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Abstract

We consider the task of under-determined and determined reverberant audio
source separation, that is the extraction of the signal of each source from a
multichannel audio mixture.

We propose a general Gaussian modeling framework whereby the contribu-
tion of each source to all mixture channels in the time-frequency domain
is modeled as a zero-mean Gaussian random variable whose covariance en-
codes both the spatial and the spectral characteristics of the source. In order
to better account for the reverberant mixing process, we relax the conven-
tional narrowband assumption resulting in rank-1 spatial covariance and
compute the upper bound on the separation performance achievable with
full-rank spatial covariance. Experimental results indicate an improvement
of up to 6 dB Signal-to-Distortion Ratio (SDR) in moderate to high rever-
berant conditions which supports this generalization. We also consider the
use of quadratic time-frequency representations and that of the auditory-
motivated equivalent rectangular bandwidth (ERB) frequency scale to in-
crease the amount of exploitable information and decrease the overlap be-
tween the sources in the input representation.

After this theoretical validation of the proposed framework, we focus on esti-
mating the model parameters from a given mixture signal in a practical blind
source separation scenario. We derive a family of Expectation-Maximization
(EM) algorithms to estimate the parameters either in the maximum likeli-
hood (ML) sense or in the maximum a posteriori (MAP) sense. We propose
a family of spatial location priors inspired by the theory of room acoustics
as well as a spatial continuity prior and investigate the use of two spectral
priors previously used in a single-channel or rank-1 multichannel context,
namely spectral continuity and Nonnegative Matrix Factorization (NMF).
The source separation results given by the proposed approach are compared
with several baseline and state-of-the-art algorithms on both simulated mix-
tures and real-world recordings in various scenarios.



Titre: Modélisation gaussienne de rang plein des mélanges audio convolu-
tifs appliquée à la séparation de sources.

Résumé

Nous considérons le problème de la séparation de mélanges audio réver-
bérants déterminés et sous-déterminés, c'est-à-dire l'extraction du signal de
chaque source dans un mélange multicanal.

Nous proposons un cadre général de modélisation gaussienne où la contri-
bution de chaque source aux canaux du mélange dans le domaine temps-
fréquence est modélisée par un vecteur aléatoire gaussien de moyenne nulle
dont la covariance encode à la fois les caractéristiques spatiales et spec-
trales de la source. A�n de mieux modéliser la réverbération, nous nous
a�ranchissons de l'hypothèse classique de bande étroite menant à une co-
variance spatiale de rang 1 et nous calculons la borne théorique de per-
formance atteignable avec une covariance spatiale de rang plein. Les ré-
sultats expérimentaux indiquent une augmentation du rapport Signal-à-
Distorsion (SDR) de 6 dB dans un environnement faiblement à très réver-
bérant, ce qui valide cette généralisation. Nous considérons aussi l'utilisation
de représentations temps-fréquence quadratiques et de l'échelle fréquentielle
auditive ERB (equivalent rectangular bandwidth) pour accroître la quantité
d'information exploitable et décroître le recouvrement entre les sources dans
la représentation temps-fréquence.

Après cette validation théorique du cadre proposé, nous nous focalisons sur
l'estimation des paramètres du modèle à partir d'un signal de mélange donné
dans un scénario pratique de séparation aveugle de sources. Nous proposons
une famille d'algorithmes Expectation-Maximization (EM) pour estimer les
paramètres au sens du maximum de vraisemblance (ML) ou du maximum
a posteriori (MAP). Nous proposons une famille d'a priori de position spa-
tiale inspirée par la théorie de l'acoustique des salles ainsi qu'un a priori de
continuité spatiale. Nous étudions aussi l'utilisation de deux a priori spec-
traux précédemment utilisés dans un contexte monocanal ou multicanal de
rang 1: un a priori de continuité spatiale et un modèle de factorisation
matricielle positive (NMF). Les résultats de séparation de sources obtenus
par l'approche proposée sont comparés à plusieurs algorithmes de base et
de l'état de l'art sur des mélanges simulés et sur des enregistrements réels
dans des scénarios variés.
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Chapter 1

Introduction

I
n this chapter, we �rst present the motivation for considering the problem of real-

world audio source separation. We then provide an overview of this problem focusing

on its basic formulation and general framework, followed by a summary of the thesis

contributions. By the end of this chapter, the organization of the thesis is presented

chapter by chapter.

1.1 Motivation

The human being is endowed with a multitude of senses. Among them, hearing is one

of the most natural and fundamental sensing systems which provides key inputs for

human perception. However, real-world sound scenes are usually mixtures of various

sound sources and require humans great ability to locate, identify and di�erentiate

sound sources which are heard simultaneously. Luckily, humans with normal hearing

are generally very good at this task. For instance, one can turn round so as to face

someone talking and follow a conversation in a noisy hall.

Contrary to humans, machines have been less successful at separating sound sources.

Current audio source separation systems perform fairly well for studio recordings with

a small number of sources. But their performance drops far below satisfaction in real-

world recording environments, where there are many sound re�ections on the walls

and/or background noise [1].

Therefore, this thesis focuses on the challenging problem of audio source separation

in real-world environments.
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1. INTRODUCTION

1.1.1 Audio source separation is essential

In daily life, recorded sound scenes often result from the superposition of several sources

which is known as the cocktail party e�ect. A typical situation is in a cocktail party

room where many people talk simultaneously in the presence of music and noise as

shown in Fig. 1.1. Similar situations also happen for instance in outdoor recordings,

where there is interference from a variety of environmental sounds, or in a music concert

scenario, where the sound is generated by di�erent instruments. In such situations, the

resulting sound is a so-called mixture, which prevents people from well perceiving the

target sound sources. Audio source separation aims to extract the signals of individual

sound sources from the observed mixture with little prior information about the sources.

This is formally known as blind source separation (BSS).

Figure 1.1: A typical cocktail party e�ect where the listened/recorded sound is the
mixture of several sound sources such as speech, background music and background
noise.

Audio source separation would bene�t many practical applications. Humans would

de�nitely better understand well-separated sound sources than mixtures with interfer-

ing sources [2, 3]. Hearing-impaired people would strive for a hearing aid equipment

employing BSS to help them focus on a target source since they have lost the normal

ability to separate it from the mixture [4, 5]. Moreover, the estimated sources may be

further processed to extract features for automatic speech recognition (ASR) systems,

automatic audio indexing systems, etc, [6, 7]. In a musical context, the extraction of in-

dividual musical components o�ered by BSS plays a key role in many music information
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1.2 Overview of the problem

retrieval (MIR) tasks such as vocal extraction, instrument identi�cation, etc, [8, 9, 10].

1.1.2 Target challenges: reverberation, di�use sources and small move-

ments

There are two typical types of real-world recording environments: studio or outdoor

recording environments, known as anechoic environments, where the microphones cap-

ture only the direct sound propagation from a source, and indoor recording environ-

ments, known as reverberant environments, where the microphones capture not only

the direct sound but also many sound re�ections on the walls. State-of-the-art BSS

algorithms perform quite well in noiseless anechoic conditions, i.e. result in the order

of up to 12 dB Signal-to-Distortion Ratio (SDR) separation performance, but poorly

and far from satisfaction in reverberant conditions, i.e. result in the order of 3 dB SDR.

These numerical performance results are clearly shown in the recent community-based

Signal Separation Evaluation Campaigns (SiSEC) [11, 12, 13, 1]. Therefore, addressing

the separation of reverberant mixtures remains one of the key scienti�c challenges in

the source separation community.

Besides, while most BSS algorithms are sensitive to background noise, all real-world

recordings do su�er from nonstationary background noise which generally acts as an

additional spatially di�use source and remarkably decreases the separation performance

[13]. Di�use sources also arise for instance in music concerts where the sound of large

musical instruments is generated from di�erent spatial positions. Additionally, many

other practical challenging situations such as source movements, short signal duration,

etc, also need to be taken into account in order to radically address the BSS problem.

To sum up, audio source separation remains very di�cult when considering real-

world situations. In this thesis, we focus on three main challenges: reverberant

conditions, di�use sources and small source movements, and leave aside other

challenges such as large source movements and short signal duration. These

three target challenges are related in the sense that they all result in spatial

di�usion of the sound �eld generated by each source.

1.2 Overview of the problem

In the previous section, we mentioned several terms like sources, mixture, source sep-

aration, reverberation, under-determined case. In this section, we de�ne them more

precisely while formulating the considered audio source separation problem.
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1.2.1 Problem formulation

Let us consider a multichannel mixture signal recorded by an array of I microphones

and denote it by x(t) = [x1(t), ..., xI(t)]
T . This mixture signal can be expressed as [14]

x(t) =
J∑

j=1

cj(t) (1.1)

where J denotes the number of sources, and cj(t) = [c1j(t), ..., cIj(t)]
T is the spatial

image of the j-th source, that is the contribution of this source to all mixture channels.

Note that background noise is also considered as a source in (1.1). In the case when the

j-th source is a point source, i.e. it emits sound from a single position in space, cj(t) is

characterized as [15]

cj(t) =
∑
τ

hj(τ)sj(t− τ) (1.2)

where hj(τ) = [h1j(τ), ..., hIj(τ)]
T are linear mixing �lters modeling the acoustic path

from the j-th source to all I microphones and sj(t) is the emitted single-channel source

signal.

Source separation consists in recovering either the J original source signals sj(t) or

their spatial images cj(t) given the I-channel mixture signal x(t). In the former case,

the estimation of sj(t) usually results in a scaling or �ltering ambiguity since both the

sources and the �lters can be arbitrarily scaled or �ltered. However, this troublesome

indeterminacy does not occur for the recovery of the source images. Only a permutation

ambiguity remains, unless speci�c prior information is exploited about each source.

Industrial applications often require that the hardware resources be minimum. In

other words, the number of mixture channels (i.e. microphones for recording) in the

system should be as small as possible but make it possible to separate as many sources

as possible. Many current BSS techniques have been designed for separating determined

or over-determined mixtures where I ≥ J : the number of microphones is equal or

larger, respectively, than the number of sources. Under-determined mixtures where

I < J have remained much more di�cult due in particular to the fact that the number

of observable variables is less than the number of unknown variables, especially in

reverberant conditions [12, 13, 1]. For instance, it was shown in [12] that the separation

of determined mixtures of three sources in lab/o�ce rooms resulted in a SDR of up to

6 dB while that of stereo mixtures only resulted in a SDR on the order of 3 dB.

In this thesis, we focus on the recovery of the source spatial images both

in the determined case and in the under-determined case, assuming that the
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number of sources J is known.

1.2.2 Mixing �lters

The shape of the mixing �lters hij varies between di�erent physical environments. In

anechoic environments where the microphones just capture the direct sound propagation

path from a source, the mixing �lters are scaled pure delay �lters as shown in the left

side of Fig. 1.2, that is hij = aijδ(t− tij), where aij is the sound amplitude attenuation

through the environment and tij the sound transmission time from the j-th source to the

i-th microphone. A special and simpler form of the mixing �lters occurs in instantaneous

mixtures such as for instance certain music mixtures generated by amplitude panning.

In this case, there is no time delay and tij = 0.

Indoor reverberant environments result in convolutive mixing with a more complex

form of the mixing �lters. In this case, hij is often modeled as a �nite impulse response

(FIR) �lter [15] as shown in the right side of Fig. 1.2. The length L of hij varies

depending on the acoustical properties of the room, which are often speci�ed by the

reverberation time T60, that is the time required for the re�ections of a direct sound to

decay by 60 dB below the level of that direct sound.

1.2.3 General framework for source separation

In order to discriminate the sources from their mixture, source separation systems ex-

ploit a number of cues about the source spatial positions or about the source spectral

structures [16, 15]. These two types of cues called spatial cues and spectral cues, respec-

tively, are brie�y discussed in the following and in more detail in Section 2.2 and 2.1,

respectively. Source separation generally necessitates to exploit both types of cues. In

particular, spatial cues alone do not su�ce to discriminate sources coming from close

directions while spectral cues alone may not enable one to discriminate sources with

similar pitch range and timbre.

1.2.3.1 Spatial cues

Spatial cues encode any information related to the spatial position of a source over time.

Many BSS algorithms exploit basic spatial cues derived from the phase and amplitude

of the mixture channels, that is interchannel time di�erence (ITD) and interchannel

intensity di�erence (IID). Fig. 1.3 illustrates a trivial example of use of IID in an

anechoic mixing condition. At the source position p nearer to microphone 1, the recorded

signal level x1 is higher than x2 and the corresponding IID when the source amplitude
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Figure 1.2: Types of mixing �lters.

varies is modeled by the green plain line p in Fig. 1.3b. On the contrary, the source

position q results in smaller x1 than x2, and the corresponding IID is represented by

the red dotted line in Fig. 1.3b. The observed IID is therefore constant over time and

directly related to the source direction of arrival (DoA). The idea of ITD and IID has

been widely exploited in the history of both anechoic and convolutive source separation

[17, 18, 19, 16, 20, 21]. In reverberant mixtures, the underlying assumption is that the

ITD and IID deviate over frequency and time but remain close to their values as a

function of the source DoAs in an anechoic mixture.

1.2.3.2 Spectral cues

Spectral cues encode the information related to the spectro-temporal structure of a

source. This includes widely used features in audio signal processing in general as well
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Figure 1.3: IID corresponding to two di�erent source positions in an anechoic environ-
ment.

as in Computational Auditory Scene Analysis (CASA) [19] and BSS in particular due

to the fact that di�erent audio sources exhibit di�erent recognizable spectro-temporal

structures. For example, sparsity stands for an important feature of most audio signals

in the time-frequency domain in the sense that many time-frequency coe�cients are

zero or close to zero [18, 16] while harmonicity and smoothness usually characterize the

spectra of human voice and musical instruments [10]. Fig. 1.4 depicts an example of

sparse and harmonic spectrum of a piano excerpt where the horizontal axis represents

time, the vertical axis is frequency, and the color indicates the signal power in each time-

frequency bin. Higher-level cues based on structured spectral models such as Spectral

Gaussian Mixture Model (Spectral-GMM) [22, 23] or Nonnegative Matrix Factorization

(NMF) [24, 25] have also been considered in the context of audio source separation.

1.2.3.3 General implementation under the narrowband assumption

Most BSS algorithms operate in the time-frequency (T-F) domain. The mixture signals

are �rst transformed into the T-F domain via the short time Fourier transform (STFT).

Denoting by F the number of frequency bins and by N the number of time frames, the

mixing process (1.1) is hence rewritten as

x(n, f) =
J∑

j=1

cj(n, f) (1.3)
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Figure 1.4: An example of sparse and harmonic spectrum.

where 1 ≤ n ≤ N denotes the time frame index and 1 ≤ f ≤ F the frequency bin

index. The two major reasons for using a T-F representation are that it enables the

use of spectral cues and that, under the so-called narrowband assumption, the linear

convolution in (1.2) can be approximated by the simpler operation of complex-valued

multiplication in each time-frequency bin (n, f)

cj(n, f) ≈ hj(f)sj(n, f) (1.4)

where cj(n, f) and sj(n, f) are the STFT coe�cients of cj(t) and sj(t), respectively, and

hj(f) is the Fourier transform of hj(τ). This equation can be seen as a deterministic

parameterization of the mixing process where the mixture STFT coe�cients can be

perfectly predicted from the source coe�cients given hj(f). The amplitude and phase

di�erences between the entries of hj(f) are related to the IID and ITD at frequency f ,

respectively. Note that the narrowband assumption holds only when the length M of

the mixing �lters is short compared to the STFT window size [26]. In particular, it does

not hold for reverberated or di�use sources, whose sound comes from several directions.

In such situations, the theory of room acoustics treats reverberation as a probabilistic

phenomenon [27].

Given the mixing formulation in the T-F domain by (1.3) and (1.4), most existing

approaches build a parametric model of the spatial cues, i.e. relating to hj(f), and of

30



1.3 Contributions

the spectral cues, i.e. relating to |sj(n, f)|, and estimate the parameters in order to

recover the original sources or source images. This general work�ow is depicted in Fig.

1.5.

STFT
 Inverse STFT


Estimation of

spatial and


spectral

parameters


Estimation of

the source


STFT

coefficients


or
 or


Figure 1.5: General source separation work�ow under the narrowband assumption.

1.3 Contributions

Motivated by the fact that state-of-the-art source separation approaches have paid more

attention to spectral cues than spatial cues, and that most existing work on spatial cues

has relied on deterministic parameterization of the mixing process which is far from the

actual characteristics of reverberation and di�use sources, we focus in this thesis on the

probabilistic modeling and parameterization of the mixing process for reverberated or

di�use sources. The achieved results have been described in our publications [28, 29,

30, 31, 32, 33, 34]. Our major contributions are to:

� propose a novel probabilistic modeling framework for spatial cues targeting re-

verberated or di�use sources and overcoming the narrowband approximation to a

certain extent [28, 30],

� design a general architecture for model parameter estimation and source separa-

tion [29, 30, 31],

� propose probabilistic spatial and spectral priors and demonstrate the potential

of the proposed framework compared to state-of-the-art algorithms in various

settings considering both simulated synthetic data and real-world recorded data

[32, 33, 34].

One of our additional contributions which is not presented in this thesis is the

participation in the organizing committee of the 2nd community-based Signal Separation
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Evaluation Campaign (SiSEC 2010)1. The considered datasets and the results of state-

of-the-art source separation systems are described in [13, 1].

Although we have not investigated the extension of the proposed modeling frame-

work to other microphone array applications so far, this framework and the general

parameter estimation algorithm described in this thesis could also largely be reused in

di�erent areas of audio signal processing such as di�use noise suppression or spatial

audio processing where accurate modeling of di�use or reverberated sources is crucial.

As a matter of fact, several authors have recently built up upon our work: Togami et

al. applied our proposed probabilistic parameterization and modeling of spatial cues in

the context of acoustic echo reduction [35] and online speech separation [36]; Ozerov et

al. combined our proposed spatial cues model with advanced spectral cue models for

robust audio source separation [37]; Araki et al. designed a hybrid source separation al-

gorithm combining their existing time-frequency masking method as the �rst step with

our proposed approach as the second step [38].

1.4 Outline of the thesis

This section describes the structure of the rest of the thesis which includes nine chapters

organized in four parts:

� Part 1: Introduction and state of the art (Chapters 1 and 2)

� Part 2: Proposed probabilistic modeling framework (Chapters 3 and 4)

� Part 3: Estimation of the model parameters and source separation (Chapters 5 to

8)

� Part 4: Conclusion and perspectives (Chapter 9)

Chapter 2 presents a literature review of the considered audio source separation

problem and summarizes existing work on spectral cues and spatial cues. It also de-

scribes two baseline approaches known as binary masking and ℓ1-norm minimization

used as benchmarks in subsequent experiments.

Chapter 3 presents the general probabilistic modeling framework where the STFT

coe�cients of the source images cj(n, f) are modeled by a multivariate zero-mean Gaus-

sian distribution whose unknown covariance is factorized into the product of a scalar

1http://sisec2010.wiki.irisa.fr/
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source variance vj(n, f) and a spatial covariance matrix Rj(n, f). Several parameteri-

zations of the spatial covariance matrix are then provided and followed by the general

source separation architecture.

Chapter 4 is devoted to the investigation of upper bounds on the source separation

performance when all or part of the model parameters are estimated from known source

image signals. At this point, the potential of the proposed approach compared to state-

of-the-art algorithms is shown in several experimental settings.

Chapter 5 focuses on the estimation of the model parameters {vj(n, f),Rj(n, f)}j,n,f
from the observed mixture signals in a blind source separation context. We �rst present

the general estimation architecture for both maximum likelihood (ML) and maximum

a posteriori (MAP) criteria. Then the details of the proposed ML estimation algorithm

are described including three steps: parameter initialization, parameter estimation by

the expectation-maximization (EM) algorithm, and permutation alignment.

Chapter 6 derives and investigates several MAP estimation algorithms in order to

improve the separation performance in certain scenarios where prior knowledge about

the spatial cues is available. Two types of spatial priors are considered: a family of

spatial location priors motivated by the theory of statistical room acoustics, and a

spatial continuity prior. The algorithms for learning the hyper-parameters of these

priors from training data are also presented.

Chapter 7 concentrates on the possibility to incorporate prior knowledge about

the spectral cues via deterministic constraints or probabilistic priors into the proposed

modeling framework. Two types of spectral priors are considered: a nonnegative matrix

factorization (NMF) spectral model and a spectral continuity prior. The corresponding

ML and MAP parameter estimation algorithms are then presented.

Chapter 8 evaluates the resulting separation performance in various scenarios. First,

common data and evaluation metrics are described. Then the separation performance

given by the proposed ML estimation algorithm is analyzed and compared with state-

of-the-art and baseline algorithms in both simulated synthetic mixtures and real-world

recorded mixtures. The potential of the MAP estimation algorithms presented in Chap-

ters 6 and 7 is also addressed later in this chapter.

Chapter 9 ends the thesis by summarizing of the conclusions and presenting per-

spectives of future research directions, including fully blind source separation based on

the estimation all acoustical parameters (e.g. reverberation time), and the use of the

proposed framework in real-world information retrieval scenarios.
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Chapter 2

State of the art

T
his chapter presents a literature review of existing audio source separation ap-

proaches. Though the whole BSS picture built in more than two decades of re-

search is very large and requires an intensive survey, e.g. see [16, 20, 21], we limit our

survey to major approaches and classify them into two categories depending on whether

the underlying assumptions relate mostly to spectral cues or to spatial cues. For that

purpose, several established works exploiting statistical models for spectral cues such

as nongaussian independent and identically distributed (i.i.d.) models, nonstationary

Gaussian models, and higher-level cue models are reported in Section 2.1. Some ex-

isting works exploiting deterministic parameterization for spatial cues are presented in

Section 2.2. Section 2.3 is devoted to two well-known baseline approaches, namely bi-

nary masking and ℓ1-norm minimization, which are used as benchmarks in subsequent

sections.

2.1 Much work on spectral cues

This section reviews the classical families of source spectral models. We start by simple

sparsity models and move towards more advanced models.

2.1.1 Nongaussian i.i.d. models

Let us start by two state-of-the-art classes of algorithms based on either independent

component analysis (ICA) or sparse component analysis (SCA). In both cases, the

original sources are assumed to be nongaussian and i.i.d..
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2.1.1.1 Independent component analysis

A breakthrough in source separation came along the advent of ICA where the sources are

assumed to be statistically independent of each other, i.e. the joint probability distribu-

tion of the sources is the product of the marginal probability distributions of individual

sources, and nongaussian i.i.d. distributed. ICA was �rst proposed for the separation

of instantaneous mixtures in the determined case where it attempts to make the out-

put signals as statistically independent as possible. More formally, source separation

is typically achieved by minimizing some approximation of the mutual information be-

tween the estimated sources. Assuming a �xed prior distribution for the sources, this

is equivalent to ML estimation [39].

Various ICA-based instantaneous source separation algorithms have been proposed.

For instance, an Infomax algorithm that maximizes the mutual information between the

input and output of a nonlinear neural network was proposed in [40]. Another famous

algorithm known as FastICA [41] combines the information theoretic approach proposed

by Comon [42] and the projection pursuit approach for fast optimization. Other popular

ICA algorithms are based on higher-order statistics, e.g. the fourth-order approximation

of mutual information proposed by Cardoso [43, 44]. All these algorithms estimate the

sources by inverting the estimated mixing system H composed of the mixing �lters hj .

When considering convolutive determined mixtures, most ICA approaches oper-

ate in the time-frequency domain where the convolution in the time domain (1.2) is

approximated by the complex-valued multiplication in (1.4). Then, complex-valued in-

stantaneous ICA can be applied to separate the source coe�cients in each frequency

bin independently. A range of frequency-domain ICA (FDICA) algorithms have been

proposed, e.g. [45, 46, 47, 48, 49, 50, 51, 52]. However FDICA su�ers from the well-

known permutation ambiguity, i.e. the source indexes are arbitrarily ordered in each

frequency bin, because the source coe�cients are estimated independently in each bin.

This issue has remained challenging in reverberant mixtures where the source DoAs,

which help aligning the source orders, are poorly estimated [48]. A popular FDICA

algorithm including four steps described in [51, 48] is shown in Fig. 2.1.

STFT
 Inverse

STFT


Complex-

valued ICA


Permutation

alignment


Scaling


Figure 2.1: Typical structure of a frequency-domain ICA algorithm.

Despite the di�culty in solving the permutation problem, the primary limitation
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of ICA-based approaches arises from the fact that they are not applicable to under-

determined mixtures because the mixing system H is non-invertible.

2.1.1.2 Sparse component analysis

Similar nongaussian i.i.d assumptions in under-determined mixtures lead to sparse com-

ponent analysis. SCA relies on the sparsity hypothesis, that is most source coe�cients

are zero or close to zero. This assumption generally holds for audio signals in the time-

frequency domain as it can be seen in Fig. 1.4 where most time-frequency coe�cients

are close to zero. A closely related concept to sparsity is known as the disjointness of

the supports of the source STFT coe�cients, that is formulated by [53] as

sj1(n, f)sj2(n, f) ≈ 0, ∀n, f, j1 ̸= j2. (2.1)

Most SCA-based source separation algorithms include two main steps [54]: (1) mix-

ing parameter estimation, (2) source coe�cient estimation. In the �rst step, the mixing

vectors hj(f) are estimated from the STFT coe�cients of the mixture signal x(n, f),

typically by a clustering algorithm [55, 56, 57]. In the second step, given the estimated

mixing matrices, the vector of the source STFT coe�cients are estimated either by

binary masking [18]

ŝj(n, f) =


hH
j (f)x(n,f)

∥hj(f)∥2 if source j is predominant

0 otherwise
(2.2)

or by solving the constrained minimization problem [58, 59]

ŝ(n, f) = arg min
s(n,f)∈CJ

∥s(n, f)∥p subject to
∑
j

hj(f)sj(n, f) = x(n, f) (2.3)

where ∥s∥p is the ℓp norm of the vector s de�ned by

∥s∥p =
( J∑

j=1

|sj |p
) 1

p
. (2.4)

Sparsity can be measured by the number of nonzero coe�cients in a vector, that

is its ℓ0 norm. However the ℓ0 norm is nonconvex and di�cult to minimize directly.

Hence, in practice relaxed versions of the ℓ0 norm such as the ℓp norm are used. When

p ≥ 1, the ℓp norm is convex and the optimization problem is easier to solve. Note
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that the optimization (2.3) is equivalent to MAP estimation when the source STFT

coe�cients are assumed to follow a generalized Gaussian prior with shape parameter p

[58]. And it becomes a ℓ1-norm minimization problem (p = 1) in the particular case

when the STFT coe�cients are Laplace distributed [55].

Various BSS algorithms exploiting sparsity in the T-F domain have been proposed

to deal with under-determined mixtures. An early approach for anechoic mixing con-

dition was presented by Aoki et al. [17]. Then a famous algorithm called Degenerate

Unmixing Estimation Technique (DUET) was proposed [53, 18] where anechoic mixing

matrices are �rst estimated, then only one dominant source in each time-frequency bin

is extracted by binary masking. Other SCA-based algorithms have been designed for

instantaneous and anechoic mixtures [60, 61, 62, 63, 58, 64] and convolutive mixtures

[58, 65, 55, 66, 67]. ℓp-norm minimization approaches usually extract on the order of

I sources per time-frequency [58]. Binary masking and ℓ1-norm minimization will be

presented in more details in Section 2.3.

2.1.2 Nonstationary Gaussian models

A distinct framework from nongaussian i.i.d. source modeling has emerged whereby

the source STFT coe�cients sj(n, f) are modeled as independent zero-mean Gaussian

random variables with free variances vj(n, f) [21]:

p
(
sj(n, f)

)
= Nc

(
sj(n, f)|0, vj(n, f)

)
. (2.5)

Given this model, the mixture coe�cients x(n, f) also follow a zero-mean Gaussian dis-

tribution with covariance matrixΣx(n, f). Under the narrowband assumption,Σx(n, f)

is given by

Σx(n, f) = H(f)Σs(n, f)H
H(f) (2.6)

where Σs(n, f) is the diagonal source covariance matrix whose diagonal entries are

vj(n, f), and H(f) is the mixing matrix.

The model parameters θ = {vj(n, f),H(f)}j,n,f are then estimated in the maximum

likelihood (ML) sense by maximizing the log-likelihood

log p(X|θ) =
∑
n,f

−tr(Σ−1
x (n, f)Σ̂x(n, f))− log det(πΣx(n, f)) (2.7)

where tr(.) and det(.) denote the trace and the determinant of a square matrix, respec-

tively. The matrix Σ̂x(n, f) is the empirical mixture covariance, which is computed

38



2.1 Much work on spectral cues

Cov1. either from the observed mixture signal in a single T-F bin as

Σ̂x(n, f) := x(n, f)xH(n, f) (2.8)

Cov2. or by locally averaging over the neighborhood of each T-F bin as [68]

Σ̂x(n, f) :=
∑
n′,f ′

w2
nf (n

′, f ′)x(n′, f ′)xH(n′, f ′) (2.9)

where wnf is a bi-dimensional window specifying the shape of the neighborhood such

that
∑

n′,f ′ w2
nf (n

′, f ′) = 1. This model is known as Local Gaussian Model (LGM)

because the source variances in di�erent time-frequency bins are independent from

each other. The time-varying source variances result in a nonstationary source model.

The source STFT coe�cients are �nally obtained in the minimum mean square error

(MMSE) sense by Wiener �ltering as

ŝ(n, f) = Σs(n, f)H
H(f)Σ−1

x (n, f)x(n, f). (2.10)

Note that the multichannel Wiener �lter is equivalent to the combination of a spatial

�lter (minimum variance distortionless response (MVDR) beamformer) and a soft spec-

tral mask (single-channel Wiener �lter) [69]. Contrary to binary masking, which enables

only one dominant source in each T-F bin, the source STFT coe�cients estimated by

multichannel Wiener �ltering are all nonzero provided that vj(n, f) ̸= 0,∀j = 1, ..., J .

This framework was introduced for the separation of determined instantaneous mix-

tures under the name of nonstationarity-based ICA [70], and was applied to the astro-

nomical imaging problem in [71] where the separated components themselves naturally

have Gaussian distributions. Then, it has been extended to the separation of under-

determined instantaneous audio mixtures in [72] and [68] and shown to provide better

separation performance than ℓ1-norm minimization.

Inspired by this Gaussian source model, in this thesis we will also consider a Gaussian

modeling framework. But instead of modeling the source STFT coe�cients sj(n, f),

which encode only the source spectral information, we propose to model the source

images cj(n, f), which encode both spectral and spatial information of the source. The

detail of our proposed modeling framework will be presented in Chapter 3.
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2.1.3 Spectral Gaussian mixture model

Regardless of the mixing parameter estimation, the main limitation of nonstationarity-

based or nongaussianarity-based ICA and SCA approaches is that they do not take into

account the redundancy and structure of each audio source. This is because the T-F

source coe�cients are assumed to be independent of each other. In the following, we

will review Gaussian model-based approaches where the redundancy and structure of

each audio source can be exploited. In this subsection, we describe a more advanced

source model, known as Spectral GMM, which incorporates a structured spectral model

of each source [22, 73, 74, 23, 75].

The Spectral GMM approach models the short time Fourier spectrum of the j-

th source sj(n) = [sj(n, f)]f , which is a column vector composed of all elements

sj(n, f), f = 1, ..., F , as a multidimensional zero-mean complex-valued K-state Gaus-

sian mixture with probability density function (pdf) given by

p
(
sj(n)

)
=

K∑
k=1

πjkNc

(
sj(n)|0,Σjk

)
(2.11)

where 0 denotes a vector of zeroes, πjk, which satis�es
∑K

k=1 πjk = 1, ∀j, and Σjk =

diag
(
[vjk(f)]f

)
are the weight and the diagonal spectral covariance matrix of the k-th

state of the j-th source, respectively, and

Nc

(
sj(n)|0,Σjk

)
=
∏
f

1

πvjk(f)
exp

(
− |sj(n, f)|

2

vjk(f)

)
. (2.12)

This model can be viewed as a two-step generative process: at each time frame n

of the j-th source, the �rst step is to pick one state k(n) with probability πjk(n); given

k(n), the vector of STFT coe�cients sj(n) is generated from a zero-mean Gaussian

distribution with covariance Σjk(n) in the second step. Source separation amounts to

computing the posterior probability of all states in each time frame.

While the LGM presented in Section 2.1.2 assumes as many variance parameters

vj(n, f) as T-F points, the Spectral GMM de�nes K×F free variances vjk(f) only and

exploits the global structure of the sources to estimate them. However, since GMM

does not explicitly model amplitude variation of sound sources, signals with di�erent

amplitude level but similar spectral shape may result in di�erent estimated spectral

variance templates [vjk(f)]f . To overcome this issue, another version of GMM called

Spectral Gaussian Scaled Mixture Model (Spectral GSMM) was proposed in [76] where
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2.1 Much work on spectral cues

a time-varying scaling parameter gjk(n) is incorporated in each Spectral-GMM. The

pdf of the GSMM is then given by

p
(
sj(n)

)
=

K∑
k=1

πjkNc

(
sj(n)|0, gjk(n)Σjk

)
. (2.13)

Spectral GMM and Spectral GSMM have been applied to single-channel audio source

separation in [22, 23, 76, 77], and stereo separation of moving sources in [78]. The

GMM was also considered in multichannel instantaneous music mixtures [75] where the

Spectral-GMMs are learnt from the mixture signals. Separation performance was then

reported to improve by 5 dB SDR compared to binary masking in stereo mixtures of

three sources.

2.1.4 Non-negative matrix factorization

NMF is an e�cient decomposition technique which helps reducing data dimension [79].

It has been applied to various �elds of machine learning and audio signal processing, e.g.

music transcription [80, 24, 10]. In the following, we will present NMF as structured

spectral source model known as Spectral NMF, applied to audio source separation.

In the Spectral NMF model, each source is the sum of Kj latent components as [25]

sj(n, f) =

Kj∑
k=1

ck(n, f) with ck(n, f) ∼ Nc(0, hnkwkf ) (2.14)

where hnk, wkf ∈ R+. The latent components are assumed to be mutually independent

in each time-frequency bin, which implies that

p
(
sj(n, f)

)
= Nc

(
sj(n, f)|0,

Kj∑
k=1

hnkwkf

)
. (2.15)

Denoting by Sj the N×F matrix of STFT coe�cients of the j-th source [sj(n, f)]nf ,

Hj = [hnk]nk with dimension N ×Kj and Wj = [wkf ]kf with dimension Kj × F , it is

shown in [24] that ML estimation of the latent variables Hj and Wj is equivalent to

NMF of the power spectrogram |Sj |2 into HjWj according to the Itakura-Saito (IS)

divergence i.e.

− log p
(
Sj |Hj ,Wj

) c
=
∑
nf

dIS
(
|sj(n, f)|2|[HjWj ]nf

)
(2.16)
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where
c
= denotes equality up to a constant and dIS(x|y) = x

y − log x
y − 1. It now turns

out into a form of dimension reduction in the sense that instead of estimating NF values

of the power spectrogram |Sj |2, NMF o�ers the estimation of only NKj values of Hj

and KjF values of Wj where NKj +KjF ≪ NF .

Note that in the Spectral NMF model each source STFT coe�cient is modeled as

the sum of K elementary components (2.14) while in the Spectral GMM described in

subsection 2.1.3 sj(n, f) is modeled as a process which can take only one of a number of

states. Spectral NMF has been applied to single-channel speech separation [81, 82, 83]

and multichannel speech/music separation [25] and shown to improve SDR by more than

1 dB compared to ℓ1-norm minimization in under-determined mixtures [25]. In [84, 85],

Spectral NMF is combined with Spectral GMM to form a more e�cient, hybrid model

(FS-HMM) compared to the Spectral NMF itself, which is applied to single-channel

speech/music separation.

To sum up, various spectral models such as nongaussian i.i.d. models, LGM, GMM,

GSMM, NMF have been proposed and deeply investigated in the literature of spectral

cues for audio source separation scenarios. They can either be implemented separately

into speci�c algorithms or incorporated as choices of spectral priors in a common general

framework, e.g. in [37, 86].

2.2 Less work on spatial cues

In order to exploit spatial information about the sources for the purpose of separation,

BSS approaches usually �rst parameterize the spatial cues and then estimate the spatial

parameters. Contrary to much work on spectral cues exploiting probabilistic models as

presented in Section 2.1, there has been less work on spatial cues. Most of it, which is

reviewed in this section, employs either deterministic or probabilistic modeling of the

IID and the ITD under the narrowband approximation. However the parameterization

by IID/ITD itself remains deterministic.

2.2.1 Deterministic IID/ITD model

Most state-of-the-art spatial cue models rely on the point source assumption, by which

sound from a source is assumed to come from a single position, and on the narrowband

approximation in equation (1.4). The mixing process from the j-th source to the mi-

crophone array is hence characterized by the frequency dependent mixing vector hj(f).

For the sake of simplicity, let us consider in this section only the stereo case with unit-

norm normalization and zero delay on the �rst channel. Remember that this is possible
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without loss of generality due to the �ltering indeterminacy about the original source

signals. The mixing vector can now be deterministically written as

hj(f) =

(
cos θj(f)

sin θj(f)e
−2iπϕj(f)

)
(2.17)

where tan θj(f) stands for the IID and ϕj(f) for interchannel phase di�erence (IPD),

which relates to the ITD. Note that θj(f) = θj is frequency-independent in anechoic

mixtures and ϕj(f) = 0 in instantaneous mixtures.

Most existing approaches that have been proposed to estimate the deterministic

variables {θj(f), ϕj(f)}j,f , and hence hj(f), rely on a sparsity assumption [18, 87]. If

the j-th source is predominant in a given time-frequency bin (n, f), then the ratio of

the mixture signals provides an approximation of IID and ITD:

x2(n, f)

x1(n, f)
≈ tan θj(f)e

−2iπfϕj(f). (2.18)

Therefore, if the sources have disjoint time-frequency supports, the data points

{x(n, f)}nf tend to form clusters along hj(f). This phenomenon is shown by the

example scatter plot in Fig. 2.2 for a stereo mixture of three sources. The geometrical

structure of the scatter plot can be clustered, e.g. by clustering algorithms [88, 56], to

obtain the estimates of hj(f) in instantaneous, anechoic or mildly reverberant mixing

conditions.

In line with this idea, many algorithms have been proposed to estimate the mixing

parameters in under-determined instantaneous and anechoic mixtures [89, 90, 91, 92, 87].

Among them, the famous DUET algorithm was proposed under the above disjointness

assumption in [53, 18]. The amplitude ratios and the phase di�erences of the STFT

coe�cients of stereo anechoic mixture signals are �rst computed in every time-frequency

bin to build a two-dimensional histogram. Then the source directions are identi�ed as

the peaks of this IID-ITD histogram. Arberet et al. proposed another method [87, 57]

known as Direction Estimation of Mixing MatrIX (DEMIX), which relies on a weaker

sparsity assumption that, for each source, there exists one time-frequency region where it

essentially contributes alone. DEMIX employs a sequential clustering algorithm over the

data points weighted by a con�dence measure for more robust mixing matrix estimation.

For di�use or reverberated sources, the model in (2.17) and the approximation (2.18)

do not hold and therefore do not provide accurate estimates of the mixing parameters

due to the frequency dependence and variability of θj(f) and ϕj(t). However this

deterministic IID/ITD model is still helpful to provide an initial estimate of hj(f) [55],
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(a) STFT magnitude of the three original sources (b) STFT magnitude of the stereo mixture
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(c) Scatter plot of the real part of the mixture STFT coe�cients.

Figure 2.2: Scatter plot of the STFT coe�cients of an instantaneous mixture of three
sources.

and can also be exploited for solving the permutation problem in FDICA algorithms

[49, 51, 93]. In the next subsection we review several existing approaches which exploit

44



2.2 Less work on spatial cues

probabilistic modeling of the IID and ITD for reverberated sources.

2.2.2 Probabilistic IID/ITD model

Probabilistic IID/ITD modeling has been considered for reverberated sources in a few

source separation algorithms, e.g. [94, 95, 84, 66, 96, 97], where the IID and the ITD

now vary with f . Mandel et al. [98, 95] proposed to model the IID and the IPD as

Gaussian variables whose means and variances are estimated in the ML sense by the

EM algorithm. This method treats the IID and the IPD as random variables. However

it still relies on the narrowband approximation and the major assumption that the IID

and the IPD are conditionally independent may not hold in practice since they both

relate to the source DoAs.

The probabilistic spatial cue parameterization of di�use sources has been considered

in beamforming techniques [99, 100, 101] and source localization algorithms [102] to

model background noise. However it has not yet been applied in the context of source

separation to model reverberated sources. By probabilistic parameterization, we mean

that the spatial image cj(n, f) of each source cannot be deterministically computed from

the source signal sj(n, f) and the mixing parameters anymore, but follows a certain

probabilistic distribution. Izumi et al. consider a di�use sound model in convolutive

source separation [66] but only for the residual noise, while the transfer functions from

the sources to the microphones are still deterministically parameterized by the ITD.

One exception is the concurrent work of Pham et al. [96, 103, 97] where the observed

log-ratio between the two channels in each time-frequency bin (n, f) logR(n, f) =

log[x1(n, f)/x2(n, f)] is modeled as a random variable whose real and imaginary parts

are the log-IID and the IPD of the predominant source, respectively. This approach

takes into account the correlation between the mixture channels which depends on the

reverberation. Performance remains limited however, due to the sparsity assumption.

In summary, most state-of-the-art works on spatial cues, even when they follow

probabilistic models, are based on deterministic parameterization by the IID and the

ITD. This parameterization is relevant for instantaneous and anechoic mixtures but far

from the actual characteristics of reverberation. This thesis therefore focuses on the

probabilistic parameterization of spatial cues in order to deal with real-world di�use

and reverberated sources.
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2.3 Baseline approaches

In this section, we detail the two baseline approaches used to benchmark the separation

performance when considering the problem described in Fig. 2.3:

"given the mixing matrix H(f), how to estimate the source or source image coe�-

cients?"

Binary masking

or


-norm minimization


or


Figure 2.3: Baseline approaches for blind source STFT coe�cient estimation

In the determined case where H(f) is square and invertible, the source coe�cients

can be easily computed by ŝ(n, f) = H−1(f)x(n, f). However this computation is not

applicable in the under-determined case since the mixing matrix is non-invertible. In

this case, binary masking [18] or ℓ1-norm minimization [55, 62] are typically applied.

These approaches are also used as benchmarks in SiSEC. We use the reference software

available for download 2.

2.3.1 Binary masking

Binary masking assumes that only one source is active in each time-frequency bin as in

(2.1). In order to detect this active source, the mixture STFT coe�cients x(n, f) are

projected onto the subspace spanned by each mixing vector hj(f), which is normalized

to unit norm, and the source index j0 yielding the largest projection is chosen:

j0 = argmax
j

∣∣∣∣ hH
j (f)

∥hj(f)∥2
x(n, f)

∣∣∣∣. (2.19)

2http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Under-determined+speech+and+music+mixtures
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The spatial image ĉj0(n, f) of this source is then set to the projected mixture STFT

coe�cients, while these of the other sources are set to zero, that is

ĉj(n, f) =


hj(f)h

H
j (f)

∥hj(f)∥2 x(n, f) if j = j0

0 otherwise.
(2.20)

Since binary masking extracts only one source per time-frequency bin, it usually

produces strong musical noise artifacts due to discontinuities between neighboring time-

frequency bins, especially in mixtures with many sources or strong reverberation where

the disjointness assumption is more violated [21].

2.3.2 ℓ1-norm minimization

Contrary to binary masking, ℓ1-norm minimization estimates at least I active sources in

each time-frequency bin by solving the constrained problem (2.3) with p = 1. This prob-

lem is equivalent to MAP estimation where the source STFT coe�cients are assumed

to follow the Laplace distribution [55]. In the real-valued case, it can be solved by linear

programming [104] or by the shortest-path method [105, 63]. In [55], complex-valued

ℓ1-norm minimization is transformed into a second-order cone programming (SOCP)

problem.

For simplicity, we adopt the shortest-path method [105, 63] which provides an ap-

proximate result but is several orders of magnitude faster than SOCP for the considered

small number of sources and microphones. Let us denote by KI
k ⊂ [1, 2, ..., J ] the k-th

subset of I sources among J sources, and H̃k(f) the I × I matrix whose columns are

hj(f) where j ∈ KI
k. Assuming that the source indexes in KI

k are predominant, their

STFT coe�cients can be computed as ŝ(n, f) = H̃−1
k (f)x(n, f). This motivation leads

to the detection of the I predominant sources in the ℓ1-norm minimization sense by

k0 = argmin
k
∥H̃−1

k (f)x(n, f)∥1. (2.21)

The source STFT coe�cients are then estimated as

ĉj(n, f) =

{
hj(f)[H̃

−1
k0

(f)x(n, f)]jk0 if j ∈ KI
k0

0 otherwise
(2.22)

where [.]j denotes the j-th entry of a vector, and jk0 is the index of the j-th source in

the subset KI
k0
.

ℓ1-norm minimization usually produces fewer artifacts than binary masking due in
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particular to the extraction of a larger number of sources in each time-frequency bin.

However, the detection of the predominant sources via (2.21) often remains inaccurate

since the mixture STFT coe�cients do not su�ce to discriminate predominant sources

as shown in [21]. In this thesis, we present a covariance modeling framework in Chapter

3 which o�ers additional information about the correlation between mixture channels

for better source discrimination.
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Part II

Proposed probabilistic modeling

framework
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Chapter 3

General Gaussian framework

T
his chapter is devoted to the proposed source separation framework based on prob-

abilistic modeling of spatial cues for reverberated or di�use sources. For that

purpose, we �rst describe the general Gaussian modeling framework where the STFT

coe�cients of the source images in each time-frequency bin are modeled by multivariate

Gaussian random variables parameterized by their spectral variance and their spatial

covariance. We then introduce four parameterizations of the spatial covariance depend-

ing on the level of constraint. Finally, a four-step general source separation architecture

is presented.

3.1 Modeling framework

We start this section by describing the general probabilistic modeling framework adopted

from now on. We then de�ne four parameterizations with di�erent degrees of �exibility

resulting in rank-1 or full-rank spatial covariance matrices. We �nally introduce the pos-

sibility to exploit spatial and spectral priors to enhance source separation performance

in certain situations.

3.1.1 General Gaussian model

Our framework builds upon the nonstationary Gaussian modeling framework in Section

2.1.2 whereby the STFT coe�cients of the source signals sj(n, f) are modeled by a

Gaussian distribution whose variance is a function of (n, f). By contrast with [72, 68], we

do not consider the source sj(n, f) but model the source image cj(n, f) instead as a zero-

mean Gaussian random vector with covariance matrix Σj(n, f) = E(cj(n, f)cHj (n, f)).
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Furthermore, we factor Σj(n, f) as

Σj(n, f) = vj(n, f)Rj(n, f) (3.1)

where vj(n, f) are scalar time-varying variances encoding the spectro-temporal power

of the sources and Rj(n, f) are I × I spatial covariance matrices encoding their spa-

tial position and spatial spread. This parameterization is probabilistic in the

sense that cj(n, f) can not be deterministically computed from the chosen

parameters, but is randomly generated according to the considered Gaussian

distribution. Note that this framework does not rely on the point source

assumption nor on the narrowband assumption, hence it appears applicable

to reverberated or di�use sources.

Under the classical assumption that the sources are uncorrelated, the vector x(n, f)

of STFT coe�cients of the mixture signal is also zero-mean Gaussian with covariance

matrix

Σx(n, f) =
J∑

j=1

vj(n, f)Rj(n, f). (3.2)

The likelihood of the set of observed mixture STFT coe�cients x = {x(n, f)}n,f given

the set of variance parameters v = {vj(n, f)}j,n,f and that of spatial covariance matrices

R = {Rj(n, f)}j,f is given by

P (x|v,R) =
∏
n,f

1

det (πΣx(n, f))
e−xH(n,f)Σ−1

x (n,f)x(n,f) (3.3)

where Σx(n, f) implicitly depends on vj(n, f) and Rj(n, f) according to (3.2). When

the empirical mixture covariances are observed instead, the considered likelihood is

expressed as

P (Σ̂x|v,R) =
∏
n,f

1

det (πΣx(n, f))
e−tr

(
Σ−1

x (n,f)Σ̂x(n,f)
)

(3.4)

where Σ̂x(n, f) is the empirical mixture covariance computed either by (2.8) or (2.9).

Under this model, source separation can be achieved by �rst estimating the variance

parameters v and the spatial parameters R. Then the spatial images of all sources are

obtained in the MMSE sense by multichannel Wiener �ltering. This general source

separation architecture will be presented in more detail in Section 3.2.

Note that, in the general situation involving possibly moving sources, the spatial
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covariance matrices are time-varying as described by Rj(n, f). However, in most of

the following, we will assume that the source positions are �xed and the reverberation

is moderate such that the spatial covariance matrices are time-invariant : Rj(n, f) =

Rj(f). This assumption is also made by most state-of-the-art approaches where the

mixing process is modeled under the narrowband approximation by the time-invariant

mixing vector hj(f).

3.1.2 Spatial covariance parameterization

We present four spatial covariance parameterizations resulting in either rank-1 or full-

rank matrices. The �rst two rank-1 parameterizations correspond to existing techniques.

The third parameterization called full-rank direct+di�use is considered in [28] for the

�rst time in the context of source separation though it has already been introduced in

the context of source localization. The fourth parameterization called full-rank uncon-

strained is our proposed parameterization, which o�ers the greatest �exibility to model

the convolutive mixing process compared to the three other parameterizations.

3.1.2.1 Rank-1 convolutive parameterization

Most existing approaches to audio source separation rely on narrowband approximation

of the convolutive mixing process (1.2) by the complex-valued multiplication (1.4). The

covariance matrix of cj(n, f) is then given by (3.1) where vj(n, f) is the variance of

sj(n, f) and Rj(f) is equal to the rank-1 matrix

Rj(f) = hj(f)h
H
j (f) (3.5)

with hj(f) denoting the Fourier transform of the mixing �lters hj(τ). This rank-1 con-

volutive parameterization of the spatial covariance matrices has recently been exploited

in [106, 25] together with an NMF model of the source variances.

3.1.2.2 Rank-1 anechoic parameterization

For omni-directional microphones in an anechoic recording environment without rever-

beration, each mixing �lter boils down to the combination of a delay τij and a gain κij

speci�ed by the distance rij from the j-th source to the i-th microphone [102]

τij =
rij
c

and κij =
1√
4πrij

(3.6)
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where c is the sound velocity. The spatial covariance matrix of the j-th source is hence

given by the rank-1 anechoic parameterization

Rj(f) = hane
j (f)

(
hane
j

)H
(f) (3.7)

where the Fourier transform hane
j (f) ∈ CI×1 of the mixing �lters is now parameterized

as

hane
j (f) =


κ1je

−2iπfτ1j

...

κIje
−2iπfτIj

 . (3.8)

Note that this parameterization is consistent with that of (2.17) but here the mixing

vectors are not normalized.

3.1.2.3 Full-rank direct+di�use parameterization

One possible interpretation of the narrowband approximation is that the sound of each

source as recorded on the microphones comes from a single spatial position at each

frequency f , as speci�ed by hj(f) or hane
j (f). This approximation is not valid in a

reverberant environment, since reverberation induces some spatial spread of each source,

due to echoes at many di�erent positions on the walls of the recording room. This spread

translates into full-rank spatial covariance matrices.

The theory of statistical room acoustics assumes that the spatial image of each source

is composed of two uncorrelated parts: a direct part, which is modeled by hane
j (f)

in (3.8) for omni-directional microphones, and a reverberant part [27]. The spatial

covariance Rj(f) of each source is then a full-rank matrix de�ned as the sum of the

covariance of its direct part and the covariance of its reverberant part

Rj(f) = hane
j (f)

(
hane
j

)H
(f) + σ2

revΩ(f) (3.9)

where σ2
rev is the variance of the reverberant part and Ωil(f) is a function of the micro-

phone directivity pattern and the distance dil between the i-th and the l-th microphone

such that Ωii(f) = 1. This full-rank direct+di�use model assumes that the reverbera-

tion recorded at all microphones has the same power but is correlated as characterized

by Ωil(f). This model has been employed for single source localization in [102] and is

currently considered for multiple source localization in [107] but not for source separa-

tion yet.

Assuming that the reverberant part is di�use, i.e. its intensity is uniformly dis-
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tributed over all possible directions, for omni-directional microphones its normalized

cross-correlation can be shown to be real-valued and equal to [27] (see appendix B for

the detailed derivation)

Ωdi�
il (f) =

sin(2πfdil/c)

2πfdil/c
. (3.10)

The assumption that the reverberant part is di�use is valid if some practical conditions

are ful�lled [27, 102]:

a) the dimensions of the room are large compared to the wavelength (this condition

is usually satis�ed for the considered audio frequencies, e.g. f > 200 Hz),

b) the frequencies of interest should be above Schroeder's frequency fS = 2000
√

T60/V ,

where T60 and V are the reverberation time, i.e. the time required for re�ections

of a direct sound to decay by 60 dB below the level of the direct sound, and the

total volume of the room, respectively,

c) the sources and the microphones are located in the interior of the room, i.e. at

least half a wavelength away from the walls.

Moreover, the power of the reverberant part within a parallelepipedic room with di-

mensions Lx, Ly, Lz is given by

σ2
rev =

4β2

A(1− β2)
(3.11)

where A is the total wall area and β the wall re�ection coe�cient computed from the

room reverberation time T60 via Eyring's formula [102]

β = exp

{
− 13.82

( 1
Lx

+ 1
Ly

+ 1
Lz

)cT60

}
. (3.12)

Note that the covariance matrix Ω(f) is usually employed for the modeling of di�use

background noise [66, 100, 101]. For instance, the source separation algorithm in [66]

assumes that the sources follow an anechoic model and represents the non-direct part of

all sources by a shared di�use noise component with covariance Ω(f) and constant vari-

ance. Hence this algorithm does not account for the correlation between the variances

of the direct part and the non-direct part. On the contrary, the proposed direct+di�use

parameterization scales the direct and non-direct part of Rj(f) by the same variance

vj(n, f), which is more consistent with the physics of sound.
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3. GENERAL GAUSSIAN FRAMEWORK

3.1.2.4 Full-rank unconstrained parameterization

In practice, the assumption that the reverberant part is di�use is rarely satis�ed in

realistically reverberant environments. Indeed, early echoes accounting for most of its

energy are not uniformly distributed on the boundaries of the recording room. When

performing some experiments in a simulated rectangular room, we observed that (3.10)

is valid on average when considering a large number of sources distributed at di�erent

positions in a room, but generally not valid for each individual source. As an example,

we computed the normalized cross-correlation Ωil(f) between the reverberant part of

the spatial image of one source at 2 microphones spaced by 20 cm in a room with

reverberation time T60 = 250 ms. Fig. 3.1a shows that the observed cross-correlation

is very di�erent from Ωdi�
il (f). We then repeated this experiment for 400 source and

microphone positions and Fig. 3.1b depicts that the mean of the observed correlation

is accurately modeled by Ωdi�
il (f) and the standard deviation equals for most frequency

bins.
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Figure 3.1: Normalized cross correlation of two microphone signals at T60 = 250 ms as
a function of frequency

Therefore, we propose to parameterize the spatial information of each source via a

full-rank unconstrained Hermitian positive semi-de�nite spatial covariance matrixRj(f)

whose coe�cients are not deterministically related a priori. This unconstrained param-

eterization is the most general possible parameterization for a covariance matrix. It

generalizes the above three parameterizations in the sense that any matrix taking the

form of (3.5), (3.7) or (3.9) can also be considered as a particular form of unconstrained

matrix. Fig. 3.2 depicts an example of a 2 × 2 rank-1 and a more general full-rank
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3.1 Modeling framework

unconstrained matrix. Because of this increased �exibility, this unconstrained parame-

terization better �ts the data as measured by the likelihood. In particular, it improves

the poor �t between the model and the data observed for rank-1 parameterizations

due to the fact that the narrowband approximation underlying these models does not

hold for reverberant mixtures. In that sense, the proposed parameterization

circumvents the narrowband approximation to a certain extent.

State
-
of
-

the
-
art


Rank
-
1 matrix
 Arbitrary Hermitian matrix


Proposed


Figure 3.2: Example of a rank-1 and a full-rank spatial covariance parameterization.

The entries of Rj(f) are not directly interpretable in terms of simple geometrical

quantities. The principal component of the matrix can be interpreted as a beamformer

[108] pointing towards the direction of maximum sound power, while the ratio between

its largest eigenvalue and its trace is equal to the ratio between the output and input

power of that beamformer. In moderate reverberation conditions, the former is expected

to be close to the source DoA while the latter is related to the ratio between the power of

direct sound and that of reverberation. However, the strength of this parameterization

is precisely that it remains valid to a certain extent in more reverberant environments,

since it is the most general possible parameterization for a covariance matrix.

3.1.3 Number of parameters and priors on the parameters

Let us �rst discuss an example of the number of spatial parameters involved in each

spatial covariance parameterization. Table 3.1 shows the number of real-valued pa-

rameters to be estimated for each spatial covariance parameterization after discounting

redundant parameters for a stereo mixture of 3 sources with a FFT length of 1024.

The rank-1 anechoic parameterization involves 6 distances rij from the sources to the

microphones. The full-rank direct+di�use parameterization involves two more param-

eters: the microphone spacing d and the variance of the reverberation part σ2
rev. The

rank-1 convolutive parameterization involves 2 real-valued parameters for each mixing
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3. GENERAL GAUSSIAN FRAMEWORK

vector hj(f), f = 2, ..., 512, since one of the two entries can be �xed arbitrary as in

(2.17), and 1 parameter for hj(1) and hj(513). Hence it results in a total of 3072

parameters. Finally the full-rank unconstrained parameterization involves 4611 real-

valued parameters: 3 parameters for each Rj(f), f = 2, ..., 512 because the scale can

be �xed arbitrarily, and 2 parameters for Rj(1) and Rj(513). The two baseline ap-

proaches involves the same number of real-valued parameters as the rank-1 convolutive

parameterization.

Rank-1 anechoic 6
Rank-1 convolutive 3072

Full-rank direct+di�use 8
Full-rank unconstrained 4611

Binary masking 3072
ℓ1-norm minimization 3072

Table 3.1: Number of real-valued parameters of the considered spatial models for a
stereo mixture of 3 sources with a FFT length of 1024.

Let us now brie�y discuss the possibility to incorporate priors on vj and Rj . The

factorization of the covariance matrix in (3.1) o�ers a �exible treatment of spatial pa-

rameters Rj(f) and spectral parameters vj(n, f) in this Gaussian modeling framework.

In the simplest case, the source variances are assumed to be unconstrained and the

spatial covariance matrices follow one of the parameterizations presented in subsection

3.1.2, so that the model parameters θ = {vj(n, f),Rj(f)}j,n,f can be estimated in the

ML sense. This ML algorithm will be presented in Chapters 4 and 5.

However, in many practical situations either the spectral structure of the sources

or the spatial source positions are known or can be estimated in advance. In these

cases, deterministic constraints probabilistic prior distributions can be exploited to help

enhance source separation performance. The incorporation of probabilistic spectral

priors on vj and probabilistic spatial priors on Rj is easy in the considered modeling

framework where the parameters are subsequently estimated in the MAP sense. The

general ML and MAP algorithms are introduced in section 5.1 and several spatial and

spectral priors will be investigated in Chapters 6 and 7.

3.2 General source separation architecture

Under the covariance modeling framework presented in Section 3.1, source separation

can be achieved using the following four-step general architecture. The overall structure
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3.2 General source separation architecture

is shown in Fig. 3.3, and each step will be described by one subsection in the following.

T-F

transform


Inverse T-F

transform


Parameter

estimation


Wiener

filtering


Figure 3.3: General source separation architecture.

3.2.1 Time-frequency transform

Most existing approaches transform the time-domain input signal x(t) into the time-

frequency domain by the STFT which results in a linear T-F representation by a vector

of complex-valued STFT coe�cients x(n, f) [48, 21, 86]. In our proposed framework,

we consider more generally a quadratic time-frequency representation where x(t) is

represented via its empirical covariance matrix Σ̂x(n, f) in the neighborhood of each

T-F bin. As a result, instead of estimating the model parameters from x(n, f), we infer

them from Σ̂x(n, f).

3.2.1.1 Linear time-frequency transform

We consider two linear T-F representations given by either the STFT or the auditory-

motivated equivalent rectangular bandwidth (ERB) transform as follows.

L1. The STFT is the most popular T-F representation used for audio signals. The

T-F mixture coe�cients are given by

x(n, f) =
∑
τ

Hf (τ)x(nM − τ) (3.13)

where Hf (τ) = w(τ)e−i2πfHzτ/fs , w is a window function, fs is the sampling

frequency, M is the STFT frame shift, fHz = (f − 1)fs/L denotes frequency in

Hz, and 1 ≤ n ≤ N and 1 ≤ f ≤ F denote time frame and frequency index,

respectively. The mixing process is then written in the STFT domain by (1.3).

L2. In the ERB representation, the frequency scale is de�ned by [109]

fHz =
efERB/9.26 − 1

0.00437
(3.14)
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where fERB = f−1
F−1f

max
ERB and fmax

ERB = 9.26 log(0.00437fs/2+1). The T-F mixture

coe�cients are obtained as in (3.13) except that Hf (τ) = wf (τ)e
−i2πfHzτ/fs where

the length of the window wf (τ) now depends on f . More precisely, its length is

de�ned such that the width of its main lope equals four times the di�erence

between the central frequencies of adjacent �lters [84].

3.2.1.2 Quadratic time-frequency transform

We propose to exploit a quadratic T-F representation where the mixture signal is de-

scribed by its I × I local covariance matrix in each T-F bin

Σ̂x(n, f) = E[x(n, f)xH(n, f)] (3.15)

where E[.] denotes empirical expectation. This representation aims to improve the ro-

bustness of parameter estimation for two reasons. Firstly, it locally exploits the observed

data in several T-F bins instead of a single one as given by the linear representation

in (2.8). Secondly, besides the interchannel phase and intensity di�erences encoded

by x(n, f) in the linear T-F representation, it o�ers additional information about the

correlation between the mixture channels which decreases when the number of active

sources or the angle between these sources increase. This additional information results

in improved separation of instantaneous mixtures [110, 68]. In the thesis, we show that

this approach also improves separation performance on reverberant mixtures, despite

the fact that interchannel correlation is intrinsically lower in this context.

We consider two di�erent quadratic representations corresponding to the two distinct

frequency scales above:

Q1. Σ̂x(n, f) is computed by local averaging over the neighborhood of each T-F bin of

the linear STFT transform as in (2.9). Fig. 3.4 gives an example of local averaging

over 5 neighboring T-F bins where wnf has a size of 3× 3. This computation was

introduced in [68] in the context of instantaneous audio source separation as a

sliding window variant of the T-F patch-based model in [72], but has not yet been

exploited in the context of convolutive source separation.

Q2. Σ̂x(n, f) is computed by local averaging over the neighborhood of each T-F bin

of the linear ERB transform as in (2.9) again.

ERB-scale representations have been used in a few studies [84, 111]. Provided that

the number of bands is large enough, they provide �ner spectral resolution than

the STFT at low frequencies, hence decrease the overlap between sources in this
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Neighbourhood of


Figure 3.4: An example of quadratic representation taking into account 5 neighboring
T-F bins.

crucial frequency range where most sound energy lies, while keeping good time

resolution at higher frequencies. These representations were shown to improve

separation performance based on ℓ1-norm minimization for instantaneous mixtures

[111] or single-channel Wiener �ltering for convolutive mixtures [84]. Yet, they

failed so far to improve separation performance based on multichannel Wiener

�ltering techniques for reverberant mixtures, due to the fact that the narrowband

approximation does not hold at high frequencies because of the coarse spectral

resolution at these frequencies [84]. We will show that ERB-scale representations

are also bene�cial for multichannel Wiener �ltering-based separation provided

that the proposed full-rank covariance parameterization is used.

3.2.2 Parameter estimation

Given the Gaussian modeling framework and the spatial covariance parameterization

presented in Section 3.1.1, the core remaining problem is then how to estimate the

model parameters θ = {vj(n, f),Rj(f)}j,n,f from the input signal. Let us post-

pone the details of this core problem to Part 3 of the thesis. At this point we would

like to point out that we have de�ned a family of EM algorithms for this purpose after

suitable parameter initialization. The proposed general model parameter estimation

architecture, which will be presented in Chapter 5, enables both ML and MAP esti-

mation where spatial and spectral priors can be taken into account in the MAP case.

Also, it accommodates both linear and quadratic input T-F representations thanks to

the likelihood de�ned in (3.4) and the equivalence relation in (2.8).
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3.2.3 Wiener �ltering

Once the model parameters θ have been estimated, the source image T-F coe�cients can

be derived in the MMSE sense by multichannel Wiener �ltering. This �lter is applied

to the mixture STFT coe�cients as [71, 72]

ĉj(n, f) := vj(n, f)Rj(f)Σ
−1
x (n, f)x(n, f). (3.16)

3.2.4 Inverse time-frequency transform

The �nal step is to reconstruct the time-domain source signals from their T-F represen-

tation. In the STFT domain, ĉj(t) is obtained from ĉj(n, f) via the inverse STFT with

the overlap-add method. For the quadratic ERB representation, fullband signals ĉj(t)

are recovered from subband signals ĉj(n, f) by upsampling followed by inverse ERB

transform [84].
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Chapter 4

Upper bound on source separation

performance

T
his chapter focuses on evaluating the potential source separation performance

achievable via the proposed framework. For that purpose, we �rst consider the

simplest setting where all model parameters are known. This oracle setting provides an

upper bound on the source separation performance achievable in a blind context. We

then move toward a semi-blind setting where the spatial covariance matrices are known,

but the source variances are blindly estimated from the observed mixture signal. Ex-

perimental results in both parameter estimation settings are reported by the end of the

chapter and show the potential of the proposed approach compared to state-of-the-art

and baseline approaches.

4.1 Oracle parameter estimation

We �rst present the estimation of the "true" spatial covariance matrices Rj(f) and

the "true" source variance vj(n, f), considering the four parameterizations in Section

3.1.2, from the source image coe�cients cj(n, f) and the mixing �lter coe�cients hj(f)

which are assumed to be known. These estimates result in the oracle source separation

algorithms shown in Fig. 4.1, which o�er the highest separation performance achievable

via each spatial covariance parameterization in the considered framework.
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Figure 4.1: Oracle source separation work�ow.

4.1.1 Oracle parameter estimation for the full-rank parameterizations

For the full-rank unconstrained parameterization, Rj(f) and vj(n, f) are estimated in

the ML sense by maximizing the log-likelihood

logLj = log
∏
n,f

p
(
cj(n, f)|vj ,Rj(f)

)
=
∑
n,f

−tr
( 1

vj(n, f)
R−1

j (f)Σ̂j(n, f)
)
− log det

(
πvj(n, f)Rj(f)

)
(4.1)

where Σ̂j(n, f) is the empirical covariance of cj(n, f), which is computed similarly to

2.8 or (2.9). By computing the derivatives of this expression with respect to vj(n, f)

and each entry of Rj(f) and equating them to zero, we obtain iterative updates for

vj(n, f) and Rj(f) as (see Appendix A.2 for the detailed derivation)

vj(n, f) =
1

I
tr(R−1

j (f)Σ̂j(n, f)) (4.2)

Rj(f) =
1

N

N∑
n=1

1

vj(n, f)
Σ̂j(n, f). (4.3)

The parameters are initialized by Rj(f) = 1
N

∑N
t=1 Σ̂j(n, f), vj(n, f) = 1 for all

n, f and convergence, as we observed in the experiments, is typically achieved in two or

three iterations.

For the full-rank direct+di�use parameterization, the spatial covariance Rj(f) is

�rst computed by (3.9) instead assuming that the room characteristics and the geometry

setting are known. Then vj(n, f) is computed by (4.2) given Rj(f).

4.1.2 Oracle parameter estimation for the rank-1 parameterizations

For the rank-1 spatial covariance parameterizations, the log-likelihood in (4.1) is un-

de�ned since Rj(f) is not invertible. The parameters are therefore computed directly

from the mixing �lter coe�cients and the source image signal coe�cients.
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For the rank-1 convolutive parameterization, Rj(f) is computed by (3.5), and the

source variances are derived by

vj(n, f) =
|hH

j (f)cj(n, f)|2

∥hj(f)∥42
. (4.4)

For the rank-1 anechoic spatial covariance parameterization, Rj(f) is computed by

(3.7), and the source variances are derived by

vj(n, f) =
|haneH

j (f)cj(n, f)|2

∥hane
j (f)∥42

. (4.5)

4.1.3 Oracle parameter estimation for the baseline approaches

For binary masking and ℓ1-norm minimization, the estimated source image T-F coe�-

cients ĉj(n, f) are derived directly from the mixture T-F coe�cients x(n, f), the mixing

matrix H(f), and the true source images cj(n, f) as in [112]. For each possible set of

active source indexes j or k, we compute ĉj(n, f) by (2.20) for binary masking or by

(2.22) for ℓ1-norm minimization. We then choose the set of active source indexes that

minimizes
∑

j ∥ĉj(n, f)− cj(n, f)∥2 in each T-F bin. Matlab implementations of these

two oracle estimators are available4.

4.2 Semi-blind parameter estimation

In a BSS context, we need to estimate the model parameters from the mixture signal

only. Recent evaluations of state-of-the-art algorithms [13, 1] have shown that the esti-

mation of the spatial parameters remains di�cult for real-world reverberant mixtures,

due in particular to the existence of multiple local maxima in the ML criterion and

to the source permutation problem arising when the model parameters at di�erent fre-

quencies are assumed to be independent. Therefore, we also investigate the potential

separation performance achievable via the proposed framework in a semi-blind context,

where the spatial covariance matricesRj(f) are known but the source variances vj(n, f)

are blindly estimated from the observed mixture as shown in Fig. 4.2.

The oracle computation of the spatial covariance matrices Rj(f) is presented in

Section 4.1. We are left with the estimation of the source variances vj(n, f) given the

mixture signal coe�cients x(n, f) and Rj(f).

4http://bass-db.gforge.inria.fr/bss_oracle/
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Figure 4.2: Semi-blind source separation work�ow.

In our preliminary paper [28], we used a quasi-Newton algorithm for the estimation

of vj(n, f) that converged in a very small number of iterations. However, due to the

complexity of each iteration, we later found out that the EM algorithm, which is a

popular choice for Gaussian models [71, 75, 66], provided a computational speedup

despite a larger number of iterations. In order to be consistent with the blind parameter

estimation in Part 3 where the EM algorithm is used, we use the same algorithm for

the estimation of vj(n, f) in this semi-blind context. The detailed derivation of the EM

algorithm will be presented in Chapter 5, where only the updates (5.19), (5.20) (in the

E-step), and (4.2) (in the M-step) are used here.

Given the mixture T-F coe�cients x(n, f) and the mixing matrix H(f), semi-blind

source image estimations by binary masking and ℓ1-norm minimization are presented

in Section 2.3.1 and 2.3.2, respectively.

4.3 Experimental results

In order to evaluate the potential source separation performance achievable with each

spatial covariance parameterization in an oracle context presented in Section 4.1, and

in a semi-blind context presented in Section 4.2, we use the simulated speech mixtures

dataset where the geometric setting and the room characteristics can be controlled.

This dataset consists of 24 stereo mixtures of three speech sources generated with four

di�erent reverberation times T60 = 50, 130, 250, 500 ms and three di�erent source-

to-microphone distances r = 50, 100, 150 cm as described in detail in Section 8.1.1.

We also compare the source separation performance with two baseline approaches, i.e.

binary masking and ℓ1-norm minimization described in Section 2.3, where the mixing

matrix is known. The common parameter settings for the experiments are summarized
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in Table 4.1 and the number of real-valued parameters to be estimated for each spatial

covariance parameterization and baseline approaches is shown in Table 3.1.

Signal duration 10 s
Sampling rate 16 kHz

Number of channels I = 2
STFT window type sine window
STFT frame size 1024
STFT frame shift 512

Table 4.1: Experimental parameter settings for oracle and semi-blind separation.

We measure the source separation performance by the signal-to-distortion ratio

(SDR), the signal-to-interference ratio (SIR), the signal-to-artifact ratio (SAR), and

the source image-to-spatial distortion ratio (ISR), expressed in decibels (dB), detailed

in Section 8.2.1, averaged over all male and female sources and all source-to-microphone

distances. These energy ratio criteria account respectively for the overall distortion of

the target source, residual crosstalk from other sources, musical noise, and spatial or

�ltering distortion of the target [11].

4.3.1 Oracle source separation performance

The oracle source separation performance achievable with the four spatial covariance

parameterizations and the baseline approaches as function of the reverberation time is

depicted in Fig. 4.3. As expected, the rank-1 convolutive parameterization performs

best in terms of SDR and SAR for very low reverberation T60 = 50 ms where the

narrowband assumption is satis�ed and the mixing process is better modeled by the

frequency dependent mixing vectors hj(f) with fewer parameters than the full-rank

Rj(f). In this case, the larger number of parameters in the full-rank unconstrained

parameterization leads to over�tting.

When the reverberation time increases, the performance of the rank-1 convolutive

parameterization drops below that of binary masking and ℓ1-norm minimization. For

T60 ≥ 130 ms, the full-rank unconstrained spatial covariance parameterization outper-

forms all other parameterizations and binary masking according to all criteria and only

results in slightly smaller SIR than ℓ1-norm minimization. For instance, at T60 = 250ms

it improves the SDR by 6.8, 8.7, 3.3, 2.1, and 4.3 dB when compared to the rank-1 con-

volutive, rank-1 anechoic, full-rank direct+di�use spatial covariance parameterizations,

binary masking, and ℓ1-norm minimization, respectively. This means that the full-rank

unconstrained spatial covariances better �t the real-world reverberant mixing process.
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Figure 4.3: Oracle source separation performance achievable by the four spatial covari-
ance parameterizations and the baseline approaches.
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Figure 4.4: Semi-blind source separation performance achievable by the four spatial
covariance parameterizations and the baseline approaches.
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Also, the two constrained parameterizations perform more poorly in general. For

moderate reverberation conditions T60 ≥ 130 ms, the rank-1 anechoic parameterization

results in lower SDR, SIR, and ISR than the three other spatial covariance parame-

terizations because it only accounts for the direct path. The full-rank direct+di�use

parameterization has lowest performance at T60 = 50 ms because the reverberation part

is not di�use so that the parameterization does not �t the mixing condition. It improves

with increasing reverberation time but remains poorer than binary masking.

4.3.2 Semi-blind source separation performance

The semi-blind source separation performance achieved by the four spatial covariance

parameterizations and the baseline approaches is shown in Fig. 4.4 as a function of the

reverberation time. Obviously, performance has dropped compared to that obtained in

the oracle context due to the blind estimation of vj(n, f).

The rank-1 anechoic parameterization o�ers very high SAR but low SDR and SIR.

Similarly binary masking results in very high SIR but low SAR because it extracts only

one dominant source per time-frequency bin, and results in strong musical noise. The

SDR and the SIR given by the full-rank direct+di�use spatial covariance parameter-

ization are now below those obtained by the rank-1 convolutive parameterization for

all reverberation conditions. Nevertheless, the full-rank unconstrained spatial covari-

ance parameterization still o�ers the best SDR, which measures the overall distortion

of the system, compared to all other approaches in real-world reverberation conditions

when T60 ≥ 250 ms. For instance, at T60 = 500 ms it improves the SDR by 2.0, 3.4,

2.3, 2.0, and 2.8 dB when compared to the rank-1 convolutive, rank-1 anechoic, full-

rank direct+di�use spatial covariance parameterizations, binary masking, and ℓ1-norm

minimization, respectively.

4.3.3 Robustness to small source movement

In a similar semi-blind source separation setting, we also investigated the robustness of

the full-rank unconstrained spatial covariance parameterization to small source move-

ments using real-world stereo recorded mixtures of three speech sources in a meeting

room with 250 ms reverberation time. For the detail of this experiment and result,

please refer to our paper [30]. As we observed, the separation performance of the

rank-1 convolutive spatial covariance parameterization degraded more than that of the

full-rank unconstrained parameterization when one of the source was slightly moved by

5◦ or 10◦ while its spatial covariance matrices were computed from its original posi-
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tion. This result can be explained when considering the fact that the full-rank spatial

covariance parameterization accounts for the spatial spread of each source as well as

its spatial direction. Therefore, small source movements remaining in the range of the

spatial spread do not a�ect much separation performance. This result indicates that

the proposed parameterization could also o�er a promising approach to the separation

of moving sources due to its greater robustness to parameter estimation errors.

4.3.4 Source separation performance with di�erent input time-frequency

representations

As an additional experiment, we investigate the e�ect of the choice of the input T-F

representation presented in Section 3.2.1 on the source separation performance given by

the proposed full-rank unconstrained spatial covariance parameterization. We consider

the linear T-F representation by the STFT (denoted linear STFT) where the input

empirical mixture covariance Σ̂x(n, f) is computed by (2.8), the quadratic T-F rep-

resentation by the STFT (denoted quadratic STFT) where Σ̂x(n, f) is computed by

(2.9) with a window wnf of size 3 × 3, and the quadratic T-F representation by the

ERB transform (denoted quadratic ERB) where Σ̂x(n, f) is computed by (2.9) with

250 frequency bins. The ERB frame size is 1 and the ERB window is Hanning. Only

the SDR achieved by both oracle and semi-blind parameter estimation is drawn in Fig.

4.5 since the SIR, the SAR and the ISR follow similar curves.

As expected, the quadratic ERB o�ers the highest source separation performance

in both oracle and semi-blind parameter estimation context because it provides �ner

spectral resolution than the STFT at low frequencies where most sound energy lies.

However, the quadratic STFT results in lower source separation performance than the

linear STFT. This can be explained by the fact that the spatial covariance matrices are

estimated from known source images in this experiment so that the estimates computed

from a single T-F point are more accurate. We shall see in [31] and Section 8.3.1 that

the quadratic STFT becomes better than the linear STFT in a blind estimation context.

4.4 Summary of Part 2

In this part, we �rst presented the proposed general Gaussian modeling framework for

audio source separation targeting real-world reverberated or di�use sources where the

spatial position of the sources is encoded by frequency-dependent spatial covariance ma-

trices and the time-frequency power of the sources is encoded by time-varying spectral

71



4. UPPER BOUND ON SOURCE SEPARATION PERFORMANCE

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

20

Reverberation time (ms)

S
D

R
 (

dB
)

 

 
Oracle quadratic ERB
Oracle quadratic STFT
Oracle linear STFT
Semi−blind quadratic ERB
Semi−blind quadratic STFT
Semi−blind linear STFT

Figure 4.5: SDR achieved by the full-rank unconstrained parameterization in the oracle
and the semi-blind context with di�erent input time-frequency representations.

variances. The reasons for which we consider the Gaussian modeling framework are that

in physical acoustics the reverberation is generally modeled as random Gaussian and

that it is easy to handle computation as shown in the parameter estimation algorithm.

We then introduced four spatial covariance parameterizations with di�erent degrees of

�exibility resulting in either rank-1 or full-rank matrices. Given the modeling framework

and the parameterizations, we later designed a general source separation architecture

which includes four major steps as presented in Section 3.2 and accepts either linear or

quadratic time-frequency input representations.

In order to demonstrate the potential of the proposed framework, we computed

the upper bound on the source separation performance achievable by the four spatial

covariance parameterizations and compared the results with that given by baseline ap-

proaches. The overall results presented in Section 4.3 suggested that the rank-1 anechoic

and the full-rank direct+di�use spatial covariance parameterization provide poorer sep-

aration than the state-of-the-art rank-1 convolutive and the newly proposed full-rank
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unconstrained spatial covariance parameterization. Hence, for the rest of the thesis,

we will focus on designing source separation algorithms where the spatial covariance

matrices are full-rank and unconstrained.
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Part III

Estimation of model parameters

and source separation
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Chapter 5

General estimation architecture and

ML algorithm

C
hapter 4 has revealed that the proposed modeling framework and parameterization

result in a higher upper bound on the source separation performance than both

baseline approaches and state-of-the-art spatial cue parameterization. However, in or-

der to perform actual blind source separation, the model parameters must be estimated

from the mixture signals only. Hence, this chapter will present a general parameter

estimation architecture which allows both ML and MAP estimation by the EM algo-

rithm as brie�y discussed in Section 3.2.2. For that purpose, we will �rst describe the

general estimation work�ow followed by ML and MAP criteria. We then provide details

of the ML algorithm including two major steps: parameter initialization by hierarchical

clustering and permutation alignment, and parameter estimation by EM updates. Note

that the parameter estimation architecture and the EM algorithms derived in this chap-

ter are applicable to either input representation, i.e. to the linear T-F representation

or to the quadratic T-F representation presented in Section 3.2.1.

5.1 General parameter estimation architecture

Given the modeling framework and a choice of parameterization, the blind estimation of

the model parameters from the mixture signal plays a central role for realistic BSS appli-

cation. We propose a general and �exible parameter estimation architecture described

in Fig. 5.1:

� this architecture mainly relies on iterative parameter updates via the EM algo-

rithm, which is well-known as an appropriate choice for Gaussian models [113, 71],
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5. GENERAL ESTIMATION ARCHITECTURE AND ML ALGORITHM

� as any iterative optimization algorithm, EM is sensitive to the initialization [25]

so that a suitable parameter initialization scheme is necessary,

� when some additional information about either the original source signals or the

mixing condition is known in advance, priors can be designed and incorporated

in the probabilistic model so as to exploit this knowledge and help improve the

source separation performance by estimating the parameters in the MAP sense.

The general model parameter estimation criteria are:

� the ML criterion

θ̂ = argmax
θ

∏
n,f

p
(
Σ̂x(n, f)|θ

)
(5.1)

� the MAP criterion

θ̂ = argmax
θ

∏
n,f

p
(
Σ̂x(n, f)|θ

)
p(θ) (5.2)

Though the general parameter estimation architecture is applicable to both ML and

MAP approaches, in the rest of this chapter we consider ML parameter estimation only

and postpone MAP estimation to Chapters 6 and 7. Besides, we will only consider the

ML parameter estimation for the proposed full-rank unconstrained and the state-of-the-

art rank-1 convolutive spatial covariance parameterizations since they were con�rmed

to provide a higher upper bound on the source separation performance compared to

the other parameterizations in Chapter 4. The initialization scheme will be presented

in Section 5.2 and the derivation of EM algorithm for the rank-1 convolutive and the

full-rank unconstrained parameterizations will be presented in Section 5.3.

5.2 Parameter initialization

Preliminary experiments showed that the initialization of the model parameters greatly

a�ects the separation performance resulting from the EM algorithm. Therefore, we

carefully initialize the spatial parameters hinit
j (f) andRinit

j (f) via two steps: hierarchical

clustering and permutation alignment as depicted in Fig. 5.2 and detailed below. In

order to ensure a fair comparison of both input T-F representations independently of the

parameter initialization procedure, the initial parameters in the quadratic ERB domain

are derived from those in the STFT domain within a third step also detailed below.
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Figure 5.2: Parameter initialization work�ow.

5.2.1 Hierarchical clustering

The parameter initialization schemes previously proposed for rank-1 Gaussian models

are either restricted to instantaneous mixtures [75] or require some prior knowledge

about the sources [28, 25]. By contrast, a number of clustering algorithms have been

proposed for blind estimation of the mixing vectors in the context of sparsity-based

convolutive source separation. In the following, we use up to minor improvements the

hierarchical clustering-based algorithm in [55] for the initialization of rank-1 spatial co-

variance matrices and introduce a modi�ed version of this algorithm for the initialization

of full-rank unconstrained spatial covariance matrices.

The algorithm in [55] relies on the assumptions that at each frequency f the sounds

of all sources come from disjoint regions of space and that a single source predominates
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5. GENERAL ESTIMATION ARCHITECTURE AND ML ALGORITHM

in most time-frequency bins. The vectors x(n, f) of mixture STFT coe�cients then

cluster around the direction of the associated mixing vector hj(f) in the time frames n

where the jth source is predominant. It is well known that the validity of this sparsity

assumption decreases with increasing reverberation. Nevertheless, this algorithm was

explicitly developed for reverberant mixtures.

In order to estimate these clusters, the vectors of mixture STFT coe�cients are �rst

normalized as

x̄(n, f)← e−i arg(x1(n,f))

∥x(n, f)∥2
x(n, f) (5.3)

where arg(.) denotes the phase of a complex number. We then de�ne the distance be-

tween two clusters C1 and C2 as the average distance between the associated normalized

mixture STFT coe�cients

d(C1, C2) =
1

|C1||C2|
∑

x̄c1∈C1

∑
x̄c2∈C2

∥x̄c1 − x̄c2∥2. (5.4)

In a given frequency bin f , each normalized vector of mixture STFT coe�cients

x̄(n, f) at a time frame n is �rst considered as a cluster containing a single item. The

distance between each pair of clusters is computed and the two clusters with the smallest

distance are merged. This bottom-up process called linking is repeated until the number

of clusters is smaller than a predetermined threshold K. This threshold is usually much

larger than the number of sources J , so as to eliminate outliers [55]. We �nally choose

the J clusters with the largest number of samples and compute the initial mixing vector

and spatial covariance matrix, up to the permutation ambiguity, for each source as

hinit
j (f) =

1

|Cj |
∑

x̄(n,f)∈Cj

x̃(n, f) (5.5)

Rinit
j (f) =

1

|Cj |
∑

x̄(n,f)∈Cj

x̃(n, f)x̃(n, f)H (5.6)

where x̃(n, f) = e−i arg(x1(n,f))x(n, f), and |Cj | denotes the total number of samples in

cluster Cj , which depends on the considered frequency bin f .

Note that, compared to the algorithm in [55], we propose some minor modi�cations:

� the distance between clusters is de�ned as the average distance between the nor-

malized mixture STFT coe�cients instead of the minimum distance between

them, and

� the mixing vector hinit
j (f) is computed from the phase-normalized mixture STFT
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coe�cients x̃(n, f) instead of the phase- and amplitude-normalized coe�cients

x̄(n, f). This increases the weight of time-frequency bins of large amplitude where

the modeled source is more likely to be prominent, in a way similar to [18].

These modi�cations were found to provide better initial approximation of the mixing

parameters in our experiments. We also tested random initialization and DOA-based

initialization, i.e. where the initial mixing vectors hinit
j (f) are equal to hane

j (f) assuming

known source and microphone positions. Both schemes were found to result in slower

convergence and poorer separation performance than the chosen scheme.

5.2.2 Permutation alignment

Since the spatial parameters of the rank-1 convolutive and the full-rank unconstrained

parameterization, i.e. hinit
j (f) and Rinit

j (f), are estimated independently in each fre-

quency bin f , they should be ordered so as to correspond to the same source across

all frequency bins. This so-called permutation problem has been widely studied in the

context of sparsity-based source separation. In the following, we apply the DoA -based

algorithm in [51] to the estimated mixing vector hinit
j (f) and align Rinit

j (f) in the same

order.
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Figure 5.3: Argument of hinit2j (f)/hinit1j (f) before and after permutation alignment for a
synthetic stereo mixture of three sources with T60 = 130 ms.
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The principle of this algorithm is as follows. Given the geometry of the microphone

array, a critical frequency is determined above which spatial aliasing may occur. The

mixing vectors hinit
j (f) are each unambiguously related to a certain DoA below that

frequency, while phase wrapping may occur at higher frequencies. The algorithm �rst

estimates the source DoAs and the permutations at low frequencies by clustering the

mixing vectors after suitable normalization assuming no phase wrapping and then re-

estimates them at all frequencies by taking phase wrapping into account. Then the order

of the spatial covariance matrices Rinit
j (f) in each frequency bin is permuted identically

to that of the mixing vectors hinit
j (f). As a result, the mixing vectors and the spatial

covariance matrices are aligned and initialized to the same source order after solving the

permutation problem. Fig. 5.3 depicts an example of the phase di�erence between the

two entries of the mixing vectors before and after solving the permutation for a stereo

synthetic mixture of three speech sources with room reverberation time T60 = 130 ms.

The critical frequency below which phase is unambiguously related to the source DoAs

is here equal to 5 kHz [51]. The source order appears globally aligned for most frequency

bins after solving the permutation.

5.2.3 Parameter computation in ERB T-F representation

Further computation is required for the ERB T-F representation. While a similar

two-step procedure, i.e. hierarchical clustering and permutation alignment, could be

applied to the �rst principal components of the empirical mixture covariances Σ̂x(n, f),

we found that this did not result in good performance in the high frequency range.

Indeed, due to the broadness of high frequency subbands, the reduction of Σ̂x(n, f) to

their �rst principal components results in some information loss.

Given the estimated mixing vectors hinit
j (f), initial estimates of the source images

in the STFT domain cinitj (n, f) are obtained by binary masking as described in Section

2.3.1. The empirical source covariances Σ̂init
j (n, f) are then derived by STFT inversion of

cinitj (n, f) followed by ERB-scale representation. Finally the spatial covariance matrices

Rinit
j (f) are initialized by averaging Σ̂init

j (n, f) over all time frames n, while the initial

mixing vectors hinit
j (f) are taken as the �rst principal component of Rinit

j (f).

5.2.4 Variance initialization

Given this suitable initialization of the spatial parameters, the initialization of the source

variances does not signi�cantly a�ect the convergence of the EM algorithm and the �nal

separation performance. In our experiments, the source variances are simply initialized
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to vinitj (n, f) = 1. We have found that this basic initialization scheme provided similar

performance to the more advanced but slower scheme consisting of �nding the vinitj (n, f)

most consistent with hinit
j (f) and Rinit

j (f) by running EM without updating the mixing

vectors or the spatial covariance matrices.

5.3 ML estimation by the EM algorithm

We �rst present the derivation of EM algorithm for the rank-1 convolutive parameteri-

zation. This algorithm is inspired from the study in [25], which relies on the same pa-

rameterization of the spatial covariance matrices but on a distinct model of the source

variances and was restricted to a linear input T-F transform. We here express the

updates in terms of Σ̂x(n, f) instead of x(n, f), so that they become applicable to

quadratic T-F transforms, and extent them to the proposed full-rank unconstrained

parameterization.

5.3.1 EM updates for the rank-1 convolutive parameterization

Similarly to [25], EM cannot be directly applied to the noiseless mixture model, i.e.

x(n, f) = H(f)s(n, f), since the estimated mixing vectors would remain �xed to their

initial value under the resulting updates (see [25] for a theoretical explanation). This

issue can be addressed by considering the noisy mixture model

x(n, f) = H(f)s(n, f) + b(n, f) (5.7)

where b(n, f) denotes some additive zero-mean Gaussian noise. Following [25], we

assume that b(n, f) is stationary and spatially uncorrelated and denote by Σb(f) = σ2
b I

its I× I time-invariant diagonal covariance matrix. This matrix is initialized to a small

value related to the average empirical channel variance as discussed in [25].

EM is separately derived for each frequency bin f for the complete data {x(n, f), s(n, f)}n
that is the set of observed mixture T-F coe�cients and hidden source T-F coe�cients of

all time frames (see Appendix A.1 for the detailed description). The resulting parame-

ter updates are summarized in Algorithm 5.1. In the E-step, the Wiener �lter W(n, f)

and the expectation of the natural statistics R̂ss(n, f) of the sources are computed.

Then, in the M-step, the source variances, the mixing matrix and the noise covariance

are updated.
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Algorithm 5.1 EM algorithm for the rank-1 convolutive parameterization
E-step:

Σs(n, f) = diag(v1(n, f), ..., vJ(n, f)) (5.8)

Σx(n, f) = H(f)Σs(n, f)H
H(f) +Σb(f) (5.9)

W(n, f) = Σs(n, f)H
H(f)Σ−1

x (n, f) (5.10)

R̂ss(n, f) = W(n, f)Σ̂x(n, f)W
H(n, f) + (I−W(n, f)H(f))Σs(n, f) (5.11)

M-step:

vj(n, f) =R̂ss jj(n, f) (5.12)

H(f) =R̂xs(f)R̂
−1
ss (f) (5.13)

Σb(f) =Diag(R̂xx(f)−H(f)R̂H
xs(f)− R̂xs(f)H

H(f)

+H(f)R̂ss(f)H
H(f)) (5.14)

where Diag(.) projects a matrix onto its diagonal, and

R̂ss(f) =
1

N

N∑
n=1

R̂ss(n, f) (5.15)

R̂xs(f) =
1

N

N∑
n=1

Σ̂x(n, f)W
H(n, f) (5.16)

R̂xx(f) =
1

N

N∑
n=1

Σ̂x(n, f). (5.17)
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5.3.2 EM updates for the full-rank unconstrained parameterization

The derivation of EM for the full-rank unconstrained parameterization is easier than for

the rank-1 convolutive parameterization since we can stick to the exact mixture model

(1.1). This can be seen as an advantage of full-rank vs. rank-1 parameterization. EM is

again separately derived for each frequency bin f . Since the mixture can be recovered

from the spatial images of all sources, the complete data reduces to {cj(n, f)}n,f , that is
the set of hidden T-F coe�cients of the spatial images of all sources on all time frames.

The resulting parameter updates are summarized in Algorithm 5.2, while the de-

tails of the derivation are presented in Appendix A.2. In the E-step, the Wiener �lter

Wj(n, f) and the covariance Σ̂j(n, f) of the spatial image of the jth source are com-

puted similarly as for the rank-1 convolutive parameterization. Then in the M-step,

vj(n, f) and Rj(f) are updated as in (4.2) and (4.3).

Algorithm 5.2 EM algorithm for the full-rank unconstrained parameterization
E step:

Σj(n, f) = vj(n, f)Rj(f) (5.18)

Wj(n, f) = Σj(n, f)Σ
−1
x (n, f) (5.19)

Σ̂j(n, f) = Wj(n, f)Σ̂x(n, f)W
H
j (n, f) + (I−Wj(n, f))Σj(n, f) (5.20)

M step:

vj(n, f) =
1

I
tr(R−1

j (f)Σ̂j(n, f)) (5.21)

Rj(f) =
1

N

N∑
n=1

1

vj(n, f)
Σ̂j(n, f). (5.22)

5.3.3 Computational complexity

Each iteration of the EM update for the full-rank unconstrained parameterization mostly

involves the computation of (N+1)FJ inversions and 5NFJ multiplications of I×I ma-

trices. The overall computational complexity of one iteration is therefore O(6NFJI3).

It is linear as a function of the number of sources and the duration of the signal, and

cubic as a function of the number of channels.
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Chapter 6

MAP algorithms exploiting spatial

priors

F
ollowing the general source separation architecture presented in Section 5.1 where

the model parameters can be estimated in either the ML or the MAP sense, this

chapter is devoted to MAP parameter estimation when some extra knowledge about

the spatial source position is available in order to enhance the source separation per-

formance. We �rst consider a family of spatial location priors in Section 6.1 where

the theory of statistical room acoustics is exploited in particular scenarios where the

geometric setting, i.e. the microphone spacing and the source-to-microphone distances,

and the room reverberation time are known. Let us also emphasize that this re-

sulting MAP algorithms do not su�er from the troublesome permutation

problem thanks to the prior location information of the sources. We then

consider a spatial continuity prior in Section 6.2 where the spatial covariance matri-

ces are time-varying but assumed to vary smoothly over time. This continuity prior

could be potentially employed to model moving sources which goes beyond the scope

of this thesis. For each spatial prior, we derive the MAP spatial parameter estimation

updates by EM where the E-step is similar to that of the ML algorithm and the M-step

is modi�ed.

6.1 MAP algorithms exploiting spatial location priors

While BSS requires to recover the source signals from a given mixture without any other

knowledge, in many practical situations the geometric setting and the room acoustical

characteristics can be known in advance. Such situations can happen, for instance, in a
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formal meeting where the position of each delegate is �xed or in a car where the positions

of the driver and the passengers are �xed. Therefore, in this section we propose and

investigate two di�erent acoustically-motivated spatial priors which exploit the known

geometric setting. These priors all rely on the theory of statistical room acoustics

in order to express the mean and/or the variance of the prior as a function of the

geometric setting and the room characteristics. The resulting MAP algorithms o�er an

acoustically principled solution to the estimation of the model parameters and to the

permutation problem. Most importantly, they provide a proof of concept of the bene�t

of the proposed priors towards their future use in a BSS context.

The choices of two prior distributions in the following sections, i.e Wishart and

inverse-Wishart, are due in particular to the engineering constraints such that they

can:

� applies to Hermitian matrices

� has a closed-form expression for the mean

� results in close-form updates.

6.1.1 MAP algorithm exploiting a Wishart spatial location prior

6.1.1.1 Wishart spatial location prior

According to the theory of statistical room acoustics [27, 102], for a given microphone

spacing and source position relative to the microphones, the mean spatial covariance

matrix over all possible microphone positions is given by (3.9). However, our preliminary

experiments have con�rmed that the actual value of Rj(f) varies depending on the

microphone positions and cannot be set to the �xed value (3.9). Therefore, we �rst

investigate the modeling of Rj(f) as

p(Rj(f)) = W
(
Rj(f)|Ψj(f),m

)
(6.1)

where

W(R|Ψ,m) =
|Ψ|−m|R|(m−I)e−tr(Ψ−1R)

πI(I−1)/2
∏I

i=1 Γ(m− i+ 1)
(6.2)

is the Wishart density over a Hermitian positive de�nite matrix R with positive de�nite

scale matrix Ψ, m degrees of freedom and mean mΨ [114]. This distribution, its mean,

and its variance are �nite for m > I − 1, m > I, and m > I +1 respectively. We de�ne
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the scale matrix Ψj(f) as

Ψj(f) =
hane
j (f)

(
hane
j (f)

)H
+ σ2

revΩ(f)

m
(6.3)

so that the mean of Rj(f) is coherent with (3.9). This model extends the full-rank

direct+di�use spatial covariance parameterization by allowing deviations of the spatial

covariance matrices around their mean controlled by the number of degrees of freedom

m. Such deviations occur since the full-rank dirrect+di�use model is only valid on

average when considering a large number of sources as shown in Fig. Fig. 3.1, or for

instance when the source or the microphones are close to the walls, resulting in a strong

directional early echo.

6.1.1.2 Learning the hyper-parameter

In order to obtain the best �t between the prior distribution and the actual spatial

covariance matrices, we learn the number of degrees of freedom m of the Wishart prior

(6.9) from training data. For a given geometric setting and reverberation time, several

training signals are generated by convolving training source signals with mixing �lters

generated for many source and microphone positions p. The corresponding spatial

covariance matrices Rp(f) are then estimated via the oracle estimator in Section 4.1.1.

Since Rp(f) can be measured only up to an arbitrary scaling factor α, the number of

degrees of freedom m may be estimated in the ML sense by maximizing

LW =
∏
p

∏
f

∞∫
0

p
(
Rp(f)|α,Ψp(f),m

)
p(α)dα (6.4)

where p
(
Rp(f)|α,Ψp(f),m

)
= JαW

(
αRp(f)|Ψp(f),m

)
, Jα = αI2 is the Jacobian of

the scaling transform, p(α) = 1/α is the non-informative Je�reys prior, and Ψp(f)

was computed by (6.3) for each geometry setting p. By computing the integral and

discarding constants, the log-likelihood to be maximized is

logLW
c
=
∑
p,f

−m log |Ψp(f)|+ (m− I) log |Rp(f)| − I m tr
(
Ψ−1

p (f)Rp(f)
)

+ log Γ(I m)−
I∑

i=1

log Γ(m− i+ 1). (6.5)
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Given Ψp(f) and Rp(f) for all p, f , logLW is then maximized using Matlab's fmincon

Newton-based optimizer. As a result, the optimal value of m is found, which increases

with the reverberation time as will be shown in Table 8.5. However, we observed in our

experiment that the value of m does not greatly a�ect the separation result.

6.1.1.3 MAP spatial parameter update

Given the prior hyper-parameters Ψj(f) and m, we now estimate the model parameters

θ in the MAP sense. We consider an EM algorithm where the complete data is chosen

as in the ML algorithm as {cj(n, f) ∀j, n, f}. In the E-step, the Wiener �lter and

the expected covariance matrices Σ̂j(n, f) are computed as in the ML algorithm (see

Algorithm 5.2).

In the M-step, the expectation of the log-posterior of the complete data

QW(θ|θold) =
∑
j,f

(∑
n

log p
(
cj(n, f)|0,Σj(n, f)

)
+ γ logW

(
Rj(f)|Ψj(f),m

))
(6.6)

is maximized with respect to the parameters, where γ is a tradeo� hyper-parameter de-

termining the strength of the prior. By computing the partial derivatives of QW(θ|θold)
with respect to each entry of Rj(n, f) and equating them to zero, we obtain a quadratic

matric equation. By solving this equation (see the detailed description in Appendix

A.3), we obtain the spatial covariance update as

Rj(f) =
1

2
A−1/2

(
− bI+ (b2I− 4A1/2CA1/2)1/2

)
A−1/2 (6.7)

where (.)1/2 denotes the square root of a Hermitian matrix, and

A = γΨ−1
j (f)

b = −γ(m− I) +N (6.8)

C =

N∑
n=1

−Σ̂j(n, f)

vj(n, f)
.

The update of vj(n, f) is not a�ected by the prior.
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6.1.2 MAP algorithm exploiting an inverse-Wishart spatial location

prior

6.1.2.1 Inverse-Wishart spatial location prior

We consider, as an alternative to the Wishart prior distribution, an inverse-Wishart

distribution over each spatial covariance matrix Rj(f) since it is the conjugate prior for

the likelihood of the considered Gaussian observation model, so that it results in simple

closed-form parameter updates as shown below. We propose to model Rj(f) as

p(Rj(f)) = IW
(
Rj(f)|Ψj(f),m

)
(6.9)

where

IW(R|Ψ,m) =
|Ψ|m|R|−(m+I)e−tr(ΨR−1)

πI(I−1)/2
∏I

i=1 Γ(m− i+ 1)
(6.10)

is the inverse Wishart density [114] over a Hermitian positive de�nite matrix R with

positive de�nite inverse scale matrix Ψ, m degrees of freedom and mean Ψ/(m − I)

[114], with Γ the gamma function. This distribution, its mean, and its variance are

�nite for m > I − 1, m > I, and m > I +1 respectively. Similarly to the Wishart prior,

we de�ne the inverse scale matrix Ψj(f) as

Ψj(f) = (m− I)
(
hane
j (f)

(
hane
j (f)

)H
+ σ2

revΩ(f)
)

(6.11)

so that the mean of Rj(f) is coherent with (3.9).

6.1.2.2 Learning the hyper-parameter

Similarly to the Wishart prior, the number of degrees of freedom m, which determines

the deviation of Rj(f) from its mean, is learned from training data by maximizing

the log-likelihood (6.4), where p
(
Rp(f)|α,Ψp(f),m

)
= JαIW

(
αRp(f)|Ψp(f),m

)
. By

computing the integral and discarding contants, the log-likelihood to be maximized is

logLIW
c
=
∑
p,f

m log |Ψp(f)| − (m+ I) log |Rp(f)| − I m tr
(
Ψp(f)R

−1
p (f)

)
+ log Γ(I m)−

I∑
i=1

log Γ(m− i+ 1). (6.12)
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Given Ψp(f) and Rp(f) for all p, f , logLIW is then maximized using Matlab's fmincon

Newton-based optimizer. As a result, the optimal value of m is found, which increases

with the reverberation time. It can be shown that this expression is equal to (6.4) in

the particular case when I = 2. Therefore, in this case, the optimal value of m is equal

for both priors.

6.1.2.3 MAP spatial parameter update

Given the hyper-parameters Ψj(f) and m, we estimate the model parameters in the

MAP sense using the EM algorithm where the complete data and the E-step are the

same as for the Wishart prior.

In the M-step, the expectation of the log-posterior of the complete data

QIW(θ|θold) =
∑
j,f

(∑
n

log p
(
cj(n, f)|0,Σj(n, f)

)
+ γ log IW

(
Rj(f)|Ψj(f),m

))
(6.13)

is maximized with respect to the parameters, where γ is a tradeo� hyper-parameter

determining the strength of the prior, and IW
(
Rj(f)|Ψj(f),m

)
is de�ned in (6.10).

By computing the partial derivatives of QIW(θ|θold) with respect to each entry of Rj(f)

and equating them to zero, we obtain the update rule for Rj(f) by

Rj(f) =
1

γ(m+ I) +N

(
γΨj(f) +

N∑
n=1

Σ̂j(n, f)

vj(n, f)

)
. (6.14)

Note that when γ = 0, i.e. the contribution of the prior is excluded, (6.14) becomes

equal to the ML update (5.22). vj(n, f) is updated by (5.21), which means that the

spatial prior does not a�ect the update of source variances. This MAP parameter update

does not signi�cantly increase the computational time compared to the ML parameter

updates.

6.2 MAP algorithm exploiting a spatial continuity prior

6.2.1 Motivation for a smoothly time-varying spatial covariance

Our proposed Gaussian modeling framework o�ers the most general parameterization

of the source covariance in (3.1). However, we have only considered a particular case

where the spatial covariance matrices are time-invariant so far. Indeed, when each

spatial image cj(t) corresponds to a point source with �xed spatial position, the spatial
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6.2 MAP algorithm exploiting a spatial continuity prior

covariance matrices are time-invariant and may be modeled by Rj(f). In this section

we target and investigate a more di�cult and general setting of slow source movement.

Such situations occur, for instance, in real human recordings where people often move

their head while talking or in general music mixtures where the considered spatial

images may consist of several instruments such as e.g the drums source including bass

drum, snare drum, hi-hat, etc. In these cases, the spatial covariance matrices of each

source are actually time-varying as parameterized by Rj(n, f) but can be assumed to

vary smoothly over time. Indeed the speed of head movements is limited and in music

mixtures one instrument usually predominates in a given time-frequency neighborhood.

In the following we present a Markov chain inverse-Wishart distribution over Rj(n, f)

to enforce this temporal continuity structure. Again this prior is chosen because

it is conjugate to the likelihood.

6.2.2 Markov chain inverse Wishart prior

We write the Markov chain inverse-Wishart prior for Rj(n, f) when n > 1 as

p
(
Rj(n, f)

)
= IW

(
Rj(n, f)|(mj − I)Rj(n− 1, f),mj

)
(6.15)

where IW
(
R|Ψ,m

)
is de�ned in (6.10). This prior distribution enforces the mean

values of the spatial covariance matrices at the current time frame to be equal to those

at the previous time frame, i.e. E{Rj(n, f)} = Rj(n − 1, f). The initial distributions

p
(
Rj(1, f)

)
for the �rst time frame index are chosen as uniform for all f .

6.2.3 MAP spatial parameter update

Similarly to the MAP parameter estimation exploiting spatial location priors, Rj(n, f)

is iteratively updated by an EM algorithm. The computations of the Wiener �lter and

the expected covariance matrices Σ̂j(n, f) in the E-step are unchanged compared to

algorithm 5.2.

In the M-step, the expectation of the log-posterior of the complete data

QMIW(θ|θold) =
∑
j,n,f

log p
(
cj(n, f)|0,Σj(n, f)

)
+γ log IW

(
Rj(n, f)|(mj−I)Rj(n−1, f),mj

)
(6.16)

is maximized with respect to Rj(n, f), where γ is a tradeo� hyper-parameter deter-

mining the strength of the continuity prior. By computing the partial derivatives of

QMIW(θ|θold) with respect to each entry of Rj(n, f) and equating them to zero, we ob-
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tain a quadratic matrix equation. By solving this equation (see the detailed description

in Appendix A.4), we obtain the spatial covariance update as

Rj(n, f) =
1

2
A−1/2

(
− bI+ (b2I− 4A1/2CA1/2)1/2

)
A−1/2 (6.17)

where

A = γ(mj − I)R−1
j (n+ 1, f)

b = γI + 1 (6.18)

C = −Σ̂j(n, f)/vj(n, f)− γ(mj − I)Rj(n− 1, f)

Note that in (A.18), due to the choice of initial distribution, Rj(n − 1, f) are zero

for all f when n = 1. Again, the update of vj(n, f) is not a�ected by the prior. This

resulting MAP update requires remarkably more computational time compared to the

ML update, as observed experimentally, since the M-step involves the computation of

square root of matrices.

6.3 Summary

In this chapter, we have introduced two families of prior distributions over the spa-

tial covariance to enhance the source separation performance in certain contexts. The

Wishart and inverse-Wishart spatial location priors, which exploit knowledge from the

theory of statistical room acoustics, are applicable when the geometric setting is known.

They both result in closed-form MAP parameter updates and, more interestingly, the

MAP algorithms do not su�er from the permutation problem thanks to this prior in-

formation about the source location. The spatial continuity prior enables the modeling

of time-varying spatial covariances constrained by a Markov chain structure. This new

model is essential to deal with slowly moving sources, which is beyond the scope of this

thesis.
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Chapter 7

Parameter estimation algorithms

exploiting spectral priors

As a complement to the investigation of spatial priors in Chapter 6, this chapter will

focus on investigating the spectral structures of the sources and the resulting parameter

estimation algorithms to enhance the source separation performance in certain contexts.

For that purpose, we �rst consider a NMF spectral model in Section 7.1 where vj(n, f)

is the sum of several latent components. We then address spectral continuity priors in

Section 7.2 with the application to music component separation discussed in Chapter 8.

For both models, we estimate the spectral parameters in the MAP sense by EM updates

where only the M-step is modi�ed compared to the ML algorithm. Note that, when

considering some spectral priors, the troublesome permutation problem is

reduced thanks to the structured coupling between the spectral parameters

across all frequency bins and the joint estimation of vj(n, f) and Rj(f). This

can be seen as an additional advantage when incorporating a spectral source model in

our source separation framework.

7.1 ML algorithm exploiting a NMF spectral model

In this section we brie�y show the possibility of incorporating a spectral source model in

the proposed Gaussian modeling framework in order to enhance the source separation

performance. Among many well-known spectral models like GMM, GSMM, and NMF

brie�y reviewed in Section 2.1, we consider the NMF spectral model. This model

was recently combined with the rank-1 spatial covariance parameterization in the same

context of convolutive audio source separation in [24] and shown to provide better
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separation than sparsity based approaches like binary masking or ℓp-norm minimization.

We extend here the formulation of [24] to full-rank covariances and quadratic T-F

representation. Examples of integration of the full-rank spatial covariance model with

other spectral models (hierarchical NMF, GMM, GSMM) are given in [37].

7.1.1 NMF model

In the spectral NMF model (2.14), the source variances are constrained as

vj(n, f) =

K∑
k=1

hj,nkwj,kf (7.1)

where hj,nk, wj,kf ∈ R+.

7.1.2 ML spectral parameter update

The derivation of the EM algorithm, which is similar to that of Algorithm 5.2, is based on

the complete data {cj(n, f)}n,f , that is the set of hidden T-F coe�cients of the spatial

images of all components on all time frames. The E-step is the same as Algorithm 5.2.

Then in the M step, unconstrained estimates ξj(n, f) of the source variances are �rst

obtained as in (5.21), then hj,nk and wj,kf are iteratively updated via multiplicative

update (MU) rules as [24, 37]

ξj(n, f) =
1

I
tr(R−1

j (f)Σ̂j(n, f)) (7.2)

Hj ← Hj ⊙
WT ((WH)⊙−2 ⊙Ξj)

WT (WH)⊙−1
(7.3)

Wj ←Wj ⊙
((WH)⊙−2 ⊙Ξj)H

T

(WH)⊙−1HT
(7.4)

where Ξj = [ξj(n, f)]n,f , Hj = [hj,nk]n,k, and Wj = [wj,kf ]k,f are N × F , N ×K, and

K × F matrices, respectively, and ⊙ denotes Hadamard entrywise product.

Note that, similarly to the MAP algorithms presented in Chapter 6 where the spec-

tral parameter update was not a�ected by the spatial priors, in this algorithm the

update of Rj(f) is the same as in Algorithm 5.2, which is not a�ected by the spectral

model.
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7.2 MAP algorithm exploiting a spectral continuity prior

When observing time-frequency representations of real-world sound sources, one can

see that the spectra of certain sources are smooth in the time direction, while those

of some other sources are piecewise smooth in the frequency direction [115]. The �rst

class of sources typically includes harmonic sources such as vocals, piano, or violin,

while the second incluides percussive sources such as drums. When considering the

separation of these sources, we can exploit this spectral smoothness structure to enhance

the separation performance. Therefore, in this section, we propose spectral continuity

priors and investigate the resulting MAP parameter estimation algorithm in the local

Gaussian modeling framework.

7.2.1 Markov chain inverse-gamma prior

Since the spectrum of harmonic sources is usually smooth over the time axis, we consider

the following Markov chain prior for vj(n, f), when j is an index of a harmonic source,

with n > 1:

p
(
vj(n, f)

)
= IG

(
vj(n, f)|αj , (αj − 1)vj(n− 1, f)

)
(7.5)

where IG(v|α, β) denotes the inverse-gamma density with shape parameter α > 0 and

scale parameter β > 0

IG(v|α, β) = βα

Γ(α)
v−α−1e−β/v (7.6)

whose mean is β/(α− 1).

Similarly, since the spectrum of percussive sources is usually smooth over the fre-

quency axis, we consider the following Markov chain prior for vj(n, f), when j is an

index of a percussive source, with f > 1:

p
(
vj(n, f)

)
= IG

(
vj(n, f)|αj , (αj − 1)vj(n, f − 1)

)
. (7.7)

Similarly to the spatial continuity prior, these prior distributions enforce E{vj(n, f)} =
vj(n− 1, f) for harmonic sources, and E{vj(n, f)} = vj(n, f − 1) for percussive sources.

Similarly to the choice of initial distribution, i.e. when n = 1 or f = 1, for the spatial

covariances in Section 6.2.2, p
(
vj(1, f)

)
∀f (for harmonic sources) and p

(
vj(n, 1)

)
∀n

(for percussive sources) are chosen as uniform. The choice of an inverse-gamma

prior, which is the conjugate prior for the considered likelihood, brings not

only simpler computation compared to the Gaussian prior investigated in

[115] but also better separation performance as shown in our experiments

97



7. PARAMETER ESTIMATION ALGORITHMS EXPLOITING
SPECTRAL PRIORS

in Section 8.5. This prior distribution was also used to model temporal continuity in

[24] in the di�erent context of multipitch estimation.

7.2.2 MAP spectral parameter update

The resulting EM updates for vj(n, f) have a similar form as those of Rj(n, f) under a

spatial continuity prior. In the E-step, the Wiener �lters and the expected covariance

matrices Σ̂j(n, f) are computed as in Algorithm 5.2.

In the M-step, the expectation of the log-posterior of the complete data

QIG(θ|θold) =
∑
j,n,f

log p
(
cj(n, f)|0,Σj(n, f)

)
+ γ log p(vj(n, f)) (7.8)

is maximized with respect to vj(n, f), where p(vj(n, f)) is given by either (7.5) (for

harmonic sources) or (7.7) (for percussive sources), and γ is a tradeo� hyper-parameters

determining the strength of the continuity priors. By computing the partial derivative

of QIG(θ|θold) with respect to vj(n, f) and equating it to zero, we obtain a second order

polynomial equation (see Appendix A.5) with a single positive solution

vj(n, f) = (−b+
√

b2 − 4ac)/(2a) (7.9)

where

a =

{
γ(α− 1)/vj(n+ 1, f) for harmonic sources

γ(α− 1)/vj(n, f + 1) for percussive sources

b = I (7.10)

c =

{
−tr
(
R−1

j (n, f)Σ̂j(n, f)
)
− γ(α− 1)vj(n− 1, f) for harmonic sources

−tr
(
R−1

j (n, f)Σ̂j(n, f)
)
− γ(α− 1)vj(n, f − 1) for percussive sources.

7.3 Summary

In this chapter, we have investigated the possibility of incorporating spectral source

models in our proposed Gaussian modeling framework. We considered two spectral

structures of the sources: an NMF model and spectral continuity priors. Both models

result in closed-form parameter updates and do not require signi�cantly more computa-

tional time, as observed experimentally, compared to the ML parameter update. They

both help enhance the source separation performance in certain contexts, as will be

shown in the experiments in Chapter 8.
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Chapter 8

Evaluation of the separation

performance in various scenarios

This chapter presents a complete evaluation of the source separation performance achieved

by the proposed framework in di�erent blind and non-blind scenarios. We �rst describe

the test data consisting of several simulated and real-world datasets corresponding to

di�erent mixing conditions. We then present two popular families of evaluation metrics

used in the source separation community to quantify the separation performance. Fi-

nally the results of various experiments are reported to compare the proposed algorithms

to state-of-the-art and baseline approaches.

8.1 Test data

We consider four datasets ranging from simulated speech mixtures to more sophisticated

real-world speech recordings, without and with background noise, and to real-world mu-

sic mixtures. These datasets will be used to evaluate the source separation performance

in Sections 8.3, 8.4, and 8.5.

8.1.1 Simulated speech mixtures

Simulated mixtures allow the generation of a wide range of recording con�gurations

while keeping precise control over the con�guration parameters, including the geometric

setting and the room characteristics. More precisely, we generate simulated speech

mixtures for the following purposes:

� in Chapter 4 we investigate the potential source separation performance achievable
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by the proposed approach in the oracle and the semi-blind context where all or

part of the model parameters are known,

� in Section 8.3.1 we investigate the blind source separation performance as a func-

tion of the reverberation time and the distance from the sources to the micro-

phones,

� in Section 8.4 we investigate the source separation using spatial location priors

where the geometric setting and the room characteristics need to be known.

For those purposes, we generated room impulse responses via the image method [116]

from three source positions to a microphone pair position using the Roomsim toolbox5.

The room dimensions were 4.45 × 3.55 × 2.5 m, that are the dimensions used in the

SiSEC campaign [12], and the microphone spacing was �xed to 5 cm. The positions of

the sources and the microphones are illustrated in Fig. 8.1. Four di�erent reverberation

times were considered: T60 = 50, 130, 250 and 500 ms, and, for each T60, three source-

to-microphone distances were considered: r = 50, 100, 150 cm. The source images were

computed by convolving 10 s speech signals with the simulated impulse responses. Two

sets of speech signals were considered: male and female speech. This resulted in two

mixtures for each T60 and r and 24 mixtures in total.

Room dimensions: 4.45 x 3.35 x 2.5 m

Source and microphone height: 1.4 m

Source DoAs: 25, 75, 135 deg.

Microphone spacing: 5cm


2 m


1.5 m


Figure 8.1: Room geometry setting for simulated speech mixtures.

5http://www.irisa.fr/metiss/members/evincent/Roomsimove.zip
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8.1.2 Real-world speech recordings

We also used a real-world speech dataset for the following reasons:

� in Section 8.3.2 we investigate the source separation performance of the pro-

posed approach in real-world mixing conditions in both determined and under-

determined cases,

� we also compare the separation performance of the proposed approach with state-

of-the-art algorithms submitted for evaluation to SiSEC 2008 and SiSEC 2010.

8.1.2.1 Under-determined mixtures

These mixtures were taken from the live recording test data of the underdetermined-

speech and music mixtures task6 of SiSEC 2010, formerly used in SiSEC 2008 [12]. They

consist of 8 real-world mixtures of 3 or 4 speech sources sampled at 16 kHz. The room

reverberation time was either 130 ms or 250 ms and the microphone spacing 5 cm. Two

mixtures were recorded for each given number of sources and each reverberation time,

using either male or female speech signals. The source directions of arrival vary between

-60 and +60 degrees with a minimal spacing of 15 degrees and the distances between

the sources and the center of the microphone pair vary between 80 cm and 1.20 m.

8.1.2.2 Determined mixtures

These mixtures were taken from part of the loesch dataset of the determined and over-

determined speech and music mixtures task7 of SiSEC 2010 [13]. They consist of 2

stereo mixtures of 2 speech sources recorded in an o�ce room whose reverberation

time is about 450-500 ms. The sampling rate is 16 kHz and the microphone spacing is

about 10 cm. Sources were played back using small loudspeakers placed approximately

120-140 cm far from the center of the microphones.

8.1.3 Real-world speech in background noise recordings

Since the ultimate goal of sound source separation techniques is to separate sources

in the real world, we collected a dataset for the evaluation of source separation in

the presence of real-world background noise. The separation results will be reported

6http://sisec2010.wiki.irisa.fr/tiki-index.php?page=Underdetermined-
+speech+and+music+mixtures

7http://sisec2010.wiki.irisa.fr/tiki-index.php?page=Determined+and+over-
determined+speech+and+music+mixtures
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in Section 8.3. We originally proposed this dataset for the Source separation in the

presence of real-world background noise8 task of the SiSEC 2010 campaign [13] which

attracted 6 entries. This dataset involved both stereo and 4-channel mixtures. In this

thesis, for simplicity and consistency with the other datasets, we restricted ourself to

stereo mixtures of one speech source and one of several kinds of real-world background

noise. All mixtures are exactly 10 s long and sampled at 16 kHz. The microphones are

omnidirectional and the microphone spacing is 8.6 cm.

Noise

Microphones

in the center


Microphones in the corner


Figure 8.2: Room geometry setting for real-world noise recordings.

Noise recording: We recorded noise signals in three di�erent real-world environ-

ments: subway car (Su), cafeteria (Ca), and square (Sq). In the (Ca) and the (Sq)

environments, the noise signals were recorded at two di�erent positions within the envi-

ronment as shown in Fig. 8.2: center (Ce), where the noise is more isotropic, and corner

(Co), where the noise may not be very isotropic. However in the (Su) environment,

noise signals were recorded only in the center.

Mixture generation: The speech signals were separately acquired and subse-

quently added to the noise signals. This is because we need to have access to their

spatial images in order to evaluate the separation performance [12]. For the (Su) and

the (Ca) environments where there is reverberation, we recorded the source signals in

a room with a reverberation time of approximately 250 ms. For the (Sq) environment

where there is little or no reverberation, we simulated the source contributions to the

8http://sisec2010.wiki.irisa.fr/tiki-index.php?page=Source+separation+in+the+presence+of+real-
world+background+noise
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microphones under the assumption of anechoic spherical wave propagation. For each

mixing condition, we considered two speech sources: male voice and female voice. This

results in a total of 10 mixtures in the dataset.

8.1.4 Real-world music

In addition to the above three speech datasets, we consider a real-world music dataset.

Sound mixing techniques vary depending on the music genre: for certain genres, instru-

ments are placed at di�erent spatial positions while for other genres most instruments

are mixed to the center. This dataset consists of 8 stereo music mixtures of harmonic

and percussive sources corresponding to two di�erent mixing conditions. These mix-

tures are part of the Quaero project database, which was used for the Professionally

produced music recordings task of SiSEC 20109[13]. The �rst 4 mixtures were originally

mixed by a sound engineer where most instruments are panned close to the center with

arti�cial reverb, and the total number of harmonic and percussive instruments in each

mixture varies from four to eight. In order to investigate the contribution of spatial

information, in the second set of mixtures (named Pan+), we moved each instrument to

a random position by amplitude panning from 0 to 3 dB but keeping the same reverb.

All the mixtures are sampled at 44.1 kHz and have 10 s duration. The separation per-

formance given by the proposed harmonic and percussive source separation algorithm

and state-of-the-art systems will be presented in Section 8.5.

8.2 Evaluation criteria

Several studies have been devoted to the evaluation of the source separation performance

in the literature, both in terms of subjective quality [117, 118, 119] and objective quality

[120, 121, 122]. We focus here on two popular families of objective evaluation criteria,

which can be applied to any audio mixture and any algorithm and do not require the

knowledge of the unmixing parameters or �lters. These criteria, namely energy ratio

criteria and perceptually-motivated criteria, have been widely used in recent evaluation

campaigns [11, 12, 1].

9http://sisec.wiki.irisa.fr/
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8.2.1 Energy ratio criteria

Both families of criteria derive from the perceptual decomposition of each estimated

source image ĉij(t) as [11]

ĉij(t) = cij(t) + espatij (t) + einterij (t) + eartifij (t) (8.1)

where cij(t) is the true spatial image of the j-th source at the i-th microphone, and

espatij , einterij , and eartifij are di�erent error components representing spatial (or �ltering)

distortion, interference from the other sources, and artifacts (or musical noise). In the

�rst family of criteria, these error components are computed as [11]:

espatij (t) = PL
j (ĉij)(t)− cij(t) (8.2)

einterij (t) = PL
all(ĉij)(t)− PL

j (ĉij)(t) (8.3)

eartifij (t) = ĉij(t)− PL
all(ĉij)(t) (8.4)

where PL
j is the least-squares projector onto the subspace spanned by ckj(t − τ), 1 ≤

k ≤ I, 0 ≤ τ ≤ L− 1, PL
all is the least-squares projector onto the subspace spanned by

ckl(t− τ), 1 ≤ k ≤ I, 1 ≤ l ≤ J , 0 ≤ τ ≤ L− 1, and L is the �lter length which is set

to 32 ms.

Given this decomposition, four energy ratios in decibels (dB) measuring overall

distortion, artifacts, interference, and spatial distortion called Signal to Distortion Ratio

(SDR), Signal to Artifacts Ratio (SAR), Signal to Interference Ratio (SIR), and source

Image to Spatial distortion Ratio (ISR), respectively, are computed as [122, 11]

SDR = 10 log10

∑I
i=1

∑
t cij(t)

2∑I
i=1

∑
t

(
espatij (t) + einterij (t) + eartifij (t)

)2 (8.5)

SAR = 10 log10

∑I
i=1

∑
t

(
cij(t) + espatij (t) + einterij (t)

)2∑I
i=1

∑
t e

artif
ij (t)2

(8.6)

SIR = 10 log10

∑I
i=1

∑
t

(
cij(t) + espatij (t)

)2∑I
i=1

∑
t e

inter
ij (t)2

(8.7)

ISR = 10 log10

∑I
i=1

∑
t cij(t)

2∑I
i=1

∑
t e

spat
ij (t)

. (8.8)

When the source images are estimated up to an arbitrary order, all possible orders

are evaluated and the order leading to the largest average SIR is selected. These criteria
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were implemented in Matlab and distributed for public use10.

8.2.2 Perceptually-motivated criteria

In addition to these energy ratio criteria, we consider the recently proposed perceptually-

motivated objective criteria in [119] to assess the quality of the estimated source im-

age signals. Four performance criteria akin to SDR, SAR, SIR, and ISR were de�ned

and termed Overall Perceptual Score (OPS), Artifacts-related Perceptual Score (APS),

Interference-related Perceptual Score (IPS), and Target-related Perceptual Score (TPS),

respectively. These criteria score from 0 to 100 where higher values indicate better per-

formance. They were derived based on the decomposition of the estimated source image

signals into several distortion components similarly to (8.2), (8.3), and (8.4) and on the

use of the PEMO-Q perceptual salience measure [123]. They were shown to improve the

correlation with subjective scores compared to the energy ratio criteria [119] and were

recently used in SiSEC 2010. The source code of these perceptually-motivated criteria

is also available11.

8.3 ML source separation performance in blind scenarios

In this section we investigate the blind source separation performance achieved with the

proposed full-rank unconstrained spatial covariance parameterization where the model

parameters are estimated from the observed mixture signals only, i.e. without any prior

knowledge about either the source locations or the source spectral structures, in the

ML sense as presented in Chapter 5. The mixing scenarios vary from simulated to

real-world recorded mixtures and from noiseless to noisy mixtures. The detail ML

parameter estimation algorithm including parameter initialization and EM parameter

update is presented in Chapter 5.

8.3.1 BSS performance on simulated speech mixtures

The �rst experiment is devoted to the BSS performance of the proposed full-rank uncon-

strained spatial covariance parameterization with di�erent sound scene parameters and

with either the quadratic STFT representation (named fullrank unconstrained STFT)

or the quadratic ERB T-F representation (named fullrank unconstrained ERB), com-

pared to the state-of-the-art rank-1 convolutive parameterization and to the baseline

10http://bass-db.gforge.inria.fr/bss_eval/
11http://bass-db.gforge.inria.fr/peass/
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approaches. Note that we consider the quadratic T-F representations here since they

were con�rmed to provide better separation performance than the linear STFT in Sec-

tion 4.3.4 and in [31]. For that purpose, we consider the simulated speech mixtures

dataset described in Section 8.1.1 and the parameter settings in Table 8.1.

Window type sine window
STFT frame size 1024
STFT frame shift 512

Number of ERB bins 250
ERB frame shift 512

Propagation velocity 343 m/s
Number of EM iterations 10

Cluster threshold K = 30

Table 8.1: Experimental parameter settings for source separation in blind scenarios.

Fig. 8.3 and Fig. 8.4 show the BSS performance, as evaluated by the energy ratio

criteria, as a function of the reverberation time and the distance from the sources to the

microphones, respectively. The results are averaged over all sources, all male and female

speech mixtures, and either all distances from the sources to the microphones (for Fig.

8.3) or all reverberation times (for Fig. 8.4). The average computational time for each

mixtures using Matlab 7.0 in an Intel core 2.4 GHz computer is about 3 minutes. As

can be seen, the separation performance of all algorithms have dropped compared to the

oracle and semi-blind results presented in Chapter 4. Also, as predicted, the BSS per-

formance of all algorithms decreases with higher reverberation time and further distance

from the sources to the microphones. However the SDR and SIR of the rank-1 convo-

lutive approaches decrease faster compared to the fullrank unconstrained approaches.

Binary masking o�ers very similar SIR to the fullrank unconstrained ERB and higher

SIR than the other approaches, however it results in the poorest SAR meaning very

strong musical noise. Overall, we observe that the proposed full-rank unconstrained

STFT and full-rank unconstrained ERB approaches always provide higher SDR than

the rank-1 convolutive STFT, the rank-1 convolutive ERB, and baseline approaches

for all reverberation times and all distances from the sources to the microphones. For

instance, with T60 = 250 ms, the SDR achieved via the full-rank unconstrained STFT

approach is 1.7 dB, 0.9 dB and 2.3 dB larger than that of the rank-1 convolutive ap-

proach, binary masking, and ℓ0-norm minimization respectively. These results con�rm

the e�ectiveness of our proposed model parameter estimation scheme and show in ad-

dition that full-rank spatial covariance matrices better approximate the mixing process
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in a reverberant room.

Regarding the input T-F representation, the rank-1 convolutive ERB results in

poorer SDR and SIR than and very similar SAR and ISR to the rank-1 convolutive

STFT. This can be explained by the fact that the narrowband assumption, for which

the rank-1 model relies on, does not hold at high frequencies in the ERB scale. On the

contrary, the fullrank unconstrained ERB approach results in very similar SDR, when

averaged over all T60 but slightly larger SAR and SIR than the fullrank unconstrained

STFT approach. This suggests that full-rank models are needed from now to achieve

further improvement in ERB scale-based source separation, since they partially over-

comes the narrowband assumption and do not su�er from the large bandwidth at high

frequencies.

8.3.2 BSS performance on real-world speech mixtures

In the second and third experiment, we compare the proposed full-rank unconstrained

spatial covariance parameterization, with or without a NMF spectral model, with state-

of-the-art BSS algorithms submitted for evaluation to SiSEC 2008 and SiSEC 2010

over the real-world speech recording dataset described in Section 8.1.2. The param-

eter settings for our proposed algorithm are listed in Table 8.1 where the input T-F

representation is given by the quadratic STFT.

8.3.2.1 BSS performance on under-determined speech mixtures

Table 8.2 shows the average SDR and OPS achieved by each algorithm on the under-

determined mixtures dataset described in Section 8.1.2.1. We consider SDR and OPS

for comparison since they both measure the overall distortion of the system. Note that

only the proposed approach and three other algorithms in SiSEC 2010 [124, 32, 125]

were evaluated in term of OPS since this criterion was not available in 2008. The SDR

and OPS �gures of all algorithms besides the proposed algorithm were taken from the

websites of SiSEC 200812 and SiSEC 201013 except for Izumi's algorithm [66] whose

results were provided by its author.

12http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Under-determined+speech+and+music+mixtures
13http://www.irisa.fr/metiss/SiSEC10/underdetermined/underdetermined-test-all.html
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Figure 8.3: BSS performance on simulated speech mixtures as a function of the
reverberation time.
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Figure 8.4: BSS performance on simulated speech mixtures as a function of the
distance from the sources to the microphones.
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T60 Algorithm SiSEC
3 sources 4 sources

SDR OPS SDR OPS

130 ms

M. Cobos [126] 2.3 - 2.1 -
M. Mandel [98] 0.1 - -3.7 -
R. Weiss [127] 2008 2.9 - 2.3 -
S. Araki [128] 2.9 - - -

Z. El Chami [129] 2.3 - 2.1 -
Full-rank 3.3 35 2.8 32
Ozerov [124] 3.4 55 2.4 29

Full-rank+NMF 2010 3.8 46 3.1 33
H. Sawada [125] 7.2 40 3.4 19

250 ms

M. Cobos [126] 2.2 - 1.0 -
M. Mandel [98] 0.8 - 1.0 -
R. Weiss [127] 2008 2.3 - 1.5 -
S. Araki [128] 3.7 - - -

Z. El Chami [129] 3.1 - 1.4 -
Full-rank 3.8 40 2.0 25
Ozerov [124] 4.5 47 1.0 30

Full-rank+NMF 2010 4.4 40 2.2 25
H. Sawada [125] 6.1 38 3.7 21

Table 8.2: Average SDR in dB and OPS over the real-world test data of SiSEC 2008
and SiSEC 2010 with 5 cm microphone spacing.

Let us �rst discuss the comparison with the algorithms in SiSEC 2008 [126, 98, 127,

128, 129] when this thesis work was started. For three-source mixtures, the proposed

algorithm provides 0.4 dB and 0.1 dB SDR improvement compared to the best results

given by Araki's algorithm [128] with T60 = 130 ms and T60 = 250 ms, respectively. For

four-source mixtures, it provides even higher SDR improvements of 0.5 dB and 0.4 dB

respectively compared to the best results given by Weiss's [127] and Izumi's algorithms

[66]. More detailed comparison (not shown in the Table) indicates that the proposed

algorithm also outperforms most others in terms of SIR, SAR and ISR. For instance, it

achieves higher SIR than all other algorithms on average except Weiss's. Compared to

Weiss's, it achieves the same average SIR but a higher SAR.

Let us now compare to the three new algorithms [124, 32, 125] submitted to SiSEC

2010. The full-rank approach performs better than Ozerov's [124] with the four-source

mixtures in terms of SDR and OPS (for T60 = 130 ms), but worse with the three-source

mixtures. The full-rank+NMF algorithm [32] whose authors we are part of, results in

better SDR than the full-rank with both reverberation times and number of sources but

similar OPS with T60 = 250 ms. Sawada's method [125] o�ers the best SDR overall, but
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poorer average OPS than all three other algorithms, while Ozerov's [124] o�ers the best

OPS overall. However, let us clarify that the algorithms [124, 32] were both built upon

our proposed Gaussian modeling framework with the full-rank unconstrained spatial

covariance parameterization. The di�erence lies in the use of spectral source models,

namely harmonic NMF in [124] and NMF in [32]. This con�rms our expectation that by

incorporating a spectral source model in the proposed Gaussian modeling framework,

we can obtain better separation performance.

Besides, the di�erent results achieved by our proposed approach, [124], and [32],

which all used di�erent initialization schemes, also suggest that the parameter initial-

ization could highly a�ect the separation performance in the full-rank spatial covariance

framework. Sawada's method [125] uses bin-wise probabilistic clustering of the mixture

coe�cient x(n, f) in the STFT domain followed by a new probabilistic method for solv-

ing the permutation problem. It would be easily feasible to use this method, as the

initialization step in our framework. We leave this potential improvement for future

work.

8.3.2.2 BSS performance on determined speech mixtures

Table 8.2 shows the average energy ratio criteria and perceptually motivated criteria

achieved by each algorithm on the determined mixtures dataset described in Section

8.1.2.2. The result of all algorithms besides the proposed algorithm were taken from

the websites of SiSEC 201014.

Algorithm
Energy ratio criteria (dB) Perceptually-motivated criteria
SDR SIR SAR ISR OPS IPS APS TPS

Proposed full-rank 4.6 6.6 11.9 8.7 22.9 31.2 70.7 45.0
H. Sawada [130] 8.8 13.7 11.9 14.2 37.6 63.9 53.1 55.9
N. Ono [131] 3.0 5.2 7.7 7.5 29.0 55.7 45.8 49.7
N. Ono2 [131] 5.5 9.3 9.2 10.6 25.4 47.2 42.2 46.1

Table 8.3: Average BSS performance over the real-world stereo mixtures of two sources
with 10 cm microphone spacing.

Our algorithm results in the best SAR and APS, i.e. less musical noise, but poorer

SDR and SIR than other algorithms [130, 131], which used more advanced techniques

for solving the permutation problem. Let us clarify that all other algorithms were based

on ICA and, on contrary to ours, can not handle the separation of under-determined

mixtures.
14http://www.irisa.fr/metiss/SiSEC10/determined/determined_all.html
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8.3.3 BSS performance on real-world speech and noise mixtures

The fourth experiment aims to examine the source separation performance of the pro-

posed approach in a challenging scenario where speech signals are mixed with real-world

background noise recorded in di�erent noisy environments. For that purpose, we applied

our algorithm to the real-world speech in background noise dataset described in Section

8.1.3 and compared the results with the four other state-of-the-art approaches which

participated in SiSEC 201015. The average performance in terms of both energy ratio

criteria and perceptually-motivated criteria of all algorithms is summarized in Table

8.4.

Algorithm
Energy ratio criteria (dB) Perceptually-motivated criteria
SDR SIR SAR ISR OPS IPS APS TPS

Proposed full-rank 2.7 4.4 11.9 16.1 36.3 45.2 88.3 69.9
J. Even [133] -9.3 14.1 8.0 -7.2 33.5 55.5 53.8 49.4
M. Go [134] -12.2 6.2 8.8 -7.7 19.3 34.8 40.6 35.2

N. Hirata [135] -8.6 7.5 5.4 -3.2 16.3 35.2 28.3 39.4
H. Sawada [130] 2.5 4.0 12.8 16.0 38.4 51.2 78.4 73.4

Table 8.4: Average BSS performance in the presence of real-world background noise

We can see that the algorithms in [133, 134, 135] performed poorly with very low

SDR and OPS. Generally, our proposed algorithm performed as well as Sawada's [130]

where we obtain larger SDR, SIR, ISR, and APS, but smaller SAR, OPS, IPS, and TPS.

This evaluation con�rms the appropriateness of our proposed approach to real-world

background noise where the full-rank unconstrained spatial covariance parameterization

accounts well for di�use noise sources.

8.4 Source separation using spatial location priors

Our �fth experiment is devoted to the investigation of the separation performance

achieved by the MAP algorithms exploiting spatial location priors presented in Section

6.1. For this purpose, we consider the simulated speech mixtures dataset described in

Section 8.1.1 where the geometric settings and the room characteristics are known. We

compare the separation results obtained by the MAP algorithm exploiting the inverse-

Wishart spatial location prior presented in Section 6.1.2, named MAP inverse-Wishart,

and the MAP algorithm exploiting the Wishart spatial location prior presented in Sec-

15One approach [132] estimated the target source only, so that it cannot be compared with others
which estimated both the target source and the noise
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tion 6.1.1, named MAP Wishart, with the ML algorithms where the spatial parameters

were either blindly initialized as presented in Chapter 5, named ML blind init, or ini-

tialized from the known geometric setting by (3.9), named ML geom. init. We used

the quadratic STFT representation where STFT was computed with a sine window of

length 1024, wnf of size 3 × 3, and 10 EM iterations for all algorithms. The trade-o�

parameter γ, which determines the strength of the priors, does not signi�cantly a�ect

the result but we observed that γ = 100 is globally a good choice. The optimal number

of degrees of freedom m of the priors was learned from training data and is shown in

Table 8.5 together with the mean power σ2
rev of echoes and reverberation computed by

(3.11), which both depend on the reverberation time.

T60 50 ms 130 ms 250 ms 500 ms
m 2.1 2.8 4.2 6.4
σ2
rev 0.011 0.057 0.131 0.287

Table 8.5: Learned value of m and predicted value of σ2
rev for the Wishart and inverse-

Wishart prior.

As expected, σ2
rev strongly increases with reverberation, such that the direct-to-

reverberant energy ratio is 14 dB lower when T60 = 500 ms than when T60 = 50 ms.

The variance of the inverse-Wishart prior, which is inversely related tom [114], decreases

with reverberation time while that of the Wishart prior, on the contrary, increases with

reverberation time.

The separation performance of all algorithms, as evaluated by the energy ratio crite-

ria and averaged for all sources and all distances from the source to the microphone, as

a function of the reverberation time is shown in Fig. 8.5. The ML algorithm initialized

from known geometry settings results in larger SDR, SAR and ISR than the blindly

initialized ML algorithm at T60 ≥ 130 ms. The MAP Wishart algorithm o�ers the best

SAR but the worst SIR and ISR compared to all other algorithms, and overall it results

in very similar SDR to the ML geom. init algorithm. Overall, the MAP inverse-Wishart

algorithm outperforms all other algorithms for all considered reverberation times in

terms of SDR, SIR, and ISR. For instance, at T60 = 250 ms, it improves the SDR by

0.8 dB, 0.4 dB and 0.3 dB compared to the ML blind init, the ML geom. init and

the MAP Wishart algorithms, respectively. This con�rms the bene�t of the proposed

inverse-Wishart spatial location prior and the associated MAP algorithm.
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Figure 8.5: ML and MAP results on simulated speech mixtures as a function of the
reverberation time.
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8.5 Harmonic and percussive musical component separa-

tion using spatial and spectral continuity priors

Real-world musical mixtures can be modeled as the sum of two source images: a har-

monic source and a percussive source. These two sources typically consist of several

instruments, i.e. the harmonic source may involve vocals, violin, piano, etc. The sepa-

ration of these sources from a mixture is useful for remixing [115] and also for various

music information retrieval tasks [8, 136, 9]. Hence, our last experiment is devoted

to the application of the MAP parameter estimation algorithm exploiting spatial and

spectral continuity priors presented in Sections 6.2 and 7.2, respectively, to the sep-

aration of these two sources in music mixtures. We jointly exploit the Markov chain

inverse-Wishart spatial continuity prior presented in Section 6.2.2 and the Markov chain

inverse-gamma spectral continuity priors presented in Section 7.2.1. The resulting spa-

tial and spectral parameter updates are derived in Section 6.2.3 and 7.2.2, respectively.

The parameter settings are summarized in Table 8.6 where the hyper-parameters m and

α were heuristically �xed depending on the desired shape of the priors, which determines

the degree of smoothness.

STFT frame size 4096
STFT frame shift 2048

Number of EM iterations 5
IW degrees of freedom m = 5

Trade-o� parameter for spatial prior γ = 0.5
IG shape parameters α = 10

Trade-o� parameter for spectral priors γ = 1

Table 8.6: Experimental parameter settings for MAP parameter estimation exploiting
spatial and spectral continuity priors

We compared the separation performance of the proposed multichannel harmonic

and percussive sound separation algorithm (M-HPSS), where both spatial and spectral

continuity priors are exploited, with that given by the single channel HPSS algorithm

(HPSSIG), where only the inverse-gamma spectral continuity prior is exploited, and

with that achieved by the state-of-the-art algorithm using I-divergence and Gaussian

continuity priors (HPSS) [115]. We consider single channel HPSS because, to the best

of our knowledge, there was not an algorithm exploiting stereo channel for harmonic

and percussive source separation so far. The resulting energy ratio criteria and and

perceptually-motivated criteria were averaged over all mixtures of the real-world music
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dataset described in Section 8.1.4 and are shown in Table 8.7.

Dataset Algorithm
Energy ratio criteria (dB) Perceptually-motivated criteria
SDR SIR SAR ISR OPS IPS APS TPS

Original
HPSS 3.8 5.2 7.6 8.7 27 36 77 45
HPSSIG 4.8 7.9 8.0 10.7 30 42 73 50
M-HPSS 5.0 7.2 8.6 10.1 30 39 79 51

Pan+
HPSS 3.8 5.1 7.5 8.6 27 36 77 44
HPSSIG 4.7 7.7 8.2 10.4 29 41 73 51
M-HPSS 5.3 7.4 8.8 10.3 31 40 80 53

Table 8.7: Average harmonic/percussive component separation performance.

The numerical results show the signi�cant separation improvement of HPSSIG com-

pared to the original HPSS in terms of all criteria but APS over both the original

and the Pan+ datasets. This means that the inverse-gamma prior better models the

spectral continuity of harmonic and percussive components than the Gaussian prior

introduced in [115]. The separation performance given by HPSS and HPSSIG over the

Pan+ dataset is very similar to that over the original dataset due to the fact that pan-

ning does not a�ect the spectral structure of the sources. But the performance achieved

by M-HPSS has noticeably increased in the panned dataset, i.e. the SDR is 0.6 dB

larger than that given by HPSSIG, showing the bene�t of exploiting spatial information.

This performance improvements are con�rmed by informal listening tests and by the

perceptually-motivated criteria.

8.6 Summary of Part 3

Following the general Gaussian modeling framework and the source separation archi-

tecture presented in Part 2, we addressed a core problem in this part of the thesis, that

is how to estimate the model parameters from a given multichannel mixture signal so

that BSS can be performed. We started by designing a general parameter estimation

architecture, which accepts both linear and quadratic input T-F representations as well

as both ML and MAP approaches. This architecture relies on the EM algorithm, which

is appropriate for Gaussian models.

We then derived a ML parameter estimation algorithm consisting of two major

steps: parameter initialization and EM parameter updates in Chapter 5. In order to

enhance the source separation performance in certain situations where prior information

about either the source spectra or the mixing process is available, we introduced several
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spatial and spectral priors and derived the corresponding ML/MAP parameter updates

in Chapter 6 and Chapter 7.

Finally, in Chapter 8, we performed a number of experiments with di�erent datasets

created in both simulated and real-world scenarios to quantify the source separation

performance of the proposed algorithms and compare it with state-of-the-art algorithms.

The experimental results demonstrate that the proposed algorithms are at or above the

level of the state of the art.
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Chapter 9

Conclusion

I
n this thesis, we presented a radically novel reverberant audio source separation

framework grounded on the statistical modeling of spatial cues. The following sec-

tions summarize our contributions and discuss the potential extensions of the thesis.

9.1 Conclusions

We targeted the challenging problem of determined and under-determined source sepa-

ration for reverberated or di�use sources. Initially motivated by the Gaussian modeling

of late reverberation in physical acoustics, we focused on the probabilistic modeling and

parameterization of the reverberant mixing process by opposition to the deterministic

parameterization adopted by most state-of-the-art source separation approaches. For

that general purpose, we introduce in Chapter 3 a general probabilistic modeling frame-

work whereby the T-F coe�cients of the source images in each T-F bin are modeled by

multivariate Gaussian random variables parameterized by their spectral variance and

their spatial covariance. We then discussed four speci�c spatial covariance parameter-

izations, including the state-of-the-art rank-1 matrix parameterizations, which rely on

the narrowband approximation, the full-rank direct+di�use parameterization, which ex-

ploits the theory of statistical room acoustics and was considered in the context of source

separation for the �rst time, and the proposed full-rank unconstrained parameterization,

which generalizes the former three parameterizationss. The latter parameterization of-

fers the greatest �exibility to model the convolutive mixing process and overcomes the

narrowband approximation, which does not hold for reverberant mixtures, to a certain

extent. Experimental results on simulated speech mixtures in Chapter 4 showed that

the full-rank unconstrained spatial covariance parameterization o�ers the highest upper

121



9. CONCLUSION

bound on the source separation performance at moderate or large reverberation times

compared to the other parameterizations and to the baseline approaches. Hence we can

conclude that the proposed full-rank unconstrained parameterization better models the

reverberant mixing process.

Given the covariance modeling framework and the parameterization, we designed

a general source separation architecture including four steps: T-F transform, parame-

ter estimation, Wiener �ltering, and inverse T-F transform. We proposed to consider

quadratic input T-F representations via the empirical mixture covariance Σ̂x(n, f) to

improve the accuracy of parameter estimation compared to the linear STFT represen-

tation considered in state-of-the-art approaches. We presented two di�erent quadratic

representations corresponding to either a linear frequency scale via the STFT or an

auditory-motivated nonlinear frequency scale via the ERB transform. The experiments

in Chapter 4 also con�rmed the e�ectiveness of the quadratic T-F representations, which

resulted in higher source separation performance than the linear T-F representation.

The latter part of the thesis focused on the investigation of the full-rank uncon-

strained spatial covariance parameterization for BSS purposes. In order to perform

blind source separation, the model parameters need to be estimated from the observed

mixture signal itself. Hence, Chapter 5 was devoted to a general parameter estimation

architecture applicable to both ML and MAP. This architecture accepts both linear or

quadratic input T-F representations and was grounded on the EM algorithm, which is

well-known as an appropriate choice for Gaussian mixture models. Since EM is very

sensitive to the initialization, we proposed suitable procedures adapted from the state

of the art to initialize and to align the order of the parameters across all frequency bins.

A complete ML parameter estimation algorithm consisting of the initialization step and

the estimation by EM updates was then presented. Experimental results revealed that

the algorithm converges in about 10 iterations.

Chapter 6 and Chapter 7 completed this probabilistic framework by de�ning prior

distributions over the spatial and spectral parameters so as to improve the robustness

of parameter estimation with small amounts of data and to address the initialization

and the permutation problem in a probabilistically principled fashion. Two classes

of spatial priors were presented in Chapter 6: the spatial location priors exploited

knowledge from the theory of statistical room acoustics assuming a known geometric

setting, and the spatial continuity prior opened a new way to deal with moving sources

whose spatial location was modeled via time-varying spatial covariances. In Chapter

7, we have investigated the spectral structures of the sources, i.e. a NMF spectral

model and spectral continuity priors, and the resulting ML/MAP parameter estimation
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algorithms.

An extensive set of experiments was presented in Chapter 8 to provide a compre-

hensive comparison of the source separation performance of the proposed algorithms

with state-of-the-art algorithms and baseline approaches in various mixing scenarios

ranging from simulated speech mixtures to real-world speech and music datasets. Ex-

perimental results, evaluated by both the widely used energy ratio criteria and the re-

cently proposed perceptually-motivated criteria, prove the e�ectiveness of the proposed

framework. The full-rank unconstrained spatial covariance parameterization improves

the separation performance compared to rank-1 models and most state-of-the-art algo-

rithms in realistic reverberant environments. The potential bene�t of the proposed prior

distributions over spatial and spectral parameters was also con�rmed. For instance, the

resulting MAP algorithms exploiting the spatial location priors presented in Chapter

6 provide a proof of concept of the bene�t of the proposed priors towards their future

use in a blind source separation context, and the resulting MAP algorithm exploiting

spatial and spectral continuity priors improves the separation performance of harmonic

and percussive sources in music mixtures.

9.2 Perspectives

A number of directions built upon the proposed framework could be explored in future

work. Let us list them in the following.

E�cient initialization and estimation for ML algorithm

Accurate initialization of the spatial parameters is crucial for the success of the ML

parameter estimation algorithm presented in Chapter 5. Our preliminary experiments

have shown that the spatial parameters initially estimated by hierarchical clustering

vary depending on the heuristic choice of the number of clusters K. Also the perfor-

mance of the chosen permutation alignment method decreases when the microphone

spacing is large due in particular to phase wrapping. Therefore, a more e�cient ini-

tialization scheme appears necessary. Experiments with the real-world speech mixtures

in Section 8.3.2 suggest a potential use of Sawada's bin-wise probabilistic clustering

method [125] for this purpose. Another possibility would be to �rst estimate the source

DoAs, for example by the algorithm in [137], then to �nd a better way of exploiting this

information for initialization rather than simple DoA-based binary masking in Section

5.2.1 which was found not to work.

In addition to the initialization, the estimation of the spatial covariance matrices
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Rj(f) from the T-F bins involving a single active source could also be considered. In-

deed, it has been shown for instantaneous mixtures that the detection of these T-F bins

improves the accuracy of the estimated mixing vectors [57]. However, this extension is

not trivial in the convolutive case and therefore o�ers an interesting research on how to

detect these single source T-F bins.

E�cient online algorithm

In order to employ source separation for real-time systems, the model parameters must

be estimated in an online manner and the computation burden should be decreased.

Tomagi et al. have recently extended our batch ML algorithm to an online algorithm

and demonstrated its potential [36]. However their approach strongly relied on the good

parameter initialization and the spatial parameters were heuristically treated without

updating them at each EM iteration, i.e. only the source variances were updated. There-

fore, any research e�ort to develop an online algorithm from our proposed framework

would potentially bring good results.

Extension toward the use of spatial priors

The investigation of the spatial location priors in Chapter 6 has provided a proof of

concept of their bene�t in a blind source separation context. However, at this stage,

the geometric setting and the reverberation time must be known to specify the prior

distribution. Future work can hence be devoted to the estimation of these parameters

from the mixture signal itself so as to perform blind source separation.

We have con�rmed that the proposed full-rank unconstrained spatial covariance pa-

rameterization better accounts for reverberation and small source movements. Though

addressing moving sources goes beyond the scope of this thesis, the time-varying spa-

tial covariance parameterization and the spatial continuity prior presented in Chapter 6

have opened a promising extension of the proposed framework toward addressing more

di�cult recording scenarios involving moving speakers.

Extension toward the use of spectral priors

Chapter 7 has investigated the combination of the spatial covariance with an NMF

spectral source model. However, depending on di�erent types of audio sources, other

spectral models such as GMM, GSMM, or HMM possibly provide a good combination

to improve source separation performance. Similarly, di�erent spectral priors rather

than the spectral continuity priors investigated in Chapter 7, e.g. prior enforcing the

harmonic structure, could also be considered for speci�c applications in the future work.
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Most of these priors has recently been considered in [37].

Extension toward a more advanced direct+early echoes+di�use model

The direct+di�use spatial covariance parameterization introduced in Section 3.1.2.3 of-

fers a promising modeling of reverberated sources, especially when considering the small

number of spatial parameters it involves. However, this model is generally not valid for

each individual source, as shown in Fig. 3.1b, due in particular to the non-uniformly

distributed early echoes. Therefore, a potential research could be devoted to a novel

model distinguishing 3 parts: the direct part, early echoes, and the late reverberation

part. This improved parameterization could require the design of a model for echoes,

which does not exist today.

Extension to other �elds

The thesis has addressed the general modeling of reverberated or di�use sound sources.

This is a core problem with applications in many areas of audio signal processing, in-

cluding speech enhancement, audio information retrieval and spatial audio processing.

As an example, in Chapter 8 we have demonstrated the bene�t of the proposed frame-

work for the separation of harmonic and percussive sound in music mixtures, which

can be exploited as a pre-processing step for some MIR tasks. Togami et al. have also

recently applied our full-rank covariance modeling framework in a multichannel acoustic

echo cancelation system [35]. Therefore, in a long-term research direction we would like

to apply the framework presented in this thesis to other audio processing �elds where

the modeling of reverberated or di�use sound sources is necessary.
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Appendix A

Derivation of the EM algorithm

This appendix present the derivation of the EM algorithms for the estimation of the

model parameters θ = {vj(n, f),Rj(f)}j,n given the empirical mixture covariances

{Σ̂x(n, f)}n,f in each frequency bin f of both the rank-1 convolutive spatial covariance

parameterization presented in Section 5.3.1 and the full-rank unconstrained parameter-

ization presented in Section 5.3.2. The detailed derivations for MAP parameter updates

in Chapters 6 and 7 are also provided.

A.1 ML estimation for the rank-1 convolutive parameteri-

zation

A.1.1 E-step

The mixing model is described by equation (5.7). The source posterior distribution is

given by

log p(s(n, f)|x(n, f),θ) c
= log p

(
x(n, f)|s(n, f),θ

)
+ log p

(
s(n, f)|θ

)
= logNc

(
x(n, f)−H(f)s(n, f)|0,Σb(f)

)
+ logNc

(
s(n, f)|0,Σs(n, f)

)
(A.1)

= logNc

(
s(n, f)|ŝ(n, f), Σ̂s(n, f)

)
(A.2)

By computing the gradient of (A.1) with respect to sH(n, f) and equating it to zero,

we obtain ŝ(n, f) as

ŝ(n, f) = W(n, f)x(n, f) (A.3)
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where the Wiener �lter W(n, f) is computed by (5.10).

By computing the second derivative ∂2

∂sH(n,f)s(n,f)
of (A.1) and (A.2), we obtain

Σ̂s(n, f) =
(
Σ−1

b HH(f)H(f) +Σ−1
s (n, f)

)−1

= Σs(n, f)−Σs(n, f)H
H(f)

(
H(f)Σs(n, f)H

H(f) +Σb

)−1
H(f)Σs(n, f)

(A.4)

with the small noise variance (Σb → 0), (A.4) can be rewritten as

Σ̂s(n, f) =
(
I−W(n, f)H(f)

)
Σs(n, f) (A.5)

The conditional expectation of the natural statistic R̂ss(n, f) is therefore given by

equation (5.15) since R̂ss(n, f) = E{ŝ(n, f)ŝH(n, f)}+ Σ̂s(n, f).

A.1.2 M step

Log-likelihood of the complete data C = {x(n, f), s(n, f)}n is

logLC =
∑
n

log p
(
x(n, f), s(n, f)|θ

)
=
∑
n

log p
(
x(n, f)|s(n, f),θ

)
+ log p

(
s(n, f)|θ

)
c
=
∑
n

logNc

(
x(n, f)−H(f)s(n, f)|0,Σb(f)

)
c
= −Ntr

[
Σ−1

b (f)
(
Rxx(f)−H(f)RH

xs(f)−Rxs(f)H
H(f) +H(f)Rss(f)H

H(f)
)]

−N log |Σb(f)| (A.6)

where the natural statistics are de�ned as

Rxx(f) =
1

N

N∑
n=1

x(n, f)xH(n, f)

Rxs(f) =
1

N

N∑
n=1

x(n, f)sH(n, f) (A.7)

Rss(f) =
1

N

N∑
n=1

s(n, f)sH(n, f)

By replacing the natural statistics by their conditional expectations with respected

to the estimated parameters in the E-step and computing the gradient of this expression
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with respect to H(f) and Σb(f) and equating them to zero, we obtain the parameter

updates (5.13) and (5.14), where R̂ss(f), R̂xs(f), and R̂xx(f) are computed by (5.15),

(5.16), and (5.17), respectively.

A.2 ML estimation for the full-rank spatial covariance pa-

rameterization

A.2.1 E-step

Let us denote by s̃(n, f) = [c1(n, f)
T , ..., cJ(n, f)

T ]T and H̃ = [I, ..., I] the I×IJ matrix.

The mixing model (1.3) is then equivalent to x(n, f) = H̃s̃(n, f), which is similar to

(5.7) when b→ 0. Therefore, the computation of the Wiener �lter by (5.19) and that

of the covariance Σ̂j(n, f) of the spatial image of the jth source by (5.20) in the E-step

are directly inherited from the computation of the Wiener �lter and the the expectation

of the natural statistics R̂ss(n, f) for the rank-1 convolutive parameterization.

A.2.2 M-step

The M-step maximizes the log-likelihood of the complete data de�ned in (4.1) to obtain

the iterative parameter update. The partial derivatives of this log-likelihood with re-

spect to vj(n, f) and to each entry (k, l) of Rj(f) are (see Appendix D for the gradient

computation)

∂ logLj

∂vj(n, f)
=

tr
(
R−1

j (f)Σ̂j(n, f)
)

v2j (n, f)
− I

vj(n, f)
(A.8)

∂ logLj

∂Rj(f)kl
= tr

(
R−1

j (f)Ekl

(
R−1

j (f)
∑
n

Σ̂j(n, f)

vj(n, f)
−N

))
(A.9)

where Ekl =
∂Rj(f)
∂Rj(f)kl

is an I × I matrix whose (k, l)-th entry is 1 and other entries

are zero. By solving the equations ∂ logLj

∂vj(n,f)
= 0 and ∂ logLj

∂Rj(f)kl
= 0 for all k, l, we obtain

iterative updates for vj(n, f) and Rj(f) as

vj(n, f) =
1

I
tr(R−1

j (f)Σ̂j(n, f)) (A.10)

Rj(f) =
1

N

N∑
n=1

1

vj(n, f)
Σ̂j(n, f). (A.11)
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A.3 MAP estimation using a Wishart spatial location prior

By computing the partial derivatives of the expectation of the log-posterior of the

complete data de�ned in (6.6) with respect to each entry of Rj(n, f) and equating

them to zero, we obtain the quadratic matrix equation

Rj(f)ARj(f) + bRj(f) +C = 0 (A.12)

where

A = γΨ−1
j (f)

b = −γ(m− I) +N (A.13)

C =

N∑
n=1

−Σ̂j(n, f)

vj(n, f)
.

After the variable exchange X = A1/2Rj(f)A
1/2 (when γ ̸= 0), (A.12) is equivalent to

X2 + bX+A1/2CA1/2 = 0 (A.14)

The �rst two coe�cients of quadratic matrix equation are scalar multiples of the identity

matrix and the last one is positive semi-de�nite. Therefore this equation can be solved

[138, p. 304]. The unique positive de�nite solution is given by

X =
1

2

(
− bI+ (b2I− 4A1/2CA1/2)1/2

)
(A.15)

Therefore

Rj(f) =
1

2
A−1/2

(
− bI+ (b2I− 4A1/2CA1/2)1/2

)
A−1/2. (A.16)

A.4 MAP estimation using a Markov chain inverse-Wishart

spatial continuity prior

By computing the partial derivatives of the expectation of the log-posterior of the

complete data de�ned in (6.16) with respect to each entry of Rj(n, f) and equating

them to zero, we obtain the quadratic matrix equation

Rj(n, f)ARj(n, f) + bRj(n, f) +C = 0 (A.17)
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where A, b, and C are given by

A = γ(mj − I)R−1
j (n+ 1, f)

b = γI + 1 (A.18)

C = −Σ̂j(n, f)/vj(n, f)− γ(mj − I)Rj(n− 1, f)

By the variable change X = A1/2Rj(n, f)A
1/2 we obtain the equivalent quadratic

matrix equation

X2 + bX+A1/2CA1/2 = 0 (A.19)

Again, the �rst two coe�cients are scalar multiples of the identity and the last one is

positive semi-de�nite. Therefore this equation can be solved [138, p. 304]. The unique

positive de�nite solution is given by

Rj(n, f) =
1

2
A−1/2

(
− bI+ (b2I− 4A1/2CA1/2)1/2

)
A−1/2. (A.20)

A.5 MAP estimation using a Markov chain inverse-gamma

spectral continuity prior

By computing the partial derivative of QIG(θ|θold) de�ned in 7.8 with respect to vj(n, f)

and equating it to zero, we obtain a second order polynomial equation

av2j (n, f) + bvj(n, f) + c = 0 (A.21)

where

a =

{
γ(α− 1)/vj(n+ 1, f) for harmonic sources

γ(α− 1)/vj(n, f + 1) for percussive sources

b = I (A.22)

c =

{
−tr
(
R−1

j (n, f)Σ̂j(n, f)
)
− γ(α− 1)vj(n− 1, f) for harmonic sources

−tr
(
R−1

j (n, f)Σ̂j(n, f)
)
− γ(α− 1)vj(n, f − 1) for percussive sources.

This equation has single positive solution, that is

vj(n, f) = (−b+
√

b2 − 4ac)/(2a). (A.23)
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Appendix B

Derivation of the normalized

cross-correlation function of di�use

signals

This appendix presents the derivation of the normalized cross-correlation function in

(3.10) to validate the full-rank direct+di�use spatial covariance paramerization in (3.9).

We assume that the intensities of incident sounds are uniformly distributed over all

possible directions in the 3D space. Under a far-�eld assumption, the complex-valued

signals at the microphone pair (i, l) coming from a given direction (see Fig. B.1) can be

written as [27]

xi(t) = A0e
j(2πft−ϕ) (B.1)

xl(t) = A0e
j(2πft−ϕ−2πfdil cos(θ)/c)

where A0, dil, ϕ, θ denotes amplitude, microphone spacing, phase, and sound incident

direction, respectively.

The normalized cross-correlation function of x1(t) and x2(t) is

Ωil,θ(f) =
x1(t)x

∗
2(t)√

E{|x1(t)|2}E{|x2(t)|2}
= ej2πfd cos(θ)/c (B.2)

By averaging Ωil,θ(f) over all directions under the di�use sound assumption (see

Fig. B.2), we obtain
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sound field


Figure B.1: Parameterization of the inci-
dent sound �eld

Figure B.2: 3D integration of the sound
�eld covariance

Ωdi�
il (f) =

1

4π

∫ 2π

0

∫ π

0
Ωil,θ(f) sin(θ)dφdθ

=
1

4π

∫ 2π

0
dφ

∫ π

0
ej2πfdil cos(θ)/c sin(θ)dθ

=
sin(2πfdil/c)

2πfdil/c
. (B.3)

Note that the normalized cross-correlation function is real-valued even with complex

signals.
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Formulas of some considered

probability distributions

C.1 Multivariate complex Gaussian distribution

p(x|µ,Σ) =
1

det(πΣ)
e−(x−µ)HΣ−1(x−µ) (C.1)

where µ and Σ are the mean and the covariance matrix of x, respectively.

C.2 Complex Wishart distribution

p(R|Ψ,m) =
|Ψ|−m|R|m−Ie−tr(Ψ−1R)

πI(I−1)/2
∏I

i=1 Γ(m− i+ 1)
(C.2)

whereΨ is an I×I positive-de�nite Hermitian matrix andm is a positive scalar (number

of degrees of freedom).

C.3 Complex inverse-Wishart distribution

p(R|Ψ,m) =
|Ψ|m|R|−(m+I)e−tr(ΨR−1)

πI(I−1)/2
∏I

i=1 Γ(m− i+ 1)
(C.3)

whereΨ is an I×I positive-de�nite Hermitian matrix andm is a positive scalar (number

of degrees of freedom).
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C.4 Inverse gamma distribution

p(v|α, β) = βα

Γ(α)
v−α−1e−β/v (C.4)

where α and β are shape parameter and scale parameter, respectively.
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Di�erentiation formulas

Di�erentiation of a number of expressions with respect to a matrix X [139]:

∂(αX) = α∂X (D.1)

∂(XY) = (∂X)Y +X(∂Y) (D.2)

∂(tr(X)) = tr(∂X) (D.3)

∂(X−1) = −X−1(∂X)X−1 (D.4)

∂(det(X)) = det(X)tr(X−1∂X) (D.5)

∂(log(det(X))) = tr(X−1∂X) (D.6)

Di�erentiation of a number of expressions with respect to the real and imaginary

parts of a complex-valued vector a

∂bHa

∂ℜa
= b∗ ;

∂bHa

∂ℑa
= ib∗ (D.7)

∂aHb

∂ℜa
= b ;

∂aHb

∂ℑa
= −ib (D.8)

∂aHWa

∂ℜa
= WTa∗ +Wa ;

∂aHWa

∂ℑa
= i
(
WTa∗ −Wa

)
(D.9)
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Résumé étendu

Introduction

Dans la vie de tous les jours, les scènes sonores résultent souvent du mélange de plusieurs

sources et requièrent la capacité de localiser, identi�er et di�érencier les sources sonores

présentes simultanément. Alors que les humains sont généralement très bons pour cette

tâche, les systèmes numériques réussissent moins bien à séparer les sources sonores, par-

ticulièrement dans les environnements réverbérants présentant de nombreuses ré�exions

sur les murs et/ou du bruit de fond [1]. Par conséquent, cette thèse se concentre sur

le problème épineux de la séparation aveugle de sources (SAS), qui vise à extraire les

signaux sources d'un mélange observé avec peu d'information a priori, dans un envi-

ronnement réverbérant réel.

Formulation du problème

Considérons un signal de mélange multicanal x(t) = [x1(t), ..., xI(t)]
T enregistré par

une antenne de I microphones. Ce mélange peut être exprimé comme [14]

x(t) =
J∑

j=1

cj(t)

où J dénote le nombre de sources et cj(t) = [c1j(t), ..., cIj(t)]
T est l'image spatiale de la

j-ième source, c'est-à-dire sa contribution à l'ensemble des canaux du mélange. Notons

que le bruit de fond est aussi considéré comme une source dans l'équation ci-dessus.

Dans le cas où la j-ième source est une source ponctuelle, c'est-à-dire qu'elle émet du

son en un point unique de l'espace, cj(t) se caractérise par [15]

cj(t) =
∑
τ

hj(τ)sj(t− τ)
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où hj(τ) = [h1j(τ), ..., hIj(τ)]
T est un �ltre de mélange linéaire modélisant la propa-

gation acoustique de la j-ième source à l'ensemble des I microphones et sj(t) est le

signal source monophonique émis. La séparation de sources consiste à estimer soit les

J signaux sources originaux sj(t) soit leurs images spatiales cj(t) à partir des I canaux

du signal de mélange x(t). Nous considérons ce deuxième problème dans cette thèse,

en supposant que le nombre de sources J est connu.

État de l'art

Les systèmes de SAS exploitent généralement un ensemble d'indices pour discriminer

les sources portant sur leur position spatiale ou sur leur structure spectrale [16, 15]. Ces

deux types d'indices sont appelés respectivement indices spatiaux, tels que la di�érence

de temps d'arrivée (ITD) et d'intensité (IID) entre les canaux, et indices spectraux, tels

que la parcimonie, l'harmonicité, la continuité spectrale ou temporelle, etc. A�n de

modéliser et d'exploiter ces indices, la plupart des approches de SAS opèrent dans le

domaine temps-fréquence (T-F) par l'intermédiaire de la transformée de Fourier à court

terme (TFCT), de sorte que le mélange peut se réécrire en chaque bande de fréquence

f et chaque trame temporelle n comme

x(n, f) =
J∑

j=1

cj(n, f).

Ces approches reposent de plus sur l'approximation de bande étroite de la convolution

par une multiplication complexe en chaque point T-F

cj(n, f) ≈ hj(f)sj(n, f)

où le vecteur de mélange hj(f) de taille I × 1 est la transformée de Fourier

de hj(τ), sj(n, f) sont les coe�cients de TFCT des sources sj(t) et cj(n, f) =

[c1j(n, f), ..., cIj(n, f)]
T les coe�cients de TFCT de leurs images spatiales cj(t).

Étant donnée cette formulation du mélange dans le domaine T-F, la plupart des

approches existantes consistent à construire un modèle des indices spatiaux, c'est-

à-dire de hj(f), et des indices spectraux, c'est-à-dire de |sj(n, f)|, et à estimer ses

paramètres. Les approches connues incluent l'analyse en composantes indépendantes

(ACI) [40, 41, 45, 46, 47, 48, 49, 50, 51, 52], l'analyse en composantes parcimonieuses

[53, 18, 55, 56, 57], les modèles gaussiens non-stationnaires [71, 72, 21], etc. La per-

formance de séparation atteignable par ces techniques reste cependant limitée pour des
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sources di�uses ou réverbérées [12] car l'approximation de bande étroite n'est pas valable

dans ce cas.

Contributions

Nous nous focalisons dans cette thèse sur la modélisation et la paramétrisation proba-

bilistes du processus de mélange pour des sources di�uses ou réverbérées. Les résultats

obtenus ont été décrits dans nos publications [28, 29, 30, 31, 32, 33, 34]. Nos contri-

butions majeures sont de proposer un nouveau cadre de modélisation probabiliste pour

les indices spatiaux qui contourne l'approximation de bande étroite dans une certaine

mesure [28, 30], de concevoir une architecture générale pour l'estimation des paramètres

et la séparation de sources [29, 30, 31], de proposer des a priori probabilistes sur les

paramètres spatiaux et spectraux, et de démontrer le potentiel du cadre proposé par

rapport aux algorithmes de l'état de l'art dans di�érents scénarios incluant des données

synthétiques simulées comme des enregistrements réels [32, 33, 34].

La structure du reste de ce résumé est comme suit. Nous introduisons d'abord le

cadre de modélisation général et la paramétrisation proposée. Ensuite, nous abordons

l'estimation des paramètres du modèle au sens du maximum de vraisemblance (MV)

ou du maximum a posteriori (MAP). Nous comparons la performance de séparation

de sources obtenue à celle des algorithmes de l'état de l'art. En�n, nous tirons les

conclusions et discutons les pistes de recherche futures.

Cadre de modélisation général

Cadre de modélisation et architecture de séparation de sources

Notre cadre de modélisation s'appuie sur le cadre de modélisation gaussienne non-

stationnaire [72, 68] où le vecteur de coe�cients T-F cj(n, f) de l'image spatiale de

chaque source est modélisé comme un vecteur aléatoire gaussien de moyenne nulle et

de matrice de covariance Σj(n, f) = E(cj(n, f)cHj (n, f)). De plus, nous factorisons

Σj(n, f) comme

Σj(n, f) = vj(n, f)Rj(n, f)

où vj(n, f) sont des variances non-stationnaires représentant le spectre de puissance à

court terme de la source et Rj(n, f) est une matrice de covariance spatiale de taille

I × I représentant sa position et sa largeur spatiale. Cette paramétrisation est

probabiliste dans le sens que cj(n, f) ne peut pas être calculé de façon déter-

ministe à partir des paramètres choisis, mais est généré de façon aléatoire

143



Resume

selon la distribution gaussienne considérée. Ce cadre de modélisation ne

repose ni sur l'hypothèse de sources ponctuelles ni sur l'approximation de

bande étroite, de sorte qu'il apparaît applicable à des sources réverbérées

ou di�uses.

Sous l'hypothèse classique que les sources sont décorrélées, le vecteur x(n, f) de

coe�cients de TFCT du mélange est aussi gaussien de moyenne nulle et sa matrice de

covariance est égale à

Σx(n, f) =

J∑
j=1

vj(n, f)Rj(n, f).

À partir de ce modèle, la séparation de sources peut être e�ectuée selon les quatre

étapes décrites dans la �gure ci-dessous.

T-F

transform


Inverse T-F

transform


Parameter

estimation


Wiener

filtering


General source separation architecture.

Le problème central consiste à estimer les paramètres du modèle θ =

{vj(n, f),Rj(n, f)}j,n,f en ajustant la covariance du modèle Σx(n, f) à la covariance

empirique observée Σ̂x(n, f) selon la fonction de vraisemblance

P (Σ̂x|v,R) =
∏
n,f

1

det (πΣx(n, f))
e−tr

(
Σ−1

x (n,f)Σ̂x(n,f)
)
.

La covariance empirique Σ̂x(n, f) s'apparente à une représentation T-F quadratique

préalablement calculée en moyennant localement au voisinage de chaque point T-F [68]

Σ̂x(n, f) :=
∑
n′,f ′

w2
nf (n

′, f ′)x(n′, f ′)xH(n′, f ′)

où wnf est une fenêtre bi-dimensionnelle spéci�ant la forme du voisinage telle que∑
n′,f ′ w2

nf (n
′, f ′) = 1. Une fois les paramètres du modèle estimés, les images spa-

tiales de toutes les sources sont obtenues au sens du minimum de l'erreur quadratique
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moyenne (MMSE) par �ltrage de Wiener multicanal [71, 72]

ĉj(n, f) := vj(n, f)Rj(f)Σ
−1
x (n, f)x(n, f).

Paramétrisations de la covariance spatiale

Nous présentons quatre paramétrisations de la covariance spatiale correspondant à des

matrices soit de rang 1 soit de rang plein. Les deux premières paramétrisations de rang

1 correspondent à des techniques existantes. La troisième appelée paramétrisation de

rang plein directe+di�use est considérée pour la première fois dans le contexte de la

séparation de sources, bien qu'elle ait déjà été utilisée pour la localisation de sources. La

quatrième paramétrisation appelée paramétrisation de rang plein non contrainte est la

paramétrisation proposée, qui o�re la plus grande �exibilité pour modéliser le processus

de mélange par rapport aux trois autres paramétrisations.

Paramétrisation de rang 1 anéchoïque ou convolutive

Les paramétrisations de rang 1 résultent de l'approximation de bande étroite. La matrice

de covariance spatiale prend alors la forme suivante pour des mélanges convolutifs:

Rj(f) = hj(f)h
H
j (f)

où hH
j (f) est le vecteur de mélange dé�ni précédemment.

Pour des mélanges anéchoïques, le vecteur de mélange est dénoté par hane
j (f) et est

une fonction directe de la distance entre les sources et les microphones [102].

Paramétrisation de rang plein directe+di�use

La paramétrisation de rang plein directe+di�use s'inspire de la théorie statistique de

l'acoustique des salles dans laquelle l'image spatiale de chaque source est supposée être

la somme de deux parties décorrélées: une partie directe modélisée par hane
j (f) et une

partie di�use provenant de toutes les directions de l'espace uniformément [27]. La

matrice de covariance spatiale Rj(f) de chaque source est alors une matrice de rang

plein dé�nie comme la somme de la covariance de sa partie directe et de la covariance

de sa partie di�use

Rj(f) = hane
j (f)

(
hane
j

)H
(f) + σ2

revΩ(f)

où σ2
rev est la variance de la partie di�use et Ωil(f) est une fonction du diagramme de

directivité des microphones et de la distance dil entre le i-ième et le l-ième microphone.
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À la fois σ2
rev et Ωil(f) sont calculables en fonction de la disposition spatiale des sources

et des caractéristiques de la salle sous certaines hypothèses [27, 102]. Par exemple, dans

le cas de microphones omnidirectionnels, Ωil(f) =
sin(2πfdil/c)

2πfdil/c
.

Paramétrisation de rang plein non contrainte

Nous proposons une paramétrisation de rang plein non contrainte, où Rj(f) est une

matrice hermitienne positive semi-dé�nie de rang plein dont les coe�cients ne sont pas

contraints a priori. Cette paramétrisation non contrainte est la plus générale possible

pour une matrice de covariance. Elle généralise les trois paramétrisations ci-dessus

dans le sens où n'importe quelle matrice contrainte de rang 1 ou de rang plein peut

être considérée comme une forme particulière de matrice non contrainte. En raison

de sa �exibilité accrue, cette paramétrisation non contrainte épouse mieux les données

en terme de vraisemblance. En particulier, elle améliore l'ajustement entre le modèle

et les données sur des mélanges réverbérants par rapport aux modèles de rang 1 car

l'approximation de bande étroite n'est pas valable dans ce cas. Dans ce sens, la

paramétrisation proposée contourne l'approximation de bande étroite dans

une certaine mesure.

Nous avons montré dans [28, 30] que cette paramétrisation o�re la meilleure borne

supérieure de performance de séparation de sources, en supposant Rj(f) connue, par

rapport aux autres paramétrisations et à deux approches de base, le masquage bi-

naire [18] et la minimisation de norme ℓ1 [55]. Par la suite, nous nous focalisons sur

l'estimation aveugle des paramètres dans un but de SAS.

Estimation des paramètres du modèle

Nous présentons tout d'abord une architecture générale pour l'estimation de paramètres

qui couvre aussi bien l'estimation au sens du MV qu'au sens du MAP, en s'appuyant sur

l'algorithme espérance-maximisation (EM). Nous détaillons ensuite l'algorithme pour

le cas MV et des exemples d'algorithmes pour le MAP avec des a priori spatiaux et

spectraux.

Achitecture générale pour l'estimation de paramètres

La �gure ci-dessous illustre l'architecture générale, �exible, que nous proposons pour

l'estimation des paramètres du modèle. Cette architecture repose principalement sur la

mise à jour itérative des paramètres via l'algorithme EM. Ce dernier est un choix appro-
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prié bien connu pour les modèles gaussiens [113, 71]. EM étant sensible à l'initialisation

[25], le choix du schéma d'initialisation des paramètres est important. Lorsque des in-

formations additionnelles sont disponibles à l'avance, que ce soit sur les signaux sources

originaux ou sur les conditions de mélange, des lois a priori peuvent être choisies et in-

corporées au modèle probabiliste pour exploiter cette connaissance et aider à améliorer

la performance de séparation, en estimant les paramètres au sens du MAP. Les critères

généraux d'estimation des paramètres sont:

� le critère MV

θ̂ = argmax
θ

∏
n,f

p
(
Σ̂x(n, f)|θ

)
� le critère MAP

θ̂ = argmax
θ

∏
n,f

p
(
Σ̂x(n, f)|θ

)
p(θ)

Parameter

initialization


Iterative parameter

update by EM


Priors

(MAP only)


Architecture générale pour l'estimation aveugle des paramètres.

Estimation MV avec l'algorithme EM

L'estimation MV des paramètres se décompose en deux étapes: l'initialisation des

paramètres puis leur mise à jour avec l'algorithme EM. Nous avons adapté une méthode

existante de clustering hiérarchique [55] pour initialiser les paramètres spatiaux, et une

technique d'estimation de directions d'arrivée (DoA) [51] pour aligner l'ordre des sources

à toutes les fréquences à la première étape [29, 30]. L'explicitation de l'algorithme EM

pour la paramétrisation de la matrice de covariance spatiale convolutive de rang 1, que
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nous avons obtenue dans [30], s'inspire fortement de l'étude [25]. Pour la paramétrisa-

tion de rang plein non contrainte, l'algorithme EM est construit séparément pour chaque

fréquence f pour les données complètes {cj(n, f) [30]. Il en résulte une procédure de

mise à jour des paramètres résumée dans l'algorithme ci-dessous.

Algorithme EM pour la paramétrisation de rang plein non contrainte
Etape E :

Σj(n, f) = vj(n, f)Rj(f)

Wj(n, f) = Σj(n, f)Σ
−1
x (n, f)

Σ̂j(n, f) = Wj(n, f)Σ̂x(n, f)W
H
j (n, f) + (I−Wj(n, f))Σj(n, f)

Etape M :

vj(n, f) =
1

I
tr(R−1

j (f)Σ̂j(n, f))

Rj(f) =
1

N

N∑
n=1

1

vj(n, f)
Σ̂j(n, f).

Chaque itération de mise à jour EM pour la paramétrisation de rang plein non

contrainte implique essentiellement le calcul de (N + 1)FJ inversions et de 5NFJ

multiplications de matrices de taille I × I. Le coût de calcul global d'une itération est

donc O(6NFJI3).

Algorithmes MAP exploitant des a priori spatiaux et spectraux

Pour améliorer la performance en séparation de sources dans certaines situations où de

l'information a priori est disponible, que ce soit sur les spectres des sources ou sur le

processus de mélange, nous avons introduit plusieurs lois a priori spatiale et spectrales,

ainsi que les mises à jour MAP des paramètres par les algorithmes EM associés. L'étape

E de ces algorithmes EM pour le MAP coïncide avec celle de l'Algorithme MV, et pour

l'étape M les a priori spatiaux changent uniquement la mise à jour de Rj(f) tandis que

les a priori spectraux a�ectent celle de vj(n, f).

A priori de position spatiale

Dans beaucoup de situations pratiques la disposition géométrique des sources et des

micros, ainsi que les principales caractéristiques acoustiques de la salle, peuvent être
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connues à l'avance. Pour ces raisons nous proposons de modéliser Rj(f) comme [33]

p(Rj(f)) = IW
(
Rj(f)|Ψj(f),m

)
où

IW(R|Ψ,m) =
|Ψ|m|R|−(m+I)e−tr(ΨR−1)

πI(I−1)/2
∏I

i=1 Γ(m− i+ 1)

est la densité de Wishart inverse [114] pour une matrice hermitienne dé�nie positive R,

avec Ψ une matrice dé�nie positive, m le nombre de degrés de liberté, Γ la fonction

gamma. L'espérance selon cette distribution estΨ/(m−I) [114]. On dé�nit les matrices

Ψj(f) comme

Ψj(f) = (m− I)
(
hane
j (f)

(
hane
j (f)

)H
+ σ2

revΩ(f)
)

si bien que l'espérance de Rj(f) correspond aux calculs résultants de la théorie statis-

tique de l'acoustique des salles [27, 102] et est cohérente avec la paramétrisation de

rang plein directe+di�use. Le nombre de degrés de liberté m, qui détermine de com-

bien Rj(f) peut typiquement dévier de son espérance, est appris sur des données

d'entraînement.

Cet a priori conjugué de la vraisemblance associé au modèle d'observation gaussien

donne lieu à une forme explicite simple de la mise à jour des paramètres spatiaux dans

l'étape M de l'algorithme EM [33]

Rj(f) =
1

γ(m+ I) +N

(
γΨj(f) +

N∑
n=1

Σ̂j(n, f)

vj(n, f)

)
où γ détermine la contribution de l'a priori. Dans la thèse on considère aussi comme

alternative un a priori Wishart sur Rj(f). Des résultats expérimentaux montrent que

l'estimation MAP exploitant l'a priori spatial de type Wishart inverse améliore d'1 dB

le rapport signal à distortion (SDR, mesure globale de la distortion en SAS) par rapport

à l'approche MV, pour des mélanges stéréophoniques de trois sources avec un temps

de réverbération de 250 ms [33]. Cela con�rme l'e�cacité de l'a priori proposé et de

l'algorithme MAP associé.

A priori de continuité spatiale

En pratique, il arrive souvent que les sources sonores ne soient pas �xes mais se déplacent

lentement. Il s'agit par exemple de légers déplacements de la tête lorsque l'on parle.
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Cela se traduit par une variabilité au cours du temps des matrices de covariance spatiales

paramétrisées par Rj(n, f), variabilité qui peut cependant être considérée comme lente

et fonction régulière du temps. Pour cette raison nous proposons de modéliser Rj(n, f)

pour n > 1 par

p
(
Rj(n, f)

)
= IW

(
Rj(n, f)|(mj − I)Rj(n− 1, f),mj

)
.

Cette distribution a priori a pour e�et d'imposer que les espérances des matrices de

covariances spatiales pour une trame temporelle donnée soient égales à leurs valeurs à la

trame précédente. Par ailleurs, il s'agit là encore d'un a priori conjugué vis-à-vis de la

vraisemblance, ce qui induit une forme explicite de la mise à jour de Rj(n, f) à l'étape

M de l'algorithme EM [34].

A priori de continuité spectrale / NMF

En complément de l'exploration d'a priori spatiaux, nous avons aussi cherché à ex-

ploiter les structures spectrales des sources et à construire des algorithmes d'estimation

de paramètres en conséquence, le tout a�n d'améliorer la performance de séparation

de sources dans certains contextes. Pour cela, nous avons considéré dans un premier

temps un modèle spectral NMF où vj(n, f) est modélisé comme la somme de plusieurs

composantes latentes [32]

vj(n, f) =

K∑
k=1

hj,nkwj,kf

où hj,nk, wj,kf ∈ R+.

Nous avons aussi considéré des a priori de continuité spectrale, pour rendre compte

du fait que le spectre à court terme de certaines sources (par exemple: la voix, le piano,

le violon. . . ) est �régulier� dans la direction du temps, tandis que celui d'autres sources

(notamment les percussions) est régulier dans la direction de la fréquence [115]. La

régularité dans le temps est favorisée sous la forme E{vj(n, f)} = vj(n − 1, f), aussi

nous avons proposé de modéliser vj(n, f) comme

p
(
vj(n, f)

)
= IG

(
vj(n, f)|αj , (αj − 1)vj(n− 1, f)

)
où IG(v|α, β) est la densité gamma inverse de paramètres de forme α > 0 et d'échelle

β > 0. De même, on peut favoriser la régularité en fréquence en modélisant vj(n, f)

comme

p
(
vj(n, f)

)
= IG

(
vj(n, f)|αj , (αj − 1)vj(n, f − 1)

)
.
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Tous ces a priori spectraux mènent à des formes explicites des mises à jour de

vj(n, f) dans l'étape M de l'algorithme EM, et nous avons montré qu'ils permettent

d'améliorer la performance en séparation de sources dans certains contextes [32, 34].

Résultats expérimentaux

L'apport du cadre de modélisation gaussien et des algorithmes MV/MAP proposés dans

cette thèse a été démontré par de nombreuses expériences, conduites dans des conditions

expérimentales variées, et présentées dans plusieurs de nos publications [28, 29, 30, 32,

33, 34]. Pour prendre un exemple, nous comparons ci-dessous la paramétrisation de la

matrice de covariance de rang plein non contrainte que nous avons proposée, avec ou sans

modèle NMF spectral, aux algorithmes de SAS de l'état de l'art soumis aux campagnes

d'évaluation SiSEC 2008 et 2010, pour les mélanges stéréophoniques enregistrés en

conditions réelles. Le tableau ci-dessous indique pour chaque algorithme le SDR moyen

et le score perceptuel global (OPS), qui mesurent tous les deux la distortion globale

obtenue.

Algorithme SiSEC
3 sources 4 sources

SDR OPS SDR OPS
M. Cobos [126] 2.3 - 2.1 -
M. Mandel [98] 0.1 - -3.7 -
R. Weiss [127] 2008 2.9 - 2.3 -
S. Araki [128] 2.9 - - -

Z. El Chami [129] 2.3 - 2.1 -
Full-rank 3.3 35 2.8 32
Ozerov [124] 3.4 55 2.4 29

Full-rank+NMF 2010 3.8 46 3.1 33
H. Sawada [125] 7.2 40 3.4 19

SDR moyen en dB et OPS pour les données de test acquises en conditions réelles de
SiSEC 2008 et SiSEC 2010, avec des microphones espacés de 5 cm et T60 = 130 ms.

Les algorithmes de SiSEC 2008 [126, 98, 127, 128, 129] correspondent au début de

ce travail de thèse, période où le critère OPS n'avait pas encore été proposé. Pour des

mélanges de trois sources, l'algorithme que nous avons proposé améliore le SDR de 0.4

dB par rapport aux meilleurs résultats obtenus par l'algorithme d'Araki [128]. Pour des

mélanges de quatre sources, l'amélioration du SDR est encore plus marquée, de l'ordre

de 0.5 dB, par rapport aux meilleurs résultats obtenus par Weiss [127].

Comparons maintenant nos résultats avec ceux des trois nouveaux algorithmes
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[124, 32, 125] soumis à SiSEC 2010. L'approche de rang plein apporte une amélio-

ration par rapport à l'approche d'Ozerov [124] sur des mélanges de quatre sources, en

termes de SDR et d'OPS. L'approche de rang plein avec NMF [32] améliore le SDR

par rapport à l'approche de rang plein seule, pour trois ou quatre sources. La méthode

de Sawada [125] aboutit au meilleur SDR global, mais au prix d'un OPS en retrait,

par rapport aux trois autres algorithmes, tandis que celle d'Ozerov [124] aboutit au

meilleur OPS. Il est intéressant de noter que ce dernier algorithme [124] a également

été construit en exploitant le cadre de modélisation gaussienne que nous avons proposé,

avec la paramétrisation de rang plein non contrainte que nous avons proposée, le tout

combiné avec un modèle spectral NMF harmonique [124]. Cela con�rme l'e�cacité du

cadre que nous avons proposé, et nous nous attendons à ce que l'incorporation d'un

modèle spectral de source dans ce cadre puisse encore améliorer la performance.

Conclusion et perspectives

Dans cette thèse, nous avons présenté un cadre radicalement nouveau pour la séparation

de sources sonores réverbérées, en s'appuyant sur la modélisation statistique d'indices

spatiaux à travers la notion de matrice de covariance spatiale. Nous avons introduit qua-

tre paramétrisations spéci�ques des matrices de covariance spatiales, qui couvrent non

seulement les paramétrisations de rang 1 de l'état de l'art basées sur l'approximation

de bande étroite, mais également des paramétrisations de rang plein qui s'a�ranchissent

de cette approximation dans une certaine mesure. Nous avons alors proposé une ar-

chitecture générale pour l'estimation des paramètres de ces modèles s'appuyant sur

la mise à jour des paramètres par EM. Pour cela nous avons proposé d'exploiter des

représentations temps-fréquence quadratiques via des matrices de covariance empiriques

du mélange Σ̂x(n, f) a�n d'améliorer la précision de l'estimation des paramètres par rap-

port aux représentations linéaires de type TFCT x(n, f) exploitées dans les approches

de l'état de l'art. Nous avons exprimé un algorithme d'estimation de paramètre au

sens MV et une famille d'algorithmes au sens MAP exploitant des a priori spatiaux

et/ou spectraux pour améliorer la performance en séparation de sources dans certains

contextes. Finalement, nous avons mené un ensemble conséquent d'expériences et de

simulations pour comparer la performance en séparation de sources des algorithmes

proposés à celle des algorithmes de l'état de l'art dans plusieurs scénarios de mélange.

Tous les résultats expérimentaux con�rment l'e�cacité du cadre proposé.

Plusieurs directions s'appuyant sur le cadre que nous avons proposé pourront être

explorées dans de futurs travaux. Tout d'abord, à court terme, il s'agira d'améliorer les
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algorithmes d'estimation MV et MAP. Par exemple, un meilleur schéma d'initialisation

est crucial pour un bon fonctionnement de l'algorithme MV puisque les paramètres

spatiaux estimés initialements par le clustering hiérarchique peuvent varier fortement

selon le choix heuristique du nombre maximum de clusters. En outre, nous pressentons

que tout e�ort de recherche pour développer un algorithme �en-ligne� à partir du cadre

que nous avons proposé a un potentiel immédiat. Par ailleurs, il serait certainement

utile pour améliorer la performance en séparation de sources de s'intéresser à plusieurs

extensions des a priori spatiaux et spectraux, comme par exemple l'estimation des

hyper-paramètres des lois a priori. A moyen terme, il s'agira d'étudier un nouveau

modèle, étendant la paramétrisation son direct + son di�us de la matrice de covariance,

en distinguant trois contributions: son direct; premières ré�ections; réverbération tar-

dive. Cette paramétrisation améliorée nécessitera vraisemblablement la conception d'un

modèle des premières ré�ections qui n'existe pas à ce jour. En�n, à plus long terme, le

cadre développé de cette thèse pourra être déployé dans d'autres champs du traitement

du signal audio où la modélisation de sources réverbérées ou di�uses s'avère utile.
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