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Network optimization for wireless microwave backhaul

Abstract: Technological breakthroughs have transformed the telecommunications
industry aiming at providing capacity and efficiency to support the increasing de-
mand for wireless broadband services. With the advances in access technologies,
the capacity bottleneck of cellular networks is gradually moving from the radio
interface towards the backhaul – the portion of the network infrastructure that
provides interconnectivity between the access and core networks. The ability for
microwave to be rapidly and cost-effectively deployed is being a crucial point for
successfully tackling the backhaul bottleneck problem.

However, backhaul solutions available with this technology have received little
attention from the scientific community. Nevertheless, the growth of microwave
backhaul networks and their increasing complexity give rise to many interest-
ing optimization problems. In fact, unlike wired networks, the capacity of a
microwave radio link is prone to variations, either due to external factors (e.g.,
weather) or by the action of the network operator. This fundamental difference
raises a variety of new issues to be addressed appropriately. Therefore, more re-
fined approaches for dealing with network optimization in wireless microwave
backhaul need to be conceived.

In this thesis, we investigate network optimization problems related to the de-
sign and configuration of wireless microwave backhaul. We are concerned with
a general class of problems expressed in terms of minimum cost multicommodity
flows with discontinuous step increasing cost functions on the links of the net-
work. These problems are among the most important and challenging problems
in network optimization. Generally, they are computationally very difficult and,
in practice, can only be solved approximately. We introduce mathematical mod-
els for some of these problems and present solution approaches essentially based
on general mixed integer programming, chance-constrained programming, relax-
ation techniques, cutting plane methods, as well as hybrid metaheuristics.

This work was done in collaboration with the SME 3Roam, and partially
developed within the scope of the joint project RAISOM (Réseaux de collecte
IP sans fil optimisés), among INRIA Sophia Antipolis, SME 3Roam, and SME
Avisto. This thesis was developed under joint PhD thesis supervision between the
University of Nice-Sophia Antipolis and the Federal University of Ceará.

Keywords: Wireless communications, mathematical programming, network
optimization, multicommodity flows, microwave backhaul networks.





Optimisation dans des réseaux backhaul sans fil

Résumé: Les avancées technologiques poussent l’industrie des télécommunica-
tions à fournir la capacité et la qualité nécessaire pour satisfaire la demande crois-
sante de services sans fil à haut débit. De plus, avec les progrès des technologies
d’accès, le goulot d’étranglement des réseaux cellulaires se déplace progressive-
ment de l’interface radio vers le backhaul – la partie de l’infrastructure du réseau
qui fournit l’interconnexion entre les réseaux d’accès et de coeur. Aussi, la possi-
bilité de déployer rapidement des liens radio micro-ondes efficaces est essentielle
pour apporter des solutions crédibles au problème de l’engorgement des réseaux
backhaul.

Toutefois, les solutions de backhaul disponibles avec cette technologie ont reçu
peu d’attention de la communauté scientifique. Pourtant, la croissance des réseaux
backhaul et l’augmentation de leur complexité posent de nombreux problèmes
d’optimisation très intéressants. En effet, contrairement aux réseaux filaires, la ca-
pacité d’un lien radio micro-ondes est sujette à variation, soit due à des facteurs
extérieurs (météo), soit par l’action de l’opérateur. Cette différence fondamentale
soulève une variété de nouvelles questions qui doivent être abordées de façon
appropriée. Il faut donc concevoir des méthodes adéquates pour l’optimisation
des réseaux backhaul.

Dans cette thèse, nous étudions les problèmes d’optimisation de réseaux liés
à la conception et la configuration des liaisons terrestres sans fil à micro-ondes.
Nous nous intéressons en particulier à la classe des problèmes de multiflot de coût
minimum avec des fonctions de coût en escalier sur les liens du réseau. Ces pro-
blèmes sont parmi les problèmes d’optimisation combinatoire les plus importants
et les plus difficiles dans l’optimisation des réseaux, et il n’est généralement pos-
sible de les résoudre que de façon approchée. Nous introduisons des modèles
mathématiques pour certains de ces problèmes et présentons des approches de
solution basées essentiellement sur la programmation entière mixte, la program-
mation sous contraintes probabilistes, des techniques de relaxation, des méthodes
de coupe, ainsi que des méta-heuristiques hybrides.

Ces travaux ont été effectués en collaboration avec la PME 3Roam, et partielle-
ment dans le cadre du projet RAISOM (Réseaux de Collecte IP sans fil optimisés)
entre le projet Mascotte et les PMEs 3Roam et Avisto. Cette thèse a été développée
en co-tutelle entre l’Université de Nice-Sophia Antipolis et l’Université Federale
du Ceará.

Mots-clés: Communications sans fil, programmation mathématique, optimi-
sation réseau, multiflots, réseaux micro-ondes backhaul.





Otimização em redes de backhaul sem fio

Resumo: Inovações tecnológicas têm transformado a indústria de telecomuni-
cações visando fornecer capacidade e eficiência para suportar a crescente demanda
por serviços de banda larga sem fio. Com os avanços das tecnologias de acesso,
o gargalo de capacidade das redes celulares está gradualmente passando da inter-
face de rádio para o backhaul – a parte da infraestrutura de rede que fornece inter-
conexão entre as redes de acesso e o backbone. A implantação rápida e econômica
da infraestrutura de comunicação sem fio está se mostrando um ponto crucial para
se resolver o problema do gargalo de capacidade do backhaul.

No entanto, soluções de backhaul disponíveis com essa tecnologia têm rece-
bido pouca atenção da comunidade científica. À medida que as redes de backhaul
sem fio se tornam maiores e mais complexas, diversos problemas interessantes de
otimização de rede surgem nesta área em desenvolvimento. De fato, ao contrário
das redes cabeadas clássicas, a capacidade de um canal de rádio microondas está
sujeita a alterações, quer seja por fatores externos (condições climáticas), quer seja
pela ação do operador de rede. Esta diferença fundamental levanta uma série de
novas questões a serem ainda abordadas de forma apropriada. Devemos, por-
tanto, desenvolver métodos de otimização adequados ao contexto das redes de
backhaul sem fio.

O tema central de investigação nesta tese são importantes e desafiadores pro-
blemas de otimização de rede relacionados com a concepção e a configuração
de redes de backhaul sem fio, dentre os quais destacam-se problemas de multi-
fluxo de custo mínimo com funções de custo em escada dos liames da rede. Estes
são problemas difíceis a um ponto tal que, diante de instâncias oriundas de situ-
ações reais, somente soluções aproximadas são factíveis de serem obtidas com-
putacionalmente. Nesse contexto, nós propomos modelos matemáticos para al-
guns destes problemas e apresentamos métodos de resolução baseados essencial-
mente em programação inteira mista, programação sob restrições probabilísticas,
técnicas de relaxação, métodos de corte, bem como metaheurísticas híbridas.

Este trabalho foi realizado em colaboração com a empresa 3Roam, e foi
parcialmente desenvolvido no âmbito do projeto conjunto RAISOM (Réseaux de
Collecte IP sans fil optimisés), entre o INRIA Sophia Antipolis, a empresa 3Roam
e a empresa Avisto. Esta tese foi desenvolvida em co-tutela entre a Universidade
Federal do Ceará e a Universidade de Nice-Sophia Antipolis.

Palavras-chave: Comunicação sem fio, programação matemática, otimização
em redes, multifluxo, redes de backhaul sem fio.
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CHAPTER 1

Introduction

1.1 Context and motivation

The increasing demand for high-speed data connections, motivated by the growth
in the number of mobile users and the tremendous uptake of wireless broadband
services, has driven an outstanding development in telecommunications over the
last years. New transmission technologies and system architectures are emerging
in an attempt to meet users’ needs for bandwidth-intensive services.

Advanced access technologies such as Worldwide Interoperability for Mi-
crowave Access (WiMAX) and Long Term Evolution (LTE), which typically rely
on a packet-based infrastructure – using Internet Protocol (IP) as a unifying ser-
vice delivery protocol and Ethernet as a universal physical transport layer –, arise
as a promising alternative to provide high-bandwidth capability to users [Boc09,
Lit09].

With the advances in access technologies, the capacity bottleneck of cellular
networks is gradually moving from the radio interface towards the backhaul – the
portion of the network infrastructure that provides interconnectivity between the
access and core networks, as illustrated in Figure 1.1.

ACCESS
NETWORKS

BACKHAUL
NETWORKS

CORE
NETWORKS

Radio
Interface

Radio
Interface

Microwave
Fiber / Copper

Microwave
Fiber / Copper

Microwave
Fiber / Copper

Microwave
Fiber / Copper

INTERNET

PSTN

BSC/
MSC

BTS

BTS

BSC/
MSC

BSC/
MSC

Figure 1.1: Access, backhaul, and core networks.

The backhaul basically comprises two functionalities within the cellular net-
work. The first, often referred to as last mile, is the connection between the base
transceiver stations (BTS) – which furnish radio coverage over a geographical area
to support communications with individual mobile handsets – and the base station



2 Chapter 1. Introduction

controller (BSC) – which performs as an intermediate traffic aggregation point.
The second, commonly referred to as middle mile, is the connection between the
BSC and the handoff point to the core network, typically a mobile switching cen-
ter (MSC) – which provides interconnection into the public switched telephone
network (PSTN) or the Internet.

Regarding the choice among the transmission technologies widely used in
backhaul networks – copper, fiber, and microwave –, operators must consider
miscellaneous aspects such as cost, capacity, and availability. Copper offers the
advantage of being widely available in some geographies, but this medium is nei-
ther cost-effective nor scalable. Fiber, thanks to its virtually unlimited capacity,
would be the perfect medium in an ideal world. Unfortunately, fiber availability
is extremely restricted due to deployment challenges and high installation costs.
Microwave, in turn, can be deployed rapidly and cost-effectively, but it does not
provide the same capacity as fiber lines.

As operators deploy third- (3G) and fourth-generation (4G) cellular networks,
microwave comes forth as a key answer to ease backhaul bottlenecks. In fact, mi-
crowave has become a common preference to build backhaul networks, particu-
larly in emerging countries and remote locations where classical copper or fiber
lines are too costly or simply unavailable.

Given the expected high density of sites for 4G systems, the classical topolo-
gies used in microwave network design [Put00] – star and ring – are also evolving
to provide the necessary data capacity at contained costs. Besides, the migration
to an all IP-based network allows that much of the network functionality shifts
to the base stations and, as a consequence, the traditional hierarchical topology is
evolving to one that is flatter, as shown in Figure 1.2. As the network architec-
ture becomes flatter, mesh connectivity would be more appropriate for ensuring
capacity efficiency and routing flexibility [Boc09, CGB09].

Figure 1.2: Hierarchical and mesh backhaul topologies.

As a whole, technological breakthroughs have transformed the telecommuni-
cations industry aiming at providing backhaul capacity and efficiency to support
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the demand for wireless broadband services. The ability for microwave backhaul
networks to be rapidly and cost-effectively deployed is being a crucial point for
successfully tackling the backhaul bottleneck problem, and it is not a coincidence
that over 50% of the world’s base transceiver stations are connected using point-
to-point microwave technologies [Lit09, San09].

Nevertheless, backhaul solutions available with this technology have received
little attention from the scientific community. Apart from original problems in
wireless communications (e.g., channel characterization, power control, and fre-
quency assignment), several interesting problems from network optimization (e.g.,
facility location, capacity planning, and traffic routing) arise in this developing
area when microwave backhaul networks become larger and more complex. Due
to fundamental differences between wireless networks and classical wired net-
works, a variety of questions in this area remain to be adequately addressed and,
doubtlessly, some additional considerations inherent to wireless communications
must be taken into account for better responding some of them.

First, the design of microwave links requires special engineering considera-
tions related to the wireless channel. In fact, while wired channels are stationary
and predictable – links are always characterized by a given capacity and other pa-
rameters –, wireless links are time-varying by nature – e.g., weather conditions can
introduce instantaneously variations into the communication channel – and have
a dynamic behavior – e.g., modulation and coding can be adjusted according to
weather conditions to keep some performance criteria.

In addition, the radio spectrum is a limited natural resource which requires
sensible allocation to many different applications and systems, and coordination
to promote its efficient use. Bandwidth assignment, which is closely related to
network capacity planning, is a highly specialized task requiring a tremendous
amount of engineering and normally subject to renewal upon payment of renewal
fees. Besides, frequency planning plays a critical role to avoid interference within
one’s own network and between other operators’ networks [AHK+07, HTRS10].

Furthermore, the design of microwave backhaul networks presents particular
constraints. It is essential for microwave links to have a clear line-of-sight (LOS)
– i.e., there is a direct path without any obstruction (such as buildings, trees, or
mountains) between the communication endpoints –, which strongly dictates the
network topology. In addition, microwave backhaul networks usually have a sig-
nificant dependency on the core network, which impacts the decision of where to
install network nodes and links in order to interconnect all the points of interest to
the core network [Dar07].

Therefore, more refined approaches for dealing with network optimization in
wireless microwave backhaul networks need to be conceived. Besides the techni-
cal task of microwave link engineering, we are especially concerned about network
optimization problems that consider the random variations of wireless channels
and the dynamic behavior of microwave links. This is the main issue that we ad-
dress in this thesis, which was partially developed within the scope of the joint
project RAISOM (Réseaux de collecte IP sans fil optimisés), among INRIA Sophia An-
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tipolis, SME 3Roam, and SME Avisto, and financed by the SME 3Roam and the
Région PACA through a PhD grant. This thesis was developed under joint PhD
thesis supervision between the University of Nice-Sophia Antipolis and the Fed-
eral University of Ceará.

1.2 Our contribution

In this thesis, we investigate network optimization problems related to the de-
sign and configuration of wireless microwave backhaul. We are concerned with
a general class of problems expressed in terms of minimum cost multicommodity
flows (MCMCF), which is largely used for optimal design and dimensioning of
telecommunication networks [Ken78, Min06]. These problems basically consist of
transporting different commodities, from their respective sources to their destina-
tions, which simultaneously use the network and are coupled through either the
links’ capacities or the cost function to be minimized. Obviously, there should be
enough capacity in the network to simultaneously carry all the traffic requirements
(given as an input). The interested reader is also referred to the following books
on network optimization [Ber98, PM04].

Various special cases of the MCMCF problem are reported in [Min06], each
of them associated with an appropriate choice of link cost function. Generally,
the optimization criterion refers to the total cost of the equipment to be installed
on the various links of the network. When the cost function is considered to be
linear, then the MCMCF problem can be formulated as a large scale continuous
linear program, and many efficient algorithms are available to tackle it (see the
survey [Ken78]). By contrast, when considering realistic situations, we have com-
monly to deal with piecewise linear concave cost functions or step increasing cost
functions, giving rise to large scale integer linear programs, much more difficult to
solve in practice (see [GKM99] and references therein).

Particularly, the problems studied here rely on a MCMCF with discontin-
uous step increasing cost functions on the links of the network. These prob-
lems are among the most important and challenging problems in network opti-
mization. Generally, they are computationally very difficult (they belong to the
NP-hard complexity class [TLM84] and, in practice, can only be solved approxi-
mately [GM97]). We introduce mathematical models for some of these problems
and present solution approaches essentially based on general mixed integer pro-
gramming, chance-constrained programming, relaxation techniques, cutting plane
methods, as well as hybrid metaheuristics. Our contribution can be summarized
as follows.

First, we have developed an optimization tool, 3Link, for helping engineers on
the technical task of conceiving a microwave link. Driven by commercial and tech-
nical requirements, 3Link provides an easy way to calculate the link budget and de-
termine which configurations are available for the new microwave link to deploy.
This work was done under the supervision of Simon Bryden from SME 3Roam
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(http://www.3roam.com), a company which provides high-capacity microwave
transmission equipments for wireless and packet networks convergence. 3Link is
distributed by SME 3Roam with its Wireless Ethernet Starter Kit.

Besides, the effort devoted to this practical activity provided an important
background for understanding and modelling the problems studied here. In
fact, we could identify the main parameters (e.g., channel bandwidth, modula-
tion scheme, and transmission power) that determine the capacity of a microwave
link. These parameters represent information of different natures – some of them
are network engineer’s decisions while others are closely related to the conditions
on the communication channel. Furthermore, we could identify how these param-
eters impact the network costs (e.g., renewal fees of licenses and power utilization)
while considering different scenarios of optimization.

In addition, we have proposed a chance-constrained programming approach
to determine the optimal bandwidth assignment for the links of a microwave back-
haul network under outage probability constraints. This problem differs from clas-
sical capacity planning problems in the sense that microwave links vary in time. In
fact, the capacity of microwave links is basically determined by the channel band-
width and the modulation scheme used to transmit data. On the one hand, the
assigned bandwidth for each link is a network engineer’s decision. On the other
hand, in response to channel fluctuations, we assume that the modulation scheme
is a random factor. Therefore, the optimal solution must somehow consider such
random variations for guaranteeing a reliability level of the solution (without lead-
ing to the inefficient use of the radio spectrum). This work was done in collabo-
ration with David Coudert from Mascotte team, Grit Claßen and Prof. Arie M.
C. A. Koster from RWTH Aachen University, and it was recently submitted to an
international conference [CCKN].

Moreover, we have presented mathematical models to generate power-efficient
radio configurations as a function of the network traffic. Since microwave links
present a dynamic behavior (transmission power and modulation scheme can be
properly adjusted on the fly), the traffic fluctuation over the time offers an op-
portunity to power mitigation when microwave links are underused. The main
goal is to reduce interference among systems that share the same spectrum, espe-
cially when the number of base transceiver stations and microwave links increases.
This work was done in collaboration with David Coudert from Mascotte team
and Hervé Rivano from CITI Lab INSA Lyon, and it has originated many pub-
lications [CNR09a, CNR09b, CNR10]. Subsequent discussions with Prof. Manoel
Campêlo and Prof. Ricardo Corrêa from Universidade Federal do Ceará, and Prof.
Arie M. C. A. Koster from RWTH Aachen University led to several improvements
on the problem modelling and solving.

Finally, we have also addressed the routing reconfiguration problem that
occurs in connection-oriented networks such as telephone, multiprotocol label
switching (MPLS), or wavelength-division multiplexing (WDM) networks. This
problem involves moving from an initial routing (set of paths connecting pairs
of nodes) to another, treating sequentially each connection. It requires a proper

http://www.3roam.com
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scheduling to avoid conflicts in accessing resources but, incidentally, connection
interruptions may happen during the reconfiguration process. Two different ob-
jectives arise: (1) minimize the total number of interruptions or (2) minimize the
maximum number of simultaneous interruptions. We study tradeoffs between
these conflicting objectives and give several complexity results about this problem.
This work was done in collaboration with many people from Mascotte team, and
it has originated national and international publications [CCM+10a, CCM+10b].
Since this work does not belong to the main subject of this thesis, it will be pre-
sented as an appendix.

1.3 Outline of this thesis

The remainder of this thesis is organized as follows:

Chapter 2 is devoted to the technical task of conceiving a microwave link. Along
with the fundamentals of wireless communications – e.g., channel capacity, mod-
ulation schemes, and fading models –, we present 3Link, an optimization tool that
we have developed for helping engineers who are faced with designing and plan-
ning microwave links.

Chapter 3 covers the minimum cost bandwidth assignment problem under out-
age probability constraints. We introduce (joint) chance-constrained mathematical
programs to tackle this problem and derive their integer linear programming (ILP)
counterparts. To enhance the performance of ILP solvers, we propose cutset-based
valid inequalities. We present a comparative study on the performance of the dif-
ferent formulations and illustrate the price of reliability.

Chapter 4 investigates on determining feasible radio configurations for mi-
crowave wireless backhaul, focusing on power efficiency. We introduce an exact
mathematical formulation for this problem and propose a piecewise linear con-
vex function that provides a good approximation of the power utilization on the
links. We present a relaxation of the exact formulation and heuristic algorithms to
produce feasible radio configuration solutions. Our models are validated through
extensive experiments that are reported and discussed.

Chapter 5 presents a preliminary study of different mathematical formulations
related to the power-efficient configuration problem. We provide several refine-
ments to the previous formulations aiming at reducing the execution time of the
problem solving. In addition, we implement a lagrangian relaxation to this prob-
lem and present a Benders’ decomposition based on constraint generation.
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Chapter 6 is devoted to the general conclusion and perspectives of this thesis.
Along with the final remarks of our work, we discuss some remaining challenges
in wireless microwave backhaul networks that we envisage as future research.

Appendix A focuses on a different research work with which we have been in-
volved during the PhD program. It covers the routing reconfiguration problem
through a game played on digraphs. In this game, we study the tradeoff between
two conflicting parameters: the total number of interruptions and the maximum
number of simultaneous interruptions. We show that minimizing one of these pa-
rameters while the other is constrained is NP-complete. We also prove that there
exist digraphs for which minimizing one of these parameters arbitrarily impairs
the quality of the solution for the other one. Conversely, we exhibit classes of di-
graphs for which good tradeoffs can be achieved. We finally detail the relationship
between this game and the routing reconfiguration problem.





CHAPTER 2

Microwave communications

In this chapter, we first introduce the fundamentals of microwave communica-
tions, such as channel capacity, modulation schemes, radio spectrum, link power
budget, and fading models. In Section 2.1, we present the basic blocks of a mi-
crowave radio system, along with generally accepted assumptions and simpli-
fications concerning microwave communications. In addition, we present some
considerations about microwave costs and frequency spectrum, and introduce a
performance analysis of microwave radio systems. In Section 2.2, mathemati-
cal models for microwave link engineering are contemplated. We present dif-
ferent calculations and models used to predict the availability of a microwave
link. The interested reader is also referred to these books on wireless communica-
tions [Rap02, Gol05] and microwave transmission [And03, Man09, Leh10]. Finally,
in this chapter, we present 3Link, an optimization tool that we have developed
(under the supervision of the SME 3Roam, which distributes the software with its
Wireless Ethernet Starter Kit) for helping engineers who are faced with designing
and planning microwave links.

2.1 Microwave radio system

Microwave, in general, denotes the technology of transmitting information by the
use of the radio waves whose wavelengths are conveniently measured in small
numbers of centimeters. In the context of this thesis, microwave refers to terres-
trial point-to-point digital radio communications1, usually employing highly di-
rectional antennas in clear line-of-sight (LOS) and operating in licensed frequency
bands from 6 GHz to 38 GHz2.

A microwave radio system is a system of radio equipment used for microwave
data transmission. A modern microwave radio, based on a split-mount model,

1It is important to remember that not all microwave systems are point-to-point. Cellular tele-
phone networks, commercial and government mobile radio systems, and oneway television and
radio broadcast systems are all examples of point-to-multipoint microwave networks. Usually, it
consists of one or more broad-beam antennas that are designed to radiate toward multiple end-user
terminals. [And03, Leh10]

2Wireless technology continues to expand the frequency range at which commercially viable com-
munication systems can be built and deployed. Millimeter-wave is a new generation of point-to-
point radio communication operating at very high frequencies, typically including 71–76 GHz, 81–
86 GHz, and 92–95 GHz. Frequencies up to 300 GHz are also the subject of wireless communications
research. [Man09, Leh10]
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consists of three basic components: the indoor unit (IDU) which performs all dig-
ital processing operations, containing the baseband and digital modem circuitry
and, optionally, a network processing unit that provides advanced networking ca-
pabilities such as routing and load balancing; the outdoor unit (ODU) which houses
all the radio frequency (RF) modules for converting a carrier signal from the mo-
dem to a microwave signal; and the antenna used to transmit and receive the sig-
nal into/from free space, which is typically located at the top of a communication
tower, as illustrated in Figure 2.1. Antennas used in microwave links are highly
directional, which means they tightly focus the transmitted and received energy
mainly into/from one specific direction. To avoid waveguide losses, the antenna
is directly attached to the ODU which, in turn, is connected to the IDU by means
of a single coaxial cable. The distance between the indoor and outdoor equipment
can sometimes be up to 300 meters. Two microwave radios are required to estab-
lish a microwave link (usually operating in duplex mode3) between two locations
that can be several kilometers apart. It should be noted that a single IDU can sup-
port multiple ODUs in a same site and, thus, multiple microwave links between
different locations.

Figure 2.1: A schematic illustration of a microwave link.

In a microwave radio system, communication starts with an information source
that can be audio, video, or data in many forms. The IDU accesses a service signal,
prompting baseband processing, multiplexing and intermediate frequency (IF)
modulation. The signal is then sent to the ODU via coaxial cable for RF process-
ing, before being finally transmitted. The energy radiated by the RF transmitter
is amplified by the transmitting antenna before propagating in the form of radio

3Duplex operation means that each RF channel consists of a pair of frequencies for the transmit
and receive directions, respectively. Both the transmit and receive frequencies are combined onto
one antenna using frequency-division duplexing (FDD), where the duplexer provides the coupling
of the two signals onto one antenna, and the isolation required to ensure that the transmit signal
does not leak through to the receiver [Man09].
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waves in the directions determined by the design and orientation of the antenna.
As a radio wave travels through the atmosphere, it experiences different propa-
gation phenomena – e.g., free-space loss, reflection, diffraction, and scattering –
which negatively impact the perceived energy at the receiving antenna. Besides
the transmitted signal, the electromagnetic fields from the interference and noise
sources are also converted to power at the RF receiver, likely leading to impre-
cise interpretation of the transmitted signal. Finally, the RF receiver processes this
power in an effort to recover exactly the source information that was originally
transmitted.

2.1.1 Capital and operational costs

Microwave generally has lower costs associated with it when compared to copper
and fiber lines [Boc09, San09]. As a common solution, self-build microwave in-
volves capital expenditure (CAPEX) and operating expenditure (OPEX). Basically,
CAPEX includes the investment in equipment and infrastructure, as well as instal-
lation costs. Note that a pair of IDUs, ODUs, and antennas are required to establish
one microwave link. The installation costs are closely tied to the site location and
equipment dimensions (size of antennas).

Conversely, OPEX comprises the recurrent costs, such as spectrum licenses,
tower rentals, maintenance, and energy consumption. As further discussed in this
chapter, the spectrum price is usually a function of the amount of the assigned
bandwidth. The tower rentals normally represent an important contribution to
the total OPEX. However, the operator may also decide for the construction of
the communication towers and, in this case, all the cost is associated with the to-
tal CAPEX. The maintenance costs are usually assumed to be a percentage of the
equipment cost on an annual basis. In addition, we must consider the energy con-
sumption to keep equipment in operation.

Since the conditions differ greatly on a project-by-project basis, it is very dif-
ficult to provide even typical information to determine CAPEX and OPEX ex-
penses [Leh10]. An illustrative example is given in Tables 2.1 and 2.2. It should
be note that, unlike copper and fiber lines, microwave costs remain relatively
distance-insensitive within the range for each deployed link. We want to note
also that the energy costs are mainly associated with the operation of IDU (100 W
per device) and ODU (60 W per device) equipment. Although energy cost com-
monly represents less than 5% of the total OPEX of microwave radio systems, the
rising demand for energy has yielded a strong social and economical incentive for
energy savings in communications networks [GS03].

2.1.2 Radio spectrum

The radio frequency spectrum is a limited natural resource worldwide regulated
by the International Telecommunications Union (ITU) [ITU10], an intergovern-
mental organization whose function is to ensure the rational, equitable, efficient
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Table 2.1: Example of capital expenditure for one microwave link.

Item Quantity Cost (€) Total (€)
IDU 2 4,000 8,000
ODU 2 2,500 5,000
Antenna 2 2,500 5,000
Installation 1 5,000 5,000
Total 23,000

Table 2.2: Example of operational expenditure for one microwave link.

Item Quant. Cost (€/year) Total (€/year)
License 2 5,000 10,000
Tower 2 5,000 10,000
Energy 1 500 500
Maintenance 1 1,500 1,500
Total 22,000

and economic use of frequency bands. In conjunction with ITU regulations, na-
tional legislation instruments establish the availability of frequency bands for spe-
cific applications and the procedures for issuing licenses, as well as the rights and
obligations resulting from using the spectrum.

It is important to distinguish two terms related to the radio spectrum utiliza-
tion: allocation and assignment. Allocation refers to the administration of the ra-
dio frequency spectrum performed by the ITU, which sets out its use by one or
more communication services. An allocation then is a distribution of frequencies
to radio services. Assignment is the authorization given by an administration for a
radio station to use a radio frequency under specified conditions. An assignment
then is a distribution of a frequency to a given radio station [ICT10].

There are a number of frequency bands that have been allocated throughout
the world for use by licensed fixed broadband services. Within the general ITU
band designations, individual countries may elect to implement polices, such as
those by the Federal Communications Commission (FCC) [FCC10] in the United
States, that allow those frequencies to be licensed and used within their country
boundaries. In a given band, there may be requirements for maximum radiated
power levels, particular efficient modulation types, and even standards for the
radiation patterns of directional antennas. These criteria are established to reduce
or minimize interference among systems that share the same spectrum, and to
ensure that the spectrum efficiency is sufficiently high to justify occupying the
spectrum [And03].
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Therefore, obtaining a license (assignment) is a highly specialized task requir-
ing a tremendous amount of engineering and a careful review and functional un-
derstanding of the administrative rules that govern the use of the intended li-
censed spectrum space. In addition, frequency spectrum licenses are normally
subject to renewal upon payment of renewal fees. Administrative methods of set-
ting spectrum prices are increasingly being supplemented by the use of market-
based methods for determining spectrum prices [ICT10].

The major policy objective for spectrum pricing is that it should be done in
a way which promotes spectrum efficiency. Spectrum efficiency does come with
a cost and the spectrum manager should attempt to find an optimal cost/benefit
tradeoff. Secondly, use of the spectrum provides considerable benefit to the na-
tional and regional economies, and this benefit should be maximized. Next, man-
aging radio frequency spectrum costs money and, as a principle, those who benefit
from the use of the spectrum should be the ones to pay these costs [ICT10].

In practice, the price of a frequency spectrum for microwave communications
is usually a function of the amount of spectrum (bandwidth) with which a license
is associated, but it may also vary according to the frequency band to reflect the
level of congestion, the market demand and the relative cost of deploying network
infrastructures. In some countries, the spectrum is sold to an operator, either by
auction or by competitive tender. Because of specific differences from country to
country, a comprehensive tabulation of spectrum prices is beyond the scope of this
thesis. As an illustrative instance, in France, the annual renewal fee R in euro can
be determined by [ARC07]:

R = l · b f · lb · es · K (2.1)

where

R = the annual renewal fee (€)

l = channel bandwidth (MHz)

b f = factor related to the frequency

lb = factor related to the frequency and other technical criteria

es = factor related to the frequency and other technical criteria

K = reference value (€/ MHz)

For example, the annual renewal fee for a bandwidth of 7 MHz at the 8 GHz
frequency band is about €1,800, while for a bandwidth of 28 MHz at the same
frequency band is about €7,000.

2.1.3 Performance analysis

The performance analysis of microwave radio systems involves detailed knowl-
edge of the physical channels through which the data is transmitted. Traditionally,
it is focused on computing signal levels at the receiver [Rap02, Leh10], and the
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first step is the link power budget (See Section 2.2). The result is an estimation
of the signal-to-noise ratio (SNR) value, from which we can obtain some impli-
cations in terms of channel capacity and bit error rate (BER). Given the assigned
channel bandwidth B and the signal-to-noise ratio value S/N, expressed as a lin-
ear power fraction, we can determine an upper bound for the channel capacity C,
in bits per second (bps), assuming that the BER approaches zero when the data
transmission rate is below the channel capacity, according to Shannon’s capacity
theorem [Sha48]:

C[bps] = B[Hz] · log2

(
1 +

S[W]

N[W]

)
(2.2)

The degree to which a microwave radio system can approximate this limit de-
pends on receiver noise and modulation techniques [ZP00]. The receiver noise is
generated by components used to implement the communication system, and it is
closely tied to the bandwidth. The receiver noise can be calculated by:

N = kTB (2.3)

where

N = receiver noise (W)

k = Boltzman’s constant (1.38× 10−23 J/K)

T = system temperature (usually assumed to be 290 K)

B = bandwidth (Hz)

Other sources of noise may arise externally to the system, such as electrical noise
from industry machinery and interference from other users of the radio channel4.

With regard to the modulation technique, there are several features that influ-
ence the preference for some modulation scheme, such as bandwidth efficiency
and power efficiency. These requirements are conflicting, and existing modula-
tion schemes do not simultaneously perform both of them. Power efficiency de-
scribes the ability of the system to reliably send information at the lowest practical
power level. Bandwidth efficiency describes the ability of a modulation scheme to
accommodate data within a limited (as small as possible) bandwidth. The most
power-efficient modulation methods, like binary phase shift keying (BPSK) and
quadrature phase shift keying (QPSK), present a rather modest bandwidth effi-
ciency. Since spectrum is a very expensive and highly regulated commodity (as
previously discussed in Subsection 2.1.2), good bandwidth efficiency with low
BER is a priority for designers of microwave radio systems [And03, Man09, Leh10].

The most commonly used modulation method for microwave radio systems is
quadrature amplitude modulation (QAM), which employs a combination of am-

4Noise is usually differentiated from interference in that it may not be identifiable to a given
source and does not carry any useful information. Interference generally refers to identifiable man-
made transmissions [And03].
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plitude and phase techniques5. Instead of transmitting one bit at a time, two or
more bits are transmitted simultaneously according to the QAM scheme in use.
An m-QAM scheme presents m different combinations of amplitude and phase,
each one representing a n-bit pattern called a symbol (with n = log2 m and inte-
ger). In practice, given the assigned channel bandwidth B and the m-QAM scheme
in use, we can determine the channel capacity C by:

C[bps] = n · B[Hz] (2.4)

where n = log2 m. To increase bandwidth efficiency, symbols that convey more
information bits are required. For example, 16-QAM is more bandwidth-efficient
than 4-QAM (most known as QPSK). However, since the constellation states are
closer together (see Figure 2.2), high-level QAM schemes (e.g., 16-QAM) are more
susceptible to errors due to noise, interference, and channel impairments than
low-level QAM schemes (e.g., QPSK). In fact, for a given transmitting power, it
becomes increasingly difficult to correctly detect which signal state has been trans-
mitted as the number of symbol states increases. Hence, as a higher modulation
technique is used, a better SNR value is needed to maintain an acceptable BER
level (typically 10−6). Figure 2.3 shows the theoretical capacity (given by Shan-
non’s theorem) and the practical bitrate (using QAM schemes), as a function of
the SNR value given in dB, achieved for a typical microwave link using 28 MHz
of bandwidth. In Table 2.3, we present the bandwidth efficiency, the SNR require-
ment (BER 10−6), along with the channel capacity for different QAM schemes.

Figure 2.2: The rectangular representation for QPSK and 16-QAM constellations.

5A radio wave has three fundamental characteristics – frequency, amplitude, and phase – which
can be modulated individually or in combination to convey information [Rap02, And03, Leh10].
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Figure 2.3: Theoretical capacity versus practical bitrate.

Table 2.3: Bandwidth efficiency and SNR requirement for different QAM schemes.

Modulation Bandwidth SNR Capacity Capacity
scheme efficiency requirement for 7 MHz for 28 MHz
QPSK 2 bps/Hz 14.21 dB 14 Mbps 56 Mbps
16-QAM 4 bps/Hz 21.02 dB 28 Mbps 112 Mbps
32-QAM 5 bps/Hz 25.24 dB 35 Mbps 140 Mbps
64-QAM 6 bps/Hz 27.45 dB 42 Mbps 168 Mbps
128-QAM 7 bps/Hz 31.10 dB 49 Mbps 196 Mbps
256-QAM 8 bps/Hz 33.78 dB 56 Mbps 224 Mbps

2.2 Link power budget

The design process of a microwave radio system makes use of many mathematical
models to predict the system operation before it is actually built. These models are
based on highly accurate measurements, as well as on imprecise prediction of the
signal levels at the receiver [And03, Leh10]. In the sequence, along with the basic
terminology, we present the models used to assess performance and availability of
microwave radio systems.

2.2.1 Basic terminology

Transmitter output power. This is the RF power of the link transmitter on the
transmission channel, usually expressed in dBm (dB relative to one milliwatt).
Normally, the link is operated with the maximum possible transmitter power, ac-
cording to the link operating frequency and modulation scheme. However, it is a
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good practice to keep some power reserve available to flexibly respond to fade or
interference from other links.

Circulator loss. Normally, the output of a transmitter is combined with the re-
ceiver input when the transmitter and receiver share the same antenna. This du-
plexing device has some loss associated with it. This loss value in dB is obtained
from the equipment manufacturer.

Line loss. This is the loss in dB from the transmission line connecting the trans-
mitter with the antenna (or the antenna with the receiver). This loss depends on
the waveguide type and length.

Connector loss. This is the loss in dB introduced by the use of connectors be-
tween transceivers devices, transmission lines, and antennas. This loss depends
on the quantity and the quality of the connectors that are used.

Antenna gain. The antenna gain value, usually given in dBi (dB relative to an
isotropic radiator), is obtained from the antenna manufacturer. It depends on the
antenna type and link operating frequency. The antenna is one of the link system
elements that the design engineer can change to improve link performance.

Antenna radome loss. Special covers for antennas called radomes are available
to protect the horn feed and reduce the wind loading on the tower. The radome
cover on the antenna introduces some loss. This loss value in dB is obtained from
the antenna manufacturer.

Antenna polarization. Polarization is a physical phenomenon of radio signal
propagation and refers to the orientation of the electric field vector in the radiated
wave. It is related to the construction and orientation of the antenna and impacts
the link availability in rain fading conditions.

Effective radiated power. This is the sum of the transmitter output power and
transmitter antenna gain minus the losses from the circulator, waveguide, and
radome. It is normally expressed in dBm.

Frequency. This is the operating frequency of the link, usually expressed in MHz.
Normally, the nominal center frequency of the channel is used to find the path loss.

Bandwidth. This is the frequency range occupied by a modulated carrier wave
to transmit the data.



18 Chapter 2. Microwave communications

Path length. This is the distance, usually expressed in km, from the transmitting
antenna to the receiving antenna.

Free space path loss. This is the loss in signal strength, normally expressed in
dB, that occurs when an electromagnetic wave travels over a line of sight path in
free space.

Atmospheric absorption loss. This is the total atmospheric absorption loss along
the link path. This loss, usually expressed in dB, depends on the path length and
link operating frequency.

Total path loss. This is the sum of the free space and other loss factors along the
path, expressed in dB.

Received signal level. This is the signal strength, usually measured in dBm, at
the input of the radio receiver.

Receiver sensitivity. This is the minimum signal strength, expressed in dBm, at
the input of the radio receiver required to perform a specific BER (normally 10−6).
It depends on the equipment manufacturer and the modulation scheme.

Fade margin. This is the difference, measured in dB, between the received signal
level and the receiver sensitivity. This is an important result for the link availability
calculations and one of the ultimate results of the link budget calculation.

Receiver noise. This is the noise generated by thermal agitation of electrons in
a conductor, expressed in dBm. It depends on channel bandwidth and system
temperature (usually assumed to be 290 K).

Signal-to-noise ratio. This is the ratio, usually measured in dB, between the re-
ceived signal level and the receiver noise.

Required SNR. This is the SNR value needed at the input of the radio receiver
to achieve a specific BER (normally 10−6). This value is found on the equipment
specifications for each modulation scheme.

Link availability. This represents the probability that the BER is at or below a
given quality threshold level (normally 10−6). Conversely, an outage is the time
when the link is not available. It can occur for a variety of reasons, including
multipath fades, rain fades, and equipment failures.
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2.2.2 Power budget calculations

The microwave link design starts with a link power budget, i.e., a calculation in-
volving the gains and losses associated with the antennas, transmitters, receivers,
transmission lines, as well as the signal attenuation due to propagation in order to
obtain the mean signal level (and other related parameters) at the receiver. These
values can then be used to assess the availability of the link under a variety of
fading mechanisms. For a microwave link in clear line-of-sight, a power budget
equation might look like this:

PRX = PTX − LTX + GTX − LPL + GRX − LRX (2.5)

where

PRX = received signal level (dBm)

PTX = transmitter output power (dBm)

LTX = transmitter losses (circulator, line, connectors, radome) (dB)

GTX = transmitter antenna gain (dBi)

LPL = total path loss (free space, absortion) (dB)

GRX = receiver antenna gain (dBi)

LRX = receiver losses (circulator, line, connectors, radome) (dB)

For a line-of-sight microwave radio system, the primary source of loss is the
decrease of the signal power due to uniform propagation, proportional to the in-
verse square of the distance. The free space path loss equation can be written as
follows:

LPL = 32.44 + 20 · log10( f ) + 20 · log10(d) (2.6)

where

LPL = free space path loss (dB)

f = frequency (MHz)

d = path length (km)

The received signal level PRX can be used to assess other important parameters,
such as the signal-to-noise ratio and fade margin. As previously discussed, the
SNR value is a determinant of the channel capacity. The fade margin, in turn, is
used to calculate the link availability under fading conditions. Fading is a broad
term that is applied to a wide range of variations observed in the signal amplitude,
phase, and frequency characteristics [And03]. Fading phenomena are described
in statistical terms, and the probability of fades of a particular magnitude can be
evaluated through analytical techniques [Bar72, Vig75, Cra80, Cra96], from which
we can estimate the probability of outage and hence the link availability.
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2.2.3 Vigants–Barnett model

The Vigants–Barnett method is a multipath fading model based on the published
work of two microwave system researchers at AT&T Bell Labs [Bar72, Vig75]. This
work used both analytical and experimental data to create semiempirical equa-
tions for fade depth probability for the received signal. This model was specifically
created for fade depths greater than 15 dB, i.e., deep fades. The average probability
of a fade of depth A using this method is given by:

PF = 6.0× 10−10C f d310
−A
10 (2.7)

where

PF = probability of a fade as a fraction of time

d = path length (km)

f = frequency (MHz)

C = propagation conditions factor

A = fade depth (dB)

The propagation conditions factor C is selected on the basis of the type of
environment in which the link is to operate. There exist maps that provide an
indication of the appropriate C factor for the area where the link will be de-
ployed [And03].

2.2.4 Crane rain fade model

The Crane rain method [Cra80, Cra96] is used to predict the attenuation by rain on
terrestrial propagation path. The degree of attenuation due to rain is a function of
the rain intensity or rain rate. Rain rates are given in terms of the probability that
the average millimeters of rain that fall over an hour will be exceeded. Calculating
the outage is an iterative process that is based on the calculation of the attenuation.
The rain attenuation is calculated by the Crane method as follows:

AR = kRα
p

(
eµαd − 1

µα
− bαecαd

cα
+

bαecαD

cα

)
[dB], d ≤ D ≤ 22.5km (2.8)

AR = kRα
p

(
eµαD − 1

µα

)
dB, D < d (2.9)
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where

b = 2.3R−0.17
p

c = 0.026− 0.03 ln(Rp)

d = 3.8− 0.6 ln(Rp)

µ = ln(becd)/d

Rp = rain rate (mm/h)

D = path length (km)

k, α = regression coefficients w.r.t frequency and polarization

The rain rate values in mm/h are directly related to the geographical area
where the link will operate. There exist maps and tables that provide an indi-
cation of the appropriate rain rate values for the area where the link will be de-
ployed [And03]. To find the rain outage percentage with the Crane rain model, AR

is iteratively calculated with increasing rain rates for the appropriate zone until
the value of rain attenuation AR equals the fade margin. The percentage of time
corresponding to that rain rate is the rain outage percentage PR.

For path lengths greater than 22.5 km, the calculation is done for D = 22.5 km
and the final adjusted outage probability is calculated as:

PR = P22.5

(
D

22.5

)
(2.10)

where PR is the final rain outage percentage and P22.5 is the rain outage percentage
for a path length of 22.5 km. The annual outage probability may be multiplied by
the number of seconds in a year to yield the total number of seconds per year that
the link is unavailable because of rain outages.

2.3 3Link

The design of microwave radio systems commonly makes use of software tools
that implement appropriate and widely accepted propagation prediction models.
Most microwave design tools are developed by radio manufacturers and therefore
are typically biased toward the manufacturers’ own equipment. Many commercial
tools, such as Pathloss 5.0, are also available upon purchase. These tools basically
calculate the performance of a given configuration and, finally, determine whether
it meets the client’s objectives. If the modelling process shows that the system per-
formance is inadequate, then the configuration can be adjusted until the predicted
performance meets the service objectives (if possible), what can take several itera-
tions.

SME 3Roam decided to develop its own software tool, 3Link, that is provided
with its Wireless Ethernet Starter Kit. The main advantage of 3Link lies in the
fact that, besides implementing the classical link power budget to assess the mi-
crowave link performance and availability, it determines the different configura-
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tions available for the microwave link to be deployed according to customers re-
quirements. Essentially, 3Link helps microwave link engineers to answer these
following questions:

1. Will the microwave link transmit data fast enough for the user?

2. Will the microwave link be reliable enough for the user?

3. Which configurations will be available for the microwave link?

2.3.1 Models, input and output

The performance predictions obtained by 3Link are intrinsically related to the mod-
els, calculations, and data used to perform such predictions. 3Link implements the
widely accepted propagation models and calculations, discussed in this chapter,
that are used to predict LOS paths for anywhere in the world. With respect to the
data, much information was obtained from technical specifications of radio equip-
ment and precise parameters available in the literature [And03, Man09, Leh10].
Radio equipment parameters, frequency and channel tables, antenna models, and
so on are defined in XML and stored in the parameters database for easy retrieval.

Input. The basic input data are parameters related to the scenario and required
performance targets for the new microwave link to be deployed (See Figure 2.4).
Some of them are informed by the user, while others are retrieved from the 3Link
database. The parameters entered by the user are:

• The path length between the communication sites;

• The requirements in terms of capacity;

• The requirements in terms of availability;

• The band frequency for the microwave link;

• The set of antennas available and polarization;

• The geographic region for the microwave link;

• The lines and connectors used to interconnect radio equipment.

Then, 3Link can determine other parameters, such as the set of bandwidth
choices according to the frequency, the set of modulation schemes depending on
the frequency and bandwidth, and the applicable range of output power for each
frequency, bandwidth and modulation combination.
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Output. The basic output computed by 3Link are all valid configurations for the
new microwave link (See Figure 2.5). Each configuration consists of the choice
of antennas, bandwidth, modulation scheme, and output power. In addition, for
each valid configuration, 3Link presents a performance summary that shows how
well the microwave link is predicted, as follows:

• The receiver noise value;

• The total path loss;

• The received signal level;

• The signal-to-noise ratio;

• The fade margin value;

• The link’s capacity;

• The link’s availability.

Models. The 3Link flowchart diagram is illustrated in Figure 2.6. For each config-
uration (antenna, bandwidth, output power, modulation, etc) 3Link first performs
the noise (Equation (2.3)), path loss (Equation (2.6)), and power budget (Equa-
tion (2.5)) calculations, from which we can estimate the received signal level and
receiver noise. The signal level is used to compute the SNR (which depends on re-
ceiver noise) and fade margin. According to the SNR requirements (Table 2.3) and
the estimated SNR value, we can determine which modulations are available and,
thus, the link’s capacity (Equation (2.4) multiplied by an encoding factor less than
1). The fade margin is used to compute the link’s availability (Vigants–Barnett and
Crane models). Finally, 3Link determines which configurations successfully meet
the performance requirements.

2.3.2 About 3Link

All mathematical models and calculations were implemented by Napoleão Nepo-
muceno from Mascotte team. The interfaces and layouts were conceived by Se-
bastien Martagex from SME 3Roam. This work has been supervised by Simon
Bryden from SME 3Roam.

2.4 Conclusion

In this chapter, we presented the main considerations related to the technical task
of conceiving a microwave link. Along with the fundamentals of wireless commu-
nications and the basic blocks of microwave radio systems, we introduced 3Link,
an optimization tool that we have developed for the designing and planning of mi-
crowave links. This work, developed under SME 3Roam supervision, represents
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Figure
2.4:3Link

inputscreen:scenario
and

perform
ance

param
eters.



2.4. Conclusion 25

Fi
gu

re
2.

5:
3L

in
k

ou
tp

ut
sc

re
en

:c
on

fig
ur

at
io

ns
an

d
pe

rf
or

m
an

ce
su

m
m

ar
y.



26 Chapter 2. Microwave communications

Figure
2.6:3Link

flow
chartdiagram

.



2.4. Conclusion 27

an important contribution of this thesis, and the effort devoted to it has provided
an indispensable technical background used throughout this thesis.

The methods and analyses presented in this chapter are also used for design-
ing microwave backhaul networks, and it would be very interesting to conceive
a complete network design tool driven by technical constraints – e.g., LOS con-
siderations, sites locations, frequency availability, etc – and performance criteria –
e.g., network CAPEX and OPEX costs, traffic requirements, network reliability, etc
– for determining network topology and configuration solutions. In general, the
optimization problems involved in this task are NP-hard [Dar07]. From a technical
viewpoint, these problems also present high complexity [HART10].

In the following chapters, we focus on two different optimization problems
related to the planning and configuration of microwave backhaul networks. We
consider the main parameters (e.g., channel bandwidth, modulation scheme, and
transmission power) that determine the capacity of a microwave link and impact
the network costs (e.g., renewal fees of licenses and power utilization), while re-
garding different scenarios of optimization.





CHAPTER 3

Bandwidth assignment for
reliable backhaul

In this chapter, we investigate on conceiving reliable microwave backhaul net-
works under outage probability constraints. We introduce a joint optimization
of data routing and bandwidth assignment that minimizes the total renewal fees
of licenses, while handling all the traffic requirements simultaneously with a pre-
scribed reliability level. It can be seen as a special case of the minimum cost mul-
ticommodity flow (MCMCF) with discontinuous step increasing cost functions on
the links [Ken78, Min06]. In addition, we must consider probabilistic constraints to
deal with random parameters (viz., modulation schemes) that impact the capacity
of microwave links.

We then propose a (joint) chance-constrained mathematical programming ap-
proach to tackle this problem. Chance-constrained programming aims at find-
ing the best solution remaining feasible for a given infeasibility probability tol-
erance. This approach is still considered as very difficult and widely intractable
since the feasible region defined by a probabilistic constraint generally is not
convex. In addition, among the vast literature on chance-constrained program-
ming, few research work has been carried out to tackle combinatorial prob-
lems [Klo10, LAN10]. Given these difficulties, we derive an equivalent ILP for-
mulation for the case where the outage probabilities of the microwave links are
independent and propose cutset-based valid inequalities to obtain strengthened
formulations for this problem.

The remainder of this chapter is organized as follows. In Section 3.1, we present
the context and motivation of this study. In Section 3.2, we give a brief intro-
duction to chance-constrained programming. In Section 3.3, we introduce exact
formulations for the application considered here. Section 3.4 is devoted to cutset-
based valid inequalities to improve these formulations. In Section 3.5, we discuss
preliminary computational results illustrating the price of reliability and present a
comparative study on the performance of the different formulations. In Section 3.6,
some final remarks and comments on future work conclude the chapter.

3.1 Context and motivation

As previously discussed in Chapter 2, the design of wireless networks differs fun-
damentally from wired network design. First, the radio frequency spectrum is a
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limited natural resource which has been regulated worldwide to promote its ef-
ficient use. Second, the radio channel is a random and difficult communication
medium. Actually, environment conditions can introduce instantaneously varia-
tions into the communication channel, likely leading to outage events. Therefore,
capacity planning for wireless microwave backhaul requires additional reliability
investigation.

In a single microwave link design, a basic calculation of the link’s performance
can be used to determine whether it meets the required service and reliability. Es-
sentially, the link availability under fading conditions can be determined from the
fade margin derived from the link budget. However, determining the reliability of
a network with several microwave links is a much more difficult task. In fact, the
overall system’s reliability is not just a function of the availability of single links,
but it also depends on the network capacity and data connections to be established.

The capacity of microwave links is basically determined by the channel band-
width and the modulation scheme used to transmit data. On the one hand, the as-
signed bandwidth for each link is a network engineer’s decision subject to obtain-
ing licenses upon payment of renewal fees whose values are usually in accordance
with the amount of spectrum (e.g., in MHz) with which a license is associated. The
amount of spectrum is generally available in modules, resulting in discontinuous
step increasing cost functions on the links.

On the other hand, in response to channel fluctuations, we assume that the
modulation scheme is a random factor. In fact, to overcome outage events, mod-
ern wireless communication systems employ adaptive modulation which has been
shown to considerably enhance radio link performance [GC97, GC98]. Adaptive
modulation refers to the automatic modulation (and other radio parameters) ad-
justment that a wireless system can make to prevent weather-related fading from
causing communication on the link to be disrupted.

Since communication signals are modulated, varying the modulation also
varies the amount of traffic that is transferred per signal. Therefore, in order to
keep the quality of the communication in terms of BER, this technique entails the
variability of the links’ capacity, as shown in Figure 3.1. For instance, 256-QAM
modulation can deliver approximately four times the throughput of QPSK.

Microwave backhaul solutions, although having limited bandwidth and suf-
fering channel impairments, must degrade gracefully as environment conditions
degrade. As a common practice, backhaul operators highly overprovision band-
width during capacity planning to avoid traffic bottlenecks under adverse scenar-
ios (when the performance of some links deteriorates). This approach, however,
incurs additional investments that do not result in resource- and cost-efficient net-
works, besides leading to the inefficient use of the radio spectrum.

Therefore, establishing better wireless backhaul solutions is not just a matter
of adding bandwidth, but it also entails a complex decision aiming at enhancing
network reliability to cope with channel fluctuations.



3.2. Chance-constrained programming 31

Figure 3.1: Adaptive modulation for a microwave link.

3.2 Chance-constrained programming

Chance-constrained programming appears as a specific model of stochastic opti-
mization for dealing with random parameters in optimization problems. These
random parameters take part of the inequalities, and sometimes of the objective
function as well, describing the proper working of the system under consideration.
Chance-constrained programming remains one of the main challenges of modern
stochastic programming. The main difficulty of such models is due to optimal
decisions that have to be taken prior to the observation of random parameters.

Chance-constrained programming is suitable when one can hardly find any
decision which would definitely exclude later constraint violation caused by un-
expected random effects. Actually, there exist situations where constraint violation
can almost never be avoided because of unexpected extreme events. When know-
ing or approximating the distribution of the random parameters, it makes sense
to call decisions feasible (in a stochastic meaning) whenever they are feasible with
high probability (i.e., only a low percentage of realizations of the random parame-
ters leads to constraint violation under this fixed decision). This can be expressed
in terms of chance constraints (or probabilistic constraints). The constraints

P(hj(x, ζ) ≥ 0) ≥ 1− ε, j ∈ J (3.1)

are called separate chance constraints, while the constraint

P(hj(x, ζ) ≥ 0, j ∈ J ) ≥ 1− ε (3.2)

is called a joint chance constraint, where
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P = probability measure

x = vector of decision variables

ζ = vector of random parameters

h(x, ζ) ≥ 0 = finite system of inequalities

J = index set of the inequalities

ε = infeasibility tolerance ∈ [0, 1]

We require that hj(x, ζ) ≥ 0 (or h(x, ζ) ≥ 0) shall hold at least with some
prescribed probability 1 − ε ∈ [0, 1], rather than for all possible realizations of
ζ. The value ε is chosen by the decision maker in order to model the reliability
requirements. Note that the former formulation (separate chance constraints) does
not ensure reliability of the solution as a whole. Usually, the infeasibility tolerance
is strictly fixed with a low value (e.g., ε=0.01,0.05). Of course, lower values of ε

lead to fewer feasible decisions x in (3.1) or (3.2), hence to optimal solutions at
higher costs. Fortunately, it turns out that usually ε can be decreased over quite a
wide range without affecting too much the optimal value of some problem, until
it closely approaches zero and then a strong increase of costs becomes evident, or
even feasible solutions do not exist. In this way, models with chance constraints
can also give a hint to a good compromise between costs and reliability of the
solutions.

Bibliography on chance-constrained programming can be found in books
about stochastic programming [Pré95, ASR09]. An introduction to chance-
constrained programming is also available at the Stochastic Programming Com-
munity home page [COS10]. In what follows, we introduce a (joint) chance-
constrained mathematical programming approach to conceive reliable microwave
backhaul networks.

3.3 Mathematical formulations

In this section, we first study the optimization problem of bandwidth assignment
with a separate chance constraint for every microwave link and afterwards the
joint chance-constrained model. We assume in both models that, for each link and
bandwidth, the modulation choice is associated with a random variable whose
discrete probability distribution is known (on the basis of analytical or statistical
studies).

3.3.1 Separate chance constraints

This problem can be formally stated as follows. The network’s topology is mod-
elled as a digraph G = (V, E), where each node v ∈ V denotes a base transceiver
station and each arc uv ∈ E represents a microwave link from u to v, with u, v ∈ V
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and u 6= v. Let δ+(v) denote the set of outneighbors of v and δ−(v) the set
of inneighbors of v. Let Wuv be the number of bandwidth choices available for
arc uv ∈ E. Each bandwidth bw

uv, for w = 1, . . . , Wuv, is associated with its cost cw
uv

and a random variable ηw
uv that represents the number of bits per symbol of the

current modulation scheme (remember that the modulation scheme varies in re-
sponse to channel fluctuations). Let εuv > 0 be the infeasibility tolerance (typically
near zero) on link uv chosen by the network engineer. The traffic requirements
are defined by K oriented pairs of nodes (sk, tk), with sk, tk ∈ V and sk 6= tk, and
expected demand dk of pair k = 1, . . . , K.

We want to determine the bandwidth assignment and the traffic flows that
minimize the total bandwidth cost. Let yw

uv be the binary decision variable in-
dicating whether the bandwidth bw

uv, w = 1, . . . , Wuv, is assigned or not for the
arc uv ∈ E. The flow variables f k

uv denote the fraction of dk, k = 1, . . . , K, routed on
the arc uv ∈ E. The optimization problem can be formulated as follows:

min ∑
uv∈E

Wuv

∑
w=1

cw
uvyw

uv (3.3)

s.t. ∑
u∈δ−(v)

f k
uv − ∑

u∈δ+(v)
f k
vu =


−1, if v = sk,

1, if v = tk,

0, otherwise

∀v ∈ V,
k = 1...K

(3.4)

P
(

K

∑
k=1

dk f k
uv ≤

Wuv

∑
w=1

ηw
uvbw

uvyw
uv

)
≥ 1− εuv ∀uv ∈ E (3.5)

Wuv

∑
w=1

yw
uv = 1 ∀uv ∈ E (3.6)

f k
uv ∈ [0, 1], yw

uv ∈ {0, 1} (3.7)

In this formulation, the objective function (3.3) represents the total bandwidth
cost that is to minimize. The flow conservation property is expressed by (3.4).
It provides the routes for each demand pair, guaranteeing that the traffic require-
ments are entirely fulfilled. Constraints (3.5) ensure that the available capacity on
each link (taking into account the bandwidth choice and the random modulation)
supports all the traffic to be routed through it with (high) probability 1− εuv. Fi-
nally, the bandwidth assignment is determined by (3.6). For each link, it forces a
single selection among the possible bandwidths.

Since we have to deal with a finite number of scenarios, this probabilistic pro-
gram can be equivalently written as a standard integer linear program. However,
this equivalent model is highly intractable due to the very large number of scenar-
ios to be considered.

Let us examine different alternatives through an example. Consider a single
microwave link and a unique demand of 70 Mbps. Assume that we have two
bandwidth choices, 10 MHz and 20 MHz, and consider the same discrete proba-
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bility distribution function for both bandwidth choices, given in Figure 3.2. Let
ε = 0.05 be the infeasibility tolerance (which corresponds to a reliability level of
0.95).

Figure 3.2: Discrete probability distribution function.

We can easily calculate the expectation value of the random variable η, E(η) =
0.80× 8 + 0.10× 7 + 0.02× 6 + 0.04× 5 + 0.03× 4 + 0.01× 2 = 7.56. Note that,
if we use the expectation value for estimating the link’s capacity, the bandwidth
choice of 10 MHz is sufficient to carry all the demand (since the estimated capacity
will be 7.56× 10 = 75.6 Mbps). However, P(10 · η ≥ 70) = P(η ≥ 7) = 0.90 ≤
0.95. Thus, this solution does not respect the infeasibility tolerance ε = 0.05.

Now let us assume the worst case (lowest modulation scheme) for estimating
the link’s capacity. This way, a feasible solution for this case will be more expensive
but necessarily feasible for all other cases. However, assuming the QPSK modula-
tion scheme (with bandwidth efficiency of 2 bps/Hz), we do not dispose enough
capacity to satisfy the demand of 70 Mbps even if we consider the largest available
bandwidth of 20 MHz (the estimated capacity will be 2× 20 = 40.0 Mbps).

Here, we use the idea of basic scenarios from Klopfenstein [Klo10] and take ad-
vantage of the problem structure to obtain, in a more efficient manner, the deter-
ministic counterparts of constraints (3.5):

K

∑
k=1

dk f k
uv ≤

Wuv

∑
w=1

nw
uvbw

uvyw
uv ∀uv ∈ E (3.8)

where for each microwave link and bandwidth, the constant nw
uv can be easily com-

puted from the cumulative probability distribution of the random variable ηw
uv. It

represents the maximum number of bits we can assume taking into account the
infeasibility tolerance εuv, i.e., the highest modulation scheme whose cumulative
probability value is greater than 1− εuv (see Figure 3.3 for an illustration). Note
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that, as the solution reliability increases (εuv approaches zero), we have to consider
lower modulation schemes and, consequently, less capacity for a given bandwidth.
Therefore, there is a tradeoff between the cost and the reliability of the solutions.

Figure 3.3: Cumulative probability distribution function.

In the example aforementioned, the modulation 32-QAM is considered to esti-
mate the link’s capacity (n = 5). Note that, in this case, the bandwidth choice of
10 MHz is not enough to carry all the demand (since the estimated capacity will
be 5× 10 = 50.0 Mbps). Conversely, using 20 MHz, we can satisfy all the demand
of 70 Mbps (the estimated capacity will be 5 × 20 = 100.0 Mbps). In addition,
P(20 · η ≥ 100) = P(η ≥ 5) = 0.96 ≥ 0.95. Since P(20 · η ≥ 70) ≥ P(20 · η ≥
100), this solution does respect the required reliability level 1− ε.

Remember that, in this model, we impose separate probabilistic con-
straints (3.5) on each link. As a consequence, even if we consider a very small
infeasibility tolerance on each link, the network reliability as a whole can be very
bad when the number of links increases (i.e., the optimal solution can be infeasible
with a significant probability). Therefore, this approach is worthwhile for partic-
ular cases where the network is not too large and the microwave links are engi-
neered to have a very high availability. In the sequel, we present a joint chance-
constrained program to overcome this limitation.

3.3.2 Joint chance constraints

In the subsequent formulation, we enforce an infeasibility tolerance on the entire
block of capacity constraints, guaranteeing that the assigned bandwidth supports
the total traffic to be routed through the network with (high) probability 1 − ε.
Thus, the constraints (3.5) are now replaced by a single chance constraint:
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P
(

K

∑
k=1

dk f k
uv ≤

Wuv

∑
w=1

ηw
uvbw

uvyw
uv ∀uv ∈ E

)
≥ 1− ε (3.9)

In case of independent probabilities, we can reformulate the left hand side
of (3.9) as the product of probabilities. For this, we introduce the following modi-
fications to the previous formulation: Let Mw

uv be the number of modulations held
by the arc uv with respect to the bandwidth choice w. Let ρwm

uv be the cumulative
probability value of the random variable ηw

uv regarding the modulation m. Now
bwm

uv represents the capacity on the arc uv for a given bandwidth choice w and a
specific modulation m. In addition, the binary decision variables y obtain a new
index m that incorporates the assumption on the modulation scheme. The problem
can be rewritten as:

min ∑
uv∈E

Wuv

∑
w=1

Mw
uv

∑
m=1

cw
uvywm

uv (3.10)

s.t. ∑
u∈δ−(v)

f k
uv − ∑

u∈δ+(v)
f k
vu =


−1, if v = sk,

1, if v = tk,

0, otherwise

∀v ∈ V,
k = 1..K

(3.11)

K

∑
k=1

dk f k
uv ≤

Wuv

∑
w=1

Mw
uv

∑
m=1

bwm
uv ywm

uv ∀uv ∈ E (3.12)

∏
uv∈E

(
Wuv

∑
w=1

Mw
uv

∑
m=1

ρwm
uv ywm

uv ) ≥ 1− ε (3.13)

Wuv

∑
w=1

Mw
uv

∑
m=1

ywm
uv = 1 ∀uv ∈ E (3.14)

f k
uv ∈ [0, 1], ywm

uv ∈ {0, 1} (3.15)

Note that now, in the capacity constraints (3.12), we assume explicitly a hy-
pothesis on the modulation scheme. Obviously, for a given link and bandwidth,
the lower the modulation scheme is, the lower will be the capacity assumed to this
link and the higher will also be the probability that the effective capacity on this
link supports all the traffic to be routed through it. In other words, more conser-
vative hypotheses on the modulation scheme will lead to more reliable solutions.

Constraint (3.13) denotes formally this relation. According to the bandwidth
assignment and the hypotheses on the modulation scheme for each microwave
link, this constraint guarantees that the reliability of the solutions is greater than
1 − ε. Note that constraint (3.13) is not linear. Nevertheless, we can derive
an equivalent linear constraint exploiting the properties of logarithmic functions
as well as constraints (3.14) stating that exactly one bandwidth and modulation
scheme are chosen. First, by the monotonicity of any logarithmic function, (3.13)
is equivalent to
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log

(
∏

uv∈E

Wuv

∑
w=1

Mw
uv

∑
m=1

ρwm
uv ywm

uv

)
≥ log(1− ε) (3.16)

Next, we employ that the logarithm of a product is equal to the sum of the
logarithms:

∑
uv∈E

log

(
Wuv

∑
w=1

Mw
uv

∑
m=1

ρwm
uv ywm

uv

)
≥ log(1− ε) (3.17)

Finally, we take advantage of the problem structure, notably of the con-
straint (3.14), that exactly one of the sum elements within the logarithmic function
will be nonzero, to obtain the equivalent linear constraint:

∑
uv∈E

Wuv

∑
w=1

Mw
uv

∑
m=1

log(ρwm
uv )ywm

uv ≥ log(1− ε) (3.18)

The resulting formulation still results in large scale integer linear programs,
which are very hard to solve. In what follows, we introduce some cutset-based
valid inequalities to improve the solving performance for this formulation.

3.4 Valid inequalities

Constraints (3.11), (3.12), and (3.14) define the basic properties of multicommodity
flow (MCF) problems studied intensively in the literature of classical network de-
sign [MMV93, MMV95, BG96, BCGT98, RKOW10]. To enhance the performance of
ILP solvers, several valid inequalities have been introduced, in particular so-called
cutset-based inequalities, exploiting knowledge about the required capacity on a
cut in the network.

Let S ⊂ V be a proper and nonempty subset of the nodes V and S = V \ S its
complement. (S, S) is a cutset, i.e., the set of arcs that connect a node in S to a node
in S, as illustrated in Figure 3.4. Also, let K(S, S) ⊆ K be the set of demands having
their origin in S and their destination in S and d(S,S) = ∑k∈K(S,S) dk.

An appropriate aggregation of constraints (3.11), (3.12), and nonnegativity of
the variables results in the following base cutset inequality:

∑
uv∈(S,S)

Wuv

∑
w=1

Mw
uv

∑
m=1

bwm
uv ywm

uv ≥ d(S,S) (3.19)

This inequality denotes that there should be enough capacity on the arcs of
the cutset in order to satisfy the demands that must be routed through it. Cutset
inequalities are necessary for a capacity vector to be feasible, but it is well-known
that they are not sufficient in general [CCG09]. In the sequel, we present two types
of strong inequalities to our problem obtained from cutset inequalities by applying
Chvátal-Gomory cutting plane methods (cf. [Wol98]).
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Figure 3.4: A cutset in a network consists of the arcs between the shores.

Type 1. Given a cutset (S, S), let auv be the smallest capacity coefficient bwm
uv , with

respect to the arc uv ∈ (S, S),

auv = minw=1,...,Wuv minm=1,...,Mw
uv

bwm
uv .

By (3.14) and a(S,S) = ∑uv∈(S,S) auv, (3.19) can be equivalently formulated as

∑
uv∈(S,S)

Wuv

∑
w=1

Mw
uv

∑
m=1

(bwm
uv − auv)ywm

uv ≥ d(S,S) − a(S,S). (3.20)

Now, let a be the maximal coefficient (bwm
uv − auv) at the left hand side of inequal-

ity (3.20). By Chvátal-Gomory rounding, we obtain the valid inequality Type 1 as
follows:

∑
uv∈(S,S)

Wuv

∑
w=1

Mw
uv

∑
m=1

1wm
uv ywm

uv ≥
⌈

d(S,S) − a(S,S)

a

⌉
, (3.21)

where

1wm
uv =

{
1 if bwm

uv > auv

0 otherwise
.

In general the linear programming (LP) relaxation of (3.10)–(3.12), (3.14), (3.15),
(3.18) does not satisfy (3.21) although all integer solutions have to satisfy it. Hence,
the inequality is valid and can enhance the solving of the ILP. Under certain con-
ditions, (3.21) defines a facet of the convex hull of feasible solutions indicating the
importance of this inequality (cf. [RKOW10] for conditions for similar results).

Type 2. Instead of subtracting auv for all coefficients in (3.19), we can also apply
Chvátal-Gomory rounding directly to (3.19) for a certain value a′. If we take

a′ = max
uv∈(S,S)

auv

the resulting valid inequality reads
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∑
uv∈(S,S)

Wuv

∑
w=1

Mw
uv

∑
m=1

⌈
bwm

uv
a′

⌉
ywm

uv ≥
⌈

d(S,S)

a′

⌉
(3.22)

and has at least |(S, S)| coefficients equal to one. Moreover, the following equal-
ity can be easily obtained as a sum of constraints (3.14) associated with the cut-
set (S, S):

∑
uv∈(S,S)

Wuv

∑
w=1

Mw
uv

∑
m=1

ywm
uv = |(S, S)|, (3.23)

and subtracting (3.23) from (3.22), we obtain

∑
uv∈(S,S)

Wuv

∑
w=1

Mw
uv

∑
m=1

(⌈
bwm

uv
a′

⌉
− 1
)

ywm
uv ≥

⌈
d(S,S)

a′

⌉
− |(S, S)| (3.24)

which is weaker than (3.21) with a′ instead of a. The same procedure can be ap-
plied for other values a′. Given a cutset (S, S), let a′uv be the second smallest ca-
pacity coefficient bwm

uv , with respect to the arc uv ∈ (S, S), of the inequality (3.19)
associated with this cutset, and let a′ be the largest coefficient among all a′uv. The
result of Chvátal-Gomory rounding is again (3.24), but this time at least two co-
efficients

(⌈
bwm

uv
a′

⌉
− 1
)

for every arc uv ∈ (S, S) are equal to 0, and the cutset in-
equality is indeed different from (3.21). We refer to the inequalities derived this
way as Type 2. Again, it can be shown that (3.24) defines a facet of the convex hull
of feasible solutions under certain conditions (beyond the scope of our study).

3.5 Computational results

Given the absence of topology instances for microwave backhaul networks avail-
able in the literature, we have performed computational experiments on a grid net-
work (available at http://www.di.unipi.it/optimize/Data/MMCF.html) which
originates from [LY04]. A particular characteristic of grid networks is the huge
number of paths between any pair of nodes. In addition, the regular structure of
grid networks make it easier to perform comparisons between various solutions
methods. We take into account the 5 × 5 grid instance (25 base transceiver stations
and 80 directional microwave links, as illustrated in Figure 3.5) with 50 demands
taken from the original paper.

With respect to the radio scenario, we consider two bandwidth choices for each
link, 7 MHz and 28 MHz, associated with costs of $ 1,000 and $ 6,000 respec-
tively. We assume that links operating at 7 MHz are designed to use the 128-QAM
scheme, with an availability of 99.9%. Only in fading conditions, these links will
use the 16-QAM scheme. Conversely, we suppose that links operating at 28 MHz
are designed to use the 256-QAM scheme, with an availability of 99.9%. The 32-
QAM scheme will be used for these links in fading conditions.

http://www.di.unipi.it/optimize/Data/MMCF.html#Plnr
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Figure 3.5: 5× 5 network grid instance.

In what follows, we focused on the integer linear program associated with the
joint chance-constrained formulation, since it is in general more appropriate to
cope with practical instances of this problem. All the computations were carried
out on a Linux machine with 3.20 GHz Intel Xeon W5580 CPU (8 Threads) and
64 GB RAM, using IBM ILOG CPLEX 12.1 [CPL10] as underlying solver.

Price of reliability. As we assume the same availability for microwave links us-
ing the highest-level modulations and under the hypothesis that the lowest-level
modulations are sufficiently robust to guarantee an availability of 100%, instead of
explicitly setting the infeasibility tolerance ε, we can specify the maximum num-
ber of links N that we assume using highest-level modulations. To prove that, let
us rewrite (3.18) considering these assumptions (ρw1

uv = 1, cumulative probability
value for lowest-level modulation, and ρw2

uv = ρ, cumulative probability value for
highest-level modulation):

∑
uv∈E

Wuv

∑
w=1

(log(1)yw1
uv + log(ρ)yw2

uv ) ≥ log(1− ε) (3.25)

Note that, as log(1) = 0, (3.25) is equivalent to

log(ρ) ∑
uv∈E

Wuv

∑
w=1

yw2
uv ≥ log(1− ε) (3.26)

Finally, in this scenario, (3.18) can be replaced by:

∑
uv∈E

Wuv

∑
w=1

yw2
uv ≤

⌊
log(1− ε)

log(ρ)

⌋
= N (3.27)
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Note that, in this scenario, the parameter N directly implies the infeasibility
tolerance ε and, as the former increases the latter also increases, i.e., the reliability
of the solutions can become worst. Therefore, in order to observe the evolution
of the bandwidth cost as a function of the infeasibility tolerance, we ran tests for
N = 0, 10, . . . , 80.

The solutions were obtained by solving the (enhanced) formulation D (as fur-
ther described in Table 3.1 and below) to optimality, which took several hours
(even days) of computation for each instance. As illustrated in Figure 3.6, the total
bandwidth cost decreases as we admit larger values for the infeasibility tolerance
(N augments). For N = 0, when we have to assume the lowest-level modulations
for all radio links, the network cannot provide enough capacity to satisfy all the
traffic demands, hence this problem is infeasible. For N = 10 (ε = 0.01), the band-
width cost is 38.6% higher than the bandwidth cost for N = 80 (ε = 0.077) and
68.4% higher compared to the case where we do not use any optimization (i.e., we
assign 28 MHz for every microwave link). For N = 60, 70, 80, the probabilistic con-
straint does not really affect the cost of the solutions because the number of links
we need to consider using the highest-level modulations to satisfy all the traffic
requirements is smaller than 60 for these instances.
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Figure 3.6: Bandwidth cost as a function of the infeasibility tolerance.

Comparison of the formulations. In addition, to study the gain of applying the
valid inequalities introduced in Section 3.4, we performed tests for different for-
mulations A, B, C, D, that consider or not such valid inequalities according to the
Table 3.1. Note that, in formulations B and D, base cutset inequalities (3.19) are also
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added although these do not contribute to an improvement of the objective – the
ILP solver, however, can benefit from those to generate its own valid inequalities.

Table 3.1: Different formulations w.r.t the valid inequalities.

Formulation Cutset Type1 Type2
A no no no
B yes no no
C no yes yes
D yes yes yes

We manually identified a restricted, but sufficiently large (432 cutsets in total),
set of cutsets of the type (S, S) to generate the valid inequalities. As typical exam-
ples, according to the node labelling of Figure 3.5, we considered the sets S:

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10},

{v4, v5, v9, v10, v14, v15, v19, v20, v24, v25},

{v1, v2, v3, v6, v7, v11},

{v1, v2, v6, v7, v11, v12},

{v18, v19, v20, v21, v22, v23, v24, v25}.

Due to computational limitations, first a limit of 30,000 nodes (LP relaxations)
of the branch-and-bound process was set for solving each instance. All other solver
settings were preserved at their defaults. In addition, as the size and the complex-
ity of the LP relaxations vary according to each formulation, instead of imposing
a limit on the number of nodes, we also performed tests where we set a time limit
of 1 hour of computation for each instance, preserving all other solver settings at
their defaults.

Figure 3.7 illustrates, for each instance, the optimality gap (given by the ILP
solver) achieved for the different formulations considering first a limit on the num-
ber of nodes (Figure 3.7(a)) and then on the execution time (Figure 3.7(b)), along
with the best feasible solution (Figure 3.7(c)) and lower bound (Figure 3.7(d)) val-
ues obtained for the first scenario (limit on the number of nodes).

With respect to the optimality gap, the adding of valid inequalities improves
the performance of the ILP solver in both scenarios. Formulation B, which consid-
ers only base cutset inequalities, performs significantly better than the basic prob-
lem formulation A. Formulation C, which introduces only the valid inequalities
Type 1 and Type 2, also improves the basic problem formulation A for most cases,
but it does not perform as well as formulation B. Actually, the valid inequalities
Type 1 and Type 2 are more useful in conjunction with base cutset inequalities. In
fact, formulation D presents the best results in terms of the achieved optimality
gap for most cases.
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Figure 3.7: Optimality gap, best solution and lower bound values achieved for the
different formulations.

Nevertheless, there are not significant differences among feasible solutions (see
Figure 3.7(c) – lower values mean better solutions) found by each formulation to
explain the better performance of formulations B and D. In Figure 3.8, we show
the performance of the different formulations according to the number of LP re-
laxations for these instances. Note that, in general, the optimality gap decreases
rather quickly until finding a barrier in a given level, when the lower bounds de-
fined by the LP relaxations improve rather slowly, suggesting that much compu-
tational effort is made to prove the optimality of the current feasible solutions.
Formulations B and D coped better to the task of finding tighter lower bounds (see
Figure 3.7(d) – higher values mean better lower bounds), and this explains in part
why these formulations provide lower optimality gaps.

3.6 Conclusion

In this chapter, we have presented a chance-constrained programming approach
to tackle the problem of assigning bandwidth for reliable microwave backhaul net-
works. We introduced different mathematical formulations and proposed cutset-
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(b) N = 20
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(d) N = 40
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(f) N = 60
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(h) N = 80

Figure 3.8: Formulations performance according to the number of LP relaxations.
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based valid inequalities for this problem. In our computational studies, we dis-
cussed the price of reliability and compared the performance of the different math-
ematical formulations. The results show that there is a tradeoff between band-
width assignment costs and network reliability. In addition, the cutset-based valid
inequalities improved the solving performance of the basic problem formulation.

Many challenges related to this problem remain unaddressed. For example, be-
sides the modulation scheme, we could consider other radio parameters (e.g., cod-
ing and transmission power) that vary in response to the conditions of the channel
and that have a great impact on the capacity of a microwave link. Obviously, more
realistic models while being more accurate also bring more difficulty on the prob-
lem solving.

In addition, it would be interesting to compare our solution to other ap-
proaches used to reduce the vulnerability of wireless networks (e.g., equipment
and frequency diversity). Actually, conceiving reliable solutions for microwave
backhaul networks involves many different design decisions. For example, in or-
der to reduce the impact of signal fluctuations, it could be more cost-efficient to
use an expensive antenna with very high gain than obtain licenses for using a
great amount of spectrum.

As a final remark we want to note that, in contrast to wired networks where
libraries of standardized benchmark instances are accessible [OPTW10], a data li-
brary with realistic data sets for microwave backhaul networks is not available so
far. A characterization of the topologies and traffic behavior of microwave back-
haul networks would be a great contribution for helping engineers who deal with
network optimization in this challenging area.





CHAPTER 4

Power-efficient radio configuration

In this chapter, we investigate on determining feasible radio configurations in mi-
crowave backhaul networks, focusing on power efficiency. We introduce a joint op-
timization of data routing and radio configuration that minimizes the total power
utilization, while handling all the traffic requirements simultaneously. As in the
previous chapter, this problem also relies on a MCMCF with discontinuous step in-
creasing cost functions on the links, which is very hard to optimize [Ken78, Min06].

We then propose a piecewise linear convex function, obtained by linear in-
terpolation of power-efficient points, that provides a good approximation of the
power utilization on the links, and present a relaxation that exploits the convexity
of the cost functions. This yields lower bounds on the total power expenditure, and
finally heuristic algorithms based on the fractional optimum are employed to pro-
duce feasible configuration solutions. Particularly, we present a hybrid algorithm
that combines a metaheuristic and an exact method to improve these solutions.

The remainder of this chapter is organized as follows. In Section 4.1, we
present the context and motivation to study this problem. In Section 4.2, we intro-
duce mathematical formulations for the application considered here, and a simple
heuristic algorithm based on the model relaxation is presented. In Section 4.3, a
hybrid algorithm to improve heuristic configuration solutions is introduced. In
Section 4.4, we discuss some computational results that we have achieved by ex-
perimenting with benchmark problem instances. In Section 4.5, some final remarks
and perspectives on future work conclude the chapter.

4.1 Context and motivation

Recent studies show that the traffic demand, even being aggregated at access
points, is highly dynamic and presents a nonstationary behavior over large time
scales due to the diurnal and weekly working cycles [DXC+08]. Therefore, mi-
crowave backhaul operators are commonly compelled to built networks in a robust
fashion to support this extremely bursty traffic behavior (and also to guarantee
fault protection and future traffic expansion). As a drawback, it leads to important
resources utilization to provide extra capacity which could be used only in critical
situations.

As discussed earlier in Chapter 2, there is a tradeoff between bandwidth effi-
ciency and power efficiency. Since microwave links present a dynamic behavior –
radio parameters (e.g., transmission power and modulation scheme) can be suit-
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ably set on the fly –, the traffic fluctuation over the time offers an opportunity to
power mitigation when microwave links are underused.

Even though terrestrial microwave links are not typically concerned with
power efficiency from an economical viewpoint, since they have plenty of power
available and the transmitter output power is very low – usually a few dozen milli-
watts of RF energy produced by the radio transmitter (which is equivalent to a few
hundred watts of RF energy effectively radiated from a highly directional antenna)
–, from a technical point of view it is a good practice to use low transmission power
levels. In fact, reducing transmission power increases the potential for frequency
reuse within a system and reduces possible interference to neighboring systems.

This is especially important in congested urban areas (containing many ran-
domly oriented microwave links), where operators opt for equipment collocation1.
The collocation trend in the industry can actually create compliance challenges that
operators otherwise would not have encountered. The reason is they must sub-
mit compliance records for their own equipment and for the equipment owned
by collocation tenants at the site. In addition, there exists a public perception of
the safety of microwave radiation2. In certain situations, and depending on the
site accessibility to the public, if emissions exceed the maximum allowed exposure
levels, any company that contributes to the RF emissions in that area is responsible
for mitigating the problem [Leh10].

Wireless networks have been intensively studied in recent years with a spe-
cific focus on capacity or other QoS parameters and installation costs [ZWZL05,
GPR08, MPR08, ORV10]. Many researches have especially focused on min-
imizing energy consumption in wireless networks, such as minimum energy
broadcasting, backbone construction or monitoring in sensor and ad-hoc net-
works [SRSW05, FKNP07]. Since a huge majority of these works consider energy-
constrained devices (sensors, ad-hoc nodes, etc), most existing solutions are per-
device power optimization. In our settings, in which a global optimum is sought
out, system-wide approaches might be more relevant.

In what follows, we introduce a mathematical programming approach to con-
ceive power-efficient microwave backhaul networks. Under this scenario, we can
define a power-efficient configuration as the minimum transmission output power
needed to achieve the SNR requirement associated with a given modulation. Every
microwave link holds a finite set of power-efficient configuration points, charac-
terized by a modulation scheme and a transmission power level (as illustrated in
Figure 4.1). Note that power-efficient configurations depend on several system’s

1Collocation is a general concept that refers to multistation sites consisting of numerous transmit-
ters and receivers installed within a limited geographical area. The site often consists of a number
of antennas, typically belonging to different operators, that are all mounted on a common tower or
distributed among a small number of closely positioned towers [Leh10].

2It should be noted that microwaves fall within the nonionized portion of the electromagnetic
spectrum, below the ionizing portion where X, gamma, and cosmic rays reside. Microwave energy
thus has insufficient energy to ionize atoms and so is unable to change the DNA composition of
human tissue or cause cancer [Man09].
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parameters (such as the antenna gain, line losses, and distance between sites) that
define the scenario of application.

Figure 4.1: Power-efficient configuration points.

4.2 Mathematical formulations

In this section, we study the optimization problem of deciding both the network’s
configuration and flows that minimize the total power utilization, while han-
dling all the traffic requirements simultaneously. Particularly, by configuration,
we mean the choice of the transmission power level and the modulation scheme
for each microwave link. We first introduce an exact formulation with discontin-
uous step increasing cost functions on the links and then we propose a relaxation
using piecewise linear convex cost functions.

4.2.1 Discontinuous step increasing cost functions

In this formulation, we consider power-efficient configuration points to derive an
energy cost function that is discontinuous step increasing (see Figure 4.2). Note
that, for each modulation scheme, only the most right point of the curve represents
a power-efficient configuration. For each modulation level, the decimal number
denotes the minimum power utilization required to attain a specific SNR. These
values were obtained for the link scenario used in our simulations (see Section 4.4).
It is important to clarify that different values could be obtained according to the
scenario in focus. Nevertheless, the shape of the function remains the same.

The power utilization on each microwave link depends on the traffic volume
that is supposed to pass through it. In this formulation, we use a multi-arc rep-
resentation of a microwave link, as illustrated in Figure 4.3, and enforce a single
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Figure 4.2: Step increasing energy cost function on the links.

arc selection (represented by a continuous line in contrast with the dashed lines).
The basic idea is to set, for each link, the lowest configuration level that supports
all the traffic to be routed through it. The arc selection, conditioned by the traffic
volume on the link, explicitly determines its capacity and power utilization.

Figure 4.3: Exclusive multi-arc representation of a 168 Mbps link.

This problem can be formally stated as follows. The network’s topology is
modelled as a digraph G = (V, E), where each node v ∈ V denotes a base
transceiver station and each arc uv ∈ E represents a microwave link from u to v,
with u, v ∈ V and u 6= v. Let δ+(v) denote the set of outneighbors of v and δ−(v)
the set of inneighbors of v. Let Muv be the number of power-efficient configura-
tions held by the arc uv, each of them associating a link capacity bm

uv with its energy
cost cm

uv, for m = 1, . . . , Muv. The traffic requirements are defined by K oriented
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pairs of nodes (sk, tk), with sk, tk ∈ V and sk 6= tk, and the expected demand dk of
pair k = 1, . . . , K.

We want to determine the network’s configuration and flows that minimize
the total energy cost. Let ym

uv be the binary decision variable indicating whether
the link configuration m is active or not for the arc uv, and let xmk

uv be the flow on
the arc uv under the configuration m with respect to the traffic requirement k. The
optimization problem can be formulated as follows:

min ∑
uv∈E

Muv

∑
m=1

cm
uvym

uv (4.1)

s.t. ∑
u∈δ−(v)

Muv

∑
m=1

xmk
uv − ∑

u∈δ+(v)

Mvu

∑
m=1

xmk
vu =


−dk, if v = sk,

dk, if v = tk,

0, otherwise

∀v ∈ V,
k = 1...K

(4.2)

K

∑
k=1

xmk
uv ≤ bm

uvym
uv

∀uv ∈ E,
m = 1 . . . Muv

(4.3)

Muv

∑
m=1

ym
uv ≤ 1 ∀uv ∈ E (4.4)

xmk
uv ∈ R+, ym

uv ∈ {0, 1} (4.5)

In this formulation, the objective function (4.1) represents the total power uti-
lization that is to minimize. For each link, it counts the energy consumption due
to the radio operation at a given transmission power level, defined by its configu-
ration. The flow conservation property is expressed by (4.2). It provides the routes
for each demand pair, guaranteeing that the traffic requirements are entirely at-
tended. By (4.3), it is assured that, on each link, the available capacity according to
its configuration supports all the traffic to be routed through it. Finally, the link’s
configuration choice is determined by (4.4). For each microwave link, it forces a
single selection among the possible power-efficient configurations.

This formulation results in large scale integer linear programs, which are very
hard to solve in practical cases. In addition, solution methods for this problem
have received little attention in the literature. In [GM97], a relaxation that com-
bines both column and constraint generation is used to derive lower bounds to
this problem. In [AT02], a difference of convex function algorithm is applied to
provide feasible solutions. These studies consider general step increasing func-
tions, where convexification may derive poor approximations.

In our application, however, we perceive that the energy cost per bit rises as
we assume higher modulation levels. Taking advantage of this fact, we introduce a
convexification-based relaxation that takes advantage of the inherent convex shape
of the energy cost functions on the links to obtain lower bounds on the power
utilization and determine the network’s configuration.



52 Chapter 4. Power-efficient radio configuration

4.2.2 Piecewise linear convex cost functions

In the subsequent formulation, we consider a piecewise linear convex cost func-
tion (see Figure 4.4), obtained by linear interpolation of power-efficient configu-
ration points, that provides a good approximation of the power utilization on the
links. Note that, for each interval, the endpoints represent power-efficient config-
urations and the decimal number denotes the marginal energy cost (i.e., the addi-
tional power utilization per unit of capacity into this interval). These values were
obtained for a real world scenario (see Section 4.4). Obviously, distinct scenarios
lead to different cost values, but the shape of the curve remains the same. Note
that the link’s energy cost per unit of capacity increases as the modulation scheme
changes to accommodate higher data rates.

1.305

0.869

0.263
0.247

0.0590.016
0

10

20

30

40

50

60

70

80

90

0 28 56 84 112 140 168 196 224
Capacity (Mbps)

P
o

w
er

 (
m

W
)

power-efficient points

Figure 4.4: Piecewise linear convex energy cost function on the links.

Here, we still have a multi-arc representation of a radio link, as shown in Fig-
ure 4.5. However, note that now the capacity of each arc represents the maximum
increment of the link’s capacity when we move from a given configuration level to
the immediate higher one. In addition, the arc selection (represented by the con-
tinuous lines in contrast with the dashed lines) is not exclusive anymore. Actually,
as the marginal energy cost for higher configurations is always increasing, we will
have a progressive utilization of the arcs from the lowest configuration level to the
highest one. When the current arc becomes saturated and the link’s capacity is still
not enough to support all the traffic to be routed through it, we start to use the next
virtual arc. The configuration can then be determined by the flow at the highest
modulation scheme.

As an example, if we need a capacity of 140 Mbps, then the power utiliza-
tion on the link will be given by (56 − 0) × 0.016 + (112 − 56) × 0.059 + (140 −
112) × 0.247 = 11.116 mW, which is the expected value in Figure 4.2 since it
corresponds to a possible power-efficient radio configuration (some difference is
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Figure 4.5: Progressive multi-arc representation of a 112 Mbps link.

due to the decimal format representation of the marginal energy costs). Con-
versely, if we want a capacity of 150 Mbps, the power utilization will be given by
(56− 0)× 0.016+(112− 56)× 0.059+(140− 112)× 0.247+(150− 140)× 0.263 =

13.746 mW. Note that this later in reality does not represent a possible power-
efficient radio configuration.

The problem can be rewritten as a MCMCF with piecewise linear convex cost
functions. Consider the problem statement, as in the previous subsection, and the
following modifications: now bm

uv represents the maximum increment of capacity
on the arc uv when we move from the configuration m− 1 to the immediate higher
level m, and cm

uv denotes the marginal energy cost into this configuration. As the
marginal cost for routing an amount of traffic over higher QAM schemes is always
increasing, the modulation and the transmission power for each radio link can be
implicitly determined by the variable x of highest configuration level and nonzero
value, i.e. by the flow at the highest QAM scheme. The problem can be then
formulated as follows:

min ∑
uv∈E

Muv

∑
m=1

K

∑
k=1

cm
uvxmk

uv (4.6)

s.t. ∑
u∈δ−(v)

Muv

∑
m=1

xmk
uv − ∑

u∈δ+(v)

Mvu

∑
m=1

xmk
vu =


−dk, if v = sk,

dk, if v = tk,

0, otherwise

∀v ∈ V,
k = 1...K

(4.7)

K

∑
k=1

xmk
uv ≤ bm

uv
∀uv ∈ E,

m = 1 . . . Muv
(4.8)

xmk
uv ∈ R+ (4.9)

The total energy cost is now given by a continuous linear function (4.6). The
flow conservation constraints (4.7) remain as in the previous model and implic-
itly provide, besides the routes for each demand pair, the network’s configuration.
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Finally, by (4.8), we guarantee that, through every link, the flow over each config-
uration level does not exceed its capacity.

This formulation gives rise to continuous linear programs and can be easily
solved even if we have to deal with very large problem instances. Despite the
fact that the resulting optimal solution of the associated linear program is not a
practical one, it yields lower bounds on the energy consumption. Furthermore,
quite satisfactory solutions can be obtained by means of simple heuristics based
on the fractional optimum.

Particularly, we consider a direct heuristic algorithm that contemplates the op-
timal solution of the relaxation and reassigns, for each microwave link, the lowest
configuration level that supports the network’s flows (obtained by the continu-
ous linear program) through it. In other words, this heuristic establishes feasible
solutions by rounding up the links’ capacity to meet a possible power-efficient con-
figuration. In some cases, it can lead to the underuse of many links that operate
at higher modulation levels to carry a small extra amount of traffic that could be
routed through other links. In what follows, we present an algorithm to overcome
this problem and improve the configuration solutions.

4.3 Hybrid algorithm

In this section, we introduce a hybrid algorithm3 that combines a metaheuristic4

and an exact method to improve radio configuration solutions. The basic idea
is summarized as follows. Given the solution obtained by the relaxation model,
instead of indistinctively rounding up the capacity of all links to the immediate
higher power-efficient configuration (which clearly provides a feasible solution),
we use a metaheuristic to decide which links will have their capacity rounded up
and which links will have their capacity pruned down. As some possible net-
work’s radio configurations produced during this process could not represent a
feasible solution to the problem, we must check at each iteration the existence of a
flow assignment that satisfies all the problem’s constraints, i.e. we have to verify
if the current network’s radio configuration supports all the traffic requirements.

As an example, consider 4 base transceiver stations A, B, C, D, 4 oriented mi-
crowave links AB, AC, CD, DB, and a traffic matrix with 4 demands of 10 Mbps

3It is only rather recently that methods which combine ideas from metaheuristics and other opera-
tions research techniques into more powerful algorithms (commonly referred to as hybrid metaheuris-
tics [Rai06]) have been proposed. These algorithms have been shown a very promising strategy, as
they typically represent complementary perspectives over the problem solving process as a whole.
Some of them mainly aim at providing optimal solutions in shorter time, while others primarily
focus on getting better heuristic solutions [PR05].

4Metaheuristics (e.g., simulated annealing, genetic algorithms, and ant colony optimization) have
succeeded in providing a suitable balance between the efficiency and effectiveness criteria while
tackling many nontrivial optimization problems, even though they cannot furnish any sort of guar-
antee of finding optimal solutions. This success can be evidenced by the diversity of works about
this topic found in the literature (see [BR03, GK03] and references therein).
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each, AB, AC, CD, DB, as illustrated in Figure 4.6. Let us also assume the power-
efficient configuration data for the link scenario used in our simulations (see Ta-
ble 4.1). The relaxation routes the demands on different links, for an overall cost
of 4× 10× 0.016 = 0.64 mW. Note that the relaxation computes the energy cost
assuming a capacity of 10 Mbps for each link. Actually, this solution does not rep-
resent a possible radio configuration. Thus, in order to obtain a feasible solution,
the heuristic rounds up the capacity of all links from 10 Mbps to 56 Mbps, for a
total energy cost of 4× 0.88 = 3.52 mW. The exact model, however, avoids the use
of the link AB, routing the demand AB through the links AC, CD, DB, for an over-
all energy cost of 3× 0.88 = 2.64 mW. Starting from the relaxation solution, the
hybrid algorithm can also find this optimal solution by rounding up the capacity
of the links AC, CD, DB, while pruning down the capacity of the link AB.

(a) Relaxation (b) Heuristic (c) Hybrid

Figure 4.6: Example of solutions obtained by the different methods.

Conceptually, the hybrid algorithm prescribes the integration of two compo-
nents, as illustrated in Figure 4.7. A metaheuristic engine implemented in the form
of a simulated annealing (SA) algorithm [KGV83] works as a generator of possible
network’s radio configurations, according to the basic idea described before and
having as a starting point the heuristic solution based on the fractional optimum.
From every network’s configuration, we can derive a multicommodity flow (MCF)
problem instance. These instances, in turn, are solved by an exact method (viz.,
linear programming (LP) solver) that acts as a filter to the metaheuristic search
process, attesting the feasibility of each MCF instance and, as a straightforward
consequence, of the network’s configuration. Finally, the best solution obtained
throughout the whole metaheuristic process is deemed to be the final solution to
the problem.

In our implementation of the SA algorithm, we consider that each microwave
link possesses only one or two possible configurations, according to what follows.
On the condition that the traffic volume through a link (given by the optimal solu-
tion of the relaxation model) already meets the capacity of a power-efficient config-
uration, we keep this configuration throughout the entire process. Otherwise, we
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Figure 4.7: Conceptualization of the hybrid algorithm.

consider the two power-efficient configurations that are derived from the round-
ing up and pruning down operations. Thus, the search space of the metaheuristic
becomes limited to a subset of possible network’s radio configurations. More pre-
cisely, the cardinality of the search space is given by 2n, where n is the number of
links whose flows do not meet the capacity of a power-efficient configuration.

At each iteration of the simulated annealing process, a new network config-
uration is generated from the current solution by switching the configuration of
a single link randomly chosen (among those that present two possible configu-
rations). Then, we apply the filter to check if this new configuration leads to a
feasible solution. In the affirmative case, we attribute the total power utilization
as energy score value of this solution. Otherwise, we generate another network
configuration. We then follow the original description of the simulated annealing
process [KGV83], where the algorithm replaces the current solution by the new so-
lution with a probability that depends on the difference between the correspond-
ing energy score values and a global parameter T (called the temperature).
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4.4 Computational results

To testify the potentialities behind the novel approach, we have performed com-
putational experiments on standard benchmark grid instances [LY04] (available at
http://www.di.unipi.it/optimize/Data/MMCF.html). We take into account the
5 × 5 grid instance (25 base transceiver stations and 80 directional microwave
links) with 50 demands and the 10 × 10 grid instance (100 base transceiver sta-
tions and 360 directional microwave links) with 100 demands.

With respect to the radio scenario, we consider that the base transceiver sta-
tions use directional antennas, the transceiver devices present identical character-
istics, and all microwave links are operated at the same frequency and bandwidth.
We assume here the free-space path loss attenuation model and do not consider
interference, but receiver noise. The following parameters are assumed:

• Channel Bandwidth: 28 MHz;

• Operated Frequency: 13 GHz;

• Antenna Gain: 30 dBi;

• Receiver Sensitivity: -90 dBm;

• Distance: 1,000 m.

By means of a link budget, we can then compute the information related
to the power-efficient configurations. Table 4.1 shows the modulation schemes
supported, along with the channel capacities, the transmission power levels, the
marginal energy costs, and the SNR requirements for a BER of 10−6.

Table 4.1: Power-efficient configurations data.

Modulation Capacity Power Marginal Cost SNR
QPSK 56 Mbps 0.88 mW 0.016 mW 14.21 dB

16-QAM 112 Mbps 4.20 mW 0.059 mW 21.02 dB
32-QAM 140 Mbps 11.10 mW 0.247 mW 25.24 dB
64-QAM 168 Mbps 18.47 mW 0.263 mW 27.45 dB

128-QAM 196 Mbps 42.81 mW 0.869 mW 31.10 dB
256-QAM 224 Mbps 79.34 mW 1.305 mW 33.78 dB

We used IBM ILOG CPLEX 12.1 [CPL10] as ILP solver to execute both the ex-
act formulation and the model relaxation, as well as to implement the filter of the
hybrid algorithm. As we adopted a time limit of two hours of computation for the
exact formulation, the best feasible solutions found within this limit (from now on
referred to as integer solutions) are not supposed to be optimal. The same time
limit was assumed to the hybrid algorithm. On the other hand, few seconds of

http://www.di.unipi.it/optimize/Data/MMCF.html#Plnr
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computation are required to solve the model relaxation and generate basic heuris-
tic solutions. The relaxation solutions yield lower bounds on the power utilization,
however they do not represent possible network radio configurations. Conversely
the integer, heuristic and hybrid solutions correspond to practical network radio
configurations.

In order to observe the evolution of the power utilization as a function of the
traffic amount, we have multiplied the demand matrix by a traffic volume factor λ,
initiated at 0.05 and increased by 0.05 until the network’s infrastructure does not
support all the traffic volume anymore. As illustrated in Figure 4.8, the total power
utilization evolves exponentially as the traffic volume increases.
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Figure 4.8: Power utilization as a function of the traffic volume.
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Figure 4.9 illustrates the gap of the hybrid solutions compared to both the re-
laxation and integer solutions. Remember that the relaxation solutions just give
lower bounds on the power utilization, and the integer ones are the best feasible
solutions found for the exact formulation within the time limit assumed.
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Figure 4.9: Power utilization gap as a function of the traffic volume.
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Note that the gap between the power utilization of the hybrid and relaxation
solutions abruptly decreases as the network becomes more charged. The hybrid
algorithm also induces a very satisfactory integrality gap (difference between the
power utilization of the hybrid and integer solutions in terms of percent of the
power utilization of the integer solution), particularly for instances on which the
amount of traffic is not small.

The exact approach performed well for all 5× 5 grid instances, providing good
integer solutions within 2 hours of computation. However, for the 10× 10 grid
instances, integer solutions were found just for the first six cases. Moreover, the
quality of these solutions was not satisfactory. These problem instances are associ-
ated with huge search spaces, and the ILP solver could not keep up with the task of
exploring well some promising regions within the time limit. None of the integer
solutions was proven to be optimal.

Heuristic feasible solutions based on the fractional optimum of the model re-
laxation were generated for all problem instances, and the execution time has
never exceeded a few seconds. As a drawback, instances on which the network’s
traffic was small have not presented good heuristic solutions. The hybrid algo-
rithm, in turn, clearly improved the heuristic solutions. In addition, for large
instances, the hybrid algorithm achieves solutions that are even better than the
integer ones.

These results are evidenced by the graphical representation of the solutions, as
illustrated in Figures 4.10– 4.13. The figures show the different solutions, side by
side, achieved by each method. In this representation, each arc is labelled by its
capacity. The dash-dotted arcs (in red) of the heuristic solutions represent the links
that have their capacity pruned down by the hybrid algorithm. On the other hand,
the dashed arcs (in blue) of the hybrid and integer solutions represent the links of
each of these solutions that operate at higher configuration levels with respect to
each other.

For a small traffic volume (Figure 4.10), the basic heuristic is inefficient mainly
because the relaxation blindly spreads the traffic among several radio links. There-
fore, by rounding up the links’ capacity, many links may use a higher modulation
level to carry a small extra amount of traffic that could be routed through other
links. The hybrid algorithm, in turn, has overcome this difficulty by aggregating
the traffic flow. Moreover, despite the fact that the hybrid and integer solutions
present very different link distributions, they are both basically composed of con-
nected oriented circuits.

As the traffic volume increases (Figures 4.11 and 4.12), the network configura-
tions become more and more similar. Nevertheless, the hybrid algorithm can still
fine-tune the heuristic solutions to achieve results as good as the integer method.
Finally, for large instances (Figure 4.13), the hybrid algorithm copes better with the
problem complexity than the integer approach.

In general, the computational results show that the hybrid method over-
achieves the heuristic algorithm (reducing the total power utilization of the ba-
sic heuristic solutions) and the exact approach (solving instances that are not
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reachable by executing the exact mathematical model and finding better solutions
within the same execution time for large instances).
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Figure 4.10: Very different solutions (Grid 5× 5, λ = 0.05).

56

56

56

112

112

112

56

56

112

112

56

112

112

112

56

56

140

140

112

56

112

112

112

112

112

112

56

56

11256

112

112

112

56

112

112

112

56

112

112

140

56

112

112

112

56

11256

112

112

112

112

56

56

112

112

112

112

140

112

112

112

140

112

112112

56

112

112

56

112

112

112

112

112

112

56

112

(a) Heuristic

56

56

56

112

56

112

56

56

112

112

56

112

112

112

56

56

112

140

56

56

112

112

112

112

112

112

56

56

11256

56

112

112

56

112

112

112

56

112

112

140

56

112

112

112

56

11256

56

112

112

112

56

56

112

112

112

112

140

112

56

112

112

112

112112 112

112

56

56

112

112

112

112

112

56

112

(b) Hybrid

56

112

56

112

56

56

112

56

56

112

56

56

56112

112

140

56

56

112

140

56

56

112

112

112

112

112

56

112

56

11256

112

140

112

56

112

112

112

56

112

112

112

56

56

112

112

56

5656

56

112

56

112

56

56

112

112

112

112

112

112

112

112

140

112

11256

56

112

112

56

56

112

112

112

112

112

56

56

(c) Integer

Figure 4.11: Similar solutions (Grid 5× 5, λ = 0.70).
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Figure 4.12: Very similar solutions (Grid 5× 5, λ = 1.30).



62 Chapter 4. Power-efficient radio configuration

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56 56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56 112

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56 56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56 5656

56

56

56

56

56

56

56 56

56

56

56

56

56 56

56

(a) Hybrid

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56 56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

5656

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56

56 56 56

56

(b) Integer

Figure 4.13: Bad integer solution (Grid 10× 10, λ = 0.30).

4.5 Conclusion

In this chapter, we have presented mathematical formulations for determining fea-
sible radio configurations in microwave backhaul networks, focusing on power
efficiency. We introduced a joint optimization of data routing and radio config-
uration that minimizes the total power utilization while handling all the traffic
requirements simultaneously. In particular, we proposed an approximation of the
power utilization on the links by a piecewise linear convex cost function. A heuris-
tic based on the fractional optimum was applied to generate feasible solutions. Fi-
nally, we introduced a hybrid algorithm to improve radio configuration solutions.

The basic idea behind our approach is to provide a power-aware solution that
takes advantage of the traffic fluctuation to keep power-efficient radio configura-
tions. Besides increasing the potential for frequency reuse and reducing possible
interference to neighboring systems, this approach can also improve the perfor-
mance of the operator’s own system since it favors the use of more robust mod-
ulation schemes whenever possible. In view of the scenarios to come, given the
expected high density of sites for 4G systems, this approach is of critical impor-
tance to ensure the proper functioning of the telecommunications infrastructure
necessary to support the growing demand for wireless broadband services.

Nevertheless, note that this method presents rather modest energy savings
compared to those achieved by switching off communication devices [CMN09,
IOR+10]. In fact, the operation of outdoor and indoor units represents the bulk
of the energy consumption of microwave radio systems. The impact of saving en-
ergy is significant, particularly in the developing world where energy is a scarce
resource. In this sense, we have some preliminary work, in collaboration with
David Coudert and Issam Tahiri from Mascotte team. Basically, we investigate on
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saving energy by selectively turning off idle ODU and IDU communication de-
vices in low-demand scenarios.

Finally, given the computational complexity of the problem studied in this
chapter and knowing the necessity of obtaining efficient solutions in a more rea-
sonable time, we conducted a performance study to investigate alternative models
and solution methods to cope with the task of finding power-efficient configura-
tions in microwave backhaul networks. This study is presented in the following
chapter.





CHAPTER 5

Reoptimizing power-efficient
configurations

In this chapter, we revisit the mathematical formulations related to the power-
efficient configuration problem. The main goal here is to obtain alternative mathe-
matical formulations aiming at reducing the execution time of the problem solving.
Actually, given the dynamic nature of this problem (since an optimal network con-
figuration for a given scenario may quickly become inefficient with changes in the
traffic requirements), we need to generate power-efficient network configurations
in a more reasonable time, even though we cannot provide any sort of guarantee
of the optimality of solutions.

Therefore, our study is mainly directed towards the improvement of the
convexification-based relaxation that we have proposed for this problem in the
previous chapter. First, we show the advantages of our relaxation compared to
a classical linear relaxation of the exact formulation, and present computational
results that corroborate the gain in terms of time efficiency obtained by using the
convexification-based relaxation. Then, we introduce some modifications in this
formulation that reduces the number of decision variables and thus the problem
dimension. Moreover, we apply classical optimization techniques (viz., lagrangian
relaxation and Benders’ decomposition) that are commonly used to tackle multi-
commodity network design problems [Hol95, SP00, LY04, CCG09, BCC10].

The remainder of this chapter is organized as follows. In Section 5.1, we
present a performance study of the different mathematical formulations proposed
in Chapter 4 for the power-efficient configuration problem. In Section 5.2, we pro-
vide several refinements to the previous formulations aiming at reducing the ex-
ecution time of the problem solving. In Section 5.3, we implement a lagrangian
relaxation of the convexification-based formulation. Finally, in Section 5.4, we
present a Benders’ decomposition formulation to the exact mathematical model.

5.1 Performance investigation

In this section, we present a performance investigation of the mathematical for-
mulations introduced in Chapter 4. Let us first retrieve the exact mathematical
formulation with discontinuous step increasing cost functions on the links.
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min ∑
uv∈E

Muv

∑
m=1

cm
uvym

uv (5.1)

s.t. ∑
u∈δ−(v)

Muv

∑
m=1

xmk
uv − ∑

u∈δ+(v)

Mvu

∑
m=1

xmk
vu =


−dk, if v = sk,

dk, if v = tk,

0, otherwise

∀v ∈ V,
k = 1...K

(5.2)

K

∑
k=1

xmk
uv ≤ bm

uvym
uv

∀uv ∈ E,
m = 1 . . . Muv

(5.3)

Muv

∑
m=1

ym
uv ≤ 1 ∀uv ∈ E (5.4)

xmk
uv ∈ R+, ym

uv ∈ {0, 1} (5.5)

In this formulation, the number of continuous and binary variables can be re-
spectively defined by |E| ·M · K and |E| ·M (assuming that Muv = M, ∀uv ∈ E).
The parameters |E| and K are closely related to the size of the network, while the
parameter M is defined for the number of modulation schemes available to the
microwave radio system (normally a small set). Therefore, for each microwave
link, the radio configuration is associated with a discrete space of power-efficient
solutions (as illustrated in Figure 5.1).

Figure 5.1: Power-efficient configuration points.

As previously discussed, this formulation results in large scale integer linear
programs for practical instances, which are very difficult to solve. In order to ob-
tain a lower bound on the total power utilization (and obtain useful information
to generate possible network configurations), we can apply a classical linear pro-
gramming relaxation of this formulation, substituting constraints (5.5) for:
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xmk
uv ∈ R+, ym

uv ∈ [0, 1] (5.6)

In this formulation, we do not consider binary variables anymore, and the
number of continuous variables becomes |E| · M · (K + 1). For each microwave
link, the radio configuration is now defined by a convex linear combination of
power-efficient solutions, as illustrated in Figure 5.2. Note that every feasible link
configuration for this relaxation – which can or not represent a valid configuration
for the exact formulation – is dominated by a configuration obtained from a convex
linear combination of two successive (w.r.t the modulation level) power-efficient
points. Graphically, for a given charge on the link, the optimal configuration solu-
tion lies on the faces of the feasible region in red.

Figure 5.2: Convex linear combination of power-efficient points.

In the sequel, we recall the convexification-based relaxation that makes use of
the inherent convex shape of the energy cost functions on the links.

min ∑
uv∈E

Muv

∑
m=1

K

∑
k=1

cm
uvxmk

uv (5.7)

s.t. ∑
u∈δ−(v)

Muv

∑
m=1

xmk
uv − ∑

u∈δ+(v)

Mvu

∑
m=1

xmk
vu =


−dk, if v = sk,

dk, if v = tk,

0, otherwise

∀v ∈ V,
k = 1...K

(5.8)

K

∑
k=1

xmk
uv ≤ bm

uv
∀uv ∈ E,

m = 1 . . . Muv
(5.9)

xmk
uv ∈ R+ (5.10)
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The main advantage of this relaxation consists in reducing the number of vari-
ables (|E| × M × K, instead of |E| · M · (K + 1) of the classical linear relaxation)
while keeping the problem structure. Note that now every feasible link configura-
tion for this relaxation – which again can or not correspond to a valid configuration
for the exact formulation and then a valid radio configuration in practice – can rep-
resent an optimal solution, each of them associated with a given level of capacity
on the link (as illustrated in Figure 5.3).

Figure 5.3: Piecewise linear convex combination of power-efficient points.

In order to compare the performance of these relaxations, we carried out com-
putational tests on the standard benchmark grid instances used in the previous
chapter. As illustrated in Figure 5.4, the convexification-based relaxation is more
time-efficient than the classical linear relaxation.

For the 5 × 5 grid instances, the execution time of the convexification-based
relaxation has never exceeded 1 second, while it has attained 4 seconds for the
linear programming relaxation in high-demand scenarios. The 10 × 10 grid in-
stances are more time-consuming (especially in high-demand scenarios). For these
instances, the execution time of the convexification-based relaxation has never ex-
ceeded 5 minutes, while it has surpassed 10 minutes for the linear programming
relaxation. It is interesting to note that, in low-demand scenarios (when the po-
tential for power mitigation is more important), the convexification-based formu-
lation remained very time-efficient.

5.2 Relaxation improvements

In this section, we propose some refinements to the convexification-based relax-
ation to reduce the problem size and improve execution performance. In the fol-
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Figure 5.4: Execution time for linear and convexification-based relaxations.

lowing, we still use the fact that the marginal energy cost for higher configurations
is always increasing, which ensures an utilization of the arcs from the lowest con-
figuration level to the highest one (considering the progressive multi-arc represen-
tation of a microwave link). But now xk

uv represents the flow on the arc uv with
respect to the traffic requirement k regardless the configuration level. Therefore,
to determine the network radio configuration, we need to introduce a new vari-
able zm

uv that represents, for each arc uv, the used capacity with respect to the link
configuration m. The optimization problem can be reformulated as follows:
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min ∑
uv∈E

Muv

∑
m=1

cm
uvzm

uv (5.11)

s.t. ∑
u∈δ−(v)

xk
uv − ∑

u∈δ+(v)
xk

vu =


−dk, if v = sk,

dk, if v = tk,

0, otherwise

∀v ∈ V,
k = 1...K

(5.12)

K

∑
k=1

xk
uv =

Muv

∑
m=1

zm
uv ∀uv ∈ E (5.13)

zm
uv ≤ bm

uv
∀uv ∈ E,

m = 1 . . . Muv
(5.14)

xk
uv ∈ R+, zm

uv ∈ R+ (5.15)

The total energy cost is given by a continuous linear function (5.11) of the vari-
ables z. The flow conservation constraints (5.12) provide the routes for each de-
mand pair. By (5.13), we say that the level of capacity on each microwave link
must be equal to the total flow on it. Finally, by (5.14), we guarantee that, through
every link, the flow on each configuration level does not exceed its capacity. The
number of continuous variables of this formulation can be defined by |E| · (K+ M).

We also applied a widely used approach related to the definition of commodi-
ties when they present the same routing cost (equal to zero in our problem). In this
case, instead of considering an individual commodity for every demand pair, de-
mands are assumed to be aggregated at their source nodes. This approach signif-
icantly reduces the problem size. Figure 5.5 shows a comparison of the execution
time for the original convexification-based relaxation (Relaxation 1), the reformu-
lation presented in this section without demand aggregation (Relaxation 2), and
the reformulation with demand aggregation (Relaxation 3). The refinements intro-
duced in the original convexification-based formulation produce considerable im-
provements on the problem solving, particularly in high-demand scenarios where
the execution time of the original relaxation tends to increase.

5.3 Lagrangian relaxation

In this section, we present a lagrangian relaxation of the original convexification-
based formulation. A straightforward lagrangian relaxation of the minimum cost
multicommodity flow problem arises if one relaxes the coupling capacity con-
straints (5.9) and incorporates them into the objective function [Hol95, BCC10].
The main idea is to decompose the problem into independent subproblems, one
for each commodity k, which can be solved efficiently in particular cases [Hol95].
Let us associate nonnegative lagrangian variables λm

uv with constraints (5.9) and
apply lagrangian relaxation. The following lagrangian primal problem LP(λ) is
obtained:
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Figure 5.5: Execution time for the different relaxations.

min ∑
uv∈E

Muv

∑
m=1

K

∑
k=1

(cm
uv + λm

uv)xmk
uv − ∑

uv∈E

Muv

∑
m=1

λm
uvbm

uv (5.16)

s.t. ∑
u∈δ−(v)

Muv

∑
m=1

xmk
uv − ∑

u∈δ+(v)

Mvu

∑
m=1

xmk
vu =


−dk, if v = sk,

dk, if v = tk,

0, otherwise

∀v ∈ V,
k = 1...K

(5.17)

xmk
uv ∈ R+ (5.18)
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Then, the lagrangian dual problem can be written as:

DLP = maxλ≥0LP(λ) (5.19)

The lagrangian dual problem is a nondifferentiable optimization problem that
can be approximately solved by any nondifferentiable optimization tool such as
subgradient optimization. Subgradient optimization has been used extensively in
the literature despite slow convergence and lack of clear stopping criteria [Roc93,
Fum01]. In our implementation (see Algorithm 1), we use a subgradient algorithm
that starts fixing the value of the lagrangian variables λ and solving for the primal
variables x. Then the lagrangian variables are updated based on the violation of
the relaxed constraints. The algorithm usually stops when a maximum number of
iterations is reached.

Algorithm 1 Subgradient algorithm
{Input}
An upper bound LP∗

{Initialization}
θ0 = 2
λ0 = 0
{Subgradient iterations}
j = 0
while θj ≥ 10−α do {stopping criterion}

γj = g(xj) {gradient of LP(λj)}
tj = θj(LP∗ − LP(λj))/||γj||2 {step size}
λj+1 = max{0, λj + tjγ

j}
if ||λj+1 − λj|| < ε then

Stop
end if
if no progress in more than β iterations then

θj+1 = θj/2
else

θj+1 = θj
end if
j = j + 1

end while

Figure 5.6 shows a comparison of the power utilization bound obtained by the
original convexification-based formulation (Relaxation) and the lagrangian relax-
ation with different parameters and stopping criteria (Lagrangian(α, β)). On the
one hand, the lagrangian relaxation with subgradient optimization method clearly
converges to the original relaxation solution. On the other hand, we did not obtain
time efficiency on the problem solving. As illustrated in Figure 5.7, the original
relaxation is solved much faster than the lagrangian relaxation. Actually, different
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reasons can explain this behavior. Firstly, we have used the highest network con-
figuration level to obtain the upper bound cost, and a too large value could make
the steps too long, and hence slowed down the convergence. Secondly, it is not
easy to find the best values for α and β. In general, as these values decrease, the
execution time also decreases. However, we have rapidly lost the quality of the
relaxation solution for too small values for α and β.
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Figure 5.6: Convergence of lagrangian relaxations.
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Figure 5.7: Execution time for the lagrangian relaxations.

5.4 Benders’ decomposition

In this section, we present a Benders’ decomposition [Ben62] for the exact formu-
lation with discontinuous step increasing cost functions. Roughly speaking, Ben-
ders’ decomposition is useful for mixed integer linear programs, when we can dis-
tinguish a subset of (integer) variables and decompose the original problem into
a master problem involving minimization of the original objective function using
only the distinguished variables, and a set of auxiliary problems which iteratively
generate inequalities for the master problem.
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Note that, in the exact formulation (5.1)– (5.5), the variables x are easily han-
dled as they are continuous in the problem formulation. However, the variables
y are constrained to be binary, leading to some difficulty on the problem solving.
The basic idea is to partition the original problem into two subproblems (an inte-
ger linear program in y and a continuous linear program in x) and use an iterative
method to generate only a subset of the constraints for the first subproblem.

Suppose that the vector y is fixed to a given network radio configuration y.
In this case, the objective function reduces to a constant cy, and we arrive to a
simple feasibility program. In other words, the original problem can be rewritten
as follows:

min
y∈{0,1}

{
∑

uv∈E

Muv

∑
m=1

cm
uvym

uv + min
x∈R+

{0x : (5.2) – (5.3)} : (5.4)

}
(5.20)

Let θk
v and µm

uv be the dual variables associated with the constraints (5.2) – (5.3),
respectively. Fixing y = y, the dual of the inner minimization problem (P) is given
by the following linear program (D):

max ∑
v∈V

K

∑
k=1

f (v, k)θk
v − ∑

uv∈E

Muv

∑
m=1

(bm
uvym

uv)µ
m
uv (5.21)

s.t. ∑
i∈V

g(uv, i)θk
i − µm

uv ≤ 0
∀uv ∈ E,

m = 1 . . . Muv,
k = 1 . . . K

(5.22)

θk
i ∈ R, µm

uv ∈ R+ (5.23)

where

f (v, k) =


−dk, if v = sk

dk, if v = tk

0, otherwise

and

g(uv, i) =


−1, if i = u

1, if i = v

0, otherwise

We have, by strong duality in linear programming, that the primal (P) is feasi-
ble if and only if its dual (D) is bounded, since (D) is always feasible. If PD denotes
the feasible domain of (D), it is known that the dual problem (D) is bounded if
and only if

∑
v∈V

K

∑
k=1

f (v, k)θk
v − ∑

uv∈E

Muv

∑
m=1

(bm
uvym

uv)µ
m
uv ≤ 0, ∀(θ, µ) ∈ PD (5.24)
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We call these the Benders’ inequalities (also called a feasibility cut [CCG09]),
since they are used as cuts in the Benders’ decomposition algorithm. Note that PD

is a full-dimensional polyhedral cone. Any solution in PD is called a ray.
In the exact formulation (5.1)– (5.5), we can replace (5.2)– (5.3) by the condi-

tion (5.24) that states the feasibility of (P). This leads to the pure integer Benders’
master problem (M):

min ∑
uv∈E

Muv

∑
m=1

cm
uvym

uv (5.25)

s.t. ∑
v∈V

K

∑
k=1

f (v, k)θk
v − ∑

uv∈E

Muv

∑
m=1

(bm
uvym

uv)µ
m
uv ≤ 0, ∀(θ, µ) ∈ PD (5.26)

Muv

∑
m=1

ym
uv ≤ 1 ∀uv ∈ E (5.27)

ym
uv ∈ {0, 1} (5.28)

We can restrict Benders’ inequalities to a finite number of such constraints and
yet obtain a characterization of the feasibility of (P), since PD is finitely generated
(Theorem 19.1 from [Roc72]). The Benders’ decomposition algorithm iteratively
generates constraints of (5.26) by obtaining values for the dual variables (θ, µ). For
this, we can use an LP solver to solve the multicommodity flow subproblem (P), or
its dual (D), at each iteration of the algorithm. The Benders’ algorithm first relaxes
all feasibility constraints (5.26) in the Benders’ master problem. At each iteration,
the relaxed master problem provides a lower bound on the optimal solution value
of the original problem and a solution y. These variables define a tentative radio
configuration for the network, and are used in the dual subproblem.

In case the dual subproblem is unbounded, we can obtain a ray that can be
used to generate a violated Benders’ inequality. In case the dual subproblem is
bounded, the conjunction of the master problem and subproblem solutions is a fea-
sible solution to the original problem (and provides an upper bound). Actually, in
this case, this is an optimal solution to the original problem and the extreme point
corresponding to the dual optimal solution is obligatory (θ, µ) = (0, 0). There-
fore, the process iterates until the dual subproblem is bounded, when the values
of the lower and upper bounds coincide, and we obtain the optimal network radio
configuration.

5.5 Conclusion

In this chapter, we have revisited mathematical formulations for determining fea-
sible radio configurations in microwave backhaul networks. We introduced sev-
eral refinements to the previous formulations aiming at reducing the execution
time of the problem solving. Computational results corroborated the gain in time
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efficiency of these improvements. In addition, we implemented a lagrangian relax-
ation of the convexification-based formulation and presented a Benders’ decompo-
sition to the exact formulation based on feasibility constraints generation.

Note that, depending on the scenario of application, the time efficiency plays a
key feature of such optimization methods. Today, adaptive modulation and power
is now extremely quick, so technically switchovers can be performed even tens of
times per second. As a consequence, the heuristic solutions based on the relax-
ations become more appropriate and could be employed to determine satisfactory
power-efficient radio configurations in practice.





CHAPTER 6

Conclusion and perspectives

The increasing demand for bandwidth-intensive services has driven an important
development in telecommunications over the last years. With the advances in ac-
cess technologies, such as WiMAX and LTE, the capacity bottleneck of cellular net-
works is gradually moving from the radio interface towards the backhaul. Since
microwave infrastructure can be deployed rapidly and cost-effectively, it emerges
as a key answer to ease backhaul bottlenecks. In fact, business opportunities us-
ing microwave is fostering the rise of more capable fixed broadband wireless net-
works. Nevertheless, backhaul networks available with this technology have re-
ceived little attention from the scientific community.

In this thesis, we investigated network optimization problems related to the
design and configuration of wireless microwave backhaul networks. From a theo-
retical point of view, the problems studied here are computationally very difficult.
And likewise, from a technical point of view, these problems are challenging be-
cause of the difficulties inherent to wireless communications, such as the random
variations of wireless channels and the dynamic behavior of microwave links. This
is the main issue that we addressed in this thesis, nevertheless our contribution is
manifold, and it is the result of collaboration with people from different research
centers and from the telecommunications industry.

First, we developed a practical activity in close collaboration with the SME
3Roam. The realization of this activity is an optimization tool, 3Link, for help-
ing engineers on the technical task of conceiving a microwave link. Besides, we
studied two interesting applications in wireless microwave backhaul networks.
Particularly, we proposed a chance-constrained programming approach to deter-
mine the bandwidth assignment for the microwave links of a backhaul network
and we introduced heuristic methods combined with linear programming models
to generate power-efficient network radio configurations. In parallel, we studied
the routing reconfiguration problem that occurs in connection-oriented networks
(to be discussed in Appendix A).

However, the field of microwave communications is very large, and many
questions that extend across all aspects of this area remain open. For instance,
the characterization of wireless channels is a key issue that foments much inter-
est in wireless communications as a whole. Moreover, interfacing the infrastruc-
ture of wired networks with the wireless infrastructure with vastly different per-
formance capabilities is still a difficult problem. In addition, the dynamic nature
and poor performance of the underlying wireless communication channel require
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robust and adaptive network solutions. All these challenges involve interdisci-
plinary expertise in communications, signal processing, and network design.

In particular, as future research, we are interested in responding some open
questions related to the problems discussed in Chapters 3 and 4. For example,
with respect to bandwidth assignment for reliable microwave backhaul networks,
we consider the random variations into the communications channel, but neglect
traffic uncertainty (assuming a static demand matrix). As a natural step, we intend
to apply robust optimization approaches to cope with this traffic uncertainty. In
addition, we envisage to study other technological solutions used to reduce the
vulnerability of wireless networks, such as equipment and frequency diversity.
Actually, we think that a global framework which considers the numerous (or at
least the main) decisions impacting the design of microwave backhaul networks
could be conceived to tackle instances of reasonable size.

With respect to the power-efficient radio configuration problem, many techni-
cal questions need to be answered. First, it should be noted that, in reality, adaptive
modulation techniques are based on real-time information of the wireless com-
munication channel. Moreover, decisions on the radio configuration are basically
taken at the network nodes. Therefore, our approach could be used as a centralized
background process (using global information of the network, especially current
traffic requirements) to determine the optimal modulation scheme for each mi-
crowave link. This network configuration target would be sent to the nodes of the
network, while keeping the decisions on the actual radio configuration (based on
both information of the communications channel and the configuration target) at
the network nodes.

In addition, in collaboration with David Coudert and Issam Tahiri from Mas-
cotte team, we are currently investigating the potential for energy savings in mi-
crowave backhaul networks. Since outdoor and indoor units represent the bulk of
the energy consumption of microwave radio systems, we aim at saving energy by
selectively turning off idle ODU and IDU communication devices in low-demand
scenarios. This problem basically relies on a fixed-charge capacitated network de-
sign, which is very hard to optimize.

Finally, we have a particular enthusiasm to study alternative models and so-
lution methods to cope better with these challenging optimization problems. The
work presented in Chapter 5 is a very first step in this direction. Besides, we intend
to carry out theoretical analyses in particular network topologies, such as star, tree,
and ring, to obtain optimal solutions and/or bounds to the problems studied here.



APPENDIX A

Tradeoffs in routing
reconfiguration problems

We consider a variant of the graph searching games that models the routing recon-
figuration problem in WDM networks. In the digraph processing game, a team
of agents aims at processing, or clearing, the vertices of a digraph D. We are in-
terested in two different measures: 1) the total number of agents used, and 2) the
total number of vertices occupied by an agent during the processing of D. These
measures respectively correspond to the maximum number of simultaneous con-
nections interrupted and to the total number of interruptions during a routing
reconfiguration in a WDM network.

Previous works have studied the problem of independently minimizing each
of these parameters. In particular, the corresponding minimization problems are
APX-hard, and the first one is known not to be in APX. In this work, we give sev-
eral complexity results and study tradeoffs between these conflicting objectives.
In particular, we show that minimizing one of these parameters while the other
is constrained is NP-complete. Then, we prove that there exist some digraphs for
which minimizing one of these objectives arbitrarily impairs the quality of the so-
lution for the other one. We show that such bad tradeoffs may happen even for a
basic class of digraphs. On the other hand, we exhibit classes of graphs for which
good tradeoffs can be achieved. We finally detail the relationship between this
game and the routing reconfiguration problem. In particular, we prove that any
instance of the processing game, i.e. any digraph, corresponds to an instance of
the routing reconfiguration problem.

A.1 Introduction

In this work, we study the digraph processing game, analogous to graph searching
games [FT08]. This game aims at processing, or clearing, the vertices of a contami-
nated directed graph D. For this, we use a set of agents which are sequentially put
and removed from the vertices of D. We are interested in two different measures
and their tradeoffs: the minimum number of agents required to clear D and the
minimum number of vertices that must be covered by an agent. The digraph pro-
cessing game has been introduced in [CPPS05] for its relationship with the routing
reconfiguration problem in Wavelength Division Multiplexing (WDM) networks.
In this context, the goal is to reroute some connections that are established between
pairs of nodes in a communication network, which can lead to interruptions of
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service. Each instance of this problem may be represented by a directed graph,
called its dependency digraph, such that the reconfiguration problem is equivalent
to the clearing of the dependency digraph. More precisely, the two measures pre-
sented above respectively correspond to the maximum number of simultaneous
disruptions, and to the total number of requests disrupted during the rerouting
of the connections. The equivalence between these two problems is detailed in
Section A.5.

The digraph processing game is defined by the three following operations (or
rules), which are very similar to the ones defining the node search number [Bre67,
DPS02, FT08, KP86, Par78] of a graph, and whose goal is to process, or to clear, all
the vertices of a digraph D.

R1 Put an agent at a vertex v of D;

R2 Remove an agent from a vertex v of D if all its outneighbors are either pro-
cessed or occupied by an agent, and process v;

R3 Process an unoccupied vertex v of D if all its outneighbors are either pro-
cessed or occupied by an agent.

A digraph whose vertices have all been processed is said processed. A sequence
of such operations resulting in processing all vertices of D is called a process strat-
egy. Note that, during a process strategy, an agent that has been removed from a
(processed) vertex can be reused. The number of agents used by a strategy on a
digraph D is the maximum number of agents present at the same time in D during
the process strategy. A vertex is covered during a strategy if it is occupied by an
agent at some step of the process strategy.

Figure A.1 illustrates two process strategies for a symmetric digraph D of 7
vertices. The strategy depicted in Figure A.1(a) first puts an agent at vertex x1

(rule R1), which let y1 (rule R3) be processed. A second agent is then put at r (rule
R1) allowing the vertex x1 to be processed, and the agent on it to be removed (rule
R2). The procedure goes on iteratively, until all the vertices are processed. The
depicted strategy uses 2 agents and covers 4 vertices. Another process strategy is
depicted in Figure A.1(b) that uses 3 agents and covers 3 vertices. Note that this
latter strategy consists in putting agents at the vertices of a feedback vertex set1 of
minimum size.

Clearly, to process a digraph D, it is sufficient to put an agent at every vertex of
a feedback vertex set F of D (rule R1), then the vertices of V(D) \ F can be sequen-
tially processed using rule R3, and finally the vertices of F can be processed and
all agents can be removed (rule R2). In particular, a Directed Acyclic Graph (DAG)
can be processed using 0 agent and thus covering no vertices. Indeed, to process
a DAG, it is sufficient to process sequentially its vertices starting from the leaves
(rule R3). Note that any process strategy for a digraph D must cover all the vertices

1A set F of nodes of D is a feedback vertex set if the removal of all nodes in F makes D acyclic.
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Figure A.1: Different process strategies for a symmetric digraph D.

of a feedback vertex set of D (not necessarily simultaneously). Obviously, for any
process strategy, the number of covered vertices is always at least the number of
agents used.

The minimum number of agents required to process a digraph D (with-
out constraint on the number of covered vertices) is called the process num-
ber [CPPS05, CS07, CHM+09], while the minimum number of covered vertices
required to process D (without constraint on the number of agents) equals the
size of a minimum feedback vertex set of D. In this work, we are interested in trade-
offs between the minimum number of agents used by a process strategy and the
minimum number of vertices it covers.
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A.1.1 Definitions and previous results

Let D be a n-node directed graph. In the following, a (p, q)-process strategy for D
denotes a process strategy for D using at most p agents and covering at most q
vertices. When the number of covered vertices is not constrained, we write (p, ∞)-
process strategy. Similarly, when the number of agents is not constrained, we write
(∞, q)-process strategy.

Process Number The problem of finding the process number of a digraph D, was
introduced in [CPPS05] as a metric of the routing reconfiguration problem (see
Section A.5). Formally,

Definition 1 The process number of D, denoted by pn(D), is the smallest p such that
there exists a (p, ∞)-process strategy for D.

For instance, the digraph D of Figure A.1 satisfies pn(D) = 2. Indeed, Fig-
ure A.1(a) describes a process strategy using 2 agents, and it is easy to check that
there is no process strategy using at most 1 agent. Digraphs whose process number
is equal to 0 or 1 can easily be identified, as they respectively correspond to acyclic
digraphs, and to graphs whose strongly connected components have a feedback
vertex set of size at most 1 (which can be checked in linear time [CS07]). In [CS07] is
also given an polynomial algorithm to recognize digraphs whose process number
is equal to 2. However the problem of computing the process number of general di-
graphs is NP-complete and not in APX (i.e., admitting no polynomial-time approx-
imation algorithm up to a constant factor, unless P = NP) [CPPS05]. A distributed
polynomial-time algorithm to compute the process number of trees (or forests)
with symmetric arcs has been proposed in [CHM08]. Furthermore, a general
heuristic to compute the process number of a digraph is described in [CHM+09].
In [Sol09], Solano conjectured that computing the process number of a digraph can
be solved, or approximated within a constant factor, in polynomial time if the set
of covered vertices is given as part of the input. We disprove this conjecture, show-
ing that computing the process number of a digraph remains not in APX (and so
is NP-complete) in this situation (see Theorem 1).

When considering symmetric digraphs, which can be thought of as a directed
version of an undirected graph, one notices that the process number is closely
related to two other graph invariants, the node search number and the pathwidth.
The node search number of a graph G, denoted by sn(G), is the smallest p such
that rules R1 and R2 (R3 is omitted) are sufficient to process G using at most p
agents. See [Bre67, DPS02, FT08, KP86, Par78] for more details. The pathwidth
of a (undirected) graph G, denoted by pw(G), was introduced by Robertson and
Seymour in [RS83]. It has been proved in [EST94] by Ellis et al. that the pathwidth
and the node search number are equivalent, that is for any graph G, pw(G) =

sn(G)− 1. The relationship between these parameters and the process number has
been described in [CPPS05]: pw(G) ≤ pn(G) ≤ pw(G) + 1 (and so sn(G)− 1 ≤
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pn(G) ≤ sn(G)), where pn(G) is the process number of the digraph built from G
by replacing each edge by two opposite arcs. Since computing the pathwidth of
a graph is NP-complete [MHG+88] and not in APX [DKL87], determining these
parameters is as hard.

Minimum Feedback Vertex Set Given a digraph D, the problem of finding a
process strategy that minimizes the number of nodes covered by agents is equiv-
alent to the one of computing a minimum feedback vertex set (MFVS) of D. Com-
puting such a set is well known to be NP-complete and APX-hard [Kan92]. A
2-approximation algorithm is known in undirected graphs [BBF99] and in sym-
metric digraph (where a feedback vertex set is a vertex cover of the underlying
graph). As far as we know, the best approximation algorithm for computing a
MFVS in general n-node digraphs has ratio log n log log n [ENS+95].

We define below the parameter m f vs(D), using the notion of (p, q)-process
strategy, corresponding to the size of a MFVS of D.

Definition 2 Let m f vs(D) denote the smallest q such that there exists a (∞, q)-process
strategy for D.

As an example, the digraph D of Figure A.1 satisfies m f vs(D) = 3. Indeed for
i ∈ {1, 2, 3}, it is easy to see that either xi or yi must be in any feedback vertex set
(FVS) of D because of the cycle (xi, yi, xi). Furthermore the removal of x1, x2, and
x3 from D is sufficient to break all the cycles. Thus these three nodes form a MFVS
of D, and so m f vs(D) = 3. The corresponding strategy, covering m f vs(D) = 3
nodes by agents, is described in Figure A.1(b).

As mentioned above, m f vs(D) ≥ pn(D). Moreover, the gap between these
two parameters may be arbitrarily large. For example consider a symmetric path
Pn composed of n ≥ 4 nodes u1, u2, . . . , un with symmetric arcs between ui and
ui+1 for i = 1, . . . , n− 1. We get m f vs(Pn) = b n

2 c while pn(Pn) = 2. Indeed either
ui or ui+1 must be in any FVS of Pn, and so we deduce that nodes u2, u4, u6, . . .
form a MFVS of Pn. Furthermore pn(Pn) ≥ 2 because Pn is strongly connected
and m f vs(Pn) > 1. We then describe a process strategy for Pn using 2 agents:
we put the first agent at u1 (R1), we put the second agent at u2 (R1), we process
u1 removing the agent from it (R2), we put this agent at u3 (R1), we process u2

removing the agent from it (R2), we put an agent at u4 (R1), and so on.
Remark that this process strategy for Pn uses the optimal number of agents,

pn(D) = 2, but all the n nodes are covered by an agent at some step of the process
strategy. For this digraph Pn, it is possible to describe a (pn(D) = 2, m f vs(D) =

b n
2 c)-process strategy, that is a process strategy for Pn minimizing both the number

of agents and the total number of covered nodes. We put the first agent at u2 (R1),
we process u1 (R3), we put the second agent at u4 (R1), we process u3 (R3), we
process u2 removing the agent from it (R2), we put this agent at u6 (R1), and so
on. Unfortunately such good tradeoffs are not always possible (it is the case for
the digraph of Figure A.1 as explained later). Actually, we prove in this work that
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there exist some digraphs for which minimizing one of these objectives arbitrarily
impairs the quality of the solution for the other one. In the following, we define
formally the tradeoff metrics we will now study.

Tradeoff Metrics We introduce new tradeoff metrics in order to study the loss
one may expect on one parameter when adding a constraint on the other. In par-
ticular, what is the minimum number of vertices that must be covered by a process
strategy for D using pn(D) agents ? Similarly, what is the minimum number of
agents that must be used to process D while covering m f vs(D) vertices ?

Definition 3 Given an integer q ≥ m f vs(D), we denote by pnq(D) the minimum
p such that a (p, q)-process strategy for D exists. We write pnm f vs+r(D) instead of
pnm f vs(D)+r(D), r ≥ 0.

Definition 4 Given an integer p ≥ pn(D), we denote by m f vsp(D) the minimum
q such that a (p, q)-process strategy for D exists. We write m f vspn+r(D) instead of
m f vspn(D)+r(D), r ≥ 0.

Intuitively pnm f vs(D) is the minimum number of agents required by a process
strategy minimizing the number of covered vertices, and m f vspn(D) is the min-
imum number of vertices that must be covered by a process strategy using the
minimum number of agents. Note that, pnm f vs(D) is upper bounded by the maxi-
mum MFVS of the strongly connected components of D. Another straightforward
remark is that m f vsm f vs(D) = m f vs(D) for any digraph D.

To illustrate the pertinence of these tradeoff metrics, consider the digraph D
of Figure A.1. Recall that pn(D) = 2 and m f vs(D) = 3. We can easily verify
that there does not exist a (2, 3)-process strategy for D, that is a process strategy
minimizing both p and q. On the other hand, we can exhibit a (2, 4)-process strat-
egy (Figure A.1(a)) and a (3, 3)-process strategy (Figure A.1(b)) for D. Hence, we
have: pnm f vs(D) = 3 while pn(D) = 2, and m f vspn(D) = 4 while m f vs(D) = 3.
Intuitively for these two process strategies, we can not decrease the value of one
parameter without increasing the other.

We generalize this concept through the notion of minimal values of a digraph D.
We say that (p, q) is a minimal value of D if p = pnq(D) and q = m f vsp(D). Note
that (pn(D), m f vspn(D)) and (pnm f vs(D), m f vs(D)) are both minimal values by
definition (and may be the same). For the digraph of Figure A.1, there are two
minimal values: (2, 4) and (3, 3). Figure A.2 depicts the variations of the minimum
number q of vertices covered by a p-strategy for a digraph D (p ≥ pn(D)), i.e.,
m f vsp(D) as a function of p. Clearly, it is a non-increasing function upper bounded
by m f vspn(D) and lower bounded by m f vs(D).

Filled circles of Figure A.2 represent the shape of minimal values of D. Clearly
for a given digraph D, the number of minimal values is at most linear in the num-
ber of nodes. We now give an example of a family of n-node digraph for which the
number of minimal value is Ω(

√
n). Intuitively, it means that, in those digraphs D,
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Figure A.2: m f vsp(D) function of p for a digraph D. Filled circles represent mini-
mal values of D.

starting from the optimal number of agents pn(D), each extra agent added allows
to strictly decrease the number of covered vertices, until the optimal, m f vs(D), is
reached. Let Hn be the symmetric directed star with n ≥ 3 branches of length 2
(for instance, H3 is the digraph of Figure A.1), and let Gk be the graph that con-
sists of the disjoint union of H3, · · · , Hk, k ≥ 3. Then, for any 0 ≤ i ≤ k − 2,
(pn(Gk) + i, m f vs(Gk) + k− 2− i) = (2 + i, (k(k + 1)/2)− 5 + k− i) are minimal
values (this can be easily proved using the easy results described in Section A.2.1).

A.1.2 Our results

Our results consist in an analysis of the behaviour of the two given tradeoff mea-
sures both in general digraphs and in symmetric digraphs. As mentioned above,
in general, no process strategy minimizes both the number of agents and the num-
ber of covered vertices (see example in Figure A.1). Hence, we are interested in the
loss on one measure when the other is constrained. In particular, we are interested

in the ratios pnm f vs(D)

pn(D)
and m f vspn(D)

m f vs(D)
. This study involves various theorems on the

complexity of estimating this loss (Section A.2) and the existence of digraphs for
which it can be arbitrarily large (Section A.3). We also study in Section A.4 the case
of symmetric digraphs. Finally we describe in Section A.5 the relation between the
routing reconfiguration problem and the processing game.

More precisely, we begin by disproving a conjecture from Solano [Sol09] (The-
orem 1). Then, we prove that for all α ∈ [0, 1], the problems of determining the
parameters α.pnm f vs(D) + (1− α)pn(D) and α.m f vspn(D) + (1− α)m f vs(D) are
NP-complete (Theorem 2). In particular, the problem of determining pnm f vs(D) is
not in APX and the problem of determining m f vspn(D) is APX-hard (Theorem 2).

Then, we prove that for any q ≥ 0 (resp. for any p ≥ 0), the ratio pnm f vs+q(D)

pn(D)
(resp.

m f vspn+p(D)

m f vs(D)
) is not bounded even in the class of bounded process number digraphs
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(Theorem 3 and Theorem 4). However we prove that m f vspn(D)

m f vs(D)
≤ pn(D) for any

symmetric digraph D (Lemma 1).
In Section A.5, we detail the relationship between the processing game and

the reconfiguration routing problem. In this context, any instance of the routing
reconfiguration problem may be represented by a directed graph, called the de-
pendency digraph of this instance, such that the routing reconfiguration problem
is equivalent to the processing of this digraph. We prove the reverse, that is, any
digraph is the dependency digraph of an instance of the reconfiguration problem
(Theorem 5).

A.2 Complexity results

This section is devoted to the study of the complexity of the problems related to the
parameters introduced in Section A.1.1. First, we need to define some digraphs.

A.2.1 Definition of some useful digraphs

Let Hn be a symmetric directed star with n ≥ 3 branches each of which contains
two vertices (the root r being at distance 2 from any leaf), with a total of 2n+ 1 ver-
tices. H3 is represented in Figure A.1. It is easy to check that pn(Hn) = 2. Indeed
1 agent is obviously not sufficient and there exists a (2, n + 1)-process strategy for
Hn: an agent is put at the central node r, then we successively put an agent at a
vertex x adjacent to r, the remaining neighbor of x (different from r) is processed,
and we process x itself relieving the agent on it. Then, the same process is applied
until all vertices adjacent to r are processed, and finally we process r. Figure A.1(a)
represents a (2, 4)-process strategy for H3. Moreover, the single MFVS of Hn is
the set X of the n vertices adjacent to r. It is easy to check that the single process
strategy occupying only the vertices of X consists in putting n agents at all ver-
tices of X. No agent can be removed while all agents have not been put. Thus
this strategy is a (n, n)-process strategy, and pnm f vs(Hn) = n. See Figure A.1(b) for
such a process strategy for H3. To summarize, the two minimal values of Hn are
(pn(Hn), m f vspn(Hn)) = (2, n + 1) and (pnm f vs(Hn), m f vs(Hn)) = (n, n)).

Let Kn be a symmetric complete digraph of n nodes. It is easy to check that the
unique minimal value of Kn is (pn(Kn), m f vs(Kn)) = (n− 1, n− 1).

Let D = (V, A) be a symmetric digraph with V = {u1, . . . , un}. Let D̂ =

(V ′, A′) be the symmetric digraph where V ′ = V ∪ {v1, . . . , vn}, and D̂ is obtained
from D by adding two symmetric arcs between ui and vi for i = 1, . . . , n. It is
easy to show that there exists an optimal process strategy for D̂ such that the set
of occupied vertices is V. Indeed, note that, for all i, at least one of ui or vi must be
covered by an agent (any FVS of D contains at least one of vi or ui). Furthermore
if some step of a process strategy for D̂ consists in putting an agent at some vertex
vi, then the process strategy can be easily transformed by putting an agent at ui
instead. In particular, m f vspn(D̂) = n.
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A.2.2 NP-completeness

Before proving that computing the tradeoff parameters introduced in Section A.1.1
are NP-complete, we disprove a conjecture of Solano about the complexity of com-
puting the process number of a digraph D.

Indeed a possible approach for computing the process number, proposed by
Solano in [Sol09], consists of the following two phases: 1) finding the subset of
vertices of the digraph at which an agent will be put, and 2) deciding the order
in which the agents will be put at these vertices. Solano conjectures that the com-
plexity of the process number problem resides in Phase 1 and that Phase 2 can be
solved, or approximated within a constant factor, in polynomial time [Sol09]. We
disprove this conjecture :

Theorem 1 Computing the process number of a digraph is not in APX (and thus NP-
complete), even when the subset of vertices of the digraph at which an agent will be put is
given.

Proof. Let D be any symmetric digraph. Let us consider the problem of computing
an optimal process strategy for D̂ when the set of vertices covered by agents is con-
strained to be V. By the remark in Section A.2.1, such an optimal strategy always
exists. It is easy to check that this problem is equivalent to the one of comput-
ing the node search number (and so the pathwidth) of the underlying undirected
graph of D which is NP-complete [MHG+88] and not in APX [DKL87].

Theorem 2 Let α ∈ [0, 1] be fixed. The problem that takes a digraph D as an input and
that aims at determining:

• α.pnm f vs(D) + (1− α)pn(D) is not in APX,

• α.m f vspn(D) + (1− α)m f vs(D) is APX-hard.

Proof. The two cases for α = 0 clearly holds from the literature.

• We start with α.pnm f vs(D) + (1− α)pn(D).

Let us first consider the case α = 1. That is, let us show that the problem of
determining pnm f vs is not in APX. Indeed, let D be the class of all digraphs
D̂ obtained from some symmetric digraph D. For any symmetric digraph
D, the problem of computing pw(D) (where pw(D) is the pathwidth of the
underlying graph of the symmetric digraph of D) is not in APX, and pn(D̂) =

pnm f vs(D̂) = pw(D)+ 1 (see Theorem 1). Hence, the problem of determining
pnm f vs is not in APX.

Assume now that α ∈]0, 1[. To prove that determining α.pnm f vs(D) +

(1 − α)pn(D) is not in APX, let D1 be the disjoint union of Hn and any
n-node digraph D. First, let us note that pnm f vs(D1) = pnm f vs(Hn)

because pnm f vs(D) ≤ n − 1 and pnm f vs(Hn) = n. Since pn(D1) =
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max{pn(D), pn(Hn)} and pn(Hn) = 2, we get that α.pnm f vs(D1) + (1 −
α)pn(D1) = α.n + (1− α)max{pn(D), 2}. So, the NP-completeness comes
from the NP-completeness of the process number problem.

• We now consider α.m f vspn(D) + (1− α)m f vs(D).

When α = 1, let us prove that the problem of determining m f vspn is APX-
hard. Let D2 be the disjoint union of Kn and any n-node digraph D. First
let us note that pn(D2) = max{pn(Kn), pn(D)} because the process num-
ber of any digraph is the maximum for the process numbers of its strongly
connected components. It is easy to show that pn(D2) = pn(Kn) = n − 1
because pn(D) ≤ n − 1. Hence, when D must be processed, n − 1 agents
are available. So, in order to minimize the number of nodes covered by
agents, the agents must be placed on a MFVS of D. Thus m f vspn(D2) =

n− 1+m f vs(D), and the result follows because computing m f vs(D) is APX-
hard.

Assume now that α ∈]0, 1[. To prove that determining α.m f vspn(D) + (1−
α)m f vs(D) is APX-hard, let D3 be the disjoint union of Kn, Hn, and D. Again,
pn(D3) = max{pn(Kn), pn(Hn), pn(D)}. It is easy to show that pn(D3) =

pn(Kn) = n − 1 because pn(Hn) = 2 and pn(D) ≤ n − 1. Moreover, any
process strategy of D3 using n− 1 agents must cover n− 1 nodes of Kn, n + 1
nodes of Hn (m f vs(Hn) = n but one extra agent is needed to cover only
n nodes), and m f vs(D) nodes of D (because n− 1 agents are available and
m f vs(D) ≤ n − 1). Hence, m f vspn(D3) = (n − 1) + (n + 1) + m f vs(D).
Furthermore m f vs(D3) = (n− 1) + n + m f vs(D) because m f vs(Kn) = n− 1
and m f vs(Hn) = n. Thus α.m f vspn(D3) + (1− α)m f vs(D3) = m f vs(D) +

2n− (1− α). The result follows the APX-hardness of the MFVS problem.

Corollary 1 For an input digraph D and two integers p ≥ 0 and q ≥ 0, the problems of
determining:

• α.pnm f vs+q(D) + (1− α)pn(D) are not in APX,

• α.m f vspn+p(D) + (1− α)m f vs(D) are APX-hard.

A.3 Behaviour of ratios in general digraphs

In this section, we study the behaviours of parameters introduced in Section A.1.1
and their ratios, showing that, in general, good tradeoffs are impossible.

Theorem 3 For any C > 0 and any integer q ≥ 0, there exists a digraph D such that
pnm f vs+q(D)

pn(D)
> C.
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(a) Dn,k of Theorem 4 and Corollary 3 (Case k odd). The red symbol 	
represents the inexistence of arcs between these subgraphs. The arcs from
V(Dn,k) \V(K1

n+1) to V(K1
n+1) are not represented.

here go

(b) D2,5 in Cor. 3 where the arcs from all vertices to one triangle K1
3 have been omitted.

Figure A.3: Digraph Dn,k described in Theorem 4 and Corollary 3.

Proof. Consider the symmetric directed star Hn defined in Section A.2.1. Let now
D be the digraph consisting of q + 1 pairwise disjoint copies of Hn. So D has q + 1
strongly connected components. We get m f vs(D) = (q + 1)n. By definition, any
(pnmv f s+q(D), m f vs(D) + q)-process strategy for D covers at most q(n + 1) + n
nodes. Therefore, there exists at least one of the q + 1 strongly connected com-
ponents for which at most n nodes must be covered. Thus to process this com-
ponent, n agents are required. Indeed (n, n) is a minimal value of Hn, and by
definition we cannot decrease the first value without increasing the second one.

Hence, pnm f vs+q(D) = n while pn(D) = 2. Taking n > 2C, we get pnm f vs+q(D)

pn(D)
> C.

Note that if it is allowed to cover m f vs(D) + q + 1 nodes during the process
strategy (instead of m f vs(D) + q), then the number of agents required is pn(D).
In other words, for the digraph D described in the proof of Theorem 3, we get
pnm f vs+q+1(D)

pn(D)
= 1 while pnm f vs+q(D)

pn(D)
= n

2 .

Corollary 2 For any C > 0, there exists a digraph D such that pnm f vs(D)

pn(D)
> C.

In the sequel, we present similar results for the second ratio.

Theorem 4 For any C > 0 and any integer p ≥ 0, there exists a digraph D such that
m f vspn+p(D)

m f vs(D)
> C.
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Proof. Let n ≥ 2 and let k ≥ 1 be an odd integer. Let us consider the digraph
Dn,k built as follows. Let IS1

n, · · · , ISk
n be k independent sets, each ISt

n (1 ≤ t ≤
k) having n vertices: yt

1, yt
2, . . . , yt

n. Let Pn,k be the digraph obtained from the k
independent sets ISt

n (1 ≤ t ≤ k) by adding the arcs from yt
i to yt+1

j , for 1 ≤ j ≤
i ≤ n and t = 1, 3, . . . , k − 2, and from yt

i to yt+1
j , for 1 ≤ i ≤ j ≤ n and t =

2, 4, . . . , k− 1. Let Kn+1 be the symmetric clique with n + 1 nodes: x1, x2, . . . , xn+1.
The digraph Dn,k is obtained from two copies P1

n,k, P2
n,k of Pn,k and two copies

K1
n+1, K2

n+1 of Kn+1, by adding the following arcs. In what follows, yt,a
j denotes the

jth vertex in the tth independent set of Pa
n,k, where j ≤ n, t ∈ {1, k}, a ∈ {1, 2}, and

xa
j denotes the jth vertex of Ka

n, where j ≤ n + 1, a ∈ {1, 2}. There are arcs from xa
i

to y1,a
j , for 1 ≤ i ≤ j ≤ n and a = 1, 2, and from yk,a

i to xb
j , for 1 ≤ i ≤ j ≤ n, a = 1, 2

and b = 3− a. Finally there is an arc from each node of V(Dn,k) \V(K1
n+1) to each

node of V(K1
n+1). Note that these last arcs are not needed to obtain the results but

help make the proof less technical.
Figure A.3(a) shows the general shape of Dn,k, where the red symbol 	 rep-

resents the inexistence of arcs between these subgraphs. D2,5 is depicted in Fig-
ure A.3(b). For not overloading the figures, the arcs from V(Dn,k) \ V(K1

n+1) to
V(K1

n+1) are not represented.
Clearly, m f vs(Dn,k) = 2n, and any MFVS consists of {x1

1, . . . , x1
n} plus n vertices

of K2
n+1.

First, note that to process one vertex of K1
n+1, there must be a step of any process

strategy for Dn,k where n agents are simultaneously occupying n nodes of K1
n+1.

Hence, pn(Dn,k) ≥ n. Note that, similarly, any process strategy for Dn,k must
occupy n vertices of K2

n+1. Moreover, because of the arcs from V(Dn,k) \ V(K1
n+1)

to V(K1
n+1), any agent that is placed at some vertex in V(Dn,k) \V(K1

n+1) can only
be removed when all vertices of K1

n+1 are occupied or processed. Consider any
process strategy S for Dn,k (in particular, S uses at least n agents) and let s0 be the
first step of S that does not consist in placing an agent at some vertex of K1

n+1. By
above remark, after step s0 − 1 of S, n agents are occupying n vertices of V(K1

n+1).
Up to reorder the first s0 − 1 steps of S, we obtain a process strategy for Dn,k that
starts by placing n agents at n vertices of V(K1

n+1), without increasing the number
of agents used nor the number of vertices occupied by S. Moreover, if the vertex of
V(K1

n+1) that is not occupied is x1
i with i < n + 1, it means that an agent is placed

at x1
n+1 during the first n steps of the strategy. Replacing this operation by the

placement of an agent at x1
i instead of x1

n+1 does not modify the remaining part of
the strategy (but the operation "remove the agent from x1

n+1" which is replaced by
"remove the agent from x1

i ") since the vertex x1
n+1 can be processed immediately

when the n other vertices of K1
n+1 are occupied. Hence, we may assume that S

starts by placing agents at {x1
1, . . . , x1

n} and then processes x1
n+1.

Second, any process strategy for any graph can easily be modified, without
increasing (possibly decreasing) the number of used agents nor the number of
occupied vertices, in such a way that the strategy processes all possible vertices



A.3. Behaviour of ratios in general digraphs 93

before placing or removing agents. In other words, the rule R3 can be first applied
without increasing the considered parameters. Therefore, any process strategy
S for Dn,k can be modified , without increasing the number of agents used nor
the number of vertices occupied by S, into a strategy that first places n agents at
{x1

1, . . . , x1
n}, then processes x1

n+1 and all vertices of P2
n,k, and finally that mimics S.

Such a strategy is called a good process strategy for Dn,k.
Third, pn(Dn,k) ≤ n + 1 as proved by the following strategy S∗. First, place n

agents at {x1
1, . . . , x1

n}, then process all vertices of P2
n,k and then x1

n+1. In the next
sentence, y0,1

i denotes x1
i and yk+1,1

i denotes x2
i , i ≤ n. Then, for j = 1 . . . k + 1, the

jth phase of S∗ consists of the following: for i = 1 . . . n, place an agent at yj,1
n−i+1 if j

odd (resp., at yj,1
i if j even) and remove the agent at yj−1,1

n−i+1 (resp., at yj−1,1
i if j even).

Finally, process all vertices of K2
n+1.

Let p, 0 ≤ p ≤ n− 2 (we choose n ≥ p− 2). Let S be a good process strategy for
Dn,k that uses n + 1 + p agents (which exists by the previous remarks). We assume
that S minimizes the number q of independent sets ISt,1

n of Dn,k for which a vertex is
occupied during the execution of S. Such an independent set is said touched. Note
that the transformation that makes a strategy good does not increase the number of
touched independent sets. Therefore, 2n+ q ≤ m f vsn+1+p(Dn,k) since any strategy
occupies n vertices in each clique plus at least one vertex per touched independent
set. In the sequel, we will prove that q ≥ k, i.e., all independent sets of P1

n,k must be

touched, and then, taking k > 2n(C− 1), we get that m f vspn+p(Dn,k)

m f vs(Dn,k)
=

m f vspn+p(Dn,k)
2n ≥

m f vsn+1+p(Dn,k)
2n ≥ 2n+k

2n > C.

It remains to prove that S touches all the k independent sets of P1
n,k. To do so,

we will modify S, possibly increasing the number of occupied vertices but without
increasing the number of touched independent sets.

Since S is good, it first places n agents at {x1
1, . . . , x1

n}, then processes x1
n+1 and

all vertices of P2
n,k. We set x1

i = y0,1
i , for all i ≤ n. Let S = S0. Let 0 ≤ j < k and

let Sj be the strategy that mimics the j first phases of S∗ and then performs in the
same order those movements of S0 that concern the unprocessed vertices at this
step. We prove by induction on j < k that Sj can be transformed into the good
process strategy Sj+1 for Dn,k satisfying the desired properties without increasing
the number of touched independent sets. Clearly, S0 is a good process strategy for
Dn,k that satisfies these properties.

Assume that, for some 0 ≤ j < k− 1, Sj is a good process strategy that satisfies
the desired properties. Then, Sj starts by occupying the vertices of {x1

1, . . . , x1
n},

processes x1
n+1 and the vertices of P2

n,k and then occupies and processes succes-

sively all vertices of ISr,1
n , r = 1 . . . j until all vertices of ISj,1

n are occupied. Let sj be

the step of Sj when it occurs. We first prove that Sj touches ISj+1,1
n . Indeed, if j is

even, there are n vertex-disjoint paths from yj+1,1
n (resp., from yj+1,1

1 if j is odd) to
x2

1, . . . , x2
n. While yj+1,1

n (resp., from yj+1,1
1 if j is odd) is not processed, no agent in
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ISj,1
n can be removed, and thus only p + 1 ≤ n− 1 agents are available. Therefore,

the only way to process yj+1,1
n (resp., from yj+1,1

1 if j is odd) is to place an agent at
it. Hence, there is a step of Sj (hence, of S0) that consists of placing an agent at
yj+1,1

n (resp., yj+1,1
1 if j is odd). Hence, S0 touches ISj+1,1

n . To conclude, we modify
Sj by adding after step sj the j + 1th phase of S∗. That is, after step j, the strategy

successively occupies the vertices of ISj+1,1
n removing the agents at ISj,1

n until all
vertices of ISj+1,1

n are occupied and all vertices of ISj,1
n have been processed. Then,

the strategy mimics the remaining steps of Sj. The strategy obtained in such a way
is clearly Sj+1 that satisfies all desired properties. In particular, the obtained strat-
egy is a good process strategy for Dn,k that touches the same independent sets as
S0.

Note that there exists a (pn(D) + p + 1, m f vs(D))-process strategy for the di-
graph Dn,k described in the proof of Theorem 4 whereas the minimum q such that
a (pn(D) + p, q)-process strategy for Dn,k exists, is arbitrarily large.

Corollary 3 For any C > 0, there exists a digraph D such that m f vspn(D)

m f vs(D)
> C.

We obtain this result by considering the digraph Dn,k described in Fig-
ure A.3(a), with n = 2 and k ≥ 1 (Figure A.3(b) represents D2,5). This digraph is
such that pn(D2,k) = 3 and m f vs(D2,k) = 4 while m f vspn(D2,k)

m f vs(D2,k)
= k+4

4 is unbounded.
Lemma 1 in Section A.4 shows that, in the class of symmetric digraphs with

bounded process number, m f vspn(D)

m f vs(D)
is bounded.

A.4 Behaviour of ratios in symmetric digraphs

We address in this section the behaviour of m f vspn(D)

m f vs(D)
for symmetric digraphs D.

Note that the behaviours of pnm f vs+q(D)

pn(D)
and pnm f vs(D)

pn(D)
have already been studied in

Section A.3 for symmetric digraphs with bounded process number.

Lemma 1 For any symmetric digraph D, m f vspn(D)

m f vs(D)
≤ pn(D).

Proof. Without loss of generality, we prove the lemma for a connected digraph D.
Let S be a (pn(D), m f vspn(D))-process strategy for D = (V, E). Let O ⊆ V be the
set of vertices occupied by an agent during the execution of S. Let F be a MFVS of
D. Let us partition V into (Y, X, W, Z) = (O ∩ F, O \ F, F \O, V \ (O ∪ F)). Since
D is symmetric, V \ F is an independent set because it is the complementary of
a MFVS. Since the vertices not occupied by S have all their neighbors occupied,
V \O is an independent set. Given V ′ ⊆ V, N(V ′) denotes the set of neighbors of
the vertices in V ′. The partition is illustrated in Figure A.4.

First, note that |N(W) ∩ X| ≤ pn(D)|W|, because, for any vertex v ∈ W to be
processed, all its neighbors must be occupied by an agent. Thus, the maximum
degree of v is pn(D).
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Figure A.4: Proof of Lemma 1

Then, we prove that |X \ N(W)| ≤ (pn(D) − 1)|Y|. Let R = X \ N(W). Be-
cause X ∪ Z is an independent set, for any v ∈ R, N(v) ⊆ Y. Let T = N(R) ⊆ Y.
Note that N(T) ∩ R = R because D is connected and symmetric. Let us order the
vertices of T = {v1, · · · , vt} in the sequence in which they are processed (when
the agents are removed) when executing S. For any i, 1 ≤ i ≤ t, let Ni =⋃

j≤i N(vj) ∩ R. We aim at proving that |N1| < pn(D) and |Ni+1 \ Ni| < pn(D)

for any i < t. Hence, we obtain |Nt| = |R| ≤ (pn(D)− 1)|T| ≤ (pn(D)− 1)|Y|.

Let us consider the step of S just before an agent is removed from v1. Let
v ∈ N1 6= ∅. Since the agent will be removed from v1, either v has already been
processed or is occupied by an agent. We prove that there is a vertex in N(v) ⊆ T
that has not been occupied yet and thus v must be occupied. Indeed, otherwise,
all neighbors of v are occupied (since, at this step, no agents have been removed
from the vertices of T) and the strategy can process v without placing any agent on
v, contradicting the fact that S occupies the fewest vertices as possible. Therefore,
just before an agent is to be removed from v1, all vertices of N1 are occupied by an
agent. Hence, |N1| < pn(D).

Now, let 1 < i ≤ t. Let us consider the step of S just before an agent is removed
from vi. Let v ∈ Ni \ Ni−1 if such a vertex exists. Since the agent will be removed
from vi, either v has already been processed or is occupied by an agent. We prove
that there is a vertex in N(v) ⊆ T \ Ni−1 that has not been occupied yet and thus v
must be occupied. Indeed, otherwise, all neighbors of v are occupied (since, at this
step, no agents have been removed from the vertices of T \ Ni−1) and the strategy
can process v without placing any agent on v, contradicting the fact that S occupies
the fewest vertices as possible. Therefore, just before an agent to be removed from
vi, all vertices of Ni+1 \ Ni are occupied by an agent. Hence, |Ni+1 \ Ni| < pn(D).
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Figure A.5: Symmetric digraph SDn of Lemma 2 (Figure A.5(a)) and instance of
SDn when n = 5 (Figure A.5(b)). The red symbol 	 represents the absence of arcs.

To conclude: m f vspn(D) = |O| = |Y|+ |X| and X = |X \N(W)|+ |N(W)∩X|.
Hence, m f vspn(D) ≤ pn(D)(|Y|+ |W|) = pn(D)|F| = pn(D).m f vs(D).

Lemma 2 For any given ε > 0, there exists a symmetric digraph D such that 3− ε ≤
m f vspn(D)

m f vs(D)
< 3.

Proof. Let n ≥ 1. Let us consider the digraph SDn built as follows. Let IS1
n and

IS2
n be two independent sets of n nodes each: respectively x1, . . . , xn and z1, . . . , zn.

Let Kn+1 be a symmetric clique of n + 1 nodes y1, . . . , yn, yn+1 = v. The digraph
SDn is built starting from the disjoint union of IS1

n, IS2
n, Kn+1 and 6 isolated vertices

{a, b, c, d, e, f } by adding the following arcs. There are symmetric arcs between the
nodes xi and yj and the nodes zi and yj, for any 1 ≤ i ≤ j ≤ n. Furthermore, all
symmetric arcs of the complete bipartite graph with partitions {b, c} and IS1

n are
added. Similarly, all symmetric arcs of the complete bipartite graph with partitions
{d, e} and IS2

n are added. Finally, the symmetric arcs (a, b), (a, c), (d, f ), (e, f ) are
added. The general shape of SDn is depicted in Figure A.5(a). The digraph SD5 is
represented in Figure A.5(b).

Note that the set F = {y1, . . . , yn, b, c, d, e} is a feedback vertex set of SDn, with
|F| = n + 4. Thus m f vs(SDn) ≤ n + 4 (actually, one can easily check that F is a
minimum feedback vertex set of SDn). Clearly, pn(SDn) ≥ n. In what follows, we
prove that any strategy using n + 1 agents needs to cover at least 3n + 2 vertices,
and we present a (n + 1, 3n + 2)-process strategy for SDn. Since m f vsn+1(D) ≤
m f vspn(D) for any digraph D, the result follows.

First, we prove by contradiction that all process strategies for SDn using n + 1
agents must start by processing either the nodes b and c or the nodes d and e, and
so by placing the n + 1 agents either at vertices a and x1, . . . , xn or at vertices f and
z1, . . . , zn.
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Suppose that the first vertex to be processed is either a or belongs to IS1
n, and it

is processed at step s. Therefore, the vertices b and c must be occupied by agents at
this step (such that a can be processed thereafter). Without loss of generality, let us
assume that b is processed, say at step s′, before c. Since at most n− 1 agents are
available while c and b are occupied, no vertex of the clique Kn+1 can be processed
before step s′. On the other hand, at step s′, all vertices of IS1

n are processed or
occupied by agents such that b can be processed. Let X be the subset of vertices
of IS1

n that are occupied at step s′, and let Y = V(IS1
n) \ X. For any xi ∈ Y, yi

must be occupied at step s′ (since xi is processed and yi is not). Hence, at step s′,
at least 2 + |X|+ |Y| = n + 2 agents are occupying some vertices, a contradiction.
By symmetry, f and any vertex of IS2

n cannot be the first vertex to be processed.
Now suppose that the first vertex to be processed is yi ∈ Kn+1, i ≤ n + 1. Note

that all vertices of Kn+1, but yn+1 = v, have at least n + 2 outneighbors. Therefore,
i = n + 1. When v is processed, the n vertices of Kn+1 \ {v} must be occupied,
leaving at most one free agent. But now, all vertices of Kn+1 but v have at least 2
unprocessed outneighbors. Whatever be the placement of the last agent, no other
vertex can be processed and no agents can be released. Hence, the strategy fails, a
contradiction.

Hence, any process strategy using n + 1 agents must start by processing b, c, d
or e. Without loss of generality, (by symmetry), let us assume that the first vertex
to be processed is b. Hence, the strategy must start by placing agents at any vertex
in {a} ∪ V(IS1

n). At this step, the strategy processes b and c without covering
them. Then a can be processed and the agent at it is released. At this step, no
other vertex can be processed. Moreover, the only move that can be done is to
place the free agent at yn. Indeed, any other move would let all agents blocked.
Then the free agent is placed at node yn and xn can be processed and the agent
occupying it can be released. Similarly, the strategy sequentially places an agent at
yn−i, processes xn−i and removes the corresponding agent, for 1 ≤ i ≤ n− 1. It is
easy to check that any variation of this would make the strategy immediately fail.
Once all vertices y1, · · · , yn are occupied, then v can be processed without being
covered. Then, the strategy goes on being highly constrained: for 1 ≤ i ≤ n, the
free agent occupies zi, allowing to process yi and to free the agent occupying it.
Finally, when all vertices of IS2

n are occupied, the free agent must occupy f , and
all remaining vertices may be processed. Again, all these moves are forced for,
otherwise, the strategy would be blocked.

Such a strategy covers 3n+ 2 nodes. Therefore, m f vspn(SDn) ≥ m f vsn+1(SDn)

= 3n + 2. Hence, m f vspn(SDn)

m f vs(SDn)
≥ 3n+2

n+4 . For n > 10
ε − 4, we get m f vspn(SDn)

m f vs(SDn)
≥ 3− ε.

Moreover, since SDn has 3n + 7 vertices, we get m f vspn(SDn) ≤ 3n + 6, and so
m f vspn(SDn)

m f vs(SDn)
< 3.

Conjecture 1 For any symmetric digraph D, m f vspn(D)

m f vs(D)
≤ 3.
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Figure A.6: Instance of the reconfiguration problem consisting
of a network with 10 nodes and symmetric arcs, 8 connections
(h, i), (h, c), (d, c), (d, b), (e, b), (e, j), (i, j), (g, i) to be reestablished. Figure A.6(a)
depicts the old set of routes S1, Figure A.6(b) the new set S2, and Figure A.6(c) the
dependency digraph from S1 to S2.

A.5 The routing reconfiguration problem

The routing reconfiguration problem occurs in connection-oriented networks such as
telephone, MPLS, or WDM [CCM+10a, CHM+09, CPPS05, CS07, Sol09, SP09]. In
such networks, a connection corresponds to the transmission of a data flow from
a source to a destination, and is usually associated with a capacitated path (or a
wavelength in WDM optical networks). A routing is the set of paths serving the
connections. To avoid confusion, we assume here that each arc of the network has
capacity one, and that each connection requires one unit of capacity. Consequently,
no two paths can share the same arc (valid assumption in WDM networks). When
a link of the network needs to be repaired, it might be necessary to change the
routing of the connection using it, and incidentally to change the routing of other
connections if the network has not enough free resources. Computing a new vi-
able routing is a well known hard problem, but it is not the concern of our work.
Indeed, this is not the end of our worries: once a new routing not using the un-
available links is computed, it is not acceptable to stop all the connections going
on, and change the routing, as it would result in a bad quality of service for the
users (such operation requires minutes in WDM networks). Instead, it is preferred
that each connection first establishes the new path on which it transmits data, and
then stops the former one. This requires a proper scheduling to avoid conflicts
in accessing resources (resources needed for a new path must be freed by other
connections first). Furthermore, cyclic dependencies might force to interrupt some
connections during that phase. The aim of the routing reconfiguration problem
is to optimize tradeoffs between the total number and the concurrent number of
connections to interrupt.

As an example, a way to reconfigure the instance depicted in Figure A.6 may
be to interrupt connections (h, c), (d, b), (e, j), then set up the new paths of all other
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connections, tear down their old routes, and finally, set up the new paths of connec-
tions (h, c), (d, b), (e, j). Such a strategy interrupts a total of 3 connections and these
ones are interrupted simultaneously. Another strategy may consist of interrupt-
ing the connection (h, i), then sequentially: interrupt connection (h, c), reconfigure
(d, c) without interruption for it, set up the new route of (h, c), then reconfigure
in the same way first (d, b) and (e, b) without interruption for these two requests,
and then (e, j) and (i, j). Finally, set up the new route of (h, i). The second strategy
implies the interruption of 4 connections, but at most 2 connections are interrupted
simultaneously.

Indeed, possible objectives are (1) to minimize the maximum number of con-
current interruptions [CHM+09, CPPS05, Sol09, SP09], and (2) to minimize the
total number of disrupted connections [JS03]. Following [CPPS05, JS03], these
two problems can be expressed through the theoretical game described in Sec-
tion A.1.1, on the dependency digraph [JS03]. Given the initial routing and the
new one, the dependency digraph contains one node per connection that must be
switched. There is an arc from node u to node v if the initial route of connection v
uses resources that are needed by the new route of connection u. Figure A.6 shows
an instance of the reconfiguration problem and its corresponding dependency di-
graph. In Figure A.6(c), there is an arc from vertex (d, c) to vertex (h, c), because
the new route used by connection (d, c) (Figure A.6(b)) uses resources seized by
connection (h, c) in the initial configuration (Figure A.6(a)). Other arcs are built in
the same way.

Given the dependency digraph D of an instance of the problem, a (p, q)-process
strategy for D corresponds to a valid reconfiguration of the connections where p
is the maximum number of concurrent disruptions and q is the total number of
interruptions. Indeed the three rules can be viewed in terms of reconfiguration of
requests:

R1 Put an agent at a vertex v of D;
Interrupt the request corresponding to v;

R2 Remove an agent from a vertex v of D if all its outneighbors are either pro-
cessed or occupied by an agent, and process v;
Route an interrupted connection when final resources are available;

R3 Process an unoccupied vertex v of D if all its outneighbors are either pro-
cessed or occupied by an agent;
Reroute a non-interrupted connection when final resources are available.

The next theorem proves the equivalence between instances of the reconfigu-
ration problem and dependency digraphs.

Theorem 5 Any digraph D is the dependency digraph of an instance of the routing re-
configuration problem.
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Figure A.7: Scheme of the transformation in the proof of Theorem 5

Proof. Roughly, consider a grid network where each initial lightpath of any con-
nection is some row of the grid. If two connections i and k are linked by an arc (i, k)
in the dependency digraph, then we build the new lightpaths of both connections
as depicted in Figure A.7 which actually create the desired dependence. Note that
the lightpath of connection k is deported on an additional row, i.e., a row corre-
sponding to no connection. For each arc of the dependency digraph, we can use
different columns of the grid-network, in such a way that these transformations
may be done independently.

More formally, let D = (V, A) be a digraph with V = {c1, · · · , cn} and A =

{a1, · · · , am}. Let us define the network G as a (n + 2)× (2m) grid such that each
edge of which has capacity one. Let Ri denotes the ith row of G (0 ≤ i ≤ n + 1) and
Ci its ith column (1 ≤ j ≤ 2m), and let vi,j ∈ V(G) be the vertex in Ri ∩ Cj. For any
i, 1 ≤ i ≤ n, connection i, corresponding to ci in D, occurs between vi,1 ∈ V(G)

the leftmost vertex of Ri and vi,2m ∈ V(G) the rightmost vertex of Ri, and let the
initial lightpath of connection i follows Ri. Now, we present an iterative method
to build the new lightpath of each connection. Initially, for any i, 1 ≤ i ≤ n,
the new lightpath P0

i of connection i equals the old lightpath Ri. Now, after the
(j − 1)th step (0 < j ≤ m) of the method, let Pj−1

i be the current value of the
new lightpath of connection i and assume that in the subgraph of G induced by
columns (C2j−1, · · · , C2m), Pj−1

i equals Ri. Consider aj = (ci, ck) ∈ A and let us do

the following transformation depicted in Figure A.7. For any ` /∈ {i, k}, Pj
` = Pj−1

` .
Now, Pj

i is defined by replacing the edge (vi,2j−1, vi,2j) in Pj−1
i by the shortest path

from vi,2j−1 to vk,2j−1 (following C2j−1), the edge (vk,2j−1, vk,2j), and the shortest

path from vk,2j to vi,2j (following C2j). Similarly, Pj
k is defined by replacing the edge

(vk,2j−1, vk,2j) in Pj−1
k by the shortest path from vk,2j−1 to vn+1,2j−1 if i < k (resp., to

v0,2j−1 if i > k), the edge (vn+1,2j−1, vn+1,2j) (resp., (v0,2j−1, v0,2j)), and the shortest
path from vn+1,2j to vk,2j (resp., from v0,2j to vk,2j). It is easy to check that the grid G,
the sets of initial lightpaths {R1, · · · , Rn} and final lightpaths {Pm

1 , · · · , Pm
n } admit

D as dependency digraph.
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Note that a digraph may be the dependency digraph of various instances of the
reconfiguration problem. Since any digraph may be the dependency digraph of a
realistic instance of the reconfiguration problem, Theorem 5 shows the relevance
of studying these problems through dependency digraph notion.

A feasible reconfiguration may be defined by a (p, q)-process strategy for the
corresponding dependency digraph. Problem (1) is equivalent to minimize p (Sec-
tion A.1.1) and Problem (2) is similar to the one of minimizing q (Section A.1.1).
Consider the dependency digraph D of Figure A.6. From Section A.1.1, we can not
minimize both p and q, that is the number of simultaneous disrupted requests and
the total number of interrupted connections. Indeed there does not exist a (2, 3)-
process strategy while (2, 4) and (3, 3) exist (Figure A.1(a) and Figure A.1(b)).

It is now easy to make the relation between tradeoff metrics introduced in Sec-
tion A.1.1 and tradeoffs for the routing reconfiguration problem. For example,
pnm f vs introduced in Definition 3 represents the minimum number of requests
that have to be simultaneously interrupted during the reconfiguration when the
total number of interrupted connections is minimum. Also Section A.2 shows that
the problems of computing these new tradeoffs parameters for the routing recon-
figuration problem are NP-complete and not in APX. Finally Section A.3 proves
that the loss one can expect on one parameter when minimizing the other may be
arbitrarily large.

A.6 Conclusion

In this work, we address the routing reconfiguration problem through a game
played on digraphs. We introduce the notion of (p, q)-process strategy and some
tradeoff metrics in order to minimize one metric under the constraint that the other
is fixed. We proved that the problems of computing these parameters are APX-
hard and some are not in APX. We also proved that there exist digraphs for which
minimizing one parameter may increase the other arbitrarily. For further research,
we plan to continue our study for symmetric digraphs in order to (dis)prove Con-
jecture 1. Moreover, it would be interesting to design exact algorithms and heuris-
tics to compute (p, q)-process strategies.
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