
HAL Id: tel-00634483
https://theses.hal.science/tel-00634483v1

Submitted on 21 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quelques modèles et méthodes pour l’étude de la
cognition

Pierre Courrieu

To cite this version:
Pierre Courrieu. Quelques modèles et méthodes pour l’étude de la cognition. Psychologie. Université
de Provence - Aix-Marseille I, 2011. �tel-00634483�

https://theses.hal.science/tel-00634483v1
https://hal.archives-ouvertes.fr

Université de Provence

Aix-Marseille I

Quelques Modèles et Méthodes pour l'Etude de la Cognition

dossier présenté pour l'obtention d'une

Habilitation à Diriger des Recherches

par

Pierre Courrieu

Chargé de Recherche au CNRS

Laboratoire de Psychologie Cognitive – UMR 6146

Centre National de la Recherche Scientifique

Université de Provence

Aix-Marseille I

Marseille - 2011

Quelques Modèles et Méthodes pour l'Etude de la Cognition

dossier présenté pour l'obtention d'une

Habilitation à Diriger des Recherches

par

Pierre Courrieu

Chargé de Recherche au CNRS

Laboratoire de Psychologie Cognitive – UMR 6146

Centre National de la Recherche Scientifique

1

SOMMAIRE

Avant-propos

PREMIERE PARTIE: Activités Scientifiques

 CURRICULUM VITAE I.1
 Etudes universitaires I.2
 Activités professionnelles I.2
 Thèmes de recherche abordés I.2
 LISTE DES PUBLICATIONS I.3
 Articles dans des revues et ouvrages à comité de lecture I.3
 Archives et publications sans comité de lecture I.5
 Manuscrits actuellement soumis pour publication I.5
 Communications I.5
 AUTRES ACTIVITES I.6
 Participation à des contrats de recherche I.6
 Expertises d'articles soumis à des revues scientifiques I.7
 Participation à l'organisation de colloques scientifiques I.7
 Enseignement I.7
 Encadrement de mémoires de recherche I.8
 ATTESTATION DE THESE DE 3ème CYCLE I.9

SECONDE PARTIE: Dossier de Travaux

 Perception des lettres II.A
 Apprentissage perceptif (Courrieu & De Falco, 1989),
 Métriques perceptives (Courrieu, Farioli, & Grainger, 2004)

 Modèles de codage de données II.B
 Codage de nuages de points (Courrieu, 2001)
 Plongement monotone Euclidien (Courrieu, 2002)

 Modèles de codage d'images II.C
 Codes de densité (Courrieu, 2006, 2007)

 Réseaux de neurones et apprentissage supervisé II.D
 Approximation des fonctions (Courrieu, 2005a)

 Méthodes de calcul des paramètres de modèles II.E
 Polytopes convexes et extériorité d'un point
 Optimisation globale (Courrieu, 1997)
 Méthodes de moindres carrés (Courrieu, 2009)

 Méthodes de validation de modèles et bases de données comportementales II.F
 Variance explicable (Rey et al., 2009; Rey & Courrieu, 2010)
 Validation des modèles (Courrieu et al., 2011)

 Travaux en cours et perspectives II.G

2

AVANT-PROPOS

 Le dossier qui suit résume 26 années d'une carrière qui fut souvent solitaire, lorsque la
matière traitée ne se prêtait guère à une réflexion collective, mais où j'ai aussi eu l'occasion de
partager de bonnes questions (et de bonnes réponses) avec quelques-uns de mes pairs. J'ai
même eu le privilège, trop rare sans doute, de guider les premiers pas dans la recherche de
quelques étudiants très motivés. Initialement expérimentateur en psychologie cognitive, je
suis entré au CNRS fin 1984 avec ce profil, après avoir soutenu une thèse de troisième cycle
sur la reconnaissance visuelle des mots. Puis, la vague connexionniste de la décennie 80 et le
développement des sciences cognitives aidant, il a été recommandé aux chercheurs de devenir
interdisciplinaires, et je me suis aussitôt lancé avec enthousiasme dans la modélisation
neurocomputationnelle. De fil en aiguille, je me suis rapproché de plus en plus des
mathématiques appliquées, où se trouve la solution de bien des problèmes liés au
développement des modèles, au calcul de leurs paramètres, et même à leur validation, ce qui
nous ramène finalement à l'expérimentation humaine, mais avec une vision un peu différente
de celle de l'expérimentaliste, encore que les faits s'avèrent toujours aussi "têtus". On peut
considérer qu'il s'agit, en fait, d'une approche de psychologie mathématique, mais avec une
dimension interdisciplinaire que la psychologie mathématique ne revendique pas
habituellement. De fait, je pense que mes publications ont plus souvent intéressé des
collègues travaillant dans des domaines de sciences pour l'ingénieur plutôt qu'en psychologie.
Ceci n'est pas forcément définitif, et je tente, depuis un certain temps, un retour à des supports
de publication plus familiers aux psychologues.

 Ma démarche de modélisation s'inspire du constat, de prime abord un peu pessimiste,
de P. Valéry: "tout ce qui est simple est faux, tout ce qui est compliqué est inutilisable". Ceci
est vrai pour la psychologie cognitive, comme pour toute science, sans doute. Le rôle de la
modélisation mathématique est précisément de rendre simple une complexité naturelle qui,
sans cela, serait inabordable. Il s'agit, suivant le mot de J. Perrin, de "remplacer du visible
compliqué par de l'invisible simple". En ce qui concerne la cognition humaine, c'est là un pari
qui est encore bien loin d'être gagné, mais je ne doute pas que ce soit le seul objectif
raisonnable à terme.

 Ce document se subdivise en deux parties principales de natures différentes. La
première partie "Activités Scientifiques" récapitule les informations que l'impétrant est
réglementairement tenu de fournir: curriculum vitae, études suivies, liste des publications,
activités scientifiques et de formation à la recherche, attestation de thèse de 3ème cycle. La
seconde partie "Dossier de Travaux" présente une sélection de douze textes publiés dans des
revues scientifiques internationales à comité de lecture. La présentation est organisée en six
sections thématiques, chacune incluant de un à trois textes représentatifs, après une brève
introduction. Toutes mes publications n'apparaissent pas dans cette présentation, et j'ai
privilégié ceux de mes thèmes de recherche qui sont toujours en développement. Cette
seconde partie se termine par un résumé de travaux en cours et quelques perspectives
destinées à convaincre le lecteur que cette Habilitation à Diriger des Recherches n'est
nullement un aboutissement, mais devrait au contraire se prolonger dans des investigations
dont les précédentes ne sont que les prémices.

3

4

Pierre Courrieu – dossier HDR I.1

PREMIERE PARTIE

Activités Scientifiques

CURRICULUM VITAE

COURRIEU, Pierre

Chargé de Recherche de Première Classe (CR1)

Centre National de la Recherche Scientifique (CNRS)

Institut des Sciences Biologiques (INSB)

Section 27 du Comité National: Comportement, Cognition, Cerveau

Affectation actuelle:

Laboratoire de Psychologie Cognitive (LPC), UMR CNRS-UP N° 6146, Pôle 3C, Université
de Provence, Centre Saint-Charles, 3, place Victor Hugo, 13331 Marseille Cedex 3

Directeur de l’Unité: J. Grainger

Equipe: Perception & Attention (responsable F. Vitu-Thibault)

Contact:

Tel.: (33 / 0) 4 42 22 87 77, (33 / 0) 4 13 55 09 89, Fax: (33 / 0) 4 13 55 09 98

E-mail: pierre.courrieu@univ-provence.fr

Etat civil: Né le 17 Mai 1954 à Sokodé (Togo), marié, 1 enfant, nationalité française.

5

Pierre Courrieu – dossier HDR I.2

Etudes Universitaires

1972: Diplôme de Bachelier de l'Enseignement du Second Degré

Etudes supérieures de psychologie à l’Université de Provence (1974-1983):

1974-1976: Diplôme d'Etudes Universitaires Générales

1977: License de Psychologie

1978: Maîtrise de Psychologie, directeur G. Noizet.

1980: DEA de Psychologie, directeur G. Noizet.

1983: Doctorat de troisième cycle en Psychologie, directeur C. Bastien. Thèse:
“L’identification des mots au cours de la lecture”, soutenue le 22/12/1983, mention “Très
Bien” à l’unanimité du jury (C. Bastien, C. Bolusset, A. Lévy-Schoen, G. Noizet, & J. Pynte).

Activités professionnelles

1980-1983: Allocataire de Recherche DGRST, Laboratoire de Psychologie Cognitive (L.A.
CNRS N° 182), Université de Provence.

1980-1981: Chargé de Cours à l’Université de Provence, UER de Psychologie (enseignement
de la méthodologie et de l’informatique).

1981(novembre)-1983(mars): Chargé d’Etudes et Conseiller Scientifique, Centre National
d’Etudes des Télécommunications (CNET-LAA-TSS-SEF), Rte de Tregastel, 22301 Lannion.

1984: Attaché de Recherche au CNRS, Centre de Recherche en Psychologie Cognitive (URA
CNRS 182), Université de Provence.

1986: Chargé de Recherche de 2ème classe au CNRS, CREPCO (URA 182), Université de
Provence.

1989: Chargé de Recherche de 1ère classe au CNRS, CREPCO (URA 182) devenu LPC
(UMR 6146), Université de Provence.

Thèmes de recherche abordés

Perception visuelle des formes et des lettres, apprentissage perceptif, code orthographique,
modèles de codage de données, modèles de codage d'images, modèles d'approximation de
fonctions, méthodes de calcul des paramètres de modèles, méthodes de validation de modèles.

6

Pierre Courrieu – dossier HDR I.3

LISTE DES PUBLICATIONS

Articles dans des revues et ouvrages à comité de lecture

Courrieu, P. (1985). Des lettres sans position dans la perception des mots. L’Année
Psychologique, 85, 9-25. doi : 10.3406/psy.1985.29064
(URL: http://www.persee.fr/web/revues/home/prescript/article/psy_0003-5033_1985_num_85_1_29064)

Courrieu, P. (1986). Analyse-t-on le mot de gauche à droite ? Bulletin de Psychologie (N°
spécial “Hommage à Georges Noizet”), T.XXXIX, N° 375, 425-427.

Courrieu, P. (1986). Serial analysis in the perceptual discrimination of words. Cahiers de
Psychologie Cognitive, 6(3), 329-336.

Courrieu, P. (1988). Paradigmes temps réel interactifs. In J.P. Caverni, C. Bastien, P.
Mendelsohn, & G. Tiberghien, Psychologie Cognitive: Modèles et Méthodes. Grenoble:
P.U.G., pp.365-373.

Courrieu, P. (1988). Stratégies d’abbréviation de mots français. L’Année Psychologique, 88,
47-63. doi : 10.3406/psy.1988.29250
(URL: http://www.persee.fr/web/revues/home/prescript/article/psy_0003-5033_1988_num_88_1_29250)

Courrieu, P. (1993a). A convergent generator of neural networks. Neural Networks, 6, 835-
844.

Courrieu, P. (1993b). A distributed search algorithm for global optimization on numerical
spaces. RAIRO: Recherche Opérationnelle / Operations Research, 27, 281-292.

Courrieu, P. (1994a). Three algorithms for estimating the domain of validity of feedforward
neural networks. Neural Networks, 7, 169-174.

Courrieu, P. (1994b). Connexionnisme et fonctions symboliques. In J.P. Caverni, C. George,
& G. Politzer, Raisonnements: Conjoncture et Prospective. Psychologie Française (numéro
spécial), 39-2, 231-236.

Courrieu, P. (1997). The Hyperbell algorithm for global optimization: a random walk using
Cauchy densities. Journal of Global Optimization, 10, 37-55.

Courrieu, P. (2001). Two methods for encoding clusters. Neural Networks, 14, 175-183.

Courrieu, P. (2002). Straight monotonic embedding of data sets in Euclidean spaces. Neural
Networks, 15, 1185-1196.

Courrieu, P. (2004). Solving time of least square systems in Sigma-Pi unit networks. Neural
Information Processing - Letters and Reviews, 4(3), 39-45.
(PDF: http://bsrc.kaist.ac.kr/nip-lr/V04N03/V04N03P2-39-45.pdf)

Courrieu, P. (2005a). Function approximation on non-Euclidean spaces. Neural Networks, 18,
91-102.

7

Pierre Courrieu – dossier HDR I.4

Courrieu, P. (2005b). Fast computation of Moore-Penrose inverse matrices. Neural
Information Processing - Letters and Reviews, 8(2), 25-29.
(PDF: http://bsrc.kaist.ac.kr/nip-lr/V08N02/V08N02P2-25-29.pdf)

Courrieu, P. (2006). Density codes and shape spaces. Neural Networks, 19, 429-445.

Courrieu, P. (2007). Fast density codes for image data. Neural Information Processing -
Letters and Reviews, 11(12), 247-255.
(PDF: http://bsrc.kaist.ac.kr/nip-lr/V11N12/V11N12P1-247-255.pdf)

Courrieu, P. (2009). Fast solving of Weighted Pairing Least-Squares systems. Journal of
Computational and Applied Mathematics, 231, 39-48.

Courrieu, P., Brand-D'Abrescia, M., Peereman, R., Spieler, D., Rey, A. (2011). Validated
intraclass correlation statistics to test item performance models. Behavior Research Methods.
doi: 10.1007/s13428-010-0002-7

Courrieu, P., De Falco, S. (1989). Segmental vs. dynamic analysis of letter shape by preschool
children. CPC: European Bulletin of Cognitive Psychology, 9, 189-198.

Courrieu, P., Dô, P. (1987). Perceptual analysis of words in Arabic. In J.K. O’Regan and A.
Lévy-Schoen (Eds), Eye Movements: From Physiology to Cognition. Amsterdam: North
Holland, pp. 451-458.

Courrieu, P., Farioli, F., Grainger, J (2004). Inverse discrimination time as a perceptual
distance for alphabetic characters. Visual Cognition, 11(7), 901-919.

Pynte, J., Courrieu, P., Frenck, C. (1989). Retrieval from verbal memory and motor
programming during writing by hand. In P. Boscolo (Ed.), Writing: Trends in European
Research. Padova: Upsel Editore, 205-212.

Pynte, J., Courrieu, P., Frenck, C. (1991). Evidence of repeated access to immediate verbal
memory during handwriting. European Journal of Psychology of Education, 6(2), 121-125.

Pynte, J., Courrieu, P., Kennedy, A., Murray, W.S. (1987). On the role of spatialisation in
reading ambiguous sentences. In G. Lüer & U. Lass, Fourth European Conference on Eye
Movements. Volume 1: Proceedings. Göttingen, C.J. Hogrefe, pp. 31-33.

Pynte, J., Kennedy, A., Murray, W.S., Courrieu, P. (1988). The effects of spatialisation on the
processing of ambiguous pronominal reference. In G. Lüer, U. Lass, & J. Shallo-Hoffmann
(Eds.), Eye Movement Research: Physiological and Psychological Aspects. Göttingen, C.J.
Hogrefe, pp. 214-225.

Rey, A., & Courrieu, P. (2010). Accounting for item variance in large-scale databases.
Frontiers in Psychology 1:200. doi:10.3389/fpsyg.2010.00200
(URL: http://www.frontiersin.org/language_sciences/10.3389/fpsyg.2010.00200/full)

Rey, A., Courrieu, P., Schmidt-Weigand, F., Jacobs, A.M. (2009). Item performance in visual
word recognition. Psychonomic Bulletin & Review, 16(3), 600-608

8

Pierre Courrieu – dossier HDR I.5

Ripoll, H., Baratgin, J., Laurent, E., Courrieu, P., & Ripoll, T. (2001). Mechanisms
underlying the activation of knowledge basis in identification of basketball play
configurations by expert and non-expert players. In A. Papaioannou, M. Goudas, & Y.
Theodorakis (Eds.), In the Dawn of the New Millennium: Proceedings of the 10th World
Congress of Sport Psychology, Skiathos, Greece, 28th May - 2nd June, Vol. 2, pp. 283-285.
Thessaloniki: Christodoulidi Publications.

Archives et publications sans comité de lecture

Baratgin, J., Courrieu, P., Ripoll, T., Laurent, L., & Ripoll, H. (2002). Similarity Judgements
of Basketball Game Configurations by Experts and Novices: A Model and Some Experimental
Tests. Unpublished manuscript (2002): http://www.ergos-perf.com/Docs/Model_PSE.pdf,
54 p.

Courrieu, P., & Lequeux, M. (2009). Anagram Effects in Visual Word Recognition.
Unpublished manuscript (1988): http://hal.archives-ouvertes.fr/hal-00429184/fr/, 40 p.

Courrieu, P., Ripoll, T., & Sabancioglu, F. (2009). Affinely Invariant Features in Visual
Perception of Letters and Words. Unpublished manuscript (2002): http://hal.archives-
ouvertes.fr/hal-00429562/fr/, 14 p.

Manuscrits actuellement soumis pour publication (Novembre 2010)

Courrieu, P. (submitted-1). Quick Approximation of Bivariate Functions.

Courrieu, P., & Rey, A. (submitted-2). Missing Data Imputation and Corrected Statistics for
Large-Scale Behavioral Databases.

Communications

Bolusset, C., Devauchelle, P., Courrieu, P. (1982). Communication homme-terminal : aspects
psychophysiologiques de la lecture sur écran. 18ème Congrès de la Société d’Ergonomie de
Langue Française. Paris, 13-15 Octobre.

Courrieu, P. (1980). La lecture des mots en contexte restreint. Journées d’étude de l’Ecole
Pratique des Hautes Etudes “Codage Phonétique et Codage Phonologique”. Paris, Octobre.

Courrieu, P. (1982). Intégration perceptive des chaînes de caractères et accès au lexique.
Journées d’étude de l’Ecole Pratique des Hautes Etudes “Accès au Lexique”. Paris, 30
Septembre-1er Octobre.

Courrieu, P. (1984). Analyse-t-on le mot de gauche à droite ? Colloque “Hommage à Georges
Noizet”. Aix-en-Provence, 18-19 Octobre.

9

Pierre Courrieu – dossier HDR I.6

Courrieu, P. (1986). Paradigmes temps réel interactifs. Colloque Société Française de
Psychologie “Activités cognitives: modèles de processus et niveaux d’observation”. Aix-en-
Provence, 13-14 Mars.

Courrieu, P. (1989). Anagram effects in word recognition. Workshop on Language
Comprehension. Aix-en-Provence, September 15-16.

Courrieu, P. (1991). A convergent generator of neural networks. Second Workshop on
Language Comprehension. Aix-en-Provence, April 26-27.

Courrieu, P. (1993). Raisonnements et connexionnisme: réponse à Alain Grumbach. Congrès
de la Société Française de Psychologie. Poitiers, 13-15 Mai.

Courrieu, P. (1998). Réalisme cognitif dans les modèles de lecture: une brève confrontation
du modèle de Fukushima avec quelques données empiriques. Journée Thématique “Lecture”
du GRCE. Paris, ENST, 26 Novembre.

Courrieu, P., Dô, P. (1985). Perceptual analysis of words in Arabic. Third European
Conference on Eye Movements. Dourdan, September 24-27.

Pynte, J., Besson, M., Courrieu, P. (1991). Etude comportementale et électrophysiologique de
la compréhension du langage. Assises Régionales des Sciences de la Cognition “Cognisud”.
Marseille, 24-26 Janvier.

Pynte, J., Courrieu, P., Frenck, C. (1988). Psycholinguistic management in immediate
memory and the motor programming of handwriting. International Workshop on Writing.
Padova, December 1988.

Pynte, J., Courrieu, P., Kennedy, A., Murray, W.S. (1987). On the role of spatialisation in
reading ambiguous sentences. Fourth European Conference on Eye Movements. Göttingen,
September 21-24.

Rey, A., Brand-d'Abrescia, M., Peereman, R., Spieler, D., & Courrieu, P. (2010). The
nanopsycholinguistic approach: Item performance in disyllabic word naming. Oral
communication presented at the 51st Annual Meeting of the Psychonomic Society, St Louis,
USA, November 18-21.

Ripoll H., Baratgin J., Laurent E., Courrieu P. & Ripoll T. (2001). Mechanisms underlying
the activation of knowledge basis in identification of basketball play configurations by experts
and non-experts players. 10th World Congress of Sport Psychology. Skiathos Island (Greece),
May 28-June 2.

AUTRES ACTIVITES

Participation à des contrats de recherche

Besson, M., Courrieu, P., Frenck-Mestre, C., Jacobs, A., Pynte, J. (1992). Approche
électrophysiologique et simulation de la compréhension du langage. M.R.T.-Sciences de la
Cognition 1992.

10

Pierre Courrieu – dossier HDR I.7

Ducrot, S., Lété, B., Nguyen, N., Pynte, J., Habib, M., Rey, V., Asmussen, C., Bastien, C.,
Bastien-Toniazzo, M., Courrieu, P., Colé, P., Rey, A. (2002-2004). Le developpement des
capacités perceptives visuo-attentionnelles au cours de l’acquisition de la lecture (normale et
pathologique). Projet co-financé par Conseil Général des Bouches-du-Rhône, Conseil
Régional PACA, CNRS-Université de Provence.

Gonzalez, M., Courrieu, P., Pélissier, A. (1988-1992). Etudes d’une expertise humaine en
détection sous-marine. Convention DCAN-CNRS C 87 48 813 517, tranches I, II, III.

Pynte, J., Courrieu, P., Frenck, C., Vion, M., Cavé, C., Di Cristo, A., Hirst, D., Roméas, P.,
Besson, M., Jacobs, A., Nazir, T., Ide, N., Véronis, J., Harie, S., Habib, M., Colé, P., Hamon,
J.-F., Léonard, F., Magnan, A., Mendoza, J.-L. J. (1992). Les unités de traitement dans la
perception de la parole et la lecture. Réseau Cognisciences “Cognisud”, N°18.

Ripoll, H., Baratgin, J., Laurent, E., Kehlhoffner, E., Cauzinille, E., Courrieu, P., Pélissier, A.,
Ripoll, T., Drogoul, A., Landau, S., Munoz, A., Zucker, J.-D., Bredeche, N. (1999-2002). Les
déterminants cognitifs de l’organisation spatiale du footballeur: application à l’homme et au
robot. A.C.I. Cognitique (thème 1: Cognition Spatiale), N° 90.

Touratier, C., Courrieu, P., Piolat, A., Pynte, J., Véronis, J. (1987). Convergence des modèles
linguistiques et psychologiques de l’orthographe dans la production écrite. A.T.P. CNRS
“Nouvelles Recherches sur le Langage”, N° 1099.

Expertises d'articles soumis aux revues suivantes:

. L'Année Psychologique
. CPC: European Bulletin of Cognitive Psychology
. IEEE Transactions on Neural Networks
. Journal of Computational & Applied Mathematics
. Computers and Mathematics with Applications
. Applied Numerical Mathematics
. Bulletin of the Malaysian Mathematical Sciences Society
. Computing

Participation à l’organisation de colloques scientifiques

Workshop on “Language Perception and Comprehension: Multidisciplinary Approaches”,
Marseille, July 14-18th 1992. Organisé par M. Besson, P. Courrieu, C. Frenck-Mestre, A.
Jacobs, & J. Pynte.

Enseignement

1984-1988: enseignement de l’informatique (programmation Basic et Pascal) en second cycle
de psychologie (37h1/2 / an), interventions en DESS d’Ergonomie Cognitive (3h / an),
Université de Provence.

1991-2006: enseignements sur les réseaux de neurones artificiels et la reconnaissance des
formes en 2ème 3ème cycles de psychologie (6h / an), Université de Provence.

11

Pierre Courrieu – dossier HDR I.8

Encadrement de mémoires de recherche

Aicart-De Falco, S. (1987). Apprentissage et reconnaissance de caractères minuscules scripts
chez des enfants d’école maternelle. Mémoire de Maîtrise de Psychologie, Université de
Provence.

Lequeux, M. (1986). Des roles des lettres sans position et des anagrammes dans la
perception des mots. Mémoire de Maîtrise de Psychologie, Université de Provence (codir. C.
Bastien).

Lequeux, M. (1988). Effet du nombre d’anagrammes lexicales en fonction de leurs fréquences
d’usage dans la perception des mots. Mémoire de D.E.A. de Psychologie, Université de
Provence (codir. C. Bastien).

Sabancioglu, F. (2002). A la recherche des invariants dans la perception visuelle des lettres et
des mots: les transformations par changement d’échelle et par double symétrie. Mémoire de
Maîtrise de Psychologie, Université de Provence (codir. T. Ripoll).

12

13

14

15

16

Pierre Courrieu – dossier HDR II.A.1

SECONDE PARTIE

Dossier de travaux

 Une grande partie des travaux que j'ai réalisés au début de ma carrière, dans la suite de

ma thèse de troisième cycle, consistait en des études expérimentales du codage

orthographique des mots chez le lecteur adulte. Je n'ai pas complètement abandonné cette

thématique, mais si je dois y revenir, ce sera dans une perspective assez différente, plus

étroitement liée à la modélisation numérique. J'ai donc choisi de ne pas présenter ici ces

travaux anciens, et le lecteur intéressé pourra se reporter aux références apparaissant sur ce

sujet dans la liste de mes publications. En particulier, trois de ces références comportent des

liens vers des documents librement accessibles (Courrieu, 1985; Courrieu, 1988; Courrieu &

Lequeux, 2009). La dernière de ces références est en fait un manuscrit non publié que j'ai

récemment mis en ligne, et dont la rédaction initiale remonte à 1988 (révisée en 2004).

L'échantillon de travaux présenté dans ce qui suit couvre essentiellement la période 2001-

2010, à l'exception de deux références antérieures à cette période qui m'ont paru avoir quand

même leur place ici.

II.A Perception des lettres

 Les lettres de l'alphabet sont des formes visuelles à part entière, assez simples à

première vue, mais aussi très variables dans leurs réalisations. Les lettres peuvent apparaître

au sein de formes plus complexes telles que des mots, et les lecteurs adultes sont experts dans

leur reconnaissance. Sur quoi se fonde cette habileté extrême à reconnaître les lettres, et

comment est-elle acquise? Ayant constaté le relatif dédain dans lequel l'Intelligence

Artificielle tenait la reconnaissance de formes simples comme les lettres (ce qui contrastait

singulièrement avec la réelle complexité de cette performance), Douglas Hofstadter (1995) n'a

pas hésité à déclarer que "the toughest challenge facing AI workers is to answer the question:

What are the letters 'A' and 'I'?".

 D'assez nombreux modèles de reconnaissance des caractères ont été proposés dans le

domaine de la Reconnaissance des Formes (Pattern Recognition), mais finalement, assez peu

de principes ont été retenus par la psychologie de la perception. Reconnaissance globale et

"template matching" ne semblent plus avoir beaucoup d'adeptes, bien que les outils de

modélisation utiles dans ces approches aient fortement progressé ces dernières années (j'y

17

Pierre Courrieu – dossier HDR II.A.2

reviendrai dans la section II.C). L'idée qui résiste le mieux aux critiques et aux mises à

l'épreuve expérimentales est celle d'une organisation hiérarchique de la perception visuelle,

partant de la détection de traits (segments) simples qui sont ensuite combinés en des éléments

plus complexes au niveau supérieur, et ainsi de suite jusqu'à atteindre le niveau d'éléments

reconnaissables comme des caractères, des combinaisons de lettres, ou des mots. Cette théorie

hiérarchique est directement inspirée des observations neurophysiologiques (Hubel & Wiesel,

1970), et est assez largement adoptée en psychologie cognitive (Dehaene, 2007).

 Une autre idée a été proposée par Courrieu et De Falco (1989, article ci-joint), se

fondant sur le double constat suivant. Il est, d'une part, relativement facile de reconnaître

automatiquement des caractères lorsque ceux-ci sont représentés sous la forme de courbes

paramétriques (position (x, y) fonction du temps (t)), c'est-à-dire sous la forme d'une

représentation abstraite du geste d'écriture. C'est ce qu'on appelle la reconnaissance "online"

de caractères (Connell & Jain, 2001). D'autre part, il est aisé pour un lecteur adulte de

reconstituer a posteriori une approximation du geste d'écriture à partir d'une trace écrite,

laquelle est une image en deux dimensions (niveau de gris (g) fonction de la position (x, y)).

Il existe de plus des méthodes de suivi automatique de tracé dans une image (Baruch, 1988;

Chouinard & Plamondon, 1992), ce qui confirme la faisabilité de la chose. La question était

donc posée: est-ce qu'apprendre à tracer des lettres facilite leur reconnaissance en lecture?

Pour tenter de répondre à cette question, Courrieu et De Falco (1989) ont appris à des enfants

pré-scolaires à reconnaître des lettres avec différentes méthodes d'apprentissage, permettant

de privilégier soit une reconnaissance globale, soit une analyse des lettres en segments

simples, soit une représentation dynamique du geste d'écriture. Les résultats ont fait

clairement apparaître l'efficacité de l'analyse des lettres en segments simples, mais il n'y avait

pas d'effet détectable de l'apprentissage du geste d'écriture sur la reconnaissance. Cependant,

d'autres auteurs ont récemment repris cette idée, et ont observé que l'apprentissage du geste

d'écriture facilite la reconnaissance des caractères chez des enfants un peu plus âgés

(Longcamp, Zerbato-Poudou, & Velay, 2005), ainsi que chez des adultes (Longcamp,

Boucard, Gilhodes, Anton, Roth, Nazarian, & Velay, 2008). L'idée n'était donc pas si

mauvaise, et il semble bien que la construction de représentations à partir du geste d'écriture

puisse contribuer à la reconnaissance des lettres, mais seulement à partir d'un certain niveau

de maturation du système cognitif. Certains auteurs ont baptisé "signature proprioceptive" le

pattern d'activation motrice caractéristique de chaque symbole graphique reconnaissable

(Roll, Albert, Ribot-Ciscar, & Bergenheim, 2004; Vinter & Chartrel, 2008), mais il s'agit là

d'une forme plus "incarnée" (donc moins abstraite) de l'hypothèse initiale de représentations

18

Pierre Courrieu – dossier HDR II.A.3

en courbes paramétriques. Par ailleurs, comme les représentations en segments simples sont

également efficaces (Courrieu & De Falco, 1989), et même plus précocement, on peut

supposer que la reconnaissance des lettres s'appuie en fait sur différentes ressources, et qu'a

priori, rien de ce qui peut être utile à la perception n'est à exclure.

 Une autre façon d'aborder la question des représentations à l'oeuvre dans la perception

des lettres consiste à analyser des données de similitude perceptive des différentes lettres, de

façon à en extraire un ensemble de facteurs déterminants. C'est ce qu'ont fait Courrieu,

Farioli, & Grainger (2004, article ci-joint) en mesurant et analysant des temps de

discrimination perceptive des 26 lettres de l'alphabet latin, plus le caractère d'espacement. La

méthodologie employée consistait à appliquer à la matrice des temps de discrimination

inverses une technique de "plongement monotone euclidien" (Courrieu, 2002, voir section

II.B), qui est une technique particulière de "multidimensional scaling" permettant d'attribuer à

chaque caractère une position dans un espace euclidien, puis à compléter par une analyse

factorielle. Nous avons ainsi obtenu un ensemble de 25 facteurs, d'importances inégales,

interprétables comme des descripteurs perceptifs ("features"). Certains de ces descripteurs

correspondaient à la présence d'une forme de lettre entière, comme par exemple "n" dans "n"

ou "h", "i" dans "i" ou "j", "v" dans "v" ou "y". D'autres descripteurs correspondaient à des

patterns particuliers tels que "4 coins et une diagonale d'un carré" comme dans "x" et "z"

(mais aussi dans "%"), ou à des segments simples comme "l'arc de cercle supérieur gauche"

commun à "c" et "r". Ces descripteurs sont compatibles avec la théorie hiérarchique évoquée

plus haut. Cependant, d'autres descripteurs, plus abstraits, sont difficilement interprétables

dans ce cadre. Certains descripteurs correspondaient à une caractéristique assez générale

comme "petite forme curvilinéaire" dans "a, c, e, o, s", ou à une caractéristique plus

spécifique comme "forme sigmoïde" dans "s" et "z". D'autres descripteurs correspondaient à

une certaine combinaison de segments simples, mais indépendamment de leur disposition

comme "petit cercle et grande barre verticale" dans "b, d, p, q", ce qui suggère des invariances

par symétrie ou rotation. Les invariances par rotation ont par ailleurs été confirmées dans une

expérience de priming masqué de lettres (Courrieu, Ripoll, & Sabancioglu, 2009). On voit

donc que la théorie hiérarchique, dans sa formulation courante, ne peut sans doute pas rendre

compte à elle seule de l'ensemble des descripteurs utilisés par la perception.

 Une étude ultérieure de Pelli, Burns, Farell, & Moore-Page (2006) estime que le

nombre de descripteurs visuels dont la détection permet d'identifier un caractère serait de

l'ordre de 7 (±2), mais aucun descripteur n'est spécifié, et les auteurs semblent avoir

totalement ignoré le travail de Courrieu et al. (2004). Une autre étude de Fiset, Blais, Ethier-

19

Pierre Courrieu – dossier HDR II.A.4

Majcher, Arguin, Bub, & Gosselin (2008) propose un ensemble de 10 descripteurs visuels

obtenus grâce une technique dite "de bulles", mais l'étude de Courrieu et al. (2004) ne semble

pas non plus avoir attiré l'attention de ces auteurs. La cause de l'étrange "transparence" de

cette publication est peut-être à rechercher dans le fait que l'article a bizarrement disparu de

certaines bases documentaires électroniques très utilisées, et que de multiples courriers

adressés à des responsables potentiels, pour tenter de corriger cette anomalie, sont restés sans

réponse et sans effet. Une autre explication possible est qu'avec les mots clés "alphabetic

character perception", Google Scholar retourne bien la référence de l'article dans les premiers

rangs, mais avec les mots clés "letter perception", il n'en est rien! Comme il n'est pas dans

mes compétences d'enseigner la notion de synonymie à Google Scholar, je veillerai une

prochaine fois à choisir plus stratégiquement le titre de mes articles...

Références

Baruch, O. (1988) Line thinning by line following. Pattern Recognition Letters, 8, 271-276.

Chouinard, C., & Plamondon, R. (1992). Thinning and segmenting handwritten characters by

line following. Machine Vision and Applications, 5, 185-197.

Connell, S.D., & Jain, A.K. (2001). Template-based online character recognition. Pattern

Recognition, 34, 1-14.

Courrieu, P. (2002). Straight monotonic embedding of data sets in Euclidean spaces. Neural

Networks, 15, 1185-1196.

Courrieu, P., De Falco, S. (1989). Segmental vs. dynamic analysis of letter shape by

preschool children. CPC: European Bulletin of Cognitive Psychology, 9, 189-198.

Courrieu, P., Farioli, F., Grainger, J (2004). Inverse discrimination time as a perceptual

distance for alphabetic characters. Visual Cognition, 11(7), 901-919.

Courrieu, P., Ripoll, T., & Sabancioglu, F. (2009). Affinely Invariant Features in Visual

Perception of Letters and Words. Unpublished manuscript (2002): http://hal.archives-

ouvertes.fr/hal-00429562/fr/, 14 p.

20

Pierre Courrieu – dossier HDR II.A.5

Dehaene, S. (2007). Les Neurones de la Lecture. Paris, Odile Jacob, 478 p.

Fiset, D., Blais, C., Ethier-Majcher, C., Arguin, M., Bub, D., & Gosselin, F. (2008). Features

for identification of uppercase and lowercase letters. Psychological Science, 19(11), 1160-

1167.

Hubel, D.H., & Wiesel, T.N. (1970). Receptive fields and functional architecture of monkey

striate cortex. Journal of Physiology, 195, 215-243.

Hofstadter, D.R. (1995). On seeing A's and seeing As. Stanford Humanities Review:

Constructions of the Mind, 4(2), 109-121.

Longcamp, M., Boucard, C., Gilhodes, J-C., Anton, J-L., Roth, M., Nazarian, B., & Velay, J-

L. (2008). Learning through Hand- or Typewriting Influences Visual Recognition of New

Graphic Shapes: Behavioral and Functional Imaging Evidence. Journal of Cognitive

Neuroscience 20:5, pp. 802–815.

Longcamp, M., Zerbato-Poudou, M-T., & Velay, J-L. (2005). The influence of writing

practice on letter recognition in preschool children: A comparison between handwriting and

typing. Acta Psychologica, 119, 67–79.

Pelli, D.G., Burns, C.W., Farell, B., & Moore-Page, D.C. (2006). Feature detection and letter

identification. Vision Research, 46, 4646–4674.

Roll, J-P., Albert, F., Ribot-Ciscar, E., & Bergenheim, M. (2004). ‘‘Proprioceptive signature”

of cursive writing in humans: a multi-population coding. Experimental Brain Research, 157,

359–388.

Vinter, A., & Chartrel, E., (2008). Visual and proprioceptive recognition of cursive letters in

young children. Acta Psychologica, 129, 147–156.

21

22

23

24

25

26

27

28

29

30

31

32

������� ���	��
������ ��
� �� � ���	������ ������	�

�� ���������	 	����	����

������ ��������� 	��
�
� 	������ �
� ��
����
 ����
���

���� � ���	
���� �� ���	
��
� ����
�����	
��
� �����

�������
 ����� �� ��������
��� ��������� ������ ���� ������� �
 �
 ��������
��
��� �
����� ��������
����
 ����� ���� ���� �� ���� ������� �
 ��� ����� �� �������
����� ������� ���� ���
� �� �� ���
�����
� ��������� ���� ������� ���!
��

����� ��
�������� ��������� �
� � ���
�
��� ����
���
� �
� ��� �� ���
������� ��� ���������� ���� ��������� �� ����������� �� ���
���� ��
��"����� ����� ���� ���
 �����
 �������� �
� �� ������� �� �� ���� ��
������ ��
����� �������� ������
 ������� ����� ���� ����� ����� �������� �� ��
��������� �
� ����

����� �� ����� ������� ���� ��������� �� �
� �� ��� ��������� ������
�

������
 ��������� ������ �� ��� ����
 ������� � ������
� ���$������

�������� ���� %&�

���
!�
� '()*+ &�

���
!�
� ,���
� - .����
� '()*+

/��

���� - ��
��
� '()(0 �� ��
�����
 ���� %1����� '(2'+ �������� - ��

	���� '(*(0� 3
������
��
� ����� ������
� �� �������
� ���� � ���������� ���
�

�� ����� �
 ����� �� ���� ����������� ����� �� ����� �����
����
 �
� �����
��

���� �� ��� �������
� �
 ����� �� ���� ������� �������� �� ��� ������������

�������� ������
 ����� ����
��� ������� ����� �������� �� ���������� ������

�� � � ��� �
 ��� ��
�������� �� ����
�� %��� ��� ������������
���������

44��
�55� 44����55� �
� 44����55 �"�� ������ �� ���� �����60� 7
 �������
� �
�

��
 ��� ��
����� ���� ���� �� � ��������� %�
� "���� ��
��
��
�0 ������ ��

����� ����� ��������
� ����� ���� ��
 ��� �� ���� ��
��� ��
�����
�

��
���
�
� ����� ������
 �����
����
�

&����� ���$������ �������� ����
� ������� ��� ��
�������� � ��� ���� ����

�
� ����
�� !
�� ������� ��� �������� �������� ����� ���� � ���$���� ���

����� ���� ��� �
����� �
 ��������� ��������
�� 8
 ��� ����� ��
�� ������� ���

������
� ��
�����
 ���� ��� "���� ���� ��
����
� ��
�� ��� ��"���� ��

����� �
� ���$���� �
 ����� �� �����
 ��
������ ��������� #� ���
��� ��� �

97.3#, �8�:7�78:� ;<<=� �� %20� (<'>('(

����� ������� � ��������
��
�� ��? ������ ��������� ,���������� �� �� ������� ���
������

�:�. %3@�)'=)0� 3
��������A �� �����
��� ;(���
�� ������ .�����
� 'B);' #����
������
��

����� '� 	��
��� C���? ��������D����
���������

� ;<<= �� ����� ����� ,��

����?EE������
�������!E$���
��E��E'BF<);*F���� &87?'<�'<*<E'BF<);*<===<<<<=(

33

������
 �
� ���
�� %'(2(0� ��������
���� ���� ������� ��� �����
� ��
���

���
� �
 ����� �� �����
 � ���� �
���� ��
�����
 ����� ���� ��� ��������

��������� �� !
��
 �� ����
� �
 ��� � �� �� ����������
 ����� @�������� �����

������� ���� ����� ���� �
 �
����� �� ����
� ������ ���� ��� ��
��"��
��

���� ���
������
� ��� ������
� �������� �
�� � ������ �� ���������� ���� ����

������� �
� �������� � ��
�� � ������ ��"����� � ����� ��� �� ����
� %,���

;<<'0� ��� ����
� ��������� �� ������ ������ %��������� C������
 �
��0 ����

�
� �� ��� ������� ���� �
� ��� ������� %����� ��������
���
� ����
�0�

����
�
������ ��������� ���� ��� ���� ������ �� �
� �� ����
 ��� �������

���! %�
� ���� �
!
��
0 ��������� �� ��� ����� ��� ���
� ���

7
 � ����
� ���� � ������
 �
� ���
�� %'(2(0 ���
� ����
� ��������

�����
�� ���� ��� ���� ��"����� �� ��������
��� ���������� ������ �� �
 �
������
�

��
����
 �� ��� ��������� �������� �� ����� ������� ��� ������� ���
��� ��� ����

�����
�� ���� ����� �������� �������� ����
��� ��� ��� ����
� ��
 ��

��� ������� �
���
����� ���� ����� � ��� �� �������� �������� #
 ����
�����

�������� �� �� ������� ������� ���
���� �� ������ �����
��� �
 ��������� �����

%������� :�G��� - H���� '(*(0� 7
 ������ �� ��� � ����
 ������ ����� ���

�����
��� ��
��� � ������ � ��� ������� �
� �� ����� ��� ��� ������� �

��������� �����
 %�
� �� ��� ���� ��� ����� �� ��� ����� �� �������
0� ��� ������

����
�� ��� �� ���� ����� � �� �� ��� ������
 �� ��� ������ ������ .������

���
���� �� ��� ��������� ������ ���� ���� �� ��
����� � ��������
����
 ������

��� � ����� �� ��������� ������� ����� ��� ���� �� ���
� �������
 ����� ���

�������
� ��� �������� �� ����� ������ ��
��
��� H������� � �������
 ���� ��

�� � ������� �
� � ���� ������ ���� �� ����� ��� ������������ �� �� ��

���������� ���������

��� ��� �� ��� �����
� ���� �� �� ������� � ����� �
� ��
������ ������� ��

��� �������� �� ������� ����� ����� �
 �����
�� ������ ��� ��
������� �� ����

������� ����� ��� ���
���G� �
 ���� �������
� �
� ��� ����� ���� ��

��������� ��� �����
� �� �������� �
����
� C������
 �
��� � ���
� ����
�

�������� ����������� ���� %��������� ;<<;0� 7
 ��� �����
� ���� � �� ����

��
� ��� ������� ���
� �������� �� ��� ���� ��!�
 �� ��������
��� ���������

������ ���� ��� ����
 �������� ��� ����� ������ �� �� ����� �� �������� ����

��� ����
� �
� �� C������
 �
� ���� ��� ������������� �������� �
� ���

������� �� �� ������� ����� �� �� ��������� ���� � ����
���
� �
� ��� ��

��� �������� I� ����� �������� � ������ ��� �����
� � ������ ����� �
 ����

�����
����
 �����
�� ������ �
� ���
 �
 ��������
� ���� ������� ���� �����
��

����� ������ �����
��
� ��� ������
� �������

�������� ���	
�������� ���������
��
�	�

���� ���� ��� �����
�� �� �����
� ������� ��������
����
 ���� ��
 ������� ���

����� �� � ������ ������� �� ��� ����� �������� �� ��������� ������

�������� �
 ��������� ����
��� �� ��� ���� ������ �
 �����
�� ���� �����

��� 	��

���� ��
���� �
�����

34

���!�
� �������� ����
 ��� �������
�� �
 ��� ���������
 �� ���
��� ������ ���

44�����55 ��������� ��� �
����� �
 ��� 44�������� �������55� �
� �� �� ��

� ������ ��
���� 44 �
 ���� ������ 8�� ���
 ��� ��� �� ��
� � �����

��
��
���� �
� ������ ��
���
�� ��
����
 �� ��������
����
 ����� ���� ����

��
����
 ���
� � ���� ������ �
 ��� �������� �������� �
� ��� �����
�� ����

��
��� ����� �������
� ��� ����� ����������� �� ����������� 8
� ����

�������� ���� � ������� �� �����
��� ���������� ���� � ��� . %����� �
 �������0 ��

�
������� ��
����
 � �
 ��� ��� �� ����� �� ����
�� �� . %����� ������0 ����

����� ��� �
 ����� ����
�� �� �� �
� � �� .� �
� ��� ��� �����
� ���� ������
�?

'� �%�� �0 J < KJL � J �� ���� ��� ��� �����
�� �� G��� ������
 ���
����

����
�� �
 �

;� �%�� �0 � <� ���� ��� � �����
�� ��

�� ��
������� %��������
���0�

B� �%�� �0 J �%�� �0� ���� ��� ��� �����
�� ������
 ��� ����
�� ����
��

����
� �
 ��� ������
� �� ����� ����
�� %� ����� 0�

=� �%�� �0 � �%�� �0 M �%�� �0� ���� ��� ������
 �
 ��� ����
��� ����� ��
�

44����55 ������� ���
 ����� �����
�� %����
�� �
�"���� 0�

I��
���� ��� ����
�� �� � ��� ��� ��������� �
 ���� ������
��� � ����� �
�

��
 ������� � �����
�� ������
 ��� ����
�� ���
� �
 ����������� ������� 	��

������� �
 � ��� �� ��������� ����
�� �� � ����
 �
���� ��� H����
� �����
��

������
 ��� ����
�� �� ���
����� �� �������
� ����� ��� ���������� �� ��� ���

����
�� ��� �������
�� ���� ��� ������ ���� �� � H����
� �����
�� �� ' ������

���
�� �� 44������������
���������55 %��������� &������� ��
����
� - 1��
���

'(220� #
����� ������ �� ���� �� @�
!���!��
 ������� �
 � ���
�����
���
�

�����?

������ � �
�

��������� � ���	���	�

����� ��� ��������� � ����������G�� � ��������� @�
!���!��
 �����
��� ���

������ � J ' ��� ��� 44��� ����!55 �����
��� � J ; ��� ��� C������
 �����
���

H������� ���
���� ������� ��

�� �� ���� ���

� ������
���� ��� ���������

7
 ���� ������ �
� ��
 ������� �� �������� ������� �����
���� ��� ������ �

���
� � ����� �� �������
� ��� ���
� �� �
 ����� .��������� ��� ��������

�������� ��������� ���
�� ������� %����� ��� ��
�� ������ ������
� '>=

�����0� ��� � ���� ������ ��
 �� ������ ������� ���� ���� � � �����

���
���������
� ����� �� ���� �� ��� ���
� �� �� �
 ��� �����
� ���� �

	����
� ������
 �
� ���
�� %'(2(0� ��� ���!�
� � �������� �� ���� ����

�����
����
 ���� �� �
 �
������
� ��
����
 �� ��� ��������� �������� �� �������

7� �
� ������� ���� ��������
����
�� ���
 ��� ��������
����
 ���� �� ���
����

������ �� � ������ �
��
���� H�
��� ��� ��������
����
 ���� �
� ��� ������ �� ���!

�� �������� ���� �� �
����� ������ ��
�� � ������ ��� � ���� �� G��� ���

���
���� ����
�� %'0� 8
 ��� ����� ��
�� �� ��� ������ ��� �����
��� ���
 ����� ��

������
 � ��
��� ��� ����� ����� �
 ���$��� ����
���� �����
 �� ��� ��

���	
�������� ��� ���

35

������ � �������
��� ���� ������ ���� � ������� �
����� ������ �� ��� ����

�����
����
 ���� ��� �
�
G��� ���� ��� �����
�� ������� �
� ���� ������� ��

�������� %�������� ���� ��� ������� �� ��������
����
 ���� �� ��� ��������N0�

����� ��������� %;0� ��� � ����� ������� %B0 ��
 ���� �� �����
�� ���
� �

��������
�� ������� ����� ��� ������ �� �� �������� �
 � ���� ���
�� � ������

�������� �� ���
��� ��!�
� ��� ���
 ��������
����
 ���� ��� ��� ��� �������

������� ������ 8� ������� ���� �� �����
� �������� ���� ��� �����
� ���� ������ ��

�� ������ �� �������� ��� ���� �������� ������� �� �����
 �� ����
��

�
�"���� %=0� 	����
��� � �
� !
��� ���� �� � ��
����
 � ��������� ������
� '>B�

���
 �
� ��
 ��
� � ������ �������� ���
����� � ���� ���� �� ��� ���������

����
�� �
�"���� � �
� ���
 �� � ������ %��������� ;<<;� ,���� ;0� @��������

����� �� �
����� ������ �������� ���
����� �� ���� ���� � � � �
� �� �� �

C������
 ������ ��� ��� ��� . %��������� ;<<;� ������� B0� @����������

��
���������
� ����
� �� ����� ������ ��� "���� ����
���� �
� ��� ������ ��
 ��
�

���� �
 ��� ����� ������
��� �������� ���� �������� ��������� ��� ���������
��

8����
�
� � C������
 ������ ���� �
� �� ����� ��� ��� . �
 � ��� ��������

C������
 ����� %���� �� � ��������
���
� ����
� ���������0� ��� C������

������ �� ��� �
 ������ ���� �� �
�����
� ������� �
 �������
� ���
���������

�� ������
���� %����� �������
0� ����� ���� ���
�
��� �������� ������
� ��

�� ���
� � ������ ������
� ������
��� ����� ���� ��
�� ������� ���
�
�
�

C������
 �������� ���� �� ��� 44��� ����!55 ������� ��� ������� ���� �� ���

���"��
� ���� �
 �� �������� �����
�� 	�
� � ��� �����
� �����! ��

���
 ��� �� �� ������ #����� ���� � ��
����
 � ��������� ��� ������
� '>B� ����

��� ��
���� �� � ��� ����� �� �����
�� ������ �� ��
%�0� �
� ��� ������� ��

���%�0� ���
� �� ���%�0 � ; ��
%�0� ���
 �
�������� ��������� ��� ����
��

�
�"���� %=0� ���� �� � �� � �������

.������G�
� ��� ����� ��
���������
�� �� ��

��� ���� �
� �� ��� �������

�� �� �����
� ��� ������� ������ � ���� ��������
����
 ���� � ��
����� ��

��!�
� � J �>�� ���� � J ' %���� �� � J 'E�0 �� ����� �������� ���� �
� �����
�

���%�0 � ; ��
%�0� ����� ��� ��
 �� ��!�
 ��� � ����� �� �����
�� �������

I�
��
��� �� ����
� �
 ����������� ������� �� ��������
����
 ���� �� ,�� �

�� ��� ���� �������
 ���� �
 � ��������
����
 ���! ����� ������ ��� �����
��� �

����� �
� ��� ���$��� ���� ����� � !� �� "���! �� ������� ���
���� ��� ���

�����
��� ������ ��� �����
��� �
� ����
�� �����
� ���
���� ��� ��� �����
���

������ ��� ������ %��E
���� ���!0� ���
 ��� �������
 ���� � �� ������� ���
 ���

��������
����
 ���� � ��
�� �
 �������
 �� �� ����� �� �� ���� � ����� �������
 ����

�
� ������ ���� ����� �������
� ������ ������ H�
��� �� ���� � J � M �<�

����� �< ��
���� ��� ��� �� ��� ����� ���� �
� ����� �������
� ������ ������

:��� ������ �
 ������� ���� ����� �< �� ���� ����� ���
 �� �
 ���� � �� ����

��� ��
��������
 �� � �� � �������
�������� ���
 �
� ���� �����
 � ���� ��

�< ��� �
 ���� �� ������� �
� ����
 ���� ������
 'E�< � ;E�<� �
� ���� �����
 �

���� ������ ���� ��
�� ������ �� ��� �������� �� ������� 	�� ���� �����
� �� ��

����
��� �� �������� �< �� ������� �� ������� �
 ����� �� �����
 �
 �����������

��� 	��

���� ��
���� �
�����

36

������� �� ��� ��������
����
 ���� � J � � �<� 7
 �������
� �
� ���� �� ������

����� ���� ��� �����
�� ������ �� ������ �� ���� ����� ���!
��
 �������� ��

�������� � �
� ���� �� ����� ������� ��� �������� �� ��� ������� 	�
� � ��

��� ���� �� � �� � ������� ���
 ��� �
 ���
����� ! L <� ��� "��
��� !� �� ���

���� ������ ���� � �������
� ����� ���� ���
� ���� ��� ���� �� ��� ������ ��
 ��

�����
 �
 ���� � �� ���� ��� ����� �� ����������� ����
� � ������
�� ���� %���

������ ' �� '<<0� ���
 �
� �����
� ��� ��
��� ���������
 �� ��� ������

����?

F� � J �%� > �<0�

)� � J �>��

����� � L < �������� ��� ������� ����� �
� � L < �� �������
�� �
 ����� ��

������� ����
�� �
�"���� ��� ��� ���� ��� . %���� ��� �������� �������0�

:��� �� �� �� ��"����� ���� ��� ������ �� C������
� ���
 �
� ������� %)0 � ?

2� � J �>��

����� < K � � �� �
� � �� �������
�� �������
� �� �������� %;<<;0 �
 ���� �

�� ���� %.� �0 �� � C������
 ������ ���� ����� ���
� ���� ����� �� � ��� �� ���
��

�
 � ��� �������� ������ ���� ���
� ��������
��
� �� �
 ����
� �� . %����� �

���������0� �
� ��� C������
 �����
��� ������
 ����� ���
�� ��� �"�� �� ���

����� �� ������ ��

��� 	����	��� �����

��������� �!

	��� ���� �� ����� �����
�� �� ��� 3
������� �� �����
�� ������������ �
 ���

��������
�� ��� ���� �
����� ����!��� �� 	��
��� ���� '*>;; ����� �
�

��������
���� �� �������������
���� �����
�

�"!�# � $ %��"���&!

.����� ���� � �������� ������ �� ��� ����
 ������� ��� � ��
! ������ #

������� �����
����
� �� ����� ������ ���� ��
�������� ����
� ;2� ;2 �������

������ 	�� � ����
 ����� �� ���������
�� ��� �� ��� ������� ����� ���� �����
���

�
 ��������� ����� %����� � �0� �
� ��� ����� ��� �
 ��� �������� ����� %����� � �0�

��� �
����
��
� ������ �� ���������
�� ���� �����
��� ���� ������ �� ��� ����

����
� ������� ���� ���� ���� � ����
 ������� ���� ��� ���
 �
 �
� ����� �
 �
�

����� �� ���������
�� �
� �
 ��� ����� ����� �
 ��� ����� ����� �� ���������
���

C��� ���������
� ��� � ������� ����� �� �������
� ���������� �
�� %;2� ;)E; J

BF' �����0� �
� 'B �������
��� �� ���� �� ��� ;2 ���
���� ����� %
���� �����0�

���	
�������� ��� ��'

37

����
� � ���� �� 2<; ��������
�� ������ ��� ����� �� ����� ��� ��
��� ���� �

�������
� ����� ��� ���� ���������
��

��(�"$)�"

,������ ���� �����
��� �
 ��������� #��� ���� '; ���
�� C��� ���� ��
������ �

��� �����
�����
 �� � ����
 ���� �� ������ �������
��� � ����� ���� ���!��

	����� ���� ���� ���!� %OOOOO0 ���� �����
��� ��� ;F<��� ������ � ����� ����

���!� ���� ��� ���� ���������� %����� O�O�O0� .������ �����
�����
 �
�

�������
� �� ���������
� �����
��� ��� ��
� ���
� ��� &@&P �������� %	������

- 	������� ;<<B0� ���������
�� ���� ��"������ �� �����
� �� ����� �
� ��

�������� �� ������� �� ��� ��� ���� ���������� ���� �������
�� ��� ����

�
��������
�� �� �����
� �� ����� �� ���
���� ������ %��E
���� ���������0� ���

�����
 ��� ������ ���
 ���$���� �����
���� # ������� �� ; � ��� ���� �
� ���

������� ���� ���� ��
���� �
 ��� �
� ���� 7
 � ������
�� ������ �����

��������
 �� ��� �������� ��� ���� ���������
� � ��!�
� ���E��� �� �����
� ��

����� �� ������� ���
���� ��� ����� ���������� %OQORO0 �������� ���
� ���

���� ���!�� 7
 ���� ������ ��� ����� ���� ���� ���!� ���� �����
��� ��� � ��
�

��� ������� ���� %�
����� ������ ������
)<< �
� '<<<��0� �
 ����� ��

����� ���������� ����������� ��� ���
 �� ��� ;< �������� ��� ��� �� ;F ����� ���

���� �� ������� ��� �����
� ��������
 �� %���� �� �<0 ��� ���� ���������
��

���������
�� ���� ���
 ����
 � ��� �� ;< �������� ����� ���
� ����� ��
������� ��

����� ��� ���� ���
���� �
� ��� �������� �� �������
�
������� .����� ��

��� ����� ������ �
 ��� ���
 ��������
�� ���������
�� ��� �� �����
� �
 ���

���
������ ���� �������
� %����� OFO*O0� #���� ���
� �
������ ���� ��� ������

����
�� ��
���� �� ������ �
� ��������� ������� ��� ���������
�� ����� �
 ��

��� ���
 ��������
�� ��� 2<; ��������
�� ����� ���� ���!�
 �
�� ����� ���!�

�� ;B= ����� ���� � ����� ���� ������
 ���!��

	�������� �� �� ��
�	�

��!���%� ���(��%" %����*

��� �������
� ���� �< ��� ��������� ��� ���� ���$��� �� ��������� ����� �
 ���

����� ��������
 ���!� ���� ���� ��� ���������� ���� ���� �����
�� ���� �� ���

���$��� �
 ��� ��������
����
 ���!� �
� ��� ������
� ����� ���� ������� � �����

���
 �
 ����� �� �����
 � ���
 ��������
����
 ���� �"�� �� ' ��� ���� ���$����

���
 ���� �� �� ��� ;2 � ;2 ��������
����
 ���� ������ �������� ��� ���
 ��

��� ��������
����
 ����� �������� � � ���$���� ��� �����
��� �� ��� ������

���
��
� ���� �� ����������� ����
 ���� ��� ���>����� ����������
 �� ���������� �

� ���� ��� �������� ��� ��� ��� ���$����� ��� ���� ��
���
�
� ��� �� � ����

����� �������
� �
 ��� ������ ����
�� �������� � ��� ���� ���$�����

��+ 	��

���� ��
���� �
�����

38

�,%%"���-���((. �/" $�!���%� ���(��%" %����*

#� � ������� �� � ����� � � �
��� ���������
 ���������
� ��� ��������

������
 ��� BF' ����� ���������
� ����� �� ��� ��������
����
 ���� ������ �
�

��� ��������
��
� ���� ���������
� ����� �� ��� ���� ������� ��� ������
�

���������
 ��� � J �)F=� � � �<<'� #� �
� ��
 ���� ��� � ����� ��
�� ��������

������� ��� ����� �� � ������� ���� ��� ��� �
 � ���
�����
� ������ �� �

H�
��� ��� ������ ��� � ������G�� � ��!�
� ��� ���
 ���� �� ��� � �������

��� �� ��� �����
� ������� ���� �������� ��� ������ �� ��� � ������ ���� ���

�����
� ���������
�� %��������
��
� �� ���
���� �����0 ��� � ������ ������� ��

�� �
��
����

�"�"�%� � # �/" %"����!

��!�
� � J 'E� %����� � J '0� �
� �����
�� ��
%�0 J <�)F== �
� ���%�0J '�;(F�

���
 ��� ������
 ���%�0 � ; ��
%�0 ��� ���������� ���� �� � J 'E� �� � ������ ���

��� �������� �������� H������� ���� ������ ���
�� C������
 ��
�� ���

����������
 �� ���
����� � �� ��� ����� ��� �����
�
� � C������
 ������

%�"�����
 20 �������� � J �2B;'� ��� ����� �� ��� %
�
�C������
0 ������ �

%�������� � '<<0 ��� ��� �������� ������� ��� �������� �
 ���� '�

	����
���� 0�� ���
 ���

��������� ��� ���� ��� ���$���� ���
�� ����� ������� ��� ���������� ���

�������� �����
��� ����� ����� �
����
�� 7
 ����� �� ���� ���� ���
����� � ���

���
 ��������
����
 ���� �� ���� ����� ��� �������� �� ��� ��������
��
�

�����
���
� ���� �����
�� �
 �
����� ��������
� %����� - ����
���� ;<<=0� 7

����� �
� ����
���5� ���� � ��� ��
���
� ���
���� ���� ���������� ����

�
�
�
���
� ���
���� %���� �����
�� �
 ��� ���� ����0 �
 ����� �� �������

���� ���������� �
���
��� �
 ��� ���� ��!�
 ��
��� ������� 7� ���
�� ��� ����

�
 � ��� �
�
�
���
�����
� ���������
 %�''0 ������� ������
 ��� ��� ���� ��

����� ���� ����� ��
� �����
�� ��� � ����� �
����
� ��������
 �
 ��� ����

�����
����
 ���!�

:��� �� �����
�� ������� ��� ��������� ������ �� ����� ������ �� ���

����� �������� �� ������� ���� ��� ����� ��
� � �������
� ��� ���� �� ���� '

�� � ����� ��
�����
 ������ %���� ;0 �����
�� ���� �������� ������
 $���

������ ��� ����
 ���
�
� �� ���� %�������� - �� 	���� '(*(0� ����� ������

��� $��� ��������
� ������� ��� ����

�
� �� ����� ������� ����� ���������
 ���

�� �
���
��� � �
����� ������� ���� �� ���
��� �
� ���"��
� �� ������� ��

��������>���
��� ��������
��
���� ���� �� ��������� � �� �� �������
� ����

����� ����� ��
�������� � ��� ��������� ��� �� ������ ������� �� ��
�

����������� ������� �
 ���� ��
�����
�� �
� ��� �����
�� ��
�����
 ������ �� �

���� "���� 44���� 55 %��
 G����0� �� �
� ��
 ��� �
 ���� ;� ��� �
��� ������

����
 ������
 ��� ��������� ���� �� ���� ' �
� ���� ; %B;F ���������
�

���	
�������� ��� ��1

39

���������
��0 �� � J��BFF� � � �<'� ��� �
��� ���������
 ������
 ��� C������

������
 �� ��� ������ �
� ��� ������
5� ��
�����
 ���� �� � J ��B))� � � �<'�

��� ���� ���� ��� ���������
� ���
������� ���� ���
� ���� ��� ��
�������� ��

������ �
������� �� ����� �����
�� ���������� H�
��� ��� ���
 � �������� ��

��
������� �
� �� �� ���� ���� �
����� ��������
����
 ���� ��
�� �
 � ����

������ �
 ��� �������� �������� ��� ��� ���
�����
� �������� � �����

�������� �

���� 2
�����* (. �/" %"���� 3)�&� .�(% &"��"� $�!���%� ���(��%"!

� *'

� *F ''<

� *) '<= ''<

� 2* '<))('<2

� 2* (2 ''' (('''

� *< '<2 '<) '<) (' '<2

� (' ''< '<2 ''F '<< ''2 '<F

� 2F ''B (* ''; '<= ''F (F '';

� 22 '<= '<* '<= '<B '<= *F (('<F

$ 2* '<* '<) ''< (2 () (2 ''2 '<' 2*

! *B ''F '<* ';* '<F ''2 '<= ''* ** (= ()

 2B (((* (((F (; 22 '<= (< 2< (B *2

� *B '<B '<; '<2 '<< (2 '<) '<' (('<< '<('<; '<F

 ** '<F '<F ''; '<B ''2 '<('<B *; (* '<B ''B ((2(

� ** () (((' (F '<B '<; '') ''; '<) '<) ';('<< (= '<=

� *B '<(*2 ''; '<' (= '<' (= ''('<) '<; '<; (= '<; '<B '<;

" *F ''; '<F '<* (= ';' '<2 2= '<B () (B '<F '<) '<2 '<= ())*

� 22 '<) '<B () ''' '<((('<B '<) (' '<' '<; (= (2 '<2 ''* '<* '<=

� 2) (* ''2 '<* ';< '<; ''; ';(''* (('<< '<* '<' (2 ''< '<< ''= ''((B

�)F '<' '<) '<B '<F '<; 2* ''B '<' ** (= ** 2' '<= '<) ''< '<; '<* *= '<'

� *(''' '<F (('<= '<) (2 '<< (2 '<('<= '<< ''< *2 (; (* ''B '<2 () ';< '<'

� 2* '<2 '<2 ''F '') ''' *) ''< ''('<; '<B (* *; *('<= ';' ';< ';< '<' ''' '<'

� *F (((B '<< '<) (('<) (2 '<' '<B '<< (; (F *= (F '<< '<* '<B (F (2 (*

� *B ''; ''= ''B '<* ''= ''< ''B '<B (2 (' (B *2 '<B '<; ''' ''= ''B (B (2 '<'

) '; '') ';= '') ''' '<('<(''2 '<< (2 '<2 *; (B ''* ''('<('<('<) ';' (*

G 22 '<2 ''; ''< ''= ''' '<; ''(''' '<' '<2 '<((< '<) '<* '<2 '<('<B (* '<B '<'

�� � � � � � � � � � $! �
 � � " � � �

� (*

� '<= *)

� (2 (2 '<;

 '<('<F (; (B

G () '<; (* *; '<=

� � � �

��� ����
 �
�� �� ��������
�� �� ��� ����� ���������� ��� ����� �� ��� ������ ���� ��������

� '<< �
� ���
��� ��� ��������� � &�����
� ��� ����� �
 ��� ���� � '<< �
� �����
� ���� �� ���

����� <�2B;'� �
� �����
� � C������
 ������ �
 ��� ��������

��4 	��

���� ��
���� �
�����

40

7
 �������
� �� �������� ��� ��������
����
 ���� ����� ������� ���� ���

����� ��
�����
 ���� �����
�� � 1���� %'(2'0 ���� �!��� ���� ��������

1����5� �������� ���� � ������G�� � �������
� ��� ����� �� ���������
�

� ������� �������
 ���� ��� �
��� ���������
 ������
 1����5� 44�����
��

�����
55 ���� �
� ��� ������ %B;F ���������
� ���������
��0 ��� � J ��;)2� � �

�<'� ���� ��� ���������
 �� ����� ���� ���� ��� C������
 ������
 �� ��� ������

��� � J ��;2'� � � �<'� ��� �
��� ���������
 ������
 1����5� 44����
����

���� �
�"��"� �(.)!�(%����* (. ��"!�/((& �/�&$�" 5$��� .�(% 	()���") 6 $" ��&�(� 2�4�7

� ';B

� ; ��

� ; < ���

� ; (; < ���

� < < = < ���

� < < < < < ���

� < B < ; < < ���

� < < < < < < < ��

� < < < < < < < < 'BF

$ < < < < < ; ' <) ���

! < < < < < < < < < < ��!

 < < < < < < < <) ; < ���

� < < < < < < < < < < < < ���

 < < < < < < < * < < < < < ���

� = < * < < < < < < < < < < < ��"

� < ;2 < ;; < < ' < < < < < < < < �!�

" ; ;< < ;; < < ' < < < < < < < < *< ��

� < < < < < ; < < < < < < < < < < < ��!

� < < < < < < < < < < < < < < < < < < ���

� < < < < < == < < < ' < < < < < < < ; < ���

� < < < < < < < = < < ' < ' ;B < < < ' < < ��#

� < < < < < < < < < < < < < ' < < < < < < '

� < < < < < < < < < < < <) < < < < < < < '

� < < < < < < < < < <) < < < < < < < < < <

 < ' < < < < < < < < < < < < < < < < < < <

G < < < < < < < < < < < < < < < < < < F < <

� � � � � � � � � $! �
 � � " � � � �

� ';F

� < ���

� < < �#�

 < < < �#�

G < < ; < ���

� � � G

��� �
��� ��������
 ������
 ��� B;F ���������
� ���������
�� �� ���� ������ �
� ���

��������
��
� ���������
�� �
 ���� ' �� � J��BFF� � K �<<'� ���� ��� ���������
 ���� ��� C������

������
 �� ��� ������ �� � J ��B))� � K �<<'�

���	
�������� ��� ���

41

�����
55 ���� �
� ��� ������ %�
 B<< ���������
� ���������
��� ��
�� 1����

������� ��� ������� 44 550 ��� � J ��B;;� � K �<'� ���� ��� ���������
 �� �����

���� ���� ��� C������
 ������
 �� ��� ������ ��� � J��B;2� � K �<'� #� �
� ��

���� ��� C������
 ������
 �� ��� ������ �� �� ���� �� ���� �� ��� ����� ������ �

� ������

	�
� � �� �������� ��� ������� ���� ��� ������� ���
���� �����
�� �

������ �� �� %'(*(0� ��� �������� ���������
 ���� ��� ����� ������ ��� � J

��;)F� � K �<'� ���� ��� ���������
 ���� ��� C������
 ������ ��� � J ��;)(�

� K �<'� H������� �� �
� �������� �� �
������� ��� ������� ���
���� �
 ���

��������
� �� ������ �� �� �� ��������
����
 ������ �
� ������� � ����
� ��������

������
 �� ��� �
����� �� ��� ����� ������� ��� �����
�� ���������
 ��� � J

�;('� � K �<'� ����� �� ���
�����
� ���
�� �� ����
� �� ��������� # ��������� ��

���� ��� ���������
 �� ������ �
 ��������� �����
� ����� ��� ��"����� �
 ������

�� ��5� ��������
�� ��� ���� �������
��� ���� ��� ����� ���������
 ��"����� �

��� ��������
�� 7� ���� �� ��� ����� �
� ����� ������ � ����
� ������
 ������

��� ������� ���
���� �
� ��� 44����
���� �����
55 ���� �� 1���� %'(2'0� ���

�����
�� ���������
 �� � J �BB=� � K �<'� ����� �� ���
�����
� ���
�� ���������

����
�� H�
��� �� ��
���� ����� ������� ����� ������� ������� �������

�������� ���� �����
 ��������� ��� ��� ��� ���� ���
� �"�����
��

����������� ����8��� �� �� ������
�8

#
����� �� �� ����� �
� ���� ��������
����
 ���� ����� ������� ��� �����

�������� �� ������ �� �� ������ ������� � ��� �� ���
�
��� ����
���
� ��

�����
� ��� ��� �������� ��������
� �
 ��������
����
 ����� :��� ������� ����

��� ������� ���� ��
�� �� ��
� �
 ������ ��� �� �������� �
 ����� �� ���� �� ��

���� � ������ ����� �� ����� ���������
� I�
��� �
 ���� ���� � ��� �� �������

����� �������� ������� ������ ����� �����
� ��� � ������
��� ���� �� ��� �����

8������ � ����� �������� �� ������ �� ����
� �� ���� ����
� �
 ��� ������

���� � �� ��
� ������ %#���� '; ���
�� ��� ��
�� �
 ��� �����
� ��������
�0�

	(%�)����(�& %"�/($

	���� �� ���� � ��
���
�� �������
� ������ %��������� ;<<;0 �
 ����� ��

������� ���
����� � �� �"�����
 2� ����� �������� ��� ����� � J �2B;'� ��

��
���
�� ������ ���� �� � ������ ��������
���
� ����
� ������� �����

�������� � ��� �� ���
�� �
 ��� ���� �� � ��
���� ����
���� ������� �
� ���

����
���
 �� ��� C������
 �������
� ����� �� ��
���G�� �� � ��
��"��
�� ��

��� ����������� �������
����
 �� �� ��� ����
���
 �� ��� �������
� ����� ���

���
� �� �� ;F� ���� ����� ������
 ��� ����� �� �� ������� ��� ��
��� ��

������ �� ��� ;2 �������
������ ���
�� �
� ���
 �� ��
��� ��� ������� H�������

���� ������
 ����
�� �
 ��� ����� �� ��� ����
�� �� ��� ���� ����� �
 ��� �����
�

���� �� ��� %�������� 0 ���������� ������ .�
�� �� ���
�� �
 � C������
 ������

�� ��
 ��� �
 �������
� ���
���������
 �� ��� ������
���� ������� ���
��
�

�2� 	��

���� ��
���� �
�����

42

��� C������
 �����
��� ������
 ��� ���
��� # ������
 ���� �� ����������� ��

������ �
������ �� ��� ������
 ����� ������
��� ���� ��� ��� ����
����
���
� ��

��� �������' 7
 ����� �� �����
 ���� ������ ������
� �� �������� ��� ;2 � ;2

� ������� ������ # J 9�9� ����� 9 �� ��� ������ ����� ;2 ����
 ������� ���

��� ��
���� ������
���� �� ��� �������
������ ���
�� �������� ���
�� �
� ��� �
��
���� ��� ���
��������
 ��������� ��� ������ # �� �������� ����
��� %������ ��

����� ��������0 �
� �� ��
! ;F� ����� ���
� ���� # ��� ����� ;F ������

�������� ��� ����
����� �
� ��� G��� ����
������ .�
�� # �� � �������� �� ��

�� ������
 �
 ��� ���� # J S&S�� ����� S �� �
 �������
� ������ �����

����
� ��� ��� ����
������� �� #� �
� & �� ��� �����
� ������ �� ����
�����

�� #� .�
�� # ��� �

�

������� ����
������ ��� ������
 �� ��� ������ C J

S&'E;� ����� ��� ;F
�
G��� ����
� �
� ����� ;2 ��� ������� ��� ���

������
���� �� ��� �������
������ ���
�� �
 ��� ;F ����
����
���
�� ��� ����

�������
 �� ��� �������� S �
� & ��� ��������� ���
� ��� ���!
��
 ������5�

�������� ������ �� ��� � ������� ������ #� ��� �����
�� ������ C �� ��������

�
 ���� B�

��%�&����, .���(�!

#
 �
�������
 �� ���� B �������� ���� ������
 ����
����
���
� %��������� ���

����� �
��0 ���� �� �
����������� ������� ��� ������ �� � ���� ��
�� ��� ��

����� ���� ������ ���� ��� ���� ���� ���������� ����
����
���
� ������G� �

���� "��
�������� ��������
 %�����
�� �
�����0� ����� ���"��
� ���� ����
�

���� �� ����� �
 �
���������� �������
 ������
 ������ �������
�� ��� �����
���

������ �� ����
�� %����������0� H�
��� �� ������ � ������ �� �������
�

�������
� �� ��� ������ �� ����
������� �
 ����� �� �����
 � ���� �������

������
 ����� ���� ����
���
 ���
 �����
�� ��� ��� �������� �� �
 �
�

����� �� �����������; ��� ����� �� ���� �������
� ���
���������
 �� �������� �

���� =� ���� ����� �
� ��
 ����� ���� ��� C������
 �����
��� ������
 ���

���
�� �������
������ �� ��� ���������� �����
 �
���
��� �
� ��� �"�� �� ���

����� � J �2B;' �� ��� �
���� ������ %���� '0� ,�� ������� ���� ������
����

��� ���� ������ ��
�� ��� ��
 ��� ������
��� ���� ��� �������
� �
� ���

���� ���
��
���� ����� H�
��� �
 ���� F� �� ������� � "��������� �����
� �� ���

����
���
�� ����� �� ��!� �
�� �����
� �
 ������
���� ����� ������� ����

�� �� ���� �"�� �� <�;<� 	�� ���� ����
���
 %P<' �� P;F0� �� ������� ��� ���

�������� ���� �� ���������� ���������� �� ���� ����
���
� ��� ���
 ��
������
�

' C���
����
���
� %�� 44���
���� �����
�
��55� �������
� �� H����
�5�� '(B)� �����
��� 0

���� �
 �������
� ������
��� � ���� ����� �����
 �� ��� ��
��� �� ������ �� ��� ������� �
� ����

��� ����������� ���� ��� ����� ! ����
���
� �����
� ��� � ������� ���� �� ��� ���� �
����� %��� ��

�"����� ������
����0� ��� �
 ! ���� �� �"�� �� ���
����� �� ����
���
��
; # �������� �������� ����� ����
��� ����� �� �� ��
�� �
������ ����� ��� ���
 �������� ��

��� ��
��
� ������� �������
�� 7
�������� ������� ��
 ��
���� ��� ����� ������ ��� ���� �������

���	
�������� ��� �22

43

�
�
�
�
�

�
(

(
�(

��
"
%
3
"
$
$
�
#
(
.
�/
"
�(
%
�
&"
�"
$
�
&�
/
�
3
"
�
�
�
�
)
�&
�$
"
�

!�
�
�"

(
.
$
�%
"

!�
(

�
'
5"
�#
"

$
�%
"

!�
(

!7

$
!
�

�
%�
�
&

$
!
�

�
%'
�
&

$
!
�

%#
'
&

$
!
#

"
%'
�
&

$
!
'

'
%�

&

$
!
"

'
%
�
&

$
!

'
%�
#
&

$
!
�

#
%�

&

$
!
�

#
%"
"
&

$
�
!

#
%�

&

$
�
�

#
%!
�
&

$
�
�

�
%�
�
&

$
�
�

�
%"
�
&

��
�
�<
)
B

�<
F
;

�
�<
(
F

�
�<
F
F

�<
B
<

�<
;
=

�
�<
;
2

�
�<
F
B

�
�<
;
(

�
�<
F
;

�
�<
;
;

�<
<
F

�<
F
*

�
�<
*
<

�B
)
*

�
�<
F
*

�
�<
F
2

�
�<
'
(

�<
=
;

�
�;
*
;

�
�'
<
F

�;
B
;

�
�'
*
<

�<
<
'

�
�;
)
;

�<
)
(

�
�B
'
;

�
�<
2
(

�<
'
<

�
�;
B
<

�
�'
B
'

�;
)
B

�;
<
'

�
�B
<
2

�
�<
=
2

�'
=
B

�
�<
'
B

�<
=
<

�'
=
'

�
�'
=
(

�B
*
)

�
�<
=
;

�
�<
B
=

�
�<
=
=

�
�B
'
(

�<
2
)

�<
'
=

�
�;
)
<

�'
(
*

�
�<
=
*

�
�'
)
)

�
�<
(
B

�
�B
B
2

�
�'
;
<

�
�<
*
=

�
�;
2
*

�
�<
2
;

�'
<
=

�;
B
2

�
�'
B
'

�'
;
=

�'
=
(

�'
=
;

�
�<
;
)

�<
*
B

�
�<
'
=

�B
B
;

�
�'
*
*

�'
<
(

�
�'
*
*

�;
<
B

�
�<
<
)

�;
B
<

�
�;
2
'

�
�;
'
=

�'
'
)

�
�'
;
B

�;
'
2

�
�
�<
2
<

�
�'
<
<

�
�'
*
F

�
�;
2
)

�
�;
)
<

�
�;
=
*

�
�<
'
=

�<
)
;

�'
'
(

�
�'
<
*

�<
'
2

�'
*
<

�
�'
;
)

�
�B
=
<

�
�;
*
=

�<
2
=

�;
2
)

�
�'
'
F

�
�;
;
<

�
�;
F
(

�
�<
B
(

�<
)
F

�<
2
'

�<
'
'

�
�'
)
<

�<
(
'

�
�<
'
;

�
�'
*
<

�;
'
<

�
�=
'
B

�;
B
=

�<
B
'

�
�<
2
B

�'
)
2

�
�'
2
'

�
�<
=
)

�
�;
'
(

�
�'
F
2

�<
<
;

�
�
�'
=
;

�
�<
(
<

�
�;
=
)

�
�<
'
B

�<
2
'

�
�'
'
2

�
�'
B
2

�;
<
;

�'
*
=

�;
;
<

�<
2
)

�<
'
(

�<
)
*

$
�
�'
<
;

�
�<
)
(

�
�;
'
;

�
�<
<
F

�;
<
'

�'
<
=

�<
*
(

�;
B
F

�<
;
=

�'
'
2

�B
*
=

�
�<
(
2

�
�<
=
2

!
�
�;
F
F

�
�B
;
<

�<
'
<

�
�'
B
B

�'
B
)

�;
=
)

�
�'
;
F

�
�'
;
*

�
�'
F
F

�
�'
F
=

�<
(
;

�
�<
2
<

�
�;
F
=

�
�;
;
F

�
�<
(
F

�
�;
B
(

�
�<
(
*

�
�'
=
'

�
�<
'
=

�<
=
(

�<
*
=

�'
<
)

�<
<
=

�
�;
F
'

�
�<
2
(

�<
*
'

�
�<
=
2

�<
*
2

�B
(
<

�'
;
'

�
�'
;
F

�'
2
=

�
�<
2
=

�'
F
=

�
�<
<
)

�<
=
=

�<
'
'

�;
=
(

�<
<
(

�'
;
*

�
�<
;
=

�B
2
*

�
�'
B
<

�'
)
2

�<
;
'

�
�'
)
(

�;
B
2

�'
)
F

�<
'
=

�
�'
<
'

�'
;
'

�;
'
F

�
�B
;
B

�B
F
=

�
�<
<
)

�
�<
;
<

�<
=
B

�
�<
;
F

�;
=
(

�'
=
=

�'
)
F

�<
<
2

�
�'
<
B

�<
(
B

�
�;
2
'

�
�B
=
(

�
�'
=
=

�
�;
)
2

�;
;
(

�<
;
B

�'
F
(

�
�<
=
;

�
�<
F
)

�
�'
<
;

�
�;
F
(

�
�<
=
2

�;
<
(

�<
2
<

"
�B
(
(

�
�;
)
)

�
�'
B
*

�;
F
;

�;
=
'

�
�'
'
2

�
�<
2
*

�
�<
;
'

�<
B
)

�
�<
=
B

�
�<
<
'

�
�<
'
B

�
�'
(
*

�
�
�'
)
*

�<
B
*

�<
<
(

�<
)
)

�<
2
'

�
�;
'
*

�
�'
)
<

�
�;
*
<

�
�;
F
<

�;
=
2

�<
=
*

�'
F
<

�'
)
=

�
�
�;
<
)

�=
'
;

�
�<
)
(

�<
*
'

�;
2
=

�'
(
B

�
�'
B
(

�
�'
;
=

�<
2
;

�'
'
2

�<
'
<

�;
;
)

�
�<
(
'

�
�
�;
B
'

�
�<
=
;

�
�;
B
'

�
�'
F
'

�
�<
*
F

�
�<
(
*

�
�'
'
'

�
�<
'
F

�
�'
)
<

�
�<
;
*

�
�'
)
<

�'
F
F

�
�<
F
)

�
�<
F
;

�
�<
<
B

�B
2
'

�
�<
F
;

�
�<
B
B

�
�;
2
F

�'
B
(

�<
F
F

�
�;
<
2

�
�;
<
)

�;
)
B

�<
)
'

�
�<
F
;

�
�
�;
(
F

�
�<
B
*

�'
(
;

�<
;
;

�
�B
(
)

�
�<
'
;

�
�<
2
2

�
�'
;
'

�;
;
2

�
�<
)
B

�'
*
(

�<
<
B

�
�<
2
2

�
�
�<
=
B

�<
F
=

�;
;
(

�'
F
2

�
�'
=
)

�;
;
;

�
�<
2
(

�
�'
'
;

�
�<
B
*

�'
)
'

�
�'
B
'

�
�;
'
(

�
�;
B
(

�
�
�B
'
F

�
�<
=
2

�'
;
<

�'
'
=

�;
2
'

�
�<
=
=

�;
)
B

�
�<
*
=

�'
<
*

�
�<
<
(

�<
2
'

�
�'
'
'

�'
F
B

�
�;
B
=

�
�;
=
F

�<
<
)

�B
)
'

�
�'
2
;

�'
<
(

�;
)
(

�;
'
F

�
�<
)
)

�'
=
;

�
�'
2
*

�
�<
<
F

�<
<
)

G
�
�'
(
=

�<
)
)

�<
)
;

�'
F
B

�'
)
F

�
�'
(
'

�;
2
*

�
�;
;
;

�'
B
=

�
�;
2
B

�
�'
F
*

�
�<
;
=

�<
2
)

�2�

44

$
�
#

�
%#

&

$
�
'

�
%!
�
&

$
�
"

�
%�
�
&

$
�

�
%
�
&

$
�
�

�
%#
�
&

$
�
�

�
%�

&

$
�
!

�
%!
"
&

$
�
�

�
%�
�
&

$
�
�

�
%'

&

$
�
�

�
%�
�
&

$
�
#

!
%�
#
&

$
�
'

!
%'
#
&

��
�
�<
F
F

�
�<
(
B

�'
F
F

�
�'
B
'

�
�'
2
2

�
�<
)
F

�;
<
2

�
�<
<
=

�'
<
*

�
�;
'
2

�<
F
)

�<
)
=

�
�
�;
F
'

�
�<
(
*

�
�;
<
<

�
�<
;
=

�<
<
<

�
�'
=
)

�
�'
<
=

�<
(
<

�<
'
F

�<
'
)

�
�<
'
2

�<
<
B

�
�'
<
2

�
�<
=
2

�
�<
2
B

�<
)
(

�'
=
*

�
�<
*
(

�'
;
F

�<
*
F

�'
'
(

�<
F
<

�
�<
B
=

�
�<
F
*

�
�;
<
=

�'
F
;

�
�<
)
F

�
�<
(
<

�
�;
<
)

�
�<
<
2

�
�<
F
;

�'
'
(

�<
F
;

�<
;
B

�<
B
'

�
�<
B
<

�
�
�'
*
2

�<
;
F

�<
2
)

�<
<
B

�
�;
'
(

�'
=
F

�
�<
(
'

�
�<
=
;

�
�'
B
=

�
�<
<
F

�
�<
;
)

�<
B
F

�
�<
B
=

�<
;
=

�'
F
F

�<
(
'

�<
=
;

�<
*
B

�<
<
;

�
�'
;
<

�
�<
B
;

�
�<
<
*

�
�<
2
*

�
�<
)
F

�
�<
<
2

�
�<
)
;

�'
*
(

�
�<
'
<

�'
'
B

�<
)
<

�
�;
=
)

�<
*
(

�<
)
(

�
�<
=
;

�
�<
<
F

�
�<
B
;

�
�
�'
=
<

�<
(
)

�'
)
=

�
�<
'
=

�'
<
)

�'
;
2

�'
;
<

�<
;
'

�<
=
'

�<
F
;

�'
;
*

�
�<
B
F

�
�<
'
2

�
�<
F
=

�;
'
=

�
�<
=
B

�<
2
;

�
�'
F
=

�
�<
<
=

�
�<
<
2

�<
=
*

�<
;
(

�
�<
'
=

�<
;
*

�
�<
F
)

�<
(
(

�
�<
)
;

�B
=
2

�
�<
;
2

�
�<
F
<

�<
*
<

�<
=
'

�'
<
'

�
�<
(
(

�
�<
2
'

�<
;
*

$
�'
'
<

�
�;
F
'

�
�<
)
<

�
�<
*
2

�<
=
(

�
�<
<
'

�
�<
'
;

�
�<
'
B

�<
;
'

�<
(
(

�'
;
*

�<
;
'

!
�
�<
F
F

�;
'
*

�
�<
(
'

�'
;
;

�
�<
(
'

�<
<
)

�
�<
;
(

�<
<
=

�
�<
=
(

�
�<
=
'

�<
2
*

�
�<
(
B

�<
*
'

�'
(
=

�
�<
F
<

�<
<
F

�<
F
2

�
�<
=
)

�<
B
2

�
�<
=
F

�
�'
(
<

�'
=
B

�<
;
(

�<
*
F

�
�
�'
<
(

�<
F
2

�<
=
=

�<
*
2

�
�'
(
2

�
�'
<
;

�
�<
(
<

�
�<
(
<

�'
=
F

�'
;
(

�<
=
<

�<
=
)

�'
*
)

�
�<
F
'

�
�'
)
(

�
�<
2
(

�
�<
B
B

�'
)
<

�
�<
'
(

�<
;
B

�
�'
'
<

�
�<
)
(

�
�<
<
<

�
�<
2
B

�
�
�<
(
*

�<
2
F

�
�<
F
2

�<
'
2

�'
)
*

�
�<
)
*

�<
2
F

�
�'
*
<

�
�<
;
B

�
�<
*
<

�<
2
2

�
�<
=
<

�
�'
2
=

�<
(
=

�
�'
<
(

�
�<
*
'

�<
B
F

�
�<
;
;

�
�<
(
*

�<
2
F

�<
B
)

�
�<
F
(

�<
)
<

�<
*
=

"
�<
)
<

�
�<
2
(

�<
=
<

�
�<
=
(

�
�<
*
2

�
�<
*
2

�<
<
F

�
�<
*
2

�
�<
=
F

�<
)
B

�
�'
(
'

�
�<
;
=

�
�
�<
=
'

�
�<
*
F

�
�<
;
*

�<
B
B

�'
<
2

�
�'
=
<

�
�'
B
2

�
�'
)
;

�
�'
;
B

�
�<
F
<

�<
B
B

�
�<
'
<

�
�
�<
B
)

�<
)
*

�;
'
)

�
�<
F
<

�<
)
B

�<
*
<

�<
2
=

�'
*
=

�
�<
2
(

�<
*
'

�
�<
B
F

�
�<
<
=

�
�
�'
)
=

�
�'
;
)

�
�;
'
;

�
�'
<
2

�
�<
=
2

�;
<
2

�'
=
F

�
�'
<
'

�'
'
(

�<
2
(

�
�<
=
;

�
�<
<
2

�
�
�'
'
=

�<
'
F

�
�'
<
2

�<
*
*

�'
'
<

�<
'
(

�'
'
F

�'
B
B

�
�<
(
2

�<
<
*

�
�<
F
2

�<
*
'

�
�;
B
*

�<
;
F

�<
B
<

�
�'
)
F

�
�<
=
;

�
�'
;
2

�'
<
)

�
�<
)
(

�
�<
;
2

�<
<
'

�
�<
B
(

�
�<
;
)

�
�'
;
B

�
�'
B
2

�
�<
'
F

�<
(
'

�<
(
)

�;
<
'

�
�<
*
)

�
�<
B
=

�<
'
;

�
�<
2
2

�
�<
B
;

�<
(
=

�
�
�<
)
)

�;
=
B

�
�<
;
<

�
�'
*
(

�<
(
(

�<
2
B

�
�<
(
B

�
�<
2
)

�'
)
)

�
�<
B
)

�
�<
2
<

�<
'
F

�
�'
(
(

�
�'
<
(

�
�<
B
*

�
�<
)
(

�
�<
'
(

�
�'
<
)

�
�<
B
=

�'
2
<

�
�<
)
;

�
�<
=
*

�
�<
;
'

�
�<
)
<

G
�'
'
)

�
�'
(
;

�<
2
;

�;
B
=

�
�'
'
(

�<
=
*

�<
<
)

�
�<
<
)

�<
'
<

�<
F
*

�<
2
'

�
�<
;
2

�
�
�
C
�
�
��
��

�
��
��

��
�
�
��
�
��

��
�
�
�
�

��
��
�
��
��

��
��
�
�
�
�
��
�
��
��
��
��
��
��
�
�"
�
�
��

��
�
�
�
�
��

�

�
��
�
'
�
�
��
��
��

�

'
<
<
�

�
��
��
��

��
��
�
�
�
�
��

�
J
�2
B
;
'
�

�2�

45

�
�
�
�
�

�
%
"
�

�
#
.)
&
(
��
/
(
#
(

�
&
�(
��
��
(

(
.
�/
"
"
�#
"

$
�%
"

!�
(

!
�"
�
(
��
"
$
�

�
3
&"
�

(
!
�

�
%!
�
&

(
!
�

%�
�
&

(
!
�

%
�
&

(
!
#

'
%�
#
&

(
!
'

#
%!
"
&

(
!
"

#
%!

&

(
!

'
%!
!
&

(
!
�

�
%'

&

(
!
�

#
%�
#
&

(
�
!

�
%�
�
&

(
�
�

�
%�
�
&

(
�
�

�
%�
�
&

(
�
�

�
%"
�
&

��
�
�<
F
B

�<
)
*

�
�<
)
B

�<
'
;

�
�<
;
F

�
�<
;
F

�<
<
2

�
�'
=
<

�
�<
*
;

�
�<
;
F

�<
<
2

�
�<
B
B

�<
'
B

�
�<
<
*

�B
F
'

�'
B
2

�
�'
'
<

�<
(
(

�
�'
=
F

�<
B
'

�<
<
<

�
�'
=
(

�B
;
<

�
�'
'
*

�
�<
F
F

�
�<
)
=

�
�B
B
2

�
�<
;
=

�<
<
<

�=
F
)

�
�'
'
F

�'
)
=

�
�'
<
(

�
�<
<
'

�<
<
B

�<
F
B

�'
B
(

�<
)
'

�
�<
=
'

�
�<
B
=

�B
*
'

�'
)
)

�
�'
'
<

�
�<
2
;

�<
'
B

�
�<
<
2

�
�<
*
2

�'
(
)

�
�<
2
'

�B
*
<

�
�<
;
=

�
�'
*
2

�
�B
=
;

�<
=
;

�
�<
(
(

�=
=
(

�
�<
*
2

�
�'
<
B

�<
'
(

�
�'
<
2

�<
(
'

�<
<
F

�
�'
'
2

�<
<
*

�
�'
;
2

�
�<
=
=

�B
)
;

�<
<
<

�
�'
;
=

�
�'
=
*

�
�'
'
)

�
�<
(
)

�
�<
2
'

�
�'
=
'

�
�'
=
(

�
�'
B
B

�
�<
'
F

�<
(
=

�
�<
2
)

�
�<
'
)

�
�;
'
)

�
�<
(
<

�
�<
=
)

�B
F
)

�<
2
'

�<
=
F

�'
2
(

�<
*
'

�
�'
=
<

�
�'
;
F

�'
B
;

�
�=
B
<

�
�'
)
F

�
�<
=
;

�
�;
B
B

�<
*
2

�
�'
2
=

�<
<
<

�<
F
2

�B
;
<

�<
<
'

�<
;
(

�<
;
F

�
�
�<
<
=

�
�;
F
=

�<
(
)

�<
)
B

�
�;
=
)

�<
B
F

�=
=
2

�
�<
F
(

�
�'
)
2

�<
F
F

�'
)
=

�
�'
2
F

�
�<
'
*

�
�
�'
*
*

�
�<
'
F

�
�;
2
'

�
�<
<
2

�<
=
*

�
�'
'
;

�<
(
2

�
�<
'
*

�;
)
B

�'
<
F

�
�<
*
)

�;
<
2

�'
)
)

$
�
�'
(
'

�
�<
;
(

�
�;
;
2

�<
2
2

�<
;
<

�
�'
)
F

�<
B
<

�
�<
)
)

�;
)
'

�
�'
2
F

�
�<
<
(

�
�'
<
(

�
�<
)
;

!
�
�'
2
2

�
�;
*
;

�
�'
2
;

�
�<
;
*

�
�<
2
)

�
�'
B
)

�
�<
B
<

�
�'
;
'

�
�'
F
2

�
�<
=
<

�
�<
F
2

�
�'
'
=

�
�'
*
(

�
�'
=
F

�<
<
'

�
�;
2
F

�<
)
)

�<
B
;

�<
'
F

�<
*
F

�<
<
'

�
�'
F
*

�'
B
F

�
�<
'
=

�;
<
(

�<
B
B

�
�<
F
=

�
�'
<
B

�B
*
F

�
�<
;
=

�'
<
)

�
�<
'
'

�
�'
<
*

�
�'
2
F

�
�<
<
<

�<
=
<

�
�<
(
'

�
�<
*
=

�'
2
B

�<
B
<

�
�'
*
=

�B
;
(

�<
<
=

�<
;
2

�
�<
)
*

�=
=
2

�
�<
2
'

�'
F
<

�
�<
F
;

�
�<
)
F

�<
2
B

�'
'
=

�
�'
2
B

�B
2
'

�
�'
(
*

�'
'
F

�<
=
)

�'
<
(

�'
'
'

�'
(
(

�
�<
;
;

�
�'
=
=

�
�<
*
=

�'
<
*

�
�<
B
F

�
�B
B
'

�<
*
B

�
�;
)
(

�
�'
=
2

�
�<
=
<

�
�<
*
=

�
�<
)
2

�
�<
B
B

�
�'
'
<

�
�'
)
<

�'
<
=

�
�<
=
B

�'
B
<

"
�B
B
'

�
�<
F
)

�
�;
'
'

�
�'
)
)

�'
B
F

�
�'
B
'

�<
2
(

�<
)
'

�<
'
B

�
�;
'
F

�'
F
=

�
�<
B
(

�<
B
(

�
�
�;
<
2

�
�<
;
2

�<
'
<

�
�<
2
'

�<
'
*

�'
'
(

�
�'
<
*

�<
)
B

�<
(
2

�'
*
'

�B
*
<

�'
2
F

�
�<
F
F

�
�
�B
)
=

�B
=
*

�'
;
'

�<
F
(

�<
F
<

�<
=
F

�<
<
B

�
�<
)
F

�
�<
(
(

�
�<
<
=

�
�<
<
B

�<
'
*

�;
F
)

�
�
�'
(
B

�<
B
F

�
�;
=
B

�
�'
=
)

�
�'
F
<

�B
F
)

�<
'
2

�
�'
;
;

�<
<
'

�'
<
2

�
�'
B
=

�
�<
<
*

�
�'
*
<

�
�<
2
;

�
�'
)
<

�B
;
)

�
�;
'
=

�
�;
=
2

�<
<
(

�
�<
(
F

�'
B
<

�'
F
*

�
�'
;
'

�
�'
;
*

�'
2
B

�
�;
2
'

�
�
�<
2
2

�
�'
2
<

�'
;
<

�
�<
B
(

�B
B
F

�<
(
<

�
�;
2
'

�
�'
B
)

�'
=
B

�<
F
2

�
�'
<
(

�<
<
;

�<
)
;

�
�
�<
<
=

�
�'
B
F

�;
;
'

�<
B
2

�'
B
B

�'
;
F

�
�'
B
(

�
�'
)
;

�
�;
'
=

�
�<
<
*

�<
;
;

�
�<
=
B

�
�<
;
2

�
�
�B
F
2

�
�<
2
;

�<
F
'

�'
2
<

�
�<
;
<

�
�'
(
2

�
�<
2
(

�B
'
'

�<
=
<

�<
B
B

�
�<
F
'

�
�;
=
'

�
�<
(
(

�
�'
;
<

�
�;
B
2

�
�'
B
2

�<
<
)

�B
B
F

�<
)
)

�
�<
(
*

�'
F
<

�
�;
=
=

�
�'
=
=

�
�<
)
F

�<
<
)

�
�'
=
B

G
�
�'
*
;

�
�'
'
<

�<
)
2

�
�<
<
*

�
�'
(
(

�
�<
B
F

�
�;
B
F

�B
'
B

�
�'
<
*

�
�'
*
<

�<
F
F

�<
=
<

�;
F
*

�2�

46

(
�
#

�
%#
!
&

(
�
'

�
%"
!
&

(
�
"

�
%"
!
&

(
�

�
%�
�
&

(
�
�

�
%'
�
&

(
�
�

�
%�

&

(
�
!

�
%#
�
&

(
�
�

�
%"
�
&

(
�
�

�
%�
�
&

(
�
�

�
%!
�
&

(
�
#

�
%'
'
&

(
�
'

�
%!
#
&

��
�<
<
)

�<
*
=

�
�<
<
'

�'
<
F

�
�<
2
(

�
�<
2
)

�<
=
<

�<
2
'

�<
;
<

�'
=
<

�
�<
*
*

�
�B
=
=

�
�'
;
*

�<
<
<

�
�;
B
=

�<
;
F

�
�<
F
(

�'
<
B

�
�'
<
(

�
�<
;
2

�B
F
B

�<
<
<

�<
<
<

�<
<
<

�
�;
*
*

�<
<
'

�
�<
F
(

�<
B
(

�<
2
*

�
�<
=
*

�
�'
<
<

�
�'
<
(

�<
<
<

�
�<
<
<

�<
<
<

�
�<
<
<

�
�
�;
;
;

�
�<
'
;

�<
;
<

�
�'
'
'

�
�<
2
*

�
�<
*
=

�
�<
<
B

�
�;
;
*

�
�<
B
B

�
�<
*
*

�<
(
<

�
�<
)
;

�
�
�;
=
(

�<
;
(

�
�<
B
*

�<
*
=

�
�<
<
*

�<
=
'

�
�<
F
)

�'
B
<

�<
2
B

�
�<
*
*

�
�<
F
B

�
�<
<
2

�
�<
*
(

�
�<
F
)

�
�<
F
(

�
�'
<
=

�
�'
'
*

�
�;
2
;

�
�'
=
)

�'
)
B

�
�'
2
(

�'
*
B

�'
(
)

�'
B
)

�
�
�;
B
'

�
�;
)
*

�
�<
;
)

�<
F
=

�<
<
)

�
�'
;
<

�<
;
(

�<
=
<

�'
2
2

�<
<
;

�
�<
<
'

�<
<
B

�
�
�<
2
(

�<
)
;

�<
(
<

�
�<
(
<

�
�<
F
=

�<
*
(

�
�<
2
'

�
�<
<
2

�
�;
F
)

�<
B
<

�
�'
B
)

�
�<
2
(

�
�
�<
<
'

�
�'
'
)

�
�<
F
;

�'
B
;

�
�<
<
<

�<
;
2

�<
=
F

�
�<
B
*

�
�<
B
;

�'
2
(

�'
=
=

�
�<
=
'

�
�<
F
'

�
�<
*
*

�
�<
2
)

�
�'
;
;

�<
<
=

�<
2
*

�<
<
*

�
�<
)
2

�
�<
2
<

�
�'
;
<

�;
B
(

�
�'
F
(

$
�'
=
*

�
�<
(
2

�
�;
'
2

�
�<
<
2

�
�;
'
2

�<
*
2

�<
*
'

�<
;
*

�
�<
2
;

�'
;
(

�
�'
=
)

�'
(
2

!
�<
<
<

�
�<
)
2

�
�'
;
=

�
�<
;
F

�=
(
=

�<
<
<

�<
<
<

�<
<
<

�<
<
<

�<
<
<

�<
<
<

�<
<
<

�
�'
=
'

�<
<
;

�'
;
<

�
�<
B
<

�
�<
<
B

�
�'
(
<

�<
*
2

�
�'
(
F

�<
)
B

�<
2
=

�'
'
<

�'
)
=

�
�<
<
(

�'
<
*

�
�<
F
B

�'
B
'

�<
=
=

�
�<
B
2

�'
)
(

�'
;
'

�
�'
)
'

�
�;
<
'

�'
2
F

�<
(
'

�'
;
;

�'
2
=

�<
*
)

�
�<
2
<

�
�<
'
;

�
�<
*
*

�
�<
2
2

�
�<
<
;

�'
'
=

�
�'
<
;

�
�<
*
(

�<
*
;

�
�
�<
<
<

�
�<
B
B

�
�<
B
<

�
�'
<
;

�<
'
*

�'
F
B

�=
'
(

�
�<
<
<

�<
<
<

�<
<
<

�<
<
<

�
�<
<
<

�
�;
(
=

�<
B
<

�'
(
B

�<
<
;

�<
(
'

�
�<
2
=

�<
)
=

�<
=
B

�<
*
'

�
�;
'
)

�
�'
B
'

�<
(
=

"
�
�<
<
<

�'
<
B

�<
*
*

�<
)
)

�<
'
(

�=
B
;

�<
<
<

�<
<
<

�<
<
<

�<
<
<

�<
<
<

�
�<
<
<

�
�
�<
<
<

�<
B
=

�<
B
'

�<
B
)

�<
=
<

�<
B
'

�
�'
B
;

�B
*
)

�<
<
<

�
�<
<
<

�<
<
<

�<
<
<

�
�<
;
<

�
�<
)
*

�<
<
<

�'
B
;

�'
)
B

�'
=
*

�
�'
'
<

�
�<
<
2

�
�'
(
*

�
�<
=
;

�
�;
(
=

�
�<
B
;

�
�<
<
<

�B
<
=

�
�<
<
<

�<
<
<

�
�<
<
<

�
�<
<
<

�
�<
<
<

�
�<
<
<

�
�<
<
<

�
�<
<
<

�
�<
<
<

�<
<
<

�
�<
<
<

�
�'
2
<

�<
B
<

�'
(
(

�<
<
<

�
�<
<
<

�<
<
<

�
�<
<
<

�
�<
<
<

�
�<
<
<

�<
<
<

�
�<
<
<

�
�
�<
=
=

�
�<
F
'

�<
(
'

�<
=
;

�<
(
=

�
�;
<
;

�
�<
<
2

�
�'
B
F

�'
)
B

�B
B
=

�<
<
<

�<
<
<

�
�
�<
<
;

�
�'
<
B

�
�<
B
<

�
�=
;
2

�
�<
=
<

�'
B
*

�
�'
;
<

�
�<
=
)

�
�<
)
(

�<
<
)

�
�<
F
;

�<
F
'

�
�
�<
<
<

�<
'
*

�B
=
'

�<
<
<

�<
<
<

�
�<
<
<

�
�<
<
<

�
�<
<
<

�
�<
<
<

�<
<
<

�<
<
<

�
�<
<
<

�
�<
B
<

�<
<
(

�
�<
;
=

�<
2
=

�
�;
*
'

�
�'
2
*

�<
;
;

�
�<
'
2

�
�;
;
(

�
�;
;
2

�<
2
=

�
�<
<
'

G
�
�'
F
)

�'
2
'

�
�<
)
2

�
�<
B
'

�
�'
<
<

�<
=
F

�
�<
B
;

�
�'
<
)

�;
F
=

�<
'
'

�
�<
B
F

�
�'
<
F

�
�
�
��
��
�
'
=
�
��

�

��
�

�
%P

<
'
��

P
'
=
0
��
�
�
��
�
�

��
�
�
��
��

��
��
�
��
�
�
�
�
�
��
�

��
�
'
'
�
��

�

��
�

�
�
�
�
��
�

��
��
��
�
�

�
��

��
�
��

�

�
�
��
��

��
��
�
��
��
�
��
�
�
�

�

�
��
��
�
�

��
��
��
��
��
�

�2'

47

���� '
��� �/�����"� !�%�&����, �&�!!"!� �(���!�� # �&�!!"!� � $ �(!!�3&" �������& ."��)�"!

�(��"!�($� # �(�/" $�%" !�(! �"�(��"$ � �3&" �

P<'� @��
 �������� ����? T �� �� �� �� " U

@��
 ��
������
� ����? > T �� �� � U

�����
 �������? � ����� ���� �
 ����
��� �� �����
���� :��� ���� �
 ��� ��
� ����� ��� �������

���������
 �� ��� ����� 44�55 �� ��� �
� ���� ��!� �!� 44"55 �
� ��� ����� 44(55�

P<;� T �� �� �� �� � U� > T �� !� U

.�� ������
��� �������

P<B� T ��
� �� � U� > T �� �� $� � �� "� � U

�������� ��� ������� ����!���

P<=� T �� � U� > T �� � U

#���
��� ������� �� P<'�

P<F� T �� U� > T �� � U

��� ��������

P<)� T �� � U� > TU

#
 ����
��� ���� � ����G�
�� ����

P<2� T ��
 U� > T �� G U

���
�������

P<*� T �� G U� > TU

	��� ���
��� �
� � �����
� �� � �"���� %�� �
 44V550�

P<(� T �� $ U� > T �� U

��� ��������

P'<� T �� � U� > T " U

7
 ��� ���� ��
�� �
� ��
 �����
 ��� ��������� 44�55 � �������
� �
� ��������
� ��� ��������� 44�55�

P''� T �� � U� > TU

#
 ��������� ��� �� ������

P';� T �� U� > T � U

��� ������� �� ������ �� �
 ������ ���� �
 �
���������
�

P'B� T �� G U� > T � U

.������ ������

P'=� T �� � U� > T �� �� � U

��� �������������� ������� �� P<'�

���
��� '' ����
���
� ������ ��
���
 �����
�
� �����
����� �������� �� �
������� ����������?

P'F� T � U� > T � U

P')� T � U� > T �� $ U

P'2� T � U� > T � U

P'*� T ! U� > T $� U

P'(� T " U� > T � U

P;<� T � U� > TU

P;'� T � U� > T � U

P;;� T � U� > T �� U

P;B� T � U� > T �� �� U

P;=� T � U� > T � U

P;F� T �� U� > TU

�2+

48

���� %�������� ���
0� �
� �� �����
� �
 ��� �!� �����
 ������� �� ��� ���

�������� ����� ��� ��
������
� ���� �� � ��� �� ���������� ���� ��
�� ����� ���

������� �����
 �� ��� ���������� �� ��� �������� ����� �
� ��
 ��������� ���

�� ���
��� ���� ��������

��� ����� '= ����
���
�� ���� ��� ������� ����� �������� �������� �����
�

���)*�<;V �� ��� ���� �
����� %��� �� �"����� ������
����0� ���� ��� ''

�����
�
� ����
���
� ���
�� ���
�
����� I�
��� ���� ��� �������� �������

���� �����
� ��� ��� ����� ��
�����
 ������ �������� ���� �������� ������

%�������� - �� 	���� '(*(0� ����� ��� �� ������ �������� ���� ��� ���
�����
�

���������
 ������
 ��� ��� ���� �� ����� ����� ��� ��� ����
� �����������

������
 ��� ������ �
� ����� ���!
��
 ������ �
� ��� �� ����� �������� ����

%����� &�

���
!�
� '()*+ &�

���
!�
 �� ��� '()*+ /��

���� - ��
��
�

'()(0�

	(%%" �! (."��)�"!

8�� ������� ��
�� �� ������ � ����� �� ����� ���������
 �
 ��� ����� �� ����

�
� ���+ �������� ��� ������ ���� ���� ���������
� ��� ������
� �� ����
���

��������� I� ������� ���� ������
 �������� ������ �� ��� �����
�� �� � ������

������ ������� �
 ���
���������
� �� ���� �� ��� ���������� %P<F� P<)� P<2�

P<(� P''� P';0� .��� �������� ���� �� ��������� ���� � ����� 44�������

������
�55 ����� �� ����� �����
����
 %��� :������� '()20� H������� �
� !
���

���� ���� � �� �� ����� ��

�� �����
� ��� ��� �������� �������� �� ��� �����

���������
 �� �����
�G� ��$���� �
��� ������� ���
���������
�� H�
��� ���

��
���� �� 44������ ��55 ��� ���
 �������� �
 ����� �� �
������� ���� ��������

�
 ��� �����
����
 ������� %���
�� - /���� '()*0� �
� ����� ��� �� ����
���

������������
� ����� ���� ��� ��� �� ������� %���� ����
��0 �
� �� �����
�G�

���������� ���� ����
� �
�����
�� �� ���
���������
� ���� �� ���
�����
� ����

���
��� ��������
�� �
� � ������ ����
� �� ��
��� ���������
 %	�!�������

'((;+ 	�!������ - 7������� '((B+ 	�!������� @� �!�� - 7��� '(*B0� H���

����� ��
��� ���� ������ �� ��� �������� ������� ������ �������� �
�����
�

������� ����
� ���
���������
� ���� ���
�� ��������� � ����� ������ ���� ��

� �������� %�������0 ���� ������� �� ��� ������� �
�E�� ��� ����G�
�� ����

%P<'� P<=� P'<� P'B� P'=0� I�
��� ��� ���� ������
 �������� ��� ���� ��������

���
 ���� ������� � ���
����
 �� ������ �� %������
����� ��� P<;� �����

�����
 ��� P<B0� ������� ����
����
 ����� ����� "���� ������� #
����� ������

�����
 �� ���� ������
 �������� ��� ����������� ����
��
�? P<= �
� P'= �������

��������
� �� P<'� 	�
� � ������
 ������ ������ ������������ �������
� ���

��� ��� �� ���!�� �����
� ����
�"���? I��� ��� ����� ��������� %P;F0 ����� ��

�� ���� ��
������� ����� ��� ����
�
���������� ���������� ���� ��
���

��������� ����� ��������� ���� �� P<* �
 V� 7
 ����� ��� ��������� V �� !
��
 ��

������� ����
� ���!�
� ������� �
 ������ ����� ����
�� %���������� - ����
����

'(((0�

���	
�������� ��� �21

49

	��	������

��� �����
� ���� �����
�� ������� �
����� ��������
����
 ���� %�"�����
� F

�
�)0� �� �� �� ��� ��
���
�� ���
����� �
�� � C������
 ������ %�"�����
 20�

���� �����
� ��� ��� ����� �������� ������
� ���
� ��������� ������� ����

��� �������� � �������
� ��� ��� ������� �� !
��
 ����� ��
�����
 ����� �
�

� � ����
���
� �
� ��� �� ��� ������� �����
�
� ��� ��������
� �� ��� C����

���
 ������
 �� ��� ������� ��� �������� ��������� ��
 ������
 �� ���� ���

����� � ��� �� ������� �
� ��� ������� ���� ���� ��������
� ������ �� ��

������ �
 ����� �������� ��� ���
 ����
���� �� ��������
����
 ����������

������� �� ���� ��� ������� � ��
������ ������� �� ��������� �������� � ����

��"����
� ���� ��� ��������
�� ���� ���
 ��� ���� ��
�����
 ����� �������

����� #
����� ����
���� �� ���� ��� ������ �������� � ����� ��� �� ���� ����
��

�������� �� ���
��� ��� � ,�� %;<<'0� ���� ������� ����� �������� ���� �

�
����� �� ����
� ������ #� � ��
��"��
��� ��� ���
���������
 �� ���� �
�� �

������ �� ���� ��������� �
� ���������� �� ���
��� ���� ��� �����
�

��������� ������� ���� �� ���"��
� ���������� ���� ����� �����
 ����

�������� 	�
� � ��� ����
���
� �
� ��� �� ��� ������� ���� ��������� ���

��
������� �� ��� ������ �
� �������� ����� �������� ���� ��� �����
� �����

�� ����� �����
����
� #
 �������
� ��
�����
 �� ���� ����� �����
����
 �����

���� �����
� ��� �������� �
�����
� �� �
����� �� ����
� ���
���������
��

�
����
� � �������� %��
�� �������
�0� 	�
� � ��
��� ���� ������ ��� "����

����� ������� �
� �� �����
� �� �� ���
 ������� � �������� �������� ���

�����
� �
 ��� ��
���� �� ����� ����
� �
� ���� ���������
�

���
��	��

1����� H� %'(2'0� 9���� �����
����
 �� ������� ��������� �������)����� �
�
���*� ��� =F(>=2=�

��������� @�� &������� C�� ��
����
� �� ��� - 1��
��� &� %'(220� #����� �� ��� �
���
� �����
� 7
 .�

&��
�� %C��0� �
���� ��+ �
����,���
)- %��� FBF>FFF0� ,�
��
? #������� ������

��������� �� %;<<;0� .������� ��
���
�� �������
� �� ���� ���� �
 C������
 ������� �
.��/

�
0��1�� �'� ''*;>''(B�

��������� ��� - �� 	���� .� %'(*(0� .����
�� ��� �
���� �
� ��� �� ����� ����� � ��������

������
� ���2 $.���
�� 3.//
�� �� ��4���	
 ����*�/�4�� �%;0� '*(>'(*�

&�

���
!�
� �� %'()*0� ��� �������� �� �������� ������ �� ��� C
���� �������� 5�.���/ ��

)
�6�/ 7
�����4 ��+)
�6�/ 3
*�	���� � ((<>((F�

&�

���
!�
� ��� ,���
� &� #�� .����
� 9� 	� %'()*0� ��
����
� ������� ������ �� ����� ��
�����

�� C
���� ������� �
��
�.�/ 8��� �1�//�� �"�)F(>)))�

	������� /� 7�� - 	������� �� �� %;<<B0� &@&P? # I�
���� ����� ������� ���� �������
�

������� � 3
*�	��� �
�
���* 8
*�+�� -���.,
��� ��+ ��,�.
��� �'� '')>';=�

	�!������� /� %'((;0� ��������� �����
����
 ����
����
�����!�� �
.����,�.��4� #� ;;'>;BB�

	�!������� /�� - 7������� �� %'((B0� �����
����
 �
� �����
�����
 �� ��

����� ���������� ����

�������� ����
���
� �
.��/ �
0��1�� "� BB>='�

	�!������� /�� @� �!�� .�� - 7��� �� %'(*B0� :�����
����
? #
����
�����! ���� ��� �����
���

�� ����� ������
 �����
����
� -$$$ 9���������� �� ���
,�� 8��� ��+ ��6
��
���� ��� *;)>*B=�

H����
�� H� %'(B)0� .�������� ��������
 �� ���
���� �����
�
��� ����*�,
��1�� �� ;2>BF�

�24 	��

���� ��
���� �
�����

50

������� #� @�� :�G��� �� #�� - H���� 8� %'(*(0� ���������
 �� ��������� ������ �
 ��������� �����
?

��������
����
 ������ ����� �
 ������� ���
����� �
��
���� ��+ ����*��*������ #"� (F>'<;�

/��

����� ��� - ��
��
� #� �� %'()(0� @��������
���
� �������� �� ������� �
��
�.�/ 8���

�1�//�� ��� B>';�

,��� @� &� %;<<'0� &������
�
� ��� ����
���
��� �� ��������
���
� ����
� �������
�����
� ���

���
����� �����
�� 5�.���/ �� 8�*
,����/ ����*�/�4�� #'� '=(>'))�

:������� 3� %'()20� ��4���	
 ����*�/�4�� :�� W��!? #�����
���
��� ��������

����������� 	�� - ����
���� �� %'(((0� ��� ��� �� ����� ���
��� �
� ����� �������
 �
 ������������

�����
�� �
��
���� ��+ ����*��*������ "��)('>2<)�

������ �� ��� - ����
���� �� %;<<=0� ,�����
���
� ���
� ��������� ���
� �
�� ���� ��� ����������

8��.����� �� ��
�������%

������
 � ��� - ���
��� I� �� %'(2(0� �������
 ���� �� � ������� �� �
���� �
� �
�����$��� �����

�������� ? ,������ �� ��� �������� �
��
���� ��+ ����*��*������ �"� B2>F;�

���
��� @� 7�� - /���� .� I� %'()*0� 8
 ��� ��
���� �� �������� ������ 5�.���/ �� $��
��,
��/

����*�/�4�� � BFB>B)B�

:��4���/ ,��.����� �
�
�	
+ �
6�.��� �!!�

�
	��
+ ,��.����� �
�
�	
+ �
6�.��� �!!#

���	
�������� ��� �2�

51

52

Pierre Courrieu – dossier HDR II.B.1

II.B Modèles de codage de données

 De très nombreux problèmes cognitifs peuvent être décrits comme (ou ramenés à) des

problèmes d'approximation de fonctions numériques, même lorsque les problèmes sont

initialement présentés sous forme symbolique, et pourvu que l'on encode convenablement les

données (Courrieu, 1994b). Une fonction numérique suppose définies trois entités: un espace

numérique d'entrée, un espace numérique de sortie, et une "machinerie" (par exemple un

réseau de neurones) établissant un lien fonctionnel entre les éléments de l'espace d'entrée et

les éléments de l'espace de sortie. La machinerie fonctionnelle requise sera par ailleurs

d'autant moins complexe que les topologies des espaces d'entrée et de sortie sont plus

compatibles. Pour faire simple, disons que les topologies sont compatibles si des éléments

proches dans l'espace d'entrée ont toujours des images proches dans l'espace de sortie, et la

compatibilité est encore plus grande (équivalence) si la réciproque est également vraie. Par

ailleurs, la topologie des espaces d'entrée et de sortie est largement dépendante du codage que

l'on adopte pour les données correspondantes. On voit donc qu'il est essentiel de déterminer

des codages appropriés lorsqu'on veut modéliser des fonctions cognitives, sans quoi il peut

s'avérer pratiquement impossible d'approcher convenablement les fonctions à modéliser. Il

faut bien reconnaître que le codage est souvent réalisé de manière empirique et intuitive par

les modélisateurs, avec plus ou moins de succès suivant les cas. J'ai pour ma part consacré

beaucoup d'efforts à la recherche de méthodes de codage appropriées pour différentes sortes

de données de base. Le cas particulier, mais particulièrement important, des données de type

image sera examiné à la section II.C. Je vais ici présenter le cas des nuages et séquences de

points, ainsi que le cas des données de similitude. J'avais par ailleurs rapidement examiné le

cas des données symboliques dans (Courrieu, 1994b), et il existe une abondante littérature sur

le sujet, mais je n'en parlerai pas ici.

 Il arrive que les données se présentent sous la forme non pas de simples points

(vecteurs), mais d'ensembles de plusieurs points d'un espace réel multidimensionnel. Lorsque

les points sont naturellement ordonnés, il s'agit d'une séquence de points, et cela ne pose pas

de problème de codage difficile. Dans ce cas, on aura simplement une matrice au lieu d'un

unique vecteur. Il n'en va pas de même lorsque les points, a priori, ne sont pas ordonnés, et

l'on parle dans ce cas de nuages de points. A titre d'exemple, supposons que l'on représente

l'état d'un footballeur par deux coordonnées de position (x, y) sur le terrain, et un vecteur de

déplacement (angle, vélocité), ce qui donne 4 coordonnées réelles par joueur. Supposons que

chaque donnée à considérer consiste en une configuration de jeu d'une équipe de 11

53

Pierre Courrieu – dossier HDR II.B.2

footballeurs. A priori, les différents joueurs ne sont pas ordonnés, sauf si l'on considère les

numéros de dossards, mais cela n'est pas pertinent dans la plupart des problèmes à traiter en

psychologie du sport. Comment pouvons nous représenter une configuration de jeu sans

induire un ordre arbitraire des joueurs, ce qui conduirait à considérer comme différentes des

configurations identiques à une permutation des joueurs près? J'ai proposé deux solutions

dans (Courrieu, 2001, article ci-joint), la seconde solution étant en fait plus particulièrement

adaptée aux séquences de points. La première solution encode un nuage de points par les

coefficients d'un polynôme multivarié particulier dont les zéros coïncident exactement avec

les points du nuage, ce qui donne bien un codage invariant par permutation des points. Cette

méthode de codage a été appliquée en psychologie du sport, dans la modélisation d'une tâche

de discrimination de configurations de jeu de basket-ball par des joueurs experts ou novices

(Baratgin, Courrieu, Ripoll, Laurent, & Ripoll, 2002; Ripoll, Baratgin, Laurent, Courrieu, &

Ripoll, 2001).

 Les données de similitude constituent un autre type de données fréquemment

rencontrées en psychologie (matrices de confusion ou de comparaison par paires). Ces

données sont souvent traitées par des méthodes de "multidimensional scaling" (Shepard,

1962), ce qui permet de représenter les objets comparés par des points d'un espace métrique,

même lorsque les données de similitude ne sont pas vraiment réductibles à des mesures de

distance exactes. A strictement parler, il s'agit de méthodes d'analyse de données, mais on

peut aussi les considérer comme des méthodes de codage permettant de construire l'espace de

sortie de modèles fonctionnels à partir de données de similitude empiriques (Baratgin et al.,

2002). J'ai défini une méthode simple permettant de transformer, de façon strictement

monotone, des mesures de similitude empiriques (pourvu qu'elles soient symétriques) en une

métrique euclidienne, et de réaliser un multidimensional scaling direct sur ces mesures

transformées (Courrieu, 2002, article ci-joint). Cette méthode, appelée "plongement monotone

euclidien", a été appliquée dans l'étude de Courrieu et al. (2004) décrite dans la section II.A

précédente. Au passage, l'élaboration de cette méthode m'a conduit à étendre la méthode de

factorisation de Cholesky à des matrices singulières, ce qui s'est par la suite avéré utile dans

d'autres contextes (voir section II.E).

54

Pierre Courrieu – dossier HDR II.B.3

Références

Baratgin, J., Courrieu, P., Ripoll, T., Laurent, L., & Ripoll, H. (2002). Similarity Judgements

of Basketball Game Configurations by Experts and Novices: A Model and Some Experimental

Tests. Unpublished manuscript (2002): http://www.ergos-perf.com/Docs/Model_PSE.pdf,

54 p.

Courrieu, P. (1994b). Connexionnisme et fonctions symboliques. In J.P. Caverni, C. George,

& G. Politzer, Raisonnements: Conjoncture et Prospective. Psychologie Française (numéro

spécial), 39-2, 231-236.

Courrieu, P. (2001). Two methods for encoding clusters. Neural Networks, 14, 175-183.

Courrieu, P. (2002). Straight monotonic embedding of data sets in Euclidean spaces. Neural

Networks, 15, 1185-1196.

Courrieu, P., Farioli, F., Grainger, J (2004). Inverse discrimination time as a perceptual

distance for alphabetic characters. Visual Cognition, 11(7), 901-919.

Ripoll, H., Baratgin, J., Laurent, E., Courrieu, P., & Ripoll, T. (2001). Mechanisms

underlying the activation of knowledge basis in identification of basketball play

configurations by expert and non-expert players. In A. Papaioannou, M. Goudas, & Y.

Theodorakis (Eds.), In the Dawn of the New Millennium: Proceedings of the 10th World

Congress of Sport Psychology, Skiathos, Greece, 28th May - 2nd June, Vol. 2, pp. 283-285.

Thessaloniki: Christodoulidi Publications.

Shepard, R.N. (1962). The analysis of proximities: multidimensional scaling with an

unknown distance function (I & II). Psychometrika, 27(2), 125-140, & 27(3), 219-246.

55

56

Contributed article

Two methods for encoding clusters

Pierre Courrieu*

Laboratoire de Psychologie Cognitive, UMR CNRS 6561, UniversiteÂ de Provence, 29 avenue Robert Schuman, 13621 Aix-en-Provence cedex 1, France

Received 17 February 2000; accepted 28 October 2000

Abstract

This paper presents two methods for generating numerical codes representing clusters of Rn, while preserving various topological

properties of data spaces. This is useful for networks whose input, or eventually output, consists of unordered sets of points. The ®rst

method is the best one from a theoretical point of view, while the second one is more usable for large clusters in practice. q 2001 Elsevier

Science Ltd. All rights reserved.

Keywords: Cluster codes; Neural network input and output representations; Pseudo-sequences; Unordered sets; Encoding problem

1. Introduction

There are applications in which the input, or eventually the

output, of a neural network is not a point but a cluster, that is an

unordered, countable ®nite set of points of Rn. A frequent

dif®culty is to ®nd an appropriate representation for such an

input, given that there is no natural order of points in Rn for

n . 1. Any permutation of a cluster's points is a priori equiva-

lent to other ones, but distinct permutations provide distinct

input vectors, and learning the equivalence of permutations is

a very complex problem given that for a set of m points there

are m! possible permutations. One can always build an arti®-

cial order of points in Rn, for example using a Peano±Hilbert

scanning. Unfortunately, this type of procedure never allows

for preserving the topology of data spaces, and a small varia-

tion of data points can lead to a large variation in the repre-

sentation. This results in major dif®culties for learning regular

functions on the space of such representations. A quite similar

problem occurs with pseudo-sequences of points, that is when

data points are ordered with respect to a natural variable, such

as a time coordinate, but the underlying process (generating

data points) is not actually sequential or is a random mixture of

several sequences. In this case, small and possibly random

variations of time coordinates can modify the order of points,

resulting in large variations of the input representation.

The problem we address here is: ®nd a mapping from the

set of clusters of Rn to a set of real vectors (or matrices),

referred to as `cluster codes', such that (1) any cluster has a

unique code, (2) distinct clusters have distinct codes, and (3)

to any continuous movement of points in a cluster corre-

sponds a continuous variation of code components. Such a

mapping would be appropriate for encoding input clusters.

Now, if the application requires that one can decode output

cluster codes, we also need that (4) the mapping is inversible

(which implies (2)). A mapping with the four above proper-

ties is in general an homeomorphism between the data space

and the code space. However, one must take care that the

code space can be a special part of Rk, which is not as simple

as Rk itself. To date, we know of no solution which can be

applied to all practical problems. However, there are various

solutions for various families of problems. Two of these

solutions are presented hereafter. Note that the problem

addressed here is to ®nd a ®nite exact representation of

data, in a format which ensures that representations of

various clusters can be compared. This is a problem differ-

ent (and much less studied in the literature) from that of

approximating data distribution by a density of probability

(Husmeier & Taylor, 1998; Specht, 1990; Traven, 1991) or

an attractor (Barnsley, 1993; Diaconis & Freedman, 1999).

The problem is in some way related to the `encoding

problem' in neural self associators (Rumelhart, Hinton &

Williams, 1986). However, such encoders require prior

learning, and they cannot guarantee property (1), since a

permutation of a cluster's points generally results in a

change of the internal representation.

2. First method: polynomial encoding of clusters

For encoding a cluster in R or R2 only, one can consider a

real or complex polynomial of the form P(z)�Qm
j�1�z 2 zj�,

Neural Networks 14 (2001) 175±183PERGAMON

Neural

Networks

0893-6080/01/$ - see front matter q 2001 Elsevier Science Ltd. All rights reserved.

PII: S0893-6080(00)00096-4

www.elsevier.com/locate/neunet

* Tel.: 133-4-4295-3728; fax: 133-4-4220-5905.

E-mail address: crepco@newsup.univ-mrs.fr (P. Courrieu).

57

which has exactly m real or complex roots, depending on the

dimension. These roots are obviously the zj's, which are the

coordinates of the cluster's points. The product in real or

complex algebra is commutative and associative, then P(z)

does not depend on the order in which the m roots are taken

into account. As a consequence, P(z) is unequivocally asso-

ciated to the unordered set of roots (that is the cluster to be

encoded). One can expand the polynomial P(z), this expan-

sion resulting in a sequence of (m 1 1) real or complex

coef®cients which is a possible cluster code satisfying all

requirements (1)±(4). Unfortunately, as a consequence of

the well known Frobenius theorem, one knows that there is

no commutative and associative algebra in dimension larger

than 2. There is an associative algebra in dimension 4

(quaternions algebra), but this algebra is not commutative.

Then, the above sketched method cannot be extended for

encoding clusters in dimension larger than 2.

The method described hereafter satis®es requirements

(1)±(4) for any cluster of Rn, and for any n. So, it is theore-

tically a very general method, and it can be useful for theo-

retical purpose. However, there are restrictions in practice

due to the fact that the generated code size increases rapidly

with the cluster dimension (n) and the cluster size (m).

Moreover, decoding is a complex operation, and when the

code is only an approximation the result of decoding can be

very approximate. Therefore, the author recommends the

practical use of this method only for encoding small clusters

in low dimension spaces, and when the application does not

require decoding. A possible application ®eld is the encod-

ing of game con®gurations, and the method is well adapted

for encoding con®gurations which contain several distinct

clusters of various sizes and dimensions.

2.1. Data projection on the half unit sphere of Rn11

Let {Xj [Rn; 1 # j # m} be the set of points of a cluster,

where one assumes that no point has in®nite coordinates.

Choose an origin point O [Rn and a real r . 0 such that, for

any j,
��Xj 2 O

�� # r;
����� where

��: ������ denotes the Euclidean norm.

Then the projection on the half unit sphere of Rn11 of the

point Xj� (x1j, ¼, x nj) is given by:

uij � �xij 2 oij�=r; 1 # i # n;

and

u0j � �1 2
Xn

i�1

u2
ij�1=2:

The vector Uj� (u0j, u1j, ¼, unj) is such that
��Uj

�� � 1;
����� and

the projection is obviously inversible by xij� ruij 1 oi,

1 # i # n.

One can choose standard O and r, and then project any

cluster which is inside the sphere of Rn of center O and

radius r. This sphere will be referred as the `encoding

sphere', and one can remark that projected coordinates are

always continuous real functions of original coordinates

inside the encoding sphere. One can also take for O the

center of gravity of the cluster, which provides translation

invariance, and/or take r � s maxl#j#m

��Xj 2 O
������� , s $ 1

®xed, which provides scale invariance. In the latter case,

any cluster of Rn is inside its own encoding sphere.

The main interest of the projection on the half unit sphere

of Rn11 is that all vectors U have unit norm, and then:

1

2
U 2 Uj

 2� 1 2 U:Uj and

1 2 U:Uj � 0, U 1 Uj , X � Xj:

2.2. Polynomial associated with a cluster

Consider the polynomial de®ned by:

P�U� �
Ym
j�1

�1 2 U:Uj�

where the Uj's are the projections of the cluster's points on

the half unit sphere of Rn11, U is the projection of the vari-

able, and `.' denotes the inner (dot) product of vectors.

This is a real polynomial of degree m with n 1 1 vari-

ables, and after Section 2.1, the set of roots of this polyno-

mial is exactly the set of projections of the m cluster's points

on the half unit sphere of Rn11. Given that the (real) product

is commutative and associative, this polynomial does not

depend on the order in which data points are taken into

account. Since the projection on the half unit sphere is

inversible, P(U) is unequivocally associated with the cluster

in a given encoding sphere. Then, expanding P(U), one

obtains a sequence of coef®cients which is a possible cluster

code. The expansion of this algebraic polynomial is ®nite,

and it is of the form:

P�U� �
Xm
k�0

X
a0 1 a1 1 ¼ 1 an�k

�21�kc�a0; a1;¼; an�ua0

0 u
a1

1
¼uan

n ;

where the ai's are integer exponents of the (projected) varia-

ble's coordinates. The real coef®cients c[.] are the code

components, and they can be described in the following

way. Let P[m, k] denote the set of parts with k elements of

the integer set {1, 2, ¼, m}, and let Q{a0, a1, ¼, an} denote

the set of all distinct permutations of the set which contains

a0 integer values 0, a1 integer values 1, ¼, an integer values

n. With k� a0 1 a1 1 ´ ´ ´ 1 an, one has:

c�0; 0;¼0� � 1;

c�a0; a1;¼; an� �
X

�j1;¼jk�[P�m;k�

X
�i1;¼ik�[Q�a0;¼;an�

Yk

s�1

uisjs
:

It should be noted that the coef®cients of the expansion

comprise only products and sums of the projected coordi-

nates of the cluster's points, which guarantees that these

coef®cients are continuous functions of the coordinates of

points, as long as clusters remain inside the encoding

sphere.

P. Courrieu / Neural Networks 14 (2001) 175±183176

58

Example. ÐWith n� 2 and m� 3, one must expand the

polynomial:

P�u0; u1; u2� � �1 2 u01u0 2 u11u1 2 u21u2� �1 2 u02u0

2 u12u1 2 u22u2� �1 2 u03u0 2 u13u1

2 u23u2�:
The expansion by hand is quite tedious but easy, and one

obtains:

P�u0; u1; u2� � 1 2 �u01 1 u02 1 u03�u0 2 �u11 1 u12

1 u13�u1 2 �u21 1 u22 1 u23�u2 1 �u01u12

1 u11u02 1 u01u13 1 u11u03 1 u02u13

1 u12u03�u0u1 1 �u01u22 1 u21u02 1 u01u23

1 u21u03 1 u02u23 1 u22u03�u0u2 1 �u11u22

1 u21u12 1 u11u23 1 u21u13 1 u12u23

1 u22u13�u1u2 1 �u01u02 1 u01u03 1 u02u03�u2
0

1 �u11u12 1 u11u13 1 u12u13�u2
1 1 �u21u22

1 u21u23 1 u22u23�u2
2 2 �u01u12u23

1 u11u02u23 1 u01u22u13 1 u11u22u03

1 u21u02u13 1 u21u12u03�u0u1u2 2 �u01u02u13

1 u01u12u03 1 u11u02u03�u2
0u1 2 �u01u02u23

1 u01u22u03 1 u21u02u03�u2
0u2 2 �u11u12u23

1 u11u22u13 1 u21u12u13�u2
1u2 2 �u01u12u13

1 u11u02u13 1 u11u12u03�u0u2
1 2 �u01u22u23

1 u21u02u23 1 u21u22u03�u0u2
2 2 �u11u22u23

1 u21u12u23 1 u21u22u13�u1u2
2 2 u01u02u03u3

0

2 u11u12u13u3
1 2 u21u22u23u3

2:

Fortunately, there is another way of computing the coef®-

cients of the expansion, as we shall see in the next section.

2.3. Encoding procedure

2.3.1. Computing the coef®cients

The following procedure provides the same coef®cients

than those of Section 2.2, however, its recurrent form makes

it much easier to implement on standard computers. The

encoding procedure is presented in pseudo-Pascal notation:

c[0, 0, ¼, 0]:� 1;

for j:� 1 to m do
for k:� j downto 1 do

for a0:� 0 to k do
for a1:� 0 to (k 2 a0) do
¼

for an21:� 0 to (k 2
P

i�0
n22ai) do

begin
an:� k 2

P
i�0
n21ai;

if k� j then c[a0, a1, ¼, an]:� 0;

c�a0; a1;¼; an� :� c�a0; a1;¼; an�
1
P

ai.0 uijc�a0;¼; ai 2 1;¼; an�;
end;

Note. For readers unfamiliar with pseudo-Pascal notation,

one can say that this is simply English mixed with mathe-

matical notations. The semicolon is the statement separator,

while `x:� y` means that x takes the value of the expression

y. The sequence of statements between `begin' and `end'

must be repeated in each iteration governed by the `for'

statements.

2.3.2. Addressing the coef®cients in a vector

For clarity in the procedure (2.3.1) statement, we used a

multidimensional array notation for c[.], where we have in

fact to obtain a vector. Moreover, the size of this multidi-

mensional array would be of (m 1 1)n11 real numbers, while

the total number of coef®cients of the expansion is only

Km
n12 � �m1n11

�m� �. The combinatorial K
j
i can be recursively

computed using the relations:

K0
i � K

j
1 � 1;

and

K
j
i � K

j
i21 1 K

j21
i :

Using this combinatorial, one can compactly address the

coef®cients in a one dimension array as follows:

k :� a0 1 a1 1 ¼ 1 an;

index�a0; a1;¼; an� :� {k . 0}Kk21
n121

{a0 . 0}
Xa0 2 1

j�0

Kk2j
n 1 {a1 . 0}

Xa1 2 1

j�0

K
k2a02j
n21 1

{a2 . 0}
Xa2 2 1

j�0

K
k2a02a12j
n22 1 ¼1

{an21 . 0}
Xan 2 1 2 1

j�0

K
k2a02¼2an222j
1 ;

where we note that {false}� 0, and {true}� 1.

In practical implementations, the multi-index

[a0, a1, ¼, an] which appears in Section 2.3.1 must be

replaced by the scalar integer function index(a0, a1, ¼, an)

de®ned above. Indexed this way, the coef®cients are ordered

P. Courrieu / Neural Networks 14 (2001) 175±183 177

59

in increasing order of the total degree of the terms they

weight. Then the total degree corresponding to the last

non zero coef®cient provides the number m of points of

the cluster. If the index of this coef®cient is larger than

Kk21
n12 but no larger than Kk

n12 then the degree is k, and

m� k. One can theoretically use an in®nite vector for

encoding any cluster of Rn, the unused components being

set to zero.

2.4. Decoding

Properties (1) and (2) of the Introduction imply that there

is a bijection between the set of clusters of Rn, inside a given

encoding sphere, and the set of exact cluster codes. This

guarantees that any exact cluster code is, in some way,

decodable with an exact result. Now, in practice, codes to

be decoded are in general approximations which are not

necessarily exact cluster codes, since the set of exact cluster

codes is only a subset of the set of real vectors. We sketch

hereafter a method which theoretically allows for approxi-

mately decoding a real vector into a cluster. Of course, an

exact result is accessible if the vector is an exact cluster

code.

First one can ®nd the number of points (m) from the last

non zero coef®cient of the vector V to be decoded (see

Section 2.3.2). Let Q be the set of clusters of size m in a

given encoding sphere, consider a cluster q [Q, and denote

C(q) the cluster code associated with q by the encoding

method (Sections 2.1 and 2.3). Then a solution, denoted

qp, to the decoding problem is provided by solving the

following global optimization problem:

qp � arg minq[Q C�q�2 Vk k:
Since the search domain is bounded (encoding sphere) and

the functional to be minimized is continuous (as a conse-

quence of property (3)), there are global optimization algo-

rithms whose convergence to a global minimizer is

guaranteed (Courrieu, 1997, Theorem 1; Ingber & Rosen,

1992; Solis & Wets, 1981). This theoretically guarantees the

solvability of the decoding problem. However, it was

observed in practice that the solving time increases very

fast with the dimension (n) and the size (m) of clusters.

So, the above described decoding method cannot reasonably

be recommended as a practical one, except for very small

problems.

2.5. Computational test

We know that the encoding preserves basic topological

properties of the data space. The object of the computational

test is to see if metric relations are also preserved, and if they

correctly re¯ect variations in data generating processes. For

the computational test, we generated 20 uniformly random

clusters of m� 12 points in [21, 1]4 (i.e. n� 4). Ten modi-

®ed versions of each cluster were generated by adding a

random quantity, uniformly sampled in [2d , d], to each

coordinate of each point. The modi®cation scale d was

experimentally varied from 0.0001 to 1.28, and each

added quantity was eventually resampled until the modi®ed

coordinate was in [21, 1]. The distance between the code C

of a cluster and the code C 0 of a modi®ed version was

de®ned as the Euclidean distance of codes: d�C;C 0� ���C 2 C 0
��:���� We also computed, for comparison, the Hausdorff

distance (associated to the Euclidean distance in Rn)

between clusters in the data space (see Barnsley, 1993).

Let q and q 0 be the two clusters to be compared, then their

Hausdorff distance is de®ned by:

h�q; q'� � max�maxX[q minY[q' uu X 2 Y uu;

maxY[q' minX[q uu Y 2 X uu�:
Mean distances (with standard deviations on 19 degrees of

freedom) are reported in Table 1.

As one can see in Table 1, the distance of codes is, on the

average, a monotone increasing function of the modi®cation

scale, and is approximately proportional to the Hausdorff

distance (d(C, C 0) . 700 Hausdorff). Hence, it seems that

the encoding method generates a code space whose metric

properties are compatible with those of the data space.

Out of curiosity, the decoding problem was tested on

exact codes of very small clusters, 1 # m # 4, in [21, 1]4.

Decoding problems were exactly solved using the so called

`Hyperbell algorithm' (Courrieu, 1997). It turned out that

the number of steps of the algorithm for ®nding exact solu-

tions was about 455 £ 10m, where each step required encod-

ing a cluster. Clearly, this is not a practical solution.

2.6. An example of application

The above described encoding method was recently used

in sport's science area for encoding and comparing basket-

ball play con®gurations (Courrieu, Ripoll, Ripoll, Baratgin

& Laurent, submitted; Baratgin, Ripoll, Ripoll, Courrieu &

Laurent, submitted). Basketball play con®gurations can be

schematized as illustrated in Fig. 1. In this type of represen-

tation, ground marks provide a reference, the dot stands for

the ball, crosses represent attackers, and segments represent

P. Courrieu / Neural Networks 14 (2001) 175±183178

Table 1

Mean distances (and standard deviations) in the space of codes (d(C, C 0),
®rst method), and in the space of data (Hausdorff), as a function of the

modi®cation scale d

d d(C, C 0) Hausdorff

0.0001 000.11 (0.04) 0.0002 (0.0000)

0.001 001.10 (0.43) 0.0015 (0.0001)

0.01 010.71 (4.12) 0.0154 (0.0009)

0.02 021.33 (8.27) 0.0309 (0.0019)

0.04 043.64 (17.3) 0.0615 (0.0041)

0.08 087.96 (36.0) 0.1232 (0.0086)

0.16 163.79 (57.6) 0.2450 (0.0182)

0.32 331.29 (129) 0.4814 (0.0375)

0.64 602.82 (262) 0.8909 (0.0783)

1.28 886.72 (243) 1.2303 (0.1692)

60

defenders with their orientation. Coaches commonly use

such representations for training basketball teams. A play

con®guration can be described as a set of three clusters: the

ball which is a cluster of one point in the plane, the attacker

team, which is a cluster of ®ve points in the plane, and the

defender team, which is a cluster of ®ve points in a four

dimension space since each defender is represented by his

position in the plane (two coordinates) and his orientation

(two more coordinates). A convenient way of representing a

defender consists of taking his ªleft handº and ªright handº

plane coordinates. Then, it suf®ces to encode each of the

three clusters as described above, and to concatenate the

resulting codes, in ®xed order, in a global vector (312 real

coef®cients). This vector unequivocally represents the

multicluster play con®guration. Fig. 1 shows four close

con®gurations (numbered from 1 to 4), each of them

being obtained from the previous one by changing the posi-

tion of one player, while the ®fth con®guration (X) is very

different from the other ones. Euclidean distances between

codes associated to these con®gurations were computed and

they are shown at the bottom-right of Fig. 1. As one can see,

these distances re¯ect the differences between play con®g-

urations in a quite natural way. More advanced results on

this topic are reported in Courrieu et al. (submitted) and

Baratgin et al. (submitted).

3. Second method: cluster codes depending on a
separating variable

This method satis®es requirements (1) and (3) for any

cluster, and requirements (2) and (4) in most cases, but

not all. Its advantages are that the generated code is concise

(nm real coef®cients), and that decoding, when possible, is

very simple. Moreover, a simple inspection of a code vector

immediately shows whether or not decoding is allowed.

This method is particularly adapted for encoding and decod-

ing pseudo-sequences of points. A possible application ®eld

is the encoding of sets of seismic events, such events being

rarely simultaneous if the time is measured with relatively

high precision. Another possible application ®eld is the

P. Courrieu / Neural Networks 14 (2001) 175±183 179

Fig. 1. Five schematized basketball play con®gurations and the Euclidean distances between their associated codes (®rst method applied by Courrieu et al.,

submitted; Baratgin et al., submitted).

61

analysis of sequences of regularly sampled physical

measures (e.g. acoustical or electrophysiological measures).

3.1. The one variable case

The one variable case is very simple since points of R are

naturally ordered. Then it is suf®cient to order data points in

increasing order (or in fact any ®xed order) of their values to

obtain a cluster code which trivially satis®es requirements

(1)±(4) in all cases. In particular, decoding is simply the

identity mapping. In the case where all points of a cluster

of R have distinct coordinates, we say that the variable

separates the points of this cluster. The set of clusters for

which the variable is not separating (i.e. clusters which have

repeated points) is a set of zero measure. To be convinced of

this, note that for any cluster size m . 1, the set of clusters

with repeated points is the union of hyperplanes of Rm

whose equations are xi 2 xj� 0, 1 # i , j # m. This is

obviously a zero measure subset of Rm.

3.2. Encoding clusters of Rn

Let t be the ®rst coordinate of Rn, and consider a cluster of

m points {Xj� (tj, x2j, ¼, xnj); 1 # j # m } in Rn, where

points have been ordered in such a way that tj # tj11,

1 # j # (m 2 1). Let g(t) be a stricly monotonic continuous

function, and form the square matrix S� (sij), 1 # i # m,

1 # j # m, where sij� [g(tj)]
i21. All coef®cients in the ®rst

row of the matrix S have value [g(.)]0� 1, and remaining

rows are successive integer powers of the second row coef-

®cients. A matrix with such a structure has a determinant,

called `Vandermonde determinant', which is:

detS �
Y

1#j,k#m

�s2k 2 s2j�:

It is clear that this determinant is different from zero if and

only if all coef®cients in the second row have different

values. Given that g is strictly monotonic, one obtains:

detS ± 0, tj ± tk; 1 # j , k # m:

Now, consider the vectors T� (tj), 1 # j # m, and Vi� (xij),

1 # j # m, 2 # i # n. The m £ n matrix C whose ®rst

column is C1� T, and whose ith column is Ci� SVi,

2 # i # n, is a code which satis®es requirements (1) and

(3) in all cases. The ®rst column encodes only one variable

(t), then after Section 3.1, the conventional increasing order

of C1 components is appropriate. On the other hand, the

columns Ci, i . 1, do not depend on any ordering of points:

let p be an m £ m permutation matrix, then a permutation of

the points gives Ci� Spp 0Vi� SVi, where p 0 denotes the

transposed of p, which is equal to its inverse given that

any permutation matrix is orthogonal. This guarantees the

property (1), while the property (3) results from the fact that

g is continuous and the encoding only implies products and

sums. Moreover, if det S ± 0, then S is inversible and

Vi� S21Ci, 2 # i # n, where S, and then S21, can be

computed from the column C1. In other words, this encoding

satis®es requirements (2) and (4) if and only if the t variable

separates the cluster's points. After Section 3.1, the set of

clusters for which t is not separating is a set of zero measure,

however it is not an empty set. Now, a simple inspection of

the column C1 of the code immediately shows whether it

contains equal coef®cients, that is, if decoding is allowed or

not. When a code was obtained as the output of an approxima-

tion process (neural network), it can happen that the compo-

nents of C1 are not in increasing order. This is not problematic,

since the set of points provided by decoding will be the same,

in permuted order (since (Sp)21 Ci� p 0S21Ci� p 0Vi).

However, if comparisons between codes are required, then

it is necessary to reorder C1 (and only C1!).

The code has another property which can be useful in

certain applications. Let V be the matrix whose columns

are the Vi`s, let W be the matrix whose columns are the

Ci's, 2 # i # n, and let B be any (n 2 1) £ (n 2 1) real

matrix. Then, the cluster whose coordinate matrix is

(T, VB) has the code matrix (T, WB), since the matrix S

only depends on T, and W� SV implies that SVB�WB.

In other words, applying a linear transform to the data coor-

dinates, without changing the ®rst coordinate, results in

applying the same transform to the code.

3.3. Practical choice of g(t)

After Section 3.2, the only theoretical requirements for

the g function are that the function is continuous and strictly

monotonic. Now, depending on this function, successive

powers which are used in the matrix S can rapidly go to

very high or very low values. Hence, one must choose the

g function in such a way that none of the coef®cients of S

tends to in®nity as the power (i.e. the row number)

increases. This means that 21 # g(t) # 1, for all possible

values of t. A solution is g(t) � 2F(t) 2 1, where F(t) is a

continuous strictly monotonic approximation of the cumu-

lative probability function of t. Another advantage of this

solution is that the distribution of g(t) is approximately

uniform in [21, 1]. Note that one can as well choose

g(t)� F(t), and then the variation interval is [0, 1].

3.4. Summary of the method

For the whole application:

² choose one of the variables, which is the most probably

separating, as the variable t,

² determine a function g(t)� 2F(t) 2 1, or g(t)� F(t),

where F(t) is a strictly monotonic continuous approx-

imation of the cumulative probability function of t.

Encoding a cluster:

² form the matrix S� (sij), sij� [g(tj)]
i21,

² the ®rst column of the code is C1� T, in increasing

order of t values,

² the ith column of the code is Ci� SVi, 2 # i # n.

Decoding a code matrix:

² T� C1,

P. Courrieu / Neural Networks 14 (2001) 175±183180

62

² if all components of T have distinct values then the

code is decodable, and one forms the matrix S as for

the encoding,

² Vi� S21Ci, 2 # i # n.

Note: If certain values of t are very close, then the matrix S

is ill-conditioned, which implies that a small approximation

error of Ci can result in a quite large approximation error in

the decoded Vi.

3.5. Computational test

Given that the above described encoding satis®es require-

ments (1) and (3) in all cases, various topological properties

of data spaces are preserved in code spaces. However, since

this encoding does not satisfy requirement (2) everywhere,

there is a potential drawback which is that two distinct

clusters can have the same code, and combined with (3),

there are quite different clusters which have close codes.

Now, since the set of unseparated clusters is of zero

measure, one can hope that the drawback is limited and

has statistically weak effect. For the computational test,

we generated 20 uniformly random clusters of m� 128

points in [21, 1]16 (i.e. n� 16). Ten modi®ed versions of

each cluster were generated by adding a random quantity,

uniformly sampled in [2d , d], to each coordinate of each

point. The modi®cation scale d was experimentally varied

from 0.0001 to 1.28, and each added quantity was even-

tually resampled until the modi®ed coordinate was in

[21, 1]. The distance between the code C of a cluster and

the code C 0 of a modi®ed version was de®ned as the Eucli-

dean matricial norm of the difference of codes: d�C;C 0� ���C 2 C 0
��;���� which is equivalent to the Euclidean distance in

Rnm. We also computed, for comparison, the Hausdorff

distance between clusters in the data space. Mean distances

(and standard deviations) are reported in Table 2.

As one can see in Table 2, the distance of codes is, on the

average, a monotone increasing function of the modi®cation

scale, as is the Hausdorff distance (however the relations are

not linear). Hence, it seems that the encoding method has

reasonable properties for practical use. Now, it is clear that

when one chooses learning examples for a neural algorithm,

it is desirable to avoid those examples of clusters whose ®rst

coordinate is not separating. When decoding an approxi-

mated output code, one has to consider with caution clusters

whose points are very irregularly spaced on the ®rst coordi-

nate (in fact, what is important is the spacing of g(t) values).

3.6. An example of pseudo-sequence problem

One can suspect that many natural processes are in fact

pseudo-sequences, that is sequences of randomly ordered

events or random mixtures of several distinct processes. In

order to show how the above cluster encoding method can

help to solve pseudo-sequence problems, we take now the

example of sequences made of a random mixture of two

independent processes: a process generated by the well-

known logistic map, and a process generated by the so

called `kappa map' (Husmeier & Taylor, 1998). A logistic

process will be de®ned by:

y�t 0 1 1� � ay�t 0��1 2 y�t'��; y�0� � 0:5;a [�3; 4�;
while a kappa process will be de®ned by:

z�t 00 1 1� � 1 2 z�t 00�k; z�0� � 0:5; k [�0:5; 1:25�:
Taking t� t 0 1 t 00, one can de®ne a pseudo-sequence by:

x�t 1 1� � y�t 0 1 1� with probability p�t 0; t 00;Dmax�;

x�t 1 1� � z�t 00 1 1� with probability 1 2 p�t 0; t 00;Dmax�;
where the probability of processes is given by:

p�t 0; t 00;Dmax� � max�0;min�1; 0:5 1 0:5�t 00 2 t 0�=Dmax��;
where Dmax .0 is an integer number.

Note that if Dmax tends to in®nity then p� 0.5 at any step,

independently of previous events, while taking a low value

for Dmax constrains t 0 and t 00 to remain close to each other.

This is a way of limiting the random variability of the

mixture. However, the global probability of each of the

two processes is always 0.5.

A sequence can be considered as a cluster {(t, x(t));

1 # t # m} in R2, where t is obviously a separating variable

uniformly distributed in the interval [1, m]. Then one can

take g(t)� t/m and apply the cluster encoding method. In

this study, we take m� 200, and we can draw the sequences

given that they are in R2. Note, however, that the same

methodology can as well be applied with higher dimension

(vector sequences), but this would be hard to draw.

Each of the two component processes of a sequence

depends on a parameter, and each pair of parameters

(a , k) corresponds to a family of random mixtures of the

same processes, while changing the parameters leads to

another family (see Fig. 2). The question is: does the cluster

code re¯ect the family the sequence belongs to? If this is the

case, then the distance between codes of sequences belong-

ing to the same family must be lower than the distance

between codes of sequences belonging to distinct families,

P. Courrieu / Neural Networks 14 (2001) 175±183 181

Table 2

Mean distances (and standard deviations) in the space of codes (d(C, C 0),
second method), and in the space of data (Hausdorff), as a function of the

modi®cation scale d

d d(C, C 0) Hausdorff

0.0001 00.09 (0.06) 0.0003 (0.0000)

0.001 00.89 (0.47) 0.0029 (0.0001)

0.01 06.31 (2.78) 0.0290 (0.0009)

0.02 10.84 (5.18) 0.0580 (0.0018)

0.04 16.30 (5.09) 0.1157 (0.0029)

0.08 23.72 (7.48) 0.2317 (0.0063)

0.16 29.26 (7.05) 0.4610 (0.0105)

0.32 36.33 (7.78) 0.9187 (0.0253)

0.64 43.57 (5.73) 1.8009 (0.0607)

1.28 57.36 (6.54) 2.5288 (0.0908)

63

and the encoding method can be used for building robust

sequence classi®ers (for example). Of course, cluster codes

are useful only if they re¯ect the component processes better

than data themselves.

A code distance can be de®ned, as in Section 3.5, by the

Euclidean norm of the difference of codes, while a data

distance can be de®ned in the same way, replacing the

code components by the (sequentially ordered) data points.

Note that, in the present case, distances do not depend on the

values of t, since these values are the same for all sequences.

A computational experiment was designed as follows. Four

values of Dmax were selected (2, 3, 4, and 200). For each of

these values, a uniform random sample of 80 pairs of para-

meters (a , k) was generated in the sampling intervals of these

parameters. 40 of these pairs were used for generating 40 pairs

of sequences (m� 200), the two sequences in a pair being

distinct random mixtures of the same two processes. The

remaining 40 pairs of parameters were randomly associated

to the previous ones for generating 40 other pairs of sequences,

the two sequences in a pair being random mixtures of

(randomly) distinct processes. The data distance and the

code distance were computed for each pair of sequences.

Mean distances (and standard deviations on 39 degrees of

freedom) for all experimental conditions are reported in

Table 3. In addition, Student t tests (with 78 degrees of free-

dom) were used for comparing the distances between

sequences generated with similar processes to the distances

between sequences generated with distinct processes. Statis-

tical signi®cance was tested according to the usual decision

threshold p , 0.05 (while `n.s.' means that the tested differ-

ence is statistically non signi®cant).

As one can see in Table 3, with Dmax� 2, the data

distance was just signi®cantly lower for similar processes

than for distinct processes, while for higher values of Dmax,

the data distance clearly does not allow for detecting the

similarity of processes. Contrasting with this result, the code

distance was always largely and signi®cantly lower for simi-

lar processes than for distinct processes. Hence, the

proposed encoding method clearly appears as an ef®cient

tool for solving pseudo-sequence problems. Moreover, this

P. Courrieu / Neural Networks 14 (2001) 175±183182

Fig. 2. Two pairs of sequences generated by a random mixture of independent logistic and kappa processes (Dmax� 200). Codes were computed using the

second method.

64

result suggests that the tool allows for robust comparisons of

sequences in general.

4. Conclusion

Two methods for encoding clusters were presented. In

applications, cluster codes can be used for comparisons or

as arguments of various functions (Spline functions, Radial

Basis functions, etc.), and decodable codes can also be used

as output of approximation processes. The ®rst method is

the best one from a theoretical point of view since it satis®es

all requirements speci®ed in the Introduction, for all clus-

ters. This method has limited applications in practice since,

due to its relative complexity, it is reserved for small clus-

ters in low dimension spaces, and applications which do not

require decoding. However, it is well adapted for encoding

multicluster con®gurations, and an example of application

in sport's science area was provided. The second method

has some theoretical drawbacks, but it is very simple and

concise, which makes it usable in most practical cases.

There is no special limitation concerning the size or the

dimension of clusters and practical examples were provided.

A reviewer asked whether the presented coding schemes are

local or global. The answer is that the two coding schemes

have the unusual property of being simultaneously local and

global. They are global in that sense that any code compo-

nent depends on all points of the cluster. On the other hand,

they are local in that sense that any point of the cluster can

be exactly deduced from the code. Finally, one can note that

there are probably other possible approaches to the problem

of encoding clusters, in particular in the ®eld of algebraic

geometry, and this is a matter for further research.

Acknowledgements

This work was partially supported by a grant from Minis-

teÁre de l'Education Nationale, de la Recherche et de la

TechnologieÐACI `Cognitique' (1999, #90).

References

Baratgin, J., Ripoll, T., Ripoll, H., Courrieu, P. & Laurent, E., submitted.

Similarity judgment of basketball play con®gurations by experts and

novices. Part 2: ®rst experimental tests.

Barnsley, M. F. (Academic PreP). Fractals Everywhere, (2nd ed.).

Courrieu, P. (1997). The Hyperbell algorithm for global optimization: a

random walk using Cauchy densities. Journal of Global Optimization,

10, 37±55.

Courrieu, P., Ripoll, T., Ripoll, H., Baratgin, J. & Laurent, E., submitted.

Similarity judgment of basketball play con®gurations by experts and

novices. Part 1: theoretical approach.

Diaconis, P., & Freedman, D. (1999). Iterated random functions. SIAM

Review, 41, 45±76.

Husmeier, D., & Taylor, J. G. (1998). Neural networks for predicting

conditional probability densities: improved training scheme combining

EM and RVFL. Neural Networks, 11, 89±116.

Ingber, L., & Rosen, B. (1992). Genetic algorithms and very fast simulated

reannealing: a comparison. Mathl. Comput. Modelling, 16, 87±100.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal

representations by error propagation. In D. E. Rumelhart & J. L.

McClelland, Parallel Distributed Processing, vol. 1. Cambridge, MA:

MIT Press.

Solis, F. J., & Wets, R. J. -B. (1981). Minimization by random search

techniques. Mathematics of Operations Research, 6, 19±30.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3,

109±118.

Traven, H. G. C. (1991). A neural network approach to statistical pattern

classi®cation by ªsemiparametricº estimation of probability density

functions. IEEE Transactions on Neural Networks, 2, 366±377.

P. Courrieu / Neural Networks 14 (2001) 175±183 183

Table 3

Mean data distance and code distance (with standard deviation) between sequences made of distinct random mixtures of independent logistic and kappa

processes. The component processes of two compared sequences can be similar or randomly distinct. When processes are similar, lowering Dmax results in

bringing the ranks of similar values of the two sequences nearer

Dmax 2 3 4 200

Data distance

Similar (a , k) 3.27 (0.90) 4.15 (1.15) 3.79 (1.10) 3.55 (0.99)

Distinct (a , k) 3.66 (0.75) 4.10 (0.82) 4.07 (0.88) 3.80 (0.96)

Student t(78), signi®cance 2.10, p , 0.05 0.21, n.s. 1.23, n.s. 1.12, n.s.

Code distance

Similar (a , k) 2.66 (2.63) 4.06 (3.60) 3.15 (2.98) 3.76 (1.73)

Distinct (a , k) 9.24 (5.33) 9.57 (6.32) 10.07 (6.03) 8.89 (4.52)

Student t(78), signi®cance 7.00, p , 0.001 4.79, p , 0.001 6.52, p , 0.001 6.70, p , 0.001

65

66

Straight monotonic embedding of data sets in Euclidean spaces

Pierre Courrieu*

Laboratoire de Psychologie Cognitive, CNRS-UMR 6146, Université de Provence, 29 avenue Robert Schuman, 13621 Aix-en-Provence Cedex 1, France

Received 12 July 2001; accepted 15 May 2002

Abstract

This paper presents a fast incremental algorithm for embedding data sets belonging to various topological spaces in Euclidean spaces. This

is useful for networks whose input consists of non-Euclidean (possibly non-numerical) data, for the on-line computation of spatial maps in

autonomous agent navigation problems, and for building internal representations from empirical similarity data. q 2002 Elsevier Science

Ltd. All rights reserved.

Keywords: Non-Euclidean data sets; Monotonic embedding; Multidimensional scaling; Singular Cholesky factor; Spatial maps

1. Introduction

The main concern of this paper is the spatial represen-

tation in Euclidean spaces of data sets belonging to metric

or non-metric topological spaces. In a previous study

(Courrieu, 2001), the particular case of spaces of clusters

was treated, a cluster being defined as a finite unordered set

of points. Two methods were proposed for encoding clusters

in an Euclidean code space, while preserving various

topological properties of data spaces. The present work

concerns other types of data spaces, and is related to a well

known field in data analysis, i.e. ‘multidimensional scaling’

(Cox & Cox, 1994; Kruskal, 1964a,b; Shepard, 1962a,b;

Young & Torgerson, 1967). Usual multidimensional scaling

algorithms search for a set of points of Rn whose mutual

distances (for a given metric) approximate a given

‘dissimilarity’ measure between the corresponding elements

of the data space, while the dissimilarity measure is not

necessarily a metric. Most of these algorithms attempt to

minimize an error criterion using a gradient descent type

procedure, which gives rise to quite slow computation and

frequently causes the search process to be trapped into local

minima. A recent variant of gradient descent allows for

improving the performance of these methods (Demartines &

Hérault, 1997). From a mathematical point of view,

multidimensional scaling is closely related to the well

known ‘isometric embedding’ problem (Blumenthal, 1936;

Fréchet, 1910; Micchelli, 1986; Schoenberg, 1937, 1938).

This connection will be widely exploited in this paper.

The Neural Networks community is concerned with this

problematic in several ways. First, neural computation

research has developped powerful methods for approximat-

ing continuous mappings on compact subsets of Euclidean

spaces, from finite sets of data points. The Euclidean nature

of the support space is particularly clear for Radial Basis

Function Networks and Radial Spline systems (Girosi &

Poggio, 1990; Poggio & Girosi, 1990), since Radial Basis

Functions are functions of an Euclidean distance on the

input space. Moreover, fundamental properties of networks,

such as their approximation and regularization capabilities,

critically depend on the hypothesis concerning the support

space. However, as concerns practical applications, one can

note that available data spaces are frequently not Euclidean,

and even that they are frequently not real vectorial spaces.

This results in difficulties for engineers faced with

implementing artificial neural network applications, since

they must transform given data spaces into real vectorial

spaces empirically, and in general without any guarantee

concerning the relevance of this operation. Certain numeri-

cal data sets can be artificially considered as Euclidean

spaces, however, using an Euclidean metric on such data

sets frequently leads to very disappointing results. A well

known example of this is the case of numerical time series:

one can always consider time series as vectors and compute

an Euclidean distance between two vectors, however, this is

rarely relevant. Dissimilarity measures provided by

Dynamic Programming methods (‘elastic template match-

ing’) are in general much more appropriate, however, the

0893-6080/02/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved.

PII: S0 89 3 -6 08 0 (0 2) 00 0 91 -6

Neural Networks 15 (2002) 1185–1196

www.elsevier.com/locate/neunet

* Corresponding author. Tel.: þ33-4-42-95-37-28; fax: þ33-4-42-20-59-

05.

E-mail address: courrieu@up.univ-mrs.fr (P. Courrieu).

67

http://www.elsevier.com/locate/neunet

resulting space is not Euclidean, a priori, and in fact it is not

necessarily metric if the measure used is not a true metric

(Okochi & Sakai, 1982; Vinstuk, 1968). There are also data

spaces which are not numerical, such as spaces of symbol

strings, for example. However, there are well-known

methods for defining dissimilarity measures on symbol

string spaces, these measures being called ‘edition dis-

tances’ (Lowrance & Wagner, 1975; Wagner & Fischer,

1974). One can find many other examples of data spaces

which are not Euclidean, or even not numerical, but on

which one can define a dissimilarity measure which has at

least some properies of a metric. In general, triangle

inequality is the most difficult property to obtain. Now,

assume that one can define a simple continuous strictly

increasing transform of a dissimilarity measure, and the

useful part of the data space with this monotonically

transformed dissimilarity measure is a metric set iso-

metrically embeddable in an Euclidean space (this is a

‘monotonic embedding’). It is clear that this would help to

solve a number of practical problems of data encoding for

neural network applications. Another field of interest

concerns autonomous agents (alive or artificial) which

must locate objects and themselves in a given environment,

using approximative evaluations of distances for building a

‘spatial cognitive map’. The interest of multidimensional

scaling in this navigational context is obvious, however, this

requires on line computation, that is simple and fast

algorithms. The problem is clear for robotic applications,

while the principle of an on line computation of spatial

cognitive maps also seems relevant from a neurobiological

point of view if one consider the behavior of hippo-

campal place cells (Cressant, Muller, & Poucet, 1997, 1999;

Muller, 1996; O’Keefe & Nadel, 1978; Poucet, Save, &

Lenck-Santini, 2000). Finally, multidimensional scaling

methods were widely used in the area of psychological

science for approximating the so-called ‘psychological

spaces’ from empirical subjective similarity data (Nosofsky,

1992; Shepard, 1987). This can be viewed as a generaliz-

ation of spatial cognitive maps to more abstract spaces.

In this paper, we present a particular approach of

multidimensional scaling which, in a sense, is less general

than usual multidimensional scaling methods, since it does

not allow for embedding data sets in any real metric space.

However, the method developed here is particularly

appropriate to neural network applications since it allows

for an exact monotonic embedding of data sets in Euclidean

spaces, using a straight, fast and incremental algorithm. The

incremental character of the algorithm implies that one can

embed any new item without recomputing or modifying the

embedding of previously embedded items. This is absol-

utely necessary for embedding the current input of a

network, or of a navigation system, without modifying the

embedding of the learning set (and hence the network itself),

or of the landmarks. A straight fast procedure is required for

on-line computation, while the exactitude of the embedding

is not the most relevant characteristic in the case of noisy

data, however, this is a way of obtaining fast computation.

The present approach lies on mathematical fundations

which extend the earlier mentioned classical results

concerning the isometric embedding problem. Surprisingly,

these classical results were much more widely used in the

study of positive definite functions than in the field of

multidimensional scaling, despite the fact that multidimen-

sional scaling is basically an isometric (or monotonic)

embedding problem.

2. Conventions and background

2.1. Notations

The identity matrix is denoted I. The transposed row

vector of a collumn vector v is denoted v0, while the

transposed matrix of a matrix Q is denoted Q0. For

specifying the content and size of a function vector or a

function matrix, it will be convenient to use notations of the

form:

v ¼ ½vi�i¼1;…;n;

where vi can be an expression,

D ¼ ½dij�i; j¼0;…;n;

where dij can be an expression.

For example, let A, B and C be three ðn þ 1Þ £ ðn þ 1Þ

matrices, then

A þ B 2 C ¼ ½aij þ bij 2 cij�i; j¼0;…;n:

2.2. Usual definitions

2.2.1. Topological and metric spaces

A ‘metric’ or ‘distance’ associated to a set S, is a real

valued function d on S £ S such that, for any a; b; c [S; one

has the four following properties: (1) dða; bÞ $ 0 and

dða; aÞ ¼ 0; (2) dða; bÞ ¼ dðb; aÞ; (3) dða; bÞ # dða; cÞ þ

dðb; cÞ; (4) if a – b then dða; bÞ . 0: The triangle inequality

(3) can also be writen as dða; bÞ $ ldða; cÞ2 dðb; cÞl:
A function which satisfies only requirements (1)–(3) is

called a ‘semi-metric’. A function d0 which satisfies only

requirements (1) and (2) is sufficient for inducing a topology

on S. An open (resp. closed) ‘ball’ of center x [S; and of

radius r $ 0; is the set of points {y [S; d0ðx; yÞ , rðresp: #

rÞ}: The set of all balls is a neighbourhood system and then,

ðS; d0Þ is a topological space. Now, if d is a true metric, then

ðS; dÞ is called a ‘metric space’, or ‘metric set’. If S is a finite

set of n þ 1 elements, then one can associate to ðS; dÞa

‘distance matrix’ of the form D ¼ ½dij�i; j¼0;…;n; and one can

do the same even if d is not a true metric (while avoiding the

term ‘distance matrix’ in this case).

P. Courrieu / Neural Networks 15 (2002) 1185–11961186

68

2.2.2. Minkowskian metrics

A Minkowskian metric is a metric associated to Rn of the

form

MqðX;YÞ ¼
Xn

i¼1

lxi 2 yil
q

 !1=q

; q $ 1:

The most usual Minkowskian metrics are the ‘city-block’

metric M1, the Euclidean metric M2, and the ‘dominance’

metric M1ðX; YÞ ¼ maxi lxi 2 yil: While all Minkowskian

metrics are invariant by changing the origin or the sign of

coordinates, the Euclidean metric is the only one which is

also invariant by any orthogonal transform of the coordin-

ates (e.g. rotation).

2.2.3. Embeddings

A metric space ðS0; d0Þ is said to be ‘isometrically

embeddable’ in a metric space ðS; dÞ if there is a

mapping f from S0 to S such that, for any a; b [S0; one

has dðf ðaÞ; f ðbÞÞ ¼ d0ða; bÞ:

A topological space ðS0; d0Þ will be said to be ‘mono-

tonically embeddable’ in a metric space ðS; dÞ iff there is

a continuous strictly increasing function g on [0,1) such

that ðS0; gðd0ÞÞ is a metric space isometrically embeddable

in ðS; dÞ:

2.2.4. Properties of symmetric matrices

The ‘Rayleigh’s ratio’ of a symmetric matrix B by a non-

zero vector v is the ratio RBðvÞ ¼ v0Bv=ðv0vÞ: The lowest

eigenvalue of B is equal to infv RBðvÞ; while the greatest

eigenvalue of B is equal to supv RBðvÞ:

A real symmetric matrix B of order n £ n is said to be

‘positive definite’ iff for any vector v [Rn; one has:

v0Bv $ 0: It is equivalent to say that none of the

eigenvalues of B is negative.

A real symmetric matrix B of order n £ n is said to be

‘strictly positive definite’ iff for any non-zero vector v [
Rn; one has: v0Bv . 0: It is equivalent to say that all

eigenvalues of B are strictly positive.

A real symmetric matrix B of order n £ n is said to be

‘almost negative definite’ (Donoghue, 1974; Micchelli,

1986) iff for any vector v [Rn such that
Pn

i¼1 vi ¼ 0; one

has: v0Bv # 0:

A real symmetric matrix B of order n £ n will be said to

be ‘almost strictly negative definite’ iff for any non-zero

vector v [Rn such that
Pn

i¼1 vi ¼ 0; one has: v0Bv , 0:

2.3. Useful theorems

Bessel–Parseval’s inequality. Let H be a pre-Hilbert

space, and ðeiÞi¼1;…;m be an orthonormal family of H. Then,

for any vector x [H; the family ðlkx; eill
2
Þi¼1;…;m is

summable and
Pm

i¼1 lkx; eill
2
kxk2; where k·,·l denotes the

scalar product of H, and k·k is the corresponding norm. The

orthonormal family ðeiÞi¼1;…;m is complete for

x iff
Pm

i¼1 lkx; eill
2
¼ kxk2 (Parseval’s identity).

Theorem 1 (Gerschgorin). Let B be a square n £ n matrix.

Then all eigenvalues of B belong to the union of the intervals

defined by

lx 2 biil #
X
j–i

lbijl; 1 # i # n:

Lemma 1 (Fréchet, 1910; Schoenberg, 1938). Any finite

metric set ðS; dÞ of n þ 1 points may be embedded

isometrically in ðRn;M1Þ:Solution:

½xij�i¼1;…;n; j¼0;…;n ¼ ½dij�i¼1;…;n; j¼0;…;n:

Theorem 2 (Schoenberg, 1937, 1938; Micchelli, 1986). A

necessary and sufficient condition for the isometric

embeddability of a finite metric set ðS; dÞ of n þ 1 elements

in an Euclidean space is that one of the two following

statements be true:

(i) the matrix ½d2
0i þ d2

0j 2 d2
ij�i; j¼1;…;n is positive definite,

(ii) the matrix ½d2
ij�i; j¼0;…;n is almost negative definite.

Moreover one has (i) , (ii).

Corollary 1. The two following statements are equivalent:

(iii) the matrix ½d2
0i þ d2

0j 2 d2
ij�i; j¼1;…;n is strictly positive

definite,

(iv) the matrix ½d2
ij�i; j¼0;…;n is almost strictly negative

definite.

Proof. It suffices to replace ‘ $ ’ and ‘ # ’ by ‘ . ’ and

‘ , ’, respectively, in the inequalities stated by Schoenberg

(1938, pp. 525–526). A

Corollary 2. If the finite metric set (S,d) is isometrically

embeddable in an Euclidean space, then the required

minimum dimension of this space is equal to the rank of the

matrix ½d2
0i þ d2

0j 2 d2
ij�i; j¼1;…;n:

Proof. Considering d as an Euclidean distance and taking

the element of S with the index 0 as the origin (that is

X0 ¼ 0), one has:

d2
0i þ d2

0j 2 d2
ij ¼ kXik

2
þ kXjk

2
2 kXi 2 Xjk

2
¼ 2Xi·Xj;

that is

½d2
0i þ d2

0j 2 d2
ij�i; j¼1;…;n ¼ 2X0X:

Since X0X is symmetric, one has X0X ¼ QDQ0; where Q is

the orthogonal matrix of eigenvectors, and D is the diagonal

matrix of eigenvalues of X0X: Since these eigenvalues are

not negative (after Theorem 2), on can take X ¼ D1=2Q0 as

P. Courrieu / Neural Networks 15 (2002) 1185–1196 1187

69

an embedding solution. Then the number of dimensions is

equal to the number of non-zero eigenvalues, and this

completes the proof. A

3. Monotonic embeddability in metric spaces

In this section, one examines general conditions of

monotonic embeddability of data sets in a real metric space,

whenever it is not required that this space be Euclidean.

Lemma 2. Let S be any finite set comprised of n þ 1 distinct

elements, and let m be a real valued function on S £ S such

that, for any a; b [S; one has mða; aÞ ¼ 0; and if a – b then

mða; bÞ ¼ mðb; aÞ . 0; mða; bÞ , 1: Then there is a real

gðSÞ . 0 such that for any stricly positive real p # gðSÞ; the

space ðS;mPÞ is a metric set isometrically embeddable in

ðRn;M1Þ.

Proof. Consider the matrix ½mij�i; j¼0;…;n associated to the

(non-metric) space ðS;mÞ; let inf m ¼ mini–j mij . 0; and

sup m ¼ maxi–j mij: Then, for a real p . 0; the space ðS;mpÞ

is a metric set provided that for any i, j, k, one has the

triangle inequality m
p
ij # m

p
ik þ m

p
kj; which is guaranteed

if p is such that ðsup mÞp # 2ðinf mÞp; that is p #

lnð2Þ=lnðsup m=inf mÞ # gðSÞ: Then the isometric embedd-

ability of ðS;mpÞ in ðRn;M1Þ results from Fréchet–

Schoenberg’s lemma (i.e. Lemma 1), which proves

Lemma 2. A

Given Lemma 1, it is quite natural to ask whether any

finite metric set is isometrically embeddable in an Euclidean

space. The answer to this question is easy, since one can find

many decisive examples.

Lemma 3. There are finite metric sets which are not

isometrically embeddable in an Euclidean space.

Proof. Consider finite metric sets of n þ 1 elements, n $ 4,

whose distance matrices have the following structure.

Chose a real vector z [Rn; n $ 4, such that

kzk ¼ 1; lzil # 1=2; 1 # i # n; ðzi 2 zjÞ
2 # 3=4;

1 # i # j # n:

Define the distances by

dii ¼ 0; 0 # i # n; d0i ¼ di0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1=2 2 z2

i

q
;

1 # i # n; dij ¼ dji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ðzi 2 zjÞ

2
q

;

1 # i , j # n:

Using this definition, one obtains

1=2 # dij ¼ dji # 1; 0 # i , j # n;

and then, for any i, j, k, one has

dij # dik þ dkj;

which is triangle inequality. Since d obviously has the other

properties of a distance, it is clear that this is actually a

metric for the considered set.

Now, one has also

2d2
0i ¼ 1 2 2z2

i ;

d2
0i þ d2

0j 2 d2
ij ¼ 2z2

i 2 z2
j þ ðzi 2 zjÞ

2 ¼ 22zizj;

that is

½d2
0i þ d2

0j 2 d2
ij�i; j¼1;…;n ¼ I 2 2zz0;

where the right member is, by definition, a Householder’s

matrix. Since one has

z0ðI 2 2zz0Þz ¼ 21;

it is clear that the matrix ½d2
0i þ d2

0j 2 d2
ij�i; j¼1;…;n is not

positive definite, and then, following Theorem 2, the finite

metric set whose distance matrix is ½dij�i; j¼0;…;n is not

isometrically embeddable in an Euclidean space, which

proves Lemma 3. A

The above proof concerns metric sets of at least five

points. Metric sets of one ore two points are trivially

isometrically embeddable in an Euclidean space. Metric sets

of three points are also embeddable since the triangle

inequality always allows for building a triangle in R 2 with

appropriate side lengths. The case of metric sets of four

points has been studied by Blumenthal (1936), who found

that raising the metric to a positive power, lower or equal to

1/2, compels the embeddability.

4. Monotonic embedding in Euclidean spaces

We have seen in Section 3 that, under quite general

conditions, data sets can be monotonically embedded in at

least one real metric space in a simple way (Lemma 2),

while this does not guarantee the embeddability in an

Euclidean space (Lemma 3). In this section, one states

general conditions of monotonic embeddability of data sets

in Euclidean spaces.

Definition 1. Let S be any set. A ‘dissimilarity’ function

associated to S is a real valued function m on S £ S such that,

for any a; b [S; one has mða; aÞ ¼ 0; and if a – b then

mða; bÞ ¼ mðb; aÞ . 0: The set of dissimilarity functions

associated to S is denoted dðSÞ:

Note that metrics are dissimilarities (which, in addition,

P. Courrieu / Neural Networks 15 (2002) 1185–11961188

70

satisfy triangle inequality), while semi-metrics are not

dissimilarities since they allow distinct elements to have a

zero distance.

Definition 2. One denotes G the set of functions gðm; pÞ of

one real variable m $ 0; and one real parameter p . 0 such

that:

gðm; pÞ is a continuous strictly increasing function of m,

gð0; pÞ ¼ 0;

for any m . 0; for any real e . 0, there is a real a . 0

such that

p # a) lg2ðm; pÞ2 1l # e :

Example 1. Power function gðm; pÞ ¼ mp [G; with the

restriction that sup m , 1 :Without loss of generality, one

can assume that e , 1, then

a ¼

lnðe þ 1Þ=ð2 ln mÞ; if m . 1;

lnð1 2 eÞ=ð2 ln mÞ; if m , 1;

. 0; if m ¼ 1:

8>><
>>:

Example 2. Weibull’s function

gðm; pÞ ¼ 1 2 expð2mr
=pÞ [G; with r . 0 :

with e , 1 one has

a ¼
2mr

lnð1 2
ffiffiffiffiffiffiffi
1 2 e

p
Þ
:

Lemma 4. Let T ¼ ½tij�i; j¼0;…;n be a trivial distance matrix

associated to n þ 1 distinct elements, that is tii ¼ 0; and if

i – j then tij ¼ 1: Consider a symmetric matrix of the form

½g2ðmij; pÞ�i; j¼0;…;n; where m [dðSÞ; for a given set S of

n þ 1 distinct elements (Definition 1), and g [G (Defini-

tion 2). Then for any real e . 0, there is a real a . 0 such

that

0 , p # a) k½g2ðmij; pÞ�i; j¼0;…;n 2 Tk1 # e ;

where the matricial norm kBk1 ¼ maxi Sjlbijl:

Proof. The diagonals of the two symmetric matrices

½g2ðmij; pÞ�i; j¼0;…;n and T are zero, which implies that there

are at most n non-zero differences per row of the difference

matrix. For each non-diagonal cell of the first matrix, there

is a real aij . 0 such that p # aij) lg2ðmij; pÞ2 1l # e =n;

by definition of the function g. This implies that there is an

appropriate real number a such that a $ min0#i,j#n aij . 0;

which completes the proof. A

Theorem 3. Let S be any finite set comprised of n þ 1

distinct elements, consider a dissimilarity m [dðSÞ; and a

function g [G: Then the following two statements are true:

(i) There is a real aðSÞ . 0 such that for any stricly

positive real p # a(S), the space ðS; gðm; pÞÞ is a metric

set isometrically embeddable in an Euclidean space

whose dimension is at most n.

(ii) There is a real bðSÞ . 0; bðSÞ # aðSÞ; such that for

any stricly positive real p , bðSÞ; the space ðS; gðm; pÞÞ

is a metric set isometrically embeddable in an

Euclidean space whose dimension is exactly n.

Proof. Step 1. Let T ¼ ½tij�i; j¼0;…;n be a trivial distance

matrix, whose diagonal coefficients equal 0, and other

coefficients equal 1. Then for any vector v [Rnþ1 such thatPn
i¼0 vi ¼ 0; one obtains

v0Tv ¼ v0
Xn

j¼0

vj

0
@

1
A2 vi

2
4

3
5

i¼0;…;n

¼ v0ð2vÞ ¼ 2kvk2 # 0;

which proves that T is almost negative definite.

Step 2. Consider the symmetric matrix Dp ¼

½g2ðmij; pÞ�i; j¼0;…;n associated to the space ðS; gðm; pÞÞ; for a

given p . 0. One can write

Dp ¼ T þ ðDp 2 TÞ;

and for any vector v [Rnþ1 such that
Pn

i¼0 vi ¼ 0; one has

v0Dpv ¼ v0Tv þ v0ðDp 2 TÞv ¼ 2kvk2 þ v0ðDp 2 TÞv;

after Step 1. Then one obtains the equivalence

v0Dpv # 0 , v0ðDp 2 TÞv # kvk2;

while a sufficient condition for obtaining the last inequality

is that the greatest eigenvalue of the symmetric matrix

ðDp 2 TÞ not be greater than 1 (after usual properties of

Rayleigh’s ratio for symmetric matrices). Now, after the

well-known theorem of Gerschgorin, one knows that the

greatest eigenvalue of any square matrix B cannot exceed

kBk1; while after Lemma 4, there is a real a . 0 such that

0 , p # a) kDp 2 Tk1 # 1:

Then, clearly, for any p in the above interval, the matrix Dp

is almost negative definite, and (i) of Theorem 3 is proved

(in account of Theorem 2 and Corollary 2). Note, however,

that the condition used for defining the upper bound (a) of

the critical interval of p is sufficient but not necessary, and

one has in fact aðSÞ ^ a:

Step 3. After Lemma 4, for any e such that 0 , e , 1, there

is a real b . 0 such that 0 , p # b) kDp 2 Tk1 # e :

Then, for any p in this interval, for any non-zero vector

v [Rnþ1 such that
Pn

i¼0 vi ¼ 0; one has v0Dpv , 0; which

P. Courrieu / Neural Networks 15 (2002) 1185–1196 1189

71

implies that the matrix ½g2ðm0j; pÞ þ g2ðm0j; pÞ2

g2ðmij; pÞ�i; j¼1;…;n is strictly positive definite (after Corollary

1), and then the dimension of the embedding space is

exactly n (after Corollary 2). Note that one has in fact

bðSÞ . b: Moreover, comparing (i) with (ii), it is clear that

bðSÞ # aðSÞ; and Theorem 3 is proved. A

Corollary 3. Let S be a given set of n distinct elements, let V

be a generalization set including S, while m [dðVÞ; and

g [G: Then there is a real aðVlSÞ . 0 such that for any

stricly positive real p # aðVlSÞ; and for any y [V; the

space ðS < {y}; gðm; pÞÞ is a metric set isometrically

embeddable in a n-dimensional Euclidean space.

Proof. One obviously has aðVlSÞ ¼ infy[V aðS < {y}Þ;

while after Theorem 3:

if y [S then aðS < {y}Þ ¼ aðSÞ . 0; if y � S then aðS <
{y}Þ . 0;

which completes the proof. A

When the embedding parameter p tends to 0, the space

ðS; gðm; pÞÞ tends to ðS; tÞ; where t is the trivial distance.

Then the points of the mapping in an Euclidean space tend

to the vertices of an equilateral polytope (e.g. an equilateral

triangle for n ¼ 2; an equilateral tetraedron for n ¼ 3; and

so on), which account for the equidistance of these points.

Then the particular structure of the data set is represented

more and more weakly in the embedding space as p tends to

0. However, as long as p . 0, the structural information

remains available, since the g transform remains inversible,

by virtue of its strict monotonicity with respect to m.

Corollary 3 is particularly important for neural network

applications since it states that one can embed any

generalization item (current input), belonging to a given

generalization set V, together with a finite learning set (or a

set of landmarks) S. Note, however, that this does not mean

that one can globally embed an infinite set V.

5. Relation with the city-block metric

There is a particular relation between city-block metric

sets and Euclidean metric sets. This relation allows for a

very simple determination of an appropriate g function with

an appropriate embedding parameter p, whenever one

knows that a data set is a city-block metric set. Moreover,

it can be important to know such a relation for the study of

psychological spaces, since various observations suggested

that objects described on dimensions of the same nature

(e.g. width and height) are encoded by humans in an

Euclidean space, while objects described on heterogeneous

dimensions (e.g. size and colour) are encoded in a city-block

space. However, there has been some debate on this

question (Ennis, 1988; Nosofsky, 1986; Shepard, 1986).

Lemma 5. Let S be a finite set of n þ 1 distinct points of Rm,

and d be a city-block metric (M1) on S £ S, where d is finite

on this set. Then the set ðS; d1=2Þ is isometrically embeddable

in the Euclidean space ðRn;M2Þ:

Proof. After the definition of a city-block metric, one has

½dij�i; j¼0;…;n ¼
Xm
k¼1

½dðkÞ
ij �i; j¼0;…;n;

where the upper index (k) indexes the dimensions, and

each matrix ½dðkÞ
ij �i; j¼0;…;n is the matrix of a Minkowskian

metric on a real space of dimension 1. In dimension 1,

all Minkowskian metrics are equal, and in particular

they are equal to the Euclidean one. Since the power

function is in G for finite measures, Theorem 3

guarantees that if one raises an Euclidean metric to

the power 1/2, it remains an Euclidean metric (for a

different set of points), and after Theorem 2, if one

squares this new Euclidean metric one obtains that all

matrices ½dðkÞ
ij �i; j¼0;…;n; k ¼ 1;…;m; are almost negative

definite. Since a sum of almost negative definite

matrices is an almost negative definite matrix, one

concludes that ½dij�i; j¼0;…;n is almost negative definite,

which implies that ðS; d1=2Þ is isometrically embeddable

in the Euclidean space ðRn;M2Þ, and Lemma 5 is

proved. A

6. Cholesky factorization of a singular matrix

In this section, one states a result which will be necessary

for defining an embedding algorithm in Section 7. One

knows that a symmetric strictly positive definite matrix B

can be factorized as a product of the form B ¼ X0X; where X

is a non-singular upper triangular matrix. This is the well-

known Cholesky factorization of B. Now, a difficulty arises

whenever B is singular, since in this case the Cholesky

factorization leads to a division by zero resulting from an

indetermination of the form 0·x ¼ 0 in Cholesky’s

equations. The following result allows for removing this

indetermination, and then to define a simple variant of the

Cholesky factorization for possibly singular matrices.

Theorem 4. Let B be a symmetric, possibly singular,

positive definite matrix of order n £ n: Then there is an

upper triangular matrix X such that X0X ¼ B; xii $ 0; 1 #

i # n; and if for an index i one has xii ¼ 0; then xij ¼ 0;

1 # j # n: Moreover, the matrix X with these properties is

unique.

Proof. Existence proof. Since B is symmetric positive

definite, there is a square matrix Y such that Y 0Y ¼ B (for

example Y ¼ D1=2Q0; as in the proof of Corollary 2). One

can define a special variant of the usual QR factorization,

this variant being of the form Y ¼ HX; where H is an

P. Courrieu / Neural Networks 15 (2002) 1185–11961190

72

orthogonal matrix and X is upper triangular:

1. H0 ¼ 0 (auxiliary vector),

2. for j ¼ 1 to n do (3)–(5)

3. Zj ¼ Yj 2
Pj21

k¼0 ðYj·HkÞHk;

4. if Zj ¼ 0 then replace it by any non-zero vector Zj such

that Zj ’ {H1;…;Hj21;Yj;…;Yn};

5. Hj ¼ Zj=kZjk;
6. X ¼ H 0Y :

In the above procedure, Hj or Yj; with j . 0; stands for the

jth column vector of the corresponding matrix. Steps (1),

(2), (3) and (5) correspond to the well-known Gram–

Schmidt orthonormalization process, while a variant is

introduced at step (4). Then a crucial point is the existence

of an appropriate non-zero vector Zj when step (3) provides

a zero vector. All vectors have the dimension n, while if step

(3) provides a zero vector, this means that Yj is a linear

combination of the vectors Hk, k ¼ 1;…; j 2 1: Then the

rank of the matrix whose collumn vectors are

{H1;…;Hj21;Yj;…; Yn} is at most n 2 1, which implies

that there is a non-zero vector of dimension n which is

orthogonal to all these vectors, and step (4) is valid. Now,

one verifies that step (6) provides a matrix X which has all

the desired properties.

X is upper triangular since Hj ’ Yk; k ¼ 1;…; j 2 1:

Using the equation of step (3), one obtains that

Yj·Zj ¼ kYjk
2
2
Xj21

k¼1

ðYj·HkÞ
2 $ 0;

since the vectors Hk, k ¼ 1;…; j 2 1; form an orthonormal-

ized basis (complete or not for Yj), and
Pj21

k¼1 ðYj·HkÞ
2 #

kYjk
2
; by virtue of Bessel–Parseval’s inequality. If the basis

is not complete for Yj, then the above inequality is strict,

which implies that xjj ¼ Hj·Yj . 0; while if the basis is

complete for Yj, then step (3) provides a zero vector, and

step (4) guarantees that Hj is orthogonal to all columns of Y,

which implies that the whole jth row of X is zero.

Finally, one has X0X ¼ Y 0HH 0Y ¼ Y 0Y ¼ B; since H is

orthogonal (that is HH 0 ¼ I), which completes the existence

proof.

Comment. Assume that a vector Hk has been chosen using

step (4). Then this choice does not affect the computation

of the next vectors by step (3) since ðYj·HkÞ ¼ 0; j ¼

k þ 1;…; n: In particular, the set of vectors for which step

(3) generates a zero result remains the same, whatever be the

particular choice of Hk. On the other hand, all vectors

generated using step (4) provide an identical effect on the

matrix X, that is a zero row. This implies that the particular

choice of certain vectors by step (4) does not affect the

resulting matrix X, and then this matrix is unique for a given

matrix Y, while the orthogonal matrix H is not unique if Y

(and hence B) is singular.

Unicity proof. It remains to prove that X does not depend on

a particular choice of the matrix Y. Since an appropriate

matrix X exists (see the existence proof earlier), one can

write the Cholesky’s equations of the system B ¼ X0X:

Using an auxiliary row vector ½x0j�j¼1;…;n ¼ 0; for writing

convenience, one obtains:

j ¼ 1;…; n; i ¼ 1;…; j :

if i ¼ j then

bii ¼
Xi

k¼0

x2
ki) xii ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bii 2

Xi21

k¼0

x2
ki

vuut ;

else

bij ¼ xiixij þ
Xi21

k¼0

xkixkj l xij

¼
bij 2

Xi21

k¼0

xkixkj

 !
=xii; if xii . 0;

0; if xii ¼ 0

8>><
>>:

by hypothesis on X properties.

One can note that the solution X is unequivocally

determined by the constraints without any reference to

a particular matrix Y, which completes the proof of

Theorem 4. A

Note that we have just defined a Cholesky’s factorization

of a possibly singular symmetric positive definite matrix B,

which was in fact the main goal of Theorem 4. This

factorization is very similar to usual Cholesky’s factoriz-

ations of strictly positive definite symmetric matrices,

except that the singular case ðxii ¼ 0Þ is allowed, with a

unique guaranteed solution.

7. Monotonic embedding algorithm

We are now ready to define a monotonic embedding

algorithm of data sets in Euclidean spaces with the

desired properties for neural network applications. First,

one can note that if Y is an isometric embedding

mapping of a set S in an Euclidean space, then so is

QY, for any orthogonal matrix Q, since the Euclidean

distance is invariant by any orthogonal transform of

coordinates. In particular X ¼ H 0Y ; where X is upper

triangular as in Section 6, is a solution. After Theorem 3

(and Corollary 3), for a given data set S, there is aðSÞ . 0

such that 0 , p # aðSÞ implies that

1
2
½g2ðm0i; pÞ þ g2ðm0j; pÞ2 g2ðmij; pÞ�i; j¼1;…;n ¼ X0X ¼ B;

where m [dðSÞ; g [G; and the solution X of course

depends on p.

After Theorem 4, this system can be solved using an

appropriate Cholesky factorization, even if B is singular,

which can happen if p $ bðSÞ: It remains to define a way of

finding an appropriate p, given that in general, one does not

P. Courrieu / Neural Networks 15 (2002) 1185–1196 1191

73

know aðSÞ a priori. For doing this, one can exploite the fact

that if p # aðSÞ; then B is positive definite and the Cholesky

factorization has a real solution, while if p . aðSÞ; then B

has negative eigenvalues and there are negative arguments

for a square root function in the computation of the diagonal

coefficients of X. Hence, each time that one detects such an

imaginary value case, this means that p . aðSÞ; and that one

must lower p. Then a simple bounding procedure allows for

approximating aðSÞ (resp. b(S)) as closely as one wants.

7.1. Procedure for embedding one element

The following procedure (EMBED) allows for embed-

ding the element number j of a set, while the elements of

number 0 to j 2 1 have been previously embedded. This is

the fundamental procedure which is called by all particular

application algorithms. One can eventually limit the

dimension m of the embedding space, while if no limit of

dimension is fixed, it suffices to call EMBED with an

arbitrary strictly positive parameter m $ j; remembering

that xij ¼ 0 if i . j. One can arbitrarily limit the dimension

m since the Cholesky factorization of the matrix B is not

only incremental with respect to the collumns, but also with

respect to the rows. One assumes that a dissimilarity

function m is associated to the data set, that a function g [
G has been fixed, and that the embedding parameter p

currently has a defined value. The procedure returns an

arbitrary negative diagonal value ðxjj ¼ 21Þ when the jth

element is not embeddable using the current value of p.

EMBED (j,m,p)

if j , m then for i U j þ 1 to m do xij U 0

if j . 0 then

for i U 1 to min(j,m) do

bij U ð1=2Þðg2ðm0i; pÞ þ g2ðm0j; pÞ2 g2ðmij; pÞÞ

if i . 1 then s U
Pi21

k¼1 xkixkj else s U 0

bij U bij 2 s

if i ¼ j then

if bij is very close to 0 then bij U 0

if bij , 0 then xij U 21 else xij U
ffiffiffi
bij

p
if i – j then

if xii ¼ 0 then xij U 0 else xij U bij=xii:

Note: in the case ði ¼ jÞ; if bij is very close to 0 then it is

set to 0 before the test ðbij , 0Þ in order to take into account

the rounding errors which occur in computer’s floating point

arithmetic.

7.2. Multidimensional scaling procedure

The procedure named MDS allows for monotonically

embedding a set S of n þ 1 elements, for given m and g

functions, while one requires that any diagonal value of the

matrix X is at least equal to a positive value e. If one calls

MDS with e ¼ 0 then the final value of p is an

approximation of aðSÞ with the specified ‘precision’. The

parameter pSup (strictly positive) is choosen as the upper

bound of the search interval of p. If the final value of p is

equal to pSup, this means that pSup # aðSÞ: Similarly, one

can obtain an approximation of bðSÞ by choosing e just

greater than zero. Take care that too large a value of e can be

incompatible with the data, which leads p to tend to zero.

MDS(e, n, pSup)

EMBED(0, n, 1) {the first element is the origin}

pInf U 0

p U pSup

repeat

j U 0

repeat

j U j þ 1

EMBED(j, n, p)

until (j ¼ n) or ðxjj , eÞ

if ðxjj , eÞ then pSup U p else pInf U p

p U (pInf þ pSup)/2

until (pSup 2 pInf) , precision.

The procedure MDS1 allows for embedding a new

element together with n þ 1 previously embedded

elements. MDS1 must be called with the current value of

the embedding parameter p. This value will be lowered in a

call to MDS if necessary. For avoiding this modification,

replace the call to MDS by any appropriate instruction (for

example, display the message ‘the new item is not

embeddable’).

MDS1(e, n, p)

m U n þ 1

EMBED(m, m, p)

if xmm , e then MDS(e, m, p)

The procedure MDS1 is useful for approximating aðVlSÞ
of Corollary 3, while S is a learning set of n þ 1 elements,

and V is a generalization set. Each generalization element

must be embeddable together with S, independently of other

generalization elements. Then repeatedly sampling V and

embedding each generalization item together with S by

MDS1(0, n, p), one can hope that p converges to aðVlSÞ:

7.3. Fixed dimension spatial maps

The procedure named MAP allows for building a spatial

map of fixed dimension m from a set of approximated

distances between n þ 1 objects ðn $ mÞ: The first m þ 1

objects are taken as landmarks, the first one being the origin

of coordinates ðX0 ¼ 0Þ: The embedding space is com-

pletely defined by the landmarks, while the remaining

objects are embedded in this space only, and their mutual

distances are not taken into account. In this type of

application, m is in general an approximation of an

Euclidean distance (however, this is not necessary), and

one chooses for g the power function, that is gðm; pÞ ¼ mp:

P. Courrieu / Neural Networks 15 (2002) 1185–11961192

74

Hence, if m is actually an Euclidean distance between the

landmarks, then one obtains p ¼ 1: The bounding method

used in the procedure MDS for the search for p is replaced

here by a simple decay method, starting from p ¼ 1; and

applying, if necessary, a reduction coefficient

(0 , reduc , 1) close to 1. This strategy is fast whenever

m is close to an Euclidean distance between the landmarks.

If this is not the case, then the decay method can of course

be replaced by another one, for axample the one used in the

MDS procedure. Taking a small e . 0 ensures that the

embedding space is exactly of dimension m.

MAP(e, m, n, reduc)

EMBED(0, m, 1) {the first element is the origin}

p U 1

OK U false

repeat

j U 0

repeat

j U j þ 1

EMBED(j, m, p)

until ð j ¼ nÞ or (ð j # mÞ and ðxjj , eÞ)

if ð j # mÞ and ðxjj , eÞ then p U reduc £ p else

OK U true

until OK

Note that in real life navigational applications, the

landmarks are frequently fixed objects. In this case, the

embedding space must be computed only once, possibly in

quite good conditions for the approximation of distances

(e.g. prior exploration of the environment). Then the on-line

computation reduces to embedding the remaining (possibly

moving) objects, that is:

MAP1(m, n, p)

for j U m þ 1 to n do EMBED(j, m, p).

This is very simple, while the main problem is of course

the on-line approximation of the distances.

8. Some numerical results

This section summarises numerical results obtained by

the application of the procedure MDS (Section 7.2) to data

sets of various types and sizes. For ‘non-metric’ data sets,

dissimilarity symmetric matrices with zero diagonal coeffi-

cients were generated by a uniform random sampling of

non-diagonal coefficients in the interval [0.01,100]. The

distance matrices of metric data sets were generated by

computing Minkowskian M1 distances between random

vectors (uniform random coordinates in [21,1]). After

Lemma 1 (Fréchet–Schoenberg), this is representative of

the whole set of finite metric sets. The distance matrices of

‘Euclidean’ data sets were generated in the same way, using

the Euclidean metric M2. while distance matrices of ‘City-

Block’ metric sets were obtained using the metric M1. The

size of the sets (n þ 1 elements) was varied from n ¼ 4 to

128. The actual dimension (m) of the metric spaces was also

varied. Tables present averaged values of the observed

embedding parameter bounds ðaðSÞÞ on four independent

problems solved by MDS(0, n, 10), and the obtained

dimension of the embedding space (m0 ¼ number of non-

zero diagonal coefficients of X). Tables 1 and 2 present

results obtained with the power function as g function, while

Table 3 presents results obtained with two distinct Weibull

functions (r ¼ 1 and 2, respectively) as g functions. The

inspection of Table 1 shows that aðSÞ is lower for non-

metric sets than for metric sets, and that it is greater than one

for Euclidean sets only. Moreover, aðSÞ decreases as the

Table 1

Averaged values of aðSÞ on four runs of MDS(0, n, 10), and dimension (m0)

of the embedding space as functions of the size of the set (n þ 1), and the

type of data space, with g ¼ mp; and m ¼ n

Data space: Non-metric Metric Euclidean

n aðSÞ m0 aðSÞ m0 a(S) m0

4 0.202 3 0.894 3 1.102 3

8 0.159 7 0.781 7 1.003 7

16 0.084 15 0.596 15 1.003 15

32 0.054 31 0.540 31 .1 31

64 0.035 63 0.528 63 .1 63

128 0.023 127 0.499 127 .1 127

Table 2

Averaged values of aðSÞ on four runs of MDS(0, 128, 10), and dimension

(m0) of the embedding space as functions of the type of metric data space,

and of its dimension (m), with g ¼ mp; and n ¼ 128

Data space: Euclidean Metric City-block

m aðSÞ m0 aðSÞ m0 aðSÞ m0

4 1 4 0.146 127 0.504 127

8 1 8 0.114 127 0.511 127

16 1 16 0.160 127 0.524 127

32 1 32 0.219 127 0.547 127

64 1 64 0.330 127 0.592 127

Table 3

Averaged values of aðSÞ on four runs of MDS(0, n, 10), and dimension (m0)

of the embedding space as functions of the size of the set (n þ 1), and the

type of data space, with g ¼ 1 2 expð2mr=pÞ; m ¼ n

Data space Non-metric Metric Euclidean

aðSÞ m0 aðSÞ m0 aðSÞ m0

r ¼ 1, n ¼ 16 1.419 15 1.594 15 .10 (16)

r ¼ 1, n ¼ 128 0.092 127 1.273 127 .10 (128)

r ¼ 2, n ¼ 16 6.022 15 0.802 15 5.648 15

r ¼ 2, n ¼ 128 0.009 127 0.831 127 .10 (128)

P. Courrieu / Neural Networks 15 (2002) 1185–1196 1193

75

size of the set (n) increases, always remaining greater than

one for Euclidean sets. The obtained dimension of the

embedding space for p ¼ aðSÞ was always m0 ¼ n 2 1;

while the actual dimension of the used metric sets was m ¼

n: Additional results were computed for City-Block metric

sets. As expected from Lemma 5, aðSÞ was always greater

than 0.5 for these sets and one obtained an averaged aðSÞ ¼

0:673 with n ¼ m ¼ 128:

Table 2 shows the effect of the actual dimension (m) of

three types of metric sets (with n ¼ 128). The results are

clear for Euclidean sets, where the actual dimension was

always detected by the algorithm ðm0 ¼ mÞ: For the two

other types of metric sets, the actual dimension was not

detected ðm0 ¼ n 2 1Þ; however, one can observe that aðSÞ

systematically varied as a function of m. Further

theoretical investigations are required for understanding

this relation.

Table 3 rapidly provides some elements concerning the

behavior of the embedding algorithm with Weibull func-

tions. The algorithm works well with these functions which

are more appropriate to function approximation contexts

than to distance geometry.

Additional results showed, in all cases, that bðSÞ ¼ aðSÞ;

that is, taking an embedding parameter p just lower than

aðSÞ always provides an embedding space of dimension n

exactly, whatever be m0 for p ¼ aðSÞ: Finally, a general

observation which can be outlined from the above results is

that dissimilarity functions (which were completely random

in this study) must be preferably built in a way which

provides them with properties close to those of a metric, in

order to avoid very low values of aðSÞ and large

transformations of the data space.

9. Example of application to a robot navigation problem

As suggested in Section 1, there are various application

fields and various ways of exploiting an embedding

algorithm. The example presented in this section has the

advantage of providing suggestive visual illustrations.

Robotic and compuer vision are very active fields, while

robot vision systems can vary considerably in their

sophistication. For this illustration, minimal hypothesis

concerning the robot technology were retained. We assume

Fig. 1. Simulated view of a scene with three landmarks (pegs) and two possibly moving objects (balls), followed by two maps computed by the embedding

algorithm from exact and approximated distance data. In these maps, the white disk stands for the autonomous agent, while the other objects are distinguished

by the diameter of their head. The origin of the coordinates is always the thin peg.

P. Courrieu / Neural Networks 15 (2002) 1185–11961194

76

a robot (autonomous agent) equiped with a simple video

camera whose images are numerised in a 200 £ 400 matrix

of binary pixels (black/white). We also assume that the

robot’s computational power is limited, and that the

computer vision program is not very sophisticated. How-

ever, this program must be able to approximately segment

an image into regions corresponding to individual objects,

discriminate objects of various shapes, and measure the

angular distance between any two points. If the two

considered points are not simultaneously present in the

visual field (e.g. if the robot lands between two objects),

then the angular distance is the absolute rotation angle of the

camera required for successively centering the two points.

In addition, we assume that the program can use a data base

providing the actual size of objects (at least approximately).

Such a data base may have been obtained from a prior

exploration of the environment. With all this information

available, one can approximate the distances between

objects (including the agent) by applying usual projection

and triangulation formulas (such as those used in astron-

omy). Then the approximated distance matrix can be used as

the input of the monotonic embedding algorithm in order to

compute a 2D map of the spatial configuration of the objects

(including the agent). Certain fixed objects can be used as

landmarks, while at least three objects (fixed or not) are

required for computing a 2D map. The main difficulties

result from the presence of image numerization noise,

shadows, noisy background, partially hidden objects, and

poorly discriminable landmarks. This can result in a certain

amount of error in the approximation of distances, which

leads to distortions in the spatial map. Figs. 1 and 2 show

two views of a simulated environment made of three

landmarks (pegs) and two moving objects (balls). The

choosen order of these objects is: thin peg, round head peg,

ellipsoid head peg, and the balls. The two balls have

undiscernable shapes, hence their set is a cluster which may

eventually be encoded in a special way after a spatial map

has been computed (Courrieu, 2001). Below each view, on

can see two 2D maps computed by the procedure MAP(e, 2,

5, 0.999), with a small positive e appropriate to the data

scale (which is arbitrary). The first map was computed by

the embedding algorithm from exact distances (known a

priori), while the other map was computed from distances

appproximated by a rudimentary (poorly performing)

computer vision program. Despite the distance approxi-

mation errors generated by this program (up to 20%), one

Fig. 2. Similar to Fig. 1, with the same landmarks and a different configuration of the three moving objects.

P. Courrieu / Neural Networks 15 (2002) 1185–1196 1195

77

can see in Figs. 1 and 2 that the obtained maps are quite

close to the exact ones.

10. Conclusion

Embedding algorithms and multidimensional scaling

potentially have a wide set of applications in various fields

(data analysis, function approximation on non-Euclidean

topological spaces, autonomous agent navigation problems,

psychological science). Mathematical fundations of a fast

monotonic embedding algorithm of data sets in Euclidean

spaces were presented, and then the algorithm was defined,

with variants for various types of applications. The

particularity of the algorithm, with respect to usual multi-

dimensional scaling methods, is that it is straight, fast, and

incremental, which makes it particularly appropriate to

Neural Network applications and on-line computation.

Some general numerical results were provided, and an

illustrative example of application in robot navigation was

presented. Further investigations are needed for solving

remaining problems such as the optimal reduction of the

embedding space dimension, however, this mainly concerns

data analysis applications.

Acknowledgement

This work was partially supported by a grant from Fond

National pour la Science – ACI “Cognitique” (2000, #90).

References

Blumenthal, L. M. (1936). New theorems and methods in determinant

theory. Duke Mathematical Journal, 2, 396–404.

Courrieu, P. (2001). Two methods for encoding clusters. Neural Networks,

14, 175–183.

Cox, T. F., & Cox, M. A. A. (1994). Multidimensional scaling. London:

Chapman & Hall.

Cressant, A., Muller, R. U., & Poucet, B. (1997). Failure of centrally placed

objects to control the firing fields of hippocampal place cells. The

Journal of Neuroscience, 17(7), 2531–2542.

Cressant, A., Muller, R. U., & Poucet, B. (1999). Further study of control of

place cell firing by intra-apparatus objects. Hippocampus, 9, 423–431.

Demartines, P., & Hérault, J. (1997). Curvilinear component analysis: a

self-organizing neural network for nonlinear mapping of data sets. IEEE

Transaction on Neural Networks, 8, 148–154.

Donoghue, W. F. (1974). Monotone matrix functions and analytic

continuation. Berlin: Springer.

Ennis, D. M. (1988). Confusable and discriminable stimuli: comment on

Nosofsky (1986) and Shepard (1986). Journal of Experimental

Psychology: General, 117(4), 408–411.

Fréchet, M. (1910). Les dimensions d’un ensemble abstrait. Mathematische

Annalen, 68, 145–168.

Girosi, F., & Poggio, T. (1990). Networks and the best approximation

property. Biological Cybernetics, 63, 169–176.

Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of

fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.

Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: a numerical

method. Psychometrika, 29, 115–129.

Lowrance, R. A., & Wagner, R. A. (1975). An extension of the string to

string correction problem. JACM, 22(2), 177–183.

Micchelli, C. A. (1986). Interpolation of scattered data: Distance matrices

and conditionally positive definite functions. Constructive Approxi-

mation, 2, 11–22.

Muller, R. U. (1996). A quarter of century of place cells. Neuron, 17,

813–822.

Nosofsky, R. M. (1986). Attention, similarity, and the identification–

categorization relationship. Journal of Experimental Psychology:

General, 115, 39–57.

Nosofsky, R. M. (1992). Similarity scaling and cognitive process model.

Annual Review of Psychology, 43, 25–53.

O’Keefe, J., & Nadel, L. (1978). Hippocampus as a cognitive map. Oxford:

Clarendon Press.

Okochi, M., & Sakai, T. (1982). Trapezoı̈dal dynamic programming

matching with time reversibility. Proceedings of the IEEE-ASSP

Conference, Paris, 1239–1242.

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning.

Proceedings of the IEEE, 78(9), 1481–1497.

Poucet, B., Save, E., & Lenck-Santini, P.-P. (2000). Sensory and memory

properties of hippocampal place cells. Reviews in the Neurosciences,

11, 95–111.

Schoenberg, I. J. (1937). On certain metric spaces arising from euclidean

spaces by a change of metric and their imbedding in Hilbert space.

Annals of Mathematics, 38(2), 787–793.

Schoenberg, I. J. (1938). Metric spaces and positive definite functions.

Transactions of the American Mathematical Society, 44, 522–536.

Shepard, R. N. (1962a). The analysis of proximities: Multidimensional

scaling with an unknown distance function, I. Psychometrika, 27,

125–140.

Shepard, R. N. (1962b). The analysis of proximities: Multidimensional

scaling with an unknown distance function, II. Psychometrika, 27,

219–246.

Shepard, R. N. (1986). Discrimination and generalization in identification

and classification: Comment on Nosofsky. Journal of Experimental

Psychology: General, 115, 58–61.

Shepard, R. N. (1987). Toward a universal law of generalization for

psychological science. Science, 237, 1317–1323.

Vinstuk, T. K. (1968). Speech discrimination by dynamic programming.

Kibernetika, 4(1), 81–88.

Wagner, R. A., & Fischer, M. J. (1974). The string to string correction

problem. JACM, 21(1), 168–173.

Young, F. W., & Torgerson, W. S. (1967). Torsca, a Fortran IV program for

Shepard–Kruskal multidimensional scaling analysis. Behavioral

Science, 12, 468.

P. Courrieu / Neural Networks 15 (2002) 1185–11961196

78

Pierre Courrieu – dossier HDR II.C.1

II.C Modèles de codage d'images

 Le problème du codage des images est étroitement lié au problème de la segmentation

des images en formes identifiables, ainsi qu'au problème des invariants perceptifs, c'est-à-dire

des transformations (géométriques ou autres) que peut subir le contenu d'une image tout en

restant identifiable, sans donner lieu à une dégradation importante des performances. Il est

communément admis que la perception visuelle possède un certain degré d'invariance par

translation ou changement d'échelle des objets perçus. En fait, il semble que l'invariance par

translation soit limitée à des éléments visuels simples et familiers composant l'image (Nazir &

O'Regan, 1990). Ces transformations élémentaires sont faciles à modéliser, mais d'autres

transformations affines comme les rotations et les symétries sont plus problématiques. De fait,

la réalité perceptive des invariants par rotation ou symétrie n'est pas établie pour le cas

général. D'un côté, on a de bonnes raisons de penser que la détection rapide d'éléments

relativement simples, par exemple des formes caractérisant localement la présence d'un

animal (oeil, bec, aile), est largement invariante par rotation de l'image (Guyonneau,

Kirchner, & Thorpe, 2006). D'un autre côté, on sait par exemple que l'identification d'un

visage est très fortement perturbée par un retournement vertical de l'image, et l'expérience

commune montre qu'il est assez difficile de lire des mots présentés à l'envers. L'invariance

perceptive par rotation/symétrie pourrait donc dépendre de la complexité des formes et de

celle de la tâche. Le modèle de codage d'images par "Affine Moment Invariants" (AMI: Suk

& Flusser, 2003, 2004) fournit une représentation vectorielle d'une image globale invariante

par toute transformation affine, mais la vraisemblance perceptive de cette élégante approche

n'a, à ma connaissance, jamais été évaluée. Toutefois, une invariance radicale, incluant

rotations et symétries, n'est a priori pas compatible avec les observations concernant

l'identification perceptive des formes complexes. De plus, il semble que la perception visuelle

est en mesure de s'affranchir d'une large gamme de transformations naturelles non affines des

images, telles que des flexions et ondulations (ex. effet du vent sur des végétaux, reflets dans

l'eau mouvante), et l'on ne connaît pas de moyen de généraliser les AMI à ces sortes de

transformations. J'ai donc développé une méthode de codage de données, plus

particulièrement adaptée aux images, mais pas uniquement, qui permet de représenter et de

comparer des formes globales sur la base d'une distribution de points dont la densité de

probabilité reproduit la fonction de densité graphique de chaque image. Cette méthode permet

d'obtenir des invariances par une large variété de transformations affines et non affines

d'apparence assez naturelle, pourvu que ces transformations aient une matrice jacobienne

79

Pierre Courrieu – dossier HDR II.C.2

triangulaire, ce qui exclut les rotations, mais couvre toutes sortes de flexions et ondulations

(Courrieu, 2006, 2007, articles ci-joints). L'article de 2006 présente une version très générale

de la méthode, ainsi qu'une version parallèle réservée aux images, sous la forme d'un réseau

de neurones feedforward. Cette deuxième version serait très rapide dans une implémentation

effectivement parallèle, mais le calcul sur une machine conventionnelle est assez long.

Comme la version générale n'est elle-même pas assez rapide pour certaines applications sur

de grosses bases de données d'images, j'ai développé, dans l'article de 2007, une variante très

rapide de la méthode pour l'encodage des images sur des ordinateurs conventionnels. Cette

variante n'est pas aussi rapide que les techniques spécialisées d'indexation d'images (voir par

exemple Glotin, Zhao, & Ayache, 2009), mais les temps de calcul sont du même ordre de

grandeur et la gamme d'invariants est plus étendue.

References

Courrieu, P. (2006). Density codes and shape spaces. Neural Networks, 19, 429-445.

Courrieu, P. (2007). Fast density codes for image data. Neural Information Processing -

Letters and Reviews, 11(12), 247-255.

Glotin, H., Zhao, Z., & Ayache, S. (2009). Efficient image concept indexing by harmonic &

arithmetic profiles entropy. 16th IEEE International Conference on Image Processing (ICIP),

pp. 277-280. doi: 10.1109/ICIP.2009.5413350

Guyonneau, R., Kirchner, H., & Thorpe, S.J. (2006). Animals roll around the clock: The

rotation invariance of ultrarapid visual processing. Journal of Vision, 6, 1008–1017.

Nazir, T.A., & O'Regan, J.K. (1990). Some results on translation invariance in the human

visual system. Spatial Vision, 5(2), 81-100.

Suk, T., & Flusser, J. (2003). Combined blur and affine moment invariants and their use in

pattern recognition. Pattern Recognition, 36, 2895–2907.

Suk, T., & Flusser, J. (2004). Graph method for generating affine moment invariants.

Proceedings of the 17th International Conference on Pattern Recognition, 2, 192-195.

80

Density codes and shape spaces

Pierre Courrieu *

Laboratoire de Psychologie Cognitive, CNRS - UMR 6146, Université de Provence, Centre St Charles,

Bat. 9, Case D, 3 Place Victor Hugo, 13331 Marseille Cedex 1, France

Received 30 September 2004; accepted 31 October 2005

Abstract

This paper presents an algorithm that allows for encoding probability density functions associated to samples of points of Rn. The resulting code

is a sequence of points of Rn whose density function approximates that of the set of data points. However, contrarily to sampled data points, code

points associated to two different density functions can be matched, which allows to efficiently compare such functions. Moreover, the comparison

of two codes can be made invariant to a wide variety of geometrical transformations of the support coordinates, provided that the Jacobian matrix

of the transformation be everywhere triangular, with a strictly positive diagonal. Such invariances are commonly encountered in visual shape

recognition, for example. Thus, using this tool, one can build spaces of shapes that are suitable input spaces for pattern recognition and pattern

analysis neural networks. Moreover, a parallel neural implementation of the encoding algorithm is available for 2D image data.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Sets of points; Density functions; Pattern encoding; Geometrical invariants; Shape similarity
1. Introduction

There are applications in which the input provided to a

neural network is not a point (real vector) but a set of unordered

points of Rn. Specific methods for suitably encoding unordered,

deterministic, fixed size sets of points have been proposed

(Courrieu, 2001). However, one can frequently consider that a

set of points results from random sampling governed by a

particular density of probability on Rn. In this case, it is usually

the density function (not the random sample) that is relevant for

the application. For example, the set of black pixels in an image

representing a written word, or an object whose detail can be

subject to some random variation, can be considered as a

random sample of points of R2 generated by a density function

that characterizes a recognizable shape (that of the word or of

the object). However, many pattern recognition problems show

that recognizable shapes can vary not only in a (limited)

random way, but also in a large regular way. For example,

depending on the used character font, or on the particular

writer, a written word can substantially vary in width, in height,

and in skewing, and its position in the image can also vary.

Thus, a recognizable shape must, in fact, be characterized by a
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2005.10.006

* Tel.: C33 4 88 57 69 02; fax: C33 4 88 57 68 95.

E-mail address: courrieu@up.univ-mrs.fr

81
family of density functions depending on a set of regular

transformations of the support. The set of transformations that

does not affect the recognizable identity of a shape can

conveniently be called ‘invariance set’. Note that the

invariance set depends on the considered shape: for example,

the character ’x’ is invariant to a 1808 rotation, while the

character ’b’ is not (since it becomes ’q’). More globally, the

set of letters (alphabet) is invariant to transformations such as

translations, scaling, stretching, and skewing, but not to

reflections (symmetries) or large orthogonal rotations (consider

the subsets {b, d, p, q}, {u, n}, {f, t}, {N, Z}). The same seems

to be true, in human vision, for more complex shapes such as

written words: words are easily recognized with geometrical

transformations that do not change their orientation, however,

reading words in a mirror is quite uneasy for human readers,

and psychologists hypothesized that reading inverted words

requires a prior corrective mental rotation of the word image

(Tzelgov & Henik, 1983). Various methods have been

developed, in pattern recognition area, in order to encode

shapes (usually 2D-shapes) invariant to certain affine trans-

formations. Well-known methods are based on moment

invariants (Heikkilä, 2004; Hu, 1962; Jin & Tianxu, 2004;

Suk & Flusser, 2003), on Fourier descriptors (Arbter, Snyder,

Burkhardt, & Hirzinger, 1990; Zhang & Lu, 2002), or on an

analysis of characteristic contour points (landmarks) such as

extreme points, or curvature maxima (Mokhtarian & Abbasi,

2002; Zhang, Zhang, Krim, &Walter, 2003). Density functions

do not seem to be very popular in this context, despite the fact
Neural Networks 19 (2006) 429–445
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet

P. Courrieu / Neural Networks 19 (2006) 429–445430
that densities can be simply approximated from sampled data

(Cacoullos, 1966; Parzen, 1962; Specht, 1990). Although

information geometry methods allow for computing simi-

larities between parametrically described densities (Amari &

Nagaoka, 2000), density functions are handicapped by the fact

that one does not know any way of encoding them that allows

for suitably comparing them in the context of shape

recognition, and thus for defining spaces of densities as

shape spaces (in a sense similar to Kendall, 1984). The purpose

of the present work is to define an encoding method for density

functions associated to samples of points of Rn, such that the

codes associated to different densities can be compared, and a

wide family of regular transformations can be simply reduced.

As we shall see, there is a simple solution if we forgo reducing

certain transformations such as reflections and orthogonal

rotations.
2. Approximation of probability functions

Given a set of m sampled data points of Rn, there is a very

simple way of approximating the density of probability

function that governed the sampling: this is the well-known

method of Parzen (1962), that have been extended by

Cacoullos (1966), and Specht (1990). In summary, one chooses

a n-dimensional kernel function (commonly a Gaussian

density), together with a scale parameter (e.g. the standard

deviation s for a Gaussian) that determines the degree of

smoothing of the approximation, and one centers such a kernel

at each of the data points. Then the approximated density at any

point X is simply the arithmetic mean of the values of the m

kernel functions at this point. One knows that, under very

general conditions, this approximation converges in quadratic

mean towards the true density as the sample size m tends to

infinity. Other probability functions (cumulative, marginal, and

conditional) can also be easily approximated if the n-dimen-

sional kernel function is a product of n univariate kernels, and

each univariate kernel can easily be integrated because it has a

simple primitive function (e.g. logistic kernel, Cauchy kernel),

or a suitable expansion (e.g. Gaussian kernel). We rapidly

provide hereafter some usual formulas and notations that we

must remember in the following sections.

Consider a set K of m data points of Rn

K Z fX1;X2;.;Xmg; Xj Z ðx1j;x2j;.;xnjÞ; j Z 1.m:

An approximation of the density of probability at any point X

of Rn is given by

f ðXÞZ
1

m

Xm

jZ1

gðX;Xj;sÞ;

where the kernel functions are simple probability density

functions of the form

gðX;Xj;sÞZ
Yn

iZ1

giðxi;xij;sÞ;
82
with, for example, in the case of a Gaussian kernel:

giðxi;xij;sÞZ
1

s
ffiffiffiffiffiffi
2p

p eKðxiKxijÞ
2=2s2 :

We use uppercase letters for integrative functions (or primitive

functions if they exist):

Giða;xij;sÞZ

ða
KN

giðx;xij;sÞdx:

Given that the kernel functions are densities of probability, one

has always:

GiðN;xij;sÞZ 1:

Thus, for example, the (nKkC1)-dimensional marginal

variable (xk, xkC1,., xn) has the density:

f ð†;.;†;xk;xkC1;.;xnÞZ

ð
RkK1

f ðx1;.;xnÞdx1.dxkK1

Z
1

m

Xm

jZ1

YkK1

iZ1

GiðN; xij;sÞ

 ! Yn

iZk

giðxi; xij;sÞ

 !

Z
1

m

Xm

jZ1

Yn

iZk

giðxi; xij;sÞ:

It is convenient here to use the following rule:

if B!A then
QB
iZA

uiZ1; whatever be ui:

The one-dimensional conditional variable (xkjxkC1ZakC

1,., xnZan) has the density:

f ðxkjxkC1 Z akC1;.;xn Z anÞZ
f ð†;.;†;xk;akC1;.;anÞ

f ð†;.;†;†;akC1;.;anÞ

Z

Pm
jZ1

gkðxk;xkj;sÞ
Qn

iZkC1

giðai;xij;sÞ

Pm
jZ1

Qn
iZkC1

giðai;xij;sÞ

;

and the cumulative probability function of this conditional

variable is given by:

Probðxk%bjxkC1 Z akC1;.;xn Z anÞ

Z

ðb
KN

f ð†;.;†;xk;akC1;.;anÞ

f ð†;.;†;†;akC1;.;anÞ
dxk

Z

Pm
jZ1

Gkðb;xkj;sÞ
Qn

iZkC1

giðai;xij;sÞ

Pm
jZ1

Qn
iZkC1

giðai;xij;sÞ

:

We use also a simplified notation for the above function

Probðxk%bjxkC1 Z akC1;.;xn Z anÞZFðbjakC1;.;anÞ;

where the uppercase F recalls that the corresponding density

function is f, and F could be replaced by H if the density

function was named h.

P. Courrieu / Neural Networks 19 (2006) 429–445 431
3. Method foundations

The principle of the encoding method is simply a

combination of the above probability function approximation

techniques with a well-known method for generating pseudo-

random data from a given probability law on Rn (see, e.g. Calot,

1967, pp. 185, 436–438). However, the use of these methods

for encoding purposes requires some specific foundations.
3.1. Density encoding principle

Definition 1. Let f(X) be a probability density function on Rn,

one associates to f the mapping P[f]:

P½f �ðXÞZ ðP1½f �ðXÞ;P2½f �ðXÞ;.;Pn½f �ðXÞÞ;

with Pn½f �ðXÞZFðxnÞZ
Ð xn

KN f ð†;.;†;tÞdt, and Pk½f �ðXÞZ
FðxkjxkC1;.;xnÞ; 1%k%nK1.

Theorem 1. Assume that f is a continuous probability density

function on Rn such that

kXjjN!N0 f ðXÞO0; X2Rn;

then

(i) P[f](X) is a continuous bijection from Rn to (0, 1)n,

(ii) the reciprocal bijection PK1[f](U), with U uniformly

distributed in (0, 1)n, is distributed as X, with density f.

Proof. If the density f is nowhere zero on Rn, then the densities

of the conditional variables (xkjxkC1,.,xn), 1%k%n, are

nowhere zero on R, which implies that the cumulative

probability functions F(xkjxkC1,.,xn), 1%k%n, are strictly

increasing, thus they are everywhere invertible, and (i) is

proven since these functions are the n components of P[f].

In what concerns (ii), with P[f](X)ZU2(0, 1)n, one has:

PK1
n ½f �ðUÞZFK1ðunÞZ xn;

PK1
k ½f �ðUÞZFK1ðukjukC1;.;unÞZ ðxkjxkC1;.;xnÞ;

k Z nK1;nK2;.;1:

If the n components uk, 1%k%n, are independent variables

uniformly distributed in (0, 1), then the conditional variable

(ukjukC1,.,un) is simply distributed as uk, that is uniformly in

(0, 1), thus the density of PK1
k ½f �ðUÞ is equal to f (xkjxkC1,.,xn),

as a (well-known) consequence of applying an inverse

cumulative function to a uniform variable in (0, 1). On the

other hand, one can easily verify that the conditional variables

(xkjxkC1,.,xn), 1%k%n, are independent from each other,

since:

f ððxkjxkC1;.;xnÞ AND ð†;.;†;xkC1;.;xnÞÞ

Z f ð†;.;†;xk;xkC1;.;xnÞ

Z f ðxkjxkC1;.;xnÞ$f ð†;.;†;xkC1;.;xnÞ:
83
Thus the density of PK1[f](U) is equal to
Qn
kZ1

f ðxkjxkC1;.;xnÞZ
f ðXÞ, which completes the proof. ,

In practice, the conditions of Theorem 1 can always be

fulfilled given that the densities to be encoded are in fact

approximations obtained by a superposition of kernel functions

(see Section 2), thus it suffices to use strictly positive

continuous kernel functions that tend to zero asymptotically

as variables tend to infinity, which is the case of common

kernel functions.

Definition 2. Let f be a probability density function on Rn that

fulfills the conditions of Theorem 1, and let SMZ
(U1,U2,.,UM) be a fixed sequence of points uniformly

distributed in the open cube (0, 1)n, then the sequence (PK

1[f](Uj), jZ1.M) is called a ‘density code’ associated to f.

Assume that we generated a fixed sequence of pseudo-

random points (U1,U2,.,UM) uniformly distributed in the

open cube (0, 1)n, and that we approximated a density

function f from an empirical data set as described in

Section 2. Then Theorem 1 implies that the sequence of

points (PK1[f](Uj), jZ1.M) is approximately distributed as

the original data set, with density f. However, contrarily to

the original data set, this is not a random sample made of

any number of unordered points, but this is in fact a

deterministic, fixed length sequence of M points, that is

representative of the data distribution.
3.2. Relation between density codes

Now, assume that we approximated two densities, say f and

h, from two distinct data sets, then we can obtain two density

codes, (PK1[f](Uj), jZ1.M) and (PK1[h](Uj), jZ1.M), that

can be compared to each other because the M points of each

sequence are paired to the M points of the other one by the

intermediate of the common Uj points. We need to know what

is the meaning of such a matching, which is the object of

Theorem 2.

Theorem 2. Let X2Rn be a random variable whose density

f(X) fulfills the conditions of Theorem 1. Let Y2Rn be another

random variable functionally related to X by a continuous

invertible transformation j such that YZjðXÞZ
ðj1ðXÞ;j2ðXÞ;.;jnðXÞÞ, with:

yk ZjkðXÞZjkðxk;.;xnÞ; and
vjk

vxk

ðXÞO0; cX2Rn:

In other words, one assumes that the kth component of Y

only depends on the nKkC1 last components of X, and that it

is a strictly increasing function of the kth component of X. If h

denotes the density function of Y, and U is a variable in (0, 1)n,

then one has:

(i) P[f](X)ZP[h](Y),

(ii) PK1[h]+P[f]Zj,
(iii) PK1[h](U)Zj(PK1[f](U)).

C1

vji

vxi
ðxiÞ

�K1 Qk
iZ1

vji

vxi
ðxiÞ

� �
dx1.dxk

ji

vxi
ðxiÞ

�K1 Qk
iZ1

vji

vxi
ðxiÞ

� �
dx1.dxk

P. Courrieu / Neural Networks 19 (2006) 429–445432
Proof. The conditions of Theorem 2 imply that the Jacobian

matrix ((vji/vxj)(X)) of the transformation j(X), at any point X,

is triangular and has a strictly positive diagonal. Thus, the

Jacobian determinant of the transformation is nowhere zero,

and it is given by:

JðjðXÞÞZ
Yn

iZ1

vji

vxi

ðXÞO0:

On the other hand, given the functional relation between the

two random variables, their density functions are related by:

hðYÞZ f ðXÞJK1ðjðXÞÞ:

Considering the n components in decreasing order, one has for

the nth one:

Pn½h�ðYÞZ

ðYn

KN

ð
RnK1

hðz1;.;znÞdz1.dzn

Z

ðjK1
n ðYÞ

KN

ð
RnK1

f ðx1;.;xnÞ$JK1ðjðx1;.;xnÞÞ$Jðjðx1;.;xnÞÞdx1.dxn

Z

ðxn

KN

ð
RnK1

f ðx1;.;xnÞdx1.dxn ZPn½f �ðXÞ:

For the remaining nK1 components, one obtains:

Pk½h�ðYÞZ

Ðyk

KN

Ð
RkK1 hðz1;.;zk;ykC1;.;ynÞdz1.dzkÐ

Rk hðz1;.;zk;ykC1;.;ynÞdz1.dzk

Z

ÐjK1
k ðYÞ

KN

Ð
RkK1 f ðx1;.;xk;xkC1;.;xnÞ

Qk
iZ1

vji

vxi
ðxiÞ

� �K1 Qn
iZk

�
Ð

Rk f ðx1;.;xk;xkC1;.;xnÞ
Qk
iZ1

vji

vxi
ðxiÞ

� �K1 Qn
iZkC1

v

�

Z

Ðxk

KN

Ð
RkK1 f ðx1;.;xk;xkC1;.;xnÞdx1.dxkÐ

Rk f ðx1;.;xk;xkC1;.;xnÞdx1.dxk

ZPk½f �ðXÞ:

This completes the proof of (i).

Set P½f �ðXÞZP½h�ðYÞZU, then:

PK1½h�ðP½f �ðXÞÞZPK1½h�ðP½h�ðYÞÞZ Y ZjðXÞ;

which proves (ii). Moreover, after (ii) one has:

PK1½h�ðUÞZPK1½h�ðP½f �ðPK1½f �ðUÞÞÞZjðPK1½f �ðUÞÞ;

which proves (iii), and then completes the proof of Theorem

2. ,

Hence, if two random variables are related by a

transformation j that fulfills the conditions of Theorem 2,

then the corresponding density codes are related by

PK1½h�ðUjÞZjðPK1½f �ðUjÞÞ; jZ1.M. Of course, this equal-

ity holds for exact probability functions, while the
84
approximations used in practice (see Section 2) can lead to

some non-zero error.
3.3. Density code dissimilarity functions

Definition 3. Let J be a set of transformation mappings of the

form

tðXÞZ ðt1ðXÞ;.;tnðXÞÞ; X2Rn;

tkðXÞZ
XN

iZ0

tikbiðXÞ; tik 2R; k Z 1.n;

where{bi(X); 0%i%N,X2Rn} is a given set ofbasis functions on

Rn, and the matrix TZ(tik)2R(NC1)!n depends on the data, as

explained below. Consider two density codes xZ ðXjZPK1½f �!
ðUjÞ; jZ1.MÞ and zZ ðYjZPK1½h�ðUjÞ; jZ1.MÞ. Then

one defines the ‘dissimilarity’ of the first density code from the

second one, with invariance to the transformation familyJ, as:

dJðx; zÞZmint2J

1

M

XM
jZ1

ktðXjÞKYjk
2

 !1=2

:

Consider the two above density codes, x and z, in the form of two

(M!n) realmatrices, and letBXZ(bi(Xj)), jZ1.M, iZ0.N, be

the (M!(NC1))matrix of the basis functions for x. Then, using a

common least square method, one obtains
dJðx;zÞZminT

1ffiffiffiffiffi
M

p kBXTKzk

� �
Z

1ffiffiffiffiffi
M

p kBXB½K1�
X zKzk;

where B½K1�
X is a pseudo-inverse matrix of BX. If BX is of rank

NC1, then one has simply:

B½K1�
X Z ðBt

XBXÞ
K1Bt

X ;

else B½K1�
X is the Moore–Penrose generalized inverse of BX (Ben

Israel &Greville, 2003; Courrieu, 2005b). As a simple but useful

example, ifJ is the set of affine transformations, then the set of

basis functions reduces to fb0ðXÞZ1;b1ðXÞZx1;.;bnðXÞZxng,

NZn, and BXZ[1, x]. If two random variables, X and Y, are

related by a transformation YZj(X) that fulfills the conditions of
Theorem 2, and j2J, then dJ(x, z)Z0 (plus possibly an

approximation error). One can also have dJ(z, x)Z0 iffjK12J,

P. Courrieu / Neural Networks 19 (2006) 429–445 433
which is the case for invertible affine transformations, but not for

every family of transformations. As an example, the reciprocal

function of an invertible algebraic polynomial is usually not an

algebraic polynomial. Note that one has in general dJ(x,
z)sdJ(z, x) in the non-zero case, thus dJ is certainly not a

distance, and it cannot be monotonically transformed into a

distance (Courrieu, 2002). If one requires that dJ(x, x)Z0, thenJ

must include at least the set of linear transformations, in order to

make the identity transform available. Let UM be the set of all

density codes that can be generated from the same uniform

sequence SM (Definition 2), then the space (UM, dJ) is a non-

metric space whose topology is induced by dJ. In particular, a

closed ball of centerX2UM, and of radius rR0, can be defined as

the set:

BðX;rÞZ fY 2UM ;dJðX;YÞ%rg:

An open ball can obviously be defined in a similar way, by using

strict inequalities (O and!, instead ofR and%). Thus there is

clearly a neighborhood system associated to (UM, dJ). In the

context of shape recognition problems, the space (UM, dJ) can be

called a ‘shape space’, and it can be used as an input space for

networks that do not require metric input data, such as nearest

neighbor classifiers, or non-metric data function approximators

(Courrieu, 2005a).
4. Implementations

4.1. Computer implementation

The principles stated in Sections 2 and 3 can be used to

develop practical algorithms for the computation of density

codes associated to empirical data sets, and for their

comparison. A Matlab program for the computation of density

codes is presented in Appendices A.1–A.3, and a Matlab

program for the computation of dJ, where J is the set of

algebraic multivariate polynomials, is presented in Appendix

A.4, which allows Matlab users to test the tool and provides an

easily readable model for practical implementations. Note,

however, that this is an illustrative program for academic use

only, since it has not been optimized with respect to reliability,

speed and precision performance. The main elements of this

program have been discussed above, however, we have not

defined a practical way of generating a sequence of points

uniformly distributed in (0,1)n, nor a practical way of inversing

the mapping P[f]. In what concerns this last point, we noted

that each component of the mapping P[f](X) is a strictly

increasing, one-variable function (Definition 1 and Theorem

1), which means that we can apply simple usual methods (e.g. a

bounding method) in order to find the inverse mapping PK1

[f](U), at any point U. One must compute the components of

the inverse mapping in decreasing order of their number. Since

the last component of P[f](X) is simply the cumulative

probability function of the marginal variable xn, it can be

computed directly from un. The (nK1)th component of P[f](X)

is the cumulative probability function of the (nK1)th marginal

variable, conditional to the value of the nth one that has just
85
been computed, thus xnK1 can be computed from unK1, and the

value of xn. The situation is clearly similar for the remaining

components in decreasing order, and xnKk can be computed

from unKk, given the previously computed values of xnKkC

1,.,xn. The main function of the program in Appendix A.1

implements this principle, while the probability functions are

approximated using the method of Section 2, and examples of

kernels and their cumulative probability functions are given in

the Matlab sub-functions of Appendix A2. In what concerns the

generation of sequences of points uniformly distributed in

(0,1)n (that is the SM-sequences of Definition 2), we use quasi-

uniform Faure sequences (Faure, 1982, 2001), that are known

to provide low discrepancy, even in high dimension spaces.

Original Faure (1982) sequences are in [0, 1)n, thus we must

exclude points that have at least one zero coordinate, in order

to avoid infinite coordinate inverse mappings. This is

implemented in the Matlab sub-functions of Appendix A3. In

what concerns the choice of the number M of code points, we

note that a choice of the form MZqk, where k is a positive

integer, and q is the smallest prime number greater or equal to

the dimension n, allows to obtain complete Faure sequences.

On the other hand, we note that the larger is M, the more

precise is the density encoding. However, the densities that we

encode are themselves approximated from data point sets. Thus

a simple and reasonable strategy consists of choosing k such

that MZqk is close to the mean number of data points per shape

of the considered shape space. However, there are many cases

where this number can be lowered because data samples are

frequently larger than necessary in order to define shapes (see

Section 5.2). Finally, note that other methods can be used for

generating quasi-uniform sequences, such as, for example, the

well-known Halton sequences (Halton, 1960). Halton’s

sequences work well in low dimension spaces, however, it is

known that their uniformity properties are degraded as the

dimension increases. Since the present encoding method must

work for every finite dimension, we must clearly prefer Faure

sequences.

4.2. Parallel implementation for 2D image data

The computer implementation described above is quite

general, it allows the computation of density codes in any

dimension (n), with various kernel functions, and with any

arbitrary precision (via the parameter named ‘Tol’). However,

in the case of image encoding for perception modeling, one

commonly requires that the encoding be fast in a neuron-like

architecture, while the dimension of data is typically nZ2, and

a ‘gray level’ type value can be associated to each data point.

We describe hereafter a parallel implementation suitable for

such data. This implementation requires a three-layered feed-

forward architecture.

Layer 1. This is a bi-dimensional input layer ðxð1Þj ;yð1Þj Þ, jZ
1.m, whose m cells correspond to image pixels, and whose

activation function ajZaðxð1Þj ;yð1Þj Þ corresponds to a positive

gray level function. The upper index in parenthesis indicates

the number of the layer in which the coordinates are

considered.

Fig. 1. Images of three words in two graphic versions (pseudo-handwriting).

Left column versions (1) differ from right column versions (2) by scaling,

stretching and skewing transformations. The first two words differ by only one

letter (orthographic neighbors), while the third one has no common letter with

them.

P. Courrieu / Neural Networks 19 (2006) 429–445434
Layer 2. This layer computes the mapping P[f](x,y) on a

fixed set of points (possibly the same as those of the input

layer). A positive gray level function can be considered as a

weighting function, and the density approximation at any point

(x,y)2R2 can be reformulated as

f ðx;yÞZ

Pm
jZ1

ajgððx;yÞ;ðx
ð1Þ
j ;yð1Þj ;sÞ

Pm
jZ1

aj

;

which implies that:

P2½f �ðx;yÞZFðyÞZ

Pm
jZ1

ajG2ðy;y
ð1Þ
j ;sÞ

Pm
jZ1

aj

;

P1½f �ðx;yÞZFðxjyÞZ

Pm
jZ1

ajG1ðx;x
ð1Þ
j ;sÞg2ðy;y

ð1Þ
j ;sÞ

Pm
jZ1

ajg2ðy;y
ð1Þ
j ;sÞ

:

Note that, if a(x,y)2{0,1}, c(x,y)2R2, then the above

formulation is equivalent to that of Section 2. The second

layer is made of two arrays of cells: a one-dimensional array of

N2 cells that compute P2[f] at N2 distinct fixed values of the y

coordinate ðyð2Þ1 ;.;yð2ÞN2Þ, and a bi-dimensional (N2!N1) array

of cells that compute P1[f] at N1 distinct fixed values of the x

coordinate ðxð2Þ1 ;.; xð2ÞN1Þ, for the N2 fixed values of y. Thus,

each cell of the first array is characterized by a particular y

coordinate, and each cell of the second array is characterized

by particular x and y coordinates. The computation of P[f] as

defined above implies that each cell of Layer 2 receives

connections from all cells of Layer 1, however, the only

quantities that vary from an input to another one are the

activation values (aj).

Layer 3. This is an output layer that approximates the

density code PK1[f](u,v) on a fixed set of M points uniformly

distributed in (0, 1)2. Each cell of the third layer is

characterized by a particular point (ui, vi)2(0, 1)2, iZ1.M,

and an output variable (x or y coordinate). Since two output

coordinates are required in all cases, it is convenient to

consider that each unit of Layer 3 is made of two cells that

share the same (ui, vi) characteristic point. Each unit of Layer 3

computes a quantity of the form:

PK1½f �ðui;viÞ

z

PN2

kZ1

PN1

jZ1

xð2Þj ;yð2Þk

� �
exp Kbkðui;viÞK P1½f � xð2Þj ;yð2Þk

� �
;P2½f � †;yð2Þk

� �� �
k

� �
PN2

kZ1

PN1

jZ1

exp Kbkðui;viÞK P1½f � xð2Þj ;yð2Þk

� �
;P2½f � †;yð2Þk

� �� �
k

� � ;

where the values of P1[f] and P2[f] are provided, respectively by the bi-

dimensional and the one-dimensional array of cells of Layer 2, and the

coordinates ðxð2Þj ;yð2Þk Þ are used as synaptic weights. As the parameter b

tends to infinity, the above expression tends to the point of coordinates
86
ðxð2Þj ;yð2Þk Þ whose P[f] mapping is the closest to the point (ui,vi), which

provides the desired approximation of PK1[f](ui,vi). Note that this

approximation is based on a MIN-like variant of the MAX-like operation

of Riesenhuber & Poggio (1999). Appendix A5 presents a Matlab

program for computer simulations of the above parallel implementation.
5. Illustrative examples

5.1. Pseudo-handwriting data, affine transformations, and

orthographic similarity

In this section, we use, as input data, the six binary images

of pseudo-handwritten words presented in Fig. 1. Left column

images (we refer to as ‘word-1’, ‘work-1’, and ‘play-1’) are

resampled affine transforms (by scaling, stretching and

skewing) of right column images (we refer to as ‘word-2’,

‘work-2’, and ‘play-2’). On the other hand, the first two words

(‘word’ and ‘work’) are orthographic neighbors, while the third

word (‘play’) has no common letter with the two previous ones.

Intuitively, a good dissimilarity measure must provide a

minimum (possibly zero) difference between left column

images and their corresponding right column images (0-letter

Fig. 2. Spatial repartition of density code points associated to the six images of

Fig. 1, using a Faure SM-sequence (upper half-figure), and a Halton SM-

sequence (lower half-figure). The data density functions were approximated

using a Gaussian kernel, with a scale of 0.3 pixels, and each code is a sequence

of MZ2048 points.

P. Courrieu / Neural Networks 19 (2006) 429–445 435
difference), and the image dissimilarity must increase as the

number of different letters between words increases, indepen-

dently of affine transformations. In other words, we expect the

shape space to have a topology compatible with an abstract

orthographic analysis. In order to test these expectations, we

must compare various dissimilarity measures, and since we do

not know, a priori, how the dissimilarity measures are

distributed, we must use non-parametric (rank-based) statisti-

cal tests. In the following, we use Mann–Whitney tests for

independent data samples, and we use Friedman tests for paired

data samples.

5.1.1. Density codes and the effect of SM-sequences

In this section, we test the above expectations together with

the effect of particular SM-sequences (Faure sequences vs.

Halton sequences) on the performance of density codes. Since

we work in a low dimension space (nZ2), the two types of SM-

sequences must provide very similar performance, showing

that the algorithm is robust with respect to the choice of

particular quasi-uniform sequences. Density codes have been

computed by the program described in Section 4.1, and by a

variant where the Faure sequence was replaced by a Halton

sequence. An input data matrix can be obtained from a binary

image matrix (say ‘image’), with 0 code for black pixels, by the

Matlab function [y, x]Zfind(imageZZ0), and XZ[x, y]. For

each type of SM-sequence and each image, a density code of

4096 points has been generated, using Gaussian kernels with a

standard deviation of 0.3 pixels, and a tolerance error of about

0.5 pixels. Then each code has been segmented into two

distinct but equivalent density codes of MZ2048 points, that

have been used for computing the dJ values, and the equivalent

dJ values have been averaged. Fig. 2 shows six distributions of

2048 density code points corresponding to the data of Fig. 1,

for Faure SM-sequences (upper half-figure), and Halton SM-

sequences (lower half-figure). As one can see in Fig. 2, the

distributions of density code points are closely similar to the

corresponding data distributions, as Theorem 1 implies,

whatever be the considered SM-sequence type.

Table 1 shows the averaged dJ values, whereJ is the set of

affine transformations (i.e. degree one polynomial transform-

ations), for all pairs of images of Fig. 1, for Faure SM-sequences

(upper sub-table), and Halton SM-sequences (lower sub-table).

At the bottom of each sub-table, we present a comparison

(means, standard deviations, and Mann–Whitney tests)

between the dJ functions of pairs of distinct images of words

differing by 0, 1, and 4 letters. As one can see, the three dJ
value distributions are ordered and well separated as expected,

whatever be the considered SM-sequence type. Moreover, the

linear correlation coefficient between the 30 out-diagonal dJ
values of the two sub-tables is rZ0.9995, and Friedman’s test

provides c2(1)Z0.5333, n.s. Clearly, the two types of SM-

sequences provide very similar results, as expected.

5.1.2. Comparison with Affine Moment Invariants based

methods

One of the most attractive ways of encoding shapes with

invariance to certain transformations is probably the approach
87
based on Affine Moment Invariants, which was initiated by Hu

(1962), and that has recently been considerably improved

(Heikkilä, 2004; Jin & Tianxu, 2004; Suk & Flusser, 2003).

Most of the tools described in this area, as well as Fourier

descriptors (Zhang & Lu, 2002), only provide invariance to

affine transformations of rigid object images (translation, scale

change, and rotation), however, certain algorithms provide

invariance to more general affine transformations, including

stretching and skewing (Heikkilä, 2004; Suk & Flusser, 2003).

To date, affine moment invariants are described for two-

dimensional data only (mainly image data). On the other hand,

density codes described in this paper can work with data of any

dimension, and allow to reduce transformations that are not

necessarily affine, but with the restriction that the Jacobian

matrix of the transformation must be triangular with strictly

positive diagonal (Theorem 2), which excludes rotation and

reflection transformations. As one can see, the application

fields of the various tools are not the same, although they have

a non-empty intersection. In this section, we use the data of

Fig. 1 to compare density code performance to that of

Combined Blur and Affine moment Invariants (CBAIs)

proposed by Suk and Flusser (2003), and to that of affine

moments based matching method of Heikkilä (2004). Table 2

shows Euclidean distances between the six images of Fig. 1 in

the space of the six available CBAIs (Suk & Flusser, 2003),

Table 1

Affinely minimized dJ functions between density codes of the six images of Fig. 1

dJ(Y,/) word-1 word-2 work-1 work-2 play-1 play-2

Faure SM-sequence

word-1 0.0000 4.1362 6.3857 8.8726 14.0711 19.2374

word-2 2.9027 0.0000 6.3974 8.8101 13.9922 19.1730

work-1 6.8646 9.5150 0.0000 2.5591 13.4056 18.4914

work-2 6.9050 9.5031 1.8074 0.0000 13.5776 18.8269

play-1 15.8377 21.7298 13.9026 19.3930 0.0000 5.9511

play-2 15.6800 21.5323 13.7298 19.1829 4.1776 0.0000

Differ 0 letters 1 letter 4 letters

mean dj 3.59 (G1.5) [MW(6,8)Z21, p!0.5] 7.91 (G1.4) [MW (8,16)Z36, p!.05] 16.99 (G3.0)

Halton SM-sequence

word-1 0.0000 3.7918 6.2827 8.6296 14.1536 19.3849

word-2 2.6674 0.0000 6.3201 8.6807 14.0860 19.3339

work-1 6.7624 9.4031 0.0000 3.0156 13.4681 18.6299

work-2 6.7381 9.3763 2.1326 0.0000 13.6119 18.9303

play-1 15.9097 21.8506 13.9325 19.3818 0.0000 5.3871

play-2 15.8130 21.7443 13.8273 19.2629 3.7959 0.0000

Differ 0 letters 1 letter 4 letters

mean dj 3.47 (G1.1) [MW(6,8)Z21, p!.05] 7.77 (G1.4) [MW (8,16)Z36, p!.05] 17.08 (G3.0)

dJ values are averaged for two distinct Faure SM-sequences (upper sub-table), and two distinctHalton SM-sequences (lower sub-table),withMZ2048.At the bottomof

each sub-table, comparisons (means, standard deviations, andMann–Whitney tests) between the dJ functions of pairs of distinct images ofwords differing by0, 1, and 4

letters. The linear correlation coefficient between the 30 out-diagonal dJ values of the two sub-tables is rZ0.9995, and Friedman’s test provides c2(1)Z0.5333, n.s.

P. Courrieu / Neural Networks 19 (2006) 429–445436
where each CBAI has been normalized (i.e. weighted by its

inverse empirical standard deviation). At the bottom of the

table, we present comparisons between the CBAI distances of

pairs of distinct images of words differing by 0, 1, and 4 letters,

as we did in Table 1 for density code dissimilarities. Mean

CBAI distances are ordered as expected, however, the

distributions corresponding to 0-letter and 1-letter differences

are not well separated (non-significant Mann–Whitney test),

and one can see their overlapping in the distance table, where

the CBAI distance between ‘word-1’ and ‘word-2’ (0-letter

difference) is greater than all 1-letter difference CBAI

distances. Table 3 presents the Hausdorff distances provided

by Heikkilä (2004)’s matching algorithm between the six

images of Fig. 1. At the bottom of the table, one can see that the

mean distances for 0, 1, and 4 letter differences are also ordered

as expected, however, the distributions corresponding to

1-letter and 4-letter differences are not well separated

(non-significant Mann–Whitney test), and one can see their
Table 2

Euclidean distances between the six images of Fig. 1 in the space of normalized C

d(Y,/) word-1 word-2 work-1

word-1 0.0000 3.0444 2.7607

word-2 3.0444 0.0000 2.9648

work-1 2.7607 2.9648 0.0000

work-2 2.6100 2.7556 0.3308

play-1 3.9205 3.3761 2.9449

play-2 4.8519 4.5974 4.8048

Differ 0 letters 1 letter

mean d 1.97 (G1.3) [MW(6,8)Z37, n.s.] 2.77 (G0.1)

At the bottom of the table, comparisons between the distances of pairs of distinct i

88
overlapping in the distance table. Comparing these results

to those of Table 1, we can conclude that density code

dissimilarity functions provide a performance at least as good

as those of the tested affine moment based algorithms, in the

common part of their respective application domains.
5.2. Effects of code length and kernel scale

The required number of code points (M) can depend on the

complexity of the shapes and on the relative scale of relevant

distinctive details in the considered shape space. On the other

hand, the required kernel scale (s) depends on the spacing of

data points, and there are well-known heuristics that allow for

estimating this scale. As an example, the ‘global first nearest-

neighbor heuristic’ (Moody & Darken, 1989) is implemented

as the default choice for s in the program of Appendix A.1. In

this section, we test the robustness of the proposed encoding

method across variations of M and s, using the data presented in
BAIs (Suk & Flusser, 2003)

work-2 play-1 play-2

2.6100 3.9205 4.8519

2.7556 3.3761 4.5974

0.3308 2.9449 4.8048

0.0000 2.9169 4.6587

2.9169 0.0000 2.5279

4.6587 2.5279 0.0000

4 letters

[MW (8,16)Z44, p!.05] 4.01 (G0.8)

mages of words differing by 0, 1, and 4 letters are provided.

Table 3

Dissimilarities between the six images of Fig. 1 in the space generated by Heikkilä (2004)’s matching algorithm

D(Y,/) word-1 word-2 work-1 work-2 play-1 play-2

word-1 0 1.5124 19.3769 18.1033 32.4786 27.6237

word-2 1.5968 0 16.3696 17.8982 32.2108 28.1221

work-1 24.8532 17.3045 0 1.5326 22.4767 24.8052

work-2 17.6128 18.4146 1.5732 0 22.5561 16.5242

play-1 27.7808 13.7445 13.9387 22.7215 0 1.9775

play-2 26.6723 15.1146 20.1152 11.4153 1.0259 0

Differ 0 letters 1 letter 4 letters

mean D 1.54 (G0.3) [MW(6,8)Z21, p!.05] 18.74 (G2.6) [MW (8,16)Z80, n.s.] 22.39 (G6.7)

At the bottom of the table, comparisons between the dissimilarities of pairs of distinct images of words differing by 0, 1, and 4 letters are provided.

Fig. 3. Four thresholded photos of flowers (left column), affinely similar data

(middle column), and non-affinely similar data (right column). The original

photos are available at http://www.pdphoto.org/ (public domain).

P. Courrieu / Neural Networks 19 (2006) 429–445 437
Fig. 3. The four left column shapes were obtained using a

threshold function on one color component of numerical

photos of flowers, in order to separate the flower shapes from

their background, and to provide suitable data points. The

number of data points (black pixels) per shape ranges from

5279 to 7885. The middle column data were obtained by an

affine transformation (stretching and skewing) of the left

column data. The number of data points per shape ranges from

2911 to 4201. The data in the right column were obtained by a

non-affine transformation of left column data. The number of

data points per shape ranges from 3774 to 5585. For all shapes,

the default kernel scale provided by the ‘global first nearest-

neighbor heuristic’ was very close to 1 (range: 1–1.04). In the

experiment, we used four kernel scales (sZ0.5, 1, 2, 4), with

logistic kernel functions, that allow faster computation of P[f]

mappings than Gaussian kernels. In what concerns the code

length, we varied M from 22 to 212. In order to do this, each of

the 12 shapes was encoded with 4096 code points, for each

value of s. For each code length, the 4096 point sequence was

segmented into 212Kk subsequences of length MZ2k, kZ
2.12. Then relevant dJ functions (whereJ is the set of affine

transformations) were computed using all these subsequences

as arguments and averaged. Dissimilarities were computed

between Fig. 3 left column shapes and the corresponding

middle column shapes (with the two argument orders), which

provided dJ values for the ‘affinely similar’ condition.

Dissimilarities were also computed between Fig. 3 left column

shapes and the corresponding right column shapes, which

provided dJ values for the ‘non-affinely similar’ condition.

Finally, dissimilarities were computed for all pairs of distinct

shapes in the first column of Fig. 3, which provided dJ values

for the ‘unrelated’ condition. Since J is the set of affine

transformations, we expect small dissimilarities for the

‘affinely similar’ condition. As in Section 5.2, we expect

intermediate dissimilarities for similarities that are not in J,

that is for the ‘non-affinely similar’ condition. Finally, we

expect maximum dissimilarities for the ‘unrelated’ condition.

Results are summarized in Fig. 4, where one can see means and

standard deviations of dJ in the three conditions, for all M and

s values. In all cases, dJ distributions are ordered as expected,

they reach stable mean values and are well separated with

MR26 code points, which is much less than the number of data

points per shape. Increasing the kernel scale tends to lower
89
large dissimilarities, however, the proposed default s (global,

first nearest-neighbor heuristic) is visibly close to an optimum

in this experiment, and it is not necessary to have a very precise

estimation of this parameter.

5.3. Three-dimensional shapes and non-affine transformations

In this section, we illustrate density code capabilities with

the example of random three-dimensional thread-like shapes as

those presented in Fig. 5, with random third degree polynomial

transformations whose Jacobian matrices are everywhere

triangular with strictly positive diagonals (as required by

Theorem 2). As Fig. 5 suggests, such transformations are

suitable for modeling soft object spaces. We computed the

http://www.pdphoto.org/

Fig. 4. Averaged affinely minimized dissimilarities (vertical bars mark standard deviations) of affinely similar, non-affinely similar, and unrelated flower data (see

Fig. 3), as a function of the code size (for MZ4–4096), and of the scale parameter of logistic kernels (sZ0.5, 1, 2, 4). The default scale parameters, as provided by the

‘global first nearest-neighbour heuristic’ (Moody & Darken, 1989), ranged from 1 to 1.04.

Fig. 5. Two examples of random 3D shapes (left column) and their random third degree polynomial transformations (right column). These soft transformations have

triangular Jacobian matrices with positive diagonals everywhere.

P. Courrieu / Neural Networks 19 (2006) 429–445438

90

P. Courrieu / Neural Networks 19 (2006) 429–445 439
density codes of these shapes using MZ36Z729 code points

(in R3), with logistic kernel functions. We used the default

scale and tolerance parameters provided by the ‘DensityCode’

program (see Appendix A.1). The dissimilarity values (dJ)

have been computed using the ‘DeltaPoly’ function (Appendix

A4), where the optimal degree parameter for this example is

dZ3. For the examples of Fig. 5, the obtained dissimilarities of

shape 1 and shape 2 from their transforms are 0.22 and 0.14,

while the dissimilarities of the transforms from the source

shapes are 0.25 and 0.16. In contrast, the dissimilarities

between distinct shapes ranged from 0.36 to 0.47. Thus, despite

the fact that the inverse of a third degree polynomial is not a

third degree polynomial, the dissimilarity function correctly

separated transformation cases from shape difference cases,

even with non-optimally ordered arguments (which leads only

to a small penalty).

One can of course ask whether this result generalizes to

large sets of shapes and transformations. One can also ask what

happens if one does not choose the optimal transformation

degree for the computation of dJ, since in real life problems,

one does not necessarily know a priori the appropriate

transformation family. In order to answer these questions, we

performed the following experiment. First, we generated a set

of 80 random source shapes, each one consisting of 730

sampled points of a random 3D trigonometric parametric

curve, as the shapes in the left column of Fig. 5. These shapes

were randomly paired, resulting in 40 pairs (Si, Sj) of source

shapes. Then for each pair, a random third degree polynomial

transformation (that fulfilled the requirements of Theorem 2)

was applied to the two shapes, resulting in a pair (Ti, Tj) of

transforms, as in the right column of Fig. 5. To each source

shape, say Si, one associated four dissimilarity measures: dJ(Si,

Ti), dJ(Tj, Ti), dJ(Ti, Si), and dJ(Sj, Si), where the density codes

are denoted in the same way as the corresponding data (there is

no ambiguity here). Since we must compare dissimilarity

measures, we must take care that the scale of a dissimilarity is

relative to the scale of its second argument, since the first

argument is transformed in order to approximate the second

one (see Section 3.3). Given that source shapes and their

transforms do not have necessarily equal scales, one must

avoid comparisons of dissimilarities that do not have the same

second argument, however, one can reliably compare the first

two or the last two dissimilarities listed above. Thus, we
Table 4

Means (with standard deviations) of dissimilarity values of 3D source shapes (Si, Sj),

of the polynomial set J, and of the type of matching

J degree dJ(Si, Ti) c2(1) dJ(Tj, Ti)

0 1.32 (0.31) 8.45 1.19 (0.31)

1 0.39 (0.13) 76.05 0.69 (0.20)

2 0.29 (0.12) 80.00 0.59 (0.19)

3 0.23 (0.12) 76.05 0.51 (0.17)

4 0.22 (0.12) 76.05 0.46 (0.15)

5 0.21 (0.11) 76.05 0.41 (0.14)

Friedman’s c2(1) tests are all significant.

91
compare the dissimilarity of a shape from its transform to the

dissimilarity of transforms of two different source shapes, and

we compare the dissimilarity of a transform from its source

shape to the dissimilarity of two different source shapes. In the

first type of comparison, we expect that the first dissimilarity is

systematically lower than the second one, because transforms

of two different source shapes are not related by a tractable

transformation. If we obtain a similar inequality for the second

type of comparison, this means that one can reasonably

approximate an inverse transformation in the same polynomial

set as the direct transformation (strictly speaking, this is true

only for degree one transformations). Finally, for all shapes, we

varied the degree of the polynomial set J (used in the

computation of dJ) from 1 to 5, and we added the pseudo-

degree 0, for which J reduces to the identity transform

(remember that the actual degree of shape transformations is

3). Results of this experiment are summarized in Table 4,

where one can see the mean dJ (and standard deviation) for

each experimental condition, together with Friedman’s c2(1)

tests for relevant comparisons. All tested differences are highly

significant (p!0.001) and in the expected direction, except for

the pseudo-degree 0 (no invariance). Thus, all J polynomial

sets, from degree 1 to degree 5, provide dJ functions that

suitably account for degree 3 similarities, whatever be the order

of the arguments provided to the dissimilarity function. These

results clearly suggest that the tool is robust with respect to the

approximation of J. One can also observe that all dissim-

ilarities decrease as the degree ofJ increases, which is normal

since the approximation capability of a polynomial tends to

increase as the number of polynomial’s terms increases. In a

limit case, if the number of terms equals M, then all

dissimilarities equal zero, whatever be the arguments, but

this is of course meaningless.
5.4. An example of neural image encoding

The parallel implementation of the density encoding

algorithm described in Section 4.2, for image data, implies a

fixed discrete sampling of the space of variables and an

approximation of code points. This can result in a loss of

precision with respect to the standard algorithm, and thus, we

must verify that there is no dramatic degradation of

performance. In order to do this, we choose the example of
and their third degree polynomial transforms (Ti, Tj), as a function of the degree

dJ(Ti, Si) c2(1) dJ(Sj, Si)

1.32 (0.31) 57.80 0.88 (0.13)

0.30 (0.09) 76.05 0.53 (0.11)

0.23 (0.08) 80.00 0.47 (0.10)

0.21 (0.08) 80.00 0.41 (0.09)

0.19 (0.07) 80.00 0.37 (0.09)

0.18 (0.07) 80.00 0.34 (0.08)

Fig. 6. Two blurred ‘vegetable-like’ fractals (left-topZ‘fern’, left-bottomZ‘bush’), and their ‘wind-like’ transformations (right column).

P. Courrieu / Neural Networks 19 (2006) 429–445440
the four images shown in Fig. 6. These are 200!200 gray level

pixel images, that are blurred ‘vegetable-like’ fractals (left

column), subject to a ‘wind-like’ transformation (right

column), that is in fact a third degree polynomial transform-

ation that fulfills Theorem 2 requirements. For convenience,

the fractal at the top of the figure will be called ‘fern’, and the

fractal at the bottom of the figure will be called ‘bush’. The

parallel encoding algorithm (Appendix A5 program) has been

applied to the four images, with MZ2048 code points, logistic

kernels with scale parameter sZ0.3 pixels, and bZ5000. For

comparison, the standard encoding algorithm (Appendix A.1

program) has been applied to the set of coordinates of all non-

black pixels from each image (in Matlab: [y,x]Zfind(imageO
0), XZ[x,y]), with the same parameters as for the parallel

version, except b that was replaced by the default tolerance.

Resulting dJ values, where J is the set of third degree
Table 5

Comparison of dJ values on density codes provided by the parallel version and th

dJ(Y,/) Fern Fern/wind

Simulated parallel implementation

Fern 0.0000 2.9899

Fern/wind 2.9319 0.0000

Bush 6.2984 6.3261

Bush/wind 6.2787 6.3934

Standard implementation

Fern 0.0000 1.5961

Fern/wind 1.6042 0.0000

Bush 5.9770 5.8693

Bush/wind 6.0729 6.0519

92
polynomial transformations, are reported in Table 5. As one

can see, the loss of precision in the parallel implementation

results in a global 10% increase of non-zero dissimilarities,

however, all important relations between dissimilarity values

are preserved, that is, each of the vegetables can be recognized

and discriminated from the other one, whatever be the wind

conditions.

Finally, take care that the simulation of a parallel process on

a sequential processor can lead to some uncomfortable

computation time. As an indication, the encoding of a 200!
200 image by the program of Appendix A5, on a common

personal computer, requires about 67 min, while the encoding

by the standard implementation requires about 6 min and 45 s

for about 4300 data points. However, the important fact, for

modeling natural perceptual processes, or for specialized

hardware development, is that the image encoding can be
e standard version of the encoding algorithm, for the four images of Fig. 6

Bush Bush/wind

10.1709 9.8703

10.0721 9.9167

0.0000 5.4999

5.5801 0.0000

9.7007 9.2874

9.2206 9.0129

0.0000 4.9764

5.1855 0.0000

P. Courrieu / Neural Networks 19 (2006) 429–445 441
computed by a three-layered feed-forward neural network, thus

very fast. Note also that there are simple recurrent neural

networks that can solve least square systems (in order to

compute dJ functions) in a short time compatible with known

performance of biological perceptual systems (Courrieu,

2004).
6. Conclusion

We have defined a tool that allows for encoding any set of

data points of Rn in the form of a fixed length, deterministic

sequence of points of Rn, whose density function approximates

the (unknown) data probability density function. Such

sequences are called ‘density codes’, and they can be used as

elements of a ‘shape space’ whose topology is induced by a

suitable dissimilarity function. Contrarily to data points, code

points associated to different data sets can be suitably matched,

which allows to define dissimilarity functions that can be made

invariant to any set of coordinate transformations whose

Jacobian matrices are triangular and have strictly positive

diagonals. This is a restriction with respect to other methods

such as affine moment invariants (Suk & Flusser, 2003), or

affine moment based matching (Heikkilä, 2004), for
93
comparisons of two-dimensional data subject to affine

transformations. However, the present method is clearly not

limited to affine transformations, and it works for any data

space dimension. Moreover, intractable transformations such

as reflections and orthogonal rotations are known to be

problematic for visual shape recognition by human as well.

In the perspective of modeling perceptual processes, a parallel

neural implementation for encoding image data is proposed.

More generally, shape spaces, as they are defined here, can be

used as input spaces for pattern analysis and pattern recognition

neural networks that do not require a metric input space

(Courrieu, 2005a), since dissimilarity measures are not

distances.
Appendix A. Matlab code
Appendix A.1

Main function of a Matlab program that computes the

density code ((M!n) matrix) from an input data (m!n) matrix

X. One can choose the kernel function (Gaussian, Logistic, or

Cauchy density), and its scale parameter (default options are

also provided).

P. Courrieu / Neural Networks 19 (2006) 429–445442
Appendix A.2

Probability functions that are called by the main function DensityCode.
Appendix A.3

Functions for generating Faure sequences (Faure, 1982) of length M and dimension n. Points that have at least one zero

coordinate are excluded.
94

P. Courrieu / Neural Networks 19 (2006) 429–445 443
Appendix A.4

The function DeltaPoly(c1, c2, d) computes dJ(c1, c2), where c1 and c2 are density codes, and J is the set of n-variable

polynomials of degree lower or equal to d.
95

P. Courrieu / Neural Networks 19 (2006) 429–445444
Appendix A.5

Main function of a Matlab program for the simulation of a parallel neural implementation of the density encoding algorithm

usable on gray level images.
96

tworks 19 (2006) 429–445 445
References
Amari, S., & Nagaoka, H, (2000). Methods of information geometry. AMS

translations of mathematical monographs (Vol. 191), Oxford: Oxford

University Press.

Arbter, K., Snyder, W. E., Burkhardt, H., & Hirzinger, G. (1990). Applications

of affine-invariant Fourier descriptors to recognition of 3-D objects. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(7),

640–646.

Ben Israel, A., & Greville, T. N. E. (2003). Generalized inverses: Theory and

applications (2nd ed.). New York: Springer.

Cacoullos, T. (1966). Estimation of a multivariate density. Annals of the

Institute of Statistical Mathematics (Tokyo), 18(2), 179–189.

Calot, G. (1967). Cours de Calcul des Probabilités (2nd ed.). Paris: Dunod.

Courrieu, P. (2001). Two methods for encoding clusters. Neural Networks, 14,

175–183.

Courrieu, P. (2002). Straight monotonic embedding of data sets in Euclidean

spaces. Neural Networks, 15, 1182–1193.

Courrieu, P. (2004). Solving time of least square systems in sigma–pi unit

networks. Neural Information Processing: Letters and Reviews, 4(3), 39–

45 (http://www.nip-lr.info).

Courrieu, P. (2005a). Function approximation on non-Euclidean spaces. Neural

Networks, 18, 91–102.

Courrieu, P. (2005b). Fast computation of Moore–Penrose inverse matrices.

Neural Information Processing: Letters and Reviews, 8(2), 25–29 (http://

www.nip-lr.info).

Faure, H. (1982). Discrépance de suites associées à un système de numération

(en dimension s). Acta Arithmetica, XLI, 337–351.

Faure, H. (2001). Variations on (0, s)-sequences. Journal of Complexity, 17,

741–753.

P. Courrieu / Neural Ne
97
Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of

points in evaluating multi-dimensional integrals. Numerische Mathematik,

2, 84–90.

Heikkilä, J. (2004). Pattern matching with affine moment descriptors. Pattern

Recognition, 37, 1825–1834.

Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE

Transactions on Information Theory, 8, 179–187.

Jin, L., & Tianxu, Z. (2004). Fast algorithm for generation of moment

invariants. Pattern Recognition, 37, 1745–1756.

Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex

projective spaces. Bulletin of the London Mathematical Society, 16,

81–121.

Mokhtarian, F., & Abbasi, S. (2002). Shape similarity retrieval under affine

transforms. Pattern Recognition, 35, 31–41.

Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned

processing units. Neural Computation, 1, 281–294.

Parzen, E. (1962). On estimation of a probability density function and mode.

Annals of Mathematical Statistics, 33, 1065–1076.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object

recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3,

109–118.

Suk, T., & Flusser, J. (2003). Combined blur and affine moment invariants and

their use in pattern recognition. Pattern Recognition, 36, 2895–2907.

Tzelgov, J., & Henik, A. (1983). On the recognition of words with inverted

letters. Canadian Journal of Psychology, 37, 233–242.

Zhang, D., & Lu, G. (2002). Shape-based image retrieval using generic Fourier

descriptor. Signal Processing: Image Communication, 17, 825–848.

Zhang, J., Zhang, X., Krim, H., & Walter, G. G. (2003). Object representation

and recognition in shape spaces. Pattern Recognition, 36, 1143–1154.

http://www.nip-lr.info
http://www.nip-lr.info
http://www.nip-lr.info

98

Neural Information Processing – Letters and Reviews Vol. 11, No. 12, December 2007

 247

Fast Density Codes for Image Data

Pierre Courrieu

Laboratoire de Psychologie Cognitive, UMR CNRS 6146, Université de Provence – Centre St Charles
Bat. 9, Case D, 3 place Victor Hugo, 13331 Marseille cedex 3, France

E-mail: Pierre.Courrieu@univ-provence.fr

(Submitted on October 22, 2007)

Abstract—Recently, a new method for encoding data sets in the form of "Density Codes"
was proposed in the literature (Courrieu, 2006). This method allows to compare sets of
points belonging to every multidimensional space, and to build shape spaces invariant to a
wide variety of affine and non-affine transformations. However, this general method does
not take advantage of the special properties of image data, resulting in a quite slow
encoding process that makes this tool practically unusable for processing large image
databases with conventional computers. This paper proposes a very simple variant of the
density code method that directly works on the image function, which is thousands times
faster than the original Parzen window based method, without loss of its useful properties.

Keywords—Image encoding, shape recognition, invariants, fast computation, neural
processing simulation.

1. Introduction

Recently, a new method for encoding sets of points belonging to multidimensional spaces has been

proposed by [1]. Given a set of data points, this method builds a deterministic sequence of points, called "density
code", whose spatial distribution approximates that of the data. However, contrarily to data points, code points
are strictly ordered in a non-arbitrary way, which makes any pair of density codes comparable. This allows
building powerful code dissimilarity functions that can be simply made invariant to a wide variety of affine and
non-affine natural transformations. As demonstrated in [1], this is clearly a promising approach to pattern
recognition problems. However, it turned out that the encoding process is quite slow (several minutes for a
200×200 pixels image), mainly due to the use of a Parzen window scheme to smoothly approximate the data
density [2], and to the requirement of integrating kernel functions. It was also proposed, in [1], a parallel neuron-
like implementation of the method for image data, which could be fast when actually running on a parallel
architecture. Unfortunately, the simulation of this parallel implementation on a conventional sequential computer
is much slower than the basic implementation, that is itself too slow to be used on-line, or to process large image
databases and to perform realistic simulations of neural processing models. Given that most simulations are
performed on conventional computers, there is clearly a need to find a rapid way of building density codes for
common data types such as images or image sequences, without loosing the useful properties of these codes.
Fortunately, this is easy if one takes into account the "array of pixels" structure of image data, as we shall see.

2. Theory and Formulation

Background—First, we rapidly summarize the density code method foundations as stated in [1]. Let
f (X) be a probability density function on Rn , then the density of the (n − k +1)-dimensional marginal

variable (xk , xk+1,..., xn) is given by:

 f (•,...,•,xk,xk+1,...,xn) = f (x1,...,xn) dx1...dxk−1
R k−1

∫ .

The density of the one-dimensional conditional variable (xk | xk+1 = ak+1,..., xn = an) is given by:

LETTER

ha
l-0

02
76

33
5,

 v
er

si
on

 2
 -

21
 J

un
 2

00
8

Author manuscript, published in "Neural Information Processing - Letters and Reviews 11, 12 (2007) 247-255"

99

http://hal.archives-ouvertes.fr/hal-00276335/fr/
http://hal.archives-ouvertes.fr

Fast Density Codes for Image Data Pierre Courrieu

 248

f (xk | xk+1 = ak+1,..., xn = an) = f (•,...,•, xk,ak+1,...,an)
f (•,...,•,•,ak+1,...,an)

 .

The cumulative probability function of this variable is given by:

Pr(xk ≤ b | xk+1 = ak+1,..., xn = an) =
−∞

b

∫ f (•,...,•, xk,ak+1,...,an)
f (•,...,•,•,ak+1,...,an)

dxk .

In compliance with [1], one simplifies the above notation by:
Pr(xk ≤ b | xk+1 = ak+1,..., xn = an) = F (b | ak+1,...,an) ,

where the uppercase F recalls that de corresponding density function is f .

For a random variable X ∈ Rn with density f , one defines a mapping P[f] from Rn to 0,1()n
 as:

P[f](X) = (P1[f](X),P2[f](X),...,Pn[f](X)),
where

Pn[f](X) = F(xn) = f (•,...,•,t) dt
−∞

xn

∫ ,

and
Pk[f](X) = F(xk | xk+1,..., xn), 1≤ k ≤ n −1.

Let U be a random variable uniformly distributed in 0,1()n
, and assume that P[f] is a bijection, then,

according to Theorem 1 from [1], the reciprocal bijection P−1[f] has the following property:
P−1[f](U) is distributed as X , with a probability density equal to f .

The above result is the foundation of the density coding method, since a density code is simply a realization of
the mapping P−1[f](U) with a fixed sequence of m distinct values of U . Theorem 1 from [1] also states that
a sufficient condition for P[f] to be a bijection is that f be continuous and nowhere zero. This fact motivated
the use in [1] of a superposition of continuous kernel functions centered on data points and asymptotically
decreasing to zero, in order to approximate f . This solution works, however it is computationally slow.
Let Y ∈ Rn be a random variable functionally related to X by a continuous invertible transformation ψ , then:

Y =ψ(X) , and g(Y) = f (X)J−1(ψ(X)) ,
where g is the probability density of Y , and J(ψ(X)) is the Jacobian determinant of the transformation.
Theorem 2 from [1] states that if the Jacobian matrix ((∂ψ i /∂x j)(X)) of the transformation is everywhere
triangular (j < i ⇒∂ψ i /∂x j = 0), and has a strictly positive diagonal (∂ψ i /∂xi > 0, 1≤ i ≤ n), then:

P−1[g](U) =ψ(P−1[f](U)) .
The above result is the foundation of the density code comparison method. The set of transformations that have
the required properties includes a wide variety of affine and non-affine natural transformations. However, certain
common affine transformations such as rotations and reflections are excluded.

Encoding Algorithm—Now, how can we translate the above model for finite array data types such as

images or sequences of images? First, we assume that the (unknown) original image function h is a positive
function whose continuous support is a hyper-rectangle Rh = 0, S1[]× ...× 0, Sn[], where the Si 's are
expressed in pixel side units, and h = 0 outside this hyper-rectangle. The image discretization results in a
(given) multidimensional array ˜ h where each (hyper-) pixel, with integer coordinates x1,...,xn(), 1≤ xi ≤ Si ,
has the mean value of h on the unit volume hypercube x1 −1, x1[]× ...× xn −1, xn[], that is:

 ˜ h (x1,...,xn) = ...
x1−1

x1

∫ h(t1,..., tn) dt1...dtn
xn−1

xn

∫ .

This simple and quite reasonable approximation of the discretization process allows us to reduce all
subsequent integrals to finite discrete sums of pixel values. However, image data are subject to variations of
foreground and background lighting that are irrelevant for shape recognition. An image affine transformation

ha
l-0

02
76

33
5,

 v
er

si
on

 2
 -

21
 J

un
 2

00
8

100

Neural Information Processing – Letters and Reviews Vol. 11, No. 12, December 2007

 249

allows us to partly solve this problem. Let min(˜ h) and max(˜ h) denote respectively the minimum and
maximum pixel values in ˜ h , then one transforms the array ˜ h into an array g by:

g = (˜ h −min(˜ h)) /(max(˜ h)−min(˜ h)) , for a light figure on a dark background,
g = (max(˜ h)− ˜ h) /(max(˜ h)−min(˜ h)) , for a dark figure on a light background.
Let Σ A() denote a real number that is the sum of all cell values of an array A . Then one can choose the

code length about m ≈α Σ(g) , for a fixed α > 0, in order to make the number of code points proportional to
the image "foreground mass". One can note that the array g /Σ g() has the properties of a discrete probability
function, however, certain cells have a zero value, with the consequence that certain cumulative probability
functions are not strictly increasing, and thus they cannot be inversed. A simple solution to this problem consists
of adding to each cell of the array g a small positive quantity c such as:

c = λ Σ g()/ Si
i=1

n

∏ ,

where λ is a small positive constant (e.g. λ = 0.0001). This limited "lighting of the background" has the same
role as the strictly positive kernel functions used in the original method [1]. Finally, the discrete probability
function from which we are going to build the density code is given by the array f defined by:

f = (g + c) /Σ(g + c).
The remaining difficulty results from the fact that f contains only a finite set of values, and thus the same

is true for any cumulative function computed from f . As a consequence, one can find an infinite number of
values of U ∈ (0,1)n for which there is no corresponding cell in f . This problem can be solved using a discrete

dichotomic bounding search completed with a local linear interpolation. Given a value of U ∈ 0,1()n
, one can

compute its corresponding code point X = P−1[f](U) ∈ Rh as follows:
function P−1[f](u1,...,un) returns (x1,...,xn)
fn ← f
for k ← n downto 1 do
 Pk[f](0)← 0 % computation of the vector Pk[f](0 : Sk)

 for i←1 to Sk do Pk[f](i)← Pk[f](i −1) + fk (i1,...,ik−1,i)
i1,...,ik−1

∑ endfori

 Pk[f](1: Sk)← Pk[f](1: Sk) /Pk[f](Sk)
 inf ← 0 , sup← Sk % dichotomic search
 while (sup − inf) >1 do
 mid ← (inf + sup) div 2
 if uk ≥ Pk[f](mid) then inf ← mid else sup← mid endif
 endwhile
 w ← (uk − Pk[f](inf)) /(Pk[f](sup) − Pk[f](inf)) % linear interpolation
 xk ← inf + w sup
 if k >1 then
 if inf > 0 then fk−1 ← fk (1: S1,...,1: Sk−1,inf) + w fk (1: S1,...,1: Sk−1,sup)
 else fk−1 ← w fk (1: S1,...,1: Sk−1,sup) endif
 endif
endfork

In the above pseudo-code, the notation " a : b" is that of Matlab, and it refers to the index range
[a,a+1,...,b−1,b]. Any text at right of "%" is a comment. Note that, for computational effectiveness, it is
preferable to implement a specific version for each dimension n , as illustrated by the Matlab function
"ImageCode", listed in the Appendix, for n = 2. One must also take care that the order of variables determines
the set of coordinate transformations to which the comparison of codes can be made invariant. Typically, for
image data, the order (x,y) of the geometrical plane coordinates corresponds to a more probable variety of

ha
l-0

02
76

33
5,

 v
er

si
on

 2
 -

21
 J

un
 2

00
8

101

Fast Density Codes for Image Data Pierre Courrieu

 250

natural transformations than the reverse order (y,x). However, the first dimension of an array usually
corresponds to the y coordinate, and the second dimension corresponds to the x coordinate. So, the
implementation must consider the dimensions in the most appropriate order, which is not necessarily the order of
the array dimensions.

It remains to choose a sequence of points (U1,...,Um) uniformly distributed in (0,1)n , and to compute the
code point corresponding to each of these points by the mapping P−1[f](U j) ,1≤ j ≤ m , in the same order,
which provides the desired density code. The length m of the sequence can vary, if necessary, depending on the
image size and complexity, however, for every given index j , the point U j must always be the same in order to
make different density codes comparable. A good choice is to use a quasi-uniform sequence such as a Halton
sequence [3] or a Faure sequence [4,5], as in [1]. It is well known that Faure sequences must be preferred for
high dimension spaces, however, the data arrays considered in this paper have rarely more than three
dimensions, thus one can as well use simple Halton sequences, and the Matlab function named "Halton" in the
Appendix generates such sequences.

Dissimilarity Function—Given two density codes V and W , that are m×n real matrices, both

computed using the same quasi-uniform sequence, and given a chosen family Ψ of transformation mappings,
one can attempt to find a transformation τ ∈ Ψ that minimizes the quadratic matching error:

EΨ
2 (V ,W) =minτ ∈Ψ τ(V) −W 2

.
This minimization problem is very easy to solve if the transformation family Ψ is linear in its parameters, which
is the case, for example, of the family of multivariate polynomials of a given degree d , that has the special
advantage of naturally including the family of affine transformations (first degree polynomials). In this case, one
computes the polynomial basis functions for each point in V , resulting in a real matrix BV of order m × q,
where the number of monomials q depends on n and d . Then the q × n real matrix T of the optimal
polynomial coefficients is simply given by T = BV

†W , where BV
† is the pseudo-inverse of BV [6,7]. In [1], it

was proposed to use a dissimilarity function defined by:
δΨ (V ,W) = BV T −W / m .

This dissimilarity function works well for data that conform to the basic probabilistic model, however, image
functions do not behave exactly as probability functions, due to the presence of lighting variations, shadows,
non-uniform background, and other sources of noise. As a result, when one compares two similar shapes, there is
frequently a small proportion of code points that do not match and that provide very large errors. These points
are outliers, and it is desirable to limit their effect on the dissimilarity measure. A simple solution to this problem
is to replace the square root of the mean quadratic matching error, which is sensitive to outliers, by the median
matching error, which is much less sensitive to outliers. Another difficulty, pointed out by [1], is that the
dissimilarity measure is asymmetric and has the scale of the target code (W). This makes dissimilarity measures
hard to compare when one works on a set of images that have different sizes. The solution is to make the
dissimilarity measure relative to some evaluation of the scale of the target code. For example, one can divide the
median matching error by the median distance of the target code points to their center of gravity (and multiply
the result by 100 in order to obtain more readable numbers). Finally, in [1], only density codes having the same
length were considered comparable, however, if two codes have different length, say m1 and m2, then the first
m = min(m1,m2) code points are in fact comparable since they have been computed using the same quasi-
uniform sub-sequence. Thus, we can compare density codes of different length, and we are no longer constrained
to use a unique code length for all items in a database. The minor, yet useful, improvements of δΨ suggested
above are implemented in the Matlab function "DeltaMedian" listed in the Appendix.

3. Results

Codes—In order to test the performance of the above described method, we generated 6 pairs of images,
each pair including a "plant-like" blurred fractal (A), and a "wind-like" transformation of it (B). Figure 1 shows
the 12 test images, together with their first 1025 density code points generated using function calls of the form
"CodeName = ImageCode (DataArray, U, 0)", with "U = Halton (1025, 2)" (see Appendix).

ha
l-0

02
76

33
5,

 v
er

si
on

 2
 -

21
 J

un
 2

00
8

102

Neural Information Processing – Letters and Reviews Vol. 11, No. 12, December 2007

 251

 Image A Code A Image B Code B

1

2

3

4

5

6

Figure 1. The 12 test images (256×256 pixels each) and their first 1025 density code points.

ha
l-0

02
76

33
5,

 v
er

si
on

 2
 -

21
 J

un
 2

00
8

103

Fast Density Codes for Image Data Pierre Courrieu

 252

As one can see in Figure 1, the spatial distributions of code points suitably approximate the corresponding
image foregrounds. Each code (1025 points for an image size of 256×256 pixels) was computed in about 19
milliseconds, in Matlab 7.4 running on a MacBook computer (Mac OS X, version 10.4.10), with a 2 GHz Intel
Core 2 Duo processor.

Dissimilarity Measure—The "wind-like" transformations between A and B images of Figure 1 can be

approximated by bivariate third-degree polynomial transformations, whose set was chosen as Ψ. The number of
code points was made proportional (coefficient α) to the image foreground mass, using function calls of the
form "CodeName = ImageCode (DataArray, U, 0, α)" (see Appendix), while α was experimentally varied
from 0.01 to 0.5 (step 0.01). The foreground masses of test images ranged 3729-8923, and a long enough Halton
sequence was available in all cases. Dissimilarity measures (δΨ) were computed for all pairs of distinct images,
for the two possible argument orders (since δΨ is asymmetric), and for all α values. The function calls were of
the form "Delta = DeltaMedian (Code1, Code2, 3)" (see Appendix). For each α value, one selected the
minimum and maximum obtained δΨ values, for pairs of unrelated shapes (distinct "plants"), and for pairs of
related shapes (A-B "wind-like" transforms). The result is plotted in Figure 2.

Figure 2. Observed δΨ boundaries for related and unrelated image pairs, as functions of α .

As one can see in Figure 2, for α > 0.04, the related and unrelated δΨ distributions do not overlap, the δΨ
values become quite stable, and one can reliably decide whether or not two images are related using a simple
threshold of about 5. One can also note that the maximum separation of δΨ distributions is reached for α =
0.25, however, this a priori depends on the considered shape space, and in particular on the relative scale of
relevant distinctive features.

Code Computation Time—An examination of the operations involved in the image coding process shows

that the complexity depends on both the image height (H), the image width (W), and the number of code

ha
l-0

02
76

33
5,

 v
er

si
on

 2
 -

21
 J

un
 2

00
8

104

Neural Information Processing – Letters and Reviews Vol. 11, No. 12, December 2007

 253

points (m). The heaviest operations concern the image preprocessing (O(HW)), the m -times iterated
dichotomic searches (O(m(log2 H + log2 W − 2))), and the m -times iterated computation of interpolated
row vectors (O(mW)). In order to estimate the weights of these operations (for our platform), we measured the
encoding time of random images whose height and width where independently varied from 16 to 1024 pixels (in
powers of 2), while the code length was also independently varied from 16 to 1024, with repeated measures
using 20 independent random images per condition. Then the regression equation was solved using a least square
method, and we obtained the following approximation of the code computation time (in milliseconds):

t(H,W ,m) ≈10−4 (0.6853 HW + 3.8459 m(log2(HW) − 2) + 0.3943 mW), (± 2.66) .
The standard approximation error is small enough for practical use, and the correlation between the observed and
approximated computation times is r = 0.99. As an example, the approximated computation time for the
images of Figure 1, with 1025 code points, is 20.4 ± 2.66 milliseconds, whereas the observed computation time
was about 19 milliseconds. We observed that adding more terms to the regression equation does not significantly
improve the approximation accuracy, whereas the formula is obscured by the presence of negative coefficients.

Finally, we note that the obtained computation times make the density code approach perfectly usable for
on-line computation and for the processing of large image databases. Using the original encoding algorithm, the
code computation time, as reported in [1], was of 6 minutes and 45 seconds for 2048 code points on an image of
200×200 pixels. Even though the used computers are not the same, there is no doubt that the present algorithm
considerably improves the situation, performing a similar encoding in only 29.4 milliseconds.

Appendix

The following implementation code, in Matlab 7.4, is provided for example, and for academic use only.

The code is not optimized and exception cases are not managed.

function code = ImageCode(f,u,DarkOnLight,alpha)
% Density code of an image f for a quasi-uniform sequence u
% For a fixed length code, do not provide the alpha argument
% Set DarkOnLight=1 for a dark figure on a light background (else 0)
[ymax,xmax]=size(f); minf=min(min(f)); maxf=max(max(f));
if DarkOnLight>0, f=(maxf-f)/(maxf-minf); else f=(f-minf)/(maxf-minf); end
Sf=sum(sum(f));
if nargin<4, m=length(u); else m=min(length(u),round(alpha*Sf)); end
lambda=0.0001; f=f+lambda*Sf/(ymax*xmax); Pyf=sum(f,2);
Pyf=cumsum(Pyf); Pyf=Pyf/Pyf(ymax); % Pn[f] is computed only once
for p=1:m
 v=u(p,2); lob=1; upb=ymax;
 if v<=Pyf(1), w=v/Pyf(1); Pxf=f(1,:)*w;
 else while (upb-lob)>1
 y=round((lob+upb)/2);
 if Pyf(y)>v, upb=y; else lob=y; end
 end
 w=(v-Pyf(lob))/(Pyf(upb)-Pyf(lob));
 u(p,2)=lob+(upb-lob)*w;
 Pxf=f(lob,:)+(f(upb,:)-f(lob,:))*w;
 end
 Pxf=cumsum(Pxf); Pxf=Pxf/Pxf(xmax); % Pk[f],k<n, is computed m times
 v=u(p,1); lob=1; upb=xmax;
 if v>Pxf(1)
 while (upb-lob)>1
 x=round((lob+upb)/2);
 if Pxf(x)>v, upb=x; else lob=x; end
 end
 u(p,1)=lob+(upb-lob)*(v-Pxf(lob))/(Pxf(upb)-Pxf(lob));
 end
end
code=u(1:m,:);

function u = Halton(m,n)
% Halton quasi-uniform sequence of m points in (0,1)^n
p=zeros(n,1);

ha
l-0

02
76

33
5,

 v
er

si
on

 2
 -

21
 J

un
 2

00
8

105

Fast Density Codes for Image Data Pierre Courrieu

 254

p(1,1)=2;
for k=2:n
 p(k,1)=p(k-1,1)+1;
 while ~isprime(p(k,1)), p(k,1)=p(k,1)+1; end
end
u=zeros(m,n);
for t=1:m
 u(t,:)=point(n,t,p);
end

function pt=point(n,t,p)
pt=zeros(1,n);
for k=1:n
 pk=p(k,1); i=t; h=0; ib=1/pk;
 while (i>0)
 d=mod(i,pk);
 h=h+d*ib;
 i=round((i-d)/pk);
 ib=ib/pk;
 end
 pt(1,k)=h;
end

function delta = DeltaMedian(c1, c2, d)
% Delta function with d-degree polynomial invariants
% Modified from the DeltaPoly function listed in Courrieu (2006)
[m1,n]=size(c1); [m2,n]=size(c2); m=min(m1,m2);
c1=c1(1:m,:); c2=c2(1:m,:); % reduce to comparable sub-sequences
if d == 0 % direct comparison of density codes
 err = sqrt(sum((c1-c2).^2,2));
else % comparison of codes using invariants
 pw = AllPowers(n,d);
 [n,NbrTerms] = size(pw);
 x = ones(m,NbrTerms);
 for t = 1:NbrTerms
 for i = 1:n
 x(:,t) = x(:,t).*c1(:,i).^pw(i,t);
 end
 end
 T = pinv(x)*c2; % optimal transformation coefficients
 err = sqrt(sum((x*T - c2).^2,2));
end
delta=median(err); % median mismatch based dissimilarity
TargetCentre=mean(c2);
TargetScale= median(sqrt(sum((c2-kron(ones(m,1),TargetCentre)).^2,2)));
delta=100*delta/TargetScale;

function pwrs = AllPowers(n,d)
% All vectors of n positive integers of sum <= d
global PW;
PW = [];
for k = 0:d
 kPowers(n,[],k);
end
pwrs = PW;

function kPowers(n,v,k)
% Recursively builds vectors of sum k
global PW;
if length(v) == (n-1)
 v = [v;k];
 PW = [PW,v];
else
 for p = 0:k
 kPowers(n,[v;p],k-p);

ha
l-0

02
76

33
5,

 v
er

si
on

 2
 -

21
 J

un
 2

00
8

106

Neural Information Processing – Letters and Reviews Vol. 11, No. 12, December 2007

 255

 end
end

References

[1] P. Courrieu, "Density Codes and Shape Spaces", Neural Networks, Vol. 19, pp. 429-445, 2006.
[2] D.F. Specht, "Probabilistic Neural Networks", Neural Networks, Vol. 3, pp. 109-118, 1990.
[3] J.H. Halton, "On the Efficiency of Certain Quasi-random Sequences of Points in Evaluating Multi-

dimensional Integrals", Numerische Mathematik, Vol. 2, pp. 84-90, 1960.
[4] H. Faure, "Discrépance de Suites Associées à un Système de Numération (en Dimension s)", Acta

Arithmetica, XLI, pp. 337-351, 1982.
[5] H. Faure, "Variations on (0, s)-sequences", Journal of Complexity, Vol. 17, pp. 741-753, 2001.
[6] A. Ben Israel, & T.N.E. Greville, Generalized Inverse: Theory and Applications (2nd ed.), New York,

Springer, 2003.
[7] P. Courrieu, "Fast Computation of Moore-Penrose Inverse Matrices", Neural Information Processing-Letters

and Reviews, Vol. 8, No. 2, pp. 25-29, 2005.

Pierre Courrieu received his PhD degree from University of Provence in 1983,
and he is a CNRS researcher currently working with psychologists and
neuroscientists in Marseille (France). He is a member of the European Neural
Network Society, and his research interests include visual shape recognition,
neural computation, data encoding, function approximation, supervised learning,
and global optimization methods.

ha
l-0

02
76

33
5,

 v
er

si
on

 2
 -

21
 J

un
 2

00
8

107

108

Pierre Courrieu – dossier HDR II.D.1

II.D Réseaux de neurones et apprentissage supervisé

 Lorsqu'on a construit un espace d'entrée et un espace de sortie, il reste à construire la

machinerie établissant un lien fonctionnel des entrées vers les sorties. La Théorie de

l'Approximation des Fonctions fournit depuis longtemps des bases solides pour construire des

approximations aussi précises que l'on voudra de toute fonction continue (ou même seulement

continue par morceaux) d'un espace métrique vers un (autre) espace métrique. Ces bases

théoriques indispensables ne fournissent cependant pas directement les méthodes pratiques

nécessaires pour résoudre les problèmes concrets d'approximation de fonctions que l'on

rencontre dans les applications et dans la modélisation cognitive. C'est un des grands mérites

de la théorie des réseaux de neurones artificiels que d'avoir développé des méthodes

d'apprentissage qui, associées aux théorèmes fondamentaux d'approximation des fonctions,

ont donné des algorithmes très efficaces pour résoudre des problèmes "naturels". Pour ma

part, je me suis essentiellement intéressé aux réseaux de neurones dits "feedforward", c'est-à-

dire aux réseaux où l'activation chemine des entrées vers les sorties sans rétroactions. Le

cerveau humain étant en réalité un système dynamique non-linéaire complexe (Pezard &

Nandrino, 2001), il est clair que les modèles feedforward sont des abstractions qui permettent,

au mieux, d'approcher certaines fonctions cognitives, mais sans doute pas les fonctions

cérébrales sous-jacentes. Ce que l'on appelle "apprentissage supervisé" consiste à calculer les

paramètres, et éventuellement l'architecture, d'une machinerie neuronale implémentant une

fonction complète (en général continue) à partir d'un échantillon fini de points de la fonction,

appelés "exemples", dont on connaît les valeurs d'entrée et de sortie. Les points qui ne sont

pas des exemples sont des points de "généralisation" où, étant donnée une valeur d'entrée, la

machine neuronale doit estimer la valeur de sortie correspondante (par interpolation ou

extrapolation), après un éventuel "lissage" visant à éliminer le bruit que peuvent contenir les

exemples. Certains algorithmes d'apprentissage utilisent les exemples pour calculer les

paramètres d'un réseau de neurones dont l'architecture est prédéterminée par le modélisateur.

C'est le cas du très célèbre algorithme de rétropropagation du gradient d'erreur (Rumelhart,

Hinton, & Williams, 1986), et des algorithmes plus simples, de type "moindres carrés", que

l'on utilise avec les réseaux à fonctions bases radiales (Poggio & Girosi, 1990; Yoon, 2001).

D'autres algorithmes d'apprentissage, comme la "Cascade-Correlation" (Fahlman, & Lebiere,

1990), déterminent à la fois l'architecture et les paramètres du réseau rendant compte des

exemples. Il existe également des variantes incrémentales des méthodes de moindres carrés

qui permettent de construire progressivement un réseau à fonctions bases radiales ou

109

Pierre Courrieu – dossier HDR II.D.2

similaires (Sin & DeFigueiredo, 1993). J'ai proposé, indépendamment du travail de Fahlman

et Lebiere (1990) que je ne connaissais pas à l'époque, un algorithme d'apprentissage qui s'est

avéré être une variante de l'algorithme de Cascade-Correlation (Courrieu, 1993a). Le travail

de Fahlman et Lebiere n'était pas encore très connu, et personne (pas même les referees de

"Neural Networks" où j'ai publié mon travail) n'a relevé la similitude des algorithmes à ce

moment là. D'autres variantes de l'algorithme de Cascade-Correlation ont été publiées depuis,

et c'est une famille d'algorithmes très utilisée dans les applications pratiques.

 Cependant, une difficulté est apparue avec les réseaux de neurones et autres méthodes

classiques d'approximation des fonctions. Ces méthodes sont conçues pour approcher des

fonctions sur des espaces métriques euclidiens. Or il est de nombreux problèmes, notamment

en reconnaissance des formes, où l'espace d'entrée n'est pas euclidien. C'est par exemple

souvent le cas lorsque, désirant approcher une fonction sur un espace de chaînes de caractères,

on structure cet espace par une pseudo-distance entre chaînes, obtenue par une méthode de

Programmation Dynamique. C'est également le cas lorsque, désirant approcher une fonction

sur un espace de formes en réduisant les transformations régulières, on structure l'espace par

une mesure de "dissimilarité" non métrique entre formes (Courrieu, 2006, 2007, voir Section

II.C). Il existe à ce jour deux façons de résoudre ce problème. La première fait appel à une

extension simple de l'approximation "au plus proche voisin" usuelle, mais cette approche est

très peu régulière et donne des généralisations assez grossières. J'ai proposé une autre

approche, beaucoup plus "régularisée", qui donne de meilleurs résultats (Courrieu, 2005a,

article ci-joint). Le modèle neurocomputationnel développé garantit la possibilité d'approcher

aussi précisément que l'on voudra toute fonction continue, non seulement sur tout espace

métrique (euclidien ou non), mais également sur une très large variété d'espaces topologiques

non métriques, couvrant sans doute l'ensemble des besoins pratiques courants. Ainsi qu'il est

dit dans l'article, ce résultat représente, me semble-t-il, une extension significative de la

notion usuelle de "capacité d'approximation universelle". Il me faut cependant mettre un

bémol à cet autosatisfecit, car la publication de ce travail semble n'avoir eu qu'un succès très

modeste. Parmi les rares auteurs qui ont cité l'article, certains n'ont même pas relevé que

l'outil proposé permet d'approcher des fonctions sur des espaces non métriques, de sorte que

je me demande pourquoi ils ont cité ce travail. La faute est sans doute à ma maladresse

chronique en matière de communication. Je profite donc de la présente circonstance

académique pour signaler que, si l'on a à approcher une fonction sur un espace aux propriétés

topologiques extravagantes, il peut être de quelque utilité de consulter la référence Courrieu

(2005a), ainsi d'ailleurs que la référence Courrieu (2002) présentée dans la section II.B.

110

Pierre Courrieu – dossier HDR II.D.3

References

Courrieu, P. (1993a). A convergent generator of neural networks. Neural Networks, 6, 835-

844.

Courrieu, P. (2005a). Function approximation on non-Euclidean spaces. Neural Networks, 18,

91-102.

Fahlman, S.E., & Lebiere, C. (1990). The Cascade-Correlation learning algorithm. In D.S.

Touretsky (Ed.): Advances in Neural Information Processing Systems, 2. San Mateo, CA:

Morgan Kauffman Publishers, pp. 525-532.

Pezard, L., & Nandrino, J.-L. (2001). Paradigme dynamique en psychopathologie: la «Théorie

du chaos», de la physique à la psychiatrie. L’Encéphale, XXVII, 260-8.

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the

IEEE, 78(9), 1481-1497.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal representations by

error propagation. In D.E. Rumelhart & J.L. McClelland (Eds.): Parallel Distributed

Processing: Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press,

pp. 318-362.

Sin, S.-K., & DeFigueiredo, R.J.P. (1993). Efficient learning procedures for optimal

interpolative nets. Neural Networks, 6, 99-113.

Yoon, J. (2001). Interpolation by Radial Basis Functions on Sobolev space. Journal of

Approximation Theory, 112, 1-15.

111

112

Function approximation on non-Euclidean spaces

Pierre Courrieu*

Laboratoire de Psychologie Cognitive, CNRS-UMR 6146, Université de Provence, 29 avenue Robert Schuman, 13621 Aix-en-Provence cedex 1, France

Received 30 April 2003; accepted 24 September 2004

Abstract

This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and

also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation

schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and

illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Function approximation; Non-metric spaces; Feed-forward neural networks; Regularization; Invariants
1. Introduction

Neural computation research, together with related areas

in approximation theory, have developed powerful methods

for approximating continuous mappings on compact

subsets of Rn as a Euclidean space. Most approximation

schemes use three layered feed-forward neural architectures

with scalar product based neurons (Cybenko, 1989;

Funahashi, 1989; Hornik, 1993; Leshno, Lin, Pinkus, &

Schocken, 1993; Rumelhart, Hinton, & Williams, 1986a,b),

or Euclidean distance based neurons (Girosi & Poggio,

1990; Micchelli, 1986; Poggio & Girosi, 1990; Yoon,

2001), while more general feed-forward architectures have

also sometimes been studied (Courrieu, 1993; Fahlman &

Lebiere, 1990; Kreinovich, 1991). In such schemes,

function approximation capabilities critically depend on

the Euclidean metric nature of the input space. However, it

is frequent in practical applications that one must approxi-

mate functions on data spaces that are not Euclidean, not

metric, or even not numerical (symbol strings, graphs). In

such cases, one usually attempts to empirically encode the

input data in the form of numerical vectors, with the hope,

but without any guarantee, that the performed encoding is

relevant. Then one applies conventional neural methods on
0893-6080/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2004.09.003

* Tel.: C33 4 42 95 37 28; fax: C33 4 42 20 59 05.

E-mail address: courrieu@up.univ-mrs.fr.

113
the space of codes, assuming that it is Euclidean and that it

suitably preserves the topology of the original data space.

Such an empirical encoding can result in a failure in

approximating the objective function because the complex-

ity of the approximation to be found not only depends on

that of the objective function, but also on the suitability of

the encoding. The data-encoding problem has been

previously treated for special data types such as clusters,

that have been shown to be suitably encodable in Euclidean

spaces (Courrieu, 2001). It has also been shown that certain

data sets can be monotonically embedded in a Euclidean

space, provided that their topology is induced by a function

that has at least some properties of a metric, except possibly

the triangle inequality (Courrieu, 2002). In these cases, one

can apply a conventional neural method for function

approximation on the Euclidean embedding space. How-

ever, there are also data spaces that cannot be embedded in a

Euclidean space without strongly modifying their topology.

This is the case, for example, of data spaces where

neighborhood relations are not symmetric, or whose

topology is induced by a semi-metric (that can take a zero

value for pairs of distinct elements). Such topological data

spaces are not rare in practice, and it can even happen that

their basically non-metric properties are in fact relevant to

the function approximation problem to be solved. Consider,

for example, objective functions invariant to certain regular

transformations of the input, which are common in pattern

recognition (see Section 8 of this paper for a meaningful
Neural Networks 18 (2005) 91–102
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet

P. Courrieu / Neural Networks 18 (2005) 91–10292
example). Non-Euclidean and non-metric spaces are also

commonly generated by Dynamic Programming methods

applied to time series or symbol strings (see Section 9).

Thus, there is clearly a need for building function

approximation schemes on data spaces with minimal

requirements concerning their topology, which is the

purpose of this paper. The model proposed hereafter has

the form of a layered feed-forward neural network, with

special neural basis functions, and it can approximate

functions on a wide variety of non-metric data spaces, as

well as on any metric space. Data spaces are usually

probabilized by a (possibly unknown) sampling probability

function on the input space. This property will be explicitly

used hereafter.
2. Problem statement

2.1. Input space topology

Let U be any set, and d be a real valued function on U!
U such that, for any X,Y2U:

dðX;XÞ Z 0;

dðX;YÞR0;

dðX;YÞ!N:

Then (U,d) is a topological space whose topology is

induced by d. In particular, a closed ball of center X2U, and

of radius rR0, is the set defined by:

BðX; rÞ Z fY 2U; dðX; YÞ%rg:
2.2. Sampling probability

Let m be a sampling probability on U such that:

mðUÞ Z 1; for any X 2U; rO00mðBðX; rÞÞO0:

Note that this last requirement implies some restriction

concerning d. In particular, if U is a continuum and m is a

continuous probability function, then d cannot be a trivial

distance because any ball of radius less than 1 would have

only one element (its center), and then would be a subset of

zero measure of U.

2.3. Objective function

Let f be a real valued mapping from U to RK such that, for

any X,Y2U:

jfiðXÞK fiðYÞj%aidðX;YÞ; 0!ai!N; 1% i%K:

If (U,d) is a metric space, then the above requirement is

simply a Lipschitz condition on f. The above property,

together with the finiteness of d (see Section 2.1), implies

that f is bounded on U.
114
2.4. Approximation problem

Find an approximation of f, given a learning set of M data

points

X Z fðXi; f ðXiÞÞ; 1% i%Mg;

where points are sampled on U with the probability m.

One requires that the approximation be uniformly

convergent as M tends to infinity.
3. Approximation method

3.1. Prototypical examples

First, one must select a subset of m data points from X,

with m%M, in such a way that

min
1%isj%m

dðXi;XjÞ Z sO0:

Each of these points is a ‘prototype’ that will be

associated to a particular basis function. The strictly positive

real number s is the minimum ‘spacing’ of prototypes in

(U,d), while non-prototypical examples are not subject to

any spacing constraint. The set of input values of prototypes

is denoted c.

3.2. Low level layer(s)

Given an input X2U, one uses one or more low level

layer(s) for computing d values between the current input X

and the m prototypical input points Xi, 1%i%m. The output

of this processing is a set of m real values d(X,Xi), 1%i%m.

Note that the order of the arguments of d is relevant since we

do not assume that d is symmetric. The exact specification

of this low level processing of course depends on each

particular input space (U,d).

3.3. Basis functions

The output of the low level processing (Section 3.2) is

used as the input of a layer of m neural basis functions, that

are defined as follows:

giðX; bÞ Z
eKb$dðX;XiÞPm
jZ1 eKb$dðX;XjÞ

; 1% i%m:

The determination of the real parameter bO0 will be

studied in the following sections. We note that the basis

functions are all positive and that their sum is equal to 1, for

any X2U.

3.4. Output layer

The output of the basis function layer (Section 3.3) is

used as the input of an output layer of K (linear) neurons.

P. Courrieu / Neural Networks 18 (2005) 91–102 93
The synaptic weight of the connection from the ith basis

function neuron to the jth output neuron is denoted wij, with

1%i%m, and 1%j%K. The output functions are given by:

4jðXÞ Z
Xm

iZ1

wijgiðX;bÞ; 1% j%K:

In the following, we will refer to such approximators as

‘4 approximators’.
3.5. Computation of synaptic weights

Synaptic weights are simply computed by a usual Least

Square method, which provides an exact interpolation of

data points if mZM, or which allows for filtering possible

data noise if m!M.

Let G be the M!m real matrix of basis function values

for the M learning examples:

G Z ðgiðXp; bÞÞ; 1%p%M; 1% i%m:

Let F be the M!K real matrix of the objective function

values for the learning examples.

Let W be the m!K real matrix of synaptic weights to be

computed.

The Least Square solution can be obtained, for example,

by using the pseudo-inverse method

W Z ðG0GÞK1G0F;

where the 0 denotes the transposition operator.

This assumes that the symmetric matrix (G 0G) is

invertible, which can be guaranteed by a suitable choice

of the parameter b, as we shall see in Section 5. In practice,

very large systems can be solved using another approach,

such as a Conjugate Gradient method. However, the

existence of a solution is always guaranteed by the non-

singularity of G 0G.
4. Uniform approximation capability

The uniform convergence proof of the above approx-

imator does not require that sO0 (see Section 3.1), thus in

this section we can simply consider the case mZM. Before

proving the uniform convergence of the approximator, we

must generalize a result that is well-know for continuous

function approximation on compact subsets of Rn. In order

to simplify the writing, we state the results for KZ1, while

the generalization to any K is immediate since all output

components have similar properties.

Definition 1. The ‘nearest known neighborhood’ of any

point X2U is the set defined by

NðXÞ Z fXi 2c; dðX;XiÞ Z min
1%j%m

dðX;XjÞg:
115
The number of points in N(X) is denoted jN(X)j, and one

has necessarily jN(X)jR1.

Definition 2. The ‘stepwise approximation’ of a function f

on U is defined by

QmðXÞ Z
Xm

jZ1

qiðXÞf ðXiÞ;

with

qiðXÞ Z
1

jNðXÞj
if Xi 2NðXÞ

0 otherwise
:

8<
:

Lemma 1. Under the general conditions stated in Section 2,

one has, for any 3O0:

lim
m/N

Probðsup
X2U

jf ðXÞKQmðXÞjO3Þ Z 0:

Proof.
(i)
 Using Section 2.2, for any X2U, rO00m(B(X,r))O0,

and thus: for any rO0, limm/N Probðmin1%i%m dðX;XiÞ

OrÞZ limm/Nð1 KmðBðX; rÞÞÞm Z0.
(ii)
 Using Section 2.3, d(X,Xi)%r0jf(X)Kf(Xi)j%a.r,

with a!N, and thus:

jf ðXÞKQmðXÞj Z f ðXÞK
1

jNðXÞj

X
Xi2NðXÞ

f ðXiÞ

�����
�����

Z
1

jNðXÞj

X
Xi2NðXÞ

f ðXÞK f ðXiÞ

�����
�����

%
1

jNðXÞj

X
Xi2NðXÞ

jf ðXÞK f ðXiÞj

%
1

jNðXÞj
jNðXÞja:r Z a:r:
(iii)
 One obtains Lemma 1 from (i) and (ii), with rZ
3/a. ,
We are now ready to prove the following theorem.

Theorem 1. Let bZb(m) be a positive increasing function

of m such that limm/N bðmÞZN. Then, under the general

conditions stated in Section 2, there are synaptic weights wi,

1%i%m, for the approximator 4(X) defined in Section 3.4,

such that, for any 3O0:

lim
m/N

Prob sup
X2U

jf ðXÞK4ðXÞjO3

� �
Z 0:

Proof. Given Lemma 1, it suffices to take wiZf(Xi),

1%i%m, and to show that:

lim
m/N

giðX;bðmÞÞ Z qiðXÞ:

P. Courrieu / Neural Networks 18 (2005) 91–10294
We note that the ith neural basis function can also be written

as:

giðX;bÞ Z
1Pm

jZ1 ebðdðX;XiÞKdðX;XjÞÞ
:

If Xi2N(X) then

giðX;bÞ Z
1

jNðXÞjC
P

Xj;NðXÞ ebðdðX;XiÞKdðX;XjÞÞ
;

where the arguments of the exponentials are all strictly

negative, and thus the sum of these exponentials tends to zero

as b tends to infinity, which leads to the expected result:

giðX;bÞ/
1

jNðXÞj
; as b/N:

On the other hand, if Xi;N(X) then

giðX;bÞ%
X

Xk;NðXÞ

gkðX; bÞ

Z 1 K
X

Xj2NðXÞ

gjðX; bÞ/1 K jNðXÞj
1

jNðXÞj

Z 0; as b/N;

which completes the proof. ,
5. Interpolation and Least Square approximation
5.1. Interpolation problem

This is the case mZM, with a minimum spacing sO0

(see Sections 3.1 and 3.5). The computation of synaptic

weights reduces to WZGK1F, which requires that the m!m

matrix G be invertible.

Theorem 2. With mO1 and sO0, there is a real number b0

such that 0%b0%ln(mK1)/s, and if bOb0, then the matrix

GZ(gij)Z(gj(Xi;b)), 1%i,j%m, is invertible.

Proof. After the well-known theorem of Gerschgorin–

Hadamard, one knows that a sufficient (but not necessary)

condition for a square matrix to be invertible is that the

absolute value of each of its diagonal coefficients be greater

than the sum of the absolute values of all non-diagonal

coefficients in the same row. Given that all coefficients of G

are positive and that each row has a sum equal to 1, the

theorem of Gerschgorin–Hadamard applies if giiO1/2,

1%i%m.

One has:

gii Z
1

1 C
Pm

j Z 1

jsi

eKb$dðXi ;XjÞ
O

1

2
5

Xm

j Z 1

jsi

eKb$dðXi;XjÞ!1:
116
On the other hand, one has:

Xm

j Z 1

js1

eKb$dðXi;XjÞ% ðm K1ÞeKbs;

and finally:

ðm K1ÞeKbs!15bO
lnðm K1Þ

s
:

Thus the lower bound b0 is at most equal to ln(mK1)/s,

which completes the proof. ,
5.2. Least square approximation

This is the case MOm, which allows for approximating

the objective function while filtering possible data noise. As

stated in Section 3.5, one must inverse the symmetric matrix

G 0G, while G is a rectangular M!m matrix. The following

evidence solves the problem.

Lemma 2. If the square m!m submatrix of G correspond-

ing to the prototypical examples is invertible, then G 0 G is

invertible.

Proof. If the submatrix of G corresponding to the

prototypical examples is invertible, then its m column

vectors are linearly independent, which implies that the m

column vectors of G are also linearly independent since

there is no non-zero vector u such that GuZ0. As a

consequence, there is no non-zero vector u such that

u 0G 0GuZ0, which means that none of the eigenvalues of

G 0G is zero, and thus G 0G is invertible. ,

As one can see, it suffices to apply Theorem 2 to the set of

prototypes to be sure that the Least Square approximation

problem has a solution (WZ(G 0G)K1G 0F). Note however

that the above proof assumes that all prototypes actually

belong to the learning set.
6. Behavior of the approximator as a function of b

In order to visualize the behavior of the approximator

4(X) as a function of b, we interpolated a fixed set of 20

distinct data points on the unit square of R2, with d(X,Y)Z
kXKYk2 (thus the support space is Euclidean for this visual

example), using various values for b. In this case, each

coefficient of the matrix G is equal to a Gaussian divided by

a sum of Gaussians, and the matrix G is equal to the product

of a non-singular diagonal matrix (inverse sums) by a

symmetric matrix of Gaussians. This implies that any bO0

can be used (that is b0Z0), since such a matrix G is always

invertible (Micchelli, 1986). We have mZ20, sZ0.02, and

thus ln(mK1)/sZ147.22. One can see, in Fig. 1, interp-

olation surfaces obtained for bZ150 (upper panel), and for

bZ50 (lower panel). The interpolation surface obtained

Fig. 1. Two interpolation surfaces of a set of 20 data points on the real unit square, with two different values of b.

P. Courrieu / Neural Networks 18 (2005) 91–102 95
with bZ150 looks like a ‘smoothed stepwise approxi-

mation’, with typical sigmoid profiles between data points.

The corresponding minimum diagonal coefficient of G is

equal to 0.95, which is unnecessarily large. The interp-

olation surface obtained with bZ50 is more regular,

although its variation range is wider. The corresponding

minimum diagonal coefficient of G is equal to 0.675.

Gradually lowering b, one obtains larger and larger

oscillations of the interpolator between data points, and

clear symptoms of ill-conditioning (of G) for b!15, while

the minimum diagonal coefficient of G is lower than 0.30.
7. Regularization

One knows that regularizing an approximator is import-

ant in order to obtain a good generalization capability

from finite samples of data points. Regularizations of

approximators on Rn are commonly obtained by minimizing
117
norms of differential operators (Girosi & Poggio, 1990;

Poggio & Girosi, 1990). Unfortunately, such operators are

not defined for functions on non-metric spaces. So, we must

first define some suitable stabilizer usable on such spaces,

which requires some reasonably restrictive additional

conditions concerning the space (U,d).
7.1. Foundations

Definition 3. With C(X,r)Z{Y2U, 0!d(X,Y)%r}, the

absolute local variation ratio of an approximator 4 at point

X2U is defined as:

D4ðXÞ Z lim
r/0

sup
Y2CðX;rÞ

ðj4ðXÞK4ðYÞj=dðX;YÞÞ:

In the following, we will determine a positive function

V(b) such that:

sup
X2U

D4ðXÞ%VðbÞ:

P. Courrieu / Neural Networks 18 (2005) 91–10296
Then there is a particular b, denoted b*, such that

Vðb�Þ Z min
bOb00

VðbÞ;

where b 00 is the b value for which min1%j%m gjj Z0:5, and

thus bOb 00 guarantees that the matrix G is invertible since

b 00Rb0 (see Theorem 2).

In other words, our regularization approach consists of

minimizing an upper bound of the absolute local variation

ratio of 4 on (U,d).

In order to do this, we consider first the case of an exact

interpolation (mZM, sO0), and we require the following

two additional conditions:
†
 For any X2U, for any rO0, C(X,r) is not empty (thus

D4(X) is defined).
†
 There is a positive number g!N such that, for any

X,Y,Z2U

jdðX;ZÞKdðY ;ZÞj%g$dðX; YÞ:

As we shall see, there is no need for knowing the value of

g, provided that one can assume that it is finite. Note also

that in the special case where d is a metric, one has gZ1,

and the condition is equivalent to the triangle inequality

(which, of course, is not required here).

Theorem 3. Under the above specified conditions, for any

bOb 00, one has:

sup
X2U

D4ðXÞ%VðbÞ Z max
1%i%m

jf ðXiÞj,g,
b

min1%j%m gjj K0:5
:

Proof. Step 1

j4ðXÞK4ðYÞj Z
Xm

iZ1

wigiðX; bÞK
Xm

iZ1

wigiðY; bÞ

�����
�����

Z
Xm

iZ1

wiðgiðX; bÞKgiðY; bÞÞ

�����
�����

% max
1%i%m

jwij
Xm

jZ1

jgjðX; bÞKgjðY; bÞj;

and thus, for any X2U:

D4ðXÞ% max
1%i%m

jwij

� �

, lim
r/0

sup
Y2CðX;rÞ

Xm

jZ1

jgjðX; bÞKgjðY ; bÞj=dðX;YÞ

 !
:

Step 2

Given that all prototypes have non-zero spacing, the m!
m matrix G tends to the identity matrix I as b tends to

infinity, and thus WZGK1F tends to F. Now, for b!N, one

can use a well-known theorem on linear system
118
conditioning (Ciarlet, 1982, pp. 30–31), which gives

jjF KWjjN%
jjI KGjjN

1 K jjI KGjjN
jjFjjN;

that is

max
1%i%m

jf ðXiÞKwij%
2ð1 Kmin1%j%m gjjÞ

1 K2ð1 Kmin1%j%m gjjÞ
, max

1%i%m
jf ðXiÞj;

which implies that

max
1%i%m

jwij% 1 C
2ð1 Kmin1%j%m gjjÞ

1 K2ð1 Kmin1%j%m gjjÞ

� �

$ max
1%i%m

jf ðXiÞj Z
max1%i%m jf ðXiÞj

2$ min1%j%m gjj K1
:

Step 3

First, we note that

jdðX; ZÞKdðY ;ZÞj%g$dðX;YÞ0eKb$dðX;ZÞ

2½eKbðdðY ;ZÞCg$dðX;YÞÞ; eKbðdðY ;ZÞKg$dðX;YÞÞ

Z ½eKbg$dðX;YÞ; ebg$ðX;YÞ
eKbdðY ;ZÞ:

Here, we use some interval calculation rules (numbered

I1–I12, see Appendix):

Xm

iZ1

jgiðX; bÞKgiðY ; bÞj

Z
Xm

iZ1

j
eKb$dðX;XiÞPm
jZ1 eKb$dðX;XjÞ

K
eKb$dðY ;XiÞPm
jZ1 eKb$dðY ;XjÞ

j

2
Xm

iZ1

j
½eKbg$dðX;YÞ; ebg$dðX;YÞ
eKb$dðY ;XiÞ

½eKbg$dðX;YÞ; ebg$dðX;YÞ
$
Pm

jZ1 eKb$dðY ;XjÞ

K
½1; 1
,eKb$dðY ;XiÞ

½1; 1
,
Pm

jZ1 eKb$dðY ;XjÞ
j ðI1; I12Þ

Z
Xm

iZ1

j½eK2bg$dðX;YÞ; e2bg$dðX;YÞ

eKb$dðY ;XiÞPm
jZ1 eKb$dðY ;XjÞ

K ½1; 1
,
eKb$dðY ;XiÞPm
jZ1 eKb$dðY ;XjÞ

j ðI5; I10Þ

Z
Xm

iZ1

j½eK2bg$dðX;YÞ K1; e2bg$dðX;YÞ K1

!
eKb$dðY ;XiÞPm
jZ1 eKb$dðY ;XjÞ

j ðI11Þ

Z ½0; e2bg$dðX;YÞ K1

Xm

iZ1

giðY; bÞ ðI8; I9; I12Þ

Fig. 2. A typical shape of the function V(b).

P. Courrieu / Neural Networks 18 (2005) 91–102 97
Since
Pm

iZ1 giðY; bÞZ1, one obtains:

Xm

iZ1

jgiðX;bÞKgiðY ; bÞj%e2bg$dðX;YÞ K1:

Remembering that (euK1) is equivalent to u on the

neighborhood of 0, we obtain:

lim
r/0

sup
Y2CðX;rÞ

Xm

jZ1

jgjðX; bÞKgjðY; bÞj=dðX; YÞ

% lim
r/0

sup
Y2CðX;rÞ

eb$2g$dðX;YÞ K1

dðX;YÞ
z2g$b:

Following Step 1, this last result time the result of Step 2

provides an upper bound of D4(X) on U, which completes

the proof of Theorem 3. ,

We note that the location of a minimizer b* of V(b)

depends only on the ratio b=ðmin1%j%m gjjK0:5Þ since the

remaining factors of V(b) are constant with respect to b.

7.2. Computation of b*

In order to examine the behavior of the function V(b)

defined in Theorem 3, we generated a large set of square

matrices with zero diagonal coefficients and strictly positive

random out-diagonal coefficients. These coefficients were

used as random d values, and we plotted the corresponding

V(b) functions for bR0. It turned out that V(b) was always

uniminimal on its positive part (that is for bOb 00). A typical

profile of V(b) can be seen in Fig. 2. Unfortunately, we

failed to state a formal proof that V(b) is necessarily

uniminimal on its positive part, so there is a small doubt that

could justify the use of a global optimization method in

order to minimize V(b). As verification, we applied well-

known random walk type global optimization algorithms,

whose convergence is guaranteed and that usually provide

accurate results (Courrieu, 1997; Ingber & Rosen, 1992).

This always provided the same result as the following

simple local search procedure, where the matrix G is

explicitly expressed as a function of b (i.e. GZG(b)), and

the output b* is a minimizer of V(b) on its positive part.

Procedure 1
function VðbÞZb=ðmin1%j%m gjjðbÞK0:5Þ.
b1:Zln(m)/s; b2d1.1*b1; b3d1.2*b1;
while V(b1)!V(b2) do
b3db2; b2db1; b1d2*b2Kb3;

while min1%i%m giiðb1Þ%0:5 do b1:Z(b1Cb2)/2;
end
while V(b3)!V(b2) do

b1db2; b2db3; b3d2*b2Kb1;
end
while (b3Kb1)Oprecision*b2 do

c1d(b1Cb2)/2; c2d(b2Cb3)/2;

if V(c1)%V(b2) then

b3db2; b2dc1;
119
else if V(b2)%V(c2) then

b1dc1; b3dc2;

else
b1db2; b2dc2;

end
end
b*db2.

Note that the above procedure is written to be easily

readable, however, in practical implementations, one must

of course avoid repeated calls to the V(b) function with the

same argument, and reusable values must be stored. This

procedure has been applied to the illustrative interpolation

problem of Section 6. The obtained value was b*z70,

while the corresponding minimum diagonal coefficient of G

was 0.78. The obtained interpolation surface is shown in

Fig. 3, where the regularization provided by b* seems

effective. We note that the interpolation surface is close to

that obtained with bZ50 (Fig. 1, lower panel), but that

surface oscillations between data points are a bit smaller.

Finally, we note that b* can be computed in all cases,

provided that sO0. In the case of a Least Square

approximation (m!M), b* must be computed for the

square m!m submatrix of G corresponding to the

prototypical examples. b* can also be computed whether

we know that g is finite or not, since g is not actually used in

practical computation. Similarly, the condition that C(X,r) is

never empty, which excludes discrete spaces, is not

necessary for b* computation. Thus we conclude that b*

can always be used at least as a reasonable default

parameter, while its full theoretical justification of course

requires the conditions stated in (Section 7.1).
8. The example of affinely invariant pattern functions

There are many kinds of data spaces on which the above

function approximation scheme can be used because the

Fig. 3. Interpolation surface of the same data points as those of Fig. 1, with bZb*.

P. Courrieu / Neural Networks 18 (2005) 91–10298
requirements concerning (U,d) are very weak. As an

example, we chose a problem that, at first glance, can

seem to be of metric nature, but that in fact is not. This is the

problem of approximating a function on a space of patterns,

while the function is invariant to affine transformations of

the input. Of course, one can ignore this last property and

build a metric input space in which each possible pattern is

considered as independent of other ones. Another approach

consists of taking into account the invariance property in

order to improve the generalization and to reduce the

required amount of learning, but this leads to build some

non-metric input space, as we shall see hereafter.
8.1. Input patterns

We consider here U as the set of sequences of L points of

a bounded subset of Rn, with LOn Any sequence is

represented in the form of a L!(nC1) real matrix X whose

first column coefficients are equal to 1, and the remaining n

columns correspond to the coordinates of points. A

sequence X belongs to U if det(X 0X)O0, which means that

X is of rank nC1, or equivalently that the set of L points is

actually of dimension n.
8.2. The d function

We must define a d function such that for any X,Y2U,

d(X,Y)Z0 if there is an affine transformation T of the n

coordinates such that T(X)ZY. Given that we added a

constant unit coordinate to each point in order to compute

translations, it is equivalent to say that d(X,Y)Z0 if there is a

square (nC1)!(nC1) matrix T such that XTZY. The

following lemma will be useful.

Lemma 3. If X and Y are both of rank nC1 and there is T

such that XTZY, then T is invertible.
120
Proof. If T is not invertible, then there is a non-zero vector u

such that TuZ0. Then XTZY implies that XTuZYuZ0, and

thus Y is not of rank nC1, which contradicts the hypothesis.

Now, one can define d(X, Y), for example, as the least

square error function:

dðX;YÞ Z inf
T
jjXT KYjj2 Z jjðXðX 0XÞK1X 0 K IÞYjj2:

This d function obviously satisfies the requirements of

Section 2.1, however one can have d(X,Y)Z0 while XsY,

and if d(X,Y)s0, then one has in general d(X,Y)sd(Y,X).

Thus d(X,Y) is certainly not a metric and it cannot by

monotonically transformed into a metric (Courrieu, 2002).

The first additional requirement of Section 7.1 is satisfied

since (U,d) is in fact a continuum. Now, we must verify that

d satisfies the second additional requirement of (Section 7.1)

that g is finite, which allows for applying Theorem 3, and

thus theoretically justifies the use of b*.

Theorem 4. With U and d defined as above, there is a

positive number g!N such that, for any X,Y,Z2U,

jd(X,Z)Kd(Y,Z)j%g$d(X,Y).

Proof. Given that all data points belong to a bounded subset

of Rn, and that for any X2U, the matrix X 0X is invertible, we

have that for any X,Y2U, d(X,Y)!N, and thus for any X,Y,

Z2U, jd(X, Z)Kd(Y,Z)j!N. This implies that, if d(X,Y)O
0, then jd(X,Z)Kd(Y,Z)j/d(X,Y)!N. On the other hand, if

d(X,Y)Z0, then there is a transformation matrix T such that

XTZY, and after Lemma 3, this matrix is invertible, thus

YTK1ZX. Assume that d(X,Z)ZjjXUKZjj2, and d(Y,Z)Z
jjYVKZjj2. If d(X,Z)!d(Y,Z), then d(Y,Z) is not the least

square solution since jjYTK1UKZjj2!d(Y,Z). Similarly, if

d(X,Z)Od(Y,Z), then d(X,Z) is not the least square solution

since jjXTVKZjj2!d(X,Z). Since d is in all cases the least

square error function, we can conclude that if d(X,Y)Z0

then jd(X,Z)Kd(Y,Z)jZ0, for any Z2U ,.

Table 1

Mean absolute generalization error (and standard deviation) of three types

of approximations of a function invariant to affine transformations of input

sequences of 4 points of [0,1]2

LZ4, nZ2 hZ0 hZ0.25 hZ0.50 hZ0.75 hZ1

mZ15

NN-invar 0 (0) 22 (17) 26 (21) 19 (14) 28 (22)

ooo n.s n.s n.s n.s

NN-metric 15 (11) 24 (15) 23 (15) 19 (13) 25 (13)

ooo ooo ooo ooo ooo

Spline 777 (519) 676 (394) 755 (359) 712 (371) 880 (750)

mZ30

NN-invar 0 (0) 12 (14) 11 (11) 12 (10) 12 (12)

ooo ooo ooo ooo ooo

NN-metric 18 (13) 22 (11) 22 (13) 19 (13) 20 (14)

ooo ooo ooo ooo ooo

Spline 85 (54) 64 (40) 62 (41) 60 (48) 102 (81)

mZ60

NN-invar 0 (0) 12 (15) 15 (17) 11 (14) 13 (14)

ooo ooo oo ooo ooo

NN-metric 18 (13) 24 (13) 20 (13) 21 (12) 21 (13)

n.s Ú n.s n.s n
Spline 19 (14) 22 (13) 21 (12) 22 (14) 18 (15)

mZ120

NN-invar 0 (0) 6.9 (8.8) 7.8 (9.0) 7.6 (8.7) 8.2 (11)

ooo ooo ooo ooo ooo
NN-metric 18 (15) 20 (14) 20 (15) 17 (13) 15 (12)

oo n.s n.s n.s o

Spline 21 (13) 21 (13) 18 (13) 19 (13) 18 (14)

mZ240

NN-invar 0 (0) 5.3 (6.3) 5.1 (6.4) 4.6 (7.2) 3.3 (4.5)

ooo ooo ooo ooo ooo

NN-metric 21 (16) 20 (13) 18 (17) 17 (14) 17 (13)

n.s n.s oo n n.s

Spline 22 (14) 19 (13) 22 (15) 15 (12) 16 (11)

The 4 approximator ‘NN-invar’ uses a non-metric input space with affine

invariance properties.

P. Courrieu / Neural Networks 18 (2005) 91–102 99
8.3. Computational test

For this test, we used as input patterns sequences of 4

points of [0,1]2, and sequences of 12 points of [0,1]4, while

patterns were encoded as described in Section 8.1. Learning

example patterns were randomly generated, while general-

ization test patterns were generated in the following way.

For each generalization input Z, a learning example X was

selected, a random affine transformation matrix T and a

random pattern R were generated, and finally:

Z Z ð1 KhÞXT ChR; 0%h%1:

Whenever hZ0, Z is a random affine transform of a

learning example. Whenever hZ1, Z is completely

independent of the learning set. Five h values were used

for the test: 0, 0.25, 0.5, 0.75, and 1. The size m of the

learning set was varied from 15 to 240, and for each (m,h)

combination, 60 generalization patterns were generated. An

artificial objective function invariant to affine transform-

ations of the input was built in the following way

f ðXÞ Z 100=ð1 Cc$dðX;X0ÞÞ; c Z 28=ðnLÞ;

where the d function is defined as in Section 8.2, and X0 is a

fixed reference pattern that does not belong to the learning

set.

For comparison, we tested three types of interpolators.

The first one, referred to as ‘NN-invar’, is the 4

approximator with the d function invariant to affine

transformations defined in Section 8.2. The second one,

referred to as ‘NN-metric’, is the 4 approximator with a d

function, say d’, that is a squared Euclidean metric on RnL,

namely d 0(X,Y)ZkXKYk2. In all cases, 4 approximators

were tested with bZb*, where b* was computed by

Procedure 1. Now, d 0 can also be used with usual radial basis

function approximators, since it is a squared Euclidean

metric. We chose Radial Splines as the third type of

interpolator. Radial Spline interpolators are of common use,

they have well-known uniform approximation and regular-

ization capabilities on Euclidean spaces (Girosi & Poggio,

1990; Poggio & Girosi, 1990), and they do not require any

free parameter tuning. Given that nL is always even here, we

used Radial Spline basis functions of the form:

SðX;YÞ Z lnðrÞ$r2; with r2 Z d0ðX;YÞ Z jjX KYjj2:

Comparing the generalization performance of NN-invar

to that of NN-metric allows for evaluating the interest of

using non-metric input spaces in this type of problem.

Comparing the generalization performance of NN-metric to

that of Spline interpolators (necessarily on a Euclidean

space) provides an evaluation of general capabilities of 4

approximators with respect to a well-known reference.

Results of the test are reported in Table 1, for LZ4 and

nZ2, and in Table 2, for LZ12 and nZ4. Tables show the

mean absolute generalization error (for 60 test items), and

the corresponding standard deviation in parenthesis, in the
121
various (m,h) conditions for the three types of interpolators.

In addition, Student t-tests were performed in order to test

the difference of performance between NN-invar and NN-

metric interpolators, and between NN-metric and Spline

interpolators. The notation ‘n.s’ means that the difference

between the mean just above and the mean just below ‘n.s’

is statistically non-significant. The notation o (or n)

means that the difference between means in marginally

significant (p!0.10). The notation oo (or nn) means

that the difference is significant (p!0.05), according to

usual decision criterions, while the notation ooo (or

nnn) means that the difference is highly significant (p!
0.01).

Although there are some visible differences between the

processing of the smallest patterns (Table 1) and that of the

largest patterns (Table 2), we can make the following

general observations. First, the NN-invar interpolator

always provides zero generalization error for hZ0, which

simply confirms that this type of network ‘recognizes’

known patterns independently of affine transformations. For

hO0, the advantage of NN-invar over NN-metric is not

systematic with small learning sets, however, NN-invar

Table 2

Similar to Table 1, with input sequences of 12 points of [0,1]4

LZ12, nZ4 hZ0 hZ0.25 hZ0.50 hZ0.75 hZ1

mZ15

NN-invar 0 (0) 5.7 (4.6) 8.1 (5.2) 8.4 (4.6) 8.4 (4.7)

ooo ooo n.s nn n.s

NN-metric 9.3 (6.1) 8.5 (6.1) 7.2 (3.7) 7.2 (5.0) 8.0 (4.7)

ooo ooo ooo ooo ooo

Spline 51 (45) 38 (32) 31 (22) 29 (22) 40 (28)

mZ30

NN-invar 0 (0) 4.4 (3.7) 6.5 (5.6) 7.5 (6.5) 6.0 (4.9)

ooo ooo n.s n.s n.s

NN-metric 5.6 (3.7) 6.1 (5.0) 6.9 (6.2) 7.8 (7.5) 6.5 (5.8)

ooo ooo ooo ooo ooo

Spline 48 (41) 38 (25) 33 (23) 29 (27) 34 (24)

mZ60

NN-invar 0 (0) 4.7 (4.5) 5.9 (5.4) 4.9 (4.2) 5.6 (4.7)

ooo ooo ooo ooo o

NN-metric 7.2 (7.1) 6.9 (7.2) 7.0 (6.7) 6.0 (4.4) 6.4 (4.7)

ooo ooo ooo ooo ooo

Spline 89 (61) 59 (37) 57 (40) 58 (42) 55 (38)

mZ120

NN-invar 0 (0) 5.3 (5.1) 5.2 (4.0) 6.2 (4.5) 6.3 (5.0)

ooo oo ooo ooo ooo
NN-metric 6.5 (5.6) 6.9 (7.6) 6.1 (4.4) 7.2 (5.8) 7.1 (5.2)

ooo ooo ooo ooo ooo

Spline 39 (32) 22 (19) 22 (16) 20 (15) 21 (17)

mZ240

NN-invar 0 (0) 4.7 (4.5) 5.8 (5.9) 5.5 (3.5) 5.0 (4.5)

ooo oo ooo ooo ooo

NN-metric 7.3 (6.4) 6.3 (5.2) 6.8 (6.8) 6.5 (4.0) 5.8 (4.7)

ooo ooo ooo o o
Spline 10 (10) 8.0 (5.4) 8.7 (7.1) 7.3 (4.0) 6.7 (5.6)

P. Courrieu / Neural Networks 18 (2005) 91–102100
performs systematically better than NN-metric with large

enough learning sets (mR30 for the smallest patterns,

mR60 for the largest patterns). In fact, if h is small enough,

then NN-invar performs better than NN-metric whatever be

m, as one can see in Table 2 for hZ0.25. The explanation is

obvious: the invariance of the interpolator to affine

transformations is efficient only if the current input is

quite close to at least one of the learning examples, modulo

an affine transformation. This can be obtained by using a

small h, or by using a large learning set as well. Spline

interpolators seem to have special difficulties to generalize

from small learning sets for this problem, however, their

learning is convergent as m increases. This appears to result

from the fact that, contrarily to 4 approximators, Spline

interpolators are not bounded on the extrapolation area, that

is, outside the interpolation polytope of the learning set

(Courrieu, 1994; Pelillo, 1996). So, a great Spline

generalization error can occur whenever a generalization

input falls outside the interpolation polytope, which is more

probable with small (random) learning sets than with large

ones. We note that the 4 approximator NN-metric performs

at least as well as Spline interpolators, even with the largest

learning sets. Thus, we conclude from this test that the

approximator presented in this paper is suitable for practical

applications, and its particular capability of working on non-

metric spaces makes it of special interest.
122
9. Non-metric d functions from dynamic programming

Dynamic Programming methods provide another source

of non-metric d functions. These methods allow for

comparing numerical sequences or symbol strings of

different lengths, and they have been extensively applied

in speech recognition (Sakoe & Chiba, 1978). Although the

resulting d functions can have some properties of distances

under reasonably restrictive conditions, most of these

functions are not metrics, since they usually break the

triangle inequality (Okochi & Sakai, 1982). Whenever the

triangle inequality is the only distance property that is

broken, one can monotonically embed the data set into a

Euclidean space (Courrieu, 2002), and then apply a usual

neural algorithm on the embedding space. However, it can

be more convenient to directly use a 4 approximator on the

original data space, which avoids prior input data embed-

ding, or possibly undesirable restrictions concerning d, and

does not require prior knowledge of all properties of d,

except those listed in Section 2.1.

As an example, we briefly consider hereafter the well-

known algorithm of Sakoe and Chiba (1978). Let U be a set

of sequences of points of Rk, and let d be some metric

associated to Rk. Let XZ(x1,x2,.xm), and YZ(y1,y2,.yn)

be two sequences, of length mO1 and nO1, respectively,

belonging to U. The algorithm statement is:
D(1,1)Z2d(x1,y1);
for jZ2.n D(1,j)ZD(1,jK1)Cd(x1,yj);
for iZ2.m D(i,1)ZD(iK1,1)Cd(xi,y1);
for iZ2.m

for jZ2.n D(i,j)Zmin[D(i,jK1)Cd(xi,yj),

D(iK1,jK1)C2d(xi,yj), D(iK1,j)Cd(xi,yj)];
d(X,Y)ZD(m,n)/(mCn).

The above d function is insensitive to repetition (e.g.

d((1,1,1,2,3,3),(1,2,2,3))Z0), which makes it suitable for

comparing sequences of regularly sampled acoustical

parameters in speech recognition, given that speech speed

is naturally variable. As an example of triangle inequality

breaking, consider XZ(1,2,3), YZ(4,5,6), ZZ(2,5). Then

one obtains d(X, Y)Z2.333., d(X,Z)Z1, d(Z,Y)Z1, thus

d(X,Y)Od(X,Z)Cd(Z,Y). The above algorithm can as well

be used to compare symbol strings provided that one can

define some natural distance d between the elements of the

used alphabet (Courrieu, Farioli, & Grainger, in press). Its

behavior is quite different from that of well-known ‘edition

distances’ for character strings (Lowrance & Wagner, 1975;

Wagner & Fischer, 1974).
10. Conclusion

We have defined a function approximation scheme that

can be expressed as a layered feed-forward neural network,

and that is able to uniformly approximate functions on a wide

P. Courrieu / Neural Networks 18 (2005) 91–102 101
variety of non-metric spaces as well as on any metric space,

while usual approximators are guaranteed to work only on

real Euclidean spaces. Non-Euclidean metric or non-metric

data spaces are commonly encountered in practical appli-

cations. For example, time series can be compared using

Dynamic Programming methods (elastic matching), but the

resulting space is not metric, in general. The same is true for

spaces of symbol strings, or for spaces of graphs. Another

example is that of spaces of real patterns invariant to some

class of transformations, while the particular case of affine

invariance has been detailed and illustrated above. Hence,

the proposed tool clearly responds to practical needs that

have been poorly investigated previously. Theoretical

foundations are provided concerning the uniform approxi-

mation capability of the approximator, the solution of

interpolation and least square approximation problems, and

an approach of regularization suitable to the considered data

spaces. All required practical algorithms are simple, and

computational examples are provided that clearly show the

suitability of the tool. As a final remark, we note that 4

approximators have conventional architectures, and that

their specificity simply resides in their special basis

functions, although these basis functions themselves do not

have an extremely ‘exotic’ form, except that they accept very

weakly constrained d functions as arguments, where Radial

Basis Functions, for example, require Euclidean metrics.

This leads us to suspect that other approximators with similar

capabilities could exist, however, their theoretical investi-

gation remains to do. This is of interest because the result is,

in fact, a significant extension of the concept of ‘universal

approximation capability’.
Appendix. Interval calculation

Interval calculation has been developed by Moore (1966)

and Ratschek and Rokra (1984). Interval arithmetic is also

reported in Zhigljavsky (1991). We list hereafter some

useful rules (I1–I12) whose consistency is easy to verify.

We consider here closed real intervals of the form ZiZ
[ai,bi], with ai%bi.
I1.
 For x2R, xZ[x,x]Z[1,1]$x.
Interval arithmetic
I2.
 Z1CZ2Z ½a1Ca2; b1Cb2

I3.
 Z1KZ2Z ½a1Kb2; b1Ka2

I4.
 Z1$Z2Z ½minða1a2; a1b2; b1a2; b1b2Þ;

maxða1a2; a1b2; b1a2; b1b2Þ

I5.
 Z1=Z2ZZ1$½1=b2; 1=a2
; if 0;Z2:
Interval functions
I6.
 If h is a monotonic increasing function, then h(Z)Z
[h(a),h(b)].
123
I7.
 If h is a monotonic decreasing function, then h(Z)Z
[h(b),h(a)].
I8.
 The absolute value function of an interval is given by:

j½a; b
j Z
½0;maxðjaj; jbjÞ
 if ab%0

½minðjaj; jbjÞ;maxðjaj; jbjÞ
 otherwise
;

(

Intervals and numbers
I9.
 j½a; b
$xjZ j½a; b
j$jxj

I10.
 ½a1; b1
$x1

½a2; b2
$x2

Z
½a1; b1

½a2; b2

$

x1

x2

; if a1; b1

R0; and a2; b2; x2O0
I11.
 ½a; b
$xK ½1; 1
$xZ ½aK1; bK1
$xP P

I12.
 m

iZ1½a; b
xiZ ½a; b
$ m
iZ1 xi; if xiR0; l% i%m
References

Ciarlet, P. G. (1982). Introduction à l’Analyse Numérique Matricielle et à

l’Optimisation. Paris: Masson.

Courrieu, P. (1993). A convergent generator of neural networks. Neural

Networks, 6, 835–844.

Courrieu, P. (1994). Three algorithms for estimating the domain of validity

of feedforward neural networks. Neural Networks, 7, 169–174.

Courrieu, P. (1997). The Hyperbell algorithm for global optimization: a

random walk using Cauchy densities. Journal of Global Optimization,

10, 37–55.

Courrieu, P. (2001). Two methods for encoding clusters. Neural Networks,

14, 175–183.

Courrieu, P. (2002). Straight monotonic embedding of data sets in

Euclidean spaces. Neural Networks, 15, 1185–1196.

Courrieu, P., Farioli, F., & Grainger, J. Inverse discrimination time as a

perceptual distance for alphabetic characters. Visual Cognition, 11(7),

601–919.

Cybenko, G. (1989). Approximation by superposition of sigmoidal

functions. Mathematics of Control, Signals, and Systems, 2, 303–314.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning

algorithm. Advances in neural information processing systems (Vol. 2)

(pp. 525–532). San Mateo, CA: Morgan Kauffman, 525–532.

Funahashi, K.-I. (1989). On the approximate realization of continuous

mappings by neural networks. Neural Networks, 2, 183–192.

Girosi, F., & Poggio, T. (1990). Networks and the best approximation

property. Biological Cybernetics, 63, 169–176.

Hornik, K. (1993). Some new results on neural network approximation.

Neural Networks, 6, 1069–1072.

Ingber, L., & Rosen, B. (1992). Genetic algorithms and very fast simulated

reannealing: a comparison. Mathematical and Computer Modelling, 16,

87–100.

Kreinovich, V. Y. (1991). Arbitrary nonlinearity is sufficient to represent all

functions by neural networks: a theorem. Neural Networks, 4, 381–383.

Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer

feedforward networks with a nonpolynomial activation function can

approximate any function. Neural Networks, 6, 861–867.

Lowrance, R., & Wagner, R. A. (1975). An extension of the string to string

correction problem. JACM, 22(2), 177–183.

Micchelli, C. A. (1986). Interpolation of scattered data: distance matrices

and conditionally positive definite functions. Constructive Approxi-

mation, 2, 11–22.

P. Courrieu / Neural Networks 18 (2005) 91–102102
Moore, R. E. (1966). Interval analysis. Englewood Cliffs, NJ:

Prentice-Hall.

Okochi, M., & Sakai, T. (1982). Trapezoidal D.P. matching with time

reversibility. Proceedings of the IEEE-ASSP Conference (Paris) ,

1239–1242.

Pelillo, M. (1996). A relaxation algorithm for estimating the domain of

validity of feedforward neural networks. Neural Processing Letters, 3,

113–121.

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning.

Proceedings of the IEEE, 78(9), 1481–1497.

Ratschek, H., & Rokra, J. (1984). Computer methods for the range of

functions. New York: Ellis Harwood/Wiley.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Learning

internal representations by error propagation. In D. E. Rumelhart, &
124
J. L. McClelland (Eds.), Parallel distributed processing: Explorations

in the microstructure of cognition (pp. 318–362). Cambridge, MA: MIT

Press, 318–362.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Learning

representations by back-propagating errors. Nature, 323, 533–536.

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm

optimization for spoken word recognition. IEEE Transactions on

ASSP, 26(1), 194–200.

Wagner, R. A., & Fischer, M. J. (1974). The string to string correction

problem. JACM, 21(1), 168–173.

Yoon, J. (2001). Interpolation by radial basis functions on Sobolev space.

Journal of Approximation Theory, 112, 1–15.

Zhigljavsky, A. A. (1991). Theory of global random search. Dordrecht:

Kluwer.

Pierre Courrieu – dossier HDR II.E.1

II.E Méthodes de calcul des paramètres de modèles

 La modélisation numérique fait appel à des techniques de calcul sophistiquées, soit

pour calculer les paramètres internes des modèles, soit pour déterminer leur domaine

d'utilisation. C'est là, on s'en doute, un terrain de jeu de choix pour les mathématiques

appliquées. La validation expérimentale des modèles fait, pour sa part, appel à des techniques

statistiques spécialisées qui seront évoquées dans la section II.F.

Polytopes convexes et extériorité d'un point

 J'ai eu l'occasion de montrer que les réseaux de neurones généralisent efficacement en

des points d'interpolation, c'est-à-dire, des points situés à l'intérieur du polytope enveloppe

convexe de l'ensemble des exemples d'apprentissage dans l'espace d'entrée. Par ailleurs, les

performances de généralisation se dégradent lorsque le point de généralisation est extérieur à

ce polytope (extrapolation), et ce d'autant plus que le point de généralisation est plus éloigné

du point intérieur au polytope le plus proche. Ceci m'a conduit à définir "l'extériorité" d'un

point de généralisation comme la distance euclidienne de ce point à son plus proche voisin

intérieur au polytope d'interpolation. J'ai proposé un algorithme efficace pour calculer le

polytope d'interpolation et l'extériorité de tout point de généralisation à ce polytope (Courrieu,

1994a). Cette technique s'applique aussi à d'autres problèmes, et elle peut notamment

permettre de calculer la probabilité optimale, en regard des données, de chaque système dans

les modèles multi-systèmes (Ashby, Alfonso-Reese, Turken, & Waldron, 1998).

 Formellement, le problème se présente ainsi. Etant donné un ensemble

!

D = X
1
,X

2
,...,X

m
{ } de

!

m points

!

X
i
" R

n ,

!

1" i " m, et un point

!

Y " R
n quelconque, trouver

un vecteur réel

!

P(Y,D) = (p
1
, p

2
,..., pm), tel que:

!

pi " 0,

!

1" i " m,

!

pi
i=1

m

" =1,

 et tel que l'extériorité du point

!

Y au nuage

!

D, définie par

!

E(Y,D) =min
P
Y " piXi

i=1

m

,

soit minimale.

125

Pierre Courrieu – dossier HDR II.E.2

 La solution très simple que j'ai proposée (Courrieu, 1994a, Algorithme 1) consiste à

remplacer le problème avec contraintes ci-dessus par le problème sans contraintes suivant.

Trouver un vecteur réel

!

W (Y,D) = (w
1
,w

2
,...,w

m
) tel que:

!

E
2
(Y,D) =min

W
Y " wi

2
Xi

i=1

m

/ w j

2

j=1

m

#
2

,

soit minimal. Ce problème peut être résolu par une simple minimisation locale (ex. descente

de gradient partant d'un

!

W initial sans composante nulle), et l'on obtient ensuite aisément:

!

pi = wi

2
/ w j

2

j=1

m

" ,

!

1" i " m.

Cette solution est une alternative pratique à des approches plus complexes que l'on trouve en

Programmation Mathematique (Clarkson, 2008; Pelillo, 1996). Il existe également une

variante technique assez facile à calculer de l'extériorité, appelée "distance de polytope"

(Gärtner, & Jaggi, 2009), mais cette approche ne fournit pas les poids (

!

pi). A noter que les

sommets du polytope enveloppe convexe du nuage

!

D sont les points de

!

D dont l'extériorité

au nuage des autres points est non nulle, ce qui fournit une méthode pratique pour déterminer

le polytope enveloppe convexe.

 A titre d'exemple, supposons que

!

Y est un vecteur d'observations (moyennes ou

fréquences), et que

!

D est un ensemble de vecteurs de prédictions générés par

!

m systèmes

distincts, supposés indépendants. Alors on peut calculer

!

P(Y,D) qui est, dans ce cas, un

vecteur de probabilités associées aux différents systèmes, au sein d'un modèle multi-systèmes,

de façon à minimiser l'erreur de prédiction globale évaluée par l'extériorité

!

E(Y,D).

Optimisation globale

 Dans la modélisation numérique, il est courant que l'on doive déterminer les valeurs de

paramètres d'un modèle de façon à minimiser (ou parfois maximiser) une certaine fonction,

par exemple une fonction d'erreur des prédictions du modèle relativement à des données,

fonction éventuellement compliquée par un certain nombre des contraintes de domaine et/ou

de régularisation. Quand on est très astucieux, on arrive parfois à construire le modèle et la

fonction à optimiser de telle manière que ladite fonction ne possède qu'un seul optimum

global, et aucun extremum "local". Les extrema locaux correspondent à des points de l'espace

des paramètres pour lesquels la fonction prend une valeur localement optimale, relativement

au voisinage proche de ces points, mais la valeur obtenue n'est pas globalement optimale pour

l'ensemble du domaine de recherche des paramètres. Les extrema locaux sont des pièges pour

126

Pierre Courrieu – dossier HDR II.E.3

les méthodes de recherche "locales" des valeurs de paramètres (ex. descente de gradient),

méthodes qui sont par ailleurs assez simples et efficaces lorsqu'il n'y a pas d'extrema locaux.

Malheureusement, l'astuce du modélisateur a ses limites, et il est des problèmes où l'on ne sait

pas éviter la présence d'extrema locaux. C'est par exemple le cas lorsqu'on calcule les poids

synaptiques des unités cachées dans un réseau de neurones multicouche ou de type "Cascade-

Correlation". On est alors obligé de recourir à des techniques d'optimisation globale capables

d'échapper aux pièges des extrema locaux pour converger vers un optimum global. Il n'existe

aucune méthode générale permettant d'obtenir à coup sûr le bon résultat en un temps fini,

mais il existe des méthodes permettant d'approcher ce résultat, et dont on peut garantir la

convergence "à la limite" grâce, notamment, à un théorème dû à Solis et Wets (1981). J'ai

proposé un premier algorithme d'optimisation globale, appelé "Recherche Distribuée", qui

était assez performant mais vorace en espace mémoire, ce qui le rendait peu pratique pour des

problèmes comportant un grand nombre de variables comme le calcul des réseaux de

neurones (Courrieu, 1993b). J'ai par la suite développé un algorithme beaucoup plus économe

et non moins efficace, dénommé "Hypercloche", que j'utilise aujourd'hui encore, notamment

pour calculer les unités cachées des réseaux dans les procédures d'apprentissage de type

"Cascade-Correlation" (Courrieu, 1997, article ci-joint).

Méthodes de moindres carrés

 Les techniques de moindres carrés sont d'un usage très courant lorsqu'on désire

minimiser une fonction d'erreur quadratique. Les récentes sophistications de ces techniques

("iteratively weighted least squares") sont également utilisées au sein de méthodes de calcul

de "statistiques robustes" dépassant le cadre des méthodes de moindres carrés proprement

dites (Maronna, Martin, & Yohai, 2006). En ce qui concerne la modélisation

neurocomputationnelle, les techniques de moindres carrés sont habituellement utilisées pour

calculer les poids synaptiques des neurones de sortie des réseaux feedforward.

 Dans le cadre d'applications en reconnaissance de formes, diverses variantes des

techniques de moindres carrés sont utiles pour calculer des mesures de similitude entre

formes. Je me suis donc assuré, dans un premier temps, qu'il serait théoriquement possible,

pour des réseaux de neurones biologiques (récurrents dans ce cas), de résoudre des systèmes

moindres carrés conséquents dans des temps compatibles avec les performances perceptives

connues, disons en moins de 250 millisecondes (Courrieu, 2004). Il ne serait donc pas a priori

127

Pierre Courrieu – dossier HDR II.E.4

complètement extravagant de modéliser des processus de reconnaissance visuelle de formes à

l'aide de systèmes moindres carrés.

 La résolution d'un système moindres carrés est une opération assez simple lorsque la

matrice du système est "de plein rang", mais il n'est pas rare en pratique de rencontrer des

systèmes "de rang déficient", surtout lorsqu'il s'agit de systèmes pondérés. Dans tous les cas,

la solution consiste à calculer une matrice "inverse généralisée", également appelée "pseudo-

inverse", la plus connue de ces inverses généralisées étant l'inverse de Moore-Penrose (Ben-

Israel & Greville, 2003). J'ai proposé un algorithme qui est à ce jour, et à ma connaissance,

l'algorithme numérique le plus rapide pour calculer l'inverse de Moore-Penrose (Courrieu,

2005b). Je ne joins pas cet article au dossier car l'algorithme est également décrit dans l'article

dont il sera question au paragraphe suivant.

 L'inverse de Moore-Penrose possède des propriétés tout à fait remarquables, mais elle

n'est pas la seule inverse généralisée qui permette de résoudre des systèmes moindres carrés.

D'autres inverses généralisées, désignées comme "{1, 3}-inverses", font tout aussi bien

l'affaire. J'ai pu définir un algorithme de calcul de l'une ces inverses, qui est à la fois plus

rapide et numériquement plus stable que le calcul de l'inverse de Moore-Penrose (Courrieu,

2009, article ci-joint). J'ai utilisé cet outil pour développer une méthode de résolution de

"systèmes moindres carrés à appariement pondéré". Ce sont des systèmes que l'on rencontre,

par exemple, lorsqu'on veut mesurer la similitude de deux ensembles de points (tels que deux

codes de densité représentant des formes), en utilisant une méthode de régression, mais qu'on

ne connaît pas précisément les correspondances entre les points des deux ensembles. On

associe alors à chaque paire de points possible une certaine mesure de vraisemblance (poids),

ce qui donne un système moindres carrés pondéré dont la matrice de poids est pleine et

rectangulaire (au lieu d'être diagonale comme dans les systèmes pondérés classiques). Il n'y a

alors plus qu'à résoudre le système pour obtenir la mesure désirée.

Références

Ashby, F. G., Alfonso-Reese, L. A., Turken A. U., & Waldron, E. M. (1998). A

neuropsychological theory of multiple systems in category learning. Psychological Review,

105, 442-481.

Ben-Israel, A., & Greville, T.N.E. (2003). Generalized Inverses: Theory and Applications

(2nd ed.). New York, Springer-Verlag.

128

Pierre Courrieu – dossier HDR II.E.5

Clarkson, K.L. (2008). Coresets, sparse greedy approximation, and the Frank-Wolfe

algorithm. SODA'08: Proceedings of the nineteenth annual ACM-SIAM Symposium on

Discrete Algorithms.

Courrieu, P. (1993b). A distributed search algorithm for global optimization on numerical

spaces. RAIRO: Recherche Opérationnelle / Operations Research, 27, 281-292.

Courrieu, P. (1994a). Three algorithms for estimating the domain of validity of feedforward

neural networks. Neural Networks, 7, 169-174.

Courrieu, P. (1997). The Hyperbell algorithm for global optimization: a random walk using

Cauchy densities. Journal of Global Optimization, 10, 37-55.

Courrieu, P. (2004). Solving time of least square systems in Sigma-Pi unit networks. Neural

Information Processing - Letters and Reviews, 4(3), 39-45.

Courrieu, P. (2005b). Fast computation of Moore-Penrose inverse matrices. Neural

Information Processing - Letters and Reviews, 8(2), 25-29.

Courrieu, P. (2009). Fast solving of Weighted Pairing Least-Squares systems. Journal of

Computational and Applied Mathematics, 231, 39-48.

Gärtner, B., & Jaggi, M. (2009). Coresets for polytope distance. ACM, Proceedings of the

25th annual symposium on Computational geometry, 33-42.

Maronna, R.A., Martin, R.D., & Yohai, V.J. (2006). Robust Statistics: Theory and Methods.

New York, John Wiley & Sons Ltd.

Pelillo, M. (1996). A relaxation algorithm for estimating the domain of validity of

feedforward neural networks. Neural Processing Letters, 3, 113-121.

Solis, F.J.,Wets, R.J-B. (1981). Minimization by random search techniques, Mathematics of

Operations Research, 6(1), 19– 30.

129

130

Journal of Global Optimization 10: 37–55, 1997. 37
c 1997 Kluwer Academic Publishers. Printed in the Netherlands.

The Hyperbell Algorithm for Global Optimization:
A Random Walk Using Cauchy Densities

PIERRE COURRIEU
CREPCO (URA CNRS 182), Université de Provence 29 avenue Robert Schuman, F-13621
Aix-en-Provence Cedex 1, France

(Received: 16 May 1995; accepted: 28 May 1996)

Abstract. This article presents a new algorithm, called the “Hyperbell Algorithm”, that searches
for the global extrema of numerical functions of numerical variables. The algorithm relies on the
principle of a monotone improving random walk whose steps are generated around the current
position according to a gradually scaled down Cauchy distribution. The convergence of the algorithm
is proven and its rate of convergence is discussed. Its performance is tested on some “hard” test
functions and compared to that of other recent algorithms and possible variants. An experimental
study of complexity is also provided, and simple tuning procedures for applications are proposed.

Key words: global optimization, random search, Cauchy distributions.

1. Introduction

Optimization problems vary in difficulty, depending on the properties of the func-
tion to be optimized. Uniextremal functions are generally the easiest to optimize
because “local search” procedures can be used. These procedures, such as usual
gradient based methods among others, are efficient and guarantee finding the solu-
tion. But many functions encountered in practice have multiple extrema, making
it necessary to use “global search” methods, which can generally only guarantee
finding the solution with a given degree of probability. Extensive efforts have
been made within the past few years to solve hard optimization problems (see
Horst & Pardalos, 1995). Certain recent methods are deterministic (Baritompa,
1993; Breiman & Cutler, 1993; Wood, 1992), but they will not be considered
here. Most of the known approaches in global optimization are based on stochas-
tic processes (see Zhigljavsky, 1991). Certain algorithms rely on the principle of
a random walk converging to an extremum of the objective function (Dekker &
Aarts, 1991; Romeijn & Smith, 1994; Solis & Wets, 1981; Zabinsky et al., 1993).
In other methods, global distributions of probabilities represented by samples of
points (“populations”) belonging to the search domain are made to converge (Cour-
rieu, 1993; Goldberg, 1989; Holland, 1975). In still other methods, convergence
is achieved by the global distribution control of a set of local searches (Boen-
der, 1982; Rinnooy Kan & Timmer, 1987a, 1987b). Branch-and-Bound methods
(Pintér, 1988; Zhigljavsky, 1991) construct a partition of the search domain and

131

38 PIERRE COURRIEU

sequentially reject those subsets which have the lowest probability of containing a
global optimum. Other approaches exist, although many of them appear to be more
interesting from a theoretical than practical point of view.

Presented below is a new stochastic global optimization algorithm, which will
be called the “Hyperbell Algorithm”. This algorithm relies on the principle of a
monotone improving random walk whose steps are generated around the current
position according to an n-dimensional Cauchy distribution which is gradually
scaled down. The name “Hyperbell” refers to the shape of the probability density
function. The algorithm is applicable to the search for the global extrema of a
numerical function f defined on a bounded domain
 of Rn . It is of interest
to situate this approach within the theoretical framework proposed by Solis and
Wets (1981) because the Hyperbell Algorithm is compatible with their “conceptual
algorithm”. The choice of Cauchy distributions is motivated by the search for a
good compromise between the speed and the guarantee of convergence. As pointed
out by Solis and Wets, guaranteeing convergence requires that the sampling strategy
must not indefinitely ignore any subset (which has a positive Lebesgue mesure) of
the search domain . Using a uniform distribution on the whole search domain would
satisfy this requirement, but unfortunately this leads to very slow convergence. In
order to improve the speed of convergence, a common strategy is to gradually
concentrate the search on the most “promising” regions. This is the strategy of
Branch-and-Bound methods, for example, but the definitive rejection of certain
subsets of the search domain does not enable one to guarantee convergence in
all cases. Hence, we must concentrate the search on certain subsets while not
completely ignoring any subset of the search domain. This can be done by using a
bell- shaped probability density of sampling centered on the current position in the
search domain, and whose scale can be controlled. Certain common bell-shaped
densities, like Gauss or logistic densities, decrease exponentially as the distance
from their center increases (in scale units). Hence, the density rapidly tends to
zero after a certain distance, resulting in a distribution whose support is “quasi-
bounded”, and whose behavior for finite samplings is very similar to that of bounded
support distributions. This results in a relatively high probability for the search to
be trapped in local extrema basins of many functions, and there is poor guarantee
of convergence in practice. Cauchy densities are more appropriate because the
density decreases very slowly as the distance from the center of the distribution
increases. Hence the probability of sampling is truly non-zero for any subset of
the search domain which has a non-zero Lebesgue mesure. The position and the
quartile deviations of Cauchy densities are easy to control in order to concentrate
the search on appropriate regions. Note that the use of Cauchy distributions was
previously shown to be more effective than the use of exponential distributions
in the framework of Simulated Annealing algorithms (see Ingber, 1989; Ingber &
Rosen, 1992). However, the Hyperbell algorithm is monotonically improving and
does not use any concept equivalent to the “temperature” of Simulated Annealing.

132

THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 39

2. Hyperbell Algorithm

The algorithm is presented in Pseudo-Pascal. The term “random”, followed by an
interval, denotes a random value taken from a uniform distribution of probabilities
on the specified interval. The algorithm shown here concerns the search for minima
of a function defined on a bounded feasible region
 of Rn (remember that the
search for maxima of a function f is equivalent to the search for minima of �f).
In order to initialize the Cauchy distribution scales (s1; s2; . . . ; sn), it is useful to
determine the upper and lower boundary of each variable such that ai 6 xi 6 bi
and
 is included in the hyperrectangle

Qn
i=1[ai; bi].

fParameters:
� 2 [0:8; 1) : scale reduction parameter;
" > 0 : arbitrarily small constant;
DLS : variant selectorg

fScale initialization (indicative example)g
for i := 1 to n do si :=

bi � ai

2tg(�(0:5)1=n=2)
;

fStarting pointg
repeat
for i := 1 to n do xi := random [ai; bi];
until (X 2
);

fSearchg
repeat

repeat
for i := 1 to n do yi := si tangent(� random(�1=2; 1=2)) + xi ;

until (Y 2
);
if DLS then Y := Y � rrf(Y); fcompute r using a bisection methodg
if f(Y) < f(X) then X := Y else for i := 1 to n do si := �(si � ") + ";

until (stopping rule);

The Parameters

The parameter � is the reduction coefficient of Cauchy’s distribution scale, when
this scale is reduced. Increasing � lowers the speed of convergence and the prob-
ability of being trapped in local minima of complex functions. Note that function
complexity should not be assessed solely on the basis of the number of local
extrema. We shall see in the experimental section below that there are functions
with an infinite number of local minima which are easy to optimize with the Hyper-
bell Algorithm. The parameter " has little effect in practice, but it guarantees that
the si scales will not drop to zero and thereby prevents the process from freezing

133

40 PIERRE COURRIEU

indefinitely. " is arbitrarily small and it is generally chosen to be smaller than the
desired precision for the result in
 .

About Scale Initialization

The example of scale initialization given in the algorithm statement corresponds
to a probability of 1/2 of generating a new point inside the critical hyperrectangle
if the starting point is the center of this hyperrectangle. This choice may seem
somewhat arbitrary, however it was empirically found to be usually appropriate.
Note that " must be chosen to be smaller than the initial scales.

Generation of Points

The coordinates of the sampled points are generated independently by means of
the generating function: yi = sitg(�ui) + xi, with ui taken at random from a
uniform distribution on (�1=2; 1=2). The random variable defined as such obeys
an n-dimensional Cauchy law with the density:

gn(Y ;X;S) =
nY
i=1

1
�si

1

1 +

�
yi � xi

si

�2 :

The point X is the center of the distribution (the xi’s are the modes and medians of
the marginal distributions), and corresponds to the current position of the random
walk in the search domain. The scale parameters si are the quartile deviations.
Cauchy’s law has no moments, and in particular its variance is infinite, which is
a reflection of the fact that the density decreases slowly and is never negligible.
Given that points generated outside
 are rejected, the density is in fact a conditional
distribution, denoted h, given by:

hn(Y ;X;S) =
gn(Y ;X;S)R

 gn(Z;X;S) dZ
> gn(Y ;X;S); for Y 2
;

hn(Y ;X;S) = 0; for Y 62
:

DLS Variant

Certain functions to be optimized have special properties, making the use of par-
ticular local transformations of the generated points interesting. One of these trans-
formations, which we will refer to as the “Directional Local Search” (DLS) variant,
consists simply of one standard local search step: Y := Y � rrf(Y), where the
step length r is positive, and is determined using a standard bisection method (see
Zhigljavsky, 1991, pp. 21–22) with the constraint that Y 2
 . The gradient cal-
culation supposes that the function is C1 continuous and is easily derivable, but

134

THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 41

an approximation can also be used by replacing the partial derivatives with the
corresponding finite increase ratios.

Stopping Rules

Various stopping rules can be used, depending on the requirements for the appli-
cation. One can simply limit the number of function calls (consumption criterion),
or wait until the generation scales are close to " (precision criterion on
).

Convergence

THEOREM 1. Let f be a function defined on a bounded subset
 of Rn . Let
Xt 2
 be the point generated by the Hyperbell Algorithm at time t of the
search for a minimum of f on
. If f is continuous at a global minimum then:
8� > 0; limk!1 Probf9t 6 k; jf(Xt) � minX2
 f(X)j < �g = 1. (Replace
“min” with “max” for a maximum search).

Proof.
(1)- 8i 6 n; si(t+ 1) > �(si(t)� ") + ") 8i 6 n;8t; si(t) > " > 0.
(2)- If
 is bounded then 8X;Y 2
; kY �Xk <1 .
(3)- (1) and (2)) 9� > 0;8t;8X;Y 2
;hn(Y ;X;S(t)) > � .
(4)- Set
� = fY 2
; jf(Y)�minZ2
 f(Z)j < �g,

let � be the Lebesgue measure on the subsets of Rn , if f is continuous at a
global minimum then 8� > 0;�(
�) > 0.

(5)- (3) and (4)) R

�
hn(Y ;X;S) dY > ��(
�) > 0.

(6)- (5)) 8� > 0;Probf9t 6 k; jf(Xt) � minX2
 f(X)j < �g > 1 � (1 �
��(
�))

k.
(7)- Finally limk!1 1� (1� ��(
�))

k = 1, which completes the proof. E

The situation is very similar using the DLS variant of the algorithm, since this
variant is only an additional process which locally favours sampling the best
points.

One can also use the global search convergence theorem of Solis and Wets
(1981) since the Hyperbell Algorithm is clearly a case of their “conceptual algo-
rithm” and it satisfies their conditions H1 and H2. The condition H1 is trivially
satisfied by the acceptance rule of steps. Proving H2 is quite similar to the above
proof, where one replaces
� by any subset of
 with non-zero Lebesgue mesure.

Concerning the rate of convergence with Cauchy distributions, one can use
equation 11 from Ingber (1989), or Ingber and Rosen (1992), and conclude that
it is a sufficient condition, for obtaining stochastic convergence in any problem,
that the scales decrease no faster than s(0)=t1=n. However, this limit rate does
not take into account properties of the problem other than the dimension (n), and
faster convergence can almost always be obtained in practice. This usually requires
the use of “free parameters”, like � for the Hyperbell algorithm whose stochastic

135

42 PIERRE COURRIEU

convergence was stated above. Let " tend to 0, then the ith scale at time t is
approximately equal to si(0)�t�w(t) , where w(t) is the number of improving steps
at time t. Clearly, the convergence rate has an exponential form, but it depends
on the frequency of winning trials. The scales at a given stage of the process tend
to stabilize as long as they are productive of improving steps, and they rapidly
decrease when the frequency of winning trials decreases. The choice of � depends
on the properties of the problem to be solved. Unfortunately, the author does not
know any theory which would enable this choice to be generally optimized. To
date, the most usual method consists of empirically determining an �-function
appropriate to the class of problems to be solved in a given application. This is
not generally difficult, but the cost of the tuning procedure has to be added to the
implementation cost.

3. Experimental Study of Performance

Box-Constrained Test Functions

Presented below is an experimental study of the performance of the Hyperbell
Algorithm on some hard minimization problems. Most test functions used in the
current literature have only a small number of local extrema, which severely
limits the scope of the tests (see, however, Floudas & Pardalos, 1990). We were
nevertheless able to find two families of standard hard functions for the test:
Csendes functions (Csendes, 1985; see also Zhigljavsky, 1991, p. 16) and Griewank
functions (Griewank, 1981; see also Rinnooy Kan & Timmer, 1987b, p. 76). A third
family of hard functions, previously used by Courrieu (1993), was also selected.
This family will be called the W functions. The three families of functions were
used with 2 and 10 variables in the comparative study. They were used with 10
variables in the study of densities. Only the W family was used in the complexity
study.

Csendes test functions

Cn(X) =

nX
i=1

x6
i

�
2 + sin

1
xi

�
; �1 6 xi 6 1:

Contrary to what might appear, this function is defined at X = 0, precisely
where it has its unique global minimum (0). The function possesses a countable
infinity of local minima on the search domain, and the oscillation frequency tends
towards infinity on the neighborhood of the global solution. This property makes it
practically impossible to minimize by applying local searches. However, Csendes
functions have the following feature: they oscillate between two convex “hulls”
which approach each other on the neighborhood of the solution.

136

THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 43

Note: what we refer to as a “hull” of a function is a hypersurface which joins
all the extrema of the same type (maxima or minima) of the function, and which
itself has the minimum number of extrema.

W functions

Wn; k(X) =
1
n

nX
i=1

1� cos(kxi) exp(�x2
i =2); �� 6 xi 6 �:

W functions have their unique global minimum (0) at X = 0. The number of
local minima on the search domain is kn (for k odd) or (k + 1)n (for k even).
Only k = 10 was used in the comparative study, which gave 121 local minima
for n = 2, and more than 2:59 � 1010 local minima for n = 10. The function
oscillates between two hulls of constant mean (= 1) whose distance from each
other is maximal on the neighborhood of the solution.

Griewank test functions

Gn(X) = 1 +

nX
i=1

x2
i=d�

nY
i=1

cos(xi=
p
i);

For n = 2 : d = 200;�100 6 xi 6 100. For n = 10 : d = 4000;�600 6 xi 6

600. These functions have their unique global minimum (0) at X = 0, and have a
large number of local minima. They have many “trap” basins on a large area around
the solution. However, in the neighborhood of certain points, Griewank functions
have some special directional local properties. To get an idea of these properties,
assign one of the variables a value like xi = (2k + 1)�

p
i=2; k 2 Z . In this case,

the partial derivatives for all other variables point to the solution, which is a stable
attractor for the variables that reach its neighborhood.

Comparative Study for Box-Constrained Problems

Reference algorithms

Because the experimental results for problems like these are rare in the literature,
three reference algorithms were used.

Simulated Annealing: We chose the Dekker and Aarts (1991) algorithm, which is
a recent version of the Simulated Annealing algorithm adapted to numerical spaces.
It is like a sequential Multistart algorithm in that it uses multiple directional local
search steps, whose global distribution is governed by a simulated annealing rule.
The algorithm was implemented in compliance with the indications provided by the
authors, except that the stopping rule was simplified in an experimentally adapted
way. This rule was replaced by a “temperature” thresholding, involving a complete
local search starting from the best point found whenever the temperature fell below

137

44 PIERRE COURRIEU

10�8. For the test functions used, this order of magnitude for the temperature was
indeed found to correspond to a “freezing” point in the process, after which no
progress was observed. We used the tuning values proposed by the authors (namely:
�0 = 0:9; L0 = 10; t = 0:75), with m0 = 100, except for the speed parameter
that usually had to be reduced since a � of 0.1 proved to be unsuitable to problems
this difficult. To determine �, a trial and error procedure was used to obtain 10
successive runs with no error in the result for each problem. This search succeeded
for three out of six problems (W2, G2, G10), but it was impossible to obtain an
exact result for the remaining problems, even once. The value used for �, then, was
simply the minimum value found in those problems which were solved (0.005).

Improving Hit-and-Run: we chose the algorithm proposed by Zabinsky et al.
(1993) (see also Romeijn & Smith, 1994). It is a converging random walk algorithm
which generates an asymptotically uniform distribution on the feasible region, and
it was implemented as it is described by the authors (with H = I). No tuning
is necessary for the Improving Hit-and-Run algorithm, and the stopping rule was
fixed at 500000 evaluations of the function.

Distributed Search: this algorithm proposed by Courrieu (1993) was chosen
because it uses Cauchy distributions like the Hyperbell Algorithm, but it is not a
random walk. The Distributed Search uses a population of M points in the feasible
region, each of them being the center of a Cauchy distribution. The convergence is
obtained by estimating the most appropriate positions and scales of the M distri-
butions at successive stages of the search. The speed of convergence is controlled
by a parameter (�), and the algorithm has a DLS variant which is quite similar
to that of the Hyperbell Algorithm. To determine M;� and the eventual necessity
of applying the DLS variant, a trial and error procedure was used to obtain 10
successive runs with no error in the result for each problem.

Tuning the Hyperbell Algorithm

The Hyperbell Algorithm parameter�was also estimated by trial and error until we
obtained 10 successive runs with no error in the result of any of the problems. This
criterion obviously did not imply that the probability of error was equal to zero,
which a priori is impossible in finite time. The results were considered exact (for
all algorithms) when the process found a function minimum equal to 0, within the
precision range of the compiler (TURBO-PASCAL 5.0 on a COMPAQ Deskpro
486 computer). The parameter " was set at 10�20. The DLS variant was applied
only if the tuning procedure failed without it (this occured only for the function
G10).

Results

The results are presented in Table I. For each algorithm and each problem, the table
gives the values of the tuning parameters and the mean number of function calls

138

THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 45

Table I. Tuning, and mean performance (with standard deviation) on 10 successive runs for the
four algorithms and six test functions.

TESTED ALGORITHMS
Dekker & Zabinsky Courrieu Hyperbell
Aarts (1991) et al. (1993) (1993) Algorithm

C2 tuning � = 0.005 – M=100,� =1.00 � = 0.93
f calls 46549 (13149) 287292 (100493) 7028 (949) 663 (21)
f error 3.38E–15 (1.01E–14) 5.49E–30 (1.11E–29) No error No error
X error 2.42E–03 (1.65E–03) 8.14E–06 (5.60E–06)

C10 tuning � = 0.005 – M=200,� =1.00 � =0.993
f calls 430301 (41406) 465682 (31070) 89453 (2304) 6621 (88)
f error 1.30E–10 (1.18E–10) 2.03E–23 (1.79E–23) No error No error
X error 3.76E–02 (4.76E–03) 2.47E–04 (5.21E–05)

W2 tuning � = 0.005 – M=100,� =0.75 � =0.99
f calls 29485 (11534) 363364 (108840) 4161 (371) 2313 (41)
f error No error 2.71E–08 (3.09E–08) No error No error
X error 2.75E–05 (1.88E–05)

W10 tuning � = 0.005 – M=250,� =0.75 � =0.99978
f calls 221752 (29660) 496511 (4753) 119799 (2617) 105723 (899)
f error 0.210 (0.028) 0.372 (0.058) No error No error
X error 2.927 (0.494) 4.187 (0.936)

G2 tuning � = 0.005 – M=150,� =0.80 � =0.995
f calls 52793 (4741) 402978 (98100) 5712 (393) 4687 (93)
f error No error 6.38E–07 (6.92E–07) No error No error

with DLS
X error 1.21E–03 (6.27E–04)

G10 tuning � = 0.01 – M=300,� =0.60 � =0.995, DLS
f calls 251870 (10208) 471011 (31388) 205584 (4084) 106799 (10583)
f error No error 0.161 (0.106) No error No error

with DLS
X error 23.98 (8.12)

for the 10 runs (f calls). Each gradient calculation was counted as a calculation
of the function. This is particularly justified in the case of separable functions
where the calculation cost of the gradient is very close to the calculation cost of
the function. Also given are the mean error on the function value (f error) and the
mean Euclidean distance between the best point found and the global minimizer (X
error). Standard deviations (with 9 degrees of freedom) are shown in parentheses
to the right of the corresponding means.

139

46 PIERRE COURRIEU

Table II. Performance of the random walk using Gauss and
logistic densities for three test functions (ten successive
runs).

f Gauss density Logistic density

C10 tuning � = 0.989 � = 0.99
f calls 4305 (66) 4705 (58)

No error No error

W10 tuning � = 0.9999 � = 0.9999
f calls 250781 (10306) 247011 (11470)
f error 0.293 (0.082) 0.268 (0.063)
X error 3.492 (0.951) 3.397 (0.773)

G10 tuning � = 0.99, DLS � = 0.99, DLS
f calls 59094 (1667) 58922 (2187)

No error No error

The results are quite clear. The Hyperbell Algorithm solved all the problems
with the smallest number of function evaluations. The most difficult function for
the algorithm was G10 whose optimization clearly required the DLS variant. With-
out the DLS variant, the process frequently became trapped by local minima. Note
that the minimization of Griewank functions is relatively easy for the Dekker and
Aarts (1991) algorithm; this is logical given its strong directional local component.
However, note also that Rinnooy Kan and Timmer (1987b) reported some disap-
pointing results concerning the minimization of the same Griewank functions by
a “Multi Level Single Linkage” algorithm. The Zabinsky et al. (1993) algorithm
found good approximations of the minimum for functions C2, C10, W2 and G2, but
the convergence was slow. The Distributed Search method found the exact solution
for all the problems, but as one can see in Table I, that algorithm converges much
slower than the Hyperbell Algorithm.

Study of Densities: Using Other Bells

The functions C10, W10 (with k = 10) and G10 were used for testing the perfor-
mance of the random walk when one replaces the Cauchy density with gradually
scaled down Gauss and logistic densities. Approximations of Gaussian variables
were generated using a sum of 12 independent uniform random variables. Each of
the 10 standard deviations was initialized at si(0) = (bi � ai)=3:664, given that
Probfjzj < 3:664=2g = 0:51=10. Logistic random variables were generated using
the formula yi = �si Ln(1=ui � 1) + xi, with ui taken at random from a uniform
distribution on (0,1), and si(0) = (bi � ai)=2(�Ln(2=(1 + 0:51=n)� 1)); n = 10.
The tuning procedure was similar to that employed for the Hyperbell Algorithm
with Cauchy densities. Means and standard deviations of performance on ten suc-

140

THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 47

Table III. Tuning of the Hyperbell Algorithm and mean number of function calls (with
standard deviation) as a function of the number of variables (ten successive runs without
error).

Number of Tuning (�) Function Number of Tuning (�) Function
variables calls variables calls

3 0.9500 504 (18) 18 0.9949 5045 (205)
6 0.9810 1339 (66) 21 0.9958 6002 (146)
9 0.9870 1982 (73) 24 0.9965 7247 (262)

12 0.9910 2875 (113) 27 0.9971 8786 (350)
15 0.9938 4127 (133) 30 0.9973 9529 (376)

cessive runs are presented in Table II. As one can see, Gauss and logistic densities
provided good performance on function C10, and also on function G10 with the
DLS variant. However, it was impossible to solve the W10 problem, even once,
using Gauss or logistic densities. Clearly, the use of exponential densities does
not lead to algorithms as robust as the Hyperbell Algorithm with Cauchy densities.
The behaviour of exponential densities looks like the behaviour of bounded support
densities, they provide fast but uncertain convergence. In contrast, approximations
of uniform densities (e.g. Improving Hit-and-Run) provide slow, truly guaranteed
convergence. The use of Cauchy densities allows for a good compromise between
speed and accuracy requirements.

Complexity Study

The behaviour of the Hyperbell Algorithm was studied varying two usual factors
of complexity: the number of variables and the number of minima. The W test
function family was used since these complexity factors are easy to control for
these functions.

Effect of the number of variables: For this study, the W test function was used
with k = 0 and a number of variables varying from 3 to 30 (step 3). This is a
set of ten uniminimal functions. The tuning procedure of the Hyperbell Algorithm
was similar to that employed in the preceding studies. Results are presented in
Table III. The number of function calls (t) increased as a function of the number
of variables (n). This function was close to linear. The best regression equation
is t = 343:4n1:3 � 922, with a very high correlation coefficient r = 0:997. A
simple linear regression gave r = 0:994. The tuning was very well predicted by
the relation � = 0:2064(1� n�1:3) + 0:7934; r = 0:999.

Effect of the number of minima: For this study, the W test function with n = 1
and 13 even values for k was used, giving a range of 1 to 101 minima. Results
are presented in Table IV. As one can see, the number of function calls increased
monotonically as a function of the number of minima (m). The best simple relation
which was found is t = 47:83m0:87 + 156:97; r = 0:968. However, this type of

141

48 PIERRE COURRIEU

Table IV. Tuning of the Hyperbell Algorithm and mean number of function calls (with
standard deviation) as a function of the number of minima (ten successive runs without
error).

Number of Tuning (�) Function Number of Tuning (�) Function
minima calls minima calls

1 0.820 134 (15) 15 0.9720 764 (64)
3 0.830 149 (17) 17 0.9725 823 (28)
5 0.860 178 (10) 19 0.9730 826 (16)
7 0.940 372 (30) 21 0.9736 867 (43)
9 0.965 629 (36) 51 0.9800 1173 (40)

11 0.969 672 (73) 101 0.9923 2956 (126)
13 0.971 758 (47)

relation cannot be generalized without caution since we have seen that it is easy for
the Hyperbell Algorithm to minimize Csendes functions, which have theoretically
an infinity of minima. In fact, we have to suspect that the number of minima per
se is not relevent, but that it is linked to more relevent caracteristics in the case of
W functions.

Comparative Study for Nonlinearly Constrained Problems

The Hyperbell algorithm was initialy designed for searching global extrema of mul-
tiextremal functions defined on simple box-constrained feasible regions. However,
certain recent global optimization algorithms are designed for solving optimiza-
tion problems on feasible regions with relatively complex constraints (Zabinsky
et al., 1993; Romeijn & Smith, 1994). Hence, it appeared interesting to complete
this experimental study with standard nonlinearly constrained problems. The two
most difficult nonlinearly constrained problems used by Romeijn & Smith (1994)
were selected (problem 1 and 2, pp. 119–120). These authors reported the best
performance which was obtained with Hide-and-Seek type algorithms (including
Improving Hit-and-Run) for solving these problems with a precision of 1%. For
comparison, the same precision criterion (stopping rule) was used in the present
study. Table V presents the mean number of constraint evaluations necessary for
finding an initial point inside the feasible region (i.c.e), the mean number of func-
tion evaluations (f.e.), and the mean number of constraint evaluations (c.e.). These
means were obtained with 20 successive runs, and the corresponding standard
deviations are given in parentheses for the Hyperbell algorithm. Results concern-
ing the Hide- and-Seek algorithm are taken from Romeijn & Smith (1994). As one
can see, the Hide-and-Seek algorithm found an initial feasible point faster than the
Hyperbell algorithm for problem 2. Hide-and-Seek algorithm has a special proce-
dure for finding an initial feasible point. When the constraint function defines a
subset with relatively low Lebesgue mesure, this procedure is more effective than

142

THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 49

Table V. Mean performance (with standard deviations) for 20
successive runs on two nonlinearly constrained problems solved
with 1% precision.

Hyperbell Romeijn & Smith (1994)
Problem 1 � = 0.992
i.c.e 6.55 (6.39) 10.1
f.e. 329.75 (131.70) 530.6
c.e. 744.90 (276.10) 1876.3

Problem 2 � = 0.990
i.c.e. 835.85 (770.82) 158.1
f.e. 168.95 (51.30) 281.9
c.e. 8323.45 (2730.87) 13893.1

the very simple initialization procedure of the Hyperbell algorithm. However, this
was the only advantage of Hide-and-Seek in the present experiment, and globally,
the Hyperbell algorithm always solved the problems faster.

4. Tuning Procedures for Applications

Tuning the algorithm for standard test problems is quite easy because the exact
solution of these problems is known a priori. However, this is not the case, in
general, for realistic applications. Moreover, certain applications require strict
control of computational effort, and more or less precision (or reliability) for
the result. Usually, the tuning is performed at the time of implementation (“off-
line tuning”). In this case, one must determine an � value or an �-function (of
complexity variables) that properly generalizes to the (infinite) set of problems
which the application should be able to solve. However, in certain cases, it is not
possible to find an appropriate �-function for the entire set of potential problems.
Such a situation requires the use of an “on-line tuning” procedure. To date, we
do not know of any general tuning method with low computational cost. In this
section, we first examine the behavior of the algorithm as a function of its tuning.
Based on the resulting observations, examples of simple tuning procedures are
defined and experimental results are presented.

Test Problem

For this study, we selected a family of problems which has practical applications
and whose exact solution is not known to date. This is the so called “elliptic Fekete
points’ problem (of order d)” (Pardalos, 1995; Shub & Smale, 1993):

global max fd(x) =
Q

16i6j6d kxi � xjk; x 2 R
3d ;

subject to kxik = 1; i = 1; :::; d:

143

50 PIERRE COURRIEU

Table VI. Behavior of the Hyperbell Algorithm (means and stan-
dard deviations for 10 runs) as a function of � for a 12 Fekete
points’ problem.

� Maximum of f12 found Solving time

0.8 1.78405E+8 (3.46344E+8) 392 (15)
0.9 4.62357E+8 (4.25513E+8) 810 (34)
0.95 1.55778E+9 (2.98085E+8) 1607 (44)
0.975 2.05888E+9 (1.12839E+8) 3166 (61)
0.9875 2.19609E+9 (1.00874E+8) 6192 (132)
0.99375 2.35477E+9 (6.96366E+7) 12275 (225)
0.996875 2.40710E+9 (2.66601E+7) 22209 (2480)
0.9984375 2.41785E+9 (0) 25802 (5062)
0.99921875 2.41785E+9 (0) 54298 (6732)
0.999609375 2.41785E+9 (0) 91316 (21832)

� Frequency of winning trials Time to stop

0.8 0.491 (0.020) 395 (15)
0.9 0.477 (0.021) 816 (32)
0.95 0.459 (0.014) 1619 (42)
0.975 0.446 (0.009) 3198 (50)
0.9875 0.430 (0.010) 6262 (108)
0.99375 0.425 (0.008) 12434 (179)
0.996875 0.370 (0.055) 22880 (1902)
0.9984375 0.031 (0.006) 29599 (192)
0.99921875 0.011 (0.001) 58010 (85)
0.999609375 0.004 (0.001) 115301 (81)

The constraint defines a set of zero mesure in R3 (the unit sphere surface). Hence
we have to use a projection of R3 points on S2:

xi := zi=kzik; zi 2 [�1; 1]3n0:

In doing this, all points zi generated along a given radial direction are equivalent,
the number of independent variables theoretically reduces to 2d, and one can easily
verify that the convergence properties of the Hyperbell Algorithm are not modified.

Effects of Tuning

In order to illustrate a typical behavior of the Hyperbell Algorithm as a function
of � , a 12 Fekete points’ problem was approximately solved with 10 different
values of � according to: �k+1 = (�k+1)=2; �0 = 0:8; k = 0; :::; 9. The stopping
criterion was s(t) 6 1:10"; " = 10�20 , and 10 runs were performed for each �

value. Table VI reports the means (and standard deviations) of the maximum found
for the objective function, the solving time (number of function calls for finding

144

THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 51

the result), the frequency of winning trials at stopping criterion, and the time to
stop (number of function calls for reaching the stopping criterion).

One can see in Table VI that the approximation of the function global maximum
is improved as � increases, and that one obtains a stable result (with variance close
to 0) after a critical value of � is reached. The computational cost monotonically
increases, and the frequency of winning trials decreases as a function of � . Note
also that the mean frequency of winning trials is lower than 1/2 for usual values
of �(> 0:8). A stable result can be considered as the best solution which can be
provided by the algorithm in the limit of a given computational effort. However,
if no validity test of the result is available, one can only guess that this is a global
optimum.

Cost Constrained Tuning

This is an on-line tuning method which enables one to choose the range of the
computational cost allowed for the search. Choose a large integer T , a small real
! > " , and a stopping criterion of the form s(t!) 6 ! , with the (approximative)
constraint that t! 6 T . If the scales of the different variables are not equal, consider
only the largest one, or eventually choose an! value for each variable in such a way
that !i = c(si(0)� ") + "; i = 1:::n, where c is a small positive constant. Clearly
T is an approximation of the maximum number of function evaluations allowed
for the search, with a precision criterion ! in
 . After the algorithm statement, we
have:

s(t!) = (s(0)� ")�(1�w!)t! + " = !)
t! =

1
(1 �w!) ln�

ln
�

! � "

s(0)� "

�
;

where w! is the frequency of winning trials at stopping criterion time. w! is a
random variable whose law depends on the problem and on the tuning, however
one can estimate that 0 < w! 6 1=2 in most cases. Assuming this, we obtain:

ln
�

! � "

s(0)� "

�
= ln� < t! 6 2ln

�
! � "

s(0)� "

�
= ln� ' T;

then we take:

� = exp
�

2 ln
�

! � "

s(0)� "

�
=T

�
=

�
! � "

s(0)� "

�2=T

:

If T is sufficiently large, one can obtain a stable result (or a global extremum),
but this cannot be verified using only one run. If no validity test of the result is
available, one can use two different costs (say T1 and T2) and perform the two
corresponding runs. Then the global cost will be comprised between (T1+T2)/2
and T1+T2. In general, there is little chance of obtaining two similar results if these
are not stable solutions.

145

52 PIERRE COURRIEU

Off-Line Tuning

Performing an off-line tuning, one must determine an � value or an �-function
(of complexity variables) which will provide reliable results with minimal com-
putational cost for a large class of problems. Given a particular problem, we first
must find a minimal � value which provides stable results. Given the convergence
properties illustrated in Table VI, this reduces to a one variable uniextremal opti-
mization. Hence, variants of usual local search methods, such as bisection type
procedures, can be used, and the convergence towards an optimal tuning can be
guaranteed. Now, for the purpose of an application, it is not necessarily relevent
to find an exact optimal tuning for a particular problem, and one has to take into
account the computational cost of the tuning procedure itself. In particular, we
have to take into account the fact that the computational cost increases quickly as
� tends to 1, since this cost is approximately proportional to j1= ln�j (see previous
section). Hence, we must define a tuning procedure which avoids large overesti-
mating of � and repeated runs using overestimated � values. As an example, the
following procedure provides quite good results:

fparameters: �0; �1: two initial low values of �;
N: critical number of repeated runs; g
ffirst approximationg f0 := Hyperbell(f; �0);
BEST := f0; f1 := Hyperbell(f; �1);
if (f1 better than BEST) then BEST := f1;
k := 1;
while (fk�1 6= BEST) or (fk 6= BEST) do

begin
k := k + 1;

�k :=
� jfk�1 � fk�2j
jfk�1j+ jfk�2j

�0:1

;

�k := (�k�1 + �k)=(1 + �k);
fk := Hyperbell(f; �k);
if (fk better than BEST) then BEST := fk;
end;

ffinal tuningg
k := k � 1;
r := 1;
repeat

repeat
fk := Hyperbell(f; �k);
r := r + 1;

until (r = N) or (fk 6= BEST);

146

THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 53

if (fk 6= BEST) then begin
r := 0;
k := k + 1;

�k :=
� jfk�1 � BESTj
jfk�1j+ jBESTj

�0:1

;

�k := (�k�1 + �k)=(1 + �k);
if (fk�1 better than BEST) then BEST := fk�1;
end;

until (r = N);

Note that the differences (6=) have to be tested with finite precision (e.g. 15 signif-
icant decimal digits). The expression of �k can be modified. For example, using
�k = 1 provides an � sequence similar to the one reported in Table VI (with �0

= 0.8 and �1 = 0.9). The choice of N (critical number of repeated runs) depends
on the desired reliability of the tuning. The “first approximation” part of the pro-
cedure can also be used as an on-line tuning procedure. This can be interesting
because the procedure ends when a result stability criterion is satisfied, however
the computational cost is not controlled for.

The tuning procedure was applied to elliptic Fekete points’ problems of var-
ious orders. Main results concerning orders 10, 11 and 12 are reported in Table
VII. Given the �-function (of the number of variables) previously obtained for
uniextremal functions (see the “complexity study” section), it was assumed that
� > �1 = 0:8 + 0:2(1� 1=d). Tuning costs are total numbers of function evalua-
tions. The first approximation tuning cost can be viewed as an on-line tuning cost
with stability criterion. The estimated maximum of f was always obtained in the
first approximation procedure with 15 significant digits. The final tuning procedure
only minimized the solving time for the specified reliability criterion (N = 10).

The remaining problem concerns the generalization of tuning to a large class
of problems. Depending on the application, the problems can differ only by a
random set of data, or (also) by systematic complexity factors (e.g. number of
variables). In the first case, a quite evident method consists of selecting a sample of
problems and performing the tuning for each problem, which provides a sample of
tunings. Then one can determine an upper boundary of � using a simple confidence
interval method. However, the distribution of �, considered as a random variable,
is very asymetrical. Hence, it is better to compute the confidence interval for the
t! variable (by usual statistical methods), and then to compute the corresponding
upper bound of � using the relations stated in the “cost constrained tuning” section.
The second case is the most frequent in practice. Unfortunately, it is also the most
problematic case because available empirical complexity factors are not always the
relevent ones, or the�-function is not a simple monotonic function of these factors.
Sometimes, it is easy to find an appropriate approximation of the �-function, as
we did in the “complexity study” section. However, if one considers for example

147

54 PIERRE COURRIEU

Table VII. Results provided by the tuning procedure for Fekete points’ problems of order 10, 11, and
12. �0 = 0:8; �1 = 0:8 + 0:2(1 � 1=d); N = 10.

f10 f11 f12

� 0.999609313189144 0.999654352379111 0.998184163562489
maximum of fd 5.74088185070187E+6 9.99798997082430E+7 2.41785163922926E+9
mean solving time 90807 122889 21645
first approx. cost 712488 1051620 121779
total tuning cost 1798733 2591413 352330

the set of elliptic Fekete points’ problems, the �-function of d seems hard to
predict. In such a situation, a practical solution would probably be to implement
the tuning values for the most frequent problems, and to implement an on-line
tuning procedure for the remaining cases.

5. Conclusion

The Hyperbell Algorithm clearly exhibits high performance levels on difficult
global optimization problems. The use of Cauchy distributions in this type of
framework is visibly more appropriate than the use of more usual distributions.
Complexity effects which were experimentally tested are close to linear, however
not all the relevent complexity factors are identified. Simple tuning procedures are
available, however verifying reliability always requires a non negligible amount
of computational effort. Further research efforts are needed to develop an efficient
way of determining the best algorithm tuning for each problem or application. This
requires a theory of problem complexity which is not available to date. Despite
these remaining questions, the Hyperbell algorithm is a useful tool in practice.
It is very easy to implement and, clearly, it provides reliable results with fast
convergence.

References

Baritompa, W. (1993), Customizing methods for global optimization – a geometric viewpoint. Journal
of Global Optimization 3, 193–212.

Boender, C.G.E., Rinnooy Kan, A.H.G., Stougie, L., Timmer, G.T. (1982), A stochastic method for
global optimization, Mathematical Programming 22, 125–140.

Breiman, L., Cutler, A. (1993), A deterministic algorithm for global optimization, Mathematical
Programming 58, 179–199.

Courrieu, P. (1993), A distributed search algorithm for global optimization on numerical spaces.
RAIRO: Recherche Opérationnelle / Operations Research, 27(3), 281–292.

Csendes, T. (1985), A simple but hard-to-solve global optimization test problem, IIASA Workshop on
Global Optimization, Sopron (Hungary).

Dekker, A., Aarts, E. (1991), Global optimization and simulated annealing, Mathematical Program-
ming 50, 367–393.

Floudas, C.A., Pardalos, P.M. (1990), Collection of Test Problems for Constrained Global Optimiza-
tion Algorithms, Springer-Verlag, Lecture Notes in Computer Science 455.

148

THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 55

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley, Reading, Massachusetts.

Griewank, A.O. (1981), Generalized descent for global optimization, Journal of Optimization Tech-
niques and Application 34, 11– 39.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, The University of Michigan Press,
Ann Arbor.

Horst, R., Pardalos, P.M. (1995), Handbook of Global Optimization, Kluwer Academic Publishers,
Dordrecht.

Ingber, L. (1989), Very fast simulated re-annealing, Mathl. Comput. Modeling 12(8), 967–973.
Ingber, L., Rosen, B. (1992), Genetic algorithms and very fast simulated reannealing: a comparison.

Mathl. Comput. Modelling 16(11), 87–100.
Pardalos, P.M. (1995), An open global optimization problem on the unit sphere, Journal of Global

Optimization 6, 213.
Pintér, J. (1988), Branch-and-Bound methods for solving global optimization problems with Lips-

chitzian structure, Optimization 19(1), 101–110.
Rinnooy Kan, A.H.G., Timmer, G.T. (1987a), Stochastic global optimization methods. Part I: clus-

tering methods, Mathematical Programming 39, 27–56.
Rinnooy Kan, A.H.G., Timmer, G.T. (1987b), Stochastic global optimization methods. Part II: multi

level methods, Mathematical Programming 39, 57–78.
Romeijn, H.E., Smith, R.L. (1994), Simulated Annealing for constrained global optimization, Journal

of Global Optimization 5, 101–126.
Shub, M., Smale, S. (1993), Complexity of Bezout’s theorem III. Condition number and packing,

Journal of Complexity 9, 4– 14.
Solis, F.J., Wets, R.J-B. (1981), Minimization by random search techniques, Mathematics of Opera-

tions Research 6(1), 19– 30.
Wood, G.R. (1992), The bisection method in higher dimensions, Mathematical Programming 55,

319–337.
Zabinsky, Z.B., Smith, R.L., McDonald, J.F., Romeijn, H.E., Kaufman, D.E. (1993), Improving

Hit-and-Run for global optimization. Journal of Global Optimization 3, 171–192.
Zhigljavsky, A.A. (1991), Theory of Global Random Search, Kluwer Academic Publishers, Dordrecht.

149

150

Journal of Computational and Applied Mathematics 231 (2009) 39–48

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Fast solving of weighted pairing least-squares systems
Pierre Courrieu ∗
LPC, UMR 6146, CNRS-University of Provence, Marseille, France

a r t i c l e i n f o

Article history:
Received 1 September 2008

Keywords:
Weighted pairing least-squares
Generalized inverses
Generalized Cholesky factor

a b s t r a c t

This paper presents a generalization of the ‘‘weighted least-squares’’ (WLS), named
‘‘weighted pairing least-squares’’ (WPLS), which uses a rectangular weight matrix and is
suitable for data alignment problems. Two fast solving methods, suitable for solving full
rank systems as well as rank deficient systems, are studied. Computational experiments
clearly show that the best method, in terms of speed, accuracy, and numerical stability,
is based on a special {1, 2, 3}-inverse, whose computation reduces to a very simple
generalization of the usual ‘‘Cholesky factorization-backward substitution’’ method for
solving linear systems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider weighted least-squares problems in the following generalized form:

E(V ; X, Y ,W) =
m1∑
i=1

m2∑
j=1

wij
∥∥Xi,:V − Yj,:∥∥2 ,

C = arg min
V∈Rn1×n2

E(V ; X, Y ,W), (1)

where threematrices are given: X ∈ Rm1×n1, Y ∈ Rm2×n2, andW = (wij) is a rectangularm1×m2 ‘‘weighted pairing’’ matrix
whose coefficients are non-negative real numbers. Xi,: denotes the ith row of X , and Yj,: denotes the jth row of Y . Note that
this generalization is not the same as the so-called ‘‘Generalized Least-Squares’’ [1]. In the special casewherem1 = m2 = m
andW is a diagonal matrix, the above problem clearly reduces to an ordinary weighted least-squares problem, that is:

C = arg min
V∈Rn1×n2

m∑
i=1

wii
∥∥Xi,:V − Yi,:∥∥2 = arg min

V∈Rn1×n2

∥∥W 1/2XV −W 1/2Y∥∥2 . (2)

In Section 2, we show that, in fact, every problem having the form (1) can be reduced to a problem having the form (2).
In such problems, each equation of the least-squares system receives a specific weight that typically depends on some
estimate of the reliability of the data used in that equation. The usual non-weighted case corresponds toW = I (identity
matrix). Ordinary weighted least-squares (2) are commonly used to solve regression problems with noisy data [2], and in
‘‘iteratively re-weighted least-squares’’ procedures for computing robust regression statistics such asM-estimators [3,4]. The
generalization (1) is potentially relevant in ‘‘data alignment’’ problems, where there is no given one-to-one correspondence
between X data points and Y data points (rows), but one has some non-negative ‘‘adequacy’’ or ‘‘plausibility’’ measure for
each possible data pair, which is represented by W . Data alignment is a hard to solve problem commonly encountered in

∗ Corresponding address: LPC, CNRS - UMR 6146, Université de Provence, Centre St Charles, Bat. 9, Case D, 3 Place Victor Hugo, 13331 Marseille Cedex 3,
France.
E-mail addresses: Pierre.Courrieu@univ-provence.fr, courrieu@up.univ-mrs.fr.

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.01.016

151

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:Pierre.Courrieu@univ-provence.fr
mailto:courrieu@up.univ-mrs.fr
http://dx.doi.org/10.1016/j.cam.2009.01.016

40 P. Courrieu / Journal of Computational and Applied Mathematics 231 (2009) 39–48

image processing and pattern recognition [5]. In this paper, ‖.‖ denotes the Euclidean norm for vectors, and the Frobenius
norm for matrices. As in Matlab, the notation ‘‘a : b’’ denotes an index interval of bounds ‘‘a’’ and ‘‘b’’, and if the bounds are
not specified (:), this corresponds to the whole index range.
WheneverW 1/2X is of full column rank in (2), the solution to this problem is unique and the normal equations lead to

the well-known result:

C = (X ′WX)−1X ′WY , (3)

where X ′ denotes the transpose of X (or the conjugate transpose in the complex case).
One of the fastestways of numerically obtaining the factor (X ′WX)−1 that appears in (3) consists of computing a Cholesky

factorization LL′ of the positive definite Gram matrix X ′WX , then one inverts the upper triangular factor L′ by a simple
backward substitution method, and one obtains (X ′WX)−1 = L′−1L−1. However, if W 1/2X is not of full column rank, then
the above method does not work because the matrix X ′WX is singular, and in this case, the weighted least-squares system
is said to be rank deficient. The solution of rank deficient systems requires more robust methods, which are also slower than
the abovementioned, in general. Among the fastest methods, we can consider those based on the use of suitable generalized
inverses, such as the popular Moore–Penrose inverse [6–8]. A solution to (2) is then:

C = (W 1/2X)ĎW 1/2Y = (X ′WX)ĎX ′WY , (4)

where the Moore–Penrose inverse is known to provide the least-squares solution C whose each column has the minimum
Euclidean norm [6, p. 109].
However, one must note that the solution of least-squares problems does not specifically require the use of the

Moore–Penrose inverse, and that other types of generalized inverses, such as {1, 3}-inverses whose numerical computation
is possibly faster, can as well be used. According to ([6], pp. 104–105), one has always a solution to (2) with:

C = (W 1/2X)(1,3)W 1/2Y , (5)

where A(1,3) denotes any {1, 3}-inverse of the matrix A (see Section 3.2).
In fact, the problem of the computational cost is crucial in many practical applications, where one must repeatedly solve

large least-squares systems. On the other hand, most practical problems lead to full rank systems that could be solved fast
using (3), however, rank deficient systems can occasionally appear, and it is commonly not acceptable to obtain a ‘‘fatal
error’’ diagnostic at run time. Thus, in order to optimize the performance of applications, we present in Section 3.2 a quite
fast solution of type (4), and in Section 3.3 a solution of type (5) whose computational cost is similar to that of (3), which has
the advantage of being fast while providing a suitable least-squares solution in all cases, even if the system is rank deficient.
These solutions apply to problem (2) and to problem (1) as well.

2. The weighted pairing least-squares problem

In this section, we consider the generalization of the weighted least-squares (WLS) problem stated in (1), which we refer
to as the ‘‘weighted pairing least-squares’’ (WPLS) problem.

Theorem 1. Every WPLS problem of type (1) reduces to a WLS problem of type (2) since:

arg min
V∈Rn1×n2

m1∑
i=1

m2∑
j=1

wij
∥∥Xi,:V − Yj,:∥∥2 = arg min

V∈Rn1×n2

m1∑
i=1

hii
∥∥Xi,:V − Zi,:∥∥2 ,

where:
H = (hij) is a diagonal matrix with diagonal coefficients hii =

∑m2
j=1wij, 1 ≤ i ≤ m1,

Z = HĎWY ,
HĎ
= (hĎij) is the Moore–Penrose inverse of H, with h

Ď
ii = 1/hii if hii > 0, and h

Ď
ij = 0 if hij = 0.

Proof. Set

dik =
m2∑
j=1

wijy2jk − h
Ď
ii

(
m2∑
j=1

wijyjk

)2
, 1 ≤ i ≤ m1, 1 ≤ k ≤ n2. (6)

Then one has:

m1∑
i=1

(
hii
∥∥Xi,:V − Zi,:∥∥2 + n2∑

k=1

dik

)
=

m1∑
i=1

n2∑
k=1

hii

(
Xi,:V:,k − h

Ď
ii

m2∑
j=1

wijyjk

)2
+ dik

=

m1∑
i=1

n2∑
k=1

(
h1/2ii Xi,:V:,k − h

1/2
ii h

Ď
ii

m2∑
j=1

wijyjk

)2
+ dik

152

P. Courrieu / Journal of Computational and Applied Mathematics 231 (2009) 39–48 41

=

m1∑
i=1

n2∑
k=1

hii(Xi,:V:,k)2 − 2hiih
Ď
ii(Xi,:V:,k)

m2∑
j=1

wijyjk + hiih
Ď2
ii

(
m2∑
j=1

wijyjk

)2
+ dik

=

m1∑
i=1

n2∑
k=1

hii(Xi,:V:,k)2 − 2(Xi,:V:,k)
m2∑
j=1

wijyjk + h
Ď
ii

(
m2∑
j=1

wijyjk

)2
+ dik

=

m1∑
i=1

n2∑
k=1

(
m2∑
j=1

wij(Xi,:V:,k)2
)
− 2

(
m2∑
j=1

wijyjk(Xi,:V:,k)

)
+

(
m2∑
j=1

wijy2jk

)

=

m1∑
i=1

n2∑
k=1

m2∑
j=1

wij((Xi,:V:,k)2 − 2(Xi,:V:,k)yjk + y2jk)

=

m1∑
i=1

m2∑
j=1

wij
∥∥Xi,:V − Yj,:∥∥2 .

Noting that the additional terms (dik) given by (6) are independent of V , one obtains Theorem 1. �

Corollary 1. (i) If H1/2X is of full column rank, then (1) has the unique solution:
C = (X ′HX)−1X ′HZ = (X ′HX)−1X ′WY .

(ii) No matter H1/2X is not of full column rank, (1) has the minimum norm solution:

C = (H1/2X)ĎH1/2Z = (X ′HX)ĎX ′WY .
(iii) No matter H1/2X is not of full column rank, (1) has all solutions of the form:

C = (H1/2X)(1,3)H1/2Z,

where H and Z are defined as in Theorem 1.
Proof. This directly follows from Theorem 1 and Eq. (3) for (i), Eq. (4) for (ii), and Eq. (5) for (iii). �

3. Fast solutions based on generalized inverses

3.1. Generalized Cholesky factors

Several generalizations of the Cholesky factorization can be found in the literature. A well-known generalized Cholesky
factorization for solving the so-called ‘‘augmented linear systems’’ is available in [9] and [10]. Another type of generalization
of the Cholesky factorization has been proposed in [11], and this approach has been successfully used to define a fast
numerical method for computing the Moore–Penrose inverse [7]. The fundamental result for the generalized Cholesky
factorization is:

Theorem 2 (From [11]). Let G be a symmetric positive semi-definite matrix of order n × n. Then there is an upper triangular
matrix R such that R′R = G, rii ≥ 0, 1 ≤ i ≤ n, and if for an index i one has rii = 0, then rij = 0, 1 ≤ j ≤ n. Moreover, the
matrix R with these properties is unique.
Proof. A proof of this is available in ([11], Theorem 4). �

The corresponding algorithm for computing the generalized Cholesky factor R defined in Theorem 2 is a very simple
variant of the usual Cholesky factorization algorithm, and its computational complexity is the same. However, the
generalization has the advantage of providing a suitable factor in all cases, even if the matrix G is singular.

Algorithm 1 (Generalized Cholesky Factor R of the given matrix G).
rij ← 0, 1 ≤ i, j ≤ n {initialization of R}
r11 =

√
g11

for j← 2 to n
for i← 1 to j

if i = j then rii ←
√
gii −

∑i−1
k=1 r

2
ki

else if rii > 0 then rij ← (gij −
∑i−1
k=1 rkirkj)/rii

{else rij = 0 as a result of the initialization}.

By construction, the output of Algorithm 1 is an upper triangular factor R with r non-zero rows, and n − r zero rows,
where r is the rank of G. The algorithm complexity is inO(n3), but the exact operations count depends on r and the indices of
zero rows.When r = n, this count is maximum, and it is equal to that of the classical Cholesky factorization (plus n(n−1)/2
low cost tests).

143

42 P. Courrieu / Journal of Computational and Applied Mathematics 231 (2009) 39–48

3.2. Fast Moore–Penrose inverse based solution

Using Algorithm 1, one can define a fast method for computing the Moore–Penrose inverse of every finite matrix. Before
examining this method, we rapidly recall some definitions and notations concerning generalized inverses.
Every finite matrix A has (possibly an infinite number of) generalized inverses (hereafter denoted B) that satisfy one or

several of the following four Penrose equations:

ABA = A (P1)
BAB = B (P2)
(AB)′ = AB (P3)
(BA)′ = BA (P4).

Everymatrix B that satisfies the equation set {Pi, Pj, . . .} is said to be a {i, j, . . .}-inverse of A, and it is usually denoted A(i,j,...).
The Moore–Penrose inverse of A is the unique matrix AĎ = A(1,2,3,4). For a complete explanation, the reader can see [6].
There are several methods for computing the Moore–Penrose inverse, the most usual being based on the singular value

decomposition (SVD). This method is numerically very stable, however it is computationally heavy and hardly usable in
many practical applications. Another usual method is based on Gram–Schmidt orthonormalization, which is clearly faster
than SVD. However, the classical Gram–Schmidt orthonormalization (CGS or GSO) is known to be numerically instable. A
simple and effective remediation to this drawback has been proposed in the form of a re-orthogonalization additional step,
leading to the CGS2 method [12]. However, the additional step in CGS2 slows down the process, while it has been observed
that CGS is not the fastest method for computing the Moore–Penrose inverse [7]. In fact, it turned out that among the most
usual methods, including Greville’s method, SVD, CGS/GSO, and iterative methods, the fastest known numerical method for
computing the Moore–Penrose inverse is based on Algorithm 1 and on the following result [7]:

Theorem 3 (From [7]). Let A be an m × n matrix, with m ≥ n, set G = A′A, compute the generalized Cholesky factorization
G = R′R using Algorithm 1, remove all zero rows from R, which results in a full row rank matrix S of size r × n, with r ≤ n, and
such that S ′S = G. Then:

AĎ = S ′(SS ′)−1(SS ′)−1SA′.

Proof. The proof is available in [7]. Since it is short, we provide it hereafter.
We start with Eq. (3.2) from [8], that is:

(EF)Ď = F ′(E ′EFF ′)ĎE ′. (7)

Setting E = A, and F = I in (7), one obtains:

AĎ = (A′A)ĎA′ = GĎA′.

Setting E = S ′, and F = S in (7), one obtains:

GĎ = (S ′S)Ď = S ′(SS ′SS ′)ĎS = S ′(SS ′)−1(SS ′)−1S, (8)

since SS ′ is invertible because S is of full row rank. �

If A is an m × n matrix, with m < n, it suffices to use the relation AĎ = ((A′)Ď)′. Note also that (8) provides a simple
formula for the Moore–Penrose inverse of any symmetric positive semi-definite matrix, and that if S is of full rank r = n,
then GĎ = G−1.

Corollary 2. Set A = H1/2X in Theorem 3, then the minimum norm solution of (1) is:

C = S ′(SS ′)−1(SS ′)−1SX ′WY ,

where S is defined as in Theorem 3.

Proof. This immediately follows from Theorem 3 and Corollary 1 (ii). �

3.3. Fast {1, 2, 3}-inverse based solution

Although Corollary 2 provides a fast solution to (1), this is not necessarily the fastest way of solving this problem.
Moreover, observing Eq. (8), one can suspect a potential numerical instability whenever the matrix SS ′ is ill-conditioned,
worsened by the fact that the factor (SS ′)−1 is repeated. In this section, we describe a {1, 2, 3}-inverse based solution
to (1) whose computational complexity is similar to that of (3), using Algorithm 1 and a simple variant of the backward
substitution method for inverting upper triangular matrices. The simplicity of this solution allows us to expect not only
faster computation, but also better numerical stability than the Moore–Penrose inverse based approach. We first define the
generalization of the backward substitution method for computing generalized inverses of generalized Cholesky factors as

154

P. Courrieu / Journal of Computational and Applied Mathematics 231 (2009) 39–48 43

they are defined in Theorem 2. The computational complexity of the generalized algorithm is the same as that of the original
backward substitution method (O(n3)). The algorithm is designed to solve in U the following equation:

RU = IR, (9)

where IR is a diagonal n × nmatrix whose ith diagonal coefficient is equal to 0 if the ith row of R is zero, else this diagonal
coefficient is equal to 1. The algorithm to solve (9) is then:

Algorithm 2 ({1, 2, 3}-inverse U of the given generalized Cholesky factor R).

uij ← 0, 1 ≤ i, j ≤ n {initialization of U}
for j← n downto 1
if rjj 6= 0 then {note: this test is optional}
for i← j downto 1
if rii 6= 0 then
if i = j then uii ← 1/rii
else uij ←−(

∑j
k=i+1 rikukj)/rii.

The test at the third line of Algorithm 2 is optional because it has no influence on the result. However, including this test
allows to save a number of useless floating-point operations (whose result is zero) whenever R is singular.
By construction, the output of Algorithm 2 is an upper triangular matrix U that has the property that if the ith row of R is

zero, then both the ith row and the ith column of U are zero. Note that the rank of U is equal to the rank of R, which is itself
equal to the rank of the factorized matrix G and to the trace of IR. Note also that if R is not invertible (in the usual sense),
then UR 6= IR, however, UR is always idempotent since URUR = UIRR = UR.

Theorem 4. Let R be a generalized Cholesky factor as defined in Theorem 2, let U be the corresponding output of Algorithm 2,
then U is a {1, 2, 3}-inverse of R.

Proof. U is a {1}-inverse of R since RUR = IRR = R,
U is a {3}-inverse of R since RU = (RU)′ = IR,
U is a {2}-inverse of R since U is a {1}-inverse of R and has the same rank as R, then the conclusion follows from ([6], p.

46). Alternatively, one can easily verify that URU = UIR = U . �

Theorem 5. Let A be an m× n matrix, with m ≥ n, set G = A′A, compute the generalized Cholesky factorization G = R′R using
Algorithm 1, compute U = R(1,2,3) using Algorithm 2. Then:

(i) The equation A = QR has a solution in Q such that Q ′Q = IR. This solution is Q = AU .
(ii) The matrix B = UU ′A′ is a {1, 2, 3}-inverse of A.

Proof.

Q ′Q = U ′A′AU = U ′R′RU = (RU)′RU = IRIR = IR,
AU = QRU = QIR = Q ,

which proves (i).
Since (i) implies that B = UQ ′, one has:
B is a {1}-inverse of A since ABA = QRUQ ′QR = QIRIRR = QR = A,
B is a {2}-inverse of A since BAB = UQ ′QRUQ ′ = UIRIRQ ′ = UQ ′ = B,
B is a {3}-inverse of A since AB = QRUQ ′ = QIRQ ′ = (AB)′,

which proves (ii), and then completes the proof of Theorem 5. �

Corollary 3. Set A = H1/2X in Theorem 5, then a solution to (1) is given by:

C = UU ′X ′HZ = UU ′X ′WY ,

where U is defined as in Theorem 5.

Proof. This immediately follows from Theorem 5 (ii) and Corollary 1 (iii). �

One can note that if H1/2X is of full column rank, then U = R−1, and the solution provided by Corollary 3 is equal to that
of Corollary 1 (i). Moreover, ifH1/2X is of column rank r ≤ n1, then each column of the solution C to problem (1) provided by
Corollary 3 has at most r non-zero coefficients, since the first factor (U) of the solution has n1− r zero rows. Note, however,
that one can find particular examples showing that the above solution is not always the one having the minimum number
of non-zero coefficients.

155

44 P. Courrieu / Journal of Computational and Applied Mathematics 231 (2009) 39–48

4. Computational test

4.1. Implementation of methods

The methods defined in Corollaries 2 and 3 for solving (1) have been implemented in Matlab code (version 7.5), and are
listed in Appendix. The Matlab function corresponding to Corollary 2 is named ‘‘WPLSdagger’’, and the Matlab function
corresponding to Corollary 3 is named ‘‘WPLS123’’. This makes available various implementation details that are not
specified in the formal definition of algorithms, such as the way of testing the equivalence to zero of floating-point diagonal
coefficients, or the way of avoiding an a posteriori removing of zero rows in Corollary 2 solution. In order to make the
performance of the two tested methods comparable, we avoided the use of high level Matlab operators such as ‘‘inv()’’,
‘‘chol()’’, or ‘‘\’’, whose implementation is hidden and compiled.

4.2. Test problems

In order to test the performance of methods for solving (1) in terms of speed, accuracy, and numerical stability, we must
build test problems in away that allows strict control of relevant characteristics such as the size and the rank of the equation
system, the exact weighted least-squares residue norm, and the ratio of extreme non-zero singular values of the system
matrix (which can be seen as a kind of generalized condition number). Note that the solution (C) itself is not relevant for
comparisons, since it is not unique in the case of rank deficient systems. Building coherent test problems having all required
properties is not so easy, and we propose the following method.
First, one chooses the size parametersm1, n1,m2, n2, the rank parameter r ≤ n1, and the maximum ratio, denoted κr , of

non-zero eigenvalues of the Grammatrix X ′HX to be built. For practical reasons, one must choose the size parameters such
thatm2 ≥ m1 > n1. Then one builds two orthogonal Householder matrices:

M = I − 2
uu′

u′u
, with a random column vector u ∈ Rm1,

N = I − 2
vv′

v′v
, with a random column vector v ∈ Rn1,

where the identity matrices (I) have the appropriate size in each case. One also builds a r × r diagonal matrix D, whose ith
diagonal coefficient is equal to κ (r−i)/2(r−1)r , 1 ≤ i ≤ r . Then one selects the first r columns of M and the first r rows of N ,
and one builds the matrix:

A = M:,1:rDN1:r,:.

Them1× n1 matrix A is of rank r , the greatest eigenvalue of A′A is equal to κr , and the lowest non-zero eigenvalue of A′A is
equal to 1. Thus, we can set X ′HX = A′A, that is H1/2X = A.
For the next step, one builds a random (m1− r)× n2 real matrix F , and one sets:

P = M:,(r+1):m1F ,

where we note that the columns of P are orthogonal to those of A.
One can now build a suitable diagonal matrix H = (hii), 1 ≤ i ≤ m1, by taking:

hii = max

(∣∣∣∣∣ n1∑
j=1

aij

∣∣∣∣∣ ,
∣∣∣∣∣ n2∑
j=1

pij

∣∣∣∣∣
)2
,

which guarantees that both A and P can be factorized with H1/2 as the first factor, in order to build a coherent problem, and
one obtains the first matrix of problem (1) by:

X = (H1/2)ĎA.

For the next step, one builds a random n1× n2 real matrix V , and one sets:

HZ = H1/2(AV + P).

It remains to build am1×m2matrixW , with non-negative coefficients, such that
∑m2
j=1wij = hii, 1 ≤ i ≤ m1, and such that

there is an m2 × n2 matrix Y that is solution of the equationWY = HZ . Unfortunately, there is no available deterministic
method for factorizing HZ in a suitable way, thus we must use a random ‘‘trials and errors’’ approach, as follows. Repeat the
following four steps untilWY = HZ (at the working precision):

– build am1×m2 matrix T = (tij)with non-negative random coefficients,
– compute the diagonal matrix K with kii =

∑m2
j=1 tij, 1 ≤ i ≤ m1,

– setW = HK−1T ,
– set Y = W ĎHZ .

156

P. Courrieu / Journal of Computational and Applied Mathematics 231 (2009) 39–48 45

Table 1
Mean solving time (in milliseconds) of WPLS problems by the two methods.

n1 128 256 512
κr 16 256 4096 16 256 4096 16 256 4096

Full rank
WPLSdagger 126 126 127 608 610 607 3438 3438 3434
WPLS123 109 109 109 523 523 523 2868 2869 2869
Rank deficient
WPLSdagger 103 102 102 502 497 498 2805 2803 2803
WPLS123 89 89 89 433 434 433 2412 2412 2468

Table 2
Mean accuracy of the two methods in solving WPLS problems.

n1 128 256 512
κr 16 256 4096 16 256 4096 16 256 4096

Full rank
WPLSdagger 8.9E–6 9.9E–3 1.532 1.4E–6 1.3E–3 0.436 0.2E–6 0.2E–3 0.099
WPLS123 <10−12 <10−12 <10−12 <10−12 <10−12 <10−12 <10−12 <10−12 <10−12
Rank deficient
WPLSdagger 3.6E–6 11.9E–3 2.872 0.9E–6 2.1E–3 0.570 0.1E–6 0.3E–3 0.137
WPLS123 <10−12 <10−12 <10−12 <10−12 <10−12 <10−12 <10−12 <10−12 <10−12

The Moore–Penrose inverseW Ď can be obtained using an accurate (slow) SVDmethod. In general, one obtains a suitable
solution quite rapidly whenm2 > m1, and κr is not too large. However, one can observe that the above process frequently
fails for large systems if κr > 212, which seems to be a practical limit for generating problems in common computational
environments such as Matlab.
We have now suitable matrices X , Y , and W for problem (1), and it remains to compute the exact weighted sum of

quadratic residues (i.e. the minimized E function of (1)) corresponding to this problem as a reference value for testing the
accuracy of solving methods. In order to do this, we use the fact that the columns of the matrix P are orthogonal to those of
A, and the proof of Theorem 1. Then one obtains:

Eexact = ‖P‖2 +
m1∑
i=1

n2∑
k=1

dik,

where the additional terms (dik) are defined as in (6).

4.3. Results

Using the procedure described in Section 4.2, we generated various problems of type (1) with the parameter sets
n1 = {128, 256, 512}, κr = {16, 256, 4096}, r =

{
n1, 78n1

}
(corresponding to ‘‘full rank’’ and ‘‘rank deficient’’ systems,

respectively), whilem1 = 2 n1,m2 = 2m1, n2 = 32. Using all parameter combinations, one obtained 18 types of problems,
and 10 problems of each type were randomly generated. Each problem was solved by both the WPLSdagger function (fast
Moore–Penrose inverse based solution), and the WPLS123 function (fast {1, 2, 3}-inverse based solution). In each case, the
solving time was recorded in milliseconds (in Matlab 7.5, on a MacBook computer), and the accuracy of each method was
measured by (Emethod − Eexact)/Eexact. The mean solving times are reported in Table 1, and the mean accuracy values are
reported in Table 2. All differences between the two methods are statistically significant (p < .01) using the sign test.
As one can see in Table 1, the {1, 2, 3}-inverse basedmethod is faster than the fast Moore–Penrose inverse basedmethod,

in all cases. One can also note that rank deficient systems are solved faster than full rank systems of the same size by both
methods, which is a consequence of the zeroing of certain rows in Algorithm 1. Moreover, an inspection of Table 2 clearly
shows that the {1, 2, 3}-inverse based method is accurate in all cases, while the fast Moore–Penrose inverse based method
is less accurate and highly sensitive to the parameter κr , thus numerically instable. In summary, it seems that the {1, 2,
3}-inverse based method is globally preferable to other knownmethods suitable for solving problem (1), except if, for some
particular reason, one requires a minimum norm solution. However, in this last case, it is certainly preferable to use an
accurate and numerically stable method for computing the Moore–Penrose inverse, but the price to be paid for this is, in
general, a quite long computation time.

5. Conclusion

We have first generalized ‘‘weighted least-squares’’ (WLS) to ‘‘weighted pairing least-squares’’ (WPLS) problems. This
generalization, which allows using a rectangular weight matrix, includes, as particular cases, the classical weighted and
non-weighted least-squares problems, and it is more particularly suitable in the framework of data alignment problems.

157

46 P. Courrieu / Journal of Computational and Applied Mathematics 231 (2009) 39–48

We have shown that WPLS problems can always be reduced to problems having the same form as WLS problems, and we
have studied two fast methods for solving such problems in the case of rank deficient systems as well as of full rank systems.
Numerical experiments clearly showed that the best solving method, in terms of speed, accuracy, and numerical stability, is
based on a special {1, 2, 3}-inverse whose computation is very simple. In contrast, approaches based on the Moore–Penrose
inverse lead to slow computation, or alternatively to numerical instability.

Appendix

The following codes are provided for example, and for academic use only. The code is not optimized and exception cases
are not managed.
Matlab code (version 7.5) of the WPLSdagger function:

function [C,Emethod,time] = WPLSdagger(X,Y,W)
% Moore--Penrose inverse based solution of a WPLS problem
tic % start the clock
[m1,n1]=size(X); [m2,n2]=size(Y); H=sum(W,2);g=X’*((H*ones(1,n1)).*X);
% s = full row rank generalized Cholesky factor of g
tol=n1*eps(norm(g,inf));
s=zeros(n1,n1); ii=0;
for i=1:n1

ii=ii+1;
v=g(i,i:n1)-s(1:(ii-1),i)’*s(1:(ii-1),i:n1);
if v(1)>tol

s(ii,i)=sqrt(v(1));
if i<n1

s(ii,(i+1):n1)=v(2:end)/s(ii,i);
end

else ii=ii-1; end
end
rs=ii; s=s(1:rs,:);
% r = classical upper Cholesky factor of ss’
g=s*s’;
r=zeros(rs,rs);
for i=1:rs

v=g(i,i:rs)-r(1:(i-1),i)’*r(1:(i-1),i:rs);
r(i,i)=sqrt(v(1));
if i<rs

r(i,(i+1):rs)=v(2:end)/r(i,i);
end

end

% u = classical inverse of r
u=zeros(rs,rs);

for j=rs:-1:1
for i=j:-1:1

if i==j
u(i,i)=1/r(i,i);

else
u(i,j)=-r(i,(i+1):j)*u((i+1):j,j)/r(i,i);

end
end

end
% iss = inverse of ss’
iss=u’*u;
% solution
C=s’*iss*iss*s*X’*W*Y;
time=toc; % record the solving time
% compute the weighted sum of quadratic residues
XC=X*C;
Emethod=0;

158

P. Courrieu / Journal of Computational and Applied Mathematics 231 (2009) 39–48 47

for i=1:m1
for j=1:m2

Emethod=Emethod+W(i,j)*sum((XC(i,:)-Y(j,:)).^ 2,2);
end

end
end

Matlab code (version 7.5) of the WPLS123 function:

function [C,Emethod,time] = WPLS123(X,Y,W)
% {1,2,3}-inverse based solution of a WPLS problem
tic % start the clock
[m1,n1]=size(X); [m2,n2]=size(Y); H=sum(W,2); g=X’*((H*ones(1,n1)).*X);
% r = generalized Cholesky factor of g
tol=n1*eps(norm(g,inf));
r=zeros(n1,n1);
for i=1:n1

v=g(i,i:n1)-r(1:(i-1),i)’*r(1:(i-1),i:n1);
if v(1)>tol

r(i,i)=sqrt(v(1));
if i<n1

r(i,(i+1):n1)=v(2:end)/r(i,i);
end

end
end
% u = {1,2,3}-inverse of r
u=zeros(n1,n1);
for j=n1:-1:1

if r(j,j)~=0
for i=j:-1:1

if r(i,i)~=0
if i==j

u(i,i)=1/r(i,i);
else

u(i,j)=-r(i,(i+1):j)*u((i+1):j,j)/r(i,i);
end

end
end

end
end
% solution
C=u*u’*X’*W*Y;
time=toc; % record the solving time
% compute the weighted sum of quadratic residues
XC=X*C;
Emethod=0;
for i=1:m1

for j=1:m2
Emethod=Emethod+W(i,j)*sum((XC(i,:)-Y(j,:)).^ 2,2);
end

end
end

References

[1] J.Y. Yuan, Numerical methods for generalized least squares problems, Journal of Computational and Applied Mathematics 66 (1996) 571–584.
[2] T. Zhou, D. Han, A weighted least squares method for scattered data fitting, Journal of Computational and Applied Mathematics 217 (2008) 56–63.
[3] K.P. Bube, R.T. Langan, Hybrid l1/l2 minimization with applications to tomography, Geophysics 62 (4) (1997) 1183–1195.
[4] R.A. Maronna, R.D. Martin, V.J. Yohai, Robust Statistics: Theory and Methods, John Wiley & Sons Ltd, New York, 2006.
[5] S.-H. Lai, Robust image matching under partial occlusion and spatially varying illumination change, Computer Vision and Image Understanding 78
(2000) 84–98.

[6] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd ed., Springer-Verlag, New York, 2003.
[7] P. Courrieu, Fast computation of Moore–Penrose inverse matrices, Neural Information Processing – Letters and Reviews 8 (2) (2005) 25–29.
[8] M.A. Rakha, On the Moore–Penrose generalized inverse matrix, Applied Mathematics and Computation 158 (2004) 185–200.

159

48 P. Courrieu / Journal of Computational and Applied Mathematics 231 (2009) 39–48

[9] W. Wang, J. Zhao, Perturbation analysis for the generalized Cholesky factorization, Applied Mathematics and Computation 147 (2004) 601–606.
[10] J. Zhao, The generalized Cholesky factorization method for saddle point problems, Applied Mathematics and Computation 92 (1998) 49–58.
[11] P. Courrieu, Straight monotonic embedding of data sets in Euclidean spaces, Neural Networks 15 (2002) 1185–1196.
[12] L. Giraud, J. Langou, M. Rozloznik, J. van den Eshof, Rounding error analysis of the classical Gram–Schmidt orthogonalization process, Numerische

Mathematik 101 (2005) 87–100.

160

Pierre Courrieu – dossier HDR II.F.1

II.F Méthodes de validation de modèles et bases de données comportementales

 L'expérimentation classique utilise des plans factoriels pour tester l'existence d'effets

différenciant des conditions expérimentales, suivant des hypothèses de travail engendrées par

des théories plus ou moins précises selon les cas. Le développement des modèles de

simulation numériques conduit à des prédictions souvent beaucoup plus précises qui portent

sur des niveaux d'analyse fins, que l'on a coutume d'appeler "items". La définition académique

du mot "item" est "élément d'un ensemble organisé" (Petit Larousse), ce qui laisse une

certaine latitude quant à son utilisation, par exemple pour "symbole d'un alphabet", ou "mot

d'un lexique", ou encore "question d'un questionnaire". La communauté de recherche sur la

reconnaissance visuelle des mots a, depuis quelques années, développé des efforts importants

en matière de modélisation, mais aussi en matière de constitution de grandes bases de données

comportementales permettant de tester les modèles et de réaliser des expériences virtuelles.

C'est ainsi qu'ont été successivement publiés le "English Lexicon Project" (ELP: Balota, Yap,

Cortese, Hutchison, Kessler, Loftis, Neely, Nelson, Simpson, & Treiman, 2007), qui fournit

des données de décision lexicale et de dénomination pour 40481 mots anglais, le "French

Lexicon Project" (FLP: Ferrand, New, Brysbaert, Keuleers, Bonin, Méot, Augustinova, &

Pallier, 2010), qui fournit des données de décision lexicale pour 39840 mots français, et le

"Dutch Lexicon Project" (DLP: Keuleers, Diependaele, & Brysbaert, 2010), qui fournit des

données de décision lexicale pour 14089 mots hollandais.

 Toutefois, alors que les plans factoriels classiques permettent de tester des effets par

des techniques du type analyse de la variance, le test des prédictions fines fournies par les

modèles au niveau des items fait plutôt appel à des techniques de régression ou corrélation

visant à rendre compte d'une part maximale de la variance liée aux items. Le problème est que

les données empiriques contiennent une certaine part de variance systématique, dont les

modèles peuvent espérer rendre compte, mais aussi une part de variance aléatoire (bruit) qui

échappe en principe à la modélisation cognitive. La pratique courante consiste à sélectionner

les modèles de telle manière que les "meilleurs" modèles sont ceux qui rendent compte de la

plus grande part de variance à l'aide du minimum de paramètres libres, et un certain nombre

d'indices statistiques ont été construits dans ce but (Pitt & Myung, 2002). Mais ceci ne

permet pas de répondre à la simple question: "est-ce que ce modèle rend convenablement

compte de ces données?" Pour répondre à cette question, il faut savoir assez précisément

quelle est la part de variance systématique dans les données empiriques. Si l'on rend compte

161

Pierre Courrieu – dossier HDR II.F.2

d'une part de variance moindre, c'est un "sous-ajustement" qui révèle une insuffisance du

modèle. Si l'on rend compte d'une part de variance supérieure à la part de variance

systématique, c'est un "sur-ajustement" qui indique que les prédictions sont corrélées avec du

bruit aléatoire, ce qui est généralement dû à l'utilisation d'un trop grand nombre de paramètres

libres dans le modèle et entraîne une faible capacité de généralisation de ce dernier.

 Curieusement, si l'aspect "compétition" entre modèles concurrents a été très étudié, la

question plus fondamentale de leur validation a été largement laissée de côté jusqu'à un passé

récent. Dans une première approche de cette question, Rey, Courrieu, Schmidt-Weigand, et

Jacobs (2009, article ci-joint) ont identifié une loi établissant le lien entre le nombre de

participants à une collecte de données et la proportion de variance systématique dans ces

données. Cette loi a la forme d'un coefficient de corrélation intraclasse (ICC) particulier, et

rend bien compte de temps d'identification perceptive de mots anglais. Sur cette base,

Courrieu, Brand-D'Abrescia, Peereman, Spieler, et Rey (2011, article ci-joint) ont développé

une méthodologie rigoureuse permettant de tester la validité de modèles sur des bases de

données comportementales, et cette approche s'est avérée satisfaisante pour des temps de

dénomination de mots anglais et français. Enfin, Rey et Courrieu (2010, article ci-joint) ont

établi les statistiques utiles (ICC et intervalles de confiance) pour la base de données DLP

(Keuleers et al., 2010). Cette méthodologie récente nous a par ailleurs permis de conclure que

les modèles de lecture actuellement les plus performants, tels que CDP++ (Perry, Ziegler, &

Zorzi, 2010), sont encore assez loin de rendre compte de la totalité de la variance

systématique des données (Rey, Brand-d'Abrescia, Peereman, Spieler, & Courrieu, 2010).

Références

Balota, D.A., Yap, M.J., Cortese, M.J., Hutchison, K.A., Kessler, B., Loftis, B., Neely, J.H.,

Nelson, D.L., Simpson, G.B., & Treiman, R. (2007). The English Lexicon Project. Behavior

Research Methods, 39(3), 445-459.

Courrieu, P., Brand-D'Abrescia, M., Peereman, R., Spieler, D., & Rey, A. (2011). Validated

intraclass correlation statistics to test item performance models. Behavior Research Methods.

doi: 10.1007/s13428-010-0002-7

162

Pierre Courrieu – dossier HDR II.F.3

Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., Augustinova, M.,

Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words

and 38,840 pseudowords. Behavior Research Methods, 42, 488-496.

Keuleers, E., Diependaele, K., & Brysbaert, M. (2010). Practice effects in large-scale visual

word recognition studies: A lexical decision study on 14,000 Dutch mono- and disyllabic

words and nonwords.. Frontiers in Psychology 1:174. doi:10.3389/fpsyg.2010.00174

Perry, C., Ziegler , J.C., & Zorzi, M. (2010). Beyond single syllables: Large-scale modeling of

reading aloud with the Connectionist Dual Process (CDP++) model. Cognitive Psychology, 61,

106–151.

Pitt, M.A., & Myung, I.J. (2002). When a good fit can be bad. Trends in Cognitive Sciences,

6(10), 421-425.

Rey, A., Brand-d'Abrescia, M., Peereman, R., Spieler, D., & Courrieu, P. (2010). The

nanopsycholinguistic approach: Item performance in disyllabic word naming. Oral

communication presented at the 51st Annual Meeting of the Psychonomic Society, St Louis,

USA, November 18-21.

Rey, A., & Courrieu, P. (2010). Accounting for item variance in large-scale databases.

Frontiers in Psychology 1:200. doi:10.3389/fpsyg.2010.00200

Rey, A., Courrieu, P., Schmidt-Weigand, F., & Jacobs, A.M. (2009). Item performance in

visual word recognition. Psychonomic Bulletin & Review, 16(3), 600-608.

163

164

© 2009 The Psychonomic Society, Inc. 600

Item performance in visual word recognition

ArnAud rey And Pierre Courrieu
CNRS and Université de Provence, Marseille, France

FloriAn SChmidt-WeigAnd
Universität Kassel, Kassel, Germany

And

Arthur m. JACobS
Freie Universität Berlin, Berlin, Germany

Standard factorial designs in psycholinguistics have been
complemented recently by large-scale databases providing em-
pirical constraints at the level of item performance. At the same
time, the development of precise computational architectures
has led modelers to compare item-level performance with item-
level predictions. It has been suggested, however, that item per-
formance includes a large amount of undesirable error variance
that should be quantified to determine the amount of reproducible
variance that models should account for. In the present study, we
provide a simple and tractable statistical analysis of this issue.
We also report practical solutions for estimating the amount of
reproducible variance for any database that conforms to the ad-
ditive decomposition of the variance. A new empirical database
consisting of the word identification times of 140 participants on
120 words is then used to test these practical solutions. Finally,
we show that increases in the amount of reproducible variance
are accompanied by the detection of new sources of variance.

The precision of theoretical accounts in the field of
visual word recognition has significantly increased over
recent years. Indeed, cognitive modelers have proposed
several detailed descriptions of the structure and dynam
ics of the reading system (e.g., Ans, Carbonnel, & Valdois,
1998; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;
Grainger & Jacobs, 1996; Harm & Seidenberg, 2004;
Perry, Ziegler, & Zorzi, 2007; Plaut, McClelland, Sei
denberg, & Patterson, 1996; Seidenberg & McClelland,
1989). The finegrained precision of these models has led
to the development of socalled computational models of
reading that can generate precise quantitative predictions.
As a consequence, by making finegrained assumptions
about the cognitive architecture of visual word recogni
tion, theorists have also remarkably increased the resolu
tion of theoretical predictions.

This progress in theory has been accompanied by a
corresponding gain of precision for empirical data. In a
seminal study, Spieler and Balota (1997) asked 31 partici
pants to read aloud a list of 2,870 English monosyllabic
words and compared the mean naming latency for each
item with the predictions of two computational models of
word reading (i.e., Plaut et al., 1996; Seidenberg & Mc

Clelland, 1989). The results were somewhat surprising,
since both of these models accounted for only a small
amount of the item variance (3.3% for Plaut et al.’s model,
10.1% for Seidenberg and McClelland’s). Spieler and Ba
lota also noticed that the models explained the amount of
variance less well than did the linear combination of three
simple linguistic predictors: log frequency, word length,
and neighborhood density (which accounted for 21.7%
of the variance). Finally, when variables related to onset
phonemes were added to the analysis, the simple predic
tors were able to account for 42% of the item variance.
Itemlevel data therefore seem to provide a critical test for
computational models of reading.

Seidenberg and Plaut (1998) claimed, however, that
two reasons might explain the relatively low item vari
ance accounted for by these models. First, item means
are affected by several factors that are not addressed by
these models. For example, they do not specify the pro
cesses involved in letter recognition or in the production
of articulatory output. Balota and Spieler (1998) noticed,
however, that the performance of these models remains
surprisingly weak, since they fail to explain more vari
ance than do three simple predictors (i.e., log frequency,
word length, and neighborhood density) that are, in prin
ciple, captured by these models. Their second, and prob
ably more critical, argument is based on the fact that item
data include a substantial amount of error variance. The
question is how substantial this amount of error variance
is. Comparing Spieler and Balota’s database with a simi
lar database recorded by Seidenberg and Waters (1989),1
they found a .54 correlation between item latencies in the
two databases. This relatively low correlation indicates
that a large amount of the variance in one database is
absent from the other.

In the present study, in line with Seidenberg and Plaut’s
(1998) criticism, we address the issue of error variance
in item databases (for a similar approach, see Rouder &
Lu, 2005). More specifically, we propose practical solu
tions to estimate the amount of error variance as a func
tion of the number of participants. Increasing the number
of participants obviously decreases the amount of error
variance (related to noise) while preserving the amount
of reproducible variance (related to items). This outcome
might appear trivial, but, paradoxically, none of the exist
ing databases has seriously considered this issue.

In the next sections, we first provide a simple analy
sis of this problem. Second, we present a new empirical
database consisting of the word identification scores of
140 participants on 120 words, and we use it to quanti
tatively estimate the amount of variance that should be
accounted for as a function of the number of participants.
Then, we propose a method to estimate the amount of re
producible variance from any database, and we give an

Psychonomic Bulletin & Review
2009, 16 (3), 600-608
doi:10.3758/PBR.16.3.600

A. Rey, arnaud.rey@univ-provence.fr

165

Notes aNd CommeNt 601

Clearly, given any two of the three quantities ρ, q, and
n, one can easily find the third.

In practice, one does not know the population parameters
(ρ or q), and one must estimate at least one of them from a
finite sample of the measure x on a sample of m items by n
participants. As we shall see below, in the sections on esti
mation with large and small samples, the sample of x can
be used to estimate ρ by means of Pearson’s r correlation
statistic.3 Before this discussion, we present the experi
mental data that will be used to calculate the estimates.

The Database
The present database has two primary characteristics.

First, it was collected using a standard perceptual iden
tification task, the luminanceincreasing paradigm (Rey,
Jacobs, SchmidtWeigand, & Ziegler, 1998; Rey & Schil
ler, 2005). As in most perceptual identification paradigms,
participants generate a simple motor response as soon as
they have identified a target stimulus. This experimental
procedure therefore simplifies the modeltodata connec
tion, since it can be assumed that word identification times
can be directly compared with word identification laten
cies in a localist connectionist model like that of Grainger
and Jacobs (1996). Second, 140 participants were recorded
in this experiment. This large number makes it possible to
estimate the amount of error variance in item mean la
tencies by comparing independent groups of participants
consisting of 20, 30, . . . , up to 70 participants.

Participants. One hundred fortyfour undergraduate
students at Arizona State University participated in the
experiment in partial fulfillment of a course requirement.4
All of them were native English speakers and had normal
or correctedtonormal vision.

Stimuli. The words used in the experiment were a
random sample of 120 monosyllabic, fiveletter English
words taken from a list of all monosyllabic fiveletter
words reported in the CELEX lexical database (Baayen,
Piepenbrock, & van Rijn, 1993). The random selection
was applied to provide a representative distribution for a
maximum number of statistical word features.

Procedure. The experiment was run on an IBM PC 486
DX2 computer.5 The stimulus words were typed in lower
case using letters created from table zero of the computer
BIOS, in which each letter is defined in an 8 3 14 pixel
matrix. To obtain a progressive increase in bottomup
information, the screen contrast was set to its maximum
value. The background therefore was as dark as possible,
and the stimulus luminance was as bright as possible. The
experiment was done in a dark room lit only by a lamp
placed behind the participants, to keep the keyboard vis
ible without causing reflections on the screen.

The participants were seated 50 cm in front of the com
puter screen. The experiment started with a training ses
sion in which 6 of the 12 training items were presented.
Data recording began with the 6 remaining training items,
and, without transition, the 120 experimental trials were
presented in a randomized order for each participant. Each
trial began with a 1sec presentation of a fixation mark
(“1”) in the center of the screen, which was replaced im
mediately by the target word. However, the target word

example. Finally, we show that an increase in reproducible
variance is accompanied by the detection of new sources
of variance.

Problem Analysis
Let I be a population of items, let P be a population of

participants, and let x be an experimental measure (e.g.,
response time) on I 3 P. The usual additive decomposi
tion model is

 x 5 m 1 α 1 β 1 ε, (1.0)

where m is the mean value of x on I 3 P and α, β, and ε are
three independent random variables with mean 0 and vari
ance σ2α, σ2

β, and σ2ε, respectively.2 The variable α is the par-
ticipant effect, which takes a constant value for each given
participant; β is the item effect, which takes a constant
value for each given item; ε is considered as random noise.
It is clear that the variable β, whose values characterize the
items, is the variable of interest in this study.

One can derive from x another measure, denoted x(n),
which is the arithmetic mean of x over n randomly selected
distinct participants, and then obtain from Equation 1.0
the following decomposition:

 x (n) 5 m 1 α(n) 1 β 1 ε(n), (1.1)

where the random variables α(n), β, and ε(n) are always
independent with 0 means, but their variances are now
σ2α/n, σ2

β, and σ2ε/n, respectively. When n increases, the
 contributions of α(n) and ε(n) to the variance of x (n) clearly
decrease. These reductions in the amounts of variance re
lated to participants and noise lead to an increase in the
amount of reproducible variance related to items.

One way to estimate the evolution of reproducible vari
ance as a function of the number of participants is to com
pare two independent realizations of x (n). The amount of
variance that is common to these two groups provides a
good estimate of the total amount of reproducible vari
ance, and it can be estimated by the squared correlation
between two independent groups of n participants. Start
ing from Equation 1.1, a simple derivation, which is stated
in Appendix A, leads to the following equations, which re
late the population correlation coefficient r to the number
of participants n and to the ratio between σ2

β and σ2ε.
To simplify the notation, one can define the ratio

q =

σ

σ
β

ε

2

2
,
 (2.0)

so that the correlation between two independent realiza
tions of x(n) is

ρ =

+
nq

nq 1
,
 (2.1)

which implies that

q

n
=

−
ρ

ρ()1 (2.2)
and also that

n

q
=

−
ρ

ρ()
.

1 (2.3)

166

602 Rey, CouRRieu, sChmidt-WeigaNd, aNd JaCobs

value above) as functions of the number of participants per
group. The result is that the predicted values are practically
indistinguishable from the observed ones.

Using the q value above with Equations 2.1 and 2.3, one
can now calculate the amount of reproducible variance ob
tained with a database composed of n participants, or the
number of participants who are engaged in an experiment,
in order to obtain a given amount of reproducible variance.
For instance, using Equation 2.1 with q 5 0.0607 and n 5
140, one obtains r 5 .89, which means that by averaging
the data of the 140 participants, one obtains an item data
vector with 80% reproducible variance. Similarly, if one
desires 90% reproducible variance, the corresponding r is
√0.9 5 .9487, and via Equation 2.3, one finds that about
304 participants would be required.

Now, it is clear that another experiment, using a dif
ferent task and different experimental conditions, would
probably provide a different value for q. However, we can
say that any experimental variable that conforms to the
additive decomposition model (Equation 1.0) necessar
ily conforms to Equations 2.1–2.3, with an appropriate
q value.6

Practical Method for
Small Samples of Participants

The method used in the previous section is suitable for
large samples of participants. However, experimenters
commonly use participant samples of only 20–40. Thus,
there is clearly a need to develop practical methods to esti
mate the percentage of variance that is reproducible when
the number of participants is not large.

The proposed solution is similar to the one adopted in
the section above, and it uses a Monte Carlo approach,
which has the advantage of being distributionfree, thus
avoiding the need for unverifiable hypotheses concerning
the Gaussian nature of the variables. The principle used
here is permutation resampling (Good, 1994; Opdyke,
2003). We describe this method hereafter and, in Appen
dix B, show an implementation in MATLAB code that is
easy to use in practice. We then provide a model for the
implementation details.

Given a data table of m items 3 n participants, first
choose a group size ng that is the greatest integer such
that ng # n/2. Then, randomly sample two independent
groups of ng participants, calculate item means for each
group, and compute the correlation coefficients r between
the resulting item means. When this has been repeated
T times, one can sort the obtained r values in increasing
order and easily find in this array the limits for any chosen
confidence level. However, the obtained r estimates con
cern samples of ng participants. To obtain the correspond
ing estimates for the whole sample of n participants, one
can compute the q values corresponding to the obtained r
values by using Equation 2.2, with ng as the sample size
parameter, and then use Equation 2.1 to compute the r
values corresponding to the q values with sample size n.
As for the choice of T, T . 1,900 provides precise enough
estimates for most applications (Opdyke, 2003), so one
can use T 5 2,000.

was initially written in black, just like the background,
and so remained invisible to the participants. By incre
menting the value of one of the RGB (red, green, blue)
counters every 100 msec, the luminance of the target word
increased progressively. Every counter was initially set
to 0. After 100 msec, the red counter was set to 1 (with
the green and blue counters remaining at 0). After an
other cycle (i.e., 200 msec after stimulus presentation),
RGB was set to 1–1–0, then to 1–1–1 after three cycles,
to 2–1–1 after four, and so forth. As soon as the partici
pants could identify the target word, they interrupted the
luminanceincreasing process by pressing the space bar.
Immediately after this response, the item was replaced by
a pattern mask #####, which contained two more # char
acters than there were letters in the target word. Finally,
the participants had to type in the word they had seen and
press “return” to start the next trial. The screen remained
black for 500 msec before the fixation point appeared
again. For each trial, the response time was recorded as
the time between the onset of the luminanceincreasing
procedure and the pressing of the space bar. The partici
pants were told to concentrate on accuracy rather than on
speed. Each experimental pass lasted about 25 min.

Results. After correcting obvious typing errors, 467
errors (2.7% of the data) remained. Four participants pro
duced more than 10% errors and were excluded for this
reason from further analysis. A trimming procedure ex
cluded response times more than three standard deviations
above and below a participant’s mean (0.9% of the data).
The resulting database was composed of 120 (words) 3
140 (participants) word identification times, which in
cluded about 4% missing data.

Estimating the Amount of Reproducible Variance
Using this database of 120 items 3 140 participants,

it is now possible to estimate parameter q from Equation
2.1 by conducting a Monte Carlo study in the following
way. Among the 140 participants, we randomly selected
two independent, equally sized groups. Item means for
each group were calculated, and correlation coefficients
(r) were computed between the two groups on these item
means. This procedure was repeated 1,000 times and for
various group sizes (i.e., for 1, 5, 10, 15, . . . , 70 partici
pants per group) to generate distributions of r (i.e., 1,000
correlations for each group size).

To test model validity, we computed the q value (Equa
tion 2.1) that minimizes the standard prediction error of the
observed correlations. One can easily obtain a first approx
imation of q—say, q0—by applying Equation 2.2 (in which
one replaces ρ with r) to the mean correlation observed for
each group size, and then averaging all resulting q values.
In the present case, we obtained q0 5 0.0618. This first
approximation was used as the starting point for a local
search (MATLAB fminsearch procedure) to minimize the
standard prediction error (i.e., the square root of the mean
quadratic error). The obtained result was q 5 0.0607, pro
viding a standard prediction error of 0.0044. Figure 1 shows
the mean observed correlations (with standard deviations)
and the correlations predicted by Equation 2.1 (using the q

167

Notes aNd CommeNt 603

randomly selected a sample of 30 participants from our
database; the resulting data table was named RT30. Then
we applied the permuqr function as follows,

[q, confq, r, confr, ndr] 5 permuqr(RT30, 0, 0.90),

obtaining the output

q 5 0.0713, confq 5 [0.0523; 0.0968], r 5 .6814,
 confr 5 [0.6106; 0.7439].

As we can see in this example, the q parameter was over
estimated; however, the reference value (0.0607) is within
the 90% confidence interval. The lower confidence limit of
r is .6106, so one can state: Prob(r . .6106) 5 .95. In other
words, one can guarantee with 95% confidence that the re
producible percentage of item variance in the sample aver
age vector is greater than 37.27%. This tells us that a model
that accounts for about 40% of item variance, given this
sample of 30 participants, is reasonably good in terms of its
performance predictions. In a similar way, we can consider
the upper confidence limit of r—that is, .7439—and state
that Prob(r , .7439) 5 .95. In other words, a model that
accounts for more than 55.34% of the item variance (in our
example) probably overfits the data by using too many free
parameters, and thus actually accounts for a substantial part
of the random noise.

Increasing the Amount of Reproducible Variance
If we assume that the amount of reproducible variance

in naming with 30 participants is close to the value ob

To test the above method, we randomly selected from
our database 14 subsamples whose size (n) varied from
10 to 140 participants (in steps of 10). The permutation
resampling procedure (the function permuqr listed in Ap
pendix B) was applied to each subsample, using a 95%
confidence interval. Figure 2 shows the obtained mean r
values, with confidence limits, as a function of the num
ber of selected participants. Also plotted are the r values
corresponding to the reference value q 5 0.0607 (the best
estimate of q for the whole database). As the figure shows,
the estimates vary randomly in the neighborhood of the
reference values, and they closely converge to these values
as the number of participants increases. In these examples,
the reference values were always within the 95% confi
dence interval provided by the method. We performed 25
independent replications of this experiment, correspond
ing to a total of 350 tests of the procedure. Globally, the
reference values fell outside the 95% confidence interval
only 8 times (and always for n # 40). This frequency of
about .02 is smaller than, but not too far from, the ex
pected .05 risk.

These observations suggest that the mean r is a reli
able estimate for n $ 100. However, for small samples of
participants, it is better to use the lower limit of the 90%
confidence interval—that is, the quantile of probability
.05, hereafter denoted r(.05)—and then to provide the
user with a statement in the form Prob[r . r(.05)] 5 .95.

We rapidly illustrate this approach using the MAT
LAB function permuqr, listed in Appendix B. First, we

1

.9

.8

.7

.6

.5

.4

.3

.2

.1

0

0 10 20 30 40 50 60 70 80

Number of Participants per Group

r

Standard Prediction Error � 0.0044411, with q � 0.060742

Predicted r
Mean observed r (�SD)

Figure 1. Means (with error bars for standard deviations) of the observed correlation
coefficient distributions, with the predicted correlations (Equation 2.1), as a function of the
number of participants per group.

168

604 Rey, CouRRieu, sChmidt-WeigaNd, aNd JaCobs

become visible, such as variance related to morphologi
cal, syntactic, or semantic processes. This second, more
optimistic outcome would then open the race for a new
generation of more sophisticated models.

To determine which of these two outcomes is the cor
rect one, we used the Monte Carlo study described above,
in which mean item latencies were calculated for different
sizes of participant groups. We then systematically cor
related these item means to the log frequency of items.
Figure 3 displays the evolution of correlation coefficients
as a function of the number of participants per group when
independent groups are compared (i.e., for estimating the
amount of reproducible variance) and when item means
are correlated with the log frequency.

The result is that an increase in the amount of repro
ducible variance is not accompanied by a proportional
increase in the variance explained by log frequency. For
example, with groups of 30 participants, on average 41%
of the variance is reproducible, and 18% of the item vari
ance is accounted for by log frequency. With groups of
70 participants, these values are now 66% and 23%, re
spectively. Thus, when increasing from 30 to 70 partici
pants, an increase of 25% is observed in the reproducible
variance, whereas an increase of only 5% is obtained in
the variance accounted for by log frequency. This result
suggests that the increase in reproducible variance allows
for capturing new sources of variance that were initially
not visible.

tained in the present perceptual identification task (i.e.,
around 40%), cognitive modelers may come up against a
critical problem. Indeed, we have already mentioned that
Spieler and Balota (1997) reported that phonemic features,
together with word frequency, neighborhood density, and
length, accounted for 42% of the variance of itemnaming
latencies. Similarly, Perry et al. (2007), when testing the
CDP1 model against the same item databases, were able
to account for a similar amount of variance. From these
results, one might conclude that psycholinguistic research
has fully solved the problem of visual word recognition
processes, since all of the reproducible variance at the
level of items has been accounted for. The only remain
ing debate would concern the format of the explanation:
Should we prefer a simple, linear model description or a
sophisticated computational account?

A solution to this potential dilemma would be to in
crease the amount of reproducible variance by simply re
cording the performance of more participants. However,
although the reproducible variance would then increase,
the amount of variance explained by the linear or the com
putational model could likewise increase. If, by increasing
the number of participants, one obtains 60% of the repro
ducible variance at the level of items, the linear model
might also account for about 60% of the variance, and
this result would probably mark the end of psycholinguis
tic research. Alternatively, as the amount of reproducible
variance increases, other sources of variance might also

1

.9

.8

.7

.6

.5

.4

.3

.2

.1

0
0 50 100 150

Total Number of Participants

r

Permutation Resampling: r

Reference r
Mean r
Lower Cl: 95%
Upper Cl: 95%

Figure 2. Mean and 95% confidence limits of the permutation resampling r distribution
as a function of the total number of participants. The reference r values correspond to q 5
0.0607.

169

Notes aNd CommeNt 605

variance that a given hypothesized cognitive architecture
can account for.8

Conclusion
One can assume that the interaction between a given

word, characterized by a set of properties (e.g., visual,
phonological, or semantic), and the population of adult
readers (supposed to share a similar cognitive architec
ture for processing written words) can be quantified by a
measure of the processing time required to read the word
in a given experimental situation. Likewise, if one con
siders a list of such words, it is a priori possible to rank
those words according to their processing time and to
evaluate the ability of computational models to reproduce
this ranking. Using this itemlevel ranking might be mis
leading, however, if intraitem variability is greater than
betweenitem variability. In this case, itemlevel databases
only reflect general trends, and the finegrained ranking
of items remains hidden in an undesirable source of error
variance.

The aim of the present study was to quantify the re
spective amounts of reproducible and error variance to
determine the amount of variance that models should ac
count for in itemlevel databases. The methodology we
presented offers such quantification, together with practi
cal solutions for estimating the amount of reproducible
variance for any database. The conclusion is that collect

Discussion
Starting with a mathematical description of the reliabil

ity of itemlevel databases, we have proposed a method
of estimating the amount of variance that models should
account for when they are tested against a database with n
participants. When n is sufficiently large (i.e., larger than
100), we have shown that the function relating the amount
of reproducible variance and the number of participants in
a given experimental paradigm can be approximated pre
cisely. When n is relatively small, calculating confidence
intervals using a permutation resampling method is still
possible and is useful for estimating the boundaries of the
amount of reproducible variance.

Following Balota and Spieler (1998) and Seidenberg
and Plaut (1998), the present study provides new argu
ments concerning the amount of variance that models
should account for. The main result concerns the relation
between reproducible variance and the total number of
participants involved in the computation of item means.
On the basis of a common statistical model, we can con
fidently state that the present set of item mean response
times (computed on the basis of the performance of 140
participants and recorded in this specific experimental
setup7) is composed of 80% reproducible variance and
20% error variance. This information is of major impor
tance, because one can now clearly evaluate the descrip
tive adequacy of computational models and the amount of

1

.8

.6

.4

.2

0

0 10 20 70

Number of Participants per Group

r

30 40 50 60

Independent groups

Log frequency

Figure 3. Means (with error bars for standard deviations) of correlations between indepen-
dent groups composed of 5–70 participants (line with black squares) and between item means,
computed for groups of 5–70 participants, and log frequency (line with white circles).

170

606 Rey, CouRRieu, sChmidt-WeigaNd, aNd JaCobs

Seidenberg, M. S., & Plaut, D. C. (1998). Evaluating wordreading
models at the item level: Matching the grain of theory and data. Psy-
chological Science, 9, 234237.

Seidenberg, M., & Waters, G. S. (1989). Word recognition and nam
ing: A mega study. Bulletin of the Psychonomic Society, 27, 489.

Spieler, D. H., & Balota, D. A. (1997). Bringing computational mod
els of word naming down to the item level. Psychological Science, 8,
411416.

Zimmerman, D. W., Zumbo, B. D., & Williams, R. H. (2003). Bias
in estimation and hypothesis testing of correlation. Psicológica, 24,
133158.

noTES

1. In this study, 30 McGill University undergraduates named aloud
2,900 monosyllabic English words.

2. It is not necessary to assume that the random variables are Gaussian,
but one can assume that the variances are finite and that σ2ε . 0.

3. Indeed, if an mdimensional vector B is hypothesized to be an ap
proximation of β (or of any affine function of β) for the item set under
consideration, a common procedure consists of averaging the n columns
of the data table and comparing the resulting mdimensional vector to
B by means of Pearson’s r statistic. However, even if B 5 β, there is no
chance that r 5 1, because of the data random variance. In the best case,
one could expect a correlation on the order of ρ, as defined by Equation
2.1, given that r is known to be a consistent asymptotically unbiased
estimator of ρ (Zimmerman, Zumbo, & Williams, 2003).

4. We are indebted to Guy Van Orden, who allowed one of us to run
the experiment in his laboratory.

5. We thank David Chesnet and Jonathan Grainger for providing us
with the computer program to implement the luminanceincreasing
procedure.

6. This is visibly the case for our data, and note that the additive de
composition model has for many years been the most commonly used
model for the analysis of experimental data (usually with the additional
assumption that the variables are Gaussian or conform to the conditions
of the centrallimit theorem). If this model is grossly false for common
experimental tasks and variables, this is a serious problem that greatly
exceeds the focus of the present study.

7. Although the estimations generated with the present database
provide a concrete example of estimating the amount of reproducible
variance from any database having either a small or a large sample,
such estimations may vary greatly from one database to another. Nota
bly, there might be important differences between experimental para
digms (e.g., perceptual identification vs. naming), and the estimations
given here therefore cannot generalize from one experimental setup
to another.

8. This does not mean that models cannot handle error variance. So
lutions have been proposed in which error variance or noise could be
simulated by adding, for example, a variable response mechanism based
on a normally distributed parameter (see, e.g., Grainger & Jacobs, 1996).
Here, we simply wish to dissociate the modeling of reading processes,
which can theoretically be considered as free of error variance, from the
addition of noise within cognitive models. One may, however, argue that
modeling should necessarily incorporate the presence of noise in the
studied systems.

ing largescale databases composed of both many items
and many participants will provide genuine challenges
to future generations of computational models of word
recognition.

AuThoR noTE

We are grateful to David A. Balota, Stephen D. Goldinger, Jeffrey
N. Rouder, and one anonymous reviewer for their helpful comments.
Correspondence should be sent to A. Rey, Laboratoire de Psychologie
Cognitive, CNRS–Université de Provence, 3 place Victor Hugo, 13331
Marseille Cedex 3, France (email: arnaud.rey@univprovence.fr).

REFEREnCES

Ans, B., Carbonnel, S., & Valdois, S. (1998). A connectionist
multiple trace memory model for polysyllabic word reading. Psycho-
logical Review, 105, 678723.

Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX
lexical database (CDROM). Philadelphia: Linguistic Data Consor
tium, University of Pennsylvania.

Balota, D. A., & Spieler, D. H. (1998). The utility of itemlevel analy
ses in model evaluation: A reply to Seidenberg and Plaut. Psychologi-
cal Science, 9, 238240.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J.
(2001). DRC: A dual route cascaded model of visual word recognition
and reading aloud. Psychological Review, 108, 204256.

Good, P. (1994). Permutation tests: A practical guide to resampling
methods for testing hypotheses. New York: Springer.

Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in
visual word recognition: A multiple readout model. Psychological
Review, 103, 518565.

Harm, M. W., & Seidenberg, M. S. (2004). Computing the meanings
of words in reading: Cooperative division of labor between visual and
phonological processes. Psychological Review, 111, 662720.

Opdyke, J. D. (2003). Fast permutation tests that maximize power under
conventional Monte Carlo sampling for pairwise and multiple com
parisons. Journal of Modern Applied Statistical Methods, 2, 2749.

Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental
modeling in the development of computational theories: The CDP1
model of reading aloud. Psychological Review, 114, 273315.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K.
(1996). Understanding normal and impaired word reading: Computa
tional principles in quasiregular domains. Psychological Review, 103,
56115.

Rey, A., Jacobs, A. M., Schmidt-Weigand, F., & Ziegler, J. C. (1998).
A phoneme effect in visual word recognition. Cognition, 68, B71B80.

Rey, A., & Schiller, N. O. (2005). Graphemic complexity and multiple
printtosound associations in visual word recognition. Memory &
Cognition, 33, 7685.

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierar
chical models with an application in the theory of signal detection.
Psychonomic Bulletin & Review, 12, 573604.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, de
velopmental model of word recognition and naming. Psychological
Review, 96, 523568.

171

Notes aNd CommeNt 607

APPEnDIx A

Let us consider the bivariate distribution of pairs (X, Y), where X and Y are independent realizations of x(n);
that is, the n participants are never the same for X and for Y. The population correlation between X and Y, vary
ing the items, is given by

 ρ X Y X Y X Y, , () () ,() = ()Cov Var Var
where, using Equation 1.1, one has

Cov Cov VarX Y X

n
Y

n, , ,() ()() = + +() = () =β ε β ε β σβ
2

because the terms that are constant with respect to the item variable (m and α(n)) play no role in the correlation,
and the variables β, εX

(n), and εY
(n) are independent.

For the same reasons, one has also

Var Var Var VarX X

n
X
n() = +() = () + () = +β ε β ε σ σβ

() () 2
εε
2 n,

and similarly,

Var Var Var VarY Y

n
Y

n() = +() = () + () = +β ε β ε σ σβ
() () 2

εε
2 n.

Thus, finally,

ρ
σ

σ σ

σ σ

σ σ
β

β ε

β ε

β ε

X Y
n

n

n
, .() =

+
=

+

2

2 2

2 2

2 2 1
Not surprisingly, the expression above is similar to that of an intraclass correlation coefficient.

APPEnDIx B

Here is MATLAB code of the permuqr function, which provides expected q and r values, with confidence
intervals of chosen probabilities confp, from a data table x. For ease of reading, structural coding is set in bold
face and comments in italics.

function [q,confq,r,confr,ndr] = permuqr(x,missing,confp,dr)
% Permutation Resampling to estimate q, r, and confidence
% intervals of given probabilities “confp” (row vector),
% from the m-items by n-participants data table x,
% where “missing” is the code for missing data in x.
% The first (second) row of “confq” corresponds to the
% lower (upper) confidence limit(s), similarly for “confr.”
% An optional desired r (dr) provides the necessary n (ndr)
% r ^2 is the reproducible proportion of item variance when
% one averages the n columns of x.
resample = 2000; % T > 1900 (see Opdyke, 2003)
[m,n] = size(x); confp = 1confp; % Proba to alpha
ng = fix(n/2); % Number of participants per group
rt = zeros(resample,1);
for t = 1:resample
ok = false;
while ~ok
xp = x(:,randperm(n)); % Random participant permutation
ng1 = zeros(m,1); mg1 = ng1; ng2 = ng1; mg2 = ng1;
for i = 1:m
for j = 1:ng % First group
if xp(i,j) ~ = missing
ng1(i) = ng1(i) + 1; mg1(i) = mg1(i) + xp(i,j);
end
end
for j = (ng + 1):(2*ng) % Second group
if xp(i,j) ~ = missing
ng2(i) = ng2(i) + 1; mg2(i) = mg2(i) + xp(i,j);
end
end
end
if (min(ng1) > 0) && (min(ng2) > 0), ok = true; end
end
mg1 = mg1./ng1; mg2 = mg2./ng2;

172

608 Rey, CouRRieu, sChmidt-WeigaNd, aNd JaCobs

APPEnDIx B (Continued)

rr = corrcoef([mg1, mg2]); rt(t) = rr(1,2);
end
q = rn2q(mean(rt),ng); r = qn2r(q,n); rt = sort(rt);
nconf = length(confp); confindex = zeros(2,nconf);
confindex(1,:) = round(resample*confp/2) + 1;
confindex(2,:) = round(resample*(1confp/2));
confq = rn2q(rt(confindex),ng); confr = qn2r(confq,n);
if nargin = = 4, ndr = round(qr2n(q,dr)); else ndr = []; end
function q = rn2q(r,n) % Provides q given r and n
q = r./(n.*(1r));
function r = qn2r(q,n) % Provides r given q and n
r = (n.*q)./(n.*q + 1);
function n = qr2n(q,r) % Provides n given q and r
n = r./(q.*(1r));

(Manuscript received September 10, 2007;
revision accepted for publication January 23, 2009.)

173

174

Validated intraclass correlation statistics to test item
performance models

Pierre Courrieu & Muriele Brand-D’abrescia &

Ronald Peereman & Daniel Spieler & Arnaud Rey

Psychonomic Society, Inc. 2010

Abstract A new method, with an application program in
Matlab code, is proposed for testing item performance
models on empirical databases. This method uses data
intraclass correlation statistics as expected correlations to
which one compares simple functions of correlations
between model predictions and observed item performance.
The method rests on a data population model whose
validity for the considered data is suitably tested and has
been verified for three behavioural measure databases.
Contrarily to usual model selection criteria, this method
provides an effective way of testing under-fitting and over-
fitting, answering the usually neglected question "does this
model suitably account for these data?"

Keywords Model test . Misfit detection . Intraclass
correlation . Item performance databases

Introduction

Theoretical models of perceptual and cognitive processing
are commonly able to provide quantitative performance
predictions at the item level. For instance, in the field of
visual word recognition, recent models of reading are able
to predict response times to individual word stimuli (the
items) in various tasks, such as lexical decision, word
naming or word identification (Coltheart, Rastle, Perry,
Langdon, & Ziegler, 2001; Perry, Ziegler, & Zorzi, 2007,
2010; Plaut, McClelland, Seidenberg, & Patterson, 1996;
Seidenberg & McClelland, 1989). Empirical databases have
been collected to test these theoretical predictions at the
item level, which in several cases resulted in disappointing
outcomes: the tested models accounted only for a small
amount of empirical item variance (Balota & Spieler, 1998;
Seidenberg & Plaut, 1998; Spieler & Balota, 1997). This
can result from the fact that the tested models are erroneous
or incomplete; however, another possibility is that the
empirical data are not accurate enough to allow good fits of
plausible models, and we miss methods to make clear
conclusions on these two points. In fact, it has recently been
shown that the amount of reproducible variance of word
identification times is related to the number of participants
used in the data collection by a simple law having the form
of an intraclass correlation coefficient (Rey, Courrieu,
Schmidt-Weigand, & Jacobs, 2009). This constitutes a
suitable reference for testing item-level performance
models, provided we can be sure that the considered
empirical data set actually fulfils the above-mentioned
law. The main purpose of this paper is to provide an
efficient test of this statistical model for every item level
data set, to show that this statistical model actually

P. Courrieu (*) :A. Rey
Laboratoire de Psychologie Cognitive, UMR CNRS 6146,
Université de Provence, Centre Saint Charles,
Bat. 9, Case D, 3 Place Victor Hugo,
13331, Marseille cedex 3, France
e-mail: pierre.courrieu@univ-provence.fr

M. Brand-D’abrescia
LEAD, CNRS, Université de Bourgogne,
Dijon, France

R. Peereman
LPNC, CNRS, Université Pierre Mendès France,
Grenoble, France

D. Spieler
School of Psychology, Georgia Institute of Technology,
Atlanta, GA, USA

Behav Res
DOI 10.3758/s13428-010-0020-5

175

applies to widely used behavioural measures, and to
show how to use validated correlation statistics to test
model predictions. This widely extends the prior work
of Rey et al., (2009) and provides a complete method-
ology to test item performance models on empirical
databases.

In order to test a model, one usually collects empirical
data to be compared to the corresponding model
predictions, and one optimizes the free parameters (if
any) of the model in order to minimise the prediction
error or to optimise some "goodness of fit" measure. At
this point, one must judge (a) whether the considered
model suitably accounts for the data or not, and (b)
whether this model must be preferred or not to other
concurrent models. Point (b) is called "model selection",
and it has been widely studied in the literature (Akaike,
1974; Hannan & Quinn, 1979; Hansen & Yu, 2001; Kass
& Raftery, 1995; Myung, Pitt, & Kim, 2005; Pitt &
Myung, 2002; Rissanen, 1996; Schwarz, 1978). Note,
however, that an answer to point (b) does not necessarily
imply a similar answer to point (a), and surprisingly, this
last point has been almost completely neglected in the
literature, leading to difficulties in interpreting a number
of results (e.g. Spieler & Balota, 1997). There are two
ways for a model fit to be bad: it can be "under-fitting" or
"over-fitting". Under-fitting results in a large prediction
error and is generated by erroneous or incomplete models.
Over-fitting is more insidious because it results in a small
prediction error for the current data, but the model is not
able to generalise suitably, and the results are poorly
reproducible. This is a well-known consequence of using
too many free parameters in a model to fit the empirical
data in such a way that the model encodes a substantial
part of the data random noise instead of capturing
essentially the data regularities. This is why usual model
selection criteria such as the Akaike Information Criterion,
abbreviated AIC (Akaike, 1974), or the Bayesian Information
Criterion, abbreviated BIC (Schwarz, 1978), require opti-
mising a compromise between the goodness of fit (maximum
log-likelihood, for these criteria) and the number of free
parameters in the model. However, none of these model
selection criteria allows us to detect under-fits or over-fits;
they just indicate a "winner" in a given set of competing
models.

For few years, considerable efforts have been devoted to
collecting and developing large-scale databases that provide
behavioural measures at the item level. Each item measure
is usually based on an average over a number of
participants. For instance, this is the case in the recent
English and French Lexicon Projects (Balota, Yap, Cortese,
Hutchison, Kessler, Loftis, Neely, Nelson, Simpson, &
Treiman, 2007; Ferrand, New, Brysbaert, Keuleers, Bonin,
Méot, Augustinova, & Pallier, 2010), which allow researchers

to test various hypotheses and reading models on large sets
of empirical data. Building factorial designs on such data is
quite easy; however, testing item-level performance models
remains problematic because one does not know what can be
considered as a good model fit for these data. A solution to
this problem would be to provide, together with the
behavioural measures, some reference "goodness of fit"
measure with suitable under-fitting and over-fitting limits.
This is the ultimate goal of this work, and the Matlab
program named "ECVT" (for "Expected Correlation Validity
Test") listed in Appendix A provides an operational solution
to the problem, together with an efficient test of the validity
of the adopted approach for the data set to be processed.
Matlab users can directly copy the code in their Matlab
editor and use it, while the listed code can also serve as an
implementation model for other platforms. Comments in the
code (at right of "%") provide indications for the use of the
program, as well as for the actions of its various parts. The
reader will also find in Appendix B an example of how to
use the ECVT program with helpful comments.

Hereafter, we describe the methods implemented in the
ECVT program, we evaluate their efficiency and perfor-
mance on artificial data, and we test their relevance on three
real databases of word identification and word naming
times. In “Population model”, we present the adopted
population model and we derive theoretical correlation
functions. In “Correlation estimates”, we present statistics
suitable to estimate the useful correlations. In “Expected
correlation validation test”, we present a test to validate
(or invalidate) the population model and derived correla-
tions for a given data set. In “Testing the test”, we
demonstrate the efficiency and effectiveness of this test on
artificial data sets. In “Testing real response time
databases”, we validate the approach on three real
behavioural databases. In “Testing regression models on
simulated data”, we demonstrate the use and performance
of the new tool to test models. Finally, we consider recent
examples of reading model fits and we conclude in
“Discussion and conclusion”.

Population model

In this section, we first define a statistical model of the
behavioural measures we plan to account for. As we shall
see, this is just an additive decomposition model commonly
used for continuous variables (Behavioural variable model).
From this model, we then derive a measure of the
proportion of item variance that is not random, that is, the
proportion of item variance that a perfect model should
account for. As we shall see, this derivation results in a
well-known intraclass correlation coefficient, commonly
abbreviated ICC (Item performance correlation between

Behav Res

176

equal size samples of participants). Finally, we define
models' fitting measures that suitably compare to the ICC,
and there are mainly two distinct kinds of models with
different appropriate fitting measures (Item performance
correlation between observed and simulated data and Item
performance correlation between a sample of participants
and a predictor).

Behavioural variable model

Let I be a population of items, let P be a population of
participants, and let X be a behavioural measure on I × P
(e.g. response time). One assumes that X conforms to the
usual additive decomposition model:

X ¼ mþ a þ b þ "; ð1Þ
where μ is the mean value of X on I × P, and α, β, and ε
are three independent random variables of mean zero, and
of variance s2

a, s
2
b, and s2

" , respectively. The variable α is
the participant effect, and it takes a constant value for
each given participant. The variable β is the item effect,
and it takes a constant value for each given item. The
variable ε is considered as a random noise; however, it can
as well result from the combination of an item-participant
interaction and of a true random noise. The variable β,
whose values characterise the items, is the variable of
interest in this study.

One can derive from X another measure, denoted X(n),
that is the arithmetic mean of X over n randomly selected
distinct participants (thus X(1) = X); then one obtains from
(1) the following decomposition:

X ðnÞ ¼ mþ aðnÞ þ b þ "ðnÞ; ð2Þ
where the random variables α(n), β, and ε(n) are always
independent with means zero, but their variances are now
s2
a=n, s

2
b, and s2

"=n, respectively.

Item performance correlation between equal size samples
of participants

Consider now the bivariate distribution of pairs (x, y),
where x and y are independent realisations of X(n). Then the
population correlation between x and y, varying the items, is
given by:

rðx; yÞ ¼ Covðx; yÞ=ðVarðxÞVarðyÞÞ1=2;
where, using (2), one has:

Covðx; yÞ ¼ Covðb þ "ðnÞx ; b þ "ðnÞy Þ ¼ VarðbÞ ¼ s2
b;

because the terms that are constant with respect to the item
variable (μ and α(n)) play no role in the correlation, and the
variables β, "ðnÞx , and "

ðnÞ
y are independent.

For the same reasons, one has also:

VarðxÞ ¼ Varðb þ "ðnÞx Þ ¼ VarðbÞ þ Varð"ðnÞx Þ ¼ s2
b þ s2

"=n;

and similarly:

VarðyÞ ¼ Varðb þ "ðnÞy Þ ¼ VarðbÞ þ Varð"ðnÞy Þ ¼ s2
b þ s2

"=n:

Thus, finally,

rðx; yÞ ¼ s2
b

s2
b þ s2

"=n
: ð3Þ

One can recognise in (3) the expression of a well-know
intraclass correlation coefficient (ICC), that is the "ICC(C,
k), Cases 2 and 2A" coefficient, according to the nomen-
clature of McGraw and Wong (1996). To simplify the
notation, it is convenient to define the ratio:

q ¼ s2
b=s

2
"; ð4Þ

so that the correlation between two independent realizations
of X(n) is:

r ¼ nq

nqþ 1
; ð5Þ

which implies that:

q ¼ r
nð1� rÞ ; ð6Þ

and also that:

n ¼ r
qð1� rÞ ; ð7Þ

which are convenient formulas for finding a parameter
when one knows the two other ones, usually replacing q an
ρ by their estimates.

The ICC therefore provides, for a given dataset, a
reference correlation value for model tests. As described
in the following sections, a distinction has to be made,
however, between two modelling approachesthat are both
designed to account for item variance. In a first approach
(Item performance correlation between observed and
simulated data), one considers theoretical item performance
as generated by full simulation models able to simulate
participant variability (very rare to date, but probably
available in a near future), while in the second approach
(Item performance correlation between a sample of
participants and a predictor), one provides an account
of theoretical item performance as generated by predic-
tors, as in multiple regression approaches (e.g., Spieler &
Balota, 1997; Yap & Balota, 2009). Note that recent
simulation models are in fact used as simple predictors
(e.g., Perry et al. 2010).

Behav Res

177

Item performance correlation between observed
and simulated data

Consider now a variable V, that could be generated, for
instance, by a full simulation model, and that is affinely
related to X by:

V ¼ aX þ b ð8Þ
where a ≠ 0, and b are two real numbers. Then one has:

V ðnÞ ¼ aX ðnÞ þ b ¼ ðamþ bÞ þ aaðnÞ þ ab þ a"ðnÞ:

Let x be a realization of X(n), and let v be an independent
realization of V(n). Then, there is a realization y of X(n) such
that v ¼ ayþ b, and:

rðx; vÞ ¼ Covðx; vÞ=ðVarðxÞVarðvÞÞ1=2

¼ aCovðx; yÞ=ðVarðxÞa2VarðyÞÞ1=2

¼ signðaÞrðx; yÞ; ð9Þ
and thus:

rðx; vÞj j ¼ rðx; yÞ: ð10Þ
In other words, if a simulation model generates data that

fulfil (8), then one can expect that groups of simulated
participants provide mean item performance values whose
absolute correlation with those of human participant groups
of the same size (n) is given by (3)–(5).

Item performance correlation between a sample
of participants and a predictor

Instead of building simulation models whose output fulfils
(8), modellers commonly try to predict the unknown
variable β that appears in (1), without modelling the
participant effect and the random variability. So, it is of
interest to know what happens if a model generates a
variable B affinely related to β by:

B ¼ ab þ b; ð11Þ
for some real numbers a ≠ 0, and b. Let x be a realization of
X(n), and let B be defined as in (11), then on has:

Covðx;BÞ ¼ Covðb þ "
ðnÞ
x ; abÞ ¼ as2

b;

VarðxÞ ¼ Varðb þ "
ðnÞ
x Þ ¼ VarðbÞ þ Varð"ðnÞx Þ ¼ s2

b þ s2
"=n;

VarðBÞ ¼ a2s2
b;

and thus:

rðx;BÞ ¼ Covðx;BÞ=ðVarðxÞVarðBÞÞ1=2 ¼ signðaÞ sb

s2
b þ s2

"=n
� �1=2

;

ð12Þ

that is:

r2ðx;BÞ ¼ rðx; yÞ; ð13Þ
where, at new, y represents a realization of X(n) independent
of x. In other words, if a model generates a variable that
fulfils (11), then one can expect that the squared correlation
of this variable with the mean item performance of a group
of n participants is given by (3)–(5). Note that a coefficient
similar to ρ(x, B) is known in the framework of the
Generalizability Theory as the "Generalizability Coefficient"
(Webb, Shavelson, & Haertel, 2006).

Correlation estimates

In “Population model”, we defined suitable correlations at
the population level. In “Correlation estimates”, we present
practical estimates of these correlations for finite data
samples.

Intraclass correlation coefficient

We consider two distinct methods to estimate the ICC. The
first one is based on the usual analysis of variance
(ANOVA) approach. It is fast and accurate, and provides
reliable confidence limits for the ICC. However, it assumes
that the underlying variables are approximately Gaussian.
The second approach is based on a Monte-Carlo method
known as "Permutation Resampling". It is distribution
free and highly flexible; however, it requires much more
computational effort than the ANOVA approach. We
observed that the ANOVA approach is less sensitive to
missing data than the Permutation Resampling
approach; however, this point will not be developed in
this paper.

ANOVA approach

In practice, one randomly selects a sample of m items in the
item population, a sample of n participants in the
participant population, and data are collected in the form
of an m × n matrix of behavioural measures (xij),
1 � i � m, 1 � j � n. A standard analysis of variance
(ANOVA) of this matrix provides three variation sources:

1. The between rows item effect, whose mean square is
denoted MSi, with degrees of freedom dfi ¼ m� 1, and
expected value EMSi ¼ ns2

b þ s2
" .

2. The between-columns participant effect, whose mean
square is denoted MSp, with degrees of freedom
dfp ¼ n� 1, and expected value EMSp ¼ ms2

a þ s2
" .

3. The residual error effect, whose mean square is denoted
MSe, with degrees of freedom dfe ¼ ðm� 1Þðn� 1Þ,

Behav Res

178

and expected value EMSe ¼ s2
" . More generally, let N

be the total number of available measures in the matrix,
then dfe ¼ N � 1� dfi� dfp.

Then, it is easy to see that one has an estimate of the q
ratio (4) with:

bq ¼ MSi�MSe

n MSe
; ð14Þ

and one can estimate the intraclass correlation coefficient
ρ(x, y) of (3)–(5) by:

br ¼ nbq
nbqþ 1

¼ MSi�MSe

MSi
: ð15Þ

Moreover, the literature provides confidence limits
and test formulas for the intraclass correlation coeffi-
cient (McGraw & Wong, 1996; Shrout & Fleiss, 1979).
The confidence interval of probability 1-α of (15) is
given by:

1� F1�a=2ðdfi; dfeÞ
Fobs

; 1� 1

Fobs � F1�a=2ðdfe; dfiÞ
� �

; ð16Þ

where Fobs ¼ MSi=MSe, and Fp(a, b) is the quantile of
probability p of Fisher F distribution with a (numerator)
and b (denominator) degrees of freedom. Take care to the
reversed order of degrees of freedom for the upper
confidence limit in (16). Note also that, in this context,
α denotes the usual type I error risk (not the participant
effect).

Special approaches of the intraclass correlation have
been developed for the particular case of binary observa-
tions (Ahmed & Shoukri, 2010), which can be useful for
the analysis of accuracy variables, for instance. However, in
this paper, we more particularly focus on continuous
behavioural variables such as reaction times.

Permutation Resampling approach

The analysis stated in “Item performance correlation
between equal size samples of participants” clearly shows
the relation between the intraclass correlation and the
correlation of average vectors. This suggests the possible
use of a Monte-Carlo type method named "Permutation
Resampling" (Opdyke, 2003) to compute the intraclass
correlation coefficient. Despite the computational effort this
method requires, Rey et al. (2009) preferred it because it is
distribution free. Another advantage is the flexibility of this
method in what concerns the number of participants taken
into account, which will allow us to build a useful test in
“Expected correlation validity test” below.

The Permutation Resampling procedure is as follows.
Given a data table of m items × n participants, first
choose a group size ng ≤ n/2. Then randomly sample two
independent groups of ng participants each, calculate item
means for each group, and compute the correlation
coefficient r between the two resulting vectors of size m.
Repeat this T times, then the average of obtained r values
is an estimate of the intraclass correlation coefficient
(ICC) for a data set of ng participants. The larger T is, the
more accurate the estimate. In order to obtain the ICC for
the whole data set with n participants, one uses the average
correlation and ng to obtain an estimate of q by (6), then
one extrapolates the desired ICC using (5) with q and n as
arguments.

Model correlation

There are two cases that must be distinguished, the case of
full simulation models (Item performance correlation
between observed and simulated data) and the case of
predictors (Item performance correlation between a sample
of participants and a predictor). In both cases, human data
are summarized in the form of a m components vector of
mean item performances:

xi ¼ 1

n

Xn

j¼1
xij; i ¼ 1:::m: ð17Þ

In the case of a full simulation model, the model
prediction vector is of the form:

vi ¼ 1

n

Xn

j ¼ 1
vij; i ¼ 1:::m; ð18Þ

and if the model data fulfil (8), then one has the null
hypothesis (10), where the estimate br of ρ(x, y) is given by
(15), and the estimate of ρ(x, v) is the Pearson r correlation
statistic between the vectors (17) and (18).

In the case of a simple predictor, this one is of the
form:

B ¼ ðbiÞ; i ¼ 1:::m; ð19Þ

and if it fulfils (11), then one has the null hypothesis (13),
where the estimate br of ρ(x, y) is given by (15), and the
estimate of ρ(x, B) is the Pearson r correlation statistic
between the vectors (17) and (19).

In both cases, the model fit statistic is a powered
absolute correlation of the form jrjc; c 2 f1; 2g, with c =
1 for simulation models and c = 2 for predictors. Under the
null hypothesis (10) or (13), jrjc must belong to the ICC
confidence interval (16) with probability 1-α of this

Behav Res

179

interval. If it does not, then one can reject the null
hypothesis (with risk α) and conclude that the considered
model does not suitably fit the data. Given that the ICC is
the reference correlation value that model fit statistics
must match as closely as possible, we refer to the ICC as
the "Expected Correlation" in this context.

Expected correlation validation test

The validity of the approach developed in “Population
model” and “Correlation estimates” critically depends on
the assumption that the considered behavioural measure
fulfils the additive decomposition model (1), or an
equivalent variant, which leads to the law (3) for the
expected correlation. However, this is not necessarily the
case for every experimental variable, and thus a prior
condition to the use of an expected correlation like the
ICC (15), as a reference value to test models, is that one
can verify that the considered data actually fulfil the
law (3). In order to do this for their word identification
time database, Rey et al. (2009) used a series of
Permutation Resampling procedures, like the one de-
scribed in “Permutation Resampling approach”, with
distinct participant group sizes (ng's). Then they comput-
ed an estimate of the q ratio that minimized the sum of
squared differences between the observed ICC estimates
and those predicted by (5) for the various selected ng
values. The predicted and observed ICCs, as functions of
the group size, were plotted in order to allow visual
comparison, and the similarity of the two graphs
appeared impressive, leading to the conclusion that the
data suitably fulfilled the expected correlation model (3).
The conclusion was correct in this case; however, visual
appreciation is not always easy and reliable, as will be
shown below. Another available information is the
prediction error measure; however, we do not know the
critical error magnitude (if any) to reject the model (3)
for the considered data. So, we need a clear and easy to use
test of validity of the expected correlation model (3) for every
item level data set. In fact, such a test can easily be built
using a procedure similar to the one described above, but
where one replaces the prediction error measure by a suitable
statistic whose theoretical distribution is known.

Consider the empirical distribution of T correlation
values generated by Permutation Resampling for a given
group size ng (see Permutation Resampling approach).
This distribution has an average rg, which is possibly an
estimate of the ICC for ng participants, and its variance is
denoted s2g. Let ρg be the true, unknown, expected
correlation for group size ng. Given that the sampled
correlation values are independent realizations of the
same bounded random variable (in [-1, 1]), all moments

of this variable exist, and the Central Limit Theorem does
apply. Thus, as T increases, the average correlation rg
rapidly converges to a normally distributed random
variable of mean ρg and of variance s2g=T . This implies
that the random variable T 1=2ðrg � rgÞ=sg is normally
distributed with mean 0 and variance 1. Now, consider
a series of K independent Permutation Resampling
estimations for K distinct group sizes, then, by definition
of the χ2 random variable with K degrees of freedom,
one has:

XK

g ¼ 1
T1=2ðrg � rgÞ=sg

� �2
! #2ðKÞ: ð20Þ

If one hypothesises that (3) is valid for the considered
data set, then there is a constant q such that, by (5), one has
the null hypothesis:

rg ¼
ngq

ngqþ 1
; g ¼ 1::K: ð21Þ

The optimal determination of q is the one that minimises
(20), while the ρg's in (20) are determined by (21). In
practice, this is easy to obtain using a local search
procedure such as Newton-Raphson iterations for zeroing
the derivative of (20) with respect to q. This is implemented
in the Matlab sub-function named "minChi2" listed in
Appendix A. In the ECVT program, one uses T = 500,
which was found to provide accurate results with an
acceptable computational effort.

The choice of the series of K group sizes is somewhat
arbitrary, and it is partially constrained by the total number
of available participants (n). In the Matlab program listed in
Appendix A, the series are built in order to obtain K equally
spaced group sizes; while K is as close as possible to 12,
the greatest group size is equal to the greatest integer lower
or equal to n/2, and the lowest group size is minimally
greater than or equal to the group size spacing. Note that
using a very small group size can cause resampling
difficulties in cases where there is a certain amount of
missing data in the data set.

Finally, if the χ2(K) value, obtained by (20) in the
conditions described above, is significant, then the null
hypothesis (21) can be rejected (with the chosen risk),
which means that (1) and (3) probably do not provide a
valid model for the considered data.

Testing the test

In order to examine the performance of the test described
in “Expected correlation validation test”, we are going to

Behav Res

180

test artificial data sets that fulfil or do not fulfil the
variable model (1) by construction. In order to have an
idea of the discrimination power of the test, it is desirable
that the data can deviate from (1) at various degrees,
including a degree zero, which is simply the conformity to
(1). This can be obtained by generalising (1) in the
following way:

X ¼ mþ a þ glþ "; ð22Þ

where μ, α, and ε are defined as in (1), 1 is the normalised
item effect with mean 0 and variance 1, and + is the
"participant sensitivity" to the item effect. The participant
sensitivity has a fixed value for each participant (as α),
and has global mean g and variance s2

g . In the special case
where s2

g ¼ 0, one obtains (1), with b ¼ gl. For the
generalised model, it is convenient to define the two
following ratios:

q ¼ g2=s2
"; ð23Þ

u ¼ s2
g=s

2
": ð24Þ

Thus, (22) reduces to (1) if u = 0, and, as one can verify,
(3) is valid only in this case.

Artificial data tables, of 360 items by 120 participants,
have been generated using (22) with q = 1/16 and four
values of u ∈ {0,1/36,1/16,1/4}. Figure 1 shows four
plots generated by the Matlab function "ECVT" listed in
the Appendix. Each plot compares the series of observed
rg values with the corresponding ρg values predicted by
(21) for a given value of u, and the result of the validity
test (20) appears in the title of the plot. As one can see,
the two graphs are confounded, and the test is clearly
non-significant for u = 0. However, for all non-zero
values of u, the test is highly significant, and thus, the
non-conformity of the data to model (1) is detected.
Moreover, one can observe that for u = 1/36, the test
detected the existing difference, while this one is not
visible at the ordinary figure scale. In fact, a very small
difference becomes visible when the figure is enlarged.
This not only suggests that the test (20) is powerful, but
also that visual inspection of graphs is not reliable
enough in this problem. The four experiments of Fig. 1
were repeated 200 times each, and one recorded the
frequency of rejection of the null hypothesis for two
conventional type I error risks (α = 0.01 and α = 0.05)
and for each value of u. As one can see in Table 1, the
frequency of rejection with u = 0 is close to the chosen α
risk, as expected. The frequency of rejection is very high
with u = 1/36, and it is the maximum possible for the two
greatest values of u. So, the validity test (20) is visibly
efficient, and we can use it on real data.

Fig. 1 Predicted and observed
mean correlation values (with
SD bars) as functions of the
number of selected participants
per group, in four artificial data
sets (both with 360 items × 120
participants, q = 1/16), with
different u ratios (0, 1/36, 1/16,
1/4). Predicted and observed
functions are not significantly
different for u = 0, but they are
significantly different for all
non-zero values of u, even in
those cases where the difference
of graphs is just visible

Behav Res

181

Testing real response time databases

Tests on artificial data allowed us to be sure that our
tools work suitably. Now, a crucial question is to know
whether or not the proposed statistical model actually
applies to real behavioural data. We examine this
question hereafter on three real reaction time databases,
involving two word reading tasks (word identification
and word naming) and two languages (English and
French).

Word identification times from Rey et al., (2009)

This database and methodology details are described
in Rey et al., (2009). It is a set of 120 items by 140
participants’ word identification times, with about 4%
missing data. The stimuli were 120 monosyllabic, five-
letter English printed words, randomly selected in the
Celex lexical database (Baayen, Piepenbrock, & van
Rijn, 1993). The used task was a standard perceptual
identification in a luminance-increasing paradigm (Rey,
Jacobs, Schmidt-Weigand, & Ziegler, 1998; Rey & Schiller,
2005). Participants were undergraduate students at Arizona
State University, native English speakers, with normal or
corrected-to-normal vision.

The data table was given as an argument to the Matlab
function ECVT listed in Appendix A. The output provided
an overall ICC equal to 0.9016, with a 99% confidence
interval of [0.8655, 0.9315]. The correlation fit plot is
shown in Fig. 2, and the test (20) is clearly non-significant
[χ2(14) = 8.62, n.s.]. Thus, the correlation model (3)
suitably accounts for these data, and the ICC above is a
reliable expected correlation to test models.

English word naming time

Participants Ninety-four undergraduate students from
Stanford University participated in the experiment. All
participants were native English speakers with normal or
corrected-to-normal vision.

Stimuli and apparatus Seven hundred seventy English
disyllabic words randomly selected from the Celex Database
were used. The words were four to eight letters long, without
plural forms.

Procedure Each trial started with a fixation point that
was presented for 500 ms on a PC computer screen. It
was immediately followed by a word that appeared in the
middle of the computer screen in font Courier 24. The
word remained on the screen until the participant’s
response. Participants were instructed to read aloud the
target word as quickly and accurately as possible. The
interval between trials was 1,500 ms. Response times
were measured from target onset to the participant’s
response. The experimenter sat behind the participant and
recorded errors and voice key failures. The experiment
started with a training session composed of ten trials.
The experiment then started with test words presented in
a randomized order for each participant with a break
every 150 trials.

The resulting database is a set of 770 items by 94
participants’ word naming times, with 3.61% missing data.
The data table was given as argument to the Matlab
function ECVT listed in Appendix A. The output
provided an overall ICC equal to 0.9261, with a 99%
confidence interval of [0.9160, 0.9355]. The correlation fit
plot is shown in Fig. 3, and the test (20) is clearly non-

Fig. 2 Predicted and observed mean correlation values (with SD bars)
as functions of the number of selected participants per group, in the
English word identification time data set (120 words × 140
participants, 4% missing data), from Rey et al. (2009). The two
functions are not significantly different [χ2(14) = 8.62, n.s.]. The
overall ICC is equal to 0.9016, with a 99% confidence interval of
[0.8655, 0.9315]

Table 1 Observed rejection frequencies of the null difference
hypothesis for two α risks (.01 and .05) in the validity test applied
to artificial data sets with different u ratios (0, 1/36, 1/16, 1/4). The
null hypothesis is true in the case u = 0 only. In both cases, the data
sets had 360 items × 120 participants, with q = 1/16, and 200 random
data sets were tested for each u value

u = 0 u = 1/36 u = 1/16 u = 1/4

α = 0.01 0.020 0.885 1.000 1.000

α = 0.05 0.040 0.960 1.000 1.000

Behav Res

182

significant [χ2(11) = 10.35, n.s.]. Thus, the correlation
model (3) suitably accounts for these data, and the ICC
above is a reliable expected correlation to test models.
Details of the above analysis are listed in Appendix B as
an example of use of the ECVT program, with helpful
comments.

French word naming time

Participants One hundred undergraduate students from the
University of Bourgogne participated in this experiment.
All were native French speakers with normal or corrected-
to-normal vision.

Stimuli A list of 615 French disyllabic words randomly
selected from the Brulex Database (Content, Mousty &
Radeau, 1990) was used. The selection was restricted to
four-to-eight letter words and excluded verbs and plural
forms.

Procedure The same procedure as the one in the English
word naming experiment (English word naming time) was
used.

The resulting database is a set of 615 items by 100
participants’ word naming times, with 3.94% missing
data. The data table was given as argument to the
Matlab function ECVT listed in Appendix A. The
output provided an overall ICC equal to 0.9578, with a

99% confidence interval of [0.9513, 0.9638]. The
correlation fit plot is shown in Fig. 4, and the test (20)
is clearly non-significant [χ2(12) = 6.60, n.s.]. Thus, the
correlation model (3) suitably accounts for these data,
and the ICC above is a reliable expected correlation to
test models.

As a conclusion to “Testing real response time databases”,
we note that all the examined real data sets seem to fulfil the
variable model (1) and the resulting correlation model (3).
This is not a trivial result, since the generalized variable
model (22), with a non-constant "participant sensitivity" to
the item effect, can a priori seem more plausible.
Fortunately, the obtained results show that very commonly
used behavioural measures such as word identification and
word naming times can be analysed in terms of the
restrictive model (1), and thus, the methodology derived
from (1) to test simulation or regression models can be
applied to these variables.

Testing regression models on simulated data

Simulated Data

In order to build a test problem, one first chooses the
number m of items, the number n of participants, and the
exact number of parameters k0 that the data-generating

Fig. 4 Predicted and observed mean correlation values (with SD bars)
as functions of the number of selected participants per group, in the
French word naming time data set (615 words × 100 participants,
3.94 % missing data). The two functions are not significantly different
[χ2(12) = 6.60, n.s.]. The overall ICC is equal to 0.9578, with a 99%
confidence interval of [0.9513, 0.9638]

Fig. 3 Predicted and observed mean correlation values (with SD bars)
as functions of the number of selected participants per group, in the
English word naming time data set (770 words × 94 participants,
3.61% missing data). The two functions are not significantly different
[χ2(11) = 10.35, n.s.]. The overall ICC is equal to 0.9261, with a 99%
confidence interval of [0.9160, 0.9355]

Behav Res

183

model will use for generating its regular part. One also
chooses kmax, the maximum number of free parameters
that tested models can use to fit the data. One must have
the inequalities: 1 < k0 < kmax � ðk0 þ nÞ < m. In addi-
tion, one chooses the noise standard deviation (σε),
which allows approximate control of the data q ratio.

One uses (1) to generate an m items by n participants
data sample matrix (xij) in the following way:

xij ¼ m0 þ aj þ bi þ "ij; 1 � i � m; 1 � j � n:

The sample mean (m0) is a random constant. The
sample participant effect (αj) is a random Gaussian
vector of length n, with zero mean and unit standard
deviation. The sample item effect (βi) is a random
Gaussian vector of length m, with zero mean and unit
standard deviation. The sample noise is a random
Gaussian m × n matrix E = (εij), with mean zero and
standard deviation σε. Each column of the noise matrix is
orthogonal to the item effect vector; however, the noise
matrix itself is not orthogonal.

In order to build a base for regression models of
"predictor" type (with c = 2, see Model correlation), one
first builds a m × k0 orthogonal matrix H = (hij) whose
first column vector has m equal components (1/m1/2), and
the remaining k0 - 1 columns are orthogonal Gaussian

random vectors of length m, with zero means and unit
norms, whose sum is proportional to the sample item
effect, more precisely:

ðm� 1Þ1=2
ðk0 � 1Þ1=2

Xk0

j ¼ 2
hij ¼ bi ; 1 � i � m:

A predictor with k degrees of freedom (free parameters)
uses a base Gk made of the k first columns of H if k ≤ k0,
to which one adds the k - k0 first columns of E if k > k0,
so Gk is a m × k matrix, and the predictor parameters (w
vector) are optimized as a least-squares solution of the
equation Gkw = x, where x = (xi) is the mean item
performance vector given by (17). Thus, one has w ¼ G

y
k x,

and the predictor is Bk = Gkw. Observe that the exact
predictor can be obtained only with k = k0. If k < k0, then
the predictor under-fits the data. If k > k0, then the
predictor over-fits the data.

Under-fit and over-fit detection using the expected
correlation

The method described in “Simulated Data” was used to
build artificial problems with the parameter values n = 40,
k0 = 20, kmax = 60, m ∈ {61, 610}, and two levels of q
approximately equal to 1/4 and 1/16, respectively. In each
problem, 59 models whose complexity varied from 2 to 60

Fig. 5 Variation of r2 and its
intersection with the ICC 99%
confidence interval, as a func-
tion of the number of free
parameters used in least-squares
fitted models, while original
artificial data were generated by
a model using exactly 20
parameters (plus random varia-
bles), with 61 or 610 items, 40
participants, and two levels of
the q ratio. The r2 values under
the lower ICC confidence limit
correspond to under-fitted
models, while r2 values above
the upper ICC confidence limit
correspond to over-fitted models

Behav Res

184

free parameters were fitted to the data by the least-squares
method, and one computed the squared correlation of each
model prediction vector with the data average vector.
Figure 5 shows the variation of the squared correlation as
a function of the model complexity for the two levels of m
and of q. Also in each plot the expected correlation (ICC)
and its 99% confidence interval are shown. Note that the
squared correlation always intersects the ICC confidence
interval in the neighbourhood of the exact complexity (20
parameters). Squared correlations under the lower
confidence limit are detected as under-fits, and squared
correlations above the upper confidence limit are detected
as over-fits. The four experiments of Fig. 5 were repeated
200 times each, in order to observe the frequency of under-fit
and over-fit detections as a function of model complexity. The
results are shown in Fig. 6, where one can see that the
minimum global frequency of misfit detections is always on
a close neighbourhood of the exact complexity level (20
parameters). The under-fit detection frequency rapidly

increases as the model complexity decreases from the
optimum, while the over-fit detection frequency more
gradually increases as the model complexity exceeds the
optimum. The accuracy of misfit detections increases as m
increases, and it is moderately sensitive to the q ratio. Table 2
shows the details of the frequency of abusive detections of
under-fits and over-fits at the exact model complexity (20
parameters). For m = 610, this frequency is exactly the
expected one, given the α risk (0.01). For m = 61, the misfit
detection frequency is a bit greater than expected; however,
the discrepancy is small enough to allow practical use,
provided that one uses α risks not greater than 0.01.

Discussion and conclusion

We have shown that, provided that the considered behav-
ioural variable fulfils the usual decomposition model (1),
one can build a suitable reference correlation (or "expected

Fig. 6 Detection frequency of
under-fits and over-fits by r2

values outside the ICC 99%
confidence interval, as functions
of the number of model param-
eters (complexity) in experi-
ments similar to those of Fig. 5,
repeated 200 times each. The
exact model complexity
corresponds to 20 parameters

m = 61, q ≈ 1/4 m = 61, q ≈ 1/16 m = 610, q ≈ 1/4 m = 610, q ≈ 1/16

Under-fits 0.030 0.010 0.005 0.005

Over-fits 0.005 0.005 0.005 0.005

Total misfits 0.035 0.015 0.010 0.010

Table 2 Detail of the frequency
of abusive detections of
under-fits and over-fits at the
exact model complexity (20
parameters), using the ICC 99%
confidence interval, in the
experiments of Fig. 6

Behav Res

185

correlation") having the form of an intraclass correlation
coefficient. The lower and upper confidence limits of this
ICC can be considered as under-fitting and over-fitting
limits, respectively, for model goodness-of-fit statistics,
which are the absolute correlation (for full simulation
models) or the squared correlation (for predictors) of model
item performance predictions with empirical data averaged
over participants. We demonstrated the effectiveness of this
approach on artificial data that, by construction, fulfilled the
variable decomposition model (1). In order to verify that
any given data set fulfils model (1), and thus that the above
methodology is suitable for these data, we proposed a test
that is able to detect even weak deviances to this model.
The performance of this test has been demonstrated on
artificial data whose deviance to model (1) was
gradually varied. Moreover, we tested real behavioural
data sets in order to have an idea of the realism of model
(1) and of the suitability of the derived methodology in
practice. Three databases were tested: one set of English
word identification times (from Rey et al., 2009), one
new set of English word naming times, and one new set
of French word naming times. It turned out that these
three databases were compatible with model (1), demon-
strating that the proposed methodology has a wide
potential application field. Finally, the Matlab program
"ECVT" listed in Appendix A allows Matlab users to
directly apply this methodology, while it can also serve
as an implementation model for developers on other
platforms. In addition, Appendix B provides a com-
mented example of use of the ECVT program with the
data of “English word naming time”.

As an ultimate illustration, let us consider two word
reading model fits recently published in the literature.
The models are (1) a multiple regression model with
many predictors, which was used by Yap and Balota
(2009) to predict word naming latencies, and (2) a
simulation model (CDP++) published by Perry et al.
(2010), which was used as a simple predictor for data similar
to those of Yap and Balota, that is, a subset of the word
naming latencies from the ELP database (Balota et al., 2007),
corresponding to more than 6000 monomorphemic multisyl-
labic English words. On these data, Yap and Balota obtained
a global fit of R2 = 0.612, while Perry et al. obtained a global
fit of R2 = 0.494 after combining CDP++ predictions with
usual phonological onset factors.

What can we say about the performance of these
models? First, these are currently the best known fits for
these two types of models on such data. But are these
fits good? On one side, Yap and Balota's result seems
better; however, a multiple regression model with many
predictors always has an important risk of over-fitting. If
one assumes that the ICC of the data set is about 0.5, for
instance, then Perry et al.’s model could be the best.

Unfortunately, one does not know the ICC of the data set
used. However, it is possible to compute an estimation of
its order of magnitude.

Firstly, one can reasonably assume that the items used
in “English word naming time” (bisyllabic English words)
are a random sample of items belonging to the same item
population as those used to test the above models.
Secondly, there is no reason to think that the participant
populations are basically different (American college
students). Thirdly, note that the expected ICC strongly
depends on the number of participants (Eqs. 3–5), but not
on the number of items. In fact, the number of items
plays an important role only for the variance of ICC
estimators, not for their expected magnitude. The
remaining critical element is the q ratio (Eq. 4), which
can vary depending on the conditions in which the data
were collected (noise). So, we clearly take a risk
assuming that the q ratio of the ELP database and the
one of the database of “English word naming time” are
comparable. With this caution in mind, we can attempt to
approximate the ICC of Yap and Balota data using our q
ratio for the English word naming times (q = 0.1333, see
Appendix B) and applying Equation 5 with n = 25
participants (which is the number of observations per
item for the naming data in ELP). Doing this, one obtains
an ICC of about 0.769. Clearly, none of the above models
reaches such a fitting level, indicating that the race for
new reading models remains open. However, note also
that a firm conclusion on this point cannot be drawn as
long as one does not know the ICCs of data sets on which
models were tested.

As a conclusion, it appears desirable to encourage the
use of statistics like the ones presented in this paper, or
possible equivalent, in order to allow researchers involved
in modelling to have a clear idea of "how far they are from
the truth" (the truth of the data of course!) when they test
their models. Comparing the performance of various
models is probably useful but clearly not sufficient. Having
a quite precise idea of the distance from the target result is
precious information that can considerably help modellers
improving the models. If the fit is quite close to the data
ICC, probably minor changes in the model or a simple
parameter tuning are sufficient. If the fit is far from the
ICC, more important changes are probably necessary. If the
model over-fits the data, then one must reduce the number
of degrees of freedom of the model. But without a reliable
reference fit, such as the data ICC and its confidence limits,
the target result is not defined.

Acknowledgments The authors would like to thank the three
anonymous reviewers and the action editor, Dr. Ira Bernstein, for
their helpful comments. Part of this study was funded by ERC
Research Grant 230313.

Behav Res

186

Appendix A

Matlab code (version 7.5) of the ECVT program

Behav Res

187

Behav Res

188

Behav Res

189

Behav Res

190

Behav Res

191

Appendix B

Example of use of the ECVT program: analysis of the
English word naming time database

>> [qAV,icc,conf,r,Chi2,Chi2df,Chi2p] = ECVT(English
RT,'English word naming time',0)

Comment: the input argument EnglishRT is the 770 x 94
data table, the string argument 'English word naming time'
is the title for the output figure (Fig. 3), and the input
argument 0 is the code for missing data in the data table.
We omit the last input argument (pconf) in order to obtain
the three default confidence intervals of the ICC (95%,
99%, and 99.9%). We omit the last output argument
(mitem) because we do not need the 770 average RT
vector. Then, we obtain the output:

qAV = 0.1333
This is the q ratio as it is computed by the ANOVA
icc = 0.9261
This is the ICC as it is computed by the ANOVA
conf =

0.9500 0.9185 0.9334

0.9900 0.9160 0.9355

0.9990 0.9130 0.9379

These are the three default confidence intervals of the
ICC (probability lower_limit upper_limit)

r = 0.9236
This is the ICC as it is estimated by permutation

resampling and extrapolation
Chi2 = 10.3450
This is the χ2 test value (equation 20) for the data set
Chi2df = 11
Number of degrees of freedom of χ2

Chi2p = 0.4996
Probability of χ2 under the null hypothesis. Here, the

test is not significant, which means that the data in the
EnglishRT table fulfil the variable model (1), and the ICC
is a valid reference to test item performance models.

>> print -r600 -dtiff English.tif
We save the correlation plot figure (Fig. 3), which

appeared in a separate figure window.

References

Ahmed, M., & Shoukri, M. (2010). A Bayesian estimator of the
intracluster correlation coefficient from correlated binary
responses. Journal of Data Science, 8, 127–137.

Akaike, H. (1974). A new look at the statistical model identification. I.
E.E.E. Transactions on Automatic Control, AC, 19, 716–723.

Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX
Lexical Database (CD-ROM). Linguistic Data Consortium.
Philadelphia, PA: University of Pennsylvania.

Balota, D. A., & Spieler, D. H. (1998). The utility of item-level
analyses in model evaluation: A reply to Seidenberg and Plaut
(1998). Psychological Science, 9, 238–240.

Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler,
B., Loftis, B., et al. (2007). The English lexicon project.
Behavior Research Methods, 39(3), 445–459.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. C. (2001).
DRC: A dual route cascaded model of visual word recognition and
reading aloud. Psychological Review, 108, 204–256.

Content, A., Mousty, P., & Radeau, M. (1990). Brulex: Une base de
données lexicales informatisée pour le français écrit et parlé.
L'Année Psychologique, 90, 551–566.

Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A.,
et al. (2010). The French Lexicon Project: Lexical decision data
for 38, 840 French words and 38, 840 pseudowords. Behavior
Research Methods, 42, 488–496.

Hannan, E. J., & Quinn, B. G. (1979). The determination of the order
of an autoregression. Journal of the Royal Statistical Society, B,
41, 190–195.

Hansen, M. H., & Yu, B. (2001). Model selection and the principle of
minimum description length. Journal of the American Statistical
Association, 96, 746–774.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association, 90, 377–395.

McGraw, K. O., & Wong, S. P. (1996). Forming inferences about
some intralass correlation coefficients. Psychological Methods, 1
(1), 30–46.

Myung, I. J., Pitt, M. A., & Kim, W. (2005). Model evaluation,
testing and selection. In K. Lamberts & R. Goldstone (Eds.),
Handbook of cognition (pp. 422–436). Thousand Oaks, CA:
Sage.

Opdyke, J. D. (2003). Fast permutation tests that maximize power
under conventional Monte Carlo sampling for pairwise and
multiple comparisons. Journal of Modern Applied Statistical
Methods, 2, 27–49.

Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental
modeling in the development of computational theories: The
CDP+ model of reading aloud. Psychological Review, 114, 273–
315.

Perry, C., Ziegler, J. C., & Zorzi, M. (2010). Beyond single syllables:
Large-scale modeling of reading aloud with the Connectionist
Dual Process (CDP++) model. Cognitive Psychology.
doi:10.1016/j.cogpsych.2010.04.001

Pitt, M. A., & Myung, I. J. (2002). When a good fit can be bad. Trends
in Cognitive Sciences, 6(10), 421–425.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K.
(1996). Understanding normal and impaired word reading:
Computational principles in quasi-regular domains. Psychologi-
cal Review, 103, 56–115.

Rey, A., Courrieu, P., Schmidt-Weigand, F., & Jacobs, A. M. (2009).
Item performance in visual word recognition. Psychonomic
Bulletin & Review, 16(3), 600–608.

Rey, A., Jacobs, A. M., Schmidt-Weigand, F., & Ziegler, J. C. (1998).
A phoneme effect in visual word recognition. Cognition, 68, 41–
50.

Rey, A., & Schiller, N. O. (2005). Graphemic complexity and multiple
print-to-sound associations in visual word recognition. Memory
& Cognition, 33(1), 76–85.

Rissanen, J. (1996). Fisher information and stochastic complexity.
IEEE Transactions on Information Theory, 42, 40–47.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of
Statistics, 6, 461–464.

Behav Res

192

http://dx.doi.org/10.1016/j.cogpsych.2010.04.001

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed,
developmental model of word recognition and naming. Psycho-
logical Review, 96, 523–568.

Seidenberg, M., & Plaut, D. C. (1998). Evaluating word reading
models at the item level: Matching the grain of theory and data.
Psychological Science, 9, 234–237.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in
assessing rater reliability. Psychological Bulletin, 86(2), 420–
428.

Spieler, D. H., & Balota, D. A. (1997). Bringing computational
models of word naming down to the item level. Psychological
Science, 8, 411–416.

Webb, N. M., Shavelson, R. J., & Haertel, E. H. (2006). Reliability
coefficients and generalizability theory. Handbook of Statistics,
26, 81–124.

Yap, M. J., & Balota, D. A. (2009). Visual word recognition of
multisyllabic words. Journal of Memory and Language, 60, 502–
529.

Behav Res

193

194

www.frontiersin.org November 2010 | Volume 1 | Article 200 | 1

GENERAL COMMENTARY
published: 24 November 2010

doi: 10.3389/fpsyg.2010.00200

Accounting for item variance in large-scale databases
Arnaud Rey* and Pierre Courrieu
Laboratoire de Psychologie Cognitive, Department of Psychology, National Center for Scientific Research, Provence University, Marseille, France
*Correspondence: arnaud.rey@univ-provence.fr

ard analysis of variance (ANOVA) of the
database. This method is fast, accurate, and
it provides suitable confidence limits for the
ICC estimate. The other method is of Monte
Carlo type. It is based on a permutation resa-
mpling procedure, which is computationally
more demanding and more sensitive to miss-
ing data than the ANOVA method. However,
this approach is distribution free and much
more flexible than the ANOVA.

In order to apply these methods, the
database needs to be available in the form
of a m n table, where m is the number of
items, and n is the number of participants.
The DLP database clearly fulfils this require-
ment, with m = 14089, and n = 39. The ELP
and FLP databases are more problematic
from this point of view because each par-
ticipant provided data only for a subset of
the whole set of items. A possible solution
is to create “virtual” participants by mixing
the data of various participants, previously
transformed to z-scores (Faust et al., 1999),
but this needs further investigations.

Fortunately, no such a problem occurs
with the DLP database, however, the
important proportion of missing data in
this database (16%) prevents from apply-
ing the permutation resampling method.
Nevertheless, an ANOVA based analysis pro-
vided an overall ICC equal to 0.8448, with a
99% confidence interval of (0.8386, 0.8510),
indicating that this database contains about
84.5% of reproducible item variance1. A
model that accounts for less than 83.86% of
the empirical item variance probably under-
fits the data, while a model that accounts for
more than 85.10% of the empirical item vari-
ance probably over-fits the data (in general
because it uses too many free parameters). Of
course, this estimation is task-dependent and
language dependent. Using a different task,
a different language, a different set of items
(e.g., monosyllabic or disyllabic words), or
a different population sample (e.g., older
adults) might generate different outcomes.

A commentary on

Practice effects in large-scale visual word
recognition studies: a lexical decision study
on 14,000 Dutch mono- and disyllabic
words and nonwords.
by Keuleers, E., Diependaele, K., and
Brysbaert, M. (2010). Front. Psychol. 1:174.
doi: 10.3389/fpsyg.2010.00174.

The Dutch Lexicon Project (DLP, Keuleers
et al., 2010) is the third published database
providing lexical decision times for a large
number of items (after the ELP, Balota et al.,
2007, and the FLP, Ferrand et al., 2010). In
this commentary, we address the issue of
the amount of item variance that models
should really try to account for in the DLP
(Spieler and Balota, 1997).

As noted by Seidenberg and Plaut (1998),
to test the descriptive adequacy of simula-
tion models with item-level databases,
one needs to estimate the amount of error
variance (i.e., sources of variance that are
unspecific to item processing and that mod-
els cannot, in principle, capture) and, con-
versely, the amount of item variance that
models should try to account for. One way
to address this issue is to create independ-
ent groups of participants from a single
database, and to compute the correlation
between the item performances averaged
over participants in each group (Courrieu
et al., in press; Rey et al., 2009). One can
show that the expected value of such cor-
relations has the form of an intraclass cor-
relation coefficient (ICC):

nq

nq 1
(1)

where is the ICC, n is the number of
participants per group, and q is the ratio
of the item related variance on the noise
variance for the considered database (for
more details, see Courrieu et al., in press or
Rey et al., 2009).

As discussed in Courrieu et al. (in press),
there are basically two methods for estimat-
ing and q. The first one is based on a stand-

Because this analysis has already been
applied to different large-scale databases
using different experimental paradigms and
different languages (i.e., a naming task with
English and French disyllabic words, Courrieu
et al., in press, and a perceptual identification
task with English monosyllables, Rey et al.,
2009), it is now possible to directly compare
these results. Indeed, for each database, a dif-
ferent q ratio has been estimated and one can
now plot the resulting evolution of the ICC
as a function of the number of participants
for each database (see Figure 1). This figure
clearly shows that there are important vari-
ations across experimental paradigms and
languages (or population samples, which is
still a confounded factor in the present situ-
ation) and that these variations can be explic-
itly quantified. For example, to reach the same
amount of reproducible variance obtained in
the DLP database (i.e., 84.5% with 39 partici-
pants), one would need to have 90 partici-
pants in the English perceptual identification
task from Rey et al. (2009).

To conclude, the purpose of the present
commentary was to provide a precise esti-
mate of the amount of reproducible vari-
ance that is present in the DLP database and
to compare the evolution of the reproduc-
ible variance across tasks or languages. By
providing this information, it is now possi-
ble to precisely test the descriptive adequacy
of any model that could generate item-level
predictions trying to account for item vari-
ance in the DLP database.

ACKNOWLEDGMENT
Part of this study was funded by ERC
Research Grant 230313.

REFERENCES
Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K.

A., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L.,
Simpson, G. B., and Treiman, R. (2007). The English
Lexicon Project. Behav. Res. Methods 39, 445–459.

Courrieu, P., Brand-D’Abrescia, M., Peereman, R., Spieler,
D., and Rey, A. (in press). Validated intraclass correla-
tion statistics to test item performance models. Behav.
Res. Methods doi: 10.1007/s13428-010-0002–7. [Epub
ahead of print].

Faust, M. E., Balota, D. A., Spieler, D. H., and Ferraro, F. R.
(1999). Individual differences in information- processing

1Note that the ICC is in the order of a squared cor-
relation, therefore providing a direct estimate of the
amount of reproducible variance (for a justification,
see Courrieu et al., in press).

195

Frontiers in Psychology | Language Sciences November 2010 | Volume 1 | Article 200 | 2

Rey and Courrieu Item variance

FIGURE 1 | Evolution of the amount of reproducible variance ICC as a function of the number of
participants in four databases: the DLP (Lexical decision task in Dutch, LDT-Dutch), Rey et al. (2009;
Perceptual identification task with English monosyllables, PI-English), Courrieu et al. (in press;
Naming disyllables in English and French: naming-English naming-French). For each of these
databases, the estimated q parameter was respectively: 0.1396, 0.0607, 0.1333, 0.2269.

rate and amount: implications for group differences in
response latency. Psychol. Bull. 125, 777–799.

Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin,
P., Méot, A., Augustinova, M., and Pallier, C. (2010).
The French Lexicon Project: lexical decision data for
38,840 French words and 38,840 pseudowords. Behav.
Res. Methods 42, 488–496.

Keuleers, E., Diependaele, K., and Brysbaert, M.
(2010). Practice effects in large-scale visual word
recognition studies: a lexical decision study on
14,000 Dutch mono- and disyllabic words and
nonwords. Front. Psychol. 1:174. doi: 10.3389/
fpsyg.2010.00174.

Rey, A., Courrieu, P., Schmidt-Weigand, F., and Jacobs, A.
M. (2009). Item performance in visual word recogni-
tion. Psychon. Bull. Rev. 16, 600–608.

Seidenberg, M., and Plaut, D. C. (1998). Evaluating word
reading models at the item level: matching the grain
of theory and data. Psychol. Sci. 9, 234–237.

Spieler, D. H., and Balota, D. (1997). Bringing computa-
tional models of word naming down to the item level.
Psychol. Sci. 8, 411–416.

Received: 24 October 2010; accepted: 25 October 2010;
published online: 24 November 2010.
Citation: Rey A and Courrieu P (2010) Accounting for item
variance in large-scale databases. Front. Psychology 1:200.
doi: 10.3389/fpsyg.2010.00200
This article was submitted to Frontiers in Language Sciences,
a specialty of Frontiers in Psychology.
Copyright © 2010 Rey and Courrieu. This is an open-access
article subject to an exclusive license agreement between
the authors and the Frontiers Research Foundation, which
permits unrestricted use, distribution, and reproduction
in any medium, provided the original authors and source
are credited.

196

Pierre Courrieu – dossier HDR II.G.1

II.G Travaux en cours et perspectives

 Dans cette dernière section, je présente un projet de recherche axé sur trois thèmes

principaux: l'approximation rapide des fonctions multivariées par l'humain, les techniques

statistiques de validation de modèles, et enfin un modèle de lecture qui devrait être capable de

lire des écritures manuscrites. Il s'agit en fait de trois projets à peu près indépendants, chacun

ayant déjà produit un certain nombre de publications, ou faisant l'objet de publications en

cours ou en préparation. Je décrirai aussi quelques perspectives à moyen terme associées à

chacun des thèmes de recherche évoqués.

Approximation rapide des fonctions multivariées

 L'apprentissage de fonctions chez l'humain a été très étudié, principalement dans les

cas de fonctions booléennes multivariées ou de fonctions continues univariées. Il est

cependant une capacité particulière dont nous faisons usage quotidiennement, et qui jusqu'à

présent n'a fait l'objet d'aucune publication. Je veux parler de la faculté que nous avons

d'estimer immédiatement (sans apprentissage) la valeur d'une fonction en un point quelconque

du plan sur le base de valeurs fournies en d'autres points. Un exemple familier est celui des

cartes de prévisions météorologiques où des températures sont prédites en un certain nombre

de localités, mais souvent pas pour la localité qui nous intéresse. Dans ce cas, nous estimons

la température probable dans cette localité en fonction des valeurs fournies pour des localités

voisines. Autrement dit, nous réalisons une approximation rapide de fonction (température) en

un point de généralisation d'un support à deux variables (longitude et latitude), à partir d'un

échantillon fini de points de cette fonction (carte des prévisions).

 J'ai eu la curiosité de tenter d'identifier les procédures que nous mettons en oeuvre

pour résoudre de tels problèmes. Pour ce faire, j'ai soumis à des participants des problèmes

artificiels du type décrit ci-dessus, et j'ai enregistré leurs réponses de généralisation (Courrieu,

submitted-1). La figure 1 visualise quelques uns des ces problèmes (noir sur blanc) et les

réponses de généralisation moyennes de 16 participants (blanc sur noir). Il se trouve que les

réponses de généralisation des sujets présentent une certaine variabilité, mais sont cependant

extrêmement consistantes puisque l'ICC des données est de 0.985, avec un intervalle de

confiance à 99.9% de [0.959, 0.997] (Courrieu et al., 2011, voir Section II.F).

197

Pierre Courrieu – dossier HDR II.G.2

Figure 1. Visualisation de 16 problèmes d'approximation rapide de fonctions bivariées. Les

données des problèmes sont en noir sur fond blanc, et les réponses moyennes de 16 sujets en

des points de généralisation sont en blanc sur fond noir (Courrieu, submitted-1).

 J'ai ensuite comparé à ces données les prédictions d'un échantillon représentatif de 10

modèles connus d'approximation des fonctions. Il se trouve que le meilleur prédicteur était le

modèle de Courrieu (2005), présenté dans la section II.D, mais que sa performance restait tout

de même très en dessous de l'ICC des données (r2 = 0.839), ce qui indique clairement que ce

modèle est inexact pour cette tâche, ainsi que tous les autres modèles testés. J'ai alors procédé

à une analyse approfondie des réponses humaines, ce qui m'a permis de conclure que l'humain

construit ses réponses de généralisation en combinant des approximations linéaires faites à

partir de certaines paires de points ("bipoints") où les valeurs de la fonction sont données. Sur

cette base, j'ai construit un nouveau modèle d'approximation rapide des fonctions, dénommé

ABI (pour "Average of Bipoint Interpolations"), et ce modèle s'est avéré capable de prédire

les réponses de généralisation humaines beaucoup plus précisément que tous les autres

modèles testés. L'ajustement obtenu est r2 = 0.951, ce qui est légèrement inférieur à la borne

198

Pierre Courrieu – dossier HDR II.G.3

inférieure de l'ICC des données (0.959), indiquant que le modèle est encore inexact, mais cela

tient vraisemblablement à peu de choses.

 La suite du projet consiste à tenter d'identifier et de corriger ce "peu de choses". L'une

des pistes que je vais explorer consiste à tenir compte de certains biais d'estimation qui

semblent influencer les réponses des sujets. Il est en effet possible que les approximations à

partir de bipoints ne soient linéaires que lorsque les valeurs trouvées sont dans un certain

intervalle délimité par les valeurs minimales et maximales de l'ensemble des valeurs fournies

dans les données du problème. En dehors de cet intervalle, le sujet pourrait tenter de corriger

son estimation de façon à ne pas trop dépasser les valeurs "vraisemblables", ce qui introduirait

le biais supposé.

Validation de modèles

 L'utilisation de la technique statistique de validation de modèles développée par

Courrieu et al. (2011) m'a conduit à observer que les grandes bases de données

comportementales contiennent en général une proportion assez élevée de données manquantes

(jusqu'à 16%), résultant d'erreurs de réponse, d'incidents techniques, ou de données aberrantes

("outliers"). J'ai également observé que ces données manquantes biaisent de façon importante

les statistiques de consistance des données (ICC), aussi bien que les statistiques d'ajustement

des modèles (r2). A la limite, une proportion trop importante de données manquantes empêche

les tests utiles de fonctionner correctement. Il était donc urgent de trouver une parade à ce

problème, et c'est ce que j'ai récemment fait en collaboration avec Arnaud Rey (Courrieu &

Rey, submitted-2). Dans un premier temps, nous avons défini une statistique corrigée qui

permet d'estimer très efficacement ce que serait l'ICC d'une base de données si aucune donnée

n'était manquante, alors qu'une proportion importante des données manque. Munis de cet

outil, nous avons également pu définir une statistique corrigée d'ajustement de modèle (r2

corrigé) qui estime efficacement l'ajustement réel d'un modèle aux données. Enfin, nous

avons défini un algorithme d'imputation des données manquantes, dénommé CRARI (pour

"Column and Row Adjusted Random Imputation") qui permet de remplacer toutes les

données manquantes par des estimations, de telle manière que les moyennes par item

originales sont préservées, et que l'ICC de la base de données sous imputation peut être

arbitrairement choisi. Il suffit alors de choisir pour ce dernier la valeur de l'ICC corrigé

évoqué ci-dessus, et l'on obtient une base de données sous imputation possédant des

199

Pierre Courrieu – dossier HDR II.G.4

propriétés statistiques importantes qui seraient celles de la base de données originale si

aucune donnée n'était manquante. Précisons que l'algorithme CRARI est une extension de

l'algorithme d'imputation connu sous le nom de "Adjusted Random Imputation" (Chen, Rao,

& Sitter, 2000), ce dernier ne donnant malheureusement pas des résultats satisfaisants en ce

qui concerne l'ICC des bases de données sous imputation. La figure 2 présente une des

nombreuses expériences que nous avons réalisées avec des données simulées pour tester l'ICC

corrigé et l'algorithme CRARI. Dans ces expériences, on part d'une matrice de données

initiale complète dont on calcule l'ICC exact, puis on dégrade progressivement la matrice en

augmentant la proportion de données manquantes (aléatoirement dans cette expérience). Dans

chaque cas, on calcule l'ICC de la matrice dégradée (courbe "missing"), puis l'ICC corrigé

(courbe "estimate"), et enfin l'ICC de la matrice sous imputation des données manquantes par

l'algorithme CRARI (courbe "imputed"). Ainsi qu'on peut le voir dans la figure 2, l'ICC de la

matrice dégradée décroît rapidement lorsque la proportion de données manquantes augmente.

En revanche, l'ICC corrigé oscille toujours dans un proche voisinage de l'ICC exact, et l'ICC

de la matrice sous imputation des données manquantes est toujours égal à l'ICC corrigé.

Figure 2. Test de l'ICC corrigé et de l'ICC sous imputation des données manquantes par

l'algorithme CRARI sur des données simulées (Courrieu & Rey, submitted-2).

200

Pierre Courrieu – dossier HDR II.G.5

 L'utilisation de cette méthodologie nous a permis de valider l'approche ICC de

Courrieu et al. (2011) pour la base de données DLP (Keuleers, Diependaele, & Brysbaert,

2010) qui fournit des temps de décision lexicale pour plus de 14000 mots hollandais. La suite

du projet consistera à appliquer cette méthodologie à d'autres grandes bases de données

comme ELP et FLP, en résolvant les problèmes particuliers résultant du caractère incomplet

du plan de recueil des données propre à ces bases de données. Nous envisageons également de

développer un site internet permettant aux utilisateurs de calculer les statistiques de leurs

propres bases de données et de tester leurs modèles en ligne, mais ce projet est subordonné à

l'obtention de ressources informatiques appropriées.

Modèle de lecture

 Il s'agit d'un projet de longue haleine sur lequel je travaille depuis plusieurs années, et

qui a déjà fourni un certain nombre de résultats intermédiaires, lesquels ont leur intérêt propre

dans la mesure où ils peuvent s'appliquer dans d'autres cadres que celui de ce projet, et ont

donc donné lieu à un certain nombre de publications. On sait depuis longtemps que la lecture

de mots imprimés passe par l'identification des lettres qu'ils contiennent (McClelland, 1976),

mais ce point de vue strictement analytique doit être nuancé car certaines observations

indiquent qu'une forme de traitement global ("holistique") des mots pourrait également

contribuer à leur reconnaissance (Allen & Emerson, 1991; Lété & Pynte, 2003). Ceci est

encore plus vraisemblable lorsqu'on considère la lecture de mots manuscrits, dans lesquels il

n'est pas rare qu'un certain nombre de lettres ne soient tout simplement pas identifiables

individuellement. Cependant, même dans le cas du manuscrit, nous restons capables de lire

des mots inconnus ou mal orthographiés pour lesquels il ne peut s'agir de reconnaissance à

proprement parler. Mon projet était donc d'essayer de rendre compte de ces capacités, aux

apparences un peu contradictoires, par l'hypothèse suivante. Supposons que l'espace d'entrée

est un espace de formes convenablement codées (ex. Courrieu, 2006, 2007), et que nous

disposons d'un "dictionnaire" de formes correspondant à des mots (manuscrits ou imprimés)

dont nous connaissons par ailleurs l'orthographe. Nous pouvons alors comparer toute nouvelle

forme donnée en entrée aux formes contenues dans notre dictionnaire de formes, et calculer

une mesure de similitude de la nouvelle entrée à chaque forme répertoriée. Suivant un

principe similaire à celui des réseaux à fonctions bases radiales, et surtout de la généralisation

que j'en ai proposée dans ce but (Courrieu, 2005), on peut construire, par apprentissage

201

Pierre Courrieu – dossier HDR II.G.6

supervisé sur l'espace de ces mesures de similitude, une fonction dont l'espace de sortie est un

espace de codes orthographiques. Une fois construite, cette fonction permettrait d'associer à

toute nouvelle forme d'entrée un code orthographique de sortie par généralisation. Il ne s'agit

pas de "reconnaître" des mots, mais plutôt d'inférer une forme orthographique

(éventuellement inconnue) à partir d'une forme visuelle, par référence à des formes connues

d'orthographe connue. Les théorèmes d'approximation des fonctions disponibles garantissent

la possibilité d'obtenir une solution convenable dans tous les cas, mais le véritable problème

est la complexité potentielle de cette solution, et donc la possibilité de la réaliser en pratique.

 Afin d'évaluer la faisabilité de ce projet, j'ai dans un premier temps téléchargé la base

de données IAM (Marti, & Bunke. 2002), qui fournit 82227 images numérisées correspondant

à 10841 mots anglais distincts, manuscrits par environ 400 participants. J'ai défini l'espace

d'entrée comme l'espace des codes de densité des images (Courrieu, 2006, 2007), muni d'une

fonction de similitude des codes capable de réduire des transformation régulières de

complexité choisie. J'ai défini l'espace de sortie comme un espace de codes orthographiques

numériques possédant un certain nombre de propriétés nécessaires pour l'application (vecteur

de dimension fixe, décodable, et résistant aux erreurs), muni d'une fonction de similitude des

codes appropriée. Ces codes orthographiques sont une variante simple du "codage spatial" de

Davis (2010). Préalablement à l'application de la procédure d'apprentissage supervisé, qui

risquait d'être lourde, j'ai préféré tester la compatibilité des topologies des espaces d'entrée et

de sortie pour différentes fonctions de similitude des formes. Pour ce faire, j'ai échantillonné

dans la base IAM un millier de paires d'images distinctes correspondant pour un tiers à des

mots identiques, pour un tiers à des mots différents mais orthographiquement proches, et pour

un tiers à des mots bien différents. J'ai ensuite calculé la corrélation entre les similitudes des

formes et les similitudes des codes orthographiques correspondants, ce qui est une façon

d'estimer la compatibilité des topologies d'entrée et de sortie. J'ai obtenu une corrélation de

0.50 dans le meilleur des cas, ce qui est loin d'être négligeable, mais n'est cependant pas

suffisant pour générer un réseau efficace de complexité raisonnable. J'ai de plus fait

l'observation quelque peu déconcertante suivante: la corrélation diminue lorsqu'on augmente

la complexité des transformations que la fonction de similitude réduit, et il en va de même si

l'on utilise des codes de densité plus "flexibles" (que j'ai élaborés au passage). La raison est

que la flexibilité des codes ou des fonctions de similitude profite en moyenne plus aux paires

de mots différents, en réduisant leur écart de forme, qu'aux paires de mots semblables. La

seule transformation qui améliore la corrélation est un simple centrage des codes de densité

202

Pierre Courrieu – dossier HDR II.G.7

sur les médianes des distributions marginales. Il est donc clair qu'il faut rechercher une

variante plus efficace du modèle, ce qui est l'objet du projet suivant.

 Ayant noté qu'il n'est pas pertinent de réduire des transformations régulières dans

l'évaluation des similitudes de formes, on peut envisager de ne pas réduire les transformations

et d'intégrer la variabilité des formes dans les données d'apprentissage. Toutefois, si l'on

utilise le principe du dictionnaire de formes tel qu'il est décrit plus haut, on va évidemment

obtenir un réseau de taille considérable car il faudra intégrer au dictionnaire de nombreuses

variantes de chaque forme de référence. Une solution à ce problème consiste à associer une

unité du dictionnaire à chaque mot appris, et non à chaque forme visuelle, puis à entraîner

chacune de ces unités à répondre à chaque forme présentée en entrée par une approximation

de la "distance" séparant les codes orthographiques du mot correspondant à l'entrée courante

et du mot représenté par l'unité. Ceci est possible car les codes de densité représentant des

formes sont des codes numériques de grande dimension, et sont de plus arbitrairement

extensibles en des polynômes qui possèdent la capacité d'approcher uniformément toute

fonction continue. Les polynômes étant des formes linéaires en leurs coefficients, on peut tout

simplement utiliser des "neurones linéaires", avec les techniques d'apprentissage élémentaires

qui leurs sont associées, pour approcher la fonction "distance orthographique" au mot de

référence de l'unité considérée, pour chaque forme d'entrée. A noter que même si la distance

orthographique utilisée lors de l'apprentissage est une métrique sur l'espace des codes

orthographiques, les réponses de généralisation obtenues ensuite (pour des formes inconnues)

ne seront pas forcément des valeurs exactes de cette métrique. Comme certaines valeurs de

généralisation peuvent être négatives, les neurones linéaires doivent comporter une fonction

de sortie qui annule les valeurs négatives (i.e. un seuil de réponse à zéro), mais ceci

n'intervient pas dans l'apprentissage. Fort heureusement, le modèle neurocomputationnel

utilisé pour l'étage suivant (Courrieu, 2005) admet, comme entrées, des mesures de

(dis)similarité sans exiger qu'elles aient les propriétés d'une métrique, de sorte que ce modèle

peut approcher les codes orthographiques de sortie sur la base des approximations de

distances orthographiques fournies par les neurones linéaires. A partir de là, tout se passe

comme dans le modèle initial, à ceci près que la topologie induite sur l'espace des codes de

densité par les sorties de la couche de neurones linéaires est une approximation de la

topologie de l'espace de sortie, ce qui permet d'espérer de bonnes performances de

généralisation avec une complexité raisonnable du réseau. La figure 3 présente un résumé de

l'architecture du modèle que je propose.

203

Pierre Courrieu – dossier HDR II.G.8

Output letter nodes: A B ... Z
(linear)

!

v
1A

!

v
2A

!

v
1B

!

v
2B

!

v
1Z

!

v
2Z

Basis functions:

!

g
1
(X) =

e
"#$1(X)

e
"#$ k (X)

k
%

!

g
2
(X) =

e
"#$ 2 (X)

e
"#$ k (X)

k
%

 ...

(Courrieu, 2005)

 Word 1 Word 2
Word nodes:

!

"
1
(X) = pos(wij1 xij

i, j

)

!

"
2
(X) = pos(wij2 xij

i, j

) ...

Density code:

!

X = (x
11
,x

21
,x
12
,x

22
,x
13
,x

23
, ...)

(or extension)

Image encoding
(Courrieu, 2006, 2007)

Input image

Figure 3. Architecture d'un réseau d'approximation de codes orthographiques (variante du

"codage spatial" de Davis, 2010) à partir d'images de mots (ou pseudo-mots) manuscrits. Les

poids synaptiques des noeuds "mots" (

!

wijk), ainsi que ceux des noeuds "lettres" (

!

v
kL

) sont

appris suivant une méthode de moindres carrés simple.

204

Pierre Courrieu – dossier HDR II.G.9

 Il reste cependant à vérifier que cette approche donne effectivement des résultats

satisfaisants en pratique, ce qui nécessite des calculs assez lourds qui sont en cours de

programmation. En cas de succès, la faisabilité de ce principe sera démontrée, et je pourrai

envisager de tester les prédictions du modèle par comparaison aux performances humaines.

Pour conclure

 En résumé, le projet ci-dessus comporte trois axes thématiques principaux:

1- "L'approximation rapide des fonctions multivariées par l'humain", projet qui est déjà bien

avancé et a produit un article actuellement soumis pour publication.

2- "Techniques statistiques de validation de modèles", projet aussi bien avancé qui a produit

trois publications (section II.F), ainsi qu'un article actuellement soumis pour publication.

3- "Modèle de lecture", projet de longue haleine qui a déjà produit trois publications

présentées dans les sections II.C et II.D, ainsi que l'une des publications techniques présentées

dans la section II.E (Courrieu, 2009). Remarquons que le modèle de lecture proposé peut

aisément être étendu à d'autres familles de formes, telles que celles qui sont présentes dans

des scènes visuelles naturelles, ce qui est un autre développement à envisager.

 Pour chacun des trois axes thématiques, le projet comporte une suite assez précisément

définie, mais on n'évitera probablement pas l'irruption de question imprévues (notamment

techniques) qui se posent habituellement en cours de route et sont également sources de

résultats pouvant présenter un intérêt propre.

 Ce projet, comme le reste de mon travail, est principalement centré sur la modélisation

numérique et sur la validation des modèles. L'expérimentation humaine en est le complément

naturel dès l'instant que les modèles sont prêts à produire des prédictions vérifiables, et cela

fait aussi partie de la suite de mon programme.

Références

Allen, P.A., & Emerson, P.L. (1991). Holism revisited: evidence for parallel independent

word-level and letter-level processors during word recognition. Journal of Experimental

Psychology: Human Perception and Performance, 17, 489-511.

Chen, J., Rao, J.N.K., & Sitter, R.R. (2000). Efficient random imputation for missing data in

complex surveys. Statistica Sinica, 10, 1153-1169.

205

Pierre Courrieu – dossier HDR II.G.10

Courrieu, P. (submitted-1). Quick Approximation of Bivariate Functions.

Courrieu, P. (2005). Function approximation on non-Euclidean spaces. Neural Networks, 18,

91-102.

Courrieu, P. (2006). Density codes and shape spaces. Neural Networks, 19, 429-445.

Courrieu, P. (2007). Fast density codes for image data. Neural Information Processing -

Letters and Reviews, 11(12), 247-255.

Courrieu, P., Brand-D'Abrescia, M., Peereman, R., Spieler, D., & Rey, A. (2011). Validated

intraclass correlation statistics to test item performance models. Behavior Research Methods,

DOI: 10.1007/s13428-010-0002-7.

Courrieu, P., & Rey, A. (submitted-2). Missing Data Imputation and Corrected Statistics for

Large-Scale Behavioral Databases.

Davis, C.J. (2010). The spatial coding model of visual word identification. Psychological

Review, 117(3), 713-758.

Keuleers, E., Diependaele, K., & Brysbaert, M. (2010). Practice effects in large-scale visual

word recognition studies: A lexical decision study on 14,000 Dutch mono- and disyllabic

words and nonwords.. Frontiers in Psychology 1:174. doi:10.3389/fpsyg.2010.00174

Lété, B., & Pynte, J. (2003). Word-shape and word-lexical-frequency effects in lexical-

decision and naming tasks. Visual Cognition, 10, 913-948.

Marti, U., & Bunke. H. (2002). The IAM-database: an English sentence database for off-line

Handwriting Recognition. Int. Journal on Document Analysis and Recognition, 5, 39 - 46.

McClelland, J.L. (1976). Preliminary letter identification in the perception of words and

nonwords. Journal of Experimental Psychology: Human Perception and Performance, 2(1),

80-91.

206

