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Abstract

To improve the safety (lower dose) and the productivity (faster acquisition) of a X-ray

CT system, we want to reconstruct a high quality image from a small number of pro-

jections. The classical reconstruction algorithms generally fail since the reconstruction

procedure is unstable and suffers from artifacts. A new approach based on the recently

developed "Compressed Sensing" (CS) theory assumes that the unknown image is in

some sense "sparse" or "compressible", and the reconstruction is formulated through a

non linear optimization problem (TV/ℓ1 minimization) by enhancing the sparsity. Using

the pixel (or voxel in 3D) as basis, to apply the CS framework in CT one usually needs

a "sparsifying" transform, and combines it with the "X-ray projector" which applies on

the pixel image. In this thesis, we have adapted a "CT-friendly" radial basis of Gaussian

family called "blob" to the CS-CT framework. The blob has better space-frequency lo-

calization properties than pixel, and many operations, such as the X-ray transform, can

be evaluated analytically and are highly parallelizable (on GPU platform). Compared

to the classical Kaisser-Bessel blob, the new basis has a multiscale structure: an image

is the sum of dilated and translated radial Mexican hat functions. The typical medical

objects are compressible under this basis, so the sparse representation system used in the

ordinary CS algorithms is no more needed. 2D simulations show that the existing TV

and ℓ1 algorithms are more efficient and the reconstructions have better visual quality

than the equivalent approach based on the pixel or wavelet basis. The new approach has

also been validated on 2D experimental data, where we have observed that in general the

number of projections can be reduced to about 50%, without compromising the image

quality.



Résumé

Afin d’améliorer la sûreté (une dose plus faible) et la productivité (une acquisition plus

rapide) du système de la tomographie par rayons X (CT), on cherche à reconstruire une

image de haute qualité avec un faible nombre de projections. Les algorithmes classiques

ne sont pas adaptés à cette situation: la reconstruction est instable et perturbée par arte-

facts. Une nouvelle approche basée sur la théorie récente du "Compressed Sensing" (CS)

fait l’hypothèse que l’image inconnue est "parcimonieuse" ou "compressible", et formule

la reconstruction par un problème d’optimisation (minimisation de la norme TV/ℓ1) afin

de promouvoir la parcimonie. Pour appliquer CS en CT, en utilisant le pixel (ou le voxel

en 3D) comme la base de représentation, il nécessite une transformation de parcimonie,

de plus il faut la combiner avec le "projecteur du rayon X" qui applique sur une image

pixelisée. Dans cette thèse, on a adapté une base radiale de famille Gaussienne nom-

mée "blob" à la reconstruction CT par CS. Le blob a une meilleure localisation spatio-

fréquentielle que le pixel, et des opérations comme la transformée en rayons X, peuvent

être évaluée analytiquement et elles sont facilement parallélisables (sur le plate-forme

GPU). Comparé au blob classique du Kaisser-Bessel, la nouvelle base a une structure

multi-échelle: une image est la somme des translations et des dilatations d’un chapeau

Mexicain radial. Les images médicales typiques sont compressibles sous cette base, ce

qui entraîne que le système de représentation parcimonieuse intervenu dans les algo-

rithmes ordinaires de CS n’y est plus nécessaire. Des simulations numériques en 2D ont

montré que, comparé à l’approche équivalente basée sur la base de pixel ou d’ondelette,

les algorithmes du TV et du ℓ1 existantes sont plus efficaces et les reconstructions ont

de meilleures qualités visuelles. Cette nouvelle approche ont été également validée sur

des données expérimentales 2D, où on a observé que le nombre de projection peut être

réduit jusqu’à 50%, sans pour autant compromettre la qualité de l’image.
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Chapter 1

Introduction

1.1 Motivations and Context

This thesis is a contribution to image reconstruction algorithms for the X-ray Computed

Tomography (CT) system working at full angle of view and few projections. CT is a

mature technology to represent visually the inside of a 2D or 3D physical object from

exterior projection measurements. It has widespread applications in both industrial and

medical domains. Some well known examples concerning our everyday life include dental

and cardiac imaging systems in hospitals, or luggage controls in airports. A minimal

CT system is composed of two elements :

• data acquisition: at different positions of a sampled trajectory around the ob-

ject, the X-ray source generates photons which are attenuated by the object, and

captured by the detector.

• image reconstruction : the spatial attenuation coefficient is reconstructed from the

data collected on the detector (also called sinogram), and represented in a gray

level image for visualization.

Let us denote f : IRd → IR the attenuation function to be reconstructed. The mathe-

matical expression for the data model is the X-ray transform:

Pf(θ, y) = Pθf(y)
△

=
∫

IR
f(y + tθ)dt, y ∈ θ⊥ (1.1)

with the direction θ ∈ Sd−1, the unit sphere of IRd. In 2D, it is equivalent to the Radon

transform, defined as:

Rf(θ, s) = Rθf(s)
△

=
∫

y∈θ⊥

f(y + sθ)dy, s ∈ IR (1.2)

2
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We are in a typical situation of ill-posed linear inverse problem, since the inversion of

Radon transform R−1 is not bounded.

1.1.1 Sampling condition

In practice both the directions θ ∈ {θ1 . . . θP } and the detector bins y ∈ {y1 . . . yD}
are finite in number. Typically, the P projections are equally positionned and the

D detector bins have the same size. This defines a uniform sampling scheme on the

domain T = {(θ, y), θ ∈ Sd−1, y ∈ θ⊥}. Suppose that the unknown f is essentially B-

band-limited ([2], Chapter 3), then the Shannon sampling analysis states that at least

P ≥ B/π projections and D ≥ B detector bins are needed in 2D standard sampling

schemes to reconstruct f accurately [2]. In language of pixel, this implies that P & 512

projections and D & 512 would be necessary to reconstruct an image of dimension

512× 512. This is the typical sampling condition required by the widespread analytical

reconstruction algorithms such as the Filtered Back Projection (FBP).

1.1.2 Few projections problem

The few projections problem refers to the reconstruction using P ≪ B/π equally dis-

tributed projections, without compromising the image quality. By solving this problem

we can improve both the safety (lower dose) and the productivity (faster acquisition) of

a CT system. Unfortunately the classical analytical algorithms such as FBP generally

fail in this situation: such a low angular sampling rate leads to heavy streak artifacts

which can make the reconstruction impossible to be interpreted. Furthermore, the in-

version procedure is unstable due to the presence of noise in data and the problem’s

ill-posedness (see Chapter 2, example 2.6.1).

Objective of this thesis In this thesis we aim to prove the feasibility of the CT

reconstruction from few projections for generic objects (medical or industrial oriented),

and provide some efficient and robust reconstruction algorithms validated on simulated

and real data.

1.2 Previous works

A viable way to treat the few projections problem (and the incomplete data problem in

general) is to use the algebraic or the iterative algorithm which allows to incorporate some

prior information in the reconstruction procedure. Multiple solutions in this direction
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have been proposed in the literature, which are based on different image models and

oriented for different applications. In a Bayesian framework, the reconstruction can be

done through the Maximum A posteriori Probability (MAP) estimation :

f̂
△

= min
f∈X

F (f, b) +R(f) (MAP)

where X is a given functional space, F (f, b) represents the data fidelity and encodes the

physical data generation process from model f to sinogram b, and R(·) is the regular-

ization term characterizing the prior information on f . A special case of R(·) is the edge

preserving prior, which assumes that f is homogeneous by region with sharp edges, so

contains little “information” outside the edges. Since a large class of CT object is well

represented by this model, this method can effectively reconstruct such objects using a

small number of projections.

In the same vein of the edge preserving prior, the popular TV minimization method

models f in the Bounded Variation space and uses the TV semi-norm as R(·). The

theoretical properties of this method, such as the edge preservation and the loss of

low contrast regions and oscillating patterns, have been intensively investigated and

relatively well understood in the literature. The surprising efficiency of TV minimization

in treating the few projections problem have been reported in many publications [3–6].

Rather than reconstructing f directly as a visual object, another possibility is to regu-

larize in the Besov space: one uses the Besov norm as R(·) via the wavelet transform,

and reconstructs the wavelet coefficients [7, 8]. This approach is based on the fact that

most natural image can be “compressed”, i.e., well represented by a multiresolution

wavelet basis with a small number of coefficients. The compression ability and the mul-

tiresolution structure of the wavelet basis provides a flexible way to reduce the inherent

dimension and compensate the ill-posedness of few projections problem.

The success of TV and wavelet methods can be roughly explained by “representing a

function in a space where it is simple”. For example, a piecewise homogeneous function

of BV space is “simple” since there is practically no information outside edges. Similarly,

a natural image represented by its wavelet coefficient has a small Besov norm since most

of its information is concentrated on few most largest coefficients.

Sparsity The notion of sparsity then enters in our field of view. A vector is sparse

if it contains few non zero entries, and compressible if it can be well approximated

by retaining few largest entries. For a linear inverse problem where the number of

available data is far fewer than the dimension of the unknown, finding the unknown in

a space where it’s supposed to be sparse can be much more advantageous than other
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regularization techniques, since the sparsity reduces the inherent dimension of the linear

system, and improves the trouble situation related to the ill-posedness, such as the

non-uniqueness, the instability with respect to noise etc..

From a signal sampling perspective, we are asking whether a unknown function f can be

identified using only few samples of the sinogram by exploiting the sparsity, and what

would be the sampling conditions and the reconstruction methods.

Compressed Sensing The emerging Compressed Sensing (CS) theory gives some rig-

orous answers to these questions. In a nutshell, if f is sufficiently sparse or compressible

with respect to some representation system, then its information can be captured by

some random linear measurements whose number is almost proportional to the sparsity

level of f , and can be reconstructed through an optimization problem, e.g., the ℓ1 norm

minimization. Furthermore, the reconstruction error is at the same order of the error

of “compression”. CS also proved that the random measurements together with the ℓ1

minimization is an optimal combination since they reach some theoretical bound of per-

formance. This theory provides us a general framework for the few projections problem.

One needs to:

• represent/model f in a sparsity promoting space, for example, through a multiscale

system like the wavelet/curvelet or an arbitrary dictionary which can synthesize a

meaningful image with a small number of atoms.

• seek the sparse solution through specific nonlinear methods like the TV or ℓ1

minimization.

Image representation in CT Remarkably, most of the reconstruction methods of

the CS framework use the pixel (or voxel in 3D) as basis for image representation. Apart

of the numerical simplicity, the pixel interfaces naturally with many fast transforms

(FFT, DCT, DWT etc.). However vis-à-vis the iterative CT reconstruction algorithms,

it is not an optimal way for representing a function for that:

• The space-frequency localization of pixel is mediocre. Large pixels are needed

for controlling the bandwidth of the reconstruction and stabilizing the inversion

procedure, while this can considerably reduce the image’s visual quality.

• It requires the discretization or approximation of the X-ray projector, whose com-

putational complexity depends only on the dimension of discretization but not on

the sparsity of image under the representation system.
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On the other side, a radial basis function called Kaisser-Bessel blob, which is better than

pixel with these regards, has already been proposed several decades ago. However, it does

not have a multiscale structure, and its representations of usual images are not sparse.

Furthermore, most of the reconstruction methods proposed for the Kaisser-Bessel blob

are not adequate for the few projections problem.

1.3 Contributions

Inspired by these elements and their limitations, we develop in this PhD thesis the “CT-

friendly” radial bases of Gaussian family, baptized blob, for image representation and

reconstruction. They have better space-frequency localization property than pixel, and

many operations, such as the X-ray transform, the gradient or the interpolation, can be

analytically evaluated, thus there is no need for discretization or approximation of the

X-ray projector. An image represented by these bases has a compressible form, so the

ad hoc sparse representation system used in the ordinary CS algorithms is not needed.

We will build a single scale and a multiscale image model based on blobs, which can

be qualified as the mimics of pixel or multiresolution wavelet representation. Some

approximation properties of these new image models will be studied. A function is

represented in the shift invariant space generated by these blobs on an hexagonal lattice,

and the reconstruction amounts to determining the blob coefficients, through the TV and

the ℓ1 minimization that we adapt for the blob image model. These two methods have

different behavior depending on the object’s content (e.g.piecewise constant or with low

contrast regions), and on the number of projections. The computations with blob, e.g.the

X-ray projection, the interpolation, are highly parallelizable on the GPU platform. A

GPU based blob-driven X-ray projector for blob image, is developed. To demonstrate

the efficiency of the new image models and the CS reconstruction algorithms, we will

compare them with the equivalent approaches based on pixel/wavelet basis through

numerical experiments of image reconstruction.

Organization of thesis In chapter 2, we introduce a widely accepted linear data

model for CT, and prepare a general Bayesian framework in which the prior information

can be easily introduced. Then the reconstruction is put in form of an optimization

problem, which is fundamental to all our further development.

The choice of the prior in the Bayesian framework is essential to solve the reconstruc-

tion problem with few projections, and it needs to reflect our a priori knowledge on

the unknown function f , primarily in term of its smoothness. In chapter 3, we give a
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review on some state-of-the-arts regularization techniques and iterative reconstruction

algorithms proposed in the CT literature, particularly those relevant to the few pro-

jections problem. We emphasize on the Total Variation minimization and the Besov

norm minimization via wavelet because of their relations with CS theory. Some non

Bayesian methods of regularization, in which the prior information is not expressed as

a probability distribution, is also discussed.

In chapter 4, we resume some important results of Compressed Sensing theory and

analyze its usefulness in CT reconstruction. Particularly we will explain why the random

measurements are relevant to capture the information of a sparse signal, and in which

sense the ℓ1 minimization is the optimal method for the reconstruction.

In the second part of this thesis we present our main contributions. The radial blob

functions is introduced in chapter 5, where two image representation models based on

Gaussian family blobs are developed. First we span the shift invariant space with the

Gaussian blob on an hexagonal lattice and prove that the translations of Gaussian blob

constitute a Riesz basis. It is found that unlike the case of pixel basis, by simply

dilating the Gaussian blob and the lattice, one cannot approximate L2(IRd) with the

shift invariant space. Then we give a general way to construct the tight frame of L2(IRd)

using the multiscale blob system, which can give compressible representations of natural

images. Some practical criteria on the choice of blob parameters are also discussed,

and finally we show that there exits a multiscale system named vaguelette blob in the

sinogram domain associated the multiscale blob system of space domain, by using the

Wavelet-Vaguelette Decomposition.

The CS reconstruction methods, namely the TV and the ℓ1 minimizations, can be applied

on the new image representation models, by solving some technical challenges such as the

evaluation of the Total Variation semi-norm on a blob image. In chapter 6 we propose

some reconstruction methods for blob image by adapting and improving the existing

algorithms.

2D reconstruction results using simulated data using the blob image models and the

CS reconstruction methods are presented in chapter 7. In order to demonstrate their

effectiveness in reducing the number of projections, we confront the methods based on

blob with the equivalent approaches based on pixel. We also make comparison between

different methods in order to understand their pros and cons in function of the applica-

tion context, e.g., medical (low contrast objects) or industrial (piecewise homogeneous

objects) oriented. In chapter 8 we present some preliminary results of reconstructions

using real data collected from different industrial/medical applications.
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Some perspectives are given in the last part. First, 3D numerical experiments are not

presented in this thesis, while the whole theory and the reconstruction methods that

we have developed include the 3D as a special case. Nevertheless, more efforts seem to

be necessary for the efficient parallelization of algorithms in 3D case, due to the large

dimension of the problem. Second, our blob image model lacks the geometric sensitivity

due to the blob’s radial symmetry, and their representation coefficients have a decaying

rate similar to that of the wavelet basis. Particularly, one needs a large number of blobs

for representing a contour. A possible improvement would be a curvelet-like multiscale

blob system, in which the radial symmetry of blob is dropped in favor of the angular

orientation, while it still keeps the “CT-friendly” characters of the radial blob. Lastly, all

the reconstruction techniques studied previously search a solution in the object space.

While another way is to restore the entire sinogram, then proceed by the standard

algorithm like FBP. Under the new context of few projections problem, we need to

restore a highly incomplete sinogram. This is possible by exploiting the sparsity of

sinogram under the vaguelette blobs using an analysis prior. We give some preliminary

investigations by presenting an algorithm on the efficient implementation of this prior.



Chapter 2

Linear data model and Bayesian

framework

The reconstruction of a spatial object from few projections is an ill-posed inverse problem

on which the analytical methods cannot be applied [2]. The iterative methods (also

called algebraic methods) on the contrary, can stabilize the inversion and provide visually

acceptable solutions by taking advantage of the prior information about the object. In

this chapter, we introduce a widely accepted linear data model for CT, which states the

linear relation between the observation and the unknown object, and is fundamental to

all our further development. Then we prepare a general Bayesian framework in which

the prior information can be easily introduced, and we put the reconstruction in form

of an optimization problem.

2.1 Physical model

The X-ray used in most CT systems has a continuous energy spectrum. Let’s denote

by mS(E) the photon number of energy E emitted by source S, and f(x;E) the linear

attenuation coefficient at position x (for a given material with a known mass attenuation

value, f(x;E) depends only on the density of material). The photon flux is attenuated

when travel between the source and the detector, and only yi(E) photons arrive finally on

the i-th detector binDi. For reason of simplicity, here we have supposed that the detector

is perfect, i.e., it captures each arriving photon with probability 1, and ignored the

undesired factors such as the spatial variation of source intensity, the photon scattering

and the background radiation. The photon number yi(E) are commonly accepted as

9
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independent Poisson random variables of mean mi(E):

yi(E) ∼ Poisson(mi(E)), for i ∈ ZZ (2.1)

and the mean mi(E) is given by the well-known Beer-Lambert law:

mi(E) = mS(E) exp
(
−
∫

Li

f(x;E)dx
)

(2.2)

where the integration is on the line segment Li from S to Di. We note yi the total

intensity for the whole energy spectrum on the i-th detector bin, and yi is the sum of

yi(E) on the whole spectral range [E0, E1]: yi =
∫ E1

E0
yi(E)dE. By the summability

of independent Poisson variables yi(E), yi follows also a Poisson distribution with the

mean mi given by:

∫ E1

E0

mi(E)dE =
∫ E1

E0

mS(E) exp
(
−
∫

Li

f(x;E)dx
)
dE (2.3)

The reconstruction amounts to determining the parameter f(x;E) for every position x

and energy E from the samples of random variables yi(E). Nevertheless, due to the

limited energy resolution of X-ray detector, in practice yi(E) are not observed for all E,

which makes the estimation of f(x;E) rarely feasible.

Monochromatic source We make the important assumption that the source is monochro-

matic, and drop the dependence on E in previous notations. Finally, the reconstruction

problem becomes estimating the attenuation coefficient f(x) from the the observations

yi, which are independent Poisson variables:

yi ∼ Poisson(mi) (2.4)

and the mean mi:

mi = mS exp
(
−
∫

Li

f(x)dx
)

(2.5)

This allows to derive a simple linear model in the sequel. However, it is worth to point

out that the X-ray source is always polychromatic in reality, and this assumption is at

the origin of the so called beam-hardening artefacts in reconstruction [2, 9].
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2.2 Bayesian framework and linear data model

In the following we identify the physical object with its attenuation value f . X denotes

the “solution space”, a separable Hilbert space which contains all possible f . We note

y
△

= [y1, y2 . . .]⊤ the observation in photon intensity, and m(f) = [m1,m2 . . .]⊤ the

vector of mean photon intensity at source. yi,mi follow the definition in Eq. (2.4) and

Eq. (2.5).

The Poisson likelihood function (PLF) P(y|m(f)) is the probability to observe the data

y given the parameters m(f). Recall the Poisson density function of mean λ: P(n|λ)
△

=

exp (−λ)λn/n!. Then under the hypothesis that yi are mutually independent, we have:

P(y|m(f)) =
∏

i

P(yi|mi) =
∏

i

myi

i

yi!
exp(−mi) (PLF)

The Bayesian framework provides a general approach to the statistical estimation of

f based on (PLF). Taking the maximum of (PLF) as an estimator of f leads to the

maximum likelihood (ML) estimation:

f̂ML
△

= arg max
f∈X

P(y|m(f)) (2.6)

If we have a prior probability density π(f) on the parameter space X, then in place of

ML the maximum a posterior probability (MAP) estimator can be used:

f̂MAP = arg max
f∈X

P(f |y)

= arg max
f∈X

P(y|m(f))π(f) (2.7)

Remark 2.2.1. MAP estimator picks up only the maximizer of P(·|y). From a general

point of view, other statistical inferences can replace MAP if one can generate the

samples from the distribution P(·|y). In Positron Emission Tomography (PET) for

example, the prior spatial distribution π governs the unknown emission concentration

λ(x). By sampling the posterior distribution P(λ|y) one generates infinite number of

realizations of λ(x) on which the statistical inferences, as the estimation of conditional

mean and variance, can be done (See the work of E.Barat [10]). In CT the situation is

similar but having a totally different interpretation. Even though the parameter space

X is equipped with a prior distribution π, one must keep in mind that the unknown f

is a fixed function but not a random spatial distribution as the λ(x) in PET.



12

2.2.1 Logarithm Poisson likelihood function

Taking the logarithm of (PLF) logP(y|m(f)) does not change the maxima of (2.6). After

removing the irrelevant constants, the log-Poisson likelihood function (LPLF) reads:

L(f ; y)
△

= −
∑

i

yi(Af)i −mS

∑

i

exp (−Af)i (LPLF)

where A : X → ℓ2(ZZ) the linear operator yielding the discrete sinogram and (Af)i

denotes the linear integration:

(Af)i =
∫

Li

f(x)dx (2.8)

In regularization theory of inverse problem, (LPLF) corresponds to the data fitting term,

whose level set consists of objects yielding the data y with equal probability. We will

replace it by a quadratic form as done in usual linear inverse problem formulations, and

this can greatly simplify the numerical treatment of the reconstruction problem. The

following arguments can be found in [11, 12].

2.2.1.1 Approximation of LPLF by quadratic form

Let’s rewrite L(f ; y) =
∑
i h((Af)i, yi), with h(u, yi) = −mSe

−u − uyi, and note bi =

− log(yi/mS) the logarithm transformed data. Remark that h(·, yi) is maximized at bi.

Then by a local development of h(·, yi) around bi we find:

h((Af)i, yi) ≃ −
1
2
yi((Af)i − bi)2 + h(bi, yi) (2.9)

thus LPLF is approximated around bi by the sum of a weighted quadratic form and an

irrelevant constant:

L(f ; y) ≃ −1
2

∑

i

yi((Af)i − bi)2 + cst

= −1
2
‖Af − b‖2Y + cst (2.10)

with b = [b1, b2 . . .]⊤, and ‖�‖Y the ℓ2 norm weighted by the diagonal matrix Y =

diag(y). This approves the usage of the quadratic form as data fitting term in place of

LPLF. Specifically, we admit the linear data model:

b = Af + n, ni ∼ N (0, 1/mi) (2.11)
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Remark 2.2.2. The above approximation is true only when we have bi ≃ (Af)i, for all

i. To see when this condition is met, we remark that:

(Af)i − bi = log
(

1 +
yi −mi

mi

)
≃ yi −mi

mi

where mi is defined as in (2.5). Since yi follows the Poisson law: E(yi) = Var(yi) = mi,

therefore:

E

[(
yi −mi

mi

)2
]

= Var(yi)/m2
i = 1/mi

This means that bi ≃ (Af)i whenmi is large. In other words, the previous approximation

is true when the mean number of arriving photons is large, i.e.when the data is not very

noisy. We shall still use (2.10) even on noisy data (low photon dosage case), and the

bias introduced by this approximation is considered as compensated by the regularization

term discussed in next chapter.

2.2.2 Variational formulations of the reconstruction problem

Taking the logarithm on (2.7) and using LPLF approximation (2.10), we put the MAP

estimator in the following form:

f̂MAP = arg min
f∈X

1
2
‖Af − b‖2Y − log π(f) (2.12)

which can be further simplified if all the observed intensity yi are of the same magnitude

σ−1: Y ≃ σ−1 Id:

min
f∈X

1
2
‖Af − b‖2 + σR(f) (2.13)

where R(f) = − log π(f) is the regularization term which represents the a priori knowl-

edge on f . The constant σ determines the strength of the regularization. It is well

known (see for example [13], Chapter 3) that as σ tends to 0, (2.13) is equivalent to the

constraint optimization form:

min
f∈X

R(f) s.t. Af = b (2.14)

The constraint here requires the noise-free data which is never the case in reality. To

take into account the noise, we solve:

min
f∈X

R(f) s.t. ‖Af − b‖2 ≤ ε (2.15)
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where ε should be set according to the noise level. Other variations to (2.13) are possible.

For example, we can drop the regularization term and consider uniquely the minimum

squared error (MSE) problem:

min
f∈KerA⊥

‖Af − b‖2 (MSE)

or even the simplest algebraic equation, in case that b ∈ ImA:

Af = b (2.16)

Remark that all these formulations can be incorporated with some explicit constraint

on f , such as the positivity f(x) ≥ 0,∀x.

2.3 Discretization of the solution space X

For the numerical treatments of the optimization problems above, we need to develop the

solution space X in more details. Let Ω be the unit ball of IRd(d = 2, 3), and L2(Ω) be

the space of squared integrable functions supported on Ω. We take X a closed subspace

of L2(Ω) representing the physical objects. A very first step in iterative reconstruction

methods is to discretize X. Generally, the idea relies on using a countable family of

basis function {φk ∈ L2(Ω)}k∈ZZ. For example,

• either {φk} is a Riesz basis, then we take X as the span of {φk},

• or we choose first X ⊆ L2(Ω), then prove that {φk} is a frame of X.

Then any f ∈ X can be expressed using a coefficient sequence {fk} ∈ ℓ2(ZZ) in the

following manner:

f(x) =
∑

k∈ZZ

fkφk(x) (2.17)

and the reconstruction amounts to determining the coefficients {fk}. In this early stage,

we take into consideration the numerical efficiency of {φk}, and prefer the spatially

localized basis functions, e.g. those with small compact support. Formally speaking, the

application of a general linear operator A on f can be done element-wisely in a parallel

manner: Af =
∑
k∈ZZ fkAφk. If the operator A is also “localized” in space, such as the

X-ray transform, then the localization of φk can help to moderate the computational

charge. See Chapter 5 and Annexe A for more detailed discussions.
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Shift invariant space A more useful model than (2.17) is based on the shift invariant

space, which is generated by the translations of a single function φ(x) (or by a family

{φj(x)}, see the discussion in Chapter 5). An immediate example is the pixel (or voxel

in 3D) basis. Let k = (k1, k2) ∈ ZZ
2, x = (x1, x2) ∈ IR2, and h > 0 the sampling step of

Cartesian lattice, the pixel basis is defined by:

φ(x) = h−11[0,1](x1/h)1[0,1](x2/h), (2.18)

Then the shift invariant space X is spanned by the translations {φk(x)
△

= φ(x − hk)},
which is an orthogonal system of X. Coupled with the fixed regular Cartesian lattice, the

pixel basis is de facto the standard way to represent image in today’s most state-of-art

reconstruction algorithms.

Wavelet basis [Chapter 7, [14]] Let φ be a monodimensional scaling function and ψ

the related mother wavelet which defines an orthogonal basis of L2(IR). We note ψ0 = φ

and ψ1 = ψ, 0 ≤ l ≤ 2d − 1 and integer and (l) = l1l2 . . . ld the binary form of l. In IRd

the mother wavelet is usually defined as a tensorial product:

ψ(l)(x)
△

= ψl1(x1)ψl2(x2) · · ·ψld(xd), x ∈ IRd

The orthogonal wavelet basis in IRd is then obtained by dilating and translating ψ(l)(x):

ψ
(l)
j,k

△

= 2−jd/2ψ(l)(2−jx− k), for j ∈ ZZ, k ∈ ZZ
d (2.19)

To simplify the notation, sometimes we shall also use ψλ to note ψ(l)
j,k with the multi-index

λ = (l, j, k). Then any L2(IRd) function f can be written as:

f =
∑

λ

〈f, ψλ〉ψλ (2.20)

Thus f is uniquely represented by the coefficients {〈f, ψλ〉} ∈ ℓ2(ZZ), and we can think

of f as “discretized” by the wavelet basis on the multiscale Cartesian lattice {2jk, j ∈
ZZ, k ∈ ZZ

d}.

2.4 X-ray projector

The operator A in the variational problems of section 2.2.2 and its adjoint A∗ (or A⊤

if understood as matrix), are of particular importance for the iterative reconstruction

algorithms. They are also called the X-ray projector and backprojector in the CT jargon.
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Numerically, the projector A is applied on a discrete image of type (2.17), and approx-

imates the linear integral (2.8). Its development is an independent line of research in

the tomography literature, with some objectives like: 1) numerical efficiency; 2) being

faithful to the X-ray transform; 3) reducing the high frequency errors (due to the sam-

pling of image and detector) in the reconstructed image. Most of existing methods for

X-ray projector are based on the pixel/voxel discretization of image, for example, the

Siddon ray-driven method [15], the Joseph pixel-driven method [16], the Distance-driven

method [17] etc. See also [18–22].

The boundness of an operator in an infinite dimension setting is an important issue. We

shall establish this point for the projector A under some simple but realistic assumptions.

Let Pθ be the X-ray transform taken at position θ:

Pθf(y)
△

=
∫

IR
f(y + tθ)dt, with θ ∈ Sd−1, y ∈ θ⊥ (2.21)

Let wB ∈ L1(IRd−1) be a band-limited function: supp ŵB ⊂ [−B,B]d−1, which charac-

terizes the response of the detector. The sampling operator on the detector is defined

as Sh =
∑
k∈ZZ

d−1 δ(x− hk), with δ the Dirac and h > 0 the sampling step. We assume

that the projector at θ acts as:

Aθf = Sh ◦ (wB ∗ Pθf) (2.22)

which means that the projection is first band limited then followed by a sampling process.

Lemma 2.4.1 (Boundness of Aθ). Let Ω be the unit ball of IRd. If the sampling step

h ≤ (2B)−1, then the operator Aθ : L2(Ω)→ ℓ2(ZZ) is bounded, the bound is uniform for

all θ ∈ Sd−1.

Proof. We note g(y) = wB ∗ Pθf(y), y ∈ θ⊥, and {g(hk)}, k ∈ ZZ
d−1 the samples given

by Sh. Clearly g(y) is band-limited. For h ≤ 1/(2B), g(y) can be reconstructed using

the sampling kernel

sincB(x)
△

=
d∏

j=1

sin(πBxj)
πBxj

(2.23)

as g(y) =
∑
k g(hk) sinc1/h(x − kh), and hd

∑
k |g(hk)|2 = ‖ĝ‖2. Since wB ∈ L1(IRd−1),

ŵB is bounded. Therefore:

‖ĝ‖2 = 2π
∫

ω∈θ⊥

|ŵB(ω)P̂θf(ω)|2dω ≤ C
∫

ω∈θ⊥

|P̂θf(ω)|2dω
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By the Theorem 2.3 from [2], Pθ is a continuous mapping from L2(IRd) to the weighted

space L2(θ⊥, 1/
√

1− |x|2). Recall that f is supported on the unit ball Ω, then:

∫

θ⊥

|Pθf(y)|2dy ≤
∫

θ⊥

|Pθf(y)|2 1√
1− |y|2dy ≤ C

∫

IRd
|f(x)|2dx

with the constant C independent of θ. This implies that

∑

k

|g(hk)|2 ≤ C
∫

IRd
|f(x)|2dx

and the operator Aθ is continuous.

The direction θ is defined on the periodic domain Sd−1, so a fixed angular sampling step

on Sd−1 can yield only a finite number of different directions θ1, . . . θJ . We formalize

the operator A appeared in the variational problems of section 2.2.2 in the following

definition.

Definition 2.4.1 (Projector). We note Aj the operator Sh ◦ (wB ∗ Pθj
), which is the

projection at angular position θj , and define the projector A as the row concatenation

of A1, . . . AJ .

Then the next proposition follows directly from Lemma 2.4.1:

Proposition 2.4.2. The projector A : L2(Ω)→ ℓ2(ZZ) is a bounded operator.

Remark 2.4.1. The continuity of A is a pleasant property. On the one hand, it is conform

with the physical intuition: a small change in the object f produces a small change in

the sinogram. On the other hand, the adjoint operator A∗ : ℓ2(ZZ) → L2(Ω) is well

defined, which is important to the study of the variational problems.

Remark 2.4.2. The lemma 2.4.1 and the proposition 2.4.2 would fail if the detector

response wB is replace by the Dirac δ. In this case, some extra assumptions on the

smoothness of the functions f ∈ X would be necessary to establish the boundness of

Aθ, and the arguments would become more involved. On the other hand, they are

established only for parallel-beam geometry and don’t handle the fan beam case. These

problems will be solved if f is expressed as (2.17) using the a finite number N of localized

basis function, e.g. the pixel basis or the blob introduced in Chapter 5. In fact:

(Af)j =
N∑

k=1

fk(Aφk)j (2.24)

So A can be represented in a matrix form, and the coefficient in j-th row and k-th

column is (Aφk)j . The boundness of A is then no more an issue. We will adopt this

point of view in all the following chapters.
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2.5 Existence of the solution

The optimization problem (2.13) will be the base of future discussions and it is important

to establish the existence of its solution. This clearly depends on the regularization term

R, on which we require the following conditions:

1. convex: R(λf + (1− λ)g) ≤ λR(f) + (1− λ)R(g)

2. proper: {f |R(f) =∞} 6= X

3. lower semi-continuous (l.s.c.): lim infnR(fn) ≥ R(f), for fn → f

4. homogeneous: R(λf) = |λ|R(f)

5. R(f) > 0 for any f ∈ KerA, f 6= 0

Lemma 2.5.1. Suppose that the solution space X has finite dimension, then:

inf{‖Af‖, f ∈ C} > 0, C
△

= KerA⊥ ∩ {‖f‖ = 1} (2.25)

inf{R(f), f ∈ C ′} > 0, C ′ △

= KerA ∩ {‖f‖ = 1} (2.26)

Proof. Since X has finite dimension, the projector A is automatically continuous and

the closed subspace KerA,KerA⊥ also have finite dimension. Let fn be a minimizing

sequence to (2.25). For all n, fn is in the compact set C and ‖Afn‖ > 0. There exists a

converging subsequence noted again by fn, fn → f∗ ∈ C. Therefore, the value of (2.25)

equals to ‖Af∗‖ > 0. The proof for (2.26) is similar.

Proposition 2.5.2. Suppose that X has finite dimension and under the assumptions

1-5 on R, there exists a global minimizer to the optimization problem (2.13).

Proof. We note J(f) = 1/2‖Af − b‖2 + σR(f). J(f) is convex on f since it is the sum

of two convex functions. Therefore if a minimizer to (2.13) exists, it is a global one. We

can uniquely decompose any f ∈ X into:

f = g + (f − g), with g ∈ KerA⊥, and (f − g) ∈ KerA.

f is unbounded only if either g or f − g is so. Suppose that g is unbounded, then

J(f) ≥ ‖Ag − b‖2/2 and by (2.25), J(f) is unbounded. Suppose on the contrary that

f − g is unbounded, we rewrite it as λg′ with λ > 0 and g′ ∈ KerA, ‖g′‖ = 1. Then

J(f) ≥ σR(g + λg′) = σλR(g/λ+ g′), which is also unbounded since by l.s.c. of R and

(2.26):

lim inf
λ→∞

R(g/λ+ g′) ≥ R(g′) > 0, for any g′ ∈ KerA
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Consequently, a minimizing sequence of (2.13) must be bounded, which implies that

there exists a converging subsequent {fn}, w.r.t. the Euclidean norm of X:

lim
n
fn = f∗, and lim

n
J(fn) = min

f∈X
J(f)

J(f) being l.s.c., thus J(f∗) ≤ lim infn J(fn), and f∗ is a global minimizer to (2.13).

For the constraint optimization problem, the existence of solution can be established by

very similar technique as above. We prove the existence of solution for the variational

problem (2.14) and (2.15):

Proposition 2.5.3. Under the same condition as in Proposition 2.5.2, there exist a

global minimizer to the following problem:

min
f∈X

R(f), s.t. f ∈ {‖Af − b‖2 ≤ ǫ} (2.27)

for ǫ ≥ 0.

Remark 2.5.1. It is worth to point out that all the popular regularization term R in the

literature do not meet all the conditions above as we shall see in next chapter. While the

TV semi-norm and the ℓ1 norm, which are two most important regularization techniques

studied in this thesis, fulfill all the conditions. Taking TV semi-norm (3.23) on a pixel

image as example, it fulfills the first 4 conditions trivially. A non-zero image has zero

total variation if and only if it is constant, while the X-ray projection of a constant image

cannot be zero. So the last condition holds too.

2.6 Ill-posedness of the few projections problem

The Radon transformR admits the singular value decomposition(SVD) (see [2], Chapter

4 for more details). In 2D this decomposition shows that the n-th singular value decays

as 1/n. The noise contained in the data makes the inversion of the Radon transform

numerically unstable, since the n-th singular component will amplify the noise level

by a factor n. When finite directions ΘK = {θ1, . . . θK} are used, the reconstruction

suffers also from the non-uniqueness: there exists an infinite number of solutions which

differ from the true object f but give exactly the same projection at the directions ΘK

(Theorem 3.7, Chapter 2, [2]).
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As a discretization of the X-ray transform, the operator A defined in section 2.4 inherits

these characters. In the matrix language, A has a non trivial kernel space, and is ill-

conditioned. Let’s consider the MSE problem:

min
f∈X
‖Af − b‖2 (2.28)

which is the MAP problem without the regularization term. Its solution(s) is(are) given

by the normal equation:

A⊤Af = A⊤b (2.29)

and can be solved numerically (without forming the matrix A⊤A) via the Conjugated

Gradient (CG) method from many other possibilities [23]. The next example illustrates

the instability of this solution.

Example 2.6.1 (Regularization-free reconstruction). We use a modified shepp-logan

phantom of 512 × 512 pixels, as test image, and a linear detector of 512 pixels. The

parallel-beam projections equally distributed on [0, π] are generated according to the

model (2.11): we apply first a Siddon ray-tracing projector on the phantom, then add

a white noise in such a way to obtain the desired SNR on the final sinogram b. In this

manner, four groups of data of 384 and 64 projections, and of the SNR at 50 and 25 dB

are generated. We solve the normal equation (2.29) on the four groups of data using

CG method initialized with 0. The reconstructed images are shown in Fig. 2.2. It can

be seen that the reconstruction is highly unstable, and suffers greatly from the streak

artifacts, the line patterns appearing around the object. These artifacts are typical signs

of the insufficient angular sampling rate.

(a) Phantom (b) Sinogram

Figure 2.1: Modified shepp-logan phantom of 512 × 512 pixels and parallel-beam
sinogram of SNR 25dB by 384 projections on a detector of 512 pixels.
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(a) SNR=14.19dB (b) SNR=9.41dB

(c) SNR=7.18dB (d) SNR=-9.86dB

Figure 2.2: Solution of (2.29) by CG using 250 iterations. The reconstructed images
have dimension 256 × 256. The first and the second rows correspond to the sinogram
data of SNR 50 and 25 dB respectively, while the first and the second columns corre-
spond to the data of 384 and 64 projections respectively. The linear window [−0.5, 2]

is applied on all images.

As a conclusion, the reconstruction with MSE (2.28) is not appropriate for the few

projections case, and some regularization term R(f) should be introduced.

2.7 Concluding remarks

In this chapter, we have seen that the reconstruction of the attenuation coefficient can

be handled under the Bayesian framework using ML or MAP estimators. These esti-

mators are expressed through an optimization problem, where the objective function is

composed of a quadratic data fitting term (likelihood) and a regularization term (prior).



22

The discretization of the function f is necessary for further numerical solution, and will

be re-discussed in Chapter 5. The choice of regularization term R is essential to solve

the reconstruction problem with few projections, and will be at the heart of our study.

In the next chapter, we review some popular regularization techniques proposed in the

tomography literature, which are relevant to the few projections problem.



Chapter 3

Review on regularization and

iterative methods

The use of prior information can greatly improve the reconstruction quality, especially

when the observed data are incomplete or corrupted by noise. Under the Bayesian

framework, the regularization functional R needs to reflect our a priori knowledge on

the unknown function f , primarily in term of its smoothness. A discrete pixel image is

treated as a Markov random field, and the smoothness is expressed through a potential

function (prior) acting on cliques. The Bounded Variation space and the Besov space

are important smoothness spaces very useful for tomographic reconstruction. There

exists also non Bayesian methods for the regularization of inverse problems, where the

prior information is not expressed as a probability distribution. In this chapter we

give a review on some important regularization techniques and iterative reconstruction

methods proposed in the tomography literature, and we will detail particularly those

relevant to the few projections problem.

Unless specified, throughout this chapter the function f ∈ X is approximated using a

finite number N of pixel basis on a Cartesian lattice, and we note f = [f1 . . . fN ]⊤ ∈ IRN

the vector of the pixel values. When applied on f , the X-ray projector A is understood

as an operator, and accordingly understood as a matrix when applied on f .

3.1 Prior and regularization

In the Bayesian framework and particularly the MAP estimation, a lot of priors π have

been proposed for CT reconstruction. The most important among them are the local

priors which characterize the local properties of f , such as the discontinuities and the

23
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smoothness. These are often the most distinguish characters of f and are easily described

as the interdependence between the neighborhood pixels.

3.1.1 Markov random fields

A convenient way to define local prior is via Markov random fields (MRF). In this

context the pixel image f ∈ IRN is considered as a random vector defined on a suitable

probability space equipped with a density function π(f). Then f is a MRF if each pixel

depends only on its neighbors. Let S = {1 . . . N} be the index set of pixels. Each

index s has a set of neighbors noted by ∂s, which is a collection of indexes satisfying:

1) s /∈ ∂s; 2) r ∈ ∂s ⇔ s ∈ ∂r. A clique c is a subset of indexes such that for any

pixel pair s, r ∈ c, s and r are mutually neighbors. For example, on a 2D Cartesian

lattice with the standard 4-neighbors system, a clique c contains only two horizontal or

vertical adjacent pixels. The collection of all cliques is noted by C. In a MRF the pixel

fr depends only on its neighbors ∂fr, that is:

P(fr|fs, s 6= r) = P(fr|fs, s ∈ ∂r) (3.1)

By the Hammerslay-Clifford theorem, (3.1) holds if and only if the MRF f has the Gibbs

density:

π(f) =
1
Z

exp (−βU(f)) , with U(f) =
∑

c∈C

Vc(f) (3.2)

where Z is a normalization constant, and β > 0 determines the strength of the prior.

Vc(f) ≥ 0 is an energy function acting on the clique c. The MAP estimation problem on

a MRF now takes the form:

min
f

1
2
‖Af − b‖2 + β

∑

c∈C

Vc(f), for f ∈ IRN (3.3)

As we will see in the following, different choices of potential function Vc can produce

very different regularization effects.

3.1.1.1 Gaussian MRF and Tikhonov regularization

As an example, we consider the Gaussian Markov random field (GMRF) [24]:

π(f) ∝ exp(−f⊤Bf), U(f) = f⊤Bf (3.4)

where the symmetric matrix B is definite positive, with the off-diagonal coefficient Bsr =

0 if s /∈ ∂r, Bsr ≤ 0 otherwise; and Bss > −
∑
r∈∂sBsr on the main diagonal. Then it
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follows easily [24]:

f⊤Bf =
N∑

s=1

asf
2
s +

∑

(s,r)∈C

bsr(fs − fr)2, (3.5)

with the positive constants as =
∑
r∈∂s∪sBsr, and bsr = −Bsr. On a Cartesian lattice,

the term fs − fr for the clique (s, r) is simply the difference between two adjacent

pixels s and r, and bsr is the directional weighting coefficient. Due to the quadratic

term (fs − fr)2, minimizing (3.3) with GMRF prior will strongly penalize the large

difference between adjacent pixels, which corresponds generally to discontinuities and

sharp transitions in image. Consequently, one should not be surprised by the over-

smoothness of the corresponding reconstruction, see the images in example 3.1.1.

Relation with Tikhonov regularization The Tikhonov regularization (3.6) in a

continuous form reads:

min
f∈X

J(f) =
1
2
‖Af − b‖2 + δ1‖f‖2 + δ2‖∇f‖2, δ1, δ2 ≥ 0 (3.6)

An admissible f such that J(f) < ∞ is clearly in the Sobolev space H1(IRd), which

consists of the square integrable functions with square integrable first order derivate:

‖f‖2H1 =
∫

IRd
|f(x)|2dx+

∫

IRd
|∇f(x)|2dx <∞, (3.7)

Let △ be the laplacian operator, then the Tikhonov regularization (3.6) has the unique

solution f∗ given by:

f∗ = (A∗A+ δ1I + δ2△)−1A∗b (3.8)

One can take δ2 = 0, in which case the Tikhonov regularization acts as a "filter" on

the singular system of A: the contribution of tiny singular components are weakened

and the inversion becomes stable, due to the presence of δ1 > 0. In GMRF prior the

weighting coefficients as and bsr can be set to constants, then comparing with (3.7), we

find that (3.5) is a weighted norm on a discrete analog of H1(IR2). In this case the MAP

solution is given by (3.8), with appropriately discretized operators A and △.

Example 3.1.1 (GMRF reconstruction). In light of the inversion formula (3.8), the

MAP problem (3.3) with GMRF prior can be solved using CG. We reconstruct again

the data of 64 projections at SNR of 25dB as in Example 2.6.1. From Figure 3.1.(a)

we see that the inversion procedure with regularization becomes stable. To reduce the

streak artifacts and the noise in reconstruction, one needs to increase the penalization

constant δ2, while this over-smoothes the whole image and suppress particularly the low

contrast edges and the small details, as shown in Figure 3.1.(b).
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(a) δ1 = 5, δ2 = 5, SNR=9.88dB (b) δ1 = 5, δ2 = 100, SNR=10.25dB

Figure 3.1: GMRF reconstructions by solving (3.8) using CG with 250 iterations.
The sinogram data contain 64 projections, and the SNR is 25dB. The linear window

[−0.5, 2] is applied on both images.

The edge one of the most prominent character of an image. In fact, many physical

objects in CT applications consist of homogeneous regions separated by sharp edges. A

such object contains very few information outside the edges. In this regard, GMRF is

not appropriate for the few projections problem since it fails to preserve the edges. The

edge-preserving priors discussed in the next is a remedy to overcome the over-smoothing

effect of the GMRF prior, especially on the piecewise homogeneous object.

3.1.2 Edge-preserving prior

The edge-preserving regularization is a very popular technique to restore piecewise ho-

mogeneous image by preserving the edges. It has been widely employed in numerous

imaging techniques [25, 26], it is useful particularly for CT reconstruction [24, 27–29]

with limited-angle data [30] or low dose photon data [11].

An edge-preserving prior(EPP) has its potential function Vc depending only on the finite

difference between pixels on the clique c, and differs from the non EPP in the way how

the discontinuity is penalized. On a 2D pixel image f we define D1, D2 : IRN → IRN the

discrete partial derivatives in horizontal and vertical directions:

(D1f)i,j = fi,j − fi,j+1, and (D2f)i,j = fi,j − fi+1,j (3.9)
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where fi,j denotes the value of pixel (i, j) with periodic boundary conditions on f as-

sumed. We define also the overall operator (discrete gradient) D : IRN → IR2N :

Df =


D

1f

D2f


 =




D1f
...

D2N f


 , Dnf = (Df)n (3.10)

Edge-preserving prior We introduce the edge-preserving prior ϕ(t) : IR+ → IR+,

and rewrite the MAP problem (3.3) as:

min J(f) =
1
2
‖Af − b‖2 + β

∑

k=1,2

∑

i,j

ϕ((Dkf)i,j) (3.11)

Or in a more compact form that one may find in most of the edge-preserving regular-

ization literature:

J(f) =
1
2
‖Af − b‖2 + β

2N∑

n=1

ϕ(Dnf) (3.12)

Some basic properties of ϕ(t) includes:

1. limt→+∞ ϕ(t)/t2 = 0

2. ϕ is increasing on IR+, and ϕ(0) = 0

3. ϕ ∈ C1([0,+∞)), ϕ′(0) = 0, and ϕ′′(0+) > 0

4. ϕ(
√
t) is concave on IR+

Some popular choices of ϕ are given in Tab. 3.1, and more examples can be found in

[24, 27, 31, 32]. These priors can be divided into the convex and non convex families.

The convex priors are preferred over the non convex ones for the global optimality and

the stability of the solution, see [24] for more discussions.

Convex Name Ref.
tα, α ∈ (1, 2) - [24]√

α+ t2 Abs [6]
log(cosh(αt)) Green [33]
Non convex Name Ref.

1− exp(−αt2) - [34]
t2/(α+ t2) Geman-McClure [35]
min{αt2, 1} Huber [36]

Table 3.1: Convex and non convex edge-preserving priors ϕ
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Figure 3.2: Graphs of some popular edge-preserving priors. α = 10−3 for Geman and
Abs priors, and α = 2 for Huber and Green prior.

Among the properties of ϕ listed above, the first point is essential to the preservation

of edges. In fact, the ϕ increasing slower than quadratic function can tolerate much

more large "jumps" between homogeneous regions, therefore avoid overly penalizing the

edge discontinuities. The other conditions (2-4) are necessary for the establishment of

a special numerical algorithm called Half-Quadratic minimization [27, 31, 37] that we

briefly resume in 3.1.2.1.

3.1.2.1 Half-quadratic minimization

With the properties 1-4 of ϕ, it can be proven that J(f) equals to the minimizer of a

functional: J(f) = inft J (f ; t), with J (f ; t) given by:

J (f ; t) =
1
2
‖Af − b‖2 + β

∑

n

(
tn
2
‖Dnf‖2 + ψ(tn)

)
(3.13)

where ψ(t) = sups≥0−ts2/2 + ϕ(s). Then we have the following two-steps alternating

minimization algorithm, referred also as Half-quadratic:

Algorithm 1 Half quadratic minimization (HQ)
Initialization: k = 0
while not converged do

tk+1 = arg mint J (fk; t)
fk+1 = arg minf J (f ; tk+1)
k ← k + 1

end while
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The first minimization in Algorithm 1 is component separable so it can be solved for

each n:

tk+1
n =




ϕ′(|Dnfk|)/|Dnfk| if |Dnfk| > 0

ϕ′′(0+) if Dnfk = 0
(3.14)

While the second minimization with respect to f is a quadratic problem and the solution

is given by the linear system:

(
A⊤A+ β/2

∑

n

tk+1
n D⊤

nDn

)
f = A⊤b (3.15)

It is commonly supposed that KerA⊤A ∩KerD⊤D = {0}, so that the system above is

invertible [27, 31]. The variable t plays the roles of line process [35]: it renews iteratively

the information about the discontinuities in image that will be taken into account in

next iteration. The convergence of this algorithm is discussed in [27]. In [31], it has

been pointed out that the HQ algorithm is indeed a basic linearized gradient method.

GGMRF prior In [24, 38, 39] the generalized Gaussian Markov random field (GGMRF)

is introduced as an extension to the GMRF (3.5). It has the similar edge preserving

effect as the EPP discussed above. The potential function of GGMRF is defined as:

U(f)
△

=
N∑

s=1

as|fs|p +
∑

(s,r)∈C

bsr|fs − fr|p, (3.16)

where 1 < p ≤ 2 is a free parameter controlling the degree of edge preservation in

reconstruction. To define a consistent potential function, one should choose the strictly

positive weight coefficients as, bsr. While in practice as can be 0 without affecting the

uniqueness of the MAP solution [24].

q-GGMRF prior In [40] the GGMRF is again extended to the q-GGMRF prior, with

the convex potential function defined as:

U(f)
△

=
∑

(s,r)∈C

bs,r
|fs − fr|p

1 + |(fs − fr)/c|p−q
(3.17)

where 2 ≥ p ≥ q ≥ 1, and c > 0. The combination of free parameters p, q and c can

give a fine control on the penalization of discontinuity and homogeneous regions, and

include many regularization priors in the literatures as special cases [4]. For example:

• p = q = 2: Gaussian prior
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• p = 2, q = 1: Approximate Huber prior

• 1 < q = p ≤ 2: GGMRF with as = 0

Numerical experiments with real data [4, 40] have shown that q-GGMRF prior is effec-

tive for few projections problem and the reconstructions have better spatial resolution

compared with analytical algorithm like FDK.

Example 3.1.2 (Edge-preserving reconstruction). We reconstruct the same data of

Example 2.6.1 by Abs prior
√
α+ t2, α = 10−3 and Geman prior t2/(a + t2), α = 10−3

with HQ algorithm 1. Figure 3.3 shows the results with 64 projections data of SNR

at 50dB (first row) and 25dB (second row). The results of Abs prior are always better

than those of Geman prior in terms of SNR. Nevertheless, it can be seen from Figure

3.3.(d) that Geman prior preserves much better the constant region, even at the price

of suppressing the low contrast small objects and the inaccurate contour shape. The

different behavior of priors is related to their convexity and the choice of parameter α

[32].

3.1.2.2 Discussions on EPP

The edge-preserving prior is a simple and efficient method in reconstructing piece-wise

homogeneous image with edges. Nevertheless, we remark the following two drawbacks

of this approach:

• All the priors discussed above depend on some free parameters (α for those in

Table 3.1, and p, q, c for GGMRF, q-GGMRF priors). They control the penaliza-

tion of the discontinuities and homogeneous regions. How to choose their value in

practice is not very clear.

• None of the priors (except some special cases in GGMRF and q-GGMRF) define

a norm or a semi-norm, for the simple reason that the homogeneous property of a

norm:

ϕ(λt) = |λ|ϕ(t) (3.18)

is not satisfied (for those defined in Table 3.1, remark that (3.18) is in conflict

with the property ϕ′(0) = 0). If generalized to infinite dimension (by tending the

pixel size to 0), it is not clear in which functional space the object is reconstructed

or approximated. Except some important contributions [31, 32], the theoretical

analysis on the effect of these priors seems to be limited in the literature.
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(a) Abs prior: SNR=14.64dB (b) Geman prior: SNR=13.59dB

(c) Abs prior: SNR=13.55dB (d) Geman prior: SNR=10.59dB

Figure 3.3: Edge-preserving reconstructions from 64 projections with the Abs prior
ϕ(t) =

√
α+ t2 and the Geman prior ϕ(t) = t2/(α + t2) both using α = 10−3. The

parameter β in (3.11) is chosen manually. The first and the second row are obtained
from sinogram data of SNR 50dB and 25dB respectively. The linear window [−0.1, 1.2]

is applied on all images.

3.1.3 BV space and Total Variation

The Bound Variation (BV) space is a pertinent model for representing images composed

by relative homogeneous regions and sharp transitions between them. The BV space is

a Banach space equipped by the norm:

‖f‖BV △

=
∫

IRd
|f(x)|dx+ TV (f) (3.19)

with TV (f) the Total Variation (TV) semi-norm.

Definition 3.1.1 (Total Variation). The total variation of a real-valued integrable func-

tion f supported on unit square region Ω = [0, 1]d is defined as :

TV (f)
△

= sup
{∫

Ω
fdivϕ : ϕ ∈ C1

c (Ω, IRd), ‖ϕ‖∞ ≤ 1
}
, (3.20)

where C1
c (Ω, IRd) is the set of continuously differentiable vector functions of compact

support contained in Ω (in particular ϕ|∂Ω = 0). For f differentiable, it can be shown



32

that (3.20) equals to :

TV (f) =
∫

Ω
|∇f(x)| dx (3.21)

Considered in L1(Ω), the TV semi norm TV : BV (Ω) → IR+ is known to be a strictly

convex lower semi-continuous functional [41]. By the co-area theorem [14, 41], TV (f)

equals to the total length of level sets contour of f . Let Bf (α)
△

= {x|f(x) ≤ α} be the

level set and ∂Bf (α) its contour such that the length is finite for almost all α, then:

TV (f) =
∫

IR
|∂Bf (α)|dα (3.22)

3.1.3.1 Discrete TV norm

BV space does not admit any countable generating system. This means that one has to

pass by some approximation schemes for discrete representation and numerical treatment

of BV function. The usual way is to represent f by its samples f (pixel values) taken

on a regular Cartesian lattice, and define a discrete analog of (3.21). Let’s consider the

2D case here. We divide the unit square Ω = [0, 1]2 ⊂ IR2 is into N = n× n pixels, and

note fi,j = f(i/n, j/n) for i, j = 0, . . . n− 1. Using the operators D1, D2 as in (3.9), the

discrete TV semi-norm on the pixel image f is defined as:

‖f‖TV △

=
∑

i,j

√
(fi,j − fi+1,j)2 + (fi,j − fi,j+1)2

=
∑

i,j

√
(D1f)2

i,j + (D2f)2
i,j (3.23)

Then by the trapezoidal rule, for n sufficiently large:

∫

Ω
|∇f(x)|dx ≃ 1

n2

∑

i,j

√
(∂1f(i/n, j/n))2 + (∂2f(i/n, j/n))2

=
1
n

∑

i,j

√
(fi,j − fi+1,j)2 + (fi,j − fi,j+1)2 + o(n−2)

comparing with (3.23), we obtain:

∫

Ω
|∇f(x)|dx ≃ 1

n
‖f‖TV (3.24)
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3.1.3.2 TV regularization

Let A be a linear operator from L2(Ω) to another Hilbert space Y , and b ∈ Y . In the

continuous form, the TV regularization problem announces:

min
f∈X

1
2
‖Af − b‖2 + βTV (f) (3.25)

In practice f is replaced by its pixel version f , and we solve the discrete optimization

problem:

min
f∈IRN

1
2
‖Af − b‖2 + β‖f‖TV (3.26)

or in a constrained form to take into account the noise in data:

min
f∈IRN

‖f‖TV s.t. ‖Af − b‖2 ≤ ε (3.27)

Remark 3.1.1. The operator A in the CT reconstruction requires the discretization di-

mension N to be specified by user, and it does have impacts on the solution of (3.26).

Let’s consider a simple case here. Suppose that f(x) = 1K(x) is the indicator function

of a set K with the smooth boundary ∂K which has finite length. The reconstruction

of f then amounts to determine the position of ∂K, or the active pixels of f , e.g., those

intersect with ∂K. It follows from (3.22), (3.24) and (3.23) that for N = n2 →∞:

1
n2
‖f‖TV ≃

1
n
TV (f)→ 0, (3.28)

while ‖f‖TV /n2 can be interpreted as the percentage (up to a constant factor) of active

pixels. Then eq. (3.28) suggests that it would be more interesting to reconstruct f by

its approximation f in high dimension (n large) than in low dimension, for that in the

high dimension the approximation quality is better, while the relative number of active

unknowns is smaller than in low dimension. The numerical experiments in Example

3.1.3 confirm this intuition.

Rudin-Osher-Fatemi(ROF) model The TV regularization technique origins from

the following ROF model [42], well known for image denoising applications:

min
f∈BV (Ω)

1
2

∫

Ω
|f − g|2 + β

∫

Ω
|∇f | (3.29)

Here g is a noisy observation and the solution f is the denoised version of g. The ROF

model has been well studied from both numerical and theoretical point of view. For

example, we know that (3.29) can preserve the edges and the constant regions of the

original image g, therefore produces piece-wise constant “cartoon” image, while quite
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often small details and low contrast regions are smoothed out in the solution. Recently,

it has been pointed out by Meyer [43], Haddad and Meyer [44] that (3.29) can be seen

as a “texture separation” algorithm, in the sense that by solving (3.29), g is uniquely

decomposed into:

g = f + v (3.30)

with the BV part f ∈ BV (Ω) as the solution of (3.29), and v ∈ G. G is a Banach

space characterizing the textures and oscillating patterns, such that these components

are expected to have small ‖·‖G norm, defined as:

‖v‖G △

= inf
g
{‖g‖∞, s.t. div(g) = v, g ∈ (L∞(Ω))2} (3.31)

where ‖g‖∞ = ‖g2
1 + g2

2‖∞. The unit ball of G is denoted by BG. Then Chambolle [45]

has proven that the solution to a discrete version of (3.29) is fully described by a convex

projection operation:

f = g −ΠβBG
(g) (3.32)

with ΠβBG
(·) the convex projector onto the closed convex set βBG. Now it follows easily

that if ‖g‖G ≤ β, the solution f of (3.29) is 0; otherwise ΠβBG
(g) 6= 0 and the solution

f never equals to g, even if g is “texture free” (e.g., piece-wise constant function).

Drawbacks of TV regularization In case of the CT reconstruction, we consider:

min
f∈BV (Ω)

1
2
‖Af −Ag‖2 + β

∫

Ω
|∇f(x)|dx (3.33)

As the projection number increases, A can even become over-determinant and invertible,

then ‖f − g‖ ≍ ‖Af −Ag‖ and one can expect the solution of (3.33) to be close to that

of (3.29), therefore inherits the same drawbacks of the ROF model:

• If ‖g‖G is smaller than β, which could happen when g is some oscillating patterns

like textures, small objects or low contrast regions, then we will lose it in the

solution.

• The solution never equals to the original image so one cannot reduce the recon-

struction error ‖f−g‖ to zero, especially when the original image contains textures,

and when the data are noisy.
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While in most cases the TV minimization results visually pleasant reconstructions, by

preserving well the discontinuities and reducing the noise and streak artifacts, the “tex-

ture killer” behavior could make it harmful in medical applications. In Chapter 7 we

give more numerical evidences for these theoretical findings.

3.1.3.3 Numerical algorithm for TV regularization

The numerical solution of (3.26) is a challenging problem in practice. Firstly, the discrete

TV norm ‖f‖TV is non differentiable at 0 and the gradient-like methods cannot be

applied. Secondly, due to the operator A, the TV regularization problem (3.26) is much

more difficult than the TV denoising problem (3.29). Particularly, some efficient methods

for (3.29), e.g., Chambolle’s projection algorithm [45], cannot be applied directly on

(3.26). Recently, new algorithms dedicated to (3.26) and (3.27) have been proposed in

[46–50]. These methods are developed for general image processing tasks, and apply as

well on the CT reconstruction problem of large dimension. In this chapter and later,

we will use the TVAL3 algorithm proposed by Li et al. [48] to solve (3.26). TVAL3

is a special variant of the Alternating Direction Method (ADM) [49, 50], it operates

on general system operator A and can incorporate positive constraints. This is a low

complexity algorithm: in each iteration it involves only one forward and one backward

operation of the X-Ray projector A and the gradient operator D. We resumed this

algorithm in Annexe B.3.1.1, and refer readers to original report [48] and the reference

therein for all technical details.

Example 3.1.3 (TV reconstruction). Figure 3.4 shows the solution of (3.26) with 64

projections on the same data as in Example 3.1.2. It can be seen that the TV reconstruc-

tions outperform those of EPP presented in Example 3.1.2. As pointed out in Remark

3.1.1, the reconstruction in high dimension (512 × 512 pixels, Figure 3.4.(b) and (d))

are better than that in low dimension (256× 256 pixels, Figure 3.4(a) and (c)). On the

piecewise constant images like the Shepp-Logan phantom, our numerical findings show

that one can reduce the number of projections down to 16, while the reconstruction im-

age quality is still interpretable, as shown in figure 3.5. In order to achieve such a result,

an iterative reweighted TV regularization with positivity constraint is solved instead

of (3.26). More details can be found in Section 6.3. Comparing with the Figure 3.4,

we can see that in very few projections case, TV regularization still recovers correctly

the constant regions, while fails on low contrast objects, high frequency oscillation, and

geometrical singularities.
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(a) SNR=14.72dB (b) SNR=17.68dB

(c) SNR=13.83dB (d) SNR=15.26dB

Figure 3.4: TV reconstructions from 64 projections. The parameter β in (3.26) is
chosen manually based on visual result. The first and the second row correspond to the
sinogram data at SNR of 50dB and 25dB respectively. The first and the second column
are the reconstructions of dimension 256 × 256 and 512 × 512 respectively. The same

linear window [−0.1, 1.2] is used for the visualization of all images.

(a) SNR=13.19dB, SI=0.0150 (b) SNR=15.97dB, SI=0.0098

Figure 3.5: TV reconstructions from 16 projections. The SNR of the sinogram data
is 50dB, and the reconstructions have the dimension 256× 256 in (a) and 512× 512 in

(b).
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3.1.4 Besov prior

The Besov space Bα
p,q = Bα

q (Lp(IRd)) for 0 < α <∞, 1 ≤ p, q ≤ ∞ is a family of Banach

spaces covering a wide range of functional smoothness. Here α determines the order of

smoothness, Lp(IRd) is the space in which it is measured, and q is a less important fine

tuning parameter. For example p = q = 2 yields the Sobolev space Wα,2(IRd). The

smoothness of function f ∈ Bα
q (Lp(IRd)) can be characterized by its wavelet coefficients,

thanks to the following norm equivalence:

‖f‖Bα
p,q
≍

∑

k∈ZZ
d

∣∣∣〈f, ψ(0)
j0,k
〉
∣∣∣
p




1/p

+



∑

j≥j0


∑

k∈ZZ
d

2d−1∑

l=1

2jps
∣∣∣〈f, ψ(l)

j,k〉
∣∣∣
p



q/p



1/q

(3.34)

with s = α + d(1/2 − 1/p). Here the wavelets Ψ = {ψ(l), l = 1 . . . 2d − 1} follow the

definition in Chapter 2, and have n > ⌈α⌉ vanishing moments. For reason of simplicity,

we take p = q, and set the constant α such that s ≥ 0, then Bα
p,q is embedded in

L2(IRd)[51]. In practice the sequence norm (3.34) can be replaced by a computational

effective definition:

‖f‖pBα
p,p
∼
∑

k∈ZZ
d

∣∣∣〈f, ψ(0)
j0,k
〉
∣∣∣
p

+
∑

j≥j0

∑

k∈ZZ
d

2d−1∑

l=1

2jps
∣∣∣〈f, ψ(l)

j,k〉
∣∣∣
p

(3.35)

We note the coefficient sequence c = {c(l)
j,k}j,k,l, with c

(l)
j,k = 〈f, ψ(l)

j,k〉, and define the

sequence norm:

‖c‖pp,α =
∑

k∈ZZ
d

∣∣∣c(0)
j0,k

∣∣∣
p

+
∑

j≥j0

∑

k∈ZZ
d

2d−1∑

l=1

2jps
∣∣∣c(l)
j,k

∣∣∣
p

(3.36)

Then the smoothness of f can be characterized by the membership of its wavelet co-

efficients in the weighted sequential space ℓp(ZZ), which implies that the n-th largest

wavelet coefficient |c(n)| decays as O(n−1/p), and the coefficient across scale decays as

2−jα. For most of the natural images the wavelet coefficients enjoy a fast decay, e.g.,

p < 2 [52], and the essential information can be coded in the first K biggest terms for

K small. The idea of regularization by Besov norm is to search the solution in a Besov

space Bα
p (Lp(IRd)) for p < 2, in which the inherent dimension K of the unknown is re-

duced, and in this way balance the ill-posedness of the reconstruction problem with few

projections. This approach has been successfully applied to dental CT reconstruction

with limited angle or few projections data [7, 8, 53–56].
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Regularization by Besov norm The function f can be re-synthesized from c by

f = Ψc, with the equality holds in L2 sense, and Ψ the synthesis operator:

Ψc(x) =
∑

k∈ZZ
d

c
(0)
j0,k

ψ
(0)
j0,k

(x) +
∑

j≥j0

∑

k∈ZZ
d

2d−1∑

l=1

c
(l)
j,kψ

(l)
j,k(x) (3.37)

Then the regularization problem by Besov prior announces:

min
c

1
2
‖AΨc− b‖2 + β‖c‖pp,α, for c ∈ ℓ2(ZZ) (3.38)

The wavelet basis here provides a natural multiresolution/multigrid discretization of

f ∈ X which can be exploited by the reconstruction algorithm. For example, in ROI

reconstruction from truncated data [7] the computation grid can be easily adapted to the

data acquisition for improving locally the resolution, reducing the number of unknowns,

and accelerating the computation. Nevertheless, (3.38) is rarely feasible in practice,

since the numerical implementation of the operator AΨ : ℓ2(ZZ) → IRM would require

to compute and store the X-ray transform of the wavelet: Aψ(l)
j,k, which is numerically

challenging in high dimension.

In order to solve (3.38) f is replaced by its samples f on a regular Cartesian lattice. Let

W be the orthogonal discrete wavelet transform (a synthesis operator): f = Wc, and

A : IRN → IRM applies on the pixel image f . The regularization problem (3.38) then

becomes:

c∗ = arg min
c∈IRN

1
2
‖AWc− b‖2 + β‖c‖pp,α (3.39)

and the reconstructed pixel image is re-synthesized from the coefficients by: f∗ = Wc∗.

Remark that the objective function in (3.39) is strictly convex, and differentiable for

p > 1. The numerical solution (3.39) can be done by the nonlinear Conjugate Gradient

method.

Example 3.1.4 (Besov norm reconstruction). The reconstruction by (3.38) is affected

mainly by the choice of wavelet basis W and the parameter p. To illustrate this point,

we solve (3.38) on the phantom “Brain” of dimension 512 × 512 (Fig. 3.6 (a)) and the

phantom “Lung” of dimension 334 × 512 (Fig. 3.6 (b)). The Haar and the Daubechies

wavelets of 6 vanishing moments are used as wavelet basis W . We have simulated 128, 96

and 64 projections equally distributed between 0 and π on the pixel phantom images, and

add a small white noise to the sinogram such that the SNR of data is around 50dB. The

reconstruction dimension N is the same as that of each phantom image. We choose the

parameter p = 1.1 in the Besov norm and α ≃ 0.81 such that s = α+ d(1/2− 1/p) = 0,
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and set the value of β in (3.39) manually by maximizing reconstruction’s visual quality.

The same linear window [0, 1] is applied on all images for screen display.

(a) Brain (b) Lung

Figure 3.6: Test phantom images.

The reconstructions using the Haar wavelet are shown in Fig. 3.7. The visual quality

of the reconstructed image is affected severely by the annoying “pixelization” artifacts,

which is a signature of the Haar wavelet. In practical applications the Haar wavelet is

rarely used and the Daubechies wavelet of higher vanishing moments is preferred.

(a) SNR=12.77dB (b) SNR=15.22dB

Figure 3.7: Reconstructions using the Haar wavelet from 64 projections (a) and 128
projections (b). The pixelization artifacts are amplified when the number of projections

is small.

The reconstructions on the same data but with the Daubechies wavelet of 6 vanishing

moments are shown in Fig. 3.8. Compared to the reconstructions by the Haar wavelet,

the visual quality is improved. Nevertheless, some isolated high frequency oscillation

patterns, called pseudo Gibbs phenomena, are very visible when the projection number
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is limited. This is a typical symptom when thresholding the coefficients of an orthogonal

wavelet basis. In the application where small details are crucial, these artifacts can affect

the interpretability of image.

(a) SNR=14.21dB (b) SNR=17.79dB

(c) SNR=17.75dB (d) SNR=19.08dB

Figure 3.8: Reconstructions using db6 wavelet from 64 (a,c) and 128 projections (b,d).
The pseudo Gibbs artifacts are amplified when the number of projections is small.

More complete reconstruction results are presented in Table 3.2. Remark that on the

Shepp-Logan phantom, the best performance in Table 3.2 is reached with 128 projec-

tions using Daubechies 6 wavelet (SNR 17.03 dB), which is still inferior to the TV recon-

struction with only 64 projections, see Figure 3.4 (b). Generally speaking, the wavelet

method is less efficient than the TV minimization in preserving the constant regions and

the edges, and in removing the streak artifacts. It would need more projections but on

the contrary doesn’t suffer from the stair wise artifacts as the TV minimization does.

Phantom a b c d e f
Shepp 14.32 15.89 16.36 14.40 16.25 17.03
Brain 12.77 14.59 15.22 14.21 16.62 17.79
Lung 16.32 17.50 17.95 17.85 18.70 19.07

Table 3.2: SNR (dB) of the reconstructed images SNR using Haar wavelet (columns
a, b, c) and Daubechies 6 wavelet (columns d, e, f) with high SNR (50dB) projection
data generated from three test phantoms. Columns a,d: 64 projections, columns b,e:

96 projections, columns c,f: 128 projections.
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3.2 Entropy methods

There exist non Bayesian methods in regularizing an ill-posed inverse problem. Here the

prior information is not expressed through a prior probability describing the smoothness

of the unknown object as in the Bayesian framework, but based on some information the-

ory principles. The regularization by entropy discussed below is an important technique

in tomography.

3.2.1 Maximum Entropy Principle

Entropy measures the "information" contained in a probability density function (pdf)

in terms of the shortest average coding length. It is the only consistent information

measure which satisfies some axiomatic formalism [57, 58]. The entropy of a probability

density function (and also for general positive functions) f is denoted by −H(f), with:

H(f)
△

=
∫

IRd
f(x) log f(x)dx (3.40)

On a positive coefficient vector f ∈ IRN , it’s defined as −H(f) with:

H(f)
△

=
∑

n

fn log fn (3.41)

Among all discrete probability distribution (f positive and ‖f‖1 = 1), H(f) is maximized

for uniform distribution fn = 1/N and minimized for Dirac fn = δn=k. The Maximum

Entropy (ME) principle states that a “good” solution to inverse problem is the most in-

formative one, e.g., the one that maximizes the entropy. This is a popular technique in

solving linear inverse problems, particularly for the situation that no prior information

is available on the unknown function, except that it is positive. The tomography prob-

lem can be interpreted as reconstructing a d-dimensional pdf from its d− 1-dimensional

marginals, and by the ME principle the best solution is the one containing the most infor-

mation. In the literature the ME reconstruction is generally formulated as a constraint

optimization problem:

min
f
H(f) s.t. Af = b (ME)

A such formulation admits a unique solution, which is automatically positive [59]. It

has been reported in [60, 61] that the maximum entropy reconstruction outperforms

the quadratic regularization techniques such as GMRF with limited or incomplete data.

In [62] it has been proved that the ME reconstruction works well especially on sparse

objects since it favorites the sparse solution, but it is not the optimal regularization

technique on this kind of object.
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3.2.1.1 MART

The ME problem (ME) can be solved by the multiplicative algebraic reconstruction tech-

nique (MART), a important row-action algorithm proposed in the tomography literature

[63–65], that we summarize briefly here.

We suppose that the i-th projection data can be written as (Af)i = 〈ai, f〉, with ai(x) is

the indicator function of a strip region Bi, covered by the i-th X-ray beam. At iteration

k + 1, MART uses only one constraint (Af)i = bi and solves:

minD(f, f (k)) s.t. (Af)i = bi (3.42)

Here f (k) is the solution of k-th iteration. D(f, f (k)) is the linearization of H(f) around

f (k), namely:

D(f, f (k))
△

= H(f)−H(f (k))− 〈∇H(f (k)), f − f (k)〉 (3.43)

and the derivative ∇H(f) : X → IR is a linear application:

〈∇H(f), g〉 =
∫

Ω
(1 + log f(x))g(x)dx, for g ∈ X (3.44)

The solution of (3.42) is a saddle point of the Lagrangian:

L(f, λ) = D(f, f (k))− λ((Af)i − bi), λ ∈ IR

hence ∇fL(f, λ) = 0 ⇒ log f(x) = log f (k)(x) − λai(x), and the solution of k + 1-th

iteration is:

f (k+1)(x) = f (k)(x) exp(−λai(x)) (3.45)

Putting (3.45) back into the constraint (Af)i = 〈ai, f〉 = bi, we find:

∫

Ω
ai(x)f (k)(x) exp(−λai(x))dx = e−λ

∫

Bi

f (k)(x)dx = bi, (3.46)

so e−λ = bi/(Af (k))i, and finally:

f (k+1)(x) =




f (k)(x)bi/(Af (k))i if x ∈ Bi
f (k)(x) if not

(3.47)

If initialized by a constant, the final solution of MART will clearly be piecewise constant

on a irregular grid deduced from the partition of all beam regions Bi, which is called
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optimal grid in [63]. On a pixel image f , (3.47) is replaced by:

f (k+1)
n =




f

(k)
n bi/(Af (k))i if pixel n contributes to detector i

f
(k)
n if not

(3.48)

The MART algorithm on a pixel image is given in Algorithm 2.

Algorithm 2 MART

Initialization: k = 0, f (0) = [1 . . . 1]⊤

while not converged do
Calculate the projection Af (k)

for all detectors i = 1 . . .M do
for all pixels n = 1 . . . N do

Update the value of pixel n with detector i by (3.48)
end for

end for
k ← k + 1

end while

3.2.2 Minimum Cross Entropy Principle

The minimum cross-entropy (MCE) principle is another entropy based regularization

technique. The cross-entropy H(p, q) is a non-symmetric measure of the difference be-

tween two probability density functions p, q:

H(p, q)
△

= −
∫

Ω
p(x) log

p(x)
q(x)

dx (3.49)

H(p, q) measures the expected number of extra bits required to code samples from p

when using a code based on q, rather than using a code based on p. It’s also referred to

as the Kullback–Leibler (KL) divergence. Typically p represents the distribution of data

or observations, and q represents a model or a reference. In the medical imaging context

for example, q could refer to the anatomical knowledge, and the cross-entropy express

the prior information that the unknown object resembles to the anatomical image.

Let f̂ be a prior estimation of the unknown density function f . Given some new in-

formation C (in form of constraint), the MCE principle says that one should choose f ,

from all possible solutions satisfying C, such that the extra information measured by

H(f, f̂) is minimized. For example, if C is given as the data fitting constraint, then:

min
f
H(f, f̂) s.t. Af = b (MCE)

The application of cross-entropy minimization in tomography can be found in [66, 67].
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3.3 Regularization by Convex Constraints

Very often in a reconstruction problem our prior knowledges on the unknown object f

are available in form of “hard” constraints, for example:

• Positivity : C+ = {f(x) ≥ 0, a.e.}

• Spatial localization : CΩ = {f(x) = 0, x /∈ Ω, a.e.}

• Prior values : CV = {a ≤ f(x) ≤ b, a.e.}

• Bounded energy : CE = {‖f‖2 ≤ E}

All these constraints listed above are closed and convex sets of X ⊂ L2(IRd), so are their

intersections. The incorporation of these constraints into the optimization problem can

efficiently reduce the size of solution space and considerably improve reconstruction

qualities.

Example 3.3.1 (Landwebber iteration with positive constraint). Let’s consider the

MSE problem with a positive constraint, namely:

min
f∈X
‖Af − b‖2 s.t. f ∈ C+ (3.50)

This problem can be solved using the simple gradient projection algorithm. At the n-th

iteration:





g(n) = A⊤(Af (n) − b)

f (n+1/2) = f (n) − αg(n), for α > 0

f (n+1) = (1− λ)f (n) + λΠC+(f (n+1/2)), for λ > 0

(3.51)

ΠC+
here is the convex projection onto C+. It is well known that the positivity constraint

can effectively reduce the streak artifacts and accelerate the convergence of the initial

MSE problem, especially when the number of projection is limited.

3.3.1 Projection onto convex set

By incorporating a closed convex constraint set C ⊂ X, the MAP problem formulated

in Section 2.2.2 now reads:

min
f

1
2
‖Af − b‖2 + βR(f), s.t. f ∈ C (3.52)
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and the constraint optimization form:

min
f
R(f), s.t. ‖Af − b‖2 ≤ ǫ2, and f ∈ C (3.53)

The existence of solution has been studied in Proposition 4.2 and 4.3 of Chapter 2.

However, solving numerically (3.52) and (3.53) could be much more difficult compared

with their original form, due to the presence of constraint C. In a Hilbert space X,

a basic tool for this purpose is the well-known theorem of projection onto convex set

(POCS). It says that for convex closed C, there exists a unique solution to the problem:

ΠC(f) = arg min
g∈C

‖f − g‖X (3.54)

The point ΠC(f) is called the convex projection of f onto C. For many basic constraint

sets, e.g.those listed above, ΠC(·) has simple analytical expression. Now suppose that C

is the non empty intersection of C1, C2, ..CK , which are all convex closed sets, and the

projector ΠCk
is known for each Ck. One can then define the cyclic projection:

Π(f) , ΠCK
◦ ..ΠC2

◦ΠC1
(f) (3.55)

and note:

Πn , Π ◦ . . . ◦Π︸ ︷︷ ︸
n times

(3.56)

Then it can be shown that when n→∞, Πn(f) converges to a point in the intersection

set C. Furthermore, if all sets C1 . . . CK are affine spaces, the converged point is indeed

the convex projection of f onto C = C1 ∩ C2 ∩ ..CN [68]. This method called cyclic

projection is particularly useful in numerical solution of optimization problems with

several convex constraints.

Example 3.3.2 (Algebraic Reconstruction Technique(ART)). The well known ART in

CT literature is a special case of the cyclic projection method. Rewrite the equality

constraint Af = b as:

Af =




〈a1, f〉
...

〈aM , f〉


 =




b1

...

bM


 = b (3.57)

The convex projection onto each of affine space Hm = {〈am, f〉 = bm} is given by:

Πm(f) = f +
b− 〈f, aM 〉
‖aM‖2

aM , for 1 ≤ m ≤M (3.58)

If f is initialized by 0, then ART converges to the same solution as MSE problem[2].
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3.3.1.1 Projection onto ℓ1 ball

Consider the ℓ1 ball in IRN : B1
α

△

= {‖f‖1 ≤ α}, and define Πℓ1 the convex projector onto

B1
α. This projector is important in sparsity related algorithms, and it can be calculated

using a thresholding operator SoftThreshλ(f) as defined in (B.2) with O(N logN) time

(more efficient methods exist, see e.g.[69]):

Πℓ1(f) = SoftThreshλ(f) (3.59)

The constant λ is found through a linear search on the sorted coefficients of {|f1|, |f2|, . . .}.

Example 3.3.3 (Reconstruction by TV minimization and ℓ1 sparsity constraint). In

previous sections, we’ve seen that the regularization by TV and Besov norm minimiza-

tions are efficient techniques in treating the few projections problem. A natural extension

would be the combination of these two methods. We replace the Besov norm by the

equivalent ℓ1 norm, and consider the following problem:

min
c
‖Wc‖TV s.t. AWc = b, and ‖c‖1 ≤ α (3.60)

where W is the discrete wavelet synthesis operator as in section 3.1.4. The constraint

‖c‖1 ≤ α is a prior knowledge on the solution: it restricts the possible solution to those

whose wavelet coefficient vector c is inside the ℓ1 ball of radius α.

Using the relaxation technique |x| ≃
√
x2 + ǫ, we replace the objective function in (3.60)

by a smooth term, therefore the problem can be approximately solved using descent

method with gradient projection: at each iteration the gradient of objective function is

projected onto the non empty convex constraint

C
△

= {AWc = b} ∩ {‖c‖1 ≤ α}

Let ΠM , and Πℓ1 be respectively the convex projectors onto the affine space {AWc = b}
and the ℓ1 ball {‖c‖1 ≤ α}. Then a point in C can be obtained by applying successively

the alternating projection ΠM ◦Πℓ1 . Numerical results in [70] confirm that the formula-

tion can effectively reduce the pseudo Gibbs artifacts appeared in the regularization by

Besov norm due to the errors in the wavelet coefficients.

3.4 Concluding remarks

In this chapter we have reviewed some important regularization techniques and most of

them are very popular in the tomography literature. The ill-posedness of few projections
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problem is balanced by the regularization, which stabilizes the inversion procedure and

improve the reconstruction quality.

The development of regularization techniques in tomography has started with the row-

action algorithms (ART, MART, POCS etc.) in the 1970s [64] and evolved lately to

the Bayesian framework, which allows to characterize the smoothness of the unknown

function through regularization through a prior distribution (in case that the prior con-

stitutes a (semi-)norm, e.g. the TV or Besov norm, the regularization is precisely done in

a functional space of smoothness defined by this norm). In this direction, many different

priors and related algorithms have been proposed since 1990s, with increasing interests

on the Edge-preserving prior which allows to recover the piecewise homogeneous function

from incomplete data.

We have reproduced some important algorithms of the literature to demonstrate the

effect of these regularization techniques. It has been observed that the minimization of

the TV norm and the Besov norm of the wavelet coefficients are generally efficient in

treating the few projections problem: the former works very well on piecewise homo-

geneous phantom image by preserving the edges and constant regions, while the later

reconstruct well the natural medical images which are “compressible” under wavelet

transform. The reason can be roughly explained by “representing a function in a space

where it’s simple”. For example, a piecewise homogeneous functions of the BV space is

“simple” since near all its information is concentrated on the edges. Similarly, a natural

image represented by its wavelet coefficient in Besov space for p < 2 is simple since near

all its information is concentrated on few most largest coefficients.

The notion of sparsity then enters in our field of view. For a linear inverse problem where

the number of data is far few than the dimension of the unknown, finding the unknown

in a space where it is supposed to be sparse can be much more advantageous than other

regularization techniques, since the sparsity reduces the inherent dimension of the linear

system, consequently improve the trouble situation related to the ill-posedness, such as

the non-uniqueness, the instability with respect to noise etc.. From a signal sampling

point of view, the question of the few projections problem can be formulated in a more

general way: is it possible to reconstruct a function from a limited samples in the Radon

domain by exploiting the sparsity? This is precisely the theme of the recent developed

Compressed Sensing theory, which brings new insights to the CT reconstruction problem.

We shall dedicate the next chapter to this subject.



Chapter 4

Compressed Sensing and CT

Compressed Sensing (CS) is an emerging theory about signal acquisition and recon-

struction, with the objective of capturing the whole information of a signal using a small

number of measurements and then recovering the signal stably with small distortions.

The acquisition process used by CS is specific and often randomized, which allows to

“compress” the information in a small number of observations, while the reconstruction

process in CS is nonlinear and one has quantitative estimations about the distortion in

function of the signal’s information complexity and the number of measurements. This

framework is particularly useful in situations where a thorough acquisition of signal is

expensive or impossible, such as MRI or the sampling of extra wide-band signal: by re-

designing the acquisition protocol to conform to the CS principle, one can use a sampling

rate much lower than the classical Shannon-Nyquist rate. In the situation where one

can not modify the acquisition process but only reduce the number of measurements,

one can still use the nonlinear reconstruction process employed in CS to get a stable

reconstruction with small distortion.

Since the foundation work by Candes and Tao in [71] and Donoho in [72], this theory

has been considerably extended. The main body of CS theory has been established on

a discrete and finite dimensional setting, although there are efforts to generalize this

theory to infinite dimension [73]. In this chapter we resume some key ingredients of

CS and point out its usefulness for the CT reconstruction. Our expositions are mainly

based on the papers [71, 74, 75]. To explain the motivation let us start by an example.

4.1 Motivations

Sampling of frequency sparse signal Let x ∈ IRN and and x̂ = Fx with the

Fourier matrix F [n,m] = exp(−2πinm/N)/
√
N . We note δ[n] = 1n=0 and Sτ [n] =

48
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∑w−1
k=0 δ[n−kτ ] the sampling vector, with τ ∈ IN the sampling period such that N = wτ

for w ∈ IN. We want to recover x from its samples xd, defined as xd[n] = x[n]Sτ [n].

Recall a discrete version of Shannon-Nyquist sampling theory:

Proposition 4.1.1 (Shannon-Nyquist). Let xd be samples of x with sampling period

τ . If |supp x̂| < w = N/τ , then x can be recovered from its samples xd by: x =

F−1
d (x̂d · 10≤n<w).

Suppose that x is sparse in frequency: x̂[n] = δ[n] + δ[n−⌊N/2⌋]. Since |supp x̂| > N/2

so by Proposition 4.1.1, the maximal sampling period τ = 1, i.e., all samples of x are

needed. Given the sparsity x̂, this seems to be overly pessimistic. On the contrary, let

T ⊂ {0, . . . , N − 1} and xT the samples of x on T : xT [n] = x[n]1n∈T . Then a result

from [71] says the following:

Proposition 4.1.2 ([71], Theorem 1.1). Let N be prime, and ΣK the set of all x such

that |supp x̂| ≤ K/2. Then limited on ΣK and for any T of size |T | ≥ K, the map

x 7→ xT is injective.

Therefore, for N prime it would be possible to recover our previous signal x from only

4 arbitrary samples. The reconstruction process needs to find a signal which is sparse

in frequency and conform with the samples xT . This can be realized by solving the ℓ1

minimization problem:

min
y∈IRN

‖ŷ‖1 s.t. yT = xT (4.1)

with ‖x‖1
△

=
∑
n|xn|. Note that (4.1) is convex and easily solvable, e.g.by converting to

a linear programming. Now using the ℓ1 minimization as reconstruction process, a more

precise and powerful result can be established, which confirms the sampling condition

suggested by Proposition 4.1.2:

Proposition 4.1.3 ([71], Theorem 1.3). Let x ∈ IRN be a signal such that x̂ is supported

on Ω, and choose T ⊂ {0, . . . , N − 1} uniformly at random. If

|T | ≥ Cγ |Ω| logN (4.2)

with Cγ ≍ γ a constant, then with probability at least 1−O(N−γ), the solution to the ℓ1

minimization problem (4.1) is unique and is equal to x.

Note that the probability 1 − O(N−γ) here is not uniform for all x but per x. So

Proposition 4.1.3 says essentially that one can sample x arbitrarily, provided that the

number of samples is at the same order of the sparsity of x̂, then x can be reconstructed



50

through (4.1) with high probability. This is very different to the classical Shannon-

Nyquist sampling theory.

4.2 Ingredients of CS

The above result is only an example of what CS can promise. In CS the concept of

sampling is generalized to the sensing matrix A : IRN → IRM ,M ≪ N with each

row a vector am ∈ IRN . Applied on a vector x, it yields the observation Ax with

(Ax)m = 〈am, x〉. Given Ax, the decoder ∆ : IRM → IRN yields ∆(Ax), an estimated

version of x, and the difference

E(x,∆, A)
△

= ‖∆(Ax)− x‖2 (4.3)

is called distortion. The central question of CS is to know what are good measurement

matrices and decoding devices (∆, A) such that the distortion on a class of signals is

small. CS theory answers this question by relating the distortion to the information

complexity of x.

4.2.1 Sparsity class

We note {xn} a sequence, and {x(n)} the sorted sequence in a decreasing order: |x(0)| ≥
|x(1)| ≥ . . .. There exist various ways to measure the information complexity of {xn}.
We say that x is in weak ℓp (p > 0) ball if there’s a constant R > 0 such that

|x(n)| ≤ Rn−1/p, for n ≥ 1 (4.4)

The weak ℓp norm ‖x‖wℓp is defined as the smallest constant R such that (4.4) holds.

We recall the definition of ℓp (quasi)-norm:

‖x‖p △

=





(
∑
n|xn|p)1/p, for 0 < p <∞

maxn|xn|, for p =∞
(4.5)

The special case p = 0 gives the ℓ0 norm ‖x‖0, defined as the number of nonzero entries

in x. For 0 < p < 1, (4.5) fails to be a norm but we have a triangle inequality:

‖x+ y‖pp ≤ ‖x‖pp + ‖y‖pp (4.6)

It can be shown easily that ‖x‖p <∞ implies ‖x‖wℓp <∞, so the n-th biggest terms of

x decreases as in (4.4).
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If x is non sparse, we can approximate it by preserving the first s-th biggest terms, and

then obtain the s-term approximation error :

σs(x)
△

= inf
y∈Σs

‖x− y‖2 (4.7)

where Σs denotes the set of all s sparse vector: x ∈ Σs ⇔ ‖x‖0 ≤ s. The decaying rate

of σs(x) as a function of s reveals also the information complexity of x. It can be shown

[75, 76] that σs(x) decays as s−r for a constant r > 0, if and only if x belongs to a weak

ℓp ball for 1/p = r+ 1/2. Therefore, the decaying rate of the coefficient and that of the

approximation error are completely equivalent. Particularly, we have:

σs(x) ≤ ‖x‖ps1/2−1/p, for s ≥ 1 (4.8)

For p small, e.g., p < 2, σs(x) decays when s increases and we say that x is compressible.

Similarly, it can be shown that if the approximation error in (4.7) is measured in ℓ1 norm,

i.e., σs(x) = infy∈Σs‖x− y‖1, then:

σs(x) ≤ ‖x‖ps1−1/p, for s ≥ 1 (4.9)

4.2.1.1 Theoretical limit of CS system performance

Under the hypothesis that the unknown signal x belongs to some sparsity class, there

exists some theoretical bounds on the best possible performance of any (∆, A) pair

[72, 74, 75]. Let’s note B1 the unit ℓ1 ball of IRN , and define the symbol E(B1,∆, A) as

the distortion of a given (∆, A) pair on B1:

E(B1,∆, A)
△

= sup
x∈B1

E(x,∆, A) (4.10)

The best performance for any (∆, A) pair on B1 is obtained by:

E(B1)
△

= inf
(∆,A)

E(B1,∆, A) (4.11)

where the infimum is taken on all possible measurement matrix and decoder for M < N

fixed. Then one can establish the upper and lower bounds on B1 (similar result holds

for other ℓp ball Bp):

Proposition 4.2.1 ([75], Lemma 2.1). There exists a constant C0 > 0 such that for all

0 < M < N we have

C0

√
log(N/M) + 1

M
≤ E(B1) ≤ 2C0

√
log(N/M) + 1

M
(4.12)
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4.2.2 Decoder

Given that the unknown signal x is sparse, the natural choice for decoder ∆ is to solve

the ℓ0 minimization problem:

min
y∈IRN

‖y‖0 s.t. Ay = Ax (P0)

Then a necessary and sufficient condition [75] for (P0) to recover all s-sparse signal x

is: kerA ∩ Σ2s = {0}, i.e., the kernel space of A does not contain any nonzero vector

of sparsity of 2s. Unfortunately, (P0) is a NP-hard problem, and in practice it is often

relaxed to some numerically tractable algorithms. To mention some of them: Matching

Pursuit (MP) and Orthogonal MP [77], Iterative Hard Thresholding [78], CoSaMP [79]

etc. Most of these methods are based on greedy strategy and benefit from equivalence to

(P0) under specific conditions. Another relaxation technique is by the ℓp minimization,

for 0 < p ≤ 1:

min
y∈IRN

‖y‖p s.t. Ay = Ax (Pp)

This is mainly based on the fact that ‖x‖p → ‖x‖0 point wisely as p→ 0.

Proposition 4.2.2 (Null Space Property (NSP)). For any x ∈ Σs, the solution of (Pp)

equals to x if and only if the following holds: for any set S of size |S| < s and any non

zero vector v ∈ kerA

‖vS‖pp <
1
2
‖v‖pp, (or equivalently, ‖vS‖pp < ‖vS̄‖pp) (4.13)

where vS and vS̄ are the restriction of v on S and on its complement S̄, respectively.

Proof. Suppose that (4.13) holds and x ∈ Σs. We need to prove that x is the unique

solution of (Pp), which is equal to say that for any nonzero vector v ∈ kerA, ‖x+ v‖pp >
‖x‖pp. We write v = vS + vS̄ with S the support of x, S̄ its complement. Using (4.6):

‖x+ vS + vS̄‖pp = ‖x+ vS‖pp + ‖vS̄‖pp
> ‖x+ vS‖pp + ‖vS‖pp ≥ ‖x‖pp

On the contrary, suppose that for any x ∈ Σs, then x is also unique solution of (Pp). For

kernel vector v = vS + vS̄ , we have AvS = A(−vS̄). Since vS ∈ Σs, so it is the unique

solution of eq. (Pp), therefore ‖vS‖pp < ‖vS̄‖pp.

Proposition 4.2.2 actually gives a condition on what is a good measurement matrix: none

of its kernel vector can concentrate more than half of its energy on a support of size s.



53

A special case is the (P1) decoder (p = 1, ℓ1 minimization) which is convex, therefore

numerically much simpler than the decoder (Pp) for p < 1. Candès and Tao revealed the

power of the (P1) decoder by studying a condition called Restricted Isometry Property

(RIP) [80].

4.2.2.1 Restricted Isometry Property (RIP)

The RIP constant δs ∈ [0, 1) is the smallest value such that the following holds:

(1− δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs)‖x‖2, ∀x ∈ Σs (RIP)

We say that A has RIP of order s with δs if such constant exists. RIP is uniform to

all sub-matrix AS composed by the columns of A in a index set S of size |S| ≤ s, and

it indicates how close is AS to an isometry. This is a powerful tool in the CS theory,

because it links the ℓ1 decoder with the good sensing matrix in a much simpler way than

other tools like NSP.

Proposition 4.2.3 ([81], Theorem 1.1). Assume that the matrix A satisfies the RIP of

order 2s with the RIP constant δ2s <
√

2− 1. Then the solution x∗ of (P1) obeys

‖x∗ − x‖1 ≤ C0‖x− xs‖1, and ‖x∗ − x‖2 ≤ C0
‖x− xs‖1√

s
(4.14)

with xs the s-terms approximation of x, and C0 a small constant.

So if the true signal x is s-sparse, x∗ = x; otherwise using (4.8) and (4.9) we see that

the distortion is not much worse than the s-term approximation error ‖x− xs‖2.

4.2.2.2 Robustness

Suppose that the vector Ax is corrupted by some additive noise z and gives the obser-

vation b = Ax+ z. Then in place of (P1), the robust ℓ1 decoder solves:

min
y
‖y‖1 s.t. ‖Ay − b‖2 ≤ ǫ (P ǫ1)

with ǫ = ‖z‖2 the noise level. Then it has been proved that (P ǫ1) does not amplify the

noise and the solution is stable.

Proposition 4.2.4 ([81], Theorem 1.2). Assume that the matrix A satisfies the RIP of

order 2s with the RIP constant δ2s <
√

2− 1. Then the solution x∗ of (P ǫ1) obeys

‖x∗ − x‖2 ≤ C0
‖x− xs‖1√

s
+ C1ǫ (4.15)
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with C0, C1 some small constants.

4.2.2.3 Optimality of ℓ1 minimization

Under the condition of Proposition 4.2.3, we consider the distortion (4.14) introduced

by the decoder ∆ = (P1):

‖x−∆(Ax)‖2 ≤ C0
‖x− xs‖1√

s
≤ C0

‖x‖1√
s

Taking superium for x ∈ B1 the unit ℓ1 ball, we obtain:

E(B1) ≤ E(B1,∆, A) ≤ C0
1√
s

(4.16)

with E(B1) and E(B1,∆, A) the class distortions as defined in (4.11) and (4.10) respec-

tively. Now use the theoretical lower bound in (4.12), we find:

s ≤ C M

log(N/M)

for some constant C > 0. This is the widest range on the sparsity level that a good

sensing matrix A can have with the (P1) decoder. On the other hand, if 1/
√
s is bounded

by the upper bound in (4.12), or if for some constant C ′

s ≥ C ′ M

log(N/M)

then by (4.16), the class distortion on B1 introduced by (∆, A) will be within the same

range as the best performance E(B1). Therefore if we can find any sensing matrix A

satisfying RIP of order 2s with

s ≍M/ log(N/M) (4.17)

such that the RIP constant δ2s <
√

2 − 1, then (∆, A) attains the best possible per-

formance on B1 and in this sense no other sensing matrix-decoder pair can do better a

job.

4.2.3 Good sensing matrix A

Verifying RIP condition for a sensing matrix A is as hard as solving directly the ℓ0

minimization problem, and for this reason most known good sensing matrices are random

in nature, in the sense that: with probability exceeding 1−O(e−γN ) for constant γ > 0,
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the random matrix A satisfies the condition of Proposition 4.2.3 with the sparsity level1

for some constant Cγ > 0. of s ≤ CγM/ log(N/M),

Well-known examples which can be associated to some probability distributions include

the Gaussian and the Binary random matrices. The entries of these matrices are in-

dependent realizations of a same centered Gaussian or Bernoulli distribution, see [82].

There are also sensing matrices which can be implemented in a “matrix-free" manner:

• Fourier measurements[71, 82, 83]. Here A is obtained by selecting M rows of

a discrete Fourier matrix uniformly at random, followed by a column-wise re-

normalization. It has been shown [83] that the condition of Proposition 4.2.3

holds with overwhelming probability if

s ≤ CγM/(logN)4 (4.18)

• Arbitrary orthonormal measurements[82, 84]. Similar statement holds also for an

arbitrary orthonormal system U . Here A is obtained by selecting M rows of

U uniformly at random, followed by a column-wise re-normalization. Then the

condition of Proposition 4.2.3 holds with overwhelming probability if

s ≤ CγM
1

µ2(U)
1

(logN)4
(4.19)

where µ(U)
△

=
√
N maxm,n|Um,n| is called the incoherence of the matrix U . This

result is of considerable importance since most of the real world signals are sparse

or compressible only after an orthonormal sparsifying transform. Well known

examples include the discrete cosines transform (DCT) and the wavelet system

used respectively in the JPEG and the JPEG2 × 103 image compression format.

We note W⊤ a such transform and use the following ℓ1 minimization problem as

decoder:

min
c
‖c‖1 s.t. AWc = AWc0 (P1,S)

with c0 = W⊤x the coefficients of x. Then the same error estimation (4.14) holds

now for the reconstructed coefficient vector.
1or with the number of measurements M ≥ C−1

γ s log(N/s).
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4.3 Implications in CT reconstruction

Parallel beam CT The Fourier transform of each parallel beam projection acquired

by detector is in fact a slice passing by the origin in the frequency domain (for the fan

beam source, this relation holds approximately if one can transform the fan beam data

to parallel beam data through a rebinning procedure[85]), as illustrated in Figure 4.1 (a).

According to CS results about the Fourier measurement, one can expect to reconstruct

any sparse object with large probability, as long as the number of projection lines is at

the same order of the sparsity of the object, while the angular position of sources can

be arbitrary. Numerical experiments in Figure 4.1 confirm this theoretical prediction.

Here we use the standard Shepp-Logan phantom of 256 × 256 pixels as test image x,

which contains only 3.3% of nonzero coefficients after the discrete gradient transform,

and solve the TV minimization problem:

min
y
‖y‖TV , s.t. Ay = Ax (4.20)

where A is the partial discrete Fourier transform with nonzero values only on radial

lines2. The mask in Figure 4.1.(b) is obtained by uniformly sampling the angular position

between [0, π) at random. Although very irregular compared to Figure 4.1.(a), the

projections using the mask of Figure 4.1.(b) produces high quality reconstruction. While

the limited-angle projections Figure 4.1.(c) which can not be obtained from a uniform

random sampling on [0, π), fail to capture the whole information of the phantom despite

its larger number of measurements. Actually, the image quality will not improve even if

we increase further the number of projections in Figure 4.1.(c).

X-ray projector’s encoding capacity The example above illustrates an ideal case

where we make great simplifications on CT system model in order to conform to the

CS framework. The practical situation is quite different. Particularly, it would not be

possible to simplify the X-ray projector to a partial Fourier transform, due to the special

source trajectory and X-ray beam employed in data acquisition system. Although there

is no available result of type (4.18) for the general X-ray projector, one may hope that

the CS principle still applies to a realistic CT system, which means that the X-ray

projector can effectively capture the information of sparse objects with a small number

of projections. Here we study this point through a Monte-Carlo test, see Figure 4.2.

The fan beam X-ray projector A in use is a matrix of dimension M ×N made from the

Siddon ray-driven method, with M = P × 128 and N = 64× 64. The P ∈ {32, . . . , 64}
projections are equally distributed on [0, 2π).

2see the document of Matlab package ℓ1-magic for more information.
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(a) 30 projections (b) 30 projections (c) 64 projections

(d) SNR=39.85db (e) SNR=29.10dB (f) SNR=6.27dB

Figure 4.1: Reconstructions by solving TV minimization problem with Matlab pack-
age ℓ1-magic. Phantom dimension 256 × 256 pixels. X-ray projector is implemented
through partial Fourier transform. First row: mask of observation. Figure (a): 30
equally distributed projections between [0, π), (b): 30 projections between [0, π) uni-
formly sampled at random, (c): 64 equally distributed projections between [0, 1)∪[2, π).
Figure (d), (e) and (f): solutions of TV minimization with the data corresponded to

(a), (b) and (c) respectively.

• Figure 4.2.(a): The test phantom x is generated as follows: we choose first uni-

formly S from N pixel positions at random, then for each position the pixel value

is obtained by sampling the same Gaussian distribution N (0, 1). By varying the

sparsity level 1 − S/N ∈ [0, 0.5] and the number of projections P , we obtain dif-

ferent x and corresponding sinogram Ax. Then we use the decoder ∆ = (P1) and

plot the relative error ‖∆(Ax)− x‖2/‖x‖2 in Figure 4.2.(a), where one can clearly

distinguish a sharp transition indicating the number of projections necessary for

reconstructing an image of a given sparsity level.

• Figure 4.2.(b): The test phantom x is generated in the same way as Figure 4.2.(a).

We add a small white noise e of energy ‖e‖ = 10−3 to the sinogram Ax and use

the decoder ∆ = (P ǫ1), with ǫ = ‖e‖. The relative error ‖∆(Ax+ e)− x‖2/‖x‖2 in

plotted in Figure 4.2.(b), where the sharp transition still exists but considerably

degraded if compared to Figure 4.2.(a).

• Figure 4.2.(c): We use the Haar wavelet basis W and generate the coefficient c

in the same way as in (a), and use the decoder ∆ = (P1,S). The relative error

‖∆(AWc)− c‖2/‖c‖2 in plotted in Figure 4.2.(c).
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(a) (P1) (b) (P ǫ
1

)

(c) (P1,S)

Figure 4.2: Monte-Carlo test of the X-ray projector’s encoding capacity. See section
4.3 for descriptions on the experiments.

Acquisition geometry and sinogram inpainting CS theory helps to explain the

surprising inpainting phenomena. Image inpainting usually refers to the restoration of

a pixel image from a partial observation where a large portion of pixels, in random or

regular positions, are lost. A simple solution to inpainting problem is as follows. Let W

be a sparsifying transform (e.g. the discrete wavelet transform, see Section 3.1.4), which

applies on an image x0 and yields a sparse or compressible coefficient vector c0 = W⊤x0,

and synthesizes the image by x0 = Wc0. One solves the ℓ1 minimization problem:

min
c
‖c‖1 s.t. MTWc = y (4.21)

where MT is the “observation mask”, i.e., the restriction onto an index set T where

pixels are observed, and y is the observed pixel values. For an orthonormal system W ,

MTW is a sub-matrix of W by selecting the rows of indexes in T . Then according

to the CS result about arbitrary orthonormal measurement (section 4.2.3), the original

coefficient vector c0 can be recovered with overwhelming probability, as long as the

observed pixels number |T | and the sparsity of c0 meet the condition (4.19), while the

observation site T only need to be chosen uniformly at random. In [86, 87], the authors
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use redundant representation systems as W and report that the original image can be

recovered with nice quality for a percentage of lost pixels up to 80%.

The CT image reconstruction can also be treated as an inpainting problem: in place of

reconstructing an image from the incomplete sinogram data, we restore first the entire

sinogram using the inpainting technique and then apply classical inversion formula,

e.g.FBP, on the restored sinogram. For this, we work in IRP×M which denotes the

space of “complete” discrete sinogram of P projections and M detector pixels. The

X-ray projection is a sampling process in IRP×M , and different acquisition geometries

T correspond to different operator MT , as illustrated in Figure 4.3. Then CS theory

suggests that if a sinogram g can be put into a sufficiently sparse or compressible form

with the aid of some (redundant) representation system, then one can restore g from

MT g for |T | small with overwhelming probability, and T can be taken by sampling

in both angular and detector positions at uniformly random. This is in contrast with

some carefully designed T which work generally at high sampling density, such as the

well-known interlaced scheme [2, 88–90].

Remark 4.3.1. Positioning the X-ray source randomly with high precision is mechanically

speaking very challenging. A compromise would be increasing the sampling density of

an equally distributed source, at the same time decreasing proportionally the detector

visibility by applying a random mask between the X-ray source and the patient. In this

way one keeps the total number of samples unchanged, while the sampling mask is more

close to a uniformly random one, see Figure 4.3. A such acquisition protocol, if the

related physical and mechanical challenges can be solved, would be useful particularly

for the dose reduction.

Efficient image representation system We say that a system {ψλ} is efficient in

representing a function f =
∑
λ fλψλ if the coefficient {fλ} belongs to some sparsity

class, e.g., the weak ℓp ball for p < 2. According to the relation (4.8), fast decay of

{fλ} implies smaller approximation error σs(f), therefore smaller reconstruction error,

using CS result (4.15). Remark that if {ψλ} is total in L2(IRd), then {Aψλ} is also a

representation system in the sinogram domain. In this case, a sinogram g = Af is sparse

or compressible with respect to {Aψλ} if it is the case for f with respect to {ψλ}.

Finding an efficient {ψλ} is therefore a central issue to the performance of a CS system.

Although the main CS theory at its current state is valid only for orthogonal represen-

tation systems, there are many numerical evidences showing that the same principle can

work with over-complete systems such as wavelet packet[91], curvelet[92], or redundant

dictionary[93–95]. By incorporating a redundant system D, we use the ℓ1 minimization
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(a) Parallel beam 48 projections (b) Fan beam 48 projections

(c) Parallel beam 96 projections (d) Fan beam 96 projections

Figure 4.3: Visual representation of the maskMT corresponding to different acquisi-
tion geometry, with K = 256,M = 256. Figure (a): Parallel beam equally distributed
on [0, π), 48 projections. (b): Fan beam equally distributed on [0, 2π), 48 projections.
(c): Parallel beam equally distributed on [0, π), 96 projections with randomly sampled
detector of 50% visibility. (d): Fan beam equally distributed on [0, 2π), 96 projections
with randomly sampled detector of 50% visibility. The vertical axis of each figure repre-
sents the source angular position, and the horizontal axis represents the detector pixel’s
index. The number of observation sites in (a) and (c) (or in (b) and (d)) are the same.

as CT reconstruction algorithm:

min
c
‖c‖1 s.t. ‖ADc− y‖2 ≤ ǫ (4.22)

or in an equivalent form:

min
c

1
2
‖ADc− y‖2 + µ‖c‖1 (4.23)

with A the X-ray projector applying on the pixel image Dc, y the noisy sinogram, and

µ a regularization parameter depending on ǫ.
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4.4 Concluding remarks

The discussions above seem to provide a thorough framework for the few projections

problem:

• Representing/modeling the image in a sparsity promoting space.

• Seeking the sparse solution through some specific nonlinear optimization problem

(like TV or ℓ1 minimization).

Then the main results of CS theory can be used to characterize quantitatively the recon-

struction error. The regularization techniques based on the Besov and TV prior studied

in Chapter 3 are concrete examples of this framework. Remarkably, all of them use

pixel (on a regular Cartesian lattice) as the representation basis, for the reason that it

enjoys great numerical simplicity and interfaces very naturally with an abundant fast

transforms (FFT, DCT, DWT etc.) defined only for pixel image. For vision based image

processing tasks, the pixel is with no doubt a natural choice of basis, however vis-à-vis

the iterative CT reconstruction algorithms, it’s not an optimal way for representing a

function for that:

• The space-frequency localization of pixel is mediocre. Large pixels are needed for

the control the bandwidth of the reconstruction, while this can considerably reduce

the visual quality of an image.

• It requires the discretization or approximation of the X-Ray projector A, whose

computational complexity depends only on the dimension of discretization but

not on the sparsity of image under the representation system D. Furthermore, the

application of D is separated from A which may also increase the computational

charge.

The major contribution of this thesis is the development of the “CT-friendly” repre-

sentation bases of Gaussian family, baptized blob, which have better space-frequency

localization property, and on which there’s no need to discretize or approximate the

X-ray projector and no need for the representation system D as in (4.22) and (4.23).

Using the TV and ℓ1 related algorithms, the CT reconstructions from few projections

with blobs are generally superior than with pixel/wavelet bases, in the sense that one

can achieve better image quality with less computational resources. In the next part

of this thesis we will 1)introduce the blob bases of Gaussian family and discuss their

theoretical properties, 2) make adaptations and propose sparsity based reconstruction

methods working with blobs, and 3) demonstrate their efficiency in solving few projec-

tions problem through numerical experiments.
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Chapter 5

Radial blob for image

representation

A “CT-friendly” radial basis function [96] called (Kaisser-Bessel) blob and the related

reconstruction techniques [97] [98], have already been proposed several decades ago.

Limited by the extra computation charge, it appears that the full potential behind this

line of research stays unexploited by the community, and the efforts haven’t been realized

to adapt it to the few projections problem, where the notion of sparsity and the specific

nonlinear reconstruction algorithms seem to be mandatory.

The purpose of this chapter is to introduce the radial blob functions of Gaussian fam-

ily, and to develop two image representation models based on it: a single scale and a

multiscale one. They can be qualified as the mimics of pixel or multiresolution wavelet

representation, while they have better property in numerical computation for CT appli-

cation that we will demonstrate in Chapter 7 through numerical experiments.

The chapter is organized as follows. In section 5.1, we start by introducing the definition

of radial blob and particularly the Gaussian blob, and discuss some general properties

of the blob image model in section 5.2. In section 5.3, we span the shift invariant

space on an hexagonal lattice and we prove that the translations of Gaussian blob

constitute a Riesz basis. Unlike the case of pixel basis, by simply dilating the Gaussian

blob and the lattice, one cannot approximate the whole L2(IRd) space with the shift

invariant space. In section 5.4 we give a general way to construct the tight frame of

L2(IRd) using multiscale blob system, which can give compressible representation of

natural images. Some practical criteria on the choice of blob parameters are discussed

in section 5.5, and finally we show that there exits a multiscale system in the sinogram

domain corresponding to the multiscale blob system, by using the Wavelet-Vaguelette

Decomposition.

63
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5.1 Blob basis function

Definition 5.1.1 (Radial blob). We call radial blob a real radial symmetric function

φ : IRd → IR satisfying the following conditions:

• φ is C1 smooth (Fréchet derivative exists and is continuous) and belongs to L1(IRd)∩
L2(IRd).

• it is well localized(e.g., polynomial decay) in both frequency and space domain.

We note bφ : IR+ → IR the monodimensional profile function associated to φ:

φ(x) = bφ(‖x‖), x ∈ IRd (5.1)

Since φ is radial symmetric and C1 smooth, therefore ∇φ(0) = 0, which implies bφ ∈
C1(IR+), and b′(0) = 0. Clearly, the Fourier transform of φ is well defined and also

radial symmetric:

φ̂(ω) = bφ̂(‖ω‖), ω ∈ IRd (5.2)

Remark 5.1.1. In order to simplify the theoretical analysis, the compact support is not

required in our definition of blob, which differs from the examples of blob considered in

the literature. Unless specified, the word “blob” refers to “radial blob”, while the later is

used to distinguish from the non-radial contour blob that will be introduced in Chapter

6.

Remark 5.1.2. Due to its radial symmetry, blob can be seen as a special case of the

well known Radial Basis Function (RBF)[99], which is a powerful tool in interpolation

with scattered data. Nevertheless, in our approach blob is used uniquely as the building

blocks of a shift-invariant space generated on a regular lattice, therefore there’s no further

relations with the RBF theory except the radial symmetry.

5.1.1 Examples of blob

Kaisser-Bessel blob The Kaisser-Bessel (KB) blob proposed in [96–98] seems to be

the first example of blob in the CT literature. One of its advantage is the easy control of

the shape, the smoothness and the frequency localization by free parameters. Its profile

function reads:

bφ(r) =





(1− (r/a)2)m/2Im(α(1− (r/a)2)1/2)/Im(α) 0 ≤ r ≤ a

0 r > a
(5.3)
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where Im is the modified Bessel function of first kind and m is its order. a is the radius

and α is the shape parameter. Eq. (5.3) is a high dimensional generalization of the

Kaisser-Bessel (or I0-sinh) window function, which is an approximation to the optimal

prolate spheroidal function [96].

KB blob is compactly supported, Cm smooth and bφ̂(R) decays in frequency domain as

O(R−(d+1)/2−m). Both the Fourier transform and the X-ray transform of KB blob can

be evaluated analytically [96]. It has been pointed out in [100] that (5.3) is not positive-

definite [99], which prevents it to represent perfectly constant region. However one can

minimize the representation error by carefully choosing the parameters controlling its

shape [100, 101].

B-Spline blob The cardinal B-Spline (CBS) is defined by the auto-convolutionBn(r) =

Bn−1∗B1(r) of rectangular function: B1(r) = 1−1/2≤r≤1/2. Bn is supported on [−n/2, n/2],

piecewise n − 1 order polynomial on each interval [k − n/2, k + 1 − n/2], and Cn−2

smooth. Its Fourier transform B̂n(s) decays as O(s−n) in frequency domain, and its

Abel transform can be calculated analytically on each interval [k − n/2, k + 1 − n/2].

These properties suggest that one can use the B-Spline Bn(r) as the profile function of

blob.

Gaussian blob This blob is defined as a simple Gaussian function:

φ(x) = exp(−α‖x‖2), α > 0 (5.4)

The Gaussian blob is optimal in the sense that it attains the best spatial-frequency

concentration among all L2(IRd) functions. Other blobs that belong to the Gaussian

family will be deduced later in section 5.4.

We will not pursue the examples of Kaisser-Bessel and B-Spline blobs any further

in this thesis. In fact, the parallelization of elementary calculations related to blob re-

quires that the blob function has a simple expression. For the Kaisser-Bessel blob which

contains the modified Bessel function of the first kind in its expression [96], there is no

computationally efficient implementation on current parallel architecture1, consequently

many numerical evaluations become too time-consuming to be incorporated in iterative

reconstruction algorithms. While for the B-Spline blob which can be implemented with

moderate effort, there’s no visible advantages over the blobs of Gaussian family, from

1Precisely, the NVIDIA GPU card GTX580/Tesla C2070
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both the numerical and theoretical point of view. The blobs of Gaussian family are per-

fectly fitted in our framework for its mathematical properties and numerical simplicity,

and will be considered exclusively in the following.

5.1.2 Abel transform of blob

The Abel transform of a 1D function b(·) is defined by:

Ab(s) △

= 2
∫ +∞

s
b(r)

r√
r2 − s2

dr (5.5)

This transform arises very naturally when treating with the line integral of radial func-

tions. On the blob φ the X-ray transform becomes the Abel transform of the pro-

file function bφ, noted by Abφ, which is independent of the X-ray’s angular direction

θ ∈ Sd−1:

Pθφ(y) = 2
∫ +∞

‖y‖
bφ(r)

r√
r2 − ‖y‖2 dr = Abφ(‖y‖) (5.6)

Furthermore, by using Abel transform one can get the expression of a blob by knowing

it in the frequency domain, and vice versa.

Proposition 5.1.1. The profile function bφ(r) of blob φ(x) is related to that bφ̂(s) of

the Fourier transform φ̂(ω) as follows:

A ◦ · · · ◦ A︸ ︷︷ ︸
d−1

bφ̂(s) = b̂φ(s), s ∈ IR (5.7)

where the left side means applying the Abel transform on bφ̂ for d − 1 times, and the

right side is the 1D Fourier transform of bφ.

Proof. The proof consists in applying recursively the Projection Slice Theorem. We note

Fd the Fourier transform in a linear space (context dependent) of dimension d. By (5.6)

Pθ1
φ(·) is a radial function defined in the d− 1 dimensional space θ⊥

1 . The Projection

Slice Theorem now says that for any ω ∈ θ⊥
1 :

Fd−1(Pθ1
φ)(ω) = Fd(φ)(ω) (5.8)

We apply again the X-ray transform at angular direction θ2 ∈ θ⊥
1 , to get another radial

function Pθ2
Pθ1

φ(·) which is defined in θ⊥
1 ∩ θ⊥

2 , and use (5.8):

Fd−2(Pθ2
Pθ1

φ)(ω) = Fd−1(Pθ1
φ)(ω) = Fd(φ)(ω) (5.9)



67

which holds for ω ∈ θ⊥
1 ∩ θ⊥

2 . Iterating this procedure for d− 1 times, finally one gets:

F1(Pθd−1
· · · Pθ1

φ)(ω) = Fd(φ)(ω), ∀ω ∈ θ⊥
1 ∩ . . . ∩ θ⊥

d−1 (5.10)

where the independent vectors θi ∈ θ⊥
1 ∩ . . . ∩ θ⊥

i−1 for i > 1, and the mono dimen-

sional space θ⊥
1 ∩ . . . ∩ θ⊥

d−1 can take any orientation in IRd by changing the direc-

tions θ1, . . . , θd−1. By the radial symmetry of φ, the 1D function Pθd−1
· · · Pθ1

φ equals

A ◦ · · · ◦ A︸ ︷︷ ︸
d−1

bφ, and (5.7) now follows by taking the Fourier transform and inverting the

roles of φ and φ̂.

5.2 Image representation by blob

A blob is used as the building block to construct the shift invariant space X, in which a

function (e.g., a d-dimensional image) is identified or approximated. For this purpose,

two ingredients must be specified: 1) a blob φ or a family of blobs {ψj}j∈ZZ; 2) the

lattice(s) on which the blobs are translated. In all cases, we will note X the closure in

L2(IRd) of the resulted shift invariant space. Two models are studied in the next.

Shift invariant space by a single blob In this model X is generated by translating

a blob φ(x) on a d-dimensional hexagonal lattice L, then any f ∈ X can be written as:

f(x) =
∑

k∈ZZ
d

fkφ(x− xk) (5.11)

with xk the k-th node of the lattice.

Tight frame by a multiscale blobs system In this model X is spanned by the shift

invariant spaces Xj generated individually by a blob ψj on a d-dimensional hexagonal

lattice Lj . A function f ∈ X can be written as:

f(x) =
∑

j∈ZZ

∑

k∈ZZ
d

fj,kψj(x− xjk) (5.12)

with xjk the k-th node of the lattice Lj . We will show that (5.12) can be a tight frame

under conditions on the family {ψj}j∈ZZ.

There are some important questions concerning the representation (5.11) and (5.12):

1) the approximation property of the space X vis-à-vis the choice(s) of blob(s); 2)

the equivalent characterization of f ∈ X by the coefficient sequences {fk}, or {fj,k}.
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Before answering these questions in section 5.3 and section 5.4, we justify the use of the

hexagonal lattice for generating the shift invariant spaces, and outline some remarkable

properties of the blob image models.

5.2.1 Hexagonal lattice for blob image

Let G = [g1, . . . gd] the invertible matrix formed by the independent vectors g1, . . . gd ∈
IRd. We define the lattice L as a collection of nodes:

L △

= {xk = Gk, k ∈ ZZ
d} (5.13)

Let G−⊤ denotes the transpose of G−1, and we define the dual lattice of L:

L∗ △

= {ωk = G−⊤k, k ∈ ZZ
d} (5.14)

Definition 5.2.1 (Fundamental domain). A fundamental domain associated to a lattice

L is a region of IRd, whose translations on nodes of the lattice produce a partition of

IRd.

Definition 5.2.2 (L-periodicity). A L1
loc(IR

d) function f(x) is said L-periodic if f(x+

xk) = f(x),∀xk ∈ L. Then the integral of f on any fundamental domain is the same.

We will use the hexagonal lattice to place the blobs and span the shift invariant space.

This lattice is generated by vectors of the same length, which form π/3 angle between

each pair of them2. Compared to the widely used Cartesian lattice for pixel image, the

hexagonal lattice has many interesting properties[102, 103]. It is the optimal lattice

in packing spherical objects in both 2D and 3D [104] for that it achieves the highest

packing density. Particularly, for recovering a 2D band-limited function, the hexagonal

lattice requires a lower sampling density than the Cartesian one, that we give a brief

explanation here.

Sampling efficiency of hexagonal lattice Consider a 2D band-limited function f

whose frequency is supported inside a disk Ω of diameter 1. In order to reconstruct f

from its samples on an arbitrary lattice L, a sufficient condition is to include Ω in one

of the fundamental domain of L∗. For a 2D Cartesian lattice generated by G = hI,

with I the identity matrix and h the sampling step, this implies that h ≤ 1. While for

an hexagonal lattice generated by the matrix G = h[g1, g2], with the unitary vectors

g1 = [1, 0]⊤, g2 = [1/2,
√

3/2]⊤, we can take the minimal hexagon including Ω as the

2In 3D it is also called the Face Centered Cubic structure, or the Cubic Close Parking structure in
the crystallography literature.
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fundamental domain of L∗, therefore it’s sufficient to take the sampling step h ≤ 2/
√

3.

Defining the lattice density as |detG|−1, we see that the hexagonal lattice density is

about 86.6% of the Cartesian one.

5.2.2 Properties of blob representation

The reconstruction problem now amounts to identify a function (or finding a good

approximation) in X. Due to the smoothness of blob and the use of hexagonal lattice,

the shift invariant space X spanned by blob generally provides better image visual

quality, compared with the piecewise constant space spanned by pixel. We list here some

important theoretical advantages and refer the reader to the numerical experiments in

Chapter 8 for more intuitive comparisons between blob and pixel reconstructions.

5.2.2.1 Efficient evaluation of linear operator

Formally speaking, any linear operator A on a function of form 5.11 (and also (5.12)) is

reduced to the operations on individual blobs, namely:

Af =
∑

k

fk(Aφk) (5.15)

where φk(x) = φ(x−xk). As already pointed out in Chapter 2.3, applying a “spatially lo-

calized” linear operator A on the localized blob is computationally efficient. In case that

A enjoys some form of translation invariance, as those implicated in our reconstruction

algorithm, then the expression (5.15) clearly suggests a parallel implementation.

Blob-driven X-ray projector Remark that on the k-th blob the X-ray transform

can be expressed as:

Pθφk(y) = Pθφ(y −Πθ⊥xk) = Abφ(‖y −Πθ⊥xk‖) (5.16)

where Πθ⊥x
△

= x− 〈x, θ〉θ is the orthogonal projection of x onto θ⊥. On a blob function

(5.16) can be evaluated using the analytical expression ofAbφ, which is a cheap operation

for the Gaussian family blobs3. This nice property is used to implement an efficient X-ray

projector, see Annexe A for details.

3The computation can still be expensive on the Diff-Gaussian blob which has an asymptotic expres-
sion, see section 5.4.2
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Blob-driven interpolator The interpolation operator consists in evaluating the value

related to the function f of (5.11) or (5.12) on a discrete set of positions. Examples

include the re-sampling of f on a Cartesian lattice for screen display, or the discrete

gradient implicated in the edge-preserving reconstruction (c.f. Chapter 3). Let L′ be

the “interpolation lattice” which has a finite number of nodes. As the definition given in

Chapter 3.2, the discrete gradient interpolator D : X → IRd×|L′| is the row concatenation

of the operator Di:

Df
△

=




D1f
...

Ddf


 ∈ IRd×|L′|

where Di : X → IR|L′| yields the i-th directional derivative of f taken on the lattice L′:

(Dif)n
△

= ∂if(x′
n) =

∑

k

fk∂iφ(x′
n − xk) (5.17)

with x′
n the n-th node of L′. As the case of X-ray projector, (5.17) can be evaluated by

using the analytical expression of ∂iφ. For example, on a Gaussian blob image with the

blob given by eq. (5.4), we have the expression:

(Dif)n = −2α
∑

k

fk exp(−α‖x′
n − xk‖2)(x′

n,i − xk,i)

The parallelization of this operator on GPU is trivial.

5.2.2.2 Control of bandwidth and suppression of ghosts

Taking the Fourier transform on 5.11:

f̂(ω) = φ̂(ω)
∑

k∈ZZ
d

fk exp(−2πi〈xk, ω〉), (5.18)

we see that φ̂(ω) acts as a filter selecting the essential bandwidth of final reconstruction

f , which is bounded by the bandwidth of the projection data, due to the Projections

Slice Theorem. By limiting the bandwidth of the solution space X, one truncates the

singular value system of X-ray transform [2] by keeping only the low frequency compo-

nents, and improve in this way the conditioning of system. On the contrary, working

with a bandwidth higher than necessary, one brings into the solution the kernel space of

X-ray transform, which consists of high frequency functions called ghosts [105]. Roughly

speaking, these functions contribute little to the visual quality of image, while “deteri-

orate” the conditioning of the linear system.
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For the efficiency of the iterative reconstruction algorithm, it’s important to choose a

representation basis which can control the reconstruction bandwidth therefore suppress

the ghost, while without damaging the image quality. The pixel basis (2.18) is less fa-

vorable than blob in this regard. In fact, its slow decay in the frequency domain requires

an enlarged sampling step h of the Cartesian lattice to limit the essential bandwidth and

suppress the ghosts. Meanwhile, this will considerably affect the reconstruction quality.

A result of this flavor is given in the following lemma.

Lemma 5.2.1 (Approximation in H1 by pixel basis). Let f ∈ H1([0, 1]d) be differen-

tiable, and fh be the orthogonal projection of f in the shift invariant space Xh spanned

by the pixel basis φ(x)
△

= h−d/21[0,1]d(x/h). Then the L2 approximation error ‖f − fh‖
decays as O(h).

Proof. Omitted.

Although there is no theoretical evidence in our knowledge showing that the Gaussian

blob provides better approximation than pixel for the L2(Ω) functions, we have observed

that as the sampling step h increases, the degradation in the reconstruction quality using

blob is much less visible compared with pixel. See the numerical experiments presented

in Chapter 7.

5.3 Shift invariant space generated by a single Gaussian

blob

This section is dedicated to the shift invariant space X of type (5.11), spanned by a single

Gaussian blob translated on an hexagonal lattice. In particular, we want to know the

stability of this representation, as well as the approximation property of X in L2(IRd).

Our approach consists in establishing first the results which holds for general choice of

basis function, then fit them to the Gaussian blob.

5.3.1 Stability of blob representation

In order to have a stable representation system, we require {φ(x − xk)} to be a Riesz

basis of X, which means that there exist constants 0 < A ≤ B <∞ such that:

A
∑

k

|fk|2 ≤ ‖f‖2 ≤ B
∑

k

|fk|2, for any f ∈ X (5.19)



72

Proposition 5.3.1. {φ(x − xk)} is a Riesz basis of X for bounds 0 < A ≤ B < ∞ if

and only if for a fundamental domain Γ of L∗:

|detG|A ≤
∑

k∈ZZ
d

|φ̂(ω +G−⊤k)|2 ≤ |detG|B, ω ∈ Γ a.e. (5.20)

Proof. Let {fk}k ∈ ℓ22(ZZd), fd(x) =
∑
k fkδ(x−xk), and f(x) = fd ∗φ(x) =

∑
k fkφ(x−

xk). Since f̂d(ω) =
∑
k fk exp(−2πi〈xk, ω〉) is L∗-periodic, we can write:

‖f̂‖2 =
∫

IRd |φ̂(ω)|2|f̂d(ω)|2dω =
∫

Γ

∑
k|φ̂(ω +G−⊤k)|2|f̂d(ω)|2dω (5.21)

Remark that {|detG|1/2 exp(−2πi〈xk, ·〉)}k is an orthonormal system on L2(Γ), therefore
∑
k|fk|2 = |detG|‖f̂d‖2L2(Γ). Then the Riesz basis condition (5.19) follows from (5.20);

(5.19) implies also (5.20) since f̂d(ω) can be arbitrary.

Using Proposition 5.3.1 we establish the following result for the Gaussian blob:

Proposition 5.3.2. The translation of Gaussian blob {φ(x − xk)} on an hexagonal

lattice is a Riesz basis of the spanned shift invariant space.

Proof. The Gaussian blob φ(x) is defined as in (5.4). We can take α = π2 without loss

of generality. Then using the Proposition 5.3.1, we need to bound

F (ω)
△

=
∑

k∈ZZ
d

exp(−‖ω +G−⊤k‖2)

by two constants 0 < A ≤ B < ∞ on the lozenge region {G−⊤x|x ∈ [0, 1)d}. Let ω =

G−⊤ω0, with ω0 ∈ [0, 1)d. Since G is invertible, there exists constants 0 < c1 ≤ c2 <∞
such that

c1‖ω0 + k‖2 ≤ ‖G−⊤(ω0 + k)‖2 ≤ c2‖ω0 + k‖2

Therefore
∑

k∈ZZ
d

exp(−c2‖ω0 + k‖2) ≤ F (ω) ≤
∑

k∈ZZ
d

exp(−c1‖ω0 + k‖2)

The conclusion now follows by using a simple property of Gaussian function. For any

α > 0, there exists constants 0 < C1 < C2 such that for any t ∈ [0, 1)d:

C1

∫

IRd
e−α‖x‖2

dx ≤
∑

k∈ZZ
d

e−α‖k+t‖2 ≤ C2

∫

IRd
e−α‖x‖2

dx (5.22)



73

5.3.2 Density of X in L2(IRd)

We will need the function
∑
k∈ZZ

d |φ̂(ω+G−⊤k)|2 to be continuous on ω. For this purpose,

let’s make two assumptions on φ̂. Firstly,

∫

‖ω‖∞>R
|φ̂(ω)|2dω = O(R−p), for some p > 0 (5.23)

which holds if φ̂(ω) decays like O(‖ω‖−q) for some q > d/2. Secondly, there exists a

constant p′ > d and C > 0 such that for ‖x‖ large,

|φ̂(x+ y)− φ̂(x)| ≤ C‖x‖−p′‖y‖, ∀y ∈ IRd (5.24)

Particularly, this condition will hold if ‖∇φ̂(ω)‖ decays as O(‖ω‖−p′

).

Lemma 5.3.3. Let {φ(x− xk)} be a Riesz basis of X. Under the condition (5.23) and

(5.24), the function
∑
k∈ZZ

d |φ̂(ω +G−⊤k)|2 is continuous on ω.

Proof. We only have to prove the continuity on the fundamental domain Γ = {G−⊤x|x ∈
[0, 1]d}. Let’s define hN (ω)

△

=
∑

‖k‖∞≤N |φ̂(ω + G−⊤k)|2, which is clearly continuous.

Since {φ(x − xk)} is a Riesz basis and by (5.20), hN (ω) converges almost everywhere.

For any ω ∈ Γ, we note ω0 = G⊤ω ∈ [0, 1]d. On the one hand, since φ̂ is a bounded

function, we have

∑

‖k‖∞≥N+1

|φ̂(G−⊤(ω0 + k))|2 −
∫

‖x‖∞≥N+1
|φ̂(G−⊤(ω0 + x))|2dx

≤ C0

∑

‖k‖∞≥N+1

∫

x∈[0,1]d
|φ̂(G−⊤(k + ω0 + x))− φ̂(G−⊤(k + ω0))|dx

Using the condition (5.24), this is bounded by

C1

∑

‖k‖∞≥N+1

1

‖k + ω0‖p
′

∞

≤ C1

∑

‖k‖∞≥N

1

‖k‖p′

∞

≤ C2

∑

n≥N

nd−1−p′

which tends to 0 with N . And on the other hand, by the condition (5.23),

∫

‖x‖∞≥N+1
|φ̂(G−⊤(ω0 + x))|2dx ≤ C3

∫

‖x‖∞≥C4N
|φ̂(x)|2dx = O(N−p)

All the constants C0, . . . , C4 appeared in above expressions depend only on G and d.

By putting these two parts together, finally we’ve proved that for N large, the series
∑

‖k‖∞≥N+1|φ̂(G−⊤(ω0 + k))|2 can be uniformly bounded by any small value, therefore

hN (ω) converges uniformly and the limit is continuous.
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Admissible basis function When representing a function f in the form of (5.11),

we make the the following restrictions on the basis function φ:





φ̂(0) 6= 0

{φ(x− xk)}k is a Riesz basis of X.

(5.23) and (5.24) hold.

(5.25)

Clearly, if we take φ as the Gaussian blob and X as the shift invariant space generated

on an hexagonal lattice, then the conditions in (5.25) are fulfilled.

Sampling step h One can improve the resolution of the representation system by

modifying the lattice sampling step h and dilating proportionally the basis function. We

note h > 0 the sampling step, φh(x) = h−d/2φ(x/h) the dilated basis function, Lh the

lattice generated by matrix hG and Γh a fundamental domain of L∗
h. The corresponding

shift invariant space now reads:

Xh = Span{φh(x− yk), k ∈ ZZ
d}, with yk = hGk (5.26)

Then a natural question arises about whether Xh is dense in L2(IRd) as h goes to 0. We

remark that the general problem about the density and the approximation order of a

shift invariant space is studied under the Strang-Fix theory [106] [107]. In the following

we give an answer to this question using some basic techniques.

Proposition 5.3.4. As h→ 0, the shift invariant space Xh generated by an admissible

basis function of type (5.25) is dense in L2(IRd) if and only if:

|φ̂(G−⊤k)| = 0, ∀k ∈ ZZ
d, k 6= 0 (5.27)

That is, φ̂(ω) vanishes on all non zero nodes of the dual lattice.

Proof. Without loss of generality, we suppose φ̂(0) = 1. Let’s first prove that(5.27) is a

sufficient condition. Given f ∈ L2(IRd), we will show that by taking the function

g(x)
△

= h−d/2
∑

k

gkφh(x− yk),

the error ‖f̂ − ĝ‖L2(IRd) can be arbitrarily reduced as h tends to 0. For this, let’s

define gd
△

=
∑
k gkδ(x − yk). Then g(x) = h−d/2gd ∗ φh(x), and its Fourier transform

ĝ(ω) = φ̂(hω)ĝd(ω). Remark that ĝd(ω) is L∗
h-periodic, and we can always choose
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coefficients {gk} such that ĝd(ω) = f̂(ω) a.e. on the fundamental domain

Γh = {h−1G−⊤ω, ω ∈ [0, 1]d}.

By introducing h′ > h > 0, we pose ‖f̂ − ĝ‖2 = I1 + I2 + I3, with:

I1 =
∫

Γh′

|f̂(ω)− φ̂(hω)ĝd(ω)|2dω =
∫

Γh′

|f̂(ω)(1− φ̂(hω))|2dω

I2 =
∫

Γh\Γh′

|f̂(ω)− φ̂(hω)ĝd(ω)|2dω =
∫

Γh\Γh′

|f̂(ω)(1− φ̂(hω))|2dω

I3 =
∫

∁Γh

|f̂(ω)− φ̂(hω)ĝd(ω)|2dω

Now we will bound I1, I2, I3 by arbitrary small values.

For I2: remark that φ̂(ω) is a bounded function, thus

sup
ω∈IRd

|1− φ̂(hω)|2 ≤ C0

for some constant C0, and I2 ≤ C0
∫
∁Γh′
|f̂(ω)|2dω can be arbitrarily small by taking h′

small.

For I1: since φ̂(ω) is continuous, for a fixed h′ we can choose 0 < h < h′ small enough,

such that supω∈Γh′
|1− φ̂(hω)|2 < ǫ for any ǫ > 0, and have I1 ≤ ǫ‖f̂‖2.

For I3: Using the triangle inequality:

I3 ≤ 2
∫

∁Γh

|f̂(ω)|2dω + 2
∫

∁Γh

|φ̂(hω)ĝd(ω)|2dω,

and the first term clearly tends to 0 with h, while for the second term we use the

periodicity of ĝd and rewrite it as:

∫

∁Γh

|φ̂(hω)ĝd(ω)|2dω =
∫

Γh

∑

k 6=0

|φ̂(hω +G−⊤k)|2|ĝd(ω)|2dω

=
∫

IRd
Fh(ω)|f̂(ω)|2dω

with Fh(ω)
△

= 1Γh
(ω)

∑
k 6=0|φ̂(hω +G−⊤k)|2. Using the fact that {φ(x− xk)} is a Riesz

basis and by Proposition 2.1, Fh(ω) is bounded almost everywhere. It’s also continuous

at zero by Lemma 5.3.3. So using the condition (5.27), for any ω ∈ IRd, Fh(ω) → 0 as

h→ 0. Finally we apply the dominated convergence theorem and achieve the proof for

the sufficient condition.
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For the other sense, note that by triangle inequality:

√
I3 ≥

(∫

IRd
Fh(ω)|f̂(ω)|2dω

)1/2

−
(∫

∁Γh

|f̂(ω)|dω
)1/2

so the first term must goes to 0 with h. Since Fh(ω)|f̂(ω)|2 is positive and f ∈ L2(IRd)

is arbitrary, we can extract a subsequence hj → 0 such that limj Fhj
(ω) → 0 almost

everywhere. This implies φ̂(G−⊤k) = 0 for any k 6= 0. In fact, if there is a k0 6= 0 for

which φ̂(G−⊤k0) 6= 0, then by the continuity of φ̂, for any ω:

lim
j→∞

Fhj
(ω) ≥ lim

j→∞
|φ̂(hjω +G−⊤k0)|2 > 0,

and we get a contradiction. This achieves the proof for the necessary condition.

The proposition above is general. Let’s take the 2D Cartesian lattice G = Id as example

to see its implication on blob φ. The condition (5.27) implies that the profile function

bφ̂(t) vanishes at all non zero positions of form t =
√
m2 + n2,m, n ∈ IN. Particularly,

this is not the case for Gaussian blob, so the limit of the shift invariant space Xh is

not dense in L2(IRd), unlike the well known result for pixel basis. While this density

problem doesn’t seem to be a drawback in real applications: the numerical experiences

in Chapter 8 confirm that the blob reconstruction, compared with the pixel one, is less

sensitive to the sampling step and offers better visual quality.

Remark 5.3.1. A possible solution to have the density is to band-limit the Gaussian blob

φ as F−1(1{G−⊤x,‖x‖∞≤1/2}(ω)φ̂(ω)), then the condition (5.27) is fulfilled. Nevertheless,

this will complicate the expression of φ in spatial domain, and reduce the numerical

efficiency of the Gaussian blob in parallel computations.

5.3.3 Limitation of the image model by Gaussian blob

Besides the density question, one might ask whether the dyadic approximation spaces

X2j , j ∈ ZZ are nested, i.e., X2j+1 ⊂ X2j .

Proposition 5.3.5. For a non zero radial function φ(x), the space X1 is not included

in X1/2 if |φ̂(ω)/φ̂(ω/2)| → 0 as ‖ω‖ → +∞.

Proof. Suppose that X1 ⊂ X1/2, then we can write φ(x) =
∑
k fkφ(2x − xk) for some

{fk} 6= 0. This is equivalent to φ̂(ω) = φ̂(ω/2)ĝ(ω), with ĝ(ω) = 2−d∑
k fk exp(−2πi〈ω, xk/2〉).

Remark that ĝ is a periodic function, and on the same time ĝ(ω) is radial and tends to 0

as ‖ω‖ → ∞. Thus we must have ĝ(ω) ≡ 0, which is in contradiction with {fk} 6= 0.
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Applying this proposition to the Gaussian blob, the answer is again negative. In regard

of these results, we conclude that one can not build a Multiresolution Analysis (MRA)

in the sense of [108] with a single Gaussian blob. In order to overcome this theoretical

limitation and build an efficient image representation model, in the next we will extend

the single blob to multiscale ones. The multiscale blob system gives a redundant and

compressible representation of L2(IRd), which is essential to solve the incomplete data

problem.

5.4 Tight frame by a multiscale blob system

We introduce the blob family {ψj(x)}j∈ZZ, where each ψj(x) is a blob. Typically, this

family is constituted by band-pass functions of different frequency selectivity, or a mix-

ture of low-pass and band-pass ones. The scalar products between L2(IRd) function

f with the translations of ψj(x) are called the analysis coefficients and denoted by:

Ψf(x, j)
△

= 〈f(·), ψj(· − x)〉.

Partition of unity In order to synthesize f from its analysis coefficients, we will re-

quire the partition of unity (PU) property on the blob family {ψj(x)}, which is expressed

as:
∑

j

|ψ̂j(ω)|2 =
∑

j

bψ̂j
(‖ω‖)2 = c0, for a.e. ω ∈ IRd, (5.28)

for some constant c0 > 0.

Theorem 5.4.1 (Chapter 5, [14]). Suppose that the PU property holds for {ψj}j∈ZZ.

Then one can use the analysis coefficients to synthesize f as following:

f(x) = c−1
0

∑

j

Ψf(·, j) ∗ ψj(x) (5.29)

A direct application of this theorem is difficult since the analysis coefficient Ψf(·, j) here

is defined on the continuous domain IRd. To make (5.29) numerically feasible, we will

build a discrete tight frame by sampling Ψf(·, j). The following lemma will be useful:

Lemma 5.4.2. Let f ∈ L2(IRd) and G an invertible matrix. The Fourier transform of

function fd(x)
△

=
∑
k∈ZZ

d f(Gk)δ(x−Gk) reads:

f̂d(ω) = |detG|−1
∑

k∈ZZ
d

f̂(ω −G−⊤k) (5.30)

Proof. Omitted.
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Sampling condition for a tight frame Now let Lj be a lattice generated by matrix

Gj , and we translate ψj(x) on Lj to obtain:

ψj,k(x)
△

= |detGj |1/2ψj(x− xjk), with xjk = Gjk (5.31)

The next proposition provides a simple way to make {ψj,k(x)} a tight frame.

Proposition 5.4.3. Suppose that for all j ∈ ZZ, the following conditions hold:

1. ψj are band-limited functions satisfying (5.28) with c0 = 1,

2. The support of ψ̂j is included in a fundamental domain Γj of the dual lattice L∗
j .

Then the set {ψj,k(x)}j∈ZZ,k∈ZZ
d constitutes a tight frame of L2(IRd):

f(x) =
∑

j∈ZZ

∑

k∈ZZ
d

〈f, ψj,k〉ψj,k(x), ∀f ∈ L2(IRd) (5.32)

Proof. We define the sampled function of continuous coefficients:

Ψd(x, j)
△

=
∑

k∈ZZ
d

Ψf(Gjk, j)δ(x−Gjk), (5.33)

and the reconstruction: g(x) =
∑
j Ψd(·, j) ∗ ψj(x)|detGj |. Then by lemma 5.4.2:

ĝ(ω) =
∑

j

Ψ̂d(ω, j)ψ̂j(ω)|detGj |

=
∑

j

ψ̂j(ω)
∑

k∈ZZ
d

f̂(ω −G−⊤
j k)ψ̂∗

j (ω −G−⊤
j k)

Since ψj is band-limited and supp ψ̂j ⊂ Γj , no aliasing is introduced in the sum above,

therefore: ĝ(ω) =
∑
j |ψ̂j(ω)|2f̂(ω) = f̂(ω), using the partition of unity property. This

proves that {ψj,k(x)}j,k constitutes a tight frame of L2(IRd).

Taking the solution space X = L2(IRd), the above proposition says that any function

f ∈ X can be synthesized from a ℓ2(ZZ) sequence {fj,k}:

f(x) =
∑

j∈ZZ

∑

k∈ZZ
d

fj,kψj,k(x) (5.34)

The question remains to known if the system {ψj,k(x)} can give a sparse or compressible

representation, for the typical images encountered in CT applications. Since this system

is generally redundant, there are infinite ways to represent f , and we will seek the

sparsest representation from all {fj,k} satisfying (5.34) through the algorithm such as
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the ℓ1 minimization or the greedy algorithm discussed in precedent chapter. By the

tight frame property of {ψj,k}, it suffices now to choose the ψj in such a way that the

analysis coefficients 〈f, ψj,k〉 have a fast decay, in order to guarantee the existence of a

sparse solution of the ℓ1 solver.

5.4.1 Construction of multiscale blob system

The construction proposed here follows the same line as the classical Wavelet theory. It

consists in three steps:

1. We choose first a band-limited mother blob ψ(x) which has n > 0 vanishing mo-

ments, i.e., ψ(x) is orthogonal to any d-variables polynomial of order less than n.

This means that for any positive indexes 0 ≤ k1 + · · ·+ kd < n:

∫

IRd
ψ(x)xkdx = 0, with xk

△

= xk1

1 · · ·xkd

d (5.35)

or when ψ̂(ω) is smooth, ∂k1

1 · · · ∂kd

d ψ̂(0) = 0 (5.36)

We generate also the lattice L0 from a matrix G0, such that supp ψ̂ is supported

in a fundamental domain of the dual lattice L∗
0.

2. From such a ψ(x), we define the family {ψj(x)}j∈ZZ as

ψj(x) = β−jdψ(β−jx) (5.37)

with the β > 1 the dilation parameter carefully chosen to fulfill the partition of

unity (5.28). As the index j decreases, the shift invariant space generated by ψj

represents higher frequency information, and we call them fine scale.

3. We translate each ψj(x) on an individual hexagonal lattice Lj , which is generated

from the matrix Gj = βjG0. Then the sampling condition of Proposition 5.4.3 is

fulfilled and the resulting system {ψj,k(x)} is then a tight frame.

We name this construction the multiscale blob system.

Vanishing moments One may wish that the condition (5.36) has an equivalence on

the profile function of bψ̂, which would be easier to verify. We establish an intermediate

result in this direction:
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Lemma 5.4.4. Define ψ(x) = b(‖x‖), with b : IR → IR+ which is even, Cn(IR) smooth

and b(k)(0) = 0 for k = 0, 1, . . . n. Note ∂ki the i-th partial derivative of order k. Then:

∂ki ψ(0) = 0, for k = 0, 1, . . . n

Proof. We note N(x) = ‖x‖. Remark that for x 6= 0 and k ≤ n, ∂ki ψ(x) is well defined

and given by the Faà di Bruno formula:

∂ki ψ(x) =
∑

P∈Pk

b(|P |)(‖x‖)
∏

p∈P

∂
|p|
i N(x) (5.38)

Here Pk denotes all possible partitions of the set {1, 2, . . . k}. P ∈ Pk is one such

partition, and |P | is the number of disjoint “pieces”. p ∈ P is then a “piece” (a subset

of {1, 2, . . . k}), and |p| > 0 is the size of p.

Clearly we have ψ(0) = 0. Now suppose that ∂ki ψ(0) = 0. We calculate the derivative

in direction i of ∂ki ψ taken at 0. For this, remark that for t > 0:

∂ki ψ(tei) =
∑

P∈Pk

b(|P |)(t)
∏

p∈P

∂
|p|
i N(tei) = b(k)(t)

The last equality above comes from the simple fact that, for t > 0:

∂mi N(tei) =





1 for m = 1

0 for m > 1

Then by definition:

∂k+1
i ψ(0) = lim

t→0+

∂ki ψ(tei)− ∂ki ψ(0)
t

= b(k+1)(0) = 0

where we have used the hypothesis ∂ki ψ(0) = 0. The conclusion now follows by induction.

Based on this lemma we conjecture the following result, which provides a sufficient

condition on the vanishing moments of the blob ψ from the bψ̂.

Conjecture 5.4.1 (Vanishing moments). If bψ̂
(m)(0) = 0 for m = 0 . . . n− 1, then:

∂kψ̂(0) = 0

for all multi-index k such that |k| < n. In other words, the blob ψ has n vanishing

moments.
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Decaying rate of the blob coefficients Given a function f , the decaying rate of its

blob coefficients will depend on the vanishing moment of ψ, and also on the smoothness

of f . If f is n − 1 order piecewise polynomial, then (5.35) implies that the blob ψj,k

located inside a polynomial region has its analysis coefficients |〈f, ψj,k〉| decaying at the

rate O(βnj) [14], and at fine scales only those located near the discontinuities of f have

significant non zero coefficients.

Two concrete examples of multiscale blob system are given in sections 5.4.2 and 5.4.3.

We emphasize here that none of them fulfils the sampling condition of the Proposition

5.4.3, since their mother blobs ψ are not band-limited, therefore they cannot be claimed

as tight-frame. Nevertheless, in the numerical applications we can treat them safely as

band-limited function, due to the exponential decay of ψ̂ in these two examples.

5.4.2 Diff-Gaussian blob

From the Gaussian blob φ(x) (5.4), we define ψ(x) in the frequency domain as:

|ψ̂(ω)|2 = φ̂(ω/2)− φ̂(ω) (5.39)

= (π/α)d/2(e−π2‖ω‖2/(4α) − e−π2‖ω‖2/α)

A close form expression of ψ(x) is difficult to find. Nevertheless, it’s possible to establish

the asymptotic expansion, with the aid of the following lemma:

Lemma 5.4.5. The mono-dimensional function

f(t)
△

= (exp(−at2)− exp(−bt2))1/2, for 0 < a < b (5.40)

has the asymptotic expansion:

f(t) =
∞∑

k=0

Ck exp(−(kb− ka+ a/2)t2), with Ck =
(2k)!

4k(k!)2(1− 2k)
(5.41)

Proof. We take the Taylor development of
√

1− x around 0:
∑
k≥0Ckx

k, with the coef-

ficient Ck given by:

Ck =
2−k

(1− 2k)k!

k∏

m=1

(2m− 1) =
(2k)!

4k(k!)2(1− 2k)

(5.41) now follows by rewriting f(t) as: f(t) = e−at2/2
√

1− e(a−b)t2 , and substituting x

by e(a−b)t2 in the development.
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Applying Lemma 5.4.5 on ψ̂ defined in (5.39) gives:

ψ̂(ω) = (π/α)d/4
∑

k≥0

Ck exp
(
−3k + 1/2

4α
π2‖ω‖2

)
(5.42)

The expression of ψ in spatial domain now follows easily:

Proposition 5.4.6 (Diff-Gaussian blob). The function ψ(x) defined in (5.39) has the

asymptotic expression:

ψ(x) = 2d(π/α)−d/4
∞∑

k=0

Ck
(3k + 1/2)d/2

exp
(
− 4α

3k + 1/2
‖x‖2

)
(5.43)

The equality holds in L2 sense.

Proof. We note ψ̂N (ω) the sum ofN first terms in the series (5.42), then ψ̂N (ω) converges

(uniformly) to ψ̂(ω) for all ω. Remark that
∑
k≥0 |Ck| = 2, and for all N , ψ̂N (ω) can be

bounded by:

ψ̂N (ω) ≤ C exp(−π2‖ω‖2/(8α)) ∈ L2(IRd)

with C > 0 a constant. Applying the Dominated Convergence Theorem (the L2 version),

we see that ψ̂N (ω) converges to ψ̂(ω) in L2(IRd). Now taking the Fourier transform term

by term on ψ̂(ω) and we obtain (5.43).

From ψ(x) the blob family is defined as

ψj(x) = 2−jdψ(2−jx) (5.44)

then ψ̂j(ω) = ψ̂(2jω). Remark that by construction,

S∑

j=−S

|ψ̂j(ω)|2 =
S∑

j=−S

φ̂(2j−1ω)− φ̂(2jω)

= φ̂(2−(S+1)ω)− φ̂(2Sω)

Now by letting S →∞, we see that the PU property (5.28) is fulfilled by this family:

∑

j∈ZZ

|ψ̂j(ω)|2 = φ̂(0)− φ̂(∞) = (π/α)d/2

We name (5.43) the Diff-Gaussian blob. Constructed in this way, ψ has one vanishing

moment. Figure 5.1 shows the 2D Diff-Gaussian blob ψ(x) with α = 1.
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(a) 2D Diff-Gaussian blob profile (b) 2D Diff-Gaussian blob

Figure 5.1: 2D Diff-Gaussian blob ψ with parameter α = 1. (a): Profile function bψ.
(b): 3D visualization.

Multiscale blob system Given a number S > 0, we truncate the sequence {ψj}
defined in (5.44) by keeping only the indexes |j| ≤ S − 1, and modify the blob of the

finest scale −S to:

|ψ̂−S(ω)|2 = (π/α)d/2 − φ̂(2−Sω) ≥ 0,

which is a high pass blob; and modify also the blob of the coarsest scale S to:

|ψ̂S(ω)|2 = φ̂(2S−1ω),

which is a low pass blob. The scales |j| > S of the family {ψj} are dropped. With the

modified system, the partition of unity property still holds:

S∑

j=−S

|ψ̂j(ω)|2 = (π/α)d/2 − φ̂(2−Sω) + . . .+ φ̂(2S−1ω) = (π/α)d/2

Figure 5.2 shows the frequency tiling created by ψ̂j of 5 different scales. Except for

the high pass blob ψ̂−S , we have spatial expressions (in asymptotic forms) for all other

blobs ψj , which make the numerical evaluation straight forward. In practice the high

pass blob is simply removed from this system, and finally we get {ψ−S+1, . . . , ψS}.

Remark 5.4.1. In practice it’s enough to sum the first 100 terms in (5.43) for an ac-

curate approximation: the truncation error (up to a constant factor) is bounded by
∑∞
k=100 |Ck|(3k + 1/2)−d/2, which is of order 10−6 by numerical evaluation.

Remark 5.4.2. The Difference of Gaussian (DOG) is a mother wavelet often employed

in the image edge detection tasks. DOG is defined in spatial domain as the difference

between a narrow and a wide Gaussian distribution (L1-normalized), which results in
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Figure 5.2: Multiscale Diff-Gaussian blob system: frequency tiling created by ψ̂j(ω)
for j = −2 . . . 2.

frequency domain a band pass filter. Our Diff-Gaussian blob differs from DOG in that

the difference is made in frequency domain to keep the PU property.

5.4.3 Mexican hat blob

A much easier way to build the multiscale blob system is to use the Mexican hat, i.e.,

the second derivative of the Gaussian function, which will be named the Mexican hat

blob. For this, we define first the profile function in frequency domain as

bψ̂(s) = c0s
2 exp(−c1s

2) (5.45)

with the constant c0 > 0, c1 > 0 to be specified. Now use the Proposition 5.1.1, we only

have to solve Ad−1bψ̂(s) = b̂ψ(s).

Lemma 5.4.7 (2D Mexican hat blob). We have the following 2D Fourier transform

pairs:

ψ(x)
△

= (1− α‖x‖2) exp(−α‖x‖2) (5.46)

ψ̂(ω)
△

= π3α−2‖ω‖2 exp(−π2α−1‖ω‖2) (5.47)

Proof. The Abel transform of (5.45) reads:

Abψ̂(s) = c0

√
π/c1(s2 + (2c1)−1) exp(−c1s

2)

Taking the 1D Fourier transform on Abψ̂ and by Proposition 5.1.1, we obtain:

bψ(t) = c0πc
−2
1 (1− π2t2/c1) exp(−π2/c1t

2)
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The transform pair (5.46) and (5.47) now follows by setting c1 = π2/α and c0 = π3/α2.

Lemma 5.4.8 (3D Mexican hat blob). We have the following 3D Fourier transform

pairs:

ψ(x)
△

= (3α(2π2)−1 − α‖x‖2) exp(−α‖x‖2) (5.48)

ψ̂(ω)
△

= (π/α)3/2‖ω‖2 exp(−π2α−1‖ω‖2) (5.49)

The Mexican hat blob has two vanishing moments. Using ψ(x) and with a dilation factor

β > 1, the blob family is constructed as ψj(x) = β−jdψ(β−jx). Figure 5.3 shows the

2D Mexican hat blob of the parameter α = 1. Compared with the Diff-Gaussian blob

(Figure 5.1), it can be seen that the Mexican hat blob has a better spatial localization.

(a) 2D Mexican hat blob profile (b) 2D Mexican hat blob

Figure 5.3: 2D Mexican hat blob ψ with parameter α = 1. (a): Profile function bψ.
(b): 3D visualization.

PU of Mexican hat blob It’s a classical result that the 1D Mexican hat function

constitutes a frame of L2(IR) if some appropriate dilation and translation parameters

are used [109]. In practice, the partition of unity property (5.28) can be verified through

a numerical procedure. For a given dilation factor β, we evaluate numerically the max-

imum and the minimum value of
∑
j∈ZZ bψ̂j

(‖ω‖)2 on interval [1, β], noted by vmin, vmax

respectively, and calculate the error ǫ = (vmax − vmin)/(vmax + vmin) which reflects the

deviation from a constant value. It can be observed that ǫ is bounded by 10−4 as long

as β ≤
√

2. Remark that taking β too small yields very redundant multiscale system so

reduces the numerical efficiency. The related numerical experiments in Chapter 7 and

Chapter 8 are obtained with β = 2 in order to reduce the redundancy.
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5.5 Parameters of blob image

The blob parameter α together with the lattice sampling step h can greatly change

the image visual quality and the convergence speed of reconstruction algorithms. We

provide some guidelines here on the choice of these parameters for the Gaussian blob

φ(x) = exp(−α‖x‖2). With some straightforward modifications, the arguments below

apply also on the multiscale blob system. We recall that in numerical implementations

the blob is truncated as φ(x)1‖x‖≤rcut
with the radius rcut as a free parameter.

Choice of blob parameter α, rcut Let wD be the essential bandwidth of the unknown

function f to be reconstructed (in the sense that |f̂(ω)| outside the ball of radius wD

is very small). By identifying the FWHM of φ̂(ω) as wD: φ̂(wD) = φ̂(0)/2, we deduce

α = π2w2
D/ ln 2. The blob radius rcut is set using a cut-off error of ε, by φ(rcut) = εφ(0).

We have observed in numerical experiments that the radius rcut has no visible impact

on image quality, as long as the cut-off error ε ≤ 10−3.

Choice of lattice sampling step h With the parameter α fixed, it’s however deli-

cate to determine the hexagonal lattice sampling step h, due to the trade-off between

the numerical efficiency and the image visual quality. Decreasing the sampling step can

improve the approximation quality of the shift-invariant space X, but at the price of

a slower convergence rate of reconstruction algorithms, since the Riesz basis bounds

deteriorate and the system becomes ill-conditioned. The criterion we take here is based

on a frequency argument for the expression (5.18). Since φ̂ decays exponentially, we

can choose a disk of radius Rcut on which φ̂ is essentially supported, in the sense that

φ̂(Rcut) = ε̂φ̂(0) for a given cut-off error ε̂. In order to reduce the aliasing error intro-

duced by the sum in (5.18), the disk of radius Rcut should not contain any non zero

nodes of the dual hexagonal lattice, which implies h ≤ 1/(
√

3Rcut). In our numerical

experiments we have used the cut-off error ε̂ = 10−1. Remark that a smaller ε̂ yields a

denser lattice and reduces furthermore the aliasing artifacts caused by the sampling, at

the price of a heavier computation charge.

Finally, it’s easy to see that the blob size and the lattice sampling step are simultane-

ously determined by the user-specified reconstruction bandwidth wD: for the bandwidth

cwD, c > 0, the blob cut-off radius becomes rcut/c and the lattice sampling step becomes

h/c. In practice, wD can be chosen according to the detector sampling step, as a conse-

quence of the Projections Slice Theorem.
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5.6 Wavelet-Vaguelette Decomposition by blob

The Wavelet-Vaguelette Decomposition (WVD) is a principle proposed by Donoho [110]

to substitute the classical singular value decomposition (SVD) for solving the linear

inverse problem whose operator is homogeneous with respect to dilations, e.g.the Radon

transform. Let X,Y be two Hilbert spaces and K : X → Y be an invertible compact

operator, whose domain and range are respectively X and Y . We note Kf = g, for

f ∈ X, g ∈ Y . The SVD of K finds two singular systems (orthonormal bases) of both

X and Y such that the application of K on f ∈ X is diagonalized with respect to these

bases. Nonetheless for general function f , its energy spread with respect to the singular

system rarely follows the decay rate of the singular values, consequently f cannot be

efficiently represented by its decomposition coefficients. On the other side, a wavelet

basis ψλ ∈ X can provide sparse representation of f but it doesn’t diagonalize K, that

is:

〈Kf,Kψλ〉 6= 〈f, ψλ〉 (5.50)

Wavelet-Vaguelette Decomposition Suppose that the wavelets ψλ are compactly

supported and have sufficiently large vanishing moments. The vaguelette {ψ̃λ}, ψ̃λ ∈ Y
is a wavelet-like system, and is related to ψλ through the operator K as following:

〈Kf, ψ̃λ〉 = 〈f, ψλ〉, ∀f ∈ X (5.51)

Particularly, K∗ψ̃λ = ψλ. In light of (5.51), f can be recovered by:

f =
∑

λ

〈Kf, ψ̃λ〉ψλ (5.52)

Therefore with the wavelet system {ψλ} in X and the vaguelette system {ψ̃λ} in Y , the

WVD offers a SVD-like diagonlization of K while at the same time retains the sparsity

of the decomposition coefficients 〈Kf, ψ̃λ〉. In case that the observation is corrupted by

noise, i.e.g = Kf + ǫ, one can apply the shrinkage operator on the coefficients 〈g, ψ̃λ〉 in

the same way as on the wavelet coefficients, and this improves considerably the classical

SVD-based linear inversion method [110]. The existence of vaguelette system for some

specific operators, especially the Radon transform, has been proved in [110], and its

applications in tomography can be found in [111–113].

Vaguelette of the multiscale blob system Here we aim in extending the WVD

paradigm to the multiscale blob system. Now let {ψj,k}j∈ZZ,k∈ZZ
d be a tight frame mul-

tiscale blob system constructed as in section 5.4. We need to find a vaguelette system
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{ψ̃j,k} in the sinogram domain, such that

P∗ψ̃j,k = ψj,k, for all j ∈ ZZ, k ∈ ZZ
d (5.53)

Then for any function f ∈ L2(IRd) we have 〈f, ψj,k〉 = 〈Pf, ψ̃j,k〉, and f can be recon-

structed by:

f =
∑

j∈ZZ

∑

k∈ZZ
d

〈Pf, ψ̃j,k〉ψj,k (5.54)

Remark that the decomposition coefficients 〈Pf, ψ̃j,k〉 has a fast decay since it’s the case

of 〈f, ψj,k〉, by construction of the multiscale blob system. This property provides a

sinogram domain based approach for exploiting the sparsity of f that we will detail in

Chapter 9. In the following we will call {ψ̃j,k} the vaguelette blob.

Calculate the vaguelette blob {ψ̃j,k} The expression of {ψ̃j,k} corresponded to the

blob ψ̃j,k can be found using the FBP formula and eq. (5.53):

ψ̃j,k(θ, y) =
1

|Sd−2|(I
−1Pψj,k)(θ, y), for y ∈ θ⊥ (5.55)

with I−1 the Riesz potential: Î−1f(ω) = ‖ω‖−1f̂(ω). In frequency domain we have

equivalently:

̂̃ψj,k(θ, ω) =
1

|Sd−2|‖ω‖ψ̂j,k(ω), for ω ∈ θ⊥ (5.56)

Remember that the multiscale blob ψj,k are constructed from a common mother blob ψ

as ψj,k(x) = βjdψ(βjx− k), for β > 0 some dilation factor. Now if we define the mother

vaguelette blob by:

ψ̃(θ, y) =
1

|Sd−2|

∫

θ⊥

‖ω‖ψ̂(ω) exp(2πi〈y, ω〉)dω (5.57)

then it follows easily that the vaguelette blob system are in fact dilations and translations

of ψ̃:

ψ̃j,k(θ, y) = βjdψ̃(θ, βjy −Πθ⊥k) (5.58)

Note that the spatial expression ψ̃(θ, y) (and that of ψ̃j,k(θ, y)) is difficult to find in

general, so for the numerical evaluation of 〈Pf, ψ̃j,k〉 we really rely on the frequency

expression (5.56). See Section 9.1.3 for more details.
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5.7 Concluding remarks

In this chapter we developed new image representation models based on radial blobs.

Compared to the standard pixel basis, the new method benefits from some theoretical

advantages such as the fast X-ray projection and the better control on the image band-

width. Whether or not the new method performs better than pixel in few projections

CT image reconstruction remains a question, and it clearly depends on the regulariza-

tion methods and related numerical algorithms applied on the new image model. This

will be the subject of the next chapter.



Chapter 6

Reconstruction Methods for Blob

Image

Based on the blob image representation models set up in previous chapters, we are now

in position to propose some reconstruction methods for these models. As pointed out

in Chapter 4, the “good” reconstruction algorithm which reaches the theoretical limit

of performance is nonlinear in nature and exploit the sparsity of the image model. In

this chapter we focus on the reconstruction methods which are numerically efficient in

the CT context and easily adaptable to the blob image models, namely:

1. the minimization of the blob image’s total variation

2. the minimization of the ℓ1 norm of blob coefficients

3. the hybrid of TV and ℓ1 minimization

Actually, these methods could have failed to be “efficient” without the remarkable

progress achieved recently in the dedicated numerical algorithms. Other reconstruc-

tion strategies, like the greedy algorithms, can also be applied to our image model but

will not be pursued here.

Notations In the following we note f
△

= {fn}n∈ZZ a coefficient vector of the blob

image, b the sinogram data vector, and A the X-ray projection operator applying on

blob coefficients f (see Annexe A). Note that all information about the acquisition

system is contained in A. We assume the following data generation model:

b = Af + n (6.1)

90
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with n a Gaussian noise vector: nk ∼ N (0, σ2) i.i.d. In practice, the number of scales

in the multiscale blob image model is prefixed, and the image support Ω is bounded,

therefore all the vectors and operators become finite dimensional. Hereafter we suppose

f ∈ IRN and drop the dimensional dependency in notations.

6.1 Total Variation minimization of blob image

The single scale Gaussian blob image model

f(x) =
∑

k∈ZZ
d

fkφ(x− xk) (6.2)

represents essentially the low frequency information, and it is well known that the usual

reconstruction will suffer from its over-smooth character. As a remedy, we propose the

minimization of the Total Variation for the blob image, which is known to preserve the

constant regions and sharp edges in reconstruction as it does on the pixel image1, and

also reduce the streak artifacts and the noise caused by the incomplete and low dose

photon data.

6.1.1 Discrete TV norm of a blob image

Let’s recall the definition of the TV semi-norm of a differentiable function f :

TV (f)
△

=
∫

IRd
‖∇f(x)‖dx (6.3)

On a blob image the numerical evaluation of the gradient ∇f(x) as well as (6.3) need to

be done in an appropriate manner. For this, we recall the blob-driven discrete gradient

operator D : X → IRd×|L′| defined in Section 5.2.2.1:

Df
△

=




D1f
...

Ddf


 ∈ IRd×|L′|

where Di : X → IR|L′| yields the i-th directional derivative of f taken on the lattice L′:

(Dif)k = ∂if(x′
k), x

′
k ∈ L′

1We refer the reader to Chapter 3 for the literature review on the TV minimization.
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Using the trapezoidal rule, we approximate TV (f) on L′ as (up to a constant factor)
∑
x′

k
∈L′‖∇f(x′

k)‖, and define the discrete total variation on coefficient vector f :

‖f‖TV △

=
∑

k∈ZZ
d

√
(D1f)2

k + · · ·+ (Ddf)2
k (6.4)

In practice, the sampling step of the lattice L′ should be taken reasonably small, e.g.,

smaller than that of blob lattice L, to make (6.4) a good approximation of (6.3). This

would require fast implementations for the operators D1, . . . Dd.

6.1.1.1 Numerical implementation of operator D

A first solution consists in parallelizing these operators on GPU platform, which has

been discussed in the section 2 of Chapter 5. Another possible solution is to compute

Di through FFT technique. We prove here some results on a 2D blob image of type

f(x) =
∑
k,l fk,lφ(x− xk,l) which can be easily generalized to 3D.

For this, we suppose that the lattice L generated by matrix G has N × N nodes, and

L′ is also generated by G, but upsampled by a integer factor s ≥ 1 (so has sN × sN
nodes). Let’s denote by FN the 2D DFT of size N ×N :

FN f(m,n) =
N−1∑

k=0

N−1∑

l=0

fk,l exp(−2πi(mk + nl)N−1)

and introduce the matrix Y, defined by Yu,v = ∂1φ(s−1G(u, v)).

Proposition 6.1.1. The 2D discrete Fourier transform of D1, its adjoint D1∗, and

D1∗D1 are :

FsN (D1f)(m,n) = FN f(m,n)FsNY(m,n) (6.5)

FN (D1∗g)(k, l) =
1
s2

s−1∑

t=0

FsNY(tN + k, tN + l)FsNg(tN + k, tN + l) (6.6)

FN (D1∗D1f)(k, l) =
1
s2
FN f(k, l)

s−1∑

t=0

|FsNY|2(tN + k, tN + l) (6.7)

All indexes above are understood as modulo the size of array that they are bound to.

Similar expressions hold for the operator D2.

Proof. Let’s rewrite D1f as:

(D1f)(m,n) = ∂1f(s−1G(m,n)) =
∑

k,l

fk,lY(m− sk, n− sl)
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Taking 2D DFT of size sN×sN on D1f , we get the equation (6.5). The adjoint operator

D1∗ : IRsN×sN → IRN×N reads:

(D1∗
g)k,l =

∑

m,n

gm,nY(m− sk, n− sl)

for any g ∈ IRN×N . Use the Parseval identity:

〈D1∗
g, f〉 =

1
N2
〈FN (D1∗

g),FN f〉 (6.8)

While on the other hand:

〈g, D1f〉 =
1

s2N2
〈FsNg,FsN (D1f)〉, and by (6.5),

=
1

s2N2

sN∑

m=0

sN∑

n=0

FsNg(m,n)FN f(m,n)FsNY(m,n)

=
1
N2

N∑

k=0

N∑

l=0

FN f(k, l)×
(

1
s2

s−1∑

t=0

FsNY(tN + k, tN + l)FsNg(tN + k, tN + l)

)

Compare the last term with (6.8), we get (6.6). Equation (6.7) is a consequence of (6.5)

and (6.6).

Since the FFT of Y can be computed off-line, one needs only two 2D FFTs for the

evaluation of D1f . Furthermore, the relations (6.6) and (6.7) confirm that the system

like D1∗D1f = D1∗g can be solved by means of FFT.

Remark 6.1.1. We’ve observed in numerical experiments that the direct evaluation on

GPUs is better than the FFT based method, since it avoids introducing aliasing er-

rors. The results presented in the next chapters are based on the GPU implementation.

Nonetheless, the FFT based method can still be useful in solving the problems of very

high dimension, where even the parallelization becomes time demanding.

6.1.2 Reconstruction by TV minimization

The TV minimization problem on the blob image (6.2) reads:

min
f
‖f‖TV , s.t. ‖Af − b‖2 ≤ ε2, for f ∈ IRN (6.9)
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with ε the noise level, or in an equivalent form:

min
f

1
2
‖Af − b‖2 + µ‖f‖TV , for f ∈ IRN (6.10)

with µ > 0 a penalty constant. These formulations are totally parallel to the TV

minimization problems for pixel image formulated in section 1.3.2 of Chapter 3, On

a Gaussian blob image, it’s possible to incorporate a positive constraint on f , and in

this way we restraint the solution space to the functions generated by positive Gaussian

blobs.

Numerical algorithm We remark that both (6.9) and (6.10) have exactly the same

form as the TV minimization for pixel image proposed in the literature, with the only

nuance that the underlying discrete gradient operator D defined as (6.4). This suggests

that many state-of-art optimization algorithms can be applied without modification.

This is the case for the TVAL3 algorithm [48], which has already been used in Sec-

tion 3.1.3. The technical details about this algorithm can be found in Annexe B.3.1.1

and in the original report [48].

Choice of penalty constant µ While the noise level ε in (6.9) can be estimated

through physical experiments, the penalty parameter µ is much more difficult to deter-

mine: it balances the data fitting term ‖Af − b‖2 and the TV term ‖f‖TV , and should

be adjusted in function of the noise level, the dimensions of data and the unknowns. We

use a simple manual method to choose µ. With the sinogram simulated from a phantom

image and with A, b fixed (so does the noise level), we solve (6.10) for a wide range of

µ, and choose the one which gives the best reconstruction result by comparing with the

phantom image. Then this choice of µ is used for (6.10) on other data of the same noise

level.

6.2 ℓ1 norm minimization of blob coefficients

As already pointed out in Chapter 5, the image representation using a single scale

Gaussian blob is not fundamentally different to that of the pixel basis, since the blob

coefficients do not have a fast decay. While for the multiscale blob system developed in

Section 5.4 which gives compressible image representation, we can follow the Compressed

Sensing theory (see Chapter 4) and use the ℓ1 minimization as decoder, which promotes

the sparsity of the blob coefficients.
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Modified multiscale blob image model For numerical feasibility, the multiscale

blob image model developed in Section 5.4 need to be modified by keeping only a finite

number of scales composed of low-pass or bandpass blobs. For the Mexican hat blob

model, this is done by dropping all fine scales of index smaller than −S and add a coarse

scale made by Gaussian blob φ0 which covers the low frequency. Finally, we have a finite

scale image model:

f(x) =
∑

k∈ZZ
d

f0,kφ0(x− x0
k) +

−1∑

j=−S

∑

k∈ZZ
d

fj,kψj(x− xjk) (6.11)

The ℓ1 minimization problem for (6.11) announces:

min
f
‖f‖1 s.t. ‖Af − b‖22 ≤ ε2, for f ∈ IRN (6.12)

where f is the blob coefficients in (6.11), and ‖f‖1 △

=
∑
k|fk|. Again, we have the

equivalent constraint-free form:

min
f

1
2
‖Af − b‖2 + µ‖f‖1, for f ∈ IRN (6.13)

with µ determined in the same manner as in TV case. Eq. (6.13) is also known under

the name of Basis Pursuit Denoising (BPDN), or Basis Pursuit (BP) for ε = 0 in

(6.12) [114], in the sparsity-related image processing literature. In solving linear inverse

problem with the pixel basis, BP is usually combined with a sparsifying transform W ,

e.g., the Wavelet or the Curvelet transform, and becomes:

min
c

1
2
‖AWc− b‖2 + µ‖c‖1, for c ∈ IRN (6.14)

where W synthesize a pixel image from the coefficient vector c, and the system operator

A applies on Wc (see Section 3.1.4). While in (6.12) and (6.13) the projector A operates

directly on the blobs and the ℓ1 norm is applied on the blob coefficients, consequently

no ad hoc sparsifying transform is needed.

Comparison between (6.13) and (6.14) Although based on the same sparsity-

promoting idea, the formulation (6.13) can be more beneficial than (6.14) from com-

putational standpoint. We consider here a simple problem to illustrate the situation.

Let A ∼ M × N , and suppose that the image to be reconstructed can be expressed

using the wavelet coefficients c which is supported on the index set I, with |I| ≪ N

and |I| < M . The reconstruction of c from noiseless data b is then reduced to solving

the equation AWSIc = b, with SI : IR|I| → IRN the embedding operator. The pseudo
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inverse solution reads:

c† = (S∗
IW

∗A∗AWSI)−1S∗
IW

∗A∗b (6.15)

The solution to the linear system (6.15) is commonly computed by the Conjugate Gra-

dient method, which terminates within |I| iterations under favorable conditions on A.

Although there is only |I| unknowns to be recovered, the computation complexity in

(6.15) is O(MN |I|), for the simple reason that the projector A applies on the pixel

image Wc which is full. This is in contrast with the blob image case. Suppose that

we want to recover an image represented by |I| blobs supported on I, then the pseudo

inverse solution reads:

f † = (S∗
IA

∗ASI)−1S∗
IA

∗b, (6.16)

and the computation complexity of (6.16) is O(M |I|2), since A operates only on the non

zero blobs.

Numerical algorithm A simple way to solve (6.13) is the iterative soft-threshold2

(IST) method, as summarized in Algorithm 3. The convergence rate of IST is O(1/n)

with n the number of iterations. A popular variant to IST is the Fast IST Algorithm

Algorithm 3 Iterative Soft-Threshold for solving (6.13)

Initialization: f0, n← 0
while not converged do

1. g ← A⊤(Afn − b)
2. update the gradient step λ using the steepest descent with line search
3. fn+1 ← SoftThreshλµ(fn − λg)
4. n← n+ 1

end while

(FISTA) [115], which accelerates the convergence rate to O(1/n2). While for (6.12)

(including the equality case ε = 0), one can use the Primal Alternating Direction Method

(PADM) [116]. We refer the reader to the Annexe B and the original papers for the

technical details of FISTA and PADM.

Heuristic acceleration of IST/FISTA In practice, the computation time of the ℓ1

minimization problem (6.13) on a multiscale blob image can be much longer3 than the

TV minimization of a single scale Gaussian blob image, therefore seriously restraints its

usefulness in real applications. This is mainly due to the X-ray projector’s concurrent
2The operator SoftThreshµ(·) is defined in Annexe (B.2).
3We have observed with simulated data (see Chapter 8) that FISTA algorithm takes usually more

than 1000 iterations to converge.
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memory access operations raised by the blobs of different radius in the multiscale blob

system. The situation could have been improved if one could know priorly the support

set I of the true solution, since in this case one only has to solve minf‖ASIf − b‖2,

where ASI applies only on a small number of nonzero blobs, therefore much faster than

on the whole vector f . Although knowing I in advance is clearly impossible, we can

indeed accelerate the computation in solving (6.13) with the IST/FISTA algorithm. We

make two observations:

• The problem (6.13) is easier to solve for µ large, because the sparsity of the solution

is overly promoted so the computation time is reduced. The homotopy method

[117–120] solves (6.13) in multiple times: it starts with a µ much bigger than the

desired value µ∗, and decreases it gradually to µ∗, by using the last solution as the

initialization of the next iteration. See Algorithm 4.

• At n-th iteration of the IST/FISTA algorithm, the soft-threshold operation (step

3 of Algorithm. 3) yields a sparse vector fn. Let s > 0 (a small number) be the

support size that one expects on the unknown, and Isn be the support of the s

largest terms of fn. It can be observed that for s small, Isn stablizes much faster

than the overall IST/FISTA algorithm, i.e., |Isn+1△Isn| → 0 rapidly with n, as

illustrated in Figure 6.1. Further iterations are needed by IST/FISTA to reduce

the residual error ‖Af−b‖2 using the gradient descent step (step 2 of Algorithm. 3),

which is known to have a slow convergence [23]. This suggest us to terminate the

IST/FISTA algorithm prematurely as soon as the support set of first s largest

term is found. Then we apply a CG debiasing step on the support of the solution

to reduce the residual error, which is more efficient than the gradient descent step,

and computationally cheap since there is only a small number of coefficients to be

identified.

Algorithm 4 Acceleration of IST/FISTA by homotopy

Initialization: f0 ← 0, t← 0, τ > 1, T ≥ 1, µ0 = µτT

while t < T do
1. Solve (6.13) with parameter µt using IST/FISTA, initialized by f t.
2. f t+1 ← the solution of step 1.
3. µt+1 ← µt/τ .
4. t← t+ 1

end while

Based on these observations, we propose an acceleration method for IST/FISTA by

combining the homotopy method and the CG debiasing step, resumed in Algorithm

5. We call it heuristic since we do not have the convergence proof of this algorithm.

Particularly, the new algorithm 5 does not solve the problem (6.13) exactly due to the
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Figure 6.1: An example of the convergence rate of the FISTA algorithm in terms
of changes in the support set. The vertical axis is in logarithmic scale. The curves
of different colors represent the value |Isn+1△Isn|/N , with n the iterations number and
N = 3×105 the dimension of vector f . Isn is the index set of s largest coefficients of the
n-th iteration solution fn. Blue curve: s = N , green curve: s = 10% × N , red curve:

s = 5%×N .

Algorithm 5 Heuristic acceleration of IST/FISTA by homotopy and debiasing

Initialization: f0 ← 0, t← 0, τ > 1, T ≥ 1, µ0 = µτT , ǫ > 0, s > 0
while t < T do

1. Solve (6.13) with parameter µt. Initialize IST/FISTA by f t and terminate when
|Isn+1△Isn|/N ≤ ǫ.
2. f t+1/2 ← the solution returned by IST/FISTA, and let I be the support of f t+1/2.

3. Debiasing: solve minf‖ASIf − b‖2 using CG, initialized by f t+1/2.
4. f t+1 ← the solution returned by step 3.
5. µt+1 ← µt/τ .
6. t← t+ 1

end while

premature termination of IST/FISTA iterations, and its solution is often slightly worse

than that of the original IST/FISTA algorithm. In Figure 6.2 we plot the acceleration

achieved by this method over FISTA in the first 500 iterations. The heuristic algorithm

terminates after 230 iterations spending 173 seconds, and the SNR of the final image is

19.50dB. FISTA algorithms terminates after 1000 iterations spending 1200 seconds, and

the final SNR is 19.73 dB.
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(a) Sparsity ‖f‖0/N (b) Residual ‖Af − b‖

Figure 6.2: An example of the convergence rate of FISTA and the heuristic acceler-
ation algorithms applied to a reconstruction problem. The horizontal axis is the total
number that the X-ray projector A,A⊤ has been applied. The heuristic algorithm uses
T = 4 homotopy iterations, with parameters τ = 0.5, ǫ = 5× 10−3, s = N . The jumps
in the red curve corresponds to the CG debiasing steps of 25 iterations. Figure (a): the
percentage of non zero coefficients at the n-th iteration. (b): the residual ‖Af − b‖ at

the n-th iteration.

6.3 Reweighted iterative TV and ℓ1 minimizations

Both the TV and the ℓ1 minimizations can be improved by their reweighted versions.

The reweighted TV minimization reads:

min
f
‖f‖TV (w) s.t. ‖Af − b‖22 ≤ ε2 (6.17)

where w is a positive weight vector and

‖f‖TV (w)
△

=
∑

k

wk

√
(D1f)2

k + . . .+ (Ddf)2
k (6.18)

The reweighted ℓ1 minimization reads:

min
f
‖w⊙ f‖1 s.t. ‖Af − b‖22 ≤ ε2 (6.19)

with w ∈ IRN
+ a weight vector and w⊙ f be the element-wise product between two

vectors. These formulations are to be incorporated into an iterative framework, where

we solve (6.17) or (6.19) for several times by updating at each new iteration the weight

w according to the solution f of the last reconstruction, see Algorithm 6. One possibility

for updating w in reweighted TV minimization is to calculate the gradient map ‖(Df)k‖
on the lattice L′4, and take the k-th entry of w as:

wk = (‖(Df)k‖+ ǫ)−1 (6.20)

4See Section 3.1.3.1 for definition of lattice L′.
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for ǫ > 0 some small constant. Similarly for reweighted ℓ1 minimization we can use:

wk = (|fk|+ ǫ)−1 (6.21)

Algorithm 6 Reweighted iterative TV/ℓ1 minimization

Initialization: t← 0, T > 0, w← 1, the constant vector of value 1.
while t < T do

1. f ← the solution of (6.17) (or the reweighted ℓ1 problem) with the weight w
2. update the weight w according to (6.20) or (6.21)
3. t← t+ 1

end while

Generally speaking, the reweighted iterative TV/ℓ1 minimization method performs bet-

ter than the standard scheme. The reason for the case of TV minimization is rather

intuitive. The map ‖(Df)k‖ has large value mainly near the discontinuities, therefore

the weight wk = (‖(Df)k‖ + ǫ)−1 is small at these positions. Consequently, the blobs

which contribute to the discontinuities are much less penalized than those inside con-

stant regions. Using the iterative scheme, the information about discontinuities found

by the last solution is recycled to a new iteration, and hopefully edges become more

sharp and constant regions become more flat. See [121, 122] and the references therein.

Recently, [122–124] brought more insights to the theoretical understanding of the reweighted

iterative ℓ1 minimization. Actually, the reweighting iterations approximate the ℓp, p < 1

minimization problem, which is non convex and the solution may not be globally op-

timal. The ℓp minimization with p < 1 is more adapted to signals of fast decay (e.g.,

those of weak ℓp ball for p < 1, see Chapter 4) and has better sparsity enhancing capa-

bility than ℓ1 [125, 126]. Therefore solving the reweighted ℓ1 problem several times can

effectively improve the reconstruction of a single ℓ1 minimization.

6.4 Hybrid of TV and ℓ
1 minimizations

As already pointed out in Section 3.1.1, by the TV minimization (6.9) the number of

projections can be greatly reduced, but the low contrast regions and small objects are

often smoothed out in favor of constant regions, which can be harmful in the context

like medical imaging. On the contrary the ℓ1 minimization reconstructs well these char-

acters but would require more projections, otherwise the image quality drops fast: the

reconstruction suffers from the “salt and pepper” noise, and the homogeneous regions

and the edges are not preserved (see Chapter 7 for numerical evidences).



101

These observations suggest us to use an hybrid model in the hope of combining the

advantageous of both parts. For this, we consider the TV-ℓ1 reconstruction method

[70, 120, 127], whose regularization term is the sum of the TV and the ℓ1 norm:

min
f

µ1‖f‖1 + µ2‖f‖TV , s.t. ‖Af − b‖2 ≤ ε2 (6.22)

Or in the equivalent constraint-free form:

min
f

1
2
‖Af − b‖2 + µ1‖f‖1 + µ2‖f‖TV (6.23)

for µ1 and µ2 two positive penalty constants. In practice we set µ1 ≫ µ2 thus (6.22)

and (6.23) are understood as the ℓ1 minimization augmented by an extra TV term,

and their solutions are expected to be sparse (small ℓ1 norm) as well as geometrically

simple (small TV norm). These formulations improves the standard ℓ1 minimization

by reducing effectively the “salt and pepper” noise and preserving homogeneous regions

and edges, and has less “texture killer” default of the standard TV minimization. We

refer the reader to next chapter for numerical evidences.

Numerical algorithm The problems (6.23) and (6.22) are numerically challenging,

due to the non-smooth regularization term µ1‖f‖1 +µ2‖f‖TV which can not be handled

by neither the TVAL3 nor the IST algorithm discussed previously. Efficient algorithms

[120, 127] based on the alternating direction method (ADM) and the penalization tech-

nique [127] (or the operator splitting technique [120]) have been proposed for (6.23).

Using the same ADM idea, in Annexe we propose an algorithm for both (6.22) and

(6.23) but based on an augmented Lagrangian formulation. Similar to the algorithms in

[120, 127], the soft-thresholding operators used in both TVAL3 and IST are preserved

in our new algorithm, which is a crucial point for its numerical efficiency.
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2D Numerical Experiments -

Simulated data

In this chapter we present 2D reconstructions results using simulated data based on the

blob image models and the reconstruction methods discussed in previous chapters. In or-

der to demonstrate their effectiveness, we shall confront the methods based on blob with

equivalent approaches based on pixel. Since the efficiency of a reconstruction method

depends on the application context, e.g., medical (low contrast objects) or industrial

(piecewise homogeneous objects) oriented, we shall also make a comparison on different

phantom images to bring out their pros and cons. The data have been simulated from

pixel phantom images, which allow precise quality assessment on the reconstructions.

Phantom images The phantoms images used in this chapter are shown in Figure 7.1.

Particularly, the disk and the Shepp-Logan phantoms are piecewise constant, while the

other phantoms are medical oriented and may contain low contrast regions and textures.

Sinogram data simulation Unless specified, the simulated data are acquired as fol-

lows. The parallel beam is equally distributed between [0, π) (or [0, 2π) for fan beam

source), and the linear detector is perpendicular to the source-rotation center axis. The

other parameters are:

• Rotation axis to source distance: 608.28mm (for fan beam case)

• Rotation axis to detector distance: 608.28mm (for fan beam case)

• Detector Length: 405.52mm

102
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(a) Disk (b) Shepp-Logan 512 × 512

(c) Thorax 512 × 512 (d) Abdomen 512 × 512

(e) Lung 334 × 512

Figure 7.1: Phantom images and their dimension. The Disk phantom (a) is a CAD
object. Figure (b) (c) (d) and (e) are pixel images with gray level normalized in [0, 1].
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• Pixel number of detector: 512

For data simulation, we apply the ray-tracing (Siddon) projector A on the phantom

image f to get a vector y = Af . The photon number at i-th detector pixel can be

considered as a Poisson variable of mean value I0 exp(−yi), with I0 being the mean value

of photon number at source. So we sample a Poisson distribution of mean I0 exp(−yi)
and generate in this way the photon data Ni, and the final noisy sinogram b is obtained

by taking bi = log I0−logNi. We define the Signal-to-Noise Ratio (SNR) of the sinogram

as:

SNR(b)
△

= 10 log10

(
E‖y‖2

E‖y− b‖2

)
(7.1)

Using the fact that for yi large (see Section 2.2.1.1):

E‖y− b‖2 ≃ I−1
0

∑

i

exp(yi)

we deduce that:

SNR(b) ≃ 10 log10 I0 + cst (7.2)

Typically in our experiments setting I0 = 107 will yield a sinogram of SNR larger than

50dB.

Image display By the property of blob image models, we can re-sample a recon-

structed blob image arbitrarily without using any ad hoc interpolation method. All our

reconstructions are re-sampled to the dimension of the original phantom image, and the

same linear window [0, 1] is applied to all output images by default.

Image quality assessment A single index can not give an objective apprehension of

image quality. Beside the standard Signal-to-Noise Ratio, we use also the Streak Index

(SI) [5] as the image quality metric. Let f be the reconstructed pixel image and g be

the reference phantom. The SNR between f ,g is defined as:

SNR(f ,g)
△

= 20 log10

(
‖g−N−1∑

i gi‖
‖f − g‖

)
(7.3)

The Streak Index between f ,g is defined as:

SI(f ,g)
△

= N−1‖f − g‖TV (7.4)
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where the discrete TV norm as defined in (3.23) is assumed, and N is the number of

pixels in image. SI is well suited for measuring the errors such as the fluctuation of the

non constant region or the imprecision of edges, typically caused by the streak artifacts

in the reconstruction.

Computation platform All the numerical experiments hereafter are made on a Intel

Xeon CPU at 2.50GHz system of 32 Gbyte memory integrating a NVIDIA Tesla C2070

GPU card of 4 Gbyte memory.

Notations We adopt following notations for this and the next chapter.

• P : the number of projections

• D: the number of pixels in the linear detector

• ∆: the reconstruction method in use, e.g., ∆ = ℓ1 means the solution is obtained

by the ℓ1 minimization

• N : the dimension (number of blobs or pixels) of the coefficient vector f

• τ : the sparsity level, e.g. the percentage of the nonzero entries (blobs).

• w = [a, b]: the linear window which is used for image visualization. The gray level

beyond (above) b (a) is set to b (a).

• T : the computation time in seconds.

• SNR: the SNR of the reconstruction compared to the original phantom, i.e., (7.3).

• SI: the SI of the reconstruction compared to the original phantom, i.e., (7.4).

• SNR(b): the SNR of the sinogram data, i.e., (7.1).

• Mex-4: 4 scales Mexican hat blob system.

• GS: (single scale) Gaussian blob.

• Daub-6: Daubechies wavelet of order 6.
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7.1 TV reconstruction results

Unless specified, all reconstructions in the following are obtained by solving the TV

minimization problem:

min
f

1
2
‖Af − b‖2 + µ‖f‖TV (7.5)

for f the coefficient of a Gaussian blob image model:

f(x) =
∑

k∈ZZ
2

fkφ(x− xk) (7.6)

See Chapter 5 for details about this image model and the choice of parameters.

7.1.1 Reconstruction of piecewise constant images

In the first experiment we aim to show that combined with TV minimization (7.5), the

Gaussian blobs can well represent small objects, sharp edges and constant regions, which

is a point for what blob is often criticized.

The CAD disk phantom with round and square holes of variant size was created for

this purpose (see Figure 7.1 (a)). The disk has the uniform attenuation value 1. The

diameters of the disk, the largest and the smallest holes are 120mm, 8mm and 0.2mm re-

spectively (the round holes in the vertical rectangular of Figure 7.1(a) appear in diamond

form due to the pixelization effect). A noiseless sinogram of 96 projections has been gen-

erated using the CIVA simulation platform [128]. The hexagonal lattice sampling step

is h = 0.15mm, and the parameters of Gaussian blob are α = 66.96, rcut = 0.32mm.

Reweighted iterative TV reconstruction We solve the reweighted iterative TV

minimization problem (6.17) with 3 iterations1, and display in Figure 7.2 the weighting

map w (see Section 6.3) after these iterations. It can be seen that after the first iteration,

most constant regions and the large holes have been already recovered. The streak

artifacts appeared in Figure 7.2.(a) are removed and the resolution of small details are

improved after the last reweighted iteration. The reconstructed image and the profiles

are shown in Figure 7.3 (a), (b), (c) and in Figure 7.4. Compared with the original disk

phantom, it can be seen that the constant regions and the contour discontinuities are well

preserved. Nevertheless, due to the large size and the smoothness of Gaussian blob, the

holes of diameter smaller than 0.4mm are blurred or even missed in the reconstruction.

The blob of smaller radius would be necessary to recover these details.

1The noise level ǫ is set manually.
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(a) Reweighted iteration 1 (b) Reweighted iteration 2 (c) Reweighted iteration 3

Figure 7.2: Disk phantom: P=96, ∆=Reweighted TV with 3 iterations. Figures (a),
(b), (c): the reweighting map w after each iteration.

(a) Reweighted iteration 1 (b) Reweighted iteration 2

(c) Reweighted iteration 3 (d) Disk phantom

Figure 7.3: Disk phantom: P=96, ∆=Reweighted TV with 3 iterations, w = [0, 1].
Figures (a), (b), (c): the reconstructed images after the first, the second and the last
iteration. Figure (d): disk phantom. The two corners in (c) and (d) are the zoomed

view on the rectangular ROI regions.
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(a) Horizontal central profile (b) Vertical central profile

Figure 7.4: Disk phantom: central profiles of the reconstruction Figure 7.3 (c)

High frequency components Here we test the TV reconstruction method on the

Shepp-Logan phantom (Figure 7.1 (b)) using P = 32 and SNR(b) = 50dB. The local

high frequency components contained in image result strong artifacts in reconstruction,

which can be observed from Figure 7.5 (b): the square oscillating pattern and the

fissure caused some high frequency aliasings in the tangent direction. These artifacts

are removed after the reweighted TV minimization, and the image resolution in the low

contrast regions are also improved. See also Figure 7.6.

7.1.2 Reconstruction quality vs. lattice sampling step h

In this experiment we study the reconstruction quality as a function of the hexagonal

lattice’s sampling step h. The Lung phantom (Figure 7.1 (e)) is used here, with the

physical size of 167.51 × 109.27mm2, and its gray level is normalized into [0, 1]. The

number of projections here is fixed to 64.

Comparison with pixel reconstruction As a comparison, we provide the TV re-

constructions with pixel basis at different dimensions, obtained by solving the same

minimization problem (7.5) (we use a GPU-implemented Siddon ray-tracing projector

A, and the discrete TV norm as defined in (3.23)). The sampling step (or the pixel

size) is chosen such that the Cartesian lattice has the dimension 128×84, 170×112 and

256×168 respectively, i.e., the number of unknowns to be recovered equals to 1/16, 1/9

and 1/4 of the original phantom image’s pixel number. Figure 7.7 (b), (d), and (f) show

the pixel reconstruction results which are zoomed to original dimension 512× 334 using

the nearest interpolation method.

To make a fair comparison, the sampling step of the blob image is also chosen such

that the number of active nodes (those located inside the FoV of acquisition system)
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(a) Reweighted iteration 1 (b) Reweighted iteration 1

(c) Reweighted iteration 2 (d) Reweighted iteration 2

(e) Reweighted iteration 3 (f) Reweighted iteration 3, SNR=14.50 dB

Figure 7.5: Shepp-Logan phantom: P=32, ∆ =Reweighted TV with 3 iterations,
SNR(b)=50dB, w = [0, 1]. Figures (a), (c), (e): the reweighting map w after the first
and the third, and the last iteration. Figures (b), (d), (f): the reconstructed images

after the first, the second and the last iteration.
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(a) Reweighted iteration 1 (b) Reweighted iteration 3

Figure 7.6: Shepp-Logan phantom: central profiles of reconstructed images after the
first and the last reweighted TV iterations. Left: Figure 7.5 (b). Right: Figure 7.5 (f).

in the resulting hexagonal lattice is close to 1/16, 1/9 and 1/4 of the original phantom

image’s pixel number. We recall that by changing h the blob radius rcut is also dilated

proportionally (see Section 5.5 for details). The reconstructed images based on blob are

shown in Figure 7.7(a), (c), (e) respectively.

We can see that when the sampling step h increases, both the blob and the pixel re-

construction take less computation time since there are less unknowns to recover, at the

price of a worse image quality. Nevertheless, the degradation in the pixel reconstruction

is more visible than the corresponding blob one, due to the annoying “zig-zag” effects.

Advantages of blob over pixel The same comparison between the blob and the

pixel on the phantom Lung has been realized on a wider range of the sampling step h.

In Figure 7.8 we plot the results of SNR, SI and computation time in function of the

number of unknowns N , which is uniquely determined from h and increases with h−1.

The results of the same experiments with phantoms Abdomen and Thorax are shown in

Figures 7.9 and 7.10 are respectively. We make the following observations.

• Compared to pixel, the blob reconstruction is less sensitive to the variation of h.

Particularly, for the range of h yielding N from 5 × 104 to 2 × 105, the SNR and

SI of the blob reconstruction is almost constant.

• At the same number of unknowns, blob is always better than pixel if measured by

SI, so one may achieve the same visual quality with less blobs. This suggests that

the shift invariant space generated by blob has better approximation quality. It is

worthy of note that the higher SNR of the pixel reconstruction for N > 2 × 105

does not mean a better image quality, since it contains more streak artifacts than

the blob reconstruction as revealed by its SI value.
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(a) Blob, h=1.460, SNR=16.28dB, SI=0.0217,
T=63.14s

(b) Pixel, h=1.309, SNR=13.74dB, SI=0.0348,
T=12.47s

(c) Blob, h=1.096, SNR=17.77dB, SI=0.0194,
T=86.36s

(d) Pixel, h=0.985, SNR=14.32dB, SI=0.033,
T=18.06s

(e) Blob, h=0.730, SNR=18.98dB, SI=0.017,
T=98.91s

(f) Pixel, h=0.654, SNR=15.71dB, SI=0.0289,
T=51.89s

Figure 7.7: Lung phantom: P=64, ∆ = TV with different sampling step h, w =
[0, 0.9]. First column: blob reconstructions. Second column: pixel reconstructions.
The number of unknowns in image pairs (a,b), (c,d) and (e,f) is respectively close to

1/16, 1/9 and 1/4 of the original phantom’s dimension 512× 334.

• The computation time with blob is close to the pixel for the dimension ≥ 105.

Remark the computation time in high dimension is very prohibitively high, and

practically it’s more interesting to use blob which yields better image quality than

pixel in middle dimension.

• The optimal choice for N is around 105, where blob is superior to pixel with a

comparable computation time. Beyond the dimension 2 × 105, there is no more

improvement in the reconstruction quality (and even a slight drop for both pixel

and blob). This can be explained by the fact that modeling the reconstruction
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in a dimension much higher than that of the phantom image (about 1.7 × 105)

brings no more information but probably results an ill-conditioned system. In

real applications it is hard to find a priori the optimal reconstruction dimension

(some upper bound can be established based on the Shannon sampling theory [2],

but it is simply too pessimistic), therefore the stability of blob can tolerate more

upstream modeling error.

7.1.3 Reconstruction from few projections

In this experiment we compare the reconstruction qualities by varying the number of

projections. We have simulated 4 groups of data using 32, 48, 64, 96 projections. Fig-

ure 7.11 shows the corresponding reconstruction on Lung phantom, obtained with the

sampling step h = 0.292mm. The reconstruction central profiles with 32 and 96 projec-

tions are displayed in Figure 7.12. It can be seen that the visual quality of reconstructed

image is improved as the number of projections increases. As a comparison, in Figure

7.11(e) we show the reconstruction from 96 projections by minimizing simply the squared

error minf‖Af −b‖2 using the Conjugated Gradient method. The streak artifacts in the

background is typical to the reconstructions with incomplete data. TV minimization

removes efficiently these artifacts and all the reconstructions have smaller SI than the

Figure 7.11(e). Similar results with the Abdomen phantom are shown in figure 7.16 (a),

(b), and (c), and the profiles are in figure 7.17.

As we have already seen in Chapter 3 with the pixel image, TV minimization sets to

constant the textures and the low contrast regions in image. With the blob image we

have observed exactly the same behavior, and the cartoon effect is particularly visible

when the number of projections is very limited, typically less than 64. This character

of TV minimization could be harmful and considerably reduce the reliability of the

reconstructed image, particularly in applications such as the tumors detection.

Reconstruction quality vs. number of projections We carry out the same test

on different phantoms: Shepp-Logan, Thorax and Abdomen (Figure 7.1 (b), (c) and

(d)), with P varying from 8 to 256. The SNR and the SI are plotted in Figure 7.13. We

make the following remarks.

• For each phantom, we can distinguish a sharp transition in its SNR plot, which

indicates roughly the minimum number of projections necessary for an acceptable

TV reconstruction. The plots suggest the value between 20 and 40 for Shepp-

Logan, between 40 and 60 for Abdomen, and between 60 and 80 for Thorax.
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(a) Reconstruction SNR

(b) Reconstruction SI

(c) Computation time

Figure 7.8: Lung phantom: comparison between blob and pixel in function of the
number of unknowns. Blob reconstructions are generally better than pixel ones in
terms of visual quality, and it takes less computation time than pixel in high dimension

reconstruction.



114

(a) Reconstruction SNR

(b) Reconstruction SI

(c) Computation time

Figure 7.9: Abdomen phantom: same experiment as in Figure 7.8.
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(a) Reconstruction SNR

(b) Reconstruction SI

(c) Computation time

Figure 7.10: Thorax phantom: same experiment as in Figure 7.8.
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(a) TV, P=32, SNR=17.65dB, SI=0.019 (b) TV, P=48, SNR=19.33dB, SI=0.018

(c) TV, P=64, SNR=19.78dB, SI=0.016 (d) TV, P=96, SNR=20.57dB, SI=0.014

(e) CG, P=96, SNR=18.93dB, SI=0.027 (f) Lung phantom

Figure 7.11: ∆ = TV with different number of projections P , w = [0, 0.9]. For all
the reconstructions, the hexagonal lattice sampling step is fixed to h = 0.292, yielding

the number of blobs 253383. Figure (e) is the reconstruction by CG method.

(a) Horizontal central profile (b) Vertical central profile

Figure 7.12: Lung phantom: central profiles of Figure 7.11(a), (d) and (f)
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• We are not very surprised to see that the Shepp-Logan and the Abdomen phantoms

have similar curves (although the SI of the Shepp-Logan phantom is much smaller),

since the later is blocky and almost piecewise constant.

• More projections are needed for the Thorax phantom since it contains a large low

contrast and texture regions which are difficult to reconstruct by TV minimization,

and yields a non monotone behavior in the reconstruction quality.

(a) SNR (b) SI

Figure 7.13: TV reconstruction quality vs number of projections on different phan-
toms: Shepp-Logan, Abdomen, and Thorax. Figure (a) and (b) show the SNR and the

Streak Index of reconstructions.

7.1.4 Reconstruction with noisy data

We demonstrate here the stability of the TV minimization with respect to noise. In Fig-

ure 7.14 we plot the SNR and SI of reconstruction from different number of projections,

by varying the noise level in the range of 10 to 50dB. The parameters for blob image

are the same as in previous section, and the parameter µ has been chosen manually to

maximize the output SNR.

It can be seen that for more than 64 projections, the reconstruction quality is mono-

tonically improved when the noise level in data decreases, and the improvement is more

important on the interval [20, 35]dB than on the interval [35, 50]dB. This suggests that

the TV minimization method can “tolerate” the noise up to a certain level, after which

the reconstruction quality drops very rapidly. Empirically speaking (see Eq. (7.2)), re-

ducing the source’s photon intensity by a factor of 10 results a lose of 10dB in the output

sinogram, so these results suggest that the very high dose (e.g., those with SNR(b) larger

than 40dB) is not necessary for TV minimization.

Figure 7.15 are the reconstructions of Lung phantom from 64 projections using the

data of SNR 20 30, 40, and 50dB, simulated by following the method described at the
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(a) SNR (b) SI

Figure 7.14: Abdomen phantom: reconstructions with ∆ = TVon data of SNR(b) in
the range [10, 50]dB, P = 32, 64, 96, 128.

beginning of this chapter. The results of the same experiment on the Abdomen phantom

are shown in figures 7.16 (d), (e) and (f).

(a) SNR(b) = 20dB, SNR=16.13dB, SI=0.020 (b) SNR(b) = 30dB, SNR=18.75dB, SI=0.019

(c) SNR(b) = 40dB, SNR=19.80dB, SI=0.017 (d) SNR(b) = 50dB, SNR=19.78dB, SI=0.016

Figure 7.15: ∆ = TV, P = 64, w = [0, 0.9] using the sinogram data of SNR 20dB
(a), 30dB (b), 40dB (c) and 50dB (d).



119

(a) P = 32, SNR(b) = 50dB, SNR=15.74dB,
SI=0.0098

(b) P = 64, SNR(b) = 50dB, SNR=17.97dB,
SI=0.0089

(c) P = 96, SNR(b) = 50dB, SNR=18.51dB,
SI=0.0086

(d) P = 64, SNR(b) = 20dB, SNR=12.92dB,
SI=0.0121

(e) P = 64, SNR(b) = 30dB, SNR=15.82dB,
SI=0.0102

(f) P = 64, SNR(b) = 40dB, SNR=16.65dB,
SI=0.0097

Figure 7.16: ∆ = TVfor various P and data SNR, w = [0, 1].
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(a) Horizontal central profile (b) Vertical central profile

Figure 7.17: Abdomen phantom: central profiles of Figure 7.16(a), (c) and the orig-
inal phantom.

7.2 ℓ
1 reconstruction results

Unless specified, the results presented in this section are obtained by solving the ℓ1

minimization problem:

min
f

1
2
‖Af − b‖2 + µ‖f‖1 (7.7)

with the multiscale blob system (see Chapter 5, section 4):

f(x) =
∑

j∈ZZ

∑

k∈ZZ
2

fj,kψj(x− xjk) (7.8)

We present only the results with the Mexican hat multiscale blob system. In fact, the

Diff-Gaussian and the Mexican hat multiscale blob systems give very close results on

our test phantom, but the computation time of the Mexican hat blob is generally 2

or 3 times less than that of Diff-Gaussian blob, due to its much simpler mathematical

expression and its better spatial localization.

7.2.1 Sparsity of the ℓ1 reconstruction

Figure 7.18 shows the reconstruction with 128 projections using a 4 scales model. Figure

7.18(a) is the first scale image represented by the Gaussian blob on a very coarse lattice.

It contains only the low frequency information, and the black background value is zero.

Figure 7.18(b), (c), and (d) are respectively the scales -1, -2, -3 represented by the

Mexican hat blob on the gradually refined lattices. The gray, black and white correspond

respectively to zero, negative and positive values. At the fine scales, there are only a

small percentage of significant non zero blobs, located around the edges and the isolated
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discontinuities. In total there are less than 8.9% of non zero blobs. The final image in

Figure 7.18(e) is the sum of the 4 scales.

(a) Scale 0, τ=84.7% (b) Scale -1, τ=20.7%

(c) Scale -2, τ=16.3% (d) Scale -3, τ=4.9%

(e) ∆ = ℓ1, τ=8.9%, SNR=20.36dB, SI=0.0159,
T=1155s

(f) ∆ = TV, τ=100%, SNR=20.60dB, SI=0.0149,
T=760s

Figure 7.18: ∆ = ℓ1, P=128, using a 4 scales Mexican hat blob system with N =
289243. The percentage in figure (a)-(d) indicates the sparsity level (proportion of non
zero blobs) in each scale, and the global sparsity level is less than 8.9%. Note that in
(f) by ∆ = TVwith the same 4 scales system, the reconstructed coefficient vector is

full.

TV reconstruction on the multiscale blob system In place of the ℓ1 norm, we

can apply the TV minimization on the same multiscale blob system. The reconstructed

images are shown in Figure 7.18 (f). Remark that the TV minimization does not promote

the sparsity of the solution and the reconstructed coefficients vector is full, e.g., there is

no zero blobs. The figure 7.18 (e) and (f) are visually very close, although the TV result

has a slightly better SNR and SI, thanks to its edge preserving ability which is absent
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in ℓ1 minimization. Nevertheless, ℓ1 minimization avoids the stair-wise effect of TV

and recovers better the low contrast regions. This can be clearly seen from the zoomed

image in Figure 7.19. In figure 7.20 we show the ROI view on the reconstructions of

Abdomen phantom with 256 projections, which confirms also the superiority of the ℓ1

minimization over TV in recovering low contrast and texture objects.

(a) ∆ = ℓ1, P=128 (b) ∆ = TV, P=128 (c) Phantom

Figure 7.19: Lung phantom: zoomed view on the ROI of figures 7.18(e), 7.18(f) and
the original phantom.

(a) ∆ = ℓ1, P=256 (b) ∆ = TV, P=256 (c) Phantom

Figure 7.20: Abdomen phantom: zoomed view on the ROI of the ℓ1 and the TV
reconstructions and the original phantom.

7.2.2 ℓ1 reconstruction using few projections

The reconstructions using 48, 64 and 96 projections with the Mexican hat multiscale

blob system are shown in Figure 7.24 (a), (c), and (e). Compared to the TV results

in Figure 7.11, it seems that the ℓ1 minimization is far less efficient when the number

of projections decreases. Indeed, these results suffer severely from the streak artifacts,

contaminating even the low frequency scale when the number of projections is highly

insufficient, see Figure 7.21. The magnitude of these artifacts are often close to that of

meaningful image contents, consequently, it is difficult for the ℓ1 solver which employs

a soft shrinkage operation on the blob coefficients, to remove these artifacts without

damaging the reconstruction image quality.

Reconstruction quality vs. number of projections We carry out the same test

on different phantoms: Shepp-Logan, Thorax and Abdomen (Figure 7.1 (b), (c) and
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(a) P=48, scale -1 (b) P=128, scale -1

(c) P=48, scale -2 (d) P=128, scale -2

(e) P=48, scale -3 (f) P=128, scale -3

Figure 7.21: Abdomen phantom: fine scales of ℓ1 reconstruction using the same 4
scales Mexican hat blob system. P=48 (first column) and P=128 (second column),
w = [−0.3, 0.3]. Background gray color represents zero. The streak artifacts corrupt

even the coarse scale when P is small.
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(d)), with P varying from 8 to 256. The SNR and the SI are plotted in Figure 7.22. We

can compare these results with those of the TV reconstruction presented in figure 7.13,

and find that the ℓ1 minimization has very different behavior, see Figure 7.23:

• The image quality improves monotonically as the number of projections increases.

This is particularly the case of the Thorax phantom, on which the TV reconstruc-

tion behaves irregularly, see Figure 7.13.

• Unlike the TV case where the reconstruction quality remains constant when P is

larger than certain number (e.g., 130 projections), the ℓ1 reconstruction continues

to improve substantially with P . For Thorax and Abdomen phantoms, the ℓ1

results are superior to the TV results for P ≥ 100 in terms of SNR, and for

P ≥ 170 in terms of SI.

These observations reveal the fundamental difference between the TV and the ℓ1 mini-

mization. As the analysis given in Chapter 3, section 1.3, the TV minimization solution

is a kind of projection onto the “texture free” space, and is always different to the true

object. Particularly, the reconstruction error can not be arbitrarily reduced as long as

the original image contains textures. On the other hand, Compressed Sensing theory

(see Chapter 4) gives a quantitative estimation of the reconstruction error of the ℓ1

minimization problem:

min
f
‖f‖1 s.t. ‖Af −Ag‖2 ≤ ε2 (7.9)

It says that if the measurement matrix satisfies the RIP condition of order 2S, e.g.,

δ2S <
√

2− 1, then the solution f of Eq. (7.9) fulfills

‖f − g‖2 ≤ c1
‖g− gS‖1√

S
+ c2ε (7.10)

with ε the noise level contained in data, and gS the best S term approximation. For

a good sensing matrix (see Chapter 4), the RIP condition is improved as the number

of measurements increases, in the sense that the sparsity level S in the RIP condition

behaves as

S .
M

log(N/M)
(7.11)

with M the number of measurements and N the dimension of g. As a consequence of

(7.10), if g is compressible (e.g., the S-term approximation error decreases faster than√
S), the reconstruction error continues to improve as the number of measurements

increases, until being dominated by the noise level.
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(a) SNR (b) SI

Figure 7.22: Shepp-Logan, Abdomen, and Thorax phantoms: ℓ1 reconstruction qual-
ity vs. number of projections. Remark that the small SI value of the reconstructions
with fewer than 20 projections are meaningless, since these reconstructions have been

totally failed.

(a) SNR (b) SI

Figure 7.23: Abdomen and Thorax phantoms: comparison between the TV and the
ℓ1 reconstructions, for P varying in [32, 256].

7.2.3 Comparison with wavelet reconstruction

In order to reveal the advantages of the multiscale blob system, we compare its recon-

structions with those based on the orthogonal Daubechies wavelet basis, also formulated

through the ℓ1 minimization problem:

min
f

1
2
‖ADf − b‖2 + µ‖f‖1, f ∈ IRN , (7.12)

which is solved using the same IST algorithm. Here f denotes the wavelet coefficients

and D is a wavelet synthesis operator. In this example we use the Daubechies wavelet

of order 6 and D is the associated decimated discrete wavelet transform (DWT). A is a

Siddon ray-tracing projector implemented on GPU and applies on the pixel image Df .
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The parameter µ is determined as precedent, i.e., we choose manually the value which

maximizes the reconstruction quality. By solving (7.12), one recovers the wavelet coeffi-

cient f , then the final image is synthesized as Df . In order to make a fair comparison, we

set the dimension of f in the wavelet reconstructions to the one of the phantom image,

and choose the blob image parameter to keep the number of blobs as close as possible to

their counterparts. The number of scales in the wavelet decomposition and in the blob

system are respectively 8 and 4.

The reconstructions from 48, 64 and 96 projections are shown in Figure 7.24 and 7.25,

where the first and the second row are respectively the blob and the wavelet results. It

can be seen that, at the same number of projections, the blob reconstruction is always

better than the wavelet one, which suffers from the high frequency oscillation patterns

in the background. There are two possible reasons for the superiority of blob. First,

our multiscale blob system is redundant therefore less concerned by the pseudo Gibbs

artifacts, which is a typical problem when thresholding under an orthogonal wavelet

basis, see Figure 7.26. Secondly, although the number of unknowns is almost the same

in two approaches, the blob reconstruction works in a lower bandwidth than the wavelet

reconstruction does, therefore avoids the high frequency artifacts without compromising

the image quality, thanks to the better space-frequency localization property.

7.2.3.1 Drawbacks of ℓ1 minimization

On the images which contains low contrast regions and oscillating patterns (e.g.medical

oriented), our results in section 7.2.2 suggests that the multiscale blob coupled with ℓ1

minimization would be the preferred reconstruction method over the TV minimization

since they preserve these characters while TV removes them, under the condition that

the number of projections is relatively important, typically P ≥ 150. If the number of

projections is highly insufficient, typically P ≤ 80, the reconstruction of ℓ1 minimization

suffers severely from high frequency artifacts, and the visual quality is largely inferior to

the TV counterpart. Apart of the streak artifacts (see Figure 7.21), we also distinguish

from the zoomed view in Figure 7.26, a kind of “salt and pepper” noisy pattern on the

low contrast regions which are mainly due to isolated blobs of fine scales, which can be

easily confused with the true porous structures. In light of the inequality (7.11), we see

that when the number of data M is small, the ℓ1 minimization which does not distinguish

the coefficients of different scales, makes more approximation errors by favoring energy

transfer between scales and using isolated blobs of fine scales in order to match the local

minima/maxima of the phantom image. Reducing these noisy pattern can make the ℓ1

minimization more adequate for P in a middle range.
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(a) Mex-4, P=48, SNR=16.49dB, SI=0.0247 (b) Daub-6, P=48, SNR=16.23dB, SI=0.0292

(c) Mex-4, P=64, SNR=18.39dB, SI=0.0215 (d) Daub-6, P=64, SNR=17.49dB, SI=0.0255

(e) Mex-4, P=96, SNR=20.04dB, SI=0.0173 (f) Daub-6, P=96, SNR=18.59dB, SI=0.0211

Figure 7.24: ∆ = ℓ1with P=48, 64, 96, w = [−0.2, 1.2]. First column: using 4 scales
Mexican hat blob system. Second column: using Daubechies wavelet of order 6.

7.2.4 Reweighted iterative ℓ1 minimization reconstruction

In Section 6.3 we argued why the standard ℓ1 minimization problem can be improved

by its reweighted iterative version:

min
f
‖w⊙ f‖1 s.t. ‖Af − b‖22 ≤ ε2 (7.13)

where w ∈ IRN
+ denotes the weight vector and w⊙ f is the element-wise product between

two vectors. Here we solve (7.13) for 6 iterations using the Algorithm 6. The weight w

is updated at each new iteration by wk = (|fk|+ 10−3)−1, with fk the k-th coefficient of

the solution returned by the last iteration. In Figure 7.27 we plot the SNR and the SI

of the reconstructions for the phantom Abdomen by varying the number of projections
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(a) Mex-4, P=48, SNR=13.73dB, SI=0.0150 (b) Daub-6, P=48, SNR=12.54dB, SI=0.0210

(c) Mex-4, P=64, SNR=16.00dB, SI=0.0134 (d) Daub-6, P=64, SNR=14.66dB, SI=0.0195

(e) Mex-4, P=96, SNR=18.53dB, SI=0.0111 (f) Daub-6, P=96, SNR=16.40dB, SI=0.0175

Figure 7.25: ∆ = ℓ1with P=48, 64, 96, w = [−0.2, 1.2]. First column: using 4 scales
Mexican hat blob system. Second column: using Daubechies wavelet of order 6.
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(a) Mexican hat blob (b) Daubechies wavelet (c) Phantom

Figure 7.26: Abdomen phantom: zoomed views on the ROI of Figure 7.25 (c), (f)
and the original phantom. w = [−0.2, 1.2] for (a) and (b).

between 32 and 256. It can be observed that only very slight improvement in SI has

been obtained, which can not even be perceived in the reconstructed image.

(a) SNR (b) SI

Figure 7.27: Abdomen phantom: comparison between the reweighted iterative and
the standard ℓ1 minimization. 6 reweighted iterations has been used. The value ε in

(7.13) is chosen manually according to the noise level.

Such a result can be explained as follows. It has been pointed out in [122] that the

reweighted iterative ℓ1 minimization approximates the ℓq minimization for q < 1, while

the later performs significantly better than ℓ1 decoder only for highly compressible sig-

nals, e.g. those on weak ℓp ball for p < q (See the numerical experiments in [129]). In

Figure 7.28 we plot the blob coefficients’ decaying rate of the Abdomen phantom using

a 4 scales Mexican hat blob system, and through a numerical estimation we obtain the

value p ≃ 1.57 which indicates that the phantom image is only moderately compressible.
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Figure 7.28: Abdomen phantom: reconstructed non zero blob coefficients with Mex-
4, P = 256. Total number of blobs N = 314302, the sparsity level of the reconstructed
coefficients τ = 12.3%. The coefficients are sorted such that |f(0)| ≥ |f(1)| ≥ · · · .
The vertical axis is in logarithmic scale. Numerical estimation for the index range in

[5000, 35000] reveals that the coefficient vector decays as n−1/p for p ≃ 1.57.

7.3 TV-ℓ1 reconstruction results

As explained in Section 6.3, another way to improve the standard ℓ1 minimization is to

solve the TV-ℓ1 minimization problem:

min
f

1
2
‖Af − b‖2 + µ1‖f‖1 + µ2‖f‖TV (7.14)

Here we choose manually the parameters by keeping the ratio µ1/µ2 = 100, and expect

to remove the erroneous blobs of fine scales by taking advantage of the TV norm’s ability

in preserving edges and constant regions.

(a) SNR (b) SI

Figure 7.29: Comparison between the standard ℓ1, the reweighted iterative ℓ1 and the
TV-ℓ1 reconstructions on the phantom Abdomen, for the number of projections varying
from 80 to 160. The ℓ1 and the reweighted ℓ1 results are the same as in Figure 7.27.
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The reconstructions for the number of projections in the range [80, 180] are plotted in

Figure 7.29. It can be observed that for the number of projections between 80 and 120,

the TV-ℓ1 model (7.14) has successfully combined the “best part” of the TV and the

ℓ1 methods: the SNR of the TV-ℓ1 results are very close to that of the standard ℓ1

results, which indicates that the solution is indeed a sparse one, while their Streak Index

values are considerably smaller than the standard ℓ1 results, which means that the high

frequency artifacts are reduced by the TV term. See also Figure 7.30. For the number

of projections larger than 150, the ℓ1 reconstruction is definitely better than the TV-ℓ1

in terms of SNR, and the smaller SI value of the later suggests that the “texture-killer”

behavior of the TV minimization appeared, so a smaller parameter µ2 in (7.14) should

be considered in this case.

In the first column of Figure 7.30 we show the ROI of reconstructions using different

methods from 128 projections. The TV-ℓ1 result is in Figure 7.30 (e). Compared with

the standard ℓ1 reconstruction (Figure 7.30.(a)), the “salt-and-pepper” noise pattern

is greatly reduced; while compared with the TV reconstruction (Figure 7.30.(c)) the

low contrast regions and small objects are better preserved. The second column of

Figure 7.30 shows the finest scale of the 4 scale Mexican hat blob system. It can be

seen that the streak artifact of the background which is very abundant in the ℓ1 and the

reweighted ℓ1 reconstructions (Figure 7.30.(b) and (d)), almost disappears in the TV-

ℓ1 reconstruction (Figure 7.30.(f)), and the isolated blobs on the homogeneous regions

inside the object also seem to get to the right place.

7.4 Concluding remarks

Using simulated data, in this chapter we have studied the blob image models and the re-

construction methods by comparing to the equivalent approaches based on pixel/wavelet,

and the results in favor of blob have been observed on different phantom images under

different scenarios. On the other side, we have also observed that depending on the

factors like the object type and the number of available projections, the multiple recon-

struction methods and blob image models may have different efficiency. A wide range

of scenarios can be covered if we take advantage of the prior information and choose

correctly the image model and (or) the reconstruction method. For example, for a

piecewise constant object the simple Gaussian blob image coupled with the TV mini-

mization method is fast and robust. For a medical object containing large low contrast

regions and textures, the multiscale blob image model coupled with the ℓ1 minimization

method should be considered if the number of projections is relatively large, otherwise

the TV or the TV-ℓ1 method would be more appropriate.
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(a) ∆ = ℓ1, Mex-4, SNR=19.80dB, SI=0.0097 (b) ∆ = ℓ1, Mex-4, τ=12.61%

(c) ∆ = TV, GS, SNR=18.52dB, SI=0.0086 (d) ∆=Reweighted ℓ1, Mex-4, τ=8.87%

(e) ∆ = TV−ℓ1, Mex-4, SNR=19.60dB, SI=0.0085 (f) ∆ = TV − ℓ1, Mex-4, τ=16.33%

Figure 7.30: Abdomen phantom: reconstructions obtained using different methods,
P=128. First column: zoomed views on the ROI. Second column: the finest scale

picture with τ representing the percentage of non zero blobs in that scale.



Chapter 8

2D Numerical experiments - real

data

In this chapter we present some preliminary results with real data obtained by our

image models and reconstructions methods. The data that we use come from different

application domains, and have been acquired independently by collaborators1 on various

non-commercial platforms. The geometrical parameters of the acquisition systems are

known only with limited precisions. Unless specified, all the acquisitions are fan beam

and full scan i.e., the source is equally distributed on [0, 2π]. The same notations as

Chapter 7 are used in this chapter.

8.1 Medical imaging

The 3D object in consideration is a piece of human spine fixed in epoxy resins of di-

mension 200 × 110 × 100mm, and a horizontal slice is used as the 2D object to be

reconstructed, as shown in Figure 8.1. The resin has much smaller attenuation coef-

ficient than bones therefore can be treated as soft tissue. In Figure 8.1, we can also

distinguish some air bubbles enclosed in resins. A possible medical application related

to this experiment is the detection of demineralization by estimating the cortex thickness

for aged person, where the radiation dose delivered to the patient is proportional to the

number of projections.

Acquisition system The data have been acquired on a platform assembled in our

laboratory, see Figure 8.2. The X-ray source of current 2.9mA is accelerated at 100kV

1The author thanks C.Cai, M.Costin, and G.Haberfehlner for having provided the sinogram data of
this chapter.
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(a) Coronal (b) Transverse

Figure 8.1: Human spine fixed in resins

without pre-filtering (polychromatic source), and the exposure time is 1.82ms. We col-

lect 360 fan-beam projections with a linear detector has 1024 pixels. At each angular

position, we repeat 512 acquisitions and assign their average as the output in order to

improve the signal-to-noise ratio of the sinogram. Other parameters are:

• Source to rotation axis distance: 208.76 mm

• Detector to rotation axis distance: 321.66 mm

• Detector length: 409.6 mm

• X-ray spot size: 0.6 mm

Reconstructions by CG To have a reference image, we solve the least square prob-

lem minf‖Af − b‖ using all available data (360 projections and 1024 detector bins for

each projection) by CG. The ring artifacts observed in the least square solution Fig-

ure 8.3 (a) and (b) are attenuated by the Tikhonov regularization (see Section 3.1.1.1)

Figure 8.3 (c). In these reconstructions, one can clearly distinguish the spongy struc-

tures inside the spine and the cortex in white color which is much more absorbent. It

seems that the cortex has been overly dilated due to the beam-hardening artifact, since

the polychromatic source is not handled by our reconstruction algorithm.

Few projections We extract P equally distributed projections, and downsample the

X-ray detector by half. The resulting sinogram has dimension P ×512. Figure 8.4 shows

the results for P = 96, 128, 160 obtained using the TV minimization based on Gaussian

blob (second column), and for comparison the Tikhonov regularizations based on pixel

are shown in the first column.
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Figure 8.2: Acquisition system for the spine object. From right to left: X-ray tube,
gantry and sample, linear detector.

(a) ∆ = Least Square, pixel, 25 CG iterations (b) ∆ = Least Square, GS, 100 CG iterations

(c) ∆ = Tikhonov, pixel, 100 CG iterations

Figure 8.3: Reconstructions using 360 projections and 1024 detector bins. Figure (a)
and (c) are based on pixel (512 × 512) of side length 0.25mm. Figure (b) is the same
least square solution as (a) but using the Gaussian blob of FWHM 0.406mm. The linear

window [0, 0.049] was used for visualization. The black background represents air.
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(a) ∆ = Tikhonov, pixel, P=96 (b) ∆ = TV, GS, P=96

(c) ∆ = Tikhonov, pixel, P=128 (d) ∆ = TV, GS, P=128

(e) ∆ = Tikhonov, pixel, P=160 (f) ∆ = TV, GS, P=160

Figure 8.4: Reconstructions from P = 96, 128, 160 by Tikhonov regularization based
on pixel (512 × 512) (first column) and by TV minimization based on Gaussian blob
of FWHM 0.812 mm (second column), w = [0, 0.049]. Number of blobs N = 49554,
number of pixels N = 512 × 512. Using smaller Gaussian blobs and a denser lattice

will not improve substantially the visual quality of images (b), (d) and (f).
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The reconstructions by TV-ℓ1 minimization using a 4 scales Mexican hat blob system are

shown in Figure 8.5. From the zoomed view on the ROIs in Figure 8.6, we can see that

the spongy bone structures are better preserved in the TV-ℓ1 reconstruction. These

results confirm that the Spine object can be well reconstructed from about P ≥ 128

projections and with a detector of 512 pixels, which represents only 17.8% of the whole

data set.

8.2 Micro-CT

The term micro-CT usually refers to a small scale CT system with the source spot size of

a few micrometers. It is useful when high resolution images on small objects are needed,

e.g.in material science. A cubic sample of dimension 10.00×11.20×7.20 mm taken from a

material composed of carbon fibers in a matrix of carbon is shown in Figure 8.7.(a). The

objective is to visualize the individual fibers separated from the matrix in a ROI of 5mm

diameter. This requires a high resolution reconstruction: typically more than 1500×1500

pixels inside the ROI, see Figure 8.8. Using analytical reconstruction methods, for such a

resolution one needs to acquire more than 1400 projections, which is very time consuming

and can raise for instance the overheating problem to the micro-CT system. Here we

show that with much less projections, one can achieve lower resolution but globally

acceptable image quality, and in this way accelerate the acquisition procedure.

Acquisition system The acquisition system is shown in Figure 8.7.(b). The source is

made of a micro-focus copper target, accelerated to 60 kV with 35 µA current. In total

360 cone beam projections are collected and at each projection we keep only the central

horizontal slice on the flat panel detector, which contains 1536 bins. Other parameters

are:

• Source to rotation axis distance: 16.4 mm

• Detector to rotation axis distance: 311.6 mm

• Detector length: 76.8 mm

• X-ray spot size: 5 µm

Figure 8.9.(a) shows the reconstruction using all available data by solving the least

square problem with 25 CG iterations. From the reconstructed image it can be deduced

that the sinogram data are actually very noisy. Then we extract P equally distributed

projections, average the adjacent detector bins and downsample the X-ray detector by
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(a) ∆ = TV − ℓ1, P=160, Scale 0, τ =90.28% (b) ∆ = TV − ℓ1, P=160, Scale -1, τ =35.41%

(c) ∆ = TV − ℓ1, P=160, Scale -2, τ =28.77% (d) ∆ = TV − ℓ1, P=160, Scale -3, τ =11.34%

(e) ∆ = TV − ℓ1, P=160, τ=16.40% (f) ∆ = TV − ℓ1, P=128, τ=17.73%

Figure 8.5: ∆ = TV− ℓ1, Mex-4, from 160 (e) and 128 (f) projections. Figure (a)-(d)
are scale decompositions of (e). τ indicates the percentage of non zero blobs in each
scale (a-d) or in total (e-f). The gray level in (a-d) are image dependent, with the
background gray color representing 0, and white color for positive values. There are
202522 blobs in all 4 scales. In the finest scale (d) the FWHM of the Mexican hat blob

is about 0.975mm.
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(a) ∆ = Tikhonov, Pixel, P=360 (b) ∆ = TV, GS, P=160 (c) ∆ = TV − ℓ1, Mex-4, P=160

Figure 8.6: Spine: zoomed view on ROI of different reconstructions. Figure (a), (b),
and (c) correspond to Figure 8.3 (c), 8.4 (f) and 8.5 (e), respectively.

(a) Sample (b) Micro-CT system

Figure 8.7: Micro-CT: A cubic sample of a material composed of carbon fibers in a
matrix of carbon and the acquisition system. Courtesy of M.Costin.

(a) (b)

Figure 8.8: Micro-CT: ROI reconstruction from 1440 projections by analytical method
ASDIR[1]. The isolated white spots inside the black regions are carbon fibers. Courtesy

of M.Costin.



140

a factor 3. The resulting sinogram has dimension P × 512. Figure 8.9 (c) and (e) show

the reconstructions for P = 360 using TV minimization with Gaussian blob and ℓ1

minimization with 4 scales Mexican blob system respectively. From the zoomed view

(Figure 8.10) on the ROI we see that TV minimization removes better the noise than

ℓ1 minimization does. Nevertheless, the carbon fibers can be distinguished in none of

these reconstructions.

Few projections Using the TV reconstruction from 360 projections (Figure 8.9.(c))

as reference image, in Figure 8.11 we plot the SNR and the SI of the reconstructions

by TV minimization with the number of projections P varies in the range [64, 256] and

with the downsampled detector (512 bins). A visual comparison suggests that the image

quality becomes acceptable for P ≥ 192, see the second column in the Figure 8.9.

8.3 Electron microscopy/tomography

Electron microscopy/tomography (EM) [130] is an imaging technology based on the sim-

ilar principle as X-ray CT but uses electron flux to probe nanoscale objects. It is widely

used in biology and material science and can provide a few tenth nanometer resolution.

The specimen to be probed is generally in needle shape, and the electron gun positioned

perpendicular to the needle scans one slice from different angles by tilting the needle.

For some mechanical reasons of the acquisition system, the angular range of view in

practice is often limited. In addition the micro structure of the (biological) specimen

can be damaged by the electron flux, therefore reducing the projection number helps to

keep their integrality.

The needle shown in Figure 8.12 is extracted from a Silicon surface irradiated by fem-

tosecond laser using Tellurium as dopant [131]. On one slice through the needle, 157

parallel beam projections equally distributed on [−78◦, 78◦] have been acquired. Figures

8.12 (b) and (c) are reconstructions using FBP and SIRT2, and different grey levels

correspond to different concentrations of Tellurium in Silicon. From these images we

can clearly distinguish the streak artifacts due to the limited angle of view, and also the

metallic artifacts around the white spot.

Few projections Here we extract P equally distributed projections from the whole

data. In order to remove the streak artifacts, we restrict the support of the recon-

struction area to a small disk (half of the diameter of the FoV) including the object.

2SIRT stands for Simultaneous Iterative Reconstruction Technique [132].
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(a) ∆ = Least Square, GS, P=360 (b) ∆ = TV, GS, P=128

(c) ∆ = TV, GS, P=360 (d) ∆ = TV, P=192

(e) ∆ = ℓ1, Mex-4, P=360 (f) ∆ = TV, P=256

Figure 8.9: First column: reconstructions using all 1536 detector bins and all 360
projections. Second column: TV minimization for P=128, 192, 256 with the detector
downsampled by a factor 3 (D=512). The Gaussian blob in Figure (a)-(d) and (f) has
FWHM 0.0148mm, and the finest scale Mexican hat blob in (e) has FWHM 0.0178mm.

w = [0, 0.0067].
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(a) Least square (b) TV minimization (c) ℓ1 minimization

Figure 8.10: Micro-CT: zoomed view on the ROI marked by rectangles in Figure 8.9.

(a) SNR (b) SI

Figure 8.11: SNR and SI of the reconstructions from P ∈ [64, 256] projections by TV
minimization based on Gaussian blob, using Figure 8.9.(b) as ground truth.

Figures 8.13 shows the TV reconstructions from different number of projections. Com-

pared with the classical reconstructions (Figure 8.12 (b) and (c)), the streak artifacts are

reduced and the details are well preserved even for P small. Figure 8.14 shows the TV-ℓ1

reconstructions with 4 scales Mexican hat blob system, where the stage-wise artifacts

due to the TV minimization are avoided.
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(a) EM object

(b) FBP (c) SIRT

Figure 8.12: Figure (a): a needle shaped EM object of diameter about 200nm. Fig-
ure (b) FBP and (c) SIRT reconstructions from 157 parallel beam projections equally

distributed on [−78◦, 78◦]. Courtesy of G.Haberfehlner.
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(a) ∆ = TV, P=48 (b) ∆ = TV, P=64

(c) ∆ = TV, P=80 (d) ∆ = TV, P=96

(e) ∆ = TV, P=112 (f) ∆ = TV, P=157

Figure 8.13: EM object: TV minimization with Gaussian blob from different num-
ber of projections, w = [0, 0.025]. The white circles are due to the restriction of the

reconstruction area.
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(a) ∆ = TV − ℓ1, P=96, Scale 0 (b) ∆ = TV − ℓ1, P=96, Scale -1

(c) ∆ = TV − ℓ1, P=96, Scale -2 (d) ∆ = TV − ℓ1, P=96, Scale -3

(e) ∆ = TV − ℓ1, P=96 (f) ∆ = TV − ℓ1, P=64

Figure 8.14: EM object: Figure (e) and (f) are reconstructions from P=96 and P=64
using ∆ = TV − ℓ1and Mex-4, w = [0, 0.025] for (e) and (f). Figure (a-d) are scale
decompositions of (e) where the gray level are scale dependant. The large circles in
(a-d) are due to the restriction of the reconstruction area and are canceled out in (e).



Chapter 9

Conclusions and perspectives

In this thesis we have studied the feasibility of CT reconstruction from few projections

for generic objects (medical or industrial oriented): does a small number of X-ray pro-

jections can capture the essential information of an object? And how to reconstruct

it?

We have seen the importance of regularizations in a Bayesian framework: some state-of-

the-arts regularization methods proposed in the CT literature, particularly those based

on the edge preserving prior, the Total Variation and the wavelets, are efficient for the

few projections problem. These methods are closely connected with the Compressed

Sensing theory. CS explains rigorously the triangular relationship between the sparsity

of the unknown, the sampling condition to be fulfilled, and the reconstruction method

as well as its error. The general CS framework for the few projections problem is: 1)

sparse representation/modeling of the function; 2) reconstruction via specific non-linear

algorithms like TV or ℓ1 minimization. This suggests the widely employed “pixel/voxel

+ sparsifying basis” scheme: as long as the object is sufficiently sparse, it (more precisely,

its representation coefficients) can be reconstructed from a small number of projections.

Nevertheless, such a scheme is not the optimal way for image representation and recon-

struction in CT, due to the poor space-frequency localization property of pixel, and to

the higher numerical complexity when combining the pixel/voxel based X-ray projector

with the ad hoc sparsifying basis, e.g., the wavelet transform. These observations has

led us to adapt the “CT-friendly” radial bases called blob to CS. In particular we have

constructed and analyzed the radial basis based on Gaussian family for image repre-

sentation and reconstruction. They have better space-frequency localization properties

than pixel, and many operations, such as the X-ray transform, the gradient or the in-

terpolation, can be analytically evaluated, thus there is no need for discretization or

approximation of the X-ray projector. The typical (medical) images in CT represented
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by these bases has a compressible form, so the ad hoc sparse representation system used

in the ordinary CS algorithms is not needed.

By following the classical wavelet theory, we have proposed two image models. The first

is the shift invariant space spanned by translating a Gaussian blob φ on an hexagonal

lattice L. We have proven that it constitutes a Riesz basis but the limit is not dense

in L2(IRd). The second is the sum of multiscale shift invariant spaces spanned by the

blob ψj(x) = β−jdψ(β−jx) and by translating on the (dyadically) refined lattices Lj .
This constitutes a tight frame of L2(IRd) if the mother blob ψ is band-limited and if

the partition of unity property is satisfied. The Mexican hat blob and the Diff-Gaussian

blob can be treated as band-limited due to their exponential decay. The adaptations

of the existing TV and ℓ1 minimization methods to blob images are straightforward,

and the main issue is to parallelize (on a GPU platform) the X-ray projector and the

interpolator (e.g., the gradient operator) on the blob image.

Through 2D numerical experiments using simulated data, we have shown that the new

models indeed have many advantages over the classical pixel and (decimated) wavelet

model. Compared with pixel, the TV reconstruction based on the Gaussian blob is much

less sensitive to the variation of the underlying lattice’s sampling step. On the medical

oriented phantoms, the low dimension blob image can achieve the reconstruction quality

(measured in SNR and in SI) equivalent to a high dimension pixel image. Working in

a lower bandwidth, the blob based reconstruction is more stable than the pixel based

one, while the reconstruction still enjoys a nice visual quality. Such a phenomenon can

be contributed to the better space-frequency localization, the smoothness and the radial

symmetry of blob, and also to the use of hexagonal lattice, which has a higher angular

frequency and lower zig-zag artifacts than the Cartesian lattice.

When the number of projections P is large, typically P > 150, the multiscale blob

model coupled with the ℓ1 minimization offers a better image quality than the TV

minimization. The multiscale blob system is a mimic of the multiresolution wavelet

basis, while it is redundant and less concerned by the pseudo Gibbs phenomenon. Using

different testing phantoms, we have revealed a fundamental difference between the TV

and the ℓ1 methods. Unlike the TV minimization which removes systematically low

contrast regions and oscillating patterns, the ℓ1 minimization preserves very well these

characters, which are essential for medical applications. On the contrary, for P small,

typically P < 80, the ℓ1 method is largely inferior to TV, due to the streak artifacts

and the erroneous fine scale blobs. The hybrid TV-ℓ1 minimization combines the best

part of each and improves the image quality for P in the middle range. We draw the

conclusion that the choice of the image model and the reconstruction method should be

made by taking into account the application context and the completeness of data. The
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multiscale blob image models and the TV/ℓ1 or TV-ℓ1 methods that we have proposed

can cover a wide range of the applications and of the number of projections.

At the end we have validated our approaches on real data collected from different appli-

cation fields, where the reduction of projections can bring real improvements. Although

these raw data have limited quality, our preliminary results confirm that the number

of projections in these applications can generally be reduced by a factor 2 or 3 without

compromising the image quality.

9.1 Perspectives

9.1.1 3D generalization

An important extension is the 3D reconstruction, which has not been presented in this

thesis, while the whole theory and the reconstruction methods that we have developed

include 3D as a special case. The 2D hexagonal lattice becomes in 3D the Face Centered

Cubic (FCC) lattice and the related blob-driven X-ray projector and interpolator must

be accordingly modified. Nevertheless, more efforts seem to be necessary for the efficient

parallelization of these operators on GPU platforms due to the large dimension in 3D.

9.1.2 Contour blob

Recall the following definition of multiscale (Mexican hat) blobs at scale j:

ψj,k(x) = |detGj |1/2ψj(x− xjk), with xjk = Gjk (9.1)

with β > 1 the dilation factor, Gj = βjG0 the generating matrix of the refined lattice

Lj , and ψj(x) = β−jdψ(β−jx) the dilated mother blob. Let f ∈ L∞(IRd) be a piecewise

linear function with the contour/surface Γ which is C2 smooth. For very fine scale, i.e.,

j ≪ 0, the number of blobs which “feel” the contour Γ is about O(|Γ|β−j(d−1)). For one

of these blobs ψj,k, it is easy to see that its analysis coefficient is bounded by:

|〈f, ψj,k〉| ≤ ‖f‖∞‖ψj,k‖1 . βjd/2 (9.2)

In other words, at scale j, there are O(|Γ|β−j(d−1)) blobs giving the non zero coefficients

of magnitude O(βjd/2). From this we can deduce that the N -th largest entry in the

coefficient vector {|〈f, ψj,k〉|} decays asymptotically as:

Nd/(2−2d) (9.3)
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Particularly in 2D we have the decaying rate N−1 which is identical to that given

by the wavelet basis. In order to reduce the reconstruction error, one would need a

representation system which gives faster decay than (9.3) (see Chapter 4). A possible

improvement is to use a curvelet-like [92] multiscale blob system, in which the radial

symmetry of blob is dropped in favor of the angular orientation which gives it the

geometric sensitivity. The blobs of such a system are the anisotropic dilations, the

translations and the rotations of a common mother contour blob ψ, and they have

a elongated shape. In 2D it is the tensorial product of a Gaussian function g(t) =

exp(−α1t
2) and a Mexican hat function and m(t) = exp(−α2t

2)(1− 2α2t
2):

ψ(x)
△

= g(x1)m(x2) (9.4)

Figure 9.1 gives a visual representation of ψ. Although not radial symmetric, the X-

ray transform Pψ(y, θ) of the contour blob can also be evaluated analytically therefore

one keeps the “CT-friendly” characters of the radial blob. Thanks to the Mexican hat

Figure 9.1: Two different views on the mother contour blob with α1 = 1, α2 = 10.

function and the elongated shape, most of the analysis coefficients of the blobs will be

cancelled out unless those which are “perfectly” aligned with the contour, thus one can

expect that the N -th largest coefficient has a faster decaying rate than the radial blob

case.

9.1.3 Sinogram inpainting

Lastly, all the reconstruction techniques studied previously search a solution in the

object space X, for the reason that the prior information, e.g.the sparsity of f , is easily

expressed in X. While another possible way of reconstruction is to restore the entire

sinogram[133–135], then proceed by standard algorithms, e.g.FBP, as we have pointed

out in Chapter 4. Under the new context of few projections problem, we need to restore

a highly incomplete sinogram. This is possible by exploiting the sparsity of sinogram
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under the vaguelette blobs (Section 5.6) using an analysis prior. We give some preliminary

investigations by presenting an algorithm on the efficient implementation of this prior.

Data fitting term Let’s note g = Pf . The X-ray projection is even in θ: Pf(−θ, y) =

Pf(θ, y), so we can restrict the domain of P to

T+ = {(θ, y)|θ ∈ Sd−1
+ , y ∈ θ⊥} (9.5)

with Sd−1
+ the half unit sphere of IRd. In practice data are observed only on T , a discrete

subset of T+, and we call observation mask M : L2(T+) → IRM the restriction on the

observation set T . Then the data fitting term reads: ‖Mg − b‖2.

Sparsity of the sinogram domain Let {ψj,k} be a tight frame of L2(Ω), e.g.the

multiscale blob system, and {ψ̃j,k} the corresponding vaguelette:

〈f, ψj,k〉 = 〈g, ψ̃j,k〉

Given that 〈f, ψj,k〉 has fast decay (see Section 5.4.1), we can regularize the sinogram

restoration problem by minimizing the ℓ1 norm of the coefficient 〈g, ψ̃j,k〉.

Consistency constraint A consistency constraint is necessary to enforce the restored

g to be a "true sinogram". In 2D, this is described by the Ludwig-Helgason consistency

condition [133, 136]. We note T+ = [0, π]× [−1,+1] and let Pn(y) be the normalized

Legendre polynomial of degree n, Sl,1(θ) = cos(lθ)/
√
π, and Sl,2(θ) = sin(lθ)/

√
π, and

define

Jnl,∗ =
∫

T+

g(θ, y)Sl,∗(θ)Pn(y)dydθ

Theorem 9.1.1 (Ludwig-Helgason consistency condition[133, 136]). If g ∈ L2(T+) is a

sinogram, then for the index set running through ∗ = 1, 2, l, n = 0, 1 . . ., n < l, and n+ l

even:

Jnl,∗ = 0

Putting the different components together, the sinogram inpainting problem announces,

in a continuous formulation:

min
g∈L2(T+)

1
2
‖Mg − b‖2 + µ

∑

j,k

|〈g, ψ̃j,k〉| s.t. Jnl,∗ = 0 (9.6)
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with µ > 0 the penalty constant, and the index set l, n, ∗ as in Theorem 9.1.1. In practice

(9.6) is approximated by a discrete version:

min
g∈IRM

1
2
‖Mg− b‖2 + µ‖Ψ̃g‖1 s.t. Jnl,∗ = 0 (9.7)

In this formulation, Ψ̃ is a linear operator such that Ψ̃g approximates 〈g, ψ̃j,k〉, and

the number of constraints Jnl,∗ = 0 is finite. The vector g is the sample values of the

continuous sinogram g taken on the lattice LT+
:

LT+

△

=
{
θp × Eθp

m/W, p = 1, . . . , P, and m ∈ I
}

(9.8)

where the following notations have been introduced:

• {θp}p=1,...,P are P directions equally distributed on Sd−1
+ .

• Eθ
△

= [e1, . . . , ed−1] denotes an orthobasis of θ⊥, and E∗
θEθ = Id.

• The detector pixel’s index set I
△

= J−L/2, L/2− 1Kd−1 with prefixed even number

L > 0.

• W−1 > 0 is the sampling step on detector.

• M = P × |I| is the dimension of the lattice LT+
(also that of g).

The observation mask M in (9.7) is the restriction on a set of observation T ⊂ P × I.

Remark that the X-ray projector, which is a time and memory consuming operation for

the iterative algorithm working in image domain, is avoided in (9.7), and the compu-

tational charge here is transfered to the scalar product Ψ̃g ≃ 〈g, ψ̃j,k〉. Although the

direct evaluation of 〈g, ψ̃j,k〉 (e.g.by numerical integration) for all indexes j, k is certainly

possible, it could be very expensive due to the large dimension of the multiscale blob

system {ψj,k}. In the following we give details on how 〈g, ψ̃j,k〉 is approximated by Ψ̃g

and using the Non-Uniform FFT technique for a fast implementation of Ψ̃.

9.1.3.1 Efficient evaluation of 〈g, ψ̃j,k〉

First we write:

〈g, ψ̃j,k〉 = 2
∫

Sd−1

+

∫

θ⊥

g(θ, y)ψ̃j,k(θ, y)dydθ (9.9)
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We observe that if the the inner integral in (9.9) can approximated by some value

Fj(θ, k), then the outer integral is easily handled by the trapezoidal rule and we get:

〈g, ψ̃j,k〉 ≃ C
P∑

p=1

Fj(θp, k) (9.10)

with C an irrelevant constant, and the summation in (9.10) can be parallelized for index

j. Now we focus on the approximation of the inner integral.

Evaluation of Fj(θp, k) Let’s recall the following fact about the vaguelette blob:

ˆ̃ψj,k(θ, ω) =
1

|Sd−2|‖ω‖ψ̂j,k(ω), for ω ∈ θ⊥ (9.11)

and by the construction of tight frame blob:

ψ̂j,k(ω) = ψ̂j(ω) exp(−2πi〈ω, xjk〉)|detGj |1/2 (9.12)

with xjk = Gjk. Then the inner integral can be rewritten as:

∫

θ⊥

g(θ, y)ψ̃j,k(θ, y)dy =
|detGj |1/2

|Sd−2|

∫

IRd−1
ĝ(θ, Eθω)‖ω‖ψ̂j(Eθω)e2πi〈ω,E∗

θ
Gjk〉dω (9.13)

Remark that by construction ψ̂j is band-limited and one can choose

supp ψ̂j ⊂ Γj =
{
G−⊤
j ω, ‖ω‖∞ ≤ 1/2

}

then Eθω ∈ Γj ⇔ ω ∈ E∗
θΓj ⊂ IRd−1. For a finite number of scales j and directions θ,

all E∗
θΓj can be contained in a cube B:

B
△

= {‖ω‖∞ ≤W/2} ∩ IRd−1 (9.14)

and W is the width of B taken as:

W = sup
|j|≤J

sup
θ∈{θ1,...,θP }

{‖E∗
θG

−⊤
j ‖∞} (9.15)

Now define

F̂j(θ, ω)
△

=
|detGj |1/2

|Sd−2| ĝ(θ, Eθω)‖ω‖bψ̂j
(‖ω‖) (9.16)

then we get an expression for the inner integral:

∫

θ⊥

g(θ, y)ψ̃j,k(θ, y)dy =
∫

B
F̂j(θ, ω) exp(−2πi〈ω,E∗

θGjk〉)dω (9.17)



153

which in turn is approximated using the trapezoidal rule by

Fj(θ, k)
△

=
(
W

L

)d−1∑

l∈I

F̂j(θ, ωl)e
−2πi〈ωl,E

∗

θ
Gjk〉 (9.18)

with ωl = Wl/L. Note that due to the presence of E∗
θGj which maps the regular

d dimensional lattice to irregular d − 1 dimensional one, there is generally no hope

calculate (9.18) by FFT and we have to use the Non Uniform FFT(NUFFT).

Evaluation of ĝ(θ, Eθω) In order to calculate (9.18) by NUFFT, the sample values

of ĝ(θ, Eθ·) for the direction θ and on the nodes ωl = Wl/L must be collected. For this,

we sample g on the lattice LT+
and use again the trapezoidal rule:

ĝ(θ, Eθωl) =
∫

IRd−1
g(θ, Eθy) exp(−2πi〈y, ωl〉)dy

≃
(

1
W

)d−1 ∑

m∈I

g(θ, Eθm/W )e−2πi〈m,l〉/L (9.19)

Clearly, (9.19) is to be processed by FFT.

Final algorithm for the operator Ψ̃ and Ψ̃∗ We introduce the following operators:

• FFT F : IR|I| → IR|I|.

• Dj : IR|I| → IR|I|, defined as:

(Djf)l
△

=
|detGj |1/2

|Sd−2| L−dW‖l‖bψ̂j
(W‖l‖/L)fl, l ∈ I

• Non-Uniform FFT FN : IR|I| → IRNj , with Nj the number of nodes at scale j:

(FN g)k =
∑

l∈I

gle
−2πi〈ωl,E

∗

θ
Gjk〉

And FN
j,p to emphasize that the NUFFT depends on j, p.

Now we can put different parts together and get the algorithm for Ψ̃ and Ψ̃∗.
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Algorithm 7 Forward operator Ψ̃. Input : sinogram vector g

Initialization: for all scales j, set to zero Sj ∈ IRNj

for |j| ≤ J (parallelization) do
for p = 1 . . . P do
Sj ← Sj + FN

j,pDjFgp, with gp the p-th projection.
end for

end for

Algorithm 8 Backward operator Ψ̃∗. Input : coefficient vector S

Initialization: for all directions p, set to zero gp ∈ IR|I|

for p = 1 . . . P (parallelization) do
for |j| ≤ J do

gp ← gp + F∗DjFN
j,p∗

Sj , with Sj the coefficients of scale j.
end for

end for



Appendix A

Blob-driven projector and

back-projector

We present in this section an algorithm for the X-ray projector A and the associated

back-projector A∗, which are invariant to the lattice structure. Baptized "blob-driven",

it has two different forms, distinguished by the way how the contribution coefficient is

calculated. Let’s note Amk the contribution coefficient of a blob centered at position xk

to the m-th detector bin. We can take Amk as:

1. the linear integral defined by the intersection between the blob and the ray from

the source to the center of detector bin, then we have the ray-tracing projector

2. or the area integral defined by the intersection between the blob and the strip

region delimited by the source and the detector bin, then we have the strip-integral

projector.

These two methods have the same computational complexity. The overall algorithm is

parallelized and implemented on GPU. We resume the forward projection kernel, i.e.,

the codes executed in parallel by all processor, in Algorithm 9. Remark that the step 3 is

a concurrent operation since multiple kernels try to add their values to the same memory

address. This can be correctly handled by the so-called atomic operation. The backward

projection algorithm is similar to 9, with the step 3 replaced by: fk ← fk +Amk × ym.

Algorithm 9 Forward projection kernel for the blob φk and the detector bin m

1: Input: blob coefficient vector f , projection vector y to be updated.
2: Determine the contribution coefficient Amk
3: Concurrent write: ym ← ym +Amk × fk
4: Output: updated projection vector y
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A.0.4 Ray-tracing projector

The first method for calculating Amk is close to the usual Siddon ray-tracing projector.

It discretizes the continuous footprint of blob at the detector’s sampling rate. The

contribution coefficient Amk is given by the Abel transform and depends only on the

distance from the blob center xk to the m-th ray. We list the Abel transforms of some

blobs:

Gaussian (5.4): Abφ(t) =
√
π/α exp(−αt2)

2D Diff-Gaussian (5.43): Abψ(t) =
√
π/α

∑∞
k=0

2Ck√
3k+1/2

exp
(
− 4αt2

3k+1/2

)

2D Mexican hat (5.46): Abψ(t) =
√
π/α exp(−αt2)(1/2− αt2)

Using these analytical expressions Amk can be evaluated on-the-fly, with the only ex-

ception of the Diff-Gaussian blob which has a cumbersome asymptotic expression. In

this case, we pre-calculate and store its Abel transform, then look up the table on-

the-fly to retrieve the contribution coefficient. For a dilated blob φλ(x)
△

= φ(λx) , we

have Abφλ
(t) = λ−1Abφ(λt), and this allows to calculate Amk for all the blobs in the

multiscale system.

A.0.5 Strip-integral projector

The second method for calculating the contribution coefficient, can be seen roughly as

applying a low-pass filter to the footprint of blob before sampling it. When the detector

sampling rate is low, this method can effectively reduce the aliasing artefacts due to the

sinogram discretization.

Figure A.1 illustrates the scenario for a blob centered at position xk, denoted by φk(x) =

φ(x − xk). The source is located at S, Γ is the m-th detector pixel delimited by the

borders D1 and D2, and Σ is the strip region defined by the intersection of the blob

and X-ray beam. The contribution coefficient Amk, defined as the area integration of φk

on Σ, is difficult to evaluate directly since there’s no analytical expression for it. The

solution we propose here (already mentioned in [97]), is to pre-calculate a strip-integral

table and look up the table on-the-fly.

A.0.5.1 Looking-up table

Let θ1 = SD1/‖SD1‖ be a unitary vector and θ⊥
1 its orthogonal (defined as the π/2

clockwise rotation). The orthogonal projection of vector Sxk = xk − S onto θ⊥
1 is
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Figure A.1: The strip-integral is calculated as the area integration of blob function
on the red region Σ.

y1 = t1θ
⊥
1 . Let Θ1 be the circular segment situated at the opposed side of θ⊥

1 . We have:

∫

Θ1

φk(x)dx =
∫ t1

−∞

∫

IR
φk(tθ⊥

1 + sθ1)dsdt (A.1)

We note T (t) the pre-calculated table: T (t) =
∫ t

−∞Abφ(|r|)dr, then it’s easy to see that

(A.1) equals to T (t1−〈xk, θ⊥
1 〉). Similar values and definitions exist for θ2 = SD2/‖SD2‖,

e.g., Θ2 is the circular segment situated at the opposed side of θ⊥
2 . Since Σ = Θ2 −Θ1,

the strip-integral equals to the difference of two area integrals, and can be retrieved by

two looking-up table operations:

∫

Σ
φk(x)dx = T (t2 − 〈xk, θ⊥

2 〉)− T (t1 − 〈xk, θ⊥
1 〉) (A.2)

A.0.6 Back-projector

We define the back-projector by transposing the contribution coefficients of projector.

For a detector pixel Γ, the contribution coefficient to blob φk is calculated exactly in

the same way as for the projector. It is worth to note that if A is considered as an

application from the solution space X to IRM , the back-projector defined in this way is

not necessarily the adjoint operator of A. Nevertheless, these two operators are adjoint

between them as long as A is treated as an application from sequential space ℓ2(ZZ) to

IRM , and we note:

(Af)m =
∑

k∈ZZ

Amkfk, (A∗b)k =
M∑

m=1

Akmbm (A.3)



Appendix B

Optimization methods

This chapter covers some important algorithms used in this thesis to solve the problems

related to TV and ℓ1 minimizations. An abundant literature exists on this subject

(though in most of cases being independent of the CT application), and the methods that

we have chosen are commonly considered to be in the state-of-the-art. We only resume

these algorithms here for completeness and for reference reasons, and refer readers to

the original publications for more advanced technical details.

B.1 Notations

• ‖x‖ = (
∑
n|xn|2)1/2, ‖x‖1 =

∑
n|xn|, and ‖x‖∞ = maxn|xn|

• ‖·‖TV : discrete TV norm, see Chapter 3 and 6 for the definitions

• C: a convex closed subset of IRN

Some useful results The following lemmas will be useful, and their proofs can be

found in [48, 50].

Lemma B.1.1 (ℓ1-shrinkage). Let w, u ∈ IRN . The minimizer of the problem:

min
u

1
2
‖w − u‖2 + λ‖u‖1, for u ∈ IRN (B.1)

is given by the shrinkage formula:

un = max (|wn| − λ, 0) · sign(wn), for n = 1, . . . , N (B.2)

with sign(x) = 1 if x ≥ 0, and sign(x) = −1 if otherwise.
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Lemma B.1.2 (ℓ2-shrinkage). Let w, u ∈ IRN , and ‖·‖ the euclidien norm. The mini-

mizer of the problem:

min
u

1
2
‖w − u‖2 + λ‖u‖, for u ∈ IRN (B.3)

is given by the shrinkage formula:

u = max (‖w‖ − λ, 0) · w

‖w‖ (B.4)

where the convention 0 · 0
0 = 0 is followed.

We denote SoftThresh (w, λ) and SoftThresh2 (w, λ) the solution of (B.1) and of (B.3),

respectively.

B.2 General framework for AL and ADM

The augmented Lagrangian(AL) and alternating direction method (ADM) are quite

classic algorithms in the numerical optimization theory. In a series of papers [116][48][49]

it has been shown that they are very efficient in solving the CS related problems.

Let f(x) : IRN1 → IR and g(y) : IRN2 → R be convex functions, and A ∼ M ×N1, B ∼
M ×N2 be two matrices. Consider the minimization problem:

min
x,y

f(x) + g(y) s.t. Ax+By = b, for x ∈ IRN1 , y ∈ IRN2 (B.5)

which can be solved by minimizing the augmented Lagrangian function:

max
λ

min
x,y
LA(x, y;λ), for for x ∈ IRN1 , y ∈ IRN2 , λ ∈ IRM (B.6)

The augmented Lagrangian LA(x, y;λ) is given by:

LA(x, y;λ)
△

= f(x) + g(y) + 〈λ,Ax+By − b〉+
β

2
‖Ax+By − b‖2 (B.7)

where λ ∈ IRP is the Lagrangian multiplier and β > 0 is the penalization parameter.

The classical AL algorithm for solving (B.6) reads (k-th iteration):





(xk+1, yk+1) ← arg minx,y LA(x, y;λ)

λ ← λ− β(Axk+1 +Byk+1 − b)

k ← k + 1

(B.8)
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Remark that the joint minimization of minx,y LA(x, y;λ) can be costly, and one can

exploit the quasi-separable form of LA(x, y;λ) in x and y. Namely, at each iteration one

solves alternatively x, y before update the Lagrangian multiplier λ. Then we have the

general algorithm of ADM for solving eq. (B.6), as resumed in Algorithm 10. For the

convergence of ADM see [48, 116] and the references therein. This general framework

is powerful since by replacing f, g, one can solve a wide range of optimization problems

related to Compressed Sensing, as we shall see in the following.

Algorithm 10 General framework for of ADM for solving (B.6)

Initialization x0, y0, λ0 = 0, k = 0, β > 0
while not converged do
xk+1 ← arg minx LA(x, yk;λk)
yk+1 ← arg miny LA(xk+1, y;λk)
λk+1 ← λk − β(Axk+1 +Byk+1 − b)
k ← k + 1

end while

B.3 TV minimization

Consider the following TV minimization problems:

min
x

µ

2
‖Ax− b‖2 + ‖x‖TV , s.t. x ∈ C (TV)

min
x
‖x‖TV , s.t. Ax = b and x ∈ C (TV-EQ)

min
x
‖x‖TV , s.t. ‖Ax− b‖2 ≤ ǫ2, x ∈ C (TV-DN)

Recall the definition of discrete TV norm (d = 2 or 3, see chapters 3 and 6 for details):

‖x‖TV =
N∑

n=1

√
(D1x)2

n + . . .+ (Ddx)2
n =

N∑

n=1

‖Dnx‖ (B.9)

where Di : IRN → IRN is the discrete derivative operator in direction i. The element-

wise operator Dn : IRN → IRd and the overall operator D : IRN → IRd×N are defined

as:

Dnx
△

=




(D1x)n
...

(Ddx)n


 , Dx

△

=




D1x
...

Ddx


 (B.10)
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We introduce the variable u = [u⊤
1 . . . u

⊤
N ]⊤ ∈ IRd×N , such that:

un = Dnx ∈ IRd, for n = 1 . . . N, and u = Dx (B.11)

i.e., un is the gradient of x taken at site n, and clearly ‖x‖TV =
∑
n‖un‖. Let’s introduce

the penalization parameter β > 0, the Lagrangian multipliers ν1 . . . νN ∈ IRd (each νn

is associated to a constraint un = Dnx), and ν = [ν⊤
1 . . . ν⊤

N ]⊤ ∈ IRd×N .

B.3.1 Solving the problem (TV-DN)

We discuss here only the solution of (TV-DN). The problems (TV) and (TV-EQ) can

be solved by taking some trivial adaptations therefore omitted. By introducing the

variables y = Ax − b, u = Dx as in eq. (B.11) and the Lagrangian multipliers ν, λ, the

AL function for (TV-DN) reads:

LA(x, u, y; ν, λ)
△

=
µ

2
‖Ax− b− y‖2 − 〈λ,Ax− b− y〉

+
β

2
‖Dx− u‖2 − 〈ν,Dx− u〉+

∑

n

‖un‖ (B.12)

The overall AL iteration (B.8) now becomes:





(xk+1, uk+1, yk+1) ← arg minx,u,y{LA(x, u, y; ν, λ), ‖y‖ ≤ ǫ, x ∈ C}

ν ← ν − β(Dxk+1 − uk+1)

λ ← λ− µ(Axk+1 − b− yk+1)

k ← k + 1

(B.13)

and the minimization of LA(x, u, y; ν, λ) w.r.t. x, u, y is carried out by ADM in three

steps:

yk+1 ← arg min
y
{LA(xk, u, y; ν, λ), ‖y‖ ≤ ǫ} (y-step)

uk+1 ← arg min
u
{LA(xk, u, y; ν, λ)} (u-step)

xk+1 ← arg min
x
{LA(x, uk+1, yk+1; ν, λ) s.t. x ∈ C} (x-step)

y-step The minimization problem in (y-step) can be rewritten as:

min
y
‖Axk − b− y − λ/µ‖2, s.t. ‖y‖ ≤ ǫ (B.14)
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and the solution is simply given by:

yk+1 = ǫ ·ΠB2
(Axk − b− λ/µ) (B.15)

with B2 the unit ℓ2 ball in IRM , and ΠK the convex projection onto set K.

u-step Note that (u-step) is equivalent to solving:

min
u

∑

n

(
‖un‖+

β

2
‖Dnx

k − νn/β − un‖2
)

(B.16)

and its solution is obtained by applying the shrinkage formula of Lemma B.1.2:

uk+1
n = SoftThresh2

(
Dnx

k − νn/β,
1
β

)
(B.17)

for n = 1 . . . N .

Remark B.3.1. If the anisotropic TV is used in place of (B.9):

‖x‖TV =
N∑

n=1

|(D1x)n|+ . . .+ |(Ddx)n| =
∑

n

‖Dnx‖1 (B.18)

Then the shrinkage formula (B.17) becomes accordingly (all operations are component-

wise):

uk+1
n = max

(
|wn| −

1
β
, 0
)
· wn|wn|

(B.19)

x-step The minimization problem in (x-step) is equivalent to:

min
x∈C

µ

2
‖Ax− b− λ/µ− yk+1‖2 +

β

2
‖Dx− ν/β − uk+1‖2 (B.20)

If the constraint C is off, its solution is simply given by the linear system:

(µA⊤A+ βD⊤D)x = βD⊤(uk+1 + ν/β) + µA⊤(b+ yk+1 + λ/µ) (B.21)

A direct inversion of this system (with CG fox example) can be time-consuming when

the dimension of x is high. This motivates the TVAL3 and the TVIADM algorithms

resumed in the next, which circumvent (B.21) by different techniques.
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B.3.1.1 TVAL3

TVAL3 algorithm [48] solves (x-step) approximately. In place of inverting the system

(B.21), it takes simply a gradient descent step:

xk+1 = xk + αgk (B.22)

with gk the gradient of function LA(x, uk+1, yk+1; ν, λ) w.r.t. x taken at xk:

gk = µA⊤(Axk − b− λ/µ− yk+1) + βD⊤(Dxk − ν/β − uk+1) (B.23)

The step length α is determined by the Barzilai-Borwein (BB) method [137]:

α =
‖xk − xk−1‖2

〈xk − xk−1, gk − gk−1〉 (B.24)

If some constraint set C is used, for example the positivity constraint xk ≥ 0, then

(B.22) is followed by a projection step ΠC :

xk+1 = ΠC(xk + αgk) (B.25)

The gradient descent step (B.22) in place of solving exactly (B.21) might cause non

convergence of ADM iterations. As a remedy, the TVAL3 algorithm applies ADM

iteratively on x, u, y (called inner iteration), the Lagrangian multipliers are updated

after the inner iteration. See Algorithm 11. It’s worth to point out that there’s no

Algorithm 11 TVAL3 for solving (TV-DN)

Initialization x0, k = 0
while not converged do

while inner iteration not converged do
yk+1 ← arg miny LA(xk, u, y; ν, λ) by (B.15)
uk+1 ← arg minu LA(xk, u, y; ν, λ) by shrinkage formula (B.17)
xk+1 ← arg minx LA(x, uk+1, yk+1; ν, λ) by gradient step (B.25)

end while
ν ← ν − β(Dxk+1 − uk+1)
λ← λ− µ(Axk+1 − b− yk+1)
k ← k + 1

end while

known theoretical proof on the convergence of TVAL3 in the literature, nevertheless,

this algorithm in practice converges very fast and is competing with the other state-of-

art TV solvers. We refer reader to the original report [48] for numerical evidences.
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B.3.1.2 TVIADM

TVIADM [50] solves approximately (x-step) by linearizing ‖Ax− b‖2/2 around xk and

adding a proximal term µ/(2τ)‖x− xk‖2. The (x-step) is replaced by:

min
x

β

2
‖Dx− ν/β − uk+1‖2 +

µ

2τ
‖x− (xk − τhk)‖2 (B.26)

with hk = A⊤(Axk − b− yk+1 − λ/µ). The solution is given by the linear system:

(
D⊤D +

µ

βτ
Id
)
x = D⊤(uk+1 + ν/β) +

µ

βτ
(xk − τhk) (B.27)

When x is a pixel image, the matrix in eq. (B.27) can be inverted immediately by taking

FFT. In Chapter 6 we have adapted this technique to the blob image, see Proposition

6.X. The final TVIADM algorithm is summarized in Algorithm 12.

Algorithm 12 TVIADM for solving (TV-DN)

Initialization x0, k = 0
while not converged do
yk+1 ← arg miny LA(xk, u, y; ν, λ) by (B.15)
uk+1 ← arg minu LA(xk, u, y; ν, λ) by shrinkage formula (B.17)
xk+1 ← arg minx LA(x, uk+1, yk+1; ν, λ) by inverting (B.27) using FFT
ν ← ν − β(Dxk+1 − uk+1)
λ← λ− µ(Axk+1 − b− yk+1)
k ← k + 1

end while

B.4 ℓ
1-minimization

The ℓ1-minimization can be one of the following optimization problems:

min
x

µ

2
‖Ax− b‖2 + ‖x‖1, s.t. x ∈ C (ℓ1)

min
x
‖x‖1, s.t. Ax = b and x ∈ C (BP)

min
x
‖x‖1, s.t. ‖Ax− b‖2 ≤ ǫ2, x ∈ C (BPDN)

B.4.1 Solving the problem (BPDN)

Here we solve (BPDN) by the augmented Lagrangian method. Let’s introduce the

auxiliary variables: y = Ax − b, and the penalization parameter β > 0, then the AL
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function of (BPDN) reads:

LA(x, y;λ) =
β

2
‖Ax− b− y‖2 − 〈λ,Ax− b− y〉+ ‖x‖1 (B.28)

We need to solve

min
x,y
LA(x, y;λ), s.t. ‖y‖ ≤ ǫ

Now apply the ADM, at the k-th iteration one needs first to minimize LA(xk, y;λ) with

respect to y, which amounts to solve:

min
y

β

2
‖Ax− b− y − λ/β‖2 s.t. ‖y‖ ≤ ǫ (B.29)

The solution is simply:

yk+1 = ΠBǫ(Ax
k − b− λ/β) (B.30)

Then we need to minimize LA(x, yk+1;λ) with respect to x. This is equivalent to solve:

min
x
J(x) + ‖x‖1 (B.31)

with J(x) = β
2 ‖Ax − b − y − λ/β‖2. Instead of solving (B.32) exactly, we solve its

approximation by linearizing J(x) around xk and adding a proximal term:

min
x

τ

2
‖x− xk‖2 + 〈gk, x− xk〉+ ‖x‖1 (B.32)

with gk = ∇J(xk) = βA⊤(Axk−b−yk+1−λ/β), and τ > 0 the strength of the proximal

term. Now one can apply the shrinkage formula (B.2) and get the solution of (B.32):

xk+1 = SoftThresh
(
xk − gk/τ, 1/τ

)
(B.33)

If some convex constraint x ∈ C is used, the above solution is followed by a projections

step: ΠC(xk+1). We resume the final algorithm in 13.

Algorithm 13 ADM for solving (BPDN)

Initialization x0, y0, λ0 = 0, k = 0, β > 0, τ > 0
while not converged do
yk+1 ← arg miny LA(xk, y;λ), s.t. ‖y‖ ≤ ǫ by (B.30)
xk+1 ← arg minx LA(x, yk+1;λ) by (B.33)
λ← λ− β(Axk+1 − b− yk+1)
k ← k + 1

end while
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Remark B.4.1. The convergence of this algorithm and the choice of the proximal strength

τ are discussed in [116].

B.5 TV-ℓ1 minimization

The hybrid TV-ℓ1 minimization problem aims in solving:

min
x

1
2
‖Ax− b‖2 + µ1‖x‖1 + µ2‖x‖TV (B.34)

As previously in section B.3.1, we introduce the auxiliary variable u = Dx, the la-

grangian multiplier ν and the penalization constant β > 0. The augmented lagrangian

function reads:

LA(x, u; ν)
△

=
1
2
‖Ax− b‖2 + µ1‖x‖1 + µ2

∑

n

‖un‖ − 〈ν,Dx− u〉+
β

2
‖Dx− u‖2 (B.35)

Now we apply the ADM as in section B.3.1. At the k-th iteration we need to solve

alternatively the u-step and the x-step.

u-step Minimizing LA(x, u; ν) with respect to u amounts to solve:

min
u

∑

n

(
µ2‖un‖+

β

2
‖Dnx

k − νn/β − un‖2
)

(B.36)

and its solution is again given by the shrinkage formula, for n = 1 . . . N :

uk+1
n = SoftThresh2

(
Dnx

k − νn/β,
µ2

β

)
(B.37)

x-step Minimizing LA(x, u; ν) with respect to x is equivalent to:

min
x
J(x) + µ1‖x‖1 (B.38)

with J(x)
△

= 1
2‖Ax− b‖2 + 〈ν,Dx− u〉+ β

2 ‖Dx− u‖2. Unlike the problem (B.1), there’s

no close-form soft-thresh formula for (B.38). Instead of solving it exactly, we can solve

an approximated version, by linearizing it around the current solution xk and adding a

proximal term τ
2‖x− xk‖2:

min
x

τ

2
‖x− xk‖2 + 〈gk, x− xk〉+ µ1‖x‖1 (B.39)

Here τ > 0 is a constant controlling the proximal term strength, and gk the gradient

gk
△

= ∇J(xk) = A⊤(Axk − b)−D⊤ν + βD⊤(Dxk − u). Now we note xk+1 the solution
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of (B.39) given by:

xk+1 = SoftThresh
(
xk − gk/τ, µ1/τ

)
(B.40)

The overall algorithm is resumed in Algorithm 14.

Algorithm 14 ADM for solving (B.34)

Initialization x0, u0, ν0 = 0, k = 0, β > 0, τ > 0
while not converged do
uk+1 ← arg minx LA(xk, u; ν) by (B.37)
xk+1 ← arg minx LA(x, uk+1; ν) by (B.40)
ν ← ν − β(Dxk+1 − uk+1)
k ← k + 1

end while

Remark B.5.1. In order to guarantee the convergence of Algorithm 14, the proximal

term constant τ > 0 must be taken strong enough. In the limit case, we can set µ2 = 0

in (B.34), and the TV-ℓ1 minimization becomes the ℓ1 minimization problem. Then

the gradient gk = A⊤(Axk − b), and Algorithm 14 is reduced to a simple Iterative

Soft-Thresholding (IST) algorithm, i.e.,

xk+1 = SoftThresh
(
xk −A⊤(Axk − b)/τ, µ1/τ

)
(B.41)

τ is therefore interpreted as the gradient step length. It’s known that IST converges if

τ−1 ∈ (0, 2/‖A‖2). See [116, 120] and [138] (Chapter 7) for more discussions.



Appendix C

Résumé de la thèse

C.1 Introduction

Cette thèse est une contribution aux algorithmes de reconstruction d’images pour le

système de la tomographie par rayon X (X-ray CT), qui fonctionne à l’angle de vue

complet mais avec un petit nombre de projections. CT est une technologie mature

pour représenter visuellement l’intérieur d’un objet physique en utilisant des projections

extérieures. Elle a des applications très répandues dans les domaines industriels et

médicaux. Quelques exemples bien connus concernant notre vie quotidienne sont les

systèmes d’imagerie dentaire ou cardiaque dans les hôpitaux, et les contrôles de bagage

dans les aéroports. Un système de CT minimum est composé de deux parties:

• acquisition de données: à différentes positions d’une trajectoire échantillonnée au-

tour de l’objet, la source de rayon X génère des photons qui seront atténués par

l’objet, ensuite capturés par le détecteur.

• reconstruction d’images: les coefficients d’atténuation sont reconstitués à partir

des données (aussi appelé le sinogramme) recueillis sur le détecteur, et représentés

en niveau de gris pour la visualisation.

Notons f : IRd → IR la fonction d’atténuation à reconstruire. L’expression mathéma-

tique pour le modèle de données est la transformée en rayon X:

Pf(θ, y) = Pθf(y)
△

=
∫

IR
f(y + tθ)dt, y ∈ θ⊥ (C.1)
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avec la direction θ ∈ Sd−1, la sphère unitaire de IRd. En 2D, cette transformation est

équivalente à celle de Radon:

Rf(θ, s) = Rθf(s)
△

=
∫

y∈θ⊥

f(y + sθ)dy, s ∈ IR (C.2)

On a affaire à une situation typique d’un problème inverse mal posé, du au fait que

l’inversion R−1 n’est pas bornée.

C.1.1 Condition d’échantillonage

En pratique, les directions θ ∈ {θ1 . . . θP } et les détecteurs y ∈ {y1 . . . yD} sont tous

les deux des nombres finis. Typiquement, les positions des sources sont équi-distribuées

et les détecteurs ont tous la même taille. Ceci définit un schéma d’échantillonnage

uniforme sur le domaine T = {(θ, y), θ ∈ Sd−1, y ∈ θ⊥}. Supposons que l’inconnue

f est essentiellement B bande-limitée ([2], Chapitre 3), par les analyses de Shannon,

un échantillonnage standard en 2D nécessite au moins P ≥ B/π projections et D ≥
B détecteurs afin d’obtenir une reconstruction fidèle de f [2]. En langage de pixel,

ceci implique que P & 512 projections seraient nécessaires pour reconstruire une image

de dimension 512 × 512. C’est la condition d’échantillonnage typique exigée par de

nombreux algorithmes analytiques comme la rétro-projection filtrée (FBP).

C.1.2 Problème de faible nombre de projections

Le problème de faible nombre de projections désigne la reconstruction en utilisant seule-

ment P ≪ B/π projections (équitablement réparties), sans compromettre la qualité de

l’image. En résolvant ce problème, nous pouvons améliorer à la fois la sécurité (faible

dose) et la productivité (acquisition rapide) d’un système de CT. Malheureusement, les

algorithmes classiques échouent dans cette situation: un faible taux d’échantillonnage

angulaire conduit aux lourds artefacts qui peuvent rendre la reconstruction impossible

à interpréter. Par ailleurs, la procédure d’inversion est instable du fait du bruit dans les

données et du problème mal posé.

Objectif de cette thèse Dans cette thèse, nous visons à démontrer la faisabilité de

la reconstruction à partir d’un faible nombre de projections pour un objet générique

(e.g. médical ou industriel), et de fournir des algorithmes de reconstruction efficaces et

robustes qu’on validera sur des données réelles et simulées.
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C.1.3 Travaux précédents

Une méthode viable de traiter le problème de faible nombre de projections (et le prob-

lème des données incomplètes en général) consiste à utiliser les algorithmes algébriques

ou itératifs qui permettent d’intégrer des informations préalables dans la procédure de

reconstruction. Dans cette direction, des solutions diverses ont été proposées dans la

littérature: elles sont basées sur différents modèles d’image et sont orientées vers de

différentes applications. Dans le cadre bayésien, la reconstruction peut être réalisée par

l’estimation du maximum de la probabilité a posteriori (MAP):

f̂
△

= min
f∈X

F (f, b) +R(f) (MAP)

où X est un espace fonctionnel, F (f, b) représente la fidélité aux données et incarne le

processus physique de la génération des données b à partir du modèle f , et R est le terme

de régularisation caractérisant l’information préalable sur f . Un cas particulier de R est

le prior préservant les bords (EPP), qui suppose que f est homogène par région, et qu’il

contient peu d’information en dehors des bords. Comme une large classe d’objet en CT

peut être représentée par ce modèle, cette méthode peut les reconstituer efficacement en

utilisant un petit nombre de projections.

Dans la même veine que l’EPP, la méthode de la minimisation TV modélise f dans

l’espace de variation bornée et utilise la semi-norme de variation totale comme R. Les

propriétés théoriques de cette méthode, telles que la préservation des bords et la perte

des régions à faible contraste et des zones d’oscillation, ont été intensivement étudiées

dans la littérature. L’efficacité surprenante de la minimisation TV dans le traitement du

problème de faible nombre de projections a été signalée dans de nombreuses publications

[3–6].

Plutôt que de reconstruire f directement comme un objet visuel, une autre possibilité

est de régulariser dans l’espace de Besov: on utilise la norme de Besov comme R via la

transformée en ondelette, et reconstruit les coefficients d’ondelette [7, 8]. Cette approche

est basée sur le fait que la plus part des images naturelles peut être "compressée", c’est

à dire fidèlement représentée par une base multi-résolution d’ondelette avec un petit

nombre de coefficients. La capacité de compression et la structure de multi-résolution

de la base d’ondelette offrent un moyen efficace pour réduire la dimension inhérente et

pour résoudre le problème mal posé.

Le succès des méthodes de TV et d’ondelette peut être expliqué par “représenter une

fonction dans un espace où elle est simple”. Par exemple, une fonction homogène par

morceaux est simple dans l’espace BV car il n’y a pratiquement pas d’information en de-

hors des bords. De même, une image naturelle représentée par ses coefficients d’ondelette
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a une petite norme Besov, due au fait que l’essentielle de ses informations est concentrée

sur seulement quelques plus grands coefficients.

Parcimonie La notion de parcimonie entre alors dans notre champ de vision. Un

vecteur est dit parcimonieux s’il contient peu de coefficients non nuls, ou compressible

s’il peut être approché par un vecteur parcimonieux en conservant quelques plus grands

coefficients. Pour un problème inverse où le nombre de données disponibles est beaucoup

plus petit que la dimension de l’inconnu, chercher l’inconnu dans un espace où il est

censé être parcimonieux serait beaucoup plus avantageux que d’autres techniques de

régularisation, grâce au fait que la parcimonie réduit la dimension inhérente du système

linéaire, et améliore la situation problématique, telles que la non unicité, l’instabilité de

la solution par rapport au bruit, etc.

Du point de vue d’échantillonnage du signal, nous demandons si une fonction f peut être

identifiée seulement à l’aide de quelques échantillons de son sinogramme en exploitant

la parcimonie, et quelles seraient les conditions d’échantillonnage et les méthodes de

reconstruction.

Compressed Sensing La théorie émergente de Compressed Sensing (CS) donne des

réponses rigoureuses à ces questions. Grosso modo, si f est suffisamment parcimonieuse

ou compressible par rapport aux certains systèmes de représentation, alors ses informa-

tions peuvent être capturées par quelques mesures aléatoires linéaires dont le nombre

est quasi proportionnel au niveau de la parcimonie de f , et la reconstruction de f est

posée comme un problème d’optimisation, par exemple, la minimisation de la norme ℓ1.

Par ailleurs, l’erreur de la reconstruction est proche de l’erreur de “compression”. CS

a également prouvé que la combinaison entre les mesures aléatoires et la minimisation

ℓ1 est en quelque sorte “optimale”, car ils atteignent la borne théorique de la perfor-

mance. Cette théorie nous fournit un cadre général pour le problème de faible nombre

de projections. Pour cela, on a besoin de:

• représenter/modéliser f dans un espace qui favorise la parcimonie, par exemple,

un système multi-échelle comme l’ondelette ou la curvelette, ou un dictionnaire

arbitraire qui peut synthétiser une image avec un petit nombre d’atomes.

• chercher la solution parcimonieuse via des méthodes spécifiques non linéaires comme

la minimisation TV ou ℓ1.

Représentation d’image en CT Il est remarquable que la plupart des méthodes

de reconstruction dans le cadre du CS utilise le pixel (ou le voxel en 3D) comme la
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base de représentation de l’image. Outre sa simplicité numérique, le pixel est à la base

de nombreuses transformées rapides (FFT, DCT, DWT, etc.). Cependant, vis-à-vis des

algorithmes de reconstruction itérative en CT, le pixel n’est pas la manière optimal pour

représenter une fonction pour les raisons suivantes:

• La localisation spatio-fréquentielle du pixel est médiocre. De gros pixels sont néces-

saires pour contrôler la bande passante de la reconstruction et pour stabiliser la

procédure d’inversion, en revanche la qualité visuelle est considérablement réduite.

• Il nécessite la discrétisation ou l’approximation du projecteur de rayon X, dont la

complexité numérique est dominée par la dimension de la discrétisation, non pas

par la parcimonie de l’image sous-jacente (par rapport au système de représenta-

tion).

De l’autre côté, la fonction radiale appelée Kaisser-Bessel blob qui est meilleure que le

pixel pour les raisons mentionnées ci-dessus, a déjà été proposée il y a plusieurs décennies.

Toutefois, le blob n’a pas une structure multi-échelle, et sa représentation de l’image n’est

pas parcimonieuse. Par ailleurs, la plupart des méthodes de la reconstruction proposées

pour le blob Kaisser-Bessel ne sont pas adéquates pour le problème de faible nombre de

projections.

C.1.4 Contributions

Inspiré par tous ces éléments, nous développons dans cette thèse des bases radiales de

la famille gaussienne toujours baptisés blobs, et nous les utilisont pour la représentation

et la reconstruction d’image. Les blobs ont de meilleures propriétés de localisation

spatio-fréquentielle que le pixel, et de nombreuses opérations, telles que la transformée

en rayon X, le gradient ou l’interpolation, peuvent être analytiquement évaluées, ainsi

on évite la discrétisation ou l’approximation dans le calcul du projecteur de rayon X.

Une image représentée par blobs est compressible, de sorte que le système ad hoc de la

représentation parcimonieuse utilisées dans les algorithmes CS ordinaires n’y est plus

nécessaire.

En nous basant sur les blobs, nous allons construire un modèle mono-échelle et un mod-

èle multi-échelle d’image, qui peuvent être qualifiés respectivement comme d’imitation

du pixel ou de l’ondelette de multi-résolution, et nous étudierons certaines propriétés

d’approximation de ces modèles.

Une fonction est représentée dans l’espace invariant par translation généré par blobs

sur une grille hexagonale, et la reconstruction revient à déterminer les coefficients de
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blobs par la minimisation de la norme TV ou ℓ1, qui seront adaptés pour ces nouveaux

modèles d’image. En fonction du caractère de l’objet (e.g., constant par morceaux ou

avec des régions à faible contraste), et du nombre de projections, ces deux méthodes de

minimisation n’ont pas le même comportement.

Les calculs avec le blob, e.g. la projection de rayon X, l’interpolation, sont facilement

parallélisables sur la plate-forme GPU. On développe un projecteur de rayon X baptisé

blob-driven qui est implementé sur le GPU. Pour démontrer les efficacités des nouveaux

modèles d’image et celles des algorithmes de reconstruction, nous les comparerons, à

travers différentes expériences numériques, aux approches équivalentes basées sur la

base de pixel / ondelette.

C.2 Linear data model and Bayesian framework

La reconstruction d’un objet spatial à partir d’un faible nombre de projections est un

problème inverse mal posé, et les méthodes analytiques n’y sont pas adaptées [2]. Au

contraire, les méthodes itératives (ou algébriques), qui exploitent l’information a pri-

ori de l’objet, peuvent stabiliser l’inversion et fournir des solutions satisfaisantes. Dans

ce chapitre, nous introduisons un modèle de donnée linéaire largement accepté dans

la littérature du CT. Ce modèle qui est fondamental pour tous nos futures études,

décrit la relation linéaire entre l’observation et l’objet inconnu. Puis nous préparons un

cadre général bayésien, dans lequel l’information a priori peut s’introduire facilement,

et nous transformons le problème de la reconstruction sous la forme d’un problème

d’optimisation.

C.3 Revue sur la régularisation et les méthodes itératives

L’utilisation de l’information a priori peut considérablement améliorer la qualité de la

reconstruction, surtout quand les données observées sont incomplètes ou corrompues par

du bruit. Dans le cadre bayésien, la régularisation R représente notre connaissance a

priori sur la fonction inconnue f , principalement en terme de régularité. Une image de

pixel est traitée comme un champ aléatoire de Markov, ainsi sa régularité est exprimée

par une fonction de potentiel qui agit sur les cliques. L’espace à variation borée et

l’espace de Besov sont des espaces de régularité très utiles pour la reconstruction en

tomographie. Il existe aussi des méthodes non bayésiennes pour la régularisation des

problèmes inverses, où l’information a priori n’est pas exprimée comme une distribution

de probabilité. Dans ce chapitre, nous récapitulons les techniques de régularisation
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ainsi que les méthodes itératives proposées dans le la littérature, et nous détaillons en

particulier celles qui concernent directement le problème de faible nombre de projections.

C.4 Compressed Sensing et CT

Compressed Sensing (CS) est une théorie émergente sur l’acquisition et la reconstruc-

tion du signal, avec le double objectifs de capter les informations essentielles du signal en

utilisant un petit nombre de mesures, et de reconstruire le signal original de façon fidèle.

La mesure utilisée par CS est souvent aléatoire, ce qui permet de "compresser" les infor-

mations dans un petit nombre de mesures, tandis que le processus de la reconstruction

est non linéaire, et son erreur peut être quantifiée en fonction de la complexité du signal

et le nombre de mesures. Le cadre du CS est particulièrement utile dans les situations

où une acquisition complète du signal est coûteuse ou même impossible, comme l’IRM et

l’échantillonage du signal de bande extra-large. En adaptant le protocole d’acquisition

au principe de CS, on peut réduire le taux d’échantillonnage au dessous de celui prédit

par le théorème de Shannon-Nyquist. Dans la situation où la mesure est déterministe

mais en petit nombre, on peut toujours utiliser le processus de reconstruction du CS

pour stabiliser la reconstruction et aussi pour réduire l’erreur.

C.5 Blob radial pour la représentation de l’image

Une base radiale nommée (Kaisser-Bessel) blob et ses techniques de reconstruction

dédiées ont déjà été proposées il y a plusieurs décennies. Limité par le charge du calcul,

il semble que le potentiel derrière cette ligne de recherche reste inexploité par la com-

munauté du CT, et qu’auncun effort n’a été réalisé pour l’adapter au problème de faible

nombre de projections, où la notion de la parcimonie et les algorithmes de reconstruc-

tion non-linéaires deviennent incontournable. Le but de ce chapitre est d’introduire les

blobs de la famille gaussienne, et de développer deux modèles de représentation d’images

basées sur blobs: un modèle mono-échelle et un multi-échelle, qui peuvent être vus re-

spectivement comme les imitations du pixel et des ondelettes de multirésolution, alors

qu’ils possèdent de meilleures propriétés pour les applications du CT.

C.6 Méthodes de reconstruction pour l’image de blob

Basés sur les modèles d’image de blob mis en place dans les chapitres précédents, nous

sommes maintenant en position de proposer des méthodes de reconstruction. Comme on
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a souligné dans le chapitre 4, un “bon” algorithme de reconstruction qui atteint la limite

théorique de la performance est non linéaire, et il exploite la parcimonie de l’image.

Dans ce chapitre, nous nous concentrons sur les méthodes de reconstruction qui sont

numériquement efficaces dans le contexte du CT et facilement adaptables aux modèles

d’image blob, à savoir:

1. la minimisation de la variation totale de l’image blob

2. la minimisation de la norme ℓ1 des coefficients de blob

3. l’hybride de la variation totale et le ℓ1

C.7 Expériences numériques 2D - Données simulées

Dans ce chapitre, nous présentons les résultats des reconstructions 2D basées sur les

modèles d’image blob et les méthodes de reconstruction présentées dans les chapitres

précédents. Afin de montrer leur efficacité, nous allons les confronter aux approches

équivalentes mais basées sur pixel. Comme l’efficacité d’une méthode de reconstruction

dépend du contexte d’application, nous allons aussi comparer différentes images de fan-

tôme. Les données ont été simulées à partir des images de pixel, ce qui permet d’avoir

une évaluation précise de l’erreur de la reconstruction.

C.8 Expériences numériques 2D - Données réelles

Dans ce chapitre, nous présentons quelques résultats préliminaires avec des données

réelles, obtenus par notres modèles d’images et notres méthodes de reconstruction. Les

données proviennent de différentes domaines d’application, et ont été acquises de façon

indépendante par notres collaborateurs sur diverses plate-formes non commerciales. Les

paramètres géométriques des systèmes d’acquisition ne sont connues que avec une pré-

cision limitée.

C.9 Conclusions et perspectives

Dans cette thèse, nous avons étudié la faisabilité de la reconstruction des objets génériques

(médicals ou industriels) en CT à partir d’un faible nombre de projections: est-ce qu’un

petit nombre de projections peut capturer les informations essentielles d’un objet? Et

comment le reconstruire?
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Dans un cadre bayésien, nous avons vu l’importance de la régularisation: certains méth-

odes proposées dans la littérature, notamment celles fondées soit sur la préservation

des bords, soit sur la variation totale ou les ondelettes, sont efficaces pour traiter ce

problème. Ces méthodes sont étroitement liées à la théorie de Compressed Sensing. CS

explique rigoureusement la relation triangulaire entre la parcimonie de l’inconnu, la con-

dition d’échantillonnage à respecter, et la méthode de reconstruction ainsi que l’erreur

entraînée. Le cadre général de CS pour résoudre notre problème est: 1) la représentation

/ la modélisation parcimonieuse de la fonction; 2) la reconstruction par des algorithmes

non linéaires comme la minimisation TV ou ℓ1. Ceci suggère le schema populaire de

"pixel / voxel + base de parcimonie": tant que l’objet est suffisamment parcimonieux, il

peut être reconstruit à partir d’un petit nombre de projections.

Néanmoins, un tel schéma n’est pas optimal pour la reconstruction en CT, en raison

de la mauvaise localisation spatio-fréquentielle du pixel, mais aussi de la complexité

numérique élevée quand on combine le projecteur de rayon X (basé sur pixel / voxel)

avec la base ad hoc de la parcimonie, e.g. la transformée en ondelette. Ces observations

nous ont conduit à adopter une base radiale appelée blob à CS. En particulier, nous

avons construit les bases radiales de la famille gaussienne pour la représentation et

la reconstruction de l’image. Leur localisation spatio-fréquentielle est meilleure que le

pixel, et de nombreuses opérations, telles que la transformée en rayon X, le gradient ou

l’interpolation, peuvent être évaluées analytiquement. Les images médicales typiques

en CT sont compressibles par rapport à ces bases, de sorte que le système ad hoc de

représentation parcimonieuse utilisé dans les algorithmes ordinaires de CS n’est plus

nécessaire.

En se servant la théorie des ondelettes classiques, nous avons proposé deux modèles

d’image. Le premier est l’espace invariant par translation engendré par un blob φ

gaussien sur une grille hexagonale L. Nous avons prouvé que ceci constitue une base

de Riesz, mais sa limite n’est pas dense dans L2(IRd). La seconde est la somme des

espaces multi-échelles invariants par translation, et ces espaces sont engendrés par les

blobs ψj(x) = β−jdψ(β−jx) sur les grilles Lj dyadiquement raffinées. Ceci constitue

une trame étroite de L2(IRd) à condition que le blob de mère ψ soit de bande limitée,

et que la partition d’unité soit satisfaite. Le blob de chapeau mexicain et le blob de

Diff-Gaussian peuvent être considérés comme bande limitée grâce à leurs décroissances

exponentielles. Les adaptations des méthodes de minimisation du TV et du ℓ1 aux im-

ages de blob sont directes, et le défi technique principal était de paralléliser le projecteur

de rayon X et les interpolateurs (e.g. l’opérateur de gradient) sur la plate-forme GPU.

Grâce aux expérimentations numériques 2D avec des données simulées, nous avons mon-

tré que les nouveaux modèles ont effectivement de nombreux avantages par rapport aux
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modèles classiques du pixel et de l’ondelette décimé. Comparée aux pixels, la reconstruc-

tion de TV basée sur le blob gaussien est beaucoup moins sensible à la variation du pas

d’échantillonnage de la grille sous-jacente. Avec les fantômes médicaux, l’image de blob

de faible dimension a la même qualité (mesurée en SNR et en SI) qu’une image de pixel

de grande dimension. En travaillant dans une bande passante faible, la reconstruction

basée sur le blob est plus stable que celle du pixel, tout en gardant la qualité visuelle

d’image. Un tel phénomène peut être du à une meilleure localisation spatio-fréquentielle,

la régularité et la symétrie radiale du blob, et aussi à l’utilisation de la grille hexagonale,

qui a une fréquence angulaire supérieure, donc réduit des artefacts de zig-zag de la grille

cartésienne.

Lorsque le nombre de projections P est grand, par exemple P > 150, le modèle du

blob multi-échelle couplé avec la minimisation ℓ1 offre une meilleure qualité d’image

que la minimisation TV. Le système des blobs multi-échelles est une analogie de la

base d’ondelette de multi-résolution, mais il est redondant donc moins concerné par le

phénomène de pseudo Gibbs. En utilisant de différentes fantômes, nous avons révélé une

différence fondamentale entre la méthode de TV et de ℓ1. Contrairement à la minimi-

sation TV qui élimine systématiquement les zones à faible contraste et à l’oscillation, la

minimisation ℓ1 préserve bien ces caractères, qui peuvent être essentiels pour certaines

applications médicales. Au contraire, pour un P petit, par exemple P < 80, la méthode

ℓ1 est largement inférieure à celle du TV, à cause des artefacts de streaks et des blobs

erronées à fine échelle. La minimisation hybride TV-ℓ1 combine la meilleur partie de

chacun et améliore la qualité de l’image pour un P moyennement élevé. Nous tirons la

conclusion que le choix du modèle de l’image et la méthode de reconstruction doivent

être faites en prenant en compte le contexte d’application et aussi la complétude des

données. Le modèle d’image multi-échelle et les méthodes TV/ℓ1 et TV-ℓ1 que nous

avons proposées peuvent couvrir un large champ d’applications en fonction du nombre

de projections.

A la fin, nous avons validé notre approche sur des données réelles provenant de différents

domaines où la réduction du nombre de projections a des intérêts réels. Bien que les

qualités des données sont limitées, nos résultats préliminaires confirment que, de man-

nière générale, le nombre de projections dans ces applications peut être réduit jusqu’à

50%, sans pour autant compromettre la qualité de l’image.
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