest eigenvalues σ2

e and
to set ϕe(xi) = σeψe(i).

We de�ne K(z, .) = [K(z, x1), . . . ,K(z, xM )]. To extend the mapping to a new
sample z, we use the Nyström approximation [Williams & Seeger 2001]:

ϕe(z) =
K(z, .)′ψe

σe
. (7.5)

The cost of computing the kernel matrixK is in O(M2D). The cost of the eigenvalue
decomposition � typically based on a Cholesky decomposition � is in O(M3). The
cost of embedding a new sample is in O(M(D+E)). In all our kPCA experiments,
we set M = E.
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7.4 Embedding for Additive Kernels: addkPCA
While kPCA can be applied as is to additive kernels, it does not exploit their
additive structure. We now propose addkPCA: an e�cient kPCA embedding for
additive kernels.

7.4.1 Learning the Embedding

As noted in [Maji & Berg 2009], a possible way to �nd an embedding ϕ for additive
kernels is to �nd separate embeddings ϕd for each dimension d and then to con-
catenate them. Therefore, we propose to apply the kPCA framework separately in
each dimension. Given an additive kernel K(x, z) =

∑D
d=1 k(x(d), z(d)) and a set

of samples {xi, i = 1 . . .M}, the embedding is learned as follows:

1) For each dimension d:

a) Compute the M ×M kernel matrix kd with entries k(xi(d), xj(d))

b) Compute the F largest eigenvalues σ2
d,1, . . . , σ

2
d,F of kd (e.g. F = 10) and

their associated eigenvectors ψd,1, . . . , ψd,F .

2) Sort the D × F eigenvalues σ2
d,e for d = 1 . . . D and e = 1 . . . F and keep the

E largest ones with their associated eigenvectors.

Although the function k is the same for all dimensions, we learn di�erent embed-
ding functions ϕd,e in each dimension because the distribution of samples is di�erent
in each dimension. Also, a variable number of functions ϕd,e is selected automati-
cally by the algorithm in each dimension d (c.f. step 2)). This enables to put more
emphasis on those dimensions which contain more energy.

The cost of computing the D kernel matrices is in O(M2D) and the cost of the
D eigenvector decompositions is in O(M3D). The crucial di�erence between kPCA
and addkPCA is that, in the �rst case, one approximates a kernel K : RD×RD → R
while, in the second case, one approximates D times a kernel k : R×R→ R. Since
K operates in a much higher dimensional space than k, the number M of vectors
necessary to learn a good approximation of K is typically much larger than for k.
In our experiments, we found that M = 128 was su�cient to learn addkPCA as
opposed to several thousands for kPCA. Learning addkPCA on BOV histograms of
dimensionality D = 4, 000 with M = 128 takes less than 30s on a single CPU of a
3GHz Xeon machine.

We show in Figure 7.1 the �rst eigenfunctions in the case of Kchi2. An important
question is: how many dimensions E will typically be needed to obtain a good
embedding? We show that Kchi2 can already be correctly approximated using a
single eigenfunction. We will show in section 7.6.2 that with E = 2D (i.e. by
doubling the dimensionality of our representations) we can do as well as additive
kernel SVMs.
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Figure 7.1: Top-left: the function k(u, v) = 2 uv
u+v which corresponds to Kchi2. Top-

right: its approximation ϕ1(u)
′ϕ1(v). Using a single eigenfunction already leads

to a very good approximation of k. Bottom: the �rst 3 eigenfunctions of k. For
this example, we learned the embedding using samples regularly spaced on the [0,1]
interval. Notice that ϕ1(u) ≈

√
u.
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7.4.2 Embedding a new sample
We can embed a sample using the Nyström approximation:

ϕd,e(z(d)) =
k(z(d), .)′ψe,d

σe,d
(7.6)

with k(z(d), .) = [k(z(d), x1(d)), . . . , k(z(d), xM (d))]. In this case, the embedding
cost is in O(M(D +E)).

However, we can make the embedding cost independent of M using the same
trick as [Maji et al. 2008]. We split each of the D dimensions into a set of B bins
(by regularly sampling the interval between the smallest and largest values). Let cd,b
be the center of the b-th bin in dimension d. We pre-compute the values ϕd,e(cd,b)
for the E dimensions of the embedding using Nyström. Given a new sample z, we
compute for each dimension the bin index (O(D)) and then use a piecewise-constant
or -linear approximation of ϕd,e (O(E)).

7.4.3 Classi�cation of a sample
We assume that we have learned a set of C linear classi�ers on the embedded
samples: fc(z) = w′

cϕ(z) + bc. We can compute fc(ϕ(z)) in two di�erent ways:

1. The simplest way is to perform the explicit embedding ϕ(z) (O(D + E)) and
then to do C dot-products (O(CE)).

2. Using � again � the trick of [Maji et al. 2008], we can rewrite the classi�ers fc
as non-linear classi�ers in the original space. fc(z) =

∑D
d=1 fc,d(z(d))+b where

each 1D function fc,d can be approximated by binning the d-th dimension and
then by using a piecewise-constant or -linear approximation. The cost of
computing the bin indices in each dimension is in O(D) and the cost of the C
classi�cations is in O(CD).

As already mentioned, to obtain top accuracy with our approach, we typically set
E = 2D which may lead to think that the second option is cheaper. Actually, this is
incorrect as the O() notation hides constants. For the �rst option, the computation
of fc(z) relies on dot-products which are very e�cient operations while for the second
option it relies on look-up table accesses which are much slower 2. In practice,
using a C++ implementation and setting E = 2D, we found that a standard dot-
product was approximately 5 times faster than look-up tables. Using the SSE2 3

implementation of the dot-product of [Bottou ], the speed-up was a factor of 15.
Note that SSE2 instructions cannot speed-up look-up table accesses.

2On modern processors, the main bottleneck is often not the execution of the instructions but
the access to the data. To reduce the access time, processors perform prefetching, i.e. when
accessing the data at a given position in RAM, they also retrieve the data at subsequent positions.
Prefetching results in a very signi�cant speed-up provided that data is accessed sequentially. This
is the case when performing dot-products and this is generally not the case when accessing look-up
tables.

3Modern processors, support single instruction with multiple data (SIMD) commands. SSE2
instructions perform multiple simple operations, such as additions or multiplications, in parallel.
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To learn the linear SVM for class c we use an SGD solver (c.f. Appendix A.1).
At each iteration, the value fc(xi) is evaluated with a di�erent training sample xi
(c.f. the term δi in equation A.4). To train our linear classi�ers, we also prefer the
direct approach to computing fc(xi) (embedding + dot-product) over the approach
based on look-up tables. This is much more e�cient when the same sample is used
multiples times by the SGD solver (5 times on average in our experiments).

7.4.4 Related Work

Closest to our approach is [Maji & Berg 2009] which proposes an explicit embed-
ding for the intersection kernel. Each dimension of the BOV vector is embed-
ded into a B-dimensional space. Per dimension, only 2 values are non-zero. This
leads to a BD-dimensional embedding with 2D non-zero values. As is the case
of [Maji & Berg 2009], addkPCA is as accurate as the additive kernel SVM it
approximates. The main advantages of the proposed approach with respect to
[Maji & Berg 2009] are the following ones:

• Our approach preserves data sparsity. Let z be a D-dimensional vector and
let nz be the proportion of non-zero values in z. According to equation 7.6,
if z(d) = 0, then k(z(d), .) is the null vector (at least in the case of Kint,
Kchi2 or Kbha) and ϕd,e(z(d)) = 0. Hence, the proportion of non-zero val-
ues in ϕ(z) is approximately nz (this is only approximate because we keep
a variable number of eigenvectors per dimension). This is to be contrasted
with [Maji & Berg 2009] where 2D values are non-zero (independently of nz).
This can be a limitation for very sparse data. For instance, in the case of ob-
ject segmentation with a sliding window classi�er, the classi�er typically has
to consider many small windows described by very sparse histograms (each
window containing a few patches).

• The training cost of [Maji & Berg 2009] is in O(NBD) with B ranging from
30 to 100. Our training cost is in O(ED) with E = 2D typically.

• [Maji & Berg 2009] reports that their work makes �training and testing an ad-
ditive classi�er only a small (constant factor) slower than training a linear clas-
si�er�. The classi�cation as well as the SGD training in [Maji & Berg 2009] are
based on look-up table accesses while our approach is based on dot-products.
We explained in the previous subsection that the second type of operation is
much more e�cient: up to 15 times faster (hardly a �small� constant) with a
good implementation of a dot-product.

[Wang et al. 2009], which proposes an algorithm to learn intersection kernel
SVMs, is closely related to [Maji & Berg 2009] and to addkPCA. The advantages
of our approach with respect to [Wang et al. 2009] are the same as the advantages
with respect to [Maji & Berg 2009]: we preserve sparsity and classi�cation as well
as training are more e�cient.
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7.5 Embedding for Shift-Invariant Kernels
We provide a brief introduction to embedding with random projections (RPs) for
shift-invariant kernels. For more details, please refer to [Rahimi & Recht 2007].

Let K : RD×RD → R be a kernel. It is shift-invariant if it can be written under
the form K(x, z) = K(x− z). For instance Kint is shift-invariant since Kint(x, z) =
1 − 1

2 |x − z| where |.| is the L1 norm. Consequently Kexp
int is also shift-invariant.

Similarly, Kexp
bha(x, z) can be rewritten as an rbf kernel: Kexp

bha(x, z) = Krbf (
√
x−√

z).
Therefore, Kexp

bha is shift-invariant in the space of the square-rooted BOV vectors. In
our experiments, we will focus on Kexp

bha .
K(x−z) is psd if and only if it is the Fourier transform of a non-negative measure

p (Bochner's theorem). If K is properly scaled, p is a probability distribution. For
instance if K is the rbf kernel, then p is the Gaussian distribution. We have:

K(x− z) =

∫

ω∈RD

p(ω)ejω
′(x−z)dω (7.7)

As K and p are real, we can replace ejω′(x−z) by cos(ω′(x− z)). Introducing the 2D
vector ζω(x) = [cos(ω′x) sin(ω′x)], we have:

K(x− z) = Eω

[
ζω(x)

′ζω(z)
]

(7.8)

In practice, to compute an embedding ϕ : RD → RE , one draws a set
of E/2 iid Gaussian vectors ω1, . . . , ωE/2 ∈ RD and the mapping is ϕ(x) =
1√
D
[cos(ω′

1x), . . . , cos(ω
′
E/2x), sin(ω

′
1x), . . . , sin(ω

′
E/2x)]. As E → ∞, ϕ(x)′ϕ(z) →

K(x− z).
We highlight that this approach does not require any learning. The cost of

embedding a vector is in O(DE).

7.6 Experiments
We follow the same experimental setup as in section 4.3.1 but with SIFT features
only. We did not make use of color features in our experiments. This is because some
of our large scale experiments were already time-consuming and running experiments
with color features would have doubled the runtime. We train visual codebooks
of 4,000 visual words. An image is described by the L1-normalized histogram of
visual-word occurrences (D = 4, 000). To learn linear SVMs, we use the SGD code
available at [Bottou ] (c.f. Appendix A.1). To learn non-linear SVMs, we use libsvm
[Chang & Lin 2001].

7.6.1 Small-Scale Experiments
For the small-scale experiments, we focus on accuracy, not on the training time.
Indeed, training non-linear SVMs on small datasets is not an issue. Our goal is to
verify to which extent the 3 approaches to explicit data embedding can approximate
the non-linear kernel classi�ers.
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Linear SVM [Bottou ]
44.1

Non-Linear SVM [Chang & Lin 2001]
Additive kernels Exponential kernels

Kbha Kchi2 Kint Kexp
bha Kexp

chi2 Kexp
int

48.9 50.1 50.5 52.7 52.8 52.0

Table 7.1: PASCAL VOC2007 baseline (in % AP).

E = 4k 8k 12k
PASCAL VOC2007

AP 49.9 50.6 50.7
(in %) (0.2) (0.1) (0.1)

Table 7.2: Accuracy (and standard deviation) of the proposed addkPCA applied to
Kchi2. E is the dimensionality of the embedded vectors.

Datasets: We experimented with PASCAL VOC2007 [Everingham et al. 2007].
Classi�cation accuracy is measured using Average Precision (AP). We report the
average over the 20 classes. To tune the SVM regularization parameters, we trained
them on the train set and used the val set for validation.

Baseline. We report baseline linear and non-linear SVM results in Table 7.1 for
VOC2007. As expected non-linear SVMs perform signi�cantly better than linear
ones, and exponential kernels somewhat better than their additive counterparts.
All additive kernels perform similarly and the same can be said about exponential
kernels.

Embedding additive kernels. We start with linear classi�ers on square-rooted
BOV vectors (exact embedding for Kbha). We obtain a 49.0% AP on VOC2007.
Compared to the linear baseline, this corresponds to absolute increases of 4.9%.

We now turn to addkPCA. We used a subset of M = 128 samples to learn the
embedding. We repeated the experiments 10 times with di�erent subsets to learn
the embedding and we report the average for Kchi2 in Table 7.2. With E = D = 4k,
we get results which are slightly better than the simple square-rooting approach.
With E = 2D = 8k, we get results as good as those obtained with the best additive
kernels.

Embedding exponential kernels. We focus on Kexp
bha since (i) it gives the best

(or very close to the best) results and (ii) it is based on the dot-product between
square-rooted vectors which is very fast to compute. We report experiments with
kPCA and RPs.

For kPCA, we repeated the experiments 10 times using di�erent subsets of the
training data to learn the embedding. We report the accuracy in Table 7.3. On both
datasets, kPCA does its best job when all samples are used to learn the embedding.
This not surprising given the high-dimensionality of the data and the small training
set sizes.
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E = 256 512 1024 2048 Full
PASCAL VOC2007

AP 45.6 47.9 49.8 51.2 52.4
(in %) (0.3) (0.4) (0.2) (0.2) (0.0)

Table 7.3: kPCA accuracy (and standard deviation) with Kexp
bha . E is the number of

training samples used to learn the embedding and therefore the dimensionality of
the embedded vectors. �Full� corresponds to using all training samples to learn the
embedding (5,011 for VOC2007).

E = 4k 8k 12k 16k 20k
PASCAL VOC2007

AP 46.7 49.0 50.0 50.7 51.0
(in %) (0.5) (0.3) (0.2) (0.2) (0.2)

Table 7.4: Accuracy (and standard deviation) of the approach of
[Rahimi & Recht 2007] applied to Kexp

bha . E is the dimensionality of the em-
bedded vectors.

For RPs, we also repeated each experiment 10 times with di�erent random ma-
trices. Results are reported in Table 7.4 for various values E of the embedding
dimensionality. On the challenging VOC2007 dataset, even with E = 5D = 20k, we
do not reach the accuracy of the baseline Kexp

bha .

7.6.2 Large-Scale Experiments
We now evaluate how the various embedding techniques scale to large training sets.
To train classi�ers, we used a subset of ImageNet [Deng et al. 2009]. Our goal was
to create a training set with the same 20 classes as PASCAL VOC2007. At the time
when we downloaded the data, only 18 classes had at least one synset in ImageNet:
aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog,
horse, motorbike, sheep, sofa, train and tvmonitor. We downloaded images from
these 18 categories as well as their sub-categories (i.e. children synsets). In our
experiments, we trained classi�ers with up to 10k images per class. Half of the
classes have less than 10k images: bicycle (6,653 images), bus (5,224), cow (1,572),
dining table (4,061), motorbike (3,779), sheep (9,702), sofa (7,474), train (9,982)
and tvmonitor (1,202).

To avoid the bias which typically occurs when training classi�ers and evaluating
their accuracy on the same dataset, we used as test data the VOC2007 test set.
Training and testing on datasets collected separately reduces over-�tting e�ects and
o�ers a much more realistic (and interesting) challenge. As is the case of VOC2007,
we use AP (averaged over the 18 classes) to measure classi�cation accuracy.

Each experiment was repeated 5 times on 5 di�erent training subsets (later
referred to as folds) and we report the average value as well as the standard deviation.
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Figure 7.2: Top: classi�cation accuracy as a function of the number of training
images. Bottom: classi�cation accuracy as a function of the training time (i.e. for
various sizes E of the embedding space) using a training set of 140k images. �lin
SVM� = linear SVM baseline. �sqrt + lin SVM� = linear SVM on square-rooted
vectors. �add kPCA + lin SVM� = proposed addkPCA for Kchi2. �rand + lin
SVM� = random projections to approximate Kexp

bha . �kPCA + lin SVM� = standard
kPCA with Kexp

bha . �sqrt + rbf SVM� = baseline kernel SVM with Kexp
bha . For the 3

embedding techniques, we used on the top plot the best system, i.e. the one with
the highest value E on the bottom plot (and therefore the highest training cost) .
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To tune the SVM regularization parameters, we trained the classi�ers on 50% of the
training data of the �rst fold and used the second 50% of this fold as validation set.
The same parameters were used for the 5 folds.

Does more data help? We �rst evaluate the in�uence of the training set size
on the classi�cation accuracy. This is an important question that remains largely
unexplored. For example, [Wang et al. 2009, Maji & Berg 2009, Li et al. 2009] re-
port experiments on large training sets but do not quantify the bene�t of using
the full training set as opposed to only a fraction. Results are reported in Figure
7.2 (top). As a comparison, the smallest training set (250 images per class = 4.5k
images in total) is comparable in size to the train+val set of VOC2007. We do not
report results with libsvm beyond 42k training images as training the 18 categories
on 42k images already takes approx. 38h of CPU time per fold. We observe a con-
tinuous improvement of the AP up to 10k images per class (140k images in total).
This clearly justi�es the use of very large training sets.

On the 140k image training sets, square-rooting BOV vectors already leads to
a large improvement: +5.4% AP (39.8% vs 45.2%). Using addkPCA leads to an
additional 1.6% increase (46.8%). Finally, the largest increase we obtained with
exponential kernels was another 1.4% (48.2%).

Training cost. We report in Figure 7.2 (bottom) the accuracy as a function of
the training time on the 140k training sets. The training time includes the combined
time of learning the embedding, embedding the training vectors and training the
18 classi�ers. All the CPU times correspond to training on a single fold and were
measured on a 3GHz Xeon machine using a single CPU. As a comparison, it takes
less than 4h to compute SIFT features and extract BOV histograms from 140k
images (approx. 100ms per image). While kPCA or RPs can outperform addkPCA,
the bene�t comes at a high cost: several hours of training as opposed to 2 min. Note
that the cost of kPCA and RPs is largely dominated by the embedding, not by the
linear SVM training.

Memory requirements should also be taken into account. For instance, with
RPs, one has to set E = 10D to obtain a mere 1% AP improvement over the best
addkPCA results and the 140k image signatures already take approx. 20GB. We
did not experiment with E = 20D for instance, as the training data would not have
�tted in the RAM of our 32GB machine. An important conclusion is that RPs for
shift-invariant kernels seem better suited to problems where the input vectors are
small dimensional as is the case of the datasets employed in [Rahimi & Recht 2007]
(127 dimensions max.).

Testing cost. We report the testing time of the systems trained on the 140k
images. As a comparison, the extraction of the BOV histograms from the 4,952 test
images takes approx. 8 min. The baseline linear SVM and the linear SVM on the
square-rooted vectors classify the whole test set in approx. 0.45s. addkPCA with
E = 2D takes approx. 2s using explicit embedding (1.4s) + dot products (0.65s).
If we were to use look-up tables instead (c.f. section 7.4.3) the test time would be
approx. 10s. The bene�t of dot-products as opposed to look-up tables increases
with the number of categories (i.e. when the embedding cost becomes negligible
with respect to dot-products). kPCA with E = 3D takes approx. 22 min and RPs
with E = 10D approx. 10 min. For both kPCA and RPs, the classi�cation time is
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fully dominated by the embedding cost.

7.7 Conclusion
In this chapter, we considered the problem of learning image classi�ers with large
training sets. We explored explicit embedding as an approach to scale non-linear
SVMs and experimented with several techniques. We demonstrated that simply
square-rooting BOV vectors, which corresponds to an exact embedding for Kbha,
already leads to large improvements. We then proposed addkPCA: a simple and
e�cient embedding based on kPCA for additive kernels. We showed that it improved
over the square-rooting at a very a�ordable cost. Finally, we experimented with
kPCA and random projections to approximate exponential kernels and showed that
it led to additional improvements but at a much higher cost this time.

This study focused on large training sets but did not address the problem of
dealing with a large number of categories (e.g. thousands) which is a very challenging
problem on its own. While we focused on the BOV, extensions to more complex
representations would also be interesting such as the GMM-based representations
introduced in the previous chapters.
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8.1 Summary
This thesis addressed the problem of deriving novel image representations and com-
puting similarities between such representations with application to image classi�-
cation. The major contributions of this thesis are the following ones.

• In chapter 4 we presented a novel approach to compute the similarity between
two unordered vector sets. We characterized each bag-of-patch model with a
continuous GMM which was adapted from a common universal GMM using
MAP. This adaptation provides a more accurate estimation than MLE when
the number of features is small and allows a one-to-one correspondence be-
tween the Gaussians of image GMMs for fast scoring. We derived e�cient
approximations for two probabilistic kernels: the Probability Product Kernel
and the Kullback-Leibler Kernel. We applied this approach to image classi�-
cation and showed its e�ciency in terms of classi�cation accuracy and cost.

• In chapter 5 a novel image representation was introduced. It consists in ap-
proximating an image, modeled for instance by a GMM, as a convex combi-
nation of K reference image GMMs and then characterizing the image as a
K-dimensional vector of mixture weights. We proposed two approximate op-
timization algorithms for the computation of the mixture weights: one based
on sampling and one based on variational bounds. This approach was applied
to image classi�cation and it was shown to outperform the GMM approach
introduced in chapter 4.

• In chapter 6 we also introduced a novel family of contextual measures of sim-
ilarity between distributions. The idea was to measure the similarity between
two distributions p and q in the context of a third distribution u. We showed
that for two important families of divergences (Bregman and Csiszár) the con-
textual similarity computation is a convex optimization problem. We focused
on the case of continuous distributions, typically GMMs, and applied this sim-
ilarity to the problem of kernel-based image classi�cation. With respect to the
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approach of chapter 5, we did not observe a signi�cant increase of accuracy.
However, an advantage of this contextual similarity is that the context does
not depend explicitly on a set of reference images.

• Finally, in chapter 7 we explored explicit embedding as an approach to scale
non-linear SVMs on BOV representations. We experimented with two state-of-
the-art techniques to embedding: kernel PCA (kPCA) and random projection
for shift-invariant kernels. We also proposed a simple and e�cient embedding
based on kPCA for additive kernels, addkPCA. We observed that a simple
square-rooting of BOV vectors (which corresponds to an exact embedding in
the case of the Bhattacharyya kernel) already led to signi�cant improvements.
We also showed that additional improvements could be gained with addkPCA
at a very a�ordable cost. Finally, we observed that, while it is possible to
improve over additive kernels, the gain in classi�cation accuracy was obtained
at a very high computational cost.

8.2 Future work
We have tried to outline some future work at the end of chapters 4, 6 and 7. We
now summarize them here:

• Adaptation Techniques. The proposed MAP adaptation provides accurate
estimation and improves the performance. We believe that other adaptation
techniques could also be employed, such as Maximum Likelihood Linear Re-
gression (MLLR) [Leggetter & Woodland 1995, Gales 1998], Cluster Adaptive
Training (CAT) [Gales 2000] or Eigenvoices [Kuhn et al. 2000]. They have
been shown to yield signi�cantly better results than MAP in the speech recog-
nition literature for smaller adaptation set.

• Multiple Kernel Learning. From the experimental results with PPK and
KLK, we note that there is no clear winner between these two kernels. It
might be interesting to consider principled combinations of kernels using Mul-
tiple Kernel Learning (MKL) [Varma & Ray 2007] to avoid the per-dataset
selection of kernels.

• Clustering based on Contextual Similarity. Clustering consists in group-
ing "similar" images where the notion of similarity depends on the other images
contained in the dataset. For instance, while it might make sense to group im-
ages of di�erent breeds of cats in a general dataset of animal images, it might
not in a dataset of cat images. Hence, we believe that clustering is a problem
that could bene�t greatly from the proposed family of contextual measures of
similarity.

• Extension of Explicit Data Embedding. In this thesis we have shown
that GMM-based representation obtain signi�cantly improvements over the
BOV. We believe that it would be interesting to extend explicit embedding
methods to these more complex GMM-based representations.
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• More generally, we believe that the ability to scale on algorithms to a large
number of classes is necessarily to make image classi�cation useful for real
world applications. Doing so e�ciently requires the ability to deal with class
hierarchies, a problem we did not address in this thesis.
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Appendix

A.1 SGD for linear SVMs
We give a brief overview of the SGD solver available at [Bottou ] inspired by
[Shalev-Shwartz et al. 2007]. Given a training set of labeled samples {(xi, yi), i =
1, . . . , N}, with yi ∈ {−1,+1}, we consider the problem of minimizing the regular-
ized loss:

E(w) =
λ

2
||w||2 + 1

N

N∑

i=1

λ(w′xi, yi). (A.1)

where λ is the regularization parameter. In the SVM case, λ(w′xi, yi) = max{0, 1−
yiw

′xi}. We did not include a bias term to simplify the presentation. Assuming
that at iteration t the SGD algorithm considers only sample xi, the loss (A.1) is
approximated by:

Ei(w) =
λ

2
||w||2 + λ(w′xi, yi). (A.2)

w is updated as follows:

wt+1 = wt − ηt∇w=wtEi(w) (A.3)
= (1− ληt)wt + ηtyixiδi (A.4)

with δi = 1 if λ(w′xi, yi) > 0 and δi = 0 otherwise. The learning rate has the
form ηt =

1
λ(t+t0)

where t0 is set heuristically in [Bottou ].

A.2 Relationship between Kchi2 and Kbha

Let x and z be two D-dimensional multinomials. Let us �rst show that Kbha(x, z) ≥
Kchi2(x, z). Let u ∈ [0, 1] and v ∈ [0, 1]. We have:

uv −
(

2uv

u+ v

)2

=
uv(u− v)2

(u+ v)2
≥ 0. (A.5)

Hence: √
uv ≥ 2uv

u+ v
(A.6)

which leads trivially to Kbha(x, z) ≥ Kchi2(x, z).
Let us now show that: Kbha(x, z) ≤ 1

2(1 +Kchi2(x, z)). Again, let u ∈ [0, 1] and
v ∈ [0, 1]. We introduce α =

√
uv and β = u+v

2 . We have:

1 +
2uv

u+ v
− 2

√
uv = 1 +

α2

β
− 2α (A.7)
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Multiplying the previous expression by β we obtain:

β(1 +
2uv

u+ v
− 2

√
uv) = β + α2 − 2αβ. (A.8)

Since β ∈ [0, 1], β ≥ β2 and

β + α2 − 2αβ ≥ β2 + α2 − 2αβ = (α− β)2 ≥ 0. (A.9)

Therefore, we have:
1 +

2uv

u+ v
− 2

√
uv ≥ 0 (A.10)

which leads trivially to 1
2(1 +Kchi2(x, z)) ≥ Kbha(x, z).

We can actually show that 1
2(1+Kchi2(x, z)) is a �rst-order Taylor expansion of

Kbha(x, z). Let m = (x+ z)/2 and ε = x− z.

Kbha(x, z) =
D∑

d=1

√
x(d)z(d) (A.11)

=

D∑

d=1

m(d)

√
1−

(
ε(d)

2m(d)

)2

. (A.12)

Assuming that ε(d)/(2m(d)) ¿ 1 ∀d and using a �rst-order Taylor expansion we
get:

Kbha(x, z) ≈
D∑

d=1

m(d)

(
1− ε(d)2

8m(d)2

)
(A.13)

≈ 1− 1

8

D∑

d=1

ε(d)2

m(d)
. (A.14)

Replacing m and ε by their de�nitions and reshu�ing the terms leads to:

Kbha(x, z) ≈ 1

2

(
1 + 2

D∑

d=1

x(d)z(d)

x(d) + z(d)

)
(A.15)

≈ 1

2
(1 +Kchi2(x, z)) . (A.16)
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