Re-ranking of candidates answers of a question-answering system.
Réordonnancement de candidats reponses pour un système de questions-réponses
Résumé
The objective of this work is to introduce a new robust approach to treat the problem of finding the correctanswer to a question.Our first contribution is the design and implementation of a robust representation model for information. The aim is torepresent the structural information of sentences of documents and questions structural information. This representation iscomposed of typed groups of words (typed segments) and relations between these groups. This model has been evaluatedon several corpus (written, oral, web) and achieved good resultats, which proves his robustness.Our second contribution consisted is the design of a re-ranking method of a set of the candidate answers output by thequestion-answering system. This re-ranking method is based on the structural information representation. The general ideais to compare a question and a passage from where a candidate answer was extracted, and to compute a similarity score by using a modified edit distance we proposed.Our re-ranking method has been evaluated on the data of several evaluation campaigns. The results are quite goodon long and complex questions. These results show the interest of our method : our approach is quite adapted to treatlong question, whatever the type of the data. The re-ranker has been officially evaluated on the 2010 edition of the Quaeroevaluation campaign, with positives results.
L’objectif de cette thèse a été de proposer une approche robuste pour traiter le problème de la recherche dela réponse précise à une question.Notre première contribution a été la conception et la mise en œuvre d’un modèle de représentation robuste de l’informationet son implémentation. Son objectif est d’apporter aux phrases des documents et aux questions de l’informationstructurelle, composée de groupes de mots typés (segments typés) et de relations entre ces groupes. Ce modèle a été évalué sur différents corpus (écrits, oraux, web) et a donné de bons résultats, prouvant sa robustesse.Notre seconde contribution a consisté en la conception d’une méthode de réordonnancement des candidats réponsesretournés par un système de questions-réponses. Cette méthode a aussi été conçue pour des besoins de robustesse, ets’appuie sur notre première contribution. L’idée est de comparer une question et le passage d’où a été extraite une réponse candidate, et de calculer un score de similarité, en s’appuyant notamment sur une distance d’édition.Le réordonnanceur a été évalué sur les données de différentes campagnes d’évaluation. Les résultats obtenus sontparticulièrement positifs sur des questions longues et complexes. Ces résultats prouvent l’intérêt de notre méthode, notreapproche étant particulièrement adaptée pour traiter les questions longues, et ce quel que soit le type de données. Leréordonnanceur a ainsi été évalué sur l’édition 2010 de la campagne d’évaluation Quaero, où les résultats sont positifs.
Domaines
Autre [cs.OH]Origine | Version validée par le jury (STAR) |
---|
Loading...