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-Pourquoi I'azur muet et I'espace insondable ?
Pourguoi les astres d'or fourmillant comme un sable ?

Arthur Rimbaud, Soleil et chair

Finding planets seems to be a sport we are getting good at.
While it took more than two thousand years of astronomical obser-
vations for the ancients to nd the eight planktsbiting with the
Earth around the Sun, more than 500 exoplanets have been found
in the last fteen years. If it is dif cult to give an exact number,
it is not only because determining what is a planet is complex, but
also because this number is now growing by the day. Doubling
every three years, it grows nearly as rapidly as the complexity of
micro-processors predicted by thore law.

This offers a unigue chance for the physicist. While the plan-
ets in our solar system offer exquisite information on the internal
and atmospheric physics, exoplanets, and especially the transiting
ones, provide the possibility to probe the physics of planetary sci-
ences in a wider diversity of extreme conditions and with a statigtigure 1: Cumulative number of
cally signi cant number of objects. However, if space and grousglar and extrasolar planets dis-
based detection missions are numerous, theoretical studies aip@€éred (solid). Exponential t
at the analysis and comprehension of the present and future ggfghed).
are necessary.

Even with the few data that we can get for any single exoplanetary system, unexpected features
appear. More than fteen years ago, Doppler spectroscopy alone already changed our vision of planetary

formation by nding giant planetsnearly ten times closer from their star than is mercury from our Sun

(Mayor and Queloz 1995). But in the last decade, thanks to the additional photometric monitoring of

the transit of some of these planets, yielding their true masses and radii, an even more disturbing pattern
arose (Henry et al. 2000). For a given mass, Giant exoplanets look much bigger than expected by the
same theory which (more or less) accords with our present understanding of Solar System giant planets.

To unravel the origin of these peculiar properties, we thus have to deconstruct part of the sophis-
ticated theories that were developed to understand our Solar System, and reconstruct them with less
restrictive hypotheses. To that purpose, the large size of the exoplanet sample is a signi cant asset as it

1pluto will always be a planet in my heart.
2Also called Hot Jupiters or Pegasids.
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allows us to directly test the generality of our theoretical predictions. However, one should not forget
about the planets that are closest to us. Even if it is hard to reproduce exactly all the observed features
of these well documented objects with the simple general models that we are trying to develop, the large
amount of data coming from various origins can provide much more precise constraints. Moreover Solar
System planets offer the advantage of reminding us that a planet is much more complex to understand
than a data point in a mass-radius diagram.

This is in that spirit that this thesis makes an attempt to address some unresolved problems of the
structure and evolution of giant planets, taking advantage of the information that can be found both inside
and outside our Solar System.

As the so calledadius anomalyl was depicting above had clearly been identi ed from the very
beginning of this work as one of the main contemporary unanswered question in this particular eld, it
can often be found, among others, as one of the underlying motivations for the various studies described
hereafter. However, if it has been a motivation, it has not been an end in itself, as the problem was not so
much to explain an unexpected property than to identify and understand the main physical processes at
work in exoplanetary systems.

Thus, in the following chapters, | tried not only to characterize and quantify the effect of the differ-
ent ingredients considered (stellar irradiation, double-diffusive convection, tidal heating) on the radius of
extrasolar giant planets, but also to develop the analytical and numerical tools necessary to model these
processes in a wider context. For this reason, | tried as much as possible to compare the models used
or developed here with others found in the literature to highlight their strengths and limitations. When
possible, | also tried to provide numerical estimates of the main physical parameters needed to directly
apply these models to different speci c cases.

User guide

As the various subjects treated here are rather independent, | chose to dedicate the| rst part
of each chapter to the introduction and de nition of the most necessary physical concepts. Even
if some of these concepts are well known, it will allow me to detail the context in which the|work
presented hereafter, has been done.

In addition, for pedagogic purposes, and so that the interested reader may have all the equa-
tions at hand, | will also develop in length the analytical theories that | used and often extended
during this thesis. However, as much as possible, these developments have been put in the appen-
dices that can be found at the end of the present manuscript.

Thus, to ease the progression of the reader through these various sections, at the beginning of
each chapter, a framed paragraph summarizes the goals of each section of the chapter, gnd where
the main results of the present work can be found.
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Abstract

The detection and characterization of extrasolar planets clearly appears as one of the main goals of
observational astronomy for the coming years. Space and ground project are numerous, but theoretical
studies aimed at analyzing and understanding available and future data are needed.

During this thesis, | study various physical processes affecting the internal structure and evolution
of both solar, and extrasolar giant planets. Here are some of the main goals of this work which is divided
in four independent parts presented in the chaf¢os.

In a rst study, | investigate the impact of the intense stellar irradiation received by a close in
planet on its subsequent internal evolution. This allows me to quantifyaitliels anomalyof

bloated Hot Jupiters and to constrain their internal composition. | also show that most features of
the mechanical structure of gaseous substellar objects can be well captured by a single effective
polytropic index, and that this index is linked to the behavior of the mass-radius relationship.
Finally, | propose an observational criterion based on the mean density of the object to distinguish
massive giant planets from mini brown dwarfs.

Then, | use both analytical and numerical models to study the tidal and centrifugal distortion
of a uid planet, and infer its shape. This allows me to provide numerical estimates of various
quantities characterizing the mechanical internal structure of giant planets and brown dwarfs (e.qg.
Love number, ...). | nd that because close in planets are tidally elongated toward the star, they
exhibit a smaller cross section, yielding major implications for transit measurements. In particular,
an underestimation of the radius.

In Chapte#, | examine how the presence of double-diffusive convection caused by a heavy ele-
ments gradient in the gaseous envelope of a planet can decrease the ef ciency of its internal heat
transport, and affect its structure and evolution. To do so, | develop a completely analytical model
of layered convection and apply it to the Solar System gas giants. These models yield a metal
enrichment for our gaseous giants up to 30 to 60% larger than previously thought. As the heavy
elements tend to be redistributed within the gaseous envelope, the models predict smaller than
usual central cores inside Saturn and Jupiter, with possibly no core for this latter.

Finally, | investigate the coupling between the orbital and the thermal evolution of a planet aris-
ing from the strong star-planet tidal interaction. Using an analytical model for the secular tidal
evolution which is t to describe highly eccentric orbits, | rst show that using tidal models based

on a quasi circular approximation can lead to quantitatively, and sometimes qualitatively different
orbital evolutions, and can overestimate the evolution timescales by orders of magnitude. Subse-
quently, I nd that tidal heating alone is not a viable explanation for the observed radius anomaly
of transiting planets.

Through these different studies, | developed various analytical models and numerical codes (such
as CHESS) that are both exible and robust, and which now allow me to study the properties of new
extrasolar planets and brown dwarfs as they are discovered.
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Chapter 1

The syntax of planetary structure

The heavenly motions... are nothing but a continuous song for several voices,
perceived not by the ear but by the intellect,
a gured music which sets landmarks
in the immeasurable ow of time.

John Banville
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The syntax of planetary structure

Before starting to introduce any new or exotic physics into the standard theory of giant plan-
ets structure, it seems mandatory to introduce its most basic concepts, and to de ne the notations
that will be used throughout this work.

Hence, in this introductory chapter, we will only concern ourselves with the derivation pf the
basic equations and conservation laws applying to (sub)stellar objects (8 1.1), and to the|various
physical ingredients needed to compute planetary models (§ 1.4 and § 1.5). Fortunately, fo some
extent, the physics of giant planets and brown dwarfs are very similar to stellar physics in their
basic principles, and the reader can take advantage of the numerous outstanding textbooks in this
area (Eddington 1926 ; Chandrasekhar 1939 ; Kippenhahn and Weigert 1990 ; Hansen and|Kawaler
1994 ; to cite only a few).

In addition, in 81.5.2, considering a toy model describing the radiative transfer in the atmo-
sphere of a strongly irradiated giant planet, | show that numerical 1D calculations of the|l atmo-
spheric boundary conditions of substellar objects that consider a redistribution of the stellar ux
over the day side only may overestimate the impact of the irradiation on the structure of the|object.
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FOR THE MOST STUDIED CELESTIAL BODY IN THE UNIVERSE namely, the

Eve ﬁarth, when it comes to the problem of internal structure, direct observational

ata are very sparse. In order to Il the numerous gaps, and to get a global un-
derstanding of how the physics at play interact in planetary interiors, and make planets evolve the way
they do, a global theory is needed. During the past two decades, this need has been strongly revived
by the discovery of the rst extrasolar planet (Mayor and Queloz 1995), of the rst cool brown dwarf
(Oppenheimer et al. 1995), and of the many that followed. But these discoveries also raised new con-
straints and challenges for the theory of planetary evolution: (i) observational data available for a given
system are even more scarce, and often limited to a few global quantities (mass, radius, luminosity, etc...

depending on the observational methods available), and (ii) the number and diversity of the systems
discovered is huge, and still growing by the day.

A direct consequence of the rst point is that modeling becomes mandatory to infer the values of
even the most basic physical quantities describing the observed objects - such as their surface pressure
and temperature, atmospheric composition and rotation speed, among others - from the limited set of
available data (incoming stellar ux, spectrum, orbital con guration...), when it is possible at all. This
is evidently a rst call for simple but robust models with the ability to constrain the basic features of
an object from a few global observables. Another, and maybe more stimulating consequence of this
lack of data, is that it somewhat gives some license and freedom to the theorist, who can more freely
explore known mechanisms in the most extreme regimes, or completely new exotic ones. Fortunately,
the second point bears a subtle but powerful constraint. We are not looldimgjtobjects anymore, but
atpopulationd Thus, any theory must be general and robust enough to account for the similarities and
differences arising between members of what could seem, when looking at a limited set of parameters,
an homogeneous family.

In any case, before starting to introduce any new or exotic physics into our model, or simply to geta
basic picture of the problem at hand, it seems proper to review the basic concepts that underlie the theory
of the structure and evolution of gaseous bodies, the assumptions that are commonly made, and the most
robust features that can be drawn from these basic assumptions.

1.1 The basics of planetary and stellar structure

As in every problem of compressible uid mechanics, the solution consists in nding expressions
for the density (1), pressure (P), temperatur€)( speci ¢ entropy €), velocity (v) as a function of both
the radius vectonm, and timet. To solve the problem, we thus need seven scalar equéiﬁlmallswill be
provided by the conservation of mass, momentum (3 scalar relations), energy, andftnyddmental
relation for the uid constituting our object which encompasses two relations, one for the pressure (the
famousequation of state) and one for the internal energy, or equivalently for the entropy.

1Reducing to ve equations for the spherical case.



8 The syntax of planetary structure

Deferring thermodynamical considerations fot.8.1, in this section, | have made an attempt to
derive rigorously the basic equations of (sub)stellar structure and evolution directly from the equations
of uid dynamics (that can be found for exampleRieutord 1997) and not from macroscopic consider-
ations. Thus spherical symmetry will only come as a simpli cation when needed, and will not be one of
the fundamental assumptions. It will then be easier to break it in Chapter

1.1.1 Mass conservation and Lagrangian coordinate

In the general case, the continuity equation, which simply express the mass conservation reads

r
it .
where the time derivative is taken at a constant locatiolm classical hydrodynamics, it is often con-

venient to introduce a Lagrangian derivative which is following a given mass element of uid. This
reads

= N (rv); (1.1)

D 1 -

oL Tt r+(v N); (1.2)
and yields

Dr -

T r (N v): (1.3)

We see that expressing the problem in a Lagrangian form greatly reduces, at least formally, the complex-
ity of the equations. In the following, we will thus try to nd a suitable set of Lagrangian coordinates.

Fortunately, for uid objects where centrifugal, tidal and magnetic forces can be nedieatieauir
variables are constant on concentric spherical shells. Then, they depend only on two scalar variables,
r =k r k andt. In this case, our Lagrangian coordinate is provided by the mass contained inside the
spherical shell of radiusat the timet,

z r
m(r;t) = 4p T (r;t)rédr. (1.4)

Indeed, as we will see, this variabteoves with the uid, and has the sought for properties. In order
to correctly carry out the coordinate changg) ! (m;t), we must express the differential form dm.
Thanks to the continuity equation, which now writes

q0r 1 (r?r v)

ﬁ ; = r2 qr t; (1.9)
withv= v 7, this yields
fm im
dm — dr+ — dt
2 (o "fr
= 4prer (r;t)dr+ 4p — redradt
ZO 1t
r 2
= 4pr?r (rt)dr  4p 1{r=rv) drdt; (1.6)
0

t

2A more precise and quantitative version of this statement will be given in Ctpigrere we will discuss in detail the
departure from sphericity of a uid object in hydrostatic equilibrium under the action of a perturbing force.
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and nally, after integration,

dm= 4pr?r (r;t)dr  4prr (r;t)vot: (1.7)

The rst term is simply the mass enclosed between the shell of radwnslr + dr, and the second, the
mass loss rate trough a shell of constant radjasie to the uid motion at the speed One can see that
the speed of a given mass element labeledifgneaning dn 0), is given by% = v. This is whymis

a Lagrangian coordinate. The change of variable can then be carried out using

T _ 2 T
Wt—4prrﬂ—mt,
T, im 7
_T 2., T .
kT . 4pr rvﬂmt. (1.8)

From the second equation above, we can see that, as exp«%«l—:teds simply the total derivative%
m

expressed here for a spherical con guration.

With the Lagrangian coordinate system, we will see hereafter, that it is convenient to replace the
equation for mass conservation by

r 1
ﬂ—mt— aprer (1.9)

However,r then appears explicitly in this equation, and is no longer a dummy variable, as it has been
replaced bym. We must therefore nd an additional relation. Fortunately, we already encountered it,
whatever simple it seems:

_
ﬂt m.
Therefore, in the following, we will always replasausing Eq. (1.10). Our problem can now be stated

as nding ve equations, two being provided by the thermodynamics, involving, P, T andSas a
function of mandt.

v (1.10)

1.1.2 Momentum equation

It is now easy to rewrite the other equations in our new set of coordinates. Let us start with the

Navier-Stockes equation (in the inviscid limiRjeutord 1997)
r % = NP rN(Vg+ Vex): (1.11)

where N(Vg+ Vey) is the acceleration due to all the external forces acting in vofur@®nsidering
only gravity and in the spherical case, we get

P g 1T
ﬂmt_ 4prz  4pr2 qt2 m’

(1.12)

wheref NVg = g= %“ is the module of the local gravity acceleration (g). The two rst term are the

usual pressure gradient and gravitational acceleration, which are equal when hydrostatic equilibrium is
reached. The last term arise when a given shell undergo an accelerated contraction or expansion.

3This equation is general, but in this section, only central forces will be discussed. For a detailed discussion of the effect of
non central forces, the reader is referred to Chapter 3.
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1.1.3 Energy conservation
Local conservation

As discussed irRieutord(1997), if U is the speci c internal energy of the uid, its Lagrangian

variation is given by
2= 1N Pt PRV enuet ot (113

whereFjy; is the energy ux density vector, arah,c andegy; are the speci ¢ energy production rate of
nuclear reactions, and of a source that yet remains to be determined. The rst two terms between brack-
ets represent respectively ttieermalandmechanicakenergy exchanged with the other mass elements,
whereas, the last terms represents a production of energy within a given mass element itself. This en-
ergy can be produced by different processes, the rst coming in mind being chemical, or in our context
nuclear, reactionsef,c and viscous dissipation. We will see in Chagi#t¢hat other sources can come
into play, and in particular tidally generated frictiog;{) that is extensively discussed in ChagiefTo
remain general, but make a difference betwie¢grnal andexternalsources of energy, we will consider
separatelenyc and an arbitrary source which produegg Joules per second and per gram of matter.

Thanks to the second principle of thermodynamics, we can de ne a thermodynamical function
S (the speci ¢ entropy of the uid) whose differential form is related to the other thermodynamical
gquantities by
~ ~ P
TdS= dU r—zdr: (1.14)
Because the in nitesimal variations are taken along the transformation of a given uid element, and
thanks to the continuity equation, Eq. (1.13) directly rewrites
DS 1, -
Dt = IT(N Fint+ PN V) + enyct €ext

P Dr
r 2 Dt
1 - o P .
= F(N Fint+ PN V) + enyct €extt FN \Y
1.
= FN Fint+ enuc+ eext: (115)

This just shows that, as expected, the entropy created in a particle of uid does not depend on the amount
of work that it receives. For a spherical con guration, de ning the luminosity(agt) 4prFiy
4pr2Fy, and using th¢m;t) coordinates we get

1S _ 1 1% _ , T _ 1

T =
it, rr fir fm , fm,

€nuct Cext (1.16)

Global conservation

The above relation express the fact that locally, the energy that exits a given shell of mass dm
(Qﬂ—r'n tdm) comes either from a release of entropﬂ'(%—f’ dm) or of a local energy productioneg: +
m
enuc) dm). However, the gravitational energy

Z Gm
Egrav Tdm; (2.17)
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never explicitly appears, nor the total macroscopic kinetic energy
VA 19r 2
2 Mt

and one may wonder if the total energy of our object is conserved as a direct consequence of this local
energy conservation. To reassure the reader, and show that it is, we must integrate our local energy
conservation (Eq. (1.16)) over the whole mass of our body.

R ~
Let us de ne the total internal luminosityy(t) 1(Mz;t), Eint UdmandE, the total internal
and nuclear energy, arfL, the energy contained in an external resefvoifrom these de nitions,

Ent = ’%—L{ mdm, and the total energy produced per unit of time in the object by nuclear reactions and

. R . .
by external processes are respectiveBnc= encdmand Eex= eexdmP. Then the integration
yields

Exin dm; (1.18)

Z pqr

r2 gt
The last term appears as the energy produced (consumed) by the contraction (expansion) of our body
(}% being respectively positive or negative). In order to link this to the variation of the gravitational

m
and kinetic energy, we must derivedarivativeof the well knownVirial theoremas follows. Let us
multiply both sides of the momentum equation (Eg. (1.12)) by%%% and integrate over the mass.

m

We have

Lint= Eint Eext Enuct (12.19)

z z z 2
4pl’2ﬂ il dm= Gmilqr m I L; dm: (1.20)
Tt o, Im, rrat, 1 ., 1te
On the left hand side, because can move inside the time derivatives, and tf%a{t ﬁ—i; =
m m
2
%% % , we immediately recognize Egay and Eyin. Integrating by part the right hand side,
m
we get
Z M Z
4pr2 E E dm= 4pr2 ﬂ P PL 4pr2 ﬂ . (121)
1Ttmﬂmt 1Ttm 0 ﬂm 1Hm t
Because
2,3 2.3
I LA T LA B D20 LU (1.22)
fm it ,  3TmMt 39tIm Tt fm, , Tt 4pr

this rewrites

4 z

ir TP d 4 P qr
dor2 " " dm= P o = 1.23
P gt _qm M7 Tamg 3P™ 2 (1.23)
wherePym is the external pressure, aRgis the external mean radius of the object. Recasting Eq. (1.20),
we get
Z P qr d 4
2 m+ Exin= Egrav Patma ép R% : (1.24)

“4For tidal friction, for example, this reservoir is the macroscopic kinetic (orbital) energy of the whole system, which can be
dissipated in the interior by the tides.

5The minus signs are merely conventional, and just come from the fact we de ned the \@eswsergyroductionrates
per unit mass and not as energgriationrates, so that they are positive.
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As we could have guessed, the mechanical work exerted by the gravitational force and the the pressure
of the external medium (even if small in all the cases of interest), is transferred into both macroscopic
and microscopic kinetic energy. Substituting this into Eq. (1.19) nally gives the expected global energy
conservation

d 4
Eint+ Exin + Egravt Enuct Eext=  Lint+ I:)atma ép R31 , (1.25)

where the left hand side is the variation in volume of the total energy, and the right hand side represents
the energy exchanged through the surface, either by thermal (radiative) losses, or by mecharfical work

1.1.4 Energy transport

We now have the three dynamical equations that we were looking for (Eqg. (1.9), (1.12) and (1.16)).
However, we can see that the energy equation involve a new variable, namely the luminosity of any
given layer] (m;t), and thus, a new relation must be found which describe the way energy is transported
throughout our medium as a function of its thermodynamical properties. For this, however, one cannot
rely on a fundamental physical principle, and there enters some modeling and parametrization.

Diffusive transport

Let us rst consider the energy that is transported by radiation. Indeed, we expect temperature
(and thus radiative enerfyyU,.q= aT*) of the matter to increase with depth, which should lead to a
ux of radiative energy. As the mean free path of a photon inside a medium of mean ogadity
equal to(k,r) * 10 ?m which is much smaller than the size of the object we are considering, a huge
simpli cation occurs, and the radiative ux can be treated as a pure diffdsion

Then, in each spectral intervia; n + dn], the diffusing component is the radiative energy density,
Un, and it is transported by photons whose diffusion coef cientd¢3knr ). Here k, is theradiative
opacityand is expressed infikg 1. This yields for the ux

C ~ o~
NUp: 1.2
3k r Un (1.26)

Deep in the interior, local thermodynamic equilibrium is achieved, so that the energy density is given by
the planck function for the intensitg(n;T), by

Fn=

4p

_4p 8ph  n3
"¢

B(n;T) = ?W: (2.27)

Thus in a given spectral bin, the ux depends only on the temperature and its gradient, and is given by

U

c 4p 1B
Tor ¢ 1T NT: (1.28)

Fn =

6Because the pressure of the interplanetary or interstellar medium are vanishingly small compared to the pressures reached
in the interior once the body is massive enough, excepted for the very early phases of the formation, the external mechanical
work is negligible

7Egs. (1.20) and (1.25) extend the relation foundkippenhahn and Weige(t.990) to objects that are not in hydrostatic
equilibrium and in contact with an external pressure reservoir.

8The constant related to the total energy radiated by a blackbaxy i%%
constant.

9This approximation is valid for optical depth larger than unity, i.e. not in the atmosphere where we will need a proper
treatment of the radiative transfer, as we will see in$2.

4Sse | wheres sp is the Stefan-Boltzmann
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We can then integrate this over the frequencies which yields the total radiative ux

z
_ 4p“~ 1 1B .
Frad= I ko T ndn NT: (1.29)

Then, it is rather useful to de ne the Rosseland mean opacity
R

1 1B z
1. ki, p “19B (1.30)
k, R%; dn  4sseT® Kk, 1T, '

which as we see, is an harmonic average weighted by the derivative of the Planck function. In other
words, this mean opacity indeed measurestthasparencyof the gas at the frequencies were most

of the ux can be transported (Wher%% is maximum). Sometimes, however, another equivalent
n

quantity describing the radiative transport is used, namelshigrenal diffusivity(k T, in m?.s 1), which
is de ned by

~ 16s SBT3 1
Fr.q= k+ NT K+, —]—22 - 1.31
rad= T CpKT; ) T 3rzee k. (1.31)
But energy is not transported only by radiation. Indeed, in the interior, because the matter is partially
ionized, the free electron can ef ciently transport heatbyduction(The ux beingFcong). This is also
a diffusive process, and by analogy, a conductive thermal diffusivify:Xland a conductive opacity ¢k
can also be de ned following
_ ~ 16s SBT3 1 .

Feond= TrCpKTeNT ) Kt “3r2cy ke (1.32)
Then, because diffusive uxes are additive, the total ux transported by diffusion is sifpty Fraq+
Fcona @nd by analogy, we can de ne a global thermal diffusivity

Kt = Kryr+ K105 (1.33)
and mean diffusive opacity

1 1 1

As for the Rosseland mean, the fact that this opacity is de ned by an harmonic average simply translates
the fact that the energy preferentially goes through the tnassparentwindow.

In the spherical case, considering the total diffusive'®xve have

64pr?sspT3dT
- 2k — ar,
La= 4prokg = Ak dr (1.35)
and using Egs. (1.8) and (1.12) (without the inertia term) yields
4
Ly= 64pssgT*MGdInT - 4pr Zckas SBmGT dinT (1.36)

3kP dinP PdInP’

10To avoid confusion, we will use the generic denominafignand use the index d for quantities describing diffusive pro-
cesses in general while keeping in mind that, except for the fack{habw includes the contribution of conductive processes,
Ny plays exactly the same role than the ushial.




14 The syntax of planetary structure

were the ux transported by radiation is expressed as a function of the thermal gradient

- dinT

Here, the derivative is taken along the actual pro le in the planet.

Itis customary to de ne thdiffusivegradient as the temperature gradient (as a function of pressure)
needed to transport all the energy through both radiation and conduction. Thus kgttinfm)
4pr?s ggT,4 (M)t in Eq. (1.36) yields

- dinT 3kP | 3 kPT}
N = — = = i, 1.38
¢ dinP , 64psssTimG 16714 g (1.38)

or equivalently

T_4
1 P11 _ 1 Pssely, (1.39)
4prcpgkt TmMG r2cpkr T g

Nd:

With this de nition, if there is no other available means to transport energy in the zone considered, which
is therefore called either mdiative zoneor aconductive zonedepending on the dominant process, the
local thermal gradient must adjust itself to the diffusive gradient so that our missing equation is simply

(1.40)

Advective transport: convection

Note that the ux (Fny) present in Eq. (1.15) should in principle only include such diffusive pro-
cesses for which energy can be transferred from one mass element to the other without any mass transfer
(or advection). Indeed, in 3D, a signi cant inhomogeneity of temperature within the uid can lead to
large scale uid motion and to turbulence that will homogenize the energy distribution at the macroscopic
level, diffusion then being able to homogenize the remaining small scale inhomogeneities. However, in
1D, such processes cannot be accounted for properly, as we would have hot plumes moving upward
smashing into the descending cold plumes, without any possibility for them to simply go around. We
thus have to include advection (or convection) in a parametrized way.

As convection is extensively discussed in Chagteve will not reproduce the argument here. Let
us just agree for the moment that if the medium is convectively unstable, which arises when the diffusive
gradient is larger than the adiabatic one

N . MInT
Nd > Nad TP «
S

(1.41)

then convection transports energy to restore the equilibrium. Because convection is very ef cient in
planetary interiors, the thermal gradient is then very close to the adiabatic one, and our missing relation
in suchconvective zonds given by

e

and is nearly independent of the luminosity.

1INote that this relation is indeed a de nition &f;(m), which is the effective temperature at depth
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Furthermore, as will also be discussed in Chaptemder the physical conditions encountered in
substellar object and gaseous planets, the uid is convectively unstable in all the interior but a thin outer
layer. Hence the interior is mostly adiabatic andTheP pro le can be integrated from the values of the
temperature and pressure just below the radiative zone using Eq. (1.42) independently of the luminosity
equation. This means that, in the fully convective case, onlytake luminosity, Lin;, and not the
luminosity pro le, I(m), affects the structure, and only through its impact on the boundary conditions
(see 81..5.2).

1.2 Evolution timescales

We now have our system of equations to solve. However, all the terms in this system do not have the
same importance, some even being completely negligible by orders of magnitude. In order to quantify
this statement, let us introduce some representative timescales

1.2.1 Dynamical timescale and free fall time

In Eq. (1.12), we see that the acceleration results of the possible unbalance between the gravitational
pull and the pressure support. However, excepted during the very early contraction or the red giant phase
of more massive stars, this term can be neglected, because its associated timescale is much shorter than
the evolution timescale.

Indeed, if we freeze all the microscopic degree of freedom of our gas, in a classical sense, then
pressure vanishes and nothing can counteract gravitational contraction. Then, follGppenhahn
and Weiger(1990), we can de ne the hydrodynamical timesdaig,, as the time needed for the uid to
undergo gravitational collapse without any thermal support. Then,

s

Ry GM; RS

—— — t = 1.43

téyn g R% ) dyn GM]_ ( )
A rigorous calculation provides

S S
_p R _1 3p
tn=% 26M - 4 26 (1.44)

wherer 1 is the mean density of the body. For Jupiter or our Sun (which most surprisingly have the same
mean density !), this hydrodynamical timescale is on the order of half an hour, and for a brown dwarf
near the hydrogen burning minimum massdyiv  0:075M 75Myyp andRy  0:7  1Ryyp; see

§2.2), it can be as low as 2 minutes. As we obviously see that the radius of the Sun or of Jupiter does not
increase or decrease signi cantly over an hour, the low valuggftells us that inertia can be neglected

in Eq. (1.12) and thatydrostatic equilibriums reached with a high degree of accuracy. In this case, the
central pressure is roughly given by

GM?Z.
R?Ll 1
nd the dynamical timescale is also equal to the time needed for a sound wave (with thespeed

P.=r 1 to propagate throughout our object
r_

tayn R1 = (1.46)

P (1.45)
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1.2.2 Kelvin-Helmholtz timescale

Now that we have exhibited a dynamical time, we can concern ourselves with the problem of nd-
ing the characteristic time taken by an object in quasi-static equilibrium to irradiate its energy. First
neglecting nuclear reactions and any external source, this should read

Eint .

— 1.47
I—int ( )

tkH
However, this relation is of mild interest if we cannot somehow quantify the content of our energy

reservoir. Fortunately, this is possible through the so-caligdl theorem, which in our context can be
derived as follows.

Becausd[P=1mj; has the dimension of an energy per unit of volume and mass, multiplying both
sides of Eq. (1.12) by 4p® and integrating over the whole mass of the body (Kippenhahn and Weigert
1990), we get

4

z z
apr3 1P cm il

‘ﬂmtdm: Tdm rWm

which obviously looks like an energy. Let us treat each term in turn. Integrating the rst term by part,
and using the fact that,= 0 at the center, anfir=mj. = 1=@pr?r), we get
z z z

4pr3;¥; dm= 4pr3p g’ll 12|0f2:11rrn Pdm= 4pR3Pum 3 rEdm: (1.49)
t t

dm:; (1.48)

: . . R~ . .
To recast this expression in term of the internal ené&igy= Udm, we de ne a dimensionless constant
z as

37 P
Eint 7 dei (1.50)

3 TP

4pre oo dm= 4pR3Pam  Z Eint: (1.51)

t
The second term in Eqg. (1.48) is of course the total gravitational energy of our con guration. Finally,
because
RIS I 2
"2 292 . Tt
the third term can be rewritten
Zqr? o192 12

e 2Ein Zo 1.52
it 2 qe dM 2Ea SgE (1.52)

R
whereE, is the macroscopic kinetic energy, and ~ r2dmthe central moment of inertia of the body.
We are then left with th&/irial theorem

1d2l
EFS +4p Fi)glpatm: 2Ein + Egravt Z Eint: (1.53)
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As shown above, the terms on left hand side, as weligsare negligible, and this reduces to
Egra\/+ Z Eint = 0 (154)

We will come back in more detail on the fundamental consequences of this relation in Chapter
where the evolution is studied more thoroughly, but for the moment, this already tells us that the internal
and gravitational energies are commensurable. As the latter scmsfaﬂl, we can de ne th&elvin-
Helmholtz timescale

GMZ
Rll—int ’

t kH (1.55)
which is the typical rate at which an object in hydrostatic equilibrium radiates its internal energy. For
Jupiter,t k4 is now on the order of 18 years because the planet is old, but was probably no shorter
than 18 © years during its young age. Thus, as expedted, t gyn and the hydrostatic assumption is
validated.

1.2.3 Nuclear time

However, for the Suntky 107 yr! As we have observational evidences that the Sun has been
radiating for a few billion years, unfortunately for Lord Kelvin, another energy source must be presentin
our star, and in others. This energy, this is the mass energy contained in atoms nuclei that can be released
by thermonuclear reactions. In the low mass star and substellar domain, the main atoms concerned are
deuterium fH ; which ignites around  4:5 10°K), lithium (Li; T 2:5 10°K) and hydrogen (H;

T 3 10°K). As the central temperature of a substellar object of a given age generally increases with
its mass, the ignition temperature of a compound X can be recast into the minimal magssm(\heeded
for a body to be able to burn the given compound. We thus de ne (Chabrier and Baraffe20997,

Musvm  75Myup
Miismm  60Myyp
MZHBMM 135Mjup.

For M1 < M2zygmm, NO Nuclear reactions occur, aeg,c can be set to 0 in our set of equations. For
M1 > MpyemMm, ON the contrary, the nuclear reactions dominate the energy budget of the star during its
stay on the main sequence, meantipg t nue, and the energy equation is well approximated by

1l

— = €enuc 1.56
ﬂmt nuc: ( )

In this case, the star is both mechanicalandthermal equilibrium, and evolves only because of its
varying chemical composition. Finally, in the intermediate case, because both Lithium and Deuterium
are not very abundant, and that the reaction ratésl#fH and Li+H reactions are very short, these species
are burnt in about 10 to 100 Myr. This entails that, at early aggs, tnucand no simpli cation can be
made.

1.3 Canonical set of equations

In view of these simpli cations, and for further reference, we can now rewrite the canonical set of
equations describing the internal structure of gaseous objects and their evolution in Lagrangian coordi-
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nates?
1"1“; - 4@;;; (1.57)
11]]rrn - 4pi2r; (1.58)
= et eon TL (1.59)
ErTn - ;%NT; (1.60)
with
Nt = Ny (radiative=conductive zone) or Nt = Nag (convective zone) (1.61)

Note that only Eqg. (1.59) explicitly involves a time derivative. This means that our object, while not in
thermalequilibrium, is always neanechanicakquilibrium, and that it evolves only because it radiates

its entropy and increases its internal order. This also means that in certain cases, with a simple pre-
scription for the luminosity, the structure of the object can be computed without any knowledge about
its evolution, as has been successfully done for Solar System giant planets (Hubbard and Marjey 1989
Chabrier et al. 1992Guillot 2005; to cite only a few. See also Chapthr

1.4 Key physical ingredients

However useful these equations are, they are not suf cient to yet solve our problem. Indeed, we
need at least three additional relations, name, T), P, T) andN.4(P, T) (or Nyag(P, T;1), meaning
thatk , andk . must be provided) to complete them. In fact, the calculations of the various thermodynamic
guantities are the very core of any numerical model, and are often the main factors limiting its accuracy.
In this section, we will review some simple analytical models that can be used to grasp general properties,
as well as the various numerical models used in our numerical code.

1.4.1 Equation of state
De nitions

Before describing the macroscopic state of our uigr(PT; S), we have to introduce some quanti-
ties that describe the microscopic state of our mixture. Our uid is composed of many different particles,
e.g. molecules, atoms, ions - hereafters referred to as ions labeled by i of particle density?)in m
atomic mass (in units of the proton mass) and charge given by, A andZ; respectively, and free
electrons whose particle densityris The chemical composition of the mixture is usually described by
the mass fractiott of Hydrogen (X, Helium (Y) and heavy elements Zfor which by de nition

X+Y+2Z=1: (1.62)

12e have dropped thig stating the variable kept constant because, unless otherwise stated, we now differentiate only with
respect tanort.

13The mass ratio of a chemical species is the ratio of the mass of all the constituents of this species contained in a small
volume over the total mass enclosed in the same volume
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For the mechanical properties of the gas, an important quantity is the mean molecular wedghed
by
1 oMy _ (&ini+ ne)my

= a
m r r |

1 1
1.63
m m’ (1.63)

which implicitly de nes the mean molecular weight of each ion)(@nd of free electronsi¢). De ning

the mean atomic mass of ioh8ig, i ”"* and the mean degree of ionizatibdi jon aa”hlz' = a’:‘;i
and thanks to electro-neutrality we get
1 1 1 hZi;
A == — and —= " (1.64)
i m hAi jon m PAI ion

This mean molecular weight is the translation in mechanical terms of the enrichment of our mixture in
volatiles, metals, or generally, heavy eleméhts

To know wether our gas must be described by classical or quantum mechanics, we must also com-
pare the mean thermal energy of a given particle to its zero energy level, i.e. the Fermi-energy

ﬁZ

2me

2=3

er 3p2ne 7 (1.65)

This de nes the electron degeneracy parameter

keT keT _ 2 memi kg Tng >

X =
e er ke Tk (3p2)2:3 A2 r2=3"

(1.66)

which allows us to separate the classical domain (X1) from the quantum one (X 1).

Classical ideal gas

For the outermost layers of planets and brown dwarfs, the density is small enough for the gas to be
in the classical domain. The pressure is thus given by the ideal gas law

o kB .
P (ai N+ ng)kgT=r rrmHT. (1.67)
For energetic considerations, one also needs to specify the nature of the gas, which can be encompassed
in the speci ¢ heat capacity at constartlume(cy), or constanpressurgice = oy + kg=m for a perfect

gas of particles of masg). For a monoatomic gasy = %'r‘n—B For a diatomic gas, for example, internal
degrees of freedom can be excited and brought into equipartition. In general we will consider tempera-
tures where rotational states are excited but not the vibrational states (Q < Quip)'®, which yields

oy = 5"—3 The energy is then given by

= o T (1.68)

1For further numerical application, if we have a fully ionized mixture of Hydrogen (with the mass fractiand Helium
(Y), m= 4=@8 5Y), andm = 2= Y), and are approximately equal to 0.6 and 1.16, respectively, for a cosmic mixture
(Y = 0:275).
15The Fermi energy is de ned here for the free electrons. For another specie, one just has to use the mass and number density
of the chosen particle.
18For Hp, Qrot 854K, andQyi,  6210K. H thus acts mostly like a diatomic gas in the atmosphere of Jupiter and Saturn,
but like a monoatomic one in Uranus and Neptune which are much colder.
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and the entropy (Reif 1985)

8 2 - 3 9
. < 53 ToT3=2 =
S= l;': In4 rr; ﬁzB Tr S+ § (monoatomic) (1.69)
p ;
g 2 5=3, ! 3= 3 ?
~ kB m - B T5_2 7" . .
S= = Ind S+ — diatomic 1.70
m : 2pﬁz I Qrot 2; ( ) ( )

Differentiating this at constant entropy, we can derive the adiabatic gradient

- TInT _
ad =

MTinP

(monoatomic)

m

(diatomic) (1.71)

Degenerate matter

On the contrary, in the deep interior, the density is much higher. If we put the mean temperature and
density of Jupiter in Eqg. (1.66), we obtain a degeneracy parameter on the order of 0.05. It thus follows
that the electrons cannot be considered classical anymore. However, because ions are around a thousand
time more massive than electrons, their degeneracy parameter is on the order of 50 and they remain
classical. Thus, adding up the electrons and ions contribdtiows get

P= P+ P

= éneelﬁ anksT
i

2 5
= geF (ne+ Xeééi. ni)

5 Xe ro 5=
ey I 1.72
21Zi ion) m ( )

R(3p2) . . . . . e
S(r:pmg:B is a constant. The main interest of this ideal equation of state is that, if ionization
ellly

(and composition) can be considered constant in the interior, Eq. (1.72) takes the form of a polytrope

whereKg

p= Kr 1t (1.73)

with a polytropictemperature K= Kpme5:3(1+ 5Xe=2Ziion), and indexn™= 3=2, which provides
rather useful analytic relations, as described hZ&1. The mean internal energy of the electrons can
then be found by integrating the Fermi energy over the number of particles, which writes
z
~ 3 2
Ue= egdr = gepr = éPe: (1.74)

1This expression is correct to rst order e, as we have neglected the thermal contribution of the electrons which is
proportional taX3 (Chabrier 1990).
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Fortunately, because the ions we consider have only one nuclei (Hi&l , He? ), their speci ¢ heat
capacity is equal to 3/2, so that the total internal energy can be written

~ o~ 2 2 3

Even if useful, at the level of accuracy that we are looking for, these simpli ed equations of state are not
completely satisfying. In our numerical model, we thus use tabulated equation of state.

Hydrogen-Helium mixture

The most widely used EOS to describe the thermodynamics properties of the gaseous H/He en-
velope of giant planets is the Saumon-Chabrier-VanHorn EOS (SC¥&umon et al. 1995). This
semi-analytical equation of state recovers numerical simulations and experimental results in the high-
density and low-density regimes, respectively, while, in its simplest form, interpolating over the pressure
ionization regime.

Interestingly enough, high-pressure experiments on uid deuterium or helium are now able to reach
pressures and temperatures typical of the giant planet interic®sRlbar, T & 10*K), probing the
equation of state in its most uncertain pressure-range. Various experimental techniques, however, give
different results, with a 30-50% difference ifP(r ) in the maximum compression region for deuterium,

0:5 1:5Mbar, although the most recent experiments seem to converge towards substantially less
compressible equation of state for hydrogen, i.e. predict a lower density for a given pressure, than SCVH
in the pressure-ionization domaiR, 0.5 4Mbar. This seems to agree with recent rst-principle
(ab-initio ; Militzer et al. 2008 Nettelmann et al. 2008Caillabet et al. 2011) or nearly rst-principle
guantum mechanical calculations, and bears signi cant impact on the internal structure of giant planets,
in particular the size of the central core. A less compressible planet will tolerate less heavy material
for a given radius or, conversely, will have a larger radius for the same internal composition (Saumon
and Guillot 2004). As these other equations of state are not yet publicly available in a usable form, we
decided to keep the SCVH equation.

In addition, we must keep in mind that the combined interactions of H and He in the mixture in-
crease drastically the degree of complexity in the characterization of the plasma. Not only the interactions
between the two uids will affect the regime of pressure ionization compared with the pure components,
but partial immiscibility between the two species has been suggested to explain Saturn's excess lumi-
nosity for the age of the Solar System, and may occur inside some exoplanets. Unfortunately, given
the aforementioned dif culty in modeling the properties of H or He alone, and the necessity to simulate
a large enough number of particles for the minor species (He in the present case) to obtain statistically
converged results, no reliable calculation of the H/He phase diagram can be claimed so far. As mentioned
above, pressure-ionization of pure hydrogen and helium must rst be fully mastered before the reliability
of the calculations exploring the behavior of the mixture can be unambiguously assessed.

Resolving these important issues concerning the H and He EOS must await (i) unambiguous exper-
imental con rmation of the H and He EOS at high pressure, (ii) unambiguous con rmation of the reli-
ability of the theoretical calculations, in particular in the pressure ionization regime, (iii) guidance from
experiments to predict the behavior of the H/He mixture under planetary interior conditions. Progress
both on the experimental and theoretical side will hopefully enable us to ful Il these criteria within the
coming years.
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Figure 1.1: Left: Conductive opacities {kn m?.kg 1) from Potekhin et al(1999) as a function of
density (in kg.m 2) and temperature (in K). Right: Decimal logarithm of the COND Rosseland radiative
opacities (k in m?.kg 1) from Ferguson et a2005) as a function of density (in kg.r¥) and tempera-
ture (in K).

Heavy elements

According to the composition of the protosolar nebula, the next most abundant constituents after
hydrogen and helium in gaseous giant planets, but the most abundant ones in ice giants and Earth-like
planets, consist of C, N and O, often referred to as "ices", or volatile® (l€H;, NH3, CO, N, and
possibly CQ). The remaining constituents consist of silicates (Mg, Si and O-rich material) and iron (as
mixtures of more refractory elements under the form of metal, oxide, sul de or substituting for Mg in
the silicates). The behavior of these different elements as a function of pressure, under the conditions
typical of giant planet interiors is not or poorly known. At very high pressure, the categorizations of gas,
ice and rock become meaningless and these elements should become a mixture of closed-shell ions.

The most widely used EOS models for such elements are ANEOS (Thompson and Lauson 1972)
and SESAME (Lyon and Johnson 1992), which describe the thermodynamic properties of water, "rocks"
(olivine (fosterite Mg2SiO4) or dunite in ANEOS) and iron. These EOS consist of interpolations be-
tween existing Hugoniot data at low to moderately highQ:5 Mbar) pressure and Thomas-Fermi or
more sophisticated rst-principle calculations at very high density (FOO Mbar), where ionized species
dominate. Interpolation, however, provides no insight about the correct structural and electronic proper-
ties of the element as a function of pressure, and thus no information about its compressibility, ionization
stage (thus conductibility), or even its phase change, solid or liquid. All these properties can have a large
impact on the internal structure and the evolution of the planets. A detailed comparison between these
EOS, and the impact of the uncertainties on the radius determination for Neptune-like and Jupiter-like
planets has been conducted Baraffe et al.(2008), who showed that the discrepancies between these
two equations of state can lead to difference of about 10% on the radius of a Neptune like planet at
1Gyr. Without conducting either ab-initio calculations or higher pressure experiments, we decided to
use ANEOS. For practical purposes, some thermodynamic relations needed to implement the ANEOS
package are provided in Appendsx

1.4.2 Opacities

Deep in the interior, the large radiative opacity of planetary material yields completely inef cient
heat transport by photons. Transport by conduction, resulting from collisions during random motion
of particles, may in some cases be relevant. To account for these process, the numerical model uses
the conductive opacity tables froRotekhin et al(1999) andCassisi et al(2007), which are shown in
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Fig. 1.1. In the central part of H/He dominated planets, thermal conductivity is dominated by electronic
transport, and Eq. (1.32) yields a thermal diffusiiitgy 10 >m?.s 1. If no electrons are available,

as in the outer envelope, conductive transport is dominated by the less ef cient molecular motions with
thermal conductivitykt 10 ®m?.s . Conduction by electrons (or eventually phonons) may also
dominate in central cores composed of heavy material.

In the most outer layers, close to the planet photosphere, matter in less opaque, and radiative opac-
ities must be used. There, one must take into account both continuous opacities (suchHas Hi, ,
H3, bound-free and free-free absorptions), molecular bonds and atomic lines. Their relative contribu-
tion depending greatly on the range of temperatures considered. Here we use the opacity tables from
Ferguson et al2005) (see right panel of Fid.1).

1.5 Boundary conditions

As for any set of differential equations, boundary conditions are needed to solve the system of
structure equations. At the center, these are rather trivial

r(m=0)=0
I(m= 0)= 0: (1.76)

However, it is not the case for the upper boundary. Indeed, one can start to see the problem in the fact
that we still have not de ned properly what we meant by the mass and radius of the object stugdied (M
andRy). If this seems intuitive for terrestrial planets, for which there is a clear separation between a solid
and gaseous phase that can be calediace, it is not so clear for giant planets. In this case, the mass
and radius of the planet are not uniquely de ned, but depend on the isobar (of prEgsjtaken as the
reference surface, yielding; = m(P = Py). Hence, the boundary conditions we are looking for are

P(m= M1)= Pa'[m
T(m= My) = Tam, (1.77)

where the rst one is purely conventional. As thermodynamic quantities are constant on concentric
shells, the radius of the object is de ned as

Ry = r(m= My): (1.78)

Even if one could be tempted to uBgmy = O to de ne the surface, one needs to remember that
the equations that we have derived above are based on many assumptions, in particular the diffusion
approximation, that is not valid at such low pressures where both radiative escape and incoming radia-
tion cannot be neglected. Therefore, one must choose a reference isobar which is deep enough for the
aforementioned approximations to be valid. Our problem can then be stated as nding the corresponding
atmospheric temperatures(§ = func(Pam)). If in situ measurements are available, as, thanks to the
CassiniandGalileo missions among others, it is the case for solar system giant planets, the atmospheric
T P prole is directly measured down to the convective region (eGuillot (2005) and reference
therein). Thus any couple {; Pam) taken in this region can be readily used as boundary conditions to
infer the internal structure.

For far remote objects, modeling must be used. However, we can separate our planet in two zones

the interior, below thé® = Py, isobar, that contains the malsk, have a radiu®;, and which is
described by Eq. (1.57) through Eq. (1.60).



24 The syntax of planetary structure

Figure 1.2: Schematic representation of the energy balance of the atmosphere. The planet receives a
ux s SBT;‘r with an incidencey, (m = cosg,). A fractionAis re ected directly and 1 A is absorbed.
Fluxes that are mostly characterized by visible wavelengths are drawn in blue. Fluxes in the infrared are

drawn in red.

the atmosphere, above tRe= Py, surface, which contains a negligible mass, and where all the
incoming external radiation is re ected or absorbed.

To nd our missing relation, we will thus have to model this atmosphere. Even if our model uses complex
numerical calculations provided Bylard and Hauschild(1995) for non-irradiated objects, aBérman

et al. (2001) for irradiated planets (s@araffe et al. 2010or a review), in this section, | will turn to

simple analytical model to get a sense of the various physical parameters that determine the energetic
and mechanical equilibrium state of an atmosphere.

1.5.1 Atmospheric energy budget and redistribution factor

From an energetic point of view, the atmosphere is the window by which the planet can release
internal energy and receive incoming radiation. Its state must hence depend on the value of the incoming
stellar ux, Fine, and of the intrinsic gravo-thermal outgoing .. However, to extract the important
parameters, let us consider the energy balance of this layer. As shown ar2k-i§we consider an area
of the atmosphere positioned at an angdeérom the substellar poif? (with m  maxfcosg»; 0]), the
ux received perpendicularly to the surfa@eeads

2

R,
Fnc=  — msseTer,  MSseTi; (1.79)

whereR,, r, andTes.» are respectively the stellar radius, distance, and effective temper&guis thus

the temperature which characterizes the incoming radiation. From this total impinging ux, a fraction
Fret A Finc, WhereAis the Bond Albedo, can be considered as directly re ected by the top of the at-
mosphere, while the remaining enerfly, A) Fc penetrates deeper down. In addition, the atmosphere
is heated from below by the intrinsic internal ux of the plafgt.

18The point at the surface for which the star is at its zenith.
19The convention taken here is that uxes are positive if energy is actually transported upward, i.e. toward the positive "
direction as shown on Fig. 1.2.
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Because we have chosen the base of our atmosphere to be deep enough, there, the total net ux is
equal to the internal ux

Fret= Fint: (1.80)

If thermal equilibrium is achieved, this net ux must be conserved throughout the atmosphere, and par-
ticularly at the top wherer,,; being the ux escaping the atmosphere,

Fnet= Fout* Finc: (1.81)
Thus,
Fout= Fint Finc= Fint+ Fn+ Fre: (1.82)

Thus we see that the outgoing ux - the one that is seen by an observer - is the sum of the re ected light,
which contributes mainly at optical wavelengths, of the internal ux, anBypf (1 A) Fnc which is
the part of the oncoming radiation that has been absorbed and thermalized in the atmosphere, and which
is re-emitted mainly at thermal wavelengths.
It is customary to de ne alinternal effective tem-
perature® as the temperature of the blackbody that
would radiate like the interior

Ft  SseTing (1.83)

and anoutgoing effective temperaturthat similarly
characterize the local escaping thermal radiation

Fnt+ Fn S spTak: (1.84)

It thus follows that

1 A
Teit (M) = T+ 5 — Fine(M)
= Tt m(L AT (1.85)

Figure 1.3: Equilibrium temperature map/hich shows that this outgoing effective temperature
The substellar point is the convergence poiMgries with the position on the planet. This is just due
of the mesh lines. to the fact that we are considering local equilibrium, and
thus, the re-radiated energy is proportional to the incom-
ing energy which varies from one point of the surface to
another. This can be used, for example, to calculate the temperature of a well de ned surface in thermal
equilibrium with an incoming radiation at the temperatGeand with an incidence characterizedroy
which is given by

To(m) = m(1 A)Ti; (1.86)

and shown on FidL.3.

20In the literature concerning internal structure and evolution, the energy absorbed and re-emitted by the atmosphere is often
not considered as it does not affect the interior. Thus, there is no call for creating a distinction b&twaad T, which are
lumped together and callexffective temperature. Here, as we are also concerned with the atmospheric boundary problem, |
have decided to make the distinction betweenitiernal effective temperaturd;,;, and theoutgoing effective temperature,
Tef. However, ad is the quantity that is most used in the following, it will be calkftective temperatur®r brevity.



26 The syntax of planetary structure

Spatial averaging

However, in our case, the modeling is essentially one dimensional. Thus, we are looking for a
guantity that would characterize the equilibrium of the total object. In addition, the thermal gradients
created at the surface by the temperature distribution of Eqg. (1.86) will cause some horizontal energy
transport, both by conduction and advection. Thus considering that energy is only globally conserved,
we can de ne a mean outgoing effective temperature

Zl4~~_1zl4~ —4~_41'K4.
5 1Teff(m)dm— é 1 Tint+ r‘r(l A)Tirr dm= Tint+ TTirr’ (1-87)
and the mean equilibrium temperature, that is the temperature that would have the planet once in com-
plete thermal equilibrium

T4
Teff

., 1 A
Te‘g: TTif;: (1.88)

This is also the equilibrium temperature reached by a planet that would be irradiated uniformly by an
average ux

= - R ? 4 . T4

Finc= f P SseTefr» = fsseTi: (1.89)
wheref_, the redistribution factor, is here equal to 1/4th, which corresponds to a redistribution over the
whole surface of the planet. If redistribution over the dayside only is considéred,=2. Intermediate
values between these two are often used in complex numerical calculations (Allard et al. 1997 ; Barman
et al. 2001). However, as is discussed in §1.5.2, thanks to a simple analytical model, it is possible to
make a more educated guess abiut

If Tyr is @ good parametrization of the incoming stellar irradia%’roﬂiq guanti es more speci cally
the way this irradiation will affect the planet. For low albedo planets, as seems to be the case of Giant
planets (Sudarsky et al. 2003 ; Hood et al. 2008), these two temperature are however redundant. In the
following, we will thus use€Tj.

Temporal averaging

As planets are possibly on eccentric orbits, their distance to their host star, and thus the incoming
ux, is not constant in time. As this variation is periodic, and with a period which is typically shorter
than the evolutionary timescale of our plaitesee §1.2), we can average it on an orbit to get the mean
ux and irradiation temperature
= 2
PFinc = fhgz?i sseTofrr = P sB Tefr2 (1.90)
r 1 & a
wherea and e are the semi-major axis and eccentricity of the orbit. Details of the calculations can
be found in §.1.1. Interestingly enough, when a planet is on an eccentric orbit, the mean ux that it
receives and the mean star-planet distance increase at the same time. In the following, this rescaling of
the incident ux is always assumed to be done and include€R}invhen needed.

2INote that here, we have not considered the spectral dependance of the incoming stellar ux at all. THEyeftfiarms
us on the amount of incoming energy, but not at all on its spectral distribution.

22Rigorously, we should compare the orbital period to the radiative timescale of the atmosphere, which can be on the same
order of magnitude. However, the error introduced here should be comparable to the one already caused by our spatial averag-

ing.
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1.5.2 Atmospheric boundary conditions
We can now state our basic problem as

1. choosing a parameteg, which de nes a level in the atmosphere at which incoming stellar energy
has been absorbed, but that lies above where most of the mass of the object is enclosed,

2. solving the hydrostatic equilibrium and the radiative transfer in our atmosphere to nd the two
missing relationsPatm( Tirr; Tint; Xatm) » @Nd Tatm( Tirr; Tint; Xatm) -

In general, to solve this problem properly, one should take into account the whole spectral depen-
dance of the incident and internal radiations, and of the opacity of the mixture, and can be treated only
numerically, as done for example Bylard and Hauschild{1995) ;Barman et al(2001), among others.

In this section, in order to have an integrable system that allows us to grasp the main physics at work, we
will use the semi-grey approach developedHansen2008) andGuillot (2010).

Using this toy model, in the end of this section, | will also show that numerical 1D calculations
of the atmospheric boundary conditions of substellar objects that consider a redistribution of the
stellar ux over the day side only (i.e. which usef = 1=2) overestimate the impact of the irradiation
on the structure of the object. Indeed, | will show that, taking into account the horizontal advection
that must take place at depth is equivalent to using a redistribution factor that is bracketed between
1/4 and 1/(2 3).

Two-band approximation

In this approach, scattering, and thus re ection, is neglec&%d 0), and we consider that the
spectrum can be split in two bands

a visible band where the radiation eld is mostly set by the stellar irradiation, which is character-
ized by f, Ty, and the opacity is considered constant and equal;to

a thermal band where the internal energy, describelhpyand the absorbed stellar ux is emitted.
The opacity in this band is callddy,.

Note that, the weight to be used in the spectral averaging leadikgid@ndk, can depend on the
physical conditions, and is in itself a complex matter which is not discussed here. It is further assumed
that there isno vertical heat ux due to convection, and that the atmosphere is in complete radiative
equilibrium. Because the complete derivation of all the formula used hereafter would lead us into a
lengthy development that is not needed here, we will just de ne the main variable used. For details the
reader is referred tdlihalas(1978) ;Hansen(2008) ; Guillot (2010). To de ne our parameter, we can
use thecolumn mass,
Zy
m r dr® (1.91)
r
This can be linked to theptical depthin one of the two bands, which can be integrated from the surface
to the local positiom using

dt Kinr dr )t = kgm (2.92)

23With this de nition, it is obvious tham is the mass per unit area contained between the top of the atmosphere and a given
radiusr. To convert this in actual mass, one can use the fact that the vertical size 9{ the atmosphere is far smaller than the planet
radiusR;. Then the mass of the atmosphere above the radaioughlymam(r) 4p *r r2dr® 4pRém .
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or
dtyis Kvist dr ) tyis= Kyism : (1.93)

where each de nition can be used to characterize respectively the thermal and visible radiations. Finally,
if hydrostatic equilibrium holds, Eq. (1.11) tells us that
1P
fr
whereg is the gravitational acceleration that can be considered constant in the outer layers. Then the
pressure at any given level reads
- 9. _ 9 )
P=gm = rmtth— rmtvis-
Guillot (2010) sho[y\[ed that, for an isotropic incoming radiation, the energy density of the visible
radiation decreases as €'vs. Then our rst constraint on the choice of the boundary yidgsm 1.
As typical opacities in the visible under the relevant conditions are on the order ®f 1D “m?.kg !
this impliesm  10° #kg.m 2, and pressureRyn g=kvs 0:1 0:01bar. Because the mass of the
atmosphere contained above thelevel is given bymym 4pRZm 10 “M; for Jupiter, the second
condition (mym  My) is not very restrictive.

= gr; (1.94)

(1.95)

Temperature pro le

We now turn to the temperature at the bounda@uillot (2010) also showed that in the same
conditions, the temperature pro le is given by (see Eq. (29) in his paper)

3Th 2 ~3T4
TAm)= =0 S+ kam + f0 4& K # wem’3 L (1.96)

3 kws kth 3 kws
One can see that, in the absence of stellar radiation, the usual Eddington pro le is recovered, and the
temperature ati, = kinm = 2=3 is equal tdljy;. This also shows that fd¢,is=ki, > 1, a temperature
inversion can occur at low pressures, which is due to the direct thermal heating of the atmosphere by the
incoming radiation. Placing ourselves in a zone ful lling the rst conditidn,i{m 1), and choosing
a reference pressure, our boundary condition is then given by

3T4 2 Kin —3T4 2 k
T4 = 2lint < thp, 4 flir <4 FB _ - 1.97
atm ™ 4 3 g atm 4 3 kvis 3 ( )

We can see from this relation than therefore depends on three parameteFg;,i®, and the gravity
24
g~

For typical values of

kyis 102 10 *m%kg !
and

kin 10 2m?kg *
Tint 200K, Ty 2000K andf = 1=4, Eq. (1.96) yields a nearly isothermal zone between 1 and 100 bar.
Then, this zone is nicely tted to contain our boundary. Higt shows the value ol for Pym =

10 bar. We can see that irradiation starts to play a signi cant rol&;fo& Tin;, and will therefore have a
diminishing impact with the mass of the irradiated planet, as we will see in CHapter

24Note that if theTam = func(Pam) relation does depend am at given massj itself depends on the radius of the object
which is determined by the integration, and thus by the boundary conditions. In other g@dmt afree parametefor our
structure model. In practice some iterative process is needed to ensure thai#fiByf) used are consistent with the structure
found.
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Redistribution factor and advection

With this model, we can also make an attempt to
make a moreeducatedguess of the redistribution fac-
tor. Indeed, taking into account an horizontal, conserva-
tive and ef cient enough advection of energy at depth,
Guillot (2010) also shown that, even with a non-uniform
insolation described by Eq. (1.79), the temperature be-
comes mostly longitudinally and latitudinally homoge-
neous at high pressures, and is given by

ﬁ: 431-';4“ g+ @P + 3T|ﬁ' g+ g@ .
4 3 g 16 3 3kys
(1.98)
Comparing Egs. (1.97) and (1.98), | nd that in this
model,
K
=1 1+ KTt.hs ) 1676 pl, 0:29: Figure 1.4: Atmospheric boundary temper-
41+ JFxn 4 3 ature (km: Eq.(1.97)) at the 10bar level

(1.99) (Patm = 10bar) as a function of the internal
ux (parametrized byTj,;) and incoming stel-

where the lower and upper boundaries are respectivially ux (parametrized byTi.) for a redistribu-
given by forkpw=kyis or 1 (the typical values of tion factorf = (2 3) ! (see text).
the opacity mentioned above yieldikg=kis 10" ?),
which is, as expected, larger than 1/4this shows that, in this simple model, because the energy
redistribution at depth is rather ef cient, averaging the incoming ux over the whole planet is
more justi ed than averaging over the dayside only. Indeed, taking a redistribution factor of 1/2

overestimates the irradiation term in Eq. (1.97) by a factor 3 1:7to 2.

While the differences yielded by such a factor are modest in comparison with other uncertainties,
especially on opacities, the accurate determination of the redistribution factor is at least of theoretical
importance as it gives us some insight on the ef ciency of horizontal energy transport inside exoplanets.
Let me conclude by noting that, of course, the above estimation is very rough, and such an issue should be
addressed with numerical Global Circulation Models (GCM) taking properly into account both radiative
transfer and hydrodynamics, and maybe magneto-hydrodynamics.
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Chapter 2

Evolution & stellar irradiation: A lid on
the bolling kettle

Il faudra revoir vos estimations a I'aune de la mécanique rationnelle.
Lord Kelvin au sujet de I'estimation de I'age de la Terre

Lord Kelvin a donné une limite supérieure de I'age de la Terre, sous la condition qu'on ne découvre pas de source de chaleur nouvelle.

Cette possibilité prophétiguement annoncée, c'est précisément notre sujet d'aujourd'hui, le radium !
Voyez ! Le vieil homme me grati a d'un sourire.

Sir Ernest Rutherford
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In this chapter, the rst goal will be to review some standard results of the theory of planetary
evolution (see §2.1). To that purpose, | compute new grids of numerical planetary modelg. | will
also discuss possible de nitions to distinguish planet from brown dwarfs.

Then, in §2.2, | analyze these grids of planetary models to show what they can tell ug about
the interior mechanical structure of extrasolar planets. In particular, | show that the irfterriy
pro le of a giant planet is well approximated by a polytrope throughout the deep interior, and that
this gives us some insight on the behavior of the equation of state in the various regime considered.
As a result, | show that the whole mechanical structure can be characterized by a single quantity,
namely an effectiv@olytropic index, and that the variation of this polytropic index with the mass
of the planet can directly be seen on the slope oflass-radius relationship. The results of this
sections were published in the artiddéstorted, non-spherical transiting planets: impact on the
transit depth and on the radius determinatifireconte et al. 2011b).

in 2.3, | address the problem of the bloated giant exoplanets, and review the major groposi-
tions made to explain it. | show how taking into account the stellar irradiation allows us to defcrease
the discrepancy. Doing so, | rst estimate the impact of the stellar irradiation on the internal|struc-
ture, for example on its effective polytropic index (se242), and then, in 8.4.3, quantify more
precisely theadius anomalyas was done iffhe radius anomaly in the planet/brown dwarf over-
lapping mass regiméLeconte et al. 2011a). | will defer the discussion of some of the physical
mechanisms proposed to explain this radius anomaly, such as semi-convection and tidal |heating,
to Chapterd and5.

Finally, in 82.5, | will show how the mass-radius diagram can be used to constrain the com-
position of extrasolar planets £84.4), and help us distinguish giant planets from mini brpwn
dwarfs in the favorable cases4®). This method is also describedStructure and evolution ¢
the rst CoRoOT exoplanets: probing the brown dwarf/planet overlapping mass re(lieumnte
et al. 2009).

=
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EVOLUTION IS A LONGSTANDING PROBLEM If observational
P I a n etar ta concerning the current internal structure of a planet are al-
ady sparse, fewer are the one on its early state and evolution.
It is therefore extremely dif cult to predict accurately the properties of a celestial body at a given age, or
simply to date its formation. This problem is well illustrated by the controversy that raged during more
than 200 years about the age of the Earth. Between Aristotle theory that the Earth has been there from

the beginning of times, and the christian thesis dating the creation between 3483 and 6984 BC, physical
arguments came to heat up the debate duriffyctury.

On one side, Edmond Halley in 1715, followed by Henri Gautier, and nearly one century later,
by Charles Darwin, proposed geological arguments demonstrating that the Earth should be older than a
few hundred years. Darwin will propose more than 300 million years, which seems in agreement with
his theory of a slow natural selection. This possibility was supporteddmnahrd Euleand William
Herschelwho noted that because light is moving at a nite speed, as has been demonstrRiaéyn
1676, its travel from distant stars could take longer than a few million years. On the otheBsffim
in 1778 and_ord Kelvinin 1862 claimed that the Earth could not be so old. If, as they think, the planet
was initially molten, the time that it needed to solidify and cool down to its current temperature should
not exceed 100 million years. Later on, with the german physkit&simann Ludwig Ferdinand von
Helmholtz,Kelvin estimated the time needed by the sun to radiate its gravitational energy (de ning at
the same time the Kelvin-Helmholtz timescale) and lowered down his estimate of the age of the Earth
formation to 20 million years. At this point, it seemed impossible to reconcile physicists and geologists.

We will have to wait until the end of the ¥9century, and the discovery of a new energy source,
radioactivity, to relieve the tension. Aftetenri Becquerel's discoverrnest Rutherford,ord Rayleigh
and others reassessed the age of the Earth, which started to increase until it reached its currently accepted
value of 4.55 billion years.

Amusingly, nearly 300 years later, history seems to repeat itself! Other worlds have been found,
and while their parent star seems old, some of them exhibit a surprisingly high radius (i.e. a large thermal
energy content), which is usually a sign of youth. However, before starting to look for an extra energy
source, it is primordial to accurately quantify this so-calladius anomaly.

2.1 Isolated planets

Let us start withisolatedobjects, i.e. objects for which the incident stellar ux can be neglected. As
was discussed in Fid.4, this condition can be reformulateds  Tin: for which the evolution of the
planet is determined only by its own properties, without any assumption on the parent star. In this section,
we will make use of this simpler case to derive some general features of the structure and evolution of
planets. This will also provide us with a reference case to compare with when we will consider close in
objects.
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2.1.1 Adiabaticity

One of the rst question that arises is how energy is transported within the object, and consequently,
whether the interior is convectively stable or not. We have seerlif.§, that the stability criterion is
given by

Ng < Nag (2.1)

For smaller diffusive gradients, radiative forcing is to weak and all the ux can be carried out by both
radiation and conduction. For stronger forcing, however, convection sets in and very ef ciently transport
a large fraction of the ux (see Chaptéifor more details).

In the outer layers, the adiabatic gradient can be easily estimated from the classical perfect gas
approximation. Indeed, differentiating logarithmically Egs. (1.69) and (1.70) at constant speci ¢ entropy,
we see that

2 . 2
? . Nad . g,
where the rst value is derived for a diatomic perfect gas {ldr example), and the second for a
monoatomic one (He ; seel$t.1).
For the radiative gradiehtwhich reads
- 3 kPTA
N — _nt. 2.3
rad 16 T4 g ( )
the problem is much more complex. Evefiif andg can be considered constant in the outer part of the
object, the problem lies in the fact thidf,q depends o andT, but that theT P pro le itself depends
on the integral o4 in a radiative zone To grasp the dif culty, let us consider a very simple model
where the opacity follows a law of the type

k = koTPrPPe: (2.4)

(2.2)

Then, an integration of Eq. (2.3) yields

4 br 3 keT?
4 br — ~ int 1+bp+ .
T 1+bp16 g (P cst); (2.5)
and in the limit of the high pressures, the radiative gradients tends to
~ 1+ Db
rad = ﬁ; (2.6)

which is completely independent &b (Kippenhahn and Weigert 1990). Thus the transition from a
radiative zone to a convective one is not determined by the value of the chécityy its variation with

the temperature and pressure (or density), which is dif cult to model analytically. This is con rmed by
our simple atmospheric radiative transfer model discussed if.8. Indeed, in this modeX, is constant

(br = 0; bp = 0), and we can easily see from Eq. (1.96), tRat! 1=4 in the high pressure limit. Note
that, according to the Schwarzschild criterion and Eg. (2.2), this radiative gradient is insuf cient to trigger
convection.

1As we are considering the outer layers of the object, thermal conductivity of the electron can be neglected with respect to
the radiative diffusivity.

2provided that the diffusion approximation holds. If not, as is the case in the upper atmosphere, the whole radiative transfer
must be calculated, still worsening the problem.

SContrarily to the transition from a convective zone toward a radiative one, wher€ the pro le is determined by
the adiabatic gradient independently of the opacity, and where the criterion for the existencadafti@e windowcan be
formulated under the form ofley threshold (see Guillot et al. 1994 for details).
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Figure 2.1: Radiative gradient (&) just below the atmospheré4m= 100) as a function of the internal
outgoing ux Ty for different surface gravities (gog g increases by 0.5 dex from 0.5 (thin orange) to
4 (thick blue)). TheT P pro les are taken fromAllard and Hauschild{1995). The adiabatic gradients
of mono- (dashed) and diatomic (dotted) perfect gases are also shown for comparison.

Therefore, in order to determine the main transport mechanism atlphaye used theT P
pro les obtained by Allard and Hauschildt (1995) by solving non grey radiative transfer for an at-
mosphere in radiative and hydrostatic equilibrium, and computed the value ofN;4q just below the
atmospheric boundary level (i.e. at an optical depth of 4m= 100) with the opacities from §1.4.2.
The results are shown in Fig2.1. We can see that at this optical depth, the medium is always convec-
tively unstable fofTi,; & 50 100K, the radiative zone being con ned to smaller optical depth/pressures.
For lower effective temperatures, and thus for older objects, the radiative zone eventually extends deeper
down because of the lower radiative forcing, and the object tends toward an isothermal sphere.

Whether the medium remains convectively unstable deeper down can however depend on the physi-
cal conditions. It has indeed been proposedioyiiot et al.(1994) that an opacity gap near 1000-2000 K
could open aadiative windowin solar system giant planets. If this possibility seems now improbable
as the opacity gap is lled by metal spectral lines, it is still possible in hotter and/or irradiated objects
(Burrows et al. 1997).

Because convection is very ef cient in gaseous planets, giant planets like Jupiter which are far from
their star, or single brown dwarfs follow a nearly adiabdtic P pro le. Hence,Sis constant in the
interior, which involves a powerful simpli cation of the equations. Indeed, neglecting nuclear reactions,
the luminosity equation can be integrated to give

Zm &
S
I(m)= T1L dm
0 it
m S
= T dm'IL
0 Rl

T_(m)jus; 2.7)

whereT(m) is the mean internal temperature interiomowith T, T(M41). In addition, becausBl,q
is independent of the actual luminosity pro le, tie P pro le can be integrated from the values of
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the temperature and pressure at the atmospheric boundary. Therefore the luminosity affects the structure
only by its impact on the boundary conditions (see%2).

2.1.2 Parametrization

Now that we have set up our model, let us review the independent parameters on which depend the
global structure of the object. The rst one is obviously the value of our integration vanialblethe
boundary, i.e. the mass of our objédt. As we have seen inB5.2, the upper boundary consists in two
parametersPam and Tam, Where the rst one is mostly conventional, and serves to de ne precisely the
radius, and the second one can be calculated by modeling the atmosphere and depends on the internal
(Tint) and incoming (if;) luminosities.

For an object with a given mass and in a given environfheve are therefore left with at leashe
degree of freedom, namely tieffective temperaturgql. This is rather fortunate ! Indeed, we have to let
the liberty to our planets to evolve with tim&o see how the structure of the planet depends on this
parameter, | have simulatedisolatedsolar composition H/He gaseous spheres;(T= 0) with mass
ranging between approximatelylOM and 2M;y,with the numerical code CHES&ee AppendixJ).
Results are shown in Fig.2.

As discussed above, all these objects are mainly adiabatic, and the speci ¢ efSripgdnstant
throughout the interior. As expected from Egs. (1.70) and (1.97), once a reference isobar is chosen,
bijective relations exist betwe@Rm, Tint andé(which all evolve in the same direction), and any of these
guantities can be used indifferently to parametrize the tracks irRFg.Following a given track from
right to left, we can see that, thanks to the adiabatic condition, the internal temperature also decreases
when the external layers of the planet get colder (panel ¢). Hence, at a given pressure level, the decreasing
thermal pressure support of the ions must be counteracted by an increase of the density (panel d) and
of the degeneracy of the electrons (panel f). In turn, this local and global increase of the density causes
a shrinkage of the radius (panel b) and, because of the hydrostatic condition, an increase of the central
pressure (panel a).

The problem is thus to solve the luminosity equation to nd the evolution of the effective temper-
ature with timeTin(t). Indeed, in the adiabatic case, Eq. (1.59) is decoupled from the rest of the system
and can be rewritten

ﬂ & R%(Tlnt) T'4

o STim) = 4psSsp——— " 2.8

Tt Tint) PSse 3 5 (2.8)
While our evolutionary code directly solve the whole set of equations, Egs. (1.57-1.60), this relation
could in principle be directly integrated following any track in Fig. 2.2.

However, we can see on Figj2.d that these models are not totally representative of Solar System
giant planets, Jupiter and Neptdnéndeed both planets are denser (and by a large factor for Neptune)
than the models of the same mass and effective temperature. This tells us that there is at least another
free parameter that we did not yet considered. If this free parameter is not obvious in our set of structure
equations, we already encountered it ifi.£.1. Indeed, to model a planet, one needs to specify the
material it will be made of, and use the relevant equation of state. For the moment we only consider
gaseous spheres with a solar composition, but the discrepancy stated above is a rst clue that dense
materials (called heavy elements) must be present inside Solar System giant planets, and giant planets in
general. This issue will have to wait untib&.4.

4Here, the environment is simply de ned by the type of the host star and by the orbital con guration which determine the
spectral and temporal characteristics of incoming energy received. To simplify the discussion, we will consider that only the
average ux, and thugj,, matters. In this section, however, we consider only isolated object, yi€lgirg 0.

Swhile it is not shown here, the same conclusions hold for Saturn and Uranus.
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(a) Central pressure (b) Radius
(c) Central temperature (d) Mean density
(e) Speci c entropy () Degeneracy parameter

Figure 2.2: Evolutionary tracks parametrizedy for different masses. The dashed and dotted curves
represent respectively the l)jand 11\1 case. The black dots represent the actual JupiteH(TL25K,
R1=71492 km) and Neptune ;{59 K, Ri=24 552 km).
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2.1.3 Evolution and energy budget

Now that we have all the ingredients nheeded to compute evolutionary tracks, it is time to use our
numerical model to predict the behavior of the various physical quantities describing our objects, and
to extract some general features. in order to show the similarities and differences arising between the
various mass regimes in the substellar and stellar domain, | computed a grid of models of H/He gaseous
spheres coverinil; 2 1Myyp, 100M;,, . Some of these evolutionary tracks are shown in Fig. 2.3. We
can clearly distinguish 3 domains

M1 < Mzygmm . SOlid curves in Fig2.3; The object is not massive enough for its interior to reach

suf ciently high central pressures and temperatures, and nuclear reactions never ignite. The inter-
nal entropy is radiated away, but the energy lost does not only come from gravitational contraction
has it is often said, but also (and sometimes mainly) from the thermal component. To disentangle
both contributions, let us consider the energy budget of the object. As we have setr2ip, 8
thanks to the Virial theorem,

Egrav+ A Eint = O, (29)

3

R
wherez is a characteristic of the equation of state de ned throbgh > rEdm; and

1 z

Linn= Egrav Ent=(z 1)En= Egrav: (2.10)
We have seen in 84.1that either in the classical or degenerate domain, a monoatomic gas is
described by = 2. Hence,

Lint= Ent= 5Egrav: (2.11)

At early ages, we can see on Fig. 2.3.d that the central degeneracy parameter of the electrons is
roughly close or bigger than unity. In this classical regime, Eq. (2.11) simply tells us that half

of the energy released by the gravitational contraction is radiated away, the remaining half going
into the internal energy of the particles. Uil . 1, the particles are classicddy,; 1 kgT, and

this causes an increase of the temperature which can be sedn f08; 5 and 1M;,, curves of
Fig.2.3.c.

Later on, degeneracy sets in and the gas consists of degenerate free electrons mixed with still
classical ions. Thus, the internal energy is also split between an electronic and a ionicgpart (E
andE), the latter being small becauseT- = X, 1. BecauseEgay M 1=R [ r11=3, the very

dependence of the Fermi energy with respect to the density (E—f:?') gives

Ee Eg rav
— 2 X 2.12
Ee Eg rav ( )

Substituting this into the Virial relations nally yields

E; E; E;i
m I Egrav 2 Egrav= Egrav

rav Eg rav

L= Ep ksT: (2.13)

Ec=2

The contraction is thus mainly used to increase the zero point Fermi energy of the electrons, while
most of the luminosity is provided by the slow thermal cooling of the ions, as seen on the right
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part of Fig.2.3.c (Guillot 2005). Of course, this result which is nearly exact in the white dwarf
domain is here only approximate because of (i) the partial degeneracy, meanirkg thatot
completely negligible, (ii) the Coulombian correlation effects which cannot be neglected in the
planetary domain.

Interestingly, during their whole lives, the effective temperature of these objects monotonously
decreases with time, and can be seen as a proxy for time. At a given mass, an object will thus
follow the corresponding track in Fig.2from right to left.

Mzpyeum < M1 < Mygmwm, dotted curves in Fig.3; During the early phase, the aforementioned
conclusions hold: the object is classical and heats up during contraction. However, at some point,
the central pressure and temperature are suf cient to ignite deuterium burning (akount5

10°KS8, and this energy source temporarily counteracts contraction. Unfortunately, because the
primordial®H/H ratio is very small ( 2 10 °; Chabrier and Baraffe 2000), all the available fuel

is consumed in 10P 8yr. After that, the standard evolution described above resumes. Note that
the beginning and the duration of this phase is highly dependent on the mass of the object. For
more massive objects, higher temperature and pressures are reached earlier, so that the reaction
starts quickly and have a shorter lifetime.

M1 > Mpyemm, dashed curves in Fig.3; Like the deuterium burning objects, these young con-
tractingprotostarsheats up until they reach. 3 10°K, temperature at which thermonuclear
reactions start. In low mass stars;(M 0:7M ), 99% of the fusion of Hydrogen into Helium is
ensured by the PPI chain

H+H! 2H+e" +ng; H+ ?H! 3He+ g; 3He+ %He! “He+ 2H:; (2.14)

which produces enough energy to stop the contraction (Chabrier and Baraffe20997., Hence,
the object will only evolve because of its slowly varying chemical composition. The object has
reached the so-callegbro age main sequence. A star is born !

2.1.4 Giant planet of mini brown dwarf ?

Note that, while from the point of view of the evolution | distinguished two different mass regimes
in the substellar domain, | took care not call planets the least massive bodiesNIMygmv ), and brown
dwarfs the most massive ones which are able to fuse deuterigm Wkyz\n ). This choice is motivated
by several facts. First, if we call deuterium burning objects brown dwarfs, why not give different names to
objects burning lithium or other compounds ? Second, the deuterium burning limit itself is not completely
well de ned, as it depends on various parameters (e.g. Helium and initial Deuterium mass fraction,
metallicity) and on the criterion used to identify Deuterium burning (Spiegel et al. 2011). Finally, note
that most of the actual objects wily > M2z gy are too old to burn deuterium anymore !

In this thesis, | thus chose to assume the following de nitions
Planet’: celestial body that formed in the disk of a star.

Brown dwarf: celestial body that formed through gravitational collapse of a dense molecular cloud
and that cannot sustain proton fusion.

8More massive object are also able to burn Lithium when they r@ach2:5 10°K, aroundM; 60Mjyp

“From Greekplanetes, "wanderer". A complete de nition should include more constraints, such as a hydrostatic equilib-
rium condition, in order to differentiate planets from planetesimals or asteroids. Here, as we only concern ourselves with the
distinction between planets and brown dwarfs, we mainly focus on the characteristics that differ between these two classes of
objects.
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(a) Radius (b) Effective temperature

(c) Central temperature (d) Central degeneracy

Figure 2.3: Evolution of the radius (panel a), effective and central temperature (panel b and ¢) and central
degeneracy (panel d) with respect to time for different masses. Dashed curves are used to represent
object massive enough to sustain Hydrogen nuclear fusi@®»(Musvum ~ 75Mjyyp), and dotted curves

for objects burning deuterium @V 12:5Mjyp).

It directly follows that planet can be massive enough to burn deuterium and also, in principle,
hydrogen. The possibility of hydrogen burning planets, though, does not seem to me a serious problem
of this more physical de nition based on the formation mechanism. Brown dwarf are somehow failed
stars that formed just the same way that these latter while not accreting enough mass, and planets form
later on, in the dusty gaseous disk formed by the material falling onto the protostar.

However, this de nition also implies an underlying ambiguity. Studies of low mass stars and brown
dwarfs in young clusters suggest a continuous mass function dowrétd;,, (Caballero et al. 2007),
indicating that the same formation process responsible for star formation can produce objects down to
a few Jupiter masses. Analytical theories of star formation (Padoan and Nordlund 2004, Hennebelle
and Chabrier 2008) also show that gravoturbulent fragmentation of molecular clouds produces, with
the same processes, stars and brown dwarfs down to a few Jupiter-masses in numbers comparable to the
observationally determined distribution. And just like there are binary stars, these brown dwarfs can form
near, or be captured by, a more massive star. On the other side, according to current models of planet
formation which include migration (Alibert et al. 2005), giant planets can form by core accretion with
masses up to 30M,,p (Mordasini et al. 20082009). "Mini" brown dwarfs and "super giant" planets
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thus overlap in mass, stressing the need for identi cation criteria enabling the distinction between these
two types of astrophysical bodies, but we will come back on this issu€i5.8

2.1.5 Initial conditions

There is still a problem that is inherent to the resolution of any set of partial derivative equations, and
that we omitted until now. We did not yet specify what are our initial conditiopg{d)), or even simply
what we calltg. This problem is complex and cannot be solved without considering consistently the
transition between the phase where the object is still forming, and its isolated phase. This is particularly
critical to model young bodies, for which the energy content is still determined by the initial amount
of energy deposited by the in-falling matter during formation, and should drastically change between a
planet embedded in the protoplanetary disk and a brown dwarf.

Fortunately, for younger objects, the typical evolution timescale, which is given by the Kelvin-
Helmholtz timescale derived in82, t k4 = GM1=RyLj., is shorter because of the larger luminosity
and radius. Numerical simulations give values arougg 10° ®yr for objects up to 20-3Mypand
txn 1P 7yr for more massive bodies. This is shown on Righ, where we see thaky can be also
seen as the timescale on which the system looses the memory of its initial conditions. Indeed, all the
curves that started with a higher initial radius than a given one are nearly confounded afi¢kg2.
Hence, even if we start from an arbitrarily high entropy statéairstart, we know that the predictions
given by our calculations start to be accurate after a few Kelvin-Helmholtz timescales.

The subtle point, however, is that because the object can start from a very low entropy state (Marley
et al. 2007), to be conservative, we must usdadhgestpossiblet k4, i.e. the one yielded by the coldest
possible initial state. Then, considering the lowest curves in each panel @t &ige see that the system
can keep the memory of its initial conditions for up to’19yr, which con rms the results oMarley
et al.(2007).

To get a better accuracy at younger ages, one needs to know the speci ¢ entropy content left into
the planet through its formation process. A rst attempt into that direction has been ddmartey et al.
(2007), which follows the planet trough several stages sgiack et al. 1996or details).

1. Dust particles in the solar nebula form planetesimals that accrete into a solid core surrounded by
a very low mass gaseous envelope. When few planetesimals are left in the feeding zone of the
planet, the accretion luminosity drops, and gas accretion is enhanced.

2. When the mass of the core and of the envelope become equal, a runaway gas accretion starts, and
the planet quickly grows. At this stage, the planet llIs its whole Hill sphere and the gas can ow
smoothly from the disk. This is called the Nebular stage.

3. At some point, the growing need of the planet for gas cannot be ful lled by the surrounding
nebula. Because of the slow contraction of the object, the radius of the latter becomes smaller than
its Hill radius, and a gap opens between the disk and the planet. As a result, the accreting gas falls
hydrodynamicallyonto the object.

4. Finally, accretion stops and the planet enters the isolation stage, where its evolution is described
by our aforementioned model.

However, as stated bylarley et al.(2007), the most crucial problem is to treat correctly the hydrody-
namical accretion that occurs in stage 3. This raises two major issues, namely, (i) the morphology of the
accretion, i.e. whether gas falls homogeneously onto the surface or predominantly onto the equator, (ii)
the thermal energy left into the accreting gas. Indeed, as shov@tabhyer et al(1980), the gas should
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Figure2.4: Evolution of the radius of a H/He gaseous sphere with respect to time for different initial
radii (in each panel), and for different masses (different panels). On each curve, the gray diamond is
located at = 2t ky, wheret gy is computed at the initial time of the simulatidrnH tp). We can see that

for any given curve (with an initial radiuRy), fort & 2 3tkn, Ri(t;R(to) > Ro) Rui(t;Ro).
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undergo a shock before reaching the planet surface. Bebdéarsey et al.(2007) assume that this shock

is super-critical and that all the gravitational energy of the infalling gas is radiated away, they predict a
very cold startin which the initial luminosities and radii of the planet can be up to, respectively, 1000
and 2 times smaller than in the hot start model. As expected, after tigwthese differences vanish.

If it is often assumed that the accretion shock is super-critical, one should keep in mind that it is not
necessarily true and remains to be explored by numerical radiation hydrodynamics calculations.

2.2 The mass-radius relationship

In our yet simple modeling, the properties
of an isolated planet (radius, surface temperature,
luminosity, spectral colors, etc...) are completely
determined by its mass and its age (or equivalently
its effective temperature). To constrain the model
and knowledge of the internal structure of these
bodies, we must measure separately at least three
of these physical quantities.

Age can often be inferred from the character-
ization of the central star. This method becomes
rather uncertain for main sequence stars older than
a few hundred million years, but at least allows
us to identify the objects that are expected to be
old andcold. Thanks to direct detection methods,
the luminosity, and even spectra of young plan-
ets and brown dwarfs can be obtained. But be-
cause neither the radius nor the mass can be di-
rectly measure?j these observations cannot con-

strain the models. Ei 25 M di lationshio of b
In the past decade, this is then the successft'ﬁaure ->: Mass-radius relationship of gaseous ob-

o ects at 5 (solid), 1 (long dashed), 0.5 (dashed) and
combination of Doppler measurements and transi ) )

. . .1 Gyr (dotted). Observational data points are also
light curves that bore the most constraints on ou

knowledge of internal structure. The observabldg """

are thus the masses and radii of transiting bodies.

This is why this section is devoted to the study of the ways to useattss-radius diagram. Fig.5shows

the mass-radius relationship computed with the numerical models described above for H/He gaseous
spheres with several different ages. It is shown along with observational data from planetary transit
surveys, observation of eclipsing binaries, and interferometric observations.

2.2.1 Linking macroscopic features and microscopic properties: the polytrope

One of the striking feature of this relationship is fitsh-monotonicity. To easily understand why
it is so, and how this is related to the behavior of the equation of state, | will turn to a simple analytical
model, thepolytropic sphere. As we have seen ii.g8.1, at least in the ideal and fully degenerate gas,

8Because of the inherent dif culty to image companions close to their host star, directly imaged substellar companions are
generally too far from their host star to transit or to be detected with radial velocimetry methods.



44 Evolution & stellar irradiation: A lid on the boiling kettle

the equation of state of our medium can be written as a polytrope,
p= Ky 1+1, (2.15)

whereK andriare called the polytropitemperatureandindexrespectively, and are constant throughout
the con guration. In addition, as | will show later on, even for a realistic equation of staté? the

pro le in an actual object can be approximated by a relation of the form given by Eq. (2.15) with well
chosen (Kii). This provides us with a powerful simpli cation, as the whole mechanical structure can be
captured in a single parametar,and that mechanical properties such as the gyration radjswhich
characterizes the moment of inertia of the bdtly,and is de ned through

2
Cr Mu(rgy Ry (2.16)

- the central over mean density ratia.€r 1), and even the linear response to a perturbing potential (k

see Chapte3) can be tabulated as a functionrodldone (Chandrasekhar 193Rai et al. 1993 Leconte

et al. 2011b). For sake of completeness, a summary of the formalism and of the variables describing
polytropic spheres (Chandrasekhar 1939), as well as the well khawe-Emderequation is given in
AppendixC.

Thanks to this formalism, we can obtain an analytical mass-radius relationship

i1 3n K fA+1 ~itl ~on1
M " R = amxﬁ" jag (2.17)

Of course, as will be shown in the next sectinandri‘are also functions of the mass of the object, so

that the mass-radius relationship is not a power law in the whole mass range. But if we consiler that
andriare only slowly varying, we will see in the next section that the slope of the mass-radius relation is
directly related to the polytropic index that describes the equation of state in the mass regime considered.

2.2.2 Effective polytropic index

To derive realistic polytropic indices, | tted the pressure-density pro le of each model of
the previous grid of planetary models by a polytropic equation of state (Eg. (2.15)) at each time
step. An example of the result of such a tis shown in F&§6. Note that the disagreement between
the actuaP r pro le and the polytrope in the lower left area of FB)6is both expected and needed:
This low-density region (the rst 5% in mass below the atmospheric boundary surface) has a different
effective polytropic index than the planetary interior. In order to capture the bulk mechanical property of
the planet, we weight each shell in the internal structure pro le by its mass during the tting procedure.
This provides us with a grid tabulating the polytropic index of the planet,fi  fi(M1;t) (plotted in
Fig.2.7). All the other polytropic functions f, ...) can be derived by integrating the Lane-Emden
equation. These functions, along with other quantitlRes Tint, ...), are tabulated and can be found in
Leconte et al(2011b).

As shown in Fig2.7, we recover qualitatively the results ©habrier et al(2009): except for the
early stages of the evolution, the (dimensionless) isothermal compressibility of the hydrogen/helium

mixture is a monotonically increasing function of the polytropic indéx; %:Qrp L= 1fﬁ, and thus

of the mass of the object. In the high mass regims|owly increases as the relative importance of

ionic Coulomb effects compared with the degenerate electron pressure decreases, and approaches the
fi= 3=2 limit, the expected value for a fully degenerate electron gas, Wheapproaches the hydrogen

burning minimum mass ( 70Myyp), as can be seen in Fig. 2.7.b. Thus, in this regime, Eq. (2.17) yields
Rip M, %3 Toward lower masses, the compressibility decreases with the mass because the repulsive
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Figure 2.6: The internal pressure-density pro le of a 1;g\blanet (solid line). The dashed line rep-
resents the best- t polytropic equation of state. The pressure-density range covered in the inner part
of the body (95% in mass) is represented by the thicker part of the solid curve, which is well modeled
by a polytropic EOS. As the thin part of the r curve represents only 5% in mass of the body it is
disregarded by the tFigure from Leconte et a(2011b).

Coulomb potential between the ions, and thus the ionic electrostatic energy becomes dominant. The tran-
sition between the two regimes occurs nearMs3, where the polytropic index is close to unity. Thus

R Mil M=E 1) U cst, the mass-radius relationship reaches a maximum and is nearly at. Ultimately,
electrostatic effects dominate, leading eventuallg to i O for solid, terrestrial planets. As expected

for incompressible matter, we tend towdRdp M%ﬂ.

A new feature highlighted by the present calculations is the non-monotonic behavior occur-
ring between 1 - 3M;ypat early ages. This occurs when the central regions of the planet, of pressure
P. and temperature T, previously in the atomic/molecular regime, become pressure-ionized, above
1-3 Mbar and 5000 - 10 000K(Chabrier et al. 1992Saumon et al. 1992,995), and the electrons be-
come degenerate. An effect more consequential for the lowest mass objects, whose interiors encompass
a larger molecular region. This stems from the fact that (Chandrasekhar 1939)
GM{ . GMjyp

; and
8pR} an 8pR;

PC > 2 3 Mbal’ Ronization: (218)

up

Older (with smalleiR;) and more massive (M& 2Myp) objects havé; > 10Ponizationand the ionization
extends all the way up to the outermost layers of the gaseous envelope, which then contains too small
a mass fraction of molecular hydrogen to signi cantly affect the value of the polytropic index. This
contrasts with younger objects around 1M3,, whose external molecular hydrogen envelope contains

a signi cant fraction of the planet's mass, leading to a larger value of the polytropic index, as molecular
hydrogen is more compressible than ionized hydrogen (see e.g. Fig.21 of Saumon et al. 1995). Once
again, for these latter objects, the interior structure would be better described by using two different
polytropes, but such a signi cant complication of the calculations is not needed at the presently sought
level of accuracy.

To evaluate the uncertainty in the determination of the polytropic index, | use an alternative method
to deriveni. Since our numerical simulations provide both the rad®fVi;;t), and the central density of
the objectr (My;t), we can invert Egs. (C.9) and (C.11) to compkitandri. This new determination of
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Figure 2.7: Left: Polytropic index for non-irradiated planets as a function of the planet's vhaas

100 Myr (Dotted), 1 Gyr (Dashed) and 5 Gyr (Solid) in the low mass regime. The shaded area represents
the uncertainty on the polytropic index for the 5 Gyr case (see texjiire from Leconte et al. (2011b).

Right: Idem but for massive substellar objects. As expected, because the Coulomb effects diminish as the
object tends toward the hydrogen burning limit, the gas becomes a perfect electron gas and its polytropic
index tends toward 3=2.

the polytropic index is compared with the previous one, obtained by tting?the pro le, in Fig. 2.7
for the 5 Gyr case: the nemvalue corresponds to the upper envelope of the shaded ared. Fsgows
that the two approaches yield very similar results, the average uncertainty lying around 5 %.

Moreover, as shown in detail inLeconte et al.(2011b), thiseffectivepolytropic index does not
simply explain the behavior of the mass-radius relationship of substellar objects, but also encom-
passes much information about the internal mechanical structure of the object. Indeed, numerical
estimates of the moment of inertia and the tidal response function (i.e. the Love number) of the
body, among other quantities, are well approximated by the ones computed for a distorted poly-
trope, provided that an accurate polytropic index, as the one presented here, is used (Leconte et al.
2011Db).

2.3 The bloating problem

If the small discrepancy between the theoretical predictions and the data points at the high mass
end of Fig2.5can be explained (M& 20M;yp; Chabrier et al. 2007a), this is not so for lower masses.
Indeed, a large fraction of giant planets seem larger than predicted by the models. While this feature
was already identi ed with the rst detected transiting planet, HD 209 458 b (Henry et al. 2000), the
mechanism(s) responsible for ttikatinghas not been completely identi ed yet.

In order to express the problem in mathematical terms, let us consider the luminosity equation
(Eq. (1.59)) in its integrated form

_ﬂé Z
Tlﬁ = (Enuct €ex)dM  Lint: (2.19)

This simply means that the internal entropy evolution depends on the balance between the energy sup-
plied to the interior by an external source and the radiative losses. As we have seen in previous sections,
in the general casen,ct+ €ext 0, and the object contracts becalgeis an increasing function &

In order to keep a larger radius, the planet thus needs to conserve its entropy, and because there are two
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terms on the right hand side of Eq. (2.19), there are two principal means to achieve this. These two types
of mechanisms can be stated as follows

Heating sources. This class encompass all the processes that provide a souegg terrounter-
balance the radiative losse&Sdecreases at a slower pace, or even increase, and the planet ends up
bigger than in the standard model. Proposed scenarios include, among others, tidal heating (Bo-
denheimer et al. 2001see Chaptées), downward transport of kinetic energy by stellar irradiation
driven winds(Showman and Guillot 2002), or ohmic dissipation (Batygin and Stevenson 2010).

Inef cient cooling. The same effect can be achieved by simply impeding the transport of energy,
either in the interior or in the atmosphere. These include, extension of the radiative zone due to the
stellar irradiation (Guillot et al. 1996), enhancement of the radiative opacity decreasing radiative
losses (Burrows et al. 2007), and inef cient large-scale convection due to a composition gradient
(Chabrier and Baraffe 20Q#vhich is also studied in Chaptéy.

Naturally, the rst chronological idea, which was proposegriori by Guillot et al. (1996), was
linked to the fact that transiting planets are at close orbital distance from their star, and receive a far
stronger ux than any of solar system giant planets. Even if other processes are at play to in ate Hot
Jupiters, the impact of stellar irradiation cannot be neglected, and | will thus dedicate the following
section to its study.

2.4 Effect of stellar irradiation

At rst sight, the fact that | classi ed stellar irradiation among the "inef cient cooling” scenarios
can seem a little counter intuitive. Indeed, one might think that such an energy input (sometimes more
than a hundred times the internal luminosity of the planet) could heat the whole body. However, as we
will see, this heating does not penetrate very deeply into the interior, and incoming energy is rapidly
reradiated toward outer space. This is not the energy input which is important, but rather the way the
atmosphere is heatdabm above, and the consequences that it implies for the boundary conditions.

2.4.1 The radiative zone

As was discussed ip§5.2, the energy density linked to the incoming visible radiation decreases
into the atmosphere as e3vsP=9 and is nearly completely absorbed at the 0.1-1 bar level, as shown
on Fig.2.8. This level can even be displaced higher in the atmosphere if strong visible absorber are
present at low pressures, like TiO and VO, possibly leading to temperature inversions (Hubeny et al.
2003; Fortney et al. 2008). As a consequence, the stellar ux does not reach the inner convective zone
of the planet, is rapidly reradiated, and does not participate to the energy budget of the planet.

As can be seen on Fig.8, when the atmosphere is heated from above, the nearly isothermal region
which is present above the 10 mbar level in the non irradiated case (solid curve) is pushed downward (up
to a few hundred bars). This is because the atmosphere is hotter in average, and thus needs a smaller
temperature lapse rate to transport the energy by radiation. As a result, the thermal giégient,

Siﬂl, is smaller. Even if the location of the radiative-convective boundary cannot be determined in this
simple model, we see that the depth at which the uid will eventually become convectively unstable

according to the Schwarzschild criterion will be pushed deeper. This simple analysis is con rmed by

9Indeed, as discussed in §2.1.1, this is the \Wayaries with temperature and pressure that determines if a radiative-
convective transition occurs. At constdntlike this is assumed in Guillot (201aY1 ! 1=4< Nyaq.
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fully consistent non gray radiative transfer numerical calculationsEseean et al. 2001or a detailed
discussion).

The question is now to see how this can affect the
observed radius of a giant planet. One of the rst idea
that comes to mind is just that as a planet is moved in-
ward, its external layers will extend in size as they are
heated as discussed above. In order to quantify this ef-
fect, let us consider that the height of the atmospheric
layer is roughly given by the pressure scale height

dr

He  Gmp’

(2.20)

which is the typical length scale on which pressure is
subject to a signi cant change. From Egs. (1.57) and
(1.58), and using the perfect gas law which is valid at
low pressures, we can show that
P keT .

Hp: — .
gr  mmug

(2.21) Figure 2.8: Atmospheri@ P pro le com-
puted with Eq.(1.96) for a Jupiter analog

If we further assume that the atmosphere is neagljth T, = 200K and T, varying between

isothermal with the 1-10bar temperature shown @K (black solid) and 2000 K (yellow dashed)

Flg 2.8 (le 300K for Tirr = OK and 2300K for by Steps of 200 K. For this examp|KVis =
Tir = 2000K), we get an evolution of the atmospherity 3m2.kg 1 and ky, = 10 2m2.kg ! (see

scale height from 50kmto 380km. The atmosphereg 1 5.2).

height still represents less than0:5% of the radius of

the planet. This is thus clearly insuf cient to explain the

observed bloating. In other words, if we keep the entropy in the inner convective zone constant while
moving the planet inward, the temperature of the atmosphere will increase, but the actual radius of the
planet will change only by a small amount. The mapping betweandSdiscussed in 8.1.2is only

mildly changed by the irradiation (Burrows et al. 2Q@@habrier et al. 2004).

To understand how irradiation can signi cantly affect the radius of a close in planet, one must
account for the thermal evolution of the planet. Once again, let us take a planet at long orbital distance
from the star, and use our mind to move it quickly close to the star, quickly meaning in a time which is
negligible in front of the Kelvin-Helmholtz timescale so that the internal structure of the object does not
have the time to signi cantly thermally evol{& Thus the internal isentrope is left unchanged, and so
istheT P prole in the convective zone. This is roughly equivalent to keeping the couplg; Fatm)
constant in a region where the incoming stellar irradiation cannot penetrate. Then, let us consider the
evolution of the ability of the atmosphere to transport the internal energy and cool down the planet with
the degree of irradiation. Isolatirig; in Eq. (1.97), we get

ATA ., 2k 2k
T= —© fTe 3+ #k = 37 EthPatm : (2.22)
VIS

So, asTj, increases]in; decreases. This simply translates the fact that, as temperature lapse rates are de-
creased, the radiative transport energy is signi cantly hampered, and because convection is very ef cient
in the interior, the overall ux is completely determined by the atmospheric energy escape rate. This
simple explanation is once again supported by the radiative transfer calculati®asdin et al(2001).

10Thermodynamically speaking, this can be seen as a quasi static and adiabatic transformation of the planet
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Thus, if the mapping betwed®, andS does not change, the relations that link these parameters to
the effective temperature dependsTp The irradiation plays a role only on the evolution. Whigp
is increased, the outgoing ux escaping the planet is decreased, and so is the variation of the internal
entropy, which is kept at a higher value for a longer period of time. To summarize, the stellar irradiation
impedes the release of the internal gravo-thermal energy of the object, slows down its cooling, and retards
the evolution (Baraffe et al. 2003).

2.4.2 Polytropic index of irradiated objects

Figure 2.9: Polytropic index for irradiated planets as a function of the planet's Mgass 100 Myr
(Dotted), 1 Gyr (Dashed) and 5 Gyr (Solid). The shaded area represents the uncertainty on the polytropic
index for the 5 Gyr case (see text). As the irradiated atmosphere impedes the radiative cooling of the
objects, it retards its contraction. Therefore, the non-monotonous behavior observed at the early ages in
the non-irradiated case (Fig. 2.7) is enhanced, even at a later epoch. The bump at the high mass end of
the 100 Myr curve is caused by deuterium burning (see t€igure from Leconte et a(2011b).

Analogously to 82.2.2, | also computed a grid of evolution models of gaseous giant planets with
solar composition forMp 2 [0:35Myyp 20Myyd and an incoming stellar ux Fpe = 4:18 10°PW:m 2.
As seen on Fig2.9, a strong irradiation enhances the features described in&2.2: the evolution
is delayed because the irradiated atmosphere impedes the release of the internal gravo-thermal
energy. This yields a slower contraction, thus a lower central pressure (and lower central temper-
ature) for a longer period so that the object enters the ionization regime at a later epochlThe bump
at the high mass end of the 100 Myr isochrone is due to deuterium burning which also occurs later for a
given mass, because of the cooler central temperature (see above). At 100 MyrMhg Bas already
burned a signi cant amount of its deuterium content and starts contracting again, whereas lower mass
planets are still burning some deuterium supply, leading to a less compact and thus less ionized structure.
This leads to the non-monotonic behavior on the high-mass part of théd diagram at 100 Myr, which
re ects a similar behavior in the mass-radius relationship.
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2.4.3 Radius anomaly

It is now well established that a large number of transiting giant exoplanets are more in ated than
predicted by the standard cooling theory of irradiated gaseous giant planets (see Udry and Santos 2007
Baraffe et al. 201@or reviews). As we have seen above that stellar irradiation can help prevent the
cooling of such planets, it is time to estimate the remaining discrepancy. Because the radius of a gaseous
giant planet is not set only by its mass, but strongly depends also on the object's composition, age
and irradiation history, the mass-radius diagram (see2Fg.only gives a limited view of the constraints
offered by the observation of transiting systefmsorder to quantify the radius anomalyof many "Hot
Jupiters" and study the possibility of such an anomaly for the more massive objects, | computed the
radius predicted by our standard irradiated model (Ry) for transiting planets with My > 0:3Mjyp
(about a Saturn mass). | de ne theradius excesss the difference between the observed radius
and that predicted by the model at the estimated age of the system, denominat&yj,;. Results are
summarized in Fig2.10.

In the low mass range, the existence of objects abov&ihe Ry, tells us that the effect of stellar
irradiation alone is still unable to explain the mean properties of transiting planets. As se@rBin §
this is evidence that some physical mechanism is yet missing in our modeling. A more thorough study
of two of these mechanisms, namely the double diffusive convection and the tidal heating, are carried
out in Chapted and5 respectively. Interestingly,aughlin et al.(2011) showed that the radius anomaly
of planets in the 0.1-1B1;,, mass range are correlated to the irradiation temperature, with a best t
dependenceéy; Ry M 'I'irlr:4 06 This seems to favor mechanisms involving an interaction between the
star and the planet. However, if the correlation seems robust, the constraints on the exponent are not
strong enough yet to disentangle between the various types of possible star-planet interactions, as they

all depend on the orbital distance (and thusTg.

Figure 2.10: Relative radius excess between the observationally and the theoretically determined values
for 57 transiting systems. Objects signi cantly above the dashed line are considered to be anomalously
bloated compared with the prediction of the regular evolution of an irradiated gaseous planet. All the
objects below this line can be explained by a heavy material enrichment in the planet's interior (Baraffe
et al. 2008 Leconte et al. 2002010a,2011a).Figure fromLeconte et al(2011a).
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2.4.4 Heavy element content

On the other hand, the existence of objects belowRkeR;; shows that there is at least another
free parameter that we did not yet considered. This could already be seendrRkigvhere ouRy (Tint)
tracks where not quite representative of Solar System giant planets, Jupiter and Nephde=d both
planets are denser (and by a large factor for Neptune) than the models of the same mass and effective
temperature. If this free parameter is not obvious in our set of structure equations, we already encountered
itin §1.4.1. To model a planet, one needs to specify the material it will be made of, and use the relevant
equation of state. For the moment, we only considered gaseous spheres with a solar composition, but
the discrepancy stated above shows us that dense materials (called heavy elements) are present in a
signi cant amount inside giant planets, both inside and outside our Solar System (Hubbard and Marley
1989; Chabrier et al. 1992Baraffe et al. 2006 Fortney et al. 2007Burrows et al. 2007 Baraffe et al.
2008; Leconte et al. 2002010a).

Unfortunately, the chemical composition of a planet cannot be encompassed in a single parameter.
Even a simple parametrization in terms of mass fractions of HydroggrH&lium (Y) and heavy ele-
ments (J already gives us two additional free parameterand splitting our heavy materialsvolatiles
(or "ices") andsilicates(or "rocks" ; see §.4.1), adds another one. In addition, the precise location of
heavy materials, and whether they are mixed in the gas component or differentiated in a dense core, is
still unknown (see Chaptd). This creates a degeneracy that cannot be removed by the knowledge of
mass and radius alone, which is one of the main limitation to the determination of the heavy element
content of exoplanets (Baraffe et al. 200B)the following, in order to make a simple estimate of the
global enrichment inside extrasolar giant planets, | will simply assume that our planet is separated
in two well de ned regions, (i) a dense core composed exclusively of heavy materials (either ices
or silicates) of massM, (ii) a gaseous envelope composed of a primordial mixture of hydrogen,
helium and metals presenting solar abundances ¢4, 0:02). In this case, | also refer to the total
heavy element mass,

Mz = Mc+ Zenv(Mp  M); (2.23)
or the total mass fraction,
Z Mz=My: (2.24)

For this class of objectgyne can infer an upper limit for the content of heavy material by
determining the maximum mass of heavy elements consistent with the lower observational efras bar
doneinLeconte et al.(2009). In the case of CoRoT-4b, | showed that models with less than WD of
water remain within the observational error box, as illustrated by the dash-dotted curve in Rd.1.

This corresponds to a total mass fraction of heavy elen®nt45%. For such low enrichment, adopting

rock as the main heavy element or a mixture of water and rock will barely change this value. For this
type of transit planet population, the bulk composition can thus be constrained with reasonable accuracy.
Note that the non-irradiated model represented by the solid curve is completely unable to reproduce the
measured radius of the planet at the current epoch, showing that the effect of the stellar irradiation must
be taken into account when trying to predict the internal properties of the object.

One may argue that since a physical process is missing in the modeling of some close-in planets
this upper limit for heavy material enrichment could be underestimétedch a process occurs in all
transiting planets. An additional heat source, for instance, will yield a larger planet's in ation at a given
age, allowing for a larger maximum amount of heavy material consistent with the observational error

while it is not shown in Fig. 2.2, the same conclusions hold for Saturn and Uranus.
12By de nition X+ Y+ Z= 1.
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Figure 2.11: CoRoT-4b: evolution of the radius as a function of agelid line: standard cooling
sequence of an isolated 0.VB,, gaseous sphere with solar compositidiong-dashed line: irradiated
case.Dash-dotted line: Irradiated case with aNIO water core.Red box observational 1serror bar.
Revised gure fronLeconte et al(2009).

box. The exact nature of such additional heating mechanisms being still a subject of debate the wisest
(and simplest) assumption is not to invoke missing physics when it is not required. One should bear
in mind, however, that, given the remaining limitations in our present understanding of planet structure
and evolution, these heavy element enrichment determinations retain some degree of uncertainty. This
maximum masshould rather be seen as the maximum enrichment consistent with the obserggdrls

bar, according to the present theoretical models.

Using that estimation we can show that, because most of the objects signi cantly beldry, the
line are in the B. M;. 1Myypregion, they can be explained withMy=Mp & 0:10 heavy material
enrichment (Baraffe et al. 20Q0& econte et al. 2009). Pushing furth@uillot et al. (2006) andGuillot
(2008) also showed that in this mass range, a correlation exists between the enrichment of the planet
and the metallicity of the star. All these conclusions seems to be in good agreement with predictions
of the core-accretion scenario for planet formation (Baraffe et al. 200 dasini et al. 2009 Alibert
et al. 2011). However, some extreme cases exist, such as CoRoT-13 b (Cabrera et al. 200M),7 1.3
planet with a 0.®Ry,p radius. Indeed, with a density of 2340kg.|°’n this planet is one of the densest
in this range of mass, favoring the presence of around 100v306f heavy material in its interior (i.e.
Z 0:75), depending on the equation of state chosen. The formation mechanism of such a strongly
enriched Jupiter like planet (Z 0:25 75) yet remains an open question.

2.5 Distinguishing super giant planets from mini brown dwarfs in their
overlapping mass domain

The discovery of "super" Jupiters, with mas&ed0M;,, in close orbit to a central star, raises
questions about their nature: planet or brown dwarf? CoRoT-3b (se8.Ed).is a perfect example
of such an ambiguity. As discussed i2.8.4, brown dwarfs and planets overlap in mass, stressing the
need for identi cation criteria enabling the distinction between these two types of astrophysical bodies.
The presence of strongly nhon-solar atmospheric abundances, as observed in the atmosphere of the giant
planets of our Solar System, may provide signatures of a planetary formation process in a protoplanetary
disk. Such a signature, however, is dif cult both to observe and to characterize at the present time
(Chabrier et al. 2007b) and may not apply to irradiated planets, with radiatively stable outer layers.
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A more robust signature of the planet formation process, as expected from the core accretion model,
is the presence of a signi cant amount of heavy material in the inte@rserved radii signi cantly
smallerthan predicted for solar or nearly-solar metallicity objects reveal the presence of such a sig-
ni cant average amount of heavy materigl a major argument in favor of the core-accretion planet
formation process. On the opposite, if a physical mechanism is missing in current planet cooling models,
as discussed in the previous sections, observed leader than predicted do not necessarily imply an
absence or a small amount of heavy material. For such cases, the nature of the object remains ambiguous,
if only based on the knowledge if its mean density.

Figure 2.12: CoRoT-3bSolid line: standard cooling sequence of an isolated NI;g6brown dwarf
with solar composition.Long dashed line: irradiated cas®ash-dotted line: Irradiated case with a
272M core of waterRed box observational 1serror bar.Revised gure from Leconte et §2009).

| rst focused on the most massive transiting object in the CoRoT sample, CoRoT-3b. To
examined whether its radius determination enables us to identify its very nature, | computed evo-
lutionary tracks corresponding to several different scenarios and compared it to the dataAs shown
in Fig.2.12, the observed radius of CoRoT-3 b can be matched by the modétafdiated brown dwarf
of 21.6M;,p with solar composition (long-dashed line). This is by itself an encouraging con rmation of
the theoretical prediction of the age-mass-radius relationship in the brown dwarf regime (Chabrier and
Baraffe 1997 ; Baraffe et al. 1998). Note that, given the small orbital distance, the effects of irradiation
are not negligible, even for such massive objects. Accounting for irradiation on the atmospheric pro le,
and thus on the object's cooling history, is thus mandatory to provide consistent comparison between
models and observations, when the radius is determined at this level of accurd@®g)( The present
radius error bars, however, are still too large to infer or exclude the presence of a signi cant amount of
heavy material in the interior of this object.

As done in 8.4.4, | determined the maximum amount of heavy material allowed by the error bar
on the radius determination. | found an upper mass limit for the core of abol8@De. Z. 12%).
However, we have to see if thimaximumenrichment compatible with the actual error bars is possible
with our current understanding of planet formation. According to current models of planet formation
which include migration (Alibert et al. 2005), up toec 30% of heavy elements contained in the
protoplanetary disk can be incorporated into forming giant planets (Mordasini et al. 2008). The
maximum mass of available heavy material that can be accreted to form planets is thus

Mz  hacc Z (f Mo); (2.25)

wheref M, is the maximum mass for a stable disk 0:1M,) andZ is the metal mass fraction of the
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staf3. For CoRoT-3 b, which is orbiting a 1.3% F star with near solar metallicity, at mddiy  270M

of heavy material can thus be accreted to form the planet. This (admittedly crude) upper limit derived
from current planet core accretion formation models yields a planet contraction consistent with today's
observations, as seen in Fg12'4,

Therefore, given the present uncertainties in the radius determination, neither the brown
dwarf nor the planet possibility can be assessed or excluded for CoRoT-3 b, whose nature remains
ambiguous. A comparison between the predicted radius of a (irradiated) solar-metallicity brown dwarf
(dashed line) and of a planet with the aforedetermined massive core, which represents détyraetal
enrichment (dash-dotted line) in Fig.12, shows that a radius accuracyd% is required to resolve the
ambiguity, according to the present models. In any event, this demonstrates the promising powerful
diagnostic provided by mass-radius determinations to distinguish massive planets from low-mass brown
dwarfs, providing adequate observational accuracy.

Figure 2.13: Hat-P-20bSolid line: Cooling sequence of an irradiated ™2, brown dwarf. Dashed
line: Irradiated case with a 340 icy core.Blue Cross: observational 1srror bar.Figure from Leconte
et al. (2011a).

Among the few known massive planetary-mass objects, there is at least one example for which
such a radius measurement provides the identi cation of its nature. This is the case of Hat-P-20b, a
7.25 My p mass object, closely orbiting a K type star (Bakos et al. 281®s illustrated in Fig. 2.13,
the evolutionary track that | computed for the irradiated brown dwarf model (long-dashed line)
overestimates the radius by 10-15%. Consistently with Eq. (2.25), models including a 349
core mass of ice¥® can nearly explain the measured radius (dashed line)The discrepancy would
be even smaller if we considered the presence of rocks. Although this amount of heavy material is
about the limit of what is available for planet formation, according to current core-accretion models (as
estimated from Eq. (2.25) for the HAT-P-20 system ; see &sodasini et al. 2009), the presence of
such a metal enrichment (Z 15%) provides the simplest plausible explanation for the observed radius
of HAT-P-20 b, according to the present theory. As mentioned earlier, this 340 for HAT-P-20 b
should be seen as a rough estimate of the upper limit for the available heavy material in the system, but

13For a more accurate determination, one should take care of the fact that omiyritiensediolatiles and silicates (the
so-calleddusts) can participate to the formation of planetesimals.

14Note that, as discussed in Baraffe et(2008) for HAT-P-2b, this heavy material does not need to be accreted into one
single object, as very massive planets, in particular short-period ones, may result from smaller planet collisions.

15n Leconte et al(2009), we discussed the case of Hat-P-2 b, and not Hat-P-20 blyg,8nass object, closely orbiting an
F type star (Winn et al. 2007b), but a more recent analyses of the data showed that the radius had been underestimated in the
discovery paper (Pal et al. 2010). What will Hat-P-200 b be like ? Future should tell.

18Note that this amount of heavy material does not necessarily need to be in a core but could be distributed all over the planet.
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this analysis shows that the currently obserieal radius of this object cannot be explained without a
substantial enrichment.

It would certainly be interesting to see whether planet models from other groups yield or not similar
determinations. Given the fact that these various planet models share many common physics inputs (in
particular the H/He and heavy element EOS), it would be surprising that they reach severely different
conclusions. While keeping in mind the remaining uncertainties in planet cooling thieergresent
analysis provides - with the parameters observed so far - a con rmation of the validity of the
core-accretion model, and makes Hat-P-20 b the rst con rmed7-8 M;ypgenuine planeformed by
core-accretion in a proto-planetary disk (Leconte et al. 20092011a).

2.6 Conclusion

In this chapter, | have shown that, even taking into account the impact of the stellar irradiation on
the atmosphere of extrasolar giant planets is not suf cient to explain their obdargedadius. Then,
by modeling numerically all the transiting exoplanets that were known to date, | quanti ed the
remaining radius anomaly(Leconte et al. 2011a).

Doing so, | also showed thdahe mechanical structure of bothisolatedand irradiated giant
planets can be well characterized by an effective polytropic index, for which | gave numerical
estimates (Leconte et al. 2011b)This also con rmed that the principal effect of stellar irradiation is
not the direct bloating of the outer layers, but the slowing down of the usual gravo-thermal evolution.

Then, | showed how the mass-radius diagram can be used to constrain the enrichment of observed
transiting planets. In particuldr,nd that the mean densitydetermination, while inconclusive in the
case of CoRoT-3 b, is discriminant in the case of Hat-P-20 b, which is thus the rst con rmation of
the possibility to form massive planets by core accretion (possibly with subsequent collisions) up to
M1 & 8Myyp (Leconte et al. 2009).This analysis shows that, according to the present models, a typical
5 % accuracy on the radius determination must be achieved in future space-based or ground based
transit detections to clearly distinguish planets from brown dwarfs in their overlapping mass domain.
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Evolution & stellar irradiation: A lid on the boiling kettle
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Chapter 3

Probing the deep interior: Theory of
planetary gures
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Because théheory of guresis the basis of the modeling of Solar System giant planetg and
of the theory of equilibrium tides that will be explored in the following chapters, the rst settion
of this chapter is dedicated to the de nition of the main variables and to the introduction pf the
main concepts needed (8 3.1). For completeness, the full development of the general linear theory
of Sterne (1939) and of the axisymmetric third order theorgtwrkov and Trubitsyi1980) (that
will be used in Chaptet) are carried out in Append@ andE? respectively.

Then, in §3.2, | show how the response sthapeand inpotentialof giant exoplanets and
brown dwarfs to the&eombinedeffect of rotational and tidal distortion can be computed from| the
knowledge of thegotential Love numbeiky) alone. To make the use of these formulae possible, |
give numerical estimates for theve numbepf these objects, and discuss what these values tell
us about the mechanical structure of gaseous substellar objects.

| also investigate the impact of heavy element enrichment on the tidal response qf giant
planets, and demonstrate on a test case how one could take advantage of these models|to infer a
core mass fronk, measurements &3).

In 3.4, | show one of the limitation of the numerical theory, and how it can be overgome,
at least in the linear regime, by an analytical theory when stronger assumptions are made.| Finally,
in 83.5, using this model, | discuss the implications of the tidal distortion of close in planets
on the parameters that are measured from their light curve. In particular, | demonstrate that the
equilibrium radius of strongly distorted objects can be larger than the measured radius, inferred
from the area of the (smaller) cross section presented to the observer by the planet during the
transit ; systematic bias in the radius determination which still enhances the aforementione radius
anomaly.

The results presented in3&to 3.5led to the publication obistorted, non-spherical tran
siting planets: impact on the transit depth and on the radius determinétieconte et al. 2011b).

aSome typos found in Zharkov et al. (1973) and Zharkov and Trubitsyn (1980) are also corrected.
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- WE USUALLY IMAGINE STARS AS BIG LUMINOUS PERFECT GLOBES
I e moving through empty space, those are spheres only in rst approxi-
mation. If the sphere is indeed the lowest energy state of an isolated,

gravitationally bound, collection of particles at reshere is no such thing as a completely isolated or
motionless celestial body ! Through conservation of angular momentum during the gravitational collapse
of a dense interstellar cloud and its following contraction, a very small initial velocity inhomogeneity
can be suf cient to imprint a quite rapid rotation to the newborn star. Part of this momentum, being kept
by the protoplanetary disk, can then be transferred to the young forming planets, in form of both orbital
and internal angular velocity. Thus, all planets and stars are rotating, even if somgionvgs and no
longer spherical. Moreover, when another massive body is cruising nearby, the effect of its gravitational
pull also changes the macroscopic equilibrium state of our assembly of particles.

This large scale perturbation of the equilibrium of a non rigid body has many dynamical conse-
guences. The most important one, which more or less encompasses all the others, being that a non
spherical distribution of matter breaks the shell theorem demonstrated lbya8a Newton(1687) in
his Philosophiae naturalis principia mathematicae., the gravitational force that it exerts on external
massive particle does not follow the usual inverse square law, and can have a non axial component. As a
result, the trajectory of a particle moving under the sole attraction of such a mass distribution will depart
from the ellipse that was rst anticipated Bphannes Keplgl609) in hisAstronomica nova. Speaking
in terms of osculating elemenrtghe shape and orientation of the orbit that best describes the motion of
the particle over time could change both periodically and secularly. If one seeks to predict the orbital
evolution of a given set of self-gravitating objects in mutual interaction, the problem of the determination
of the gravitational eld created by each body, and thus of their shape, arises.

The question of the gure of a self-gravitating body, rst formulated for the Earth during the Antig-
uity, is a long standing problem. Sin&armenide} for aesthetic and geometrical reasons, Biatd',
who based his reasoning on the observation of the Earth shade during lunar eclipses, the Earth was
thought to be spherical. This was only, as often through new observations made during the seventeenth
century, that the sphericity of the Earth started to be questioned scienti cally. On one side, by anal-
ogy with Jupiter, whose oblateness has been measur&idwanni Domenico Cassiiim 1666 and has
rapidly been thought to be related to the rapid rotation of the planet (see notes at the end of this chapter,

Lin a macroscopic sense

2From the Latin vertpsculare, to kiss, the osculating elements at an ingtare the six orbital elements - semi-major axis
(a), eccentricity (e), inclination §| argument of pericenter (v longitude of the ascending node (W) and time of pericenter
passage (t - that completely de ne the shape and orientation of the orbit that our two bodies would follow if the perturbing
force were to disappear at that instant (Murray and Dermott 1999). In the unperturbed two body problem, those elements are
constant over time. In practice, the osculating elements can be computed by knowing the position and velocity of one of the
bodies in any reference frame at any given time, and their temporal evolution can calculated by integrating a set of differential
equations, commonly known as Lagrange planetary equations. An example of such equations is presented § Chapter

3515-450 BC.

4428-348 BC.
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Philosophical Transactions 1665), it was natural to think that the Earth could also have an ellipsoidal
shape. On the other side, during a travel to Cayenne in 1672, Jean Richer discovered that the length of
the seconds pendulum, that is a pendulum with a swing of one second, was 2.8 millimeters shorter in
Guyana than in Paris, showing that the gravity was smaller near the equator. This rapidly led Newton and
Christian Huyghens to formulate a rst theory of the gravity of the Earth (Huyghens 1690). However, the
modern theory of the gure of celestial bodies in hydrostatic equilibrium, which is detailed hereatter, is
rst due to Colin MaclaurinandAlexis Clairaut(1743), and was subsequently pursuedPiBfre Simon

Laplace Jean-Charles Rodolphe Rad&gorge Darwin(1899) andAleksandr Mikhailovich Lyapunov

(1903), among others. This is only thanks to these developments that the equilibrium theory of tides
could emerge (see Chaptr

Conversely, itis possible to measure the gravitational eld created by a celestial body and its depar-
ture from sphericity. This can be done either directly with orbiting spacecrafts, when the object is nearby,
or by monitoring its dynamical interactions with other bodies when the rst option is not available. Then,
these constraints on the gures of the body considered can be used to constrain some of its internal prop-
erties, as has been successfully achieved for, e.g. giant planets in our solar syst@ma(kee and
Trubitsyn 1980and reference thereifjubbard and Marley 1989Chabrier et al. 1992, large satellites
(de Sitter 1914), binary stars (Sterne 193%ula 1964), etc...

3.1 Theory of gures

3.1.1 Problem statement

The basic problem of théheory of guresis as follows. We are given some amount of self-
gravitating matter under the in uence of an external perturbation, and for which we have an Equation
of State (EOS), and we wish to know what is the distribution of the matter in space when hydrostatic
equilibrium is achieved. As we have seen in Chapiex body is in hydrostatic equilibrium when the
pressure gradient (NP) balances the other forces, yielding

NP=rN(Vo+ Vex); (3.1)

whereVg is the gravitational self potential, andy a perturbing potential. The hydrostatic balance
directly implies that isobaric surfaces and equipotentials are identical. Because the equation of state
(P(r)) is known, isodensity surfaces also have the same shape, so the problem reduces to that of nding
the shape of the equipotentials, that will also be cdlbeel surfacesn the following.

In general, no exact analytical solution can be found to the problem stated above. Because we
are consideringsmall perturbations, in a sense that remains to be de ned, the departure of the nal
equilibrium con guration from sphericity is also weak, and all expansions can be used. The order at
which the perturbative development has to be carried out then directly depends on amplitude of the
perturbation considered, and on the degree of accuracy sought on the observables. On one side, the
precision of the transit observations of exoplanets is not yet high enough to justify the use of high order
theories in this context. On the other hand, a high order scheme is necessary to fully take advantage of
the accuracy of gravitational moments measurements in our solar system to constrain the composition of
our giant planets interiors, as done in Chagterdowever, such a theory is too cumbersome to be easily
usable in a general context.
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3.1.2 Summary

Because of the functional form of the gravitational potential of a point mass, which goes as the
inverse of the distance, expansions of the total potential naturally involve Legendre polynomials. Then
it seems natural to postulate that the nal shape of the equipotentials can be expressed in terms of those
Legendre polynomials (which are generalized by spherical harmonics in the non axisymmetric case), as
rst did Maclaurin andClairaut(1743). This approach, which has been repeatedly criticized because
of a divergence of the Legendre expansion in a small region between the sphere and the level surfaces,
has however been demonstrated to be correciy@punov(1903). Thus, matter organizes itself in
concentric shells, whose shape is a combination of spherical harmonics, and the values of the density,
pressure, potential and gure functions (the coef cients affecting the various spherical harmonics) on
these shells, depend on a unidereel variable labeling the surface (se8.8.5for examples of different
level variables).

With that in mind, in order to derive usable equations, we follow ve different steps that will be
considered in that order hereafter.

We formally compute the gravitational potential created at a poiytan arbitrary mass distribu-

tion (r (r9), which is not yet necessarily in equilibrium§gL.3). The potential is then expressed in
terms of spherical harmonicy'(q;f )), whose coef cients are expressed through integrals of the
density eld weighted by the aforementioned spherical harmonics (hereafter, the mass integrals,
D).

Various possible perturbing potential&y) are then considered and projected onto spherical har-
monics. We also de ne a dimensionless coef cient{)) which measures the amplitude of the
perturbation compared to the restoring force, i.e. the self gravity (8ee4).

Then, in §83.1.5, we expand the shape of each level surface on the same spherical harmonic basis.
To do so, we have to chose tlevelvariable () and consequently the set of gure functions that

we will use (['(1)). At that point, depending on the set of functions and the variable chosen, some
preliminary relations can be derived (see eithér.3or E.2).

Knowing, at least formally, the mass distribution - meaning that the density eld is constrained
to verify r (r9 = r (1), where the latter function is still arbitrary for the moment - we can derive
formal expressions for the mass integrals which now involve only this one dimensional density
pro le and the gure functions ($.3 or E.3).

The coef cients of the expansion of thetal potential on each level surfa@a theY,"(q;f ) can

then be expressed in terms of algebraic combinations of the mass integrals and gure functions.
Because level surfaces are equipotentials by construction, all but one of these terms must be iden-
tically equal to zero, which provides us with a suf cient number of integro-differential equations

to be solved to obtain the gure functions. Finally the radial term provides us with an expression
for the perturbed gravity eld to use in solving hydrostatic equilibriuniX8 or E.4).

Of course, we did not detail yet what prescription should be taken fgr Indeed, if this seems
an input in the above procedure, it directly results from the integration of the hydrostatic equilibrium
eqguation which is one of the output of the calculation. It is then understood that an iterative process will
be needed, where a rst prescription is given for the strati cation, allowing a computation of the gure
functions and an update of the density pro le, this procedure being repeated until some convergence
criterion is met. However, thanks to the fact that the perturbation is often... well... only a perturbation,
the density pro le that would be obtained in the unperturbed spherical case gives a good rst guess, and
can even be left unchanged, depending on the accuracy sought.
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3.1.3 Self gravitational potential

As mentioned above, the main reason why celestial bodies are nearly spherical is that the sphere
is the minimum energy shape of self gravitating isolated particles, and that we are considering massive
enough objects for self gravity to dominate. Thus, self gravity is the restoring force in our problem,
and we must concern ourselves with the computation of this gravitational potential for an arbitrary mass
distribution in space (r9. It can be shown that the gravitational potential created at the pdintthis
mass distribution reads

Gs ¢ S
Vo= +a a r"og+rmioy (e ); (3:2)
n=0m= n
z
DR() = (1+ dno) mzr%r GIGRACHEEE 33)
BR() = (1+ o) (poh 1 (99 " YA O 34)

de ning the internal (OJ') and external [6””‘) mass integrafs®. For compactness, we have introduced
spherical harmonics de ned by

cogmijf

sinjmjf 0 (cosa); (3.5)

Ya'(a:f)
where theP" are the usual associated Legendre polynomials. The cos (sin) corresponds to positive
(negative) values of m. As advertised, this shows that the gravitational potential can be projected onto
spherical harmonics weighted by the mass integrals.

These mass integrals are not purely mathematical entities. Indeed, considering a point exterior to
the objectDy' = 0, andDy' is constant. Then the gravitational eld reads

Gy GM; o "
Vo= SArDpYR@f) SN R oy, (356)
n,ym n;m

where we see that thgravitational momentare the dimensionless counterparts to the mass integrals
C'= DR'=(M1Ry): (3.7)

While these expressions are not yet usable, we will see in § D.3 and E.3, that further constraining the

density eld yields major simpli cations of these relations.

3.1.4 Perturbing potentials

If only the gravitational potential is considered, we know that the body takes a spherical shape in
hydrostatic equilibrium. It is now time to consider in more detail the various perturbations that can break
this symmetry, and to de ne the dimensionless quantities measuring the amplitude of these perturbations.

Centrifugal potential

If a mean rotation of the uid composing the planet occurs, the centrifugal acceleration, which
is alway perpendicular to the mean rotation axis, causes a attening of the body. However, axial and

5When no confusion can occut;j is assumed to be the Kronecker symbol which is equal to % if and 0 otherwise.
6In the following, &&= will be abbreviated b ..



Theory of gures 63

North/South symmetries remain. For simplicity, we place ourselves in the frame rotating with the planet
(assumed in solid body rotation) at the angular spegdn this frame, the centrifugal potential reads

1 :
Viot(r) = §W12r23'n2q

%lerz(l Px(cosq)) (3.8)

To evaluate the deformation, we de ne the dimensionless parammeigas the ratio of the centrifugal
acceleration over the gravitational one at the surface

Myot = (3.9)

whereR; is the mean radius of the external surface of the planet (8el2Sfor detailsy. This parameter
estimate the relative importance of the rotational deformation over the restoring gravitational force.

For Jupiter and saturn, the values ifiag; are on the order of 0.1, justifying our use of a perturbative
theory, where equations can be expanded with regard to the (small) parameter generallymey; as
de ned in Eq. (3.15)). However, because errors yielded by a theory of dtdeitlibe on the order of
i* 1, one can see that high order developments will be needed to develop accurate enough models of
our giant planets. On the contrary, for close in giant exoplanets, as will be discussed in detab,n 8
the slow rotation induced by the tidal pseudo-synchronization yields typical valumg@gnging from
a few percent to 1°. Coupled to the yet limited accuracy of transit observations, this justi es the use

of low order developments (se8& for details).

Tidal potential

When an external object is present (called the secondary in the following), the non uniform grav-
itational potential that it creates also disturbs the equilibrium structure of our deformable body. As we
will see, this "Tidal potential" also conserve axial symmetry, but the axis of symmetry then lies along the
vector joining the center of mass of the two objects.

To calculate the potential created by this external object, we should in principle solve the equations
forits internal structure, as detailed hereafter, and then compute its resulting external eld using Eq. (3.2).
As this external object is itself disturbed by the primary body, we would then have to solve iteratively
for the structure of each of these objects until some convergence is reached. To simplify the problem,
we will assume that the secondary keeps its spherical symmetry. This is justi ed as long as we keep our
calculations to the quadrupole order, meaning that only linear terms are con8idered

Let the secondary lie at the location in the coordinate system centered on our primary, with a
massMl,. Considering a spherically symmetric body, the value of the potential at the locatidtes

GM,
jro nj’

Viid(r2;1) = (3.10)

WERE

7In the literature, one can also nd a slightly different normalization and de nition G, whereReq is the equatorial
radius of the external surface of the object. Note that to high orders, this leads to differences in the gures equations.

8Meaning, in the following, a theory for which all the terms proportionatﬂ;*(.;&l and smaller are neglected.

91t might seem a little counter intuitive to speak about the quadrupolar term in the tidal potentialiagéin¢éerm. In the
following, the termlinear always refer to the rst non vanishing order of the perturbation, and thus to all the terms that are
proportional tomext.
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Because we are interested in the value of this potential in the neighborhood of the primary, we can expand
the fraction into Legendre polynomials. We thus have

GMy, & r "
a

Viid(ro;r) = - - Pa(cosy ); (3.11)

n=0
wherey is the angle betweenandr,. The rst term is just a constant and the second gives rise to the

usual Keplerian acceleration and need not be considered. Keeping only the quadrupolar term, we are left
with the usual tidal potential

GM

Viia(r ;1) = r;)ZFZPz(COSY)Z (3.12)

A small parameter corresponding to the tidal disturbance can be de ned analogously to Eq. (3.9),
MR},
Mll’g '
Note the negative sign, which is just a statement that, along the axis of symmetry of the perturbation, the
disturbed body is elongated and not attened.

Considering the Roche limitg?, as the smallest possible orbital distance between two self gravi-
tating bodies, for a Jupiter like planet orbiting a sun like gtaggj . 0:05. While solid satellites happen
to be closer to the planet than the uid Roche limitin the solar system, this gure shows us that the linear
approximation remains satisfying when computing the tidal deformation to be used in Chapter

Mg = (3.13)

Arbitrary perturbation

To lowest order the body response is linear and the total deformation is the sum of the response to
each term of the decomposition of the perturbing potential. Thus, in order to derive the equations in a
rather general way, we only need to consider a term a perturbing potential of the form

Vexd(r; q;f) = cqr™,"(a;f); (3.14)

wherec])' is a constant which de nes the amplitude of the perturbation (Sterne 1939). The reference axis
de ning g andf may change from one term to the other. For example, the rotation axis is best suited to
treat rotational distortion and the line connecting the center of mass of each body is better to describe the
tidal distortion.

Analogously to Eq. (3.13), a small dimensionless parameter can be de ned as
IR 3 R

GM;  4p Gr,
One can see that this form is not completely general. For example the rst term of the centrifugal
potential in Eq. (3.8) cannot be reproduced. This is due to the fact this term produce a net, isotropic,
outward centrifugal force, and thus do not affect the shape of the body, but only its mean equilibrium
radius. However, in the linear regime, there is no coupling of these different effects, which can then

be addressed separately. Restricting the perturbing potentials that we will consider to those that can be
described by Eq. (3.14) is thus justi ed in this lirhit

Mext = (3.15)

10/ the perfect uid case, the Roche limit of a secondary of mean densijtground a primary of mean density and radius,
r1 andRy, respectively, is given byr ~ 2:423R; (r1=r )™

while we will keep the aforementioned de nition af.; to be consistent with Zharkov and Trubitsyn (1980), we remind
the reader that for the linear rotational perturbation, only the second term of Eq. (3.8) can be treated, and using Eg. (3.15) yields
Mext = Myot=3. As expected, for the tidal perturbatiogy; = mygy.
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3.1.5 Level surfaces

In the spherical case, equipotential surfaces are surfaces of constant radius. For small departure
from sphericity, as was rst hinted by Maclaurin and later demonstrateldyBpunov(1903), the equa-
tion describing the equipotentials, or level surfaces, can be expanded in a series of spherical harmonics
as follows
" #

r(hasf)=1 1+ 3 1IN Y (a:f) (3.16)

nm

wherel is a characteristic length (radius) of the level surfacdewel variable, and thé&'(l), or gure
functions, characterize the shape of each level surface. Intuitively, we see that the gure functions, which
would be equal to zero in the unperturbed case, are directly related to the amplitude of the perturbation
(quanti ed by the small parameteney;), and should be small corrections. More rigorously, it can be
shown that, apart from# 0, II' u mg,; (Lyapunov 1903).

As discussed irzharkov and Trubitsyr{1970), many variables can be chosen as our variable
However, there is a possibility which somewhat simpli es the gure equations. This variableliseha
radiusr which is implicitly de ned by

z z
p 2p

f'pr_?’: 1 decog  df r¥(fiq;f); (3.17)

3 30 0
wherer(r;q;f ) is given by Eq. (3.16). Indeed, an equipotential labeled byncloses the same volume
that the sphere of radius justifying the term of mean radius. Subsequently, the mean radius of the
object is de ned to be the mean radius of the surface enclosing thevhamsd is noted?;. Substituting
| by thismean radiusand renaming the?", 7' in Eq. (3.16) implies that for any,

n #3
Z, Z 9 .
4p=  dcogy df 1+ g s(nYqg;f) (3.18)
0 0

nym

This provides us with the rst of the needed gure equations. To convince ourselves that this variable
simpli es the equations, let us consider a rst order perturbation. Tliéqgou mg,; O, and Eq.(3.18)
rewrites% = 0: Thus, to this order, thaydrostatic equilibriumequation does not involve te, as is

shown in Appendix D. For this reason, we will use the variahland noteR; the mean radius of the

1 bar equipotential of the object considered. For gure equations derived using either the equatorial or
polar radius, the reader is referred to Zharkov and Trubitsyn (1970).

Which radius ?

Before going further, it is important to summarize the differences between the various radii that
can be de ned. Note that, in the literature, the term "radius” is used loosely, even for non-spherical
objects. Importantly enough, this can lead to discrepant normalizations throughout different studies and
published values of transit radius measurements when, for example, radii are shown in units of Jupiter
radii (Ryyp) without precisely de ning the latter.

For any distorted object, one can de ag, a, andag as the distances between the center and any
given isobaric surface along the three principal axes of inértitf axial symmetry holds (e.g. for a

12For a uid object in a binary, the three directions along which the principal axes are measured are, respectively, the line
connecting the center of mass of the two components, its hormal contained in the orbital plane and the direction of the orbital
angular momentum vector.
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rotating uid body), we havea; = ap  req de ning the equatorial radius of the isobar, amgd g its
polar radius. In this case, for the 1 bar surfagg, Reqandrpe Rpol by de nition. One must be aware
that only the external value @, a; andaz (reducing toReq andRyq for axisymmetric bodies) can be
measured directly and aret model dependent. This is why we de iy, as the equatorial radius of
Jupiter at the 1 bar lev@®yyp Reqp= 7:1492 10’ m; Guillot 2005and reference therein).

Equilibrium radius

Finally, we can de neRy, the radius of the spherical shape that the uid body would assume if it
was isolated and at rest in an inertial frame (the limiting case for which all the mentioned radii would
be equal). While this de nition is purely theoretical, it has some importancd; &3 is the radius
computed in usual 1D numerical evolution calculations, and the one that we have used throughout the
previous chapters. In geneidf 6=R; because the centrifugal force has a net outward component that
increases the volume of the object. Therefore, if one is not only interested by the shape, but also by the
absolute radius of the object, as it will be the case hereafter, one needs to nd a relation bej\aeen
R:. Numerically, this can be handled by integrating hydrostatic equilibrium with the centrifugal force,
but requires a numerical integration for each object and each value of the perturbatidtiowever, as
we will show in §3.4, approximate analytical formulae can be used to correct this.

3.1.6 Total potential

The goal of the theory of gures is to express the total potential on the level surfaces using only
(r;q;f). In practice, we will replace thes that appear in the expression of the gravitational potential
and in the mass integrals, Egs. (3.3) and (3.4), by their spherical harmonics decomposition, given by
Eq. (3.16). We can then decompose the total potential on spherical harmonics following

Viot(r;9;F ) = Vo + Vext

4 o o
= épGrlrza VU GIMUCHBE (3.19)

nm

Because the= cst surfaces are equipotentials by construction, our set of equations on the gure functions
we be given by Eg. (3.18) and

V(= 0 seimion - (3.20)
The n= 0 term provides the equation for the hydrostatic equilibrium,
1P TVt _ 4 - d 500 .

Beyond this stage, the actual form of these equations directly depends on the order of the develop-
ment carried out. In order not to introduce to much technical discussions, the general rst order theory
developed bysterng(1939), and that will be used hereafter, can be found in Appebdio summarize,
itis found that the shape of each isodensity surface can be characterized by the w&ﬁt#yﬁ%,
which can be obtained by integration of a rst order integro-differential equation, Eq. (D.21).

For those interested in a higher order, but axisymmetric theory, based on the wtirkrétbv and

Trubitsyn(1980), they are referred to Appendix
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3.2 The gure of (extrasolar) giant planets

Using the linear theory o%terne(1939) (see Appendi®), once the density pro le has been ob-
tained by integrating the hydrostatic equilibrium equation, and the gure functions by the integration of
Eqg. (D.21), we have all the information needed to completely describe the distribution of matter in our
object. But this distribution is not, in general, directly observable. We thus need to concern ourselves
with the computation of observable quantities such as the external shape, and the external gravitational
potential.

Fortunately, as we use a linear theory, the amplitude of the response of the body is directly propor-
tional to the amplitude of the perturbation. In our context, themasfer functionsare called thd.ove
numbers, and capture all the equilibrium response of the biodthis section, | will show how these
guantities can be computed, and present numerical estimations of their values for giant planets.

3.2.1 External shape: ellipticity and level Love Numbers

Figure 3.1: Oblateness given by Eq. (3.25) as a function of the rotation period (in days) at 1 Gyr for plan-

ets of mass: 0.3)p (dotted), 0.5Myp (dashed), 1M, (dash-dotted), 3 (long dashed), 15hd(solid).

The oblateness decreases when the mass of the planet increases because massive objects are more com-
pressible (see &.2.2), have a more intense self-gravity eld and are thus less subject to perturbations.
Figure fromLeconte et al(2011b).

Once, hp = hn(R71) has been obtained by numerical integration of Eq. (D.21), we can show by
settings= r=R; = 1 in Eq.(D.18), that the external shape of our body (i.e. the value of the gure
function at the surface) is given by

2n+ 1

nr R e (3.22)

(R =

As expected, the deformation is linear with respect to the amplitude of the perturbing potegtial (m
Because, the strength of the perturbation can vary with time, it is customary to refer to the proportionality
constant in EqQ. (3.22), which is an intrinsic characteristic of the deformable body itself. This constant of
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the object, de ned as
Vext(Ru; ;)
gRs

whereg is the unperturbed surface gravity acceleration, idekel Love numbegh,), which is therefore
given by

S(RYY(g;f) by ) SMR)= haMmexs (3.23)

_2n+ 1

For an isolated, rotating object, an observable quantity is provided by the dynamical attening, also
called ellipticity or oblateness ( %), which is given by

_ 30_3 _hz
f= 552— éhzmext- >

Mot (3.25)

Attempts have been made to constrain the oblateness and thus the rotation period of transiting
planets by using the solar system planets as test cases (Carter and Winn 2010a,b). Because of the wide
variety of exoplanets, it is important to have the ability to predict the attening of uid planets for a wider
range of parameters than encountered in the solar sy$tigr3.1 shows the oblateness predicted by
my numerical code for various planet masses as a function of the rotational perioy; = 2p=ws.

The values of thelevelLove number are deduced from thepotentialLove number (k) as explained
in the following section.

Because the radius weakly depends on the mass of the object in tB@M,,, mass range, at xed
angular velocitymyo; decreases when mass increaséassive object, which have a much stronger grav-
ity, are thus less subject to perturbatio$owever, the main limitation to the detection of the oblateness
of transiting objects is that close in planets are expected to quickly pseudo synchronize because of the
tidal friction. To get an idea of the timescales involved, with the dissipation rates inferred in Chagter
Jupiter like planet around a Sun like star must be on an orbit with a period longer than 20 days to maintain
a fast rotation for more than a Gyr. Below that limit, the rotation period will be mostly determined by
the orbital period and will hardly be much shorter than a day. Above, only few objects are available, and
observation will take time as an orbital revolution takes longer. In this case, the longer transit duration
may be favorable.

3.2.2 External potential: gravitational moments and potential Love numbers

Because the gravitational potential naturally expands on a basis of Legendre polynomials, as shown
in §3.1.3, the external eld is often written

GMig Reg

r nm

Vo(r > Riq;f ) = CY(aif ); (3.26)

whereq is the colatitude andl the longitude of the body consideféd For rotating uid bodies, for
which the symmetry with respect to both the rotation axis and the equator‘flamdy the even har-

13A more conventional notation is
n
Tq (C' cosmf + S sinmf)PM(cosq);
0

Va(r > Ry;q;f) = 7GrM1

T Qox
T Qo5

0

but this would lead to possible confusion with the mass inted@isom & D.4, which have a slightly different normalization.
By constructionCj = 1.
14Meaning that the other perturbation, such as tidal deformation, can be neglected.
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monics with a zero azimuthal number remain and the most common notation reads
n 2n #
— GM Re
Vo(r > R q;f)= % 1 & dn Tq Pon(cosq) : (3.27)

n

The gravitational moment&" or J,, are directly related to the mass integrals de ned D.gby

Ch' = DY'=(M1RYy; (3.28)
or

= Dp=(MiRL):; (3.29)

wherelﬁnm = Dnm(ﬁl), the value of the integral at the surface. Hence, they encompass all the information

on the density pro le needed to compute the external eld. A major consequence of that, is that mea-
surement of the gravitational eld of a planet will allow us to estimate only the mass integrals and not
directly the density eld. In principle, because spherical harmonics are a complete basis, the informa-

tion contained in all th€", or equivalently thel, in the axisymmetric case, should allow us to retrieve
exactly the density eld. However, as the order of the harmonic (n) increases, the vaijeusfually
decreases, and only the rst harmonics are measured té°ddtieese measurements can thus only con-

strain the internal state of giant planets, but is suf cient to rule out some compositions and equation of

states (Chabrier et al. 1998aumon and Guillot 2004Guillot 2005)

In our case, we know from Eq. (D.13) that the gravitational potential at the surface of the sphere of

radiusR; can be expressed through tienensionlessnass integrals (Eq. (D.12)), many of them being
equal to zero, and reads

Vo(Ruq:f) = %“fl QR+ SRYYM(Gif ) - (3.30)

Because&)(Ry) = 1, evaluating Eq. (D.14) a&="1 yieldsS'(R) = SM(R1)+ Mext=(1 hn) Mext. Then,
solving the Dirichlet problem yields the potential outside the sphere

- GM R
Vs(r > Ry;q:f) = Tl 1 (hn 1)T§nbxtvnm(q;f) : (3.31)

where the non spherical part is the potential induced by the deformstjgnFor the same reasons that
in 83.2.1, we can de ne thpotential Love humbek;,, as the linear response coef cient

Vind(Re; G5 ) = KnVexe(Re; a;f ); (3.32)
which yieldg®
_ _n+1 Ay
kn=h, 1= B (3.33)

Thus, for this perturbation

n+1 h,

Ch = Tﬁnmext: KnMext (3.34)
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(a) Isolated objects (b) Irradiated objects

Figure 3.2: Left: Potential Love number for isolated planets as a function of the planet magy (M

at 100 Myr (dotted), 1 Gyr (dashed) and 5 Gyr (solid). Right: idem for strongly irradiated objects
(Finc = 4:18 10°W:m ?). As contraction proceeds, the density contrast between the outer layers of
the planet and the center decreases, andkhinereases. Note the change in thecale between panels.

As irradiation retards the evolution, irradiated objects show the same behavior than the young isolated
object (dotted curve in the left panel).

andC"’ = 0 for °6=n or nP6=m'7,

In order to provide a numerical estimates of the response of an actual planet, | thus integrated
these equations numerically on a full set of solar metallicity planetary models.The results are
summarized in Fig. 3.2. nd that the value of the Love number tends to decrease when mass increases
mass above 1 ) This is due to the fact that more massive objects are (i) more compressible and thus
more centrally condensed (See §2.2.2), (ii) denser, with a larger surface gr®étgw this mass, the
ko of isolated objects also increases when mass decreases. This is expected as we slowly tend toward the
incompressible limitf= 0 ; see 8.2.2) for whichk, = 3=2, as shown in AppendX.

For irradiated objects, however, the valuggstarts to shrink at lower masses. This has two causes.
Most importantly, as already mentioned, irradiation retards the evolution. Like young isolated objects,
irradiated planets are more centrally condensed and less subject to perturbation. In addition, as discussed
in Chapter, the strong stellar irradiation heats up and thus slightly in ates the external layers of the
body. While there is hot much mass in this zone, this is where a perturbation has the most important
effect®,

15For Uranus and Neptune, measurements made by the various yby missions are signi cadj gmit up talg for Jupiter
and Saturn.

18Note, that thék, = h, 1 holds only because our body is in hydrostatic equilibrium without any elastic stress.

17 For a purely rotational distortion = w#=3 implyingmey: = Myot=3, and

_ _lewWiR ke
Jo = KoMext = 3 GMy = gmrot- (3.35)
By extension, one can de n& for a tidal perturbation by a secondary of mass which leads to
S5 3
M2 R
R=lkemia= ket (3.36)
1 I?

but the reference axis is the line connecting the two center of mass and not the rotational axis. Note that, in thisscase,
negative, because the body is elongated along the symmetry axis, and not attened.

18| other words, like the gravitational moments, the Love number is more sensitive to the density distribution in the outer
layers (Guillot 2005).
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As shown in Fig. 3.3, numerical simulations that | per-
formed with my numerical code CHES&lso show that, at
constant mass, a small enrichment in heavy elements to-
ward the center (possibly in a core) acts to decrease the
value of k. In general, redistributing mass from the external
to the internal layers, which are less sensitive to the disturbing
potential, decreases the response of the body to an exciting po-
tential, which translates into a low&s. However, when the
core is large enough to reach the outer layer of the body,
ko starts to increase again.Calculations are stopped around
Mc:=M; 0:96 for numerical stability reasons. In principle, in
theM. = My limit, k> should be larger than for the completely
gaseous object as is hinted by the large slope. This is due to the
fact that gas is much more compressible than ices or rocksF.It 33 L b f .
will however not reach 3/2 value reached for truly incompres lgure 3.3: Love number as a function

ible mattet® as the ANEOS equation of state does predictosglt.he core mass fora planet, for
rious effective temperatur@;(; from

o ey . . V
small compressibility for high pressure "ices" (Thompson a %
P y gnhp ( P 5 to 120K by steps of 20K ; more and
Lauson 1972). .
o _ more spaced dashing).
While it is tempting to use these formula to compute, for
example, the response of the deformable body to all the suc-
cessive terms of the tidal disturbance and to add them linearly, one must be aware that this approach is
not fully justi ed due to the fact that we have neglected all the cross correlation terms throughout the
calculation. The precision that we would gain by adding the contribution of a higher harmonic would be
lost by our poor description of the response to the lower order harmonics. Such cases require a higher
order theory like the one presented in Apperigixt is however perfectly justi ed to use this approach
to compute the response of a body to a sum of disturbing potential having different axes of symmetry but
being of the same importance. Such an example is presented hereafter.

3.2.3 Application to close binaries: Combined effect of tidal and rotational disturbances

Because our theory is linear, the calculation of the equilibrium shape of an object undergoing several
different perturbations at the same time reduces to the problem of nding the response to each separate
perturbing potential and adding them linedPly However, if this seems correct to add Egs. (3.35) and
(3.36) to obtain the total, of a body in a close binary, we must remember that the tidal and rotational
deformations do not have the same axis of symmetry in general.

In order to correctly add these contribution, as presenteddonte et al(2011b), I thus had to carry
out a change of coordinates. Takiggas the colatitude and as the longitude of the body considered,
the quadrupole moment of the external gravitational potential (Eq. (3.26)) in the linear approximation, is

19Because we intuitively picture incompressible objects as being solid (like terrestrial planets), it seems a little counter
intuitive thatk, reaches its maximum in this limit. We must remember, however, that this remains true only in the hydrostatic
case, i.e. when the cohesion is ensured by gravity alone. For terrestrial planets, the elastic modulus of the bulk imposes a lower
tidal response ¢k 0:33 for the Earth). This also reminds us that our formalism does not apply to such low mass terrestrial
planets for which hydrostatic equilibrium is not fully achieved.

20This linear behavior as been veri ed with the analytical polytropic modélaifet al. (1993) and_econte et al(2011b),
for which calculating the response to a sum of perturbations or adding the response to each perturbation yields exactly the same
result.
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given at the surface by

GM

$ w2 GM
R 8 VP = kR SPfcosy) = =PB(com) (3.37)

m=0 I’§

whereq?is the angle between the current point and the line connecting the two center of mass (also
called the substellar point for a planet). For the coplanar case where the tides raising object orbits in the
equatorial plane of the distorted body, ¢ds sing cosf and thus

P(cosq? = Zsinz(q)cosQf)+ 35"4‘12((” %
= %cosQf)Pzz(cosq) %Pg(cosq): (3.38)
Thus
0 " 1WiR 1M, Ry & hmrot mtidi
b= CG=k éGM1+§W P =k 3 o (3.39)
and
G= tophe B - M. (3.40)

All the other moments are equal to 0. Similar decompositions can be used to infer the precise shape of
the surface from a sum of perturbing elds. This gives

r(Ruy;q:f 1 1 h
MRUAT) _ 1y L+ T YO(a:f)+ M2 migY2(a:f): (3.41)
Ry 2 3 4

and thus, at the surface,

a Mot | /Mg

—=1+hy —+ :

Ry 2 6 4

a, Mot SMig

—=1+hy —/(— ;

Ry 2 76 4

ag Myot | Miid

~2=1 h =+ = : 3.42
R 2 3 > (3.42)

Note that to use these relations, one must already knowntenradius of the object. In general, if
rotation is present, this requires to solve numerically the hydrostatic equilibrium of the body for each
value of the rotational perturbation @), and is thus very computationally intensiven overcome this
limitation, when a high precision is not needed, we can however rely on a completely analytical model
such as the one that | will describe irB&, and use in 8.5(Leconte et al. 2011b).

3.3 Gravitational sounding of extrasolar planets

As already mentioned in&4.4, characterizing precisely the composition of a giant planet requires
many parameters. In addition, because the large thermal expansion coef cient of the gas cannot be
neglected, the age of the object must also be knowntlasdegeneracy prevents a precise determination
of the composition from the position of the planet in the mass-radius diagram @lolaens et al. 2008).
However, we can still roughly constrain the composition from the knowledge giRivt) if
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we reduce the parameter space describing the composition of the planet (e.g. by assuming the
object to be composed of a Solar abundance H/He gaseous mixture surrounding a homogeneous
core of a given material).

we assume that no bloating mechanism is at work (sté.8for details).

If one wants to go further and relax one or the other of these assumptions, new observables must be
measured. As will be detailed in Chaptelin the Solar System, these additional constraints are provided
by in situ measurements of the composition and atmospheric thermal pro le, and the determination of
the gravitational moments{JJs, ...). While it was thought that such measurements would remain out
of reach for exoplanets, it has been shown that tides in the planet (whose amplitude is proporkgnal to
can lead to characteristic quasi-equilibrium orbital states in multi-planet systems (Mardling 2007), and
transit timing variations (Ragozzine and Wolf 2009), making possible the determinatien of

In particular, as discussed IRagozzine and Wolf2009), values of the Love number on the order
the one found in 8.2.2could be measured through the precession rate of very Hot Jupiters on eccentric
orbits. Such measurements could be carried outdyyler for WASP-12 b analogs with an eccentricity
> 3 10 * (most favorable case) or Tres-3b analogs with an eccentrici®y 10 2 (for ko  0:3)
and lower eccentricities for higher Love number values, and should reach a precision of a few percents.
On the other side, if the accuracy of the method proposelfiéndling (2007) is limited if the distant
companion is not transiting, With 170 multi-transiting planet system candidates announced recently by
Borucki et al.(2011), our ability to measure exoplanets tidal response should soon reach an unprece-
dented precision.

(a) ko maps (b) M constraints

Figure 3.4: (a) Mapping of the Love Number as a function of the effective temperafyya(il mass of

a water corel{l¢) for a Neptune mass planet. The dashed lines are the iso-radii curves. (b) Mass fraction
of water core (M=M,) retrieved for a given (Rk>). The parameter space that is not covered by the grid

is left blank.

While this is only awork in progress, in Fig3.4, | attempt to outline the possible yields of a
measurement d& on our knowledge of an exoplanet structurethis example, | relax the assumption
on the evolution while still considering a simple 2-layer planetary modelThe planet structure is then
entirely determined by three parameters, namely its mass, effective temperature and core masd fraction.
thus used my numerical code to compute a large grid of structure models covering this parameters
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space and estimate several mechanical characteristics of the object modeled, such as the radius
and ko. Fig. 3.4.a shows an example of such maps for a Neptune mass planet.

Because iso-radii and iso-k contours are not parallel in most of the parameter space, the
knowledge these two quantities makes the determination of botfi; (constraining the age of the
object) and Mc=M; possible(as shown in Fig3.4.b, where only the core mass is shown). For large
core masses, however, both contours follow the same direction. This is because the thermal expansion
coef cient of the core is much smaller than the one of the envelope, as can be inferred from the fact
that iso-radii curves are mostly vertical in F&4.a. The structure only weakly dependsTgpnand, as
a result, this parameter cannot be retrieved. On the other hand, in this limit, the core mass fraction can
more easily be linked to the mean density.

Then, ultimately, it will be possible to include additional constraints, such as the age of the system,
to get more information about the internal composition. Of course, let us conclude by noting that, because
of the highest number of free parameters in the nal, more realistic model, and of the observational
uncertainties, such constraints on the interior composition will have to be inferred in a statistical sense.

3.4 An analytical model: ellipsoidal polytropes

As mentioned in 8.2.3, one of the limitations of the numerical approach developed previously is
that the nal meanradius cannot be computed from the spherical equilibrium radius by these relations
alone. This is particularly critical when one is interested in predicting the absolute radius that an observed
object would have if it were isolated and at rest. Indeed, this igtjodibrium radius R that needs to be
compared to the output of evolutionary codes when, for example, trying to quantify the radius anomaly
of observed transiting planets.

To overcome that limitation, in Leconte et al.(2011b), | modeled giant planets by self similar
ellipsoidal polytropes,as rst done bylLai et al.(1994) for white dwarfs and neutron staasnd showed
that this analytical model yields rather accurate results provided that the effective polytrope index
of the object (fi; see 8.2.2) be known.This theory is based on the minimization of the total energy of
the binary

Etot = U1+ U+ Wi+ Wor T+ W5 (3.43)

whereU andW are the internal and self gravitational energy of each compofieistthe total kinetic
energy (including both the orbital motion and the spin of each object)\\and the gravitational inter-
action between the objects.

As this total energy can be easily expressed as a function of both the shape and the mean radius,
the minimum energy principle directly yields an approximate formula for these. In addition, because it
is easy to cut off the perturbation in these formulae, we also have accessemuilibrium radius(Ry).

As shown inLai et al.(1994), to rst order inmyt andmg?*

a1 15+ i 5
=1+ 7ﬁqﬁmrot+ §Qﬁmtid

Ry 43

%— 1+ ESLF] =~ § = M
R, = 43 r~]qnmrot 4Qnmt|d
az _ 15 3n

5
e = 0 Mg 3.44
) 53 7 UiMot  ,diMid (3.44)

2170 rst order, it is equivalent to use thmeanor theequilibriumradius in de ningmyot (O Myg).
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whereqgs is a function of the polytropic index de ned ineconte et al(2011b). This implies that

&:1+g n~
R1 33 1

O Mot (3.45)

As expected, to rst order, the tides do not change the volume (and thus the mearﬁ@digsalazag)

of our ellipsoid, and only the rotation has a net effect. As expected, the volume variation also vanishes
for an incompressible objeat € 0).

While these expressions necessitate a stronger level of approximation than the mere hydrostatic
equilibrium used in the complete theory of gurddhave shown in Leconte et al(2011b) that, con-
sidering our poor knowledge of the metal enrichment of extrasolar gas giant planets (particularly
about the presence or not of a differentiated central core), such a simpli ed model is satisfactory
to infer the impact of the shape of close-in exoplanets on their transit light-curve, as done below.

In addition, these formulae are more accurate than the one yielded by a Roche approximation, as the
retroaction of the distortion of each body on the gravitational eld is taken into acc@dahn et al.
2010).

3.5 Distorted exoplanets: Implications for observations

Because the tidal bulge raised by a star on its low mass companion is aligned with respect to the
axis joining the two objects, when planet transits across the stellar disc, we expect to sewllee
cross section of its actual ellipsoidal shape so that the depth of the trashsitresasedvith respect to the
expected signal for a spherical objethis implies that the radius inferred from the light curve analysis,
derived under the assumption of spherical planet and star, shandrestimatethe real equilibrium
radius of the objectThis bias needs to be corrected for a proper comparison with theoretical 1D numer-
ical simulations of the structure and evolution of extrasolar planets and enhances the actual discrepancy
between theory and observation for the so called "bloated"” plaméis.is why, in the following sec-
tion, | will guantify the impact of the non sphericity of the planet and star on the depth of the light
curve, and the resulting bias on the radius determination.

Figure 3.5: Schematic representation of the impact of the non-spherical shape of the planet on its cross
section. For the same equilibrium radius, the close in planet is seen smaller during transit.
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3.5.1 Transit depth variation

When limb darkening is ignored, the depth of a transit is given by the ratio of the planetary and
stellar projected areas. When both bodies are spherical, this simply redudes=io, (Rp:R?)Z.
For close-in planet-star systems, however, both tidal and rotational deformations yield a departure from
sphericity, so that what is measured is no longer the mean radius keffeative'transit radius” de ned
such that the cross section of the planet is equaRﬁp and similarly for the star. Thus the transit depth
reads

dlo  Ryp 2

>~ Res (3.46)
In general, the projected area of an ellipsoid can be computed for any orientation and then

at each point of the orbit, as demonstrated in Appendi¥. Figure3.6 shows the projected area of the

planet (;R%r;p) as a function of its anomaly {fnormalized to the spherical caseRl?p. When the planet

is seen from its "side" (Ep = 0:5), the observer sees a bigger planet because the rotation of the latter

on itself tends to increase its volume. The possibility to measure these effects from the light curve is

discussed ilRagozzine and Wolf2009) andCarter and Winr{2010a).

Figure 3.6: Normalized projected area of the planet as a function of its anomjafgr(inclinations
of the orbit going fromi = 90 toi= 0 by steps of 10for a WASP-12b analog on a circular orbit.
Top: For the full orbit. Bottom: zoom on the (primary or secondary) transihinges by steps of b
The ordinates of the dotted, solid and dashed horizontal lines are respeaiiagla@% (face-on orbit),
a1a3=R? andayaz=R. Revised gure from Leconte et 2011b).

For the simple case of an edge-on orbit at mid transit (D), since the observer, the planet and
the star are aligned with the long axis of the tidally deformed ellig$6it] Ryrp = "~ @283 andRy.2 =
az»az- (see §3.1.5 for the de nition of tha). Therefore,

dL, _ azpagp

R, ?
— 1+ TDV); 3.47
L» ap:7a3:7 R, ( ) ( )

whereR, andR- are the respective radii the planet and the star would have in spherical equilibrium (the
R; de ned above) and TD\Vs by de nition the transit depth variation induced by the ellipsoidal shape

22This is still veri ed to rst order inf andi % as only second order terms appear.
231 the following, the variables have the same meaning as earlier with p indices when referring to the pl&rtettarcstar
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of the components relative to the transit depth in the spherical case. This is given by

a2,p83;p R5

TDV = 220%8p 77
R agqag:

(3.48)

where thea;=R; are given by Eq. (3.44) which depend (through, andmygt;7) onro, W, andw,. How-

ever, most of the planet hosting stars have a low rotation rate compared to the orbital mean motion. This
entails that the rotational deformation is negligible compared to the tidal one and can generally be ne-
glected. As discussed in Chap$gihot Jupiters should be pseudo synchronized early in their evoitition
Therefore, we will assume such an approximation in our calculations in order not to introduce any other
free parameter. Under such an approximation,

_ 1 5 7+p 4fip
V= 3% Mo 4 1 3,
S >
+ — _ .
2P (3.49)

where the parametgrnow denotes the mass rafiy,=M-, andq, andg- are equal ta, for i= A, and

fi= fA,, respectively. The rst line in the above equation represents the contribution of the planet, which
is always negative (for reasonable valuesig)f Our line of sight follows the long axis of the tidal bulge
and we see the minimal cross section of the ellipsoid.

The contribution of the star is positive and, in most cases, negligible compared the planet's contri-
bution because

R p?

Rgl+p L

for a typical system (10® for a Jupiter-Sun like system). As a consequence, the results presented here-
after do not depend op as long as realistic values of 2 [1.5; 3] are taken.

Figure 3.7 portrays the relative transit depth variation computed with Eq. (3.49) for several
planet masses as a function of the orbital distance, for a Sun-like parent star. While | computed
all the curves for an age of 1 Gyr, they do not change much for older ages because both the radii
and the polytropic indices remain nearly unchanged after 1 Gyr (see Fig.7). Given the accuracy
of the radius determination achieved by the latest observations (1 to 1@84jansit depth variation
is signi cant for Saturn mass objects (M,  M;,=3) closer than 0.04 AU and Jupiter mass objects
closer than 0.02-0.03 AUBecause the equations are derived to rst order, the value of TDV derived
from the analytical model should be taken with caution when 1@¥:1 0:3 (and are clearly not
meaningful for TDV& 1). In this regime, corresponding to the upper left region of §ig, one should
use the theory of planetary gures to higher order, but then numerical calculations become necessary,
loosing the advantage of our simple analytical expressions.

Figure3.7also displays the transit depth variation computed for the most distorted known transiting
exoplanets, with the observationally measured parameters. The error bars re ect the uncertainties in the
model and in the measured data.

3.5.2 Radius determination bias

Unfortunately, transit measurements only give access to the projected opaque cross section of the
planet ( pR%r;p) de ning a "transit radius" which depends on the shape of the planet, its orientation

24If the rotation of the object is synchronous with the orbit, tagh= G(My + M2)=r3, andmyot = ( 1+ My=Mp) myjg.
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Figure 3.7: Relative transit depth variation TDV computed with Eqg. (3.49) as a function of the semi-
major axis at 1 Gyr for planets of mass: 0.gMdotted), 0.5M,, (dashed), 1M, (dash-dotted), 3

(long dashed), 15p4y(solid). The shaded area shows the zone where higher order terms become non-
negligible. The decrease of the transit depth due to tidal interactions is smaller when the mass of the
planet increases because massive objects are denser and more compressible (see 84) and thus less subject
to non-spherical deformationBigure fromLeconte et al(2011b).

during the observation and the wavelength used. To convert this transit radius inferred from the obser-
vations (Ry,p) to the spherical radius @R- that can be compared to 1D numerical models - one must
eliminatedL,=L, from Egs. (3.46) and (3.47). As shown above, the stellar impact on TDV is negligible
compared to the planet's contributionf{R R,). Then, using the rstterm in Eq. (3.49) and expanding

the expression giving the de nition &y, one gets

TDV
Ro Rup 1 — : (3.50)

For the most distorted known planets, the relative variation between the transit radius and the equilibrium
radius

DR=R (Rp Rtr,p)thr,p TDV:2

is positive and amounts to 3.00% for WASP-12 b, 2.72% for WASP-19b, 1.21% for WASP-4 b, 1.20%
for CoRot-1b, 0.89% and OGLE-TR-56B.

To conclude, through this analysis, | showed that the departure from sphericity of the transit-
ing planets produces a distortion of their transit light curves from which many of their parameters

250f course, since TDVL (Rp:r?)3, Eq. (3.50) is an implicit equation dR,. To obtainR, to the sought accuracy, a pertur-
bative development in powers of TIN= TDV(R, = Ryr;p) can be obtained using recursively Eq. (3.50)

R, TOV(Ry) TDVU+3TDV"2 3TDVy3
Rir;p 2 2 4 2

+ O(TDVy?): (3.51)

However, terms of order TD) are of the same order than the second order corrections to the shape that we have neglected
throughout.
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are measured. In particular, the radius inferred from the light curve analysis always underes-
timates the real equilibrium radius, possibly by up to 5% for the closest planets detected so far
(. 0:05AU), enhancing the aforementioned radius anomaly.

3.6 Conclusion

Because of the large variety of exoplanetary systems presently discovered, with many more ex-
pected in the near future, and the increasing accuracy of the observations, it is important to take into
account the changes in the dynamical and observable properties of exoplanets arising from their non-
spherical deformation, due to rotational and/or tidal forces. Indeed, such deformations not only yield a
decrease of the transit depth, but also perturbs the orbital evolution of the system, possibly leading to
a measurement of the tidal response. In order to correct for, or take advantage of these properties, it is
primordial to be able to compute eitheumerically(§ 3.2) oranalytically (8§ 3.4 ; see alsbeconte et al.
2011b) the shape and potential of planets and stars in any con guration from the knowledge of only
their mass, orbital separation and one single parameter describing their internal structure (elittree the
number k, or theeffective polytropic index, that was discussed in Chap2¢r The main problem being
to have an accurate value for one or the other of these quantities.

To that purpose, | performed numerical simulations to calculate theLove numberof substellar
object for a wide range of masses (from a saturn mass to the Hydrogen burning minimum mass),
ages and irradiations. As for the determination of the effective polytropic index in Chagtethe
inferred values ok, presented in 8.2 give us insight on the way the mechanical structure of gaseous
substellar objects changes with age and maddsing my numerical codeCHESS, | also started to
investigate the impact of heavy element enrichment on the tidal response of giant planets, and
demonstrated on a test case how one could take advantage of these models to infer a core mass
from k, measurements (8.3).

In 8 3.4, | showed however that, inferring the absolutemeanradius of a given object from
its equilibrium radius cannot be done with the knowledge ofk; alone, but that this limitation can
be overcome with an analytical model based on homologously distorted polytropes (Leconte et al.
2011b). I nd that this analytical model can easily be used to determine the impact of the absolute shape
of the planet on its phase curve and on the shape of the transit light curve itself (Carter and Winn 2010a).
It can also be used to model ellipsoidal variations of the stellar ux that are now detected in the CoRoT
and Kepler light curves (Welsh et al. 2010).

Finally, in § 3.5, using this analytical model, | also showed that departure from sphericity of
the transiting planets produces a bias in the determination of the radius. For the closest planets
detected so far (. 0:05AU), the effect on the transit depth is of the order of 1 to 10% (see Fig.7),
by no means a negligible effect.The equilibrium radius of these strongly distorted objects can thus
be larger than the measured radius, inferred from the area of the (smaller) cross section presented to
the observer by the planet during the transit. Combining the analytical formulae presehtambirie
et al.(2011b), and the characteristic polytropic index values derive®if 2for various gaseous planet
masses and ages, allows to easily take such a correction into account. Interestingly, since this equilibrium
radius is the one computed with the 1D structure models available in the literature, the bias reported here
still enhances the magnitude of the puzzling radius anomaly (se&.E®). exhibited by the so-called
bloated planets.
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A new perspective on heat transport in the interior

While conventional interior models for Jupiter and Saturn are based on the simpligtic as-
sumption of a solid core surrounded by a homogeneous gaseous envelope, in this chapter, | derive
new models with an inhomogeneous distribution of heavy elements, i.e. a gradient of comppsition,
within these planets. Such a compositional strati cation hampers large scale convectiorn] which
turns into double-diffusive convection, yielding an inner thermal pro le which departs from the
traditionally assumed adiabatic interior, affecting these planet heat content and cooling higtory.

To address this problem, after a brief review of the onset of the double diffusive instability
in 84.1, in 8.2, | develop an analytical formalism of layered double-diffusive convection hased
on the mixing length theory, and derive analytical asymptotic solutions for the convective ef -
ciency and the super-adiabaticity in the mediurd.83). By simple considerations, | also derjve
analytical constraints on the range of possible values for the size of the convective/diffusive cells
(84.2.4).

Then, in 8.4, | apply this formalism to Solar System giant planet interiors. These models
satisfy all observational constraints and yield a metal enrichment for our gaseous giants yip to 30
to 60% larger than previously thought. As the heavy elements tend to be redistributed within the
gaseous envelope, the models predict smaller than usual central cores inside Saturn and Jupiter,
with possibly no core for this latter.

These models open a new window and raise new challenges on our understanding of the
internal structure of giant (solar and extrasolar) planets, in particular the determination ¢f their
heavy material content, a key diagnostic for planet formation theories.

The results of this chapter have been submittedisiponomy & Astrophysida A new visior
on giant planet interiorgLeconte and Chabrier 2011).
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B GIANT PLANET MODELS have always been

Trad I tl O n al I based on two major speci ¢ assumptions con-
Jcerning their inner pro le, essentially for rea-

sons of simplicity in the planet's modeling (see e.g. Stevenson 1985). It is conventional to assume (i)
that the inner structure of our giants consists of a few - generally 2 to 3 - superposed, well separated,
mogeneousgegions, namely, going from the planet's center to the surface, a central solid rocky/icy core,
and a surrounding largely dominantly H/He gaseous envelope, often split into an inner metallic region
and an outer atomic/molecular one ; the more dense components are always supposed to have quickly
settled into the central core under the action of gravity ; (ii) that planetary interiors are adiabatic, based
on the fact that the giant planet heat ow must be transported by convection (Hubbard 1968). All the
present determinations of the internal - chemical, mechanical and thermal - structures of the Solar sys-

tem planets, including their heavy material content, are derived assuming such homogeneously strati ed,
adiabatic interiors (Saumon and Guillot 20G2ortney and Nettelmann 2010).

Giant planet interiors, however, might depart from this conventional, simpli ed description, be-
cause of complex processes for which we lack an accurate description but which may very well be at
play in real situations (Stevenson 1985). In this paper, we derive interior models for Jupiter and Sat-
urn which relax the aforementioned preconceptions. Instead of the homogeneous layer assumption, we
explore the possibility of a mixednhomogeneousolid-gas interior composition, leading to a heavy
material gradient throughout the planet. This in turn means that gravitational sedimentation of heavy
material is counterbalanced by diffusive/convective transport processes and thus that compositional gra-
dients lead to signi cant departure from global adiabaticity in the interior, reducing heat transport. As
shown below, these models do ful Il the planet observational constraints while leading to (i) a signi -
cantly larger metal content and (ii) signi cantly larger internal temperatures than the one inferred from
homogeneously strati ed adiabatic models. This opens a new vision on planet structure, evolution and
formation ef ciency. Such inhomogeneous interior pro les for Solar System giant planets had brie y
been suggested several decades ago by Stevenson (Stevenson 1985) but no attempt has ever been made
to derive consistent models and to verify whether such models would be consistent with the planet vari-
ous observational constraints. This scenario has been revived recently in the context of extrasolar plan-
ets and has been shown to provide a possible explanation for the anomalously large observed radii of
many of these bodies (Chabrier and Baraffe 2007). Indeed, as mentioned above, not only an inhomoge-
neously strati ed interior yields a different interior structure and global metal content, but it decreases
heat transport ef ciency throughout the planet's interior and thus affects its cooling, thus its mass-radius
relationship at a given age, a crucial diagnostic to understand (transiting) extrasolar planet structure and
evolution. Since, as mentioned earlier, only loose constraints on the object's internal composition are
accessible for gaseous exoplanets, it is crucial to verify whether such unconventional internal structures
are a viable possibility for our own giants. Furthermore, determining the maximum possible amount of
heavy elements in Jupiter and Saturn and their distribution within the planet are important diagnostics to
understand how our own Solar System giants formed.
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4.1 Linear stability analysis

In order to introduce the various relevant quantities in a simple way, | rst derive the criterion for
the presence of overturning convection and the onset of the double diffusive instability.

4.1.1 Adiabatic criterion

It is well known that, when thermal diffusivity and viscosity can be neglected, an homogeneous
medium is stable against convective motion if ®ehwarzschildstability criterion (orSchwarzschild
Harm criterion) is ful lled, i.e. if

@

whereNy  §i°T is the thermal gradient, anlag 115 ,is called the adiabatic gradient. How-
al

ever, concerning the criterion to use in presence of a compositional gradient, there is still a debate. If
Schwarzschild and Harm (1958) proposed to keep on witBtmevarzschild stability criteriorfakashita

and Hayash{1959), for example, suggested a new criterion, initially proposddcsoypux(1947), stating

that the (destabilizing) super adiabaticity in the medium must be large enough to counteract the stabiliz-
ing effect of a mean molecular weight gradient. In mathematical termgatieuxcriterion reads

- « Amg «  Cmge oo
Nag> Nt =ORin| or |Nag -2Np> Ny; (4.2)
aT CTt
TInr Tinr 1InP 1InP 1 i
wherear TIT p @M Tm pr CM Tinm o andcr g7 o In general, areas which

are bothLedoux stablend Schwarzschild unstablere calledsemi-convectiveones. If no convective
mode can seem to grow in these zones in our basic picture, it is not so when nite thermal and solute
diffusivities are taken into account. Our modeling is too simple. We thus have to rely on a more complex
stability analysis.

4.1.2 General linear stability analysis of the double diffusive instability

To have a better description of the onset of the double diffusive instability, we will carry a linear
analysis similar to the one described by Stevenson (1979a). For brevity, as we will only consider a mono
dimensional approach of convection, we will not concern ourselves with rotation or magnetic eld, even
if these two ingredients have a signi cant in uence on convection (Busse 1976). We consider an in nite
medium in a rotating frame in which the unperturbed state is at rest. The mean eld is characterized by a
uniform gravity eld g. The velocity, pressure, temperature and density perturbations are denadted by
dp,dT anddr. In addition, we can have a chemical composition perturbatiom,In practice,d mcan
be the mean molecular weight change due to a chemical concentration change (and not due to ionization
which is already taken into account into the equation of state) or the mass fraction of the constituent
under consideration, but any other dimensionless parameter describing the chemical composition can be

1For a perfect gas, all these thermodynamic derivatives are equal to 1 (ex¢ept 1). In the following, this is the values
that we will use in our numerical examples when needed.
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used. The linearized Boussinesq equations are then

N dv=0; (4.3)
1. dr <9
Tidv=" —Ndp+ -——g+ nNdv, (4.4)
fdT = krR2dT + dv 2(Ny Nad)Hl; (4.5)
P
fidm= DR2dm+ dv 2NmHm: (4.6)
P

D, k1 andn are the solute, thermal and cinematic viscosities (or diffusivities, % i"r). Zis the vertical
unit vector directed upward (suchgs g2), andHp % is the pressure scale height. A closure
equation is provided by the equation of state which yields for the density perturbation

dr dm aT

— = — 4.7

= am— a
r "m 7T

Let us search for plane waves solutions of the folu €% ™ St: and introduce it in the previous equa-
tions’. After some vectorial algebra, this yields

k dv=0; (4.8)

(s + nk?)dv = irEd p+ dr—rg; (4.9)
— (NT Nad) T 5.

dm= _Nm_m .. (4.12)

S+ DKCHo vV Z:
Eliminating all the variables but the velocity perturbation and taking the cross product of Eq. (4.9) with
k we have

s+nk? k dv= OllTr(k Q): (4.12)
; : ; 2 9 < N 2 9 N
De ning the following frequencied| N? H—aT(NT Nag) | and [ N7, H—amNm, we get
P P
|
) N2 N
s+nk® k dv= STk 5+ DR (dv 2)(k  2): (4.13)
This rewritesA dv = 0 with
0 0 5 , 11
N
s+kpk? s+DK2
0k k@ oA
2 0 2 2 1
A=(s + nk9 NKT 2 Ngkz X (4.14)
kz 0 K @1 T's+nk2 A
ky Ky 0

2Note that, with this de nition, ifs is real and positive (negative), the perturbation grows (is damped) exponentialy. If
is complex, the perturbation oscillates, but its amplitude can still grow if the real part,) Regositive. In the following, the

termgrowth ratewill refer to Re(s).
3But remembering that this refers to a true frequency orihy%ik 0. In this caseNt = iNgy whereNgy is the well known

Brunt-Vaisala frequency.
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Finally Det A = 0 yields the dispersion relation
I

K3 N2 NZ,
+nk?= 2 T : 4.1
STNC= 1 S+ s+DK (4.15)

wherek, is the horizontal part of the wave vector (k ks + ky). It can be shown that, in this case, the
most unstable mode always occurs when the vertical wavenumber is equal to zero, i.ek,whdn
(Walin 1964). This corresponds to an elevator mode, which is not surprising as all the forcing follows
the vertical direction. Then restricting ourselves to this case, we get

(s + nk?) (s + kTk®) (s + Dk?) N2Z(s + Dk®)+ N2(s + k1k?) = 0: (4.16)

There are several possibilities to non-dimensionalize this equation. Anticipating the length scale of the
fastest growing modes, we will use the thermal diffusion scale

q
d= Kr=y; (4.17)

and the diffusion timeg?=kt = N; 1. Then usingk = k=d= Rp Nr=kr ands = Nt §, we get

(S+ ) (S +Prid)(§ +tgk®) (§+1t4kA)+ RIS +K®) = 0; (4.18)

where

Pro N5 (4.19)
is thePrandlt number,

ty D:kT; (4.20)
is the solute to thermal diffusivity ratio (or inverkewisnumber), and

2 _ar Nt KN
Nr= = ST T Mad. 4.21

is the so-calledlensity ratio(Rosenblum et al. 2011).

For a given material (i.ePr andt 4 are xed), there are three different regimes that are summarized
in Fig. 4.1

Ro1 < 1; the cubic Eq. (4.18) have three real roots, two being positive for small enough values
of the wavenumber. The instability can grow and overturning convection sets in, as was already
predicted by thé_edouxcriterion. Because the maximum growth rate is obtained for a vanishing
wavenumber, this analysis cannot provide us with the typical lengthscale of the fastest growing
mode.

16 R, 16 FF,’thld ; the real root of Eq. (4.18) is negative and the instability cannot grow as above.
However, one of the complex roots exhibits a positive growth rate, so that an oscillating overstable
mode can grow. This corresponds to the situation where a hotter rising eddy looses its thermal
energy ef ciently enough to be colder when it is brought back to its position by its increased mean
molecular weight . Thus, during its downward motion, the eddy will sink deeper, and increase the

amplitude of the oscillations.

Ro 1> FF,’thld ; the growth rates of all the roots are negative. The system is stable against convection.
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(a) Overturning convection (b) Double diffusive convection (c) Stable system

Figure 4.1: Growth rate of the modes described by Eq. (4.18) with respect to the wavenuntres for
tq = 0:3 in the three different regimes (see text). Solid curves stand for real roots (unstable modes if
positive) and dashed curves for their real part when the roots are complex (overstable modes).

In the double diffusive mode, we can even go further. By
maximizing the real part of§ over all wavenumbers, we can
nd the most unstable mode in the system. HE@ shows its
wavenumber and growth rate fBr = t4 = 0:3. By and large,
the most rapidly growing mode has a wavelength of the order
of 12d regardless ORol for the parameters selected. As ad-
vertised, the length scale of the fastest growing mode is on the
same order of magnitude than the diffusive length scale.

Thus, this simple linear analysis shows that the Ledoux
criterion is not suf cient to decide of the stability of an in-
homogeneously strati ed medium. Howeveve cannot pre-
dict the nite amplitude that the perturbation will reach when
the instability is fully developed. Under Earth conditions,
double-diffusive leads to layered convection, i.e. uniformfigure 4.2: Dimensionless wavenum-
mixed convective layers separated by thin diffusive interfadesr ; dashed) and growth rate
characterized by a steep jump in the mean molecular weightRs(S ) ; solid) of the fastest growing
observed in oceans or in laboratory experiments. Under gianérstable mode with respect to the in-
planet interior conditions, however, the exact nature of doublgrse density ratio ((Rl). The length
diffusive convection if it occurshomogeneous oscillatory conscale of the fastest growing mode is
vection or layered convectiofremains uncertain (Rosenblunabout 1.
et al. 2011).Various arguments (Chabrier and Baraffe 2007)
and 3D hydrodynamical simulations (Rosenblum et al. 2011), however, seem to support the existence of
layered convection under planetary conditios.any event, both homogeneous double-diffusive con-
vection or layered convection (generically denominated as "semi-convection” in the following) are found
to yield thermal and compositional uxes that are signi cantly smaller than that expected from standard
convection. Indeed, the presence of diffusive interfaces strongly decreases the ef ciency of heat transport
compared with large-scale, adiabatic convection, leading in the planet's interior to a signi cant departure
from the usual adiabatic pro le, as quanti ed hereatfter.
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Figure 4.3: Schematic representation of the interiors of Jupiter and Saturn, according to the present study,
and of layered convection, with the resulting compositional and thermal radial pro les. The abundance
of metals is constant within the well mixed convective cells of $jzend undergoes a steep variation
within the diffusive interfaces of thermal sizlg (grey regions). Thanks to this steep gradient, these
interfaces are stable against convection and energy and matter are transported therein by diffusive pro-
cesses. Because the size of these diffusive layers is very small compared with the size of the planet, the
mean thermal and compositional gradient$(handhN,,i ) can be used in good approximation to infer

the global planet structure.

4.2 A mixing length theory for layered convection

In order to investigate the impact of such strongly hampered convection on giant planet inter-
nal structure, | developed a simple, but completely analytical sub-grid model based on the Mixing
Length Theory (MLT) of convection.

As illustrated on Fig4.3and found in simulations (Rosenblum et al. 2011), we consider that a semi
convective zone consists of a large numbsr, of well mixed convectively unstable layers of size
separated by thin diffusive interfacestbermalthicknesgdr, within which the large stabilizing compo-
sitional gradient completely inhibits convective motions. Within each convective layer, the convective
ux is assumed to be described by the MLT formalism (Hansen and Kawaler ;1881 Appendixs for
details), with a typical mixing length equal to the size of the lajef he dimensionless mixing length
parameter is de ned as usual in the MLT formalism by dividirday the pressure scale heigat, |=Hp.

In§4.2.1, I will rst derive the equations describing separately the energy transport in the diffusive
and in the convective layers. Then, id 8.2, | will show how these formulas can be used to derive the
mean properties of a stack of convective/diffusive cells. As these equations take a polynomial form, |
will show in 84.2.3that the solutions can be expressed in terms of power laws in the two limit regimes
of interest. Finally, considering some physical limits that must apply to semi-convection inside giant
planets, | will derive analytical limits on the possible range of sizes for the convective/diffusive cells
(84.2.4).

4.2.1 Transportin each layer

In the stably strati ed regions of sizer, the thermal gradient in Eq. (4.56)lr, corresponds to
a gradient characteristic ofdiffusiveprocess, i.e. the thermal gradient needed to transport the whole
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outgoing energy ux by diffusion is given by

-~ 1 Hp

N ——— Fnt: 4.22
d kTr CpT Int ( )

As discussed in &.1.4, this gradient encompass both the radiative and conductive transport processes.

In convectively unstable zones, once a mixing length paranzetisrchosen, the thermal gradi-
ent can be computed with the MLT equations as described in Appéndbhe convective forcing is
characterized by

atgHs 4

F 5—a’(Ng Nag): (4.23)
kg

For sake of compactness, we introduce
€d Nol Nad; (4.24)
and rewrite Eq. (4.23) as
F  Foa‘ey: (4.25)
It is clear from Eq. (4.23) thaF o is a local constant of the medium, which characterizes its ability
to transport energy by convection, independently of the mixing length or of the ux to be transported

(1 eg). Once the convective forcing is determined everywhere in the structure, we want to determine the
actual convection ef ciencyl. de ned by Egs. (G.5) and (G.18) which rewrites

L N2|%=kZ = Foa’er; (4.26)
where
er= Nt Nug (4.27)

Then, eithelL or er can be considered as the unknown of our central equation

_ 3
F=L+ L¥X(L) ; (4.28)
with
. 1 P—
S(L)= P 1+4L 1 : (4.29)

Finally, combining the de nitions of. andF, we get the super adiabaticity in the convective layers

er=gy= L=F = Nu; (4.30)

and the proper temperature gradient is then obtained from Eq. (4.27). Then all the other quantities (con-
vective ux, velocity ...) can be calculated by using the relevant equation in Appé&hdix
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4.2.2 Mean properties of a convective/diffusive cell

Once we have calculated the thermal gradient in the convective zones bfaiwkin the radiative
interfaces of sizelr, we need to determine thmeeanproperties of a whole stack of convective-diffusive
cells. As discussed ichabrier and Baraff¢2007), since the convective plumes must be fed by the
diffusive interfaces, the thermal convectiveon= 1=(Nt$)) and diffusive (¢=kr) time scales should
be similar in each respective layer. Therefore

dr 2 kr 1_ 1

I T NI2E T s ()

(4.31)

In addition, comparing the mean kinetic energy of an upwelling eddy with the potential energy barrier
created by the negative buoyancy in the diffusive interface, we see that the above condition also entails
that convective overshooting can be neglected.

Because solute gnd heat have different diffusivities cthrapositionathickness of the inhomoge-
neous interface igd; D=kr dr, whereD is the solute microscopic diffusivity (Stevenson and Salpeter
1977; Chabrier and Baraffe 2007), and theor Z gradients at the interface can be linked to the mean
gradient (shown in Figt.3) by

% i (4.32)
dz

Disregarding convective overshoot, the solute ux)5 determined by the metal fraction variation rate
at each interface, such that

_ dz _ |+dz dzZ.
F = rDE— rD & hEI. (4.33)

From a global point of view, this can be regarded as an enhanced diffusion process with an effective
solute diffusivityDeg = D (I + dz)=dz.
Analogously, this enables us to compute theanthermal gradient to be used in Eq. (4.56)

Nm=

1 - d -
L R+ Rig: 4.34
ANTi T g N (4.34)

Numerical values oér, ey, and of the mean super adiabaticitiiti N.q are shown as a function of
the mixing length parameter for conditions found in the interior of Jupiter ordHddsee next section
for numerical values).

4.2.3 Asymptotic regimes

On Fig.4.4, we clearly distinguish two domains, separated by a value of the mixing length param-
etera = aciit. The behavior oL anddr in these two regimes is shown in Fig5. For values of
approaching unity, the medium is essentially convective but convection becomes less and less ef cient
with decreasing values @. Below agj the system becomes purely diffusive. One can show that the
transition arises when the convective forcifggrosses unity. Hence, the two regimes are separated by

F=1) acit (Foed ™ (4.35)

Because the planet's energy ux (luminosity) to be transported decreases withejjrdecreases and
acrit Increases. We saw that for condition prevailing in the interior of the actual Jupiter (Saturn), the
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mean thermal diffusivity ikt 5 10 ®m?.s ! (Potekhin 1999), yieldingo 3 10%3(9 10°?) and
Nag Nag 40 (30; see also Fig.7), so thadeir= 1 10 2 (2-3 10 °). Hence, theonvectivepart
of the parameter space (roughdy2 [acrit; 1]) gets narrower with time untiy < 0, at which time the
planet becomes completely diffusive.

Convective limit

As seenin Figd.4, fora  acit, convection is still the dominant heat transport mechanism in our
object, implying thatF 1; the above equations can easily be solved in this limit. In this regime,
Egs. (4.28), (4.29) and (4.30) enthil 1, and keeping only the highest order termg jive get

s 1

L F23=(Foe)¥2at™

er F ey=F,ePa 3 (4.36)
and from Eq. (4.31),

dr=l F ¥®=(Foe) a =3 (4.37)
Using Eq. (G.9), the convective ux reads

pP——— 5
Feonv= r T gHpar 5 a2 (4.38)

Then, to rst non vanishing order,

i Nag+(Ng NaF ¥+ O(F ¥9); (4.39)

or equivalently

1=6 5=6 2=3,

Fo g a (4.40)

Thus, combining Egs. (4.37) and (4.40) we g&ti  Nagu dr=I, which illustrates the fact thaton-

vection remains ef cient in the convective layers and that most of the super adiabaticity arises from the
diffusive interfaceg¢dashed curve in Fig.4). Indeed, considering the departure from adiabaticity in the
convective cells @pu F  173; solid curve in Fig4.4) only yields a higher order correction in Eq. (4.39).

As expected and as formalized above, the presence of diffusive interfaces impedes large scale convection
and substantially enhances the global super-adiabaticity.

In terms of the Nusselt number, this reatis= F=L F'=3 L2 1, which means that indeed
convection transports most of the energy. Moreover, in our MLT formalism, this implies that

Nu=(Pr Ra)*2 (4.41)

This scaling differs from the one found in numerical simulations, winaugr Ra-=3 (Rosenblum et al.

2011). This means that in the high convective ef ciency regime of our MLT-based layered convection
formalism, the MLT overestimates the convective ux, as is indeed the case for large scale convection
(Hansen and Kawaler 1994). In other words, smaller convective/diffusive cells will be needed in our
MLT model compared with the results &osenblum et al(2011) to reach a given amount of super
adiabaticity, which is the very quantity constrained by observational data &d#. 8This should not,
however, drastically change the amount of heavy element enrichment needed to counteract this super-
adiabaticity.
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Figure 4.4: Mean super adiabaticity of of a semi-convective medium as a function of the mixing length
parametea = |=Hp (red dashed curveF o= 3 10°3: g5 = 40). For comparison, the super adiabaticity

in a convective (solid) and in a diffusive cell (dashed) are also shown. As expected a smooth transition
between the convective and diffusive regimes occurs agar 10 °.

(a) Convection ef ciency (b) Thermal thickness

Figure 4.5: Left: Ef ciency of the convection (L) as a function of the forciig= LNu (Solid curve).

The dashed (dotted) line represents the 2/3 (1) power law characteristic of the high (low) ef ciency
regime. Right: Size of the diffusive layer as a function of the mixing length under Jovian conditions.
The dashed and dotted lines are tH& and| curves respectively. At the bottom of the curve, we shift
from the convective regime (on the right) to the fully diffusive regime (on the left). As expected, this
transition occurs when the size of the diffusive and convective regions are equal.
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Diffusive regime

Fora agi, F andL are 1. Thus, keeping only the lowest order termd.inn Egs. (4.28),
(4.29) and (4.30), yields

L F
§ F 17
er € (4.42)

and from Eq. (4.31),
dr=l F ¥=(Fgey) ¥a (4.43)

Convection becomes so inef cient that the convective cells must become smaller than the diffusive ones.
Even in the convective layers, all the ux is transported by diffusionldnd 1. Eventually, the medium

will exhibit large diffusive layers separated by thin convective interfaces. However, if the medium is
convectively unstable in the absence of any compositional gradient, this regime is not stable, as will
be shown in the next section. This would require a mean molecular weight gradient that remains large
enough on the planetary scale, which is possible onlNgif Nag, i.e. if the planet's interior is already
diffusive in the rst place.

An additional constraint is provided by the Prandlt number that we have neglected throughout. In
the diffusive regimeL. = Ra Pr 1. But we must remember that one of the necessary conditions
to conserve an overturning convectionRe> 1. Then the convective layers can support convective
motions only wher. > Pr. Below this limit, convection will not be vigorous enough to counteract, not
only the thermal losses, but also the viscous friction.

4.2.4 Theoretical constraints on the mixing length

Indeed, semi-convection, is not necessarily long lived for all values. oDn one side, the mean
molecular weight gradieritl,, in the diffusive interfaces must be high enough to satisfy the stability
criterion given by Eq. (4.2). This implies

19 O > (g Nag): (4.44)
dz CTt

which can be rewritten

|+ dZHpC—mhd—z' MTinm

> (Ng  Nag): :

For a perfect gassm= 1 andct = 1. The precise value oﬁ%‘ actually depends on the precise
PT
chemical composition of the heavy element considered, but is typically around unity. Let us consider

a stack of layers extending over a zone of dizend de ne a global gradierh%i DTZ, whereDZ
is the difference between the metal mass ratios of heavy element at the bottom and at the top of the
semi-convective zone. In the diffusive reginde, |, and the aforementioned condition reads
dz. R . .
Heh i DZTp & (Ng Nag): (4.46)

As DZ6 1 by de nition, a semi-convective zonat the entire planet's scales possible only if
Ng. Nagis nearly equal to or smaller than , i.e. if the whole object is nearly diffusive in the rst place.
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In an object with a heat ux high enough to be convectively unstable, this criterion can never be met
for L Rp. This simply means thain order for layered convection to be stable, convective cells must
remain larger than the diffusive interfaces, and the medium is always in the convective gegiragi.

We stress that this applies only teyyeredconvection, and does not preclude the possibility that, under
some conditions, double diffusive convection may manifest itself under the fon@nobgeneoudouble
diffusive convection and act liketarbulent diffusion(Rosenblum et al. 2011).

Another possibility is that the semi-convective zone is con ned fmation of the planet, near an
immiscibility region or a phase transition for example. Then, the total size of the zone mustLwR{f%
€y 1 ( 1=40 in Jupiter). In that case, a large enough jump in the heavy element mass fraction can be
suf cient to stabilize the whole zone against convection and opdiffasive buffeiin the interior (where
Nt  Ng). From the global point of view of the planet, this would act as a composition, temperature and
entropy nearly discontinuity. In the following, we will not consider this scenario any further, and we will
only consider the effect of a planetary scale semi-convection zone.

Thus, considering the convective limit, the criterion (4.44) is rewritten

' D ¢ g0
a23> - Cl — dﬂmm . (4.47)
T Cm poTDZ LY

PT

Under the present conditions in the interiors of our gas gidbts, 10 © 10 8m?.s ! (Stevenson

and Salpeter 1977), yielding & 10 °-10  which is very close t@ci. This con rms our precedent
estimate: in order to be stable, diffusive interfaces must be thin enough that layered convection can occur
only in the convective limit.

On the other hand, the solute gradient in the planet will be homogenized within a typical timescale
r DZR,
Note, however, that layered inhomogeneities could be dynamically regenerated over time. In that case,

layered convection will always persist in the planet's interior. In the convective limit, substituting the
solute ux by Eq. (4.33), and using

dz. Dz

t, (4.48)

% RT)’ (4.49)
Eq. (4.48) becomes
R2 dr R2
tz p=—=— P=x=F "Ppa 3 4.50
2 P Poie  HA (4.30)

Therefore, if energy transport by double-diffusion in the interiors of Solar System giant planets yields
a . 10 3-10 2, complete homogenization of their interiors will never occur in less than 5Gyr, i.e. at
their present age. This indeed corresponds to a fairly inef cient transport mechanism compared with
standard large-scale convection. This small valua gfsti es a posteriori the approximation of contin-
uous thermal and heavy element pro les when considering the planet's entire internal structure.

Therefore, for the age of the Solar System and for the conditions prevailing in gas giant interiors,
semi-convection is only long lived in the rarg@ [10 & 10 2]. In this limit, a > acir, and convection
remains ef cient enough to use tiie 1 limit of the MLT equations derived in £.2.3 (Eq. (4.36)
through Eqg. (4.40)). This analysis shows tifaguch a semi-convective zone is present at some point
during the evolution of the planet, it is stable and will persist during the planet’s life until today.
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4.3 Adiabatic models of Jupiter and Saturn

In the analytical analysis derived in the previous section, | have shown that semi-convection is
theoretically possible in giant planet interiors for the aforementioned rangevafues.To get further
constraints from the observational data measured for our Solar System gas giants, we need to
determine the area of thesuper adiabaticity/compositioparameter space for which we can derive
internal structure models that match these measurements.

This is the goal of this section, where | rst explain the methodology used to nd such structure
models (§84.3.1) and use it to derive reference homogeneous models of Jupiter and SatBu2).(8
Finally, in 84.4, | present new semi-convective inhomogeneous models of our gas giants, and discuss the
implications of these models for their heavy element contents and temperature pro les.

4.3.1 Method

Solar System giant planets are rapidly rotating bodies (the period of rotation is about 10 hours), with
the centrifugal potential representing about 10% of the gravitational potential. As extensively discussed
in ChapteB and AppendiE, this modi es the hydrostatic equilibrium condition between the pressure
gradient and the gravitational force in the interior which now writes

NP= r N(Vg+ Vior); (4.51)
where
Z r (I’() Z
Vo= G mdgro and Vigi(r;q) = w(x9xax? (4.52)
0

denote respectively the gravitational and centrifugal potentials, with differential rotajor), where

X is the distance from the positionto the rotation axis, an@ the gravitational constant. In the present
study, wp is assumed to be constant and given by the magnetospheric rotation rate. Because of the
symmetry of the centrifugal potential with respect to both the rotation axis and the equatorial plane,
surfaces of equal densities for these objects are supposed to be generalized ellipsoids of revolution whose
exact shape is given by

r(f;a)= 1 1+ & Sn(f) Pn(COsq) ; (4.53)

wherer is the mean radius of the equipotentR, are the usual Legendre polynomiaiss the colatitude

and thes, are a set of gure functions. These latter can be derived using the theory of gures for rotating
bodies detailed in AppendE, and must be solved iteratively with the setpefrturbed1D hydrostatic
equilibrium equations

P _ 1Gm w5

im ap + ar—*' j w(s); (4.54)
s _ 1

Tm~ apier (4.55)
1T TP .

ﬂTn - EﬂTnNT, (456)

wheremis the mass enclosed in the equipotential of mean radausd]j \,(r) is a second order correction
due to the centrifugal potential, which depends on the gure functions (see Eq. (E.17)). As discussed in
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§4.2, the thermal gradient is determined by the energy transport process which is relevant in the zone
considered.

The departure from sphericity of the iso-density surfaces results in a perturbation of the external
gravity eld Vg(r;q) that writes
GM n ¥ Re ] (0]
Vo(ra)= == 1 & () ZiPu(cosa) (4.57)
7 i=1

- 1 oy p 2o 3.
Joi = MlRéiq Vr(r,q)r Pi(cosq) d°r; (4.58)

wherer is the radial distance from the center of the plaivgtthe mass of the planeReq the equatorial
radius,q the colatitude P,; are Legendre polynomials ard; denote the gravitational moments, that

can be computed once the gure equations have been solved. The measured gravity moments provide
stringent constraints on the density pro le and the possible layering within these planets.

As, in practice, Legendre polynomial expansions are truncated at a givemoedelosure equation
is provided by the equation of state (EOS) of the mixture along the planet's interior pro le. Such an EOS
is generally given by the so-called ideal volume law for the mixture:

1: £+ i+ E; (4.59)

r I'x Iy rz
whereX, Y andZ denote the mass fractions of H, He and heavy elements, respectively. For the H/He
uid, the most widely used EOS is the Saumon-Chabrier-vanHorn EOS (Saumon et al, $@%51).
For the heavy material, | have used the "Rock" EOS of (Hubbard and Marley 1989) for silicates and
the "lce" ANEOS equation of state (Thompson and Lauson 1972) for volatiles, (€@Hg, H,O). The
impact of the differences between various EOS's on exoplanet structure and evolution has been explored

in (Baraffe et al. 2008).

Once such equations of stat®r ()], are speci ed, structure models with various compositions
are calculated by solving iteratively the aforementioned hydrostatic equilibrium condition for a rotating
body and the third-order level-surface theory (Zharkov and Trubitsyn 1978) to obtain a model which
reproduces the observed values of the radidg, and gravitational moments andJ; measured by the
Pioneer and Voyager missions (see Tahlb).

Table 4.1: Observed characteristics of Solar System gaseous giants (GuillgttB@@kimbers in paren-
theses are the uncertainty in the last digits of the value).

Jupiter Saturn
M, [10%%kg] 18.986112(15) 5.684640(30)
Req [10'm] 7.1492(4) 6.0268(4)
Rool[10°m] 6.6854(10) 5.4364(10)
Pot[10%s] 3.57297(41)  3.83577(47)
b 107 1.4697(1) 1.6332(10)
Jy 10 -5.84(5) -9.19(40)
Zatm=2 2-4 2-8

(Y=(X+Y))am  0.238(50) 0.215(35)
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4.3.2 Homogeneous reference models

In conventional giant planet models, the abundances of heavy elements are chosen to be constant
in the gaseous H/He envelope, with a possible discontinuity at the transition between the molecular and
metallic regions (Chabrier et al. 1992). In the absence of a compositional gradient and under the actual
conditions found in Jupiter and Saturn,

Nag< Ng: (4.60)

so that the medium is always convectively unstable with respect to the Schwarzschild criterion. As
discussed in Appendix G, convection is very ef cient the structure can be solved by déftiagN,q in
the energy transport equation given by Eq. (4.56).

In order to have a reference case, | use the formalism described ing3.1to derive homoge-
neous, adiabatic interior models representative of the usual 2-layer compositiors the interpolated
SCvH EOS is used, | do not consider the effect of a Plasma Phase Transition, and only two free parame-
ters remain, namely the core mass:(nd the metal mass fraction in the gaseous envelogg) (4 he
temperature, density and pressure pro les of the best representative homogeneous models of Jupiter and
Saturn are shown in Fig.6 (solid curves).These are composed of a solid core of mad = 3:9 and
256M surrounded by a H/He gaseous envelope with aonstantmetal fraction Zg,, = 0:11 and
Zenv= 0:05for Jupiter and Saturn, respectively (these results are summarized in Tabld.2). These
reference models yields interior enrichment that are consistent previous determinations (Chabrier
et al. 1992, Saumon and Guillot 2004; Guillot 2005).

Figure 4.6: Pressure (black), temperature
(red) and density (blue) proles as a func-
tion of depth (expressed by the Lagrangian
coordinate, i.e. the mas®), for the ref-
erence adiabatic (solid curves) and semi-
convective (dashed curves) cases for Saturn
(@) and Jupiter (b). The increased thermal
gradient due to the inef cient heat transport
in the semi-convective case (with = 10*

for Jupiter and 16° for Saturn) strongly in-
creases the internal temperature. This causes
a partial redistribution of the core material
within the gaseous envelope.
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4.4 Inhomogeneous interiors

I now turn to inhomogeneous models. In the present calculations, in contrast to all previous models,
the mass fraction of heavy materi&gm) at a depthr(m) within the planet (i.e. at the depth of the iso-
density surface enclosing a mas®f the planet) icontinuouslydecreasing from the core to the surface,
producing a compositional gradient within the gaseous envelope of the planet,

o dinzZ dr dz -
Z qnp_dmpar PN& (4.61)

4.4.1 Compositional gradient origin

The possible origin of such a compositional gradient is an open question (StevensqiCha®sier
and Baraffe 2007). While in the conventional scenario all the accreted planetesimals are assumed to di-
rectly sink to the core and not to evaporate in the envelope, for sake of simplicity, incomplete mixing
of large planetesimals or dissolution of a substantial fraction of volatiles and rocks from small solid
bodies could occur in the envelope during the phase of planetesimal accretion on the nascent planet; a
substantial amount of ice could as well remain in the envelope (laroslavitz and Podolakr-2®0and
lkoma 2011). The gradient might also stem from an only partial redistribution by small scale convec-
tive motions of stably layered (soluble) constituents released by core erosion in the gas-rich envelope
during the planet's evolution (Stevenson 19&zuillot et al. 2004). This could be enhanced by the im-
miscibility (phase separation) of an abundant enough material (e.g. helium, water) in the dominantly
metallic-hydrogen envelope. At last, rapid rotation and/or strong magnetic elds, necessarily present
in Jupiter and Saturn interidtsare known to hamper large-scale convection (Chabrier et al. 2007a),
possibly leading to imperfect mixing of heavy elements in part of the envelope.

4.4.2 Numerical results

| now derive semi-convective, inhomogeneous interior models for Jupiter and Saturn. | stress
that all these models are consistent, within the observational uncertainties, with the measured gravi-
tational moments of Jupiter and Saturr(see Table4.1; Campbell and Synnott 1985 Campbell and
Anderson 1989).

An additional constraint on the outermost value of the compositional gradient is provided by the
surface abundance of heavy elements in the planets measured by the 1995 Galileo Entry Probe mission.
Indeed, elemental abundances of the atmospheres of solar giant planets are observed to differ signi cantly
from each other and from the solar composition, being enriched by a fackeor 4 and 2 8 with
respect to the Sun's atmosphere for Jupiter and Saturn, respectively, as shown #h Téblellot 2005).
Moreover, the planet's total mean abundances of H andXHandY)) must recover the values of the
protosolar nebula, i.e&/=(X+Y) 0:275.

In the present calculations, the adjustable parameters to ful Il all these constraints are chosen to be
the mass of the core (] the mean heavy element mass fraction in the gaseous envélgpe &nd the
global compositional variation in the envelope (RZthe difference between the metal mass fraction
just above the central core and the one in the atmosphere). To assess the robustness of the results with
respect to the equation of state chosen to describe the thermodynamics of the heavy material, | derived
several sets of models for which the composition of the core varies from pure ice to pure rock.

4The zonal ows observed in Jupiter's atmosphere might indeed reveal the presence of coneéistaedeeper levels, a
consequence of the impact of rotation on convective motions, according to the Taylor-Proudman theorem (Busse 1976).
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Figure 4.7: Conductive (top red curves) and
adiabatic (bottom black curves) thermal gra-
dient proles for Jupiter and Saturn. The
shaded area represents the allowed range
of super adiabaticity in presence of semi-
convection, consistent with the observational
constraints. The dashed curves correspond
to 10 layers and the dotted curves t0%10
and 10° layers for Jupiter and Saturn,
respectively.

The important quantity describing layered convection is the number of convective-diffusive layers,
Ni. This number is roughly equal to the ratio of the size of the semi-convective zone, comparable to
the planet's radiusRy, if this zone extends over the whole planet, to the height of a typical convec-
tive/diffusive cell,| + dr. As shown in 8.2, in the regime where convection dominatesH| 1,
so that the size of a convective-diffusive cell is nearly the one of the convective layek (I 1), and
N, Rp=l. Becaus#lp R inthe deep interior, the number of layers in the planet is thus approximately
equaltoN, a 1, and in the following we will always refer indifferently to eitharor

N a ! Hp=l: (4.62)

As shown in .2.4,N, is constrained to lie within the range4§ N, 10’ 8. Note that, given
the small size of the diffusive-convective layers compared with the size of the planet, the discontinuous
(staircase-like) temperature and composition pro les can be well approximated by contineaother-
mal and compositional gradients\thi andhiN i, respectively) to determine the planet's global structure,
as illustrated in Figd.3.

This possible range of numbers of layers is further constrained by the numerical calculations.
nd that, in order to reproduce our giant planet observational constraints, no more than 3 10
layers can in reality be present in Saturn and 10* in Jupiter. Indeed, a larger number of layers
leads to so high temperatures in the interior that the induced mean density decrease can not be
counterbalanced by an increase of the heavy element mass fraction compatible with the observed
surface abundances. This is due to the fact that, the larger the number of layers, the smaller the size
of each convective cell, reducing the maximum height a convective eddy can travel to transport heat
before being stopped by the negative buoyancy present in the diffusive interface. A large number of
layers thus decreases convective heat (and composition) transport ef ciency. This leads to an increase
of the mean super adiabaticity, as portrayed on &ig. which in turn immediately implies a rise of
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Figure 4.8: Metal abundance proles as a
function of depth (expressed by the La-
grangian mass) for Saturn (a) and Jupiter
(b) for different numbers of layers. The
abundance increases with the number of lay-
ers, to keep the density prole unchanged
when convection becomes inefcient. The
extreme cases (10 layers for Saturn and
10* layers for Jupiter) correspond to the semi-
convective pro les portrayed in Fid..6.

the internal temperature, as illustrated on Fig. 4.6. It is important to stress that super adiabaticity is the
physical quantity most directly constrained by the data. Tiwngreas the allowed range of number of
layers (or equivalently of mixing length parameter values) may depend on the model used to parametrize
semi-convection (see 84.2.3), the allowed range of super adiabaticity displayed4n/sgould remain
weakly affected.

The pressure, density and thermal pro les obtained in the most exemeconvectivease com-
patible with the observational constraints discussed above are shown4n@gashed curves). As seen
on the gure, and as expected from the above discussion, the non-adiabatic envelope pro le obtained
in the semi-convective case yields substantially higher internal temperatures than the usual adiabatic
assumption, as heat and material redistributions are partly inhibited by diffusive processes. The pres-
sure and density pro les, on the other hand, remain barely affected, being strongly constrained by the
gravitational moments.

Indeed, at basically xed density pro le, a higher temperature pro le must be compensated by a
larger amount of heavy material within the envelope. This is illustrated indR8gwhere we show the
abundance pro les, as calculated in Appenidipcorresponding to semi-convective models with different
numbers of layers. The bottom curve (solid) in each panel corresponds to models with 1000 layers while
the other curves correspond to a gradually increasing number of layers.

Thereforejn order to compensate the radius increase (density decrease) due to the hotter interior,
semi-convection yields a signi cantlgrger total metal contentompared with conventional homoge-
neous modelsThis can be seen in Fig.9, which shows the amount of heavy elements in the core and
envelope for the various cases discussed here, as summarized it abler Saturn, up to 44 of
heavy elements could be present in the planet while for Jupiter the heavy material content could reach
65M . This corresponds to about 20 and 10 times the solar abundances, respectiabe these

5 Note that the abundances of heavy elements brought to Jupiter and Saturn, in particular water, could already be enriched
compared with the solar value (Gautier et al. 2001)
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Figure 4.9: Mass range of heavy elements in the corg @dd in the envelope (Wkny) consistent with

all observational constraints, for different numbers of layers, for Jupiter (bottom right) and Saturn (upper
left). The open dots at the upper left of each region correspond to the homogeneous interior models. As
the number of semi-convective layers increases, the ef ciency of convection decreases, and the heavy
element mass fraction increases to counteract the radius increase induced by the planet's higher internal
temperature. The metals initially present in the core are then redistributed within the envelope. For
Jupiter, solution with no core at all (¥ 0) can be found for the non adiabatic models (red dots).

values only depend on the allowed amount of super adiabaticity, they should not strongly depend on our
modeling of diffusive/convective transport, as mentioned above. In contrast, the maximum amount of
heavy elements compatible with the observational constraints for the homogeneous, adiabatic models, is
about 3M for Saturn and 404 for Jupiter, in agreement with previous studies (Saumon and Guillot
2004).

But semi-convection does not only increase the global metal content, it also yietnametely
differentdistribution of heavy elements. While the global enrichment of the planatisasedin the
inhomogeneous modelie mass of the central core is decreased, as heavy elements are preferentially
redistributed in the gaseous envelope.

In the case of Saturn, the vertical spread in core mass at xed number of layers observed ifi Fig.
is obtained when varying the core composition from pure ice (top) to pure rock (bottom). In Jupiter
the inferred core mass is too small for the equation of state to make a signi cant difference. One could
wonder why the homogeneous case is not continuously recoveredavtestds toward 1. This slightly
counter intuitive effect is due to the fact that, at least when using the SCvH EOS, completely homoge-
neous models (central core plus a fully homogeneous envelope) cannot in general reproduce both the
observed), andJ; (Chabrier et al. 1992Saumon and Guillot 2004). Thus, if we relax the consfnt
condition in the envelope, the presence of a compositional gradient and of a smaller core appears to be
the best solution to reproduce observational data, even in the absence of any additional super-adiabaticity.

For Jupiter, models can be found that match the gravitational moments without the presence of
a central, completely differentiated core (red dots on the bottom right of Bi@). Such cases yield an
atmospheric metallicit¢ nn, 4 5Z . The fact that the possible erosion of the core mass would have
been more ef cient in Jupiter than in Saturn might stem from the larger energy ux available in Jupiter
(Guillot et al. 2004).
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Table 4.2: Heavy element content for Jupiter and Saturn inferred from the various models consistent with
these constraints within the quoted observational uncertainties.

Jupiter Saturn
Region Amount of heavy elements (M
Homogeneous model

Envelope 36 4.7

Core 3.9 25.6

Total 40 30.3
Semi-convective models

Envelope 41-64 10-24

Core 0-0.5 12-21

Total 41-64.5 26.5-42

4.5 Prospect for giant planets evolution

The impact of non-adiabatic interiors on the cooling of the planets requires more cumbersome
evolutionary calculations and will not be explored here. However, the following points are worth men-
tioning. Conventional models based on fully adiabatic thermal pro les notably lead to cooling times
about 15% longer than the age of the Solar System for Jupiter (Fortney et al. 2011). In principle, the
hotter non-adiabatic internal structures suggested in the present paper will prolong the cooling and thus
worsen the problem. However, in case of erosion of an initially large core, part of the gravitational work
will be spent eroding the core and mixing the material upward and will thus not contribute to the total
luminosity, quickening the cooling. Both effects must be properly accounted for to infer the appropriate
cooling timescale.

On the other hand, if Jupiter and Saturn initial cores were allowed to be relatively larf@M&),
the corresponding high surface density of solids in the protosolar nebula will quicken the formation
timescale in the conventional core accretion scenario, helping solving the related formation timescale
problem (Pollack et al. 1996). Furthermore, since, in the present scenario, some of the ablated material
from the accreted planetesimals during the planet's early formation stages remains distributed throughout
the envelope, this will (i) reduce the heating due to gravitational energy release produced by the infalling
planetesimals on the planet embryo and (ii) increase the envelope mean molecular weight. Both effects
will cause the protoplanet to contract more quickly, shortening again the planet's formation timescale
in the conventional core accretion scenario (Pollack et al. 1996). A correct exploration of the impact of
inhomogeneous interiors upon giant planet history thus necessitates to investigate the consequences not
only on the thermal evolution but also on the formation process.
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4.6 Conclusion and perspective

In this chapter] have rst developed an analytical approach of layered convection, based on an
extension of the MLT formalism. This formalism allows a quantitative determination of the expected
number of diffusive layers, or equivalently of the average characteristic mixing-length parameter, in a
semi-convective planet interior characterized by a given total ux and a given thermal (and composi-
tional) diffusivity. Furthermorethis formalism allows an exact determination of the characteristic
thermal gradient in the presence of double-diffusive convection, and thus of the related amount of
super-adiabaticity within the planet's interior.

Using this formalism| have computed semi-convective interior models of Jupiter and Saturn.
| have shown that a strati ed internal structure for Solar System gaseous giants, with a compo-
sitional gradient of heavy material extending over a substantial fraction of the planet, is a viable
hypothesis, as such models can ful ll all the observed gravitational and atmospheric constraints for
these planets. This new possibility differs from the conventional description of giant planet interiors,
assumed to be composed of 2 main superposed, well identi ed layers of homogeneously distributed ma-
terial, namely a solid core surrounded by a dominantly gaseous H/He envelope. The consequences of the
present giant planet interior description are multiple. Namely,

(i) our jovian planets might be signi cantly more enriched in heavy elements than previously
thought,

(i) their interior temperature, thus heat content, might be much larger than usually as-
sumed,

(i) the inner temperature pro le could signi cantly depart from the usually assumed adia-
batic pro le.

Note that these conclusions do not depend on the precise model used to describe double diffusive con-
vection.

Besides directly affecting our conventional vision of giant planet mechanical, compositional and
thermal structures, these results have profound impacts on our understanding of planet formation and
cooling properties. Indeed, the revised possible maximum amount of heavy material bears direct conse-
guences on the determination of the ef ciency of solid planetesimal accretion during planet formation in
the protoplanetary nebula, suggesting an early and ef cient capture of planetesimals for our, and probably
extrasolar as well, giant planets. Moreover, the larger heat content and the departure from adiabaticity, as
well as the possibility of signi cant core erosion from an initially large core, directly impact the planet
cooling histories. Departure from adiabaticity, in particular, implies less ef cient heat transport, a di-
rect consequence of the inhibited convective motions due to a persistent compositional gradient, and
thus a smaller heat ux output rate than assumed in the conventional approach. These results open a new
window, and raise new challenges, on our present understanding of planet structure, formation and evolu-
tion. Importantly, the viability of such strati ed interior models for our Solar System gas giants directly
applies to the case of extrasolar planets, reinforcing the possibility that such a lower heat ux output
could at least partly explain the anomalously large radius of several transiting "hot Jupiters" (Chabrier
and Baraffe 2007). Indeed, it seems that invoking an extra source of (tidal, kinetic or magnetic) energy
dissipation in these object interiors can not completely solve this “radius anomaly” puzzle and that an
alternative or complementary process is necessary (Laughlin et al. 2011). Unconventional, inhomoge-
neous non-adiabatic planetary interiors, as suggested in the this chapter, might provide the missing piece
of the puzzle.
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Chapter 5

An alternative energy source: Tidal
friction

An error does not become a proof by reason of multiplied propagations,
nor does a truth become error because nobody sees it

Mahatma Gandhi

When it shall be found that much is omitted,
let it not be forgotten that much likewise is performed

Samuel Johnson, 1755
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After examining in detail in &.1.2the relation between theonstant time lagDt) in Hut
(1981) model and the usual tidal quality factor (Q) widely used in the literature, in Appendix
| extend the Hut model to any nite obliquity. Then, in582, | present analytical solutions [of
the equations that | derived for two limiting cases. These simple models have two purpdses, (i)
providing benchmarks for the numerical code that | developed to solve the full set of equations,
and (ii) allowing an analytical constraint @ from the study of the Galilean satellites with the
constant timelag model. In$3, | also update the results bévrard et al.(2009) by including
newly found transiting planets, and nd many new stable systems.

In §5.4 1 demonstrate witlanalytical argumentshat truncating the tidal equations a4
order in eccentricity leads to wrong tidal evolution histories, with sequences drastically differ-
ing from those obtained when solving the complete equations. 395,81 compare the full
thermal/orbital evolution calculations with similar studies based on a truncated and cdDstant
tidal model. These numerical comparisons con rm and quantify the conclusions reached in
§5.4, namely that low-order eccentricity models substantially underestimate the tidal evplution
timescales for initially eccentric systems and thus lead to incorrect tidal energy contributjons to
the planet's energy balance. | show for instance that tidal heating cannot explain the rddius of
HD 209 458 b for the present values of their orbital parameters, contrarily to what has been ¢laimed
in previous calculations based on truncated eccentricity models (Ibgui et al. 2009).

Finally I apply my model in .6 to some of the discovered bloated planets. | show|that
although tidal heating can explain the presently observed radius of smuerately bloatedHot
Jupiters, as indeed suggested in some previous studies, tidal heating alone cannoaéxplain
anomalously large radii. Indeed, in these cases eccentricity damping occurs too early in the sys-
tem's tidal evolution (assuming a genuine two-body planetary system) to lead to the presgnt state
of the planet's contraction.

The results of this chapter led to the publicationlsftidal heating suf cient to explai
bloated exoplanets ? Consistent calculations accounting for nite initial eccentritiégonte]
et al. 2010a). The results of5§2.3where also used iftidal obliquity evolution of potentially
habitable planet¢Heller, Leconte & Barnes 2011).

—




Theory of tidal evolution 107

- - TIDES HAVE MARKED OUT THE HISTORY
G rav I tat I O n aiscience and astrophysics since the rst
sessment by Seleucus of Seleucia of the
relation between the height of the tides and the position of the Moon and the Sun in the second century
BC. Modern astrophysics extended the study of gravitational tides in an impressive variety of contexts

from the synchronization of the Moon and other satellites to the evolution of close binary stars and even
the disruption of galaxies.

The recent discoveries of short period extrasolar planetary systems and the determination of the
anomalously large radius of some giant close-in exoplanets revived the need for a theory of planetary
tides covering a wider variety of orbital con gurations than previously encountered in our own solar
system planets. In particular, the orbital evolution of very eccentric systems like HD 86 60&:9337,

Naef et al. 2001), or of planets on polar and even retrograde orbits, like HAT-P-7 b (with a stellar pro-
jected obliquity 1825 9:4deg; Pal et al. 2008), cannot be properly treated with tidal models limited
to the case of zero or vanishing eccentricity and obliquity.

5.1 Theory of tidal evolution

5.1.1 Tidal potential

Since Kepler (1609), we know that when two spherical body are in gravitational interaction, they
undergo - provided that their total mechanical energy is negative - a Keplerian motion consisting in
elliptical orbits. It has been shown Byewton (1687) that this behavior stems from the scaling of the
gravitational force between the two bodies as the inverse of the square of their separation. Of course, this
simplicity of the gravitational potential relies heavily on the assumption of spherical symmetry of the
object creating the potential, and breaks when its mass distribution presents non spherical deformations.

These asymmetries can be separated in two classes that have quite a different impact on the dynam-
ical properties of the object.

The permanent or slowly varying asymmetries

Their origin can be very diverse. In rigid or elastic bodies, such as rocky planets and asteroids,
the internal stress keeps the structure from evolving toward its minimum energy state, conserving the
primordial asymmetries inherited from the formation stage. For small - generally undifferentiated - ob-
jects, where self-gravitational energy is still comparable to the internal electromagnetic cohesion forces,
this primordial asymmetry can directly come from an inhomogeneous accretion of matter. For more
massive objects, including planets, the energy released during mass accretion is suf cient to liquify the
bulk material. During this early uid phase, differentiation takes place and the object is in a state of near
hydrostatic equilibrium. As discussed in Chag@ein such a phase, the presence of a disturbing potential
gives rise to a non-spherical shape that can be crystallized during the cooling and solidi cation of the
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Figure 5.1: External potential created by a deformable body under the in uence of a distant companion.

planet. This is thought to be the cause of the attening observed on our own earth and all other rocky
planets in the solar system. For uid bodies, like giant gaseous planets, a fast rotation also prevents the
sphericity of the object.
Up to the quadrupole order, it can be shown that the potential of the object is given by
n I !#

GM, 1 3¢ ))?)
2

Ve(r) = T rES(B A) Lﬁk)z)

+(C A > ; (5.1)
whereA, B, andC are the principal moment of inertia of the body with respect to the axis following

i, ] andk, respectively. This perturbation to the gravitational potential causes the precession of the
periapsis, and the precession and nutation of the spin of the planet. For perfectly rigid bodies, no energy

is dissipated, and these effects are periodic. The precession period for example can be approximated by

5 20w 2C
PP "3 n2cose; 2C A B’

wherew; is the angular velocity of the body, argl is its obliquity, i.e. the angle between the rotation

and the orbital axis. Because the periods of these processes range from a few days to a few million years,
when no resonances arise, the precession-nutation motion can be averaged to compute the secular tidal
evolution on a billion years timescale, as discussed later.

(5.2)

The periodic deformations
For an elastic or uid body, the presence of an external perturbation, like the one created by a
secondary body, creates a distortion of both the shape and the gravitational eld of the object, as discussed
above. As detailed in Chapterthe external gravitational eld created at the locatidoy a deformable
body perturbed by a secondary point mass)(ldcated at- (See Fig5.1) is given by Eq. (3.31):
" #

_ GM; s R M,
Vel = = 1 & kg,
n= K

P.(cosy) ; (5.3)

wherey is the angle betweenandr-, Ris the mean radius of the primary akglis the love number

of degree n. This perturbed gravitational eld also creates periodic variations of the orbital elements. In
particular the r= 2 term entails an apsidal precession that can be measured and give direct constraints
on the internal structure of the object considered (Sterne 1939).

The major difference with the permanent inhomogeneities discussed above is that the external per-
turbation varies with time, and so does the shape of the primary (Eq. (3.22)). This of course involves



Theory of tidal evolution 109

large scale motions, or "tides", of the uid composing the latter. The direct consequence of this forced
internal motion in the uid is that the viscosity of the material can act to damp the oscillations. It is

of course understood that, in gaseous bodies, the molecular viscosity alone has a negligible effect on
these large scales motion (Hubbard 1974) and that some dynamical mechanism are needed to transfer
the energy from the large scales to the small scales where it can be dissipated and transferred into internal
energy. The exact nature of these mechanisms - gravity waves, inertial waves, elliptical instability, etc... -
is still subject to debate (Zahn 198%ahn and Bouchet 198Rieutord and Zahn 199 Rieutord 2004

Ogilvie and Lin 2007 Goodman and Lackner 2008arker and Ogilvie 2010Cébron et al. 2011).

However, this dissipation is not yet present in Eq. (5.3). Indeed, this equation describe the potential
of an object in hydrostatic equilibriuinand applies only if the time needed for the body to relax to this
equilibrium state is in nitely short compared to the timescale of the orbital motion. In this case, it can be
shown that the forces derived from Eq. (5.3) exert no average work over an orbit, and thus do not cause
any secular energy dissipation.

5.1.2 Modeling the dissipation

Including the effect of dissipative processes arising inside the deformable body on its orbital dy-
namics is a rather complicated matter. Indeed, in addition to the various sources of friction in the non
ideal medium, the forcing tidal frequencies are not, in the cases of interest, very different from the char-
acteristic frequencies of the various oscillations or waves that can take place in the deformable body.
The large scale tidal motion can then excite these waves, and a complete modeling of these dynamical
processes coupled with the orbital motion is needed.

The earliest mathematical model for the dynamical effects of tides is due to George Darwin (son
of naturalist Charles Darwin). In his pioneering work, he assumed that tidal friction was solely due to
viscosity, and developed a linear theory of #mguilibrium tides, in which the departure of the shape
of the deformable body from hydrostatic equilibrium is small and can be related to the strength of the
dissipation (Darwin 18801908). In practice, this assumes that the perturbing potential created by the
tides raising object can be split in a sum of Fourier components, and that the response of the primary
to each of these terms is linear and depends only on its frequer3pjs The direction of each of
these tidal bulges is then shifted with respect to the direction of the secondary by ard énglend
the amplitude of the wave can differ from the equilibrium value. Modern astrophysics generalized and
extended Darwin's work to an impressive variety of contexts, from the synchronization of the Moon
and other satellites to the evolution of close binary stars (Kaula 18&f&Donald 1964 Goldreich
and Soter 1966Goldreich 1966 Mignard 1978,1979,1980; Hut 1980,1981; Zahn 1989 Zahn and
Bouchet 1989 Touma and Wisdom 1993,994; Neron de Surgy and Laskar 199Eggleton et al.

1998; Correia and Laskar 20Q1Jackson et al. 2008-erraz-Mello et al. 2008Efroimsky and Williams

2009; Levrard et al. 2009 Leconte et al. 20102011a). However, when considering the impact of the
dissipative processes on the orbital evolution, all these models still rely on a simple parametrization in
terms of lag angles and amplitudes.

Then, the dif culty lies in choosing the best formulation fb{s ), or equivalently for the phase lag
e(s)?. A simple way to link this lag angle to the dissipation is through the speci ¢ dissipation function
(Q Y, which is de ned, at each frequency, as the energy damped over a cycle of exure divided by
the peak energy stored in the system during that time (Goldreich;1BB8imsky and Williams 2009).

IMeaning here that there is no motion in the considered frame, but elastic forces can be present and are already accounted
for in kn.

2The response to a perturbation proportional % ¢hus being proportional to@&* ). For the usual diurnal tides, both
angles are simply related by 2de.
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Efroimsky and Williamg2009) show that

D(:ycIeE(S ) _ tanj e(s )J

2PEpea(s) 1 (3§ e(s)itane(s)j’ (5.4)

Q (s)

Thanks to this relation, specifying the spectrum of the dissipation, either by equilibrium or dynamical
tides, is suf cient to infer the impact of tides on the orbital evolution of the system.

However, to further simplify the model, one of the two following assumptions is often made.

Constant Q approximation

Based on the observation that, for the earth, the speci c dissipation function varies by less than one
order of magnitude between the Chandler petipd440 days) and the periods relative to seismic waves
(a few seconds), it is often assumed that the speci ¢ dissipation is constant with respect to the forcing
frequency (Q¢) = Q). The overall dissipation is therefore encompassed in a single number, th@ tidal
(or equivalentlyQ™), or theconstant phase lag. However, this model has two major drawbacks, whose
consequences will be more comprehensively discussed in the following sections.

() Inverting Eq. (5.4) in the limit of low dissipation, we see tleat sign(s )=Q. This model thus
introduces a discontinuity at each time that one of the tidal frequency vanishes. This assumption is
thus particularly unjusti ed when considering tides on nearly synchronized objects, as it is thought
to be the case for most close in exoplanets.

(i) Because, one must rst decompose the forcing potential in terms with a well de ned phase and
frequency before lagging them with the chosen lag, perturbative developments of Kepler equations
of motion, both in eccentricity and inclination must be used. The resulting equations are then
strictly valid only in the low eccentricity and obliquity regime.

Weak friction approximation

As shown byDarwin (1880) andAlexander(1973), the frequency dependence of the phase lag of a
purely viscoelastic oscillator is given by

S

tan(e) = tv(W§752) ;

(5.5)

wheret , is a viscous damping timescale ang=2p the natural frequency of the oscillator. In an incom-

pressible gaseous body, the restoring force acting against the tidza deformation is the self-gravity of the

body. Thuswg can be estimated through the free-fall time as@p %1 %?T 30 minutes for Jupiter

mean densityr;  1:33 10°%kg/m®). For tidal periods of several daygs s and for weakly viscous
uid, the phase lag reads

S .
tywe’

e(s) (5.6)

SPeriod of the free motion of the of the gure axes of a body around its rotational pole.

4Because the ef ciency of tidal processes is proportional to the product of the amplitude of the tides (proportiohal to
with the ef ciency of the damping of these tides (inversely proportion&joit is customary to introduce the reduced quality
factorQ®= %,% so thatQP= Q for an incompressible homogeneous sphere.
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In this weak friction approximation, the speci c dissipation then scales linearly with the forcing fre-
quency. Each Fourier component is thus delayed by a soagistant time lag

21

1 .
Dt ; withe(s) sDt: (5.7)
tyw3

While this approximation may overestimate the dissipation for high frequenci€swg), it entails a

signi cant simpli cation. Indeed, in the frame co-rotating with the deformable body, the tidal forces
exerted by the secondary can be calculated by stating that the effect of viscosity is simply to delay the
tidal bulge with respect to the tides raising potential by the saamstant time lagX. As shown in

Hut (1981), and detailed in Appendixthanks to this approximation, the set of equations for the tidal
evolution of the orbital elements can be calculated for any eccentricity and inclination of the orbit in
terms of closed formulae. Because many exoplanets are very eccentric, and for the reasons described in
§5.4, in the following, | will use this weak friction approximation.

The frequency dependent quality factor then reads,

Qs) - (5.8)

sDt’
It is therefore dif cult to express global dissipation ef ciency. A rough estimate can nonetheless be
found in cases for which the excitation spectrum reduces to a small number of frequencies. For non-
synchronized circular orbits, semi-diurnal tides, whose frequency is twice the difference between the
rotation rate of the primary (and the orbital mean motion (n), dominate and setsirg 2jw  nj in
Eq. (5.8) yields

Q! 2mjw nj: (5.9)

This formula can be used to estimate the quality factor for non-synchronous bodies, such as the Sun,
the Earth or Jupiter, as long as the eccentricity of the orbit is small. As the planet tends toward syn-
chronization, the dissipative effects of the semi diurnal tides vanish with their frequency. Then, the most
dissipative tides are the eccentric annual tides (s) and

Q! Dtn: (5.10)

Apart from these two limit cases, no tidal frequency dominates, and the dissipation is the response of the
body to the rich spectrum of exciting tidal frequencies. Thus no simple relation exists berazstiDt
in the general case.

Although it is tempting to use Eq. (5.10) to rewrite the tidal equation and to ®epnstant instead
of Dt as done by, for exampléardling and Lin(2002), Dobbs-Dixon et al(2004) andBarker and
Ogilvie (2009), one must keep in mind that this procedure is not equivalent either to the constant phase
lag (i.e. constan@) or time lag model. Indeed the frequency dependence of the phase lag is given by
e(s) = s=(nQ) and is still proportional to the tidal frequency over an orbit as in the constant time-lag
model, but with a slope that is changing during the evolution, while no physical change has necessarily
occurred inside our bodies.

5.1.3 Secular evolution equations

Having a prescription for the parameters modeling the dissipation in our bodies, in our case a
constantime lag, we can concern ourselves with the determination of the secular change of the orbital
elements of a tidally interacting binary system. We consider a system of two deformable bodies of mass
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M; andMa. Note that no approximation will be made on the masses of the two bodies, meaning that
the following equations can be used in a large variety of contexts, covering Star-Star, Star-Planet and
Planet-Satellite interactions.

The major interest of thénear model, i.e. at constant time lag, is that, as demonstrated by Hut
(1981), equations can be derived to be valid up to any nite value of the eccentricity. However, his
model remained restricted to vanishing obliquitiesthe calculations presented in Appendix, using
a vector representation of the tidal torque, | extend the set of tidal secular evolution differential
eqguations to account for any nite obliquity.

In ne, the complete equations taking into account tides in both bodies are obtained by computing
separately the effects of the tides raised in both objects (as shown in Appeaikby adding them up.

We are then left with the following set of six coupled, non linear equations of rst order

h i
lda 4a o Wi
S0 = 3K NE)X— Nae) ; 11
adt - G, & K NEX Rale) (.11)
lde_ 1la o . w18 :
odt - GMlea{ Ki We(e)x; o 11Ne(e) ; (5.12)
" h _ i
i KT e we 2xN(e) (5.13)
at n h n i
de . Ki _ _ Wi .
e Sme'Ciwin (X h.)W(e)F 2N(e) ; (5.14)

wherex; = cosg andh; is de ned by Eq. (1.31). For details about the notations, the reader is referred to
Appendix |. The various functions of the eccentricity are

31,2, 255.4, 1856, 25
1+ 3le?+ 22t + 186+ B8

Na(e) = (1 e2)15:2 !
Ne(E) = 1+ L2+ Lty 268
€ (1 €2)13=2 ’
1+ D+ Let+ 2P
N(e)= —2 a 22)6 -, (5.15)
and
_ e i
We(e) = W
1+ 3¢+ 3¢
The strength of the tides in the body i are parametrized by
3, L G M PR
Ki = Ekz;lul T M a n=; (5.17)

where the j index denotes the quantities relative to the other body. Notice here that no assumptions
have been made on the masses of the objects studied. In particular, in our notations, the secondary
can be the most massive object of the binary. In general, the tides raised in both objects have rather
different amplitudes and dissipation timescales and effects. It can thus sometimes be useful to study
them separately. In these cases, and when no confusion is possible, the index i will refer to the body on
which tides are raised (the primary), and j will stand for the tides raising object (the secondary).
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As shown in §.2.3, for a strongly interacting low mass companion, such as a planet, pseudo syn-
chronization is often achieved. Egs. (5.13) and (5.14) can thus be replaegé yandw, equal

_ N 26 Ne)

Weq = We) e 2" we (5.18)

In this case, the rate of tidal dissipation which is given by Eq. (1.43) in the general case can be rewritten

N%(e)

Eid = 2K1 Na(e) We)

(5.19)

5.2 Some analytical solutions

The above equations are coupled and non-linear and must then be handled numerically in most
casesFor this purpose | developed a code integrating the set of equations by means of a leap-frog
integrating scheme. In order to test both the code and the level of numerical error yielded by
the integration, | solved the equations in some simple limit cases, which are presented beloim.
addition, when the system studied is in the right regime, these analytical solutions can be used directly
to have a more exible modelAs shown in Leconte et al(2010a) and in &.2.2, the model presented
below can be used to constrain the dissipation inside Jupiter.

5.2.1 Small object spiraling in or outward on circular orbits

Let us consider the case of a pseudo synchronized and aligned secondary around a non synchronized
(but aligned) primary. This case is not purely ideal, as it can be used to describe the orbital evolution
of binaries with large mass ratios, such as a satellite orbiting a planet, or a close in planet orbiting its
host star. As we will see, in the rst case, the often fast rotation of the planet pushes the satellites away
(as for the Earth, Jupiter, Saturn, etc...), whereas the slow stellar rotation causes most exoplanets to
spiral inward, and eventually cross the Roche lobe where they are tidally disrupted. In this case, some
simpli cations occur. Let us take the following initial conditions:

wi(t=0)= ang
@ at=0)=a A:
et=0)=0
Thanks to Eq. (5.12), we can show thahif< % e= 0 is a stable value for the eccentricity and will
not evolve with time. With the same argument we can showehatO are also stable solutions. As
the pseudo synchronization approximation gives= Weq = n, we are left with only two variables
and equations to solve simultaneously. Let us highlight that in this con guration, there is no more
dissipation in the secondary, and the only tidal effects are due to the tides raised on the primary. Taking
the dimensionless variableséunted in units ofg andt in units of

1 M2 5

tin= Z———t—— & 81 __. (5.20)
6 M2(Mz2+ M1) "Ry” GMika:1 Dty

the equations read

Wy = =7 —

tsyncr?G n
1 i
a= 1 M (5.21)

a n
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The combination of these equations gives
tin

t sync

a
Wi = pgno

and by time integration

“m_a 55 1 (5.22)
No

where the initial conditions have been used ard 2tin=tsync This relation is to be expected as it is
simply the expression of the conservation of the total angular momentum of the $ysSeabstituting
Eq. (5.22) in Eg. (5.21) yields:
h [

1 &87a b(IO :

a= 57

Therefore, the following integration gives an implicit solution for the semi major axis

ya ~7

B = 5.23
11 &89a i (5:23)

I computed this analytic solution and compared it with the numerical integration of the full set of equa-
tions (including the spin state of the planet). For a given object, the only parameters left are the ratio
of initial rotational over orbital angular velocities Yaand the initial semi-major axis ¢ | decided to
consider a system near the critical semi-major ayig as de ned in &.3, withag = 1:03 ayit. There-

fore, choosing am < a. ° yields an unstable system with a total angular momentum lowerkhan

As shown in gure5.2, in this case angular momentum is transferred from the orbit to the central object
until the merging of the two bodies. Far> a. the system tends to the closest stable orbital equilibrium
available for its angular momentum and the angular momentum is transferred from spin to orbit.

Figure5.3 shows the discrepancies between the analytical solution derived here and the numerical
integration. As the numerical integration dealt with the full set of equations, these discrepancies are
due both to the numerical error and to the pseudo synchronization hypothesis for the planet. Further
calculations showed that in this case the numerical errors are predominant. This validates the pseudo
synchronization hypothesis made for most of the computations involving a star-planet system, as done
hereafter.

5.2.2 Constraining the dissipation in Jupiter

In order to use the constatine lagmodel, we must consider many values Bir To constrain
the range of values to use in the numerical calculations performed in 8.5, | follow the analysis of
Goldreich and Soter (1966), but with the constant time lag model, and use the lo-Jupiter system
to infer an upper limit for ky, Dty in giant extrasolar planets (Leconte et al. 2010a)As | shown
above, because the massive body (hereafter Jupiter) is rapidly rotatingyysitms, wherens is the
orbital mean motion of any of the satellites of Jupiter, tidal transfer of angular momentum drives the
small bodiesoutwards, into expanding orbits. Therefore the presence of lo in a close orbit provides
an upper limit for the time lag in Jupiter. Indeed,Df, was too large, the backward evolution of the
satellites' orbits would imply their disappearance within less time than the age of the Solar system, i.e.
of Jupiter.

5The angular momentum of the planet can be neglected, which is, here, equivalent to the pseudo synchronization hypothesis.
8a;  0:995 in this case.
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Figure 5.2: Comparison between the exact solution given by Eq. (5.23) for the angular velocity of the
primary and the semi-major axis and the numerical integration of the full set of equations. The exact
solution has been shifted to be visible (the real relative errori® ©). As predicted fom < 1 angular
momentum is transferred from the orbit to the central object: the primary is spinning up while the semi-
major axis is decreasing. As this con guration is not stable<(a), the two objects will eventually
merge at  9:3tj,.

| can thus use the model described above and directly integrate Eq. (5.23). Note that in this context,
this integral cannot be performed downae 0 because the satellite rst crosses the co-rotation radius
where the integrand tends to in nity, which is an unstable equilibrium state for the system (Hut 1980).
For the lo-Jupiter system, takintg= 4.5 10°yr anda(t) equal to the Roche limit in Eq. (5.23)
yieldsk;Dt;. 5 10 3s. Therefore Eq. (5.9) implie®} & 1 1CP for the actual lo - Jupiter system,
slightly lower than the value derived Igyoldreich and Sotgf1966). As discussed by these authors, our
upper limit onDt, must be multiplied by a factor 5 to 7.5, as lo might have been trapped in a low order
commensurability with Europa and Ganymede during part of its evolution, slowing down the expansion
of its orbit. Thus, as discussed ih.econte et al.(2010a), for Jupiter,

kiDty. 2 3 10 2s: (5.24)

For the sake of easy comparison, | will refer to the quar@@ywhich is the reduced quality factor
computed for a reference period of one day:

3Q(2p=1day)_ 3 lday
2 ko T 22pkoDt”

Qb= (5.25)
The above calculated constraint re@&p & 1 1CP. In the calculations presented in the following
sections, | will examine two cases for the planet under consideration, n&]&gly 100 andQp, = 10’
(kgpDtp 2 10 2 2 10 3), while takingQg.,intherange 10 10° (kzoDt, 2 101 2 10 ?),
a typical value for solar-type stars (Ogilvie and Lin 2007).

It is important to stress that Bt, or its counterpar®, is poorly known for both planets and stars,
its variability from one object or con guration to another is even more uncertain. For instance, the tidal
dissipation in planets probably differs signi cantly from that in brown dwarfs because of a dense core
able to excite inertial waves in the convective envelope (Goodman and Lackner 2009). Given the highly
non-linear behavior of tidal dissipation mechanisms, the effective tidal dissipation function varies not
only with the structure of the object or with the tidal frequency, but also with the amplitude of the tidal
potential. For exampleQ values inferred from the circularization of close FGK binary stars (Meibom
and Mathieu 2005), may be lower than the act@dlencountered in star-planet systems (Ogilvie and
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Figure 5.3: Relative error between the exact solution given by Eq. (5.23) and the numerical integration
of the full set of equations (right: unstable system, left: stable system). The numerical integration yields
correct results down to 16. The error grows near the singularity corresponding to the fall of the planet
on to the star.

Lin 2007). Consequently, the range of values considered here forQ@btnd Q% should be seen as
mean values and be re-evaluated when considering speci ¢ and/or atypical systems (XO-3, HAT-P-2 or
CoRoT-3 for example).

5.2.3 The spin state of the low mass companion.

In the previous section we discussed the angular momentum transfer between a massive primary and
the orbital motion. To do so, we assumed synchronism between the rotation of the smaller companion
and the orbit. For long term evolution, because the synchronization timescale for the planet is very
short compared to the one of the orbital evolution, this assumption is justi ed as discussé@.ih 8
and veri ed in 85.2.1. For the same reason, if we want to look at the evolution of the spin state of the
low mass companion, the other orbital parameters can be considered frozen in time because they evolve
on a much longer timescale. This is what | attempt to do in this section. This will allow us to verify
the coupling between the equationswrande for any eccentricity. Let us take the following initial
conditions:

wi(t) = wo
@ at)=a A:
e(t) = e

We are left with only two equations, Egs. (5.13) and (5.14), for the variablesde, to solve simulta-
neously. The non linearity of these equations with respeet t;nd the coupling between the equations
prevents any analytical solution to be found in the general case. Therefore we will consider only the
linear case, implying; 1. In addition, we place ourselves in the case where

M1+ My 2
h ———2rs.
N VA

(R=a)y 1

meaning that the internal angular momentum of the object can be neglected with respect to the orbital
one. This assumption is fully justi ed for a planet, as is con rmed by the numerical integration. Since
the eccentricity and the semi-major axis are xed, it is tempting to use the following dimensionless
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Figure 5.4: Left: Comparison between the exact solution given by Eq. (5.28) for the obliquity obliquity of
the planet and the numerical integration of the full set of equations. The exact solution has been shifted to
be visible. As predicted the planet pseudo synchronizes and its obliquity is damped to 0. Right: Relative
error between the exact solution and the numerical integration. The numerical integration yields correct
results down to 10°. The peculiar behavior of the error is due to the fact that the solution is not convex:
the sign of the error changes.

variables,
8 .
< t=tW(e)=tsync t:fsync
W = W2=Weq 1 (526)
€= ex=ep

wherews, is normalized to the pseudo synchronization rotation speecant the initial obliquity of
the planet. We nally just need to provide an initial condition for the angular velogitft: = 0) = Wp.
The equations thus read:

w=1 w;
s=e L I
T2 W

Fortunately, the obliquity creates only a second order perturbation of the other equations, and thus our
system is no longer coupled. We can then solve our system sequentially. The rst equation being similar
to the one of a damped twisted pendulum without inertia, we can see that the rotation rate will relax

toward its quasi equilibrium value following an exponential decay of the form

W= 1+(Wo 1)e & (5.27)
Thus
~ Z=
NN S dt
In(e(f))_ é 0 1+(W0 1)e t
oo W2

| compared this analytical solution with the numerical integration of the full set of equations in
Fig.5.4. As predicted the planet pseudo synchronizes and its obliquity is damped to zero on a short
timescale compared to the global orbital evolution. As can be seen from Eg. (5.14) in the general case, or
by differentiating Eqg. (5.28) with respect to time, we can see that when the rotation of the object becomes
larger than twice the pseudo synchronous rotation rate, the zero obliquity state is no longeiT$tiable.
analytical model has been used to countercheck our numerical results ideller et al. (2011).
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5.3 Are transiting planetary systems about to merge ?

From the equations shown in58L.3, we directly
see that a tidal equilibrium is achieved only when the
two bodies are in a state of coplanarity£€0), circular-
ity (e = 0) and co-rotation (w= n). However, this does
not tell us whether such equilibrium states exist or can
be reached by a given system! Thanksiat (1980) a
criterion for the existence of these states can be derived.
Indeed, because the total angular momentum of the sys-
tem is conserved, and tidal friction dissipates mechan-
ical energy, a system with a given angular momentum
(Hop) Will be able to reach equilibrium only if there is an
equilibrium state with the same angular momentum. The
stability of the equilibrium can then be deduced from the
fact that energy is at a minimum and not a maximum.

Let us then study the angular momentum of equi-
librium states, which is given by

Figure 5.5: Hy(a) for equilibrium states in
unit of (acit; Herit). The solid (dashed) part
of the curve represent the (un)stable branghy; (1980) showed that, thanks to the synchronization
Gray arrows show the direction followed bY:ondition, this rewrites
a(t) in each part of the diagram. The dots rep-
resent observed values for transiting systems.  Hiot = Heq@)

Htot = Horp+ Hi+ Ho: (5.29)

In all the systems witli ot < Heyit, the planet 3 g 2 1 N 3:2#
will eventually merge with its star. = Hepp - —— - et

d J N4 g 4 a '

(5.30)
> 1=4
(M1+ MZ) GZ(M1M2)3 a
wherelagit= 3——————(C1+C)) |and|Hgit=4 ———————(C1+C
Acrit MMy (C 2) crit 27(My + Mz)( 1 2)

This shows that the angular momentum of a con guration in equilibrium only depends on the semi-
major axis. Itis easy to see thidtq a) has a minimum reached fagqi:” for which the minimum reads
Heit?. Thus, only systems witHt > Herit can pretend to reach an equilibrium before the merging of the
two components. Unfortunately for most transiting plankegsiyrard et al(2009) showed that because of
their short period orbit, only one of the transiting planetary systems known at the time, namely HAT-P-2,
had enough angular momentum to ful Il this criterion, all the other planets being doomed to fall onto
their parent stars !

To see wether this conclusion still holds, | have performed a similar analysis but including
newly found transiting planets. The results are summarized in Fig5.5. While most of the transiting
systems are found to be unstable, the number of stable systems has signi cantly increasé&ar the
systems found on the left of tree= a; line, the stability is just due to the fast rotation of the star, as
was the case for HAT-P-2. But this analysis also reveals systemsawithi; that were not present in
Levrard et al(2009) (some of these with very largeare not shown in Figh.5). For these, stability in

q___
"For a Star-planet systeri, Mp andR, > Ry, thusC,  Cp andagyi 3r§y,;?k,,"—; R, > Ry:

8 Hut (1980) also showed that from the equilibrium states described above, oy thg;; branch of theHeq(a) curve is
stable, as shown on Fig. 5.5.
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ensured by a long orbital period, and thus a large orbital angular momentum. The fact that such transiting
objects have been discovered only recently is due to the fact that long period planet have a smaller transit
probability and require longer observation run to be detected and con rhh@dever, this reminds us

that if many short period planets are about to be engulfed by their host star, exoplanets on wider

orbits, many having already been discovered by radial velocity, are safe.

Note however, that these studies make use of two major assumptions that are not true in general.
First, the radii of the components are assumed to be constant. As it is not true, this meahg;that
andagit will change over time. During the early stages of the evolution of the star-planet system where
a rapid contraction occurs, the system will move toward the upper right corner of the phase diagram
shown in Fig.5.5. This is a rather good news from the point of view of the stability: As the star spins
up during contraction, its co-rotation radius shrinks and the planet has more chances to be outside of this
radius, where tides push it outward. On the other hand, because of the stellar magnetic winds, angular
momentum is not conserved. This causes a spin down of the star and a downward motian irthe
diagram. From a theoretical point of view, all the systems will eventually enteldihe< Hic zone,
and all the planets will fall onto their parent star. The only remaining question is when ? But as tidal
interaction strongly decrease when planets are further away, most long period planets are safe for more
than the lifetime of their star.

5.4 On the effect of the quasi circular approximation: Analytical analysis

Following the initial studies of Jackson et al. (2008), all studies exploring the effect of tidal heating
on the internal evolution of "Hot Jupiters” (Miller et al. 200Bgui et al. 2009) have been using a tidal
model assuming a consta@tvalue during the evolution. Moreover, in all these calculations the tidal
evolution equations are truncated at tH&@&der in eccentricity (hereafter referred to as therfedel”),
even when considering tidal evolution sequences with non-negligible vale=g efrlier stages of evo-
lution. Although such ae?-truncated model is justi ed for planets and satellites in the solar system
(Kaula 1963; Goldreich and Soter 1966), it becomes invalid, and thus yields incorrect results for
a(t), e(t) and Eggesfor nite eccentricity values, as showed inLeconte et al.(2010a).The main argu-
ment claimed for using this simple tidal model is the large uncertainty on the tidal dissipation processes
in astrophysical objects. In particular, as detaileddgenberg2009), the linearity of the response to the
tidal forcing based on the viscoelastic model may not hold in a real object for the large spectrum of ex-
citing frequencies encountered when computing high-order terms in the eccentricity. Although the large
uncertainty in the dissipative processes certainly precludes an exact determination of the tidal evolution,
it can by no means justify calculations which are neglecting dominant terms atenite

Indeed, from a dimensional point of view apdor to any particular tidal model, the strong impact
of high-order terms in the eccentricity is simply caused by the tidal torque (N) being proportional to
(w q)=r§ (q being the true anomaly) and that over a Keplerian orbit the average work done by the
torque is of the form

2 2 105 35,6 35
g% __ P 1+ 148+ '+ Db+ e

§ 7 &b (1 )12 ’

which is a rapidly increasing function ef(see §.1.1for the details of the calculation). This means that
although the mean distance between the planet and the star increasesthathklistance at the periapsis
stronglydecreases, and most of the work due to the tidal forces occurs at this point of the orbit. One
can see that foe> 0:32 the high-order terms dominate the constant enterms. This is physical
evidence that shows that for moderate to high eccentricity most of the tidal effects are contained in

the high-order terms that can therefore not be neglected independently of any tidal model.
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(a) w=nvsephase space: complete equations (b) w=nvs e phase space: truncated equations

Figure 5.6: Pseudo-synchronization curve (splidea= 0 curve (dashedand thee= 0 curve (dottell

for the complete model (left panel) and for the truncated one (right panel) inthes e phase space. A
pseudo-synchronized planet always followsthe O curve and always lies in thie< 0 ande< 0 part

of the diagram because the curves do not intersect with the complete equations (left panel). In contrast,
in the 2Y9-order truncated model the pseudo-synchronization curve intersecis=the(ate  0:208)

ande= Olines (e 0:326).Revised gure froniLeconte et al(2010a).

In this section, as already presented irLeconte et al.(2010a), | quantify this statement more
comprehensively. | will demonstrate analytically that

in the context of the Hut model, a truncation of the tidal equations at the ordere? can lead
not only to quantitatively wrong but to qualititatively wrong tidal evolution histories, with
sequences drastically differing from those obtained with the complete solution.

the rate of tidal dissipation can be severely underestimated by the quasi circular approxima-
tion(e 1).

Furthermore Q-constant models consider only low-order terms in obliquity, @nd thus cannot
address the problem of obliquity tides and energy dissipation produced by this mechanism. For more
detailed discussion of this subject, damvrard et al(2007) andBarker and Ogilvig2009).

5.4.1 Expanding vs shrinking orbits

On one hand, considering Eqg. (5.11) (wah= 0 for simpli cation) we can see that fow;,=n6
Na(e)=N(e), the tides raised on the bodyead to a decrease of the semi-major axis, transferring the
angular momentum from the orbit to the body's internal rotation. It is easy to show that for a synchronous
planet this condition is always ful lled, becauswg-j9 = {)'%8 6 '\,if‘((;) for any eccentricity (respectively
solid and dashed curves of Fig6.a). As a result, the semi-major axis of most short period planets is
decreasing.
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On the other hand, truncating Eq. (5.11) for the semi-major axis evolution at thegdrgietds

lda_  4a " 27 5 Wp
S 20 K, (1+ 22 (1+238) + K, (1+
adt ~ GM,M, P 1+ 5€)77 (1+236) + Ko (

27 , Wo o
2eZ)F (1+ 23¢€%)

(5.31)

and the previous condition becomesn6 (1+ 23€?)=(1+ 277e2). Up to 29 order in eccentricity, the
pseudo-synchronization angular velocity is givenvay, = (1+ 6€’)n °. One can see thateq=n =
1+ 66?6 (1+ 23€?)=(1+ Z/€?) only for
17

e6 9 2 0:208:
This means that even for a moderate eccentrieity0:2, the truncated model predicts that tides raised on
a pseudo-synchronous planet lead mrawth of the semi-major axis instead oftecrease, as obtained
by the complete model. Therefore, truncating the tidal equations at thesdidean eccentricitye> 0:2
not only predicts quantitatively wrong bgualitativelywrong tidal evolutions. The same arguments for
the evolution of the eccentricity show that tides raised on a pseudo-synchronous planet lgauiitha
of the eccentricity for

r
7

e> 6 0:326
and not to adecrease. This is illustrated by Fig6, which shows the pseudo-synchronization curve
(solid), thea= 0 curve (dashed) and tles= 0 curve (dotted) for the full model (left panel) and the trun-
cated one (right panel), in te=nvs e phase space. As demonstrated before, the pseudo-synchronization
curve crosses the= 0 ande= 0 lines in the 29 order model (Fig5.6.b), whereas it does not when
solving the complete Hut equations (Fg6.a). As a result, with the truncated model, a pseudo-
synchronized planet can erroneously enter the zone of the phase space where its tides act to increase
both the semi-major axis and the eccentricityVhile this behavior is not observed with the constant
phase-lag model because it assumes that the star is slowly rotatig (wl) and that the planet is near
synchronization (w=n 1) - placing them in th@ < 0 ande< 0 zone of the phase space - this formal
demonstration sets clear limits on the domain of validity of the quasi-circular approximation.

5.4.2 Underestimating tidal heating

The key quantity arising from the coupling between the orbital evolution and the internal cooling
history of a planet is the amount of energy dissipated by the tides in the planet's interior, which may
compensate or even dominate its energy losses. As a result, tides raised in an eccentric planet can slow
down its contraction (Bodenheimer et al. 2QQ%kconte et al. 2009Baraffe et al. 2010) or even lead to
a transitory phase of expansion (Miller et al. 2Q0Bgui et al. 2009). Correctly determining the tidal
heating rate is thus a major issue in the evolution of short-period planets. The often used formula is
(Kaula 1963 Peale and Cassen 1978ackson et al. 2008)

_21kyp GM3 Ry 6ne2

Eijg = 7Kpe? = ———=P
W= T T2 Ry a

(5.32)

(the 21k.p=2Qis rewritten 63=48&in Miller et al. (2009)). As already stated byisdom(2008), although
this formula gives a fair approximation of the tidal dissipation rate for the small eccentricity cases,

°these equations truncated at the orefeagree with equations in §16 of Ferraz-Mello et al. (2008), even though they have
been derived with different methods



122 An alternative energy source: Tidal friction

which are typical in the solar system, it severely underestimates the tidal heating for moderate and high
eccentricities. Figure 5.iMustrates the power dissipated in a pseudo-synchronized planet as a function
of the eccentricity. It shows that far & 0:45, the truncated formula used in Miller et al. (2009)

and Ibgui et al. (2009) underestimates the actual tidal dissipation ratédoy more than one order of
magnitude and by more than a factdk0® for e& 0:7, an eccentricity value often advocated by these
authors to explain the highly in ated planets (see %.5.3; Leconte et al. 2010a2011a).

Figure 5.7: Tidal energy dissipation rate in a pseudo-synchronized planet (in Watt) as a function of the
eccentricity calculated with Eqg. (5.19) (solid curve) and with the truncated formula (Eq. (%l&@2hed.

The ratio of the two curves only depends on the eccentricity and not on the system's parameters. For
e= 0:45, thee? approximation (Eq. (5.32)) underestimates the tidal heating by a factor 10. The actual
values were derived using HD 209 458 b parametelis= 0:657Mjyp, Rp = 1:32Ryyp, M> = 1:101M

a= 0:047 AU (Knutson et al. 2007)Q°= 10° (see &.1.2). Thedotted curvegives the dissipation rate
calculated up t@'® (Eq. (5.35)). The shaded areas are obtained by vai@hay one (two) order of
magnitude Revised gure fronieconte et al(2010a).

From a mathematical point of view, the fact that a truncatior"m2der in eccentricity yields such
discrepancies is due to ti¢ €?) " factors in the equations for the tidal dissipation, that are expanded
in low order calculations. Fortunately, such expansions can be carried out, as the convergence radius of
the series is 1. Indeed, if the power series converges

1 5 ek 3 ‘
———=a 0O i ae?: 5.33
@ e gult ) & 39
The convergence radius is thus given by
S ——  r
. : in kj
ecov= limuy akall = limuy Jk+ 1J =1 (5.34)

However, as already stated byisdom (2008), for moderate to high eccentricity this function is
poorly represented by the rst terms of its polynomial representation. Indeed, the rst terms of the
energy dissipation rate are given by

Etg _ 1+ 5:1e2+ 1133e4+ 31845€6+ 381909e8+

10 .
7K &2 7 28 224 gog ¢ 1O € (5.35)
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The dissipation rate calculated upe¥ is plotted in Fig5.7 (dotted curve), where it can be compared

with the exact result. It is clear thédr e & 0:4 the polynomial developments of the tidal evolution
equations must be done to a much higher degree than in previous studies, or complete calculations like
those done iHut (1981) must be usedihe same argument holds for the evolution of the semi-major
axis and the eccentricity. Because Egs. (5.11) and (5.12) also c¢htagf) P=?factors, the decrease of
aandeis severely underestimated at even moderately high eccentricity when uslfhgralér truncated
expansion in eccentricity.

In particular, as discussed in the next section, a high eccentricByqQ®) cannot be maintained
for a few 100 Myr to a few Gyr in a system like HD 209458 in agreement with the resulliefr
et al. (2009) (see Figh.9 below). This is in contrast withbgui and Burrows(2009), who nd that
the radius HD 209458 b can be matched and that the system can sustain a signi cant eccentricity up
to the observed epoch. These discrepancies between these two studies based on the same tidal model
may reveal differences in the implementations of the tidal equations, or a difference in the calculation of
interior structures or boundary conditions.

5.5 Tidal friction as an energy source: Implications for Hot Jupiters

As mentioned earlier, tidal heating has been suggested by several authors to explain the anomalously
large radius of some giant close-in observed exoplanets. As demonstrated analyticaliyl jrthie
previous calculations, which are all based on constamte@els truncated at the ordgryield inaccurate
results when applied to signi cantly (initial or actual) eccentric orbits - a common situation among
detected exoplanetary systems. In the following section, | rst review the energetic arguments on which
this "tidal heating hypothesis" is based. Doing so, .81, also develop for the rst time an
analytical formula bracketing the total energy available for the planet during circularization which
is valid to any eccentricity. Then, | investigate the impact of tidal heating on the thermal evolution
of the planet on numerical grounds.As expected from the analytical analysis, and shownSrb&and
5.5.3, the numerical comparison of the two models shows that the complete tidal equations lead to a much
quicker evolution, and thus to a much higher, but also shorter, tidal heating. Finally,8rl gevisit the
viability of such a tidal heating mechanism to explain the extensive observed Hot Jupiter radii with
the present complete Hut tidal model.l show that although it indeed provides a possible explanation
for some transiting systems, the tidal heating hypothesis fails to explain the radii of extremely bloated
planets like - among others - HD 209458 b, TrES-4 b, WASP-4 b or WASP-12b, in contrast with some
previously published results based on truncated tidal models.

5.5.1 Energy budget

Tidal friction is, by nature a dissipative process. Over time, non ideal effects inside one or the other
of the deformable bodies transform macroscopic mechanical energy into microscopic entropy. If this
processes are energy sinks when considering the orbital evolutiggye(Eo)=a < 0), from the point
of view of the thermal evolution of the object, they represent an energy soeygewhich has to be
incorporated in the luminosity equation

L S
11]Tm = €nuct €tid T11]Tt: (5.36)
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As a large fraction of the objects considered are convective, this equation can be integrated to yield (see
Eq. (1.59))

1S
Lp=  Enuct Etd Tﬁ;

where the three terms are, respectively, the contribution of the nuclear re&ttidne friction'! and
gravo-thermal energy release (intrinsic luminosity). If an additional source of energy is present, it in-
creases the total outgoing energy ux. Then, the bottom of the atmospheric boundary layer, and thus the
adiabat, is slightly hotter in presence of heating than without. This causes an increase of the radius com-
pared to the traditional case, and less gravo-thermal energy, or entropy, is radiated away. This mechanism
is very similar to the irradiation of the atmosphere by the star, but here, the energy is deposited at depth
(in the convective zone), participates to the energetic budget of the object, and thus, the atmosphere is
heated fronbelow.

However, for this effect to become signi cant, the energy injection rate must be comparable to the
intrinsic luminosity of the body, and remain so for an extended period of time. To have a rst insight
into the capacity of tidal friction to increase the radius of giant exoplanets, | will thus estimate the global
amount of mechanical energy available for the planet in the system, and the typical timescale on which
it will be released, and compare them to the binding energy of the planet and its relevant evolution time.

(5.37)

Synchronization energy

Like Jupiter and Saturn, giant planets are believed to form with a high speci ¢ angular momentum,
and thus a high initial rotational energy which reads
1
2

Because tidal processes tend to synchronize the rotational with the orbital motion, and that, in general,
n  Wini, the ratio of the available rotational energy over the internal energy of the body is

Erot= SCawf = —rg,MiREw?: (5.38)

1o
sloyr

2 P32 2
Erot _ Tgyr RIWE Ty,

— . : 5.39
Ent 59 GM;  5g (5:39)

whereg = EilezGMf and should be of order unity. Within a numerical factor, this is equal to the
dimensionless rotation parametal; de ned in ChapteB, which cannot be higher than unity because

then, gravity at the surface would be to weak too counteract the centrifugal force, and the body would
experience high mass losses. For roughly the same reason, the spin of the planet is small compared to
the orbital angular momentum, and (pseudo)synchronization occurs on a short timescale compared to
the age of the system (seé.8.1). Therefore, rotational energy is not a sustainable energy source in our
context. At most, the early synchronization will provide a small initial energy pulse whose consequences
will be visible only during a few Kelvin-Helmholtz timescales.

Obliquity tides

Another way to dissipate energy into the interior is by obliquity tides. For the same reasons than
above, if there is no other torque present, the planet obliquity will be damped very quickly. However,
as proposed byevrard et al.(2007) the presence of a secular perturbation of the orbit could trap the

1Owhich are important only above 12-13}, and at young ages.
1INote that contrarily to § 1.1.3, here, | have de nEg €tigdmto manipulate positive quantities.
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planet into a Cassini state, stabilizing the obliquity. Orbital energy can then be dissipated into the planet
trough this channel. If this process can be important for terrestrial planets, it seems rather inef cient in
maintaining a large obliquity for a giant planet, as demonstrateeayycky et al(2007).

Circularization energy

If synchronization happens way to fast to heat the
planet at a late epoch, we have seen Ir28 that the
timescale needed to circularize a binary system seems to
be much more similar to the age of the planets that we
currently observ€. At rst sight, we might be tempted
to say that the maximum energy available is simply the
total mechanical energy that need to be extracted from
the system to decrease the semi-major axis from its ini-
tial value (an;), to the current one (f), the latter being
necessarily larger than the Roche limikjainder which
the planet is disrupted by the tidal forces. Therefore, the
mechanical energy available is

MM 1 1
CMiM; 1 1, (5.40)
2 an Ajni

DEorp =

However, this energy can be released in both the star, _ . _
and the planet. Indeed, if the planet is pseudo synch gaure 5'_8: qumum (minimum) tldalien-
nized, and that orbit is nearly circular, tides in the plan% g_y_gvallable |n_ l_m't OfEin; 8s a fun_ct_lt_)n
do not dissipate energy anymore, and all the momentd initial eccentricity and observed (initial)

exchange arise between the star, which is spinning astni—major_ﬁxis. The zonﬁ wr;]ere ti?al_ circu-
and the orbit, which is shrinking. This is why, for Ho[arlzatlon Wi _not Impact the thermal history
fythe planet is roughly above th&ig = Ein;

Jupiters, which are probably pseudo synchronized, off
the circularization period need to be considered to evarve:
uate the energy available (Bodenheimer et al. 2001).

During this period, tides in the planet dominkiteFor a pseudo synchronized object, a combination
of Egs. (5.11) and (5.12) gives us

N2(e) N
ae_ 4 wg M)  2¢ (5.41)
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Neglecting the dissipation in the star, | can estimate the total energy released during the circular-
ization by

20 GMM, da _ “ en GMiM, ede |

42
e; 22 a 0 a 1 &’ (5.42)

Ecirc =

which extends the formula given by Bodenheimer et al(2001) to higher orders. If the integration
of the full set of tidal equations is needed to compute precisely the energy released, the latter can be

12Indeed, most of them orbit around main sequence stars, and are supposed to be between a few 100 Myr and a few Gyr old.
13As long as a nite eccentricity remains in the system, the ratio of the planetary over stellar tidal dissipation rates is roughly

2 5
given byK =K, = tﬁigi’ ,\'\ﬁ—; % ,andis 10 for a Jupiter-Sun like system.
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bracketed by integrating the above equation for l@othaj,; anda= a, (with ajn > an,)

GMiM GMiM
! Zln(l e'?ni)< Ecirc< 1

A 55 It &) (5.43)

Note that, contrarily to the estimate given by Bodenheimer et al. (2001), this formula is valid for
arbitrarily high eccentricities. Thus

E.i 1 My R; 5 M M R; 0:05AU
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In(ef;  1):
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Fig. 5.8 shows the maximum (minimum) circularization energy in unit of the internal energygwith)

for a Jupiter-Sun like system as a function of the nal (initial) semi-major axis and initial eccentricity. As
expected, the importance of the tidal heating will increase as the object starts on a more eccentric orbit,
and is closer to the central body. This also shows that the amount of available energy could in principle
be suf cient to signi cantly impact the planet.

5.5.2 Coupled tidal/thermal evolution

However, to know whether this energy is delivered at the right time and at the right pace, one
must couple consistently the internal and the orbital evolution as each one will in uence the other.
| thus implemented the aforementioned module computing the orbital evolution at each time step
in the evolutionary code described in Chapter 2.For the moment, the internal evolution of the star is
supposed frozen, and its radius is kept constant at its current value during the whole evolution. Regarding
the orbital evolution of the system, this hypothesis is valid for two main reasons. First, the tidal heating
in the star is too weak compared to the nuclear burning to signi cantly impact the stellar evolution, and
second, the pre main sequence phase, where the star exhibits a radius and an angular velocity which are
drastically higher than today, does not last long enough compared to the tidal evolution. Of course, this
is no longer possible if one is speci cally interested in the evolution of the angular velocity of the star.
Indeed, as discussed in.8.4, in this case, conservation of the angular momentum during the contraction
and stellar winds must be properly taken into account along tidal friction to calculate consistently the
evolution.

In our simulations, the evolution of the planet can exhibit three different general behaviors, depend-
ing on the initial conditions:

In the low initial eccentricity regime, the eccentricity is damped to zero in a few Gyr and the
semi-major axis decreases until the planet reaches the Roche limit and merges with the star (due to
stellar tides ;Levrard et al. 2009), because the system does not have enough angular momentum
to reach a stable equilibrium (Hut 198Qevrard et al. 2009). In this case, tidal heating is not

suf cient to signi cantly affect the radius of the planet, which keeps shrinking steadily as it cools.

For higher initial eccentricities, the planet rst undergoes a phase of contraction and rapid cooling
before the tidal heating due to the high initial eccentricity starts to dominate the energy balance
of the object, leading to a phase of radius in ation (as shown by3-id for a test case). This
speeds up the damping of the eccentricity and the decrease of the semi-major axis, aecalise

el R5p When the eccentricity becomes low enough, a "standard" contraction phase begins and
lasts until the planet merges with the star or - if enough angular momentum is present in the system
- until both tidal and thermal equilibria are achieved. This behavior has already been identi ed by
Miller et al. (2009) andbgui and Burrowg2009), but because these authors used truncated tidal
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(a) Semi-major axis (b) Eccentricity

(c) Planetary radius (d) Tidal energy dissipation

Figure 5.9: Consistent tidal/thermal evolution of XO-4 b (thin, b)agkd HD 209458 b (thick, blue)
computed with our constant time-lag model (solid line) and with tfemiedel" (dashed line). XO-4b

is a 1.72Myp planet orbiting a 1.3M star (McCullough et al. 2008). HD 209458b is a 0.887,,

planet orbiting a 1.0M star (Knutson et al. 2007). The dashed curves are comparable to Fig. 8 and 10
of Miller et al. (2009) and were computed with the same parametels=(Q0°, Q3 = 10°). In this high
eccentricity regime, using the same quality factor, therf@del" underestimates the tidal dissipation

rate by 2 orders of magnitude and thus overestimates the star-planet merging timescale by a factor 10 to
10°. Figure fromLeconte et al(2010a).
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Figure 5.10: Internal energy balance in the evolving plaBgack solid line: luminosity of the object

with tidal heating.Purple dotted line: luminosity of the object without tidal heatii¢jue dashed line:

tidal energy dissipation rate. The object contracts as it cools until the energy input balances its thermal
losses and sustains a higher entropy in the gaseous envelop, yielding a largerHigdiesfrom Leconte

et al. (2010a).

equations, they found that a high eccentricity can be maintained for a few Gyr and kept in ating
the planet at a late time, as illustrated in F@ (dashed curves) ; while this is not the case.

In some extreme cases like HD 209 458, for the initial conditions corresponding to thosegrekig.

the tidal heating can overwhelm the cooling rate of the planet by orders of magnitude and lead to
a spectacular in ation of the planet and thus to a rapid merging with the star. This stems from
a combination of different effects. First of all, as mentioned above, the expansion of the radius
accelerates the tidal %volution and thus the decrease of the orbital distance. Furthermore, the
Roche limit (& = aRp* M>=M,, wherea is a constant which depends on the structure of the
body and is equal to 2.422 for uid objects) increases with the radius of the planet, extending the
merging zone.

5.5.3 Effect of the truncation to 29 order in e: Simulation results

In this section, | present the comparison of the results of the complete model wit thtel".
| calculated evolutionary tracks of the tidal evolution for various transiting systems, coupling the
internal evolution of the object either with my tidal model (Leconte et al. 2010a), or with the "&
model" used in Miller et al. (2009) andlbgui and Burrows (2009). In order to ensure a consistent
comparison with these authors, | directly convert their set of tidal parameters. Because our model as-
sumes a constant time lag, and not a cons@value, a history track computed with t#"e? model"
with a constant couple @Qg) is compared with a history track computed in our model with a constant
couple(kaDp; koDto) given by (koDtp = m; koDt = m), wherengys is the currently observed
value of the mean motion of the planet considered (sed.8and Eq. (5.10)). This ensures that - al-
thoughDt is heldconstanin our calculations (becausgysis by de nition a constant)- the quality factor
computed with Eqg. (5.10) in the object at the present time is the same as that usedirconstant
model.
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(a) Semi-major axis (b) Eccentricity

(c) Planetary radius (d) Tidal energy dissipation

Figure 5.11: Consistent tidal/thermal evolution of TrES-1 b computed with our constant time-lag model
(solid line) and with the&” model" (dashed line). Thisis a 0.RMyypplanet orbiting a 0.881 star (Winn

et al. 2007a). The error bars are the measured parameters with tnecéstainty. The dashed curve is
comparable to Fig. 7 dfliller et al. (2009) and was computed with the same parametes=(Q0°>,

Q%= 10°). As expected, in the low limit the tidal dissipation rate is well approximated by Eq. (5.32)
and the two models yield similar evolutions, although the merging time depends on the rheology used.
Figure fromLeconte et al(2010a).



130 An alternative energy source: Tidal friction

Calculations at low eccentricity

| rst compare the results of the two models on a system which has a zero measured eccentricity
and is not in ated, namely TrES-1. Such a system does not require a substantial initial eccentricity for
its observed properties to be reproduced and thus provides an opportunity to test the quasi-circular limit,
where the "é model" used byMiller et al. (2009) and our model should yield similar results. Figure
5.11illustrates the results of the integration of the coupled internal/orbital evolution equations with our
constant time-lag model (solid curve) and with thé teodel" (dashed curve) for an initial eccentricity
of 0.07. As expected, in this low eccentricity limit both models yield very similar tracks whose behavior
is discussed in §.5.2. Note however that although the qualitative behavior of the evolution is the same,
the hypothesis made on the rheology of the body can in uence the age at which the merging occurs.

Calculations at high eccentricity

In the moderately to highly eccentric regime, the tidal dissipation rate can no longer be approxi-
mated by Eq. (5.32) (see584.2). Instead, Eq. (5.19) must be used and yields - as shown by.Fig.
a much more important dissipation rate. As a result, tidal evolution takes place on a much shorter time
scale, and both the eccentricity damping and the merging with the star occur earlier in the evolution of
the planet. For illustration Fi¢.9 portrays the possible thermal/tidal evolution (for given initial condi-
tions) for XO-4 b (thin black curves) and HD 209 458 b (thick blue curves) computed with4medeel"
(dashed) and with our model (solid). The dashed curves are similar to those displayed in Figs. 8 and 10
of Miller et al. (2009). As mentioned above and illustrated in Bi§.d, the energy dissipation is much
larger when fully accounting for the high eccentricity. As clearly illustrated by these calculations, using
tidal equations truncated af®(e?) order leads to severely erroneous evolutionary tracks for initially
moderately (& 0:2) or highly eccentric systems. Indeed, the complete tidal model shows that for the
initial conditions andQ parameter values chosen tpgui and Burrowqg2009) andMiller et al. (2009),
HD 209 458 b would actually have disappearedld mentioned earlier, the use of this quasi-circular
approximation cannot be justi ed by the uncertainty on the quality factor, as the discrepancy in
the characteristic evolution timescales can amount to 3 orders of magnitude in some cases, depend-
ing on the initial eccentricity (Leconte et al. 2010a) Conversely, trying to infer values for the stellar or
planetary tidal quality factor® from tidal evolution calculations performed with the truncaéédnodel
will lead to severely inaccurate values.

5.6 Viability of the tidal heating hypothesis

Among the observed objects in the giant planet/mini brown dwarfs mass regimegeg)d will
focus on the most extremely in ated ones to investigate the validity of the tidal heating hypothesis
to explain their abnormally low density, as they provide the most stringent cases to examine the
viability of this scenario. Indeed all the planets with radii in th® . Ry, region of Fig2.10(i.e. with
a negative radius anomaly) do not need any additional energy source. Interestingly enough, these do not
show any signi cant eccentricity, so that an evolution without tidal heating can be obtained with a low
initial eccentricity. For the sake of simplicity and to avoid introducing further free parameters in our tidal
model, and because our aim is to deriveugper limitfor the radius that a planet can achieve under the
effect of tidal heating, | will not consider heavy element enrichment in our calculations.

My calculations proceed as follows:

1. For each of the systems a range of initial semi-major agig[amax) is found by abackward
integrationof the tidal equations from present-day observed values.
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2. Evolutionary tracks, which consistently couples the gravo-thermal evolution of the irradiated
planet and the tidal heating source (Eq. (5.19)), are then computeg,f@ [amin; amax and an
initial eccentricityej,; 2 [0;0:8]. The plausibility of these initial conditions as a remnant of early
planet-disk and/or planet-planet interaction is discussédlliar et al. (2009). Because total angu-
lar momentum is conserved during the tidal evolution,ittigal spin rate of the star is calculated
by satisfying the equality between the initial and the presently observed value of the system'’s total
angular momentum (seel .4 for details). Calculations are performed wifl§., = 10° and 16

andQj,, = 1P and 10 (see &.2.2for a detailed discussion).

3. For each evolutionary calculation, the departure from a given measured quantity is de ned as
dy(t) = % , Wherex refers toa, e, Rp, & or w, andsy to their measured uncertainty. When

no error bar was measured for the eccentricity @ard0 was assumed in the light curve analysis, |
tookse = 0:05. | consider that the evolution accurately reproduces the presently measured data if
there is a time interval (compatible with the age of the system) within wdliched,'s are smaller

than 1, meaning that each one of these parameters agrees with the measured oneswithin 1

Figure 5.12: Set of initial conditions yielding evolutions consistent with the actual orbital parameters
of HD 209458b. These runs assu@g, = 10° andQJ, = 1(°. Because high eccentricity speeds
up the tidal evolution, the initial semi-major axis must increase when the initial eccentricity of the orbit
increases to recover the observed parameters at the age of the dyigiemefrom Leconte et a(2010a).

Figure5.12 portrays a grid of evolution history initial conditions that are found to be consistent
with the observed parameters of HD 209 458, at the age of the system. As expected, an initially more
eccentric system must have a greater initial separation to end up at the same location. This stems from
the fact thajaj is a monotonically increasing function effor a slowly rotating star (as obtained from
Eq. (5.11) forwp = Wequ andws=n  1). Although | do nd evolutionary tracks that lead to the
presently observed orbital parameters for these extremely bloated planetsone of these solutions
can reproduce the presently observed radii, as illustrated in Figl3for HD 209 458 b. Indeed, the
major phase of eccentricity damping as given by Eq. (5.12) and discussesltB®ccurs too early
in the evolution, so that a large fraction of the tidal heating energy dissipated in the planet has been
radiated away at the age of the systema(few Gyrs) and can no longer provide enough energy to slow
down the gravitational contraction. The same behavior is found for other bloated systems like WASP-
12, TrES-4 and WASP-4, whose best evolutionary tracks are shown ib.E#y. For all these systems
tidal dissipation occurs too early to reproduce the present values of the planet radii, although a solution
matching the presently observed orbital parameters can be found.
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(a) Semi-major axis (b) Eccentricity

(c) Planetary radius (d) Tidal energy dissipation

Figure 5.13: Consistent tidal/thermal evolution of HD 209 458 b with different initial conditions (solid
and dashed) computed with our constant time-lag model. HD 209458 b is aMgpflanet orbiting

a1.01M star (Knutson et al. 2007). These runs ass@hg= 10° andQj., = 10°. For comparison,

the radius and luminosity of an isolated planet (no tidal heating) is shown on the lower panels (dotted
curves). Even though these evolutions recover the presently observed orbital parameters for the system,
the eccentricity damping arises too early during the evolution, leading to insuf cient tidal dissipation at
present epoch to explain the in ated radilisgure fromLeconte et al(2010a).
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(@) Semi-major axis (b) Eccentricity

(c) Planetary radius (d) Tidal energy dissipation

Figure 5.14: Evolutionary tracks for WASP-12 b (solidebb et al. 2009), TrES-4 b (dashéshemgen

et al. 2009) and WASP-4 b (dotted/inn et al. 2009) that lead to the best agreement with the observed
orbital parameters for these systems. These runs as@@;gwe 100 andQ., = 10°. Tidal dissipation is

not suf cient to sustain the large radii observed for these planets.
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These results, based on complete tidal evolution calculations, show that the tidal energy dissipated
in the planet's tidal bulges, although providing a viable explanation to the large radius of many short-
period planets (like OGLE-TR-211 b shown in Fig. 10 of Leconte et al. 2010a), is not suf cient to explain
the radii of the most bloated planets at the age inferred for these systems. In that case, an extra mecha-
nism besides tidal heating must be invoked to solve this puzzling problem. Surface winds driven by the
powerful incident stellar ux (Showman and Guillot 2002), converting kinetic energy to heat by dissi-
pation within the tidal bulge and thus reaching deep enough layers to affect the planet's inner isentrope,
or inef cient large-scale convection due to a composition gradient (Chabrier and Baraffe 2007) could be
the other mechanisms to be considered with tidal dissipation to eventually lead to these large planet radii
(see Baraffe et al. 201for discussion).

5.7 Summary and prospects

Let us summarize the main results of this chapter.

First, as shown in Appendix| developed the secular tidal equationsHtit (1981) to arbitrarily
high obliquity. Then, considering the tidal set of equations in various asymptotic regimes, | derived two
simple analytical solutions that, to my knowledge, have not been found before. These solutions, pre-
sented in .2, were then used to benchmark my numerical integrator, and check numerical calculations
from (Heller, Leconte & Barnes 2011). Thanks to these modelso derived an upper limit on the
tidal dissipation (and thus the time lag) in Jupiter.

In 5.3, 1 updated the results of Levrard et al. (2009) by including newly found transiting
planets, and showed that, while most of the transiting planetary systems yet discovered do not possess
a stable equilibrium end state, this is only due to the detection bias toward short period systems. As this
detection bias tends to diminish, the number of long period transiting planets able to reach a stable tidal
equilibrium should grow in a near future.

Then, | demonstrated that the quasi-circular approximation (g i.e. tidal equations truncated at
the ordere?) usually assumed in tidal calculations of transiting planet systems and valid for our Solar
system planets, is not valid for the exoplanetary systems that have - or were born with - an even modestly
high (e& 0:2) eccentricity. As shown in seé&.4, although the real frequency dependence of the tidal
effect remains uncertaithere are dimensional evidences that for eccentric orbits, most of the tidal
effect is contained in the high-order terms and that truncating the tidal equations at2"® order in
eccentricity can overestimate the characteristic timescales of the various orbital parameters by up
to three orders of magnitude. Therefore truncating the tidal equations at tigé@der can by no means
be justi ed by invoking the large uncertainty in the dissipative processes and their frequency dependence.
Accordingly, high-order tidal equations should be solved to derive reliable results for most of the existing
exoplanet transiting systems. This need to solve the complete equations is met by any tidal model. In
this context, even though no tidal model can claim describing perfectly a two body evolution, | recall that
the Hut model is at least exact in the weak friction viscous approximation (se& 4e2j.

In 85.6, | tested the complete tidal model on several in ated planets to nd out whether or not
tidal heating can explain the large radius of most of the observed transiting systems. Although this
mechanism is indeed found to be suf cient to explain moderately bloated planets like OGLE-TR-211b
(see Fig. 10 olLeconte et al. 2010a), | wamableto nd evolutionary paths that reproduce both the
measured radius and the orbital parameters of HD 209 458 b, WASP-12 b, TrES-4 b, and WASP-4 b (see
Figs.5.13and5.14) for their inferred age range. The main reason is the early circularization of the orbit
of these systems. As demonstrated B.4 this stems from the non-polynomial terms in eccentricity
in the complete tidal equations, which are missing when truncating the equations a¢srdélr. The
present results, based on complete tidal equations, show that tidal heating, although providing an
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important contribution to the planet's internal heat budget during the evolution, cannot explain
alonethe observed properties of all exoplanets (Leconte et al. 2010a).

This is in contrast with some of the conclusions reached in previous studies. Based on truncated tidal
models, Ibgui and Burrows (2009) ataui et al.(2009) nd evolutionary tracks that match observed
parameters for HD 209458 b, WASP-12 b, and WASP-4 b and thus suggest that the tidal heating is the
principal cause of the large radii of Hot Jupiters.

These particular properties of Hot Jupiters, including the extreme cases of the most severely bloated
planets, can only be explained if the following explanations/mechanisms occur during the system’s life-
times:

Early spin-up of the star: simulations of the rotational evolution of solar-like stars (Bouvier et al.
1997) show that after the dispersion of the accretion disk, the rotation rate of the contracting star
increases due to angular momentum conservation, until magnetic braking takes over. Considering
Eqg. (5.12), we see that stellar tides act as an eccentricity sou?—’ﬁeﬂf%az((ee)). Investigating
whether the duration of this phase lasts long enough and whether the magnitude of this effect is
large enough to drive enough eccentricity requires performing consistent star/planet thermal/tidal

calculations and will be investigated in a forthcoming paper.

Presence of a third body: as proposed by Mard{2@07), a low-mass terrestrial planet can drive
the eccentricity of a massive giant planet during up to Gyr timescales. Accurate enough observa-
tions are necessary to support or exclude such low-mass companions.

As mentioned earlier, combining tidal heat dissipation with other mechanisms like surface winds,
due to the stellar insolation, dissipating deep enough in the tidal bulges, or layered convection
within the planet's interior may provide the various pieces necessary to completely solve the puz-
Zle.

In conclusion, the suggestion that tidal heating is the main mechanism responsible to solve the
problem of anomalously large short-period planets, as sometimes claimed in the literature, must be more
rigorously reformulated: although providing a non-negligible contribution to Hot Jupiter heat content,
tidal dissipation does not appear to provide the whole explanation. Further studies are thus necessary to
eventually nail down this puzzling issue.
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Summary & Perspectives

The ability to quote is a serviceable substitute for wit.
William Somerset Maugham

During this thesis, | studied various physical processes affecting the internal structure and evolution
of both solar, and extrasolar giant planets. Let me summarize brie y the main results that | obtained
during this work and that led to the publication of the articles listed in Appefdix

Evolution & stellar irradiation: A lid on the boiling kettle

First, by comparing the internal structure of gaseous substellar objects predicted by my numerical
simulations, and by a simple analytical model, | showed that most features of their mechanical structure
can be well captured by a single effective polytropic index. As this index characterizes both the equation
of state, and the slope of the mass-radius relationship, this study highlights the existing link between the
microscopic and the macroscopic mechanical properties of degenerate gaseous bodies.

Then, | investigated the impact of the intense stellar irradiation received by a close in planet on
its subsequent internal evolution. As most transiting planets are very close from their host star, this
effect must be taken into account to infer accurate theoretical predictions to be compared with obser-
vations. This allowed me to quantify thadius anomalyof bloated Hot Jupiters and to constrain their
internal composition.

Based on this study, | proposed an observational criterion based on the mean density of the object
to distinguish massive giant planets from mini brown dwarfs in their overlapping mass domain. The
application of this criterion to several objects in this regime revealed that, with its unusually high density,
Hat-P-20 b is probably the rst secured planet in this range of masses.

Probing the deep interior: Theory of planetary gures

In this chapter, | used both analytical and numerical models to study the tidal and centrifugal dis-
tortion of a uid planet, and infer its shape. As these models depend on a unique response coef cient
(e.g. the Love number), | carried out numerical simulations to provide numerical estimates of this quan-
tity and discussed how these values characterize the mechanical internal structure of giant planets and
brown dwarfs.

| also discussed how, measurements could help us to constrain the composition of extrasolar
planets. With the more and more precise transit timing measurements, and the large number of newly
announced multi transiting planet systems, this opens new possibilities to infer direct constraints on the
internal composition of extrasolar planets ; internal composition which remains out of reach of spectro-
scopic observations.
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Finally, thanks to our analytical model, | found that because close in planets are tidally elongated
toward the star, they exhibit a smaller cross section, yielding major implications for transit measurements.
In particular, this causes a systematic underestimation of the radius which can amount to a few percents.
While slightly enhancing the so-calleddius anomaly, this reminds us that, as transit measurements
get more precise, subtler effects must be taken into account into the light curve modeling to extract
accurate results.

A new perspective on heat transport in the interior

Here, | developed a completely analytical model to investigate how the presence of double-diffusive
convection caused by a heavy elements gradient in the gaseous envelope of a planet can decrease the
ef ciency of its internal heat transport. This formalism allows an exact determination of the characteristic
super-adiabaticity within the planet, and can thus easily be used in planetary structure and evolution
numerical models to quantify the global impact of the presence of double-diffusive convection in the
interior.

By applying this model to the Solar System gas giants, | found that the metal enrichment for our
gaseous giants can be up to 30 to 60% larger than previously thought. As the heavy elements tend to
be redistributed within the gaseous envelope, the models predict smaller than usual central cores inside
Saturn and Jupiter, with possibly no core for this latter.

These results open a new window, and raise new challenges, on our present understanding of planet
structure, formation and evolution. The revised possible maximum amount of heavy material, for ex-
ample, suggests a greater ef ciency of solid planetesimal accretion during giant planet formation than
previously thought, both inside and outside our Solar System. The slower cooling entailed by semi-
convection may also provide a part of the explanation of exoplanets large radii, and interestingly enough,
without requiring any star-planet interaction.

An alternative energy source: Tidal friction

Finally, using an analytical model for the secular tidal evolution which is t to describe highly
eccentric and inclined orbits, | studied the coupling between the orbital and the thermal evolution of a
exoplanets arising from the strong star-planet tidal interaction. Such a model is necessary to describe
exoplanetary systems which, contrarily to the Solar System, commonly exhibit high eccentricities and
obliquities, some planets even being on polar or retrograde orbits.

In particular, | demonstrated that using tidal models based on a quasi circular approximation can
lead to quantitatively, and sometimes qualitatively different orbital evolutions, and can overestimate the
evolution timescales by orders of magnitude. Subsequently, thanks to this more complete mathematical
treatment of eccentric orbits, | found that contrarily to previously published results base on the quasi
circular approximation, the circularization (and thus heating) period is too short compared to the age of
observed transiting planets for tidal heating alone to be a viable explanation for their large radii.

As presently observed transiting planets are very close to their host stars, tidal interactions are a
signi cant ingredient of their lives, and properly taking these interactions into account is primordial in
understanding both the thermal and orbital evolution of exoplanets and their coupling. Coupling which
is not only ensured by tidal heating, but also by the secular and seasonal variations of the stellar ux
in uenced by the orbital and the rotational evolution of the planet. In that context, a general and robust
theory, such as the linear model studied here, is strongly needed.
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In the decade to come

If the successful combination of Doppler measurements and Transit photometry already taught us a
lot about the internal structure of giant planets in a wide variety of physical contexts, things are far from
over. Not only these methods will continue to improve, and gain in precision, but new detection methods
will soon come to maturity, opening many promising paths for the coming years.

On the transiting planet side, recent observations have proved our ability to detect Earth size objects.
But these planets are still too close from a too bright star to be able to sustain liquid water at their surface.
At the same time, spectroscopic observations of the primary and secondary transits of giant planets
revealed a complex, and possibly out of equilibrium, atmospheric chemistry. But such observations are
not precise enough yet to be carried out on an Earth analog orbiting a Sun like star.

Fortunately, most stars in the universe are fainter than the Sun! Warm planets can thus be found on
much closer orbits. And as these stars are also smaller and less massive than our Sun, they offer ideal
targets for transit detection and radial velocity follow up, and even make spectroscopic observations of
small size objects possible. With ground and space based missions already nding such objects (MEarth:
Charbonneau et al. 200Kepler. Borucki et al. 2011), the rstharacterizableEarth analog in the
habitable zone does not seem so far ahead of us.

However, to prepare upcoming spectrometric observations ki, Spitzeror JWST, theoretical
models of the chemical composition and thermal structure of the atmosphere of terrestrial planets in
the relevant range of the parameter space are required. Moreover, as these planets are expected to be
(pseudo) synchronized and exhibit a strong day night contrast, the global atmospheric circulation must
be properly treated to correctly interpret the transmission spectra which probe very speci ¢ regions of
the surface. This should soon revive the need for applying 3D Global Circulation Models (GCMs) not
only to Hot Jupiters, but also to close in Super Earths for which the atmospheric dynamics and chemistry
is yet poorly understood. The potential of this research is immense as it will open the avenue to the
detection of bio-signatures.

On the non transiting side, during the last few years, a tremendous amount of work has been devoted
to direct imaging of extrasolar planets and brown dwarfs. This resulted on one hand in many successful
detections, for example bghauvin et al(2004) orMarois et al.(2010) (to cite only a few), and on the
other in constraining the population of substellar companions by large surveys (Lafreniere et al. 2007
Chauvin et al. 2010Leconte et al. 2010b).

However, while this method is a formidable tool to constrain the atmospheric physics - in particular
the presence of molecular absorbers, clouds or non-equilibrium chemistry - of young giant planets and
brown dwarfs at large orbital separation, it cannot yet constrain our structure and evolution models.
Indeed, as the mass of the object is still unmeasured, this is only through the theoretical mass-luminosity
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relationships provided by the aforementioned models that it can be determined. But, as transit and
Doppler measurements probe toward longer and longer period objects, and as extremely high angular
resolution imaging instruments are being built (SPHEGE]), these techniques should soon overlap.

When this arrives, the possibility to have at the same time, the mass of the body, its bolometric
luminosity and its colors in different bands will undoubtedly unravel new families of substellar objects,
maybe allowing us to distinguish between their various possible formation mechanisms and to pin down
their true nature. Not to mention the possibility to detect such objects at the very rst stages of their
evolution and even maybe from their formation. Hence, to ready ourselves to these upcoming observa-
tions, in addition to a better modeling of planets and brown dwarfs atmospheres, we will have to bridge
the gap between formation and evolution models. This of course requires to treat consistently the early
solid and gas accretion, the radiative shock that occurs when a gap is opened between the planet and the
nebula, and the following evolution in the detached phase. We will thus be able to make more accurate
predictions of the observable parameters of substellar objects from their very youngest age, and follow
their life from birth to fate.

Let us wager that the next decade will bring us, as always, very challenging ndings.
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Appendix B

Thermodynamic relations

As is well known, for a given material, there exists only three independent thermodynamic deriva-
tives (Callen 1960). Thus, numerical equations of state only provide a set of three such derivatives from
which one can nd all the others by means of thermodynamic relations. In this appendix, we brie y give
general thermodynamic relations that can be used to derive the relations needed, as well as the relations
that are most needed when handling the numerical ANEOS and SCVH packages.

B.1 General relations

As can be shown (e.g. Callen 1960), if we have three thermodynamic vari@ul€sZ), there
exists the relation

1z M1z
dZz= — dX+ — dY; B.1
7%, % gy (B.1)
and thus
X v
1Y «
— = : B.2
X v

Sometimes, we also need to compute the derivative of a given furfe{dny9 that we know as a
function of (X;Y). We thus need to carry out a change of variable f(df) to (X;Y9. As

_T e Y e
A= gx O gue 48 (B.3)
we have
F qF
dF = dX+ — dY
VA
1F  IF 7Y T .
— _— — dX+ — — dY5 B.4
X IV Xy 07 Y, YO, (B.4)
whence
fE _TF Y
TYOu  TY  TYO,
1w _fIF 1P (B.5)

T™X vo Xy T 4 TX o
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B.2 ANEOS

ANEOS (Thompson and Lauson 1972) was designed to work with the varighl&3, and thus
provides the speci c thermal capacity at constant volume (density)

10

ﬁ r ; (B.6)

Cv

and two derivatives of the pressurﬁ and }TT—': . For convenience, as it was designed to be used in
r
hydrodynamics codes, it also provides directly the sound speed

P
fir &

as well as the radiative opacitlg). As we have seen in Chaptkrthere are two other derivatives that can
be needed, the speci ¢ thermal capacity at constant pressure and the adiabatic gradient, that are given by

2= (B.7)

0 1 2
S i T i T
!> - 718_ ¢ S+ ' = o+ r. B.
Cp 0T, T O, TR ov YT (B.8)
ﬂST ﬂST ﬂrTﬂST ﬂrT
where the last transformation uses the usual maxwell rel%n = r? ’1}—; ,and
T r
InT P P P o P%
N n r
S r T S CVI«Z% +T11'.[[7'||:')
T r
because
ﬁ; T 1S 2 T
r r<c
L 2. LI L Y L (B.10)
T & 15 P, 1T, T TP,
1r 5
B.3 SCVH

The SCVH equation of state (Saumon et al. 1995) uses the intensive va(igdi¢sand provides
all the derivatives of the density and entropy, as well as the adiabatic gradigmn, the sound speed
which is given by

0 18 1
1 1 F =
2= I S L (L L - L LA LI I ¥/ (B.11)
1P ¢ WP+ T TP g 1P - ﬂTP'I‘lTLT
P

INote that the SCVH package gives the decimal logarithm of the thermodynamic quantities, and their logarithmic derivatives

1 logr . Tlogr
('ﬂlogT p’ T logP T etc...).




143

Appendix C

Polytropic spheres

Let us assume that our equation of state is of the form
p= Kr 1. (C.1)

whereK andriare called the polytropitemperatureandindex, and are constant throughout the con g-
uration. Because the temperature does not enter explicitly in our equation of state, we do not need any
equation for the energy conservation, nor the energy transport, which are already implicitly contained in
Eqg. (C.1). We can thus derive a simple equation for the structure of the objedCtegdrasekhar 1939).

For brevity, we will only discuss here undistorted polytropic spheres to introduce the classical variables
used and have the useful equations at hand.

C.1 Lane-Emden equation

Following Chandrasekhaf1939), combining hydrostatic equilibrium and mass conservation
(Egs. (1.57) and (1.58)), we get

z
P_ Gr=" o a
i A 4pr%% (r)dr® (C.2)
and differentiating this intro-differential equation with respect {oelds
1 r2qP _ 2. .
worar 4pGrer : (C.3)

SubstitutingP by its expression given by the polytropic equation of state, and introducing the two fol-
lowing dimensionless variables

q"=r=rcandx = r=Re; (C.4)
wherer ¢ is the central density, arfél g is a yet undetermined scaling factor we nally obtain

1 ~

(it DKrd * 1d  -pdg

ApGRL  x2dx  dx

Then, choosing

= gn (C.5)

+1 1
Rie = ”TKrcn g (C.6)
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yields the famousane Emderequation

1d ~,dq

e x2=1 = gn C.7
X2 dx dx 4= (©.7)

As it is visible from Eq. (1.57)%;@ V1 ;n% Near the centempu >Z3, and the boundary conditions are
thus

OI~( 0)=0 and q(x = 0) = 1: (C.8)

C.2 Global properties

Once theLane Emderequation has been integrated numerically utmt# 0, we are left with the
value ofx and of the derivative o] at this point. As these quantities dependnaaidhe, | will call them
Xf andqn respectively. Using the structure equations, we can derive some global characteristics of our

objects. Because of the de nition af, the radius is obviously given by
r
~ fA+1 11
R]_ - Xn RLE X 4p76Krcn (Cg)
The mass can be obtained by integrating the density which, by means of the Lane-Emden equation,
rewrites

Z, Z;
Mi=4p o= 4pr R q Ay 2dx:
0 0
Zad  -,dq - .-
= 4preRie  — x®—= dx = 4prcRYexFjad: (C.10)
0 dx X
Hence
r K i+ 1 2.
Cc 0.
My = pr < K x2j9d: (C.11)
Thanks to Egs. (C.9) and (C.10), we can also show that the mean density writes
p— 3 ~~
1 _ 3jad, (C.12)
e X
De ning the dimensionless gyration radius is given by
5 q”x“'dx
= 3 e (C.13)

ﬁqu%
which can also be computed for any givenWith this de nition, rqy, is equal to 1 for an incompressible
body (7= 0), and to O for an object where all the mass in concentrated at the center.

Finally, by eliminatingr c from Egs. (C.9) and (C.10), we get the mass radius relationship

noge K A+l oo

M, R* = G gy (C.14)

1as qQis always negative, we often make usdaff to manipulate positive quantities.
n
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Appendix D

First order theory for an arbitrary
perturbing potential

In Chapter 3, we introduced the various concepts of the theory of gures. In order for the reader to
have all the needed equations at hand, here we outline the method rst developed by E8f)e

D.1 Arbitrary perturbation

To lowest order the body response is linear and the total deformation is the sum of the response to
each term of the decomposition of the perturbing potential. Thus, in order to derive the equations in a
rather general way, we only need to consider a term a perturbing potential of the form

Vexd(r;q;f) = cqr™,"(a;f); (D.1)

wherecy' is a constant which de nes the amplitude of the perturbation. The reference axis de ming
f may change from one term to the other. Analogously to Eg. (3.13), a small dimensionless parameter
can be de ned as
_ R 3 qIR) 2
Mext = GM; B 4p GI’_]_ '

(D.2)

D.2 Level surfaces

To simplify the gure equations, we choose to use the mean radiesned by Eq. (3.17). Using
this mean radiusmplies that to rst order, meaning thqf‘sﬂ}ou m, O,

gpﬁz gpﬁ(1+ 38) ) L= 0: (D.3)

For this reason, using the variablginstead ofreq Or o), simplies the rst order equation for the
hydrostatic equilibriunwhich thus does not involve thg (the dependency inof thes] being implicitly
assumed). Thus, in the following, we will use the variahland noteR; the mean radius of the 1 bar
equipotential of the object considered. To rst order, the shape of our body is a general triaxial ellipsoid,
and we haveR; = (a1apaz)'™> For gure equations derived using either the equatorial or polar radius,
the reader is referred harkov and Trubitsyi§1970).

As discussed in §.1.1, by de nition, level surfaces are also isodensity surfaces. This means that
the various integrals involving the density can be integrated by usiry= r (r).
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D.3 Computation of the mass integrals

As we have reduced our density eld to a functionrailone, we can now express the gravitational
potential and the mass integrals, Egs. (3.3) and (3.4), with algebraic functions of the gure functions.
As r (r9 is only a function ofr, we must carry out the change of variable frégmg;f) to (r;q;f)
using Eg. (3.16). The dif culty lies in the limit of the integration domain which is still spherical. It has
been shown by harkov and Trubitsyr§1980) andLyapunov(1903) that replacing this domain by the
one delimitated by a level surface of the form Eq. (3.16) and enclosing the same volume (the condition
therefore reading®< i instead ofr°< r) does not affect the integral, all the terms calculated between
the level surface and the sphere compensating one another. This yields

DR = (1 o) (00 (9 (O"YP(QRT 9
:(1+dm;0)(n m)! 1

(n+ m)n+ 3

z 1‘} ! 0 2p Od n+3y1ymy~0
rTkr_olr (r9 ldcosq . df @[(rcﬁ 1Y (@S 9;
(D.4)
— (n m! 1
m —
Dn —(Zl+ dm’O)(n-i-n%)IZn Z
1 2p d
0 o+ 2 npymy~0 .
r,(F(kﬁldr*"r(r*) 1dcosq . df OIrT,[(rcﬁ V(@S 9;
—n _ (n m)!
Dg] - ( 1+ dm;O) (n+ rTZ])I
z -q. ! 0Z 2p Od my~0
F<F0<§1dr (9 1olcosq . df d—ﬁo[lnr(ﬁYn (q%f9: (D.5)
Replacing®using Eq. (3.16) we get
: (n m)!
Dan - ( l+ dm;o) (n+"m)! #
2 7 sl Z 2 . . 03
dror (7 - deosg®  df 1+ & SPYP(a%f9  YM(%f9 : (D.6)
0 fr n+3 1 0 nomo

Developing the last term, ignoring terms of ordgr §[}5°, and using the orthogonality relation for the
tesseral harmonics, this simpli es to

m 4p o -0 d _onis
Dn=2n+10drr(r'€)@r sn (D.7)
Analogously
Z -
— 4 Ry d
D = anl ] oF°r (79 o 7297 (D.8)

By coincidence, this equation also works for 2, even iﬂfg1 involves the derivative of Ir. There are
two special cases:

(7 die? (D.9)

NS w|E
S, N
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We can see thd{' p T, therefore they are all rst order quantities (exc&gand 58 which give the
zeroth order spherical potential).

D.4 Total potential and equations of gures

Now that we have calculated the coef cients of the spherical harmonics decomposition of both
gravitational and perturbing potentials, we can express the total potential as well

Viot(r;9:F ) = Vo + Vext
4 _ oo
= 3PGMP A VI(MY(a:f): (D.10)
nm
Because the=cst surfaces are equipotentials by construction, our set of equations on the gure functions
we be given by Eg. (D.3) and

v'(n=10 n68:jmi6n - (D.11)
Using the dimensionless variables
8 _
% § = =Ry
- 3Dm
3 SHEE Zprors (D.12)
an  — 3D
. S:'n - 4pF1I72 n

the potential given by Egs. (3.2) and (D.1) can be expanded onto spherical harmonics, and rewriten
(neglecting all thes! §,I5° ands) Mey terms)

_ 4 _
Viot(T59;) = §pGr1r2

#
S+ meed” AN(a:f)+ & SEH Y ¥Paf) © (D13
n%0; mo
Thus, our set of equations is
VB =S5+ §5 D dnitnmos” 2mee= 0 (D.14)
nym

Of course, theneanhydrostatic equilibrium is provided by theen0 term, which reads

P_4 —d o0 wo_ :

W— épGrlarrVO ) V —%‘l‘ % (D15)
SubstitutingS) and% by their expressions in Eq. (D.9) shows us that the mean equilibrium is left unper-
turbed

P Gm
‘I‘IT“_: = (D.16)

meaning that the mean radius of any given equipotential surface is the same in the spherical case or in the
real object. This entails that the pro les of all the thermodynamical variables expressed as a function

of the mean radius in the distorted object are equal to the radial pro le obtained in the unperturbed case
(r (r)= r (r)). In particular, the density pro le yielded by the integration of the zeroth order hydrostatic
equilibrium (r (r)), can be directly used in integrating Eq. (D.19) derived hereafter.

1As can be seen in Appendix E, this is true only to rst order.
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D.5 Differential equation on &'

From the set of equations (D.14), we immediately see that ath@°6=n and n6=m) are equal
to 0. To derive numerically thel', the integro-differential equation (D.14) can be solved iteratively with
the method described itharkov and Trubitsyii1980). The numerical solution after i iterations is given

by
si = % ST D+ SN ) 8 Pme (D.17)

and s1'(5)j, = 0 can be used as a rst guess. This procedure, which is mandatory to higher order, can
however be reduced in the linear case. Indeed, multiplying Eq. (D.14"0y differentiating with
respect tes;”and dividing by&", we see thadll' veri es? (Sterne 1939)

Z s z
ns?  1ds" ‘s o f1 _2n+l_
51T 5 r (8)&ds+ . r(§)d & g = r 1Mext. (D.18)
Differentiating once again with respectdgiélds
d’s?  n(n+ 1) 6r(g) .dg"
+ — + =0: D.1
0% g grE Sas T 7O (D-19)
with
3%s
r§)= == r(HPuL (D.20)
8o
the mean density interior t® andr (1) = r ;. Using the variablé,(S) = gﬁg) ddsg, this rewrites
.dh r(8)
§ dsf +h2 h, nn+ 1)+ 6®(hn+ 1)= 0: (D.21)

As always, the dif cult part lies in nding the boundary condition for(0). Following Jeffreys
(1970), let us assume thgf p & nears= 0 and substitute this solution in Eq. (D.19). Keeping the
smallest power irs e get the following equation for k

k(k 1) n(n 1)+ 6k+6=0; (D.22)
whence
k=n 2o0rk= n 3: (D.23)

The k= n 3 solutions are obviously singular at the center and can be discardedsTi&)st & 2
nears= 0, which provides us with the boundary condition Fgr

limh,(8§)=n 2: (D.24)
SI0

For the n= 1 case, there still seems to be a singularity at the center. But we can see that in this
case,s"(8) = A§ lis an exact solution of Eq. (D.19). Therefore, the radial displacement is given by
F%Ynm = AY". This is arigid body displacement and need not be considered further.

In an idealized case, this equation can be solved directly analytically. Indeed, in the incompressible
caser (8) = r (8) = r1. Then, for a quadrupolar disturbance<(i2), hn(0) = 0 andnh%(0) = 0. Because
hn(8) = 0 is a solution of the differential equation that veri es the boundary conditions, the Cauchy's
theorem states that it is the unigue solution we are looking for. As explained hereafter, this yields
ko = 3=2 anch, = 5=2, as expected (Zharkov and Trubitsyn 1980).

2To involve only the variables in the following equations, it is implicitly assumed that for any functiprg(8) indeed
denotegy(§R;) = g(r).
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Appendix E

Third order theory of planetary gures

While the rst order theory presented in Chapseran be suf cient to describe system where ob-
servational constraints are still weak, it is not accurate enough to describe the major planets of the Solar
System. Indeed, the missions that landed, orbited or simply passed by our four gas giants provided high
precision measurements of their composition, atmospheric properties and gravitational and magnetic
elds (seeGuillot 2005for a review). The gravitational eld, in particular, has been measured up to its
third harmonic (d; Campbell and Synnott 1988Campbell and Anderson 1989) providing very valu-
able information on the deep interior of these planets. To to extract this information, we need an accurate
theory predicting the structure of the gravitational eld of a body in hydrostatic equilibrium to third or
higher order as derived iharkov and Trubitsy§1980). However, during the process of re-calculating
these high order developments, | found some errors or typos that | wish here to correct.

E.1 Rotational perturbation

Because the tidal distortion is negligible for the giant planets - for Jupiter, the disturbance created
by lo givesjmigj 2 10 7 againstme; 0:1 due to the fast rotation of the planet - we only focus on
the rotational deformation. This directly entails that the shape of planet will be symmetric with respect to
both the rotation axis and the equatorial plane (Zharkov and Trubitsyn 1980). As a result, only the m
harmonics need to be considered. For simplicity, we therefore drop these in our notation and superscript
indices will only be exponent.

E.2 Level surfaces

E.2.1 Mean radius

Once again, to obtain a set of equations for the gure functions, we must decompose the total
potential on spherical harmonics and as a function of the gure functions. Because of the symmetry of
the problem, we can reduce our set of spherical harmonics to a set containing only the even Legendre
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polynomials. In this case only thsgn terms remaif. Eq. (3.16) thus reduces to

r(150;f)= 1 1+ & sen(f) Pon() (E.1)
n
wherem= cosg, the cosine of the colatitude. Hence, Eq. (3.17) yields
Z, ‘ #3
2= 1*ra SonPon(M)  dimt (E.2)
n=0

To 349 order, this yields (with correction of a typo #harkov and Trubitsyn 1980)
1 2
= S+ —S .
S AT (E-3)

De ning reqthe equatorial radius of a shell of mean radipee also have

r 3
%*: 1+ @ S2nPon(0)
n=0
1 3 5

=1+ 5 és2+ §s4 1—636+ O(mfot); (E.4)
r 2. $ 3y 1 3 S) 4
_ =1 + 242 + = ot —5+ 0 ; E.5
- ot St Z g %% 8§ %28+ 7%+ O(Moy) (E.5)

E.2.2 Generalized ellipsoidse, k and h variables

For an axisymmetric disturbance, one can also search a planetary gure equation in the form of a
distorted ellipsoid of revolution. To"8order, this equation writes (Zharkov and Trubitsyn 1980)
h
r(q)=req 1 ecogq 38ez+ k sir?(2q))
&3 i
oo h sirPq 5sirfq 6sifq+1 (E.6)

Converting trigonometric functions into Legendre polynomials and the equatorial radius into the mean
radius (using Eq. (E.4)), the comparison of Eq. (E.6) with Eq. (3.16) gives a system of nonlinear equations
for e, k, h and thes,. To solve this set of equations t&®rder, one can replace the gure functions by
¥ ¥ ¥
2K
sn= 8 S oor €= & 9y k= & K9mly o (E.7)
k=1

k=n k=2
Becausamn is arbitrary, the coef cients of all the‘ffot (k=1...3) terms must be equal. This provides us
with a set of linear equations on t&&, e, ... . Regrouping all the terms we get

4, 52, 32
0= 5% 557° 315%
> 23, 8 4, 2 152
= = == — S e
2= 3@ & 21K 7% 7210 3¢

= Lz + 372k+ ie3+ 192h+ 32 ek;

%= 355 " 35" 11° T 385" 105

_ 40, 80,

%= 231° 231" (E8)

1The rotational symmetry entails that the shape cannot depend on the longitude, and the symmetry of the planet with respect
to the equator plane implies that only even harmonics are not equal to zero.
2|n this context, thegn are rewrittensy,, and the superscripts are only exponents.
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This formula is in agreement with Eq (30.4) Bharkov and Trubitsyi(1980).

E.3 Mass integrals: S

Asin 8D, we must rst compute the mass integrals that appear in the self gravitational potential of
the deformable body (Eq. (3.2)). The mass integiglsandD,,, are given by

Zy Zf Z,
Dn(0)= df © . drt (9 ldr"n"(lr‘)”*zPn(ﬁﬂ
-2 g a Sy
n+3 o 1 dr® " '
_ 2p ZRr Z, _d 5 .
Dn(= 5=, _ dr% (9 1<1lrn°d70[(r‘) " Pa(fiP);
_ Zr Z, d
D)= 2p _ di% (1)  diP—[Inr]Py(iif): (E.9)
r 1 dr

Again, we have changed the limit of the integration domain in Egs. (3.3) and (3.4} fromto r°= r (i),

the additional terms arising from the integration domain contained between the sphere and the level
surfaces being equal to zero (Zharkov and Trubitsyn 1980). As usual, the poweaseoéxpanded in

terms of the gure functions using Eg. (3.16). Then, products of Legendre polynomials can be developed
and all the angular functions are integrated avelJsing the dimensionless variables

8
% § = r=R;
d = r=r_1
— 3Dy (E.10)
3 ST e
T e 3Dy,
81 - 4pF1I72n
this gives
Zg _ Z4 _
$=58"3 d@d2"3%,] and S,= 8" 2 d(2)d[Z "f.]; (E.11)
0 s
where
fo=1,
3 4 2 8
= — + -SS5+ —S5+ — :
fa= ¢ = 7% A
f —} +% +g) +£‘8 .
4T 3 MT 3T 7Rt 7%
f —i +@ +% :
6% 3 ST T1%MT 7%
- 3 1 12 ., 2
= — — + — — N
fa=¢ = 7% S 9%
falg g 8O, 2165
4T3 % 3% 77957 3559
- 3 25 90
fg= — omt oS E.12
6 13 S6 115254 77 ( )
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In terms of thee, k andh functions, this reads

fo= 1;
fo= é e+%e2 —k+ =¢é° }h+ﬂek;

fa= 35 Sk 23 * ek

fo= é e+ 1—94e2+ ilk+ %e3 %h+ ;ek;

f_4:1%25 k+ l%h ﬁek ;

fo= —(h 4el: (E.13)

1001

E.4 3Yorder potential

As in the linear theory, once the mass integrals are known, one can express the total potential. Here
also, because of the symmetry of the problem, we can reduce our set of spherical harmonics to a set
containing only the even Legendre polynomials. The total potential thus writes

V(r; M) = Vg + Vot
¥
-2 0

= épGr af aVZn(F)PZn(m): (E.14)

Then the equations to be solved to nd the gure functions will be
V(1= 0 1 gae (E.15)

and the hydrostatic equilibrium will read

LIP_ Mo _ 4 od g oo OM 2 0

i 3pGrldr_r Vo(r) = = + 3w1r+ Aprej w; (E.16)
where

: Gr 1d 2 ~ rT\'ot

@ gt S % 3¢ (E17)

E.4.1 Expression in term of thesy,

To 39 order, the rst terms of Eq. (E.14) are given by
- 2 3 12

= + — — S+ —
Vo= 1 § 105§ St % 35§ S

- 2 9,
+ S+ 582 % S+ 1 &% 5% (E.18)
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~ 2 29 4 6 111 6 10
LA i S - S A A
4 1 4 = 8 = Mg 10 9 4
+ 14 -+ 24+ - + = it i S+ - :
1+ o5 35§ s oS 1 Te Stow (E.19)

18 108 40 54 648 60
+ + +

V4 = g - - + | 7" ==
Va St 3e% 3geRt 7Y™ D ;B2 352 77N 2
100 36 108, 40 - 80 -
Poh o ST g%t g % g2 &
12 5. 95
?SMOt S 25 67634 ; (E.20)
) 18 . 10 108, 15 25
= o84 + = = = +
Ve 772t %% DT 2% 9% % 799+ S
18, 10 - 20 - - 10 9
+ 77 + ﬁ54 S+ ﬁ5234+ S ﬁmrot S+ ?5§ : (E.21)

These formulae are in agreement with Eq (28.7-9) and (29.Zhafkov and Trubitsyi§1980).

E.4.2 39order potential with e,k and h

In term of thee, k andh functions, this writes

R 8. 64 584 2 13, 4
Vo= 1+ —€+ —ek+t ——e® S+ = e+ €+ =k
o 458 T3S 2g3® ot et ¥tk =
_ 4 19, 4 - 1 4 2., 16
+ — e+ —e+_k S+ 1+ —e+ —e"+ —k E.22
S g5 e pCt 7K S gMa I+ et et oo (E.22)
.2 31, 76, 8 2 8 4 10, 16
= Ze+ &+ — €+ —ek —h+ — + 1+ —e+ —&& —
Vo= 38+ 3%t 1g0° T 31K 21t 21k o lrget oe kS
20 8 32 - 16 - 1 20 38, 16
+ 2—1e&+ 1 2—1e+ ﬁk S 2—1e& émrot 1+ 2—1e+ 53 + Ek (E.23)
. 4, 172, 32 192 416 36 402, 48
Va = ?5‘92 1155 35° 335" 1155°K % 35%% 38 3g5¢ 2
200 24 4, 32 - 160 -
+ 1+ + Ze &+ 2 S+ ——
1+ 5318 = 3% 5% t3gs 2t 1 a3 S
8 76, 32
+ —e+ —e+ —k E.24
Mot 358" 231° " 55 (E.24)
. 8 , 128 80 12 . 96 50
= — & ekt _— + = = + eSS+
Vo= 5318 231Kt 31" Dt 77¥ 77K S 339t S
32, 64 — 40 — - 32 . 64
+ ——e+ -k —e§+ S+ — —k E.2
7€t 7K 2 BT ST M o51€ oxg (E.25)
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E.5 Gravitational moments

As shown in §3.2.2, the gravitational moments are directly given by the mass integrals, which
rewrites here

£20

Like in 8E.2.2, we can nd an algebraic relation between dhend the gure functions. To do so, one
can replace the gure functions and the gravitational moments by

¥ ¥
o <] K

e= § eMm; i = g In,; (E.27)
k=1 k=1

in Egs. (E.23), (E.24) and (E.25). Then, becadse 0 for n= 2;4;6;:::, and equating all the terms of
the same order to zero, we get

2 My €2 8 11 16 40 2,

230 5 3Tt ok 1a® M q0s Mt gk 51 (£:28)
4, 32 4 4, 3616 22 208 192

= _ “Tk+ = + — — — + “h: _

U= g€ gkt gemat g€ Seoek Jo€ Mot sk pah: (E.29)
8, 128 20 160 80

= 26+ ek = i + h: .

b= 7€+ ok 1€Mookt agh (E.30)

These expressions correct minor typoZivarkov et al(1973).



155

Appendix F

Projected area of a triaxial ellipsoid

F.1 General case

Let us de ne two coordinate systems. The rst orié §° 29 is de ned by the three main axes of
the ellipsoid. In this frame, the equation of the surface of the ellipsoid is
02 2 2
X7+£;+£;=1: (F.1)
a & &
To compute the projected area of this ellipsoid as it will be seen by the observer, it is easier to put
ourselves in another coordinate system de ned by the line connecting the center of mass of the system
and the observer (toward the observ&},; the projection of the orbital angular momentum on the sky
plane ¢) and a third axis in the sky plane chosen so tay; 2) follows the right-hand vector sense.
The current position vectdr = ( x; Y, z)) expressed in this frame is thus related to the one expressed in
the rst coordinate system by a rotation matRxsuch ag®= R r; with R'R = 1. The equation of the
ellipsoid in the new system thus writes

0 % 0 0 1
gn r'R'E O ;1% 0 XRr rsr=1: (F.2)
0 0 3
&

The exact value of the matr&will depend on the rotation needed and on the angles chosen to represent
it. This can be worked out in each speci ¢ case. To keep some generality, we wilbtaikéne form

0 1
a d f

S=@d b eA: (F.3)
f e ¢

The symmetry is ensured by the fact that both of our coordinate systems are orthonormal. The equation
of the contour of the projected shadow is given by the fact that the normal to the ellipsoid is normal to
the line of sight ) there. This assumes a completely opaque body below the isobar chosen to be the
surface. This reads

0= grad[g(n]" %= 2r"sx: (F.4)

This shows that these points are located on a plane whose equation isa(6iri)e

X = a%(d y+ f2): (F.5)
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Substitutingx in Eq. (F.2) by Eg. (F.5) we see that the cross section is an ellipse following the equation
!

o
—

d2
i e -

(v:2) & 2 >Z’ (y.2)P 32’ =1 (F.6)
a a

It is thus possible to nd the rotation in the sky plane needed to reduce the ellipse and nd its principal
axes 01; p2). If only the cross section (. p2) is needed, we can use the fact that the determinant of a
matrix is independent of the coordinate system so that

p
= P F.7
P pLP2 piDe ©® (F.7)

with

2 2
Det(P) = bc € b;: odf, 2def,

e (F.8)

In the case of an edge-on orbit at mid transit, no rotation is nedlexthe identity and thua= 1=&,
b= 1=, c= 1= andd = e= f = 0. We retrieve

PP1p2 = P%: = pagaz: (F.9)

F.2 Coplanar case

If the planet equator and the orbital plane are coplanar, the unit vectors of rst coordinate system
de ned above coincides with the unit vectors de ned by the line connecting the two center of mass (from
the secondary to the object under considerati®f, ;its normal in the orbital plane (in the direction of
motion ; §9 and the rotation axis of the bodg%. If i is the inclination of the orbit with respect to the
sky plane and the true anomaly de ned to be 0 at mid transit, the rotation matrix reads

sini cosf sinf cosi cosf
R= @ sinisinf cosf  cosisinf A: (F.10)
cos 0 sini

The S matrix can be computed thanks to Eq. (F.2) giving #hé, ..., f coef cients and thus the
projected area reads

q
A =p aisirfi alsir’f + ajcoff + aZa3coLi: (F.11)

This gives the projected area of the planet or the star at any given point of the orbit as showr3o6. Fig.



157

Appendix G

The Mixing Length Theory

In order to investigate the impact of such strongly hampered convection on giant planet internal
structure, | developed a simple sub-grid model based on the Mixing Length Theory (MLT) of convection
(Hansen and Kawaler 1994). However, before getting into the derivation of this model, let us introduce
the basic formulation of the MLT.

G.1 Growth rate

In a homogeneous medium without rotation and magnetic eld, the dispersion relation for horizon-
tal waves (corresponding to vertical velocity ; seeB2) is

(§+K)(s+Prkd) 1=0; (G.1)

or
§2+ §kP(1+ Pr)+ Pri 1= 0: (G.2)
A closer look at the determinant of this equation,
D=(1+Pn%* 4Prk* 1)=4+(1 Pr)2k4

shows us that is is always positive, so that the roots are real. Then, because the sum of these roots,
(1+ Pr)Kk?, is negative, their product must also be negative so that at least one of them be positive.
This entailsPrk* 6 1. Recasting this in term of the well known Rayleigh number

Ra N2=(nkrk%) =(Prk¥ 1 (G.3)

this criterion then readRa> 1. Hence, not only the super adiabaticity needs to be positive for the
medium to be convectively unstable, but it must be large enough to counteract the radiative losses and
maintain an overturning convection. The problem that arises, however, is that in an in nite medium,
this criterion can always be met by taking a small enolighe. a large enough length scale for the
perturbation. This problem is at the heart of the MLT formalism. As the fastest growing mode is reached
for vanishing wave numbers, the theory cannot predict the typical size of the perturbation. In practice,
this implies that the so-calledixing length] 1=k is a free parameter.

Let us agree for the moment that this mixing length is determined by some exterior constraint.
Moreover, one of the fundamental assumptions of the MLT is that our growing wave can be seen as a
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rising eddy of sizd which is described by a velocity.n, and temperature differend2T, those being
the nite versions ofdv anddT de ned in 8§4.1.2 reached fdr= tcony 1=S. Solving Eq. (G.1), we get
the growth rate of the convective wave
1 q - o~ ~
§ = 5 A1 Prk4 (1+ Prk? (G.4)

Following Hansen and Kawal€i994), we de ne

L Ra Pr= N2=(k2k% = k % (G.5)

which measures the ef ciency of the convection. The growth rate of the perturbation then rewrites

q

s = NrS(L) | with |S(L) ?}FL 4L+(1 Pr2 (1+Pr) ; (G.6)
and the convective velocity is then

To nd the convective ux, we will need to know what is the temperature difference between a moving
eddy and the exterior (DTUsing Egs. (4.10) and (G.1), we have

=($ + Prk?) (NTNTNad) Jpvcom,
= ?}T | AL+(1 Pr2 (1 Pr) (NTI\ITNa"') HTPvconv; (G.8)
and the convective ux can be written
Feonv= T CpDT \onv: (G.9)

G.2 Convective ef ciency

While we seem to have solved the problem and found the convective velocity, we are still far from
a usable solution. Indeed, all along, we have used the Brunt-Vaisala freqdgneg if it were known.
However, this depends on the super adiabaticity in the medium which will obviously depend on the
ef ciency of the convection. In order to nd a xed point to this retroacting, | thus need to de ne a
quantity quantifying the radiative forcing in the system. To do so, | rst need to consider the different
relevant uxes. Those are the total internal ux to be transporteg)(Fhe ux transported by diffusive
processes (, and the diffusive ux that would be presentin a completely adiabatic zoﬁé éfe given

by (see 8..1.4)
0 F 1 0 ] 1
int A rceT 'Nd A
@ Fy =kt H @ Nt . (GlO)

P
Fc? d Nad
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An often used quantity to describe energy transport by convection is the Nusselt number (Nu), which is
given in general by the ratio of the total ux (diffusive turbulent) to the diffusive ux in a convective
layer. In our context, we use the slightly different de nitiontédnsen and Kawal€i994)

NU Fint Fé"d: Ng Nag.
Fo F9  Nr Nag

(G.11)

Hence, with this de nition, if convection is ef cient, the super adiabaticity will be small and the Nusselt
number high. On the other hand, if convection is not present or inef cidot!  1: The interesting
property ofNuis that, by multiplying it byL, we can de ne our convective forcing

atg 1 -

F LNu= —° —(Ng Nag; G.12

which can be directly computed once the total ux to be transported (hiddBlig)iits known. Hence to
get our equation on the convective ef ciency, we need to manipulate the de nition of the Nusselt. Since
Fint = Feonvt Fa,

Fnt Fa+ Fg F2d F
Nu= int d dd d — 1+ conv d: (G.13)
Fa F2 Fa F2

Then, using the de nition of the convective ux, we can obtain the sought for equation and solve it
numerically. By chance, in the context of gaseous bodies, the PrandIt number is often small. In order
to derive an analytical theory, we will thus use e 1 limit of the equations (Hansen and Kawaler
1994), and will come back later on the implications of this approximation. Then using Egs. (G.8) and
(G.9), the convective ux also takes a more manageable form

receTNr

Feonv = T(NT Nad)§3|2: (G.14)
P
Hence,
F Nrl2 —on
convd: T3 L 17253, (G.15)
Fy Fd"’1 kTt
and
LNu= L+ L3283, (G.16)

wheresS now reads

S(L) ?@LL PIear 1 (G.17)

Deferring a thorough study of the asymptotic regimes of this equation uhtl.§, let us just derive some

orders of magnitude for large scale convection. Of course we need a prescription for the mixing length.
An implicit assumption that was made during our linear analysis was that all the quantities involved
should be constant in our medium. In a star or a gaseous body, this is strictly veri ed dnly Hp.

It has been shown, however, that in order to reproduce some observed properties of solar like stars, the
mixing length should be chosen to be on the order of the pressure scale height. Thign, & in

most of a gaseous object interior, we nd that for condition prevailing in the interior of the actual Jupiter
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(Saturn), the mean thermal diffusivityks 5 10 m2.s ! (Potekhin 1999)N.q Nag 40 (30;see
also Fig.4.7), andlNu is equal toLNu 1 10%°(3 10%%).

As the forcing is extremely large, convection is very ef cient. Indeed, keeping only the largest
power inL, we getLNu  L3%2 sothat. 10?3 Then, because the de nition &f can be rewritten

atg 4

L= T%WP(NT Nad); (G.18)

this tells us that the super adiabaticity needed to transport the outgoing energy is on the ordér of 10
10 9, so that the structure can be solved by sethirge Nag *.

INote that rapid rotation and/or strong magnetic elds, necessarily present in Jupiter and Saturn interiors, are known to
hamper large-scale convection. Indeed, the zonal ows observed in Jupiter's atmosphere might reveal the presence of convective
rolls at deeper levels, a consequence of the impact of rotation on convective motions, according to the Taylor-Proudmann
theorem (Busse 1976). However the super adiabaticity needed is still negligible in fidgy (Stevenson 1979b)
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Appendix H

Computation of the heavy element content

The mean molecular weight gradient needed to stabilize the uid against large scale convection can
be caused by an inhomogeneous distribution of both helldgm)) and metals (Zm)) in the hydrogen
(X(m))-rich medium. In practice, both gradients can be present at the same time and either compete or
contribute constructively.

In the model, | consider an ideal mixture of heavy elements within a H/He envelope whose H/He
mass ratio is kept constant and equal to its value in the protosolar nebula, gig@di&his implies

Y Y

+Y+Z=1; =
X+Y+Z l’andX+Y X+ v

0:275; (H.1)
proto
everywhere in the planet's gaseous envelope. Only one degree of freedom thus remains. Following previ-
ous calculations (Chabrier et al. 1992), for sake of simplicity and in order to have a exible determination
of the metal enrichment and a thermodynamically consistent EOS in the gaseous phase, the metal mass
fraction is approximated by affectivehelium mass fractionv9 in the H/He EOS. As for the core, this
latter is correctly described by the appropriate water and silicate EOS mentioned in the text.

The various element mass fractions, then the corresponding metal enrichment, are thus inferred
from the relation

1 _ 1 z N zZz

FRTY) I (HzHepoolPT)  rz(RT)’

(H.2)

which givesZ at each depth along a given modRelT pro le (Chabrier et al. 1992). The hydrogen and
helium mass fractions are then derived using

Y
X+Y

Y=(1 2 (H.3)

proto

and
X=1Y Z (H.4)

In this simple model, & gradient thus necessarily yields a competing inhomogeneous helium distribution
within the planet. Because the mean molecular weight of a H/He mixture at xed temperature and
pressure only depends (X + Y), only theZ variations need to be considered to comp\gein our

simpli ed model. TheZ(m) pro le is then integrated to obtain the total amount of heavy elements mixed
in the gaseous layers for each planetary model, as portrayed ifh.gign the most general case, with

an intrinsic inhomogeneity of the helium distribution, caused for instance by its immiscibility in metallic
hydrogen, both th¥ andZ gradients would have to be properly calculated.
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Appendix |

Secular tidal evolution for nite
eccentricity and obliquity

Having a prescription for the parameters modeling the dissipation in our bodies, in our case a
constant viscosity, we can concern ourselves with the determination of the secular change of the orbital
elements of a tidally interacting binary system. We consider a system of two deformable bodies of mass
M1 andM,. Note that no approximation will be made on the masses of the two bodies, meaning that the
following equations can be used in a large variety of contexts, covering Star-Star, Star-Planet and Planet-
Satellite interactions. Up to the quadrupolar terms in the tidal deformation, approximation that remains
to be explained and justi ed, the mutual interaction of the tidal bulges is negligible and we can separately
consider the effects of the tides raised in each body and sum them up at the end of the calculation. Let
us consider the effect of the tides raised in a deformable bodyMsapereafter the primary, of mean
radiusRy) in interaction with a point mass (s&y» the secondary). In these notations, the primary is
not necessarily the most massive object of the pair, but always refers to the object whose tides are being
considered, and the secondary always refers to the tides raising dbjewt, the complete equations are
obtained by simply adding the contributions of the tides in both objects, each body playing consecutively
the role of primary.

In general, because tidal processes are small perturbations to the mean orbital motion, the standard
perturbation method rst developed by Lagrange can be used (se®mgwer and Clemence 1961).
However, | will present hereafter a simple and physically more transparent derivation of the equations,
based on the formulation d¢iut (1981). Note that | have extended the calculations to be valid for
any obliquity.

.1 Secular equation to arbitrary obliquity

The demonstration follows three main steps.

1. The orientation of the tidal bulge with time is computed. This yields vector expressions for the
tidal force and torque.

2. The variations of the rotation rate, obliquity and orbital angular momentum are obtained thanks to
this expression of the torque and using tbi&l angular momentum conservation.

3. The evolution of the semi-major axis and eccentricity are obtained from the expression of the work
exerted by tidal forces. The total amount of energy dissipated by tides in one of the bodies is a
direct product of the calculation.
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.1.1 Trivia

One of the major assumption made here, that remains to be justi ed, is that the tidal perturbation
entails only a small departure of the orbital motion from the unperturbed Keplerian solution. We will
thus consider that, over an orbit, our two bodies follow the usual motion, solution of the unperturbed two
body problem. This will allow us to average the effect of the tidal forces over the orbital timescale, and
to keep only the secular effect of the tidal interaction on the orbital elenemsy; ande;, respectively,
the semi major axis (or the mean motio)) the eccentricity, and the rotation rate and obliquity of the
component i.

In order to simplify the following derivation, | brie y recall here some properties of the two body
problem solution. The radial distancebetween the center of mass of the two objects writes

1 é
rh=a—  —: (1.2)
1+ ecosq
whereq is the true anomaly, de ned as the angle between the line connecting the center of mass of the
two components and the one connecting the center of mass of the whole system and the perihelion (point

of closest encounter).
Over such an orbit, the total orbital energy of the binary is given by

M1 M2

Eorb = ; 1.2
orb G 2a ( )

and the orbital angular momentum by

S

MMy M2M32
Hob= ————r15g= G——2-a(l €): 1.3
orb M1+ Mz 20 Ml"' MZ ( ) ( )

Because the orbital angular momentum is constant over an orbit, we can compute the variation of the
true anomaly and radial distance with respect to the position on the orbit

pP—— 2 2
g=n 1 E = n%; (|4)
2 1 &~
and differentiating Eq. (I.1) with respect ¢pwe get
dro 1o _ sing _
and thus
esing
r.-= an ; 1.6
2 2 (1.6)

Thanks to these expressions, it is now easy to compute the average value of any fiyrintiolving
a combination ofy, r, or ro, over an orbit. Indeed, one can rst exprekss a functiorg of g alone
(with g(q(t)) = f(t)). Then the average is given by
| |
1 1 d
fhd= —  g(a)~ (17)

hfi —
Torb  orbit Torb  orbit q(q)

In the cases of interest, the functigfq)=q can be expanded in a nite series of sines cosines functions,
and the integral in Eq. (1.7) reduces to a sum of terms of the form

Z 2p
In= sir’q cod'qdq: (1.8)
0
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If nis odd,l, = O due to the symmetry. For even values of n,

z Z Z -

p=2 p=2 p=2
Ik = 4 sifqcos®qdq = 4 coqdq cos*2qdq : (1.9)
0 0 0

é recursive process shows that the integrals on the right hand side (also known as Wallis integrals) give

O %cogkqdq = & D p=2 and thus

k 1)
Ik = ZDHZ (1.10)

[.1.2 Tidal torque

Up to quadrupolar order, the potential created at a locatitwy a body being distorted by a sec-
ondary located at,, is obtained by truncating Eq. (5.3) up to terms with 2 which gives

GM R M
V(I o) = Tl 1 kZ%M—iPz(cosy) : (.11)

wherey is the angle betweeanandr,, andk; is the Love number of degree 2 of the primary.

Figure I.1: Point mass approximation of the tidal bulge (in the coplanar case). In this exampleay
so that the tidal bulge is leading in front of the secondary.

To this order, the mass distribution of the primary can be mimicked by a centralvhas2dm
and two point masses at the location of the tidal bulgesi(r = r. ; see Fig.1.1) of masdm with
kri k= kr k= R;the radius of the primary and

dm= *kzMz — : (|.12)

Because we considercanstanttime lagDt; between the deforming potential and the tidal deformation
in the frame rotating with the primary, = fo(t Dt;) ( f, refers to the unit vector associatedrt) in
this frame. Lelg be the orbital rotation vector colinear to the orbital angular momentum whose value is

1By denition, i' = i(i 2)(i 4)::1.
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the instantaneous variation rate of the true anorgady the bodies in their Keplerian motion amd the
rotation vector of the primary. Thus, to rst order iy,

fre=To(t D) F» Duufr (wp Q): (1.13)

The amplitude of the tidal bulges also lags behind the deforming potential and is given by

S 3

1 Ru
= ZkoMpy — L
N
1 R, °
SkoMa L (1+37Dt): (1.14)
2 > >

Then, adding the forces exerted by each point mass of the primary on the secondary, the total tidal force
exerted on the secondary reads

_ G(Mp 2dm)My GMdm GMdm )
Fio = kr K3 ? Ko 1K (r> r+) Ko 1 K3 (ro r ) (1.15)
Substitutingr+, r = r, anddm by their expressions in Egs. (1.13) and (1.14), and neglecting terms

smaller thar(R;=r,)° gives

GMM, . _GkMZR
Pp 3-—-21
r5 rf

GkoM2R?

Fip = r72 1[11(W1 q) o (1.16)
?

f1 + 3:—?Dt1g Fot 3
?

Thus the tidal torque exerted by the tidal bulge on the secondary is given by

CIoNER

Niz =3 > f  D(wy q) fo: (1.17)
)

[.1.3 Angular momentum transfer
Because the total angular momentum is conserved, we can write
N1z = Hom = Ha; (1.18)

whereH o is the orbital angular momentum vector, whose direction followandH; = Cyw; the

rotational angular momentum of the primary, whose moment of inertia along the rotation &jis is
Remember that the secondary is here treated as a point mass, meaning that its angular momentum is an
internal degree of freedom, and cannot be transferred to another component for the moment. We can
then simply derive the rate of variation of the modulus of the internal angular momentum:

d A -
a(clwl): Hi=Hi Hi= Nz2 Hi (1.19)

This product can be carried out by projecting in any base. We choose the base deldgg by( 0; 0; h)
andw; = (wy siney; 0; wy coser) wheree; is the obliquity. In this base,
0 . :
GloM2FE wisine; sir’(g + v )
—— 21, @ wsinejcos@+ v)sin(@+v) A; (1.20)

Nip =3 5
wicose;

?
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wherev is the longitude of the periapsis. The precession of the periapsis occurring on a much shorter
timescale than the tidal migration, we can average the tidal torquevavehis yields
1

l .
GloM2RE sW1sine
Nip = 3 ke — 21 @ 0 A (1.21)
8 wicose; ¢

We can compute the dot product in Eq. (1.19) giving (with= cosey)
dC]_Wl sz[llM R5 o 1+ X%

1.22
ot 5 1 2 W1 (1.22)
The mean rotation-rate variation is obtained by averaging over a Keplerian orbit using
| 6 3
1 a 1+ 3¢+ 3¢
We) — - dt= —— 8~ 1.23
© Torb orbit 7 (1 92)9:2 ( )
and
| 6 15 45 5 6
1 1+ 22+ Let+ 26
NEe) — o & g="2- 7816, (1.24)
Torb orbit N T2 1 &)
This reads
dCywy Kol 2 w1 !
= — 1+x7 WeEe)— 2xN(e) ; 1.25
& -1 We) 2aN(e) (1-25)
where we have introduced a scaling factor which has the dimension of an energy dissipation rate,
3 GM2 M, 2 Ry °
= ZlkoDt; —2 = — n% 1.26

As detailed later, this parameter can be used to compare the strength of the tidal dissipation inside each
body. As can be seen from Eq. (1.25), for any value of the obliquity and orbital elements, one can nd a
value of the rotation rate which cancels the mean tidal torque.

The variation of the obliquity can be obtained with
d ~ -~ SN SN
a(Hl Ho) = H1 Hom + H1 Homw: (1.27)
Carrying out the differentiation and using Eq. (1.18) yields
(H1 Hob)(Nuz H1)  (Ni2 Hom) (How H1)(Niz Hom) . (N1 Hy) |

1.28
H i 2, o~ (0
Subsituting Eq. (1.21) foN11, we get after simpli cation
de1 3Gk2[11|\/|%§? . X1 q W1
— == — 2 1.29
da 2 r§ Siney C  Cwi Hom (129)
Averaging over an orbit using Egs. (1.23)-(1.24) gives
dey K1 L W1 I
= —_— h)WEe)— 2N ; 1.30
o - S e - O hy)We)— (e) ; (1.30)
whereh; is the ratio of rotational over orbital angular momentum
+
hi = Mi+ My C|W| (1.31)

MiMy a2n 1 &
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[.1.4 Energy dissipation

To obtain the variation of the semi-major axis and eccentricity, we must compute the work done by
the tidal force on the secondary
|
: 1
hEorpl1 = —— Fuz dr
orb , orbit

1 I

= — (roFuz 7+ Nyo  q)dt; (1.32)
Torb orbit

wherer,F1, fis the radial component aridy;, g the normal one. The radial forcesn'4_512 andrf_,7
in Eqg. (1.16) are conservative and do not dissipate energy. The radial part of the work is computed using

| 8 2 15 15,4, 5.6
1 1 1+ L+ Let+ 3¢
ne) 2t €L a - =" a-T 8" T e (1.33)
€ Tom omit I? na (1 e?)1s=2
The normal component can be written
Nip qdt = 3GkDLMZRE Xlwrliﬁq dq: (1.34)
?
Again, averaging is carried out using Egs. (1.24)-(1.23). After integration we get
h [
, W
MEomi1 = 2K N(€)x1— Na(e) ; (1.35)
where
1+ 31?2+ 255¢h + 185¢6 4 2568
Na(e) — 2 8 16 64~ . (|36)

(1 e)15=2

The variation of semi-major axis due to the tides raised in the primary can be obtained through the
fact that

d GMiM, _ GMiMy

hEorpi1 = .37
obl1= G 2a 2a2 (137)
which gives

1da 4a n W1 !

—— = Ki N — N : 1.38

adt . Gt N Na(e) (1-38)

Because the orbital angular momentum is given by
s
_ o MM .
Horp = GM1+ M, a(l €); (1.39)

the variation of the eccentricity can be obtained by differentiatigg with respect td:

Horb - 5. 1 e2
Only total angular momentum is conserved, thég, = d(Ciw;)=d and substituting Eq. (1.25), (1.38)
and (1.39) in (1.40) gives

1lde a w; 18
—— = 11— K; We(e)xy— —Ne(e) : .41
edt , GMiM, 1 We(e)xq n 11 k(e) ( )
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Finally, the rate of mechanical energy{& Eorbt+ Erot) dissipated by the primary is

FEmed 1= MEomi 1+ NEroti 1
E GMiM,
d 2a

Thus, substituting Egs. (1.22) and (1.35) in Eq. (1.42) gives

d
+ Wla(clwl)i (|.42)

1+ x2
2

2
FEmed1= 2Ki Na(€) 2N(e)x1%+ Wee) % : (1.43)

One can see that the energy dissipated in the bBgly (h Emed 1) is positive for any value of andx;

as expected (Hut 1981) and that it is minimum when the body is pseudo-synchronized. Substituting

by the pseudo-synchronization rate (Eq. (1.51)), Eq. (1.43) simpli es to Eq. (I.53), which can be used
for a close-in gas-giant exoplanet. For rocky planets locked in synchronous rotation by their permanent
quadrupolar mass distribution, the heating rate can be estimated settng in Eq. (1.43).

.2 Assumptions, order of magnitudes and timescales

.2.1 Timescales

Let us summarize the different timescales involved with tidal evolution. We remind here that most
of the timescales de ned here can change when considering one or the other object of a pair, but we will
omit the subscript i for simplicity. The shortest period, is of course the dynamical timescale which we
take here to be the period of the orbital motion of a test particle which would be grazing the surface of
the primary

s
P 2 R : 1.44
dyn p GM (1.44)
Another short timescale is the orbital period, on which all our equations have been averaged
S
2p 4p2ad
P —_—= 1.4
orb G(M1+ MZ) ( 5)

However, viscous processes produce only a weak secular perturbation of the orbital motion, and
their effect occur on much longer timescales. To scale these effects, we can de ne a viscous time as
follows

i( Tayn
4p2 ko Dt

ty ) Tayn (1.46)

- GMikz;iDt; :

From Egs. (5.12) and (5.11), we see that two comparable timescales arise for the evolution of the
orbital elements. The rstone, also called the circularization timescale (due to the body i), is proportional
to the ratio of the orbital energy over the typical dissipation rate in the body under consideration
e _ 1GMiM;
€ w=weg e!0 7 akK

t circ

(1.47)

It measures the time needed to damp the eccentricity of a nearly circular orbit. For exoplanets, this
timescale will be of particular interest, as it will set the rate at which gravitational energy is released into
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the primary during the circularization of the orbit (se&.8.1). Notingp = M;=M the ratio of the mass
of the body under consideration over the mass of the secondary, this rewrites

t circ =

2 p? L ag

— —)"ty: 1.48

211+ p(Ri) v (1.48)

It is comparable to the typical timescale for the evolution of the semi-major axis, or infall timescale, that
can be derived from Eq. (5.11) using

a _1p (E_)St\,: (1.49)

t b - =
n aw=0e=0 61+ p'R

From Egs. (1.25) and (1.30), we see that the evolution of timescales for the (pseudo) synchronization
and the coplanarization are also equal and can de ned as

a
t —_— = r —  ty 1.50
sync W =0 3 gyrp R| \ ( )

[.2.2 Validity of the weak friction approximation

We are now able to quantify more precisely the weak friction approximation and to de ne what is a
smalltime lag (R). In our calculations, this approximation appeared under two different forms. First, in
computing the positions and masses of the tidal bulges (see Egs. (1.13) and (1.14)), where we truncated
our development to linear order X, and second in averaging the effects of the tidal forces over an
unperturbed Keplerian orbit. Thus the linear approximation is justi ed if both, the principal tidal driving
period is large compared to the time lag, and the orbital period is small with respect to the timescales
linked to the tidal evolution (bothgjrc andt syng).

In reasonable cases, the rst constraint is the most stringent and can be rewritten either
2jw  njDt 1 for non-synchronous objects, noB&x 1 in the pseudo-synchronous case. Even for
rigid objects like the Earth (D 630¢ ; Mignard 1979 ; Neron de Surgy and Laskar 1997), this assump-
tion is well justi ed.

However, another subtle averaging has been made to obtain a torque which is independent of the
relative orientation of the spin with respect to the perihelion of the orbit in Eq. (1.21). While the tidal
processes still occur on a much longer timescale than the precession period, possible resonances of this
precession with other secular perturbation of the system, by a distant third companion for example, can
occur. Therefore, the object can be trapped in a spin-orbit resonance, also called Cassini state (see
Levrard et al. 2007 while this seems improbable for giant close in planets as showrabyycky et al.

2007), or a Kozai-Lidov resonance (Fabrycky and Tremaine 2007), which cannot be described by the
above equations as they are.

[.2.3 Pseudo-Synchronization

While the evolution ol ande arise on quite comparable timescales, synchronization, however, can
proceed much faster. Indeed, considering a plgnetMy,=M, 1, yielding

2
tsync &
t circ a

1:

2This value is of the time lag is the one needed to recover the increase of the Earth-Moon semi-major axis measured with
Lunar Laser Ranging, and which is currentlyl cm per year.
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Therefore one can make the assumption than tidally evolve exoplanets must be in a state of pseudo
synchronization with their orbit. The value of the pseudo synchronized angular velocity can be found by
either setting Eq. (1.25) equal to zero or by minimizing the rate of tidal dissipation at xed semi-major
axis, eccentricity and obliquity. This reads

_N(e) 2x _ N(e) .
Yea™ Weyte @' we)

(1.51)

for a zero inclination. When the orbit is circularized, this reduces to the simple synchroniagiem.

As the obliquity equation involves the same typical timescale as the evolution of the angular velocity, the
planet obliquity must rapidly be damped by tides and we can make the assumption of alignment between
orbital and planetary angular momentum (€0).

1.2.4 Stellar spin

Figure 1.2: Absolute value ofi,=w, due to the winds (dashed), radius variation (solid) and tides (dotted)
for a Jupiter-Sun like system on a circular orbit watk 0:1 AU (left) and 0.02 AU (right). Herek, Dt, =

2 10 2. The contraction always dominates on the pre main sequence, spinning up the star, but is
counteracted by magnetic winds later on. The tides raised by the planet only play a signi cant role for
very short period orbits, when the planet and star are nearly merging.

On the contrary, for star = M>=Mp 1, tsyncteic U P % 2 and a pseudo synchronization
and coplanarity hypothesis is no longer justi ed in most cases. The spin state of the star must then be
taken into account. However, this is not as simple as integrating Eqg. (1.25) at cobstditst, the star
contracts during the pre main sequence, or expand on the main sequence, and the angular momentum
conservation entails an additional term in the spin rate variatitm addition, as is well known, stars
loose angular momentum through the ejection of magnetized winds. Following the parametrization of
Bouvier et al.(1997) for the stellar winds, we get

r___
R

M7?,

wo_ K"

Wo Cowsn

G Kwind . .
& K i

i
W
1+ %3 W(e)F? 2% N(e) (1.52)
whereKying andwsy are constant for a given star. The strength of the various terms is compared in
Fig. 1.2 for a Jupiter-Sun like system. This shows that angular momentum losses are far from being
negligible, but including these effects in our model adds many additional free parametek§,(g.@nd
Wsat Which are only weakly constrained, but also the lifetime of the circumstellar disk which determines

3As | keptC; in the time derivative of Eq. (1.25), this term is already implicitly included.
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the initial spin rate of the staiBouvier et al. 1997). Thus, in order to keep the number of unknown as low

as possible, | decided to do not take into account these additional terms in the general study described
in the following sections. The initial angular momentum of the star used in our simulations can then
directly be deduced from the observed one.

[.2.5 Tidal heating

One can see from Eq. (1.43) inl §hat in the special case of a body in pseudo-synchronous rotation,
as expected for uid objects {&= 0, w; = Weg), the tidal energy dissipation rate is given by

N*(e)
W)

Eia = 2K1 Na(e) ; (Wi = Weg): (1.53)

The dissipated heat is deposited over the whole planet's interior.

For arocky planet, however, the external gravitational potential created by its permanent quadrupole
moment can cause its locking into synchronous rotatign<w), and the dissipation rate reads in that
case

" 1l 4L

1+ %2
Eia = 2K1 Na(e) 2N(e)xp+ T" We) ; (W= n): (1.54)

This equation fully agrees with Eq. (30) #isdom (2008) who calculated it for a homogeneous, in-
compressible with a radial displacement Love numiiger 5k,=3. Note that our derivation does not
require such an hypothesis and all the uncertainties in the radial distribution of material and its physical
properties (e.g., density, compressibility, elasticity) are lumped intétparameter (Levrard 2008).
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Appendix J

CHESS user guide

J.1 Goal

CHESB a Code computing Hydrostatic Equilibrium Structure by Shooting method. It can basically
run in two different modes:

Find and compute a structure in hydrostatic equilibrium (HSE) for a given set of planetary pa-
rameters such akm, Parm (OF Teg, logg if @ numerical grid is used for the atmospheric boundary
condition),Y, Mc, ws, etc... In this mode, several quantities characterizing the structure are com-
puted as outputs (PTe, Rp, Ry, k2, Cy, etc...).

Can nd the values of a speci ed set of parameters,(Me to rock mass ratioy, dYy=dm, ...)
that t best the observable parameters of the plangt,(Rp, Jo, Ja, Js, Zam) by an optimized
Newton-Raphson procedure.

J.2 Code Structure

J.2.1 Equations

To nd the HSE,CHES#tegrates the standard set of stellar structure equations in the Lagrangian
form

;qr:: zmgr‘2+(\sl\:3pr_+jw; (J.1)
11]1;1: 4pi_2r ; 3.2)
1111;: e T:T“S; J.3)
j];: HE’]NT; (3.4)
where j is given by Eq.(E.17). In the code, the set of variables fy§gi-=14 =

flog P, (F=§p)b;(lzunt)§; logTg, and the parameter is the reduced Lagrangian nnas$m=Nb)a_. Note
that the term due to the centrifugal force in the pressure equation is valiti sod@r (see Appendix E).
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The equations solved thus read

#

2 31 2 a1 = 1 %
Tyi_  GMp nP= T WpMp m= % Mpmi= . =10 % (3.5)
m 4paRd yé21=b 6pa R, y;=b a In10
Ty bMp %5 *2 26)
Tm 4paR3rm! 1=’ '
fys_ GMp 5 = e TIS . 3.7)
fm~ alL,mt = 1t '
fya _ Tyig .
- D (3.8)

The power law indicea,, b_andg_can be chosen so that the equations do not show any singularity at the
boundaries. This is achieved usiag= 2=3,b = 2 andg= 2=3.

Because the luminosity cannot be calculated self-consistently without any knowledge on the evo-
lution, some assumptions must be made. Here we will assume that the interior is strictly adiabatic. For
planets below the deuterium burning limit, the luminosity can therefore be integrated as follows

Zm 13 g% m

[(m) = e T— dm

EERE
>0 Tam= T(m)oMmy, .
m=0 it Mt meo'Om= T(M)gy Mp (J9)

de ning a mean temperatufB(m) (with T = T(Mp)). In our models with semi-convection, we will use

this equation even if it is not strictly valid. To avoid adding a free parameter to be adjusted in our shooting
method, we will go beyond this hypothesis and assume that "for the luminosity”, the temperature pro le
follows a square law

T=Tc (T Tam); (J.10)
- 2 1

This means that, although the temperature pro le is computed using Eq. (J.4), the luminosity is computed
using

1(X) = Tt XTe 3 (Te Tatm) ;
ﬂé_ Lint )
e T - J.12)

J.2.2 Boundary conditions

With the set of equations described above, one needs only 3 initial conditions at each edge to
compute a structure (not necessarily in HSE)CHESS, these initial conditions are 0, P= P, and
T = T, at the center and=" §p P = PymandT = Ty at the outer edge. The Boundary conditions on
the luminosity are already enforced by Eq. (J.12).

J.2.3 Parameter adjustment

WhenCHES$ searching for a structure in HSE,, T andF\Tp are varied until the discrepancy at
the mid point in the structure reaches zero to numerical precision.
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The code can nd the values tting the observable constraintg, (8, Js) for any speci ed set of
variables including up to 3 variables fronTsm (or Tint), Y, % Mc, Miock=M;. At each step, new values
of R, Tc andR, are computed to satisfy the HSE.

J.3 Principal variables list

The main variables describing the planet physical structure are:

Mass_p: Planet mass gyl

R_mean_g: Mean radius of tRe= Py isobar Ry). If the rotation is set to zerd, = Req= Rp.
R_equatorial : Equatorial radius ().

IPc_g: Log of central pressure (Idg).

ITc_g: Log of central temperature (I0G).

IT_atm: Log of temperature at the atmospheric boundary conditionTgdgg.

IP_atm: Log of pressure at the atmospheric boundary conditionRlgg.

Teff_p: Planet effective temperature i)

Ltot_p: Total luminosity (Lin:). This is recomputed each time that eittiermean_gr Teff_p
changes.

w_rot: Angular velocity (wp)

m_rot_g: dimensionless rotation paramet%’%)

M_core_g: Core mass (M

X_core_g: Ratio of core to total mass (MM,).

alpha_core_g: Ratio of rocky core to total core mass gM=M.).

YHe_g: Mean Helium and heavy elements mass réfiavhereY= Y + 2).
DYHe_g: Mean Helium and heavy elements mass ratio gra@ﬁ%)nt (

f_YHe_modFunction to use to compute the Helium and heavy elements mass ratio at each point
knowingYHe_candDYHe_dinteger).

core_EOS: EOS to use for the core (integer).

Unless stated otherwise, these variables are double precision real given in Sl units (MKS system) and log
is the decimal logarithm. These variables are contained in the m&duian_Global They are global
variables used by all the subroutines to compute the structure without having to specify them as input
variables. They are initialized by the loading subroutindsaul.f90.

To runCHESH different modes, the main program can access the mdjotions and switch the
following parameters to the required value. They are listed here with their default value.
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Param_io_channel=0: =1 if the physical parameters are provided by the main program, =0 if
CHESS8ust read them in the speci ed les.

EOS init=0: If = 1, the EOS for Hydrogen and Helium (SCvH) has already been loaded. = 0 for
normal initialization.

ANEOS init=0: If = 1, ANEOS has already been loaded. =0 for normal initialization.
OpaCOND_in#t0: If = 1, COND opacities have already been loaded. =0 for normal initialization.

CONDALL_Init0: If = 1, Conductive opacities have already been loaded. =0 for normal initial-
ization.

atm_init=0: If = 1, atmospheric boundary conditions have already been loaded. =0 for normal
initialization.

what_should | do=-1: If <0 CHESSnly carries out initialization (test mode), =0 compute HSE
for the given parameters, =i>1 ti parameters, with the i constraints.

FitParameter =['YHe','’x_core','DYHe’]: parameters to constrain.

Constraint=['R_equa’,'J2','J4". Constraints to use.

use_atm_BC=1: If =0 the program usés atm and|T_atm given in the init le as external
boundary conditions. If =ICHES®ill use theatm_files along with the speci edleff_p and
logg_p (computed fromMass_pandR_mean_q) to infer the atmospheric Boundary Conditions.

write_res =1: If = 0 does nothing, =1 writes the tted parameters in the le specied in
chess.fo0 .

write_struc=0: If = 0 does nothing, =1 writes the structure in the le specied irthess.f90
with the number of point given bibrPointOutput, =2 writes the structure in an unformatted le
compatible with the evolution code (thisintOutFormat must be 17)

write_mode=0: If = 0 normal mode: The code writes only most useful quantities. =1, writes
additional physical quantities (opacities, temperature gradients...)

write_figures=0: If = 0 does nothing, =1 writes the gure functions in the le spec-
ied in chess.f90 with the number of point given byNbrPointOutput (works only if
write_struc>=1)

NbrPointOutput =300: Number of grid points for the structure output.

PrintOutFormat =9: Number of digits (after the coma) to print out in tResultStructure.dat
le. 17 is the max in double precision
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