
HAL Id: tel-00643552
https://theses.hal.science/tel-00643552

Submitted on 22 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web services governance : Security and Data handling
aspects

Ehtesham Zahoor

To cite this version:
Ehtesham Zahoor. Web services governance : Security and Data handling aspects. Web. Université
Nancy II, 2011. English. �NNT : �. �tel-00643552�

https://theses.hal.science/tel-00643552
https://hal.archives-ouvertes.fr

Université Nancy 2
———————————————————————————————————–

ÉCOLE DOCTORALE IAEM
Département de formation doctorale

en informatique

T H È S E

présentée et soutenue publiquement le

pour l’obtension du

Doctorat de l’Université Nancy2
(spécialité informatique)

par

Ehtesham ZAHOOR

Gouvernance de service: aspects sécurité et

données

Thèse dirigée par Claude GODART et Olivier PERRIN

préparée au LORIA, Projet SCORE

Jury :

Rapporteurs :

Ernesto DAMIANI - Professeur à Université de Milan

Farouk TOUMANI - Professeur à Université Blaise Pascal

Examinateur : Jörg HOFFMANN - Dr à INRIA Nancy Grand Est

Yves LE TRAON - Professeur à Université du Luxembourg

——————————————————————————————–

Laboratoire Lorrain de Recherche en Informatique et ses

applications – UMR7503

Acknowledgments

The work presented in this thesis would not have been possible without the help of

my thesis advisors Claude Godart and Olivier Perrin. I am sincerely and highly

thankful to them for being highly supportive and for their continuous guidance and

wisdom throughout this journey.

I am very fortunate to have had opportunity to be part of the team SCORE

at LORIA and I would like to thank my colleagues Karim Dahman, Walid Fdhila,

Aymen Baouab and others for all the time we spent together during these past years.

I would also like to thank my parents, my friends Atif and Dawood, and my wife

for their prayers and support.

Abstract

Web services are in the mainstream of information technology, paving way for inter

and across organizational application integration. Individual fine-grained services

may need to be orchestrated into more coarse-grained value added processes and Web

services composition is highly active and widely studied research direction. In the

literature, a number of approaches have been proposed to handle different aspects

at different stages of composition process life-cycle, that includes composition pro-

cess design, verification and execution time monitoring. The traditional approaches

however focus only on some stages of process life-cycle and little work however has

been done in integrating these related dimensions using a unified formalism.

At the process design stage, the proposed modeling approaches are mostly

procedural and they over-constrain the process making it rigid and assuming the

design choices that may not be present in the requirements but only added to

specify the process flow. For the process verification, the traditional approaches

require to map the process to some formal logic and then verify the process.

However, this lack of integration results in a complex model and it may not always

possible to have a complete transformation from one modeling approach to other.

Further, with the addition of non-functional (such as security and temporal)

requirements the transformation becomes even more complex and challenging.

Then, the traditional approaches for composition process monitoring while in

execution, build upon composition frameworks that are highly procedural, such

as WS-BPEL, an this in-turn poses two major limitations. First, they limit the

benefits of any event-based monitoring approach as the events are not part of

the composition framework and functional and non-functional properties are not

expressed in terms of events and their effects. Secondly the use of procedural

approach for process specification does not bridge the gap between organization

and situation in a way that it is very difficult to learn from run-time viola-

tions and to change the process instance (or more importantly process model)

at execution time, and it does not allow for a reasoning approach allowing for

effects calculation and recovery actions such as re-planning or alternate path finding.

The objective of our thesis is thus to handle the process modeling, design-time

verification, execution-time monitoring and recovery in an integrated and declar-

ative way. Declarative approach results in a highly flexible composition process that

may be needed to cater for dynamically changing situations while integration sim-

plifies the approach by using the same formalism for composition design, verification

and monitoring. The use of declarative and integrated approach further allows to

have recovery actions such as re-planning (to cater for monitored violations during

process execution) which are difficult to achieve using traditional approaches. In

this thesis, we have proposed an integrated declarative event-oriented framework,

called DISC (Declarative Integrated Self-healing web services Composition), that

serves as a unified framework to bridge the gap between the process design, verifi-

cation and monitoring and thus allowing for self-healing Web services composition.

iii

The proposed framework allows for a composition design that is declarative and

can accommodate various aspects such as partial or complete process choreography

and exceptions, data relationships and constraints, Web services dynamic binding,

compliance regulations, security or temporal requirements or other non-functional

aspects. We have based the composition design on event-calculus and defined pat-

terns for specifying the functional and non-functional aspects using event-calculus

for process specification, instead on relying on different formalisms or extensions for

specifying different aspects as required by traditional approaches such as WS-BPEL.

For the process design-time verification we have proposed a symbolic model

checking approach using satisfiability reasoning. The need for the satisfiability solv-

ing for process verification stems from the fact the state space of a declarative

process can be significantly large, as the process is only partially defined and all

the transitions may not have been explicitly defined (in contrast to procedural ap-

proaches), and thus it makes it easier to do the symbolic model checking instead

of using explicit representation of state transition graphs and/or using the binary

decision diagrams. Further, as the conflict clauses returned by the SAT solver can

be very large, we have proposed filtering criteria to reduce the clauses and defined

patterns for identifying the nature of conflicts.

For the execution-time monitoring (and recovery from any monitored violations)

we have proposed an event-based message-level monitoring approach that allows to

reason about the events and does not require to define and extract events from pro-

cess specification, as the events are first class objects of both design and monitoring

frameworks. As the proposed monitoring approach builds upon event-calculus based

composition design, it allows for the specification of monitoring properties that are

based on both functional and non-functional (such as temporal, security or their

combinations) requirements. These properties are expressed as event-calculus ax-

ioms and can be added to the process specification both during process design and

during the process execution. The proposed monitoring approach both allows for

KPI’s measurement (that may be needed for process evaluation or result in proac-

tive detection of any violations) and the detection of violations once they happen.

Different levels of detection are provided such as detection to the process execution

plan, detection to the violations based-on any properties and events added during

process execution and others.

iv

Contents

I PROLOGUE 1

1 Introduction 3

1.1 Motivation . 5

1.2 Thesis objectives and main contributions 5

1.2.1 Declarative composition design 6

1.2.2 SAT-based process verification 6

1.2.3 Event-based process monitoring 7

1.2.4 Implementation architecture 8

1.3 Thesis Structure . 8

II BACKGROUND 11

2 Context and problem definition 13

2.1 Context . 13

2.1.1 Web Services Description Language (WSDL) 14

2.1.2 The SOAP communication protocol 14

2.1.3 Service-Oriented Architecture (SOA) 15

2.1.4 Business Process Modeling Notation (BPMN) 15

2.1.5 Business Process Execution Language (WS-BPEL) 16

2.1.6 Event-calculus . 17

2.2 Motivating example . 19

2.2.1 Overview . 19

2.2.2 Case Study: Recovery of priority items at ANH 20

2.3 Problem definition . 24

2.3.1 Lack of integration . 24

2.3.2 Procedural composition model 24

2.3.3 Verification . 25

2.3.4 Event-based monitoring . 26

2.3.5 Synthesis for the motivating example 26

2.4 Summary . 27

3 State of the art 29

3.1 Composition process modeling . 29

3.1.1 Graph based modeling approaches 30

3.1.2 AI Planning based composition model 32

3.1.3 Modeling non-functional requirements 36

3.1.4 Synthesis . 36

3.2 Process verification . 38

3.2.1 Automata based approaches 39

Contents

3.2.2 Petri net based approaches 39

3.2.3 Process Algebras based approaches 41

3.2.4 Synthesis . 41

3.3 Process monitoring and recovery . 42

3.3.1 Process monitoring . 43

3.3.2 Recovery . 43

3.3.3 Synthesis . 44

3.4 Summary . 45

III COMPOSITION DESIGN 49

4 Composition design - components 51

4.1 Activities . 52

4.1.1 Activities with states . 52

4.1.2 Example . 53

4.1.3 Activities without intermediate states 54

4.1.4 Activities that can be restarted 55

4.2 Web services . 56

4.2.1 Synchronous Web services invocation 56

4.2.2 Pull-based Asynchronous invocation 57

4.2.3 Push-based Asynchronous invocation 57

4.2.4 Services re-invocation . 58

4.3 Nodes . 59

4.4 BPMN and event-calculus . 60

4.5 Example . 62

4.6 Summary . 63

5 Control/Data flow specification 65

5.1 Dependency . 65

5.2 Split and Join . 67

5.3 Conditions . 69

5.4 Iteration . 71

5.5 Request/Response data . 72

5.6 Message flow . 73

5.7 Example . 74

5.8 Summary . 78

6 Modeling Non-functional aspects 81

6.1 Modeling temporal aspects . 81

6.1.1 Response time . 82

6.1.2 Restart/Refresh . 82

6.1.3 Invocation time-frame and delay 83

6.1.4 Allen’s Interval Algebra . 83

6.1.5 Modeling time-units . 86

vi

Contents

6.2 Modeling security aspects . 86

6.2.1 Security requirements . 86

6.2.2 Interaction levels . 87

6.2.3 Data confidentiality, retention and integrity 87

6.2.4 Authentication/Authorization 89

6.2.5 Dynamic Task Delegation . 89

6.3 Example . 90

6.4 Summary . 92

IV VERIFICATION AND MONITORING 93

7 Instantiation and Verification 95

7.1 Nodes instantiation . 96

7.1.1 Background . 96

7.1.2 The proposed approach . 96

7.1.3 The worksWith dependency 98

7.1.4 Backtracking and propagation 98

7.2 Process instantiation . 99

7.2.1 Example . 99

7.3 Process verification . 101

7.3.1 Motivation . 101

7.3.2 Verification properties . 102

7.3.3 The proposed approach . 103

7.3.4 Filtering the unsatisfiable-core 104

7.3.5 Example . 105

7.4 Summary . 109

8 Monitoring and recovery 111

8.1 Properties specification . 112

8.2 Detection and effects calculation . 113

8.2.1 Detection . 113

8.2.2 Effects calculation . 113

8.3 Response . 114

8.4 Example . 115

8.5 Summary . 117

V EPILOGUE 119

9 Implementation 121

9.1 Overview . 121

9.2 Composition design using ECWS . 123

9.3 Enhancements to DECReasoner . 124

9.3.1 Process verification using zchaff/zverify_df 125

vii

Contents

9.3.2 Event-calculus to SAT encoding 125

9.4 Performance evaluation . 126

10 Conclusion 131

10.1 Problem description . 131

10.2 The proposed approach . 134

10.3 Declarative composition design . 134

10.3.1 Components . 135

10.3.2 Control/Data flow specification 136

10.3.3 Temporal and security aspects 136

10.4 Process verification and monitoring 137

10.5 Implementation architecture . 138

10.6 Perspectives and limitations . 139

Bibliography 141

viii

Part I

PROLOGUE

Chapter 1

Introduction

Contents

1.1 Motivation . 5

1.2 Thesis objectives and main contributions 5

1.2.1 Declarative composition design 6

1.2.2 SAT-based process verification 6

1.2.3 Event-based process monitoring 7

1.2.4 Implementation architecture 8

1.3 Thesis Structure . 8

Web services are in the mainstream of information technology, paving way for

inter and across organizational application integration. They can be defined as the

software systems designed to support interoperable machine-to-machine interaction

over a network1. Their definition highlights one of their core objectives, interop-

erable machine-to-machine interaction. Thus, the Web services allow heterogenous

systems based on heterogenous platforms to not only communicate but to expose

their operation to the rest of the world using Web services. In addition, the Web

services can also be used to implement reusable application-components, such as

currency conversion, weather reports and others.

Figure 1.1: Basic elements of a Web service

Web Services have three basic elements (Figure-1.1): their description specified

using the Web Services Description Language (WSDL) which is a W3C standard

and an XML-based language for locating and describing Web services, a directory

1http://www.w3.org/TR/ws-gloss/

Chapter 1. Introduction

service where companies can register and search for Web services (or more specifi-

cally their interfaces described by WSDL) called Universal Description, Discovery

and Integration (UDDI) and a communication protocol to access the services which

can be either a standardized XML-based communication protocol called (SOAP)

or Representational state transfer (REST).

Figure 1.2: Web services composition process life-cycle

The Web services are autonomous and they only present an interface that allows

other systems to use the operations provided by them and internal implementation

of these operations is hidden to the outside world. Further, high-level languages such

as WS-BPEL and specifications such as WS-CDL and WS-Coordination extend the

service concept by providing a method of defining and supporting orchestration

(composition) of fine-grained services into more coarse-grained value added pro-

cesses. The Web services composition process has different life-cycle stages, first the

process designer needs to model the composition process by using the fine-grained

services to define new added-value processes (Figure-1.2-1). Then the composi-

tion process needs to be verified to identify any anomalies and conflicts (such as

deadlocks) in the process specification (Figure-1.2-2) and once the process has been

verified it is executed (Figure-1.2-3). Then, as the Web services are autonomous and

only expose their interfaces, composition process is based on design level service con-

tracts and the actual execution of composition process may result in the violation of

the design-level services contracts due to errors such as network or service failures,

change in implementation or other unforeseen situation. This highlights the need

to monitor and detect the errors and react accordingly to cater for them. The reac-

tion may also require to update the composition design to cater for the monitored

violation and to find alternatives (Figure-1.2-4).

4

1.1. Motivation

1.1 Motivation

The motivation of our work stems from the process modeling, design-time verifica-

tion, execution-time monitoring and recovery in an integrated and declarative way

to cater for dynamically changing situations (for instance, crisis handling or the

logistics processes). The situations these processes are dealing with are complex,

ambiguous, highly dynamic and characterized by temporal and security constraints,

coordination of multiple services and multiple data sources, with varying degrees

of reliability and in different formats. Information that was treated at time t may

be superseded by new information at time t+1. The process to handle such a

situation thus needs to be highly flexible, may only be partially defined and is re-

quired to be self-healing and self-adaptive to handle continuously changing situation.

Web services composition is highly active and widely studied research direction

and in the literature, a number of approaches have been proposed that handle

different stages of process life-cycle. However, the traditional approaches have two

major short-comings; first these approaches focus only on some (not all) stages of

process life-cycle and this lack of integration results in a complex model such as

mapping the WS-BPEL based process specification to a particular automata with

guards, and using SPIN model checker [Fu 2004] for verification, WS-BPEL to timed

automata and using UPPAAL model checker [Guermouche 2009b] for checking

temporal properties. Further, the lack of integration leads to the approaches that

does not allow (unless with complex mappings) to learn from the run-time failures

to provide the recovery actions, such as re-planning or alternative path finding,

to recover from the monitored run-time violations based on current state of the

process. Then, the second shortcoming of proposed approaches is that they aim to

build on top of the traditional approaches (such as WS-BPEL, OWL-S) which focus

on the control flow of the composition using a procedural approach and as pointed

out in [van der Aalst 2006] they over constrain the composition process making

it rigid and not able to handle the dynamically changing situations. Further, the

focus on data, temporal, security and other non-functional requirements is not

thoroughly investigated and adding these aspects makes the composition even

more complex, as again they are proposed as a new layer on the top of existing

WS-BPEL based processes.

The proliferation of partial solutions, the lack of expressiveness and simplicity

to handle both functional and non-functional aspects, the lack of integration, the

lack of recovery actions and the lack of flexibility mark the motivation for our work.

1.2 Thesis objectives and main contributions

The objective of our thesis is to investigate a non-procedural approach for Web

services composition that integrates different stages of the process life-cycle in an

unified and declarative way. Declarative approach results in a highly flexible com-

5

Chapter 1. Introduction

position process that may be needed to cater for dynamically changing situations

while integration simplifies the approach by using the similar formalism for com-

position design, verification and monitoring. The use of declarative and integrated

approach further allows to have recovery actions such as re-planning (to cater for

monitored violations during process execution) which are difficult to achieve using

traditional approaches.

In this thesis, we have proposed an integrated declarative event-oriented frame-

work, called DISC (Declarative Integrated Self-healing web services Composition),

that serves as a unified framework to bridge the gap between the process design, ver-

ification and monitoring and thus allowing for self-healing Web services composition.

Below we briefly discuss our main contributions.

1.2.1 Declarative composition design

The proposed framework allows for a composition design that is declarative and

can accommodate various aspects such as partial or complete process choreography

and exceptions, data relationships and constraints, Web services dynamic binding,

compliance regulations, security or temporal requirements or other non-functional

aspects. We have based the composition design on event-calculus and defined pat-

terns for specifying the functional and non-functional aspects using event-calculus

for process specification, instead on relying on different formalisms or extensions for

specifying different aspects as required by traditional approaches such as WS-BPEL.

The use of event-calculus as the modeling formalism allows for integrating

the existing work on composition design [Cicekli 2000], composition monitoring

[Mahbub 2004], authorization [Bandara 2003, Gaaloul 2010], and work on model-

ing other related aspects. The proposed models in the thesis thus can be further

modified and extended and our framework acts as a bridging agent between com-

position design, verification and monitoring. Further, there have been some ap-

proaches that attempt to translate WS-BPEL based process to event-calculus for

verification [Fdhila 2008] and also LTL based declarative process to event calcu-

lus [Kowalski 1986a], that justify the expressiveness of event calculus for process

specification.

1.2.2 SAT-based process verification

For the process design-time verification we have proposed a symbolic model checking

approach using satisfiability reasoning. The need for the satisfiability solving for

process verification stems from multiple sources. First, as the composition process

may be declarative and partially defined by only specifying the constraints that

mark the boundary of the solution to the composition process and the objective

is to find solution(s) that respect those constraints (and which is connectivity

verification property), satisfiability solving can thus be used to solve the problem

by encoding it as a satisfiability problem, representing the constraints.

6

1.2. Thesis objectives and main contributions

Further, the state space of a declarative process can be significantly large, as the

process is only partially defined and all the transitions may not have been explicitly

defined (in contrast to procedural approaches), and thus it makes it easier to do

the symbolic model checking instead of using explicit representation of state transi-

tion graphs and/or using the binary decision diagrams. The verification properties

can include the connectivity, compatibility and behavioral correctness (safety and

liveness properties) and the proposed approach allows for both model checking the

verification properties and for identifying and resolving the conflicts in the process

specifications a result of process verification. Further, as the conflict clauses re-

turned by the SAT solver can be very large, we have proposed filtering criteria to

reduce the clauses and defined patterns for identifying the nature of conflicts.

1.2.3 Event-based process monitoring

For the execution-time monitoring (and recovery from any monitored violations)

we have proposed an event-based message-level monitoring approach that allows

to reason about the events and does not require to define and extract events

from process specification, as the events are first class objects of both design

and monitoring framework. As the proposed monitoring approach builds upon

event-calculus based composition design, it allows for the specification of mon-

itoring properties that are based on both functional and non-functional (such

as temporal, security or their combinations) requirements. These properties are

expressed as event-calculus axioms and can be added to the process specification

both during process design and during the process execution. The proposed

monitoring approach both allows for KPI’s measurement2 (that may be needed

for process evaluation or result in proactive detection of any violations) and

the detection of violations once they happen. Different levels of detection are

provided such as detection to the process execution plan, detection to the viola-

tions based on any properties and events added during process execution and others.

Further, the web services composition problem is traditionally considered as a

planning task, given a goal the planner can give a set of plans leading to the goal.

However, in case of run-time monitoring we already have a plan to execute and in

case of violation it is important to compute the side-effects this violation has on the

overall process execution. Our approach is based on event calculus and the use of

event calculus is twofold, at design "abduction reasoning" can be used to find a set

of plans, and at the execution time "deduction reasoning" can be used to calculate

the effect of run-time violations. This also allows to cater for the "ripple effect" any

violation has on the process execution, and for proactive detection of any possible

violation that is bound to happen later in the process execution, as a result of current

detected violation. In addition, once a violation is detected and a recovery solution

2We will collectively use the term KPI’s measurement in the paper, however it can signify

monitoring the resource utilization, SLA’s fulfillment, or some domain specific KPIs that may be

required to measure the performance or to fulfill some domain specific monitoring requirements.

7

Chapter 1. Introduction

(for instance re-planning) is sought, the proposed approach allows both to find a

new solution based on the current process state (thus specifying what steps should

be taken now to recover from the violation and hence termed forward recovery)

or to backtrack to some previous activity (if possible) and try to find a new from

there. Then, any recovery solution takes care of the functional and non-functional

properties associated with the process, when performing recovery.

1.2.4 Implementation architecture

The proposed event-calculus models presented in this work are mentioned using the

discrete event calculus language [Mueller 2006] and they can be directly used for

reasoning purposes. We have proposed an implementation architecture and imple-

mented a Java-based application that allows to abstract the event-calculus mod-

els to the end-user. It facilitates the composition design process by providing a

user-friendly interface for specifying composition design (including entities and con-

trol/data flow between them) and allows to automatically generate the correspond-

ing event-calculus models, invokes the reasoner and shows the results returned by

the reasoner.

The proposed approach uses the DECReasoner as the event-calculus reasoner,

however as we discussed in [Zahoor 2010a, Zahoor 2010b] the event-calculus to SAT

encoding process provided by the reasoner, does not scale well. We have thus modi-

fied the DECReasoner code to gain substantial performance improvement as evident

in performance evaluation results (Section-9.4). Further, we have presented a real

world crisis management case-study and discussed how a process-based approach can

be beneficial. For process verification, we extended DECReasoner [Mueller 2006] to

include zchaff as a solver and then using zverify to find the unsatisfiable core. This

also serves as an example of extensibility of the proposed framework as different

reasoners can be used to analyze the same SAT-based encoding.

1.3 Thesis Structure

The rest of the thesis is organized as follows: first we will briefly discuss the context

and background needed to understand the problem domain, explicitly formalize the

problem and present the motivating example in Chapter-2. Further in Chapter-3,

we will discuss the related work, focusing on the traditional approaches proposed in

the literature deal for composition process design, verification and monitoring. We

will also provide a detailed synthesis highlighting the limitations these approaches

have in terms of being procedural, lack of expressivity and lack of integration.

Then, in Chapter-4 we will discuss the proposed event-calculus based composi-

tion design by first presenting the event-calculus models for different components

that constitute the composition design. We will then discuss the event-calculus

based models for specifying different control/data flow constructs in Chapter-5 and

will then extend the composition process design in Chapter-6, for the incorporation

8

1.3. Thesis Structure

of non-functional (such as temporal and security) requirements. We will organize

the models in a pattern-based approach and we will specify the generic patterns for

specifying different functional and non-functional properties and this will allow to

re-use the patterns for the process specification.

Then we will discuss the proposed symbolic model checking approach using sat-

isfiability reasoning for composition process verification, Chapter-7, and the event-

based monitoring (and recovery) in Chapter-8. We will then discuss the implemen-

tation details in Chapter-9 presenting the architecture, the ECWS tool, the changes

to the DECReasoner encoding process to improve performance and detailed perfor-

mance evaluation results based on the motivation example. Finally we will discuss

the limitations of the proposed approach, future perspectives to conclude the thesis

in Chapter-10.

9

Part II

BACKGROUND

Chapter 2

Context and problem definition

Contents

2.1 Context . 13

2.1.1 Web Services Description Language (WSDL) 14

2.1.2 The SOAP communication protocol 14

2.1.3 Service-Oriented Architecture (SOA) 15

2.1.4 Business Process Modeling Notation (BPMN) 15

2.1.5 Business Process Execution Language (WS-BPEL) 16

2.1.6 Event-calculus . 17

2.2 Motivating example . 19

2.2.1 Overview . 19

2.2.2 Case Study: Recovery of priority items at ANH 20

2.3 Problem definition . 24

2.3.1 Lack of integration . 24

2.3.2 Procedural composition model 24

2.3.3 Verification . 25

2.3.4 Event-based monitoring . 26

2.3.5 Synthesis for the motivating example 26

2.4 Summary . 27

2.1 Context

In this section we will briefly discuss the different concepts and background knowl-

edge needed for understanding the problem domain. We will first discuss how the

Web services can be defined using the Web Services Description Language (WSDL)

and how they can be accessed using the (SOAP) communication protocol. Fur-

ther, we will briefly discuss the Service-Oriented Architecture (SOA). Then, we will

discuss the Business Process Modeling Notation (BPMN) for defining and the Busi-

ness Process Execution Language (WS-BPEL) for implementing the orchestration

of Web services into added value processes. Further, we will also briefly discuss

the background needed and motivation for using the event-calculus as the modeling

formalism.

Chapter 2. Context and problem definition

2.1.1 Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is used to describe a Web service and

it specifies the location of the service and the operations the service exposes to the

rest of the world. The service description using WSDL takes the form of an XML

document and WSDL uses following major elements: <types> specify the data

types while the <message> element specify the messages used by the web service.

The <portType> element is used to specify the operations a Web service provided

while the <binding> element specifies the communication protocols used by the

service. A skeleton WSDL document1 for service description is shown below:

Structure of a WSDL document

<definitions>

<types> definition of data types used by the Web service. </types>
<message> definition of messages used by the Web service. </message>
<portType> definition of a port type supported by the Web service. </portType>
<binding> definition of a service binding. </binding>

</definitions>

2.1.2 The SOAP communication protocol

SOAP is a XML-based standardized platform and language independent commu-

nication protocol that allows for communication between applications over the

internet. SOAP was designed to allows communication between applications over

HTTP, instead of Remote Procedure Calls (RPC) between objects. A SOAP

message is a XML document containing the following elements: an Envelope

element that identifies the XML document as a SOAP message, a Header element

that contains header information, a Body element that contains call and response

information and a Fault element containing errors and status information. A

Skeleton SOAP message2 is shown below:

Skeleton SOAP Message

<?xml version=1.0?>

<soap:Envelope>
The SOAP Envelope element is the root element of a SOAP message and defines the XML document
as a SOAP message.

1http://www.w3schools.com/wsdl/wsdl_intro.asp
2http://www.w3schools.com/wsdl/wsdl_intro.asp

14

2.1. Context

<soap:Header>
The optional SOAP Header element (which should be first child of envelope element, if present)
contains application-specific information (like authentication etc.) about the SOAP message.
</soap:Header>

<soap:Body>
The required SOAP Body element contains the actual SOAP message intended for the ultimate
endpoint of the message.

<soap:Fault>
The optional SOAP Fault element is used to indicate error messages and can only appear once in
a SOAP message.

</soap:Fault>
</soap:Body>
</soap:Envelope>

2.1.3 Service-Oriented Architecture (SOA)

Web services can also be used to implement a Service Oriented Architecture (SOA)

which is defined to be a flexible set of design principles for system development, that

rely on the use of services to support the development of distributed, interoperable

and agile applications3. The vision associated with the SOA is to separate functions

into services, which are autonomous, platform independent and are accessible over

a network. As the Web services are autonomous, independent of platforms and

programming languages and are accessible over Internet, they can make functional

building-blocks of SOA.

Further, the SOA allows users to combine and reuse the services to create new

applications and for the Web services, high-level languages such as WS-BPEL and

specifications such as WS-CDL and WS-Coordination can be used for the orches-

tration of fine-grained services into more coarse-grained business services. Before

going into details of WS-BPEL for Web services composition process orchestration,

we will briefly discuss the Business Process Modeling Notation (BPMN) that can be

used to model the composition process at an abstract level and the BPMN diagrams

can then be converted into WS-BPEL for their execution.

2.1.4 Business Process Modeling Notation (BPMN)

The Business Process Modeling Notation (BPMN) is a graphical notation for speci-

fying business processes based on a flowcharting technique. The BPMN is intended

to be a standard notation that is understandable by business analysts who create the

processes, the technical developers responsible for implementing the processes, and

the business managers who monitor and manage the processes. Process modeling

using BPMN is simple and intuitive and it has a small set of of graphical elements

that are categorized into following categories4:

3http://en.wikipedia.org/wiki/Service-oriented_architecture
4http://en.wikipedia.org/wiki/Business_Process_Model_and_Notation

15

Chapter 2. Context and problem definition

• Flow Objects including Events (that specify something that happens), Activ-

ities (that specify the kind of work which must be done) and Gateways (that

represent forking and merging of paths).

• Connecting Objects which include Sequence Flow (which shows in which order

the activities will be performed), Message Flow (that represent what messages

flow) and Association (which is used to associate an Artifact to flow objects).

• Swimlanes which include Pool (which represents participants in a process)

and Lanes (that are used to organize and categorize activities within a pool

according to function or role).

• Artifacts including Data Object (representing input/output data of an activ-

ity), Group (to group different activities) and Annotations.

Figure 2.1: A simple BPMN process from the BPMN specification

A simple BPMN process with two activities, taken from the BPMN specifica-

tion, is shown in Figure-2.1. As the primary objective of BPMN includes to bridge

the gap between different stake-holders including business analysts and developers

responsible for implementing the process, the BPMN specification includes an infor-

mal and partial mapping from BPMN to WS-BPEL, a more detailed mapping has

been implemented in a number of tools such as BPMN2BPEL. However, any such

mapping is partial and it is possible that some BPMN models cannot be translated

into WS-BPEL. Further, the problem of synchronization of BPMN diagrams and

WS-BPEL so that any modification to one is propagated to the other, is even more

complicated.

2.1.5 Business Process Execution Language (WS-BPEL)

Web Services Business Process Execution Language (WS-BPEL) is an XML based

programming language to specify the orchestration of fine-grained services into more

coarse-grained value added processes. As the WS-BPEL is an XML-based program-

ming language, it has three basic components: Programming logic that is defined

16

2.1. Context

using WS-BPEL itself, Data types from XSD (XML Schema Definition) and In-

put/Output specified using the WSDL. A sample WS-BPEL process is shown below:

Skeleton WS-BPEL Message

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/" ... >

<import importType="http://schemas.xmlsoap.org/wsdl/" location="" ... />

<partnerLinks>
<partnerLink name="..." partnerLinkType="..." partnerRole="..."/>
</partnerLinks>

<variables>
<variable ... />
</variables>

<invoke partnerLink="..." operation="..." inputVariable="..." />
</process>

2.1.6 Event-calculus

In order to model the composition design, our approach relies on the Event Calculus

(EC) [Kowalski 1986a]. Event Calculus is a logic programming formalism for

representing events and their side-effects and can infer "what is true when" given

"what happens when" and "what actions do" (see figure 2.2). The "what is true

when" part both represents the state of the world, called initial situation and the

objective or goal. The "what actions do" part states the effects of the actions. The

"what happens when" part is a narrative of events.

What happens when

What actions do

What is true when
Event calculus

axioms

Figure 2.2: Event calculus components

The EC comprises the following elements: A is the set of events (or actions),

F is the set of fluents (fluents are reified5), T is the set of time points, and X is a

set of objects related to the particular context. In EC, events are the core concept

that triggers changes to the world. A fluent is anything whose value is subject to

change over time. EC uses predicates to specify actions and their effects. Basic

event-calculus predicates used for modeling the proposed framework are:

• Initiates(e, f, t) - fluent f holds after timepoint t if event e happens at t.

• Terminates(e, f, t) - fluent f does not hold after timepoint t if event e happens at t.

5Fluents can be quantified over and can appear as the arguments to predicates.

17

Chapter 2. Context and problem definition

• Happens(e, t) is true iff event e happens at timepoint t.

• HoldsAt(f, t) is true iff fluent f holds at timepoint t.

• Initially(f) - fluent f holds from time 0.

• Clipped(t1, f, t2) - fluent f was terminated during time interval [t1, t2].

• Declipped(t1, f, t2) - fluent f was initiated during time interval [t1, t2].

The choice of using EC as the modeling formalism is motivated by several rea-

sons. First, EC integrates an explicit time structure (this is not the case in the

situation calculus) independent of any sequence of events (possibly concurrent).

Then, given the composition design specified in the EC, a reasoner can be used to

instantiate the composition design. Further, EC is very interesting as the same log-

ical representation can be used for verification at both design time (static analysis)

and runtime (dynamic analysis and monitoring). Further, it allows for a number of

reasoning tasks that can be broadly categorized into deductive, abductive and in-

ductive tasks. In reference to our proposal, at composition design stage "abduction

reasoning" can be used to find a set of plans or to identify any conflicts and at the

composition monitoring stage, "deduction reasoning" can be used to calculate the

effect of run-time violations. This leads to bridging the gap between composition

design, verification and monitoring as the same framework is used with different

reasoning approaches (see figure 2.3 for the mapping of event-calculus to the pro-

posed framework). In addition, the use of event-calculus results in an extensible

approach as the proposed models can be modified and extended in order to model

other related aspects.

Figure 2.3: Event-calculus for the proposed framework

The event calculus models presented in this thesis are modeled using the discrete

event-calculus language [Mueller 2006]. All the variables (such as service, time) are

universally quantified and in case of existential quantification, it is represent with

variable name within curly brackets, {variablename}. Further, for spacing issues we

will abbreviate some words and the abbreviated words would be used in models and

any such abbreviation would be explicitly mentioned before presenting the model.

18

2.2. Motivating example

Further, we will use the DECReasoner6 as the event-calculus reasoner. The DE-

CReasoner is a program for performing automated commonsense reasoning using

the discrete event calculus. It supports different reasoning modes (as required by

the proposed approach) including deduction, abduction, model finding and others.

It also supports the commonsense law of inertia, conditional effects of events, release

from the commonsense law of inertia, indirect effects of events, state constraints,

causal constraints and other aspects allowing to model real-world domains. In or-

der to use the DECReasoner, domain description (specified using Discrete Event

Calculus Reasoner language) that includes an axiomatization describing domains of

interest, observations of world properties at various times, and a narrative of known

event occurrences is placed in a file. The DECReasoner is then invoked for the do-

main description and it firsts transforms the domain description into a satisfiability

(SAT) problem. It then invokes a SAT solver, which produces zero or more solutions

and resulting solutions are decoded and displayed to the user.

2.2 Motivating example

Before formalizing the problem statement, let us now briefly discuss the motivating

example that we will use as a base for describing various aspects of the proposed

approach discussed in this thesis.

2.2.1 Overview

For the motivating example, we consider a composition process being setup to

semi-automate the disaster plan for the Australian National Herbarium (ANH),

Canberra7. The choice of the motivating example stems from multiple objectives.

First, it highlights the need for a process based approach to respond to a crisis

situation, which is normally defined informally in the document form. A formal

approach will allow to thus verify the recovery process to identify any possible

conflicts and anomalies in process specification. Further, the composition process

to handle such a situation is highly dynamic and possibly partially defined,

is characterized by temporal constraints, coordination of multiple services and

multiple data sources, and require the composition process to be self-healing and

flexible to adapt to continuously changing environment.

The possible threats to the ANH collection include threats from fire and water

and it is suggested that the risks due to bush-fire and lightening strikes are very real

due to its location at the base of Black Mountain and close proximity to bushland.

The immediate response to handle any fire-based disaster situation (for simplicity,

we will only consider the fire-based disaster situation) includes evacuating the

building in response to the fire alarm and it is suggested that re-entry of the

building(s) and recovery may not commence until the ACT Fire Brigade and

6http://decreasoner.sourceforge.net/
7http://www.anbg.gov.au/cpbr/disaster-plan/

19

Chapter 2. Context and problem definition

any other Emergency Service that may be in attendance have given permission.

Further, the recovery should not commence until after a plan has been developed

for conducting the recovery. The disaster plan suggests a role-based approach

and different user groups have been assigned different roles for disaster handling

including the Collections Recovery Coordinator (CRR), the Facilities Coordinator

(FC) and the Salvage Controllers (SC).

The role of collection recovery coordinator (CRR) include the overall manage-

ment of recovery process such as ensuring security, lighting, and delegating the

task of notifying staff to assist in the recovery operation, staff (and any volunteers)

management and logging of hours worked. Further the disaster plan suggests that

the CRR should nominate someone to deal with media enquiries. In addition,

the CRR should ask someone to contact the Bureau of Meteorology to obtain

a updated local forecast which may determine the course of action to be taken

(continuing storms may require SES to rig tarpaulins over the damaged area). CRR

should also monitor progress and adjust plans (to cater for bottlenecks, complaints

from salvage workers, the effect of the environmental conditions and others) as

appropriate. The communication with insurance company and progress update

to senior management is also required. Then, the task of facilities coordinator

(FC) is to ensure that the recovery Teams have the proper equipment needed to

clean, salvage and stabilize the damaged collection materials. Further, the Salvage

Controller (SC) is responsible for initial cleanup, salvaging, sorting and stabilization

of damaged collection materials by creating recovery teams.

Before going further, let us briefly review the tasks assigned to CRR and if a

process-based approach can be beneficial. First, a lot of tasks have been assigned

to CRR and the tasks of assigning shifts and recording the hours worked by staff

and volunteers would be very difficult to handle manually. Then it is suggested that

someone should notify the staff, someone should contact meteorology department

and someone should handle media inquires, how that someone is chosen is left to the

choice of CRR. In contrast, using a process-based approach the tasks for allocating

user shifts can be automated, a service-based approach to handling media inquires

can be provided, meteorology department Web service can be contacted for getting

the local forecast and re-adjusting the plans and the task of notifying users can be

automated. Further the insurance department Web service can also be contacted.

2.2.2 Case Study: Recovery of priority items at ANH

For this case-study we consider an unfortunate fire-incident as a result of lightning

strike and the recovery of the items for priority salvage and treatment at ANH.

These items include the Type specimens and as a result of fire, they may get

smoke-damaged and the recovery plan suggest to either freeze or transfer them to

some other location. The recovery process however cannot begin, unless the fire

20

2.2. Motivating example

has been (partially) contained and emergency staff is given permission to enter the

premises and a plan for recovery has been developed by the CRR in collaboration

with FC and SC. Now we will briefly describe the process by first highlighting

different entities that constitute the composition process and then the control/data

flow, temporal and security constraints for the process. Different entities for the

motivating example include:

Web services: The composition process can invoke different Web services

such as once the fire-alarms are activated, the composition process contacts

the Web services provided by different emergency services such as fire-brigade

(FireBrigadeWS), police (PoliceWS), ambulance (AmbulanceWS) and also invokes

a service to call emergency handling staff (CallEmergencyStaff). Further, the

meteorology department (MetDepartmentWS) and insurance company Web service

(InsuranceWS) can also be invoked by the composition process, instead of relying

on CRR to designate someone to contact them. Further, it is important to contact

the meteorology department Web service as soon as possible to get the timely

updates needed for planning.

Conditions: Conditional invocation of different Web services (or activities) is mod-

eled using conditions such as the arrival of disaster handling staff (CRR/FC/SC)

is modeled as conditions Has(CRR/FC/SC)Arrived. The help from a professional

conservator to provide advice on-site to help the SC and recovery teams in

sorting material may be needed. We consider the service to call emergency staff

(CallEmergencyStaff) also contacts the conservator and his arrival is modeled

by the condition, HasConservatorArrived. The decision to seek external help (if

needed) is modeled as condition IsExternalHelpNeeded). Further, the fire-alarm

resulting in composition process invocation, can also be only a false-alarm and it is

modeled as a condition called NotAFalseAlarm.

Activities: Different activities represent the task carried out by the recovery

teams such as at the arrival of fire brigade staff, the fire containment starts which

is modeled as an activity FireContainment). Then the task to examine the nature

and extent of damage is modeled as an activity called ExamineDisasterSite, the

task to plan the recovery is modeled as the activity PlanRecovery. The FC/SC

collaborate for the recovery of priority items, and the recovery task is modeled by

an activity called, RecoverPriorityItems.

The process is however likely to change, with new activities can be added once

the process is in execution. We now specify the control/data flow for the composition

process by identifying dependencies that exists between different entities discussed

above. We will also present the composition process modeling, using the flow chart

like general notation.

• The fire-alarm can also be only a false-alarm , so if the CRR is available at site

21

Chapter 2. Context and problem definition

Figure 2.4: Motivating example - CRR available at site

(modeled as a condition, IsCRRAvailable), he can verify if it is not the case

(modeled as a condition NotAFalseAlarm) and invoke the emergency services

if needed, Figure-2.4.

• However, if the CRR is not available, the composition process can invoke

the services CallEmergencyStaff and FireBrigadeWS itself, and once the fire-

brigade reaches site (HasFireBrigadeArrived is true), they can verify if it is

not just a false alarm (NotAFalseAlarm). The FireContainment activity can

only start if the fire-brigade staff has decided that it is not just a false alarm

(NotAFalseAlarm). Further, once the CRR reaches the site he can decide to in-

voke other emergency services than CallEmergencyStaff and FireBrigadeWS,

if needed. The composition process model from Figure-2.4 can thus be updated

as shown in 2.5.

Figure 2.5: Motivating example - CRR not available at site

• Activity for examining the disaster site (ExamineDisasterSite) cannot be

started unless the CRR has reached the site and FireContainment activity

is finished. Then, for deciding on the recovery Plan (PlanRecovery activity)

and deciding on if external help is needed (IsExternalHelpNeeded) , CRR, FC

and SC should have reached the site. However PlanRecovery activity can

be started once the CRR is there (and others may not have yet reached the

site) but to finish the planning process, approval from all three is needed.

Further, the priority items recovery (RecoverPriorityItems) activity cannot be

22

2.2. Motivating example

started unless the FireContainment activity has finished and recovery has been

planned (PlanRecovery activity finishes). The updated composition model is

shown in Figure-2.6.

Let us now briefly discuss different temporal and security constraints associated

with different services and activities in the composition process, and the constraints

associated with the overall goal for the composition process. These temporal and

security constraints are only tentative and are likely to change during process exe-

cution, for instance the time needed for fire-containment cannot be determined in

advance and is dependent on nature and extent of fire.

Figure 2.6: Motivating example - a procedural approach

• The smoke damaged, wet specimens should be treated as soon as possible and

any delay of more than an hour may result in deterioration of the specimens.

This serves as the composition process goal to ideally have the RecoverPrior-

ityItems activity finished before one hour.

• It is estimated that the time needed for ambulance, fire-brigade and police to

reach the site can be probably 15 minutes. However, these are only estimated

delays and the arrival time for emergency services can vary based on factors

such as weather, time and others.

• The arrival time for the staff (CRR/FC/SC/Conservator) varies, however it

is estimated that it may take between 15-25 minutes for the staff to reach the

site.

• Only once the fire-brigade reaches the site, the time required for (possibly

partial) fire-containment can be somewhat estimated.

• The emergency Web services (FireBrigadeWS, PoliceWS and others) should

only be invoked by the CRR, however if the CRR is not available (emergency

23

Chapter 2. Context and problem definition

situation in non-working hours), the process automatically invokes FireBri-

gadeWS and CallEmergencyStaffWS and wait for CRR arrival for invoking

other services.

2.3 Problem definition

In this section we will provide an overview of the problem being solved in this

thesis and leave the detailed synthesis for limitations of traditional approaches, for

Chapter-3. We will discuss the problem by first discussing the lack of integration

and limitations of traditional approaches at each composition process life-cycle stage

and then will discuss the motivating example highlighting the challenges it poses.

2.3.1 Lack of integration

Web services composition is highly active and widely studied research direction and

in the literature a number of approaches have been proposed to handle different

aspect related to the composition process at different stages of composition process

life-cycle. The traditional approaches focus only on some stages of process life-cycle

and this lack of integration results in a complex model such as mapping the WS-

BPEL based process specification to a particular automata with guards, and using

SPIN model checker [Fu 2004] for verification, WS-BPEL to timed automata and

using UPPAAL model checker [Guermouche 2009b] for checking temporal proper-

ties. Further, it is not always possible to have a complete transformation from one

modeling approach to other and with the addition of non-functional (such as se-

curity and temporal) requirements the transformation becomes even more complex

and challenging. In addition, the lack of integration leads to the approaches that

does not allow to learn from the run-time failures to provide the recovery actions,

such as re-planning or alternative path finding.

2.3.2 Procedural composition model

A process model is called procedural when it contains explicit and complete infor-

mation about the flow of the process but only implicitly keeps track of why these

design choices have been made and if they are indeed part of the requirements or

merely assumed for specifying the process flow [Goedertier 2008]. Although specify-

ing exact and complete flow adds a lot to the control over the composition process,

however as there is tradeoff between the control and flexibility, this control comes

at the expense of process flexibility and thus making the process rigid to adapt to

continuously changing situations and possibly not even conforming to the process

specification requirements. On the other hand, a process is termed as declara-

tive when it models the minimal (and only specified) requirements that mark the

boundary of the process and any suitable execution plan which meets the specified

requirements is sought.

24

2.3. Problem definition

The proposed graph-based composition modeling approaches are mostly proce-

dural and although the graph-based approaches tend to be simpler and intuitive

for the process modeler for the composition design, they over-constrain the process

assuming the design choices that may not be present in the requirements but only

added to specify the process flow. The paradigm change from procedural to declar-

ative process modeling was advocated in [Pesic 2006] by introducing the ConDec

language for declarative process modeling. However, we believe that the traditional

AI planning (and so as rule-based) approaches for composition process modeling

are declarative and they have advantages in terms of expressibility, flexibility and

adaptability and dynamism as they are more expressive based and are based on for-

mal logic and flexible as only constraints that mark the boundary of the process are

specified. Further, the declarative approaches allow for specifying more workflow

patterns than the procedural ones.

Figure 2.7:

As an example let us consider a simple process with three activities ActivityA,

ActivityB and ActivityC. The only requirement regarding the control flow for the

composition process is that the all the activities should not be started in parallel. A

procedural approach will require enumerating all the possible combinations such as

the few shown in the Figure-2.7. In contrast a declarative approach will only specify

the constraint (such as if ActivityA has started then neither ActivityB nor ActivityC

can start at the same time) which will serve as a boundary for any solution to the

composition process, without explicitly enforcing a solution.

2.3.3 Verification

The proposed approaches for the composition verification, in general, require map-

ping the process (mostly defined using procedural approaches such as WS-BPEL)

to some formal logic (such as petri-nets, automata or process logic) and then us-

ing model checkers to verify the composition process. This transformation based

approach has two major limitations, first the proposed verification approaches are

25

Chapter 2. Context and problem definition

based on traditional procedural approaches and as we will detail in the Chapter-3,

procedural approaches have less expressibility, flexibility and adaptability and dy-

namism as compared to the declarative ones. Further, the limited expressibility

makes it difficult to verify the non-functional properties (such as temporal, security

requirements or more importantly their combinations) associated with the compo-

sition process as for first, it is difficult to specify the non-functional properties using

the traditional approaches such as WS-BPEL and a number of approaches have

been proposed as an extension to WS-BPEL for specifying non-functional aspects

and then it is not trivial (if possible) to add formal semantics to them for their

verification.

Specifying the exact and complete sequence of activities to be performed for the

composition process, as required by the traditional procedural approaches, however

does make it possible to use proposed automata or Petri-nets based approaches for

design-time verification of composition process. In contrast, for the declarative ap-

proaches the process may be only partially defined and thus this makes it difficult to

use traditional approaches for the process verification as the transition system for a

declarative process can be very large. Further, the design-time verification should be

coupled with execution-time monitoring and complexity of these approaches make

them difficult to use for verifying the functional and non-functional constraints as-

sociated with the process while handle process change or recovery.

2.3.4 Event-based monitoring

Traditional approaches for the composition monitoring are proposed as an extension

to some particular run-time and are tightly coupled and limited to it. In contrast

the use of an event-based approach works on the message-level and thus is un-

obtrusive, independent of run-time and allows for integration of other systems and

processes, as discussed in [Moser 2010]. Then, the traditional monitoring approaches

[Barbon 2006a, Baresi 2009, Mahbub 2004] build upon composition frameworks that

are highly procedural, such as WS-BPEL, an this in-turn poses two major limita-

tions. First, they limit the benefits of any event-based monitoring approach as the

events are not part of the composition framework and functional and non-functional

properties are not expressed in terms of events and their effects. Secondly the use

of procedural approach for process specification does not bridge the gap between

organization and situation in a way that it is very difficult to learn from run-time

violations and to change the process instance (or more importantly process model)

at execution time, and it does not allow for a reasoning approach allowing for effects

calculation and recovery actions such as re-planning or alternate path finding as we

discussed in [Zahoor 2010a].

2.3.5 Synthesis for the motivating example

Let us briefly review the motivating example and discuss the limitations and chal-

lenges the traditional approaches pose while modeling such a composition process.

26

2.4. Summary

We first consider the composition model specification that is traditionally specified

using the workflow based approaches such as BPMN and later mapped to WS-BPEL

for process execution. Figure-2.6 shows an attempt to model the composition pro-

cess using a general flow chart based notation, focusing on only entities and the

control flow between them. As evident from the model, the composition process

is very complicated and the semantics are not clear leading to many interpretation

for the single process. Adding temporal, security and other constraints will further

complicate the model and with the increase of entities and their interactions, it

would be difficult and time consuming even to have a proper visual representation

for the process model.

Figure 2.8: Motivating example - a declarative approach

In contrast the proposed declarative approach allows user to specify the con-

straints (including control/data flow, security, temporal and others) from an in-

dividual service or activity perspective (see Figure-2.8). This allows to specify the

composition process in a flexible way without over-constraining the process and only

specifying the constraints that are part of the problem (and not added for merely

process modeling). These constraints mark the boundary of any acceptable solution

and a reasoner can then be used to connect these process fragments, respecting the

associated constraints.

Further, the successful execution of the process is challenging provided highly

dynamic and continuously changing situation. For instance, the time-taken by the

fire-brigade and emergency staff to reach the site can be somewhat defined and es-

timated but the time-taken for the fire-containment process itself is highly relative.

Then, it may not be possible to define all the monitoring properties during compo-

sition design and even if the design-level constraints are respected, the occurrence of

external events during process execution can have impacts on the process execution.

2.4 Summary

In this chapter, we have first briefly discussed different concepts and background

knowledge needed for understanding the problem domain in Section-2.1. We have

discussed how the Web services can be defined using the Web Services Description

Language (WSDL) and how they can be accessed using the Simple Object Access

Protocol (SOAP). Further, we will discuss the Service-Oriented Architecture (SOA).

27

Chapter 2. Context and problem definition

Then, we will discuss the Business Process Modeling Notation (BPMN) for defining

and the Business Process Execution Language (WS-BPEL) for implementing the

orchestration of Web services into added value processes. Further, we have also

briefly discussed the background needed and motivation for using the event-calculus

as the modeling formalism.

Then we have presented the motivating example in Section-2.2, that we will use

as a base for describing various aspects of the proposed approach discussed in this

thesis. For the motivating example, we have considered a composition process being

setup to semi-automate the disaster plan for the Australian National Herbarium

(ANH), Canberra. We have presented the motivation for choosing the disaster-plan

as the motivating example and expressed the example in detail highlighting different

components, control/data flow and security and temporal constraints amongst the

components.

Further, in Section-2.3 we have have formally presented the problem that is

being considered in this thesis and identified limitations of proposed approaches in

the literature in terms of having lack of integration and limitations and rigidness of

having procedural composition model. We have also discussed the challenges and

motivation for design time verification and event-based execution time monitoring of

declarative process and how the lack of integration makes it difficult to have recovery

actions such as re-planning once a violation is detected during process execution.

28

Chapter 3

State of the art

Contents

3.1 Composition process modeling 29

3.1.1 Graph based modeling approaches 30

3.1.2 AI Planning based composition model 32

3.1.3 Modeling non-functional requirements 36

3.1.4 Synthesis . 36

3.2 Process verification . 38

3.2.1 Automata based approaches 39

3.2.2 Petri net based approaches 39

3.2.3 Process Algebras based approaches 41

3.2.4 Synthesis . 41

3.3 Process monitoring and recovery 42

3.3.1 Process monitoring . 43

3.3.2 Recovery . 43

3.3.3 Synthesis . 44

3.4 Summary . 45

The event-based approach for Web services composition presented in this thesis both

aims to integrate different stages of process life-cycle, Figure-1.2, and advocates the

use of declarative event-based approach at different stages. In this chapter, we will

therefore briefly discuss the proposed approaches in the literature for handling each

(or some) of process life cycle stages.

3.1 Composition process modeling

The composition process modeling is the first and most important stage of the

composition process life cycle, Figure-3.1. The objective of composition process

modeling is to provide high-level specification independent from its implementation

that should be easily understandable by process modeler who create the process,

the developers responsible for implementing the process, and the business managers

who monitor and manage the process.

In the literature, different approaches for the composition process modeling have

been proposed having their strengths and weaknesses in terms of ease of usage

Chapter 3. State of the art

Figure 3.1: Web services composition process design

and expressibility of the modeling language. Further, as it is important to have

a process model properly defined, verified, and refined before being implemented,

different approaches offer varying level of complexity for model-checking the com-

position process. The proposed approaches for the composition process modeling

can be broadly categorized into Workflow based composition and AI planning based

approaches, as discussed in [Rao 2004a] or similarly as either graph-based or rule-

based approaches as discussed in [Lu 2007]. In this section, we will first briefly

discuss the proposed graph (workflow) and AI planning based approaches and then

the proposed approaches for incorporating non-functional (security and temporal)

requirements. Then, we will provide a detailed synthesis highlighting the challenges

posed by and the short-comings of the traditional approaches for modeling services

composition.

3.1.1 Graph based modeling approaches

The graph (or workflow) based process modeling approaches allow for the speci-

fication of process definition in an intuitive and easy way using graphical process

models based on graph theory or variants. Activities within the process are

represented as nodes and control flow and data dependencies between activities

is defined using transitions or arcs between activities. However, graph-based

process models can include arbitrariness and lack strictness allowing for different

interpretation of same process models (or multiple models for the same process

requirements). As a result, many graph-based models have their origin in Petri

net theory (or on different variants of Petri nets to provide extra expressibility

and functionality) including High Level Petri nets [Ellis 1993], Low Level Petri

nets [Wikarski 1996], and Colored Petri nets [Merz 1994], a detailed discussion can

be found in [Janssens 2000]. Petri nets based approaches have the advantage of

providing the formal semantics despite the graphical nature of the process and that

in-turn allows for analyzing and verifying the properties such as deadlocks.

30

3.1. Composition process modeling

The proposed graph-based process modeling approaches includes the Business

Process Modeling Notation (BPMN) which provides a graphical notation for

specifying business processes using a flowcharting technique very similar to activity

diagrams from Unified Modeling Language (UML). BPMN aims to serve as a

standard notation that is understandable by all business stakeholders and allows to

bridge the gap between business process design and implementation. The proposed

modeling approaches also includes [Sadiq 1999] in which authors propose to divide

the workflow modeling into structure, data, execution, temporal, and transactional

partitions for workflow modeling. The authors have also proposed the FlowMake

modeling tool which allows to partition a workflow into several graph layers, instead

of modeling all the workflow constraints on a single graph. The proposed approach

also allows to verify the syntactic correctness of the process specifications by using

a graph-reduction algorithm.

ADEPTflex [Reichert 1998] is also a graph-based modeling approach which

allows ad hoc changes to process schema. The authors have proposed a complete

and minimal set of change operations which that support users in modifying the

structure of a workflow instance during its execution, while preserving structural

correctness and consistency. The tool uses the correctness properties defined by the

ADEPT to determine whether some specific change can be applied (or possibly re-

jected, if properties are violated) to the workflow instance. ActivityFlow [Liu 1997]

provides a uniform workflow specification interface to describe different types of

workflows and aims to increase the flexibility of workflow processes in accommo-

dating changes. It also allows declarative and incremental flow specification and

to reason about correctness and security of complex activities irrespective of their

underlying implementation details. YAWL (Yet Another Workflow Language) is a

Petri net based workflow language extended with additional features to facilitate

the modeling of complex workflow and providing direct support for several patterns

that are difficult to deal with using (colored) Petri net. It supports specification of

the control flow and the data perspective of business processes and is supported by

a software system that includes an execution engine, a graphical editor and worklist

handler.

In terms of Web services composition and binding Web services to the activities

in a graph (or workflow) based process model, proposed approaches can be classified

as the static and dynamic workflow approaches as proposed in [Rao 2004a]. The

static approaches require the process modeler to define an abstract process model

using the graph-based modeling approaches as discussed above. Then the enact-

ment and binding of Web services to the activities in the process model is handled

either manually by defining the concrete Web service to be used to fulfill the ac-

tivity or by automatic selection and discovery of Web service instances based on

specified criteria by the process modeler. On the other hand, the dynamic workflow

approaches [Casati 2000b, Schuster 2000] aim to both create the process model and

selects atomic services automatically based on several constraints specified by the

31

Chapter 3. State of the art

process modeler, including the dependency and control flow for the atomic services,

the user’s preferences and others. Further, in terms of implementing the business

process and for its execution, the Web Services Business Process Execution Lan-

guage (WS-BPEL) is the most commonly used approach.

3.1.2 AI Planning based composition model

A large number of approaches for the composition of Web services are based on AI

(Artificial Intelligence) planning. The planning is a complex problem which has

been investigated extensively by AI research, and it can be defined as a "kind of

problem solving, where an agent uses its beliefs about available actions and their

consequences, in order to identify a solution over an abstract set of possible plans"

[Russell 1995]. In general, a planning problem includes the description of the

possible actions which may be executed and their effects (a domain theory) in some

formal language, the description of the initial state of the world and the description

of the desired goal. The planner attempts to find a sequence of actions leading

from an initial situation to the goal state. A planning problem can be formalized

as a five-tuple (S, S0, G,A, Γ), where S is the set of all possible states of the world,

S0 denotes the initial situation (or state), G denotes the goal state the planner

attempts to reach, A is the set of actions the planner can perform in attempting

to change from one state to another and eventually leading to goal state, and the

relation Γ defines the precondition and effects for the execution of each action.

A planning problem includes domain formalization to provide a domain theory

that represents the semantics of the actions and the proposed formalisms for specify-

ing the domain theory can be broadly categorized as classical logics and extra-logical

domain theories [Peer 2005]. The logical approaches include the situation calculus

[Mccarthy 1963, Levesque 1998, Pirri 1999], event calculus [Kowalski 1986b] or

the modal logics, as discussed by [Giacomo 1995, Giordano 1998, Castilho 1999].

However despite the advantages of these pure logic based approaches, such as

precise semantics, the AI planning community has traditionally used formalisms

based on STRIPS [Fikes 1971] notation, whose precise logical semantics have

been a subject of debate. The ADL language [Pednault 1994] was then pro-

posed to narrow the gap between the semantically ambiguous STRIPS and the

declarative situation calculus and later Planning Domain Definition Language

(PDDL) [Ghallab 1998] was developed to serve as a standard domain (and

problem) specification language. Then, the basic planning paradigms include

State-Space based Planning [McDermott 1996, Bonet 2001, Hoffmann 2001],

Graph Based Planning [Blum 1997, Koehler 1997, Fox 2011], Partial Order

Refinement Planning [Tate 1977, Penberthy 1992, Younes 2003], Planning as

Satisfiability [Kautz 1992, Berardi 2003] and Planning as Logic Programming

[Subrahmanian 1995, Shanahan 2000]. Other approaches have also been explored

that aim to provide the planing agent with domain or task dependent control

knowledge in order to achieve good performance in real world domains. Planning

32

3.1. Composition process modeling

techniques that allow to incorporate and exploit domain or task-dependent control

knowledge can be broadly categorizes into Hierarchical Task Network Planning

, High-level Program Execution, Planning As Model Checking and Temporal

Planning.

The interest in AI community for using AI planning for the Web services compo-

sition stems from the use of OWL-S (previously called DAML-S) for the semantically

annotated Web services. "OWL-S is an ontology, within the OWL-based framework

of the Semantic Web, for describing Semantic Web Services. It will enable users and

software agents to automatically discover, invoke, compose, and monitor Web re-

sources offering services, under specified constraints" 1. The OWL-S ontology has

three main parts: the service profile, the process model and the grounding. The

process model includes the sets of inputs, outputs, pre-conditions and results of

the service execution and this allows to translate the OWL-S based service descrip-

tion to a planning problem. Regarding the proposed AI planning based approaches

for the Web services composition, we will first discuss the two different categories

of approaches that aim to provide the planing agent with domain or task depen-

dent control knowledge and then will briefly discuss the other AI-planning based

approaches.

3.1.2.1 Golog and situation calculus

The classical approaches to planning require the planner to search a (possibly

very large) space of possibilities to identify solution to the planning problem. An

alternative approach is high-level program execution which transform the planning

task to identify a sequence of actions which constitutes a legal execution of a

given high level program. The Golog (alGOL in LOGic) [Levesque 1997] is such

a high-level language. It is based on the situation calculus (a logical language for

reasoning about action and change, [Mccarthy 1963, Levesque 1998, Pirri 1999])

providing a set of extra-logical constructs such as test actions, sequence, while

loops and others. Golog based planning problems can be carried out by logic tools

such as theorem provers. A variant of Golog capable of dealing with concurrency is

ConGolog (Concurrent Golog) [Giacomo 2000].

In [McIlraith 2002] the authors advocate the use of a modified and extended

version of ConGolog for the Web Service composition. The proposed approach

is based on the notion of generic procedures and customizing user constraints and

authors argue that the Web services composition can be viewed as customizations of

reusable, Golog based high-level generic procedures instead of classical AI planning

problem. As an example, the authors discuss the generic procedure to make travel

plans and how it can be customized. Further, authors propose to archive generic

procedures in sharable (DAML-S) ontologies so that multiple users can access and

customize them. The authors have also proposed an implementation framework

1http://en.wikipedia.org/wiki/OWL-S

33

Chapter 3. State of the art

and suggest that their approach does not change the complexity of Web services

composition, in contrast to traditional planning based approaches, and the proposed

approach has the potential to reduce the search space, making it computationally

advantageous. Further, in [Narayanan 2002b], a formal transformation from OWL-S

to situation calculus and Golog is discussed and thus OWL-S processes can serve

as specification of desired processes and the atomic and complex actions offered by

Web services. The composition problem would then be to find an execution of a

Golog program that satisfies the properties defined in the goal and are associated

with the process.

3.1.2.2 Hierarchical Task Network (HTN) planning

Hierarchical Task Network (HTN) planning provides hierarchical abstraction to

deal with the complex real world planning domains and was first introduced in

the early Abstrips [Sacerdoti 1974] planner and in [Erol 1994] authors provide its

formal semantics. HTN planning creates plans by task decomposition and assumes

a set of operators (as similar to other planning systems) which are called primitive

tasks. In addition, it also supports a set of methods, where each method specifies

how to decompose some task into a set of subtasks. There are three types of goals

in HTN planning as discussed in [Erol 1994]; goal tasks which are the properties

of the goal state, the primitive tasks, and compound tasks that specify desired

changes involving several goal tasks and primitive tasks.

An approach for using the HTN planning for the Web Services composition was

proposed in [Sirin 2004] using the SHOP2 system [Nau 1999]. SHOP2 is a domain-

independent planning system based on ordered task composition having the property

that it plans for tasks in the same order in which they will be executed which can

reduce the complexity of the planning process. The authors describe how SHOP2

can be used with OWL-S Web Service descriptions and provide a sound and com-

plete algorithm to translate OWL-S service descriptions to a SHOP2 domain. The

authors discuss that the OWL-S processes are pre-defined descriptions of actions to

be carried out to get a certain task done as similar to HTN networks, and the con-

cept of task decomposition in HTN planning is similar to the concept of composite

process decomposition in OWL-S process ontology. The OWL-S composite pro-

cesses serves as an input to a planner, which describes how to compose a sequence

of single step actions and thus the goal of automated Web services composition is

find a collection of atomic process instances which form an execution sequence for

given composite process.

3.1.2.3 Other AI-planning based approaches

The strong interest from the AI community in Web services composition has lead

to a number of AI-planning based approaches for the Web services composition. In

this section we will briefly discuss some of the proposed approaches. In, SWORD

34

3.1. Composition process modeling

[Ponnekanti 2002] authors uses Entity-Relation (ER) model to specify the Web ser-

vices. A Web service is represented in the form of a Horn rule that denotes the

postconditions are achieve if the preconditions are true. They are specified in a

world model that consists of entities and relationships among entities. To create a

composite service, the requester only needs to specify the initial and final states for

the composite service, then the plan generation can be achieved automatically us-

ing a rule-based expert system. In [McDermott 2002] authors introduce value of an

action, which persists and which is not treated as a truth literal and which enables

to distinguish the information transformation and the state change produced by the

execution of the service. The input/output parameters for a service are considered

to be reusable, thus the data values can be duplicated for the execution of multiple

services. For instance, data values such as session IDs once established after some

initial service invocations can then be re-used.

In [Sirin 2002] authors present a service selection approach based on OWL rea-

soner. The functionalities (parameters) are presented by OWL classes and OWL

reasoner is applied to match the services, by checking if the output parameter of

one service is the same OWL class or subclass of an input parameter of another

service. The resulting matched services can also be ordered based on the distance

between the two types in the ontology tree increases. In case of multiple-matches,

it is further possible to filter the services based on the non-functional attributes. In

[Medjahed 2003], authors propose a set of composability rules to determine whether

two services are compatible and correspondingly composable. The composability

rules include the syntactic rules (operation modes, binding protocols) and the se-

mantic rules which may include checking the message, operation semantic, qualita-

tive and soundness composability of the interacting Web services. The overall Web

services composition approach first requires to specify the high-level description of

the composition process using a language called Composite Service Specification

Language(CSSL). Then, using the composability rules it is possible to generate

composition plans that conform to specifications. In case of more than one plan,

a particular plan is selected based on parameters such as rank, cost, and others.

Then, the description of the composite service is automatically generated.

Further, various composition approaches rely on the theorem proving, as in

[Waldinger 2000] authors elaborates an approach based on automated deduction

and program synthesis. Available services and user requirements are described

in a first-order language and then the Snark theorem prover is used and service

composition descriptions are extracted from particular proofs. In [Sven 2002], au-

thors apply a deductive approach for the synthesis of programs from specifications

called Structural Synthesis of Program (SSP) for automated service composition.

In [Rao 2003, Rao 2004b] authors introduces a method for automatic composition

of semantic Web services using Linear Logic theorem proving.

35

Chapter 3. State of the art

3.1.3 Modeling non-functional requirements

In terms of modeling the non-functional requirements, a number of approaches

have been proposed that extend and build upon the traditional approaches

to model the non functional aspects. In this thesis, we will focus on the

temporal and security aspects and as the Web services are autonomous,

having local (temporal and security) constraints and as the composition pro-

cess may have some global (temporal and security) constraints, the need to

represent and compute an ordering satisfying the associated constraints is

evident. The proposed approaches for incorporating temporal aspects in-

clude [Guermouche 2009a, Bordeaux 2004a, Ponge 2007, Benatallah 2005]. In

[Kazhamiakin 2006], authors introduced a formalism called WSTTS to capture

timed behavior of Web services and then using this formalism for model-checking

WS-BPEL processes. In the planning domain, in [Tsamardinos 2003] authors

proposed Conditional Temporal Problem (CTP) formalism that allows for the

construction of conditional plans that satisfy complex temporal constraints. The

approaches also include ISDL [Quartel 2004] which uses time attributes to represent

properties. In order to verify the timed properties authors proposed converting

the WS-BPEL process specification to timed automata and using UPPAAL model

checker [Guermouche 2009b].

Further, there have been many approaches that aim to handle the security

aspects in the Web services composition [Menzel 2009, Basin 2006, Garcia 2008,

Souza 2009] however, as similar to the approaches for incorporating the temporal

aspects, they focus on only part of the problem. The approaches that deal with the

representation of the security aspects and aim to incorporate the security require-

ments into the business process definition include [Menzel 2009, Neubauer 2008,

Rodríguez 2007]. Further, there have been approaches that aim to incorporate

security requirements in the executable composition [Basin 2006, Garcia 2008,

Chollet 2008] or their enforcement at execution time [Song 2006, Menzel 2009].

However, in [Souza 2009] authors proposed to use a formalism that allows for in-

corporating security aspects at different levels of abstraction and has important

contributions in terms of identification of security requirements in the services com-

position.

3.1.4 Synthesis

Let us first briefly discuss the design principles for the process modeling before

evaluating the proposed approaches discussed earlier. A process model is called

procedural when it contains explicit and complete information about the flow of

the process however, only implicitly keeps track of why these design choices have

been made and if they are indeed part of the requirements or merely assumed for

specifying the process flow [Goedertier 2008]. Although this adds a lot to the control

over the composition process, however as there is tradeoff between the control and

36

3.1. Composition process modeling

flexibility, this control comes at the expense of process flexibility and thus making

the process rigid to adapt to continuously changing situations and possibly not

even conforming to the process specification requirements. On the other hand, a

process is termed as declarative when it models the minimal (and only specified)

requirements that mark the boundary of the process and any suitable execution

plan which meets the specified requirements is sought. For a declarative business

process [Pesic 2006] concerns are made explicit, execution mechanism is goal driven

instead of state driven and a declarative model allows for both design and run-time

process modification. A detailed discussion about the declarative and procedu-

ral design approaches for the process specification can be found in [Goedertier 2008].

The graph-based composition modeling approaches are mostly procedural

and although the graph-based approaches tend to be simpler and intuitive for

the process modeler for the composition design, they over-constrain the process

assuming the design choices that may not be present in the requirements but only

added to specify the process flow. A typical example of such an approach is Business

Process Modeling Notation (BPMN) and even of there is no dependency between

the activities the process modeler is required to specify the process flow (possibly

only using the sequence construct) that will result in over-constraining the process.

A comparative analysis of proposed graph-based and rule-based approaches in

terms of their expressibility, flexibility and adaptability, dynamism and complexity

can be found in [Lu 2007] and the authors suggest that the rule-based approaches

are able to express structure, data, execution, as well as temporal requirements

and can model more Workflow patterns than the graph-based approaches. Further,

rule-based approaches are indeed more flexible as they allow for the incomplete

specification for task dependency and they provide better adaptability and dy-

namism support as the rule expressions can be revised at runtime to cater for the

ad-hoc changes to process logic. However, one drawback the rule-based approaches

is that they are harder to model as they have no visual appeal and modeling

languages have a logical syntax and required some expertise when modeling.

The paradigm change from procedural to declarative process modeling was ad-

vocated in [Pesic 2006] by introducing the ConDec language for declarative pro-

cess modeling. However, we believe that the traditional AI planning (and so as

rule-based) approaches for composition process modeling are declarative and the

advantages in terms of expressibility, flexibility and adaptability and dynamism we

discussed above for the rule-based approaches can be generalized to declarative ap-

proaches as they are more expressive based and are based on formal logic and flexible

as only constraints that mark the boundary of the process are specified.

Further, the traditional AI planning approaches such as Golog [McIlraith 2002]

or HTN [Sirin 2004] based approaches are strongly related to OWL-S based process

descriptions and the authors have proposed the formal semantics of OWL-S pro-

cesses in situation-calculus considering how OWL-S processes can be transformed

into situation calculus. This approach although very practical, limits the expressive-

37

Chapter 3. State of the art

ness of formalism as objective is to transform from OWL-S to situation calculus and

not building about a formal design that can model OWL-S processes and also allows

to model complex orchestrations, i.e. those in which we need to express not only

functional but also non-functional requirements such as cardinality constraints (one

or more execution), existence constraints, negative relationships between services,

temporal and security requirements on services. Further, the need of verifying the

composition process before execution and monitoring the process while in execution

to cater and recover from unforeseen situation by finding alternatives is critical for

the Web services composition. We believe that using a formal approach not only

results in a highly expressive design approach but can also allow for the integration

of different process life cycle stages using the same formalism. Further, it allows for

formal verification of the composition process and allows for recovery actions such

as re-planning or alternative path finding to cater for violations monitored during

process execution.

3.2 Process verification

The traditional graph-based approaches for modeling the composition process, dis-

cussed in the previous section, are very intuitive and make it easier to model the

processes however this ease is coupled with lack of strictness and the process speci-

fication includes arbitrariness allowing different interpretations for a single process.

As a result a number of approaches have been approaches to define strict seman-

tics to the processes in order to formally verify them and the composition process

verification is highly active and widely studied research direction, Figure-3.2.

Figure 3.2: Web services composition process verification

The approaches for formal verification of the composition process can be broadly

categorized into automata, Petri nets and process-algebra based approaches as dis-

cussed in [Morimoto 2008]. In this section, we will briefly discuss each category of

the proposed approaches for the composition process verification.

38

3.2. Process verification

3.2.1 Automata based approaches

Automata are base model of formal specifications for systems [Hopcroft 2001]. An

automaton consists of a set of states and transition rules specify how to move from

one state to another and can be regarded as a graph where nodes represent the

states, the arcs between the nodes represent the transition from one state to another

and labels on the arcs represent what actions cause the transition. Numerous

approaches have been proposed to verify the Web services composition process

using the automata based approaches and in general, automata based approaches

require to first convert the composition process model (specified using WS-BPEL,

WS-CDL) to automata. Then, proposed approaches require to convert the au-

tomata to XML formats to be used with model-checkers such as SPIN and UPPAAL.

In [Fu 2004], authors have extended the guarded automata model to allow the

use of local XML variables and developed a tool which translates WS-BPEL web

services to extended guarded automata model. These guarded automata can then

be translated into Promela (Process or Protocol Meta Language) for the SPIN

model checker [Holzmann 2004] to verify the properties (specified using Linear

Time Temporal Logic) of composite web services specified in WS-BPEL and that

communicate through asynchronous XML messages. In [Guermouche 2009b], au-

thors propose a formal framework for analyzing the compatibility of a choreography

in which the Web services support asynchronous timed communications. Timed

properties are modeled as the standard clocks of standard timed automata and

authors propose a set of required abstractions that allow to use the UPPAAL model

checker to handle timed asynchronous services.

In [Díaz 2005], authors discuss how to translate Web services with time restric-

tions (described by WS-BPEL/WS-CDL) into a timed automata orchestration and

then subsequently verify them by using the UPPAAL model checker2. The au-

thors present an extensive Travel Reservation System case-study for discussing the

translation and verification process using timed-automata. Further, in [Dong 2006]

authors use the composition process specified using an approach called Orc, which

has precise semantics and is proposed to support a structured way of orchestrating

services. The authors define Timed Automata semantics for the Orc language and

discuss how the Orc models are translated into timed-automata that can be verified

using the UPPAAL model.

3.2.2 Petri net based approaches

Petri net is a framework to model concurrent systems and has an easily under-

standable graphical notation. As the traditional graph-based composition process

modeling approaches can include arbitrariness and lack strictness allowing for dif-

ferent interpretation of same process models (or multiple models for the same pro-

2http://www.uppaal.com/

39

Chapter 3. State of the art

cess requirements), numerous modeling approaches have their origin in Petri net

theory (or on different variants of Petri nets to provide extra expressibility and

functionality) including High Level Petri nets [Ellis 1993], Low Level Petri nets

[Wikarski 1996], and Colored Petri nets [Merz 1994], a detailed discussion can be

found in [Janssens 2000]. In addition, different approaches investigate the use of

Petri net for the composition process verification and in general the focus is how to

translate business process diagrams into Petri net and once the translation has been

done, a variety of Petri net based tools can be used for process verification however

as discussed in [Morimoto 2008] various BPMN components such as gateways, event

triggers, loop activities, are difficult to translate into Petri net.

The proposed Petri net base approaches include [Dijkman 2007] in which authors

shows how to correspond BPMN constructs into labeled Petri net by providing a

mapping from a subset of BPMN elements to Petri nets. The authors have also im-

plemented the proposed framework however, the proposed mapping does not fully

deal with some of BPMN constructs such as parallel multi-instance activities and

OR-join gateways that highlight the limitations of Petri nets. In [Narayanan 2002a],

the authors define the semantics of relation WS-BPEL and OWL-S in terms of situ-

ation calculus and they formalize business processes in Petri net, and have developed

a tool to describe and automatically verify composition of business processes. In

[Hamadi 2003], authors have proposed a Petri net-based algebra for composing Web

services. The authors have provided a direct mapping from each composition op-

erator to a Petri net construction and have claimed that any service composition

expressed using the algebra constructs can be translated into a Petri net represen-

tation that also allows for the process verification.

In [Yi 2004], authors have proposed a Petri net-based design and verification

framework that allows for both visualize and verify existing WS-BPEL processes

and also provides support for creating new WS-BPEL processes. The framework

enables the use of verification techniques at the design time and the generated WS-

BPEL specification skeleton is thus verified process model. In [Zhang 2004], authors

introduce a Petri net-based architectural description language called WS-Net, which

is executable and incorporates the semantics of Colored Petri net and also supports

the verification and monitoring of web services. WS-Net describes each Web services

component in interface, interconnection and interoperation layers and the proposed

approach requires manually transferring the WSDL specifications into the WS-Net

specifications which the authors suggested is not trivial. Further, in [Hinz 2005]

authors propose formal Petri net semantics for WS-BPEL processes which covers

both standard behavior of WS-BPEL as well as the exceptional behavior such as

faults, events and compensation, exception handling and compensations. In addi-

tion, the authors have implemented the proposed approach as a parser which can

automatically convert WS-BPEL specification into the input language of the Petri

net model checking tool LoLA to analyze the composition process.

40

3.2. Process verification

3.2.3 Process Algebras based approaches

The process algebras are a family of approaches (including CSP, CCS, ACP, ambient

calculus, fusion calculus, PEPA and LOTOS) for formally modeling the concurrent

systems. They provide support for both specifying the high-level description of

interactions, communications, and synchronizations between processes and algebraic

laws that allow specified process descriptions to be analyzed. They also provide

support for on bisimulation analysis (formal reasoning about equivalences between

processes) which can be helpful to verify whether a service can substitute another

service or the redundancy of a service [Bordeaux 2004b].

Proposed process-algebraic based approaches for Web services composition in-

clude [Salaün 2004], in which authors discuss the application of process algebras

to, compose, and verify business processes. The authors have shown an example

in which they use CCS to specify and compose business processes and the use of

Concurrency Workbench3 to verify the composition process. In [Ferrara 2004], the

authors have proposed correspondence between WS-BPEL and LOTOS (including

compensations and exception handling) and enables the verification of temporal

properties with the CADP model checker.

3.2.4 Synthesis

The proposed approaches for the composition verification discussed in this section,

in general, require mapping the process (mostly defined using procedural approaches

such as WS-BPEL) to some formal logic (such as Petri nets, automata or process

logic) and then using model checkers to verify the composition process. This

transformation based approach has two major limitations. First, the proposed

verification approaches are based on traditional procedural approaches and proce-

dural approaches have less expressibility, flexibility and adaptability and dynamism

as compared to the declarative ones. Further, the limited expressibility makes it

difficult to verify the non-functional properties (such as temporal, security require-

ments or more importantly their combinations) associated with the composition

process as for first, it is difficult to specify the non-functional properties using

the traditional approaches such as WS-BPEL and a number of approaches have

been proposed as an extension to WS-BPEL for specifying non-functional aspects

and then it is not trivial (is possible) to add formal semantics to them for their

verification.

Specifying the exact and complete sequence of activities to be performed for the

composition process, as required by the traditional procedural approaches, however

does make it possible to use proposed automata or Petri nets based approaches for

design-time verification of composition process. However, with the declarative ap-

proaches the process may be only partially defined and thus this makes it difficult to

use traditional approaches for the process verification as the transition system for a

3http://www.cs.sunysb.edu/ cwb/

41

Chapter 3. State of the art

declarative process can be very large. Further, the design-time verification should be

coupled with execution-time monitoring and complexity of these approaches make

them difficult to use for verifying the functional and non-functional constraints as-

sociated with the process while handle process change or recovery.

3.3 Process monitoring and recovery

The need to monitor the Web services composition process during execution stems

from two major objectives. At one hand continuously monitoring the resource

utilization, SLA’s violation, or some domain specific Key Performance Indicators

(KPI’s) may be required to measure the performance or to fulfill some domain spe-

cific monitoring requirements. Then, as the Web services are autonomous and only

expose their interfaces, composition process is based on design level service con-

tracts and the actual execution of composition process may result in the violation of

the design-level services contracts due to errors such as network or service failures,

change in implementation or other unforeseen situation. This highlights the need to

detect the errors and react accordingly to cater for them, Figure-3.3.

Figure 3.3: Process monitoring and recovery

The reaction may include to calculate the effect the violation has on the overall

process execution and then to recover from it. Composition monitoring thus involves

two related problems, how to effectively monitor the composition process in order to

identify anomalies or for KPI’s measurement and then once the violation is detected

how to recover from the violation. In this section we will first briefly discuss the

proposed approaches that focus on how to monitor the composition process and then

the approaches that allow (possibly only partial) recovery. However, it is not always

possibly to fully distinguish these related problems and approaches for monitoring

may also handle process recovery and vice-versa.

42

3.3. Process monitoring and recovery

3.3.1 Process monitoring

For the run-time monitoring of the composition process a number of approaches

can be classified as assertion based approaches, as discussed in [Moser 2010]. In

[Sun 2009], authors have proposed a monitoring approach based on Aspect-Oriented

Programming (AOP) in order to verify the requirements specified using WS-Policy.

In [Wu 2008], authors also present an AOP-based approach for identifying patterns

(and to trigger corresponding actions) for the instances of WS-BPEL processes.

In [Baresi 2005, Baresi 2011], authors have proposed a constraint language for the

supervision of WS-BPEL processes called WSCoL. The approach builds upon WS-

BPEL and the monitoring properties are specified as assertions on the WS-BPEL

code. The authors then propose to use Aspect-Oriented Programming (AOP) to

check the assertions wile the process is in execution. In [Baresi 2010], authors further

extend their approach by separating data collection, aggregation and computation

from the actual analysis. They have thus proposed a general monitoring language

called SECMOL.

Then a number of approaches aim to monitor the temporal aspects in the Web

services composition, in [Kallel 2009] authors propose an approach based on formal

language called XTUS-Automata and in [Barbon 2006b], authors propose RTML

(Runtime Monitoring Specification Language) and their approach translates moni-

toring information to Java code for monitoring.

In contrast to assertion based approaches, some event-based approaches have

also been proposed [Moser 2010] and instead of using some language to define as-

sertions, event-based approaches use CEP techniques to operate on event-streams,

detect patterns and take corresponding actions, and combine events based on CEP

operators such as temporal aspects. CEP techniques are very powerful because they

operate on event streams (i.e., the monitoring data) and CEP operators are non in-

trusive. In [Suntinger 2008] authors propose a visualization approach to visualize

complex event streams of historical information and allows to detect and analyze

patterns. In [Beeri 2008] authors propose a query language allowing to visually

design monitoring tasks.

3.3.2 Recovery

Traditional approaches for the Web services composition monitoring and recovery

has roots in the exception handling approach provided by the Workflow manage-

ment systems. For instance, in WS-BPEL different types of fault/event/message

handlers and corresponding actions to be taken (based on the process state

and ad hoc implementations of exception management) can be specified. Ex-

ception handling in general is an active and highly studied problem in WfMS

has been and different types of exception handling mechanism are proposed

[Russell 2006, Weske 2007, Vanhatalo 2007, Vanhatalo 2008]. However, most of

them define handlers to be invoked under given conditions and provide support

to handle given types of exceptions.

43

Chapter 3. State of the art

Regarding the proposed approaches for exception handling, in [Vanhatalo 2007,

Vanhatalo 2008] authors propose an approach to not only identify the errors in work-

flow models but also how the work flow models can be re-factored to support (par-

tial) recovery from the identified errors. The SARN (Self-Adaptive Recovery Net)

[Hamadi 2003] proposes a Petri net-based model and in [Cao 2005] authors propose

a mobile-agent-based approach to handling exceptions. Pattern-based approaches

have also been proposed as in [Russell 2006] authors present a pattern-based classi-

fication framework for exception handling while in [Casati 2000a, Casati 1999] pro-

pose exceptions handling based on predefined patterns derived from executions his-

tory.

As discussed earlier, the service based approaches in general build upon the

exception handling approaches provided by the Workflow management systems

(Wfms) to provide support for exceptions and handlers in service-based approaches.

The motivation comes from the similarities in the Workflow based approaches and

graph-based approaches fro composition process definition. In [Verma 2005] authors

have presented an approach for elevating autonomic computing to the process level

and have discuss the application of different self-* properties (self configuring, self

healing, self optimizing and self aware) for Autonomic Web Processes (AWPs). In

SCENE [Colombo 2006], the authors discuss that the problem to dynamically recon-

figure composition processes needs to be addressed by having a flexible runtime plat-

form and by having an expressive composition language that support constraints for

the definition of rules for activating repair actions (e.g., alternative services, rebind-

ing, and process termination). Authors partially address these issues by proposing a

language for composition design that extends the standard WS-BPEL language with

rules. In [Baresi 2007] authors enrich the WS-BPEL specification to propose self-

healing processes by using supervision rules to annotate WS-BPEL processes and

to react and recover (proposed recovery approaches include programmable,flexible,

and extensible solution) in case of monitored violations.

The workflow based approaches discussed earlier propose an exception handling

based solution to process monitoring and recovery. The AI planning based ap-

proaches on the other hand allow for plan revision, adaptation, and re-planning

techniques to handle exceptions and process recovery.

3.3.3 Synthesis

Traditional approaches for the composition monitoring are proposed as an exten-

sion to some particular run-time and are tightly coupled and limited to it. In

contrast the use of an event-based approach works on the message-level and thus

is unobtrusive, independent of run-time and allows for integration of other systems

and processes, as discussed in [Moser 2010]. Then, the traditional monitoring

approaches [Barbon 2006a, Baresi 2009, Mahbub 2004] build upon composition

frameworks that are highly procedural, such as WS-BPEL, and this in-turn

poses two major limitations. First, they limit the benefits of any event-based

monitoring approach as the events are not part of the composition framework and

44

3.4. Summary

functional and non-functional properties are not expressed in terms of events and

their effects. Secondly the use of procedural approach for process specification

does not bridge the gap between organization and situation in a way that it

is very difficult to learn from run-time violations and to change the process

instance (or more importantly process model) at execution time, and it does not

allow for a reasoning approach allowing for effects calculation and recovery ac-

tions such as re-planning or alternate path finding as we discussed in [Zahoor 2010a].

In [Moser 2010] authors proposed an event based monitoring approach that

works on the message-level and thus is unobtrusive, independent of run-time and

that highlights the need and motivation for using an event-based monitoring frame-

work. However the approach aims to extract and define events from procedural

process specification, while our approach builds on an event-based framework and

events are first class objects in both composition design and monitoring framework.

This allows to reason about events during execution and allows for effects calcula-

tion and different types of recovery actions. In [Kowalski 1986a] authors attempt

to add monitoring directives to a declarative approach but still the approach lacks

expressiveness and does not allow for recovery actions. Our work can be compared

to PAWS framework [Ardagna 2007], in which authors propose to add annotations

to the WS-BPEL process to handle services replacement in case of run-time failure.

However, as the approach is based on WS-BPEL and is procedural, it allows for lim-

ited recovery options (such as service replacement and not re-planning or alternative

path finding) and effects calculation once a violation is detected. In [Friedrich 2010]

authors proposed a model based approach for repair by exploiting information about

the causes of process and deriving repair strategies based on process structure, how-

ever the approach builds upon WS-BPEL and PAWS and thus does not allow to

reason about monitoring properties and allowing for effects calculation and different

recovery schemes.

3.4 Summary

The proposed event-based approach for Web services composition presented in this

thesis both aims to integrate different stages of process life-cycle, Figure-1.2, and

advocates the use of declarative event-based approach at different stages. In this

chapter, we have thus discussed categories of proposed approaches in the literature

for each process life cycle stage and provided a detailed synthesis for the limitations

they pose.

For the composition design, different approaches have been proposed having

their strengths and weaknesses in terms of ease of usage and expressibility of the

modeling language. Further, as it is important to have a process model properly

defined, verified, and refined before being implemented, different approaches offer

varying level of complexity for model-checking the composition process. The pro-

45

Chapter 3. State of the art

posed approaches for the composition process modeling can be broadly categorized

into Workflow based composition and AI planning based approaches, as discussed in

[Rao 2004a] or similarly as either graph-based or rule-based approaches as discussed

in [Lu 2007].

The proposed graph-based composition modeling approaches are mostly proce-

dural and although the graph-based approaches tend to be simpler and intuitive

for the process modeler for the composition design, they over-constrain the process

assuming the design choices that may not be present in the requirements but only

added to specify the process flow. A comparative analysis of proposed graph-based

and rule-based approaches in terms of their expressibility, flexibility and adaptabil-

ity, dynamism and complexity can be found in [Lu 2007] and the authors suggest

that the rule-based approaches (and so as declarative approaches) are able to ex-

press structure, data, execution, as well as temporal requirements and can model

more Workflow patterns than the graph-based approaches. Further, rule-based ap-

proaches are indeed more flexible as they allow for the incomplete specification for

task dependency and they provide better adaptability and dynamism support as the

rule expressions can be revised at runtime to cater for the ad-hoc changes to process

logic. However, one drawback the rule-based approaches is that they are harder to

model as they have no visual appeal and modeling languages have a logical syntax

and required some expertise when modeling. The paradigm change from procedural

to declarative process modeling was advocated in [Pesic 2006] by introducing the

ConDec language however we believe that the traditional AI planning (and so as

rule-based) approaches for composition process modeling are declarative.

Further, the traditional AI planning approaches such as Golog [McIlraith 2002]

or HTN [Sirin 2004] based approaches are strongly related to OWL-S based

process descriptions and the authors have proposed the formal semantics of

OWL-S processes in situation-calculus considering how OWL-S processes can

be transformed into situation calculus. This approach although very practical,

limits the expressiveness of formalism as objective is to transform from OWL-S

to situation calculus and not building about a formal design that can model

OWL-S processes and also allows to model complex orchestrations, i.e. those in

which we need to express not only functional but also non-functional requirements

such as cardinality constraints (one or more execution), existence constraints, neg-

ative relationships between services, temporal and security requirements on services.

For the composition process verification, some seminal work on categorizing

the verification properties and defining correctness of the composition process can

be found in [Röglinger 2009].The authors have categorized the verification prop-

erties in application dependent and application independent categories and have

also classified them as structural or behavioral correctness categories. The ap-

proaches for formal verification of the composition process can be broadly catego-

rized into automata, Petri nets and process-algebra based approaches as discussed

in [Morimoto 2008].

The proposed approaches for the composition verification, in general, require

46

3.4. Summary

mapping the process (mostly defined using procedural approaches such as WS-

BPEL) to some formal logic (such as Petri nets, automata or process logic) and

then using model checkers to verify the composition process. This transformation

based approach has two major limitations, first the proposed verification approaches

are based on traditional procedural approaches and procedural approaches have less

expressibility, flexibility and adaptability and dynamism as compared to the declar-

ative ones. Further, the limited expressibility makes it difficult to verify the non-

functional properties (such as temporal, security requirements or more importantly

their combinations) associated with the composition process as for first, it is diffi-

cult to specify the non-functional properties using the traditional approaches such as

WS-BPEL and a number of approaches have been proposed as an extension to WS-

BPEL for specifying non-functional aspects and then it is not trivial (is possible) to

add formal semantics to them for their verification.

Further, specifying the exact and complete sequence of activities to be per-

formed for the composition process, as required by the traditional procedural

approaches, however does make it possible to use proposed automata or Petri nets

based approaches for design-time verification of composition process, however with

the declarative approaches the process may be only partially defined and thus

this makes it difficult to use traditional approaches for the process verification

as the transition system for a declarative process can be very large. Further,

the design-time verification should be coupled with execution-time monitoring

and complexity of these approaches make them difficult to use for verifying

the functional and non-functional constraints associated with the process while

handling process change or recovery.

Then, in order to monitor the composition process while in execution we have

discussed proposed approaches for two related problems; first how to effectively

monitor the composition process in order to identify anomalies or for KPI’s mea-

surement and then once the violation is detected how to recover from the violation.

Traditional approaches for the composition monitoring are proposed as an extension

to some particular run-time and are tightly coupled and limited to it. In contrast the

use of an event-based approach works on the message-level and thus is unobtrusive,

independent of run-time and allows for integration of other systems and processes,

as discussed in [Moser 2010].

In addition, the traditional monitoring approaches [Barbon 2006a, Baresi 2009,

Mahbub 2004] build upon composition frameworks that are highly procedural, such

as WS-BPEL, and this results in having two major limitations. First, they limit

the benefits of any event-based monitoring approach as the events are not part of

the composition framework and functional and non-functional properties are not

expressed in terms of events and their effects. Secondly the use of procedural ap-

proach for process specification does not bridge the gap between organization and

situation in a way that it is very difficult to learn from run-time violations and to

change the process instance (or more importantly process model) at execution time,

and it does not allow for a reasoning approach allowing for effects calculation and

47

Chapter 3. State of the art

recovery actions such as re-planning or alternate path finding as we discussed in

[Zahoor 2010a]. For process recover, our work can be compared to PAWS frame-

work [Ardagna 2007], in which authors propose to add annotations to the WS-BPEL

process to handle services replacement in case of run-time failure. However, as the

approach is based on WS-BPEL and is procedural, it allows for limited recovery

options (such as service replacement and not re-planning or alternative path find-

ing) and effects calculation once a violation is detected. In [Friedrich 2010] authors

proposed a model based approach for repair by exploiting information about the

causes of process and deriving repair strategies based on process structure, however

the approach builds upon WS-BPEL and PAWS and thus does not allow to rea-

son about monitoring properties and allowing for effects calculation and different

recovery schemes.

48

Part III

COMPOSITION DESIGN

Chapter 4

Composition design - components

Contents

4.1 Activities . 52

4.1.1 Activities with states . 52

4.1.2 Example . 53

4.1.3 Activities without intermediate states 54

4.1.4 Activities that can be restarted 55

4.2 Web services . 56

4.2.1 Synchronous Web services invocation 56

4.2.2 Pull-based Asynchronous invocation 57

4.2.3 Push-based Asynchronous invocation 57

4.2.4 Services re-invocation . 58

4.3 Nodes . 59

4.4 BPMN and event-calculus . 60

4.5 Example . 62

4.6 Summary . 63

The composition process modeling is the first and most important stage of the

composition process life cycle, Figure-3.1. The objective of composition process

modeling is to provide high-level specification independent from its implementation

that should be easily understandable by process modeler who create the process,

the developers responsible for implementing the process, and the business managers

who monitor and manage the process. The proposed DISC framework allows for

a composition design that can accommodate various aspects such as partial or

complete process choreography and exceptions, data relationships and constraints,

Web services dynamic binding, compliance regulations, security and temporal

requirements or other non-functional aspects. The composition design (and so are

the other phases of the proposed framework) is based on event-calculus.

In this chapter, we will discuss event-calculus models for different components in

reference to the proposed framework. The various components that constitute the

composition design can be broadly divided into activity and service categories.

Activity is a general terms for any work being performed while the services include

either the Web services instances already known or abstract Web services (called

nodes) that need to be instantiated (discovered) based on some specified constraints.

Chapter 4. Composition design - components

4.1 Activities

Activity is a general term for representing any work being performed1. In this

section we will discuss event-calculus models for modeling different aspects related

to activities. We will also provide an example for using the proposed event-calculus

based activity model, in order to introduce the reader to the proposed reasoning

approach.

4.1.1 Activities with states

Each activity can have an activity life-cycle as it changes states from being started

till its completion. In order to model the activities using event-calculus we can

define events that represent the actions required to start and finish the activities

and the activity state can be represented by defining event-calculus fluents. The

event-calculus formalism below models activities:

Activities (with states) - activitywithstate.e
Usage: - import activitywithstate.e and define instances of sort activitywithstate to define activities

sort activityS

fluent Started_activityS(activityS)
fluent Finished_activityS(activityS)
event Start_activityS(activityS)
event End_activityS(activityS)

Initiates(Start_activityS(activityS), Started_activityS(activityS),time).
Initiates(End_activityS(activityS), Finished_activityS(activityS),time).

Terminates(End_activityS(activityS), Started_activityS(activityS),time).

Happens(End_activityS(activityS), time) → HoldsAt(Started_activityS(activityS), time).
HoldsAt(Started_activityS(activityS), time) → !Happens(Start_activityS(activityS), time).
HoldsAt(Finished_activityS(activityS), time) → !Happens(End_activityS(activityS), time).

HoldsAt(Finished_activityS(activityS), time) → !Happens(Start_activityS(activityS), time).

!HoldsAt(Started_activityS(activityS), 0).
!HoldsAt(Finished_activityS(activityS), 0).

In the model above, we first defined an event-calculus sort named activityS and

instances of the sort will represent the actual activities2. Then, we define events

that represent the actions to change activity state and fluents that represent the

activity state. An activity state can either be Started or Finished and the events

that are responsible for state change are the Start and End events. Then, in the

event-calculus model above, we define the Initiates axioms that specify that if the

Start event happens at some time, the fluent Started holds true after that time and

thus the Initiates axioms represent the state change. Further, as a result of End

1Activities are also termed as tasks but we will use the term activity.
2As DECReasoner language does not allow upper-case alphabets in sort names, the actual

event-calculus model has a sort named activitywithstate abbreviated as activityS.

52

4.1. Activities

event, the activity state changes to Finished (represented by the second Initiates

axiom) and we have also defined a Terminates axiom, which specifies that as a result

of End event, the activity state is no longer Started (and thus the fluent Started,

does not hold).

Further, we have defined some axioms to control the invocation of specified

events such as the End_activityS event should only Happen once the activity has

already been started, and the fluent Started_activityS Holds. Similarly, other

axioms specify that once the activity has Started (or Finished) the Start (and End)

events should not Happen. Finally, the last two axioms specify that the initial

condition for the fluents that they do not hold at time point 0.

4.1.2 Example

Before going further, let us briefly discuss how such an event-calculus based com-

position model can be used for reasoning by defining two instances (ActivityA and

ActivityB) of sort activityS. In the model below, we first import the event-calculus

core files (root.e and ec.e) and then we import the activitywithstate.e file which

contains the event-calculus model for activities modeling shown earlier. Then, we

define instances of sort activitywithstate that represent the activities and also the

goal for the process that is to have the activities Finished (and thus requiring the

fluent Finished_activitywithstate to hold) at time-point 2. Finally we specify the

range for time/offset and any options for the DECReasoner, in this case requiring

not to show predicates (showpred off).

Activities definition using activitywithstate.e

;including helper files
load foundations/Root.e
load foundations/EC.e
load includes/activitywithstate.e

;creating instances representing activities
activitywithstate ActivityA, ActivityB

;initial conditions for the fluents
!HoldsAt(Finished_activitywithstate(activitywithstate), 0).
;composition goal
HoldsAt(Finished_activitywithstate(activitywithstate), 2).

range time 0 2
range offset 1 1
option showpred off

Invoking the event-calculus reasoner for the above instantiated model gives

us the solution shown below. The solution returned by the reasoner shows that

if the Start_activitywithstate events happen (representing that the activities are

thus being started) at time-point 0, the fluents Started_activitywithstate hold

at time-point 1 as indicated by the + sign shown next to them at time-point

53

Chapter 4. Composition design - components

1 (representing that the activities state has been changed to Started). Further,

once the activities have been started the End_activitywithstate events happen at

time-point 1 to have the fluents Finished_activitywithstate hold at time-point 2,

that was the specified process goal. Notice that the End_activitywithstate events

also make the fluents Started_activitywithstate does not hold as indicated by the

− sign shown next to them at time-point 2, representing the activity state is no

longer Started.

Activities definition using activitywithstate.e

Discrete Event Calculus Reasoner 1.0
loading activityS_instances.e
loading foundations/Root.e
loading foundations/EC.e
loading includes/activitywithstate.e
32 variables and 78 clauses
relsat solver
1 model
—
model 1:
0
Happens(Start_activitywithstate(ActivityA), 0).
Happens(Start_activitywithstate(ActivityB), 0).
1
+Started_activitywithstate(ActivityA).
+Started_activitywithstate(ActivityB).
Happens(End_activitywithstate(ActivityA), 1).
Happens(End_activitywithstate(ActivityB), 1).
2
-Started_activitywithstate(ActivityA).
-Started_activitywithstate(ActivityB).
+Finished_activitywithstate(ActivityA).
+Finished_activitywithstate(ActivityB).

encoding 0.0s
solution 0.0s
total 0.1s

The activity model shown in this section can be further enriched to specify

other related aspects, such as the time taken by an activity or dependency between

activities, as we will discuss later in Section-5.1.

4.1.3 Activities without intermediate states

The activities may not always need to be represented by the states and a simpler

version of the previous activity model is shown below (activitywithoutstate abbre-

viated as activityWS):

54

4.1. Activities

Activities (without states) - activitywithoutstate.e
Usage: - import activitywithoutstate.e and define instances of sort activitywithoutstate to define
activities

sort activityWS
event Start_activityWS(activityWS)
fluent Finished_activityWS(activityWS)
Initiates(Start_activityWS(activityWS), Finished_activityWS(activityWS),time).
HoldsAt(Finished_activityWS(activityWS), time) → !Happens(Start_activityWS(activityWS),
time).
!HoldsAt(Finished_activityWS(activityWS), 0).

4.1.4 Activities that can be restarted

The activity models shown so far in this section does not cater for the cardinality

constraints and thus does not allow to re-start an activity once it has finished.

However, the activities may require to be restarted (as in case of activities within

loop body) and in order to model the activities that can be restarted we enrich the

activity model as below (activitywithstaterestart abbreviated as activitySR) :

Activities (with states that can be restarted) - activitywithstaterestart.e
Usage: - import activitywithstaterestart.e and define instances of sort activitywithstaterestart to
define activities

sort activitySR

fluent Started_activitySR(activitySR)
fluent Finished_activitySR(activitySR)
event Start_activitySR(activitySR)
event End_activitySR(activitySR)

event ResetactivitySRStatus(activitySR)

Initiates(Start_activitySR(activitySR), Started_activitySR(activitySR),time).
Initiates(End_activitySR(activitySR), Finished_activitySR(activitySR),time).
Terminates(End_activitySR(activitySR), Started_activitySR(activitySR),time).

Terminates(ResetactivitySRStatus(activitySR), Started_activitySR(activitySR),time).
Terminates(ResetactivitySRStatus(activitySR), Finished_activitySR(activitySR),time).

Happens(End_activitySR(activitySR), time) → HoldsAt(Started_activitySR(activitySR), time).
Happens(ResetactivitySRStatus(activitySR), time) → HoldsAt(Finished_activitySR(activitySR),
time) .
HoldsAt(Started_activitySR(activitySR), time) → !Happens(Start_activitySR(activitySR), time).
HoldsAt(Finished_activitySR(activitySR), time) → !Happens(End_activitySR(activitySR), time).
HoldsAt(Finished_activitySR(activitySR), time) → !Happens(Start_activitySR(activitySR), time).

!HoldsAt(Started_activitySR(activitySR), 0).
!HoldsAt(Finished_activitySR(activitySR), 0).

In the model above, we have enriched the activity with states model to add

an event called ResetactivitySRStatus and have defined Terminates axioms for the

fluents, Started_activitySR and Finished_activitySR. As a result, once the Rese-

tactivitySRStatus event happens it resets the status of activity and thus allows to

re-start an activity. Further, we can also define when the ResetactivitySRStatus

event happens as we will discuss later while defining models for control flow con-

structs such as loops.

55

Chapter 4. Composition design - components

4.2 Web services

The proposed composition design also allows to model the Web services and in this

section we will discuss event-calculus models for Web services supporting different

invocation modes (synchronous or asynchronous). As the proposed framework aims

to reason about the composition process, we will only model the core aspects related

to the Web services that are needed to be reasoned about and leaving out the details

only needed for services execution. However, proposed models can be extended to

handle other aspects, if needed.

4.2.1 Synchronous Web services invocation

In order to model the synchronous Web services invocation, we can define an

event-calculus sort called synchservice and its instances represent the Web services

used in the composition process. We can then define events to invoke the Web

services and fluents that represent if the response has been received from the

Web service. The event-calculus model below allows synchronous Web services

invocation:

Web services (synchronous invocation without delay) - synchservice.e
Usage: - import synchservice.e and define instances of sort synchservice to represent Web services

sort synchservice

fluent ResponseReceived_synchservice(synchservice)
event Invoke_synchservice(synchservice)

Initiates(Invoke_synchservice(synchservice), ResponseReceived_synchservice(synchservice),time).
HoldsAt(ResponseReceived_synchservice(synchservice), time) → !Happens(Invoke_synchservice
(synchservice),time).

!HoldsAt(ResponseReceived_synchservice(synchservice),0).

In the event-calculus model above, we define an event to specify the service invo-

cation Invoke_synchservice, a fluent ResponseReceived_synchservice, which specifies

if we have received the response message from the Web service and an Initiates ax-

iom that states if the action Invoke_synchservice, happens at some time then the

fluent ResponseReceived_synchservice continues to hold after that time. We also

define that once the service has been invoked and response received, it should not

be re-invoked again and the initial condition for the fluent that it does not hold at

time-point 0.

The synchronous Web service model discussed above is simplistic model that does

not allow for specifying the delay a Web service takes to produce response. In order

to model the response time delay for a Web service (see synchservicewithdelay.e file),

we can break down the Web service invocation event Invoke_synchservice, into two

separate events (Invoke and EndInvocation) and add corresponding fluents. Then

we can define the delay between invocation start and end events to model response

time delay.

56

4.2. Web services

4.2.2 Pull-based Asynchronous invocation

The invocation mode for the Web services can be pull-based asynchronous and the

composition process can request and later "pull" the response message from the Web

service after some specified delay. In order to model the pull-based asynchronous

invocation, we can update the event-calculus model for synchronous Web services

invocation by adding events and fluents for the sending request and then pulling

the response, as shown in the model below (asynchpullservice abbreviated as APull).

Web services (Pull-based asynchronous invocation) - asynchpullservice.e
Usage: - import asynchpullservice.e and define instances of sort asynchpullservice to represent Web
services

sort APull
fluent ResponseReceived_APull(APull)
fluent ResponseRequested_APull(APull)

event Invoke_APull(APull)
event EndInvocation_APull(APull)

Initiates(Invoke_APull(APull), ResponseRequested_APull(APull),time).
Initiates(EndInvocation_APull(APull), ResponseReceived_APull(APull),time).
Happens(EndInvocation_APull(APull), time)→ HoldsAt(ResponseRequested_APull (APull),
time).

HoldsAt(ResponseRequested_APull(APull), time) → !Happens(Invoke_APull (APull),time).
HoldsAt(ResponseReceived_APull(APull), time) → !Happens(EndInvocation_APull (APull),time).

!HoldsAt(ResponseReceived_APull(APull),0).
!HoldsAt(ResponseRequested_APull(APull),0).

4.2.3 Push-based Asynchronous invocation

The invocation mode for the Web services can also be push-based asynchronous

and the composition process can request and the response is later "pushed" by the

service provider to the composition process. In order to model the push-based asyn-

chronous invocation, we introduce the queues that can be used to store the pushed

data from the service providers and composition process can then use the data from

the queues. the event-calculus model below handles the push-based asynchronous

invocation for the Web services ((asynchpushservice abbreviated as APush)). The

process first sends the request to the Web service (as similar to the previous models,

using the event Invoke_APush) and then the response is pushed to the process

queue, PushResponse_APush, between some specified time intervals. Once the

data is available in the queues, HoldsAt(ResponsePushed_APush), the response

can then be retrieved from the process queue using the event EndInvocation_APush.

57

Chapter 4. Composition design - components

Web services (Push-based asynchronous invocation) - asynchpushservice.e
Usage: - import asynchpushservice.e and define instances of sort asynchpushservice to represent
Web services

sort APush

fluent ResponseReceived_APush(APush)
fluent ResponseRequested_APush(APush)
fluent ResponsePushed_APush(APush)

event Invoke_APush(APush)
event PushResponse_APush(APush)
event EndInvocation_APush(APush)

Initiates(Invoke_APush(APush),ResponseRequested_APush(APush),time).
Initiates(PushResponse_APush(APush),ResponsePushed_APush(APush),time).
Initiates(EndInvocation_APush(APush),ResponseReceived_APush(APush),time).

Happens(PushResponse_APush(APush),time)→ HoldsAt(ResponseRequested_APush(APush),time).
Happens(EndInvocation_APush(APush),time)→ HoldsAt(ResponsePushed_APush(APush),time).

HoldsAt(ResponseRequested_APush(APush), time) → !Happens(Invoke_APush(APush),time).
HoldsAt(ResponsePushed_APush(APush), time) → !Happens(PushResponse_APush(APush),time).
HoldsAt(ResponseReceived_APush(APush), time)→ !Happens(EndInvocation_APush(APush),time).

!HoldsAt(ResponseReceived_APush(APush),0).
!HoldsAt(ResponsePushed_APush(APush),0).
!HoldsAt(ResponseRequested_APush(APush),0).

4.2.4 Services re-invocation

The Web services models discussed in this section does not allow to re-invoke a

service once it has been invoked and the response has been received. In order to

handle the services re-invocation (which would be needed for defining the iteration

control construct, Section-5.4) we can add terminates axioms, that reset the

fluents representing that the service has been invoked and the response message

has been received. The event-calculus model below is for the synchronous Web

services invocation that can be re-invoked (substituting synchservicewithreinvoke

for serviceSR):

58

4.3. Nodes

Web services (synchronous invocation that can be re-invoked) - synchservicewithreinvoke.e
Usage: - import synchservicewithreinvoke.e and define instances of sort synchservicewithreinvoke
to represent Web services

sort serviceSR

fluent ResponseReceived_serviceSR(serviceSR)
event Invoke_serviceSR(serviceSR)
event ResetStatus_serviceSR(serviceSR)

Initiates(Invoke_serviceSR(serviceSR), ResponseReceived_serviceSR(serviceSR),time).
HoldsAt(ResponseReceived_serviceSR(serviceSR),time) → !Happens(Invoke_serviceSR (ser-
viceSR),time).
Terminates(ResetStatus_serviceSR(serviceSR), ResponseReceived_serviceSR(serviceSR),time).
Happens(ResetStatus_serviceSR(serviceSR), time) → HoldsAt(ResponseReceived_ ser-
viceSR(serviceSR), time) .

!HoldsAt(ResponseReceived_serviceSR(serviceSR),0).

4.3 Nodes

In addition to the Web service instances already known, the user can also add

abstract Web service types, called nodes, that need to be discovered and instantiated

to some concrete Web service instances based on some specified constraints. Each

node has a unique type, that specifies the type of Web services that can be discovered

and bound to the node. The constraints associated with the nodes can include

functional and non-functional properties needed for services discovery.

In order to model nodes using event-calculus, we add the sorts node and con-

straints (which specify the constraints added to a node). The IsConcrete(service)

fluent separates the concrete Web service instances (used in the composition pro-

cess) from the services in the repository and candidates for selection. The fluent

Bound(node,service) specifies if the node has been eventually bound to some service

while the fluent Resolved(node) specifies that the node has been both bound to some

service that has been invoked to get the results.

Further, we introduce the predicate, HasConst(node, constraint), which spec-

ifies the constraints added to a node and the predicate, SatisfiesConst(service,

constraint), that specifies the constraints satisfied by the service. The predicate,

HasType(service, node), specifies the type of each service and we add some events

that use the fluents discussed above. We update the service invocation axioms to

only handle the invocation for the concrete Web services (and not to invoke the

services is repository unless they are bound to some Nodes and are made concrete).

Web service nodes - nodes.e
Usage: -

sort node, constraint
fluent IsConcrete(service), Bound(node,service), Resolved(node)
predicate SatisfiesConst(service,constraint), HasConst(node,constraint), HasType(service,node)

event Resolve(node), Bind(node, service)
Happens(Invoke(service), time) → HoldsAt(IsConcrete(service), time).

59

Chapter 4. Composition design - components

Next, we add axioms to handle node binding. These axioms satisfy that a

service is bound to a node only if it satisfies constraints and has the same type as

of the node. This binding results in service being marked concrete (and thus can

be invoked), finally once the service is bound to node and is invoked the node is

considered resolved.

Web service nodes - nodes.e
Usage: -

Initiates(Bind(node, service), Bound(node, service), time).
Initiates(Bind(node, service), IsConcrete(service), time).

HasConst(node, constraint) & !SatisfiesConst(service, constraint) → !Happens(Bind(node, ser-
vice),time).
Happens(Bind(node1, service),time) & HasType(service, node2) → node1 = node2.

Initiates(Resolve(node), Resolved(node), time).
Happens(Resolve(node),time) → {service} HoldsAt(Bound(node, service), time) & Hold-
sAt(RespRecvd(service), time).

The basic approach for handling nodes instantiation using the event calculus dis-

cussed above, requires transforming the service descriptions from service repository

into event calculus predicates and fluents, it does incur some overhead. As a result,

moving the local constraints specification and discovery outside event calculus (see

Section-7.1 for a SQWRL based approach that searches through the OWL-S based

repository using SQWRL queries) may be a better option. In this approach, the

nodes are discovered and the candidate services for a node are added to the event-

calculus with the axioms that exactly one service is executed (see [Zahoor 2009b]

for an example).

4.4 BPMN and event-calculus

In this section we will briefly discuss how the proposed event-calculus based

approach relates to the BPMN by both relating the proposed models to BPMN core

elements and also considering a mapping from core BPMN elements to the event-

calculus. The objective is twofold; at one hand this allows to provide formal-logic

semantics to the BPMN elements while on the other hand, the resulting design is

highly expressive, flexible and allows for reasoning about the BPMN elements to

identify conflicts and to compute an ordering based on (possibly) partially defined

process.

An overview of the mapping BPMN core elements in event-calculus is shown

in the table below. In general the different BPMN elements can be regarded as

event-calculus sorts (which are types) and a particular BPMN entity of some

element type can be regarded as the instance of event-calculus sort. Further, we

can also have sub-sorts in the event-calculus that allows to model hierarchy among

BPMN elements and for instance, providing roles-hierarchy in a role based access

60

4.4. BPMN and event-calculus

control system. In order to model properties of and relationships between different

elements we can correspondingly create event-calculus predicates that can than be

used to reason about them.

Element Event-calculus model
Event Instances of basic EC sort event, their trigger can be defined as axioms and

their impact can be defined by effect on fluents.
Activity Can be mapped directly to Activities model we presented in Section-4.1.
Gateway BPMN gateway constructs can be mapped to proposed Split/Join constructs,

Section-5.2.
Sequence/Message
flow

Sequence flow corresponds to the proposed dependency construct (Section-
5.1) with some difference as discuss below. Message flow can be mapped to
the proposed message flow construct discussed in Section-5.6

Association We can have a predicate HasAssociation(parameters) to define associations
for different elements.

Pool/Lane/Group We can have sorts called pool, lane, group and can use EC predicates (similar
to the association) to specify which activity belong to which pool/lane/group.

Data object/ Mes-
sage/Text

Can be mapped to the request/response data elements modeling presented in
Section-5.5.

Events are the core concept in the proposed modeling approach and in terms of

event-calculus terminology they can be regarded as the instances of basic EC sort

event, each event has a trigger and impact. Their trigger can be defined as axioms

that define the necessary conditions for the events to happen and their impact can

be defined by the effect on fluents and/or the triggering of other events. Events can

have parameters and can have multiple (combination of) impacts and triggers. In

relation to the events defined in the BPMN, we do not distinguish between start,

intermediate and end events. All the events can have impact(s) and trigger(s). In

order to mark the entry and exit point of the process we can have events named

Start and End, however in contrast to BPMN notation the End event can also have

impact(s), for instance changing the process status fluent, ProcessTerminated().

Some examples of events used in the proposed model include the events to invoke

Web services (with different synchronization modes), events to handle data flow,

temporal and security aspects and others.

Activities as proposed in BPMN notation, can be mapped directly to the

activities models we presented in Section-4.1. Regarding the control/data flow

BPMN constructs modeling using event-calculus, the sequence (message) flow

BPMN element can be mapped as specifying the (data) dependency (Section-5.1)

between different components with one major difference; in BPMN notation, a

sequence flow is used to show the order in which the activities will be performed in

a process which may or may not be based on dependency. As a result, the process

gets over-constrained and becomes highly procedural. In contrast the proposed

approach allows to specify the dependency between components if and only if, there

exists the dependency. One important advantage of the proposed approach is that

it allows to define events-based dependency and thus dependency can be specified

between any two events. This in-turn, makes it possible to specify dependency not

only on the successful completion of a component but also on the partial state of a

61

Chapter 4. Composition design - components

component. Examples include to define the dependency on a activity being started,

in execution or on a service being invoked (and not yet completed) or on the data,

such as data has been received, expired or the reception of some particular data

values.

For the BPMN gateways, the proposed XOR Split (Section-5.2) is an Exclusive

gateway, the OR split is Inclusive gateway while the AND-Split is the Parallel

gateway. The proposed event based split is different to the BPMN event-based

gateway in a way that the split decision is based on the occurrence or absence

of the events, while the BPMN event-based gateway can be converted to a

data-based split gateway. The association BPMN construct is used to associate

information and artifacts with the data elements. In event-calculus this can be

modeled by defining a predicate called HasAssociation(artifact, activity) to define

associations for different artifacts, that can be instances of a defined sort named

artifact. Then for the Pool/Lane/Group we can have sorts called pool, lane, group

and can use EC predicates (similar to the association) to specify which activ-

ity belong to which pool/lane/group. For the Data object/Message/Text we can

have a sort object/message/text and the predicate HasDataObject(activity, object).

4.5 Example

We will now review the motivating example (Section-2.2) and discuss event-calculus

modeling for different aspects related to the example. In this section we will only

identify different components regarding the motivating example and leave the

detailed discussion about modeling the control/data flow for Chapter-5 and about

modeling the non-functional requirements for Chapter-6. The event calculus model

below lists the components regarding the motivating example:

Motivating example - Defining components

load foundations/Root.e
load foundations/EC.e
load includes/synchservice.e
load includes/activitywithstate.e
load includes/activitywithoutstate.e
synchservice FireBrigadeWS, CallStaffWS, PoliceWS, AmbulanceWS, ExternalOrgWS, Meteorolo-
gyDeptWS
activitywithstate FireContainment, ExamineSite, PlanRecovery, RecoverPriorityItems
activitywithoutstate Start, End1, End2

For modeling different components for the motivating example using proposed

event-calculus based approach we first define the generic models to be included (such

as includes/synchservice.e and others) and instances of different sorts for defining

components constituting the composition process, as shown in the model above.

62

4.6. Summary

4.6 Summary

Different components that constitute the composition process can be broadly

categorized into activities and services categories. In this chapter, we have

first presented how activities (with intermediate states) can be modeled using

event-calculus and then used that activity model to present an example highlight-

ing how the model can be used for reasoning purposes. We have then presented

different sub-models for activities such as the one for activities that do not require

intermediate states and for the ones that need to be restarted (probably within a

loop-body). The table below provides an overview regarding the structure of this

chapter for modeling activities.

Activities Section for event-calculus models

Activities with states Event-calculus model is discussed in Section-4.1.1, in order to use the model
include activitywithstate.e to the event-calculus file.

Instantiated model A basic example showing how to use the activitywithstate.e for reasoning
using DECReasoner is shown in Section-4.1.2.

Without states A simplified model, where activity states are not needed is discussed in
Section-4.1.3 and corresponding include file is activitywithoutstate.e.

Activities with restart Activities that need to be restarted are modeled in Section-4.1.4 and corre-
sponding include files are activity(with/without)staterestart.e

For the Web services, we have presented event-calculus based models for Web

services supporting different synchronization modes (synchronous, push/pull based

asynchronous). We have also detailed how event-calculus based approach can be

also be used to modeling Nodes highlighting the limitations it poses and leaving

the discussion to Section-7.1 for an alternative SQWRL-based approach for Nodes.

The table below provides an overview regarding the structure of this chapter for

modeling different Web service types.

Web services Section for event-calculus models

Synchronous Web services model with synchronous invocation mode is discussed in Section-
4.2.1. Corresponding include files are synchservice(withdelay).e.

Asynchronous (pull) Pull-based asynchronous Web services invocation model is presented in
Section-4.2.2, corresponding include file is asynchpullservice.e.

Asynchronous (push) Push-based asynchronous invocation model is discussed in Section-4.2.3, cor-
responding include file is asynchpushservice.e.

Services(re-invoke) EC model for Web services that need to reinvoked (for instance within loop
body) is discussed in Section-4.2.4, corresponding include files are (asynch-
pull/asynchpush/synch)servicewithreinvoke.e

Nodes An brief discussion about the nodes is presented in Section-4.3.

The event-calculus models presented in this section are organized into generic

self-contained models added to independent event-calculus files that can be included

into process specification. For instance, in order to add some synchronous Web

services to the process specification we can simply include the file called, synchser-

vice.e, and define instances of event-calculus sort called synchservice. This generic

approach has allowed to implement a Java-based application, called ECWS, that

63

Chapter 4. Composition design - components

can automatically generate the event-calculus models for the process specification,

we will discuss the ECWS application in Section-9.2. We have also identified differ-

ent components for the motivating example, presented in Section-2.2 and discussed

event-calculus models for representing the components.

64

Chapter 5

Control/Data flow specification

Contents

5.1 Dependency . 65

5.2 Split and Join . 67

5.3 Conditions . 69

5.4 Iteration . 71

5.5 Request/Response data . 72

5.6 Message flow . 73

5.7 Example . 74

5.8 Summary . 78

In this chapter we will discuss different control and data flow constructs mod-

eling using event-calculus, that specify the dependencies and control and data flow

between different components1 added to the composition design.

5.1 Dependency

The dependency construct specifies the control and/or data flow dependency be-

tween different components and requires that the dependent component should

not be started/invoked unless the component on which it is dependent, is com-

pleted/response data has been received, Figure-5.1.

Figure 5.1: The dependency construct

In order to model the dependency between different components using event-

calculus we can add the axioms to the process specification that specify that the

1We will use the generic term component that can either be a service or an activity.

Chapter 5. Control/Data flow specification

invocation/start event of the dependent component should not happen unless the

fluent representing the completion of the source component holds. We can thus

define the following generic pattern:

Pattern for specifying dependency construct
Usage: see example below

;Dependency specification without explicitly defining the delay
Happens(DEPENDENT_EVENT, time) → HoldsAt(SOURCE_FLUENT, time).

;Dependency specification with explicitly defining the delay (delay value 1 means immediately after)
Happens(SOURCE_EVENT, time) → Happens(DEPENDENT_EVENT, time+DELAY).
Happens(DEPENDENT_EVENT, time) → Happens(SOURCE_EVENT, time-DELAY).

In order to use the above pattern for dependency specification, we first need to

choose between two different patterns for dependency specification. The first pat-

tern is for dependency specification without explicitly defining the delay between the

components, Figure-5.1. As a result the dependent component is started/invoked

after some time (which is not explicitly specified) after the completion of other

component. Then the second pattern for dependency specification in the model

above, is for explicitly specifying the delay with a delay value of 1 signifying im-

mediately after. Then we need to update the source and target events/fluents in

the patterns above. For the first pattern the DEPENDENT_EVENT should be

substituted by the start/invocation event for the dependent component while the

SOURCE_FLUENT should be substituted by the fluent representing the comple-

tion/response reception of the component on which other is dependent. For the sec-

ond dependency pattern, SOURCE_EVENT specifies the completion/invocation

end event for the component on which other is dependent, while the DELAY spec-

ifies the invocation delay of dependent component after the completion of other

component.

Figure 5.2: The dependency construct - example

Before going further, let us briefly present the dependency pattern usage for

specifying that some activity, DependentActivity, is dependent on the completion

(response data received) of a service called SomeService. An intuitive representation

of dependency construct for this particular example is shown in Figure-5.2 and the

complete event-calculus axioms are shown below:

66

5.2. Split and Join

Dependency specification patterns - Usage example

;Dependency specification without explicitly defining the delay
Happens(Start_activitywithoutstate(DependentActivity), time) → HoldsAt (ResponseRe-
ceived_synchservice (SomeService), time).
Happens(Invoke_synchservice(DependentService), time) → HoldsAt (Finished_activitywithoutstate
(SomeActivity), time).

;Dependency specification with explicitly defining the delay (delay value 1 means immediately after)
Happens(End_activitywithstate(SomeActivity), time) → Happens (Invoke_synchservice (Depen-
dentService), time+1).
Happens(Invoke_synchservice(DependentService), time) → Happens (End_activitywithstate
(SomeActivity), time-1).

One important advantage of the proposed approach is that it allows to define

events-based dependency and thus dependency can be specified between any two

events. This in-turn, makes it possible to specify dependency not only on the suc-

cessful completion of a component but also on the partial state of a component.

Examples include to define the dependency on a activity being started, in execution

or on a service being invoked (and not yet completed) or on the data, such as data

has been received, expired or the reception of some particular data values.

5.2 Split and Join

The split construct requires the parallel start/invocation of multiple components

(termed as split target) after the completion of a component (called split source),

Figure-5.3. The split construct can take three forms; the AND-Split requires

the parallel start/invocation of all components, the OR-Split requires the paral-

lel start/invocation of at-least-one of the components while the XOR-Split requires

the parallel start/invocation of exactly-one of the components specified in the split

target.

Figure 5.3: The Split construct

67

Chapter 5. Control/Data flow specification

An intuitive graphical representation of the structure of event-calculus axioms

for specifying the split-construct is shown in Figure-5.3 and below we present the

complete event-calculus based patterns for the specification of the split construct

with different modes:

Pattern for specifying split construct with different modes

;the AND-Split
Happens(SOURCE_EVENT, time) → Happens(DEPENDENT_EVENT_1, time+DELAY) &
Happens(DEPENDENT_EVENT_2, time+DELAY) & ...
Happens(DEPENDENT_EVENT_1, time) | Happens(DEPENDENT_EVENT_2, time) | ... →

Happens(SOURCE_EVENT, time-DELAY).

;the OR-Split
Happens(SOURCE_EVENT, time) → Happens(DEPENDENT_EVENT_1, time+DELAY) |
Happens(DEPENDENT_EVENT_2, time+DELAY) | ...
Happens(DEPENDENT_EVENT_1, time) | Happens(DEPENDENT_EVENT_2, time) | ... →

Happens(SOURCE_EVENT, time-DELAY).

;the XOR-Split
Happens(SOURCE_EVENT, time) → Happens(DEPENDENT_EVENT_1, time+DELAY) |
Happens(DEPENDENT_EVENT_2, time+DELAY) | ...
Happens(DEPENDENT_EVENT_1, time) | Happens(DEPENDENT_EVENT_2, time) | ... →

Happens(SOURCE_EVENT, time-DELAY).
Happens(DEPENDENT_EVENT_1, time) → !Happens(DEPENDENT_EVENT_2, time) & ...
Happens(DEPENDENT_EVENT_2, time) → !Happens(DEPENDENT_EVENT_1, time) & ...

The event-calculus patterns for split construct presented above, is for the

control-split however in general, the split-decision can also be based on data values

or the occurrence of some event. In order to model the event-calculus patterns

for data-values based split we need to have notions for conditions that can be

evaluated to true are false. The conditions construct is defined later in Section-5.3

and we leave the discussion for data-based split scheme to Section-5.3. The split

decision can also be based on the occurrence of some event and below we discuss

the event-calculus patterns for event-based split scheme:

Pattern for specifying event-based (AND/OR)split construct

Happens(SOURCE_EVENT, time) & Happens(CONDITIONAL_EVENT, time) → Hap-
pens(DEPENDENT_EVENT_1, time+DELAY) (&,|) Happens(DEPENDENT_EVENT_2,
time+DELAY) (&,|) ...

Happens(DEPENDENT_EVENT_1, time) | Happens(DEPENDENT_EVENT_2, time) | ...
→ Happens(SOURCE_EVENT, time-DELAY) & Happens(CONDITIONAL_EVENT, time-
DELAY).

In the model above, we update the patterns for specifying the split construct

and added the axiom to split iff CONDITIONAL_EVENT happens. As discussed

earlier, one important aspect of the proposed approach is that it allows to define

constructs (such as the split construct) not only on the successful completion of a

component but also on the partial state of a component. In general, the constructs

68

5.3. Conditions

such as split are thus defined in terms of events and any specified target events can

happen in parallel after the occurrence of the source event.

Further, the join construct handles the control aggregation after the parallel

invocation of components using the split construct discussed above and requires

the components (to which control was splitted) to complete before the start/invoke

of the component after the join construct. Different aggregation schemes can be

used that can be used requiring all/exactly-one/at-least-one/subset of components

to complete. The join construct can be modeled using event-calculus by defining

dependency (using the patterns for the dependency construct defined earlier) for the

component following the join construct on (all/exactly-one/at-least-one/subset-of)

components to which control was routed using the split construct.

5.3 Conditions

In order to handle the conditional invocation of components, we introduce the

condition construct that signifies a data-based condition that can be evaluated to

be either true or false and other events can be based on conditions evaluation. In

order to model conditions we can define an event-calculus sort called condition,

whose instances represent the conditions to be evaluated. Then to abstract the

condition evaluation process, we can define two events called EvaluateCondition-

True(condition) and EvaluateConditionFalse(condition), and the corresponding

fluents named ConditionTrue(condition) and ConditionFalse(condition), that

represent if the condition is evaluated to true or false. Further, we add an axiom

that specifies, either the condition is evaluated to true or false and not both. The

event-calculus model below is used for defining conditions:

69

Chapter 5. Control/Data flow specification

Conditions specification using event-calculus - condition.e
Usage: import condition.e and define instances of sort condition to represent conditions

sort condition

event EvalConditionTrue(condition)
event EvalConditionFalse(condition)

fluent ConditionTrue(condition)
fluent ConditionFalse(condition)

Initiates(EvalConditionTrue(condition), ConditionTrue(condition),time).
Initiates(EvalConditionFalse(condition), ConditionFalse(condition),time).

HoldsAt(ConditionTrue(condition), time) → !Happens(EvalConditionTrue(condition), time) &
!Happens(EvalConditionFalse(condition), time).
HoldsAt(ConditionFalse(condition), time) → !Happens(EvalConditionFalse(condition), time) &
!Happens(EvalConditionTrue(condition), time).

Happens(EvalConditionTrue(condition), time) → !Happens(EvalConditionFalse(condition), time).
Happens(EvalConditionFalse(condition), time) → !Happens(EvalConditionTrue(condition), time).

!HoldsAt(ConditionTrue(condition), 0).
!HoldsAt(ConditionFalse(condition), 0).

The conditions model defined above can then also be used to define data-based

split scheme mentioned in Section-5.2 where the decision to split the control should

be based on the evaluation of some particular condition. An intuitive graphical

representation of the structure of event-calculus axioms for specifying the data-

based split scheme is shown in Figure-5.4.

Figure 5.4: The data-based split construct

In the model below, we update the patterns for specifying the split construct

and add the axiom to split iff CONDITION_TRUE_EVENT (or condition false

event, if needed) happens.

70

5.4. Iteration

Pattern for specifying data-based (AND/OR/XOR)split construct

Happens(SOURCE_EVENT, time) & Happens(CONDITION_TRUE_EVENT, time) → Hap-
pens(DEPENDENT_EVENT_1, time+DELAY) (&,|) Happens(DEPENDENT_EVENT_2,
time+DELAY) (&,|) ...

Happens(DEPENDENT_EVENT_1, time) | Happens(DEPENDENT_EVENT_2, time) | ...
→ Happens(SOURCE_EVENT, time-DELAY) & Happens(CONDITION_TRUE_EVENT, time-
DELAY).

5.4 Iteration

Iteration construct requires a set of components (termed as loop-body) to be invoked

continuously until some condition (termed as loop-exit-condition) does not holds. In

order to model the iteration construct using the proposed framework, we can first

define dependency (using the dependency construct discussed earlier) amongst the

components included in the loop-body and finally specifying the dependency for the

loop-exit-condition on the last component included in the loop body. Further, we

can define an event-calculus axiom to either exit the loop (if the condition holds)

or to re-start the first component in the loop-body if the condition does not hold,

Figure-5.5.

Figure 5.5: Patterns for specifying Iteration construct

One important requirement for the iteration construct is that all the compo-

nents (and conditions including loop exit condition) included in the loop-body

should be possible to be restarted/reinvoked (and thus the event-calculus models

added to the process specification, should be appropriate ones). Further, once

the loop-exit-condition does not hold and requiring iteration, the status of all the

components should be reset. The event-calculus model below specifies the patterns

for specifying iteration construct:

71

Chapter 5. Control/Data flow specification

Pattern for specifying iteration construct

Happens(LOOP_EXIT_CONDITION_FALSE_EVENT, time) → Happens(START_EVENT,
time+DELAY)
Happens(LOOP_EXIT_CONDITION_FALSE_EVENT, time) → Happens(RESET_EVENT_1,
time+DELAY) & Happens(RESET_EVENT_2, time+DELAY) ...

Happens(RESET_EVENT_1, time) | Happens(RESET_EVENT_2, time) ... → Hap-
pens(LOOP_EXIT_CONDITION_FALSE_EVENT, time-DELAY)

5.5 Request/Response data

The Web services and activities models presented earlier in this chapter do not

cater for request and response data (and their properties) that are associated with

different components, for instance input/output parameters of some service. In

order to model request and response data we introduce new sorts named requestdata

and responsedata, respectively. The instances of these sorts then represent the

request and response data elements.

Then, in order to associate these data elements to the components they belong,

for instance specifying the search_query input data element (instance of sort

requestdata) belongs to the Search synchronous Web service (instance of sort

synchservice) we have explored two approaches. First, we can define a predicate

called HasInput(synchservice, requestdata) and we can specify the predicate for

individual instances, HasInput(Search, search_query), and then we can use this

predicate in axioms. However, we believe that this approach results in complex

axioms which may increase the problem size (and the time taken for event-calculus

to SAT encoding process). The other approach requires to specify some data based

properties (such as data availability, validity, confidentiality and others) in form of

event-calculus axioms and fluents that need to be evaluated for the request and

response data. Then, we can associate these data-based events and fluents to the

service/activity based events. Below we present the model for the request data

(response data model is very much similar):

72

5.6. Message flow

Request data for Web services - requestdata.e
Usage: - import requestdata.e and define instances of sort requestdata to represent request data

sort requestdata

event Validate_requestdata(requestdata)
event Encrypt_requestdata(requestdata)
fluent IsValid_requestdata(requestdata)
fluent IsEncrypted_requestdata(requestdata)
Initiates(Validate_requestdata(requestdata), IsValid_requestdata(requestdata),time).
Initiates(Encrypt_requestdata(requestdata), IsEncrypted_requestdata(requestdata),time).

HoldsAt(IsValid_requestdata(requestdata), time) → !Happens(Validate_requestdata (request-
data),time).
HoldsAt(IsEncrypted_requestdata(requestdata), time) → !Happens(Encrypt_requestdata (request-
data),time).

!HoldsAt(IsEncrypted_requestdata(requestdata),0).
!HoldsAt(IsValid_requestdata(requestdata),0).

In order to use the model we need to import the model to the specification and

then define instances of the sort requestdata. Further, we need to specify when

the properties are evaluated for each data element, for instance the request data

associated with a service needs to be encrypted before the request is to be made.

5.6 Message flow

In order to model the message flow between different components, we can also

define an event-calculus sort called messagedata and its instances represent the

data elements that need to be transferred between components. Then each

messagedata has a source component, from which the data being sent, and a

target component which is the receiver of the data. These can be abstracted by

defining events Send_messagedataReceive_messagedata and corresponding fluents

Sent_messagedataReceived_messagedata. Finally we can define axioms to specify

that the Send_messagedata event happens when the source component starts (or

is in any intermediate state) and the Receive_messagedata event happens when

the target component starts (or is in any intermediate state). The event-calculus

model below handles message flow between components (messagedata abbreviated

as msgdata):

73

Chapter 5. Control/Data flow specification

Message-flow specification using event-calculus - messagedata.e
Usage: import messagedata.e and create instances of sort messagedata

sort msgdata

event Validate_msgdata(msgdata)
event Send_msgdata(msgdata)
event Receive_msgdata(msgdata)

fluent IsValid_msgdata(msgdata)
fluent Sent_msgdata(msgdata)
fluent Received_msgdata(msgdata)

Initiates(Validate_msgdata(msgdata), IsValid_msgdata(msgdata),time).
Initiates(Send_msgdata(msgdata), Sent_msgdata(msgdata),time).
Initiates(Receive_msgdata(msgdata), Received_msgdata(msgdata),time).

HoldsAt(IsValid_msgdata(msgdata),time) → !Happens(Validate_msgdata(msgdata),time).
HoldsAt(Sent_msgdata(msgdata), time) → !Happens(Send_msgdata(msgdata),time).
HoldsAt(Received_msgdata(msgdata), time) → !Happens(Receive_msgdata(msgdata),time).
Happens(Validate_msgdata(msgdata),time) → HoldsAt(Received_msgdata(msgdata), time).

!HoldsAt(IsValid_msgdata(msgdata),0).
!HoldsAt(Sent_msgdata(msgdata),0).
!HoldsAt(Received_msgdata(msgdata),0).

5.7 Example

We will now review the motivating example (Section-2.2) and discuss event-calculus

modeling for different control/data flow aspects related to the example. As

discussed earlier in Section-2.3.5, we will consider process fragments modeling from

an individual component perspective and later in Chapter-7 we will discuss process

instantiation that aims to find a solution by connecting these fragments. We

identified different components for the motivating example in Section-4.5 and as

the invocation of different components depend on some conditions to be evaluated,

we also add some conditions to the process specification as shown in the model below:

Motivating example - Defining conditions

...
load includes/condition.e
condition Is(CRR/SC/FC)Available, Has(CRR/SC/FC/FB)Arrived, FalseAlarmCheckByCRR,
FalseAlarmCheckByFB, HasConservatorArrived, IsExternalHelpNeeded

Figure 5.6: Motivating example - Process start fragment

Regrading the control/data flow requirements for the motivating example,

we first specify that at the start of the process we need to first check if the

74

5.7. Example

CRR/FC/SC are available, Figure-5.6. The first axiom in the model below is for

checking CRR availability and we have omitted the axioms for FC/SC availability

as they are very similar. Further, if CRR is available at the site he can check that if

it is not the false alarm, the second axioms. In the model below we will abbreviate

Start_activitywithoutstate as Start_AWS and EvalCondition(True/False) as

EvalCond(True/False).

Motivating example - Checking if CRR is available, if so check for the FalseAlarm

;at start check condition
Happens(Start_AWS(Start), time) → Happens(EvalCondTrue(IsCRRAvailable), time) | Hap-
pens(EvalCondFalse(IsCRRAvailable), time).

;check if it is a false alarm only if CRR is available
Happens(EvalCondTrue (FalseAlarmCheckByCRR), time) | Happens(EvalCondFalse (FalseAlarm-
CheckByCRR),time) → HoldsAt (ConditionTrue (IsCRRAvailable),time).

Figure 5.7: Motivating example - Invocation of FireBrigadeWS and CallStaffWS

Next, in the model below we specify to end the process if CRR is available and

he decides that it is a false alarm (the first axiom) and if not the case invoke the

FireBrigadeWS and CallStaffWS Web services, Figure-5.7. These services can also

be invoked automatically if the CRR is not there and the last two axioms in the

model below handle this requirement.

Motivating example - If FalseAlarm end process, otherwise invoke services

;if indeed it is a false alarm then exit
Happens(Start_AWS(End1), time) → HoldsAt(ConditionTrue (FalseAlarmCheckByCRR),time).

;two cases for the invocation of FireBrigadeWS
Happens(Invoke_synchservice(FireBrigadeWS), time) → HoldsAt(ConditionFalse (FalseAlarm-
CheckByCRR),time) | HoldsAt (ConditionFalse(IsCRRAvailable),time).

;two cases for the invocation of CallStaffWS
Happens(Invoke_synchservice(CallStaffWS), time) → HoldsAt(ConditionFalse (FalseAlarmCheck-
ByCRR),time) | HoldsAt (ConditionFalse(IsCRRAvailable),time).

Then, the CRR if available can invoke other services as well but as we are

discussing event-calculus models from individual components point of view and in

75

Chapter 5. Control/Data flow specification

terms of security requirements for the process CRR should always be available for

invoking other emergency services. There are two cases, is he already available as

modeled above or either he is not there and once the CallStaffWS service is invoked

he is there after some delay, Figure-5.8. In the model below we handle the arrival

of CRR once the CallStaffWS is invoked and only if he is not already there at the site.

Motivating example - If CRR not available, he is there after CallStaffWS is invoked

Happens(EvalCondTrue(HasCRRArrived), time) | Happens(EvalCondFalse(HasCRRArrived),
time) → HoldsAt(ResRecvd_synchservice (CallStaffWS),time) & !HoldsAt(ConditionTrue (IsCR-
RAvailable),time).

Figure 5.8: Motivating example - Invocation of other emergency services

We can have similar model as shown above for SC and FC. Then, once CRR

has reached the site (or was already there) he can invoke other emergency services,

Figure-5.8, as modeled below.

Motivating example - Other emergency services invocation

Happens(Invoke_synchservice(PoliceWS), time) → HoldsAt(ConditionFalse (FalseAlarmCheckBy-
CRR),time) | HoldsAt(ConditionTrue (HasCRRArrived),time).

Happens(Invoke_synchservice(AmbulanceWS), time) → HoldsAt(ConditionFalse(FalseAlarm-
CheckByCRR),time) | HoldsAt(ConditionTrue (HasCRRArrived),time).

Happens(Invoke_synchservice(MeteorologyDeptWS), time) → HoldsAt(ConditionFalse
(FalseAlarmCheckByCRR),time) | HoldsAt(ConditionTrue (HasCRRArrived),time).

Now moving to other part of the process, Figure-5.9, the fire-brigade arrives

after the FireBrigadeWS is invoked and the condition that HasFBArrived is thus

evaluated after the request to the FireBrigadeWS has been made. The first axiom

in the model below handles this behavior and once the fire brigade arrives they

can check also check if it is just a false alarm (or the scale of fire does not need

containment), if so the process ends. The last two axioms in the model below

handle this requirement:

76

5.7. Example

Motivating example - Fire-brigade arrival and checking if fire indeed needs containment

Happens(EvalCondTrue(HasFBArrived), time) | Happens(EvalCondFalse(HasFBArrived), time) →

HoldsAt(RespRecvd_synchservice(FireBrigadeWS),time).

Happens(EvalCondTrue(FalseAlarmCheckByFB), time) | Happens(EvalCondFalse (FalseAlarm-
CheckByFB), time) → HoldsAt(ConditionTrue(HasFBArrived),time).

Happens(Start_activitywithoutstate(End2), time) → HoldsAt(ConditionTrue (FalseAlarmCheck-
ByFB),time).

Figure 5.9: Motivating example - FireContainement and ExamineSite activities

Further, once the fire-brigade arrives and they decide it is not a false alarm,

the fire containment starts, the first axiom in the model below handle this re-

quirement. Then, once the fire-containment finishes and once the CRR has ar-

rived (or was already there), examine site activity starts. The last axiom in the

model below handle this requirement, Start/End_activitywithstate abbreviated as

Start/End_activityWS).

Motivating example - Fire-containment and ExamineSite

Happens(Start_activityWS(FireContainment), time) → HoldsAt(ConditionFalse (FalseAlarm-
CheckByFB),time).

Happens(Start_activityWS(ExamineSite), time) → HoldsAt(Finished_activitywithstate (FireCon-
tainment), time) & (HoldsAt(ConditionTrue (HasCRRArrived),time) | HoldsAt(ConditionTrue (Is-
CRRAvailable),time)).

Once the site has been examined, it is decided whether external help is needed

and if so, the ExternalOrgWS is invoked (the first two axioms in the model below).

Then, the activity to plan recovery can only be started if the decision on external

help is taken and once CRR, SC and FC are all available at the site (either they

were already there at the site or have reached the site once the CallStaffWS has

been invoked), Figure-5.10. The last axiom (only shown for CRR but also contains

conditions for SC/FC) in the event-calculus model below handles this requirement.

77

Chapter 5. Control/Data flow specification

Motivating example - External help decision and Plan recovery activity

Happens(EvalCondTrue(IsExternalHelpNeeded), time) | Happens(EvalCondFalse (IsExternalHelp-
Needed), time) → HoldsAt(Finished_activityWS(ExamineSite), time).

Happens(Invoke_synchservice(ExternalOrgWS), time) → HoldsAt(ConditionTrue (IsExternalHelp-
Needed),time).

Happens(Start_activityWS(PlanRecovery), time) → (HoldsAt(RespRecvd_synchservice (Ex-
ternalOrgWS), time) | HoldsAt(ConditionFalse(IsExternalHelpNeeded),time)) & (Hold-
sAt(ConditionTrue(HasCRRArrived),time) | HoldsAt(ConditionTrue(IsCRRAvailable),time))
& ... conditions for SC/FC.

Figure 5.10: Motivating example - PlanRecovery and RecoverPriorityItems activities

Finally the activity for the recovery of the priority items (RecoverPriorityItems)

can start once the planning has finished, Figure-5.10. In the model below, we also

specify the composition goal that is to have the items recovered 90 minutes after

the start of the process.

Motivating example - Recover items activity and the composition goal

Happens(Start_activityWS(RecoverPriorityItems),time) → HoldsAt(Finished_activityWS (Plan-
Recovery),time).

; composition goal
HoldsAt(Finished_activitywithstate(RecoverPriorityItems), 90).

5.8 Summary

In this chapter we have discussed the event-calculus based patterns for specifying

different control/data flow constructs, such as Dependency, Split/Join and different

Split/Join Schemes, Conditional invocation/start of components, Iteration and data

flow between different components. The table below provides an overview regarding

the structure of this chapter.

78

5.8. Summary

Construct Section for event-calculus model

Dependency Event-calculus based patterns for specifying dependency between two compo-
nents is discussed in Section-5.1.

Split & Join Patterns for Split and Join constructs (including different split/join schemes)
is presented in Section-5.2.

Conditions Event-calculus model for specifying conditions is discussed in Section-5.3 and
corresponding include file is condition.e.

Iteration Patterns for specifying iteration construct is discussed in Section-5.4.

Data Event-calculus model for specifying request/response data is discussed in
Section-5.5, corresponding files are request.e and response.e.

Messages EC model for specifying the message transfer between two components includ-
ing patterns for its usage is discussed in Section-5.6, corresponding include
file is messagedata.e.

We have also discussed the control/data flow specification for the motivating

example, Section-2.2, and discussed how the proposed patterns can be used to spec-

ify the control/data flow between different components identified for the motivating

example. This pattern based approach has allowed us to implement a Java-based ap-

plication, called ECWS, that can automatically generate the event-calculus models

for the process specification, we will discuss the ECWS application in Section-9.2.

79

Chapter 6

Modeling Non-functional aspects

Contents

6.1 Modeling temporal aspects . 81

6.1.1 Response time . 82

6.1.2 Restart/Refresh . 82

6.1.3 Invocation time-frame and delay 83

6.1.4 Allen’s Interval Algebra . 83

6.1.5 Modeling time-units . 86

6.2 Modeling security aspects . 86

6.2.1 Security requirements . 86

6.2.2 Interaction levels . 87

6.2.3 Data confidentiality, retention and integrity 87

6.2.4 Authentication/Authorization 89

6.2.5 Dynamic Task Delegation . 89

6.3 Example . 90

6.4 Summary . 92

In this chapter we will discuss how the proposed approach allows to model dif-

ferent security and temporal aspects related to the composition process. We will

first discuss patterns for specifying temporal requirements and then will discuss

how the event-calculus models for specifying different security requirements for the

composition process.

6.1 Modeling temporal aspects

Using event-calculus as the modeling formalism also allows to specify the temporal

constraints for the composition process. The temporal constraints can either be

local to a component (such as specifying the time it takes for a service to produce

response) or they can be imposed by the composition process on the participating

components (such as specifying the delay between the invocation of two services).

Further, the temporal constraints can be either control based (such as specifying the

delay between the successive invocation of component) or they can be data-based

temporal constraints (such as data validity constraints).

Chapter 6. Modeling Non-functional aspects

6.1.1 Response time

The response time temporal constraint specifies the time it takes for a component

to finish execution, such as the time taken for Web service to produce response once

a request is made or the time it takes for an activity to be completed. The choice

of event-based approach allows to specify delay between events and for instance,

makes it possible to specify the time it takes for an activity to get started/finished

or the time spent during execution. The response time is a local constraint and

is specified by the participating components requiring the composition process to

cater for this constraint in finding the solution to the composition process. The

event-calculus pattern below can be used to specify the response-time constraint:

Pattern for specifying response-time temporal constraint

Happens(START_EVENT, time) → Happens(END_EVENT, time+RESPONSE_DELAY).
Happens(END_EVENT, time) → Happens(START_EVENT, time-RESPONSE_DELAY).

In the model above, the START_EVENT represents the component start event

(such as) and the END_EVENT represents the end event for the same compo-

nent. Finally the RESPONSE_DELAY represents the response-time delay for the

component.

6.1.2 Restart/Refresh

The temporal constraints also include the restart constraint which requires a

component to be restarted/reinovked after a fixed time, for instance re-invoking

some backup service after a fixed delay. The restart constraint when applied to

data flow, requires the data to be re-fetched (by re-invoking service/task) once it

expires and is called data refresh constraint. Below we present the patterns for

specifying the restart/refresh temporal constraint using event-calculus.

Pattern for specifying restart/refresh temporal constraint

Happens(SOURCE_EVENT, time) → Happens(RESTART_EVENT, time+DELAY).
Happens(DATA_EXPIRY_EVENT, time) → Happens(REFRESH_EVENT, time+DELAY).

In the model above, the first pattern is for specifying the restart constraint

while the other one is for the data refresh temporal constraint. For the restart

constraint, the SOURCE_EVENT represents the event after which the component

should be restarted (for instance, some condition RequiresBackup being true). Then

for the refresh constraint the DATA_EXPIRY_EVENT represents the data expiry

event after which the component should be restarted to fetch the data. One im-

portant requirement for the restart/refresh constraint is that the component should

support restart and its status has been reset once the SOURCE_EVENT or the

DATA_EXPIRY_EVENT happens.

82

6.1. Modeling temporal aspects

6.1.3 Invocation time-frame and delay

The invocation timeframe constraint requires a service to be invoked (task to be

started) within a fixed timeframe. The specified time-frame can either be absolute

time or the time that has been passed after any particular event and serves as

a boundary for the times in which service/task can be invoked. As an example,

consider the service to backup records should start between some specific time

interval or it can be specified that the backup service should be invoked after the

data has been updated. Further it is also possible to specify the exact time at which

the service/task should be invoked. In terms of data flow, the timeframe constraint

requires that the some particular data data is available (at-least/only) between

the specified time-frame. Below we model different types of invocation time frame

constraints; the first axiom models the control flow based invocation time-frame

constraint. Then, the other axiom model the component invocation/start at exact

time-point:

Pattern for specifying invocation time-frame and delay temporal constraints

Happens(COMPONENT_START_EVENT,time) → time>IntervalStartTime &
time<IntervalEndTime.
Happens(SOME_EVENT, SomeExactTimepoint).

The execution delay constraint requires that the successive invocations of the

service must be delayed by some time (possibly to prevent overloading a service).

This constraint can also be specified to specify the invocation delay between multiple

services, such as some backup service must be invoked some time after the service

that has changed the data.

6.1.4 Allen’s Interval Algebra

Allen’s Interval Algebra is a calculus for temporal reasoning that was introduced

by James F. Allen in 1983. The calculus defines possible relations between time

intervals and provides a composition table that can be used as a basis for reasoning

about temporal descriptions of events1.

The base relations for the Allen’s interval algebra can be mapped and applied

to the proposed framework and below we discuss the patters for specifying these

relations using event-calculus:

1http://en.wikipedia.org/wiki/Allen’s_Interval_Algebra

83

Chapter 6. Modeling Non-functional aspects

Figure 6.1: Base relations (after, meets, overlaps) for Allen’s Interval Algebra

Patterns for specifying base relations of Allen’s interval algebra
Usage:

COMP_A after COMP_B
Happens(EVENT_B, time) → Happens(EVENT_A, time+DELAY).
Happens(EVENT_A, time) → Happens(EVENT_B, time-DELAY).

COMP_A meets COMP_B
Happens(EVENT_B, time) → Happens(EVENT_A, time).
Happens(EVENT_A, time) → Happens(EVENT_B, time).

COMP_A overlaps COMP_B
Happens(EVENT_B, time) → Happens(EVENT_A, time-OVERLAP_DELAY).
Happens(EVENT_A, time) → Happens(EVENT_B, time+OVERLAP_DELAY).

The patterns above are for after/meets/overlaps relations proposed in the

Allen’s interval algebra, Figure-6.1. EVENT_A is the start event of component

COMP_A and EVENT_B is the end event of the component COMP_B. For

the after relation the DELAY specifies the delay time between the start of the

components and for the meets relation there is no DELAY, as COMP_A starts

at the same time as COMP_B finishes. Further, in case of the overlaps relation,

the delay is called the OVERLAP_DELAY which specifies the time in which both

components are in concurrent execution.

Patterns for specifying base relations of Allen’s interval algebra
Usage:

COMP_A starts COMP_B
Happens(EVENT_A, time) → Happens(EVENT_B, time).

COMP_A ends COMP_B
Happens(EVENT_A, time) → Happens(EVENT_B, time).

The patterns above are for starts/ends relations proposed in the Allen’s interval

algebra, Figure-6.2. For the starts (ends) relation EVENT_A is the start (end)

event of component COMP_A and EVENT_B is the start (end) event of the

component COMP_B.

84

6.1. Modeling temporal aspects

Figure 6.2: Base relations (starts, ends) for Allen’s Interval Algebra

Patterns for specifying base relations of Allen’s interval algebra
Usage:

COMP_A during(starts after and finishes before) COMP_B
Happens(EVENT_B_START, time) → Happens(EVENT_A_START, time+START_DELAY).
Happens(EVENT_A_START, time) → Happens(EVENT_B_START, time+START_DELAY).

Happens(EVENT_B_END, time) → Happens(EVENT_A_END, time-END_DELAY).
Happens(EVENT_A_END, time) → Happens(EVENT_B_END, time+END_DELAY).

The patterns above are for during and equals relations proposed in the Allen’s

interval algebra, Figure-6.3. EVENT_A_START and EVENT_A_END are the

start/end events of the component COMP_A while EVENT_B_START and

EVENT_B_END are start/end events of the component COMP_B. For the during

relation, the START_DELAY specifies after how much time the COMP_A should

start after starting COMP_B and END_DELAY specifies before how much time

is should finish before COMP_B finishes. The equals relation uses the same axioms

as for the during relation, without specifying the delay (or having delay equals 0).

Figure 6.3: Base relations (during, equals) for Allen’s Interval Algebra

85

Chapter 6. Modeling Non-functional aspects

6.1.5 Modeling time-units

The event-calculus models presented above discuss the events that happens and

fluents that hold at a particular time-point. However, in order to model the Web

services with temporal constraints in different time-units, as synchronous services

take seconds while the asynchronous can take minutes and longer, we need to add

semantics to the event-calculus time-points. This will allow us to treat time-points

as the actual time and thus specifying that an event happens at event-calculus

time-point 1, can signify that the event happens at one second/minute and so

on. The possible solutions to this problem include to convert all the time-units

to some common time-unit (such as seconds), however in reference to proposed

implementation architecture which attempt to convert the composition process to a

SAT based problem and then invokes a SAT based solver, this choice is unfeasible.

A smaller common time-unit such as seconds, and converting all other units to

seconds (10 minutes means 600 seconds) will increase the resulting SAT encoding

size and thus is not feasible. On the other hand, converting all the units to a higher

common format such as minutes will not allow to reason about the smaller time

units, such as seconds, as for the implementation DECReasoner is discrete.

As an alternative, we pre-process the time-units associated with different par-

ticipating services to first convert all the time-units to a common format such as

seconds. Then, an order is sought based on the time they take and finally that order

is used to redefine the time they take. A solution is then sought with the updated

constraints using the reasoner and the solution is then post-processed to update the

time-units associated with each service.

6.2 Modeling security aspects

The choice of event-calculus as the modeling formalism also allows to handle the

security requirements in the composition process. Some initial work on modeling

security policies using event-calculus and to reason about them can be found in

[Bandara 2003]. In section, we will first briefly discuss some of the security require-

ments for the composition process and then we will discuss the different levels at

which the security aspects can be incorporated in the services composition. Then,

we will discuss how the proposed framework allows to model these requirements at

different interaction levels.

6.2.1 Security requirements

The different security requirements for the composition process, are shown in the

table below[Souza 2009]:

86

6.2. Modeling security aspects

Requirement Description

Authentication requires to identify the user requesting a critical resource and thus allowing
only the legitimate users have access to the critical information.

Authorization requires to identify what operations the user is allowed to perform and if the
user is allowed to access the critical resource they are requesting.

Confidentiality security property requires that the critical information, such as credit card and
other personal information, should be encrypted and protected from unautho-
rized access.

Data integrity security property requires that the sensitive data (such as personal informa-
tion of a user) has to be verified for data corruption (such as tampering of
data between the sender and receiver) before usage.

Data retention property associates a time-to-live (TTL) information with the data requiring
it to be deleted after a certain time.

Auditing property requires that all the operations performed by the composition process
should be logged and are available for auditing (if needed).

Non-
repudiation

property requires that any user performing an operation (such as access-
ing critical information) can not later deny that action and thus the non-
repudiation requires support from authentication, integrity and auditing pro-
cess.

6.2.2 Interaction levels

The above mentioned security requirements can be handled at different interaction

levels for the participating Web services in the composition process. At the trans-

port layer, existing Web tier technology such as SSL can be used to handle security

requirements such as SSL encrypted connections for confidentiality and to avoid

data interception. Then at the message level, security data can be added to the

SOAP header fields to be then handled by the SOAP server. Further, the security

requirements can further be handled at the application level by using the application

specific encryption, authorization checks and others.

The proposed framework allows to model the security requirements at different inter-

action levels for Web services. Below we briefly discuss the event-calculus modeling

for the different security requirements identified earlier, and for each requirement

we will discuss the event-calculus modeling for different interaction levels.

6.2.3 Data confidentiality, retention and integrity

Confidentiality security property requires that the critical information, such as

credit card and other personal information, should be encrypted and protected

from unauthorized access. At the transport layer, confidentiality can be achieved

by using, for instance, SSL encrypted connections. Then at the message level, XML

Encryption specification can be used while at the application layer some application

level encryption schemes can be used. Using event-calculus, the confidentiality

requirement can be modeled at different interaction levels and we discussed earlier

the event-calculus models for specifying properties such as encryption for the

request/response data. In general, we can define event-calculus events/fluents that

abstract the encryption at different levels and then define axioms that specify when

a particular encryption level is used. In the event-calculus model below we first

attempt to model the transport level data confidentiality and then present the

87

Chapter 6. Modeling Non-functional aspects

pattern to handle the application-level confidentiality requirement:

Confidentiality - Transport and Application level

event UseEncryptedSSLConnection()
fluent EncryptedSSLConnectionUsed()
Initiates(UseEncryptedSSLConnection(), EncryptedSSLConnectionUsed(),time).
!HoldsAt(EncryptedSSLConnectionUsed(), 0).

Happens(COMPONENT_START_EVENT, time) → HoldsAt(IsEncrypted_requestdata
(SOME_DATA_ELEMENT), time).

Before going further, let us briefly discuss how the proposed modeling ap-

proach can be used to reason about the confidentiality requirement. First, as the

confidentiality can b handled at different levels and an application may opt to

choose one particular encryption level and thus not opting for encryption levels.

Then, for the application level encryption we can have axioms that the data

should not be used once decrypted and should not be transferred to other services

before encryption. Further, we can use the reasoner to perform a compatibility

analysis of services that support different encryption schemes, for instance if a

service is using some particular application level encryption scheme then we need to

identify if some other service consuming data from that service can decrypt the data.

The data retention requirement associates a time-to-live (TTL) information

with the data requiring it to be deleted after a certain time and we earlier modeled

the request/response data that can be expired. The data retention property

can thus be defined as defining the axioms that specify the delay between the

request/response messages and their expiry. The event-calculus model below

presents the pattern to be used to specify the data invalidity (responsedata) in this

case after some event.

Data Retention

Happens(SOME_EVENT, time) → Happens(Invalidate_responsedata(SOME_DATA_ELEMENT),
time).

Further, the data integrity property requires that the sensitive data (such

as personal information of a user) has to be verified for data corruption (such as

tampering of data between the sender and receiver) before usage. Using event-

calculus, the data integrity requirement can be modeled at different interaction

levels and we discussed earlier the event-calculus models for specifying properties

such as checking data validity for the request/response data and they serve as an

example for the application-level data integrity model. In general, we can define

event-calculus events/fluents the data validation at different levels and then define

axioms that specify when a particular validation is performed.

88

6.2. Modeling security aspects

6.2.4 Authentication/Authorization

The authentication property requires that only appropriate users have access to

the sensitive or critical information held by the services while the authorization

access control restricts the access to resources to only the authorized users.

As similar to the event-calculus models for confidentiality and integrity, we can

define events and fluents to model the authentication and authorization at different

interaction levels, as shown below:

Access control
Usage: Specify users by defining instances of sort user, then use axioms to specify the
access required by each event.

sort user
event AuthorizeUser(user)
event RevokeAuthorization(user)
fluent UserAuthorized(user)

Initiates(AuthorizeUser(user), UserAuthorized(user), time).
Terminates(RevokeAuthorization(user), UserAuthorized(user), time).

Happens(RevokeAuthorization(user), time) → HoldsAt(UserAuthorized(user), time).
HoldsAt(UserAuthorized(user), time) → !Happens(AuthorizeUser(user),time).

!HoldsAt(UserAuthorized(user),0).

In order to use the authorization model mentioned above, we can use a set of

patterns as below.

Access control usage patterns

Happens(SOME_EVENT, time) → Happens(AuthorizeUser(SOME_USER), time-DELAY).
Happens(AuthorizeUser(SOME_USER), time) → Happens(SOME_EVENT, time+DELAY) |
Happens(SOME_OTHER_EVENT, time+DELAY)É list of all events that user is authorized to
perform.

Happens(AuthorizeUser(SOME_USER), time) -> Happens(RevokeAuthorization(SOME_USER),
time+DELAY).

Further, the Auditing property requires that all the operations performed by

the composition process should be logged and are available for auditing (if needed).

In relation to the proposed event-calculus modeling approach, an event called Cre-

ateLog() can be used that should be invoked after each event to log the process

state.

6.2.5 Dynamic Task Delegation

Task delegation presents one of the business process security leitmotifs. It defines

a mechanism that bridges the gap between both workflow and access control

systems. There are two important issues relating to delegation, namely allowing

task delegation to complete, and having a secure delegation within a workflow.

Delegation completion and authorization enforcement are specified under specific

89

Chapter 6. Modeling Non-functional aspects

constraints. Constraints are defined from the delegation context implying the

presence of a fixed set of delegation events to control the delegation execution.

We have proposed an approach that aims to reason about delegation events

to specify delegation policies dynamically[Gaaloul 2010]. To that end, we present

an event-based task delegation model to monitor the delegation process. We then

identify relevant events for authorization enforcement to specify delegation poli-

cies. Moreover, we propose a technique that automates delegation policies using

event-calculus to control the delegation execution and increase the compliance of all

delegation changes in the global policy.

6.3 Example

We will now review the motivating example (Section-2.2) and discuss event-calculus

modeling for different temporal and security requirements associated with the pro-

cess. We identified different components for the motivating example in Section-4.5

and different conditions and control/data flow specification for the composition pro-

cess in Section-5.7. In this section, we will further enrich the model by adding

different temporal and security requirements.

For the temporal constraints, we first specify the exact delay between the invoca-

tion/start of two components. This is necessary as only specifying the dependency

using the first dependency pattern, Section-5.1, would not enforce to invoke the

dependent component immediately after the source component. However, this can

be enforced using the second dependency pattern, Section-5.1, with DELAY having

value 1. As an example we first review the control flow specification at the start of

the process that we need to first check if the CRR/FC/SC are available and if CRR

is available he can check if its just the false alarm. In the model below, the first

axiom specifies the dependency to check the false alarm only if CRR is available.

However it does not specify if indeed the CRR is available, when (after how much

delay) the check for false alarm should be made. The last two axioms handle this

behavior and are based on second dependency pattern as discussed in Section-5.1.

The delay value in this case is 1 specifying immediately after, and we an have sim-

ilar axioms for other dependent components which are omitted from the process

specification.

Motivating example - Delay for checking the false alarm

Happens(EvalCondTrue(IsCRRAvailable), time) → Happens(EvalCondTrue(FalseAlarmCheckByCRR),
time+1) | Happens(EvalCondFalse (FalseAlarmCheckByCRR), time+1).
Happens(EvalCondTrue(FalseAlarmCheckByCRR), time) | Hap-
pens(EvalCondFalse(FalseAlarmCheckByCRR), time) → Happens(EvalCondTrue (IsCRRA-
vailable), time-1).

The delay value can be further modified to specify delay between different

components and conditions such as in the model below we handle the temporal

requirement that CRR arrives 15 minutes after the CallStaffWS has been invoked.

90

6.3. Example

Motivating example - If CRR not available, he arrives 15 minutes after CallStaffWS
is invoked

Happens(Invoke_synchservice(CallStaffWS), time) & !HoldsAt(ConditionTrue(IsCRRAvailable),time)
→ Happens(EvalCondTrue(HasCRRArrived), time+15) | Hap-
pens(EvalCondFalse(HasCRRArrived), time+15).
Happens(EvalCondTrue(HasCRRArrived), time) | Happens(EvalCondFalse(HasCRRArrived),
time) → Happens(Invoke_synchservice(CallStaffWS), time-15) & !Hold-
sAt(ConditionTrue(IsCRRAvailable),time).

We can have similar model as shown above for SC and FC, with their arrival

time being planned to be 25 minutes after the invocation of CallStaffWS. Similarly,

the fire-brigade arrives 15 minutes after the FireBrigadeWS is invoked and the

condition that HasFBArrived is thus evaluated 15 minutes after the request to the

FireBrigadeWS has been made.

The same pattern can be used to specify the response-time for a component

such as once the fire-brigade arrives and they decide it is not a false alarm, the fire

containment starts which may take 20 minutes (theses are only estimates and the

actual containment time can be different depending upon for instance the scale of

the fire). Th eevent-calclus model below specifies this temporal requirement:

ent finishes and once the CRR has arrived (or was already there), examine site

activity starts. The last axiom in the model below handle this requirement and the

examine site activity make take 10 minutes, we have omitted the axioms for speci-

fying temporal constraint as they very similar to the second and third axioms in the

model below (Start/End_activitywithstate abbreviated as Start/End_activityWS).

Motivating example - Fire-containment (with temporal constraint) and ExamineSite

Happens(Start_activityWS(FireContainment), time) → Happens(End_activityWS (FireContain-
ment), time+20).
Happens(End_activityWS(FireContainment), time) → Happens(Start_activityWS (FireContain-
ment), time-20).

Further, we consider that the PlanRecovery activity may take 15 minutes

(again only just an estimate) and the activity for the recovery of the priority items

(RecoverPriorityItems) can start once the planning is done and it may take 20

minutes to recover the items. In the model below, we also specify the composi-

tion goal that is to have the items recovered 90 minutes after the start of the process.

Motivating example - the composition goal

; composition goal
HoldsAt(Finished_activitywithstate(RecoverPriorityItems), 90).

In terms of security requirements for the composition process we here consider

a component (activity/service) based access control scheme. While modeling the

control/data flow for the composition process we modeled the arrival/availability of

91

Chapter 6. Modeling Non-functional aspects

emergency staff as conditions and defined axioms that enforce their availability for

certain components to be started/invoked. As an example, we considered that the

emergency services can either be invoked by CRR (with exception of some services

which can be invoked automatically by the composition process). Then for checking

a false-alarm either CRR should be there or fire-brigade has reached the site. For

planning all the emergency staff (CRR/FC/SC) and others should be there. We will

discuss how the security requirements can be updated and modified during process

execution, later in Section-8.4.

6.4 Summary

In this chapter we have discuss how the proposed approach allows to model different

security and temporal aspects related to the composition process. We have first

discussed patterns for specifying temporal requirements, such as response-time,

restart/refresh and ordering relations for the components based on the base-

relations for the Allen’s interval algebra. The table below provides an overview

regarding the structure of this chapter, for event-calculus models for specifying

different temporal requirements:

Temporal patterns Section for event-calculus model

Response time Event-calculus based pattern for specifying the time taken by components to
finish execution is discussed in Section-6.1.1.

Restart/Refresh Pattern for specifying components re-invocation (either after some specific
time or based on data invalidity) is presented in Section-6.1.2.

Time frame EC Pattern for specifying the time frame allowed for a component’s execution
is presented in Section-6.1.3.

Interval algebra Patterns based on base relations of Allen’s interval algebra are discussed in
Section-6.1.4.

Time units An approach to cater different time-units used for specifying temporal aspects
for different components is discussed in Section-6.1.5.

Further, we have also presented different security requirements for the Web ser-

vices composition problem and different Web services interaction levels at which

they can be handled. We have then discussed how the proposed event-calculus

based approach can be used for specifying different security requirements for the

composition process, at different interaction levels. Then, we have discussed event-

calculus models for specifying different temporal and security requirements for the

motivating example, by using the patterns presented in this chapter. The generic

pattern based approach has allowed to implement a Java-based application, called

ECWS, that can automatically generate the event-calculus models for the process

specification (including the temporal and security requirements and we will discuss

the ECWS application in Section-9.2.

92

Part IV

VERIFICATION AND

MONITORING

Chapter 7

Instantiation and Verification

Contents

7.1 Nodes instantiation . 96

7.1.1 Background . 96

7.1.2 The proposed approach . 96

7.1.3 The worksWith dependency 98

7.1.4 Backtracking and propagation 98

7.2 Process instantiation . 99

7.2.1 Example . 99

7.3 Process verification . 101

7.3.1 Motivation . 101

7.3.2 Verification properties . 102

7.3.3 The proposed approach . 103

7.3.4 Filtering the unsatisfiable-core 104

7.3.5 Example . 105

7.4 Summary . 109

The proposed components for the process specification, as discussed in Section-

4.3, also include the Nodes that need to be discovered and instantiated to some

concrete Web services based on some specified constraints. In this chapter we will

first discuss the proposed SQWRL based nodes instantiation approach by also pro-

viding a brief background for the SQWRL. Then, as the proposed declarative event-

calculus based composition process specification may only be partially defined (in

terms of process fragments) and may contain conflicts or inconsistencies, we will also

discuss the process instantiation which aims to find a solution for possibly partially

defined composition process, connecting different process fragments respecting any

functional and non-functional aspects associated with the process. Further, if there

are some conflicts in the composition design and/or the specified constraints are

too strict, this leads to empty solution set and we will then discuss the proposed

approach for the verification of the composition process to identify any conflicts or

hard constraints. Finally, we will discuss the proposed approach for composition

process monitoring and recovery, while in execution.

Chapter 7. Instantiation and Verification

7.1 Nodes instantiation

The nodes instantiation phase aims to find candidate services for the specified

nodes in the composition process. Below we discuss a SQWRL based approach

[Zahoor 2009b] to handle nodes instantiation which uses SQWRL queries to search

through the OWL-S based repository for Web services that satisfy the constraints

associated with the nodes. The nodes are thus resolved using the SQWRL based

approach and are added to the event-calculus based process description. Before

going into the details of the proposed approach, we briefly discuss some background

about the OWL-S and the SQWRL.

7.1.1 Background

OWL-S is a OWL-based Web service ontology providing constructs for describing

a Web service in terms of a service profile (which describes what a service provides

and allows service classification using ServiceCategory attribute and specification

of non-functional properties using ServiceParameter attribute), the process model

(which describes how the service works) and the service grounding (which specifies

concrete details such as message formats, network addresses used and others).

The Semantic Web Rule Language (SWRL) is intended to be the rule language

for the semantic web. The SWRL rules are written in terms of OWL classes,

properties and individuals. SWRL also provides a set of core built-ins for strings

manipulation, basic mathematical operations and others. It also allows to extend

the core built-ins to add user defined built-ins. An example of a SWRL rule to

express that a person with a older female sibling has a older sister can be written as:

SWRL example)

Person(?p) ∧ hasAge(?p, ?pAge) ∧ hasSibling(?p,?s) ∧ Woman(?s)
∧ hasAge(?s, ?sAge) ∧ swrlb:greaterThan(?sAge, ?pAge) → hasOlderSister(?p,?s)

In the rule above, Person is a class with a sub-class named Woman and hasSi-

bling and hasOlderSister are OWL properties with domain and range of the class

Person. The rule also uses the hasAge property (with domain as Person and range

of primitive datatype Integer) and the SWRL builtin (swrlb:greaterThan) to add

hasOlderSister property to all individuals who have older female siblings. The Se-

mantic Query-Enhanced Web Rule Language (SQWRL) adds querying capabilities

to SWRL by providing primitives to select, count and perform other operations on

the results of a SWRL rule. Finally, SQWRL queries (and so as SWRL rules) require

a rule-solver and for that we have used the JESS rule-solver.

7.1.2 The proposed approach

The proposed SQWRL based approach requires the services descriptions of the

candidate services to be specified using OWL-S, which include the specification

96

7.1. Nodes instantiation

of the non-functional properties using the approach specified in DAML1 examples.

However, our proposal can also adapt the various QoS extensions to the OWL-

S such as QoS-MO [Tondello 2008], QoSOnt [Dobson 2005] and other approaches

that extend OWL-S for specifying QoS properties. Then, the SQWRL queries are

used to search through the OWL-S service model to get the services which match

the associated local constraints as shown in the example below.

Nodes instantiation using SQWRL

service:Service(?someServiceName) ∧ service:presents(?someServiceName,
?someServiceProfile) ∧ profile:serviceCategory(?someServiceProfile,
?someServiceCategory) ∧ profile:code(?someServiceCategory, ?categoryCode)
∧ swrlb:equal(?categoryCode,) ∧

profile:serviceParameter(?someServiceProfile,?SomeServiceParameter)∧
profile:sParameter(?SomeServiceParameter, SomeParameterValue) ∧ ...
other constraints
→sqwrl:select(?someServiceName)

The query first selects the candidate services for a particular node based on

the Web service classification code specified in the serviceCategory attribute of the

service profile. We have used NAICS2 categorization for the Web services. So the

initial part of the query will select only the services that have the same type as

specified in the local constraints for the node. Next, we filter for the non-functional

constraints, specified using the ServiceParameter, such as reliability.

The node instantiation result may be a collection of Web service and in case

of a loosely constrained node, the result set can be very large. Our proposal

thus aims to choose the best matched Web service based on some user-specified

criteria such as the quality rating for the Web services, by assuming that some

trusted third-party has quality ratings assigned to services. This choice can also

be based on some other non-functional requirements or the user can also manually

select the best matched (or suited) Web service. Once the candidate services and

the best matched (or suited) Web service have been identified using the SQWRL

based approach they are added to event calculus as other service instances with

one exception, axioms are added to event calculus model for invoking only the

best matched service from the candidate services and for not invoking the other

candidates. The event-calculus pattern below can be used to handle this behavior:

Pattern for specifying candidate services after nodes instantiation)

;for all candidate services other than selected Web service
Happens(Invoke_synchservice (ALL_CANDIDATES),time).

An important aspect regarding nodes is how to deal with dependencies amongst

nodes with a node being dependent on some other node and thus requiring to cater

1http://www.daml.org/services/owl-s/1.1/examples.html
2http://www.census.gov/eos/www/naics/

97

Chapter 7. Instantiation and Verification

for this dependency while instantiating nodes. In this case, if the instantiation

result set for a node is empty and if the worksWith relation is unsatisfied, we need

to backtrack to the results of dependent node to select some other instantiation

solution and then proceed to finding solution for the current node. The process

continues until all backtrack solutions have been explored.

7.1.3 The worksWith dependency

We consider that a service worksWith some other service using the modified form

of the composability rules discussed in [Narayanan 2002a]. These rules consider

the syntactic and semantic properties of Web services. Syntactic rules include the

rules for operation modes (one-way, request-response. . .), and the rules for binding

protocols and data formats of interacting services. The Semantic rules include the

message composability rule which defines that two Web services are composable only

if the output message of one service is compatible with the input message of another

service. In case of semantic Web services described using OWL-S, it is important to

consider that the input and output parameters are defined in the domain ontology

as specifying them as datatypes add very little to semantics ([Redavid 2008] has

a detailed discussion). Further, the operation semantic composability defines the

compatibility between the domains, categories and purposes of two services while

the qualitative composability defines the requester’s preferences regarding the quality

of operations for the composite service. Then, the composition soundness considers

whether a composition of services is reasonable, see [Narayanan 2002a] for details.

7.1.4 Backtracking and propagation

The backtracking process involves finding an alternative to some previously chosen

node instantiation solution. Backtracking is needed when the worksWith relation

for some node is unsatisfied resulting in empty result set. Once the backtracking

process execution terminates, resulting in a newly chosen solution (instance), the

composition solution must be recomputed and may require the propagation of newly

chosen solution. This would likely be the case when a (partial) solution to the

composition process has already been determined and backtracking to some higher

node (in hierarchal order) may result in propagating the new solution. Further,

propagation may also be needed when the user fine tunes the solution by manually

selecting some other Web service after the instantiation process. The propagation

process will require recomputing the composition and this may result in significant

overhead to re-instantiate the service nodes. Our proposal aims to re-instantiate

only the Web service nodes that have dependency on the node to backtrack (either

a worksWith dependency or a data dependency).

98

7.2. Process instantiation

7.2 Process instantiation

Once all the nodes added to the composition process have been resolved and se-

lected services are added to the event-calculus based composition design, an event-

calculus reasoner can be used to instantiate the composition process to find a so-

lution respecting all the functional and non-functional constraints associated with

the process. The solution returned by the reasoner states what events happen at

which time-points and also shows the effects those events have on the fluents, and

the instantiated solution serves as a plan for process execution. As similar to the

nodes instantiation, the process instantiation phase may result in a number of so-

lutions in the case of loosely constrained process. A particular solution from the

set is chosen for execution based on either user-choice or based on some criteria

such as overall-cost and others. In reference to temporal properties, one criteria for

solution-selection is minimal time requiring to find a solution specifying to complete

the execution process in minimal possible time. Below we highlight guidelines that

help enforcing this criteria:

• For all the services having no dependency, they should be invoked at the start

of the process (concurrently if possible).

• Asynchronous services should be invoked (if possible) before the synchronous

ones and invoking them at the start will help invoking the synchronous ones

while the response is yet to be received from asynchronous ones.

• For the services having dependency on some other services, they should be

invoked as soon as the dependency is resolved.

7.2.1 Example

Figure 7.1: Instantiated model for the motivating example

99

Chapter 7. Instantiation and Verification

Let us now review the motivating example and invoking the DECReasoner for

the event-calculus model for the motivating example presented in Section-2.2, gives

us a set of solutions including the one shown below (Condition abbreviated as Cond,

activity(with/without)state abbreviated as activity(S/WS) and Invoke_synchservice

abbreviated as Invoke) :

Instantiation (solution finding) for the motivating example

0
Happens(EvalCondTrue(IsCRRAvailable/IsFCAvailable/IsSCAvailable), 0).
Happens(Start_activityWS(Start), 0).
1
+CondTrue(IsCRRAvailable/IsFCAvailable/IsFCAvailable). +Finished_activityWS(Start).
Happens(EvalCondFalse(FalseAlarmCheckByCRR), 1).
2
+CondFalse(FalseAlarmCheckByCRR).
Happens(Invoke(AmbulanceWS/CallStaffWS/FireBrigadeWS/MeteorologyDeptWS/PoliceWS), 2).
3
+RespReceived_serv(AmbulanceWS/CallStaffWS/FireBrigadeWS/MeteorologyDeptWS/PoliceWS).
4
...
17
Happens(EvalCondTrue(HasFBArrived), 17).
18
+CondTrue(HasFBArrived). Happens(EvalCondFalse(FalseAlarmCheckByFB), 18).
19
+CondFalse(FalseAlarmCheckByFB). Happens(Start_activityS(FireContainment), 19).
20
+Started_activityS(FireContainment).
21
...
39
Happens(End_activityS(FireContainment), 39).
40
-Started_activityS(FireContainment). +Finished_activityS(FireContainment).
Happens(Start_activityS(ExamineSite), 40).
41
+Started_activityS(ExamineSite).
42
...
45
Happens(End_activityS(ExamineSite), 45).
46
-Started_activityS(ExamineSite). +Finished_activityS(ExamineSite).
Happens(EvalCondTrue(IsExternalHelpNeeded), 46).
47
+CondTrue(IsExternalHelpNeeded). Happens(Invoke(ExternalOrgWS), 47).
48
+ResponseReceived_serv(ExternalOrgWS). Happens(Start_activityS(PlanRecovery), 48).
49
+Started_activityS(PlanRecovery).
50
...
63
Happens(End_activityS(PlanRecovery), 63).
64
-Started_activityS(PlanRecovery). +Finished_activityS(PlanRecovery).
Happens(Start_activityS(RecoverPriorityItems), 64).

100

7.3. Process verification

65
+Started_activityS(RecoverPriorityItems).
66
...
84
Happens(End_activityS(RecoverPriorityItems), 84).
85
-Started_activityS(RecoverPriorityItems). +Finished_activityS(RecoverPriorityItems).

7.3 Process verification

If there are some conflicts in the composition design and/or the specified constraints

are too strict, this leads to empty solution set and requires to verify the composition

process. In this section, we will first discuss the motivation for the proposed SAT

based symbolic model checking approach and then will discuss some of the properties

that can be verified using the proposed approach. Further, as the conflict clauses

returned by the SAT solver can be very large, we will also discuss the proposed

filtering criteria to reduce the clauses to identify the nature of conflicts.

7.3.1 Motivation

Traditional approaches for the Web services composition rely on a workflow-based

approach where the process is modeled using approaches such as BPMN and

are later translated to approaches such as WS-BPEL for their execution. The

traditional approaches for modeling the composition process are very intuitive

and make it easier to model the processes however this ease is coupled with lack

of strictness and the process specification includes arbitrariness allowing different

interpretations for a single process. As a result a number of approaches have been

approaches to define strict semantics to the processes in order to formally verify

them.

Further, the traditional workflow-based approaches for the Web services

composition are highly procedural as they over-constrain the composition pro-

cess making it rigid and difficult to handle dynamically changing situation .

In contrast some declarative approaches have been proposed in the literature

[Zahoor 2010a, van der Aalst 2006] that require the specification of constraints that

mark the boundary of any solution to the composition process and any solution

that respects the constraints associated with the composition process is consid-

ered a valid solution. In addition, the traditional approaches in general require

mapping the process (defined using procedural approaches such as WS-BPEL)

to some formal logic and then verifying the process and this makes it difficult to

verify the non-functional properties (such as temporal and security requirements)

associated with the composition process as for first, it is difficult to specify the

non-functional properties using the traditional approaches such as BPEL and

a number of approaches have been proposed as an extension to WS-BPEL for

specifying non-functional aspects and then to add formal semantics to them for

101

Chapter 7. Instantiation and Verification

their verification.

Specifying the exact and complete sequence of activities to be performed for the

composition process, as required by the traditional procedural approaches, however

does make it possible to use proposed automata or petri-nets based approaches

for design-time verification of composition process. However with the declaratives

approaches the process may be only partially defined and thus this makes it difficult

to use traditional approaches for the process verification as the transition system

for a declarative process can be very large as all the transitions have not been

explicitly defined (as by traditional procedural approaches). This motivates the

use of symbolic model checking using satisfiability solving for process verification,

instead of using explicit representation of state transition graphs and/or using the

binary decision diagrams. The verification properties can include the connectivity,

compatibility and behavioral correctness (safety and liveness properties) and the

proposed approach allows for both model checking the verification properties and

for identifying and resolving the conflicts in the process specification as a result of

process.

7.3.2 Verification properties

The proliferation of proposed approaches for composition process verification

has lead to numerous verification properties that are dependent on some specific

case-study [Röglinger 2009] such as the fitness property [Rozinat 2008] requires to

identify if the behavior of a composition process conforms to its implementation,

the usability verification property as proposed by [Schlingloff 2005, Martens 2005]

requires the composition process to terminate properly, syntactic compatibility

[Martens 2005] requires to identify if Web services can be composed (and thus

are compatible) with respect to their interfaces, while the semantic compatibility

requires to identify if the composition of Web services satisfies usability.

Some seminal work on categorizing the verification properties and defining cor-

rectness of the composition process can be found in [Röglinger 2009].The authors

have categorized the verification properties in application dependent and applica-

tion independent categories and have also classified them as structural or behavioral

correctness categories. Structural correctness requires that for each operation by

which a composition process is defined and exposes its functionality to other Web

services interface there is at least one identically named operation in participating

component Web services interface that matches with respect to number, sequence,

and types of parameters. Structural correctness can be verified by comparing the

WSDL-based interfaces of participating Web services and the invocation statements

WS-BPEL process specification or if the Web services are semantically annotated,

operations also need to be matched with respect to input and output parameters.

Structural correctness serves as the pre-requisite for verifying the behavioral

correctness of the composition process which requires that the sequences of

102

7.3. Process verification

messages to conform to the specified safety and liveness properties [Ouaknine 2005].

Safety claims must not be violated while the liveness claims must always hold

[Holzmann 2004]. Further, in terms of composition process verification there is

need to classify the behavioral claims into application-independent (generic issues

like mutual exclusion and deadlock freedom) and application-dependent (based on

specific use-cases) categories [Röglinger 2009].

7.3.3 The proposed approach

For the proposed approach, the verification properties are added to the process

specification (in terms of event-calculus axioms) and then the reasoner is invoked for

instantiating the process, which indeed is the connectivity verification property. As

the composition process is (possibly) partially defined the basic verification objective

is to verify that if a solution exists that respects all the associated functional and

non-functional constraints for the process. In other words, we must ensure that the

fragments of (possibly) partially defined process can be connected in a way that the

orchestration is compatible with the constraints associated with the composition

process.

Connectivity and computability can ensure that there exists a solution to

composition process and is indeed a necessary condition for defining the cor-

rectness of the process. A connected process may represent a solution but as

the objective of the proposed approach is to handle dynamicity, process change

and the ability to self-heal and adapt to continuously changing situation by

finding alternatives based on current process state, the connectivity itself cannot

be considered as a sufficient condition. We can thus augment the verification

properties to also include the behavioral properties, such as the liveness and

safety properties. Connectivity and computability can ensure the safety properties,

for the initial solutions returned, as the process is connected and solution is

returned only if safety claims hold, while the liveness properties can ensure that

the alternatives to the solutions returned (if needed to cater for process change

during execution) can still hold the safety claims or not or which claims are violated.

The violations to verification properties, hard constraints or incorrect process

specification leads to conflicts that need to be identified and resolved. The

conflicts in process specifications can be broadly categorized into the syntactic

and semantic categories. The syntactic conflicts result due to erroneous process

specification and not following the syntactic rules for process specification using

Discrete Event-Calculus Language, such as not following the naming conventions

for instances, events or fluents definition. The DCReasoner allows to identify the

syntactic errors providing error description that can be used to rectify the syntactic

errors.

The semantic conflicts result from the process specification including deadlocks,

103

Chapter 7. Instantiation and Verification

hard and conflicting constraints. The specified composition goal (to hold at spec-

ified time-point) may not be possible to achieve if the dependency between two

components cannot be respected, within the specified time-frame. For instance, it

may be the case that starting two activities in parallel can achieve some specified

goal however executing them in sequence can lead to failure. The conflicts can be

based on local temporal constraints, such as the response-time for different compo-

nents can be higher to achieve the specified goal at specified time-point. Further

the conflicts can appear also due to the temporal constraints specified between dif-

ferent components, by the composition process. Further, the conflicts can be based

on security constraints associated with the composition process such as the SoD

constraint requiring prohibition to invoke of a service if another service had been

executed, possibly combined with temporal conditions (e.g. the ban lasts only two

hours), access control aspects such as the permission/prohibition to invoke a service

given a role.

7.3.4 Filtering the unsatisfiable-core

The event-calculus to SAT encoding can be very large especially with the increase

in time-points/free variables in axioms and with the complexity of the composition

process. As a result the set of un-satisfiable clauses (termed as unsatisfiable core)

can be very large and we thus propose to filter the unsatisfiable core, but before going

into the details of the filtering approach we first briefly discuss the event-calculus

to SAT encoding process.

The event-calculus to SAT encoding process is detailed in [Mueller 2006] and it

works by first applying syntactic transformations to all the input formulas contain-

ing the predicate symbols such as Initiates, Terminates, Releases, or Trajectory to

reduce resulting SAT problem size and the transformed formulas are added to the

conjunction of problem formulas. Then, conjunction of any problem formulas not

modified by syntactic transformations are also added and the Happens predicates

are completed in the conjunction of problem formulas. Further, in order to enforce

the commonsense law of inertia, explanation closure frame axioms from Initiates,

Terminates, and Releases axioms are added to the conjunction of problem formu-

las. Then, the conjunction of problem formulas are transformed into a propositional

calculus formula and finally ground atoms are mapped to the variables of the sat-

isfiability problem. A detailed discussion with corresponding example can be found

in [Mueller 2006].

In order to filter the unsatisfiable core, we propose to only consider the encoded

clauses added for formula axioms (that specify the control/data flow, temporal, se-

curity or other constraints for the particular problem). This allows us to ignore

the encoded clauses added for the frame and completion axioms, encoding of Initi-

ates/Terminates symbols, initial conditions for fluents, the composition goal and the

initial conditions for Releases axioms. The use of pattern based approach, further

allows to ignore the encoding of generic axioms needed to model the services and

activities.

104

7.3. Process verification

7.3.5 Example

The instantiated model for the composition design as presented in Section-7.2.1

shows that the composition problem does have a solution and it satisfies the

connectivity and safety properties associated with the process. However, the

process can also be augmented with liveness properties to explore other paths and

cases. As an example we consider the case of adding the liveness property that the

emergency staff is not there and reaches at the site once the CallStaffWS has been

invoked, as shown below:

Motivating example verification - adding liveness properties

{time} Happens(EvalConditionFalse(Is(SC/FC/CRR)Available), time).

The event-calculus axiom shown requires the reasoner to consider that the

condition to check the availability of the emergency staff should not hold at any

time-point (notice the existential quantification of the time variable). It is also

possible to modify and further constrain other aspects such as modifying the

time taken by fire-containment and others to conduct a design-time analysis for

the composition process. The result returned by the reasoner with the addition

of the liveness property is shown below (Condition abbreviated as Cond, activ-

ity(with/without)state abbreviated as activity(S/WS) and Invoke_synchservice

abbreviated as Invoke):

Figure 7.2: Liveness properties verification for the motivating example

105

Chapter 7. Instantiation and Verification

Liveness properties verification: instantiated model

0
Happens(Start_activityWS(Start), 0).
Happens(EvalCondFalse(IsCRRAvailable/IsFCAvailable/IsSCAvailable), 0).
1
+CondFalse(IsCRRAvailable/IsFCAvailable/IsFCAvailable). +Finished_activityWS(Start).
Happens(Invoke(CallStaffWS), 1). Happens(Invoke(FireBrigadeWS), 1).
2
+RespRecvd(CallStaffWS).
+RespRecvd(FireBrigadeWS).
...
16
Happens(EvalCondTrue(HasCRRArrived), 16). Happens(EvalCondTrue(HasFBArrived), 16).
17
+CondTrue(Has(CRR/FB)Arrived). Happens(EvalCondFalse(FalseAlarmCheckByFB), 17).
Happens(Invoke(AmbulanceWS/MeteorologyDeptWS/PoliceWS), 17).
18
+CondFalse(FalseAlarmCheckByFB).
+RespRecvd(AmbulanceWS/MeteorologyDeptWS/PoliceWS).
Happens(Start_activityS(FireContainment), 18).
19
+Started_activityS(FireContainment).
...
26
Happens(EvalCondTrue(HasFCArrived/HasSCArrived), 26).
27
+CondTrue(HasFCArrived). +CondTrue(HasSCArrived).
...
38
Happens(End_activityS(FireContainment), 38).
39
-Started_activityS(FireContainment). +Finished_activityS(FireContainment).
Happens(Start_activityS(ExamineSite), 39).
40 +Started_activityS(ExamineSite).
...
44
Happens(End_activityS(ExamineSite), 44).
45
-Started_activityS(ExamineSite). +Finished_activityS(ExamineSite).
Happens(EvalCondTrue(IsExternalHelpNeeded), 45).
46
+CondTrue(IsExternalHelpNeeded). Happens(Invoke(ExternalOrgWS), 46).
47
+RespRecvd(ExternalOrgWS). Happens(Start_activityS(PlanRecovery), 47).
48
+Started_activityS(PlanRecovery). ...
62
Happens(End_activityS(PlanRecovery), 62).
63
-Started_activityS(PlanRecovery). +Finished_activityS(PlanRecovery).
Happens(Start_activityS(RecoverPriorityItems), 63).
64
+Started_activityS(RecoverPriorityItems).
...
83
Happens(End_activityS(RecoverPriorityItems), 83).
84
-Started_activityS(RecoverPriorityItems). +Finished_activityS(RecoverPriorityItems).

Further, in order to demonstrate the process verification in case of a conflict

in process specification and corresponding filtering of the unsatisfiable-core, we

106

7.3. Process verification

first consider a simple example with two synchronous services, AmbulanceWS and

PoliceWS that need to be invoked (in parallel at time-point 0) to have response

from at time-point 1. However, we intentionally add a conflicting axiom to have the

activity PoliceWS dependent on service AmbulanceWS. The event-calculus model

for the composition process is shown below (Invoke_synchservice abbreviated

from actual model as Invoke and ResponseReceived_synchservice abbreviated as

RespRecvd):

Process specification with a conflict

load includes/synchservice.e
synchservice AmbulanceWS, PoliceWS

;the conflicting axiom
Happens(Invoke(PoliceWS), time) → HoldsAt(RespRecvd(AmbulanceWS), time).
HoldsAt(RespRecvd(synchservice), 1).

Invoking the SAT-solver for the process verification gives us a set of unsatis-

fiable clauses, as shown below. The unsatisfiable core returned by the reasoner

contains 7 clauses for a very simple composition process and with the increase in

problem complexity and size, the unsatisfiable core can be very large. However, the

proposed filtering on the unsatisfiable core can be very effective for reducing the size.

Unsatisfiable-core for the example

7 unsatisfied clauses:
-10 0: (!ReleasedAt(RespRecvd(PoliceWS), 0)).
-8 0: (!HoldsAt(RespRecvd(PoliceWS), 0)).
-7 0: (!HoldsAt(RespRecvd(AmbulanceWS), 0)).

4 6 8 -5 0: (Happens(Invoke(PoliceWS), 0) | ReleasedAt(RespRecvd(PoliceWS), 1) |
HoldsAt(RespRecvd(PoliceWS), 0) | !HoldsAt(RespRecvd(PoliceWS), 1)). 5 0: Hold-
sAt(RespRecvd(PoliceWS), 1).

7 -4 0: (HoldsAt(RespRecvd(AmbulanceWS), 0) | !Happens(Invoke(PoliceWS), 0)).
10 -6 0: (ReleasedAt(RespRecvd(PoliceWS), 0) | !ReleasedAt(RespRecvd(PoliceWS), 1)).

For the above mentioned unsatisfiable core, the clauses 4 6 8 -5 0 and 10 -6 0

are the frame axioms so they can be ignored. Then the axioms -10 0, -8 0 and -7

0 are the initial conditions for the fluents and initial conditions for the ReleasedAt.

Further, the axiom 5 0 is the composition goal and the only clause left is 7 -4 0:

(HoldsAt(RespRecvd(AmbulanceWS), 0) | !Happens(Invoke(PoliceWS), 0)). This

clause is transformed form of the dependency axiom in the process specification

requiring PoliceWS to started if the AmbulanceWS has finished and this clause is

causing the conflict because respecting the dependency, it is not possible to achieve

the composition goal. However, removing the dependency will allow services to be

invoked in parallel and thus achieve the composition goal.

The unsatisfiable core for the simple example contained only 7 conflict clauses

and they were filtered to have only one clause. The conflict clause is in fact based

on the proposed patterns for specifying the dependency amongst components, as

discussed in Section-5.1 and the use of pattern based approach thus further allows

107

Chapter 7. Instantiation and Verification

us to concentrate only on specific kind of clauses, once the unsatisfiable core has

been filtered. Let us now move to the motivating example and introduce a cyclic

dependency between the conditions to check CRR availability and the condition to

check if there is a false alarm, as shown in the model below:

Motivating example with deadlock

;check if it is a false alarm only if CRR is available
Happens(EvalCondTrue(FalseAlarmCheckByCRR), time) | Happens(EvalCondFalse (FalseAlarm-
CheckByCRR), time) → HoldsAt(CondTrue(IsCRRAvailable),time).

;the conflicting axiom - deadlock
Happens(EvalCondTrue(IsCRRAvailable), time) | Happens(EvalCondFalse(IsCRRAvailable), time)
→ HoldsAt(CondTrue(FalseAlarmCheckByCRR),time).

Invoking the SAT-solver for the process verification gives us a set of unsatisfiable

clauses as shown below:

Unsatisfiable-core for the motivating example with deadlock

5 unsatisfied clauses: -11125 0: (!HoldsAt(CondTrue(FalseAlarmCheckByCRR), 0)).
4215 0: Happens(Start_activityWS(Start), 0).
5118 8118 -4215 0: (Happens(EvalCondTrue(IsCRRAvailable), 0) | Happens(EvalCondFalse (Is-
CRRAvailable), 0) | !Happens(Start_activityWS(Start), 0)).

11125 -5118 0: (HoldsAt(CondTrue(FalseAlarmCheckByCRR), 0) | !Happens (Eval-
CondTrue(IsCRRAvailable), 0)).
11125 -8118 0: (HoldsAt(CondTrue(FalseAlarmCheckByCRR), 0) | !Hap-
pens(EvalCondFalse (IsCRRAvailable), 0)).

Analyzing the unsatisfiable core for the above example and focusing only on

the clauses for dependency pattern (the last two clauses), we can identify that

they are the transformed clauses for the newly added axiom causing the deadlock,

Happens(EvalCondTrue(IsCRRAvailable), time) | Happens(EvalCondFalse (IsCR-

RAvailable), time) → HoldsAt(CondTrue(FalseAlarmCheckByCRR),time). The

unsatisfiable core, however is not always very small and may contain a number of

clauses. As an example now we add a conflicting goal to the process specification

as shown below:

Motivating example specification with conflicting goals

HoldsAt(Finished_activitywithstate(RecoverPriorityItems), 90).
HoldsAt(Finished_activitywithoutstate(End2), 90).

Invoking the SAT-solver for the process verification gives us a large set of

2002 unsatisfiable clauses primarily because of grounding of the clauses to all

the time-points. However, by filtering, ignoring multiple groundings for the same

conflict clause and only focusing on the conflict clauses for specifying dependency

pattern, we narrow the unsatisfiable core to following clauses:

108

7.4. Summary

Filtered unsatisfiable-core for the motivating example with conflicting goal

2 -6921 0: HoldsAt(RespRecvd(FireBrigadeWS),1) | !Happens(EvalCondTrue(HasFBArrived),1).
1808 -3019 0: HoldsAt(Started_actS(FireContainment),1)|!Happens(End_actS(FireContainment),1)
1817 -3028 0: HoldsAt(Started_actS(RecoverPriorityItems),1)|!Happens(End_actS (RecoverPrior-
ityItems), 1).
1814 -3025 0: HoldsAt(Started_actS(PlanRecovery),1) | !Happens(End_actS (PlanRecovery), 1)
4216 -4215 0: HoldsAt(Finished_actS(Start),1) | !Happens(Start_actWS(Start),0).

11118 11121 -1822 0: HoldsAt(CondTrue(IsCRRAvailable), 0) | HoldsAt(CondTrue (HasCRRAr-
rived), 0) | !Happens(Start_activityS(ExamineSite), 1).
11120 11122 -1813 0: HoldsAt(CondTrue(IsSCAvailable), 0) | HoldsAt(CondTrue(HasSCArrived),
0) | !Happens(Start_activityS(PlanRecovery), 0).
11128 11135 -1 0: HoldsAt(CondFalse(IsCRRAvailable), 0) | HoldsAt(CondFalse(FalseAlarm-
CheckByCRR), 0) | !Happens(Invoke(FireBrigadeWS), 0).

7518 -4230 0: Happens(EvalCondTrue(FalseAlarmCheckByFB),0) | !Happens
(Start_activityWS(End2),1).
11124 -10518 0: HoldsAt(CondTrue(HasFBArrived),0) | !Happens(EvalCondFalse (FalseAlarm-
CheckByFB),0).
4212 -7818 0: HoldsAt(Finished_activityS(ExamineSite),0) | !Happens(EvalCondTrue (IsExternal-
HelpNeeded),0).

11126 -4221 0: HoldsAt(CondTrue(FalseAlarmCheckByFB), 0) | !Hap-
pens(Start_activityWS(End2), 0).

11136 -1807 0: HoldsAt(CondFalse(FalseAlarmCheckByFB), 0) | !Hap-
pens(Start_activityS(FireContainment), 0).

From the filtered unsatisfiable core mentioned above, the last two axioms specify

that in order to have the conflicting goal achieved, the condition FalseAlarmCheck-

ByFB should be both evaluated to true and false and this highlights the conflict in

specification.

7.4 Summary

The proposed components for the process specification, as discussed in Section-4.3,

also include the Nodes that need to be discovered and instantiated to some concrete

Web services based on some specified constraints. In this chapter, we have first

discussed a SQWRL based nodes instantiation approach by also providing a brief

background for the SQWRL. The choice of using SQWRL based approach is based

upon the observation that the event-calculus based approach for nodes instantiation

may incur some over-head, as we discussed in Section-4.3, and an external approach,

where nodes are resolved and candidates Web services are added to the process

specification before instantiating the process seems more efficient.

Then, as the proposed declarative event-calculus based composition process spec-

ification may only be partially defined (in terms of process fragments) and may con-

tain conflicts or inconsistencies, we have discussed the process instantiation which

aims to find a solution for possibly partially defined composition process, connect-

ing different process fragments respecting any functional and non-functional aspects

associated with the process. Further, if there are some conflicts in the composition

design and/or the specified constraints are too strict, this leads to empty solution

109

Chapter 7. Instantiation and Verification

set and we have discussed the proposed SAT approach for the verification of the

composition process to identify any conflicts or hard constraints. Further, the set

of conflict clauses returned by the SAT solver (called unsatisfiable-core) can be very

large and we have discussed the filtering criteria based on the patterns and the

structure of conflict clauses. Further, we have also reviewed the motivating example

and discussed process instantiation and verification for the motivating example.

110

Chapter 8

Monitoring and recovery

Contents

8.1 Properties specification . 112

8.2 Detection and effects calculation 113

8.2.1 Detection . 113

8.2.2 Effects calculation . 113

8.3 Response . 114

8.4 Example . 115

8.5 Summary . 117

The instantiated solution(s) returned by the reasoner serves as a plan for the

process execution by mapping different events and axioms defined for specifying

the composition process to actual actions to be taken by process run-time. For

instance, the defined events to invoke services can be mapped to actual service

invocation calls by the process run-time. Further, once the process is in execution

the need to monitor the Web services composition process during execution stems

from two major objectives. At one hand continuously monitoring the resource

utilization, SLA’s violation, or some domain specific Key Performance Indicators

(KPI’s) may be required to measure the performance or to fulfill some domain

specific monitoring requirements. Then, as the Web services are autonomous

and only expose their interfaces, composition process is based on design level

service contracts and the actual execution of composition process may result in

the violation of the design-level services contracts due to errors such as network

or service failures, change in implementation or other unforeseen situation. This

highlights the need to detect the errors and react accordingly to cater for them.

The reaction may include to calculate the effect the violation has on the overall

process execution and then to recover from it.

The proposed event-based monitoring framework [Zahoor 2011] allows to specify

and reason about the monitoring properties during composition process execution.

The composition process is specified using the event-calculus and is then used to

instantiate, verify and execute the composition process (see Figure 8.1-➀). The

instantiation phase involves finding a solution to the composition process using

the event calculus reasoner and the instantiated plan is then executed using the

execution engine (see Figure 8.1-➁).

Chapter 8. Monitoring and recovery

!"#$%&'()'*)*+,-!./#(+0$#1,

!"#$%&'()'*)*+,-(+#.,.#')(/(0"#,1/2'#++,+1#'34'(02$,($.,

3$+%($0(%#.,+2)*02$5,-(+#.,2$,%6#,789:,;/(<#=2/>,

2,

30$4%014$5,61(7#8019,
&  !"#$%&$'()*5,,
&  +#,#$()*-.-/0#$,1-2'3$43'()*5,

&  5#1")*1#,

:,!;#'*<0$,!$54$#,

!?#'*%#,%6#,'2<12+302$,

1/2'#++,*+3$@,%6#,+2)*02$,
/#%*/$#.,-A,%6#,#"#$%&
'()'*)*+,/#(+2$#/,,,

=,

B!C,

C"D,

D!B,

Figure 8.1: Proposed monitoring framework

The proposed monitoring framework (see Figure 8.1-➂) works during the com-

position process execution and is divided into three phases. The specification phase

requires the user to specify the functional and non-functional properties that needs

to be monitored to identify anomalies or needed for KPI’s measurement. Then, the

detection and effects calculation phase is both responsible for detecting any viola-

tions based on the specified properties and to calculate the side-effects the detected

violation has on the overall process. Then, the response phase uses the user-specified

actions to respond to the monitored property. In the sections to follow, we will first

discuss the monitoring properties specification in Section-8.1 and then will discuss

how the detection and effects calculation works once a violation is detected, in

Section-8.2. Then, we will discuss the possible response actions to cater for the

monitoring properties, in Section-8.3.

8.1 Properties specification

The specification phase requires the user to specify the functional and non-functional

properties that needs to be monitored to identify anomalies or needs for KPI’s mea-

surement. The properties that need to be monitored are added to process description

either at the process design (if they are already known, Figure-8.1-➀) or they can

be added to the process specification at the execution time. In the later case the

process specification is updated and an updated instantiated solution is sought, in

order to verify any conflicts and to get an updated execution plan as a result of

process change during execution (see Figure 8.1–3➝1).

Properties that can be monitored include the functional aspects such as moni-

toring the invocation and execution order or they can be based on non functional

aspects such as temporal aspects requiring to monitor the response time for a ser-

vice, delay between successive invocations of the service or monitoring invocation

time-frame for a service. Further, the properties can also be based on data such as

112

8.2. Detection and effects calculation

monitoring the data availability, validity and expiry or based on the security proper-

ties such as monitoring the data integrity, confidentiality, access-control. The choice

of highly expressive event-calculus formalism even allows to combine the properties

related to temporal, security and other aspects such as monitoring the data validity

and access control within specific time frame which may be needed for instance,

during dynamic task delegation (see [Gaaloul 2010] for details).

8.2 Detection and effects calculation

8.2.1 Detection

The detection of the violations can be handled at different levels using the proposed

framework. At a basic level we first consider the violations to the execution plan,

which is handled by maintaining an event repository which keeps track of all the

messages exchanged between the composition process and the participating services

during process execution. This repository is then used to find any mismatch be-

tween the temporal ordering of actual events and the ones mentioned in the initial

instantiated plan. Using the basic detection technique, it is possible to find viola-

tions to the execution plan or the invocation and execution order of the services.

However such a detection level may not be useful in detecting data values based or

other low-level violations, as using the event-calculus, the process is modeled at an

abstract level. This can be handled by also abstracting the processing of verifying

the data values and other low level service details by using event-calculus fluents.

For instance, we can have a fluent ResponseValid(SomeService) and an event called

ValidateResponse(SomeService), and whenever data is received from a service we

check for its validity. Then, if the data is not considered valid, based on application

level checks on data, the fluent ResponseValid(SomeService) does not hold and in-

turn results in a mismatch between the initial instantiated plan and actual service

execution. The detection phase may thus require the execution engine support (for

instance checking data validity, see Figure 8.1-➁).

Then, in order to detect the monitoring properties added at the execution time

(e.g. based on external events not there in the initial instantiated plan), the "abduc-

tion reasoning" mode can be used by adding the newly added events and monitoring

properties to the process model and re-invoking the reasoner. In case of no conflict

and violation, the reasoner returns an updated plan based on the added events and

monitoring axioms. However, if there is some conflict based on addition of new

events or if the newly added monitoring property is not satisfied, the reasoner re-

turns a set of unsatisfied clauses highlighting the error. The detection phase may

thus also require the reasoner support (see Figure 8.1–3➝1).

8.2.2 Effects calculation

Once a violation to some monitoring property is detected, the effects calculation

phase is responsible for calculating the side-effects this violation has on the over-

113

Chapter 8. Monitoring and recovery

all process flow. This allows to prioritize the violations based on their impact and

it may be possible to ignore some violations, for instance if the response time de-

lay for a service has no effect on the overall process goal and other functional and

non-functional properties associated with the composition process. As the proposed

approach allows to reason about the composition process and as the approach is

based on event-calculus with different reasoning modes, the effects calculation is

achieved by adding the partial plan with the violation to the initial plan and re-

invoking the reasoner. Although the process may seem similar to the detection of

monitoring properties added at the execution-time, there is one major difference;

instead of using the "abduction reasoning" we use "deduction reasoning" in the

effects calculation phase. This may further allow to foresee any anomalies which

may not be evident now but may happen later in the process execution. The ef-

fects calculation phase thus requires the support from the event-calculus reasoner

to perform deductive reasoning (see Figure 8.1–3➝1).

8.3 Response

The response for the monitoring properties may involve some domain specific actions

to cater for or measure the KPI’s and other parameters (such as logging, performance

evaluation) needed for the successful process execution. Then, in order to cater for

the monitoring violations detected at the execution time, different recovery actions

can be used in-order to recover from the violation. These actions may include to

ignore the violation, terminate the process, re-invoke or substitute the service, find

an alternative solution based on current process state or backtrack to some previous

state and then seek an alternative solution and others. Below we briefly discuss the

alternative-path as a recovery action as it highlights the need for a reasoning-based

approach.

The recovery process is handled by adding the current process state (with the

violation) and re-invoking the reasoner to perform abductive reasoning for the goal.

However, it is not always possible to recover from a violation AND respecting the

associated constraints and composition goal. As a result, some constraints may

require to be relaxed and the proposed approach allows to identify the conflicting

clauses and hard-constraint if a recovery solution is not possible. The proposed

approach thus preserves all the functional and non-functional constraints associated

with the composition process (unless needed to be relaxed) while performing recov-

ery. Further, the proposed approach allows both to find a new solution based on

the current process state (thus specifying what steps should be taken now to recover

from the violation and hence termed forward recovery) or to backtrack to some pre-

vious activity (if possible) and try to find a new from there. The response phase

may require the execution run-time support (for instance actions such as logging,

KPI’s measurement, see Figure 8.1–3➝2) and may also require the support from

the DECReasoner in order to do abductive reasoning for actions such as finding

alternatives (see Figure 8.1–3➝1).

114

8.4. Example

8.4 Example

For the motivating example, we consider that the event-calculus based composition

process specification has been instantiated, as discussed in Section-7.2.1, and

different solutions and cases have been explored, as discussed in Section-7.3.5. One

particular instantiated solution (or a set of solutions based on initial context) is

then chosen for execution and for this example, we consider that the initial solution

requiring CRR/FC/SC to be there, Section-7.2.1 is chosen for execution. The

solution returned by the reasoner states what event happen at which time-point

and corresponding world-state representing the effects of events. The event-calculus

Happens axioms thus can serve as the plan to execute the process and the table

below represents the execution plan for the motivating example:

Execution plan for the motivating example

Happens(Start_activityWS(Start), 0).
Happens(EvalCondTrue(IsCRRAvailable/IsFCAvailable/IsSCAvailable), 0).
Happens(EvalCondFalse(FalseAlarmCheckByCRR), 1).
Happens(Invoke(AmbulanceWS/CallStaffWS/FireBrigadeWS/MeteorologyDeptWS/PoliceWS), 2).
Happens(EvalCondTrue(HasFBArrived), 17).

Happens(EvalCondFalse(FalseAlarmCheckByFB), 18).
Happens(Start_activityS(FireContainment), 19).
Happens(End_activityS(FireContainment), 39).
Happens(Start_activityS(ExamineSite), 40).
...

According to execution plan shown above, at the start of process the availability

of emergency staff is checked and thus as the result of an unfortunate fire incident

once the fire-alarms are activated (or composition process needs to be started

manually), the availability of emergency staff is checked. The execution plan further

requires all CRR/SC/FC to be there however as mentioned earlier this plan is

based on the solution returned by the reasoner for the design-level contracts. Let us

consider that at the execution time, it is the case that only CRR is there and other

emergency staff is absent. This would result in a mismatch from the execution plan

and a violation is thus detected. In order to cater for the violation (and to get an

updated execution plan) the process specification needs to be updated by adding

the violation and re-invoking the reasoner. The updated composition process is

shown below:

Updated process specification to cater for monitored violation

Process specification ...
Happens(EvalConditionTrue(IsCRRAvailable), 0).
Happens(EvalConditionFalse(IsFCAvailable), 0).
Happens(EvalConditionFalse(IsSCAvailable), 0).

Invoking the reasoner gives us a new solution (as similar to the one discussed

in Section-7.3.5) suggesting that as the FC/SC are not available, they can still be

115

Chapter 8. Monitoring and recovery

there once the CallStaffWS is invoked. The solution re-computation to cater for

violation to the execution plan is repeated for all the violations to the execution

plan such as the time taken for the fire-containment, arrival time for the emergency

staff and so on. Further at any time during process execution, the process can

be updated to have the components and constraints to be added, modified and

removed. For instance, let us consider a new requirement to be added to the

process (once it is known that the FC/SC are not there) that the arrival time of

staff members (SC/FC) should be logged. In order to add the logging monitoring

property, we can define multiple activities for logging each staff member, such as

LogSCArrival and LogFCArrival. Then we can add axiom that whenever the arrival

condition for some staff member holds true, we start the corresponding logging

activity. The event-calculus model below should be added to process specification

for the logging, activitywithoutstate abbreviated as activity_WS :

Process change while in execution - adding logging property

activity_WS LogFCArrival, LogSCArrival
Happens(Start_activityWS(Log(FC/SC)Arrival), time) → HoldsAt(CondTrue(Has(FC/SC) Ar-
rived), time).

Then, the reasoner needs to be re-invoked to have an updated solution to cater

for the newly added requirement and the result returned by the reasoner (shown

below) shows that at the arrival of the FC and SC the corresponding logging

activities need to be started.

Updated instantiated solution to cater for process change

...
27
Happens(EvalCondTrue(Has(FC/SC)Arrived), 27). 28
+ConditionTrue(HasFCArrived). +ConditionTrue(HasSCArrived).
Happens(Start_activityWS(Log(FC/SC)Arrival), 28).
29
+Finished_activityWS(Log(FC/SC)Arrival).
30
...

In order to further elaborate the process change while in execution we consider

a new security requirement added to the composition process specification once

the ExamineSite activity is started. It is required that the recovery process for

the items should be only be handled by a professional conservator. In order to

handle this requirement, we can create a new condition representing that the

Conservator has been arrived (HasConservatorArrived) and lets assume that the

conservator arrives 20 minutes after the ExternalOrgWS has been invoked. The

process specification is updated as follows:

116

8.5. Summary

Process change while in execution

condition HasCONSArrived
Happens(EvalCondTrue(HasCONSArrived), time) | Happens(EvalCondFalse(HasCONSArrived),
time) → HoldsAt(RespRecvd_synchservice(ExternalOrgWS),time).

Happens(Invoke_synchservice(ExternalOrgWS), time) → Happens(EvalCondTrue(HasCONSArrived),
time+20) | Happens(EvalCondFalse(HasCONSArrived), time+20).
Happens(EvalCondTrue(HasCONSArrived), time) | Happens(EvalCondFalse(HasCONSArrived),
time) → Happens(Invoke_synchservice(ExternalOrgWS), time-20).

Happens(Start_activityWS(RecoverPriorityItems),time) → HoldsAt(Finished_activityWS (Plan-
Recovery),time) & HoldsAt (CondTrue(HasCONSArrived),time).

The last axiom in the model above updates the invocation axiom for the

RecoverPriorityItems activity and enforces that the conservator should be there

before the start of the RecoverPriorityItems activity. Changing the process

specification will again require re-instantiating the process and in order to get an

updated solution we update the composition process to include the events that

have already happened (the partial execution plan), and models for newly added

security requirement and re-invoke the reasoner. The updated model is shown below:

Updated instantiated solution to cater for process change

...
Happens(EvalCondTrue(IsExternalHelpNeeded), 46).
47
+CondTrue(IsExternalHelpNeeded). Happens(Invoke(ExternalOrgWS), 47).
48
+ResponseReceived(ExternalOrgWS).
...
62
Happens(EvalCondTrue(HasCONSArrived), 62).
63
+CondTrue(HasCONSArrived). Happens(End_activityS(PlanRecovery), 63).
64
-Started_activityS(PlanRecovery). +Finished_activityS(PlanRecovery).
Happens(Start_activityS(RecoverPriorityItems), 64).
65
+Started_activityS(RecoverPriorityItems).
...
84
Happens(End_activityS(RecoverPriorityItems), 84).
85
-Started_activityS(RecoverPriorityItems). +Finished_activityS(RecoverPriorityItems).

8.5 Summary

In this chapter, we have discussed the proposed approach for monitoring Web

services composition process while in execution. The proposed monitoring

framework [Zahoor 2011] is event-based and allows to specify and reason about

the monitoring properties during composition process execution. The proposed

monitoring framework (see Figure 8.1-➂) is divided into three phases and in this

117

Chapter 8. Monitoring and recovery

chapter we have first discussed the specification phase which requires the user to

specify the functional and non-functional properties that needs to be monitored to

identify anomalies or needed for KPI’s measurement.

Further, we have discussed the detection and effects calculation phase which is

both responsible for detecting any violations based on the specified properties and

to calculate the side-effects the detected violation has on the overall process. Then,

we have discussed the response phase which uses the user-specified actions to re-

spond to the monitored property. We have also discussed the monitoring properties

specification, detection, effects calculation and recovery for the motivating example.

118

Part V

EPILOGUE

Chapter 9

Implementation

Contents

9.1 Overview . 121

9.2 Composition design using ECWS 123

9.3 Enhancements to DECReasoner 124

9.3.1 Process verification using zchaff/zverify_df 125

9.3.2 Event-calculus to SAT encoding 125

9.4 Performance evaluation . 126

The event-calculus models for the proposed framework are specified using the

discrete event calculus language [Mueller 2006] and all the models mentioned earlier

can be directly used for reasoning purposes. In this chapter we will first discuss

overall architecture for the proposed approach. We will then present the ECWS

tool and enhancement to the DECReasoner for process verification and optimizing

the encoding process, in the sections to follow. In the last section, we will detail the

performance evaluation results.

9.1 Overview

As discussed earlier, the DECReasoner is a program for performing automated com-

monsense reasoning using the discrete event calculus [Mueller 2006]. It supports

different reasoning modes (as required by the proposed approach) including deduc-

tion, abduction, model finding and others. The tool is open-source and thus we were

able to modify the source code to enhance the SAT encoding process and include

zchaff/zverify_df solvers support for the process verification.

The event-calculus based composition model and DECReasoner can reason

about the Web services composition process at an abstract level. In order to

have a concrete solution we propose the following implementation architecture,

Figure-9.1. The composition process starts when the user specifies the composition

design, using a Java based application called ECWS, allowing to drag and drop

components and provide constraints. Then, the Java-based application translates

the composition design to event calculus based model in following phases:

The pre-processing phase discovers and binds the Web service nodes to con-

crete Web services instances using the SQWRL based approach, we discussed in

Chapter 9. Implementation

Figure 9.1: Implementation architecture

[Zahoor 2009b]. The nodes instantiation process itself can be purely event-calculus

based as we discussed earlier, but due to performance issues we propose to use

the pre-processing phase. The pre-processing phase may also involve handling the

time-units of different participating components as we discussed in Section-6.1.5

and allowing the user to select one particular service from the candidate services

returned as a result of nodes instantiation.

The translation phase follows which does the event calculus translation using

the following guidelines. For all the services (and other components), corresponding

include files are added to resulting output file (along with general files root.e and

ec.e). Then for specifying control/data flow, temporal and security requirements

corresponding patterns are used and resulting axioms are added to the event-calculus

model.

The DECReasoner is then invoked to process the file, during the process in-

stantiation phase, to either provide possible solutions or detect conflicts. In case of

conflicts the verification phase attempts to identify the conflicts and may require to

updated the composition design to resolve the conflicts or hard constraints and to

re-invoke the reasoner. In case of multiple solutions, the user can be given option to

select one particular solution which is then used by the Java application to perform

the actual services execution. The semantics of different events (such as invoke) can

be roughly mapped to WS-BPEL for execution and while the process is in execution,

an event repository data structure is maintained at the Java application layer. This

repository is updated with every service call and response reception and is com-

pared to the initial solution returned by the reasoner at each step for the process

monitoring. In case of a violation/recovery actions, event calculus translated file is

updated and sent to reasoner.

122

9.2. Composition design using ECWS

9.2 Composition design using ECWS

In order to abstract the event-calculus models from the process-designer and

automate the composition process specification, verification and monitoring, we

have implemented a Java-based application, called ECWS, that provides a user

friendly interface for specifying the composition design, Figure-9.2. The application

has three different sections, the left one listing components (Web services), the

right one allows to specify the control/data flow amongst components and the

middle one showing process specification and any results obtained.

Figure 9.2: The ECWS application for composition design

The components section includes the Web services already added and options

to add or remove more services, Figure-9.3. Instances of already known services

can be added to (or removed from) the process specification section and once added

they can be dragged and moved around. The control/data flow section includes

options to specify the dependency amongst services and update any conditions if

conditional invocation is sought, Figure-9.3. The dependencies can be added and

removed and specifying multiple services to be dependent on some particular service,

will result in a Split and ECWS will show a dialog box allowing user to specify the

Split scheme (AND/OR based split, Section-5.2). The process specification section

is also updated to reflect any dependencies added between services.

Then on the bottom left of the components section, is the GENERATE button

that will generate event-calculus models for the specification and will automatically

invoke the DECReasoner to reason about the generated even-calculus models. The

resulting models returned by the DECReasoner are then displayed to the user both

in the RAW form and by parsing them and aligning them with a time-modeling

approach which shows the models using a graphical interface, Figure-9.4.

The proposed ECWS application for the process specification is still in early

123

Chapter 9. Implementation

Figure 9.3: Adding a new service and specifying dependency between Web services

phases and only serves as a proof of concept prototype. Although it can handle

partial process specification, can automatically generate event-calculus models and

can directly invoke the reasoner and parse the results returned, it does not handle

process verification and monitoring.

Figure 9.4: Displaying result after invoking DECReasoner

9.3 Enhancements to DECReasoner

As discussed earlier, in order to use the DECReasoner domain description (specified

using Discrete Event Calculus Reasoner language) that includes an axiomatization

describing domains of interest, observations of world properties at various times, and

a narrative of known event occurrences is placed in a file. The DECReasoner is then

invoked for the domain description and it firsts transforms the domain description

into a satisfiability (SAT) problem. It then invokes a SAT solver (relsat), which

produces zero or more solutions and resulting solutions are decoded and displayed

to the user.

124

9.3. Enhancements to DECReasoner

9.3.1 Process verification using zchaff/zverify_df

However, if relsat solver produces no models (as a result of some conflict in the

process specification), the DECReasoner then invokes the walksat solver first with

the -target parameter having value 1 and then (if previous run fails) with -target

parameter having 2. If the walksat run fails again, the DECReasoner gives up

without providing any solution. If the invocation of walksat solver does return a

set of unsatisfiable clauses it is suggested that one or two unsatisfied clauses may

be helpful for debugging while three or more unsatisfied clauses tend to be less

useful [Mueller 2006]. Further it is suggested that as the walksat is stochastic, it

is possible to get a different set of unsatisfiable clauses on different runs and by

looking at different sets of unsatisfiable clauses would be helpful in debugging the

process model.

However, we believe that this approach may be somewhat helpful for simpler

models however it is not possible to use this as a verification approach as neither

walksat is always able to identify unsatisfiable core, nor the size of unsatisfiable

core is small enough to be manually observed. As a result we have modified the

DECReasoner code to have zchaff/zverify_df as the solver to use for the process

verification. Zchaff is an implementation of the Chaff algorithm and won the Best

Complete Solver in both industrial and handmade bench-mark categories for SAT

2002 Competition. It is also integrated with the BlackBox AI planner, NuSMV

model checker and others. The output from zchaff can also be used by zverify_df

tool to get a set of unsatisfiable clauses that can be used for the process verification.

The modified verification approach thus first invokes the zchaff solver instead

of walksat and the output from the zchaff is passed to zverify_df for identifying

a set of unsatisfiable clauses. These unsatisfiable clauses can be then filtered, as

discussed in Section-7.3.4 and we have also modified the encoding process to log

that which clauses represent the frame axioms (and others) and this information

can help to automate the filtering process.

9.3.2 Event-calculus to SAT encoding

Then, one important limitation of DECReasoner is the time taken for event-calculus

to SAT encoding which increases exponentially with the increase in time-points

and introducing complex axioms involving multiple free variables, as we discussed

in [Zahoor 2010a, Zahoor 2010b]. As the proposed approach requires invoking

the reasoner multiple times (instantiation, monitoring and recovery) the encoding

process can thus be bottleneck. In this work, we have thus modified the encoding

process by two approaches. First, the process encoding is done only once during

the instantiation phase of the DISC framework and encoding for any subsequent

changes to the process description, such as during process execution or during

125

Chapter 9. Implementation

effects calculation phase of the proposed monitoring framework, is added to the

initial process encoding.

Further, we have thoroughly analyzed and modified the c language code for the

encoding process to improve performance. Profiling the encoding process (using

Shark) helped us identify that the strcmp function is proving to be bottleneck

once an element is sought from the hash table. On further investigation, we

identified that the hashing function (DictHash) is not that efficient as it tries

to calculate the hash-value based on first 6 characters of the input symbols.

However, the structure of input symbols (in general) is such that only last few

characters differ from other symbols. This results in a lot of collisions/chaining

and subsequent use of strcmp takes all the time. By just changing the hash

function to calculate the hash based on last 6 characters of the input symbol we

can avoid a lot of hashing conflicts and this improves performance. The updated

hash function is shown below and we also discussed the proposed changes with

Erik T. Mueller, who is responsible for initial implementation of DECReasoner at

IBM and the changes can now be downloaded from DECReasoner official Website 1.

int DictHash(Dict *d,char *symbol)

{

unsigned char s[6];

size_t len;

len=(size_t)strlen(symbol);

memset(s,0,6);

if (len > 6) {

memcpy(s,symbol+(len-6),6);

} else {

memcpy(s,symbol,(size_t)len);

}

return (int)(((s[1]+s[5]+(s[0]+s[4])*(long)256) +

(s[3]+s[2]*(long)256)*(long)481) % d->size);

}

9.4 Performance evaluation

In this section we will detail the performance evaluation results for the motivating

example. The tests were conducted on a MacBook Pro Core 2 Duo 2.53 Ghz and 4GB

RAM running Mac OS-X 10.6. The DEC reasoner version 1.0 and the SAT reasoner,

relsat-2.0 were used for reasoning. In order to complicate the composition process to

highlight the performance of different solvers for process instantiation/verification

and the effect of proposed modifications to the event-calculus to SAT encoding

process, we consider two cases.

The first one further complicates the motivating example by increasing the

number of components (and conditions) and adding the same control/data flow

constructs and temporal and security constraints for the newly added components

1http://decreasoner.sourceforge.net/

126

9.4. Performance evaluation

11523 40 60 80 100

220,000

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

Number of components (Web services, Activities) and conditions

N
u
m

b
e
r

o
f

C
la

u
s
e
s
/
V

a
ri

a
b
le

s

Number of clauses
Variables

Figure 9.5: Problem size increase with the number of components

(and conditions). The corresponding increase in the problem complexity and state

space (as we discussed for motivating the use of SAT-solver for process verification

in Section-7.3.1) is evident from Figure-9.5, with Y-axis showing the number of

variables and clauses in the SAT encoding for the motivating example while the

X-axis showing the number of components.

The performance evaluation results, Figure-9.5 show that the increase in number

of components results in increase in problem size and so as the state space needed

to model check the composition process. Further, we consider the time taken for

process instantiation (solution computation using relsat solver) and the effect of pro-

posed modifications to the encoding process in Figure-9.6, with X-axis representing

the number of components and the Y-axis representing the time in seconds. The

performance results indicate that the motivating example requires 7.6 seconds for

encoding the problem into a SAT problem (the original encoding approach) and only

0.3 seconds for solution finding using relsat solver. However, the original encoding

process does not scale well with the increase in problem size (by adding components)

while the modified encoding process (based on the changes we proposed in Section-

9.3.2) performs considerably better. The solution computation using the relsat is

very efficient.

Next, we consider the performance evaluation results for the process verification

using zchaff/zverify_df solver, Figure-9.6 with X-axis representing the number of

components and the Y-axis representing the time in seconds. The results indicate

the zchaff/zverify_df to be very efficient but this observation stems from the fact

that the zchaff/zverify_df only tries to find the minimal unsatisfiable-core, which

stays small even with the addition of more-components.

The composition process can also be complicated by adding the number of

127

Chapter 9. Implementation

11523 40 60 80 100

200

0

20

40

60

80

100

120

140

160

180

Number of components (Web services, Activities) and conditions

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Encoding (original)
Encoding (modified hash-function)
Solution computation (relsat-solver)

Figure 9.6: Encoding/solution time with increase in number of components

11523 40 60 80 100

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of components (Web services, Activities) and conditions

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Verification - Conflicting goals

Verification - Deadlock

Figure 9.7: Unsatisfiable-core computation using zchaff/zverify_df

time-points for the process specification and next we consider the performance

evaluation results for the motivating example, with the increase in time-points.

As with the case with the increase in number of components, the performance

evaluation results, Figure-9.8, indicate that the increase in number of time-points

results in increase in problem size and so as the state space needed to model check

the composition process.

The performance evaluation results for the time taken for process instantiation

(solution computation using relsat solver) and the effect of proposed modifications

128

9.4. Performance evaluation

500100 150 200 250 300 350 400 450

200,000

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

Time-points for the event-calculus based process specification

N
u
m

b
e
r

o
f

C
la

u
s
e
s
/
V

a
ri

a
b
le

s

Variables

Number of clauses

Figure 9.8: Problem size increase with the number of time-points

to the encoding process, with increase in the time-points are shown in in Figure-9.9,

with X-axis representing the time-points and the Y-axis representing the time in

seconds. The performance results indicate (as similar to Figure-9.6) that the the

modified encoding process (based on the changes we proposed in Section-9.3.2) per-

forms considerably better than the original encoding process and again the solution

computation using the relsat is very efficient.

500100 150 200 250 300 350 400 450

200

0

20

40

60

80

100

120

140

160

180

Time-points for the event-calculus based process specification

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Encoding (original)
Encoding (modified hash-function)
Solution computation (relsat-solver)

Figure 9.9: Encoding/solution time with increase in number of time-points

129

Chapter 10

Conclusion

Contents

10.1 Problem description . 131

10.2 The proposed approach . 134

10.3 Declarative composition design 134

10.3.1 Components . 135

10.3.2 Control/Data flow specification 136

10.3.3 Temporal and security aspects 136

10.4 Process verification and monitoring 137

10.5 Implementation architecture 138

10.6 Perspectives and limitations 139

In this thesis, we have presented an event-based declarative and integrated ap-

proach called DISC that aims to bridge the gap between composition design, ver-

ification and monitoring. In this chapter will first review the problem description

and then will briefly discuss the proposed approach focusing on use of event-calculus

for specifying composition design, and the proposed approach for design-time ver-

ification and execution time monitoring and recovery. Further, we will discuss the

known limitations of the proposed approach and the future perspectives.

10.1 Problem description

Web services are defined as the software systems designed to support interoperable

machine-to-machine interaction over a network1 and they are in the mainstream of

information technology, paving way for inter and across organizational application

integration. Individual services may need to be composed to satisfy user needs and

thus high-level languages such as WS-BPEL and specifications such as WS-CDL

and WS-Coordination extend the service concept by providing a method of defining

and supporting orchestration (composition) of fine-grained services into more

coarse-grained value added processes. The Web services composition process has

different life-cycle stages, first the process designer needs to model the composition

process by using the fine-grained services to define new added-value processes.

Then the composition process needs to be verified to identify any anomalies and

1http://www.w3.org/TR/ws-gloss/

Chapter 10. Conclusion

conflicts (such as deadlocks) in the process specification and once the process

has been verified it is executed. Further, as the Web services are autonomous

and only expose their interfaces, composition process is based on design level

service contracts and the actual execution of composition process may result in

the violation of the design-level services contracts due to errors such as network

or service failures, change in implementation or other unforeseen situation. This

highlights the need to monitor and detect the errors and react accordingly to cater

for them.

The significance of Web services and composition of Web services into

value-added process has led to a number of proposed approaches that aim to

handle different aspects related to Web services composition at different life-cycle

stages. However, the proposed approaches are procedural (and rigid to handle

dynamically changing situations) and focus on some stage(s) of the composition

process life-cycle. The proliferation of partial solutions, the lack of expressiveness

and simplicity to handle both functional and non-functional aspects, the lack of

integration, the lack of recovery actions and the lack of flexibility thus mark the

motivation for our work. Below we briefly discuss the limitations of the proposed

approaches:

Lack of integration - The traditional approaches focus only on some stages of

process life-cycle and this lack of integration results in a complex model such as

at design-time first using BPMN/WS-BPEL for the process specification. Then

transforming the process specification to a particular automata with guards, and

using SPIN model checker [Fu 2004] for process verification, and finally using

some event-based approach for process monitoring while in execution. The lack of

integration not only results in a complex model but it is not always possible to

have a complete transformation from one modeling approach to other and with

the addition of non-functional (such as security and temporal) requirements the

transformation becomes even more complex and challenging. In addition, the

lack of integration leads to the approaches that does not allow to learn from the

run-time failures to provide the recovery actions such as re-planning.

Procedural composition model - A process model is called procedural when it

contains explicit and complete information about the flow of the process but only

implicitly keeps track of why these design choices have been made and if they are

indeed part of the requirements or merely assumed for specifying the process flow

[Goedertier 2008]. Although this adds a lot to the control over the composition

process, however as there is tradeoff between the control and flexibility, this control

comes at the expense of process flexibility and thus making the process rigid to

adapt to continuously changing situations and possibly not even conforming to the

process specification requirements. On the other hand, a process is termed as declar-

ative when it models the minimal (and only specified) requirements that mark the

boundary of the process and any suitable execution plan which meets the specified

132

10.1. Problem description

requirements is sought.

The proposed graph-based composition modeling approaches are mostly proce-

dural and although the graph-based approaches tend to be simpler and intuitive

for the process modeler for the composition design, they over-constrain the process

assuming the design choices that may not be present in the requirements but

only added to specify the process flow. The paradigm change from procedural

to declarative process modeling was advocated in [Pesic 2006] by introducing the

ConDec language for declarative process modeling. However, we believe that the

traditional AI planning (and so as rule-based) approaches for composition process

modeling are declarative and they have advantages in terms of expressibility,

flexibility and adaptability and dynamism as they are more expressive based and

are based on formal logic and flexible as only constraints that mark the boundary

of the process are specified. Further, the declarative approaches allow for specifying

more workflow patterns than the procedural ones.

Verification - The proposed approaches for the composition verification, in general,

require mapping the process (mostly defined using procedural approaches such as

BPEL) to some formal logic (such as petri-nets, automata or process logic) and then

using model checkers to verify the composition process. This transformation based

approach has two major limitations, first the proposed verification approaches are

based on traditional procedural approaches and as we detailed in the Chapter-3,

procedural approaches have less expressibility, flexibility and adaptability and dy-

namism as compared to the declarative ones. Further, the limited expressibility

makes it difficult to verify the non-functional properties (such as temporal, security

requirements or more importantly their combinations) associated with the compo-

sition process as for first, it is difficult to specify the non-functional properties using

the traditional approaches such as BPEL and a number of approaches have been

proposed as an extension to BPEL for specifying non-functional aspects and then it

is not trivial (is possible) to add formal semantics to them for their verification.

Specifying the exact and complete sequence of activities to be performed for the

composition process, as required by the traditional procedural approaches, however

does make it possible to use proposed automata or petri-nets based approaches

for design-time verification of composition process, however with the declaratives

approaches the process may be only partially defined and thus this makes it

difficult to use traditional approaches for the process verification as the transition

system for a declarative process can be very large. Further, the design-time

verification should be coupled with execution-time monitoring and complexity

of these approaches make them difficult to use for verifying the functional and

non-functional constraints associated with the process while handle process change

or recovery.

Event-based monitoring - Traditional approaches for the composition monitoring

are proposed as an extension to some particular run-time and are tightly coupled

and limited to it. In contrast the use of an event-based approach works on the

133

Chapter 10. Conclusion

message-level and thus is unobtrusive, independent of run-time and allows for in-

tegration of other systems and processes, as discussed in [Moser 2010]. Then, the

traditional monitoring approaches [Barbon 2006a, Baresi 2009, Mahbub 2004] build

upon composition frameworks that are highly procedural, such as BPEL, and this

in-turn poses two major limitations. First, they limit the benefits of any event-based

monitoring approach as the events are not part of the composition framework and

functional and non-functional properties are not expressed in terms of events and

their effects. Secondly the use of procedural approach for process specification does

not bridge the gap between organization and situation in a way that it is very diffi-

cult to learn from run-time violations and to change the process instance (or more

importantly process model) at execution time, and it does not allow for a reasoning

approach allowing for effects calculation and recovery actions such as re-planning or

alternate path finding as we discussed in [Zahoor 2010a].

10.2 The proposed approach

The motivation of our work stems from the process modeling, design-time verifica-

tion, execution-time monitoring and recovery in an integrated and declarative way

to cater for dynamically changing situations (for instance, crisis handling or the

logistics processes) and we have presented a real-world crisis handling process in

Section-2.2.

The objective of our thesis is thus to handle the process modeling, design-time

verification, execution-time monitoring and recovery in an integrated and declar-

ative way. Declarative approach results in a highly flexible composition process that

may be needed to cater for dynamically changing situations while integration simpli-

fies the approach by using the similar formalism for composition design, verification

and monitoring. The use of declarative and integrated approach further allows to

have recovery actions such as re-planning (to cater for monitored violations during

process execution) which are difficult to achieve using traditional approaches. In

this thesis, we have proposed an integrated declarative event-oriented framework,

called DISC (Declarative Integrated Self-healing web services Composition), that

serves as a unified framework to bridge the gap between the process design, verifi-

cation and monitoring and thus allowing for self-healing Web services composition.

In the sections to follow, we will briefly discuss the proposed approach.

10.3 Declarative composition design

The composition process modeling is the first and most important stage of the

composition process life cycle. The objective of composition process modeling is to

provide high-level specification independent from its implementation that should

be easily understandable.

134

10.3. Declarative composition design

The proposed framework allows for a composition design that is declarative and

can accommodate various aspects such as partial or complete process choreography

and exceptions, data relationships and constraints, Web services dynamic binding,

compliance regulations, security or temporal requirements or other non-functional

aspects. We have based the composition design on event-calculus and defined pat-

terns for specifying the functional and non-functional aspects using event-calculus

for process specification, instead on relying on different formalisms or extensions for

specifying different aspects as required by traditional approaches such as WS-BPEL.

In this section we will first provide an overview of different components modeling us-

ing event-calculus. Further, we will discuss patterns for specifying control and data

flow between them and will also provide an overview for modeling non functional

(temporal and security) requirements modeling using event-calculus.

10.3.1 Components

The various components that constitute the composition design can be broadly

divided into activity and service categories, Section-4. Activity is a general

terms for any work being performed while the services include either the Web

services instances already known or abstract Web services (called nodes) that

need to be discovered based on some specified constraints. Detailed event-

calculus based models for different activity types can be found in Section-4.1 and

the table below provides pointers to different related sections for modeling activities.

Activities Section for event-calculus models

Activities with states Event-calculus model is discussed in Section-4.1.1, in order to use the model
include activitywithstate.e to the event-calculus file.

Instantiated model A basic example showing how to use the activitywithstate.e for reasoning
using DECReasoner is shown in Section-4.1.2.

Without states A simplified model, where activity states are not needed is discussed in
Section-4.1.3 and corresponding include file is activitywithoutstate.e.

Activities with restart Activities that need to be restarted are modeled in Section-4.1.4 and corre-
sponding include files are activity(with/without)staterestart.e

Then, detailed event-calculus models for Web services supporting different

invocation modes (synchronous, asynchronous) can be found in Section-4.2 and the

table below provides pointers to different related sections for modeling different

Web service types.

Web services Section for event-calculus models

Synchronous Web services model with synchronous invocation mode is discussed in Section-
4.2.1. Corresponding include files are synchservice(withdelay).e.

Asynchronous (pull) Pull-based asynchronous Web services invocation model is presented in
Section-4.2.2, corresponding include file is asynchpullservice.e.

Asynchronous (push) Push-based asynchronous invocation model is discussed in Section-4.2.3, cor-
responding include file is asynchpushservice.e.

Services(re-invoke) EC model for Web services that need to reinvoked (for instance within loop
body) is discussed in Section-4.2.4, corresponding include files are (asynch-
pull/asynchpush/synch)servicewithreinvoke.e

Nodes A brief discussion about the nodes is presented in Section-4.3.

135

Chapter 10. Conclusion

10.3.2 Control/Data flow specification

We have presented a pattern-based approach for specifying the control/data flow

between different components and detailed discussion about patterns and their

usage for different constructs can be found in Section-5. The table below provides

pointers to different related sections for modeling different control and data flow

constructs.

Construct Section for event-calculus model

Dependency Event-calculus based patterns for specifying dependency between two compo-
nents is discussed in Section-5.1.

Split & Join Patterns for Split and Join constructs (including different split/join schemes)
is presented in Section-5.2.

Conditions Event-calculus model for specifying conditions is discussed in Section-5.3 and
corresponding include file is condition.e.

Iteration Patterns for specifying iteration construct is discussed in Section-5.4.

Data Event-calculus model for specifying request/response data is discussed in
Section-5.5, corresponding files are request.e and response.e.

Messages EC model for specifying the message transfer between two components includ-
ing patterns for its usage is discussed in Section-5.6, corresponding include
file is messagedata.e.

10.3.3 Temporal and security aspects

Using event-calculus as the modeling formalism also allows to specify the temporal

constraints for the composition process, Section-6.1. The temporal constraints can

either be local to a component (such as specifying the time it takes for a service

to produce response) or they can be imposed by the composition process on the

participating components (such as specifying the delay between the invocation of

two services). Further, the temporal constraints can be either control based (such

as specifying the delay between the successive invocation of component) or they

can be data-based temporal constraints (such as data validity constraints). The

table below provides pointers to different related sections for modeling different

patterns of temporal requirements.

Temporal patterns Section for event-calculus model

Response time Event-calculus based pattern for specifying the time taken by components to
finish execution is discussed in Section-6.1.1.

Restart/Refresh Pattern for specifying components re-invocation (either after some specific
time or based on data invalidity) is presented in Section-6.1.2.

Time frame EC Pattern for specifying the time frame allowed for a component’s execution
is presented in Section-6.1.3.

Interval algebra Patterns based on base relations of Allen’s interval algebra are discussed in
Section-6.1.4.

Time units An approach to cater different time-units used for specifying temporal aspects
for different components is discussed in Section-6.1.5.

136

10.4. Process verification and monitoring

The choice of event-calculus as the modeling formalism also allows to handle

the security requirements in the composition process. An overview about different

security requirements for the composition process can be found in Section-6.2.1.

Further, the security requirements can be handled at different interaction levels for

the participating Web services in the composition process. The table below provides

pointers to different related sections for modeling different security requirements.

Security requirement Section for event-calculus model

Data confidentiality, retention and in-
tegrity

Event-calculus based patterns and brief for specifying data
confidentiality, retention and integrity is discussed in Section-
6.2.3.

Authentication/ Authorization Patterns for specifying Authentication/Authorization is pre-
sented in Section-6.2.4.

Dynamic Task Delegation A brief overview of the event-calculus based approach for dy-
namic task delegation is discussed in Section-6.2.5.

10.4 Process verification and monitoring

For the process design-time verification we have proposed a symbolic model checking

approach using satisfiability reasoning. The need for the satisfiability solving for

process verification stems from multiple sources; first as the composition process

may be declarative and partially defined by only specifying the constraints that

mark the boundary of the solution to the composition process and the objective is to

find solution(s) that respect those constraints (and which is connectivity verification

property), satisfiability solving can thus be used to solve the problem by encoding

it as a satisfiability problem, representing the constraints.

Further, the state space of a declarative process can be significantly large, as

the process is only partially defined and all the transitions may not have been

explicitly defined (in contrast to procedural approaches), and thus it makes it

easier to do the symbolic model checking instead of using explicit representation of

state transition graphs and/or using the binary decision diagrams. The verification

properties can include the connectivity, compatibility and behavioral correctness

(safety and liveness properties) and the proposed approach allows for both model

checking the verification properties and for identifying and resolving the conflicts

in the process specifications a result of process verification. Further, as the conflict

clauses returned by the SAT solver can be very large, we have proposed filtering cri-

teria to reduce the clauses and defined patterns for identifying the nature of conflicts.

For the execution-time monitoring (and recovery from any monitored violations)

we have proposed an event-based message-level monitoring approach that allows to

reason about the events and does not require to define and extract events from pro-

cess specification, as the events are first class objects of both design and monitoring

frameworks. As the proposed monitoring approach builds upon event-calculus based

composition design, it allows for the specification of monitoring properties that are

137

Chapter 10. Conclusion

based on both functional and non-functional (such as temporal, security or their

combinations) requirements. These properties are expressed as event-calculus ax-

ioms and can be added to the process specification both during process design and

during the process execution. The proposed monitoring approach both allows for

KPI’s measurement(that may be needed for process evaluation or result in proac-

tive detection of any violations) and the detection of violations once they happen.

Different levels of detection are provided such as detection to the process execution

plan, detection to the violations based-on any properties and events added during

process execution and others.

Further, the web services composition problem is traditionally considered as a

planning task, given a goal the planner can give a set of plans leading to the goal.

However, in case of run-time monitoring we already have a plan to execute and in

case of violation it is important to compute the side-effects this violation has on the

overall process execution. Our approach is based on event calculus and the use of

event calculus is twofold, at design "abduction reasoning" can be used to find a set

of plans, and at the execution time "deduction reasoning" can be used to calculate

the effect of run-time violations. This also allows to cater for the "ripple effect" any

violation has on the process execution, and for proactive detection of any possible

violation that is bound to happen later in the process execution, as a result of current

detected violation. In addition, once a violation is detected and a recovery solution

(for instance re-planning) is sought, the proposed approach allows both to find a

new solution based on the current process state (thus specifying what steps should

be taken now to recover from the violation and hence termed forward recovery)

or to backtrack to some previous activity (if possible) and try to find a new from

there. Then, any recovery solution takes care of the functional and non-functional

properties associated with the process, when performing recovery.

10.5 Implementation architecture

The proposed event-calculus models presented in this work are mentioned using the

discrete event calculus language [Mueller 2006] and they can be directly used for

reasoning purposes. We have proposed an implementation architecture and imple-

mented a Java-based application that allows to abstract the event-calculus mod-

els to the end-user. It facilitates the composition design process by providing a

user-friendly interface for specifying composition design (including entities and con-

trol/data flow between them) and allows to automatically generate the correspond-

ing event-calculus models, invokes the reasoner and shows the results returned by

the reasoner.

The proposed approach uses the DECReasoner as the event-calculus reasoner,

however as we discussed in [Zahoor 2010a, Zahoor 2010b] the event-calculus to SAT

encoding process provided by the reasoner, does not scale well. We have thus modi-

fied the DECReasoner code to gain substantial performance improvement as evident

in performance evaluation results, Section-9.4. Further, we have presented a real

138

10.6. Perspectives and limitations

world crisis management case-study and discussed how a process-based approach can

be beneficial. For process verification, we extended DECReasoner [Mueller 2006] to

include zchaff as a solver and then using zverify to find the unsatisfiable core. This

also serves as an example of extensibility of the proposed framework as different

reasoners can be used to analyze the same SAT-based encoding.

10.6 Perspectives and limitations

Regarding the limitations of the approach presented in this thesis, one observation is

regarding the abstraction level chosen for modeling Web services and activities. We

have extensively modeled different components at an abstract level and although the

models presented are very expressive, they may need to be modified and updated

for modeling some concrete low-level details (if needed to be reasoned about). As

the proposed approach is extensible and is based on expressive event-calculus, the

proposed models can thus be modified and new ones can be added to handle other

requirements.

Then, the proposed ECWS tool for the process specification is in early phases

and only serves as a proof of concept prototype. Although it can handle partial pro-

cess specification, can automatically generate event-calculus models and can directly

invoke the reasoner and parse the results returned, it does not handle process ver-

ification and monitoring. Further, regarding the changes to the DECReasoner, the

modified event-calculus to SAT encoding does improve the time taken for encoding

(as discussed in Section-9.3.2 and as evident from the performance evaluation re-

sults, Section-9.4) however the encoding can further be improved by calculating the

hash values based on both first and last characters of the input symbol. Regarding

the process verification, we have modified the DECReasoner to use zchaff/zverify as

the solver to use when performing verification, however the current implementation

should be modified by adding an option to DECReasoner to override the default

use of Walksat solver. Further, the proposed filtering approach has not yet been

automated and requires manually matching the process logs with conflicts clauses

to filter the unsatisfiable core.

Regarding the future perspectives, we would like to have a complete imple-

mentation for the ECWS tool for declarative process specification, verification and

monitoring. Further, the proposed models can be updated to cover other aspects

regarding the services composition, such as compatibility analysis and automatic

Web services composition. The use of event-calculus as the modeling formalism not

only allows for expressiveness to model different related concepts but also allows to

combine them, such as we mentioned in the thesis that the security and temporal

aspects can be combined to have for instance, access control policies defined for

specific time intervals as needed for dynamic task delegation. Thus any extension

to the models presented in this work will allow to use the base models for specifying

different functional and non-functional properties. The use of a pattern-based ap-

proach, where different event-calculus models are organized into self-contained and

139

Chapter 10. Conclusion

independent files, further aids to reuse and extend the proposed models.

140

Bibliography

[Ardagna 2007] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici

and Pierluigi Plebani. PAWS: A Framework for Executing Adaptive Web-

Service Processes. IEEE Software, vol. 24, no. 6, 2007. (Cited on pages 45

and 48.)

[Bandara 2003] Arosha K Bandara, Emil C Lupu and Alessandra Russo. Using

Event Calculus to Formalise Policy Specification and Analysis. Policies for

Distributed Systems and Networks, IEEE International Workshop on, vol. 0,

page 26, 2003. (Cited on pages 6 and 86.)

[Barbon 2006a] Fabio Barbon, Paolo Traverso, Marco Pistore and Michele Trainotti.

Run-Time Monitoring of Instances and Classes of Web Service Compositions.

In ICWS, pages 63–71, 2006. (Cited on pages 26, 44, 47 and 134.)

[Barbon 2006b] Fabio Barbon, Paolo Traverso, Marco Pistore and Michele Train-

otti. Run-Time Monitoring of Instances and Classes of Web Service Compo-

sitions. In ICWS, pages 63–71, 2006. (Cited on page 43.)

[Baresi 2005] Luciano Baresi and Sam Guinea. Dynamo: Dynamic Monitoring of

WS-BPEL Processes. In ICSOC, pages 478–483, 2005. (Cited on page 43.)

[Baresi 2007] Luciano Baresi and Sam Guinea. Dynamo and Self-Healing BPEL

Compositions. In ICSE Companion, pages 69–70, 2007. (Cited on page 44.)

[Baresi 2009] Luciano Baresi, Sam Guinea, Marco Pistore and Michele Trainotti.

Dynamo + Astro: An Integrated Approach for BPEL Monitoring. ICWS,

pages 230–237, 2009. (Cited on pages 26, 44, 47 and 134.)

[Baresi 2010] Luciano Baresi, Sam Guinea, Olivier Nano and George Spanoudakis.

Comprehensive Monitoring of BPEL Processes. IEEE Internet Computing,

vol. 14, no. 3, pages 50–57, 2010. (Cited on page 43.)

[Baresi 2011] Luciano Baresi and Sam Guinea. Self-Supervising BPEL Processes.

IEEE Trans. Software Eng., vol. 37, no. 2, pages 247–263, 2011. (Cited on

page 43.)

[Basin 2006] David A. Basin, Jürgen Doser and Torsten Lodderstedt. Model driven

security: From UML models to access control infrastructures. ACM Trans.

Softw. Eng. Methodol., vol. 15, no. 1, 2006. (Cited on page 36.)

[Beeri 2008] Catriel Beeri, Anat Eyal, Tova Milo and Alon Pilberg. BP-Mon: query-

based monitoring of BPEL business processes. SIGMOD Record, vol. 37,

no. 1, pages 21–24, 2008. (Cited on page 43.)

Bibliography

[Benatallah 2005] Boualem Benatallah, Fabio Casati, Julien Ponge and Farouk

Toumani. On Temporal Abstractions of Web Service Protocols. In CAiSE

Short Paper Proceedings, 2005. (Cited on page 36.)

[Berardi 2003] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio

Lenzerini and Massimo Mecella. e-Service Composition by Description Logics

Based Reasoning. In Description Logics, 2003. (Cited on page 32.)

[Blum 1997] Avrim Blum and Merrick L. Furst. Fast Planning Through Planning

Graph Analysis. Artif. Intell., vol. 90, no. 1-2, pages 281–300, 1997. (Cited

on page 32.)

[Bonet 2001] Blai Bonet and Hector Geffner. Heuristic Search Planner 2.0. AI

Magazine, vol. 22, no. 3, pages 77–80, 2001. (Cited on page 32.)

[Bordeaux 2004a] Lucas Bordeaux, Gwen Salaün, Daniela Berardi and Massimo

Mecella. When are Two Web Services Compatible? In TES, pages 15–28,

2004. (Cited on page 36.)

[Bordeaux 2004b] Lucas Bordeaux, Gwen Salaün, Daniela Berardi and Massimo

Mecella. When are Two Web Services Compatible? In TES, pages 15–28,

2004. (Cited on page 41.)

[Cao 2005] Jiannong Cao, Jin Yang, Wai Ting Chan and Cheng-Zhong Xu. Ex-

ception Handling in Distributed Workflow Systems Using Mobile Agents. In

ICEBE, pages 48–55, 2005. (Cited on page 44.)

[Casati 1999] Fabio Casati, Maria Grazia Fugini and Isabelle Mirbel. An Environ-

ment for Designing Exceptions in Workflows. Inf. Syst., vol. 24, no. 3, pages

255–273, 1999. (Cited on page 44.)

[Casati 2000a] Fabio Casati, Silvana Castano, Maria Grazia Fugini, Isabelle Mirbel

and Barbara Pernici. Using Patterns to Design Rules in Workflows. IEEE

Trans. Software Eng., vol. 26, no. 8, pages 760–785, 2000. (Cited on page 44.)

[Casati 2000b] Fabio Casati, Ski Ilnicki, Li-jie Jin, Vasudev Krishnamoorthy and

Ming-Chien Shan. Adaptive and Dynamic Service Composition in eFlow. In

Proceedings of the 12th International Conference on Advanced Information

Systems Engineering, CAiSE ’00, pages 13–31, London, UK, 2000. Springer-

Verlag. (Cited on page 31.)

[Castilho 1999] Marcos A. Castilho, Olivier Gasquet and Andreas Herzig. Formaliz-

ing Action and Change in Modal Logic I: the frame problem. J. Log. Comput.,

vol. 9, no. 5, pages 701–735, 1999. (Cited on page 32.)

[Chollet 2008] Stéphanie Chollet and Philippe Lalanda. Security Specification at

Process Level. In IEEE SCC (1), pages 165–172, 2008. (Cited on page 36.)

142

Bibliography

[Cicekli 2000] Nihan Kesim Cicekli and Yakup Yildirim. Formalizing Workflows

Using the Event Calculus. In DEXA, 2000. (Cited on page 6.)

[Colombo 2006] Massimiliano Colombo, Elisabetta Di Nitto and Marco Mauri.

SCENE: A Service Composition Execution Environment Supporting Dynamic

Changes Disciplined Through Rules. In ICSOC, pages 191–202, 2006. (Cited

on page 44.)

[Díaz 2005] Gregorio Díaz, Juan José Pardo, María-Emilia Cambronero, Valentin

Valero and Fernando Cuartero. Automatic Translation of WS-CDL Chore-

ographies to Timed Automata. In EPEW/WS-FM, pages 230–242, 2005.

(Cited on page 39.)

[Dijkman 2007] R.M. Dijkman, M. Dumas and C. Ouyang. Formal semantics

and analysis of BPMN process models. Rapport technique, Technical Re-

port Preprint 7115, Queensland University of Technology, 2007. (Cited on

page 40.)

[Dobson 2005] G. Dobson, R. Lock and Ian Sommerville. QoSOnt: a QoS Ontology

for Service-Centric Systems. In EUROMICRO-SEAA, pages 80–87, 2005.

(Cited on page 97.)

[Dong 2006] Jin Song Dong, Yang Liu 0003, Jun Sun 0001 and Xian Zhang. Ver-

ification of Computation Orchestration Via Timed Automata. In ICFEM,

pages 226–245, 2006. (Cited on page 39.)

[Ellis 1993] Clarence A. Ellis and Gary J. Nutt. Modeling and Enactment of Work-

flow Systems. In Application and Theory of Petri Nets, pages 1–16, 1993.

(Cited on pages 30 and 40.)

[Erol 1994] Kutluhan Erol, James A. Hendler and Dana S. Nau. UMCP: A Sound

and Complete Procedure for Hierarchical Task-network Planning. In AIPS,

pages 249–254, 1994. (Cited on page 34.)

[Fdhila 2008] Walid Fdhila, Mohsen Rouached and Claude Godart. Communica-

tions Semantics for WSBPEL Processes. In ICWS, pages 185–194, 2008.

(Cited on page 6.)

[Ferrara 2004] Andrea Ferrara. Web Services: A Process Algebra Approach. CoRR,

vol. cs.AI/0406055, 2004. (Cited on page 41.)

[Fikes 1971] Richard Fikes and Nils J. Nilsson. STRIPS: A New Approach to the

Application of Theorem Proving to Problem Solving. Artif. Intell., vol. 2,

no. 3/4, pages 189–208, 1971. (Cited on page 32.)

[Fox 2011] Maria Fox and Derek Long. Efficient Implementation of the Plan Graph

in STAN. CoRR, vol. abs/1105.5457, 2011. (Cited on page 32.)

143

Bibliography

[Friedrich 2010] Gerhard Friedrich, Mariagrazia Fugini, Enrico Mussi, Barbara Per-

nici and Gaston Tagni. Exception Handling for Repair in Service-Based Pro-

cesses. IEEE Trans. Software Eng., vol. 36, no. 2, pages 198–215, 2010.

(Cited on pages 45 and 48.)

[Fu 2004] Xiang Fu, Tevfik Bultan and Jianwen Su. Analysis of interacting BPEL

web services. In WWW, pages 621–630, 2004. (Cited on pages 5, 24, 39

and 132.)

[Gaaloul 2010] Khaled Gaaloul, Ehtesham Zahoor, Francois Charoy and Claude

Godart. Dynamic Authorisation Policies for Event-based Task Delegation.

In accepted in CAiSE, 2010. (Cited on pages 6, 90 and 113.)

[Garcia 2008] Diego Zuquim Guimarães Garcia and Maria Beatriz Felgar de Toledo.

Ontology-Based Security Policies for Supporting the Management of Web Ser-

vice Business Processes. In ICSC, 2008. (Cited on page 36.)

[Ghallab 1998] Malik Ghallab, A Howe, C Knoblock, D McDermott, A Ram,

M Veloso, Daniel Weld and D Wilkins. PDDL—The Planning Domain Def-

inition Language. AIPS98 planning committee, vol. 78, no. 4, page 27, 1998.

(Cited on page 32.)

[Giacomo 1995] Giuseppe De Giacomo and Maurizio Lenzerini. PDL-based frame-

work for reasoning about actions. In AI*IA, pages 103–114, 1995. (Cited on

page 32.)

[Giacomo 2000] Giuseppe De Giacomo, Yves Lespérance and Hector J. Levesque.

ConGolog, a concurrent programming language based on the situation calcu-

lus. Artif. Intell., vol. 121, no. 1-2, pages 109–169, 2000. (Cited on page 33.)

[Giordano 1998] Laura Giordano, Alberto Martelli and Camilla Schwind. Dealing

with Concurrent Actions in Modal Action Logics. In ECAI, pages 537–541,

1998. (Cited on page 32.)

[Goedertier 2008] Stijn Goedertier. Declarative Techniques for Modeling and Min-

ing Business Processes. PhD thesis, Katholieke Universiteit Leuven, Facul-

teit Economie en Bedrijfswetenschappen, 2008. (Cited on pages 24, 36, 37

and 132.)

[Guermouche 2009a] Nawal Guermouche and Claude Godart. Asynchronous Timed

Web Service-Aware Choreography Analysis. In CAiSE, 2009. (Cited on

page 36.)

[Guermouche 2009b] Nawal Guermouche and Claude Godart. Timed Model Check-

ing Based Approach for Web Services Analysis. In ICWS, pages 213–221,

2009. (Cited on pages 5, 24, 36 and 39.)

144

Bibliography

[Hamadi 2003] Rachid Hamadi and Boualem Benatallah. A Petri Net-based Model

for Web Service Composition. In ADC, pages 191–200, 2003. (Cited on

pages 40 and 44.)

[Hinz 2005] Sebastian Hinz, Karsten Schmidt 0004 and Christian Stahl. Transform-

ing BPEL to Petri Nets. In Business Process Management, pages 220–235,

2005. (Cited on page 40.)

[Hoffmann 2001] Jörg Hoffmann. FF: The Fast-Forward Planning System. AI Mag-

azine, vol. 22, no. 3, pages 57–62, 2001. (Cited on page 32.)

[Holzmann 2004] Gerard J. Holzmann. The spin model checker - primer and refer-

ence manual. Addison-Wesley, 2004. (Cited on pages 39 and 103.)

[Hopcroft 2001] John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman. Intro-

duction to automata theory, languages, and computation - (2. ed.). Addison-

Wesley series in computer science. Addison-Wesley-Longman, 2001. (Cited

on page 39.)

[Janssens 2000] Gerrit K. Janssens, Jan Verelst and Bart Weyn. Techniques for

Modeling Workflows and Their Support of Reuse. In Business Process Man-

agement, pages 1–15, 2000. (Cited on pages 30 and 40.)

[Kallel 2009] Slim Kallel, Anis Charfi, Tom Dinkelaker, Mira Mezini and Mohamed

Jmaiel. Specifying and Monitoring Temporal Properties in Web Services

Compositions. In ECOWS, pages 148–157, 2009. (Cited on page 43.)

[Kautz 1992] Henry A. Kautz and Bart Selman. Planning as Satisfiability. In ECAI,

pages 359–363, 1992. (Cited on page 32.)

[Kazhamiakin 2006] Raman Kazhamiakin, Paritosh K. Pandya and Marco Pistore.

Representation, Verification, and Computation of Timed Properties in Web.

In ICWS, pages 497–504, 2006. (Cited on page 36.)

[Koehler 1997] Jana Koehler, Bernhard Nebel, Jörg Hoffmann and Yannis Di-

mopoulos. Extending Planning Graphs to an ADL Subset. In ECP, pages

273–285, 1997. (Cited on page 32.)

[Kowalski 1986a] Robert A. Kowalski and Marek J. Sergot. A Logic-based Calculus

of Events. New Generation Comput., vol. 4, no. 1, pages 67–95, 1986. (Cited

on pages 6, 17 and 45.)

[Kowalski 1986b] Robert A. Kowalski and Marek J. Sergot. A Logic-based Calculus

of Events. New Generation Comput., vol. 4, no. 1, pages 67–95, 1986. (Cited

on page 32.)

[Levesque 1997] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen

Lin and Richard B. Scherl. GOLOG: A Logic Programming Language for

145

Bibliography

Dynamic Domains. J. Log. Program., vol. 31, no. 1-3, pages 59–83, 1997.

(Cited on page 33.)

[Levesque 1998] Hector J. Levesque, Fiora Pirri and Raymond Reiter. Foundations

for the Situation Calculus. Electron. Trans. Artif. Intell., vol. 2, pages 159–

178, 1998. (Cited on pages 32 and 33.)

[Liu 1997] Ling Liu and Calton Pu. ActivityFlow: Towards Incremental Specifica-

tion and Flexible Coordination of Workflow Activities. In ER, pages 169–182,

1997. (Cited on page 31.)

[Lu 2007] Ruopeng Lu and Shazia Wasim Sadiq. A Survey of Comparative Business

Process Modeling Approaches. In BIS, pages 82–94, 2007. (Cited on pages 30,

37 and 46.)

[Mahbub 2004] Khaled Mahbub and George Spanoudakis. A framework for re-

quirents monitoring of service based systems. In ICSOC ’04: Proceedings of

the 2nd international conference on Service oriented computing, New York,

NY, USA, 2004. ACM. (Cited on pages 6, 26, 44, 47 and 134.)

[Martens 2005] Axel Martens. Analyzing Web Service Based Business Processes. In

FASE, pages 19–33, 2005. (Cited on page 102.)

[Mccarthy 1963] J. Mccarthy. Situations, actions and causal laws. 1963. (Cited on

pages 32 and 33.)

[McDermott 1996] Drew V. McDermott. A Heuristic Estimator for Means-Ends

Analysis in Planning. In AIPS, pages 142–149, 1996. (Cited on page 32.)

[McDermott 2002] Drew V. McDermott. Estimated-Regression Planning for Inter-

actions with Web Services. In AIPS, pages 204–211, 2002. (Cited on page 35.)

[McIlraith 2002] Sheila A. McIlraith and Tran Cao Son. Adapting Golog for Com-

position of Semantic Web Services. In KR, pages 482–496, 2002. (Cited on

pages 33, 37 and 46.)

[Medjahed 2003] Brahim Medjahed, Athman Bouguettaya and Ahmed K. Elma-

garmid. Composing Web services on the Semantic Web. VLDB J., vol. 12,

no. 4, pages 333–351, 2003. (Cited on page 35.)

[Menzel 2009] Michael Menzel, Ivonne Thomas and Christoph Meinel. Security Re-

quirements Specification in Service-Oriented Business Process Management.

In ARES, pages 41–48, 2009. (Cited on page 36.)

[Merz 1994] M. Merz, D. Moldt, K. Muller and W. Lamersdorf. Workflow Modeling

and Execution with Coloured Petri Nets in COSM, 1994. (Cited on pages 30

and 40.)

146

Bibliography

[Morimoto 2008] Shoichi Morimoto. A Survey of Formal Verification for Business

Process Modeling. In ICCS (2), pages 514–522, 2008. (Cited on pages 38, 40

and 46.)

[Moser 2010] Oliver Moser, Florian Rosenberg and Schahram Dustdar. Event

Driven Monitoring for Service Composition Infrastructures. In WISE, pages

38–51, 2010. (Cited on pages 26, 43, 44, 45, 47 and 134.)

[Mueller 2006] Erik T. Mueller. Commonsense reasoning. Morgan Kaufmann Pub-

lishers Inc., CA, USA, 2006. (Cited on pages 8, 18, 104, 121, 125, 138

and 139.)

[Narayanan 2002a] S. Narayanan and S. A. McIlraith. Simulation, verification and

automated composition of web services. In WWW, pages 77–88, 2002. (Cited

on pages 40 and 98.)

[Narayanan 2002b] Srini Narayanan and Sheila A. McIlraith. Simulation, verifica-

tion and automated composition of web services. In WWW, pages 77–88,

2002. (Cited on page 34.)

[Nau 1999] Dana S. Nau, Yue Cao, Amnon Lotem and Héctor Muñoz-Avila. SHOP:

Simple Hierarchical Ordered Planner. In IJCAI, pages 968–975, 1999. (Cited

on page 34.)

[Neubauer 2008] Thomas Neubauer and Johannes Heurix. Defining Secure Business

Processes with Respect to Multiple Objectives. In ARES, 2008. (Cited on

page 36.)

[Ouaknine 2005] Joël Ouaknine. Verification of Reactive Systems: Formal Methods

and Algorithms. By Klaus Schneider. Springer, Texts in Theoretical Com-

puter Science Series, 2004, ISBN: 3-540-00296-0, pp 600. Softw. Test., Verif.

Reliab., vol. 15, no. 3, pages 202–203, 2005. (Cited on page 103.)

[Pednault 1994] Edwin P. D. Pednault. ADL and the State-Transition Model of

Action. J. Log. Comput., vol. 4, no. 5, pages 467–512, 1994. (Cited on

page 32.)

[Peer 2005] Joachim Peer. Web Service Composition as AI Planning Ð a Survey.

Language, no. March, 2005. (Cited on page 32.)

[Penberthy 1992] J. Scott Penberthy and Daniel S. Weld. UCPOP: A Sound, Com-

plete, Partial Order Planner for ADL. In KR, pages 103–114, 1992. (Cited

on page 32.)

[Pesic 2006] Maja Pesic and Wil M. P. van der Aalst. A Declarative Approach for

Flexible Business Processes Management. In Business Process Management

Workshops, 2006. (Cited on pages 25, 37, 46 and 133.)

147

Bibliography

[Pirri 1999] Fiora Pirri and Raymond Reiter. Some Contributions to the Metatheory

of the Situation Calculus. J. ACM, vol. 46, no. 3, pages 325–361, 1999. (Cited

on pages 32 and 33.)

[Ponge 2007] Julien Ponge, Boualem Benatallah, Fabio Casati and Farouk Toumani.

Fine-Grained Compatibility and Replaceability Analysis of Timed Web Ser-

vice Protocols. In ER, 2007. (Cited on page 36.)

[Ponnekanti 2002] Shankar R. Ponnekanti and Armando Fox. SWORD: A devel-

oper toolkit for web service composition. In Proceedings of the 11th Inter-

national WWW Conference (WWW2002), Honolulu, HI, USA, 2002. (Cited

on page 35.)

[Quartel 2004] Dick A. C. Quartel, Remco M. Dijkman and Marten van Sinderen.

Methodological support for service-oriented design with ISDL. In ICSOC,

pages 1–10, 2004. (Cited on page 36.)

[Rao 2003] Jinghai Rao, Peep Küngas and Mihhail Matskin. Application of Linear

Logic to Web Service Composition. In ICWS, pages 3–, 2003. (Cited on

page 35.)

[Rao 2004a] J. Rao and Xiaomeng Su. A Survey of Automated Web Service Com-

position Methods. In SWSWPC, 2004. (Cited on pages 30, 31 and 46.)

[Rao 2004b] Jinghai Rao, Peep Küngas and Mihhail Matskin. Logic-based Web Ser-

vices Composition: From Service Description to Process Model. In ICWS,

pages 446–453, 2004. (Cited on page 35.)

[Redavid 2008] D. Redavid, L. Iannone, T. R. Payne and G. Semeraro. OWL-S

Atomic Services Composition with SWRL Rules. In ISMIS, pages 605–611,

2008. (Cited on page 98.)

[Reichert 1998] Manfred Reichert and Peter Dadam. ADEPTflex-Supporting Dy-

namic Changes of Workflows Without Losing Control. J. Intell. Inf. Syst.,

vol. 10, no. 2, pages 93–129, 1998. (Cited on page 31.)

[Rodríguez 2007] Alfonso Rodríguez, Eduardo Fernández-Medina and Mario Piat-

tini. A BPMN Extension for the Modeling of Security Requirements in Busi-

ness Processes. IEICE Transactions, vol. 90-D, 2007. (Cited on page 36.)

[Röglinger 2009] Maximilian Röglinger. Verification of Web Service Compositions:

An Operationalization of Correctness and a Requirements Framework for

Service-oriented Modeling Techniques. Business & Information Systems Engi-

neering, vol. 1, no. 6, pages 429–437, 2009. (Cited on pages 46, 102 and 103.)

[Rozinat 2008] Anne Rozinat and Wil M. P. van der Aalst. Conformance checking

of processes based on monitoring real behavior. Inf. Syst., vol. 33, no. 1, pages

64–95, 2008. (Cited on page 102.)

148

Bibliography

[Russell 1995] Stuart J. Russell and Peter Norvig. Artificial intelligence - a mod-

ern approach: the intelligent agent book. Prentice Hall series in artificial

intelligence. Prentice Hall, 1995. (Cited on page 32.)

[Russell 2006] Nick Russell, Wil M. P. van der Aalst and Arthur H. M. ter Hofstede.

Workflow Exception Patterns. In CAiSE, pages 288–302, 2006. (Cited on

pages 43 and 44.)

[Sacerdoti 1974] Earl D. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces.

Artif. Intell., vol. 5, no. 2, pages 115–135, 1974. (Cited on page 34.)

[Sadiq 1999] S. W. Sadiq and M. E. Orlowska. On capturing process requirements

of workflow based business information systems. In BIS’99, 1999. (Cited on

page 31.)

[Salaün 2004] Gwen Salaün, Lucas Bordeaux and Marco Schaerf. Describing and

Reasoning on Web Services using Process Algebra. In ICWS, pages 43–, 2004.

(Cited on page 41.)

[Schlingloff 2005] Bernd-Holger Schlingloff, Axel Martens and Karsten Schmidt

0004. Modeling and Model Checking Web Services. Electr. Notes Theor.

Comput. Sci., vol. 126, pages 3–26, 2005. (Cited on page 102.)

[Schuster 2000] Hans Schuster, Dimitrios Georgakopoulos, Andrzej Cichocki and

Donald Baker. Modeling and Composing Service-Based and Reference

Process-Based Multi-enterprise Processes. In Proceedings of the 12th Inter-

national Conference on Advanced Information Systems Engineering, CAiSE

’00, pages 247–263, London, UK, 2000. Springer-Verlag. (Cited on page 31.)

[Shanahan 2000] Murray Shanahan. An abductive event calculus planner. J. Log.

Program., vol. 44, no. 1-3, pages 207–240, 2000. (Cited on page 32.)

[Sirin 2002] Evren Sirin, James Hendler and Bijan Parsia. Semi-automatic Com-

position of Web Services using Semantic Descriptions. In In Web Services:

Modeling, Architecture and Infrastructure workshop in ICEIS 2003, pages

17–24, 2002. (Cited on page 35.)

[Sirin 2004] Evren Sirin, Bijan Parsia, Dan Wu, James A. Hendler and Dana S.

Nau. HTN planning for Web Service composition using SHOP2. J. Web

Sem., vol. 1, no. 4, pages 377–396, 2004. (Cited on pages 34, 37 and 46.)

[Song 2006] Haitao Song, Yanming Sun, Yingyu Yin and Shixiong Zheng. Dynamic

Weaving of Security Aspects in Service Composition. In SOSE, 2006. (Cited

on page 36.)

[Souza 2009] Andre R. R. Souza, Bruno L. B. Silva, Fernando Antônio Aires Lins,

Julio C. Damasceno, Nelson Souto Rosa, Paulo R. M. Maciel, Robson W. A.

Medeiros, Bryan Stephenson, Hamid R. Motahari Nezhad, Jun Li and Caio

149

Bibliography

Northfleet. Incorporating Security Requirements into Service Composition:

From Modelling to Execution. In ICSOC/ServiceWave, 2009. (Cited on

pages 36 and 86.)

[Subrahmanian 1995] V. S. Subrahmanian and Carlo Zaniolo. Relating Stable Mod-

els and AI Planning Domains. In ICLP, pages 233–247, 1995. (Cited on

page 32.)

[Sun 2009] Mingjie Sun, Bixin Li and Pengcheng Zhang. Monitoring BPEL-Based

Web Service Composition Using AOP. In ACIS-ICIS, pages 1172–1177, 2009.

(Cited on page 43.)

[Suntinger 2008] Martin Suntinger, Hannes Obweger, Josef Schiefer and M. Ed-

uard Gröller. The Event Tunnel: Interactive Visualization of Complex Event

Streams for Business Process Pattern Analysis. In PacificVis, pages 111–118,

2008. (Cited on page 43.)

[Sven 2002] Lämmermann Sven. Runtime Service Composition via Logic-Based Pro-

gram Synthesis. PhD thesis, KTH, Microelectronics and Information Tech-

nology, IMIT, 2002. (Cited on page 35.)

[Tate 1977] Austin Tate. Generating Project Networks. In IJCAI, pages 888–893,

1977. (Cited on page 32.)

[Tondello 2008] G. F. Tondello and Frank Siqueira. The QoS-MO ontology for se-

mantic QoS modeling. In SAC, pages 2336–2340, 2008. (Cited on page 97.)

[Tsamardinos 2003] Ioannis Tsamardinos, Thierry Vidal and Martha E. Pollack.

CTP: A New Constraint-Based Formalism for Conditional, Temporal Plan-

ning. Constraints, vol. 8, no. 4, pages 365–388, 2003. (Cited on page 36.)

[van der Aalst 2006] Wil M. P. van der Aalst and Maja Pesic. DecSerFlow: Towards

a Truly Declarative Service Flow Language. In The Role of Business Processes

in Service Oriented Architectures, 2006. (Cited on pages 5 and 101.)

[Vanhatalo 2007] Jussi Vanhatalo, Hagen Völzer and Frank Leymann. Faster and

More Focused Control-Flow Analysis for Business Process Models Through

SESE Decomposition. In ICSOC, pages 43–55, 2007. (Cited on pages 43

and 44.)

[Vanhatalo 2008] Jussi Vanhatalo, Hagen Völzer, Frank Leymann and Simon Moser.

Automatic Workflow Graph Refactoring and Completion. In ICSOC, pages

100–115, 2008. (Cited on pages 43 and 44.)

[Verma 2005] Kunal Verma and Amit P. Sheth. Autonomic Web Processes. In

ICSOC, pages 1–11, 2005. (Cited on page 44.)

[Waldinger 2000] Richard J. Waldinger. Web Agents Cooperating Deductively. In

FAABS, pages 250–262, 2000. (Cited on page 35.)

150

Bibliography

[Weske 2007] Mathias Weske. Business process management: Concepts, languages,

architectures. Springer, 2007. (Cited on page 43.)

[Wikarski 1996] Dietmar Wikarski. An Introduction to Modular Process Nets. TR-

96-019, International Computer Science Institute, Berkeley, CA, pages 1–51,

April 1996. (Cited on pages 30 and 40.)

[Wu 2008] Guoquan Wu, Jun Wei and Tao Huang. Flexible Pattern Monitoring for

WS-BPEL through Stateful Aspect Extension. In ICWS, 2008. (Cited on

page 43.)

[Yi 2004] Xiaochuan Yi and Krys Kochut. A CP-nets-based Design and Verification

Framework for Web Services Composition. In ICWS, pages 756–760, 2004.

(Cited on page 40.)

[Younes 2003] Håkan L. S. Younes and Reid G. Simmons. VHPOP: Versatile

Heuristic Partial Order Planner. J. Artif. Intell. Res. (JAIR), vol. 20, pages

405–430, 2003. (Cited on page 32.)

[Zahoor 2009a] Ehtesham Zahoor, Olivier Perrin and Claude Godart. An Inte-

grated Declarative Approach to Web Services Composition and Monitoring.

In WISE, pages 247–260, 2009. (Not cited.)

[Zahoor 2009b] Ehtesham Zahoor, Olivier Perrin and Claude Godart. Rule-Based

Semi Automatic Web Services Composition. In SERVICES I, pages 805–812,

2009. (Cited on pages 60, 96 and 122.)

[Zahoor 2010a] Ehtesham Zahoor, Olivier Perrin and Claude Godart. DISC: A

declarative framework for self-healing Web services composition. In ICWS,

2010. (Cited on pages 8, 26, 45, 48, 101, 125, 134 and 138.)

[Zahoor 2010b] Ehtesham Zahoor, Olivier Perrin and Claude Godart. DISC-SeT:

Handling Temporal and Security Aspects in the Web Services Composition.

In ECOWS, 2010. (Cited on pages 8, 125 and 138.)

[Zahoor 2011] Ehtesham Zahoor, Olivier Perrin and Claude Godart. An Event-

Based Reasoning Approach to Web Services Monitoring. In ICWS, pages

628–635, 2011. (Cited on pages 111 and 117.)

[Zhang 2004] Jia Zhang, Jen-Yao Chung, Carl K. Chang and Seongwoon Kim. WS-

Net: A Petri-net Based Specification Model for Web Services. In ICWS,

pages 420–427, 2004. (Cited on page 40.)

151

	I PROLOGUE
	Introduction
	Motivation
	Thesis objectives and main contributions
	Declarative composition design
	SAT-based process verification
	Event-based process monitoring
	Implementation architecture

	Thesis Structure

	II BACKGROUND
	Context and problem definition
	Context
	Web Services Description Language (WSDL)
	The SOAP communication protocol
	Service-Oriented Architecture (SOA)
	Business Process Modeling Notation (BPMN)
	Business Process Execution Language (WS-BPEL)
	Event-calculus

	Motivating example
	Overview
	Case Study: Recovery of priority items at ANH

	Problem definition
	Lack of integration
	Procedural composition model
	Verification
	Event-based monitoring
	Synthesis for the motivating example

	Summary

	State of the art
	Composition process modeling
	Graph based modeling approaches
	AI Planning based composition model
	Modeling non-functional requirements
	Synthesis

	Process verification
	Automata based approaches
	Petri net based approaches
	Process Algebras based approaches
	Synthesis

	Process monitoring and recovery
	Process monitoring
	Recovery
	Synthesis

	Summary

	III COMPOSITION DESIGN
	Composition design - components
	Activities
	Activities with states
	Example
	Activities without intermediate states
	Activities that can be restarted

	Web services
	Synchronous Web services invocation
	Pull-based Asynchronous invocation
	Push-based Asynchronous invocation
	Services re-invocation

	Nodes
	BPMN and event-calculus
	Example
	Summary

	Control/Data flow specification
	Dependency
	Split and Join
	Conditions
	Iteration
	Request/Response data
	Message flow
	Example
	Summary

	Modeling Non-functional aspects
	Modeling temporal aspects
	Response time
	Restart/Refresh
	Invocation time-frame and delay
	Allen's Interval Algebra
	Modeling time-units

	Modeling security aspects
	Security requirements
	Interaction levels
	Data confidentiality, retention and integrity
	Authentication/Authorization
	Dynamic Task Delegation

	Example
	Summary

	IV VERIFICATION AND MONITORING
	Instantiation and Verification
	Nodes instantiation
	Background
	The proposed approach
	The worksWith dependency
	Backtracking and propagation

	Process instantiation
	Example

	Process verification
	Motivation
	Verification properties
	The proposed approach
	Filtering the unsatisfiable-core
	Example

	Summary

	Monitoring and recovery
	Properties specification
	Detection and effects calculation
	Detection
	Effects calculation

	Response
	Example
	Summary

	V EPILOGUE
	Implementation
	Overview
	Composition design using ECWS
	Enhancements to DECReasoner
	Process verification using zchaff/zverify_df
	Event-calculus to SAT encoding

	Performance evaluation

	Conclusion
	Problem description
	The proposed approach
	Declarative composition design
	Components
	Control/Data flow specification
	Temporal and security aspects

	Process verification and monitoring
	Implementation architecture
	Perspectives and limitations

	Bibliography

