

Mécanismes et évolution des chaînes d'accrétion : exemple des chaînes paléozoïques d'Asie Centrale (Ouest Junggar, N-O de la Chine)

Flavien Choulet

► To cite this version:

Flavien Choulet. Mécanismes et évolution des chaînes d'accrétion : exemple des chaînes paléozoïques d'Asie Centrale (Ouest Junggar, N-O de la Chine). Sciences de la Terre. Université d'Orléans, 2011. Français. NNT : 2011ORLE2036 . tel-00658776v2

HAL Id: tel-00658776 https://theses.hal.science/tel-00658776v2

Submitted on 21 Mar 2012 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITÉ D'ORLÉANS

ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES

INSTITUT DES SCIENCES DE LA TERRE D'ORLÉANS

soutenue le : 12 décembre 2011

pour obtenir le grade de : **Docteur de l'université d'Orléans** Discipline : Sciences de la Terre et de l'Atmosphère

Mécanismes et évolution des chaînes d'accrétion.

Exemple des chaînes paléozoïques d'Asie Centrale (Junggar Occidental, N-O de la Chine).

THÈSE dirigée par : Michel FAURE Rixiang ZHU	Professeur, Université d'Orléans Professeur-Académicien, Chinese Academy of Sciences
RAPPORTEURS : Karel SCHULMANN Stéphane GUILLOT	Professeur, Université de Strasbourg Directeur de Recherche, Université de Grenoble
JURY	
Jean-Pascal COGNE	Professeur, Institut de Physique du Globe, Président du jury
Stéphane GUILLOT	Directeur de Recherche CNRS, Université de Grenoble
Karel SCHULMANN	Professeur, Université de Strasbourg
Wei LIN	Professeur, Chinese Academy of Science
Wang BO	Professeur, Université de Nanjing
Jacques CHARVET	Professeur émérite, Université d'Orléans
Yan CHEN	Professeur, Université d'Orléans
Michel FAURE	Professeur, Université d'Orléans

22 22238 238 2 222 22 238 238**4** 2 39 2223 2

« L'examen attentif d'un terrain circonscrit et uniformément accessible fait connaître la prépondérance de certaines formations indépendantes et les limites de leurs rapports mutuels mais lorsqu'un groupe de montagnes occupe une surface de 4400 lieues carrées ou trois fois grande comme la Suisse lorsque la majeure partie du groupe n a point encore été examinée par des géologues instruits on ne peut rien affirmer d une manière positive. »

Alexandre von Humboltz, 1842, L'Asie Centrale

REMERCIEMENTS

Mes premiers mots vont pour le Professeur Michel Faure qui m'a guidé non seulement pendant mes trois de thèse, mais aussi lors de mon travail de master. Il m'a apporté sa confiance et son expérience de terrain. Lors de nos discussions jusqu'à tard dans la nuit, j'ai appris du professeur mais surtout de l'homme de précieuses connaissances, qui je le sais, guideront mes pas dans ma future carrière.

Le Professeur Yan Chen a lui aussi fortement contribué à la réussite de cette thèse, grâce à sa disponibilité et à ses conseils prodigués. Je ne saurais me rappeler toutes ces discussions, parfois animées, sur le terrain et au laboratoire, mais à coup sûr ces échanges sont pour beaucoup dans mon développement scientifique.

J'adresse également de profonds remerciements au Professeur Dominique Cluzel, qui, malgré la distance, a su insuffler une orientation originale et attractive à cette étude. Son expérience de terrain a permis d'élaborer une vision alternative à l'origine d'un débat scientifique permanent et stimulant pour ces trois années.

Ce travail n'aurait pu voir le jour sans une collaboration franco-chinoise forte et à tous niveaux. Je remercie tout d'abord les professeurs Lin Wei et Wang Bo qui m'ont guidé non seulement sur le terrain mais aussi lors de mes séjours à Pékin et à Taipei. Grace à leur encadrement j'ai découvert une culture, certes différente, mais tout aussi intrigante. Je suis également très reconnaissant envers les Professeurs Wang Qingchen, Zhu Rixiang et Wu Fuyuan à Pékin et Bor-Min Jahn à Taipei qui ont contribué, par leur soutien financier et scientifique, à l'aboutissement de ce projet. J'ai aussi une pensée pour les chauffeurs chinois qui nous ont bien guidé sur le terrain et ont toujours montré de l'enthousiasme et de la sympathie, malgré la barrière de langue.

Je tiens aussi à remercier les directeurs successifs de l'Institut des Sciences de la Terre d'Orléans, Bruno Scaillet et Ary Bruand, qui m'ont accueilli au sein du laboratoire et m'ont apporté un appui financier nécessaire à l'obtention et la diffusion des résultats scientifiques. Je salue également la contribution de l'Ecole Doctorale Sciences et Techniques d'Orléans, qui m'a octroyé une bourse d'étude, me permettant ainsi d'effectuer des séjours scientifiques à Pékin et à Taipei.

Ce travail a également bénéficié de l'apport de nombreux collaborateurs. Le Professeur Jacques Charvet, en plus de sa bonne humeur, a mis à disposition sa grande expérience des processus tectoniques géodynamiques à l'origine de la formation des chaînes de montagne. Le Professeur Jean-Pascal Cogné, avec qui j'ai partagé une mission de terrain assez épique, m'a fait

découvrir encore plus le monde des paléomagiciens (oups !!). Je tiens aussi à adresser ma profonde reconnaissance au Professeur Olivier Fabbri, qui depuis le début m'a soutenu et guidé vers une carrière scientifique. Au cours de nos missions dans les Vosges, dans le Morvan ou dans les Hébrides, il m'a fait comprendre que la réussite est le produit du travail, du courage et de l'abnégation, surtout lorsque l'on a les pieds dans la boue et que le vent souffle très fort.

Je remercie les Professeurs Karel Schulmann et Stéphane Guillot, rapporteurs de ce manuscrit, qui ont su, non seulement apprécié sa qualité et son apport pour la connaissance scientifique, mais aussi ont pointé ses limites en suggérant d'intéressantes perspectives de travail.

J'adresse une profonde reconnaissance à toutes les personnes de l'ISTO que j'ai côtoyé durant ces années à Orléans et qui ont, de manière plus ou moins directe, contribué à la réussite de ce travail de thèse. En particulier, je salue Romain Augier, Luc Barbanson, Nicole Le Breton, Charles Gumiaux et Max Vidal. Je remercie également Jean-Gabriel Badin, Sylvain Janiec, Chantale Lecoq et Catherine Leroy.

Mes pensées vont aussi vers les différentes générations de doctorant que j'ai pu rencontré durant mon master et ma thèse. J'ai pu bénéficié de leurs conseils et, à mon tour, j'espère avoir su faire profiter les nouveaux entrants de mon expérience. Je remercie Pierre, Jérémy, Mourad, Paul, Aurore, Fred, Emmanuelle, Nicolas C., Chen Ke, Marlène, Mariem, Chu Yang, Li Guangrong, Anaëlle, Nour, Mickaël, Nicolas B., Matthieu, Damien, Noémie, Gaby, Wei Wei, Leslie, Armel, Nolwenn et Leïla. Chacun a su apporter sa bonne humeur et a permis d'égayer ses quelques années.

Je remercie également ma famille qui m'a soutenu pendant ce travail et qui, bien des années auparavant, avait su m'inculquer l'envie d'avancer, d'apprendre et de partager mes connaissances. J'espère, par ce travail, avoir pu leur donner de la fierté.

Je complimente enfin Julie, qui pendant ces trois années m'a apporté un soutien immense et a su braver les moments difficiles. Elle est pour beaucoup dans l'aboutissement de ce travail, et pour les instants passés et ceux à venir, je la remercie du fond de mon cœur.

Sommaire

INTRODUCTION GENERALE	17
CHAPITRE I : LES CHAINES D'ACCRETION : DEFINITIONS, TYPOLOGIE, EXEMPLES ET	21
IMPLICATIONS POUR LA CROISSANCE CONTINENTALE	
A LES CHAINES D'ACCRETION	23
A.1 DEFINITIONS	23
A.2 ELEMENTS CONSTITUTIFS DES CHAINES D'ACCRETION	24
A.2.i Le prisme d'accrétion	25
A.2.ii L'arc magmatique	29
A.2.iii Les bassins en périphéries de l'arc	29
A.3 TYPOLOGIE DES CHAINES D'ACCRETION	31
A.4 DE LA MARGE A LA CHAINE D'ACCRETION	33
B QUELQUES EXEMPLES DE CHAINE D'ACCRETION A TRAVERS LE TEMPS ET L'ESPACE	36
B.1 LES CORDILLERES NORD-AMERICAINES	37
B.1.i Structures des chaînes d'accrétion : exemple des cordillères canadiennes	39
B.1.ii Paléosubduction de ride : évidences depuis la Californie jusqu'en Alaska	40
B.1.iii Déformation et exhumation du complexe d'accrétion : le cas du complexe franciscain	41
B.1.iv Accrétion et croissance continentale épisodique : exemple de l'Alaska	44
B.2 LES TASMANIDES	47
B.3 LE CAS DU JAPON	50
CHAPITRE II : LES CHAINES D'ACCRETION D'ASIE CENTRALE : MODELES GEODYNAMIQ ET PROBLEMATIOUE	<u>UES</u> 61
	63
A 1 LE DOMAINE OURALIEN	63
A 2 LE DOMAINE ORIENTAL	64
A 3 LE DOMAINE OCCIDENTAL	65
A 4 LE PROBLEME DE LA DEFINITION D'UNITES EN ÁSIE CENTRALE	65
B APERCI GEOLOGIOUE	68
B.1 LE DOMAINE KAZAKH	68
B.2 LE TIANSHAN	72
B.3 LES CHAINES PERIPHERIQUES DU JUNGGAR	73
B.4 LA REACTIVATION DE LA CHAINE	75
C Les modeles d'evolution proposes	77
C.1 LE MODELE DE L'ARC DE KIPCHAK	77
C.2 LES ADAPTATIONS DU MODELE DE KIPCHAK	81
C.3 LES MODELES D'ACCRETIONS MULTIPLES (ARCHIPELAGO MODEL)	82
C.4 L'HYPOTHESE DU MICROCONTINENT KAZAKH	83
D IMPLICATIONS POUR LA CROISSANCE DE LA CROUTE CONTINENTALE EN ASIE CENTRALE	87
E LIMITES DES MODELES EXISTANTS	89
F Problematique	92
-	

<u> CHAPITRE III : OBJET ET METHODES : LE</u>	JUNGGAR OCCIDENTAL,	NECESSITE D'UNE
APPROCHE PLURIDISCIPLINAIRE		

APPROCHE PLURIDISCIPLINAIRE	
A LE JUNGGAR OCCIDENTAL	97
A.1 Aperçu geologique	97
A.1.i Présentation des formations	97
A.1.ii Structuration du Junggar Occidental	103
A.1.iii Magmatisme	105
A.2 MODELES EXISTANTS	106
A.2.i Modèle de type arc de Kipchak	106
A.2.ii Les modèles d'accrétions multiples	108
A.2.iii Modèle de subduction de ride	112
A.3 LIMITES DES MODELES EXISTANTS	115
A.4 OBJECTIFS DE LA THESE	117
B APPROCHE PLURIDISCIPLINAIRE	118
B.1 ETUDE GEOCHRONOLOGIQUE ET ISOTOPIQUE DES ZIRCONS DETRITIQUES	118
B.2 ETUDE DE GEOCHIMIE ELEMENTAIRE ET ISOTOPIQUE SUR ROCHE TOTALE	120
B.3 MAGNETISME DES ROCHES : MINERALOGIE MAGNETIQUE ET PALEOMAGNETISME	120
B.4 PRESENTATION DES ARTICLES	121

CHAPITRE IV : EVOLUTION GEODYNAMIQUE POLYCYCLIQUE DU JUNGGAR OCCIDENTAL : IMPLICATIONS POUR LA CROISSANCE DE LA CROUTE CONTINENTALE EN ASIE CENTRALE

	<u>123</u>
A INTRODUCTION	125
B ARTICLE SOUMIS À TERRA NOVA: NEW CONSTRAINTS ON THE PRE-PERMIAN CONTINENTAL CRUST	
GROWTH OF CENTRAL ASIA (WEST JUNGGAR, CHINA) BY U-PB AND HF ISOTOPIC DATA FROM DETRIT	'AL
ZIRCON.	126
Abstract	126
B.1 INTRODUCTION	127
B.2 GEOLOGICAL SETTING AND SAMPLING	128
B.3 GEOCHRONOLOGY	130
B.3.i U-Pb dating of detrital zircons	131
B.3.ii U-Pb dating of magmatic zircons	133
B.4 ZIRCON LU-HF ISOTOPE DATA	133
B.5 DISCUSSION	135
B.5.i Maximum ages of sedimentation	135
B.5.ii Zircon provenance	136
B.5.iii A polycyclic model for West Junggar	137
B.5.iv Crustal evolution of West Junggar and implication for the Altaids	138
C CONCLUSION	139
CHAPITRE V : L'EVOLUTION GEODYNAMIQUE DU JUNGGAR OCCIDENTAL AU	
PALEOZOÏQUE INFERIEUR	141
A INTRODUCTION	143
$\textbf{B} \textbf{Article} \ \textbf{A} \textbf{ soumettre}: \textbf{Structure} \ \textbf{and} \ \textbf{evolution} \ \textbf{of} \ \textbf{the} \ \textbf{Early} \ \textbf{Palaeozoic} \ \textbf{accretionary}$	
COMPLEXES IN WEST JUNGGAR AND THEIR PLACE WITHIN THE ALTAIDS COLLAGE.	144
Abstract	144

183

B.1 INTRODUCTION	145
B.2 AN OUTLINE OF THE EARLY PALAEOZOIC UNITS OF WEST JUNGGAR	148
B.2.i The Chingiz-Tarbagatay Unit	149
B.2.ii The Mayila Unit	153
B.2.iii The Tangbale Unit	157
B.3 SAMPLING AND RESULTS	160
B.3.i U-Pb geochronology	161
B.3.ii Lu-Hf isotope compositions	164
B.4 DISCUSSION – THE EARLY PALAEOZOIC GEODYNAMIC EVOLUTION OF WEST JUNGGAR	169
B.4.i Detrital zircons maximum deposition ages	169
B.4.ii Potential zircon sources	169
B.4.iii Architecture of the Early Palaeozoic accretionary complexes	172
B.4.iv Correlations with eastern Kazakhstan	175
B.4.v A possible geodynamical scenario for West Junggar complexes	176
B.5 CONCLUSION	179
C CONCLUSION	181

CHAPITRE VI : L'EVOLUTION GEODYNAMIQUE DU JUNGGAR OCCIDENTAL AU PALEOZOÏQUE SUPERIEUR

A INTRODUCTION	185
B ARTICLE ACCEPTE A GONDWANA RESEARCH: FROM OBLIQUE ACCRETION TO TRANSPRESSION IN THE	E
EVOLUTION OF THE ALTAID COLLAGE: NEW INSIGHTS FROM WEST JUNGGAR, NORTHWESTERN CHINA	186
Abstract	186
B.1 INTRODUCTION	187
B.2 GEOLOGICAL OUTLINE	189
B.2.i Central Asia	189
B.2.ii West Junggar	190
B.3 AGE AND NATURE OF THE WEST KARAMAY UNIT	193
B.3.i The turbidite series	193
B.3.ii The graywacke mass flows	196
B.3.iii Ophiolitic and sedimentary mélanges	197
B.3.iii.a The Dalabute mélange	197
B.3.iii.b The Karamay mélange	200
B.3.iv Magmatic and tectonic features of the West Karamay Unit	200
B.4 NEW STRUCTURAL EVIDENCE FOR TRANSPRESSION	201
B.4.i Mega scale structures of the West Karamay Unit	201
B.4.ii Mesoscale and microscale structures in the West Karamay Unit	204
B.4.ii.a Polyphase ductile shearing within limestone olistoliths	204
B.4.ii.b Evidence for folds with vertical axes in turbidites.	207
B.5 DISCUSSION	207
B.5.i The West Karamay Unit: a single Carboniferous accretionary complex	207
B.5.ii Timing of the deformation	209
B.5.iii Oblique subduction driven by oroclinal bending	212
B.6 CONCLUSION	215
Aknowledgements	216
C CONCLUSION	217

CHAPITRE VII : EVOLUTION TARDI- A POST-OROGENIQUE DES CHAINES D'ACCRETIC	<u>N</u>
D'ASIE CENTRALE	219
A INTRODUCTION	221
B ARTICLE ACCEPTÉ À JOURNAL OF ASIAN EARTH SCIENCES: LATE PALEOZOIC PALEOGEOGRAPHIC	
RECONSTRUCTION OF WESTERN CENTRAL ASIA BASED UPON PALEOMAGNETIC DATA AND ITS GEOD	YNAMIC
IMPLICATIONS	223
Abstract	223
B.1 INTRODUCTION	224
B.2 GEOLOGICAL SETTING AND PALEOMAGNETIC SAMPLING	226
B.2.i The Junggar basin	227
B.2.ii North Tian Shan	227
B.2.iii West Junggar Mountains	228
B.2.iv Paleomagnetic sampling	229
B.3 PALEOMAGNETIC STUDY	230
B.3.i Laboratory processing	230
B.3.ii Magnetic mineralogy	232
B.3.iii Paleomagnetic directional data	233
B.3.iii.a Paleomagnetic data from South Junggar	235
B.3.iii.b West Junggar Mountains	235
B.4 DISCUSSION	237
B.4.i Reliability and age of the magnetic remanence	237
B.4.ii Comparison with previous paleomagnetic results	240
B.4.iii Relative motions between blocks	241
B.4.iv Tectonic implications	244
B.4.v Tentative reconstruction	248
B.4.v.a Carboniferous (before 320 Ma; Fig. 7.B.11a)	249
B.4.v.b Late Carboniferous-Early Permian (between 320 and 280; Fig. 7.B.11b)	250
B.4.v.c Late Permian (between 280 and 260; Fig. 7.B.11c)	250
B.4.v.d Present (Fig. 7.B.11d)	250
B.5 CONCLUSIONS	251
Acknowledgements	251
C ARTICLE À SOUMETTRE: FIRST TRIASSIC PALAEOMAGNETIC CONSTRAINTS FROM JUNGGAR (NW C	China)
AND THEIR IMPLICATIONS FOR MESOZOIC TECTONICS IN CENTRAL ASIA.	253
Abstract	253
C.1 INTRODUCTION	254
C.2 GEOLOGICAL SETTING	255
C.2.i Northwestern China	255
C.2.ii North Tianshan	257
C.2.iii West Junggar	259
C.3 PALAEOMAGNETIC SAMPLING AND METHODS	260
C.4 ANALYTIC RESULTS	265
C.4.i Magnetic mineralogy	265
C.4.ii Anisotropy of the magnetic susceptibility	269
C.4.iii Palaeomagnetic directions	270
C.5 DISCUSSION	276
C.5.i Reliability of results and age of the magnetisation	276

C.6 CONCLUSION	288
C.5.iv Mesozoic Tectonics in northwestern China	283
C.5.iii The Early Triassic single rigid Junggar block	282
C.5.ii Relative motions between blocks of northwestern China	280

CHAPITRE VIII DISCUSSION : MECANISMES D'ACCRETION ET EVOLUTION GEODYNAMIQUE

A MECANISMES DE FORMATION ET ARCHITECTURE DES CHAINES D'ACCRETION DU JUNGGAR OCCIDEN	TAL
	293
A.1 DEVELOPPEMENT ET STRUCTURE DES COMPLEXES D'ACCRETION	293
A.2 CHRONOLOGIE DE L'ACCRETION ET MECANISMES D'ARRET DE LA SUBDUCTION	294
B MODELE D'EVOLUTION GEODYNAMIQUE DU JUNGGAR OCCIDENTAL	296
B.1 Ordovicien moyen.	296
B.2 SILURIEN INFERIEUR	298
B.3 DEVONIEN INFERIEUR	298
B.4 DEVONIEN SUPERIEUR	299
B.5 CARBONIFERE INFERIEUR	299
B.6 CARBONIFERE SUPERIEUR	299
B.7 Permien inferieur	301
C Place du Junggar Occidental dans le cadre des Altaïdes Occidentales	303
C.1 RELATIONS JUNGGAR OCCIDENTAL -KAZAKHSTAN	303
C.2 RELATIONS JUNGGAR OCCIDENTAL -TIANSHAN	305
C.3 RELATIONS JUNGGAR OCCIDENTAL – JUNGGAR ORIENTAL	305
D MECANISMES ET CHRONOLOGIE DE LA CROISSANCE DE LA CROUTE CONTINENTALE	307
CONCLUSION ET PERSPECTIVES	309
REFERENCES BIBLIOGRAPHIQUES	313
METHODOLOGIE DETAILLEE ET DONNEES COMPLEMENTAIRES	357
A MAGNETISME DES ROCHES	359
A.1 LE CHAMP MAGNETIQUE TERRESTRE	359
A.1.i Principes physiques du magnétisme	359
A.1.i.a Définitions	359
A.1.i.b Le potentiel magnétique	360
A.1.ii Le magnétisme terrestre	360
A.1.ii.a Composantes et champs de référence	360
A.1.ii.b Origines du magnétisme terrestre	361
A.1.ii.c Le champ magnétique dipolaire centré	361
A.1.ii.d Le champ non dipolaire et les variations séculaires	362
A.2 L'AIMANTATION DES ROCHES	362
A.2.i L'aimantation à l'échelle de l'atome	362
A.2.i.a Définitions	362
A.2.11.0 L almantation induite	363
A.2.i.c L'aimantation rémanente	363 364

A.2.i.e Les domaines magnétiques	365
A.2.ii L'aimantation à l'échelle du minéral et dans la roche	366
A.2.ii.a Les principaux minéraux magnétiques et leurs paramètres	366
A.2.ii.b L'aimantation des roches	367
A.2.ii.c La stabilité de l'aimantation des roches et les différents types d'aimantation	368
A.2.iii Méthodes indirectes de détermination de la minéralogie magnétique	370
A.2.iii.a Mesure de la susceptibilité magnétique et thermomagnétisme	370
A.2.iii.b Aimantation rémanente isotherme	372
A.2.iii.c Méthode de Lowrie	372
A.2.iii.d Cycles d'hystérésis	373
A.3 L'ANISOTROPIE DE SUSCEPTIBILITE MAGNETIQUE	374
A.3.i Principes	374
A.3.ii Mesure de l'ASM	374
A.3.iii Traitement statistique et fabriques magnétiques	375
A.3.iv Applications de l'ASM	376
A.4 LE PALEOMAGNETISME	376
A.4.i L'échantillonnage et l'acquisition de la rémanence	377
A.4.i.a Stratégie d'échantillonnage	377
A.4.i.b Prélèvement et corrections	377
A.4.i.c Technique de désaimantation	377
A.4.i.d Mesures en laboratoire de la rémanence	378
A.4.ii Les directions paléomagnétiques et leur signification	379
A.4.ii.a Analyses statistiques de la direction	379
A.4.ii.b Correction de pendage et direction paléomagnétique	379
A.4.ii.c Tests paléomagnétiques, aimantation primaire et réaimantation	380
A.4.iii Pôles paléomagnétiques	381
B GEOCHRONOLOGIE U-PB SUR ZIRCONS ET ANALYSES ISOTOPIQUES LU-HF SUR ZIRCONS	383
B.1 GEOCHRONOLOGIE U-TH-PB SUR ZIRCON	383
B.1.i Structure, composition et formation des zircons	383
B.1.i.a Structure d'un cristal de zircon	383
B.1.i.b Composition chimique des zircons et implications	383
B.1.i.c Morphologie et textures internes	384
B.1.i.d Pétrogenèse des zircons et conservation au cours des processus géologiques	386
B.1.ii Utilisation du zircon comme géochronomètre	388
B.1.ii.a Principes de géochronologie U-Th-Pb	388
B.1.ii.b Méthode LA-ICPMS	388
B.1.ii.c Analyses LA-ICPMS	390
B.1.ii.d Corrections et modes de représentation	390
B.1.iii Etude des zircons magmatiques	391
B.1.iv Etude des zircons détritiques	392
B.1.iv.a Principe de l'étude	392
B.1.iv.b Echantillonnage, préparation et analyse	392
B.1.iv.c Représentation graphique et traitement statistique	393
B.1.iv.d Signification des âges et implication dans les études de provenance	393
B.2 DETERMINATION DES ISOTOPES LU-HF SUR ZIRCONS	394
B.2.i Le système Lu-Hf	394
B.2.ii Les isotopes de l'hafnium dans le zircon	394

B.2.ii Mesures des isotopes du lutétium et de l'hafnium	395
B.2.ii.a Appareillage et principe de la méthode LA-ICPMS	395
B.2.ii.b Analyse et traitement des données	395
B.2.iii Utilisation des isotopes de l'hafnium	395
C DONNEES COMPLEMENTAIRES	399

INTRODUCTION GENERALE

'étude des processus orogéniques est un outil fondamental pour comprendre et interpréter le paysage géologique actuel. Notre connaissance de ces mécanismes est directement issue de la théorie de la tectonique des plaques, qui illustre la formation des chaînes de montagnes. Classiquement, les chaînes alpines ou himalayennes sont le résultat de la rencontre entre deux plaques continentales à l'origine de la création de relief. Ce schéma simple n'est cependant pas toujours vérifié, puisque de vastes domaines orogéniques ne peuvent être expliqués une simple collision continentale. Les chaînes dites d'accrétion se développent le long des zones de subduction et leur architecture est essentiellement contrôlée par la dynamique à l'interface des plaques inférieures et supérieures. Ces chaînes d'accrétion présentent des unités récurrentes, qui correspondent à des reliques d'arc magmatique ou de prisme d'accrétion, semblables à ceux observés dans les zones de subduction modernes. L'interruption du processus de subduction résulte de la collision de microcontinents et d'arcs insulaires ou d'un changement cinématique à grande échelle, entraînant une consolidation de la chaîne. Comme les zones de subduction représentent des sites majeurs de transfert de matériel d'origine mantellique dans la croûte, le développement des chaînes d'accrétion contribue à la croissance de la croûte continentale. L'étude des chaînes d'accrétion est donc fondamentale pour comprendre l'évolution de la croûte au cours de l'histoire de la Terre.

La vaste région de l'Asie Centrale est occupée par le collage tectonique des Altaïdes qui s'étend de l'Oural au Pacifique. De nombreuses chaînes d'accrétion se sont développées au sein de ce domaine bordé par les cratons Siberia, Baltica, Alay, Tarim et Chine du Nord. Les modèles géodynamiques actuellement envisagés s'appuient sur la reconnaissance d'unités tectonostratigraphiques, mais les schémas d'évolution proposés sont diamétralement opposés. Le modèle monocyclique de l'arc de Kipchak (Sengör et al., 1993 ; Sengör et al., 1996a) suggère une unique subduction sur plusieurs milliers de kilomètres qui aurait été active tout au long du Paléozoïque. La chaîne d'accrétion ainsi formée aurait ensuite été dilacérée par les décrochements permiens pour donner la géométrie complexe actuelle. A l'inverse, le puzzle d'Asie Centrale a été interprété comme un collage d'arc insulaires et de microcontinents indépendants, selon une configuration proche de l'actuel Ouest Pacifique (Mossakovsky et al., 1993 ; Filippova et al., 2001 ; Badarch et al., 2002 ; Kheraskova et al., 2003 ; Xiao et al., 2008 ; 2010). Les nombreux modèles proposés diffèrent par la durée des processus de subduction, par la nature des marges actives (marges continentales ou arcs insulaires) et par la

chronologie du collage. Quel que soit le modèle envisagé, les différents auteurs considèrent qu'un large volume de croûte continentale a été formé durant le Paléozoïque, non seulement au niveau des zones de subduction (**Sengör et al., 1993**), mais aussi par la contribution du magmatisme post-orogénique (**Jahn et al., 2000a**; **Jahn, 2004**). Cependant, il existe relativement peu d'informations détaillées permettant d'appréhender les mécanismes et la chronologie de la croissance de la croûte continentale en Asie Centrale. Les modèles disponibles fournissent une vision schématique à grande échelle de l'histoire géodynamique des Altaïdes, mais l'image renvoyée est peu en accord avec la réalité géologique. En outre, l'absence de données structurales, stratigraphiques et géochronologiques ne permet pas de contraindre l'architecture et l'évolution des chaînes d'accrétion, dont la connaissance est nécessaire à l'évaluation du phénomène de croissance de la croûte continentale.

L'objectif de ce travail est de caractériser l'évolution d'un segment des Altaïdes, le Junggar Occidental (nord-ouest de la Chine), afin d'établir les mécanismes de formation des chaînes d'accrétion d'Asie Centrale et leur rôle dans l'évolution de la croûte continentale. Ce travail nécessite de s'affranchir des modèles géodynamiques existants et d'adopter une approche pluridisciplinaire, nécessaire à l'intégration de l'ensemble des données disponibles. L'analyse structurale et l'outil paléomagnétique permettent ainsi de contraindre l'architecture de la chaîne d'accrétion dont l'évolution géodynamique sera retracée grâce à l'apport de nouvelles données géochronologiques et géochimiques. Parmi ces méthodes, l'utilisation des données géochronologiques et sotopiques des zircons détritiques des complexes d'accrétion, fréquemment utilisée dans les chaînes de subduction modernes, mais relativement inédite pour le collage des Altaïdes, se révèle être un outil puissant pour contraindre la stratigraphie, la paléogéographie et l'évolution de la croûte continentale.

Le chapitre 1 est essentiellement consacré à une revue des connaissances sur les chaînes d'accrétion, basée sur la description des éléments constitutifs de ces chaînes. Les mécanismes observés dans les chaînes d'accrétion sont abordés au travers d'exemples régionaux choisis et permettent d'introduire les relations entre chaînes d'accrétion et croissance de la croûte continentale. Le chapitre 2 présente la géologie des Altaïdes Occidentales et les modèles géodynamiques actuellement proposés. Les limites affichées par ces modèles permettent d'introduire les trois objectifs de ce travail : 1) caractériser des chaînes d'accrétion, 2) établir la chronologie et les mécanismes de la croîssance de la croûte continentale et les modèle géodynamique intégré. Le chapitre 3 donne un aperçu de l'objet d'étude : le Junggar Occidental. La problématique scientifique spécifique à cette

région repose sur les imprécisions des scénarios géodynamiques disponibles dans la littérature, qui souffrent cruellement de l'absence de données structurales, géochronologiques, géochimiques et stratigraphiques. Ce chapitre expose également la méthodologie suivie par ce travail, le détail des outils utilisés étant présenté en annexe.

Les chapitres 4 à 7 s'articulent autour de cinq articles publiés, soumis ou en préparation. Le chapitre 4 étudie de manière globale l'évolution géologique du Junggar Occidental. Les résultats, basés essentiellement sur l'étude géochronologique et isotopique des zircons détritiques des complexes d'accrétion sont en faveur d'un scénario polycyclique du Junggar Occidental. Le premier cycle d'âge Paléozoïque inférieur est décrit dans le chapitre 5, qui s'appuie sur une étude pluridisciplinaire dans trois massifs du Junggar Occidental. Le chapitre 6, consacré au cycle d'âge Paléozoïque supérieur, présente aussi des données pluridisciplinaires, mais utilise également la reconstruction cinématique proposée dans le chapitre suivant. L'évolution tardi à post-orogénique de l'Asie Centrale et la réactivation tectonique en domaine intracontinental sont exposées dans le chapitre 7, essentiellement basé sur les nouvelles données paléomagnétiques obtenues durant ce travail de thèse.

Le **chapitre 8** est consacré à la synthèse des résultats et à la présentation des mécanismes à l'origine du puzzle géologique de l'Asie Centrale. Le modèle géodynamique proposé intègre l'ensemble des données géologiques disponibles et soulève aussi les questions à examiner au cours de futures études. Enfin, ce travail représente une contribution majeure à la connaissance de la croîssance de la croîte continentale en Asie Centrale.

CHAPITRE I : LES CHAINES D'ACCRÉTION : DÉFINITIONS, TYPOLOGIE, EXEMPLES ET IMPLICATIONS POUR LA CROISSANCE CONTINENTALE

Le collage tectonique du nord de la Californie

Mécanismes de subduction

A Les chaînes d'accrétion

A.1 Définitions

Dans le schéma classique du cycle de Wilson (Wilson, 1966), la formation d'une chaîne de montagnes (orogénie ou orogenèse) est le produit de l'ouverture puis de la fermeture d'un océan. La fin du cycle orogénique est marquée par la collision de deux masses continentales, ce qui entraîne la création de relief à la limite de plaques. Ce schéma permet d'expliquer de manière simple l'origine des chaînes alpines ou himalayenne (Dewey, 1969; Sengör, 1990), mais pour de nombreux autres cas, ce modèle se révèle inadapté. En effet, la variabilité lithologique, tectonique, magmatique ou encore métamorphique de certaines chaînes (Japon, Cordillères Américaines, Asie Centrale) ne peut pas être le résultat d'une simple collision continentale. De nombreux modèles accompagnés d'une nomenclature parfois obscure ont été proposés : Pacific-type (Matsuda & Uyeda, 1971), puis Miyashirotype (Maruyama 1997) au Japon, West-Pacific type (Crook, 1974) puis Turkic-type (Sengör & Okurogullan, 1991; Sengör, 1993) en Asie Centrale, Cordilleran-type, Andean-type ou B-type subduction (Bally, 1975; Ernst, 2005) dans les Cordillères Américaines. Malgré cette apparente complexité, ces chaînes, qu'elles soient anciennes ou encore en formation, résultent de l'accrétion de matériaux d'origine diverse en contexte de subduction, et ainsi elles sont regroupées sous le terme de chaînes d'accrétion (accretionary orogen). Elles sont aussi appelées parfois chaînes de subduction.

La formation d'une chaîne d'accrétion se déroule en plusieurs étapes. L'initiation de l'orogénèse débute avec la mise en place d'une zone de subduction (transformation d'une marge passive en marge active, subduction intra-océanique au niveau d'une dorsale). La durée de fonctionnement de cette zone de subduction varie de quelques dizaines de millions d'années à plusieurs centaines de millions d'années (**Condie, 2007**). Au cours de cet intervalle de temps, une quantité importante de matériaux pourra être accrétée à la marge continentale active ou à l'arc insulaire. Les objets susceptibles d'être amalgamés sont des éléments de la lithosphère océanique (croûte océanique, manteau supérieur, plateau océanique et guyot), des fragments continentaux ou des arcs (**Cawood et al., 2009**). L'événement terminal orogénique correspond généralement à la collision entre deux continents ou cratons. Il existe cependant une confusion générale entre cet épisode terminal de collision, et la collision continentale au sens alpin ou himalayen. En effet, si les chaînes de collision résultent de la rencontre entre deux masses continentales, cette dernière peut aussi être précédée d'une

phase d'accrétion plus ou moins complexe. Les Appalaches, la chaîne Varisque ou encore les Calédonides sont considérées comme des chaînes de collision, mais de nombreux éléments suggèrent une évolution précoce, marquée par l'accrétion de microcontinents ou d'arcs insulaires (Keppie et al., 1996; van Staal, 1998; Murphy et al., 1999; Matte, 2001; Oliver, 2001 ; Faure et al., 2005). Même l'Himalaya, souvent considérée comme l'exemple type de la chaîne de collision a enregistré l'accrétion précoce de l'arc du Kohistan (Khan et al., 2009). De manière identique, de nombreuses chaînes d'accrétion (Asie centrale, Bouclier Arabo-Nubien, Cordillères Nord Américaines) montrent des évidences de collision (entre microcontinent et marge continentale ou entre microcontinents) au cours du processus d'accrétion (Charvet et al., 1985 ; 2007 ; Plafker et al., 1994 ; Badarch et al., 2002). Ces exemples soulèvent le problème de la terminologie des chaînes de montagnes, la frontière entre chaîne d'accrétion et chaîne de collision étant souvent mince. Par souci de clarté, les épisodes intermédiaires et terminaux de collision au cours de l'évolution d'une chaîne d'accrétion sont souvent appelés collage. Ce terme est particulièrement adapté à certaines orogénèses d'accrétion (Asie Centrale, Alaska, Tasmanides) dans la mesure où l'amalgamation finale des blocs continentaux n'engendre que peu d'épaississement crustal lors de la tectonique tangentielle ; il s'agit simplement d'une juxtaposition latérale de blocs, accommodée par des décrochements (Sengör et al., 1993).

A.2 Eléments constitutifs des chaînes d'accrétion

Les chaînes d'accrétion se forment au niveau des zones de subduction. La connaissance des processus d'accrétion et de la structure de ces chaînes découle principalement de l'étude des analogues modernes, principalement concentrés autour de l'Océan Pacifique. Si les chaînes modernes sont relativement étroites (par exemple la chaîne Andine), les anciennes chaînes d'accrétion peuvent apparaître relativement larges du fait des déformations syn- à post-accrétion. En plus des unités exotiques accrétées (microcontinents, arcs insulaires, plateaux océaniques), les chaînes d'accrétion comprennent les unités d'accrétion (paléo-prismes d'accrétion), les unités d'arc magmatique, ainsi que les reliques des bassins d'avant- et arrière-arc. La caractérisation de ces unités, dans les anciennes chaînes d'accrétion, est principalement basée sur la comparaison avec les processus observés dans les chaînes actuelles (*Fig. 1.A.1*).

Figure 1.A.1 Schéma simplifié d'une zone de subduction idéale. Les flèches noires illustrent les flux de matière dans l'asthénosphère. Les isothermes 500°C et 1000°C montrent une invagination caractéristique des zones de subduction. La déshydratation du panneau plongeant est à l'origine du magmatisme d'arc dans la plaque supérieur.

A.2.i Le prisme d'accrétion

L'élément principal d'une chaîne d'accrétion est le prisme d'accrétion ou complexe d'accrétion (*accretionary wedge, complex or prism*), qui marque la limite entre la plaque plongeante et la plaque supérieure (*Fig. 1.A.2*). A première vue, ce prisme peut être considéré comme un bourrelet orogénique formé de matériaux océaniques rabotés lors de la subduction (**Seely et al., 1974 ; Karig & Sharman, 1975**). Cette vision est cependant fausse, car la majeure partie du prisme est composée de sédiments d'origine continentale issus de l'érosion de la plaque supérieure. Ces sédiments détritiques, plus ou moins stratifiés montrent une grande variabilité granulométrique, mais les faciès dominants sont les turbidites. Puisque la plaque supérieure porte l'arc magmatique, la composition des turbidites est largement volcanoclastique. D'autres sédiments, issus des deltas sous-marins de grands fleuves peuvent aussi nourrir le prisme d'accrétion. L'Orénoque ou le Gange contribuent ainsi à la croissance des prismes de la Barbade ou de Sumatra (**Parra et al., 1997 ; Allen et al., 2008 ; Callec et al., 2010**). L'interface entre le prisme d'accrétion et la plaque plongeante est caractérisée par le chenal de subduction, dans lequel les éléments accrétés peuvent être recyclés dans le manteau (*Fig. 1.A.2*) ou sous-plaqués.

Les sédiments du prisme sont associés aux éléments arrachés à la lithosphère océanique entrée en subduction (Seely et al., 1974 ; Kimura & Ludden, 1995). Tous les composants d'une plaque océanique peuvent être incorporés de manière fragmentaire au sein du prisme (Moore & Silver, 1987) ou sous forme d'unités cohérentes (Kimura & Mukai, 1991 ; Matsuda & Isozaki, 1991) : le manteau supérieur représenté par les roches ultramafiques, la croûte océanique constituée de gabbros et de basaltes et la couverture océanique (sédiments hémipélagiques, chert *s.l.* et sédiments détritiques). Les caractéristiques géochimiques des roches mafiques incluses dans le prisme d'accrétion montrent que les ophiolites sont accompagnées de certains éléments du plancher océaniques, tels que les guyots ou les plateaux océaniques (Ballance et al., 1989 ; Cawood, 1990 ; Kimura et al.,

Figure 1.A.2 Coupe d'un prisme d'accrétion idéal (modifié d'après **Kusky et al., 1997b**). Ce schéma illustre les deux mécanismes d'accrétion de sédiments (accrétion frontale et sous-charriage) et le changement de régime de déformation au sein du prisme (compression *versus* extension). Les flèches en pointillés indiquent le trajet idéal d'une particule au cours du temps.

1994). La subduction de ce type d'objet а généralement des conséquences importantes sur l'allure du prisme, comme le montrent les analogues modernes (Oshima et al., 1985; Cadet et al., 1987; Lallemand et al., 1989; Dominguez et al., 1998). couverture carbonatée La recouvrant parfois les monts sous-marins pourra elle aussi être accrétée (Isozaki et al., 1990).

L'incorporation de fragments d'origine exotique conduit à la formation de mélange (*Fig. 1.A.2*). Un mélange peut être défini comme une association de roches dures (blocs) au sein d'une matrice schisteuse (**Greenly, 1919**; **Hsü, 1966**; **1968**; **1974**; **Silver & Beutner, 1980**). En fonction de la nature des blocs, de leur forme et du degré chaotique de la série, différents types de mélange (*mélange, olistostrome, tectonic mélange, ophiolitic mélange, broken formation, etc.*) ont été distingués (**Raymond, 1984**), selon une classification plus descriptive que génétique. Dans les prismes d'accrétion, les mélanges sont caractérisés par des blocs de gabbro, chert, basalte ou roches sédimentaires emballés dans une matrice sédimentaire ou serpentineuse. La structure d'un mélange résulte non seulement de l'accrétion de matériaux à l'état fragmentaire, mais elle est fortement influencée par le contraste de viscosité entre les blocs et la matrice et par le régime tectonique affectant le prisme. Le

développement des mélanges peut être associé au fluage de la matière (Cloos, 1982 ; 1984) au sein du prisme sous forme de protrusion (Lockwood, 1972 ; Casey & Dickinson, 1976 ; Saleeby, 1984), mais le rôle de la tectonique au sein du prisme ne doit pas être négligé. En effet, la structure originale planaire de la matrice argileuse ou serpentineuse permet de localiser facilement la déformation cisaillante. Les mélanges sédimentaires et ophiolitiques du prisme d'accrétion ne doivent pas être confondus avec les produits du détritisme ophiolitique (hyaloclastites, brèches, grès gabbroïques et ophicalcites), parfois observés dans les prismes d'accrétion (Faure, 1985). Ces brèches, marquées par l'association de clastes d'origine sédimentaire (chert, boues hémipélagiques) et ophiolitique (basaltes, gabbro, roches ultramafiques) au sein d'une matrice sédimentaire ou serpentineuse ont été formés préalablement à l'accrétion et témoignent de processus tectono-sédimentaires affectant le plancher océanique (Lagabrielle & Auzende, 1982 ; Lagabrielle et al., 1984).

L'accrétion de matériaux se fait soit de manière frontale, soit par sous-charriage à la base du prisme (Fig. 1.A.2; Byrne, 1986; Fisher & Byrne, 1987; Moore et al., 1991). L'hétérogénéité du prisme d'accrétion marquée par la coexistence de séries cohérentes de turbidites et de mélanges chaotiques est contrôlée par l'épaisseur de sédiments entrant dans la zone de subduction (Kusky et al., 1997b ; Kusky & Bradley, 1999). Si la pile sédimentaire est faible, la déformation sera localisée à l'interface de subduction et les matériaux sous plaqués (sédiments et ophiolites) seront incorporés à l'état fragmentaire. A l'opposé, si la plaque plongeante supporte une épaisseur conséquente de sédiments, la déformation sera plus diffuse, l'accrétion se fera par paquets et la structure sédimentaire des turbidites pourra être conservée. Les éléments tectoniques caractéristiques des prismes d'accrétion sont des chevauchements, à l'origine de duplex (Aoki et al., 1982 ; McCarthy & Scholl, 1985 ; Green et al., 1990), des chevauchements hors-séquence et des failles normales permettant l'exhumation des structures profondes (Platt, 1986). En effet, lorsque la plaque inférieure s'enfonce, la lithosphère océanique pourra être affectée par un métamorphisme de haute pression-basse température, marqué par des paragenèses du faciès Schistes Bleus ou Eclogite (Miyashiro, 1961; 1973). L'exhumation rapide par fluage tectoniquement assisté (Platt, 1986; Cloos & Shreve, 1988) permet la conservation des assemblages de haute pression, soit sous formes d'unités, soit sous forme de blocs dans un mélange.

L'accrétion de matériaux dans un prisme au front de la marge (*Fig. 1.A.3a*) n'est pas toujours réalisée (*Fig. 1.A.3b*). En effet, seulement 30% des marges actives exposent des complexes d'accrétion développés (**Scholl & von Huene, 2007**), car les sédiments sont

Figure 1.A.3 Schéma illustrant les deux types de marges (modifié d'après **Clift & Vannucchi, 2004**). a : marge active caractérisée par l'accrétion de sédiments et une structure compressive classique. b : marge active caractérisée par l'ablation de matériaux de la plaque supérieure. Les matériaux érodés tectoniquement sont enfouis via le chenal de subduction.

préférentiellement accrétés lorsque la vitesse de convergence est faible (**Clift & Vannucchi**, **2004**). Alternativement, lorsque le taux de subduction est élevé (> 6 cm/an), les matériaux de la plaque supérieure sont entraînés dans le chenal de subduction (*Fig. 1.A.3*; **Scholl et al.**, **1977**; **Hilde, 1983**; **von Huene & Scholl, 1991**; **Clift & Vannucchi, 2004**). L'ablation d'une partie du prisme (*subduction erosion*) et parfois du bassin d'avant-arc est marquée par une migration de l'arc, une tectonique en extension dans le prisme, une troncature des séries sédimentaires de la plaque supérieure et un sur-épaississement en base de prisme (von Huene & Lallemand, 1990). Si le phénomène d'ablation de la plaque supérieure est bien documenté en Amérique du Sud ou au nord-est du Japon (von Huene & Lallemand, 1990; Vannucchi et al., 2004), les mécanismes restent mal compris. Les sédiments sont généralement piégés dans des grabens formés lors du bombement de la lithosphère océanique juste avant son entrée dans la zone de subduction (*Fig. 1.A.3b*; **Hilde, 1983**). Lorsque le remplissage des

grabens n'est pas total, l'irrégularité de la surface plongeante peut entraîner une abrasion de la base du prisme (Hilde, 1983). De manière identique, certains éléments du prisme peuvent être arrachés puis transportés en profondeur lors de la subduction d'aspérités comme les rides asismiques (Clift et al., 2003 ; Vannucchi et al., 2003). Alternativement, la subduction de la lithosphère océanique entraîne une libération d'eau qui tend à migrer vers la surface ce qui provoque une fracturation hydraulique au sein du prisme (von Huene et al., 2004). Le matériel fragmenté est ensuite emporté dans le chenal de subduction jusqu'au réservoir mantellique. Les sédiments ainsi entraînés en profondeur contribuent partiellement au magmatisme d'arc comme l'indique le traceur isotopique béryllium-bore (Tera et al., 1986).

A.2.ii L'arc magmatique

L'activité magmatique se développe dans l'arc en réponse à la subduction d'une lithosphère océanique. Les transformations minéralogiques des phases hydratées lors du métamorphisme de haute pression accompagnant le plongement de la plaque entraînent une libération de fluides au sein du manteau asthénosphérique sus-jacent. La présence d'eau dans le coin mantellique de la plaque supérieure est à l'origine de la fusion partielle du manteau supérieur qui va générer le magmatisme d'arc (*Fig. 1.A.1*; **Tatsumi, 2005**). Ce magmatisme est représenté par la mise en place de plutons au sein de la croûte et de systèmes volcaniques en surface. Du fait de la richesse en eau des magmas d'arcs, des phases hydratées telles que l'amphibole pourront cristalliser. La présence de fluides dans le système est à l'origine du caractère explosif du volcanisme d'arc, marqué par d'épais dépôts pyroclastiques. Les magmas d'arc sont caractérisés par une composition chimique variable, depuis des tholéiites pauvres en potassium, des laves calco-alcalines, et jusqu'à des shoshonites (Morrison, 1980; Bailey, 1981 ; Pearce, 1982). Cette variabilité reflète les interactions entre le magma et son encaissant, et souvent elle témoigne de la maturité de la marge active (**Brown et al., 1984**).

Au cours du développement de la chaîne d'accrétion et selon la dynamique de la zone de subduction, l'arc magmatique est susceptible de migrer. Cette migration est à l'origine du métamorphisme de haute température observé dans certaines unités sédimentaires des chaînes d'accrétion (**Matsuda & Uyeda, 1971**). Dans de rares cas, les conditions thermiques sont suffisantes pour effacer les paragenèses antérieures (**Dirks et al., 1992** ; **1993**).

A.2.iii Les bassins en périphéries de l'arc

Le bassin d'avant-arc occupe la zone située entre l'arc et le prisme d'accrétion (**Seely** et al., 1974). Le développement et la géométrie de ce bassin, d'une larguer d'environ 100km,

sont intimement liés à la dynamique de la zone de subduction. Les bassins d'avant-arc peuvent se développer sur un substratum continental, mais aussi sur un arc magmatique ou un paléoprisme d'accrétion (Fig., 1.A.1; Dickinson & Seely, 1979). Dans le cas des arcs insulaires ou des chaînes d'accrétion extensives, qui seront développés dans la section A.3, une croûte océanique appelée supra-subduction ophiolite peut se former dans la région de l'avant-arc (Pearce et al., 1984b ; Shervais, 2001 ; Milsom, 2003). Généralement, la bathymétrie du bassin est relativement faible permettant la mise en place d'une plate-forme carbonatée, mais dans certains cas des turbidites ou des sédiments siliceux peuvent s'y déposer. Le remplissage du bassin est assuré par des apports continentaux, principalement issus de l'arc volcanique, au sein de deltas ou de cônes sous-marins (Dickinson & Seely, 1979; Kuenzi et al., 1979). La déformation du bassin d'avant-arc est contrôlée par la dynamique de la zone de subduction : 1) vitesse relative de la plaque supérieure par rapport à la plaque inférieure, 2) l'obliquité de la subduction, 3) le pendage du plan de Wadati-Benioff et 4) la géométrie de la zone de convergence (McCaffrey, 1992). Dans le cas d'une subduction oblique, si la fosse présente une forme concave vers l'océan, le bassin d'avant-arc sera soumis à une transpression généralisée. A l'opposé, si la forme de zone de convergence est convexe, des structures extensives pourront se développer au sein de la marge. Le bassin d'avant-arc peut aussi être le siège d'un magmatisme « anormal » lié à la subduction d'une dorsale (Thorkelson, 1996).

Le développement d'un bassin arrière-arc est aussi contrôlé par la dynamique de convergence. Si des bassins sédimentaires peuvent se développer directement sur le substratum de la marge active (arc, croûte continentale), le stade d'océanisation est relativement fréquent (*Fig. 1.A.1*). Quelle que soit la dynamique de la zone de subduction, la zone d'arrière arc est caractérisée par un important flux de chaleur (**Hyndman et al., 2005**) lié à la faible épaisseur de la lithosphère. Cette caractéristique permet la localisation de la déformation en domaine arrière-arc. Le remplissage du bassin d'arrière-arc est assuré conjointement par l'érosion des produits volcaniques de l'arc et par des dépôts terrigènes issus du continent voisin. Ces dépôts correspondent généralement à des turbidites plus riches en quartz que celles déposées dans le prisme d'accrétion (**Dickinson, 1985**). La composition du plancher océanique formé dans la zone d'arrière-arc est sensiblement différente de celles des croûtes océaniques classiques, avec un enrichissement en éléments compatibles corrélé à la subduction du panneau plongeant océanique (**Jenner et al., 1987**; **Smellie, 1994**). Contrairement aux bassins d'avant-arc, les bassins d'arrière-arc sont marqués par une

bathymétrie plus profonde, liée à l'installation d'une croûte basaltique. La sédimentation siliceuse est relativement courante. Elle alterne avec les dépôts turbiditiques mais aussi avec les dépôts aériens à subaériens liés au volcanisme, ce qui entraîne des interstratifications de séries volcanosédimentaires et de dépôts hémipélagiques.

A.3 Typologie des chaînes d'accrétion

Si les chaînes d'accrétion présentent les éléments caractéristiques précédemment décrits, l'agencement et le nombre de ces éléments (et par conséquent la structure de la chaîne) sont fortement variables. La classification descriptive (Condie, 2007) est basée sur deux facteurs : la durée d'accrétion et la durée de vie de l'unité accrétée. La durée d'accrétion est définie comme la différence d'âge entre les unités accrétées les plus vieilles et les unités accrétées les plus jeunes. Lorsque ce paramètre, généralement compris entre 50 et 300 Ma, augmente, l'accrétion au sein d'une même chaîne peut être diachrone, surtout lorsque cette chaîne présente une extension géographique importante (plusieurs milliers de kilomètres). La durée de vie d'une unité accrétée est calculée comme l'intervalle de temps entre les roches les plus jeunes et les roches les plus vieilles au sein d'une même unité. Ce paramètre est généralement corrélé à la nature de l'unité (les microcontinents présentent souvent une durée de vie plus importante que les arcs insulaires) et à la distance par rapport à la zone d'accrétion (les unités proches de la marge sont généralement accrétées avant les unités exotiques). Ces deux paramètres permettent de caractériser deux types de chaînes d'accrétion : les chaînes simples et les chaînes complexes. Les chaînes simples sont marquées par une accrétion rapide d'unités juvéniles et semblent avoir été le type dominant du Protérozoïque, même si elles sont aussi connues dans le Paléozoïque (Lachlan Orogen). Les chaînes dites complexes sont marquées par l'accrétion d'unités juvéniles et l'amalgamation de microcontinents ou d'unités exotiques. La complexité de la chaîne est accrue lorsque des décrochements entraînent le déplacement latéral des domaines accrétés. Les chaînes complexes semblent dominer au Phanérozoïque (Japon, Cordillères Américaines), mais dans de nombreuses chaînes les deux types semblent avoir coexister dans le temps et/ou dans l'espace (cas des Cordillères Nord-Américaines).

Bien que cette typologie descriptive présente des avantages, notamment pour quantifier la croissance continentale, la classification génétique est généralement plus utile pour caractériser les processus à l'origine de la formation de la chaîne. Le principal paramètre est la dynamique de la zone de subduction qui se caractérise par : 1) le mouvement relatif entre la plaque supérieure et la plaque inférieure et 2) la vitesse de retrait du panneau plongeant (*slab rollback*) (Royden et al., 1993a). Le retrait du panneau plongeant correspond à l'enfoncement du panneau dense de lithosphère océanique en subduction dans le manteau sous-jacent plus léger (Schellart et al., 2006). En s'appuyant sur la dynamique des zones de subduction actuelles (Uyeda & Kanamori, 1979; Lallemand et al., 2008), deux types de chaînes d'accrétion ont pu être distingués (Fig. 1.A.4; Royden, 1993b; Cawood et al., 2009). Les chaînes d'accrétion « extensives » (retreating accretionary orogens) (Royden, 1993b; Collins, 2002) sont caractérisées par une vitesse de retrait du panneau plongeant supérieure à l'avancée de la plaque chevauchante (Fig. 1.A.4). Cette dynamique entraîne une extension dans la plaque supérieure généralement en domaine d'arrière-arc (Smith & Landis, 1995), comme dans de nombreux bassins de l'Ouest Pacifique (Royden, 1993a ; Schellart & Lister, 2004). Dans les chaînes d'accrétion, si le processus de retrait du panneau plongeant est entretenu, de multiples bassins peuvent se superposer (Collins, 2002 ; Schellart et al., 2006 ; Foster et al., 2009). Lorsque la vitesse de la plaque chevauchante est égale ou supérieure au retrait du panneau plongeant, des chaînes d'accrétion « en compression » (advancing accretionary orogens) peuvent se développer (Fig. 1.A.4; Lallemand et al., 2005). Ces chaînes sont marquées par une compression généralisée de la plaque supérieure et par le développement d'une chaîne plissée en domaine d'arrière-arc (Jordan, 1995). Ces phénomènes sont observés dans la chaîne andine (Oncken et al., 2006), où le raccourcissement est tel que la lithosphère du craton amazonien est chevauchée par la croûte andine (Beck et al., 1996 ; McQuarrie et al., 2005). L'avancée de la plaque supérieure en direction de l'océan entraîne le chevauchement du prisme par la marge active, ce qui favorise

l'ablation des sédiments préalablement accrétés (Scholl & von Huene, 2009). Dans une même chaîne d'accrétion, les épisodes de compression et d'extension peuvent alterner au cours du temps (Lister et al., 2001 ; Collins, 2002). Un couplage entre ces événements est aussi envisagé : l'accrétion d'unité contre la marge active génère une compression dans la plaque supérieure, mais entraîne aussi une migration de la zone de subduction vers l'océan. Si le panneau plongeant est suffisamment

Figure 1.A.4 Types de chaîne d'accrétion (modifié d'après **Cawood & Buchan, 2007**). La vitesse de retrait du panneau plongeant est le facteur dominant le développement de l'un ou l'autre type.

dense pour se retirer, la plaque supérieure subira une extension localisée en domaine d'arrière-arc, jusqu'à ce qu'une nouvelle unité vienne s'amalgamer et bloquer la subduction *(subduction jamming)*. On parle alors de cycle *pull-push* quand le mode compressif remplace le mode extensif et de cycle *push-pull* lorsque le mode compressif fait place à un mode extensif (Lister & Forster, 2006).

Les interactions entre plaque supérieure et plaque inférieure peuvent conduire à deux types de régime (von Huene & Scholl, 1991) : l'accrétion dans le prisme et l'ablation du prisme (voire de la marge). En combinant la dynamique de la plaque supérieure et les interactions entre cette plaque supérieure et le panneau plongeant, il est possible de définir quatre environnements de marges actives (de Franco et al., 2008): 1) accrétion dans le prisme + compression d'arrière-arc (cas de l'Alaska), 2) ablation du prisme + extension d'arrière arc (Amérique Centrale et Mariannes), 3) accrétion dans le prisme + extension d'arrière arc (Mer Egée) et 4) ablation du prisme + compression d'arrière-arc (cas du Pérou). Ces quatre types de marges contrôlent la structure de la future chaîne d'accrétion. Au cours de l'orogénèse, ils peuvent se succéder spatialement et/ou temporellement en fonction des caractéristiques de vitesse et de volume des deux plaques convergentes. Cela revient à dire que le développement de la future chaîne d'accrétion est largement contrôlé à l'interface entre les deux plaques, c'est à dire au niveau du chenal de subduction (Shreve & Cloos, 1986; Beaumont et al., 1999). En effet, selon les caractéristiques du panneau plongeant (épaisseur, vitesse), la géométrie et la dynamique de ce chenal de subduction vont influencer le comportement de la plaque supérieure (de Franco et al., 2008) et ainsi la structuration de la future chaîne d'accrétion.

A.4 De la marge à la chaîne d'accrétion

La transformation d'une marge active en une chaîne d'accrétion (*cratonization*) se déroule de manière continue au cours de la convergence des plaques. Plusieurs mécanismes sont évoqués pour rendre compte de la création de croûte continentale stable (**Cawood & Buchan, 2007**) : la subduction plate, l'accrétion d'unités et la réorganisation à grande échelle (*Fig. 1.A.5*).

De nombreuses marges actives montrent des évidences d'une subduction à faible pendage, quasi plate (**Ramos et al., 2002**). La capacité d'une lithosphère à flotter sur l'asthénosphère sous-jacente (*buoyancy*) reflète une faible densité souvent corrélée à son jeune âge (**Murphy et al., 2003**). Les subductions à faible pendage contribuent à l'orogenèse

de plusieurs manières. Premièrement, elles se manifestent par un épaississement local de la lithosphère de la plaque supérieure qui entraîne une déformation crustale importante (**Gutscher et al., 2000**). Ensuite, la subduction plate d'objets tel que les plateaux océaniques

Figure 1.A.5 Schémas illustrant les trois modes d'accrétion (modifié d'après **Cawood et al., 2009**).

entraîne un blocage de la zone de subduction et généralement une déformation compressive dans la croûte de la plaque supérieure. La faible densité du panneau plongeant peut découler de la présence dune anomalie thermique (Bradley et al., 2003). La fréquemment subduction dorsale de est évoquée; caractérise elle se par un magmatisme de type adakitique (Samianego et al., 2002) qui remplace le magmatisme d'arc. En effet, ce dernier ne peut s'exprimer car le panneau plongeant se localise dans le coin de manteau susceptible de fondre partiellement (Fig. 1.A.5). Dans certains cas l'addition de magma issu de cette dorsale est à l'origine du métamorphisme de haute température observé dans certaines unités accrétées (Brown, 2006).

Lorsque la lithosphère est dense, le pendage de la subduction devient plus fort. Le panneau plongeant est entraîné en profondeur, mais lorsque certains domaines sont anormalement épais (plateaux océaniques, guyots, microcontinents), la subduction est bloquée (*Fig. 1.A.5*). Lorsqu'il s'agit d'un microcontinent ou d'un arc mature épais, une collision continentale, voire une subduction continentale, peut s'installer ; c'est le cas dans la chaîne Varisque (**Faure et al., 2005**), dans les Appalaches (**Keppie et al., 1996**) ou même dans le Tianshan (**Charvet et al., 2007**). Dans d'autres cas, seule une partie de l'unité est amalgamée à la marge, et l'impact tectonique et métamorphique dans la plaque supérieure est très faible. En effet, la structure des Cordillères Nord-Américaines est marquée par des unités majoritairement superficielles sans aucune trace de racine crustale profonde (**Clowes et al., 2005**; **Snyder et al., 2009**). En contexte convergent continu, le blocage de la zone de subduction entraîne l'établissement d'une nouvelle zone de subduction (*stepping out*) avec

du front magmatique est modifiée avec une migration de l'arc. Un autre point important du processus d'accrétion d'unités est le devenir de la lithosphère océanique entrée en subduction. En effet, lorsqu'un domaine épais de la lithosphère bloque la subduction, il y a compétition entre les forces de collision en surface et la force de traction vers le manteau du panneau plongeant. Une rupture de ce panneau plongeant (*slab break-off*) est alors observé, accompagné d'une remontée d'asthénosphère. L'anomalie thermique qui en découle génère un métamorphisme de haute température dans les unités accrétées.

Le réajustement à l'échelle globale ou régionale est aussi évoqué comme une cause potentielle de la formation des chaînes d'accrétion (*Fig. 1.A.5*; **Coblentz & Richardson**, **1996**; **Cawood & Buchan**, **2007**). Le réajustement tectonique se définit comme la variation de la direction de convergence des plaques en réponse à une collision continentale ou à un changement d'activité d'une dorsale. Les nombreuses chaînes d'accrétion péri-Pacifiques sont parfois interprétées comme le résultat de l'augmentation de l'activité des dorsales océaniques au cours du Crétacé (**Sutherland & Hollis, 2001**; **Vaughan & Livermore, 2005**). Le réajustement des plaques tectoniques est aussi à l'origine de la variation de la géométrie de la marge ce qui entraîne des subductions (et accrétions) obliques et des déplacements latéraux d'unités (**Beck, 1983**). La variation des directions de convergence peut aussi influencer l'environnement dynamique de la marge (compressif ou extensif) et ainsi modifier la structuration de la future chaîne d'accrétion. Le processus de réajustement des plaques n'est pas limité à une seule et unique orogénèse et sa mise évidence ne peut se faire que grâce à des corrélations à grande échelle (**Cawood & Buchan, 2007**).
B Quelques exemples de chaîne d'accrétion à travers le temps et l'espace

Les chaînes d'accrétion se sont développées à toutes les époques de l'histoire de la Terre, dès que la tectonique des plaques a été le processus géodynamique dominant (**Condie**, **2007**; **Cawood et al., 2009**). Si les chaînes péri-Pacifiques constituent des archétypes modernes (*Fig. 1.B.1*), de nombreux exemples sont décrit dans le Protérozoïque (**Condie**, **1992**; **Windley, 1992**; **Sengör et al., 1993**; **Johnson & Woldehaimanot, 2003**; **Kröner et al., 2007**; **Lahtinen et al., 2009**) ou dans l'Archéen (**Kusky & Polat, 1999**; **Wyman et al., 1999**; **Polat et al., 2009**). Certains auteurs considèrent que le développement des chaînes d'accrétion est intimement lié au cycle des supercontinents et à l'activité de panaches mantelliques (**Dalziel et al., 2000**; **Rino et al., 2008**; **Murphy et al., 2009**), bien qu'aucune corrélation temporelle simple ne soit observée (**Condie, 2007**).

Figure 1.B.1 Carte de l'Océan Pacifique, montrant les nombreuses chaînes d'accrétion qui se sont développées depuis le Paléozoïque (modifié d'après **Schermer et al., 1984**). Cette carte montre également les futures unités accrétées (arc insulaires, rides asismiques, guyots).

Au travers d'exemples choisis parmi des chaînes d'accrétion péri-Pacifiques (*Fig. 1.B.1*) modernes et anciennes, nous tenterons d'illustrer leurs caractéristiques et de mettre en évidence les processus à l'origine de leur évolution parfois complexe.

B.1 Les cordillères nord-américaines

Les cordillères nord-américaines, qui s'étendent depuis l'Alaska jusqu'en Amérique Centrale font partie des chaînes d'accrétion les mieux étudiées au monde. Depuis le Mésozoïque, des matériaux d'origine diverse ont été accrétés à la marge nord-américaine sur une largeur d'environ 500 kilomètres, si bien que les cordillères nord-américaines représentent actuellement près d'un tiers de la superficie du continent nord-américain.

L'étude des cordillères est basée sur l'identification de « *terranes* » (*Fig. 1.B.2*; **Irwin, 1972**; **Coney et al., 1980**; **Howell, 1989**). Un « *terrane* » correspond à une unité géologique limitée tectoniquement. Chaque « *terrane* » a enregistré une histoire géologique particulière, différente de celle du « *terrane* » voisin. La nomenclature des « *terranes* » est basée sur leur nature et leur âge (**Vaughan et al., 2005**). On distingue ainsi :

 les « *terranes* » de turbidites qui sont formées dans le prisme d'accrétion, ou dans les bassins bordant l'arc volcanique (avant-arc, intra-arc et arrière arc). Ces « *terranes* » présentent une imbrication liée au développement d'une tectonique tangentielle (chevauchement basal et hors séquence).

 \cdot les « *terranes* » de mélange sédimentaire et tectonique qui sont caractérisée par une matrice sédimentaire ou serpentineuse portant des blocs d'origine locale ou exotique. Généralement, ces « *terranes* » ont enregistré une déformation intense caractérisée par le développement d'une schistosité ; ils peuvent parfois représenter la zone de suture entre deux « *terranes* » ou entre un « *terrane »* et une marge continentale.

 les « *terranes* » magmatiques qui sont constituées de roches magmatiques formées dans divers contextes (arc magmatique, bassin d'arrière, croûte océanique, plateau océanique ou guyots).

• les « *terranes* » sédimentaires non turbiditiques qui représentent une sédimentation de plateforme ou continentale.

les « *terranes* » composites qui résultent du collage de deux « *terranes* » avant l'accrétion à la marge continentale : on parle alors de « *superterrane* ».

L'origine des « *terranes* » permet aussi de les caractériser. Si certains « *terranes* » sont quasi-autochtones par rapport à la zone où ils seront ultérieurement accrétés, d'autres « *terranes* » peuvent présenter une origine allochtone ou exotique (*Fig. 1.B.2*). Le déplacement des « *terranes* » peut se faire avant l'accrétion suite au mouvement des plaques vers la zone de subduction, mais aussi après l'amalgamation à la marge, par le biais de décrochements, qui permettent le déplacement des unités sur plusieurs centaines de kilomètres. Enfin, lorsque l'origine et la paléogéographie du « *terrane* » sont inconnues ou douteuses, on parle de « *suspect terrane* » (*Fig. 1.B.2* ; **Coney et al., 1980**).

Figure 1.B.2 Carte des *terranes* du nord-ouest de l'Amérique du Nord (modifié d'après **Coney et al., 1980**). A l'origine cette carte désignait tous les *suspect terranes*, c'est à dire les *terranes* dont l'origine exacte était incertaine. Depuis, le puzzle des terranes d'Amérique du Nord a été simplifié et seules quelques *terranes* (Alexandria, Wrangellia) sont encore considérés comme *suspect* ou *exotic*.

Bien que cette nomenclature de « *terrane* », essentiellement anglo-saxonne, n'apporte que peu d'avantage par rapport à la définition classique d'unité tectonostratographique, elle est essentielle, dans un souci de clarté et d'uniformité, à la compréhension des cordillères américaines. De part son immensité, le collage orogénique nord américain présente une importante variabilité. Trois segments (Alaska, cordillères canadiennes, Californie) sont ici présentés afin d'illustrer la variabilité typologique des chaînes d'accrétion et les divers processus affectant ces chaînes.

B.1.i Structures des chaînes d'accrétion : exemple des cordillères canadiennes

Deux cycles d'accrétion majeure ont permis la croissance continentale du bouclier canadien consolidé pendant le Protérozoïque (Price, 1994). Au Jurassique moyen, l'accrétion de « l'Intramontane Superterrane » a provoqué une tectonique pelliculaire et tangentielle vers l'est ainsi que le développement d'une chaîne plissée d'avant pays (Fold-and-thrust Belt). Cependant, dans les zones les plus internes, la déformation et le métamorphisme ont été plus intenses et ont permis le développement de la chaîne d'Omenica qui représente grossièrement la suture entre « l'Intramontane Superterrane » et la marge Nord-Américaine. Pendant la fin du Jurassique et le Crétacé, la subduction de la plaque pacifique sous la marge continentale a engendré le complexe plutonique de la « Coast Belt » (Gabrielse, 1991). Durant cette période, le transfert de larges volumes de magma depuis le réservoir mantellique vers la surface a entraîné une importante croissance de la croûte continentale nord Américaine. Au Crétacé terminal, « l'Insular Superterrane » (Alexander and Wrangellia « terranes ») d'origine exotique a été accrété à la marge nord-américaine (Armstrong, 1988). Le « Wrangellia Terrane » est un arc insulaire d'âge Paléozoïque supérieur recouvert par des dépôts triasiques. Si l'origine ouest-Pacifique du « Wrangellia Terrane » est encore débattue, il est généralement admis que cette unité a traversé le Pacifique pour venir s'amalgamer à la marge nord-américaine avant d'être démembré et dispersé (comme les autres terranes) latéralement par les décrochements tertiaires (Fig. 1.B.2 ; failles de Fraser et de Tintina).

Dans la partie nord de la cordillère (*Fig. 1.B.3a*), il n'existe actuellement pas d'évidences de subduction active et la limite entre la plaque Pacifique et le continent nord-Américaine est essentiellement décrochante (Faille de la Reine Charlotte-Fairweather). Dans le partie sud, la subduction de la plaque Juan de Fuca sous la marge nord-américaine entraîne la formation d'un prisme d'accrétion et d'un bassin d'avant-arc qui remobilisent partiellement « l'*Insular Superterrane* ». La magmatisme d'arc Cénozoïque et actuel de la « *Coast Belt* » se surimpose à celui d'âge Mésozoïque.

Figure 1.B.3 Coupes de la cordillère canadienne (modifié d'après **Hammer & Clowes, 2007**). L'interprétation géologique est basée sur le calcul de la vitesse des ondes dans la lithosphère et sur les données de sismique réflexion. La partie nord (a) montre que la plupart des *terranes* ne présentent pas de racines crustales profondes. La partie sud (b) illustre la subduction actuelle de la plaque Juan de Fuca qui entraîne des modifications tectono-métamorphiques dans la plaque supérieur et par conséquent affecte les *terranes* déjà accrétés.

La structure des cordillères canadiennes a pu être mise en évidence grâce à la combinaison d'études géologiques et géophysiques (sismique réflexion profonde et réfraction). Ces travaux (**Hammer et al., 2000**; **Clowes et al., 2005**) ont notamment montré que les « *terranes* » accrétés étaient relativement peu épais (environ 10 kilomètres) et que la lithosphère sous-jacente est beaucoup moins épaisse qu'au niveau du craton continental canadien (*Fig. 1.B.3a*). Bien que le Moho reste relativement plat, il existe des variations abruptes correspondant aux limites de terranes et aux décrochements lithosphériques. L'imagerie géophysique a aussi montré que les structures majeures liées à l'accrétion et les contrastes lithologiques entre les « *terranes* » étaient préservées au cours du temps. A l'opposé, il existe des contrastes d'épaisseur crustale lorsque la subduction est encore active. En effet, la partie occidentale de la marge sud-canadienne est épaissie au niveau du prisme et amincie en arrière de l'arc probablement à cause de la délamination ou de l'érosion tectonique (*Fig. 1.B.3b*).

B.1.ii Paléosubduction de ride : évidences depuis la Californie jusqu'en Alaska

Une particularité des cordillères nord-américaines est la trace d'une subduction de ride. Cette ride, qui constituait la limite entre les plaques Farallon et Kula, aujourd'hui disparues, est entrée en subduction sous la marge nord-américaine au Crétacé (**Engebretson et al., 1985**). Puisque l'axe de la ride était vraisemblablement oblique par rapport à la marge, le point triple a migré vers le nord pour atteindre l'Alaska au cours du Tertiaire (**Marshak & Karig, 1977**; **Bradley et al., 2003**). Par la suite, d'autres subductions de dorsales ont été

enregistrées le long de la marge nord-américaine, suite au morcellement des plaques Farallon et Pacifique. La subduction d'une ride peut engendrer un découplage au niveau de la limite de plaques entre les deux lithosphères en subduction (*Figure 1.B.4*; **Thorkelson, 1996**). Cette distension crée une fenêtre asthénosphérique (*slab window*) et une remontée de magma (**Dickinson & Snyder, 1979**). Cet upwelling asthénosphérique peut engendrer du magmatisme alcalin à l'aplomb de la fenêtre et du magmatisme dans le bassin d'avant-arc (*Figure 1.B.4*; **Marshak & Karig, 1977**). Il peut également faciliter la fusion de la lithosphère du panneau plongeant et produire des magmas de type adakitique (*Figure 1.B.4*; **Kay et al., 1993**). Le flux thermique important généré par le magmatisme entraîne un adoucissement des contraintes et peut faciliter la déformation dans la plaque supérieure. Comme la subduction de la ride est généralement oblique par rapport à la marge, cette marge, et plus particulièrement l'arc, l'avant-arc et le prisme d'accrétion, sont affectés par une tectonique décrochante (**McCaffrey, 1992**).

Figure 1.B.4 Bloc diagramme idéal d'une subduction de dorsales (modifié d'après **Thorkelson, 1996**). Ce schéma illustre la subduction de la ride Kula-Farallon qui a affecté la marge nord-américaine durant le Crétacé et le Tertaire.

B.1.iii Déformation et exhumation du complexe d'accrétion : le cas du complexe franciscain

Le complexe franciscain occupe la partie centrale de côte Pacifique des Etats-Unis (*Figure 1.B.5*). Il comprend principalement des roches clastiques, déposées à l'origine dans la fosse, et actuellement associées à des lambeaux de roches volcaniques dont certains correspondent à des fragments de guyots accrétés (**Blake, 1984**). Le complexe franciscain se

divise en trois parties, séparées par des chevauchements vers l'ouest (*Figure 1.B.5*). La partie occidentale d'âge tertiaire est caractérisée par des roches de faible degré de métamorphisme

Figure 1.B.5 Carte des unités tectono-stratigraphiques mésozoïques et cénozoïques du nord-Ouest de la Californie indiquant la localisation du complexe franciscain, de la chaîne côtière et du bassin d'avant arc de la vallée centrale (modifié d'après, **Ring**, **2008**). Côtière (*Coast Range Fault Zone*). Les déplacements principaux le long de cet accident lithosphérique

(Blake et al., 1988). La partie centrale, d'âge jurassique supérieur à crétacé supérieur, est marquée par un mélange à matrice sédimentaire contenant des blocs de grauwacke, de roches vertes, de schistes bleus, de chert et d'éclogites (Blake et al., 1988; Wakabayashi, 1990). La partie orientale est formée par deux unités accrétées, présentant une histoire métamorphisme Le « Yolla différente. Bolly Terrane » a enregistré son pic de métamorphisme au milieu du Crétacé, alors qu'il est d'âge Jurassique supérieur à Crétacé inférieur dans le « Pickett Peak Terrane » (*Figure 1.B.5*). Le complexe franciscain est bordé à l'est par la faille de la Chaîne Côtière (Coast Range Fault Zone). long de cet accident lithosphérique

sont d'âge Crétacé supérieur à Eocène (**Suppe, 1978**). Les études sédimentologiques, ainsi que les traces de fission multi-minérales ont permis de démontrer que cette faille accommodait une exhumation différentielle du complexe franciscain (**Dickinson et al., 1982**; **Unruh et al., 2007**), même si la géométrie a été perturbée par le jeu récent de la faille de San Andréas. L'accident de la Chaîne Côtière met en contact le complexe franciscain et le bassin d'avant-arc de la vallée Centrale (*Great Valley Fore-arc Basin*) (*Figure 1.B.5*). La base de ce bassin, qui forme un épais synclinorium dyssimétrique, est constituée par des ophiolites jurassiques parfois serpentinitées. Les premiers dépôts datent du Jurassique supérieur et sont recouverts par les sédiments du Crétacé, avec une discordance mineure à la base du Crétacé

supérieur (**Dickinson, 1971**; **Ingersoll, 1979**). Le remplissage du bassin est scellé par la discordance majeure de l'Eocène sur le Créatacé-paléocène.

La présence de roches de haute pression (éclogites et schistes bleus) juxtaposées au sédiments du bassin d'avant-arc est depuis longtemps une question qui intrigue la communauté géologique (**Wakabayashi & Unruh, 1995**). Plusieurs modèles ont ainsi été proposés pour expliquer l'exhumation des parties profondes du complexe franciscain, ainsi que sa déformation (*Figure 1.B.6*). Le modèle du corner flow (**Cloos, 1982**) propose que l'exhumation des roches de haute pression soit contrôlée par les contrastes de viscosité entre

Figure 1.B.6 Modes de déformation du prisme d'accrétion à l'origine de l'exhumation des roches de haute pression (exemple du complexe franciscain). A : le modèle du *corner flow* (Cloos, 1982) met en avant le fluage de la matière dans le prisme. b : le modèle proposé par Platt (1986) favorise l'extension dans la partie superficielle et non-frontale du prisme. C : modèle d'érosion (Willett et al., 1993) suggère que l'érosion joue un rôle important dans l'exhumation des parties profondes du prisme.

les différents matériaux accrétés (Figure 1.B.6a). Ce postulat est principalement basé sur la présence de mélange à blocs dans le prisme d'accrétion, où le contraste de viscosité entre la (sédimentaire matrice 011 serpentineuse) blocs et les (mafiques, ultramafiques ou siliceux) se traduit par un fluage de la matière. De ce modèle découle l'hypothèse du chenal de subduction (channel flow), zone étroite du coin orogénique le long de laquelle se localise l'exhumation. Ce modèle n'est cependant applicable que dans le d'unités de mélange à cas matrice serpentineuse (Cloos, 1982). Le modèle d'effondrement du prisme d'accrétion (Platt, 1986 ; 1993a) est principalement basé sur la géométrique de la zone de convergence et notamment sur la présence d'un buttoir rigide (*stagnant region* ou *buttress*). Puisqu'une partie de la lithosphère plongeante est accrétée par sous placage à la base du prisme, le flux de matière entrant génère une convection (*solution mass transport*) à l'intérieur du prisme (*Figure 1.B.6b*). En fonction de la géométrie du buttoir, il peut exister des différences de vitesse relative, ce qui entraîne de l'extension dans une partie du prisme. Le développement de systèmes conjugués de failles normales permet ainsi l'exhumation des parties profondes du prisme. Bien que ce modèle soit couramment accepté, le volume du prisme est considéré comme constant, alors qu'il existe des évidences de variations de volume, notamment à cause de l'érosion. L'érosion est le processus dominant de l'exhumation des roches profondes (**Ring, 2008**). L'érosion est d'autant plus active, qu'un haut topographique (bassin d'avant-arc montagneux) est formé (*Figure 1.B.6c*; **Willett et al., 1993**). Les variations de la topographie sont liées 1) à l'accrétion de matériaux en base de prisme et 2) à la tectonique extensive découlant de la convection interne.

B.1.iv Accrétion et croissance continentale épisodique : exemple de l'Alaska

Le nord-ouest de l'Amérique du Nord (Alaska, Yukon) résulte d'une accrétion quasicontinue d'unités pendant le Phanérozoïque (Figure 1.B.7). Si certaines sont franchement exotiques, de nombreux « terranes » sont situés à proximité de la marge nord-américaine. Ils appartiennent au « terrane » composite SAYBIA qui s'étendait vraisemblablement de l'Alaska au Mexique (Johnston, 2001). Ce ruban continental, formé lors d'une histoire précoce Paléozoïque à Mésozoïque commence à migrer vers le Nord-est (Engebretson et al., **1985**) et entre en collision avec le contient nord-américain au cours du Crétacé supérieur. Cette collision est oblique et, à cause de l'hétérogénéité du SAYBIA, entraîne la formation de deux virgations en Alaska (Figure 1.B.8; Johnston, 2001). La collision terminale tertiaire dans l'ouest du Canada est marquée par une importante composante décrochante dextre qui accommode la migration vers le nord des unités accrétées (Cowan, 1982 ; Johnston et al., **1996**). Pendant le Paléozoïque, d'autres « *terranes* », plus exotiques comme « Wrangelia » et « Alexander » se sont formés en domaine intra-océanique. A la fin du Trias, l'amalgame de ces deux terranes avec l'arc insulaire de « Peninsular Terrane » entraîne la formation du « Wrangellia (Insular) Superterrane » (Figure 1.B.7; Plafker et al., 1994). Ce dernier situé à l'interface entre les plaques Farallon (aujourd'hui disparue) et Pacifique est déjà affecté par la zone de subduction de la plaque Pacifique à l'origine de la formation d'un complexe d'accrétion Triassique à Crétacé supérieur (« Chugach Terrane »). Les matériaux accumulés découlent de l'érosion du « Wrangellia Superterrane » et de l'accrétion de fragments

Figure 1.B.7 Carte des *terranes* d'Alaska su sud, montrant le rajeunissement progressif des *terranes* en direction de la subduction actuelle, à l'exception des *terranes* exotiques comme Wrangellia (modifié d'après **Plafker et al., 1994**).

océaniques. Le « *Chugach Terrane* » est divisé en deux parties. La partie interne, appelée *McHugh Complex* » (« Uyak Complex » dans l'île de Kodiak) est formée par un mélange à blocs (sédimentaire et magmatiques) emballés dans une matrice sédimentaire et métamorphisé jusque dans le faciès schiste bleu (**Clark, 1973**; **Connelly, 1978**; **Bradley et al., 1999**). La partie externe (« *Valdez Group* ») comprend des turbidites du Crétacé supérieur métamorphisées (**Plafker et al., 1994**; **Kochelek et al., 2011**). Durant le Mésozoïque, les dépôts d'érosion du « *Wrangellia Superterrane* » se sont aussi déposés en arrière de la zone de subduction dans ce qui deviendra le « *Kahiltna Terrane* » (*Figure 1.B.7*). La collision diachrone entre le « *Wrangellia Superterrane* » et la marge nord-Américaine débute au Crétacé inférieur dans l'actuel Oregon et devient généralisée en Alaska vers la fin du Crétacé

Figure 1.B.8 Carte schématique illustrant la paléogéographie de l'Alaska et du Yukon entre le Crétacé supérieur et le Tertiaire (Modifié d'après **Johnston, 2001**). La migration vers le nord du *superterrane* SYBIA s'accompagne d'une butée contre les *terranes* arctiques paléozoïques à l'origine de la double virgation de l'Alaska.

(Trop & Ridgway, 2007). En plus du métamorphisme et de la déformation développée lors cette collision oblique, des décrochements morcèleront le «Wrangellia Superterrane», pour lui donner son aspect fragmentaire actuel (Figure 1.B.2). La subduction de la Pacifique plaque sous le continent nord-américain se poursuit au cours du Tertiaire, avec la formation du complexe d'accrétion Paléocène-Eocène de « Prince William Terrane »

(Cowan, 2003). Ce dernier comprend des séries de turbidites associées à des fragments océaniques (Moore, 1973; Bradley et al., 2003). Le « Yakutat terrane » est un plateau océanique éocène recouvert de sédiments continentaux accrétés durant l'Oligocène (Perry et al., 2009). Depuis le Néogène, et jusqu'à aujourd'hui, la subduction se poursuit au niveau de la fosse des Aléoutiennes, entraînant du magmatisme d'arc au niveau des « terranes » mésozoïques accrétés (*Figure 1.B.7*). Les produits d'érosion s'accumulent dans le bassin d'avant-arc du Golfe de Cook. Si la subduction est pratiquement frontale au niveau de l'Alaska, elle devient progressivement oblique, puis est remplacée par des décrochements de direction nord-sud et de cinématique dextre.

Cette immense chaîne d'accrétion a enregistré les témoins d'une croissance épisodique marquée par des alternances de phases d'accrétion dans le prisme et d'épisodes d'érosion tectonique. Actuellement, le prisme d'accrétion sous marin croît par accrétion frontale de matériau combiné aux apports depuis le continent (**Moore et al., 1991**). Si la subduction a été quasi continue depuis le Paléozoïque, les enregistrements sédimentaires et tectoniques dans les « *terranes* » de Chugach, Prince William et Yakutat montrent des évidences de phases d'érosion intercalées entre les périodes d'accrétion et de croissance frontale du prisme. Dans le groupe de Valdez du « *Chugach Terrane* » et dans le « *Prince William Terrane* », l'accrétion semble être le mécanisme dominant de la subduction entre 80 Ma et 40 Ma, bien

que dans le détail l'accrétion apparaît comme épisodique au Crétacé supérieur (**Byrne & Fisher, 1987**). Sur la base des spectres d'âge des zircons détritiques, deux autres périodes d'érosion au sein du complexe de McHugh (« *Chugach Terrane* ») ont pu être mis en évidence : 1) au cours du Crétacé supérieur et 2) durant le Crétacé inférieur (**Amato & Pavlis, 2010**). Enfin, un épisode d'érosion d'âge jurassique inférieur est avancé à partir des caractéristiques du magmatisme d'arc jurassique (**Clift et al., 2005**). Cette alternance de période d'accrétion et d'érosion au cours de la subduction témoigne de l'instabilité chronique de la marge nord américaine. Les transitions entre les différents régimes de subduction traduisent des variations du flux de sédiments au niveau de la fosse, conséquences directes de la collision de microcontinents, de ride ou de plateaux océaniques.

B.2 Les Tasmanides

Les Tasmanides représentent une partie du système orogénique des Australides s'étendant de l'Amérique du sud à l'Océanie en passant par l'Antartique (**Cawood & Leitch**, **2002**; **Cawood**, **2005**). Les Australides ont été formées du Néoprotérozoïque au Mésozoïque sur la bordure du Gondwana, avant sa destruction au Mésozoïque (**Vaughan et al., 2005**).

Les Tasmanides constituent un ensemble linéaire de chaînes d'accrétion d'âge paléozoïque, s'étendant depuis la Nouvelle Guinée jusqu'en Tasmanie en couvrant toute la partie orientale de l'Australie (**Glen**, **2005**). D'ouest en est, l'âge de ces chaînes d'accrétion australiennes diminue (*Fig. 1.B.9*). La chaîne de Thomson («*Thomson Orogen*») est partiellement recouverte par les sédiments mésozoïques du basin crétacé d'Eromanga. Ce segment orogénique, autrefois rattaché à la chaîne de Lachlan, présente des indices de déformation cambrienne, ce qui pourrait en faire un équivalent de la chaîne Delamerienne (*Draper, 2005*; **Glen, 2005**). La chaîne Delamerienne («*Delamerian Orogen*») résulte de l'accrétion, au Cambrien supérieur, d'un arc insulaire et de son basin d'avant-arc contre la

marge continentale Australienne (**Glen, 2005**). L'épisode final de déformation est daté à la limite entre le Cambrien et l'Ordovicien (**Haines & Flöttmann, 1998**; **Foden et al., 2006**).

La chaîne de Lachlan (« *Lachlan Fold Belt* ») consiste en un vaste ensemble plissé de terrains paléozoïques, reposant sur un substratum à croûte océanique (**Foster & Gray, 2007**). Ces terrains paléozoïques correspondent à des turbidites cambro-ordoviciennes, associées à des séries volcaniques et volcano-sédimentaires ordoviciennes, des turbidites d'âge silurien à carbonifère inférieur et des intrusions siluro-dévoniennes. Puisque les principales unités reconnues sont d'affinité magmatique, la formation de cette chaîne et la croissance continentale en Australie résultent principalement du transfert de matière entre le réservoir mantellique et la croûte. Ce modèle génétique s'oppose à l'accrétion d'unités exotiques proposée pour rendre compte de l'expansion latérale des cordillères nord-Américaines. Afin d'expliquer ces associations lithologiques et le développement vertical et frontal de la chaîne plissée de Lachlan, des épisodes successifs d'extension et de compression dans la zone intra-arc sont évoqués (**Glen, 2005**). Cette zone est caractérisée par une lithosphère mince et chaude, ce qui permet une localisation de la déformation. Dans un des modèles proposés (*Fig. 1.B.10*; **Collins, 2002**), le retrait vers l'océan du panneau plongeant entraîne une extension

Figure 1.B.10 Modèle d'évolution de la chaîne de Lachlan illustrant les mécanismes de croissance de la croûte continentale de l'Australie Orientale au cours du Paléozoïque (modifié d'après **Collins, 2002**). L'expansion de la marge résulte de l'ouverture (a, b et d) puis de la fermeture (c) de bassins d'arc-arrière successifs, contrôlées respectivement par le retrait du panneau plongeant (b) et par l'aplatissement du plan subduction (c).

crustale en domaine intra-arc et le développement d'un bassin d'arrière-arc à croûte basaltique. Puisque la croûte océanique est généralement hétérogène, la subduction d'aspérités, telle que les plateaux océaniques peut entraîner des variations du régime de la subduction et un aplatissement du plan de subduction. La faible inclinaison du plan de subduction empêche le retrait du panneau plongeant et entraîne une contraction dans la plaque supérieure. La déformation compressive se localise alors au niveau du bassin d'arrière-arc, qui finira par se fermer, avec le développement de structures 'en fleur positive'. Lorsque la subduction redevient facile, le panneau plongeant se retire à nouveau entraînant l'ouverture d'un nouveau basin d'arrière-arc. Ces épisodes successifs de compression et d'extension dans la zone supra-subduction sont à l'origine d'une importante croissance de la croûte continentale australienne. Trois composantes contribuent à l'expansion frontale et verticale de la marge : 1) le magmatisme d'arc, 2) la formation d'une croûte juvénile basaltique dans le bassin d'arrière-arc et 3) la sédimentation dans le prisme d'accrétion associée à l'incorporation de fragments de lithosphère océanique lors de la subduction d'aspérités.

L'édifice orogénique le plus récent des Tasmanides est la chaîne plissée de la Nouvelle-Angleterre (« New England Orogen »). Cette chaîne qui s'est développée à la fin du Paléozoïque sur des fragment orogéniques plus anciens se caractérisée par l'association de trois éléments (Korsch, 1977 ; Cawood & Leitch, 1985): 1) l'arc magmatique de Keepit-Connors au nord-ouest, 2) le bassin central d'avant arc de Tamworth-Yarroll et 3) le complexe de subduction de Tablelands-Wandilla, à l'est (Fig. 1.B.11). Ces deux derniers domaines sont séparés par une séquence ophiolitique discontinue, qui pourrait représenter le substratum du bassin d'avant-arc (Aitchison et al., 1992). Si au premier ordre, la chaîne se présente de manière linéaire nord-sud, la partie méridionale est caractérisée par une structure curviligne : la virgation de la Nouvelle Angleterre (Offler & Foster, 2008). Cette virgation est particulière du fait de la double vergence et plusieurs modèles (Korsch, 1977 ; Offler & Foster, 2008) proposent des décrochements à cinématiques opposés pour expliquer cette géométrie. Récemment, sur la base de données paléomagnétiques au Carbonifère et au Permien, un modèle alternatif a été proposé (Fig. 1.B.11; Cawood et al., 2011b). La forme en oméga (Ω) de la chaîne résulte du déplacement du segment sud par rapport à un segment nord fixé au continent australien. Ce mouvement relatif vers le nord est accommodé par un réseau de failles sénestres parallèles à la chaîne. Le développement de ces failles est possiblement lié au changement de la direction de la paléo-plaque Pacifique par rapport à la marge du Gondwana (Cawood et al., 2011a).

Figure 1.B.11 Reconstruction paléomagnétique des blocs de la chaîne de Nouvelle-Angleterre, montrant les différentes étapes à l'origine de la virgation complexe actuellement observé (modifié d'après **Cawood et al., 2011b**). A l'origine la marge est australienne représentait un segment linéaire (a), mais l'initiation d'un décrochement sénestre dans la partie du de la marge conduit à la courbure progressive (b and c) de la partie centrale et méridionale de la chaîne. La chaîne actuelle montre ainsi une double virgation (d) caractérisée par une forme d' « Ω ».

B.3 Le cas du Japon

Le Japon est classiquement divisé en trois parties : la partie nord-est au nord de la faille de Tanakura, la partie centrale entre les failles de Tanakura et Itoigawa-Shizuoka et la partie sud-ouest au sud de la faille de Itoigawa-Shizuoka (ITL). Dans les parties centrale et méridionale, la Ligne Tectonique Médiane (MTL) sépare les zones internes des zones externes (*Fig. 1.B.12*). Dans les zones internes, on distingue les domaines de Hida, Oga, Sangun, Maizuru, Tamba et Ryoke. Les domaines de Sambagawa, Chichibu et Shimanto constituent la zone externe. Des accidents tectoniques majeurs séparent les différentes zones, chacune de ces dernières présentant des conditions métamorphiques spécifiques.

Figure 1.B.12 Carte tectonique du sud Japon, illustrant l'évolution orogénique depuis le Paléozoïque supérieur (compilé d'après Charvet et al., 1985; Faure, 1985; Charvet & Fabbri, 1987; Faure & Charvet, 1987).

L'association de larges zones internes non métamorphiques traversées par des intrusions magmatiques et de zones externes étroites où les roches océaniques et/ou profondes sont préservées a conduit certains auteurs à définir les orogenèses de type Pacifique (**Miyashiro**, **1961**; **Matsuda & Uyeda**, **1971**). Ces chaînes s'opposent alors aux chaînes alpines caractérisées par des nappes. Ce modèle s'inspire de la géométrie des zones de subduction mais offre très peu de contraintes sur la structure du Japon. L'apport des études structurales couplées à la biostratigraphie (radiolaires, conodontes) a permis l'identification de nappes dans le sud-ouest du Japon (*Fig. 1.B.12*; **Faure, 1985**; **Faure et al., 1986**; **Faure & Charvet, 1987**). Du fait de l'existence de ces nappes, de nombreuses corrélations entre les zones ont été proposées (**Isozaki, 1996**; **1997**; **Maruyama, 1997**; **Isozaki et al., 2010**). En outre, les zones respectives d'enracinement des nappes sont beaucoup discutées. L'importance de la tectonique tangentielle a entraîné la mutation du modèle d'orogenèse de

Figure 1.B.13 Coupe schématique du sud-ouest du Japon, illustrant le rajeunissement des complexes d'accrétion (et des paléo-plans de Bénioff) en direction de la zone de subduction actuelle (Modifié d'après **Isozaki et al., 2010**).

Figure 1.B.14 Tableau synthétique des événements géodynamiques affectant le Japon depuis le Paléozoïque (Modifié d'après **Isozaki et al., 2010**). L'alternance d'épisodes métamorphiques de haute pression et de haute température est interprétée comme le résultat de multiples subductions de rides océaniques entrecoupant une accrétion quasi continue le long de la marge est-asiatique.

type Pacifique en un modèle de chaîne de Miyashiro » « type (Maruyama, 1997). Ce modèle considère le sud-ouest du Japon comme une pile de complexes d'accrétion 1.B.13). (Fig. La juxtaposition de roches de différents degrés métamorphiques reflète la dynamique du complexe d'accrétion marquée par l'exhumation syn-convergence des parties profondes du prisme le long

du chenal de subduction. Par analogie avec les cordillères mésozoïques nord-américaines, plusieurs épisodes de subduction de ride, à l'origine du métamorphisme de haute température (Zone de Ryoke par exemple), ont été proposés (*Fig. 1.B.14*; **Maruyama, 1997**; **Brown, 1998**; **Isozaki et al., 2010**). La subduction continue de croûte océanique a entraîné la mise en place d'importants volumes de magma dans la croûte, avec des pics de magmatisme lors des subductions de ride. L'accrétion continue de matériel entraîne la migration vers l'océan du complexe d'accrétion et du front magmatique ce qui provoque la croissance de la marge continentale.

Bien que le modèle de la subduction océanique continue soit accepté par une grande partie de la communauté scientifique, de nombreux arguments sont en faveur de collisions successives de microcontinents (*Fig. 1.B.15*). En effet, à la faveur de discordances régionales, trois cycles orogéniques sont généralement reconnus pour expliquer la structure Pré-Miocène (**Kobayashi, 1941**; **Kimura, 1973**): 1) le cycle paléozoïque supérieur à triasique ou orogénèse d'Akiyoshi, 2) le cycle mésozoïque et 3) le cycle paléogène. La structure générale des nappes est relativement différente de celle des prismes d'accrétion classique. En effet, dans les zones actuelles de convergence, la tectonique compressive est limitée à la zone du prisme. Dans le cas du Japon, le tectonique tangentielle n'est pas seulement localisée dans certains niveaux de décollement, mais elle affecte aussi les domaines anciens où les structures sont réactivées. Ce type de processus est classique dans les chaînes alpines où la collision continentale produit une migration du front de déformation depuis les zones internes vers les zones externes et l'avant pays. De manière identique, les chemins pression-température-temps

Figure 1.B.15 Modèle polycyclique de l'évolution géodynamique du SW Japon (**Charvet, 2011**). Les collisions successives de microcontinents sont à l'origine de la structure de nappes. A l'exception de début du Tertiaire, où il existe des évidences nettes de subduction de ride, le métamorphisme haute température observée résulte d'une remontée asthénosphérique en réponse à la rupture du panneau plongeant.

de certaines éclogites montrent une exhumation très rapide de ces roches, ce qui est

54

compatible avec un modèle de subduction continentale. De plus, des éléments continentaux (en plus de la zone de Hida) sont impliqués dans la structure de nappes (**Charvet et al., 1985**; **Charvet & Fabbri, 1987**; **Faure & Charvet, 1987**) ou suspectés par la géochimie des granites (Stein et al., 1994; Jahn, 2010): 1) le bloc de Honshu représenté par des vieux granites, 2) le bloc de Kurosegawa, corrélé au massif du sud-Kitakami dans le nord-est du Japon, 3) le bloc de Kyushu, 4) le bloc Nord-Philippin. Les granitoïdes du sud-ouest du Japon présentent des valeurs négatives d'ɛNd(T), ainsi que des âges modèles Sm-Nd protérozoïques (Jahn, 2010) ce qui indique une source partiellement crustale pour ces magmas et un recyclage de vieille croûte continentale. Les caractéristiques géochimiques de ces granites ne s'accordent donc pas avec l'hypothèse de multiples subductions de ride (Maruyama, 1997; Isozaki et al., 2010), qui auraient généré une croûte juvénile, potentiellement recyclable par la suite (Jahn, 2010). De plus, la rupture du panneau plongeant, consécutivement à une collision continentale, peut générer une remontée asthénosphérique et entraîner un magmatisme « anormal », représenté par des sanukites ou des adakites.

L'évolution tertiaire à actuelle du sud-ouest du Japon montre des caractéristiques typiques de chaînes d'accrétion. Les prismes d'accrétion successifs se sont développés grâce au sous placage de matériaux océaniques (**Kimura & Mukai, 1991**; **Kimura & Ludden, 1995**), mais certaines parties du complexe d'accrétion ont pu disparaître par érosion tectonique (**von Huene & Culotta, 1989**). Chaque prisme expose des caractéristiques structurales (**Hashimoto & Kimura, 1999**) ou lithologiques (**Faure, 1985**) identiques aux analogues modernes. Néanmoins le style de la déformation ainsi que la présence de blocs continentaux observés ou soupçonnés semblent indiquer que la subduction océanique a été entrecoupée d'événements discrets de collision continentale au cours du Phanérozoïque. Le cas du Japon montre ainsi l'ambiguïté du terme « chaîne d'accrétion ».

C Le rôle des chaines d'accrétion dans la croissance de la croûte continentale

Au cours de l'histoire de la Terre, la croissance de la croûte continentale a été progressive (**Taylor & McLennan, 1985**; **Belousova et al., 2010**). Si les première études, basées sur des mesures isotopiques Rb-Sr et K-Ar prônaient une origine tardive de la croûte continentale (**Hurley & Rand, 1969**), les données géochimiques et isotopiques plus récentes suggèrent que le volume actuel de croûte continentale a été atteint dès l'Archéen ou le début du Protérozoïque (*Fig. 1.C.1*; **Fyfe, 1978**; **Reymer & Schubert, 1984**; **Taylor & McLennan, 1985**; **Armstrong, 1991**; **Belousova et al., 2010**). Dans les chaînes d'accrétion,

Figure 1.C.1 Histogramme de la distribution volumique de croûte continentale juvénile depuis la formation de la Terre (modifié d'après **Condie, 2005**). Cette distribution basée sur une compilation des âges U-Pb sur zircons et des âges Nd met en avant le mode épisodique de la croissance continentale. Les modèles de croissance continentale sont aussi reportés (1 : Fyfe, 1978 ; 2 : Reymer & Schubert, 1984 ; 3 : Armstrong, 1991 ; 4 : Taylor & McLennan, 1985 ; 5 : Hurley & Rand, 1969).

les valeurs positives d' ε_{Nd} montrent la présence d'unités juvéniles, même si certaines unités présentent des valeurs $d' \epsilon_{Nd}$ négatives, caractéristiques d'un mélange d'apports juvéniles et de recyclage de croûte plus ancienne (Samson et al., 1989; Jahn, 2004).

La croissance de la croûte continentale se caractérise par le transfert de matériaux mantelliques juvéniles dans la croûte et deux mécanismes sont généralement proposés (*Fig. 1.C.2*; Rudnick, 1995; Jahn, 2004).

9La <u>croissance horizontale</u> (*lateral growth*) se caractérise principalement par la fusion du coin de manteau et la production de magmatisme d'arc (*Fig. 1.C.2a*; **Condie, 2007**). En effet, la composition moyenne de la croûte continentale est identique à celles des marges actives (**Taylor & McLennan, 1985**) ce qui tend à montrer que les zones de subduction participent activement à la croissance des masses continentales (**Taylor, 1967**). La fusion partielle de la croûte océanique dans la zone de subduction contribue aussi à la production de magma juvénile. L'amalgame d'unités juvéniles formées au niveau des dorsales (croûte océanique), en domaine intra-plaque (guyots, plateaux océaniques), en limite de plaques océaniques (arcs

insulaires) et en domaine avant-arc et arrière-arc (*supra-subduction zone ophiolites*) participe aussi à l'expansion des masses continentales (*Fig. 1.C.2b*).

9La <u>croissance verticale</u> est marquée par le sous-plaquage (*underplating*) de magmas d'origine mantellique en base de croûte d'arc ou de croûte continentale (**Jahn, 2004**). Cette remontée de matériel asthénosphérique intervient en réponse à la rupture du panneau plongeant (*Fig. 1.C.2c*) ou résulte de l'activité d'un panache mantellique (*plume*) (*Fig. 1.C.2d*). Le flux de chaleur généré permet la fusion de la croûte inférieure et la production de magmas plus ou moins siliceux et caractérisés par une contamination par l'encaissant et par une composante juvénile mantellique. Les injections d'origine asthénosphérique peuvent aussi se mettre en place directement dans les niveaux supérieurs, voire superficiels de la croûte.

L'accrétion de microcontinents dérivant à l'origine d'une marge continentale ne peut être considérée comme un mécanisme direct de croissance crustale, car elle conduit uniquement à une redistribution spatiale des masses existantes. Cependant, la convergence entre deux lithosphères continentales engendre un magmatisme d'arc, l'accrétion (ou l'obduction) d'ophiolites dans le prisme, mais aussi un magmatisme post-orogénique d'origine partiellement mantellique. A l'opposé, les chaînes de collision, malgré des épisodes d'accrétion, précoces sont marquées préférentiellement par le recyclage crustal et la production de croûte juvénile y est négligeable (Dewey et al., 1986). Dans les chaînes d'accrétion, le taux de production de croûte juvénile semble avoir été plus élevé au

Figure 1.C.2 Schéma illustrant les modes latéraux et verticaux de croissances continentale (modifié d'après **Jahn, 2004**). a : magmatisme d'arc, b : accrétion d'arcs insulaires, c : sous placage de magma mantellique en réponse à une délamination de la lithosphère (rupture de panneau plongeant), d : Fusion intracrustale et rôle de l'extension lithosphérique ou d'un éventuel panache mantellique.

Précambrien qu'au Phanérozoïque (*Fig. 1.C.1*), à l'exception du collage orogénique Paléozoïque d'Asie Centrale (**Condie, 2007**).

Les travaux récents, basés sur l'analyse couplée de plusieurs systèmes isotopiques dans les zircons (Nd-Hf-O), confirment l'hypothèse d'une croissance crustale précoce dans l'histoire de la Terre, mais cette dernière semble liée à des événements ponctuels (Fig. 1.C.1; Condie, 1998 ; Hawkesworth & Kemp, 2006a). En effet, cette croissance épisodique est corrélée à l'activité de panaches mantelliques (Condie, 1998). Pourtant, la chaleur terrestre est principalement évacuée aux limites de plaques (dorsales et zones de subduction), le magmatisme intraplaque ne rendant compte que de 10% du flux thermique sortant du manteau (Davies, 1999). Ce paradoxe semble indiquer qu'une partie de la croûte continentale, créée à l'instant t₀, est transférée dans le réservoir mantellique à un instant t₁. Le recyclage de croûte continentale, parfois juvénile a pu être mis en évidence par la signature isotopique (Hf-O) des granites de type I (Chappell & White, 1974) de la Lachlan Fold Belt (Hawkesworth & Kemp, 2006b), puisque ces derniers ont montré une contamination du magma mantellique par des métasédiments. En effet, dans les zones de convergence, l'ablation tectonique du prisme permet l'érosion de matériaux crustaux, possiblement juvéniles et leur retour dans l'asthénosphère (von Huene & Scholl, 1991 ; Scholl & von Huene, 2007) via le chenal de subduction (Cloos & Shreve, 1988). Ce processus permet d'expliquer la différence d'environ 30% entre le taux de production de croûte continentale juvénile et le taux d'accrétion dans les chaînes d'accrétion nord-américaines (Condie, 2007). La subduction de sédiments continentaux apportés à la fosse par les grands fleuves, ainsi que le détachement des racines crustales des unités accrétées ou des microcontinents entrés en collision contribuent aussi au recyclage de la croûte continentale (Scholl & von Huene, 2009). Depuis le Paléoprotérozoïque et l'installation d'une tectonique des plaques moderne, le volume de croûte généré au niveau des zones de subduction est de 2.8 à 3 km³/an, alors que le taux de recyclage de la croûte continentale est estimé à 3.2 km³/an (Scholl & von Huene, 2009). La compensation entre le volume de croûte juvénile formée et le volume recyclé permet d'expliquer la relative stabilité du volume total de croûte continentale depuis 3 Ga.

Cette compensation indique que les marges actives représentent non seulement des sites de production de croûte juvénile, mais aussi des sites de recyclage de la croûte continentale. Cependant, les taux de production et de recyclage sont des taux moyens estimés sur une large période et à l'échelle globale. Or, depuis l'Archéen, la production de croûte continentale semble avoir progressivement diminué au profit du recyclage de la croûte existante, lors de la formation des supercontinents (**Belousova, 2010**). De plus, la part du magmatisme post-orogénique n'est pas prise en compte, alors que ce dernier est largement représenté dans les chaînes d'accrétion (**Jahn, 2004**). Ainsi, certaines marges et donc certaines chaînes d'accrétion représentent des sites majeurs de la production mondiale de croûte juvénile, telles que l'Asie Centrale au Paléozoïque (**Sengör et al., 1993**) ou les Cordillères Nord-Américaines mésozoïques (**Samson et al., 1989**). A l'opposé, l'important recyclage sédimentaire dans les chenaux de subduction japonais et sud-américains dépasse largement la production de croûte juvénile (**Condie, 2007**; **Kukovsky & Oncken, 2006**).

CHAPITRE II: LES CHAINES D'ACCRETION D'ASIE CENTRALE: MODELES GEODYNAMIQUES ET PROBLEMATIQUE

La géologie de l'Asie selon Argand (1924)

A Introduction

L'Asie Centrale est un vaste domaine qui couvre le sud de la Russie, le Kazakhstan, le Kirghizstan, l'Ouzbékistan, la Mongolie et le nord de la Chine. Géologiquement, cette région correspond au collage tectonique d'Asie Centrale, appelé CAOB (Central Asian Orogenic Belt) ou Altaïdes, qui s'étend de l'Oural à l'Océan Pacifique (Mossakovsky et al., 1993; Sengör et al., 1993) (*Fig. 2.A.1*). Les Altaïdes sont limitées au nord par le bassin sédimentaire mésozoïque de la Sibérie Occidentale (Allen et al., 2006) et le bloc Sibérien, formé par le craton d'Angara et la chaîne Protérozoïque des Baïkalides. (Zonenshain et al., 1990; Vernikovskiy et al., 1999). La bordure ouest, au delà de la chaîne de l'Oural correspond au craton Baltica. La limite sud est marquée d'ouest en est par les cratons d'Alay, du Tarim et de Chine du Nord. Le collage tectonique des Altaïdes dessine l'ébauche du continent asiatique, lequel sera ensuite agrandi avec la formation des chaînes d'âge triasique (Kunlun-Songpan-Ganze, Indochine), jurassique à crétacé (Tibet) et tertiaire (Himalaya), puis le développement du système complexe de l'Ouest Pacifique (*Fig. 2.A.1*). Les Altaïdes peuvent être divisées en trois domaines : le domaine ouralien, le domaine oriental et le domaine occidental.

A.1 Le domaine Ouralien

A l'Ouest, le système orogénique de l'Oural a enregistré une histoire polycyclique avec les Pré-Ouralides (Timanides) d'âge néoprotérozoïque (**Puchkov**, **1997**; **Kuznetsov**, **et al.**, **2005**) et les Ouralides d'âge paléozoïque (**Brown et al.**, **1997**; **Puchkov**, **1997**; **2009**; **Alvarez et al.**, **2000**; **Herrington et al.**, **2005**). Ce dernier cycle est marqué par une ouverture océanique Cambro-Ordovicienne (**Puchkov**, **1997**; **Savelieva & Nesbitt**, **2006**), suivie du développement d'un arc intra-océanique complexe (Tagil puis Magnitogorsk) de l'Ordovicien supérieur au Dévonien (**Brown et al.**, **2001**; **Puchkov**, **2009**). Entre le Dévonien et le carbonifère inférieur, cet arc entre en collision oblique avec la marge du craton est-européen (**Brown et al.**, **2006**), alors que plus à l'est, le bassin océanique ouralien rémanent entre en subduction sous le microcontinent Kazakh (**Matte**, **2006**). La collision finale entre le Kazakhstan et le craton de la Baltique a lieu à la fin du Carbonifère et elle est caractérisée par une importante composante décrochante.

A.2 Le domaine oriental

Figure 2.A.1 Carte tectonique simplifiée de l'Asie. Les triangles noirs indiquent les zones de subduction actuelles.

La partie orientale des Altaïdes s'étend à l'est de la faille de l'Irtysh et couvre le sudest de la Russie, la Mongolie et le nord-est de la Chine. Cette région complexe est marquée par l'accrétion paléozoïque d'arcs et de microcontinents le long de la marge sud du craton sibérien. Deux types de modèles sont classiquement présentés. Les modèles du type virgation sont caractérisés par l'imbrication latérale d'un fragment continental associée à une rotation de ces fragments autour d'un axe vertical (Sengör et al., 1993 ; Sengör & Natal'in, 1996a ; Zorin, 1999 ; Yakubchuk, 2008 ; Lehmann et al., 2010). Des modèles de type archipel ont également été proposés (Badarch et al., 2002 ; Xiao et al., 2003 ; 2009a ; Windley et al., 2007 ; Jian et al., 2008) ; ces auteurs suggèrent l'existence de plusieurs domaines océaniques et considèrent que la géométrie actuelle des Altaides Orientales résulte de multiples subductions et collisions. Néanmoins, tous ces modèles s'appuient sur deux domaines océaniques, largement discutés. La zone de suture de Solonker est généralement considérée d'âge permo-triasique (**Jian et al., 2008**), mais certaines données stratigraphiques et géochimiques semblent favoriser une collision anté-dévonienne (**Xu, 2010**). L'existence de l'Océan Mongol-Okhotsk est aussi largement débattue (e.g. **Zorin, 1999**; **Cogné et al., 2005**), car peu de données géologiques sont actuellement disponibles.

A.3 Le domaine occidental

La partie occidentale des Altaïdes couvre une région située entre la faille de l'Irtysh à l'est et la mer d'Aral à l'ouest. Les Altaïdes Occidentales s'étendent à travers le Kirghizstan, le Kazakhstan central et oriental et le nord-ouest de la Chine (Région autonome Ouïgoure du Xinjiang). Au nord, les terrains paléozoïques sont limités par le bassin ouest-sibérien, alors qu'au sud, au delà du Tianshan, les montagnes du Pamir marquent la bordure méridionale du collage d'Asie Centrale. La partie occidentale de l'Asie Centrale est marquée par trois domaines : le domaine kazakh, comprenant les terrains du centre et de l'est du Kazakhstan, le Tianshan, traversant le Xinjiang et le Kirghizstan, et l'Altaï marquant la limite entre les parties occidentales et orientales des Altaides. Plusieurs bassins sédimentaires mésozoïques à cénozoïques masquent le substratum anté-mésozoïque : au nord, le bassin ouest-sibérien, les bassins du Junggar et du Tarim coté chinois, les bassins d'Alakol, de Sary-Ishikotrau et de Muyunkum au Kazakhstan.

A.4 Le problème de la définition d'unités en Asie Centrale

Les premiers travaux notoires sur l'Asie Centrale ont montré la présence d'argilites et d'ardoises (Von Humboltz, 1843), recoupés par des granites et des diabases (Suess, 1901). Par la suite, les levés cartographiques régionaux ont montré l'association récurrente de turbidites, chert et basaltes (Fig. 2.A.2; Argand, 1924; Sengör, 1993). Ces lithologies sont assez différentes des

Figure 2.A.2 Carte tectonique de l'Asie, illustrant la CALEDONIAN FOLDS reconnaissance de chaînes plissées en périphérie du PRECAMBRIAN FOLDS craton sibérien (**Argand, 1924**). roches métamorphiques classiquement observées dans les chaînes plissées (Alpes, Calédonides). De plus l'absence de continuité lithologique (mélange) ou structurale (rôle des failles) a souvent empêché la définition d'unités ainsi que leur corrélation. Les unités actuelles sont majoritairement basées sur les travaux de **Sengör et al. (1993)**, puis **Sengör & Natal'in (1996a; 1996b)**. Ces unités ont été définies grâce à la reconnaissance de fronts d'arc magmatique qui correspondent à la limite spatiale (en direction de la plaque plongeante) du magmatisme d'arc dans une zone de subduction. Puisque les exemples modernes montrent une linéarité relative de l'arc, du complexe d'accrétion et de la fosse, la caractérisation de ces fronts de subduction. Une vingtaine puis une quarantaine d'unités ont ainsi été différenciées (*Fig. 2.A.3*; **Sengör et al., 1993**; **Sengör & Natal'in, 1996a**), chaque unité étant limitée par des failles permiennes. En effet, une des caractéristiques des Altaïdes est la présence de failles

Figure 2.A.3 Carte des unités tectoniques des Altaïdes (modifié d'après Sengör et al., 1993 ; Sengör and Natal'in, 1996a).

d'âge Paléozoïque supérieur le long desquelles des cisaillements ductiles sont observés (Yin & Nie, 1996 ; Laurent-Charvet et al., 2002 ; 2003 ; Buslov et al., 2004 ; Wang et al., 2009a). Cependant, la méthode utilisée par Sengör et al (1993) pour définir ces unités est fortement influencée par le modèle d'évolution proposé. Dans de nombreuses unités, la

relation entre le socle précambrien et les arcs magmatiques n'est pas décrite (*Fig. 2.A.3*). Comme la stratigraphie paléozoïque est regardée à l'échelle des Altaïdes, les événements enregistrés au sein d'une unité ne sont pas forcément pris en compte. Ainsi une même unité peut comprendre un fragment de croûte continentale précambrienne, des complexes d'accrétion paléozoïque inférieur et supérieur, et des arcs d'âge paléozoïque inférieur à supérieur.

Du fait de ces problèmes, les unités ont été redéfinies sur le modèle des chaînes d'accrétion péri-pacifiques pour établir une carte géotectonique du Kazakhstan (**Degtyarev**, **1999**; **Windley et al., 2007**). Les unités (terranes) sont limitées par des accidents tectoniques et correspondent à des entités caractéristiques de la chaîne d'accrétion et dont la mise en place est limitée dans le temps. Les arcs magmatiques (intra-océaniques et marge continentale active) sont distingués des complexes d'accrétion et des microcontinents. Pour chaque unité, une stratigraphie complète est généralement disponible (Kheraskova et al., 2003 ; Degtyarev & Ryazantsev, 2007). Le même type d'analyse a été proposé pour expliquer la géologie des chaînes périphériques du Junggar (Feng et al., 1989 ; Buckman & Aitchison, 2004 ; Xiao et al., 2004).

Dans le Tianshan, ce type d'analyse est difficilement réalisable à cause de l'importance de la tectonique tangentielle (**Charvet et al., 2007**). Trois domaines sont classiquement distingués (**Gao et al., 1998**) : le Nord Tianshan, le Tianshan central et le Sud Tianshan. Ces domaines ne correspondent pas à des unités telles que celles décrites au Kazakhstan. De plus, ces distinctions géographiques au sein du Tianshan chinois ne peuvent être corrélées avec les unités géologiques définies dans le Tianshan kirghiz (**Charvet et al., 2011**).

B Aperçu géologique

La géologie actuelle des Altaïdes occidentales résulte d'une succession d'événements géologiques depuis le Précambrien jusqu'à l'actuel (*Fig. 2.B.1*). Comme il a été dit précédemment, les Altaïdes sont formées de trois domaines géologiques particuliers : le domaine kazakh à l'ouest, le Tian Shan au sud et l'Altaï chinois au nord-est (*Fig. 2.B.2*).

Figure 2.B.1 Carte géologique simplifiée au 1 :5000000 des Altaïdes Occidentales (Li, 1997).

B.1 Le domaine kazakh

L'évolution géologique de ce domaine est largement marquée par l'amalgame au Paléozoïque inférieur de blocs précambriens (*Fig. 2.B.2*; Mossakovsky et al., 1993; Kheraskova et al., 2003). L'origine sibérienne ou est-gondwanienne de ces blocs a été longtemps débattue (Mossakovsky et al., 1993; Berzin & Dobretsov, 1994; Kheraskova et al., 2003; Popov et al., 2009). Cependant, les données paléomagnétiques obtenues sur une collection de roches paléozoïques a montré une dérive vers le nord de ces fragments

continentaux précambriens (Bazhenov et al., 2003 ; Collins et al., 2003 ; Alexyutin et al., 2005). De plus, les sédiments néoprotérozoiques à ordoviciens qui recouvrent les gneiss précambriens du Kazakhstan présentent d'importantes similarités avec les dépôts contemporains du Tarim, de la Chine du Nord et de la Chine du Sud (Eganov & Sovetsov, 1979), ce qui suggère une origine gondwanienne. Les blocs précambriens sont composés de gneiss d'âge paléo-protérozoïque à archéen (Filatova, 1983a ; Kasymov, 1995; Kröner et al., 2007; 2008; 2009) et de métasédiments méso à néoprotérozoïques (Riphéen moyen à supérieur). Les terrains métamorphiques sont recouverts par une série sédimentaire vendienne (néoprotérozoïque supérieur) à ordovicienne constituée de carbonates et de dépôts terrigènes (Nikitin, 1972; Degtyarev & Ryazanstev, 2007). L'évolution néoprotérozoïque est aussi marquée par un rifting intracontinental et du magmatisme alcalin (Filatova, 1983b; Kheraskova et al., 2003; Kröner et al., 2007), témoignant de la dislocation du supercontinent Rodinia (Hoffman, 1999). Ce rifting évolue jusqu'à la formation de croûte océanique dans l'Océan Paléoasiatique au pourtour des cratons Siberia, Baltica et Est-Gondwana (Khain et al., 2003). Au Kazakhstan, plusieurs domaines océaniques de taille réduite (Avdeev, 1984) tels que les bassins de Dzalair-Naiman, Kirghiz-Terskey se développent au cours du Cambrien (Ryazantsev et al., 2009; Degtyarev et al., 2010; Kröner et al., 2011). Le collage des blocs précambriens est caractérisé par une évolution polycyclique et au moins trois épisodes d'âge Paléozoïque inférieur sont reconnus (Degtyarev and Ryazanstev, 2007; Degtyarev, 2011).

L'épisode Vendien à Cambrien moyen est marqué par la mise en place d'une zone de subduction intra-océanique et l'émergence des arcs intra-océaniques de Selety (Korobkin & Smirnov, 2006) et de Bozchakol-Chingiz (Degtyarev & Ryazanstev, 2007). D'autres arcs intra-océaniques ont aussi pu se développer au sein des bassins de Dzalair-Naiman et de Kirghiz-Terskey (*Fig. 2.B.2*; Lomize et al., 1997; Mikolaichuk et al., 1997; Degtyarev & Ryazanstev, 2007).

L'épisode Cambrien moyen à Ordovicien inférieur est marqué par une subduction généralisée des bassins océaniques cambriens. Les témoins de cette subduction sont le métamorphisme de haute pression enregistré dans le Kokshetau (**Dobretsov et al., 1995**; **Okamoto et al., 2000**) et dans les montagnes du Chu-Yili (**Alexeiev et al., 2010**), et la présence d'arcs installés sur des marges continentales (**Parkinson et al., 2002**; **Glorie et al., 2010**; **Alexeiev et al., 2010**; **Kröner et al., 2011**), ou en domaine intra-océanique, comme l'arc de Bozshakol-Chingiz (**Degtyarev and Ryazanstev, 2007**). La fermeture des bassins

océaniques de Dzalair-Naiman et de Kirghiz-Terskey est marquée par la collision respective des blocs Stepniak-Nord Tianshan et Chu-Yili et Stepniak-Nord Tianshan Ishim-Middle Tianshan (*Fig. 2.B.2*; **Mikolaichuk et al., 1997**). Cette collision est datée à l'Ordovicien inférieur (**Yakubchuk & Degtyarev, 1994**; **Mikolaichuk et al., 1997**; **Alexeiev et al., 2010**; **Kröner et al., 2011**), bien que certains auteurs considèrent un collage au Silurien inférieur (**Ghes, 2006**; **Konopelko et al., 2008**).

Figure 2.B.2 Carte tectonique de l'Asie Centrale (modifié d'après **Xiao et al., 2004**; **Charvet et al., 2007**; **Windley et al., 2007**). Abréviations : A: Arkalyk, Ak: Aktau, Ar : Armentai, BA: Baidaulet-Akbastau, BC: Bozchekul-Chingiz, Bo: Bole, CANTF: faille de Chingiz-Alakol-North Tianshan, CK: Chatkal-Kurama, CKF: faille du Kazakhstan central, CTSb: socle du Central Tianshan, CTSb: suture du Central Tianshan (A: Atbashi, G: Gangou, K: Kekesu), CY: Chu-Yili, DF: faille de Dalabute, DN: Dzalair-Naiman, Du : Dulate, EB: Erementau-Buruntau, EY: Erementau-Yili, Ha : Harlieke, IGSZ: zone de cisaillement d'Irtysch-Gornotsaev, IMT: Ishim Middle Tianshan, IVB : ceinture volcanique interne, IZ : zone de l'Irtysh, KJ : Kelameili-Jiangjun, KK: Kumdykol, KT: Kirghiz-Terskey, MK: Maikan-Kyziltas, MTF : Faille majeure du Tianshan, NNTL: faille de Nalati-Nikolaiev, OVB : ceinture volcanique externe, S: Sawuer, Se: Selety, SNT: Stepnyak North Tianshan, STS: Sud Tianshan, TFF: faille de Talas-Fergana, U: Urumbai, Ye : Yemaquan, Yi: Yili, Z: Zharma. Numéros: 1: Tekturmas, 2: Agadyr, 3: Nord Balkash, 4: Aktau, 5: Mayila-Tangbale.

L'épisode Ordovicien moyen à supérieur est caractérisé par le développement d'une marge continentale (Windley et al., 2007) supportant un arc magmatique (*Fig. 2.B.2*; Ghes, 2006; Degtyarev et al., 2008b; Kröner et al., 2008 ; Letnikov et al., 2009a) et bordée par le complexe d'accrétion d'Erementau-Buruntau (Degtyarev, 1999; Windley et al., 2007). La fermeture de l'Océan Paléoasiatique est aussi accommodée par des subductions en domaine

intra-océanique, avec l'arc de Bozchakol-Chingiz associé au complexe d'accrétion de Maikan-Kyziltas (**Khromykh**, **1986** ; **Degtyarev et al.**, **2010**) et l'arc de Baidaulet-Akbastau (**Zhautikov et al.**, **1971** ; **Chitalin**, **1989** ; **Nikitin et al.**, **1995**) associé aux complexes d'accrétion de Tekturmas, Agadyr et Nord Balkash (*Fig. 2.B.2* ; **Avdeev**, **1984** ; **Degtyarev**, **2011**). La collision finale entre le proto-continent kazakh, les arcs de Bozchakol-Chingiz et Baidaulet-Akbastau et le bloc d'Aktau-Junggar (**Degtyarev et al.**, **2008a**) a lieu à la fin de l'Ordovicien (**Degtyarev & Ryazanstev, 2007**) et semble marquée par une composante décrochante majeure (**Degtyarev, 2003**)

La subduction semble avoir perduré au début du Silurien dans certains domaines du nord-est du Kazakhstan, comme l'indiquent le magmatisme d'arc silurien du Chingiz (**Bandatelov, 1969 ; Degtyarev, 2011**), et les blocs siluriens du mélange de Nord Balkash (**Tevelev et al., 2003**). Dans le reste du Kazakhstan, la période Silurienne est principalement marquée par le dépôt de molasse (**Degtyarev & Ryazanstev, 2007**) et la mise en place de granites post-collisionnels à chimie variable (**Shatagin et al., 2001 ; Konopelko et al., 2008 ; Letnikov et al., 2009b ; Seltmann et al., 2010**).

A partir du Dévonien inférieur, des zones de subduction se mettent en place en bordure du microcontinent Kazakh. Au nord, la subduction de l'Océan Ob-Zaisan est à l'origine de l'émergence de l'arc de Zharma-Sawuer et de la formation du complexe d'accrétion de l'Irtysh-Zaisan (**Buslov et al., 2001**). A l'est, la subduction de l'Océan Balkash Junggar est à l'origine des deux chaînes, initialement linéaires : la chaîne externe d'âge dévonien inférieur et la chaîne interne d'âge dévonien moyen à carbonifère (Fig. 2.B.2; Kurchavov et al., 1998; Skrinnik & Senkevitch, 1996; Kurchavov, 2008). Le développement de ces deux alignements magmatiques est lié à une migration vers l'océan du front magmatique au cours de la subduction. Cette dernière est accompagnée par la formation d'une virgation caractérisée par la rotation relative autour d'un axe vertical des différents segments de l'arc (Grishin et al., 1997; Levashova et al., 2003a; 2007; 2009; Abrajevitch et al., 2007; 2008). Ces édifices volcaniques sont associés à des complexes d'accrétion dévono-carbonifère (Ryazantsev, 1999; Filippova et al., 2001). Le sud du microcontinent kazakh est aussi marqué par une zone de subduction qui accommode la fermeture de l'Océan Turkestan (Fig. 2.B.2; Burtman, 1975; Alexeiev et al., 2009; Biske & Seltmann, 2010; Hegner et al., 2010). Si à l'ouest, la polarité de la subduction est bien établie (Biske, 1996), les évidences d'un arc continental reposant sur le microcontinent
kazakh sont assez limitées, si bien qu'une subduction sous le Tarim a été alternativement proposée (*Fig. 2.B.2*; Charvet et al., 2011).

La fermeture complète de ces océans au Carbonifère conduit à l'amalgame final des cratons Sibérien, Alay, Tarim et du microcontinent kazakh. Cette collision relativement modérée est accompagnée de décrochements permiens (*Fig. 2.B.2*; **Burtman, 1980**; **Levashova et al. 2003b**; **van der Voo et al., 2006**); elle est suivie par le dépôt de molasses permiennes (**Zonenshain et al., 1990**) et la mise en place d'un important volume de roches magmatiques permiennes (**Konopelko et al., 2007 ; 2009 ; Seltmann et al., 2010**).

B.2 Le Tianshan

Le Tianshan chinois est subdivisé en trois parties : Tianshan du Nord, Tianshan Central et Tianshan du Sud (*Fig. 2.B.2*). A ces trois domaines s'ajoutent les blocs de Yili et de Bole.

Les terrains précambriens du bloc de Yili correspondent à des roches métamorphiques (**BGRMXUAR**, 1993) recouvertes par des carbonates, des dépôts détritiques méso à néoprotérozoïques et une série détritique Cambro-Ordovicienne (**Gao et al., 1998**). De manière identique, le bloc de Bole est caractérisée par des roches métamorphiques protérozoiques (**Hu et al., 2006**) et des séries sédimentaires mésoprotérozoïques à siluriennes (**Gao et al., 1998**), mais aucune relation socle-couverture n'a été clairement mise en évidence (**Wang et al., 2011a**). La région centrale du Tianshan est aussi marquée par un substratum métamorphique protérozoïque (**Gao et al., 2009**). Au sud, le craton du Tarim présente une histoire polyphasée précambrienne (**Hu et al., 2000**; **Lu et al., 2008**; **Shu et al., 2010**) et comme la majeure parties des terrains d'Asie Centrale, il a enregistré un important épisode magmatique alcalin à la fin du Néoprotérozoïque (**Zhang et al., 2009 ; 2010**).

Dans le Tianshan du Nord chinois, les turbidites carbonifères (**Wang et al., 2006**) sont associées à un mélange ophiolitique carbonifère (**Xu et al., 2005 ; 2006c**) ainsi qu'à des roches volcaniques dévoniennes à carbonifères (**Wang et al., 2007**). Cet arc magmatique qui s'est développé sur le substratum précambrien et la couverture paléozoïque du bloc de Yili, semble se poursuivre à l'est dans l'arc de Bogda (*Fig. 2.B.2* ; **Charvet et al., 2007**). Le bloc de Bole semble avoir enregistré une collision antérieure au Silurien moyen (**Wang et al., 2011a**), mais l'enregistrement sédimentaire paléozoïque supérieur est assez différent de celui du Tianshan du Nord (**Wang et al., 2006**). De manière identique, le bloc de Yili est composite

puisque son extrémité sud est marquée par la présence d'une suture ophiolitique ordovicienne (*Fig. 2.B.2*; Gao et al., 2009).

Le Tianshan Central est constitué de roches volcaniques et sédimentaires ordoviciennes à siluriennes métamorphisées (Charvet et al., 2011), d'un flysch silurien (Shu et al., 2002) et de granites d'arc siluro-dévonien (Xu et al., 2006b ; Yang et al., 2006). Le Tianshan Central est bordé au nord par un mélange ophiolitique dévono-carbonifère (Klemd et al., 2005) contenant des reliques de haute pression (Gao &Klemd, 2003). L'histoire géologique enregistrée par ces roches est scellée par la discordance des conglomérats du Carbonifère moyen (Viséen) (Carroll et al., 1995 ; Laurent-Charvet, 2001) et par l'intrusion de granites post-orogéniques d'âge dévonien supérieur (Shi et al., 2007).

Dans le Tianshan du Sud, des unités allochtones de mélange ophiolitique dévonien à carbonifère (*Fig. 2.B.2* ; Laurent-Charvet, 2001 ; Shu et al., 2007) recouvrent la couverture volcano-sédimentaire paléozoïque inférieur du socle précambrien du Tianshan Central (Wang et al., 2011b). Si initialement ces unités étaient enracinées au nord (Windley et al., 1990 ; Allen et al., 1993 ; Chen et al., 1999), les données structurales récentes (Laurent-Charvet, 2001 ; Chavet et al., 2007 ; Lin et al., 2009 ; Wang et al., 2010) indiquent une provenance méridionale (Wang et al., 2011b). L'amalgame final du craton du Tarim, du bloc du Junggar et du Tianshan est marqué par la discordance du Permien avec le dépôt de grès rouges et conglomérats (Wartes et al., 2002) et la mise en place de granites de type A (Su et al., 2006b ; Han et al., 2010).

B.3 Les chaînes périphériques du Junggar

La nature du substratum du bassin mésozoïque du Junggar (Lawrence et al., 1990) a toujours été une question largement débattue par la communauté scientifique (*Fig. 2.B.2*). En se basant sur contraintes stratigraphiques du pourtour du bassin, Carroll et al. (1990) ont proposé qu'un bassin océanique rémanent a été piégé sous la couverture sédimentaire, lors de l'amalgame de fin du Paléozoïque (Coleman, 1989 ; Feng et al., 1989 ; Hsü, 1989). Ce bassin, possiblement de type arrière-arc (Hsü, 1988) permettrait d'expliquer la forte anomalie de conductivité électrique observée sous le bassin (Zhao et al., 2003). A l'inverse, l'épaisseur crustale d'environ 47 kilomètres (Li & Mooney, 1998) suggère la présence de croûte continentale précambrienne (Yuan et al., 1994 ; Gao et al., 1998). Certaines données géochimiques obtenues sur les granites post-collisionnels sont en faveur d'un sous-placage mantellique et ce dernier a vraisemblablement modifié la chimie du socle du Junggar (Han et

al., 1997 ; 1999). Cependant, les récents sondages au sein du bassin du Junggar ont atteint un substratum constitué majoritairement de roches volcaniques et ophiolitiques paléozoïques (Zheng et al., 2007). L'hypothèse d'une croûte juvénile constituée d'arcs et de complexes d'accrétion paléozoïques a aussi été avancée à partir des données géochimiques obtenues sur les chaînes bordant le bassin (Hu et al., 2000 ; Chen & Jahn, 2004).

La chaîne du Junggar Occidental qui est l'objet de ce travail sera détaillée dans les chapitres suivants.

Le Junggar Oriental, qui appartient à la chaîne plissée mongole est limité au nord par la faille de l'Irtysh (*Fig. 2.B.2*). Cet accident a accommodé des déplacements permiens de plus d'un millier de kilomètres (**Sengör & Natal'in, 1996a**; **Wang et al., 2007**). Elle représente donc une limite tectonique majeure entre les Altaïdes Orientales et les Altaïdes Occidentales. Les terrains de l'Altaï chinois, situé au delà de cette faille ne seront pas discutés ici, mais la géologie de cette région, ainsi que son évolution, est largement décrite (*Fig. 2.B.2*; **Windley et al., 2002**; **Xiao et al., 2004**; **2009b**). Le Junggar Oriental est constitué de terrains paléozoïques, marqués par un assemblage de roches volcaniques et volcanosédimentaires associé à des mélanges ophiolitiques et à des intrusions de chimie variable (*Fig. 2.B.2*; **Xiao et al., 2009b**). Du nord au sud, les unités suivantes sont classiquement distinguées (**Xiao et al, 2004**) et séparées par des accidents décrochements permiens :

• La zone de l'Irtysh. Cette unité est marquée par un important décrochement sénestre (Laurent-Charvet et al., 2002 ; 2003), qui affecte des granites permiens, des gneiss protérozoïques (Qu & Zhang, 1994), mais aussi des mélanges ophiolitiques. Ces mélanges (Qinhe et Qiaoxiahala) affleurent sur la bordure sud de la zone et sont corrélés avec les mélanges de Kokeshantan dans le Junggar Occidental (Xiao et al., 2009b) et de Chara au Kazakhstan (Buslov et al., 2001). Les mélanges contiennent des blocs de chert, de basaltes de type MORB et OIB (Yu et al., 2000) datés du Carbonifère inférieur (Wu et al., 2006a).

• L'unité de Dulate. Cette unité est principalement marquée par des roches volcaniques (andésites, dacites) et volcanoclastiques d'âge dévonien et carbonifère inférieur (**BGRMXUAR**, 1993 ; Xiao et al., 2004). Des calcaires ordoviciens sont aussi observés mais leur relation avec les séries du Paléozoïque supérieur n'est pas encore clairement établie, bien que certains auteurs considèrent que ce sont des blocs exotiques (Xiao et al., 2009). Des

adakites du Dévonien inférieur (Liu et al., 1993), des boninites du Dévonien moyen (Niu et al., 2006) et des granites calco-alcalins sont aussi observés.

• Le mélange ophiolitique d'Aermentai. Ce mélange contient des blocs de chert, de gabbro, de péridotite et de basalte. Les basaltes présentent une importante variabilité géochimique avec des signatures de type OIB, IAB et MORB (**Jin et al., 2001** ; **Wang et al., 2003**). Les blocs sont d'âge cambrien à ordovicien (**Li, 1991** ; **Liu & Zhang, 1993** ; **He et al., 2001** ; **Jian et al., 2005** ; **Xiao et al., 2009b**) ou dévonien (**Xiao et al., 1992** ; **Jian et al., 2005**).

• L'unité de Yemaquan. Cette unité est composée de roches volcaniques basiques à intermédiaires associées à des roches volcanoclastiques d'âge dévonien à carbonifère (BGRMXUAR, 1993 ; Xiao et al., 2009b).

Le mélange ophiolitique de Kelameili. Ce mélange contient notamment des blocs de basalte présentant une signature de IAB et MORB (Wang et al., 2003). La majorité des blocs a fourni un âge dévonien à carbonifère inférieur (Laurent-Charvet, 2001; Shu & Wang, 2003; Jian et al., 2005), bien que des âges ordoviciens aient aussi été obtenus (Jian et al., 2005; He & Zhao, 2011).

• L'unité Jiangjun. Cette unité est marquée par des andésites carbonifères reposant sur des andésites, des adakites et des boninites dévoniennes (Xiao et al., 2009b). Plus à l'est, les roches dévono-carbonifères présentent un substratum ordovicien marqué par des argilites et des turbidites (Charvet et al., 2007 ; He & Zhao, 2011). Des granites d'arc ordoviciens ont aussi été mis en évidence dans les montagnes de Harlike (Cao et al., 2006).

L'ensemble des unités présente une structuration NW-SE marquée par des chevauchements a pendage sud et à vergence sud-ouest (Charvet et al., 2007; Xiao et al., 2009b).

B.4 La réactivation de la chaîne

La physiographie actuelle de l'Asie Centrale se caractérise par des reliefs importants et localisés pouvant atteindre plus de 7000 m dans le Tian Shan et plus de 4000 m dans l'Altaï. L'émergence de ces reliefs est un effet à longue distance de la collision indienne (**Molnar et al., 1973**; **Tapponnier & Molnar, 1977**; **1979**; **Burchfield et al., 1999**; **Avouac et al., 1993**). A l'échelle du continent asiatique, le raccourcissement crustal est estimé à environ 2700 km, sur la base des données paléomagnétiques de l'Inde et de la Sibérie (*Fig. 2.B.3*; **Chen et al., 1993**). La déformation est hétérogène car elle est principalement accommodée

dans le plateau tibétain, dans le Kunlun et dans le Tianshan, où d'anciennes structures paléozoïques ou mésozoïques sont réactivées (*Fig. 2.B.3*; **Chen et al., 1993**). La déformation récente à actuelle de l'Asie Centrale est répartie en une composante chevauchante localisée comme dans la chaîne du Tianshan et en une composante décrochante comme le long de la faille de l'Altyn Tagh (**Avouac & Tapponnier, 1993**).

Dans le Tian Shan, la réactivation intracontinentale de la chaîne est majoritairement visible dans les piedmonts nord et sud (**Windley et al., 1990**; **Hendrix et al., 1992**; **Charreau et al., 2009**), où les séries sédimentaires triasiques à néogènes sont affectées par des plis et des chevauchements. En plus du décollement de la couverture plissée, le raccourcissement lithosphérique est accommodé par la subduction continentale du Tarim sous le Tianshan (Poupinet et al., 2002 ; Zhao et al., 2003). L'épisode de réactivation à l'origine du relief actuel est d'âge cénozoïque (Sobel & Dimitru, 1997 ; Dimitru et al., 2001 ;

Figure 2.B.3 Reconstruction de l'Asie tertiaire, illustrant la quantité de raccourcissement engendrée par la convergence Inde-Asie (modifié d'après **Chen et al., 1993**). Ce raccourcissement est largement réparti en fonction de l'architecture régionale issue des accrétions et collisions paléozoïques à cénozoïques.

Charreau et al., 2009). Cependant des données stratigraphiques récentes (Hendrix et al., 1992 ; Hendrix, 2000 ; Chen et al., 2011) ou géochronologiques (Wang et al., 2009 ; Jolivet et al., 2010) ont montré la présence d'un relief mésozoïque et l'importance des événements érosifs depuis le Trias. Des résultats identiques ont été enregistré dans l'Altai (de Grave et al., 2007). Ces données indiquent que la réactivation des chaînes paléozoïques d'Asie Centrale est un phénomène récurrent depuis la formation des Altaïdes. Cette déformation intra-continentale est le résultat non seulement de la collision indienne, mais des collisions successives des blocs tibétains de Qiantang et de Lhassa, respectivement au Trias supérieur-Jurassique moyen et au Jurassique supérieur-Crétacé inférieur (Vin & Harrison, 2000).

C Les modèles d'évolution proposés

C.1 Le modèle de l'arc de Kipchak

modèle Ce est basé sur les interprétations de Suess (1901) au début du vingtième siècle. Ce dernier a reconnu la présence de chaînes périphériques autour du vieux craton sibérien. Ces ensemble appelée Altaïdes est interprété comme un vertex de « vagues orogéniques » autour du nucléus sibérien. Ce modèle est repris par Argand (1924) qui introduit la nécessité de mouvements continentaux. Il propose que la dérive des continents est à l'origine de l'accrétion de matière sur la bordure du nucléus précambrien et c'est la collision continentale finale qui est responsable de la Altaïdes. structure complexe des caractérisée par des plis de fond affectant le substratum. Ces concepts ont été repris par la suite par Sengör (1987), Sengör & Okurogullari (1991) et Sengör et al. (1993) qui adaptent le modèle des vertex à la tectonique des plaques.

Dans les chaînes de subduction, les interactions entre la plaque supérieure et la plaque inférieure entraînent des mouvements relatifs de ces plaques. En

Figure 2.C.1 Carte tectonique simplifiée des Altaïdes Occidentales (modifié d'après **Sengör & Natal'in, 1996a**). Les fronts magmatiques dévoniens, siluriens et ordoviciens ainsi que la direction de subduction suggérée sont représentés La géométrie observée est interprétée comme le résultat d'une virgation et d'une imbrication latérale due à des décrochements tardifs (**Sengör et al., 1993**).

MECANISMES ET EVOLUTION DES CHAINES D'ACCRETION EN ASIE CENTRALE

réponse, une migration de l'arc et du complexe d'accrétion est observée et engendre des unités larges et imbriquées dans la future zone d'accrétion (Matsuda & Uyeda, 1971; Sengör & Okurogullari, 1991). Contrairement aux chaînes de collision où la limite entre les deux blocs continentaux, correspondant à la suture ophiolitique, est souvent bien établie, les sutures océaniques n'existent pas dans les chaînes d'accrétion, bien que des ophiolites soient préservées dans les mélanges serpentineux. Cependant, les fronts d'arc magmatique représentent un marqueur net de l'évolution de la chaîne (Fig. 2.C.1; Sengör & **Okurogullari**, 1991), car ils sont spatialement et temporellement continus. La définition des fronts magmatiques permet non seulement de représenter l'allure géométrique de la chaîne, mais aussi de caractériser la migration de ce front lors du processus continu de subduction (Hamilton, 1970). Dans les Altaïdes, cette migration n'est cependant pas continue (Fig. 2.C.1 ; Sengör et al, 1993), et plusieurs fronts magmatiques (Vendien-Cambrien, Ordovicien, Silurien et Dévonien-Carbonifère) sont distingués. De plus, l'identification des fronts d'arc magmatique combinée à la reconnaissance des complexes d'accrétion et de la marge continentale existante permet de discriminer la polarité de la paléo-zone de subduction. Enfin, la présence d'accidents tectoniques décrochants tardifs permet d'expliquer le décalage des fronts magmatiques contemporains (Fig. 2.C.1; Sengör, 1993).

Ces considérations ont permis de reconstruire la structure d'origine (antédécrochement) en incluant des unités actuellement disparues ou cachés sous les sédiments mésozoïques. Ce segment linéaire est appelé arc de Kipchak (*Fig. 2.C.2*; **Sengör et al, 1993**).

 \cdot Au Vendien, les masses continentales unifiées (Rodinia) sont affectées par un épisode de rifting (*Fig. 2.C.3*). Cette distension générale, conduit à la séparation des cratons Baltica et Siberia et à l'individualisation d'un fragment continental qui deviendra le substratum de l'arc de Kipchak.

MECANISMES ET EVOLUTION DES CHAINES D'ACCRETION EN ASIE CENTRALE

Figure 2.C.3 Modèle de reconstitution géodynamique des Altaïdes (Sengör et al., 1993).

9Dès la fin du Vendien, l'océan Turkestan entre en subduction sous la marge continentale. Le mouvement relatif entre les deux cratons, associé à la dérive de l'arc de Kipchak entraîne une migration de la zone de subduction vers l'océan et le développement de l'océan Khanty-Mansi à partir du Cambrien (*Fig. 2.C.3*). La dérive de l'arc de Kipchak est géographiquement hétérogène, car ce dernier reste partiellement attaché au craton dans la zone actuelle de la Mongolie. Cette hétérogénéité entraîne une courbure progressive de l'arc. La subduction Cambro-Silurienne est caractérisée par une accrétion continue.

9A partir du Dévonien inférieur, la collision de l'arc de Kipchak avec un fragment de l'Océan Ouralien entraîne une accommodation de la courbure de l'arc par des décrochements (*Fig. 2.C.3*). Ces derniers sont à l'origine d'une imbrication latérale des unités du complexe d'accrétion. Cependant, la subduction de l'Océan Turkestan continue entraînant la formation d'un nouveau front d'arc magmatique sécant sur les complexes paléozoïque inférieur. Au cours du Dévonien, la courbure de la virgation kazakh augmente et ce domaine est désolidarisé de la partie méridionale (actuel Tianshan) par des décrochements sénestres.

9Au cours du Carbonifère, le rapprochement des cratons Baltica et Siberia évolue en transpression généralisée dans les Altaïdes (*Fig. 2.C.3*). En conséquence, le domaine de la virgation kazakh se retrouve enserré, ce qui conduit à l'imbrication de ses différents segments. A cette époque la subduction de l'océan Turkestan est toujours active, avec une zone de subduction unique reliant l'Oural et le Tianshan et une zone de subduction au niveau de la virgation kazakh.

 \cdot A la fin du Carbonifère, la collision oblique entre les cartons Baltica et Siberia entraîne une disparition de l'océan Khanty-Mansy un mouvement transcurrent dextre des unités par rapport à la Sibérie (*Fig. 2.C.3*). L'augmentation de la courbure de la virgation kazakh se poursuit jusqu'à la fermeture complète du domaine océanique. La subduction de l'Océan Turkestan continue en bordure du collage, jusqu'à la collision permienne avec le Tarim et la Chine du Nord.

 \cdot Au cours du Permien, l'inversion de la cinématique des décrochements le long de failles comme l'Irtysh entraîne la juxtaposition des Altaïdes Orientales et Occidentales. Le régime général transtensif est aussi à l'origine d'un étirement crustal, localisé dans les futurs bassins mésozoïques d'Alakol et du Junggar (*Fig. 2.C.3*).

C.2 Les adaptations du modèle de Kipchak

Sengör and Natal'in (1996a) modifièrent leur modèle initial en l'étendant à la partie orientale des Altaïdes. L'arc de Kipchak qui à l'origine ne présentait qu'un substratum uniquement continental a été transformé localement en un arc intra-océanique afin de rentre compte de l'absence de substratum précambrien dans la région de l'Altaï (*Fig. 2.C.2*). De plus, la période ordovicienne a été détaillée, ce qui permet de contraindre les rotations relatives entre cratons sibérien et européen à la fin de l'Ordovicien, car les limites tectoniques entre les différentes unités sont scellées par le magmatisme daté entre 450 et 430 Ma. Une méthodologie similaire au modèle Kipchak a été employée par Yakubchuk et al. (2005) pour caractériser l'évolution du supercollage d'Asie Centrale. Cependant la structure générale obtenue et le modèle d'évolution proposé sont légèrement différents. En effet, ces auteurs suggèrent que l'ensemble des roches néoprotérozoiques à paléozoïques des Altaïdes résulte de trois systèmes d'arc-complexe d'accrétion subparallèles.

Dans les modèles proposés ultérieurement, **Yakubchuk et al. (2008)** suggèrent une nouvelle approche pour caractériser l'évolution des Altaïdes. Cette méthode est basée sur le constat de la croissance crustale des marges actives d'Asie Centrale au Paléozoïque (**Sengör et al., 1993**). En effet, au fur et à mesure du développement de la subduction, les matériaux sont accrétés ce qui entraîne une migration de l'arc vers l'océan. Le retrait de la plaque plongeante est à l'origine d'une extension en domaine arrière-arc. **Yakubchuk et al. (2008**) proposent donc de retracer les systèmes convergents en regardant non seulement le front magmatique, mais aussi les éventuels bassins arrière-arc. Cette approche est notamment nécessaire pour discriminer les complexes d'accrétion turbiditiques formés en avant de l'arc

de ceux formés dans la zone arrière-arc (**Cawood et al., 2009**). Des unités lithotectoniques simple (« *terrane* ») ou composites (« *superterrane* ») dans le sens de **Coney et al. (1980)** et **Howell (1989)** sont ainsi distinguées. Contrairement au modèle de **Sengör et al. (1993)**, des sutures limitant des blocs continentaux sont ainsi mises en évidence. La reconstruction obtenue est assez proche de celle proposée par **Yakubchuk et al. (2005**), avec trois « *superterranes* » (arc + complexe d'accrétion) néoprotérozoïques à paléozoïque supérieur. Comme dans le modèle de **Sengör et al. (1993**) la formation de virgation et le rôle des décrochements sont largement pris en considération. Les unités accrétées ont ensuite été transportées vers l'ouest (coordonnées actuelles) par un ensemble de décrochements senestres (faille de l'Irtysh, ligne tectonique de Nikolaïev). Cette translation est le fruit de la rotation horaire de la Sibérie combinée au mouvement oblique vers l'est (coordonnées actuelles) du bloc d'Alay, du bloc du Tarim et du craton de la Chine du Nord.

C.3 Les modèles d'accrétions multiples (archipelago model)

Ces modèles considèrent les Altaïdes comme le résultat de l'amalgame d'unités lithotectoniques indépendantes. Ces « *terranes* » se sont développés au sein d'un unique océan (Océan Paléoasiatique) entre le Néoprotérozoïque et le Mésozoïque (**Coleman, 1989**; **Mossakovsky et al., 1993**). Les « *terranes* » accrétés aux cratons Baltica et Siberia sont principalement des arcs insulaires intra-océaniques complexes (*Fig. 2.C.4*; **Xiao et al., 2004**; **2008**; **2009a**; **2009b**; **2010**; **Windley et al., 2007**) et des microcontinents (**Mossakovsky et al., 1993**; **Berzin & Dobretsov, 1994**; **Buslov et al., 2001**). Ces « *terranes* » sont séparés par de multiples zones de subduction. L'amalgame de certains de ces « *terranes* » avant la collision finale à la fin du Carbonifère entraîne la formation de « *superterranes* ». La géométrie générale de ces multiples zones de subduction (*Fig. 2.C.4*) peut être regardée comme un analogue de l'actuel Ouest Pacifique où de nombreux bassins marginaux, séparant des arcs insulaires ou des blocs continentaux se sont développés entre la marge asiatique et l'océan Pacifique (**Jolivet et al., 1989**).

Les blocs continentaux accrétés sont principalement d'origine est-Gondwanienne (Mossakovsky et al., 1993) et caractérisés par un substratum précambrien (Kasimov, 1995). Des collisions continentales précoces sont aussi documentées et à l'origine de la formation de sutures (Yakubchuk, 1990). Si des systèmes classiques d'arc ont pu se développer en domaine intra-océanique (type Mariannes), en bordure de marge continentale (type Japon) sur une marge continentale (type Cordillères), les arcs insulaires du domaine océanique paléoasiatique sont généralement complexes (Xiao et al., 2004). Ils peuvent être caractérisés

Figure 2.C.4 Reconstruction des archipels des Altaïdes Occidentales au Dévonien (modifié d'après **Xiao et al., 2010**). Dans ce modèle, l'existence d'arcs insulaires plus ou moins complexes est mise en avant. Les mouvements contrastés du Tarim, de la Siberia et de la Baltica entraînent la disparition des domaines océaniques et le collage des arcs insulaires.

par plusieurs stades d'évolution de bassin avant- et arrière-arc (Xiao et al. 2010); ils correspondent alors à la combinaison spatiale et temporelle des trois types classiques (type Alaskéen).

C.4 L'hypothèse du microcontinent Kazakh

Les données paléomagnétiques, sédimentologiques et structurales ont conduit certains auteurs à proposer l'existence d'un microcontinent Kazakh à la fin du Paléozoïque inférieur (**Filippova et al., 2001**; **Kheraskova et al., 2003**). En effet, des déformations dites « calédoniennes », scellés par la molasse silurienne et « hercyniennes », scellées par la molasse permienne sont reconnues au Kazakhstan (*Fig. 2.A.2*; **Argand, 1924**). Ce microcontinent composite résulte de l'amalgame à la fin de l'Ordovicien de blocs

continentaux d'origine est-gondwanienne et d'arc insulaire (*Fig. 2.C.5* ; **Kheraskova et al., 2003**) après la fermeture de sous-domaines de l'Océan Paléo-asiatique.

Figure 2.C.5 Cartes palinspatiques de l'Asie Centrale au Vendien, au Cambrien inférieur, à l'Ordovicien inférieur et à l'Ordovicien supérieur (modifié d'après **Kheraskova et al., 2003**). La collision de plusieurs systèmes insulaires au sein de l'Océan Paléo-asiatique est à l'origine de l'émergence du microcontinent Kazkahstan à l'Ordovicien supérieur.

Dans le modèle proposé (**Kheraskova et al., 2003**), la dislocation du supercontinent Rodinia entre la fin du Riphéen et le début du Vendien conduit à l'individualisation de microblocs continentaux qui vont dériver vers le nord au fur et à mesure de l'ouverture de

Figure 2.C.6 Schéma illustrant l'évolution géodynamique des Altaïdes Occidentales depuis le Silurien inférieur jusqu'au Permien (modifié d'après **Filippova et al., 2001**). L'amalgamation finale de l'Asie Centrale est le résultat de collisions diachrones entre le microcontinent Kazakhstan et les cratons environnants (Tarim, Alay, Baltica, Siberia).

l'Océan paléoasiatique (*Fig. 2.C.5*). Le rifting évolue rapidement vers un stade d'océanisation cambrien et la formation de croûte océanique entre les différents blocs. Parallèlement, des arcs insulaires se développent au sein de l'Océan Paléo-asiatique, en bordure de la marge sibérienne. Au cours de l'Ordovicien, d'autres systèmes d'arcs insulaires se développent en bordure des blocs précambriens du Kazakhstan. L'accrétion progressive de ces arcs à la fin de l'Ordovicien et la collision avec les blocs Tarim et Qaidam est à l'origine de l'individualisation du microcontinent composite kazakh (*Fig. 2.C.5*).

L'évolution au Paléozoïque supérieur (**Filippova et al., 2001**) est marquée par la disparition des océans en périphérie de ce microcontinent : Océan Ob-Zaisan entre Kazakhstan et Sibérie, Océan Turkestan entre Kazakhstan et Tarim-Alay (détaché pendant le Silurien) et Ouralien entre Kazakhstan et Baltica (*Fig. 2.C.6*). De plus, il existe aussi un golfe océanique au sein du microcontinent kazakh : l'Océan Junggar-Balkash. Dans ce modèle, l'actuelle forme de fer à cheval de la marge continentale kazakh existe dès le Silurien, et le processus de virgation est peu considéré (*Fig. 2.C.6*). Les collisions permiennes entre les blocs sont décrites comme obliques et à l'origine des décrochements dextres de l'Oural et senestres des Altaïdes Occidentales.

D Implications pour la croissance de la croûte continentale en Asie Centrale

L'accrétion continue de matériaux d'origine diverse le long de l'arc de Kipchak (Sengör et al., 1993) suggère que la croissance de la croûte terrestre a été significative dans les Altaïdes au cours du Paléozoïque. En se basant sur les estimations du taux de recyclage des matériaux continentaux dans les zones de subduction (Howell and Murray, 1986), Sengör et al. (1993) suggèrent que 45% de la surface actuelle du collage (5.3 millions de km²) est d'origine juvénile, soit 2.5 millions de km². Le taux de croissance crustale d'environ

Figure 2.D.1 Diagramme de la valeur $\epsilon_{Nd}(t)$ en fonction de l'âge de formation de la roche (**Hu et al., 2000**). La répartition des données obtenues sur une large collection de roches métamorphiques et sédimentaires montre la variabilité du recyclage de la croûte précambrienne dans les unités du Nord-Ouest de la Chine.

0.205 km³/an dans les Altaïdes indique que près de la moitié de la nouvelle croûte continentale terrestre est formée au cours du Paléozoïque par le collage d'Asie Centrale (Sengör et al., **1993**). L'accrétion de matériaux précambriens est cependant démontrée, non seulement par la présence de roches précambriennes, mais aussi par la variabilité des âges modèles Nd des roches sédimentaires métamorphiques (Fig. et 2.D.1; Hu et al., 2000).

Le rôle du magmatisme permien post-accrétion (**Coleman, 1989**) a aussi été inclus dans les calculs de croissance crustale (**Sengör & Natal'in, 1996a**), mais ces auteurs le considèrent comme une contribution mineure liée à l'extension généralisée de la fin du Paléozoïque. Pourtant, de nombreux granites sont observés dans le nord de la Mongolie (**Kovalenko et al., 2004**), dans l'Altaï (**Chen & Jahn, 2002**), dans le nord-ouest de la Chine (**Han et al., 1997**; **Chen & Jahn, 2004**) et au Kazakhstan (**Heinhorst et al., 2000**; **Konopelko, 2008**; **2009**). Les données isotopiques Sr-Nd de ces granitoïdes indiquent une origine juvénile (*Fig. 2.D.2*; **Jahn et al., 2000a**; **2000b**; **Wu et al., 2000**; **Jahn, 2004**), avec un recyclage mineur de la vieille croûte gondwanienne (**Kröner et al., 2007**). L'étude de ces plutons montre aussi un recyclage des arcs accrétés, des produits d'érosion de ces arcs ou encore des mélanges ophiolitiques tout au long du Paléozoïque (**Kovalenko et al., 2004**).

La conversion de cette croûte juvénile en granitoïde correspond à une différentiation intracrustale, qui nécessite un apport conséquent de chaleur. Les caractéristiques géochimiques des granites de type A indiquent une contamination des magmas basiques d'origine mantellique parde la croûte (**Chen & Arakawa, 2005**). Ces intrusions témoignent d'une source de chaleur mantellique à l'origine de la fusion partielle de la base de croûte.

Plusieurs mécanismes sont évoqués pour expliquer cette remontée d'asthénosphère : rupture des panneaux plongeants délamination et lithosphérique (Wu et al., 2002). panache (Yarmoluk mantellique 2001). et al., Alternativement, un modèle de subduction de ride, analogue à celui proposé par Maruyama (1997) pour le Japon, est avancé pour expliquer cet

Figure 2.D.2 Diagramme de la valeur $\varepsilon_{Nd}(t)$ en fonction de composante mantellique, illustrant l'importance relative des apport de matériel mantellique lors de la formation de la croûte juvénile d'Asie Centrale (modifié d'après **Jahn, 2004**). La composante mantellique est calculée à partir des compositions isotopiques et élémentaires en néodyme de l'échantillon, de la croûte et du manteau (voir **Jahn, 2004** pour le détail des calculs).

apport de chaleur (**Windley et al., 2007 ; Xiao et al., 2010**). Les preuves en faveur de ce phénomène sont cependant rares et ponctuelles: 1) coexistence de terrains de haute pressionbasse température en Mongolie et dans le Tianshan et 2) adakites et boninites intrusives dans le prisme d'accrétion de l'Ouest Junggar (**Geng et al., 2009 ; Tang et al., 2010 ; Zhang et al., 2011a**).

La croissance de la croûte continentale en Asie Centrale résulte donc de deux processus : 1) l'accrétion horizontale et/ou latérale de matériaux, associée à la production de magmatisme d'arc, et 2) la croissance verticale par addition de matériaux d'origine mantellique en contexte post-orogénique. Ce dernier mécanisme, longtemps ignoré dans les premiers modèles représente cependant une part importante de la croissance de la croûte continentale dans les Altaïdes.

E Limites des modèles existants

Malgré son apparente simplicité, le modèle de l'arc de Kipchak (Sengör et al., 1993) reste très spéculatif, car il donne une vision à grande échelle des unités géologiques des Altaïdes sans forcément considérer l'histoire intrinsèque de ces unités. De plus, de nombreux points critiques de ce modèle ont souvent été débattus (Windley et al., 2007 ; Xiao et al., 2010). L'absence de substratum précambrien dans certains domaines des Altaïdes a conduit Sengör et al., (1993) à modifier l'architecture de l'arc de Kipchak. Dans la version mise à jour du modèle, Sengör & Natal'in (1996) proposent que cet arc est latéralement hétérogène, avec une marge plutôt continentale dans la partie kazakh et un arc de type insulaire dans la partie Altaï. Cependant, les récents travaux dans les Altaïdes Occidentales ont montré que cette distinction n'était pas si simple et que les arcs insulaires et continentaux coexistaient dans les deux régions (Buslov et al., 2001 ; Degtyarev, 2011).

La juxtaposition des cratons Siberia et Baltica au début du Vendien est aussi largement remise en cause (e.g. Windley et al., 2007) par les reconstructions paléomagnétiques (Meert & Lieberman, 2004 ; Cocks & Torsvik, 2005) qui indiquent la présence d'un domaine océanique (Mer d'Aegir) entre les deux masses continentales. L'existence d'un océan est aussi suggérée par des ophiolites néoprotérozoïques au Kazakhstan et dans l'Altaï (Bykadorov et al., 2003), mais cette hypothèse n'est pas confirmée par les données géochronologiques récentes (Degtyarev et al., 2010 ; Kröner et al., 2011).

Une autre critique du modèle de l'arc de Kipchak concerne l'origine des blocs précambriens. Puisque ces derniers présentent des caractéristiques stratigraphiques communes avec les autres blocs est-gondwaniens (Eganov & Sovetov, 1979), une origine exotique à la Siberia ou la Baltica est nécessaire. De plus, les données paléomagnétiques indiquent une dérive vers le nord depuis l'hémisphère sud de ces blocs (Bazhenov et al., 2003 ; Collins et al., 2003 ; Alexyutin et al., 2005) ce qui suggère leur accrétion dans le collage. Les données géochimiques et géochronologiques obtenues dans les terrains sédimentaires et métamorphiques du nord de la Chine vont aussi dans ce sens (Hu et al., 2000). Dans un modèle dérivé, Yakubchuk (2008) propose des paires d'arc et de bassins arrière-arc, mais la caractérisation de ces domaines d'arrière-arc n'est pas vraiment claire et les évidences géochimiques et sédimentologiques sont encore assez rares (Seltmann et al., 2010).

Le diachronisme régional des complexes d'accrétion et du magmatisme d'arc semble en faveur d'un modèle d'accrétions multiples au cours du paléozoïque. La présence de sutures ophiolitiques au Kazakhstan (**Mikolaichuk et al., 1997**; **Alexeiev et al., 2010**; **Kröner et al., 2011**) et dans le Tianshan (**Alexeiev et al., 2009**; **Hegner et al., 2010**; **Charvet et al., 2007**) va aussi dans ce sens. Néanmoins, les données paléomagnétiques obtenues au Kazakhstan ont permis d'établir l'existence d'une structure continue à grande échelle : la virgation kazakh (*Fig. 2.E.1*; **Grishin et al., 1998**; **Levashova et al., 2003**; **2007**; **2009**; **Abrajevitch et al., 2007**; **2008**). La cinématique de cette virgation est relativement bien contrainte avec à

Figure 2.E.1 Evolution cinématique de la virgation du Kazakhstan (van der Voo et al., 2008). Ce modèle est basé sur les données paléomagnétiques obtenues dans les trois segments de l'orocline (Bazhenov et al., 2003 ; Collins et al., 2003 ; Levashova et al., 2003b ; 2003b ; 2007 ; van der Voo et al., 2006 ; Abrajevitch et al., 2007 ; 2008). En violet, la position des segments calculée et en gris la position inférée.

l'origine une structure linéaire pré-silurienne, puis une individualisation en trois segments qui vont subir une rotation relative selon un axe vertical. Ces travaux paléomagnétiques (**Abrajevitch et al., 2008**) ont aussi montré que seuls 50% de la courbure totale était dus à la formation de la virgation lors de la résorption de l'Océan Balkash-Junggar sous la marge kazakh. Les 50 % restants sont dus aux décrochements post-orogéniques (**Levashova et al., 2003 ; van der Voo et al., 2006 ; Wang et al., 2007 ; Abrajevitch et al., 2008**) qui affectent les segments sud et nord-est pendant le Permien. Si la présence de cette virgation remet partiellement en cause certains modèles de type archipel (**Filippova et al., 2001 ; Kheraskova et al., 2003**), la cinématique proposée est assez différente de celle du modèle de l'arc de Kipchak (**Sengör et al., 2003 ; Sengör & Natal'in, 2006**). De même, une seule virgation a pu être mise en évidence au Kazkahstan, ce qui n'est pas en faveur de l'hypothèse des paires d'arcs bassin d'arrière-arc proposée par **Yabukchuk (2008**).

Une des limites des modèles d'accrétions multiples (Filippova et al., 2001; Kheraskova et al., 2003; Xiao et al., 2010) concerne la polarité des subductions. Si dans certains cas, l'agencement du complexe d'accrétion, des mélanges ophiolitiques et de l'arc magmatique permet de contraindre aisément la vergence de la subduction (Alexeiev et al., 2010 ; Kröner et al., 2011), dans de nombreux cas, la géométrie de la paléo-zone de subduction est ambiguë car les interactions entre la plaque plongeante et la plaque supérieure ont entraîné une migration du front de l'arc magmatique et du complexe d'accrétion. Dans la région de l'Irtysh-Zaisan, des subductions vers le nord et vers le sud alternativement été proposées (Filippova et al., 2001; Buslov et al., 2001), la déformation décrochante permienne masquant souvent la structure primaire de la chaîne (Laurent-Charvet et al., 2003 ; Buslov et al., 2004). Dans le Tianshan, la polarité de la subduction de l'océan Kirghiz-Terskey est largement débattue (Mikolaichuk et al., 1997; Degtyarev, 2011). Dans le Tianshan chinois, une subduction vers le nord a longtemps été proposée (Windley et al., 1990 ; Gao et al., 1998 ; Xiao et al., 2008), sur des arguments essentiellement géométriques. Cependant, les études structurales récentes dans l'ouest (Lin et al., 2008 ; Wang et al., 2010 ; 2011) et l'est (Laurent-Charvet, 2001) du Tianshan chinois semblent indiquer une subduction sous le Tarim. Cette hypothèse vaut également pour le Kirghizstan, car il n'existe aucune évidence d'arc magmatique (Charvet et al., 2011) au nord de la suture d'Atbashi (Alexeiev et al., 2009). A l'ouest de la faille de Talas-Fergana, la polarité de la subduction est cependant sans ambiguïté vers le nord (Burtman, 1975 ; Zonenshain et al., 1990).

L'âge de la collision finale entre le bloc du Tarim et le Tianshan est aussi matière à débat. Pendant longtemps, l'assemblage final des Altaïdes a été situé à la fin du Carbonifère voire au début du Permien (Coleman, 1989). Les travaux dans le Tianshan ont permis de mettre en évidence une discordance majeure dans le Carbonifère inférieur (Carroll et al., 1995), suggérant une collision assez précoce (Charvet et al., 2007). Cependant sur la base de radiolaires permiens (Li et al., 2005) et d'éclogites triasiques (Zhang et al., 2007), la collision finale a été réinterprétée d'âge triasique (Xiao et al., 2008 ; 2010). Ces auteurs considèrent que l'amalgamation du Tarim dès le Carbonifère aurait empêché les mouvements tardifs permiens, faute d'espace disponible. Cependant, les arguments proposés sont assez ambigus (Charvet et al., 2011). La discordance entre le Permien continental et le Trias continental, considérée comme la preuve de la collision permo-triasique (Xiao et al., 2008) correspond en fait à une déformation intra-continentale de la chaîne en réponse à une collision continentale dans le Kunlun (Hendrix et al., 1992). Enfin, la réactivation en décrochement au Permien des principales sutures ophiolitiques (Buslov et al., 2001 ; Wang et al., 2006 ; 2010) indique que le collage tectonique est bien antérieur à l'épisode décrochant permien.

F Problématique

L'architecture et les modalités d'évolution des chaînes d'accrétion des Altaïdes Occidentales sont des questions scientifiques majeures. Certains auteurs proposent une analogie avec le Japon (**Sengör & Natal'in, 1996**; **Windley et al., 2007**; **Xiao et al., 2010**). Cependant, comme nous l'avons présenté dans le premier chapitre, l'évolution du Japon est largement débattue (**Charvet et al., 2011**) et de nombreux éléments indiquent la coexistence de caractères de chaîne de collision et de chaîne d'accrétion. De plus, les intrusions magmatiques de ces deux régions présentent des caractéristiques assez différentes, ce qui suggère une variabilité de la nature de la croûte sous jacente. Dans les Altaïdes, les modèles existants sont principalement basés sur les données géochronologiques et géochimiques. Comme les données structurales sont assez rares, excepté dans le Tianshan chinois et kirghiz, ou localisées le long des accidents tectoniques majeurs, il est difficile de tester les scénarios tectoniques à grande échelle (virgation, translation des blocs).

Le premier objectif de ce travail est de caractériser l'architecture de ces chaînes d'accrétion, afin d'évaluer le rôle des structures tectoniques (virgation, décrochements) contemporaines de leur formation.

Les travaux géochimiques et géochronologiques dans les nombreux plutons postaccrétion ont permis de mettre en valeur la croissance verticale de la croûte continentale durant le Permien (**Jahn et al., 2004**). L'accrétion de matériaux dans les zones de subduction paléozoïque et le magmatisme d'arc ont aussi largement contribué à la croissance de la croûte continentale (**Sengör et al., 1993**), mais peu de contraintes chronologiques sur les étapes de cette croissance sont actuellement disponibles. Les chaînes d'accrétion modernes péripacifiques attestent que la croissance continentale est rarement un processus continu au cours de la subduction (e.g. **Condie et al., 2007**; **Cawood et al., 2009**), puisque les interactions entre la plaque supérieure et la plaque inférieure contrôlent l'activité de l'arc, le développement de basins en périphérie de l'arc et le régime du chenal de subduction (ablation versus accrétion).

Le second objectif de ce travail est d'établir les étapes de la croissance de la croûte continentale des Altaïdes Occidentales au cours des multiples subductions du Paléozoïque.

De nombreux éléments montrent que le modèle Kipchak ne permet pas d'expliquer la relative variabilité des Altaïdes Occidentales. L'hypothèse d'accrétions et/ou de collisions

multiples est généralement acceptée. Cependant, il existe un problème d'harmonie régionale entre les différents modèles proposés.

• Au Kazakhstan, les études géochronologiques et géochimiques suggèrent une évolution polycyclique avec un stade « calédonien » correspondant à la formation du microcontinent kazakh et un stade « hercynien » caractérisé par la résorption des domaines océaniques périphériques. La collision de blocs continentaux est généralement proposée.

• Dans le Tianshan, le schéma de collisions multiples proposé (**Charvet et al., 2011**) est assez compatible avec le modèle kazakh malgré des différences concernant la chronologie et la polarité de la subduction de l'Océan Turkestan.

Dans l'Altaï et le Junggar Oriental, une accrétion continue d'arcs insulaires au cours du Paléozoïque a été proposée (Xiao et al., 2004 ; 2009), en mettant en valeur la possibilité de subduction de rides océaniques (Windley et al., 2007 ; Xiao et al., 2010). Ces auteurs étendent ce modèles au Junggar Occidentalet au Tianshan (Xiao et al., 2008) et proposent arbitrairement une indépendance des systèmes orogéniques Kazakh et Chinois (Xiao et al., 2009 ; 2010).

La grande variabilité des modèles proposés reflète non seulement le caractère épars des données, mais aussi l'absence de corrélations régionales.

Le troisième objectif de la thèse est d'explorer les relations et les éventuelles corrélations entre les différentes régions des Altaïdes Occidentales afin de proposer un modèle géodynamique régional et intégré.

Comme nous l'avons vu, les Altaïdes Occidentales représentent un vaste domaine et ne peuvent faire l'objet d'une seule étude. Pour cette raison, nous allons nous concentrer sur un segment de ce collage tectonique : le Junggar Occidental. Cette région, à l'extrémité nordouest de la Chine, est au carrefour des trois ensembles majeurs des Altaïdes (Kazakhstan, Altaï et Tianshan). Elle représente donc un laboratoire naturel pour étudier la formation du collage d'Asie Centrale et caractériser les mécanismes de la croissance de la croûte continentale. Les prochains chapitres seront focalisés sur le Junggar Occidental, tout en essayant de replacer, à l'échelle des Altaïdes Occidentales, les différents processus et épisodes tectoniques évoqués.

CHAPITRE III : OBJET ET METHODES : LE JUNGGAR OCCIDENTAL, NECESSITE D'UNE APPROCHE PLURIDISCIPLINAIRE

Les mélanges ophiolitiques de Tangbale et Dalabute

?

A Le Junggar Occidental

Le Junggar Occidental est un massif montagneux situé à l'extrémité nord-ouest de la Chine. Il marque la limite avec le Kazakhstan. Ce massif est bordé à l'est par le bassin du Junggar Occidental, au nord par le bassin de l'Irtysh-Zaisan et à l'ouest par le bassin d'Alakol. Le Junggar est classiquement séparé par la vallée de Hueshentaolege et le bassin de Tacheng qui délimitent un domaine nord et un domaine sud (Fig. 3.A.1; Feng et al., 1989). Le domaine nord est marqué par une chaine centrale d'orientation E-W, avec à l'est les Monts Sawuer et à l'ouest les Monts Tarbagatay qui se poursuivent au Kazakhstan. Cette chaîne qui peut atteindre plus de 3800 mètres d'altitude est bordée par deux chaînons subparallèles, Buerj'in au nord et, d'ouest en est, Wuerkashier-Xiemisitai-Saier-Sharburt au sud. La région au sud de la vallée de Hueshentaolege est marquée par une structuration NE-SW, essentiellement due à la réactivation récente des failles de Barliek, Toli et Dalabute. Trois domaines montagneux sont généralement distingués : le monts Barliek à la frontière kazakh, les monts de Mayila, dans la partie centrale et les monts Hatu en bordure du bassin du Junggar. Malgré les importantes différences d'altitude entre les régions montagneuses et les bassins sédimentaires récents, l'allure générale du relief contraste fortement avec les paysages accidentés et les vallées incisées du Tianshan. En effet, le Junggar Occidental, se caractérise plutôt par des plateaux surélevés sans contreforts majeurs et une pente relativement douce jusqu'au bassin.

A.1 Aperçu géologique

A.1.i Présentation des formations

Une des caractéristiques majeures du Junggar Occidental est l'absence de roches précambriennes (*Fig. 3.A.1*; **Feng et al., 1989**; **BGRMXUAR, 1993**). Cependant, dans la région de Tangbale, des métasédiments réputés ordoviciens ont fourni un âge modèle Sm-Nd mésoprotérozoïque, ce qui suggère que certaines unités du Junggar Occidental ont recueilli des produits d'érosion précambriens (**Hu et al., 2000**).

Trois zones exposent des formations d'âge paléozoïque inférieur (*Fig. 3.A.1*). Ces domaines seront détaillés dans le chapitre 5 et seulement un aperçu est présenté ici.

La région de Tangbale, limitée par la faille de Dalabute au NW et les dépôts mésozoïques au SE est caractérisée par un mélange (mélange de Tangbale) à matrice serpentineuse contenant des blocs de péridotite, de gabbro, de basalte et de chert (*Fig. 3.A.1*;

Huo, 1984; Feng et al., 1989; Zhang et al., 1993). Les roches mafiques présentent une 98 MECANISMES ET EVOLUTION DES CHAINES D'ACCRETION EN ASIE CENTRALE

47°N

46°N

Figure 3.A.1 Carte géologique simplifiée du Junggar Occidental (modifié d'après Feng et al., 1989; BGRMXUAR, 1993; Buckman & Aitchison, 2004). L'encart montre la localisation des ensembles géographiques discutés dans le texte. Les âges des intrusions magmatiques sont extraits de Chen et al. (2006), Han et al. (2006), Su et al. (2006a), Zhou et al. (2008b), Geng et al. (2009) et Chen et al. (2010a). Les numéros se réfèrent aux mélanges ophiolitiques.1 : Tangbale, 2 : Mayila, 3 : Honguleleng, 4 : Hobuksar, 5 : Tacheng, 6 : Barliek, 7 : Bayanhe, 8 : Dalabute, 9 : Karamay, 10 : Kokeshentan, 11 : Kujibai.

large variabilité géochimique suggérant des contextes de mise en place en domaine océanique, d'arc, d'avant-arc ou intraocéanique (**Zhang et al., 1993**; **Wang et al., 2003**; **Buckman & Aitchison, 2004**). Les blocs du mélange (gabbro, plagiogranite, chert, schistes bleus) ont fourni des âges cambro-ordoviciens (**Wang, 1982**; **Kwon et al., 1989**; **Zhang et al., 1993**; **Zhang, 1997**; **Buckman & Aitchison, 2001**; **Jian et al., 2005**), mais la matrice n'est pas datée. Le mélange est recouvert par des turbidites siluriennes de la formation de Qiargaye (*Fig. 3.A.2*; **Mu et al., 1986**; **Feng et al., 1989**). Au sud, le mélange de Tangbale est en contact avec la série métasédimentaire de Laba. Cette formation est arbitrairement attribuée à l'Ordovicien moyen (*Fig. 3.A.2*; **Feng et al., 1989**; **Zhang et al., 1993**), du fait de son caractère métamorphique.

La région de Mayila est bordée au sud-ouest par le réseau de failles NW-SE d'Alashankou. Comme à Tangbale, un mélange serpentineux est observé (*Fig. 3.A.1* ; **Zhang et al., 1993**). Il contient des blocs de péridotite, de chert, de basalte, de gabbro et de calcaire. Les rares données géochimiques obtenues sur les roches basiques indiquent des environnements de mise en place en domaine océanique, d'arc ou d'arrière arc (**Xiao et al., 1991 ; Zhang et al., 1995 ; Wang et al., 2003**). Les blocs (chert, pyroxénites) ont fourni un âge silurien (**Li, 1994 ; Jian et al., 2005**). Le mélange est associé à la formation de Mayila, qui comprend des turbidites volcanoclastiques et des calcaires du Silurien inférieur à moyen (*Fig. 3.A.2* ; **Mu et al., 1986 ; Feng et al., 1989 ; BGRMXUAR, 1993**).

La région de Sharburt présente aussi un mélange serpentineux qui semble se poursuive à l'ouest (mélanges de Hobuksar, Kujibai et Tacheng) (*Fig. 3.A.1*), si bien que cette unité d'âge Paléozoïque inférieur pourrait se corréler à l'unité de Chingiz-Tarbagatay (**Chen et al., 2010a**), qui constitue la partie supérieure de l'unité de Bozshekul-Chingiz (**Degtyarev, 2011**). Comme à Mayila et Tangbale, les mélanges contiennent des blocs de péridotite, gabbro et basalte (**Zhang et al., 1993** ; **Jin et al., 1999**). Sur la base des caractéristiques géochimiques des roches mafiques, des environnements océaniques et de bassins d'arrière-arc ont été alternativement proposés (**Zhang et al., 1993** ; **Huang et al., 1995**). Bien qu'un âge Sm-Nd néoprotérozoïque ait été obtenu (**Jin et al., 1999**), les blocs de gabbros ont fourni des âges cambro-ordoviciens (**Jian et al., 2005** ; **Zhu & Xu, 2006**) et ordovicien terminal (**Zhang et** al., 1993 ; Jin et al., 1999). Le mélange contient également des volcanites rattachées à la formation ordovicienne moyen de Bulukeqi (*Fig. 3.A.2* ; BGRMXUAR, 1993). L'Ordovicien moyen affleure aussi sous forme de séries sédimentaires (formation de Kekesayi) dans les monts Tarbagatay (*Fig. 3.A.1* ; BGRMXUAR, 1993). Dans les monts Saier, l'Ordovicien terminal est constitué par des volcanites, des calcaires et des conglomérats qui remobilisent des éléments du mélange (Feng et al., 1989 ; BGRMXUAR, 1993). Les séries siluriennes reposent en concordance sur l'Ordovicien supérieur et se caractérisent par une base d'argilites à graptolites (formation de Sharburt) et un sommet composé de turbidites fines volcanoclastiques (formation de Kekexiongkuduke) (*Fig. 3.A.2* ; Mu et al., 1986 ; Feng et al., 1989 ; BGRMXUAR, 1993). L'extension de l'unité paléozoïque est vraisemblablement plus importante car l'ensemble volcanique des Monts Xiemisiatai, originalement attribué au Dévonien, est recoupé par des granites siluro-dévoniens (*Fig. 3.A.1* ; Chen et al., 2010a).

Il existe une importante diversité des formations d'âge paléozoïque. Nous donnons ici une présentation sommaire de ces terrains mais une description plus précise (concernant principalement le domaine sud) sera faite dans les chapitres 6 et 7. Comme pour le paléozoïque inférieur, une distinction des formations est généralement faite entre la partie nord et la partie sud.

La partie nord est caractérisée par trois chaînons parallèles (Buerj'in, Tarbargatay-Sawuer, Wuerkashier-Xiemisitai-Saier-Sharburt). Dans la zone la plus septentrionale, le mélange ophiolitique de Kokeshentan (*Fig. 3.A.1*) expose des blocs de chert, basalte, gabbro et péridotites (**Zhang et al., 1996**). Ces péridotites sont caractéristiques d'un manteau légèrement appauvri (**Niu et al., 2006**). Aucune contrainte géochronologique n'est disponible, mais le mélange de Kokeshentan est classiquement corrélé au mélange carbonifère de Kuerti (**Xiao et al., 2004 ; Wu et al., 2006a**). Le mélange est associé aux turbidites dévoniennes de la formation de Yundukula (*Fig. 3.A.2* ; **BGRMXUAR, 1993**). Dans la région de Tarbargatay-Sawuer, le Dévonien inférieur est seulement représenté par les séries détritiques de la formation de Mangkelu. La sédimentation reprend au Dévonien moyen, mais ces séries sont principalement marquées par la mise en place de roches volcaniques et de dépôts volcanosédimentaires dans les formations de Sawuer et de Tarbagatay (**Shen et al., 2008 ; Wang et al., 2009c**). Ce type de sédimentation continue au Carbonifère inférieur avec le dépôt de la formation de Heishantou (**BGRMXUAR, 1993**). Dans le chaînon de Wuerkashier-Xiemisitai-Saier-Sharburt, la formation de Hobuksar, concordante sur le Silurien

est marquée par une arrivée progressive de débris volcaniques et une diminution de la

Figure 3.A.2 Tableau synthétique des formations géologiques du Junggar Occidental (compilé à partir des données de Feng et al., 1989; BGRMXUAR, 1993).

profondeur de dépôts au cours du Dévonien inférieur (Wei et al., 2009). La série montre des variations latérales de faciès avec des intercalations de niveaux volcaniques dans les formations de Malasu et Mengbulak (Fig. 3.A.2; BGRMXUAR, 1993). Une lacune sédimentaire de l'Eifelien et une discordance majeure à la base du Givétien est observée dans tout le chaînon (Fig. 3.A.2; Soto & Lin, 2000; Wei et al., 2009). La sédimentation reprend au Givétien avec des dépôts volcanosédimenaires associés à des volcanites à l'ouest et une sédimentation détritique puis carbonatée, à l'est (Xia, 1996 ; Waters et al., 2003 ; Xu & Wang, 2008). Les séries sédimentaires du Carbonifère inférieur sont similaires à celles du chaînon central avec majoritairement des dépôts volcanosédimentaires et de rares niveaux calcaires dans la formation de Hebukehe (Fig. 3.A.2; BGRMXUAR, 1993). Dans le domaine nord du Junggar Occidental, les sédiments du Carbonifère supérieur sont dominés par des turbidites des formations de Jimunai, Nalikala et Sarbulake (BGRMXUAR, 1993). Après une lacune sédimentaire intra-Carbonifère supérieur, une sédimentation détritique fine et grossière se développe dès le Carbonifère terminal (formations de Qiaqihai et Batamayineishan) et se poursuit durant le Permien (Formations de Haerjiawu et Kalagang) (Fig. 3.A.2; BGRMXUAR, 1993); cette molasse est associée à la mise en place de volcanites (Tan et al., 2006). L'origine des mélanges ophiolitiques de Barliek et de Bayanhe (Fig. 3.A.1) est assez incertaine et il n'existe actuellement aucune contrainte géochronologique et géochimique qui permettrait de les caractériser ou de les corréler avec les autres mélanges.

La partie sud du Junggar Occidental est caractérisée par l'absence de roches d'âge dévonien inférieur, à l'exception de l'extrémité nord de la région de Hatu où les dépôts volcano-sédimentaires sont similaires à ceux de la région de Wuerkashier (*Fig. 3.A.1*; **BGRMXUAR, 1993**). Comme dans le domaine septentrional, la sédimentation reprend au cours du Dévonien moyen, avec le dépôt d'une série détritique volcanoclastique (formation de Kulumudi), parfois associé à des épanchements volcaniques (Formation de Barliek). Les dépôts du Dévonien Supérieur sont assez rares, à l'exception de la formation de Tieliketi composée d'un conglomérat de base et de turbidites grossières (*Fig. 3.A.2*; **Feng et al., 1989**; **BGRMXUAR, 1993**). Ces turbidites évoluent vers des faciès plus carbonatés au Dévonien terminal-Carbonifère inférieur. Dans les régions de Barliek et de Mayila, les séries du Carbonifère sont principalement marquées par des séquences de dépôts volcanoclastiques entrecoupées de lacunes sédimentaires et de légères discordances (**Feng et al., 1989**; **BGRMXUAR, 1993**). A l'est de la faille de Toli, le Dévonien est assez mal connu mais les séries carbonifères sont bien exprimées (formations de Xibeikulasi, Baogutou et Tailegula).

Elles sont composées de turbidites fines (Feng et al., 1989 ; Li & Jin, 1989 ; Wu & Pan, **1991**; Guo et al., 2002) associées à des séquences grossières de grauwackes (*Fig. 3.A.2*; Wu & Pan, 1991 ; Guo et al., 2002). Des intercalations de tufs ont été datées du Carbonifère inférieur et supérieur (Guo et al., 2010 ; Zhang et al., 2011a). Les séries sédimentaires sont associées à deux bandes de mélange ophiolitique. Le mélange de Dalabute (aussi appelé Darbut) affleure le long de la faille éponyme (Fig. 3.A.1) et se caractérise par des blocs de basalte, chert, gabbro et péridotite au sein d'un matrice de serpentinite (Feng et al., 1989). Les roches mafiques présentent des caractéristiques de MORB, OIB, de E-MORB et de BABB (Zhang et al., 1993 ; Wang et al., 2003 ; Lei et al., 2008 ; Gu et al., 2009 ; Liu et al., 2009 ; Yang et al., 2011). Si des âges ordoviciens (He & Zhao, 2011) et carbonifères (Liu et al., 2009) ont été avancés, les blocs de chert à radiolaires et de gabbro ont fourni un âge Dévonien moyen, généralement admis (Feng et al., 1989 ; Zhang et al., 1993 ; Gu et al., 2009 ; Yang et al., 2011). Le mélange de Karamay (aussi appelé Baijantan ou Baikouquan) est situé sur la bordure est du massif du Junggar Occidental (Fig. 3.A.1). Il consiste en un mélange serpentineux à bloc de chert, péridotite, basalte et gabbro (Zhang et al., 2011a) et des reliques de haute pression (Zhu & Xu, 2007 ; Zhu et al., 2008). Les roches mafiques montrent des affinités océaniques et intraocéaniques (Zhu et al., 2007 ; Zhang et al., 2011b). L'âge du mélange est assez mal contraint, des âges ordovicien et carbonifère ont été alternativement proposés (Xu et al., 2006a ; He et al., 2007 ; Zhu et al., 2007). L'ensemble du domaine sud est recouvert par une molasse permienne associée à des volcanites alcalines (Fig. 3.A.2; Feng et al., 1989; BGRMXUAR, 1993; Buckman & Aitchison, 2004).

A.1.ii Structuration du Junggar Occidental

La structure actuelle du Junggar Occidental résulte principalement de la tectonique permienne et de la réactivation cénozoïque des accidents paléozoïques. Bien que le relief puisse atteindre plus de 3000 mètres, l'expression de la tectonique récente est limitée contrairement au piedmont du Tianshan (**Avouac et al., 1993**). Actuellement, le régime de déformation est plutôt compressif et se caractérise par un léger chevauchement du socle paléozoïque sur sa couverture mésozoïque et par le développement du chevauchement profond de Ke-Wu dans la partie occidentale du bassin du Junggar (**Lawrence, 1990**). La réactivation fragile des structures paléozoïques est difficile à mettre en évidence, car elle se surimpose à une déformation fragile permienne et les déplacements sont très limités.

Les accidents permiens principaux sont la faille d'Alashankou au sud-ouest, les failles de Toli, Barliek et Dalabute et la faille de l'Irtysh au nord-est (*Fig. 3.A.1*). Ces failles sont

essentiellement décrochantes (Allen et al., 1995 ; Allen & Vincent, 1997 ; Laurent-Charvet et al., 2002). Elles contrôlent la mise en place de bassins sédimentaires syn-tectoniques permiens (Allen et al., 1995). La déformation pré-permienne est assez mal connue et reste limitée à quelques rares études locales à proximité des mélanges ophiolitiques.

Dans la région de Tangbale, **Feng et al. (1989)** proposent que le mélange de Tangbale, affecté par une foliation N70°E à fort pendage vers le nord (**Zhang et al., 1993**), soit sous les turbidites de la formation de Qiargaye. Ce contact à pendage moyen vers le NW est interprété comme un chevauchement (**Buckman & Aitchison, 2004**).

Le mélange de Mayila est caractérisé par une foliation subverticale orientée NE-SW dans la partie nord et E-W dans la partie sud (**Zhang et al., 1993**). Ce changement de direction est vraisemblablement causé par une tectonique transpressive tardive à l'origine d'un plissement complexe des terrains. La structure initiale est marquée par le chevauchement des turbidites dévoniennes sur le mélange ophiolitique, bien qu'une discordance soit parfois suggérée (**Zhang et al., 1993**).

Dans la région de Dalabute, le mélange ophiolitique est considéré comme une nappe à vergence SE (**Feng et al., 1989**). Si le mélange est principalement dans sa position d'enracinement, il existe des klippes de mélange sur les turbidites carbonifères (**Feng et al., 1989**).

L'étude détaillée de la coupe de Yayagou, à travers le mélange de Karamay et les turbidites adjacentes à montré une structure plissée marquée par de nombreux accidents subverticaux interprétés comme des chevauchements (**Zhang et al., 2011a**). Ces auteurs proposent une vergence NW des plis et des chevauchements, bien que leur étude de détail montre une importante complexité de la structure.

Enfin la région de Buerj'in est largement marquée par une verticalisation des structures et le développement d'une schistosité NW-SE liée à l'accident sénestre de l'Irtysh (Laurent-Charvet et al., 2002). Néanmoins, l'observation de critères cinématiques dextres dans les calcaires Paléozoïques de la zone de l'Irtysh (Xiao et al., 2009a) semble indiquer un jeu polyphasé de la faille (Laurent-Charvet et al., 2003).

A.1.iii Magmatisme

Comme dans le reste de l'Asie Centrale, plusieurs épisodes magmatiques ont été enregistrés dans le Junggar Occidental. Nous présentons ici seulement les intrusions magmatiques, car les roches volcaniques ont déjà été détaillées au sein des formations géologiques. De même, les roches magmatiques présentes sous forme de blocs au sein des mélanges ne seront pas détaillées.

Les intrusions d'âge Paléozoïque inférieur sont assez rares dans le Junggar Occidental et seuls quelques plutons de diorite ont été décrits dans la région de Mayila et de Tangbale (**Buckman & Aitchison, 2004**). Le complexe de Suyuenka (*Fig. 3.A.1*), d'âge inconnu recoupe le mélange de Tangbale ; mais, il est recouvert par les turbidites Siluriennes de la formation de Qiargaye, ce qui lui confère un âge probable ordovicien à silurien. La chimie de ces diorites est clairement calco-alcaline.

La limite entre le Silurien et le Dévonien est caractérisée par la mise en place de diorite et de granites à mégacristaux de feldspath potassique dans le chaînon de Xiemisitai (*Fig. 3.A.1*; **Chen et al., 2010a**). Bien que la chimie de ces roches ne soit pas disponible, la présence de granitoïdes à pyroxènes et amphiboles sodiques indique un caractère relativement alcalin de la roche.

Il existe très peu d'intrusions magmatiques dévoniennes, à l'exception de la granodiorite de type I de Bieluakaxi (*Fig. 3.A.1*; **Jin & Xu, 1997**).

La Carbonifère inférieur est marqué par la mise en place de nombreux granitoïdes principalement dans les monts Tarbagatay et Sawuer (*Fig. 3.A.1*; **Han et al., 2006**; **Zhou et al., 2008b**; **Chen et al., 2010a**). Ces granites montre une signature géochimique calcoalcaline (**Chen et al., 2010b**) et ont été interprétés comme des granites de type I. Ce magmatisme se poursuit jusqu'au Carbonifère supérieur avec la mise en place de granodiorites dans la région de Barliek (*Fig. 3.A.1*; **Chen et al., 2006**).

La période s'étalant du Carbonifère terminal au Permien supérieur est marquée par la mise en place de nombreux plutons et dykes dans l'ensemble du Junggar Occidental. Les intrusions les plus remarquables sont les plutons granitiques de forme circulaire (Miaoergou, Akbastan, Hongshan, etc.) (*Fig. 3.A.1*). Ces granites à feldspaths alcalins sont datés entre 300 Ma et 290 Ma et présentent une chimie alcaline (**Kwon et al., 1989**; **Han et al., 1997**; **1999**; **2006**; **Chen & Jahn, 2004**; **Chen & Arakawa, 2005**; **Su et al., 2006a**; **Zhou et al., 2008b**; **Geng et al., 2009**; **Chen et al., 2010a**; **2010b**). La majeure partie de ces plutons a

été interprétée comme des granites de type A, mais certains sont considérés de type I (**Chen & Jahn, 2004**). Ces intrusions sont accompagnées par des charnockites (**Zhang et al., 2004** ; **Geng et al., 2009**) et par un réseau irrégulier de dykes mafiques (basaltes, diabase, dolérite) daté entre 300 et 260 Ma (**Qi, 1993** ; **Li et al., 2004a** ; **Xu et al., 2008b** ; **Zhou et al., 2008a**).

Les récents travaux dans la partie sud-est du Junggar Occidental ont permis de mettre en évidence des intrusions à affinités adakitiques (Geng et al., 2009 ; 2011 ; Tang et al., 2010 ; Zhang et al., 2011b). La période de mise en place de ces adakites et ces diorites magnésiennes s'étend entre 320 Ma et 300 Ma (Geng et al., 2009 ; Tang et al., 2010 ; Yin et al., 2010).

A.2 Modèles existants

A.2.i Modèle de type arc de Kipchak

Jusqu'à récemment, aucun modèle géodynamique ou tectonique n'était proposé pour le Junggar Occidental. L'évolution de la chaîne était considérée comme le résultat d'une accrétion continue au Paléozoïque (à l'origine des différents complexes d'accrétion) et d'une collision fini-Paléozoïque (**Coleman, 1989** ; **Feng et al., 1989** ; **Zhang et al., 1993**).

Sur la base de nouvelles données géochimiques obtenues dans les blocs de roches magmatiques des mélanges ophiolitiques des différents complexes d'accrétion, **Wang et al.** (2003) proposent d'intégrer l'évolution du Junggar Occidental (et aussi du Junggar Oriental) dans le modèle de l'arc de Kipchak (Sengör et al., 1993 ; Sengör & Natal'in, 1996a). Les zones de Mayila, Tangbale et Hongguleleng représentent un unique complexe d'accrétion bordant l'arc de Kipchak (partie intra-océanique de l'arc dans la version mise à jour par Sengör & Natal'in, 1996a). Ce prisme va se développer durant tout le Paléozoïque inférieur et sera marqué par une migration de l'arc vers l'océan (*Fig. 3.A.3*). Au fur et à mesure que le prisme se développe (complexe Dévonien de Darbut), l'arc magmatique (arc de Sharburt) migre sur les anciennes parties du prisme.

A partir de la fin du Dévonien, une virgation marquée par une marge concave vers l'océan se développe (*Fig. 3.A.3*). La marge comprend non seulement le Junggar Occidental, mais aussi, l'arc de Bogda dans le Tianshan et le complexe de Kekesentao (Kokeshentan). La courbure du système est accommodée par des décrochements sénestres qui permettent un déplacement latéral des unités. Cette période est aussi marquée par l'accrétion d'une unité exotique : l'arc de Sawuer (*Fig. 3.A.3*).

La subduction se poursuit jusqu'au milieu du Carbonifère et la disparition des domaines océaniques sauf peut-être dans l'actuel bassin du Junggar où un fragment de croûte océanique resterait préservé (Carroll et al., 1990). La collision fini-Paléozoïque est

MECANISMES ET EVOLUTION DES CHAINES D'ACCRETION EN ASIE CENTRALE
Figure 3.A.3 Modèle géodynamique du Junggar Occidental (modifié d'après **Wang et al., 2003**). Ce scénario qui s'inspire largement du modèle Kipchak (**Sengör et al., 1993**) est caractérisé par une subduction/accrétion tout au long du Paléozoïque. Le développent d'une virgation, puis un régime transcurrent général à l'origine de rotations de blocs sont suggérés pour expliquer la géométrie actuelle des complexes d'accrétion du Junggar Occidental.

caractérisée par un régime tectonique à forte composante décrochante, marqué par des cisaillements senestres en bordure de l'Altaï et du Tianshan (*Fig. 3.A.3*). La zone située entre ces deux décrochements est caractérisée par des rotations antihoraires des unités du Junggar Occidental par rapport au Tarim et à la Sibérie, largement accommodées par la réactivation dextres des limites d'unités (**Allen et al., 1995**).

A.2.ii Les modèles d'accrétions multiples

L'absence assez systématique de relations stratigraphiques entre les séries de turbidites, les séries volcanoclastiques à volcaniques et les mélanges ophiolitiques conduit **Buckman and Aitchison (2004)** à adopter une approche classique pour l'étude des chaînes d'accrétion : l'analyse des *terranes* (**Coney et al., 1980 ; Jones et al., 1983 ; Howell, 1989**). Cette analyse tectono-stratigraphique ne concerne que le domaine au sud de la vallée de Hueshentaolege. Neufs *terranes* sont ainsi distingués avec du plus ancien au plus jeune (*Fig. 3.A.4*) :

9Le Tangbale *Terrane* d'âge cambrien supérieur est marqué par le mélange ophiolitique de Tangbale au sens strict, c'est à dire seulement la partie comprenant les blocs basiques et ultrabasiques.

Figure 3.A.4 Carte tectonique de la partie sud du Junggar Occidental, indiquant la localisation des terranes paléozoïques (modifié d'après **Buckman & Aitchison, 2004**).

• Le Kekesayi *Terrane* d'âge Ordovicien supérieur à Silurien est composé d'une série discontinue et répétée de basaltes, cherts et tufs emballés dans une matrice de serpentinite.

• L'Ebinur *Terrane* est composite. Il comprend un substratum formé par l'amalgame des *terranes* de Tangbale et d'Ebinur. Le complexe de Suyuenka se développe au sein de ce *terrane* qui comprend aussi les dépôts turbiditiques de la formation de Qiargaye.

• Le Laba *Terrane* est un bloc exotique composé de métasédiments réputés ordoviciens (formation de Laba).

• Le Mayila *Terrane* est un *terrane* composite silurien qui comprend le mélange de Mayila, les séries sédimentaires de la formation de Mayila et un complexe dioritique intrusif.

• Le Toli *Terrane* est composé des terrains volcanosédimenatires et volcaniques dévoniens de la région de Barliek. Il comprend aussi la partie occidentale du chaînon de Hatu et notamment la granodiorite de Bieluakaxi.

· Le Kulumudi *Terrane* est caractérisé par une série répétée de basaltes, cherts, tufs et turbidites volcanoclastiques d'âge dévonien.

• Le Sartuohai *Terrane* comprend le mélange ophiolitique de Dalabute. La mise en place de ce mélange qui contient des blocs dévoniens est située au Carbonifère.

· Le Karamay *Terrane* est dominé par des turbidites volcanoclastiques carbonifères et des niveaux de basaltes alcalins intercalés.

A partir de cette analyse, le modèle d'évolution suivant a été proposé (Fig. 3.A.5).

L'histoire débute au Cambrien supérieur avec le développement d'une subduction intra-océanique à partir d'une faille transformante (*Fig. 3.A.5*). La subduction vers le nord de l'Océan Kekesayi est à l'origine des ophiolites du Tangbale *Terrane* qui se développe en contexte supra-subduction. Au cours de l'Ordovicien, la couverture sédimentaire et la partie supérieure de la croûte océanique de l'Océan Kekesayi sont accrétées à la protomarge du Junggar Occidental pour former le Kekesayi *Terrane*. Vers 450-440 Ma, la marge active (Ebinur *Terrane*) est marquée par du magmatisme d'arc intra-océanique (complexe de Suyuenka) et un bassin d'avant-arc (formation de Qiargaye) (*Fig. 3.A.5*). La fermeture de l'Océan Kekesayi se traduit par la collision entre les *terranes* d'Ebinur et de Laba vers 425 Ma. A la même époque, un autre bassin (Océan Mayila) entre en subduction sous le futur Mayila *Terrane*. La fermeture du bassin marginal de Mayila au début du Dévonien entraîne

l'amalgame du Mayila *Terrane* avec les *terranes* d'Ebinur et de Laba (Formation du *superterrane* Mayila-Ebinur-Laba) (*Fig. 3.A.5*).

Figure 3.A.5 Modèle d'évolution géodynamique du Junggar Occidental (modifié d'après **Buckman & Aitchison, 2004**). De multiples collisions de terranes sont proposées et la croissance du Junggar Occidental résulte d'une succession d'ouverture puis fermeture de bassin d'arrière-arc.

Le superterrane Mayila-Ebinur-Laba constitue la marge passive méridionale de l'Océan Kulumudi. Cet océan s'est probablement développé en domaine d'arrière-arc de la subduction silurienne de l'Océan Mayila. La subduction intraocéanique de l'Océan Kulumidi débute au cours du Dévonien ; elle est caractérisée par du magmatisme d'arc dans le Toli *terrane*, une extension d'avant-arc et la mise en place des ophiolites du Sartuohai *Terrane* et l'accrétion de la couverture sédimentaire et d'une partie de la croûte océanique de l'Océan Kulumudi dans le Kulumudi *Terrane*. L'accrétion continue au Carbonifère, mais l'arrivée dans le chenal de subduction du Karamay *Terrane* (guyot carbonifère) entraîne un blocage de la subduction (*Fig. 3.A.5*). En réponse à ce régime général compressif, le bassin d'avant-arc de Sartuohai se ferme et les ophiolites sont incorporées dans un mélange à blocs. La zone de subduction de l'Océan Kulumudi migre vers le sud. La collision entre le *superterrane* Mayila-Ebinur-Laba et les *terranes* dévoniens et carbonifères intervient au Carbonifère terminal. L'association de ces *terranes* est scellée par le magmatisme alcalin permien.

Ce modèle d'accrétion multiple met en valeur l'extension en domaine avant et arrière de l'arc, à l'origine de l'ouverture de bassins marginaux. (*Fig. 3.A.2*) Cette extension est rendue possible grâce au retrait du panneau plongeant. Ce modèle implique de multiples collisions de terranes (exotiques ou intraocéaniques) qui succèdent à la subduction océanique. L'arrêt de la subduction est aussi rendu possible grâce à la subduction d'aspérités. Ce modèle d'évolution pour le Junggar Occidental est assez comparable à celui proposé par **Collins** (**2002**) pour expliquer la formation de la chaîne plissée de Lachlan en Australie orientale (voir chapitre 1). L'ouverture puis la fermeture de multiples bassins d'arrière-arc implique une croissance crustale importante.

Ce modèle a été repris par **Xiao et al. (2008)**, qui modifia quelques aspects, comme la direction de la subduction des océans Mayila et Kulumudi. Le Laba terrane a été supprimé si bien que la subduction sous l'Ebinur terrane continue durant tout le Paléozoïque. Enfin, la partie nord a été intégrée avec une subduction continue vers le nord de l'Océan Kulumudi durant le Paléozoïque inférieur. Cet ajout implique que l'Océan Kulumudi existe depuis le Cambrien et que sa subduction est à l'origine de l'arc de Sawuer assigné au Paléozoïque inférieur.

A.2.iii Modèle de subduction de ride

Ce modèle, qui ne s'intéresse qu'à l'évolution fini-paléozoïque du domaine sud du Junggar Occidental, est essentiellement basé sur les caractéristiques du magmatisme carbonifère et permien (*Fig. 3.A.1*). Jusqu'à récemment, toutes ces intrusions étaient considérées comme post-orogéniques (**Chen & Jahn, 2004**; **Han et al., 2006**). Les granites de type A et de type I étaient formés par différenciation d'un magma issu soit de la fusion partielle du manteau appauvri (**Han et al., 1999**; **Zhou et al., 2008b**), soit de la fusion de la base de croûte d'âge paléozoïque inférieur (**Chen & Jahn, 2004**; **Su et al., 2006**). Une combinaison des deux processus était aussi avancée (**Chen & Arakawa, 2005**). La découverte dans le sud-est du Junggar Occidental d'adakites et de diorites magnésiennes (**Geng et al., 2009**; **2011**; **Tang et al., 2010**; **Yin et al., 2010**; **Zhang et al., 2011b**) a conduit ces auteurs à proposer qu'une partie du magmatisme fini-paléozoïque était lié à une subduction de ride, par analogie avec les interprétations proposées pour les chaînes du Japon (**Maruyama, 1997**) ou nord-américaines (**Sisson et al., 2003**).

Le modèle avancé par Geng et al. (2009; 2011) revisite le schéma d'évolution proposé par Xiao et al. (2008) en incluant la subduction de la dorsale de l'océan séparant le Junggar Occidental et le bloc de Yili (Fig. 3.A.6a). La subduction de la ride intervient au cours du Carbonifère et se poursuit pendant le Permien. Les diorites magnésiennes (Geng et al., 2009; Yin et al., 2010) et les adakites (Tang et al., 2010) sont issus de la fusion partielle de panneau plongeant, mais sont largement contaminées par l'encaissant mantellique (Fig. 3.A.6a). Simultanément, les charnockites (Zhang et al., 2004) et les granites alcalins se forment par fusion partielle de la croûte inférieure juvénile puis cristallisation fractionnée, la chaleur nécessaire étant apportée au niveau de la fenêtre asthénosphérique (slab window) (Fig. 3.A.6a; Thorkelson, 1996). Ce modèle permet ainsi d'expliquer l'origine du magmatisme calco-alcalin carbonifère au sein des turbidites du bassin d'avant-arc et du prisme d'accrétion (e.g. pluton de Baogutou). La durée d'au moins 30 Ma de ce magmatisme « anormal » implique une obliquité de la direction de la plaque plongeante par rapport à la plaque supérieure. Comme dans le cas d'accrétion multiple (Buckman & Aitchison, 2004), le scénario proposé suggère une subduction vers le NW au Carbonifère (Geng et al., 2009), mais ces auteurs repoussent la collision finale au Permien voire au Trias comme dans le modèle de Xiao et al. (2008).

Alternativement, une double subduction océanique a été proposée par **Zhang et al.** (2011a ; 2011b) pour expliquer l'évolution géodynamique fini-paléozoïque des deux cotés de

A) Modèle «fenêtre asthénophérique» subduction simple vers le NW (Geng et al., 2009)

B) Modèle «fenêtre asthénophérique» double subduction vers le NW et le SE (Zhang et al., 2010)

Figure 3.A.6 Modèle de subduction de ride. a : la subduction de la dorsale de l'Océan Junggar-Balkash est à l'origine du magmatisme adakite et alcalin dans le Junggar Occidental entre 320Ma et 300 Ma (**Geng et al., 2009**; **2011**). b : l'Océan Dalabute est affecté par une double subduction. Dans chacun des cas, la ride océanique est impliquée et cette dernière est à l'origine du magmatisme dans la région de l'avant-arc (**Zhang et al., 2011a**).

la faille de Dalabute (*Fig. 3.A.6b*). Ce modèle reprend en partie celui proposé par **Geng et al.** (2009) pour expliquer la genèse du compartiment occidental, avec une subduction vers le NW du domaine océanique, actuellement représenté par les ophiolites de Dalabute. De plus, **Zhang et al.** (2011a) proposent une subduction vers le SE de ce même domaine océanique afin d'expliquer l'origine du domaine à l'est de la faille de Dalabute (*Fig. 3.A.6b*). Cette hypothèse s'appuie sur la vergence NW des chevauchements et le déversement des plis vers le NW dans la région de Karamay. En outre, les réflecteurs sismiques présentent un pendage général vers le SE (**Xu et al., 2008a**) en accord avec l'allure du paléo-plan de Bénioff. Dans chacune de ces subductions, la ride océanique, entraînée en profondeur, est à l'origine du

magmatisme adakitique *s.l.* en avant de l'arc. Les arcs associés à ces deux subductions sont situés dans la région de Barliek et sous l'actuel bassin du Junggar (**Zheng et al., 2007**). Ce modèle implique que la faille de Dalabute était initialement une faille transformante.

Enfin, le modèle proposé par **Yang et al. (2011)** reprend des éléments avancés dans les modèles d'accrétions/collisions multiples (**Buckman & Aitchison, 2004**) et de subduction de ride (**Geng et al., 2009**). Sur la base de nouvelles données géochimiques et géochronologiques, **Yang et al. (2011)** proposent une subduction dévono-carbonifère de l'Océan Junggar sous l'arc de Karamay et une ouverture en domaine d'arrière-arc du bassin de Darbut (*Fig. 3.A.7*). Un changement du régime de la subduction de l'Océan Junggar entraîne une compression dans la plaque supérieure et, par conséquence, une subduction du bassin d'arrière-arc de Darbut, à l'origine du magmatisme d'arc de Baobei (région de Hatu). La collision entre les arcs de Karamay et de Baobei a lieu au Carbonifère terminal (*Fig.*

Figure 3.A.7 Modèle d'évolution de la partie sud-est du Junggar Occidental (**Yang et al., 2011**). Ce scénario suggère que le bassin de Darbut s'est développé en domaine d'arrière-arc entre le Dévonien (a) et le Carbonifère supérieur (b). La subduction de la ride est aussi proposée pour rendre compte des caractéristiques géochimiques du magmatisme de la fin du Carbonifère (c).

3.A.7) ; elle est contemporaine de la subduction de la ride de l'Océan Junggar, à l'origine du magmatisme adakitique et alcalin dans la plaque supérieure (**Geng et al., 2009**).

A.3 Limites des modèles existants

Un des problèmes posé par les modèles avancés par **Wang et al. (2003)** et **Buckman & Aitchison (2004)** est la géométrie des unités et notamment la position relative des complexes d'accrétion par rapport aux arcs volcaniques. Dans le scénario type arc de Kipchak (**Wang et al., 2003**), l'arc insulaire de Sawuer est situé au nord du mélange de Kokeshentan, ce qui n'est pas en accord avec la géométrie actuelle (*Fig. 3.A.3*). De manière identique, le scénario proposé par **Buckman & Aitchison (2004**) suggère que l'Océan Kulumudi à l'origine du complexe d'accrétion dévono-carbonifère était situé au nord des *terranes* de Mayila, Ebinur et Laba (*Fig. 3.A.5*). Pourtant, dans la partie occidentale, il n'existe aucune preuve d'un complexe d'accrétion carbonifère entre le Toli *terrane* et le Mayila *terrane (Fig. 3.A.1*). Bien que la région ait largement subi la tectonique permienne, cette dernière ne peut être à l'origine de ces incompatibilités géométriques.

Dans le modèle proposé par **Wang et al. (2003)**, une zone de subduction unique et continue est à l'origine des différents complexes d'accrétion paléozoïque (*Fig. 3.A.3*). Les unités de Honguleleng, Mayila et Tangbale sont considérés comme les éléments d'un même prisme d'accrétion. Pourtant, il existe un diachronisme assez net entre ces complexes, puisque, par exemple, le mélange de Honguleleng est remobilisé dans les conglomérats de l'Ordovicien terminal, alors que le mélange de Mayila contient des blocs d'âge silurien (*Fig. 3.A.2*). De plus, la subduction continue le long de la marge s'accompagne d'une migration de l'arc vers l'océan et d'un processus d'accrétion permanent. Or l'étude des marges actives anciennes et actuelles a montré que l'accrétion dans le prisme est minoritaire par rapport à l'ablation du prisme (**Scholl & von Huene, 2009**). Si une zone de subduction avait perduré tout au long du Paléozoïque, des épisodes d'érosion tectonique devraient être enregistrés, bien qu'il soit difficile de prouver cette ablation. Enfin, le magmatisme d'arc est assez discontinu dans le temps et l'espace, avec des interruptions au cours du Silurien et du Dévonien, ce qui suggère un modèle d'accrétions multiples.

La direction des différentes subductions est largement débattue. Si de nombreux modèles s'accordent pour des subductions vers le NW (Wang et al., 2003 ; Buckman & Aitchison, 2004 ; Geng et al., 2009 ; 2011 ; Yang et al., 2011), Xiao et al. (2008) puis Zhang et al. (2011a) proposent une subduction vers le SE sous les *terranes* de Mayila et

Karamay (*Fig. 3.A.6b*). Aucun argument n'est donné pour expliquer la direction SE de la subduction paléozoïque inférieur (**Xiao et al., 2008**). L'hypothèse d'une direction SE de la subduction carbonifère de l'Océan Dalabute (**Zhang et al., 2011a**) s'appuie sur la déformation de la série turbiditique, sur la position des intrusions magmatiques « anormales » et sur la géométrie des réflecteurs sismiques profonds. Cependant, les critères cinématiques proposés sont ambigus car : 1) deux vergences de chevauchements sont observés (NW et SE) et 2) les plis réputés déversés au NW présentent un plan axial subvertical. De plus, le pendage vers le SE des réflecteurs sismiques résulte surtout de la surcharge des sédiments du bassin du Junggar (plus de 10 km de séries sédimentaire mésozoïques à cénozoïques) sur le substratum. Enfin, la position des magmas adakitiques s.l. dans le bassin d'avant-arc peut aussi être expliquée par la direction NW (**Geng et al., 2011**). L'incertitude de la direction des différentes subductions révèle surtout l'absence de données sur la structure de la chaîne.

La validité des modèles est aussi remise en cause par l'absence de contraintes lithologiques et temporelles pour certaines unités. Par exemple, le Karamay *Terrane (Fig. 3.A.4)* a été considéré comme un prisme d'accrétion carbonifère (**Wang et al., 2003** ; **Xiao et al., 2008** ; **Geng et al., 2009** ; **Zhang et al., 2011a**), un arc dévono-carbonifère (**Yang et al., 2011**) ou un guyot accrété (**Buckman & Aitchison, 2004**). De même, peu de données sont disponibles pour les *terranes* de Laba et Mayila, si bien que leur origine reste incertaine. Enfin, dans le modèle proposé par **Xiao et al. (2008**) le mélange de Honguleleng est rattaché à une subduction cambrienne à dévonienne, à l'origine de l'arc de Sawuer plus au nord. Cependant l'unité de Sawuer est uniquement composée de roches volcaniques et volcanoclastiques datées du Dévonien moyen au Carbonifère moyen (Shen et al., 2005 ; **2008**), alors que les conglomérats de l'Ordovicien supérieur scellent le mélange de Honguleleng (*Fig. 3.A.2*).

Néanmoins, la critique majeure des modèles existants reste le mécanisme à l'origine de l'arrêt de la subduction et la chronologie de la collision finale. Le scénario géodynamique de **Wang et al. (2003)** suggère qu'au Paléozoïque supérieur, il existe une virgation depuis Bogda jusque dans le Junggar oriental en passant par le Junggar Occidental (*Fig. 3.A.3*). La courbure de la marge associée à la subduction océanique accommode la disparition de l'océan, mais aucune précision n'est donnée sur l'évolution entre le Carbonifère moyen et le Permien supérieur. Dans le modèle proposé par **Buckman & Aitchison (2004)**, la position méridionale des *terranes* d'âge paléozoïque inférieur permet la collision de ces *terranes* avec les *terranes* d'âge paléozoïque supérieur (*Fig. 3.A.5*). Cette configuration n'est cependant pas

compatible avec la géométrie actuelle du système. Dans les modèles de **Geng et al.**, (2009), **Zhang et al.** (2011a) et **Yang et al.** (2011), la subduction de ride, initiée au Carbonifère inférieur (**Geng et al., 2011**), continue pendant le Permien (*Fig. 3.A.6a*). Les scénarios proposés par **Xiao et al.** (2008) et **Geng et al., (2009**) suggèrent une collision permo-triasique entre le Junggar Occidental et le bloc de Yili, mais cette hypothèse est en total désaccord avec la présence d'une molasse permienne. De même il n'existe aucune évidence de subduction permienne, puisque les intrusions calco-alcalines les plus jeunes (adakites comprises) sont datées à 300 Ma (**Geng et al., 2009**). De plus, les travaux dans le nord Tianshan ont montré la coexistence de magmas alcalins et calco-alcalins pendant le Permien, bien qu'à cette époque la subduction soit déjà terminée (**Wang et al., 2009a**). La présence de magmas calco-alcalins dans un contexte post-collisionel montre qu'une période de plusieurs millions d'années (entre 5 et 20) est nécessaire pour rééquilibrer géochimiquement le système ; il existe alors un léger décalage dans le temps entre le contexte géodynamique et le magmatisme engendré.

A.4 Objectifs de la thèse

Les limites révélées par les modèles proposés pour expliquer l'évolution géodynamique reflètent le besoin de données de diverses natures.

Pour certaines unités, des contraintes lithologiques, stratigraphiques, géochimiques et géochronologiques sont nécessaires pour *déterminer la chronologie des événements et le contexte de mise en place des roches*.

Il est aussi impératif d'établir les relations stratigraphiques et tectoniques entre ces différentes unités, afin de *caractériser l'architecture de la chaîne et son évolution au cours du temps*.

Enfin, il est nécessaires d'acquérir des données cinématiques dans les différents blocs du puzzle de l'Asie Centrale afin d'*intégrer l'évolution du Junggar Occidental l'Ouest dans le cadre des Altaïdes Occidentales*.

L'objectif de ce travail est non seulement de reconstruire l'histoire géologique du Junggar Occidental, mais aussi d'illustrer la structure et le fonctionnement d'une chaîne d'accrétion paléozoïque en mettant en avant les processus géologiques et géodynamiques responsables de sa formation. Cette étude permettra aussi d'approcher les questions fondamentales soulevées dans le chapitre 2, comme la formation du collage d'Asie Centrale ou les étapes de la croissance de la croûte continentale.

B Approche Pluridisciplinaire

La diversité des questions posées dans le chapitre précédent montre le besoin d'acquérir des données géologiques. Ces données sont d'ordre lithologique, géochimique, stratigraphique, structural et cinématique et nécessitent donc une approche pluridisciplinaire. Ce type d'approche permettra de proposer un modèle qui intégrera des données de nature diverse contrairement aux modèles de **Wang et al., (2003)** ou **Geng et al., (2009)** qui considèrent uniquement les données géochimiques et sont parfois en désaccord avec les observations de terrain.

Durant ce travail, trois missions de terrain ont été effectuées dans le Junggar Occidental, le Tianshan et le Junggar Oriental. 621 affleurements ont été visités dans le Junggar Occidental, et environ 400 échantillons ont été prélevés et ramenés en France (*Fig. 3.B.1*). Ces travaux de terrain ont permis d'établir des coupes qui seront présentées dans les chapitres suivants et qui rendent compte de l'architecture du Junggar Occidental. Parmi les échantillons ramenés en laboratoire, une grande partie a été utilisée pour caractériser la lithologie et la cinématique de la déformation. Les autres échantillons ont été utilisés pour des études géochronologiques, géochimiques et paléomagnétiques. Dans les sections suivantes, seul l'intérêt et l'objectif des méthodes seront décrits, mais le lecteur pourra se reporter aux annexes pour la présentation détaillée de la méthodologie.

B.1 Etude géochronologique et isotopique des zircons détritiques

Un des problèmes fondamentaux de l'Ouest Junggar est l'absence de contraintes temporelles dans certaines formations et unités. C'est le cas par exemple de la formation de Laba, attribué à l'Ordovicien simplement à cause de la paragenèse métamorphique exposée (**Zhang et al., 1993**). Il en est de même avec les mélanges ophiolitiques où seul l'âge des blocs est connu. Des échantillons d'argilites constituant parfois la matrice des mélanges ont été prélevés, mais les radiolaires présents n'étaient pas déterminables à cause de la recristallisation du quartz sous l'effet du magmatisme carbonifère à permien.

Des roches volcanoclastiques (20) ont été prélevées dans les différentes unités de l'Ouest Junggar, pour réaliser une étude géochronologique U-Pb sur les zircons détritiques. Avec cette approche, il est possible d'estimer l'âge maximum du dépôt sédimentaire et de caractériser la provenance des sédiments en discriminant les sources potentielles des zircons. Cette méthode est largement utilisée dans les chaînes précambriennes où aucune donnée paléontologique n'est disponible (e.g. **Dodson et al., 1988 ; Barton et al., 1989 ; Ross et al.,**

Figure 3.B.1 Carte de localisation des affleurements visités dans le Junggar Occidental (points noirs). Les localités prélevées pour l'étude paléomagnétisme sont aussi reportées.

1992 ; Sircombe et al., 2001 ; Griffin et al., 2004). Dans les chaînes phanérozoïques, les données de zircons détritiques complètent les données paléontologiques, lorsque celle-ci sont disponibles ; elles permettent alors de caractériser la provence des sédiments et de reconstituer le puzzle orogénique, notamment dans les chaînes d'accrétion (Gaudette et al., 1981 ; Cawood et al., 1999 ; Sircombe, 1999 ; Adams et al., 2007 ; Cluzel et al., 2010). L'acquisition simultanée des isotopes du lutétium et de l'hafnium permet de caractériser la nature du magma à l'origine des futurs zircons détritiques (Griffin et al., 2002 ; Hawkesworth & Kemp, 2006b). A l'aide de ces données isotopiques il est alors possible d'estimer le caractère juvénile d'une chaîne et la part du recyclage crustal (Griffin et al., 2004 ; Condie et al., 2005 ; Willner et al., 2008 ; Bahlburg et al., 2009).

Une vingtaine de roches magmatiques ont aussi été échantillonnées dans le but : 1) d'identifier des sources potentielles de zircons détritiques, 2) de caractériser les épisodes magmatiques (océanisation, fonctionnement de l'arc) et 3) d'estimer la contribution du recyclage crustal.

B.2 Etude de géochimie élémentaire et isotopique sur roche totale

Environ une cinquantaine d'échantillons de roches magmatiques a été prélevé dans le Junggar Occidental. Il s'agit aussi bien de roches volcaniques intercalées au sein des séries sédimentaires, d'intrusions plutoniques ou de blocs dans les mélanges. L'objectif de cette étude géochimique est d'évaluer les processus pétrogénétiques et de caractériser le contexte de mise en place de la roche. Ce dernier point est essentiel pour les roches mafiques présentes sous forme de blocs dans le mélange et dont l'origine est incertaine. Il en est de même pour les intrusions magmatiques ou les épanchements volcaniques afin de distinguer les contextes géodynamiques (arc, post-collisionel).

Les échantillons ont été broyés à l'ISTO. Les analyses élémentaires ont été réalisées au SARM de Nancy, à l'université de Nanjing et l'université de Taipei (NTU). Les isotopes du rubidium, du strontium, du samarium et du néodyme ont été déterminés à l'Academia Sinica de Taipei. Les protocoles expérimentaux et la méthodologie ne seront pas détaillés dans ce travail, mais le lecteur pourra se reporter aux références suivantes (**Rollinson, 1993**; **Carignan et al., 2001**; **Yang et al., 2005**; **Jahn et al., 2009**).

B.3 Magnétisme des roches : minéralogie magnétique et paléomagnétisme

Afin de caractériser la cinématique des blocs d'Asie Centrale et de contraindre le scénario géodynamique, un large échantillonage (environ 1500 carottes réparties sur 173 sites) a été réalisé dans le Junggar Occidental, Yili et le Tianshan (*Fig. 3.B.1*). Le Junggar Oriental a aussi été visité mais la déformation permienne empêche toute analyse paléomagnétique. L'objectif de ce prélèvement est de réaliser une étude paléomagnétique couvrant la période paléozoïque et s'inscrit dans un programme de recherche chinois (financé par SINOPEC) qui s'intéresse à la paléographie de l'Ouest de la Chine au Paléozoïque.

En plus de l'étude paléomagnétique, plusieurs méthodes de minéralogie magnétique ont été utilisées pour caractériser les porteurs de l'aimantation : aimantation rémanente isotherme, thermomagnétisme, test de Lowrie et anisotropie de susceptibilité magnétique. Les résultats obtenues ont été comparés aux données existantes aussi bien coté chinois (Li et al., 1991 ; Chen et al., 1991 ; Sharps et al., 1992 ; Wang et al., 2007) que coté kazakh (Levashova et al., 2003a ; 2003b ; 2007 ; 2009 ; van der Voo, 2006 ; Abrajevitch et al., 2007 ; 2008).

Les données présentées dans ce travail couvrent uniquement la période Carbonifère à triasique et permettent de caractériser la cinématique tardi à post-orogénique du collage des Altaïdes occidentales. Les échantillons prélevés dans les coupes carbonifères et dévoniennes sont en cours de traitement ; les résultats préliminaires indiquent la présence de plusieurs aimantations difficiles à interpréter. Aucune section d'âge paléozoïque inférieur n'a pu être prélevée dans le Junggar Occidental (comme pour le reste du Xinjiang), car les roches présentent soit : 1) un environnement de dépôt turbulent, 2) une déformation pénétrative et 3) des évidences de métamorphisme de contact tardif.

B.4 Présentation des articles

Les résultats de ces travaux de thèse sont présentés au sein de cinq articles répartis dans les chapitres suivants. Le chapitre 4, constitué d'une note courte soumise à Terra Nova traite de la croissance de la croûte continentale. Il s'appuie essentiellement sur des données géochronologiques (U-Pb) et isotopiques (Lu-Hf) obtenues sur des zircons détritiques extrait de roches représentatives des différentes unités du Junggar Occidental (Fig. 3.B.2). Les résultats mettent en avant l'importance du recyclage de la croûte juvénile et suggèrent une évolution polycyclique du Junggar Occidental. Le chapitre 5 comprend un article original à soumettre à Tectonics. Ce manuscrit est centré sur l'évolution au Paléozoïque inférieur du Junggar Occidental à partir de l'étude des secteurs de Mayila, Tangbale et Honguleleng (Fig. 3.B.2). Il comprend des données de terrain, géochimiques, géochronologiques et isotopiques qui permettent d'établir des corrélations entres les unités du Junggar Occidental et celles du Kazakhstan. Le chapitre 6 est composé d'un article original sous presse à Gondwana Research. Cet article porte sur l'évolution du complexe d'accrétion carbonifère du Junggar Occidental (Fig. 3.B.2). Les données lithologiques, structurales et géochronologiques permettent de caractériser le régime de déformation du complexe d'accrétion. L'évolution géodynamique du Junggar Occidental est replacée dans le cadre général des Altaïdes Occidentales. Cet article s'appuie également sur la reconstruction proposée dans le chapitre 7. Le chapitre 7 est constitué de deux articles originaux. Le premier article sous presse à Journal of Asian Earth Sciences fait partie d'un volume spécial consacré à l'Asie centrale intitulé « Continental accretion and intra-continetal deformation of the Central Asian Orogenic Belt ». Dans ce manuscrit de nouvelles données paléomagnétiques obtenues dans le Tianshan du Nord et dans le Junggar Occidental (Fig. 3.B.2) sont présentées et rendent compte de la cinématique des différents blocs à la fin du Paléozoïque. La seconde partie du chapitre 7 est un article original à soumettre à Earth and Planetary Science Letters. Ce manuscrit présente

Figure 3.B.2 Localisation des zones d'études présentées dans les articles des chapitres 4 à 7 à l'échelle du Junggar Occidental et du Xinjiang du Nord (encart).

de nouvelles données paléomagnétiques permo-triasiques, provenant de roches échantillonnées dans le Tianshan et le Junggar Occidental (*Fig. 3.B.2*). Ces nouveaux résultats permettent de contraindre l'évolution post-orogénique de collage tectonique d'Asie Centrale et de caractériser l'effet de la réactivation de la chaîne au Mésozoïque.

CHAPITRE IV: EVOLUTION GEODYNAMIQUE POLYCYCLIQUE DU JUNGGAR OCCIDENTAL: IMPLICATIONS POUR LA CROISSANCE DE LA CROUTE CONTINENTALE EN ASIE CENTRALE

?

?

?

?

?

Bloc lenticulaire de péridotite au sein du mélange de Hobuksar

A Introduction

Comme il a été présenté dans le chapitre 2, la croissance de la croûte continentale des Altaïdes résulte des processus de subduction (croissance horizontale) et du magmatisme tardi à post-orogénique (croissance verticale) (Jahn, 2004). S'il est largement admis que la production de croûte juvénile a été très importante au cours du Paléozoïque (Sengör et al., 1993 ; Jahn et al., 2000), la part du recyclage des éléments crustaux préexistants est encore largement débattue. Les travaux géochimiques et géochronologiques au Kazakhstan et en Mongolie ont montré, non seulement une contribution de la croûte précambrienne des Altaïdes, mais aussi un recyclage partiel de la croûte juvénile Néoprotérozoïque à Paléozoïque (Heinhorst et al., 2000 ; Kovalenko et al., 2003). Ce recyclage résulte de la fusion de la base de croûte pendant la subduction, puis lors de l'épisode post-orogénique (Chen and Jahn, 2004). Cependant, la chronologie de ce recyclage, qui influence directement la croissance de la croûte continentale est assez mal connue et il existe trop peu d'information pour trancher entre des scénarii épisodiques et continus.

Dans cet article, nous proposons une étude géochronologique et isotopique de zircons détritiques extraits d'échantillons prélevés dans les différentes unités du Junggar Occidental. L'objectif de ce travail est d'étudier la provenance des zircons détritiques dans des environnements assez confinés (zone de subduction) et d'illustrer le caractère juvénile et ou contaminé du magma source et par conséquent les processus de croissance de la croûte continentale. De plus, cette étude de provenance apporte des contraintes géochronologiques pour des formations parfois mal ou non datées (e.g. la formation de Laba) grâce un âge maximal de dépôts. Les résultats obtenus mettent en lumière certaines lacunes des modèles d'accrétion continue (**Wang et al., 2003**) et de collages multiples (**Buckman and Aitchison, 2004**) et sont à la base d'un nouveau scénario géodynamique.

B Article soumis à Terra Nova: New constraints on the pre-Permian continental crust growth of Central Asia (West Junggar, China) by U-Pb and Hf isotopic data from detrital zircon.

Flavien Choulet^{1, *}, Dominique Cluzel², Michel Faure¹, Wei Lin³, Bo Wang⁴, Yan Chen¹, Fu-Yuan Wu³, Wenbin Ji³

¹: Institut des Sciences de la Terre d'Orléans, UMR 6113 - CNRS/Université d'Orléans, 1A, rue de la Férollerie, 45071 Orléans cedex 2, France.

²: Pôle Pluri-disciplinaire de la Matière et de l'Environnement-EA 3325, Université de la Nouvelle-Calédonie, BP R4, 98851 Noumea cedex, New Caledonia.

³: State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China.

⁴: Department of Earth Sciences, Nanjing University, Nanjing, China

Abstract

In-situ U–Pb geochronology of detrital zircons from various Palaeozoic sedimentary rocks of West Junggar accretionary complexes (Central Asia) suggests two distinct episodes of arc magmatism, and an evolution in three steps: i) Ordovician-Silurian subduction generating juvenile arc crust; ii) Late Silurian subduction jamming, erosion and intraplate magmatism, iii) development of two new opposed Devonian-Carboniferous subductions recycling the Early Palaeozoic crust. Zircon Hf isotopes document three pre-Permian episodes of mantle-derived magmatic input into the crust: 1) Neoproterozoic (850-550 Ma), 2) Early Palaeozoic (530-450 Ma) and 3) Late Palaeozoic (380-320 Ma). Zircons also record the recycling of Neoproterozoic and Early Palaeozoic juvenile crusts during the Early and Late Palaeozoic. These data support a model of episodic continental crust growth in Central Asia.

B.1 Introduction

Accretionary orogens are major sites of continental crust growth (**Cawood & Buchan**, 2007), with addition of juvenile magma, and accretion of oceanic and exotic materials (**Rudnick**, 1990; **Condie**, 2000; **Jahn**, 2004). Deciphering the origin of materials is critical to constrain continental growth; therefore, accretionary orogens have been extensively studied (e.g. Kusky et al., 1997; Kröner et al., 2007; Cawood et al., 2009; Isozaki et al., 2010).

Eurasia was partly formed by the huge Altaids collage, with numerous accreted terranes (Sengör et al.; 1993, *Fig 4.B.1a*). During the Palaeozoic, large volumes of juvenile crust were produced (Sengör et al., 1993; Jahn, 2004); however, the timing of continental crust growth is debated (Xiao et al., 2010). In West Junggar (western Altaids), the positive ϵ Nd(t) values of Permian granitoids reveal a mantle origin and subsequent differentiation of underplated magmas (Han et al., 1999; Chen & Jahn, 2004; Chen & Arakawa, 2005; Chen et al., 2010b). Alternatively, melting of the Early Palaeozoic juvenile lower crust was proposed (Hu et al., 2000; Chen & Arakawa, 2005; Su et al., 2006a; Geng et al., 2009). Post-collisional setting is generally admitted (Han et al., 1999; Chen & Jahn, 2004) but oceanic subduction was recently forwarded (Geng et al., 2009). Permian magmatism obviously contributed to the Late Palaeozoic vertical growth of the continental crust. These studies pointed out the juvenile character of the Palaeozoic basement, but constraints on the pre-Permian evolution are lacking.

Several models for the pre-Permian terrane amalgamation in West Junggar are available (**Wang et al., 2003**; **Buckman & Aitchison, 2004**; **Xiao et al., 2008**), but timing and geometry remain uncertain. Several elements are apparently lacking (Early Palaeozoic arcs), or are poorly documented (e.g. the Laba unit). Mélange zones and major strike-slip faults separate the Palaeozoic terranes and hinder their original relationships. Therefore, exploring the provenance of sediments could be an effective method for reconstructing a reasonable pattern.

We report zircon U-Pb ages and Hf isotopic data from West Junggar accretionary complexes. Since zircons preserve the initial characteristics of their host magmas, U-Pb geochronology and Hf isotopes reveal the juvenile or contaminated character of their source. Provenance of detrital grains may be used to track continental growth processes (**Condie et al., 2005**). This method has been applied to Precambrian orogens (**Griffin et al., 2004**; **Wu et al., 2007**), but remains rare for Phanerozoic collages (e.g. **Willner et al., 2008**; **Bahlburg et**

al., 2009), especially in the Altaids (Long et al., 2007; Sun et al., 2008). The direct investigation on subduction complex rocks could provide time constraints on magmatism and estimate the relative involvement of juvenile material versus crust recycling.

Figure 1 a) Simplified map of northwestern Eurasia, indicating the Altaids and the location of West Junggar (WJG) within the collage, b) Tectonic map of West Junggar Mountains, modified after **Feng et al. (1989)**, **BGMRXUAR(1993)**, and **Buckman & Aitchison, (2004)** showing the location of detrital zircon samples (Open diamond). Numbers in open circles refer to the ophiolitic mélanges mentioned in the text. 1: Tangbale mélange; 2: Mayila mélange; 3 Hongguleleng mélange; 4: Dalabute mélange; 5 Baijantan mélange; 6: Kokeshentan mélange. Black diamonds indicate Early Palaeozoic arc volcanic rocks (Feng et al., 1989; Buckman & Aitchison, 2004).

B.2 Geological setting and sampling

West Junggar, at the Kazakh-Chinese border separates into two parts along the Hueshentaolege Valley (*Fig. 4.B.1b*). To the north, Middle Ordovician ashes, Late Ordovician conglomerate, Early Silurian shales and Middle Silurian volcanic rocks are exposed in the Sharburt and Xiemisitai Mountains (**Mu et al., 1986**; **Feng et al., 1989**; **BGMRXUAR**, **1993**). The Hongguleleng ophiolitic mélange containing Cambrian-Ordovician mafic rocks (**Zhang & Huang, 1992**; **Jian et al., 2005**) extends toward the Tarbagatay Mountains (**Zhu & Xu, 2006**). Early Palaeozoic rocks correlate with the Chingiz-Tarbagatay and the Maikan-Kyziltas belts (**Degtyarev, 2011**). 420-400 Ma A-type granites intrude the volcanic rocks of

the Xiemisitai Mountains, but their emplacement setting is uncertain (Chen et al., 2010a). Late Silurian to Carboniferous sedimentary rocks cover the Early Palaeozoic rocks (Wei et al., 2009). In the Sawuer Mountains, Carboniferous I-type granites (Han et al., 2006; Zhou et al., 2008; Chen et al., 2010a; 2010b) intrude Middle Devonian to mid-Carboniferous volcanic rocks (Shen et al., 2008). The Sawuer arc is related to the Devonian-Carboniferous subduction of the Ob-Zaisan Ocean, closed in the Late Carboniferous (Buslov et al., 2001).

For the southern part of West Junggar, we follow the tectonostratigraphic terranes subdivision of **Buckman and Aitchison (2004)**. In the Tangbale area, Early Silurian turbidites (**Mu et al., 1986**) are thrust over the Tangbale ophiolitic mélange that contains Cambrian-Ordovician gabbros (**Kwon et al., 1989**; **Zhang & Huang, 1992**; **Jian et al., 2005**), Middle Ordovician radiolarian cherts (**Buckman & Aitchison, 2001**) and Ordovician blueschists (**Zhang, 1997**). **Buckman and Aitchison (2004**) described undated calk-alkaline diorite (Suyuenka Complex), postdated by Early Silurian turbidites. Ordovician-assigned metamorphosed terrestrial clastic rocks compose the Laba Terrane (**Feng et al., 1989; Zhang et al., 1993**). The Mayila Terrane comprises Early to Middle Silurian sedimentary units (**Mu et al., 1986**) and the Mayila ophiolitic mélangewith Silurian radiolarian chert (**Li, 1994**) and pyroxenite (**Jian et al., 2005**). Both Mayila and Tangbale terranes may correlate with the Agadyr-Tekturmas-North Balkash accretionary complexes in Kazakhstan (**Degtyarev, 2011**).

Unconformable Devonian turbidites overlie the Mayila mélange (BGMRXUAR, 1965). The Toli Terrane displays Middle Devonian to Carboniferous arc volcanic rocks and granodiorite (Jin & Xu, 1997; Buckman & Aitchison, 2004). To the southeast, Carboniferous turbidites (Jin & Li, 1999), tuffs (Zhang et al., 2011a) and greywackes (Guo et al., 2010; Choulet et al., in press) are thrust over ophiolitic mélanges, with Devonian oceanic crust remnants (Zhang & Huang, 1992; Xu et al., 2006; Gu et al., 2009) and radiolarian chert (Zhu et al., 1987). Carboniferous intrusions like the Baogutu porphyry (Shen et al., 2009), and adakites (Geng et al., 2009; 2011; Tang et al., 2010; Yin et al., 2010) suggest Carboniferous ridge subduction. Late Palaeozoic units belong to the Kazakh orocline (Abrajevitch et al., 2008). Post-mélange (Chen & Guo, 2010) A- and I-type granitoids (305-240 Ma) were ascribed a post-collisional setting (Chen & Jahn, 2004; Chen & Arakawa, 2005; Han et al., 2006), although Geng et al. (2009) proposed a suprasubduction setting. The Early Permian molasse postdates accretionary processes (BGMRXUAR, 1993).

Although remarkable stratigraphic localities are documented in West Junggar (**BGMRXUAR**, **1993**), the lack of palaeontological data leaves some sedimentary units undated (e.g. clastic rocks from the Laba terrane). Therefore, twelve detrital rock samples were collected throughout West Junggar for detrital zircons analysis. *Table 4.B.1* presents sample location, detailed petrography and stratigraphic assignments. Two hornblende-bearing granites (DJ259 and DJ303) from the Sawuer Mountains were also collected for U-Pb dating and Hf isotopes, because they represent potential sources of detrital zircons.

Table 4.B.1 Detrital sample localities and detailed petrographic analysis. Abbreviations: amph.: amphibole, and.: andesite, bas.: basalt, cc.: calcite, chl.: chlorite, cpx.: clinopyroxene, ep.: epidote, fsp.: feldspar (K-feldspar and plagioclase), FTO: Fe-Ti oxydes, LF: lithic fragments, Opx.: orthopyroxene, qz.: quartz. L.: Lower, M.: Middle, U.: Upper. Carb.: Carboniferous, Dev.: Devonian, Ord.: Ordovician, Sil. Silurian. Stratigraphic age and Formation are from **BGMRXUAR (1993)**. *: For southern West Junggar, terrane assignment is from Buckman and Aitchinson (2004). **: **BGMRXUAR (1993)** assign these rocks to Late Devonian Tarbagatay Formation (Toli Sheet) or, alternatively, to Early Devonian (Bayanhe Sheet). The Ordovician age of the Laba terrane is uncertain and does not rely on palaeontological or radiometric evidence.

				Stratigraphic		Sampling
Sample	Coordinates	Lithology	Detailed petrography	assignement	Stratigraphic age	environment
DJ46	45.4307°N ; 84.0212°E	Greywacke (CS)	Qz. (40%), fsp. (40%), LF (10%, chert), ep., cpx, chl	Ebinur - Kekesayi Terrane *	U. Ord L. Sil.	Block within ophiolitic mélange
DJ83	45.2346°N ; 83.9952°E	Green sandstone (CS)	Qz. (55%), fsp. (15%), LF (15%, chert + bas.)	Laba Terrane *	Ord. ?	Massive schistose detrital serie
DJ87	45.2819°N ; 83.8031°E	Greywacke (CS)	Fsp. (50%), qz. (20%), LF (15%, bas. + and.), chl. (15%)	Ebinur - Kekesayi Terrane *	U. Ord L. Sil.	Turbidites
DJ89	45.2587°N ; 83.7424°E	Microconglomerate (CS)	Qz. (50%), LF (25%, and.), fsp. (15%), chl. (5%), amph.	Ebinur - Kekesayi Terrane *	U. Ord L. Sil.	Turbidites
DJ98	45.6551°N ; 82.9492°E	Sandstone (CS)	Qz (70%), fsp. (20%), LF (5%, and.), cc., FTO.	Toli Terrane *	L. Dev U. Dev.	Broken serie
DJ108	45.6640°N ; 83.2337°E	Microconglomerate (CS)	Qz (60%), fsp. (30%), LF (5%, and.), opx., cpx., ep., chl.	Mayila Terrane *	M. Sil U.Sil.	Block within ophiolitic mélange
DJ188	45.3624°N ; 82.7874°E	Microconglomerate (CS)	Qz, Fsp., LF	Mayila Terrane *	M. Sil U.Sil.	Detrital serie
DJ192	45.4079°N ; 82.7640°E	Greywacke (CS)	LF (40%, bas. + chert), fsp. (25%), qz. (15%), cpx. (10%), FTO (10%)	Mayila Terrane *	M. Sil U.Sil.	Block within ophiolitic mélange
DJ15	45.7214°N ; 84.4593°E	Greywacke (CS)	Fsp. (30%), LF (30%, and.), qz. (25%), chl. (15%)	Karamay Terrane *	L. Carb U. Carb.	Turbidites
DJ149	46.0789°N ; 84.0098°E	Greywacke (CS)	Fsp. (60%), LF (15%, and.), qz. (15%), chl. (10%)	Toli Terrane *	L. Dev U. Dev.	Volcanosedimentary serie
DJ325	46.8107°N ; 86.6885°E	Greywacke (CS)	Fsp. (40%),LF (25%, and.), qz. (20%), chl. (10%)	Hujiersite Formation **	M. Dev.	Detrital serie
DJ329	47.0640°N ; 86.5972°E	Greywacke (CS)	Fsp. (50%), qz. (20%), LF (20%, bas. + and.), FTO (10%)	Heishantou **	L. Carb.	Turbidites

B.3 Geochronology

Cathodoluminescence (CL) imaging, and simultaneous determination of U-Pb and Lu-Hf isotopes were carried out at the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (IGGCAS). Sample preparation and analytical procedure are described in **Wu et al. (2010)**.

CL images reveal growth and sector zoning, suggesting igneous origin for the detrital zircons. Euhedral, unrounded grains indicate a relatively short transport (*Fig. 4.B.2*).

Figure 4.B.2 CL images of selected representative detrital zircon grains from dated samples (greywacke, sandstone). For sample location, see *Figure 4.B.1b* and *Table 4.B.1*.

B.3.i U-Pb dating of detrital zircons

Computation of U, Th and Pb isotopic ratios yields concordant ages (*Fig. 4.B.3*). All ages range from 300 to 600 Ma, whilst only one Early Proterozoic (1894 \pm 19 Ma) zircon was found (*Table 4.B.2*; *X.C.1*). Statistically, this occurrence is meaningless and might be due to sample contamination. Therefore, this grain will not be considered further in the discussion. All samples, except DJ15 display one single age population (*Fig. 4.B.4*).

Samples DJ46, DJ87, DJ89, DJ108 and DJ192 from the Mayila and Tangbale terranes show an Early Silurian maximum deposition age and Ordovician peak population (*Fig. 4.B.4a*; *4.B.4b*). Sample DJ83 displays a Middle Devonian maximum deposition age and a Late Ordovician peak population (*Fig. 4.B.4a*; *Table 4.B.2*). Samples DJ98 and DJ188 from Mayila also present Devonian maximum deposition ages (*Fig. 4.B.4b*; *Table 4.B.2*), but Late Silurian to Early Devonian zircon sources.

Table 4.B.2 Data summary. *: The age statistics were calculated by Age Pick software package of the Arizona University (<u>http://www.geo.arizona.edu/alc/Analysis%20Tools.htm</u>). \ddagger : N is the number of individual analyses taken into account for the age peak calculations, N₀ is the total number of analyses. For sample DJ188, mineral separation only provided 39 grains. Though this value is much below the threshold of 59 defined by **Dodson et al. (1988**), we chose to keep this sample as it represents the unconformable molasse deposits lying over the Mayila mélange.

Sample	Units	Coordinates	Youngest age*	Main population (N/N ₀) [†]	Other populations (N/N ₀)
DJ46	Tangbale	45.4307°N ; 84.0212°E	439 ± 12 Ma	464 ± 4 Ma (60/61)	-
DJ83	Tangbale	45.2346°N ; 83.9952°E	$398\pm8\;Ma$	445 ± 5 Ma (47/51)	
DJ87	Tangbale	45.2819°N ; 83.8031°E	$437\pm8\;Ma$	468 ± 5 Ma (38/57)	-
DJ89	Tangbale	45.2587°N ; 83.7424°E	$434\pm 6\ Ma$	476 ± 7 Ma (39/60)	
DJ98	Mayila	45.6551°N ; 82.9492°E	$395\pm9\;Ma$	415 ± 6 Ma (51/59)	
DJ108	Mayila	45.6640°N ; 83.2337°E	$440\pm10\ Ma$	460 ± 5 Ma (51/58)	
DJ188	Mayila	45.3624°N ; 82.7874°E	$379\pm10\ Ma$	413 ± 5 Ma (32/39)	
DJ192	Mayila	45.4079°N ; 82.7640°E	$429\pm10\ Ma$	453 ± 3 Ma (58/66)	
DJ15	West Karamay	45.7214°N ; 84.4593°E	$304\pm13\;Ma$	322 ± 6 Ma (33/62)	426 ± 13 Ma (13/62)
DJ149	Barliek	46.0789°N ; 84.0098°E	$373\pm11~\text{Ma}$	402 ± 7 Ma (47/50)	
DJ325	Chingiz-Tarbagatay	46.8107°N ; 86.6885°E	$388 \pm 10 \; \text{Ma}$	424 ± 4 Ma (36/48)	
DJ329	Sawuer	47.0640°N ; 86.5972°E	307 ± 8 Ma	332 ± 3 Ma (62/78)	

Figure 4.B.3 Concordia plots for detrital zircon grains from dated samples.

concordant ages ranging from 331 Ma to 355 Ma, with a Concordia age of 344±1 Ma (*Fig. 4.B.5b*; *Table X.C.2*).

Figure 4.B.5 a: CL images of selected representative magmatic zircon grains from Sawuer granites. b: Concordia plots for magmatic zircon grains from Sawuer granites and average Concordia age (Ludwig, 1998).

B.4 Zircon Lu-Hf isotope data

Figure 4.B.4 a, b and c: relative probability diagrams for detrital zircon ²⁰⁶Pb/²³⁸U ages from West Junggar units. The Early Proterozoic age obtained on a sole zircon from sample DJ83 is not shown. ☑

Such source ages are similar to those of samples DJ325 and DJ149 (*Fig. 4.B.4c*; *Table 4.B.2*). Late Carboniferous turbidites from Sawuer and Karamay Units display an Early Carboniferous peak population with, for DJ15, a subsidiary Middle Silurian peak (*Fig. 4.B.4c*; *Table 4.B.2*).

B.3.ii U-Pb dating of magmatic zircons

Zircons extracted from the Sawuer granites exhibit prismatic shape and growth zoning (*Fig. 4.B.5a*). Sample DJ259 displays eighteen concordant ages ranging from 327 Ma to 353 Ma, with a Concordia age (**Ludwig**, **1998**) of 339±1 Ma (*Fig. 4.B.5b*; *Table X.C.2*). Twenty-four grains from sample DJ303 yield

Lu-Hf isotope data were obtained from 13 out of 14 samples (*Table X.C.3*). ε Hf values of detrital zircons fluctuate from +5 to +19. As the crust of West Junggar evolved from an immature arc (**Buckman & Aitchison, 2004**), two-stage Hf model ages (T_{DM}^{LC}), using the

Lu/Hf ratio (0.022) of the lower mafic crust (**Amelin et al., 1999**), are proposed (*Table X.C.3*). Only five Devonian-Carboniferous detrital zircons have Late Palaeozoic model ages. 30% and 60% of the grains display Cambrian-Ordovician and Neoproterozoic Hf model ages, respectively (*Fig. 4.B.6*). 33% of the Early Palaeozoic detrital zircons display Palaeozoic Hf model ages, but the other grains present Precambrian model ages (850 - 550 Ma) (*Fig. 4.B.6*; *Table X.C.3*). EHf values of Carboniferous zircons from the two Sawuer granites vary between +11 and +16. Only three grains show Devonian-Carboniferous model ages (*Fig. 4.B.6*), other zircons have Cambrian-Ordovician (25%) and Neoproterozoic (75%) model ages (*Table X.C.3*).

Figure 4.B.6 Plot of ϵ Hf(t) vs²⁰⁶Pb/²³⁸U ages. Positive ϵ Hf(t) values indicate juvenile origin for zircons. Three episodes of mantle-derived magma input into the crust can be distinguished: 1) Late Palaeozoic, 2) Early Palaeozoic and 3) Neoproterozoic, but Early and Late Palaeozoic reworking of this new juvenile crust is also inferred. Two-stage Hf model ages (T_{DM}^{LC}), using a Lu/Hf ratio equal to 0.022, typical of the mafic crust (**Amelin et al., 1999**) were calculated, because they mirror a realistic estimate of the extraction time from a immature island arc crust. DM and CHUR notations correspond to the Depleted Mantle and Chondritic Uniform Reservoir, respectively. Details regarding initial Hf ratios and model age computation are in *Table X.C.3*. Squares and diamonds correspond to detrital zircons and magmatic grains from Sawuer granites, respectively.

B.5 Discussion

B.5.i Maximum ages of sedimentation

The detrital zircon data set has three characteristics: i) only one Precambrian grain; ii) narrow population peaks; and, iii) consistent maximum sedimentary age and main population peak age (*Table B.4.2*). Andesite clasts (*Fig. 4.B.7*) and positive ε Hf(t) values of zircons indicate that volcaniclastic greywacke probably accumulated in the arc vicinity. Therefore, maximum deposition age closely mirrors the timing of arc magmatism. The similar U-Pb and stratigraphic ages (**BGMRXUAR, 1993**) of samples DJ87, DJ89, DJ149, and DJ325 support this postulate.

The Tangbale mélange was ascribed to Ordovician, but DJ46 greywacke block has an Early Silurian maximum deposition age. The Early Silurian ages of microconglomerate and greywacke blocks (DJ108 and DJ192) of the

Figure 4.B.7 Microphotographs of andesite clasts from a) Sharburt Mountains (sample DJ325) and b) Dalabute Valley (Sample DJ15). Note the fluidal texture underlined by the alignment of altered plagioclase microlites.

Mayila mélange are consistent with the Silurian ages of chert and pyroxenite blocks (Li, 1994; Jian et al., 2005). The incorporation of sedimentary rocks into the mélanges closely follows sedimentation because Silurian turbidites overlie it (Feng et al., 1989). The Early Devonian maximum deposition age of mafic sandstone DJ83 questions the Ordovician assignment of the Laba Terrane.

Middle to Late Devonian greywacke (DJ98 and DJ188) belongs to the sporadic molasse postdating the Mayila mélange (**BGMRXUAR**, 1965). Samples DJ15 and DJ329, previously assigned to the Early Carboniferous (**BGMRXUAR**, 1993) show Late Carboniferous maximum deposition ages consistent with the age of interlayered tuffs (**Zhang et al., 2011a**).

B.5.ii Zircon provenance

Single zircon populations infer that local rocks principally supplied detrital zircons. Because of similar U-Pb age spectra and Hf isotopic signatures, the Sawuer arc represented by samples DJ259 and DJ303, is a potential source of the Carboniferous detrital zircons (*Fig. 4.B.6*).

In contrast with Kazakhstan, there is no Early Devonian magmatic arc in West

Junggar (**Windley et al., 2007**); therefore, a possible local source for Late Silurian to Early Devonian zircons is the alkaline plutons of Xiemisitai Mountains (**Chen et al., 2010a**).

Zircon populations with age peaks at 426 and 424 Ma could derive from the Middle Silurian arc rocks of Sharburt Mountains (**Feng et al., 1989**). In Tangbale and Mayila, undated diorites of the Suyuenka complex (**Buckman & Aitchison, 2004**) could be potential sources. Zircons could also reasonably come from Early Palaeozoic units, suspected upon geochemical evidence (e.g. **Chen & Jahn, 2004**), but hidden below Late Palaeozoic sediments. These Early Palaeozoic units may represent the eastern extension of the Ordovician Baydaulet-Aqbastau volcanic arc (**Degtyarev, 2011**) exposed in Kazakhstan (*Fig. 4.B.8*).

Figure 4.B.8 a: Tectonic map illustrating the relationships between West Junggar and neighbouring areas. Originally, Ob-Zaisan and Junggar-Balkash Ocean separated West Junggar from Altai and North Tianshan, respectively; therefore these two areas are unlikely sources for the detrital zircons of our data set. Abbreviations: A: Arkalyk, Al: Alataw, BA: Baidaulet-Akbastau, BC: Bozchekul-Chingiz, Bo: Bole, CANTF: Chingiz-Alakol-North Tianshan Fault, CKF: Central Kazakhstan Fault, CT: Chingiz-Tarbagatay, DF: Dalabute Fault, IGSZ: Irtysh-Gornotsaev Fault Zone, Hg Hongguleleng mélange, IVB: Inner Volcanic Belt, Ma-Ta: Mayila-Tangbale mélange, MK: Maikan-Kyziltas mélange, MTF: Main Tianshan Fault, NB: Nord Balkash mélange, NTS: North Tianshan, OVB : Outer Volcanic Belt, S: Sawuer, Z: Zharma. 5: b: synoptic chart of magmatic events in West Junggar and Eastern Kazakhstan, adapted from **Feng et al., (1989)**, **Windley et al., (2007)**, **Chen et al., (2010a)** and **Degtyarev (2011)**. This diagram illustrates the potential provenance of detrital zircons.

B.5.iii A polycyclic model for West Junggar

These new data support the polycyclic evolution of West Junggar, proposed by **Buckman and Aitchison (2004)**. Ordovician to Middle Silurian subduction contributed to the formation of juvenile arc crust. The slight diachronism between Mayila and Tangbale areas (*Fig. 4.B.9*) suggests either two subduction zones (**Buckman & Aitchison, 2004**), or migration of a single one (**Wang et al., 2003**).

Subduction complexes were docked to the Chingiz-Tarbagatay margin. Lower Devonian terrigenous sediments (Feng et al., 1989) record an episode of erosion in response to collision. Late Silurian to Early Devonian A-type granite emplacement (Chen et al., 2010a; *Fig. 4.B.9*) suggests an uplift of the asthenosphere that may be related to post-accretion slab break-off, back-arc, or intra-arc rifting.

Figure 4.B.9 Synoptic chart showing population peak ages and maximum ages of sedimentation of detrital zircon samples and crystallization ages of magmatic samples. On the right, the major magmatic and sedimentary episodes, described by **Feng et al. (1989)**, **BGMRXUAR (1993)**, **Buckman and Aitchison**, (2004), and **Chen et al. (2010a)** are represented. Dashed lines figure the uncertainty of magmatic and sedimentary events through time.

Late Devonian-Early Carboniferous magmatic rocks replaced Early Palaeozoic rocks that initially supplied the basins. These rocks compose the Barliek and Sawuer arcs that ensue

from two opposed new subduction zones (Filippova et al., 2001; *Fig. 4.B.8*). The final amalgamation occurred during the Late Carboniferous-Early Permian, due to the combined effect of oceanic closure and oroclinal bending (Abrajevitch et al., 2008; Choulet et al., 2011).

B.5.iv Crustal evolution of West Junggar and implication for the Altaids

The ε Hf(t) values close to the DM, with similar U-Pb ages and Hf model ages, imply a juvenile origin for several Palaeozoic zircons (*Fig. 4.B.6*). In contrast, grains with older model ages mirror the recycling of a pre-existing juvenile crust, during Palaeozoic magmatism (*Fig. 4.B.6*).

Numerous Palaeozoic zircons show Neoproterozoic Hf model ages that suggest provenance from a moderately evolved continental crust (*Table X.C.3*). Considering the location of West Junggar in Palaeozoic time (**Filippova et al., 2001**), Kazakhstan is the most likely provenance for remote grains, conveyed towards the accretionary prism along the trench axis (**Von Huene, 1974**). However, this hypothesis contradicts the morphological and geochronological characteristics of the zircons population, which support a local origin. Although Precambrian rocks are neither exposed in West Junggar, nor inferred from zircon geochronology, a significant involvement of Precambrian primitive crustal materials in the formation of Palaeozoic arc magmas may be regarded. The Neoproterozoic model ages coincide with the break-up of Rodinia (Hoffman, 1999; Kheraskova et al., 2003; Zhang et al., 2010) and the emplacement of ophiolites in Central Asia (Khain et al., 2003). Heinhorst et al. (2000) and Kröner et al. (2007; 2008) observed a similar contamination of Palaeozoic rocks by Neoproterozoic juvenile material in Central Kazakhstan.

Our data suggest three pre-Permian magmatic episodes: 1) Neoproterozoic (850-550 Ma), 2) Cambro-Ordovician (530-450 Ma), and 3) Late Devonian-Carboniferous (380-320 Ma). Crustal growth terminates with the major Permian intraplate episode (**Jahn, 2004**). Results support episodic crust growth in West Junggar, like in Mongolia (**Kovalenko et al., 2004**), with lateral and vertical growth, but recycling of juvenile crust is seemingly a dominant process.

C Conclusion

Cette étude a permis de mettre en évidence l'absence de substratum précambrien sous le Junggar Occidental. Les zircons détritiques d'âge paléozoïque dérivent exclusivement de l'érosion d'arc magmatique. La provenance de ces zircons est essentiellement locale mais certains grains présentant des âges modèles néoprotérozoïques pourraient avoir une source plus éloignée (Kazakhstan). La signature isotopique de l'hafnium indique que différents épisodes d'apport de magma mantellique ont contribué à la formation d'une croûte continentale juvénile, elle-même partiellement recyclée par le magmatisme paléozoïque (arc + intra-plaque post-accrétion). Cette croissance épisodique de la croûte continentale reflète le caractère polycyclique de la chaîne du Junggar Occidental. Le premier cycle est caractérisé par le développement d'arcs intra-océaniques entre le Cambrien et le Silurien. La collision entre ces arcs a lieu à la fin du Silurien ; elle est marquée par le dépôt d'une molasse dévonienne inférieur à moyen. Le second cycle, qui débute au Dévonien moyen est marqué par l'installation de deux nouvelles zones de subduction en bordure du microcontinent paléozoïque inférieur. Les deux chapitres suivants traiteront de ce scénario polycyclique, avec dans le chapitre 5, un aperçu de l'évolution au Paléozoïque inférieur et dans le chapitre 6, une caractérisation des processus d'accrétion et de collage durant le Paléozoïque supérieur.

CHAPITRE V: L'EVOLUTION GEODYNAMIQUE DU JUNGGAR Occidental au Paleozoïque inferieur

?

Olistolithes de calcaire silurien

A Introduction

Nous avons vu, dans le chapitre précédent que le Junggar Occidental résultait d'une histoire polycyclique, marquée par le recyclage de la croûte juvénile cambro-ordovicienne pendant les épisodes magmatiques dévono-carbonifères. L'évolution au Paléozoïque supérieur, présentée dans le chapitre 6, a été largement étudiée, et de nombreux modèles d'évolution sont actuellement proposés et débattus. Inversement, il existe très peu d'informations sur la géologie du Paléozoïque inférieur et seules des données géochimiques et géochronologiques sur les mélanges ophiolitiques sont disponibles (Zhang et al., 1993 ; Jian et al., 2005). Le modèle proposé par Wang et al (2003), suggère une continuité des phénomènes d'accrétion durant tout le Paléozoïque, pas en accord avec les données géologiques présentées dans le chapitre 4. Xiao et al. (2008) ont suggéré un collage d'arcs intraocéaniques. Cependant, la polarité de la subduction est mal contrainte, et la géométrie proposée des complexes d'accrétion et des arcs magmatique est très discutable (cf. chapitre 3). L'accrétion d'arcs intra-océaniques et de microcontinents est aussi avancée par Buckman & Aitchison (2004), mais il existe de nombreuses incertitudes sur les terranes de Mayila et de Laba. De plus, ce modèle s'intéresse uniquement à l'évolution du domaine sud et les régions de Tarbagatay et de Sharburt ne sont pas considérées. L'absence d'études géologiques détaillées sur les complexes de roches de Paléozoïque inférieur est le problème majeur des scénarii géodynamiques existants. Le premier objectif de ce chapitre est donc de documenter précisément la géologie des massifs ordoviciens à siluriens du Junggar Occidental, en apportant de nouvelles contraintes structurales, géochronologiques et géochimiques.

Dans de nombreuses études, le Junggar Occidental est considéré comme un système insulaire isolé au sein de l'Océan paléo-asiatique (Xiao et al., 2008 ; 2010), bien que des corrélations avec le Junggar Oriental ont aussi été envisagées (Wang et al., 2003). Cependant, les nouvelles données géochronologiques (Chen et al., 2010) et paléontologiques (He et al., 2011) obtenues dans les régions de Tarbagatay et de Tangbale suggèrent des similitudes entre les unités du Junggar Occidental et celles du Kazakhstan. Le second objectif de ce chapitre est d'explorer ces possibles connections entre le Junggar Occidental et le Kazakhstan Oriental, en s'appuyant sur les synthèses régionales récentes proposées par Windley et al. (2007) et Degtyarev (2011). Cette étude comparative permet ainsi de replacer l'évolution géodynamique du Junggar Occidental dans le cadre général des Altaïdes Occidentales, marquée notamment par la formation du microcontinent kazakh (Kheraskova et al., 2003).
B Article à soumettre : Structure and evolution of the Early Palaeozoic accretionary complexes in West Junggar and their place within the Altaids collage.

Abstract

Understanding the development and the evolution of accretionary orogens is crucial for characterizing continental crust growth in time and space. In the Altaids tectonic collage (Central Asia), divergent geodynamical models have been suggested to spell out the origin of the Palaeozoic orogenic belts, which have extensively contributed to the formation of a mostly juvenile continental crust. But, chronology of this continental crust growth is not well documented, as it is highly dependant on the geodynamic evolutionary scenario. This study focuses on West Junggar (NW China), a segment of the Altaids. Multidisciplinary approach, including detrital zircon provenance studies, geochemistry, and field structural analysis, deals with three Early Palaeozoic units in West Junggar. Subduction seems to have been predominant in Early Palaeozoic time, as indicated by ophiolitic mélanges, volcaniclastic turbidite series and magmatic arc suites. However, olistostrome, molasses deposits and magmatic events chronology reveal interruptions of subduction. Discrete collisions are inferred by the structure of the belt, which displays allochtonous units rooted in the suture zone. Magmatic and sedimentary successions in West Junggar bear some resemblance to Eastern Kazakhstan rocks, suggesting a lateral continuation of units. On the basis of this new results, we propose the following evolution: 1) Ordovician subductions below intra-oceanic island arcs, 2) Late Ordovician amalgamation of island arcs against Kazakhstan margin, 3) Early to Middle Silurian resumption of oceanic subduction and arc magmatism and 4) Late Silurian-Early Devonian collision with a microcontinent. This scenario, consistent with the formation of the Kazakhstan microcontinent supports a model of multiple accretions for the Altaids tectonic collage. These results also imply that continental crust growth in Central Asia might result from alternation of vertical and lateral growth episodes throughout Palaeozoic.

B.1 Introduction

Accretionary orogens are major sites for the production of juvenile magmas, and therefore they significantly contribute to the growth of the continents (Rudnick, 1995; Condie, 2005; Cawood & Buchan, 2007). A fundamental issue is the timing of the crustal growth process. Since accretionary orogen formation is related to long-lived subduction zones, the architecture and evolution of these orogens are usually complex (Cawood et al., 2009). Accretionary orogens were extensively studied throughout the world for instance in the Western America cordilleras (Coney et al., 1980; Clowes et al., 2005; Ring, 2008), Alaska (Byrne, 1984; Sisson et al., 2003), Japan (Maruyama, 1997), or Australia (Foster & Gray, 2000; Glen, 2005). However, when the age of formations is not well established by palaeontological evidence, or when stratigraphic relationships between units are overprinted by late tectonics, it becomes complicated to decipher the construction steps leading to the formation of an accretionary orogen. Using an indirect method, like the provenance of sediments is a powerful method for reconstructing the reasonable pattern of an accretionary orogeny (e.g. Ledent et al., 1964; Gaudette et al., 1981; Cawood et al. 1999). Such an approach has been efficiently used in numerous worldwide orogens (e.g. Gehrels et al., 2002; Griffin et al., 2004; Willner et al., 2008; Bahlburg et al., 2009). Despite multiple sedimentary cycles, detrital zircons can preserve the initial isotopic ratios of their host magmas and disclose to their origin (Fedo et al., 2003). Zircon U-Pb geochronology and Hf isotopes provide the age of the source rock, and direct information on the juvenile or contaminated character of the source rock, respectively (Stevenson & Patchett, 1990; Griffin et al., 2004; Wu et al., 2010). Therefore, the study of detrital zircons provenance may help for tracking the formation and evolution of the continental crust (Condie et al., 2005).

In Central Asia, the Altaids collage (Sengör et al., 1993; Sengör and Natal'in, 1996a), also called the Central Asian Orogenic Belt (CAOB) (Mossakovsky et al., 1993; Windley et al., 2007; Xiao et al., 2010), consists of numerous ribbon-like units of Precambrian microcontinents, magmatic arcs, and accretionary wedges with ophiolitic remnants amalgamated during the Palaeozoic (*Fig. 5.B.1a*). The timing of continental crust growth during the Palaeozoic is uncertain, as the steps of the collage formation are not clearly established yet. The Kipchak arc model (Sengör et al., 1993) assumes a long-lived subduction zone of several thousands of kilometres, active from Late Neoproterozoic to Early Permian. During Permian, large transcurrent motions disrupted the belt (Laurent-Charvet et al., 2003) and gave birth to the puzzle structure of the Altaids collage. The Kipchak arc also

Figure 5.B.1: a: Tectonic map of the Western Altaids illustrating the relationships between northern China, Kazakhstan and Kirghizstan (modified after **Windley et al., 2007**; **Charvet et al., 2011**; **Degtyarev, 2011**). b: Tectonic map of West Junggar Mountains (adapted after Feng et al., 1989, BGMRXUAR, 1993, and **Buckman & Aitchison, 2004**) illustrating the location of Early Palaeozoic accretionary complexes, mélanges and magmatic rocks. Numbers in open circle refer to the ophiolitic mélanges mentioned in the text. 1: Late Palaeozoic Dalabute mélange; 2: Late Palaeozoic Baijantan mélange; 3: Undated Barliek mélange; 4: Late Palaeozoic Kokeshentan mélange; 5: Early Palaeozoic Mayila mélange ; 6: Early Palaeozoic Tangbale mélange 7: Early Palaeozoic Hongguleleng mélange *sensu stricto*, 8: Early Palaeozoic Hobuksar mélange, 9: Early Palaeozoic Bayanhe mélange. These three mélange are refered to a single Hongguleleng mélange *sensu lato*.

model implies a continuous accretion during the Palaeozoic. Alternatively, archipelago models (Mossakovsky et al., 1993; Buslov et al., 2001; Filippova et al., 2001; Badarch et al., 2002; Xiao et al., 2008) propose the existence of several independent and diachronous subduction zones, by analogy with the present-day Western Pacific setting. The resulting magmatic arcs and accretionary wedges were subsequently amalgamated (see reviews in Windley et al., 2007; Xiao et al., 2010), but timing of the final collision is largely debated (Charvet et al., 2011).

According to Sengör et al. (1993), the resulting Altaid accretionary orogens can account to almost 50% of the Earth's total, newly added, Palaeozoic continental crust. The juvenile character of the crust was largely documented by positive ENd values of Late Palaeozoic granites (Heinhorst et al., 2000; Jahn et al., 2000a and 2000b; Wu et al., 2000; Kovalenko et al., 2004; Jahn, 2004; Kroner et al., 2008). However, some geochemical studies (Heinhorst et al., 2000; Chen & Jahn, 2004; Kröner et al., 2008) point out a recycling of juvenile material and/or Precambrian crust during arc and post-collisional magmatic events. Therefore, this partial recycling of the substratum during orogenic processes shows that continental crust growth is a complex process and it cannot be only limited to a simple transfer of mantle-derived magma into the crust. Moreover, recent field investigations in Western Altaids have revealed a polycyclic character for several diachronous accretionary orogens, e.g. the Tian Shan (Charvet et al., 2007; 2011) or the Chingiz belt (Degtyarev, 2011) (Fig. 5.B.1a). This feature is not in agreement with the single long-lived subduction model or the subduction complex tectonic collage model, but polycyclic orogens may explain how a Precambrian or Palaeozoic basement can be reworked during late magmatic events. These considerations are particularly important for the formation and evolution of the Early Palaeozoic Kazakhstan microcontinent (see a review in Degtyarev, 2011), where unit contacts are often hindered by a late tectonic overprint (Burtman, 1964; Samygin, 1974; Abdullin et al., 1980; Laurent-Charvet et al., 2003; Yakubchuk, 2004; van der Voo et al., 2006).

In West Junggar, northwest China, like in many places in the Altaids, Early and Late Palaeozoic ophiolitic mélanges are juxtaposed with diversely aged turbidites and volcanic rocks (Feng et al., 1989; Zhang et al., 1993; Wang et al., 2003; Buckman & Aitchison, 2004). Several models based on geochemistry and geochronology (Wang et al., 2003), or structure (Buckman & Aitchison, 2004; Xiao et al., 2008; 2010) have been proposed. Lateral duplication of a single long-lived subduction complex (Wang et al., 2003) and diachronous subductions of multiple oceanic basins (Buckman & Aitchison, 2004) have been alternatively proposed to explain the Palaeozoic geodynamic evolution of West Junggar. Numerous geochemical (Jian et al., 2005; Gu et al., 2009; Lei et al., 2008; Geng et al., 2009; Liu et al., 2009), and structural data (Zhang et al., 2011a; Choulet et al., 2011) have been recently published, but they mainly deal with the Late Palaeozoic events. Geological constraints on the Pre-Devonian evolution only consist of a stratigraphic inventory (BGMRXUAR, 1993), and geochemical and geochronological data from boulders in the

mélange (Zhang et al., 1993; Wang et al., 2003; Buckman & Aitchison, 2001; 2004; Jian et al., 2005). The architecture of Early Palaeozoic rock complexes is thus not well constrained. However, a recent study of zircon U-Pb geochronology and Hf isotopes on detrital zircons from Palaeozoic accretionary complex rocks (Choulet et al., submitted) has shown the coexistence of juvenile magmatic input with recycled juvenile magma, as inferred by the geochemical signature of some late to post-orogenic plutons (Chen & Jahn, 2004; Chen & Arakawa, 2005; Su et al., 2006a). An arc source with a likely Kazakhstan provenance for these zircons is involved, (Choulet et al., submitted). These results imply that the juvenile basement is recycled during the Palaeozoic and it rules out the idea of a diachronous collage of several magmatic arcs (Xiao et al., 2008). Another consequence is the genetic link between West Junggar and the Kazakhstan microcontinent that has been often disregarded (Wang et al., 2003; Buckman & Aitchison, 2004; Xiao et al., 2008).

The purpose of this paper is to provide new data demonstrating that West Junggar is a polycyclic accretionary orogen, with cycles of accretion separated by intervals of erosion and deposition of a molasses and olistostromes. Therefore we investigated the Chingiz-Tarbagatay, Mayila and Tangbale Early Palaeozoic accretionary complexes of West Junggar (*Fig. 5.B.1b*). We report here zircon U-Pb and Hf isotope data from a set of detrital samples collected in clastic deposits. In addition, we present new geochemical and geochronological data from magmatic rocks. These new results, combined with data from the literature, provide time constraints on the emplacement of the magmatic arcs, the activity of the subduction zones, and the subsequent erosion of the accretionary orogen. We also use these data to explore the possible connection of West Junggar, with neighbouring Kazakhstan during the Early Palaeozoic geological evolution.

B.2 An outline of the Early Palaeozoic units of West Junggar

The West Junggar accretionary orogen is a mountainous massif located in northwestern China, near the Kazakh border (*Fig. 5.B.1b*). The primary relationships between the tectonic units have been by Permian strike-slip faulting (Allen & Vincent, 1997; Choulet et al., 2010) and by emplacement of numerous Late Carboniferous-Early Permian plutons (Kwon et al., 1989; Chen & Jahn, 2004; Han et al., 2006; Zhou et al., 2008b; Geng et al., 2009). The West Junggar accretionary orogeny results of a polyclic evolution with Devonian-Carboniferous subduction complexes superimposed on an Ordovician-Silurian basement itself edificated through out accretionary process (Feng et al., 1989). The Late Palaeozoic evolution is marked by Devonian Carboniferous events, which have significantly affected the

primary archicture of the Ordovician-Silurian basement. The Late Palaeozoic West Junggar was a part of the Kazakh orocline (**Abrajevitch et al., 2008**). The subduction of the Junggar Balksh Ocean during Devonian and Carboniferous (**Buckman & Aitchison, 2004**; **Choulet et al., 2011**) gave birth to the Barliek arc and the West Karamay accretionary complex (*Fig. 5.B.1b*), which display Carboniferous turbidites (**Jin & Li, 1999**) and the Karamay and Dalabute ophiolitic mélanges (**Zhang et al., 2011a**). The northern part of West Junggar Mountains exposes a second Devonian-Carboniferous subduction belt formed by the Sawuer arc and the Erquis accretionary complex, including the Kokeshentan ophiolitic mélange (**Buslov et al., 2001**; **Zhou et al., 2008b**; **Chen et al., 2010a**; **2010b**) (*Fig. 5.B.1b*).

Three Early Palaeozoic massifs are exposed in the West Junggar Mountains (*Fig. 5.B.1b*). The Chingiz-Tarbagatay Unit that may extend to the eastern Kazakhstan, crops out in Xiemisitai-Sharburt Mountains and Tarbagatay Mountains (**Feng et al., 1989**; **Chen et al., 2010a**). Because of the difficulty of access, the Ordovician series of the Tarbagatay Mountains were not investigated in detail, and only a brief outline is given here. Conversely, the Mayila and Tangbale units that are well exposed in the southern part of West Junggar are analysed in detail here (**Feng et al., 1989**; **Buckman & Aitchison, 2004**; **Chen et al., 2010a**) (*Fig. 5.B.1b*). The three areas will be discussed further and especially their correlations with Kazakhstan.

B.2.i The Chingiz-Tarbagatay Unit

Pre-Devonian rocks crop out in the Tarbagatay, Sharburt, Xiemisitai, North Wuerkashier and Saier Mountains (*Fig. 5.B.2*). There, serpentinite mélanges are recognized from west to east in the Bayanhe, Hobuksar and Hongguleleng areas. Although no radiometric data support a contemporaneous origin of these three mélanges, they display similar lithology and can be grouped in a single mélange unit, which will be called the Hongguleleng mélange. Plagiogranite, troctolite, diabase, and gabbro from the Hongguleleng mélange were dated at 625±25 Ma by Sm-Nd isochron method (**Huang et al., 1995**; **Jin et al., 1999**). However, this age is conspicious since damouritization of the gabbro plagioclase is reported and since 5 out the 7 analyzed rocks display Nd and Sm content lower than 1 ppm (**Huang et al., 1995**). The Late Ordovician Nd-Sm isochron age at 444±27 Ma (**Zhang & Huang, 1992**), obtained from four gabbroic cumulates and one basalt, is more acceptable and is compatible with the 475 Ma age, obtained by SHRIMP on 24 zircons from an anorthosite (**Jian et al., 2005**). The serpentinite matrix of the mélange includes various-sized boulders of harzburgite (sometimes with chromite), dunite, troctolite, gabbro, anorthosite, plagiogranite,

websterite, gabbroic pegmatite, dolerite and basalts (Zhang et al., 1993; Jin et al., 1999). According to Huang et al. (1995), these ophiolites formed in an oceanic setting, but a backarc setting cannot be ruled out (Zhang et al., 1993). In the Honguleleng mélange (*Fig. 5.B.2*), slices of tuffs, graywackes, and andesitic lavas from the Bulukqi Formation are also exposed in the Sharburt Mountains and limestone interlayers yield Middle to Late Ordovician trilobites, brachiopods and gasteropods (BGMRXUAR, 1993). Further to the west, in the Tarbagatay Mountains (*Fig. 5.B.1b*), Zhu and Xu (2006) dated a gabbro from the Kujibai ophiolite at 478±3 Ma, reworked into an Early Carboniferous conglomerate. The Hongguleleng, Hobuksar and Bayanhe mélanges experienced intense ductile shearing, documented by highly schistone serpentinite matrix and sigmoidal blocks of pillow-basalt, (*Fig. 5.B.3a*). The mélange is usually in fault contact with the surrounding younger rocks, except to the east of Hongguleleng, where unconformable shallow dipping Late Silurian rocks cover the sub-vertical mélange rocks (*Fig. 5.B.2*).

Figure 5.B.2 Geological map of Sharburt-Xiemisitai Mountains (modified after Feng et al., 1989; Chen et al., 2010a), with location of samples.

Middle Ordovician volcanoclastic rocks of the Kekesayi Formation are exposed in the Tarbagatay Mountains (Fig. 1; **BGMRXUAR**, **1993**). Upper Ordovician ashes and tuffaceous sandstones pass upward to an olistostrome, which consists of blocks of conglomerate and limestone included into a shaly matrix. According to **Feng et al.** (**1989**), the conglomerate contains boulders of chert, calk-alkaline lavas and ophiolitic rocks. In the Saier Mountains (*Fig. 5.B.2*), the fossiliferous limestone has yielded Late Ordovician corals, gasteropods and trilobites (**BGMRXUAR**, **1993**). Early Silurian tuffaceous siltstones and graptolite-rich shales (Bulong Formation) conformably overlie the Late Ordovician olistostrome (**Feng et al.**, **1989**; **Mu et al.**, **1986**). In the Sharburt Mountains (*Fig. 5.B.2*), a thick pile of volcanic

rocks (Sharburt Formation) is composed of and esitic tuff (Fig. 5.B.3b), porphyrytic and esite lava and andesitic (Fig. 5.B.3c) (Feng et al., 1989). The base of the series is not observed (BGMRXUAR, 1993). Rare fossils of Middle Silurian age are reported from interlayered sandstone and limestone (Mu et al., 1986). The geochemistry of these volcanic rocks is not available. The uppermost part of the formation is composed of a dark greenish to reddish conglomerate, including boulders of the underlying volcanic rocks (Fig. 5.B.3d), but also fragments of the Hongguleleng ophiolites (Jin et al., 1999). Limestone, containing Ordovician fossils (Jin et al., 1999) and Middle Silurian (Wenlock) corals (Mu et al., 1986), were initially described as synsedimentary lenses, but our investigations indicate that these blocks are rather olistoliths enclosed in a terrigenous conglomeratic matrix. The size of the blocks can reach several tens of metres (Fig. 5.B.3e), and there is no concordance between the bedding of the matrix and the folded bedding within the limestone olistoliths (Fig. 5.B.3f). Various-scaled breccias are exposed at the base of the blocks and support a syn-tectonic redeposition setting for the limestone (Fig. 5.B.3g and 5.B.3h). This block-in-matrix formation must not be confused with the serpentinite mélange described above. Instead, it represents a Middle to Late Silurian olistostrome (Wenlock-Pridoli), formed by a gravitational unstability.

The Kekexiongkuduke Formation, which overlies the olistostrome, consists of tuffaceous variegated sandstone, and limestone lenses containg Middle Silurian-Late Silurian age (Wenlock-Pridoli) corals and brachiopods (Mu et al., 1986; BGMRXUAR, 1993). The volcaniclastic series grades into a thick sequence of pyroclastic-rich turbidites (Feng et al., 1989) and is conformably overlain by the lower Devonian clastic sandstones (Hobuksar formation). In the Sharburt Mountains, the base of the Lower Devonian (Wutabulak subformation) is similar to the Kekexiongkuduke Formation, with turbidites containing bivalves, graptolites and trilobites (Mu et al., 1986; Feng et al., 1989). As shown by ichnofacies variations (Gong, 1993), the sedimentary deposits became shallower in the middle Lower Devonian Mangeer sub-Formation, with abundant immature debris (Wei et al., 2009). The presence of conglomerate suggests molasse-like deposits. At the top of the Lower Devonian series, calcareous siltstone and limestone contain abundant plant debris (BGMRXUAR, 1993). In the Wuerkashier Mountains (Fig. 5.B.2), the Lower Devonian rocks of the Malasu and Mengbulak formations are composed of terrigenous clastic rocks interlayered with lavas and tuffs (BGMRXUAR, 1993). The base of the middle Devonian (Eifelian) is lacking (Soto & Lin, 2000; Wei et al., 2009). Sedimentation starts again at the end of the Middle Devonian

with continental sandstone of the Hujiersite Formation overlain by the variegated tuffaceous sandstone and conglomerate of the Zulumute Formation (**BGMRXUAR**, 1993). Fossil plant assemblage (**Cai & Wang**, 1995; **Xu & Wang**, 2008), and detrital zircon geochronology (**Choulet al., submitted**) provide a Givetian age for the Hujiersite Formation, whereas the Frasnian age of the Zulumute formation is based on rare plant debris (**BGMRXUAR**, 1993).

Figure 5.B.3 Field pictures from Xiemisitai and Sharburt Mountains. a: sheared block or serpentinized ultrabasite within the Hobuksar mélange (46.8156°N; 85.5866°E), b: Early to Middle Silurian volcanic tuffs (46.7785°N; 85.7305°E), c: Early to Middle Silurian porphyrytic andesite from the Sharburt Mountains (46.8444°N; 86.5096°E), d: Middle to Late Silurian microconglomerate containing volcanic fragments (46.8444°N; 86.5096°E), e to h: Middle to Upper Silurian olistostrome (46.8313°N; 86.6454°E). e: 10 metresscale limestone block at the base of the olistostrome, f: detail of the folds within a large limestone olistolith, g: limestone block displaying a sigmoid shape, h: details of the limestone breccia occurring at the base of the olistoliths.

The overlying Hongguleleng formation, which should not be confused with the Honggulelleng mélange is composed of calcareous siltstone, calcarenite and limestone. Famennian faunae of conodonts, rugose corals, brachiopods and echinoderms were reported (Xia, 1996; Lane et al., 1997; Soto & Lin, 2000; Waters et al., 2003). To the north, the Middle to Late Devonian rocks of the Sawuer Mountains expose thick sections of andesite and tuff, related to the Sawuer arc (BGMRXUAR, 1993; Shen et al., 2008) (*Fig. 5.B.2*). The Carboniferous sedimentary deposits are chiefly volcanocastic turbidites associated with lavas (BGMRXUAR, 1993). Continental molasses deposits usually characterize the Permian deposits (Feng et al., 1989).

A ten of granitic intrusions (A-type granite, diorite, and K-feldspar granite), initially assigned to Permian yield zircon SHRIMP and LA-ICPMS ages ranging from 422 Ma to 405 Ma (**Chen et al., 2010a**) (*Fig. 5.B.2*). These Late Silurian-Early Devonian ages imply that the plutons host rocks are older than Late Silurian. These host rocks, composed of a thick sequence of basalts, andesite and tuffs were initially considered as Middle to Late Devonian, on the basis of lithological similarities with the Devonian rocks of Sawuer and Tarbagatay Mountains (**BGMRXUAR, 1993**). Two other generations of magmatic intrusions are represented in the Sawuer Mountains, firstly by Early Carboniferous granodiorite and diorite (**Han et al., 2006**; **Chen et al., 2010a; 2010b; 2011; Choulet et al., submitted**) and secondly by a widespread Late Carboniferous-Permian A-type magmatism (**Han et al., 2006; Zhou et al., 2010a**) (*Fig. 5.B.2*).

B.2.ii The Mayila Unit

The Mayila Unit is poorly studied, as it crops out in a remote area in the southwestern part of West Junggar Mountains (*Fig. 5.B.4a*). The geographic limit between the Mayila Unit and the Tangbale Unit (next section) is unclear, since a dense net of NE-SW and NW-SE striking faults has disturbed the primary geometry (*Fig. 5.B. 1b*). Because of these strike-slip faults, the Mayila mélange appears as abnormally thick (more than ten kilometres), and the initially flat planar fabrics are verticalized (**Zhang et al., 1993**). The Mayila Unit consists of an ophiolitic mélange and sedimentary interlayers. The mélange comprises both ophiolitic and

sedimentary components (*Figs. 5.B.4a* and *5.B.4b*). The ophiolitic blocks are serpentinized peridotite (harzburgite, lherzolite and dunite with chromite), pyroxenite, basalt, chert and limestone, included in a highly schistose serpentinite matrix (**Zhang et al., 1993**) (*Fig. 5.B.5a*). Within some blocks, the intricate pattern of reddish shale, chert, hyaloclastite and basalts (*Fig. 5.B.5b*) suggest a pre-accretion sedimentary mixing process, similar to that observed in modern ocean floor such as in the Gorringe Bank (**Lagabrielle and Auzende, 1982**). The geochemistry of ultramafic and mafic rocks indicates various environment settinsg like mid-oceanic ridge, magmatic arc or back-arc basin (**Xiao, 1991**; **Zhang et al., 1995**; **Wang et al., 2003**). Only one zircon SHRIMP U-Pb age of 415 Ma from a pyroxenite of the mélange is reported (**Jian et al., 2005**), but the number of analysed grains and the statistical parameters are not mentioned. A middle Silurian age (Wenlock) was obtained from

Figure 5.B.4. a: Geological map of the Mayila Mountains, indicating the location of detrital zircon samples (adapted from **Buckman & Aitchison, 2004**). The structure of the Late Devonian turbidites is inferred from satellite image analysis. b and c: NW-SE and N-S geological sections across the Mayila Unit, illustrating the sliver structure of the mélange.

radiolarian chert of the Mayila mélange (Zhang, 1990; Li, 1994). The mélange is associated with purplish and greenish sediments, probably contemporaneous to the ophiolites. NW striking steeply dipping faults, which probably reactivate pre-existing thrusts, separate the mélange from the Early to Middle Silurian sedimentary formations (Zhang et al., 1993) (*Fig. 5.B.4c*). The base of the series is a thick Silurian turbidite sequence (Qiergaye formation), well-exposed in the Tangbale area (Feng et al., 1989) (*Fig. 5.B.6*). The Lower Mayila Formation (Ludlow) that might be equivalent to the sedimentary parts of the mélange, contains basalts, cherts, tuffs and sandstones yielding graptolites (Mu et al., 1986; Feng et al., 1989). According to Buckman and Aitchison (2004), calk-alkaline intrusions cross cut the Lower Mayila Formation but are overlain by the volcaniclastic turbidites of the Upper Mayila Formation, which contain Middle Silurian (Ludlow) corals, graptolites and brachiopods (Mu et al., 1986).

In the Mayila area, Early Devonian deposits are lacking, and sedimentation resumed during the Middle and Late Devonian. First, unconformable terrigenous clastic deposits (Kulumudi Formation), that contains rare Middle Devonian fossils of plants and corals (BGMRXUAR, 1993) and Frasnian detrital zircons (Choulet et al., submitted) rest upon the mélange rocks. Secondly, the thick sequence of turbidites (Taleaileke Formation), which yielded Late Devonian brachiopods (BGMRXUAR, 1993) postdate the emplacement of the Mayila Unit. The basis of the series is a shallow dipping conglomerate, fining upward into turbidite, which rest upon the vertical sedimentary rocks of the Mayila Unit (Fig. 5.B.5c). The Taleailek Formation grades upward to the Early Carboniferous Kalagandi Formation, which also display turbidites, associated with limestone and calcareous turbidite (BGMRXUAR, 1993). The Taleailek Formation experienced two successive folding episodes, with first upright folds followed by folding around a vertical axis induced by Permian strike-slip faults (Figs. 5.B.4a). Locally, slivers of Late Devonian rocks overthrust the Mayila mélange (Zhang et al., 1993), suggesting that the present structure was acquired after Devonian (Fig. 5.B.4b). To the north of the Mayila Unit, the Givetien to Frasnian Barliek Formation comprises sandstone, conglomerate, volcanoclastic turbidites and limestone interlayered with tuffs and andesitic lavas to form the Barliek arc (Feng et al., 1989; BGMRXUAR, 1993; Buckman & Aitchison, 2004) (Figs. 5.B.1b and 5.B.4a).

To the north of Mayila Unit, limestones do not form a coherent sedimentary series, but rather appear as ten to hundred metres scale olistoliths (*Figs. 5.B.4a* and *5.B.5d*) within a sandstone-siltsone matrix. A deformed sedimentary breccia, with limestone and cherty

pebbles develops at the base of the blocks. Green sandstone and fine greywacke are also present, as well as a thick sequence of red chert and reddish mudstone. The age of this gently folded series is not constrained as only limestone olistoliths have yielded Silurian corals and crinoids (**BGMRXUAR**, 1993).

Figure 5.B.5 Field pictures from Mayila and Tangbale Mountains. a: Phacoid of peridotite, with serpentinite shear bands from the Mayila mélange (45.3473°N; 83.0671°E), b: intricate association of reddish shale and hyaloclatite from a block of the Mayila mélange. This illustrates the pre-accretionary processes that took place in the ocean floor (45.6456°N; 83.1463°E), c: Angular unconformity between the high-angle southward dipping Silurian purplish to greenish sedimentary mélange (left and bottom) and the shallow dipping Devonian turbidites of the Taileaileke Formation (right and top). The contact is also marked by a five metres thick Devonian conglomerate (45.5133°N; 82.5381°E), d: hundred metres-scale Silurian limestone olistolith at the piedmont of the Barliek Mountains (45.7668°N; 83.1113°E), e: typical landscape of the Tangbale mélange along the Dalabute Fault Valley, with knockers of red chert (45.4329°N; 84.0166°E), f: Detail of sigmoidal blocks of red chert, greenish basalts and gabbro within a serpentinite matrix, in the Tangbale mélange (46.3815°N; 84.0300°E), g: pyrite crystal in greywacke levels of the Qiargaye formation (Tangbale area). Asymmetry of the calcite-quartz tails is consistent with a top-to-the east kinematics and the thrusting of the Qiargaye Formation over the Tangbale mélange (45.3168°N; 83.9008°E). The slaty cleavage, controlled by pressure-solution present an apparent offset of the veinlet. h: volcaniclastic turbidites of the Qiargaye Formation, showing disrupted sandstone beds (45.2819°N; 83.8031°E).

The Barliek ophiolitic mélange is exposed in the southern piedmont of the Barliek Mountains (*Figs. 5.B.1b* and *5.B.4a*). The formations of the Barliek arc seem to overthrust this mélange that itself overthrusts the Taleailek Formation (*Fig. 5.B.4b*). The age of these contacts is unknown. The mélange contains blocks of peridotite, basalt, gabbro, chert, limestone and greywacke included in a serpentinite matrix. The rare geochemical data from basalts indicate a within-plate origin (**Zhang, 1990**). Presently, no time constraints are available and, alternatively, Devonian or Ordovician age is assumed for the Barliek Mélange is assumed Devonian (**Feng et al., 1989; Zhang et al., 1993; Buckman & Aitchison, 2004**).

B.2.iii The Tangbale Unit

The Tangbale Unit, exposed as a ten kilometres stripe, to the south of the West Junggar Mountains, is partly covered by the Cenozoic and Quaternary sediments of the Junggar basin (*Fig. 5.B.6a*). To the northwest and to the east, the Permian Dalabute strike-slip fault (Allen & Vincent, 1997; Choulet et al., 2011) separates the Tangbale Unit from the Early Carboniferous West Karamay Unit (*Fig. 5.B.6a*). From north to south, the Tangbale Unit consists of Early to Middle Silurian turbidites and an ophiolitic mélange. The Tangbale ophiolitic mélange is composed of blocks of peridotite (harzburgite, dunite with minor lherzolite), pyroxenite, gabbro, basalt and chert included in a highly sheared serpentinite matrix (Huo, 1984; Feng et al., 1989; Zhang et al., 1993) (Fig. 5e). Blueschists and amphibolite blocks are also reported at several localities (Guo, 1983; Feng et al., 1989; Zhang, 1997), but the mélange chiefly displays greenschist facies assemblages. The serpentinite is often transformed to listwaenite (Buckman & Aitchison, 2004). In their terrane analysis, Buckman and Aitchison (2004) proposed to distinguish a Tangbale terrane comprising the ophiolitic mélange from a Kekesayi terrane characterized by a disrupted sequence of basalt-chert-tuff, since the Cambrian ophiolite was older than the Middle

Ordovician volcanic-sedimentary rocks. However, as all blocks of the Tangbale and Kekesayi terranes are included in the same matrix, it is simpler to consider a single mélange unit containing blocks of various ages and origins (*Fig. 5.B.6a*). According to **Wang et al. (2003)**, the harzburgites are highly depleted mantle peridotites and formed in an environment associated with a subduction zone, like a supra-subduction zone setting (**Zhang et al., 1993**; **Buckman & Aitchison, 2004**). Pillow basalts, gabbro, and mafic lavas show a large geochemical variety with MORB-type mafic rocks (**Wang et al., 2003**; **Buckman & Aitchison, 2004**), supra-subduction zone basalts (**Zhang et al., 1993**), OIB-type rocks (**Zhang et al., 1993**; **Buckman & Aitchison, 2004**), and island arc basalt (**Wang et al., 2003**). εNd values of the basalts and gabbros range from +7.3 to 7.9 (**Zhang et al., 1995**). A plagiogranite of the mélange has yielded a titanite Pb-Pb age at 523.7±7.2 Ma (**Kwon et al., 1989**). A layered gabbro was also dated at 531±15 Ma by SHRIMP method (**Jian et al., 2005**). Younger Sm/Nd isochron ages at 489±53 Ma and at 447±56 Ma were obtained from gabbros and basalts, respectively (**Zhang & Huang, 1992**; **Zhang et al. 1993**). Blueschist

Figure 5.B.6 a: geological map of Tangbale area (modified after **Feng et al., 1989**), b and c: N-S and NW-SE geological sections across the Tangbale Unit, illustrating the thrusting of the Qiargaye turbidites over the Tangbale mélange, and the Tangbale mélange thrusts over the Laba Unit. The basement of the Laba unit is not observable but a Precambrian block is suspected from geochemical evidence (**Tu, 1993**; **Hu et al., 2000**; **Chen et al., 2002** see section B.2.iii for discussion).

were dated by Ar-Ar method at 458.2 ± 2.5 Ma and 470.2 ± 2.3 Ma (**Zhang, 1997**). Middle Ordovician (Llandeilan) radiolarians were reported from cherty blocks (**Wang, 1982**; **Buckman & Aitchison, 2001**). Furthermore, a greywacke block from the mélange display an Early Silurian maximum deposition age (**Choulet et al., submitted**). The Tangbale mélange experienced a ductile deformation, as documented by the shear bands and the sigmoidal chert blocks (*Fig. 5.B.5f*). Except along the Dalabute fault where a vertical foliation is pervasive, the mélange displays a shallow, NW dipping foliation and a NW-SE striking lineation (*Figs. 5.B.5f, 5.B.6b* and *5.B.6c*). The mélange is locally reworked by late strike-slip faults along which the foliation is reoriented into a N-S direction, and the lineation strikes E-W (*Fig. 5.B.6a*).

To the northwest, the mélange is overthrust by turbidites of the Qiargaye formation (*Fig. 5.B.6b*). Although this contact was not directly observed, the top-to-the-E or to the SE shear criteria, like asymmetric quartz fibers on pyrite (*Fig. 5.B.5g*), document such a kinematics. **Feng et al. (1989)** and **Buckman and Aitchison (2004)** already proposed this geometry, but field evidence was not displayed. The Qiargaye formation consists of folded volcanoclastic turbidites (**Feng et al., 1989**), with disrupted sandstone beds (*Fig. 5.B.5h*). According to **Feng et al. (1989)** and **Zhang et al. (1993)**, these turbidites contain olivine, chromite, gabbro and chert clasts, suggesting that the Qiargaye formation partly reworks the Tangbale Mélange. However, the occurrence of quartz and feldspars clasts, as well as basalt and andesite debris, indicates a prominent volcanic arc provenance (**Choulet et al., submitted**). U-Pb detrital zircon geochronology indicates sources of Lower to Middle Ordovician age (**Choulet et al., submitted**). The 434-437 Ma maximum deposition ages (**Choulet et al., submitted**) are consistent with the Llandoverian age assignment based on graptolite, coral, brachiopod and trilobite faunae (**Mu et al., 1986; Feng et al., 1989; BGMRXUAR, 1993**).

The Suyuenka magmatic complex consists of andesite, diorite dacite and tuff, which display a calk-alkaline signature suggesting an intra-oceanic island-arc setting (**Buckman & Aitchison, 2004**) (*Fig. 5.B.6*). The age of this magmatic suite is not constrained yet, but a Late Ordovician-Early Silurian age is suspected, since the Suyuenka Complex intrudes the Tangbale mélange and the unconformable Silurian turbidites (Qiargaye formation) rest upon the magmatic rocks (**Buckman & Aitchison, 2004**).

To the southeast of the Tangbale mélange, a thick sequence of sandstone, graywacke and shale was reported as the Laba Unit or Terrane (Feng et al., 1989; Buckman & **Aitchison, 2004**). These terrestrial clastic rocks are deformed by recumbent folds overturned to the SE or E, coeval with a NW to W dipping axial plane cleavage, and a NW-SE to E-W trending lineation (*Fig. 5.B.6c*). Top-to-the-E shear criteria indicate that the Laba Unit was overthrusted by the Tangbale mélange (*Fig. 5.B.6a*). These sedimentary rocks were buried at metamorphic conditions up to amphibolite facies (**Buckman & Aitchison, 2004**). An Early Ordovician age is usually assumed (**Feng et al., 1989**; **Buckman & Aitchison, 2004**). An Early Ordovician age is usually assumed (**Feng et al., 1989**; **Buckman & Aitchison, 2004**), but this is merely because sandstone and shales of the Laba Unit are more deformed than the surrounding rocks (**Zhang et al., 1993**). U-Pb geochronology of detrital zircons from a metasandstone of Laba Unit yields an Early Devonian maximum deposition age (**Choulet et al., submitted**). The lower part of the Laba Unit is unknown (*Fig. 5.B.6c*), but a Precambrian basement is suspected since some metamorphosed tuffs and phyllite yield Meso-Proterozoic model ages (**Tu, 1993**; **Hu et al., 2000**; **Chen et al., 2002**). The Late Devonian molasse of the Kulumudi Formation is exposed to the NW of Tangbale.

Table 5 R 1 Detrita	l sample localities	and detailed	netrographic	analycic
Table J.D.T Denna	i sample localities	and uctaneu	penographic	anary 515

Sample	Coordinates	Lithology	Detailed petrography	Stratigraphic assignement	Stratigraphic age	Sampling environment	
DJ57	45.2581°N 83.9373°E	Greywacke (MS)	Qz. (60%), LF (35%), fsp. (5%)	Ebinur - Kekesayi Terrane *	U. Ord L. Sil.	Block within ophiolitic mélange	
DJ81	45.3110°N 83.9340°E	Greywacke (MS)	Qz. (50%),LF (40%) fsp. (10%)	Laba Terrane *	Ord. ?	Detrital series	
DJ85	45.2297°N 83.9632°E	Greywacke (CS)	Fsp. (45%), qz. (25%), LF (15%, bas. + and.), chl. (10%)	Ebinur - Kekesayi Terrane *	U. Ord L. Sil.	Block within ophiolitic mélange	
DJ96	45.6489°N 82.8918°E	Greywacke (CS)	fsp. (30%), LF (50%, and.), Qz. (15%), micas (5%), cc., FTO	Toli Terrane *	L. Dev U. Dev.	Turbidite series	
DJ100	45.6602°N 83.0923°E	Green sandstone (MS)	Qz (80%), LF (10%) fsp. (10%), cc., FTO.	Mayila Terrane *	M. Sil U.Sil.	Detrital series	
DJ123	45.5621°N 83.2568°E	Greywacke (CS)	Qz (50%), fsp. (25%), LF (15%, and.), chl. (10%), pp.	Mayila Terrane *	M. Sil U.Sil.	Block within ophiolitic mélange	
DJ182	45.4447°N 82.6068°E	Greywacke (CS)	fsp. (50%), Qz (25%), LF (15%, and.), chl. (5%),ep.	Mayila Terrane *	M. Sil U.Sil.	Turbidite series	
DJ183	45.3979°N 82.6098°E	Greywacke (CS)	qz. (30%), LF (30%, bas.), fsp. (15%), chl. (15%), ep., hb.	Mayila Terrane *	M. Sil U.Sil.	Block within ophiolitic mélange	

B.3 Sampling and Results

In order to better constrain the Early Palaeozoic geological evolution of West Junggar, and especially the timing of subduction-accretion processes, samples were collected for U-Pb geochronology and geochemistry. Eight clastic rocks were sampled from Tangbale and Mayila Units for U-Pb detrital zircon geochronology (*Figs. 5.B.4a* and *5.B.6a*). Sample location and petrographic details are available in *Table 5.B.1*. In addition, a felsic volcanic rock (sample DJ292) and a gabbro cumulate (sample DJ321) were sampled in the Chingiz-

Tarbagatay Unit for U-Pb dating (Fig. 5.B.2). Four basalts-andesites from the Sharburt suite (samples DJ380 to DJ383), four dacites-rhyolites from the Xiemisitai suite (samples DJ288 to DJ292) and a basaltic dyke (DJ294) that crosscut the Xiemisitai suite (*Fig. 5.B.2*) were also analysed for elemental and isotopic geochemistry. Sm-Nd isotopes were also determined for samples DJ288, DJ289 and DJ294.

B.3.i U-Pb geochronology

Cathodoluminescence (CL) images were taken at the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (IGGCAS). LA-ICPMS U-Pb datings were carried out at IGGCAS (for 6 out of 8 samples) and at Nanjing University (samples DJ57 and DJ81). An Agilent 7500a Q-ICPMS and a GeoLas PLUS 193nm excimer ArF laser ablation system were used for U-Pb isotopic measurements (c.f. appendix *Tables X.C.4* and *X.C.5*). For samples DJ321 and DJ100, a simultaneous determination of U-Pb and Lu-Hf isotopes was carried out at IGGCAS by using a MC-ICPMS. Details regarding instrument setting and analytical procedure are given in **Xie et al. (2008)** and **Wu et al. (2010)**. Maximum depositional ages are determined from the mean of the youngest three coeval concordant grains (e.g., **Dickinson & Gehrels, 2009**), and reported in *Table 5.B.2*. Hf isotopic ratios, $\varepsilon_{Hf}(t)$, and Hf model ages were calculated using a decay constant for ¹⁷⁶Lu of 1.93x10⁻¹¹ yr⁻¹ (**Blichert-Toft & Albarède, 1997**) and details regarding their calculations are in appendix (*Table X.C.6*).

Sample	Units	Youngest age	Main population (N/N ₀) [†]	Other populations (N/N ₀)
DJ57	Tangbale	421 \pm 7 Ma *	448 Ma	cf. fig. XX
DJ81	Tangbale	$401\pm8~\text{Ma}$	426 Ma	450 Ma
DJ85	Tangbale	421 ± 8 Ma **	437 Ma	-
DJ96	Mayila	$337\pm10~\text{Ma}$	373 Ma	-
DJ100	Mayila	$419\pm11~Ma$	438 Ma	cf. fig. XX
DJ123	Mayila	432 ± 10 Ma	448 Ma	-
DJ182	Mayila	388 ± 8 Ma	430 Ma	-
DJ183	Mayila	422 ± 9 Ma	459 Ma	-

Table 5.B.2 Synoptic table of detrital zircons ages.

CL images show broken euhedral zircon grains with growth and sector zonings for all samples except for green sandstone of sample DJ100 (c.f. appendix *Fig. X.C.1*). These features indicate a magmatic origin for these grains. Zircons from sample DJ100 show a both euhedral grains

with growth zoning and rounded grains without internal zoning pattern (*Fig. X.C.1*). Such features may indicate a mixing of zircon grains with magmatic and metamorphic orgin. U-Pb isotopic ratios of our samples plot along the Concordia Line (c.f. appendix *Fig. X.C.2*) without significant discordance (*Table X.C.4*). Except for samples DJ57 and DJ100, and for two grains from DJ96, detrital zircons are Palaeozoic.

Figure 7 Relative probability diagrams (with corresponding histogram) for detrital zircon 206 Pb/ 238 U ages (< to 1000 Ma) and 207 Pb/ 206 Pb ages (> to 1000 Ma) from eight samples of Tangbale and Mayila areas (sample location is given in Figs. 5.B.4 and 5.B.6).

Age spectra for detrital zircons are presented in *Fig. 5.B.7*, and results are summarized in *Table 5.B.2*. Sample DJ57 show a prominent peak at 448 and subsidiary populations at 559 Ma, 691 Ma, 885-977 Ma, 1061 Ma, 1408 Ma, 1764 Ma, 1939 Ma, 2171 Ma 2386 Ma, 2497 Ma, 2707 Ma, 3109 Ma and 3236 Ma (*Fig. 5.B.7a*). We calculated a Late Silurian maximum age of deposition (*Table 5.B.2*). An Early Devonian maximum age of deposition is computed for sample DJ100 (*Table 5.B.2*), which exhibits population peaks at 438Ma, 509 Ma, 642, 883-968 Ma, 1118 Ma, 1289 Ma, 1391 Ma, 1550 Ma, 1760 Ma, 2407 Ma and 2609 Ma (*Fig. 5.B.7b*). For all other samples, unimodal distribution was observed. Peaks are relatively

narrow and maximum deposition age is close to peak age. Sample DJ81 displays a maximum deposition age at 401±8 Ma, with a major and minor population peak at 426 Ma and 450 Ma, respectively (*Fig. 5.B.7c*). A maximum deposition age at 421±8 Ma and a population peak at 437 Ma were calculated for DJ85 (*Fig. 5.B.7d*). Early Carboniferous maximum deposition ages were determined for sample DJ96, with a Late Devonian prominent peak (*Fig. 5.B.7e*). In addition, one Cambrian zircon and two Early Proterozoic zircons were recorded. Samples DJ123 and DJ183 from greywacke blocks of the Mayila mélange show an Early to Middle Silurian maximum age of sedimentation and a Late Ordovician population peaks (*Figs. 5.B.7f*) and *5.B.7g*). A maximum deposition age at 388±8 Ma and a population peak at 430 Ma were calculated for DJ182 (*Fig. 5.B.7h*).

Sample DJ321 is a cumulative gabbro that was collected from a ten metres-sized block in the Hongguleleng mélange (46.8324°N; 86.4858°E; *Fig. 5.B.2*). This coarse-grained gabbro is made up of plagioclase (75%) and tremolite (25%), with occasional quartz. Twentythree zircon grains yield a Concordia age (**Ludwig, 1998**) of 488±3 Ma with a fitting probability of 0.91 (*Fig. 5.B.8a* and Table *X.C.5*). Sample DJ292 is a rhyolite from Xiemisitai. The outcrop is located along S318 road, twenty kilometres to the south of

Hobuksar city (46.6505°N; 85.6371°E; *Fig.* 5.*B.2*). The rock is orange in colour, with graphic texture (*Fig.* 5.*B.9a*) composed of orthoclase and quartz. Sample DJ292 belongs to the thick sequence of volcanic rocks, previously ascribed to Late Devonian. Since Late-Silurian-Early Devonian plutons intrude these volcanic rocks, this series is pre-Late Silurian (**Chen et al., 2010a**). Eleven zircons give a Concordia age at 435±2 Ma, with a probability of 0.71 (*Fig.* 5.*B.8b* and Table *X.C.5*).

Figure 5.B.8 Concordia plots for magmatic zircon grains from samples DJ292 and DJ321, with CL images of representative zircons (sample location in Fig. 5.B.2).

Figure 5.B.9 Microphotographs from volcanic rocks of the Sharburt-Xiemisitai Suite. a: graphic texture with quartz and alkali feldspar surrounding an orthoclase (46.6505°N; 85.6371°E), b: Basaltic andesite from Sharburt, showing plagioclase microlits and small plagioclase and clinopyroxene crystals (46.8530°N; 86.5409°E), c: Clinopyroxene megacryst aggregate in a basaltic andesite from Sharburt (46.8530°N; 86.5409°E), d: piedmontite euhedral grain in a dacite from the Xiemisitai Mountains (46.6547°N; 86.6391°E).

B.3.ii Lu-Hf isotope compositions

For sample DJ321, Hf isotopic ratios are close to the values of the Depleted Mantle, with ε Hf ranging from +13.6 to +17.2 (*Fig. 5.B.10a* and *Table X.C.6*). Single stage model ages (T_{DM}) are Cambrian or Late Neoproterozoic. For sample DJ100, ε Hf values display an important variability (*Fig. 5.B.10a* and

Table X.C.6). Early Palaeozoic zircons show ε Hf ranging from -11 to +13. ε Hf values for zircons of Early Neoproterozoic age vary from -9.8 to +6.6. Late Palaeoproterozoic to Mesoproterozoic zircons display ε Hf, bracketed between -23.9 and + 5.4. ε Hf values of Late Archean to Early Palaeoproterozoic zircons age are exclusively negative and vary from -16.6 to -2.9. Hf crustal (or two-stages) model ages range from 600 Ma to 4200 Ma, with prominent peaks at 700Ma, 1200-1400 Ma, 1500-1800 Ma, 2000-2200 Ma, 2500-2800 Ma and 3100-3350 Ma (*Fig. 5.B.10b*).

Figure 5.B.10 a: Plot of ε Hf(t) vs ²⁰⁶Pb/²³⁸U ages. ε Hf(t) of magmatic zircons from sample DJ321 overlap the DM curve and indicate a pure juvenile origin. ε Hf(t) values of detrital zircons from sample DJ100 fluctuate from positive to negative and suggest a juvenile orgin with major crustal contamination, and important old crust recycling. b: histogram of two-cycle (crustal) Hf model ages (T_{DM}^C). Details regarding ε Hf(t) and T_{DM}^C calculation are given in Table X.C.6.

For 7 out of 9 samples from the Xiemisitai-Sharburt suite, major elements and traces were determined by ICP-MS at the SARM-CRPG, Nancy (France), following procedures of **Carignan et al.** (**2001**). For the 2 other samples, major elements were analysed by XRF at the

Department of Geological Sciences, National Taiwan University (NTU, Taipei) and trace elements were determined by ICP-MS at NTU. Details regarding the analytical procedures are given by **Yang et al. (2005)**. Nd isotopic compositions were also determined for the samples from Xiemisitai Mountains, at the Institute of Earth Sciences, Academia Sinica (Taipei). Procedures of chemical separation and analysis are described by **Jahn et al. (2009)**.

The Sharburt-Xiemisitai suite comprises porphyritic andesite and basaltic andesite, but basalt, dacite and rhyolite were also recognized. In the Sharburt area, four andesitic basalts were collected (*Fig. 5.B.2*). All samples display a prominent porphyric texture, with plagioclase phenocrystals in a purplish matrix. This matrix presents a flow structure with oriented plagioclase microlites (*Fig. 5.B.9b*). Small crystals of clinopyroxene (*Fig. 5.B.9c*) and, occasional olivine are visible, but intense secondary chloritisation is usually prominent. In the Xiemisitai area, dacites and rhyolites were collected. Euhedral quartz and feldspars (plagioclase and orthoclase) are visible either as phenocrysts or as microliths. Fe-Mg minerals are represented by secondary chlorite replacing biotite. Euhedral crystals and needles of piemontite (a Mn-bearing epidote) were recognized in sample DJ290 (*Fig. 5.B.9d*). Piemontite usually occurs in low to medium grade metamorphic rocks, but piemontite was also described in magmatic and metasomatic environments (**Bonazzi & Menchetti, 2004**). In addition, we collected a basaltic sample (DJ194) from a dyke that crosscut the dacites and the

rhyolites of Xiemisitai Mountains. This basalt shows microlites of plagioclase, clinopyroxene and olivine, rare plagioclase phenocristals and original bubbles filled by secondary calcite.

Sample no.	DJ288	DJ289	DJ290	DJ292	DJ294	DJ380	DJ381	DJ382	DJ383
Rock type	Rhyolite	Rhyolite	Andésite	Rhyolite	Basalt	Andésite	Andésite	Andésite	Andésite
Analysis Lab	NTU	Nancy (NTU*)	Nancy	Nancy	NTU	Nancy	Nancy	Nancy	Nancy
Locality	Xiemisitai	Xiemisitai	Xiemisitai	Xiemisitai	Xiemisitai	Sharburt	Sharburt	Sharburt	Sharburt
									<u></u>
(wt%)									
SiO2	78.877	73.02	64.91	78.81	46.665	48.19	48.6	50.96	50.31
Al2O3	10.704	13.311	15.28	9.98	15.091	21.64	16.17	19.43	16.44
Fe2O3	3.46	2.622	4.84	2.03	13.179	9.99	12.51	9.75	12.98
MnO	0.187	0.1261	0.12	0.02	0.208	0.14	0.23	0.19	0.25
MgO	0.13	0.939	1.91	0.35	4.038	4.88	5.67	4.36	5.04
CaO	0.339	1.049	2.63	0.1	8.643	7.44	10.83	8.58	9.06
Na2O	3.389	1.879	3.22	3.3	3.732	3.35	2.86	3.14	3.03
K2O	3.009	5.92	3.28	3.3	0.85	0.35	0.48	0.16	0.82
TiO2	0.164	0.28	0.42	0.19	2.728	0.77	0.94	0.71	1.04
P2O5	0.034	0.071	0.18	0	0.761	0.1	0.13	0.13	0.18
PF		1.228	2.2	0.7		3.21	1.5	2.66	1.55
Total	100.293	100.444	98.99	98.78	95.895	100.07	99.91	100.06	100.69
(ppm)									
V	136.7	29.59	65.75	26.69	228.7	284.2	447.7	229.6	485.2
Ba	492.5	591.1	646.1	135.7	499.5	257.3	377.4	129.4	392.5
Rb	33.45	186.4	89.31	71.5	2.89	3.489	4.831	2.025	6.334
Zr	167.4	175.8	119.2	290	243.8	37.34	44.16	53.79	40.88
Hf	4.107	5.09	3.018	6.657	5.077	1.104	1.346	1.566	1.229
Th	2.873	19.69	8.609	7.128	1.389	0.521	0.642	0.845	0.743
Та	0.631	0.744	0.413	0.998	1.264	0.055	0.102	0.088	0.124
Nb	10.49	7.492	4.891	13.76	22.03	0.866	1.363	1.22	1.788
Y	21.98	19.77	14.86	41.16	31.8	13.05	17.16	17.04	16.14
La	18.63	27.29	21.45	39.3	29.39	5.47	5.241	5.958	6.473
Ce	45.82	53.57	39.29	78.28	74.51	11.67	12.21	13.97	14.7
Pr	5.53	5.991	4.488	9.417	8.457	1.776	1.839	2.039	2.146
Nd	23.69	21.25	16.77	35.82	35.42	8.24	8.974	9.535	10.14
Sm	5.541	4.014	3.228	7.013	8.057	2.186	2.559	2.545	2.725
Eu	1.579	0.639	0.907	0.364	2.757	0.801	0.93	0.89	1.024
Gd	5.031	3.251	2.76	6.41	7.574	2.255	2.815	2.756	2.826
Tb	0.725	0.511	0.401	1.092	1.12	0.354	0.45	0.439	0.447
Dy	4.065	3.065	2.44	6.796	6.327	2.265	2.953	2.875	2.819
Но	0.8268	0.622	0.484	1.401	1.27	0.464	0.605	0.595	0.569
Er	2.264	1.922	1.441	4.17	3.33	1.313	1.74	1.709	1.626
Tm	0.3331	0.315	0.228	0.653	0.4684	0.192	0.263	0.26	0.251
Yb	2.137	2.306	1.642	4.541	2.911	1.31	1.802	1.778	1.717
Lu	0.3195	0.375	0.27	0.717	0.4274	0.199	0.279	0.268	0.271

Major and trace elements analyses are reported in Table 5.B.3. In total alkalies versus silica plot (Le Bas et al., 1986) (*Fig. 5.B.11a*), rocks from the Sharburt suite fall in the fields of basalts and andesitic basalts, whereas rocks from the Xiemisitai suite display dacitic to

rhyolitic compositions. A sub-alkaline series is also inferred. Sample DJ294, which displays high alkaline content and high Nb/Y ratio plots in alkaline basalt fields (**Winchester & Floyd, 1977**) (*Figs. 5.B.11a* and *5.B.11b*). Chondrite-normalized (**Evensen et al., 1978**) REE

MECANISMES ET EVOLUTION DES CHAINES D'ACCRETION EN ASIE CENTRALE

Figure 11 Geochemical diagrams for felsic and mafic rocks of the Sharburt-Xiemisitai magmatic suite. Samples DJ288, DJ289, DJ290 and DJ292 were collected in the Xiemisitai Mountains; DJ380, DJ381, DJ382 and DJ383 from the Sharburt Mountains. See Fig. 5.B.2 for sample location. a: Total alkali versus silica plot (Le Bas, 1986), b: Zr/TiO2 versus Nb/Y (Winchester & Floyd, 1977), c Chondrite-normalized (Evensen et al., 1978) REE spidergram, d: MORB-normalized (Sun & McDonough, 1989) spidergram, e: Ti versus Zr plot for basaltic compositions (Pearce & Cann, 1973), f; V vs. Ti plot for basaltic compositions (Shervais, 1982), g: Hf/3-Th-Ta triangular plot for basaltic composition (Wood, 1980), h : Ta versus Yb plot for granitic compositions (Pearce et al., 1984).

spidergram shows a REE-enriched pattern. LREE enrichment is more significant in the Xiemisitai suite (ca. 100 times) than in the Sharburt suite (ca. 20 times) (Fig. 5.B.11c). All samples from the Xiemisitai suite, except DJ288 and DJ294, display negative Eu anomaly and a slight HREE enrichment with respect to MREE. Despite a significant deviation of the Ba, Rb and K content, MORB-normalized (Sun & McDonough, 1989) spidergram shows LILE enrichment and light HFSE depletion (Fig. 5.B.11d). All samples, except DJ294, show wellpronounced Nb, Ta, P, Eu and Ti negative anomalies. Zr and Hf slightly negative and positive anomalies are noticeable in samples from Sharburt and Xiemisitai suites, respectively. Sample DJ294 shows a very distinguishable pattern without obvious anomalies. Basalts from Sharburt suite have low Ti and Zr content and plot in the field of volcanic-arc basalt in a Ti vs. Zr diagram (Pearce & Cann, 1973) (Fig. 5.B.11e). In V vs. Ti digramm (Shervais, 1982), these rocks plot in the fields of arc tholeite and calck-alkaline basalts and align according to a Ti/V ratio of 7.5 (Fig. 5.B.11f). On the Hf/3- Th-Ta triangular plot of Wood (1980) (Fig. 5.B.11g), rocks from the Sharburt suite plot within the field of calkalkaline basalts with low Ta contents and low Hf/Th ratios (*Fig. 5.B.11g*). Because of higher Zr, Ti and Ta content, sample DJ294 plot in the fields of within-plate basalts, alkali basalts and E-type MORB. Rocks from the Xiemisitai suite display a granitic s.l. composition and plot in the volcanic arc field of Ta vs. Yb diagram of Pearce et al. (1984a) (Fig. 5.B.11h). DJ288 and DJ289 from the Xiemisitai suite present positive ε Nd values of 4.4 and 4.9, but this value is higher (6.3) for DJ294 (Table 5.B.4).

Sample no.	[Sm] (ppm)	[Nd] (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	2s	e _{Nd} (0)	e _{Nd} (T)	$\mathbf{f}_{Sm/Nd}$	T _{DM1} (Ga)	T _{DM2} (Ga)
DJ288	5.541	23.69	0.1408	0.512702	6	1.2	4.4	-0.28	0.94	0.75
DJ289	4.014	21.25	0.1137	0.512653	7	0.3	4.9	-0.42	0.76	0.79
DJ294	8.057	35.42	0.1369	0.512803	6	3.2	6.3	-0.30	0.69	0.58

Table 5.B.4 Whole rock Nd isotopes data for volcanic rocks from Xiemisitai Mountains, West Junggar.

B.4 Discussion - the Early Palaeozoic geodynamic evolution of West Junggar

In this section, we discuss the significance and the implication of the new structural, geochronological and geochemical results. Detrital zircons U-Pb geochronological data constrain the age of undated units and the potential zircon sources are debated. Successive tectonic, magmatic and sedimentary events are deciphered and help to discuss the relationships between West Junggar and Eastern Kazakhstan units. Finally, we propose a possible evolutionary geodynamic model for these areas.

B.4.i Detrital zircons maximum deposition ages

The Middle to Upper Silurian maximum deposition age obtained for greywacke blocks from the Tangbale mélange (sample DJ57 and DJ85) implies that this ophiolitic mélange was formed during Late Silurian or Early Devonian. Sample DJ81 from Laba Unit display a maximum deposition age at 401 ± 8 Ma similar to pre-existing geochronological data (**Choulet et al. submitted**) (*Table 5.B.2*).

In the Mayila Unit, greywacke blocks (DJ123 and DJ183) from the Mayila ophiolitic mélange yield Early to Middle Silurian maximum deposition age very consistent with the available ages (**Choulet et al. submitted**) (*Table 5.B.2*). As the mélange contains chert blocks with Middle Silurian radiolarian (**Li, 1994**) and Late Silurian pyroxenite (**Jian et al., 2005**), its emplacement age, younger than Late Silurian, does not significantly differ from the age of the Tangbale mélange. The green sandstone sample (DJ100) displays a Late Silurian maximum deposition age, and therefore it is contemporaneous of the olistostrome that contains blocks of Middle Silurian limestone (*Fig. 5.B.4a*). Sample DJ182 is a graywacke that was collected from a sliver of turbidite imbricated within the Mayila Mélange. Based on the Givetian maximum age of sedimentation (*Table 5.B.2*), we can correlate these turbidites with the Late Devonian Taileaileke Formation (*Fig. 5.B.4a*). The upper limit of this formation is constrained by the Lower Carboniferous maximum deposition age, displayed by a calcareous greywacke (sample DJ96). Therefore, the turbidite series ranges from Upper Givetian to Lower Visean.

B.4.ii Potential zircon sources

In rocks collected at Tangbale and Mayila, the narrow Late Ordovician and Early Silurian peaks display mainly unimodal distribution, which may indicate a single zircon source (*Fig. 5.B.7*). The volcanoclastic nature of the collected samples reaveals a volcanic arc

Figure 12 Tectonic map of Western Altaids, highlighting the correlations between Early Palaeozoic units of Western Junggar and Eastern Kazakhstan. Abbreviations: A: Arkalyk, CANTF: Chingiz-Alakol-North Tian Shan Fault, CK: Chatkal-Kurama, CKF: Central Kazakhstan Fault, DF: Dalabute Fault, IGSZ: Irtysch-Gornotsaev Shear Zone, IVB: Late Palaeozoic Inner Volcanic Belt, NNTL: Nalati-Nikolaiev Tectonic Line, OVB: Late Palaeozoic Outer Volcanic Belt, S: Sawuer, TFF: Talas-Fergana Fault, Yi: Yili, Z: Zharma.

provenance. In Mayila and Tangbale, the only evidence of 460-440 Ma magmatism is the dioritic intrusion of the Suyuenka Complex, but these rocks remain undated yet (**Buckman & Aitchison, 2004**). In the Chingiz-Tarbagatay Unit, Late Ordovician arc magmatism is described and could be a possible source for these zircons, however a remote provenance from the Ordovician Baidaulet-Aqbastau arc (see a review in **Degtyarev, 2011**) can also be envisaged (*Fig. 5.B.12*). According to **Choulet et al. (submitted**), Early Palaeozoic detrital rocks of Mayila and Tangbale units also contain Cambrian and Early Ordovician zircons.

Based on Hf isotopic signature, a remote source, like the Bozshekol-Chingiz arc (Degtyarev & Ryazantsev, 2007) or the Kazakh continental margin (Kröner et al., 2007) can be also inferred (*Fig. 5.B.12*). Samples DJ81 and DJ182, show a prominent Middle Silurian age peak and a minor Late Ordovician peak. Until now, 425-435 Ma arc magmatism was only known in the Chingiz area (Bandaletov, 1969; Degtyarev, 2011). The Sharburt-Xiemisitai volcanic suite that presents a calk-alcaline geochemical signature typical of arc environment (Fig. 5.B.11), was dated at 435±2 Ma (Fig. 5.B.8). Therefore, a Late Llandoverian arc likely developed in northern West Junggar. The ε (Nd) value of +4.4 and +4.9 (*Table 5.B.4*) obtained on sample DJ288 and DJ289 are similar to those obtained on Early Palaeozoic igneous complex of the Bozchekul-Chingiz arc (Degtyarev et al., 2008c; Degtyarev, 2011). Sample DJ96 that is calcareous sandstone collected in the Early Carboniferous Kalagang Formation (Fig. 4a) displays a Fammenian population age peak. Middle to Late Devonian calk-alkaline magmatism in the Barliek arc is documented by the Bieluakaxi granodiorite dated at 369±6 Ma by U-Pb method on zircon (Jin & Xu, 1997). In sample DJ96, a minor population of Early Palaeozoic zircons is also recycled (Fig. 5.B.7e). This may confirm that the Devonian-Carboniferous Brliek magmatic arc developed upon an Early Palaeozoic basement.

Detrital Precambrian zircons of Mayila green sandstones (DJ100) and Tangbale greywackes (DJ57) suggest a remote provenance of the grains, since no Precambrian basement is observed or inferred in West Junggar (Chen & Jahn, 2004, Geng et al., 2009; Choulet et al. submitted), except in the Laba area (Hu et al., 2000). The complex age spectra of these samples (Figs. 5.B.7a and 5.B.7b) and the high variability of zircon Hf isotope signature of sample DJ100 (Fig. 5.B.8a) most likely suggest mixed zircon sources. Following Berry et al. (2001), the Kolmogorov-Smirnoff test was performed to document the similarity between the age spectra of samples DJ100 and DJ57. According to (Press et al., 1986), a probability threshold of 0.05 must be reached to be 95% confident that the two populations are not statistically different. While, in detail, certain age peaks are specific to one sample or another (e.g. 1939 Ma, 2172 Ma, 2497 Ma, 3109 Ma and 3236 Ma for sample DJ57, or 1118 Ma, 1289 Ma, 1550 Ma and 2609 Ma for sample DJ100), five peaks (883-885 Ma, 968-977 Ma, 1391-1408 Ma, 1760-1764 Ma, 2386-2407 Ma) are identical. A probability value of 0.101, higher than then threshold value of 0.05, was calculated for the two datasets. This indicates a significant similarity at 95% between the two samples. Based on Hf isotope data of sample DJ100 (Fig. 5.B.10), different possible source rocks for zircons can be invoked: 1) mantle-derived magmatic rocks affected by a substantial continental crust contamination, 2) metamorphic or anatectic rocks derived from a heterogeneous crustal protolith. The coexistence of euhedral grains with growth zoning and rounded grains with internal mantle and core textures indicates a mixing of zircon sources (c.f. appendix Fig. X.C.4). Although Early Paleozoic metamorphic or migmatitic rocks are reported in Altai (Long et al., 2007) and Tian Shan (e.g. Charvet et al., 2007), these provenances can be ruled out because in the Silurian and Devonian, West Junggar was separated from present Altai and Tian Shan by the Ob-Zaisan and Junggar oceans, respectively (Filippova et al., 2001). Alternatively, Ordovician magmatic arc resting on a Precambrian continental basement is well documented in Kazakhstan (Degtyarev, 1999, Kröner et al., 2008). Numerous Cambrian island arcs, like the Bozchekul-Chingiz arc or the Selety arc (Fig. 5.B.12) might have supplied the 509 Ma zircon population (Degtyarev, 2011). Riphean-Vendian peaks may correspond to the major episodes of rifting that led to the opening of the Palaeo-Asian oceanic domains (Avdeev, 1984; Khain et al., 2003; Kheraskova et al., 2003; Kröner et al., 2007). Neoproterozoic ages at ca. 1000 Ma are known in Central Kazakhstan area (see a review of available ages in Kröner et al., 2007). The origin of the Middle Mesoproterozoic zircons is unknown since these ages are not documented in Siberia, Kazakhstan and Tarim. Although inherited grains within an Early Cambrian metadacite from South Kazakhstan have yielded ages at ca. 1365 Ma (Kröner et al., 2007), no major Middle Mesoproterozoic thermal event is forwarded yet. Late Paleoproterozoic orogenic episodes are extensively documented in Chu-Yili (Kröner et al., 2007), Kirghizstan (Kröner et al., 2010), Altai and Siberia (see a review in Long et al., 2007) (Fig. 5.B.12). Identically, magmatic episodes at ca. 2600 Ma are known in South Kazakhstan, Kirghizstan (Kröner et al., 2007; 2011), Siberia (see a review in Long et al., 2007) and Tarim (Hu et al., 2000; Lu et al., 2008). The Early Silurian paleogeography suggests that West Junggar was close to the Kazakhstan microcontinents and separated apart from Siberia and Tarim by large oceanic domains (Filippova et al., 2001). Therefore, the Kazakhstan microcontinents represent the likely sources for the old Precambrian detrital zircons of samples (DJ57 and DJ100).

B.4.iii Architecture of the Early Palaeozoic accretionary complexes

Remnants of Cambrian-Ordovician oceanic crust are widely developed in West Junggar like in the entire Central Asia (**Khain et al., 2003**; **Wang et al., 2003**; **Windley et al., 2007**; **Xiao et al., 2008**). No typical ocean plate stratigraphy is preserved and fragments of oceanic crust were included in mélange units during accretion. To the north, in the Honguleleng mélange, the age at 488±3 Ma of the cumulative gabbro is consistent with the

pre-existing dating of **Zhang and Huang (1992)** and **Jian et al. (2005)** (*Fig. 5.B.13*). It is also coeval with the emplacement age of gabbros in the Kujibai ophiolite (**Zhu & Xu, 2006**) (*Fig. 5.B.12*). The Upper Ordovician conglomerate of the Bulonguuer Formation (*Fig. 5.B.2*) ophiolitic contains gravels (**Feng et al., 1989**) that postdate the Hongguleleng mélange. The Mayila and Tangbale ophiolitic mélanges were initially considered as Ordovician and Silurian, respectively. However, both mélanges include greywacke blocks with maximum age of deposition up to Late Silurian (*Figs. 5.B.7a* and *5.B.7d*). Therefore, a maximum Late Silurian age of emplacement is assumed for these two mélanges and this age probably corresponds to the last increment of subduction-accretion process during the Early Palaeozoic (*Fig. 5.B.13*).

In the northern part of West Junggar, two successive episodes of arc magmatism are documented (*Fig. 5.B.13*). Middle Ordovician volcanoclastic sediments and Late Ordovician ashes (**BGMRXUAR**, 1993) indicate a proximal Ordovician arc. After an apparent Late Ordovician-Early Silurian hiatus of arc activity, calk-alkaline magmatism started again with the emplacement of the Early to Middle Silurian Sharburt-Xiemisitai magmatic serie (*Figs. 5.B.11* and *5.B.13*). In the Mayila and Tangbale units, the only direct evidence of arc magmatism is the undated Suyuenka dioritic complex (**Buckman & Aitchison, 2004**). Since volcaniclastic turbidites display a prominent Ordovician population of zircons (*Fig. 5.B.13*), the Mayila and Tangbale units represent accretionary complexes, initially located along an Ordovician active margin. Along trench sedimentation also supplied the wedge and the forearc, with older zircons from the neighbouring Cambrian-Ordovician Kazakhstan (**Choulet et al., submitted**).

Turbiditic sequences, contemporaneous to the Early Palaeozoic active subduction are not preserved in the northern part of West Junggar. Conversely, in Mayila and Tangbale, thick turbidites series are exposed. Although the present structure is mainly post-Silurian (*Figs. 5.B.4b*, *5.B.4c*; *5.B.6b* and *5.B.6c*), the geometry is identical between the two areas and it is characteristic of an accretionary wedge. This wedge developed until Middle to Late Silurian, as inferred by geochronological constrains from detrital zircons.

The cessation of arc activity related to subduction jamming is recorded at the end of Middle Silurian. In the Chingiz-Tarbagatay and Mayila area, olistoliths of Silurian limestones emplaced on the top of the arc volcanic pile or upon the mélange (Figs. 5.B.3e, 5.B.3f, 5.B.5d and *5.B.13*). This olistostrome grades into a terrigenous clastic series, marked by continental Late Silurian green sandstones, in the Mayila and Laba units (*Figs. 5.B.4* and *5.B.6*). One of

Figure 13 Synoptic chart of available geochronological and stratigraphic data in West Junggar and their possible correlation with Eastern Kazakhstan. The successive sedimentary, magmatic and tectonic events are compiled from available data in the three investigated Early Palaeozoic units (Chingiz-Tarbagatay, Mayila, Tangbale). The comparison with Eastern Kazakhstan is adapted from **Windley et al., 2007** and **Degtyarev, 2011**.

these sandstones contains Precambrian zircons with a remote provenance, likely from the Kazakhstan microcontinent (Fig. 5.B.7b). From Late Silurian to middle Devonian, molasse deposits overlay the Ordovician-Silurian rocks, with numerous sedimentation gaps (Feng et al., 1989; BGMRXUAR, 1993) (Fig. 5.B.13). In the Tangbale area, the mélange overthrusts the Early Devonian metasediments of the Laba Unit (*Fig. 5.B.6c*) that were buried to reach the P-T conditions of the amphibolite facies (Feng et al., 1989; Buckman & Aitchison, 2004). The timing of thrusting is not directly constrained, but this episode is older than Early Devonian, and younger than Middle Devonian, since the unconformable Middle Devonian Kulumudi molasse is neither deformed, nor metamorphosed (Feng et al., 1989) (Fig. 5.B.6c). A major Middle Devonian unconformity is visible in Mayila area (Fig. 5.B.5c).

Middle Devonian magmatic arc, forearc and accretionary prism further developed in West Junggar upon the Early Palaeozoic rocks (**Buckman & Aitchison, 2004**; **Choulet et al., submitted**).

B.4.iv Correlations with eastern Kazakhstan

As discussed in **Chen et al.** (2010), the Early Palaeozoic rocks of the Chingiz-Tarbagatay Unit present numerous similarities with the volcanic and sedimentary series of the Bozshakol-Chingiz ensimatic arc (*Fig. 5.B.12*). This composite arc is characterized by three successive periods of activity: 1) Early to Middle Cambrian, 2) Late Cambrian to Ordovician and 3) Early to Middle Silurian (**Degtyarev, 1999; 2011**) (Fig. 5.B.13). Identically to the northern West Junggar, the uppermost Ordovician series in the Bozchekul area is characterized by an olistostrome (**Degtyarev & Ryazantsev, 2007**), which is sedimentary signature of an important tectonic episode experienced by northeast Kazakhstan. The Lower Ordovician age yielded by the Hongguleleng and Kujibai ophiolitic mélanges is similar to the inferred age of the ophiolites in the Maikan-Kyziltas zone (**Kromykh, 1986; Degtyarev et al., 2010**) (*Figs. 5.B.12* and *5.B.13*). This suggests a single pre-Late Ordovician subduction zone below the Bozshekul-Chingiz intra-oceanic arc.

Because of their structural positions in the core of the Kazakh orocline, the Mayila and Tangbale units may correlate with the Teqturmas, Agadyr, North Balkash and Alataw ophiolitic mélanges (Fig. 5.B.12). These three zones represent accretionary complexes, composed of Ordovician to Silurian ophiolitic mélanges and turbiditic series (Degtyarev et al., 2009; Degtyarev, 2011) (Fig. 5.B.13). Therefore, we propose that the Mayila, Tangbale, Alataw, North Balkash, Agadyr and Teqturmas units initially represented a single linear subduction zone, active up to Middle Silurian. This accretionary complex was later partitioned into isolated fragments due to the Devonien to Carboniferous buckling of the Kazakh Orocline and the Late-Carboniferous-Permian transcurrent displacements along the Central Kazakhstan Fault and the Chingiz-Alakol-North Tian Shan Fault (Samygyn, 1974; Levashova et al., 2003b; Choulet et al., 2010) (Fig. 5.B.12). As previously said, detrital zircon age spectra of the Mayila and Tangbale turbidites display a principal Ordovician arc source, possibly the Suyuanka dioritic complex or the Ordovician Baidaulet-Aqbastau island arc (Fig. 5.B.13). Oceanic subduction has perdured until Late Silurian in the Tangbale and Mayila Units accretionary complexes (Fig. 5.B.13). The Baidaulet-Aqbastau island arc does not show any evidence of Silurian arc magmatism related to subduction of the Mayila and Tangbale Units, meaning that this arc was unactive at that time. Conversely, Early to Middle Silurian arc magmatism is recorded in the Chingiz-Tarbagatay Unit, in the Chingiz range (**Degtyarev et al., 2008c; Degtyarev, 2011**) and in the Sharburt-Xiemisitai Mountains (*Figs. 5.B.8* and *5.B.11*). The numereous Middle Silurian zircons conveyed into the Mayila and Tangbale accretionary complexes might be originated in the Sharburt-Xiemisitai Mountains. The correlation between the population peaks of sample DJ57 (*Fig. 5.B.7a*) and the major magmatic or metamorphic events in Kazakhstan (**Kröner et al., 2007; 2008**) suggests that the Tangbale and Mayila Units were probably adjacent or affixed to the Kazakhstan microcontinent in the mid-Silurian.

Intraplate magmatism and molasse deposition support a cessation of subduction at Late Silurian (*Fig. 5.B.13*). Based on the structural pattern of the Tangbale Unit (*Fig. 5.B.6b* and *5.B.6c*), we assume that subduction stopped because a microcontinent collided with the Early Palaeozoic West Junggar arc. This microcontinent, represented in the study area by the Laba Unit, constitutes the basement of the Laba sedimentary rocks (**Hu et al., 2000**; **Chen et al., 2002**), and may correlate with the Aktau and Bole blocks (*Fig. 5.B.12*), as there is a consistency between the few available ages in West Junggar (**Tu, 1993**; **Hu et al., 2000**) and the metamorphic and magmatic episodes recognized in the Aktau block of the Central Kazakhstan (**Zykov et al., 1977**; **Degtyarev et al., 2008a**). However, the Laba block has a limited extent, since geochemical signature of Permian plutons surrounding the Junggar rather indicate a juvenile crust than a Precambrian crust (**Han et al., 1997**; **2010**; **Chen and Jahn, 2004**; **Su et al., 2006a**; **2006**b; **Wang et al., 2009a**).

No equivalent of the Early Devonian Outer Volcanic Belt (**Filippova et al., 2001**) is documented in West Junggar (*Fig. 5.B.12*). Middle Devonian to Carboniferous arc magmatism, recorded in the Barliek Unit, correlate with the development of the Middle Devonian to Carboniferous Inner Volcanic Belt (*Figs. 5.B.12* and *5.B.13*). Arc magmatism is accompanied by the formation of an accretionary complex, which is presently exposed in the core of the orocline and in the West Karamay Unit (**Zhang et al., 2011a**; **Choulet et al., 2011**) (*Figs. 5.B.12* and *5.B.13*).

B.4.v A possible geodynamical scenario for West Junggar complexes

During the Neoproterozoic, the break-up of the Rodinia (Hoffman, 1999) has contributed to the individualization of numerous continental blocks (Avdeev, 1984; Mossakovsky et al., 1993), separated by several oceanic basins related to the large Palaeo-Asian Ocean (Avdeev, 1984; Yakubchuk, 1990; Khain et al., 2003; Kröner et al., 2007;

Figure 14 A possible geodynamic evolution of Western Altaids during the Early Palaeozoic, illustrating relationships between West Junggar and Kazakhstan. See figure 5.B.12 for abbreviations. Sketch represents a geographic area with a width of ca. 300 km e and a length of ca. 1000 km.

Ryazanstev et al., 2009; Degtyarev et al., 2010). During the Cambrian, intra-oceanic subduction gave rise to island arcs (Degtyarev & Ryazanstev, 2007) and led to the

amalgamation of several Precambrian fragments into a proto-Kazakhstan microcontinent (Mikolaichuk et al., 1997; Alexeiev et al., in 2010; Kröner et al., 2011) (*Fig. 5.B.14a*).

During Ordovician, a new subduction zone developed along the margin of the Kazakh microcontinent, with the Erementau-Yili accretionary complex and continental arc magmatism upon the Precambrian basement (Windley et al., 2007) (*Fig. 5.B.14a*). Meanwhile, in the Bozschekul-Chingiz U and its equivalent (the Chingiz-Tarbagatay unit in West Junggar), the Ordovician arc magmatism, which developed upon a pre-Middle Cambrian Belt (Degtyarev & Ryazanstev, 2007), is associated with the formation of an accretionary wedge in the Maikan-Kyziltas Unit. Fragments of the subducting oceanic crust, now included in the Hongguleleng, and Kujitai ophiolitic mélanges correlated with the Maikan-Kyziltas accretionary complex (*Fig. 5.B.12*). A second island arc system is represented by the Baidaulet-Akbastau arc and the Suyuenka complex in West Junggar along which an accretionary complex is presently documented by the Tangbale, Mayila, Alataw, North Balkash, Agadyr and Teqturmas units.

The subductions of the branches of the Palaeo-Asian Ocean continued until Late Ordovician leading to the collision between the Kazakhstan continental margin and the two island arcs (Degtyarev, 2011) (Fig. 5.B.14b). Upper Ordovician olistostrome and unconformable molasses covering the accretionary complex and reworking ophiolite fragments attest for this collisional event (Feng et al., 1989; Degtyarev & Ryazanstev, 2007). The closure of the Palaeo-Asian Ocean also led to the collision of the Aktau block with the proto-Kazakhstan (Windley et al., 2007). The Late Ordovician-Early Silurian collisional event is documented in Kazakhstan by Silurian molasse deposits and Silurian post-collisional granitic intrusions (Konopelko et al., 2008; Letnikov et al., 2009b; Seltmann et al., 2010). However, as indicated by the Silurian age of ophiolite and sedimentary blocks within Tangbale, Mayila, North Balkash and Agadyr mélanges (Feng et al., 1989; Buckman & Aitchison, 2004; Degtyarev, 2011), subduction of a limited oceanic domain may have perdured in Eastern Kazakhstan and West Junggar (Fig. 5.B.14b). Associated to this subduction, a short-lived active continental margin developed upon the already amalgamated Cambro-Ordovician island arc and ancient accretionary complexes, in the Chingiz Tarbagatay Unit (Bandaletov, 1969; Degtyarev, 2011) (Fig. 5.B.14b).

The final closure of the last branch of the Palaeo-Asian Ocean (*Fig.* 5.B.14c) occurred in the end of Silurian. Amalgamation is documented by tectonic evidence and changes in sedimentation and magmatism (*Fig.* 5.B.13). Green sandstone deposits of continental origin reworked zircons of Kazakhstan provenance, and are associated with molasse deposition and numerous breaks in the sedimentation (**Feng et al., 1989**). Olistostrome development with limestone olistoliths suggests that sedimentation was coeval with tectonics. Thrusting of the Tangbale unit over the Early Devonian series of the Laba Unit also occurred at that time (*Fig. 5.B.6c*). 420-400 Ma magmatism was characterised by alkaline-type plutons intruding the Xiemisitai arc volcanic series (**Chen et al., 2010a**) (*Fig. 5.B.14c*). In the Chingiz area, the emplacement of Late Silurian plutons corresponds to the melting of the lower crust, probably assisted by the underplating of mantle-derived magmas (**Kayupov, 1977**; **Degtyarev et al., 2008c**). Meanwhile, the Early Devonian Outer Volcanic Belt developed upon the Kazakh microcontinent (**Filippova et al., 2001**; **Abrajevitch et al., 2008**) (*Fig. 5.B.14c*). The Outer Volcanic Belt, which was related to the subduction of the Balkash-Junggar Ocean, did not extend to West Junggar, but the origin of this discrepancy is still an open question.

During Middle Devonian and until Late Carboniferous, the subduction zone related to the Balkash-Junggar Ocean consumption, laterally extent to West Junggar. The oceanward retreat of the subduction zone (**Zonenshain et al., 1990**; **Abrajevitch et al.,** 2008) was responsible for the widening of the accretionary prism, and the jump of the volcanic arc toward the ocean (**Windley et al., 2007**), with the Inner Volcanic Belt replacing the non-active Outer Volcanic Belt (*Fig. 5.B.17d*). The Late Palaeozoic geodynamic evolution of West Junggar, which is related to the development of the Kazakh orocline is beyond the scope of this paper, but details can be found in (**Choulet et al., 2011**).

B.5 Conclusion

These new results bring constraints on the pre-Middle Devonian geological evolution of West Junggar. In this study, we have also explored the possible connection between West Junggar and Eastern Kazakhstan, which have often been regarded as isolated massifs. This tentative reconstruction helps to understand the still largely debated Early Palaeozoic geodynamic evolution of Central Asia. The proposed scenario emphasizes the role of unit accretion (island-arc or microcontinent) to interrupt the dominant subduction process. Therefore, thrusting, olistostrome and molasses deposits result from these successive soft collisions.

These new results also question the timing of the continental crust growth. In the literature, continental crust growth is believed to be a combination of a Pre-Permian lateral growth related to continuous accretion, and a Permian vertical growth, marked by intense
magmatism. However, this process is apparently more complex. During the Early Palaeozoic, episodes of vertical growth may have occurred, in response to slab break-offs. Lateral growth is also a discontinuous process, since magmatic arcs and accretionary complexes expose numerous breaks. However, in accretionary complexes, a major uncertainty concerns the role of subduction erosion, a dominant process along active margin that could account for the discontinuous sedimentary record. Further investigations on this process are essential to provide a good estimate of the net growth of the Altaids continental crust.

C Conclusion

L'étude de ces trois massifs (Chingiz-Tarbagatay, Mayila et Tangbale) a permis d'apporter des contraintes géochronologiques, géochimiques et structurales qui supportent un modèle d'amalgamation diachronique d'arcs insulaires au cours du Paléozoïque inférieur. La collision suspectée d'un microcontinent à la fin du Silurien conduit à la formation d'un microcontinent composite qui évoluera en marge continentale active au cours du Dévonien. L'histoire géologique du Junggar Occidental présente des similitudes avec les scénarii avancés au Kazakhstan, si bien qu'une corrélation latérale entre le Junggar Occidental et les arcs insulaires du Kazakhstan Oriental est envisagée. Le modèle proposé suggère également que le Junggar Occidental fait partie du microcontinent kazakh à la fin du Silurien. Néanmoins, ces deux régions montrent une évolution contrastée au Dévonien inférieur. Au Kazakhstan, cette période est marquée par le développement d'une marge active continentale suite à l'initiation de la subduction de l'Océan Junggar-Balkash. A l'opposé, le Dévonien inférieur du Junggar Occidental est caractérisé par des dépôts sédimentaires syn-tectoniques (olistostromes et molasses) et du magmatisme en réponse à la collision d'un microcontinent à la fin du Silurien. Plusieurs hypothèses peuvent être évoquées pour expliquer cette différence. Les roches magmatiques et sédimentaires du Dévonien inférieur du Junggar Occidental sont peut-être masquées sous les dépôts plus récents, mais elles ont pu aussi être érodées tectoniquement lors de la subduction dévonienne à carbonifère. Comme nous l'avons présenté dans le chapitre 1, le phénomène d'ablation du prisme est très courant au niveau des marges actives modernes et il existe des évidences dans les prismes plus anciens. Une alternative à l'érosion tectonique du prisme pourrait être le diachronisme de l'initiation de la subduction. Ce phénomène est notamment observé lorsque la convergence entre la plaque océanique et la marge continentale est oblique. La subduction oblique de l'Océan Junggar-Balkash sera documentée dans le chapitre suivant à partir d'évidences structurales dans le prisme d'accrétion carbonifère du Junggar Occidental.

CHAPITRE VI: L'EVOLUTION GEODYNAMIQUE DU JUNGGAR Occidental au Paleozoïque superieur

A Introduction

Nous avons vu dans le chapitre 3 que de nombreux modèles étaient proposés pour expliquer l'évolution du Junggar Occidental au cours du Paléozoïque (Buckman & Aitchison, 2004 ; Geng et al., 2009 ; Zhang et al., 2011a). Le modèle de subduction de ride (Geng et al., 2009) est essentiellement basée sur les données géochimiques alors que le modèle d'accrétions/collisions successives (Buckman & Aitchison, 2004) s'appuie sur des contraintes lithologiques et géochronologiques. Ces modèles permettent d'expliquer la formation du complexe d'accrétion d'âge Paléozoïque supérieur et le magmatisme contemporain, mais la structure du complexe reste très mal connue. Sur la base de données structurales, Zhang et al. (2011a) proposent une double subduction au carbonifère, mais nous avons vu précédemment que cette interprétation était discutable. L'objectif de cette étude est d'apporter des observations de terrain sur la structure du complexe d'accrétion.

Parallèlement, les modèles cinématiques proposés en Asie Centrale montrent la présence d'une virgation au Kazakhstan pendant le Paléozoïque supérieur (Abrajevitch et al., 2007 ; 2008). La marge active associé à cette virgation est responsable de la disparition par subduction de l'Océan Junggar Balkash (Filippova et al., 2001). La virgation kazakh se connecte à l'Ouest Junggar et au nord Tianshan, si bien que l'évolution de ces deux régions est vraisemblablement due à la cinématique régionale affectant les Altaïdes Occidentales à la fin du Paléozoïque. Cette période est aussi marquée par la transition entre le régime compressif entraînant la subduction dévono-carbonifère et le régime transcurrent à l'origine des mouvements relatifs entre les blocs d'Asie Centrale (van der Voo et al., 2006 ; Wang et al., 2007). Ces mouvements sont principalement des rotations de blocs autour d'un axe vertical qui sont accommodés par de grands décrochements documentés dans l'Altaï (Laurent-Charvet et al., 2002; 2003; Buslov et al., 2004), dans le Tianshan (Yin & Nie, 1996; Laurent-Charvet et al., 2002; Wang et al., 2010) et au Kazakhstan. Le second objectif de cette étude est de caractériser, à partir de l'étude structurale d'un segment de l'Asie Centrale, la transition entre la subduction carbonifère et le régime décrochant permien. Ce travail permettra ainsi de replacer l'évolution fini-paléozoïque du Junggar Occidental au sein du cadre géodynamique de l'Asie Centrale.

B Article accepté à Gondwana Research: From oblique accretion to transpression in the evolution of the Altaid collage: new insights from West Junggar, northwestern China

Flavien Choulet^{1,*}, Michel Faure¹, Dominique Cluzel², Yan Chen¹, Wei Lin³, Bo Wang⁴

¹: Institut des sciences de la Terre d'Orléans, UMR 6113 - CNRS/Université d'Orléans 1A, rue de la Férollerie, 45071 Orléans CEDEX 2, France

²: Pôle Pluridisciplinaire de la Matière et de l'Environnement, EA 3325, Université de la Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie, France

³: State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China.

⁴: Department of Earth Sciences, Nanjing University, Nanjing, China

*: <u>flavien.choulet@univ-orleans.fr</u>

Abstract

Along active margins, tectonic features that develop in response to plate convergence are strongly controlled by subduction zone geometry. In West Junggar, a segment of the giant Palaeozoic collage of Central Asia, the West Karamay Unit represents a Carboniferous accretionary complex composed of fore-arc sedimentary rocks and ophiolitic mélanges. The occurrence of quasi-synchronous upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the West Junggar. Latest Carboniferous (ca. 300 Ma) alkaline plutons postdate this early phase of folding, which was synchronous with accretion of the Carboniferous complex. The Permian Dalabute sinistral fault overprints Carboniferous ductile shearing and split the West Karamay Unit ca. 100 kilometres apart. Oblique convergence may have been provoked by the buckling of the Kazakh orocline and relative rotations between its segments. Depending upon the shape of the convergence zone, either upright folds and fold with vertical axes, or alternatively, strike-slip brittle faults developed in response to strain partitioning. Sinistral brittle faulting may account for the lateral imbrication of units in the West Junggar accretionary complex.

Keywords

Altaids, West Junggar, oblique convergence, Late Paleozoic, transpression

B.1 Introduction

In contrast with strictly frontal convergence, which is rarely observed, examples of oblique subduction are widespread (**Chamot-Rooke & Rabaute, 2007**), and often generate strike-slip faults parallel to the upper plate boundary (**Allen, 1965**; **Katili, 1970**). The western North American Cordilleras, Andes, Taiwan, and Sumatra are the best examples of such an oblique convergent setting. **Fitch (1972)** was the first to link the tectonic structures in the upper plate to the oblique slip of the lower plate. Based on earthquake focal mechanisms in western Pacific, he proposed that the total decoupling of the oblique slip would result into a component of convergence normal to the trench and a shearing component parallel to the trench marked by transcurrent faulting. **Beck (1983)** improved this model by establishing the geometric and thermal constraints that favour decoupling of oblique convergence. Very oblique convergence, gently dipping subduction and thermal softening of the upper plate are the main conditions that favour the decoupling of oblique slip in a subduction zone.

Because total decoupling of oblique convergence is rarely achieved at sites of oceanic subduction, McCaffrey (1992) proposed a partial decoupling model, and demonstrated that margin geometry could influence the tectonic response of the upper plate. Therefore, oblique convergence along a concave or a convex subduction zone toward the ocean will be accommodated by transpression or transtension, respectively. The present curvature of the western Sunda and Aleoutian subduction zones (Ekström & Engdahl, 1989; McCaffrey, 1991) are good paradigms of oblique slip partitioning that may also be reproduced by analogical modelling (Chemenda et al., 2000). The rheology of the accretionary wedge also influences the geometric variability of the subduction zone (Platt, 1993b). Very oblique convergence would logically generate an intense slicing of the upper plate boundary (Martinez et al., 2002). Triple junctions and ridge subduction can also account for the initiation or reactivation of strike-slip faults in the overriding plate (Thorkelson, 1996; Roeske et al., 2003).

Lateral tectonic transport along the active margin is a direct consequence of decoupling (Coney et al., 1980; Beck, 1983; Jarrard, 1986); it is referred as "Sunda style" tectonics (Beck, 1983), and thousands of kilometres along-margin displacements have been evidenced in far-travelled allochthonous terranes of western North America (Beck, 1980; Coney et al., 1980). However, in most cases, terrane traveling is limited to a few tens of kilometres (Beck, 1986). This variability depends upon the age and obliquity of the subduction, and occurrence of a buttress or not (Beck, 1991). Therefore, oblique convergence

that may result in lateral terrane transport significantly contributes to lateral growth of the continental margin and, consequently, to a reorganisation of the continental crust pattern.

During the last decades, Mesozoic and Cenozoic cases of oblique subduction have been established in the Circum-Pacific area, (Karig et al., 1978; Engebretson et al., 1985; Kimura, 1986; Reutter et al., 1991; Beck, 1994; Kusky et al., 1997a, 1997b) by comparison with modern analogues (Malod et al., 1995; Lallemand et al., 1999; Goldfinger et al., 1996). In contrast, oblique subduction is rarely documented in older accretionary orogens (Henderson, 1987; Veevers, 2003). The purpose of this article is to report an example of Palaeozoic oblique convergence and to discuss its regional geodynamic controls.

Figure 6.B.1: a) location of the Altaids including major cratons and orogenic belts of Eurasia. b) structural map of western Altaids, modified after **Windley et al. (2007)** and **Charvet et al. (2007)**. The Devonian to Carboniferous Kazakh orocline lying on the pre-Devonian Kazakhstan microcontinent is the major structure of this region. The nature of the microcontinent in the core of the orocline, below the Junggar basin is still controversial, and a discussion on this topic is beyond the scope of this paper. Major faults are also represented. BOLE: Bole Block, CANTF: Chingiz-Alakol-North Tianshan, CKF: Central Kazakhstan Fault, DF: Dalabute Fault, IGSZ: Irtysh-Gornotsaev Shear Zone, MTF: Main Tianshan Fault, NNTL: Nalati-Nikolaiev Teconic Line, TTF: Talas-Fergana Fault.

The Altaids (Sengör et al., 1993; Sengör & Natal'in, 1996a) or Central Asian Orogenic Belt (CAOB; Mossakovsky et al., 1993; Windley et al., 2007) are a wide orogenic collage formed during the Palaeozoic as a result of the convergence of Siberia, Baltica, Tarim, and North China blocks (*Fig. 6.B.1a*). Because of post-Palaeozoic tectonics, the present structure exhibits a distorted pattern of accretionary complexes, magmatic arcs, and ribbon-like micro continents. Several conflicting models have been proposed for the Altaids (for a review see Windley et al., 2007 and Xiao et al., 2010). The Kipchak Arc model is

characterized by a single long-lived subduction that was later shredded by strike-slip faults (Sengör et al., 1993; Sengör & Natal'in, 1996a). An archipelago model was alternatively proposed (Filippova et al., 2001; Xiao et al., 2008); it consists of accreted and laterally docked pairs of associated accretionary complexes and magmatic arcs. A remarkable feature of the Altaids is the presence of horseshoe-shaped belts, such as the Kazakh Orocline (*Fig. 6.B.1b*; Abrajevitch et al., 2008), or the Central Mongol Orocline (Yakubchuk et al., 2008). These structures are intimately associated with lithosphere-scale strike-slip faults along which palaeomagnetic evidence document block rotations and displacements over thousands kilometres (van der Voo et al., 2006; Wang et al., 2007; Choulet et al., 2010); however, the link between oroclinal bending, transcurrent faulting and accretion remains poorly understood.

This study deals with the structural pattern of the Late Palaeozoic West Karamay accretionary complex, in order to document transcurrent tectonics and lateral docking. On the basis of new geochronological data and multi-scale structural analysis, we present the first evidence of an oblique convergent system in West Junggar. Considering the structural pattern of the Central Asian puzzle, we discuss the possible origin of oblique subduction, and the controls of regional geodynamics on the geometry of the convergent plate boundary.

B.2 Geological outline

B.2.i Central Asia

In the central part of the Altaids, a region that extends from central Kazakhstan to Xinjiang (northwestern China), three main geological domains are recognized (*Fig. 6.B.1b*). To the northeast, (1) the Altai range is composed by Early and Late Palaeozoic units that were accreted and docked to the Siberian margin and affected by high-grade metamorphism (**Windley et al., 2002**; **Xiao et al., 2004**). To the south, the convergence between the Tarim Block and several micro continents such as Yili and Central Tianshan formed the (2) Palaeozoic Tianshan Orogen (**Charvet et al., 2007**). The central and northwestern parts of Central Asia display a horseshoe shape that can be followed from North Tianshan to West Junggar around the Balkash Lake area (*Fig. 6.B.1b*). This megastructure is termed the (3) Kazakh Orocline (**Zonenshain et al., 1990**). In central Kazakhstan, the outer part of the orocline is made of micro continents and intra-oceanic arcs, which amalgamated during the Early Palaeozoic (**Kröner et al., 2008**). In the inner part of the orocline, the subduction of the Junggar Ocean below the Kazakhstan active margin generated Late Palaeozoic accretionary

complexes and magmatic arcs (**Degtyarev**, **1999**; **Wang et al.**, **2006**; **Windley et al.**, **2007**). To the north of this domain (*Fig. 6.B.1b*), the Irtysh-Zaisan fold-and-thrust Belt results from the Late Carboniferous closure of the Ob-Zaisan Ocean that originally separated the Kazakh orocline and the south-western margin of Siberia (**Buslov et al.**, **2004**). The Permian-Early Triassic transcurrent tectonics that affected Central Asia (**Allen et al.**, **1995**; **Laurent-Charvet et al.**, **2003**), eventually dismembered the oroclinal system, displaced segments over more than 1000 km, and thus disorganised its original structure (**Wang et al.**, **2007**; **Choulet et al.**, **2010**).

B.2.ii West Junggar

West Junggar, a mountainous area located along the Kazakh border in northwestern China, forms the easternmost part of the Kazakh orocline (*Fig. 6.B.1b*). It is limited by two major strike-slip fault systems, the Irtysh-Gornotsaev sinistral shear zone to north and the Chingiz-Alakol-North Tianshan dextral shear zone to the south (**Choulet et al., 2010**; *Fig. 6.B.1b*). Permian displacements along these faults have been estimated from several hundreds to more than one thousand kilometres (**Wang et al., 2007**; **Choulet et al., 2010**). These faults represent major tectonic boundaries between West Junggar, Altai, and Tianshan. Although detailed investigations are rare in West Junggar, several authors have recognized numerous stratigraphic and tectonic units (**Feng et al., 1989**; **Buckman & Aitchison, 2004**). The section below is a brief summary of the litho-stratigraphic units defined in **Choulet et al.** (**unpublished results**; *Fig. 6.B.2a*).

The Chingiz-Tarbagatay Unit in the central part of the West Junggar massif, is composed of Early Palaeozoic mélange, turbidite and magmatic arc rocks (Unit I in *Fig. 6.B.2a*; **Feng et al., 1989**). The Mayila and Tangbale Units are also formed by Early Palaeozoic ophiolitic mélanges and turbidites (Units IVa and IVb in *Fig. 6.B.2a*; **Buckman & Aitchison, 2004**). Unconformable Middle Devonian conglomerate that overlie Ordovician and Silurian rocks argue for a Late Silurian event (**XBGRM, 1965a**). A-type Early Devonian granites intrude the Chingiz-Tarbagatay Unit and postdate the pre-Late Silurian accretion-subduction (**Chen et al., 2010a**). These units with still a poorly documented architecture represent the substratum of the Devonian, two new subduction zones developed. To the north, the south-dipping subduction of the Ob-Zaisan Ocean generated the Sawuer arc and Erquis accretionary complex (Unit IIa and IIb in *Fig. 6.B.2a*; **Windley et al., 2007**; **Shen et al., 2008**; **Zhou et al., 2008**; **Chen et al., 2010a**). To the south, the Barliek magmatic arc,

Figure 6.B.2: a) map of West Junggar Mountains, showing the different tectonic units. Two pairs of Late Palaeozoic accretionary complexes and magmatic arcs overlie an Early Palaeozoic substratum, itself formed by arc magmatism and accretion. The location of samples described in this article is also presented. b) structural map of the West Karamay Unit. This unit is in fault contact with the surrounding Barliek, Mayila and Tangbale units. The West Karamay unit is an accretionary complex that comprises Early to Late Carboniferous sedimentary rocks (turbidite series and mass-flow greywacke deposits) and ophiolitic mélanges. The NE-SW trending Dalabute fault separates the unit in two parts. c) geological section across Barliek magmatic arc end West Karamay accretionary complex. P: Permian, Mz-Cz: Mesozoic and Cenozoic sedimentary rocks.

and the West Karamay accretionary complex are related to the northwest-dipping subduction of the Junggar Ocean (Units IIIa and IIIb in *Fig 6.B.2a*; Feng et al., 1989; Buckman &

Aitchison, 2004; Chen et al., 2006; Xiao et al., 2008). This magmatic arc–subduction complex assemblage corresponds to the easternmost extension of the Kazakh orocline (Choulet et al., in press; *Fig. 6.B.1b*).

A particularity of West Junggar is the abundant and widespread Late Palaeozoic magmatism (Han et al., 2006; *Fig 6.B.2a*), which affected the entire Central Asia (Jahn et al., 2000a). Magmatic suites consist of A-type and I-type plutons, mafic dykes and volcanic rocks, emplaced between 320 Ma and 250 Ma (Chen & Jahn, 2004; Li et al., 2004a; Han et al., 2006; Xu et al., 2008b; Geng et al., 2009; Yin et al., 2010). A-type granitoids were generated either by a partial melting of the depleted-mantle reservoir (Han et al., 1999) or, alternatively, by a thermally induced melting of the Palaeozoic juvenile lower crust followed by in situ differentiation (Chen & Jahn, 2004; Su et al., 2006a); or both processes acting together (Chen & Arakawa, 2005; Geng et al., 2009). I-type granitoids stem from the melting of Early Palaeozoic juvenile crust (Chen & Jahn, 2004) or a depleted mantle reservoir (Zhou et al., 2008b). Dolerite and low-Mg diorite dykes dated between 283Ma and 241Ma (Qi, 1993; Li et al., 2004a; Xu et al., 2008b; Zhou et al., 2008a) have a depleted-mantle origin. All these rocks have been assigned a post-collisional setting.

In contrast, 320-300 Ma calk-alkaline rocks with adakitic affinities (**Zhang et al., 2006**; **Geng et al., 2009**; **Tang et al., 2010**) and high-Mg diorite dykes (**Yin et al., 2010**) were recently described and slab melting related to ridge subduction was proposed to account for their genesis. These new data led several authors to consider that subduction may have continued during Permian (**Geng et al., 2010**; **Xiao et al., 2010**), but this is not supported by field evidence. Actually, eruption of Permian lava flows (**Tan et al., 2006**) is closely associated with the accumulation of Permian coarse red sandstones and conglomerates, considered as a post-orogenic molasse (**Feng et al., 1989**; **Allen et al., 1995**; **Jin & Li, 1999**; **Buckman & Aitchison, 2004**; *Fig. 6.B.2b*). Undeformed Early Permian molasse postdates turbidite accumulation; therefore, subduction likely ended before the Early Permian.

All the Palaeozoic rocks of West Junggar have been affected by Permian post accretion transcurrent tectonics (Allen et al., 1995; Laurent-Charvet et al., 2003; *Fig* 6.B.1b). SW-NE trending faults, such as the Dalabute sinistral fault, affect Permian plutons and generate cataclasite (Allen et al., 1995; *Fig* 6.B.2b), whilst ductile mylonite is never observed.

B.3 Age and nature of the West Karamay Unit

West Junggar Mountains are bounded to the east by the Junggar basin (*Fig. 6.B.2b*); in this area, low elevation and desert morphology expose discontinuous outcrops. From the bottom to the top, the Carboniferous Xibeikulasi, Baogoutu, and Tailegula formations have been classically recognized (**XBGRM**, **1966**; **1978**; **Wu and Pan**, **1991**); however, similar lithologies and the lack of accurate stratigraphic evidence led several authors to reappraise this classification (Feng et al., **1989**; **Buckman & Aitchison**, **2004**; **Choulet et al., unpublished results**). In the following section, they will be collectively termed "West Karamay Unit" (*Fig. 6.B.2b*; **Choulet et al., unpublished results**). This unit consists of imbricate slices of turbidite, greywacke, and ophiolitic mélange (**Feng et al., 1989**), described thereafter (*Fig. 6.B.2b*).

B.3.i The turbidite series

In the West Karamay Unit, ca. 10 m-thick alternations of fine-grained grey siltstone and blackish mudstone are the predominant lithology (**Feng et al., 1989**; **Li & Jin, 1989**; **Guo et al., 2002**; *Fig. 6.B.3a*); in many places, the Permian magmatism and associated high heat flow transformed these rocks into hornfels (**Choulet et al., unpublished results**; *Fig. 6.B.2a*). In clastic rocks, quartz and clay are dominant, but many feldspar and lithic clasts are also preserved (*Fig. 6.B.3b*), and coarse-grained, greywacke contains numerous andesite clasts (*Fig. 6.B.3c*). Slumps, disrupted soft sandstone beds, Bouma sequences (*Fig. 6.B.3d*), and the coexistence of deep-water and shallow-water ichnofacies attest to the tectonic instability of the basin and resedimentation processes (**Jin and Li, 1999**).

Rare fossils of plants, corals and brachiopods do not provide a better age assignment than Carboniferous (**XBGRM**, **1966**; **Li & Jin**, **1989**; **Wu & Pan**, **1991**). Recent U-Pb geochronological data on detrital zircons yield a maximum Late Carboniferous age (ca. 305 Ma) for turbidite deposition, which is close to the age of accretion (**Choulet et al.**, **unpublished results**). The positive ε Hf values of these zircons argue for a juvenile origin consistent with an immature active margin (**Choulet et al.**, **unpublished results**). The bedding (S₀) is usually apparent in coarse-grained turbidites, but often undistinguishable from the slaty cleavage (S₁) in black mudstone. Relationships between bedding and cleavage will be described and discussed later in this article. Turbidites often dip steeply, however upright folds hinges are rarely observed (*Fig. 6.B.3e*).

Figure 6.B.3: Photographs of turbidites and greywackes from the West Junggar sedimentary units. a: turbidites made of decimetre-scale alternation of medium to coarse-grained volcaniclastc sandstone (45.9808°N; 85.3093°E), b: microphotographs of lithic, feldspar and quartz clasts within turbidite sandstone (45.7233°N; 84.4516°E), c: fine-grained andesite clast frequently appearing within turbidites (45.7233°N; 84.4516°E), d: syn-sedimentary load casts structures of sandstone-siltstone beds in turbidites (45.8675°N; 84.6934°E), e: upright fold in the turbidites (45.8702°N; 85.2176°E), f: microphotograph of greywacke showing plagioclase, amphibole and pyroxene clasts within a clayey matrix (45.7214°N; 84.4593°E), g: andesite clast with well-expressed fluidal texture in greywacke mass-flow deposit (45.7214°N; 84.4593°E).

Analysis No.		Th (ppm)	U (ppm)	Th/U	Ratios								Ages (Ma)								
					207Pb / 206Pb	±1σ	207Pb / 235U	±1σ	206Pb / 238U	±1σ	208Pb / 232Th	±1σ	207Pb / 206Pb	± 1σ	207Pb / 235U	± 1σ	206Pb / 238U	± 1σ	208Pb / 232Th	± 1σ	Disc% *
D.	155 (n=26)																				
1	DJ155 03	238.42	255.70	0.93	0.0526	0.0005	0.3674	0.0079	0.0507	0.0011	0.0138	0.0003	312	22	318	6	319	7	276	6	-2.14
2	DJ155 05	76.35	89.53	0.85	0.0533	0.0014	0.3927	0.0202	0.0534	0.0017	0.0148	0.0007	342	57	336	15	335	10	297	15	2.08
3	DJ155 06	51.66	77.20	0.67	0.0531	0.0005	0.3920	0.0074	0.0535	0.0012	0.0156	0.0003	334	22	336	5	336	7	313	7	-0.52
4	DJ155 07	406.58	393.41	1.03	0.0532	0.0005	0.3956	0.0070	0.0539	0.0012	0.0160	0.0003	337	22	338	5	339	7	322	6	-0.53
5	DJ155 08	94.31	120.14	0.79	0.0528	0.0005	0.3717	0.0063	0.0510	0.0011	0.0137	0.0003	322	22	321	5	321	7	275	5	0.21
6	DJ155 09	84.89	102.06	0.83	0.0525	0.0005	0.3550	0.0070	0.0490	0.0011	0.0124	0.0003	308	21	309	5	309	7	249	6	-0.31
7	DJ155 10	52.99	74.93	0.71	0.0533	0.0007	0.3901	0.0113	0.0531	0.0013	0.0167	0.0005	339	28	334	8	334	8	335	10	1.73
8	DJ155 11	22.70	44.06	0.52	0.0531	0.0018	0.3821	0.0235	0.0522	0.0019	0.0172	0.0012	334	73	329	17	328	11	344	23	1.86
9	DJ155 12	359.05	362.73	0.99	0.0529	0.0006	0.3702	0.0050	0.0508	0.0011	0.0142	0.0002	325	23	320	4	319	6	284	5	1.85
10	DJ155 13	92.75	134.05	0.69	0.0530	0.0005	0.3778	0.0058	0.0517	0.0011	0.0145	0.0003	328	22	325	4	325	7	291	5	0.75
11	DJ155 15	28.56	56.07	0.51	0.0531	0.0006	0.3895	0.0096	0.0532	0.0012	0.0175	0.0005	335	24	334	7	334	7	351	10	0.26
12	DJ155 18	280.90	280.11	1.00	0.0529	0.0005	0.3758	0.0055	0.0515	0.0011	0.0150	0.0003	324	24	324	4	324	7	301	5	-0.12
13	DJ155 19	91.39	162.90	0.56	0.0528	0.0010	0.3596	0.0141	0.0494	0.0014	0.0134	0.0006	321	44	312	11	311	8	269	13	3.15
14	DJ155 21	99.04	122.76	0.81	0.0524	0.0005	0.3484	0.0067	0.0482	0.0010	0.0138	0.0003	305	24	303	5	303	6	277	6	0.44
15	DJ155 22	65.25	408.37	0.16	0.0548	0.0006	0.4894	0.0070	0.0648	0.0013	0.0197	0.0005	404	24	404	5	404	8	395	11	0
16	DJ155 24	10.73	26.74	0.40	0.0542	0.0008	0.4349	0.0138	0.0582	0.0015	0.0184	0.0008	378	31	367	10	365	9	368	15	3.49
17	DJ155 25	93.09	172.86	0.54	0.0529	0.0005	0.3783	0.0073	0.0519	0.0011	0.0139	0.0003	322	21	326	5	326	7	279	7	-1.25
18	DJ155 27	365.07	403.30	0.91	0.0527	0.0006	0.3665	0.0044	0.0504	0.0010	0.0142	0.0002	318	26	317	3	317	6	286	4	0.22
19	DJ155 30	166.33	158.89	1.05	0.0526	0.0005	0.3566	0.0057	0.0492	0.0010	0.0135	0.0002	309	21	310	4	310	6	272	5	-0.08
20	DJ155 32	25.58	47.25	0.54	0.0532	0.0006	0.3840	0.0098	0.0523	0.0012	0.0160	0.0005	339	25	330	7	329	7	322	10	2.98
21	DJ155 33	49.81	80.35	0.62	0.0527	0.0006	0.3599	0.0099	0.0495	0.0012	0.0136	0.0004	317	28	312	7	311	7	273	9	1.84
22	DJ155 34	123.65	133.63	0.93	0.0532	0.0005	0.3939	0.0085	0.0536	0.0012	0.0146	0.0003	339	22	337	6	337	7	292	7	0.64
23	DJ155 35	52.14	70.81	0.74	0.0528	0.0006	0.3683	0.0091	0.0506	0.0012	0.0124	0.0004	319	23	318	7	318	7	248	7	0.35
24	DJ155 36	77.59	100.61	0.77	0.0526	0.0006	0.3548	0.0085	0.0489	0.0011	0.0137	0.0004	312	25	308	6	308	7	275	7	1.38
25	DJ155 38	141.05	179.12	0.79	0.0527	0.0005	0.3673	0.0065	0.0506	0.0011	0.0139	0.0003	315	20	318	5	318	7	278	6	-0.97
26	DJ155 39	277.83	260.72	1.07	0.0527	0.0005	0.3705	0.0076	0.0510	0.0011	0.0142	0.0003	317	22	320	6	320	7	284	6	-1.05

Table 6.B.1: La-ICPMS U-Pb detrital zircon data. *: Degree of discordance.

B.3.ii The graywacke mass flows

Mass flows are lenses without obvious internal structure intercalated within turbidite series (Wu & Pan, 1991; Guo et al., 2002). These discharges of sand-sized volcanic materials can reach tens of metres in thickness. Despite highly variable geometry of the mass flow itself, the greywacke is very homogenous and occasionally well sorted (Guo et al., 2002); quartz, zoned feldspar and volcanic-rock clasts are dispersed in a matrix of fine-grained quartz and clay (*Fig. 6.B.3f*). Rock fragments are usually dark andesite, occasionally exposing fluidal texture (*Fig. 6.B.3g*), consistent with a volcanic-arc origin for these

Figure 6.B.4: a: cathodoluminescence image of representative detrital zircon grains from sample DJ155, showing grain and spot numbers, and ²⁰⁶Pb/²³⁸U for each analysed spot, b: Concordia plot of U-Pb isotopic ratios from zircons of sample DJ155, c: relative probability diagrams for detrital zircons of samples DJ155, 08YY-02 (**Zhang et al., 2011**) and DJ15 (**Choulet et al., unpublished results**).

volcaniclastic rocks. Greywackes are lithologically identical the to volcaniclastic sandstone beds of turbidite sequences. Some of these rocks were previously referred to as volcanic tuffs (Wu & Pan, 1991; Buckman & Aitchison, 2004). however, the clayey matrix and rounded clasts clearly rule out a pyroclastic origin for this rocks, which otherwise present all the features of volcaniclastic turbidites accumulated in a fore-arc basin. Nevertheless. Tournaisian-Visean and Moscovian volcanic tuffs are locally associated with greywacke mass-flows (Guo et al., 2010; Zhang et al., 2011a), a possible consequence of transient filling-up.

A U-Pb geochronological study on detrital zircons was performed on a sample of greywacke from Sartuohai (*Fig. 6.B.2a*). In coarse-grained greywacke, zircons were separated and analyzed by LA-ICPMS at the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing. Details regarding analytical procedure and instrumentation can be found in **Wu et al. (2010)**. Isotopic ratios and individual ages are reported in *Table 6.B.1*. Detrital zircon grains are generally euhedral and display growth zoning on cathodo-luminescence

images (*Fig. 6.B.4a*), a feature consistent with a magmatic origin. The U-Pb Concordia plot displays concordant ages, which are considered as crystallization ages (*Fig. 6.B.4b*). The age distribution pattern shows one single population mode of 320 Ma and a maximum age of sedimentation (the mean of the three youngest concordant grains; **Dickinson & Gehrels**, **2009**) of ca. 305 Ma (*Fig. 6.B.4c*).

These results are similar to those obtained from nearby tuff and turbidite (**Zhang et al., 2011a**; **Choulet et al., unpublished results**). Each sample of tuff, greywacke and turbidite displays an unimodal age distribution, with a population peak ranging between 330 Ma and 320 Ma (*Fig. 6.B.4c*). Maximum ages of deposition of both turbidites and greywacke mass flows cluster around 305 Ma. The consistency between minimum age of sedimentation and single population peak age implies a local and single source for the turbidites and greywacke discharges (**Zhang et al., 2011a**; **Choulet et al., unpublished results**). This is consistent with the angular shape of detrital zircon grains that indicate short transport from the source to the basin (*Fig. 6.B.4a*). The potential sources of these zircon grains are the mid-Carboniferous (**Feng et al., 1989**; **Han et al., 2006**; **Shen et al., 2008**; **Chen et al., 2010a**) Barliek and Sawuer magmatic arc rocks.

B.3.iii Ophiolitic and sedimentary mélanges

These rock bodies occur as irregular bands, within the sedimentary series (*Fig.* 6.B.2b). Mélanges are characterized by the lack of internal strata continuity and inclusion of various-sized blocks of oceanic material in a fragmented fine matrix (**Greenly, 1919**; **Raymond, 1984**). In West Junggar, the matrix is usually serpentine or, locally, metasomatized serpentine, termed listwaenite (**Buckman & Aitchison, 2004**), this material is highly sheared and encloses lens-shaped exotic fragments. Many stripes of mélange interleaved with sediments are too small for being represented on geological maps; in contrast, two large bands, the Dalabute and Karamay mélanges have been mapped in detail (**Feng et al., 1989; Zhang et al., 2011a; 2011b;** *Fig. 6.B.2b*).

B.3.iii.a The Dalabute mélange

The Dalabute (also called Darbut) ophiolitic mélange crops out on the northwestern side of the Dalabute Fault (*Fig.* 6.B.2b). The width of the rock body can reach several kilometres and its fabric dips steeply. However, a preserved northwest dipping foliation suggests that the ophiolitic mélange lies below the sediments that crop out to the west of the Dalabute Fault (**Feng et al., 1989**; *Fig.* 6.B.2c).

Figure 6.B.5: Photographs of the main lithologies represented within ophiolitic and sedimentary mélanges. a: pyroxenite block within a serpentinite matrix of the Dalabute mélange, near Sartuohai (45.9847°N; 84.9155°E), b: phacoidal blocks of basalts and gabbro, metamorphosed into the greenschist facies, southwest of Sartuohai (45.8698°N; 84.6832°E), c: pillow basalt block, northwest of Sartuohai (46.0895°N; 84.8138°E), d: roddingitized dyke within the Dalabute ophiolitic mélange, along the Dalabute River (45.8609°N; 84.7275°E), e: metric block of red chert within the serpentinite matrix, near Sartuohai (45.9067°N; 84.7743°E), f: mixture of red shale and fine-grained green rocks (probably hyaloclastic basalt), west of Karamay (45.9847°N; 84.9155°E); this facies denotes pre-accretion but syn-tectonic sedimentation upon the oceanic plate (45.7915°N; 84.5622°E), g: decimetre-scale lenses of limestone within the turbiditic sequence, north of Karamay (45.6937°N; 84.8486°E), h: round-shaped block of undeformed gabbro within a strongly deformed limestone lens, west of Karamay (45.7199°N; 84.4619°E), i: microphotograph of gabbroic sandstone, exposing plagioclase (plg), pyroxene (px) and epidote (ep) angular clasts in a fine-grained matrix of quartz and clay, West of Karamay (45.7199°N; 84.4619°E), j: photograph of horizontal surface, showing vertically dipping schistose serpentinite matrix that supports chert and greenstone boulders, Karamay mélange, north of Karamay (45.9595°N; 84.2975°E), k: sigmoidal block of basalts within the Karamay mélange (45.9595°N; 84.2975°E), l: round-shaped block of gabbro within the serpentinite matrix of the Karamay mélange (45.9595°N; 84.2975°E).

The mélange also contains serpentinized harzburgite blocks that can reach several tens

to hundreds of metres near Sartuohai mine (*Fig. 6.B.2b*; *6.B.5a*), cumulate gabbro, and basalt metamorphosed into amphibolite or greenschist (**Feng et al., 1989**; *Fig. 6.B.5b*). Pillow basalts are not uncommon (*Fig. 6.B.5c*). Mafic rocks display OIB, N-MORB or E-MORB affinities (**Zhang et al., 1993**; **Wang et al., 2003**; **Buckman & Aitchison, 2004**; **Lei et al., 2008**; **Gu et al., 2009**; **Liu et al., 2009**). Since the dismembered nature of the mélange facilitates fluids migration, some magmatic rocks have been transformed into roddingite at the boundary with the serpentinite matrix (**Buckman & Aitchison, 2004**; *Fig. 6.B.5d*). The rheological behaviour of serpentinite (**Saleeby, 1984**) also enhances the exhumation of high-grade metamorphic rocks such as blueschists (**Feng et al., 1989**). Boulders of red chert and recrystallized radiolarite are often associated with greenish mafic rocks, giving the landscape its typical "coloured mélange" look (*Fig. 6.B.5e*). Sometimes, mixtures of chert, basalt and limestone appear within one single block (*Fig. 6.B.5f*), and this close association is a clear evidence for pre-melange syntectonic sedimentation. Modern analogues of these features can be found at sites of oceanic mantle denudation, such as the Gorringe Bank in the Atlantic Ocean (**Lagabrielle & Auzende, 1982**).

Olistostromes and broken formations are often closely associated with ophiolitic mélange stripes; they contain intrabasinal dismembered strata, and exotic blocks as well. Various-sized limestone lenses are irregularly distributed along the strike of the Dalabute fault (**XBGRM, 1966**; **Guo et al., 2002**; *Fig. 6.B.5g*). This thin-bedded limestone is highly recrystallized, but contains remnants of crinoids and Devonian to Carboniferous rugose corals as well (**XBGRM, 1966**). The limestone also locally contains gabbro phacoids associated with sandstone, conglomerate and breccia (*Fig. 6.B.5h*) that contain a significant amount of pyroxene, feldspar and gabbro fragments (*Fig. 6.B.5i*). The occurrence of mafic clasts argues for syn-tectonic sedimentation to have occurred prior to accretion. A detailed structural study of this limestone will be provided in the next section. The sedimentary mélange also contains phacoids of greywacke and turbidite, similar to those of the coherent sedimentary units.

The age of the Dalabute mélange is uncertain since its matrix remains undated. Poorly preserved radiolarian fossils in chert blocks indicate a Middle Devonian age (Feng et al., 1989). Sm/Nd and U-Pb isotopic ages of 395 ± 12 Ma and 391 ± 7 Ma, respectively have been obtained on blocks of oceanic gabbro (Zhang et al., 1993; Gu et al., 2009). An E-MORB leucogabbro yields a zircon U-Pb age of 302 ± 2 Ma (Liu et al., 2009). This age is very close to that of alkaline plutons that obviously postdate mélange emplacement (Geng et al., 2009). Since no information on the sampling location of this leucogabbro is available, this

rock could be a boulder within the mélange, or alternatively a dyke or a sill that crosscuts it. Therefore, this date must be considered with caution and will not be used in our discussion.

B.3.iii.b The Karamay mélange

This stripe of mélange, also called Baijiantan mélange or Baikouquan (**Zhu et al., 2008**), that crops out at the boundary of the Junggar Basin is partly hidden by Mesozoic sediments (*Fig. 6.B.2b*). Thus, the breadth of the band is possibly underestimated. Geometrically, the Karamay mélange lies below the sedimentary stack; a configuration similar to that of Dalabute mélange (**Feng et al., 1989**). The matrix of the mélange consists of highly sheared serpentinite, which encloses various-sized blocks of harzburgite, metagabbro, basalt and chert (*Fig. 6.B.5j, 6.B.5k* and *6.B.5l*). Mafic rocks display both OIB and MORB geochemical affinities (**Zhu et al., 2007**; **Zhang et al., 2011b**). Metamorphic mineral assemblages representative of pressure up to 27 kbar are preserved within dolomitic marble and garnet amphibolite blocks (**Zhu et al., 2008**). Exsolution textures in two-pyroxenes lherzolite lenses also attest for high-grade metamorphism and deep burial (**Zhu & Xu, 2007**).

The formation of the Karamay Mélange is not well time-constrained. Zircons extracted from a gabbro yield two U-Pb ages at 415 ± 8 Ma and 332 ± 14 Ma (**Xu et al., 2006a**), but the significance of these ages is uncertain. Based upon regional correlation, and in agreement with **Geng et al. (2009**), and **Zhang et al. (2011a**), we consider that the Late Silurian-Lower Devonian age may come from inherited grains, whilst the Visean age represents the crystallization age of gabbro. **Zhu et al. (2007**) also provide a zircon U-Pb age of 517 Ma on a pillow basalt of the OIB type; however, this data will not be considered since it is based on one single and highly discordant individual age, only.

B.3.iv Magmatic and tectonic features of the West Karamay Unit

High-Mg diorite dykes, dated at 321 ± 1 Ma, by ⁴⁰Ar-³⁹Ar method, were likely formed by partial melting of the mantle metasomatised by slab-derived fluid/melt (**Yin et al., 2010**). The calk-alkaline plutons of Baogutu porphyry copper belt intrude the West Karamay unit and consist in diorite porphyry stocks that document Late Carboniferous arc magmatism (**Shen et al., 2009**). 315-310 Ma adakites also crop out in the Baogutu area, and a slab melting origin is forwarded (**Tang et al., 2010**). Many circular plutons intrude the West Karamay Unit (**Kwon et al., 1989**; *Fig. 6.B.2b*). The oldest intrusion is dated at 305 ± 5 Ma, but many ages stretch from 300 Ma to 280 Ma (**Kwon et al., 1989**; **Han et al., 1999**; **2006**; Chen & Jahn, 2004; Su et al., 2006a; Geng et al., 2009). Recently, diorites with adakitic affinity were interpreted as the result of the partial melting of a subducted slab (Geng et al., 2009). An alternative origin of these magmas could be a partial melting of the mafic juvenile lower crust consistent with the Permian post-accretionary episode (Jahn et al., 2000). However, the slab melting interpretation (Geng et al. 2009) does not contradict the post-accretionary setting hypothesized for the Late Carboniferous to Permian magmatism, since subduction related magmas can be retained in the crust during a residence time of several millions years (Wang et al., 2009a). Alkaline magmatism persists until the Late Permian, with the emplacement of a doleritic to basaltic dyke swarm (Qi, 1993; Li et al., 2004a; Han et al., 2006; Xu et al., 2008b; Zhou et al., 2008b).

The West Karamay Unit is divided into two parts by the NE-SW trending Dalabute fault (*Fig. 6.B.2b*). This sinistral fault affects post-accretionary plutons, but estimate of its offset is not available. Strike slip faulting continued in Early Mesozoic time and intensely disturbed the primary Palaeozoic geometry (**Allen et al., 1995**; **Xu et al., 2009**). Cenozoic tectonics also reactivated most tectonic discontinuities (**Avouac et al., 1993**); however, this reactivation remains weak in West Junggar, compared to Tianshan.

B.4 New structural evidence for transpression

Within the West Karamay Unit, the deformation is irregularly expressed, depending on the lithology and observation scale.

B.4.i Mega scale structures of the West Karamay Unit

Mega scale structures are obviously visible on satellite scene (available at https://zulu.ssc.nasa.gov/mrsid/ and http://maps.google.com/; *Fig.* 6.B.6a). Lineament analysis reveals two types of linear structures within the sedimentary series of the West Karamay unit (*Fig.* 6.B.6b). Type 1 lineaments draw kilometre-scale undulations and tens of kilometres wide S-shaped features (*Fig.* 6.B.6a ; 6.B.6b) that are interpreted as mega scale drag-folds with vertical axes. Type 2 lineaments display a regular pattern, with two principal directions. To the north of the West Karamay Unit, the trend is N100°E, whereas to the south of the unit, the average direction is N75°E. Such a constant distribution pattern suggests that the type 2 lineaments represent the slaty cleavage trend developed in the turbidites.

Field investigations confirm our interpretation of the mega scale structures. At outcrop scale, the bedding S_0 shows a persistent vertical or steep dip, but a frequently changing strike (*Fig.* 6.B.2a; 6.B.6c), consistent with the folds with vertical axes inferred from satellite imagery (*Fig.* 6.B.6a). The pervasive slaty cleavage in fine-grained sedimentary rocks displays a constant attitude, which depends upon the location (*Fig.* 6.B.2a; 6.B.6d). To the

Figure 6.B.6: a: satellite map of southeast of West Junggar Mountains (Landsat 7 image downloaded from https://zulu.ssc.nasa.gov/mrsid/mrsid.pl), b: interpretative map of lineaments, with the 2 major trends. Type 1, which is marked by small undulations corresponds to the bedding. Type 2 lineaments display regular N110°E and N80°E trending directions, to the north and to south of Dalabute Fault, respectively. Type 2 linear trend corresponds to the cleavage, c: stereoplot of field measurements of the bedding of the turbidites. Though a preferred NE-SW trending direction is visible, the bedding is variable in trend but constantly dips vertical, d: stereoplot of the cleavage of the turbidite, deduced from field measurements on both sides of the Dalabute Fault. In average, the vertically dipping cleavage is trending N75°E, to the south of West Karamay Unit, and N100°E to the north of the unit, e: detailed satellite photograph of the northermost part of the West Karamay unit (located in Fig. 6.B.6b), f: interpretative map of fig. 6e, showing the vertical folds in turbidite. The deflection of the bedding close to the Dalabute Fault is in agreement with a sinistral kinematics.

north of Dalabute Fault, the cleavage trend is ca. N110°E, whilst, to the south of the fault, its average trend is ca. N70°E, fully consistent with satellite observation (*Fig. 6.B.6a*; *6.B.6b*).

Although folds with vertical axes are common geologic features, they may generate through different mechanisms (**Reutter et al., 1991**; *Fig. 6.B.7*). They may form by tilting or refolding of preexisting upright or recumbent folds (*Fig. 6.B.7a*; *6.B.7b*). However, the lean by 90° of the whole region would require large detachment structures that are totally lacking in West Junggar. Moreover, there is no progressive change from gently to steeply plunging

Figure 6.B.7: schematic diagrams showing the three possibilities to generate folds with vertical axes. a: 90° rotation of the fold axis of a preexisting upright fold. b: 90° rotation of both axial plane and fold axis of an early recumbent fold. c: drag folding along a shear zone (e.g. the Dalabute sinistral strike-slip fault) that induces rotations around a vertical axis of both axial plane and fold axis of a preexisting upright fold.

fold axes. Alternatively, wrench tectonics could directly generate folds with steeply dipping axes (Fig. 6.B.7c). Drag folds with oblique to vertical axes appear in brittle or ductile wrench shear zones (Ramsay, 1967; Sanderson, 1979, Berthé & Brun, 1980; Carreras 2005). The et al..

steepening of the sedimentary series requires a preliminary deformation stage, which is locally documented in the Karamay Unit (**Wu & Pan, 1991**; **Zhang et al., 2011a**; *Fig. 6.B.3e*). A continuum between compression and transpression can also be envisaged and will be discussed later in this paper.

It is worth to note that, on satellite scenes, circular plutons neatly crosscut the two types of lineament (*Fig.* 6.B.6a; 6.B.6b), thus clearly demonstrating that Late Carboniferous magmatism postdates the folding. Moreover, near the Dalabute Fault, both bedding and

cleavage deflect and progressively become tangent to this NE-SW trending fault (*Fig. 6.B. 6e*; *6.B.6f*).

B.4.ii Mesoscale and microscale structures in the West Karamay Unit

Since West Junggar rocks do not record significant crust thickening, there is also no evidence for any ductile deformation and high-grade metamorphism. However, our structural investigations reveal that limestone olistoliths, silicified siltstone, well-sorted turbidite, or mafic magmatic rocks record a pervasive deformation restricted to a ca. 4-5 km wide band along the Dalabute Fault.

B.4.ii.a Polyphase ductile shearing within limestone olistoliths

Several hundred of metres to kilometre-scale massive limestone blocks, which crop out along the northern side of the Dalabute fault zone (**XBGRM**, **1966**; **Guo et al.**, **2002**), draw asymmetric S-shaped drag folds (*Fig. 6.B.8a*). The well-defined vertical planar fabric represents both bedding and foliation (*Fig. 6.B.8b*). This S₀₋₁ surface is deformed by three types of folds. Upright or slightly recumbent folds are rarely observed (Fig. 6.B.8c). Folds with vertical axes are generally tight or isoclinal (*Fig. 6.B.8d*) and develop a vertical axial plane cleavage striking N80°E (*Fig. 6.B.8e*). Multi-scale (from centimetre to several metres) second-phase gentle to open folds with similarly steeply plunging axes refold the early folds (*Fig. 6.B.8a*; 6.B.8*f*; 6.B.8*g*). An horizontal mineral/stretching lineation (L₁) develops on the S₀₋₁ surface (*Fig. 6.B.8h*).

Limestone blocks are often associated with gabbro and gabbroic sandstone lenses (*Fig. 6.B.5h*; *5i*). The sigmoidal shape of these metre-scale phacoids indicates sinistral shearing. Though mafic rocks are too strong to experience ductile deformation, they developed a rough vertical foliation. This planar fabric is deflected at the block boundary, in agreement with a sinistral shearing along a N60°E direction. Microscopic observation in thin sections perpendicular to the foliation and parallel to the lineation (i.e. in the horizontal plane) of limestone and mafic sandstone show asymmetric clasts of calcite, quartz or epidote that indicate a left-lateral shearing (*Fig. 6.B.8i*; *6.B.8j*). The sinistral kinematics of the clayey shear bands that develop in sandstone corroborates this interpretation (*Fig. 6.B.8k*).

Both sinistral and dextral asymmetric fold limbs appear in limestone (*Fig. 6.B.8f*; 6.B.8g). S-shaped open folds, sheared along N30°E and N80°E directions, are distributed along the fold long limb (*Fig. 6.B.8f*). In contrast, open to gentle Z-shaped drag folds appear

Figure 6.B.8: photographs of structures within limestone olistoliths along the Dalabute Fault. a: Aerial photograph of a deformed limestone lens located in Fig. 6.B.6b (45.6928°N; 84.4101°E). The general trend of the ribbon is NE-SW and parallels the Dalabute Fault (DF), but, locally, draws S-shaped drag fold consistent with sinistral kinematics along the fault, b: vertically schistosed beds of limestone representing a S0-1 fabric (45.7199°N; 84.4619°E), c: upright to NW verging fold inside limestone (45.7199°N; 84.4619°E), d: horizontal surface exposing isoclinal fold with vertical axis (45.7084°N; 84.4412°E), e: stereoplot showing the vertical axis of the folds and vertical dip of the N80°E trending cleavage within the limestone, f: S-shaped drag fold indicating Riedel P-sinistral shears (45.6928°N; 84.4101°E), g: subsidiary Z-shaped drag fold indicating Riedel R'-dextral shears (45.6928°N; 84.4101°E). The geometric configuration of S and Z-shaped drag folds is consistent with a NE-SW sinistral strike-slip fault, h: horizontal lineation supported by the vertical cleavage of limestone (45.7084°N; 84.4412°E), i: microphotograph of a sigmoid clast of an altered feldspar (fd, 45.6928°N; 84.4101°E), j: microphotograph of a deformed crinoid fragment made of calcite (cc, 45.6928°N; 84.4101°E), k: clayey shear bands indicating (45.5747°N; 84.2464°E). The i, j and k pictures show microstructures documenting sinistral kinematics.

with a north-south trend and indicate a dextral sense of shear (Fig. 6.B.8g). Such a geometry

is consistent with a conjugate fault configuration (Riedel, 1929). Considering the N50°E sinistral shearing along the Dalabute Fault, slightly oblique secondary faults with sinistral

MECANISMES ET EVOLUTION DES CHAINES D'ACCRETION EN ASIE CENTRALE

Figure 6.B.9: a, b and c: field photographs showing the geometric interactions between the bedding (S0) and the cleavage (S1), with parallel (a), oblique (b) and perpendicular intersections (c), respectively, from northwest of Karamay ($45.7777^{\circ}N$; $84.5174^{\circ}E$). The distribution in map of these structures display folds with vertical axes of several metres amplitude. In fig. 6.B.8b, the penetrative character of the S1 cleavage depends on the lithology. d and e: examples of 10 cm-scale isoclinal folds with vertical axis developed in silicified siltstones ($45.3978^{\circ}N$; $83.4024^{\circ}E$).

kinematics may develop along the N°30-N40°E and N°70-80°E directions (R and P-type, respectively, *Fig. 6.B.8f*). The highly oblique dextral faults along the N-S direction may correspond to antithetic shear zones (R'-type; *Fig. 6.B.8g*). The kinematic indications observed around the Dalabute Fault therefore attest for a bulk sinistral shearing.

B.4.ii.b Evidence for folds with vertical axes in turbidites.

Ductile fabric and kinematic indicators generally lack in massive greywacke, whilst they are widespread in turbidite. In mudstone, a penetrative slaty cleavage (S₁) develops and generally erases or transposes the sedimentary bedding (S₀). In contrast, in coarser-grained well-sorted turbidites, the relationships between sedimentary and tectonic fabrics clearly appear. Both S0 and S1 are steeply dipping, and make an angle that vary from 0° to 90° in the limbs and hinge, respectively (*Fig. 6.B.9a*; *6.B.9b* and *6.B.9c*). These metre- to hectometrescale structures are consistent with the megascale folds with vertical axes, inferred from observation of satellite scenes (*Fig. 6.B.6a*; *6.B.6b*). The cleavage trend remains relatively constant throughout the West Karamay Unit, except in the vicinity of the Dalabute fault zone, where it has been reoriented parallel to the fault (*Fig. 6.B.6e*). Therefore, the regional cleavage may be related to the large-scale folds with vertical axes. Metre-scale isoclinal folds with vertical axes also develop in siliceous siltstone of the turbidite series (*Fig. 6.B.9d* and *6.B.9e*).

B.5 Discussion

These new structural data raise fundamental questions about the timing and origin of the deformation. In this section, we discuss these two points and, on the basis of preexisting data, we propose a possible scenario for the West Junggar Palaeozoic evolution in the frame of the Central Asia geodynamics.

B.5.i The West Karamay Unit: a single Carboniferous accretionary complex

New investigations in West Junggar led us to reconsider the nature and origin of the West Karamay Unit. Dalabute and Karamay ophiolitic mélanges probably formed by off scrapping oceanic crust materials and bathyal sediments from the lower oceanic plate. Both MORB and OIB-like components of the mélange (Zhang et al., 1993; Wang et al., 2003; Zhu et al., 2007; Lei et al., 2008; Gu et al., 2009; Liu et al., 2009; Zhang et al., 2011b) argue for an oceanic basin (e.g. oceanic crust and seamounts). Pre-subduction features, such as ophiolitic detritism, are commonly preserved, but the initial oceanic stratigraphy is completely disturbed (*Fig. 6.B.5f*; Feng et al., 1989). Rheologically contrasted oceanic materials generate the disrupted aspect of the mélange and allow strain partitioning (*Fig. 6.B.5a*; *6.B.5b*; *6.B.5d*; *6.B.5j*; *6.B.5k*). Serpentinite is especially ductile, even at a low temperature, and may accommodate the bulk of deformation both by plasticity and protrusion processes (Saleeby, 1984). Boulders of high-strength rocks such as gabbro, basalt, and chert, generally preserve their initial magmatic or sedimentary structure, and are only deformed at their boundaries (*Fig. 6.B.5d*; *6.B.5d*; *6.B.5d*; *6.B.5d*; *6.B.5d*; *6.B.5b*; *6.B.5d*; *6.B.5d*, *6.B.5d*; *6.B.5d*; *6.B.5d*, *6.B.5d*; *6.B.*

Turbidites, greywacke mass flows and olistostrome formations geometrically overlie the mélange. Although folded and faulted, sedimentary rocks remain coherent, as suggested by type 1 lineaments observed in the satellite images (*Fig. 6.B.6a*). Broken formations, slumps and occurrence of allochthonous limestone boulders suggest a syntectonic sedimentation developed in an unstable margin. Andesite, pyroxene and plagioclase clasts that are widespread in greywacke, turbidite, and mass-flow deposits as well, argue for a nearby volcanic-arc source. Finally, the occurrence of one single detrital population of Late Carboniferous age within sandstone samples of the West Karamay Unit, demonstrates one single and local magmatic-arc source (*Fig. 6.B.4c*).

The association of turbidites, greywacke, mass-flows and ophiolitic mélange in the West Karamay Unit suggest that they formed in an acccretionary complex. Buckman & Aitchison, (2004), Xiao et al. (2008), and Geng et al. (2009) already proposed this interpretation, and considered that the Karamay Unit was a combination of three separate terranes. They distinguished, i) to the west, the Kulumudi terrane, interpreted as a Devonian accretionary wedge, ii) the Karamay terrane, to the east, corresponding to accreted Carboniferous oceanic material, and iii) the Sartuohai terrane equivalent to the Dalabute mélange and laying in-between the two aforementioned terranes. The Karamay mélange was not included in this tectonic analysis. Recently, Zhang et al., (2011a; 2011b) have suggested

that the eastern and western domains represent two separate accretionary complexes formed along two opposite subduction zones. All these models assume that the Dalabute Fault was a major terrane boundary. Our field investigations reveal that the same lithological succession is exposed on both sides of the Dalabute Fault. Moreover, evidence of opposite senses of subduction is unclear, since the transcurrent deformation erased most of the initial structure. Furthermore, the available geochronological data do not confirm the existence of two diachronous accretionary complexes; conversely, the eastern and western domains of the fault appear genetically and chronologically related. Detailed mapping several tens of years ago, already established a similarity of the sedimentary rocks on both sides of the Dalabute Fault (XBGRM, 1966). Presently, our lithological, chronological and structural knowledge does not allow us to distinguish the Dalabute and Karamay mélanges, since blocks are similar in age and nature, and display identical tectonic structures. Finally, the apparent difference between Dalabute and Karamay mélanges is only due to the present geometry on both sides of the Dalabute Fault (Fig. 6.B.10), as discussed in the next section. Therefore, in contrast with Buckman & Aitchison (2004) and Zhang et al. (2011a), we consider only one single West Karamay Unit, made of sedimentary series and ophiolitic mélange.

Figure 6.B.10: a: 3D diagram of the West Karamay unit and surrounding units. Upright and vertical folds, and thrust deform the accretionary complex. These structures are postdated by the Late Carboniferous plutons. Transcurrent events marked by strike-slip fault affected the region, during the Permian. The 110 km of displacement along the Dalabute fault is estimated by the present offset of the two mélange belts.

B.5.ii Timing of the deformation

New U-Pb geochronology on detrital zircons indicates a Late Carboniferous maximum age of deposition of turbidites and greywackes (*Fig. 6.B.4c*; *6.B.11*; **Zhang et al., 2011a**; **Choulet al., unpublished results**); however, sedimentation may have started earlier, possibly

as soon as Middle or Late Devonian (**XBGRM**, **1966**; **Feng et al.**, **1989**). Since structures in limestone boulders are similar to that of turbidites, the deformation obviously took place after olistostrome accumulation; thus, all the structures described above result from the same tectonic event. Although transcurrent tectonics is prominent throughout the West Karamay Unit, an earlier stage of compressive tectonics is locally preserved (**Feng et al., 1989**; **Wu & Pan, 1991**; **Zhang et al., 2011a**). In agreement with these authors, in several places such as Sartuohai or Baijiantan, we recognize thrusts and folds that contributed to place the strata into an upright position. Then, various-scale folds with steep axes deformed upright strata under ductile, low temperature rheological conditions. Firstly, isoclinal to tight folds are accompanied by the development of a vertical E-W axial plane cleavage and a shallow dipping lineation (*Fig. 6.B.8d*; *6.B.8d*), and asymmetrical clasts and intrafolial folds indicate a sinistral sense of shear (*Fig. 6.B.8i*; *6.B.8j*). Asymmetrical open or kink-like folds commonly follow the early synfolial folds, and developed during the last increments of ductile shearing (*Fig. 6.B.8f*; *6.B.8g*).

Figure 6.B.11: synoptic chart of the major episodes of magmatism, deformation and sedimentation that affected West Junggar during Carboniferous and Permian. The Carboniferous is marked by syn-accretion sedimentation, and is accompanied by a continuous deformation, and magmatism in the arc and fore-arc regions. The Late Carboniferous to Permian stage is characterized by moderate continental erosion, alkaline magmatism and transcurrent brittle deformation. Hachures in boxes correspond to periods where age assignment is uncertain.

Alkaline plutons, dated at ca. 300 Ma (Han et al., 2006; Geng et al, 2009) postdate both the compressive and the transcurrent structures (*Fig.* 6.B.6a) that appeared after ca. 305 Ma, which is the age of the youngest deformed turbidites. Such a short interval argues for a deformation continuum between the compressional and transcurrent events.

The geometry of the early synfolial folds, the shallow dipping lineation, and the secondary folds (*Fig. 6.B.8f*; *6.B.8g*), suggest accommodation of movements along a major wrench shear zone, precursor of the Dalabute Fault, whilst the present fault is only a result of minor reactivation in brittle conditions (*Fig. 6.B.8a*). Brittle faulting probably occurred during Permian time, since the Late Permian conglomerate and sandstone that crop out along the fault valley, display evidence for syn-tectonic sedimentation such as tilted blocks (**Zhao et al., 1990**; **Allen et al., 1995**). Permian palaeomagnetic data from remagnetised turbidites sampled on both sides of the fault do not reveal any relative block motion (**Choulet et al., in press**). This means that either the remagnetisation is younger than faulting, or, alternatively, that fault motion was not large enough to be recorded by palaeomagnetic investigation. Therefore, the two domains of the Karamay Unit, lying on both sides of the Dalabute Fault, initially formed a single continuous domain, and Dalabute and Karamay mélanges originally formed one single belt, overlain by disrupted sediments. The present-day offset between the two mélanges can be estimated at ca. 110 km (*Fig. 6.B.10*); this bulk value includes the Permian displacements, and possible younger reactivations, as well (**Gu et al., 2009**).

In summary, two tectonic events may be distinguished in the Karamay Unit (Fig. 6.B.11). From 340 Ma to 305 Ma, oceanic material derived from the Devonian Junggar Ocean was scraped-off and accreted in the wedge. Meanwhile, magmatic-arc rocks intruded the Early Palaeozoic substratum or erupted upon it. The accretionary complex was also intruded by 320-300 Ma diorites with adakitic affinities (Geng et al., 2009; Tang et al., 2010; Yin et al., 2010). These authors propose that ridge subduction might have provoked the "unzipping" of the divergent plate boundary (Thorkelson, 1996) and the opening of a slab window (Dickinson & Snyder, 1979). In response, asthenosphere upwelling triggered slab melting, and generated adakitic magma (Kay et al., 1993) in the fore-arc region (Marshak & Karig, 1977; Delong et al., 1979; Hole et al., 1991). Eroded volcaniclastic material fed the fore-arc basin and the accretionary wedge, where they formed syntectonic turbidites and mass-flow deposits. The occurrence of sub-contemporaneous upright folds and folds with vertical axes during the 305-300 Ma interval suggests transpression coeval with oblique accretion in the West Karamay Unit. The 305-300 Ma period also represents the transition from accretion to post-accretion setting. During this period, both alkaline and calk-alkaline magmatic rocks are recorded (Geng et al., 2009; Fig. 6.B.10), but no evidence of a Permian subduction can be found in the sedimentary and tectonic records, as well (Feng et al., 1989; Buckman & Aitchison, 2004). Permian brittle transcurrent tectonics coexists with molasse deposition and alkaline magmatism (*Fig. 6.B.10*). In contrast with Tianshan and Altai regions, where Permian post-accretion plutons display the features of synkinematic intrusions, controlled by strike-slip shear zones (Laurent-Charvet et al., 2003; Wang et al., 2009; Pirajno, 2010), West Junggar plutons do not present fabrics related to a syntectonic emplacement. This may infer either a post-kinematic intrusion, or, alternatively, shallow level emplacement.

The lack of continuity of the West Karamay Unit and Dalabute Fault along strike prevents any accurate calculation of the bulk offset. A series of NW-SE trending strike-slip faults hinders the relationship between the West Karamay Unit and the Early Palaeozoic Mayila Unit. In addition, the connection between the West Karamay Unit and the Early Palaeozoic basement is also unknown, since the deeper parts of the accretionary complex have not been exhumed yet.

B.5.iii Oblique subduction driven by oroclinal bending

Transpression within an accretionary complex evokes oblique subduction (McCaffrey, 1992). Decoupling of oblique plate convergence into a normal component and a shear component could explain the coexistence of compressive and transcurrent tectonics. Such tectonics features are documented in South America or New Zealand (Reutter et al., 1991; Henderson, 1987). These authors recognized en-echelon fault systems and vertical folds that superimposed on compressive episodes in connection with oblique subduction. Considering these analogues, we suggest that the West Karamay Unit also formed during oblique subduction.

This interpretation raises the issue of oblique subduction inception. Oblique subduction may result either from a changing lower plate vector, or, alternatively, from a modification of the geometry at the boundary between the upper and lower plates (McCaffrey, 1992). Constraints are not available to check the first option, since the oceanic domains completely disappeared by subduction. The second option could account for the development of an oblique convergence in West Junggar. The West Junggar magmatic arc and the accretionary complex can be extended westward into the Kazakh orocline (*Fig. 6.B.1b*). A complex evolution of this megastructure is documented by the palaeomagnetic data obtained in the three segments of the orocline (Abrajevitch et al., 2007; 2008; Levashova et al., 2003; 2009). Since Late Devonian time, the convergence of Tarim and Siberia caused a bending of the NW-SE trending Middle Devonian active margin (Abrajevitch et al., 2008). In response to this buckling, the magmatic arc segmented into

three parts that formed the Kazakh orocline (Fig. 6.B.12). These three segments rotated around a vertical axis during the tightening that led to the closure of the Junggar Ocean. A

Figure 6.B.12: tentative reconstruction of the Late Paleozoic evolution of West Junggar in the regional frame of Central Asia. The time-evolution in Kazakhstan and northwestern China is based on palaeomagnetic data (**Van der Voo et al., 2008**; **Choulet et al., 2010**). Carboniferous closure of the Junggar Ocean by oroclinal bending leads to buckling of the active margin (1); subsequent relative rotation of a part of this margin give an oceanward concave shape of the margin and induced obliquity of the subduction zone. Ridge subduction may also be implicated in this process (2). Such a configuration may have favoured continuous deformation inside the upper plate and impeded large transcurrent displacements. In Late Carboniferous (305 Ma), oceanic domains have almost disappeared by subduction, and in response to the buckling of the margin, large transcurrent faults started to develop (3); this led to the destruction of the orocline and induced opposite relative rotations of West Junggar and North Kazakhstan ribbon margins (4). During the Permian (280 Ma), the counterclockwise rotation of West Junggar modified the geometry of the oblique convergent zone that turned into a convex shape toward Junggar (5); it may favour the initiation of strike-slip faults and lateral displacement of units within West Junggar. The continuous transcurrent faulting throughout Central Asia (6) probably kept up this "Sunda style tectonics". KZK: Kazakhstan, NTS: North Tianshan, WJG: West Junggar. Faults abbreviations are the same as in Fig. 6.B.1b.

continuous subduction until the Late Carboniferous eventually closed the internal oceanic domain (Abrajevitch et al., 2008).

In order to relate this geodynamic scenario with the structural observations and to explain how oroclinal bending controlled the development of the tectonic features, we propose a comparison with Cenozoic to modern active margins. According to **Beck et al.** (1994), the association of an oblique subduction with the convex shape of Western North America plate toward the Pacific Plate has strongly favoured the lateral displacement since at least Mesozoic times. In contrast, the oceanward concave shape of the South American plate

characterized the configuration of the Bolivian orocline that inhibited or at least limited sideways transports. However, oblique slip was accommodated by internal transpression in the accretionary complex and in the magmatic arc (Reutter et al., 1991; McCaffrey, 1992). In comparison, until the Late Carboniferous (ca. 305 Ma; Fig. 6.B.12), West Junggar, affixed to the bend structure of the Kazakh orocline, constituted its easternmost extension. The horseshoe shape, deduced from the available palaeomagnetic data, suggests an oceanward concave active margin (Abrajevitch et al., 2008; Fig. 6.B.12). Since relative rotations of the arms, at the lithosphere scale can reach several tens of degrees, the subduction vector with respect to the plate margin changed during the Late Devonian and Carboniferous. During this period, ridge subduction likely occurred, and the resulting slab window probably enabled emplacement of adakitic magma in the fore-arc region (Geng et al., 2009; Tang et al., 2010; Yin et al., 2010). The "unzipping" of the ridge during subduction can also facilitate transcurrent deformation in the overriding plate (Thorkelson, 1996). Since no lateral displacements in the upper plate are documented, we propose that the concavity of the subduction zone with respect to the oceanic plate generated a transform margin, and a configuration similar to the Bolivian Orocline (Beck et al., 1994). In response, folds with vertical axis developed in West Junggar (Fig. 6.B.12). Since the Ob-Zaisan Ocean (that originally separated West Junggar and Siberia during the Palaeozoic) closed in Late Carboniferous time (Windley et al., 2007), the northern segment of the orocline was at that time, affixed to Siberia. This probably played the role of a buttress (Beck, 1991) and hindered the localization of the transcurrent deformation along strike-slip faults.

During the latest Carboniferous (ca. 305-300 Ma), subduction partly ended around the orocline, which had reached ca. fifty per cent of the present curvature only (**Abrajevitch et al., 2008**). The additional fifty per cent of buckling are supposed to be due to large-scale Permian block rotations along major shear zones (**Van der Voo et al., 2006**; **Abrajevitch et al., 2008**; **Wang et al., 2007**; **Choulet et al., 2020**; *Fig. 6.B.12*). This transcurrent episode partly dismembered the horseshoe. At that time, West Junggar was separated from the northeastern segment of the orocline by the Chingiz-Alakol-North Tianshan fault. The resulting Permian counterclockwise rotation of West Junggar with respect to Kazakhstan probably increased the obliquity of the convergence and modified the shape of the active margin (Choulet et al., 2010; *Fig. 6.B.12*). The new Permian convex shape of the convergence zone towards the Junggar microcontinent may have initiated transcurrent

displacements along the Dalabute Fault, and duplication of the accretionary complex (*Fig. 6.B.12*).

In this study, we have considered that the basement of the Junggar basin was a microcontinent, but we do not want to speculate much about its nature. Many hypotheses have been proposed, like a trapped oceanic basin (Hsü, 1989; Carroll et al., 1990), a Precambrian crust (Wu, 1987; Chen et al., 2002), or a Palaeozoic juvenile crust (Chen & Jahn, 2004; Hu et al., 2000). Here, we assume that the Junggar microcontinent is a composite consolidated tectonic block and not a Precambrian craton. However, our results can suggest an alternative origin for the Carboniferous magmatic arc-rocks and accreted materials, drilled below the Mesozoic infill of the Junggar basin (Zheng et al, 2007). Until now, these rocks were hypothesized to belong to an arc-accretionary complex system, independent of the West Karamay Unit (Zhang et al., 2011a; 2011b) that collided with the West Junggar margin. Alternatively, based on our observations in the West Karamay Unit, we suggest that the units hidden below the Junggar basin are equivalent to the West Karamay and Barliek Units, and therefore, are fragments of the same Late Palaeozoic subduction-accretion complex. The present-day geometry is related to major Permian strike-slip faults, such as the Dalabute Fault that transported magmatic-arc rocks and accreted units along the margin. This model is in agreement with that of Wang et al. (2003) who proposed that West Junggar results of the lateral imbrication of a shredded single Palaeozoic active margin. However, our observations only document Carboniferous and Permian "Sunda-style" tectonics, and there is no evidence for such a similar continuous tectonics since the Early Palaeozoic.

This article only focuses on the prominent tectonic features of the accretionary complex, and we did not consider the tectonic response of the magmatic arc to oblique convergence. However, the thermal softening of the lithosphere in the magmatic arc region probably favoured transcurrent deformation of the upper plate (**Beck, 1983**).

B.6 Conclusion

This study emphasizes the role of the transcurrent tectonics that affected West Junggar during the Late Palaeozoic. The tectonic structures at various scales include folds with vertical axes and strike-slip faults that can be interpreted as the tectonic response of the accretionary complex to the forces acting at the boundary between the West Junggar and Junggar oceanic plates. The geometry and kinematics indicators suggest an oblique slip of the lower oceanic plate. Ridge subduction, traced by the adakitic rocks also supports oblique
geometry. Non-frontal subduction directly results from the formation of the Kazakh orocline that provoked the bending of the subduction zone and subsequent block rotations. This specific tectonic setting controlled the style of deformation and strain partitioning, with two consecutive episodes of folding and strike-slip faulting.

These tectonic events have deeply altered the original geometry of the accretionary complex, and reorganized the West Karamay unit. The ca. 100 km lateral displacement is responsible for the partial duplication of the accretionary complex, the thickness of which is probably overestimated.

In West Junggar, and in Central Asia as a whole, the production of juvenile crust accounts for vertical growth of the continents (Jahn et al., 2000; Jahn, 2004; Han et al., 2006). Nevertheless, as suggested by Xiao et al. (2010), the continental crust growth in the Altaids is a combination of both lateral and vertical processes. Vertical addition of mantlederived magmas contributed to the formation of the juvenile continental crust, but lateral transport by strike-slip faults of this newly formed crustal material reorganized the primary tectonic pattern formed during accretion. Although the geological data gathered during the last two decades are not consistent with one single long-lived subduction, the collage model proposed by Sengör et al. (1993), which emphasized the importance of the lateral tectonic transport, remains still valid for the Late Palaeozoic evolution of the Altaids.

Aknowledgements

We thank Xiao Wenjiao and two anonymous referees for their critical reviews, which substantially improved the manuscript. This work was funded by Chinese National SandT Major Project (2011ZX05008) and National Basic Research Program of China (973 Project N° 2009CB825008).

C Conclusion

Cette étude a mis en évidence des plis à axes verticaux au sein du complexe d'accrétion. Ce style de déformation suggère un régime de transpression, en réponse à un partitionnement de la déformation lors de la subduction oblique de l'Océan Balkash-Junggar au cours du Carbonifère. L'épisode décrochant permien scelle le processus d'accrétion et entraîne une imbrication latérale des unités paléozoïques du Junggar Occidental. La chronologie de ces évènements est bien établie, grâce à des contraintes géochronologiques sur les plutons tardifs et les turbidites du complexe d'accrétion. Ce plissement et cette tectonique décrochante sont le résultat de la géodynamique régionale, marquée notamment par l'évolution de la virgation du Kazakhstan. La formation puis la destruction de cette structure a contrôlé la géométrie de la zone de convergence et, par conséquence, influencé la structure finale. Ce travail établit clairement un lien entre les contextes syn- à post-accrétion et il contribue à la compréhension de la collision finale des Altaïdes Occidentales. En outre, cette étude met en avant la nécessité d'obtenir des données structurales dans les trois directions de l'espace (et aussi dans le temps), dans le but de caractériser l'architecture des chaînes d'accrétion.

CHAPITRE VII: EVOLUTION TARDI- A POST-OROGENIQUE DES CHAINES D'ACCRETION D'ASIE CENTRALE

A Introduction

Dans les chapitres précédents, grâce aux études structurales et géochronologiques, nous avons montré que le Junggar Occidental s'était formé par accrétions successives d'unités exotiques (arcs insulaires, microcontinents) au cours du Paléozoïque. Bien que certains auteurs suggèrent que la subduction a perduré au cours du Permien (Xiao et al., 2008), les contraintes sédimentologiques, tectoniques et magmatiques indiquent que l'amalgamation finale a lieu au Carbonifère terminal, dans le Junggar Occidental comme dans le reste de l'Asie Centrale. L'épaississement crustal lié à cette collision reste assez faible car le collage est essentiellement accommodé par un régime transcurrent (Allen et al., 1995). L'activité décrochante des zones de cisaillement, documentée entre le Carbonifère supérieur et le Trias (e.g. Laurent-Charvet et al., 2003) conduit à une redistribution de la géométrie initiale du collage. Ainsi, résoudre le puzzle de l'Asie Centrale va permettre de caractériser les épisodes tardi à post-orogéniques. Les reconstructions paléogéographiques et cinématiques nécessitent cependant des contraintes paléomagnétiques.

Les récentes études paléomagnétiques ont permis de décrypter l'histoire cinématique de l'orocline du Kazakhstan (Abrajevitch, 2007 ; 2008 ; Levashova, 2007 ; 2009), tout en insistant sur le rôle majeur des rotations permiennes dans la réorganisation géométrique du collage (van der Voo, 2006 ; Wang et al., 2007). Ces rotations de blocs rigides sont associées des mouvements décrochants à la limite des blocs. Dans le nord-ouest de la Chine, la quantité de déplacement durant le Permien a été estimée à plusieurs centaines de kilomètres (Wang et al., 2007), mais ces valeurs reposent sur l'existence d'un bloc Junggar comprenant le Junggar Occidental et le Tianshan du Nord. Or, les récents travaux sur l'Asie Centrale ont montré que ces deux régions avaient enregistré une histoire géodynamique contrastée (cf. chapitres 2 et 3), si bien que la rigidité du bloc Junggar peut être remise en cause. De plus, l'histoire cinématique actuellement proposée pour le Nord-Ouest de la Chine ne tient pas compte de la déformation intracontinentale post-paléozoïque. Or, il existe des preuves d'une tectonique majeure dans l'enregistrement sédimentaires mésozoïque et cénozoïque (Hendrix et al., 1992 ; Chen et al., 2011), et le rôle de la réactivation ne doit pas être minimisé.

L'objectif de ce chapitre est d'apporter de nouvelles données paléomagnétiques sur les régions de la périphérie du bassin du Junggar, afin de contraindre la rigidité du bloc Junggar. Les collections, prélevées dans le Junggar Occidental, dans le sud du bassin du Junggar et dans le Tianshan, s'étalent du Carbonifère au Trias. Les résultats obtenus permettent d'estimer les déplacements le long des limites de blocs afin de proposer une histoire cinématique du nord-ouest de la Chine. Les résultats de cette étude sont présentés dans deux articles originaux. Le premier article, basé sur la comparaison entre les quatre nouveaux pôles permiens calculés et les pôles permiens existants en Asie Centrale, s'intéresse aux étapes tardi à post-orogénique du collage. Le second article, qui présente les premières données paléomagnétiques triasiques du pourtour du bassin du Junggar, traite des interactions entre l'évolution post-orogénique du collage et les réactivations mésozoïques de l'Asie Centrale.

B Article accepté à Journal of Asian Earth Sciences: Late Paleozoic paleogeographic reconstruction of Western Central Asia based upon paleomagnetic data and its geodynamic implications

F. Choulet^{1, *}, Y. Chen^{1, 2}, B. Wang^{3, 4}, M. Faure^{1, 2}, D. Cluzel^{1, 5}, J. Charvet¹, W. Lin² and B. Xu⁶

^{1.} Université d'Orléans, CNRS/INSU, Institut des Sciences de la Terre d'Orléans – UMR 6113, France

^{2.} Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

^{3.} Department of Earth Sciences, Nanjing University, Nanjing, China

^{4.} Institute of Earth Sciences, Academia Sinica, Taipei

^{5.} Université de la Nouvelle Calédonie, EA 3325-PPME.

^{6.} School of Earth and Space Sciences, Peking University, Beijing, China

*: corresponding author, address: UMR 6113 - CNRS/Université d'Orléans, 1A, rue de la Férollerie, F45071 ORLEANS CEDEX 2, Tel. : +33 2 38 49 25 73, Fax. : +33 2 38 63 64 88, E-mail: flavien.choulet@univ-orleans.fr

Abstract

Carboniferous to Permian volcanoclastic rocks have been collected from South Junggar and West Junggar. Primary magnetizations have been observed from the characteristic components of 10 sites of Early Permian (P₁) and Late Pemian (P₂) red beds of South Junggar area. The 14 Early Carboniferous sites from West Junggar Mountains expose post-folding secondary magnetizations and according to their spatial distribution, 9 remagnetized sites are related to Late Carboniferous – Early Permian granite emplacement whereas 5 sites are located at the vicinity of Late Permian mafic dykes. Two new paleomagnetic poles have been consequently calculated for the periods of P₁ at 79.5°N, 36.6°E and of P₂ at 60.4°N, 4.7°E, with A₉₅ of 6.8° and 5.4°, respectively. They yield two paleomagnetic poles at 65.3°N, 329.7°E with A₉₅ of 6.3 and 64.8°N, 179.5°E with A₉₅ of 6.9° respectively. Compilation of available data shows stationary and consistent poles for South Junggar area during the Carboniferous and Permian whereas NW Junggar underwent a significant anticlockwise rotation between the Late Carboniferous-Early Permian and the Late Permian, indicating that Junggar was not a rigid block up to the end of the Paleozoic. West

Junggar and South Junggar may have experienced contrasting tectonic evolutions. Comparisons of Late Paleozoic poles of Central Asia blocks show: (1) counter clockwise rotation of West Junggar with respect to Siberia, contrasting with the clockwise rotation of North Kazakhstan with respect to Siberia, (2) no significant movements between West Junggar, North Kazakhstan and Siberia since Late Permian, indicating that they were rigidly welded since that time, and (3) anticlockwise rotations of Tarim, Yili and South Junggar with respect to the welded Siberia-Kazakhstan-West Junggar block. Such rotations may have been accommodated by Late Permian to Early Triassic strike-slip faults with an estimation of the displacements of 1570 \pm 280 km along the Irtysh-Gornotsaev Shear Zone, 410 \pm 380 km along the Nikolaiev-Nalati Tectonic Line and 490 \pm 250 km along the Chingiz-Alakol-North Tian Shan Fault since Late Permian time.

Keywords:

CAOB, Junggar, paleomagnetism, strike-slip faults, Tian Shan, Late Paleozoic

B.1 Introduction

Paleozoic continental growth in Central Asia results from successive accretion, collision and collage in a huge orogen, called the Central Asian Orogenic Belt (CAOB) which extends from the Urals to the Pacific Ocean between the main continents of Baltica, Siberia, Tarim and North China (*Figs. 7.B1a*; *7.B.1b*). On the basis of observation in the western part of the CAOB, **Sengör et al., (1993)** and **Sengör & Natal'in (1996a)** proposed a model of collage invoking a single long-lived subduction along the Kipchak Arc. They emphasized the role of strike-slip faulting that duplicated the Kipchak Arc. Regional studies provided new data on the accretion and accretion processes in Chinese Tian Shan (e.g. **Charvet et al., 2007**), Kazakhstan and Kirghizstan (e.g. **Windley et al., 2007**). These new data do not agree with the Kipchak collage model. Alternative models with multiple subductions of several oceanic basins, island arcs and microcontinents, widely distributed in time and space, similar to the present setting of Southwest Pacific, have been proposed (**Xiao et al., 2004**; **Windley et al., 2007**).

Recent paleomagnetic studies also documented a northward drift of the Kazakh terranes during Early Paleozoic accretion (**Bazhenov et al., 2003**). Successive accretions led to the formation of the Kazakhstan microcontinent (**Degtyarev & Ryazantsev, 2007**). Along its margin, the Late Paleozoic subduction of the Junggar Ocean is associated with the

Figure 7.B.1 a) Location of the Central Asian Fold Belt in Eurasia (after **van der Voo et al., 2006**). b) Map of West Central Asia, including major belts and tectonic features (modified after **Charvet et al., 2007** and **Windley et al., 2007**). Thick solid lines denote major shear zone with their main kinematics. Abbreviations correspond to: BO: Bole; CANTF: Chingiz-Alakol-North Tian Shan Fault; CH: Chingiz; CKF: Central Kazakhstan Fault; CS: Chu-Sarysu; IGSZ: Irtysh-Gornotsaev Shear Zone; IMT: Ishim Middle Tian Shan; KT: Karatau; MTF: Main Tian Shan Fault; NNTL: Nikolaiev-Nalati Tectonic Line; NR: Naryn; SB: Shaburt Mountains; SNT: Stepnyak-North Tian Shan; TFF: Talas-Fergana Fault; TN: Teniz; YI: Yili; ZS: Zharma Sawuer.

emplacement of a magmatic arc and an accretionary wedge. The current horseshoe shape of the Kazakhstan (*Fig. 7.B.1a*) results from Devonian to Permian oroclinal bending (**Collins et al., 2003**; Levashova et al., 2003a, 2003b; 2007; 2009; van der Voo et al., 2006;

Abrajevitch et al., 2007, 2008). The clockwise rotation of its northern limb with respect to its southern one would be responsible for the closure of the Junggar Ocean.

Central Asia underwent a final stage of collage, accommodated by transcurrent deformation (*Fig. 7.B.1a*; **Burtman, 1975, 1980**; **Yin & Nie, 1996**; **Laurent-Charvet et al., 2003**; **Buslov et al., 2004**; **van der Voo et al., 2006**; **Wang et al., 2007**) coeval with magmatism, leading to world-class economic mineral deposits (**Yakubchuk, 2004**). The origin of the Carboniferous to Permian magmatism has been well constrained by geochemical and geochronological studies (e.g. Jahn et al., 2000; Chen & Jahn, 2004). Although chronological and kinematic studies are available, the amount of displacement along these strike-slip faults and thus the Late Paleozoic paleogeography remains controversial or even unknown. However, recent studies have suggested that the displacement between Late Carboniferous and Late Permian interval can reach several hundreds of kilometers in the Chinese North Tian Shan and more than one thousand kilometers in Altai (Wang et al., 2007). **Wang et al. (2007**) also considered that the present geometric framework was principally acquired in the Late Permian with only limited Mesozoic motions and a Cenozoic reactivation due to the Indian Collision (**Avouac et al., 1993**; **Chen et al., 1993**).

Junggar is a triangular-shaped area surrounded by three belts, with different orientations of verging and accretionary events (e.g. Charvet et al., 2007; Windley et al., 2007; Xiao et al. 2008). The Junggar basin is enclosed between Kazakhstan (west Junggar mountains), Siberia (Altai) and Tian Shan. Due to its location, Junggar is a key area for understanding the final amalgamation of Western Central Asia. Until now, Junggar and its surrounding belts have been regarded as a rigid block and no comparison between these diachronous surrounding belts have been attempted. Thus a paleomagnetic study has been performed in the southern and western borders of the Junggar Basin. This study is an attempt to estimate the Late Paleozoic relative motions between these belts, and also with respect to other units of Central Asia. Another aim of this work is to propose a tentative paleogeographic reconstruction during the Late to Post-orogenic processes of the western part of Central Asia.

B.2 Geological setting and paleomagnetic sampling

Northwestern China consists of several mountain ranges (Tian Shan, Altai, West Junggar Mountains) and sedimentary basins (Yili, Tarim and Junggar). The Junggar area can

be simplified as a triangle-shaped sedimentary basin surrounded by Paleozoic orogenic belts (*Fig. 7.B.1b*).

B.2.i The Junggar basin

Bordered by the Tian Shan range in the south, the Altai in the northeast and the West Junggar mountains in the northwest, the Junggar Basin is filled by Permian to Quaternary sedimentary series overlying an unknown basement, the nature of which is a matter of speculation (e.g. Lawrence, 1990). Based on the sedimentary record along its border, Carroll et al. (1990) suggested a trapped oceanic basin. Hsü (1988) also proposed an oceanic nature of the Junggar crust, but in a back-arc context. However, recent geophysical studies indicated that the thickness of the crust attains to 40 km, suggesting a continental character. Furthermore, recent drillings have encountered schist and volcanic-arc rocks (Ma H.D., personal communication), which question the trapped oceanic crust hypothesis, and argue for the existence of accreted terranes below the Junggar basin. The thick sedimentation started accumulating with Permian marine sandstone mainly derived from the erosion of underlying terranes. Sedimentation changed upwards into lacustrine deposits with several coal lenses and a large amount of oil-bearing material. The deformation, limited to the basin border, along active faults such as the Uhre Thrust is due to intracontinental orogenies.

B.2.ii North Tian Shan

The southern border of the Junggar Basin is in contact with North Tian Shan (*Fig.* 7.B.2), which consists of a Devonian to Carboniferous accretionary complex and a volcanic arc, largely exposed in the Bogda Shan (e.g. **Wang et al., 2006**; **Charvet et al., 2007**). Accreted rocks are coarse and fine-grained turbidite, associated with an ophiolitic mélange. North-verging folds and top-to-the north kinematic criteria observed in these series argue for a deformation associated with a south-dipping subduction (**Wang et al., 2006**). Superimposed Permian dextral strike-slip faults affected the accretionary complex and the magmatic arc as well (**Laurent-Charvet et al., 2002, 2003**; **Wang et al., 2006**). Post-collisional pull-apart basins, with bimodal magmatism (e.g. Baiyanggou, SE of Urumqi) occurred during the events. The structures related to the Paleozoic were reactivated by multiple intracontinental tectonic events, which resulted in repeated uplift, erosion, folding and thrusting of the Tian Shan, the age of folding is mainly Tertiary (**Avouac et al., 1993**; **Charreau et al., 2005**), although several Mesozoic tectonic events are recognized (**Hendrix et al., 1992**).

Figure 7.B.2 Map (a), cross section (b) and stratigraphic chart (c) of the Northwestern Bogdashan (South Junggar) simplified after **XBGRM (1965b**), with stratigraphic chart after **Carroll et al. (1995)** and **Wartes et al.** (2002). Reference number (REF 1-4) is the same than those in the caption of the map of Figure 2a.

The term "South Junggar" used in this paper refers to the geographic location of the samples and it is not related to a peculiar geologic unit. The Permian terrigenous rocks that we sampled can be considered either as the sedimentary cover of the Carboniferous Bogda Shan arc because of a weak unconformity between Carboniferous and Permian layers or as the lowest strata of the Junggar Basin since the sedimentary sequence is continuous from Permian to present.

B.2.iii West Junggar Mountains

The West Junggar Mountains are located at the northwestern edge of the Junggar basin and extends to the Kazakh frontier (*Fig. 7.B.1*). To the south, West Junggar is limited by the active Alashankou Fault, a reactivation of the Permian Chingiz-Alakol-North Tian Shan Shear Zone. To the north, West Junggar is separated from the Chinese Altai by the 50 km wide sinistral Late Carboniferous–Permian Irtysh-Gornotsaev Shear Zone (Laurent-Charvet et al., 2003; Buslov et al., 2004). The northern part of West Junggar, in Sawuer and Shaburt Mountains along the Kazakh border, consists of Devonian to Carboniferous volcanic-arc rocks, which unconformably overlie an Early Paleozoic accretionary complex (*Fig. 7.B.3*; Feng et al., 1989; Zhou et al., 2008b). The southern part of West Junggar Mountains consists

Figure 7.B.3 Location (a) and map (b) of eastern part of the West Junggar Mountains, modified after **XBGRM** (1966).

of an association of Ordovician to Carboniferous ophiolitic mélanges and turbidite sequences (Feng et al., 1989; Zhang et al., 1993). Although these accreted terranes are affected by postcollisonal tectonics, their architecture suggests a northdipping subduction (Buckman & Aitchinson, 2004). This subduction zone might extent to the west into Kazakhstan. Its becomes progressively strike

rotated by 180° in Central Kazakhstan and thus connects to the North Tian Shan subduction zone (*Fig. 7.B.1*). This horseshoe shape corresponds to the Devonian to Carboniferous Kazakh orocline (**Sengör & Natal'in, 1996a**; **Abrajevitch et al., 2007**). Post-collisional magmatic rocks cross-cut the accretionary complex (**Chen & Jahn, 2004**; **Han et al., 2006**; **Geng et al., 2009**), and Permian continental deposits unconformably overlie Carboniferous turbidites. Ductile to brittle deformation occurs along SW-NE trending sinistral faults, like Darbut Fault. Since the Paleozoic, intracontinental basins, like Junggar were filled by Mesozoic and Cenozoic sedimentary rocks covering the Paleozoic basement. Active top-tothe SE thrusting allows the Paleozoic basement of the West Junggar Mountains to be locally exposed along the Darbut Fault or the Uhre thrust near Karamay City.

B.2.iv Paleomagnetic sampling

In South Junggar, three Permian formations were sampled namely the Early Permian Tashikula formation (P_{1t}); and Late Permian rocks of Wulapo and Jingjingzhigou formation (P_{2j} and P_{2jn}), outcropping in Jingjingzi Valley and Shiren Valley, East of Urumqi (*Fig.* 7.B.2). The Tashikula formation (P_{1t}) consists of fine to medium-grained greywacke, which contain lithic fragments of volcanic-arc rocks, alternating with mudstone. The age of this formation is defined by *Pugilis sp., Septimyalina sp., Mesoconularia sp., Neoggerathiopsis*

sp. (XBGMR, 1965b; Carroll et al., 1995; Wartes et al., 2002). 4 sites have been sampled in this formation (*Table 7.B.1*). The Late Permian species *Labiisporites, Illinites, Darwinula Darwinuloides, and Tomiella*, have been found in the Wulapo and Jingjingzigou formations (XBGMR, 1965b; Zhang, 1981; Carroll et al., 1995; Wartes et al., 2002). Four and two sites of siltstone and sandstone have been drilled in these two formations (*Table 7.B.1*), respectively. Permian rocks rest with a slight unconformity upon Late Carboniferous volcanic-arc rocks of Bogda Shan, and are in turn overlain by Triassic detrital series (Wartes et al., 2002). This area is marked by fold and thrusts related to the Cenozoic intracontinental orogeny (Molnar & Tapponnier, 1975)

In West Junggar, the ages of the sedimentary rocks from Xibeikulasi and Tailegula formations are less well constrained, since fossils are rare; however, a few fossil discoveries allow an Early Carboniferous age to be established (**XBGRM**, **1966**). Fourteen sites were sampled in greywacke of Xibeikulasi and Tailegula formations in the south-west of Karamay City, along the road S221, between Miaoergou and Tacakuo (*Fig. 7.B.3, Table 7.B.1*). These rocks are folded, with a slaty cleavage developed in fine-grained facies. Deformation is postdated by abundant Late Paleozoic plutons (**Chen & Jahn, 2004**; **Han et al., 2006**; **Geng et al., 2009**) and all the sites are located within thermal aureoles. In addition, some sampling sites are located near Permian mafic dykes that belong to a large dyke swarm (**XBGRM**, **1966**; **Li et al., 2004a**; **Qi, 1993**). In all these sites, prominently silicified hornfels bear evidence of a strong thermal overprint. The timing of these late-orogenic processes will be furthermore discussed in detail.

Eight to ten cores were drilled from each site with a portable gasoline drill. Cores were orientated by both magnetic and solar compasses, when it was possible. The average difference between these two azimuths is about $2.9^{\circ} \pm 2^{\circ}$ and $4.3^{\circ} \pm 3^{\circ}$ for Urumqi and Karamay areas, respectively. These values were used to correct the orientation of samples measured by magnetic compass alone and the sedimentary bedding measurements.

B.3 Paleomagnetic study

B.3.i Laboratory processing

Before the measurements of the magnetic remanence of this paleomagnetic collection, its magnetic mineralogy was investigated by several methods in the Laboratory of Rock Magnetism of Institut des Sciences de la Terre d'Orléans (ISTO). Thermal magnetic (Curie point) experiment and the measurements of Anisotropy of Magnetic Susceptibility were carried out by Agico ® CS3 coupled KLY-3s kappabridge, the measurements of Isothermal Remanent Magnetization (IRM, acquired with ASC Scientific IM-10-30), Lowrie test (**Lowrie, 1990**) and magnetic remanence were performed with Agico® JR5A spinner magnetometer. The thermal and Alternative Field (AF) demagnetization are realized by labbuilt furnace and Agico® LDA-3 demagnetizer, respectively.

Table 7.B.1 Results of the paleomagnetic measurements. Abbreviations: n, number of measured samples; N, number of collected samples; P, polarity; R, reversed; P_{1t}, Early Permian Tashikula Formation (Fm); P_{2j}, Late Permian Wulapo Fm; P_{2jn}, Late Permian Jingjingzigou Fm; C_{1x}, Early Carboniferous Xibeikulasi Fm; C_{1t}, Early Carboniferous Tailegula Fm; *, the age of remanence in parentheses; Dg, Ig, Ds and Is, declination (D) and inclination (I) in geographic (g) and stratigraphic (s) coordinates; k, the precision parameter, α_{95} , the radius that the mean direction lies within 95% confidence.

Site	Coordinates	Rocks	Age	Strike/Dip	n/N	Р	Dg	Ig	Ds	Is	k	a ₉₅
Urumqi ar	rea											
DP92	43.8°N, 87.8°E	Grey sandstones	P_1t	207/37	7/8	R	263.5	-62.5	165.5	-70.1	187.8	4.4
DP93	43.8°N, 87.8°E	Grey sandstones	$P_1 t$	205/40	7/8	R	253.8	-57.6	171.4	-64.9	247.4	3.8
DP94	43.8°N, 87.8°E	Dark siltsones	$\mathbf{P}_1 t$	199/41	8/8	R	250.4	-52.8	175.2	-65.7	49.7	7.9
DP95	43.8°N, 87.8°E	Dark siltsones	$\mathbf{P}_1 t$	199/41	8/9	R	253.1	-60.3	156.4	-66.8	235.6	3.6
Mean					4	R	254.8	-58.4			255.2	5.8
									167.4	-67.0	417.5	4.5
DP96	43.8°N, 87.8°E	Dark siltsones	$P_2 j$	200/67	6/9	R	269.3	-50.1	135.7	-58.4	71.8	8.0
DP97	43.8°N, 87.8°E	Dark siltsones	$P_2 j$	200/67	8/9	R	262.2	-49.4	142.6	-55.7	217.2	3.8
DP98	43.8°N, 87.8°E	Siltsones and sandstones	$P_2 j$	200/67	8/8	R	278.9	-51.7	123.8	-60.1	80.4	6.2
DP99	43.8°N, 87.8°E	Dark siltsones	$P_2 j$	214/58	8/14	R	283.0	-55.9	149.3	-62.0	103.6	5.5
DP101	43.8°N, 87.8°E	Siltsones and sandstones	$P_2 jn$	222/94	5/8	R	305.4	-27.4	143.1	-58.0	648.5	3.0
DP102	43.8°N, 87.8°E	White sandstones	$P_2 jn$	222/94	8/10	R	304.3	-25.0	146.1	-60.1	45.6	8.3
Mean					6	R	286.4	-44.6			18.6	16.0
									140.1	-59.3	253.9	4.2
Karamay a	area											
DP11	45.4°N, 84.4°E	Graywackes	$C_1 x (C_3 - P)$	359/62	7/8	R	160.9	-58.7	211.5	-10.5	200.0	4.3
DP12	45.4°N, 84.4°E	Graywackes	$C_1 x (C_3 - P)$	359/62	6/8	R	165.3	-54.3	208.0	-6.8	165.9	5.2
DP14	45.4°N, 84.4°E	Graywackes	$C_1 x (C_3 - P)$	359/62	5/8	R	144.1	-48.0	198.8	-18.4	18.7	18.1
DP15	45.5°N, 84.1°E	Graywackes	$C_1 t (C_3 - P)$	131/70	8/8	R	163.1	-49.0	84.3	-35.9	202.3	3.9
DP16	45.5°N, 84.1°E	Graywackes	$C_1 t (C_3 - P)$	131/70	5/9	R	158.9	-51.3	82.1	-32.8	449.2	3.6
DP17	45.5°N, 84.1°E	Graywackes	$C_1 t (C_3 - P)$	131/70	7/8	R	155.0	-45.3	89.5	-30.8	240.5	3.9
DP18	45.5°N, 84.1°E	Graywackes	$C_1 t (C_3 - P)$	131/70	8/8	R	148.5	-37.6	97.9	-25.6	140.6	4.7
DP19	45.3°N, 84.3°E	Graywackes	C1x (C ₃ -P)	359/62	6/8	R	136.3	-53.1	228.4	-47.3	98.1	6.8
DP20	45.3°N, 84.3°E	Graywackes	C1x (C ₃ -P)	359/62	7/8	R	151.4	-58.9	233.6	-37.8	199.7	4.3
Mean					9	R	153.5	-51.0			81.6	5.7
									164.4	-48.4	2.2	45.8
DD13	15 1°N 81 1°E	Grauwackas	$C_{\rm err}(\mathbf{P}_{\rm e})$	350/67	5/8	D	215.6	527	226.1	16.4	10.7	177
DI 15	45.4 N, 84.4 E	Graywackes	$C_{1\lambda}(\Gamma_{2})$	241/95	5/0	D	213.0	-52.7	220.1	10.4	572.0	20
DF21	45.5 IN, 04.4 E	Graywackes	$C_1 \lambda (\Gamma_2)$	341/05	5/9	р	217.0	-01.0	234.1	20.9	273.9 261 1	5.4 1 7
DF22	45.5 IN, 04.4 E	Graywackes	$C_{1\lambda}(\mathbf{P}_{2})$	241/85	J/0 1/9	л D	217.3	-30.0	233.2	20.8 19.5	201.1 59.2	4./
DF23	45.5 IN, 04.4 E	Graywackes	$C_1 \lambda (\mathbf{P}_2)$	241/85	4/0 7/10	л D	201.2	-52.9	222.0	10.3	204.2	12.1
DF24 Moor	45.5 IN, 64.4 E	Graywackes	$C_1 x (\mathbf{P}_2)$	341/83	//10 5	к р	213.8	-01.5	233.2	1/./	204.5	4.2 5.5
mean					3	к	414.1	-3/.0	220.9	10 /	170.7 217.9	5.5 5.2
									229 . ð	10.4	21/.0	5.4

Six to eight specimens were selected from each site to be demagnetized by about 16 steps with both thermal (up to 690C°) and AF (up to 100 mT) methods. Progressive demagnetizations were plotted on orthogonal vector diagrams (**Zijderveld, 1967**) and magnetic remanent directions were isolated by the principal component analysis (**Kirschvink, 1980**). Site-mean directions were computed by spherical statistic (**Fisher, 1953**). Paleomagnetic softwares written by **Cogné (2003)** and **Enkin (unpublished)** were used for the data analysis.

B.3.ii Magnetic mineralogy

Figure 7.B.4 presents the results of the magnetic mineralogical investigations on the representative samples from both south (left column) and west of Junggar basin (right column).

Concerning the samples from South Junggar, the fine to medium-grained greywacke of Tashikula formation (P_{1t}) and siltstone and sandstone of Wulapo and Jingjingzigou formations (P_{2w} and P_{2j}) show similar magnetic behaviors: a saturation of >95% below 300 mT (*Fig. 7.B.4a*), total demagnetization of the three components of the Lowrie Test (*Fig. 7.B.4b*), and sharp drops of the magnetic susceptibility at 580°C (*Fig. 7.B.4c*), suggesting the presence of various-sized titanium-poor magnetite as the principal magnetic remanent carrier.

For the greywacke of Xibeikulasi (C_{1x}) and Tailegula (C_{1t}) formations from West Junggar, IRM measurements (*Fig. 7.B.4d*) indicate that the specimens are saturated more than 80% at 200 mT and not completely saturated until 1200 mT, and Lowrie Test curves (*Fig. 7.B.4e*) present two drops of magnetic remanence at about 300-350°C and 580°C, corresponding to maghemite (titanomaghemite) and magnetite. These observations are confirmed by thermal magnetic (Curie) measurements (*Fig. 7.B.4f*) with magnetic susceptibility dropping at around 300-350°C and 580°C.

To summarize the investigation of remanent carriers, the soft coercive minerals, such as magnetite, with probably a few maghemite, are the principal remanent carriers with small percentage of high coercive minerals for all collection.

Figure 7.B.4 Results of Isothermal Remanence of the Magnetism (IRM, a, d), Lowrie Test (b, e) and thermomagnetic Curie temperature analysis (c-f) of samples from South Junggar and West Junggar. HC and CC are the heating and cooling curves respectively.

B.3.iii Paleomagnetic directional data

The progressive demagnetization show two magnetic components for most of the measured samples differentiated at about 300°C (*Figs. 7.B.5a*; *7.B.5b*; *7.B.6a*; *7.B.6b*). The low temperature component (LTC, up to 200-300°C) isolated from the 10 Permian sites from South Junggar present a well-grouped mean direction with a negative fold test (**McElhinny**, **1964**): Dg = 5.4° , Ig = 60.1° , kg = 46.5, $\alpha_{95} = 7.2^{\circ}$ and Ds = 328.0° , Is = 15.4° , ks = 12.9, α_{95}

Figure 7.B.5 Measurement results from Early and Late Permian rocks of South Junggar (a, b):Orthogonal projection of sample demagnetization (**Zijderveld, 1967**) in stratigraphic coordinates. White and black circles represent vertical and horizontal plans respectively. (c-f): Equal-area projection for site-mean directions isolated from high temperature and high coercive AF components in geographic (c, e) and stratigraphic (d, f) coordinates. Stars represent the locality-mean directions.

= 14° with n = 10 (labels g and s correspond to the geographic and stratigraphic coordinate system respectively). This mean direction in geographic coordinates is close to the Present Earth Field (PEF, D = 1.4° , I = 62.9°). The LTC from West Junggar show a dispersed distribution. Therefore, no mean direction has been calculated. As this LTC does not offer any information on further geodynamic implication, we will only discuss the high temperature component (HTC) below. Before presenting the statistical results of each formation from both areas, some common characteristics of HTC may be described as following. Unblocking temperature of this component is in the 300°C and 350°C interval. The thermal demagnetization of this remanence shows a linear decay of the magnetization to the origin and a total demagnetization before 585°C (see demagnetization curves in *Figs. 7.B.5*; *7.B.6*). The above observations confirm again that (various-sized titanium-poor) magnetite is the principal remanence carrier. Conversely to LTC, this component only presents a reverse polarity for the characteristic magnetic direction.

B.3.iii.a Paleomagnetic data from South Junggar

\cdot Tashikula Formation (P_{1t})

Fisher spherical statistics (**Fisher, 1953**) on the 4 sites (30 cores) of fine to mediumgrained greywacke show a well grouped direction of each site with $\alpha_{95} < 8^{\circ}$ (*Table 7.B.1*). Site mean directions and the corresponding statistical parameters are presented in Table 1 and Figures 5c and 5d. A P₁ age-mean direction has been further calculated for this locality: Dg = 254.8°, Ig = -58.4°, kg = 255.2, $\alpha_{95} = 5.8^{\circ}$ for the geographic coordinates and Ds = 167.4°, Is = -67°, ks = 417.5, $\alpha_{95} = 4.5^{\circ}$ with n = 4 sites for the stratigraphic coordinates (*Table 7.B.1*).

• Wulapo and Jingjingzigou formations (P_{2w} and P_{2j})

Four and two sites of siltstone and sandstone, from Late Permian Wulapo formation and Jingjingzhigou formation, respectively, show similar magnetic behaviors as Lower Permian samples. A P₂ age-mean direction has been therefore calculated: Dg = 286.0°, Ig = -44.6°, kg = 18.6, $\alpha_{95} = 16^{\circ}$ for the geographic coordinates and Ds = 140.1°, Is = -59.3°, ks = 253.9, $\alpha_{95} = 4.2^{\circ}$ with n = 6 sites for the stratigraphic coordinates (*Table 7.B.1, Figs. 7.B.5e*; *7.B.5f*).

Because of weak bedding variation for only 4 sites, the fold test for Lower Permian Tashikula formation is not conclusive though the statistical parameter (k) is improved after bedding correction. However, the regional fold test for Tashikula, Wulapo and Jingjingzhigou formations is positive at 95% level (**McElhinny, 1964**).

B.3.iii.b West Junggar Mountains

Fourteen sites of greywacke sampled in the Early Carboniferous Xibeikulasi and Tailegula formations in the southwest of Karamay City (*Fig. 7.B.3*) show significantly

Figure 7.B.6 Measurement results from Early Carboniferous rocks of West Junggar Mountains (for 9 sites: a, c and d and for 5 sites: b, e and f) (a, b):Orthogonal projection in geographic coordinates. (c, d, e, f): Equal-area stereoplots for site-mean directions isolated from high temperature and hard AF components.

different magnetic behaviors from above though the majority of sites show still coherent directions within the site. These same age rocks reveal two distinct groups of directions in geographic coordinates and highly dispersed directions in the stratigraphic directions (*Fig.* 7.B.6; *Table 7.B.1*). Statistically, the dispersion of site-mean directions does not yield one single Fisherian age mean direction for this locality. Two mean directions have been therefore

computed for this area (*Table 7.B.1*). The first group consists of 9 sites: $Dg = 153.5^{\circ}$, $Ig = -51.0^{\circ}$, kg = 81.6, $\alpha_{95} = 5.7^{\circ}$ and $Ds = 164.4^{\circ}$, $Is = -48.4^{\circ}$, kg = 2.2, $\alpha_{95} = 45.8^{\circ}$ (*Figs. 7.B.6c*; *7.B.6d*), and the second consists of 5 sites: $Dg = 212.7^{\circ}$, $Ig = -57.9^{\circ}$, kg = 196.9, $\alpha_{95} = 5.5^{\circ}$ and $Ds = 229.8^{\circ}$, $Is = 18.4^{\circ}$, ks = 217.8, $\alpha_{95} = 5.2^{\circ}$ (*Figs. 7.B.6e*; *7.B.6f*). The fold test is negative (**McElhinny, 1964**). The geological significance of the direction grouping will be analyzed in the Discussion section.

B.4 Discussion

Progressive demagnetizations have successfully isolated two magnetic components. The low temperature component (LTC), called also the viscous magnetization, presents only a normal magnetic polarity and directions close to the PEF, therefore, records the recent geomagnetic field. The high temperature components (HTC), principally carried by magnetite with probably little maghemite, reveal a solo reversed polarity. The directions are generally consistent within site with $\alpha_{95} < 10^{\circ}$. Before interpreting tectonically these new paleomagnetic data, some discussion on their reliability and age of magnetization is deserved, as it is well known that Central Asia experienced a multiphase tectonic evolution.

B.4.i Reliability and age of the magnetic remanence

Although no direct evidence of a penetrative deformation (except tilting and folding of the strata) can be observed in the field, the measurement of Anisotropy of Magnetic Susceptibility (AMS) has been carried out on the paleomagnetic collection in order to assess the effect of rock deformation. A weak anisotropy has been observed with the anisotropy degree P'<1.05 (*Fig. 7.B.7a*) suggesting that these rocks have not experienced intensive deformation since their formation. The statistical results of the three principal magnetic anisotropic axes show a well-grouped vertical K₃ (D = 60.7° , I = 81.8° , pole of magnetic foliation; *Fig. 7.B.7b*) after bedding corrections. These observations indicate that the magnetic fabrics developed during the sedimentation. Furthermore, the original deposition surface should be close to horizontal.

Only a reversed polarity has been isolated from HTCs of all rocks dated between the Early Carboniferous and the Late Permian. These remanent ages are consistent with the Kiaman Permo-Carboniferous Reversed Superchron (320 to 260 Ma; **Hounslow et al., 2004**). The mean direction deduced from the HTC is distinguishably different from PEF, Mesozoic or Cenozoic magnetic directions (*Table 7.B.1*; **Chen et al., 1992**; **1993**). It is reasonable to

Figure 7.B.7 AMS study of rocks of South Junggar and West Junggar. a) Plots of anisotropy degree (P') versus anisotropy shape (T) of magnetic susceptibility. $P' = \exp\{2[(\ln K_1 - \ln K_m)^2 + (\ln K_2 - \ln K_m)^2 + (\ln K_3 - \ln K_m)^2]^{1/2}\}$, and $T = 2\ln(K_2 / K_3) / \ln(K_1 / K_3) - 1$, where K_1 , K_2 and K_3 are the principal axes of the magnetic fabrics and K_m is the average of them. (b) Stereoplot of K_1 , K_2 and K_3 , (open and filled circles correspond to data and their means, respectively.

assume that the corresponding magnetic remanence was acquired before 260 Ma. However, the Late Paleozoic time is the main period of accretion in the Central Asia Orogenic Belt, including the Paleozoic Tian Shan range. Numerous magmatic events took place in this region, which could affect the magnetic remanence. In order to check if this remanence is primary or secondary, each section should be discussed.

Concerning the sandstone of the South Junggar area, the stratigraphically wellconstrained sedimentary rocks present positive fold tests for both Early and Late Permian directions at 95% statistic level (**McElhinny**, **1964**). With the solo reverse magnetic polarity isolated from these formations, the characteristic tilt-corrected directions can be considered as primary magnetizations. Therefore two paleomagnetic poles have been calculated for Early Permian (P₁; λ =79.5°N, Φ =36.6°E, A₉₅=6.8° with n=4) and Late Permian periods (P₂; λ =60.4°N, Φ =4.7°E, A₉₅=5.4° with n=6), respectively.

In the Western Junggar Mountains, the ages of the remanence for the sites of Early Carboniferous Xibeikulasi and Tailegula Formations are however less constrained. Recent U/Pb datings of zircon from altered tuffs from Baogutu Formation yield a Visean age (between 343 and 328 Ma; Wang & Zhu, 2007; An & Zhu, 2009) and Late Carboniferous detrital zircons were found in similar formation near Karamay (Zhang, 2009). Moreover, if these rocks were representative of Early Carboniferous period, both normal and reverse polarities should be identified, as the reversal frequency is relatively high at that time (Hounslow et al., 2004). The negative fold test with a decrease of the precision parameter after bedding corrections reveals a remagnetization of these Carboniferous rocks (*Table*

Figure 7.B.8 a): Laminated mudstone transformed into hornfels from the vicinity of Miaoergou pluton of West Junggar. b): Prehnite and pumpellyite from greywacke of West Junggar. c): Synthesis of geochronological data from magmatic Late Paleozoic rocks of West Junggar, after Kwon et al. (1989), Jin & Zhang (1993), Qi (1993), Shen et al. (1993), Li et al. (2004a), Chen & Arakawa (2005), Han et al. (2006), Su et al. (2006a), Zhou et al. (2006), Song et al. (2007), Wang & Zhu (2007), Zhou et al. (2008b), An & Zhu (2009), Geng et al. (2009), Tang et al. (2009), Zhang (2009) and Yin et al. (2010).

7.B.1). The observation of solely reverse polarities for this long Carboniferous sedimentary series may indicate that the age of the remanence is probably not older than the lower limit of the Kiaman superchron (i.e. 325 Ma; **Hounslow et al., 2004**). This magnetization is probably related to magmatic events and low-grade metamorphism. Hornfelses (*Fig. 7.B.8a*) and low-grade metamorphic minerals, such as prehnite and pumpelleyite (*Fig. 7.B.8b*) can be observed in greywackes. As described in the previous section, two well grouped mean directions have been revealed in this area (*Table 7.B.1*). The sampling sites of these two groups are located very close to the pluton boundary and mafic dykes, respectively. The first group of nine sites is located near the Miaoergou pluton and the remaining five sites are in the vicinity of mafic dykes (*Fig. 7.B.3*). The Miaoergou, Akebastaw or Karamay plutons (*Fig. 7.B.3*) were emplaced between 320 and 300 Ma (**Chen & Jahn, 2004**; **Han et al., 2006**; **Geng et al., 2009**). Several generations of intrusive rocks characterize the dyke swarm, with high-Mg microdiorites at ca. 320 Ma (**Yin et al., 2010**) and dolerites or diabases at 260 Ma (**Qi, 1993**; **Li et al., 2004a**). A compilation of recent dating results exhibits two magmatic peaks at 300 Ma and 260 Ma (*Fig. 7.B.8c*). We thus suggest that these two thermal events may be the

cause of the observed remagnetizations and, therefore, the ages of the two groups of remagnetization may correspond to those of granitic pluton and mafic dyke swarm, i.e. Late Carboniferous-Early Permian (320-300 Ma) and Late Permian (about 260 Ma), respectively. Two paleomagnetic poles have been calculated from the in situ directions of this collection for West Junggar at λ =65.3°N, Φ =329.7°E, A₉₅=6.3° with n=9 for the Late Carboniferous-Early Permian and at λ =64.8°N, Φ =179.5°E, A₉₅=6.9° with n=5 for the Late Permian (*Table 7.B.2*). Since no obvious declination deviation has been observed among the sites across the Darbut Fault (*Fig. 7.B.3*), it seems that no major internal deformation associated with this shear zone likely occurred within the West Junggar block since the Late Carboniferous-Early Permian.

B.4.ii Comparison with previous paleomagnetic results

Eight paleomagnetic poles, including two from this study, are available for South Junggar (*Table 7.B.2*). Among them, two poles are distinguished by abnormal declination and/or inclination with respect to others (Poles 1 and 2 in *Table 7.B.2*). Pole 1 displayed a deviating declination probably due to local rotation along strike slip faults. Pole 2 from volcanic lava flows (Late Carboniferous Liushugou Formation, **Li et al., 1991**) may represent a short time record of the magnetic field due to rapid cooling. Moreover, the initial geometry of these flows is also questionable for the bedding corrections, and these poles were used for tectonic implications. Though the ages, constrained by paleontological evidence are bracketed between C3 and P2, the remaining poles show a relatively good consistency of the paleolatitude with a slight declination variation (*Fig. 7.B.9a*). Within the uncertainty, the pole from Tianchi volcanic rocks seems having experienced a weak clockwise rotation with respect to others (Pole 8 in *Table 7.B.2*; **Nie et al., 1993**). It may be due to the secular variation influence on the data. According to the statistical consistency among these poles, a Late Carboniferous-Late Permian paleomagnetic pole has been calculated at λ =77.0°N, Φ =7.6°E, A₉₅=9.9° with n=6 (*Fig. 7.B.9a*).

Concerning West Junggar, poles 11 and 12 in Table 2 of Devonian to Carboniferous rocks from Shaburt Mountains with Late Carboniferous-Early Permian remanent age show a good statistical consistency with that of our study (*Fig. 7.B.9b*). Nevertheless the Late Carboniferous-Early Permian pole from **Zhao et al.** (**1990**; Pole 9 in *Table 7.B.2*) obtained from a granite without control neither on its initial setting position nor on the recording time of the magnetic field during its emplacement shows a significant difference with others. A

Late Carboniferous to Early Permian pole has been calculated for West Junggar, from poles 10 - 12 only at $\lambda = 68.2^{\circ}$, $\Phi = 326.7^{\circ}$, $A_{95} = 12.6^{\circ}$ with n=3 (*Fig. 7.B.9b*). For the Late Permian data, the Permian pole from **Li et al.** (**1989**; Pole 13 in *Table 7.B.2*) obtained from mafic dykes strongly deviates from the others poles probably due to uncertainty on the initial inclination and/or rapid cooling. The Late Permian poles from Upper Permian detrital rocks and from overprinted basalts (poles 14 and 15, **Zhao et al., 1990**) are similar to the five dyke-related sites-mean direction of Karamay section with an insignificant angular difference of $19.1^{\circ} \pm 27.5^{\circ}$ (*Fig. 7.B.9b*). A Late Permian pole has also been calculated at $\lambda = 53.0^{\circ}$ N, $\Phi = 183.9^{\circ}$ E, $A_{95} = 16.6^{\circ}$ with n=3 for West Junggar (*Fig. 7.B.9b*).

B.4.iii Relative motions between blocks

As described in the Introduction section, in the paleogeographic reconstruction of **Wang et al. (2007)**, the paleomagnetic data from West Junggar were used to represent the entire Junggar Block considering that the latter is a rigid body during the Late Carboniferous. The new results from both South and West Junggar of this study allow us to enhance the understanding of the Late Paleozoic paleogeographic evolution of Central Asia. *Table 7.B.2* shows the poles used to discuss the relative motions between South Junggar, West Junggar, NE Kazakhstan, Tarim, Yili and Siberia.

Recent studies in North Kazakhstan and especially in the Chingiz Range yield eight poles for the Late Carboniferous-Early Permian and the Late Permian (**Collins et al., 2003**; **Levashova et al., 2003a**; **2003b**; **2009**; **Abrajevitch et al., 2008**; *Table 7.B.2*; *Fig. 7.B.9c*). Pole 17 (λ =13.3°N, Φ =138.3°E, A₉₅=6.9°) from **Abrajevitch et al. (2008**) was used as the Late Carboniferous North Kazakhstan pole. Five Late Permian paleomagnetic poles are well grouped and a mean pole was calculated at λ =46.6°N, Φ =171.6°E, A₉₅=8.4° with n=5 for Late Permian (*Fig. 7.B.9c*). The two remaining Late Carboniferous to Early Permian and Late Permian poles are scattered with others probably due to local motion produced by the Chingiz Fault (Pole 19 in Levashova et al., 2003b) or oversteep inclination (Pole 21 in Levashova et al., 2003a; *Table 7.B.2*). The paleomagnetic poles of Siberia, Yili and Tarim blocs are discussed in Wang et al., (2007).

Figures 7.B.9d and *7.B.9e* present the relative motions among the West Junggar, South Junggar, NE Kazakhstan, Tarim, Yili and Siberia at the Late Carboniferous-Early Permian and the Late Permian. Several remarkable features may be outlined, namely: (1) South Junggar remains in a relatively stationary position during this period; (2) South Junggar was

Table 7.B.2 Compilation of Late Paleozoic data of Western Central Asia. Abbreviations: N, the number of sites; Slat (Plat), the latitude of site (pole); Slong (Plong), the longitude of site (pole); # REF, the reference number; A₉₅, the radius that mean direction lies within 95% confidence; dp and dm, the two axes of an oval of confidence with 95%. a, important uncertainties on the bedding surface; b, 52 out of 78 samples analysed with great circle method; c, Pole recalculated after cancelling isolated site 42 of **Nie et al. (1993)**; d: mafic dykes sampled without control on the initial setting; e, deviation of the declination due to local rotation along the Chingiz Fault; f: overstep post-folding inclination, with unknown origin. The paleomagnetic poles denoted by * are eliminated from the average. All poles available in literature were recalculated from paleomagnetic directions and some values could differ from those given by reference papers

Bloc	Locality	Age	Ν	Slat (°)	Slong (°)	Plat (°)	Plong (°)	A95 (°)	dp (°)	dm (°)	#REF	REF
S Junggar	Urumqi a*	C2	7	43.8	87.8	54.6	173.5	14,0	11.9	16.5	1	Li et al., 1991
	Urumqi a*	C2	6	43.8	87.8	73.4	96.5	27.4	26.1	28.9	2	Li et al., 1991
	Urumqi	C3	15	43.8	87.8	71.9	4.7	13.3	11.7	15.1	3	Li et al., 1991
	Urumqi	P1	4	43.8	87.8	79.5	36.6	6.8	6.2	7.5	4	THIS STUDY
	Urumqi	P2	6	43.8	87.8	60.4	4.7	5.4	4.7	6.3	5	THIS STUDY
	Urumqi b	P2	78s	43.8	87.7	77.7	0.5	5.5	4.8	6.2	6	Sharps et al., 1992
	Urumqi	P2	4	43.8	87.7	75,0	13.3	22.1	19.8	24.8	7	Sharps et al., 1992
	Tien Shi c	P2	6	44,0	88.1	83.6	211.8	7.7	6.6	8.9	8	Nie et al., 1993
	Mean	C3 to P2	6			77,0	7.6	9.9				
W Junggar	Karamay d*	C3-P	2	45.3	84.3	62.7	182.6	-	-	-	9	Zhao et al., 1990
	Karamay	C3-P OVP	9	45.5	84.4	65.3	329.7	6.3	5.2	7.7	10	THIS STUDY
	Hoboksar	C2-P	11	47.2	86.6	67.3	345.2	7.5	6.4	8.7	11	Li et al., 1991
	Hoboksar	C2	13	46.7	86.1	69.2	302.7	5.6	4.5	6.9	12	Li et al., 1991
	Mean	C2-P	3			68.2	326.7	12.6				
	Karamay d*	P2	25	45.6	83.2	78,0	238.7	7.9	6.6	9.4	13	Li et al., 1989
	Karamay	P2	10	45.6	84.2	46.5	189.8	26.6	20.7	34.3	14	Zhao et al., 1990
	Karamay	P2 OVP	12	45.5	84.7	47.6	180.6	7.8	6.3	9.7	15	Zhao et al., 1990
	Karamay	P2 OVP	5	45.5	84.4	64.8	179.5	6.9	5.9	8.1	16	THIS STUDY
	Mean	P2	3			53,0	183.9	16.6				
NE Kazakhstan	Ayaguz A	C3-P	15	47.85	80,0	13.3	138.3	6.9	5.7	8.4	17	Abrajevitch et al.,
Razakiistan	Tokrau A	C3-P	18	48.1	75.6	42.2	178.8	4,0	3.1	5.2	18	Abrajevitch et al.,
	Ayaguz A e*	P1	8	47.8	80.0	25.6	151.2	4.3	6.4	5.3	19	2008 Levashova et al.,
	Chingiz	P OVP	9	48.8	79,0	42,0	157,0	12.9	11,0	15.2	20	2003b Collins et al., 2003
	Chingiz f*	P2 OVP	16	48.4	78.4	55.4	135.4	6.6	6.2	7.1	21	Levashova et al.,
	Ayaguz B	P2	11	47.8	80.0	48.5	172.2	11.5	9.5	13.9	22	2003a Abrajevitch et al.,
	Tokrau B	P2	19	47.9	75.3	56.3	180.6	4.5	3.7	5.5	23	2008 Abrajevitch et al.,
	Avaguz B	P2	8	47.6	79.7	42.8	171.6	3.6	2.9	4.4	24	2008 Levashova et al
	Maan	D2	5			166	171.6	0 1				2003b
	Wiean	12	5			40.0	171.0	0.4				
Siberia	Mean	C2	17			41,0	169,0	3,0				van der Voo. 1993
	Mean	P2	5			50,0	160,0	7,0				van der Voo. 1993
Tarim	Mean	C2	6			51.5	169.1	7.7				Wang et al., 2007
	Mean	P2	5			66.8	184.1	4.9				Wang et al., 2007
												-
Yili	Mean	C2	2			68.6	290.6	6.1				Wang et al., 2007
	Mean	P2	1			79.7	172,0	11.3				Wang et al., 2007

at a higher paleolatitude than West Junggar at C3-P1 time, although respective paleolatitudes of 33.1° +/- 12.6° and 44.6° +/- 9.9° are not statistically different due to rather large confidence errors; (3) West Junggar underwent an important motion during C3-P1 and P2 with respect to NE Kazakhstan and Siberia, essentially by relative rotations as they are aligned on the small circle centered at the sampling region. (4) These three latter areas form a relatively rigid block since P2, however, Tarim, Yili and South Junggar still experienced relative motions after P2.

Figure 7.B.9 a-c): Equal-area projections of Late Paleozoic poles of West Junggar, South Junggar and North Kazakhstan, respectively. d-e): Equal-area projections of Late Carboniferous-Early Permian (C_3 -P) and Late Permian (P_2) mean poles of West Junggar block (WJG), South Junggar block (SJG), North Kazakhstan block (NKZ), Siberia (SIB), Yili (YI) and Tarim (TAR), respectively, showing the amount of relative rotation and latitudinal movement between these blocks. Open stars represent the sampling location. Small circle centred on this location and passing through poles reveals large discrepancies in declination (subsequent rotation) and weak difference in paleolatitude (subsequent N-S movements) of blocks.

From above relative motions, quantitative displacements may be calculated. First, the angular difference can describe the consistency or not between two blocks. Secondly, the relative paleolatitude changes and rotations between two concerned blocks can be inferred. These results are synthesized in *Table 7.B.3* with the geographic reference at 45°N and 84°E.

For the C3-P1 period, the angular difference between South and West Junggar is about $14.6^{\circ}\pm 16.0^{\circ}$, with a significant paleolatitude discrepancy ($14.2^{\circ}\pm 10.0^{\circ}$ for relative latitudinal displacement and $-4.4^{\circ}\pm 16.2^{\circ}$ for relative rotation). The angular differences become larger and attend to $69.5^{\circ}\pm 13.0^{\circ}$ and $98.3^{\circ}\pm 14.4^{\circ}$ of West Junggar to Siberia and Kazakhstan, respectively, which are essentially due to relative rotations, i.e. $-84.4^{\circ}\pm 12.0^{\circ}$ and $-130.1^{\circ}\pm 13.3^{\circ}$, respectively (*Fig. 7.B.9d*).

During Late Permian, the angular difference among paleomagnetic poles from West Junggar, NE Kazakhstan and Siberia becomes not significant $(10.2^{\circ} \pm 18.6^{\circ}, 15.0^{\circ} \pm 18.0^{\circ},$ respectively). However, the angular differences are still relatively important, principally due to relative rotations, between West Junggar-NE Kazakhstan-Siberia and South Junggar, Yili and Tarim, $61.7^{\circ} \pm 18.7^{\circ}$, $28.5^{\circ} \pm 19.4^{\circ}$ and $13.9^{\circ} \pm 15.7^{\circ}$, respectively (*Table 7.B.3* and *Fig. 7.B.9e*). The difference in latitude is less significant, i.e. $17.2^{\circ} \pm 12.1^{\circ}$, $15.1^{\circ} \pm 12.6^{\circ}$ and $7.5^{\circ} \pm 10.8^{\circ}$ respectively.

B.4.iv Tectonic implications

The first important implication from this new paleomagnetic study is the existence of significant relative movements between West and South Junggar. In other words, the Junggar basin cannot be considered as a rigid body at least until the Mesozoic since the P2 poles are still significantly different. Moreover, West Junggar is paleogeographically closer to Kazakhstan and Siberia than to South Junggar, as the P2 poles of West Junggar, Siberia and Kazakhstan are consistent (*Fig. 7.B.9e*). This implies that West Junggar, NE Kazakhstan and Siberia seem having been agglomerated since P2. As described previously, significant post Late Permian rotations between this agglomerated block and South Junggar, Tarim and Yili can be inferred from their respective poles. These rotations reveal a continuity of rotational movements at least until Early Mesozoic between and West-Junggar-Kazakhstan-Siberia.

As mentioned above, the angular differences between the paleomagnetic poles of the aforementioned blocks are mainly due to relative rotations along major faults during the Late Carboniferous to Late Permian period. Latitudinal displacement also occurs between West Junggar and South Junggar during the C2-P1. The Early Permian clockwise rotation of North

Kazakhstan with respect to Siberia has been interpreted to result from oroclinal bending with individualization of three different limbs (Levashova et al., 2003a, 2009; van der Voo et al., 2006; Abrajevitch et al., 2007, 2008). Nevertheless, West Junggar underwent a counterclockwise rotation with respect to Siberia and the origin of this motion may be discussed as follows. West Junggar represents the easternmost end of the Kazakhstan orocline and is limited to the northeast by the Gornotsaiev and Irtysh faults. These tectonic structures represent the reactivated suture zone of the Devonian to Carboniferous Ob-Zaisan Ocean (*Fig. 7.B.1b*; Filippova et al., 2001; Windley et al., 2007), the boundary between Kazakhstan and Siberia that collided during Late Carboniferous. Geological and geochemical evidences also testify a contemporaneous collision of the Kazakh Orocline with Junggar block. These collisions can be considered as diachronous or "oblique" as only West Junggar is involved. Hence the West Junggar ribbon is sandwiched within Junggar microcontinents, Siberian margin and the Kazakh orocline. This oblique collision may lead to the counterclockwise rotation of West Junggar with respect to Siberia with a complex buckling of an oroclinal ribbon (Fig 7.B.1b). The regional structure with NE-SW and NW-SE trends of the Late Devonian accretionary front in West Junggar and North Kazakhstan, respectively (Fig. 7.B.1b), is a consequence of the relative rotation between those two blocks. In this model, Early Permian left lateral motions along Gornotsaiev and Irtysh faults (Melnikov et al., 1998; Laurent-Charvet et al., 2003; Buslov et al., 2004) could accommodate that rotation. We also propose that the development of this bent back structure might initiate strike slip faulting along the Chingiz-Alakol-North Tian Shan Shear zone and relative dismembering of the orocline.

To the south, in Tian Shan, the right-lateral shearing has produced the relative rotation of Yili block with respect to Tarim along the Nikolaiev-Nalati Tectonic Line, and with respect to South Junggar along the Chingiz-Alakol-North Tian Shan Fault (**Yin & Nie, 1996**; **Laurent-Charvet et al., 2003**, **Wang et al., 2007**). Further to the west, Permian rotations accommodated by strike-slip faults were also described (**van der Voo et al., 2006**). Strike slip faulting along the Central Kazakhstan Fault (**Samugyn, 1974**) has been observed, but until now no relative rotations are reported.

Since the Late Permian, as their poles are statistically coherent, West Junggar, Siberia and North Kazakhstan formed an amalgamated block (*Fig. 7.B.9e*). The relative motions of Tarim, Yili and South Junggar with respect to this welded block are characterized by a northward increase of the amount of anticlockwise rotations, i.e. $-13.9^{\circ} \pm 15.7^{\circ}$, $-28.5^{\circ} \pm$

19.4° and -61.7° \pm 18.7°, respectively (*Table 7.B.3*). Late Permian-Early Triassic right lateral faults in both North and South Tian Shan may have accommodated such rotations; and leftlateral fault in Altai as well (Figs. 7.B.1b; 7.B.10).

respectively.

Table 7.B.3 Compilation of Late Paleozoic	Period	Blocks	ANG ± DANG	ROT ± DROT	Plat ± DPlat
relative movements between West Junggar,		WJG - SJG	$14.6^\circ\pm16.0^\circ$	$-4.4^{\circ} \pm 16.2^{\circ}$	$14.2^\circ\pm10.0^\circ$
North Kazakhstan, Siberia, Yili, South		WJG - NKZ	$98.3^{\circ} \pm 14.4^{\circ}$	-130.1° ± 13.3°	$1.6^\circ \pm 9.0^\circ$
Junggar and Tarim; ANG $\pm \Delta$ ANG, ROT $\pm \Delta$ ROT and Plat $\pm \Delta$ Plat correspond to	C2 D	WJG - SIB	$69.5^\circ\pm13.0^\circ$	$-84.4^\circ\pm12.0^\circ$	$\text{-}1.9^\circ\pm8.1^\circ$
angular difference between paleopoles,	C2-P	SJG - SIB	$61.4^\circ\pm10.3^\circ$	$\textbf{-80.3^{\circ} \pm 11.2^{\circ}}$	$\text{-}12.1^\circ\pm6.5^\circ$
relative rotation and latitudinal displacement		SJG - TAR	$51.0^\circ\pm12.5^\circ$	$\textbf{-69.1^{\circ} \pm 13.3^{\circ}}$	$7.0^\circ\pm7.8^\circ$
(and their error limit) between blocks ,		SJG - YI	$22.2^\circ\pm11.6^\circ$	$-9.3^{\circ} \pm 12.0^{\circ}$	$\text{-}20.9^\circ \pm 7.3^\circ$
the conversion factor of 0.78 (Demarast		WJG - SJG	$50.0^\circ\pm19.3^\circ$	$61.7^\circ\pm18.7^\circ$	$17.2^\circ\pm12.1^\circ$
1983 ; Coe et al., 1985). Relative movements		WJG - NKZ	$10.2^\circ\pm18.6^\circ$	$\text{-}11.4^\circ \pm 16.8^\circ$	$2.8^\circ \pm 11.6^\circ$
between the blocks are computed by using	P2	WJG - SIB	$15.0^\circ \pm 18.0^\circ$	$-12.5^\circ\pm16.5^\circ$	$11.2^\circ\pm11.2^\circ$
average sites at 45.3°N, 84.0°E and 43.8°N,		WJG - YI	$27.0^\circ\pm20.1^\circ$	$28.5^\circ\pm19.4^\circ$	$15.1^\circ\pm12.6^\circ$
87.8°E for West Junggar and South Junggar,		WJG - TAR	$13.8^\circ\pm17.3^\circ$	$13.9^\circ\pm15.7^\circ$	$7.5^\circ \pm 10.8^\circ$

Considering these Late Permian relative rotations, it is possible to make quantitative estimates of the displacement along these faults since Late Permian. According to the geometry of major structures that separate the mentioned blocks, we can define the Euler pole to quantify the relative motion along the structure (Table 7.B.4, Fig. 7.B.10). The Nalati fault in Chinese Tianshan, also called the Nikolaiev Tectonic Line (Burtman, 1975) in Kirghizstan, is the major fault that separates Tarim and Yili (Zhao et al., 2003; Wang et al., 2007). Though sinistral motions have been described in Kirghizstan (Mikolaichuk et al., **1995**), the timing of deformation is badly constrained. More to the East, a dextral kinematics of the fault has been better described and the deformation is dated between 265 Ma and 250 Ma (Ar-Ar dating; de Jong et al., 2009; Wang et al., 2010). Its well preserved linear shape allows to estimate an Euler pole position at ca. 54°N, 76°E, with a radius of about 1690 km. Therefore the $14.0^{\circ} \pm 12.9^{\circ}$ counterclockwise rotation of Yili with respect to Tarim corresponds to its eastward displacement of $410 \text{km} \pm 380 \text{ km}$ (*Table 7.B.4*).

The boundary between Yili and South Junggar is characterized by a dextral long-lived shear zone called the Chingiz-Alakol-North Tian Shan Shear zone, merging in the Main Tian Shan Shear zone to the east (Zhou et al., 2001; Zhao et al., 2003; Wang et al., 2006, 2007). Dextral criteria can be observed along these faults (Laurent-Charvet et al., 2002; 2003; Wang et al., 2006, 2007) and Ar-Ar dating yield ages ranging from 290 Ma to 240 Ma for the deformation (Yin & Nie, 1996; Zhou et al., 2001; Laurent-Charvet et al., 2002, 2003). The center of the best fitting small circle intercepting this curved shear zone is around 50°N, 92°E, with a radius of about 880km. The estimate of the post Late Permian displacement along the

Chingiz-Alakol-North Tian Shan Shear zone is thus $490 \text{km} \pm 250 \text{ km}$, corresponding to the - $32.4^{\circ} \pm 16.4^{\circ}$ counterclockwise rotation of South Junggar with respect to Yili (*Table 7.B.4*).

Figure 7.B.10 Sketch of Western Central Asia showing post-Upper Permian displacements, Euler poles and tectonic boundaries (NNTL: Nikolaiev-Nalati Tectonic Line; CANTF: Chingiz-Alakol-North Tian Shan Fault; IGSZ: Irtysh-Gornotsaev Shear Zone and Jg: Junggar Basin). Relative rotations (with uncertainties) between tectonic blocks are recalculated at the coordinates of the corresponding Eular pole and listed in Table 4. Kinematics and time brackets on the strike-slip faults are also mentioned.

As presented in above sections, the Irtysh-Gornotsaev Shear Zone is a major tectonic zone in the Altaids and it is characterized by a sinistral sense of shear and ages of deformation bracketed between 290 Ma to 240 Ma (Ar-Ar dating; Melnikov et al., 1997; 1998; Vladmirov et al., 1998; Travin et al. 2001; Laurent-Charvet et al., 2003; Buslov et al., 2004), with a probable Mesozoic brittle reactivation (Allen et al., 1995). The bent shape of the shear zone proposes an Euler pole at 56°N, 101°E, with a radius of about 1220 km. The estimated displacement for the post Permian displacement is about 1570km \pm 280 km, associated with a -73.9° \pm 13.1° couterclockwise rotation of South Junggar with respect to Siberia (*Table 7.B.4*). This value is slightly higher than that predicted by a previous study

(870km ± 370km, Wang et al., 2007). Sum of post Late Permian and Early Permian displacement of 140km \pm 250 km (associated with 6.4° \pm 11.7° couterclockwise rotation of South Junggar with respect to Siberia, *Table 7.B.4*) along the Irtysh-Gornotsaev Shear Zone give a total value of ≈ 1700 km, comparable with the value of 2000 km predicted by Sengör & Natal'in, (1996a). The new estimate of the Late Carboniferous to Early Permian displacement along the Irtysch Fault is significantly different from that of 620km \pm 320 km predicted by Wang et al., (2007), because Junggar was considered as a rigid block and an averaged pole from West and South Jungar was used to calculate the displacement along this fault in Wang et al. (2007). The consistence of the Cretaceous poles of Mongolia, South Junggar and Siberia (Chen et al., 1993; Hankard et al., 2005) suggests that the bulk of relative motion mentioned above was completed before Cretaceous and possibly Middle Triassic time (Lyons et al., 2002), although Jurassic motions are also described (Allen et al., 1995). Further studies on Triassic rocks around the Junggar Basin will probably provide better age constraints on these events. It is worth to note that above mentioned quantitative displacements should be considered with caution as they depend on the quality of paleomagnetic data and the structure geometry which is used to define the position of Euler poles. Paleomagnetic studies in this area are scarce and the available data probably insufficient with respect to the extreme complexity of this region, which has suffered multiple tectonic events since the Paleozoic.

Table 7.B.4 Relative displacements between Siberia, South Junggar and Tarim. "P2" corresponds to the displacement since Late Permain, whereas "C2 to P2", corresponds to the displacement between Late Carboniferous and Late Permian. The radius column corresponds to the radius of a circle, centred on the Euler pole and intercepting major blocks boundary.

Blocks (age)	Euler Pole coordinates	Radius	Modulus of rotation angle with errors	Diplacement with errors
YIL/TAR (P2)	54°N, 76°E	1690 km	$14^{\circ} \pm 12.9^{\circ}$	$410\pm380\ km$
SJG/YIL (P2)	50°N, 92°E	880 km	$32^{\circ} \pm 16.4^{\circ}$	$490 \pm 250 \text{ km}$
SJG/SIB (P2)	56°N, 101°E	1220 km	$73.9^{\circ} \pm 13.1^{\circ}$	$1570\pm280\ km$
SJG/SIB (C2 to P2)	56°N, 101°E	1220 km	$6.4^{\circ} \pm 11.7^{\circ}$	$140 \pm 250 \text{ km}$

B.4.v Tentative reconstruction

Combined with previous paleomagnetic data, these new results make possible to construct hypothetical scenarios of the geodynamical evolution of this western part of Central Asia during Late Paleozoic times. Four stages can be distinguished as follows (see also *Fig. 7.B.11*):

Figure 7.B.11 Tentative reconstruction of four stages of the geodynamic evolution of Eastern Central Asia since Carboniferous (after **van der Voo et al., 2008**). a), At 340 Ma, subduction of Junggar and Ob-Zaisan oceans under Kazakhstan, Tian Shan and Altai. Oroclinal bending process is active since Devonian in Kazakhstan; b), At 300 Ma, subduction is limited to the inner part of the orocline in Central Kazakhstan (Filippova et al., 2001; Windley et al., 2007). Collision between West Junggar, Junggar and Siberia, with subsequent rotation. At this time Strike-slip faults are inititied in Altai, Kazakhstan and Tian Shan; c), At 260 Ma, subduction process is complete, but significant relative rotations between the blocks are recorded along major shear zones; and d), Present setting resulting from the continuity of the rotational movements in Early Mesozoic and the post-Paleozoic reactivation of the belts. Abbreviations: ANTF: Alakol-North Tian Shan Fault; CF: Chingiz Fault; CKF: Central Kazakhstan Fault; GF: Gornotsaev Fault; IF:Irtysh Fault; MTF: Main Tian Shan Fault; NNTL: Nikolaev-Nalati Tectonic Line; SF: Sangshuyanzhi Fault.

B.4.v.a Carboniferous (before 320 Ma; Fig. 7.B.11a)

Two subduction zones were active. In the north, the Ob-Zaisan Ocean was subducting under the North Kazakhstan and the Siberia (Early Paleozoic Altai accretionary complexes) as active margins (**Filippova et al., 2001**; **Briggs et al., 2007**). The Junggar Ocean was enclosed

in the Kazakhstan orocline extending from Tian Shan to Kazakhstan (Abrajevitch et al., 2008). Arc magmatism associated with subduction was still active in Kazakhstan, Yili, Bogda Shan and West Junggar, while accretionary wedge developed along the margins (Wang et al., 2006). The Kazakhstan oroclinal bending is marked by a clockwise rotation of North Kazakhstan with respect to Siberia (Grishin et al., 1997; Levashova et al., 2003a; Abrajevitch et al., 2008) and forwards to the closure of this oceanic basin.

B.4.v.b Late Carboniferous-Early Permian (between 320 and 280; Fig. 7.B.11b)

At this time, only a remnant part of the Junggar Ocean was still in subduction in the inner part of the orocline (**Windley et al., 2007**). The closure of the basin was accommodated by internal deformation of the orocline and by the development of strike slip faults with dextral kinematics in Tian Shan (**Laurent-Charvet et al., 2002, 2003**; **Wang et al.; 2007**) and Kazakhstan (**Samugyn, 1974**) and sinistral kinematics in Altai. The closure of the Ob-Zaisan Ocean and consequently oblique collision led to the counterclockwise rotation of West Junggar with respect to Siberia.

B.4.v.c Late Permian (between 280 and 260; Fig. 7.B.11c)

The end of Paleozoic is characterized by transcurrent tectonics. Since the Permian, sinistral strike-slip along the Irtysh Fault and dextral strike-slip along the Tian Shan shear zones accomodated the counterclockwise rotation of Tarim, Yili and South Junggar with respect to Siberia. Although important shear zones are recognized in North Kazakhstan or West Junggar, no significant rotations within the blocks are recorded by paleomagnetic data except local rotations in Chingiz range (Levashova et al., 2003b).

B.4.v.d Present (Fig. 7.B.11d)

Since Permian or Early Triassic, the Central Asia has experienced successive reactivations due to the agglomeration of Tibetan blocks and the collision India-Eurasia. These compressive tectonics have certainly generated the intracontinental deformation among these blocks and affected the topography of Central Asia (e.g. Molnar & Tapponnier, 1975; Avouac et al., 1993). However, the paleomagnetic studies on Mesozoic (especially Cretaceous) rocks show that the relative motions (rotation and latitudinal displacement) are often statistically insignificant (i.e. the mean difference is less than error bar; Chen et al., 1993), implying that the amount of intracontinental deformation remains weak compared to the Paleozoic period.

B.5 Conclusions

This new paleomagnetic study of Late Paleozoic sedimentary rocks from South and West Junggar yields primary and secondary magnetization, respectively. The magnetic overprints probably result from two well-chronologically constrained magmatic events during Late Carboniferous - Early Permian and Late Permian respectively. These new paleomagnetic results are consistent with the bulk of previously published results from West and South Junggar and clearly show a significant paleogeographic discrepancy between them, implying that Junggar was not a rigidly welded block until the end of Paleozoic. Comparison with surrounding blocks, such as North Kazakhstan, Yili, Siberia and Tarim, indicates relatively weak latitudinal motions and important rotations. These rotations are related either to the Kazakh oroclinal bending; or, alternatively to strike-slip faulting. We suggest that in the Late Carboniferous - Early Permian time, West Junggar, located at the easternmost part of the Kazakh orocline and sandwiched between North Kazakhstan and Siberia has been squeezed by approaching close to the latter one and rotated counterclockwise with respect to Siberia. This motion was accommodated by large sinistral and dextral dextral motion in Altai and Tian Shan shear zones, respectively. As evidenced by numerous Ar-Ar dating and kinematic studies (Laurent-Charvet et al., 2002, 2003; Wang et al.; 2007), strike-slip faulting continues in Late Permian, leading to large rotations to achieve the present configuration of Central Asia.

This new model emphasizes the importance of relative rotation among these blocks due to lateral motions along strike-slip faults during the late and post-accretionary orogenic processes However, although no important Cenozoic motion has been recorded, the end of large-scale wrench tectonics is still poorly constrained and more detailed paleomagnetic studies on Early Mesozoic rocks are needed to better clarify the geodynamic history of this region that will complement the understanding of CAOB evolution.

Acknowledgements

Many thanks are due to Mrs. Wei Wei and Xu Shaoyong from Peking University for their help in the field work. We also thank Bureau 305 at Urumqi (Xinjiang Uigur Autonous Region) for their important logistical support during fieldwork. This research is a contribution to the project "Paleomagnetic study on the tectonic and paleogeographic evolution of northwest of China" funded by SINOPEC, and co-sponsored by National Nature Science Foundation of China (40821002, 40802043) and National Basic Research Program of China
(973 Project Nos. 2009CB825008, 2007CB411301). The first author has benefited a scholarship from French Ministère de l'Enseignement Supérieur et de la Recherche. We express our gratitude to R. Van der Voo and an anonymous referee who considerably improve this article.

C Article à soumettre: First Triassic palaeomagnetic constraints from Junggar (NW China) and their implications for Mesozoic tectonics in Central Asia.

Abstract

Northwestern China belts result from the Palaeozoic collage of Central Asia and subsequent reactivations due to far-field effects of Mesozoic Tibetan and Cenozoic Himalayan collisions. Triassic is a crucial period to understand and decipher the displacements relative to these two episodes. About 250 oriented cores from 43 sites were collected from six sections of Upper Permian to Late Triassic sandstone, in South and West Junggar, Northwestern China. Thermomagnetic, IRM and hysteresis measurements reveal magnetite as the main magnetic carrier with minor hematite and maghemite. Stepwise thermal demagnetisation has generally isolated two components. The low temperature component, up to 300-350°C, displays a direction consistent with the present-day geomagnetic field. Locality-mean directions related to the high temperature component (above 350°C) were also calculated. Two out of six sections display intense viscous magnetisation or Cenozoic chemical remagnetisation as indicated by maghemite occurence. At the other four localities, we assume that magnetisation is primary as: 1) AMS measurements reveal a primary fabric, 2) inversion test is positive, and 3) palaeolatitudes of tilt-corrected poles are compatible with previous studies. The consistency between the Early Triassic poles of West and South Junggar indicates that Junggar evolved as a rigid block only since Early Mesozoic. The comparison of the Late Palaeozoic and Early Mesozoic poles of Junggar and those of Siberia and Tarim shows major rotations between Late Permian and Late Jurassic-Early Cretaceous. Periods of discrete rotations are characterized by strike-slip faulting in Tianshan and Altai and may correlate with major episodes of coarse-grained detrital sedimentation and uplift. Especially, the counter-clockwise rotations of Junggar relative to Tarim and Siberia, which occurred between Early and Late Triassic and between Late Triassic and Late Jurassic, are accommodated by transpressive tectonics of Tianshan and Altai belts. This reactivation is a far-field effect of Tibetan blocks diachronous collisions. Therefore, these first Triassic palaeomagnetic results from Junggar infer that post-Carboniferous rotations were due to the combined effect of post-orogenic transcurrent movement and Mesozoic oblique reactivation.

C.1 Introduction

Present structures in Central Asia are due to the combined effect of Palaeozoic orogenic collage and subsequent reactivations. The Palaeozoic collage, namely the Altaids was formed by the amalgamation of Baltica, Siberia, Tarim and North China cratons. A single long-lived subduction was initially proposed to account for the linear pattern of Central Asia units (Sengör et al., 1993; Sengör & Natal'in, 1996a). This model also emphasizes the role of Late Palaeozoic strike-slip fault that shredded the original collage to give its current disturbed aspect (Sengör et al., 1993). Although recent studies throughout the Altaids rather support a polycyclic collage than a single-phase model (Fillipova et al., 2001; Badarch et al., 2002; Xiao et al., 2004; Charvet et al., 2007; Degtyarev, 2011), the Late Palaeozoic transcurrent event was largely documented (Yin & Nie, 1996; Laurent-Charvet et al., 2002; 2003; Buslov et al., 2004; Wang et al., 2007). Synkinematic granites and mylonitic rocks attest for a ductile deformation localized along major strike-slip shear zones in Altai (Laurent-Charvet et al., 2002; Buslov et al., 2004) or Tianshan (Yin & Nie, 1996; de Jong et al., 2009; Wang et al., 2010). Ar-Ar dating on micas from mylonitic rocks constrains ductile shearing between 305 Ma and 245 Ma (Melnikov et al., 1997, 1998; Vladimirov et al., 1998; Travin et al., 2001; Zhou et al., 2001; Laurent-Charvet et al., 2003; de Jong et al., 2009; Wang et al., 2010); late brittle faulting along these shear zone is not well documented, though. Recent palaeomagnetic studies have attended to estimate the importance of these Late Palaeozoic displacements, in northwestern China. Firstly, Wang et al. (2007) pointed out significant Permian rotation of Junggar with respect to Siberia and Tarim, accommodated by displacement up to several hundreds of kilometres along Altai and Tianshan strike-slip faults. However, the existence of a rigid Junggar block was challenged by new palaeomagnetic collections from West and South Junggar (Choulet et al., 2010) that display significant differences of declination and inclination between these two areas in Late Permian. The amount of displacements along shear zone was also re-evaluated with significant rotations rather occurring after Late Permian than during Permian (Choulet et al., **2010**). Origin of these movements remains an open question.

The reactivation of Central Asian orogens was long recognized, especially in Tianshan (e.g. **Molnar & Tapponnier, 1975**; **1977**). Folds and thrusts affect its northern and southern foreland. The major prominent deformation event during Cenozoic (45-40 Ma) is interpreted as a far-away effect of the India-Asia collision (**Molnar & Tapponnier, 1975**; **1977**; **Avouac et al., 1993**). Other minor reactivations, occurring during Mesozoic time, are evidenced by

coarse and chaotic intercalations within the sedimentary record of the foreland (**Hendrix et al., 1992**; **Hendrix, 2000**; **Li et al., 2004b**). Specifically, huge conglomerate layers attest for episodic reactivations related to Late Triassic (230-200 Ma), Late Jurassic-Early Cretaceous (140-125 Ma) and Late Cretaceous (80-70 Ma) successive collisions along the southern margin of Asia (**Enkin et al., 1992**; **Yin & Harrison, 2000**). Folds and thrusts accommodate the deformation, but a significant transcurrent component is also forwarded (**Hendrix et al., 1992**). From relationships between the Palaeozoic basement and its sedimentary cover, a Mesozoic palaeorelief was inferred in Tianshan support contemporaneous tectonics (**Hendrix, 2000**; **Chen et al., 2011**) and basement exhumation (**Dumitru et al., 2001**; **Jolivet et al., 2007**; **Wang et al., 2009b**).

In addition, Late Jurassic to Early Cretaceous poles of Junggar and Tarim are statistically compatible, indicating that no significant rotation or shortening occurred since that time (**Chen et al., 1991**). However, **Choulet et al. (2010**) show significant differences un rotation of Junggar with respect to Siberia and Tarim in La Permian time. Therefore, Triassic is a crucial period for understanding the interactions between late-orogenic transcurrent movements and the Mesozoic reactivations, but very few data are available up to now. Hence, we collected six sections of Late Permian to Late Triassic sedimentary rocks in West and South Junggar, aiming at palaeomagnetically estimate the Triassic displacements related to post-orogenic transcurrent motions and reactivations.

C.2 Geological setting

C.2.i Northwestern China

Northwestern China is a part of the Central Asian Orogenic Belt (CAOB), namely the Altaids (*Fig. 7.C.1a*). This huge belt that developed from the Urals to Pacific results from the amalgamation of Baltica, Siberia, Tarim and North China cratons during Palaeozoic. Single subduction (**Sengör et al., 1993**; **Sengör & Natal'in, 1996a**) and polycyclic models (**Filippova et al., 2001**; **Xiao et al., 2010**) have been proposed to explain the linear pattern of Central Asia units.

In northwestern China, the linearly trending Tianshan is the major structure that extends to Beishan to the east (*Fig. 7.C.1b*). To the west, the belt enlarges and contours the triangular-shape Yili block, which represents a fragment of the Kazakhstan microcontinent (**Wang et al., 2006**). Two sedimentary basins with Palaeozoic to Quaternary infilling bound the Tianshan range: Junggar, to the north and Tarim, to the south. The Tianshan range can be

Figure 7.C.1 a: Map of Eurasia, including major structures with age, b: Map of Northwestern China, and neighbouring areas. Location of figures 7.C.2 and 7.C.3 is reported.

separated into three parts. The southern and central Tianshan consist of a Precambrian basement similar to Tarim, ophiolitic mélange and magmatic arc series (**Charvet et al., 2007**). Although the evolution of Palaeozoic Tianshan is largely debated (e.g. **Gao et al., 1998**; **Xiao et al., 2008**), a model with successive south–directed subductions of two oceanic domains has been proposed, with a final collision during mid-Carboniferous (e.g. **Charvet et al., 2007**; **2011**). The North Tianshan is composed of a magmatic arc, an ophiolitic mélange and associated turbidites and a Devonian to Carboniferous south-directed subduction is inferred (**Wang et al., 2006**). This subduction zone extends to Kazakhstan, and its strike has been clockwise rotated up to 180° in Kazakhstan and West Junggar (*Fig. 7.C.1b*). This bend structure represents the Kazakh orocline (**Abrajevitch et al., 2007**; **2008**).

The northernmost units belong to the NW-SE striking Mongolian Fold Belt and the Altai-Sayan Belts (*Fig. 7.C.1b*). These units consist of Palaeozoic magmatic arc rocks, turbidites and ophiolitic mélanges (**Windley et al., 2002**; **Xiao et al., 2004**); microcontinents with metamorphic rocks are also recognized in Altai Mountains. A polycyclic evolution with multiple subduction arc collage is proposed for the Mongolian Fold Belt, Chinese Altai and Altay-Sayan (**Buslov et al., 2001**; **Xiao et al., 2004**; **2009**).

C.2.ii North Tianshan

North Tianshan corresponds to the northern piedmont of the range; it is also referred as South Junggar (*Fig. 7.C.2a*). Basement units of Borohoro Range (western part) consist of volcanic rocks related to a Devonian to Carboniferous arc (**Wang et al., 2009a**), folded turbidites (**Wang et al., 2006**) and an ophiolitic mélange (**Wu & Liu, 1989**). To the east, at the northern piedmont of Bogda Range, the ophiolitic mélange is hidden, but sedimentary and volcanic rocks are similarly associated (**Charvet et al., 2007**).

Late Carboniferous to Permian detrital rocks crop out near Urumqi city (*Fig. 7.C.2a*). Despite a regional variability of the Permian stratigraphy (**Wartes et al., 2002**), these thick sequences of clastic deposits (**Carroll et al., 1995**) represent a molasse that postdates the Carboniferous deformation (**Charvet et al., 2007**). Contemporaneously, the dextral strike-slip faulting along major shear zones (**Allen & Vincent, 1997**; **Laurent-Charvet et al., 2002**; **2003**; **Wang et al., 2009a**) generate pull-apart basin (**Wang et al., 2009a**), with bimodal alkaline magmatism (**Shu et al., 2011**).

The filling of the Junggar basin is marked by several kilometres of continental clastic deposits that underline high sedimentation rates (**Chen et al., 2011**). Timing and style of deposition is relatively homogenous within the Junggar basin and very similar to those of Turfan-Hami and Tarim basins (**Hendrix et al., 1992**). Triassic fluvial deposits consist of red sandstone at the base and at the top with a thick intermediate conglomerate. Triassic is often hidden below the thick lower Jurassic well-sorted clast-supported conglomerate (1000 metres), which becomes progressively finer and grades into the Middle Jurassic coal-rich sandstones (**Hendrix et al., 1992**). The upper Jurassic consists of fine red beds, but the transition between Jurassic and Cretaceous is marked by a thick sedimentary breccia that can reach up to 800 m (**Chen et al., 2011**). Fine-grained fluvial to lacustrine sedimentation characterizes the Lower Cretaceous, but unconformable coarse-grained clastic rocks mark the Upper Cretaceous (**Hendrix et al., 1992**). The thick Xiyu conglomerate chiefly characterizes the Late Cenozoic deposits and the current sedimentation (**Charreau et al., 2005**).

The northern piedmont of Tianshan was affected by intercontinental deformation (e.g. **Tapponnier & Molnar, 1977**; **Avouac et al., 1993**), which is documented by top to the north thrusts and folds (*Fig. 7.C.2a*). Although the principal structuration is recent (Tertiary to Quaternary), evidence of Mesozoic deformation is visible by sedimentation (**Hendrix et al.,**

Figure 7.C.2 a: Geological map of North Tian Shan including location of three collected sections and data from the literature, b: detailed geological map of Urumqi and Tien Shi areas, c: detailed geological map of Jimusar area, d: detailed geological map of Aiwergou area.

1992; **Hendrix, 2000**; **Li et al., 2004b**), and a Mesozoic palaeorelief was inferred from the relationships between the basement and its sedimentary cover (Chen et al., 2011).

C.2.iii West Junggar

West Junggar is a mountainous massif located to west of Junggar Basin at the Kazakh Chinese border (*Fig. 7.C.2a*). Early Palaeozoic basement is composed of volcanic arc rocks, turbidites and ophiolitic mélanges that recorded a pre-Upper Silurian deformation (**Buckman & Aitchison, 2004**; **Choulet et al., submitted**). After a period of tectonic quiescence (**Feng et al., 1989**) and alkaline magmatism (**Chen et al., 2010a**), two new subduction zones developed, bounding the Early Palaeozoic basement. To the north, Middle Devonian to Middle Carboniferous volcanic rocks, turbidites and ophiolitic mélanges are related to the south-directed (present coordinates) subduction of the Ob-Zaisan Ocean (**Buslov et al., 2001**). To the southeast, a magmatic arc is associated with a well-documented accretionary complex composed of Carboniferous turbidites and ophiolitic mélanges (**Geng et al., 2009**; **Zhang et**

Figure 7.C.3 a: Geological map of West Junggar, including location of the Laba area and data from the literature, b: detailed geological map of the Laba area.

al., 2010; 2011; Choulet et al., 2011). A transition from Carboniferous calkalkaline magmatism toward a Permian alkaline attests the termination to of subduction process and is contemporaneous to the final collage of Central & Asia (Chen Jahn, 2004). Lower Permian molasse is associated with alkaline lava flows (Buckman & Aitchison, 2004), whereas Upper Permian pull-apart basin, with clastic coarse sedimentation developed along the Dalabute strikeslip fault (Allen & Vincent, 1997).

In West Junggar, the post-Palaeozoic sedimentation is limited to the region near Karamay City that corresponds to the westernmost part of the Junggar Basin. The stratigraphic pile is very similar to that of North Tianshan. Triassic layers are poorly exposed and often hidden by the transgressive Middle Jurassic strata (Lawrence, 1990). Nevertheless, Triassic rocks are preserved in the intra-mountainous basin of Laba (*Fig. 7.C.3b*). Contrary to North Tianshan, reactivation of the belt during Mesozoic and Cenozoic is very limited in West Junggar. This difference is likely due to the orientation of pre-existing structures (e.g. the NE-SW striking Dalabute Fault) that hinders the development of major thrusts like in Tianshan. A prominent deformation is yet localized at the interface between the Palaeozoic basement and its sedimentary cover.

C.3 Palaeomagnetic sampling and methods

Samples were collected on six sections from South and West Junggar. Figure 7.*C.4* presents a synoptic chart of the Upper-Permian and Triassic formation of northwestern China with stratigraphic position of the six investigated sections.

Lower Jurassic		Badaowan Fm.							
Unner Trisseis	Unner	Jimusar (T ₃)							
Upper massic	Opper Cangfanggou		Bailishan Fm.						
Middle Triassic	Gloup								
Lower Triassic	Lower	Aiwergou (T) Shaofanggou Fi	Jiansha	Laba (T ₁) Ingou Fm.				
Upper Permian	Cangfanggou		Guodikeng Fm.	Wutonggou Fm.					
	Group		Wutongg	ou Fm.					
			Quanziji	ie Fm. Tianchi (P₂)	Shangwuerhe Fm.				
		Tarlang Fm.	Hongyan Lucaogo	chi Fm.	Xiawuerhe Fm.	Kurjitai Fm.			
		Aiwergou	Jimusar	Urumqi	Karamay	Toli			
		Tianshan	South Ju	nggar	West Junggar				

Figure 7.C.4 Synoptic table of Upper Permian and Triassic formations of Northwestern China. Stratigraphic position of each collected section is also reported.

The Urumqi section (Qijiagou section from **Hendrix et al., 1992**) is located about five kilometres to the east of Urumqi city (*Fig.* 7.*C*.2*a*). This section consists of a NE-SW trending asymmetric syncline with Upper Triassic in the middle and a periclinal termination to the northeast (*Fig.* 7.*C*.2*b*). The northwestern limb is slightly dipping, whereas the southeastern one is highly inclined and even occasionally overturned. The Lower Triassic rocks belong to

Table 7.C.1 Results of the paleomagnetic measurements. Abbreviations: n, number of measured samples; N,
number of collected samples; Dg, Ig, Ds, and Is, declination (D) and inclination (I) in geographic (g) and
stratigraphic (s) coordinates; k, the precision parameter, a95, the radius that the mean direction lies within 95%
confidence.

Site	Strike/dip	n/N	type	Dg	Ig	Ds	Is	k	α95		
URUMQI SECTION (LOWER TRIASSIC)											
M ITO		7/7		359.6	62.6			100	6.1		
MeanLTC		7/7				342.5	43.2	3.8	36		
DQ42	232/105	4/8	3g, 1k	351.8	48.3	352	-48.6	340.8	6.8		
D043	237/33	7/8	7k	10	61.3	349.9	33	392.2	12.1		
D044	222/30	8/8	8k	93	68	338.3	44 5	20.3	18.3		
DO45	216/24	7/7	7k	39.9	48.8	14	44.8	107.7	15.1		
DQ15	220/24	5/5	5k	50.6	57.5	14.4	54.2	25.5	13.1		
DQ40 DQ47	115/20	6/8	JK 61	50.0	55.6	211	70.0	25.5	21.5		
DQ47	113/30	0/8	0K	259.1	50.0	71.6	19.9	10.7	21.5		
DQ48	43/35	5/5	ЭК	358.1	59.2	/1.0	05.0	11	24.1		
MeanHTC		7/7		15.3	58.7			34.2	10.5		
		7/7				1.2	47	3.6	37		
	URUMQI SECTION (UPPER TRIASSIC)										
MeanLTC		8/8		12	59.2			163.5	4.3		
		8/8				12.5	53.2	7.1	22.3		
MoonHTC*		10/13		325.4	33.4			21.2	11.3		
Meanine		10/13				325.8	49	59.5	6.7		
		TIAN	ICHI SECTION	N (UPPER P	ERMIAN)						
		6/6		51.9	74.2			52.3	9.3		
MeanLTC		6/6				6.9	47.3	79.7	7.6		
DO01	252/40	5/5	4g. 1k	71.2	75.7	3.6	47.7	59.3	12.5		
D002	252/40	5/5	50	271.3	-73.8	187.8	-52.7	0	12.4		
DQ02	2/8/30	4/5	$1\sigma 3k$	295.5	-82.1	170.8	-65.3	65 1	12.1		
DQ03	240/30	5/5	1g, 5k	293.5	76.8	105.0	-05.5	138.2	6.5		
DQ04	260/31	5/5	2~ 21	294	-70.8	210.6	-04.2	112	0.5		
DQ03	260/30	5/5	5g, 2k	299	-07.5	219.0	-0/	115	0.2		
DQ06	262/35	5/5	3g, 2k	285.7	-/1	206.5	-58.2	/6.1	10		
MeanHTC		6/6		283.3	-75.1			137.2	5.7		
		6/6				192.9	-60	52.4	9.3		
		JIMU	SAR SECTION	N (UPPER T	RIASSIC)						
MoonI TC		5/6		18.5	64.8	90	0	52.7	10.6		
Witchilli		5/6		90	0	252.8	47.6	47.3	11.2		
DQ66	145/65	8/8	8k	219	-17.9	167.4	-73.5	65.8	6.9		
DQ67	145/65	8/8	8k	213	-18.8	157.4	-68.7	58.7	7.3		
DQ68	145/65	9/9	1g, 8k	217.2	-18.6	162.6	-72.3	59.7	6.8		
DO69	136/55	8/8	8k	209.4	0.3	198.8	-51.4	88.6	5.9		
D070	136/55	10/10	10k	208.6	-2.7	195.6	-53.9	63.2	6.1		
D071	139/60	8/8	20 6k	206.6	-10.3	177.7	-61.3	47.1	83		
22/1	100/00	6/6	26, 011	212.2	-11 4	1,,,,,	0110	68.4	8 2		
MeanHTC		6/6		212.2	-11.4	181 1	64.4	44.1	10.2		
				N (LOWER	TDIACCIC	101.1	-04.4	44.1	10.2		
		AIWER 0/0	GOU SECTIO	249 A	10 C	-)		1226	5		
MeanLTC		0/0		340.4	40.0	200.4	(\mathbf{a}, \mathbf{a})	125.0	5		
D.0.57	100 / 00	8/8		250 1	75.0	309.4	62.2	130.3	4.9		
DQS/	120/23	//9	5g,1s,1k	359.1	/5.9	243.7	//	28.4	12.7		
DQ58	135/22	6/7	5g,1k	28.6	59.3	357.5	/8./	44.2	12.1		
DQ59	134/23	6/9	5g,1k	358.8	53.8	323.2	64.9	19.4	18.3		
DQ60	118/30	5/8	4g,1k	0.4	24.3	347.4	49.5	40.6	15.1		
DQ61	125/32	5/8	5g	172.1	-33.8	146.3	-52.6	-	13.4		
DQ62	125/32	7/8	7g	181.3	-35.8	155.2	-58.7	-	19.2		
DQ63	118/32	4/8	4g	169.9	-29	149.2	-50.9	-	9.9		
DQ64	115/38	6/9	5g,1k	166.4	-40.5	123.2	-61.3	48.5	11.5		
		7/8		357.9	40			26.4	12		
MeanHIC		7/8				330.3	60.3	40.1	9.6		
		LABA SE	CTION (UNDI	FFERENCI	ED TRIAS	SIC)					
		5/8		6	58.3	,		274.9	4.6		
MeanLTC		5/8		Ŭ	conc	341 5	55 1	369.6	4		
D007	185/10	4/4				avel	udad	507.0	-		
	185/210					excl	udad				
DQ00	210/20	4/4	41-	177	67 4	елсі 155 7	10 v	126	27		
DQ09	210/20	4/4	4K	1//	-02.4	155./	-48.3	12.0	21		
DQ10	210/20	1/1	1g, 6k	1/2.2	-58.3	155	-43.6	98.1	6.2		
DQ11	185/22	8/8	1g, 7k	223.5	-/4.8	139.4	-72.9	171.5	4.3		
DQ12	185/22	4/4	4k	225.8	-70.7	153.4	-72.9	1750.1	2.2		
DQ13	185/22	5/5	5k	224.1	-80.6	145.6	-80.5	27	15		
DQ14	185/15	5/8	1g, 4k	190	-74.9	143.6	-69.8	46.2	11.7		
MaanHTO		6/8		195.2	-71.8			46.8	9.9		
meanHIC		6/8				151	-64.9	28.4	12.8		

261

the Cangfanggou Formation and consist of fine-grained red beds with lenticular sandstone encased in reddish to greenish shale and siltstone (Hendrix et al., 1992) (*Fig. 7.C.5a*). The Karamay Formation of Middle Triassic age is a thick sequence of well-sorted imbricated conglomerate and sandstone, overlain by braided-fluvial sandstone and siltstone of the Upper Triassic Huangshanjie Formation (Hendrix et al., 1992) (*Fig. 7.C.5b*). The age assignment is based on palynostratigraphy, vertebrates (Metcalfe et al., 2009) and gasteropods like *Omphaloptycha* and plants like *Neocalamites* (BGRMXUAR, 1993). Lower and Upper Triassic strata from both limbs and the periclinal termination were sampled (*Figs. 7.C.2b* and *7.C.4*). It is worth to notice that Lower and Upper Permian rocks from the same section were collected for palaeomagnetism (Li et al., 1991; Sharps et al., 1992; Choulet et al., 2010) (*Fig. 7.C.2b*). 113 cores of 15 sites have been collected in this section (*Table 7.C.1*).

The Tianchi section is located about 110km to the northeast of Urumqi (*Fig. 7.C.2a*). In this homoclinal section, there is no obvious unconformity between the basal mid-Carboniferous turbidites and the Late Carboniferous-Early Permian volcaniclastic sandstone (**Carroll et al., 1990**) (*Fig. 7.C.2b*). The Permian sedimentary series fines upward and grades into a thick pile of lacustrine mudstone, with intercalations of sandstone (**Carroll et al., 1995**) (*Fig. 7.C.5c*). Coarse-grained clastic rocks of fluvial-alluvial origin characterize the top of the Permian (**Carroll et al., 1990**; **1995**; **Wartes et al., 2002**), where sandstone samples were collected (Lucaogou and Hongyanchi Formations; *Figs. 7.C.2b* and *7.C.4*). Rich faunas and floras constrain the age of the Permian series (see a review in **Wartes et al., 2002**). The sampling locality is close to that of **Nie et al. (1993**) (*Fig. 7.C.2b*). Because this pole was different from the other Permian pole of this area (**Li et al., 1991**; **Sharps et al., 1992**; **Choulet et al., 2010**), a new investigation was made in order to understand this discrepancy. 48 cores of 6 sites have been collected in this section (*Table 7.C.1*).

The Jimusar section is located about 250 km to the east of Urumqi city, 10 km to the south of Jimusar city (*Fig. 7.C.2a*). The section consists of homoclinal alternations of mudstone, siltstone and sandstone (*Fig. 7.C.5d*) that were deposited in lacustrine and fluvial environments (**Carroll, 1998**; **Wartes et al., 2002**). Redbeds, which belong to the Upper Triassic Huangshanjie Formation, were collected in Jimusar (*Figs. 7.C.2c* and *7.C.4*). Precise stratigraphic and time constraints are available for the Triassic and Permian series (**Li et al., 1986**; **Yang et al., 1986**; **Ouyang & Norris, 1999**), since the Permian-Triassic boundary was investigated in detail along Dalongkou section, 30 km to east of the Jimsar section (**Liu**,

MECANISMES ET EVOLUTION DES CHAINES D'ACCRETION EN ASIE CENTRALE

Figure 7.C.5 Picture's plate of sampling localities. a: Lower Triassic redbeds from Urumqi, b: shallow dipping Upper Triassic sandstone from Urumqi, c: Upper Permian reddish sandstones from Tianshi, d: steeply dipping variegated Upper Triassic sandstone, e: panoramic view of unconformable shallow dipping Lower Triassic strata over Upper Permien folded black turbidites at Aiwergou, f: alternation of well-grading conglomerate and fine-grained pink sandstone, Early Triassic, Aiwergou, g: northward view of the Lower Triassic Laba basin, with shallow dipping red strata in the middle, h: detailed view of Early Triassic redbeds of Laba.

1994; Metcalfe et al., 2009). 51 cores of 6 sites have been collected in this section (*Table 7.C.1*).

The Aiwergou section is located to the west of the Turfan-Hami Basin and 100 km to the south of Urumqi City (*Fig.* 7.*C*.2*a*). This section displays a prominent unconformity of the Triassic shallow dipping strata upon the gently folded Upper Permian (**Greene et al., 2001**; **Wartes et al., 2002**) (*Figs.* 7.*C*.2*d* and 7.*C*.5*e*). At the basis of the section, well-sorted conglomerate with sandstone interlayers belong to the Lower Triassic Jiucaiyuan Formation (**Greene et al., 2001**) (*Fig.* 7.*C*.5*f*). Collected rocks consist of grey to pink sandstone, which constitutes the top of the formation (likely the Lower Triassic Shaofanggou Formation) (*Fig.* 7.*C*.4). 58 cores of 8 sites have been collected in this section (*Table* 7.*C*.1).

The Laba section is located about 150 km to the west of Karamay City, in West Junggar (*Fig.* 7.*C.3a*). Triassic rocks belong to an intra-mountainous basin, bounded by two north-south trending brittle faults (*Fig.* 7.*C.3b*). These faults have controlled the opening of the basin; they correspond to reactivated Permian strike-slip faults that had juxtaposed Carboniferous turbidites with the Silurian ophiolitic mélange of Mayila (**Choulet et al., 2011**) (*Fig.* 7.*C.5g*). Triassic flat lying strata are composed of conglomerate and sedimentary breccia to the base, and sandstone and siltstone to the top (*Fig.* 7.*C.5h*). Redbeds of Lower Tiassic Jianshangou Formation were collected (**BRGMXUAR, 1993**). However, no fossils are reported at Laba locality, and this assignment is based on lithological analogies with Lower Triassic Jianshangou Formation near Karamay city that contains *Chasmatosaurus* or *Listrosaurus* (**BRGMXUAR, 1993**).

Palaeomagnetic sampling was carried out using a portable gasoline-powered drill. Cores were oriented with magnetic and sun compasses, when it is possible, to correct local magnetic declinations. The averages of differences between these measurements are 2.3° at Urumqi, 2.7° at Tianchi, 1.6° at Jimusar and 4.4° at Laba. A correction of 2.6° , has been applied to the samples from the Aiwergou section as no sun measurements were available

Magnetic mineralogy of this collection was investigated by several methods: 1) thermomagnetic measurements (Curie point), 2) isothermal remanent magnetisation (IRM) and 3) hysteresis loops. Thermal magnetic experiments were carried out at Institut des

Sciences de la Terre d'Orléans (ISTO) by using an AGICO KLY3S kappabridge susceptometer coupled with a CS3 furnace and a pump-assisted cooling system. Induced magnetization was applied with an ASC Scientific IM-10-30 impulse magnetiser, and IRM measurements were performed with an AGICO JR-5 automatic spinner magnetometer, hosted at ISTO. Magnetic hysteresis curves were obtained with a homemade magnetic inductometer at Institut de Physique du Globe de Paris (IPGP). In addition, anisotropy of the magnetic susceptibility (AMS) was measured by using an AGICO KLY3S kappabridge susceptometer, hosted at ISTO.

Stepwise thermal magnetic field demagnetisation was performed to remove the magnetic remanence. Four to nine specimens from each collected site were demagnetised with laboratory-built furnace, at ISTO by ca. fifteen steps from room temperature up to 700°C. Magnetic remanence was measured with an AGICO JR-5A automatic spinner magnetometer, hosted at ISTO. Inclinations and declinations obtained by stepwise demagnetisations were plotted on orthogonal vector diagrams (**Zijderveld**, 1967). Magnetic remanent directions were isolated by several methods: 1) the principal component analysis (**Kirschvink**, 1980), 2) intersection of great circles (**Hoffman & Day**, 1978), 3) Fisher spherical statistics (**Fisher**, 1953) and 4) combined analysis of great circles and stable points (**McFadden & McElhinny**, 1988). Site-mean directions were computed with Fisher statistics. Palaeomagnetic software package of **Cogné** (2003) was used for data processing.

C.4 Analytic Results

C.4.i Magnetic mineralogy

Representative results of thermomagnetic experiments are presented in Figure 7.C.6. All specimens display a sharp drop of the magnetic susceptibility between 500°C and 580°C, consistent with the Curie point of magnetite at 585°C (e.g. **Dunlop & Özdemir, 1997**). A subsidiary decrease of the magnetic susceptibility from 600°C to 700°C is also observed and suggests a minor component of hematite. The sharp drop of the susceptibility of some specimens from 300°C to 400°C may correspond to the transformation of magnetite, an iron oxide by the oxidation of magnetite during weathering (*Figs. 7.C.6a* and *7.C.6b*). Four out of six samples present a small increase of the magnetic susceptibility over the range at ca. 200-300°C (*Figs. 7.C.6c, 7.C.6d* and *7.C.6f*). This may correspond to a mineral transformation of the original phase into a secondary magnetite (*Figs. 7.C.6c, 7.C.6d* and *7.C.6f*). The irreversible trend of thermomagnetic curve also suggests mineral transformation during

Figure 7.C.6 Results of thermomagnetic Curie temperature carried out on the six sections. a: Urumqi (Lower Triassic), b: Urumqi (Upper Triassic), c: Tianshi, d: Jimusar, e: Aiwergou, f: Laba.

heating and cooling. Except for specimens from Tianchi, the susceptibility is generally low, indicating a weak proportion of magnetic mineral within the studied rocks.

IRM measurements are presented in Figure 7.C.7. Samples from Tianchi display two magnetic behaviours (*Fig.* 7.C.7*a*): 1) a saturation of 90% before 300 mT, which might indicate a predominance of low-coercivity minerals, such as magnetite, and 2) an unachieved

Figure 7.C.7 Results of Isothermal Remanence of the Magnetism (IRM) measurements carried out on three out of the six sections. a: Urumqi (Upper Triassic), b: Jimusar, c: Aiwergou.

saturation at 1200 mT that could reveal coexistence of low and high-coercivity minerals, like magnetite and hematite, respectively. All specimens from Jimusar show a saturation of ca. 90% before 300 mT, indicating that magnetite is the principal magnetic remanent carrier (Fig. 7.C.7b). Like in Tianchi, samples from Aiwergou display two contrasting behaviours (*Fig.* 7.C.7c): 1) a total saturation before 200 mT that is characteristic of magnetite, and 2) a rapid increase of magnetisation before 200 mT, followed by a weak unachieved slope and saturation until to 1200 mT. Such latter magnetic behaviour may indicate coexistence of low and high-coercivity minerals, like magnetite and hematite, respectively.

Figure 7.C.8 displays the hysteresis loops of representative specimens from each section. A paramagnetic correction was applied to the linear part of original loops. For all specimens, the induced magnetic moment is of the order of 10^1 to 10^2 mA.m²/kg and, as noted before, it indicates that proportion of magnetic mineral in the rock is relatively weak. For five out of six specimens, loops are narrow-waisted (*Figs. 7.C.8a* to *7.C.8e*) and this may suggest that low-coercivity minerals are predominant. Specimen from Laba (*Fig. 7.C.8f*) displays a broader loop, indicating that minerals of higher coercivity, like hematite, coexist with magnetite.

Figure 7.C.8 Hysterisis cycle showing typical shape for ferromagnetic minerals. Paramagnetic corrections have been applied to the loops, but uncorrected loops are shown in insert. a: Urumqi (Lower Triassic), b: Urumqi (Upper Triassic), c: Tianshi, d: Jimusar, e: Aiwergou, f: Laba.

Thermomagnetic experiments, IRM measurements and hysteresis loops show that magnetite may be considered as the principal magnetic carrier. Minor hematite is also inferred, especially in Tianchi, Laba and Aiwergou. Specimens collected in Urumqi have revealed maghemite indicating that rocks experienced post-deposition weathering.

C.4.ii Anisotropy of the magnetic susceptibility

For three out of six sections (Urumqi, Jimusar and Aiwergou), a study of the anisotropy of the magnetic susceptibility (AMS) was carried out on a representative set of specimens (*Fig. 7.C.9*). The magnetic anisotropy of this collection is characterized by weak corrected anisotropy degree P_J ($P_J < 1.04$). The shape parameter (T) indicates either oblate or prolate fabrics, without any regular trend. These parameters may suggest that these rocks have

experienced not intensive deformation since deposition. After bedding correction, the three principal magnetic anisotropy axes display а vertical well-grouped mean K₃, pole of magnetic foliation, and shallow plunging and girdledistributed K_1 , magnetic 7.*C*.9). lineation (*Fig.* This indicates that the original deposition surface was not significantly different from the horizontal. At Jimusar, no preferred orientation of K₁ axes can be inferred, but at Urumqi and Aiwergou, site-mean K₁ axes are relatively clustered and average directions trend to NE-SW and NW-SE, respectively.

Figure 7.C.9 AMS measurements for a: Urumqi (Upper Triassic), b: Jimusar, c: Aiwergou. Stereoplot of K₁, K₂ and K₃ (open and filled circles) correspond to data and their means, respectively. Plots of anisotropy degree (P_J) versus anisotropy shape (T) of magnetic susceptibility are also displayed. $P_J=exp\{2[(lnK_1-lnK_m)^2+(lnK_2-lnK_m)^2+(lnK_3-lnK_m)^2]^{1/2}\}$, and T=2ln(K₂/K₃)/ln(K₁/K₃)-1. K₁, K₂ and K₃ are the principal axes of the magnetic fabrics and K_m is the average of them.

At Urumqi, this direction is very different from N-S Middle and Upper Triassic palaeocurrents (**Hendrix et al., 1992**). At Aiwergou, no constraints on the Lower Triassic palaeocurrents are available. However, this NW-SE direction is compatible with a predicted direction estimated from an Upper Permian easterly sediment transport (**Greene et al., 2001**) and from Lower Jurassic south-directed palaeocurrents (**Yu et al., 1996**). A preferred orientation of minerals is also visible in thin-sections of sandstone from Aiwergou.

C.4.iii Palaeomagnetic directions

The progressive demagnetisation displays two magnetic components for most of the samples. A low temperature component (LTC) was isolated below 300-350°C from numerous specimens of the six sections, and this component is northerly and steeply downward before bedding correction (*Fig.* 7.*C.10*). In the Upper Triassic rocks collected near Urumqi, this LTC can occasionally persists up to high temperature (550°C) and it is often the sole magnetic component recorded in the rocks. Except slightly abnormal directions of the LTC at Tianshi (*Fig.* 7.*C.10c*), five out of six sections display a well-grouped mean direction around the present-day geomagnetic field direction (PEF), which was 5.5° in declination and 71.9° in inclination for 2010. The LTC is, therefore, of recent and viscous origin. Although this component is not helpful for tectonic interpretations, the good clustering of LTC directions and the consistency between site-mean direction and PEF direction attest to precise and coherent field-orientations during sampling.

Samples from the Lower Triassic section of Urumqi display a high temperature component after removal of LTC in the temperature range between 120°C and 580°C (*Fig.* 7.C.11a). In geographic coordinates, the HTC are north-northeastward and steeply downward, decaying to the origin. The comparison of direction distribution before and after bedding corrections reveals a significant dispersion of site-mean directions in stratigraphic coordinates with respect to those in geographic coordinates (*Figs.* 7.C.11b and 7.C.11c) and a locality-mean direction can be calculated: Dg = 15.3°, Ig = 58.7°, kg = 34.2, $\alpha_{95} = 10.5^{\circ}$ and Ds = 1.2°, Is = 47°, ks = 3.6, $\alpha_{95} = 37^{\circ}$, with n=7 (*Table 7.C.1*).

Concerning the specimens from Upper Triassic of Urumqi, most samples show highly viscous low temperature component (*Fig. 7.C.11d*), and only 13 out of 64 measured specimens display a high temperature component, with unblocking temperature above 300-350°C up to 580°C. Among these 13 specimens, 4 of them show north-northwestward and steeply downward directions (*Fig. 7.C.11f*), whereas others present unstable end-points and

Figure 7.C.10 Stereoplots of site-mean directions of the low temperature component (LTC) and the locality-mean direction. Data are in geographic coordinates. a: Urumqi (Lower Triassic), b: Urumqi (Upper Triassic), c: Tianshi, d: Jimusar, e: Aiwergou, f: Laba

high temperature. Therefore, their directions were estimated by great circle (Fig. 7.C.11e). A

Figure 7.C.11 Representative thermal demagnetisation plots (a, d, e, f) and site-mean stereoplots (b, c, g, h) of Lower and Upper Triassic rocks from Urumqi.

specimen-mean direction was calculated by the combined analysis of great circles and stables

Figure 7.C.12 Representative thermal demagnetisation plots (a, b, e and f) and site-mean stereoplots (c, d, g and h) of Upper Permian from Tianchi (a, b, c and d) and of Upper Triassic rocks from Jimusar (e, f, g and h).

points (McFadden & McElhinny, 1988) for this locality (Figs. 7.C.11g and 7.C.11h): Dg =

325.4°, Ig = 33.4°, kg = 21.2, α_{95} = 11.3° and Ds = 325.8°, Is = 49°, ks = 59.5, α_{95} = 6.7°, with n=10 (*Table 7.C.1*).

After removing the LTC, specimens from the Upper Permian section of Tianchi display a high temperature component toward the origin with an unblocking temperature over 300-350°C. After bedding correction, this component is chiefly south-southwestward and steeply upward (*Fig. 7.C.12a*). In addition, a north-northeastward and downward component is rarely observed (*Fig. 7.C.12b*). When plotted in stereoplot, site-mean directions are well-grouped and a locality-mean direction (*Figs. 7.C.12c* and *7.C.12d*) has been therefore calculated: Dg = 283.3°, Ig = -75.1°, kg = 137.2, $\alpha_{95} = 5.7^{\circ}$ and Ds = 192.9°, Is = -60°, ks = 52.4, $\alpha_{95} = 9.3^{\circ}$, with n=6 (*Table 7.C.1*).

At Jimusar, after removal of random NRM and LTC, specimens collected in Upper Triassic Huangshanjie formation display a southerly and steeply upward high temperature component, in stratigraphic coordinates, decaying to the origin (*Figs 7.C.12e* and *7.C.12f*). Site-mean directions of this HTC cluster in stratigraphic and geographic coordinates (*Figs 7.C.12g* and *7.C.12h*). A mean direction is therefore calculated for this locality: $Dg = 212.2^{\circ}$, Ig = -11.4°, kg = 68.4, $\alpha_{95} = 8.2^{\circ}$ and Ds = 181.1°, Is = -64.4°, ks = 44.1, $\alpha_{95} = 10.2^{\circ}$, with n=6 (Table 7.C.1).

At Aiwergou, after removing the LTC, a high temperature component is also inferred. For half of the specimens, principal component analysis was used to calculate this HTC, which is either southeasterward and upward (*Fig. 7.C.13a*), or northwesterward and downward (*Fig. 7.C.13b*). For the other specimens, as spectra of LTC and HTC unblocking temperature overlap, great circle method (**Halls, 1978**) was applied to estimate the HTC direction (*Fig. 7.C.13c*). In some case, stable points and great circle were combined to calculate the site-mean (**Bailey & Halls, 1984**; **McFadden & McElhinny, 1988**). Except an outlier that represents a coarse-grained facies, seven out of eight sites were used to calculate an average direction for the locality (*Figs. 7.C.13d* and *7.C.13e*): Dg = 357.9°, Ig = 40°, kg = 26.4, $\alpha_{95} = 12^{\circ}$ and Ds = 330.3° , Is = 60.3° , ks = 40.1, $\alpha_{95} = 9.6^{\circ}$, with n=7 (*Table 7.C.1*).

After removing the LTC, specimens from Lower Triassic Jianshangou Formation at Laba display a southeasterly and steeply upward high temperature component from an unblocking temperature at 300-350°C to the origin at 700°C (*Figs.* 7.C.13f and 7.C.13g). Although two outliers display shallow inclinations (Table 7.C.1), site-mean directions are well-grouped (*Figs.* 7.C.13h and 7.C.13i). Therefore, an average direction may be calculated

Figure 7.C.13 Representative thermal demagnetisation plots (a, b, c, f and g) and site-mean stereoplots (c, d, h and i) of Lower Triassic from Aiwergou (a to e) and of Lower Triassic rocks from Laba (e to i).

for this locality: $Dg = 195.2^{\circ}$, $Ig = -71.8^{\circ}$, kg = 46.8, $\alpha_{95} = 9.9^{\circ}$ and $Ds = 151^{\circ}$, $Is = -64.9^{\circ}$, ks = 28.4, $\alpha_{95} = 12.8^{\circ}$, with n=6 (*Table 7.C.1*). In addition, two sites corresponding to coarse

grained facies like sedimentary breccia display random directions and were not taken into consideration for average calculations (*Table 7.C.1*).

C.5 Discussion

For these six sections, two magnetic components have been generally isolated from stepwise demagnetisation. The direction of the low temperature component (LTC) is consistent with the present-day geomagnetic field direction belonging to a viscous and recent origin. High temperature components (HTC) with unblocking temperature over 300-350°C are carried by magnetite and minor hematite. Except few outliers due to coarse-grained lithology, HTC directions are well-grouped and locality-mean directions were calculated for each sections. Before interpreting these directions in terms of tectonics, a discussion on the reliability and the age of magnetisation is required, since northwestern China had experienced polyphased deformation.

C.5.i Reliability of results and age of the magnetisation

Locality-mean directions of the HTC from Lower Triassic rocks of Urumqi display a unique normal polarity in geographic coordinates. Stereoplots also display a significant scattering of site-mean directions after bedding correction, whereas data cluster around the locality-mean direction in geographic coordinates (Figs. 7.C.11b and 7.C.11c). The fold test is negative at 95% (McElhinny, 1964; McFadden, 1990); it means that magnetization was acquired after folding. To the northeast of Urumqi, the youngest tilted strata are of Late Jurassic (BRGMXUAR, 1993), but to the southwest of Urumqi, Cretaceous and Tertiary strata form the core of syncline. Therefore, folding probably took place during the Tertiary period (Charreau et al., 2009) and this secondary magnetisation is probably syn to post-Tertiary. Tectonic origin seems unlikely, since folding of the North Tian Shan is relatively gentle and at shallow crustal levels. No Cenozoic magmatic events are either recorded or inferred, ruling out the hypothesis of a thermal remagnetisation. Chemical processes might be advanced. As north Tianshan experienced polyphased reactivation (Hendrix et al., 1992) that culminated during Tertiary, folding and thrusting accommodated the exhumation of Triassic strata (Dumitru et al., 2001; Charreau et al., 2009; Wang et al., 2009b). Therefore, strata were exposed to weathering, and alteration of magnetic minerals followed by recrystallization could have occurred (Dunlop & Özdemir, 1997). Maghemite, inferred from thermomagnetic experiments (Fig. 7.C.6a), argues for a secondary magnetisation, which completely overprints the primary one. This remagnetisation is likely Tertiary, as high temperature component is distinct from LTC and PEF direction. Therefore, a palaeomagnetic pole is calculated at: $\lambda = 193.4^{\circ}N$, $\Phi = 77.8^{\circ}E$, $A_{95} = 15.6^{\circ}$, n = 7. It's worthy to notice that Triassic rocks of the Urumqi area experienced intense weathering, whereas no mineral alteration is documented in the adjacent Permian strata (Li et al., 1991; Sharps et al., 1992; Choulet et al., 2010).

For the Upper Triassic rocks of Urumqi, a locality mean-direction of the high temperature component was calculated from specimen instead of sites, because only ten samples display HTC (*Table 7.C.1*). These HTC directions were isolated from both limbs of the syncline (*Fig. 7.C.2b*). The cluster of directions is better in stratigraphic coordinates, and the precision parameter k is improved after bedding corrections (*Fig. 7.C.11b*, *Table 7.C.1*). The fold test is positive at 99% (**McFadden, 1990**) and magnetization should have occurred before Tertiary folding. However, the origin of this magnetisation related to this overall mean is hardly reliable, because based on a small number of specimens. In addition to this statistical bias, HTC directions were almost exclusively estimated from great circles. The fold test is also questionable; the core of the syncline (Upper Triassic) is characterized by very shallow-dipping limbs (less than 20°), so the dip variations along the sections are weak. Because of these numerous uncertainties, the related pole was not calculated and excluded from the discussion. Additional data on Upper Triassic of Urumqi are needed to improve our preliminary results.

Stepwise demagnetisation curve of Upper Permian rocks from Tianshi display two kinds of high temperature components: a principal south-southwesterward and steeply upward direction and a minor north-northeasterward and downward one (*Figs. 7.C.12a* and *7.C.12b*). As the sampled section is homoclinal, no fold test could be performed, although the precision parameter k is improved after bedding correction (*Figs. 7.C.12c* and *7.C.12d*, *Table 7.C.1*). After bedding corrections, the inversion test is not conclusive at 95% because of an unbalanced dataset (**McFadden & McElhinny, 1990**). However, the occurrence of these two opposed polarities may suggest a primary magnetisation for these Late Permian sandstones. Therefore, a new P2 pole can be calculated at: $\lambda = 80^{\circ}$ N, $\Phi = 191.6^{\circ}$ E, A₉₅ = 12.4°, n = 6 (*Table 7.C.2*).

The Late Triassic rocks from Jimusar were collected along a homoclinal section. Though the precision parameter decreases after bedding correction, the dip variation of the bedding is not significant and the fold test is non-conclusive (*Table 7.C.1*). A unique polarity is observed and no inversion test could have been carried out. However, the occurrence of single normal polarity cannot be a criterion to rule out a primary magnetisation since Late

Triassic is marked by long-lasting normal and reversal chrons (Gradstein et al., 2004). In this case, we suggest to estimate the origin and age of the magnetization, by looking at the geological implications of two possible palaeomagnetic poles, before and after bedding corrections. In Jimusar area, Permian to Middle Jurassic strata experienced a folding episode that is postdated by Pliocene deposits (Fig. 7.C.2c). In case of secondary magnetization, it would mean that the calculated pole before bedding corrections ($\lambda = 42.6^{\circ}N$, $\Phi = 223.1^{\circ}E$) represents a period between Late Jurassic and present-day (the solely reverse polarity in geographic coordinate indicates that this remagnetisation is not due to PEF). Moreover, the comparison between this pole and the Late Jurassic-Early Cretaceous and Late Cretaceous-Early Tertiary poles of north Tianshan (Chen et al., 1991) shows a huge discrepancy in inclination (24°±5°, 26.3°±6.1°, respectively), requiring a latitudinal movement of at least 2500 km between these two localities. Evidence of such displacement is absent. To the opposite, the palaeomagnetic pole ($\lambda = 87.5^{\circ}$ N, $\Phi = 106.2^{\circ}$ E, A₉₅ = 13.1°, n = 6) calculated after bedding corrections (Table 7.C.2) is more compatible (-16.4°±11.2°, -14.1°±11.7°), with the Mesozoic data of the Junggar Basin (Chen et al., 1991). Therefore, magnetisation more likely predates the tilting of the strata. As no thermal, tectonic and weathering events have occurred between sedimentation and folding, we assume that this magnetisation is likely primary and of Late Triassic age. Although this pole will be considered for tectonic implications, we are mindful that the lack of reliable palaeomagnetic test may challenge our further interpretations. Additional data are therefore required to assess our preliminary conclusions.

At Aiwergou, the lower Triassic rocks display both normal and reverse polarities. The inversion test carried out on Fisher site-mean directions is positive (**McFadden & McElhinny, 1990**). Since the collected section is homoclinal, variations of the precision parameter k are not sufficient to perform a fold test (*Table 7.C.1*). However, the positive inversion test may suggest a primary magnetisation of detrital origin and Early Triassic in age. A new palaeomagnetic pole is therefore calculated at: $\lambda = 68.0^{\circ}$ N, $\Phi = 3.0^{\circ}$ E, A₉₅ = 14.6°, n = 7 (*Table 7.C.2*).

At Laba, the shallow dip of the strata does not permit any fold test (*Table 7.C.1*). In addition only a normal polarity was isolated. As previously mentioned, West Junggar did not experience major tectonic or thermal event since Late Permian. Only a chemical origin can be envisaged for a possible remagnetisation, however samples do not show any evidence of intense alteration. The red colour of the red beds is due to pigmentary hematite that formed

soon after sediment deposition. The growth Chemical Remanent magnetisation (g-CRM) that hematite carries is related to diagenesis, and the recent weathering process did not affect the high temperature component. Moreover, if taking the pole before bedding corrections into account ($\lambda = 75.3^{\circ}$ N, $\Phi = 117.6^{\circ}$ E), it implies an absolute latitudinal motion of -27.4±18.1°, i.e. 2500 km of West Junggar with respect to its Late Permian position ($\lambda = 53^{\circ}$ N, $\Phi =$ 183.9°E from **Choulet et al., 2010**). In Central Asia, subductions have ceased before Permian and could not account for these huge Late Permian displacements. In addition, no significant (in palaeomagnetic terms) latitudinal motions between blocks surrounding West Junggar are observed during and after Mesozoic (**Chen et al., 1991; 1993; Gilder et al., 1996; 2008**). Thus, the g-CRM represents a primary magnetisation. The palaeomagnetic pole calculated after bedding correction ($\lambda = 69.9^{\circ}$ N, $\Phi = 7.7^{\circ}$ E, A₉₅ = 20.6°, n = 6) is more compatible in palaeolatitude with the Upper Permian one's (-17.5±18.8°) of West Junggar (**Choulet et al., 2010**). Despite the lack of statistical test, this debatable pole will be used for tectonic interpretation assuming that the magnetization is primary and of Early Triassic age.

Table 7.C.2 Compilation of Paleomagnetic data of Junggar, Tarim and Siberia over the Early Mesozoic period. Abbreviations: N, the number of sites; Slat (Plat), the latitude of site (pole); Slong (Plong), the longitude of site (pole); A₉₅, the radius that mean direction lies within 95% confidence.

Block	Locality	Age	N	Slat	Slong	Plat	Plong	A ₉₅	Reference
West Junggar	Mean	P2	3	45.5	84.4	53	183.9	16.6	Choulet et al. in press
	Laba	T1	6	45.4	83.1	69.9	7.7	20.6	This study
South Junggar	Mean	C3-P	6	43.8	87.8	77	7.6	9.9	Choulet et al. in press
	Tianchi	P2	6	43.95	88.083	80	191.6	12.4	This study
	Aiwergou	T1	7	43.011	87.549	68	3	14.6	This study
Junggar	Jimusar	Т3	6	43.821	89.207	87.5	106.2	13.1	This study
	Junggar	J3-K1 K2-	13	44.2	86	72.3	227.3	4.8	Chen et al., 1991
	Junggar	Cz1	9	44.2	86	74.3	223.1	1.9	Chen et al., 1991
	Urumqi	Cz	7	43.8	87.8	77.8	193.4	15.6	This study
Tarim	Mean	C3-T1				63.4	181	6.2	Gilder et al., 2008
	West Tarim	T1	5	41	74.9	52.8	175.5	8	Zhu et al., 1998
	Mean	T3				70.4	190	7	expected from Gilder et al., 2008
	Aksu	T3	8	41.7	80.5	52.1	166.8	5.8	Fang et al. 1990
	Kuche	J2	6	42.1	83.2	75.7	198	8.1	Gilder et al., 2008
Siberia	Mean	P2	5			50	160	7	Van der Voo, 1993
	Mean	T1	9			52	156	4	Van der Voo, 1993
	Mean	Т3	6			55	138	9	Van der Voo, 1993

C.5.ii Relative motions between blocks of northwestern China

The pre-existing Late Permian pole of Tianchi, proposed by Nie et al. (1993) and recalculated by Choulet et al. (2010), was significantly different from the mean South Junggar Permian pole. The new calculated pole for Late Permian rocks of Tianchi ($\lambda = 80^{\circ}$ N, $\Phi =$ 191.6°E, $A_{95} = 12.4^{\circ}$) is very compatible with that of Nie et al. (1993), as angular difference is only of 4.6°±13.2° (Fig. 7.C.14a). The angular difference between our Late Permian pole and the mean Permian one's is still significant (23°±14.6°). The origin of this angular difference is not well understood but as it is rather due to rotation (31.1±19.9°) than inclination $(3.2^{\circ}\pm9.5^{\circ})$, it is likely that along-strike rotations of strata have caused this discrepancy. This situation may happen in case of sedimentation coeval with tectonic processes. The occurrence of conglomerate intercalations in the Upper Lucaogou and Hongyanchi Formations, where cores were collected, supports the hypothesis of Late Permian local tectonics. As pointed out by Choulet et al. (2010), the mean South Junggar Permian pole displays a significant discrepancy in rotation with the Upper Permian poles of West Junggar, Tarim and Siberia. The calculated rotations of South Junggar with respect to the surrounding block are of the order of several tens of degrees (-62°±23.7°, -52.2°±15.9° and -73.9°±13.1° relative to West Junggar, Tarim and Siberia, respectively), but latitudinal displacements remain weak and non-significant (Fig. 7.C.14a)

Early Triassic palaeomagnetic poles of Laba (West Junggar) and Aiwergou (South Junggar) display an insignificant angular difference of $2.5^{\circ}\pm 23.4^{\circ}$ (*Fig. 7.C.14b*). The consistency between these poles refutes the idea that Cenozoic tectonics has partitioned the Junggar block into small blocks and that significant local rotation around vertical axis between these blocks occurred recently (e.g. **Gilder et al., 2008** for Tarim block). The observed movements between Junggar and surrounding blocks cannot be regarded as an artefact of the Cenozoic tectonics and Mesozoic movements should be considered. However, a significant discrepancy exists between the Early Triassic poles from Tarim (**McFadden et al., 1988**; **Zhu et al., 1998**). Here, these declination differences are due to local vertical-axis block rotations that occurred over last 20 Ma (**Gilder et al., 1996**; **2008**). On the basis of a large review of published palaeomagnetic data, **Gilder et al., (2008)** proposed a mean Late Carboniferous – Early Triassic pole, arguing a relative stable Tarim block. This pole was used for the calculations. The two compatible poles of West and South Junggar display significant relative rotations of $-83.3^{\circ}\pm 15.8^{\circ}$ and $-63.3^{\circ}\pm 16.6^{\circ}$ with respect to Siberia and Tarim,

respectively (*Fig.* 7.*C.14b*). Latitudinal movements between Junggar and Siberia $(3.4^{\circ}\pm9.4^{\circ})$ and between Junggar and Tarim $(-5^{\circ}\pm10^{\circ})$ are not significant (*Fig.* 7.*C.14b*).

Figure 14 (a–d) Equal-area projections of Late Paleozoic – Mesozoic poles of West Junggar, South Junggar Tarim and Siberia. Angular difference (AD) and the amount of relative rotation and latitudinal movement between the blocks are also indicated. Open stars represent the sampling location. Small circle centered on this location and passing through poles reveals large discrepancies in declination (subsequent rotation) and weak difference in paleolatitude (subsequent N–S movements) of blocks.

The Late Triassic pole of Tarim was calculated by interpolation of the linear trend between the C3-T1 and the J2 poles (**Gilder et al., 2008**; *Table 7.C.2*). We lend credence to this study as it is based on an extensive review of the literature and because geological processes experienced by Tarim were taken into consideration. Therefore, the Late Triassic pole of Tarim (**Fang et al., 1990**) that is away from the expected value was not included in the analysis (*Fig. 7.C.14c*). Figure 14c shows Late Triassic poles indicating rotations of Junggar relative to Siberia (-51.6°±25.2°) and Tarim (-23.4°±20.9°). Again, no significant N-S movement between Junggar and Siberia (10.9°±12.7°) or between Junggar and Tarim (- $8.8^{\circ}\pm11.9^{\circ}$) can be forwarded.

The likely Cenozoic pole obtained from Lower Triassic remagnetised rocks of Urumqi is consistent with the Lower Cenozoic palaeopole of Junggar (**Chen et al., 1991**), since an angular difference of $7.9^{\circ}\pm11.8^{\circ}$ is observed (*Fig. 7.C.14d*). In addition, as noted by **Chen et al. (1991**), During Late Mesozoic and Cenozoic times, Junggar is relatively stable relative to its present-day position. J₃-Cz pole of Junggar is compatible with that of Tarim (angular difference equal to $7.7^{\circ}\pm 8.4^{\circ}$) and with the apparent polar wander path (APWP) of Eurasia (**Besse & Courtillot, 1991**) since Early Cretaceous. Actually, the angular difference of the Cenozoic pole of Urumqi with the AWPW pole at 40 Ma is only $9.2^{\circ}\pm12.1^{\circ}$.

C.5.iii The Early Triassic single rigid Junggar block

The consistency of Early Triassic poles of Laba (West Junggar) and Aiwergou (South Junggar) suggests that no more displacement between these two blocks has been observed since that time. Therefore, Junggar can be regarded as a rigid block at Early Triassic. In fact a rigid Junggar block during Palaeozoic was forwarded in many previous palaeomagnetic studies (Li et al., 1991; Wang et al., 2007). However, the palaeomagnetic directions of Late Carboniferous to Permian rocks from West and South Junggar display significant differences in inclination and declination (Choulet et al., 2010; Fig. 7.C.14a). These results challenged the idea of a rigid Junggar block in Late Palaeozoic. Choulet et al. (2010) rather suggest that West and South Junggar underwent individual evolution related to inheritance of the Palaeozoic geodynamics. Indeed, West Junggar and North Tianshan (South Junggar) were parts of the Kazakh oroclinal system that enclosed the Junggar Ocean (Abrajevitch et al., 2008; Choulet et al., 2010; Fig. 7.C.15). According to palaeogeographic reconstructions, the increase of orocline curvature is accommodated by the diminution of the inner oceanic domain. Devonian to Carboniferous subduction of Junggar Ocean underwent below Tian Shan, Kazakhstan and West Junggar margins (Wang et al., 2006; Windley et al., 2007; Choulet et al., 2010). At Permian, oceanic domains have completely disappeared (Windley et al., 2007) and the suture zone of the Junggar Ocean formed between West Junggar and North Tianshan (Fig. 7.C.15). Nevertheless, oroclinal bending can only account for the half of the present belt curvature (Abrajevitch et al, 2008). Another half is due to the Permian "orocline disarticulation" assisted by block rotations around vertical axes (Levashova et al.,

Figure 7.C.15 Simplified map of the Late Palaeozoic belts (in blue) of Western Central Asia (modified after Choulet et al., **2010**). This belts underlie an Early Palaeozoic basement (in green) and display a 180° curvature. The cryptic suture of the Junggar basement (red dashes) is hidden below the Junggar and Alakol basin (in yellow). Late Carboniferous to Permian srike-slip faults and their major kinematics displayed. Abbreviations: are also CANTSF: Chingiz-Alakol-North Tianshan Fault, CKF: Central Kazakhstan Fault, DF: Dalabute Fault, GF: Gornotsaev Fault, K: Karamay city, KZK: Kazakhstan, NNTL: Nalati-Nikolaiev Tectonic Line, NTS: North Tianshan, U: Urumqi city, WJG: West Junggar.

Inferred Palaeo-Junggar Ocean suture

2003a; Van der Voo, 2006; Wang et al., 2007). Movements along strike-slip faults in the whole Altaids (Laurent-Charvet et al., 2002; 2003; Natal'in and Sengör, 2005) accommodating these rotations and related displacements were estimated to several hundred of kilometres in Tianshan and Altai (Wang et al., 2007; Choulet et al., 2010; Fig. 7.C.15). The Ar-Ar geochronological investigations, carried out on mylonites from Tianshan and Altai, indicate transcurrent movements between Late Carboniferous and Early Triassic (Laurent-Charvet et al., 2003). These faults likely stem from individual rotations of West and South Junggar with respect to their surrounding blocks (Choulet et al., 2010). In addition, structures related to transpressive deformation in the West Junggar accretionary prism (Choulet et al., 2011) and ridge subduction (Geng et al., 2009; Tang et al., 2010) document a non-frontal Carboniferous subduction of the Junggar Ocean. This oblique subduction evolves toward a Permian oblique collage (Choulet et al., 2011). Therefore, the suture of the palaeo-Junggar Ocean, representing the limit between West and South Junggar may have been reactivated as a strike-slip fault during Permian (Fig. 7.C.15). Like in numerous regions of Central Asia (Melnikov et al., 1998; Laurent-Charvet et al., 2003), transcurrent motions have persisted until the Early Triassic. In consequence, no more relative displacement are recorded between West and South Junggar after Early Triassic, and then Junggar may have evolved as a single rigid block.

C.5.iv Mesozoic Tectonics in northwestern China

Though previous studies have emphasized the Late Palaeozoic deformation (**Wang et al., 2007**; **Choulet et al., 2010**), the comparison of palaeomagnetic poles from Junggar, Tarim

and Siberia ranging from Late Permian to Cenozoic periods show importance of Mesozoic rotations. Since Junggar became a rigid block at Early Triassic, the observed rotations are neither local nor related to a late Cenozoic deformation. These rotations rather correspond to large-scale Mesozoic tectonic episodes, which need to be discussed in detail.

Table 7.C.3 Compilation of Late Paleozoic relative movements between South Junggar, West Junggar, Siberia, and Tarim; ANG \pm DANG, ROT \pm DROT and Plat \pm DPlat correspond to angular difference between paleopoles, relative rotation and latitudinal displacement (and their error limit) between blocks, respectively. Errors were computed by using the conversion factor of 0.78 (**Demarest, 1983**; **Coe et al., 1985**). Relative movements between the blocks are computed by using average site at 44°N, 87°E for Junggar block.

Age	Blocks	$ANG\pm\Delta ANG$	$ROT \pm \Delta ROT$	$N\text{-}S\pm\Delta N\text{-}S$			
P2	SJG-TAR	$39.5^\circ\pm11.7^\circ$	-52.2 ± 15.9	-7.6 ± 9.3			
	SJG-SIB	$51.8^\circ\pm12.1^\circ$	-73.9 ± 16.8	-2.4 ± 9.7			
	SJG-WJG	$50^\circ \pm 19.2^\circ$	-62.1 ± 23.7	-4.2 ± 15.5			
	SJG-TAR	$48.6^\circ\pm12.7^\circ$	-63.3 ± 16.6	-5 ± 10.2			
T1	SJG-SIB	$58.3^\circ \pm 11.8^\circ$	-83.3 ± 15.8	3.4 ± 9.4			
	SJG-WJG	$2.5^\circ\pm23.4^\circ$	-2 ± 31.9	2 ± 18.7			
Τ3	JG-TAR	$19.5^\circ \pm 14.9^\circ$	-23.4 ± 20.9	-8.8 ± 11.9			
	JG-SIB	32.9° ±15.9°	-51.6 ± 25.2	10.9 ± 12.7			
J3-Cz1	JG-TAR	$7.7^\circ\pm8.4^\circ$	-7.6 ± 9.6	-3.8 ± 6.7			
	Blocks		$ROT\pm\Delta ROT$				
	SJG-TAR (P2	to T1)	11.1 ± 17.9				
	SJG-TAR (T1	to T3)	-39.9 ± 20.8				
	SJG-TAR (T3 t	o J3-K1)	-15.8 ± 17.9				
	SJG-SIB (P2	to T1)	9.4 ± 18				
	SJG-SIB (T1	to T3)	-31.7 ± 23.2				

The comparison of Late Permian poles of South Junggar, West Junggar, Tarim and Yili (*Fig. 7.C.14a*) infers that important rotations may have occurred after Late Permian (**Choulet et al., 2010**), but no upper limit of these motions was available yet. These rotations were supposed to be accommodated by strike-slip faults in Altai and Tianshan (**Wang et al., 2007**; **Choulet et al., 2010**). Actually, mylonites have recorded ductile transcurrent deformation up to Early Triassic along Irtysch-Gornotsaev shear zone or Chingiz-Alakol-North Tianshan Fault (**Melnikov et al., 1998**; **Laurent-Charvet et al., 2003**). The rotations of South Junggar relative to Tarim and Siberia from Late Permian to Early Triassic are estimated to $11.1^{\circ}\pm17.9^{\circ}$ and $9.4^{\circ}\pm18^{\circ}$, respectively (*Table 7.C.3*). Despite non-significant

values, the rotation of South Junggar with respect to these two adjacent blocks is clockwise, instead of the anticlockwise movement deduced from Late Permian poles. This unexpected kinematics may results from discrete (in space and time) transcurrent movements in Altai and Tianshan, but their tectonic origin is still an open question. It is widely accepted that the Irtysch zone is a Late Palaeozoic sinistral shear zone (Laurent-Charvet et al., 2002; Buslov et al., 2004; Natal'in and Sengör, 2005), but dextral kinematic is also recorded between 244±3 Ma and 249±2 Ma (Laurent-Charvet et al., 2003). According to the curved shape of the Irtysch zone, this Early Triassic dextral shearing may accommodate a clockwise rotation of South Junggar with respect to Tarim. In Tianshan, dextral Late Permian to Early Triassic movements along the Nalati and Main Tianshan faults are also described (Laurent-Charvet et al., 2003; de Jong et al., 2009). Late Permian -Early Triassic shearing along the North Tianshan Fault is little documented (de Jong et al., 2009) and post-Permian rotation between Yili and South Junggar is null (Wang et al., 2007) or weak (Choulet et al., 2010). The true Late-Permian-Early Triassic boundary between Junggar and Tarim may be therefore represented by the Nalati and Main Tianshan faults that display a curved shape. If the Euler pole related to a rotation along these faults is located in Tarim, dextral motions along these faults may accommodate the Late Permian-Early Triassic clockwise rotation of Junggar block relative to Tarim. Although Early Triassic poles of Laba and Aiwergou suggest a rigid Junggar block, this Junggar block seems to have experienced important post-Early Triassic counter-clockwise rotations with respect to Siberia and Tarim (Table 7.C.3). This suggests that displacements ascribed to pre-Early Triassic transcurrent tectonics were probably overemphasized by the previous studies (Wang et al., 2007; Choulet et al., 2010) and that a great part of the relative displacements between Tarim, Junggar and Siberia was rather accommodated since Early Mesozoic (Fig. 7.C.16).

Post-Early Triassic rotations (-63.3°±16.6°) between Junggar and Tarim were partly accommodated by the Middle Triassic reactivation of ancient Tianshan faults, since rotation of Junggar relative to Tarim between Early and Late Triassic was estimated at -39.9°±20.8° (*Table 7.C.3*). Evidence of such a deformation may be recorded by the 300m thick conglomerate of the Karamay Formation, observed in Junggar, Tarim and Turfan-Hami basins (**Hendrix et al., 1992**; **Greene et al., 2001**) and contemporaneous unconformity. At present time, Middle to Late Triassic movements between Siberia and Junggar are not documented by geologic evidence in Altai, but brittle faulting in the Irtysch zone remains poorly constrained. Origin of the mid-Triassic reactivation could be to the Triassic collision of

Figure 7.C.16 Synoptic chart illustrating the tectonic episodes experienced by northwestern China. Major alluvial events recorded in the South Junggar basin correlates with major tectonic episodes. Sketches (not to scale) of relative displacements between West Junggar (WJG), South Junggar (SJG), Junggar (JG), Siberia (SIB) and Tarim (TAR) reveal that post-Carboniferous rotations were accommodated by late orogenic-transcurrent event and oblique reactivation.

the Qianqtang block with the basement of the Songpang-Ganzi terrane (**Yin & Harrison**, **2000**). Based on diachronous arc magmatism from West to East (**Searle, 1991**; **Burchfiel et al., 1995**), the collision was likely oblique (**Yin & Harrison, 2000**) and this may have favoured a transpressive reactivation tectonics in Tianshan. Late Triassic poles display significant rotation movements of Junggar relative to Siberia (-23.6°±14.9°) and Tarim (-

50.4°±20.4°) (*Table 7.C.3*). Consequently, the Triassic tectonics can only account for a part of the post-Early Triassic rotations and younger tectonics must be forwarded.

As pointed out by previous studies, rotations of less than ten degrees were calculated between mean Mesozoic poles of south Junggar (by averaging J3-K1 and K2-Cz1 poles) and that of Tarim and Siberia (Chen et al., 1991; 1993). Therefore, only a small part of the largescale rotations inferred from Triassic palaeomagnetic data is due to post-Jurassic tectonics. In other words, it means that rotations between Late Triassic and Late Jurassic-Early Cretaceous $(-15.8^{\circ}\pm 17.9^{\circ})$ were accommodated by displacements along Jurassic strike-slip faults (*Table* 7.C.3). Jurassic tectonics is not well documented in Tianshan, but geological evidence is found in the sedimentary pile. The thick conglomerate sequences of the Badaowan Formation (J1) and Kalaze formation (J3-K1) may indicate intense basin subsidence controlled by tectonics (Hendrix et al., 1992; Hendrix, 2000). This tectonic was accompanied by the formation of an Early Mesozoic relief in Tianshan (Hendrix et al., 1992; Sobel & Dimitru, 1997; Dimitru et al., 2001; Greene et al., 2001; Jolivet et al., 2007; Chen et al., 2011). Angular unconformity is also visible at the top of the Jurassic (Chen et al., 2011). Similarly to the Middle Triassic intracontinental deformation, Late Jurassic deformation is usually described as a far-field effect of the collision between the Lhasa block and the Asian margin (Hendrix et al., 1992). Like for the Qiangtang block, the collision is diachronous along strike (Dewey et al., 1988; Gaetani et al., 1993) and Late Jurassic transpressive reactivation is usually advanced (McKnight et al., 1990; Nishidai and Berry, 1990; Hendrix et al., 1992). The Early Jurassic reactivation is not well documented and its origin is unclear. It could be due to far-effect or late collisional movements in the Songpang-Ganzi area (Yin & Harrison, 2000).

Mesozoic intracontinental deformation is also described in Altai and Mongolia (de Grave et al., 2007; Jolivet et al., 2007) and could account for post Late Triassic relative rotation of Junggar with respect to Siberia ($-5.8^{\circ}\pm17.9^{\circ}$) (*Table 7.C.3*). However, the position of Siberia remains problematic. Siberia and Europe formed Eurasia after the Permian collision in the Urals and, usually, the synthetic Eurasian APWP (Besse & Courtillot, 1991; 2002) is used to represent Siberia. However, the important inclination discrepancies between Central Asian blocks and Siberia led many authors to consider that Eurasia is not so rigid (Cogné et al., 1999; Gilder et al., 2008) and that relative movements of Siberia relative to Europe occurred during Mesozoic. Therefore, it is rather difficult to give credence to the inferred Triassic and Jurassic rotations of Junggar with respect to Siberia at present time.
C.6 Conclusion

Constraining the past tectonic events is a crucial issue to understand the present geometry of Central Asia. Geological and geophysical studies have focused on Late Palaeozoic transcurrent episode and Tertiary reactivation. However, much uncertainty has remained about the Mesozoic, which was generally considered as a period of tectonic quiescence. Sedimentary data, combined with recent structural and geochronological results have suggested possible Mesozoic reactivations, but no kinematic constraints were currently available.

This study presents new palaeomagnetic results from Permian and Triassic sedimentary rocks collected around the Junggar basin. Newly obtained poles suggest that Junggar might be regarded as a rigid block only after Early Triassic. Comparison of palaeomagnetic poles from Junggar and Tarim blocks reveals significant post-Permian relative rotations due to probably reactivation of Permian strike-slip faults under brittle conditions, though more field surveys are needed for geological evidences.

These new results are in agreement with the hypothesis of a Mesozoic intracontinental reactivation in Central Asia in response to a far-field effect of Tibetan collisions. Although the current physiography of Central Asia is due to the recent tectonics, the Mesozoic episode has probably played an important role on the present geometric pattern. However, these interpretations and conclusions are only preliminary; other palaeomagnetic constraints are necessary to improve the kinematic scenario advanced in this paper.

D Conclusion

Ces deux études apportent de nouvelles contraintes paléomagnétiques sur les régions du pourtour du bassin du Junggar. Les résultats de ces travaux indiquent que le bloc du Junggar peut être considéré comme rigide seulement à partir de la fin du Permien supérieur, ce qui remet partiellement en cause les modèles cinématiques existants. De nouvelles estimations des déplacements le long des accidents décrochants peuvent alors être calculées. L'histoire cinématique proposée s'accordent assez bien avec les modèles tectoniques existants aussi bien pour l'évolution finale du collage orogénique que pour la réactivation mésozoïque des chaînes de l'Asie Centrale. Cependant, seules des preuves de déformation ductile documentent le régime transcurrent fini-paléozoique. L'absence de contraintes sur les décrochements fragiles empêche une vérification des estimations de déplacement. De plus, les données triasiques présentées ici sont les premières données disponibles, si bien que le modèle cinématique proposée est assez préliminaire. Dans l'avenir, d'autres contraintes paléomagnétiques devront être apporter afin d'assurer la représentativité de nos résultats. Malgré ces incertitudes, il apparaît assez clairement que la géométrie actuelle du collage d'Asie Centrale résulte de la tectonique transcurrente fini-paléozoïque et de la réactivation mésozoïque en domaine intracontinental.

CHAPITRE VIII DISCUSSION: MECANISMES D'ACCRETION ET EVOLUTION GEODYNAMIQUE

?

?

A Mécanismes de formation et architecture des chaines d'accrétion du Junggar Occidental

A.1 Développement et structure des complexes d'accrétion

Au travers des chapitres 3 à 5, l'étude des complexes d'accrétion d'âge Paléozoïque a permis de mettre en évidence l'importance des processus géologiques contemporains des épisodes de subduction dans le Junggar Occidental. Le développement spatial des prismes d'accrétion résulte de nombreux mécanismes.

Les principaux composants des paléo-prismes et des bassins d'avant-arc sont les séquences turbiditiques. La granulométrie de ces séries traduit le caractère proximal ou distal du dépôt. Les turbidites sont essentiellement formées par le recyclage sédimentaire des produits issus de l'arc magmatique ; elles sont souvent associées à des niveaux de grauwackes peu ou pas stratifiés. A partir de l'étude géochronologique des zircons détritiques, une source proximale (arc magmatique) de ces dépôts sédimentaires a pu être identifiée. Une source plus distale, marquée par un transport des sédiments le long de la fosse est aussi envisagée. L'incorporation des séries sédimentaires dans le prisme d'accrétion se fait soit par accrétion frontale soit par sous charriage de séquences cohérentes, ce qui permet de conserver la structure sédimentaire d'origine.

L'autre composante mineure, mais remarquable des complexes d'accrétion est représentée par les mélanges ophiolitiques qui forment des bandes discontinues. Ils sont caractérisés par des blocs d'origine et de taille variable au sein d'une matrice schistosée. Les éléments au sein de ce mélange proviennent de la plaque supérieure (blocs de turbidites et de grauwackes), mais aussi de la lithosphère océanique entrée en subduction. La diversité géochimique des roches magmatiques incorporées dans le mélange traduit les différents contextes de mise en place, depuis la dorsale océanique jusqu'aux volcans intra-plaque. La géométrie intrinsèque des mélanges traduit trois phénomènes : le détritisme ophiolitique préaccrétion, l'arrachement de fragments de la lithosphère plongeante et la tectonique affectant le prisme. Cette dernière est facilitée par les contrastes lithologiques et rhéologiques entre la matrice serpentineuse et les blocs mafiques et elle permet d'accommoder l'exhumation des roches de haute pression.

Les complexes d'accrétion d'âge paléozoïque supérieur présentent actuellement une structuration verticale liée à la tectonique transcurrente tardive. La structure plissée initiale est conservée dans certaines lithologies, bien que la cinématique reste délicate à interpréter à cause de la déformation pénétrative permienne. La déformation du prisme est essentiellement localisée dans des bandes de mélange. Ces bandes de mélange sont intercalées dans l'empilement d'écailles tectoniques de roches sédimentaires. Dans le complexe d'accrétion d'âge Paléozoïque supérieur, le contact entre le mélange ophiolitique et l'unité sédimentaire est marqué par une bande de brèches contenant des éléments du mur et du toit. La structure des complexes d'accrétion d'âge Paléozoïque supérieur est très différente de l'architecture actuelle des complexes d'accrétion formés au Cambro-Ordovicien. Dans la région de Tangbale, chaque unité est marquée par des lithologies et des conditions métamorphiques bien distinctes et l'étude structurale suggère un empilement de nappes enracinées au niveau de la faille permienne de Dalabute. Cette architecture est la conséquence d'un épisode de collision et ne reflète pas forcément la structure héritée du complexe de subduction.

A.2 Chronologie de l'accrétion et mécanismes d'arrêt de la subduction

Si le développement des complexes d'accrétion reste le processus dominant dans l'histoire géodynamique du Junggar Occidental, il n'a pas été un phénomène continu. Sur la base des enregistrements sédimentaires, tectoniques et magmatiques, deux mécanismes sont proposés pour expliquer l'interruption du régime de subduction et la consolidation de la chaîne du Junggar Occidental.

• Les collisions successives d'un arc insulaire puis d'un microcontinent sont envisagées au Paléozoïque inférieur. Ces collisions sont à l'origine d'une tectonique tangentielle qui conduit à l'empilement d'unités allochtones, enracinées dans la zone de suture océanique. La présence de zircons précambriens dans les séries détritiques indique la proximité d'une source continentale et confirme l'implication d'un microcontinent dans l'architecture de la chaîne. L'étude des enregistrements sédimentaires a mis en évidence une sédimentation syntectonique, avec le développement d'olistostromes et le dépôt de molasses discordantes scellant ainsi les déformations causées par les épisodes de collision. Ces collisions se manifestent aussi par la migration de l'arc magmatique, dans le cas de la collision d'arcs insulaires, ou par l'arrêt du magmatisme d'arc remplacé par du magmatisme alcalin intraplaque dans le cas d'une subduction de microcontinent.

 \cdot L'évolution progressive d'une zone de convergence oblique en un système décrochant permet aussi d'expliquer l'arrêt de la subduction à la fin du Carbonifère. La réorganisation des plaques suite au développement de la virgation du Kazakhstan a entraîné des rotations relatives de blocs et le développement d'un contexte transpressif, documenté par les plis à axes obliques affectant les séries sédimentaires du complexe d'accrétion. La subduction océanique, à l'origine d'un magmatisme de type adakitique dans le domaine d'avant-arc, atteste aussi d'une obliquité de la convergence océanique. Le régime transpressif évolue progressivement vers un régime transcurrent. Le développement de failles décrochantes contribue non seulement à l'accolement des deux marges actives de l'Océan Balkash-Junggar mais aussi au déplacement latéral des unités du Junggar Occidental. La chronologie de ces évènements est relativement bien établie grâce aux relations de recoupement entre les structures tectoniques (plis, décrochements) et les intrusions magmatiques.

B Modèle d'évolution géodynamique du Junggar Occidental

Dans le chapitre 3, nous avons pointé les lacunes des modèles existants dans la littérature (**Wang et al., 2003**; **Buckman & Aitchison, 2004**; **Xiao et al., 2008**). La géométrie des unités et la chronologie des épisodes magmatiques, sédimentaires et tectoniques sont assez mal contraintes, si bien que l'histoire géologique proposée est imprécise et peu convaincante. En s'appuyant sur de nouvelles données géochimiques, géochronologiques et structurales, un modèle géodynamique peut être avancé pour expliquer l'évolution du Junggar Occidental au cours du Paléozoïque.

L'histoire débute probablement à la fin du Néoprotérozoïque avec la fragmentation du supercontinent Rodinia et l'ouverture de l'Océan Paléoasiatique. Dans le Junggar Occidental, les plus anciennes reliques de croute océaniques sont d'âge Cambrien (**Jian et al., 2005**), mais les âges modèles hafnium de certains zircons magmatiques des plutons carbonifères de l'arc de Sawuer suggèrent une source juvénile néoprotérozoïque.

B.1 Ordovicien moyen.

Deux systèmes d'arc insulaires se sont développés au sein de l'Océan Paléoasiatique (Fig. 8.B.1a). Au nord (coordonnées actuelles), l'Océan Maikan-Kyzyltas est en subduction sous l'arc de Chingiz-Bozchekul. Dans le Junggar Occidental, aucun critère cinématique ne permet de caractériser la polarité de cette subduction, mais, sur la base de corrélations avec le Kazakhstan, l'agencement des unités est en faveur d'une subduction vers le nord (c.f. chapitre 5). Un complexe d'accrétion contenant notamment les mélanges ophiolitiques de Hongguleleng, Kujibai, Hobuksar et Bayanhe s'est développé le long de l'arc insulaire de Chingiz-Bozchekul. Dans le Junggar Occidental, la subduction de l'Océan est documentée à l'Ordovicien moyen, mais cette dernière semble avoir commencé dès le Cambrien dans l'actuel Kazakhstan Oriental (Degtyarev & Ryazantsev, 2007). Le second système de subduction est représenté par l'Océan Kekesayi (Buckman & Aitchison, 2004) qui disparait partiellement par subduction sous l'arc insulaire de Baidaulet-Akbastau pendant l'Ordovicien. Ce dernier, bien représenté au Kazakhstan, est masqué sous les dépôts Dévono-Carbonifères de le Junggar Occidental, à l'exception du complexe de Suyuenka dans la région de Tangbale. Cependant, les zircons magmatiques ordoviciens dans les turbidites siluriennes de Mayila et Tangbale suggèrent la présence à proximité d'un arc ordovicien. La subduction de l'Océan Kekesayi est à l'origine du développement des complexes d'accrétion de Mayila et Tangbale. Dans l'état actuel des connaissances, nous considérons Mayila et Tangabale comme deux segments d'un même complexe d'accrétion. Cependant, l'hypothèse d'un bassin d'arrière-arc de Mayila, contemporain de l'Océan Kekesayi (**Buckman & Aitchison, 2004**) ne peut être écartée.

Figure 8.B.1 Schéma d'évolution géodynamique du Junggar Occidental au Paléozoïque inférieur. Les collisions successives d'un arc, puis d'un microcontinent permettent la croissance de la marge du Junggar Occidental, et la consolidation du microcontinent kazakh.

B.2 Silurien inférieur

La fermeture de l'Océan Maikan-Kyzyltas entraîne la collision entre l'arc de Baidaulet-Akbastau et le complexe d'accrétion bordant l'arc de Chingiz-Bozchekul (*Fig.* 8.B.1b). Les déformations liées à cette collision sont scellées par les conglomérats de l'Ordovicien terminal qui remanient des fragments des mélanges ophiolitiques. Plus au sud, la subduction de l'Océan Kekesayi continue sous la marge du Junggar Occidental (*Fig.* 8.B.2). Elle entraine le développement d'un magmatisme d'arc dans les régions de Sharburt et de Xiemisitai, ainsi qu'une expansion frontale du prisme de Tangbale-Mayila marquée par le dépôt des turbidites des formations de Mayila et de Qiargaye dans le bassin d'avant-arc et au niveau de la fosse.

B.3 Dévonien inférieur

La fermeture de l'Océan Kekesayi entraîne la collision du microcontinent Laba avec la marge du Junggar Occidental (*Fig. 8.B.1c*). Ce microcontinent, constitué d'un socle précambrien et d'une couverture paléozoïque s'est individualisé avec la fragmentation du supercontinent Rodinia au Néoprotérozoïqiue. La collision est marquée par le développement d'une tectonique tangentielle et un empilement des unités enracinées dans la zone de suture de l'océan Kekesayi. Cette tectonique de nappes permet l'exhumation des parties profondes du mélange, qui s'accompagne d'une rétromorphose dans le faciès Schistes Verts. Une sédimentation syn-tectonque caractérise la période du la fin du Silurien au début du Dévonien, avec la mise en place d'olistostrome et de molasse scellant la déformation prédévonienne. Dans la région de Laba, la présence de zircons précambriens dans l'enregistrement détritique indique la proximité d'un microcontinent. Dans la région de Sharburt-Xiemisitai, le magmatisme d'arc est remplacé par du magmatisme alcalin intraplaque, probablement lié à la rupture du panneau lithosphérique plongeant qui entraîne une remontée de magma asthénophérique (*Fig. 8.B.1c*).

La collision du bloc de Laba scelle la fin d'un premier cycle orogénique. Cependant, le rapprochement relatif des cratons Tarim, Siberia et Baltica, initié au Paléozoïque inférieur continue et cette convergence est à l'origine du développement d'un second cycle orogénique d'âge Dévono-Carbonifère et marqué par l'émergence de nouvelles zones de subduction.

B.4 Dévonien supérieur

Cette période est marquée par le développement de deux nouvelles zones de subductions et la mise en place d'arcs magmatiques sur le substratum paléozoïque inférieur (*Fig. 8.B.2a*). Dans la partie nord, la subduction de l'Océan Ob-Zaisan sous l'arc de Sawuer est à l'origine de la formation du complexe d'accrétion de l'Irtysh comprenant le mélange de Kokeshentan. Dans la partie sud, la subduction de l'Océan Balkash-Junggar sous la marge Paléozoïque inférieur du Junggar Occidental entraîne la formation de l'arc magmatique de Barlieke et du complexe d'accrétion de West Karamay. Dans les modèles précédents, des contextes d'avant-arc (**Buckman & Aitchison, 2004** ; **Zhang et al., 2011a**) ou d'arrière-arc (**Yang et al., 2011**) ont été avancés pour expliquer les caractéristiques géochimiques de certains blocs mafiques des mélanges ophiolitiques de Dalabute et Karamay. Dans le modèle présenté, l'ouverture de bassin d'avant-arc, qui requiert une extension de la plaque supérieure suite au retrait vers l'océan du panneau plongeant (*Fig. 8.B.2a*), n'est pas exclue, mais à l'heure actuelle aucune donnée structurale ne permet n'étayer cette hypothèse.

B.5 Carbonifère inférieur

Durant cette période, les subductions, initiées au Devonien moyen, continuent à contribuer à la formation des complexes d'accrétion. Dans le complexe de West Karamay, le développement des mélanges de Dalabute et de Karamay se fait grâce notamment à l'incorporation d'éléments de la plaque océanique tels que les guyots et la plate-forme associée (*Fig. 8.B.2b*). L'extension du complexe d'accrétion est cependant mal contrainte puisque l'enregistrement sédimentaire reste incomplet. Des processus d'ablation du prisme pourraient notamment être envisagés pour expliquer la présence limitée de turbidites dévoniennes. Au niveau de la plaque supérieure, les épanchements de l'arc actif recouvrent les produits plus anciens du magmatisme d'arc. Des basins sédimentaires recueillant une sédimentation carbonatée et détritique, principalement alimentée par l'érosion de l'arc se développent en périphérie de l'arc magmatique.

B.6 Carbonifère supérieur

Dans la partie nord, la fermeture de l'Océan Ob-Zaisan entraîne la collision entre la marge nord du Junggar Occidental et le microcontinent Altai composé d'un substratum précambrien et d'une couverture paléozoïque (unité de Kalpa-Naryn, **Buslov et al., 2004**) (*Fig. 8.B.2c*). La collision est modérée, car vraisemblablement oblique. La zone de suture

A) Dévonien supérieur (385-375 Ma)

Figure 8.B.2 Schéma d'évolution géodynamique du Junggar Occidental au Paléozoïque supérieur. Les subductions océaniques sur les bordures nord et sud du Junggar Occidental contribuent à la croissance de la croûte continentale. L'amalgamation finale entre le Junggar Occidental et les blocs avoisinants est un processus diachrone, caractérisé par l'évolution d'une zone de convergence oblique vers système décrochant.

évolue rapidement en un système de failles décrochantes: faille de l'Irtysh (Laurent-Charvet et al., 2002 ; 2003). Le mouvement senestre estimé à plusieurs centaines de kilomètres entraîne une déformation intense des terrains paléozoïques, qui masquent la structure précarbonifère supérieur. La collision s'accompagne d'une modification du chimisme des magmas. Ces intrusions alcalines, se mettent en place en réponse à la rupture du panneau lithosphérique plongeant qui est à l'origine d'une remontée de magma asthénosphérique. Dans la partie sud du Junggar Occidental, la formation de la virgation du Kazakhstan entraîne des rotations relatives entre les différents segments de la marge active de l'Océan Junggar-Balkash. Ces rotations engendrent une redistribution de la paléogéographie régionale et le développement d'une subduction oblique de l'Océan Junggar-Balkash par rapport à la marge sud du Junggar Occidental. Cette convergence oblique entraîne une déformation transpressive dans la plaque supérieure. Sur la base d'intrusions adakitiques au sein du complexe d'accrétion, la subduction de la ride est aussi envisagée et favorisée par la subduction oblique de la plaque océanique (*Fig. 8.B.2c*).

B.7 Permien inférieur

A la fin du Carbonifère supérieur, la subduction oblique de l'Océan Junggar-Balkash évolue vers un régime purement transcurrent, caractérisé par un système de failles décrochantes qui permettent l'accolement des deux marges actives (Junggar Occidental et Tianshan du Nord) (*Fig. 8.B.2d*). Dans le Junggar Occidental, La déformation transcurrente se manifeste par le déplacement latéral des unités le long d'accidents sénestres et une réorganisation de la géométrie des terrains paléozoïques. Ces failles contrôlent également le développement de bassins sédimentaires de type demi-graben ou *pull-apart* qui recueillent les produits d'érosion de la chaîne. Cette sédimentation est accompagnée par des épanchements volcaniques à chimie alcaline. Ce magmatisme alcalin est aussi caractérisé par la mise en place d'intrusions plutoniques dans l'ensemble des terrains du Junggar Occidental. Ces magmas sont produits par la fusion de la croute inférieure rendue possible grâce à un sous placage de magmas d'origine mantellique (*Fig. 8.B.2d*). Plusieurs hypothèses sont envisagées pour expliquer cette remontée d'asthénosphère : 1) la présence de panache mantellique à l'origine des *LIPs* (*Large Igneous Province*) permiens de Sibérie et du Tarim et 2) la délamination lithosphérique en réponse à la rupture des panneaux plongeants. Les processus de différentiation magmatiques conduisent à une diversité des lithologies de ces intrusions depuis des termes basiques, d'origine strictement mantellique, jusqu'à des roches acides très différenciées.

Le modèle proposé dans cette étude est assez proche de celui présenté par **Buckman & Aitchison (2004)**, mais en s'appuyant sur de nouvelles données géochronologiques et structurales, il permet de mieux contraindre la géométrie des unités et la chronologie des événements géologiques. Sur la base de nouvelles données géochronologiques, géochimiques et structurales, deux cycles orogéniques sont mis en évidence, ce qui n'est pas en accord avec les modèles monocycliques (**Wang et al., 2003** ; **Xiao et al., 2008**). Enfin, ce scénario propose plusieurs mécanismes pour expliquer l'arrêt de la subduction, phénomène jusque là très mal documenté.

C Place du Junggar Occidental dans le cadre des Altaïdes Occidentales

Les scénarios géodynamiques proposés jusqu'à présent ne regardent pas les éventuelles corrélations entre le Junggar Occidental et les domaines adjacents (Tianshan, Kazakhstan, Junggar Oriental). Dans certains cas (**Xiao et al., 2010**), le Junggar Occidental était considéré comme un arc insulaire complexe au sein de l'Océan Paléo-asiatique, complétement indépendant du cadre régional. Cependant, les contraintes cinématiques issues des données paléomagnétiques et la comparaison entre les unités des différents domaines d'Asie Centrale semblent indiquer que l'évolution du Junggar Occidental s'inscrit dans le scénario géodynamique de l'Asie Centrale.

C.1 Relations Junggar Occidental -Kazakhstan

Il existe une continuité géométrique des terrains et des structures d'âge Paléozoïque supérieur entre le Junggar Occidental et le Kazakhstan. Dans le partie septentrionale, le complexe d'accrétion et l'arc de Sawuer se poursuivent au nord-ouest le long de la faille de l'Irtysh et sont corrélés respectivement avec les unités de la zone de Chara et de Zharma (**Buslov et al., 2004**). L'ensemble forme l'actuelle chaine plissée de Zaisan qui résulte de la fermeture par subduction vers le SW de l'Océan Ob-Zaisan jusqu'au Carbonifère supérieur. Dans la partie méridionale, il existe aussi une continuité entre l'arc magmatique de Barlieke et la ceinture volcanique interne (IVB) d'âge Dévonien moyen à Carbonifère supérieur. Cette dernière enserre un complexe d'accrétion peu étudié, d'âge Paléozoïque supérieur, qui pourrait représenter un analogue de l'unité de West Karamay. Bien qu'il n'existe actuellement pas de données cinématiques sur les roches anté-carbonifères, les corrélations stratigraphiques et magmatiques semblent indiquer que le Junggar Occidental appartenait au segment NE de la virgation kazakh. Le développement du décrochement dextre de Chingiz-Alakol-Nord Tianshan à la fin du Carbonifère entraîne une rotation relative du Junggar Occidental par rapport au nord-est du Kazakhstan et l'individualisation du massif.

Il n'existe aucune continuité dans le Junggar Occidental de la ceinture volcanique externe (OVB) d'âge Dévonien inférieur, bien développé au Kazakhstan. L'absence de subduction à cette époque peut s'expliquer par la présence de l'épisode de collision entre le microcontinent Laba et la marge du Junggar Occidental. Cette collision est probablement diachronique car il semble que les blocs d'Aktau et de Bole, équivalents du bloc de Laba aient été amalgamés au reste du microcontinent kazakh à la fin de l'Ordovicien et au cours du Silurien.

Figure 8.C.1 Schéma tectonique illustrant les corrélations entre les unités du Junggar Occidental et celles des régions avoisinantes. Abréviations des failles identiques à la figure 2.B.2.

Malgré le caractère épars des massifs d'âge Paléozoïque inférieur, des corrélations stratigraphiques peuvent être proposées entre les unités du Junggar Occidental et celles du Nord-est Kazakhstan. En faisant abstraction des déplacements permiens, il existe une continuité linéaire des arcs magmatiques et des complexes d'accrétions comprenant notamment les mélanges ophiolitiques. Ces complexes de subductions sont cependant assez isolés des microcontinents précambriens du Kazakhstan, puisqu'à l'exception des grains issus du bloc de Laba, aucun zircon précambrien n'est présent dans les séquences détritiques du Junggar Occidental. Le modèle géodynamique proposé est en faveur de l'hypothèse d'un microcontinent kazakh. Ce dernier s'est formé par le biais de multiples collisions d'arc insulaires et de microcontinents depuis le Cambrien jusqu'au Dévonien. La collision du bloc de Laba, enregistrée au début du Dévonien dans le Junggar Occidental semble être l'épisode terminal de la formation du microcontinent kazakh.

C.2 Relations Junggar Occidental -Tianshan

A l'origine, le Junggar Occidental et le Tianshan représentait deux entités relativement éloignées, comme l'atteste la différence significative de paléolatitude au Carbonifère supérieure. Cependant, comme ces deux domaines représentent deux segments de la marge active de l'Océan Balkash Junggar, le développement de la virgation du Kzakhstan entraîne leur rapprochement au fur et à mesure de la disparition de l'océan par subduction. L'évolution de la convergence oblique en un régime transcurrent entraîne la juxtaposition des deux domaines à la fin du Paléozoïque, le long d'accidents décrochants dextres. Cependant, les mouvements relatifs entre les deux blocs sont encore significatifs au Permien et, c'est seulement à partir du début du Trias que le bloc Junggar acquiert sa rigidité.

C.3 Relations Junggar Occidental – Junggar Oriental

Une corrélation directe entre les domaines occidentaux et orientaux du Junggar a été proposée par **Wang et al. (2003)**. Cette hypothèse est uniquement basée sur la similarité des âges des blocs au sein des mélanges ophiolitiques de Hongguleleng, Mayila, Tangbale et Dalabute dans l'Ouest Junggar et Aermentai et Kelameili dans le Junggar Oriental. Il est cependant difficile de conclure sur une éventuelle corrélation entre les unités d'âge Paléozoïque inférieur, puisque, dans le Junggar Oriental, les terrains pré-dévonien sont limités au mélange ophiolitique d'Aermentai contenant des blocs d'âge cambrien, à des calcaires ordoviciens et à des laves siluriennes. De plus, les relations entre ces terrains et les unités dévoniennes à carbonifères ne sont d'ailleurs pas clairement établies.

Les relations entre les unités d'âge paléozoïque supérieure du pourtour du bassin du Junggar sont aussi matière à débats. Dans la partie nord du Junggar Oriental, l'unité de l'Irtysh représente la continuité du complexe d'accrétion de l'Irtysh du nord du Junggar Occidental, le mélange de Kuerti étant un équivalent du mélange de Kokeshentan (**Xiao et al., 2004**; **2009b**) ou des mélange de la zone de Chara (**Buslov et al., 2004**). Ces unités sont limitées au sud par des arcs dévono-carbonifères (Zharma et Sawuer à l'Ouest et Dulate à

l'Est). Le problème majeur pour une éventuelle corrélation réside dans la direction de la subduction océanique au cours du Paléozoïque. Dans le Junggar Occidental et dans le nord-est du Kazakhstan, une subduction vers le SW de l'Océan Ob-Zaisan est proposée (**Buslov et al., 2004**), mais **Xiao et al. (2004, 2009b**) suggèrent une polarité différente (vers le NE) de la subduction dans le Junggar Oriental. Cette configuration est assez semblable à celle du sud su Tianshan, où des directions de subduction opposées sont proposées (**Charvet et al., 2011**). Contrairement au sud du Tianshan, où la faille de Talas-Fergana représente une limite majeure entre les deux domaines cinématiques, il existe une continuité apparente entre les unités du nord du Junggar, et la difficulté à corréler les deux domaines s'explique surtout par l'absence de contraintes structurales. En effet, ces régions ont été très affectées par la tectonique décrochante permienne qui masque les structure contemporaines des épisodes de subduction et/ou de collision. Dans le Junggar Oriental, la tectonique décrochante ne se limite pas uniquement au couloir cisaillant de l'Irtysh, car il existe de nombreuses failles satellites qui perturbent la géométrie de la chaîne.

L'absence de consensus sur la chronologie et les mécanismes de le collision finale empêche aussi les corrélations entre Junggar Occidental et Oriental. Dans le scénario géodynamique proposé par **Xiao et al. (2009b**), la subduction de l'Océan Junggar continue au Permien. L'amalgamation entre Tianshan Oriental et Junggar Oriental est attribuée au Trias sans toutefois d'indication sur le mécanismes de juxtaposition (collision, collage...). Dans l'état actuel des connaissances, il est donc difficile de proposer des corrélations entre Junggar Occidental et Oriental. De nouvelles données stratigraphiques et structurales sont nécessaires, notamment dans le Junggar Oriental, afin d'établir un schéma général d'évolution des Altaïdes Occidentales.

D Mécanismes et chronologie de la croissance de la croûte continentale

Jusqu'à présent, les études sur la croissance de la croûte continentale dans le Junggar Occidental étaient essentiellement concentrées sur la croissance verticale permienne, caractérisée par la mise en place d'un important volume de magmas issus de la fusion partielle de la croûte inférieure juvénile (**Chen & Jahn, 2004** ; **Jahn, 2004**). En apparence, ce recyclage intercrustal de matière ne traduit pas d'augmentation du volume totale de croûte continentale, mais la fusion de la croûte inférieure est rendu possible grâce au sous-plaquage de magma mantellique et donc au transfert de matériaux mantelliques dans la croûte.

La mise en évidence de l'évolution géodynamique des chaînes du Junggar Occidental met en lumière l'importance de la croissance crustale horizontale pré-Permienne. L'accrétion frontale et le sous plaquage de matériaux d'origine océanique contribuent de manière mineure à la croissance du Junggar Occidental, puisque les complexes d'accrétions sont essentiellement composés de turbidites qui sont issues de l'érosion de la marge active. La croissance de cette marge est principalement assurée par le magmatisme d'arc juvénile. Episodiquement la subduction de ride et l'ouverture de bassin d'avant-arc ou d'arrière-arc peuvent aussi contribuer au transfert de matériaux d'origine mantellique dans la croûte. Le piégeage de la lithosphère océanique dans la croûte, proposée par **Carroll et al. (1990)**, semble aussi un mécanisme important pour la croissance de la croûte juvénile. Cependant, ce phénomène ne peut être réalisé que dans un contexte dynamique tel que l'évolution d'une zone de convergence oblique vers un régime transcurrent et non dans un environnement statique, comme le suggéraient **Hsü (1988)** et **Carroll et al. (1990)**.

Il n'existe aucune évidence de contamination des magma par de la croûte précambrienne, uniquement représentée par le microcontinent de Laba. Cependant le recyclage de la croûte juvénile est effectif tout au cours du Paléozoïque, non seulement par le magmatisme d'arc mais aussi lors d'un épisode magmatique intraplaque consécutif à la collision du microcontinent de Laba au Dévonien inférieur. Ces travaux supportent ainsi une croissance discontinue de la croûte continentale essentiellement dominée par un mécanisme de croissance horizontale, mais entrecoupée par des épisodes de croissance verticale. Si au Permien, certaines données semblent indiquer le rôle prépondérant des panaches mantelliques dans la genèse de magma juvénile, la croissance crustale des Altaïdes au cours du Paléozoïque semble essentiellement être contrôlée par le géodynamique régionale.

CONCLUSION ET PERSPECTIVES

'évolution géodynamique des Altaïdes et la formation de la croûte continentale d'Asie Centrale restent des problèmes scientifiques majeurs dans la connaissance des phénomènes orogéniques. Ce vaste domaine est considéré comme le résultat de processus d'accrétion, mais les modèles actuellement avancés décrivent une évolution à grande échelle difficilement corrélable avec la réalité géologique. A travers cette étude pluridisciplinaire, il a été possible de caractériser l'architecture et les mécanismes de formation d'une chaîne d'accrétion (Junggar Occidental). La reconstruction géodynamique proposée s'intègre dans un scénario régional d'évolution à l'échelle des Altaïdes Occidentales et apporte de nouvelles contraintes sur la chronologie de la croissance de la croûte continentale en Asie Centrale au cours du Paléozoïque. Cette étude a permis d'aboutir aux conclusions suivantes :

• Les roches présentes ont majoritairement été formées dans un contexte de subduction. L'absence d'une collision de type alpin à grande échelle a permis de préserver ces lithologies. Le Junggar Occidental, et par conséquent les Altaïdes, représentent ainsi un laboratoire naturel pour étudier la formation et l'évolution des chaînes d'accrétion.

• L'architecture des chaînes d'accrétion d'Asie Centrale reste cependant complexe, car elle résulte des interactions entre les déformations paléozoïques syn à post accrétion et la réactivation des chaînes en domaine intracontinental. Ce travail a exploré les relations entre ces différents épisodes tectoniques et a permis d'estimer le rôle prépondérant des décrochements permiens dans la réorganisation de la géométrie de l'Asie Centrale.

• Le modèle géodynamique proposé intègre les données disponibles dans la littérature et les contraintes cinématiques, géochronologiques, géochimiques et structurales apportées par cette étude pluridisciplinaire. De plus, ce scénario d'évolution polycyclique documente deux mécanismes de consolidation des chaînes d'accrétion du Junggar Occidental en réponse à l'interruption de la subduction : la collision d'arc ou de microcontinent et l'évolution d'une convergence oblique vers un régime tectonique transcurrent.

• Les corrélations géologiques entre le Junggar Occidental et les blocs avoisinants permettent de replacer le modèle géodynamique du Junggar Occidental dans le cadre général des Altaïdes. L'hypothèse d'une évolution polycyclique à grande échelle est aussi avancée avec la formation du microcontinent kazakh dont le Junggar Occidental représente l'extrémité orientale. Le moteur de cette évolution semble être le mouvement relatif des différents cratons (Sibérie, Baltica, Tarim), qui contrôle la cinématique et la chronologie de la fermeture des domaines océaniques intermédiaire durant le Paléozoïque.

• Le Junggar Occidental est essentiellement formé par une croûte continentale d'origine juvénile. A l'exception du microcontinent de Laba, la croûte précambrienne a peu ou pas contribué à la croissance crustale du Junggar Occidental. Si le transfert de matériaux mantelliques dans la croûte est un phénomène récurrent dans l'histoire paléozoïque, la croûte juvénile a aussi été largement recyclée par les événements magmatiques ultérieurs (magmatisme d'arc et intraplaque). Bien qu'il soit difficile de proposer un taux de croissance crustale, le magmatisme d'arc apparaît comme le processus dominant la formation de la croûte.

• La coexistence d'épisodes de croissance horizontale dominée par le magmatisme d'arc et d'épisodes de croissance verticale caractérisée par le magmatisme intra-plaque indique une croissance de la croûte continentale en plusieurs étapes. Ces résultats impliquent que l'évolution géodynamique régionale joue un rôle prépondérant dans la croissance de la croûte continentale en Asie Centrale.

La diversité des modèles géodynamiques proposés jusqu'à maintenant reflète non seulement la complexité de la structure régionale et des processus impliqués, mais surtout un cloisonnement des données issues de disciplines considérés comme indépendantes. Néanmoins, l'approche utilisée dans cette étude souligne la nécessité de croiser certains domaines de compétence afin d'obtenir une reconstruction plus réaliste du puzzle orogénique. Les résultats obtenus dans cette thèse permettent d'éclaircir certaines interrogations concernant les chaînes d'accrétions de l'Asie Centrale, mais ce travail soulève aussi de nombreuses questions. La mise en évidence de multiples zones de subductions, actives sur des périodes de plusieurs dizaines de millions d'années, questionne sur la dynamique de ces zones de convergence. L'ablation du prisme, couramment observée dans les subductions modernes doit être envisagée et des études stratigraphiques détaillées pourraient permettre d'explorer cette question, bien qu'il soit difficile d'évaluer les volumes disparus de matière. L'estimation de la part de l'ablation est cependant nécessaire pour caractériser l'équilibre entre croissance et recyclage de la croûte. Ce travail pose aussi la question des éventuelles corrélations régionales, qui ont souvent été ignorées. Dans le cas du Junggar Occidental et du Junggar Oriental, la difficulté des corrélations repose essentiellement sur l'absence de données de détail sur la stratigraphie des terrains et l'architecture des chaines d'accrétion, car les données géologiques et structurales ont souvent été délaissées au profit de données géochronologiques et géochimiques. Les futures études se doivent donc d'apporter des contraintes de terrain, afin d'exploiter au mieux le laboratoire naturel qu'est l'Asie Centrale.

REFERENCES BIBLIOGRAPHIQUES

A

- ABDULLIN, A.A., VOLKOV, V.M., SCHERBA, G.N., 1980. Chu-Ili Ore Belt. Nauka, Alma-ata. 503 pp. (in Russian).
- ABRAJEVITCH, A., VAN DER VOO, R., BAZHENOV, M.L., LEVASHOVA, N.M., MCCAUSLAND, P.J.A., 2008. The role of the Kazakhstan orocline in the late Palaeozoic amalgamation of Eurasia. *Tectonophysics*, **455**, 61-76.
- ABRAJEVITCH, A.V., VAN DER VOO, R., LEVASHOVA, N.M., BAZHENOV, M.L., 2007. Paleomagnetism of the mid-Devonian Kurgasholak Formation, Southern Kazakhstan: Constraints on the Devonian paleogeography and oroclinal bending of the Kazakhstan volcanic arc. *Tectonophysics*, **441**, 67-84.
- ADAMS, C.J., CAMPBELL, H.J., GRIFFIN, W.R., 2007. Provenance Comparisons of Permian to Jurassic Tectonostratigraphic Terranes in New Zealand: Perspectives from detrital zircon age patterns. *Geological Magazine*, **144**, 701-729.
- AITCHISON, J.C., IRELAND, T.R., BLAKE, J.M.C., FLOOD, P.G., 1992. 530 Ma zircon age for ophiolite from New England orogen: oldest rocks known from eastern Australia. *Geology*, **20**, 125-128.
- ALEXEIEV, D.V., COOK, H.E., BUVTYSHKIN, V.M., GOLUB, L.Y., 2009. Structural evolution of the Ural-Tian Shan junction: A view from Karatau ridge, South Kazakhstan. *Comptes Rendus Geoscience*, **341**, 287-297.
- ALEXEIEV, D.V., RYAZANTSEV, A.V., KRÖNER, A., TRETYAKOV, A.A., XIA, X., LIU, D.Y., 2010. Geochemical data and zircon ages for rocks in a high-pressure belt of Chu-Yili Mountains, southern Kazakhstan: Implications for the earliest stages of accretion in Kazakhstan and the Tianshan. *Journal of Asian Earth Sciences*, doi: 10.1016/j.jseaes.2010.09.004, in press.
- ALEXYUTIN, M.V., BACHTADSE, V., ALEXEIEV, D.V., NIKITINA, O.I., 2005. Palaeomagnetism of Ordovician and Silurian rocks from the Chu-Yili and Kendyktas Mountains, South Kazakhstan. *Geophysical Journal International*, **162**, 321-331.
- ALLEN, C.R., 1965. Transcurrent faults in continental areas A symposium on continental drift. *Philosophical Transaction of the Royal Society London serie A*, **258**, 82-89.
- ALLEN, M.B., ANDERSON, L., SEARLE, R.C., BUSLOV, M., 2006. Oblique rift geometry of the West Siberian Basin: tectonic setting for the Siberian flood basalts. *Journal of the Geological Society*, **163**, 901-904.
- ALLEN, M.B., SENGOR, A.M.C., NATALIN, B.A., 1995. Junggar, Turfan and Alakol basins as Late Permian to Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central-Asia. *Journal of the Geological Society*, 152, 327-338.
- ALLEN, M.B., VINCENT, S.J., 1997. Fault reactivation in the Junggar region, northwest China: the role of basement structures during Mesozoic-Cenozoic compression. *Journal of the Geological Society*, 154, 151-155.
- ALLEN, M.B., WINDLEY, B.F., ZHANG, C., 1993. Paleozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia. *Tectonophysics*, **220**, 89-115.
- ALLEN, R., CARTER, A., NAJMAN, Y., BANDOPADHYAY, P.C., CHAPMAN, H.J., BICKLE, M.J., GARZANTI, E., VEZZOLI, G., ANDO, S., FOSTER., G.L., GERRING, C., 2008. New constraints on the sedimentation and uplift history of the Andaman-Nicobar accretionary prism, South Andaman Island, in: DRAUT, A., CLIFT, P.D., SCHOLL, D.W., eds., Formation and Applications of the Sedimentary Record in Arc Collision Zones. Geological Society of America, Special Paper 436, 223-256.
- ALVAREZ-MARRON, J., BROWN, D., PEREZ-ESTAUN, A., PUCHKOV, V., GOROZHANINA, Y., 2000. Accretionary complex structure and kinematics during Paleozoic arc-Continent collision in the southern Urals. *Tectonophysics*, 325, 175-191.
- AMATO, J.M., PAVLIS, T.L., 2010. Detrital zircon ages from the Chugach terrane, southern Alaska, reveal multiple episodes of accretion and erosion in a subduction complex. *Geology*, **38**, 459-462.

- AMELIN, Y., LEE, D.-C., HALLIDAY, A.N., PIDGEON, R.T., 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. *Nature*, **399**, 252-255.
- AN, F., ZHU, Y.F., 2009. SHRIMP U-Pb zircon ages of tuff in Baogutu Formation and their geological significances. *Acta Petrologica Sinica*, **25**, 1437-1445 (in Chinese).
- ANDERSEN, T. 2002. Correction of common Pb in U-Pb analyses that do not report ²⁰⁴Pb. *Chemical Geology*, **192**, 59-79.
- ANDERSON, T., 2005. Detrital zircon as tracers of sedimentary provenance; limiting conditions from statistics and numerical simulation. *Chemical Geology*, **216**, 249-270.
- AOKI, Y., TAMANO, T., KATO, S., 1982. Detailed structure of the Nankai Trough from migrated seismic sections. American Association of Petroleum Geologists Memoir 34, 309-322.
- ARGAND, E., 1924. La tectonique de l'Asie. Extrait du Compte-rendu du XIIIe Congrès géologique international 1922 (Liège), 1, 171-372.
- ARMSTRONG, R.L., 1988. Mesozoic and Cenozoic magmatic evolution of the Canadian Cordillera, in: CLARK, S.P., JR., BURCHFIEL, B.C., SUPPE, J., eds., Processes in continental lithospheric deformation. Geological Society of America, Special Paper 218, 55-91.
- ARMSTRONG, R.L., 1991. The persistent myth of crustal growth. *Australian Journal of Earth Sciences*, **38**, 613-630.
- AVDEEV, A.V., 1984. Ophiolite zones and the geologic history of Kazakhstan from the mobilist standpoint. International Geology Review, 26, 995-1005.
- AVOUAC, J.-P., TAPPONNIER, P., 1993. Kinematic model of active deformation in central Asia. *Geophysical Research Letters*, **20**, 895-898.
- AVOUAC, J.-P., TAPPONNIER, P., BAI, M., YOU, H., WANG, G., 1993. Active thrusting and folding along the northern Tien-Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. *Journal of Geophysical Research*, **98**, 6755-6804.

В

- BADARCH, G., CUNNINGHAM, W.D., WINDLEY, B.F., 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. *Journal of Asian Earth Sciences*, **21**, 87-110.
- BAHLBURG, H., VERVOORT, J.D., DU FRANE, S.A., AUGUSTSSON, C., REIMANN, C., 2009. Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America. *Earth Science Reviews*, **97**, 215-241.
- BAILEY, J.C., 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. *Chemical Geology*, 32, 139-154.
- BAILEY, R.C., HALLS, H.C., 1984. Estimate of confidence in paleomagnetic directions derived from remagnetization circle and direct observational data. *Journal of Geophysics*, **54**, 174-182.
- BAKER, D.R., CONTE, A.M., FREDA, C., OTTOLINI, L., 2002. The effect of halogens on Zr diffusion and zircon dissolution in hydrous metaluminous granitic melts. *Contributions to Mineralogy and Petrology*, **142**, 666-678.
- BALLANCE, P.F., SCHOLL, D.W., VALLIER, T.L., STEVENSON, A.J., RYAN, H., HERZER, R.H., 1989. Subduction of a Late Cretaceous seamount of the Louisville Ridge at the Tonga Trench: A model of normal and accelerated tectonic erosion. *Tectonics*, **8**, 953-962.
- BALLY, A.W., 1975. A geodynamic scenario for hydrocarbon occurrences. Proceedings 9th World Petroleum Congress, Tokyo, **2**, 33-44.
- BANDALETOV, S.M., 1969. The Silurian of Kazakhstan. Nauka, Alma-Ata, 149 pp. (in Russian).
- BARTON, E.S., COMPSTON, W., WILLIAMS, I.S., BRISTOW, J.W., HALLBAUER, D.K., SMITH, C.B., 1989. Provenance ages for the Witwatersrand Supergroup and the Ventersdorp Contact Reef: Constraints from ion microprobe U-Pb ages of detrital zircons. *Economic Geology*, 84, 2012-2019.

- BAZHENOV, M.L., COLLINS, A.Q., DEGTYAREV, K.E., LEVASHOVA, N.M., MIKOLAICHUK, A.V., PAVLOV, V.E., VAN DER VOO, R., 2003. Paleozoic northward drift of the North Tien Shan (Central Asia) as revealed by Ordovician and Carboniferous paleomagnetism. *Tectonophysics*, **366**, 113-141.
- BEA, F., MONTERO, P., GONZALEZ-LODEIRO, F., TALAVERA, C., 2007. Zircon Inheritance Reveals Exceptionally Fast Crustal Magma Generation Processes in Central Iberia during the Cabro-Ordovician. *Journal of Petrology*, 48, 2327-2339.
- BEAUMONT, C., ELLIS, S. PFIFFNER, A. 1999. Dynamics of sediment subduction accretion at convergent margins: Short-term modes, long-term deformation, and tectonic implications. *Journal of Geophysical Research*, 104, 17573-17601
- BECK, M.E., 1980. Paleomagnetic record of plate-margin tectonic processes along the western edge of North America. *Journal of Geophysical Research*, **85**, 7115-7131.
- BECK, M.E., 1983. On the mechanism of tectonic transport in zones of oblique subduction. *Tectonophysics*, **93**, 1-11.
- BECK, M.E., 1986. Model for late Mesozoic-early Tertiary tectonics of coastal California and western Mexico, and speculations on the origin of the San Andreas fault. *Tectonics*, **5**, 49-64.
- BECK, M.E., 1991. Coastwise transport reconsidered: Lateral displacements in oblique subduction zones, and tectonic consequences. *Physics of the Earth and Planetary Interiors*, **68**, 1-8.
- BECK, M.E., BURMESTER, R.R., DRAKE, R.E., RILEY, P.D., 1994. A tale of two continents: Some tectonic contrasts between the central Andes and the North American Cordillera, as illustrated by their paleomagnetic signatures. *Tectonics*, **13**, 215-224.
- BECK, S.L., ZANDT, G., MYERS, S.C., WALLACE, T.C., SILVER, P.G., DRAKE, L., 1996 Crustal-thickness variations in the central Andes. *Geology*, 24, 407-410.
- BELOUSOVA, E., GRIFFIN, W., O'REILLY, S.Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples From Eastern Australian Granitoids. *Journal of Petrology*, 47, 329-353.
- BELOUSOVA, E., GRIFFIN, W., O'REILLY, S.Y., FISHER, N., 2002. Igneous zircon: trace element composition as an indicator of source rock type. *Contributions to Mineralogy and Petrology*, **143**, 602-622.
- BELOUSOVA, E., KOSTITSYN, Y.A., GRIFFIN, W.L., BEGG, G.C., O'REILLY, S.Y., PEARSON, N.J., 2010. The growth of the continental crust: Constraints from zircons Hf-isotope data. *Lithos*, **119**, 457-466.
- BERRY, R.F., JENNER, G.A., MEFFRE, S., TUBRETT, M.N., 2001. A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania? *Earth and Planetary Science Letters*, **192**, 207-222.
- BERTHE, D., BRUN, J.-P., 1980. Evolution of folds during progressive shear in the South Armorican Shear Zone, France. *Journal of Structural Geology*, **2**, 127-133.
- BERZIN, N.A., DOBRETSOV, N.L., 1994. Geodynamic evolution of southern Siberia in late Precambrian-early Paleozoic time, in: COLEMAN, R.G., ed., Reconstruction of the Paleo-Asian Ocean. Proceedings 29th Internatational Geological Congress, Utrecht, 53-70.
- BESSE, J., COURTILLOT, V., 1991. Revised and synthetic apparent polar wander paths of the African, Eurasian, North American and Indian plates, and true polar wander since 200 Ma, *Journal of Geophysical Research*, 96, 4029-4050.
- BESSE, J., COURTILLOT, V., 2002. Apparent and true polar wander and the geometry of the geomagnetic field in the last 200 million years. *Journal of Geophysical Research*, **107** (B11), 2300, doi:10.129/2000JB000050.
- BGMRXUAR (BUREAU OF GEOLOGY AND MINERAL RESSOURCES OF XINJIANG UYGUR AUTONOMOUS REGION), 1993. Regional Geology of Xinjiang Uygur Autonomous Region Geological Publishing House, Beijing. 841 pp. (in Chinese).
- BINGEN, B., AUSTRHEIM, H., WHITEHOUSE, M., 2001. Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of W. Norway and implications for zircon geochronology. *Journal of Petrology*, 42, 355-375.
- BISKE, Y.S., 1996. Paleozoic Structure and History of the Southern Tian Shan. St. Peterburg University Publishing, St. Peterburg (in Russian).

- BISKE, Y.S., SELTMANN, R., 2010. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans, *Gondwana Research*, **17**, 602-613.
- BIZZARRO, M., BAKER, J. A., HAACK, H., ULFBECK, D., ROSING, M., 2003. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites. *Nature*, **421**, 931-933.
- BLAKE, M.C., JR., 1984. Franciscan geology of northern California. Pacific Section Society of Economic Mineralogists and Paleontologists, Los Angeles, 254 pp..
- BLAKE, M.C., JR., JAYKO, A.S., MCLAUGHLIN, R.J., UNDERWOOD, M.B., 1988. Metamorphic and tectonic evolution of the Franciscan complex, northern California, in ERNST, W.G., ed., Metamorphism and Crustal Evolution of the Western United States, Englewood Cliffs, 1036-1059.
- BLICHERT-TOFT, J., ALBARÈDE, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. *Earth and Planetary Science Letters*, **148**, 243-258.
- BLICHERT-TOFT, J., CHAUVEL, C., ALBAREDE, F., 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector multiple collector ICP-MS. *Contributions to Mineralogy and Petrology*, **127**, 248-260.
- BONAZZI, P., MENCHETTI, S., 2004. Manganese in monoclinic members of the epidote group: piedmontite and related minerals, in: LIEBSCHER, A., FRANZ, G., eds., Epidotes. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry 56, 495-552.
- BORRADAILE, G.J., 1991. Correlation of strain with anisotropy of magnetic susceptibility. *Pure Applied Geophysics*, **135**, 15-29.
- BRADLEY, D., KUSKY, T., HAEUSSLER, P., GOLDFARB, R., MILLER, M., DUMOLIN, J., NELSON, S.W., KARL, S., 2003. Geologic signature of early Tertiary ridge subduction in Alaska, in: SISSON, V.B., ROESKE, S.M., PAVLIS, T.L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America, Special Paper **371**, 19-50.
- BRADLEY, D.C., KUSKY, T.M., HAEUSSLER, P.J., KARL, S.M., DONLEY, D.T., 1999. Geologic map of the Seldovia quadrangle, south-central Alaska: U.S. Geological Survey Open-File Report 99-18, scale 1:250,000, 1 sheet.
- BRIGGS, S.M., YIN, A., MANNING, C.E., CHEN, Z.L., WANG, X.F., GROVE, M., 2007. Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System. *Geological Society of America Bulletin*, **119**, 944-960.
- BROWN, D., ALVAREZ-MARRON, J., PEREZ-ESTAUN, A., GOROZHANINA, Y., BARYSHEV, V., PUCHKOV, V., 1997. Geometric and kinematic evolution of the foreland thrust and fold belt in the southern Urals. *Tectonics*, 16, 551-562.
- BROWN, D., ALVAREZ-MARRON, J., PEREZ-ESTAUN, A., PUCHKOV, V., GOROZHANINA, Y., AYARZA, P., 2001. Structure and evolution of the Magnitogorsk forearc basin: Identifying upper crustal processes during arccontinent collision in the southern Urals. *Tectonics*, 20, 364-375.
- BROWN, D., SPADEA, P., PUCHKOV, V., ALVAREZ- MARRON, J., HERRINGTON, R., WILLNER, A.P., HETZEL, R., GOROZHANINA, Y., JUHLIN, C., 2006. Arc-continent collision in the Southern Urals. *Earth Science Reviews*, **79**, 261-287.
- BROWN, G.C, THORPE, R.S., WEBB, P.C. 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. *Journal of the Geological Society*, **141**, 413-426.
- BROWN, M., 1998. Unpairing metamorphic belts: P T paths and a tectonic model for the Ryoke Belt, southwest Japan. *Journal of Metamorphic Geology*, **16**, 3-22.
- BROWN, M., 2006. Duality of thermal regimes is the dis- tinctive characteristic of plate tectonics since the Neoarchean. *Geology*, **34**, 961-964.
- BUCKMAN, S., AITCHISON, J.C., 2001. Middle Ordovician (Llandeilan) radiolarians from West Junggar, Xinjiang, China. *Micropaleontology*, 47, 359-367.
- BUCKMAN, S., AITCHISON, J.C., 2004. Tectonic evolution of Paleozoic terranes in West Junggar, Xinjiang, NW China, in: MALPAS, J., FLETCHER, C.J., AITCHISON, J.C., eds., Aspects of the Tectonic Evolution of China. The Geological Society, London, Special Publication 226, 101-129.

- BURCHFIEL, B.C., BROWN, E.T., DENG, Q.D., FENG, J., MOLNAR, P., SHI, J.B., WU, Z.M., YOU, H.C., 1999. Crustal shortening on the Margins of the Tien Shan, Xinjiang, China. *International Geology Review*, **41**, 665-700.
- BURCHFIEL, B.C., CHEN, Z., LIU, Y., ROYDEN, L.H., 1995. Tectonics of the Longmen Shan and adjacent regions, central China. *International Geology Review*, **37**, 661-735.
- BURTMAN, V.S., 1964. The Talasso-Fergana Strike-slip Fault. Nauka, Moscow, 144 pp. (in Russian).
- BURTMAN, V.S., 1975. Structural geology of Variscan Tien Shan, USSR. American Journal of Science, 275-A, 157-186.
- BURTMAN, V.S., 1980. Faults of middle Asia. American Journal of Science, 280, 725-744.
- BUSLOV, M.M., SAPHONOVA, I.Y., WATANABE, T., OBUT, O.T., FUJIWARA, Y., IWATA, K., SEMAKOV, N.N., SUGAI, Y., SMIRNOVA, L.V., KAZANSKY, A.Y., 2001. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. *Geosciences Journal*, 5, 203-224.
- BUSLOV, M.M., WATANABE, T., FUJIWARA, Y., IWATA, K., SMIRNOVA, L.V., SAFONOVA, I.Y., SEMAKOV, N.N, KIRYANOVA, A.P., 2004. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. *Journal of Asian Earth Sciences*, 23, 655-671.
- BUTLER, R.F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes, Blackwell Scientific Publications, Boston, 336 pp..
- BYRNE T., 1984. Early deformation in mélange terranes of the Ghost Rocks formation, Kodiac Island, Alaska, in: RAYMOND, L.A., ed., Mélanges, their nature, origin and significance. Geological Society of America, Special Paper 198, 21-52.
- BYRNE T., 1986. Eocene underplating along the Kodiak Shelf, Alaska: Implications and regional correlations. Tectonics, 5, 403-421.
- BYRNE, T., FISHER, D., 1987. Episodic growth of the Kodiak convergent margin. Nature, 325, 338-341.

C

- CADET, J.-P., KOBAYASHI, K., LALLEMAND, S., JOLIVET, L., AUBOUIN, J., BOULEGUE, J., DUBOIS, J., HOTTA, H., ISHII, T., KONISHI, K., NIITSUMA, N., SHIMAMURA, H., 1987. Deep scientific dives in the Japan and Kuril Trenches. *Earth Planetary Science Letters*, **83**, 313-328.
- CAI, C.Y., WANG, Y., 1995. Devonian floras, in : LI, X.X., ed., Fossil floras of China through the geological ages, Guangdong Science and Technology Press, Guangzhou, 28-77 (in Chinese).
- CALLEC, Y., DELVILLE, E., DESAUBLIAUX, G., GRIBOULARD, R., HUYGHE, P., MASCLE, A., MASCLE, G., NOBLE, M., PADRON DE CARILLO, C., SCHMITZ, J., 2010. The Orinoco turbidite system: Tectonic controls on seafloor morphology and sedimentation. *American Association of Petroleum Geologists Bulletin*, **94**, 869-887.
- CAMERON, A.E., SMITH, D.E., WALKER, R.L., 1969. Mass spectrometry of nanogram size samples of lead. Analytical Chemistry, 41, 525-526.
- CAO, F.G., TU, Q.J., ZHANG, X.M., REN, Y., LI, S.L., DONG, F.R., 2006. Preliminary determination of the Early Paleozoic magmatic arc in the Karlik Mountains, East Tianshan, Xinjiang, China - Evidence from zrcon SHRIMP U-Pb dating of granite bodies in the Tashuihe area. *Regional Geology of China*, 8, 923-927 (in Chinese).
- CARIGNAN, J., HILD, P., MEVELLE, G., MOREL, J., YEGHICHEYAN, D. 2001. Routine Analyses of Trace Elements in Geological Samples using Flow Injection and Low Pressure On-Line Liquid Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, DR-N, UB-N, AN-G and GH, *Geostandards Newsletter*, 25, 187-198.
- CARRERAS, J., DRUGUET, E., GRIERA, A., 2005. Shear zone-related folds. *Journal of Structural Geology*, 27, 1229-1251.
- CARROLL, A.R., 1998. Upper Permian lacustrine organic facies evolution, Southern Junggar, NW China. Organic Geochemistry, 28, 649-667.

- CARROLL, A.R., GRAHAM, S.A., HENDRIX, M.S., YING, D., ZHOU, D., 1995. Late Paleozoic tectonic amalgamation of NW China: sedimentary records of the northern Tarim, northwestern Turpan, and southern Junggar basins. *Geological Society of America Bulletin*, **107**, 571-594.
- CARROLL, A.R., LIANG, Y.H., GRAHAM, S.A., XIAO, X.C., HENDRIX, M.S., CHU, J.C., MCKNIGHT, C.L., 1990. Junggar Basin, Northwest China – trapped Late Paleozoic ocean. *Tectonophysics*, **181**, 1-14.
- CASEY, T.A.L., DICKINSON, W.R., 1976. Sedimentary serpentinite of the Miocene Big Blue Formation near Cantua Creek, California, in: Fritsche, A.E., ed., Neogene symposium volume, Pacific Section Society of Economic Mineralogists and Paleontologists, Los Angeles, California, 65-74.
- CAWOOD, P.A., 1990. Provennance mixing in an intraoceanic subduction zone: Tonga Trench-Louiville Ridge collision zone, Southwest Pacific. *Sedimentary Geology*, **67**, 35-53.
- CAWOOD, P.A., 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. *Earth Science Reviews*, **69**, 249-279.
- CAWOOD, P.A., BUCHAN, C., 2007. Linking accretionary orogenesis with supercontinent assembly. *Earth Science Reviews*, **82**, 217-256.
- CAWOOD, P.A., KRÖNER, A., COLLINS, W.J., KUSKY, T.M., MOONEY, W.D., WINDLEY, B.F., 2009. Accretionary orogen through earth history, in: CAWOOD, P.A., KRÖNER, A., eds., Earth Accretionary systems in space and time. The Geological Society, London, Special Publication **318**, 1-36.
- CAWOOD, P.A., LEITCH, E.C., 1985. Accretion and dispersal tectonics of the southern New England Fold Belt, Eastern Australia, in HOWELL, D.G., ed., Tectonostratigraphic terranes of the Circum-Pacific region, Circum-Pacific Council for Energy and Mineral Ressources, **1**, 481-492.
- CAWOOD, P.A., LEITCH, E.C., 2002. Terra Australis orogen: Rodinian breakup and subduction initiation in the Pacific Ocean. *Geological Society of Australia, Abstracts*, **65**, 13-15.
- CAWOOD, P.A., LEITCH, E.C., MERLE, R.E., NEMCHIN, A.A., 2011. Orogenesis without collision: Stabilizing the Terra Austalis accretionary orogen, eastern Australia. *Geological Society of America Bulletin*, doi: 10.1130/B30415.1, **in press**.
- CAWOOD, P.A., NEMCHIN, A.A., 2000. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. *Sedimentary Geology*, **134**, 209-234.
- CAWOOD, P.A., NEMCHIN, A.A., LEVERENZ, A., SAEED, A., BALLANCE, P.F., 1999. U/Pb dating of detrital zircons: Implications for the provenance record of Gondwana margin terranes. *Geological Society of America Bulletin*, **111**, 1107-1119.
- CAWOOD, P.A., PISAREVSKY, S.A., LEITCH, E.C., 2011. Unravelling the New England Orocline, East Gondwana Accretionary Margin. *Tectonics*, **30**, TC5002, doi: 10.1029/2011TC002864.
- CHAMOT-ROOKE, N., RABAUTE, A., 2007. Plate tectonic from space. Episodes, 30, 119-124.
- CHAPPELL, B.W., WHITE, A.J.R, 1974. Two contrasting granite types. Pacific Geology, 8,173-174.
- CHARREAU, J., CHEN, Y., GILDER, S., DOMINGUEZ, S., AVOUAC, J. P., SEN, S., SUN, D. J., LI, Y. G., WANG, W. M., 2005. Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): implications for Late Cenozoic uplift of the Tianshan mountains. *Earth and Planetary Science Letters*, 230, 177-192.
- CHARREAU, J., GUMIAUX, C., AVOUAC, J-P., AUGIER, R., CHEN, Y., BARRIER, L., ET AL., 2009. The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan : Climatic and tectonic implications. *Earth and Planetary Science Letters*, **287**, 298-310.
- CHARVET, J., 2011. Late Paleozoic-Mesozoic tectonic evolution of SW Japan: a review, in: The Fifth Workshop on 1:5M International Geological Map of Asia, Beijing, Proceedings, 219-226.
- CHARVET, J., FABBRI, O., 1987. Vue générale sur l'Orogenèse Shimanto et l'évolution tertiaire du Japon sudouest. *Bulletion de la Société Géologique de France*, **8**, III, 1171-1188.
- CHARVET, J., FAURE, M., CARIDROIT, M., GUIDI, A., 1985. Some tectonic and tectonogenetic aspects of SW Japan: an alpine-type orogen in an island-arc position, in: NASU, N., KOBAYASHI, K., UYEDA, S., KUSHIRO, I., KAGAMI, H., eds., Formation of the Active Margins, terrapub, Tokyo, 791-817.
- CHARVET, J., SHU, L.S., LAURENT-CHARVET, S., 2007. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates. *Episodes*, **30**, 162-186.

- CHARVET, J., SHU, L.S., LAURENT-CHARVET, S., WANG, B., FAURE, M., CLUZEL, D., CHEN, Y., DE JONG, K., 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. *Science in China Earth Science*, **54**, 166-184, doi: 10.1007/s11430-010-4138-1.
- CHEMENDA, A., LALLEMAND, S., BOKUN, A., 2000. Strain partitioning and interplate friction in oblique subduction zones: Constraints provided by experimental modeling. *Journal of Geophysical Research*, **105**, 5567-5581.
- CHEN, B., ARAKAWA, Y., 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. *Geochimica et Cosmochimica Acta*, **69**, 1307-1320.
- CHEN, B., JAHN, B.M., 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications. *Geological Magazine*, **139**, 1-13.
- CHEN, B., JAHN, B.M., 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. *Journal of Asian Earth Sciences*, **23**, 691-703.
- CHEN, C.M., LU, H.F., JIA, D., CAI, D.S., WU, S.M., 1999. Closing history of the southern Tianshan oceanic basin, western China: an oblique collisional orogeny. *Tectonophysics*, **302**, 23-40.
- CHEN, J.F., HAN, B.F, JI, J.Q., ZHANG, L., XU, Z., HE, G.Q. AND WANG, T., 2010a. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. *Lithos*, **115**, 137-152.
- CHEN, J.F., HAN, B.F, ZHANG, L., 2010b. Geochemistry, Sr-Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar, Northwest China. *Acta Petrologica Sinica*, **26**, 2317-2335 (in Chinese).
- CHEN, K., GUMIAUX, C., AUGIER, R., CHEN, Y., WANG, Q.C., LIN, W., WANG, S.L., 2011. The Mesozoic palaeorelief of the northern Tian Shan (China). *Terra Nova*, 23, 195-205.
- CHEN, X., LU, H.F., SHU, L.S., WANG, H.M., ZANG, G.Q., 2002. Study on tectonic evolution of Junggar Basin. *Geological Journal of China Universities*, **8**, 257-267 (in Chinese).
- CHEN, Y., COGNE, J.-P., COURTILLOT, V., AVOUAC, J.-P., TAPPONNIER, P., BUFFETAUT, E., WANG, G.Q, BAI, M.X., YOU, H.Z., LI, M., WEI, C.S., 1991. Paleomagnetic study of Mesozoic continental sediments along the Northern Tien Shan (China) and heterogeneous strain in central Asia. *Journal of Geophysical Research*, **96**, 4065-4082.
- CHEN, Y., COGNE, J.-P., COURTILLOT, V., 1992. New Cretaceous paleomagnetic poles from the Tarim Basin, Northwestern China. *Earth and Planetary Science Letters*, **114**, 17-38.
- CHEN, Y., COURTILLOT, V., COGNE, J.-P., BESSE, J., YANG, Z. Y., ENKIN, R., 1993. The configuration of Asia prior to the collision of India: Cretaceous paleomagnetic constraints. *Journal of Geophysical Research*, **98**, 21927-21941.
- CHEN, Y., SUN, M.S., ZHANG, X.L., 2006. SHRIMP U–Pb dating of zircons from quzrtz diorite at the southeast side of the Baerkule fault, western Junggar, Xinjiang. China. *Geological Bulletin of China*, **25**, 992-994 (in Chinese).
- CHERNIAK, D.J., HANCHAR, J.M., WATSON, E.B., 1997a. Diffusion of tetravalent cations in zircon. *Contributions* to Mineralogy and Petrology, **127**, 383-390.
- CHERNIAK, D.J., HANCHAR, J.M., WATSON, E.B., 1997b. Rare-earth diffusion in zircon. *Chemical Geology*, **134**, 289-301.
- CHERNIAK, D.J., LANFORD, W.A., RYERSON, F.J., 1991. Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques. *Geochimica et Cosmochimica Acta*, **55**, 1663-1673.
- CHERNIAK, D.J., WATSON, E.B., 2001. Pb Diffusion in zircon. Chemical Geology, 172, 5-24.
- CHERNIAK, D.J., WATSON, E.B., 2003. Diffusion in zircon, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry **53**, 113-143.
- CHITALIN, A.F., 1989. Ordovician Stratigraphy of the Spassk Anticlinorium. *Biulleten Moskovskogo obshchestva Ispytatelei Prirody, Otdel Geologicheski*, **64**, 55-63 (in Russian).

- CHOULET, F., CHEN, Y., WANG, B., FAURE, M., CLUZEL, D., CHARVET, J., LIN, W., XU, B., 2010. Late Palaeozoic palegeographic reconstruction of western Central Asia based upon paleomagnetic data and its geodynamic implications. *Journal of Asian Earth Sciences*, doi:10.1016/j.jseaes.2010.07.01, in press.
- CHOULET, F., FAURE, M., CLUZEL, D., CHEN, Y., LIN, W., WANG, B., 2011. From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China. *Gondwana Research*, doi:10.1016/j.gr.2011.07.0105, **in press**.
- CLARK, S.H.B., 1973. The McHugh Complex of south-central Alaska. U.S. Geological Survey Bulletin, 1372D, 1-11.
- CLIFT, P.D., PAVLIS, T., DE BARI, S.M., DRAUT, A.E., RIOUX, M., KELEMEN, P.K., 2005. Subduction erosion of the Jurassic Talkeetna-Bonanza arc and the Mesozoic accretionary tectonics of western North America. *Geology*, 33, 881-884.
- CLIFT, P.D., PECHER, I., KUKOWSKI, N., HAMPEL, A., 2003. Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. *Tectonics*, **22**, doi:10.1029/2002TC001386.
- CLIFT, P.D., VANNUCCHI, P., 2004. Controls on Tectonic Accretion versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. *Reviews of Geophysics*, 42, RG2001, doi: 10.1029/2003RG000127.
- CLOOS, M., 1982. Flow melanges: Numerical modelling ans geologic constraints on their origin in the Franciscan subduction complex. *Geological Society of America Bulletin*, **93**, 330-345.
- CLOOS, M., 1984. Flow melanges and the structural evolution of accretionary wedges, in: RAYMOND, L.A., ed., Melanges: Their nature, origin and significance. Geological Society of America, Special Paper 198, 71-79.
- CLOOS, M., SHREVE, R.L., 1988. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: Part II, implications and discussion. *Pure and Applied Geophysics*, **128**, 501-545.
- CLOWES, R.M., HAMMER, P.T.C., FERNANDEZ-VIEJO, G., WELFORD, K., 2005. Lithospheric structure in northwestern Canada from Lithoprobe seismic refraction and related studies: a synthesis. *Canadian Journal of Earth Sciences*, **42**, 1277-1293.
- CLUZEL, D., ADAMS, C. J., MEFFRE, S., CAMPBELL, H., MAURIZOT, P., 2010. Discovery of Early Cretaceous rocks in New Caledonia; new geochemical and U-Pb zircon age constraints on the transition from subduction to marginal breakup in the Southwest Pacific. *The Journal of Geology*, **118**, 381-397.
- COBLENTZ, D.D., RICHARDSON, R.M., 1996. Analysis of the South American intraplate stress field. *Journal of Geophysical Research*, **101**, 8643-8657.
- COCHERIE, A., FANNING, C.M., JEZÉQUEL, P., ROBERT, M., 2008. LA-MC-ICPMS and SHRIMP U-Pb dating of complex zircons from Quaternary tephras from the French Massif Central : Magma residence time and geochemical implications. *Geochimica et Cosmochimica Acta*, **73**, 1095-1108.
- COE, R.S., GLOBERMAN, B.R., PLUMLEY, P.W., THRUPP, G.A., 1985. Paleomagnetic results from Alaska and their tectonic implications, in: HOWELL, D.G., ed., Tectonostratigraphic terranes of the Circum-Pacific region, Amer. Assoc. Petrol. Geol., Circum-Pacific Council for Energy and Mineral Resources Series, 1, 85-108.
- COGNE, J.-P., 2003. A MacintoshTM application for treating paleomagnetic data and making plate reconstructions. *Geochemical Geophysical Geosystems*, **4**, doi:10.1029/2001GC000227.
- COGNE, J.-P., HALIM, N., CHEN, Y., COURTILLOT, V., 1999. Resolving the problem of shallow magnetizations of Tertiary age in Asia: Insights from pa- leomagnetic data from the Qiangtang, Kunlun, and Qaidam blocks (Tibet, China), and a new hypothesis. *Journal of Geophysical Research*, **104**, 17,715-17,734.
- COGNE, J.-P., KRAVCHINSKY, V.A., HALIM, N., HANKARD, F., 2005. Late-Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic paleomagnetic results from the Trans-Baïkal area (SE Siberia). *Geophysical Journal International*, **163**, 813-832.
- COLEMAN, R.G., 1989, Continental growth of northwest China. Tectonics, 8, 621-635.
- COLLINS, A.Q., DEGTYAREV, K.E., LEVASHOVA, N.M., BAZHENOV, M.L., VAN DER VOO, R., 2003. Early Paleozoic paleomagnetism of East Kazakhstan: implications for paleolatitudinal drift of tectonic elements within the Ural–Mongol belt. *Tectonophysics*, **377**, 229-247.

- COLLINS, W.J., 2002. Nature of extensional accretionary orogens. *Tectonics*, 21, doi: 10.1029/2000TC001272.
- COMPSTON, W., WILLIAMS, I.S., CLEMENT, S.W., 1982. U-Pb ages within single zircons using a sensitive highresolution ion microprobe. American Society of Mass Spectroscopy, 30th Conference, Honolulu, 593-595.
- CONDIE, K.C., 1992. Proterozoic terranes and continental accretion in southwestern North America, in: CONDIE, K.C., ed., Proterozoic Crustal Evolution. Developments in Precambrian Geology, 447-480.
- CONDIE, K.C., 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. *Chemical Geology*, **104**, 1-37.
- CONDIE, K.C., 1998. Episodic continental growth and super- continents: A mantle avalanche connection? *Earth* and *Planetary Science Letters*, **163**, 97-108.
- CONDIE, K.C., 2000. Episodic continental growth models: afterthoughts and extensions. *Tectonophysics*, **322**, 153-162.
- CONDIE, K.C., 2005. Earth as an Evolving Planetary System. Elsevier Academic Press, Amsterdam, 350 pp..
- CONDIE, K.C., 2007. Accretionary orogens in space and time, in: HATCHER, R.D., JR., CARLSON, M.P., MCBRIDE, J.H., MARTINEZ-CATALAN, J.R., eds., 4-D framework of the continental crust. Geological Society of America, Memoir 200, 145-158, doi: 10.1130/2007.1200(09).
- CONDIE, K.C., BEYER, E., BELOUSOVA, E., GRIFFIN, W.L., O'REILLY, S.Y., 2005. U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. *Precambrian Research*, **139**, 42-100.
- CONEY, P.J., JONES, D.L., MONGER, J.W.H., 1980. Cordilleran suspect terranes. Nature, 288, 29-33.
- CONNELLY, W., 1978. Uyak Complex, Kodiak Islands, Alaska: A Cretaceous subduction complex. *Geological Society of America Bulletin*, **89**, 755-769.
- CORFU, F., HANCHAR, J.M., HOSKIN, P.W.O., KINNY, P., 2003. Atlas of zircon textures, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry 53, 469-495.
- CORFU, F., STOTT, G.M., 1993; Age and petrogenesis of two late Archean magmatic suites, northwestern Superior Province, Canada: Zircon U-Pb and Lu-Hf isotopic relations. *Journal of Petrology*, **34**, 817-838.
- COWAN, S.D., 1982. Geological evidence for post-40 m.y. B.P. large-scale northwestward displacement of part of southeastern Alaska. *Geology*, **10**, 309-313.
- COWAN, S.D., 2003. Revisiting the Baranof-Leech River hypothesis for early Tertiary coastwise transport of the Chugach-Prince William terrane. *Earth and Planetary Science Letters*, **213**, 463-475.
- CROOK, K.A.W., 1974. Cratonization of west Pacific-type geosynclines. Journal of Geology, 108, 181-197.

D

- DALZIEL, I.W.D, LAWVER, L.A., MURPHY, J.B., 2000. Plumes, orogenesis, and supercontinental fragmentation. *Earth and Planetary Science Letters*, **178**, 1-11.
- DAVIES, G.F., 1999. Dynamic Earth Plates, Plumes and Mantle Convection. Cambridge University Press.
- DAVIS, D.W., 1982. Optimum linear regression and error estimation applied to U-Pb data. *Canadian Journal of Earth Sciences*, **19**, 2141-2149.
- DAVIS, D.W., WILLIAMS, I.S., KROGH, T.E., 2003. Historical development of zircon geochronology, in: Hanchar, J.M., Hoskin, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry 53, 145-181.
- DAY, R., 1977. TRM and its variation with grain size. Journal of Geomagntism and Geoelectricity, 29, 233-265.
- DE FRANCO, R., GOVERS, R., WORTEL, R., 2008. Nature of the plate contact and subduction zones diversity. *Earth and Planetary Science Letters*, **271**, 245-253.
- DE GRAAFF-SURPLESS, K., MCWILLIAMS, M.O., WOODEN, J.L., IRELAND, T.R., 2000. Limitations of detrital zircon data for prov- enance analysis: an example from the Methow Basin, Washington and British Columbia. Geological Society of America, Abstract Program, 32, 9.

- DE GRAVE, J., BUSLOV, M.M., VAN DEN HAUTE, P., 2007. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. Journal of Asian Earth Sciences, 29, 188-204.
- DE JONG, K., WANG, B., FAURE, M., SHU, L., CLUZEL, D., CHARVET, J., RUFFET, G., CHEN, Y., 2009. New 40 Ar/39 Ar age constraints on the Late Paleozoic tectonic evolution of the western Tianshan (Xinjiang, northwestern China), with emphasis on Permian fluid ingress. *International Journal of Earth Sciences*, 98, 1239-1258.
- DEGTYAREV, K.E., 1999. Tectonic Evolution of the early Paleozoic Active Margin in Kazakhstan. Nauka, Moscow 123 pp. (in Russian).
- DEGTYAREV, K.E., 2003. Position of the Aqtau-Dzungar Microcontinent in the Structural Framework of the Paleozoides of Central Kazakhstan. *Geotectonics*, **37**, 271-288.
- DEGTYAREV, K.E., 2011. Tectonic evolution of Early Paleozoic Island-arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan. *Geotectonics*, **45**, 23-50.
- DEGTYAREV, K.E., RYAZANTSEV, A.V., 2007. Cambrian arc-continent collision in the Paleozoides of Kazakhstan. *Geotectonics*, **41**, 63-86.
- DEGTYAREV, K.E., RYAZANTSEV, A.V., KOTOV, A.B., SAL'NIKOVA, E.B., ANISIMOVA, I.V., YAKOVLEVA, S.Z., 2010. Early Cambrian Ophiolites of the Boshchekul Zone (Central Kazakhstan): Structure of Sections and Age Substantiation. *Doklady Earth Sciences*, **431**, 413-417.
- DEGTYAREV, K.E., SHATAGIN, K.N., KOTOV, A.B., SAL'NIKOVA, E.B., LUCHITSKAYA, M.V., TRET'YAKOV, A.A., YAKOVLEVA, S.Z., 2008a. Late Precambrian Volcanoplutonic Association of the Aktau-Dzhungar Massif, Central Kazakhstan: Structural Position and Age. *Doklady Earth Sciences*, **421**, 879-883.
- DEGTYAREV, K.E., SHATAGIN, K.N., KOTOV, A.B., SAL'NIKOVA, E.B., LUCHITSKAYA, M.V., SHERSHAKOVA, M.M., SHERSHAKOV, A.V., TRET'YAKOV, A.A., 2008b. Early Ordovician Volcanic Complex of the Stepnyak Zone (Northern Kazakhstan): Age Substantiation and Geodynamic Setting. *Doklady Earth Sciences*, **419**, 248-252.
- DEGTYAREV, K.E., SHATAGIN, K.N., KOTOV, A.B., ET AL., 2008c. Composition of Deep Crustal Units of the Chingiz Range, Eastern Kazakhstan: Results of Isotopic Geochemical Study of Paleozoic Granitoids and Volcanic Rocks, in : Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Foldbelt (from Ocean to Continent) (Inst. Earth's Crust, Irkutsk, 2008), 6, 102-103 (in Russian).
- DEGTYAREV, K.E., TRET'YAKOV, A.A., KOTOV, A.B., SHATAGIN, K.N., 2009. Formation of the Continental Crust of the Stepnyak Segment of the Caledonides of Kazakhstan, in: Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Foldbelt (from Ocean to Continent) (Inst. Earth's Crust, Irkutsk, 2009), 7, 87-89 (in Russian).
- DELONG, S.E., SCHWARZ, W.M., ANDERSON, R.N., 1979. Thermal effects of ridge subduction. *Earth and Planetary Science Letters*, 44, 239-246.
- DEMAREST, T.J., 1983. Error analysis for the determination of the tectonic rotation from paleomagnetic data. Journal of Geophysical Research, 88, 4321-4328
- DEWEY, J.F., 1969. Evolution of the Appalachian-caledonian orogen. Nature, 222, 124-129.
- DEWEY, J.F., 1988. The tectonic evolution of the Tibetan Plateau. *Philosophical Transaction of the Royal* Society London serie A, **327**, 379-413.
- DEWEY, J.F., HEMPTON, M R., KIDD, W.S.F., SAROGLU, F., SENGOR, A.M.C., 1986. Shortening of continental lithosphere: The neotectonics of Eastern Anatolia—a young collision zone, in: COWARD, M.P., RIES, A.C., eds., Collision Tectonics. The Geological Society, London, Special Publication 19, 3-36.
- DICKINSON, W.R., 1971. Clastic sedimentary sequences deposited in shelf, slope and trough settings between magmatic arcs and associated trenches. *Pacific Geology*, **8**, 15-30.
- DICKINSON, W.R., 1985. Interpreting provenance relations from detrital modes of sandstones, in: ZUFFA, G.G., ed., Provenance of Arenites. NATO-ASI Series 148, 333-361.
- DICKINSON, W.R., GEHRELS, G.E., 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. *Earth and Planetary Science Letters*, 288, 115-125.

- DICKINSON, W.R., INGERSOLL, R.V., COWAN, D.S., HELMOLD, K.P., SUCZEK, C.A., 1982. Provenance of Franciscan graywackes in coastal California. *Geological Society of America Bulletin*, **93**, 95-107.
- DICKINSON, W.R., SEELY, D.R., 1979. Structure and stratigraphy of forearc regions. American Association of Petroleum Geologists Bulletin, 63, 2-31.
- DICKINSON, W.R., SNYDER, W.S., 1979. Geometry of subducted slabs related to San Andreas transform. *Journal* of Geology, **87**, 609-627.
- DIRKS P.H.G.M., OFFLER R., COLLINS W.J., 1993. Timing of emplacement and deformation of the Tia Granodiorite, southern New England Fold Belt, NSW: Implications for the metamorphic history. *Australian Journal of Earth Sciences*, **40**, 103-108.
- DIRKS, P., HAND M., COLLINS W.J., OFFLER, R., 1992. Structural metamorphic evolution of the Tia Complex, New England Fold Belt—thermal overprint of an accretion subduction complex in a compressional backarc setting. *Journal of Structural Geology*, **14**, 669-688.
- DIXON, D., MCNAIR, A., CURRAN, S.C., 1954. The natural radioactivity of lutetium. *Philosophical Magazine*, **45**, 683-684.
- DOBRETSOV, N., BERZIN, N., BUSLOV, M., 1995. Opening and tectonic evolution of the Paleo-Asian Ocean. International Geology Review, **37**, 335-360.
- DODSON, M.H., 1986. Closure profiles in cooling systems. Materials Science Forum, 7, 145-154.
- DODSON, M.H., COMPSTON, W., WILLIAMS, I.S., WILSON, J.F., 1988. A search for ancient detrital zircons in Zimbabwean sediments. *Journal of the Geological Society*, **145**, 977-983.
- DOMINGUEZ, S., LALLEMAND, S.E., MALAVIEILLE, J., VON HUENE, R., 1998. Upper plate deformation associated with seamount subduction. *Tectonophysics*, **293**, 207-224.
- DRAPER, J., 2005. Age dating of the Thomson Fold Belt a new paradigm required, in: Digging Deeper 3, Geological Survey of Queensland Symposium.
- DUMITRU, T. A., ZHOU, D., CHANG, E., GRAHAM, S. A., HENDRIX, M. S., SOBEL, E. R., CARROLL, A. R., 2001. Uplift, exhumation, and deformation in the Chinese Tian Shan, in: HENDRIX, M.S., DAVIS, G.A., eds., Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation. Geological Society of America Memoir **194**, 71-99.
- DUNLOP, D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoritical curves and tests using titanomagnetite data. *Journal of Geophysical research*, **107**, doi: 10.1029/2001JB000486.
- DUNLOP, D.J., OZDEMIR, O., 1997. Rock magnetism, Fundamentals and Frontiers. Cambridge University Press, Cambridge, 573 pp..

E

- EGANOV, E.A., SOVETOV, Y.K., 1979. The Karatau Range as a Model of Phosphorite Accumulation. Nauka, Novosibirsk, 190 pp. (in Russian).
- EKSTRÖM, G., ENGDAHL, E.R., 1989. Earthquake Source Parametres and Stress Distribution in the Adak Island Region of the Central Aleutian Islands, Alaska. *Journal of Geophysical Research*, **94**, 15499-15519.
- ENGEBRETSON, D.C., COX, A., GORDON, R.G., 1985. Relative motion between oceanic and continental plates in the Pacific basin Geological Society of America, Special Paper **206**, 59 pp..
- ENKIN, R.J., YANG, Z., CHEN, Y., COURTILLOT, V., 1992. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the Present. *Journal of Geophysical Research*, **97**, 13953-13989.
- ERNST, W.G., 2005. Apline and Pacific styles of Phanerozoic mountain building: Subduction-zone petrogenesis of continental crust. *Terra Nova*, **17**, 165-188.
- EVANS, M.E., MCELHINNY, M.W., 1969. An investigation of the origin of stable remanence in magnetite-bearing igneous rocks. *Journal of Geomagnetism and Geoelectricity*, **21**, 757-773.
- EVENSEN, N.M., HAMILTON, P.J., O'NIONS, R.K., 1978. Rare earth abundances in chondritic meteorites. *Geochimica et Cosmochimica Acta*, **42**, 1199-1212.
EVERITT, C.W.F., CLEGG, J.A., 1962. A field test of palaeomagnetic stability. *Geophysical Journal of the Royal Astronomical Society*, **6**, 312-319.

F

- FANG, D., CHEN, H., JIN, G., GUO, Y., WANG, Z., TAN, X., YIN, S., 1990. Late Paleozoic and Mesozoic paleomagnetism and tectonic evolution of Tarim terrane, in: WILEY, T.J., HOWELL, D.G., WONG, F.L., eds., Terrane analysis of China and the Pacific rim, Circum-Pacific Council for Energy and Mineral Resources. Earth Science Series, 13, 251-255.
- FAURE, M., 1985. The Pre-Cretaceous structure of the Outer belt of Southwest Japan. *Tectonophysics*, **113**, 139-162.
- FAURE, M., BE MEZEME, .E, DUGUET, M., CARTIER, C., TALBOT, J., 2005. Paleozoic tectonic evolution of medioeuropa from the example of the french massif central and massif armoricain, in: CAROSI, R., DIAS, R., IACOPINI, D., ROSENBAUM, G., eds., The southern Variscan belt. *Journal of the Virtual Explorer*, 19, 5, doi: 10.3809/jvirtex.2005.00120.
- FAURE, M., CARIDROIT, M., CHARVET, J., 1986. The Late Jurassic oblique collisional orogen of SW Japan. New structural data and synthesis. *Tectonics*, **5**, 1089-1114.
- FAURE, M., CHARVET, J. 1987. Late Permian/early Triassic orogeny in Japan: piling up of nappes, tranverse lineation and continental subduction of the Honshu block. *Earth and Planetary Science Letters*, 84, 295-308.
- FEDO, C.M., SIRCOMBE, K.N., RAINBIRD, R.H., 2003, Detrital zircon analysis of the sedimentary record, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry 53, 277-303.
- FENG, Y., COLEMAN, R.G., TILTON, G., XIAO, X., 1989. Tectonic evolution of the West Junggar region, Xinjiang, China. *Tectonics*, **8**, 729-752.
- FILATOVA, L.I., 1983a. Lower Riphean Stratigraphy and Petrochemistry of the Atasu-Mointy Divide (Central Kazakhstan). *Vestnik Moskovskogo Universiteta, Series 4 Geologiya*, **3**, 13-28 (in Russian).
- FILATOVA, L.I., 1983b. Stratigraphy and Historical Geological Analysis of Precambrian Metamorphic Sequences of Central Kazakhstan, Nedra, Moscow (in Russian).
- FILIPPOVA, I.B., BUSH, V.A., DIDENKO, A.N., 2001. Middle Paleozoic subduction belts: the leading factor in the formation of the Central Asian fold-and-thrust belt. *Russian Journal of Earth Sciences*, **3**, 405-426.
- FINCH, R.J., HANCHAR, J.M., 2003. Structure and chemistry of zircon and zircon-group minerals, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America Reviews in Mineralogy & Geochemistry 53, 1-25.
- FISHER, D., BYRNE, T., 1987. Structural evolution of underthrusted sediments, Kodiak Islands, Alaska. *Tectonics*, **6**, 775-793.
- FISHER, R., 1953. Dispersion on a sphere. Proceedings of the Royal Society, series A, 217, 295-305.
- FITCH, T.J., 1972. Plate convergence, transcurrent faults and internal deformation adjacent to Southwest Asia and the Western Pacific. *Journal of Geophysical Research*, **77**, 4432-4460.
- FLINN, D., 1965. On the symmetry principle and the deformation ellipsoid. Geological Magazine, 102, 36-45.
- FODEN, J., ELBURG, M.A., SMITH, P.B., DOUGHERTY-PAGE, J., BURTT, A., 2006. The timing and duration of the Delamerian orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. *The Journal of Geology*, **114**, 189-210.
- FOSTER, D.A., GRAY, D.R. 2007. Strain rate in Palaeozoic thrust sheets, the western Lachlan Orogen, Australia: Strain analysis and fabric geochronology, in: SEARS, J.W., HARMS, T., EVENCHICK, C.A., eds., Whence the Mountains? Enquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond Price. Geological Society of America, Special Paper **433**, 349–368.
- FOSTER, D.A., GRAY, D.R., 2000. The structure and evolution of the Lachlan Fold Belt (Orogen) of eastern Australia. *Annual Review of Earth and Planetary Sciences*, **28**, 47-80.

- FOSTER, D.A., GRAY, D.R., SPAGGIARI, C., KAMENOV, G., BIERLEIN, F.P., 2009. Palaeozoic Lachlan orogen, Australia; accretion and construction of continental crust in a marginal ocean setting: Isotopic evidence from Cambrian metavolcanic rocks, in: Cawood, P.A., Kröner, A., eds., Earth Accretionary systems in space and time. The Geological Society, London, Special Publication **318**, 329–349
- FRASER, G., ELLIS, D., EGGINS, S., 1997. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. *Geology*, **25**, 607-610.
- FROUDE, D.O., IRELAND, T.R., KINNY, P.D., WILLIAMS, I.S., COMPSTON, W., WILLIAMS, I.R., MYERS, J.S., 1983. Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. *Nature*, **304**, 616-618.
- FYFE, W.S., 1978. The evolution of the Earth's crust: Modern plate tectonics or ancient hot spot tectonics? *Chemical Geology*, 23, 89-114.

G

- GABRIELSE, H., MONGER, J.W.H., WHEELER, J.O., YORATH, C.J., 1991. Tectonic Framework Part A. Morphological belts, tectonic assemblages and terranes, in: GABRIELSE, H., YORATH, C.J., eds., Geology of the Cordilleran Orogen in Canada, Geological Society of America, Denver, 15-28.
- GAETANI, M., JADOUL, F., ERBA, E., GARZANTI, E., 1993. Jurassic and Cretaceous orogenic events in the North Karakorum: age constraints from sedimentary rocks, in: TRELOAR, P.J., SEARLE, M.P., eds., Himalayan Tectonics. The Geological Society, Special Publication 74, 39-52.
- GAO, J., KLEMD, R., 2003. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints. *Lithos*, **66**, 1-22.
- GAO, J., LI, M.S., XIAO, X.C., TANG, Y.Q., HE, G.Q., 1998. Paleozoic tectonic evolution of the Tianshan orogen, northwestern China. *Tectonophysics*, **287**, 213-231.
- GAO, J., LONG, L.L., KLEMD, R., QIAN, Q., LIU, D.Y., XIONG, X.M., SU, W., LIU, W., WANG, Y.T., YANG, F.Q., 2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks. *International Journal of Earth Sciences*, 98, 1221-1238.
- GAUDETTE, H.E., VITRAC-MICHARD, A., ALLEGRE, C.J., 1981. North American Precambrian history recorded in a single sample: high-resolution U-Pb systematics of the Potsdam Sandstone detrital zircons, New York State. *Earth and Planetary Science Letters*, **54**, 248-260.
- GEHRELS, G.E., 2000. Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California, in SOREGHAN, J., GEHRELS, G.E., eds., Paleozoic and Triassic paleogeography and tectonics of western Nevada and Northern California. Geological Society of America, Special Paper **347**, 1-17.
- GEHRELS, G.E., DICKINSON, W.R., ROSS, G.M., STEWART, J.H., HOWELL, D.G., 1995. Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America. *Geology*, **23**, 831-834.
- GEHRELS, G.E., STEWART, J.H., KETNER, K.B., 2002. Cordilleran-margin quartzites in Baja California implications for tectonic transport. *Earth and Planetary Science Letters*, **199**, 201-210.
- GEHRELS, G.E., VALENCIA, V., PULLEN, A., 2006. Detrital zircon geochronology by Laser-Ablation Multicollector ICPMS at the Arizona LaserChron Center, in: LOSZEWSKI, T., HUFF, W., eds., Geochronology: Emerging Opportunities, Paleontology Society Short Course, Paleontology Society Papers, 11, 10 pp..
- GEISLER, T., RASHWAN, A.E.A., RAHN, M.K.W., POLLER, U., ZWINGMANN, H., PIDGEON, R.T., SCHLEICHER, H., TOMASCHEK, F., 2003. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. *Mineralogical Magazine*, **67**, 485-508.
- GEISLER, T., SCHALTEGGER, U., TOMASCHEK, F., 2007. Re-equilibration of Zircon in Aqueous Fluids and Melts. *Elements*, **3**, 43-50.
- GENG, H.Y., SUN, M., YUAN, C., XIAO, W. J., XIAN, W. S., ZHAO, G. C., ZHANG, L. F., WONG, K., WU, F. Y., 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? *Chemical Geology*, **266**, 373-398.

- GENG, H.Y., SUN, M., YUAN, C., ZHAO, G.C., XIAO, W.J., 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. *Journal of Asian Earth Sciences*, 10.1016/j.jseaes.2011.01.006, 42, 854-866
- GHES, M.D., 2006. Terrane structure and geodynamic evolution of the Tien Shan Caledonides. Extended abstract of doctoral dissertation, Bishkek, 48 pp. (in Russian).
- GILDER, S.A., GOMEZ, J., CHEN, Y., COGNE, J.-P., 2008. A new paleogeographic configuration of the Eurasian landmass resolves a paleomagnetic paradox of the Tarim Basin (China). *Tectonics*, 27, TC1012, doi: 10.1029/2007TC002155.
- GILDER, S.A., ZHAO, X.X., COE, R.S., MENG, Z.F., COURTILLOT, V., BESSE, J., 1996. Paleomagnetism, tectonics and geology of the southern Tarim Basin, northwestern China. *Journal of Geophysical Research*, **101**, 22,015-22,031.
- GIRDLER, R.W., 1961. The measurement and computation of anisotropy of magnetic susceptibility of rocks. *Geophysical Journal of the Royal Astronomical Society*, **5**, 34-44.
- GLEN, R.A., 2005. The Tasmanides of eastern Australia, in: VAUGHAN, A.P.M., LEAT, P.T., PANKHURST, R.J., eds., Terrane Processes at the Margins of Gondwana. The Geological Society, London, Special Publication 246, 23–96.
- GLORIE, S., DE GRAVE, J., BUSLOV, M.M., ELBURG, M.A., STOCKLI, D.F., GERDES, A., VAN DEN HAUTE, P., 2010. Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): From emplacement to exhumation. *Journal of Asian Earth Sciences*, 38, 131-146, doi: 10.1016/j.jseaes.2009.12.009.
- GOLDFINGER, C., KULM, L.D., YEATS, R.S., HUMMON, C., HUFTILE, G.J., NIEM, A.R., MCNEIL, L.C., 1996. Oblique strike-slip faulting of the Cascadia submarine forearc: The Daisy Bank fault zone off central Oregon, in: BEBOUT, G.E., SCHOLL, D., KIRBY, S., PLATT, J.P., eds., Subduction top to bottom - AGU Geophysical Monograph, Washington D.C., 96, 65-74.
- GONG, Y.M., 1993. Process-facies types and sequinces of Devonian volcanlc sedimentary successions in northern Xinjiang and their relation to plate tectonics. *Acta geologica Sinica*, **67**, 37-51 (in Chinese).
- GRADSTEIN, F.M., OGG, S.G., SMITH, A.G., 2004. A Geologic Time Scale. Cambridge University Press, Cambridge, 589 pp..
- GRAHAM, J.W., 1949. The stability and significance of magnetism in sedimentary rocks. *Journal of Geophysical Research*, **54**, 131-167.
- GRANAR, L., 1958. Magnetic measurements on Swedish varved sediments. Arkiv för geofysik, 3, 1-40.
- GRAY, D.R., FOSTER, D.A., 2004. Tectonic evolution of the Lachlan Orogen, southeast Australia: Historical review, data synthesis and modern perspectives. *Australian Journal of Earth Sciences*, **51**, 773-817.
- GREEN, A., MILKEREIT, B., PERCIVAL, J., DAVIDSON, A., PARRISH, R., COOK, F., GEIS, W., CANNON, W., HUTCHINSON, D., WEST, G., CLOWES, R., 1990. Origin of deep crystal reflections: seismic profiling across high-grade metamorphic terranes in Canada. *Tectonophysics*, **173**, 627-638.
- GREENE, T.J., CARROLL, A.R., HENDRIX, M.S., GRAHAM, S.A., WARTES, M.A., ABBINK, O.A., 2001, Sedimentary record of Mesozoic deformation and inception of the Turpan-Hami basin, northwest China, in: HENDRIX, M.S., DAVIS, G.A., eds., Paleozoic and Mesozoic tectonic evolution of central Asia—From continental assembly to intracontinental deformation: Geological Society of America, Memoir 194, 317-340.
- GREENLY, E., 1919. The Geology of Anglesey. Memoirs of the Geological Survey of Great Britain, London, 78, 980 pp..
- GRIFFIN, W.L., BELOUSOVA, E.A., SHEE, S.R., PEARSON, N.J., O'REILLY, S.Y., 2004. Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons. *Precambrian Research*, **131**, 231-282.
- GRIFFIN, W.L., PEARSON, N.J., BELOUSOVA, E., JACKSON, S.E., O'REILLY, S.Y., VAN ACHTERBERG, E., SHEE, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. *Geochimica Cosmochimica Acta*, 64, 133-147.

- GRIFFIN, W.L., WANG, X., JACKSON, S.E., PEARSON, N.J., O'REILLY, S.Y., XU, X., ZHOU, X., 2002, Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. *Lithos*, **61**, 237-269.
- GRISHIN, D.V., PECHERSKY, D.M., DEGTYAREV, K.E., 1997. Paleomagnetism and reconstruction of Middle Paleozoic structure of Central Kazakhstan. *Geotectonics*, **1**, 71-81.
- GU, P.Y., LI, Y.J., ZHANG, B., TONG, L.L., WANG, J.N., 2009. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China. *Acta Petrologica Sinica*, **25**, 1364-1372 (in Chinese).
- GUO, H.L., ZHU, R.K., SHAO, L.Y., HE, D.B., LUO, Z., 2002. Lithofacies palaeogeography of the Carboniferous in the northwest of China. *Journal of Paleogeography*, **4**, 25-35 (in Chinese).
- GUO, L.S., LIU, Y.L., WANG, Z.H., SONG, D., XU, F.J., SU, L., 2010. The zircon U-Pb LA-ICP-MS geochronology of volcanic rocks in Baogutu areas, western Junggar. *Acta Petrologica Sinica*, **26**, 471-477 (in Chinese).
- GUO, Y. H., 1983. The glaucophane schist belt in Tangbale of Xinjiang. In: ANON, ed., The Collection of Papers on the Tectonic Plate in North China. Geological Publishing House, Beijing, 89-104.
- GUTSCHER, M-A., SPAKMAN, W., BIJWAARD, H., ENGDAHL, E., 2000. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. *Tectonics*, **19**, 814-833.

Η

- HAINES, P.W., FLÖTTMANN, T., 1998. Delamerian Orogeny and potential foreland sedimentation: a review of age and stratigraphic constraints. *Australian Journal of Earth Sciences*, **45**, 559-570.
- HALLS, H.C., 1976. A least-squares method to find a remanence direction from converging remagnetization circles. *Geophysical Journal of the Royal Astronomical Society*, **45**, 297-304.
- HALLS, H.C., 1978. The use of converging remagnetization circles in paleomagnetism. *Physics of the Earth and Planetary Interiors*, **16**, 1-11.
- HALLSWORTH, C.R., MORTON, A.C., CLAOUÉ-LONG, J., FANNING, C.M., 2000. Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sedimentary Geology, 137, 147-185.
- HAMILTON, W.B., 1970. The Uralides and the motion of the Russian and Siberian platforms. *Geological Society* of America Bulletin, **81**, 2553-2576.
- HAMMER, P.T.C., CLOWES, R.M., 2007. Lithospheric-scale structures across the Alaskan and Canadian Cordillera: comparisons and tectonic implications, in: SEARS, J.W., HARMS, T., EVENCHICK, C.A., eds., Whence the Mountains? Enquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond Price. Geological Society of America, Special Paper 433, 99-116.
- HAMMER, P.T.C., CLOWES, R.M., ELLIS, R.M., 2000. Crustal structure of NW British Columbia and SE Alaska from seismic wide-angle studies: Coast Plutonic Complex to Stikinia. *Journal of Geophysical Research*, 105, 7961-81.
- HAN, B.F., GUO, Z.J., ZHANG, Z.C., ZHANG, L., CHEN, J.F., SONG, B., 2010. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. *Geological Society of America Bulletin*, 122, 627-640.
- HAN, B.F., HE, G.Q., WANG, S.G., 1999. Post-collisional mantle-derived magmatism, underplating and implications for basement of the Junggar basin. *Science in China Series D*, **42**, 113-119 (in Chinese).
- HAN, B.F., JI, J.Q., SONG, B., CHEN, L.H., ZHANG, L., 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I) : Timing of post-collisional plutonism. *Acta Petrologica Sinica*, **22**, 1077-1086 (in Chinese).
- HAN, B.F., WANG, S.G., JAHN, B.M., HONG, D.W., KAGAMI, H., SUN, Y.L., 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd–Sr isotopic evidence, and implications for Phanerozoic crustal growth. *Chemical Geology*, **138**, 135-159.
- HANCHAR, J.M., MILLER, C.F., 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. *Chemical Geology*, **110**, 1-13.

- HANCHAR, J.M., RUDNICK, R.L., 1995. Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. *Lithos*, **36**, 289-303.
- HANCHAR, J.M., VAN WESTRENEN, W., 2007. Rare Earth Element behavior in Zircon-Melt Systems. *Elements*, **3**, 37-42.
- HANCHAR, J.M., WATSON, E.B., 2003. Zircon saturation thermometry, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry **53**, 89-112.
- HANKARD, F., COGNE, J.P., KRAVCHINSKY, V., 2005. A new Late Cretaceous paleomagnetic pole for the west of Amuria block (Khunnen Uul, Mongolia). *Earth and Planetary Science Letters*, **236**, 359-373.
- HANNA, W.F., 1977. Weak-field magnetic susceptibility anisotropy and its dynamic measurement, U.S. Geological Survey Bulletin, 1418, 1-73.
- HARLEY, S.L, KELLY, N.M., 2007. Zircon: Tiny but timely. Elements, 3, 13-18.
- HARLEY, S.L, KELLY, N.M., MÖLLER, A., 2007. Zircon Behaviour and the Thermal Histories of Mountain Chains. *Elements*, **3**, 25-30.
- HASHIMOTO, Y., KIMURA, G., 1999. Underplating process from melange formation to duplexing: Example from the Cretaceous Shimanto Belt, Kii Peninsula, southwest Japan. *Tectonics*, **18**, 92-107.
- HAWKESWORTH, C.J., KEMP, A.I.S., 2006a. Evolution of continental crust. Nature, 443, 811-817.
- HAWKESWORTH, C.J., KEMP, A.I.S., 2006b. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. **Chemical Geology**, 226, 144-162.
- HAY, D.C., DEMPSTER, T.J., 2009a. Zircon alteration, formation and preservation in sandstones. **Sedimentology**, *56*, 2175-2191.
- HAY, D.C., DEMPSTER, T.J., 2009b. Zircon behaviour during low-temperature metamorphism. *Journal of Petrology*, **50**, 571-589.
- HE, G. Q., LI, J. Y., HAO, J., LI, J. L., CHENG, S. D., XU, X., XIAO, X. C., TIAN, P. R., DENG, Z. Q., LI, Y. A., GUO, F. X., 2001. Crustal structure and evolution of Xinjiang, China, Chinese National 305 Project 07-01, Urumqi, 227 pp. (in Chinese).
- HE, G., ZHAO, L., 2011. A Tectonic Sketch Map of Central Asia, in: The Fifth Workshop on 1:5M International Geological Map of Asia, Beijing, Proceedings.
- HE, G.Q., LIU, J.B., ZHANG, Y.Q., XU, X., 2007. Keramay Ophiolitic mélange formed during Early Paleozoic in western Jungar basin. *Acta Petrologica Sinica*, **23**, 1573-1576 (in Chinese)
- HEGNER, E., KLEMD, R., KRÖNER, A., CORSINI, M., ALEXEIEV, D.V., IACCHERI, L.M., ZACK, T., DULSKI, P., XIA X., WINDLEY, B.F., 2010. Chronology and P–T conditions of late Paleozoic high-pressure metamorphism and provenance of mélange sediments in the South Tianshan orogen of Kyrgyzstan. *American Journal of Science*, **310**, 916-950.
- HEINHORST, J., LEHMANN, B., ERMOLOV, P., SERYKH, V., ZHURUTIN, S., 2000. Paleozoic crustal growth and metallogeny of central Asia: evidence from magmatic-hydrothermal ore systems of central Kazakhstan. *Tectonophysics*, 328, 69-87.
- HENDERSON, R.A., 1987. An oblique subduction and transform faulting model for the evolution of the Broken River Province, northern Tasman Orogenic System. *Australian Journal of Earth Sciences*, **34**, 237-249.
- HENDRIX, M.S., 2000. Evolution of Mesozoic sandstone compositions, southern Junggar, northern Tarim, and western Turpan basins, northwest China: a detrital record of the ancestral Tian Shan. *Journal of Sedimentary Research*, **70**, 520-532.
- HENDRIX, M.S., GRAHAM, S.A., CARROLL, A.R., SOBEL, E.R., MCKNIGHT, C.L., SCHULEIN, B.J., WANG, Z., 1992. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. *Geological Society of America Bulletin*, **104**, 53-79.
- HERRINGTON, R., PUCHKOV, V.N., YAKUBCHUK, A., 2005. Reassessment of the Tectonic Zonation of the Uralides: Implications for Metallogeny, in: MCDONNALDS, I., HERRINGTON, R., eds., Mineral Deposits and Earth Evolution, The Geological Society, London, Special Publication 248, 153–166.
- HILDE, T.W.C., 1983. Sediment subduction versus accretion around the pacific. Tectonophysics, 99, 381-397.

- HOFFMAN, K.A., DAY, R., 1978. Separation of multi-component NRM: a general method. *Earth and Planetary Science Letters*, **40**, 433-438.
- HOFFMAN, P.F., 1999. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball earth. *Journal of African Earth Science*, **28**, 17-34.
- HOLE, M.J., ROGERS, G., SAUNDERS, A.D., STOREY, M., 1991. Relation between alkalic volcanism and slab window formation. *Geology*, **19**, 657-660.
- HOSKIN, P.W.O., 2000. Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon. *Geochimica et Cosmochimica Acta*, **64**, 1905-1923.
- HOSKIN, P.W.O., BLACK, L.P., 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. *Journal of Metamorphic Geology*, **18**, 423-439.
- HOSKIN, P.W.O., IRELAND, T.R., 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. *Geology*, **28**, 627-630.
- HOSKIN, P.W.O., KINNY, P.D., WYBORN, D., CHAPPELL, B.W., 2000. Identifying accessory mineral saturation during differentiation behaviour in granitoid magmas: an integrated approach. *Journal of Petrology*, **41**, 1365-1396.
- HOSKIN, P.W.O., SCHALTEGGER, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry **53**, 27-62.
- HOUNSLOW, M.W., DAVYDOV, V.I., KLOOTWIJK, C.T., TURNER, P., 2004. Magnetostratigraphy of the Carboniferous: a review and future prospects. *Newsletter on Carboniferous Stratigraphy*, **22**, 35-41.
- HOWELL, D.G., 1989. Tectonics of Suspect Terranes: mountain building and continental growth. Chapman & Hall, London.
- HOWELL, D.G., MURRAY, R.W., 1986. A budget for continental growth and denudation. Science, 233, 446-449.
- HOWER, J.C., RUPPERT, L.F., EBLE, C.F., 1999. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. *International Journal of Coal Geology*, **39**, 141-153.
- HROUDA, F., KAHAN, S., 1991. The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Moutains, N. Slovakia. *Journal of Structural Geology*, **13**, 431-442.
- HSÜ, K.J., 1966. Mélange concept and its application to an interpretation of the California Coast Range geology. Geological Society of America Abstracts for 1966, 99-100.
- HSÜ, K.J., 1968. The principles of melanges and their bearing on the Franciscan-Knoxville paradoxe. *Geological Society of America Bulletin*, **79** 1063-1074.
- HSÜ, K.J., 1974. Melanges and their distinction from olistostromes, in: DOTT, R.H., JR., SHAVER, R.H., eds., Modern and Ancient Geosynclinal Sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publication 19, 321-333.
- HSÜ, K.J., 1988. Origin of Sedimentary Basins of China, in: Zhu, H., ed., Chinese Sedimentary Basins, Elsevier, 207-227.
- HSÜ, K.J., 1989. Relict back-arc basins: principles of recognition and possible new examples from China, in: KLEINSPEHN, K.L., PAOLA, C., eds., New Perspectives in Basin Analysis, Springer, 245-263.
- HU, A.Q., JAHN, B.M., ZHANG, G.X., CHEN, Y.B., ZHANG, Q.F., 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. *Tectonophysics*, 328, 15-51.
- Hu, A.Q., Zhang, G.X., Chen, Y.B., 2006. Isotope Geochronology and Geochemistry for Major Geological Events of Continental Crustal Evolution of Xinjiang, China, Geological Publishing House, Beijing, 119-161 (in Chinese).
- HUANG, J.H., LU, X.C., ZHU, X.N., ABDUKADAR, P., 1995. Advance in research of the ophiolites in Hongguleleng of North Junggar, Xinjiang. *Xinjiang Geology*, **13**, 20-30.
- HUO, Y., 1984. Petrochemical and REE characteristics of the ophiolites at Tangbale, West Junggar, Xinjiang and their geological significance. *Bulletin of the Xi'an Institute of Geological Sciences*, **7**, 82-94.
- HURLEY, P.M., RAND, J.R., 1969. Predrift continental nuclei. Science, 164, 1229–1242.

HYNDMAN, R.D., CURRIE, C.A., MAZOTTI, S.P., 2005. Subduction zone backarcs, mobile belts and orogenic heat. *GSA Today*, **15**, 4-10.

Ι

- IRELAND, T.R., WILLIAMS, I.S., 2003. Considerations in zircon geochrology by SIMS, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry 53, 215-241.
- IRWIN, W.P., 1972. Terranes of the western Paleozoic and Triassic belt in the southern Klamath Mountains. *California United States Geological Survey Professional Papers*, **800-C**, C103-C111.
- ISOZAKI, Y., 1996. Anatomy and genesis of a subduction-related orogen: A new view of geotectonic subdivision and evolution of the Japanese Islands. *Island Arc*, **5**, 289-320.
- ISOZAKI, Y., 1997. Jurassic accretion tectonics of Japan. Island Arc, 6, 25-51.
- ISOZAKI, Y., AOKI, K., NAKAMA, T., YANAI, S., 2010. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. *Gondwana Research*, **18**, 82-105.
- ISOZAKI, Y., MARUYAMA, S., FURUOKA, F., 1990. Accreted oceanic materials in Japan. *Tectonophysics*, 181, 179-205.

J

- JACKSON S.E., PEARSON, N.J., GRIFFIN, W.L., BELOUSOVA, E.A., 2004. The application of laser abalationinductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U–Pb zircon geochronology. *Chemical Geology*, **211**, 47-69.
- JAHN, B.M., 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic, in: MALPAS, J., FLETCHER, C.J., AITCHISON, J.C., eds., Aspects of the Tectonic Evolution of China. The Geological Society, London, Special Publication 226, 73-100.
- JAHN, B.M., 2010. Accretionary orogen and evolution of the japanese islands Implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan. *American Journal of Science*, **310**, 1210-1249.
- JAHN, B.M., LITVINOVSKY, B., ZANVILEVICH, A.N., REICHOW, M., 2009. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: evolution, petrogenesis and tectonic significance. *Lithos*, **113**, 521–539.
- JAHN, B.M., WU, F.Y., CHEN, B., 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. *Transactions of the Royal Society of Edinburgh: Earth Sciences*, **91**, 181-193.
- JAHN, B.M., WU, F.Y., CHEN, B., 2000b. Massive granitoid generation in Central Asia: Nd isotope evidence and implications for continental growth in the Phanerozoic. *Episodes*, **23**, 82-92.
- JANAK, F., 1965. Determination of anisotropy of magnetic susceptibility of rocks. *Studi Geophysica et Geodaetica*, **9**, 290-301 (in Czech).
- JARRARD, R.D., 1986. Terrane motion by strike-slip faulting of forearc slivers. Geology, 14, 780-783.
- JELINEK, V., 1977. The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Brno, Geofyzika, 1-88 (in Czech).
- JELINEK, V., 1981. Characterization of the magnetic fabric of rocks. *Tectonophysics*, 79, T63-T67.
- JENNER, G.A., CAWOOD, P.A., RAUTENSCHLEIN, M., WHITE, W.M., 1987. Composition of back-arc basin volcanics, Valu Fa Ridge, Lau Basin; evidence for a slab-derived component in their mantle source. *Journal of Volcanology and Geothermal Research*, **32**, 209-222.
- JIAN, P., LIU, D.Y., KRÖNER, A., WINDLEY, B.F., SHI, Y.R., ZHANG, F.Q., SHI, G.H., MIAO, L.C., ZHANG, W., ZHANG, Q., ZHANG, L.Q., REN, J.S., 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: implications for continental growth. *Lithos*, 101, 233-259.

- JIAN, P., LIU, D.Y., SHI, Y.R., ZHANG, F.Q., 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: implications for generation of oceanic crust in the central Asian orogenic belt, in: SKLYAROV, E.V., Ed., Structural and tectonic correlation across the central Asian orogenic collage: northeastern segment. Guidebook and abstract volume of the Siberian workshop IGCP-480.
- JIN, C., HUANG, X., XU, Y., LI, Y., 2001. The Hongguleleng-Aermantai ophiolite and its relationship to mineralogy, in: ZHAO, Z., SHEN, Y., TU, G., eds., Basic Research of the Metallogeny in Xinjiang. Beijing, Science in China, 27-51 (in Chinese).
- JIN, C., XU, Y., 1997. Petrology and genesis of the Bieluagaxi granitoids in Tuoli, Xinjiang, China. Acta Petrologica Sinica, 13, 529-537 (in Chinese).
- JIN, C.W., ZHANG, X.Q., 1993. Geochronology and genesis of the western Junggar granitoids, Xinjiang, China. *Scientia Geologica Sinica*, **28**, 28-36 (in Chinese).
- JIN, H.J., LI, Y.C., 1999. Carboniferous biogenic sedimentary structures on the northwestern margin of Jungar Basin. *Chinese Science Bulletin*, 44, 368-368.
- JIN, Z.D., HUANG, J.H., LI, F.C., 1999. Sm-Nd isotope study and dating on Honguleleng ophiolite in Xinjiang, China. *Chinese Science Bulletin*, **44**, 1914-1917.
- JOHNSON, P.R., WOLDEHAIMANOT, B., 2003. Development of the Arabian Nubian Shield: Perspectives on accretion and deformation in the northern East African orogen and the assembly of Gondwana. In: Yoshida, M., Windley, B.F., Dasgupta, S., eds., Proterozoic East Gondwana: Supercontinent Assembly and Breakup. The Geological Society, London, Special Publication 206, 289-325.
- JOHNSTON, S.T., 2001, The great Alaskan terrane wreck: Reconciliation of paleomagnetic and geological data in the northern Cordillera. *Earth and Planetary Science Letters*, **193**, 259-272.
- JOHNSTON, S.T., WYNNE, P.J., FRANCIS, D., HART, C.J.R., ENKIN, R.J., ENGEBRETSON, D.C., 1996. Yellowstone in Yukon: The Late Cretaceous Carmacks Group, *Geology*, **24**, 997-1000.
- JOLIVET, L., HUCHON, P., RANGIN, C., 1989. Tectonic setting of Western Pacific marginal basins. *Tectonophysics*, 160, 23-47.
- JOLIVET, M., DOMINGUEZ, S., CHARREAU, J., CHEN, Y., LI, Y., WANG, Q., 2010. Mesozoic and Cenozoic tectonic history of the Central Chinese Tian Shan : Reactivated tectonic structures and active deformation. *Tectonics*, **29**, TC6019, doi: 10.1029/2010TC002712.
- JONES, D.L., HOWELL, D.G., CONEY, P.J., MONGER, J.W.H., 1983. Recognition, character and analysis of tectonostratigraphic terranes in western North America, in: HASHIMOTO, M., UYEDA., eds., Accretion tectonics in the circum-Pacific region: Tokyo, Terra Science, 21-35.
- JORDAN, T.E., 1995. Retroarc foreland and related basins, in: BUSBY, C.J., INGERSOLL, R.V., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 331-362.

K

- KARIG, D.E., ANDERSON, R.N., BIBEE, L.D., 1978. Characteristics of back-arc spreading in the Mariana trough. *Journal of Geophysical Research*, 83, 1213-1226.
- KARIG, D.E., SHARMAN, G.F. III, 1975. Subduction and Accretion in Tranches. *Geological Society of America Bulletin*, **86**, 377-389.
- KASYMOV, M.A., 1995. Precambrian of Kazakhstan: a review, in: KANES, W.H., ed., Contributions to Eurasian geology. Aspects of the Geology of Kazakhstan: A Collection of Papers Honoring the 70th Birthday of Academician A.A. Abdulin. Occ. Publ. ESRI, New Series No. 12B, Universities of South Carolina and Utah, 7-12.
- KATILI, J.A., 1970. Large transcurrent faults in Southeast Asia with special reference to Indonesia. *Geologische Rundschau*, **59**, 581-600.
- KAY, S.M., RAMOS, V.A., MARQUEZ, M., 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. *Journal of Geology*, **101**, 703-714.
- KAYUPOV, A.K. (Ed.), 1977. Geology and Metalogeny of the Chingiz–Tarbagatay Anticlinorium. Nauka, Alma-Ata, 532 pp. (in Russian).

- KELSEY, D.E., CLARK, C., HAND, M., 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using metapelitic and metapsammitic granulites. *Journal of Metamorphic Geology*, 26, 199-212.
- KEPPIE, J.D., DOSTAL, J., MURPHY, J.B., NANCE, R.D., 1996. Terrane tranfer between eastern Laurentia and western Gondwanain the Early Paleozoic, in: NANCE, R.D., THOMPSON, M.D., eds., Avalonian and peri-Gondwanan terranes of the circon-North Atlantic. Geological Society of America, Special Paper 304, 369-380.
- KHAIN, E.V., BIBIKOVA, E.V., SALNIKOVA, E.E., KRÖNER, A., GIBSHER, A.S., DIDENKO, A.N., DEGTYAREV, K.E., FEDOTOVA, A.A., 2003. The Palaeo-Asian ocean in the Proterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions. *Precambrian Research*, **122**, 329-358.
- KHAN, S.D., WALKER, D.J., HALL, S.A., BURKE, K.C., SHAH, M.T., STOCLI, L., 2009. Did the Kohistan-Ladakh island arc collide first with India? *Geological Society of America Bulletin*, **121**, 366-384, doi: 10.1130/B26348.1.
- KHERASKOVA, T.N., DIDENKO, A.N., BUSH, V.A., VOLOZH, Y.A., 2003. The Vendian Early Paleozoic history of the continental margin of eastern Paleogondwana, Paleoasian ocean, and Central Asian foldbelt. *Russian Journal of Earth Sciences*, **5**, 165-184.
- KHROMYKH, B.F., 1986. New Data of the Vendian–Early Paleozoic Evolution and Metallogeny of the Boshchekul Ore District. *Izvestiya Akademii Nauk Kazakhstan SSR, Seriya Geologiya*, **6**, 20-34.
- KIMBROUGH, D.L.SMITH, D.P., MAHONEY, J.B., MOORE, T.E., GASTIL, R.G., ORTEGA RIVERA, M.A., FANNING, C.M., 2001. Forearc-basin sedimentary response to rapid Late Cretaceous batholith emplacement in the Peninsular Ranges of southern and Baja California. *Geology*, 29, 491-494.
- KIMURA, G., 1986. Oblique subduction and collision: forearc tectonics of the Kuril Arc. Geology 14, 404-407.
- KIMURA, G., LUDDEN, J., 1995. Peeling oceanic crust in subduction zones. Geology, 23, 217-220.
- KIMURA, G., MUKAI, A., 1991. Undeplated units in an accretionary complex: mélange of the Shimanto Belt of eastern Shikoku, Southwest Japan. *Tectonics*, **10**, 31-50.
- KIMURA, G., SAKAKIBARA, M., OKAMURA, M., 1994. Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan. *Tectonics*, **13**, 905-916.
- KIMURA, T., 1973. The Old Inner Arc of Japan and its deformation, in: Coleman, P.J., ed., The Western pacific Island Arcs, Marginal Seas, Geochemistry, University of Western Australia, 255-273.
- KINNY, P.D., COMPSTON, W., WILLIAMS, I.S., 1991. A reconnaissance ion-probe study of hafnium isotopes in zircons. *Geochimica et Cosmochimica Acta*, **55**, 849-859.
- KINNY, P.D., MAAS, R., 2003. Lu-Hf and Sm-Nd isotope in zircon, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry **53**, 327-341.
- KIRSCHVINK, J.L., 1980. The least squares line and the analysis of paleoamgnetic data. *Geophysical Journal of the Royal Astronomical Society*, **62**, 699-718.
- KLEMD, R., BRÖCKER, M., HACKER, B. R., GAO, J., GANS, P., WEMMER, K., 2005. New age constraints on the metamorphic evolution of the high- pressure/low-temperature belt in the western Tianshan mountains, NW China. *Journal of Geology*, **113**, 157-168.
- KNUDSEN, T.-L., ANDERSEN, T., WHITEHOUSE, M.J., VESTIN, J., 1997. Detrital zircon ages from southern Norway—implications for the Proterozoic evolution of the southwestern Baltic Shield. *Contributions to Mineralogy and Petrology*, 130, 47-58.
- KOBAYASHI, T., 1941. The Sakawa orogenic cycle and its bearing on the origin of the Japanese islands. *Journal* of the Faculty of Science, The University of Tokyo, **5**, 219-578 (in Japanese).
- KOBER, B., 1986. Whole-grain evaporation for ²⁰⁷Pb/²⁰⁶Pb age investigations on single zircons using a doublefilament thermal ion source. *Contributions to Mineralogy and Petrology*, **93**, 482-490.
- KOCHELEK, E.V., AMATO, J.M., PAVLIS, T.L., CLIFT, P.D., 2011. Flysch deposition and preservation of coherent bedding in accretionary complex: Detrital zircon ages from the Upper Cretaceous Valdez Group, Chugach terrane, Alaska. *Lithosphere*, 3, 265-274.

- KONOPELKO, D., BISKE, G., SELTMANN, R., EKLUND O., BELYATSKY, B., 2007. Post-collisional granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan: age, petrogenesis and regional tectonic implications. *Lithos*, **97**, 140-160.
- KONOPELKO, D., BISKE, G., SELTMANNN, R., KISELEVA, M., MATUKOV, D., SERGEEV, S., 2008. Deciphering Caledonian events: timing and geochemistry of the Caledonian magmatic arc in the Kyrgyz Tien Shan. *Journal of Asian Earth Sciences*, **32**, 131-141.
- KONOPELKO, D., SELTMANN, R., BISKE, G., LEPEKHINA, E., SERGEEV, S., 2009. Possible source dichotomy of contemporaneous post-collisional barren I-type versus tin-bearing A-type granites, lying on opposite sides of the South Tien Shan suture. Ore Geology Reviews, 35, 206-216.
- KOROBKIN, V.V., SMIRNOV, A.V., 2006. Paleozoic tectonics and geodynamics of volcanic arcs in northern Kazakhstan. *Russian Geology and Geophysics*, **47**, 462-474.
- KORSCH, R.J., 1977. A framework for the Palaeozoic geology of the southern part of the New England Geosyncline. *Journal of the Geological Society of Australia*, **25**, 339-355.
- KOSLER, J., SYLVESTER, P.J., 2003. Present trends and the future of zircon in geochronology: laser ablation ICPMS, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry 53, 243-275.
- KOVALENKO, V.I., YARMOLYUK, V.V., KOVACH, V.P., KOTOV, A.B., KOZAKOV, I.K., SALNIKOVA, E.B., LARIN, A.M., 2004. Isotopic provinces, mechanism of generation and sources of the continental curst in the Central Asian mobile belt: geological and isotopic evidence. *Journal of Asian Earth Sciences*, 23, 605-627.
- KROGH, T.E., 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. *Geochimica et Cosmochimica Acta*, **37**, 485-494.
- KROGH, T.E., 1982. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. *Geochimica et Cosmochimica Acta*, **46**, 637-649
- KRÖNER, A., ALEXEIEV, D.V., HEGNER, E., ROJAS-AGRAMONTE, Y., CORSINI, M., CHAO, Y., WONG, J., WINDLEY, B.F., LIU, D., TRETYAKOV, A.A., 2011. Zircon and muscovite ages, geochemistry, and Nd–Hf isotopes for the Aktyuz metamorphic terrane: Evidence for an Early Ordovician collisional belt in the northern Tianshan of Kyrgyzstan, *Gondwana Research*, doi: 10.1016/j.gr.2011.05.010, in press.
- KRÖNER, A., ALEXEIEV, D.V., HEGNER, E., CORSINI, M., MIKOLAICHUK, A., XIA, X., ZACK, T., WINDLEY, B.F., SUN, M., ROJAS-AGRAMONTE Y., LIU, D., 2009. New zircon, Sm–Nd, and Ar–Ar ages for Precambrian and Palaeozoic rocks from the Tianshan orogenic belt in Kyrgyzstan and disappearance of the Archaean. International Field Excursion and Workshop on Tectonic Evolution and Crustal Structure of the Paleozoic Chinese Tianshan, Urumqi, China, September 9-19, 2009, 43-44.
- KRÖNER, A., HEGNER, E., LEHMANN, B., HEINHORST, J., WINGATE, M.T.D., LIU, D.Y., ERMELOV, P., 2008. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. *Journal of Asian Earth Sciences*, 32, 118-130.
- KRÖNER, A., WINDLEY, B.F., BADARCH, G., TOMURTOGOO, O., HEGNER, E., JAHN, B.M., GRUSCHKA, S., KHAIN, E.V., DEMOUX, A., WINGATE, M.T.D., 2007. Accretionary growth and crust-formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian Shield, in: HATCHER, R.D., JR., CARLSON, M.P., MCBRIDE, J.H., MARTINEZ-CATALAN, J.R., eds., 4-D framework of the continental crust. Geological Society of America, Memoir 200, 181-210.
- KUENZI, W.D., HORST, O.H., MCGEHEE, R.V., 1979. Effect of Volcanic Activity on Fluvial-Deltaic Sedimentation in a Modern Arc-Trench Gap, Southwestern Guatemala. *Geological Society of America Bulletin*, 90, 827-838.
- KUKOVSKY, N., ONCKEN, O., 2006. Subduction erosion—the 'normal' mode of fore-arc, material transfer along the Chile margin?, in: ONCKEN, O., CHONG, G., FRANZ, G., GIESE, P., GOTZE, H-J., RAMOS, V.A., STRECKER, M.R., WIGGER, P., eds., The Andes: Active Subduction Orogeny. Springer, 217-236.
- KURCHAVOV, A.M., 2008. Geochemistry of Paleozoic ignimbrites in central Kazakhstan and their petrogenetic significance. *Petrology*, **16**, 613-628.
- KURCHAVOV, A.M., GRANKIN, M.S. MAL'CHENKO, E.G., ZHUKOVSKII, V.I., MAZUROV, A.K., KHAMZIN S.K., 1998. New data on the structure of the Devonian volcanic belt of northeastern central Kazakhstan. *Doklady Earth Sciences*, **358**, 83-86.

- KUSKY, T.M., BRADLEY, D.C., 1999. Kinematics of mélange fabrics: Examples and Applications from the McHugh Complex, Kenai Peninsula, Alaska. *Journal of Structural Geology*, **21**, 1773-1796.
- KUSKY, T.M., BRADLEY, D.C., HAEUSSLER, P., 1997a. Progressive deformation of the Chugach accretionary complex, Alaska, during a Paleogene ridge-trench encounter. *Journal of Structural Geology*, **19**, 139-157.
- KUSKY, T.M., BRADLEY, D.C., HAEUSSLER, P., KARL, S., 1997b. Controls on accretion of flysch and mélange belts at convergent margins: Evidence from the Chugach Bay thrust and Iceworm mélange, Chugach accretionary wedge, Alaska. *Tectonics*, 16, 855-878.
- KUSKY, T.M., POLAT, A., 1999. Growth of granite- greenstone terranes at convergent margins, and stabilization of Archean cratons. *Tectonophysics*, **305**, 43-73.
- KUZNETSOV, N.B., SOBOLEVA, A.A., UDORATINA, O.V., GERTSEVA, M.V., 2005. Pre-Ordovician granitoids of the Timan-Urals region and evolution of the Protouralides-Timanides. Geoprint, Syktyvkar, 98 pp. (in Russian).
- KWON, S.T., TILTON, G.R., COLEMAN, R.G., FENG, Y., 1989. Isotopic studies veering on the tectonics of the West Junggar region, Xinjiang, China. *Tectonics*, **8**, 719-727.

L

- LAGABRIELLE, Y., AUZENDE, J.M., 1982. Active in situ disaggregation of oceanic crust and mantle on Gorringe Bank: analogy with ophiolitic massives. *Nature*, **297**, 490-493.
- LAGABRIELLE, Y., POLINO, R., AUZENDE, J-M., BLANCHET, R., CABY, R., FUDRAL, S., LEMOINE, M., MEVEL., C., OHNENSTETTER, M., ROBERT, D., TRICART, P., 1984. Les témoins d'une tectonique intraocéanique dans les domaine téthysien: analyse des rapports entre les ophiolites et leurs couvertures métasédimentaires dans la Zone Piémontaise des Alpes franco-italiennes. *Ofioliti*, **9**, 67-88.
- LAHTINEN, R., KORJA, A., NIRONEN, M., HEIKKINEN, P., 2009. Palaeoproterozoic accretionary processes in Fennoscandia, in: CAWOOD, P.A., KRÖNER, A., eds., Earth Accretionary systems in space and time. The Geological Society, London, Special Publication 318, 237-256.
- LALLEMAND S., HEURET, A., BOUTELIER, D., 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. *Geochemistry Geophysics Geosystems*, **6**, Q09006.
- LALLEMAND S., HEURET, A., FACCENNA, C., FUNICIELLO, F., 2008. Subduction dynamics as revealed by trench migration. *Tectonics*, **27**, doi: 10.1029/2007/ TC002212.
- LALLEMAND, S., LIU, C.S., DOMINGUEZ, S., SCHNÜRLE, P., MALAVIEILLE, J., AND THE ACT SCIENTIFIC CREW, 1999. Trench-parallel stretching and folding of forearc basins and lateral migration of the accretionary wedge in the southern Ryukyus: a case of strain partition caused by oblique convergence. *Tectonics*, **18**, 231-247.
- LALLEMAND, S.E., CULOTTA, R., VON HUENE, R., 1989. Subduction of the Daiichi-Kasima seamount in the Japan trench. *Tectonophysics*, 160, 231-247.
- LANE, N. G., WATERS J. A., MAPLES, C.G., 1997. Echinoderm faunas of the Hongguleleng Formation, Late Devonian (Famennian), Xinjiang-uygur Autonomous Region, People's Republic of China. The Paleontological Society, Memoir 47, 43 pp..
- LANZA, R., MELONI, A., 2006. The Earth's magnetism. Springer, 278 pp..
- LAURENT-CHARVET, S., 2001. Accrétions continentales en Asie centro-orientale : évolution géodynamique et structurale du Tianshan et du Junggar oriental (nord-ouest Chine) au Paléozoïque, Thèse soutenue à l'Université d'Orléans, 312 pp..
- LAURENT-CHARVET, S., CHARVET, J., MONIE, P., SHU, L.S., 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data. *Tectonics*, **22**, 1009-1034.
- LAURENT-CHARVET, S., CHARVET, J., SHU, L., MA, R., LU, H., 2002. Paleozoic late collisional strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China. *Terra Nova*, **14**, 249-256.
- LAWRENCE, S.R., 1990. Aspects of the petroleum geology of the Junggar basin, Northwest China, in: BROOKS, J., ed., Classic Petroleum Provinces. The Geological Society, London, Special Publication **50**, 545-557.

- LE BAS, M., LE MAITRE, R.W., STRECKEISEN, A., ZANETTIN, B., 1986. A chemical classification of volcanic rocks based on the total-silica diagram. *Journal of Petrology*, **27**, 745-750.
- LEDENT, D., PATTERSON, C., TILTON, G.R., 1964. Ages of zircon and feldspar concentrates from North American beach and river sands. *Journal of Geology*, **72**, 112-122.
- LEHMANN, J., SCHULMANN, K., LEXA, O., CORSINI, M., KRONER, A., STIPSKA, P., TOMURHUU, D., OTGONBATOR, D., 2010. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia. *American Journal of Science*, **310**, 575-628.
- LEI, M., ZHAO, Z.D., HOU, Q.Y., ZHANG, H.F., XU, J.F., CHEN, Y.L., ZHANG, B.R., LIU, X.J., 2008. Geochemical and Sr-Nd-Pb istopic characteristics of the Dalabute ophiolite, Xinjiang: comparison between the Paleo-Asian ocean and the Tethyan mantle domains. *Acta Petrologica Sinica*, **24**, 661-672 (in Chinese).
- LETNIKOV, F.A., KOTOV, A.B., DEGTYAREV, K.E., LEVCHENKO, O.A., SHERSHAKOVA, M.M., SHERSHAKOV, A.V., RIZVANOVA, N.G., MAKEEV, A.F., TOLKACHEV, M.D., 2009a. Late Ordovician Granitoids of Northern Kazakhstan: U–Pb Age and Tectonic Setting. *Doklady Earth Sciences*, **424**, 24-28.
- LETNIKOV, F.A., KOTOV, A.B., DEGTYAREV, K.E., SAL'NIKOVA, E.B., LEVCHENKO, O.A., SHERSHAKOVA, M.M., SHERSHAKOV, A.V., RIZVANOVA, N.G., MAKEEV, A.F., TOLKACHEV, M.D., 2009b. Silurian Granites of Northern Kazakhstan: U–Pb Age and Tectonic Position. *Stratigraphy and Geological Correlation*, **17**, 275–282.
- LEVASHOVA, N.M., DEGTYAREV, K.E., BAZHENOV, M.L., COLLINS, A.Q., VAN DER VOO, R., 2003a. Middle paleozoic paleomagnetism of east Kazakhstan: post-Middle Devonian rotations in a large-scale orocline in the central Ural-Mongol belt. *Tectonophysics*, **377**, 249-268.
- LEVASHOVA, N.M., DEGTYAREV, K.E., BAZHENOV, M.L., COLLINS, A.Q., VAN DER VOO, R., 2003b. Permian paleomagnetism of East Kazakhstan and the amalgamation of Eurasia. *Geophysical Journal International*, **152**, 677-687.
- LEVASHOVA, N.M., MIKOLAICHUK, A.V., MCCAUSLAND, P.J.A., BAZHENOV, M.L., VAN DER VOO, R., 2007. Devonian paleomagnetism of the North Tien Shan: Implications for the middle-Late Paleozoic paleogeography of Eurasia. *Earth and Planetary Science Letters*, **257**, 104-120.
- LEVASHOVA, N.M., VAN DER VOO, R., ABRAJEVITCH, A.V., BAZHENOV, M.L., 2009. Paleomagnetism of mid-Paleozoic subduction-related volcanics from the Chingiz Range in NE Kazakhstan: The evolving paleogeography of the amalgamating Eurasian composite continent. *Geological Society of America Bulletin*, **121**, 555-573.
- LI, H.S., 1994. Middle Silurian radiolarians from Keerhada, Xinjiang. Acta Micropalaeontologica Sinica, **11**, 259-272 (in Chinese).
- LI, J. Y., 1991. On evolution of Paleozoic plate tectonics of east Junggar, Xinjiang, China, in: XIAO, X.C., TANG, Y.Q., eds., On Tectonic Evolution of the Southern Margin of the Paleozoic Composite Megasuture Zone. Beijing Technical Press, Beijing, 92-108 (in Chinese).
- LI, J.Y., JIN, H.J., 1989. The trace fossils discovery and its environment significance in Carboniferous turbidite series, the northwest border of Zhunga'er basin, Xinjiang. *Scientia Geologica Sinica*, **63**, 9-15 (in Chinese).
- LI, P., ZHANG, Z., WU, S., 1986. Stratigraphy, in: Permian and Triassic strata and fossil assemblages in the Dalongkou area of Jimsar, Xinjiang, People's Republic of China, Ministry of Geology and Mineral Resssources, Geology Memoir 3, 2-38 (in Chinese).
- LI, S.L., MOONEY, W.D., 1998. Crustal structure of China from deep seismic sounding profiles, *Tectonophysics*, **288**, 105-113.
- LI, T.D., (ed.) 1997. Geological Map of Asia and Europe. (1: 5000000). Geological Publishing House, Beijing.
- LI, X.Z., HAN, B.F., JI, J.Q., LI, Z.H., LIU, Z.Q., YANG, B., 2004a. Geology, geochemistry and K-Ar ages of the Karamay basic-intermediate dike swarm from Xinjiang, China. *Geochimica*, **33**, 574-584 (in Chinese).
- LI, Y.P., SHARPS, R., MCWILLIAMS, M., LI, Y. G., LI, Q., ZHANG, W., 1991. Late Paleozoic paleomagnetic results from the Junggar Block, Northwestern China. *Journal of Geophysical Research*, **96**, 16047-16060.
- LI, Y.P., SHARPS, R., MCWILLIAMS, M., NUR, A., LI, Y. G., LI, Q., ZHANG, W., 1989. Paleomagnetic results from late Paleozoic dikes from the northwestern Junggar Block. *Earth and Planetary Science Letters*, 94, 123-130.

- LI, Z., SONG, W.J., PENG, S.T., WANG, D.X., ZHANG, Z.P., 2004b. Mesozoic-Cenozoic tectonic relationships between the Kuqa subbasin and Tian Shan, northwest China: constraints from deposi- tional records. *Sedimentary Geology*, **172**, 223-249.
- LIN, W., FAURE, M., SHI, Y.H., WANG, Q.C., LI, Z., 2009. Palaeozoic tectonics of the south- western Chinese Tianshan: new insights from a structural study of the high-pressure/ low-temperature metamorphic belt. *International Journal of Earth Sciences*, 98, 1259-1274.
- LISTER, G.S., FORSTER, M.A., 2006. The plate-tectonic significance of inversion cycles during orogenesis. Geological Society of America, Abstracts with Programs, Speciality Meeting, 2, 119.
- LISTER, G.S., FORSTER, M.A., RAWLINGS, T.J., 2001. Episodicity during orogenesis, in: MILLER J.A., HOLDSWORTH, R.E., BUICK, I.S., HAND, M., eds., Continental Reactivaton and Reworking. The Geological Society, London, Special Publication **184**, 89-113.
- LIU, D.Q., TANG, Y.L., ZHOU, R.H., 1993. The Devonian intra-oceanic arc and boninite in the North Junggar, Xinjiang. *Xinjiang Geology*, **11**, 1-12 (in Chinese).
- LIU, S., 1994. The non-marine Permian-Triassic boundary and Triassic Conchostracan fossils in China. *Albertiana*, **13**, 12-24.
- LIU, W., ZHANG, X. B., 1993. Ulungur-Zaisan Tectonic Mélange and its Geological Significance. China Science Press, Beijing, 217-228 (in Chinese).
- LIU, X.J., XU, J.F., WANG, S.Q., HOU, Q.Y., BAI, Z.H., LEI, M., 2009. Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications. Acta Petrologica Sinica, 25, 1373-1389.
- LOCKWOOD, J.P., 1972. Possible mechanisms for the emplacement of alpine-type serpentinite, in: SHAGAM, R., ed., The H.H. Hess volume: Studies in Earth and Space Science. Geological Society of America, Memoir **132**, 273-287.
- LOI, A., DABARD, M.P., 1997. Zircon typology and geochemistry in the paleogeographic reconstruction of the Late Ordovician of Sardinia (Italy). *Sedimentary Geology*, **112**, 263-279.
- LOMIZE, M.G., DEMINA, L.I., ZARSHCHIKOV, A.A., 1997. The Kyrgyz-Terskei Paleoceanic Basin, Tien Shan. *Geodynamics*, **6**, 35-55.
- LONG, X.P., SUN, M., YUAN, C., XIAO, W.J., LIN, S.F., WU, F.Y., XIA, X.P., CAI, K.D., 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. *Tectonics*, 26, TC5015, doi:10.1029/2007TC002128.
- LOWRIE, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. *Geophysical Research Letters*, **17**, 159-162.
- LOWRIE, W., 1997. Fundamentals of Geophysics. Cambridge University Press, 368 pp..
- LU, S.N., LI, H.K., ZHANG, C.L., NIU, G.H., 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments. *Precambrian Research*, **160**, 94-107.
- LUDWIG, K.R, 1998, On the treatment of concordant uranium-lead ages. *Geochimica et Cosmochimica Acta*, **62**, 665-676.
- LUDWIG, K.R., 2003. Users manual for ISOPLOT/EX, version 3. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4.
- LUDWIG, K.R., 2008. Isoplot 3.6; a geochronology toolkit for Microsoft Excel. Berkeley Geochronology Center, 77 pp..
- LYONS, J.J., COE, R.S., ZHAO, X.X., RENNE, P.R., KAZANSKY, A.Y., IZOKH, A.E., KUNGURTSEV, L.V., MITROKHIN, D.V., 2002. Paleomagnetism of the early Triassic Semeitau igneous series, eastern Kazakstan. Journal of Geophysical Research, 107, DOI: 10.1029 /2001JB000521.

Μ

- MACHADO, N., SIMONETTI, A., 2001. U-Pb dating and Hf isotopic composition of zircon by laser ablation MC-ICP-MS, in: SYLVESTER, P., ed., Laser Ablation-ICPMS in the Earth Sciences: Principles and Applications, Wiley, 29, 121-146.
- MALOD, J.A., KOMAR KARTA, BESLIER, M.O., ZEN JR, M.T., 1995. From normal to oblique subduction: Tectonic relationships between Java and Sumatra. *Journal of Southeast Asian Earth Sciences*, **12**, 85-93.
- MARSHAK, R.S., KARIG, D.E., 1977. Triple junctions as a cause for anomalously near-trench igneous activity between the trench and volcanic arc. *Geology*, **5**, 233-2.
- MARSHALL, D.J., 1988. Cathodoluminescence of Geological Materials. Unwin Hyman, Boston, 146 pp..
- MARTINEZ, A., MALAVIEILLE, J., LALLEMAND, S., COLLOT, J.-Y., 2002. Partition de la déformation dans un prisme d'accrétion sédimentaire en convergence oblique; approche expérimentale. *Bulletin de la Société Géologique de France*, **173**, 17-24.
- MARUYAMA, S., 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc, 6, 91-120.
- MATSUDA, T., ISOZAKI, Y., 1991. Well-documented travel history of Mesozoic pelagic cherts in Japan: from remote ocean to subduction zone. *Tectonics*, **10**, 475-499.
- MATSUDA, T., UYEDA, S., 1971. On the Pacific-type orogeny and its model: Extension of the paired belts concept and possible origin of marginal seas. *Tectonophysics*, **11**, 5-27.
- MATTE, P., 1991. Accretionary history and crustal evolution of the Variscan Belt in western Europe. *Tectonophysics*, **196**, 309-337.
- MATTINSON, J.M., GRAUBARD, C.M., PARKINSON, D.L., MCLELLAND, W.C., 1996. U-Pb reverse discordance in zircons: the role of fine-scale oscillatory zoning and sub-microscopic transport of Pb. American Geophysical Union, Geophysical Monograph **95**, 355-370.
- MCCAFFREY, R., 1991. Slip vectors and stretching of the Sumatran fore arc. Geology, 19, 881-884.
- MCCAFFREY, R., 1992. Oblique Plate Convergence, Slip Vectors, and Forearc Deformation. Journal of Geophysical Research, 97, 8905-8915.
- MCCARTHY, J., SCHOLL, D.W., 1985. Mechanisms of subduction accretion along the central Aleutian Trench. *Geological Society of America Bulletin*, **96**, 691-701.
- MCELHINNY, M.W., 1964. Statistical significance of the fold test in paleomagnetism. *Geophysical Journal of the Royal Astronomical Society*, **8**, 338-340.
- MCFADDEN, P.L., 1990. A new fold test for paleomagnetic studies. *Geophysical Journal international*, **103**, 163-169.
- MCFADDEN, P.L., MA, X.H., MCELHINNY, M.W., ZHANG, Z.K., 1988. Permo-Triassic magnetostratigraphy in China: northern Tarim. *Earth and Planetary Science Letters*, **87**, 152-160.
- MCFADDEN, P.L., MCELHINNY, M.W., 1988. The combined analysis of remagnetization circles and direct observations in paleomagnetism. *Earth and Planetary Science Letters*, **87**, 152-160.
- MCFADDEN, P.L., MCELHINNY, M.W., 1990. Classification of the reversal test in paleomagnetism. *Geophysical Journal International*, **103**, 725-729.
- MCKNIGHT, C.L., CARROLL, A.R., CHU, J., HENDRIX, M.S., GRAHAM, S.A., LYON, R.J.P., 1989, Stratigraphy and structure of the Kalpin uplift, Tarim basin, northwest China, in: Proceedings, Seventh Thematic Conference on Remote Sensing for Exploration Geology, Calgary, Alberta: Ann Arbor, Environmental Research Institute of Michigan, 1085-1096.
- MCQUARRIE, N., HORTON, B.K., ZANDT, G., BECK, S., DECELLES, P.G., 2005. Lithospheric evolution of the Andean fold-thrust belt, Bolivia, and the origin of the central Andean plateau. *Tectonophysics*, **399**, 15-37.
- MELNIKOV, A., DELVAUX, D., TRAVIN, A., BUSLOV, M., VLADIMIROV, A., SMIRNOVA, L., THEUNISSEN, K., 1997. Late Paleozoic–EarlyMesozoic sinistral movement along the Irtysh shear zone, NE Kazakhstan. Tectonic studies group annual general meeting, Durham, 17–19 December.

- MELNIKOV, A., TRAVIN, A., PLOTNIKOV, A., SMIRNOVA, L., THEUNISSEN, K., 1998. Kinematics and Ar/Ar geochronology of the Irtysh shear zone in NE Kazakhstan. In: Continental growth in the Phanerozoic: evidence from East-Central Asia. First workshop, IGCP-420, Urumqi, China, 27 July–3 August, p. 30.
- METCALFE, I., FOSTER, C.B., AFONIN, S.A., NICOLL, R.S., MUNDIL, R., WANG, X.F., LUCAS, S.G., 2009. Stratigraphy, biostratigraphy and C-isotopes of the Permian-Triassic non-marine sequence at Dalongou and Lucaogou, Xinjiang Province, China. *Journal of Asian Earth Science*, **36**, 503-520.
- MIKOLAICHUK, A.V., KOTOV, V.V., KUZIKOV, S.I., 1995. The structural position of the Malyi Naryn metamorphic complex and the boundary between the North and Middle Tien Shan. *Geotectonics*, **29**, 157-166.
- MIKOLAICHUK, A.V., KURENKOV, S.A., DEGTYAREV, K.E., RUBTSOV, V.I., 1997. Northern Tien Shan main stages of geodynamic evolution in the Late Precambrian–Early Paleozoic. *Geodynamics*, **6**, 16-34.
- MILSOM, J., 2003. Forearc ophiolites: a view from the western Pacific, in: DIREK, Y., ROBINSON, P.T., eds., Ophiolites in Earth History. The Geological Society, London, Special Publication **218**, 507-515.
- MIYASHIRO, A., 1961. Evolution of metamorphic belts. Journal of Petrology, 2, 277-311.
- MIYASHIRO, A., 1973. Metamorphism and metamorphic belts. Allen & Unwin, London, 492 pp..
- MOLLER. A., O'BRIEN, P.J., KENNEDY, A., KRÖNER, A., 2002. Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. *Journal of Metamorphic Geology*, 20, 727-740.
- MOLNAR, P., FITCH, T.J., WU, F.T., 1973. Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia. *Earth and Planetary Science Letters*, **19**, 101-112.
- MOLNAR, P., TAPPONNIER, P., 1975. Cenozoic tectonics of Asia: Effects of a continental collision. *Science*, **189**, 419-426.
- MOLNAR, P., TAPPONNIER, P., 1977. Active Faulting and tectonics of China. *Journal of Geophysical Research*, **82**, 2905-2930.
- MOORE, J.C., 1973. Complex deformation of Cretaceous trench deposits, southwestern Alaska. *Geological Society of America Bulletin*, **84**, 2005-2020.
- MOORE, J.C., DIEBOLD, J., FISHER, M.A., SAMPLE, J., BROCHER, T., TAWANI, M., EWING, J., VON HUENE, R., ROWE, C., STONE, D., STEVENS, C., SAWYER, D., 1991. EDGE deep seismic reflection transect of the eastern Aleutian arc-trench layered lower crust reveals underplating and continental growth. *Geology*, **19**, 420-424.
- MOORE, J.C., SILVER, E., 1987. Continental margin tectonics: Submarine accretionary prisms. *Reviews of Geophysics*, 25, 1305-1312.
- MORRISON, G.W., 1980, Characteristics and tectonic setting of the shoshonite rock association. *Lithos*, **13**, 97-108.
- MORTON, A.C., CLAUOÉ-LONG, J.C., BERGE, C., 1996. SHRIMP constraints on sediment provenance and transport history in the Mesozoic Statfjord Formation, North Sea. *Journal of the Geological Society*, **153**, 915-929.
- MORTON, A.C., HALLSWORTH, C.R., 1994. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. *Sedimentary Geology*, **90**, 241-256.
- MOSSAKOVSKY, A.A., RUZHENTSEV, S.V., SAMYGIN, S.G., KHERASKOVA, T.N., 1993. The Central Asian foldbelt: geodynamics evolution and the history of formation. *Geotektonika*, **6**, 3-33 (in Russian).
- MU, E.Z., BOUCOT, A.J., CHEN, X., RONG, J.Y., 1986. Correlation of the Silurian rocks in China, in: BOUCOT, A.B., BERRY, W.B., eds., A part of the Silurian correlation for East Asia. Geological Society of America, Special Paper 202, 1-80.
- MURPHY, J.B., HYNES, A.J., JOHNSTON, S.T., KEPPIE, J.D., 2003. Reconstructing the ancestral Yellowstone plume from accreted seamounts and its relationship to flat-slab subduction. *Tectonophysics*, **365**, 185-194.
- MURPHY, J.B., NANCE, R.D., GUTIERREZ-ALONSO, G., KEPPIE, J.D., 2009. Supercontinent reconstruction from recognition of leading continental edges. *Geology*, **37**, 595-5998.

MURPHY, J.B., VAN STAAL, C.R., KEPPIE, J.D., 1999. Middle to late paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny? *Geology*, **27**, 653-656.

Ν

NAGATA, T., 1961. Rock magnetism, 2nd edition. Maruzen, Tokyo, 350 pp..

- NATAL'IN, B.A., SENGÖR, A.M.C., 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre-history of the Palaeo-Tethyan closure. *Tectonophysics*, **404**, 175-202.
- NELSON, D.R., 2001. An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircon. *Sedimentary Geology*, **141-142**, 37-60.
- NIE, S.Y., ROWLEY, D.B., VAN DER VOO, R., LI, M.S., 1993. Paleomagnetism of Late Paleozoic rocks in the Tianshan, Northwestern China. *Tectonics*, **12**, 568-579.
- NIER, A.O., 1939. The isotopic composition of uranium and the half-lives of the uranium isotopes. I. *Physical Review*, **60**, 150-153.
- NIKITIN, I.F. 1972. Ordovician of Kazakhstan: Part I, Stratigraphy. Nauka, Alma-Ata (in Russian).
- NIKITIN, I.F., GRIDINA, N.M., ZHILKAIDAROV, A.M., STEPANETS, V.G., 1995. Age of the Kuvsk Formation and Localization of Ordovician Rocks in Western Fore-Chingiz. *Geologiya Kazakhstana*, **2**, 32-41 (in Russian).
- NISHIDAI, T., BERRY, J.L., 1990, Structure and hydrocarbon potential of the Tarim basin (NW China) from satellite imagery. *Journal of Petroleum Technology*, **13**, 35-58.
- NIU, H.C., SATO, H., ZHANG, H.X., ITO, J., YU, X.Y., NAGAO, T., TERADA, K., ZHANG, Q., 2006. Juxtaposition of adakite, boninite, high-TiO2 and low-TiO2 basalts in the Devonian southern Altay, Xinjiang, NW China. *Journal of Asian Earth Sciences*, 28, 439-456.
- NOWELL, G.M., KEMPTON, P.D., NOBLE, S.R., FITTON, J.G., SAUNDERS, A.D., MAHONEY, J.J., TAYLOR, R.N., 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. *Chemical Geology*, 149, 211-233.
- NUTMAN, A.P., 2001. On the scarcity of >3900 Ma detrital zircons in •3500 Ma metasediments. *Precambrian Research*, **105**, 93-114.
- NYMAN, H., HYDE, B.G., ANDERSSON, S., 1984. Zircon, anhydrite, scheelite and some related structures containing bisdisphenoids. *Acta Crystallographica, Section B*, **40**, 441-447.

O

- OFFLER, R., FOSTER, D.A., 2008. Timing and development of oroclines in the southern New England Orogen, New South Wales. *Australian Journal of Earth Science*, **55**, 331-340.
- OHNENSTETTER, D., CESBRON, F., REMOND, G., CARUBA, R., CLAUDE, J.M., 1991. Emissions de cathodoluminescence de deux populations de zircons naturels: tentative d'interpretation. *Comptes-Rendus de l'Académie des Sciences de Paris*, **313**, 641-647.
- OKAMOTO, K., MARUYAMA, S., ISOZAKI, Y., 2000. Accretionary complex origin of the Sanbagawa, high P/ T metamorphic rocks, central Shikoku, Japan: layer-parallel shortening structure and greenstone geochemistry. *Journal of the Geological Society of Japan*, **106**, 70-86 (in Japanese).
- OLIVER, G.J.H., 2001. Reconstruction of the Grampian episode in Scotland: its place in the Caledonian Orogeny. *Tectonophysics*, **332**, 23-49.
- ONCKEN, O., HINDLE, D., KLEY, J., ELGER, K., SCHEMMANN, K., 2006. Deformation of the Central Andean upper plate system—facts, fiction, and constraints for plateau models, in: ONCKEN, O., CHONG, G., FRANZ, G., GIESE, P., GOTZE, H-J., RAMOS, V.A., STRECKER, M.R., WIGGER, P., eds., The Andes: Active Subduction Orogeny, Springer, 3–27.
- OSHIMA, S., OGINO, T., KATSURA, T., IKEDA, K., UCHIDA, M., NAGANO, M., HAYASHIDA, M., MUNEDA, K., KASUGA, S., 1985. Subduction of the Daiiti-Kasima seamount into the landward slope of the Japan trench. *Report Hydrology Research*, **20**, 25-46.

OUYANG, S., NORRIS G., 1999. Earliest Triassic (Induan) spores and pollen from the Junggar Basin, Xinjiang, northwest China. *Review of Paleobotany and Palynology*, **106**, 1-56.

P

- PAN, Y., 1997. Zircon- and monazite-forming metamorphic reactions at Manitouwadge, Ontario. *Canadian Mineralogist*, **35**, 105-118.
- PANKHURST, R.J., WEAVER, S.D., HERVE, F., LARRONDO, P., 1999. Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile. *Journal of the Geological Society*, **156**, 673-694.
- PAQUETTE, J.L., MONCHOUX, P., COUTURIER, M., 1995. Geochemical and isotopic study of a norite-eclogite transition in the European Variscan belt: Implications for U-Pb zircon systematics in metabasic rocks. *Geochimica et Cosmochimica Acta*, **59**, 1611-1622.
- PARKINSON, C.D., KATAYAMA, I., LIOU, J.G. & MARUYAMA, S. (eds) 2002. The Diamond-bearing Kokchetav Massif, Kazakhstan. Universal Academy Press, Tokyo.
- PARRA, M., FAUGERES, J-C., GROUSSET, F., PUJOL, C., 1997. Sr-Nd isotopes as tracers of fine-grained detrital sediments: the South-Barbados accretionary prism during the last 150 kyr. *Marine Geology*, **136**, 225-243.
- PARRISH, R.R., NOBLE, S.R., 2003. Zircon U-Th-Pb geochronology by isotope dilution thermal ionization mass spectrometry (ID-TIMS), in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry 53, 183-213.
- PATCHETT, P.J., 1983. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. *Geochimica et Cosmochimica Acta*, **47**, 81-91.
- PATCHETT, P.J., KOUVO, O., HEDGE, C.E., TATSUMOTO, M., 1981. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. *Contributions to Mineralogy and Petrology*, **78**, 279-297.
- PATCHETT, P.J., TATSUMOTO, M., 1980. A routine high-precision method for Lu-Hf isotope geochemistry and chronology. *Contributions to Mineralogy and Petrology*, **75**, 263-267.
- PATCHETT, P.J., WHITE, W.M., FELDMANN, H., KIELINCZUK, S., HOFMANN, A.W., 1984. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle. *Earth and Planetary Science Letters*, **69**, 365-378.
- PATERSON, B.A., STEPHENS, W.E., 1992. Kinetically induced compositional zoning in titanite: Implications for accessory phase/ melt partitioning of trace elements. *Contributions to Mineralogy and Petrology*, **109**, 373-385.
- PEARCE, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries, in THORP, R.S., ed., Andesites, John Willey-Son, 525-548.
- PEARCE, J.A., CANN, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. *Earth and Planetary Science Letters*, **19**, 290-300.
- PEARCE, J.A., HARRIS, N.B., TINDLE, A.G., 1984a. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
- PEARCE, J.A., LIPPARD, S.J., ROBERT, S., 1984b. Characteristics and tectonic significance of supra-subduction zone ophiolites, in KOKELAAR, B.P., HOWELLS, M.F., eds., Marginal Basin Geology: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins. The Geological Society, London, Special Publication 16, 77-94.
- PEARCE, N.J.G., PERKING, W.T., WESTGATE, J.A., GORTON, M.P., JACKSON, S.E., NEAL, C.R., CHENERY, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass materials. *Geostandards Newsletter*, 21, 115-144.
- PERRY, S.E., GARVER, J.I., RIDGWAY, K.D., 2009. Transport of the Yakutat terrane, Southern Alaka: evidence from sediment petrology and detrital zircon fission-track and U/Pb doule dating. *Journal of Geology*, 117, 156-173.
- PETTINGILL, H.S., PATCHETT, P.J., 1981. Lu-Hf total-rock age for the Amîtsoq gneisses, West Greenland. *Earth and Planetary Science Letters*, **55**, 150-156.

- PIRAJNO, F., 2010. Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). *Journal of Geodynamics*, **50**, 325-346.
- PLAFKER, G., MOORE, J.C., WINKLER, G.R., 1994. Geology of the southern Alaska margins, in: PLAFKER, G., BERG, H.C., eds., The geology of Alaska: Boulde, Colorado, Geological Society of America, the Geology of North America, G1, 389-449.
- PLATT, J.P., 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. *Geological Society of America Bulletin*, **97**, 1037-1053.
- PLATT, J.P., 1993a. Exhumation of high-pressure rocks: A review of concepts and processes. *Terra Nova*, **5**, 119-133.
- PLATT, J.P., 1993b. Mechanics of oblique convergence. Journal of Geophysical Research, 98, 16239-16256.
- POLAT, A., KERRICH, R., WINDLEY, B.F., 2009. Archaean crustal growth processes in southern West Greenland and the southern Superior Province: geodynamic and magmatic constraints, in: Cawood, P.A., Kröner, A., eds., Earth Accretionary systems in space and time. The Geological Society, London, Special Publication 318, 155-191.
- POPOV, L.E., BASSET, M.G., ZHEMCHUZHNIKOV, V.G., HOLMER, L.E., KLISHEVICH, I.A., 2009. Gondwanan faunal signatures from Early Palaeozoic terranes of Kazakhstan and Central Asia: evidence and tectonic implications, in: BASSETT, M.G., ed., Early Palaeozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography, The Geological Society, London, Special Publication 325, 23-64.
- POUPINET, G., AVOUAC, J.-P., JIANG, M., WEI, S., KISSLING, E., HEQUEL, G., PAUL, A., WITTLINGER, G., SU, H., THOMAS J.-C., 2002. Intracontinental subduction and Paleozoic inheritance of the lithosphere suggested by a teleseismic experiment across the Chinese Tien Shan. *Terra Nova*, **14**, 18-24.
- PRESS, W.H., FLANNERY, B.P., TEUKOLSKY, S.A., VETTERLING, W.T., 1986. Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, Cambridge, 818 pp..
- PRICE, R.A., 1994. Cordilleran tectonics and the evolution of the Western Canada sedimentary basin, in: MOSSOP, G.D., SHETSEN, I., eds., Geological Altlas of Western Canada, Canadian Society of Petroleum Geologists/Alberta Research Council, Calgary, 13-24.
- PUCHKOV V.N., 2009. The evolution of the Uralian orogen, in : MURPHY, J.B, KEPPIE, J.D., HYNES, A.J., eds., Ancient Orogens and Modern Analogues. The Geological Society, London, Special Publication **327**, 161-195.
- PUCHKOV, V.N., 1997. Structure and geodynamics of the Uralian orogen, in: BURG, J-P., FORD, M., eds., Orogeny Through Time. The Geological Society, London, Special Publication **121**, 201-236.
- PUPIN, J.-P., 1976 Signification des caractères morphologiques du zircon commun des roches en pétrologie. Base de la méthode typologique. Applications. Thèse soutenue à l'Université de Nice, 394 pp..
- PUPIN, J.-P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207-220.

Q

- QI, J.Y., 1993. Geology and genesis of dike swarms in western Junggar, Xinjiang, China. Acta Petrologica Sinica, 9, 288-299 (in Chinese).
- QU, G., ZHANG, J., 1994. Oblique thrust systems in the Altay orogen, China. Journal of Southeast Asian Earth Sciences, 9, 277-287

R

- RAMOS, V.A., CRISTALLINI, E.O., PEREZ, D.J., 2002. The Pampean flat-slab of the Central Andes. *Journal of South American Earth Sciences*, **15**, 59-78.
- RAMSAY, J., 1967. Folding and Fracturing of Rocks.McGraw-Hill, New York, 568 pp..
- RAYMOND, L.A., 1984. Classification of melanges, in: RAYMOND, L.A., ed., Melanges: Their nature, origin and significance. Geological Society of America, Special Paper **198**, 7-20.

- REINERS, P.W., 2005. Zircon (U-Th)/He thermochronometry, in: REINERS, P.W., EHLERS, T.A., eds., Low-Temperature Thermochronology: techniques, interpretations, and Applications, Mineralogical Society of America, Reviews in mineralogy and Geochemistry **58**, 1-18.
- REUTTER, K-J., SCHEUBER, E., HELMCKE, D., 1991. Structural evidence of orogen-parallel strike-slip displacements in the North Chilean Precordillera. *Geologische Rundschau*, **80**, 135-153.
- REYMER, A., SCHUBERT, G., 1984. Phanerozoic addition rates to the continental crust and crustal growth. *Tectonics*, **3**, 63-77.
- RIEDEL, W., 1929. Zur mechanik geologisher brucherscheinungen. Zentralblatt fur Mineralogie, Geologie und Paleontologie B, 354-368.
- RING, U., 2008. Deformation and exhumation at convergent margins: the Fransiscan subduction complex. Geological Society of America, Special Paper 445, 61 pp..
- RINO, S., KON, Y., SATO, W., MARUYAMA, S., SANTOSH, M., ZHAO, D., 2008. The Grenvillian and pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume. *Gondwana Research*, 14, 51-72.
- RÍOS, S., MALCHEREK, T., SALJE, E.K.H., DOMENEGHETTI, C., 2000. Localized defects in radiation-damaged zircon. Acta Crystallographica, Section B, 56, 947-952.
- RODDICK, J.C., BEVIER, M.L., 1995. U-Pb dating of granites with inherited zircon: conventional and ion microprobe results from two Paleozoic plutons, Canadian Appalachians. *Chemical Geology*, **119**, 307-329.
- ROESKE, S.M., SNEE, L.W., PAVLIS, T.L., 2003. Dextral-slip reactivation of an arc-forearc boundary during Late Cretaceous-Early Eocene oblique convergence in the northern Cordilera, in: SISSON, V.B., ROESKE, S.M., PAVLIS, T.L., eds., Geology of a transpression orogen developed during ridge-trench interaction along the North Pacific margin. Geological Society of America Special Paper **371**, 141-169.
- ROLLINSON, H.R., 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation, Longman, UK. 352 pp..
- ROSS, G.M., PARRISH, R.R., WINSTON, D., 1992. Provenance and U-Pb geochronology of the Mesoproterozoic Belt Supergroup (northwestern United States): implications for the age of deposition and pre-Panthalassa plate reconstructions. *Earth and Planetary Science Letters*, **113**, 57-76
- ROYDEN, L.H. 1993a. Evolution of retreating subduction boundaries formed during continental collision. *Tectonics*, **12**, 629-638.
- ROYDEN, L.H. 1993b. The tectonic expression of slab pull at continental convergent boundaries. *Tectonics*, **12**, 303-325.
- RUBATTO, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. *Chemical Geology*, **184**, 123-138.
- RUBATTO, D., HERMANN, J., 2007. Zircon Behaviour in Deeply Subducted Rocks. Elements, 3, 31-35.
- RUDNICK, R., 1990. Continental crust growth from below. Nature, 347, 711-712.
- RUDNICK, R., 1995. Making continental crust. Nature, 378, 571-578.
- RYAZANTSEV, A.V., 1999. Structures of the Middle Paleozoic Active Margin in Kazakhstan: Their Lateral Zoning and Migration, *Doklady Earth Sciences*, **369**, 1259-1263.
- RYAZANTSEV, A.V., DEGTYAREV, K.E., KOTOV, A.B., SAL'NIKOVA, E.B., ANISIMOVA, I.V., YAKOVLEVA, S.Z., 2009. Ophiolite Sections of the Dzhalair-Nayman Zone, South Kazakhstan: Their Structure and Age Substantiation. *Doklady Earth Sciences*, 427, 902-906.

S

SALEEBY, J.B., 1984. Tectonic significance of serpentinite mobility and ophiolitic melange, in: RAYMOND, L.A., ed., Melanges: Their nature, origin and significance. Geological Society of America, Special Paper **198**, 153-168.

- SAMANIEGO, P., MARTIN, H., ROBIN, C., MONZIER, M., 2002. Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: Insights into slab melts and mantle wedge interactions. *Geology*, **30**, 967-970.
- SAMSON, S.D., MCCLELLAND, W.C., PATCHETT, P.J., GEHRELS, G.E., ANDERSON, R.G., 1989. Evidence from neodymium isotopes for mantle contributions to Phanerozoic crustal genesis in the Canadian Cordillera. *Nature*, 337, 705–709.
- SAMYGIN, S.G., 1974. The Chingiz strike-slip fault and its position in the structure of Central Kazakhstan. Nauka, Moscow. 208 pp. (in Russian).
- SANDERSON, D.J., 1979. The transition from upright to recumbent folding in the Variscan fold belt of southwest England: a model based on the kinematics of simple shear. *Journal of Structural Geology*, **1**, 171-180.
- SAVELIEVA, G.N., NESBITT, R.W., 2006. A synthesis of the stratigraphic and tectonic setting of the Uralian ophiolites. *Journal of the Geological Society*, **153**, 525-537.
- SAXENA, S.K., 1966. Evolution of zircons in sedimentary and metamorphic rocks. Sedimentology, 6, 1-33.
- SCHAFER, J., DORR, W., 1997. Heavy-mineral analysis of detrital zircons: a new approach to provenance study (Saxothuringian flysch, Germany). *Journal of Sedimentary Research*, **67**, 451-461.
- SCHALTEGGER, U., FANNING, C.M., GUNTHER, D., MAURIN, J.C., SCHULMANN, K., GEBAUER, D., 1999. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. *Contributions to Mineralogy and Petrology*, **134**, 186-201.
- SCHELLART, W.P., LISTER, G.S., 2004. Tectonic models for the formation of arc-shaped convergent zones and backarc basins, in: SUSSMAN A.J., WEIL A.B., eds., Orogenic Curvature: Integrating Palaeomagnetic and Structural Analyses. Geological Society of America, Special Paper 383, 237-258.
- SCHELLART, W.P., LISTER, G.S., TOY, V.G., 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. *Earth Science Reviews*, 76, 191-233.
- SCHERER, E., MUNKER, C., MEZGER, K., 2001. Calibration of the lutetium-hafnium clock. Science, 293, 683-687.
- SCHERMER, E.R., HOWELL, D.G., JONES, D.L., 1984. The origin of allochthonous terranes. *Annual Review of Earth and Planetary Sciences*, **12**, 107-131.
- SCHOLL, D. W., MARLOW, M. S. & COOPER, A. K., 1977. Sediment subduction and off-scraping at Pacific margins, in TALWANI, M., PITMAN, W.C., III, eds., Island Arcs, Deep-Sea Trenches and Back-Arc Basins, 199-210.
- SCHOLL, D.W., VON HUENE, R., 2007. Crustal recycling at modern subduction zones applied to the past-issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction, in: HATCHER, R.D., JR., CARLSON, M.P., MCBRIDE, J.H., MARTINEZ-CATALAN, J.R., eds., 4-D framework of the continental crust. Geological Society of America, Memoir 200, 9-32.
- SCHOLL, D.W., VON HUENE, R., 2009. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens, in: Cawood, P.A., Kröner, A., eds., Earth Accretionary systems in space and time. The Geological Society, London, Special Publication **318**, 105-125.
- SCOATES, J.S., CHAMBERLAIN, K.R., 1995. Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming: Petrologic consequences and U-Pb ages. *American Mineralogist*, **80**, 1317-1327.
- SEARLE, M.P., 1991. Geology and Tectonics of the Kakakoram Mountains. Wiley, New York, 358 pp..
- SEELY, D.R., VAIL, P.R., WALTON, G.G., 1974. Trench slope model, in: BURK, C.A., DRAKE, C.L., eds., the geology of Continental Margins. Springer, Berlin, 249-260.
- SELTMANN, R., KONOPELKO, D., BISKE, G., DIVAEV, F., SERGEEV, S., 2010. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. *Journal of Asian Earth Sciences*, doi:10.1016/j.jseaes.2010.08.016, in press.
- SENGÖR, A.M.C., 1987. East Asia tectonic collage. Nature, 318, 16-17.

- SENGÖR, A.M.C., 1990. Plate tectonics and orogenic research after 25 years: a Tethyan perspective. *Earth Science Reviews*, 27, 1-201.
- SENGÖR, A.M.C., 1993. Turkic-type orogeny in the Altaids: implications for the evolution of continental crust and methodology of regional tectonic analysis. *Transactions of the Leicester Literary and Philosophical Society*, 87, 37-54.
- SENGÖR, A.M.C., NATAL'IN, B.A., BURTMAN, V.S., 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. *Nature*, **364**, 299-307.
- SENGÖR, A.M.C., NATAL'IN, B.A., 1996a. Paleotectonics of Asia: fragments of a synthesis, in: YIN, A., HARRISON, M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 486-640.
- SENGÖR, A.M.C., NATAL'IN, B.A., 1996b. Turkic-type orogeny and its role in the making of the continental crust. *Annual Review in Earth and Planetary Sciences*, **24**, 263-337.
- SENGÖR, A.M.C., OKUROGULLARI, A.H., 1991. The role of accretionary wedges in the growth of continents: Asiatic examples from argang to plate tectonics. *Eclogae Geologicae Helvetica*, **84**, 535-597.
- SHARPS, R., LI, Y.P., MCWILLIAMS, M., LI, Y.G., 1992. Paleomagnetic investigation of Upper Permian sediments in the South Junggar Basin. *Journal of Geophysical Research*, **97**, 1753-1765.
- SHATAGIN, K.N., DEGTYAREV, K.E., GOLUBEVT, V.N., ASTRAKHANTSEV, O.V., KUZNETSOV, N.B., 2001. Vertical and lateral heterogeneity of the crust beneath Northern Kazakhstan from geochronological and isotopic–geochemical data on Paleozoic granitoids. *Geotectonics*, **35**, 356-372.
- SHEN, P., SHEN, Y., LIU, T., MENG, L., DAI, H., YANG, Y., 2009. Geochemical signature of porphyries in the Baogutu porphyry copper belt, western Junggar, NW China. *Gondwana Research*, **16**, 227-242.
- SHEN, P., SHEN, Y.C., LIU, T.B., LI, G.M., ZENG, Q.D., 2008. Geology and geochemistry of the Early Carboniferous Eastern Sawur caldera complex and associated gold epithermal mineralization, Sawur Mountains, Xinjiang, China. *Journal of Asian Earth Sciences*, 32, 259-279.
- SHEN, P., SHEN, Y.C., ZENG, Q.D., LIU, T.B., LI, G.M., 2005. ⁴⁰Ar-³⁹Ar age and geological significance of the Sawuer gold belt in northern Xinjiang, China. *Acta Geologica Sinica*, **79**, 276–285.
- SHEN, Y.C., JIN, C.W., QI, J.Y., 1993. Ore-forming model and mechanism of gold mineralization area in west Junggar, in: Tu, G., ed., New developments of Solid Earth Sciences of Northern Xinjiang. Science Press, 137-150 (in Chinese).
- SHERVAIS, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. *Earth and Planetary Science Letters*, **59**, 101-118.
- SHERVAIS, J.W., 2001, Birth, Death, and Resurrection: The Life Cycle of Suprasubduction Zone Ophiolites. *Geochemistry Geophysics Geosystems*, **2**, 1010, doi: 10.1029/2000GC000080.
- SHI, Y.R., LIU, D.Y., ZHANG, Q., JIAN, P., ZHANG, F.Q., MIAO, L.C., 2007. SHRIMP zircon U–Pb dating of the Gangou granitoids, Central Tianshan Mountains, Northwest China and tectonic signicances. *Chinese Science Bulletin*, 52, 1507-1516.
- SHREVE, R.L., CLOOS, M., 1986. Dynamics of sediment subduction, mélange formation, and prism accretion. *Journal of Geophysical Research*, **91**, 10229-10245.
- SHU, S., WANG, B., ZHU, W.B., GUO, L.S., CHARVET, J., ZHANG, Y., 2011. Timing of initiation of extension in the Tianshan, based on structural, geochemical and geochronological analyses of bimodal volcanism and olistostrome in the Bogda Shan (NW China). *International Journal of Earth Sciences*, 100, 1647-1663.
- SHU, L. S., WANG, Y. J., 2003, Late Devonian-Early Carboniferous radiolarian fossils from siliceous rocks of the Kelameili ophiolite, Xinjiang. *Geological Review*, **49**, 408-413 (in Chinese).
- SHU, L.S., CHARVET, J., LU, H.F., LAURENT-CHARVET, S., 2002. Paleozoic accretion-collision events and kinematics of ductile deformation in the central-southern Tianshan Belt, China. Acta Geologica Sinica, 76, 308-323 (in Chinese).
- SHU, L.S., DENG, X.L., ZHU, W.B., MA, D.S., XIAO, W.J., 2010. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain. *Journal of Asian Earth Sciences*, doi: 10.1016/j.jseaes.2010.08.018, in press.

- SHU, L.S., WANG, B., ZHU, W.B., 2007. Age and tectonic signi345cance of radiolarian fossils from the Heiyingshan ophiolitic melange, South Tianshan Belt, NW China. Acta Geologica Sinica, 81, 1–8 (in Chinese).
- SILVER, E.A., BEUTNER, E.C., 1980. Melanges. Geology, 8, 32-34.
- SILVER, L. 1963. The relation between radioactivity and discordance in zircons. *National Academy of Sciences, National Research Council Publication*, **1075**, 34-52.
- SILVER, L.T., DEUTSCH, S., 1963. Uranium-lead isotopic variations in zircons: a case study. *Journal of Geology*, **71**, 721-758.
- SILVERMAN, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London, 175 pp..
- SIRCOMBE K.N., 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. *Sedimentary Geology*, **124**, 47-67.
- SIRCOMBE K.N., 2004. AGEDISPLAY: An EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. *Computers Geoscience*, **30**, 21-31.
- SIRCOMBE, K.N., 2000. Quantitative comparison of large sets of geochronological data using multivariate analysis: a provenance study example from Australia. *Geochimica et Cosmochimica Acta*, **64**, 1593-1616.
- SIRCOMBE, K.N., BLEEKER, W., STERN, R.A., 2001. Detrital zircon geochronology and grain-size analysis of a ~2800 Ma Mesoarchean proto-cratonic cover succession, Slave Province, Canada. *Earth and Planetary Science Letters*, 189, 207-220.
- SIRCOMBE, K.N., STERN, R.A., 2002. An investigation of artificial biasing in detrital zircon U-Pb geochronology due to magnetic separation in sample preparation. *Geochimica et Cosmochimica Acta*, **66**, 2379-2397.
- SISSON, V.B., ROESKE, S., PAVLIS, T.L. (eds) 2003. Geology of a Transpressional Orogen Developed During Ridge – Trench Interaction along the North Pacific Margin. Geological Society of America, Special Paper 371.
- SKRINNIK, L., SENKEVICH, M., 1996. Rock associations and zonation of the southern segment of the Devonian volcanic belt in Kazakhstan. *Geologiya Kazakhstana*, **4**, 28-43, (in Russian).
- SMELLIE, J.L., (ed.) 1994. Volcanism Associated with Extension at Consuming Plate Margins. The Geological Society, London, Special Publication 84.
- SMITH, G.A., LANDIS, C.A., 1995. Intra-arc basins, in: BUSBY, C.J., INGERSOLL, R.V., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 263-298.
- SMITH, M., GEHRELS, G.E., 1994. Detrital zircon geochronology and the provenance of the Harmony and Valmy Formations, Roberts Mountains allochthon, Nevada. *Geological Society of America Bulletin*, **106**, 968-979.
- SMITH, P.E., TATSUMOTO, M., FARQUHAR, R.M., 1987. Zircon Lu-Hf systematics and the evolution of the Archean crust in the southern Superior Province, Canada. *Contributions to Mineralogy and Petrology*, 97, 93-104.
- SNYDER, D.B., PILKINGTON, M., CLOWES, R.M., COOK, F.A., 2009. The underestimated Proterozoic component of the Canadian Cordillera accretionary margin, in: CAWOOD, P.A., KRÖNER, A., eds., Earth Accretionary systems in space and time. The Geological Society, London, Special Publication 318, 257-271.
- SOBEL, E.R., DUMITRU, T.A., 1997. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision. *Journal of Geophysical Research*, **102**, 5043-5063.
- SONG, H.X., LIU, Y.L., QU, W.J., SONG, B., ZHANG, R., CHENG, Y., 2007. Geological characters of Baogutu porphyry copper deposit in Xinjiang, NW China. *Acta Petrologica Sinica*, 23, 1891-1988 (in Chinese).
- SOTO, F., LIN, B., 2000. Corales rugosos de la Formacion Hongguleleng (Fameniense) en el N de Sinkiang (NO de China). *Geobios*, **33**, 527-541 (in Spanish).
- SPEER, J.A., 1982. Zircon, in: RIBBE, P., ed., Orthoslicates. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry 5, 67-112.

- STEIN, G., CHARVET, J., LAPIERRE, H., FABBRI, O., 1994. Geodynamic dsetting of colcano-plutonic rocks in socalled "paleo-accretionary prisms": Fore-arc activity or post-collisional magmatism? The Shimanto belt as a case study. *Lithos*, 33, 85-107.
- STEVENSON, R.K., PATCHETT, P.J., 1990. Implications for the evolution of continental crust from Hf isotope systematics of Archaean detrital Zircons. *Geochimica et Cosmochimica Acta*, **54**, 1683-1697.
- SU, Y.P., TANG, H.F., HOU, G.S., LIU, C.Q., 2006a. Geochemistry of aluminous A-type granites along Darabut tectonic belt in West Junggar, Xinjiang. *Geochemica*, **35**, 1-5 (in Chinese).
- SU, Y.P., TANG, H.F., LIU, C.Q., HOU, G.S., LIANG, L.L., 2006b. The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang. Acta Petrologica Et Mineralogica, 25, 175-184 (in Chinese).
- SUESS E., 1901. Das Antlitz der Erde. Vienna/Prague: Tempsky; Leipzig: Freytag. Vol. III/1, IV. 508 pp. (in German).
- SUN M., YUAN C., XIAO W., LONG X., XIA X, ZHAO G., LIN S., WU F., KRÖNER A., 2008. Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, 247, 352-383.
- SUN, S.S., MCDONOUGH, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in: SAUNDERS A.D., NORRY M.J., eds., Magmatism in Ocean Basins. The Geological Society, London, Special Publication 42, 313-345.
- SUPPE, J., 1978. Cross-section of southern part of Northern Coast ranges and Sacramento Valley, California. Geological Society of America Map and Chart Series MC-28B, scale 1:250,000, 1 sheet.
- SUTHERLAND, R., HOLLIS, C., 2001. Cretaceous demise of the Moa plate and strike–slip motion at the Gondwana margin. *Geology*, **29**, 279-282.

T

- TAGAMI, T., 2005. Zircon fission-track thermochronology and applications to fault studies, in: REINERS, P.W., EHLERS, T.A., eds., Low-Temperature Thermochronology: techniques, interpretations, and Applications, Mineralogical Society of America, Reviews in mineralogy and Geochemistry 58, 95-122.
- TAN, L., ZHOU, T., YUAN, F., FAN, Y., YUE, S., 2006. Mechanism of formation of Permian volcanic rocks in Sawu'er region, Xinjiang, China: Constraints from rare earth elements. *Journal of Rare Earths*, 24, 626-632.
- TANG, G., WANG, Q., WYMAN, D.A., LI, Z.-X., ZHAO, Z.-H., JIA, X.-H., JIANG, Z.-Q., 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). *Chemical Geology*, 277, 281-300.
- TANG, G.J., WANG, Q., ZHAO, Z.H, WYMAN, D.A, CHEN, H.H., JIA, X.H., JIANG, Z.Q., 2009. Geochronology and geochemistry of the ore-bearing porphyries in the Baogutu area (western Junggar) : petrogenesis and their implications for tectonics and Cu-Au mineralization. *Scientia Geologica Sinica*, 34, 56-74 (in Chinese).
- TAPPONNIER, P., MOLNAR, P., 1977. Active faulting and tectonics of China. *Journal of Geophysical Research*, **82**, 2905-2930.
- TAPPONNIER, P., MOLNAR, P., 1979. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia and Baykal Regions. *Journal of Geophysical Research*, **84**, 3425-3459.
- TARLING, D.H., HROUDA, F., 1993. The magnetic anisotropy of rocks. Chapman and Hall, 215 pp..
- TATSUMI, Y. 2005. The subduction factory: How it operates in the evolving Earth. GSA Today, 15, 4-10.
- TATSUMOTO, M., UNRUH, D.M., PATCHETT, P.J., 1981. U-Pb and Lu-Hf systematics of Antarctic meteorites. Proceedings of the 6th Symposium Antarctic Meteor, National Institute of Polar Research, Tokyo, 237-249.
- TAUXE, L., 2010. Essentials of Paleomagnetism, University of California Press, 512 pp..
- TAYLOR, S.R., 1967. The origin and growth of continents. Tectonophysics, 4, 17-34.

- TAYLOR, S.R., MCLENNAN, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford.
- TERA, F., BROWN, L., MORRIS, J., SACKS, I.S., KLEIN, J., MIDDLETON, R., 1986. Sediment incorporation in island-arc magmas; inferences from ¹⁰Be. *Geochimica et Cosmochimica Acta*, **50**, 535-550.
- TERA, F., WASSERBURG, G.J., 1972. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. *Earth and Planetary Science Letters*, **14**, 281-304.
- TEVELEV, A.V., BESSTRASHNOV, V.M., GERASIMOVA, N.A., ET AL., 2003. Stratigraphy of Middle Paleozoic in the Zhaman-Sarysu Megablock, Central Kazakhstan. *Biulleten Moskovskogo obshchestva Ispytatelei Prirody, Otdel Geologicheski*, **78**, 25-39 (in Russian).
- THOMPSON, R., OLDFIELD, F., 1986. Environmental Magnetism. Springer, 227 pp..
- THORKELSON, D.J., 1996. Subduction of diverging plates and the principles of slab window formation. *Tectonophysics*, **255**, 47-63.
- THORNBURG, T.M, KULM, L.D., 1987. Sedimentation in the Chile Trench: Depositional morphologies, lithofacies, and stratigraphy. *Geological Society of America Bulletin*, **99**, 599-600.
- TILTON, G.R., PATTERSON, C., BROWN, H., INGHRAM, M., HAYDEN, R., HESS, D., LARSEN, E., 1955. Isotopic composition and distribution of lead, uranium and thorium in a Precambrian granite. *Geological Society* of America Bulletin, 66, 1131-1148.
- TRAVIN, A.V., BOVEN, A., PLOTNIKOV, A.V., VLADIMIROV, V.G., THEUNISSEN, K., VLADIMIROV, A.G., MELNIKOV, A.I., TITOV, A.V., 2001. ⁴⁰Ar/³⁹Ar dating of ductile deformation in the Irtysh shear zone (Eastern Kazakhstan). *Geochemistry*, **12**, 1347-1350.
- TROP, J.M., RIDGWAY, K.D., 2007. Mesozoic and Cenozoic tectonic growth of southern Alaska: A sedimentary basin perspective, in: RIDGWAY, K.D., TROP, J.M., O'NEILL, J.M., GLEN, J.M.G., eds., Tectonic growth of a collisional continental margin: Crustal evolution of south-central Alaska. Geological Society of America, Special Paper 431, 55-94.
- TU, G.C., 1993. New progress of Solid Geoscience in Nothern Xinjiang, Beijing, Science Press (in Chinese).

U

- UNRUH, J.R., DUMITRU, T.A., SAWYER, T.L., 2007. Coupling early Tertiary extension in the Great Valley forearc basin with blueschist exhumation in the underlying Franciscan accretionary wedge at mount Diable, California. *Geological Society of America Bulletin*, **119**, 1347-1367.
- UYEDA, S., KANAMORI, H., 1979. Back-arc opening and the mode of subduction. Journal of Geophysical Research, 84, 1049-1061.

V

- VALLEY, J.W., 2003. Oxygen isotopes in zircon, in: HANCHAR, J.M., HOSKIN, P.W.O., eds., Zircon. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry **53**, 343-385.
- VAN DER VOO, R., 1993. Paleomagnetism of the Atlantic, tethys and Iapetus Oceans, Cambridhe University Press, Cambridge, 421 pp..
- VAN DER VOO, R., ABRAJEVITCH, A.V., BAZHENOV, M.L., LEVASHOVA, N.M., 2008. A Late Paleozoic orocline that developed in the central Asian triangle between the converging Baltica, Siberia and Tarim cratons. 33rd International Geological Congress, Oslo.
- VAN DER VOO, R., LEVASHOVA, N.M., SKRINNIK, L.I., KARA, T.V., BAZHENOV, M.L., 2006. Late orogenic, largescale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan. *Tectonophysics*, 426, 335-360.
- VAN STAAL, C.R., DEWEY, J.F., MAC NIOCAILL, C., MCKERROW, W.S., 1998. The Cambrian-Silurian tectonic evolution of the northern Appalachian and British Caledonides: history of a complex west and southwest Pacific-type segment of Iapetus, in: BUNDELL, D.J., SCOTT, A.C., eds., Lyell: The Past is the Key to the Present. The Geological Society, London, Special Publication 143, 199-242.

- VANNUCCHI, P., GALEOTTI, D.S., CLIFT, P.D., RANERO, C.R., VON HUENE, R., 2004. Long-term subduction erosion along the Middle America Trench offshore Guatemala. *Geology*, **32**, 617-620.
- VANNUCCHI, P., RANERO, C.R., GALEOTTI, S., STRAUB, S.M., SCHOLL, D.W., MCDOUGALL-RIED, D., 2003. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones. *Journal of Geophysical Research*, **108**, doi: 10.1029/2002JB002207.
- VAUGHAN, A.P.M., LEAT, P.T., PANKHURST, R.J., 2005. Terrane Processes at the Margins of Gondwana: an introduction, in: VAUGHAN, A.P.M., LEAT, P.T., PANKHURST, R.J., eds., Terrane Processes at the Margins of Gondwana. The Geological Society, London, Special Publication 246, 1-21.
- VAUGHAN, A.P.M., LIVERMORE, R.A., 2005. Episodicity of Mesozoic terrane accretion along the Pacific margin of Gondwana: Implications for superplume – plate interactions, in: VAUGHAN, A.P.M., LEAT, P.T., PANKHURST, R.J., eds., Terrane Processes at the Margins of Gondwana. The Geological Society, London, Special Publication 246, 143-178.
- VAVRA, G., 1993. A guide to quantitative morphology of accessory zircon. Chemical Geology, 110, 15-28.
- VAVRA, G., 1994. Systematics of internal zircon morphology in major Variscan granitoid types. *Contributions to Mineralogy and Petrology*, **117**, 331-334.
- VAVRA, G., GEBAUER, D., SCHMID, R., COMPSTON, W., 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea zone (Southern Alps): An ion microprobe (SHRIMP) study. *Contributions to Mineralogy and Petrology*, **122**, 337-358.
- VEEVERS, J.J., 2003. Pan-African is Pan-Gondwanaland: Oblique convergence drives rotation during 650-500 Ma assembly. *Geology*, **31**, 501-504.
- VERMEESCH, P., 2004. How many grains are needed for a provenance study? *Earth and Planetary Science Letters*, **224**, 441-451.
- VERNIKOVSKY, V.A., VERNIKOVSKAYA, A.E., SAL'NIKOVA, E.B., KOTOV, A.B., CHERNYKH, A.I., KOVACH, V.P., BEREZHNAYA, N.G., YAKOVLEVA, S.Z., 1999. New U-Pb data on the formation of the Predivinsk paleoisland-arc complex (Yenisei Range), *Russian Geology and Geophysics*, 40, 255-259 (in Russian).
- VERVOORT, J.D., BLICHERT-TOFT, J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. *Geochimica et Cosmochimica Acta*, **63**, 533-566.
- VERVOORT, J.D., PATCHETT, P.J., 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from precambrian crustally derived granites. *Geochimica et Cosmochimica Acta*, **60**, 3717-3723.
- VERVOORT, J.D., PATCHETT, P.J., BLICHERT-TOFT, J., ALBAREDE, F., 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. *Earth and Planetary Science Letters*, 168, 79-99.
- VLADIMIROV, A., MELNIKOV, A., TRAVIN, A., PLOTNIKOV, A., SMIRNOVA, L., AND THEUNISSEN, K., 1998. The Irtysh shear zone in NE Kazakhstan: kinematics and preliminar data on metamorphic conditions and Ar/Ar geochronology. In: Active tectonic continental basin, International Conference, Gent, April 30– May 2, 1998, p. 105.
- VON HUENE, R., 1974, Modern trench sediments, in: BURK, C.H., DRAKE, C.L., eds., The geology of continental margins. Springer-Verlag, New York, 207-211.
- VON HUENE, R., CULOTTA, R., 1989. Tectonic erosion at the front of the japan convergent margin. *Tectonophysics*, **160**, 75-90.
- VON HUENE, R., LALLEMAND, S., 1990. Tectonic erosion along the Japan and Peru convergent margins. *Geological Society of America Bulletin*, **102**, 704-720.
- VON HUENE, R., RANERO, C.R., VANNUCCHI, P., 2004. Generic model of subduction erosion. *Geology*, **32**, 913-916.
- VON HUENE, R., SCHOLL, D.W., 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Reveiws of Geophysics, 28, 279-316.
- VON HUMBOLDT, A., 1843. Asie centrale. Recherches sur les chaînes de montagnes et la climatologie comparée de l'Asie centrale, Gide, Paris, 3 vol..

W

- WAKABAYASHI, J., 1990. Counterclockwise P-T-t paths from amphibolites, Franciscan Complex, California: relicts from the early stages of subduction zone metamorphism. *Journal of Geology*, **98**, 657-680.
- WAKABAYASHI, J., UNRUH, J.R., 1995. Tectonic wedging, blueschist metmorphism, and exposure of blueschists : Are they compatible? *Geology*, 23, 85-88.
- WANG, B., CHEN, Y., ZHAN, S., SHU, L.S., FAURE, M., CLUZEL, D., CHARVET, J., LAURENT-CHARVET, S., 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt. *Earth and Planetary Science Letters*, 263, 288-308.
- WANG, B., CLUZEL, D., SHU, L.S., FAURE, M., CHARVET, J., CHEN, Y., MEFFRE, S., JONG, K.D., 2009a. Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan. *International journal of Earth Science*, **98**, 1275-1298.
- WANG, B., FAURE, M., CLUZEL, D., SHU, L. S., CHARVET, J., MEFFRE, S., MA, Q., 2006. Late Paleozoic tectonic evolution of the northern West Chinese Tianshan Belt. *Geodinamica Acta*, **19**, 237-247.
- WANG, B., FAURE, M., SHU, L., DE JONG, K., CHARVET, J., CLUZEL, D., JAHN, B., CHEN, Y., RUFFET, G., 2010. Structural and Geochronological Study of High-Pressure Metamorphic Rocks in the Kekesu Section (Northwestern China): Implications for the Late Paleozoic Tectonics of the Southern Tianshan. *The Journal of Geology*, **118**, 59-77.
- WANG, B., JAHN, B.M., LO, C.H., SHU, L.S, WU, C.Y., LI, K.S., WANG, F., 2011a. Structural analysis and ⁴⁰Ar/³⁹Ar thermochronology of Proterozoic rocks in Sailimu area (NW China): Implication to polyphase tectonics of the North Chinese Tianshan, *Journal of Asian Earth Sciences*, doi: 10.1016/j.jseaes.2011.07.022.article/pii/S1367912011003105, **in press**.
- WANG, B., SHU, L.S., FAURE, M., JAHN, B.M., CLUZEL, D., CHARVET, J., CHUNG, S.L., MEFFRE, S., 2011b. Paleozoic tectonics of the southern Chinese Tianshan: insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). *Tectonophysics*, 497, 85-104.
- WANG, Q.C., LI, S.J., DU, Z.L., 2009b. Differential uplift of the Chinese Tianshan since the Cretaceous: constraints from sedimentary petrography and apatite fission-track dating. *International Journal of Earth Sciences*, 98, 1341-1363.
- WANG, R., ZHU, Y.F., 2007. Geology of the Baobei gold deposit in Western Juggar and zircon SHRIMP age of its wall-rocks, Western Junggar (Xinjiang, NW China). *Geological Journal of China Universities*, 13, 590-602 (in Chinese).
- WANG, Y., WEI, W., PANG, X.Y., XU, B., 2009c. Sedimentary characters during the Late Devonian in Tacheng area and their tectono-paleogeography signification. *Acta Petrologica Sinica*, **25**, 699-707 (in Chinese).
- WANG, Y.S., 1982. Basic geologic characteristics of Darbut ophiolite and discussion of its mode of origin, *Bulletin of Xi'an Institute of Geology and Mineral Resources*, **4**, 37-45 (in Chinese).
- WANG, Z.H., SUN, S., LI, J.L., HOU, Q.L., QIN, K.Z., XIAO, W.J., HAO, J., 2003. Paleozoic tectonic evolution of the northern Xinjiang, China: geochemical and geochronolgical constrains from the ophiolites. *Tectonics*, 22, 1014.
- WARTES, M.A., CARROLL, A.R., GREENE, T.J., 2002. Permian sedimentary record of the Turpan-Hami basin and adjacent regions, northwest China: Constraints on postamalgamation tectonic evolution. *Geological Society of America Bulletin*, **114**, 131-152.
- WATERS, J., MAPLES, C.G., LANE, G., MARCUS, S. LIAO Z.H., LIU, L.J., HOU H.F., WANG J.X., 2003. A quadrupling of Famennian pelmatozoan diversity: new Late Devonian blastoids and crinoids from northwest China. *Journal of Paleontology*, 77, 922-948.
- WATSON, E.B., 1996. Dissolution, growth and survival of zircons during crustal fusion: Kinetic principles, geologica lmodels and implications for isotopic inheritance. *Transactions of the Royal Society of Edinburgh, Earth Sciences*, **87**, 43-56.
- WATSON, E.B., HARRISON, T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. *Earth and Planetary Science Letters*, **64**, 295-304.

- WATSON, E.B., HARRISON, T.M., 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. *Science*, **308**, 841-844.
- WATSON, E.B., LIANG, Y., 1995. A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. American Mineralogist, 80, 1179-1187.
- WEI, W., PANG, X.Y., WANG, Y., XU, B., 2009. Sediment facies, provenance evolution and their implications of the Lower Devonian in Shaerbuerti mountain in North Xinjiang. Acta Petrologica Sinica, 25, 689-698 (in Chinese).
- WESTPHAL, M., 1986. Paléomagnétisme et magnétisme des roches. Doin, Paris, 131 pp..
- WETHERHILL, G.W., 1956. Discordant uranium-lead ages, I. *Transactions of the American Geophysical Union*, **37**, 320-326.
- WHITEHOUSE, M.J., PLATT, J.P., 2003. Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. *Contributions to Mineralogy and Petrology*, **145**, 61-74.
- WIEDENBECK, M., ALLE, P., CORFU, F., GRIFFIN, W.L., MEIER, F., OBERLI, F., VON QUADT, A., RODDICK, J.C., SPIEGEL, W., 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element, and REE analyses. *Geostandards Newsletter*, **19**, 1-23.
- WILDE, S.A., VALLEY, J.W., PECK, W.H., GRAHAM, C.M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. *Nature*, **409**, 175-178.
- WILLETT, S., BEAUMONT, C., FULLSACK, P., 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. *Geology*, 21, 371-374.
- WILLNER, A.P., GERDES, A., MASSONNE, H.J., 2008. History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29 degrees-36 degrees S revealed by a U-Pb and Lu-Hf isotope study of detrital zircon from late Paleozoic accretionary systems. *Chemical Geology*, 253, 114-129.
- WILSON, J.T., 1966. Did the Atlantic close and then re-open? Nature, 2011, 676-681.
- WINCHESTER, J.A., FLOYD, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. *Chemical Geology*, **20**, 325–343.
- WINDLEY, B.F., 1992. Proterozoic collisional and accretionary orogens. in: CONDIE, K.C., ed., Proterozoic Crustal Evolution. Developments in Precambrian Geology, **10**, 419–446.
- WINDLEY, B.F., ALEXEIEV, D., XIAO, W., KRÖNER, A., BADARCH, G., 2007. Tectonic models for accretion of the Central Asian Orogenic belt. *Journal of the Geological Society*, **164**, 31-47.
- WINDLEY, B.F., ALLEN, M.B., ZHANG, C., ZHAO, Z.Y., WANG, G.R., 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, Central Asia. *Geology*, **18**, 128-131.
- WINDLEY, B.F., KRÖNER, A., GUI, J., QU, G., LI, Y., ZHANG, C., 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. *Journal of Geology*, **110**, 719-737.
- WOOD, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. *Earth and Planetary Science Letters*, **50**, 11-30.
- WOODHEAD, A., ROSSMAN, G.R., SILVER, L.T., 1991. The metamictization of zircon: radiation dose-dependent structural characteristics. *American Mineralogist*, **76**, 74-82.
- WOODHEAD, J., HERGT, J., SHELLEY, M., EGGINS, S., KEMP, R., 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. *Chemical Geology*, **209**, 121–135.
- WU, B., HE, G.Q., WU, T.R., LI, H.J., LUO, H.L., 2006a. Discovery of the Buergen ophiolitic me lange belt in Xinjiang and its tectonic significance. *Geology in China*, **33**, 476-486 (in Chinese).
- WU, F.Y., HAN, R.H., YANG, J.H., WILDE, S.A., ZHAI, M.G., PARK, S.C., 2007. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. *Chemical Geology*, 238, 232-248.

- WU, F.Y., JAHN, B.M., WILDE, S., SUN, D., 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. *Tectonophysics*, **328**, 89-113.
- WU, F.Y., JI, W.Q., LIU, C.Z., CHUNG, S.L., 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. *Chemical Geology*, 271, 13-25.
- WU, F.Y., SUN, D.Y., LI, H.M., JAHN, B.M., WIKDE, S., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. *Chemical Geology*, **187**, 143-173.
- WU, F.Y., YANG, Y.H., XIE, L.W., YANG, J.H., XU, P., 2006b. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. *Chemical Geology*, **234**, 105-126.
- WU, H., PAN, Z., 1991. Paleozoic sedimentary sequences and their tectonic setting discrimination in Western Junggar, Xinjiang, China. Advances in Geoscience, **8**, 246-274 (in Chinese).
- WU, J.Y., LIU, C.D., 1989. Geological features of the Bayingol ophiolite complexes in North Tien Shan, Xinjiang, *Acta Petrologica Sinica*, **2**, 76-87 (in Chinese).
- WU, Q.F., 1987. The Junggar terrane and its significance in the tectonic evolution of the Kazakhstan Plate. Plate Tectonics of Northern China, Geological Publishing House, Beijing, 2, 29-38 (in Chinese).
- WYMAN, D.A., BLEEKER, W., KERRICH, R., 1999. A 2.7 Ga plume, proto-arc, to arc transition and the geodynamic setting of the Kidd Creek deposit: Evidence from precise ICP MS trace element data. *Economic Geology Monograph*, **10**, 511-528.

X

- XBGMR. 1965a. Geological map of China, Taleaileke sheet (L-44-23), scale 1:200000.
- XBGMR. 1965b. Geological map of China, Urumqi sheet (K-45-4), scale 1:200000.
- XBGMR. 1966. Geological map of China, Karamay sheet (K-45-19), scale 1:200000.
- XBGMR. 1978. Geological map of China, Toli sheet (L44-24), scale 1:200000.
- XIA, F., 1996. New knowledge on the age of Hongguleleng Formation in the northwestern margin of Junggar Basin, northern Xinjiang. *Acta Micropalaeontologica Sinica*, **13**, 277-285 (in Chinese).
- XIAO, W.J., HAN, C.M., YUAN, C., SUN, M., LIN, S.F., CHEN, H.L., LI, Z.L., LI, J.L., SUN, S., 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: implications for the tectonic evolution of Central Asia. *Journal of Asian Earth Sciences*, 32, 102-117.
- XIAO, W.J., HUANG, B.C., HAN, C.M., GUN, S., LI, J.L., 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. *Gondwana Research*, **18**, 253-273.
- XIAO, W.J., WINDLEY, B.F., BADARCH, G., SUN, S., LI, J., QIN, K., WANG, Z., 2004. Paleozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia. *Journal of the Geological Society*, 161, 339-342.
- XIAO, W.J., WINDLEY, B.F., HAO, J., ZHAI, M.G., 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian orogenic belt. *Tectonics*, 22, 1069, doi: 10.1029/2002TC1484.
- XIAO, W.J., WINDLEY, B.F., HUANG, B.C., HAN, C.M., YUAN, C., CHEN, H.L., SUN, M., SUN, S., LI, J.L., 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. *International Journal of Earth Sciences*, 98, 1189-1217.
- XIAO, W.J., WINDLEY, B.F., YUAN, C., SUN, M., HAN, C.M., LIN, S.F., CHEN, H.L., YAN, Q.R., LIU, D.Y., QIN, K.Z., LI, J.L., SUN, S., 2009b. Paleozoic multiple subduction-accretion processes of the southern Altaids. *American Journal of Science*, **309**, 221-270.
- XIAO, X., TANG, Y., FENG, Y., ZHU, B., LI, J., ZHAO, M., 1992. Tectonic Evolution of the Northern Xinjiang and its Adjacent Regions. Geological Publishing House, Beijing, 169 pp. (in Chinese).
- XIAO, X., TANG, Y.Q., LI, J.Y., ET AL., 1991. Tectonic Evolution of the Southern Margin of the Paleo-Asian Ocean Composite Gigantic suture. Beijing Science and technology Press, Beijing, 169 pp. (in Chinese).

- XIE, L.W., ZHANG, Y.B., ZHANG, H.H., SUN, J.F., WU, F.Y., 2008. In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopes in zircon and baddeleyite. *Chinese Science Bulletin*, **53**, 1565-1573.
- XU, B., 2010. Mid-Paleozoic Opposite Orogenic Belt in Inner Mongolia of China and its significance for Central Asian Orogenic Belt. International Conference of "from Gondwana to Asia: Evidence of East Asia and its continental margins", Qindao, China, Sept. 25th-29th 2010.
- XU, H.H., WANG, Y., 2008. The palaeogeographical significance of specimens attributed to Protolepidodendron scharyanum Krejci (Lycopsida) from the Middle Devonian of North Xinjiang, China. Geological Magazine, 145, 295-299.
- XU, J.D., MA, Z.J., QU, G.S., LI, J., 2008a. Study on basin-range coupling along northwestern margin of Junggar Basin. *Xinjiang Petroleum Geology*, **29**, 143-146 (in Chinese).
- XU, Q.Q., JI, J.Q., GONG, J.F., ZHAO, L., TU, J.Y., SUN, D.X., TAO, T., ZHU, Z.H., HE, G.Q., HOU, J.J., 2009. Structural style and deformation sequence of western Junggar, Xinjiang, since Late Paleozoic. *Acta Petrologica Sinica*, **25**, 636-644 (in Chinese).
- XU, Q.Q., JI, J.Q., HAN, B.F., ZHU, M.F., CHU, Z.Y., ZHOU, J., 2008b. Petrology, geochemistry and geochronology of the intermediate to mafic dykes in northern Xinjiang since Late Paleozoic. *Acta Petrologica Sinica*, **24**, 977-996 (in Chinese).
- XU, X., HE, G.Q., LI, H.Q., DING, T.F., LIU, X.Y., MEI, S.W., 2006a. Basic characteristics of the Karamay ophiolitic mélange, Xinjiang, and its zircon SHRIMP dating. *Geology in China*, **3**, 470-475 (in Chinese).
- XU, X.Y., MA, Z.P., XIA, L.Q., ET AL., 2005. SHRIMP dating of plagiogranite from Bayingou ophiolite in the northern Tianshan Mountains. *Geological Review*, **51**, 523-527 (in Chinese).
- XU, X.Y., MA, Z.P., XIA, Z.C., XIA, L.Q., LI, X.M., WANG, L.S., 2006b. TIMS U-Pb isotopic dating and geochemical characteristics of Paleozoic granitic rocks from the middle-western section of Tianshan. *Northwestern Geology*, **39**, 50-75 (in Chinese).
- XU, X.Y., XIA, L.Q., MA, Z.P., XIA, Z.C., LI, X.M., WANG, L.S., 2006c. SHRIMP zircon U–Pb geochronology of the plagiogranites from Bayingou ophiolite in North Tianshan Mountains and the petrogenesis of the ophiolite. *Acta Petrologica Sinica*, 22, 83-94 (in Chinese).

Y

- YAKUBCHUK, A., 1990. Tectonic position of ophiolite zones in the Paleozoic structure of the Central Kazakhstan. *Geotectonics*, **5**, 55-68 (in Russian).
- YAKUBCHUK, A., 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model. *Journal of Asian Earth Sciences*, 23, 761-779.
- YAKUBCHUK, A., 2008. Re-deciphering the tectonic jigsaw puzzle of northern Eurasia. *Journal of Asian Earth Sciences*, **32**, 82–101.
- YAKUBCHUK, A.S., DEGTYAREV, K.E., 1994. The remnants of the Paleo-Asian ocean within Central Kazakhstan, in: COLEMAN, R.G., ed., Reconstruction of the Paleo-Asian Ocean. Proceedings 29th Internatational Geological Congress, Utrecht, 7–24.
- YAKUBCHUK, A.S., SHATOV, V.V., KIRWIN, D., EDWARDS, A., TOMURTOGOO, O., BADARCH, G., BURYAK, V.A., 2005. Gold and base metal metallogeny of the Central Asian orogenic supercollage. 100th Anniversary Volume of Economic Geology, 1069-1096.
- YANG, G.X., LI, T.J., GU, P.Y., YANG, B.K., TONG, L.L., ZHANG, H.G., 2011 Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. *Gondwana Research*, doi: 10.1016/j.gr.2011.07.029, in press.
- YANG, J., QU, L., ZHOU, H., ET AL., 1986. Stratigraphy, in: Permian and Triassic strata and fossil assemblages in the Dalongkou area of Jimsar, Xinjiang, People's Republic of China, Ministry of Geology and Mineral Ressources, Geology Memoir 2, 235 pp. (in Chinese).
- YANG, J.H., CHUNG, S.L., WILDE, S.A., WU, F.Y., CHU, M.F., LO, C.H., FAN, H.R., 2005. Petrogenesis of postorogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. *Chemical Geology*, 214, 99-125.

- YANG, T.N., LI, J.Y., SUN, G.H., WANG, Y.B., 2006. Earlier Devonian active continental arc in Central Tianshan: evidence of geochemical analyses and zircon SHRIMP dating on mylonitized granitic rocks. *Acta Petrologica Sinica*, **22**, 41-48 (in Chinese).
- YARMOLYUK, V.V., LITVINOVSKY, B.A., KOVALENKO, V.I., JAHN, ET AL., 2001. Formation stages and sources of the peralkaline granitoid magmatism of the Northern Mongolia Transbaikalia Rift Belt during the Permian and Triassic. *Petrology*, **9**, 302-328.
- YIN, A., HARRISON, T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. *Annual Review of Earth and Planetary Sciences*, **28**, 211-280.
- YIN, A., NIE, S., 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions, in: YIN, A., HARRISON, M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 442-485.
- YIN, J.Y., YUAN, C., SUN, M., LONG, X.P., ZHAO, G.C., WONG, K.P., GENG, H.Y., CAI, K.D., 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications. *Gondwana Research*, **17**, 145-152.
- YORK. D., 1969. Least-squares fitting of a straight line with correlated errors. *Earth and Planetary Science Letters*, **5**, 320-324.
- YU, C., JIANG, Y., LIU, S., 1996. Jurassic sedimentary boundary between the Junggar and Turpan-Hami basins in Xinjiang. *Sedimentary Facies and Palaeogeography*, **16**, 48-54 (in Chinese).
- YU, X., NIU, H., XU, J., CHEN, F., ZHENG, Z., 2000. On the Fluid System of the Paleozoic Volcano-Sedimentary Basins and Associated Mineralisation. Chinese National 305 Project, Urumqi, Xinjiang, China, 305 (in Chinese).
- YUAN, H.L., GAO, S., DAI, M.N., ZONG, C.L., GUNTHER, D., FONTAINE, G.H., LIU, X.M., DIWU, C.R., 2008. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple- collector ICP-MS. *Chemical Geology*, 247, 100-118.
- YUAN, X., ZHO, Y., ZHANG, C., 1994. Evidences for the West China cratons and its evolution, in: COLEMAN, R.G., ed., Reconstruction of the Paleo-Asian Ocean. Proceedings 29th Internatational Geological Congress, Utrecht, 39-51.

Ζ

- ZEITLER, P.K., JOHNSON, N.M., BRIGGS, N.D., NAESER, C.W., 1982. History of uplifts in northwestern himalayas using study of ages by fission tracks of detrital Siwalik zircons, in: Symposium on Mesozoic and Cenozoic Geology in Celebration of the 60th Anniversary of the Geological Society of China, Beidaihe, China, 108-109.
- ZHANG, C., 1990. The geological character and mineralization of the Western Junggar ophiolites in Xinjiang, China. Report of the Geoscience of Xinjiang. Project 305. (in Chinese).
- ZHANG, C., HUANG, X., 1992. The age and tectonic settings of ophiolites in West Junggar, Xinjiang. *Geological Review*, **38**, 509-523 (in Chinese).
- ZHANG, C., HUANG, X., ZHAI, M.G., 1995. Geological characteristics of the ophiolites, and their tectonic settings and ages, western Junggar, Xinjiang. Bulletin of the Institute of Geology, Chinese Academy of Science, Science Press, 165-218 (in Chinese).
- ZHANG, C., ZHAI, M.G., ALLEN, M.B., SAUNDERS, A.D., WANG, G.R., HUANG, X., 1993. Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central Asia. *Journal of the Geological Society of London*, 150, 551-561.
- ZHANG, C.L., LI, Z.X., LI, X.H., YE, H.M., 2009. Neoproterozoic mafic dyke swarm in north margin of the Tarim, NW China: age, geochemistry, petrogenesis and tectonic implications. *Journal of Asian Earth Sciences*, 35, 167–179.
- ZHANG, C.L., YANG, D.S., WANG, H.Y., TAKAHASHI, Y., YE, H.M., 2010. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: Two phases of mafic igneous activity with different mantle sources. *Gondwana Research*, **19**, 177-190.

- ZHANG, J., 2009. Late Paleozoic accretionary tectonics of the eastern part of Western Junggar, Xinjiang: insights from anatomy of the ophiolitic mélange and accretionary complex. PhD Thesis, Chinese Academy of Science, Beijing (in Chinese).
- ZHANG, J., XIAO, W.J., HAN, C.M., AO, S.J., YUAN, C., SUN, M., GENG, H.Y., ZHAI, G.C., GUO, Q.Q., MA, C., 2011a. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in Western Junggar, NW China. *Gondwana Research*, **19**, 958-974.
- ZHANG, J., XIAO, W.J., HAN, C.M., MAO, Q.G., AO, S.J., GUO, Q.Q., MA, C., 2011b. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. *Lithos*, **125**, 592-606.
- ZHANG, L.C., WAN, B., JIAO, X.J., ZHANG, R., 2006. Characteristics and geological significance of adaktic rocks in copper-bearing porphyry in Baogutu, western Junggar. *Geology in China*, **33**, 626-631 (in Chinese).
- ZHANG, L.F., 1997. The ⁴⁰Ar/³⁹Ar metamorphic ages of Tangbale blueschists and their geological significance in West Junggar of Xinjiang. *Chinese Science Bulletin*, **42**, 1902-1904 (in Chinese).
- ZHANG, L.F., XIAN, W.S., SUN, M., 2004. Petrogenesis of charnockites from western Junggar, Xinjiang, China. *Xinjiang Geology*, **22**, 36-42 (in Chinese).
- ZHANG, X. B., SUI, J. X., LI, Z. C., LIU, W., YANG, X. Y., LIU, S. S., 1996, Tectonic Evolution of the Erqis Belt and its Mineral Deposit Series. Science in China Press, Beijing, 205 pp. (in Chinese).
- ZHANG, X., 1981, Regional stratigraphic chart of northwestern China, branch of Xinjiang Uygur autonomous region: Beijing, Geological Publishing House, 496 pp. (in Chinese).
- ZHAO, J.M., LIU, G.D., LU, Z.X., ZHANG, X.K. AND ZHAO, G.Z., 2003. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar basin. *Tectonophysics*, **376**, 199-239.
- ZHAO, X.X., COE, R.S., ZHOU, Y.X., WU, H.R., WANG, J., 1990. New paleomagnetic results from Northern China Collision and suturing with Siberia and Kazakhstan. *Tectonophysics*, **181**, 43-81.
- ZHAUTIKOV, T.M., POLYANSKY, N.V., LEBED', N.I., 1971 Stratigraphy of the Upper Ordovician and Lower Silurian Rocks in the Akbastau-Kosmurun Ore Field, Geology and Metallogeny of Eastern Kazakhstan, Alma-Ata, 58-69, (in Russian).
- ZHENG, J.P., SUN, M., ZHAO, G.C., ROBINSON, P.T., WANG, F.Z., 2007. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China: Implications for the formation and evolution of the basin basement. *Journal of Asian Earth Sciences*, **29**, 778-794.
- ZHOU, D., GRAHAM, S.A., CHANG, E.Z., WANG, B., HACKER, B., 2001. Paleozoic tectonic amalgamation of the Chinese Tian Shan: Evidence from a transect along the Dushanzi-Kuqa Highway, in: HENDRIX, M.S., DAVIS, G.A., eds., Paleozoic and Mesozoic tectonic evolution of central Asia—From continental assembly to intracontinental deformation: Geological Society of America, Memoir 194, 23-46.
- ZHOU, J., HAN, B.F., MA, F., GONG, J.F., XU, Q.Q., GUO, Z.J., 2008a. 40Ar/39Ar Geochronology of mafic dykes in north Xinjiang. *Acta Petrologica Sinica*, **24**, 997-1010 (in Chinese).
- ZHOU, T.F., YUAN, F., FAN, Y., ZHANG, D.Y., COOKE, D., ZHAO, G.C., 2008b. Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance. *Lithos*, **106**, 191-206.
- ZHOU, T.F., YUAN, F., TAN, L.G., FAN, Y. AND YUE, S.C., 2006. Geodynamic significance of the A-type granites in the Sawuer region in west Junggar, Xinjiang: Rock geochemistry and SHRIMP zircon age evidence. *Science in China, Series D*, 49, 113-123.
- ZHU, B.Q., FENG, Y.M., YE, L.H., 1987. Paleozoic ophiolites in West Junggar and their geological significance, Symposium on Plate Tectonics of Northern China. Geological Publishing House, Beijing, 19-28 (in Chinese).
- ZHU, R., WANG, Z., WU, H., MA, X., HUANG, B., MENG, Z., FANG, D., 1998. Paleomagnetic constraints on the tectonic history of the major blocks of China during the Phanerozoic. *Science in China, Series D*, 41, 1-19 (in Chinese).
- ZHU, Y.F., XU, X., 2006. The discovery of Early Ordovian ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China. *Acta Petrologica Sinica*, **22**, 2833-2842 (in Chinese).
- ZHU, Y.F., XU, X., 2007. Exsolution texture of two-pyroxenes in lherzolite from Baijiangtan ophiolitic melange, western Junggar, China. *Acta Petrologica Sinica*, **23**, 1075-1086 (in Chinese).

- ZHU, Y.F., XU, X., CHEN, B., XUE, Y.X., 2008. Dolomite marble and garnet amphibolite in the ophiolitic melange in western Junggar: Relics of the Early Paleozoic oceanic crust and its deep subduction. Acta Petrologica Sinica, 24, 2767-2777 (in Chinese).
- ZHU, Y.F., XU, X., WEI, S.N., SONG, B., GUO, X., 2007. Geochemistry and tectonic significance of OIB-type pillow basalts in western Mts. of Karamay city (western Junggar), NW China. Acta Petrologica Sinica, 23, 1739 (in Chinese).
- ZIJDERVELD, J.D.A., 1967. A.C. demagnetization of rocks: analysis of results. in: COLLINSON, D.W., CREER, K.M., RUNCORN, S.K., eds., Methods on Paleomagnetism. Elsevier, 245–286.
- ZONENSHAIN, L.P., KUZMIN, M.I., NATAPOV, L.M., 1990. Geology of the USSR: a Plate-Tectonic Synthesis. American Geophysical Union, Geodynamic Series 21, 242 pp.
- ZORIN, Y.A., 1999. Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. *Tectonophysics*, **306**, 33-56.
- ZYKOV, S.I., STUPNIKOVA, N.I., FILATOVA, L.I., 1977. Lead-uranium-thorium dating of Precambrian metamorphic rocks of central Kazakhstan. *Izvestiya Akademii Nauk USSR Geol. Series*, **5**, 20–37 (in Russian).

METHODOLOGIE DETAILLEE ET DONNEES COMPLEMENTAIRES

- 2
 2
 2
- ?

?		
?		
	ad cleaneredadered adressed	23 #12222#123#1#1#182122
?		
?		

A Magnétisme des roches

Cette partie méthodologique, essentiellement tirée d'une synthèse bibliographique, donne un aperçu général du magnétisme des roches. Pour plus de détails, le lecteur pourra se reporter aux ouvrages suivants : Westphal, 1986 ; Tarling & Hrouda, 1993 ; van der Voo, 1993 ; Dunlop & Ozdemir, 1997; Lanza & Meloni, 2006 ; Tauxe, 2010.

A.1 Le champ magnétique terrestre

A.1.i Principes physiques du magnétisme

A.1.i.a Définitions

Un champ physique est une propriété de l'espace dans lequel une force peut s'exercer sur un objet ou provoquer des interactions entre plusieurs objets. Le champ de force est défini par des lignes de champ, tangentes à la direction de la force. Comme les autres types de champ, le champ magnétique n'est pas une grandeur observable, mais il peut être étudié en regardant la réponse physique d'un objet placé dans ce champ. Le champ magnétique est généré par un courant électrique. Le champ électromagnétique 🛛 pointe perpendiculairement à la direction du courant 🛛 tel que :

2 étant le rayon.

Lorsque l'on déforme le matériau conducteur traversé par le courant i, on crée un moment magnétique 🛛 tel que (*Fig. X.A.1*):

Fig. X.A.1 Champ magnétique **H** produit au point **P** par un moment

magnétique **m**. Le champ **H** peut

être exprimé par la composante

radial \mathbf{H}_{r} et la composante tangentielle $\mathbf{H}_{\boldsymbol{\theta}}$. $\boldsymbol{\theta}$ est l'angle entre

le rayon **r** et la direction du

Comme n'importe quel champ, le champ magnétique est défini par des lignes de champ correspondant au flux magnétique \mathbb{Z} (*Fig. X.A.1*). Ce flux magnétique permet d'estimer la force d'un champ magnétique et plus les lignes de champ seront resserrées dans l'espace, plus le champ magnétique sera important. C'est donc la densité du flux magnétique \mathbb{Q} créé par un courant électrique, peut à son tour générer un courant électrique dans n'importe quel matériau conducteur, grâce à la force de ce champ. L'induction magnétique \mathbb{Z} correspond à la densité du flux magnétique et entraîne une variation de potentiel sur une longueur \mathbb{Z} d'un conducteur se déplaçant à une vitesse \mathbb{Z} tel que :

Le moment magnétique m induit par \mathbbm{Z} possède une énergie $\mathbbm{Z}_{\mathbbm{Z}}$ tel que (*Fig. X.A.1*) :

?_? ? ? ? ? ?????*\(\alpha\)*

2 étant l'angle entre le moment magnétique et l'induction magnétique.

La réponse d'un matériau à un champ magnétique externe 🛛 appliqué est l'aimantation induite M suivant la relation :

? ? ??*¤*?*¤A*?

Is usceptibilité totale du matériau, mais elle peut varier localement en fonction de l'arrangement cristallin, de la température ou de l'orientation.
 L'aimantation est une réponse à l'échelle particulaire et elle sera détaillée par la suite.

La relation théorique qui lie le champ magnétique 2 et l'induction magnétique 2 est :

2 2 2₁₂22 2 2 2**1**/2*1*/2*1*/2/2

moment **m**.

 $\mathbb{D}_{\mathbb{D}}$ est la perméabilité de l'espace libre. Cependant, dans de nombreux cas on considère \mathbb{D} $\mathbb{D}_{\mathbb{D}}$, et l'induction magnétique \mathbb{D} est couramment appelé champ magnétique \mathbb{D} .
A.1.i.b Le potentiel magnétique

Dans le cas des courants électriques, le champ magnétique H peut être représenté par le gradient d'un potentiel magnétique $\mathbb{Z}_{\mathbb{Z}}$ tel que :

?????<u>?</u>*Q?*??A?

Dans un espace défini en coordonnées polaires (222), le potentiel magnétique $\mathbb{Z}_{\mathbb{Z}}$ d'un moment dipolaire à un point P peut s'écrire :

avec les composantes radiales $\mathbb{P}_{\mathbb{P}}$ \mathbb{P} \mathbb{P} $\frac{\mathbb{P}_{\mathbb{P}}}{\mathbb{P}}$ \mathbb{P} $\frac{\mathbb{P}_{\mathbb{P}}}{\mathbb{P}}$ et tangentielles $\mathbb{P}_{\mathbb{P}}$ \mathbb{P} \mathbb{P} $\frac{\mathbb{P}_{\mathbb{P}}}{\mathbb{P}}$ \mathbb{P} $\frac{\mathbb{P}_{\mathbb{P}}}{\mathbb{P}}$ \mathbb{P} $\frac{\mathbb{P}_{\mathbb{P}}}{\mathbb{P}}$

Contrairement au champ électrique, le champ magnétique ne peut être généré par une charge unique, et une paire de charges opposées (dipôle) est nécessaire. Les lignes de champ sont telles qu'elles relient les deux parties du dipôle et la divergence de la densité du champ est nulle ($\square \square \square$.

A.1.ii Le magnétisme terrestre

A.1.ii.a Composantes et champs de référence

En première approximation, le champ géomagnétique peut correspondre à un dipôle axial géocentré. En tout point, le champ magnétique terrestre est un vecteur et possède une magnitude (intensité) et une direction.

L'intensité \square du champ magnétique terrestre est relativement faible (de l'ordre de 10⁻⁵ T). La direction peut s'exprimer par deux angles : la déclinaison \square et l'inclinaison \square (*Fig. X.A.2*). Dans un repère orthonormé, l'inclinaison est l'angle fait par le champ magnétique par rapport à l'horizontale. La déclinaison est l'angle entre le nord géographique et la projection du vecteur \square sur le plan horizontal. Le champ magnétique \square peut alors être séparé en deux composantes : verticale (\square_{\square}) et horizontale (\square_{\square}). La composantes : nord (\square_{\square}) et est (\square_{\square}) (*Fig. X.A.2*). En coordonnées polaires, ces composantes s'expriment en fonction de (\square , \square et \square) :

 $\label{eq:states} \begin{bmatrix} \mathbb{S}^m & \mathbb{S} &$

Exprimé dans un repère cartésien (X, Y, Z), le vecteur du champ magnétique s'exprime par $\mathbb{Z}_{\mathbb{Z}}$, $\mathbb{Z}_{\mathbb{Z}}$ et $\mathbb{Z}_{\mathbb{Z}}$ d'après les relations suivantes :

Fig. X.A.2 Composantes du vecteur champ magnétique terrestre **B**.

Sachant que les vecteurs du champ magnétique terrestre peuvent être obtenus à partir de la relation $2 2 2 2_{2}$ et que $2^{2} 2_{2} 2$ (longitude) et une équation de Laplace tel que :

$$\mathbb{P}_{\mathbb{Z}} \left(\mathbb{P} \mathbb{P} \mathbb{P} \right) \mathbb{P} \left[\frac{\mathbb{P}}{\mathbb{P}_{\mathbb{Z}}} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \mathbb{P}_{\mathbb{Z}}^{n} \left(\frac{n}{2} \right)^{n n n} \mathbb{P}_{\mathbb{Z}}^{n} \left(\mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \right) \left(\mathbb{P}_{\mathbb{Z}}^{n} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \right) \mathbb{P} \left(\mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \right)$$

a est le rayon moyen de la Terre

2 est la perméabilité dans l'espace libre

 $\mathbb{D}_{\mathbb{D}}^{\mathbb{D}}$ et $\mathbb{D}_{\mathbb{D}}^{\mathbb{D}}$ sont des constantes (coefficients de Gauss de degré *n* et d'ordre *m*) variant chaque année et exprimées en nT.

 $\mathbb{Z}^{\mathbb{Z}}_{\mathbb{Z}}$ (2222) est une fonction polynomiale de Schmidt d'argument 2222 et peut s'écrire :

 $\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}} (\mathbb{Z}\mathbb{Z}\mathbb{Z}) \mathbb{Z} \left(\mathbb{Z} \frac{(\mathbb{Z}\mathbb{Z})}{(\mathbb{Z}\mathbb{Z})} \mathbb{Z} \right)^{\frac{1}{2}} \mathbb{Z}\mathbb{Z}^{\mathbb{Z}} \mathbb{Z}^{\mathbb{Z}} \mathbb{Z}^{\frac{1}{2}} \mathbb{Z} \frac{(\mathbb{Z}\mathbb{Z}^{\frac{1}{2}} \mathbb{Z}^{\frac{1}{2}} \mathbb{Z}^{\frac{$

Les composantes du champ magnétique terrestre $(\mathbb{Z}_{\mathbb{Z}}, \mathbb{Z}_{\mathbb{Z}} \text{ et } \mathbb{Z}_{\mathbb{Z}})$ peuvent ensuite être calculées :

A.1.ii.b Origines du magnétisme terrestre

L'expression de la dérivée du potentiel magnétique du champ magnétique terrestre ne représente qu'une seule partie du champ magnétique terrestre : le champ d'origine interne. Ce champ est produit par le noyau externe liquide, principalement constitué de fer liquide, de nickel et d'éléments non métalliques. La graine (noyau interne) est constituée de fer pur. De part sa composition ferrifère, le noyau est un réservoir conducteur. Cependant, la production d'un champ magnétique généré par un courant électrique n'aurait pu perduré pendant des millions d'années. En effet, les phénomènes électromagnétiques entraînent un effet Joule et une perte d'énergie du système électrique, qui finit par disparaître. Le modèle de la dynamo géomagnétique est une analogie de la production de courant électrique par un conducteur en rotation dans un champ magnétique. A partir des équations magnétohydrodynamiques, il est possible de relier le champ magnétique à la conductivité 🛛 de l'alliage fer-nickel et au déplacement de fluides dans le noyau externe à une vitesse 🛛

Cette équation vectorielle indique que le taux de variation du flux magnétique dans le noyau est la somme d'une composante de diffusion et d'une composante de dynamique. Puisque la conductivité du noyau externe est forte, la diffusion est faible et l'effet dynamo est dominant. Les lignes de flux peuvent alors se propager sous l'effet du déplacement du fluide.

Il existe aussi un champ magnétique terrestre d'origine externe, créé par les vents solaires. Ce plasma de particules chargées, interagit avec le champ magnétique dans la magnétosphère et le modifie. Cette interaction crée une onde de choc dont le front de forme arquée constitue la limite supérieure de la magnétosphère. Sous ce front, il existe une région turbulente, la magnétogaine où les particules ioniques solaires vont produire un champ magnétique externe. Suivant l'orientation du soleil, ce champ va comprimer ou renforcer le champ magnétique terrestre d'origine interne et provoquer des variations diurnes du champ magnétique terrestre.

Le champ magnétique terrestre total peut s'exprimer à partir du potentiel magnétique 🛛 🖉

 $\mathbb{S} \ \mathbb{S} \$

 $\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}}$ ($\mathbb{Z}_{\mathbb{Z}}$) est une fonction harmonique sphérique qui décrit les variations de potentiel sur la surface d'une sphère.

 $\mathbb{Z}_{\mathbb{R}}\mathbb{Z}^{\mathbb{I}}$ décrit la composante de $\mathbb{Z}_{\mathbb{R}}$ issue du champ magnétique d'origine externe.

 $\mathbb{D}_{\mathbb{Z}}$ décrit la composante de $\mathbb{D}_{\mathbb{Z}}$ issue du champ magnétique d'origine interne

A.1.ii.c Le champ magnétique dipolaire centré

Le champ magnétique est dominé par le premier ordre (n=1), ce qui peut se traduire par un dipôle géocentré à trois axes. $\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}}$ représente l'axe de révolution, alors que $\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}}$ et $\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}}$ correspondent aux axes équatoriaux. Le pôle géomagnétique associé au dipôle géocentré est actuellement incliné d'environ 10° par rapport au nord géographique. Les pôles magnétiques correspondent aux points du globe où le champ magnétique est parfaitement vertical (*Fig. X.A.3*). Les pôles obtenus par le modèle du dipôle axial géocentré sont compatibles avec la réalité, si bien que ce modèle est une bonne approximation du champ magnétique terrestre.

Fig. X.A.3 Vue schématique des trajectoires des lignes de flux d'un champ dipôlaire, d'un quadrupôlaire et d'un octupôlaire (modifié d'après **Lowrie, 1997**).

En considérant l'hypothèse d'un dipôle axial géocentré (n=1, m=0), on peut écrire :

Fig. X.A.4 Relation entre inclination I et latitude λ dans l'hypothèse d'un dipôle axial géocentré.

Et exprimer les composantes du champ magnétique terrestre par :

A une latitude 🕮

222 2 2 2 <u>2</u> 2 2 222 2 2 222 2 *(2 22 2 A*2

Cette équation montre que pour l'hypothèse du dipôle axial géocentré, que la latitude peut être calculée à partir de la détermination de l'inclinaison (*Fig. X.A.4*). De plus, l'intensité du dipôle est directement reliée à la latitude par la relation :

A.1.ii.d Le champ non dipolaire et les variations séculaires

Lorsque l'on soustrait le champ dipolaire axial centré au champ magnétique terrestre total mesuré, on obtient un champ résiduel faible (5% du champ magnétique total) : c'est le champ non-dipolaire. Ce champ s'exprime dans des ordres supérieurs \mathbb{Z} \mathbb{Z} \mathbb{Z} . Quand \mathbb{Z} \mathbb{Z} , le champ est calculé à partir d'un quadrupôle magnétique (*Fig. X.A.3*). Quand \mathbb{Z} \mathbb{Z} \mathbb{Z} , le champ est calculé à partir d'un quadrupôle magnétique (*Fig. X.A.3*). Lorsque \mathbb{Z} \mathbb{Z} \mathbb{Z} , \mathbb{Z} \mathbb{Z} ne varie pas pour une latitude donnée. Pour chaque hémisphère, il existe une valeur de latitude à partir de laquelle, les lignes de champ quittent la Terre. Elles retournent sur Terre dans des zones où le champ est horizontal.

En tout point du globe, le champ magnétique n'est pas constant au cours du temps et de petites variations peuvent être observées sur une dizaine ou une centaine d'années. Ces variations sont dites séculaires et sont liées aux composantes dipolaires et non-dipolaires du champ magnétique. Les variations séculaires du champ dipolaire s'expriment par une modification de la position de l'axe du dipôle et un changement d'intensité du champ dipolaire. L'origine de ces variations séculaires est encore mal comprise, mais elles pourraient correspondre à l'amorce d'une inversion de la polarité du champ magnétique. Les variations séculaires du champ non-dipolaire se traduisent par des changements d'intensité ou des dérives géographiques de l'anomalie du champ. Cette dérive pourrait traduire l'effet de la rotation différentielle du noyau externe par rapport au manteau inférieur.

A.2 L'aimantation des roches

Afin d'exploiter les enregistrements du champ magnétique terrestre par les roches et de retracer des événements tectoniques, il est nécessaire de comprendre comment une roche peut acquérir une aimantation et comment cette aimantation peut être conservée au cours du temps. Cette aimantation résulte de processus à l'échelle de l'atome et c'est la somme des caractéristiques de ces particules infinitésimales qui confèrent à la roche ces propriétés magnétiques exploitables.

A.2.i L'aimantation à l'échelle de l'atome

A.2.i.a Définitions

Les champs magnétiques sont produits par réaction à des champs électriques. A l'échelle particulaire, ce champ magnétique est issu du mouvement des électrons. En mécanique quantique, les électrons ne sont pas considérés sur une orbite autour d'un atome, mais ils occupent de manière probabiliste certaines régions de l'espace autour du noyau. Le mouvement des électrons s'apparente à des sauts d'énergie afin d'atteindre une

stabilité. Les états d'énergie sont quantifiables et peuvent être estimé par l'équation de Schrödinger qui donne la densité de probabilité d'un électron libre. Les solutions de cette équation sont des fonctions d'ondes stationnaires définies par les trois nombres quantiques (l, m, n). l est lié au moment angulaire orbital L qui permet de définir le moment magnétique orbital.

Ces nombres quantiques permettent de définir les zones de l'espace où la probabilité de trouver un électron autour du noyau est de 95% : les orbitales ou couches (s, p, d, f, etc.) et les sous-couches électroniques qui les constituent (1s, 2s, 1p, etc.). En plus de ces trois nombres quantiques, l'état d'un électron est aussi défini par son spin qui correspond au moment angulaire de l'électron. Le spin, égal à $\pm 1/2$, produit un moment magnétique m_b numériquement égal à celui produit par l'orbite. Le remplissage des couches électroniques de l'atome se fait selon trois règles :

- · deux électrons ne peuvent avoir le même état quantique (Principe d'exclusion de Pauli)
- · les orbitales sont remplies dans l'ordre croissant d'énergie
- · le remplissage électronique se fait tel que les spins restent parallèles (règle de Hund).

Lorsqu'un seul électron occupe une orbitale, on parle alors de spin dépareillé. Ces derniers caractérisent les éléments de transition tels que Mn ou Fe.

Il existe ainsi deux types de mouvements électroniques (moments) : les orbites et les spins (dépareillés). En réponse à un champ magnétique externe, ces moments vont pouvoir générer une aimantation induite.

A.2.ii.b L'aimantation induite

La « révolution » d'un électron autour d'un noyau produit un moment angulaire L qui possède un moment magnétique. Lorsqu'un champ magnétique est appliqué, le vecteur du moment angulaire se retrouve dévié par rapport à la direction du champ induit : c'est la précession de Larmor. En réponse à la précession du moment angulaire orbital, un moment magnétique se développe dans le sens opposé au champ magnétique appliqué. La réponse au moment magnétique issu des couches électroniques est une aimantation induite M_I qu'on peut relier au champ magnétique appliqué H par la relation :

 $M_I = \chi_d H \ (A.19)$

La susceptibilité diamagnétique χ_d est négative et commune à tous les matériaux. Cependant, cette susceptibilité est souvent neutralisée par le rôle des spins et elle n'est visible que dans de rares cas (calcite, quartz et eau).

Les spins électroniques dépareillés jouent un rôle de dipôle et produisent un moment magnétique. A l'état naturel les spins sont orientés dans des directions aléatoires. Lorsqu'un champ magnétique H est appliqué, ces spins tendent à s'aligner, ce qui génère une aimantation de réseau égale à χ_p H, où χ_p est la susceptibilité paramagnétique. En considérant que 1) chaque spin crée un moment magnétique dipolaire, 2) la distribution aléatoire des spins en l'absence de champ applique n'entraîne pas d'orientation préférentielle, 3) l'énergie magnétique E_m d'un moment magnétique m faisant un angle θ avec le champ externe B est telle que : $E_m = m.B.cos\theta$ (B = μ_0 H) et 4), l'énergie thermique E_m est en compétition avec l'énergie thermique (kT avec k : la constante de Boltzmann), alors il est possible de modéliser le comportement paramagnétique : c'est la théorie de Langevin. Le degré d'alignement dépend du rapport entre les énergies magnétiques et thermiques et contrôle l'aimantation du réseau. Lorsque les spins sont totalement alignés, une aimantation de saturation M_s est atteinte. Cependant, l'augmentation de la température entraîne une agitation thermique qui va perturber l'orientation des moments magnétiques. Bien que certaines déviations liées à des effets mécaniques quantiques, à la forme des cristaux, à des défauts de réseau ou à une contrainte puissent compliquer ce modèle et générer une anisotropie, la susceptibilité paramagnétique peut s'écrire sous la forme :

$$\chi_p = \frac{Nm_b^2\mu_0}{3kvT} (A.20)$$

avec :

- · N :le nombre de moments magnétiques
- $\cdot\ m_b$: le moment lié au spins dépareillés
- \cdot v : le volume

La susceptibilité paramagnétique est positive et supérieure à la susceptibilité diamagnétique. Cette relation inverse entre susceptibilité paramagnétique et température est la loi de Curie paramagnétique.

A.2.i.c L'aimantation rémanente

Certaines substances ont la capacité de produire un champ magnétique même en l'absence de champ externe appliqué. Cette aimantation spontanée caractérise les matériaux ferromagnétiques dont le réseau cristallin est suffisamment dense pour permettre des superpositions d'orbitales d'ions contigus et un partage d'électrons. A l'échelle moléculaire, les forces d'interactions entre les spins voisins parallèles ou antiparallèles vont entraîner un moment magnétique spontané, même en l'absence d'un champ externe. Les interactions d'échange dépendent de la forme du cristal, principalement contrôlée par la température. Lorsque que celle-ci atteint un seuil critique (Température de Curie T_C), l'expansion cristalline annule le couplage entre les spins et la substance adopte un comportement paramagnétique.

On peut simplifier le moment ferromagnétique par une réponse quasi-paramagnétique à un champ interne fort H_W (champ moléculaire de Weiss), proportionnel à l'aimantation M de la roche. Par analogie avec la théorie de Langevin, on peut définir la susceptibilité ferromagnétique (χ_f) sous la température de Curie par :

En considérant que sous T_C, le champ externe H est négligeable, on peut définir la température de Curie par :

avec $\beta = H_W\!/B$

Cette approche classique n'est cependant pas vraie d'un point de vue quantique, où seulement certains angles de moments magnétiques sont autorisés. La relation entre aimantation de saturation et température de Curie doit alors être corrigée par une facteur $\frac{1}{2}$ (**Dunlop & Özdemir,1997**).

Puisque une aimantation permanente dite rémanente relative aux interactions entre les spins dépareillés existe sous la température de Curie, plusieurs types de substances ferromagnétiques peuvent être caractérisées en fonction des associations de spins (parallèles et antiparallèles) (*Fig. X.A.5*). Trois sous-classes sont distinguées :

Ile ferromagnétisme sensu stricto marqué par des spins parallèles et de même sens (Fig. X.A.5)

 \square 'antiferromagnétisme qui du fait de la compensation des spins parallèles et antiparallèles ne présente pas de moment magnétique de réseau (*Fig. X.A.5*). En réalité, l'alignement des spins n'est pas parfait (*spin-canted*) et des défauts au sein du réseau cristallin sont fréquents ; il en résulte un faible moment magnétique de réseau. Le désordre dans les substances antiferromagnétiques apparaît à partir d'une certaine température T_N (température de Néel).

Ile ferrimagnétisme est aussi marqué par des spins parallèles et antiparallèles, mais la magnitude des moments est différente selon la direction, ce qui génère un moment magnétique de réseau (*Fig. X.A.5*).

Fig. X.A.5 Représentations schématiques des types d'alignement de moments magnétiques atomiques. A : ferromagnétisme, b : antiferromagnétique, c : antiferromagnétique de type spin-canted, d : antiferromagnétique +défauts cristallins, e : ferrimagnétisme.

Lorsque l'alignement des spins n'est pas parfait, l'application d'un champ externe peut entraîner une précession en spirale jusqu'à ce que le moment s'aligne avec la direction du champ appliqué. Le mouvement coordonné des spins voisins est appelé « onde de spin ».

A.2.i.d Les énergies d'échange et la stabilité magnétique

Fig. X.A.6 a : Arrangement des domaines magnétiques dans un matériaux ferromagnétiques polycristallin, en l'absence d'un champ magnétique externe appliqué (modifié d'après **Lanza & Meloni, 2006**). b : détails de la rotation progressive des spins au niveau des limites de domaine.

Quelque soit la complexité cristalline d'un matériau, un grain cherchera à acquérir une aimantation qui minimise l'énergie totale. Ainsi, certaines directions d'aimantation seront favorisées et si la barrière énergétique liée à cette configuration est suffisamment forte, la direction de l'aimantation sera conservée dans le temps. Dans les substances ferromagnétiques, les spins électroniques vont évoluer de manière coordonnée afin de suivre le principe d'exclusion de Pauli. En fonction des interactions entre les spins électroniques, ces spins vont s'orienter parallèlement (ou antiparallèlement) afin de minimiser l'énergie d'échange associée. Dans les minéraux magnétiques, certaines orbitales (3d) ne sont pas isotropes, ce qui entraîne une hétérogénéité des spins dans certaines directions de l'espace.

La densité d'énergie d'interaction magnétostatique caractérise l'interaction entre les lignes de flux d'un champ magnétique et les moments des spins électroniques. Cette densité d'énergie est minimale lorsque l'aimantation est alignée avec le champ. Les particules monodomaines (SD) présentent des spins coordonnés et une aimantation uniforme dont l'intensité ne dépend pas du champ appliqué. Afin de satisfaire une énergie minimale, l'aimantation tourne jusqu'à saturation. Ces rotations ne sont cependant pas libres dans l'espace, du fait de barrières énergétiques. L'origine de cette anisotropie est la structure cristalline marquée par l'anisotropie magnétocristalline, l'anisotropie de contrainte et l'anisotropie de forme. L'anisotropie magnétocristalline est liée à la symétrie de la structure du réseau qui affecte les interactions électroniques. L'anisotropie de contrainte est issue du réajustement des distances interatomiques lors de l'acquisition de l'aimantation. L'anisotropie de forme est causée par les caractéristiques intrinsèques des grains. Selon

l'habitus du grain et son orientation par rapport au champ appliqué, le champ interne de désaimantation produit sera plus ou moins important ce qui générera une anisotropie magnétique.

La stabilité magnétique d'une particule peut être caractérisée par la coercitivité ou champ coercitif (H_c) qui correspond au champ nécessaire pour contraindre l'aimantation dans une autre direction. Ce champ doit être suffisamment large pour que l'énergie magnétique soit supérieure à l'énergie d'anisotropie et permettre de dépasser ces barrières énergétiques.

A.2.i.e Les domaines magnétiques

Les matériaux polycristallins ferromagnétiques peuvent être subdivisés en plusieurs domaines magnétiques (Fig. X.A.6a). Chaque domaine magnétique est caractérisé par un alignement cohérent et parallèle de spin qui définit un moment spontané propre à ce domaine. Les domaines magnétiques contigus sont séparés par une zone de transition graduelle où les spins subissent progressivement une rotation d'un domaine à un autre (Fig. X.A.6b). Lorsqu'un champ est appliqué, les transitions de domaines tendront à migrer afin de favoriser les domaines où l'aimantation se fera dans la direction du champ appliqué. Si le champ est faible, l'aimantation induite sera identique à celle observée dans les substances paramagnétiques et l'opération sera réversible. Par contre si le champ appliqué est suffisamment fort, les seuils des barrières énergétiques entre les domaines pourront être atteints de manière irréversible, et une nouvelle configuration d'équilibre

Fig. X.A.7 Diagramme illustrant la position des types de domaines en fonction de la taille et de la morphologie des grains (modifié d'après **Evans & McElhinny, 1969**).

pourra être atteinte. Cette aimantation spontanée dans la direction du champ appliqué est une aimantation rémanente.

Les domaines magnétiques dépendent de la taille de grain (*Fig. X.A.7*). Les particules les plus petites, présentant une uniformité de l'aimantation sont dites monodomaines (SD). Dans les particules plus grosses, l'énergie interne domine les énergies d'échange et magnétocristalline, si bien que plusieurs états d'aimantation coexistent. Ces particules sont dites polydomaine (MD). Entre ces deux entités, il existe un type dit de transition marqué par des particules pseudo-monodomaines (PSD). Enfin, certaines particules très fines sont marquées par un comportement magnétique particulier et sont dites super-paramagnétiques. Les différences entre ces types de grains sont considérables et elles entraînent une grande variabilité des propriétés magnétiques des matériaux.

A.2.ii L'aimantation à l'échelle du minéral et dans la roche

A.2.ii.a Les principaux minéraux magnétiques et leurs paramètres

Certains éléments de transition, comme le fer, présentent un certain nombre de spins dépareillés, ce qui entraîne des comportements paramagnétiques. Cependant, lorsque ces spins sont alignés parallèlement dans une structure dense et que les orbitales électroniques se chevauchent, les substances deviennent ferromagnétiques. Les solides contenant le fer en sont les meilleurs exemples. Les oxydes de fer, les hydroxydes de fer et les sulfures de fer sont les principaux types. Les alliages fer-nickel possèdent aussi des propriétés ferromagnétiques, mais puisqu'on les trouve seulement dans les matériaux extraterrestres et dans le noyau, ils ne seront pas abordés.

Les oxydes de fer sont généralement des solutions solides entre le fer divalent, le fer trivalent et le titane tétravalent. Cependant, comme le titane ne présente pas de spin dépareillé, la teneur en Ti au sein de la solution

fait largement varier les propriétés magnétiques des minéraux. Ces minéraux peuvent être représentés dans un diagramme ternaire FeO-TiO₂-Fe₂O₃ (*Fig. X.A.8*). Trois séries isomorphes peuvent alors être caractérisées.

Iles titanomagnétites (Fe_{3-x}Ti_xO₄) cristallisent dans le système cubique selon la forme du spinelle. Les cations se répartissent en deux sous-réseaux. Si dans chaque sous-réseau les spins sont parallèles, les deux sous-réseaux s'organisent de manière antiparallèle. Comme un des sous-réseaux prédomine, les ferrimagnétiques. Les titanomagnétites sont interactions de spins sont fortement perturbées par la présence de Ti, ce qui modifie les propriétés magnétiques du minéral. La susceptibilité volumique de la magnétite est la plus importante des minéraux ferromagnétiques (Fig. X.A.9). La température de Curie de la magnétite est 585°C mais elle diminue de manière linéaire avec la composition en titane pour atteindre, à -153°C, la température de Néel de l'ulvöspinelle. La saturation magnétique de la magnétite oscille entre 480 et 0 kA.m⁻¹. Les propriétés des titanomagnétites dépendent de la taille du grain; ainsi, la saturation magnétique et la coercitivité sont inversement proportionnelles à la taille du domaine.

Fig. X.A.8 Diagramme ternaire de classification des oxydes de fer et de titane dans le système rutile-wüstite-hématite.

Eles titanohématites ($Fe_{2-x}Ti_xO_3$) cristallisent dans le système rhomboédrique et adoptent la structure du corindon. Les ions Fe^{3+} occupent les plans basaux séparés par des plans intermédiaires contenant O^{2-} . Au sein de chaque plan basal, les spins sont couplés de manière parallèle, mais deux plans contigus présentent des spins presque antiparallèles. Il en résulte un moment magnétique de réseau et un comportement antiferromagnétique liés à ce biais angulaire de spin. Dans la structure ilménite, le couplage des spins est antiparallèle, ce qui confère des propriétés antiferromagnétiques aux solutions solides les plus riches en titane. La susceptibilité magnétique des titanohématites est plus faible que celle de la magnétite. La température du Néel (on ne parle pas de température de Curie car ce terme est réservé aux comportements ferromagnétiques directement issus du parallélisme des spins) est de 675°C pour l'hématite et elle décroit jusqu'à -218 pour l'ilménite. L'aimantation

de saturation est d'environ 2.5 kA.m⁻¹, soit deux ordres de grandeur plus faible que la valeur de la magnétite. Par contre la coercitivité de l'hématite est de 1 à 5 T, soit dix fois plus que la magnétite.

les pseudobrookites.

Fig. X.A.9 Diagramme illustrant la susceptibilité des minéraux principaux en fonction de leur concentration dans la roche (modifié d'après **Hrouda & Kahan, 1991**).

Les maghémites (titomaghémites) sont des oxydes fer qui résultent de l'oxydation de magnétites (titanomagnétites) dans divers environnements. A l'échelle cristalline, l'oxydation se caractérise par une diffusion de Fe²⁺ et une incorporation de Fe³ dans les sites vacants. Bien que ces minéraux présentent une composition chimique proche des titanohématites, ils conservent la structure du spinelle avec un déficit cationique entraînant une variation de volume. Le maghémites sont métastables. Si la température augmente, elles peuvent se transformer de manière irréversible en hématite stable et cette transformation est marquée par une chute drastique des propriétés magnétiques. La maghémite peut aussi être réduite en magnétite. La température de Curie théorique de la maghémite se situe entre 580°C et 675°C, mais du fait des défauts et des impuretés, elle est généralement beaucoup plus basse (autour de 350°C). Malgré les nombreuses transformations subies, la maghémite présente des caractéristiques de coercitivité et d'aimantation de saturation proches de la magnétite.

Les hydroxydes de fer telle que la goethite (FeOOH) présentent des caractéristiques magnétiques. La goethite cristallise soit à partir de solutions riches en fer, soit elle est issue de l'altération de phases solides ferrifères. La goethite se transforme généralement en hématite par déshydratation entre 300°C et 400°C. La goethite, qui cristallise dans le système orthorhombique est antiferromagnétique, mais son aimantation est principalement due à des défauts cristallins. Sa température de Néel est de 120°C, mais elle décroît avec les impuretés et les défauts cristallins. La goethite présente des caractéristiques de coercitivité et d'aimantation de saturation proches de l'hématite. Les sulfures de fer comme que la pyrrhotite (FeS_{1+x}) et la greigite (Fe₃S₄) sont ferromagnétiques sensu lato. Ils se forment dans des environnements réduits et tendent à s'oxyder avec le temps, si bien que seule la pyrite paramagnétique est conservée. On distingue la pyrrhotite monoclinale et la pyrrhotite hexagonale. Pour certaines compositions, la pyrrhotite monoclinale est ferrimagnétique et montre une diminution exponentielle jusqu'à son point de Curie qui est inférieur ou égal à 320°C. La pyrrhotite hexagonale est aussi ferrimagnétique, mais elle se caractérise par un pic d'aimantation autour de 200°C (caractérisant l'expansion du cristal avec la température) et une température de Curie de 330°C. La greigite, qui présente une structure similaire à l'hématite est aussi ferromagnétique et sa température de Curie est approximativement de 330°C. La pyrrhotite et la greigite présente des caractéristiques de d'aimantation de saturation entre 80 et 120 kA.m⁻¹ (inférieure à la magnétite). Si la coercitivité de la greigite est très faible (30mT), celle de la pyrrhotite varie, selon la composition entre 0,5 et 1T.

A.2.ii.b L'aimantation des roches

Une roche est un assemblage de minéraux stables. Ces minéraux ayant des caractéristiques magnétiques variables, on peut adapter cette définition en proposant qu'une roche est un assemblage de minéraux diamagnétiques, paramagnétiques et ferromagnétiques. Les minéraux ferromagnétiques peuvent être rencontrés dans divers types de roches, mais seules les roches ignées et sédimentaires seront détaillées.

Dans les roches ignées, la formation de minéraux magnétiques dépend de la composition chimique du magma (qui contrôle la nature chimique des minéraux) et des caractéristiques de pression et de température (qui contrôlent la forme et la taille des minéraux). Ainsi, il existe une grande variabilité des paramètres magnétiques (Température de Curie, aimantation de saturation, susceptibilité et coercitivité) au sein des roches magmatiques. Les roches mafiques sont riches (jusqu'à 5 wt%) en oxydes de Fe-Ti (principalement ilménite et titanomagnétites), alors dans les roches felsiques, plus pauvres (moins de 1 wt%), les titanomagnétites ferrifères, l'hématite et l'ilménite peuvent coexister. Lorsque le refroidissement du magma est brusque, seuls des petits grains de type pseudo-monodomaine cristallisent, mais l'importante variabilité des conditions physicochimiques entraînent des transformations minéralogiques successives. Dans les roches intrusives, le refroidissement lent du magma contrôle la cristallisation de grains plus gros de type pluridomaine, qui peuvent cependant être affectés par des transformations à l'état solide. La cristallisation des oxydes de Fe-Ti commence aux alentours de 1000°C, sous forme de solutions solides type titanomagnétites ou titanohématites. Autour de 700°C, le processus de diffusion des ions Fe et Ti est remplacé des exsolutions de minéraux, ce qui génère des sous-domaines au sein des grains. A des températures plus faibles (200°C-350°C), d'autres réactions d'exsolution ou d'oxydation

peuvent être rencontrées. Ces réactions sont liées à l'altération de la roche en surface ou au contact de fluides et peuvent conduire à des transformations minéralogiques (cristallisation de maghémite) et, par conséquent, à des modifications des paramètres magnétiques de la roche.

Dans les roches sédimentaires, les minéraux ferromagnétiques peuvent être détritiques, diagénétiques ou authigènes. Même si les titanomagnétites et les titanohématites sont les minéraux ferromagnétiques détritiques les plus fréquents, la minéralogie magnétique des roches détritiques est contrôlée par la composition minéralogique de la source et le transport subi par les particules. Durant le transport des particules, la différence de densité liée à la teneur en titane exerce un tri minéralogique. Ce tri peut être accentué s'il existence à l'origine une gamme de tailles de grains ferromagnétiques. Dès leur dépôt, les grains seront susceptibles d'être transformés ou altérés du fait de la présence d'eau ou de conditions d'oxydo-réduction non favorables. Des minéraux authigènes peuvent alors se former soit par transformations à l'état solide, soit par dissolution/précipitation. Les minéraux détritiques et/ou authigènes ne seront cependant pas toujours stables avec le temps et pourront évoluer notamment pendant la diagénèse, à cause de la présence de fluides et d'une variation des conditions de pression et de température. En conditions oxydantes, une hématite pigmentaire rouge peut se former à partir de solutions aqueuses très riches en oxygène. L'oxydation de la magnétite peut conduire à la formation de maghémite. Certaines phases minérales (pyrrhotite, greigite) sont formées en conditions réductrices, mais si la sulfuration est trop importante seule la pyrite subsistera. Durant la diagénèse, les sulfures de fer ferromagnétiques seront rapidement oxydés. Dans les carbonates, les minéraux magnétiques dominants (titanomagnétites et titanohématites secondaires) sont relativement rares.

A.2.ii.c La stabilité de l'aimantation des roches et les différents types d'aimantation

La rémanence magnétique dépend essentiellement de l'énergie d'anisotropie qui inhibe les rotations libres dans l'espace des moments magnétiques individuels et permet de conserver la direction d'un paléochamp. L'énergie d'anisotropie d'énergie contrôle également la probabilité que la direction du moment magnétique d'un

grain soit modifié en franchissant une barrière énergétique. Le temps de relaxation caractérise la décroissance exponentielle de l'aimantation initiale d'un grain au cours du temps (Fig. X.A.10). Il contrôle ainsi la probabilité qu'un moment magnétique puisse « sauter » une barrière énergétique et favoriser une autre direction d'aimantation. La préservation de la direction d'un paléochamp nécessite ainsi un passage d'un état d'équilibre (pour permettre l'acquisition d'un champ magnétique) à un état de blocage (pour permettre de figer cette aimantation au cours du temps). Il existe une compétition entre l'énergie thermique kT et l'énergie d'anisotropie Kv (énergie de blocage) pour « sauter les barrières

énergétiques » et modifier la direction de l'aimantation. La théorie de Néel régit la préservation de la rémanence magnétique et l'équilibre magnétique. Lorsqu'un champ H est appliqué, le temps de relaxation τ s'exprime par :

$$2 \ 2 \ \frac{2}{2} \ 2 \ 2 \ \frac{2}{2} \ \left[2 \ 2 \ \frac{2}{2} \ \frac{2}{2} \ \right]^2 \ \frac{2}{2} \$$

avec :

C : le facteur de fréquence

HC : la coercitivité avec
$$\mathbb{P}_{\mathbb{Z}}$$
 $\mathbb{P}_{\mathbb{Z}}$

Soit :

Fig. X.A.10 Courbes du temps de relaxation d'un grain en fonction de son volume v et de la valeur de la constante de l'énergie d'anisotropie. L'encart montre le rôle majeur de la température (modifié d'après **Tauxe, 2010**).

Ainsi le temps de relaxation dépend de l'aimantation, du volume et de la température. Plusieurs types d'aimantation sont présents dans la nature en fonction des processus géologiques et des conditions physicochimiques du milieu (température et composition).

L'aimantation rémanente correspond à un état ordonné et continu dans le temps notamment à des barrières énergétiques. Cependant, la théorie de Néel tient compte de la fréquence de saut C ; il existe donc une faible probabilité que certains domaines magnétiques subissent des modifications de l'arrangement magnétique. En conséquence, une nouvelle aimantation, tendant vers une aimantation d'équilibre se forme et s'oriente selon le champ terrestre présent. Cette aimantation est dite visqueuse et suit une loi logarithmique au cours du temps. Elle dépend également des caractéristiques des domaines magnétiques. L'aimantation rémanente visqueuse est secondaire.

IL'aimantation rémanente thermique est généralement rencontrée dans les roches magmatiques mais elle peut aussi être secondaire due à un métamorphisme de contact. Bien que les oxydes de fer cristallisent à des températures d'environ 1000°C, ils présentent un comportement paramagnétique jusqu'à leur température de Curie où ils adoptent un comportement ferromagnétique. Au cours du refroidissement, le temps de relaxation est extrêmement court et l'aimantation du minéral varie constamment. Cependant lorsque cette température devient plus faible, l'énergie thermique diminue et le temps de résidence peut ainsi augmenter. Pour certaine valeur de température (température de blocage), la probabilité que le cristal soit réorienté est très faible ; l'aimantation est donc figée et cette dernière est appelée aimantation rémanente thermique (ART). L'acquisition de cette aimantation est un processus réversible et il existe une température de déblocage égale à la température de blocage où l'aimantation devient à nouveau aléatoire. L'aimantation d'une roche dépend de l'ensemble des minéraux qui la compose ; ainsi chaque population, définie par sa taille ou sa nature chimique présentera des caractéristiques propres (température de blocage). En conséquence, différents spectres d'aimantation seront présents dans la roche.

DL'aimantation rémanente détritique (ARD) est généralement très complexe car les conditions physicochimiques varient au cours de la sédimentation (Fig. X.A.11). Dans un modèle simple, on peut considérer que le moment magnétique d'un grain ferromagnétique va s'aligner avec la direction du champ magnétique lors du dépôt. Cependant, la viscosité de l'eau et l'inertie du grain vont perturber cette orientation. La taille du grain est aussi un paramètre important puisque les grains grossiers entraîneront une aimantation détritique plus chaotique. L'aimantation détritique est un phénomène passif, puisqu'il s'agit en réalité de l'orientation de grains portant déjà une aimantation rémanente. Le modèle simple présenté ci-dessus est en réalité beaucoup plus complexe. La nature du courant (turbulent ou laminaire), la forme des grains mais aussi la salinité de l'eau sont des paramètres importants qui contrôlent ou modifient la direction de l'aimantation (Fig. X.A.11). Le rôle de la bioturbation, ainsi que des processus diagénétiques est aussi important. Lorsque tous ces paramètres sont pris en compte, on parle plutôt d'aimantation post-dépôt. Cette dernière dépend principalement de porosité qui contrôle le degré de liberté (rotation) des particules. La porosité dépend de l'assemblage granulaire et de la proportion de matrice ou de ciment. Avec la diagénèse (compaction), la porosité et la teneur en eau diminuent ; par conséquent, la direction d'aimantation pourra être figée. Lorsque le dépôt est brutal (par exemple lors de forts taux de sédimentation), l'aimantation est mal définie et une erreur d'inclinaison peut être observée (Fig. X.A.12).

ILes roches et, par conséquent, les minéraux ferromagnétiques, peuvent subir des variations chimiques qui entraînent la formation de nouveaux minéraux ferromagnétiques ou l'altération de phases magnétiques préexistantes. L'aimantation

portée par ces néograins est appelée aimantation rémanente chimique (ARC) et elle est acquise à une température inférieure à T_C (Fig. X.A.13. Ces transformations chimiques entraînent une augmentation de volume, ce qui permet d'augmenter le temps de relaxation et de figer une nouvelle aimantation. Dans le cas des « redbeds », la formation d'un ciment d'hématite pigmentaire, a) environnement d'eau douce

b) environnement marin

Fig. X.A.11 Représentation des processus physico-chimique affectant le dépôt d'une particule sédimentaire et par conséquence son aimantation dans un environnement d'eau douce (a) et marin (b) (modifié d'après Tauxe, 2010).

par des processus de nucléation et de croissance, s'accompagne d'une aimantation chimique primaire. La transformation par oxydation de la magnétite en maghémite entraîne une aimantation chimique secondaire.

La durée d'acquisition d'une aimantation rémanente est variable selon le type d'aimantation. Pour les roches effusives, le refroidissement est suffisamment rapide pour que l'on puisse comme considérer l'acquisition de l'aimantation thermorémanente comme instantanée. Pour les roches intrusives, le refroidissement est beaucoup plus lent et l'acquisition de l'aimantation se fait sur plusieurs millions d'années. Puisque les

Fig. X.A.12 Schéma illustrant l'arrangement des particules détritiques lors de la sédimentation en eau douce et l'erreur d'inclinaison quasi-systématique observée dans le cas d'une aimantation rémanente détritique (modifié d'après Lanza & Meloni, 2006). B représente le champ magnétique terrestre.

méthodes de datation radiochronologique dépendent de la température de fermeture du système isotopique considéré, il peut apparaître un décalage significatif entre l'âge isotopique de la roche et l'âge de l'aimantation thermorémanente. Le taux de sédimentation (taux d'enfouissement) est le paramètre principal contrôlant la durée d'acquisition de l'aimantation rémanente détritique qui varie de quelques années à plusieurs milliers d'années.

Fig. X.A.13 Diagramme schématique montrant le principe de l'acquisition d'une aimantation rémanente chimique (CRM) en fonction du volume et de la coercitivité (modifié d'après **Butler**, 1992). Au début de la cristallisation, le volume des particule est faible (zone sombre) et inférieur au volume de blocage (comportement superparamagnétique). Lorsque le volume augmente, il devient supérieur au volume de blocage et la particule devient monodomaine et acquiert une aimantation rémanente chimique.

A.2.iii Méthodes indirectes de détermination de la minéralogie magnétique

La minéralogie magnétique d'une roche peut être déterminée de manière directe (par exemple par l'observation microscopique) ou indirecte (étude du comportement magnétique de la roche). De part leur structure cristalline, les minéraux magnétiques sont généralement opaques en lumière transmise et polarisée ; il donc nécessaire d'utiliser un microscope métallographique en lumière réfléchie. Les différentes teintes de réflectance (gris pour la magnétite, gris-blanc pour l'hématite, brun-gris pour l'ilménite) sont généralement des critères discriminants. L'observation au microscope électronique à balayage peut aussi renseigner sur l'habitus et les variations de composition des différents minéraux présents dans la roche. Néanmoins, ces méthodes directes ne renseignent que qualitativement sur la nature des minéraux présents. Il est donc nécessaire d'étudier le comportement magnétique de la roche en évaluant certains paramètres comme la susceptibilité magnétique, l'aimantation de saturation ou encore la coercitivité. L'évolution de ces paramètres avec la température peut aussi renseigner sur la nature minéralogique

A.2.iii.a Mesure de la susceptibilité magnétique et thermomagnétisme

La susceptibilité magnétique varie de plusieurs ordres de grandeur en fonction des minéraux considérés. Elle est négative pour les minéraux paramagnétiques comme le quartz ou la calcite (de l'ordre de 10^{-6} SI), faiblement positive dans les minéraux paramagnétiques (entre 10^{-5} SI et 10^{-3} SI). La susceptibilité magnétique des minéraux ferromagnétiques varie depuis des valeurs faibles pour l'hématite (de l'ordre de 10^{-3} SI) jusqu'à des valeurs fortes pour la magnétite (de l'ordre de 1SI). Cependant les minéraux ferromagnétiques sont dilués dans la roche (moins de 5%), principalement constitués de minéraux para- et diamagnétiques. La susceptibilité magnétique des roches est donc généralement très variable (entre 10^{-5} SI et 10^{-2} SI pour les roches sédimentaires et entre 10^{-3} SI et 1 SI pour les roches magmatiques) et il est relativement difficile d'identifier les phases minérales sur le simple critère de susceptibilité.

Fig. X.A.14 Schéma de principe de l'appareillage utilisé pour obtenir les courbes de thermomagnétisme.

thermomagnétique du porte-échantillon, on obtient une courbe d'évolution de la susceptibilité magnétique de l'échantillon en fonction de la température. Les chutes brutales et les inflexions de la susceptibilité magnétique d'un correspondent au passage comportement ferromagnétique à un comportement paramagnétique et vont permettre d'identifier les points de Curie ou de Néel (par exemple 585°C pour la magnétite) (Fig. X.A.15a). Cependant, ces analyses sont réalisées à l'air libre, ce qui peut entraîner des oxydations et des transformations minéralogiques. Ces réactions chimiques (oxydation des sulfures) seront marquées par des variations importantes de la susceptibilité magnétique. Certaines transformations seront non réversibles et cela pourra se traduire par des

Fig. X.A.15 Exemple de courbes thermomagnétiques obtenues après chauffe (HC) et refroidissement (CC) d'une poudre d'échantillon. Dans le cas a), les courbes sont pratiquement réversibles alors que pour b) l'augmentation drastique de la susceptibilité indique une transformation minéralogique. Les chutes ou augmentations brutales de la susceptibilité à une température donnée permettent l'identification des phases minérales présentent en fonction de leur température de Curie.

L'étude de l'évolution de la susceptibilité magnétique en fonction de la température peut permettre de mettre en évidence certains points de température (Températures de Curie et de Néel) caractéristiques de minéraux. Une poudre d'échantillon de volume connu est placée dans un four (CS3) dont la température est régulée par un contrôleur de température et un circuit de refroidissement (Fig. X.A.14). L'échantillon est chauffé depuis la température ambiante jusqu'à 700°C puis refroidi à 40°C, avec un incrément d'environ 2-3°C. A chaque palier, une mesure de la susceptibilité magnétique de l'échantillon est réalisée à l'aide d'un susceptomètre Kappabridge KLY3-S (Fig. X.A.14). Cet appareil est constitué d'une bobine, qui traversée par un courant alternatif va induire un champ magnétique faible dans l'échantillon. Ce champ créé va à son tour entraîner une variation d'inductance de la bobine électrique. proportionnelle à la Cette variation sera susceptibilité magnétique de l'échantillon. Après déconvolution du signal et correction du porteéchantillon (soustraction de la courbe

courbes de chauffe et de refroidissement non superposables Tempéra (*Fig. X.A.15b*). La forme des courbes sera aussi dépendante du type de domaine magnétique présent dans la roche (**Thompson & Oldfield, 1986**).

A.2.iii.b Aimantation rémanente isotherme

Une aimantation rémanente isotherme peut être induite dans une roche lorsque celle-ci est placée dans un champ magnétique à température constante. Dans la nature, lorsque la foudre s'abat sur certaines roches, une aimantation secondaire masquant l'aimantation primaire détritique ou thermique peut être enregistrée. L'aimantation rémanente isotherme induite en laboratoire peut permettre l'identification des phases minérales

ferromagnétiques en fonction de leurs caractéristiques d'aimantation de saturation et de coercitivité. A la température ambiante, un champ magnétique connu est produit grâce à une bobine traversée par un courant électrique. Cet appareil, appelé magnétiseur à induction (ASC IM-10) va ainsi contraindre la réorientation partielle ou totale des moments magnétiques de chaque grain et induire une aimantation secondaire. Environ une dizaine de paliers de 0 à 1200 mT sont appliqués à l'échantillon et la réponse de l'aimantation est mesurée, après chaque palier par un magnétomètre à spinner (AGICO JR-5A). Le principe de cette mesure repose sur la rotation à vitesse constante d'un échantillon de forme et de volume connu (cylindre de 25 mm de diamètre et de 22mm de long) entre une paire de bobines. Cette rotation produit un courant électrique alternatif dans les bobines dont la phase et l'amplitude dépendent de la magnitude et de l'orientation de l'aimantation de la roche. Le potentiel mesuré est ensuite amplifié, filtré et numérisé.

Fig. X.A.16 Exemple de courbe d'aimantation rémanente isotherme. Pour l'échantillon 538A, une saturation de l'aimantation est rapidement obtenue, suggérant la présence de phases minérales peu coercitives. A l'opposé, l'absence de saturation de l'aimantation pour l'échantillon 04-25A dans la gamme de champ magnétique appliqué suggère la présence de minéraux très coercitifs.

La variation de l'aimantation rémanente isotherme induite en fonction du champ appliqué est représentée par une courbe normalisée à la valeur maximale d'aimantation. Lorsque que la saturation est atteinte, la courbe montre un palier horizontal (*Fig. X.A.16*). Si la saturation est rapidement obtenue, cela indique la présence de minéraux de faible coercitivité (par exemple la magnétite). L'appareillage utilisé ne permet cependant pas d'obtenir une saturation complète pour les assemblages contenant des minéraux à fortes coercitivité (hématite H_C entre 1 et 5 T).

A.2.iii.c Méthode de Lowrie

Des courbes thermomagnétiques peuvent être obtenues en suivant l'évolution de la magnitude de l'aimantation totale de la roche avec la température. Pour cela les échantillons doivent être chauffés puis refroidis dans un champ nul afin d'éviter les réaimantations. Une quinzaine de paliers de 0 à 700°C sont réalisés depuis la mesure de l'aimantation rémanente naturelle (NRM), jusqu'à la désaimantation totale de l'échantillon. Des chutes brutales liées à des transformations minéralogiques et/ou des passages de point de Curie ou de Néel (*Fig. X.A.17a*).

La méthode de Lowrie (Lowrie, 1990) permet une détermination qualitative intéressante car elle combine les propriétés thermomagnétiques et coercitives des roches. Préalablement à la chauffe, un champ magnétique anisotrope est appliqué à l'échantillon grâce à un magnétiseur à induction (ASC IM-10). L'objectif est de saturer dans les trois directions de l'espace, les minéraux de faible (< 120 mT), moyenne (< 400 mT) et forte (<2500 mT) coercitivité. Les échantillons sont ensuite désaimantés par palier de température et l'aimantation rémanente est mesurée après chacune des quinze étapes de chauffe (*Fig. X.A.17b*). Cette méthode permet d'évaluer pour

Fig. X.A.17 a : Exemple d'un spectre de désaimantation. b : Exemple de détermination des phases minérales présentes par la méthode de Lowrie (**Lowrie**, **1990**). Voir texte pour plus d'explications.

chaque composante de coercitivité la température de Curie (ou de Néel). Les minéraux dont les températures de Curie sont proches (ex. maghémite et pyrrhotite) pourront être distingués car leurs coercitivités respectives sont significativement différentes.

A.2.iii.d Cycles d'hystérésis

La minéralogie magnétique d'une roche peut aussi être approchée par la méthode des cycles d'hystérésis. L'appareillage utilisé se trouve à l'Institut de Physique du Globe de Paris, à Saint-Maur. L'échantillon de petite taille (0.3 cm^3) est placé dans l'entrefer d'un électroaimant produisant un champ magnétique uniforme élevé (1.7 T). A l'aide d'une courroie, l'échantillon va vibrer latéralement, ce qui permettra de mesurer une aimantation. Dans un premier temps, un champ magnétique H va être progressivement appliqué jusqu'à saturation (aimantation de saturation J_S) (*Fig. X.A.18*). Le champ magnétique appliqué sera ensuite

Fig. X.A.18 Représentation idéalisée d'un cycle d'hystérésis, illustrant la variation de l'aimantation au sein des domaines magnétiques pendant l'application du champ magnétique induit (modifié d'après Lanza & Meloni, 2006).

Champ magnétique appliqué H (mT)

Fig. X.A.19 Exemples de cycles d'hystérésis, après correction de la partie paramagnétique. Les encarts montrent la courbe d'origine, la partie linéaire représente la fraction paramganétique.

diminué jusqu'à zéro où l'on pourra mesurer l'aimantation rémanente de saturation J_{RS}. Un champ magnétique sera ensuite appliqué dans la direction opposée jusqu'à une valeur -H où la rémanence magnétique sera annulée. Si le champ négatif continue à augmenter, une nouvelle aimantation sera enregistrée, et il sera possible d'atteindre une aimantation de saturation. Lorsque le champ diminue, puis devient nul, on obtient une valeur d'aimantation rémanente de saturation -J_{RS} (Fig. X.A.18). Si un champ magnétique positif est à nouveau appliqué, l'aimantation -J sera annulée pour une valeur de coercitivité H_C. Par incrément d'aimantation, il est possible d'approximer la valeur de la coercitivité rémanente H_{CR}, qui correspond au champ magnétique nécessaire pour réorienter de manière irréversible la moitié des moments magnétiques. En pratique, les roches sont un assemblage de minéraux ferro-, para- et diamagnétiques (Fig. X.A.19). Lorsque l'aimantation de saturation des minéraux ferromagnétiques sera atteinte, l'aimantation

Fig. X.A.20 Diagramme de **Day** (**1977**) pour la magnétite construit à partir des rapports d'aimantation rémanente et de coercitivité (modifié d'après **Dunlop**, **2002**). SD : monodomaine, PSD : Pseudo-monodomaine, MD : multi-domaine, SP : superparamagnétique.

de la roche évoluera de façon linéaire par rapport au champ appliqué. Cette partie linéaire correspond à la contribution des minéraux paramagnétiques et devra être corrigée pour obtenir des cycles d'hystérésis exploitables. La forme de ces cycles va permettre d'estimer le type de minéraux présents en fonction de leurs caractéristiques de coercitivité et d'aimantation de saturation. En outre, grâce aux paramètres H_{CR} , H_C , J_{RS} et J_S et à leur rapport respectif, le type de domaine magnétique présent dans la roche pourra être déterminé (*Fig. X.A.20*).

A.3 L'anisotropie de susceptibilité magnétique

Du fait de leur structure ordonnée à l'échelle atomique, les minéraux possèdent des propriétés magnétiques qui varient selon leurs axes cristallographiques. Cette anisotropie magnétique est renforcée par le fait qu'il existe des directions préférentielles d'aimantation qui dépendent de la forme des grains. La distribution des grains (minéraux) contrôle elle aussi l'anisotropie de la roche. Bien qu'il existe une hétérogénéité spatiale pour des paramètres magnétiques telle que l'aimantation rémanente ; l'anisotropie de susceptibilité magnétique (ASM) est la plus étudiée, car elle apporte de nombreuses indications sur l'histoire d'une roche magmatique ou sédimentaire depuis sa formation jusqu'à sa « déformation ».

A.3.i Principes

La susceptibilité magnétique relie l'aimantation induite M au champ appliqué H. On distingue une susceptibilité extrinsèque ou totale, et la susceptibilité intrinsèque ou vraie. Bien que cette dernière puisse être obtenue en corrigeant l'effet du champ de désaimantation interne, la susceptibilité extrinsèque est principalement utilisée. La relation 2 2 22 est valable pour des champs faibles appliqués ou dans le cas du paramagnétisme. Cette relation est aussi valable pour les matériaux isotropes. Cependant, lorsque la réponse magnétique dépend de l'orientation du champ appliqué, on doit alors tenir compte des différentes composantes du champ H et de l'aimantation M qui en résulte. La relation s'écrit alors :

 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2

Soit :

? ? ? ?_{??}?_?*[[?]??A?*

Avec la susceptibilité 2, un tenseur symétrique de deuxième ordre et 2, 2 2

Parmi tous les repères cartésiens (x, y, z) possibles, il en existe un pour lequel :

? ? ?] ? _{??} ? _?	??????? <i>?</i> ?
? ? ?] ? _{??} ? _?	? ? _? ? _? /?
? ? ?] ? _{??} ? _?	???????????????????????????????????????

 K_1 , K_2 et K_3 sont orthogonaux dans l'espace ; ils définissent donc un ellipsoïde à trois axes tel que $K_1 > K_2 > K_3$ (*Fig. X.A.21*). Les démonstrations de calcul du tenseur de deuxième ordre en utilisant la méthode des moindres carrés sont décrites par **Granar** (1958), Girdler (1961), Janák (1965), Hanna (1977) et Jelinek (1977).

Fig. X.A.21 Représentation théorique de l'ellipsoïde de susceptibilité magnétique $(\mathbf{k_1}, \mathbf{k_2} \text{ et } \mathbf{k_3})$ dans un système cartésien (x, y, z).

A.3.ii Mesure de l'ASM

374

Fig. X.A.22 Schéma de l'appareillage utilisé pour les mesures de l'anisotropie de susceptibilité magnétique.

d'obtenir les composantes du tenseur d'anisotropie de susceptibilité. Une mesure de la susceptibilité totale est cependant nécessaire pour obtenir le tenseur complet. Puisque cette mesure est relative, il est impératif que l'appareil soit calibré par rapport à un standard dont la susceptibilité est connue. La susceptibilité (et son anisotropie) du porte-échantillon doivent être retranchées à la valeur mesurée. Les données obtenues doivent ensuite être remises dans le repère de prélèvement (repère géographique) et,

si besoin, corrigées du pendage et de la direction de la couche (repère stratigraphique).

A.3.iii Traitement statistique et fabriques magnétiques

L'anisotropie de susceptibilité magnétique peut être qualifiée et quantifiée grâce à la forme de l'ellipsoïde et à l'orientation dans l'espace des trois axes principaux. Le premier paramètre calculable est la susceptibilité moyenne Km du spécimen, calculée à

partir de la moyenne des axes principaux de l'ellipsoïde (Nagata, 1961 ; Janak, 1965).

Cette valeur est sensiblement identique à la susceptibilité totale de l'échantillon obtenue lors de la mesure. Le degré d'anisotropie corrigé P_J (**Jelinek**, **1981**) met en évidence l'anisotropie et intègre les axes principaux de la susceptibilité magnétique.

$$[2_{\pi}] ? ? \sqrt{[(22)_{\pi} 2, 22)_{\pi} 2, (22)_{\pi} 2, (2$$

Lorsque P_J est faible ($P_J < 1.05$), l'anisotropie est faible. Dans certains cas, le degré d'anisotropie peut refléter la quantité de déformation subie par la roche (**Borradaile**, **1991**). Cependant, la magnitude de la susceptibilité magnétique dépend du degré d'alignement des particules, mais aussi des anisotropies cristallines et de forme intrinsèques aux minéraux. Pour certains minéraux et certains types de domaine (magnétite monodomaine), l'anisotropie de forme domine, si bien que l'anisotropie de susceptibilité magnétique mesurée ne reflète pas toujours l'effet des contraintes.

Fig. X.A.23 Diagramme illustrant la valeur du paramètre de forme en fonction de la linéation (k_1/k_2) et de la foliation (k_2/k_3) (modifié d'après **Tarling & Hrouda, 1993**).

Par analogie aux diagrammes de Flinn (**Flinn, 1965**), il est possible de caractériser une fabrique magnétique. En effet, puisque $K_1 > K_2 > K_3$ et que ces trois axes définissent un ellipsoïde, l'axe K_1 correspond à la linéation magnétique et l'axe K_3 au pôle de foliation magnétique décrit par le plan K_1 - K_2 . On peut alors définir un paramètre de forme T compris entre -1 et 1 (*Fig. X.A.23*), tel que :

Lorsque la linéation domine (K1>K2 \approx K3), le paramètre de forme T est négatif et l'ellipsoïde aura une forme allongée de « cigare » (ou prolate). A l'opposé, si la foliation domine, (K1 \approx K2>K3), T sera positif et l'ellipsoïde présentera une forme aplatie en « galette » (ou oblate).

A.3.iv Applications de l'ASM

Lorsque la minéralogie magnétique correspond à des minéraux et/ou des domaines magnétiques où l'anisotropie magnétocristalline domine l'anisotropie de forme, la fabrique magnétique d'une roche sera la réponse aux contraintes ayant affecté la roche au cours de son histoire géologique. Selon le processus de petrogénèse, cette contrainte (gravité, champ magnétique terrestre, forces hydrodynamiques ou tectoniques) tendra à orienter les grains en fonction de leur taille et de leur forme dans une direction préférentielle d'équilibre.

Fig. X.A.24 Exemples de données d'anisotropie de susceptibilité magnétique. A gauche, les projections stéréographiques permettent de définir la linéation magnétique (K_1) et la foliation magnétique (K_3). A droite, La graphique du paramètre de forme **T** en fonction du degré d'anisotropie P_J permet de caractériser la forme (oblate ou prolate) de l'ellipsoïde de susceptibilité magnétique.

L'ASM est un outil majeur pour l'étude des fabriques des roches magmatiques. Dans les roches effusives, les grains de titanomagnétites et la linéation magnétique seront généralement orientés dans la direction de l'écoulement laminaire. Si l'écoulement est turbulent, la fabrique sera mal définie. Bien que la topographie puisse complexifier ce modèle, ce dernier reste assez simple car le refroidissement des roches volcaniques effusives est suffisamment rapide pour annihiler l'effet d'éventuelles contraintes tectoniques (faibles en

surface). Dans le cas des roches plutoniques, il existe une compétition entre viscosité du magma (écoulement), refroidissement (modification de la viscosité) et contraintes tectoniques et chacune de ces composantes va s'exprimer de manière plus ou moins marquée dans la fabrique.

Dans le cas des roches sédimentaires, il existe une compétition entre la gravité, la force hydrodynamique (courant) et le champ magnétique terrestre. Lorsque le courant est faible, les particules vont sédimenter seulement sous l'effet de la gravité. Les particules aplaties se déposeront à plats, alors que les grains allongés s'accumuleront de telle sorte que leur grand axe s'orientera de manière aléatoire dans le plan de sédimentation. L'ellipsoïde associé est clairement aplati et la linéation magnétique moyenne ne s'exprime pas (*Fig. X.A.24a*). Lorsque que le courant est fort, les grains vont s'imbriquer les uns aux autres et former ce qui deviendra une stratification oblique. Le plan de foliation magnétique sera basculé dans le sens du courant et ne correspondra alors plus exactement au litage sédimentaire. De plus, les grains allongés tendront à s'aligner dans la direction du courant (*Fig. X.A.24b*). La fabrique magnétique sédimentaire dépend de la surface topographique de dépôt et pourra être modifiée par les processus de diagénèse (bioturbation, compaction, expulsion de fluides).

La déformation progressive des roches pourra aussi être mise en évidence par l'ASM. La fabrique sédimentaire originale d'une roche pourra être modifiée par l'effet de contraintes. Dans le cas d'un raccourcissement progressif, l'axe K_3 , caractérisant initialement le pôle de la fabrique sédimentaire va se réorienter dans la direction de raccourcissement. Dans la réalité, cette rotation se caractérise par un allongement de l'axe K_3 avec l'augmentation de la déformation. Lorsque K_3 atteindra la valeur de l'axe intermédiaire, il y a permutation entre K_2 et K_3 et ainsi de suite, si la déformation continue. Cette transposition dépend de nombreux paramètres comme la taille de grain, la forme des minéraux et l'angle entre la contrainte maximale et la fabrique initiale.

A.4 Le paléomagnétisme

Puisque les minéraux ferromagnétiques d'une roche sont capables, en présence du champ magnétique terrestre, d'acquérir une aimantation spontanée dont la direction pourra être conservée au cours des temps géologiques, l'étude des caractéristiques de cette aimantation rémanente doit permettre d'obtenir une archive de l'histoire magnétique de la roche. La comparaison des directions paléomagnétiques entre les roches devient alors un outil puissant pour reconstruire et quantifier les mouvements entre les roches. A une autre échelle, on parlera de mouvements relatifs entre des blocs rigides (domaines de l'espace où la direction de l'aimantation est homogène), généralement liés à la tectonique des plaques.

A.4.i L'échantillonnage et l'acquisition de la rémanence

A.4.i.a Stratégie d'échantillonnage

Lors de l'échantillonnage, les imprécisions d'orientation, qui peuvent induire une erreur nonsystématique sur le résultat final, sont généralement évitées grâce à un protocole rigoureux. De plus, une réflexion sur la position relative des échantillons de la collection est nécessaire pour s'affranchir (en les moyennant) des variations séculaires du champ magnétique terrestre. Cette approche statistique requiert que, pour une localité, un certain nombre \square d'échantillons individuellement orientés soit prélevé dans un nombre \square de sites. Pour chaque site, la collecte doit se faire sur une distance métrique et dans des orientations de prélèvement variables. Malgré le protocole précis d'échantillonnage, il existe toujours une incertitude sur l'orientation, mais celle-ci peut être moyennée et réduite en augmentant le nombre d'échantillon, puisque la précision augmente avec $\sqrt{\square}$. Pour une localité d'âge connu, entre 6 et 10 échantillons ont été collectés sur 6 à 8 sites.

A.4.i.b Prélèvement et corrections

Le prélèvement s'effectue à l'aide d'une foreuse à essence à foret diamanté, équipée d'un système de refroidissement à circulation d'eau. Le diamètre des carottes est d'environ 2,5 cm, avec une profondeur de

pénétration jusqu'à 10 cm, ce qui permet de tailler plusieurs spécimens d'une hauteur de 2,2 cm. Avant le prélèvement, l'échantillon est orienté à l'aide d'une boussole équipée d'un clinomètre inversé. Une génératrice de référence parallèle à l'axe longitudinal de la carotte est orientée dans l'espace grâce à son azimut 2 (dans le plan horizontal) par rapport au nord magnétique, et son inclination I par rapport à la verticale (Fig. X.A.25). De plus, une mesure de l'azimut solaire est réalisée à l'aide d'un gnomon. Cette mesure permet de corriger, grâce à un algorithme astronomique, l'azimut magnétique d'une éventuelle anomalie de déclinaison locale. Ainsi, dans les roches très magnétiques (basaltes), un biais de plusieurs degrés peut apparaître car il y a compétition entre le champ magnétique terrestre et l'aimantation des basaltes pour contraindre l'orientation de l'aiguille de la boussole magnétique. En l'absence d'anomalie, la différence angulaire entre azimuts magnétique et solaire est faible et elle correspond à la valeur de déclinaison donnée par le champ magnétique terrestre de référence (IGRF).

A.4.i.c Technique de désaimantation

Plan horizontal

β: Inclinaison par rapport à la verticale

a: Azimut ou déclinaison

Fig. X.A.25 Détail du prélèvement d'une carotte et méthode d'orientation (modifié d'après **Tauxe**, **2010**). La carotte peut ensuite être découpée en spécimen cylindrique (A, B, C).

Les roches acquièrent une rémanence magnétique à travers divers processus depuis leur formation jusqu'à d'éventuelles réaimantations. L'aimantation rémanente naturelle (NRM) que présente une roche est une combinaison de toutes ces composantes. Ces composantes sont portées par différents minéraux ferromagnétiques dont les propriétés de coercitivité ou de température de Curie (ou de Néel) sont suffisamment marquées pour permettre leur distinction. Chaque composante peut ainsi être effacée en appliquant progressivement une énergie thermique ou magnétique : c'est la désaimantation.

La désaimantation thermique est basée sur le caractère réversible de l'aimantation thermorémanente partielle. La chauffe est réalisée grâce à un four en céramique. La température est contrôlée grâce à trois thermocouples répartis dans la chambre de chauffe. Le four est amagnétique car protégé du champ magnétique terrestre par une coque en mumétal (alliage Ni-Fe). Ce bouclier magnétique est important car il évite une nouvelle aimantation spontanée de l'échantillon après chaque étape de désaimantation. Un circuit de refroidissement à circulation permanente d'eau sépare le four de la coque de mumétal afin d'éviter que celui-ci ne perde ses propriétés de bouclier avec la chauffe. Pour un même palier de température, une trentaine d'échantillons peuvent être simultanément désaimantés par chauffage. Chaque étape de chauffe dure entre 40

minutes (T>500°C) et 60 minutes (T<500°C), car la conductivité thermique des roches augmente avec la température. Les échantillons sont ensuite refroidis dans un champ nul pendant environ une heure, avant que leur rémanence ne soit mesurée. Chaque palier de température va permettre de désaimanter les domaines magnétiques dont la température de blocage est inférieure à la température de chauffe. L'opération est répétée jusqu'à ce que l'aimantation rémanente mesurée soit nulle. En fonction de la taille et de la composition chimique des minéraux ferromagnétiques, la température de Curie d'un minéral ferromagnétique porteur de l'aimantation. Environ une quinzaine de paliers de désaimantation ont été réalisés depuis la température ambiante, jusqu'à 700°C.

La désaimantation par champ alternatif (AF) est basée sur le cycle d'hystérésis et la coercitivité des minéraux ferromagnétiques. L'énergie magnétique est produite grâce une bobine (solénoïde) protégée du champ magnétique externe par un triple bouclier de mumétal. Grâce au courant électrique traversant la bobine, un champ magnétique peut être appliqué à l'échantillon. L'intensité du champ augmente puis décroit avec le courant mais un pic d'intensité du champ magnétique est atteint au cours de la mesure. Pendant la désaimantation, chaque spécimen est placé dans un porte-échantillon capable de tourner dans les trois directions de l'espace de telle sorte que le champ soit appliqué uniformément. La désaimantation d'un domaine magnétique sera effective lorsque l'intensité du champ appliqué atteindra la coercitivité du domaine. L'aimantation du domaine est alors marquée par des moments de même direction mais de sens opposés de sorte que la HAUT résultante soit nulle. L'opération est répétée sur une dizaine de paliers depuis 0 mT jusqu'à environ 100mT. Pour cette valeur maximale, la désaimantation n'est pas toujours totale car certains minéraux ferromagnétiques (comme l'hématite) présentent une coercitivité élevée.

A.4.i.d Mesures en laboratoire de la rémanence

Comme pour la méthode de l'IRM ou de Lowrie, la mesure de la rémanence magnétique est réalisée par un magnétomètre (inductomètre) à rotation (spinner) de type Agico JR5-A. La rotation de l'échantillon (de forme et de volume connus) dans une bobine produit une force électromotrice proportionnelle à l'aimantation qui peut être déterminée dans un repère orthonormé. L'aimantation selon une direction est mesurée à partir des variations de potentiel (dans la bobine) induites par la rotation du moment magnétique de l'échantillon. Deux modes de mesure sont possibles. En mode manuel, l'échantillon est placé manuellement dans plusieurs directions (orthogonales) de l'espace. La direction de l'aimantation est obtenue en compilant les différentes composantes. En mode automatique, une sonde permet de changer les positions et trois positions

Fig. X.A.26 Schéma de construction d'un diagramme de Zijderveld, à partir de projection dans au moins deux plans de références de l'espace (horizontale, vertical est-ouest, vertical nord-sud) (modifié d'après **van der Voo, 1993**).

sont suffisantes pour obtenir la direction de l'aimantation. Les analyses étant relatives, il est nécessaire d'effectuer régulièrement la mesure d'un standard.

A.4.ii Les directions paléomagnétiques et leur signification

A.4.ii.a Analyses statistiques de la direction

Les données d'orientation paléomagnétique sont numériques et difficilement interprétables de manière directe. Il est donc nécessaire d'adopter une représentation graphique pour visualiser les composantes et calculer leur direction. Bien que les données paléomagnétiques soient tridimensionnelles, il est possible de les représenter dans des projections orthogonales appelées diagrammes de Zijderveld (Zijderveld, 1967). Ces diagrammes sont composés de deux projections simultanées (Fig. X.A.26). Les données de déclinaison sont projetés dans le plan horizontal défini par les cordonnées géographiques (Nord, Est, etc...). Les données d'inclinaison sont projetées dans un plan vertical, dont la direction est soit parallèle à l'axe N-S, soit perpendiculaire. De plus, grâce à ce diagramme, il est possible de visualiser l'allure de la désaimantation puisque la distance entre deux points de température est proportionnelle à la chute de la rémanence entre ces deux paliers. L'alignement des points sur une gamme de température permet de caractériser une composante. La direction dans laquelle la désaimantation est réalisée est opposée à la direction d'aimantation présente dans l'échantillon. Ainsi la direction d'une composante sera définie par l'orientation et le sens de la trajectoire depuis la température la plus haute, jusqu'à la température la plus faible. Par convention, lorsque l'inclinaison est vers le bas, on parle de polarité normale, alors que lorsqu'elle pointe vers le haut, la polarité est dite inverse. Une autre façon de visualiser les données magnétiques est d'utiliser des projections stéréographiques d'iso-aire (canevas de Schmidt) ; la déclinaison est reportée en utilisant le contour extérieur du canevas, alors que les latitudes de la grille permettent de caractériser l'inclinaison. Lorsqu'une composante décroît uniformément vers l'origine, les données sont groupées. S'il existe une autre composante de plus basse température dont la direction ne pointe pas vers l'origine, alors les données correspondant à cette composante se disposeront le long d'un grand cercle interceptant aussi les données groupées de la composante de haute température.

A.4.ii.b Correction de pendage et direction paléomagnétique

Les données d'orientation obtenues à partir du magnétomètre sont valables dans le repère de l'appareil. Il est donc nécessaire de replacer l'échantillon dans sa position de prélèvement puis dans sa position stratigraphique. Pour la première correction, on utilise les angles \mathbb{Z} et \mathbb{Z} et la direction de la génératrice doit correspondre au repère de l'appareil de mesure. Plusieurs calculs matriciels permettent ensuite le changement de coordonnées. La correction de pendage des coordonnées géographiques obtenues s'effectue par trois rotations successives (d'abord d'axe vertical, puis d'axe horizontal et à nouveau d'axe vertical).

En fonction de la géométrie observée dans les diagrammes de Zijderveld ou dans les projections stéréographiques, les directions de chaque composante pourront être calculées (dans les repères géographique et stratigraphique). La méthode la plus couramment utilisée est la méthode de l'analyse de la composante principale (**Kirschvink, 1980**) qui permet de tracer la meilleure droite de régression sur une gamme de température donnée. Cet algorithme permet aussi de calculer une déviation angulaire maximale.

Lorsque deux composantes existent, plusieurs cas de figure peuvent se présenter. Lorsque les spectres de température sont clairement distincts, il est facile de distinguer les deux composantes et une estimation de la direction de chaque composante peut être réalisée à l'aide de l'analyse de la composante principale (*Fig. X.A.27*). Cependant, lorsque les spectres de température se superposent, il devient très difficile de reconnaître les vecteurs de direction de chaque composante (*Fig. X.A.27*). Or, ces deux composantes définissent un plan qui dans une projection stéréographique se matérialise par un grand cercle (**Halls, 1976**). Ainsi, pour chaque

Fig. X.A.27 Exemples théoriques de spectre de température de déblocage. En fonction du chevauchement des spectres de chaque composante, il sera plus ou moins facile d'analyser les composantes dans le diagramme de Zijderveld. Dans le cas extrême où les spectres de température sont superposés, la direction moyenne calculée dans le diagramme de Zijderveld n'a aucune signification par rapport aux deux composantes d'origine.

échantillon, il est possible de tracer un grand cercle portant les deux composantes. Lors que l'on reporte les grands cercles de chaque échantillon d'un même site ou d'une même localité, l'intersection de ces grands cercles est une des composantes. L'autre composante est en général définie par des points groupés. Cette méthode n'est cependant pas applicable lorsque les deux directions sont proches, car les grands cercles seront subparallèles et leur intersection mal définie. Il est aussi possible de calculer une direction moyenne par sites (ou par localité) à partir de grands cercles et de directions de Kirschvink (**Bailey & Halls, 1984**).

La stratégie d'échantillonnage utilisée la suivante. Une localité comprend un certain nombre de sites (6 à 8) et pour chaque site, il est nécessaire de prélever entre 8 et 10 carottes (spécimen). Ainsi la direction moyenne d'une localité sera calculée à partir de la moyenne des directions de chaque site, la direction moyenne d'un site étant la moyenne des directions de chaque spécimen mesuré. Les données de direction sont vectorielles et réparties sur une sphère. La direction moyenne et sa dispersion sont calculées statistiquement (**Fisher, 1953**). Chaque direction paléomagnétique peut être considérée comme un vecteur unitaire. Ces vecteurs unitaires ne sont pas parallèles et la direction de leur somme vectorielle est la direction paléomagnétique moyenne. En outre, il existe une loi de distribution (densité de probabilité) pour l'angle θ défini comme la différence angulaire entre une direction paléomagnétique et la direction moyenne réelle :

$$P(\theta, k) = \frac{k}{4\pi \sinh k} e^{k \cos \theta} (A.29)$$

k est le paramètre de précision et décrit la dispersion des directions. Cependant, puisque ni la direction moyenne réelle, ni le paramètre de précision k ne sont connus, k est estimé à partir de la relation :

$$k = \frac{N-1}{N-R} \left(A.30 \right)$$

où N est le nombre de vecteurs unitaires, et R est le vecteur somme. Le paramètre k augmente avec le regroupement des données. La direction moyenne réelle possède une probabilité de 95% de tomber dans un cercle de confiance correspondant à l'intersection de la sphère avec un cône de confiance de demi-angle α et d'axe orienté selon la direction moyenne. On définit alors que :

$$\alpha_{95} = \cos^{-1} \left[1 - \frac{N-R}{R} \left[\left(\frac{1}{0.05} \right)^{\frac{1}{N-1}} - 1 \right] \right] \approx \frac{140}{\sqrt{kN}} \left(A.40 \right)$$

Ainsi, quand le paramètre de précision k augmente, le demi angle du cône de confiance α_{95} diminue.

A.4.ii.c Tests paléomagnétiques, aimantation primaire et réaimantation

Les directions paléomagnétiques moyennes obtenues sont largement dépendantes de la minéralogie ferromagnétique des roches et de l'histoire géologique qu'elles ont connue. Une identification des phases magnétiques porteuses de l'aimantation et une reconnaissance des éventuels signes d'altération, de métamorphisme ou de déformation est nécessaire. L'interprétation des directions moyennes obtenues peut aussi se faire sur la distribution des données (données groupées, données aberrantes) ou sur la cohérence entre le pôle virtuel géomagnétique calculé et les données disponibles dans la littérature. Néanmoins, il est généralement nécessaire d'effectuer quelques tests afin de déterminer le caractère primaire ou secondaire de l'aimantation.

• Le test du pli (**Graham**, 1949) consiste à regarder la dispersion des données d'une couche plissée avant et après correction de pendage (*Fig. X.A.28*). Si le paramètre de précision k augmente avec la correction de pendage, le test est dit positif, et inversement. Dans le cas d'un test positif, l'aimantation est antérieure au plissement (mais pas forcément primaire), alors que dans le cas d'un test négatif l'aimantation est postérieure au plissement. Plusieurs méthodes permettent de déterminer le caractère positif ou négatif d'un test du pli à 95% (McElhinny, 1964) ou à 99% (McFadden, 1990). Il est également possible de déterminer le pourcentage de plissement (ou de « déplissement ») requis pour que le paramètre de précision soit le maximum. Cette méthode permet de mettre en avant un troisième cas : l'aimantation acquise pendant le plissement.

 \cdot Le test du conglomérat (**Graham, 1949**) est basé sur la cohérence des aimantations portées par les galets constituant un conglomérat (*Fig. X.A.28*). Puisqu'un courant complexe a permis la mise en place de ces galets d'origine différente, les aimantations primaires portées par ces galets (en supposant qu'elles ont été conservées lors du transport) doivent montrer une distribution aléatoire dans l'espace. Si les directions d'aimantation sont systématiquement groupées, l'aimantation de la couche et vraisemblablement d'une partie de la série détritique est secondaire.

• Le test du contact (**Everitt & Clegg, 1962**) peut être réalisé lorsqu'un ou plusieurs filons recoupent la couche ou l'unité étudiée. Durant l'intrusion, le dyke va induire un métamorphisme de contact dans son encaissant. Dans la zone « cuite », limitée à quelques mètres au-delà de l'éponte du filon, la direction de l'aimantation est identique à celle de l'intrusion (*Fig. X.A.28*); le test est alors positif et l'aimantation de l'encaissant en dehors de

la zone de contact est antérieure à l'intrusion. Cependant, comme la minéralogie magnétique est différente entre l'encaissant et l'intrusion, ces roches ne vont pas réagir de la même manière à un événement de réaimantation (par exemple des roches sédimentaires recoupées par un dyke basaltique). Ainsi, dans le cas d'un test de contact négatif, l'encaissant (en incluant la zone « cuite ») va présenter une aimantation différente de celle de l'intrusion. L'aimantation de l'encaissant est secondaire et postérieure à l'intrusion non réaimantée.

Fig. X.A.28 Coupe géologique idéale illustrant les différents tests paléomagnétiques (modifié d'après Lanza & Meloni, 2006). Le test du pli : la couche a, plissée, est caractérisée par des directions uniformes de l'aimantation (aimantation secondaire et test du pli négatif) alors que la couche b, elle aussi plissée, présente des directions d'aimantation qui suivent l'allure de la stratification (aimantation primaire et test du pli positif). Le test du conglomérat. La direction d'aimantation aléatoire au sein des galets d'un conglomérat (c) indique une aimantation primaire de la couche. Le test du contact. Lorsqu'un dyke filon se met en place, on observe le développement d'une aimantation secondaire dans l'encaissant à proximité des épontes du filon. Dans la zone de contact, les roches de la couches b présente une aimantation différent de celle du reste de la couche, mais comparable à celle mesurée à l'intérieur du filon : l'aimantation de la couche et différente de celle du filon : l'aimantation de la couche et différente de celle du filon : l'aimantation de la couche et différente de celle du filon : l'aimantation de la couche et différente de celle du filon : l'aimantation de la couche a donc été acquise après la mise en place du filon.

ZLa présence dans une roche de polarités inverses et normales indique que les variations séculaires ont été moyennées et que les directions ne sont pas biaisées par une réaimantation systématique. Bien que la présence de deux polarités ne garantisse pas la possibilité d'une aimantation secondaire, une aimantation primaire est fortement suspectée lorsque ces composantes sont portées par la magnétite. En fonction de la direction moyenne des antipodes (et de leur intervalle de confiance), le test de l'inversion peut être positif, négatif ou non conclusif (**McFadden and McElhinny, 1990**), mais la présence d'une inversion après correction de pendage est généralement un bon critère.

A.4.iii Pôles paléomagnétiques

Les directions moyennes obtenues (inclinaison moyenne et déclinaison moyenne) permettent de calculer un pôle moyen géomagnétique virtuel (VGP). Ce VGP correspond à la position théorique du pôle d'un dipôle axial centré pour obtenir les valeurs moyennes de déclinaison et d'inclinaison d'une aimantation mesurée. Pour obtenir ses coordonnées ($\mathbb{Z}_{\mathbb{Z}}$, $\mathbb{Z}_{\mathbb{D}}$), il faut calculer la distance angulaire \mathbb{Z} entre le VGP et le site de coordonnées ($\mathbb{Z}_{\mathbb{Z}}$, $\mathbb{Z}_{\mathbb{D}}$), qui correspond à la colatitude (*Fig. X.A.29*). D'après l'hypothèse du dipôle axial centré, on a :

Fig. X.2.A.29 Méthode de calcul du pole magnétique virtuel (VGP) à partir de la déclinaison D et de l'inclinaison I (modifié d'après Nagata, 1961)

On peut alors déterminer λ_P , ϕ_P :

$$\begin{split} \lambda_{P} &= \sin^{-1}[\sin\lambda_{S}\cos p + \cos\lambda_{S}\sin p\cos D] \ (A.42) \\ \phi_{P} &= \phi_{S} + \sin^{-1}\left[\frac{\sin p\sin D}{\cos\lambda_{P}}\right] \ (A.43) \ si\cos p \geq \sin\lambda_{S}\sin\lambda_{P} \\ \phi_{P} &= \phi_{S} + 180 - \sin^{-1}\left[\frac{\sin p\sin D}{\cos\lambda_{P}}\right] \ (A.44) \ si\cos p \leq \sin\lambda_{S}\sin\lambda_{P}. \end{split}$$

La longitude obtenue pour le VGP est relative au méridien de référence dans les coordonnées géographiques actuelles. Lors de l'aimantation, tous les sites situés sur une même latitude ont enregistrés une aimantation avec une déclinaison nulle, car une ligne du champ dipolaire axial relie le site à l'axe de rotation de la Terre. La paléolongitude du site correspondant à ce VGP est donc indéterminé. La déclinaison mesurée actuellement dans la roche témoigne donc de mouvements locaux ou à grande échelle du bloc, mais ce mouvement ne peut être contraint qu'en latitude ou en rotation.

Puisque la direction paléomagnétique moyenne est donnée avec un paramètre de précision k et un cercle de confiance défini à partir d' α_{95} , les données VGP présentent aussi un paramètre de précision K et un intervalle de confiance calculé à partir de A_{95} . Cependant, comme la relation entre latitude et inclinaison du champ magnétique n'est pas linéaire, il est préférable d'utiliser une ellipse de confiance. Cette ellipse est définie par un petit axe (dp) situé sur le grand cercle reliant le site à son VGP (paléoméridien) et par un grand axe (dm) perpendiculaire tel que :

$$dp = \alpha_{95} \frac{[1+3\cos^2 p]}{2} (A.45)$$
$$dm = \alpha_{95} \frac{\sin p}{\cos l} (A.46)$$

B Géochronologie U-Pb sur zircons et analyses isotopiques Lu-Hf sur zircons

B.1 Géochronologie U-Th-Pb sur zircon

B.1.i Structure, composition et formation des zircons

B.1.i.a Structure d'un cristal de zircon

Le zircon (ZrSiO₄) est un nésosilicate quadratique, marqué par des tétraèdres isolés SiO₄ qui partagent des arêtes et des sommets avec des dodécaèdres ZrO_8 (*Fig. X.B.1*; Finch & Hanchar, 2003). De même, chaque dodécaèdre ZrO₈ partage un sommet avec quatre autres dodécaèdres, formant ainsi des chaînes parallèles à <100> et réticulés. Les tétraèdres SiO₄ et les dodécaèdres ZrO₈ partagent aussi des sommets pour formés des chaînes parallèles à [001], marquées par des alternances de polyèdres SiO₄ et ZrO₈. Les principales

caractéristiques du cristal (habitus prismatique, clivage {110} et forte biréfringence) découlent de cette structure (**Speer, 1982**). La répulsion entre les cations Zr^{4+} et Si⁴⁺ influence fortement la structure des polyèdres. Contrairement aux tétraèdres SiO₄ classiques, les tétraèdres SiO₄ des zircons sont allongés selon [001] (**Speer, 1982**). Le dodécaèdre ZrO₈ correspond grossièrement à deux tétraèdres SiO₄ interpénétrés, l'un étant comprimé, l'autre étant allongé (*Fig. X.B.1*; **Nyman et al., 1984**; **Ríos et al., 2000**). Ainsi, la distance Zr-O est variable au sein des tétraèdres, avec quatre liaisons courtes (0.213 nm) et quatre liaisons longues (0.227 nm) (**Finch & Hanchar, 2003**).

Fig. X.B.1 Représentation de la structure d'un zircon, projeté sur le plan (100) (modifié d'après **Rios et al., 2000**) $ZrO_4(s)$ et $ZrO_4(e)$ correspondent respectivement aux tétraèdres comprimés et étirés.

B.1.i.b Composition chimique des zircons et implications

La structure relativement ouverte du zircon aussi bien entre les polyèdres SiO₄ et ZrO₈ qu'au sein des chaînes parallèles à [001] permet l'incorporation d'impuretés (**Speer, 1982** ; **Hoskin et al., 2000**). Ces quelques ppm (voire plusieurs dizaines de ppm) d'impuretés intersticielles restent cependant négligeables par rapport à la substitution au niveaux des sites cationiques Zr^{4+} et Si⁴⁺. P, Y, Hf, U, Th et Terres Rares peuvent entrer dans la composition du zircon (**Hoskin & Shaltegger, 2003**). Deux mécanismes de substitutions sont proposés (**Hoskin & Shaltegger, 2003** et références incluses) :

2Substitution simple

22²² 2 22²² *Q 2 M A*2

22 ²⁷ 22 2²² 22 2²² 22 2²² 2 2 2 2²² *A* 2*MA*

(??)_???????*A?*

Substitution complexe

(2222)²² 2 (22222)²² 2 222²² **4**2**m**Az

(?????)²² ? ?²² ? ??²² ? ??²² **Д**?**ША**?

(22)²² 2 2²² 2 22²² 2 23²² *Q* 2*MA*

2 ² 2 2(22)² 2 (2 2 2)2_n2 2 22²⁰ 2 (232_n)²⁰ *4 2 m Amom momon portablem 230*

(22022)²² 2 2(22222)²² 2 2²² 2 222²² 2 22²² 2 22²²

* : Al, Fe et Mg sont incorporés dans des sites interstitiels.

Les rayons ioniques des cations substituants contrôlent fortement les réactions de remplacement. Ainsi, les substitutions qui minimisent la déformation du cristal seront favorisées.

Le principal substituant du zirconium est l'hafnium. En effet, Hf^{4+} (rayon ionique = 0.083 nm) remplace fréquemment (jusqu'à 3 wt% d'HfO₂) Zr^{4+} (rayon ionique = 0.084 nm). La concentration en Hf d'un zircon augmente généralement avec la différentiation (**Hoskin & Shaltegger, 2003** et références incluses). Le fractionnement de Zr et de Hf dans le zircon et le liquide silicaté est lié à l'évolution du rapport d'activité Zr/Hf; lors de la cristallisation fractionnée, ce rapport diminue dans le liquide et ce qui entraine une augmentation de la teneur en Hf dans le zircon. Les isotopes de l'hafnium dans le zircon ont été largement étudiés et leur intérêt pour la connaissance des processus de croissance continentale sera présenté dans la partie B.2.

Le zircon peut contenir des quantités significatives d'actinides (U et Th) par substitutions monovalentes de Zr^{4+} , ce qui le rend très intéressant en terme de géochronomètre. La complexité des familles radioactives de l'U et du Th a permis le développement de plusieurs méthodes de datations radiométriques. La méthode U-Th-Pb, décrite dans la section B.1.ii permet d'estimer avec une bonne précision l'âge de cristallisation d'un zircon lors d'un processus magmatique ou métamorphique. La méthode U-Th-He sur zircon renseigne sur l'âge du passage de l'isotherme 70°C du cristal, température à laquelle les atomes d'hélium formés par désintégration nucléaire sont piégés dans la structure du zircon. Les traces de fission des zircons, formées par le passage à très grande vitesse de particules issues de la fission spontanée de l'uranium permettent aussi de calculer l'âge du passage de l'isotherme 240 \pm 10°C. Ces méthodes géochronologiques de basse température sont utilisées en néotectonique, pour contraindre notamment l'évolution thermique d'un bassin ou l'exhumation des roches. (Zeitler et al., 1982 ; Reiners, 2005 ; Tagami, 2005))

L'incorporation de titane dans le zircon se fait par substitution monovalente de Zr^{4+} ou de Si^{4+} par Ti^{4+} . Dans un système saturé en TiO_2 , la réaction $TiO_{2(rutile)} = TiO_{2(zircon)}$ peut être considérée comme un thermomètre avec la relation linéaire log[Ti]= a/T+b, avec [Ti] : la concentration en Ti dans le zircon, T la température en K, a et b des constantes (**Watson & Harrison, 2005**). Ce thermomètre a été calibré pour des températures de 1025°C à 1450°C (P = 1 à 2 GPa) et permet d'établir les conditions de température de la cristallisation du magma source.

La teneur en terres rares des zircons renseigne sur les conditions de croissance des grains, mais aussi sur la composition du liquide source. Les coefficients de partition des terres rares dans le zircon et le liquide silicaté restent cependant difficiles à évaluer (Hanchar & van Westrenen, 2007). Les spectres de terres rares sont utiles pour discriminer des provenances de zircons détritiques (Hoskin & Ireland, 2000) ou pour tracer des réservoirs magmatiques sources (Belousova et al., 2002), mais ils doivent être traités avec précaution (Hoskin & Shaltegger, 2003).

La diffusivité de l'oxygène dans le zircon étant faible (**Cherniak & Watson, 2003** ; **Valley, 2003**), les zircons magmatiques préservent la composition isotopique en oxygène à l'équilibre avec leur magma source. La rapport ¹⁸O/¹⁶O exprimé par δ^{18} O varie selon le contexte géologique (sédiments, coûte océanique, manteau, croûte continentale), si bien que la valeur δ^{18} O d'un zircon magmatique peut renseigner sur les éventuelles contaminations subies par le réservoir magmatique et discriminer le caractère juvénile ou recyclé d'une roche (**Valley, 2003** et références incluses). Lorsqu'elles sont couplées à la géochronologie U-Pb et/ou aux isotopes de l'hafnium, les données isotopiques de l'oxygène des zircons sont un outil puissant pour l'évolution de la croûte continentale (**Hawkesworth & Kemp, 2006b**).

B.1.i.c Morphologie et textures internes

La morphologie et la texture des grains de zircons sont extrêmement variables. Ils reflètent l'histoire géologique du minéral depuis sa cristallisation jusqu'aux épisodes tardifs d'altération. Généralement les grains de zircons présentent des tailles allant de 20 à 300 μ m (**Silver & Deutsch, 1963**). Les méthodes les plus appropriées pour étudier la morphologie et la texture interne d'un grain de zircon sont l'imagerie par cathodoluminescence (CL) et l'imagerie par électrons rétrodiffusés (BSE). L'émission CL est liée aux transitions électroniques des éléments trivalents du groupe des terres rares (**Marshall, 1988**; **Hanchar & Rudnick, 1995**), mais aussi à la présence d'Y³⁺, de Ti⁴⁺ et d'U⁴⁺ au niveau de défauts cristallins (**Ohnenstetter et al., 1991**). Les contrastes des images BSE traduisent des variations élémentaires, les zones claires reflétant les éléments les plus « lourds » tels que Hf et U (**Hanchar & Miller, 1993**).

Le zircon est quadratique et il cristallise sous forme de prisme allongé avec un rapport c/a pouvant atteindre 5 (**Corfu et al., 2003**). Généralement, les formes d'aiguilles (c/a=12) sont fréquentes dans les roches hypovolcaniques et les gabbros, alors que les grains trapus ou équants caractérisent les intrusions à refroidissement lent. La composition et la température de cristallisation peuvent aussi influencer la forme des cristaux magmatiques de zircon. La typologie des zircons basée sur la morphologie des facettes cristallines (pyramidales ou prismatiques) peut être reliée au rapport Al/alcalins (indice A) et à la température (*Fig. X.B.2*; **Pupin, 1980**). Ainsi, une forme cristalline est spécifique à une composition chimique et à une température. Cette classification systématique reste cependant simplifiée car elle ne prend pas en compte certains facteurs

Fig. X.B.2 Diagrammes de Pupin (**Pupin**, **1980**) représentant la forme cristalline du zircon (A) et la chimie du magma (B) en fonction de la température et de l'index d'alcalinité (vor **Pupin**, **1976** pour le calcul). Mu représente l'isotherme d'apparition de la muscovite. Référence des numéros : 1 : leucogranites alumineux, 2 : monzogranites et granodiorites, 3 : monzogranites et granodiorites alumineux, 4a, 4b et 4c : Granites calcoalcalins, 5 : charnockites, 6 : granites sub-alcalins, 7 : Granites alcalins, 8 : granites tholéitiques.

cinétiques qui contrôlent la morphologie du cristal (Vavra, 1993). La vitesse de cristallisation influence le rapport longueur sur largeur. Lors d'une croissance rapide, la forme cristalline sera mal définie ou squelettique.

Lorsque le liquide silicaté est pauvre en Zr ou présente une solubilité en Zr élevé, la saturation n'est atteinte que tardivement ; des cristaux xénomorphes de zircon apparaissent alors et comblent les faibles espaces disponibles (**Scoates & Chamberlain, 1995**). Lorsque le système est sursaturé en Zr, les cristaux existant ne peuvent être totalement dissous dans le liquide silicaté ; ils sont alors préservés et servent de germes pour une néocristallisation. En plus des surcroissances, des phénomènes de résorption et recristallisation peuvent apparaître lorsque un cristal est au contact d'un liquide silicaté. Ainsi, certains zircons peuvent présenter une morphologie compliquée qui révèle une histoire magmatique complexe.

La faible diffusivité au sein du zircon des cations trivalents et tétravalents (en condition anhydre) implique une immobilité des éléments chimiques au cours du temps. Ainsi les zonations chimiques et isotopiques peuvent être conservées (**Cherniak & Watson, 2003**) et révélées par imagerie CL. Plusieurs types de zonation sont distingués dans les zircons magmatiques (**Corfu et al., 2003**) :

• Les zonations de croissance sont les plus représentées et elles sont marquées par des variations de composition chimiques. Zr, Si, Hf, P, Y, TR, U et Th sont les principaux éléments concernés (Hanchar & Rudnick, 1995; Corfu et al., 2003). Les zonations de croissance se présentent soit en alternances bimodales de compositions, soit en alternances de teintes intermédiaires. Parfois la différence de teinte entre deux bandes de croissance devient si faible que ces dernières sont difficiles à révéler. L'origine des zonations de croissance peut être liée à une cristallisation épisodique du zircon, résultant d'interactions entre la croissance cristalline, la nature de l'interface cristal-liquide silicaté, le degré de supersaturation du liquide silicaté, le taux de diffusion et l'état d'oxydation (Mattinson et al., 1996). Les substitutions cationiques et la diffusion sont probablement impliquées (Hoskin, 2000).

• Les zonations en secteur sont caractérisées par des zones (pyramidales) très enrichies en U, Hf et Y, et par des zones (prismatiques) peu enrichies en U et traces (**Krogh**, 1982). L'origine des zonations en secteur est liée à des variations cinétiques brutales lors la cristallisation (**Paterson & Stephens**, 1992), mais aussi à la diffusivité intra-cristalline (**Watson & Liang**, 1995), ou encore à une irrégularité de la surface du zircon couplée à une hétérogénéité du degré de saturation du milieu de croissance (**Vavra et al.**, 1996).

• Les zonations de type « patchy » sont marquée par une texture irrégulière, similaire à l'extinction roulante de quartz déformé (**Paquette et al., 1995**). Une cristallisation sous contrainte lors des derniers stades du développement du minéral ou encore des recristallisations le long de micro-fractures sont proposées pour expliquer ce type de zonation (**Corfu et al., 2003**).

• L'imagerie CL peut aussi révéler la présence de cœurs hérités, au sein d'une bordure plus ou moins automorphe. La différence de teneur en U entre le cœur et la bordure permet de reconnaître ces cœurs hérités. Lorsque la teneur en U du cœur est supérieure à celle de la bordure, une métamictisation différentielle s'opère ; elle est marquée par une destruction à l'échelle du réseau cristallin du cœur et une fracturation radiale de la bordure liée à l'expansion volumique du cœur (**Corfu et al., 2003**). Les cœurs se distinguent des bordures par des interfaces irrégulières, des zonations tronqués, qui peuvent indiquer des phénomènes de résorption de la phase précoce.

B.1.i.d Pétrogenèse des zircons et conservation au cours des processus géologiques

La cristallisation du zircon à partir d'un liquide silicaté est contrôlée par la température (et la pression) du système et la teneur en zirconium du liquide nécessaire pour atteindre la saturation (**Watson & Harrison**, **1983**). La composition du liquide silicaté influence fortement la température de saturation et donc la cristallisation du zircon. De nombreuses études ont abordé la thermométrie de saturation du zircon (voir **Hanchar & Watson**, **2003** pour une synthèse détaillée) et il apparaît que de nombreux autres paramètres contrôlent la cristallisation (et à fortiori la dissolution) du zircon à partir d'un liquide silicaté. Néanmoins, pour des teneurs en Zr de l'ordre de la centaine de ppm et des compositions granitiques, il est généralement admis que le zircon cristallise autour de 750-850°C. Cette gamme de température correspond grossièrement à l'initiation de la cristallisation du magma granitique, si bien que l'âge du zircon est une bonne approximation de l'âge de mise en place du granite. Cependant, l'interprétation de l'âge obtenu et sa signification en terme géologique doivent cependant tenir compte des épisodes métamorphiques que le zircon aurait pu subir depuis sa cristallisation.

La préservation d'anciens zircons dans les liquides magmatiques est un facteur important pour la cristallisation de néozircons. Théoriquement, un zircon peut être complétement dissous dans un liquide silicaté sous-saturé en Zr. La cinétique de dissolution dépend alors de la composition du magma, de la teneur en eau et en halogénures, et de la température (Watson & Harrison, 1983 ; Baker et al., 2002). Parfois l'alternance de conditions de saturation et de conditions de sous-saturation peut entrainer des textures complexes de dissolution-précipitation (Vavra, 1994).

La cristallisation de néo-grains de zircon peut être observée aux différents stades du métamorphisme depuis le trajet prograde (Bingen et al., 2001), en passant par le pic de température (Hoskin & Black, 2000; Möller et al., 2002), jusque dans les conditions rétrogrades (Whitehouse & Platt, 2003). Le zircon cristallise rarement sous forme de néograins dans des conditions P-T inférieures au faciès des Amphibolites ou des Granulites ; il s'agit plutôt de zircons présents dans le protolithe. Les néoformations de zircon peuvent être associés à des réactions métamorphiques sub-solidus impliquant des phases riches en zirconium comme le grenat (Fraser et al., 1997), la biotite (Vavra et al., 1996), l'allanite (Pan, 1997) ou encore l'ilménite (Bingen et al., **2001**). Lors des cristallisations à hautes températures (*Fig. X.B.3*), les interactions avec des fluides et/ou des liquides silicatés, participent aussi à la formation de nouveaux zircons et au développement de morphologies et de textures particulières (Vavra et al., 1996; Schaltegger et al., 1999; Hoskin & Black, 2000). Des caractéristiques particulières telles que le rapport Th/U ou la distribution des terres rares permettent de tracer les zircons métamorphiques (Rubatto, 2002 ; Rubatto & Hermann, 2007), mais elles doivent être considérées avec prudence car ces systèmes sont très sensibles aux variations de pression ou de température, ainsi qu'à la présence de fluide dans le milieu (Harley et al., 2007). Si les conditions métamorphiques atteignent le domaine de la fusion partielle (Fig. X.B.3), les zircons peuvent être en partis dissous, ce qui entraîne une redistribution du zircon dans le liquide silicaté (Harley et al., 2007). Cependant, le zircon peut résister à des conditions relativement importantes (900°C, 0.7 GPa pour une composition métapélitique) surtout lorsque l'extraction des liquides magmatiques se fait au fur et à mesure de la fusion partielle (Kelsev et al., 2008). Si le volume est trop faible ou si les zircons sont protégés au sein d'autres minéraux, leur dissolution sera ralentie voir inhibée (Watson, 1996; Bea et al., 2007). La croissance et/ou la recristallisation du zircon continue lors des stades rétrogrades du métamorphisme, soit par des variations des contions physico-chimiques du système, soit lorsque certaines phases contenant du zirconium (ex. grenat) sont impliquées dans des réactions physico-chimiques (Fraser et al., 1997).

Fig. X.B.3 Représentation schématique du trajet température-temps d'un zircon au cours de son évolution lors des processus orogéniques (modifié d'après **Harley et al., 2007**).

La morphologie, la texture mais aussi la composition chimique du zircon peuvent être modifiées dans les stades ultimes de l'évolution du grain. Même à des températures inférieures à celles de la fermeture du système cristallin, le zircon peut être sensible à l'effet de fluides externes ou produits par réactions métamorphiques (**Harley et al., 2007**). Dans le cas des zircons métamictes, la fragilisation de la structure cristalline, transformée par l'effet de la décroissance des actinides (Woodhead et al., 1991), est marquée par un réseau de microfractures qui vont faciliter les phénomènes de dissolution-reprécipitation (Geisler et al., 2003 ; Hay & Dempster, 2009b).

B.1.ii Utilisation du zircon comme géochronomètre

B.1.ii.a Principes de géochronologie U-Th-Pb

La méthode de géochronologie U-Pb sur zircons se base sur le principe de la désintégration radioactive naturelle découverte par Henri Becquerel en 1896. Si on distingue des isotopiques pères (P) et des isotopes fils (F), alors on a les relations :

22 27 2 2 22 *Q* 2*D* 2*A* 2

²/₂ 2 2²² 2 2*1*(2*1*)2*A*2

P : la quantité d'élément père à l'instant t, P_0 : la quantité initiale d'éléments père, F : la quantité d'éléments fils à l'instant t et λ : la constante de désintégration liée au couple P-F.

nombre de neutron (N), illustrant les chaînes radioactives des

Par substitution des cations Zr^{4+} , le zircon est capable d'intégrer plusieurs centaines voire milliers de ppm d'U et de Th dans sa structure. Ces éléments de la famille des actinides présentent plusieurs isotopes radioactifs naturels :

 \mathbb{Z}^{238} U (99,2745% de l'uranium total)

 \mathbb{Z}^{235} U (0.720% de l'uranium total)

²³²Th (99.9999% du thorium total)

Ces trois isotopes sont à la base de chaînes de désintégration complexes qui donneront chacune un isotope stable du plomb (*Fig. X.B.4*). Comme la demi-vie des éléments fils des différentes chaînes de désintégration est insignifiante par rapport à la demi-vie de l'élément père et l'ordre de grandeur des temps géologiques (Ma), on peut exprimer ces trois désintégrations de manière simple :

$$\mathbb{Z}^{238}$$
U \Rightarrow ²⁰⁶Pb avec λ_{238} =1.55125*10⁻¹⁰ an⁻¹

$$\mathbb{Z}^{235}$$
U $\Rightarrow \mathbb{Z}^{207}$ Pb avec $\lambda_{235} = 9.8485 \times 10^{-10}$ an⁻¹

 \mathbb{P}^{232} Th $\Rightarrow {}^{208}$ Pb avec $\lambda_{232} = 0.49475 * 10^{-10} \text{ an}^{-1}$

Les isotopes fils obtenus sont stables à l'échelle des temps géologiques. Même s'il existe d'autres isotopes du plomb, ceux-ci sont

synthétiques et radioactifs à l'exception du ²⁰⁴Pb. Cet isotope stable à l'échelle des temps géologiques est dit commun (par rapport au plomb radiogénique issu des désintégrations d'U et Th) et sera utilisé comme référence.

Ainsi en mesurant les quantités respectives de chaque isotope (père et fils), on peut estimer trois âges correspondant à la fermeture du système isotopique. Malheureusement, les conditions de fermeture du système sont variables selon les éléments et U et Th réagissent différemment aux effets post-cristallisation (**Harley & Kelly, 2007**). Des méthodes graphiques sont alors nécessaires pour résoudre ces problèmes ; elles seront abordées ultérieurement.

B.1.ii.b Méthode LA-ICPMS

actinides (²³²Th, ²³⁵U, ²³⁸U).

Afin de discriminer les différents isotopes d'un même élément et d'estimer leur quantité, de nombreuses méthodes ont été élaborées. Si les premières déterminations isotopiques ont donné des résultats encourageants

(Nier, 1939), il faut attendre les années 1950 et la mise au point de la spectrométrie de masse à thermoionisation par dilution isotopique (ID-TIMS) pour que commence l'essor de la géochronologie (Tilton et al., 1955 ; Wetherhill, 1956). Cette méthode consiste à une mise en solution de l'échantillon et à l'ajout de traceurs isotopiques afin d'obtenir un mélange isotopique dont on déterminera la composition par spectrométrie de masse à thermo-ionisation. La méthode fut perfectionnée au cours des années 1960 puis 1970 (Cameron et al., 1969 ; Krogh, 1973).

La mise au point de la méthode d'évaporation (**Kober, 1986**) a permis un engouement général sur les méthodes de géochronologie (**Davis et al., 2003**), mais aussi elle a aussi soulevé la nécessité d'obtenir des datations ponctuelles. Ainsi, depuis une trentaine d'années, des méthodes de datation *in situ* ont été développées telles que la SIMS (Secondary Ion Mass Spectrometry) ou encore la méthode LA-ICPMS (**Compston et al., 1982**; **Kosler & Sylvester, 2003**; **Ireland & Williams, 2003**). La méthode couplée LA-ICPMS utilisée dans cette étude est caractérisée par un système d'ablation laser (Light Amplification by Stimulated Emission of Radiation) associée à des spectromètres de masse à plasma (ICP-MS ou Inductively Coupled Plasma-Mass Spectrometer). Cette méthode présente l'avantage d'être plus rapide et moins coûteuse que la méthode par SIMS. Si le diamètre d'ablation reste moins précis qu'à la sonde ionique, les résultats obtenus sont comparables (**Kosler & Sylvester, 2003**).

Fig. X.B.5 Diagramme conceptuel de l'appareillage utilisé pour les études géochronologiques U-Pb et isotopiques d'hafnium dans les zircons. Le Q-ICPMS est utilisé pour quantifier les rapports isotopiques d'U, de Th et de Pb, alors que les isotopes d'Y, de Lu et d'Hf sont déterminer par MC-ICPMS.

L'appareillage utilisé durant ces travaux est présenté dans la *figure X.B.5.* Il est hébergé à l'Institut de Géologie et de Géophysique de l'Académie des Sciences de Pékin (IGGCAS). Le système présenté est plus complexe que l'appareillage classique puisque un second ICPMS à multi-collecteur permettant une mesure simultanée des isotopes de l'hafnium est intégré. Cet élément sera détaillé dans la partie B.2.ii.a. Le système d'ablation laser comprend un générateur laser à exciplexe ArF de type COMPex 102 avec une longueur d'onde de 193 nm et un système optique laser permettant l'homogénéisation et la focalisation du faisceau. Cette opération est contrôlée par le logiciel Geolas standard. La densité d'énergie maximale est de 35 J/cm². Le faisceau est appliqué sur l'échantillon placé au sein d'une platine de 5.8 cm de diamètre et 1.5 cm de hauteur. La platine est alimentée par un flux d'hélium ce qui facilite le transport de la matière ablatée. Une pipe à trois voies

est ensuite utilisée pour répartir la matière ablatée vers les deux spectromètres de masse, avec un contrôle du flux de masse en sortie de pipe. La détermination des isotopes de l'uranium, du thorium et du plomb est réalisée par un spectromètre de masse quadripolaire à torche plasma de type Agilent 7500a (*Fig. X.B.5*), équipé d'un système de lentilles abaxiales Omega II. Un flux d'argon est ajouté à l'aérosol afin de permettre une ionisation de la matière grâce à une torche plasma. Les ions sont ensuite filtrés par des cônes de filtration, afin de réduire la pression et d'atteindre le vide dans le spectromètre de masse. Le faisceau ionique est ensuite modelé par un système de lentilles électrostatiques et accéléré dans l'analyseur de masse. Le quadrupôle consiste en quatre tiges métalliques parallèles entre lesquelles peuvent circuler les ions ; elles sont connectées deux par deux et un potentiel électrique est appliqué. Lorsqu'on fait varier ce potentiel, le trajet des ions devient sinusoïdal. Le détecteur unique (électromultiplicateur ou cage de Faraday) permet alors d'obtenir des rapports isotopiques et des spectres de masse à partir des intensités ioniques mesurées lors des variations de potentiel au sein du quadrupôle. La détection d'un pic de masse doit être rapide afin d'éviter les fluctuations du signal. L'analyse séquentielle à commutation rapide (mode dynamique) permet aussi d'améliorer la précision de la mesure.

B.1.ii.c Analyses LA-ICPMS

Les échantillons ont été préparés à l'IGGCAS à partir d'au moins 1kg de roches broyées. La séparation des grains de zircons a été réalisée par la méthode des liqueurs denses et par séparation magnétique. Chaque grain a ensuite été placé manuellement dans de la résine époxy. Chaque section comprend cinq échantillons différents marqués par des lignes d'au moins 300 zircons de 50 à 200 µm. de long. Les sections ont ensuite été polies sur un tiers des grains. Des images en Cathodoluminescence à 15kV ont été acquises à l'IGGCAS afin de caractériser la morphologie et la texture interne des grains de zircons et de déterminer stratégiquement les cibles d'ablation. Préalablement à l'analyse LA-ICPMS, les sections ont été nettoyées à l'éthanol pour éviter les contaminations.

Les conditions d'analyse et leur validité sont détaillées par **Xie et al. (2008)** et **Yuan et al. (2008)**. Avant chaque session analytique, les lignes de gaz ont été purgées pendant une heure afin de réduire la teneur superficielle en ²⁰⁴Pb à 50 coups par seconde. Ce procédé est nécessaire puisque le système ICP-MS à quadripôle ne permet pas d'obtenir une mesure acceptable de l'isotope ²⁰⁴Pb. L'ablation laser a été réalisée à 10Hz avec une densité d'énergie de 15 J/cm². Le diamètre d'ablation est de 50 à 70 µm lors de la mesure simultanée des systèmes isotopiques U-Pb et Lu-Hf, mais peut être réduit à 30 µm, lorsque le MC-ICP-MS est inactif. Aucun fractionnement de masse significatif n'est observé lorsque des proportions variables de matière ablatée sont transportées vers les deux systèmes de spectroscopie. Les taux de comptage en ligne de ²⁹Si, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th and ²³⁸U ont été utilisés pour calculer les rapports isotopiques, avec des temps d'intégration de 62.76 ms pour le plomb et de 30 ms pour les autres éléments. L'acquisition des données s'est d'abord faite sur 30 s sans laser puis sur 40 s avec laser, soit 340 détections de masser pour une pénétration d'environ 20 µm. La valeur moyenne du blanc est 4000 cps pour ²⁹Si, 10 cps pour ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb et 1 cps pour ²³²Th et ²³⁸U (**Wu et al., 2010**). Au début et à la fin de chaque échantillon, deux mesures du standard NIST SRM 610 (**Pearce et al., 1997**) ont été effectuées. Toutes les quinze analyses ont été précédés et suivies de deux mesures du zircon standard 91500 (**Wiedenbeck et al., 1995**) et d'une mesure du zircon standard GJ-1 (Jackson et al., 2004). La pertinence de ces standards a été validée sur l'appareillage utilisé (Xie et al., 2008).

Les résultats obtenus par méthode LA-ICP-MS sont comparables à ceux fournis aussi bien par les autres méthodes *in situ* tel que la SIMS (**Kosler et al., 2002**) que par la méthode ID-TIMS (**Cocherie et al., 2008**).

B.1.ii.d Corrections et modes de représentation

La nature complexe du signal obtenu par ablation laser pour chaque analyse ponctuelle nécessite l'utilisation d'un logiciel de réduction de données. Ce programme permet de distinguer les intervalles de temps correspondant au blanc et à la mesure effective et d'appliquer les corrections nécessaires. Les résultats présentés dans cette étude ont été obtenus avec le logiciel GLITTER 4.0 (Macquarie University, **Jackson et al., 2004**). Les rapports isotopiques ²⁰⁷Pb/²⁰⁶Pb, ²⁰⁶Pb/²³⁸U, ²⁰⁷Pb/²³⁵U (déduit de la relation ²³⁵U=²³⁸U/137.88) et ²⁰⁸Pb/²³²Th ont été corrigés par rapport au standard externe 91500 et un standard interne ³⁹Si (normalisée par rapport à la valeur du NIST SRM 610). La déviation standard relative du zircon référence 91500 a été fixée à 2%.

Malgré de très faibles valeurs de ²⁰⁴Pb, les rapports isotopiques ont été corrigés du plomb commun (**Andersen, 2002**). Cette méthode, basée sur les caractéristiques de discordance du système isotopique U-Th-Pb, est parfaitement adaptée aux données issues d'ICP-MS quadripolaire.

Les rapports isotopiques obtenus sont ensuite reportés graphiquement, afin de trier les données à utiliser en fonction de leur degré de concordance. Un point d'analyse est dit concordant lorsque deux ratios isotopiques correspondent à un même âge. Lorsque l'on reporte tous ces points concordants en fonction du temps dans un diagramme exprimant le ²⁰⁶Pb/²³⁸U en fonction de ²⁰⁷Pb/²³⁵U, on obtient alors la courbe « concordia » (*Fig.*

X.B.6a; Wetherill, 1956). Néanmoins, il est fréquent que certaines analyses s'éloignent de la droite de concordance. Ceci peut être expliquer par l'existence de deux composante d'âges ou par des pertes en plomb (diffusion intracristalline ou défauts cristallins). Généralement ces perturbations affectent de manière différente les cristaux, si bien que les analyses discordantes s'alignent sur des droites de mélange appelées « discordia ». Dans le cas d'un mélange d'âge, l'intercepte supérieur peut correspondre à un héritage (ex. cœur) alors que l'intercepte inférieur représente le dernier épisode de cristallisation (ex. bordure). Dans le cas de perte en plomb, l'intercepte supérieur correspond à l'âge de cristallisation et l'intercepte inférieur caractérise l'âge de l'événement à l'origine de la perte en plomb. L'interprétation des données discordantes devient complexe lorsque la roche a subi plusieurs pertes de plomb ou lorsque le zircon enregistré plusieurs épisodes de а cristallisation.

En plus des trois âges obtenus à partir des couples isotopiques père fils (²³⁸U-²⁰⁶Pb, ²³⁵U-²⁰⁷Pb et ²³²Th-²⁰⁸Pb), un quatrième âge 207Pb/206Pb peut être calculé en combinant les chronomètres 238 U- 206 Pb et 235 U- 207 Pb et en utilisant ${}^{238}\text{U}/{}^{235}\text{U} = 137.88$. Les données isotopiques peuvent ainsi être reportées dans un diagramme ²⁰⁷Pb/²⁰⁶Pb en fonction de ²³⁸U/²⁰⁶Pb (*Fig. X.B.5*; **Tera & Wasserburg**, 1972). Lorsqu'une analyse s'éloigne de la courbe d'équivalence des âges 207Pb/206Pb et ²⁰⁶Pb/²³⁸U, ceci témoigne soit d'un héritage, soit d'une perte de plomb, soit d'un enrichissement en Pb commun. Comme dans le diagramme « concordia », une droite de mélange permettra de discriminer la présence de deux composantes d'âge. La combinaison des différents processus rend cependant difficile. Le programme l'interprétation Isoplot/Ex 3.00 a été utilisé pour tracer les diagrammes Concordia et Tera Wasserburg (Ludwig, 2003).

B.1.iii Etude des zircons magmatiques

Au moins une dizaine de zircons ont été séparés de chaque échantillon de roche magmatique broyé. L'imagerie en cathodoluminescence permet de caractériser le type de zonation interne du zircon, ainsi que l'éventuelle présence d'un cœur hérité. Des zones appauvries en uranium et sécantes sur les zonations peuvent aussi être mise en évidence ; elles résultent vraisemblablement de recristallisation en présence de fluides magmatiques.

Afin d'évaluer l'âge de la roche, deux méthodes ont été employées. Lorsque les âges sont concordants et groupés, un âge « concordia » peut être calculé à partir d'un algorithme combinant les trois chronomètres (**Ludwig, 1998**). Lorsque les points d'analyse se répartissent sur une droite de mélange, il est préférable de calculer des âges aux interceptes (**York, 1969**), potentiellement pondérés par les points les plus concordants (**Davis, 1982**). Ces calculs d'âges ont été réalisés à partir du programme Isoplot/Ex 3.00 (**Ludwig, 2003**).

Fig. X.B.6 Représentation graphiques des âges U-Pb (modifié d'après **Parrish & Noble, 2003**). a : Diagramme « Concordia » (**Wetherill, 1956**) montrant la position théorique d'un cœur hérité, d'un mélange cœur bordure, d'une bordure néoformée et d'un grain ayant subi des pertes en plomb. b : diagramme « Tera-Wasserburg » (**Tera & Wasserburg, 1972**) illustrant les mêmes phénomènes ainsi qu'une contamination en plomb commun.

Il est généralement admis que les âges U-Pb sur zircon des roches magmatiques représentent la fermeture du système U-Th-Pb du zircon. Comme nous l'avons dit précédemment, cette fermeture intervient généralement dans les premiers stades de cristallisation du magma (Watson & Harrison, 1983). La diffusion des éléments au sein du zircon est généralement considérée faible, mais cette dernière peut influencer la température de fermeture du système de plusieurs dizaine de degré (Dodson, 1986 ; Cherniak & Watson, 2001) ou initier des pertes en plomb principalement dans les zircons métamictes (Cherniak et al., 1991). L'action de fluides froids ou chauds entraîne une remise à zéro totale ou partielle du géochronomètre (Geisler et al., 2007).

B.1.iv Etude des zircons détritiques

B.1.iv.a Principe de l'étude

Toute roche affleurant à la surface de la terre est susceptible d'être érodée et mise à l'état granulaire. Le zircon est un minéral relativement ubiquiste qui se retrouve facilement dans le cycle de sédimentation. Les zircons authigéniques sont rares et issus de processus hydrothermaux liés à des fluides extérieurs au système (Saxena, 1966 ; Hower et al., 1999). Du fait de sa forte dureté et de sa stabilité cristalline dans les conditions physico-chimique de surface, les zircons préservent leur composition et leur texture d'origine lors des processus d'altération, de transport, de dépôt et de diagénèse (Fedo et al., 2003 ; Hay & Dempster, 2009a). Ainsi, l'analyse des âges U-Pb des zircons détritiques renseigne sur les composantes sédimentaires présentes et leur possible source. On peut alors reconstruire l'histoire de bassins sédimentaires et leurs relations avec les régions voisines sources. Néanmoins, les zircons présente des duretés, des densités et des solubilités différentes de celles des autres éléments constitutifs des roches détritiques comme le quartz ou le feldspath ; ainsi l'analyse des zircons sont anormalement riches en uranium, ils sont plus sensibles à la métamictisation, ce qui modifie la structure cristalline et par conséquent la densité. Les grains métamictes réagiront donc différemment au processus sédimentaire.

B.1.iv.b Echantillonnage, préparation et analyse

Avant toute étude analyse géochronologique, il est nécessaire d'établir une stratégie d'échantillonnage et de connaître les sources potentielles des zircons détritiques. Les distributions d'âges ne sont pas toujours régulières au sein d'une même série ou séquence sédimentaire (**deGraaff-Surpless et al., 2000**). Par ailleurs il n'existe pas toujours de lien entre maturité de la roche sédimentaire et complexité du spectre d'âge (**Sircombe et al., 2001**), mais une corrélation entre morphologie du grain et âge du grain est potentiellement observable (**Smith & Gehrels, 1994**).

Lors de la séparation minérale, des biais, caractérisés par des absences de populations de zircon peuvent apparaître. La séparation magnétique, du fait de la corrélation positive entre susceptibilité magnétique, perte en plomb et teneur en uranium (Silver, 1963), peut entrainer une distribution d'âge erronée (Sircombe & Stern, 2002). Ce biais peut être évité en sélectionnant une plus large gamme de susceptibilité magnétique (Gehrels, 2000).

Une large gamme de taille de zircon peut aussi fausser la distribution d'âge, du fait du fractionnement hydrodynamique des grains (**Morton & Hallsworth, 1994**). Il est ainsi préférable de travailler sur la fraction 63-125 m (**Morton et al., 1996**), ce qui contraint l'échantillonnage. Les étapes de broyage peuvent aussi induire des biais, en fonction du diamètre d'ouverture utilisés. Enfin, la taille minimale requise pour l'analyse isotopique (SIMS, ID-TIMS, LA-ICP-MS, etc...) contraint à négliger les zircons les plus petits qui pourtant représente une population possiblement significative.

Il existe deux stratégies d'analyse des zircons détritiques. Lors d'une analyse qualitative, les zircons sont sélectionnés en fonction de leurs caractéristiques intrinsèques. Les particularités morphologiques et texturales permettent de distinguer des populations (Gehrels et al., 1995), mais cette méthode peut aussi apparaître exclusive (Roddick & Bevier, 1995). Une approche alternative consiste à analyser suffisamment de grains pour prendre en compte toutes les populations présentes. Cette sélection doit se faire au hasard afin de ne pas opérer de biais morphologiques. Au moins 59 analyses sont nécessaires pour réduire à 5% la probabilité de négliger une population (Dodson et al., 1988). Un seuil de 117 analyses doit être atteint afin d'obtenir une distribution d'âge uniforme (Vermeesch, 2004). Cependant, quelque soit le nombre de zircon sélectionné, il apparaît impossible de reproduire statistiquement une distribution d'âge représentative de l'échantillon (Anderson, 2005). Il apparaît alors nécessaire de coupler l'analyse qualitative, basée sur la variabilité morphologique et texturale des grains et l'analyse quantitative reposant sur un nombre significatif de grain (35-70).

B.1.iv.c Représentation graphique et traitement statistique

Les diagrammes Concordia permettent de visualiser rapidement la concordance des analyses isotopiques U-Pb ; cependant, dans le cas de multiples populations, cette représentation devient vite complexe. Il est ainsi préférable d'utiliser des diagrammes à une seule variable tels que les histogrammes ou les distributions de densité de probabilité. Les données reportées doivent préalablement remplir des contions de concordance (ex. entre 95% et 105% de concordance). Les histogrammes de fréquence sont généralement utilisés car ils permettent de visualiser rapidement des événements géologiques à partir des modes. Cependant, les données reportées dans les classes ne tiennent pas compte des erreurs individuelles de l'analyse et la taille des classes est arbitrairement choisie (Fedo et al., 2003). Ces biais peuvent être réduit en adoptant une approche mathématique permettant de calculer la largeur des classes (Sircombe, 2004). La distribution de densité de probabilité d'un échantillon est calculée à partir d'estimateur par noyau (*kernel*) gaussien (Silverman, 1986 ; Dodson et al., 1988) ; cette méthode prend en compte l'erreur individuelle de chaque point d'analyse, mais la courbe calculée est généralement disproportionnée par rapport aux données déduites d'un histogramme. Il apparaît donc judicieux de montrer un diagramme combinant histogramme de fréquence et distribution de densité de probabilité (Nutman, 2001). La macro Microsoft Excel « Age Display » a été utilisé pour représenter les distributions d'âge (Sircombe, 2004).

La distribution d'âge obtenue s'avère souvent complexe, et il est nécessaire de déconvoluer le signal pour distinguer les différents modes d'âge. Ce traitement est d'autant plus délicat lorsque les modes d'âge sont proches et que les erreurs d'analyses sont larges. Dans cette étude, les modes d'âge ont été calculés à partir de la macro « Age Pick » (Gehrels et al., 2006). Il est généralement difficile d'utiliser seule une distribution d'âge, et des comparaisons de similitude entre plusieurs échantillons sont souvent requises. La méthode par recouvrement et similitude est basée sur la comparaison semi-quantitative des densités de probabilités cumulées de chaque échantillon (Gehrels, 2000 ; Gehrels et al., 2002). Le test non paramétrique de Kolmogorov-Smirnov (Press et al., 1986) a été utilisé dans cette étude. Il permet aussi de comparer deux distributions et de tester l'hypothèse que deux échantillons sont semblables ou non dans un intervalle de confiance donné (Berry et al., 2001). Cette méthode quantitative ne tient malheureusement pas compte de l'erreur individuelle des âges. Les analyses statistiques à plusieurs variables sont lourdes et nécessitent un nombre significatif d'échantillon (Sircombe, 2000).

B.1.iv.d Signification des âges et implication dans les études de provenance

D'après le principe d'inclusion, l'âge du dépôt est nécessairement plus jeune que l'âge du zircon le plus jeune, en considérant que le système isotopique U-Pb n'a subi aucune perturbation. Cet âge maximum de dépôt est particulièrement utile pour les formations précambriennes ou celles ne contenant pas de fossiles discriminants. Dans de rares cas, l'âge maximum de sédimentation peut correspondre à l'âge du dépôt (**Nelson**, **2001**) ; cela nécessite 1) des échantillons de faible degré de métamorphisme, 2) des précautions particulières d'échantillonnage et d'analyse pour éviter les contaminations et 3) une attention spécifique de l'état d'altération des roches collectées. Un facteur limitant de cette méthode est l'éventuelle perte en plomb qu'a pu subir le grain, ce qui entraîne un rajeunissant de l'âge isotopique (**Kimborough et al., 2001**) ; ce dernier pourra alors être plus jeune que l'âge réel du dépôt de la formation. Une connaissance de la stratigraphie régionale est donc essentielle à l'interprétation des âges maximum de sédimentation. Afin d'éviter un biais analytique, l'âge du zircon le plus jeune est rarement utilisé. Plusieurs méthodes de calcul de l'âge maximum de dépôt sont disponibles : détermination graphique ou programme « Youngest Detrital Zircon » (**Ludwig, 2008**), âge moyen pondéré du groupe de zircons (> 2 ou >3) le plus jeune avec recoupement d'âge à 1 σ ou 2 σ (**Dickinson & Gehrels, 2009**). Cette dernière méthode sera utilisée.

L'étude des zircons détritiques permet ainsi de contraindre l'âge maximum d'une succession stratigraphique à partir des zircons les plus jeunes. Les modes d'âge, correspondant aux pics de la courbe de distribution d'âge permettent d'identifier les sources régionales possibles de zircons. En couplant la géochronologie U-Pb avec une étude pétrographique (ex. Hallsworth et al., 2000), texturale (Loi & Dabard, 1997 ; Schäfer & Dörr, 1997) et géochimique (Hoskin & Irleand, 2000 ; Griffin et al., 2000) de ces zircons détritiques, il est possible de retracer la provenance des grains et de discriminer les étapes d'un cycle sédimentaire parfois complexe (Gaudette et al., 1981). De ces études peuvent découler des reconstructions paléogéographiques ou tectoniques d'échelle variables (ex. Knudsen et al., 1997 ; Cawood et al., 1999 ; Cawood & Nemchin, 2001 ; Gehrels et al., 2002 ; Adams et al., 2007), ainsi que des contraintes sur l'histoire précoce de la Terre (Froude et al., 1983 ; Wilde et al., 2001). La combinaison des données isotopique U-Pb et Hf sur zircons détritiques apporte des contraintes majeures sur l'évolution crustale (Amelin et al., 1999 ; Griffin et al., 2004) ; elle sera développée dans la section suivante.

B.2 Détermination des isotopes Lu-Hf sur zircons

Le zircon peut intégrer de nombreux éléments traces dans sa composition (**Hoskin & Schaltegger**, **2003**). En plus du Th et du Pb, d'autres éléments radioactifs tels que le ¹⁷⁶Lu et le ¹⁴⁷Sm produisent respectivement du ¹⁷⁶Hf et du ¹⁴³Nd. Comme pour les roches totales, les couples d'éléments père-fils au sein du zircon peuvent être utilisés comme traceur géochimique. Les systèmes Lu-Hf et Sm-Nd se comportent de manière similaire (Vervoort & Blichert-Toft, 1999). Le fractionnement Lu/Hf durant la fusion partielle du manteau est cependant deux fois supérieur au fractionnement Sm/Nd. Ainsi, comme la demie vie du ¹⁷⁶Lu est plus courte que celle du ¹⁴⁷Sm et du même ordre de grandeur que celle du ²³⁵U, du ²³⁸U et du ²³²Th, les isotopes de l'hafnium ont une très bonne résolution pour identifier les sources potentielles des magmas produits au cours d'évènements géologiques d'une évolution géologique (**Patchett and Tatsumoto, 1980; Patchett, 1983**).

B.2.i Le système Lu-Hf

A l'état naturel, le lutétium existe sous forme de ¹⁷⁵Lu (97,4% de l'abondance en Lu), stable, et de ¹⁷⁶Lu (2.6%) qui produit par désintégration β^{-} du ¹⁷⁶Hf, stable (**Dixon et al., 1954**). L'hafnium possède de nombreux autres isotopes stables tels que ¹⁷⁷Hf (18,6 %), ¹⁷⁸Hf (27,3 %), ¹⁷⁹Hf (13,2 %) et ¹⁸⁰Hf (35,1 %), ainsi qu'un isotope instable ¹⁷⁴Hf (0,16 %), dont la demie vie est de l'ordre de 2.10¹⁵ a. Actuellement, l'¹⁷⁶Hf représente 5,2 % de l'abondance terrestre de l'hafnium. En normalisant à l'isotope ¹⁷⁷Hf, on peut écrire l'équation suivante :

$$\left(\frac{^{176}Hf}{^{177}Hf} \right)_{t_i} = \left(\frac{^{176}Hf}{^{177}Hf} \right)_{t=0} + \left(\frac{^{176}Lu}{^{177}Hf} \right)_{t_i} \times \left(e^{\lambda t} - 1 \right) (B.13)$$

avec :

t : le temps depuis la fermeture du système à t=0, jusqu'à l'instant t_i

 λ : la constante de désintégration.

Plusieurs valeurs de λ ont été proposées (Patchett & Tastumoto, 1980 ; Tatsumoto et al., 1981 ; Blichert-Toft & Albarède, 1997 ; Scherer et al., 2001 ; Bizarro et al., 2003). La valeur λ =1.93.10⁻¹¹ a été utilisée dans cette étude (Blichert-Toft & Albarède, 1997).

B.2.ii Les isotopes de l'hafnium dans le zircon

L'hafnium est un élément lithophile à fort potentiel ionique (HFSE). Il possède des caractéristiques proches de celles du zirconium, comme le rayon ionique, ce qui entraine des substitutions fréquentes entre Zr^{4+} et Hf⁴⁺. Ainsi, de 0.5% à plus de 2% d'HfO₂ peuvent intégrer la structure du zircon (**Hoskin & Schaltegger**, **2003**). Bien que les spectres de Terres Rares normalisés aux chondrites montrent un enrichissement en Terres Rares lourdes (de l'ordre de 10⁴), la teneur en Lu des zircons reste faible (15 ppm) (**Hoskin & Schaltegger**, **2003**). Ainsi la rapport Lu/Hf est très faible (0.002), et la cristallisation du zircon dans n'importe quel contexte géologique entraîne un fractionnement important du rapport Lu/Hf entre le zircon et les autres phases à l'équilibre (**Kinny & Maas, 2003**). Le rapport ¹⁷⁶Lu/¹⁷⁷Hf est lui aussi très faible (< 0,0005), et de ce fait les variations du rapport ¹⁷⁶Hf/¹⁷⁷Hf liées à la désintégration du ¹⁷⁶Lu en ¹⁷⁶Hf sont négligeables. En d'autres termes, cela signifie que le rapport ¹⁷⁶Hf/¹⁷⁷Hf, acquis lors de la cristallisation du zircon a pu être conservé au cours du temps, même en cas d'événement métamorphique (**Pettingill & Patchett, 1981**). Le rapport initial en Hf est ainsi défini :

$$\left(\frac{^{176}Hf}{^{177}Hf}\right)_{i} = \left(\frac{^{176}Hf}{^{177}Hf}\right)_{m} - \left[\left(\frac{^{176}Lu}{^{177}Hf}\right)_{m} \times \left(e^{\lambda t} - 1\right)\right] (B.14)$$

avec :

 $({}^{176}\text{Hf}/{}^{177}\text{Hf})_{i}$, le rapport $({}^{176}\text{Hf}/{}^{177}\text{Hf})$ initial $({}^{176}\text{Hf}/{}^{177}\text{Hf})_{m}$, le rapport $({}^{176}\text{Hf}/{}^{177}\text{Hf})$ mesuré $({}^{176}\text{Lu}/{}^{177}\text{Hf})_{m}$, le rapport $({}^{176}\text{Lu}/{}^{177}\text{Hf})$ mesuré λ , la constante de désintégration $(1.93.10^{-11})$

t, l'âge U-Pb

Il existe en effet une forte immobilité des isotopes de l'hafnium au sein du zircon en système ouvert. Dans le cas des zircons discordants, pas ou très peu de variations du rapport ¹⁷⁶Hf/¹⁷⁷Hf sont observées (**Patchett, 1983**; **Kinny et al., 1991**). Contrairement au système isotopique U-Th-Pb qui peut facilement subir des pertes lors d'événements géologiques, il existe peu d'échange des isotopes Lu et Hf entre le zircon et la

matrice (Hoskin & Black, 2000). La température de fermeture du système Lu-Hf est 200°C plus haute que celle du système U-Th-Pb (Cherniak et al., 1997a ; 1997b ; Cherniak & Watson, 2003). Ainsi le système Lu-Hf est rarement remis à zéro.

B.2.ii Mesures des isotopes du lutétium et de l'hafnium

B.2.ii.a Appareillage et principe de la méthode LA-ICPMS

Comme pour le système isotopique U-Th-Pb, plusieurs méthodes permettent de déterminer la proportion isotopique de l'hafnium et du lutétium (TIMS, SIMS, LA-ICP-MS). La méthode in situ par ablation Laser - ICP-MS a été utilisée dans cette étude. La mesure des abondances isotopiques en Hf et Lu a été couplée à une détermination simultanée des isotopes U-Th-Pb. Cette méthode est décrite par Xie et al. (2008) et Yuan et al. (2008), et la première partie portant sur l'ablation Laser est détaillée dans la section (B.1.ii.c). La matière ablatée, est transportée par de l'hélium jusqu'à un système de pipe à trois voies et de contrôleurs de masse qui permet de discriminer le matériel entre les deux systèmes de mesure. L'analyse des rapports isotopiques ¹⁷⁶Lu/¹⁷⁷Hf et ¹⁷⁶Hf/¹⁷⁷Hf se fait grâce à un ICP-MS à secteur magnétique et des multi-collecteurs (MC ICP MS ¹⁷Hf et ¹⁷⁶Hf/¹⁷⁷Hf se fait grâce à un ICP-MS à secteur magnétique et des multi-collecteurs (MC-ICP-MS Neptune). Les secteurs magnétiques correspondent à des zones de champ magnétique (créées par un électroaimant) qui permettent de discriminer la masse des particules ionisées. La déflection de la trajectoire des particules est fonction de la masse. La détermination isotopique est réalisée par un système multi-collecteur (9 cages de Faraday). Cet appareillage permet, en mode statique, une détection simultanée de plusieurs isotopes et s'oppose au mode dynamique des quadrupôles (Section B.1.ii.b). De plus, alors que les Q-ICPMS fournissent un pic de masse « gaussien », les MC-ICP-MS permettent d'obtenir un pic de masse de type « plateau », ce qui augmente la précision de la mesure d'un à deux ordres de grandeur (Kosler & Silvester, 2003). Les multicollecteurs permettent aussi de réduire le bruit de scintillement du plasma.

B.2.ii.b Analyse et traitement des données

La mesure est précédée d'une analyse pré-ablation de 30 secondes. Chaque analyse correspond à un bloc de 200 cycles d'acquisition de 0,131 s soit un temps total d'acquisition de 30 secondes. La précision et la reproductibilité de la mesure ont été assurées en analysant préalablement la solution standard JMC475 à 200 ppm d'hafnium (**Blichert-Toft et al., 1997**; **Nowell et al., 1998**; **Wu et al., 2006**). Pendant les mesures, l'interférence isobarique du ¹⁷⁶Lu sur le ¹⁷⁶Hf peut être considérée comme négligeable du fait de la très faible valeur du rapport ¹⁷⁶Lu/¹⁷⁷Hf dans les zircons (< 0,0005). Néanmoins, une correction de cette interférence peut être apportée en utilisant ¹⁷⁶Lu/¹⁷⁵Lu = 0,02655 (Machado & Simonetti, 2001). L'interférence de ¹⁷⁶Yb sur ¹⁷⁶Hf, peut profondément altérer la précision du rapport ¹⁷⁶Hf/¹⁷⁷Hf (**Woodhead et al., 2004**); la contribution du ¹⁷⁶Yb par rapport au ¹⁷⁶Hf peut être corrigée en utilisant ¹⁷⁶Yb/¹⁷²Yb = 0,5887 (Wu et al., 2006b). Les zircons 91500 (**Wiedenbeck et al., 1995**) et GJ-1 (**Jackson et al., 2004**) ont été utilisés comme standards externes et ont donné respectivement des rapports ¹⁷⁶Hf/¹⁷⁷Hf de 0.282290±21 et 0.282001±19 comparables à ceux proposés par **Xie et al. (2008**).

B.2.iii Utilisation des isotopes de l'hafnium

L'hafnium est un élément plus incompatible que le lutétium ; ainsi durant la fusion partielle du manteau, la croûte continentale formée va s'enrichir en Hf par rapport au Lu (*Fig. X.B.7*). Grace au fractionnement de Lu et d'Hf lors de la production de magma, le système isotopique Lu-Hf pourra être utiliser pour tracer l'évolution crustale. Puisque ¹⁷⁶Hf est produit par la désintégration du ¹⁷⁶Lu, le rapport ¹⁷⁶Hf/¹⁷⁷Hf tendra à diminuer dans la croûte continentale et à augmenter dans le manteau résiduel appauvri (**Patchett et al., 1981**). Ainsi la composition isotopique en hafnium du manteau résiduel (DM) et de la croûte continentale divergera de celle du manteau chondritique non fractionné (CHUR) au cours du temps. La déviation de la composition isotopique par rapport au CHUR en fonction du temps peut être exprimée ainsi :

$$\varepsilon_{Hf} = \left[\frac{\binom{176_{Hf}}{177_{Hf}}_{l} - \binom{176_{Hf}}{177_{Hf}}_{CHUR}^{t}}{\binom{176_{Hf}}{177_{Hf}}_{CHUR}^{t}}\right] \times 10^{4} (B.15)$$

Avec :

$$\binom{1^{76}Hf}{1^{177}Hf}_{CHUR}^{t} = \binom{1^{76}Hf}{1^{177}Hf}_{CHUR} - \left[\binom{1^{76}Lu}{1^{177}Hf}_{CHUR} \times (e^{\lambda t} - 1)\right] (B.16)$$

 $(^{176}\text{Hf}/^{177}\text{Hf})_{\text{CHUR}} = 0.282772, (^{176}\text{Lu}/^{177}\text{Hf})_{\text{CHUR}} = 0.0332$ (**Blichert-Toft & Albarède, 1997**)

Fig. X.B.7 Modèle schématique de l'évolution des isotopes de l'hafnium au cours des processus géologiques (modifié d'après **Patchett et al., 1981**). Voir le texte pour plus d'explications.

Le manteau chondritique primitif aura ainsi une valeur d' $\epsilon_{\rm Hf}$ égale à zéro. Les échantillons dont la valeur ¹⁷⁶Hf/¹⁷⁷Hf est inférieure à celle des chondrites présenteront un $\epsilon_{\rm Hf}$ négatif, alors que ceux dont la valeur ¹⁷⁶Hf/¹⁷⁷Hf est supérieure à celle des chondrites montreront un $\epsilon_{\rm Hf}$ positif (ex. le manteau appauvri) (*Fig. X.B.7*). La variabilité des valeurs d' $\epsilon_{\rm Hf}$ au sein d'un même échantillon indique soit une hétérogénéité des sources magmatiques, soit

des contaminations par du matériel appauvri ou enrichi (Smith et al., 1987 ; Corfu & Stott, 1993 ; Belousova et al., 2006) (*Fig. X.B.7*).

La fusion partielle du manteau appauvri génère des magmas mantelliques qui migreront jusque dans la croûte continentale. En d'autres termes, une roche directement issue d'un magma mantellique présentera, à t, le même rapport ¹⁷⁶Hf/¹⁷⁷Hf que sa source, soit :

En remplaçant dans l'équation (2), on obtient :

Soit :

$$\left[\begin{array}{c} \frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{2 \cos \left(\frac{1}{2}\right)}{\cos \left(\frac{1}{2}\right)} \right) & \left[2 \left(\frac{1}{2}\right) & \left[2 \left(\frac{1}{2}\right) & \left[\frac{1}{2}\right] & \left[\frac{1}{2}$$

avec :

 $(^{176}Hf/^{177}Hf)_{DM} = 0.283251$ (Nowell et al., 1998)

 $(^{176}Lu/^{177}Hf)_{CHUR} = 0.0384$ (Griffin et al., 2000)

Cette valeur t, généralement écrite T_{DM} est un âge modèle Hf. Il correspond à l'âge minimum de la source du magma à partir duquel le zircon a cristallisé. Les magmas directement issus du manteau appauvri ou de la fusion de matériel récemment extrait du manteau sont dits juvénile. Dans cette étude, l'âge modèle T_{DM} sera utilisé pour les zircons présentant des valeurs d' ϵ_{Hf} >0.75 fois la valeur du manteau appauvri (**Belousova et al., 2010**).

Cependant, les magmas crustaux ne proviennent pas systématiquement du réservoir mantellique appauvri. La fusion de matériel crustal (croûte inférieure, voire supérieure) peut générer des magmas dont la signature isotopique en hafnium des zircons reflétera la composition initiale de la source fondue. Ces zircons présentent généralement des valeurs ϵ_{Hf} négative et un rapport ${}^{176}\text{Hf}/{}^{177}\text{Hf}$ faible (*Fig. X.B.7*). Ainsi un âge modèle Hf « crustal » (T^C_{DM}) ou âge modèle en deux étapes a été proposé en considérant que la magma à partir duquel les zircons ont cristallisé a été produit par fusion d'un volume de croûte continentale moyenne (**Griffin et al., 2004**).

A T_i :

$$\begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{C}^{T_{i}} = \begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{C}^{0} - \left[\begin{pmatrix} \frac{17^{6}Lu}{177Hf} \end{pmatrix}_{C} \times (e^{\lambda T_{i}} - 1) \right] (B.23)$$

$$\begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{DM}^{T_{i}} = \begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{DM}^{0} - \left[\begin{pmatrix} \frac{17^{6}Lu}{177Hf} \end{pmatrix}_{DM} \times (e^{\lambda T_{i}} - 1) \right] (B.24)$$
A T_{DM}:
$$\begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{DM}^{T_{DM}} = \begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{DM}^{0} - \left[\begin{pmatrix} \frac{17^{6}Lu}{177Hf} \end{pmatrix}_{DM} \times (e^{\lambda T_{DM}} - 1) \right] (B.25)$$
A T^C_{DM}:
$$\begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{DM}^{T_{DM}} = \begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{DM}^{0} - \left[\begin{pmatrix} \frac{17^{6}Lu}{177Hf} \end{pmatrix}_{DM} \times (e^{\lambda T_{DM}} - 1) \right] (B.25)$$
A T^C_{DM}:
$$\begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{DM}^{T_{DM}} = \begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{DM}^{0} - \left[\begin{pmatrix} \frac{17^{6}Lu}{177Hf} \end{pmatrix}_{DM} \times (e^{\lambda T_{DM}^{C}} - 1) \right] (B.26)$$

$$\begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{C}^{T_{DM}} = \begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{C}^{0} - \left[\begin{pmatrix} \frac{17^{6}Lu}{177Hf} \end{pmatrix}_{C} \times (e^{\lambda T_{DM}^{C}} - 1) \right] (B.27)$$
Avec (Fig. X.B.8):
$$\begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{i}^{T_{i}} = \begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{C}^{T_{i}} = \begin{pmatrix} \frac{17^{6}Hf}{177Hf} \end{pmatrix}_{DM}^{T_{DM}} (B.28)$$

$$\left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{C}^{T_{DM}^{C}} = \left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{DM}^{T_{DM}^{C}} (B.29)$$

Soit :

$$\begin{pmatrix} \frac{1^{76}Hf}{1^{77}Hf} \end{pmatrix}_{DM}^{0} - \begin{pmatrix} \frac{1^{76}Lu}{1^{77}Hf} \end{pmatrix}_{DM} \times \left(e^{\lambda T_{DM}^{c}} - 1 \right) = \left(\frac{1^{76}Hf}{1^{77}Hf} \right)_{C}^{0} - \left(\frac{1^{76}Lu}{1^{77}Hf} \right)_{C} \times \left(e^{\lambda T_{DM}^{c}} - 1 \right) (B.30)$$

$$\begin{pmatrix} \frac{1^{76}Hf}{1^{77}Hf} \end{pmatrix}_{DM}^{0} - \left(\frac{1^{76}Hf}{1^{77}Hf} \right)_{C}^{0} = \left(e^{\lambda T_{DM}^{c}} - 1 \right) \left[\left(\frac{1^{76}Lu}{1^{77}Hf} \right)_{DM} - \left(\frac{1^{76}Lu}{1^{77}Hf} \right)_{C} \right] (B.31)$$

En utilisant (B.23), on obtient :

$$\left(\frac{{}^{176}Hf}{{}^{177}Hf} \right)_{DM}^{0} - \left(\frac{{}^{176}Hf}{{}^{177}Hf} \right)_{C}^{T_{i}} - \left(\frac{{}^{176}Lu}{{}^{177}Hf} \right)_{C} \times \left(e^{\lambda T_{i}} - 1 \right) = \left(e^{\lambda T_{DM}^{C}} - 1 \right) \left[\left(\frac{{}^{176}Lu}{{}^{177}Hf} \right)_{DM} - \left(\frac{{}^{176}Lu}{{}^{177}Hf} \right)_{C} \right] (B.32)$$

Et avec (B.31) :

$$\binom{1^{76}Hf}{1^{77}Hf}_{DM}^{0} - \binom{1^{76}Hf}{1^{77}Hf}_{i} - \binom{1^{76}Lu}{1^{77}Hf}_{c} \times \left(e^{\lambda T_{i}} - 1\right) = \left(e^{\lambda T_{DM}^{c}} - 1\right) \left[\left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{DM} - \left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{c}\right] (B.33)$$

En insérant (B.24) :

$$\begin{pmatrix} \frac{176}{177}Hf \end{pmatrix}_{DM}^{T_{i}} + \begin{pmatrix} \frac{176}{177}Hf \end{pmatrix}_{DM} \times \left[(e^{\lambda T_{i}} - 1) - \left(\frac{176}{177}Hf \right)_{i} \right] - \left[\left(\frac{176}{177}Hf \right)_{c} \times (e^{\lambda T_{i}} - 1) \right] = \left(e^{\lambda T_{DM}^{c}} - 1 \right) \left[\left(\frac{176}{177}Hf \right)_{DM} - \left(\frac{176}{177}Hf \right)_{c} \right] (B.34)$$

$$\begin{pmatrix} \frac{176}{177}Hf \end{pmatrix}_{DM}^{T_{i}} - \left(\frac{176}{177}Hf \right)_{i} + (e^{\lambda T_{i}} - 1) \times \left[\left(\frac{176}{177}Hf \right)_{DM} - \left(\frac{176}{177}Hf \right)_{c} \right] = \left(e^{\lambda T_{DM}^{c}} - 1 \right) \left[\left(\frac{176}{177}Hf \right)_{c} \right] (B.35)$$

$$\begin{pmatrix} \frac{176}{177}Hf \\ \frac{177}{177}Hf \end{pmatrix}_{DM}^{T_{i}} - \left(\frac{176}{177}Hf \right)_{i} + \left(e^{\lambda T_{c}^{c}} - 1 \right) \left[\left(\frac{176}{177}Hf \right)_{DM} - \left(\frac{176}{177}Hf \right)_{c} \right] - \left(e^{\lambda T_{i}^{c}} - 1 \right) \times \left[\left(\frac{176}{177}Hf \right)_{c} \right] (B.35)$$

$$\begin{pmatrix} \frac{176}{177}Hf \\ \frac{177}{177}Hf \end{pmatrix}_{DM}^{T_{i}} - \left(\frac{176}{177}Hf \right)_{i} = \left(e^{\lambda T_{DM}^{c}} - 1 \right) \left[\left(\frac{176}{10} - 1 \right)_{DM} - \left(\frac{176}{107} Hf \right)_{c} \right] \times \left[\left(e^{\lambda T_{i}^{c}} - 1 \right) \times \left[\left(\frac{176}{177}Hf \right)_{DM} - \left(\frac{176}{177}Hf \right)_{c} \right] \right] (B.36)$$

$$\begin{pmatrix} \frac{176}{177}Hf \\ \frac{177}{177}Hf \end{pmatrix}_{DM}^{T_{i}} - \left(\frac{176}{177}Hf \right)_{i} = \left[\left(\frac{176}{10} - 1 \right)_{DM} - \left(\frac{176}{107} Hf \right)_{c} \right] \times \left[\left(e^{\lambda T_{DM}^{c}} - 1 \right) - \left(e^{\lambda T_{i}} - 1 \right) \right] (B.37)$$

$$\begin{pmatrix} \frac{176}{177}Hf \\ \frac{177}{177}Hf \end{pmatrix}_{DM}^{T_{i}} - \left(\frac{176}{177}Hf \right)_{i} = e^{\lambda T_{DM}^{c}} - e^{\lambda T_{i}} (B.38)$$

Soit :

$$\frac{\binom{176}{177}H_{f}}{\binom{176}{177}H_{f}}_{c} - \binom{176}{177}H_{f}}_{DM}^{T_{i}} = e^{\lambda T_{DM}^{c}} - e^{\lambda T_{i}} (B.39)$$

Comme :
$$e^{x} = \sum_{i=0}^{n} \frac{1}{i!} \times x^{i} + o(x^{n}) \Rightarrow e^{\lambda T_{DM}^{c}} - e^{\lambda T_{i}} \cong e^{\lambda (T_{DM}^{c} - T_{i})} - 1$$

 $T_{i} + \frac{1}{\lambda} \times ln \left[\frac{\binom{176H_{f}}{177H_{f}}_{c} - \binom{176H_{f}}{177H_{f}}_{DM}}{\binom{176H_{f}}{177H_{f}}_{c} - \binom{176H_{f}}{177H_{f}}_{DM}} + 1 \right] = T_{DM}^{c} (B.40)$

Fig. X.B.8 Diagramme théorique ɛHf en fonction du temps, illustrant la significations des âges modèles Hf par rapport à l'âge U-Pb interprété comme l'âge de la cristallisation. L'encart montre la variation du rapport Lu/Hf en fonction du caractère juvénile ou contaminé de l'échantillon.

La valeur moyenne du rapport Lu/Hf pour la croûte de 0.015 (**Griffin et al., 2002**) a été utilisée. Cette valeur est variable au sein de la croûte et avec le temps (**Condie, 1993**) (*Fig. X.B.8*). Il est cependant nécessaire de considérer que le fractionnement du lutétium par rapport à l'hafnium n'a pas varié au cours du temps pour un réservoir donné. Le fractionnement Lu/Hf s'exprime

dans de nombreux cas. Dans les cycles sédimentaires, l'érosion peut générer des biais en Lu, plutôt concentré dans les sédiments profonds, et en Hf, préférentiellement concentré dans les dépôts continentaux riches en zircons (**Patchett et al., 1984**). Le fractionnement Lu/Hf n'est cependant pas systématique dans les environnements sédimentaires et reste limité aux marges passives évoluées (**Vervoort et al., 1999**). Lors des processus de cristallisation (magmatique ou métamorphique), l'implication des phases tels que le grenat ou les zircons hérités peut influencer le rapport Lu/Hf (**Vervoort & Patchett, 1996**).

Si les isotopes de l'hafnium dans les zircons permettent de tracer la provenance (crustale ou mantellique) du magma qui les a généré, les âges modèles doivent être utilisés avec précaution, car ils dépendent fortement du rapport Lu/Hf de la prétendue source. De plus, la signature isotopique en Hf devient complexe à décrypter lorsque les zircons ont cristallisé à partir d'un mélange de source extrait à des intervalles de temps différents (**Hawkesworth & Kemp, 2006b**).

C Données complémentaires

					Rat	ios							Ag	ge (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1	s ²⁰⁷ Pb s ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ PI ²³² TI	<u>)</u>	$\frac{\pm}{1s} \frac{^{207}P}{^{206}P}$	$\frac{b}{b} \pm \frac{b}{1s}$	207	$\frac{Pb}{U} = \frac{1}{2}$	s ²⁰⁶ Pl	$\frac{b}{1}$ = 1s	²⁰⁸ PL ²³² TP	$\frac{2}{n}$ $\frac{\pm}{1s}$	Disc* (%)
DJ4	6 (n=61)																	
1	DJ46 01	0.0557	29	0.5487	485	0.0715	32	0.0255	29	442	112	444	32	445	19	509	57	-0.7
2	DJ46 02	0.0565	13	0.5902	251	0.0758	18	0.0222	15	471	46	471	16	471	11	443	29	0.07
3	DJ46 04	0.0568	45	0.6260	839	0.0800	54	0.0339	59	482	175	494	52	496	32	673	116	-2.98
4	DJ46 06	0.0559	21	0.5538	366	0.0719	25	0.0182	23	448	87	448	24	448	15	365	46	0.25
5	DJ46 07	0.0564	20	0.5912	370	0.0761	26	0.0260	20	467	79	472	24	473	15	519	40	-1.36
6	DJ46 08	0.0558	10	0.5501	190	0.0716	15	0.0218	9	444	44	445	12	445	9	437	17	-0.29
7	DJ46 09	0.0562	12	0.5743	219	0.0742	17	0.0224	15	460	40	461	14	461	10	449	30	-0.14
8	DJ46 10	0.0566	20	0.5914	360	0.0758	24	0.0229	24	476	75	472	23	471	14	458	48	1.01
9	DJ46 11	0.0561	17	0.5702	300	0.0738	21	0.0211	20	456	62	458	19	459	13	422	39	-0.49
10	DJ46 12	0.0567	7	0.6024	158	0.0772	14	0.0223	9	478	29	479	10	479	8	446	18	-0.22
11	DJ46 13	0.0561	13	0.5788	245	0.0749	18	0.0225	12	457	53	464	16	465	11	449	23	-1.91
12	DJ46 14	0.0567	14	0.6029	268	0.0772	20	0.0241	16	479	54	479	17	479	12	482	31	-0.1
13	DJ46 15	0.0560	8	0.5578	152	0.0723	13	0.0228	9	450	27	450	10	450	8	455	17	0.09
14	DJ46 16	0.0564	16	0.5868	299	0.0755	21	0.0213	12	467	64	469	19	469	13	426	24	-0.39
15	DJ46 17	0.0568	15	0.6054	292	0.0774	21	0.0223	15	483	55	481	18	480	12	445	29	0.71
16	DJ46 18	0.0561	13	0.5648	247	0.0730	18	0.0217	12	457	54	455	16	454	11	433	24	0.57
17	DJ46 19	0.0557	17	0.5408	291	0.0705	21	0.0227	17	440	65	439	19	439	12	453	33	0.18
18	DJ46 20	0.0565	4	0.5873	97	0.0755	11	0.0211	4	470	15	469	6	469	7	422	8	0.26
19	DJ46 21	0.0565	28	0.5938	508	0.0762	34	0.0220	21	473	104	473	32	473	20	441	42	-0.01
20	DJ46 22	0.0557	8	0.5442	162	0.0709	14	0.0205	8	441	33	441	11	441	8	411	15	-0.1
21	DJ46 23	0.0567	29	0.6136	536	0.0785	36	0.0279	34	481	99	486	34	487	21	556	66	-1.26
22	DJ46 24	0.0560	10	0.5577	187	0.0722	15	0.0210	11	454	38	450	12	449	9	420	22	1.07
23	DJ46 25	0.0566	11	0.5980	217	0.0767	17	0.0247	13	476	43	476	14	476	10	493	25	-0.1
24	DJ46 26	0.0561	9	0.5687	179	0.0735	15	0.0228	11	456	34	457	12	457	9	455	22	-0.23
25	DJ46 27	0.0562	11	0.5676	206	0.0732	16	0.0205	10	461	41	456	13	456	10	410	19	1.34
26	DJ46 28	0.0565	13	0.5614	231	0.0722	17	0.0220	14	470	49	452	15	449	10	441	28	4.65
27	DJ46 29	0.0567	14	0.6022	274	0.0771	20	0.0229	15	479	51	479	17	479	12	457	29	0.13
28	DJ46 30	0.0564	10	0.5871	202	0.0755	16	0.0223	14	469	40	469	13	469	9	446	27	-0.01
29	DJ46 31	0.0567	17	0.5858	311	0.0749	22	0.0229	20	481	59	468	20	466	13	457	39	3.23
30	DJ46 32	0.0566	17	0.5907	309	0.0758	22	0.0201	16	475	68	471	20	471	13	402	32	0.93

Table X.C.1 La-ICPMS U-Pb detrital zircon data. *: Degree of discordance.

					Rat	ios							Ag	e (Ma)				
Ana	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1:	s ²⁰⁷ Pb s ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	- 	$\frac{\pm}{1s} \frac{^{207}P}{^{206}P}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	207 235	$\frac{D}{D} = \frac{\pm}{1}$	²⁰⁶ PL ²³⁸ U	$\frac{1}{2}$ $\frac{\pm}{1s}$	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
31	DJ46 33	0.0560	11	0.5547	204	0.0719	16	0.0201	8	450	44	448	13	448	10	403	17	0.63
32	DJ46 34	0.0561	5	0.5675	118	0.0733	12	0.0221	6	458	19	456	8	456	7	442	12	0.3
33	DJ46 35	0.0563	9	0.5749	177	0.0741	15	0.0209	9	464	35	461	11	461	9	418	19	0.72
34	DJ46 36	0.0559	11	0.5552	199	0.0721	15	0.0208	13	447	43	448	13	449	9	416	25	-0.34
35	DJ46 37	0.0572	23	0.6320	439	0.0802	30	0.0260	20	498	86	497	27	497	18	519	39	0.19
36	DJ46 38	0.0562	17	0.5716	303	0.0738	22	0.0204	15	459	66	459	20	459	13	407	30	0.11
37	DJ46 39	0.0564	14	0.5860	259	0.0753	19	0.0232	18	469	52	468	17	468	11	464	35	0.27
38	DJ46 40	0.0559	12	0.5599	225	0.0726	17	0.0219	13	449	46	451	15	452	10	438	26	-0.73
39	DJ46 41	0.0562	10	0.5730	192	0.0739	15	0.0210	12	461	39	460	12	460	9	420	24	0.3
40	DJ46 42	0.0568	10	0.6090	203	0.0778	16	0.0232	12	484	37	483	13	483	10	463	24	0.32
41	DJ46 43	0.0563	6	0.5806	136	0.0748	13	0.0229	8	464	25	465	9	465	8	457	16	-0.16
42	DJ46 44	0.0561	15	0.5699	277	0.0736	20	0.0251	16	458	61	458	18	458	12	500	32	-0.11
43	DJ46 45	0.0563	8	0.5799	157	0.0747	14	0.0243	10	465	31	464	10	464	8	485	20	0.27
44	DJ46 46	0.0563	12	0.5772	223	0.0744	17	0.0219	14	462	46	463	14	463	10	438	28	-0.11
45	DJ46 47	0.0563	12	0.5788	220	0.0746	17	0.0213	12	463	46	464	14	464	10	426	23	-0.06
46	DJ46 48	0.0563	13	0.5745	241	0.0740	18	0.0219	13	463	50	461	16	460	11	438	26	0.57
47	DJ46 50	0.0563	10	0.5816	202	0.0749	16	0.0233	12	466	42	465	13	465	9	465	23	0.09
48	DJ46 51	0.0565	6	0.5935	128	0.0761	13	0.0221	5	473	23	473	8	473	7	441	10	0.03
49	DJ46 52	0.0562	6	0.5707	135	0.0737	13	0.0212	9	458	25	458	9	459	8	423	18	-0.05
50	DJ46 53	0.0563	26	0.5803	458	0.0748	31	0.0240	30	463	87	465	29	465	18	479	60	-0.43
51	DJ46 54	0.0562	11	0.5696	208	0.0735	16	0.0203	11	462	44	458	13	457	10	407	22	1.1
52	DJ46 55	0.0567	15	0.6057	286	0.0775	21	0.0219	14	479	64	481	18	481	12	438	28	-0.45
53	DJ46 56	0.0572	22	0.6352	415	0.0806	27	0.0224	25	498	80	499	26	500	16	449	49	-0.41
54	DJ46 57	0.0566	13	0.5990	255	0.0767	19	0.0216	12	477	50	477	16	476	11	431	23	0.15
55	DJ46 58	0.0566	10	0.5986	195	0.0767	16	0.0218	10	475	38	476	12	477	9	435	20	-0.3
56	DJ46 59	0.0564	10	0.5801	203	0.0746	16	0.0213	9	469	44	465	13	464	10	426	17	1.07
57	DJ46 60	0.0562	5	0.5749	105	0.0742	11	0.0210	7	461	18	461	7	461	7	420	14	-0.13
58	DJ46 61	0.0565	6	0.5918	133	0.0759	13	0.0219	8	473	24	472	8	472	8	437	16	0.33
59	DJ46 62	0.0558	29	0.5649	498	0.0734	33	0.0253	44	444	112	455	32	457	20	506	86	-2.99
60	DJ46 63	0.0562	8	0.5769	161	0.0744	14	0.0213	10	462	31	462	10	462	8	426	20	-0.16
61	DJ46 64	0.0561	11	0.5685	213	0.0735	16	0.0230	15	455	46	457	14	457	10	459	30	-0.53

					Rat	ios							Age	e (Ma)				
Ana	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1:	$\frac{207}{Pb}}{235}U$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th		$\pm \frac{207}{1s} \frac{207}{206} \frac{Pb}{Pb}$	$\frac{1}{5}$ $\frac{\pm}{1s}$	²⁰⁷ <i>I</i>	$\frac{b}{y} \pm \frac{1}{1s}$	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
DJ	83 (n=51)																	
1	DJ83 02	0.0557	23	0.5412	400	0.0704	28	0.0173	19	442	92	439	26	439	17	346	38	0.7
2	DJ83 03	0.0554	19	0.5300	323	0.0694	24	0.0164	16	427	76	432	21	432	14	330	31	-1.3
3	DJ83 04	0.0562	5	0.5772	90	0.0744	15	0.0209	4	462	20	463	6	463	9	418	9	-0.2
4	DJ83 05	0.0554	10	0.5245	202	0.0687	19	0.0177	8	427	39	428	13	428	11	354	16	-0.4
5	DJ83 06	0.0558	6	0.5504	69	0.0715	14	0.0188	3	445	24	445	5	445	9	375	6	0.0
6	DJ83 07	0.0561	9	0.5642	201	0.0729	19	0.0185	9	456	35	454	13	454	11	370	17	0.6
7	DJ83 08	0.0554	8	0.5254	159	0.0687	17	0.0182	7	429	32	429	11	428	10	365	14	0.0
8	DJ83 09	0.0558	17	0.5664	320	0.0735	24	0.0293	21	446	68	456	21	457	14	584	42	-2.7
9	DJ83 10	0.0561	10	0.5652	200	0.0731	18	0.0200	9	456	41	455	13	455	11	400	18	0.2
10	DJ83 11	0.0558	7	0.5506	153	0.0715	17	0.0199	7	445	26	445	10	445	10	399	15	-0.2
11	DJ83 12	0.0550	6	0.5054	116	0.0666	15	0.0186	5	411	22	415	8	416	9	372	10	-1.3
12	DJ83 13	0.0560	9	0.5590	199	0.0724	19	0.0204	10	451	37	451	13	451	11	409	20	0.1
13	DJ83 14	0.0556	7	0.5371	143	0.0700	16	0.0192	7	437	23	437	9	436	10	385	14	0.1
14	DJ83 15	0.0559	6	0.5571	135	0.0723	16	0.0212	7	448	22	450	9	450	10	423	14	-0.5
15	DJ83 16	0.0554	14	0.5214	248	0.0683	20	0.0200	12	427	56	426	17	426	12	399	24	0.2
16	DJ83 17	0.0564	14	0.5911	290	0.0759	23	0.0283	19	470	55	472	19	472	14	564	38	-0.5
17	DJ83 18	0.0556	6	0.5364	139	0.0699	16	0.0198	7	436	27	436	9	436	10	395	14	-0.1
18	DJ83 19	0.0558	13	0.5473	246	0.0711	21	0.0220	14	443	51	443	16	443	12	439	28	-0.1
19	DJ83 20	0.0558	18	0.5537	331	0.0719	25	0.0278	20	444	75	447	22	448	15	554	39	-0.9
20	DJ83 21	0.0557	6	0.5433	120	0.0707	15	0.0209	7	442	23	441	8	440	9	417	14	0.3
21	DJ83 22	0.0556	10	0.5289	197	0.0690	18	0.0229	12	436	41	431	13	430	11	457	23	1.4
22	DJ83 23	0.0557	10	0.5378	206	0.0700	19	0.0229	12	439	42	437	14	436	11	458	23	0.5
23	DJ83 24	0.0557	6	0.5416	125	0.0705	16	0.0194	7	441	24	439	8	439	9	389	13	0.5
24	DJ83 25	0.0563	14	0.5753	281	0.0740	22	0.0220	18	465	59	461	18	460	13	441	36	1.0
25	DJ83 26	0.0555	6	0.5326	138	0.0695	16	0.0197	6	433	25	434	9	433	10	393	12	-0.1
26	DJ83 27	0.0559	8	0.5567	178	0.0722	18	0.0201	8	448	35	449	12	449	11	402	16	-0.3
27	DJ83 28	0.0558	6	0.5460	121	0.0710	15	0.0249	8	442	23	442	8	442	9	497	16	0.0
28	DJ83 29	0.0561	15	0.5594	292	0.0723	23	0.0226	18	454	60	451	19	450	14	452	35	0.9
29	DJ83 30	0.0558	5	0.5492	118	0.0713	15	0.0197	5	444	20	444	8	444	9	394	9	-0.1
30	DJ83 31	0.0563	6	0.5789	142	0.0746	17	0.0210	7	463	25	464	9	464	10	419	15	-0.1
31	DJ83 32	0.0562	11	0.5743	220	0.0741	19	0.0217	11	460	46	461	14	461	12	434	23	-0.1
32	DJ83 33	0.0563	9	0.5738	197	0.0739	19	0.0219	12	463	37	460	13	460	11	438	24	0.6

					Rat	ios							Ag	ge (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1:	$\frac{207}{Pb}}{s}$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ PE ²³² Th	<u>)</u>	$\frac{\pm}{1s} \frac{^{207}P}{^{206}P}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	207	P <u>b</u> ± U 1	s ²⁰⁶ Pi	$\frac{b}{r}$ $\frac{\pm}{1s}$	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
33	DJ83 34	0.0559	22	0.5566	404	0.0721	30	0.0242	21	450	90	449	26	449	18	483	42	0.1
34	DJ83 35	0.0555	6	0.5283	125	0.0690	15	0.0200	6	432	23	431	8	430	9	399	11	0.4
35	DJ83 36	0.0558	6	0.5470	135	0.0711	16	0.0206	7	442	24	443	9	443	10	412	15	-0.2
36	DJ83 37	0.0558	6	0.5497	145	0.0714	16	0.0212	8	444	26	445	9	445	10	424	16	-0.1
37	DJ83 38	0.0557	13	0.5420	246	0.0705	20	0.0218	14	440	49	440	16	439	12	437	27	0.0
38	DJ83 39	0.0564	26	0.5863	477	0.0753	34	0.0331	37	469	97	469	31	468	20	658	72	0.2
39	DJ83 40	0.0558	22	0.5537	393	0.0719	29	0.0279	27	446	87	447	26	447	17	556	53	-0.5
40	DJ83 41	0.0566	10	0.5959	222	0.0763	20	0.0215	14	477	40	475	14	474	12	430	27	0.6
41	DJ83 42	0.1159	13	5.4728	648	0.3421	69	0.0941	19	1894	19	1896	10	1897	33	1818	35	-0.2
42	DJ83 43	0.0564	7	0.5825	161	0.0749	17	0.0233	9	468	28	466	10	465	10	465	18	0.5
43	DJ83 44	0.0549	5	0.4932	83	0.0651	13	0.0180	3	407	20	407	6	407	8	361	7	-0.1
44	DJ83 45	0.0563	6	0.5782	141	0.0744	17	0.0254	9	464	23	463	9	463	10	507	18	0.1
45	DJ83 46	0.0563	6	0.5785	143	0.0745	17	0.0255	10	465	21	463	9	463	10	508	20	0.3
46	DJ83 47	0.0565	12	0.5923	249	0.0760	21	0.0221	16	472	49	472	16	472	13	443	31	0.0
47	DJ83 48	0.0553	6	0.5196	133	0.0681	15	0.0219	8	423	24	425	9	425	9	437	15	-0.6
48	DJ83 49	0.0547	5	0.4800	64	0.0636	13	0.0185	3	398	21	398	4	398	8	370	6	0.1
49	DJ83 50	0.0557	10	0.5444	210	0.0708	19	0.0237	11	441	44	441	14	441	11	473	21	-0.1
50	DJ83 51	0.0559	10	0.5533	202	0.0718	19	0.0198	11	448	39	447	13	447	11	396	21	0.2
51	DJ83 52	0.0557	6	0.5383	126	0.0701	16	0.0221	8	439	21	437	8	437	9	441	15	0.4
DJ8	7 (n=57)																	
1	DJ87 02	0.0581	18	0.6671	383	0.0832	27	0.0400	39	535	66	519	23	515	16	793	77	3.75
2	DJ87 04	0.0561	4	0.5698	81	0.0736	13	0.0220	5	458	16	458	5	458	8	440	10	-0.1
3	DJ87 05	0.0563	8	0.5789	176	0.0746	16	0.0217	9	463	33	464	11	464	10	433	18	-0.08
4	DJ87 06	0.0571	4	0.6302	91	0.0800	14	0.0254	5	496	16	496	6	496	8	507	10	-0.01
5	DJ87 07	0.0566	5	0.5953	128	0.0763	14	0.0240	9	475	22	474	8	474	9	479	17	0.25
6	DJ87 08	0.0564	9	0.5787	188	0.0745	17	0.0232	12	467	36	464	12	463	10	464	24	0.79
7	DJ87 09	0.0565	5	0.5860	116	0.0753	14	0.0233	6	471	20	468	7	468	8	465	11	0.59
8	DJ87 10	0.0561	4	0.5658	86	0.0732	13	0.0228	5	456	17	455	6	455	8	456	10	0.07
9	DJ87 11	0.0559	4	0.5539	95	0.0719	13	0.0222	6	449	17	448	6	447	8	444	12	0.34
10	DJ87 12	0.0560	4	0.5595	98	0.0725	13	0.0215	6	450	17	451	6	451	8	430	11	-0.22
11	DJ87 13	0.0560	6	0.5561	129	0.0720	14	0.0236	9	453	23	449	8	448	8	470	19	1.04
12	DJ87 14	0.0565	6	0.5861	141	0.0753	15	0.0197	7	471	20	468	9	468	9	393	14	0.77

					Rat	ios							Ag	e (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1	s $\frac{207}{235}U$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	•	$\frac{\pm}{1s} \frac{^{207}P}{^{206}P}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	207 235	$\frac{D}{D} = \frac{1}{2}$	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
13	DJ87 15	0.0561	5	0.5663	123	0.0732	14	0.0230	8	456	22	456	8	456	8	460	15	-0.01
14	DJ87 16	0.0561	6	0.5663	134	0.0732	14	0.0208	9	458	22	456	9	455	9	417	17	0.51
15	DJ87 17	0.0567	6	0.5980	147	0.0765	15	0.0239	9	480	24	476	9	475	9	478	17	1.13
16	DJ87 18	0.0561	5	0.5663	101	0.0732	13	0.0222	7	457	20	456	7	455	8	445	13	0.3
17	DJ87 19	0.0558	7	0.5431	154	0.0707	15	0.0200	8	443	30	440	10	440	9	400	15	0.66
18	DJ87 20	0.0571	7	0.6268	161	0.0797	16	0.0236	9	494	23	494	10	494	10	471	17	0.04
19	DJ87 21	0.0566	5	0.6003	124	0.0769	14	0.0234	8	477	20	477	8	478	9	468	16	-0.07
20	DJ87 22	0.0566	7	0.5948	163	0.0762	16	0.0228	10	476	28	474	10	474	9	456	19	0.54
21	DJ87 23	0.0570	6	0.6207	136	0.0790	15	0.0237	8	492	23	490	9	490	9	474	16	0.41
22	DJ87 24	0.0566	10	0.5931	218	0.0761	18	0.0203	11	475	42	473	14	473	11	405	23	0.62
23	DJ87 25	0.0567	4	0.6028	80	0.0771	13	0.0220	3	481	17	479	5	479	8	440	7	0.43
24	DJ87 26	0.0563	7	0.5780	160	0.0744	16	0.0206	10	465	28	463	10	463	9	412	19	0.49
25	DJ87 27	0.0566	11	0.5937	232	0.0761	19	0.0219	11	474	43	473	15	473	11	438	22	0.32
26	DJ87 28	0.0567	5	0.6019	114	0.0770	14	0.0212	6	479	19	478	7	478	8	424	12	0.28
27	DJ87 29	0.0557	6	0.5433	129	0.0708	14	0.0217	9	438	22	441	8	441	8	434	17	-0.61
28	DJ87 30	0.0556	5	0.5373	105	0.0701	13	0.0204	5	436	19	437	7	437	8	408	9	-0.28
29	DJ87 31	0.0561	5	0.5654	121	0.0731	14	0.0218	7	456	22	455	8	455	8	436	14	0.35
30	DJ87 32	0.0562	5	0.5752	105	0.0742	13	0.0234	6	461	18	461	7	461	8	468	11	-0.08
31	DJ87 33	0.0572	5	0.6351	117	0.0805	15	0.0228	6	499	18	499	7	499	9	455	12	-0.01
32	DJ87 34	0.0563	5	0.5812	108	0.0748	14	0.0197	7	465	20	465	7	465	8	394	13	0.05
33	DJ87 35	0.0564	5	0.5864	110	0.0754	14	0.0230	7	469	20	469	7	468	8	459	13	0.1
34	DJ87 36	0.0569	8	0.6163	176	0.0786	17	0.0236	10	488	29	488	11	488	10	471	19	0.04
35	DJ87 37	0.0566	16	0.6009	320	0.0770	24	0.0233	21	476	67	478	20	478	14	466	42	-0.59
36	DJ87 38	0.0560	6	0.5594	127	0.0725	14	0.0228	9	452	22	451	8	451	8	455	17	0.23
37	DJ87 39	0.0566	11	0.5939	227	0.0761	19	0.0224	14	476	45	473	14	473	11	447	27	0.59
38	DJ87 40	0.0571	6	0.6220	143	0.0791	15	0.0248	10	494	23	491	9	491	9	496	19	0.71
39	DJ87 41	0.0567	6	0.6045	152	0.0774	16	0.0260	9	479	23	480	10	480	9	520	19	-0.26
40	DJ87 42	0.0561	6	0.5658	144	0.0731	15	0.0239	10	457	25	455	9	455	9	477	20	0.39
41	DJ87 43	0.0573	7	0.6356	175	0.0805	17	0.0237	10	502	26	500	11	499	10	472	19	0.6
42	DJ87 44	0.0563	4	0.5777	96	0.0745	13	0.0212	6	463	18	463	6	463	8	423	11	0.12
43	DJ87 45	0.0572	4	0.6376	91	0.0808	14	0.0269	6	500	17	501	6	501	8	537	12	-0.19
44	DJ87 46	0.0568	5	0.6138	121	0.0784	15	0.0253	8	484	19	486	8	486	9	505	17	-0.56
45	DJ87 47	0.0568	7	0.6085	164	0.0778	16	0.0242	11	482	27	483	10	483	10	484	21	-0.2

					Rat	ios							Age	e (Ma)				
Ana	alysis No.	²⁰⁷ Ph	+	²⁰⁷ Ph	+	²⁰⁶ Ph	+	²⁰⁸ Ph		+ ²⁰⁷ Ph	, +	²⁰⁷ P	b +	²⁰⁶ Ph	+	²⁰⁸ Ph	+	Disc*
		²⁰⁶ <i>Pb</i>	15	²³⁵ U	1s	²³⁸ U	1s	²³² Th		1s 206Pb	1s	²³⁵ U	1s	²³⁸ U	1s	²³² Th	1s	()-)
46	DJ87 48	0.0570	13	0.6240	280	0.0794	22	0.0328	16	490	53	492	18	493	13	652	32	-0.51
47	DJ87 49	0.0565	6	0.5884	132	0.0756	15	0.0208	7	471	22	470	8	470	9	416	14	0.38
48	DJ87 50	0.0573	9	0.6447	201	0.0816	18	0.0258	12	503	32	505	12	506	11	514	23	-0.63
49	DJ87 51	0.0563	5	0.5782	115	0.0745	14	0.0230	7	463	20	463	7	463	8	460	13	0.04
50	DJ87 52	0.0565	7	0.5904	152	0.0758	15	0.0227	9	471	26	471	10	471	9	454	18	-0.16
51	DJ87 53	0.0570	5	0.6206	117	0.0790	14	0.0235	7	490	19	490	7	490	9	470	14	-0.05
52	DJ87 54	0.0570	5	0.6256	135	0.0795	15	0.0258	8	493	20	493	8	493	9	514	17	-0.06
53	DJ87 55	0.0571	5	0.6271	108	0.0796	14	0.0253	7	496	18	494	7	494	9	504	13	0.49
54	DJ87 56	0.0580	10	0.6737	243	0.0843	20	0.0242	17	529	37	523	15	522	12	483	33	1.47
55	DJ87 57	0.0568	4	0.6081	89	0.0777	13	0.0227	5	482	17	482	6	482	8	453	10	-0.03
56	DJ87 58	0.0569	8	0.6189	189	0.0789	17	0.0257	11	487	30	489	12	490	10	512	21	-0.58
57	DJ87 59	0.0564	4	0.5872	90	0.0755	13	0.0226	5	469	17	469	6	469	8	452	9	0.06
DJ	89 (n=60)																	
1	DJ89 01	0.0565	5	0.5909	109	0.0758	12	0.0206	6	473	19	471	7	471	7	412	12	0.38
2	DJ89 02	0.0568	5	0.6050	115	0.0773	12	0.0246	8	482	20	480	7	480	7	491	15	0.37
3	DJ89 03	0.0563	5	0.5812	116	0.0748	12	0.0242	6	465	19	465	7	465	7	483	12	-0.17
4	DJ89 04	0.0574	5	0.6463	130	0.0817	13	0.0235	6	505	21	506	8	506	8	469	12	-0.3
5	DJ89 05	0.0565	8	0.5938	171	0.0762	15	0.0219	11	473	28	473	11	473	9	437	22	-0.01
6	DJ89 06	0.0567	7	0.5993	158	0.0767	14	0.0239	8	479	27	477	10	476	8	477	17	0.6
7	DJ89 07	0.0569	7	0.6138	155	0.0782	14	0.0241	9	487	26	486	10	485	8	481	17	0.34
8	DJ89 08	0.0571	8	0.6300	172	0.0799	15	0.0231	7	497	30	496	11	496	9	461	14	0.22
9	DJ89 09	0.0556	4	0.5359	85	0.0699	10	0.0199	5	435	14	436	6	436	6	398	10	-0.14
10	DJ89 11	0.0560	5	0.5625	107	0.0728	11	0.0216	5	454	17	453	7	453	7	432	9	0.23
11	DJ89 12	0.0575	7	0.6535	163	0.0825	15	0.0235	8	510	25	511	10	511	9	469	15	-0.25
12	DJ89 13	0.0562	4	0.5748	80	0.0741	11	0.0211	4	461	14	461	5	461	6	421	9	0.09
13	DJ89 14	0.0571	8	0.6288	176	0.0798	15	0.0261	12	497	30	495	11	495	9	521	24	0.41
14	DJ89 15	0.0560	4	0.5616	86	0.0727	11	0.0209	4	454	15	453	6	452	6	418	8	0.39
15	DJ89 16	0.0570	6	0.6153	145	0.0783	13	0.0243	8	490	26	487	9	486	8	484	16	0.7
16	DJ89 17	0.0564	5	0.5868	124	0.0755	12	0.0214	7	468	21	469	8	469	7	428	14	-0.28
17	DJ89 18	0.0567	4	0.6029	95	0.0771	11	0.0222	5	479	16	479	6	479	7	443	10	0.01
18	DJ89 19	0.0563	5	0.5777	104	0.0744	11	0.0232	6	464	19	463	7	463	7	463	11	0.33
19	DJ89 20	0.0557	5	0.5386	107	0.0702	11	0.0207	7	439	20	438	7	437	7	415	14	0.48

					Rat	ios							Ag	ge (Ma)				
An	alysis No.	²⁰⁷ <i>Pb</i> ²⁰⁶ <i>Pb</i>	± 1	s $\frac{207}{235}U$	± 1s	$\frac{206Pb}{238U}$	± 1s	²⁰⁸ Pb ²³² Th	•	$\frac{\pm}{1s} \frac{\frac{207}{206}}{\frac{206}{206}}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	207 235	$\frac{Pb}{U} = \frac{\pm}{1}$	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
20	DJ89 21	0.0561	4	0.5693	86	0.0736	11	0.0192	4	457	14	458	6	458	6	384	9	-0.12
21	DJ89 22	0.0565	5	0.5955	108	0.0764	12	0.0216	7	473	17	474	7	474	7	432	13	-0.3
22	DJ89 23	0.0570	10	0.6447	220	0.0821	17	0.0226	12	490	39	505	14	508	10	451	23	-4.05
23	DJ89 24	0.0557	10	0.5411	187	0.0705	15	0.0235	11	440	39	439	12	439	9	470	21	0.24
24	DJ89 26	0.0570	5	0.6174	126	0.0786	13	0.0232	6	490	22	488	8	488	8	463	12	0.36
25	DJ89 27	0.0560	9	0.5692	182	0.0737	15	0.0222	9	453	37	458	12	458	9	444	18	-1.3
26	DJ89 28	0.0560	4	0.5650	100	0.0731	11	0.0228	7	454	17	455	7	455	7	455	13	-0.34
27	DJ89 29	0.0565	4	0.5917	100	0.0759	11	0.0229	5	473	17	472	6	472	7	458	9	0.25
28	DJ89 30	0.0562	5	0.5747	115	0.0741	12	0.0223	5	461	19	461	7	461	7	446	11	-0.1
29	DJ89 31	0.0566	6	0.5963	138	0.0764	13	0.0238	9	476	20	475	9	474	8	475	18	0.3
30	DJ89 32	0.0560	5	0.5618	103	0.0728	11	0.0216	5	451	17	453	7	453	7	432	10	-0.41
31	DJ89 33	0.0568	5	0.6062	122	0.0775	12	0.0233	7	482	21	481	8	481	7	465	13	0.17
32	DJ89 34	0.0574	12	0.6471	261	0.0818	20	0.0275	13	506	44	507	16	507	12	549	26	-0.13
33	DJ89 35	0.0565	4	0.5892	99	0.0757	11	0.0224	7	471	17	470	6	470	7	449	13	0.15
34	DJ89 36	0.0558	3	0.5496	66	0.0714	10	0.0223	4	445	13	445	4	445	6	446	8	0.13
35	DJ89 37	0.0558	4	0.5454	76	0.0709	10	0.0219	5	443	14	442	5	442	6	438	10	0.25
36	DJ89 38	0.0564	5	0.5802	121	0.0747	12	0.0245	8	466	21	465	8	464	7	489	15	0.43
37	DJ89 39	0.0570	10	0.6257	218	0.0796	17	0.0230	11	493	39	493	14	493	10	460	21	-0.18
38	DJ89 40	0.0564	5	0.5875	114	0.0755	12	0.0231	5	470	17	469	7	469	7	461	10	0.11
39	DJ89 41	0.0565	4	0.5903	96	0.0758	11	0.0232	5	472	16	471	6	471	7	463	9	0.16
40	DJ89 42	0.0570	4	0.6189	87	0.0788	11	0.0237	4	490	15	489	5	489	7	474	8	0.22
41	DJ89 43	0.0573	6	0.6420	150	0.0813	14	0.0241	7	503	24	504	9	504	8	481	13	-0.21
42	DJ89 44	0.0568	4	0.6061	84	0.0774	11	0.0260	6	484	12	481	5	480	7	519	12	0.69
43	DJ89 45	0.0569	16	0.6134	311	0.0782	22	0.0293	19	487	60	486	20	485	13	584	37	0.41
44	DJ89 46	0.0563	4	0.5825	99	0.0751	11	0.0243	7	463	16	466	6	467	7	484	14	-0.82
45	DJ89 47	0.0565	4	0.5926	86	0.0760	11	0.0235	5	473	14	473	5	472	7	469	10	0.2
46	DJ89 48	0.0565	5	0.5894	110	0.0757	12	0.0217	5	470	18	470	7	470	7	435	10	-0.1
47	DJ89 49	0.0565	4	0.5926	87	0.0760	11	0.0229	6	473	15	473	6	472	7	458	11	0.2
48	DJ89 50	0.0569	5	0.6140	114	0.0782	12	0.0234	6	488	17	486	7	486	7	467	12	0.41
49	DJ89 51	0.0566	4	0.5957	98	0.0763	11	0.0224	6	476	14	474	6	474	7	448	12	0.39
50	DJ89 52	0.0566	3	0.5986	69	0.0767	11	0.0235	4	477	13	476	4	476	6	469	8	0.21
51	DJ89 53	0.0568	3	0.6102	65	0.0778	11	0.0253	4	485	12	484	4	483	6	504	7	0.33
52	DJ89 54	0.0570	18	0.6373	351	0.0811	25	0.0277	20	490	71	501	22	503	15	552	39	-2.85

					Rat	ios							Ag	e (Ma)				
Ana	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1:	$\frac{207Pb}{235U}$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th		$\pm \frac{207}{100}$ Pb 1s $\frac{206}{206}$ Pb	$\frac{1}{5}$ $\frac{\pm}{1s}$	²⁰⁷ Pi	$\frac{b}{r}$ 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
53	DJ89 55	0.0570	5	0.6223	119	0.0791	12	0.0225	6	492	18	491	7	491	7	450	11	0.26
54	DJ89 56	0.0570	5	0.6199	112	0.0789	12	0.0252	8	491	18	490	7	489	7	503	15	0.25
55	DJ89 57	0.0557	6	0.5538	129	0.0721	12	0.0229	7	441	24	447	8	448	7	457	14	-1.74
56	DJ89 58	0.0555	3	0.5328	66	0.0696	10	0.0202	3	434	13	434	4	434	6	404	7	-0.02
57	DJ89 59	0.0566	4	0.5975	79	0.0765	11	0.0237	4	477	14	476	5	475	6	473	8	0.29
58	DJ89 60	0.0565	8	0.5850	165	0.0751	14	0.0209	10	471	32	468	11	467	8	418	21	0.75
59	DJ89 61	0.0558	5	0.5543	102	0.0720	11	0.0198	6	446	18	448	7	448	7	396	12	-0.61
60	DJ89 62	0.0569	9	0.6165	183	0.0785	15	0.0248	9	489	32	488	12	487	9	495	18	0.41
DJ	98 (n=59)																	
1	DJ98 01	0.0550	4	0.4951	84	0.0654	11	0.0185	5	410	17	408	6	408	7	371	10	0.55
2	DJ98 02	0.0549	8	0.4925	147	0.0652	14	0.0177	8	406	30	407	10	407	8	354	15	-0.16
3	DJ98 03	0.0548	6	0.4827	113	0.0640	12	0.0179	5	402	23	400	8	400	7	359	10	0.75
4	DJ98 04	0.0551	7	0.5051	134	0.0665	13	0.0191	7	415	28	415	9	415	8	382	14	-0.03
5	DJ98 05	0.0548	5	0.4819	92	0.0638	12	0.0188	5	402	18	399	6	399	7	377	9	0.93
6	DJ98 06	0.0552	13	0.5101	214	0.0671	16	0.0206	10	419	52	419	14	419	10	412	20	0.06
7	DJ98 07	0.0548	6	0.4857	119	0.0643	13	0.0183	6	404	26	402	8	402	8	367	12	0.51
8	DJ98 08	0.0547	6	0.4857	113	0.0644	12	0.0176	5	400	23	402	8	403	7	352	11	-0.74
9	DJ98 09	0.0548	7	0.4884	136	0.0647	13	0.0172	7	403	29	404	9	404	8	344	14	-0.3
10	DJ98 10	0.0551	7	0.5082	136	0.0669	13	0.0175	6	416	29	417	9	417	8	351	12	-0.27
11	DJ98 11	0.0550	12	0.4968	203	0.0655	17	0.0215	10	413	52	410	14	409	10	429	20	0.91
12	DJ98 12	0.0552	6	0.5163	125	0.0679	13	0.0200	5	419	23	423	8	424	8	400	10	-1.16
13	DJ98 13	0.0547	8	0.4814	143	0.0638	14	0.0179	7	401	31	399	10	399	8	359	14	0.65
14	DJ98 14	0.0551	4	0.5086	63	0.0669	11	0.0192	3	418	17	418	4	418	7	385	6	0.12
15	DJ98 15	0.0556	4	0.5342	60	0.0697	11	0.0179	3	435	18	435	4	435	7	359	5	0.18
16	DJ98 16	0.0549	26	0.5013	407	0.0662	28	0.0161	20	410	108	413	27	413	17	323	40	-0.83
17	DJ98 17	0.0552	8	0.5114	157	0.0672	15	0.0194	7	421	33	419	11	419	9	388	15	0.51
18	DJ98 18	0.0553	5	0.5176	108	0.0679	13	0.0180	6	423	21	424	7	424	8	361	11	-0.12
19	DJ98 19	0.0548	5	0.4909	95	0.0650	12	0.0178	5	404	18	406	6	406	7	357	9	-0.31
20	DJ98 20	0.0549	14	0.4980	229	0.0658	18	0.0174	9	409	60	410	16	411	11	349	19	-0.52
21	DJ98 21	0.0552	5	0.5146	111	0.0676	13	0.0198	5	421	21	422	7	422	8	395	9	-0.23
22	DJ98 22	0.0549	5	0.4950	103	0.0654	12	0.0171	5	409	20	408	7	408	7	342	10	0.08
23	DJ98 23	0.0552	5	0.5083	112	0.0668	13	0.0190	6	419	21	417	8	417	8	380	11	0.52

					Rat	ios							Ag	ge (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1	s $\frac{^{207}Pb}{^{235}U}$	± 1s	$\frac{206Pb}{238U}$	± 1s	²⁰⁸ Pb ²³² Th		$\frac{\pm}{1s} \frac{207Pl}{206Pl}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	²⁰⁷ F	$\frac{b}{U} = \frac{b}{1}$	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
24	DJ98 24	0.0547	6	0.4782	122	0.0635	13	0.0168	5	398	24	397	8	397	8	336	10	0.46
25	DJ98 25	0.0556	13	0.5367	232	0.0701	18	0.0179	9	435	53	436	15	437	11	359	18	-0.29
26	DJ98 26	0.0552	4	0.5106	87	0.0672	12	0.0189	4	419	18	419	6	419	7	379	8	-0.04
27	DJ98 27	0.0549	6	0.4925	118	0.0651	13	0.0177	6	408	24	407	8	406	8	355	13	0.34
28	DJ98 28	0.0552	4	0.5139	91	0.0675	12	0.0171	4	422	17	421	6	421	7	344	8	0.26
29	DJ98 29	0.0553	4	0.5217	72	0.0684	12	0.0182	3	426	16	426	5	426	7	365	6	-0.09
30	DJ98 30	0.0552	4	0.5141	78	0.0675	12	0.0192	3	421	17	421	5	421	7	384	6	-0.02
31	DJ98 31	0.0555	6	0.5321	120	0.0695	13	0.0194	5	433	23	433	8	433	8	388	9	0
32	DJ98 32	0.0554	7	0.5231	136	0.0685	14	0.0188	6	429	26	427	9	427	8	377	12	0.46
33	DJ98 33	0.0566	11	0.5937	233	0.0761	19	0.0202	10	474	43	473	15	473	11	405	20	0.22
34	DJ98 34	0.0552	6	0.5136	129	0.0675	13	0.0184	5	420	24	421	9	421	8	369	10	-0.15
35	DJ98 35	0.0546	11	0.4753	182	0.0632	15	0.0183	9	394	42	395	13	395	9	367	18	-0.19
36	DJ98 36	0.0549	10	0.4886	172	0.0646	15	0.0191	10	406	40	404	12	404	9	383	19	0.65
37	DJ98 37	0.0550	4	0.5035	69	0.0664	11	0.0187	4	413	17	414	5	414	7	375	8	-0.18
38	DJ98 38	0.0552	5	0.5154	104	0.0677	12	0.0195	4	422	19	422	7	422	7	391	8	-0.15
39	DJ98 39	0.0551	9	0.5097	174	0.0671	15	0.0205	9	417	40	418	12	418	9	410	18	-0.22
40	DJ98 40	0.0551	11	0.5100	193	0.0671	16	0.0200	10	417	43	418	13	419	10	399	19	-0.27
41	DJ98 41	0.0547	4	0.4833	85	0.0641	11	0.0166	4	398	17	400	6	401	7	332	8	-0.6
42	DJ98 42	0.0554	5	0.5235	97	0.0686	12	0.0192	5	427	16	428	6	428	7	385	9	-0.21
43	DJ98 43	0.0551	6	0.5073	121	0.0668	13	0.0180	5	415	23	417	8	417	8	360	11	-0.46
44	DJ98 44	0.0551	5	0.5054	95	0.0665	12	0.0184	4	416	18	415	6	415	7	368	9	0.15
45	DJ98 45	0.0553	5	0.5181	95	0.0680	12	0.0195	5	424	20	424	6	424	7	390	9	-0.08
46	DJ98 46	0.0552	4	0.5078	87	0.0667	12	0.0184	4	422	18	417	6	416	7	369	7	1.44
47	DJ98 47	0.0548	14	0.4940	230	0.0653	18	0.0202	13	406	55	408	16	408	11	404	27	-0.57
48	DJ98 48	0.0548	7	0.4814	128	0.0637	13	0.0170	6	403	27	399	9	398	8	341	12	1.15
49	DJ98 50	0.0555	4	0.5323	79	0.0695	12	0.0181	4	434	17	433	5	433	7	362	7	0.09
50	DJ98 51	0.0548	5	0.4878	95	0.0645	12	0.0174	4	406	20	403	6	403	7	349	8	0.69
51	DJ98 52	0.0550	4	0.4966	87	0.0655	12	0.0175	4	410	17	409	6	409	7	350	8	0.24
52	DJ98 53	0.0552	4	0.5103	90	0.0671	12	0.0181	4	420	18	419	6	418	7	362	8	0.26
53	DJ98 54	0.0549	7	0.4981	137	0.0658	14	0.0205	8	408	29	410	9	411	8	409	15	-0.67
54	DJ98 55	0.0560	7	0.5558	151	0.0720	15	0.0197	7	452	25	449	10	448	9	394	14	0.76
55	DJ98 56	0.0552	5	0.5145	54	0.0675	11	0.0184	3	422	19	421	4	421	7	369	5	0.03
56	DJ98 57	0.0551	9	0.5049	173	0.0664	15	0.0193	7	418	39	415	12	414	9	386	15	0.84

					Rat	ios							А	ge (l	Ma)				
An	alysis No.	²⁰⁷ Ph	+	²⁰⁷ Ph	+	²⁰⁶ Ph	+	²⁰⁸ Ph		+ ²⁰⁷ P	h +	207 p	Ph	+ 2	²⁰⁶ Ph	+	²⁰⁸ Ph	+	Disc*
		²⁰⁶ <i>Pb</i>	18	s ²³⁵ U	1s	²³⁸ U	1s	²³² Th		1s 206PI	<u>b</u> 1s	235	U	1s -	²³⁸ U	1s	²³² Th	1s	
57	DJ98 58	0.0556	4	0.5381	77	0.0702	12	0.0186	3	436	18	437	5	43	7	7	373	6	-0.22
58	DJ98 59	0.0556	6	0.5310	131	0.0693	14	0.0206	7	434	23	432	9	43	2	8	413	14	0.56
59	DJ98 60	0.0553	5	0.5218	95	0.0684	12	0.0175	4	425	17	426	6	42	7	7	350	8	-0.45
DJ	108 (n=58)																		
1	DJ108 01	0.0562	5	0.5738	111	0.0740	16	0.0209	7	459	21	460	7	46	0	10	419	13	-0.36
2	DJ108 02	0.0558	9	0.5459	193	0.0709	19	0.0206	9	443	38	442	13	44	2	11	413	18	0.15
3	DJ108 03	0.0562	6	0.5715	82	0.0736	15	0.0211	5	460	22	459	5	45	8	9	422	9	0.25
4	DJ108 04	0.0565	6	0.5891	129	0.0755	17	0.0232	7	471	22	470	8	46	9	10	464	14	0.27
5	DJ108 05	0.0564	6	0.5886	85	0.0755	16	0.0218	4	470	23	470	5	46	9	9	435	7	-0.07
6	DJ108 06	0.0560	6	0.5610	82	0.0726	15	0.0227	5	452	23	452	5	45	2	9	453	10	-0.15
7	DJ108 07	0.0566	6	0.6004	79	0.0768	16	0.0206	4	477	22	477	5	47	7	9	413	8	-0.09
8	DJ108 08	0.0565	6	0.5902	122	0.0756	17	0.0219	6	472	20	471	8	47	0	10	437	11	0.4
9	DJ108 09	0.0559	5	0.5511	94	0.0714	15	0.0203	5	446	22	446	6	44	5	9	406	9	0.2
10	DJ108 10	0.0561	6	0.5727	89	0.0739	16	0.0219	5	456	22	460	6	46	0	9	438	9	-1.04
11	DJ108 11	0.0559	6	0.5559	78	0.0720	15	0.0218	4	450	22	449	5	44	8	9	435	8	0.21
12	DJ108 12	0.0558	6	0.5434	130	0.0706	16	0.0216	8	442	25	441	9	44	0	10	432	15	0.5
13	DJ108 13	0.0560	5	0.5571	109	0.0721	16	0.0204	5	451	20	450	7	44	.9	9	409	10	0.31
14	DJ108 14	0.0561	6	0.5664	69	0.0731	15	0.0214	4	456	26	456	4	45	5	9	427	8	0.17
15	DJ108 15	0.0558	5	0.5516	110	0.0716	16	0.0206	6	446	23	446	7	44	5	9	413	12	-0.11
16	DJ108 16	0.0563	5	0.5762	108	0.0742	16	0.0237	7	463	21	462	7	46	1	10	473	13	0.18
17	DJ108 17	0.0561	7	0.5665	156	0.0732	18	0.0213	9	454	25	456	10	45	5	11	426	18	-0.37
18	DJ108 18	0.0560	5	0.5592	112	0.0724	16	0.0227	6	452	22	451	7	45	0	10	453	13	0.16
19	DJ108 19	0.0560	6	0.5611	118	0.0725	16	0.0200	5	454	24	452	8	45	1	10	401	10	0.47
20	DJ108 20	0.0562	5	0.5706	97	0.0736	16	0.0222	6	458	21	458	6	45	8	9	443	12	-0.02
21	DJ108 21	0.0560	5	0.5586	116	0.0723	16	0.0204	7	452	20	451	8	45	0	10	408	14	0.26
22	DJ108 22	0.0562	6	0.5727	83	0.0738	15	0.0219	5	460	23	460	5	45	9	9	437	9	0.15
23	DJ108 23	0.0568	6	0.6072	122	0.0775	17	0.0250	8	483	20	482	8	48	1	10	499	17	0.42
24	DJ108 24	0.0569	6	0.6140	86	0.0782	16	0.0233	4	486	23	486	5	48	5	10	466	8	0.1
25	DJ108 25	0.0562	5	0.5712	96	0.0736	16	0.0222	6	460	21	459	6	45	8	9	445	12	0.4
26	DJ108 26	0.0560	5	0.5654	114	0.0731	16	0.0201	5	454	19	455	7	45	5	10	402	10	-0.3
27	DJ108 28	0.0571	6	0.6336	157	0.0804	19	0.0235	7	496	22	498	10	49	8	11	469	14	-0.65
28	DJ108 29	0.0562	6	0.5742	81	0.0741	15	0.0131	2	459	22	461	5	46	1	9	263	5	-0.33

					Rat	ios							Ag	e (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1	s $\frac{207Pb}{235U}$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th		$\frac{\pm}{1s} \frac{^{207}P}{^{206}P}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	²⁰⁷ Pi	b ± 18	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$^{\pm}_{1s}$	Disc* (%)
29	DJ108 31	0.0580	6	0.6825	96	0.0853	18	0.0243	5	529	22	528	6	528	11	484	10	0.17
30	DJ108 32	0.0562	6	0.5764	119	0.0743	17	0.0226	6	461	22	462	8	462	10	452	12	-0.18
31	DJ108 33	0.0558	6	0.5526	120	0.0717	16	0.0215	7	446	23	447	8	447	10	429	13	-0.3
32	DJ108 34	0.0560	6	0.5653	78	0.0731	15	0.0209	5	454	23	455	5	455	9	418	9	-0.38
33	DJ108 35	0.0564	5	0.5848	115	0.0752	17	0.0214	7	467	21	468	7	467	10	428	14	-0.15
34	DJ108 36	0.0564	6	0.5853	147	0.0752	18	0.0210	6	470	25	468	9	467	11	420	13	0.5
35	DJ108 37	0.0566	5	0.5978	105	0.0766	17	0.0210	5	474	21	476	7	476	10	420	11	-0.38
36	DJ108 38	0.0563	6	0.5814	119	0.0748	17	0.0199	8	466	23	465	8	465	10	399	15	0.11
37	DJ108 39	0.0565	5	0.5909	103	0.0758	16	0.0217	6	472	21	471	7	471	10	433	12	0.16
38	DJ108 40	0.0562	6	0.5713	87	0.0737	16	0.0207	5	458	23	459	6	459	9	415	10	-0.14
39	DJ108 41	0.0563	6	0.5807	80	0.0748	16	0.0210	5	464	25	465	5	465	9	419	9	-0.29
40	DJ108 42	0.0560	6	0.5638	85	0.0729	15	0.0211	5	454	24	454	6	454	9	421	9	-0.12
41	DJ108 43	0.0568	8	0.6129	192	0.0782	20	0.0247	8	485	30	485	12	485	12	494	16	-0.22
42	DJ108 44	0.0560	6	0.5577	63	0.0723	15	0.0216	4	451	25	450	4	450	9	432	7	0.2
43	DJ108 45	0.0562	5	0.5732	104	0.0739	16	0.0200	5	461	22	460	7	460	10	401	11	0.16
44	DJ108 46	0.0561	6	0.5666	149	0.0732	17	0.0202	7	457	26	456	10	455	10	404	14	0.35
45	DJ108 47	0.0564	6	0.5838	85	0.0751	16	0.0207	4	466	22	467	5	467	9	415	8	-0.19
46	DJ108 48	0.0569	6	0.6113	126	0.0780	17	0.0230	6	486	23	484	8	484	10	460	12	0.35
47	DJ108 49	0.0568	9	0.6138	213	0.0784	21	0.0241	13	482	32	486	13	487	12	482	25	-1.07
48	DJ108 50	0.0565	6	0.5910	93	0.0759	16	0.0206	4	471	22	472	6	471	10	412	9	-0.06
49	DJ108 51	0.0559	5	0.5562	106	0.0722	16	0.0207	6	448	20	449	7	449	10	414	12	-0.28
50	DJ108 52	0.0562	9	0.5657	203	0.0730	20	0.0208	11	460	34	455	13	454	12	416	22	1.36
51	DJ108 53	0.0565	6	0.5899	98	0.0758	16	0.0222	6	471	22	471	6	471	10	443	12	0.03
52	DJ108 54	0.0568	10	0.6072	232	0.0776	22	0.0254	14	482	39	482	15	482	13	506	27	0.11
53	DJ108 55	0.0564	6	0.5851	98	0.0752	16	0.0210	6	469	21	468	6	467	10	421	11	0.32
54	DJ108 56	0.0569	7	0.6147	174	0.0784	19	0.0201	9	487	28	486	11	486	11	402	19	0.2
55	DJ108 57	0.0558	5	0.5450	103	0.0709	16	0.0214	6	443	21	442	7	442	9	428	11	0.31
56	DJ108 58	0.0570	6	0.6218	129	0.0791	18	0.0234	7	492	22	491	8	491	11	467	13	0.24
57	DJ108 59	0.0569	6	0.6128	80	0.0782	16	0.0224	4	486	23	485	5	485	10	447	8	0.11
58	DJ108 60	0.0570	6	0.6241	131	0.0794	18	0.0233	6	492	22	492	8	493	11	465	12	-0.03
DJ	188 (n=39)																	
1	DJ188 02	0.0558	6	0.5458	73	0.0709	14	0.0214	4	443	23	442	5	442	9	428	7	0.2

					Rat	ios							Ag	e (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1:	s $\frac{^{207}Pb}{^{235}U}$	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	-	$\frac{\pm}{1s} \frac{\frac{207}{206}}{\frac{206}{206}}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	²⁰⁷ 235	$\frac{Pb}{U} = \frac{\pm}{1s}$	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
2	DJ188 04	0.0553	8	0.5110	155	0.0670	16	0.0222	7	423	29	419	10	418	10	443	14	1.0
3	DJ188 06	0.0559	5	0.5562	99	0.0721	15	0.0250	6	449	20	449	6	449	9	499	12	-0.1
4	DJ188 09	0.0556	9	0.5313	183	0.0693	18	0.0202	7	435	37	433	12	432	11	404	14	0.6
5	DJ188 11	0.0542	10	0.4530	172	0.0606	16	0.0184	6	381	47	379	12	379	10	369	12	0.4
6	DJ188 12	0.0548	5	0.4950	107	0.0655	14	0.0210	5	403	21	408	7	409	9	420	10	-1.6
7	DJ188 15	0.0562	13	0.5495	245	0.0710	21	0.0244	14	458	50	445	16	442	12	488	28	3.7
8	DJ188 16	0.0554	5	0.5233	100	0.0686	15	0.0200	4	426	20	427	7	427	9	400	8	-0.3
9	DJ188 17	0.0552	18	0.4874	293	0.0640	23	0.0161	11	420	76	403	20	400	14	324	22	5.0
10	DJ188 18	0.0551	7	0.5198	141	0.0684	16	0.0202	6	416	26	425	9	427	10	405	12	-2.6
11	DJ188 19	0.0550	6	0.4998	63	0.0659	13	0.0189	3	411	23	412	4	412	8	379	6	-0.2
12	DJ188 20	0.0552	10	0.5093	189	0.0669	18	0.0194	8	420	41	418	13	418	11	389	16	0.6
13	DJ188 26	0.0550	5	0.4971	98	0.0656	14	0.0196	5	411	21	410	7	410	9	392	9	0.5
14	DJ188 29	0.0560	7	0.5379	159	0.0697	17	0.0240	8	451	30	437	10	434	10	480	16	3.8
15	DJ188 31	0.0557	11	0.5310	215	0.0691	19	0.0226	11	441	46	432	14	431	11	452	21	2.4
16	DJ188 32	0.0554	5	0.5090	71	0.0667	14	0.0196	3	428	23	418	5	416	8	393	7	2.8
17	DJ188 33	0.0549	9	0.4995	171	0.0660	17	0.0195	6	408	37	411	12	412	10	390	12	-1.1
18	DJ188 34	0.0556	11	0.5100	203	0.0666	18	0.0210	9	434	42	418	14	416	11	419	18	4.5
19	DJ188 35	0.0545	8	0.4742	154	0.0631	16	0.0193	7	393	33	394	11	394	9	386	13	-0.2
20	DJ188 37	0.0549	7	0.5124	148	0.0678	16	0.0199	7	407	29	420	10	423	10	398	13	-4.1
21	DJ188 39	0.0546	10	0.4773	187	0.0635	17	0.0197	9	395	44	396	13	397	10	395	17	-0.2
22	DJ188 40	0.0543	11	0.4613	191	0.0617	17	0.0204	8	383	44	385	13	386	10	408	15	-0.8
23	DJ188 41	0.0548	10	0.4779	175	0.0634	17	0.0178	7	402	42	397	12	396	10	357	14	1.6
24	DJ188 43	0.0544	7	0.4766	144	0.0636	15	0.0190	6	387	31	396	10	398	9	381	12	-2.7
25	DJ188 45	0.0551	13	0.4839	230	0.0637	19	0.0201	10	417	56	401	16	398	12	402	21	4.7
26	DJ188 47	0.0550	17	0.4971	292	0.0657	23	0.0186	12	411	72	410	20	410	14	373	24	0.4
27	DJ188 48	0.0550	11	0.4998	201	0.0660	18	0.0232	12	410	45	412	14	412	11	463	24	-0.4
28	DJ188 51	0.0558	8	0.5428	170	0.0705	17	0.0233	10	446	30	440	11	439	10	465	20	1.5
29	DJ188 54	0.0552	12	0.5013	212	0.0659	19	0.0190	7	420	47	413	14	411	11	380	13	2.3
30	DJ188 55	0.0549	9	0.4718	167	0.0624	16	0.0198	7	406	35	392	12	390	10	397	15	4.1
31	DJ188 58	0.0552	6	0.5048	126	0.0664	15	0.0225	6	419	25	415	8	414	9	450	12	1.1
32	DJ188 59	0.0556	14	0.5216	253	0.0681	21	0.0206	8	435	59	426	17	425	13	413	15	2.5
33	DJ188 60	0.0565	17	0.6117	346	0.0785	27	0.0245	16	473	62	485	22	487	16	490	32	-3.1
34	DJ188 61	0.0553	17	0.5388	314	0.0707	24	0.0233	14	424	67	438	21	440	15	465	28	-4.1

					Rat	ios							A	ge (Ma	ı)			
An	alysis No.	²⁰⁷ Pb	± 19	²⁰⁷ Pb	± 1s	²⁰⁶ Pb	± 1s	$\frac{208}{232}$ Pb		$\pm \frac{207}{206}$	$\frac{b}{b} = \frac{\pm}{1s}$	²⁰⁷ F	<i>b</i>	± 206	$\frac{5Pb}{8H} = 18$	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
		10		0		0		111		11	,		0		0	110		
35	DJ188 62	0.0550	12	0.4868	205	0.0642	18	0.0177	9	413	45	403	14	401	11	354	18	2.9
36	DJ188 63	0.0546	8	0.4739	155	0.0630	16	0.0199	8	396	37	394	11	394	10	398	15	0.6
37	DJ188 65	0.0550	8	0.4944	162	0.0652	16	0.0201	8	412	33	408	11	407	10	402	15	1.2
38	DJ188 66	0.0552	11	0.5074	208	0.0667	19	0.0193	8	420	43	417	14	416	11	386	16	1.1
39	DJ188 67	0.0552	5	0.5059	94	0.0665	14	0.0189	4	419	20	416	6	415	9	377	9	0.9
DI	192 (n-66)																	
DJ	192 (II=00)																	
1	DJ192 01	0.0564	5	0.5820	108	0.0749	16	0.0217	6	466	19	466	7	465	10	433	12	0.12
2	DJ192 02	0.0569	6	0.6166	141	0.0785	18	0.0239	7	488	23	488	9	487	11	477	14	0.08
3	DJ192 03	0.0565	8	0.5888	189	0.0755	19	0.0219	12	474	33	470	12	469	11	439	24	0.93
4	DJ192 04	0.0568	13	0.6199	286	0.0791	24	0.0275	22	485	51	490	18	491	14	549	44	-1.26
5	DJ192 05	0.0568	6	0.6067	153	0.0775	18	0.0234	9	483	25	481	10	481	11	467	17	0.29
6	DJ192 07	0.0559	8	0.5536	170	0.0718	18	0.0234	9	449	30	447	11	447	11	468	17	0.4
7	DJ192 08	0.0557	-	0.5557	293	0.0723	23	0.0253	18	441	62	449	19	450	14	505	36	-2.1
8	DJ192 09	0.0565	7	0.5884	157	0.0756	18	0.0236	9	471	27	470	10	470	11	471	18	0.18
9	DJ192 10	0.0562	5	0.5716	112	0.0738	16	0.0232	6	459	21	459	7	459	10	463	13	-0.1
10	DJ192 11	0.0557	5	0.5496	115	0.0716	16	0.0237	8	439	21	445	8	446	9	474	16	-1.66
11	DJ192 12	0.0562	6	0.5632	143	0.0727	17	0.0222	9	461	23	454	9	452	10	444	17	1.89
12	DJ192 13	0.0561	5	0.5667	110	0.0732	16	0.0228	7	457	21	456	7	456	9	456	14	0.23
13	DJ192 14	0.0566	6	0.5847	138	0.0749	17	0.0215	9	476	26	467	9	466	10	430	18	2.22
14	DJ192 15	0.0566	18	0.5702	343	0.0731	26	0.0267	22	474	66	458	22	455	16	532	44	4.17
15	DJ192 16	0.0561	5	0.5602	107	0.0725	16	0.0205	6	455	21	452	7	451	9	409	11	0.84
16	DJ192 17	0.0567	10	0.5970	221	0.0764	20	0.0235	12	480	38	475	14	474	12	469	24	1.19
17	DJ192 18	0.0556	5	0.5395	112	0.0704	15	0.0243	8	436	23	438	7	438	9	486	15	-0.58
18	DJ192 19	0.0558	6	0.5603	71	0.0728	15	0.0217	4	445	22	452	5	453	9	433	7	-1.92
19	DJ192 20	0.0558	6	0.5503	121	0.0715	16	0.0220	7	446	21	445	8	445	10	439	14	0.12
20	DJ192 21	0.0559	5	0.5564	90	0.0722	15	0.0213	4	447	21	449	6	450	9	425	9	-0.65
21	DJ192 22	0.0557	6	0.5494	127	0.0715	16	0.0236	9	440	21	445	8	445	10	472	17	-1.29
22	DJ192 23	0.0560	6	0.5537	84	0.0717	15	0.0210	5	452	19	447	5	447	9	419	9	1.14
23	DJ192 24	0.0560	8	0.5587	172	0.0724	18	0.0223	11	452	31	451	11	450	11	445	22	0.25
24	DJ192 25	0.0560	7	0.5619	158	0.0728	17	0.0258	10	452	27	453	10	453	10	515	20	-0.32
25	DJ192 26	0.0566	6	0.6008	150	0.0770	18	0.0223	8	476	25	478	10	478	11	446	16	-0.46
26	DJ192 27	0.0557	5	0.5454	107	0.0710	15	0.0205	6	442	23	442	7	442	9	410	13	0.02

					Rat	ios							Ag	e (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1:	s $\frac{207Pb}{235U}$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	•	$\frac{\pm}{1s} \frac{207Pl}{206Pl}$	$\frac{b}{b} = \frac{\pm}{1s}$	²⁰⁷ F	$\frac{b}{y} = \frac{b}{1}$	$\frac{^{206}Pb}{^{238}U}$	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
27	DJ192 28	0.0568	9	0.6119	207	0.0781	20	0.0223	12	485	34	485	13	485	12	445	24	-0.05
28	DJ192 29	0.0565	6	0.5797	133	0.0745	17	0.0226	7	470	23	464	9	463	10	451	14	1.55
29	DJ192 30	0.0563	6	0.5753	74	0.0742	15	0.0220	4	462	22	461	5	461	9	439	8	0.22
30	DJ192 31	0.0565	17	0.5826	333	0.0748	25	0.0366	30	472	63	466	21	465	15	726	59	1.46
31	DJ192 32	0.0561	8	0.5647	184	0.0730	19	0.0211	11	458	31	455	12	454	11	421	22	0.79
32	DJ192 33	0.0571	6	0.6192	146	0.0787	18	0.0271	8	495	24	489	9	488	11	539	16	1.45
33	DJ192 34	0.0566	24	0.5786	442	0.0741	32	0.0261	32	477	87	464	28	461	19	522	64	3.44
34	DJ192 35	0.0561	6	0.5645	146	0.0730	17	0.0221	9	456	24	454	9	454	10	441	18	0.3
35	DJ192 36	0.0555	6	0.5352	142	0.0699	16	0.0213	9	434	27	435	9	436	10	427	18	-0.36
36	DJ192 37	0.0560	14	0.5419	259	0.0702	21	0.0253	17	452	50	440	17	437	13	504	33	3.45
37	DJ192 38	0.0561	7	0.5593	148	0.0723	17	0.0213	7	456	24	451	10	450	10	427	14	1.31
38	DJ192 40	0.0559	5	0.5576	106	0.0723	16	0.0214	6	450	19	450	7	450	9	428	12	-0.09
39	DJ192 41	0.0561	5	0.5633	111	0.0729	16	0.0235	7	455	21	454	7	454	9	469	13	0.29
40	DJ192 42	0.0561	11	0.5664	233	0.0733	21	0.0234	16	455	42	456	15	456	12	467	31	-0.25
41	DJ192 43	0.0565	9	0.5855	203	0.0751	19	0.0233	14	473	37	468	13	467	12	465	27	1.39
42	DJ192 44	0.0561	9	0.5641	190	0.0730	19	0.0190	9	456	39	454	12	454	11	380	18	0.36
43	DJ192 45	0.0573	6	0.6326	155	0.0801	18	0.0259	8	502	25	498	10	497	11	516	15	0.97
44	DJ192 46	0.0560	5	0.5621	106	0.0728	16	0.0201	6	452	21	453	7	453	9	402	12	-0.15
45	DJ192 47	0.0563	7	0.5737	163	0.0739	18	0.0222	8	465	28	460	11	460	11	443	16	1.33
46	DJ192 48	0.0564	5	0.5819	112	0.0749	16	0.0209	8	468	21	466	7	465	10	418	15	0.66
47	DJ192 49	0.0555	5	0.5321	116	0.0695	15	0.0200	5	433	20	433	8	433	9	400	10	0
48	DJ192 50	0.0556	8	0.5268	171	0.0688	17	0.0224	11	435	31	430	11	429	10	448	22	1.56
49	DJ192 51	0.0562	6	0.5797	134	0.0748	17	0.0235	9	462	24	464	9	465	10	470	18	-0.66
50	DJ192 52	0.0556	5	0.5442	96	0.0710	15	0.0202	6	438	21	441	6	442	9	405	12	-1.01
51	DJ192 53	0.0557	5	0.5397	85	0.0703	15	0.0205	5	439	19	438	6	438	9	410	9	0.28
52	DJ192 54	0.0558	5	0.5472	84	0.0711	15	0.0214	5	446	24	443	6	443	9	428	9	0.68
53	DJ192 55	0.0572	7	0.6115	173	0.0776	19	0.0230	10	497	28	484	11	482	11	459	20	3.25
54	DJ192 56	0.0567	5	0.5996	114	0.0768	17	0.0233	6	479	21	477	7	477	10	466	12	0.45
55	DJ192 57	0.0567	7	0.6103	64	0.0781	16	0.0225	3	481	26	484	4	485	9	449	7	-0.71
56	DJ192 58	0.0559	9	0.5507	192	0.0715	19	0.0218	10	448	34	445	13	445	11	436	20	0.59
57	DJ192 59	0.0559	5	0.5584	111	0.0726	16	0.0215	7	446	20	450	7	452	9	431	13	-1.13
58	DJ192 60	0.0569	10	0.6134	222	0.0782	21	0.0214	14	488	37	486	14	485	12	427	28	0.7
59	DJ192 61	0.0558	7	0.5449	151	0.0709	17	0.0202	8	444	27	442	10	441	10	404	16	0.77

					Rat	ios							Ag	ge (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1:	s $\frac{207Pb}{235U}$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th) 	$\frac{\pm}{18} \frac{^{207}P}{^{206}P}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	207	$\frac{Pb}{U} = \frac{\pm}{1}$	s ²⁰⁶ Pb s ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
60	DJ192 62	0.0558	5	0.5429	105	0.0706	15	0.0222	6	444	22	440	7	440	9	444	12	1.03
61	DJ192 63	0.0566	7	0.5863	171	0.0752	18	0.0239	12	476	29	469	11	467	11	477	24	1.96
62	DJ192 64	0.0560	6	0.5669	138	0.0734	17	0.0253	10	454	24	456	9	457	10	504	21	-0.56
63	DJ192 65	0.0562	5	0.5738	108	0.0741	16	0.0228	7	461	21	460	7	461	10	455	13	0.06
64	DJ192 66	0.0559	6	0.5557	66	0.0722	15	0.0215	4	447	24	449	4	449	9	429	7	-0.52
65	DJ192 67	0.0559	5	0.5561	114	0.0722	16	0.0244	8	448	22	449	7	449	9	486	16	-0.26
66	DJ192 68	0.0570	5	0.6165	116	0.0785	17	0.0245	7	490	20	488	7	487	10	489	15	0.61
DJ1	5 (n=62)																	
1	DJ15 01	0.0530	24	0.3752	291	0.0513	21	0.0188	20	330	109	323	21	322	13	377	39	2.34
2	DJ15 02	0.0527	26	0.3507	297	0.0482	21	0.0151	9	317	105	305	22	304	13	303	17	4.21
3	DJ15 03	0.0526	9	0.3664	122	0.0505	11	0.0162	4	312	38	317	9	318	7	324	9	-1.68
4	DJ15 04	0.0530	4	0.3834	72	0.0524	9	0.0161	3	331	21	330	5	329	6	322	7	0.34
5	DJ15 05	0.0551	8	0.5054	152	0.0666	14	0.0210	7	415	32	415	10	415	8	420	14	-0.08
6	DJ15 06	0.0525	4	0.3555	63	0.0491	9	0.0150	3	308	17	309	5	309	5	301	6	-0.45
7	DJ15 07	0.0534	9	0.4022	129	0.0546	12	0.0183	6	347	38	343	9	343	7	366	12	1.17
8	DJ15 08	0.0562	45	0.5789	788	0.0747	51	0.0165	40	459	172	464	51	465	31	331	79	-1.15
9	DJ15 09	0.0526	17	0.3624	206	0.0500	16	0.0134	10	310	73	314	15	315	10	269	19	-1.55
10	DJ15 10	0.0530	7	0.3838	104	0.0525	11	0.0160	5	328	29	330	8	330	6	320	9	-0.83
11	DJ15 11	0.0527	7	0.3671	108	0.0505	10	0.0151	5	318	31	318	8	317	6	304	10	0.04
12	DJ15 12	0.0529	6	0.3749	91	0.0514	10	0.0155	4	324	25	323	7	323	6	310	8	0.29
13	DJ15 13	0.0533	15	0.4023	207	0.0548	16	0.0205	11	341	58	343	15	344	10	409	22	-0.9
14	DJ15 16	0.0535	8	0.4098	123	0.0555	12	0.0177	6	350	31	349	9	348	7	354	11	0.59
15	DJ15 17	0.0524	18	0.3513	209	0.0486	15	0.0155	8	303	82	306	16	306	9	311	16	-0.89
16	DJ15 19	0.0527	6	0.3695	91	0.0508	10	0.0164	4	316	25	319	7	320	6	328	9	-1.24
17	DJ15 20	0.0539	10	0.4366	156	0.0588	13	0.0178	7	366	44	368	11	368	8	356	14	-0.73
18	DJ15 22	0.0531	5	0.3865	74	0.0528	9	0.0163	3	331	20	332	5	332	6	326	6	-0.31
19	DJ15 23	0.0527	24	0.3716	293	0.0512	21	0.0185	16	315	104	321	22	322	13	370	31	-2.32
20	DJ15 24	0.0538	24	0.4153	306	0.0560	20	0.0233	17	362	92	353	22	351	12	466	34	3.13
21	DJ15 27	0.0530	6	0.3839	101	0.0526	10	0.0167	5	327	28	330	7	330	6	335	10	-1.16
22	DJ15 28	0.0546	20	0.4698	300	0.0624	22	0.0239	18	394	80	391	21	390	13	477	36	0.97
23	DJ15 29	0.0556	32	0.5264	515	0.0687	33	0.0254	30	436	134	429	34	428	20	508	60	1.75
24	DJ15 30	0.0526	4	0.3588	54	0.0495	8	0.0154	3	312	16	311	4	311	5	309	5	0.11

					Rat	ios							Ag	e (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1	s $\frac{207}{235}U$	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	-	$\frac{\pm}{1s} \frac{\frac{207}{206}P}{\frac{206}{206}P}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	207	$\frac{Pb}{U} = \frac{\pm}{1s}$	$\frac{206Pb}{238U}$	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
25	DJ15 32	0.0526	7	0.3615	98	0.0498	10	0.0139	4	313	29	313	7	313	6	278	8	-0.18
26	DJ15 34	0.0527	7	0.3604	106	0.0496	10	0.0154	4	314	28	313	8	312	6	309	8	0.62
27	DJ15 35	0.0527	40	0.3709	471	0.0510	31	0.0269	36	317	182	320	35	321	19	536	71	-1.32
28	DJ15 36	0.0530	28	0.3694	331	0.0505	23	0.0157	11	329	121	319	25	318	14	315	21	3.4
29	DJ15 37	0.0524	15	0.3487	177	0.0483	13	0.0151	8	302	67	304	13	304	8	303	15	-0.5
30	DJ15 38	0.0530	8	0.3805	114	0.0521	11	0.0176	6	329	31	327	8	327	7	352	13	0.49
31	DJ15 39	0.0539	15	0.4322	216	0.0581	17	0.0177	9	367	64	365	15	364	10	354	19	0.7
32	DJ15 40	0.0530	5	0.3807	77	0.0521	10	0.0168	3	328	20	328	6	328	6	336	6	-0.02
33	DJ15 41	0.0556	10	0.5331	182	0.0696	15	0.0219	9	435	38	434	12	434	9	438	18	0.28
34	DJ15 42	0.0533	17	0.3973	224	0.0541	16	0.0150	8	341	74	340	16	339	10	301	16	0.52
35	DJ15 43	0.0528	5	0.3711	76	0.0510	9	0.0152	3	321	21	320	6	320	6	305	6	0.22
36	DJ15 44	0.0532	16	0.3921	212	0.0535	16	0.0138	8	336	66	336	15	336	10	276	15	-0.08
37	DJ15 45	0.0558	14	0.5515	259	0.0716	20	0.0217	16	446	55	446	17	446	12	434	31	0.02
38	DJ15 46	0.0526	17	0.3569	199	0.0492	15	0.0180	13	310	70	310	15	310	9	360	25	-0.02
39	DJ15 47	0.0532	23	0.3988	295	0.0543	21	0.0186	13	339	97	341	21	341	13	372	26	-0.75
40	DJ15 48	0.0525	13	0.3594	161	0.0497	13	0.0139	6	306	57	312	12	313	8	279	11	-2.37
41	DJ15 49	0.0530	5	0.3810	74	0.0521	9	0.0161	3	328	19	328	5	328	6	323	7	0.06
42	DJ15 50	0.0530	8	0.3779	115	0.0518	11	0.0140	5	327	34	325	8	325	7	282	10	0.42
43	DJ15 51	0.0541	6	0.4496	103	0.0602	12	0.0195	5	377	23	377	7	377	7	391	10	-0.03
44	DJ15 52	0.0526	7	0.3560	98	0.0491	10	0.0162	7	310	29	309	7	309	6	325	14	0.4
45	DJ15 53	0.0553	4	0.5169	74	0.0678	12	0.0211	3	424	16	423	5	423	7	421	7	0.13
46	DJ15 55	0.0553	7	0.5202	147	0.0682	14	0.0214	7	424	28	425	10	426	9	428	13	-0.5
47	DJ15 56	0.0558	15	0.5508	271	0.0716	20	0.0246	14	443	59	446	18	446	12	490	27	-0.75
48	DJ15 57	0.0525	9	0.3593	120	0.0496	11	0.0167	6	309	38	312	9	312	7	334	11	-1.18
49	DJ15 58	0.0553	10	0.5052	174	0.0663	15	0.0205	8	424	38	415	12	414	9	409	15	2.41
50	DJ15 59	0.0530	5	0.3839	80	0.0525	10	0.0162	3	328	20	330	6	330	6	324	7	-0.53
51	DJ15 61	0.0558	7	0.5426	148	0.0706	15	0.0195	7	443	28	440	10	439	9	390	13	0.87
52	DJ15 62	0.0531	5	0.3861	87	0.0527	10	0.0145	4	333	22	332	6	331	6	292	7	0.39
53	DJ15 63	0.0545	29	0.4919	339	0.0655	15	0.0205	4	390	126	406	23	409	9	409	8	-4.91
54	DJ15 64	0.0532	13	0.3982	186	0.0542	15	0.0189	10	338	57	340	14	341	9	379	20	-0.74
55	DJ15 65	0.0525	4	0.3525	63	0.0487	9	0.0145	3	306	19	307	5	307	5	291	5	-0.07
56	DJ15 66	0.0527	5	0.3650	74	0.0502	9	0.0153	3	318	20	316	5	316	6	307	6	0.62
57	DJ15 67	0.0552	15	0.5184	258	0.0681	20	0.0238	14	419	63	424	17	425	12	475	27	-1.57

					Rat	ios							Age	e (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 19	$\frac{207Pb}{235U}$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th		$\frac{\pm}{1s} \frac{207}{206} Pb$	± 1s	²⁰⁷ Pi ²³⁵ U	$\frac{b}{1}$ ± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
58	DJ15 68	0.0527	5	0.3600	82	0.0496	9	0.0144	3	314	22	312	6	312	6	288	6	0.56
59	DJ15 69	0.0530	15	0.3810	195	0.0521	15	0.0142	9	330	62	328	14	327	9	286	17	0.82
60	DJ15 70	0.0555	9	0.5315	168	0.0694	15	0.0230	10	433	33	433	11	433	9	459	19	0.13
61	DJ15 72	0.0550	15	0.4992	242	0.0658	18	0.0225	12	412	66	411	16	411	11	450	24	0.31
62	DJ15 73	0.0535	12	0.4069	177	0.0552	14	0.0184	10	349	52	347	13	346	9	369	19	0.88
DJ	149 (n=50)																	
1	DJ149 01	0.0546	6	0.4638	117	0.0616	14	0.0179	5	395	25	387	8	385	9	359	11	2.62
2	DJ149 02	0.0543	7	0.4674	130	0.0625	15	0.0203	7	382	31	389	9	391	9	405	13	-2.25
3	DJ149 03	0.0559	25	0.5214	409	0.0677	29	0.0254	22	446	94	426	27	422	17	507	43	5.57
4	DJ149 04	0.0575	26	0.6121	505	0.0772	36	0.0263	22	510	103	485	32	480	21	525	44	6.09
5	DJ149 06	0.0553	16	0.5162	279	0.0677	22	0.0208	11	426	63	423	19	422	14	416	22	0.85
6	DJ149 07	0.0557	27	0.5482	470	0.0714	33	0.0262	28	441	99	444	31	444	20	523	56	-0.84
7	DJ149 09	0.0544	20	0.4894	324	0.0652	25	0.0184	13	389	93	405	22	407	15	368	25	-4.74
8	DJ149 10	0.0547	7	0.4853	134	0.0644	16	0.0184	6	398	27	402	9	402	9	368	11	-1.01
9	DJ149 11	0.0550	9	0.5012	180	0.0661	18	0.0191	9	410	38	412	12	413	11	383	17	-0.68
10	DJ149 12	0.0547	25	0.5109	412	0.0677	30	0.0261	24	401	98	419	28	422	18	521	46	-5.44
11	DJ149 13	0.0547	8	0.4807	151	0.0637	16	0.0186	7	401	33	399	10	398	10	372	14	0.8
12	DJ149 14	0.0559	15	0.5207	267	0.0676	22	0.0210	13	448	55	426	18	421	13	421	26	6.21
13	DJ149 15	0.0547	10	0.4834	182	0.0641	17	0.0194	8	401	35	400	12	400	10	387	16	0.24
14	DJ149 16	0.0545	6	0.4742	120	0.0631	15	0.0171	5	393	25	394	8	394	9	343	10	-0.46
15	DJ149 18	0.0543	8	0.4628	155	0.0618	16	0.0162	6	383	36	386	11	387	10	325	12	-1.11
16	DJ149 19	0.0545	9	0.4599	168	0.0612	16	0.0174	8	391	40	384	12	383	10	349	15	1.95
17	DJ149 20	0.0547	14	0.4856	246	0.0644	20	0.0171	11	400	64	402	17	402	12	343	21	-0.58
18	DJ149 21	0.0547	12	0.4706	203	0.0624	18	0.0209	10	401	49	392	14	390	11	418	21	2.88
19	DJ149 22	0.0547	12	0.4732	208	0.0627	18	0.0203	9	402	47	393	14	392	11	407	17	2.48
20	DJ149 23	0.0549	14	0.5001	247	0.0661	21	0.0199	12	406	56	412	17	413	12	399	24	-1.69
21	DJ149 24	0.0551	16	0.4982	268	0.0656	22	0.0183	11	417	60	410	18	409	13	367	22	1.82
22	DJ149 25	0.0546	8	0.4752	153	0.0632	16	0.0194	8	394	32	395	11	395	10	388	15	-0.28
23	DJ149 26	0.0547	8	0.4937	152	0.0655	16	0.0188	7	400	31	407	10	409	10	377	14	-2.14
24	DJ149 27	0.0550	19	0.4809	302	0.0635	23	0.0193	15	411	80	399	21	397	14	387	29	3.75
25	DJ149 28	0.0551	15	0.5160	275	0.0679	22	0.0190	13	418	59	422	18	423	13	380	26	-1.34
26	DJ149 29	0.0547	13	0.4694	217	0.0622	19	0.0181	9	401	52	391	15	389	11	363	17	3.01

					Rat	ios							Ag	ge (Ma)				
Ar	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1:	$\frac{207Pb}{235U}$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	-	$\frac{\pm}{1s} \frac{^{207}P}{^{206}P}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	207 235	$\frac{Pb}{U} = \frac{\pm}{1}$	s ²⁰⁶ Pi	$\frac{b}{r}$ $\frac{\pm}{1s}$	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
27	DJ149 30	0.0549	7	0.4953	146	0.0654	16	0.0189	7	409	29	409	10	409	10	378	13	0.01
28	DJ149 31	0.0545	8	0.4739	148	0.0631	16	0.0189	7	392	33	394	10	394	9	377	14	-0.66
29	DJ149 32	0.0541	14	0.4439	226	0.0595	19	0.0168	9	375	64	373	16	373	11	338	17	0.57
30	DJ149 34	0.0562	27	0.5559	466	0.0718	33	0.0191	14	459	110	449	30	447	20	381	29	2.76
31	DJ149 35	0.0550	7	0.4952	144	0.0653	16	0.0174	6	413	28	408	10	408	10	348	12	1.47
32	DJ149 36	0.0551	13	0.5123	245	0.0675	21	0.0187	10	415	53	420	16	421	12	374	19	-1.58
33	DJ149 37	0.0559	26	0.5431	448	0.0706	31	0.0225	19	447	107	440	29	440	19	450	37	1.74
34	DJ149 38	0.0552	9	0.4862	168	0.0639	17	0.0183	7	421	34	402	11	399	10	367	15	5.3
35	DJ149 39	0.0555	19	0.4999	312	0.0654	24	0.0190	13	431	74	412	21	409	14	380	26	5.41
36	DJ149 40	0.0547	22	0.5014	359	0.0666	26	0.0190	17	399	95	413	24	415	16	380	33	-4.12
37	DJ149 41	0.0547	7	0.4738	134	0.0628	15	0.0174	6	401	29	394	9	393	9	349	12	2.23
38	DJ149 43	0.0553	12	0.5112	218	0.0671	19	0.0249	13	424	46	419	15	419	12	496	25	1.24
39	DJ149 44	0.0546	27	0.4822	412	0.0642	28	0.0205	18	394	110	400	28	401	17	410	36	-1.77
40	DJ149 45	0.0565	21	0.5444	369	0.0700	27	0.0190	17	471	82	441	24	436	16	380	34	7.83
41	DJ149 46	0.0557	25	0.5619	434	0.0732	30	0.0237	19	441	99	453	28	456	18	472	37	-3.35
42	DJ149 47	0.0557	41	0.4970	622	0.0647	41	0.0186	24	442	172	410	42	404	25	373	47	8.89
43	DJ149 48	0.0549	20	0.4840	316	0.0640	24	0.0174	13	409	84	401	22	400	14	348	26	2.52
44	DJ149 50	0.0543	12	0.4611	197	0.0617	17	0.0173	9	383	46	385	14	386	11	346	18	-0.6
45	DJ149 51	0.0554	14	0.4925	244	0.0646	20	0.0211	11	428	54	407	17	403	12	422	22	5.95
46	DJ149 52	0.0539	23	0.4522	341	0.0609	25	0.0215	17	368	91	379	24	381	15	430	33	-3.63
47	DJ149 53	0.0542	15	0.4736	245	0.0635	20	0.0247	13	377	64	394	17	397	12	493	26	-5.24
48	DJ149 54	0.0541	13	0.4472	206	0.0601	18	0.0171	10	374	49	375	14	376	11	343	19	-0.43
49	DJ149 56	0.0543	20	0.4823	313	0.0645	23	0.0168	14	383	91	400	21	403	14	336	28	-5.36
50	DJ149 57	0.0552	15	0.4713	246	0.0621	19	0.0186	11	419	57	392	17	388	12	372	22	7.67
DJ3	25 (n=48)																	
1	DJ325 01	0.0555	26	0.5230	360	0.0683	18	0.0180	8	434	108	427	24	426	11	361	16	1.93
2	DJ325 02	0.0553	32	0.5237	433	0.0686	20	0.0225	15	426	140	428	29	428	12	450	29	-0.47
3	DJ325 03	0.0554	16	0.5263	254	0.0688	16	0.0206	8	430	62	429	17	429	10	413	16	0.18
4	DJ325 04	0.0554	10	0.5269	185	0.0690	15	0.0194	5	427	40	430	12	430	9	389	9	-0.85
5	DJ325 05	0.0553	13	0.5095	215	0.0668	15	0.0184	7	423	53	418	14	417	9	369	14	1.47
6	DJ325 06	0.0550	7	0.5003	135	0.0659	14	0.0197	5	414	26	412	9	411	8	395	10	0.56
7	DJ325 10	0.0550	7	0.4842	128	0.0639	14	0.0183	5	411	23	401	9	399	8	367	9	3.07

					Rat	ios							Ag	e (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1:	s $\frac{^{207}Pb}{^{235}U}$	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th) !	$\frac{\pm}{1s} \frac{^{207}P}{^{206}P}$	$\frac{b}{b} \pm \frac{1}{1}$ s	²⁰⁷ 235	$\frac{Pb}{U} = \frac{\pm}{18}$	²⁰⁶ PE ²³⁸ U	2 ± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
8	DJ325 11	0.0549	46	0.4990	573	0.0659	24	0.0194	20	408	180	411	39	412	14	388	39	-0.98
9	DJ325 12	0.0551	20	0.5174	292	0.0681	17	0.0197	10	417	82	423	20	424	10	394	19	-1.84
10	DJ325 13	0.0551	7	0.5107	137	0.0672	14	0.0188	4	417	27	419	9	419	9	376	8	-0.42
11	DJ325 14	0.0552	32	0.5167	426	0.0679	20	0.0200	13	421	140	423	28	423	12	401	26	-0.63
12	DJ325 17	0.0544	22	0.4748	291	0.0633	16	0.0181	9	387	89	394	20	396	10	363	17	-2.39
13	DJ325 18	0.0553	18	0.5187	267	0.0681	16	0.0206	8	423	71	424	18	424	10	413	16	-0.32
14	DJ325 19	0.0546	30	0.4910	388	0.0652	19	0.0212	11	398	116	406	26	407	11	424	23	-2.45
15	DJ325 20	0.0551	11	0.5057	189	0.0666	15	0.0197	7	416	43	416	13	415	9	395	13	0.21
16	DJ325 21	0.0551	5	0.5110	115	0.0672	14	0.0194	4	418	22	419	8	419	8	388	9	-0.36
17	DJ325 23	0.0560	52	0.5482	689	0.0711	27	0.0221	21	451	207	444	45	442	16	441	41	1.9
18	DJ325 24	0.0550	16	0.5166	250	0.0681	16	0.0203	8	413	66	423	17	425	10	405	16	-2.8
19	DJ325 26	0.0563	42	0.5627	586	0.0725	25	0.0244	18	464	154	453	38	451	15	486	36	2.81
20	DJ325 27	0.0557	20	0.5315	296	0.0692	17	0.0190	9	440	80	433	20	432	10	380	17	1.9
21	DJ325 29	0.0554	9	0.5223	166	0.0684	15	0.0219	6	428	36	427	11	426	9	437	13	0.48
22	DJ325 30	0.0554	26	0.5213	362	0.0682	18	0.0265	16	428	97	426	24	425	11	529	31	0.69
23	DJ325 31	0.0553	12	0.5210	205	0.0683	15	0.0219	7	425	46	426	14	426	9	438	13	-0.19
24	DJ325 32	0.0555	7	0.5318	139	0.0695	15	0.0198	5	432	26	433	9	433	9	396	10	-0.29
25	DJ325 33	0.0557	7	0.5363	152	0.0699	15	0.0236	7	440	29	436	10	435	9	471	13	1.12
26	DJ325 34	0.0558	15	0.5418	254	0.0705	17	0.0198	9	443	64	440	17	439	10	396	17	1
27	DJ325 35	0.0559	14	0.5613	249	0.0728	17	0.0219	9	449	59	452	16	453	10	438	17	-0.87
28	DJ325 36	0.0556	11	0.5374	195	0.0700	15	0.0202	7	438	42	437	13	436	9	403	14	0.37
29	DJ325 37	0.0553	16	0.5154	248	0.0676	16	0.0219	9	424	60	422	17	422	10	438	17	0.67
30	DJ325 38	0.0560	11	0.5673	212	0.0735	16	0.0213	7	452	45	456	14	457	10	425	13	-1.07
31	DJ325 39	0.0565	6	0.5824	138	0.0748	16	0.0221	6	470	23	466	9	465	9	442	11	1.09
32	DJ325 40	0.0557	15	0.5418	247	0.0706	16	0.0223	9	440	61	440	16	440	10	445	17	0
33	DJ325 41	0.0554	6	0.5191	53	0.0680	12	0.0214	3	428	24	425	4	424	7	429	7	0.87
34	DJ325 42	0.0547	7	0.4776	139	0.0634	15	0.0186	6	399	32	396	10	396	9	372	12	0.84
35	DJ325 43	0.0548	5	0.4917	83	0.0651	13	0.0175	4	405	20	406	6	406	8	351	8	-0.23
36	DJ325 44	0.0551	5	0.5055	79	0.0666	13	0.0197	4	416	17	415	5	415	8	394	8	0.25
37	DJ325 47	0.0555	5	0.5309	87	0.0694	13	0.0196	5	432	18	432	6	433	8	392	9	-0.23
38	DJ325 49	0.0548	6	0.4909	112	0.0649	14	0.0210	6	406	23	406	8	406	8	420	12	0.05
39	DJ325 50	0.0554	5	0.5198	72	0.0680	13	0.0195	3	429	18	425	5	424	8	390	6	1.2
40	DJ325 50	0.0547	5	0.4822	77	0.0639	12	0.0171	4	400	19	400	5	400	7	342	7	0.13

					Rat	ios							Ag	e (Ma)				
Ar	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1	$\frac{207Pb}{s}$ $\frac{235U}{s}$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	-	$\frac{\pm}{1s} \frac{^{207}P}{^{206}P}$	$\frac{b}{b}$ $\frac{\pm}{1s}$	207	$\frac{Pb}{U} = \frac{\pm}{1}$	²⁰⁶ PŁ ²³⁸ U	$\frac{1}{2}$ $\frac{\pm}{1s}$	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
41	DJ325 51	0.0551	7	0.5062	137	0.0667	15	0.0229	10	416	27	416	9	416	9	457	19	-0.01
42	DJ325 52	0.0544	12	0.4648	201	0.0620	17	0.0176	8	386	52	388	14	388	10	352	15	-0.62
43	DJ325 53	0.0544	5	0.4653	86	0.0620	12	0.0165	3	388	21	388	6	388	7	331	7	0.03
44	DJ325 54	0.0547	7	0.4717	131	0.0626	14	0.0194	8	398	29	392	9	391	8	388	15	1.68
45	DJ325 55	0.0546	5	0.4780	56	0.0635	12	0.0164	2	397	21	397	4	397	7	328	5	0.12
46	DJ325 56	0.0560	23	0.5769	424	0.0747	31	0.0267	25	454	96	462	27	464	18	533	49	-2.44
47	DJ325 58	0.0547	6	0.4829	115	0.0640	13	0.0182	5	399	24	400	8	400	8	364	10	-0.28
48	DJ325 59	0.0549	5	0.4978	95	0.0658	13	0.0182	4	408	18	410	6	410	8	365	8	-0.61
DJ3	29 (n=78)																	
1	DJ329 01	0.0534	10	0.4073	157	0.0553	14	0.0173	7	347	45	347	11	347	8	346	13	-0.08
2	DJ329 02	0.0527	6	0.3782	95	0.0520	12	0.0146	4	317	26	326	7	327	7	292	7	-3.3
3	DJ329 03	0.0528	7	0.3600	111	0.0494	12	0.0141	5	322	30	312	8	311	7	283	11	3.51
4	DJ329 04	0.0533	6	0.3943	100	0.0537	12	0.0154	4	339	27	337	7	337	8	308	8	0.69
5	DJ329 05	0.0535	7	0.4158	129	0.0564	14	0.0172	7	348	29	353	9	354	9	344	13	-1.72
6	DJ329 06	0.0529	18	0.3715	227	0.0509	18	0.0166	12	325	74	321	17	320	11	332	23	1.64
7	DJ329 07	0.0538	5	0.4258	80	0.0574	13	0.0167	4	361	21	360	6	360	8	334	8	0.4
8	DJ329 08	0.0533	6	0.4017	48	0.0547	11	0.0156	3	341	24	343	3	343	7	312	5	-0.73
9	DJ329 09	0.0531	5	0.3874	60	0.0528	11	0.0155	3	335	24	332	4	332	7	310	6	0.82
10	DJ329 10	0.0536	5	0.4115	88	0.0557	12	0.0175	4	353	24	350	6	349	8	350	8	0.9
11	DJ329 12	0.0531	6	0.3782	97	0.0516	12	0.0143	4	334	26	326	7	324	7	286	8	2.89
12	DJ329 13	0.0529	5	0.3716	57	0.0510	11	0.0145	3	322	21	321	4	321	7	290	6	0.55
13	DJ329 14	0.0526	5	0.3667	70	0.0505	11	0.0155	4	313	23	317	5	318	7	311	7	-1.44
14	DJ329 15	0.0537	5	0.4246	78	0.0573	12	0.0164	4	358	20	359	6	359	8	329	8	-0.42
15	DJ329 16	0.0528	5	0.3667	67	0.0504	11	0.0145	3	319	22	317	5	317	7	291	6	0.78
16	DJ329 17	0.0531	5	0.3860	64	0.0527	11	0.0162	3	333	21	331	5	331	7	326	6	0.59
17	DJ329 18	0.0529	7	0.3819	112	0.0523	13	0.0162	6	325	28	328	8	329	8	325	12	-1.27
18	DJ329 19	0.0529	5	0.3730	65	0.0511	11	0.0139	3	325	21	322	5	321	7	279	6	0.94
19	DJ329 20	0.0531	5	0.3904	57	0.0534	11	0.0153	3	331	21	335	4	335	7	307	6	-1.17
20	DJ329 21	0.0536	7	0.4125	121	0.0558	14	0.0180	6	355	33	351	9	350	8	360	12	1.47
21	DJ329 22	0.0529	5	0.3881	87	0.0532	12	0.0161	4	325	22	333	6	334	7	323	8	-3.07
22	DJ329 23	0.0530	14	0.3974	203	0.0543	17	0.0126	9	330	64	340	15	341	10	253	18	-3.46
23	DJ329 24	0.0533	6	0.4042	54	0.0550	12	0.0163	3	343	23	345	4	345	7	326	6	-0.49

					Rat	ios							Ag	e (Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1	s $\frac{207Pb}{235U}$	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th		$\frac{\pm}{1s} \frac{^{207}P}{^{206}P}$	$\frac{b}{b} = \frac{\pm}{1s}$	²⁰⁷ P	$\frac{b}{J}$ $\frac{\pm}{1s}$	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
24	DJ329 25	0.0529	5	0.3667	64	0.0503	11	0.0131	2	325	23	317	5	316	7	263	5	2.63
25	DJ329 26	0.0528	6	0.3727	50	0.0512	11	0.0148	3	319	25	322	4	322	7	296	5	-0.99
26	DJ329 27	0.0529	5	0.3826	85	0.0525	12	0.0152	4	323	22	329	6	330	7	304	8	-2.24
27	DJ329 28	0.0530	5	0.3860	66	0.0529	11	0.0148	3	328	23	331	5	332	7	296	7	-1.42
28	DJ329 29	0.0529	5	0.3664	78	0.0502	11	0.0141	4	324	23	317	6	316	7	284	8	2.56
29	DJ329 30	0.0532	6	0.3881	55	0.0529	11	0.0151	3	336	26	333	4	333	7	303	6	0.94
30	DJ329 31	0.0531	5	0.3860	71	0.0528	12	0.0149	4	331	23	331	5	332	7	299	7	-0.04
31	DJ329 32	0.0534	5	0.4025	67	0.0547	12	0.0171	4	347	21	343	5	343	7	342	7	1.1
32	DJ329 33	0.0527	5	0.3632	74	0.0500	11	0.0146	4	314	22	315	6	315	7	294	8	-0.16
33	DJ329 34	0.0530	5	0.3780	66	0.0517	11	0.0145	3	331	22	326	5	325	7	291	6	1.76
34	DJ329 35	0.0527	5	0.3744	55	0.0515	11	0.0149	3	317	22	323	4	324	7	300	5	-2.1
35	DJ329 36	0.0530	5	0.3776	68	0.0517	11	0.0150	3	328	22	325	5	325	7	301	7	1.1
36	DJ329 37	0.0530	6	0.3946	106	0.0540	13	0.0162	5	328	28	338	8	339	8	324	11	-3.66
37	DJ329 38	0.0531	5	0.3909	62	0.0534	11	0.0151	3	335	21	335	5	335	7	303	6	-0.08
38	DJ329 39	0.0533	5	0.3913	77	0.0533	12	0.0159	4	340	19	335	6	335	7	319	8	1.57
39	DJ329 40	0.0536	5	0.4127	69	0.0559	12	0.0162	4	353	24	351	5	351	7	325	7	0.87
40	DJ329 41	0.0531	13	0.3730	176	0.0510	16	0.0142	7	331	49	322	13	321	10	285	13	3.35
41	DJ329 42	0.0527	8	0.3546	116	0.0488	12	0.0148	6	318	31	308	9	307	8	298	11	3.45
42	DJ329 43	0.0529	5	0.3747	77	0.0514	12	0.0149	4	323	22	323	6	323	7	300	9	-0.11
43	DJ329 44	0.0532	5	0.4005	84	0.0546	12	0.0151	4	337	22	342	6	343	8	302	7	-1.77
44	DJ329 45	0.0530	6	0.3782	46	0.0518	11	0.0152	3	327	25	326	3	326	7	304	5	0.49
45	DJ329 46	0.0532	6	0.3781	103	0.0516	12	0.0145	5	337	27	326	8	324	8	290	9	4.05
46	DJ329 47	0.0534	6	0.4150	99	0.0564	13	0.0168	5	345	22	352	7	354	8	337	9	-2.42
47	DJ329 48	0.0527	5	0.3657	55	0.0504	11	0.0144	3	315	24	316	4	317	7	290	6	-0.53
48	DJ329 49	0.0529	5	0.3791	64	0.0520	11	0.0157	3	326	23	326	5	327	7	314	7	-0.04
49	DJ329 50	0.0531	6	0.3782	95	0.0517	12	0.0153	5	331	23	326	7	325	7	307	9	1.84
50	DJ329 51	0.0529	5	0.3798	71	0.0522	12	0.0165	4	322	23	327	5	328	7	332	8	-1.65
51	DJ329 52	0.0526	5	0.3555	73	0.0490	11	0.0136	4	312	21	309	5	309	7	272	7	1.03
52	DJ329 53	0.0535	5	0.4018	66	0.0545	12	0.0168	3	349	23	343	5	342	7	337	7	2.12
53	DJ329 54	0.0536	6	0.4133	94	0.0560	13	0.0154	4	354	21	351	7	351	8	308	8	0.87
54	DJ329 55	0.0533	5	0.4041	77	0.0550	12	0.0167	4	342	20	345	6	345	8	334	8	-0.9
55	DJ329 56	0.0533	5	0.3931	76	0.0536	12	0.0161	4	339	21	337	6	336	7	323	8	0.97
56	DJ329 57	0.0529	5	0.3849	67	0.0528	12	0.0146	3	326	24	331	5	332	7	293	6	-1.58

					Rat	ios							Ag	e (Ma)				
An	alysis No.	²⁰⁷ Pb	±	²⁰⁷ Pb	±	²⁰⁶ Pb	±	²⁰⁸ Pb		± 207Pb	±	²⁰⁷ Pl) ±	²⁰⁶ Pb	±	²⁰⁸ Pb	±	Disc* (%)
		²⁰⁶ Pb	1:	s ²³⁵ U	1s	²³⁸ U	1s	²³² Th		1s 206Pb	1s	²³⁵ U	1s	²³⁸ U	1s	²³² Th	1s	
57	DJ329 58	0.0531	5	0.3868	64	0.0529	12	0.0160	4	334	23	332	5	332	7	322	8	0.82
58	DJ329 59	0.0529	5	0.3785	59	0.0519	11	0.0160	3	325	23	326	4	326	7	320	6	-0.37
59	DJ329 60	0.0533	5	0.4037	64	0.0550	12	0.0155	3	341	24	344	5	345	7	311	7	-1.09
60	DJ329 61	0.0532	5	0.3987	82	0.0544	12	0.0152	4	339	24	341	6	341	8	305	8	-0.58
61	DJ329 62	0.0528	9	0.3737	140	0.0514	14	0.0160	7	320	42	322	10	323	9	320	14	-0.94
62	DJ329 63	0.0531	5	0.3882	74	0.0531	12	0.0158	4	332	21	333	5	334	7	317	7	-0.46
63	DJ329 64	0.0531	5	0.3912	71	0.0535	12	0.0160	4	333	23	335	5	336	7	320	8	-0.61
64	DJ329 65	0.0537	6	0.4284	60	0.0579	13	0.0170	3	358	24	362	4	363	8	341	7	-1.31
65	DJ329 66	0.0531	5	0.3834	75	0.0524	12	0.0161	4	333	23	330	6	329	7	322	9	1.25
66	DJ329 68	0.0528	10	0.3556	138	0.0489	14	0.0166	9	321	40	309	10	308	8	333	17	4.23
67	DJ329 69	0.0534	6	0.4019	63	0.0547	12	0.0161	4	345	24	343	5	343	7	323	7	0.82
68	DJ329 70	0.0528	6	0.3873	92	0.0532	13	0.0161	5	322	25	332	7	334	8	322	9	-3.82
69	DJ329 71	0.0533	6	0.4016	91	0.0548	13	0.0150	4	339	22	343	7	344	8	301	8	-1.17
70	DJ329 72	0.0536	6	0.4084	105	0.0554	13	0.0177	6	353	26	348	8	347	8	355	13	1.76
71	DJ329 73	0.0530	16	0.3929	217	0.0539	18	0.0139	8	328	58	337	16	338	11	278	16	-3.08
72	DJ329 74	0.0534	6	0.4138	66	0.0563	12	0.0158	3	348	25	352	5	353	8	317	7	-1.4
73	DJ329 75	0.0531	5	0.3914	76	0.0535	12	0.0155	4	335	23	335	6	336	7	311	7	-0.22
74	DJ329 76	0.0532	7	0.3911	116	0.0534	13	0.0144	6	336	31	335	8	335	8	288	11	0.46
75	DJ329 77	0.0540	6	0.4388	120	0.0590	15	0.0180	7	371	25	369	8	370	9	361	14	0.53
76	DJ329 78	0.0530	6	0.3827	57	0.0525	11	0.0147	3	328	25	329	4	330	7	295	6	-0.55
77	DJ329 79	0.0532	6	0.3915	54	0.0535	12	0.0159	3	337	26	335	4	336	7	319	6	0.51
78	DJ329 80	0.0532	6	0.3951	57	0.0539	12	0.0157	3	339	25	338	4	339	7	316	6	0.19

					Ratio	s					Age (M	la)		
Ana	lysis No.	$\frac{U}{Th}$	²⁰⁷ <i>Pb</i> ²⁰⁶ <i>Pb</i>	± 1s	$\frac{207}{235}$ <i>U</i>	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	²⁰⁷ <i>Pb</i> ²³⁵ <i>U</i>	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s
DJ259)	46.9046°N, 84	4.2452°E											
1	DJ259 01	1.31	0.05334	1.14	0.39453	1.76	0.05365	2.44	343	27	338	5	337	8
2	DJ259 02	1.3	0.05321	1.35	0.39498	1.28	0.05384	2.38	338	28	338	4	338	8
3	DJ259 03	1.28	0.05341	1.29	0.39386	1.35	0.05348	2.37	346	27	337	4	336	8
4	DJ259 04	1.5	0.05364	1.19	0.39471	1.63	0.05338	2.42	356	28	338	5	335	8
5	DJ259 06	1.42	0.05343	1.31	0.39538	1.34	0.05367	2.38	347	28	338	4	337	8
6	DJ259 07	1.64	0.05312	1.30	0.39279	1.37	0.05363	2.39	334	31	336	4	337	8
7	DJ259 08	1.53	0.0531	1.28	0.38635	1.40	0.05277	2.39	333	29	332	4	332	8
8	DJ259 11	2.04	0.05278	1.33	0.3816	1.36	0.05244	2.40	319	31	328	4	329	8
9	DJ259 12	1.05	0.05368	1.36	0.40094	1.29	0.05418	2.40	358	31	342	4	340	8
10	DJ259 13	1.43	0.05262	1.12	0.3828	1.98	0.05276	2.50	312	24	329	6	331	8
11	DJ259 14	1.47	0.05332	1.18	0.38895	2.67	0.05291	2.65	342	26	334	8	332	9
12	DJ259 15	1.2	0.05327	1.35	0.39665	1.31	0.054	2.41	340	30	339	4	339	8
13	DJ259 16	1.02	0.05347	1.38	0.41008	1.25	0.05563	2.39	349	29	349	4	349	8
14	DJ259 19	1.05	0.05338	1.39	0.41365	1.25	0.05621	2.40	345	32	352	4	353	8
15	DJ259 20	1.1	0.05274	1.35	0.40298	1.34	0.05542	2.42	318	30	344	4	348	8
16	DJ259 21	1.38	0.05278	1.36	0.40734	1.31	0.05598	2.43	319	32	347	4	351	8
17	DJ259 22	1.22	0.05221	1.36	0.39875	1.31	0.0554	2.42	295	30	341	4	348	8
18	DJ259 23	1.92	0.05285	1.12	0.3787	2.16	0.05198	2.56	322	25	326	6	327	8
DJ303	i	47.0245°N, 80	6.0374°E											
1	DJ303 01	0.62	0.05479	1.20	0.39822	2.69	0.05276	2.67	404	27	340	8	331	9
2	DJ303 02	1.54	0.05462	1.28	0.42085	2.91	0.05593	2.72	397	29	357	9	351	9
3	DJ303 03	1.08	0.05354	1.14	0.41151	2.07	0.05579	2.55	352	25	350	6	350	9
4	DJ303 04	1.67	0.05544	1.61	0.41317	3.60	0.0541	2.92	430	35	351	11	340	10
5	DJ303 05	1.27	0.05356	1.12	0.41638	2.30	0.05643	2.59	353	26	353	7	354	9
6	DJ303 06	0.59	0.054	1.13	0.40287	2.05	0.05415	2.53	371	25	344	6	340	8
7	DJ303 07	1.8	0.054	1.15	0.42161	2.48	0.05667	2.61	371	26	357	7	355	9
8	DJ303 08	1.09	0.05384	1.15	0.40493	2.51	0.05459	2.62	364	26	345	7	343	9
9	DJ303 09	1.32	0.05443	2.81	0.42212	5.51	0.05629	3.50	389	63	358	17	353	12
10	DJ303 10	0.77	0.05357	1.18	0.40427	1.79	0.05478	2.48	353	26	345	5	344	8
11	DJ303 11	1.08	0.05362	1.12	0.40575	2.35	0.05492	2.59	355	25	346	7	345	9
12	DJ303 12	1.13	0.0531	1.13	0.39641	2.05	0.05418	2.53	333	26	339	6	340	8

Table X.C.2 La-ICPMS	U-Pb m	agmatic	zircon data

13	DJ303 13	0.82	0.05399	1.39	0.41239	3.19	0.05543	2.78	371	34	351	9	348	9
14	DJ303 15	1.27	0.05333	1.16	0.39946	1.75	0.05436	2.47	343	26	341	5	341	8
15	DJ303 16	2.01	0.05361	1.12	0.4008	2.37	0.05426	2.58	355	24	342	7	341	9
16	DJ303 17	1.61	0.05264	2.11	0.41012	4.43	0.05654	3.13	313	47	349	13	355	11
17	DJ303 18	2.18	0.05335	3.28	0.41069	6.22	0.05586	3.76	344	82	349	18	350	13
18	DJ303 19	1.41	0.05348	1.53	0.40462	3.46	0.05491	2.84	349	34	345	10	345	10
19	DJ303 20	0.58	0.05369	1.27	0.40109	2.90	0.05421	2.69	358	29	342	8	340	9
20	DJ303 21	1.09	0.05332	1.14	0.39281	2.47	0.05346	2.60	342	27	336	7	336	9
21	DJ303 22	1.37	0.05326	1.13	0.39488	2.01	0.0538	2.51	340	26	338	6	338	8
22	DJ303 23	0.67	0.05378	1.19	0.40186	1.68	0.05422	2.45	362	26	343	5	340	8
23	DJ303 24	1.44	0.05325	1.54	0.40451	3.49	0.05512	2.85	339	35	345	10	346	10
24	DJ303 26	1.98	0.05467	1.13	0.41246	2.39	0.05474	2.58	399	26	351	7	344	9

Table X.C.3 Hf isotopic data on zircon. *: ²⁰⁶Pb/²³⁸U ages.

$$\begin{split} & \left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{i} = \left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{SAMPLE} - \left[\left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{SAMPLE} \left(e^{\frac{\lambda t}{1000}} - 1\right)\right] \\ & \varepsilon_{Hf}(t) = 10^{4} \times \left[\frac{\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{SAMPLE} - \left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{SAMPLE} \left(e^{\frac{\lambda t}{1000}} - 1\right)}{\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{CHUR} - \left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{CHUR} \left(e^{\frac{\lambda t}{1000}} - 1\right)} - 1\right] \\ & T_{DM} = \frac{1}{\lambda} \times \ln \left(1 + \left[\frac{\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{SAMPLE} - \left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{DM}}{\left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{CHUR} - \left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{DM}}\right]\right) \\ & T_{DM}^{C} = \frac{t}{1000} + \left[\frac{1}{\lambda} \times \ln \left(1 + \left[\frac{\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{SAMPLE} - \left(\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{DM}}{\left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{C} - \left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{DM}}\right]\right)\right] \\ & T_{DM}^{L} = \frac{t}{1000} + \left[\frac{1}{\lambda} \times \ln \left(1 + \left[\frac{\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{SAMPLE} - \left(\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{DM} - \left(\left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{DM}\left(e^{\frac{\lambda t}{1000^{t}}} - 1\right)\right)\right)\right]\right)\right] \\ & T_{DM}^{LC} = \frac{t}{1000} + \left[\frac{1}{\lambda} \times \ln \left(1 + \left[\frac{\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{SAMPLE} - \left(\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{DM} - \left(\left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{DM}\left(e^{\frac{\lambda t}{1000^{t}}} - 1\right)\right)\right)\right)\right]\right) \\ & \lambda = 1.865 \times 10^{-11} \ yr^{-1} (\text{Schere et al., 2001}, \left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{CHUR} = 0.282772, \left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{CHUR} = 0.0332, \left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{DM} = 0.28325, \left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{DM} = 0.0384, \left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{C} = 0.015, \left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{LC} = 0.022 \end{split}$$

C: Average continental crust, CHUR: Chondritic Uniform Reservoir DM: Depleted Mantle.

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ \ LC}$
DJ46											
DJ46 01	445	0.28292	0.00003	0.0014	0.0310	0.282908	14.6	1.1	0.476	0.497	0.519
DJ46 02	471	0.28291	0.00002	0.0014	0.0258	0.282898	14.8	0.8	0.490	0.504	0.519
DJ46 04	496	0.28288	0.00003	0.0016	0.0294	0.282865	14.2	1.1	0.536	0.562	0.591
DJ46 06	448	0.28287	0.00003	0.0008	0.0165	0.282863	13.1	0.9	0.539	0.598	0.662
DJ46 07	473	0.28281	0.00002	0.0010	0.0217	0.282801	11.4	0.7	0.627	0.724	0.830
DJ46 08	445	0.28294	0.00003	0.0039	0.0770	0.282907	14.6	1.0	0.480	0.499	0.522
DJ46 09	461	0.28289	0.00002	0.0010	0.0196	0.282881	14.0	0.8	0.514	0.548	0.585
DJ46 10	471	0.28291	0.00002	0.0007	0.0130	0.282904	15.0	0.8	0.481	0.490	0.498
DJ46 11	459	0.28287	0.00002	0.0009	0.0168	0.282862	13.3	0.8	0.541	0.593	0.650
DJ46 12	479	0.28288	0.00002	0.0010	0.0192	0.282871	14.1	0.7	0.528	0.560	0.595
DJ46 13	465	0.28283	0.00003	0.0023	0.0479	0.282810	11.6	0.9	0.620	0.709	0.812
DJ46 14	479	0.28292	0.00002	0.0010	0.0186	0.282911	15.5	0.8	0.471	0.468	0.464
DJ46 15	450	0.28287	0.00003	0.0021	0.0394	0.282852	12.7	0.9	0.558	0.622	0.695

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_i$	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ46 16	469	0.28284	0.00002	0.0016	0.0357	0.282826	12.2	0.8	0.594	0.670	0.755
DJ46 17	480	0.28290	0.00003	0.0016	0.0302	0.282886	14.6	0.9	0.508	0.526	0.546
DJ46 18	454	0.28288	0.00002	0.0015	0.0326	0.282867	13.4	0.7	0.535	0.585	0.641
DJ46 19	439	0.28290	0.00002	0.0012	0.0249	0.282890	13.8	0.7	0.502	0.542	0.587
DJ46 20	469	0.28284	0.00003	0.0025	0.0538	0.282818	12.0	0.9	0.609	0.688	0.781
DJ46 21	473	0.28284	0.00002	0.0012	0.0260	0.282829	12.4	0.8	0.588	0.659	0.738
DJ46 22	441	0.28289	0.00002	0.0017	0.0368	0.282876	13.4	0.9	0.523	0.574	0.630
DJ46 23	487	0.28292	0.00002	0.0009	0.0199	0.282912	15.7	0.7	0.470	0.461	0.451
DJ46 24	449	0.28298	0.00002	0.0016	0.0317	0.282967	16.8	0.9	0.392	0.361	0.323
DJ46 25	476	0.28288	0.00002	0.0014	0.0266	0.282868	13.9	0.8	0.534	0.570	0.610
DJ46 26	457	0.28289	0.00002	0.0011	0.0203	0.282881	13.9	0.6	0.515	0.553	0.593
DJ46 27	456	0.28288	0.00002	0.0013	0.0296	0.282869	13.5	0.7	0.532	0.580	0.633
DJ46 28	449	0.28288	0.00002	0.0012	0.0222	0.282870	13.3	0.8	0.531	0.582	0.639
DJ46 29	479	0.28292	0.00003	0.0015	0.0284	0.282907	15.3	0.9	0.477	0.479	0.479
DJ46 30	469	0.28292	0.00003	0.0015	0.0284	0.282907	15.1	0.9	0.477	0.485	0.491
DJ46 31	466	0.28290	0.00002	0.0009	0.0172	0.282892	14.5	0.6	0.498	0.520	0.543
DJ46 32	471	0.28294	0.00002	0.0011	0.0203	0.282930	16.0	0.8	0.444	0.430	0.412
DJ46 33	448	0.28283	0.00003	0.0018	0.0384	0.282815	11.4	1.1	0.612	0.708	0.819
DJ46 34	456	0.28292	0.00002	0.0022	0.0499	0.282901	14.6	0.7	0.487	0.506	0.527
DJ46 35	461	0.28293	0.00003	0.0021	0.0405	0.282912	15.1	0.9	0.471	0.478	0.486
DJ46 36	449	0.28287	0.00002	0.0013	0.0258	0.282859	13.0	0.6	0.546	0.607	0.674
DJ46 37	497	0.28282	0.00002	0.0012	0.0270	0.282809	12.2	0.7	0.616	0.690	0.773
DJ46 38	459	0.28290	0.00002	0.0017	0.0349	0.282885	14.1	0.8	0.509	0.540	0.575
DJ46 39	468	0.28291	0.00002	0.0013	0.0240	0.282899	14.8	0.7	0.489	0.504	0.520
DJ46 40	452	0.28291	0.00002	0.0010	0.0190	0.282902	14.5	0.7	0.485	0.508	0.532
DJ46 41	460	0.28290	0.00002	0.0014	0.0248	0.282888	14.2	0.6	0.505	0.534	0.565
DJ46 42	483	0.28289	0.00002	0.0012	0.0222	0.282879	14.4	0.6	0.516	0.539	0.563
DJ46 43	465	0.28290	0.00002	0.0010	0.0189	0.282891	14.5	0.7	0.499	0.523	0.547
DJ46 44	458	0.28293	0.00002	0.0016	0.0305	0.282916	15.2	0.7	0.464	0.470	0.475
DJ46 45	464	0.28290	0.00002	0.0014	0.0268	0.282888	14.3	0.6	0.505	0.531	0.560
DJ46 46	463	0.28288	0.00002	0.0008	0.0141	0.282873	13.8	0.6	0.525	0.566	0.610
DJ46 47	464	0.28283	0.00002	0.0008	0.0175	0.282823	12.0	0.8	0.596	0.679	0.771

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_{i}$	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ46 48	460	0.28289	0.00002	0.0015	0.0278	0.282877	13.8	0.7	0.521	0.559	0.601
DJ46 50	465	0.28290	0.00002	0.0013	0.0233	0.282889	14.4	0.7	0.503	0.529	0.556
DJ46 51	473	0.28287	0.00002	0.0028	0.0654	0.282845	13.0	0.7	0.569	0.623	0.687
DJ46 52	459	0.28289	0.00002	0.0018	0.0337	0.282875	13.7	0.7	0.525	0.565	0.610
DJ46 53	465	0.28292	0.00002	0.0009	0.0184	0.282912	15.2	0.7	0.470	0.475	0.479
DJ46 54	457	0.28288	0.00002	0.0012	0.0218	0.282870	13.5	0.7	0.531	0.577	0.629
DJ46 55	481	0.28286	0.00002	0.0012	0.0260	0.282849	13.3	0.7	0.559	0.609	0.663
DJ46 56	500	0.28289	0.00002	0.0012	0.0212	0.282879	14.8	0.6	0.516	0.529	0.541
DJ46 57	476	0.28292	0.00002	0.0017	0.0365	0.282905	15.2	0.7	0.480	0.485	0.488
DJ46 58	477	0.28286	0.00002	0.0014	0.0288	0.282847	13.2	0.7	0.562	0.615	0.674
DJ46 59	464	0.28283	0.00002	0.0015	0.0338	0.282817	11.8	0.7	0.607	0.693	0.791
DJ46 60	461	0.28287	0.00001	0.0016	0.0296	0.282856	13.1	0.5	0.551	0.606	0.667
DJ46 61	472	0.28290	0.00002	0.0009	0.0160	0.282892	14.6	0.5	0.498	0.517	0.536
DJ46 62	457	0.28289	0.00002	0.0004	0.0075	0.282887	14.1	0.6	0.506	0.539	0.574
DJ46 63	462	0.28288	0.00001	0.0011	0.0233	0.282870	13.7	0.5	0.529	0.572	0.619
DJ46 64	457	0.28287	0.00002	0.0008	0.0144	0.282863	13.3	0.5	0.539	0.592	0.650
DJ83											
DJ83 02	439	0.28287	0.00003	0.0006	0.0135	0.282865	13.0	0.9	0.536	0.600	0.668
DJ83 03	432	0.28288	0.00003	0.0014	0.0271	0.282869	12.9	1.1	0.534	0.596	0.666
DJ83 04	463	0.28286	0.00003	0.0013	0.0248	0.282849	12.9	0.9	0.561	0.621	0.689
DJ83 05	428	0.28289	0.00003	0.0018	0.0401	0.282876	13.1	1.0	0.525	0.583	0.649
DJ83 06	445	0.28280	0.00002	0.0033	0.0800	0.282772	9.8	0.8	0.683	0.807	0.961
DJ83 07	454	0.28285	0.00003	0.0016	0.0344	0.282836	12.3	0.9	0.580	0.655	0.741
DJ83 08	428	0.28288	0.00002	0.0017	0.0376	0.282866	12.8	0.7	0.538	0.604	0.679
DJ83 09	457	0.28283	0.00003	0.0010	0.0189	0.282821	11.8	0.9	0.599	0.688	0.786
DJ83 10	455	0.28285	0.00002	0.0012	0.0271	0.282840	12.4	0.8	0.573	0.647	0.729
DJ83 11	445	0.28287	0.00002	0.0011	0.0240	0.282861	12.9	0.8	0.543	0.606	0.674
DJ83 12	416	0.28279	0.00003	0.0015	0.0351	0.282778	9.4	1.0	0.664	0.812	0.981
DJ83 13	451	0.28289	0.00002	0.0015	0.0311	0.282877	13.7	0.8	0.521	0.564	0.612
DJ83 14	436	0.28286	0.00002	0.0021	0.0396	0.282843	12.1	0.8	0.573	0.652	0.744
DJ83 15	450	0.28287	0.00002	0.0013	0.0246	0.282859	13.0	0.8	0.546	0.606	0.673
DJ83 16	426	0.28283	0.00002	0.0009	0.0187	0.282823	11.2	0.7	0.597	0.705	0.823

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	T_{DM}	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ83 17	472	0.28284	0.00002	0.0012	0.0227	0.282829	12.4	0.8	0.588	0.660	0.740
DJ83 18	436	0.28282	0.00002	0.0017	0.0347	0.282806	10.8	0.9	0.625	0.736	0.864
DJ83 19	443	0.28288	0.00003	0.0016	0.0301	0.282867	13.1	0.9	0.536	0.593	0.657
DJ83 20	448	0.28283	0.00002	0.0021	0.0405	0.282812	11.3	0.9	0.617	0.714	0.827
DJ83 21	440	0.28282	0.00002	0.0017	0.0314	0.282806	10.9	0.8	0.625	0.734	0.859
DJ83 22	430	0.28281	0.00002	0.0008	0.0171	0.282804	10.6	0.8	0.624	0.746	0.880
DJ83 23	436	0.28291	0.00003	0.0027	0.0528	0.282888	13.7	1.1	0.508	0.549	0.598
DJ83 24	439	0.28292	0.00002	0.0016	0.0309	0.282907	14.4	0.8	0.479	0.504	0.532
DJ83 25	460	0.28286	0.00002	0.0008	0.0142	0.282853	13.0	0.6	0.553	0.613	0.679
DJ83 26	433	0.28287	0.00002	0.0023	0.0458	0.282851	12.3	0.8	0.561	0.635	0.721
DJ83 27	449	0.28282	0.00002	0.0014	0.0297	0.282808	11.2	0.7	0.620	0.723	0.839
DJ83 28	442	0.28285	0.00002	0.0017	0.0311	0.282836	12.0	0.6	0.581	0.664	0.759
DJ83 29	450	0.28289	0.00002	0.0007	0.0149	0.282884	13.9	0.8	0.510	0.549	0.591
DJ83 30	444	0.28279	0.00002	0.0023	0.0541	0.282771	9.7	0.8	0.679	0.811	0.967
DJ83 31	464	0.28281	0.00002	0.0009	0.0168	0.282802	11.3	0.7	0.625	0.727	0.839
DJ83 32	461	0.28287	0.00002	0.0012	0.0233	0.282860	13.3	0.7	0.545	0.598	0.656
DJ83 33	460	0.28287	0.00002	0.0020	0.0357	0.282853	13.0	0.9	0.557	0.614	0.680
DJ83 34	449	0.28286	0.00003	0.0015	0.0303	0.282847	12.6	0.9	0.564	0.634	0.712
DJ83 35	430	0.28287	0.00002	0.0014	0.0282	0.282859	12.5	0.8	0.548	0.620	0.701
DJ83 36	443	0.28284	0.00002	0.0017	0.0311	0.282826	11.7	0.7	0.596	0.687	0.790
DJ83 37	445	0.28284	0.00002	0.0011	0.0220	0.282831	11.9	0.7	0.586	0.674	0.771
DJ83 38	439	0.28279	0.00002	0.0010	0.0217	0.282782	10.0	0.8	0.655	0.790	0.939
DJ83 39	468	0.28283	0.00002	0.0012	0.0227	0.282819	12.0	0.6	0.602	0.685	0.777
DJ83 40	447	0.28285	0.00002	0.0013	0.0247	0.282839	12.2	0.8	0.575	0.654	0.742
DJ83 41	474	0.28281	0.00002	0.0010	0.0194	0.282801	11.5	0.7	0.627	0.723	0.829
DJ83 42	1894	0.28137	0.00003	0.0004	0.0091	0.281356	-7.9	1.0	2.589	3.061	3.551
DJ83 43	465	0.28281	0.00002	0.0019	0.0379	0.282793	11.0	0.8	0.643	0.746	0.866
DJ83 44	407	0.28282	0.00002	0.0022	0.0492	0.282803	10.1	0.6	0.633	0.761	0.912
DJ83 45	463	0.28284	0.00002	0.0007	0.0132	0.282834	12.4	0.6	0.580	0.655	0.737
DJ83 46	463	0.28281	0.00002	0.0018	0.0330	0.282794	11.0	0.7	0.641	0.745	0.866
DJ83 47	472	0.28289	0.00002	0.0013	0.0245	0.282879	14.2	0.7	0.518	0.548	0.580
DJ83 48	425	0.28294	0.00002	0.0011	0.0212	0.282931	15.0	0.7	0.444	0.457	0.471

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_{i}$	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{ LC}$
DJ83 49	398	0.28285	0.00002	0.0028	0.0595	0.282829	10.8	0.8	0.599	0.708	0.840
DJ83 50	441	0.28283	0.00002	0.0014	0.0302	0.282818	11.3	0.7	0.605	0.705	0.817
DJ83 51	447	0.28281	0.00001	0.0011	0.0219	0.282801	10.9	0.5	0.629	0.741	0.866
DJ83 52	437	0.28283	0.00001	0.0015	0.0278	0.282818	11.2	0.5	0.607	0.709	0.825
DJ87											
DJ87 02	515	0.28293	0.00002	0.0008	0.0148	0.282922	16.7	0.8	0.454	0.419	0.378
DJ87 04	458	0.28292	0.00002	0.0014	0.0257	0.282908	14.9	0.7	0.476	0.489	0.502
DJ87 05	464	0.28300	0.00003	0.0020	0.0393	0.282983	17.7	1.1	0.367	0.314	0.250
DJ87 06	496	0.28284	0.00002	0.0015	0.0338	0.282826	12.8	0.6	0.592	0.652	0.718
DJ87 07	474	0.28292	0.00002	0.0013	0.0263	0.282908	15.3	0.7	0.475	0.478	0.479
DJ87 08	463	0.28293	0.00002	0.0015	0.0316	0.282917	15.3	0.8	0.463	0.465	0.466
DJ87 09	468	0.28288	0.00002	0.0012	0.0272	0.282869	13.8	0.7	0.531	0.571	0.615
DJ87 10	455	0.28292	0.00002	0.0013	0.0235	0.282909	14.9	0.6	0.475	0.489	0.503
DJ87 11	447	0.28290	0.00002	0.0014	0.0265	0.282888	14.0	0.7	0.505	0.541	0.582
DJ87 12	451	0.28287	0.00002	0.0013	0.0235	0.282859	13.0	0.7	0.546	0.606	0.672
DJ87 13	448	0.28290	0.00002	0.0017	0.0316	0.282886	13.9	0.8	0.509	0.547	0.589
DJ87 14	468	0.28291	0.00002	0.0017	0.0326	0.282895	14.7	0.8	0.494	0.512	0.531
DJ87 15	456	0.28292	0.00002	0.0014	0.0259	0.282908	14.9	0.8	0.476	0.490	0.505
DJ87 16	455	0.28288	0.00002	0.0011	0.0217	0.282871	13.5	0.6	0.529	0.577	0.628
DJ87 17	475	0.28285	0.00002	0.0014	0.0310	0.282838	12.8	0.7	0.577	0.639	0.709
DJ87 18	455	0.28291	0.00002	0.0012	0.0234	0.282900	14.5	0.7	0.488	0.510	0.533
DJ87 19	440	0.28291	0.00002	0.0013	0.0277	0.282899	14.2	0.7	0.489	0.521	0.555
DJ87 20	494	0.28289	0.00002	0.0012	0.0229	0.282879	14.7	0.7	0.516	0.532	0.549
DJ87 21	478	0.28291	0.00002	0.0010	0.0194	0.282901	15.1	0.6	0.485	0.492	0.498
DJ87 22	474	0.28292	0.00002	0.0010	0.0229	0.282911	15.4	0.6	0.471	0.472	0.470
DJ87 23	490	0.28292	0.00002	0.0013	0.0266	0.282908	15.6	0.7	0.475	0.468	0.459
DJ87 24	473	0.28289	0.00002	0.0014	0.0285	0.282878	14.2	0.7	0.519	0.549	0.581
DJ87 25	479	0.28289	0.00002	0.0025	0.0593	0.282868	13.9	0.8	0.535	0.568	0.606
DJ87 26	463	0.28296	0.00002	0.0012	0.0234	0.282950	16.5	0.6	0.416	0.391	0.360
DJ87 27	473	0.28283	0.00002	0.0008	0.0193	0.282823	12.2	0.7	0.596	0.674	0.759
DJ87 28	478	0.28287	0.00002	0.0012	0.0267	0.282859	13.6	0.7	0.545	0.588	0.634
DJ87 29	441	0.28293	0.00002	0.0011	0.0209	0.282921	15.0	0.7	0.458	0.471	0.483

MECANISMES ET EVOLUTION DES CHAINES D'ACCRETION EN ASIE CENTRALE

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_{i}$	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ87 30	437	0.28294	0.00002	0.0019	0.0469	0.282924	15.0	0.7	0.453	0.465	0.477
DJ87 31	455	0.28293	0.00002	0.0015	0.0302	0.282917	15.2	0.6	0.463	0.470	0.476
DJ87 32	461	0.28291	0.00002	0.0012	0.0259	0.282900	14.7	0.6	0.488	0.506	0.526
DJ87 33	499	0.28297	0.00002	0.0018	0.0338	0.282953	17.4	0.6	0.409	0.359	0.299
DJ87 34	465	0.28293	0.00002	0.0013	0.0257	0.282919	15.4	0.6	0.461	0.460	0.458
DJ87 35	468	0.28288	0.00002	0.0013	0.0248	0.282869	13.7	0.7	0.532	0.573	0.617
DJ87 36	488	0.28294	0.00002	0.0010	0.0219	0.282931	16.4	0.6	0.443	0.417	0.387
DJ87 37	478	0.28291	0.00002	0.0007	0.0134	0.282904	15.2	0.8	0.481	0.486	0.489
DJ87 38	451	0.28294	0.00002	0.0011	0.0216	0.282931	15.5	0.7	0.444	0.442	0.438
DJ87 39	473	0.28295	0.00002	0.0014	0.0273	0.282938	16.3	0.7	0.433	0.411	0.385
DJ87 40	491	0.28292	0.00002	0.0008	0.0169	0.282913	15.8	0.7	0.469	0.457	0.442
DJ87 41	480	0.28290	0.00002	0.0010	0.0199	0.282891	14.8	0.6	0.499	0.514	0.528
DJ87 42	455	0.28293	0.00002	0.0005	0.0092	0.282926	15.5	0.6	0.451	0.450	0.449
DJ87 43	499	0.28290	0.00002	0.0016	0.0331	0.282885	15.0	0.8	0.508	0.515	0.522
DJ87 44	463	0.28293	0.00002	0.0013	0.0260	0.282919	15.4	0.7	0.461	0.461	0.461
DJ87 45	501	0.28292	0.00002	0.0016	0.0351	0.282905	15.7	0.7	0.479	0.468	0.454
DJ87 46	486	0.28291	0.00002	0.0010	0.0181	0.282901	15.3	0.7	0.485	0.487	0.488
DJ87 47	483	0.28294	0.00002	0.0007	0.0168	0.282934	16.4	0.7	0.439	0.414	0.384
DJ87 48	493	0.28289	0.00002	0.0014	0.0326	0.282877	14.6	0.7	0.519	0.537	0.556
DJ87 49	470	0.28289	0.00002	0.0014	0.0326	0.282878	14.1	0.7	0.519	0.551	0.585
DJ87 50	506	0.28289	0.00002	0.0010	0.0233	0.282881	15.0	0.7	0.514	0.521	0.527
DJ87 51	463	0.28288	0.00002	0.0011	0.0223	0.282870	13.7	0.6	0.529	0.572	0.618
DJ87 52	471	0.28289	0.00002	0.0008	0.0161	0.282883	14.3	0.6	0.511	0.538	0.567
DJ87 53	490	0.28287	0.00002	0.0013	0.0263	0.282858	13.8	0.6	0.546	0.583	0.622
DJ87 54	493	0.28291	0.00002	0.0010	0.0206	0.282901	15.4	0.6	0.485	0.483	0.478
DJ87 55	494	0.28294	0.00002	0.0013	0.0256	0.282928	16.4	0.7	0.446	0.420	0.388
DJ87 56	522	0.28288	0.00002	0.0010	0.0191	0.282870	15.0	0.7	0.528	0.534	0.539
DJ87 57	482	0.28289	0.00002	0.0015	0.0291	0.282876	14.3	0.7	0.521	0.546	0.573
DJ87 58	490	0.28289	0.00002	0.0010	0.0221	0.282881	14.6	0.7	0.514	0.530	0.548
DJ87 59	469	0.28289	0.00002	0.0010	0.0221	0.282881	14.2	0.7	0.514	0.543	0.575
DJ89											
DJ89 01	471	0.28290	0.00002	0.0016	0.0306	0.282886	14.4	0.7	0.508	0.531	0.557

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ89 02	480	0.28289	0.00002	0.0010	0.0194	0.282881	14.4	0.7	0.514	0.537	0.561
DJ89 03	465	0.28282	0.00002	0.0016	0.0354	0.282806	11.4	0.8	0.623	0.718	0.825
DJ89 04	506	0.28288	0.00002	0.0013	0.0274	0.282868	14.5	0.8	0.532	0.550	0.569
DJ89 05	473	0.28288	0.00002	0.0011	0.0205	0.282870	13.9	0.7	0.529	0.566	0.605
DJ89 06	476	0.28286	0.00002	0.0011	0.0226	0.282850	13.2	0.7	0.558	0.610	0.667
DJ89 07	485	0.28283	0.00002	0.0010	0.0212	0.282821	12.4	0.7	0.599	0.671	0.750
DJ89 08	496	0.28284	0.00002	0.0015	0.0331	0.282826	12.8	0.8	0.592	0.652	0.718
DJ89 09	436	0.28287	0.00002	0.0011	0.0202	0.282861	12.7	0.6	0.543	0.611	0.685
DJ89 11	453	0.28287	0.00002	0.0017	0.0412	0.282856	12.9	0.8	0.552	0.612	0.680
DJ89 12	511	0.28284	0.00002	0.0010	0.0216	0.282830	13.3	0.7	0.585	0.632	0.684
DJ89 13	461	0.28287	0.00002	0.0013	0.0256	0.282859	13.2	0.7	0.546	0.600	0.659
DJ89 14	495	0.28291	0.00002	0.0015	0.0272	0.282896	15.3	0.8	0.492	0.492	0.491
DJ89 15	452	0.28282	0.00002	0.0014	0.0324	0.282808	11.2	0.7	0.620	0.721	0.836
DJ89 16	486	0.28289	0.00002	0.0011	0.0261	0.282880	14.5	0.6	0.515	0.535	0.556
DJ89 17	469	0.28292	0.00002	0.0008	0.0156	0.282913	15.3	0.8	0.469	0.471	0.471
DJ89 18	479	0.28284	0.00002	0.0012	0.0248	0.282829	12.6	0.8	0.588	0.656	0.731
DJ89 19	463	0.28288	0.00002	0.0012	0.0247	0.282870	13.6	0.8	0.531	0.574	0.621
DJ89 20	437	0.28292	0.00002	0.0007	0.0124	0.282914	14.7	0.7	0.467	0.489	0.510
DJ89 21	458	0.28289	0.00003	0.0014	0.0270	0.282878	13.8	0.9	0.519	0.558	0.600
DJ89 22	474	0.28288	0.00002	0.0009	0.0172	0.282872	14.0	0.9	0.526	0.561	0.598
DJ89 23	508	0.28291	0.00002	0.0016	0.0314	0.282895	15.5	0.8	0.493	0.487	0.478
DJ89 24	439	0.28291	0.00002	0.0018	0.0498	0.282895	14.0	0.7	0.496	0.531	0.570
DJ89 26	488	0.28281	0.00002	0.0010	0.0217	0.282801	11.8	0.7	0.627	0.715	0.811
DJ89 27	458	0.28284	0.00002	0.0009	0.0173	0.282832	12.2	0.7	0.583	0.662	0.749
DJ89 28	455	0.28294	0.00002	0.0012	0.0243	0.282930	15.6	0.7	0.445	0.441	0.435
DJ89 29	472	0.28281	0.00002	0.0013	0.0241	0.282799	11.3	0.6	0.632	0.730	0.840
DJ89 30	461	0.28295	0.00002	0.0017	0.0371	0.282935	15.9	0.6	0.437	0.425	0.409
DJ89 31	474	0.28295	0.00002	0.0015	0.0290	0.282937	16.3	0.7	0.434	0.413	0.387
DJ89 32	453	0.28282	0.00002	0.0014	0.0297	0.282808	11.2	0.7	0.620	0.721	0.834
DJ89 33	481	0.28289	0.00002	0.0010	0.0208	0.282881	14.4	0.6	0.514	0.536	0.559
DJ89 34	507	0.28283	0.00002	0.0011	0.0236	0.282820	12.9	0.7	0.600	0.659	0.724
DJ89 35	470	0.28294	0.00002	0.0014	0.0264	0.282928	15.9	0.6	0.447	0.436	0.422

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_{i}$	εHf(t)	1σ	T_{DM}	$T_{DM}^{\ \ C}$	$T_{DM}^{\ LC}$
DJ89 36	445	0.28290	0.00002	0.0011	0.0199	0.282891	14.0	0.7	0.501	0.537	0.576
DJ89 37	442	0.28287	0.00002	0.0013	0.0246	0.282859	12.8	0.6	0.546	0.611	0.683
DJ89 38	464	0.28293	0.00002	0.0007	0.0145	0.282924	15.6	0.7	0.453	0.449	0.442
DJ89 39	493	0.28286	0.00002	0.0011	0.0227	0.282850	13.6	0.7	0.558	0.599	0.645
DJ89 40	469	0.28282	0.00002	0.0013	0.0282	0.282809	11.6	0.7	0.618	0.709	0.811
DJ89 41	471	0.28286	0.00002	0.0013	0.0289	0.282849	13.1	0.6	0.561	0.617	0.679
DJ89 42	489	0.28285	0.00002	0.0017	0.0387	0.282834	13.0	0.6	0.581	0.637	0.700
DJ89 43	504	0.28283	0.00002	0.0012	0.0263	0.282819	12.8	0.6	0.602	0.663	0.731
DJ89 44	480	0.28290	0.00002	0.0009	0.0173	0.282892	14.8	0.6	0.498	0.512	0.525
DJ89 45	485	0.28288	0.00002	0.0011	0.0220	0.282870	14.1	0.7	0.529	0.558	0.590
DJ89 46	467	0.28291	0.00002	0.0011	0.0208	0.282900	14.8	0.6	0.487	0.501	0.515
DJ89 47	472	0.28294	0.00002	0.0013	0.0248	0.282929	15.9	0.7	0.446	0.433	0.416
DJ89 48	470	0.28284	0.00002	0.0009	0.0210	0.282832	12.5	0.7	0.583	0.655	0.734
DJ89 49	472	0.28289	0.00002	0.0009	0.0177	0.282882	14.3	0.6	0.512	0.539	0.568
DJ89 50	486	0.28285	0.00002	0.0013	0.0291	0.282838	13.0	0.5	0.575	0.631	0.692
DJ89 51	474	0.28289	0.00002	0.0010	0.0181	0.282881	14.3	0.7	0.514	0.540	0.568
DJ89 52	476	0.28284	0.00002	0.0008	0.0139	0.282833	12.6	0.6	0.582	0.649	0.723
DJ89 53	483	0.28287	0.00002	0.0014	0.0324	0.282857	13.7	0.6	0.548	0.589	0.634
DJ89 54	503	0.28284	0.00002	0.0012	0.0244	0.282829	13.1	0.7	0.588	0.641	0.700
DJ89 55	491	0.28280	0.00002	0.0009	0.0190	0.282792	11.5	0.6	0.640	0.733	0.837
DJ89 56	489	0.28290	0.00001	0.0011	0.0206	0.282890	14.9	0.5	0.501	0.510	0.519
DJ89 57	448	0.28290	0.00002	0.0019	0.0468	0.282884	13.8	0.5	0.512	0.550	0.594
DJ89 58	434	0.28293	0.00002	0.0019	0.0362	0.282915	14.6	0.7	0.468	0.490	0.514
DJ89 59	475	0.28285	0.00001	0.0010	0.0188	0.282841	12.9	0.5	0.570	0.631	0.698
DJ89 60	467	0.28291	0.00002	0.0012	0.0218	0.282900	14.8	0.6	0.488	0.503	0.518
DJ89 61	448	0.28290	0.00002	0.0016	0.0364	0.282887	13.9	0.7	0.508	0.545	0.586
DJ89 62	487	0.28285	0.00002	0.0014	0.0323	0.282837	13.0	0.6	0.577	0.632	0.694
DJ98											
DJ98 01	408	0.28290	0.00002	0.0011	0.0208	0.282892	13.2	0.6	0.501	0.559	0.624
DJ98 02	407	0.28287	0.00002	0.0007	0.0121	0.282865	12.2	0.7	0.538	0.621	0.713
DJ98 03	400	0.28288	0.00002	0.0009	0.0195	0.282873	12.4	0.6	0.526	0.606	0.694
DJ98 04	415	0.28289	0.00002	0.0006	0.0111	0.282885	13.1	0.7	0.508	0.569	0.635

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_{i}$	εHf(t)	1σ	T_{DM}	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ98 05	399	0.28282	0.00002	0.0007	0.0159	0.282815	10.3	0.6	0.608	0.740	0.885
DJ98 06	419	0.28286	0.00002	0.0004	0.0079	0.282857	12.2	0.6	0.547	0.631	0.722
DJ98 07	402	0.28288	0.00002	0.0010	0.0186	0.282872	12.4	0.6	0.528	0.607	0.694
DJ98 08	403	0.28288	0.00002	0.0010	0.0198	0.282872	12.4	0.6	0.528	0.606	0.693
DJ98 09	404	0.28287	0.00002	0.0009	0.0160	0.282863	12.1	0.6	0.541	0.627	0.721
DJ98 10	417	0.28289	0.00002	0.0011	0.0216	0.282881	13.0	0.7	0.515	0.577	0.645
DJ98 11	409	0.28292	0.00002	0.0008	0.0147	0.282914	14.0	0.6	0.469	0.508	0.550
DJ98 12	424	0.28288	0.00002	0.0010	0.0222	0.282872	12.9	0.5	0.528	0.593	0.666
DJ98 13	399	0.28288	0.00002	0.0010	0.0201	0.282873	12.3	0.6	0.528	0.609	0.698
DJ98 14	418	0.28287	0.00002	0.0008	0.0172	0.282864	12.4	0.6	0.539	0.616	0.701
DJ98 15	435	0.28285	0.00001	0.0012	0.0259	0.282840	12.0	0.5	0.573	0.659	0.754
DJ98 16	413	0.28285	0.00002	0.0008	0.0169	0.282844	11.6	0.6	0.567	0.665	0.772
DJ98 17	419	0.28287	0.00002	0.0009	0.0178	0.282863	12.4	0.6	0.541	0.618	0.702
DJ98 18	424	0.28287	0.00002	0.0008	0.0154	0.282864	12.6	0.6	0.539	0.613	0.693
DJ98 19	406	0.28282	0.00002	0.0008	0.0160	0.282814	10.4	0.6	0.610	0.738	0.879
DJ98 20	411	0.28286	0.00002	0.0005	0.0093	0.282856	12.0	0.5	0.549	0.638	0.735
DJ98 21	422	0.28284	0.00002	0.0017	0.0389	0.282827	11.2	0.7	0.596	0.699	0.816
DJ98 22	408	0.28287	0.00002	0.0016	0.0322	0.282858	12.0	0.6	0.551	0.636	0.734
DJ98 23	417	0.28288	0.00001	0.0007	0.0151	0.282875	12.8	0.5	0.524	0.592	0.667
DJ98 24	397	0.28290	0.00002	0.0010	0.0207	0.282893	13.0	0.6	0.499	0.564	0.635
DJ98 25	437	0.28287	0.00002	0.0005	0.0098	0.282866	12.9	0.5	0.535	0.599	0.668
DJ98 26	419	0.28286	0.00002	0.0008	0.0173	0.282854	12.1	0.7	0.553	0.639	0.732
DJ98 27	406	0.28287	0.00002	0.0008	0.0143	0.282864	12.2	0.5	0.539	0.624	0.716
DJ98 28	421	0.28289	0.00002	0.0012	0.0224	0.282881	13.1	0.6	0.516	0.576	0.642
DJ98 29	426	0.28288	0.00002	0.0013	0.0286	0.282870	12.8	0.7	0.532	0.598	0.671
DJ98 30	421	0.28288	0.00002	0.0015	0.0347	0.282868	12.7	0.7	0.535	0.604	0.682
DJ98 31	433	0.28288	0.00002	0.0014	0.0318	0.282869	12.9	0.7	0.534	0.595	0.665
DJ98 32	427	0.28286	0.00001	0.0009	0.0178	0.282853	12.3	0.5	0.555	0.636	0.724
DJ98 33	473	0.28287	0.00001	0.0004	0.0077	0.282866	13.8	0.5	0.534	0.574	0.618
DJ98 34	421	0.28285	0.00002	0.0015	0.0355	0.282838	11.6	0.6	0.578	0.673	0.780
DJ98 35	395	0.28286	0.00002	0.0008	0.0151	0.282854	11.6	0.7	0.553	0.653	0.763
DJ98 36	404	0.28287	0.00002	0.0006	0.0108	0.282865	12.2	0.6	0.536	0.622	0.714
Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
-----------------	--------------	--------------------------------------	---------	--------------------------------------	--------------------------------------	--	--------	-----	--------------	--------------	-----------------
DJ98 37	414	0.28286	0.00002	0.0010	0.0201	0.282852	11.9	0.6	0.556	0.645	0.744
DJ98 38	422	0.28288	0.00002	0.0013	0.0281	0.282870	12.7	0.6	0.532	0.600	0.676
DJ98 39	418	0.28286	0.00002	0.0008	0.0157	0.282854	12.1	0.6	0.553	0.639	0.733
DJ98 40	419	0.28287	0.00002	0.0004	0.0079	0.282867	12.6	0.5	0.534	0.609	0.689
DJ98 41	401	0.28285	0.00002	0.0010	0.0227	0.282842	11.3	0.7	0.570	0.676	0.793
DJ98 42	428	0.28284	0.00001	0.0008	0.0167	0.282834	11.6	0.5	0.582	0.679	0.785
DJ98 43	417	0.28287	0.00002	0.0008	0.0160	0.282864	12.4	0.7	0.539	0.617	0.702
DJ98 44	415	0.28289	0.00002	0.0013	0.0277	0.282880	13.0	0.6	0.518	0.581	0.652
DJ98 45	424	0.28291	0.00002	0.0009	0.0198	0.282903	14.0	0.7	0.484	0.523	0.565
DJ98 46	416	0.28289	0.00002	0.0014	0.0317	0.282879	12.9	0.7	0.519	0.583	0.654
DJ98 47	408	0.28284	0.00002	0.0006	0.0117	0.282835	11.2	0.7	0.578	0.687	0.806
DJ98 48	398	0.28285	0.00002	0.0015	0.0286	0.282839	11.1	0.6	0.578	0.686	0.809
DJ98 50	433	0.28286	0.00001	0.0008	0.0166	0.282854	12.4	0.5	0.553	0.630	0.714
DJ98 51	403	0.28289	0.00002	0.0015	0.0287	0.282879	12.6	0.6	0.521	0.592	0.672
DJ98 52	409	0.28285	0.00001	0.0012	0.0254	0.282841	11.4	0.5	0.573	0.675	0.787
DJ98 53	418	0.28290	0.00001	0.0015	0.0297	0.282888	13.3	0.5	0.506	0.560	0.621
DJ98 54	411	0.28290	0.00002	0.0010	0.0192	0.282892	13.3	0.5	0.499	0.556	0.617
DJ98 55	448	0.28286	0.00001	0.0008	0.0181	0.282853	12.7	0.5	0.553	0.621	0.694
DJ98 56	421	0.28285	0.00001	0.0011	0.0268	0.282841	11.7	0.5	0.572	0.666	0.770
DJ98 57	414	0.28288	0.00001	0.0009	0.0174	0.282873	12.7	0.5	0.526	0.598	0.676
DJ98 58	437	0.28282	0.00002	0.0016	0.0374	0.282807	10.9	0.5	0.623	0.734	0.860
DJ98 59	432	0.28286	0.00001	0.0006	0.0104	0.282855	12.4	0.5	0.550	0.627	0.710
DJ98 60	427	0.28285	0.00002	0.0010	0.0228	0.282842	11.9	0.5	0.570	0.660	0.759
DJ108											
DJ108 01	460	0.28290	0.00002	0.0007	0.0135	0.282894	14.4	0.6	0.495	0.520	0.546
DJ108 02	442	0.28286	0.00002	0.0009	0.0195	0.282853	12.6	0.6	0.555	0.626	0.705
DJ108 03	458	0.28287	0.00002	0.0011	0.0254	0.282861	13.2	0.6	0.543	0.598	0.657
DJ108 04	469	0.28293	0.00002	0.0010	0.0235	0.282921	15.6	0.7	0.457	0.452	0.444
DJ108 05	469	0.28284	0.00003	0.0024	0.0568	0.282819	12.0	1.0	0.607	0.686	0.778
DJ108 06	452	0.28287	0.00002	0.0010	0.0231	0.282862	13.1	0.6	0.542	0.599	0.662
DJ108 07	477	0.28286	0.00002	0.0017	0.0410	0.282845	13.1	0.7	0.567	0.621	0.683
DJ108 08	470	0.28290	0.00002	0.0024	0.0581	0.282879	14.1	0.8	0.519	0.548	0.581

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ108 09	445	0.28287	0.00002	0.0018	0.0423	0.282855	12.7	0.8	0.554	0.619	0.693
DJ108 10	460	0.28285	0.00002	0.0013	0.0309	0.282839	12.5	0.6	0.575	0.646	0.725
DJ108 11	448	0.28288	0.00002	0.0013	0.0301	0.282869	13.3	0.6	0.532	0.585	0.643
DJ108 12	440	0.28290	0.00002	0.0012	0.0276	0.282890	13.9	0.5	0.502	0.542	0.585
DJ108 13	449	0.28289	0.00002	0.0018	0.0396	0.282875	13.5	0.6	0.525	0.571	0.623
DJ108 14	455	0.28287	0.00002	0.0019	0.0463	0.282854	12.9	0.5	0.555	0.615	0.683
DJ108 15	445	0.28287	0.00002	0.0016	0.0342	0.282857	12.8	0.6	0.551	0.615	0.687
DJ108 16	461	0.28286	0.00002	0.0024	0.0527	0.282839	12.5	0.7	0.578	0.644	0.722
DJ108 17	455	0.28288	0.00002	0.0013	0.0270	0.282869	13.4	0.8	0.532	0.581	0.634
DJ108 18	450	0.28290	0.00002	0.0017	0.0351	0.282886	13.9	0.7	0.509	0.545	0.586
DJ108 19	451	0.28290	0.00002	0.0011	0.0271	0.282891	14.1	0.6	0.501	0.533	0.568
DJ108 20	458	0.28292	0.00002	0.0012	0.0250	0.282910	15.0	0.6	0.474	0.485	0.497
DJ108 21	450	0.28285	0.00002	0.0009	0.0183	0.282842	12.4	0.6	0.569	0.644	0.727
DJ108 22	459	0.28289	0.00001	0.0007	0.0163	0.282884	14.1	0.5	0.510	0.543	0.579
DJ108 23	481	0.28287	0.00001	0.0005	0.0094	0.282865	13.9	0.5	0.535	0.571	0.610
DJ108 24	485	0.28284	0.00002	0.0022	0.0524	0.282820	12.4	0.6	0.604	0.673	0.753
DJ108 25	458	0.28288	0.00002	0.0011	0.0223	0.282871	13.6	0.5	0.529	0.575	0.625
DJ108 26	455	0.28288	0.00002	0.0011	0.0265	0.282871	13.5	0.6	0.529	0.577	0.628
DJ108 29	461	0.28289	0.00002	0.0024	0.0565	0.282869	13.6	0.6	0.534	0.576	0.625
DJ108 30	431	0.28293	0.00003	0.0012	0.0238	0.282920	14.7	1.0	0.459	0.479	0.499
DJ108 31	528	0.28282	0.00002	0.0016	0.0359	0.282804	12.8	0.6	0.623	0.681	0.746
DJ108 32	462	0.28287	0.00002	0.0015	0.0348	0.282857	13.2	0.6	0.549	0.603	0.663
DJ108 33	447	0.28288	0.00001	0.0012	0.0246	0.282870	13.3	0.5	0.531	0.583	0.641
DJ108 34	455	0.28291	0.00002	0.0018	0.0376	0.282895	14.4	0.6	0.496	0.522	0.550
DJ108 35	467	0.28287	0.00002	0.0006	0.0112	0.282865	13.6	0.6	0.536	0.582	0.631
DJ108 36	467	0.28287	0.00002	0.0013	0.0301	0.282859	13.3	0.7	0.546	0.596	0.651
DJ108 37	476	0.28288	0.00001	0.0012	0.0278	0.282869	13.9	0.4	0.531	0.566	0.604
DJ108 38	465	0.28289	0.00002	0.0009	0.0185	0.282882	14.1	0.6	0.512	0.544	0.577
DJ108 39	471	0.28287	0.00001	0.0006	0.0138	0.282865	13.7	0.5	0.536	0.580	0.626
DJ108 40	459	0.28291	0.00002	0.0012	0.0249	0.282900	14.6	0.6	0.488	0.508	0.528
DJ108 41	465	0.28286	0.00001	0.0012	0.0233	0.282850	13.0	0.5	0.559	0.618	0.684
DJ108 42	454	0.28286	0.00001	0.0016	0.0383	0.282846	12.6	0.4	0.565	0.633	0.709

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_{i}$	εHf(t)	1σ	T_{DM}	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ108 43	485	0.28285	0.00002	0.0023	0.0581	0.282829	12.7	0.5	0.591	0.652	0.723
DJ108 44	450	0.28286	0.00002	0.0027	0.0672	0.282837	12.2	0.6	0.583	0.656	0.744
DJ108 45	460	0.28289	0.00001	0.0014	0.0282	0.282878	13.9	0.5	0.519	0.557	0.598
DJ108 46	455	0.28288	0.00001	0.0009	0.0226	0.282872	13.6	0.5	0.526	0.573	0.623
DJ108 47	467	0.28287	0.00001	0.0010	0.0240	0.282861	13.4	0.5	0.542	0.590	0.643
DJ108 48	484	0.28288	0.00001	0.0013	0.0305	0.282868	14.1	0.5	0.532	0.563	0.597
DJ108 49	487	0.28287	0.00001	0.0007	0.0138	0.282864	14.0	0.5	0.538	0.572	0.608
DJ108 50	471	0.28292	0.00002	0.0015	0.0347	0.282907	15.1	0.6	0.477	0.483	0.489
DJ108 51	449	0.28291	0.00002	0.0020	0.0456	0.282893	14.2	0.5	0.499	0.529	0.563
DJ108 52	454	0.28290	0.00002	0.0011	0.0243	0.282891	14.2	0.5	0.501	0.531	0.565
DJ108 53	471	0.28284	0.00002	0.0004	0.0074	0.282836	12.7	0.6	0.575	0.644	0.718
DJ108 54	482	0.28286	0.00002	0.0009	0.0166	0.282852	13.4	0.5	0.555	0.602	0.653
DJ108 55	467	0.28289	0.00001	0.0008	0.0179	0.282883	14.2	0.5	0.511	0.540	0.572
DJ108 56	486	0.28286	0.00001	0.0012	0.0295	0.282849	13.4	0.5	0.559	0.606	0.657
DJ108 57	442	0.28290	0.00002	0.0010	0.0228	0.282892	14.0	0.6	0.499	0.537	0.577
DJ108 58	491	0.28287	0.00001	0.0009	0.0217	0.282862	14.0	0.4	0.541	0.573	0.609
DJ108 59	485	0.28291	0.00001	0.0023	0.0573	0.282889	14.8	0.5	0.503	0.515	0.527
DJ108 60	493	0.28289	0.00001	0.0016	0.0372	0.282875	14.5	0.5	0.522	0.541	0.562
DJ188											
DJ188 02	442	0.28294	0.00003	0.0034	0.0749	0.282912	14.7	1.0	0.473	0.491	0.512
DJ188 04	418	0.28291	0.00002	0.0027	0.0608	0.282889	13.3	0.9	0.508	0.559	0.619
DJ188 06	449	0.28293	0.00003	0.0026	0.0508	0.282908	14.7	0.9	0.477	0.495	0.514
DJ188 09	432	0.28297	0.00003	0.0026	0.0591	0.282949	15.8	1.1	0.418	0.412	0.404
DJ188 11	379	0.28297	0.00003	0.0036	0.0858	0.282944	14.4	0.9	0.430	0.457	0.491
DJ188 12	409	0.28295	0.00002	0.0009	0.0199	0.282943	15.1	0.8	0.427	0.441	0.454
DJ188 15	442	0.28287	0.00003	0.0017	0.0339	0.282856	12.7	1.0	0.552	0.619	0.694
DJ188 16	427	0.28296	0.00003	0.0024	0.0536	0.282941	15.4	0.9	0.430	0.434	0.437
DJ188 17	400	0.28299	0.00003	0.0018	0.0387	0.282977	16.0	1.1	0.380	0.370	0.357
DJ188 18	427	0.28308	0.00004	0.0041	0.1081	0.283047	19.1	1.5	0.265	0.190	0.088
DJ188 19	412	0.28300	0.00003	0.0036	0.0818	0.282972	16.2	1.2	0.384	0.372	0.355
DJ188 20	418	0.28294	0.00003	0.0022	0.0480	0.282923	14.5	0.9	0.457	0.481	0.508
DJ188 26	410	0.28291	0.00002	0.0010	0.0203	0.282902	13.6	0.7	0.485	0.533	0.586

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ188 29	434	0.28293	0.00003	0.0020	0.0438	0.282914	14.6	0.9	0.469	0.492	0.516
DJ188 31	431	0.28291	0.00003	0.0016	0.0341	0.282897	13.9	1.0	0.493	0.532	0.575
DJ188 32	416	0.28293	0.00004	0.0053	0.1416	0.282889	13.3	1.3	0.516	0.561	0.622
DJ188 33	412	0.28290	0.00003	0.0024	0.0555	0.282881	12.9	1.1	0.519	0.580	0.651
DJ188 34	416	0.28289	0.00002	0.0009	0.0187	0.282883	13.1	0.8	0.512	0.574	0.641
DJ188 35	394	0.28295	0.00002	0.0022	0.0485	0.282934	14.4	0.9	0.443	0.472	0.505
DJ188 37	423	0.28288	0.00003	0.0021	0.0455	0.282863	12.5	1.1	0.544	0.614	0.695
DJ188 39	397	0.28292	0.00002	0.0020	0.0465	0.282905	13.4	0.7	0.484	0.535	0.594
DJ188 40	386	0.28295	0.00003	0.0012	0.0272	0.282941	14.5	0.9	0.431	0.460	0.491
DJ188 41	396	0.28295	0.00002	0.0023	0.0542	0.282933	14.4	0.8	0.444	0.472	0.505
DJ188 43	398	0.28293	0.00004	0.0038	0.1011	0.282902	13.3	1.3	0.494	0.543	0.604
DJ188 45	398	0.28292	0.00002	0.0020	0.0437	0.282905	13.5	0.8	0.484	0.535	0.593
DJ188 47	410	0.28288	0.00003	0.0016	0.0349	0.282868	12.4	0.9	0.536	0.612	0.699
DJ188 48	412	0.28283	0.00002	0.0017	0.0318	0.282817	10.7	0.6	0.610	0.727	0.861
DJ188 51	439	0.28289	0.00003	0.0018	0.0354	0.282875	13.3	1.0	0.525	0.577	0.635
DJ188 54	411	0.28295	0.00003	0.0025	0.0567	0.282931	14.7	1.0	0.446	0.468	0.492
DJ188 55	390	0.28292	0.00002	0.0009	0.0198	0.282913	13.6	0.6	0.470	0.521	0.577
DJ188 58	414	0.28294	0.00002	0.0016	0.0344	0.282928	14.6	0.6	0.450	0.473	0.498
DJ188 59	425	0.28296	0.00003	0.0052	0.1166	0.282919	14.5	0.9	0.466	0.486	0.513
DJ188 60	487	0.28292	0.00003	0.0018	0.0405	0.282904	15.4	0.9	0.481	0.480	0.477
DJ188 61	440	0.28290	0.00002	0.0017	0.0396	0.282886	13.7	0.8	0.509	0.551	0.599
DJ188 62	401	0.28297	0.00002	0.0022	0.0473	0.282953	15.2	0.8	0.413	0.422	0.431
DJ188 63	394	0.28294	0.00002	0.0032	0.0686	0.282916	13.8	0.7	0.470	0.512	0.562
DJ188 65	407	0.28293	0.00002	0.0019	0.0423	0.282916	14.0	0.7	0.468	0.505	0.547
DJ188 66	416	0.28296	0.00003	0.0022	0.0500	0.282943	15.2	1.0	0.428	0.437	0.446
DJ188 67	415	0.28290	0.00002	0.0014	0.0311	0.282889	13.3	0.6	0.505	0.560	0.622
DJ192											
DJ192 01	465	0.28293	0.00002	0.0015	0.0285	0.282917	15.4	0.8	0.463	0.464	0.464
DJ192 02	487	0.28287	0.00002	0.0007	0.0138	0.282864	14.0	0.8	0.538	0.572	0.608
DJ192 03	469	0.28291	0.00002	0.0008	0.0157	0.282903	15.0	0.6	0.483	0.493	0.504
DJ192 04	491	0.28292	0.00002	0.0008	0.0156	0.282913	15.8	0.8	0.469	0.457	0.442
DJ192 05	481	0.28291	0.00002	0.0020	0.0400	0.282892	14.8	0.8	0.499	0.511	0.523

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ192 07	447	0.28285	0.00002	0.0013	0.0303	0.282839	12.2	0.9	0.575	0.654	0.742
DJ192 08	450	0.28290	0.00003	0.0017	0.0316	0.282886	13.9	0.9	0.509	0.545	0.586
DJ192 09	470	0.28292	0.00002	0.0014	0.0273	0.282908	15.2	0.8	0.476	0.482	0.487
DJ192 10	459	0.28295	0.00002	0.0024	0.0500	0.282929	15.7	0.8	0.445	0.440	0.431
DJ192 11	446	0.28292	0.00002	0.0008	0.0161	0.282913	14.8	0.6	0.469	0.485	0.501
DJ192 12	452	0.28289	0.00002	0.0016	0.0311	0.282876	13.6	0.6	0.522	0.565	0.614
DJ192 13	456	0.28292	0.00002	0.0013	0.0245	0.282909	14.9	0.8	0.475	0.488	0.502
DJ192 14	466	0.28296	0.00003	0.0011	0.0192	0.282950	16.6	0.9	0.415	0.387	0.353
DJ192 15	455	0.28288	0.00002	0.0011	0.0209	0.282871	13.5	0.8	0.529	0.577	0.628
DJ192 16	451	0.28292	0.00002	0.0018	0.0389	0.282905	14.6	0.8	0.481	0.501	0.522
DJ192 17	474	0.28292	0.00003	0.0011	0.0235	0.282910	15.3	0.9	0.472	0.474	0.473
DJ192 18	438	0.28289	0.00002	0.0011	0.0225	0.282881	13.5	0.8	0.515	0.564	0.618
DJ192 19	453	0.28297	0.00002	0.0042	0.1051	0.282934	15.7	0.8	0.437	0.432	0.423
DJ192 20	445	0.28289	0.00002	0.0010	0.0206	0.282882	13.7	0.7	0.514	0.558	0.606
DJ192 21	450	0.28293	0.00002	0.0019	0.0400	0.282914	14.9	0.8	0.468	0.481	0.494
DJ192 22	445	0.28293	0.00002	0.0014	0.0273	0.282918	15.0	0.8	0.462	0.474	0.486
DJ192 23	447	0.28293	0.00002	0.0015	0.0320	0.282917	15.0	0.6	0.463	0.475	0.487
DJ192 24	450	0.28295	0.00002	0.0012	0.0228	0.282940	15.8	0.8	0.431	0.421	0.409
DJ192 25	453	0.28292	0.00002	0.0012	0.0254	0.282910	14.8	0.9	0.474	0.488	0.503
DJ192 26	478	0.28293	0.00002	0.0012	0.0249	0.282919	15.7	0.8	0.459	0.450	0.438
DJ192 27	442	0.28290	0.00002	0.0013	0.0280	0.282889	13.9	0.7	0.503	0.543	0.585
DJ192 28	485	0.28289	0.00003	0.0013	0.0225	0.282878	14.4	1.1	0.518	0.540	0.563
DJ192 29	463	0.28286	0.00002	0.0013	0.0279	0.282849	12.9	0.9	0.561	0.621	0.689
DJ192 30	461	0.28296	0.00002	0.0023	0.0444	0.282940	16.1	0.8	0.429	0.414	0.393
DJ192 31	465	0.28298	0.00002	0.0009	0.0173	0.282972	17.3	0.9	0.385	0.337	0.283
DJ192 32	454	0.28296	0.00002	0.0010	0.0207	0.282951	16.3	0.8	0.414	0.392	0.366
DJ192 33	488	0.28295	0.00003	0.0017	0.0322	0.282934	16.5	1.1	0.437	0.409	0.375
DJ192 34	461	0.28296	0.00003	0.0015	0.0276	0.282947	16.3	1.1	0.420	0.398	0.371
DJ192 35	454	0.28295	0.00002	0.0010	0.0191	0.282941	16.0	0.8	0.428	0.415	0.398
DJ192 36	436	0.28289	0.00002	0.0015	0.0300	0.282878	13.3	0.7	0.521	0.573	0.631
DJ192 37	437	0.28288	0.00002	0.0008	0.0140	0.282873	13.2	0.8	0.525	0.582	0.644
DJ192 38	450	0.28290	0.00002	0.0012	0.0230	0.282890	14.1	0.7	0.502	0.536	0.572

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ192 40	450	0.28289	0.00002	0.0011	0.0223	0.282881	13.8	0.7	0.515	0.557	0.602
DJ192 41	454	0.28297	0.00003	0.0012	0.0214	0.282960	16.6	0.9	0.402	0.373	0.338
DJ192 42	456	0.28287	0.00002	0.0008	0.0156	0.282863	13.3	0.8	0.539	0.593	0.651
DJ192 43	467	0.28295	0.00003	0.0010	0.0187	0.282941	16.3	1.1	0.428	0.407	0.381
DJ192 44	454	0.28296	0.00003	0.0016	0.0319	0.282946	16.2	1.1	0.421	0.404	0.382
DJ192 45	497	0.28291	0.00003	0.0011	0.0201	0.282900	15.5	0.9	0.487	0.482	0.476
DJ192 46	453	0.28291	0.00002	0.0017	0.0323	0.282896	14.3	0.8	0.494	0.521	0.550
DJ192 47	460	0.28291	0.00002	0.0011	0.0192	0.282901	14.7	0.7	0.487	0.505	0.524
DJ192 48	465	0.28286	0.00002	0.0007	0.0117	0.282854	13.1	0.7	0.552	0.608	0.669
DJ192 49	433	0.28287	0.00002	0.0014	0.0320	0.282859	12.6	0.8	0.548	0.618	0.697
DJ192 50	429	0.28292	0.00003	0.0008	0.0150	0.282914	14.5	1.0	0.469	0.495	0.524
DJ192 51	465	0.28299	0.00003	0.0013	0.0247	0.282979	17.6	1.2	0.374	0.322	0.261
DJ192 52	442	0.28289	0.00002	0.0008	0.0154	0.282883	13.7	0.6	0.511	0.556	0.604
DJ192 53	438	0.28287	0.00002	0.0016	0.0360	0.282857	12.6	0.9	0.551	0.619	0.696
DJ192 54	443	0.28291	0.00003	0.0020	0.0439	0.282893	14.0	0.9	0.499	0.532	0.570
DJ192 55	482	0.28294	0.00002	0.0008	0.0163	0.282933	16.3	0.8	0.440	0.417	0.389
DJ192 56	477	0.28287	0.00003	0.0009	0.0191	0.282862	13.7	0.9	0.541	0.582	0.627
DJ192 57	485	0.28292	0.00002	0.0030	0.0683	0.282893	15.0	0.6	0.498	0.506	0.516
DJ192 58	445	0.28294	0.00003	0.0019	0.0357	0.282924	15.2	1.2	0.453	0.461	0.467
DJ192 59	452	0.28295	0.00003	0.0013	0.0251	0.282939	15.9	0.9	0.432	0.422	0.409
DJ192 60	485	0.28294	0.00002	0.0011	0.0204	0.282930	16.3	0.8	0.444	0.421	0.394
DJ192 61	441	0.28289	0.00003	0.0015	0.0333	0.282878	13.4	1.0	0.521	0.570	0.625
DJ192 62	440	0.28288	0.00002	0.0014	0.0310	0.282868	13.1	0.7	0.534	0.591	0.656
DJ192 63	467	0.28294	0.00002	0.0014	0.0254	0.282928	15.8	0.7	0.447	0.438	0.426
DJ192 64	457	0.28290	0.00002	0.0018	0.0362	0.282885	14.0	0.7	0.510	0.543	0.580
DJ192 65	461	0.28291	0.00002	0.0012	0.0225	0.282900	14.7	0.7	0.488	0.506	0.526
DJ192 66	449	0.28286	0.00002	0.0022	0.0472	0.282842	12.3	0.6	0.575	0.647	0.731
DJ192 67	449	0.28288	0.00002	0.0008	0.0155	0.282873	13.5	0.7	0.525	0.574	0.628
DJ192 68	487	0.28283	0.00002	0.0012	0.0234	0.282819	12.4	0.7	0.602	0.674	0.753
DJ15											
DJ15 01	322	0.28302	0.00002	0.0010	0.0197	0.283014	15.6	0.6	0.329	0.335	0.341
DJ15 02	304	0.28289	0.00002	0.0018	0.0390	0.282880	10.5	0.9	0.525	0.653	0.802

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	T_{DM}	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ15 03	318	0.28296	0.00002	0.0021	0.0509	0.282948	13.2	0.7	0.427	0.490	0.563
DJ15 04	329	0.28279	0.00003	0.0015	0.0348	0.282781	7.5	1.0	0.664	0.862	1.088
DJ15 05	415	0.28292	0.00002	0.0019	0.0465	0.282905	13.8	0.8	0.483	0.524	0.570
DJ15 06	309	0.28294	0.00002	0.0021	0.0478	0.282928	12.3	0.9	0.456	0.540	0.639
DJ15 07	343	0.28270	0.00003	0.0007	0.0161	0.282696	4.8	1.0	0.777	1.047	1.344
DJ15 08	465	0.28295	0.00003	0.0012	0.0268	0.282940	16.2	1.0	0.431	0.412	0.390
DJ15 09	315	0.28300	0.00002	0.0024	0.0533	0.282986	14.5	0.7	0.371	0.404	0.442
DJ15 10	330	0.28284	0.00002	0.0010	0.0218	0.282834	9.4	0.7	0.585	0.741	0.916
DJ15 11	317	0.28294	0.00003	0.0015	0.0306	0.282931	12.6	0.9	0.449	0.528	0.618
DJ15 12	323	0.28293	0.00002	0.0009	0.0209	0.282925	12.5	0.7	0.456	0.539	0.631
DJ15 13	344	0.28298	0.00002	0.0010	0.0217	0.282974	14.7	0.7	0.386	0.413	0.443
DJ15 16	348	0.28297	0.00002	0.0012	0.0254	0.282962	14.4	0.7	0.402	0.437	0.475
DJ15 17	306	0.28296	0.00003	0.0019	0.0436	0.282949	13.0	1.1	0.424	0.494	0.574
DJ15 19	320	0.28299	0.00003	0.0024	0.0590	0.282976	14.2	0.9	0.386	0.424	0.469
DJ15 20	368	0.28293	0.00002	0.0012	0.0258	0.282922	13.4	0.8	0.459	0.516	0.579
DJ15 22	332	0.28291	0.00002	0.0022	0.0504	0.282896	11.7	0.8	0.501	0.598	0.710
DJ15 23	322	0.28305	0.00003	0.0014	0.0315	0.283042	16.6	1.0	0.289	0.272	0.250
DJ15 24	351	0.28299	0.00002	0.0009	0.0177	0.282984	15.2	0.8	0.370	0.385	0.399
DJ15 27	330	0.28297	0.00002	0.0021	0.0462	0.282957	13.8	0.7	0.412	0.460	0.516
DJ15 28	390	0.28296	0.00003	0.0004	0.0090	0.282957	15.1	0.9	0.408	0.421	0.434
DJ15 29	428	0.28292	0.00002	0.0003	0.0056	0.282918	14.6	0.8	0.462	0.487	0.512
DJ15 30	311	0.28290	0.00002	0.0017	0.0381	0.282890	11.0	0.8	0.509	0.625	0.759
DJ15 32	313	0.28284	0.00002	0.0019	0.0443	0.282829	8.9	0.9	0.599	0.763	0.954
DJ15 34	312	0.28298	0.00003	0.0017	0.0377	0.282970	13.9	1.0	0.393	0.442	0.497
DJ15 35	321	0.28299	0.00002	0.0014	0.0334	0.282982	14.5	0.7	0.375	0.410	0.448
DJ15 36	318	0.28295	0.00003	0.0021	0.0478	0.282938	12.8	1.2	0.441	0.513	0.595
DJ15 37	304	0.28299	0.00002	0.0016	0.0314	0.282981	14.1	0.8	0.378	0.422	0.473
DJ15 38	327	0.28299	0.00002	0.0021	0.0501	0.282977	14.4	0.8	0.383	0.416	0.454
DJ15 39	364	0.28299	0.00002	0.0020	0.0487	0.282976	15.2	0.7	0.382	0.394	0.407
DJ15 40	328	0.28297	0.00002	0.0035	0.0841	0.282949	13.5	0.8	0.428	0.481	0.546
DJ15 41	434	0.28293	0.00002	0.0006	0.0130	0.282925	15.0	0.6	0.452	0.466	0.479
DJ15 42	339	0.28298	0.00002	0.0009	0.0185	0.282974	14.6	0.8	0.385	0.415	0.447

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ15 43	320	0.28285	0.00002	0.0015	0.0329	0.282841	9.5	0.7	0.578	0.731	0.906
DJ15 44	336	0.28279	0.00003	0.0013	0.0295	0.282782	7.7	1.1	0.661	0.855	1.076
DJ15 45	446	0.28293	0.00002	0.0010	0.0191	0.282922	15.1	0.7	0.457	0.466	0.474
DJ15 46	310	0.28298	0.00002	0.0019	0.0403	0.282969	13.8	0.8	0.395	0.446	0.504
DJ15 47	341	0.28293	0.00002	0.0008	0.0150	0.282925	12.9	0.7	0.454	0.527	0.606
DJ15 48	313	0.28287	0.00003	0.0017	0.0357	0.282860	10.0	1.0	0.552	0.692	0.853
DJ15 49	328	0.28296	0.00002	0.0007	0.0144	0.282956	13.7	0.6	0.411	0.465	0.523
DJ15 50	325	0.28302	0.00002	0.0015	0.0305	0.283011	15.6	0.6	0.333	0.340	0.347
DJ15 51	377	0.28293	0.00002	0.0008	0.0185	0.282924	13.7	0.6	0.454	0.504	0.559
DJ15 52	309	0.28294	0.00002	0.0011	0.0222	0.282934	12.5	0.6	0.444	0.527	0.620
DJ15 53	423	0.28290	0.00002	0.0013	0.0313	0.282890	13.5	0.8	0.503	0.554	0.610
DJ15 55	426	0.28291	0.00002	0.0011	0.0261	0.282901	13.9	0.7	0.487	0.526	0.568
DJ15 56	446	0.28290	0.00002	0.0008	0.0190	0.282893	14.1	0.6	0.497	0.531	0.567
DJ15 57	312	0.28288	0.00002	0.0022	0.0493	0.282867	10.2	0.8	0.545	0.677	0.832
DJ15 58	414	0.28289	0.00002	0.0008	0.0156	0.282884	13.1	0.5	0.511	0.573	0.641
DJ15 59	330	0.28291	0.00002	0.0017	0.0420	0.282900	11.8	0.7	0.494	0.592	0.703
DJ15 61	439	0.28288	0.00002	0.0009	0.0200	0.282873	13.2	0.5	0.526	0.583	0.644
DJ15 62	331	0.28290	0.00002	0.0034	0.0860	0.282879	11.1	0.7	0.534	0.638	0.768
DJ15 63	409	0.28290	0.00002	0.0009	0.0182	0.282893	13.3	0.6	0.498	0.555	0.617
DJ15 64	341	0.28297	0.00001	0.0007	0.0132	0.282966	14.3	0.5	0.397	0.434	0.473
DJ15 65	307	0.28293	0.00002	0.0016	0.0359	0.282921	12.0	0.6	0.464	0.558	0.664
DJ15 66	316	0.28292	0.00002	0.0013	0.0275	0.282912	11.9	0.6	0.475	0.571	0.680
DJ15 67	425	0.28288	0.00002	0.0009	0.0210	0.282873	12.9	0.6	0.526	0.591	0.662
DJ15 68	312	0.28293	0.00002	0.0015	0.0332	0.282921	12.1	0.5	0.463	0.554	0.656
DJ15 69	327	0.28294	0.00001	0.0008	0.0186	0.282935	13.0	0.5	0.440	0.512	0.591
DJ15 70	433	0.28290	0.00001	0.0006	0.0127	0.282895	13.9	0.5	0.494	0.535	0.578
DJ15 72	411	0.28291	0.00002	0.0008	0.0193	0.282904	13.7	0.7	0.483	0.529	0.580
DJ15 73	346	0.28293	0.00001	0.0007	0.0146	0.282925	13.0	0.5	0.453	0.522	0.597
DJ149											
DJ149 01	385	0.28289	0.00002	0.0031	0.0752	0.282868	11.9	0.7	0.544	0.629	0.732
DJ149 02	391	0.28293	0.00003	0.0028	0.0674	0.282910	13.5	0.9	0.480	0.529	0.588
DJ149 03	422	0.28287	0.00002	0.0012	0.0272	0.282861	12.4	0.8	0.545	0.621	0.706

MECANISMES ET EVOLUTION DES CHAINES D'ACCRETION EN ASIE CENTRALE

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	176Lu/177Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_{i}$	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ149 04	480	0.28288	0.00003	0.0021	0.0480	0.282861	13.7	1.0	0.544	0.582	0.626
DJ149 06	422	0.28292	0.00003	0.0027	0.0645	0.282899	13.8	1.0	0.493	0.534	0.582
DJ149 07	444	0.28293	0.00002	0.0012	0.0274	0.282920	15.0	0.8	0.459	0.471	0.482
DJ149 09	407	0.28290	0.00002	0.0018	0.0405	0.282886	13.0	0.8	0.510	0.572	0.642
DJ149 10	402	0.28292	0.00002	0.0022	0.0503	0.282903	13.5	0.8	0.487	0.536	0.593
DJ149 11	413	0.28295	0.00002	0.0029	0.0687	0.282928	14.6	0.8	0.451	0.474	0.500
DJ149 12	422	0.28287	0.00002	0.0020	0.0463	0.282854	12.2	0.9	0.557	0.636	0.726
DJ149 13	398	0.28288	0.00003	0.0019	0.0449	0.282866	12.1	1.0	0.541	0.625	0.721
DJ149 14	421	0.28297	0.00003	0.0025	0.0588	0.282950	15.6	1.0	0.417	0.416	0.415
DJ149 15	400	0.28292	0.00002	0.0020	0.0460	0.282905	13.5	0.7	0.484	0.534	0.591
DJ149 16	394	0.28287	0.00003	0.0025	0.0591	0.282852	11.5	0.9	0.565	0.660	0.773
DJ149 18	387	0.28292	0.00002	0.0036	0.0835	0.282894	12.8	0.8	0.506	0.568	0.644
DJ149 19	383	0.28292	0.00002	0.0024	0.0572	0.282903	13.1	0.9	0.489	0.550	0.621
DJ149 20	402	0.28290	0.00002	0.0022	0.0490	0.282883	12.8	0.7	0.516	0.582	0.658
DJ149 21	390	0.28294	0.00003	0.0026	0.0636	0.282921	13.9	0.9	0.462	0.504	0.552
DJ149 22	392	0.28290	0.00002	0.0026	0.0614	0.282881	12.5	0.7	0.522	0.594	0.680
DJ149 23	413	0.28292	0.00002	0.0024	0.0563	0.282901	13.7	0.8	0.489	0.533	0.585
DJ149 24	409	0.28290	0.00002	0.0024	0.0565	0.282882	12.9	0.8	0.519	0.581	0.655
DJ149 25	395	0.28290	0.00003	0.0029	0.0697	0.282879	12.5	0.9	0.526	0.597	0.684
DJ149 26	409	0.28290	0.00002	0.0021	0.0505	0.282884	13.0	0.8	0.515	0.576	0.647
DJ149 27	397	0.28292	0.00003	0.0020	0.0463	0.282905	13.4	0.9	0.484	0.535	0.594
DJ149 28	423	0.28291	0.00002	0.0021	0.0476	0.282893	13.6	0.7	0.500	0.545	0.598
DJ149 29	389	0.28289	0.00002	0.0020	0.0439	0.282875	12.2	0.7	0.528	0.608	0.702
DJ149 30	409	0.28294	0.00002	0.0031	0.0742	0.282916	14.1	0.7	0.469	0.502	0.542
DJ149 31	394	0.28293	0.00002	0.0029	0.0687	0.282909	13.5	0.9	0.481	0.529	0.587
DJ149 32	373	0.28293	0.00002	0.0026	0.0588	0.282912	13.2	0.8	0.477	0.536	0.605
DJ149 34	447	0.28290	0.00002	0.0020	0.0460	0.282883	13.8	0.8	0.513	0.553	0.598
DJ149 35	408	0.28297	0.00003	0.0039	0.0950	0.282940	14.9	0.9	0.433	0.448	0.465
DJ149 36	421	0.28288	0.00002	0.0021	0.0454	0.282863	12.5	0.8	0.544	0.615	0.698
DJ149 37	440	0.28294	0.00002	0.0016	0.0350	0.282927	15.2	0.8	0.450	0.458	0.465
DJ149 38	399	0.28294	0.00002	0.0028	0.0662	0.282919	14.0	0.8	0.465	0.502	0.546
DJ149 39	409	0.28292	0.00002	0.0029	0.0692	0.282898	13.5	0.8	0.496	0.544	0.602

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ149 40	415	0.28301	0.00002	0.0028	0.0669	0.282988	16.8	0.8	0.360	0.333	0.298
DJ149 41	393	0.28291	0.00002	0.0025	0.0588	0.282892	12.9	0.8	0.505	0.569	0.644
DJ149 43	419	0.28294	0.00002	0.0019	0.0433	0.282925	14.6	0.8	0.453	0.475	0.500
DJ149 44	401	0.28292	0.00002	0.0026	0.0594	0.282900	13.4	0.7	0.492	0.543	0.604
DJ149 45	436	0.28294	0.00002	0.0021	0.0496	0.282923	14.9	0.7	0.456	0.470	0.484
DJ149 46	456	0.28293	0.00002	0.0026	0.0592	0.282908	14.8	0.8	0.477	0.491	0.506
DJ149 47	404	0.28289	0.00002	0.0029	0.0679	0.282868	12.3	0.8	0.541	0.616	0.706
DJ149 48	400	0.28296	0.00002	0.0034	0.0803	0.282935	14.6	0.8	0.442	0.466	0.494
DJ149 50	386	0.28294	0.00002	0.0019	0.0441	0.282926	14.0	0.8	0.453	0.494	0.540
DJ149 51	403	0.28295	0.00002	0.0027	0.0647	0.282930	14.4	0.8	0.449	0.476	0.506
DJ149 52	381	0.28294	0.00002	0.0024	0.0543	0.282923	13.7	0.6	0.460	0.505	0.558
DJ149 53	397	0.28289	0.00002	0.0019	0.0442	0.282876	12.4	0.5	0.526	0.602	0.690
DJ149 54	376	0.28297	0.00002	0.0023	0.0540	0.282954	14.7	0.8	0.414	0.438	0.464
DJ149 56	403	0.28293	0.00002	0.0020	0.0469	0.282915	13.9	0.5	0.469	0.509	0.554
DJ149 57	388	0.28293	0.00002	0.0019	0.0434	0.282916	13.6	0.6	0.468	0.516	0.571
DJ325											
DJ325 01	426	0.28291	0.00003	0.0015	0.0335	0.282898	13.8	1.0	0.492	0.533	0.578
DJ325 02	428	0.28289	0.00003	0.0011	0.0219	0.282881	13.3	0.9	0.515	0.570	0.631
DJ325 03	429	0.28290	0.00002	0.0010	0.0193	0.282892	13.7	0.8	0.499	0.545	0.594
DJ325 04	430	0.28299	0.00003	0.0030	0.0651	0.282966	16.3	1.0	0.392	0.375	0.351
DJ325 05	417	0.28293	0.00002	0.0013	0.0246	0.282920	14.4	0.8	0.461	0.489	0.519
DJ325 06	411	0.28289	0.00002	0.0012	0.0231	0.282881	12.9	0.8	0.516	0.582	0.655
DJ325 10	399	0.28290	0.00002	0.0016	0.0315	0.282888	12.9	0.6	0.508	0.573	0.647
DJ325 11	412	0.28298	0.00003	0.0009	0.0176	0.282973	16.2	1.0	0.385	0.370	0.352
DJ325 12	424	0.28284	0.00003	0.0012	0.0229	0.282830	11.4	1.0	0.588	0.688	0.801
DJ325 13	419	0.28294	0.00002	0.0011	0.0246	0.282931	14.9	0.9	0.444	0.461	0.479
DJ325 14	423	0.28299	0.00003	0.0014	0.0280	0.282979	16.6	1.1	0.375	0.350	0.318
DJ325 17	396	0.28288	0.00002	0.0013	0.0262	0.282870	12.2	0.8	0.532	0.615	0.709
DJ325 18	424	0.28289	0.00002	0.0014	0.0306	0.282879	13.1	0.8	0.519	0.578	0.643
DJ325 19	407	0.28287	0.00003	0.0010	0.0190	0.282862	12.2	1.0	0.542	0.627	0.720
DJ325 20	415	0.28288	0.00003	0.0014	0.0270	0.282869	12.6	0.9	0.534	0.606	0.687
DJ325 21	419	0.28289	0.00003	0.0016	0.0318	0.282877	13.0	0.9	0.522	0.584	0.655

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_{i}$	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{\ LC}$
DJ325 23	442	0.28285	0.00002	0.0010	0.0218	0.282842	12.2	0.8	0.570	0.651	0.740
DJ325 24	425	0.28285	0.00002	0.0008	0.0145	0.282844	11.9	0.7	0.567	0.658	0.757
DJ325 26	451	0.28295	0.00003	0.0010	0.0209	0.282942	15.9	1.0	0.428	0.417	0.402
DJ325 27	432	0.28286	0.00002	0.0015	0.0332	0.282848	12.2	0.6	0.564	0.644	0.734
DJ325 29	426	0.28286	0.00002	0.0010	0.0188	0.282852	12.2	0.6	0.556	0.638	0.728
DJ325 30	425	0.28288	0.00002	0.0009	0.0180	0.282873	12.9	0.7	0.526	0.591	0.662
DJ325 31	426	0.28285	0.00002	0.0015	0.0309	0.282838	11.7	0.7	0.578	0.670	0.774
DJ325 32	433	0.28287	0.00002	0.0011	0.0204	0.282861	12.7	0.7	0.543	0.613	0.689
DJ325 33	435	0.28288	0.00002	0.0014	0.0268	0.282869	13.0	0.7	0.534	0.594	0.662
DJ325 34	439	0.28287	0.00002	0.0011	0.0205	0.282861	12.8	0.7	0.543	0.609	0.682
DJ325 35	453	0.28286	0.00002	0.0014	0.0266	0.282848	12.7	0.7	0.562	0.629	0.704
DJ325 36	436	0.28289	0.00002	0.0009	0.0174	0.282883	13.5	0.6	0.512	0.561	0.615
DJ325 37	422	0.28288	0.00002	0.0015	0.0321	0.282868	12.7	0.8	0.535	0.604	0.681
DJ325 38	457	0.28279	0.00003	0.0008	0.0147	0.282783	10.5	1.0	0.652	0.775	0.910
DJ325 39	465	0.28279	0.00002	0.0012	0.0223	0.282780	10.5	0.7	0.659	0.778	0.911
DJ325 40	440	0.28285	0.00002	0.0012	0.0250	0.282840	12.1	0.6	0.573	0.656	0.748
DJ259											
DJ259 01	337	0.28293	0.00002	0.0029	0.0695	0.282912	12.4	0.8	0.481	0.559	0.654
DJ259 02	338	0.28295	0.00002	0.0031	0.0730	0.282930	13.0	0.7	0.454	0.516	0.592
DJ259 03	336	0.28289	0.00002	0.0021	0.0526	0.282877	11.1	0.7	0.529	0.639	0.768
DJ259 04	335	0.28289	0.00002	0.0022	0.0533	0.282876	11.1	0.8	0.531	0.641	0.772
DJ259 06	337	0.28297	0.00002	0.0022	0.0524	0.282956	13.9	0.6	0.413	0.458	0.509
DJ259 07	337	0.28294	0.00002	0.0016	0.0390	0.282930	13.0	0.6	0.450	0.518	0.595
DJ259 08	332	0.28298	0.00002	0.0019	0.0461	0.282968	14.2	0.6	0.395	0.433	0.477
DJ259 11	329	0.28293	0.00001	0.0011	0.0256	0.282923	12.6	0.5	0.458	0.538	0.627
DJ259 12	340	0.28291	0.00002	0.0017	0.0424	0.282899	12.0	0.6	0.494	0.586	0.690
DJ259 13	331	0.28295	0.00002	0.0025	0.0603	0.282935	13.0	0.7	0.446	0.511	0.588
DJ259 14	332	0.28291	0.00002	0.0019	0.0464	0.282898	11.8	0.5	0.497	0.593	0.704
DJ259 15	339	0.28296	0.00002	0.0024	0.0599	0.282945	13.6	0.6	0.430	0.482	0.544
DJ259 16	349	0.28298	0.00002	0.0024	0.0604	0.282964	14.5	0.7	0.401	0.431	0.466
DJ259 19	353	0.28293	0.00002	0.0027	0.0696	0.282912	12.7	0.6	0.478	0.548	0.631
DJ259 20	348	0.28291	0.00003	0.0035	0.0863	0.282887	11.7	0.9	0.520	0.608	0.719

Analysis No.	Age* (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	$(^{176}\text{Hf}/^{177}\text{Hf})_{i}$	εHf(t)	1σ	$T_{\rm DM}$	T_{DM}^{C}	$T_{DM}^{ LC}$
DJ259 21	351	0.28293	0.00002	0.0029	0.0696	0.282911	12.6	0.6	0.481	0.552	0.637
DJ259 22	348	0.28294	0.00002	0.0026	0.0662	0.282923	13.0	0.7	0.462	0.526	0.602
DJ259 23	327	0.28289	0.00002	0.0013	0.0320	0.282882	11.1	0.6	0.518	0.633	0.763
DJ303											
DJ303 01	331	0.28293	0.00003	0.0034	0.0691	0.282909	12.1	1.1	0.488	0.569	0.671
DJ303 02	351	0.28290	0.00002	0.0013	0.0240	0.282891	11.9	0.9	0.503	0.596	0.701
DJ303 03	350	0.28299	0.00003	0.0026	0.0473	0.282973	14.8	0.9	0.388	0.411	0.437
DJ303 04	340	0.28301	0.00003	0.0024	0.0457	0.282995	15.4	1.0	0.356	0.367	0.379
DJ303 05	354	0.28294	0.00002	0.0017	0.0318	0.282929	13.3	0.9	0.451	0.509	0.576
DJ303 06	340	0.28295	0.00003	0.0035	0.0687	0.282928	13.0	1.0	0.459	0.521	0.598
DJ303 07	355	0.28299	0.00003	0.0011	0.0197	0.282983	15.3	0.9	0.372	0.385	0.398
DJ303 08	343	0.28298	0.00003	0.0019	0.0371	0.282968	14.5	0.9	0.395	0.427	0.463
DJ303 09	353	0.28292	0.00002	0.0009	0.0159	0.282914	12.8	0.8	0.470	0.544	0.625
DJ303 10	344	0.28292	0.00003	0.0020	0.0395	0.282907	12.3	1.0	0.484	0.565	0.659
DJ303 11	345	0.28300	0.00003	0.0028	0.0515	0.282982	15.0	0.9	0.375	0.394	0.414
DJ303 12	340	0.28292	0.00002	0.0022	0.0410	0.282906	12.2	0.9	0.487	0.570	0.668
DJ303 13	348	0.28294	0.00002	0.0023	0.0437	0.282925	13.1	0.7	0.458	0.522	0.596
DJ303 15	341	0.28297	0.00002	0.0017	0.0323	0.282959	14.1	0.7	0.408	0.448	0.494
DJ303 16	341	0.28294	0.00002	0.0007	0.0127	0.282936	13.3	0.7	0.439	0.502	0.571
DJ303 17	355	0.28296	0.00003	0.0015	0.0264	0.282950	14.1	1.0	0.420	0.460	0.505
DJ303 18	350	0.28291	0.00002	0.0009	0.0167	0.282904	12.4	0.9	0.484	0.568	0.661
DJ303 19	345	0.28292	0.00002	0.0017	0.0332	0.282909	12.4	0.9	0.480	0.560	0.652
DJ303 20	340	0.28294	0.00003	0.0017	0.0335	0.282929	13.0	0.9	0.451	0.517	0.593
DJ303 21	336	0.28294	0.00003	0.0016	0.0297	0.282930	13.0	0.9	0.450	0.518	0.596
DJ303 22	338	0.28290	0.00002	0.0016	0.0307	0.282890	11.6	0.7	0.508	0.608	0.723
DJ303 23	340	0.28293	0.00002	0.0028	0.0571	0.282912	12.4	0.8	0.480	0.556	0.648
DJ303 24	346	0.28293	0.00002	0.0013	0.0246	0.282922	12.9	0.7	0.461	0.531	0.610
DJ303 26	344	0.28293	0.00002	0.0011	0.0198	0.282923	12.9	0.8	0.458	0.529	0.608

Figure X.C.1 CL images of selected representative detrital zircon grains from dated samples (greywacke, sandstone).

					Ratio	s						Age	(Ma)				
А	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	$\frac{207}{235}$ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb 235U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
DJ1	00 (n=52)																
1	DJ100 01	0.0556	8	0.5323	171	0.0695	18	0.0188	6 434	34	433	11	433	11	375	12	0.31
2	DJ100 04	0.0557	7	0.5457	150	0.0711	17	0.0194	6 439	24	442	10	443	10	389	11	-0.83
3	DJ100 05	0.0550	9	0.5028	171	0.0663	17	0.0182	5 413	33	414	12	414	10	365	11	-0.29
4	DJ100 06	0.0949	11	3.4978	945	0.2672	71	0.0655	15 1526	23	1527	21	1527	36	1282	29	-0.05
5	DJ100 07	0.0554	13	0.5158	237	0.0675	20	0.0210	8 428	50	422	16	421	12	419	16	1.5
6	DJ100 08	0.1727	20	11.5091	1427	0.4832	104	0.1222	26 2584	19	2565	12	2541	45	2330	46	1.99
7	DJ100 09	0.0553	9	0.5207	190	0.0683	18	0.0188	6 425	37	426	13	426	11	376	12	-0.12
8	DJ100 10	0.0767	8	1.9820	465	0.1875	45	0.0464	22 1112	22	1109	16	1108	25	917	43	0.44
9	DJ100 11	0.0554	15	0.5295	281	0.0693	23	0.0206	11 427	66	431	19	432	14	412	21	-1.23
10	DJ100 12	0.1094	12	4.8305	769	0.3201	72	0.0616	15 1790	22	1790	13	1790	35	1207	29	-0.05
11	DJ100 13	0.0574	6	0.6444	152	0.0814	19	0.0229	8 507	24	505	9	504	11	458	16	0.48
12	DJ100 14	0.1803	21	12.6791	1814	0.5100	115	0.1243	26 2655	19	2656	13	2657	49	2368	46	-0.09
13	DJ100 15	0.0696	7	1.4647	321	0.1527	36	0.0412	11 915	21	916	13	916	20	816	21	-0.09
14	DJ100 16	0.0562	22	0.5744	405	0.0741	30	0.0214	16 461	84	461	26	461	18	428	31	0.16
15	DJ100 17	0.0610	8	0.8810	271	0.1047	27	0.0266	8 640	32	642	15	642	16	530	16	-0.26
16	DJ100 18	0.0573	11	0.6397	253	0.0810	23	0.0229	9 502	42	502	16	502	14	457	18	-0.04
17	DJ100 19	0.1376	36	7.7518	4577	0.4085	212	0.1046	79 2197	44	2203	53	2208	97	2011	145	-0.59
18	DJ100 20	0.0568	6	0.6073	111	0.0775	17	0.0220	5 483	21	482	7	481	10	439	10	0.4
19	DJ100 21	0.0555	15	0.5330	272	0.0696	22	0.0188	9 434	62	434	18	434	13	375	18	-0.05
20	DJ100 23	0.1076	12	4.6502	659	0.3133	68	0.0830	17 1760	21	1758	12	1757	33	1612	31	0.14
21	DJ100 24	0.0680	8	1.3533	385	0.1443	37	0.0388	15 869	25	869	17	869	21	769	28	-0.07
22	DJ100 25	0.0560	7	0.5610	158	0.0727	18	0.0213	6 451	26	452	10	452	11	425	12	-0.27
23	DJ100 26	0.0968	10	3.6545	624	0.2739	62	0.0687	17 1563	21	1561	14	1561	31	1343	32	0.13
24	DJ100 27	0.1065	12	4.5546	1158	0.3102	82	0.0311	15 1740	23	1741	21	1742	40	619	29	-0.12
25	DJ100 28	0.0561	9	0.5687	204	0.0735	20	0.0201	7 456	38	457	13	457	12	402	14	-0.34
26	DJ100 29	0.0562	27	0.5783	472	0.0746	32	0.0163	15 461	108	463	30	464	19	327	30	-0.72
27	DJ100 31	0.0556	9	0.5356	184	0.0698	18	0.0192	7 438	38	435	12	435	11	383	14	0.6
28	DJ100 32	0.0684	7	1.3809	195	0.1464	31	0.0386	9 880	22	881	8	881	17	765	17	-0.12
29	DJ100 33	0.0579	7	0.6737	187	0.0844	20	0.0226	6 525	25	523	11	522	12	452	12	0.46
30	DJ100 34	0.0797	8	2.2286	417	0.2027	46	0.0563	15 1191	19	1190	13	1190	25	1108	28	0.07
31	DJ100 35	0.0715	7	1.6099	358	0.1632	38	0.0457	14 972	21	974	14	975	21	903	27	-0.28

Table X.C.4 La-ICPMS U-Pb	detrital zircon data.	*: Degree of discordance.
---------------------------	-----------------------	---------------------------

					Ratio	8						Age	(Ma)				
A	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	$\frac{\pm}{1s}$	²⁰⁷ <i>Pb</i> ²³⁵ <i>U</i>	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
32	DJ100 36	0.0770	8	2.0194	314	0.1901	41	0.0502	11 1122	20	1122	11	1122	22	990	21	-0.01
33	DJ100 37	0.0560	6	0.5640	141	0.0731	17	0.0263	11 451	24	454	9	455	10	524	21	-0.81
34	DJ100 38	0.0715	8	1.5981	210	0.1621	34	0.0590	16 971	24	969	8	968	19	1158	30	0.32
35	DJ100 39	0.0884	9	2.9327	630	0.2406	57	0.0664	21 1391	22	1390	16	1390	30	1300	40	0.02
36	DJ100 40	0.0557	8	0.5406	172	0.0704	18	0.0196	8 440	32	439	11	439	11	393	16	0.23
37	DJ100 41	0.0562	9	0.5778	192	0.0745	19	0.0216	8 462	31	463	12	463	11	431	16	-0.32
38	DJ100 42	0.0554	8	0.5283	173	0.0691	18	0.0189	6 430	31	431	11	431	11	379	12	-0.19
39	DJ100 43	0.0844	9	2.5711	493	0.2210	51	0.0578	15 1301	20	1292	14	1287	27	1135	29	1.17
40	DJ100 44	0.0555	5	0.5273	98	0.0690	15	0.0192	4 431	19	430	7	430	9	385	8	0.22
41	DJ100 45	0.0612	14	0.8829	402	0.1047	33	0.0304	16 645	47	643	22	642	19	604	31	0.48
42	DJ100 46	0.0553	6	0.5191	129	0.0681	16	0.0192	5 425	24	425	9	424	9	384	10	0.06
43	DJ100 47	0.0561	5	0.5654	102	0.0731	16	0.0205	4 456	20	455	7	455	9	410	8	0.13
44	DJ100 48	0.0557	5	0.5442	106	0.0708	16	0.0200	5 442	21	441	7	441	9	401	9	0.13
45	DJ100 49	0.0557	12	0.5414	241	0.0706	21	0.0222	11 438	50	439	16	439	13	443	21	-0.26
46	DJ100 50	0.0578	13	0.6728	302	0.0844	25	0.0246	13 523	48	522	18	522	15	491	25	0.13
47	DJ100 51	0.0559	8	0.5520	175	0.0716	18	0.0204	7 448	31	446	11	446	11	408	13	0.47
48	DJ100 53	0.0698	17	1.4817	761	0.1540	54	0.0437	36 922	53	923	31	923	30	865	70	-0.12
49	DJ100 55	0.0560	23	0.5593	415	0.0724	30	0.0204	14 452	87	451	27	451	18	408	28	0.24
50	DJ100 56	0.1555	18	9.6905	1979	0.4519	115	0.1173	40 2407	20	2406	19	2404	51	2242	72	0.14
51	DJ100 59	0.1763	21	12.1992	1296	0.5018	103	0.1301	22 2618	19	2620	10	2622	44	2472	38	-0.19
52	DJ100 60	0.0830	9	2.4639	315	0.2152	45	0.0575	13 1270	22	1261	9	1256	24	1131	24	1.19
DJ9	5																
1	DJ96 01	0.05389	12	0.40993	179	0.05516	16	0.01616	7 366	54	349	13	346	10	324	13	-5.68
2	DJ96 03	0.05396	10	0.44502	177	0.05981	17	0.01629	7 369	47	374	12	374	10	327	15	1.43
3	DJ96 04	0.0543	11	0.46404	193	0.06198	18	0.01854	7 384	43	387	13	388	11	371	14	1.11
4	DJ96 05	0.05403	12	0.40303	173	0.0541	16	0.01849	8 372	49	344	13	340	9	370	15	-9
5	DJ96 06	0.05518	6	0.50519	116	0.0664	15	0.01978	5 420	22	415	8	414	9	396	10	-1.25
6	DJ96 07	0.05391	5	0.43082	96	0.05796	13	0.01757	4 367	22	364	7	363	8	352	9	-1.14
7	DJ96 08	0.05422	5	0.43483	94	0.05817	13	0.01672	4 380	20	367	7	364	8	335	8	-4.26
8	DJ96 09	0.0541	6	0.44338	101	0.05944	13	0.01739	5 375	23	373	7	372	8	348	9	-0.82
9	DJ96 10	0.1525	18	9.22498	941	0.43873	89	0.11556	18 2374	21	2361	9	2345	40	2210	33	-1.47
10	DJ96 11	0.05409	6	0.43574	51	0.05843	12	0.01772	3 375	26	367	4	366	7	355	6	-2.4
11	DJ96 13	0.05348	7	0.40141	112	0.05444	13	0.01603	4 349	27	343	8	342	8	321	9	-2.21

					Ratio	s							Age	(Ma)				
Ar	aalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	²⁰⁷ <i>Pb</i> ²³⁵ <i>U</i>	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s}$ $\frac{2}{2}$	⁰⁷ Pb ⁰⁶ Pb	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\pm 1s$	Disc* (%)
12	DJ96 14	0.05436	12	0.45338	200	0.06049	18	0.02057	8	386	43	380	14	379	11	412	16	-1.97
13	DJ96 15	0.05404	6	0.44193	110	0.05931	14	0.01847	5	373	25	372	8	371	8	370	11	-0.35
14	DJ96 16	0.05418	15	0.43432	225	0.05814	18	0.01792	14	379	61	366	16	364	11	359	27	-3.87
15	DJ96 17	0.05416	5	0.44104	97	0.05906	13	0.01757	4	378	20	371	7	370	8	352	8	-2.12
16	DJ96 18	0.05422	6	0.44952	106	0.06013	14	0.0173	5	380	21	377	7	376	8	347	9	-1.02
17	DJ96 19	0.05385	5	0.43472	95	0.05855	13	0.01711	5	365	23	367	7	367	8	343	10	0.57
18	DJ96 20	0.05391	5	0.42905	82	0.05772	13	0.0175	4	367	21	363	6	362	8	351	8	-1.55
19	DJ96 21	0.05417	7	0.44906	124	0.06012	14	0.01841	6	378	28	377	9	376	9	369	11	-0.48
20	DJ96 22	0.05413	7	0.44618	130	0.05978	14	0.0162	5	376	27	375	9	374	9	325	10	-0.59
21	DJ96 23	0.05504	17	0.51909	308	0.0684	24	0.01953	11	414	69	425	21	427	15	391	22	3.16
22	DJ96 24	0.05494	11	0.48948	206	0.06462	19	0.01867	8	410	43	405	14	404	11	374	16	-1.55
23	DJ96 25	0.05408	14	0.43902	216	0.05888	18	0.01988	10	374	49	370	15	369	11	398	20	-1.54
24	DJ96 27	0.05381	6	0.42825	117	0.05772	14	0.01758	4	363	29	362	8	362	8	352	9	-0.38
25	DJ96 28	0.05378	26	0.45045	377	0.06075	27	0.02276	17	362	120	378	26	380	16	455	33	5.21
26	DJ96 29	0.05357	7	0.41663	115	0.05641	14	0.01732	6	353	26	354	8	354	8	347	11	0.21
27	DJ96 30	0.05381	6	0.43576	57	0.05873	12	0.01695	3	363	25	367	4	368	7	340	6	1.36
28	DJ96 31	0.05443	7	0.46313	129	0.06172	15	0.01755	6	389	29	386	9	386	9	352	12	-0.76
29	DJ96 32	0.05422	11	0.46101	185	0.06167	17	0.01622	6	380	43	385	13	386	10	325	13	1.51
30	DJ96 33	0.054	13	0.40501	193	0.0544	17	0.01704	9	371	56	345	14	341	10	342	17	-8.19
31	DJ96 34	0.05458	13	0.46516	219	0.06182	19	0.01793	9	395	54	388	15	387	11	359	18	-2.2
32	DJ96 35	0.0546	7	0.44817	133	0.05954	15	0.01723	5	396	30	376	9	373	9	345	10	-6.01
33	DJ96 36	0.05414	5	0.44739	89	0.05994	13	0.01691	4	377	22	375	6	375	8	339	7	-0.45
34	DJ96 37	0.05488	8	0.48384	155	0.06395	16	0.02026	7	407	32	401	11	400	10	405	14	-1.97
35	DJ96 40	0.05412	7	0.43919	130	0.05887	15	0.01731	5	376	30	370	9	369	9	347	10	-2.02
36	DJ96 41	0.05464	10	0.46067	177	0.06115	17	0.01879	6	398	36	385	12	383	10	376	12	-3.87
37	DJ96 42	0.05423	6	0.45364	106	0.06068	14	0.01747	5	381	23	380	7	380	8	350	9	-0.25
38	DJ96 43	0.05412	5	0.44209	71	0.05925	13	0.01782	4	376	22	372	5	371	8	357	7	-1.37
39	DJ96 44	0.05392	5	0.44015	85	0.05921	13	0.01681	3	368	21	370	6	371	8	337	7	0.86
40	DJ96 45	0.05425	5	0.45487	72	0.06082	13	0.01845	3	381	23	381	5	381	8	370	7	-0.24
41	DJ96 46	0.0545	6	0.4625	62	0.06155	13	0.01727	3	392	26	386	4	385	8	346	6	-1.77
42	DJ96 47	0.05765	9	0.64956	215	0.08174	21	0.0322	11	516	31	508	13	507	13	641	21	-2.04
43	DJ96 48	0.0532	10	0.40685	154	0.05547	15	0.01648	6	337	43	347	11	348	9	330	12	3.24
44	DJ96 49	0.05407	6	0.44388	120	0.05955	14	0.01775	6	374	26	373	8	373	9	356	11	-0.31

					Ratio	s							Age	(Ma)				
Aı	nalysis No.	²⁰⁷ <i>Pb</i> ²⁰⁶ <i>Pb</i>	± 1s	²⁰⁷ <i>Pb</i> ²³⁵ <i>U</i>	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	± 1s	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	$\frac{207}{235}$ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\pm 1s$	Disc* (%)
45	DJ96 50	0.05438	5	0.45297	80	0.06042	13	0.01726	3	387	22	379	6	378	8	346	7	-2.31
46	DJ96 51	0.05436	8	0.42188	142	0.0563	15	0.01585	5	386	35	357	10	353	9	318	10	-8.78
47	DJ96 52	0.05514	24	0.46886	368	0.06168	27	0.01867	14	418	107	390	25	386	16	374	27	-7.92
48	DJ96 53	0.15501	19	9.81032	979	0.45912	94	0.11624	17	2402	22	2417	9	2436	42	2223	32	1.66
49	DJ96 54	0.05565	13	0.49441	226	0.06445	20	0.01904	9	438	51	408	15	403	12	381	19	-8.44
50	DJ96 55	0.05413	5	0.45533	95	0.06103	14	0.01763	4	376	21	381	7	382	8	353	9	1.45
51	DJ96 56	0.05364	10	0.39159	152	0.05296	15	0.01594	7	356	40	336	11	333	9	320	14	-6.74
52	DJ96 57	0.05427	16	0.46306	259	0.06189	21	0.02569	14	382	69	386	18	387	13	513	28	1.29
53	DJ96 58	0.05379	6	0.4264	100	0.05751	13	0.01694	4	362	22	361	7	360	8	340	9	-0.54
54	DJ96 59	0.05493	6	0.49586	131	0.06549	16	0.01962	5	409	24	409	9	409	9	393	10	-0.14
55	DJ96 60	0.0542	5	0.45271	89	0.06059	13	0.01738	3	379	22	379	6	379	8	348	6	-0.06
DJ12	23																	
1	DJ123 01	0.05615	11	0.57049	206	0.07369	16	0.02049	8	458	44	458	13	458	9	410	16	0
2	DJ123 02	0.05662	7	0.59681	162	0.07645	15	0.0214	7	477	26	475	10	475	9	428	13	-0.4
3	DJ123 04	0.05725	5	0.6374	95	0.08075	15	0.02326	4	501	18	501	6	501	9	465	7	-0.1
4	DJ123 05	0.05571	16	0.54343	263	0.07075	17	0.02	12	441	58	441	17	441	10	400	23	0
5	DJ123 06	0.05632	11	0.58356	214	0.07515	16	0.02126	7	465	45	467	14	467	10	425	13	0.5
6	DJ123 07	0.05548	8	0.52954	154	0.06923	14	0.01931	5	432	35	432	10	432	8	387	10	0
7	DJ123 08	0.05561	8	0.53703	161	0.07005	14	0.01904	7	437	30	436	11	436	8	381	13	-0.1
8	DJ123 09	0.05642	10	0.58256	198	0.07489	16	0.02118	7	469	38	466	13	466	9	424	13	-0.8
9	DJ123 10	0.05566	21	0.53116	322	0.06922	19	0.02189	18	439	84	433	21	431	11	438	36	-1.7
10	DJ123 11	0.0564	9	0.58126	181	0.07474	15	0.02092	6	468	37	465	12	465	9	418	11	-0.8
11	DJ123 12	0.05592	9	0.55532	169	0.07202	15	0.02083	7	449	34	448	11	448	9	417	13	-0.2
12	DJ123 13	0.05608	5	0.57497	79	0.07436	13	0.02089	3	456	17	461	5	462	8	418	7	1.6
13	DJ123 14	0.05629	5	0.57312	110	0.07385	14	0.02062	5	464	21	460	7	459	8	413	10	-1
14	DJ123 15	0.05704	11	0.62068	224	0.07892	17	0.02391	7	493	43	490	14	490	10	478	13	-0.7
15	DJ123 16	0.05582	6	0.54564	125	0.0709	14	0.03018	7	445	22	442	8	442	8	601	15	-0.9
16	DJ123 17	0.05619	5	0.57949	104	0.0748	14	0.02289	5	460	18	464	7	465	8	457	9	1.2
17	DJ123 18	0.05617	10	0.56614	192	0.0731	15	0.02078	8	459	35	456	12	455	9	416	15	-1
18	DJ123 19	0.05588	8	0.54981	167	0.07136	15	0.02097	9	448	34	445	11	444	9	419	18	-0.8
19	DJ123 20	0.05657	21	0.60057	359	0.077	21	0.02155	12	475	75	478	23	478	13	431	24	0.7
20	DJ123 21	0.05584	6	0.55016	130	0.07146	14	0.02065	5	446	27	445	9	445	8	413	10	-0.3
21	DJ123 22	0.05606	8	0.56652	170	0.0733	15	0.02105	6	455	34	456	11	456	9	421	13	0.3

					Ratio	s						Age	(Ma)				
Aı	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	²⁰⁷ <i>Pb</i> ²³⁵ <i>U</i>	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
22	DJ123 23	0.05611	5	0.56753	106	0.07335	14	0.02064	4 457	19	456	7	456	8	413	8	-0.1
23	DJ123 24	0.05579	10	0.5471	185	0.07112	15	0.0211	6 444	39	443	12	443	9	422	12	-0.3
24	DJ123 25	0.05571	5	0.54283	108	0.07067	13	0.02124	5 441	22	440	7	440	8	425	9	-0.2
25	DJ123 26	0.05582	6	0.55603	131	0.07224	14	0.02112	5 445	23	449	9	450	8	422	9	1
26	DJ123 27	0.05545	5	0.53258	92	0.06966	13	0.02056	4 430	18	434	6	434	8	411	8	0.9
27	DJ123 28	0.05601	5	0.55898	115	0.07238	14	0.02165	5 453	20	451	7	450	8	433	9	-0.5
28	DJ123 29	0.05579	10	0.54532	187	0.07089	15	0.02164	8 444	38	442	12	442	9	433	15	-0.6
29	DJ123 30	0.05579	8	0.54752	157	0.07118	14	0.02169	7 444	30	443	10	443	9	434	14	-0.2
30	DJ123 31	0.05629	7	0.568	148	0.07319	14	0.02092	6 464	27	457	10	455	9	418	12	-1.9
31	DJ123 32	0.05597	12	0.55704	217	0.07218	16	0.02222	9 451	45	450	14	449	10	444	17	-0.4
32	DJ123 33	0.05596	6	0.55861	125	0.0724	14	0.02087	4 451	21	451	8	451	8	417	9	0
33	DJ123 34	0.05627	12	0.58704	229	0.07567	17	0.02063	8 463	45	469	15	470	10	413	15	1.6
34	DJ123 35	0.05583	5	0.54952	100	0.07139	13	0.02068	4 446	19	445	7	445	8	414	8	-0.3
35	DJ123 36	0.05717	5	0.63146	87	0.0801	15	0.02347	4 498	16	497	5	497	9	469	7	-0.3
36	DJ123 37	0.05631	8	0.57668	165	0.07427	15	0.02212	6 465	32	462	11	462	9	442	11	-0.6
37	DJ123 38	0.05642	5	0.58728	102	0.07549	14	0.02192	4 469	17	469	7	469	8	438	8	0.1
38	DJ123 39	0.05723	14	0.6359	267	0.08058	19	0.02364	9 500	57	500	17	500	11	472	17	-0.2
39	DJ123 40	0.05576	12	0.54289	212	0.07062	16	0.02229	10 443	47	440	14	440	9	446	20	-0.7
40	DJ123 41	0.05596	12	0.56382	215	0.07307	16	0.02264	10 451	42	454	14	455	10	453	20	0.9
41	DJ123 42	0.05582	12	0.54944	211	0.07139	16	0.02058	7 445	51	445	14	445	9	412	15	-0.2
42	DJ123 43	0.05585	8	0.55221	156	0.07171	14	0.02208	7 446	27	446	10	446	9	441	13	0
43	DJ123 44	0.05628	12	0.58033	223	0.07478	17	0.02167	8 463	49	465	14	465	10	433	15	0.3
44	DJ123 45	0.05652	7	0.60135	164	0.07716	15	0.02311	6 473	27	478	10	479	9	462	11	1.4
45	DJ123 46	0.0559	8	0.55564	168	0.07209	15	0.02164	8 448	31	449	11	449	9	433	15	0.1
46	DJ123 47	0.05645	14	0.59499	256	0.07645	18	0.02458	9 470	59	474	16	475	11	491	19	1
47	DJ123 48	0.05609	15	0.55838	251	0.0722	17	0.02363	13 456	56	450	16	449	10	472	25	-1.5
48	DJ123 49	0.05685	5	0.61029	127	0.07786	15	0.02393	5 486	19	484	8	483	9	478	9	-0.5
49	DJ123 50	0.05606	6	0.56168	132	0.07267	14	0.0214	6 455	23	453	9	452	8	428	11	-0.6
50	DJ123 51	0.05603	5	0.5581	123	0.07225	14	0.0216	5 454	22	450	8	450	8	432	9	-0.9
51	DJ123 52	0.05577	9	0.54144	168	0.07041	15	0.02102	8 443	35	439	11	439	9	420	16	-1.1
52	DJ123 53	0.05615	6	0.5631	127	0.07273	14	0.02185	5 458	21	454	8	453	8	437	9	-1.3
53	DJ123 54	0.05586	10	0.55312	191	0.07182	15	0.02105	7 447	42	447	13	447	9	421	14	0.1
54	DJ123 55	0.0566	24	0.62581	410	0.0802	23	0.02615	16 476	92	493	26	497	14	522	31	4.6

					Ratio	s						Age	(Ma)				
Aı	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	$\frac{\pm}{1s}$	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\pm 1s$	Disc* (%)
55	DJ123 56	0.05573	9	0.54588	181	0.07105	15	0.02129	8 442	37	442	12	442	9	426	15	0.2
56	DJ123 57	0.05603	12	0.55575	223	0.07194	16	0.02151	9 454	52	449	15	448	10	430	18	-1.3
57	DJ123 58	0.05573	5	0.54528	109	0.07097	14	0.02062	4 442	19	442	7	442	8	413	8	0.1
58	DJ123 59	0.05612	5	0.5589	97	0.07224	14	0.02288	5 457	18	451	6	450	8	457	10	-1.7
59	DJ123 60	0.05649	7	0.59173	151	0.07597	15	0.02261	6 472	26	472	10	472	9	452	11	0.1
DJ18	32																
1	DJ182 01	0.05533	5	0.51184	107	0.06707	14	0.01903	5 426	21	420	7	418	8	381	11	-1.69
2	DJ182 02	0.05623	8	0.57451	171	0.07406	17	0.02607	11 461	30	461	11	461	10	520	21	-0.14
3	DJ182 03	0.05487	10	0.48358	182	0.06389	16	0.02096	8 407	42	401	12	399	10	419	16	-1.9
4	DJ182 04	0.05674	12	0.60299	256	0.07705	21	0.0342	25 481	50	479	16	478	13	680	48	-0.6
5	DJ182 05	0.05545	5	0.52685	76	0.06888	13	0.02191	5 430	19	430	5	429	8	438	9	-0.2
6	DJ182 06	0.0556	5	0.53272	83	0.06946	13	0.02125	5 436	19	434	6	433	8	425	10	-0.79
7	DJ182 07	0.05601	8	0.56848	174	0.07358	17	0.02538	11 453	32	457	11	458	10	507	21	1.17
8	DJ182 08	0.05556	5	0.53073	100	0.06925	14	0.01958	6 435	19	432	7	432	8	392	11	-0.72
9	DJ182 09	0.05547	5	0.53345	87	0.06972	13	0.02275	5 431	19	434	6	434	8	455	11	0.82
10	DJ182 10	0.05628	5	0.57369	102	0.07389	14	0.0234	6 463	18	460	7	460	9	468	12	-0.81
11	DJ182 11	0.05454	5	0.47605	78	0.06327	12	0.01832	4 393	19	395	5	395	7	367	7	0.6
12	DJ182 12	0.05532	5	0.51839	95	0.06793	13	0.02016	5 425	19	424	6	424	8	403	10	-0.32
13	DJ182 13	0.0563	5	0.58135	102	0.07486	15	0.02238	5 464	18	465	7	465	9	447	10	0.3
14	DJ182 14	0.05619	8	0.56945	183	0.07347	17	0.02276	10 460	34	458	12	457	10	455	20	-0.6
15	DJ182 15	0.05576	5	0.54625	105	0.07102	14	0.0212	6 443	20	443	7	442	8	424	11	-0.08
16	DJ182 16	0.05608	7	0.56056	153	0.07246	16	0.02121	8 456	27	452	10	451	10	424	16	-0.99
17	DJ182 17	0.05498	5	0.50053	73	0.066	12	0.01971	3 411	18	412	5	412	7	395	7	0.19
18	DJ182 18	0.05457	5	0.46565	61	0.06186	11	0.01755	3 395	20	388	4	387	7	352	5	-1.97
19	DJ182 19	0.05495	5	0.49688	79	0.06555	12	0.01964	4 410	18	410	5	409	8	393	8	-0.18
20	DJ182 20	0.05492	6	0.48941	117	0.0646	13	0.01898	6 409	24	405	8	404	8	380	13	-1.32
21	DJ182 21	0.05519	5	0.51017	57	0.06701	12	0.02076	3 420	19	419	4	418	7	415	6	-0.4
22	DJ182 22	0.05544	12	0.51849	220	0.06779	18	0.01995	10 430	50	424	15	423	11	399	20	-1.67
23	DJ182 23	0.05504	5	0.50467	63	0.06647	12	0.01873	3 414	21	415	4	415	7	375	6	0.3
24	DJ182 24	0.05679	7	0.60444	168	0.07716	17	0.02379	8 483	28	480	11	479	10	475	17	-0.87
25	DJ182 25	0.05638	5	0.58172	77	0.07479	14	0.02216	4 467	20	466	5	465	8	443	8	-0.48
26	DJ182 26	0.05551	5	0.53245	85	0.06953	13	0.0202	5 433	18	433	6	433	8	404	10	0.17
27	DJ182 27	0.05572	5	0.54261	62	0.07059	13	0.02056	3 441	20	440	4	440	8	411	6	-0.3

					Ratio	s						Age	(Ma)				
Aı	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	²⁰⁷ <i>Pb</i> ²³⁵ <i>U</i>	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
28	DJ182 28	0.05515	7	0.49727	142	0.06536	15	0.01882	8 418	30	410	10	408	9	377	15	-2.46
29	DJ182 29	0.05502	5	0.50072	86	0.06597	13	0.01823	4 413	18	412	6	412	8	365	8	-0.25
30	DJ182 30	0.05567	5	0.53773	116	0.07002	14	0.02145	6 439	21	437	8	436	9	429	11	-0.65
31	DJ182 31	0.0561	5	0.5705	84	0.07372	14	0.02184	5 456	19	458	5	459	8	437	9	0.55
32	DJ182 32	0.05435	9	0.45528	156	0.06072	15	0.01857	7 386	37	381	11	380	9	372	13	-1.43
33	DJ182 33	0.05519	5	0.51427	66	0.06754	12	0.02011	3 420	20	421	4	421	7	402	6	0.4
34	DJ182 34	0.0554	5	0.52438	99	0.06861	13	0.02117	6 428	18	428	7	428	8	423	13	-0.1
35	DJ182 35	0.05566	5	0.54093	88	0.07045	13	0.02122	5 439	18	439	6	439	8	424	10	0.06
36	DJ182 36	0.05478	5	0.48971	80	0.0648	12	0.01839	3 403	17	405	5	405	7	368	6	0.44
37	DJ182 37	0.05541	5	0.52783	103	0.06905	14	0.02097	6 429	19	430	7	430	8	419	12	0.45
38	DJ182 38	0.05526	5	0.51412	73	0.06744	13	0.02071	4 423	20	421	5	421	8	414	8	-0.45
39	DJ182 39	0.05529	8	0.52687	163	0.06907	16	0.02067	7 424	31	430	11	431	10	414	15	1.67
40	DJ182 40	0.05565	5	0.53349	114	0.06948	14	0.0218	7 438	23	434	8	433	8	436	14	-1.21
41	DJ182 41	0.05577	5	0.546	78	0.07096	13	0.02123	4 443	18	442	5	442	8	425	7	-0.24
42	DJ182 42	0.05504	5	0.50838	84	0.06695	13	0.02061	4 414	18	417	6	418	8	412	8	1.03
43	DJ182 43	0.05552	5	0.53239	87	0.06951	13	0.01989	5 433	17	433	6	433	8	398	9	0.05
44	DJ182 44	0.05551	5	0.53038	89	0.06926	13	0.01991	5 433	17	432	6	432	8	398	9	-0.22
45	DJ182 45	0.05543	5	0.52311	108	0.06841	14	0.01979	4 430	20	427	7	427	8	396	9	-0.68
46	DJ182 46	0.05552	5	0.53368	88	0.06967	13	0.02129	5 433	18	434	6	434	8	426	10	0.29
47	DJ182 47	0.05536	5	0.52169	74	0.06831	13	0.01938	4 427	19	426	5	426	8	388	7	-0.15
48	DJ182 48	0.0553	5	0.52141	79	0.06834	13	0.02043	4 424	21	426	5	426	8	409	7	0.5
49	DJ182 49	0.05614	5	0.57174	93	0.07381	14	0.0234	6 458	19	459	6	459	8	468	11	0.33
50	DJ182 50	0.05644	8	0.59432	177	0.07632	17	0.01992	11 470	29	474	11	474	10	399	21	1.04
51	DJ182 51	0.05595	6	0.55456	130	0.07183	15	0.01927	6 450	23	448	8	447	9	386	12	-0.66
52	DJ182 52	0.05484	5	0.49425	67	0.06532	12	0.01888	3 406	20	408	5	408	7	378	7	0.63
53	DJ182 53	0.05553	5	0.53439	103	0.06974	14	0.02083	5 434	19	435	7	435	8	417	10	0.31
54	DJ182 54	0.05464	5	0.48725	84	0.06462	12	0.01829	4 398	20	403	6	404	7	366	8	1.68
55	DJ182 55	0.05529	5	0.51427	81	0.06741	13	0.01889	5 424	19	421	5	421	8	378	10	-0.77
56	DJ182 56	0.05509	6	0.51395	121	0.06762	14	0.02091	7 416	24	421	8	422	8	418	14	1.53
57	DJ182 57	0.05601	5	0.55926	100	0.07237	14	0.02297	6 453	21	451	7	450	8	459	11	-0.47
58	DJ182 58	0.05501	5	0.50294	103	0.06626	13	0.01859	5 413	21	414	7	414	8	372	9	0.31
59	DJ182 59	0.0555	5	0.53896	60	0.07037	13	0.01927	3 432	21	438	4	438	8	386	6	1.51
60	DJ182 60	0.05592	5	0.55279	71	0.07164	13	0.02018	4 449	18	447	5	446	8	404	8	-0.65

					Ratio	s						Age	(Ma)				
A	nalysis No.	²⁰⁷ <i>Pb</i> ²⁰⁶ <i>Pb</i>	± 1s	$\frac{207}{235}$ U	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ <i>Pb</i> ²³⁵ <i>U</i>	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	$\pm 1s$	Disc* (%)
DJ1	83																
1	DJ183 01	0.05616	5	0.56978	59	0.07377	13	0.02183	3 459	24	458	4	459	8	436	6	-0.22
2	DJ183 02	0.05723	5	0.64043	132	0.08137	16	0.02191	7 500	19	503	8	504	10	438	14	0.55
3	DJ183 03	0.05626	5	0.5724	76	0.07398	14	0.0214	4 463	18	460	5	460	8	428	9	-0.82
4	DJ183 04	0.05682	5	0.61159	69	0.07827	14	0.02225	4 485	20	485	4	486	8	445	8	0.01
5	DJ183 05	0.05636	5	0.57657	83	0.07438	14	0.02156	5 467	18	462	5	462	8	431	10	-1.15
6	DJ183 06	0.05618	5	0.57114	95	0.07392	14	0.02203	5 459	19	459	6	460	8	440	10	-0.2
7	DJ183 07	0.05665	5	0.60064	117	0.07709	15	0.02241	6 478	18	478	7	479	9	448	11	-0.07
8	DJ183 08	0.05657	5	0.59712	82	0.07674	14	0.02155	4 475	19	475	5	477	8	431	8	0.16
9	DJ183 09	0.05606	5	0.56119	85	0.07277	14	0.0206	5 455	18	452	6	453	8	412	9	-0.66
10	DJ183 10	0.05629	5	0.57867	96	0.07473	14	0.02164	6 464	18	464	6	465	9	433	11	-0.06
11	DJ183 11	0.05642	5	0.58608	68	0.07552	14	0.02137	4 469	21	468	4	469	8	427	8	-0.15
12	DJ183 12	0.05572	5	0.53985	87	0.07043	13	0.01928	4 441	18	438	6	439	8	386	8	-0.81
13	DJ183 13	0.05583	5	0.54987	94	0.07159	14	0.01836	4 446	18	445	6	446	8	368	8	-0.19
14	DJ183 14	0.05628	5	0.57545	66	0.07433	13	0.02073	3 463	22	462	4	462	8	415	6	-0.51
15	DJ183 15	0.05536	6	0.51964	135	0.06823	15	0.01724	6 427	27	425	9	425	9	345	13	-0.54
16	DJ183 16	0.05587	5	0.55051	61	0.07161	13	0.01967	3 447	19	445	4	446	8	394	6	-0.51
17	DJ183 17	0.05607	5	0.56172	80	0.07281	13	0.02058	4 455	20	453	5	453	8	412	7	-0.68
18	DJ183 18	0.05632	5	0.58042	96	0.07489	14	0.02165	6 465	18	465	6	466	9	433	11	-0.07
19	DJ183 19	0.05584	5	0.54627	81	0.07109	13	0.02036	4 446	19	443	5	443	8	407	9	-0.95
20	DJ183 20	0.05606	5	0.56673	102	0.07346	14	0.02138	7 455	19	456	7	457	9	428	13	0.32
21	DJ183 21	0.05612	5	0.56373	95	0.07299	14	0.02096	7 457	17	454	6	454	8	419	13	-0.86
22	DJ183 22	0.05611	5	0.56527	113	0.0732	15	0.02257	7 457	19	455	7	455	9	451	13	-0.48
23	DJ183 23	0.05592	5	0.55566	75	0.0722	13	0.02034	4 449	20	449	5	449	8	407	8	-0.13
24	DJ183 24	0.0564	5	0.58022	101	0.07475	14	0.02214	6 468	20	465	6	465	9	443	11	-0.94
25	DJ183 25	0.05618	5	0.57185	107	0.07396	14	0.02071	5 459	20	459	7	460	9	414	10	-0.07
26	DJ183 26	0.05683	5	0.61146	74	0.07816	14	0.02286	4 485	19	484	5	485	8	457	7	-0.12
27	DJ183 27	0.0557	5	0.54249	58	0.07076	13	0.01959	3 440	21	440	4	441	8	392	6	-0.1
28	DJ183 28	0.05598	5	0.55222	93	0.07166	14	0.0215	5 452	21	446	6	446	8	430	10	-1.4
29	DJ183 29	0.05666	5	0.60092	98	0.07704	15	0.02064	5 478	18	478	6	478	9	413	10	-0.13
30	DJ183 30	0.05623	5	0.58368	120	0.07541	15	0.02198	7 461	18	467	8	469	9	439	14	1.45
31	DJ183 31	0.056	5	0.55275	84	0.07169	13	0.01977	4 452	18	447	6	446	8	396	8	-1.52
32	DJ183 32	0.05613	5	0.56965	96	0.07372	14	0.02117	6 458	18	458	6	459	8	423	12	0.08

					Ratio	s						Age	(Ma)				
Aı	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	$\frac{\pm}{1s}$	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
33	DJ183 33	0.05612	5	0.57062	80	0.07385	14	0.01947	4 457	19	458	5	459	8	390	7	0.35
34	DJ183 34	0.05625	5	0.57333	87	0.07403	14	0.02111	5 462	20	460	6	460	8	422	10	-0.56
35	DJ183 35	0.05676	5	0.60151	104	0.07696	15	0.02166	5 482	16	478	7	478	9	433	10	-1.05
36	DJ183 36	0.05652	5	0.59291	98	0.07619	14	0.02223	7 473	20	473	6	473	9	444	14	-0.03
37	DJ183 37	0.0562	5	0.57835	94	0.07474	14	0.02086	5 460	19	463	6	465	8	417	10	0.85
38	DJ183 38	0.05623	5	0.57618	99	0.0744	14	0.02126	5 461	19	462	6	463	9	425	11	0.15
39	DJ183 39	0.05622	5	0.57441	125	0.07419	15	0.02022	8 461	21	461	8	461	9	405	15	-0.05
40	DJ183 40	0.05595	5	0.56454	95	0.07326	14	0.02161	6 450	19	454	6	456	8	432	12	1.13
41	DJ183 41	0.05548	5	0.53313	84	0.06978	13	0.02053	4 432	18	434	6	435	8	411	9	0.65
42	DJ183 42	0.05594	5	0.56464	90	0.07329	14	0.02224	6 450	19	455	6	456	8	445	11	1.26
43	DJ183 43	0.05629	5	0.57374	83	0.074	14	0.02171	5 464	21	460	5	460	8	434	10	-0.91
44	DJ183 44	0.05678	5	0.60935	116	0.07792	15	0.02256	5 483	18	483	7	484	9	451	11	0.04
45	DJ183 45	0.05612	5	0.56987	63	0.07372	13	0.02146	3 457	21	458	4	459	8	429	7	0.22
46	DJ183 46	0.05628	5	0.58173	94	0.07504	14	0.02197	5 463	18	466	6	466	8	439	11	0.58
47	DJ183 47	0.05525	5	0.51257	66	0.06734	12	0.02013	3 422	19	420	4	420	7	403	6	-0.63
48	DJ183 48	0.05587	5	0.55169	72	0.07168	13	0.02095	4 447	19	446	5	446	8	419	9	-0.3
49	DJ183 49	0.05591	5	0.57956	108	0.07525	15	0.02138	6 449	20	464	7	468	9	428	12	4.27
50	DJ183 50	0.05614	5	0.56598	84	0.07318	14	0.02229	5 458	19	455	5	455	8	446	10	-0.68
51	DJ183 51	0.05582	5	0.55056	87	0.07159	13	0.02032	5 445	20	445	6	446	8	407	9	0.04
52	DJ183 52	0.05625	5	0.57723	86	0.07447	14	0.01965	5 462	17	463	6	463	8	393	9	0.12
53	DJ183 53	0.05648	5	0.59086	83	0.07592	14	0.02425	5 471	17	471	5	472	8	484	10	0.04
54	DJ183 54	0.05611	5	0.56199	83	0.07268	14	0.02099	4 457	21	453	5	452	8	420	9	-1.06
55	DJ183 55	0.05562	6	0.52208	124	0.06812	14	0.01998	7 437	21	427	8	425	9	400	15	-2.99
56	DJ183 56	0.05606	5	0.56155	63	0.07269	13	0.02064	4 455	19	453	4	452	8	413	7	-0.6
57	DJ183 57	0.05605	5	0.56871	98	0.07363	14	0.01992	5 454	19	457	6	458	8	399	9	0.77
58	DJ183 58	0.05621	6	0.58606	134	0.07566	16	0.02168	8 461	20	468	9	470	9	434	15	2.08
59	DJ183 59	0.05674	5	0.6016	97	0.07693	15	0.02286	5 481	19	478	6	478	9	457	9	-0.83
60	DJ183 60	0.05685	5	0.60723	82	0.07751	14	0.02274	5 486	19	482	5	481	8	454	9	-1.01
DJ85	5																
1	DJ85 01	0.05639	6	0.58051	135	0.07457	17	0.02435	7 468	22	465	9	464	10	486	13	-0.79
2	DJ85 02	0.05558	6	0.52351	128	0.06823	16	0.0179	6 436	22	427	9	425	10	359	13	-2.29
3	DJ85 03	0.05525	6	0.51114	123	0.06702	16	0.0195	6 422	22	419	8	418	9	390	13	-0.91
4	DJ85 04	0.05566	6	0.5253	138	0.06837	16	0.02006	7 439	24	429	9	426	10	401	13	-2.84

					Ratio	s							Age	(Ma)				
Ar	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	²⁰⁷ <i>Pb</i> ²⁰⁶ <i>Pb</i>	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
5	DJ85 05	0.05559	6	0.53442	128	0.06964	16	0.02083	7	436	22	435	8	434	10	417	13	-0.37
6	DJ85 06	0.05583	5	0.55466	98	0.07197	16	0.02015	5	446	23	448	6	448	9	403	10	0.67
7	DJ85 07	0.05549	5	0.5323	101	0.0695	15	0.01901	5	432	23	433	7	433	9	381	10	0.37
8	DJ85 08	0.05544	5	0.52406	103	0.06849	15	0.01981	5	430	20	428	7	427	9	396	9	-0.61
9	DJ85 09	0.05557	5	0.53383	111	0.0696	16	0.01945	6	435	21	434	7	434	9	389	12	-0.25
10	DJ85 10	0.05567	6	0.53761	88	0.06997	15	0.0211	5	439	23	437	6	436	9	422	9	-0.67
11	DJ85 11	0.05574	5	0.55256	96	0.07182	16	0.02092	5	442	22	447	6	447	9	418	10	1.3
12	DJ85 12	0.05577	10	0.55923	204	0.07265	20	0.0191	9	443	42	451	13	452	12	382	18	2.18
13	DJ85 13	0.05517	5	0.51605	101	0.06778	15	0.02017	5	419	22	423	7	423	9	404	11	0.99
14	DJ85 14	0.05512	5	0.51432	103	0.06761	15	0.01975	5	417	23	421	7	422	9	395	11	1.25
15	DJ85 16	0.05548	11	0.53057	214	0.0693	20	0.01903	11	432	39	432	14	432	12	381	21	0.16
16	DJ85 17	0.05559	9	0.53877	189	0.07024	19	0.02345	13	436	38	438	12	438	11	469	25	0.45
17	DJ85 18	0.05542	5	0.5269	106	0.06891	15	0.02066	6	429	23	430	7	430	9	413	11	0.15
18	DJ85 19	0.05555	6	0.53508	71	0.06981	15	0.02023	4	434	25	435	5	435	9	405	7	0.21
19	DJ85 20	0.05554	6	0.52711	121	0.06878	16	0.01974	6	434	22	430	8	429	10	395	12	-1.17
20	DJ85 21	0.05556	8	0.53793	165	0.07017	18	0.01894	9	435	31	437	11	437	11	379	17	0.63
21	DJ85 22	0.05545	5	0.52276	107	0.06833	15	0.02032	6	430	22	427	7	426	9	407	11	-0.97
22	DJ85 23	0.05582	5	0.5485	107	0.07123	16	0.0211	5	445	21	444	7	444	10	422	11	-0.33
23	DJ85 24	0.05562	6	0.53374	72	0.06956	15	0.01989	4	437	23	434	5	434	9	398	7	-0.83
24	DJ85 25	0.05501	5	0.51652	108	0.06806	15	0.0184	5	413	23	423	7	424	9	369	10	3.02
25	DJ85 26	0.05532	6	0.52395	77	0.06865	15	0.01896	4	425	23	428	5	428	9	380	8	0.75
26	DJ85 27	0.05502	5	0.48501	90	0.0639	14	0.01893	4	413	22	402	6	399	9	379	8	-3.38
27	DJ85 28	0.05572	6	0.55052	127	0.07162	17	0.02007	6	441	25	445	8	446	10	402	12	1.15
28	DJ85 29	0.05587	6	0.54239	130	0.07038	17	0.01906	6	447	23	440	9	438	10	382	12	-1.99
29	DJ85 30	0.05559	6	0.54118	87	0.07058	15	0.02042	4	436	22	439	6	440	9	409	9	0.9
30	DJ85 31	0.05605	6	0.56197	76	0.07269	15	0.02078	4	454	22	453	5	452	9	416	7	-0.42
31	DJ85 32	0.05557	6	0.53579	139	0.0699	17	0.02288	10	435	26	436	9	436	10	457	19	0.12
32	DJ85 34	0.05581	6	0.5498	142	0.07143	17	0.02116	7	445	24	445	9	445	10	423	14	0.01
33	DJ85 35	0.05561	6	0.541	84	0.07054	15	0.01997	4	437	20	439	6	439	9	400	8	0.63
34	DJ85 36	0.05555	5	0.53571	102	0.06992	16	0.01949	5	434	22	436	7	436	9	390	10	0.33
35	DJ85 37	0.05552	6	0.53264	80	0.06956	15	0.01925	4	433	21	434	5	434	9	385	8	0.09
36	DJ85 38	0.0558	6	0.54729	92	0.07112	16	0.02144	4	444	22	443	6	443	9	429	9	-0.33
37	DJ85 39	0.05538	6	0.52336	69	0.06853	15	0.01911	3	428	25	427	5	427	9	383	7	-0.06

					Ratio	s						Age	(Ma)				
An	alysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	$\frac{207}{235}$ U	± 1s	²⁰⁶ Pb 238U	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
38	DJ85 41	0.05572	6	0.53877	125	0.07012	16	0.02157	9 441	23	438	8	437	10	431	17	-1.01
39	DJ85 42	0.05571	6	0.54309	82	0.0707	15	0.02021	4 441	23	440	5	440	9	404	8	-0.1
40	DJ85 43	0.05625	6	0.57639	77	0.07432	16	0.02151	4 462	26	462	5	462	9	430	8	-0.03
41	DJ85 44	0.05567	6	0.53886	73	0.07019	15	0.0205	4 439	23	438	5	437	9	410	7	-0.44
42	DJ85 45	0.0556	9	0.55283	195	0.07211	19	0.02206	9 436	36	447	13	449	12	441	19	2.95
43	DJ85 46	0.05543	6	0.53032	90	0.06939	15	0.02027	5 430	22	432	6	432	9	406	9	0.69
44	DJ85 47	0.05573	6	0.55011	112	0.0716	16	0.02145	6 442	21	445	7	446	10	429	12	0.96
45	DJ85 48	0.0555	6	0.53037	119	0.06932	16	0.01942	7 432	23	432	8	432	10	389	13	-0.1
46	DJ85 49	0.05595	7	0.57191	169	0.07415	19	0.02141	9 450	29	459	11	461	11	428	17	2.45
47	DJ85 50	0.05543	6	0.53018	114	0.06938	16	0.01961	6 430	24	432	8	432	10	393	13	0.66
48	DJ85 51	0.05567	6	0.5377	92	0.07007	15	0.01818	5 439	21	437	6	437	9	364	9	-0.65
49	DJ85 52	0.05625	7	0.58007	155	0.07482	18	0.023	8 462	25	465	10	465	11	460	16	0.61
50	DJ85 53	0.05598	6	0.56402	102	0.07309	16	0.0207	5 452	21	454	7	455	10	414	11	0.7
51	DJ85 54	0.05594	6	0.55706	90	0.07225	16	0.02101	5 450	23	450	6	450	9	420	10	-0.1
52	DJ85 55	0.05642	6	0.58564	149	0.0753	18	0.02135	8 469	25	468	10	468	11	427	17	-0.23
53	DJ85 56	0.05578	6	0.55483	85	0.07216	16	0.02064	4 444	24	448	6	449	9	413	8	1.26
54	DJ85 57	0.05594	6	0.55974	103	0.0726	16	0.02161	6 450	23	451	7	452	10	432	12	0.38
55	DJ85 58	0.05658	6	0.59334	104	0.07609	17	0.02281	6 475	21	473	7	473	10	456	11	-0.58
56	DJ85 59	0.05618	6	0.57361	83	0.07409	16	0.02152	5 459	21	460	5	461	10	430	9	0.23
57	DJ85 60	0.05604	6	0.56579	109	0.07325	17	0.02001	5 454	22	455	7	456	10	400	9	0.37
58	DJ85 61	0.05585	6	0.54918	129	0.07135	17	0.02178	7 446	25	444	8	444	10	435	13	-0.54
59	DJ85 62	0.05569	6	0.54179	114	0.07059	16	0.02047	6 440	22	440	8	440	10	410	12	-0.12
60	DJ85 63	0.05578	6	0.54865	133	0.07138	17	0.02459	9 444	26	444	9	444	10	491	17	0.14
61	DJ85 64	0.05606	6	0.56468	100	0.0731	16	0.02051	5 455	22	455	6	455	10	410	10	-0.05
62	DJ85 65	0.05631	6	0.5788	107	0.07459	17	0.02164	6 465	22	464	7	464	10	433	11	-0.25
DJ57																	
1	DJ57-3	0.0711	11	1.5637	264	0.15952	21	0.04042	14 960	16	956	10	954	12	801	26	-0.7
2	DJ57-4	0.05514	9	0.51562	87	0.06783	9	0.01818	6 418	18	422	6	423	5	364	12	1.3
3	DJ57-6	0.05507	11	0.52617	108	0.0693	9	0.01805	6 415	23	429	7	432	6	362	12	4.2
4	DJ57-7	0.06509	9	1.14595	168	0.1277	16	0.03301	11 777	14	775	8	775	9	656	21	-0.4
5	DJ57-10	0.16349	22	10.31446	1530	0.45764	61	0.105	33 2492	11	2463	14	2429	27	2018	61	-3
6	DJ57-11	0.05551	18	0.55407	180	0.07239	12	0.0162	7 433	44	448	12	451	7	325	14	4.2
7	DJ57-13	0.25829	30	23.4275	3141	0.65781	84	0.13356	40 3236	10	3245	13	3259	33	2534	71	0.9

					Ratio	s						Age	(Ma)				
Ar	aalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	$\frac{207}{235}$ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	$\frac{\pm}{1s}$	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\pm 1s$	Disc* (%)
8	DJ57-14	0.05866	16	0.71995	197	0.08901	13	0.02002	8 555	34	551	12	550	8	401	15	-0.9
9	DJ57-15	0.05608	14	0.53712	137	0.06946	10	0.01588	5 456	32	437	9	433	6	318	11	-5.1
10	DJ57-17	0.16378	20	10.67278	1464	0.47261	61	0.09857	29 2495	10	2495	13	2495	27	1900	54	0
11	DJ57-18	0.05577	19	0.53664	177	0.06979	11	0.01637	6 443	45	436	12	435	7	328	12	-1.9
12	DJ57-21	0.06022	21	0.81745	285	0.09846	17	0.02017	6 611	46	607	16	605	10	404	13	-1.1
13	DJ57-22	0.13564	23	7.67001	1396	0.41013	60	0.07442	22 2172	14	2193	16	2216	28	1451	40	2.4
14	DJ57-23	0.05538	10	0.54164	106	0.07094	10	0.01482	4 428	21	440	7	442	6	297	9	3.4
15	DJ57-24	0.05517	9	0.54296	94	0.07138	10	0.01429	4 419	18	440	6	444	6	287	8	6.3
16	DJ57-25	0.05544	10	0.55276	101	0.07232	10	0.01428	4 430	19	447	7	450	6	287	8	4.8
17	DJ57-26	0.05555	9	0.55636	96	0.07264	10	0.01454	4 434	18	449	6	452	6	292	8	4.2
18	DJ57-27	0.05965	13	0.79631	173	0.09682	14	0.01953	5 591	24	595	10	596	8	391	10	0.9
19	DJ57-28	0.0654	9	1.1041	175	0.12245	16	0.02994	8 787	15	755	8	745	9	596	16	-5.7
20	DJ57-29	0.05995	13	0.83667	183	0.10122	14	0.02012	6 602	24	617	10	622	8	403	11	3.4
21	DJ57-30	0.0564	18	0.57254	180	0.07363	12	0.01475	5 468	41	460	12	458	7	296	11	-2.3
22	DJ57-31	0.07462	10	1.72872	257	0.16809	22	0.03708	10 1058	13	1019	10	1002	12	736	19	-5.8
23	DJ57-32	0.05678	9	0.55268	95	0.07063	10	0.01558	4 483	18	447	6	440	6	312	8	-9.3
24	DJ57-34	0.1638	20	10.42422	1482	0.46172	62	0.08948	24 2495	11	2473	13	2447	27	1732	44	-2.4
25	DJ57-35	0.06934	10	1.40881	229	0.14742	20	0.03269	11 909	15	893	10	886	11	650	22	-2.7
26	DJ57-37	0.07548	15	1.79962	362	0.17299	25	0.03605	10 1081	20	1045	13	1029	14	716	19	-5.3
27	DJ57-38	0.07311	11	1.63539	268	0.16229	22	0.0333	9 1017	15	984	10	969	12	662	18	-5.1
28	DJ57-39	0.05733	10	0.58446	110	0.07397	10	0.01582	4 504	20	467	7	460	6	317	8	-9.1
29	DJ57-41	0.05697	9	0.57196	100	0.07283	10	0.01846	5 490	18	459	6	453	6	370	11	-7.9
30	DJ57-43	0.07076	11	1.51723	253	0.15553	21	0.0368	11 950	16	937	10	932	12	730	21	-2.1
31	DJ57-44	0.05738	12	0.60482	127	0.07646	11	0.01901	6 506	23	480	8	475	6	381	12	-6.4
32	DJ57-45	0.10153	24	4.3474	1022	0.31061	49	0.06887	25 1652	22	1702	19	1744	24	1346	47	6.3
33	DJ57-46	0.05676	7	0.56321	83	0.07197	9	0.01792	5 482	15	454	5	448	6	359	10	-7.3
34	DJ57-47	0.0565	11	0.58996	115	0.07575	10	0.01987	6 472	21	471	7	471	6	398	12	-0.3
35	DJ57-49	0.10605	14	4.52176	671	0.30928	41	0.07242	21 1733	12	1735	12	1737	20	1413	40	0.3
36	DJ57-50	0.07484	9	1.87116	265	0.18137	23	0.04445	13 1064	13	1071	9	1074	13	879	25	1
37	DJ57-52	0.08057	14	2.19561	411	0.19775	28	0.03332	11 1211	17	1180	13	1163	15	662	21	-4.4
38	DJ57-53	0.05476	11	0.50698	109	0.06718	10	0.01183	4 402	24	416	7	419	6	238	7	4.2
39	DJ57-54	0.1816	21	12.67186	1748	0.50633	67	0.07787	22 2668	10	2656	13	2641	29	1516	42	-1.3
40	DJ57-55	0.05568	12	0.53908	124	0.07025	10	0.01274	4 440	27	438	8	438	6	256	8	-0.5

					Ratio	s						Age	(Ma)				
Aı	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	²⁰⁷ <i>Pb</i> 235 <i>U</i>	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	Disc* (%)
41	DJ57-56	0.06835	11	1.29447	231	0.13743	19	0.02442	9 879	17	843	10	830	11	488	17	-6
42	DJ57-58	0.08924	12	2.91479	458	0.23701	32	0.04064	12 1409	13	1386	12	1371	17	805	24	-3.1
43	DJ57-59	0.06733	15	1.28505	289	0.13849	21	0.02572	8 848	24	839	13	836	12	513	16	-1.5
44	DJ57-61	0.18547	21	13.24326	1814	0.51798	68	0.09604	28 2702	10	2697	13	2691	29	1854	51	-0.6
45	DJ57-62	0.08985	12	3.05048	465	0.24629	33	0.05012	15 1422	13	1420	12	1419	17	988	29	-0.3
46	DJ57-63	0.06229	16	0.95526	250	0.11124	17	0.02175	8 684	31	681	13	680	10	435	17	-0.7
47	DJ57-64	0.0658	14	1.20888	261	0.13327	19	0.0279	9 800	23	805	12	806	11	556	18	0.8
48	DJ57-65	0.15355	18	9.45804	1323	0.44681	59	0.08639	26 2386	11	2383	13	2381	26	1675	48	-0.3
49	DJ57-66	0.16046	19	10.25457	1429	0.46359	61	0.09079	26 2461	11	2458	13	2455	27	1756	48	-0.3
50	DJ57-67	0.05612	10	0.54756	105	0.07077	10	0.01508	5 457	20	443	7	441	6	303	10	-3.7
51	DJ57-68	0.11884	18	5.75398	967	0.35121	50	0.07391	25 1939	14	1940	15	1940	24	1441	47	0.1
52	DJ57-69	0.07803	11	2.12279	326	0.19735	26	0.04094	12 1148	14	1156	11	1161	14	811	23	1.3
53	DJ57-70	0.05577	8	0.56622	94	0.07365	10	0.01559	5 443	17	456	6	458	6	313	9	3.5
54	DJ57-71	0.06958	11	1.45625	249	0.15182	20	0.0316	8 916	16	912	10	911	11	629	16	-0.6
55	DJ57-72	0.06266	8	0.98447	148	0.11397	15	0.02288	6 697	14	696	8	696	9	457	13	-0.2
56	DJ57-73	0.0684	10	1.31738	209	0.13971	19	0.02744	7 881	15	853	9	843	10	547	15	-4.6
57	DJ57-74	0.06921	9	1.44323	221	0.15126	20	0.0308	9 905	14	907	9	908	11	613	17	0.3
58	DJ57-76	0.11318	14	5.05352	708	0.32391	42	0.06296	17 1851	11	1828	12	1809	21	1234	31	-2.6
59	DJ57-77	0.06852	14	1.38933	300	0.14708	21	0.03096	9 884	23	884	13	885	12	616	18	0
60	DJ57-78	0.10793	13	4.58601	633	0.30824	40	0.05999	16 1765	11	1747	12	1732	20	1178	30	-2.1
61	DJ57-79	0.23836	27	20.35415	2728	0.61945	80	0.08946	23 3109	10	3108	13	3108	32	1732	43	-0.1
62	DJ57-80	0.06854	10	1.37811	213	0.14586	19	0.03021	9 885	14	880	9	878	11	602	18	-0.9
63	DJ57-82	0.0746	12	1.75995	291	0.17115	22	0.03868	12 1058	15	1031	11	1018	12	767	22	-4
64	DJ57-84	0.0764	9	1.9145	265	0.18179	23	0.0445	13 1106	12	1086	9	1077	12	880	25	-2.9
65	DJ57-86	0.05634	20	0.54887	190	0.07067	11	0.01782	8 466	48	444	12	440	7	357	16	-5.7
66	DJ57-88	0.16615	20	10.90641	1489	0.47622	60	0.10605	31 2519	10	2515	13	2511	26	2037	56	-0.4
67	DJ57-89	0.07241	9	1.64316	222	0.16464	20	0.03823	11 997	12	987	9	983	11	758	21	-1.7
68	DJ57-92	0.07221	11	1.62243	267	0.16296	21	0.04229	14 992	16	979	10	973	12	837	27	-2
69	DJ57-93	0.16442	19	10.69785	1418	0.47195	58	0.11537	37 2502	10	2497	12	2492	25	2207	67	-0.5
70	DJ57-94	0.05654	9	0.56447	93	0.07241	9	0.02047	7 474	17	454	6	451	5	410	13	-5
71	DJ57-97	0.08873	11	2.94511	396	0.24074	30	0.06384	21 1398	12	1394	10	1391	15	1251	39	-0.6
DJ81	l																
1	DJ81-002	0.05569	16	0.49833	146	0.06491	10	0.0173	7 440	38	411	10	405	6	347	14	-8.1

					Ratio	s							Age	(Ma)				
Aı	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	²⁰⁷ <i>Pb</i> ²³⁵ <i>U</i>	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\pm 1s$	Disc* (%)
2	DJ81-004	0.05613	14	0.52109	132	0.06733	10	0.01823	7	458	31	426	9	420	6	365	13	-8.5
3	DJ81-006	0.05587	11	0.56101	116	0.07283	10	0.01909	7	447	23	452	8	453	6	382	14	1.4
4	DJ81-008	0.05706	20	0.56433	192	0.07173	12	0.02011	10	494	46	454	12	447	7	402	19	-9.9
5	DJ81-010	0.05616	13	0.50267	119	0.06492	9	0.01719	6	459	28	414	8	405	6	344	12	-12
6	DJ81-012	0.05575	16	0.52069	150	0.06774	10	0.01932	9	442	38	426	10	423	6	387	17	-4.6
7	DJ81-013	0.05618	11	0.53299	108	0.06882	9	0.01988	8	459	23	434	7	429	6	398	15	-6.9
8	DJ81-015	0.05539	15	0.53101	140	0.06953	10	0.02026	9	428	34	432	9	433	6	405	17	1.3
9	DJ81-016	0.05552	23	0.50492	207	0.06596	12	0.01842	9	433	59	415	14	412	7	369	17	-5.1
10	DJ81-017	0.05715	27	0.60897	283	0.07729	15	0.02301	15	497	69	483	18	480	9	460	29	-3.6
11	DJ81-018	0.05616	14	0.52047	131	0.06722	10	0.01931	8	459	31	425	9	419	6	387	16	-8.9
12	DJ81-019	0.05602	15	0.51398	140	0.06655	10	0.0193	9	453	35	421	9	415	6	386	18	-8.6
13	DJ81-020	0.05617	20	0.52767	184	0.06814	11	0.02016	10	459	48	430	12	425	7	403	19	-7.7
14	DJ81-022	0.05527	16	0.55085	158	0.07232	11	0.02022	10	423	37	446	10	450	7	405	19	6.5
15	DJ81-024	0.0565	8	0.56543	93	0.07261	10	0.01805	6	472	17	455	6	452	6	362	12	-4.5
16	DJ81-025	0.05585	14	0.54238	139	0.07046	11	0.01809	7	446	31	440	9	439	6	362	14	-1.8
17	DJ81-026	0.05562	11	0.55539	119	0.07245	10	0.01823	8	437	24	449	8	451	6	365	15	3.2
18	DJ81-027	0.05563	10	0.51083	96	0.06663	9	0.01737	6	438	20	419	6	416	6	348	12	-5.2
19	DJ81-028	0.05597	12	0.53324	120	0.06912	10	0.01783	7	451	26	434	8	431	6	357	13	-4.7
20	DJ81-029	0.05568	22	0.52349	202	0.06821	12	0.01868	10	440	55	427	13	425	7	374	19	-3.4
21	DJ81-030	0.05498	11	0.5311	116	0.07008	10	0.01742	7	411	25	433	8	437	6	349	13	6.3
22	DJ81-034	0.05655	38	0.56861	373	0.07291	18	0.02035	20	474	102	457	24	454	11	407	40	-4.4
23	DJ81-035	0.05686	16	0.5659	157	0.07218	11	0.01893	10	486	35	455	10	449	7	379	20	-7.8
24	DJ81-038	0.05563	12	0.49917	108	0.06507	9	0.01707	9	438	24	411	7	406	6	342	17	-7.4
25	DJ81-041	0.05609	21	0.52341	194	0.06769	11	0.01851	10	456	53	427	13	422	7	371	19	-7.7
26	DJ81-044	0.05659	28	0.54228	259	0.06951	14	0.01939	12	476	70	440	17	433	8	388	25	-9.2
27	DJ81-045	0.05669	22	0.55256	212	0.0707	13	0.02037	12	479	53	447	14	440	8	408	24	-8.5
28	DJ81-046	0.0562	12	0.54006	124	0.0697	10	0.01867	8	460	26	438	8	434	6	374	15	-5.8
29	DJ81-048	0.05636	11	0.58225	124	0.07493	11	0.02147	9	467	24	466	8	466	6	429	17	-0.2
30	DJ81-049	0.05695	17	0.56679	173	0.07219	12	0.01936	9	490	40	456	11	449	7	388	19	-8.5
31	DJ81-050	0.05699	17	0.56077	164	0.07137	11	0.01884	9	491	37	452	11	444	7	377	17	-9.9
32	DJ81-052	0.05589	12	0.52554	121	0.06821	10	0.01772	7	448	27	429	8	425	6	355	14	-5.2
33	DJ81-053	0.05643	15	0.53899	148	0.06928	11	0.01788	8	469	34	438	10	432	6	358	15	-8.3
34	DJ81-055	0.05527	11	0.51367	111	0.06741	10	0.01724	7	423	24	421	7	421	6	345	13	-0.6

					Ratio	s						Age	(Ma)				
A	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	$\frac{207}{235}$ U	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb 232Th	$\pm 1s$	Disc* (%)
35	DJ81-056	0.05714	16	0.61846	176	0.07851	12	0.02022	10 497	36	489	11	487	7	405	20	-2
36	DJ81-057	0.05681	29	0.57475	288	0.07338	15	0.01935	16 484	75	461	19	456	9	387	33	-5.9
37	DJ81-059	0.0565	26	0.58262	266	0.0748	14	0.02053	15 472	67	466	17	465	9	411	29	-1.6
38	DJ81-063	0.05671	16	0.58902	170	0.07533	12	0.0213	11 480	37	470	11	468	7	426	22	-2.6
39	DJ81-064	0.05625	10	0.53506	98	0.069	10	0.01949	8 462	19	435	7	430	6	390	15	-7.2
40	DJ81-065	0.05658	11	0.56956	115	0.07301	10	0.01981	8 475	22	458	7	454	6	396	16	-4.6
41	DJ81-066	0.05552	27	0.54335	261	0.07098	14	0.01726	12 433	72	441	17	442	8	346	23	2.1
42	DJ81-067	0.0571	14	0.58529	150	0.07435	11	0.02116	10 495	31	468	10	462	7	423	20	-6.9
43	DJ81-068	0.05695	13	0.5693	130	0.0725	10	0.02079	9 490	26	458	8	451	6	416	18	-8.1
44	DJ81-069	0.05686	16	0.58964	165	0.07522	11	0.02071	11 486	36	471	11	468	7	414	21	-4
45	DJ81-070	0.05554	18	0.5555	177	0.07255	12	0.02162	12 434	43	449	12	452	7	432	23	4.2
46	DJ81-071	0.05672	36	0.57114	348	0.07303	17	0.019	11 481	93	459	22	454	10	380	22	-5.7
47	DJ81-072	0.05652	19	0.54554	177	0.07001	11	0.02002	11 473	44	442	12	436	7	401	22	-8
48	DJ81-073	0.05594	10	0.52622	97	0.06824	9	0.0189	7 450	19	429	6	426	6	378	14	-5.6
49	DJ81-074	0.05554	20	0.51015	179	0.06663	11	0.01916	10 434	49	419	12	416	7	384	19	-4.3
50	DJ81-075	0.05492	13	0.52358	130	0.06915	10	0.01841	8 409	31	428	9	431	6	369	16	5.6
51	DJ81-076	0.05492	11	0.51259	108	0.0677	10	0.01843	7 409	24	420	7	422	6	369	14	3.4
52	DJ81-078	0.05686	21	0.58234	208	0.07429	12	0.02108	12 486	50	466	13	462	7	422	24	-5.2
53	DJ81-079	0.05538	9	0.521	95	0.06824	9	0.01783	7 428	19	426	6	426	6	357	13	-0.5
54	DJ81-081	0.05678	33	0.57766	324	0.07379	15	0.0223	17 483	89	463	21	459	9	446	34	-5.2
55	DJ81-086	0.05633	29	0.59128	292	0.07614	15	0.02257	15 465	74	472	19	473	9	451	30	1.7
56	DJ81-087	0.05712	34	0.60041	348	0.07625	17	0.01849	15 496	89	477	22	474	10	370	30	-4.7
57	DJ81-088	0.05693	20	0.56455	195	0.07193	12	0.0194	10 489	47	454	13	448	7	388	20	-8.7
58	DJ81-089	0.0559	15	0.54659	150	0.07092	11	0.01957	9 448	35	443	10	442	6	392	17	-1.6
59	DJ81-090	0.05551	21	0.51832	195	0.06773	11	0.01867	10 433	55	424	13	422	7	374	20	-2.5
60	DJ81-091	0.05581	21	0.55323	203	0.0719	12	0.01992	14 445	53	447	13	448	7	399	27	0.6
61	DJ81-092	0.05652	13	0.57873	133	0.07427	10	0.02099	10 473	27	464	9	462	6	420	19	-2.4
62	DJ81-093	0.05708	14	0.52089	127	0.06618	10	0.01961	9 495	29	426	9	413	6	393	18	-17
63	DJ81-095	0.05711	12	0.5916	132	0.07513	11	0.02042	9 496	26	472	8	467	6	409	18	-6
64	DJ81-096	0.05619	25	0.52829	227	0.06819	13	0.01896	11 460	63	431	15	425	8	380	22	-7.8
65	DJ81-097	0.05684	18	0.56749	174	0.07241	11	0.02104	12 485	41	456	11	451	7	421	24	-7.4
66	DJ81-099	0.05662	15	0.56839	155	0.07282	11	0.02161	11 477	35	457	10	453	6	432	21	-5.2
67	DJ81-100	0.05585	20	0.51249	178	0.06655	11	0.0189	12 446	49	420	12	415	7	378	23	-7.2

					Ratio	s						Age	(Ma)				
A	nalysis No.	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	$\frac{207}{235}$ U	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	$\frac{\pm}{1s} \frac{{}^{207}Pb}{{}^{206}Pb}$	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\pm 1s$	Disc* (%)
68	DJ81-103	0.05563	32	0.52021	291	0.06782	14	0.02137	17 438	86	425	19	423	9	427	33	-3.4
69	DJ81-107	0.05622	19	0.52799	178	0.06812	11	0.019	10 461	46	430	12	425	7	380	21	-8.1
70	DJ81-108	0.0563	18	0.52782	163	0.068	11	0.01952	11 464	41	430	11	424	6	391	23	-8.9
71	DJ81-110	0.05562	14	0.49484	126	0.06453	9	0.01895	9 437	32	408	9	403	6	379	18	-8.1
72	DJ81-111	0.05646	19	0.53806	177	0.06913	11	0.0156	9 471	44	437	12	431	7	313	17	-8.7
73	DJ81-112	0.05571	37	0.49189	320	0.06404	15	0.01663	14 441	102	406	22	400	9	333	27	-9.5
74	DJ81-114	0.05563	12	0.49934	113	0.0651	10	0.01589	6 438	26	411	8	407	6	319	12	-7.3
75	DJ81-115	0.05514	27	0.48853	236	0.06426	12	0.01471	9 418	74	404	16	401	7	295	17	-4.1
76	DJ81-116	0.05557	31	0.51495	282	0.06722	13	0.01777	14 435	87	422	19	419	8	356	27	-3.8
77	DJ81-117	0.05651	25	0.54608	237	0.07009	13	0.01717	11 472	64	442	16	437	8	344	21	-7.8
78	DJ81-119	0.05587	20	0.52401	182	0.06804	12	0.01736	7 447	47	428	12	424	7	348	14	-5.3
79	DJ81-120	0.05614	57	0.56823	562	0.07342	24	0.02202	21 458	163	457	36	457	14	440	41	-0.3
80	DJ81-121	0.0561	30	0.54128	284	0.06998	14	0.02023	15 456	81	439	19	436	8	405	30	-4.6

Figure X.C.2 Concordia plots for detrital zircon grains from dated samples.

					Ratios								Age	(Ma)			
А	nalysis No.	²⁰⁷ <i>Pb</i> ²⁰⁶ <i>Pb</i>	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	± 1s	²⁰⁷ Pb ²⁰⁶ Pb	± 1s	²⁰⁷ Pb ²³⁵ U	± 1s	²⁰⁶ Pb ²³⁸ U	± 1s	²⁰⁸ Pb ²³² Th	$\pm 1s$
DJ2	92																
1	DJ292 02	0.05603	64	0.54198	618	0.07019	144	0.02185	39	454	24	440	4	437	9	437	8
2	DJ292 03	0.05527	62	0.516	614	0.06774	140	0.02146	36	423	24	422	4	423	8	429	7
3	DJ292 04	0.05544	62	0.52801	618	0.06911	142	0.02094	33	430	25	430	4	431	9	419	7
4	DJ292 05	0.05541	62	0.52536	624	0.06881	142	0.02222	37	429	29	429	4	429	9	444	7
5	DJ292 06	0.05562	101	0.5458	2108	0.07122	198	0.02153	87	437	40	442	14	444	12	431	17
6	DJ292 07	0.05562	64	0.53642	620	0.07001	145	0.0228	37	437	24	436	4	436	9	456	7
7	DJ292 08	0.05568	54	0.5364	1002	0.06993	154	0.02131	47	440	22	436	7	436	9	426	9
8	DJ292 09	0.05557	57	0.52587	776	0.06874	146	0.02012	42	435	21	429	5	429	9	403	8
9	DJ292 10	0.05481	57	0.52668	744	0.0698	148	0.02159	41	404	25	430	5	435	9	432	8
10	DJ292 12	0.05532	55	0.52841	1094	0.06939	157	0.02137	50	425	20	431	7	432	9	427	10
11	DJ292 13	0.05558	57	0.53054	1218	0.06936	161	0.02013	53	436	23	432	8	432	10	403	11
DJ3	21																
1	DJ321 01	0.05724	118	0.62936	2717	0.07994	243	0.02313	64	501	44	496	17	496	15	462	13
2	DJ321 02	0.05763	101	0.62339	2358	0.07863	220	0.02271	97	516	39	492	15	488	13	454	19
3	DJ321 03	0.05684	116	0.61378	2634	0.07848	239	0.02321	96	485	45	486	17	487	14	464	19
4	DJ321 04	0.05722	234	0.62378	4682	0.07923	341	0.02136	139	500	88	492	29	492	20	427	28
5	DJ321 05	0.05633	76	0.59695	1841	0.07701	206	0.02288	63	465	28	475	12	478	12	457	12
6	DJ321 06	0.057	417	0.60785	7679	0.07748	508	0.02342	318	492	169	482	48	481	30	468	63
7	DJ321 07	0.05739	90	0.60924	2136	0.07713	217	0.02141	76	507	37	483	13	479	13	428	15
8	DJ321 08	0.05779	201	0.61287	4049	0.07704	307	0.02042	131	522	71	485	25	478	18	409	26
9	DJ321 09	0.05692	93	0.62635	2276	0.0799	227	0.02362	89	488	37	494	14	496	14	472	18
10	DJ321 10	0.05767	107	0.65513	2584	0.08249	236	0.02516	89	517	39	512	16	511	14	502	18
11	DJ321 11	0.05794	83	0.61674	2014	0.07728	212	0.02389	65	527	32	488	13	480	13	477	13
12	DJ321 12	0.05839	216	0.65598	4509	0.08156	328	0.02464	161	544	92	512	28	505	20	492	32
13	DJ321 13	0.05721	66	0.61441	1599	0.07795	198	0.02461	67	500	25	486	10	484	12	491	13
14	DJ321 14	0.0573	139	0.63945	3139	0.081	266	0.02081	116	503	52	502	19	502	16	416	23
15	DJ321 15	0.05683	75	0.60385	1817	0.07711	205	0.02381	76	485	29	480	12	479	12	476	15
16	DJ321 16	0.05695	137	0.64115	3155	0.0817	272	0.02687	143	490	51	503	20	506	16	536	28
17	DJ321 17	0.05689	85	0.61969	2092	0.079	217	0.02326	68	487	31	490	13	490	13	465	13

Table X.C.5 La-ICPMS U-Pb magmatic zircon data.

					Ratios								Age	(Ma)			
А	nalysis No.	²⁰⁷ <i>Pb</i> ²⁰⁶ <i>Pb</i>	± 1s	$\frac{207}{235}$ U	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	± 1s	²⁰⁷ <i>Pb</i> ²⁰⁶ <i>Pb</i>	± 1s	$\frac{207}{235}$ U	± 1s	²⁰⁶ <i>Pb</i> ²³⁸ <i>U</i>	± 1s	²⁰⁸ Pb ²³² Th	$\pm 1s$
18	DJ321 18	0.05663	78	0.59973	1891	0.07681	207	0.02252	58	477	31	477	12	477	12	450	11
19	DJ321 19	0.05678	129	0.60762	2811	0.0776	243	0.0224	98	483	51	482	18	482	15	448	19
20	DJ321 20	0.05733	94	0.62405	2265	0.07893	225	0.02271	83	504	40	492	14	490	13	454	16
21	DJ321 21	0.057	320	0.64226	6171	0.0817	400	0.02388	228	492	128	504	38	506	24	477	45
22	DJ321 22	0.05613	146	0.57367	2984	0.0741	252	0.02011	105	458	52	460	19	461	15	402	21
23	DJ321 23	0.0563	236	0.63559	4842	0.08184	352	0.02766	194	464	93	500	30	507	21	551	38

Table	X.C.6	Hf	isotopic	data data	of	magmatic	and	detrital	zircons	from	Early	Palaeozoic	complexes	of	West
Jungga	ar. *: ²⁰	⁰⁶ Pb/	²³⁸ U age	es for a	ige∙	<1000 Ma,	²⁰⁷ Pb	/ ²⁰⁶ Pb a	ges for a	ge<10	00 Ma		-		

Analysis No.	Age*	$\frac{176}{177} Hf}{177}$	1 s	¹⁷⁶ Lu ¹⁷⁷ Hf	$\frac{176Yb}{177Hf}$	$\left(\frac{^{176}Hf}{^{177}Hf}\right)_i$	εHf(t)	1 s	$T_{\rm DM}$	$T_{\text{DM}}^{}\text{C}}$
DJ100, n= 52										
DJ100 01	433	0.28268	19	0.0011	0.0241	0.282673	6.4	0.67	0.78	1.00
DJ100 04	443	0.28255	27	0.0017	0.0333	0.282538	1.8	0.95	0.97	1.28
DJ100 05	414	0.28264	22	0.0014	0.0318	0.282626	4.2	0.76	0.85	1.11
DJ100 06	1526	0.28160	22	0.0008	0.0211	0.281571	-7.4	0.78	2.23	2.69
DJ100 07	421	0.28244	23	0.0009	0.0210	0.282437	-2.3	0.81	1.10	1.52
DJ100 08	2584	0.28099	19	0.0007	0.0165	0.280954	-4.3	0.66	3.02	3.32
DJ100 09	426	0.28258	23	0.0013	0.0257	0.282570	2.5	0.81	0.93	1.23
DJ100 10	1112	0.28194	20	0.0006	0.0140	0.281930	-4.3	0.70	1.76	2.18
DJ100 11	432	0.28280	21	0.0010	0.0221	0.282793	10.6	0.74	0.62	0.73
DJ100 12	1790	0.28158	21	0.0009	0.0225	0.281552	-1.9	0.74	2.25	2.56
DJ100 13	504	0.28284	22	0.0023	0.0408	0.282814	13.0	0.77	0.59	0.64
DJ100 14	2655	0.28058	19	0.0004	0.0087	0.280559	-16.6	0.67	3.52	4.12
DJ100 15	916	0.28243	21	0.0036	0.0928	0.282367	6.6	0.74	1.20	1.35
DJ100 16	461	0.28242	21	0.0003	0.0068	0.282417	-2.1	0.73	1.12	1.54
DJ100 17	642	0.28172	26	0.0007	0.0176	0.281709	-23.0	0.91	2.06	2.94
DJ100 18	502	0.28251	21	0.0006	0.0115	0.282502	1.9	0.73	1.01	1.33
DJ100 19	2197	0.28097	19	0.0005	0.0129	0.280949	-13.7	0.67	3.03	3.59
DJ100 20	481	0.28242	21	0.0019	0.0377	0.282405	-2.0	0.73	1.16	1.55
DJ100 21	434	0.28257	19	0.0007	0.0159	0.282565	2.5	0.66	0.93	1.23
DJ100 23	1760	0.28156	18	0.0006	0.0150	0.281539	-3.0	0.63	2.27	2.61
DJ100 24	869	0.28232	19	0.0011	0.0270	0.282305	3.3	0.65	1.27	1.52
DJ100 25	452	0.28223	20	0.0009	0.0210	0.282225	-9.1	0.68	1.39	1.96
DJ100 26	1563	0.28192	18	0.0005	0.0122	0.281908	5.4	0.62	1.78	1.93
DJ100 27	1740	0.28160	17	0.0010	0.0236	0.281567	-2.5	0.60	2.24	2.56
DJ100 28	457	0.28238	20	0.0011	0.0247	0.282370	-3.8	0.69	1.20	1.64
DJ100 29	464	0.28256	20	0.0009	0.0198	0.282555	2.9	0.68	0.94	1.23
DJ100 31	435	0.28241	15	0.0005	0.0122	0.282408	-3.0	0.54	1.13	1.57
DJ100 32	881	0.28210	13	0.0007	0.0181	0.282086	-4.1	0.46	1.56	1.99
DJ100 33	522	0.28212	16	0.0004	0.0092	0.282116	-11.3	0.56	1.52	2.15
DJ100 34	1191	0.28200	17	0.0006	0.0156	0.281989	-0.4	0.61	1.68	2.00
DJ100 35	975	0.28208	17	0.0010	0.0227	0.282059	-2.9	0.59	1.60	1.99
DJ100 36	1122	0.28167	16	0.0005	0.0126	0.281655	-13.8	0.57	2.12	2.77

Analysis No.	Age*	$\frac{176}{177} Hf}{177}$	1 s	$\frac{176Lu}{177Hf}$	$\frac{176Yb}{177Hf}$	$\left(\frac{^{176}Hf}{^{177}Hf}\right)_i$	εHf(t)	1 s	$T_{\rm DM}$	$T_{\text{dm}}^{\ \ c}$
DJ100 37	455	0.28217	18	0.0010	0.0221	0.282159	-11.3	0.64	1.48	2.10
DJ100 38	968	0.28188	17	0.0004	0.0082	0.281868	-9.8	0.59	1.84	2.41
DJ100 39	1391	0.28120	16	0.0003	0.0069	0.281194	-23.9	0.54	2.71	3.59
DJ100 40	439	0.28258	16	0.0005	0.0110	0.282580	3.2	0.54	0.90	1.20
DJ100 41	463	0.28259	16	0.0009	0.0197	0.282582	3.8	0.56	0.90	1.18
DJ100 42	431	0.28246	15	0.0010	0.0229	0.282456	-1.4	0.52	1.08	1.47
DJ100 43	1301	0.28207	13	0.0007	0.0148	0.282051	4.4	0.46	1.60	1.79
DJ100 44	430	0.28239	15	0.0009	0.0193	0.282383	-4.0	0.53	1.17	1.63
DJ100 45	642	0.28192	14	0.0008	0.0201	0.281909	-15.9	0.50	1.80	2.52
DJ100 46	424	0.28238	15	0.0004	0.0100	0.282379	-4.3	0.53	1.17	1.64
DJ100 47	455	0.28244	23	0.0016	0.0349	0.282425	-1.9	0.79	1.13	1.52
DJ100 48	441	0.28233	15	0.0007	0.0137	0.282325	-5.8	0.52	1.25	1.75
DJ100 49	439	0.28255	18	0.0010	0.0191	0.282545	2.0	0.63	0.96	1.27
DJ100 50	522	0.28227	17	0.0009	0.0189	0.282257	-6.3	0.61	1.34	1.85
DJ100 51	446	0.28245	18	0.0004	0.0083	0.282444	-1.5	0.65	1.08	1.49
DJ100 53	923	0.28228	16	0.0005	0.0107	0.282271	3.4	0.54	1.31	1.56
DJ100 55	451	0.28234	20	0.0007	0.0153	0.282339	-5.1	0.70	1.23	1.71
DJ100 56	2407	0.28111	18	0.0004	0.0086	0.281095	-3.5	0.61	2.83	3.13
DJ100 59	2618	0.28103	16	0.0011	0.0262	0.280969	-2.9	0.55	3.00	3.26
DJ100 60	1270	0.28192	15	0.0002	0.0066	0.281918	-1.1	0.52	1.77	2.11
DJ321, n=23			0							
DJ321 01	496	0.28291	30	0.0032	0.0780	0.282874	14.9	1.07	0.51	0.51
DJ321 02	488	0.28288	18	0.0010	0.0206	0.282872	14.7	0.62	0.51	0.52
DJ321 03	487	0.28286	20	0.0013	0.0281	0.282846	13.7	0.70	0.54	0.58
DJ321 04	492	0.28297	26	0.0026	0.0559	0.282942	17.2	0.91	0.41	0.37
DJ321 05	478	0.28290	21	0.0024	0.0542	0.282882	14.8	0.74	0.49	0.51
DJ321 06	481	0.28290	18	0.0004	0.0091	0.282892	15.2	0.62	0.48	0.48
DJ321 07	479	0.28287	19	0.0018	0.0392	0.282855	13.9	0.65	0.53	0.57
DJ321 08	478	0.28287	21	0.0016	0.0334	0.282852	13.7	0.74	0.54	0.57
DJ321 09	496	0.28289	19	0.0013	0.0285	0.282872	14.9	0.66	0.51	0.52
DJ321 10	511	0.28284	20	0.0011	0.0239	0.282828	13.6	0.72	0.57	0.60
DJ321 11	480	0.28288	25	0.0022	0.0487	0.282862	14.1	0.89	0.52	0.55
DJ321 12	505	0.28288	19	0.0012	0.0248	0.282865	14.8	0.67	0.52	0.53
DJ321 13	484	0.28289	26	0.0018	0.0389	0.282876	14.7	0.92	0.50	0.52

Analysis No.	Age*	$\frac{176}{177} Hf$	1 s	¹⁷⁶ Lu ¹⁷⁷ Hf	$\frac{176Yb}{177Hf}$	$\left(\frac{^{176}Hf}{^{177}Hf}\right)_i$	εHf(t)	1 s	$T_{\rm DM}$	$T_{\rm DM}^{\ \ C}$
DJ321 14	502	0.28292	24	0.0011	0.0227	0.282914	16.5	0.84	0.45	0.42
DJ321 15	479	0.28290	23	0.0016	0.0338	0.282887	15.0	0.79	0.49	0.50
DJ321 16	506	0.28289	25	0.0010	0.0209	0.282881	15.4	0.86	0.50	0.49
DJ321 17	490	0.28291	20	0.0013	0.0287	0.282896	15.5	0.69	0.48	0.47
DJ321 18	477	0.28295	30	0.0029	0.0637	0.282923	16.2	1.05	0.44	0.42
DJ321 19	482	0.28291	71	0.0006	0.0147	0.282908	15.8	2.47	0.46	0.45
DJ321 20	490	0.28290	26	0.0018	0.0384	0.282887	15.2	0.91	0.49	0.49
DJ321 21	506	0.28290	25	0.0009	0.0187	0.282894	15.9	0.87	0.48	0.46
DJ321 22	461	0.28290	21	0.0022	0.0472	0.282876	14.2	0.74	0.50	0.53
DJ321 23	507	0.28287	32	0.0016	0.0332	0.282853	14.4	1.12	0.53	0.55
Flavien CHOULET

Mécanismes et évolution des chaînes d'accrétion : exemple des chaînes paléozoïques d'Asie Centrale (Junggar Occidental, N-O Chine).

es chaînes d'accrétion se développent au niveau des zones de subduction océanique et contribuent à la croissance de la croûte continentale. En Asie Centrale, le collage tectonique des Altaïdes comprend de nombreuses chaînes d'accrétion à l'origine de la formation de la croûte continentale asiatique au Paléozoïque. Basé sur l'approche combinée de données géochimiques, géochronologiques, paléomagnétiques et structurales, ce travail permet de caractériser l'architecture d'une chaîne d'accrétion (Junggar Occidental, nord-ouest Chine) et de déchiffrer les étapes de la croissance de la croûte continentale en Asie Centrale. L'étude des zircons détritiques indique une évolution géodynamique polycyclique du Junggar occidental. Le recyclage continu de la croûte juvénile accompagne le transfert épisodique de magmas mantelliques dans la croûte. Ces résultats suggèrent un contrôle de la croissance crustale par la géodynamique régionale. Le cycle paléozoïque inférieur correspond à la fermeture de deux domaines océaniques bordant des arcs intra-océaniques. La tectonique de nappes, la sédimentation syn-tectonique et le magmatisme alcalin intra-plaque caractérisent les collisions successives d'arc et de microcontinent à l'origine de l'arrêt de la subduction au Dévonien inférieur. La subduction des océans Ob-Zaisan au nord et Junggar-Balkash au sud entraîne le développement, de deux marges continentales actives au Dévonien moyen. L'accrétion de matériaux océaniques et terrigènes contribue à l'expansion des complexes d'accrétion. La formation de la virgation kazakh au Paléozoïque supérieur conduit à la subduction oblique de l'Océan Junggar-Balkash. Une déformation transpressive, marquée par des plis à axes verticaux affecte alors le complexe d'accrétion du Junggar Occidental. L'augmentation de la courbure de la virgation est à l'origine de décrochements qui accommodent le transport latéral des unités accrétées. Les rotations relatives entre les différents blocs se poursuivent au Mésozoïque suite à la réactivation intracontinentale de la chaîne.

Mots clés : Chaîne d'accrétion, Croissance continentale, Altaïdes, Zircons détritiques, Paléomagnétisme

Mechanisms and evolution of accretionary orogens : new insights from Palaeozoic belts of Central Asia (West Junggar, NW China)

ccretionary orogens develop at sites of oceanic subduction and they largely contribute to continental crust growth. The Altaids tectonic collage covers the whole Central Asia, exposing numerous accretionary orogens that can account for the Palaeozoic continental crust growth. Multidisciplinary approach, using geochronological, geochemical, structural and palaeomagnetic tools was carried out to reveal the architecture of a past accretionary belt (West Junggar, Northwestern China) and to decipher the timing of continental crust growth in Central Asia. A polycyclic geodynamical evolution is inferred from the detrital zircon studies and field observation. Continuous recycling of the Palaeozoic juvenile crust is coeval with episodic addition of mantle-derived materials into the crust and this supports a geodynamic control of the continental crust growth. The Early Palaeozoic cycle is characterized by the closure of two oceanic domains bounding island-arc systems. Early Devonian subduction jamming results from the successive collisions of an island arc and a microcontinent, which are documented by thrusting, sedimentation coeval with tectonics and alkaline intraplate magmatism. From Middle Devonian, two active continental margins developed upon the Early Palaeozoic basement, in response to the subductions of Ob-Zaisan Ocean, to the north and Junggar-Balkash Ocean, to the south. Accretionary complexes growth results from the accretion of oceanic and terrigenous materials. Development of the Late Palaeozoic Kazakh orocline led to oblique subduction of the Junggar-Balkash Ocean. Consequently, transpression affected the West Junggar accretionary complex as indicated by folds with vertical axes. Progressive buckling of the orocline gives rise to Late Carboniferous to Permian strike-slip faults, which accommodate lateral unit transport. Relative rotations of the blocs continue after Late Triassic, due to diachronous intraplate reactivation.

Keywords: Accretionary orogens, Continental growth, Altaids, Detrital zircon, Palaeomagnetism

ISTO-CNRS (UMR6113), 45071 Orléans, France IGGCAS, 100029, Beijing, Chine

