Machine learning for signal processing : applications to Brain Computer Interfaces - Archive ouverte HAL Access content directly
Theses Year : 2011

Machine learning for signal processing : applications to Brain Computer Interfaces

Apprentissage statistique pour le signal: applications aux interfaces cerveau-machine

(1)
1

Abstract

Brain Computer Interfaces (BCI) require the use of statistical learning methods for signal recognition. In this thesis we propose a general approach using prior knowledge on the problem at hand through regularization. To this end, we learn jointly the classifier and the feature extraction step in a unique optimization problem. We focus on the problem of sensor selection, and propose several regularization terms adapted to the problem. Our first contribution is a filter learning method called large margin filtering. It consists in learning a filtering maximizing the margin between samples of each classe so as to adapt to the properties of the features. In addition, this approach is easy to interpret and can lead to the selection of the most relevant sensors. Numerical experiments on a real life BCI problem and a 2D image classification show the good behaviour of our method both in terms of performance and interpretability. The second contribution is a general sparse multitask learning approach. Several classifiers are learned jointly and discriminant kernels for all the tasks are automatically selected. We propose some efficient algorithms and numerical experiments have shown the interest of our approach. Finally, the third contribution is a direct application of the sparse multitask learning to a BCI event-related potential classification problem. We propose an adapted regularization term that promotes both sensor selection and similarity between the classifiers. Numerical experiments show that the calibration time of a BCI can be drastically reduced thanks to the proposed multitask approach.
Les Interfaces Cerveau-Machine (ICM) nécessitent l'utilisation de méthodes d'apprentissage statistique pour la reconnaissance de signaux. Dans cette thèse, nous proposons une approche générale permettant d'intégrer des connaissances a priori dans le processus d'apprentissage. Cette approche consiste à apprendre de manière jointe le classifieur et la représentation des données lors d'une optimisation unique. Nous nous sommes plus particulièrement intéressés à des problèmes de sélection de capteurs et proposons plusieurs termes de régularisation adaptés pour ces problèmes. Notre première contribution est une méthode d'apprentissage supervisé de filtres: le filtrage vaste marge. Un filtrage maximisant la marge entre les échantillons est appris et permet de s'adapter automatiquement aux caractéristiques des signaux tout en restant interprétable. Une application ICM et une extension 2D du filtrage a été réalisée. La seconde contribution est une méthode d'apprentissage multitâche parcimonieuse. Elle permet de sélectionner de manière jointe un ensemble de noyaux pertinents pour l'ensemble des tâches de classification. Des algorithmes efficaces ont été proposés pour résoudre le problème d'optimisation et des expérimentations numériques ont montré l'intérêt de l'approche. Finalement, la troisième contribution est une application de l'apprentissage multitâche parcimonieux sur un ensemble de jeux de données ICM. Un terme de régularisation plus général permettant de promouvoir une similarité entre classifieurs est également proposé. Les résultats numériques ont montré qu'une réduction importante du temps de calibration peut être obtenue grâce à l'apprentissage multitâche proposé.
Fichier principal
Vignette du fichier
these.pdf (3.38 Mo) Télécharger le fichier
Vignette du fichier
Presentation.pdf (2.68 Mo) Télécharger le fichier
Format : Other
Loading...

Dates and versions

tel-00687501 , version 1 (13-04-2012)

Identifiers

  • HAL Id : tel-00687501 , version 1

Cite

Rémi Flamary. Apprentissage statistique pour le signal: applications aux interfaces cerveau-machine. Machine Learning [stat.ML]. Université de Rouen, 2011. Français. ⟨NNT : ⟩. ⟨tel-00687501⟩
590 View
3250 Download

Share

Gmail Facebook Twitter LinkedIn More