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-Pourquoi l'azur muet et l'espace insondable ?
Pourquoi les astres d'or fourmillant comme un sable ?

Arthur Rimbaud, Soleil et chair

Figure 1: Cumulative number of
solar and extrasolar planets dis-
covered (solid). Exponential �t
(dashed).

Finding planets seems to be a sport we are getting good at.
While it took more than two thousand years of astronomical obser-
vations for the ancients to �nd the eight planets1 orbiting with the
Earth around the Sun, more than 500 exoplanets have been found
in the last �fteen years. If it is dif�cult to give an exact number,
it is not only because determining what is a planet is complex, but
also because this number is now growing by the day. Doubling
every three years, it grows nearly as rapidly as the complexity of
micro-processors predicted by theMoorelaw.

This offers a unique chance for the physicist. While the plan-
ets in our solar system offer exquisite information on the internal
and atmospheric physics, exoplanets, and especially the transiting
ones, provide the possibility to probe the physics of planetary sci-
ences in a wider diversity of extreme conditions and with a statisti-
cally signi�cant number of objects. However, if space and ground
based detection missions are numerous, theoretical studies aimed
at the analysis and comprehension of the present and future data
are necessary.

Even with the few data that we can get for any single exoplanetary system, unexpected features
appear. More than �fteen years ago, Doppler spectroscopy alone already changed our vision of planetary
formation by �nding giant planets2 nearly ten times closer from their star than is mercury from our Sun
(Mayor and Queloz 1995). But in the last decade, thanks to the additional photometric monitoring of
the transit of some of these planets, yielding their true masses and radii, an even more disturbing pattern
arose (Henry et al. 2000). For a given mass, Giant exoplanets look much bigger than expected by the
same theory which (more or less) accords with our present understanding of Solar System giant planets.

To unravel the origin of these peculiar properties, we thus have to deconstruct part of the sophis-
ticated theories that were developed to understand our Solar System, and reconstruct them with less
restrictive hypotheses. To that purpose, the large size of the exoplanet sample is a signi�cant asset as it

1Pluto will always be a planet in my heart.
2Also called Hot Jupiters or Pegasids.
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allows us to directly test the generality of our theoretical predictions. However, one should not forget
about the planets that are closest to us. Even if it is hard to reproduce exactly all the observed features
of these well documented objects with the simple general models that we are trying to develop, the large
amount of data coming from various origins can provide much more precise constraints. Moreover Solar
System planets offer the advantage of reminding us that a planet is much more complex to understand
than a data point in a mass-radius diagram.

This is in that spirit that this thesis makes an attempt to address some unresolved problems of the
structure and evolution of giant planets, taking advantage of the information that can be found both inside
and outside our Solar System.

As the so calledradius anomalyI was depicting above had clearly been identi�ed from the very
beginning of this work as one of the main contemporary unanswered question in this particular �eld, it
can often be found, among others, as one of the underlying motivations for the various studies described
hereafter. However, if it has been a motivation, it has not been an end in itself, as the problem was not so
much to explain an unexpected property than to identify and understand the main physical processes at
work in exoplanetary systems.

Thus, in the following chapters, I tried not only to characterize and quantify the effect of the differ-
ent ingredients considered (stellar irradiation, double-diffusive convection, tidal heating) on the radius of
extrasolar giant planets, but also to develop the analytical and numerical tools necessary to model these
processes in a wider context. For this reason, I tried as much as possible to compare the models used
or developed here with others found in the literature to highlight their strengths and limitations. When
possible, I also tried to provide numerical estimates of the main physical parameters needed to directly
apply these models to different speci�c cases.

User guide

As the various subjects treated here are rather independent, I chose to dedicate the �rst part
of each chapter to the introduction and de�nition of the most necessary physical concepts. Even
if some of these concepts are well known, it will allow me to detail the context in which the work
presented hereafter, has been done.

In addition, for pedagogic purposes, and so that the interested reader may have all the equa-
tions at hand, I will also develop in length the analytical theories that I used and often extended
during this thesis. However, as much as possible, these developments have been put in the appen-
dices that can be found at the end of the present manuscript.

Thus, to ease the progression of the reader through these various sections, at the beginning of
each chapter, a framed paragraph summarizes the goals of each section of the chapter, and where
the main results of the present work can be found.
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Abstract
The detection and characterization of extrasolar planets clearly appears as one of the main goals of

observational astronomy for the coming years. Space and ground project are numerous, but theoretical
studies aimed at analyzing and understanding available and future data are needed.

During this thesis, I study various physical processes affecting the internal structure and evolution
of both solar, and extrasolar giant planets. Here are some of the main goals of this work which is divided
in four independent parts presented in the chapters2 to 5.

� In a �rst study, I investigate the impact of the intense stellar irradiation received by a close in
planet on its subsequent internal evolution. This allows me to quantify theradius anomalyof
bloated Hot Jupiters and to constrain their internal composition. I also show that most features of
the mechanical structure of gaseous substellar objects can be well captured by a single effective
polytropic index, and that this index is linked to the behavior of the mass-radius relationship.
Finally, I propose an observational criterion based on the mean density of the object to distinguish
massive giant planets from mini brown dwarfs.

� Then, I use both analytical and numerical models to study the tidal and centrifugal distortion
of a �uid planet, and infer its shape. This allows me to provide numerical estimates of various
quantities characterizing the mechanical internal structure of giant planets and brown dwarfs (e.g.
Love number, ...). I �nd that because close in planets are tidally elongated toward the star, they
exhibit a smaller cross section, yielding major implications for transit measurements. In particular,
an underestimation of the radius.

� In Chapter4, I examine how the presence of double-diffusive convection caused by a heavy ele-
ments gradient in the gaseous envelope of a planet can decrease the ef�ciency of its internal heat
transport, and affect its structure and evolution. To do so, I develop a completely analytical model
of layered convection and apply it to the Solar System gas giants. These models yield a metal
enrichment for our gaseous giants up to 30 to 60% larger than previously thought. As the heavy
elements tend to be redistributed within the gaseous envelope, the models predict smaller than
usual central cores inside Saturn and Jupiter, with possibly no core for this latter.

� Finally, I investigate the coupling between the orbital and the thermal evolution of a planet aris-
ing from the strong star-planet tidal interaction. Using an analytical model for the secular tidal
evolution which is �t to describe highly eccentric orbits, I �rst show that using tidal models based
on a quasi circular approximation can lead to quantitatively, and sometimes qualitatively different
orbital evolutions, and can overestimate the evolution timescales by orders of magnitude. Subse-
quently, I �nd that tidal heating alone is not a viable explanation for the observed radius anomaly
of transiting planets.

Through these different studies, I developed various analytical models and numerical codes (such
asCHESS) that are both �exible and robust, and which now allow me to study the properties of new
extrasolar planets and brown dwarfs as they are discovered.
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Chapter 1

The syntax of planetary structure

The heavenly motions... are nothing but a continuous song for several voices,
perceived not by the ear but by the intellect,

a �gured music which sets landmarks
in the immeasurable �ow of time.

John Banville
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6 The syntax of planetary structure

Before starting to introduce any new or exotic physics into the standard theory of giant plan-
ets structure, it seems mandatory to introduce its most basic concepts, and to de�ne the notations
that will be used throughout this work.

Hence, in this introductory chapter, we will only concern ourselves with the derivation of the
basic equations and conservation laws applying to (sub)stellar objects (§ 1.1), and to the various
physical ingredients needed to compute planetary models (§ 1.4 and § 1.5). Fortunately, to some
extent, the physics of giant planets and brown dwarfs are very similar to stellar physics in their
basic principles, and the reader can take advantage of the numerous outstanding textbooks in this
area (Eddington 1926 ; Chandrasekhar 1939 ; Kippenhahn and Weigert 1990 ; Hansen and Kawaler
1994 ; to cite only a few).

In addition, in §1.5.2, considering a toy model describing the radiative transfer in the atmo-
sphere of a strongly irradiated giant planet, I show that numerical 1D calculations of the atmo-
spheric boundary conditions of substellar objects that consider a redistribution of the stellar �ux
over the day side only may overestimate the impact of the irradiation on the structure of the object.
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EvenFOR THE MOST STUDIED CELESTIAL BODY IN THE UNIVERSE, namely, the
Earth, when it comes to the problem of internal structure, direct observational
data are very sparse. In order to �ll the numerous gaps, and to get a global un-

derstanding of how the physics at play interact in planetary interiors, and make planets evolve the way
they do, a global theory is needed. During the past two decades, this need has been strongly revived
by the discovery of the �rst extrasolar planet (Mayor and Queloz 1995), of the �rst cool brown dwarf
(Oppenheimer et al. 1995), and of the many that followed. But these discoveries also raised new con-
straints and challenges for the theory of planetary evolution: (i) observational data available for a given
system are even more scarce, and often limited to a few global quantities (mass, radius, luminosity, etc...
depending on the observational methods available), and (ii) the number and diversity of the systems
discovered is huge, and still growing by the day.

A direct consequence of the �rst point is that modeling becomes mandatory to infer the values of
even the most basic physical quantities describing the observed objects - such as their surface pressure
and temperature, atmospheric composition and rotation speed, among others - from the limited set of
available data (incoming stellar �ux, spectrum, orbital con�guration...), when it is possible at all. This
is evidently a �rst call for simple but robust models with the ability to constrain the basic features of
an object from a few global observables. Another, and maybe more stimulating consequence of this
lack of data, is that it somewhat gives some license and freedom to the theorist, who can more freely
explore known mechanisms in the most extreme regimes, or completely new exotic ones. Fortunately,
the second point bears a subtle but powerful constraint. We are not looking atsingleobjects anymore, but
at populations! Thus, any theory must be general and robust enough to account for the similarities and
differences arising between members of what could seem, when looking at a limited set of parameters,
an homogeneous family.

In any case, before starting to introduce any new or exotic physics into our model, or simply to get a
basic picture of the problem at hand, it seems proper to review the basic concepts that underlie the theory
of the structure and evolution of gaseous bodies, the assumptions that are commonly made, and the most
robust features that can be drawn from these basic assumptions.

1.1 The basics of planetary and stellar structure

As in every problem of compressible �uid mechanics, the solution consists in �nding expressions
for the density (r), pressure (P), temperature (T), speci�c entropy (̃S), velocity (v) as a function of both
the radius vector,r, and timet. To solve the problem, we thus need seven scalar equations1 that will be
provided by the conservation of mass, momentum (3 scalar relations), energy, and by thefundamental
relation for the �uid constituting our object which encompasses two relations, one for the pressure (the
famousequation of state) and one for the internal energy, or equivalently for the entropy.

1Reducing to �ve equations for the spherical case.
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Deferring thermodynamical considerations for §1.4.1, in this section, I have made an attempt to
derive rigorously the basic equations of (sub)stellar structure and evolution directly from the equations
of �uid dynamics (that can be found for example inRieutord 1997) and not from macroscopic consider-
ations. Thus spherical symmetry will only come as a simpli�cation when needed, and will not be one of
the fundamental assumptions. It will then be easier to break it in Chapter3.

1.1.1 Mass conservation and Lagrangian coordinate

In the general case, the continuity equation, which simply express the mass conservation reads

¶ r
¶t

�
�
�
�
r

= � Ñ � (r v); (1.1)

where the time derivative is taken at a constant locationr. In classical hydrodynamics, it is often con-
venient to introduce a Lagrangian derivative which is following a given mass element of �uid. This
reads

D
Dt

=
¶
¶t

�
�
�
�
r
+ ( v � Ñ); (1.2)

and yields

Dr
Dt

= � r (Ñ � v): (1.3)

We see that expressing the problem in a Lagrangian form greatly reduces, at least formally, the complex-
ity of the equations. In the following, we will thus try to �nd a suitable set of Lagrangian coordinates.

Fortunately, for �uid objects where centrifugal, tidal and magnetic forces can be neglected2, all our
variables are constant on concentric spherical shells. Then, they depend only on two scalar variables,
r = k r k andt. In this case, our Lagrangian coordinate is provided by the mass contained inside the
spherical shell of radiusr at the timet,

m(r;t) = 4p
Z r

0
r (r;t)r2dr: (1.4)

Indeed, as we will see, this variablemoves with the �uid, and has the sought for properties. In order
to correctly carry out the coordinate change(r;t) ! (m;t), we must express the differential form dm.
Thanks to the continuity equation, which now writes

¶ r
¶t

�
�
�
�
r

= �
1
r2

¶(r2r v)
¶r

�
�
�
�
t
; (1.5)

with v = v � r̂, this yields

dm�
¶m
¶r

�
�
�
�
t
dr +

¶m
¶t

�
�
�
�
r
dt

= 4pr2r (r;t) dr + 4p
Z r

0

¶ r
¶t

�
�
�
�
r
r2drdt

= 4pr2r (r;t) dr � 4p
Z r

0

¶(r2r v)
¶r

�
�
�
�
t
drdt; (1.6)

2A more precise and quantitative version of this statement will be given in Chapter3, where we will discuss in detail the
departure from sphericity of a �uid object in hydrostatic equilibrium under the action of a perturbing force.
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and �nally, after integration,

dm= 4pr2r (r;t) dr � 4pr2r (r;t)vdt: (1.7)

The �rst term is simply the mass enclosed between the shell of radiusr andr + dr, and the second, the
mass loss rate trough a shell of constant radiusr, due to the �uid motion at the speedv. One can see that
the speed of a given mass element labeled bym (meaning dm= 0), is given byDr

Dt = v. This is whym is
a Lagrangian coordinate. The change of variable can then be carried out using

¶
¶r

�
�
�
�
t
= 4pr2r

¶
¶m

�
�
�
�
t
;

¶
¶t

�
�
�
�
r

=
¶
¶t

�
�
�
�
m

+
¶m
¶t

�
�
�
�
r

¶
¶m

�
�
�
�
t

=
¶
¶t

�
�
�
�
m

� 4pr2r v
¶
¶m

�
�
�
�
t
: (1.8)

From the second equation above, we can see that, as expected,¶
¶ t

�
�
�
m

is simply the total derivative,DDt

expressed here for a spherical con�guration.

With the Lagrangian coordinate system, we will see hereafter, that it is convenient to replace the
equation for mass conservation by

¶r
¶m

�
�
�
�
t
=

1
4pr2r

: (1.9)

However,r then appears explicitly in this equation, and is no longer a dummy variable, as it has been
replaced bym. We must therefore �nd an additional relation. Fortunately, we already encountered it,
whatever simple it seems:

v =
¶r
¶t

�
�
�
�
m

: (1.10)

Therefore, in the following, we will always replacev using Eq. (1.10). Our problem can now be stated
as �nding �ve equations, two being provided by the thermodynamics, involvingr, r , P, T andS̃ as a
function ofm andt.

1.1.2 Momentum equation

It is now easy to rewrite the other equations in our new set of coordinates. Let us start with the
Navier-Stockes equation (in the inviscid limit ;Rieutord 1997)

r
Dv
Dt

= � ÑP� r Ñ(VG + Vext); (1.11)

where� Ñ(VG + Vext) is the acceleration due to all the external forces acting in volume3. Considering
only gravity and in the spherical case, we get

¶P
¶m

�
�
�
�
t
= �

g
4pr2 �

1
4pr2

¶2r
¶t2

�
�
�
�
m

; (1.12)

wherer̂ � ÑVG = g = Gm
r2 is the module of the local gravity acceleration (g). The two �rst term are the

usual pressure gradient and gravitational acceleration, which are equal when hydrostatic equilibrium is
reached. The last term arise when a given shell undergo an accelerated contraction or expansion.

3This equation is general, but in this section, only central forces will be discussed. For a detailed discussion of the effect of
non central forces, the reader is referred to Chapter 3.
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1.1.3 Energy conservation

Local conservation

As discussed inRieutord(1997), if Ũ is the speci�c internal energy of the �uid, its Lagrangian
variation is given by

DŨ
Dt

= �
1
r

(Ñ � Fint + PÑ� v)+ �enuc+ �eext; (1.13)

whereFint is the energy �ux density vector, and�enuc and �eext are the speci�c energy production rate of
nuclear reactions, and of a source that yet remains to be determined. The �rst two terms between brack-
ets represent respectively thethermalandmechanicalenergy exchanged with the other mass elements,
whereas, the last terms represents a production of energy within a given mass element itself. This en-
ergy can be produced by different processes, the �rst coming in mind being chemical, or in our context
nuclear, reactions (�enuc) and viscous dissipation. We will see in Chapter2 that other sources can come
into play, and in particular tidally generated friction (�etid) that is extensively discussed in Chapter5. To
remain general, but make a difference betweeninternalandexternalsources of energy, we will consider
separately�enuc and an arbitrary source which produces�eext Joules per second and per gram of matter.

Thanks to the second principle of thermodynamics, we can de�ne a thermodynamical function
S̃ (the speci�c entropy of the �uid) whose differential form is related to the other thermodynamical
quantities by

T dS̃= dŨ �
P
r 2dr : (1.14)

Because the in�nitesimal variations are taken along the transformation of a given �uid element, and
thanks to the continuity equation, Eq. (1.13) directly rewrites

T
DS̃
Dt

= �
1
r

(Ñ � Fint + PÑ� v)+ �enuc+ �eext �
P
r 2

Dr
Dt

= �
1
r

(Ñ � Fint + PÑ� v)+ �enuc+ �eext+
P
r

Ñ � v

= �
1
r

Ñ � Fint + �enuc+ �eext: (1.15)

This just shows that, as expected, the entropy created in a particle of �uid does not depend on the amount
of work that it receives. For a spherical con�guration, de�ning the luminosity asl (m;t) � 4p r2Fint � r̂ �
4p r2Fint, and using the(m;t) coordinates we get

�enuc+ �eext � T
¶S̃
¶t

�
�
�
�
m

=
1

r2r
¶r2Fint

¶r

�
�
�
�
t
= 4p

¶ r2Fint

¶m

�
�
�
�
t
=

¶l
¶m

�
�
�
�
t
: (1.16)

Global conservation

The above relation express the fact that locally, the energy that exits a given shell of mass dm

( ¶ l
¶ m

�
�
�
t
dm) comes either from a release of entropy (�T ¶ S̃

¶ t

�
�
�
m

dm) or of a local energy production ((�eext+

�enuc) dm). However, the gravitational energy

Egrav � �
Z Gm

r
dm; (1.17)
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never explicitly appears, nor the total macroscopic kinetic energy

Ekin �
Z 1

2
¶r
¶t

�
�
�
�

2

m
dm; (1.18)

and one may wonder if the total energy of our object is conserved as a direct consequence of this local
energy conservation. To reassure the reader, and show that it is, we must integrate our local energy
conservation (Eq. (1.16)) over the whole mass of our body.

Let us de�ne the total internal luminosityLint(t) � l (M1; t), Eint �
R

ŨdmandEnuc the total internal
and nuclear energy, andEext, the energy contained in an external reservoir4. From these de�nitions,
�Eint =

R ¶ Ũ
¶ t

�
�
�
m

dm, and the total energy produced per unit of time in the object by nuclear reactions and

by external processes are respectively� �Enuc =
R

�enucdm and� �Eext =
R

�eextdm5. Then the integration
yields

Lint = � �Eint � �Eext � �Enuc+
Z P

r 2

¶ r
¶ t

�
�
�
�
m

: (1.19)

The last term appears as the energy produced (consumed) by the contraction (expansion) of our body

( ¶ r
¶ t

�
�
�
m

being respectively positive or negative). In order to link this to the variation of the gravitational

and kinetic energy, we must derive aderivativeof the well knownVirial theoremas follows. Let us

multiply both sides of the momentum equation (Eq. (1.12)) by 4pr2 ¶ r
¶ t

�
�
�
m

and integrate over the mass.

We have
Z

4pr2 ¶r
¶ t

�
�
�
�
m

¶P
¶m

�
�
�
�
t
dm= �

Z Gm
r

1
r

¶r
¶ t

�
�
�
�
m

dm�
Z ¶r

¶t

�
�
�
�
m

¶2r
¶ t2

�
�
�
�
m

dm: (1.20)

On the left hand side, becausem can move inside the time derivatives, and that¶ r
¶ t

�
�
�
m

¶ 2r
¶ t2

�
�
�
m

=

1
2

¶
¶t

�
¶ r
¶ t

�
�
�
2

m

� �
�
�
�
m

, we immediately recognize� �Egrav and� �Ekin. Integrating by part the right hand side,

we get

Z
4pr2 ¶r

¶ t

�
�
�
�
m

¶P
¶m

�
�
�
�
t
dm=

�
4pr2 ¶r

¶t

�
�
�
�
m

P
� M1

0
�

Z
P

¶
¶m

�
4pr2 ¶r

¶ t

�
�
�
�
m

� �
�
�
�
t
: (1.21)

Because

¶
¶m

�
r2 ¶r

¶ t

�
�
�
�
m

� �
�
�
�
t
=

1
3

¶2r3

¶m¶t
=

1
3

¶2r3

¶t¶m
=

¶
¶ t

�
r2 ¶r

¶m

�
�
�
�
t

� �
�
�
�
m

=
¶
¶ t

�
1

4p r

� �
�
�
�
m

; (1.22)

this rewrites
Z

4pr2 ¶r
¶ t

�
�
�
�
m

¶P
¶m

�
�
�
�
t
dm= Patm

d
dt

�
4
3

p R3
1

�
+

Z P
r 2

¶ r
¶t

�
�
�
�
m

; (1.23)

wherePatm is the external pressure, andR1 is the external mean radius of the object. Recasting Eq. (1.20),
we get

Z P
r 2

¶ r
¶t

�
�
�
�
m

+ �Ekin = � �Egrav� Patm
d
dt

�
4
3

p R3
1

�
: (1.24)

4For tidal friction, for example, this reservoir is the macroscopic kinetic (orbital) energy of the whole system, which can be
dissipated in the interior by the tides.

5The minus signs are merely conventional, and just come from the fact we de�ned the various�e as energyproductionrates
per unit mass and not as energyvariation rates, so that they are positive.



12 The syntax of planetary structure

As we could have guessed, the mechanical work exerted by the gravitational force and the the pressure
of the external medium (even if small in all the cases of interest), is transferred into both macroscopic
and microscopic kinetic energy. Substituting this into Eq. (1.19) �nally gives the expected global energy
conservation

�Eint + �Ekin + �Egrav+ �Enuc+ �Eext = � Lint + Patm
d
dt

�
4
3

p R3
1

�
; (1.25)

where the left hand side is the variation in volume of the total energy, and the right hand side represents
the energy exchanged through the surface, either by thermal (radiative) losses, or by mechanical work6;7.

1.1.4 Energy transport

We now have the three dynamical equations that we were looking for (Eq. (1.9), (1.12) and (1.16)).
However, we can see that the energy equation involve a new variable, namely the luminosity of any
given layer,l (m;t), and thus, a new relation must be found which describe the way energy is transported
throughout our medium as a function of its thermodynamical properties. For this, however, one cannot
rely on a fundamental physical principle, and there enters some modeling and parametrization.

Diffusive transport

Let us �rst consider the energy that is transported by radiation. Indeed, we expect temperature
(and thus radiative energy8, Ũrad = aT4) of the matter to increase with depth, which should lead to a
�ux of radiative energy. As the mean free path of a photon inside a medium of mean opacityk r is
equal to(k rr ) � 1 � 10� 2m which is much smaller than the size of the object we are considering, a huge
simpli�cation occurs, and the radiative �ux can be treated as a pure diffusion9.

Then, in each spectral interval[n;n + dn], the diffusing component is the radiative energy density,
Ũn, and it is transported by photons whose diffusion coef�cient isc=(3knr ). Here,k n is theradiative
opacityand is expressed in m2.kg� 1. This yields for the �ux

Fn = �
c

3knr
ÑŨn: (1.26)

Deep in the interior, local thermodynamic equilibrium is achieved, so that the energy density is given by
the planck function for the intensity,B(n;T), by

Ũn =
4p
c

B(n;T) =
8ph
c3

n3

ehn=kBT � 1
: (1.27)

Thus in a given spectral bin, the �ux depends only on the temperature and its gradient, and is given by

Fn = �
c

3knr
4p
c

¶B
¶T

�
�
�
�
n

ÑT: (1.28)

6Because the pressure of the interplanetary or interstellar medium are vanishingly small compared to the pressures reached
in the interior once the body is massive enough, excepted for the very early phases of the formation, the external mechanical
work is negligible

7Eqs. (1.20) and (1.25) extend the relation found inKippenhahn and Weigert(1990) to objects that are not in hydrostatic
equilibrium and in contact with an external pressure reservoir.

8The constant related to the total energy radiated by a blackbody isa � 8p5k4
B

15c3h3 � 4s SB
c , wheres SB is the Stefan-Boltzmann

constant.
9This approximation is valid for optical depth larger than unity, i.e. not in the atmosphere where we will need a proper

treatment of the radiative transfer, as we will see in §1.5.2.
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We can then integrate this over the frequencies which yields the total radiative �ux

Frad = �
�

4p
3r

Z 1
k n

¶B
¶T

�
�
�
�
n

dn
�

ÑT: (1.29)

Then, it is rather useful to de�ne the Rosseland mean opacity

1
k r

=

R 1
k n

¶ B
¶ T

�
�
�
n

dn
R ¶ B

¶ T

�
�
�
n

dn
=

p
4s SBT3

Z 1
k n

¶B
¶T

�
�
�
�
n

dn; (1.30)

which as we see, is an harmonic average weighted by the derivative of the Planck function. In other
words, this mean opacity indeed measures thetransparencyof the gas at the frequencies were most

of the �ux can be transported (where¶ B
¶ T

�
�
�
n

is maximum). Sometimes, however, another equivalent

quantity describing the radiative transport is used, namely thethermal diffusivity(k T;r, in m2.s� 1), which
is de�ned by

Frad = � r cPk T;rÑT ) k T;r �
16s SBT3

3r 2cP

1
k r

: (1.31)

But energy is not transported only by radiation. Indeed, in the interior, because the matter is partially
ionized, the free electron can ef�ciently transport heat byconduction(The �ux beingFcond). This is also
a diffusive process, and by analogy, a conductive thermal diffusivity (kT;c) and a conductive opacity (kc)
can also be de�ned following

Fcond= � r cPk T;cÑT ) k T;c �
16s SBT3

3r 2cP

1
k c

: (1.32)

Then, because diffusive �uxes are additive, the total �ux transported by diffusion is simplyFd = Frad+
Fcond, and by analogy, we can de�ne a global thermal diffusivity

kT = k T;r + k T;c; (1.33)

and mean diffusive opacity

1
k̄

=
1
k r

+
1
k c

: (1.34)

As for the Rosseland mean, the fact that this opacity is de�ned by an harmonic average simply translates
the fact that the energy preferentially goes through the mosttransparentwindow.

In the spherical case, considering the total diffusive �ux10, we have

Ld = 4pr2Fd = �
64pr2s SBT3

3r k̄
dT
dr

; (1.35)

and using Eqs. (1.8) and (1.12) (without the inertia term) yields

Ld =
64p s SBT4mG

3k̄P
d lnT
d lnP

= 4p r 2cPkTs SBmG
T
P

d lnT
d lnP

; (1.36)

10To avoid confusion, we will use the generic denominationÑd and use the index d for quantities describing diffusive pro-
cesses in general while keeping in mind that, except for the fact thatkT now includes the contribution of conductive processes,
Ñd plays exactly the same role than the usualÑrad.
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were the �ux transported by radiation is expressed as a function of the thermal gradient

ÑT �
d lnT
d lnP

: (1.37)

Here, the derivative is taken along the actual pro�le in the planet.

It is customary to de�ne thediffusivegradient as the temperature gradient (as a function of pressure)
needed to transport all the energy through both radiation and conduction. Thus settingLd = l(m) �
4pr2s SBT4

int(m)11 in Eq. (1.36) yields

Ñd �
�

d lnT
d lnP

�

d
=

3k̄P
64p s SBT4

l
mG

=
3
16

k̄P
T4

T4
int

g
; (1.38)

or equivalently

Ñd =
1

4p r 2cPkT

P
T

l
mG

=
1

r 2cPkT

P
T

s SBT4
int

g
: (1.39)

With this de�nition, if there is no other available means to transport energy in the zone considered, which
is therefore called either aradiative zoneor aconductive zonedepending on the dominant process, the
local thermal gradient must adjust itself to the diffusive gradient so that our missing equation is simply

ÑT = Ñd: (1.40)

Advective transport: convection

Note that the �ux (Fint) present in Eq. (1.15) should in principle only include such diffusive pro-
cesses for which energy can be transferred from one mass element to the other without any mass transfer
(or advection). Indeed, in 3D, a signi�cant inhomogeneity of temperature within the �uid can lead to
large scale �uid motion and to turbulence that will homogenize the energy distribution at the macroscopic
level, diffusion then being able to homogenize the remaining small scale inhomogeneities. However, in
1D, such processes cannot be accounted for properly, as we would have hot plumes moving upward
smashing into the descending cold plumes, without any possibility for them to simply go around. We
thus have to include advection (or convection) in a parametrized way.

As convection is extensively discussed in Chapter4, we will not reproduce the argument here. Let
us just agree for the moment that if the medium is convectively unstable, which arises when the diffusive
gradient is larger than the adiabatic one

Ñd > Ñad �
¶ lnT
¶ lnP

�
�
�
�
S̃
; (1.41)

then convection transports energy to restore the equilibrium. Because convection is very ef�cient in
planetary interiors, the thermal gradient is then very close to the adiabatic one, and our missing relation
in suchconvective zonesis given by

ÑT = Ñad; (1.42)

and is nearly independent of the luminosity.

11Note that this relation is indeed a de�nition ofTint(m), which is the effective temperature at depthm.
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Furthermore, as will also be discussed in Chapter2, under the physical conditions encountered in
substellar object and gaseous planets, the �uid is convectively unstable in all the interior but a thin outer
layer. Hence the interior is mostly adiabatic and theT � P pro�le can be integrated from the values of the
temperature and pressure just below the radiative zone using Eq. (1.42) independently of the luminosity
equation. This means that, in the fully convective case, only thetotal luminosity, Lint, and not the
luminosity pro�le, l (m), affects the structure, and only through its impact on the boundary conditions
(see §1.5.2).

1.2 Evolution timescales

We now have our system of equations to solve. However, all the terms in this system do not have the
same importance, some even being completely negligible by orders of magnitude. In order to quantify
this statement, let us introduce some representative timescales

1.2.1 Dynamical timescale and free fall time

In Eq. (1.12), we see that the acceleration results of the possible unbalance between the gravitational
pull and the pressure support. However, excepted during the very early contraction or the red giant phase
of more massive stars, this term can be neglected, because its associated timescale is much shorter than
the evolution timescale.

Indeed, if we freeze all the microscopic degree of freedom of our gas, in a classical sense, then
pressure vanishes and nothing can counteract gravitational contraction. Then, followingKippenhahn
and Weigert(1990), we can de�ne the hydrodynamical timescalet dyn, as the time needed for the �uid to
undergo gravitational collapse without any thermal support. Then,

R1

t 2
dyn

� g �
GM1

R2
1

) t dyn �

s
R3

1

GM1
: (1.43)

A rigorous calculation provides

t dyn =
p
2

s
R3

1

2GM1
=

1
4

s
3p

2Gr̄ 1
; (1.44)

wherer̄ 1 is the mean density of the body. For Jupiter or our Sun (which most surprisingly have the same
mean density !), this hydrodynamical timescale is on the order of half an hour, and for a brown dwarf
near the hydrogen burning minimum mass (MHBMM � 0:075M� � 75MJup, andR1 � 0:7 � 1RJup; see
§2.2), it can be as low as 2 minutes. As we obviously see that the radius of the Sun or of Jupiter does not
increase or decrease signi�cantly over an hour, the low value oft dyn tells us that inertia can be neglected
in Eq. (1.12) and thathydrostatic equilibriumis reached with a high degree of accuracy. In this case, the
central pressure is roughly given by

Pc �
GM2

1

R4
1

; (1.45)

and the dynamical timescale is also equal to the time needed for a sound wave (with the speedcs �p
Pc=r̄ 1 to propagate throughout our object

t dyn � R1

r
r̄ 1

Pc
: (1.46)
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1.2.2 Kelvin-Helmholtz timescale

Now that we have exhibited a dynamical time, we can concern ourselves with the problem of �nd-
ing the characteristic time taken by an object in quasi-static equilibrium to irradiate its energy. First
neglecting nuclear reactions and any external source, this should read

t KH �
Eint

Lint
: (1.47)

However, this relation is of mild interest if we cannot somehow quantify the content of our energy
reservoir. Fortunately, this is possible through the so-calledVirial theorem, which in our context can be
derived as follows.

Because¶P=¶mjt has the dimension of an energy per unit of volume and mass, multiplying both
sides of Eq. (1.12) by 4pr3 and integrating over the whole mass of the body (Kippenhahn and Weigert
1990), we get

Z
4pr3 ¶P

¶m

�
�
�
�
t
dm= �

Z Gm
r

dm�
Z

r
¶2r
¶t2

�
�
�
�
m

dm; (1.48)

which obviously looks like an energy. Let us treat each term in turn. Integrating the �rst term by part,
and using the fact that,r = 0 at the center, and¶r=¶mjt = 1=(4pr2r ), we get

Z
4pr3 ¶P

¶m

�
�
�
�
t
dm=

�
4pr3P

� M1

0 �
Z

12pr2 ¶r
¶m

�
�
�
�
t
Pdm= 4pR̄3

1Patm� 3
Z P

r
dm: (1.49)

To recast this expression in term of the internal energyEint =
R

Ũdm, we de�ne a dimensionless constant
z as

Eint �
3
z

Z P
r

dm: (1.50)

Thus
Z

4pr3 ¶P
¶m

�
�
�
�
t
dm= 4pR̄3

1Patm� z Eint: (1.51)

The second term in Eq. (1.48) is of course the total gravitational energy of our con�guration. Finally,
because

r
¶2r
¶ t2

�
�
�
�
m

=
1
2

¶2r2

¶ t2

�
�
�
�
m

�
¶r
¶t

�
�
�
�

2

m
;

the third term can be rewritten

Z ¶r
¶t

�
�
�
�

2

m
�

1
2

¶2r2

¶ t2

�
�
�
�
m

dm� 2Ekin �
1
2

d2I
dt2 ; (1.52)

whereEkin is the macroscopic kinetic energy, andI1 �
R

r2dmthe central moment of inertia of the body.
We are then left with theVirial theorem

1
2

d2I1
dt2 + 4pR̄3

1Patm = 2Ekin + Egrav+ z Eint: (1.53)
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As shown above, the terms on left hand side, as well asEkin are negligible, and this reduces to

Egrav+ z Eint = 0: (1.54)

We will come back in more detail on the fundamental consequences of this relation in Chapter2,
where the evolution is studied more thoroughly, but for the moment, this already tells us that the internal
and gravitational energies are commensurable. As the latter scales asGM2

1=R1, we can de�ne theKelvin-
Helmholtz timescale

t KH �
GM2

1

R1Lint
; (1.55)

which is the typical rate at which an object in hydrostatic equilibrium radiates its internal energy. For
Jupiter,t KH is now on the order of 1011 years because the planet is old, but was probably no shorter
than 105� 6 years during its young age. Thus, as expected,t KH � t dyn and the hydrostatic assumption is
validated.

1.2.3 Nuclear time

However, for the Sun,t KH � 107 yr ! As we have observational evidences that the Sun has been
radiating for a few billion years, unfortunately for Lord Kelvin, another energy source must be present in
our star, and in others. This energy, this is the mass energy contained in atoms nuclei that can be released
by thermonuclear reactions. In the low mass star and substellar domain, the main atoms concerned are
deuterium (2H ; which ignites aroundT � 4:5� 105K), lithium (Li ; T � 2:5� 106K) and hydrogen (H ;
T � 3� 106K). As the central temperature of a substellar object of a given age generally increases with
its mass, the ignition temperature of a compound X can be recast into the minimal mass (MXBMM ) needed
for a body to be able to burn the given compound. We thus de�ne (Chabrier and Baraffe 1997,2000),

� MHBMM � 75MJup

� MLiBMM � 60MJup

� M2HBMM � 13:5MJup.

For M1 < M2HBMM , no nuclear reactions occur, and�enuc can be set to 0 in our set of equations. For
M1 > MHBMM , on the contrary, the nuclear reactions dominate the energy budget of the star during its
stay on the main sequence, meaningt KH � t nuc, and the energy equation is well approximated by

¶l
¶m

�
�
�
�
t
= �enuc: (1.56)

In this case, the star is both inmechanicaland thermal equilibrium, and evolves only because of its
varying chemical composition. Finally, in the intermediate case, because both Lithium and Deuterium
are not very abundant, and that the reaction rates of2H+H and Li+H reactions are very short, these species
are burnt in about 10 to 100 Myr. This entails that, at early ages,t KH � t nuc and no simpli�cation can be
made.

1.3 Canonical set of equations

In view of these simpli�cations, and for further reference, we can now rewrite the canonical set of
equations describing the internal structure of gaseous objects and their evolution in Lagrangian coordi-
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nates12

¶P
¶m

= �
Gm
4pr4 ; (1.57)

¶r
¶m

=
1

4pr2r
; (1.58)

¶ l
¶m

= �enuc+ �eext � T
¶S̃
¶t

; (1.59)

¶T
¶m

=
T
P

¶P
¶m

ÑT ; (1.60)

with

ÑT = Ñd (radiative=conductive zone) or ÑT = Ñad (convective zone): (1.61)

Note that only Eq. (1.59) explicitly involves a time derivative. This means that our object, while not in
thermalequilibrium, is always nearmechanicalequilibrium, and that it evolves only because it radiates
its entropy and increases its internal order. This also means that in certain cases, with a simple pre-
scription for the luminosity, the structure of the object can be computed without any knowledge about
its evolution, as has been successfully done for Solar System giant planets (Hubbard and Marley 1989;
Chabrier et al. 1992; Guillot 2005; to cite only a few. See also Chapter4).

1.4 Key physical ingredients

However useful these equations are, they are not suf�cient to yet solve our problem. Indeed, we
need at least three additional relations, namelyr (P;T), S̃(P;T) andÑad(P;T) (or Ñrad(P;T; l ), meaning
thatk r andk c must be provided) to complete them. In fact, the calculations of the various thermodynamic
quantities are the very core of any numerical model, and are often the main factors limiting its accuracy.
In this section, we will review some simple analytical models that can be used to grasp general properties,
as well as the various numerical models used in our numerical code.

1.4.1 Equation of state

De�nitions

Before describing the macroscopic state of our �uid (P;r ;T; S̃), we have to introduce some quanti-
ties that describe the microscopic state of our mixture. Our �uid is composed of many different particles,
e.g. molecules, atoms, ions - hereafters referred to as ions labeled by i of particle density (in m� 3),
atomic mass (in units of the proton massmH) and charge given byni , Ai andZi respectively, and free
electrons whose particle density isne. The chemical composition of the mixture is usually described by
the mass fraction13 of Hydrogen (X), Helium (Y) and heavy elements (Z), for which by de�nition

X + Y + Z = 1: (1.62)

12We have dropped thejx stating the variable kept constant because, unless otherwise stated, we now differentiate only with
respect tom or t.

13The mass ratio of a chemical species is the ratio of the mass of all the constituents of this species contained in a small
volume over the total mass enclosed in the same volume
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For the mechanical properties of the gas, an important quantity is the mean molecular weight (m) de�ned
by

1
m

�
ntotmH

r
=

(å i ni + ne)mH

r
� å

i

1
mi

+
1
me

; (1.63)

which implicitly de�nes the mean molecular weight of each ion (mi) and of free electrons (me). De�ning
the mean atomic mass of ionshAi ion � å i niAi

å i ni
and the mean degree of ionizationhZi ion � å i niZi

å i ni
= ne

å i ni
,

and thanks to electro-neutrality we get

å
i

1
mi

=
1

hAi ion
and

1
me

=
hZi ion

hAi ion
: (1.64)

This mean molecular weight is the translation in mechanical terms of the enrichment of our mixture in
volatiles, metals, or generally, heavy elements14.

To know wether our gas must be described by classical or quantum mechanics, we must also com-
pare the mean thermal energy of a given particle to its zero energy level, i.e. the Fermi energy15

eF �
h̄2

2me

�
3p2ne

� 2=3
: (1.65)

This de�nes the electron degeneracy parameter

Xe �
kBT
eF

�
kBT
kBTF

=
2

(3p2)2=3

mem
2=3
H kB

h̄2
Tm2=3

e

r 2=3
; (1.66)

which allows us to separate the classical domain (Xe � 1) from the quantum one (Xe � 1).

Classical ideal gas

For the outermost layers of planets and brown dwarfs, the density is small enough for the gas to be
in the classical domain. The pressure is thus given by the ideal gas law

P = ( å
i

ni + ne) kBT = r
kB

mmH
T: (1.67)

For energetic considerations, one also needs to specify the nature of the gas, which can be encompassed
in the speci�c heat capacity at constantvolume(cV), or constantpressure(cP = cV + kB=mi for a perfect
gas of particles of massmi). For a monoatomic gas,cV = 3

2
kB
mi

. For a diatomic gas, for example, internal
degrees of freedom can be excited and brought into equipartition. In general we will consider tempera-
tures where rotational states are excited but not the vibrational states (Qrot < T < Qvib)16, which yields
cV = 5

2
kB
mi

. The energy is then given by

Ũ = cV T (1.68)

14For further numerical application, if we have a fully ionized mixture of Hydrogen (with the mass fractionX) and Helium
(Y), m= 4=(8 � 5Y), andme = 2=(2 � Y), and are approximately equal to 0.6 and 1.16, respectively, for a cosmic mixture
(Y = 0:275).

15The Fermi energy is de�ned here for the free electrons. For another specie, one just has to use the mass and number density
of the chosen particle.

16For H2, Qrot � 85:4K, andQvib � 6210K. H2 thus acts mostly like a diatomic gas in the atmosphere of Jupiter and Saturn,
but like a monoatomic one in Uranus and Neptune which are much colder.
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and the entropy (Reif 1985)

S̃=
kB

mi

8
<

:
ln

2

4

 
m5=3

i kB

2ph̄2

! 3=2
T3=2

r

3

5 +
5
2

9
=

;
(monoatomic); (1.69)

S̃=
kB

mi

8
<

:
ln

2

4

 
m5=3

i kB

2ph̄2

! 3=2
T5=2

r Qrot

3

5 +
7
2

9
=

;
(diatomic): (1.70)

Differentiating this at constant entropy, we can derive the adiabatic gradient

Ñad �
¶ lnT
¶ lnP

�
�
�
�
S̃

=
2
5

(monoatomic);

=
2
7

(diatomic): (1.71)

Degenerate matter

On the contrary, in the deep interior, the density is much higher. If we put the mean temperature and
density of Jupiter in Eq. (1.66), we obtain a degeneracy parameter on the order of 0.05. It thus follows
that the electrons cannot be considered classical anymore. However, because ions are around a thousand
time more massive than electrons, their degeneracy parameter is on the order of 50 and they remain
classical. Thus, adding up the electrons and ions contributions17, we get

P = Pe+ Pi

=
2
5

neeF + å
i

ni kBT

=
2
5

eF (ne+ Xe
5
2å

i
ni)

= KF (1+
5
2

Xe

hZi ion
)

�
r
me

� 5=3

; (1.72)

whereKF �
h̄2(3p2)2=3

5mem
5=3
H

is a constant. The main interest of this ideal equation of state is that, if ionization

(and composition) can be considered constant in the interior, Eq. (1.72) takes the form of a polytrope

P = Kr 1+1=ñ; (1.73)

with a polytropic temperature K= KF m� 5=3
e (1+ 5Xe=2hZi ion), and index ˜n = 3=2, which provides

rather useful analytic relations, as described in §2.2.1. The mean internal energy of the electrons can
then be found by integrating the Fermi energy over the number of particles, which writes

Ũe =
Z

eFdr =
3
5

eF r =
2
3

Pe: (1.74)

17This expression is correct to �rst order inXe, as we have neglected the thermal contribution of the electrons which is
proportional toX2

e (Chabrier 1990).
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Fortunately, because the ions we consider have only one nuclei (H, H� , He� , He2� ), their speci�c heat
capacity is equal to 3/2, so that the total internal energy can be written

Ũ = Ũe+ Ũi =
2
3

Pe+
2
3

Pi =
3
2

P: (1.75)

Even if useful, at the level of accuracy that we are looking for, these simpli�ed equations of state are not
completely satisfying. In our numerical model, we thus use tabulated equation of state.

Hydrogen-Helium mixture

The most widely used EOS to describe the thermodynamics properties of the gaseous H/He en-
velope of giant planets is the Saumon-Chabrier-VanHorn EOS (SCVH ;Saumon et al. 1995). This
semi-analytical equation of state recovers numerical simulations and experimental results in the high-
density and low-density regimes, respectively, while, in its simplest form, interpolating over the pressure
ionization regime.

Interestingly enough, high-pressure experiments on �uid deuterium or helium are now able to reach
pressures and temperatures typical of the giant planet interiors (P& 1 Mbar, T & 104 K), probing the
equation of state in its most uncertain pressure-range. Various experimental techniques, however, give
different results, with a� 30-50% difference inP(r ) in the maximum compression region for deuterium,
� 0:5 � 1:5 Mbar, although the most recent experiments seem to converge towards substantially less
compressible equation of state for hydrogen, i.e. predict a lower density for a given pressure, than SCVH
in the pressure-ionization domain,P � 0:5 � 4 Mbar. This seems to agree with recent �rst-principle
(ab-initio ; Militzer et al. 2008; Nettelmann et al. 2008; Caillabet et al. 2011) or nearly �rst-principle
quantum mechanical calculations, and bears signi�cant impact on the internal structure of giant planets,
in particular the size of the central core. A less compressible planet will tolerate less heavy material
for a given radius or, conversely, will have a larger radius for the same internal composition (Saumon
and Guillot 2004). As these other equations of state are not yet publicly available in a usable form, we
decided to keep the SCVH equation.

In addition, we must keep in mind that the combined interactions of H and He in the mixture in-
crease drastically the degree of complexity in the characterization of the plasma. Not only the interactions
between the two �uids will affect the regime of pressure ionization compared with the pure components,
but partial immiscibility between the two species has been suggested to explain Saturn's excess lumi-
nosity for the age of the Solar System, and may occur inside some exoplanets. Unfortunately, given
the aforementioned dif�culty in modeling the properties of H or He alone, and the necessity to simulate
a large enough number of particles for the minor species (He in the present case) to obtain statistically
converged results, no reliable calculation of the H/He phase diagram can be claimed so far. As mentioned
above, pressure-ionization of pure hydrogen and helium must �rst be fully mastered before the reliability
of the calculations exploring the behavior of the mixture can be unambiguously assessed.

Resolving these important issues concerning the H and He EOS must await (i) unambiguous exper-
imental con�rmation of the H and He EOS at high pressure, (ii) unambiguous con�rmation of the reli-
ability of the theoretical calculations, in particular in the pressure ionization regime, (iii) guidance from
experiments to predict the behavior of the H/He mixture under planetary interior conditions. Progress
both on the experimental and theoretical side will hopefully enable us to ful�ll these criteria within the
coming years.
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Figure 1.1: Left: Conductive opacities (kc in m2.kg� 1) from Potekhin et al.(1999) as a function of
density (in kg.m� 3) and temperature (in K). Right: Decimal logarithm of the COND Rosseland radiative
opacities (kr in m2.kg� 1) from Ferguson et al.(2005) as a function of density (in kg.m� 3) and tempera-
ture (in K).

Heavy elements

According to the composition of the protosolar nebula, the next most abundant constituents after
hydrogen and helium in gaseous giant planets, but the most abundant ones in ice giants and Earth-like
planets, consist of C, N and O, often referred to as "ices", or volatiles (H2O, CH4, NH3, CO, N2 and
possibly CO2). The remaining constituents consist of silicates (Mg, Si and O-rich material) and iron (as
mixtures of more refractory elements under the form of metal, oxide, sul�de or substituting for Mg in
the silicates). The behavior of these different elements as a function of pressure, under the conditions
typical of giant planet interiors is not or poorly known. At very high pressure, the categorizations of gas,
ice and rock become meaningless and these elements should become a mixture of closed-shell ions.

The most widely used EOS models for such elements are ANEOS (Thompson and Lauson 1972)
and SESAME (Lyon and Johnson 1992), which describe the thermodynamic properties of water, "rocks"
(olivine (fosterite Mg2SiO4) or dunite in ANEOS) and iron. These EOS consist of interpolations be-
tween existing Hugoniot data at low to moderately high (�0:5 Mbar) pressure and Thomas-Fermi or
more sophisticated �rst-principle calculations at very high density (P> 100 Mbar), where ionized species
dominate. Interpolation, however, provides no insight about the correct structural and electronic proper-
ties of the element as a function of pressure, and thus no information about its compressibility, ionization
stage (thus conductibility), or even its phase change, solid or liquid. All these properties can have a large
impact on the internal structure and the evolution of the planets. A detailed comparison between these
EOS, and the impact of the uncertainties on the radius determination for Neptune-like and Jupiter-like
planets has been conducted byBaraffe et al.(2008), who showed that the discrepancies between these
two equations of state can lead to difference of about 10% on the radius of a Neptune like planet at
1Gyr. Without conducting either ab-initio calculations or higher pressure experiments, we decided to
use ANEOS. For practical purposes, some thermodynamic relations needed to implement the ANEOS
package are provided in AppendixB.

1.4.2 Opacities

Deep in the interior, the large radiative opacity of planetary material yields completely inef�cient
heat transport by photons. Transport by conduction, resulting from collisions during random motion
of particles, may in some cases be relevant. To account for these process, the numerical model uses
the conductive opacity tables fromPotekhin et al.(1999) andCassisi et al.(2007), which are shown in
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Fig. 1.1. In the central part of H/He dominated planets, thermal conductivity is dominated by electronic
transport, and Eq. (1.32) yields a thermal diffusivitykT � 10� 5 m2.s� 1. If no electrons are available,
as in the outer envelope, conductive transport is dominated by the less ef�cient molecular motions with
thermal conductivitykT � 10� 6 m2.s� 1. Conduction by electrons (or eventually phonons) may also
dominate in central cores composed of heavy material.

In the most outer layers, close to the planet photosphere, matter in less opaque, and radiative opac-
ities must be used. There, one must take into account both continuous opacities (such as H� , He� , H�

2 ,
H+

2 , bound-free and free-free absorptions), molecular bonds and atomic lines. Their relative contribu-
tion depending greatly on the range of temperatures considered. Here we use the opacity tables from
Ferguson et al.(2005) (see right panel of Fig.1.1).

1.5 Boundary conditions

As for any set of differential equations, boundary conditions are needed to solve the system of
structure equations. At the center, these are rather trivial

r(m= 0) = 0

l (m= 0) = 0: (1.76)

However, it is not the case for the upper boundary. Indeed, one can start to see the problem in the fact
that we still have not de�ned properly what we meant by the mass and radius of the object studied (M1

andR1). If this seems intuitive for terrestrial planets, for which there is a clear separation between a solid
and gaseous phase that can be calledsurface, it is not so clear for giant planets. In this case, the mass
and radius of the planet are not uniquely de�ned, but depend on the isobar (of pressurePatm) taken as the
reference surface, yieldingM1 = m(P = Patm). Hence, the boundary conditions we are looking for are

P(m= M1) = Patm

T(m= M1) = Tatm; (1.77)

where the �rst one is purely conventional. As thermodynamic quantities are constant on concentric
shells, the radius of the object is de�ned as

R1 = r(m= M1): (1.78)

Even if one could be tempted to usePatm = 0 to de�ne the surface, one needs to remember that
the equations that we have derived above are based on many assumptions, in particular the diffusion
approximation, that is not valid at such low pressures where both radiative escape and incoming radia-
tion cannot be neglected. Therefore, one must choose a reference isobar which is deep enough for the
aforementioned approximations to be valid. Our problem can then be stated as �nding the corresponding
atmospheric temperature (Tatm = func(Patm)). If in situ measurements are available, as, thanks to the
CassiniandGalileomissions among others, it is the case for solar system giant planets, the atmospheric
T � P pro�le is directly measured down to the convective region (e.g.Guillot (2005) and reference
therein). Thus any couple (Tatm;Patm) taken in this region can be readily used as boundary conditions to
infer the internal structure.

For far remote objects, modeling must be used. However, we can separate our planet in two zones

� the interior, below theP = Patm isobar, that contains the massM1, have a radiusR1, and which is
described by Eq. (1.57) through Eq. (1.60).
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Figure 1.2: Schematic representation of the energy balance of the atmosphere. The planet receives a
�ux s SBT4

irr with an incidenceq? (m? = cosq?). A fraction Ā is re�ected directly and 1� Ā is absorbed.
Fluxes that are mostly characterized by visible wavelengths are drawn in blue. Fluxes in the infrared are
drawn in red.

� the atmosphere, above theP = Patm surface, which contains a negligible mass, and where all the
incoming external radiation is re�ected or absorbed.

To �nd our missing relation, we will thus have to model this atmosphere. Even if our model uses complex
numerical calculations provided byAllard and Hauschildt(1995) for non-irradiated objects, andBarman
et al. (2001) for irradiated planets (seeBaraffe et al. 2010for a review), in this section, I will turn to
simple analytical model to get a sense of the various physical parameters that determine the energetic
and mechanical equilibrium state of an atmosphere.

1.5.1 Atmospheric energy budget and redistribution factor

From an energetic point of view, the atmosphere is the window by which the planet can release
internal energy and receive incoming radiation. Its state must hence depend on the value of the incoming
stellar �ux, Finc, and of the intrinsic gravo-thermal outgoing �uxFint. However, to extract the important
parameters, let us consider the energy balance of this layer. As shown on Fig.1.2, if we consider an area
of the atmosphere positioned at an angleq? from the substellar point18 (with m? � max[cosq?;0]), the
�ux received perpendicularly to the surface19 reads

Finc = �
�

R?

r?

� 2

m?s SBT4
eff;? � � m?s SBT4

irr ; (1.79)

whereR?, r? andTeff;? are respectively the stellar radius, distance, and effective temperature.Tirr is thus
the temperature which characterizes the incoming radiation. From this total impinging �ux, a fraction
Fref � Ā � Finc, whereĀ is the Bond Albedo, can be considered as directly re�ected by the top of the at-
mosphere, while the remaining energy,(1� Ā) � Finc penetrates deeper down. In addition, the atmosphere
is heated from below by the intrinsic internal �ux of the planetFint.

18The point at the surface for which the star is at its zenith.
19The convention taken here is that �uxes are positive if energy is actually transported upward, i.e. toward the positive ˆz

direction as shown on Fig. 1.2.
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Because we have chosen the base of our atmosphere to be deep enough, there, the total net �ux is
equal to the internal �ux

Fnet = Fint: (1.80)

If thermal equilibrium is achieved, this net �ux must be conserved throughout the atmosphere, and par-
ticularly at the top where,Fout being the �ux escaping the atmosphere,

Fnet = Fout+ Finc: (1.81)

Thus,

Fout = Fint � Finc = Fint + Fth + Fref: (1.82)

Thus we see that the outgoing �ux - the one that is seen by an observer - is the sum of the re�ected light,
which contributes mainly at optical wavelengths, of the internal �ux, and ofFth � (1� Ā) � Finc which is
the part of the oncoming radiation that has been absorbed and thermalized in the atmosphere, and which
is re-emitted mainly at thermal wavelengths.

Figure 1.3: Equilibrium temperature map.
The substellar point is the convergence point
of the mesh lines.

It is customary to de�ne aninternal effective tem-
perature20 as the temperature of the blackbody that
would radiate like the interior

Fint � s SBT4
int; (1.83)

and an outgoing effective temperaturethat similarly
characterize the local escaping thermal radiation

Fint + Fth � s SBT4
eff: (1.84)

It thus follows that

T4
eff(m?) = T4

int +
1� Ā
s SB

Finc(m?)

= T4
int + m?(1� Ā)T4

irr ; (1.85)

which shows that this outgoing effective temperature
varies with the position on the planet. This is just due
to the fact that we are considering local equilibrium, and
thus, the re-radiated energy is proportional to the incom-
ing energy which varies from one point of the surface to

another. This can be used, for example, to calculate the temperature of a well de�ned surface in thermal
equilibrium with an incoming radiation at the temperatureTirr and with an incidence characterized bym?,
which is given by

T4
eq(m?) = m?(1� Ā)T4

irr ; (1.86)

and shown on Fig.1.3.

20In the literature concerning internal structure and evolution, the energy absorbed and re-emitted by the atmosphere is often
not considered as it does not affect the interior. Thus, there is no call for creating a distinction betweenTint andTeff, which are
lumped together and calledeffective temperature. Here, as we are also concerned with the atmospheric boundary problem, I
have decided to make the distinction between theinternal effective temperature,Tint, and theoutgoing effective temperature,
Teff. However, asTint is the quantity that is most used in the following, it will be calledeffective temperaturefor brevity.
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Spatial averaging

However, in our case, the modeling is essentially one dimensional. Thus, we are looking for a
quantity that would characterize the equilibrium of the total object. In addition, the thermal gradients
created at the surface by the temperature distribution of Eq. (1.86) will cause some horizontal energy
transport, both by conduction and advection. Thus considering that energy is only globally conserved,
we can de�ne a mean outgoing effective temperature

T̄4
eff �

1
2

Z 1

� 1
T4

eff(m̃)dm̃=
1
2

Z 1

� 1

�
T4

int + m̃(1� Ā)T4
irr

�
dm̃= T4

int +
1� Ā

4
T4

irr ; (1.87)

and the mean equilibrium temperature, that is the temperature that would have the planet once in com-
plete thermal equilibrium

T̄4
eq =

1� Ā
4

T4
irr : (1.88)

This is also the equilibrium temperature reached by a planet that would be irradiated uniformly by an
average �ux

F̄inc = � f̄
�

R?

r?

� 2

s SBT4
eff;? = � f̄ s SBT4

irr ; (1.89)

where f̄ , the redistribution factor, is here equal to 1/4th, which corresponds to a redistribution over the
whole surface of the planet. If redistribution over the dayside only is considered,f̄ = 1=2. Intermediate
values between these two are often used in complex numerical calculations (Allard et al. 1997 ; Barman
et al. 2001). However, as is discussed in § 1.5.2, thanks to a simple analytical model, it is possible to
make a more educated guess aboutf̄ .

If Tirr is a good parametrization of the incoming stellar irradiation21, T̄eq quanti�es more speci�cally
the way this irradiation will affect the planet. For low albedo planets, as seems to be the case of Giant
planets (Sudarsky et al. 2003 ; Hood et al. 2008), these two temperature are however redundant. In the
following, we will thus useTirr .

Temporal averaging

As planets are possibly on eccentric orbits, their distance to their host star, and thus the incoming
�ux, is not constant in time. As this variation is periodic, and with a period which is typically shorter
than the evolutionary timescale of our planet22 (see § 1.2), we can average it on an orbit to get the mean
�ux and irradiation temperature

hF̄inci = � f̄ h
R2

?

r2
?

i s SBT4
eff;? = �

f̄
p

1� e2

�
R?

a

� 2

s SBT4
eff;? ; (1.90)

wherea and e are the semi-major axis and eccentricity of the orbit. Details of the calculations can
be found in §I.1.1. Interestingly enough, when a planet is on an eccentric orbit, the mean �ux that it
receives and the mean star-planet distance increase at the same time. In the following, this rescaling of
the incident �ux is always assumed to be done and included inTirr when needed.

21Note that here, we have not considered the spectral dependance of the incoming stellar �ux at all. Therefore,Tirr informs
us on the amount of incoming energy, but not at all on its spectral distribution.

22Rigorously, we should compare the orbital period to the radiative timescale of the atmosphere, which can be on the same
order of magnitude. However, the error introduced here should be comparable to the one already caused by our spatial averag-
ing.
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1.5.2 Atmospheric boundary conditions

We can now state our basic problem as

1. choosing a parameterxatm which de�nes a level in the atmosphere at which incoming stellar energy
has been absorbed, but that lies above where most of the mass of the object is enclosed,

2. solving the hydrostatic equilibrium and the radiative transfer in our atmosphere to �nd the two
missing relations,Patm(Tirr ;Tint;xatm), andTatm(Tirr ;Tint;xatm).

In general, to solve this problem properly, one should take into account the whole spectral depen-
dance of the incident and internal radiations, and of the opacity of the mixture, and can be treated only
numerically, as done for example byAllard and Hauschildt(1995) ;Barman et al.(2001), among others.
In this section, in order to have an integrable system that allows us to grasp the main physics at work, we
will use the semi-grey approach developed byHansen(2008) andGuillot (2010).

Using this toy model, in the end of this section, I will also show that numerical 1D calculations
of the atmospheric boundary conditions of substellar objects that consider a redistribution of the
stellar �ux over the day side only (i.e. which usef̄ = 1=2) overestimate the impact of the irradiation
on the structure of the object. Indeed, I will show that, taking into account the horizontal advection
that must take place at depth is equivalent to using a redistribution factor that is bracketed between
1/4 and 1/(2

p
3).

Two-band approximation

In this approach, scattering, and thus re�ection, is neglected (Ā = 0), and we consider that the
spectrum can be split in two bands

� a visible band where the radiation �eld is mostly set by the stellar irradiation, which is character-
ized by f̄ , Tirr , and the opacity is considered constant and equal tok vis,

� a thermal band where the internal energy, described byTint, and the absorbed stellar �ux is emitted.
The opacity in this band is calledk th.

Note that, the weight to be used in the spectral averaging leading tok vis and k th can depend on the
physical conditions, and is in itself a complex matter which is not discussed here. It is further assumed
that there isno vertical heat �ux due to convection, and that the atmosphere is in complete radiative
equilibrium. Because the complete derivation of all the formula used hereafter would lead us into a
lengthy development that is not needed here, we will just de�ne the main variable used. For details the
reader is referred toMihalas(1978) ;Hansen(2008) ;Guillot (2010). To de�ne our parameter, we can
use thecolumn mass23,

m� �
Z ¥

r
r dr0: (1.91)

This can be linked to theoptical depthin one of the two bands, which can be integrated from the surface
to the local positionr using

dt th � � k th r dr ) t th = k thm� ; (1.92)

23With this de�nition, it is obvious thatm� is the mass per unit area contained between the top of the atmosphere and a given
radiusr. To convert this in actual mass, one can use the fact that the vertical size of the atmosphere is far smaller than the planet
radiusR1. Then the mass of the atmosphere above the radiusr is roughlymatm(r) � 4p

R¥
r r r2dr0� 4pR2

1m� .
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or

dt vis � � k vis r dr ) t vis = k vism� : (1.93)

where each de�nition can be used to characterize respectively the thermal and visible radiations. Finally,
if hydrostatic equilibrium holds, Eq. (1.11) tells us that

¶P
¶r

�
�
�
�
t
= � gr ; (1.94)

whereg is the gravitational acceleration that can be considered constant in the outer layers. Then the
pressure at any given level reads

P = gm� =
g

k th
t th =

g
k vis

t vis: (1.95)

Guillot (2010) showed that, for an isotropic incoming radiation, the energy density of the visible
radiation decreases as e�

p
3tvis. Then our �rst constraint on the choice of the boundary yieldsk vism� � 1.

As typical opacities in the visible under the relevant conditions are on the order of 10� 3 � 10� 4 m2.kg� 1,
this impliesm� � 103� 4 kg.m� 2, and pressuresPatm � g=kvis � 0:1� 0:01 bar. Because the mass of the
atmosphere contained above them� level is given bymatm � 4pR2

1m� � 10� 7M1 for Jupiter, the second
condition (matm � M1) is not very restrictive.

Temperature pro�le

We now turn to the temperature at the boundary.Guillot (2010) also showed that in the same
conditions, the temperature pro�le is given by (see Eq. (29) in his paper)

T4(m� ) =
3T4

int

4

�
2
3

+ k thm�
�

+ f̄
3T4

irr

4

�
2
3

+
k th

k vis
p

3
+

�
k vis

k th
p

3
�

k th

k vis
p

3

�
e� k vis m�

p
3
�

: (1.96)

One can see that, in the absence of stellar radiation, the usual Eddington pro�le is recovered, and the
temperature att th = k thm� = 2=3 is equal toTint. This also shows that fork vis=kth > 1, a temperature
inversion can occur at low pressures, which is due to the direct thermal heating of the atmosphere by the
incoming radiation. Placing ourselves in a zone ful�lling the �rst condition (k vism� � 1), and choosing
a reference pressure, our boundary condition is then given by

T4
atm =

3T4
int

4

�
2
3

+
k th

g
Patm

�
+ f̄

3T4
irr

4

�
2
3

+
k th

k vis
p

3

�
: (1.97)

We can see from this relation than therefore depends on three parameters, i.e.Tint, Tirr and the gravity
g24.

For typical values of

k vis � 10� 3 � 10� 4m2:kg� 1

and

k th � 10� 2m2:kg� 1;

Tint � 200 K,Tirr � 2000 K andf̄ = 1=4, Eq. (1.96) yields a nearly isothermal zone between 1 and 100 bar.
Then, this zone is nicely �tted to contain our boundary. Fig.1.4 shows the value ofTatm for Patm =
10 bar. We can see that irradiation starts to play a signi�cant role forTirr & Tint, and will therefore have a
diminishing impact with the mass of the irradiated planet, as we will see in Chapter2.

24Note that if theTatm = func(Patm) relation does depend ong, at given mass,g itself depends on the radius of the object
which is determined by the integration, and thus by the boundary conditions. In other words,g is not afree parameterfor our
structure model. In practice some iterative process is needed to ensure that the (Patm;Tatm) used are consistent with the structure
found.
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Redistribution factor and advection

Figure 1.4: Atmospheric boundary temper-
ature (Tatm ; Eq. (1.97)) at the 10 bar level
(Patm = 10 bar) as a function of the internal
�ux (parametrized byTint) and incoming stel-
lar �ux (parametrized byTirr) for a redistribu-
tion factor f̄ = ( 2

p
3)� 1 (see text).

With this model, we can also make an attempt to
make a moreeducatedguess of the redistribution fac-
tor. Indeed, taking into account an horizontal, conserva-
tive and ef�cient enough advection of energy at depth,
Guillot (2010) also shown that, even with a non-uniform
insolation described by Eq. (1.79), the temperature be-
comes mostly longitudinally and latitudinally homoge-
neous at high pressures, and is given by

T4 =
3T4

int

4

�
2
3

+
k th

g
P

�
+

3T4
irr

16

�
2
3

+
2
3

k th

k vis

�
:

(1.98)

Comparing Eqs. (1.97) and (1.98), I �nd that in this
model,

f̄ =
1
4

1+ k th
k vis

1+
p

3
2

k th
k vis

)
1
4

6 f̄ 6
1

2
p

3
� 0:29;

(1.99)

where the lower and upper boundaries are respectively
given by for k th=kvis � or � 1 (the typical values of
the opacity mentioned above yieldingk th=kvis � 101� 2),
which is, as expected, larger than 1/4th.This shows that, in this simple model, because the energy
redistribution at depth is rather ef�cient, averaging the incoming �ux over the whole planet is
more justi�ed than averaging over the dayside only. Indeed, taking a redistribution factor of 1/2
overestimates the irradiation term in Eq. (1.97) by a factor

p
3 � 1:7 to 2.

While the differences yielded by such a factor are modest in comparison with other uncertainties,
especially on opacities, the accurate determination of the redistribution factor is at least of theoretical
importance as it gives us some insight on the ef�ciency of horizontal energy transport inside exoplanets.
Let me conclude by noting that, of course, the above estimation is very rough, and such an issue should be
addressed with numerical Global Circulation Models (GCM) taking properly into account both radiative
transfer and hydrodynamics, and maybe magneto-hydrodynamics.
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Chapter 2

Evolution & stellar irradiation: A lid on
the boiling kettle

Il faudra revoir vos estimations à l'aune de la mécanique rationnelle.

Lord Kelvin au sujet de l'estimation de l'âge de la Terre

Lord Kelvin a donné une limite supérieure de l'âge de la Terre, sous la condition qu'on ne découvre pas de source de chaleur nouvelle.
Cette possibilité prophétiquement annoncée, c'est précisément notre sujet d'aujourd'hui, le radium !

Voyez ! Le vieil homme me grati�a d'un sourire.

Sir Ernest Rutherford
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In this chapter, the �rst goal will be to review some standard results of the theory of planetary
evolution (see § 2.1). To that purpose, I compute new grids of numerical planetary models. I will
also discuss possible de�nitions to distinguish planet from brown dwarfs.

Then, in § 2.2, I analyze these grids of planetary models to show what they can tell us about
the interior mechanical structure of extrasolar planets. In particular, I show that the internalT � P
pro�le of a giant planet is well approximated by a polytrope throughout the deep interior, and that
this gives us some insight on the behavior of the equation of state in the various regime considered.
As a result, I show that the whole mechanical structure can be characterized by a single quantity,
namely an effectivepolytropic index, and that the variation of this polytropic index with the mass
of the planet can directly be seen on the slope of themass-radius relationship. The results of this
sections were published in the articleDistorted, non-spherical transiting planets: impact on the
transit depth and on the radius determination(Leconte et al. 2011b).

in § 2.3, I address the problem of the bloated giant exoplanets, and review the major proposi-
tions made to explain it. I show how taking into account the stellar irradiation allows us to decrease
the discrepancy. Doing so, I �rst estimate the impact of the stellar irradiation on the internal struc-
ture, for example on its effective polytropic index (see §2.4.2), and then, in §2.4.3, quantify more
precisely theradius anomalyas was done inThe radius anomaly in the planet/brown dwarf over-
lapping mass regime(Leconte et al. 2011a). I will defer the discussion of some of the physical
mechanisms proposed to explain this radius anomaly, such as semi-convection and tidal heating,
to Chapter4 and5.

Finally, in §2.5, I will show how the mass-radius diagram can be used to constrain the com-
position of extrasolar planets (§2.4.4), and help us distinguish giant planets from mini brown
dwarfs in the favorable cases (§2.5). This method is also described inStructure and evolution of
the �rst CoRoT exoplanets: probing the brown dwarf/planet overlapping mass regime(Leconte
et al. 2009).
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PlanetaryEVOLUTION IS A LONGSTANDING PROBLEM. If observational
data concerning the current internal structure of a planet are al-
ready sparse, fewer are the one on its early state and evolution.

It is therefore extremely dif�cult to predict accurately the properties of a celestial body at a given age, or
simply to date its formation. This problem is well illustrated by the controversy that raged during more
than 200 years about the age of the Earth. Between Aristotle theory that the Earth has been there from
the beginning of times, and the christian thesis dating the creation between 3483 and 6984 BC, physical
arguments came to heat up the debate during 18th century.

On one side, Edmond Halley in 1715, followed by Henri Gautier, and nearly one century later,
by Charles Darwin, proposed geological arguments demonstrating that the Earth should be older than a
few hundred years. Darwin will propose more than 300 million years, which seems in agreement with
his theory of a slow natural selection. This possibility was supported byLeonahrd EulerandWilliam
Herschelwho noted that because light is moving at a �nite speed, as has been demonstrated byRömerin
1676, its travel from distant stars could take longer than a few million years. On the other side,Buffon
in 1778 andLord Kelvin in 1862 claimed that the Earth could not be so old. If, as they think, the planet
was initially molten, the time that it needed to solidify and cool down to its current temperature should
not exceed 100 million years. Later on, with the german physicistHermann Ludwig Ferdinand von
Helmholtz,Kelvin estimated the time needed by the sun to radiate its gravitational energy (de�ning at
the same time the Kelvin-Helmholtz timescale) and lowered down his estimate of the age of the Earth
formation to 20 million years. At this point, it seemed impossible to reconcile physicists and geologists.

We will have to wait until the end of the 19th century, and the discovery of a new energy source,
radioactivity, to relieve the tension. AfterHenri Becquerel's discovery,Ernest Rutherford,Lord Rayleigh
and others reassessed the age of the Earth, which started to increase until it reached its currently accepted
value of 4.55 billion years.

Amusingly, nearly 300 years later, history seems to repeat itself ! Other worlds have been found,
and while their parent star seems old, some of them exhibit a surprisingly high radius (i.e. a large thermal
energy content), which is usually a sign of youth. However, before starting to look for an extra energy
source, it is primordial to accurately quantify this so-calledradius anomaly.

2.1 Isolated planets

Let us start withisolatedobjects, i.e. objects for which the incident stellar �ux can be neglected. As
was discussed in Fig.1.4, this condition can be reformulated asTirr � Tint for which the evolution of the
planet is determined only by its own properties, without any assumption on the parent star. In this section,
we will make use of this simpler case to derive some general features of the structure and evolution of
planets. This will also provide us with a reference case to compare with when we will consider close in
objects.
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2.1.1 Adiabaticity

One of the �rst question that arises is how energy is transported within the object, and consequently,
whether the interior is convectively stable or not. We have seen in §1.1.4, that the stability criterion is
given by

Ñd < Ñad: (2.1)

For smaller diffusive gradients, radiative forcing is to weak and all the �ux can be carried out by both
radiation and conduction. For stronger forcing, however, convection sets in and very ef�ciently transport
a large fraction of the �ux (see Chapter4 for more details).

In the outer layers, the adiabatic gradient can be easily estimated from the classical perfect gas
approximation. Indeed, differentiating logarithmically Eqs. (1.69) and (1.70) at constant speci�c entropy,
we see that

2
7

. Ñad .
2
5

; (2.2)

where the �rst value is derived for a diatomic perfect gas (H2 for example), and the second for a
monoatomic one (He ; see §1.4.1).

For the radiative gradient1, which reads

Ñrad �
3
16

k̄P
T4

T4
int

g
; (2.3)

the problem is much more complex. Even ifTint andg can be considered constant in the outer part of the
object, the problem lies in the fact thatÑrad depends onP andT, but that theT � P pro�le itself depends
on the integral ofÑrad in a radiative zone2. To grasp the dif�culty, let us consider a very simple model
where the opacity follows a law of the type

k̄ = k0TbT PbP: (2.4)

Then, an integration of Eq. (2.3) yields

T4� bT =
4� bT

1+ bP

3
16

k0T4
int

g
(P1+bP + cst); (2.5)

and in the limit of the high pressures, the radiative gradients tends to

Ñrad =
1+ bP

4� bT
; (2.6)

which is completely independent ofk0 (Kippenhahn and Weigert 1990). Thus the transition from a
radiative zone to a convective one is not determined by the value of the opacity3, but by its variation with
the temperature and pressure (or density), which is dif�cult to model analytically. This is con�rmed by
our simple atmospheric radiative transfer model discussed in §1.5.2. Indeed, in this model,̄k is constant
(bT = 0; bP = 0), and we can easily see from Eq. (1.96), thatÑT ! 1=4 in the high pressure limit. Note
that, according to the Schwarzschild criterion and Eq. (2.2), this radiative gradient is insuf�cient to trigger
convection.

1As we are considering the outer layers of the object, thermal conductivity of the electron can be neglected with respect to
the radiative diffusivity.

2Provided that the diffusion approximation holds. If not, as is the case in the upper atmosphere, the whole radiative transfer
must be calculated, still worsening the problem.

3Contrarily to the transition from a convective zone toward a radiative one, where theT � P pro�le is determined by
the adiabatic gradient independently of the opacity, and where the criterion for the existence of aradiative windowcan be
formulated under the form of ak0 threshold (see Guillot et al. 1994 for details).
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Figure 2.1: Radiative gradient (Ñrad) just below the atmosphere (t̄ atm = 100) as a function of the internal
outgoing �ux Tint for different surface gravities (g; log g increases by 0.5 dex from 0.5 (thin orange) to
4 (thick blue)). TheT � P pro�les are taken fromAllard and Hauschildt(1995). The adiabatic gradients
of mono- (dashed) and diatomic (dotted) perfect gases are also shown for comparison.

Therefore, in order to determine the main transport mechanism at play,I have used theT � P
pro�les obtained by Allard and Hauschildt (1995) by solving non grey radiative transfer for an at-
mosphere in radiative and hydrostatic equilibrium, and computed the value ofÑrad just below the
atmospheric boundary level (i.e. at an optical depth of̄t atm = 100) with the opacities from §1.4.2.
The results are shown in Fig.2.1. We can see that at this optical depth, the medium is always convec-
tively unstable forTint & 50� 100K, the radiative zone being con�ned to smaller optical depth/pressures.
For lower effective temperatures, and thus for older objects, the radiative zone eventually extends deeper
down because of the lower radiative forcing, and the object tends toward an isothermal sphere.

Whether the medium remains convectively unstable deeper down can however depend on the physi-
cal conditions. It has indeed been proposed byGuillot et al.(1994) that an opacity gap near 1000-2000 K
could open aradiative windowin solar system giant planets. If this possibility seems now improbable
as the opacity gap is �lled by metal spectral lines, it is still possible in hotter and/or irradiated objects
(Burrows et al. 1997).

Because convection is very ef�cient in gaseous planets, giant planets like Jupiter which are far from
their star, or single brown dwarfs follow a nearly adiabaticT � P pro�le. Hence,S̃ is constant in the
interior, which involves a powerful simpli�cation of the equations. Indeed, neglecting nuclear reactions,
the luminosity equation can be integrated to give

l (m) = �
Z m

0
T

¶S̃
¶t

dm

= �
Z m

0
T dm

¶S̃
¶t

� � T̄(m)
¶S̃
¶t

; (2.7)

whereT̄(m) is the mean internal temperature interior tom, with T̄1 � T̄(M1). In addition, becauseÑad

is independent of the actual luminosity pro�le, theT � P pro�le can be integrated from the values of
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the temperature and pressure at the atmospheric boundary. Therefore the luminosity affects the structure
only by its impact on the boundary conditions (see §1.5.2).

2.1.2 Parametrization

Now that we have set up our model, let us review the independent parameters on which depend the
global structure of the object. The �rst one is obviously the value of our integration variablem at the
boundary, i.e. the mass of our objectM1. As we have seen in §1.5.2, the upper boundary consists in two
parameters,Patm andTatm, where the �rst one is mostly conventional, and serves to de�ne precisely the
radius, and the second one can be calculated by modeling the atmosphere and depends on the internal
(Tint) and incoming (Tirr) luminosities.

For an object with a given mass and in a given environment4, we are therefore left with at leastone
degree of freedom, namely theeffective temperature Tint. This is rather fortunate ! Indeed, we have to let
the liberty to our planets to evolve with time.To see how the structure of the planet depends on this
parameter, I have simulatedisolatedsolar composition H/He gaseous spheres (Tirr = 0) with mass
ranging between approximately10M� and 2MJupwith the numerical codeCHESS(see AppendixJ).
Results are shown in Fig.2.2.

As discussed above, all these objects are mainly adiabatic, and the speci�c entropy (S̃) is constant
throughout the interior. As expected from Eqs. (1.70) and (1.97), once a reference isobar is chosen,
bijective relations exist betweenTatm, Tint andS̃(which all evolve in the same direction), and any of these
quantities can be used indifferently to parametrize the tracks in Fig.2.2. Following a given track from
right to left, we can see that, thanks to the adiabatic condition, the internal temperature also decreases
when the external layers of the planet get colder (panel c). Hence, at a given pressure level, the decreasing
thermal pressure support of the ions must be counteracted by an increase of the density (panel d) and
of the degeneracy of the electrons (panel f). In turn, this local and global increase of the density causes
a shrinkage of the radius (panel b) and, because of the hydrostatic condition, an increase of the central
pressure (panel a).

The problem is thus to solve the luminosity equation to �nd the evolution of the effective temper-
ature with timeTint(t). Indeed, in the adiabatic case, Eq. (1.59) is decoupled from the rest of the system
and can be rewritten

¶
¶t

�
S̃(Tint)

�
= � 4p s SB

R2
1(Tint) T4

int

T̄1(Tint)
: (2.8)

While our evolutionary code directly solve the whole set of equations, Eqs. (1.57-1.60), this relation
could in principle be directly integrated following any track in Fig. 2.2.

However, we can see on Fig.2.2.d that these models are not totally representative of Solar System
giant planets, Jupiter and Neptune5. Indeed both planets are denser (and by a large factor for Neptune)
than the models of the same mass and effective temperature. This tells us that there is at least another
free parameter that we did not yet considered. If this free parameter is not obvious in our set of structure
equations, we already encountered it in §1.4.1. Indeed, to model a planet, one needs to specify the
material it will be made of, and use the relevant equation of state. For the moment we only consider
gaseous spheres with a solar composition, but the discrepancy stated above is a �rst clue that dense
materials (called heavy elements) must be present inside Solar System giant planets, and giant planets in
general. This issue will have to wait until §2.4.4.

4Here, the environment is simply de�ned by the type of the host star and by the orbital con�guration which determine the
spectral and temporal characteristics of incoming energy received. To simplify the discussion, we will consider that only the
average �ux, and thusTirr , matters. In this section, however, we consider only isolated object, yieldingTirr = 0.

5While it is not shown here, the same conclusions hold for Saturn and Uranus.
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(a) Central pressure (b) Radius

(c) Central temperature (d) Mean density

(e) Speci�c entropy (f) Degeneracy parameter

Figure 2.2: Evolutionary tracks parametrized byTint for different masses. The dashed and dotted curves
represent respectively the 1MJupand 1M[ case. The black dots represent the actual Jupiter (Tint = 125 K,
R1=71 492 km) and Neptune (Tint=59 K, R1=24 552 km).
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2.1.3 Evolution and energy budget

Now that we have all the ingredients needed to compute evolutionary tracks, it is time to use our
numerical model to predict the behavior of the various physical quantities describing our objects, and
to extract some general features. in order to show the similarities and differences arising between the
various mass regimes in the substellar and stellar domain, I computed a grid of models of H/He gaseous
spheres coveringM1 2

�
1MJup;100MJup

�
. Some of these evolutionary tracks are shown in Fig. 2.3. We

can clearly distinguish 3 domains

� M1 < M2HBMM , solid curves in Fig.2.3; The object is not massive enough for its interior to reach
suf�ciently high central pressures and temperatures, and nuclear reactions never ignite. The inter-
nal entropy is radiated away, but the energy lost does not only come from gravitational contraction
has it is often said, but also (and sometimes mainly) from the thermal component. To disentangle
both contributions, let us consider the energy budget of the object. As we have seen in §1.2.2,
thanks to the Virial theorem,

Egrav+ z Eint = 0; (2.9)

wherez is a characteristic of the equation of state de�ned throughEint � 3
z

R P
r dm;and

Lint = � �Egrav� �Eint = ( z � 1) �Eint =
�

1� z
z

�
�Egrav: (2.10)

We have seen in §1.4.1 that either in the classical or degenerate domain, a monoatomic gas is
described byz = 2. Hence,

Lint = �Eint = �
1
2

�Egrav: (2.11)

At early ages, we can see on Fig. 2.3.d that the central degeneracy parameter of the electrons is
roughly close or bigger than unity. In this classical regime, Eq. (2.11) simply tells us that half
of the energy released by the gravitational contraction is radiated away, the remaining half going
into the internal energy of the particles. UntilXe . 1, the particles are classical,Eint µ kBT, and
this causes an increase of the temperature which can be seen forM1 = 3; 5 and 10MJup curves of
Fig. 2.3.c.

Later on, degeneracy sets in and the gas consists of degenerate free electrons mixed with still
classical ions. Thus, the internal energy is also split between an electronic and a ionic part (Ee

andEi), the latter being small becauseT=TF = Xe � 1. BecauseEgrav µ 1=R1 µ r 1=3
1 , the very

dependence of the Fermi energy with respect to the density (Ee µ r 2=3
1 ) gives

�Ee

Ee
� 2

�Egrav

Egrav
: (2.12)

Substituting this into the Virial relations �nally yields

�Ee = 2
Eint � Ei

Egrav
�Egrav � 2

Eint

Egrav
�Egrav = � �Egrav

Lint = � �Ei µ � kB �T: (2.13)

The contraction is thus mainly used to increase the zero point Fermi energy of the electrons, while
most of the luminosity is provided by the slow thermal cooling of the ions, as seen on the right
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part of Fig. 2.3.c (Guillot 2005). Of course, this result which is nearly exact in the white dwarf
domain is here only approximate because of (i) the partial degeneracy, meaning thatEi is not
completely negligible, (ii) the Coulombian correlation effects which cannot be neglected in the
planetary domain.

Interestingly, during their whole lives, the effective temperature of these objects monotonously
decreases with time, and can be seen as a proxy for time. At a given mass, an object will thus
follow the corresponding track in Fig.2.2from right to left.

� M2HBMM < M1 < MHBMM , dotted curves in Fig.2.3; During the early phase, the aforementioned
conclusions hold: the object is classical and heats up during contraction. However, at some point,
the central pressure and temperature are suf�cient to ignite deuterium burning (aroundTc � 4:5�
105K6, and this energy source temporarily counteracts contraction. Unfortunately, because the
primordial2H/H ratio is very small (� 2� 10� 5 ; Chabrier and Baraffe 2000), all the available fuel
is consumed in� 106� 8 yr. After that, the standard evolution described above resumes. Note that
the beginning and the duration of this phase is highly dependent on the mass of the object. For
more massive objects, higher temperature and pressures are reached earlier, so that the reaction
starts quickly and have a shorter lifetime.

� M1 > MHBMM , dashed curves in Fig.2.3; Like the deuterium burning objects, these young con-
tractingprotostarsheats up until they reachTc � 3 � 106K, temperature at which thermonuclear
reactions start. In low mass stars (M1 < 0:7M� ), 99% of the fusion of Hydrogen into Helium is
ensured by the PPI chain

H+ H ! 2H+ e+ + ne; H+ 2H ! 3He+ g; 3He+ 3He! 4He+ 2H; (2.14)

which produces enough energy to stop the contraction (Chabrier and Baraffe 1997,2000). Hence,
the object will only evolve because of its slowly varying chemical composition. The object has
reached the so-calledzero age main sequence. A star is born !

2.1.4 Giant planet of mini brown dwarf ?

Note that, while from the point of view of the evolution I distinguished two different mass regimes
in the substellar domain, I took care not call planets the least massive bodies (M1 < M2HBMM ), and brown
dwarfs the most massive ones which are able to fuse deuterium (M1 > M2HBMM ). This choice is motivated
by several facts. First, if we call deuterium burning objects brown dwarfs, why not give different names to
objects burning lithium or other compounds ? Second, the deuterium burning limit itself is not completely
well de�ned, as it depends on various parameters (e.g. Helium and initial Deuterium mass fraction,
metallicity) and on the criterion used to identify Deuterium burning (Spiegel et al. 2011). Finally, note
that most of the actual objects withM1 > M2HBMM are too old to burn deuterium anymore !

In this thesis, I thus chose to assume the following de�nitions

� Planet7: celestial body that formed in the disk of a star.

� Brown dwarf: celestial body that formed through gravitational collapse of a dense molecular cloud
and that cannot sustain proton fusion.

6More massive object are also able to burn Lithium when they reachTc � 2:5� 106K, aroundM1 � 60MJup.
7From Greekplanētēs, "wanderer". A complete de�nition should include more constraints, such as a hydrostatic equilib-

rium condition, in order to differentiate planets from planetesimals or asteroids. Here, as we only concern ourselves with the
distinction between planets and brown dwarfs, we mainly focus on the characteristics that differ between these two classes of
objects.
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(a) Radius (b) Effective temperature

(c) Central temperature (d) Central degeneracy

Figure 2.3: Evolution of the radius (panel a), effective and central temperature (panel b and c) and central
degeneracy (panel d) with respect to time for different masses. Dashed curves are used to represent
object massive enough to sustain Hydrogen nuclear fusion (M1 > MHBMM � 75MJup), and dotted curves
for objects burning deuterium (M1 > 12:5MJup).

It directly follows that planet can be massive enough to burn deuterium and also, in principle,
hydrogen. The possibility of hydrogen burning planets, though, does not seem to me a serious problem
of this more physical de�nition based on the formation mechanism. Brown dwarf are somehow failed
stars that formed just the same way that these latter while not accreting enough mass, and planets form
later on, in the dusty gaseous disk formed by the material falling onto the protostar.

However, this de�nition also implies an underlying ambiguity. Studies of low mass stars and brown
dwarfs in young clusters suggest a continuous mass function down to� 6MJup (Caballero et al. 2007),
indicating that the same formation process responsible for star formation can produce objects down to
a few Jupiter masses. Analytical theories of star formation (Padoan and Nordlund 2004, Hennebelle
and Chabrier 2008) also show that gravoturbulent fragmentation of molecular clouds produces, with
the same processes, stars and brown dwarfs down to a few Jupiter-masses in numbers comparable to the
observationally determined distribution. And just like there are binary stars, these brown dwarfs can form
near, or be captured by, a more massive star. On the other side, according to current models of planet
formation which include migration (Alibert et al. 2005), giant planets can form by core accretion with
masses up to� 30MJup (Mordasini et al. 2008,2009). "Mini" brown dwarfs and "super giant" planets
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thus overlap in mass, stressing the need for identi�cation criteria enabling the distinction between these
two types of astrophysical bodies, but we will come back on this issue in §2.5.

2.1.5 Initial conditions

There is still a problem that is inherent to the resolution of any set of partial derivative equations, and
that we omitted until now. We did not yet specify what are our initial conditions (Tint(t0)), or even simply
what we callt0. This problem is complex and cannot be solved without considering consistently the
transition between the phase where the object is still forming, and its isolated phase. This is particularly
critical to model young bodies, for which the energy content is still determined by the initial amount
of energy deposited by the in-falling matter during formation, and should drastically change between a
planet embedded in the protoplanetary disk and a brown dwarf.

Fortunately, for younger objects, the typical evolution timescale, which is given by the Kelvin-
Helmholtz timescale derived in §1.2, t KH = GM1=R1Lint, is shorter because of the larger luminosity
and radius. Numerical simulations give values aroundt KH � 105� 6 yr for objects up to 20-30MJup and
t KH � 106� 7 yr for more massive bodies. This is shown on Fig.2.4, where we see thatt KH can be also
seen as the timescale on which the system looses the memory of its initial conditions. Indeed, all the
curves that started with a higher initial radius than a given one are nearly confounded after 2� 3t KH .
Hence, even if we start from an arbitrarily high entropy state, orhot start, we know that the predictions
given by our calculations start to be accurate after a few Kelvin-Helmholtz timescales.

The subtle point, however, is that because the object can start from a very low entropy state (Marley
et al. 2007), to be conservative, we must use thelongestpossiblet KH , i.e. the one yielded by the coldest
possible initial state. Then, considering the lowest curves in each panel of Fig.2.4, we see that the system
can keep the memory of its initial conditions for up to 107� 9 yr, which con�rms the results ofMarley
et al.(2007).

To get a better accuracy at younger ages, one needs to know the speci�c entropy content left into
the planet through its formation process. A �rst attempt into that direction has been done byMarley et al.
(2007), which follows the planet trough several stages (seePollack et al. 1996for details).

1. Dust particles in the solar nebula form planetesimals that accrete into a solid core surrounded by
a very low mass gaseous envelope. When few planetesimals are left in the feeding zone of the
planet, the accretion luminosity drops, and gas accretion is enhanced.

2. When the mass of the core and of the envelope become equal, a runaway gas accretion starts, and
the planet quickly grows. At this stage, the planet �lls its whole Hill sphere and the gas can �ow
smoothly from the disk. This is called the Nebular stage.

3. At some point, the growing need of the planet for gas cannot be ful�lled by the surrounding
nebula. Because of the slow contraction of the object, the radius of the latter becomes smaller than
its Hill radius, and a gap opens between the disk and the planet. As a result, the accreting gas falls
hydrodynamicallyonto the object.

4. Finally, accretion stops and the planet enters the isolation stage, where its evolution is described
by our aforementioned model.

However, as stated byMarley et al.(2007), the most crucial problem is to treat correctly the hydrody-
namical accretion that occurs in stage 3. This raises two major issues, namely, (i) the morphology of the
accretion, i.e. whether gas falls homogeneously onto the surface or predominantly onto the equator, (ii)
the thermal energy left into the accreting gas. Indeed, as shown byStahler et al.(1980), the gas should



42 Evolution & stellar irradiation: A lid on the boiling kettle

Figure2.4: Evolution of the radius of a H/He gaseous sphere with respect to time for different initial
radii (in each panel), and for different masses (different panels). On each curve, the gray diamond is
located att = 2t KH , wheret KH is computed at the initial time of the simulation (t = t0). We can see that
for any given curve (with an initial radiusR0), for t & 2� 3t KH , R1(t;R(t0) > R0) � R1(t;R0).
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undergo a shock before reaching the planet surface. BecauseMarley et al.(2007) assume that this shock
is super-critical and that all the gravitational energy of the infalling gas is radiated away, they predict a
very cold start in which the initial luminosities and radii of the planet can be up to, respectively, 1000
and 2 times smaller than in the hot start model. As expected, after a fewt KH , these differences vanish.
If it is often assumed that the accretion shock is super-critical, one should keep in mind that it is not
necessarily true and remains to be explored by numerical radiation hydrodynamics calculations.

2.2 The mass-radius relationship

Figure 2.5: Mass-radius relationship of gaseous ob-
jects at 5 (solid), 1 (long dashed), 0.5 (dashed) and
0.1 Gyr (dotted). Observational data points are also
shown.

In our yet simple modeling, the properties
of an isolated planet (radius, surface temperature,
luminosity, spectral colors, etc...) are completely
determined by its mass and its age (or equivalently
its effective temperature). To constrain the model
and knowledge of the internal structure of these
bodies, we must measure separately at least three
of these physical quantities.

Age can often be inferred from the character-
ization of the central star. This method becomes
rather uncertain for main sequence stars older than
a few hundred million years, but at least allows
us to identify the objects that are expected to be
old andcold. Thanks to direct detection methods,
the luminosity, and even spectra of young plan-
ets and brown dwarfs can be obtained. But be-
cause neither the radius nor the mass can be di-
rectly measured8, these observations cannot con-
strain the models.

In the past decade, this is then the successful
combination of Doppler measurements and transit
light curves that bore the most constraints on our
knowledge of internal structure. The observables
are thus the masses and radii of transiting bodies.
This is why this section is devoted to the study of the ways to use themass-radius diagram. Fig.2.5shows
the mass-radius relationship computed with the numerical models described above for H/He gaseous
spheres with several different ages. It is shown along with observational data from planetary transit
surveys, observation of eclipsing binaries, and interferometric observations.

2.2.1 Linking macroscopic features and microscopic properties: the polytrope

One of the striking feature of this relationship is itsnon-monotonicity. To easily understand why
it is so, and how this is related to the behavior of the equation of state, I will turn to a simple analytical
model, thepolytropic sphere. As we have seen in §1.4.1, at least in the ideal and fully degenerate gas,

8Because of the inherent dif�culty to image companions close to their host star, directly imaged substellar companions are
generally too far from their host star to transit or to be detected with radial velocimetry methods.
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the equation of state of our medium can be written as a polytrope,

P = Kr 1+1=ñ; (2.15)

whereK andñ are called the polytropictemperatureandindexrespectively, and are constant throughout
the con�guration. In addition, as I will show later on, even for a realistic equation of state, theP� r
pro�le in an actual object can be approximated by a relation of the form given by Eq. (2.15) with well
chosen (K; ñ). This provides us with a powerful simpli�cation, as the whole mechanical structure can be
captured in a single parameter, ˜n, and that mechanical properties such as the gyration radius -rgyr which
characterizes the moment of inertia of the body,C1, and is de�ned through

C1 �
2
5

M1(rgyrR1)2; (2.16)

- the central over mean density ratio (rc=r̄ 1), and even the linear response to a perturbing potential (k2,
see Chapter3) can be tabulated as a function of ˜n alone (Chandrasekhar 1939; Lai et al. 1993; Leconte
et al. 2011b). For sake of completeness, a summary of the formalism and of the variables describing
polytropic spheres (Chandrasekhar 1939), as well as the well knownLane-Emdenequation is given in
AppendixC.

Thanks to this formalism, we can obtain an analytical mass-radius relationship

M
ñ� 1

ñ
1 R

3� ñ
ñ

1 =
K
G

ñ+ 1
(4p)1=ñ

x̃
ñ+1

ñ
ñ jq̃0

ñj
ñ� 1

ñ : (2.17)

Of course, as will be shown in the next section,K andñ are also functions of the mass of the object, so
that the mass-radius relationship is not a power law in the whole mass range. But if we consider thatK
andñ are only slowly varying, we will see in the next section that the slope of the mass-radius relation is
directly related to the polytropic index that describes the equation of state in the mass regime considered.

2.2.2 Effective polytropic index

To derive realistic polytropic indices, I �tted the pressure-density pro�le of each model of
the previous grid of planetary models by a polytropic equation of state (Eq. (2.15)) at each time
step. An example of the result of such a �t is shown in Fig.2.6. Note that the disagreement between
the actualP� r pro�le and the polytrope in the lower left area of Fig.2.6 is both expected and needed:
This low-density region (the �rst 5% in mass below the atmospheric boundary surface) has a different
effective polytropic index than the planetary interior. In order to capture the bulk mechanical property of
the planet, we weight each shell in the internal structure pro�le by its mass during the �tting procedure.
This provides us with a grid tabulating the polytropic index of the planet, ñ � ñ(M1; t) (plotted in
Fig.2.7). All the other polytropic functions (rgyr, ...) can be derived by integrating the Lane-Emden
equation. These functions, along with other quantities (R1, Tint, ...), are tabulated and can be found in
Leconte et al.(2011b).

As shown in Fig.2.7, we recover qualitatively the results ofChabrier et al.(2009): except for the
early stages of the evolution, the (dimensionless) isothermal compressibility of the hydrogen/helium

mixture is a monotonically increasing function of the polytropic index,c̃ = ¶ lnr
¶ lnP

�
�
�
T

= ñ
1+ ñ, and thus

of the mass of the object. In the high mass regime,n slowly increases as the relative importance of
ionic Coulomb effects compared with the degenerate electron pressure decreases, and approaches the
ñ = 3=2 limit, the expected value for a fully degenerate electron gas, whenMp approaches the hydrogen
burning minimum mass (�70MJup), as can be seen in Fig. 2.7.b. Thus, in this regime, Eq. (2.17) yields

R1 µ M� 1=3
1 . Toward lower masses, the compressibility decreases with the mass because the repulsive
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Figure 2.6: The internal pressure-density pro�le of a 1.8MJup planet (solid line). The dashed line rep-
resents the best-�t polytropic equation of state. The pressure-density range covered in the inner part
of the body (95% in mass) is represented by the thicker part of the solid curve, which is well modeled
by a polytropic EOS. As the thin part of theP� r curve represents only 5% in mass of the body it is
disregarded by the �t.Figure from Leconte et al.(2011b).

Coulomb potential between the ions, and thus the ionic electrostatic energy becomes dominant. The tran-
sition between the two regimes occurs near 2-3MJup, where the polytropic index is close to unity. Thus

R1 µ M(1� ñ)=(3� ñ)
1 µ cst, the mass-radius relationship reaches a maximum and is nearly �at. Ultimately,

electrostatic effects dominate, leading eventually toc̃ � ñ � 0 for solid, terrestrial planets. As expected
for incompressible matter, we tend towardR1 µ M1=3

1 .

A new feature highlighted by the present calculations is the non-monotonic behavior occur-
ring between 1 - 3MJupat early ages. This occurs when the central regions of the planet, of pressure
Pc and temperatureTc, previously in the atomic/molecular regime, become pressure-ionized, above
1-3 Mbar and 5000 - 10 000K(Chabrier et al. 1992; Saumon et al. 1992,1995), and the electrons be-
come degenerate. An effect more consequential for the lowest mass objects, whose interiors encompass
a larger molecular region. This stems from the fact that (Chandrasekhar 1939)

Pc >
GM2

1

8pR4
1
; and

GM2
Jup

8pR4
Jup

� 2� 3Mbar� Pionization: (2.18)

Older (with smallerR1) and more massive (M1 & 2MJup) objects havePc > 10Pionizationand the ionization
extends all the way up to the outermost layers of the gaseous envelope, which then contains too small
a mass fraction of molecular hydrogen to signi�cantly affect the value of the polytropic index. This
contrasts with younger objects around 1 - 3MJup, whose external molecular hydrogen envelope contains
a signi�cant fraction of the planet's mass, leading to a larger value of the polytropic index, as molecular
hydrogen is more compressible than ionized hydrogen (see e.g. Fig. 21 of Saumon et al. 1995). Once
again, for these latter objects, the interior structure would be better described by using two different
polytropes, but such a signi�cant complication of the calculations is not needed at the presently sought
level of accuracy.

To evaluate the uncertainty in the determination of the polytropic index, I use an alternative method
to deriveñ. Since our numerical simulations provide both the radius,R1(M1; t), and the central density of
the object,r c(M1; t), we can invert Eqs. (C.9) and (C.11) to computeK andñ. This new determination of
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Figure 2.7: Left: Polytropic index for non-irradiated planets as a function of the planet's massMp at
100 Myr (Dotted), 1 Gyr (Dashed) and 5 Gyr (Solid) in the low mass regime. The shaded area represents
the uncertainty on the polytropic index for the 5 Gyr case (see text).Figure from Leconte et al. (2011b).
Right: Idem but for massive substellar objects. As expected, because the Coulomb effects diminish as the
object tends toward the hydrogen burning limit, the gas becomes a perfect electron gas and its polytropic
index tends toward 3=2.

the polytropic index is compared with the previous one, obtained by �tting theP� r pro�le, in Fig. 2.7
for the 5 Gyr case: the new ˜n value corresponds to the upper envelope of the shaded area. Fig.2.7shows
that the two approaches yield very similar results, the average uncertainty lying around 5 %.

Moreover, as shown in detail inLeconte et al.(2011b), thiseffectivepolytropic index does not
simply explain the behavior of the mass-radius relationship of substellar objects, but also encom-
passes much information about the internal mechanical structure of the object. Indeed, numerical
estimates of the moment of inertia and the tidal response function (i.e. the Love number) of the
body, among other quantities, are well approximated by the ones computed for a distorted poly-
trope, provided that an accurate polytropic index, as the one presented here, is used (Leconte et al.
2011b).

2.3 The bloating problem

If the small discrepancy between the theoretical predictions and the data points at the high mass
end of Fig.2.5 can be explained (M1 & 20MJup; Chabrier et al. 2007a), this is not so for lower masses.
Indeed, a large fraction of giant planets seem larger than predicted by the models. While this feature
was already identi�ed with the �rst detected transiting planet, HD 209 458 b (Henry et al. 2000), the
mechanism(s) responsible for thisbloatinghas not been completely identi�ed yet.

In order to express the problem in mathematical terms, let us consider the luminosity equation
(Eq. (1.59)) in its integrated form

T̄1
¶S̃
¶t

=
Z

( �enuc+ �eext) dm� Lint: (2.19)

This simply means that the internal entropy evolution depends on the balance between the energy sup-
plied to the interior by an external source and the radiative losses. As we have seen in previous sections,
in the general case,�enuc+ �eext � 0, and the object contracts becauseR1 is an increasing function of̃S.
In order to keep a larger radius, the planet thus needs to conserve its entropy, and because there are two
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terms on the right hand side of Eq. (2.19), there are two principal means to achieve this. These two types
of mechanisms can be stated as follows

� Heating sources. This class encompass all the processes that provide a source term�eext to counter-
balance the radiative losses.S̃decreases at a slower pace, or even increase, and the planet ends up
bigger than in the standard model. Proposed scenarios include, among others, tidal heating (Bo-
denheimer et al. 2001; see Chapter5), downward transport of kinetic energy by stellar irradiation
driven winds(Showman and Guillot 2002), or ohmic dissipation (Batygin and Stevenson 2010).

� Inef�cient cooling. The same effect can be achieved by simply impeding the transport of energy,
either in the interior or in the atmosphere. These include, extension of the radiative zone due to the
stellar irradiation (Guillot et al. 1996), enhancement of the radiative opacity decreasing radiative
losses (Burrows et al. 2007), and inef�cient large-scale convection due to a composition gradient
(Chabrier and Baraffe 2007; which is also studied in Chapter4).

Naturally, the �rst chronological idea, which was proposeda priori by Guillot et al. (1996), was
linked to the fact that transiting planets are at close orbital distance from their star, and receive a far
stronger �ux than any of solar system giant planets. Even if other processes are at play to in�ate Hot
Jupiters, the impact of stellar irradiation cannot be neglected, and I will thus dedicate the following
section to its study.

2.4 Effect of stellar irradiation

At �rst sight, the fact that I classi�ed stellar irradiation among the "inef�cient cooling" scenarios
can seem a little counter intuitive. Indeed, one might think that such an energy input (sometimes more
than a hundred times the internal luminosity of the planet) could heat the whole body. However, as we
will see, this heating does not penetrate very deeply into the interior, and incoming energy is rapidly
reradiated toward outer space. This is not the energy input which is important, but rather the way the
atmosphere is heatedfrom above, and the consequences that it implies for the boundary conditions.

2.4.1 The radiative zone

As was discussed in §1.5.2, the energy density linked to the incoming visible radiation decreases
into the atmosphere as e�

p
3kvis P=g, and is nearly completely absorbed at the 0.1-1 bar level, as shown

on Fig.2.8. This level can even be displaced higher in the atmosphere if strong visible absorber are
present at low pressures, like TiO and VO, possibly leading to temperature inversions (Hubeny et al.
2003; Fortney et al. 2008). As a consequence, the stellar �ux does not reach the inner convective zone
of the planet, is rapidly reradiated, and does not participate to the energy budget of the planet.

As can be seen on Fig.2.8, when the atmosphere is heated from above, the nearly isothermal region
which is present above the 10 mbar level in the non irradiated case (solid curve) is pushed downward (up
to a few hundred bars). This is because the atmosphere is hotter in average, and thus needs a smaller
temperature lapse rate to transport the energy by radiation. As a result, the thermal gradient,ÑT =
d lnT
d lnP , is smaller. Even if the location of the radiative-convective boundary cannot be determined in this
simple model9, we see that the depth at which the �uid will eventually become convectively unstable
according to the Schwarzschild criterion will be pushed deeper. This simple analysis is con�rmed by

9Indeed, as discussed in § 2.1.1, this is the wayk̄ varies with temperature and pressure that determines if a radiative-
convective transition occurs. At constantk̄ , like this is assumed in Guillot (2010),ÑT ! 1=4< Ñad.
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fully consistent non gray radiative transfer numerical calculations (seeBarman et al. 2001for a detailed
discussion).

Figure 2.8: AtmosphericT � P pro�le com-
puted with Eq. (1.96) for a Jupiter analog
with Tint = 200K andTirr varying between
0 K (black solid) and 2000 K (yellow dashed)
by steps of 200 K. For this example,k vis =
10� 3m2.kg� 1 and k th = 10� 2m2.kg� 1 (see
§ 1.5.2).

The question is now to see how this can affect the
observed radius of a giant planet. One of the �rst idea
that comes to mind is just that as a planet is moved in-
ward, its external layers will extend in size as they are
heated as discussed above. In order to quantify this ef-
fect, let us consider that the height of the atmospheric
layer is roughly given by the pressure scale height

HP � �
dr

d lnP
; (2.20)

which is the typical length scale on which pressure is
subject to a signi�cant change. From Eqs. (1.57) and
(1.58), and using the perfect gas law which is valid at
low pressures, we can show that

HP =
P

gr
=

kBT
mmH g

: (2.21)

If we further assume that the atmosphere is nearly
isothermal with the 1-10 bar temperature shown in
Fig. 2.8 (i.e. � 300 K for Tirr = 0K and � 2300 K for
Tirr = 2000K), we get an evolution of the atmospheric
scale height from� 50 km to� 380 km. The atmosphere
height still represents less than� 0:5% of the radius of
the planet. This is thus clearly insuf�cient to explain the
observed bloating. In other words, if we keep the entropy in the inner convective zone constant while
moving the planet inward, the temperature of the atmosphere will increase, but the actual radius of the
planet will change only by a small amount. The mapping betweenR1 andS̃discussed in §2.1.2is only
mildly changed by the irradiation (Burrows et al. 2000; Chabrier et al. 2004).

To understand how irradiation can signi�cantly affect the radius of a close in planet, one must
account for the thermal evolution of the planet. Once again, let us take a planet at long orbital distance
from the star, and use our mind to move it quickly close to the star, quickly meaning in a time which is
negligible in front of the Kelvin-Helmholtz timescale so that the internal structure of the object does not
have the time to signi�cantly thermally evolve10. Thus the internal isentrope is left unchanged, and so
is theT � P pro�le in the convective zone. This is roughly equivalent to keeping the couple (Tatm;Patm)
constant in a region where the incoming stellar irradiation cannot penetrate. Then, let us consider the
evolution of the ability of the atmosphere to transport the internal energy and cool down the planet with
the degree of irradiation. IsolatingTint in Eq. (1.97), we get

T4
int =

�
4T4

atm

3
� f̄ T4

irr

�
2
3

+
k th

k vis
p

3

�� . �
2
3

+
k th

g
Patm

�
: (2.22)

So, asTirr increases,Tint decreases. This simply translates the fact that, as temperature lapse rates are de-
creased, the radiative transport energy is signi�cantly hampered, and because convection is very ef�cient
in the interior, the overall �ux is completely determined by the atmospheric energy escape rate. This
simple explanation is once again supported by the radiative transfer calculations ofBarman et al.(2001).

10Thermodynamically speaking, this can be seen as a quasi static and adiabatic transformation of the planet
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Thus, if the mapping betweenR1 andS̃does not change, the relations that link these parameters to
the effective temperature depends onTirr . The irradiation plays a role only on the evolution. WhenTirr

is increased, the outgoing �ux escaping the planet is decreased, and so is the variation of the internal
entropy, which is kept at a higher value for a longer period of time. To summarize, the stellar irradiation
impedes the release of the internal gravo-thermal energy of the object, slows down its cooling, and retards
the evolution (Baraffe et al. 2003).

2.4.2 Polytropic index of irradiated objects

Figure 2.9: Polytropic index for irradiated planets as a function of the planet's massMp at 100 Myr
(Dotted), 1 Gyr (Dashed) and 5 Gyr (Solid). The shaded area represents the uncertainty on the polytropic
index for the 5 Gyr case (see text). As the irradiated atmosphere impedes the radiative cooling of the
objects, it retards its contraction. Therefore, the non-monotonous behavior observed at the early ages in
the non-irradiated case (Fig. 2.7) is enhanced, even at a later epoch. The bump at the high mass end of
the 100 Myr curve is caused by deuterium burning (see text).Figure from Leconte et al.(2011b).

Analogously to §2.2.2, I also computed a grid of evolution models of gaseous giant planets with
solar composition forMp 2 [0:35MJup; 20MJup] and an incoming stellar �ux Finc = 4:18� 106W:m� 2.
As seen on Fig.2.9, a strong irradiation enhances the features described in §2.2.2: the evolution
is delayed because the irradiated atmosphere impedes the release of the internal gravo-thermal
energy. This yields a slower contraction, thus a lower central pressure (and lower central temper-
ature) for a longer period so that the object enters the ionization regime at a later epoch.The bump
at the high mass end of the 100 Myr isochrone is due to deuterium burning which also occurs later for a
given mass, because of the cooler central temperature (see above). At 100 Myr, the 20MJup has already
burned a signi�cant amount of its deuterium content and starts contracting again, whereas lower mass
planets are still burning some deuterium supply, leading to a less compact and thus less ionized structure.
This leads to the non-monotonic behavior on the high-mass part of the ˜n� M diagram at 100 Myr, which
re�ects a similar behavior in the mass-radius relationship.
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2.4.3 Radius anomaly

It is now well established that a large number of transiting giant exoplanets are more in�ated than
predicted by the standard cooling theory of irradiated gaseous giant planets (see Udry and Santos 2007;
Baraffe et al. 2010for reviews). As we have seen above that stellar irradiation can help prevent the
cooling of such planets, it is time to estimate the remaining discrepancy. Because the radius of a gaseous
giant planet is not set only by its mass, but strongly depends also on the object's composition, age
and irradiation history, the mass-radius diagram (see Fig.2.5) only gives a limited view of the constraints
offered by the observation of transiting systems.In order to quantify the radius anomalyof many "Hot
Jupiters" and study the possibility of such an anomaly for the more massive objects, I computed the
radius predicted by our standard irradiated model (Rirr) for transiting planets with Mp > 0:3MJup

(about a Saturn mass). I de�ne theradius excessas the difference between the observed radius
and that predicted by the model at the estimated age of the system, denominatedRirr . Results are
summarized in Fig.2.10.

In the low mass range, the existence of objects above theR1 = Rirr tells us that the effect of stellar
irradiation alone is still unable to explain the mean properties of transiting planets. As seen in §2.3,
this is evidence that some physical mechanism is yet missing in our modeling. A more thorough study
of two of these mechanisms, namely the double diffusive convection and the tidal heating, are carried
out in Chapter4 and5 respectively. Interestingly,Laughlin et al.(2011) showed that the radius anomaly
of planets in the 0.1-10MJup mass range are correlated to the irradiation temperature, with a best �t
dependence,R1 � Rirr µ T1:4� 0:6

irr . This seems to favor mechanisms involving an interaction between the
star and the planet. However, if the correlation seems robust, the constraints on the exponent are not
strong enough yet to disentangle between the various types of possible star-planet interactions, as they
all depend on the orbital distance (and thus onTirr).

Figure 2.10: Relative radius excess between the observationally and the theoretically determined values
for 57 transiting systems. Objects signi�cantly above the dashed line are considered to be anomalously
bloated compared with the prediction of the regular evolution of an irradiated gaseous planet. All the
objects below this line can be explained by a heavy material enrichment in the planet's interior (Baraffe
et al. 2008; Leconte et al. 2009,2010a,2011a).Figure fromLeconte et al.(2011a).
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2.4.4 Heavy element content

On the other hand, the existence of objects below theR = Rirr shows that there is at least another
free parameter that we did not yet considered. This could already be seen in Fig.2.2.d where ourR1(Tint)
tracks where not quite representative of Solar System giant planets, Jupiter and Neptune11. Indeed both
planets are denser (and by a large factor for Neptune) than the models of the same mass and effective
temperature. If this free parameter is not obvious in our set of structure equations, we already encountered
it in § 1.4.1. To model a planet, one needs to specify the material it will be made of, and use the relevant
equation of state. For the moment, we only considered gaseous spheres with a solar composition, but
the discrepancy stated above shows us that dense materials (called heavy elements) are present in a
signi�cant amount inside giant planets, both inside and outside our Solar System (Hubbard and Marley
1989; Chabrier et al. 1992; Baraffe et al. 2006; Fortney et al. 2007; Burrows et al. 2007; Baraffe et al.
2008; Leconte et al. 2009,2010a).

Unfortunately, the chemical composition of a planet cannot be encompassed in a single parameter.
Even a simple parametrization in terms of mass fractions of Hydrogen (X), Helium (Y) and heavy ele-
ments (Z) already gives us two additional free parameters12, and splitting our heavy materials involatiles
(or "ices") andsilicates(or "rocks" ; see §1.4.1), adds another one. In addition, the precise location of
heavy materials, and whether they are mixed in the gas component or differentiated in a dense core, is
still unknown (see Chapter4). This creates a degeneracy that cannot be removed by the knowledge of
mass and radius alone, which is one of the main limitation to the determination of the heavy element
content of exoplanets (Baraffe et al. 2008).In the following, in order to make a simple estimate of the
global enrichment inside extrasolar giant planets, I will simply assume that our planet is separated
in two well de�ned regions, (i) a dense core composed exclusively of heavy materials (either ices
or silicates) of massMc, (ii) a gaseous envelope composed of a primordial mixture of hydrogen,
helium and metals presenting solar abundances (Zenv � 0:02). In this case, I also refer to the total
heavy element mass,

MZ = Mc + Zenv(Mp � Mc); (2.23)

or the total mass fraction,

Z � MZ=Mp: (2.24)

For this class of objects,one can infer an upper limit for the content of heavy material by
determining the maximum mass of heavy elements consistent with the lower observational error bar, as
done inLeconte et al.(2009). In the case of CoRoT-4b, I showed that models with less than 10M� of
water remain within the observational error box, as illustrated by the dash-dotted curve in Fig.2.11.
This corresponds to a total mass fraction of heavy elementsZ . 15%. For such low enrichment, adopting
rock as the main heavy element or a mixture of water and rock will barely change this value. For this
type of transit planet population, the bulk composition can thus be constrained with reasonable accuracy.
Note that the non-irradiated model represented by the solid curve is completely unable to reproduce the
measured radius of the planet at the current epoch, showing that the effect of the stellar irradiation must
be taken into account when trying to predict the internal properties of the object.

One may argue that since a physical process is missing in the modeling of some close-in planets
this upper limit for heavy material enrichment could be underestimated,if such a process occurs in all
transiting planets. An additional heat source, for instance, will yield a larger planet's in�ation at a given
age, allowing for a larger maximum amount of heavy material consistent with the observational error

11While it is not shown in Fig. 2.2, the same conclusions hold for Saturn and Uranus.
12By de�nition X + Y + Z = 1.
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Figure 2.11: CoRoT-4b: evolution of the radius as a function of age.Solid line: standard cooling
sequence of an isolated 0.72MJup gaseous sphere with solar composition.Long-dashed line: irradiated
case.Dash-dotted line: Irradiated case with a 10M� water core.Red box: observational 1serror bar.
Revised �gure fromLeconte et al.(2009).

box. The exact nature of such additional heating mechanisms being still a subject of debate the wisest
(and simplest) assumption is not to invoke missing physics when it is not required. One should bear
in mind, however, that, given the remaining limitations in our present understanding of planet structure
and evolution, these heavy element enrichment determinations retain some degree of uncertainty. This
maximum massshould rather be seen as the maximum enrichment consistent with the observed 1serror
bar, according to the present theoretical models.

Using that estimation we can show that, because most of the objects signi�cantly below theRirr

line are in the 0:3 . M1 . 1MJup region, they can be explained with aMZ=Mp & 0:10 heavy material
enrichment (Baraffe et al. 2008; Leconte et al. 2009). Pushing furtherGuillot et al.(2006) andGuillot
(2008) also showed that in this mass range, a correlation exists between the enrichment of the planet
and the metallicity of the star. All these conclusions seems to be in good agreement with predictions
of the core-accretion scenario for planet formation (Baraffe et al. 2006; Mordasini et al. 2009; Alibert
et al. 2011). However, some extreme cases exist, such as CoRoT-13 b (Cabrera et al. 2010), a 1.3MJup

planet with a 0.9RJup radius. Indeed, with a density of 2 340kg.m� 3, this planet is one of the densest
in this range of mass, favoring the presence of around 100-300M� of heavy material in its interior (i.e.
Z � 0:75), depending on the equation of state chosen. The formation mechanism of such a strongly
enriched Jupiter like planet (Z� 0:25� 75) yet remains an open question.

2.5 Distinguishing super giant planets from mini brown dwarfs in their
overlapping mass domain

The discovery of "super" Jupiters, with masses& 10MJup, in close orbit to a central star, raises
questions about their nature: planet or brown dwarf ? CoRoT-3 b (see Fig.2.10) is a perfect example
of such an ambiguity. As discussed in §2.1.4, brown dwarfs and planets overlap in mass, stressing the
need for identi�cation criteria enabling the distinction between these two types of astrophysical bodies.
The presence of strongly non-solar atmospheric abundances, as observed in the atmosphere of the giant
planets of our Solar System, may provide signatures of a planetary formation process in a protoplanetary
disk. Such a signature, however, is dif�cult both to observe and to characterize at the present time
(Chabrier et al. 2007b) and may not apply to irradiated planets, with radiatively stable outer layers.
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A more robust signature of the planet formation process, as expected from the core accretion model,
is the presence of a signi�cant amount of heavy material in the interior.Observed radii signi�cantly
smallerthan predicted for solar or nearly-solar metallicity objects reveal the presence of such a sig-
ni�cant average amount of heavy material; a major argument in favor of the core-accretion planet
formation process. On the opposite, if a physical mechanism is missing in current planet cooling models,
as discussed in the previous sections, observed radiilarger than predicted do not necessarily imply an
absence or a small amount of heavy material. For such cases, the nature of the object remains ambiguous,
if only based on the knowledge if its mean density.

Figure 2.12: CoRoT-3 b.Solid line: standard cooling sequence of an isolated 21.66MJup brown dwarf
with solar composition.Long dashed line: irradiated case.Dash-dotted line: Irradiated case with a
272M� core of water.Red box: observational 1serror bar.Revised �gure from Leconte et al.(2009).

I �rst focused on the most massive transiting object in the CoRoT sample, CoRoT-3 b. To
examined whether its radius determination enables us to identify its very nature, I computed evo-
lutionary tracks corresponding to several different scenarios and compared it to the data.As shown
in Fig.2.12, the observed radius of CoRoT-3 b can be matched by the model of anirradiatedbrown dwarf
of 21:6MJup with solar composition (long-dashed line). This is by itself an encouraging con�rmation of
the theoretical prediction of the age-mass-radius relationship in the brown dwarf regime (Chabrier and
Baraffe 1997 ; Baraffe et al. 1998). Note that, given the small orbital distance, the effects of irradiation
are not negligible, even for such massive objects. Accounting for irradiation on the atmospheric pro�le,
and thus on the object's cooling history, is thus mandatory to provide consistent comparison between
models and observations, when the radius is determined at this level of accuracy (�7%). The present
radius error bars, however, are still too large to infer or exclude the presence of a signi�cant amount of
heavy material in the interior of this object.

As done in §2.4.4, I determined the maximum amount of heavy material allowed by the error bar
on the radius determination. I found an upper mass limit for the core of about 800M� (i.e. Z . 12%).
However, we have to see if thismaximumenrichment compatible with the actual error bars is possible
with our current understanding of planet formation. According to current models of planet formation
which include migration (Alibert et al. 2005), up tohacc � 30% of heavy elements contained in the
protoplanetary disk can be incorporated into forming giant planets (Mordasini et al. 2008,2009). The
maximum mass of available heavy material that can be accreted to form planets is thus

MZ � hacc� Z � ( f � M?); (2.25)

where f � M? is the maximum mass for a stable disk (. 0:1M?) andZ is the metal mass fraction of the
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star13. For CoRoT-3 b, which is orbiting a 1.37M� F star with near solar metallicity, at mostMZ � 270M�

of heavy material can thus be accreted to form the planet. This (admittedly crude) upper limit derived
from current planet core accretion formation models yields a planet contraction consistent with today's
observations, as seen in Fig.2.1214.

Therefore, given the present uncertainties in the radius determination, neither the brown
dwarf nor the planet possibility can be assessed or excluded for CoRoT-3 b, whose nature remains
ambiguous.A comparison between the predicted radius of a (irradiated) solar-metallicity brown dwarf
(dashed line) and of a planet with the aforedetermined massive core, which represents only a� 4% metal
enrichment (dash-dotted line) in Fig.2.12, shows that a radius accuracy. 3% is required to resolve the
ambiguity, according to the present models. In any event, this demonstrates the promising powerful
diagnostic provided by mass-radius determinations to distinguish massive planets from low-mass brown
dwarfs, providing adequate observational accuracy.

Figure 2.13: Hat-P-20b.Solid line: Cooling sequence of an irradiated 7.25MJup brown dwarf.Dashed
line: Irradiated case with a 340M� icy core.Blue Cross: observational 1serror bar.Figure from Leconte
et al. (2011a).

Among the few known massive planetary-mass objects, there is at least one example for which
such a radius measurement provides the identi�cation of its nature. This is the case of Hat-P-20 b, a
7.25 MJup mass object, closely orbiting a K type star (Bakos et al. 2010)15. As illustrated in Fig. 2.13,
the evolutionary track that I computed for the irradiated brown dwarf model (long-dashed line)
overestimates the radius by� 10-15%. Consistently with Eq. (2.25), models including a 340M�

core mass of ices16 can nearly explain the measured radius (dashed line).The discrepancy would
be even smaller if we considered the presence of rocks. Although this amount of heavy material is
about the limit of what is available for planet formation, according to current core-accretion models (as
estimated from Eq. (2.25) for the HAT-P-20 system ; see alsoMordasini et al. 2009), the presence of
such a metal enrichment (Z. 15%) provides the simplest plausible explanation for the observed radius
of HAT-P-20 b, according to the present theory. As mentioned earlier, this 340M� core for HAT-P-20 b
should be seen as a rough estimate of the upper limit for the available heavy material in the system, but

13For a more accurate determination, one should take care of the fact that only thecondensedvolatiles and silicates (the
so-calleddusts) can participate to the formation of planetesimals.

14Note that, as discussed in Baraffe et al.(2008) for HAT-P-2b, this heavy material does not need to be accreted into one
single object, as very massive planets, in particular short-period ones, may result from smaller planet collisions.

15In Leconte et al.(2009), we discussed the case of Hat-P-2 b, and not Hat-P-20 b, a 8MJup mass object, closely orbiting an
F type star (Winn et al. 2007b), but a more recent analyses of the data showed that the radius had been underestimated in the
discovery paper (Pál et al. 2010). What will Hat-P-200 b be like ? Future should tell.

16Note that this amount of heavy material does not necessarily need to be in a core but could be distributed all over the planet.
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this analysis shows that the currently observedlow radius of this object cannot be explained without a
substantial enrichment.

It would certainly be interesting to see whether planet models from other groups yield or not similar
determinations. Given the fact that these various planet models share many common physics inputs (in
particular the H/He and heavy element EOS), it would be surprising that they reach severely different
conclusions. While keeping in mind the remaining uncertainties in planet cooling theory,the present
analysis provides - with the parameters observed so far - a con�rmation of the validity of the
core-accretion model, and makes Hat-P-20 b the �rst con�rmed7-8MJupgenuine planetformed by
core-accretion in a proto-planetary disk (Leconte et al. 2009,2011a).

2.6 Conclusion

In this chapter, I have shown that, even taking into account the impact of the stellar irradiation on
the atmosphere of extrasolar giant planets is not suf�cient to explain their observedlarge radius.Then,
by modeling numerically all the transiting exoplanets that were known to date, I quanti�ed the
remaining radius anomaly(Leconte et al. 2011a).

Doing so, I also showed thatthe mechanical structure of both isolatedand irradiated giant
planets can be well characterized by an effective polytropic index, for which I gave numerical
estimates (Leconte et al. 2011b).This also con�rmed that the principal effect of stellar irradiation is
not the direct bloating of the outer layers, but the slowing down of the usual gravo-thermal evolution.

Then, I showed how the mass-radius diagram can be used to constrain the enrichment of observed
transiting planets. In particular,I �nd that the mean densitydetermination, while inconclusive in the
case of CoRoT-3 b, is discriminant in the case of Hat-P-20 b, which is thus the �rst con�rmation of
the possibility to form massive planets by core accretion (possibly with subsequent collisions) up to
M1 & 8MJup (Leconte et al. 2009).This analysis shows that, according to the present models, a typical
. 5 % accuracy on the radius determination must be achieved in future space-based or ground based
transit detections to clearly distinguish planets from brown dwarfs in their overlapping mass domain.
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Chapter 3

Probing the deep interior: Theory of
planetary �gures
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Because thetheory of �guresis the basis of the modeling of Solar System giant planets and
of the theory of equilibrium tides that will be explored in the following chapters, the �rst section
of this chapter is dedicated to the de�nition of the main variables and to the introduction of the
main concepts needed (§ 3.1). For completeness, the full development of the general linear theory
of Sterne (1939) and of the axisymmetric third order theory ofZharkov and Trubitsyn(1980) (that
will be used in Chapter4) are carried out in AppendixD andEa respectively.

Then, in §3.2, I show how the response inshapeand inpotentialof giant exoplanets and
brown dwarfs to thecombinedeffect of rotational and tidal distortion can be computed from the
knowledge of thepotential Love number(k2) alone. To make the use of these formulae possible, I
give numerical estimates for theLove numberof these objects, and discuss what these values tell
us about the mechanical structure of gaseous substellar objects.

I also investigate the impact of heavy element enrichment on the tidal response of giant
planets, and demonstrate on a test case how one could take advantage of these models to infer a
core mass fromk2 measurements (§3.3).

In §3.4, I show one of the limitation of the numerical theory, and how it can be overcome,
at least in the linear regime, by an analytical theory when stronger assumptions are made. Finally,
in §3.5, using this model, I discuss the implications of the tidal distortion of close in planets
on the parameters that are measured from their light curve. In particular, I demonstrate that the
equilibrium radius of strongly distorted objects can be larger than the measured radius, inferred
from the area of the (smaller) cross section presented to the observer by the planet during the
transit ; systematic bias in the radius determination which still enhances the aforementioned radius
anomaly.

The results presented in §3.2 to 3.5 led to the publication ofDistorted, non-spherical tran-
siting planets: impact on the transit depth and on the radius determination(Leconte et al. 2011b).

aSome typos found in Zharkov et al. (1973) and Zharkov and Trubitsyn (1980) are also corrected.
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WhileWE USUALLY IMAGINE STARS AS BIG LUMINOUS PERFECT GLOBES

moving through empty space, those are spheres only in �rst approxi-
mation. If the sphere is indeed the lowest energy state of an isolated,

gravitationally bound, collection of particles at rest1, there is no such thing as a completely isolated or
motionless celestial body ! Through conservation of angular momentum during the gravitational collapse
of a dense interstellar cloud and its following contraction, a very small initial velocity inhomogeneity
can be suf�cient to imprint a quite rapid rotation to the newborn star. Part of this momentum, being kept
by the protoplanetary disk, can then be transferred to the young forming planets, in form of both orbital
and internal angular velocity. Thus, all planets and stars are rotating, even if sometimesslowly, and no
longer spherical. Moreover, when another massive body is cruising nearby, the effect of its gravitational
pull also changes the macroscopic equilibrium state of our assembly of particles.

This large scale perturbation of the equilibrium of a non rigid body has many dynamical conse-
quences. The most important one, which more or less encompasses all the others, being that a non
spherical distribution of matter breaks the shell theorem demonstrated by SirIsaac Newton(1687) in
his Philosophiae naturalis principia mathematica; i.e., the gravitational force that it exerts on external
massive particle does not follow the usual inverse square law, and can have a non axial component. As a
result, the trajectory of a particle moving under the sole attraction of such a mass distribution will depart
from the ellipse that was �rst anticipated byJohannes Kepler(1609) in hisAstronomica nova. Speaking
in terms of osculating elements2, the shape and orientation of the orbit that best describes the motion of
the particle over time could change both periodically and secularly. If one seeks to predict the orbital
evolution of a given set of self-gravitating objects in mutual interaction, the problem of the determination
of the gravitational �eld created by each body, and thus of their shape, arises.

The question of the �gure of a self-gravitating body, �rst formulated for the Earth during the Antiq-
uity, is a long standing problem. SinceParmenides3, for aesthetic and geometrical reasons, andPlato4,
who based his reasoning on the observation of the Earth shade during lunar eclipses, the Earth was
thought to be spherical. This was only, as often through new observations made during the seventeenth
century, that the sphericity of the Earth started to be questioned scienti�cally. On one side, by anal-
ogy with Jupiter, whose oblateness has been measured byGiovanni Domenico Cassiniin 1666 and has
rapidly been thought to be related to the rapid rotation of the planet (see notes at the end of this chapter,

1in a macroscopic sense
2From the Latin verbosculare, to kiss, the osculating elements at an instantt are the six orbital elements - semi-major axis

(a), eccentricity (e), inclination (I), argument of pericenter (v), longitude of the ascending node (W) and time of pericenter
passage (t) - that completely de�ne the shape and orientation of the orbit that our two bodies would follow if the perturbing
force were to disappear at that instant (Murray and Dermott 1999). In the unperturbed two body problem, those elements are
constant over time. In practice, the osculating elements can be computed by knowing the position and velocity of one of the
bodies in any reference frame at any given time, and their temporal evolution can calculated by integrating a set of differential
equations, commonly known as Lagrange planetary equations. An example of such equations is presented in Chapter5.

3515-450 BC.
4428-348 BC.
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Philosophical Transactions 1665), it was natural to think that the Earth could also have an ellipsoidal
shape. On the other side, during a travel to Cayenne in 1672, Jean Richer discovered that the length of
the seconds pendulum, that is a pendulum with a swing of one second, was 2.8 millimeters shorter in
Guyana than in Paris, showing that the gravity was smaller near the equator. This rapidly led Newton and
Christian Huyghens to formulate a �rst theory of the gravity of the Earth (Huyghens 1690). However, the
modern theory of the �gure of celestial bodies in hydrostatic equilibrium, which is detailed hereafter, is
�rst due to Colin MaclaurinandAlexis Clairaut(1743), and was subsequently pursued byPierre Simon
Laplace,Jean-Charles Rodolphe Radau,George Darwin(1899) andAleksandr Mikhailovich Lyapunov
(1903), among others. This is only thanks to these developments that the equilibrium theory of tides
could emerge (see Chapter5).

Conversely, it is possible to measure the gravitational �eld created by a celestial body and its depar-
ture from sphericity. This can be done either directly with orbiting spacecrafts, when the object is nearby,
or by monitoring its dynamical interactions with other bodies when the �rst option is not available. Then,
these constraints on the �gures of the body considered can be used to constrain some of its internal prop-
erties, as has been successfully achieved for, e.g. giant planets in our solar system (seeZharkov and
Trubitsyn 1980and reference therein,Hubbard and Marley 1989; Chabrier et al. 1992, large satellites
(de Sitter 1914), binary stars (Sterne 1939; Kaula 1964), etc...

3.1 Theory of �gures

3.1.1 Problem statement

The basic problem of thetheory of �guresis as follows. We are given some amount of self-
gravitating matter under the in�uence of an external perturbation, and for which we have an Equation
of State (EOS), and we wish to know what is the distribution of the matter in space when hydrostatic
equilibrium is achieved. As we have seen in Chapter1, a body is in hydrostatic equilibrium when the
pressure gradient (ÑP) balances the other forces, yielding

ÑP = � r Ñ(VG + Vext) ; (3.1)

whereVG is the gravitational self potential, andVext a perturbing potential. The hydrostatic balance
directly implies that isobaric surfaces and equipotentials are identical. Because the equation of state
(P(r )) is known, isodensity surfaces also have the same shape, so the problem reduces to that of �nding
the shape of the equipotentials, that will also be calledlevel surfacesin the following.

In general, no exact analytical solution can be found to the problem stated above. Because we
are consideringsmall perturbations, in a sense that remains to be de�ned, the departure of the �nal
equilibrium con�guration from sphericity is also weak, and all expansions can be used. The order at
which the perturbative development has to be carried out then directly depends on amplitude of the
perturbation considered, and on the degree of accuracy sought on the observables. On one side, the
precision of the transit observations of exoplanets is not yet high enough to justify the use of high order
theories in this context. On the other hand, a high order scheme is necessary to fully take advantage of
the accuracy of gravitational moments measurements in our solar system to constrain the composition of
our giant planets interiors, as done in Chapter4. However, such a theory is too cumbersome to be easily
usable in a general context.
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3.1.2 Summary

Because of the functional form of the gravitational potential of a point mass, which goes as the
inverse of the distance, expansions of the total potential naturally involve Legendre polynomials. Then
it seems natural to postulate that the �nal shape of the equipotentials can be expressed in terms of those
Legendre polynomials (which are generalized by spherical harmonics in the non axisymmetric case), as
�rst did Maclaurin andClairaut (1743). This approach, which has been repeatedly criticized because
of a divergence of the Legendre expansion in a small region between the sphere and the level surfaces,
has however been demonstrated to be correct byLyapunov(1903). Thus, matter organizes itself in
concentric shells, whose shape is a combination of spherical harmonics, and the values of the density,
pressure, potential and �gure functions (the coef�cients affecting the various spherical harmonics) on
these shells, depend on a uniquelevelvariable labeling the surface (see §3.1.5for examples of different
level variables).

With that in mind, in order to derive usable equations, we follow �ve different steps that will be
considered in that order hereafter.

� We formally compute the gravitational potential created at a pointr by an arbitrary mass distribu-
tion (r (r0)), which is not yet necessarily in equilibrium (§3.1.3). The potential is then expressed in
terms of spherical harmonics (Ym

n (q; f )), whose coef�cients are expressed through integrals of the
density �eld weighted by the aforementioned spherical harmonics (hereafter, the mass integrals,
Dm

n ).

� Various possible perturbing potentials (Vext) are then considered and projected onto spherical har-
monics. We also de�ne a dimensionless coef�cient (mext), which measures the amplitude of the
perturbation compared to the restoring force, i.e. the self gravity (see §3.1.4).

� Then, in §3.1.5, we expand the shape of each level surface on the same spherical harmonic basis.
To do so, we have to chose thelevelvariable (l) and consequently the set of �gure functions that
we will use (lmn (l )). At that point, depending on the set of functions and the variable chosen, some
preliminary relations can be derived (see either §D.2 or E.2).

� Knowing, at least formally, the mass distribution - meaning that the density �eld is constrained
to verify r (r0) = r (l ), where the latter function is still arbitrary for the moment - we can derive
formal expressions for the mass integrals which now involve only this one dimensional density
pro�le and the �gure functions (§D.3 or E.3).

� The coef�cients of the expansion of thetotal potential on each level surfaceon theYm
n (q; f ) can

then be expressed in terms of algebraic combinations of the mass integrals and �gure functions.
Because level surfaces are equipotentials by construction, all but one of these terms must be iden-
tically equal to zero, which provides us with a suf�cient number of integro-differential equations
to be solved to obtain the �gure functions. Finally the radial term provides us with an expression
for the perturbed gravity �eld to use in solving hydrostatic equilibrium (§D.4 or E.4).

Of course, we did not detail yet what prescription should be taken forr (l ). Indeed, if this seems
an input in the above procedure, it directly results from the integration of the hydrostatic equilibrium
equation which is one of the output of the calculation. It is then understood that an iterative process will
be needed, where a �rst prescription is given for the strati�cation, allowing a computation of the �gure
functions and an update of the density pro�le, this procedure being repeated until some convergence
criterion is met. However, thanks to the fact that the perturbation is often... well... only a perturbation,
the density pro�le that would be obtained in the unperturbed spherical case gives a good �rst guess, and
can even be left unchanged, depending on the accuracy sought.
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3.1.3 Self gravitational potential

As mentioned above, the main reason why celestial bodies are nearly spherical is that the sphere
is the minimum energy shape of self gravitating isolated particles, and that we are considering massive
enough objects for self gravity to dominate. Thus, self gravity is the restoring force in our problem,
and we must concern ourselves with the computation of this gravitational potential for an arbitrary mass
distribution in spacer (r0). It can be shown that the gravitational potential created at the pointr by this
mass distribution reads

VG(r) = �
G
r

¥
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n
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�
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de�ning the internal (Dm
n ) and external (̄Dm

n ) mass integrals5;6. For compactness, we have introduced
spherical harmonics de�ned by

Ym
n (q; f ) �

�
cosjmjf
sinjmjf

�
Pjmj

n (cosq); (3.5)

where thePm
n are the usual associated Legendre polynomials. The cos (sin) corresponds to positive

(negative) values of m. As advertised, this shows that the gravitational potential can be projected onto
spherical harmonics weighted by the mass integrals.

These mass integrals are not purely mathematical entities. Indeed, considering a point exterior to
the object,D̄m

n = 0, andDm
n is constant. Then the gravitational �eld reads
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where we see that thegravitational momentsare the dimensionless counterparts to the mass integrals

Cm
n = Dm

n =(M1Rn
eq): (3.7)

While these expressions are not yet usable, we will see in § D.3 and E.3, that further constraining the
density �eld yields major simpli�cations of these relations.

3.1.4 Perturbing potentials

If only the gravitational potential is considered, we know that the body takes a spherical shape in
hydrostatic equilibrium. It is now time to consider in more detail the various perturbations that can break
this symmetry, and to de�ne the dimensionless quantities measuring the amplitude of these perturbations.

Centrifugal potential

If a mean rotation of the �uid composing the planet occurs, the centrifugal acceleration, which
is alway perpendicular to the mean rotation axis, causes a �attening of the body. However, axial and

5When no confusion can occur,di;j is assumed to be the Kronecker symbol which is equal to 1 if i= j and 0 otherwise.
6In the following,å ¥

n=0å n
m= � n will be abbreviated byå n;m.
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North/South symmetries remain. For simplicity, we place ourselves in the frame rotating with the planet
(assumed in solid body rotation) at the angular speedw1. In this frame, the centrifugal potential reads

Vrot(r) = �
1
2

w2
1r2sin2q

= �
1
3

w2
1r2 (1� P2(cosq)) : (3.8)

To evaluate the deformation, we de�ne the dimensionless parametermrot as the ratio of the centrifugal
acceleration over the gravitational one at the surface

mrot =
w2

1R̄3
1

GM1
; (3.9)

whereR̄1 is the mean radius of the external surface of the planet (see §3.1.5for details)7. This parameter
estimate the relative importance of the rotational deformation over the restoring gravitational force.

For Jupiter and saturn, the values formrot are on the order of 0.1, justifying our use of a perturbative
theory, where equations can be expanded with regard to the (small) parametermrot (or generallymext as
de�ned in Eq. (3.15)). However, because errors yielded by a theory of order i8 will be on the order of
mi+ 1

rot , one can see that high order developments will be needed to develop accurate enough models of
our giant planets. On the contrary, for close in giant exoplanets, as will be discussed in detail in §3.5,
the slow rotation induced by the tidal pseudo-synchronization yields typical values ofmrot ranging from
a few percent to 10� 5. Coupled to the yet limited accuracy of transit observations, this justi�es the use
of low order developments (see §3.5for details).

Tidal potential

When an external object is present (called the secondary in the following), the non uniform grav-
itational potential that it creates also disturbs the equilibrium structure of our deformable body. As we
will see, this "Tidal potential" also conserve axial symmetry, but the axis of symmetry then lies along the
vector joining the center of mass of the two objects.

To calculate the potential created by this external object, we should in principle solve the equations
for its internal structure, as detailed hereafter, and then compute its resulting external �eld using Eq. (3.2).
As this external object is itself disturbed by the primary body, we would then have to solve iteratively
for the structure of each of these objects until some convergence is reached. To simplify the problem,
we will assume that the secondary keeps its spherical symmetry. This is justi�ed as long as we keep our
calculations to the quadrupole order, meaning that only linear terms are considered9.

Let the secondary lie at the locationr? in the coordinate system centered on our primary, with a
massM2. Considering a spherically symmetric body, the value of the potential at the locationr writes

Vtid(r?; r) = �
GM2

jr? � rj
: (3.10)

7In the literature, one can also �nd a slightly different normalization and de�nitionq =
w2

1R3
eq

GM1
; whereReq is the equatorial

radius of the external surface of the object. Note that to high orders, this leads to differences in the �gures equations.
8Meaning, in the following, a theory for which all the terms proportional tomi+ 1

rot and smaller are neglected.
9It might seem a little counter intuitive to speak about the quadrupolar term in the tidal potential as thelinear term. In the

following, the termlinear always refer to the �rst non vanishing order of the perturbation, and thus to all the terms that are
proportional tomext.



64 Probing the deep interior: Theory of planetary �gures

Because we are interested in the value of this potential in the neighborhood of the primary, we can expand
the fraction into Legendre polynomials. We thus have

Vtid(r?; r) = �
GM2

r?

¥
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� n

Pn(cosy ); (3.11)

wherey is the angle betweenr andr?. The �rst term is just a constant and the second gives rise to the
usual Keplerian acceleration and need not be considered. Keeping only the quadrupolar term, we are left
with the usual tidal potential

Vtid(r?; r) = �
GM2

r3
?

r2P2(cosy ): (3.12)

A small parameter corresponding to the tidal disturbance can be de�ned analogously to Eq. (3.9),

mtid = �
M2R̄3

1

M1r3
?

: (3.13)

Note the negative sign, which is just a statement that, along the axis of symmetry of the perturbation, the
disturbed body is elongated and not �attened.

Considering the Roche limit,r R
10, as the smallest possible orbital distance between two self gravi-

tating bodies, for a Jupiter like planet orbiting a sun like star,jmtidj . 0:05. While solid satellites happen
to be closer to the planet than the �uid Roche limit in the solar system, this �gure shows us that the linear
approximation remains satisfying when computing the tidal deformation to be used in Chapter5.

Arbitrary perturbation

To lowest order the body response is linear and the total deformation is the sum of the response to
each term of the decomposition of the perturbing potential. Thus, in order to derive the equations in a
rather general way, we only need to consider a term a perturbing potential of the form

Vext(r;q; f ) = cm
n rnYm

n (q; f ); (3.14)

wherecm
n is a constant which de�nes the amplitude of the perturbation (Sterne 1939). The reference axis

de�ning q andf may change from one term to the other. For example, the rotation axis is best suited to
treat rotational distortion and the line connecting the center of mass of each body is better to describe the
tidal distortion.

Analogously to Eq. (3.13), a small dimensionless parameter can be de�ned as

mext =
cm

n R̄n+1
1

GM1
=

3
4p

cm
n R̄n� 2

1

Gr̄ 1
: (3.15)

One can see that this form is not completely general. For example the �rst term of the centrifugal
potential in Eq. (3.8) cannot be reproduced. This is due to the fact this term produce a net, isotropic,
outward centrifugal force, and thus do not affect the shape of the body, but only its mean equilibrium
radius. However, in the linear regime, there is no coupling of these different effects, which can then
be addressed separately. Restricting the perturbing potentials that we will consider to those that can be
described by Eq. (3.14) is thus justi�ed in this limit11.

10In the perfect �uid case, the Roche limit of a secondary of mean densityr̄ 2, around a primary of mean density and radius,
r̄ 1 andR̄1, respectively, is given byr R � 2:423R̄1 (r̄ 1=r̄ 2)1=3

11While we will keep the aforementioned de�nition ofmrot to be consistent with Zharkov and Trubitsyn (1980), we remind
the reader that for the linear rotational perturbation, only the second term of Eq. (3.8) can be treated, and using Eq. (3.15) yields
mext = mrot=3. As expected, for the tidal perturbationmext = mtid.
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3.1.5 Level surfaces

In the spherical case, equipotential surfaces are surfaces of constant radius. For small departure
from sphericity, as was �rst hinted by Maclaurin and later demonstrated byLyapunov(1903), the equa-
tion describing the equipotentials, or level surfaces, can be expanded in a series of spherical harmonics
as follows

r(l ;q; f ) = l

"

1+ å
n;m

lmn (l )Ym
n (q; f )

#

; (3.16)

wherel is a characteristic length (radius) of the level surface, orlevel variable, and thelmn (l ), or �gure
functions, characterize the shape of each level surface. Intuitively, we see that the �gure functions, which
would be equal to zero in the unperturbed case, are directly related to the amplitude of the perturbation
(quanti�ed by the small parametermext), and should be small corrections. More rigorously, it can be
shown that, apart from n= 0, lmn µ mn

ext (Lyapunov 1903).

As discussed inZharkov and Trubitsyn(1970), many variables can be chosen as our variablel .
However, there is a possibility which somewhat simpli�es the �gure equations. This variable is themean
radiusr̄ which is implicitly de�ned by

4
3

pr̄3 =
1
3

Z p

0
dcosq

Z 2p

0
df r3(r̄;q; f ); (3.17)

wherer(r̄;q; f ) is given by Eq. (3.16). Indeed, an equipotential labeled by ¯r encloses the same volume
that the sphere of radius ¯r, justifying the term of mean radius. Subsequently, the mean radius of the
object is de�ned to be the mean radius of the surface enclosing the massM1 and is noted̄R1. Substituting
l by thismean radiusand renaming thelmn , sm

n in Eq. (3.16) implies that for any ¯r,

4p =
Z p

0
dcosq

Z 2p

0
df

"

1+ å
n;m

sm
n (r̄)Ym

n (q; f )

#3

: (3.18)

This provides us with the �rst of the needed �gure equations. To convince ourselves that this variable
simpli�es the equations, let us consider a �rst order perturbation. Then,sm

n sm0

n0 µ m2
ext � 0, and Eq. (3.18)

rewritess0
0 = 0: Thus, to this order, thehydrostatic equilibriumequation does not involve thesm

n , as is
shown in Appendix D. For this reason, we will use the variable ¯r, and noteR̄1 the mean radius of the
1 bar equipotential of the object considered. For �gure equations derived using either the equatorial or
polar radius, the reader is referred to Zharkov and Trubitsyn (1970).

Which radius ?

Before going further, it is important to summarize the differences between the various radii that
can be de�ned. Note that, in the literature, the term "radius" is used loosely, even for non-spherical
objects. Importantly enough, this can lead to discrepant normalizations throughout different studies and
published values of transit radius measurements when, for example, radii are shown in units of Jupiter
radii (RJup) without precisely de�ning the latter.

For any distorted object, one can de�nea1, a2 anda3 as the distances between the center and any
given isobaric surface along the three principal axes of inertia12. If axial symmetry holds (e.g. for a

12For a �uid object in a binary, the three directions along which the principal axes are measured are, respectively, the line
connecting the center of mass of the two components, its normal contained in the orbital plane and the direction of the orbital
angular momentum vector.
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rotating �uid body), we havea1 = a2 � req, de�ning the equatorial radius of the isobar, anda3 � rpol its
polar radius. In this case, for the 1 bar surface,req � Req andrpol � Rpol by de�nition. One must be aware
that only the external value ofa1, a2 anda3 (reducing toReq andRpol for axisymmetric bodies) can be
measured directly and arenot model dependent. This is why we de�neRJup as the equatorial radius of
Jupiter at the 1 bar levelRJup � Req;J = 7:1492� 107m; Guillot 2005and reference therein).

Equilibrium radius

Finally, we can de�neR1, the radius of the spherical shape that the �uid body would assume if it
was isolated and at rest in an inertial frame (the limiting case for which all the mentioned radii would
be equal). While this de�nition is purely theoretical, it has some importance, asR1(t) is the radius
computed in usual 1D numerical evolution calculations, and the one that we have used throughout the
previous chapters. In generalR1 6=R̄1 because the centrifugal force has a net outward component that
increases the volume of the object. Therefore, if one is not only interested by the shape, but also by the
absolute radius of the object, as it will be the case hereafter, one needs to �nd a relation betweenR1 and
R̄1. Numerically, this can be handled by integrating hydrostatic equilibrium with the centrifugal force,
but requires a numerical integration for each object and each value of the perturbationmrot. However, as
we will show in §3.4, approximate analytical formulae can be used to correct this.

3.1.6 Total potential

The goal of the theory of �gures is to express the total potential on the level surfaces using only
(r̄;q; f ). In practice, we will replace ther's that appear in the expression of the gravitational potential
and in the mass integrals, Eqs. (3.3) and (3.4), by their spherical harmonics decomposition, given by
Eq. (3.16). We can then decompose the total potential on spherical harmonics following

Vtot(r̄;q; f ) = VG + Vext

= �
4
3

p Gr̄ 1 r̄2 å
n;m

V̂m
n (r̄)Ym

n (q; f ): (3.19)

Because the ¯r = cst surfaces are equipotentials by construction, our set of equations on the �gure functions
we be given by Eq. (3.18) and

�
V̂m

n (r̄) = 0
	

n6=0;jmj6n : (3.20)

The n= 0 term provides the equation for the hydrostatic equilibrium,

1
r

¶P
¶ r̄

= �
¶Vtot

¶ r̄
=

4
3

p Gr̄ 1
d
dr̄

�
r̄2V̂0

0 (r̄)
�
: (3.21)

Beyond this stage, the actual form of these equations directly depends on the order of the develop-
ment carried out. In order not to introduce to much technical discussions, the general �rst order theory
developed bySterne(1939), and that will be used hereafter, can be found in AppendixD. To summarize,
it is found that the shape of each isodensity surface can be characterized by the quantityhn(r̄) = r̄

sm
n (r̄)

dsm
n

dr̄ ,
which can be obtained by integration of a �rst order integro-differential equation, Eq. (D.21).

For those interested in a higher order, but axisymmetric theory, based on the work ofZharkov and
Trubitsyn(1980), they are referred to AppendixE.
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3.2 The �gure of (extrasolar) giant planets

Using the linear theory ofSterne(1939) (see AppendixD), once the density pro�le has been ob-
tained by integrating the hydrostatic equilibrium equation, and the �gure functions by the integration of
Eq. (D.21), we have all the information needed to completely describe the distribution of matter in our
object. But this distribution is not, in general, directly observable. We thus need to concern ourselves
with the computation of observable quantities such as the external shape, and the external gravitational
potential.

Fortunately, as we use a linear theory, the amplitude of the response of the body is directly propor-
tional to the amplitude of the perturbation. In our context, thesetransfer functionsare called theLove
numbers, and capture all the equilibrium response of the body.In this section, I will show how these
quantities can be computed, and present numerical estimations of their values for giant planets.

3.2.1 External shape: ellipticity and level Love Numbers

Figure 3.1: Oblateness given by Eq. (3.25) as a function of the rotation period (in days) at 1 Gyr for plan-
ets of mass: 0.3MJup(dotted), 0.5MJup(dashed), 1MJup(dash-dotted), 3MJup(long dashed), 15MJup(solid).
The oblateness decreases when the mass of the planet increases because massive objects are more com-
pressible (see §2.2.2), have a more intense self-gravity �eld and are thus less subject to perturbations.
Figure fromLeconte et al.(2011b).

Once, ĥn = hn(R̄1) has been obtained by numerical integration of Eq. (D.21), we can show by
settings̃ = r̄=R̄1 = 1 in Eq. (D.18), that the external shape of our body (i.e. the value of the �gure
function at the surface) is given by

sm
n (R̄1) = �

2n+ 1
n+ ĥn

mext: (3.22)

As expected, the deformation is linear with respect to the amplitude of the perturbing potential (mext).
Because, the strength of the perturbation can vary with time, it is customary to refer to the proportionality
constant in Eq. (3.22), which is an intrinsic characteristic of the deformable body itself. This constant of
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the object, de�ned as

sm
n (R̄1)Ym

n (q; f ) � � hn
Vext(R̄1;q; f )

gR̄1
) sm

n (R̄1) = � hnmext; (3.23)

whereg is the unperturbed surface gravity acceleration, is thelevel Love number(hn), which is therefore
given by

hn =
2n+ 1
n+ ĥn

: (3.24)

For an isolated, rotating object, an observable quantity is provided by the dynamical �attening, also
called ellipticity or oblateness (f � Req� Rpol

Rpol
), which is given by

f = �
3
2

s0
2 =

3
2

h2mext =
h2

2
mrot: (3.25)

Attempts have been made to constrain the oblateness and thus the rotation period of transiting
planets by using the solar system planets as test cases (Carter and Winn 2010a,b). Because of the wide
variety of exoplanets, it is important to have the ability to predict the �attening of �uid planets for a wider
range of parameters than encountered in the solar system.Fig. 3.1 shows the oblateness predicted by
my numerical code for various planet masses as a function of the rotational periodProt = 2p=w1.
The values of thelevelLove number are deduced from thepotentialLove number (k2) as explained
in the following section.

Because the radius weakly depends on the mass of the object in the 1� 30MJupmass range, at �xed
angular velocity,mrot decreases when mass increases.Massive object, which have a much stronger grav-
ity, are thus less subject to perturbations.However, the main limitation to the detection of the oblateness
of transiting objects is that close in planets are expected to quickly pseudo synchronize because of the
tidal friction. To get an idea of the timescales involved, with the dissipation rates inferred in Chapter5, a
Jupiter like planet around a Sun like star must be on an orbit with a period longer than 20 days to maintain
a fast rotation for more than a Gyr. Below that limit, the rotation period will be mostly determined by
the orbital period and will hardly be much shorter than a day. Above, only few objects are available, and
observation will take time as an orbital revolution takes longer. In this case, the longer transit duration
may be favorable.

3.2.2 External potential: gravitational moments and potential Love numbers

Because the gravitational potential naturally expands on a basis of Legendre polynomials, as shown
in §3.1.3, the external �eld is often written

VG(r > R̄1;q; f ) = �
GM1

r å
n;m

�
Req

r

� n

Cm
n Ym

n (q; f ); (3.26)

whereq is the colatitude andf the longitude of the body considered13. For rotating �uid bodies, for
which the symmetry with respect to both the rotation axis and the equator plane14, only the even har-

13A more conventional notation is

VG(r > R̄1;q; f ) = �
GM1

r

¥

å
n=0

n

å
m=0

�
Req

r

� n

(Cm
n cosmf + Sm

n sinmf )Pm
n (cosq);

but this would lead to possible confusion with the mass integralsSm
n from § D.4, which have a slightly different normalization.

By construction,C0
0 = 1.

14Meaning that the other perturbation, such as tidal deformation, can be neglected.
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monics with a zero azimuthal number remain and the most common notation reads

VG(r > R̄1;q; f ) = �
GM1

r

"

1� å
n

J2n

�
Req

r

� 2n

P2n(cosq)

#

: (3.27)

The gravitational moments,Cm
n or Jn, are directly related to the mass integrals de�ned in §D.4 by

Cm
n = D̂m

n =(M1Rn
eq); (3.28)

or

Jn = � D̂0
n=(M1Rn

eq); (3.29)

whereD̂m
n = Dm

n (R̄1), the value of the integral at the surface. Hence, they encompass all the information
on the density pro�le needed to compute the external �eld. A major consequence of that, is that mea-
surement of the gravitational �eld of a planet will allow us to estimate only the mass integrals and not
directly the density �eld. In principle, because spherical harmonics are a complete basis, the informa-
tion contained in all theCm

n , or equivalently theJn in the axisymmetric case, should allow us to retrieve
exactly the density �eld. However, as the order of the harmonic (n) increases, the value ofCm

n usually
decreases, and only the �rst harmonics are measured to date15. These measurements can thus only con-
strain the internal state of giant planets, but is suf�cient to rule out some compositions and equation of
states (Chabrier et al. 1992; Saumon and Guillot 2004; Guillot 2005)

In our case, we know from Eq. (D.13) that the gravitational potential at the surface of the sphere of
radiusR̄1 can be expressed through thedimensionlessmass integrals (Eq. (D.12)), many of them being
equal to zero, and reads

VG(R̄1;q; f ) = �
GM1

R̄1

�
S0

0(R̄1) + Sm
n (R̄1)Ym

n (q; f )
�
: (3.30)

BecauseS0
0(R̄1) = 1, evaluating Eq. (D.14) at ˜s= 1 yieldsSm

n (R̄1) = sm
n (R̄1)+ mext = ( 1� hn) mext. Then,

solving the Dirichlet problem yields the potential outside the sphere

VG(r > R̄1;q; f ) = �
GM1

r

�
1� (hn � 1)

R̄n
1

rn mextYm
n (q; f )

�
; (3.31)

where the non spherical part is the potential induced by the deformation,Vind. For the same reasons that
in § 3.2.1, we can de�ne thepotential Love number,kn, as the linear response coef�cient

Vind(R̄1;q; f ) = knVext(R̄1;q; f ); (3.32)

which yields16

kn = hn � 1 =
n+ 1� ĥn

n+ ĥn
: (3.33)

Thus, for this perturbation

Cm
n = �

n+ 1� ĥn

n+ ĥn
mext = � knmext (3.34)
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(a) Isolated objects (b) Irradiated objects

Figure 3.2: Left: Potential Love number for isolated planets as a function of the planet mass (Mp)
at 100 Myr (dotted), 1 Gyr (dashed) and 5 Gyr (solid). Right: idem for strongly irradiated objects
(Finc = 4:18� 106W:m� 2). As contraction proceeds, the density contrast between the outer layers of
the planet and the center decreases, and thusk2 increases. Note the change in they scale between panels.
As irradiation retards the evolution, irradiated objects show the same behavior than the young isolated
object (dotted curve in the left panel).

andCm0

n0 = 0 for n06=n or m06=m17.

In order to provide a numerical estimates of the response of an actual planet, I thus integrated
these equations numerically on a full set of solar metallicity planetary models.The results are
summarized in Fig. 3.2.I �nd that the value of the Love number tends to decrease when mass increases
mass above 1 MJup. This is due to the fact that more massive objects are (i) more compressible and thus
more centrally condensed (See § 2.2.2), (ii) denser, with a larger surface gravity.Below this mass, the
k2 of isolated objects also increases when mass decreases. This is expected as we slowly tend toward the
incompressible limit ( ˜n = 0 ; see §2.2.2) for whichk2 = 3=2, as shown in AppendixD.

For irradiated objects, however, the value ofk2 starts to shrink at lower masses. This has two causes.
Most importantly, as already mentioned, irradiation retards the evolution. Like young isolated objects,
irradiated planets are more centrally condensed and less subject to perturbation. In addition, as discussed
in Chapter2, the strong stellar irradiation heats up and thus slightly in�ates the external layers of the
body. While there is not much mass in this zone, this is where a perturbation has the most important
effect18.

15For Uranus and Neptune, measurements made by the various �yby missions are signi�cant up toJ4, and up toJ6 for Jupiter
and Saturn.

16Note, that thekn = hn � 1 holds only because our body is in hydrostatic equilibrium without any elastic stress.
17 For a purely rotational distortion,c0

2 = w2
1=3 implyingmext = mrot=3, and

J2 = k2mext =
k2

3
w2

1R̄3
1

GM1
=

k2

3
mrot: (3.35)

By extension, one can de�neJ2 for a tidal perturbation by a secondary of mass which leads to

J2 = k2mtid = � k2
M2

M1

�
R̄1

r?

� 3

; (3.36)

but the reference axis is the line connecting the two center of mass and not the rotational axis. Note that, in this case,J2 is
negative, because the body is elongated along the symmetry axis, and not �attened.

18In other words, like the gravitational moments, the Love number is more sensitive to the density distribution in the outer
layers (Guillot 2005).
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Figure 3.3: Love number as a function
of the core mass for a 11M� planet, for
various effective temperature (Tint from
20 to 120 K by steps of 20 K ; more and
more spaced dashing).

As shown in Fig. 3.3, numerical simulations that I per-
formed with my numerical code CHESSalso show that, at
constant mass, a small enrichment in heavy elements to-
ward the center (possibly in a core) acts to decrease the
value of k2. In general, redistributing mass from the external
to the internal layers, which are less sensitive to the disturbing
potential, decreases the response of the body to an exciting po-
tential, which translates into a lowerk2. However, when the
core is large enough to reach the outer layer of the body,
k2 starts to increase again.Calculations are stopped around
Mc=M1 � 0:96 for numerical stability reasons. In principle, in
theMc = M1 limit, k2 should be larger than for the completely
gaseous object as is hinted by the large slope. This is due to the
fact that gas is much more compressible than ices or rocks. It
will however not reach 3/2 value reached for truly incompress-
ible matter19 as the ANEOS equation of state does predict a
small compressibility for high pressure "ices" (Thompson and
Lauson 1972).

While it is tempting to use these formula to compute, for
example, the response of the deformable body to all the suc-
cessive terms of the tidal disturbance and to add them linearly, one must be aware that this approach is
not fully justi�ed due to the fact that we have neglected all the cross correlation terms throughout the
calculation. The precision that we would gain by adding the contribution of a higher harmonic would be
lost by our poor description of the response to the lower order harmonics. Such cases require a higher
order theory like the one presented in AppendixE. It is however perfectly justi�ed to use this approach
to compute the response of a body to a sum of disturbing potential having different axes of symmetry but
being of the same importance. Such an example is presented hereafter.

3.2.3 Application to close binaries: Combined effect of tidal and rotational disturbances

Because our theory is linear, the calculation of the equilibrium shape of an object undergoing several
different perturbations at the same time reduces to the problem of �nding the response to each separate
perturbing potential and adding them linearly20. However, if this seems correct to add Eqs. (3.35) and
(3.36) to obtain the totalJ2 of a body in a close binary, we must remember that the tidal and rotational
deformations do not have the same axis of symmetry in general.

In order to correctly add these contribution, as presented inLeconte et al.(2011b), I thus had to carry
out a change of coordinates. Takingq as the colatitude andf as the longitude of the body considered,
the quadrupole moment of the external gravitational potential (Eq. (3.26)) in the linear approximation, is

19Because we intuitively picture incompressible objects as being solid (like terrestrial planets), it seems a little counter
intuitive thatk2 reaches its maximum in this limit. We must remember, however, that this remains true only in the hydrostatic
case, i.e. when the cohesion is ensured by gravity alone. For terrestrial planets, the elastic modulus of the bulk imposes a lower
tidal response (k2 � 0:33 for the Earth). This also reminds us that our formalism does not apply to such low mass terrestrial
planets for which hydrostatic equilibrium is not fully achieved.

20This linear behavior as been veri�ed with the analytical polytropic model ofLai et al.(1993) andLeconte et al.(2011b),
for which calculating the response to a sum of perturbations or adding the response to each perturbation yields exactly the same
result.
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given at the surface by
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whereq0 is the angle between the current point and the line connecting the two center of mass (also
called the substellar point for a planet). For the coplanar case where the tides raising object orbits in the
equatorial plane of the distorted body, cosq0= sinq cosf and thus
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All the other moments are equal to 0. Similar decompositions can be used to infer the precise shape of
the surface from a sum of perturbing �elds. This gives

r(R̄1;q; f )
R̄1

= 1� h2

�
1
2

mtid +
1
3

mrot

�
Y0

2 (q; f ) +
h2

4
mtidY2

2 (q; f ); (3.41)

and thus, at the surface,
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Note that to use these relations, one must already know themeanradius of the object. In general, if
rotation is present, this requires to solve numerically the hydrostatic equilibrium of the body for each
value of the rotational perturbation (mrot), and is thus very computationally intensive.To overcome this
limitation, when a high precision is not needed, we can however rely on a completely analytical model
such as the one that I will describe in §3.4, and use in §3.5(Leconte et al. 2011b).

3.3 Gravitational sounding of extrasolar planets

As already mentioned in §2.4.4, characterizing precisely the composition of a giant planet requires
many parameters. In addition, because the large thermal expansion coef�cient of the gas cannot be
neglected, the age of the object must also be known, andthis degeneracy prevents a precise determination
of the composition from the position of the planet in the mass-radius diagram alone(Adams et al. 2008).
However, we can still roughly constrain the composition from the knowledge of (M1;R1; t) if
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� we reduce the parameter space describing the composition of the planet (e.g. by assuming the
object to be composed of a Solar abundance H/He gaseous mixture surrounding a homogeneous
core of a given material).

� we assume that no bloating mechanism is at work (see §2.4.4for details).

If one wants to go further and relax one or the other of these assumptions, new observables must be
measured. As will be detailed in Chapter4, in the Solar System, these additional constraints are provided
by in situ measurements of the composition and atmospheric thermal pro�le, and the determination of
the gravitational moments (J2, J4, ...). While it was thought that such measurements would remain out
of reach for exoplanets, it has been shown that tides in the planet (whose amplitude is proportional tok2)
can lead to characteristic quasi-equilibrium orbital states in multi-planet systems (Mardling 2007), and
transit timing variations (Ragozzine and Wolf 2009), making possible the determination ofk2.

In particular, as discussed byRagozzine and Wolf(2009), values of the Love number on the order
the one found in §3.2.2could be measured through the precession rate of very Hot Jupiters on eccentric
orbits. Such measurements could be carried out byKepler for WASP-12 b analogs with an eccentricity
> 3 � 10� 4 (most favorable case) or Tres-3 b analogs with an eccentricity> 2 � 10� 3 (for k2 � 0:3)
and lower eccentricities for higher Love number values, and should reach a precision of a few percents.
On the other side, if the accuracy of the method proposed byMardling (2007) is limited if the distant
companion is not transiting, With 170 multi-transiting planet system candidates announced recently by
Borucki et al.(2011), our ability to measure exoplanets tidal response should soon reach an unprece-
dented precision.

(a) k2 maps (b) Mc constraints

Figure 3.4: (a) Mapping of the Love Number as a function of the effective temperature (Tint) and mass of
a water core (Mc) for a Neptune mass planet. The dashed lines are the iso-radii curves. (b) Mass fraction
of water core (Mc=M1) retrieved for a given (R1;k2). The parameter space that is not covered by the grid
is left blank.

While this is only awork in progress, in Fig.3.4, I attempt to outline the possible yields of a
measurement ofk2 on our knowledge of an exoplanet structure.In this example, I relax the assumption
on the evolution while still considering a simple 2-layer planetary model.The planet structure is then
entirely determined by three parameters, namely its mass, effective temperature and core mass fraction.I
thus used my numerical code to compute a large grid of structure models covering this parameters
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space and estimate several mechanical characteristics of the object modeled, such as the radius
and k2. Fig.3.4.a shows an example of such maps for a Neptune mass planet.

Because iso-radii and iso-k2 contours are not parallel in most of the parameter space, the
knowledge these two quantities makes the determination of bothTint (constraining the age of the
object) and Mc=M1 possible(as shown in Fig.3.4.b, where only the core mass is shown). For large
core masses, however, both contours follow the same direction. This is because the thermal expansion
coef�cient of the core is much smaller than the one of the envelope, as can be inferred from the fact
that iso-radii curves are mostly vertical in Fig.3.4.a. The structure only weakly depends onTint and, as
a result, this parameter cannot be retrieved. On the other hand, in this limit, the core mass fraction can
more easily be linked to the mean density.

Then, ultimately, it will be possible to include additional constraints, such as the age of the system,
to get more information about the internal composition. Of course, let us conclude by noting that, because
of the highest number of free parameters in the �nal, more realistic model, and of the observational
uncertainties, such constraints on the interior composition will have to be inferred in a statistical sense.

3.4 An analytical model: ellipsoidal polytropes

As mentioned in §3.2.3, one of the limitations of the numerical approach developed previously is
that the �nal meanradius cannot be computed from the spherical equilibrium radius by these relations
alone. This is particularly critical when one is interested in predicting the absolute radius that an observed
object would have if it were isolated and at rest. Indeed, this is theequilibrium radius R1 that needs to be
compared to the output of evolutionary codes when, for example, trying to quantify the radius anomaly
of observed transiting planets.

To overcome that limitation, in Leconte et al.(2011b), I modeled giant planets by self similar
ellipsoidal polytropes,as �rst done byLai et al.(1994) for white dwarfs and neutron stars,and showed
that this analytical model yields rather accurate results provided that the effective polytrope index
of the object (ñ ; see §2.2.2) be known.This theory is based on the minimization of the total energy of
the binary

Etot = U1 + U2 + W1 + W2 + T + W1�2 ; (3.43)

whereU andW are the internal and self gravitational energy of each component,T is the total kinetic
energy (including both the orbital motion and the spin of each object), andW1�2 the gravitational inter-
action between the objects.

As this total energy can be easily expressed as a function of both the shape and the mean radius,
the minimum energy principle directly yields an approximate formula for these. In addition, because it
is easy to cut off the perturbation in these formulae, we also have access to theequilibrium radius(R1).
As shown inLai et al.(1994), to �rst order inmrot andmtid

21
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qñmrot �
5
4

qñmtid; (3.44)

21To �rst order, it is equivalent to use themeanor theequilibriumradius in de�ningmrot (or mtid).
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whereqñ is a function of the polytropic index de�ned inLeconte et al.(2011b). This implies that

R̄1

R1
= 1+

2
3

ñ
3� ñ

qñmrot (3.45)

As expected, to �rst order, the tides do not change the volume (and thus the mean radiusR̄1 = 3
p

a1a2a3)
of our ellipsoid, and only the rotation has a net effect. As expected, the volume variation also vanishes
for an incompressible object ( ˜n = 0).

While these expressions necessitate a stronger level of approximation than the mere hydrostatic
equilibrium used in the complete theory of �gures,I have shown in Leconte et al.(2011b) that, con-
sidering our poor knowledge of the metal enrichment of extrasolar gas giant planets (particularly
about the presence or not of a differentiated central core), such a simpli�ed model is satisfactory
to infer the impact of the shape of close-in exoplanets on their transit light-curve, as done below.
In addition, these formulae are more accurate than the one yielded by a Roche approximation, as the
retroaction of the distortion of each body on the gravitational �eld is taken into account(Zahn et al.
2010).

3.5 Distorted exoplanets: Implications for observations

Because the tidal bulge raised by a star on its low mass companion is aligned with respect to the
axis joining the two objects, when planet transits across the stellar disc, we expect to see thesmaller
cross section of its actual ellipsoidal shape so that the depth of the transit isdecreasedwith respect to the
expected signal for a spherical object.This implies that the radius inferred from the light curve analysis,
derived under the assumption of spherical planet and star, shouldunderestimatethe real equilibrium
radius of the object.This bias needs to be corrected for a proper comparison with theoretical 1D numer-
ical simulations of the structure and evolution of extrasolar planets and enhances the actual discrepancy
between theory and observation for the so called "bloated" planets.This is why, in the following sec-
tion, I will quantify the impact of the non sphericity of the planet and star on the depth of the light
curve, and the resulting bias on the radius determination.

Figure 3.5: Schematic representation of the impact of the non-spherical shape of the planet on its cross
section. For the same equilibrium radius, the close in planet is seen smaller during transit.
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3.5.1 Transit depth variation

When limb darkening is ignored, the depth of a transit is given by the ratio of the planetary and
stellar projected areas. When both bodies are spherical, this simply reduces todL?=L? µ (Rp=R?)2.
For close-in planet-star systems, however, both tidal and rotational deformations yield a departure from
sphericity, so that what is measured is no longer the mean radius but aneffective"transit radius" de�ned
such that the cross section of the planet is equal topR2

tr;p and similarly for the star. Thus the transit depth
reads

dL?

L?
=

�
Rtr;p

Rtr;?

� 2

: (3.46)

In general, the projected area of an ellipsoid can be computed for any orientation and then
at each point of the orbit, as demonstrated in AppendixF. Figure3.6shows the projected area of the
planet (pR2

tr;p) as a function of its anomaly (f) normalized to the spherical case (pR2
p). When the planet

is seen from its "side" (f=p = 0:5), the observer sees a bigger planet because the rotation of the latter
on itself tends to increase its volume. The possibility to measure these effects from the light curve is
discussed inRagozzine and Wolf(2009) andCarter and Winn(2010a).

Figure 3.6: Normalized projected area of the planet as a function of its anomaly (f) for inclinations
of the orbit going fromi = 90� to i = 0� by steps of 10� for a WASP-12 b analog on a circular orbit.
Top: For the full orbit. Bottom: zoom on the (primary or secondary) transit (ichanges by steps of 5� ).
The ordinates of the dotted, solid and dashed horizontal lines are respectivelya1a2=R2

p (face-on orbit),
a1a3=R2

p anda2a3=R2
p. Revised �gure from Leconte et al.(2011b).

For the simple case of an edge-on orbit at mid transit (f= 0), since the observer, the planet and
the star are aligned with the long axis of the tidally deformed ellipsoid22;23, Rtr;p = p a2;pa3;p andRtr;? =
p a2;?a3;? (see § 3.1.5 for the de�nition of theai). Therefore,

dL?

L?
=

a2;pa3;p

a2;?a3;?
�

�
Rp

R?

� 2

� (1+ TDV); (3.47)

whereRp andR? are the respective radii the planet and the star would have in spherical equilibrium (the
R1 de�ned above) and TDVis by de�nition the transit depth variation induced by the ellipsoidal shape

22This is still veri�ed to �rst order in f andi � p
2 as only second order terms appear.

23In the following, the variables have the same meaning as earlier with p indices when referring to the planet and? to the star
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of the components relative to the transit depth in the spherical case. This is given by

TDV =
a2;pa3;p

R2
p

R2
?

a2;?a3;?
� 1; (3.48)

where theai=R1 are given by Eq. (3.44) which depend (throughmrot;p andmrot;?) onr?, wp andw?. How-
ever, most of the planet hosting stars have a low rotation rate compared to the orbital mean motion. This
entails that the rotational deformation is negligible compared to the tidal one and can generally be ne-
glected. As discussed in Chapter5, hot Jupiters should be pseudo synchronized early in their evolution24.
Therefore, we will assume such an approximation in our calculations in order not to introduce any other
free parameter. Under such an approximation,

TDV = �
1
3

qp (1+ p)mrot;p

�
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�
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4ñp
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��
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R3

?

r3
?

; (3.49)

where the parameterp now denotes the mass ratioMp=M?, andqp andq? are equal toqn for ñ = ñp and
ñ = ñ?, respectively. The �rst line in the above equation represents the contribution of the planet, which
is always negative (for reasonable values of ˜np). Our line of sight follows the long axis of the tidal bulge
and we see the minimal cross section of the ellipsoid.

The contribution of the star is positive and, in most cases, negligible compared the planet's contri-
bution because

R3
?

R3
p

p2

1+ p
� 1;

for a typical system (10� 3 for a Jupiter-Sun like system). As a consequence, the results presented here-
after do not depend onq? as long as realistic values of ˜n? 2 [1:5; 3] are taken.

Figure 3.7 portrays the relative transit depth variation computed with Eq. (3.49) for several
planet masses as a function of the orbital distance, for a Sun-like parent star. While I computed
all the curves for an age of 1 Gyr, they do not change much for older ages because both the radii
and the polytropic indices remain nearly unchanged after 1 Gyr (see Fig.2.7). Given the accuracy
of the radius determination achieved by the latest observations (1 to 10%),the transit depth variation
is signi�cant for Saturn mass objects (Mp � MJup=3) closer than 0.04 AU and Jupiter mass objects
closer than 0.02-0.03 AU.Because the equations are derived to �rst order, the value of TDV derived
from the analytical model should be taken with caution when TDV& 0:1 � 0:3 (and are clearly not
meaningful for TDV& 1). In this regime, corresponding to the upper left region of Fig.3.7, one should
use the theory of planetary �gures to higher order, but then numerical calculations become necessary,
loosing the advantage of our simple analytical expressions.

Figure3.7also displays the transit depth variation computed for the most distorted known transiting
exoplanets, with the observationally measured parameters. The error bars re�ect the uncertainties in the
model and in the measured data.

3.5.2 Radius determination bias

Unfortunately, transit measurements only give access to the projected opaque cross section of the
planet (� pR2

tr;p) de�ning a "transit radius" which depends on the shape of the planet, its orientation

24If the rotation of the object is synchronous with the orbit, thenw2
1 = G(M1 + M2)=r3?, andmrot = ( 1+ M1=M2)mtid.
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Figure 3.7: Relative transit depth variation TDV computed with Eq. (3.49) as a function of the semi-
major axis at 1 Gyr for planets of mass: 0.3MJup (dotted), 0.5MJup (dashed), 1MJup (dash-dotted), 3MJup

(long dashed), 15MJup(solid). The shaded area shows the zone where higher order terms become non-
negligible. The decrease of the transit depth due to tidal interactions is smaller when the mass of the
planet increases because massive objects are denser and more compressible (see §4) and thus less subject
to non-spherical deformations.Figure fromLeconte et al.(2011b).

during the observation and the wavelength used. To convert this transit radius inferred from the obser-
vations (Rtr;p) to the spherical radius (Rp) - that can be compared to 1D numerical models - one must
eliminatedL?=L? from Eqs. (3.46) and (3.47). As shown above, the stellar impact on TDV is negligible
compared to the planet's contribution (Rtr;? � R?). Then, using the �rst term in Eq. (3.49) and expanding
the expression giving the de�nition ofRtr;p, one gets

Rp � Rtr;p �
�

1�
TDV

2

�
: (3.50)

For the most distorted known planets, the relative variation between the transit radius and the equilibrium
radius

DR=R� (Rp � Rtr;p)=Rtr;p � � TDV=2

is positive and amounts to 3.00% for WASP-12 b, 2.72% for WASP-19 b, 1.21% for WASP-4 b, 1.20%
for CoRot-1 b, 0.89% and OGLE-TR-56 b25.

To conclude, through this analysis, I showed that the departure from sphericity of the transit-
ing planets produces a distortion of their transit light curves from which many of their parameters

25Of course, since TDVµ (Rp=r?)3, Eq. (3.50) is an implicit equation onRp. To obtainRp to the sought accuracy, a pertur-
bative development in powers of TDVtr = TDV(Rp = Rtr;p) can be obtained using recursively Eq. (3.50)

Rp

Rtr;p
� 1�

TDV(Rp)
2

� 1�
TDVtr

2
+

3TDVtr
2

4
�

3TDVtr
3

2
+ O(TDVtr

4): (3.51)

However, terms of order TDVtr2 are of the same order than the second order corrections to the shape that we have neglected
throughout.
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are measured. In particular, the radius inferred from the light curve analysis always underes-
timates the real equilibrium radius, possibly by up to 5% for the closest planets detected so far
(. 0:05AU), enhancing the aforementioned radius anomaly.

3.6 Conclusion

Because of the large variety of exoplanetary systems presently discovered, with many more ex-
pected in the near future, and the increasing accuracy of the observations, it is important to take into
account the changes in the dynamical and observable properties of exoplanets arising from their non-
spherical deformation, due to rotational and/or tidal forces. Indeed, such deformations not only yield a
decrease of the transit depth, but also perturbs the orbital evolution of the system, possibly leading to
a measurement of the tidal response. In order to correct for, or take advantage of these properties, it is
primordial to be able to compute eithernumerically(§ 3.2) oranalytically(§ 3.4 ; see alsoLeconte et al.
2011b) the shape and potential of planets and stars in any con�guration from the knowledge of only
their mass, orbital separation and one single parameter describing their internal structure (either theLove
number k2, or theeffective polytropic index, ˜n, that was discussed in Chapter2). The main problem being
to have an accurate value for one or the other of these quantities.

To that purpose, I performed numerical simulations to calculate theLove numberof substellar
object for a wide range of masses (from a saturn mass to the Hydrogen burning minimum mass),
ages and irradiations. As for the determination of the effective polytropic index in Chapter2, the
inferred values ofk2 presented in §3.2 give us insight on the way the mechanical structure of gaseous
substellar objects changes with age and mass.Using my numerical codeCHESS, I also started to
investigate the impact of heavy element enrichment on the tidal response of giant planets, and
demonstrated on a test case how one could take advantage of these models to infer a core mass
from k2 measurements (§3.3).

In § 3.4, I showed however that, inferring the absolutemeanradius of a given object from
its equilibrium radius cannot be done with the knowledge ofk2 alone, but that this limitation can
be overcome with an analytical model based on homologously distorted polytropes (Leconte et al.
2011b). I �nd that this analytical model can easily be used to determine the impact of the absolute shape
of the planet on its phase curve and on the shape of the transit light curve itself (Carter and Winn 2010a).
It can also be used to model ellipsoidal variations of the stellar �ux that are now detected in the CoRoT
and Kepler light curves (Welsh et al. 2010).

Finally, in § 3.5, using this analytical model, I also showed that departure from sphericity of
the transiting planets produces a bias in the determination of the radius. For the closest planets
detected so far (. 0:05AU), the effect on the transit depth is of the order of 1 to 10% (see Fig.3.7),
by no means a negligible effect.The equilibrium radius of these strongly distorted objects can thus
be larger than the measured radius, inferred from the area of the (smaller) cross section presented to
the observer by the planet during the transit. Combining the analytical formulae presented inLeconte
et al.(2011b), and the characteristic polytropic index values derived in §2.2.2for various gaseous planet
masses and ages, allows to easily take such a correction into account. Interestingly, since this equilibrium
radius is the one computed with the 1D structure models available in the literature, the bias reported here
still enhances the magnitude of the puzzling radius anomaly (see Fig.2.10) exhibited by the so-called
bloated planets.
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While conventional interior models for Jupiter and Saturn are based on the simplistic as-
sumption of a solid core surrounded by a homogeneous gaseous envelope, in this chapter, I derive
new models with an inhomogeneous distribution of heavy elements, i.e. a gradient of composition,
within these planets. Such a compositional strati�cation hampers large scale convection which
turns into double-diffusive convection, yielding an inner thermal pro�le which departs from the
traditionally assumed adiabatic interior, affecting these planet heat content and cooling history.

To address this problem, after a brief review of the onset of the double diffusive instability
in § 4.1, in §4.2, I develop an analytical formalism of layered double-diffusive convection based
on the mixing length theory, and derive analytical asymptotic solutions for the convective ef�-
ciency and the super-adiabaticity in the medium (§4.2.3). By simple considerations, I also derive
analytical constraints on the range of possible values for the size of the convective/diffusive cells
(§4.2.4).

Then, in §4.4, I apply this formalism to Solar System giant planet interiors. These models
satisfy all observational constraints and yield a metal enrichment for our gaseous giants up to 30
to 60% larger than previously thought. As the heavy elements tend to be redistributed within the
gaseous envelope, the models predict smaller than usual central cores inside Saturn and Jupiter,
with possibly no core for this latter.

These models open a new window and raise new challenges on our understanding of the
internal structure of giant (solar and extrasolar) planets, in particular the determination of their
heavy material content, a key diagnostic for planet formation theories.

The results of this chapter have been submitted toAstronomy & Astrophysicsin A new vision
on giant planet interiors(Leconte and Chabrier 2011).
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Traditionally,GIANT PLANET MODELS have always been
based on two major speci�c assumptions con-
cerning their inner pro�le, essentially for rea-

sons of simplicity in the planet's modeling (see e.g. Stevenson 1985). It is conventional to assume (i)
that the inner structure of our giants consists of a few - generally 2 to 3 - superposed, well separated,ho-
mogeneousregions, namely, going from the planet's center to the surface, a central solid rocky/icy core,
and a surrounding largely dominantly H/He gaseous envelope, often split into an inner metallic region
and an outer atomic/molecular one ; the more dense components are always supposed to have quickly
settled into the central core under the action of gravity ; (ii) that planetary interiors are adiabatic, based
on the fact that the giant planet heat �ow must be transported by convection (Hubbard 1968). All the
present determinations of the internal - chemical, mechanical and thermal - structures of the Solar sys-
tem planets, including their heavy material content, are derived assuming such homogeneously strati�ed,
adiabatic interiors (Saumon and Guillot 2004; Fortney and Nettelmann 2010).

Giant planet interiors, however, might depart from this conventional, simpli�ed description, be-
cause of complex processes for which we lack an accurate description but which may very well be at
play in real situations (Stevenson 1985). In this paper, we derive interior models for Jupiter and Sat-
urn which relax the aforementioned preconceptions. Instead of the homogeneous layer assumption, we
explore the possibility of a mixed,inhomogeneoussolid-gas interior composition, leading to a heavy
material gradient throughout the planet. This in turn means that gravitational sedimentation of heavy
material is counterbalanced by diffusive/convective transport processes and thus that compositional gra-
dients lead to signi�cant departure from global adiabaticity in the interior, reducing heat transport. As
shown below, these models do ful�ll the planet observational constraints while leading to (i) a signi�-
cantly larger metal content and (ii) signi�cantly larger internal temperatures than the one inferred from
homogeneously strati�ed adiabatic models. This opens a new vision on planet structure, evolution and
formation ef�ciency. Such inhomogeneous interior pro�les for Solar System giant planets had brie�y
been suggested several decades ago by Stevenson (Stevenson 1985) but no attempt has ever been made
to derive consistent models and to verify whether such models would be consistent with the planet vari-
ous observational constraints. This scenario has been revived recently in the context of extrasolar plan-
ets and has been shown to provide a possible explanation for the anomalously large observed radii of
many of these bodies (Chabrier and Baraffe 2007). Indeed, as mentioned above, not only an inhomoge-
neously strati�ed interior yields a different interior structure and global metal content, but it decreases
heat transport ef�ciency throughout the planet's interior and thus affects its cooling, thus its mass-radius
relationship at a given age, a crucial diagnostic to understand (transiting) extrasolar planet structure and
evolution. Since, as mentioned earlier, only loose constraints on the object's internal composition are
accessible for gaseous exoplanets, it is crucial to verify whether such unconventional internal structures
are a viable possibility for our own giants. Furthermore, determining the maximum possible amount of
heavy elements in Jupiter and Saturn and their distribution within the planet are important diagnostics to
understand how our own Solar System giants formed.
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4.1 Linear stability analysis

In order to introduce the various relevant quantities in a simple way, I �rst derive the criterion for
the presence of overturning convection and the onset of the double diffusive instability.

4.1.1 Adiabatic criterion

It is well known that, when thermal diffusivity and viscosity can be neglected, an homogeneous
medium is stable against convective motion if theSchwarzschildstability criterion (orSchwarzschild
Härm criterion) is ful�lled, i.e. if

Ñad > ÑT ; (4.1)

whereÑT � d lnT
d lnP is the thermal gradient, andÑad � ¶ lnT

¶ lnP

�
�
�
ad

is called the adiabatic gradient. How-

ever, concerning the criterion to use in presence of a compositional gradient, there is still a debate. If
Schwarzschild and Härm (1958) proposed to keep on with theSchwarzschild stability criterion,Sakashita
and Hayashi(1959), for example, suggested a new criterion, initially proposed byLedoux(1947), stating
that the (destabilizing) super adiabaticity in the medium must be large enough to counteract the stabiliz-
ing effect of a mean molecular weight gradient. In mathematical terms, theLedouxcriterion reads

Ñad > ÑT �
am

aT
Ñm or Ñad�

cm

cT
Ñm > ÑT ; (4.2)

whereaT � � ¶ lnr
¶ lnT
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�
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, am � ¶ lnr
¶ lnm
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�
�
P;T

, cm � ¶ lnP
¶ lnm

�
�
�
T;r

andcT � ¶ lnP
¶ lnT

�
�
�
r ;m

1. In general, areas which

are bothLedoux stableandSchwarzschild unstableare calledsemi-convectivezones. If no convective
mode can seem to grow in these zones in our basic picture, it is not so when �nite thermal and solute
diffusivities are taken into account. Our modeling is too simple. We thus have to rely on a more complex
stability analysis.

4.1.2 General linear stability analysis of the double diffusive instability

To have a better description of the onset of the double diffusive instability, we will carry a linear
analysis similar to the one described by Stevenson (1979a). For brevity, as we will only consider a mono
dimensional approach of convection, we will not concern ourselves with rotation or magnetic �eld, even
if these two ingredients have a signi�cant in�uence on convection (Busse 1976). We consider an in�nite
medium in a rotating frame in which the unperturbed state is at rest. The mean �eld is characterized by a
uniform gravity �eld g. The velocity, pressure, temperature and density perturbations are denoted bydv,
dp, dT anddr . In addition, we can have a chemical composition perturbation,d m. In practice,d mcan
be the mean molecular weight change due to a chemical concentration change (and not due to ionization
which is already taken into account into the equation of state) or the mass fraction of the constituent
under consideration, but any other dimensionless parameter describing the chemical composition can be

1For a perfect gas, all these thermodynamic derivatives are equal to 1 (exceptcm = � 1). In the following, this is the values
that we will use in our numerical examples when needed.



Linear stability analysis 85

used. The linearized Boussinesq equations are then

Ñ� dv = 0; (4.3)

¶tdv = �
1
r

Ñdp+
dr
r

g+ nÑ2dv; (4.4)

¶tdT = kTÑ2dT + dv � ẑ(ÑT � Ñad)
T
HP

; (4.5)

¶td m= DÑ2d m+ dv � ẑÑm
m
HP

: (4.6)

D, kT andn are the solute, thermal and cinematic viscosities (or diffusivities, in m2s� 1). ẑ is the vertical
unit vector directed upward (such asg = � gẑ), andHP � � dz

d lnP is the pressure scale height. A closure
equation is provided by the equation of state which yields for the density perturbation

dr
r

=
�

am
d m
m

� aT
dT
T

�
: (4.7)

Let us search for plane waves solutions of the formdv µ eik� r+ s t ; and introduce it in the previous equa-
tions2. After some vectorial algebra, this yields

k � dv = 0; (4.8)

(s + nk2)dv = � i
k
r

dp+
dr
r

g; (4.9)

dT =
(ÑT � Ñad)
s + kTk2

T
HP

dv � ẑ; (4.10)

d m=
Ñm

s + Dk2

m
HP

dv � ẑ: (4.11)

Eliminating all the variables but the velocity perturbation and taking the cross product of Eq. (4.9) with
k we have

�
s + nk2�

k � dv =
dr
r

(k � g): (4.12)

De�ning the following frequencies3 N2
T �

g
HP

aT (ÑT � Ñad) and N2
m �

g
HP

amÑm ; we get

�
s + nk2�

k � dv =

 
N2

T

s + kTk2 �
N2

m

s + Dk2

!

(dv � ẑ)(k � ẑ): (4.13)

This rewritesA � dv = 0 with

A = ( s + nk2)

0

B
B
B
B
B
B
B
B
@

0 � kz ky

0

@1�

�
N2

T
s + kT k2 �

N2
m

s + Dk2

�

s + nk2

1

A

kz 0 � kx

0

@1�

�
N2

T
s + kT k2 �

N2
m

s + Dk2

�

s + nk2

1

A

� ky kx 0

1

C
C
C
C
C
C
C
C
A

: (4.14)

2Note that, with this de�nition, ifs is real and positive (negative), the perturbation grows (is damped) exponentially. Ifs
is complex, the perturbation oscillates, but its amplitude can still grow if the real part, Re(s) is positive. In the following, the
termgrowth ratewill refer to Re(s).

3But remembering that this refers to a true frequency only ifN2
T < 0. In this case,NT = iNBV whereNBV is the well known

Brunt-Väisälä frequency.
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Finally Det A = 0 yields the dispersion relation

s + nk2 =
k2

?

k2

 
N2

T

s + kTk2 �
N2

m

s + Dk2

!

; (4.15)

wherek? is the horizontal part of the wave vector (k? = kx + ky). It can be shown that, in this case, the
most unstable mode always occurs when the vertical wavenumber is equal to zero, i.e. whenk? = k
(Walin 1964). This corresponds to an elevator mode, which is not surprising as all the forcing follows
the vertical direction. Then restricting ourselves to this case, we get

(s + nk2) (s + kTk2) (s + Dk2) � N2
T (s + Dk2) + N2

m(s + kTk2) = 0: (4.16)

There are several possibilities to non-dimensionalize this equation. Anticipating the length scale of the
fastest growing modes, we will use the thermal diffusion scale

d =
q

kT=NT
; (4.17)

and the diffusion time,d2=kT = N� 1
T . Then usingk = k̃=d= k̃

p
NT=kT ands = NT s̃ , we get

(s̃ + k̃2) ( s̃ + Pr k̃2) ( s̃ + t d k̃2) � (s̃ + t d k̃2) + R� 1
0 (s̃ + k̃2) = 0; (4.18)

where

Pr � n=kT
; (4.19)

is thePrandlt number,

t d � D=kT
; (4.20)

is the solute to thermal diffusivity ratio (or inverseLewisnumber), and

R0 �
�

NT=Nm

� 2
=

aT

am

ÑT � Ñad

Ñm
; (4.21)

is the so-calleddensity ratio(Rosenblum et al. 2011).

For a given material (i.e.Pr andt d are �xed), there are three different regimes that are summarized
in Fig. 4.1

� R� 1
0 < 1 ; the cubic Eq. (4.18) have three real roots, two being positive for small enough values

of the wavenumber. The instability can grow and overturning convection sets in, as was already
predicted by theLedouxcriterion. Because the maximum growth rate is obtained for a vanishing
wavenumber, this analysis cannot provide us with the typical lengthscale of the fastest growing
mode.

� 1 6 R� 1
0 6 Pr+ 1

Pr+ t d
; the real root of Eq. (4.18) is negative and the instability cannot grow as above.

However, one of the complex roots exhibits a positive growth rate, so that an oscillating overstable
mode can grow. This corresponds to the situation where a hotter rising eddy looses its thermal
energy ef�ciently enough to be colder when it is brought back to its position by its increased mean
molecular weight . Thus, during its downward motion, the eddy will sink deeper, and increase the
amplitude of the oscillations.

� R� 1
0 > Pr+ 1

Pr+ t d
; the growth rates of all the roots are negative. The system is stable against convection.
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(a) Overturning convection (b) Double diffusive convection (c) Stable system

Figure 4.1: Growth rate of the modes described by Eq. (4.18) with respect to the wavenumber forPr =
t d = 0:3 in the three different regimes (see text). Solid curves stand for real roots (unstable modes if
positive) and dashed curves for their real part when the roots are complex (overstable modes).

Figure 4.2: Dimensionless wavenum-
ber (̃k ; dashed) and growth rate
(Re(s̃ ) ; solid) of the fastest growing
overstable mode with respect to the in-
verse density ratio (R� 1

0 ). The length
scale of the fastest growing mode is
about 12d.

In the double diffusive mode, we can even go further. By
maximizing the real part of̃s over all wavenumbers, we can
�nd the most unstable mode in the system. Fig.4.2 shows its
wavenumber and growth rate forPr = t d = 0:3. By and large,
the most rapidly growing mode has a wavelength of the order
of 12d regardless ofR� 1

0 for the parameters selected. As ad-
vertised, the length scale of the fastest growing mode is on the
same order of magnitude than the diffusive length scale.

Thus, this simple linear analysis shows that the Ledoux
criterion is not suf�cient to decide of the stability of an in-
homogeneously strati�ed medium. However,we cannot pre-
dict the �nite amplitude that the perturbation will reach when
the instability is fully developed. Under Earth conditions,
double-diffusive leads to layered convection, i.e. uniformly
mixed convective layers separated by thin diffusive interfaces
characterized by a steep jump in the mean molecular weight, as
observed in oceans or in laboratory experiments. Under giant
planet interior conditions, however, the exact nature of double
diffusive convection if it occurs -homogeneous oscillatory con-
vection or layered convection- remains uncertain (Rosenblum
et al. 2011).Various arguments (Chabrier and Baraffe 2007)
and 3D hydrodynamical simulations (Rosenblum et al. 2011), however, seem to support the existence of
layered convection under planetary conditions.In any event, both homogeneous double-diffusive con-
vection or layered convection (generically denominated as "semi-convection" in the following) are found
to yield thermal and compositional �uxes that are signi�cantly smaller than that expected from standard
convection. Indeed, the presence of diffusive interfaces strongly decreases the ef�ciency of heat transport
compared with large-scale, adiabatic convection, leading in the planet's interior to a signi�cant departure
from the usual adiabatic pro�le, as quanti�ed hereafter.
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Figure 4.3: Schematic representation of the interiors of Jupiter and Saturn, according to the present study,
and of layered convection, with the resulting compositional and thermal radial pro�les. The abundance
of metals is constant within the well mixed convective cells of sizel , and undergoes a steep variation
within the diffusive interfaces of thermal sizedT (grey regions). Thanks to this steep gradient, these
interfaces are stable against convection and energy and matter are transported therein by diffusive pro-
cesses. Because the size of these diffusive layers is very small compared with the size of the planet, the
mean thermal and compositional gradients (hÑT i andhÑmi ) can be used in good approximation to infer
the global planet structure.

4.2 A mixing length theory for layered convection

In order to investigate the impact of such strongly hampered convection on giant planet inter-
nal structure, I developed a simple, but completely analytical sub-grid model based on the Mixing
Length Theory (MLT) of convection.

As illustrated on Fig.4.3and found in simulations (Rosenblum et al. 2011), we consider that a semi
convective zone consists of a large number,Nl , of well mixed convectively unstable layers of sizel ,
separated by thin diffusive interfaces ofthermalthicknessdT , within which the large stabilizing compo-
sitional gradient completely inhibits convective motions. Within each convective layer, the convective
�ux is assumed to be described by the MLT formalism (Hansen and Kawaler 1994; see AppendixG for
details), with a typical mixing length equal to the size of the layer,l . The dimensionless mixing length
parameter is de�ned as usual in the MLT formalism by dividingl by the pressure scale height,a � l=HP.

In §4.2.1, I will �rst derive the equations describing separately the energy transport in the diffusive
and in the convective layers. Then, in §4.2.2, I will show how these formulas can be used to derive the
mean properties of a stack of convective/diffusive cells. As these equations take a polynomial form, I
will show in §4.2.3that the solutions can be expressed in terms of power laws in the two limit regimes
of interest. Finally, considering some physical limits that must apply to semi-convection inside giant
planets, I will derive analytical limits on the possible range of sizes for the convective/diffusive cells
(§4.2.4).

4.2.1 Transport in each layer

In the stably strati�ed regions of sizedT , the thermal gradient in Eq. (4.56),ÑT , corresponds to
a gradient characteristic of adiffusiveprocess, i.e. the thermal gradient needed to transport the whole
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outgoing energy �ux by diffusion is given by

Ñd �
1

kT

HP

r cPT
Fint: (4.22)

As discussed in §1.1.4, this gradient encompass both the radiative and conductive transport processes.

In convectively unstable zones, once a mixing length parametera is chosen, the thermal gradi-
ent can be computed with the MLT equations as described in AppendixG. The convective forcing is
characterized by

F �
aT gH3

P

k 2
T

a 4 (Ñd � Ñad): (4.23)

For sake of compactness, we introduce

ed � Ñd � Ñad; (4.24)

and rewrite Eq. (4.23) as

F � F 0a 4ed: (4.25)

It is clear from Eq. (4.23) thatF 0 is a local constant of the medium, which characterizes its ability
to transport energy by convection, independently of the mixing length or of the �ux to be transported
(µ ed). Once the convective forcing is determined everywhere in the structure, we want to determine the
actual convection ef�ciency,L de�ned by Eqs. (G.5) and (G.18) which rewrites

L � N2
T l4=k2

T = F 0a 4eT ; (4.26)

where

eT = ÑT � Ñad: (4.27)

Then, eitherL or eT can be considered as the unknown of our central equation

F = L +
�

L 1=2X(L)
� 3

; (4.28)

with

s̃ (L) =
1

2
p

L

� p
1+ 4L � 1

�
: (4.29)

Finally, combining the de�nitions ofL andF, we get the super adiabaticity in the convective layers

eT=ed = L=F = Nu; (4.30)

and the proper temperature gradient is then obtained from Eq. (4.27). Then all the other quantities (con-
vective �ux, velocity ...) can be calculated by using the relevant equation in AppendixG.
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4.2.2 Mean properties of a convective/diffusive cell

Once we have calculated the thermal gradient in the convective zones of sizel , and in the radiative
interfaces of sizedT , we need to determine themeanproperties of a whole stack of convective-diffusive
cells. As discussed inChabrier and Baraffe(2007), since the convective plumes must be fed by the
diffusive interfaces, the thermal convective (l=vconv= 1=(NT s̃ )) and diffusive (d2T=kT) time scales should
be similar in each respective layer. Therefore

�
dT

l

� 2

=
kT

NT l2

1
s̃

=
1

L 1=2s̃ (L)
: (4.31)

In addition, comparing the mean kinetic energy of an upwelling eddy with the potential energy barrier
created by the negative buoyancy in the diffusive interface, we see that the above condition also entails
that convective overshooting can be neglected.

Because solute and heat have different diffusivities, thecompositionalthickness of the inhomoge-
neous interface isdZ �

p
D=kT dT , whereD is the solute microscopic diffusivity (Stevenson and Salpeter

1977; Chabrier and Baraffe 2007), and themor Z gradients at the interface can be linked to the mean
gradient (shown in Fig.4.3) by

Ñm =
l + dZ

dZ
hÑmi : (4.32)

Disregarding convective overshoot, the solute �ux (FZ) is determined by the metal fraction variation rate
at each interface, such that

FZ = � r D
dZ
dr

= � r D
l + dZ

dZ
h
dZ
dr

i : (4.33)

From a global point of view, this can be regarded as an enhanced diffusion process with an effective
solute diffusivityDeff = D(l + dZ)=dZ.

Analogously, this enables us to compute themeanthermal gradient to be used in Eq. (4.56)

hÑT i �
l

l + dT
ÑT +

dT

l + dT
Ñd: (4.34)

Numerical values ofeT , ed, and of the mean super adiabaticity,hÑT i � Ñad are shown as a function of
the mixing length parameter for conditions found in the interior of Jupiter on Fig.4.4 (see next section
for numerical values).

4.2.3 Asymptotic regimes

On Fig.4.4, we clearly distinguish two domains, separated by a value of the mixing length param-
etera = acrit. The behavior ofL anddT in these two regimes is shown in Fig.4.5. For values ofa
approaching unity, the medium is essentially convective but convection becomes less and less ef�cient
with decreasing values ofa . Below acrit the system becomes purely diffusive. One can show that the
transition arises when the convective forcing,F crosses unity. Hence, the two regimes are separated by

F = 1 ) acrit � (F 0ed) � 1=4: (4.35)

Because the planet's energy �ux (luminosity) to be transported decreases with time,ed decreases and
acrit increases. We saw that for condition prevailing in the interior of the actual Jupiter (Saturn), the
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mean thermal diffusivity iskT � 5� 10� 5 m2.s� 1 (Potekhin 1999), yieldingF 0 � 3� 1033 (9� 1032) and
Ñad� Ñad � 40 (30 ; see also Fig.4.7), so thatacrit = 1� 10� 9 (2-3� 10� 9). Hence, theconvectivepart
of the parameter space (roughlya 2 [acrit;1]) gets narrower with time untiled < 0, at which time the
planet becomes completely diffusive.

Convective limit

As seen in Fig.4.4, fora � acrit, convection is still the dominant heat transport mechanism in our
object, implying thatF � 1 ; the above equations can easily be solved in this limit. In this regime,
Eqs. (4.28), (4.29) and (4.30) entailL � 1, and keeping only the highest order terms inL, we get

s̃ � 1;

L � F 2=3 = ( F 0ed)2=3 a 8=3;

eT � F � 1=3 ed = F � 1=3
0 e2=3

d a � 4=3; (4.36)

and from Eq. (4.31),

dT=l � F � 1=6 = ( F 0ed) � 1=6a � 2=3: (4.37)

Using Eq. (G.9), the convective �ux reads

Fconv = r cPT
p

gHPaT e3=2
T a 2: (4.38)

Then, to �rst non vanishing order,

hÑT i � Ñad+ ( Ñd � Ñad) F � 1=6 + O(F � 1=3); (4.39)

or equivalently

hÑT i � Ñad � F � 1=6 ed

� F � 1=6
0 e5=6

d a � 2=3: (4.40)

Thus, combining Eqs. (4.37) and (4.40) we gethÑT i � Ñad µ dT=l, which illustrates the fact thatcon-
vection remains ef�cient in the convective layers and that most of the super adiabaticity arises from the
diffusive interfaces(dashed curve in Fig.4.4). Indeed, considering the departure from adiabaticity in the
convective cells (eT µ F � 1=3 ; solid curve in Fig.4.4) only yields a higher order correction in Eq. (4.39).
As expected and as formalized above, the presence of diffusive interfaces impedes large scale convection
and substantially enhances the global super-adiabaticity.

In terms of the Nusselt number, this readsNu= F=L � F 1=3 � L 1=2 � 1, which means that indeed
convection transports most of the energy. Moreover, in our MLT formalism, this implies that

Nu= ( Pr � Ra)1=2: (4.41)

This scaling differs from the one found in numerical simulations, whereNuµ Ra1=3 (Rosenblum et al.
2011). This means that in the high convective ef�ciency regime of our MLT-based layered convection
formalism, the MLT overestimates the convective �ux, as is indeed the case for large scale convection
(Hansen and Kawaler 1994). In other words, smaller convective/diffusive cells will be needed in our
MLT model compared with the results ofRosenblum et al.(2011) to reach a given amount of super
adiabaticity, which is the very quantity constrained by observational data (see §4.4). This should not,
however, drastically change the amount of heavy element enrichment needed to counteract this super-
adiabaticity.
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Figure 4.4: Mean super adiabaticity of of a semi-convective medium as a function of the mixing length
parametera = l=HP (red dashed curve ;F 0 = 3� 1033 ; ed = 40). For comparison, the super adiabaticity
in a convective (solid) and in a diffusive cell (dashed) are also shown. As expected a smooth transition
between the convective and diffusive regimes occurs nearacrit � 10� 9.

(a) Convection ef�ciency (b) Thermal thickness

Figure 4.5: Left: Ef�ciency of the convection (L) as a function of the forcingF = LNu (Solid curve).
The dashed (dotted) line represents the 2/3 (1) power law characteristic of the high (low) ef�ciency
regime. Right: Size of the diffusive layer as a function of the mixing length under Jovian conditions.
The dashed and dotted lines are thel1=3 andl curves respectively. At the bottom of the curve, we shift
from the convective regime (on the right) to the fully diffusive regime (on the left). As expected, this
transition occurs when the size of the diffusive and convective regions are equal.



A mixing length theory for layered convection 93

Diffusive regime

For a � acrit, F andL are� 1. Thus, keeping only the lowest order terms inL in Eqs. (4.28),
(4.29) and (4.30), yields

L � F

s̃ � F � 1=2

eT � ed (4.42)

and from Eq. (4.31),

dT=l � F � 1=4 = ( F 0ed) � 1=4a � 1: (4.43)

Convection becomes so inef�cient that the convective cells must become smaller than the diffusive ones.
Even in the convective layers, all the �ux is transported by diffusion andNu� 1. Eventually, the medium
will exhibit large diffusive layers separated by thin convective interfaces. However, if the medium is
convectively unstable in the absence of any compositional gradient, this regime is not stable, as will
be shown in the next section. This would require a mean molecular weight gradient that remains large
enough on the planetary scale, which is possible only ifÑd . Ñad, i.e. if the planet's interior is already
diffusive in the �rst place.

An additional constraint is provided by the Prandlt number that we have neglected throughout. In
the diffusive regime,L = Ra� Pr � 1. But we must remember that one of the necessary conditions
to conserve an overturning convection isRa> 1. Then the convective layers can support convective
motions only whenL > Pr. Below this limit, convection will not be vigorous enough to counteract, not
only the thermal losses, but also the viscous friction.

4.2.4 Theoretical constraints on the mixing length

Indeed, semi-convection, is not necessarily long lived for all values ofa . On one side, the mean
molecular weight gradientÑm in the diffusive interfaces must be high enough to satisfy the stability
criterion given by Eq. (4.2). This implies

�
l + dZ

dZ

cm

cT
hÑmi > (Ñd � Ñad); (4.44)

which can be rewritten

l + dZ

dZ
HP

cm

cT
h
dZ
dr

i
¶ lnm
¶Z

�
�
�
�
P;T

> (Ñd � Ñad): (4.45)

For a perfect gas,cm = � 1 andcT = 1. The precise value of¶ lnm
¶ Z

�
�
�
P;T

actually depends on the precise

chemical composition of the heavy element considered, but is typically around unity. Let us consider
a stack of layers extending over a zone of sizeL, and de�ne a global gradienthdZ

dr i � � DZ
L , whereDZ

is the difference between the metal mass ratios of heavy element at the bottom and at the top of the
semi-convective zone. In the diffusive regime,dZ � l , and the aforementioned condition reads

� HPh
dZ
dr

i � DZ
Rp

L
& (Ñd � Ñad): (4.46)

As DZ 6 1 by de�nition, a semi-convective zoneat the entire planet's scaleis possible only if
Ñd . Ñad is nearly equal to or smaller than , i.e. if the whole object is nearly diffusive in the �rst place.
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In an object with a heat �ux high enough to be convectively unstable, this criterion can never be met
for L � Rp. This simply means that,in order for layered convection to be stable, convective cells must
remain larger than the diffusive interfaces, and the medium is always in the convective regimea > acrit.
We stress that this applies only tolayeredconvection, and does not preclude the possibility that, under
some conditions, double diffusive convection may manifest itself under the form ofhomogeneousdouble
diffusive convection and act like aturbulent diffusion(Rosenblum et al. 2011).

Another possibility is that the semi-convective zone is con�ned to afraction of the planet, near an
immiscibility region or a phase transition for example. Then, the total size of the zone must verifyL=Rp 6
e� 1

d (� 1=40 in Jupiter). In that case, a large enough jump in the heavy element mass fraction can be
suf�cient to stabilize the whole zone against convection and open adiffusive bufferin the interior (where
ÑT � Ñd). From the global point of view of the planet, this would act as a composition, temperature and
entropy nearly discontinuity. In the following, we will not consider this scenario any further, and we will
only consider the effect of a planetary scale semi-convection zone.

Thus, considering the convective limit, the criterion (4.44) is rewritten

a 2=3 >

r
D
kT

�
�
�
�
cT

cm

�
�
�
�

e5=6
d

F 1=6
0 DZ ¶ lnm

¶ Z

�
�
�
P;T

: (4.47)

Under the present conditions in the interiors of our gas giants,D � 10� 7 � 10� 8 m2.s� 1 (Stevenson
and Salpeter 1977), yieldinga & 10� 9-10� 8 which is very close toacrit. This con�rms our precedent
estimate: in order to be stable, diffusive interfaces must be thin enough that layered convection can occur
only in the convective limit.

On the other hand, the solute gradient in the planet will be homogenized within a typical timescale

tZ �
r DZRp

jFZj
: (4.48)

Note, however, that layered inhomogeneities could be dynamically regenerated over time. In that case,
layered convection will always persist in the planet's interior. In the convective limit, substituting the
solute �ux by Eq. (4.33), and using

h
dZ
dr

i �
DZ
Rp

; (4.49)

Eq. (4.48) becomes

tZ �
R2

pp
DkT

dT

l
�

R2
pp

DkT
F � 1=6 µ a � 2=3: (4.50)

Therefore, if energy transport by double-diffusion in the interiors of Solar System giant planets yields
a . 10� 3-10� 2, complete homogenization of their interiors will never occur in less than 5 Gyr, i.e. at
their present age. This indeed corresponds to a fairly inef�cient transport mechanism compared with
standard large-scale convection. This small value ofa justi�es a posteriori the approximation of contin-
uous thermal and heavy element pro�les when considering the planet's entire internal structure.

Therefore, for the age of the Solar System and for the conditions prevailing in gas giant interiors,
semi-convection is only long lived in the rangea 2 [10� 8 � 10� 2]. In this limit, a > acrit, and convection
remains ef�cient enough to use theF � 1 limit of the MLT equations derived in §4.2.3 (Eq. (4.36)
through Eq. (4.40)). This analysis shows thatif such a semi-convective zone is present at some point
during the evolution of the planet, it is stable and will persist during the planet's life until today.
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4.3 Adiabatic models of Jupiter and Saturn

In the analytical analysis derived in the previous section, I have shown that semi-convection is
theoretically possible in giant planet interiors for the aforementioned range ofa values.To get further
constraints from the observational data measured for our Solar System gas giants, we need to
determine the area of thesuper adiabaticity/compositionparameter space for which we can derive
internal structure models that match these measurements.

This is the goal of this section, where I �rst explain the methodology used to �nd such structure
models (§ 4.3.1) and use it to derive reference homogeneous models of Jupiter and Saturn (§4.3.2).
Finally, in §4.4, I present new semi-convective inhomogeneous models of our gas giants, and discuss the
implications of these models for their heavy element contents and temperature pro�les.

4.3.1 Method

Solar System giant planets are rapidly rotating bodies (the period of rotation is about 10 hours), with
the centrifugal potential representing about 10% of the gravitational potential. As extensively discussed
in Chapter3 and AppendixE, this modi�es the hydrostatic equilibrium condition between the pressure
gradient and the gravitational force in the interior which now writes

ÑP = � r Ñ(VG + Vrot); (4.51)

where

VG(r) = � G
Z r (r0)

jr � r0j
d3r0 and Vrot(r;q) = �

Z x

0
w2

p(x0)x0dx0 (4.52)

denote respectively the gravitational and centrifugal potentials, with differential rotationwp(x ), where
x is the distance from the positionr to the rotation axis, andG the gravitational constant. In the present
study, wp is assumed to be constant and given by the magnetospheric rotation rate. Because of the
symmetry of the centrifugal potential with respect to both the rotation axis and the equatorial plane,
surfaces of equal densities for these objects are supposed to be generalized ellipsoids of revolution whose
exact shape is given by

r(r̄;q) = r̄
�
1+ å

n
s2n(r̄) P2n(cosq)

�
; (4.53)

where ¯r is the mean radius of the equipotential,P2n are the usual Legendre polynomials,q is the colatitude
and thes2n are a set of �gure functions. These latter can be derived using the theory of �gures for rotating
bodies detailed in AppendixE, and must be solved iteratively with the set ofperturbed1D hydrostatic
equilibrium equations

¶P
¶m

= �
1

4p
Gm
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wheremis the mass enclosed in the equipotential of mean radius ¯r, andj w(r̄) is a second order correction
due to the centrifugal potential, which depends on the �gure functions (see Eq. (E.17)). As discussed in
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§ 4.2, the thermal gradient is determined by the energy transport process which is relevant in the zone
considered.

The departure from sphericity of the iso-density surfaces results in a perturbation of the external
gravity �eld VG(r;q) that writes

VG(r;q) = �
GM1

r

n
1�

¥
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o
; (4.57)
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wherer is the radial distance from the center of the planet,M1 the mass of the planet,Req the equatorial
radius,q the colatitude,P2i are Legendre polynomials andJ2i denote the gravitational moments, that
can be computed once the �gure equations have been solved. The measured gravity moments provide
stringent constraints on the density pro�le and the possible layering within these planets.

As, in practice, Legendre polynomial expansions are truncated at a given ordern, a closure equation
is provided by the equation of state (EOS) of the mixture along the planet's interior pro�le. Such an EOS
is generally given by the so-called ideal volume law for the mixture:
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Y
r Y
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Z
r Z

; (4.59)

whereX, Y andZ denote the mass fractions of H, He and heavy elements, respectively. For the H/He
�uid, the most widely used EOS is the Saumon-Chabrier-vanHorn EOS (Saumon et al. 1995; SCvH).
For the heavy material, I have used the "Rock" EOS of (Hubbard and Marley 1989) for silicates and
the "Ice" ANEOS equation of state (Thompson and Lauson 1972) for volatiles (CH4, NH3, H2O). The
impact of the differences between various EOS's on exoplanet structure and evolution has been explored
in (Baraffe et al. 2008).

Once such equations of states,P[r (Xi)], are speci�ed, structure models with various compositions
are calculated by solving iteratively the aforementioned hydrostatic equilibrium condition for a rotating
body and the third-order level-surface theory (Zharkov and Trubitsyn 1978) to obtain a model which
reproduces the observed values of the radius,Req, and gravitational momentsJ2 andJ4 measured by the
Pioneer and Voyager missions (see Table4.1).

Table 4.1: Observed characteristics of Solar System gaseous giants (Guillot 2005; the numbers in paren-
theses are the uncertainty in the last digits of the value).

Jupiter Saturn
Mp [1026kg] 18.986112(15) 5.684640(30)
Req [107m] 7.1492(4) 6.0268(4)
Rpol[107m] 6.6854(10) 5.4364(10)
Prot [104s] 3.57297(41) 3.83577(47)
J2 � 102 1.4697(1) 1.6332(10)
J4 � 104 -5.84(5) -9.19(40)
Zatm=Z� 2-4 2-8
(Y=(X + Y))atm 0.238(50) 0.215(35)
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4.3.2 Homogeneous reference models

In conventional giant planet models, the abundances of heavy elements are chosen to be constant
in the gaseous H/He envelope, with a possible discontinuity at the transition between the molecular and
metallic regions (Chabrier et al. 1992). In the absence of a compositional gradient and under the actual
conditions found in Jupiter and Saturn,

Ñad < Ñd; (4.60)

so that the medium is always convectively unstable with respect to the Schwarzschild criterion. As
discussed in Appendix G, convection is very ef�cient the structure can be solved by settingÑT = Ñad in
the energy transport equation given by Eq. (4.56).

In order to have a reference case, I use the formalism described in §4.3.1to derive homoge-
neous, adiabatic interior models representative of the usual 2-layer composition.As the interpolated
SCvH EOS is used, I do not consider the effect of a Plasma Phase Transition, and only two free parame-
ters remain, namely the core mass (Mc) and the metal mass fraction in the gaseous envelope (Zenv). The
temperature, density and pressure pro�les of the best representative homogeneous models of Jupiter and
Saturn are shown in Fig.4.6(solid curves).These are composed of a solid core of massMc = 3:9 and
25:6M� surrounded by a H/He gaseous envelope with aconstantmetal fraction Zenv = 0:11 and
Zenv = 0:05 for Jupiter and Saturn, respectively (these results are summarized in Table4.2). These
reference models yields interior enrichment that are consistent previous determinations (Chabrier
et al. 1992; Saumon and Guillot 2004; Guillot 2005).

Figure 4.6: Pressure (black), temperature
(red) and density (blue) pro�les as a func-
tion of depth (expressed by the Lagrangian
coordinate, i.e. the massm), for the ref-
erence adiabatic (solid curves) and semi-
convective (dashed curves) cases for Saturn
(a) and Jupiter (b). The increased thermal
gradient due to the inef�cient heat transport
in the semi-convective case (withNl = 104

for Jupiter and 104:5 for Saturn) strongly in-
creases the internal temperature. This causes
a partial redistribution of the core material
within the gaseous envelope.
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4.4 Inhomogeneous interiors

I now turn to inhomogeneous models. In the present calculations, in contrast to all previous models,
the mass fraction of heavy materialZ(m) at a depthr(m) within the planet (i.e. at the depth of the iso-
density surface enclosing a massmof the planet) iscontinuouslydecreasing from the core to the surface,
producing a compositional gradient within the gaseous envelope of the planet,

ÑZ �
d lnZ
d lnP

=
dr

d lnP
dZ
dr

� � HPÑZ: (4.61)

.

4.4.1 Compositional gradient origin

The possible origin of such a compositional gradient is an open question (Stevenson 1985; Chabrier
and Baraffe 2007). While in the conventional scenario all the accreted planetesimals are assumed to di-
rectly sink to the core and not to evaporate in the envelope, for sake of simplicity, incomplete mixing
of large planetesimals or dissolution of a substantial fraction of volatiles and rocks from small solid
bodies could occur in the envelope during the phase of planetesimal accretion on the nascent planet ; a
substantial amount of ice could as well remain in the envelope (Iaroslavitz and Podolak 2007; Hori and
Ikoma 2011). The gradient might also stem from an only partial redistribution by small scale convec-
tive motions of stably layered (soluble) constituents released by core erosion in the gas-rich envelope
during the planet's evolution (Stevenson 1982; Guillot et al. 2004). This could be enhanced by the im-
miscibility (phase separation) of an abundant enough material (e.g. helium, water) in the dominantly
metallic-hydrogen envelope. At last, rapid rotation and/or strong magnetic �elds, necessarily present
in Jupiter and Saturn interiors4, are known to hamper large-scale convection (Chabrier et al. 2007a),
possibly leading to imperfect mixing of heavy elements in part of the envelope.

4.4.2 Numerical results

I now derive semi-convective, inhomogeneous interior models for Jupiter and Saturn. I stress
that all these models are consistent, within the observational uncertainties, with the measured gravi-
tational moments of Jupiter and Saturn(see Table4.1; Campbell and Synnott 1985; Campbell and
Anderson 1989).

An additional constraint on the outermost value of the compositional gradient is provided by the
surface abundance of heavy elements in the planets measured by the 1995 Galileo Entry Probe mission.
Indeed, elemental abundances of the atmospheres of solar giant planets are observed to differ signi�cantly
from each other and from the solar composition, being enriched by a factor� 2 � 4 and� 2� 8 with
respect to the Sun's atmosphere for Jupiter and Saturn, respectively, as shown in Table4.1(Guillot 2005).
Moreover, the planet's total mean abundances of H and He (X̄ andȲ)) must recover the values of the
protosolar nebula, i.e.̄Y=(X̄ + Ȳ) � 0:275.

In the present calculations, the adjustable parameters to ful�ll all these constraints are chosen to be
the mass of the core (Mc), the mean heavy element mass fraction in the gaseous envelope (Z̄env), and the
global compositional variation in the envelope (DZenv, the difference between the metal mass fraction
just above the central core and the one in the atmosphere). To assess the robustness of the results with
respect to the equation of state chosen to describe the thermodynamics of the heavy material, I derived
several sets of models for which the composition of the core varies from pure ice to pure rock.

4The zonal �ows observed in Jupiter's atmosphere might indeed reveal the presence of convectiverolls at deeper levels, a
consequence of the impact of rotation on convective motions, according to the Taylor-Proudman theorem (Busse 1976).



Inhomogeneous interiors 99

Figure 4.7: Conductive (top red curves) and
adiabatic (bottom black curves) thermal gra-
dient pro�les for Jupiter and Saturn. The
shaded area represents the allowed range
of super adiabaticity in presence of semi-
convection, consistent with the observational
constraints. The dashed curves correspond
to 102 layers and the dotted curves to 104

and 104:5 layers for Jupiter and Saturn,
respectively.

The important quantity describing layered convection is the number of convective-diffusive layers,
Nl . This number is roughly equal to the ratio of the size of the semi-convective zone, comparable to
the planet's radius,Rp, if this zone extends over the whole planet, to the height of a typical convec-
tive/diffusive cell, l + dT . As shown in §4.2, in the regime where convection dominates,dT=l � 1,
so that the size of a convective-diffusive cell is nearly the one of the convective layer (l+ dT � l ), and
Nl � Rp=l. BecauseHP � Rp in the deep interior, the number of layers in the planet is thus approximately
equal toNl � a � 1, and in the following we will always refer indifferently to eithera or

Nl � a � 1 � HP=l: (4.62)

As shown in §4.2.4,Nl is constrained to lie within the range 102� 3 � Nl � 107� 8. Note that, given
the small size of the diffusive-convective layers compared with the size of the planet, the discontinuous
(staircase-like) temperature and composition pro�les can be well approximated by continuousmeanther-
mal and compositional gradients (hÑT i andhÑmi , respectively) to determine the planet's global structure,
as illustrated in Fig.4.3.

This possible range of numbers of layers is further constrained by the numerical calculations.I
�nd that, in order to reproduce our giant planet observational constraints, no more than � 3� 104

layers can in reality be present in Saturn and� 104 in Jupiter. Indeed, a larger number of layers
leads to so high temperatures in the interior that the induced mean density decrease can not be
counterbalanced by an increase of the heavy element mass fraction compatible with the observed
surface abundances. This is due to the fact that, the larger the number of layers, the smaller the size
of each convective cell, reducing the maximum height a convective eddy can travel to transport heat
before being stopped by the negative buoyancy present in the diffusive interface. A large number of
layers thus decreases convective heat (and composition) transport ef�ciency. This leads to an increase
of the mean super adiabaticity, as portrayed on Fig.4.7, which in turn immediately implies a rise of
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Figure 4.8: Metal abundance pro�les as a
function of depth (expressed by the La-
grangian massm) for Saturn (a) and Jupiter
(b) for different numbers of layers. The
abundance increases with the number of lay-
ers, to keep the density pro�le unchanged
when convection becomes inef�cient. The
extreme cases (104:5 layers for Saturn and
104 layers for Jupiter) correspond to the semi-
convective pro�les portrayed in Fig.4.6.

the internal temperature, as illustrated on Fig. 4.6. It is important to stress that super adiabaticity is the
physical quantity most directly constrained by the data. Thus,whereas the allowed range of number of
layers (or equivalently of mixing length parameter values) may depend on the model used to parametrize
semi-convection (see §4.2.3), the allowed range of super adiabaticity displayed in Fig.4.7should remain
weakly affected.

The pressure, density and thermal pro�les obtained in the most extremesemi-convectivecase com-
patible with the observational constraints discussed above are shown in Fig.4.6(dashed curves). As seen
on the �gure, and as expected from the above discussion, the non-adiabatic envelope pro�le obtained
in the semi-convective case yields substantially higher internal temperatures than the usual adiabatic
assumption, as heat and material redistributions are partly inhibited by diffusive processes. The pres-
sure and density pro�les, on the other hand, remain barely affected, being strongly constrained by the
gravitational moments.

Indeed, at basically �xed density pro�le, a higher temperature pro�le must be compensated by a
larger amount of heavy material within the envelope. This is illustrated in Fig.4.8, where we show the
abundance pro�les, as calculated in AppendixH, corresponding to semi-convective models with different
numbers of layers. The bottom curve (solid) in each panel corresponds to models with 1000 layers while
the other curves correspond to a gradually increasing number of layers.

Therefore,in order to compensate the radius increase (density decrease) due to the hotter interior,
semi-convection yields a signi�cantlylarger total metal contentcompared with conventional homoge-
neous models.This can be seen in Fig.4.9, which shows the amount of heavy elements in the core and
envelope for the various cases discussed here, as summarized in Table4.2. For Saturn, up to 42M� of
heavy elements could be present in the planet while for Jupiter the heavy material content could reach
65 M� . This corresponds to about 20 and 10 times the solar abundances, respectively5. Since these

5 Note that the abundances of heavy elements brought to Jupiter and Saturn, in particular water, could already be enriched
compared with the solar value (Gautier et al. 2001)
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Figure 4.9: Mass range of heavy elements in the core (Mc) and in the envelope (MZ;env) consistent with
all observational constraints, for different numbers of layers, for Jupiter (bottom right) and Saturn (upper
left). The open dots at the upper left of each region correspond to the homogeneous interior models. As
the number of semi-convective layers increases, the ef�ciency of convection decreases, and the heavy
element mass fraction increases to counteract the radius increase induced by the planet's higher internal
temperature. The metals initially present in the core are then redistributed within the envelope. For
Jupiter, solution with no core at all (Mc = 0) can be found for the non adiabatic models (red dots).

values only depend on the allowed amount of super adiabaticity, they should not strongly depend on our
modeling of diffusive/convective transport, as mentioned above. In contrast, the maximum amount of
heavy elements compatible with the observational constraints for the homogeneous, adiabatic models, is
about 30M� for Saturn and 40M� for Jupiter, in agreement with previous studies (Saumon and Guillot
2004).

But semi-convection does not only increase the global metal content, it also yields acompletely
differentdistribution of heavy elements. While the global enrichment of the planet isincreasedin the
inhomogeneous models,the mass of the central core is decreased, as heavy elements are preferentially
redistributed in the gaseous envelope.

In the case of Saturn, the vertical spread in core mass at �xed number of layers observed in Fig.4.9
is obtained when varying the core composition from pure ice (top) to pure rock (bottom). In Jupiter
the inferred core mass is too small for the equation of state to make a signi�cant difference. One could
wonder why the homogeneous case is not continuously recovered whena tends toward 1. This slightly
counter intuitive effect is due to the fact that, at least when using the SCvH EOS, completely homoge-
neous models (central core plus a fully homogeneous envelope) cannot in general reproduce both the
observedJ2 andJ4 (Chabrier et al. 1992; Saumon and Guillot 2004). Thus, if we relax the constantZ
condition in the envelope, the presence of a compositional gradient and of a smaller core appears to be
the best solution to reproduce observational data, even in the absence of any additional super-adiabaticity.

For Jupiter, models can be found that match the gravitational moments without the presence of
a central, completely differentiated core (red dots on the bottom right of Fig.4.9). Such cases yield an
atmospheric metallicityZatm � 4� 5Z� . The fact that the possible erosion of the core mass would have
been more ef�cient in Jupiter than in Saturn might stem from the larger energy �ux available in Jupiter
(Guillot et al. 2004).
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Table 4.2: Heavy element content for Jupiter and Saturn inferred from the various models consistent with
these constraints within the quoted observational uncertainties.

Jupiter Saturn
Region Amount of heavy elements (M� )

Homogeneous model
Envelope 36 4.7
Core 3.9 25.6
Total 40 30.3

Semi-convective models
Envelope 41-64 10-24
Core 0-0.5 12-21
Total 41-64.5 26.5-42

4.5 Prospect for giant planets evolution

The impact of non-adiabatic interiors on the cooling of the planets requires more cumbersome
evolutionary calculations and will not be explored here. However, the following points are worth men-
tioning. Conventional models based on fully adiabatic thermal pro�les notably lead to cooling times
about 15% longer than the age of the Solar System for Jupiter (Fortney et al. 2011). In principle, the
hotter non-adiabatic internal structures suggested in the present paper will prolong the cooling and thus
worsen the problem. However, in case of erosion of an initially large core, part of the gravitational work
will be spent eroding the core and mixing the material upward and will thus not contribute to the total
luminosity, quickening the cooling. Both effects must be properly accounted for to infer the appropriate
cooling timescale.

On the other hand, if Jupiter and Saturn initial cores were allowed to be relatively large (&10M� ),
the corresponding high surface density of solids in the protosolar nebula will quicken the formation
timescale in the conventional core accretion scenario, helping solving the related formation timescale
problem (Pollack et al. 1996). Furthermore, since, in the present scenario, some of the ablated material
from the accreted planetesimals during the planet's early formation stages remains distributed throughout
the envelope, this will (i) reduce the heating due to gravitational energy release produced by the infalling
planetesimals on the planet embryo and (ii) increase the envelope mean molecular weight. Both effects
will cause the protoplanet to contract more quickly, shortening again the planet's formation timescale
in the conventional core accretion scenario (Pollack et al. 1996). A correct exploration of the impact of
inhomogeneous interiors upon giant planet history thus necessitates to investigate the consequences not
only on the thermal evolution but also on the formation process.
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4.6 Conclusion and perspective

In this chapter,I have �rst developed an analytical approach of layered convection, based on an
extension of the MLT formalism. This formalism allows a quantitative determination of the expected
number of diffusive layers, or equivalently of the average characteristic mixing-length parameter, in a
semi-convective planet interior characterized by a given total �ux and a given thermal (and composi-
tional) diffusivity. Furthermore,this formalism allows an exact determination of the characteristic
thermal gradient in the presence of double-diffusive convection, and thus of the related amount of
super-adiabaticity within the planet's interior.

Using this formalism,I have computed semi-convective interior models of Jupiter and Saturn.
I have shown that a strati�ed internal structure for Solar System gaseous giants, with a compo-
sitional gradient of heavy material extending over a substantial fraction of the planet, is a viable
hypothesis, as such models can ful�ll all the observed gravitational and atmospheric constraints for
these planets. This new possibility differs from the conventional description of giant planet interiors,
assumed to be composed of 2 main superposed, well identi�ed layers of homogeneously distributed ma-
terial, namely a solid core surrounded by a dominantly gaseous H/He envelope. The consequences of the
present giant planet interior description are multiple. Namely,

� (i) our jovian planets might be signi�cantly more enriched in heavy elements than previously
thought,

� (ii) their interior temperature, thus heat content, might be much larger than usually as-
sumed,

� (iii) the inner temperature pro�le could signi�cantly depart from the usually assumed adia-
batic pro�le.

Note that these conclusions do not depend on the precise model used to describe double diffusive con-
vection.

Besides directly affecting our conventional vision of giant planet mechanical, compositional and
thermal structures, these results have profound impacts on our understanding of planet formation and
cooling properties. Indeed, the revised possible maximum amount of heavy material bears direct conse-
quences on the determination of the ef�ciency of solid planetesimal accretion during planet formation in
the protoplanetary nebula, suggesting an early and ef�cient capture of planetesimals for our, and probably
extrasolar as well, giant planets. Moreover, the larger heat content and the departure from adiabaticity, as
well as the possibility of signi�cant core erosion from an initially large core, directly impact the planet
cooling histories. Departure from adiabaticity, in particular, implies less ef�cient heat transport, a di-
rect consequence of the inhibited convective motions due to a persistent compositional gradient, and
thus a smaller heat �ux output rate than assumed in the conventional approach. These results open a new
window, and raise new challenges, on our present understanding of planet structure, formation and evolu-
tion. Importantly, the viability of such strati�ed interior models for our Solar System gas giants directly
applies to the case of extrasolar planets, reinforcing the possibility that such a lower heat �ux output
could at least partly explain the anomalously large radius of several transiting "hot Jupiters" (Chabrier
and Baraffe 2007). Indeed, it seems that invoking an extra source of (tidal, kinetic or magnetic) energy
dissipation in these object interiors can not completely solve this “radius anomaly” puzzle and that an
alternative or complementary process is necessary (Laughlin et al. 2011). Unconventional, inhomoge-
neous non-adiabatic planetary interiors, as suggested in the this chapter, might provide the missing piece
of the puzzle.
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Chapter 5

An alternative energy source: Tidal
friction

An error does not become a proof by reason of multiplied propagations,
nor does a truth become error because nobody sees it

Mahatma Gandhi

When it shall be found that much is omitted,
let it not be forgotten that much likewise is performed

Samuel Johnson, 1755
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After examining in detail in §5.1.2the relation between theconstant time lag(Dt) in Hut
(1981) model and the usual tidal quality factor (Q) widely used in the literature, in AppendixI,
I extend the Hut model to any �nite obliquity. Then, in §5.2, I present analytical solutions of
the equations that I derived for two limiting cases. These simple models have two purposes, (i)
providing benchmarks for the numerical code that I developed to solve the full set of equations,
and (ii) allowing an analytical constraint onDt from the study of the Galilean satellites with the
constant timelag model. In §5.3, I also update the results ofLevrard et al.(2009) by including
newly found transiting planets, and �nd many new stable systems.

In §5.4 I demonstrate withanalytical argumentsthat truncating the tidal equations at 2nd

order in eccentricity leads to wrong tidal evolution histories, with sequences drastically differ-
ing from those obtained when solving the complete equations. In §5.5, I compare the full
thermal/orbital evolution calculations with similar studies based on a truncated and constantQ
tidal model. These numerical comparisons con�rm and quantify the conclusions reached in
§5.4, namely that low-order eccentricity models substantially underestimate the tidal evolution
timescales for initially eccentric systems and thus lead to incorrect tidal energy contributions to
the planet's energy balance. I show for instance that tidal heating cannot explain the radius of
HD 209 458 b for the present values of their orbital parameters, contrarily to what has been claimed
in previous calculations based on truncated eccentricity models (Ibgui et al. 2009).

Finally I apply my model in §5.6 to some of the discovered bloated planets. I show that
although tidal heating can explain the presently observed radius of somemoderately bloatedHot
Jupiters, as indeed suggested in some previous studies, tidal heating alone cannot explainall the
anomalously large radii. Indeed, in these cases eccentricity damping occurs too early in the sys-
tem's tidal evolution (assuming a genuine two-body planetary system) to lead to the present state
of the planet's contraction.

The results of this chapter led to the publication ofIs tidal heating suf�cient to explain
bloated exoplanets ? Consistent calculations accounting for �nite initial eccentricity(Leconte
et al. 2010a). The results of §5.2.3where also used inTidal obliquity evolution of potentially
habitable planets(Heller, Leconte & Barnes 2011).
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GravitationalTIDES HAVE MARKED OUT THE HISTORY

of science and astrophysics since the �rst
assessment by Seleucus of Seleucia of the

relation between the height of the tides and the position of the Moon and the Sun in the second century
BC. Modern astrophysics extended the study of gravitational tides in an impressive variety of contexts
from the synchronization of the Moon and other satellites to the evolution of close binary stars and even
the disruption of galaxies.

The recent discoveries of short period extrasolar planetary systems and the determination of the
anomalously large radius of some giant close-in exoplanets revived the need for a theory of planetary
tides covering a wider variety of orbital con�gurations than previously encountered in our own solar
system planets. In particular, the orbital evolution of very eccentric systems like HD 80 606 (e� 0:9337,
Naef et al. 2001), or of planets on polar and even retrograde orbits, like HAT-P-7 b (with a stellar pro-
jected obliquity� 182:5� 9:4 deg ; Pál et al. 2008), cannot be properly treated with tidal models limited
to the case of zero or vanishing eccentricity and obliquity.

5.1 Theory of tidal evolution

5.1.1 Tidal potential

Since Kepler (1609), we know that when two spherical body are in gravitational interaction, they
undergo - provided that their total mechanical energy is negative - a Keplerian motion consisting in
elliptical orbits. It has been shown byNewton(1687) that this behavior stems from the scaling of the
gravitational force between the two bodies as the inverse of the square of their separation. Of course, this
simplicity of the gravitational potential relies heavily on the assumption of spherical symmetry of the
object creating the potential, and breaks when its mass distribution presents non spherical deformations.

These asymmetries can be separated in two classes that have quite a different impact on the dynam-
ical properties of the object.

The permanent or slowly varying asymmetries
Their origin can be very diverse. In rigid or elastic bodies, such as rocky planets and asteroids,

the internal stress keeps the structure from evolving toward its minimum energy state, conserving the
primordial asymmetries inherited from the formation stage. For small - generally undifferentiated - ob-
jects, where self-gravitational energy is still comparable to the internal electromagnetic cohesion forces,
this primordial asymmetry can directly come from an inhomogeneous accretion of matter. For more
massive objects, including planets, the energy released during mass accretion is suf�cient to liquify the
bulk material. During this early �uid phase, differentiation takes place and the object is in a state of near
hydrostatic equilibrium. As discussed in Chapter3, in such a phase, the presence of a disturbing potential
gives rise to a non-spherical shape that can be crystallized during the cooling and solidi�cation of the
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Figure 5.1: External potential created by a deformable body under the in�uence of a distant companion.

planet. This is thought to be the cause of the �attening observed on our own earth and all other rocky
planets in the solar system. For �uid bodies, like giant gaseous planets, a fast rotation also prevents the
sphericity of the object.

Up to the quadrupole order, it can be shown that the potential of the object is given by
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; (5.1)

whereA, B, andC are the principal moment of inertia of the body with respect to the axis following
î, ĵ and k̂, respectively. This perturbation to the gravitational potential causes the precession of the
periapsis, and the precession and nutation of the spin of the planet. For perfectly rigid bodies, no energy
is dissipated, and these effects are periodic. The precession period for example can be approximated by

Ppr =
2p
3

w1

n2cose1

2C
2C� A� B

; (5.2)

wherew1 is the angular velocity of the body, ande1 is its obliquity, i.e. the angle between the rotation
and the orbital axis. Because the periods of these processes range from a few days to a few million years,
when no resonances arise, the precession-nutation motion can be averaged to compute the secular tidal
evolution on a billion years timescale, as discussed later.

The periodic deformations
For an elastic or �uid body, the presence of an external perturbation, like the one created by a

secondary body, creates a distortion of both the shape and the gravitational �eld of the object, as discussed
above. As detailed in Chapter3, the external gravitational �eld created at the locationr by a deformable
body perturbed by a secondary point mass (M2) located atr? (See Fig.5.1) is given by Eq. (3.31):

VG(r; r?) =
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#

; (5.3)

wherey is the angle betweenr andr?, R̄ is the mean radius of the primary andkn is the love number
of degree n. This perturbed gravitational �eld also creates periodic variations of the orbital elements. In
particular the n= 2 term entails an apsidal precession that can be measured and give direct constraints
on the internal structure of the object considered (Sterne 1939).

The major difference with the permanent inhomogeneities discussed above is that the external per-
turbation varies with time, and so does the shape of the primary (Eq. (3.22)). This of course involves
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large scale motions, or "tides", of the �uid composing the latter. The direct consequence of this forced
internal motion in the �uid is that the viscosity of the material can act to damp the oscillations. It is
of course understood that, in gaseous bodies, the molecular viscosity alone has a negligible effect on
these large scales motion (Hubbard 1974) and that some dynamical mechanism are needed to transfer
the energy from the large scales to the small scales where it can be dissipated and transferred into internal
energy. The exact nature of these mechanisms - gravity waves, inertial waves, elliptical instability, etc... -
is still subject to debate (Zahn 1989 ;Zahn and Bouchet 1989; Rieutord and Zahn 1997; Rieutord 2004;
Ogilvie and Lin 2007; Goodman and Lackner 2009; Barker and Ogilvie 2010; Cébron et al. 2011).

However, this dissipation is not yet present in Eq. (5.3). Indeed, this equation describe the potential
of an object in hydrostatic equilibrium1, and applies only if the time needed for the body to relax to this
equilibrium state is in�nitely short compared to the timescale of the orbital motion. In this case, it can be
shown that the forces derived from Eq. (5.3) exert no average work over an orbit, and thus do not cause
any secular energy dissipation.

5.1.2 Modeling the dissipation

Including the effect of dissipative processes arising inside the deformable body on its orbital dy-
namics is a rather complicated matter. Indeed, in addition to the various sources of friction in the non
ideal medium, the forcing tidal frequencies are not, in the cases of interest, very different from the char-
acteristic frequencies of the various oscillations or waves that can take place in the deformable body.
The large scale tidal motion can then excite these waves, and a complete modeling of these dynamical
processes coupled with the orbital motion is needed.

The earliest mathematical model for the dynamical effects of tides is due to George Darwin (son
of naturalist Charles Darwin). In his pioneering work, he assumed that tidal friction was solely due to
viscosity, and developed a linear theory of theequilibrium tides, in which the departure of the shape
of the deformable body from hydrostatic equilibrium is small and can be related to the strength of the
dissipation (Darwin 1880,1908). In practice, this assumes that the perturbing potential created by the
tides raising object can be split in a sum of Fourier components, and that the response of the primary
to each of these terms is linear and depends only on its frequency (s=2p). The direction of each of
these tidal bulges is then shifted with respect to the direction of the secondary by an angled(s ), and
the amplitude of the wave can differ from the equilibrium value. Modern astrophysics generalized and
extended Darwin's work to an impressive variety of contexts, from the synchronization of the Moon
and other satellites to the evolution of close binary stars (Kaula 1964; MacDonald 1964; Goldreich
and Soter 1966; Goldreich 1966; Mignard 1978,1979,1980; Hut 1980,1981; Zahn 1989; Zahn and
Bouchet 1989; Touma and Wisdom 1993,1994; Neron de Surgy and Laskar 1997; Eggleton et al.
1998; Correia and Laskar 2001; Jackson et al. 2008; Ferraz-Mello et al. 2008; Efroimsky and Williams
2009; Levrard et al. 2009; Leconte et al. 2010a,2011a). However, when considering the impact of the
dissipative processes on the orbital evolution, all these models still rely on a simple parametrization in
terms of lag angles and amplitudes.

Then, the dif�culty lies in choosing the best formulation ford(s ), or equivalently for the phase lag
e(s )2. A simple way to link this lag angle to the dissipation is through the speci�c dissipation function
(Q� 1), which is de�ned, at each frequency, as the energy damped over a cycle of �exure divided by
the peak energy stored in the system during that time (Goldreich 1963; Efroimsky and Williams 2009).

1Meaning here that there is no motion in the considered frame, but elastic forces can be present and are already accounted
for in kn.

2The response to a perturbation proportional to eis t thus being proportional to ei(s t+ e) . For the usual diurnal tides, both
angles are simply related by 2d= e.
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Efroimsky and Williams(2009) show that

Q� 1(s ) � �
DcycleE(s )
2pEpeak(s )

=
tanje(s )j

1� ( p
2 � j e(s )j) tanje(s )j

: (5.4)

Thanks to this relation, specifying the spectrum of the dissipation, either by equilibrium or dynamical
tides, is suf�cient to infer the impact of tides on the orbital evolution of the system.

However, to further simplify the model, one of the two following assumptions is often made.

ConstantQ approximation

Based on the observation that, for the earth, the speci�c dissipation function varies by less than one
order of magnitude between the Chandler period3 (� 440 days) and the periods relative to seismic waves
(a few seconds), it is often assumed that the speci�c dissipation is constant with respect to the forcing
frequency (Q(s ) = Q). The overall dissipation is therefore encompassed in a single number, the tidalQ
(or equivalentlyQ04), or theconstant phase lage. However, this model has two major drawbacks, whose
consequences will be more comprehensively discussed in the following sections.

(i) Inverting Eq. (5.4) in the limit of low dissipation, we see thate = sign(s )=Q. This model thus
introduces a discontinuity at each time that one of the tidal frequency vanishes. This assumption is
thus particularly unjusti�ed when considering tides on nearly synchronized objects, as it is thought
to be the case for most close in exoplanets.

(ii) Because, one must �rst decompose the forcing potential in terms with a well de�ned phase and
frequency before lagging them with the chosen lag, perturbative developments of Kepler equations
of motion, both in eccentricity and inclination must be used. The resulting equations are then
strictly valid only in the low eccentricity and obliquity regime.

Weak friction approximation

As shown byDarwin (1880) andAlexander(1973), the frequency dependence of the phase lag of a
purely viscoelastic oscillator is given by

tan(e) =
s

t v(w2
0 � s 2)

; (5.5)

wheret v is a viscous damping timescale andw0=2p the natural frequency of the oscillator. In an incom-
pressible gaseous body, the restoring force acting against the tidal deformation is the self-gravity of the

body. Thusw0 can be estimated through the free-fall time as 2p=w0 � 1
4

q
3p

2G ¯r 1
� 30 minutes for Jupiter

mean density (̄r 1 � 1:33� 103kg/m3). For tidal periods of several daysw0 � s and for weakly viscous
�uid, the phase lag reads

e(s ) �
s

t v w2
0

: (5.6)

3Period of the free motion of the of the �gure axes of a body around its rotational pole.
4Because the ef�ciency of tidal processes is proportional to the product of the amplitude of the tides (proportional tok2)

with the ef�ciency of the damping of these tides (inversely proportional toQ), it is customary to introduce the reduced quality
factorQ0= 3

2
Q
k2

, so thatQ0= Q for an incompressible homogeneous sphere.
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In this weak friction approximation, the speci�c dissipation then scales linearly with the forcing fre-
quency. Each Fourier component is thus delayed by a singleconstant time lag

Dt �
1

t v w2
0

; with e(s ) � s Dt: (5.7)

While this approximation may overestimate the dissipation for high frequencies (s& w0), it entails a
signi�cant simpli�cation. Indeed, in the frame co-rotating with the deformable body, the tidal forces
exerted by the secondary can be calculated by stating that the effect of viscosity is simply to delay the
tidal bulge with respect to the tides raising potential by the sameconstant time lagDt. As shown in
Hut (1981), and detailed in AppendixI, thanks to this approximation, the set of equations for the tidal
evolution of the orbital elements can be calculated for any eccentricity and inclination of the orbit in
terms of closed formulae. Because many exoplanets are very eccentric, and for the reasons described in
§5.4, in the following, I will use this weak friction approximation.

The frequency dependent quality factor then reads,

Q(s ) �
1

s Dt
: (5.8)

It is therefore dif�cult to express aglobal dissipation ef�ciency. A rough estimate can nonetheless be
found in cases for which the excitation spectrum reduces to a small number of frequencies. For non-
synchronized circular orbits, semi-diurnal tides, whose frequency is twice the difference between the
rotation rate of the primary (w) and the orbital mean motion (n), dominate and settings = 2jw � nj in
Eq. (5.8) yields

Q� 1 � 2Dtjw � nj: (5.9)

This formula can be used to estimate the quality factor for non-synchronous bodies, such as the Sun,
the Earth or Jupiter, as long as the eccentricity of the orbit is small. As the planet tends toward syn-
chronization, the dissipative effects of the semi diurnal tides vanish with their frequency. Then, the most
dissipative tides are the eccentric annual tides (s= n) and

Q� 1 � Dt n: (5.10)

Apart from these two limit cases, no tidal frequency dominates, and the dissipation is the response of the
body to the rich spectrum of exciting tidal frequencies. Thus no simple relation exists betweenQ andDt
in the general case.

Although it is tempting to use Eq. (5.10) to rewrite the tidal equation and to keepQ0constant instead
of Dt as done by, for example,Mardling and Lin(2002),Dobbs-Dixon et al.(2004) andBarker and
Ogilvie (2009), one must keep in mind that this procedure is not equivalent either to the constant phase
lag (i.e. constantQ) or time lag model. Indeed the frequency dependence of the phase lag is given by
e(s ) = s =(nQ) and is still proportional to the tidal frequency over an orbit as in the constant time-lag
model, but with a slope that is changing during the evolution, while no physical change has necessarily
occurred inside our bodies.

5.1.3 Secular evolution equations

Having a prescription for the parameters modeling the dissipation in our bodies, in our case a
constanttime lag, we can concern ourselves with the determination of the secular change of the orbital
elements of a tidally interacting binary system. We consider a system of two deformable bodies of mass
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M1 andM2. Note that no approximation will be made on the masses of the two bodies, meaning that
the following equations can be used in a large variety of contexts, covering Star-Star, Star-Planet and
Planet-Satellite interactions.

The major interest of thelinear model, i.e. at constant time lag, is that, as demonstrated by Hut
(1981), equations can be derived to be valid up to any �nite value of the eccentricity. However, his
model remained restricted to vanishing obliquities.In the calculations presented in AppendixI, using
a vector representation of the tidal torque, I extend the set of tidal secular evolution differential
equations to account for any �nite obliquity.

In �ne, the complete equations taking into account tides in both bodies are obtained by computing
separately the effects of the tides raised in both objects (as shown in AppendixI) and by adding them up.
We are then left with the following set of six coupled, non linear equations of �rst order

1
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wherexi = cosei andhi is de�ned by Eq. (I.31). For details about the notations, the reader is referred to
Appendix I. The various functions of the eccentricity are

Na(e) =
1+ 31

2 e2 + 255
8 e4 + 185

16 e6 + 25
64e8

(1� e2)15=2
;

Ne(e) =
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(1� e2)13=2
;
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(1� e2)6 ; (5.15)

and

We(e) =
1+ 3

2e2 + 1
8e4

(1� e2)5 ;
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: (5.16)

The strength of the tides in the body i are parametrized by
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where the j index denotes the quantities relative to the other body. Notice here that no assumptions
have been made on the masses of the objects studied. In particular, in our notations, the secondary
can be the most massive object of the binary. In general, the tides raised in both objects have rather
different amplitudes and dissipation timescales and effects. It can thus sometimes be useful to study
them separately. In these cases, and when no confusion is possible, the index i will refer to the body on
which tides are raised (the primary), and j will stand for the tides raising object (the secondary).
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As shown in §I.2.3, for a strongly interacting low mass companion, such as a planet, pseudo syn-
chronization is often achieved. Eqs. (5.13) and (5.14) can thus be replaced byep = 0 andwp equal

weq =
N(e)
W(e)

2xp

1+ x2
p

n =
N(e)
W(e)

n: (5.18)

In this case, the rate of tidal dissipation which is given by Eq. (I.43) in the general case can be rewritten

�Etid = 2K1

�
Na(e)�

N2(e)
W(e)

�
: (5.19)

5.2 Some analytical solutions

The above equations are coupled and non-linear and must then be handled numerically in most
cases.For this purpose I developed a code integrating the set of equations by means of a leap-frog
integrating scheme. In order to test both the code and the level of numerical error yielded by
the integration, I solved the equations in some simple limit cases, which are presented below.In
addition, when the system studied is in the right regime, these analytical solutions can be used directly
to have a more �exible model.As shown in Leconte et al.(2010a) and in §5.2.2, the model presented
below can be used to constrain the dissipation inside Jupiter.

5.2.1 Small object spiraling in or outward on circular orbits

Let us consider the case of a pseudo synchronized and aligned secondary around a non synchronized
(but aligned) primary. This case is not purely ideal, as it can be used to describe the orbital evolution
of binaries with large mass ratios, such as a satellite orbiting a planet, or a close in planet orbiting its
host star. As we will see, in the �rst case, the often fast rotation of the planet pushes the satellites away
(as for the Earth, Jupiter, Saturn, etc...), whereas the slow stellar rotation causes most exoplanets to
spiral inward, and eventually cross the Roche lobe where they are tidally disrupted. In this case, some
simpli�cations occur. Let us take the following initial conditions:

0

@
w1(t = 0) = a n0

a(t = 0) = a0

e(t = 0) = 0

1

A :

Thanks to Eq. (5.12), we can show that ifa < 18
11, e = 0 is a stable value for the eccentricity and will

not evolve with time. With the same argument we can show thatei = 0 are also stable solutions. As
the pseudo synchronization approximation givesw2 = weq = n, we are left with only two variables
and equations to solve simultaneously. Let us highlight that in this con�guration, there is no more
dissipation in the secondary, and the only tidal effects are due to the tides raised on the primary. Taking
the dimensionless variables ˜a counted in units ofa0 andt in units of
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1
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the equations read
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The combination of these equations gives

�w1 = �
t in

t sync

�̃a
p

ã
n0

and by time integration

w1

n0
= a � b̃ (

p
ã� 1); (5.22)

where the initial conditions have been used andb̃ = 2t in=t sync. This relation is to be expected as it is
simply the expression of the conservation of the total angular momentum of the system5. Substituting
Eq. (5.22) in Eq. (5.21) yields:
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Therefore, the following integration gives an implicit solution for the semi major axis
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1� ã3=2(a � b̃ (
p

ã� 1))
= t̃: (5.23)

I computed this analytic solution and compared it with the numerical integration of the full set of equa-
tions (including the spin state of the planet). For a given object, the only parameters left are the ratio
of initial rotational over orbital angular velocities (a), and the initial semi-major axis (a0). I decided to
consider a system near the critical semi-major axisacrit, as de�ned in §5.3, witha0 = 1:03 acrit. There-
fore, choosing ana < ac

6 yields an unstable system with a total angular momentum lower thanHcrit.
As shown in �gure5.2, in this case angular momentum is transferred from the orbit to the central object
until the merging of the two bodies. Fora > ac the system tends to the closest stable orbital equilibrium
available for its angular momentum and the angular momentum is transferred from spin to orbit.

Figure5.3shows the discrepancies between the analytical solution derived here and the numerical
integration. As the numerical integration dealt with the full set of equations, these discrepancies are
due both to the numerical error and to the pseudo synchronization hypothesis for the planet. Further
calculations showed that in this case the numerical errors are predominant. This validates the pseudo
synchronization hypothesis made for most of the computations involving a star-planet system, as done
hereafter.

5.2.2 Constraining the dissipation in Jupiter

In order to use the constanttime lagmodel, we must consider many values forDt. To constrain
the range of values to use in the numerical calculations performed in §5.5, I follow the analysis of
Goldreich and Soter (1966), but with the constant time lag model, and use the Io-Jupiter system
to infer an upper limit for k2;p � Dtp in giant extrasolar planets (Leconte et al. 2010a).As I shown
above, because the massive body (hereafter Jupiter) is rapidly rotating, withwJ > nS, wherenS is the
orbital mean motion of any of the satellites of Jupiter, tidal transfer of angular momentum drives the
small bodiesoutwards, into expanding orbits. Therefore the presence of Io in a close orbit provides
an upper limit for the time lag in Jupiter. Indeed, ifDtp was too large, the backward evolution of the
satellites' orbits would imply their disappearance within less time than the age of the Solar system, i.e.
of Jupiter.

5The angular momentum of the planet can be neglected, which is, here, equivalent to the pseudo synchronization hypothesis.
6ac � 0:995 in this case.
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Figure 5.2: Comparison between the exact solution given by Eq. (5.23) for the angular velocity of the
primary and the semi-major axis and the numerical integration of the full set of equations. The exact
solution has been shifted to be visible (the real relative error is. 10� 6). As predicted fora < 1 angular
momentum is transferred from the orbit to the central object: the primary is spinning up while the semi-
major axis is decreasing. As this con�guration is not stable (a< ac), the two objects will eventually
merge att � 9:3t in.

I can thus use the model described above and directly integrate Eq. (5.23). Note that in this context,
this integral cannot be performed down toa = 0 because the satellite �rst crosses the co-rotation radius
where the integrand tends to in�nity, which is an unstable equilibrium state for the system (Hut 1980).
For the Io - Jupiter system, takingt = � 4:5 � 109 yr and a(t) equal to the Roche limit in Eq. (5.23)
yields kJDtJ . 5 � 10� 3s. Therefore Eq. (5.9) impliesQ0

J & 1� 106 for the actual Io - Jupiter system,
slightly lower than the value derived byGoldreich and Soter(1966). As discussed by these authors, our
upper limit onDtp must be multiplied by a factor 5 to 7.5, as Io might have been trapped in a low order
commensurability with Europa and Ganymede during part of its evolution, slowing down the expansion
of its orbit. Thus, as discussed inLeconte et al.(2010a), for Jupiter,

kJDtJ . 2� 3� 10� 2s: (5.24)

For the sake of easy comparison, I will refer to the quantityQ0
0, which is the reduced quality factor

computed for a reference period of one day:

Q0
0 =

3
2

Q(2p=1day)
k2

=
3
2

1day
2pk2Dt

: (5.25)

The above calculated constraint readsQ0
0;p & 1� 106. In the calculations presented in the following

sections, I will examine two cases for the planet under consideration, namelyQ0
0;p = 106 andQ0

0;p = 107

(k2;pDtp � 2� 10� 2 � 2� 10� 3), while takingQ0
0;? in the range 105 � 106 (k2;?Dt? � 2� 10� 1 � 2� 10� 2),

a typical value for solar-type stars (Ogilvie and Lin 2007).

It is important to stress that ifDt, or its counterpartQ, is poorly known for both planets and stars,
its variability from one object or con�guration to another is even more uncertain. For instance, the tidal
dissipation in planets probably differs signi�cantly from that in brown dwarfs because of a dense core
able to excite inertial waves in the convective envelope (Goodman and Lackner 2009). Given the highly
non-linear behavior of tidal dissipation mechanisms, the effective tidal dissipation function varies not
only with the structure of the object or with the tidal frequency, but also with the amplitude of the tidal
potential. For example,Q0

? values inferred from the circularization of close FGK binary stars (Meibom
and Mathieu 2005), may be lower than the actualQ0

? encountered in star-planet systems (Ogilvie and
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Figure 5.3: Relative error between the exact solution given by Eq. (5.23) and the numerical integration
of the full set of equations (right: unstable system, left: stable system). The numerical integration yields
correct results down to 10� 6. The error grows near the singularity corresponding to the fall of the planet
on to the star.

Lin 2007). Consequently, the range of values considered here for bothQ0
? andQ0

p should be seen as
mean values and be re-evaluated when considering speci�c and/or atypical systems (XO-3, HAT-P-2 or
CoRoT-3 for example).

5.2.3 The spin state of the low mass companion.

In the previous section we discussed the angular momentum transfer between a massive primary and
the orbital motion. To do so, we assumed synchronism between the rotation of the smaller companion
and the orbit. For long term evolution, because the synchronization timescale for the planet is very
short compared to the one of the orbital evolution, this assumption is justi�ed as discussed in §I.2.1
and veri�ed in §5.2.1. For the same reason, if we want to look at the evolution of the spin state of the
low mass companion, the other orbital parameters can be considered frozen in time because they evolve
on a much longer timescale. This is what I attempt to do in this section. This will allow us to verify
the coupling between the equations onw ande for any eccentricity. Let us take the following initial
conditions:

0

@
w1(t) = w0

a(t) = a0

e(t) = e0

1

A :

We are left with only two equations, Eqs. (5.13) and (5.14), for the variablesw2 ande2 to solve simulta-
neously. The non linearity of these equations with respect toe2 and the coupling between the equations
prevents any analytical solution to be found in the general case. Therefore we will consider only the
linear case, implyinge2 � 1. In addition, we place ourselves in the case where

h2 µ
M1 + M2

M1
r2
g;2(R̄2=a)2 � 1;

meaning that the internal angular momentum of the object can be neglected with respect to the orbital
one. This assumption is fully justi�ed for a planet, as is con�rmed by the numerical integration. Since
the eccentricity and the semi-major axis are �xed, it is tempting to use the following dimensionless
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Figure 5.4: Left: Comparison between the exact solution given by Eq. (5.28) for the obliquity obliquity of
the planet and the numerical integration of the full set of equations. The exact solution has been shifted to
be visible. As predicted the planet pseudo synchronizes and its obliquity is damped to 0. Right: Relative
error between the exact solution and the numerical integration. The numerical integration yields correct
results down to 10� 5. The peculiar behavior of the error is due to the fact that the solution is not convex:
the sign of the error changes.

variables,
8
<

:

t̃ = t W(e)=t sync � t=t̃ sync

w̃ = w2=weq

ẽ = e2=e2;0

; (5.26)

wherew2 is normalized to the pseudo synchronization rotation speed ande2;0 is the initial obliquity of
the planet. We �nally just need to provide an initial condition for the angular velocity:w̃(t = 0) = w̃0.
The equations thus read:

�̃w = 1� w̃;

�̃e = ẽ
�

1
2

�
1
w̃

�
:

Fortunately, the obliquity creates only a second order perturbation of the other equations, and thus our
system is no longer coupled. We can then solve our system sequentially. The �rst equation being similar
to the one of a damped twisted pendulum without inertia, we can see that the rotation rate will relax
toward its quasi equilibrium value following an exponential decay of the form

w̃(t̃) = 1+ ( w̃0 � 1)e� t̃ : (5.27)

Thus

ln(ẽ(t̃)) =
t̃
2

�
Z t̃

0

dt
1+ ( w̃0 � 1)e� t

ẽ(t̃) =
w̃0et̃=2

et̃ + ( w̃0 � 1)
: (5.28)

I compared this analytical solution with the numerical integration of the full set of equations in
Fig. 5.4. As predicted the planet pseudo synchronizes and its obliquity is damped to zero on a short
timescale compared to the global orbital evolution. As can be seen from Eq. (5.14) in the general case, or
by differentiating Eq. (5.28) with respect to time, we can see that when the rotation of the object becomes
larger than twice the pseudo synchronous rotation rate, the zero obliquity state is no longer stable.This
analytical model has been used to countercheck our numerical results inHeller et al. (2011).
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5.3 Are transiting planetary systems about to merge ?

Figure 5.5: Htot(a) for equilibrium states in
unit of (acrit;Hcrit). The solid (dashed) part
of the curve represent the (un)stable branch.
Gray arrows show the direction followed by
a(t) in each part of the diagram. The dots rep-
resent observed values for transiting systems.
In all the systems withHtot < Hcrit, the planet
will eventually merge with its star.

From the equations shown in §5.1.3, we directly
see that a tidal equilibrium is achieved only when the
two bodies are in a state of coplanarity (ei = 0), circular-
ity (e = 0) and co-rotation (wi = n). However, this does
not tell us whether such equilibrium states exist or can
be reached by a given system ! Thanks toHut (1980) a
criterion for the existence of these states can be derived.
Indeed, because the total angular momentum of the sys-
tem is conserved, and tidal friction dissipates mechan-
ical energy, a system with a given angular momentum
(Htot) will be able to reach equilibrium only if there is an
equilibrium state with the same angular momentum. The
stability of the equilibrium can then be deduced from the
fact that energy is at a minimum and not a maximum.

Let us then study the angular momentum of equi-
librium states, which is given by

Htot = Horb+ H1 + H2: (5.29)

Hut (1980) showed that, thanks to the synchronization
condition, this rewrites

Htot = Hequ(a)

= Hcrit

"
3
4

�
a

acrit

� 1=2

+
1
4

� acrit

a

� 3=2
#

;

(5.30)

where acrit =

s

3
(M1 + M2)

M1M2
(C1 + C2) and Hcrit = 4

�
G2(M1M2)3

27(M1 + M2)
(C1 + C2)

� 1=4

:

This shows that the angular momentum of a con�guration in equilibrium only depends on the semi-
major axis. It is easy to see thatHequ(a) has a minimum reached foracrit

7 for which the minimum reads
Hcrit

8. Thus, only systems withHtot > Hcrit can pretend to reach an equilibrium before the merging of the
two components. Unfortunately for most transiting planets,Levrard et al.(2009) showed that because of
their short period orbit, only one of the transiting planetary systems known at the time, namely HAT-P-2,
had enough angular momentum to ful�ll this criterion, all the other planets being doomed to fall onto
their parent stars !

To see wether this conclusion still holds, I have performed a similar analysis but including
newly found transiting planets. The results are summarized in Fig.5.5. While most of the transiting
systems are found to be unstable, the number of stable systems has signi�cantly increased.For the
systems found on the left of thea = acrit line, the stability is just due to the fast rotation of the star, as
was the case for HAT-P-2. But this analysis also reveals systems witha > acrit that were not present in
Levrard et al.(2009) (some of these with very largea are not shown in Fig.5.5). For these, stability in

7For a Star-planet system,M? � Mp andR? > Rp, thusC? � Cp andacrit �
q

3r2
gyr;?

M?
Mp

R? > R?:
8 Hut (1980) also showed that from the equilibrium states described above, only thea > acrit branch of theHequ(a) curve is

stable, as shown on Fig. 5.5.
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ensured by a long orbital period, and thus a large orbital angular momentum. The fact that such transiting
objects have been discovered only recently is due to the fact that long period planet have a smaller transit
probability and require longer observation run to be detected and con�rmed.However, this reminds us
that if many short period planets are about to be engulfed by their host star, exoplanets on wider
orbits, many having already been discovered by radial velocity, are safe.

Note however, that these studies make use of two major assumptions that are not true in general.
First, the radii of the components are assumed to be constant. As it is not true, this means thatHcrit

andacrit will change over time. During the early stages of the evolution of the star-planet system where
a rapid contraction occurs, the system will move toward the upper right corner of the phase diagram
shown in Fig. 5.5. This is a rather good news from the point of view of the stability: As the star spins
up during contraction, its co-rotation radius shrinks and the planet has more chances to be outside of this
radius, where tides push it outward. On the other hand, because of the stellar magnetic winds, angular
momentum is not conserved. This causes a spin down of the star and a downward motion in thea� Htot

diagram. From a theoretical point of view, all the systems will eventually enter theHtot < Hcrit zone,
and all the planets will fall onto their parent star. The only remaining question is when ? But as tidal
interaction strongly decrease when planets are further away, most long period planets are safe for more
than the lifetime of their star.

5.4 On the effect of the quasi circular approximation: Analytical analysis

Following the initial studies of Jackson et al. (2008), all studies exploring the effect of tidal heating
on the internal evolution of "Hot Jupiters" (Miller et al. 2009,Ibgui et al. 2009) have been using a tidal
model assuming a constantQ value during the evolution. Moreover, in all these calculations the tidal
evolution equations are truncated at the 2nd order in eccentricity (hereafter referred to as the "e2 model"),
even when considering tidal evolution sequences with non-negligible values ofeat earlier stages of evo-
lution. Although such ae2-truncated model is justi�ed for planets and satellites in the solar system
(Kaula 1963; Goldreich and Soter 1966), it becomes invalid, and thus yields incorrect results for
a(t), e(t) and �Etides for �nite eccentricity values, as showed inLeconte et al.(2010a).The main argu-
ment claimed for using this simple tidal model is the large uncertainty on the tidal dissipation processes
in astrophysical objects. In particular, as detailed byGreenberg(2009), the linearity of the response to the
tidal forcing based on the viscoelastic model may not hold in a real object for the large spectrum of ex-
citing frequencies encountered when computing high-order terms in the eccentricity. Although the large
uncertainty in the dissipative processes certainly precludes an exact determination of the tidal evolution,
it can by no means justify calculations which are neglecting dominant terms at �nitee.

Indeed, from a dimensional point of view andprior to any particular tidal model, the strong impact
of high-order terms in the eccentricity is simply caused by the tidal torque (N) being proportional to
(w � �q)=r6

? (q being the true anomaly) and that over a Keplerian orbit the average work done by the
torque is of the form

< N � �q > µ <
�q2

r6
?

> =
n2

a6 �
1+ 14e2 + 105

4 e4 + 35
4 e6 + 35

128e
8

(1� e2)15=2
;

which is a rapidly increasing function ofe (see §I.1.1 for the details of the calculation). This means that
although the mean distance between the planet and the star increases withe, the distance at the periapsis
stronglydecreases, and most of the work due to the tidal forces occurs at this point of the orbit. One
can see that fore > 0:32 the high-order terms dominate the constant ande2 terms. This is physical
evidence that shows that for moderate to high eccentricity most of the tidal effects are contained in
the high-order terms that can therefore not be neglected independently of any tidal model.
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(a) w=nvsephase space: complete equations (b) w=nvsephase space: truncated equations

Figure 5.6: Pseudo-synchronization curve (solid), the �a = 0 curve (dashed) and the �e= 0 curve (dotted)
for the complete model (left panel) and for the truncated one (right panel) in thew=nvsephase space. A
pseudo-synchronized planet always follows the�w = 0 curve and always lies in the �a < 0 and �e< 0 part
of the diagram because the curves do not intersect with the complete equations (left panel). In contrast,
in the 2nd-order truncated model the pseudo-synchronization curve intersects the �a = 0 (at e � 0:208)
and �e= 0 lines (e� 0:326).Revised �gure fromLeconte et al.(2010a).

In this section, as already presented inLeconte et al.(2010a), I quantify this statement more
comprehensively. I will demonstrate analytically that

� in the context of the Hut model, a truncation of the tidal equations at the ordere2 can lead
not only to quantitatively wrong but to qualititatively wrong tidal evolution histories, with
sequences drastically differing from those obtained with the complete solution.

� the rate of tidal dissipation can be severely underestimated by the quasi circular approxima-
tion (e � 1).

Furthermore,Q-constant models consider only low-order terms in obliquity (ei), and thus cannot
address the problem of obliquity tides and energy dissipation produced by this mechanism. For more
detailed discussion of this subject, seeLevrard et al.(2007) andBarker and Ogilvie(2009).

5.4.1 Expanding vs shrinking orbits

On one hand, considering Eq. (5.11) (withei = 0 for simpli�cation) we can see that forwi=n6
Na(e)=N(e), the tides raised on the bodyi lead to a decrease of the semi-major axis, transferring the
angular momentum from the orbit to the body's internal rotation. It is easy to show that for a synchronous
planet this condition is always ful�lled, becauseweq

n = N(e)
W(e) 6 Na(e)

N(e) for any eccentricity (respectively
solid and dashed curves of Fig.5.6.a). As a result, the semi-major axis of most short period planets is
decreasing.
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On the other hand, truncating Eq. (5.11) for the semi-major axis evolution at the ordere2 yields

1
a

da
dt

=
4a

GM?Mp

n
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�
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n
� (1+ 23e2)

�
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n
� (1+ 23e2)

� o
;

(5.31)

and the previous condition becomeswi=n6 (1+ 23e2)=(1+ 27
2 e2). Up to 2nd order in eccentricity, the

pseudo-synchronization angular velocity is given byweq = ( 1+ 6e2)n 9. One can see thatweq=n =
1+ 6e2 6 (1+ 23e2)=(1+ 27

2 e2) only for

e6
1
9

r
7
2

� 0:208:

This means that even for a moderate eccentricity,e� 0:2, the truncated model predicts that tides raised on
a pseudo-synchronous planet lead to agrowthof the semi-major axis instead of adecrease, as obtained
by the complete model. Therefore, truncating the tidal equations at the ordere2 for an eccentricitye> 0:2
not only predicts quantitatively wrong butqualitativelywrong tidal evolutions. The same arguments for
the evolution of the eccentricity show that tides raised on a pseudo-synchronous planet lead to agrowth
of the eccentricity for

e>

r
7
66

� 0:326

and not to adecrease. This is illustrated by Fig.5.6, which shows the pseudo-synchronization curve
(solid), the �a = 0 curve (dashed) and the �e= 0 curve (dotted) for the full model (left panel) and the trun-
cated one (right panel), in thew=nvsephase space. As demonstrated before, the pseudo-synchronization
curve crosses the �a = 0 and �e = 0 lines in the 2nd order model (Fig.5.6.b), whereas it does not when
solving the complete Hut equations (Fig.5.6.a). As a result, with the truncated model, a pseudo-
synchronized planet can erroneously enter the zone of the phase space where its tides act to increase
both the semi-major axis and the eccentricity.While this behavior is not observed with the constant
phase-lag model because it assumes that the star is slowly rotating (w?=n� 1) and that the planet is near
synchronization (wp=n� 1) - placing them in the �a < 0 and �e< 0 zone of the phase space - this formal
demonstration sets clear limits on the domain of validity of the quasi-circular approximation.

5.4.2 Underestimating tidal heating

The key quantity arising from the coupling between the orbital evolution and the internal cooling
history of a planet is the amount of energy dissipated by the tides in the planet's interior, which may
compensate or even dominate its energy losses. As a result, tides raised in an eccentric planet can slow
down its contraction (Bodenheimer et al. 2001; Leconte et al. 2009; Baraffe et al. 2010) or even lead to
a transitory phase of expansion (Miller et al. 2009; Ibgui et al. 2009). Correctly determining the tidal
heating rate is thus a major issue in the evolution of short-period planets. The often used formula is
(Kaula 1963; Peale and Cassen 1978; Jackson et al. 2008)

�Etid = 7Kpe2 =
21
2

k2;p

Q

�
GM2

?

Rp

� �
Rp

a

� 6

ne2 (5.32)

(the 21k2;p=2Qis rewritten 63=4Q0in Miller et al. (2009)). As already stated byWisdom(2008), although
this formula gives a fair approximation of the tidal dissipation rate for the small eccentricity cases,

9these equations truncated at the ordere2 agree with equations in §16 of Ferraz-Mello et al. (2008), even though they have
been derived with different methods
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which are typical in the solar system, it severely underestimates the tidal heating for moderate and high
eccentricities. Figure 5.7illustrates the power dissipated in a pseudo-synchronized planet as a function
of the eccentricity. It shows that fore & 0:45, the truncated formula used in Miller et al. (2009)
and Ibgui et al. (2009) underestimates the actual tidal dissipation rateby more than one order of
magnitude and by more than a factor103 for e& 0:7, an eccentricity value often advocated by these
authors to explain the highly in�ated planets (see §5.5.3; Leconte et al. 2010a,2011a).

Figure 5.7: Tidal energy dissipation rate in a pseudo-synchronized planet (in Watt) as a function of the
eccentricity calculated with Eq. (5.19) (solid curve) and with the truncated formula (Eq. (5.32) ;dashed).
The ratio of the two curves only depends on the eccentricity and not on the system's parameters. For
e = 0:45, thee2 approximation (Eq. (5.32)) underestimates the tidal heating by a factor 10. The actual
values were derived using HD 209 458 b parameters:Mp = 0:657MJup, Rp = 1:32RJup, M? = 1:101M� ,
a = 0:047AU (Knutson et al. 2007).Q0= 106 (see §5.1.2). Thedotted curvegives the dissipation rate
calculated up toe10 (Eq. (5.35)). The shaded areas are obtained by varyingQ0 by one (two) order of
magnitude.Revised �gure fromLeconte et al.(2010a).

From a mathematical point of view, the fact that a truncation to 2nd order in eccentricity yields such
discrepancies is due to the(1� e2) � n factors in the equations for the tidal dissipation, that are expanded
in low order calculations. Fortunately, such expansions can be carried out, as the convergence radius of
the series is 1. Indeed, if the power series converges
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The convergence radius is thus given by
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However, as already stated byWisdom(2008), for moderate to high eccentricity this function is
poorly represented by the �rst terms of its polynomial representation. Indeed, the �rst terms of the
energy dissipation rate are given by
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The dissipation rate calculated up toe10 is plotted in Fig.5.7 (dotted curve), where it can be compared
with the exact result. It is clear thatfor e & 0:4 the polynomial developments of the tidal evolution
equations must be done to a much higher degree than in previous studies, or complete calculations like
those done inHut (1981) must be used.The same argument holds for the evolution of the semi-major
axis and the eccentricity. Because Eqs. (5.11) and (5.12) also contain(1� e2) � p=2 factors, the decrease of
a ande is severely underestimated at even moderately high eccentricity when using a 2nd order truncated
expansion in eccentricity.

In particular, as discussed in the next section, a high eccentricity (e& 0:6) cannot be maintained
for a few 100 Myr to a few Gyr in a system like HD 209 458 in agreement with the results ofMiller
et al. (2009) (see Fig.5.9 below). This is in contrast withIbgui and Burrows(2009), who �nd that
the radius HD 209 458 b can be matched and that the system can sustain a signi�cant eccentricity up
to the observed epoch. These discrepancies between these two studies based on the same tidal model
may reveal differences in the implementations of the tidal equations, or a difference in the calculation of
interior structures or boundary conditions.

5.5 Tidal friction as an energy source: Implications for Hot Jupiters

As mentioned earlier, tidal heating has been suggested by several authors to explain the anomalously
large radius of some giant close-in observed exoplanets. As demonstrated analytically in §5.4, the
previous calculations, which are all based on constant-Qmodels truncated at the ordere2 yield inaccurate
results when applied to signi�cantly (initial or actual) eccentric orbits - a common situation among
detected exoplanetary systems. In the following section, I �rst review the energetic arguments on which
this "tidal heating hypothesis" is based. Doing so, in §5.5.1, I also develop for the �rst time an
analytical formula bracketing the total energy available for the planet during circularization which
is valid to any eccentricity. Then, I investigate the impact of tidal heating on the thermal evolution
of the planet on numerical grounds.As expected from the analytical analysis, and shown in §5.5.2and
5.5.3, the numerical comparison of the two models shows that the complete tidal equations lead to a much
quicker evolution, and thus to a much higher, but also shorter, tidal heating. Finally, in §5.6,I revisit the
viability of such a tidal heating mechanism to explain the extensive observed Hot Jupiter radii with
the present complete Hut tidal model.I show that although it indeed provides a possible explanation
for some transiting systems, the tidal heating hypothesis fails to explain the radii of extremely bloated
planets like - among others - HD 209 458 b, TrES-4 b, WASP-4 b or WASP-12 b, in contrast with some
previously published results based on truncated tidal models.

5.5.1 Energy budget

Tidal friction is, by nature a dissipative process. Over time, non ideal effects inside one or the other
of the deformable bodies transform macroscopic mechanical energy into microscopic entropy. If this
processes are energy sinks when considering the orbital evolution (d(Eorb+ Erot)=dt < 0), from the point
of view of the thermal evolution of the object, they represent an energy source (�etid) which has to be
incorporated in the luminosity equation

¶L
¶m

= �enuc+ �etid � T
¶S̃
¶t

: (5.36)
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As a large fraction of the objects considered are convective, this equation can be integrated to yield (see
Eq. (1.59))

Lp = � �Enuc+ �Etid � T̄
¶S̃
¶t

; (5.37)

where the three terms are, respectively, the contribution of the nuclear reactions10, tidal friction11 and
gravo-thermal energy release (intrinsic luminosity). If an additional source of energy is present, it in-
creases the total outgoing energy �ux. Then, the bottom of the atmospheric boundary layer, and thus the
adiabat, is slightly hotter in presence of heating than without. This causes an increase of the radius com-
pared to the traditional case, and less gravo-thermal energy, or entropy, is radiated away. This mechanism
is very similar to the irradiation of the atmosphere by the star, but here, the energy is deposited at depth
(in the convective zone), participates to the energetic budget of the object, and thus, the atmosphere is
heated frombelow.

However, for this effect to become signi�cant, the energy injection rate must be comparable to the
intrinsic luminosity of the body, and remain so for an extended period of time. To have a �rst insight
into the capacity of tidal friction to increase the radius of giant exoplanets, I will thus estimate the global
amount of mechanical energy available for the planet in the system, and the typical timescale on which
it will be released, and compare them to the binding energy of the planet and its relevant evolution time.

Synchronization energy

Like Jupiter and Saturn, giant planets are believed to form with a high speci�c angular momentum,
and thus a high initial rotational energy which reads

Erot =
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Because tidal processes tend to synchronize the rotational with the orbital motion, and that, in general,
n � w ini , the ratio of the available rotational energy over the internal energy of the body is
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whereg = EintR1=GM2
1 and should be of order unity. Within a numerical factor, this is equal to the

dimensionless rotation parametermrot de�ned in Chapter3, which cannot be higher than unity because
then, gravity at the surface would be to weak too counteract the centrifugal force, and the body would
experience high mass losses. For roughly the same reason, the spin of the planet is small compared to
the orbital angular momentum, and (pseudo)synchronization occurs on a short timescale compared to
the age of the system (see §I.2.1). Therefore, rotational energy is not a sustainable energy source in our
context. At most, the early synchronization will provide a small initial energy pulse whose consequences
will be visible only during a few Kelvin-Helmholtz timescales.

Obliquity tides

Another way to dissipate energy into the interior is by obliquity tides. For the same reasons than
above, if there is no other torque present, the planet obliquity will be damped very quickly. However,
as proposed byLevrard et al.(2007) the presence of a secular perturbation of the orbit could trap the

10Which are important only above 12-13MJup, and at young ages.
11Note that contrarily to § 1.1.3, here, I have de�ned�Etid �

R
�etid dm to manipulate positive quantities.
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planet into a Cassini state, stabilizing the obliquity. Orbital energy can then be dissipated into the planet
trough this channel. If this process can be important for terrestrial planets, it seems rather inef�cient in
maintaining a large obliquity for a giant planet, as demonstrated byFabrycky et al.(2007).

Circularization energy

Figure 5.8: Maximum (minimum) tidal en-
ergy available in unit ofEint as a function
of initial eccentricity and observed (initial)
semi-major axis. The zone where tidal circu-
larization will not impact the thermal history
of the planet is roughly above theEtid = Eint

curve.

If synchronization happens way to fast to heat the
planet at a late epoch, we have seen in §I.2.1 that the
timescale needed to circularize a binary system seems to
be much more similar to the age of the planets that we
currently observe12. At �rst sight, we might be tempted
to say that the maximum energy available is simply the
total mechanical energy that need to be extracted from
the system to decrease the semi-major axis from its ini-
tial value (aini), to the current one (a�n ), the latter being
necessarily larger than the Roche limit (aR) under which
the planet is disrupted by the tidal forces. Therefore, the
mechanical energy available is

DEorb =
GM1M2

2

�
1

a�n
�

1
aini

�
> 0: (5.40)

However, this energy can be released in both the star,
and the planet. Indeed, if the planet is pseudo synchro-
nized, and that orbit is nearly circular, tides in the planet
do not dissipate energy anymore, and all the momentum
exchange arise between the star, which is spinning up,
and the orbit, which is shrinking. This is why, for Hot
Jupiters, which are probably pseudo synchronized, only
the circularization period need to be considered to eval-
uate the energy available (Bodenheimer et al. 2001).

During this period, tides in the planet dominate13. For a pseudo synchronized object, a combination
of Eqs. (5.11) and (5.12) gives us
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Neglecting the dissipation in the star, I can estimate the total energy released during the circular-
ization by
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which extends the formula given by Bodenheimer et al.(2001) to higher orders. If the integration
of the full set of tidal equations is needed to compute precisely the energy released, the latter can be

12Indeed, most of them orbit around main sequence stars, and are supposed to be between a few 100 Myr and a few Gyr old.
13As long as a �nite eccentricity remains in the system, the ratio of the planetary over stellar tidal dissipation rates is roughly
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, and is� 10 for a Jupiter-Sun like system.
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bracketed by integrating the above equation for botha = aini anda = a�n (with aini > a�n )
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Note that, contrarily to the estimate given by Bodenheimer et al. (2001), this formula is valid for
arbitrarily high eccentricities. Thus
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Fig. 5.8 shows the maximum (minimum) circularization energy in unit of the internal energy (withg= 1)
for a Jupiter-Sun like system as a function of the �nal (initial) semi-major axis and initial eccentricity. As
expected, the importance of the tidal heating will increase as the object starts on a more eccentric orbit,
and is closer to the central body. This also shows that the amount of available energy could in principle
be suf�cient to signi�cantly impact the planet.

5.5.2 Coupled tidal/thermal evolution

However, to know whether this energy is delivered at the right time and at the right pace, one
must couple consistently the internal and the orbital evolution as each one will in�uence the other.
I thus implemented the aforementioned module computing the orbital evolution at each time step
in the evolutionary code described in Chapter 2.For the moment, the internal evolution of the star is
supposed frozen, and its radius is kept constant at its current value during the whole evolution. Regarding
the orbital evolution of the system, this hypothesis is valid for two main reasons. First, the tidal heating
in the star is too weak compared to the nuclear burning to signi�cantly impact the stellar evolution, and
second, the pre main sequence phase, where the star exhibits a radius and an angular velocity which are
drastically higher than today, does not last long enough compared to the tidal evolution. Of course, this
is no longer possible if one is speci�cally interested in the evolution of the angular velocity of the star.
Indeed, as discussed in §I.2.4, in this case, conservation of the angular momentum during the contraction
and stellar winds must be properly taken into account along tidal friction to calculate consistently the
evolution.

In our simulations, the evolution of the planet can exhibit three different general behaviors, depend-
ing on the initial conditions:

� In the low initial eccentricity regime, the eccentricity is damped to zero in a few Gyr and the
semi-major axis decreases until the planet reaches the Roche limit and merges with the star (due to
stellar tides ;Levrard et al. 2009), because the system does not have enough angular momentum
to reach a stable equilibrium (Hut 1980; Levrard et al. 2009). In this case, tidal heating is not
suf�cient to signi�cantly affect the radius of the planet, which keeps shrinking steadily as it cools.

� For higher initial eccentricities, the planet �rst undergoes a phase of contraction and rapid cooling
before the tidal heating due to the high initial eccentricity starts to dominate the energy balance
of the object, leading to a phase of radius in�ation (as shown by Fig.5.10 for a test case). This
speeds up the damping of the eccentricity and the decrease of the semi-major axis, because �a and
�e µ R5

p. When the eccentricity becomes low enough, a "standard" contraction phase begins and
lasts until the planet merges with the star or - if enough angular momentum is present in the system
- until both tidal and thermal equilibria are achieved. This behavior has already been identi�ed by
Miller et al. (2009) andIbgui and Burrows(2009), but because these authors used truncated tidal
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(a) Semi-major axis (b) Eccentricity

(c) Planetary radius (d) Tidal energy dissipation

Figure 5.9: Consistent tidal/thermal evolution of XO-4 b (thin, black) and HD 209 458 b (thick, blue)
computed with our constant time-lag model (solid line) and with the "e2 model" (dashed line). XO-4 b
is a 1.72MJup planet orbiting a 1.32M� star (McCullough et al. 2008). HD 209 458 b is a 0.657MJup

planet orbiting a 1.01M� star (Knutson et al. 2007). The dashed curves are comparable to Fig. 8 and 10
of Miller et al. (2009) and were computed with the same parameters (Q0

p = 105, Q0
? = 105). In this high

eccentricity regime, using the same quality factor, the "e2 model" underestimates the tidal dissipation
rate by 2 orders of magnitude and thus overestimates the star-planet merging timescale by a factor 10 to
103. Figure fromLeconte et al.(2010a).
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Figure 5.10: Internal energy balance in the evolving planet.Black solid line: luminosity of the object
with tidal heating.Purple dotted line: luminosity of the object without tidal heating.Blue dashed line:
tidal energy dissipation rate. The object contracts as it cools until the energy input balances its thermal
losses and sustains a higher entropy in the gaseous envelop, yielding a larger radius.Figure from Leconte
et al. (2010a).

equations, they found that a high eccentricity can be maintained for a few Gyr and kept in�ating
the planet at a late time, as illustrated in Fig.5.9(dashed curves) ; while this is not the case.

� In some extreme cases like HD 209 458, for the initial conditions corresponding to those in Fig.5.9,
the tidal heating can overwhelm the cooling rate of the planet by orders of magnitude and lead to
a spectacular in�ation of the planet and thus to a rapid merging with the star. This stems from
a combination of different effects. First of all, as mentioned above, the expansion of the radius
accelerates the tidal evolution and thus the decrease of the orbital distance. Furthermore, the
Roche limit (aR = a Rp

3
p

M?=Mp, wherea is a constant which depends on the structure of the
body and is equal to 2.422 for �uid objects) increases with the radius of the planet, extending the
merging zone.

5.5.3 Effect of the truncation to 2nd order in e: Simulation results

In this section, I present the comparison of the results of the complete model with the "e2 model".
I calculated evolutionary tracks of the tidal evolution for various transiting systems, coupling the
internal evolution of the object either with my tidal model (Leconte et al. 2010a), or with the "e2

model" used in Miller et al. (2009) andIbgui and Burrows (2009). In order to ensure a consistent
comparison with these authors, I directly convert their set of tidal parameters. Because our model as-
sumes a constant time lag, and not a constantQ0value, a history track computed with theQ0"e2 model"
with a constant couple (Q0p; Q0

?) is compared with a history track computed in our model with a constant
couple(k2Dtp; k2Dt?) given by(k2Dtp = 3

2nobsQ0
p
; k2Dt? = 3

2nobsQ0
?
), wherenobs is the currently observed

value of the mean motion of the planet considered (see §5.1.2and Eq. (5.10)). This ensures that - al-
thoughDt is heldconstantin our calculations (becausenobs is by de�nition a constant)- the quality factor
computed with Eq. (5.10) in the object at the present time is the same as that used in theQ constant
model.
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(a) Semi-major axis (b) Eccentricity

(c) Planetary radius (d) Tidal energy dissipation

Figure 5.11: Consistent tidal/thermal evolution of TrES-1 b computed with our constant time-lag model
(solid line) and with the "e2 model" (dashed line). This is a 0.76MJupplanet orbiting a 0.89M� star (Winn
et al. 2007a). The error bars are the measured parameters with the 1suncertainty. The dashed curve is
comparable to Fig. 7 ofMiller et al. (2009) and was computed with the same parameters (Q0

p = 106:5,
Q0

? = 105). As expected, in the lowe limit the tidal dissipation rate is well approximated by Eq. (5.32)
and the two models yield similar evolutions, although the merging time depends on the rheology used.
Figure fromLeconte et al.(2010a).
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Calculations at low eccentricity

I �rst compare the results of the two models on a system which has a zero measured eccentricity
and is not in�ated, namely TrES-1. Such a system does not require a substantial initial eccentricity for
its observed properties to be reproduced and thus provides an opportunity to test the quasi-circular limit,
where the "e2 model" used byMiller et al. (2009) and our model should yield similar results. Figure
5.11illustrates the results of the integration of the coupled internal/orbital evolution equations with our
constant time-lag model (solid curve) and with the "e2 model" (dashed curve) for an initial eccentricity
of 0.07. As expected, in this low eccentricity limit both models yield very similar tracks whose behavior
is discussed in §5.5.2. Note however that although the qualitative behavior of the evolution is the same,
the hypothesis made on the rheology of the body can in�uence the age at which the merging occurs.

Calculations at high eccentricity

In the moderately to highly eccentric regime, the tidal dissipation rate can no longer be approxi-
mated by Eq. (5.32) (see §5.4.2). Instead, Eq. (5.19) must be used and yields - as shown by Fig.5.7 -
a much more important dissipation rate. As a result, tidal evolution takes place on a much shorter time
scale, and both the eccentricity damping and the merging with the star occur earlier in the evolution of
the planet. For illustration Fig.5.9 portrays the possible thermal/tidal evolution (for given initial condi-
tions) for XO-4 b (thin black curves) and HD 209 458 b (thick blue curves) computed with the "e2 model"
(dashed) and with our model (solid). The dashed curves are similar to those displayed in Figs. 8 and 10
of Miller et al. (2009). As mentioned above and illustrated in Fig.5.9.d, the energy dissipation is much
larger when fully accounting for the high eccentricity. As clearly illustrated by these calculations, using
tidal equations truncated at 2nd (e2) order leads to severely erroneous evolutionary tracks for initially
moderately (e& 0:2) or highly eccentric systems. Indeed, the complete tidal model shows that for the
initial conditions andQ parameter values chosen byIbgui and Burrows(2009) andMiller et al. (2009),
HD 209 458 b would actually have disappeared !As mentioned earlier, the use of this quasi-circular
approximation cannot be justi�ed by the uncertainty on the quality factor, as the discrepancy in
the characteristic evolution timescales can amount to 3 orders of magnitude in some cases, depend-
ing on the initial eccentricity (Leconte et al. 2010a).Conversely, trying to infer values for the stellar or
planetary tidal quality factorsQ from tidal evolution calculations performed with the truncatede2 model
will lead to severely inaccurate values.

5.6 Viability of the tidal heating hypothesis

Among the observed objects in the giant planet/mini brown dwarfs mass regime (see §2.4.3),I will
focus on the most extremely in�ated ones to investigate the validity of the tidal heating hypothesis
to explain their abnormally low density, as they provide the most stringent cases to examine the
viability of this scenario. Indeed all the planets with radii in theR1 . Rirr region of Fig.2.10(i.e. with
a negative radius anomaly) do not need any additional energy source. Interestingly enough, these do not
show any signi�cant eccentricity, so that an evolution without tidal heating can be obtained with a low
initial eccentricity. For the sake of simplicity and to avoid introducing further free parameters in our tidal
model, and because our aim is to derive anupper limit for the radius that a planet can achieve under the
effect of tidal heating, I will not consider heavy element enrichment in our calculations.

My calculations proceed as follows:

1. For each of the systems a range of initial semi-major axis ([amin;amax]) is found by abackward
integrationof the tidal equations from present-day observed values.
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2. Evolutionary tracks, which consistently couples the gravo-thermal evolution of the irradiated
planet and the tidal heating source (Eq. (5.19)), are then computed foraini 2 [amin;amax] and an
initial eccentricityeini 2 [0;0:8]. The plausibility of these initial conditions as a remnant of early
planet-disk and/or planet-planet interaction is discussed inMiller et al. (2009). Because total angu-
lar momentum is conserved during the tidal evolution, theinitial spin rateof the star is calculated
by satisfying the equality between the initial and the presently observed value of the system's total
angular momentum (see §I.2.4 for details). Calculations are performed withQ0

0;? = 105 and 106

andQ0
0;p = 106 and 107 (see §5.2.2for a detailed discussion).

3. For each evolutionary calculation, the departure from a given measured quantity is de�ned as

dx(t) =
�

x(t)� xp
sx

�
, wherex refers toa, e,Rp, e? or w? andsx to their measured uncertainty. When

no error bar was measured for the eccentricity ande= 0 was assumed in the light curve analysis, I
took se = 0:05. I consider that the evolution accurately reproduces the presently measured data if
there is a time interval (compatible with the age of the system) within whichall thedx's are smaller
than 1, meaning that each one of these parameters agrees with the measured one within 1s .

Figure 5.12: Set of initial conditions yielding evolutions consistent with the actual orbital parameters
of HD 209 458 b. These runs assumeQ0

0;p = 106 and Q0
0;? = 106. Because high eccentricity speeds

up the tidal evolution, the initial semi-major axis must increase when the initial eccentricity of the orbit
increases to recover the observed parameters at the age of the system.Figure from Leconte et al.(2010a).

Figure5.12 portrays a grid of evolution history initial conditions that are found to be consistent
with the observed parameters of HD 209 458, at the age of the system. As expected, an initially more
eccentric system must have a greater initial separation to end up at the same location. This stems from
the fact thatj �aj is a monotonically increasing function ofe for a slowly rotating star (as obtained from
Eq. (5.11) forwp = wequ andw?=n � 1). Although I do �nd evolutionary tracks that lead to the
presently observed orbital parameters for these extremely bloated planets,none of these solutions
can reproduce the presently observed radii, as illustrated in Fig.5.13for HD 209 458 b. Indeed, the
major phase of eccentricity damping as given by Eq. (5.12) and discussed in §5.5.3occurs too early
in the evolution, so that a large fraction of the tidal heating energy dissipated in the planet has been
radiated away at the age of the system (�a few Gyrs) and can no longer provide enough energy to slow
down the gravitational contraction. The same behavior is found for other bloated systems like WASP-
12, TrES-4 and WASP-4, whose best evolutionary tracks are shown in Fig.5.14. For all these systems
tidal dissipation occurs too early to reproduce the present values of the planet radii, although a solution
matching the presently observed orbital parameters can be found.
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(a) Semi-major axis (b) Eccentricity

(c) Planetary radius (d) Tidal energy dissipation

Figure 5.13: Consistent tidal/thermal evolution of HD 209 458 b with different initial conditions (solid
and dashed) computed with our constant time-lag model. HD 209 458 b is a 0.657MJup planet orbiting
a 1.01M� star (Knutson et al. 2007). These runs assumeQ0

0;p = 106 andQ0
0;? = 106. For comparison,

the radius and luminosity of an isolated planet (no tidal heating) is shown on the lower panels (dotted
curves). Even though these evolutions recover the presently observed orbital parameters for the system,
the eccentricity damping arises too early during the evolution, leading to insuf�cient tidal dissipation at
present epoch to explain the in�ated radius.Figure fromLeconte et al.(2010a).
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(a) Semi-major axis (b) Eccentricity

(c) Planetary radius (d) Tidal energy dissipation

Figure 5.14: Evolutionary tracks for WASP-12 b (solid,Hebb et al. 2009), TrES-4 b (dashed,Daemgen
et al. 2009) and WASP-4 b (dotted,Winn et al. 2009) that lead to the best agreement with the observed
orbital parameters for these systems. These runs assumeQ0

0;p = 106 andQ0
0;? = 106. Tidal dissipation is

not suf�cient to sustain the large radii observed for these planets.
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These results, based on complete tidal evolution calculations, show that the tidal energy dissipated
in the planet's tidal bulges, although providing a viable explanation to the large radius of many short-
period planets (like OGLE-TR-211 b shown in Fig. 10 of Leconte et al. 2010a), is not suf�cient to explain
the radii of the most bloated planets at the age inferred for these systems. In that case, an extra mecha-
nism besides tidal heating must be invoked to solve this puzzling problem. Surface winds driven by the
powerful incident stellar �ux (Showman and Guillot 2002), converting kinetic energy to heat by dissi-
pation within the tidal bulge and thus reaching deep enough layers to affect the planet's inner isentrope,
or inef�cient large-scale convection due to a composition gradient (Chabrier and Baraffe 2007) could be
the other mechanisms to be considered with tidal dissipation to eventually lead to these large planet radii
(see Baraffe et al. 2010for discussion).

5.7 Summary and prospects

Let us summarize the main results of this chapter.

First, as shown in AppendixI, I developed the secular tidal equations ofHut (1981) to arbitrarily
high obliquity. Then, considering the tidal set of equations in various asymptotic regimes, I derived two
simple analytical solutions that, to my knowledge, have not been found before. These solutions, pre-
sented in §5.2, were then used to benchmark my numerical integrator, and check numerical calculations
from (Heller, Leconte & Barnes 2011). Thanks to these models,I also derived an upper limit on the
tidal dissipation (and thus the time lag) in Jupiter.

In §5.3, I updated the results of Levrard et al. (2009) by including newly found transiting
planets, and showed that, while most of the transiting planetary systems yet discovered do not possess
a stable equilibrium end state, this is only due to the detection bias toward short period systems. As this
detection bias tends to diminish, the number of long period transiting planets able to reach a stable tidal
equilibrium should grow in a near future.

Then, I demonstrated that the quasi-circular approximation (e� 1, i.e. tidal equations truncated at
the ordere2) usually assumed in tidal calculations of transiting planet systems and valid for our Solar
system planets, is not valid for the exoplanetary systems that have - or were born with - an even modestly
high (e& 0:2) eccentricity. As shown in sect.5.4, although the real frequency dependence of the tidal
effect remains uncertain,there are dimensional evidences that for eccentric orbits, most of the tidal
effect is contained in the high-order terms and that truncating the tidal equations at2nd order in
eccentricity can overestimate the characteristic timescales of the various orbital parameters by up
to three orders of magnitude.Therefore truncating the tidal equations at the 2nd order can by no means
be justi�ed by invoking the large uncertainty in the dissipative processes and their frequency dependence.
Accordingly, high-order tidal equations should be solved to derive reliable results for most of the existing
exoplanet transiting systems. This need to solve the complete equations is met by any tidal model. In
this context, even though no tidal model can claim describing perfectly a two body evolution, I recall that
the Hut model is at least exact in the weak friction viscous approximation (see sect.5.1.2).

In §5.6, I tested the complete tidal model on several in�ated planets to �nd out whether or not
tidal heating can explain the large radius of most of the observed transiting systems. Although this
mechanism is indeed found to be suf�cient to explain moderately bloated planets like OGLE-TR-211 b
(see Fig. 10 ofLeconte et al. 2010a), I wasunableto �nd evolutionary paths that reproduce both the
measured radius and the orbital parameters of HD 209 458 b, WASP-12 b, TrES-4 b, and WASP-4 b (see
Figs.5.13and5.14) for their inferred age range. The main reason is the early circularization of the orbit
of these systems. As demonstrated in §5.4, this stems from the non-polynomial terms in eccentricity
in the complete tidal equations, which are missing when truncating the equations at smalle-order.The
present results, based on complete tidal equations, show that tidal heating, although providing an
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important contribution to the planet's internal heat budget during the evolution, cannot explain
alonethe observed properties of all exoplanets (Leconte et al. 2010a).

This is in contrast with some of the conclusions reached in previous studies. Based on truncated tidal
models, Ibgui and Burrows (2009) andIbgui et al.(2009) �nd evolutionary tracks that match observed
parameters for HD 209 458 b, WASP-12 b, and WASP-4 b and thus suggest that the tidal heating is the
principal cause of the large radii of Hot Jupiters.

These particular properties of Hot Jupiters, including the extreme cases of the most severely bloated
planets, can only be explained if the following explanations/mechanisms occur during the system's life-
times:

� Early spin-up of the star: simulations of the rotational evolution of solar-like stars (Bouvier et al.
1997) show that after the dispersion of the accretion disk, the rotation rate of the contracting star
increases due to angular momentum conservation, until magnetic braking takes over. Considering
Eq. (5.12), we see that stellar tides act as an eccentricity source ifw?

n > 18
11

Ne(e)
We(e). Investigating

whether the duration of this phase lasts long enough and whether the magnitude of this effect is
large enough to drive enough eccentricity requires performing consistent star/planet thermal/tidal
calculations and will be investigated in a forthcoming paper.

� Presence of a third body: as proposed by Mardling(2007), a low-mass terrestrial planet can drive
the eccentricity of a massive giant planet during up to Gyr timescales. Accurate enough observa-
tions are necessary to support or exclude such low-mass companions.

� As mentioned earlier, combining tidal heat dissipation with other mechanisms like surface winds,
due to the stellar insolation, dissipating deep enough in the tidal bulges, or layered convection
within the planet's interior may provide the various pieces necessary to completely solve the puz-
zle.

In conclusion, the suggestion that tidal heating is the main mechanism responsible to solve the
problem of anomalously large short-period planets, as sometimes claimed in the literature, must be more
rigorously reformulated: although providing a non-negligible contribution to Hot Jupiter heat content,
tidal dissipation does not appear to provide the whole explanation. Further studies are thus necessary to
eventually nail down this puzzling issue.
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Summary & Perspectives

The ability to quote is a serviceable substitute for wit.

William Somerset Maugham

During this thesis, I studied various physical processes affecting the internal structure and evolution
of both solar, and extrasolar giant planets. Let me summarize brie�y the main results that I obtained
during this work and that led to the publication of the articles listed in AppendixA.

Evolution & stellar irradiation: A lid on the boiling kettle

First, by comparing the internal structure of gaseous substellar objects predicted by my numerical
simulations, and by a simple analytical model, I showed that most features of their mechanical structure
can be well captured by a single effective polytropic index. As this index characterizes both the equation
of state, and the slope of the mass-radius relationship, this study highlights the existing link between the
microscopic and the macroscopic mechanical properties of degenerate gaseous bodies.

Then, I investigated the impact of the intense stellar irradiation received by a close in planet on
its subsequent internal evolution. As most transiting planets are very close from their host star, this
effect must be taken into account to infer accurate theoretical predictions to be compared with obser-
vations. This allowed me to quantify theradius anomalyof bloated Hot Jupiters and to constrain their
internal composition.

Based on this study, I proposed an observational criterion based on the mean density of the object
to distinguish massive giant planets from mini brown dwarfs in their overlapping mass domain. The
application of this criterion to several objects in this regime revealed that, with its unusually high density,
Hat-P-20 b is probably the �rst secured planet in this range of masses.

Probing the deep interior: Theory of planetary �gures

In this chapter, I used both analytical and numerical models to study the tidal and centrifugal dis-
tortion of a �uid planet, and infer its shape. As these models depend on a unique response coef�cient
(e.g. the Love number), I carried out numerical simulations to provide numerical estimates of this quan-
tity and discussed how these values characterize the mechanical internal structure of giant planets and
brown dwarfs.

I also discussed howk2 measurements could help us to constrain the composition of extrasolar
planets. With the more and more precise transit timing measurements, and the large number of newly
announced multi transiting planet systems, this opens new possibilities to infer direct constraints on the
internal composition of extrasolar planets ; internal composition which remains out of reach of spectro-
scopic observations.
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Finally, thanks to our analytical model, I found that because close in planets are tidally elongated
toward the star, they exhibit a smaller cross section, yielding major implications for transit measurements.
In particular, this causes a systematic underestimation of the radius which can amount to a few percents.
While slightly enhancing the so-calledradius anomaly, this reminds us that, as transit measurements
get more precise, subtler effects must be taken into account into the light curve modeling to extract
accurate results.

A new perspective on heat transport in the interior

Here, I developed a completely analytical model to investigate how the presence of double-diffusive
convection caused by a heavy elements gradient in the gaseous envelope of a planet can decrease the
ef�ciency of its internal heat transport. This formalism allows an exact determination of the characteristic
super-adiabaticity within the planet, and can thus easily be used in planetary structure and evolution
numerical models to quantify the global impact of the presence of double-diffusive convection in the
interior.

By applying this model to the Solar System gas giants, I found that the metal enrichment for our
gaseous giants can be up to 30 to 60% larger than previously thought. As the heavy elements tend to
be redistributed within the gaseous envelope, the models predict smaller than usual central cores inside
Saturn and Jupiter, with possibly no core for this latter.

These results open a new window, and raise new challenges, on our present understanding of planet
structure, formation and evolution. The revised possible maximum amount of heavy material, for ex-
ample, suggests a greater ef�ciency of solid planetesimal accretion during giant planet formation than
previously thought, both inside and outside our Solar System. The slower cooling entailed by semi-
convection may also provide a part of the explanation of exoplanets large radii, and interestingly enough,
without requiring any star-planet interaction.

An alternative energy source: Tidal friction

Finally, using an analytical model for the secular tidal evolution which is �t to describe highly
eccentric and inclined orbits, I studied the coupling between the orbital and the thermal evolution of a
exoplanets arising from the strong star-planet tidal interaction. Such a model is necessary to describe
exoplanetary systems which, contrarily to the Solar System, commonly exhibit high eccentricities and
obliquities, some planets even being on polar or retrograde orbits.

In particular, I demonstrated that using tidal models based on a quasi circular approximation can
lead to quantitatively, and sometimes qualitatively different orbital evolutions, and can overestimate the
evolution timescales by orders of magnitude. Subsequently, thanks to this more complete mathematical
treatment of eccentric orbits, I found that contrarily to previously published results base on the quasi
circular approximation, the circularization (and thus heating) period is too short compared to the age of
observed transiting planets for tidal heating alone to be a viable explanation for their large radii.

As presently observed transiting planets are very close to their host stars, tidal interactions are a
signi�cant ingredient of their lives, and properly taking these interactions into account is primordial in
understanding both the thermal and orbital evolution of exoplanets and their coupling. Coupling which
is not only ensured by tidal heating, but also by the secular and seasonal variations of the stellar �ux
in�uenced by the orbital and the rotational evolution of the planet. In that context, a general and robust
theory, such as the linear model studied here, is strongly needed.
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In the decade to come

If the successful combination of Doppler measurements and Transit photometry already taught us a
lot about the internal structure of giant planets in a wide variety of physical contexts, things are far from
over. Not only these methods will continue to improve, and gain in precision, but new detection methods
will soon come to maturity, opening many promising paths for the coming years.

On the transiting planet side, recent observations have proved our ability to detect Earth size objects.
But these planets are still too close from a too bright star to be able to sustain liquid water at their surface.
At the same time, spectroscopic observations of the primary and secondary transits of giant planets
revealed a complex, and possibly out of equilibrium, atmospheric chemistry. But such observations are
not precise enough yet to be carried out on an Earth analog orbiting a Sun like star.

Fortunately, most stars in the universe are fainter than the Sun ! Warm planets can thus be found on
much closer orbits. And as these stars are also smaller and less massive than our Sun, they offer ideal
targets for transit detection and radial velocity follow up, and even make spectroscopic observations of
small size objects possible. With ground and space based missions already �nding such objects (MEarth:
Charbonneau et al. 2009; Kepler: Borucki et al. 2011), the �rstcharacterizableEarth analog in the
habitable zone does not seem so far ahead of us.

However, to prepare upcoming spectrometric observations withHST,Spitzeror JWST, theoretical
models of the chemical composition and thermal structure of the atmosphere of terrestrial planets in
the relevant range of the parameter space are required. Moreover, as these planets are expected to be
(pseudo) synchronized and exhibit a strong day night contrast, the global atmospheric circulation must
be properly treated to correctly interpret the transmission spectra which probe very speci�c regions of
the surface. This should soon revive the need for applying 3D Global Circulation Models (GCMs) not
only to Hot Jupiters, but also to close in Super Earths for which the atmospheric dynamics and chemistry
is yet poorly understood. The potential of this research is immense as it will open the avenue to the
detection of bio-signatures.

On the non transiting side, during the last few years, a tremendous amount of work has been devoted
to direct imaging of extrasolar planets and brown dwarfs. This resulted on one hand in many successful
detections, for example byChauvin et al.(2004) orMarois et al.(2010) (to cite only a few), and on the
other in constraining the population of substellar companions by large surveys (Lafrenière et al. 2007;
Chauvin et al. 2010; Leconte et al. 2010b).

However, while this method is a formidable tool to constrain the atmospheric physics - in particular
the presence of molecular absorbers, clouds or non-equilibrium chemistry - of young giant planets and
brown dwarfs at large orbital separation, it cannot yet constrain our structure and evolution models.
Indeed, as the mass of the object is still unmeasured, this is only through the theoretical mass-luminosity
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relationships provided by the aforementioned models that it can be determined. But, as transit and
Doppler measurements probe toward longer and longer period objects, and as extremely high angular
resolution imaging instruments are being built (SPHERE,GPI), these techniques should soon overlap.

When this arrives, the possibility to have at the same time, the mass of the body, its bolometric
luminosity and its colors in different bands will undoubtedly unravel new families of substellar objects,
maybe allowing us to distinguish between their various possible formation mechanisms and to pin down
their true nature. Not to mention the possibility to detect such objects at the very �rst stages of their
evolution and even maybe from their formation. Hence, to ready ourselves to these upcoming observa-
tions, in addition to a better modeling of planets and brown dwarfs atmospheres, we will have to bridge
the gap between formation and evolution models. This of course requires to treat consistently the early
solid and gas accretion, the radiative shock that occurs when a gap is opened between the planet and the
nebula, and the following evolution in the detached phase. We will thus be able to make more accurate
predictions of the observable parameters of substellar objects from their very youngest age, and follow
their life from birth to fate.

Let us wager that the next decade will bring us, as always, very challenging �ndings.



140 Publication list

Appendix A

Publication list
A.1 Refereed publications

� J. Leconte & G. Chabrier. "A new vision on giant planet interiors".Submitted to Astronomy &
Astrophysics, June 2011.

� J. Leconte, D. Lai, and G. Chabrier. "Distorted, non-spherical transiting planets : impact on the transit
depth and on the radius determination".Astronomy & Astrophysics, 528 :A41, April 2011.

� R. Heller, J. Leconte, and R. Barnes. "Tidal obliquity evolution of potentially habitable planets".
Astronomy & Astrophysics, 528 :A27, April 2011.

� J. Leconte, G. Chabrier, I. Baraffe, and B. Levrard. "Is tidal heating suf�cient to explain bloated
exoplanets ? Consistent calculations accounting for �nite initial eccentricity".Astronomy & As-
trophysics, 516 :A64+, June 2010.

� J. Leconte, R. Soummer, S. Hinkley, B. R. Oppenheimer, A. Sivaramakrishnan, D. Brenner, J. Kuhn,
J. P. Lloyd, M. D. Perrin, R. Makidon, L. C. Roberts, Jr., J. R. Graham, M. Simon, R. A. Brown,
N. Zimmerman, G. Chabrier, and I. Baraffe. "The Lyot Project Direct Imaging Survey of Substel-
lar Companions : Statistical Analysis and Information from Nondetections".The Astrophysical
Journal, 716 :1551-1565, June 2010.

� J. Leconte, I. Baraffe, G. Chabrier, T. Barman, and B. Levrard. "Structure and evolution of the �rst
CoRoT exoplanets : probing the brown dwarf/planet overlapping mass regime".Astronomy &
Astrophysics, 506 :385-389, October 2009.

A.2 Proceedings

� J. Leconte, G. Chabrier, I. Baraffe, and B. Levrard. "The radius anomaly in the planet/brown dwarf
overlapping mass regime". EPJ Web of Conferences, 11 :03004, 2011.

� G. Chabrier, I. Baraffe,J. Leconte, J. Gallardo, and T. Barman. "The mass-radius relationship from
solar-type stars to terrestrial planets : a review". In E. Stempels, editor,American Institute of
Physics Conference Series, volume 1094, pages 102-111, February 2009.

� J. Leconte, G. Chabrier, I. Baraffe. "Uncertainties in tidal theory: Implications for bloated Hot
Jupiters".Proceeding of the IAU Symposium 276, Torino, October 2010.

� G. Chabrier,J. Leconte, and I. Baraffe. "Understanding exoplanet formation, structure and evolution
in 2010".Proceeding of the IAU Symposium 276, ArXiv e-prints, December 2010.



141

Appendix B

Thermodynamic relations

As is well known, for a given material, there exists only three independent thermodynamic deriva-
tives (Callen 1960). Thus, numerical equations of state only provide a set of three such derivatives from
which one can �nd all the others by means of thermodynamic relations. In this appendix, we brie�y give
general thermodynamic relations that can be used to derive the relations needed, as well as the relations
that are most needed when handling the numerical ANEOS and SCVH packages.

B.1 General relations

As can be shown (e.g. Callen 1960), if we have three thermodynamic variables(X;Y;Z), there
exists the relation

dZ =
¶Z
¶X

�
�
�
�
Y

dX +
¶Z
¶Y

�
�
�
�
X

dY; (B.1)

and thus
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¶Y
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�
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�
Z

= �

¶ Z
¶ Y
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�
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¶ Z
¶ X

�
�
�
Y

: (B.2)

Sometimes, we also need to compute the derivative of a given functionF(X;Y0) that we know as a
function of(X;Y). We thus need to carry out a change of variable from(X;Y) to (X;Y0). As

dY =
¶Y
¶X

�
�
�
�
Y0

dX +
¶Y
¶Y0

�
�
�
�
X

dY0; (B.3)

we have
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dY

=
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+
¶F
¶Y
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�
�
X
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¶X
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�
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�
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whence
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�
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B.2 ANEOS

ANEOS (Thompson and Lauson 1972) was designed to work with the variables(r ;T), and thus
provides the speci�c thermal capacity at constant volume (density)

cV �
¶Ũ
¶T

�
�
�
�
r

; (B.6)

and two derivatives of the pressure,¶ P
¶ T

�
�
�
r

and ¶ P
¶ r

�
�
�
T
. For convenience, as it was designed to be used in

hydrodynamics codes, it also provides directly the sound speed

c2
s =

¶P
¶ r

�
�
�
�
S̃
; (B.7)

as well as the radiative opacity (k̄ ). As we have seen in Chapter1, there are two other derivatives that can
be needed, the speci�c thermal capacity at constant pressure and the adiabatic gradient, that are given by

cP � T
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where the last transformation uses the usual maxwell relation¶ r
¶ S̃
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because
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B.3 SCVH

The SCVH equation of state (Saumon et al. 1995) uses the intensive variables(P;T), and provides
all the derivatives of the density and entropy, as well as the adiabatic gradient1. Then, the sound speed
which is given by
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1Note that the SCVH package gives the decimal logarithm of the thermodynamic quantities, and their logarithmic derivatives

( ¶ logr
¶ logT

�
�
�
P

; ¶ logr
¶ logP

�
�
�
T

, etc...).
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Appendix C

Polytropic spheres

Let us assume that our equation of state is of the form

P = Kr 1+1=ñ; (C.1)

whereK andñ are called the polytropictemperatureandindex, and are constant throughout the con�g-
uration. Because the temperature does not enter explicitly in our equation of state, we do not need any
equation for the energy conservation, nor the energy transport, which are already implicitly contained in
Eq. (C.1). We can thus derive a simple equation for the structure of the object (e.g.Chandrasekhar 1939).
For brevity, we will only discuss here undistorted polytropic spheres to introduce the classical variables
used and have the useful equations at hand.

C.1 Lane-Emden equation

Following Chandrasekhar(1939), combining hydrostatic equilibrium and mass conservation
(Eqs. (1.57) and (1.58)), we get

¶P
¶r

= �
Gr
r2

Z r

0
4pr02r (r)dr0; (C.2)

and differentiating this intro-differential equation with respect tor yields

¶
¶r

�
r2

r
¶P
¶r

�
= � 4pGr2r : (C.3)

SubstitutingP by its expression given by the polytropic equation of state, and introducing the two fol-
lowing dimensionless variables

q̃ ñ = r =r c andx̃ = r=RLE; (C.4)

wherer c is the central density, andRLE is a yet undetermined scaling factor we �nally obtain

(ñ+ 1)K r
1
ñ � 1
c

4pGR2
LE

�
1

x̃2

d

dx̃

�
x̃2dq̃

dx̃

�
= � q̃ ñ: (C.5)

Then, choosing

R2
LE =

ñ+ 1
4pG

Kr
1
ñ � 1
c ; (C.6)



144 Polytropic spheres

yields the famousLane Emdenequation

1

x̃2

d

dx̃

�
x̃2dq̃

dx̃

�
= � q̃ ñ: (C.7)

As it is visible from Eq. (1.57),dq̃
dx̃

µ m
x̃2 . Near the center,mµ x̃3, and the boundary conditions are

thus

dq̃

dx̃
(x̃ = 0) = 0 and q̃(x̃ = 0) = 1: (C.8)

C.2 Global properties

Once theLane Emdenequation has been integrated numerically untilq̃ = 0, we are left with the
value ofx̃ and of the derivative of̃q at this point. As these quantities depend on ˜n alone, I will call them
x̃ñ andq̃0

ñ respectively1. Using the structure equations, we can derive some global characteristics of our
objects. Because of the de�nition of̃x , the radius is obviously given by

R1 = x̃ñRLE = x̃ñ

r
ñ+ 1
4pG

Kr
1
ñ � 1
c : (C.9)

The mass can be obtained by integrating the density which, by means of the Lane-Emden equation,
rewrites

M1 = 4p
Z r

0
r r02dr0= 4p r cR3

LE

Z x̃ñ

0
q̃ ñx̃2dx̃ ;

= � 4p r cR3
LE
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0

d

dx̃

�
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�
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LE x̃2
ñ jq̃0

ñj: (C.10)

Hence

M1 =
r

3� ñ
2ñ

cp
4p

�
ñ+ 1

G
K

� 3=2

x̃2
ñ jq̃0

ñj: (C.11)

Thanks to Eqs. (C.9) and (C.10), we can also show that the mean density writes

r̄ 1

r c
=

3jq̃0
ñj

x̃ñ
: (C.12)

De�ning the dimensionless gyration radius is given by

r2
gyr =

5
3

Rx̃ñ
0 q̃ ñx̃4dx̃

x̃4
ñ jq̃0

ñj
; (C.13)

which can also be computed for any given ˜n. With this de�nition,rgyr is equal to 1 for an incompressible
body (ñ = 0), and to 0 for an object where all the mass in concentrated at the center.

Finally, by eliminatingr c from Eqs. (C.9) and (C.10), we get the mass radius relationship

M
ñ� 1

ñ
1 R

3� ñ
ñ

1 =
K
G

ñ+ 1
(4p)1=ñ

x̃
ñ+1

ñ
ñ jq̃0

ñj
ñ� 1

ñ : (C.14)

1As q̃0
ñ is always negative, we often make use ofjq̃0

ñj to manipulate positive quantities.
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Appendix D

First order theory for an arbitrary
perturbing potential

In Chapter 3, we introduced the various concepts of the theory of �gures. In order for the reader to
have all the needed equations at hand, here we outline the method �rst developed by Sterne(1939).

D.1 Arbitrary perturbation

To lowest order the body response is linear and the total deformation is the sum of the response to
each term of the decomposition of the perturbing potential. Thus, in order to derive the equations in a
rather general way, we only need to consider a term a perturbing potential of the form

Vext(r;q; f ) = cm
n rnYm

n (q; f ); (D.1)

wherecm
n is a constant which de�nes the amplitude of the perturbation. The reference axis de�ningq and

f may change from one term to the other. Analogously to Eq. (3.13), a small dimensionless parameter
can be de�ned as

mext =
cm

n R̄n+1
1

GM1
=

3
4p

cm
n R̄n� 2

1

Gr̄ 1
: (D.2)

D.2 Level surfaces

To simplify the �gure equations, we choose to use the mean radius ¯r de�ned by Eq. (3.17). Using
this mean radiusimplies that to �rst order, meaning thatsm

n sm0

n0 µ m2
ext � 0,

4
3

pr̄3 =
4
3

pr̄3(1+ 3s0
0) ) s0

0 = 0: (D.3)

For this reason, using the variable ¯r, instead ofreq or rpol, simpli�es the �rst order equation for the
hydrostatic equilibriumwhich thus does not involve thesm

n (the dependency in ¯r of thesm
n being implicitly

assumed). Thus, in the following, we will use the variable ¯r, and noteR̄1 the mean radius of the 1 bar
equipotential of the object considered. To �rst order, the shape of our body is a general triaxial ellipsoid,
and we havēR1 = ( a1a2a3)1=3. For �gure equations derived using either the equatorial or polar radius,
the reader is referred toZharkov and Trubitsyn(1970).

As discussed in §3.1.1, by de�nition, level surfaces are also isodensity surfaces. This means that
the various integrals involving the density can be integrated by usingr (r0) = r (r̄).
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D.3 Computation of the mass integrals

As we have reduced our density �eld to a function of ¯r alone, we can now express the gravitational
potential and the mass integrals, Eqs. (3.3) and (3.4), with algebraic functions of the �gure functions.
As r (r0) is only a function of ¯r, we must carry out the change of variable from(r;q; f ) to (r̄;q; f )
using Eq. (3.16). The dif�culty lies in the limit of the integration domain which is still spherical. It has
been shown byZharkov and Trubitsyn(1980) andLyapunov(1903) that replacing this domain by the
one delimitated by a level surface of the form Eq. (3.16) and enclosing the same volume (the condition
therefore reading ¯r0< r̄ instead ofr0< r) does not affect the integral, all the terms calculated between
the level surface and the sphere compensating one another. This yields

Dm
n = ( 1+ dm;0)

(n� m)!
(n+ m)!

Z

r0< r
r (r0) ( r0)nYm
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(D.4)
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Replacingr0using Eq. (3.16) we get

Dm
n = ( 1+ dm;0)
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Developing the last term, ignoring terms of ordersm
n � sm0

n0 , and using the orthogonality relation for the
tesseral harmonics, this simpli�es to

Dm
n =

4p
2n+ 1

Z r̄

0
dr̄0r (r̄0)

d
dr̄0

�
r̄0n+3sm

n

�
: (D.7)

Analogously

D̄m
n =

4p
2n+ 1

Z R̄1

r̄
dr̄0r (r̄0)

d
dr̄0

�
r̄02� nsm

n

�
: (D.8)

By coincidence, this equation also works for n= 2, even ifD̄m
2 involves the derivative of lnr0. There are

two special cases:

D0
0 =

4p
3

Z r̄

0
r (r̄0) dr̄03;

D̄0
0 =

4p
2

Z R̄1

r̄
r (r̄0) dr̄02: (D.9)
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We can see thatDm
n µ sm

n , therefore they are all �rst order quantities (exceptD0
0 andD̄0

0 which give the
zeroth order spherical potential).

D.4 Total potential and equations of �gures

Now that we have calculated the coef�cients of the spherical harmonics decomposition of both
gravitational and perturbing potentials, we can express the total potential as well

Vtot(r̄;q; f ) = VG + Vext

= �
4
3

p Gr̄ 1 r̄2 å
n;m

V̂m
n (r̄)Ym

n (q; f ): (D.10)

Because the ¯r = cst surfaces are equipotentials by construction, our set of equations on the �gure functions
we be given by Eq. (D.3) and

�
V̂m

n (r̄) = 0
	

n6=0;jmj6n : (D.11)

Using the dimensionless variables
8
>>><

>>>:

s̃ = r̄=R̄1

Sm
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n
4p r̄ 1 r̄n+3

S̄m
n = 3D̄m

n
4p r̄ 1 r̄2� n

(D.12)

the potential given by Eqs. (3.2) and (D.1) can be expanded onto spherical harmonics, and rewriten
(neglecting all thesm

n � sm0

n0 andsm
n � mext terms)

Vtot(r̄;q; f ) = �
4
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p Gr̄ 1 r̄2 �
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"
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: (D.13)

Thus, our set of equations is
n

V̂m0

n0 (s̃) = Sm0

n0 + S̄m0

n0 � sm0

n0 S0
0 � dn;n0dm;m0s̃n� 2mext = 0

o

n0;m0
: (D.14)

Of course, themeanhydrostatic equilibrium is provided by the n= 0 term, which reads

¶P
¶r̄

=
4
3

p Gr̄ 1
d
dr̄

�
r̄2V̂0

0

�
; V̂0

0 = S0
0 + S̄0

0: (D.15)

SubstitutingS0
0 andS̄0

0 by their expressions in Eq. (D.9) shows us that the mean equilibrium is left unper-
turbed

¶P
¶r̄

= � r
Gm
r̄2 ; (D.16)

meaning that the mean radius of any given equipotential surface is the same in the spherical case or in the
real object1. This entails that the pro�les of all the thermodynamical variables expressed as a function
of the mean radius in the distorted object are equal to the radial pro�le obtained in the unperturbed case
(r (r̄) = r (r)). In particular, the density pro�le yielded by the integration of the zeroth order hydrostatic
equilibrium (r (r)), can be directly used in integrating Eq. (D.19) derived hereafter.

1As can be seen in Appendix E, this is true only to �rst order.
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D.5 Differential equation on smn

From the set of equations (D.14), we immediately see that all thesm0

n0 (n06=n and m06=m) are equal
to 0. To derive numerically thesm

n , the integro-differential equation (D.14) can be solved iteratively with
the method described inZharkov and Trubitsyn(1980). The numerical solution after i iterations is given
by

sm
n j i =

1
S0

0

�
Sm

n ( sm
n j i� 1) + S̄m

n ( sm
n j i� 1) � s̃n� 2mext

�
; (D.17)

and sm
n (s̃)j0 = 0 can be used as a �rst guess. This procedure, which is mandatory to higher order, can

however be reduced in the linear case. Indeed, multiplying Eq. (D.14) by ˜sn+3, differentiating with
respect to ˜s, and dividing by ˜s2n, we see thatsm

n veri�es2 (Sterne 1939)
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2n+ 1
3
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Differentiating once again with respect to ˜s yields

d2sm
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s̃2 sm
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with

r̄ (s̃) =
3
s̃3

Z s̃

0
r (s̃0)s̃02ds̃0; (D.20)

the mean density interior to ˜s, andr̄ (1) = r̄ 1. Using the variablehn(s̃) = s̃
sm
n (s̃)

dsm
n

ds̃ , this rewrites

s̃
dhn

ds̃
+ h 2

n � hn � n(n+ 1)+ 6
r (s̃)
r̄ (s̃)

(hn + 1) = 0: (D.21)

As always, the dif�cult part lies in �nding the boundary condition forhn(0). Following Jeffreys
(1970), let us assume thatsm

n µ s̃k nears̃ = 0 and substitute this solution in Eq. (D.19). Keeping the
smallest power in ˜s we get the following equation for k

k(k � 1) � n(n� 1)+ 6k+ 6 = 0; (D.22)

whence

k = n� 2 or k= � n� 3: (D.23)

The k= � n� 3 solutions are obviously singular at the center and can be discarded. Thussm
n (s̃) µ s̃n� 2

nears̃= 0, which provides us with the boundary condition forhn

lim
s̃!0

hn(s̃) = n� 2: (D.24)

For the n= 1 case, there still seems to be a singularity at the center. But we can see that in this
case,sm

n (s̃) = As̃� 1 is an exact solution of Eq. (D.19). Therefore, the radial displacement is given by
r̄ A

r̄ Ym
n = AYm

n . This is a rigid body displacement and need not be considered further.

In an idealized case, this equation can be solved directly analytically. Indeed, in the incompressible
case,r (s̃) = r̄ (s̃) = r̄ 1. Then, for a quadrupolar disturbance (n= 2), hn(0) = 0 andh 0

n(0) = 0. Because
hn(s̃) = 0 is a solution of the differential equation that veri�es the boundary conditions, the Cauchy's
theorem states that it is the unique solution we are looking for. As explained hereafter, this yields
k2 = 3=2 andh2 = 5=2, as expected (Zharkov and Trubitsyn 1980).

2To involve only the variable ˜s in the following equations, it is implicitly assumed that for any functiong, g(s̃) indeed
denotesg(s̃R̄1) = g(r̄).
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Appendix E

Third order theory of planetary �gures

While the �rst order theory presented in Chapter3 can be suf�cient to describe system where ob-
servational constraints are still weak, it is not accurate enough to describe the major planets of the Solar
System. Indeed, the missions that landed, orbited or simply passed by our four gas giants provided high
precision measurements of their composition, atmospheric properties and gravitational and magnetic
�elds (seeGuillot 2005for a review). The gravitational �eld, in particular, has been measured up to its
third harmonic (J6 ; Campbell and Synnott 1985; Campbell and Anderson 1989) providing very valu-
able information on the deep interior of these planets. To to extract this information, we need an accurate
theory predicting the structure of the gravitational �eld of a body in hydrostatic equilibrium to third or
higher order as derived inZharkov and Trubitsyn(1980). However, during the process of re-calculating
these high order developments, I found some errors or typos that I wish here to correct.

E.1 Rotational perturbation

Because the tidal distortion is negligible for the giant planets - for Jupiter, the disturbance created
by Io givesjmtidj � 2� 10� 7 againstmrot � 0:1 due to the fast rotation of the planet - we only focus on
the rotational deformation. This directly entails that the shape of planet will be symmetric with respect to
both the rotation axis and the equatorial plane (Zharkov and Trubitsyn 1980). As a result, only the m= 0
harmonics need to be considered. For simplicity, we therefore drop these in our notation and superscript
indices will only be exponent.

E.2 Level surfaces

E.2.1 Mean radius

Once again, to obtain a set of equations for the �gure functions, we must decompose the total
potential on spherical harmonics and as a function of the �gure functions. Because of the symmetry of
the problem, we can reduce our set of spherical harmonics to a set containing only the even Legendre
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polynomials1. In this case only thes0
2n terms remain2. Eq. (3.16) thus reduces to

r(l ;q; f ) = r̄
�
1+ å

n
s2n(r̄) P2n(m̃)

�
; (E.1)

wherem̃= cosq, the cosine of the colatitude. Hence, Eq. (3.17) yields

2 =
Z 1

� 1

"

1+
¥

å
n=0

s2nP2n(m̃)

#3

dm̃: (E.2)

To 3rd order, this yields (with correction of a typo inZharkov and Trubitsyn 1980)

s0 = �
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1
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s2
2 +

2
105

s3
2

�
: (E.3)

De�ning req the equatorial radius of a shell of mean radius ¯r, we also have

req

r̄
= 1+

¥

å
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s2nP2n(0)

= 1+ s0 �
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s2 +
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rot); (E.4)
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= 1� s0 +
s2

2
+

s2
2

4
�

3s4
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s2s4 +
5
16

s6 + O(m4
rot): (E.5)

E.2.2 Generalized ellipsoids:e,k and h variables

For an axisymmetric disturbance, one can also search a planetary �gure equation in the form of a
distorted ellipsoid of revolution. To 3rd order, this equation writes (Zharkov and Trubitsyn 1980)

r(q) = req

h
1� ecos2q �

�
3e2

8
+ k

�
sin2(2q))

+
�

e3

2
+ h

�
sin2q

�
5sin4q � 6sin2q + 1

� i
: (E.6)

Converting trigonometric functions into Legendre polynomials and the equatorial radius into the mean
radius (using Eq. (E.4)), the comparison of Eq. (E.6) with Eq. (3.16) gives a system of nonlinear equations
for e,k, h and thesn. To solve this set of equations to 3rd order, one can replace the �gure functions by

s2n =
¥

å
k= n

s(2k)
2n mk

rot; e=
¥

å
k= 1

e(k)mk
rot; k =

¥

å
k= 2

k(k)mk
rot; ::: (E.7)

Becausemrot is arbitrary, the coef�cients of all themk
rot (k=1...3) terms must be equal. This provides us

with a set of linear equations on thes(2k)
2n , e(k) , ... . Regrouping all the terms we get
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s6 = �
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e3 �
80
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h: (E.8)

1The rotational symmetry entails that the shape cannot depend on the longitude, and the symmetry of the planet with respect
to the equator plane implies that only even harmonics are not equal to zero.

2In this context, thes0
2n are rewrittens2n and the superscripts are only exponents.
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This formula is in agreement with Eq (30.4) ofZharkov and Trubitsyn(1980).

E.3 Mass integrals:S2n

As in §D, we must �rst compute the mass integrals that appear in the self gravitational potential of
the deformable body (Eq. (3.2)). The mass integralsD2n andD̄2n are given by

Dn(r̄) =
Z 2p

0
df 0

Z r̄

0
dr̄0r (r̄0)

Z 1

� 1
dm̃0(r0)n+2Pn(m̃0)
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dr̄0[ln r]Pn(m̃0): (E.9)

Again, we have changed the limit of the integration domain in Eqs. (3.3) and (3.4) fromr0= r to r0= r(m̃),
the additional terms arising from the integration domain contained between the sphere and the level
surfaces being equal to zero (Zharkov and Trubitsyn 1980). As usual, the powers ofr are expanded in
terms of the �gure functions using Eq. (3.16). Then, products of Legendre polynomials can be developed
and all the angular functions are integrated overm̃. Using the dimensionless variables

8
>>>>><

>>>>>:

s̃ = r̄=R̄1

d = r =r̄ 1

Sn = 3Dn
4p r̄ 1 r̄n+3

S̄n = 3D̄n
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(E.10)

this gives
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In terms of thee,k andh functions, this reads
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E.4 3rd order potential

As in the linear theory, once the mass integrals are known, one can express the total potential. Here
also, because of the symmetry of the problem, we can reduce our set of spherical harmonics to a set
containing only the even Legendre polynomials. The total potential thus writes

V(r̄; m̃) = VG + Vrot

= �
4
3

p Gr̄ 1 r̄2
¥

å
n=0

V̂2n(r̄) P2n(m̃): (E.14)

Then the equations to be solved to �nd the �gure functions will be
�
V̂n(r̄) = 0

	
n=2;4;6 (E.15)

and the hydrostatic equilibrium will read
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E.4.1 Expression in term of thes2n

To 3rd order, the �rst terms of Eq. (E.14) are given by
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These formulae are in agreement with Eq (28.7-9) and (29.4) ofZharkov and Trubitsyn(1980).

E.4.2 3rd order potential with e,k and h

In term of thee,k andh functions, this writes
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E.5 Gravitational moments

As shown in § 3.2.2, the gravitational moments are directly given by the mass integrals, which
rewrites here

J2n = � S2n: (E.26)

Like in §E.2.2, we can �nd an algebraic relation between theJ and the �gure functions. To do so, one
can replace the �gure functions and the gravitational moments by
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rot; :::; J2 =
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J(k)
2 mk

rot; ::: (E.27)

in Eqs. (E.23), (E.24) and (E.25). Then, becauseV̂n = 0 for n= 2;4;6; :::, and equating all the terms of
the same order to zero, we get
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These expressions correct minor typos inZharkov et al.(1973).
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Appendix F

Projected area of a triaxial ellipsoid

F.1 General case

Let us de�ne two coordinate systems. The �rst one (x̂0, ŷ0, ẑ0) is de�ned by the three main axes of
the ellipsoid. In this frame, the equation of the surface of the ellipsoid is

x02

a2
1

+
y02

a2
2

+
z02

a2
3

= 1: (F.1)

To compute the projected area of this ellipsoid as it will be seen by the observer, it is easier to put
ourselves in another coordinate system de�ned by the line connecting the center of mass of the system
and the observer (toward the observer ;x̂), the projection of the orbital angular momentum on the sky
plane (̂z) and a third axis in the sky plane chosen so that(x̂; ŷ; ẑ) follows the right-hand vector sense.
The current position vector(r = ( x; y; z)) expressed in this frame is thus related to the one expressed in
the �rst coordinate system by a rotation matrixR such asr0= R � r; with RtrR = 1. The equation of the
ellipsoid in the new system thus writes

g(r) � r tr Rtr

0

B
@

1
a2

1
0 0

0 1
a2

2
0

0 0 1
a2

3

1

C
A Rr � r tr Sr = 1: (F.2)

The exact value of the matrixSwill depend on the rotation needed and on the angles chosen to represent
it. This can be worked out in each speci�c case. To keep some generality, we will takeSof the form

S=

0

@
a d f
d b e
f e c

1

A : (F.3)

The symmetry is ensured by the fact that both of our coordinate systems are orthonormal. The equation
of the contour of the projected shadow is given by the fact that the normal to the ellipsoid is normal to
the line of sight (̂x) there. This assumes a completely opaque body below the isobar chosen to be the
surface. This reads

0 = grad[g(r)] tr � x̂ = 2r tr Sx̂: (F.4)

This shows that these points are located on a plane whose equation is (sincea 6=0)

x = �
1
a

(d y+ f z): (F.5)
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Substitutingx in Eq. (F.2) by Eq. (F.5) we see that the cross section is an ellipse following the equation

(y;z)

 
b� d2

a e� d f
a

e� d f
a c� f 2

a

! �
y
z

�
� (y;z)P

�
y
z

�
= 1: (F.6)

It is thus possible to �nd the rotation in the sky plane needed to reduce the ellipse and �nd its principal
axes (p1; p2). If only the cross section (pp1p2) is needed, we can use the fact that the determinant of a
matrix is independent of the coordinate system so that

p p1p2 =
p

p
Det(P)

; (F.7)

with

Det(P) = bc� e2 �
b f2

a
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cd2
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2de f
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In the case of an edge-on orbit at mid transit, no rotation is needed,R is the identity and thusa = 1=a2
1,

b = 1=a2
2, c = 1=a2

3 andd = e= f = 0. We retrieve

p p1p2 =
p

p
bc

= pa2a3: (F.9)

F.2 Coplanar case

If the planet equator and the orbital plane are coplanar, the unit vectors of �rst coordinate system
de�ned above coincides with the unit vectors de�ned by the line connecting the two center of mass (from
the secondary to the object under consideration ;x̂0), its normal in the orbital plane (in the direction of
motion ; ŷ0) and the rotation axis of the body (ẑ0). If i is the inclination of the orbit with respect to the
sky plane andf the true anomaly de�ned to be 0 at mid transit, the rotation matrix reads

R =

0

@
sini cosf sinf cosi cosf

� sini sinf cosf � cosi sinf
� cosi 0 sini

1

A : (F.10)

The S matrix can be computed thanks to Eq. (F.2) giving thea, b, ..., f coef�cients and thus the
projected area reads

A = p
q

a2
3sin2 i

�
a2

1sin2 f + a2
2cos2 f

�
+ a2

1a2
2cos2 i: (F.11)

This gives the projected area of the planet or the star at any given point of the orbit as shown on Fig.3.6.
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Appendix G

The Mixing Length Theory

In order to investigate the impact of such strongly hampered convection on giant planet internal
structure, I developed a simple sub-grid model based on the Mixing Length Theory (MLT) of convection
(Hansen and Kawaler 1994). However, before getting into the derivation of this model, let us introduce
the basic formulation of the MLT.

G.1 Growth rate

In a homogeneous medium without rotation and magnetic �eld, the dispersion relation for horizon-
tal waves (corresponding to vertical velocity ; see §4.1.2) is

(s̃ + k̃2) ( s̃ + Pr k̃2) � 1 = 0; (G.1)

or

s̃ 2 + s̃ k̃2(1+ Pr)+ Pr k̃4 � 1 = 0: (G.2)

A closer look at the determinant of this equation,

D= ( 1+ Pr)2k̃4 � 4(Pr k̃4 � 1) = 4+ ( 1� Pr)2 k̃4;

shows us that is is always positive, so that the roots are real. Then, because the sum of these roots,
� (1+ Pr) k̃2, is negative, their product must also be negative so that at least one of them be positive.
This entailsPr k̃4 6 1. Recasting this in term of the well known Rayleigh number

Ra� N2
T=(nkTk4) = ( Pr k̃4) � 1; (G.3)

this criterion then readsRa> 1. Hence, not only the super adiabaticity needs to be positive for the
medium to be convectively unstable, but it must be large enough to counteract the radiative losses and
maintain an overturning convection. The problem that arises, however, is that in an in�nite medium,
this criterion can always be met by taking a small enoughk̃, i.e. a large enough length scale for the
perturbation. This problem is at the heart of the MLT formalism. As the fastest growing mode is reached
for vanishing wave numbers, the theory cannot predict the typical size of the perturbation. In practice,
this implies that the so-calledmixing length,l � 1=k, is a free parameter.

Let us agree for the moment that this mixing length is determined by some exterior constraint.
Moreover, one of the fundamental assumptions of the MLT is that our growing wave can be seen as a
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rising eddy of sizel which is described by a velocityvconv and temperature differenceDT, those being
the �nite versions ofdv anddT de�ned in § 4.1.2 reached fort = tconv � 1=s. Solving Eq. (G.1), we get
the growth rate of the convective wave

s̃ =
1
2

� q
4+ ( 1� Pr)2 k̃4 � (1+ Pr)k̃2

�
: (G.4)

Following Hansen and Kawaler(1994), we de�ne

L � Ra� Pr = N2
T=(k 2

Tk4) = k̃� 4; (G.5)

which measures the ef�ciency of the convection. The growth rate of the perturbation then rewrites

s = NT s̃ (L) with s̃ (L) �
1

2
p

L

� q
4L + ( 1� Pr)2 � (1+ Pr)

�
; (G.6)

and the convective velocity is then

vconv = s l = NT l s̃ (L) : (G.7)

To �nd the convective �ux, we will need to know what is the temperature difference between a moving
eddy and the exterior (DT). Using Eqs. (4.10) and (G.1), we have

DT =
(ÑT � Ñad)
s + kTk2

T
HP

vconv

= ( s̃ + Pr k̃2)
(ÑT � Ñad)

NT

T
HP

vconv

=
1

2
p

L

� q
4L + ( 1� Pr)2 � (1� Pr)

�
(ÑT � Ñad)

NT

T
HP

vconv; (G.8)

and the convective �ux can be written

Fconv = r cPDT vconv: (G.9)

G.2 Convective ef�ciency

While we seem to have solved the problem and found the convective velocity, we are still far from
a usable solution. Indeed, all along, we have used the Brunt-Väisälä frequency,NT , as if it were known.
However, this depends on the super adiabaticity in the medium which will obviously depend on the
ef�ciency of the convection. In order to �nd a �xed point to this retroacting, I thus need to de�ne a
quantity quantifying the radiative forcing in the system. To do so, I �rst need to consider the different
relevant �uxes. Those are the total internal �ux to be transported (Fint), the �ux transported by diffusive
processes (Fd), and the diffusive �ux that would be present in a completely adiabatic zone (Fad

d ) are given
by (see §1.1.4)

0
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Fad
d

1

A = kT
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ÑT

Ñad

1

A : (G.10)
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An often used quantity to describe energy transport by convection is the Nusselt number (Nu), which is
given in general by the ratio of the total �ux (diffusive+ turbulent) to the diffusive �ux in a convective
layer. In our context, we use the slightly different de�nition ofHansen and Kawaler(1994)

Nu�
Fint � Fad

d

Fd � Fad
d

=
Ñd � Ñad

ÑT � Ñad
: (G.11)

Hence, with this de�nition, if convection is ef�cient, the super adiabaticity will be small and the Nusselt
number high. On the other hand, if convection is not present or inef�cient,Nu ! 1: The interesting
property ofNu is that, by multiplying it byL, we can de�ne our convective forcing

F � L Nu=
aT g
k 2

T

l4

HP
(Ñd � Ñad); (G.12)

which can be directly computed once the total �ux to be transported (hidden inÑd) is known. Hence to
get our equation on the convective ef�ciency, we need to manipulate the de�nition of the Nusselt. Since
Fint = Fconv+ Fd,

Nu=
Fint � Fd + Fd � Fad

d

Fd � Fad
d

= 1+
Fconv

Fd � Fad
d

: (G.13)

Then, using the de�nition of the convective �ux, we can obtain the sought for equation and solve it
numerically. By chance, in the context of gaseous bodies, the Prandlt number is often small. In order
to derive an analytical theory, we will thus use thePr � 1 limit of the equations (Hansen and Kawaler
1994), and will come back later on the implications of this approximation. Then using Eqs. (G.8) and
(G.9), the convective �ux also takes a more manageable form

Fconv =
r cPTNT

HP
(ÑT � Ñad)s̃ 3l2: (G.14)

Hence,

Fconv

Fd � Fad
d

=
NT l2

kT
s̃ 3 = L 1=2s̃ 3; (G.15)

and

LNu = L + L 3=2s̃ 3; (G.16)

wheres̃ now reads

s̃ (L) �
1

2
p

L

� p
1+ 4L � 1

�
: (G.17)

Deferring a thorough study of the asymptotic regimes of this equation until §4.2.3, let us just derive some
orders of magnitude for large scale convection. Of course we need a prescription for the mixing length.
An implicit assumption that was made during our linear analysis was that all the quantities involved
should be constant in our medium. In a star or a gaseous body, this is strictly veri�ed only ifl � HP.
It has been shown, however, that in order to reproduce some observed properties of solar like stars, the
mixing length should be chosen to be on the order of the pressure scale height. Then, asHP � R1 in
most of a gaseous object interior, we �nd that for condition prevailing in the interior of the actual Jupiter
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(Saturn), the mean thermal diffusivity iskT � 5� 10� 5 m2.s� 1 (Potekhin 1999),Ñad� Ñad � 40 (30 ; see
also Fig. 4.7), andLNu is equal toLNu � 1� 1035 (3� 1034).

As the forcing is extremely large, convection is very ef�cient. Indeed, keeping only the largest
power inL, we getLNu � L 3=2, so thatL � 1023: Then, because the de�nition ofL can be rewritten

L =
aT g
k 2

T

l4

HP
(ÑT � Ñad); (G.18)

this tells us that the super adiabaticity needed to transport the outgoing energy is on the order of 10� 8 �
10� 9, so that the structure can be solved by settingÑT = Ñad

1.

1Note that rapid rotation and/or strong magnetic �elds, necessarily present in Jupiter and Saturn interiors, are known to
hamper large-scale convection. Indeed, the zonal �ows observed in Jupiter's atmosphere might reveal the presence of convective
rolls at deeper levels, a consequence of the impact of rotation on convective motions, according to the Taylor-Proudmann
theorem (Busse 1976). However the super adiabaticity needed is still negligible in front ofÑad (Stevenson 1979b)
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Appendix H

Computation of the heavy element content

The mean molecular weight gradient needed to stabilize the �uid against large scale convection can
be caused by an inhomogeneous distribution of both helium (Y(m)) and metals (Z(m)) in the hydrogen
(X(m))-rich medium. In practice, both gradients can be present at the same time and either compete or
contribute constructively.

In the model, I consider an ideal mixture of heavy elements within a H/He envelope whose H/He
mass ratio is kept constant and equal to its value in the protosolar nebula, (H/He)proto. This implies

X + Y + Z = 1; and
Y

X + Y
=

�
Ȳ

X̄ + Ȳ

�

proto
� 0:275; (H.1)

everywhere in the planet's gaseous envelope. Only one degree of freedom thus remains. Following previ-
ous calculations (Chabrier et al. 1992), for sake of simplicity and in order to have a �exible determination
of the metal enrichment and a thermodynamically consistent EOS in the gaseous phase, the metal mass
fraction is approximated by aneffectivehelium mass fraction (Y0) in the H/He EOS. As for the core, this
latter is correctly described by the appropriate water and silicate EOS mentioned in the text.

The various element mass fractions, then the corresponding metal enrichment, are thus inferred
from the relation

1
r (P;T;Y0)

=
1� Z

r (H=He)proto(P;T)
+

Z
r Z(P;T)

; (H.2)

which givesZ at each depth along a given modelP-T pro�le (Chabrier et al. 1992). The hydrogen and
helium mass fractions are then derived using

Y = ( 1� Z)
�

Ȳ
X̄ + Ȳ

�

proto
(H.3)

and

X = 1� Y � Z: (H.4)

In this simple model, aZ gradient thus necessarily yields a competing inhomogeneous helium distribution
within the planet. Because the mean molecular weight of a H/He mixture at �xed temperature and
pressure only depends onY=(X + Y), only theZ variations need to be considered to computeÑm in our
simpli�ed model. TheZ(m) pro�le is then integrated to obtain the total amount of heavy elements mixed
in the gaseous layers for each planetary model, as portrayed in Fig.4.9. In the most general case, with
an intrinsic inhomogeneity of the helium distribution, caused for instance by its immiscibility in metallic
hydrogen, both theY andZ gradients would have to be properly calculated.
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Appendix I

Secular tidal evolution for �nite
eccentricity and obliquity

Having a prescription for the parameters modeling the dissipation in our bodies, in our case a
constant viscosity, we can concern ourselves with the determination of the secular change of the orbital
elements of a tidally interacting binary system. We consider a system of two deformable bodies of mass
M1 andM2. Note that no approximation will be made on the masses of the two bodies, meaning that the
following equations can be used in a large variety of contexts, covering Star-Star, Star-Planet and Planet-
Satellite interactions. Up to the quadrupolar terms in the tidal deformation, approximation that remains
to be explained and justi�ed, the mutual interaction of the tidal bulges is negligible and we can separately
consider the effects of the tides raised in each body and sum them up at the end of the calculation. Let
us consider the effect of the tides raised in a deformable body (sayM1, hereafter the primary, of mean
radiusR̄1) in interaction with a point mass (sayM2 the secondary). In these notations, the primary is
not necessarily the most massive object of the pair, but always refers to the object whose tides are being
considered, and the secondary always refers to the tides raising object.In �ne, the complete equations are
obtained by simply adding the contributions of the tides in both objects, each body playing consecutively
the role of primary.

In general, because tidal processes are small perturbations to the mean orbital motion, the standard
perturbation method �rst developed by Lagrange can be used (see e.g.Brouwer and Clemence 1961).
However, I will present hereafter a simple and physically more transparent derivation of the equations,
based on the formulation ofHut (1981). Note that I have extended the calculations to be valid for
any obliquity.

I.1 Secular equation to arbitrary obliquity

The demonstration follows three main steps.

1. The orientation of the tidal bulge with time is computed. This yields vector expressions for the
tidal force and torque.

2. The variations of the rotation rate, obliquity and orbital angular momentum are obtained thanks to
this expression of the torque and using thetotal angular momentum conservation.

3. The evolution of the semi-major axis and eccentricity are obtained from the expression of the work
exerted by tidal forces. The total amount of energy dissipated by tides in one of the bodies is a
direct product of the calculation.
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I.1.1 Trivia

One of the major assumption made here, that remains to be justi�ed, is that the tidal perturbation
entails only a small departure of the orbital motion from the unperturbed Keplerian solution. We will
thus consider that, over an orbit, our two bodies follow the usual motion, solution of the unperturbed two
body problem. This will allow us to average the effect of the tidal forces over the orbital timescale, and
to keep only the secular effect of the tidal interaction on the orbital elements,a, e,w i andei , respectively,
the semi major axis (or the mean motionn), the eccentricity, and the rotation rate and obliquity of the
component i.

In order to simplify the following derivation, I brie�y recall here some properties of the two body
problem solution. The radial distancer? between the center of mass of the two objects writes

r? = a
1� e2

1+ ecosq
; (I.1)

whereq is the true anomaly, de�ned as the angle between the line connecting the center of mass of the
two components and the one connecting the center of mass of the whole system and the perihelion (point
of closest encounter).

Over such an orbit, the total orbital energy of the binary is given by

Eorb = � G
M1M2

2a
; (I.2)

and the orbital angular momentum by

Horb =
M1M2

M1 + M2
r2
?

�q =

s

G
M2

1M2
2

M1 + M2
a(1� e2): (I.3)

Because the orbital angular momentum is constant over an orbit, we can compute the variation of the
true anomaly and radial distance with respect to the position on the orbit

�q = n
p

1� e2

�
a
r?

� 2

= n
(1+ ecosq)2

(1� e2)3=2
; (I.4)

and differentiating Eq. (I.1) with respect toq we get

dr?

dq
=

�r?
�q

= ae(1� e2)
sinq

(1+ ecosq)2 ; (I.5)

and thus

�r? = an
esinq

p
1� e2

: (I.6)

Thanks to these expressions, it is now easy to compute the average value of any functionf , involving
a combination of�q, �r? or r?, over an orbit. Indeed, one can �rst expressf as a functiong of q alone
(with g(q(t)) = f (t)). Then the average is given by

hf i �
1

Torb

I

orbit
f (t) dt =

1
Torb

I

orbit
g(q)

dq
�q(q)

: (I.7)

In the cases of interest, the functiong(q)= �q can be expanded in a �nite series of sines cosines functions,
and the integral in Eq. (I.7) reduces to a sum of terms of the form

In =
Z 2p

0
sin2q cosnqdq: (I.8)
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If n is odd,In = 0 due to the symmetry. For even values of n,

I2k = 4
Z p=2

0
sin2q cos2kqdq = 4

� Z p=2

0
cos2kqdq �

Z p=2

0
cos2k+2qdq

�
: (I.9)

A recursive process shows that the integrals on the right hand side (also known as Wallis integrals) give1
Rp=2

0 cos2kqdq = (2k� 1)!!
2k!! p=2 and thus

I2k = 2p
(2k� 1)!!
(2k+ 2)!!

: (I.10)

I.1.2 Tidal torque

Up to quadrupolar order, the potential created at a locationr, by a body being distorted by a sec-
ondary located atr?, is obtained by truncating Eq. (5.3) up to terms with n= 2 which gives

VG(r; r?) =
GM1

r

�
1� k2

R̄5
1

r2r3
?

M2

M1
P2(cosy )

�
; (I.11)

wherey is the angle betweenr andr?, andk2 is the Love number of degree 2 of the primary.

Figure I.1: Point mass approximation of the tidal bulge (in the coplanar case). In this example,w1 > �q
so that the tidal bulge is leading in front of the secondary.

To this order, the mass distribution of the primary can be mimicked by a central massM1 � 2dm
and two point masses at the location of the tidal bulges (r+ ; r � = � r+ ; see Fig. I.1) of massdm with
kr+ k = kr � k = R̄1 the radius of the primary and

dm=
1
2

k2M2

�
R̄1

r?

� 3

: (I.12)

Because we consider aconstanttime lagDt1 between the deforming potential and the tidal deformation
in the frame rotating with the primary,r̂+ = r̂?(t � Dt1) ( r̂? refers to the unit vector associated tor?) in
this frame. Let�q be the orbital rotation vector colinear to the orbital angular momentum whose value is

1By de�nition, i!! = i (i � 2) (i � 4) :::1.



166 Secular tidal evolution for �nite eccentricity and obliquity

the instantaneous variation rate of the true anomalyq of the bodies in their Keplerian motion andw1 the
rotation vector of the primary. Thus, to �rst order inDt1,

r̂+ = r̂?(t � Dt1) � r̂? � Dt1 r̂? � (w1 � �q): (I.13)

The amplitude of the tidal bulges also lags behind the deforming potential and is given by

dm(t) =
1
2

k2M2

�
R̄1

r?(t � Dt1)

� 3

�
1
2

k2M2

�
R̄1

r?

� 3

(1+ 3
�r?

r?
Dt1): (I.14)

Then, adding the forces exerted by each point mass of the primary on the secondary, the total tidal force
exerted on the secondary reads

F1!2 = �
G(M1 � 2dm)M2

kr?k3 � r? �
GM2dm

kr? � r+ k3 � (r? � r+ ) �
GM2dm

kr? � r � k3 � (r? � r � ): (I.15)

Substitutingr+ , r � = � r+ anddm by their expressions in Eqs. (I.13) and (I.14), and neglecting terms
smaller than(R̄1=r?)5 gives

F1!2 = �
GM1M2

r2
?

� r̂? � 3
Gk2M2

2R̄5
1

r7
?

f1 + 3
�r?

r?
Dt1g � r̂? + 3

Gk2M2
2R̄5

1

r7
?

Dt1(w1 � �q) � r̂?: (I.16)

Thus the tidal torque exerted by the tidal bulge on the secondary is given by

N1!2 = 3
Gk2M2

2R̄5
1

r6
?

r̂? �
�
Dt1(w1 � �q) � r̂?

�
: (I.17)

I.1.3 Angular momentum transfer

Because the total angular momentum is conserved, we can write

N1!2 = �H orb = � �H1; (I.18)

whereH orb is the orbital angular momentum vector, whose direction follows�q, andH1 = C1w1 the
rotational angular momentum of the primary, whose moment of inertia along the rotation axis isC1.
Remember that the secondary is here treated as a point mass, meaning that its angular momentum is an
internal degree of freedom, and cannot be transferred to another component for the moment. We can
then simply derive the rate of variation of the modulus of the internal angular momentum:

d
dt

(C1w1) = �H1 = �H1 � Ĥ1 = � N1!2 � Ĥ1: (I.19)

This product can be carried out by projecting in any base. We choose the base de�ned byH orb = ( 0; 0; h)
andw1 = ( w1sine1; 0; w1cose1) wheree1 is the obliquity. In this base,

N1!2 = 3
Gk2M2

2R̄5
1

r6
?

Dt1

0

@
w1sine1sin2(q + v )

� w1sine1cos(q + v ) sin(q + v )
w1cose1 � �q

1

A ; (I.20)
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wherev is the longitude of the periapsis. The precession of the periapsis occurring on a much shorter
timescale than the tidal migration, we can average the tidal torque overv . This yields

N1!2 = 3
Gk2M2

2R̄5
1

r6
?

Dt1

0

@
1
2w1sine1

0
w1cose1 � �q

1

A : (I.21)

We can compute the dot product in Eq. (I.19) giving (withx1 = cose1)

dC1w1

dt
= 3

Gk2Dt1M2
2R̄5

1

r6
?

�
x1 �q �

�
1+ x2

1

2

�
w1

�
: (I.22)

The mean rotation-rate variation is obtained by averaging over a Keplerian orbit using

W(e) �
1

Torb

I

orbit

�
a
r?

� 6

dt =
1+ 3e2 + 3

8e4

(1� e2)9=2
(I.23)

and

N(e) �
1

Torb

I

orbit

�q
n

�
a
r?

� 6

dt =
1+ 15

2 e2 + 45
8 e4 + 5

16e6

(1� e2)6 : (I.24)

This reads

dC1w1

dt
= �

K1

n

h�
1+ x2

1

�
W(e)

w1

n
� 2x1N(e)

i
; (I.25)

where we have introduced a scaling factor which has the dimension of an energy dissipation rate,

K1 =
3
2

k2Dt1

�
GM2

1

R̄1

� �
M2

M1

� 2 �
R̄1

a

� 6

n2: (I.26)

As detailed later, this parameter can be used to compare the strength of the tidal dissipation inside each
body. As can be seen from Eq. (I.25), for any value of the obliquity and orbital elements, one can �nd a
value of the rotation rate which cancels the mean tidal torque.

The variation of the obliquity can be obtained with

�x1 =
d
dt

(Ĥ1 � Ĥ orb) = �̂H1 � Ĥ orb + Ĥ1 � �̂H orb : (I.27)

Carrying out the differentiation and using Eq. (I.18) yields

�x1 =
(Ĥ1 � Ĥ orb)(N1!2 � H1)

H2
1

�
(N1!2 � Ĥ orb)

H1
�

(Ĥ orb � Ĥ1)(N1!2 � H orb)
H2

orb
+

(N1!2 � Ĥ1)
Horb

: (I.28)

Subsituting Eq. (I.21) forN1!2 we get after simpli�cation

de1

dt
=

3
2

Gk2Dt1M2
2R̄5

1

r6
?

sine1

�
x1

C1
� 2

�q
C1w1

�
w1

Horb

�
: (I.29)

Averaging over an orbit using Eqs. (I.23)-(I.24) gives

de1

dt
= sine1

K1

C1w1n

h
(x1 � h1) W(e)

w1

n
� 2N(e)

i
; (I.30)

wherehi is the ratio of rotational over orbital angular momentum

hi =
M1 + M2

M1M2

Ciwi

a2n
p

1� e2
: (I.31)



168 Secular tidal evolution for �nite eccentricity and obliquity

I.1.4 Energy dissipation

To obtain the variation of the semi-major axis and eccentricity, we must compute the work done by
the tidal force on the secondary

h�Eorbi 1 =
1

Torb

I

orbit
F1!2 � dr

=
1

Torb

I

orbit
( �r?F1!2 � r̂ + N1!2 � �q) dt; (I.32)

where �r?F1!2 � r̂ is the radial component andN1!2 � �q the normal one. The radial forces inr � 2
? andr � 7

?
in Eq. (I.16) are conservative and do not dissipate energy. The radial part of the work is computed using

Ne(e) � 2
1� e2

e2

1
Torb

I

orbit

�
a
r?

� 8 �
�r?

na

� 2

� dt =
1+ 15

4 e2 + 15
8 e4 + 5

64e6

(1� e2)13=2
: (I.33)

The normal component can be written

N1!2 � �q dt = 3Gk2Dt1M2
2R̄5

1

�
x1w1 � �q

r6
?

�
dq: (I.34)

Again, averaging is carried out using Eqs. (I.24)-(I.23). After integration we get

h�Eorbi 1 = 2K1

h
N(e)x1

w1

n
� Na(e)

i
; (I.35)

where

Na(e) =
1+ 31

2 e2 + 255
8 e4 + 185

16 e6 + 25
64e8

(1� e2)15=2
: (I.36)

The variation of semi-major axis due to the tides raised in the primary can be obtained through the
fact that

h�Eorbi 1 = �
d
dt

GM1M2

2a
=

GM1M2

2a2 �a; (I.37)

which gives

1
a

da
dt

�
�
�
�
1

=
4a

GM1M2
K1

h
N(e)x1

w1

n
� Na(e)

i
: (I.38)

Because the orbital angular momentum is given by

Horb =

s

G
M2

1M2
2

M1 + M2
a(1� e2); (I.39)

the variation of the eccentricity can be obtained by differentiatingHorb with respect tot:

2 �Horb

Horb
=

�a
a

�
2e�e

1� e2 : (I.40)

Only total angular momentum is conserved, then�Horb = � d(C1w1)=dt and substituting Eq. (I.25), (I.38)
and (I.39) in (I.40) gives

1
e

de
dt

�
�
�
�
1

= 11
a

GM1M2
K1

�
We(e)x1

w1

n
�

18
11

Ne(e)
�

: (I.41)
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Finally, the rate of mechanical energy (Emec � Eorb+ Erot) dissipated by the primary is

h�Emeci 1 = h�Eorbi 1 + h�Eroti 1

= �
d
dt

GM1M2

2a
+ w1

d
dt

(C1w1): (I.42)

Thus, substituting Eqs. (I.22) and (I.35) in Eq. (I.42) gives

h�Emeci 1 = � 2K1

�
Na(e)� 2N(e)x1

w1

n
+

�
1+ x2

1

2

�
W(e)

� w1

n

� 2
�

: (I.43)

One can see that the energy dissipated in the body (�Etid � �h �Emeci 1) is positive for any value ofeandx1

as expected (Hut 1981) and that it is minimum when the body is pseudo-synchronized. Substitutingw1

by the pseudo-synchronization rate (Eq. (I.51)), Eq. (I.43) simpli�es to Eq. (I.53), which can be used
for a close-in gas-giant exoplanet. For rocky planets locked in synchronous rotation by their permanent
quadrupolar mass distribution, the heating rate can be estimated settingw1 = n in Eq. (I.43).

I.2 Assumptions, order of magnitudes and timescales

I.2.1 Timescales

Let us summarize the different timescales involved with tidal evolution. We remind here that most
of the timescales de�ned here can change when considering one or the other object of a pair, but we will
omit the subscript i for simplicity. The shortest period, is of course the dynamical timescale which we
take here to be the period of the orbital motion of a test particle which would be grazing the surface of
the primary

Pdyn � 2p

s
R̄3

i

GMi
: (I.44)

Another short timescale is the orbital period, on which all our equations have been averaged

Porb �
2p
n

=

s
4p2a3

G(M1 + M2)
: (I.45)

However, viscous processes produce only a weak secular perturbation of the orbital motion, and
their effect occur on much longer timescales. To scale these effects, we can de�ne a viscous time as
follows

t v �
1

4p2 (
Tdyn

k2;iDti
)Tdyn =

R̄3
i

GMik2;iDti
: (I.46)

From Eqs. (5.12) and (5.11), we see that two comparable timescales arise for the evolution of the
orbital elements. The �rst one, also called the circularization timescale (due to the body i), is proportional
to the ratio of the orbital energy over the typical dissipation rate in the body under consideration

t circ � �
e
�e

�
�
�
w= weq;e!0

=
1
7

GM1M2

aKi
: (I.47)

It measures the time needed to damp the eccentricity of a nearly circular orbit. For exoplanets, this
timescale will be of particular interest, as it will set the rate at which gravitational energy is released into
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the primary during the circularization of the orbit (see §5.5.1). Notingp = Mi=Mj the ratio of the mass
of the body under consideration over the mass of the secondary, this rewrites

t circ =
2
21

p2

1+ p
(

a
R̄i

)8t v: (I.48)

It is comparable to the typical timescale for the evolution of the semi-major axis, or infall timescale, that
can be derived from Eq. (5.11) using

t in � �
a
�a

�
�
�
w= 0;e=0

=
1
6

p2

1+ p
(

a
R̄i

)8t v: (I.49)

From Eqs. (I.25) and (I.30), we see that the evolution of timescales for the (pseudo) synchronization
and the coplanarization are also equal and can de�ned as

t sync �
w � n

�w

�
�
�
�
e=0

=
1
3

r2
gyrp

2
�

a
R̄i

� 6

t v: (I.50)

I.2.2 Validity of the weak friction approximation

We are now able to quantify more precisely the weak friction approximation and to de�ne what is a
smalltime lag (Dt). In our calculations, this approximation appeared under two different forms. First, in
computing the positions and masses of the tidal bulges (see Eqs. (I.13) and (I.14)), where we truncated
our development to linear order inDt, and second in averaging the effects of the tidal forces over an
unperturbed Keplerian orbit. Thus the linear approximation is justi�ed if both, the principal tidal driving
period is large compared to the time lag, and the orbital period is small with respect to the timescales
linked to the tidal evolution (botht circ andt sync).

In reasonable cases, the �rst constraint is the most stringent and can be rewritten either
2jw � njDt � 1 for non-synchronous objects, ornDt � 1 in the pseudo-synchronous case. Even for
rigid objects like the Earth (Dt � 630s2 ; Mignard 1979 ; Neron de Surgy and Laskar 1997), this assump-
tion is well justi�ed.

However, another subtle averaging has been made to obtain a torque which is independent of the
relative orientation of the spin with respect to the perihelion of the orbit in Eq. (I.21). While the tidal
processes still occur on a much longer timescale than the precession period, possible resonances of this
precession with other secular perturbation of the system, by a distant third companion for example, can
occur. Therefore, the object can be trapped in a spin-orbit resonance, also called Cassini state (see
Levrard et al. 2007; while this seems improbable for giant close in planets as shown byFabrycky et al.
2007), or a Kozai-Lidov resonance (Fabrycky and Tremaine 2007), which cannot be described by the
above equations as they are.

I.2.3 Pseudo-Synchronization

While the evolution ofa andearise on quite comparable timescales, synchronization, however, can
proceed much faster. Indeed, considering a planet,p = Mp=M? � 1, yielding

t sync

t circ
µ

�
Rp

a

� 2

� 1:

2This value is of the time lag is the one needed to recover the increase of the Earth-Moon semi-major axis measured with
Lunar Laser Ranging, and which is currently� 4 cm per year.
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Therefore one can make the assumption than tidally evolve exoplanets must be in a state of pseudo
synchronization with their orbit. The value of the pseudo synchronized angular velocity can be found by
either setting Eq. (I.25) equal to zero or by minimizing the rate of tidal dissipation at �xed semi-major
axis, eccentricity and obliquity. This reads

weq =
N(e)
W(e)

2xi

1+ x2
i

n =
N(e)
W(e)

n; (I.51)

for a zero inclination. When the orbit is circularized, this reduces to the simple synchronizationweq = n.
As the obliquity equation involves the same typical timescale as the evolution of the angular velocity, the
planet obliquity must rapidly be damped by tides and we can make the assumption of alignment between
orbital and planetary angular momentum (ei � 0).

I.2.4 Stellar spin

Figure I.2: Absolute value of�w?=w? due to the winds (dashed), radius variation (solid) and tides (dotted)
for a Jupiter-Sun like system on a circular orbit witha= 0:1 AU (left) and 0.02 AU (right). Here,k2Dt? =
2 � 10� 2. The contraction always dominates on the pre main sequence, spinning up the star, but is
counteracted by magnetic winds later on. The tides raised by the planet only play a signi�cant role for
very short period orbits, when the planet and star are nearly merging.

On the contrary, for stars,p = M?=Mp � 1, t sync=t circ µ p
� R?

a

� 2
and a pseudo synchronization

and coplanarity hypothesis is no longer justi�ed in most cases. The spin state of the star must then be
taken into account. However, this is not as simple as integrating Eq. (I.25) at constantC1. First, the star
contracts during the pre main sequence, or expand on the main sequence, and the angular momentum
conservation entails an additional term in the spin rate variation3. In addition, as is well known, stars
loose angular momentum through the ejection of magnetized winds. Following the parametrization of
Bouvier et al.(1997) for the stellar winds, we get

�w?

w?
= �

Ki

C?w?n

h�
1+ x2

?

�
W(e)

w?

n
� 2xi N(e)

i
�

�C?

C?
�

Kwind

C?
min[w2

? ;w2
sat]

r
R?

M?
; (I.52)

whereKwind andwsat are constant for a given star. The strength of the various terms is compared in
Fig. I.2 for a Jupiter-Sun like system. This shows that angular momentum losses are far from being
negligible, but including these effects in our model adds many additional free parameters (e.g.Kwind and
wsat which are only weakly constrained, but also the lifetime of the circumstellar disk which determines

3As I keptC1 in the time derivative of Eq. (I.25), this term is already implicitly included.
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the initial spin rate of the star ;Bouvier et al. 1997). Thus, in order to keep the number of unknown as low
as possible, I decided to do not take into account these additional terms in the general study described
in the following sections. The initial angular momentum of the star used in our simulations can then
directly be deduced from the observed one.

I.2.5 Tidal heating

One can see from Eq. (I.43) in §I that in the special case of a body in pseudo-synchronous rotation,
as expected for �uid objects (e1 = 0, w1 = weq), the tidal energy dissipation rate is given by

�Etid = 2K1

�
Na(e)�

N2(e)
W(e)

�
; (w1 = weq): (I.53)

The dissipated heat is deposited over the whole planet's interior.

For a rocky planet, however, the external gravitational potential created by its permanent quadrupole
moment can cause its locking into synchronous rotation (wp = n), and the dissipation rate reads in that
case

�Etid = 2K1

"

Na(e)� 2N(e)xp +

 
1+ x2

p

2

!

W(e)

#

; (w = n): (I.54)

This equation fully agrees with Eq. (30) ofWisdom(2008) who calculated it for a homogeneous, in-
compressible with a radial displacement Love numberh2 = 5k2=3. Note that our derivation does not
require such an hypothesis and all the uncertainties in the radial distribution of material and its physical
properties (e.g., density, compressibility, elasticity) are lumped into thek2 parameter (Levrard 2008).
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Appendix J

CHESS user guide

J.1 Goal

CHESSis a Code computing Hydrostatic Equilibrium Structure by Shooting method. It can basically
run in two different modes:

� Find and compute a structure in hydrostatic equilibrium (HSE) for a given set of planetary pa-
rameters such asTatm, Patm (or Teff, logg if a numerical grid is used for the atmospheric boundary
condition),Y, Mc, w1, etc... In this mode, several quantities characterizing the structure are com-
puted as outputs (Pc, Tc, Rp, R̄p, k2, C1, etc...).

� Can �nd the values of a speci�ed set of parameters (Mc, ice to rock mass ratio,Y, dY=dm, ...)
that �t best the observable parameters of the planet (Req, wp, J2, J4, J6, Zatm) by an optimized
Newton-Raphson procedure.

J.2 Code Structure

J.2.1 Equations

To �nd the HSE,CHESSintegrates the standard set of stellar structure equations in the Lagrangian
form

¶P
¶m

= �
g

4pr̄2 +
w2

p

6pr̄
+ j w; (J.1)

¶ r̄
¶m

=
1

4pr̄2r
; (J.2)

¶L
¶m

= �e� T
¶S̃
¶t

; (J.3)

¶T
¶m

=
T
P

¶P
¶m

ÑT ; (J.4)

where j w is given by Eq. (E.17). In the code, the set of variables isfy igi= 1;4 =
flog P;(r̄=R̄p)b̄ ; (l=Lint)ḡ; logTg, and the parameter is the reduced Lagrangian massm= ( m=Mp)ā . Note
that the term due to the centrifugal force in the pressure equation is valid to 3rd order (see Appendix E).
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The equations solved thus read

¶y1

¶ m
=

"

�
GM2

p

4p ā R̄4
p

m2=ā � 1

y4=b̄
2

+
w2

pMp

6p ā R̄p

m1=ā � 1

y1=b̄
2

+
Mpm1=ā � 1

ā
j w

#
10� y1

ln10
; (J.5)

¶y2

¶ m
=

b̄ Mp

4p ā R̄3
p

y1� 3=b̄
2

r m1� 1=ā
; (J.6)

¶y3

¶ m
=

ḡMp

ā Lp

y1� 1=ḡ
3

m1� 1=ā

�
�e � T

¶S
¶t

�
; (J.7)

¶y4

¶ m
=

¶y1

¶ m
ÑT ; (J.8)

The power law indices̄a , b̄ andḡ can be chosen so that the equations do not show any singularity at the
boundaries. This is achieved usingā = 2=3,b̄ = 2 andḡ = 2=3.

Because the luminosity cannot be calculated self-consistently without any knowledge on the evo-
lution, some assumptions must be made. Here we will assume that the interior is strictly adiabatic. For
planets below the deuterium burning limit, the luminosity can therefore be integrated as follows

l (m) =
Z m

m=0

�
�e � T

¶S̃
¶t

�
dm� �

¶S̃
¶t

Z m

m=0
Tdm= � T̄(m)

¶S̃
¶t

Mp; (J.9)

de�ning a mean temperaturēT(m) (with T̄ = T̄(Mp)). In our models with semi-convection, we will use
this equation even if it is not strictly valid. To avoid adding a free parameter to be adjusted in our shooting
method, we will go beyond this hypothesis and assume that "for the luminosity", the temperature pro�le
follows a square law

T = Tc � x2 (Tc � Tatm); (J.10)

T̄ =
2
3

Tc +
1
3

Tatm: (J.11)

This means that, although the temperature pro�le is computed using Eq. (J.4), the luminosity is computed
using

l (x) = �
¶S̃
¶t

�
xTc �

x3

3
(Tc � Tatm)

�
;

¶S̃
¶t

= �
Lint

T̄ Mp
: (J.12)

J.2.2 Boundary conditions

With the set of equations described above, one needs only 3 initial conditions at each edge to
compute a structure (not necessarily in HSE). InCHESS, these initial conditions arer = 0, P = Pc and
T = Tc at the center and ¯r = R̄p, P = Patm andT = Tatm at the outer edge. The Boundary conditions on
the luminosity are already enforced by Eq. (J.12).

J.2.3 Parameter adjustment

WhenCHESSis searching for a structure in HSE,Pc, Tc andR̄p are varied until the discrepancy at
the mid point in the structure reaches zero to numerical precision.
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The code can �nd the values �tting the observable constraints (Req, J2, J4) for any speci�ed set of
variables including up to 3 variables from :Tatm (or Tint), Ȳ, dY

dm, Mc, Mrock=Mc. At each step, new values
of Pc, Tc andR̄p are computed to satisfy the HSE.

J.3 Principal variables list

The main variables describing the planet physical structure are:

� Mass_p: Planet mass (Mp)

� R_mean_g: Mean radius of theP = Patm isobar (R̄p). If the rotation is set to zero,̄Rp = Req = Rp.

� R_equatorial : Equatorial radius (Req).

� lPc_g: Log of central pressure (logPc).

� lTc_g: Log of central temperature (logTc).

� lT_atm: Log of temperature at the atmospheric boundary condition (logTatm).

� lP_atm: Log of pressure at the atmospheric boundary condition (logPatm).

� Teff_p: Planet effective temperature (Tint)

� Ltot_p: Total luminosity (Lint). This is recomputed each time that eitherR_mean_gor Teff_p
changes.

� w_rot: Angular velocity (wp)

� m_rot_g: dimensionless rotation parameter (
w2

p R̄3
p

GMp
)

� M_core_g: Core mass (Mc).

� x_core_g: Ratio of core to total mass (Mc=Mp).

� alpha_core_g : Ratio of rocky core to total core mass (Mrock=Mc).

� YHe_g: Mean Helium and heavy elements mass ratio (Ȳ0, whereY0= Y + Z).

� DYHe_g: Mean Helium and heavy elements mass ratio gradient (dY0

dm).

� f_YHe_mod: Function to use to compute the Helium and heavy elements mass ratio at each point
knowingYHe_gandDYHe_g(integer).

� core_EOS: EOS to use for the core (integer).

Unless stated otherwise, these variables are double precision real given in SI units (MKS system) and log
is the decimal logarithm. These variables are contained in the moduleParam_Global. They are global
variables used by all the subroutines to compute the structure without having to specify them as input
variables. They are initialized by the loading subroutines inload.f90.

To runCHESSin different modes, the main program can access the moduleOptions and switch the
following parameters to the required value. They are listed here with their default value.
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� Param_io_channel=0: =1 if the physical parameters are provided by the main program, =0 if
CHESSmust read them in the speci�ed �les.

� EOS_init=0: If = 1, the EOS for Hydrogen and Helium (SCvH) has already been loaded. = 0 for
normal initialization.

� ANEOS_init=0: If = 1, ANEOS has already been loaded. =0 for normal initialization.

� OpaCOND_init=0: If = 1, COND opacities have already been loaded. =0 for normal initialization.

� CONDALL_init=0: If = 1, Conductive opacities have already been loaded. =0 for normal initial-
ization.

� atm_init=0: If = 1, atmospheric boundary conditions have already been loaded. =0 for normal
initialization.

� what_should_I_do =-1: If < 0 CHESSonly carries out initialization (test mode), =0 compute HSE
for the given parameters, =i>1 �t i parameters, with the i constraints.

� FitParameter =['YHe','x_core','DYHe']: parameters to constrain.

� Constraint=['R_equa','J2','J4']: Constraints to use.

� use_atm_BC=1: If =0 the program useslP_atm and lT_atm given in the init �le as external
boundary conditions. If =1,CHESSwill use theatm_files along with the speci�edTeff_p and
logg_p (computed fromMass_pandR_mean_g) to infer the atmospheric Boundary Conditions.

� write_res =1: If = 0 does nothing, =1 writes the �tted parameters in the �le speci�ed in
chess.f90 .

� write_struc=0: If = 0 does nothing, =1 writes the structure in the �le speci�ed inchess.f90
with the number of point given byNbrPointOutput, =2 writes the structure in an unformatted �le
compatible with the evolution code (thusPrintOutFormat must be 17)

� write_mode=0: If = 0 normal mode: The code writes only most useful quantities. =1, writes
additional physical quantities (opacities, temperature gradients...)

� write_figures=0: If = 0 does nothing, =1 writes the �gure functions in the �le spec-
i�ed in chess.f90 with the number of point given byNbrPointOutput (works only if
write_struc>=1)

� NbrPointOutput =300: Number of grid points for the structure output.

� PrintOutFormat =9: Number of digits (after the coma) to print out in theResultStructure.dat
�le. 17 is the max in double precision
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