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Résumé

Les systèmes cryptographiques à base de courbes elliptiques sont aujourd’hui de plus
en plus employés dans les protocoles utilisant la cryptographie à clef publique. Ceci est
particulièrement vrai dans le monde de l’embarqué qui est soumis à de fortes contraintes
de coût, de ressources et d’efficacité, car la cryptographie à base de courbes elliptiques
permet de réduire significativement la taille des clefs utilisées par rapport à d’autres
systèmes cryptographiques tels que RSA.

Les travaux qui suivent décrivent dans un premier temps l’implantation efficace et
sécurisée de la cryptographie à base de courbes elliptiques sur des composants embar-
qués, en particulier sur des cartes à puce. La sécurisation de ces implantations nécessite
de prendre en compte les attaques physiques dont un composant embarqué peut être la
cible. Ces attaques incluent notamment les analyses par canaux auxiliaires qui consistent
à étudier le comportement d’un composant qui manipule une clef secrête pour en dé-
duire de l’information sur celle-ci, et les analyses par faute dans lesquelles un attaquant
peut perturber le fonctionnement d’un composant dans le même but.

Dans la seconde partie de ce mémoire de thèse, nous étudions ces attaques et leurs
conséquences concernant l’implantation des systèmes cryptographiques à clef publique
les plus répandus. De nouvelles méthodes d’analyse et de nouvelles contre-mesures sont
proposées pour ces systèmes cryptographiques, ainsi que des attaques spécifiques à
l’algorithme de chiffrement par bloc AES.

Mots clefs : cryptographie à base de courbes elliptiques, analyse par canaux auxilliaires,
RSA, multiplication scalaire, exponentiation.
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Abstract

Elliptic curve based cryptosystems are nowadays increasingly used in protocols involving
public-key cryptography. This is particularly true in the context of embedded devices
which are subject to strong cost, resources, and efficiency constraints, since elliptic curve
cryptography requires significantly smaller key sizes compared to other cryptosystems
such as RSA.

The following study focuses in the first part on secure and efficient implementation
of elliptic curve cryptography in embedded devices, especially smart cards. Designing
secure implementations requires to take into account physical attacks which can target
embedded devices. These attacks include in particular side-channel analysis which may
infer information on a secret key manipulated from a component by monitoring how it
interacts with its environment, and fault analysis in which an adversary can disturb the
normal functioning of a device with the same goal.

In the second part of this thesis, we study these attacks and their impact on the
implementation of the most used public-key cryptosystems. In particular, we propose
new analysis techniques and new countermeasures for these cryptosystems, together
with specific attacks on the AES block cipher.

Keywords: elliptic curve cryptography, side-channel analysis, RSA, scalar multiplication,
exponentiation.
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Introduction

Motivation

Embedded devices are more and more present in everyday life and will probably become
ubiquitous with the emergence of cloud computing. Numerous applications already
rely on microchips for security features and to protect sensitive assets; for example we
may cite e-payment, e-passport, pay TV, access control, trusted computing, e-purse,
anti-counterfeiting, etc. Smart cards have been used to provide such services since
the French Télécarte pay phone card was launched in 1983. While these first cards
used very simple memory chips, the Carte Bleue debit card introduced in 1992 and the
massive use of SIM cards in GSM mobile phones in the 1990s marked the beginning of
a wide use of cards embedding a real microprocessor. Their features have substantially
evolved since then, so that they have now significant processing capabilities and various
form factors. Notably, most of them can store secret keys in tamper-proof areas, and
high-end smart cards are able to use public-key cryptography involving computations
over integers of hundreds of digits.

Currently, the most widespread public-key cryptosystem is the well-known Rivest-
Shamir-Adleman (RSA) system which relies on the difficulty of factoring large integers.
Since significant advances in this field have been made over the last two decades, keys
of thousands of bits are required today. As a consequence, Elliptic Curve Cryptography
(ECC) which is considered to provide an equivalent security with much shorter keys
is gaining ground over RSA, especially in the context of embedded devices that have
limited resources. The main operation of ECC is the scalar multiplication which is
similar in many ways to the modular exponentiation used in RSA. Its implementation
raises efficiency and security issues that have been covered by an abundant literature.
Not all these works fit the context of embedded devices however.

Since their introduction, smart cards have been considered as tamper-proof de-
vices — they are often referred to as digital strong-boxes — and security properties
of cryptographic algorithms can be proven under mathematical assumptions. However,
the emergence of side-channel analysis from 1996 onwards has shown that embedded
systems provided with state-of-the-art cryptography may not be as secure as initially
thought. An integrated circuit performing computations physically interacts with its
environment so that various kinds of leakage can occur when it manipulates a secret
key. As a consequence, straightforward implementations of cryptographic algorithms in
which leakages are not taken into account are generally insecure when embedded in a
device potentially owned by an adversary.
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2 INTRODUCTION

Fault analysis demonstrated another issue for the security of embedded devices:
as it is not possible to control the environment in which these systems operate, they
may be subject to voluntary perturbations. Many works have shown how corrupting
computations performed by a device or data stored in its memories can help an adversary
to extract secret keys out of it.

These physical attacks have initiated substantial research and nowadays constitute
a full field of study known as physical cryptanalysis. This new area involves cryptology,
computer science, statistics, signal processing and engineering. For 15 years, new at-
tacks have been successively demonstrated as the review of existing implementations
by the community progressed. In the same time, numerous countermeasures have been
devised by embedded systems designers to prevent information leakages and to resist
fault attacks. These countermeasures can take place either at hardware, software or
mathematical levels; this thesis focuses on the last two.

Contributions and Outline

The aim of this thesis is twofold: first, Chapter 1 focuses on the implementation of
ECC in existing smart cards with practical industrial constraints. We detail the options
suitable for low-resources embedded devices, with regard to the standards used in real-
life applications. Since most previous works do not fit this context, we estimate the
cost of these solutions depending on devices characteristics. Finally, we propose a new
method which is both efficient and resistant against known attacks.

Second, we detail in Chapter 2 how physical cryptanalysis threatens embedded sys-
tems that integrate cryptographic functionalities. Our study focuses on public-key cryp-
tography but covers also some aspects of the implementation of the Advanced Encryp-
tion Standard (AES), the most used secret-key block cipher. We show that protecting
devices against side-channel analysis requires both high-level and low-level implementa-
tions to be considered. In particular, we demonstrate how modular multiplication — the
basic operation in both ECC and RSA — can be targeted by side-channel analysis, and
how sound countermeasures are inefficient when improperly implemented. As a conse-
quence, we give recommendations to implementors and propose new countermeasures
at different implementation levels.

Specifically, key contributions of this thesis include:

• In Section 1.2, a comprehensive survey of the implementation of ECC scalar mul-
tiplication in embedded devices. In particular we evaluate the cost of available
algorithms when taking field additions into account, which is relevant in the con-
text of embedded devices. This survey addresses both algorithmic efficiency and
resistance towards side-channel analysis.

• In Section 1.3, a new implementation of the atomicity countermeasure to protect
scalar multiplication against side-channel analysis. Considering the context of
embedded devices, this method brings the best efficiency to our knowledge in some
realistic cases for general curves over large characteristic prime fields [GV10].
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• In Section 2.5, new exponentiation algorithms using squarings only and implement-
ing the atomicity principle. These new atomic algorithms are more resistant to
attacks than previous atomic methods, while remaining faster than known regular
algorithms. We also show that parallelizing squarings makes our method one of
the most efficient to our knowledge [CFG+11g].

• In Section 2.6, a new side-channel analysis on an RSA exponentiation. It computes
correlation estimates, which are generally used by side-channel analysis to infer in-
formation on a secret key from numerous exponentiation traces. Our method
allows a secret exponent to be recovered from a single trace under realistic as-
sumptions [CFG+10].

• In Section 2.7, new countermeasures operating at the multiplication implementa-
tion level. They are intended mainly for hardware designers and provide immunity
against a wide range of side-channel analysis, including the one introduced in
Section 2.6 [CFG+10].

• In Section 2.8, a new side-channel analysis on the AES using collisions between
trace segments. This attack is shown to be successful against classical counter-
measures when realistic security trade-offs are used to improve the efficiency of
implementations. It may thus threaten devices used in practice [CFG+11b].
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Chapter 1

Elliptic Curve Cryptography on
Embedded Devices

Elliptic Curve Cryptography (ECC) provides public-key primitives using much shorter
key lengths for a given security level than other cryptosystems such as RSA, Digital
Signature Algorithm (DSA), or Diffie-Hellman. This is a decisive advantage in the
context of embedded devices where resources (power, memory, frequency, bandwidth,
etc.) are generally limited. Thus, many applications1 are currently switching to ECC
as security requirements increase over the years and traditional key lengths become
prohibitive in the embedded context.

For cryptographic applications, elliptic curves are generally defined over prime fields
Fp, p > 3, or binary fields F2n . In this study, we leave aside the latter case since elliptic
curves over Fp are generally preferred in applications2. Section 1.1 recalls the basics of
elliptic curve point arithmetic over prime fields and its implementation.

Scalar multiplication is the key operation for ECC. A substantial literature focuses
on the implementation of this operation with respect to efficiency and security con-
straints. Section 1.2 recalls most of the proposed methods and evaluates their cost in
the context of embedded devices. We emphasize that the classical assumptions found in
the literature do not fit the context of embedded devices provided with a cryptographic
coprocessor, such as most smart cards designed for public-key cryptography. Indeed
field additions are generally neglected when estimating the cost of algorithms, whereas
we demonstrate that it is worthwhile to consider them also, cf. Section 1.1.1.6. To our
knowledge, we provide the most comprehensive comparison regarding this point.

In Section 1.3 we propose a new implementation of the scalar multiplication. Our
algorithm is designed to resist classical side-channel analysis and exhibits some of the
best performances of protected methods for general curves over Fp with regard to the
survey provided in Section 1.2.

Finally, in Section 1.4 we consider Edwards curves, elliptic curves with a particular
shape, that have been recently put under the spotlight due to the efficient arithmetic

1E.g. the EMV banking protocol [EMV07], e-passport ICAO specification [ICAO06], etc.
2Part of it is the fact that the use of ECC over binary fields is restricted by several patents in practice.

Also the NSA selected the prime moduli option for the Suite B cryptographic set [NSA05].
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and the nice implementation properties they provide. We discuss the opportunity to use
Edwards model in the context of standard-compliant products.

1.1 Point Arithmetic

In this section, we recall the point arithmetic of elliptic curves over large characteristic
fields and some of the numerous methods used to speed up the computation of point
additions and doublings. We also evaluate the cost of such operations in the context of
embedded devices.

Section 1.1.1 presents some general statements about elliptic curve arithmetic using
the affine representation. Projective representations that are generally used in imple-
mentations are detailed in Section 1.1.2 with the corresponding operations formulas.
Careful attention is paid to recall all known formulas, including those operating under
particular conditions such as readditions, mixed additions, co-Z additions, etc. Finally,
Section 1.1.3 briefly recalls some unified addition formulas of interest for cryptographic
applications.

1.1.1 Generalities

We recall hereafter some properties of elliptic curves over large characteristic fields and
basic facts concerning their use in cryptographic applications. Also, we discuss the
actual cost of field operations when performed on embedded devices provided with a
cryptographic coprocessor. This point yields a key observation for the sequel of this
study.

1.1.1.1 Equation and Group Law

An elliptic curve over a field K of characteristic char(K) 6= 2, 3, is defined by an affine
equation of the form:

y2 = x3 + ax + b (1.1)

where a, b are elements of K such that 4a3 + 27b2 6= 0. Equation (1.1) is called short
Weierstraß equation of the curve.

Let E(K) denote the set of projective points (X :Y :Z) on the curve with coordinates
in K. It corresponds to the set of affine points (x, y) of K2 satisfying the equation of
E together with the projective point O = (0 : 1 : 0), the point at infinity. The set E(K)

has an abelian group structure considering the chord and tangent group law denoted
additively and described hereafter:

• O is the neutral element for the group law,

• the opposite of P = (x, y) is −P = (x,−y),



1.1. POINT ARITHMETIC 7

• for P1 = (x1, y1) and P2 = (x2, y2) two affine points, P1 6= ±P2, the point
(x3, y3) = P1 + P2 is given by:{

x3 = m2 − x1 − x2

y3 = m (x1 − x3)− y1
with m =

y2 − y1

x2 − x1
(1.2)

this formula is referred to as the affine addition formula,

• for P1 = (x1, y1) with y1 6= 0, the point (x3, y3) = P1 + P1 is given by:{
x3 = m2 − 2x1

y3 = m (x1 − x3)− y1
with m =

3x1
2 + a

2y1
(1.3)

this formula is referred to as the affine doubling formula.

This group law, so called because of its nice geometric representation, is depicted
in Figure 1.1 on the elliptic curve y2 = x3 − x + 1 defined over R.

•P1 + P2 •
P1

•
P2

•−(P1 + P2)

O

•
P1

•
−(P1 + P1)

•P1 + P1

O

Figure 1.1: Geometric representation of the chord and tangent group law over R

Choice of Parameters The groups of points of the curves given by E1 : y2 = x3 +

a1x + b1 and E2 : y2 = x3 + a2x + b2 over Fq of characteristic p > 3 and a1, b1 6= 0,
are isomorphic if and only if there exists v in F∗q such that a1 = v4a2 and b1 = v6b2.
The corresponding isomorphism is then:

E1 (Fq)→ E2 (Fq)

(x, y) 7→
(
v2x, v3y

)
Therefore, if a2 is a more convenient value for computing the doubling of a point, one can
perform point operations on E2 instead of E1. This property is used in standards [NIST06;
LM10] which restrict themselves to isomorphism classes containing a curve with a = −3.
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1.1.1.2 Scalar Multiplication

Given P a point of E(Fq) and k ∈ N∗, let kP be the point of the subgroup generated
by P defined by:

kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

This operation is called the scalar multiplication of the point P by k . This definition
extends naturally to k ∈ Z with 0P = O and (−k)P = k(−P ).

In the sequel, we restrict ourselves to the implementation of elliptic curves over a
field Fq of large characteristic p.

1.1.1.3 Security and Key Lengths

In the same way as ElGamal cryptosystem is based on the discrete logarithm problem in
the multiplicative group of a finite field, ECC is based on the difficulty to compute dis-
crete logarithms in the group of points of an elliptic curve. As the matter of comparison,
RSA encryption relies on the difficulty of the problem of factoring large integers.

The discrete logarithm problem in a multiplicative group G is the following: given
an element g of G and x an element of the subgroup of order ng generated by g, find
the integer d such that 0 ≤ d ≤ ng − 1 and x = gd . Using the additive notation, the
elliptic curve discrete logarithm problem consists in finding d such that Q = dP for P
a point of the curve, and Q a point of the subgroup generated by P .

Unlike the discrete logarithm on Fq or the factorization of integers, no known algo-
rithm solves in sub-exponential time the discrete logarithm problem on an elliptic curve.
The fastest known general method is the Pollard ρ algorithm, which heuristically uses
O(n

1
2 ) group additions.

Consequently, it is considered that ECC provides an equivalent security level as
ElGamal or RSA with much shorter keys. Table 1.1 gives the commonly accepted
equivalences between these cryptosystems key lengths [HMV03]. Note however that
the estimates vary a little depending on the source [Gir08]. A security level s is achieved
when we estimate that solving the instance will require more that 2s operations.

Table 1.1: Comparison of estimated equivalent key lengths between ECC and RSA for
different security levels

Security level 80 112 128 192 256

ECC 160 224 256 384 512

RSA 1024 2048 3072 8192 15360
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1.1.1.4 Cardinality

Let n = #E(Fq) denote the cardinality of the group of points E(Fq). Define t, the
value such that n = q+ 1− t, as the trace of the curve. Then, Hasse’s theorem states
that:

|t| ≤ 2
√
q (1.4)

In other words, the cardinality of the group of points is close to q and bounded by:

(
√
q − 1)2 ≤ n ≤ (

√
q + 1)2 (1.5)

For cryptographic applications, it is required that the cardinality of the group of
points of a curve has a large prime factor, otherwise the discrete logarithm problem
becomes easier using Pohlig-Hellman algorithm [PH78; MOV97]. In practice, considered
groups have cardinality n = hm, with m prime and h ∈ {1, 2, 3, 4}. The value h is called
the cofactor of the group of points of the curve.

The curve is supersingular if char(Fq) divides t, and ordinary otherwise. Since
the discrete logarithm problem on the group of points of supersingular elliptic curves
succumbs to pairing attacks [CFA+05], these curves are avoided for the cryptographic
applications considered in this work. Pairing based cryptography is another branch of
ECC which uses some properties of supersingular curves to provide new cryptographic
primitives such as identity based cryptography [CS11].

1.1.1.5 Standard Curves

There are currently two main standards defining elliptic curves for cryptography: the
NIST standard FIPS 186-3 [NIST06] and the German Brainpool standard [LM10].
Indeed, other standards such as ANSI X9.62 [ANSI05], ISO 15946 [ISO02], IEEE
P1363 [IEEE04], and SECG [Cer00] mainly provide pointers to NIST curves.

Fast and secure implementations of the elliptic curve scalar multiplication for indus-
trial products are optimized for NIST and/or Brainpool curves. There are 5 NIST curves
over prime fields whose parameters sizes are 192, 224, 256, 384, and 521 bits and 7
Brainpool curves over prime fields whose parameters sizes are 160, 192, 224, 256, 320,
384, and 512 bits. All theses curves have cofactor 1: n is prime.

1.1.1.6 Estimating Computations Cost

In this study, we are interested in estimating the cost of different scalar multiplica-
tion techniques over a prime field Fp on an embedded device such as a smart card.
On such devices, most of the computation time of a scalar multiplication is spent in
the point arithmetic, i.e. the computation of field operations. Thus, other operations
(assignments, loop processing, conditional branchings, etc.) have a negligible cost.

Field operations include additions, subtractions, multiplications and inversions. The
main one in term of cost and usage is the multiplication. Denoting M, resp. S, the
cost of a modular multiplication, resp. modular squaring, it is generally considered that
S/M = 0.8 for operands of a few hundreds of bits. The modular inversion is very
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expensive compared to the multiplication: we have generally observed on smart cards
that I/M ≈ 100, I being the cost of a modular inversion.

The following study focuses on embedded devices provided with a dedicated arith-
metic coprocessor. This is the case of most smart cards used for public-key applications,
e.g. Inside Secure (ex-Atmel SMS) AT90SC, NXP SmartMX, or Infineon SLE66CX se-
ries.

In the literature, the cost of field additions and subtractions is generally neglected
compared to the cost of multiplications. While this assumption is asymptotically correct,
these operations are not as insignificant as predicted in the context of embedded devices.
For example, the aforementioned smart cards provided with arithmetic coprocessors offer
the following operations: addition, subtraction, multiplication, modular multiplication
and sometimes modular squaring. To our knowledge, only one chip is currently equipped
with a hardware modular addition3. On all other devices, modular additions, resp.
subtractions, are therefore carried out using one regular addition, resp. subtraction,
and one conditional subtraction, resp. addition4. In practice, this conditional operation
should always be performed for side-channel analysis immunity — i.e. a dummy operation
is performed half of the time. Moreover every operation performed by the coprocessor
requires a constant extra software processing to configure and start the coprocessor.

It stems from these features that the cost of field additions/subtractions is in prac-
tice not negligible compared to field multiplications. Figure 1.2 is an electromagnetic
leakage measurement during the execution on a SmartMX chip of a 192-bit modular
multiplication followed by a modular addition. Large amplitude blocks represent the
32-bit arithmetic coprocessor activity while those with smaller amplitude are CPU pro-
cessing only. On this figure, we denote by δ the time spend by CPU instructions for
filling the coprocessor registers and triggering a multi-precision operation. In this case
the timing ratio between modular multiplication and modular addition is approximately
0.3.

From experiments on the aforementioned devices, we estimated the average cost of
modular additions/subtractions compared to modular multiplications. Our results are
presented in Table 1.2. The average value of A/M for considered bit lengths is about
0.2.

An obvious hardware improvement for these devices would be to offer native modular
additions and subtractions, which saves one software processing δ per modular addi-
tion/subtraction. We thus also consider in the sequel of this study the case A/M = 0.1.
It can also be used for estimating the cost of computations using key lengths from 384
to 521 bits.

3The reference of this chip is not publicly available.
4On some devices, the reduction following an addition or subtraction can be delayed if the following

operation is a multiplication or a squaring. Also, it is possible on some devices to compute an addition
using the CPU during a squaring or a multiplication performed by the coprocessor, i.e. virtually for free.
We do not consider such features in the following study as they vary a lot from a chip to another.
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M

δ

A

δ

Figure 1.2: Comparison between modular multiplication and modular addition timings
for 192-bit operands on a smart card designed for public-key cryptography

Table 1.2: Average A/M ratio observed on smart cards provided with an arithmetic
coprocessor for standard ECC key lengths

Bit length 160 192 224 256 320 384 512 521

A/M 0.36 0.30 0.25 0.22 0.16 0.13 0.09 0.09
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1.1.2 Projective Representations

The affine addition and doubling formulas (1.2) and (1.3) require the computation of
an inverse in the base field Fq. As discussed in Section 1.1.1.6, if q is prime, modular
inversions are very expensive operations, compared to modular multiplications. For that
reason, most implementations perform internal operations using a redundant projective
representation which requires no inversion to add two points. As detailed hereafter, a
scalar multiplication computed using projective coordinates requires to eventually per-
form a single inversion to output the result in affine representation.

We recall hereafter most of the projective formulas found in the literature. This
survey makes intensive use of the usefull Explicit Formula Database [EFD] available at:
http://hyperelliptic.org/EFD/.

1.1.2.1 On S–M Trade-Offs

Addition and doubling formulas presented hereafter are voluntarily not state-of-the-
art [EFD]. Indeed, recent advances have provided projective formulas where some field
multiplications have been traded for faster field squarings [Ber01; Lon07, Sec. 4.1].
These advances have been achieved by using the so-called S–M trade-off principle
which is based on the fact that computing ab when a2 and b2 are known can be done
as 2ab = (a + b)2 − a2 − b2. Thus, a squaring can replace a multiplication and the
additional factor 2 can be handled by considering the representative (2X : 2Y : 2Z) of
the homogeneous coordinates coset5 (X :Y :Z).

Nevertheless such trade-offs not only replace field multiplications by field squarings
but also add field additions. In the previous example, 3 extra additions have to be
performed6, thus the trade-off is profitable only if A/M < (1 − S/M)/3, i.e. A/M <

0.067 taking S/M = 0.8. We show in Section 1.1.1.6 that it is not the case for the
considered devices. In practice, it also depends on the considered hardware capabilities
which highly vary from a chip to another.

Therefore, we consider that these new formulas are generally not relevant in the
context of embedded devices — especially smart cards —, but they would be of interest
if modular additions could be performed at a lower cost.

1.1.2.2 Homogeneous Projective Coordinates

By denoting x = X/Z and y = Y/Z, Z 6= 0, we obtain the homogeneous projective
Weierstraß equation of the elliptic curve E :

Y 2Z = X3 + aXZ2 + bZ3 (1.6)

Each affine point (x, y) is represented by homogeneous projective coordinates (λx : λy :

λ) with λ ∈ F∗q. Conversely, every point represented by (X : Y :Z), Z 6= 0, has affine
coordinates (x, y) = (X/Z, Y/Z).

5In the case of Jacobian coordinates, the representative (4X :8Y :2Z) is considered.
6If Jacobian coordinates are used, more additions may be required to compute (4X : 8Y : 2Z). In

such a case, the A/M threshold is even lower.

http://hyperelliptic.org/EFD/
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The opposite of a point (X : Y : Z) is (X : −Y : Z) and the point at infinity O is
represented by (0:λ :0), λ ∈ F∗q, the unique coset in E(Fq) with Z = 0.

The sum of P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2), with Z1, Z2 6= 0 and
P1 6= ±P2, is the point (X3 :Y3 :Z3) such that:


X3 = BC

Y3 = A
(
B2X1Z2 − C

)
− B3Y1Z2

Z3 = B3Z1Z2

with

A = Y2Z1 − Y1Z2

B = X2Z1 −X1Z2

C = A2Z1Z2 − B3

−2B2X1Z2

(1.7)

If P1 is given in affine coordinates — i.e. Z1 = 1 — we save three multiplications
in (1.7). Such a case is referred to as mixed affine-projective addition.

The double of the point (X1 :Y1 :Z1) is the point (X2 :Y2 :Z2) such that:


X2 = EB

Y2 = A (D − E)− 2C2

Z2 = B3
with

A = 3X1
2 + aZ1

2

B = 2Y1Z1

C = BY1

D = 2CX1

E = A2 − 2D

(1.8)

When curve parameter a is −3, a doubling can be carried out using:

A = 3 (X1 + Z1) (X1 − Z1)

which saves two squarings in the above formula. We denote this operation by fast
doubling.

Adding up field operations yields 12M+ 2S+ 7A for general addition, 9M+ 2S+ 7A

for mixed addition, 7M + 5S + 10A for general doubling and 7M + 3S + 11A for fast
doubling.

1.1.2.3 Jacobian Projective Coordinates

By denoting x = X/Z2 and y = Y/Z3, Z 6= 0, we obtain the Jacobian projective
Weierstraß equation of the elliptic curve E :

Y 2 = X3 + aXZ4 + bZ6 (1.9)

Each affine point (x, y) is represented by Jacobian projective coordinates (λ2x : λ3y : λ)

with λ ∈ F∗q. Conversely, every point represented by (X : Y : Z), Z 6= 0, has affine
coordinates (x, y) = (X/Z2, Y/Z3).

The opposite of a point (X : Y : Z) is (X : −Y : Z) and the point at infinity O is
represented by (λ2 :λ3 :0), λ ∈ F∗q, the unique coset with Z = 0.
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The sum of P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2), with Z1, Z2 6= 0 and
P1 6= ±P2, is the point (X3 :Y3 :Z3) such that:


X3 = F 2 − E3 − 2AE2

Y3 = F
(
AE2 −X3

)
− CE3

Z3 = Z1Z2E

with

A = X1Z2
2

B = X2Z1
2

C = Y1Z2
3

D = Y2Z1
3

E = B − A
F = D − C

(1.10)

If P1 is given in affine coordinates (i.e. Z1 = 1) we save one squaring and four
multiplications in (1.10). Besides, if P has to be added several times, storing Z1

2 and
Z1

3 saves one squaring and one multiplication in all succeeding additions involving P .
This latter case is referred to as readdition.

The double of the point (X1 :Y1 :Z1) is the point (X2 :Y2 :Z2) such that:
X2 = C2 − 2B

Y2 = C (B −X2)− 2A2

Z2 = 2Y1Z1

with
A = 2Y1

2

B = 2AX1

C = 3X1
2 + aZ1

4
(1.11)

When curve parameter a is −3, two squarings can be saved in formula (1.11) using:

C = 3
(
X1 + Z1

2
) (
X1 − Z1

2
)

Adding up field operations yields 12M+4S+7A for general addition, 11M+3S+7A

for readdition, 8M + 3S + 7A for mixed addition, 4M + 6S + 11A for general doubling
formula and 4M + 4S + 12A for fast doubling.

Remark 1. Consecutive general doublings can be sped-up using the following trick: store
the values U ← aZ1

4 and V ← 2A2 manipulated in the first doubling, then compute
aZ1

4 in the second doubling as 2UV which requires only one multiplication and one
addition. Iterate this process to trade two squarings for one addition per doubling after
the first one. This trick has been generalized with the introduction of the so-called
modified Jacobian coordinates, see 1.1.2.4.

Co-Z Addition Meloni observes that two Jacobian points sharing the same Z coordi-
nate can be added efficiently [Mel07]. Indeed, if P1 = (X1 :Y1 :Z) and P2 = (X2 :Y2 :Z),
such that X1 6= X2, the sum P1 +P2 = P3, with P3 = (X3 :Y3 :Z3) can be computed as
follows:


X3 = D − B − C
Y3 = (Y2 − Y1) (B −X3)− Y1(C − B)

Z3 = Z (X2 −X1)

with

A = (X2 −X1)2

B = X1A

C = X2A

D = (Y2 − Y1)2

(1.12)

This addition formula, denoted Co-Z addition, requires only 5M + 2S + 7A, which
is even cheaper than the fast doubling formula.
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An interesting property of this formula is that the input point P1 can be converted for
free to another representative P ′1 = (X ′1 :Y ′1 :Z3) after the addition. Indeed observe that
Z3 = Z(X2 − X1), which yields X ′1 = X1(X2 − X1)2 = X1A and Y ′1 = Y1(X2 − X1)3 =

Y1(C − B), both of which appear as subexpressions in (1.12).

In the following ZADDU (for co-Z ADDition and Update) denotes Meloni’s addition
formula, such that ZADDU(P1, P2) = (P3, P

′
1) using the above notations.

Conjugate Co-Z Addition The ZADDU operation is extended to a conjugate addition
by Goundar, Joye, and Miyaji [GJM10] by observing that the previous co-Z addition can
also yield P1 − P2 = (X4 :Y4 :Z3) with:{

X4 = (Y2 + Y1)2 − B − C
Y4 = (Y2 + Y1) (B −X4)− Y1(C − B)

(1.13)

This operation, referred to as ZADDC(P1, P2) = (P3, P4), with P3 defined as previ-
ously and P4 = (X4 :Y4 :Z3), costs 6M + 3S + 11A.

Composite Operations A composite operation denotes several uses of the group law
to output a single result. The most studied composite operations have the form dP1+P2

for small values of d ≥ 2.

Based on a work by Ciet, Joye, Lauter and Montgomery [CJLM06], Longa and
Miri [LM08b] show that computing 2P1 + P2 can be performed more efficiently as
P1 + (P1 + P2) if the Co-Z formula is used for the second addition. Indeed, if P1 =

(X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2), with Z1, Z2 6= 0 and P1 6= ±P2, the sum
2P1 + P2 = (X3 :Y3 :Z3) can be computed as follows [EPAF]:

X3 = U2 − T 3 − 2X ′1T
2, Y3 = U(X3 −X ′1T 2)− Y ′1T 3, Z3 = Z′1T (1.14)

Where: α1 = Y2Z1
3, α2 = Y1Z2

3, β1 = X2Z1
2, β2 = X1Z2

2,

A = α1 − α2, B = β1 − β2,

X ′1 = β2B
2, Y ′1 = α2B

3, Z′1 = Z1Z2B,

T = A2 − B3 − 3X ′1, and U = AT + 2Y ′1.

This scheme also allows the computation of 4P1 + P2, resp. 8P1 + P2, by applying
P1 ← 2P1, resp. P1 ← 2(2P1), prior to the previous formula. We give in Table 1.3
the cost of these composite operations depending on the context of the first addition:
general case (Z2 unknown), readdition (Z2

2, Z2
3 known), or mixed addition (Z2 = 1).

This scheme allows to compute (2k + 1)P1 + P2 for k = 1, 2, . . . by iterating the
previous formulas. We do not detail these operations and their costs as they are not
involved in the scalar multiplication algorithms considered in this study. The interested
reader can find more details in the work by Longa and Miri [LM08b].
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Table 1.3: Cost of Jacobian composite operation dP1 + P2, for d = 2, 4, 8, depending
on the addition context

Operation General case Readdition Mixed addition

2P1 + P2 17M + 6S + 13A 16M + 5S + 13A 13M + 5S + 13A

4P1 + P2 21M + 12S + 24A 20M + 11S + 24A 17M + 11S + 24A

4P1 + P2, a = −3 21M + 10S + 25A 20M + 9S + 25A 17M + 9S + 25A

8P1 + P2 25M + 16S + 36A 24M + 15S + 36A 21M + 15S + 36A

8P1 + P2, a = −3 25M + 14S + 37A 24M + 13S + 37A 21M + 13S + 37A

1.1.2.4 Modified Jacobian Projective Coordinates

This representation, introduced by Cohen, Miyaji, and Ono [CMO98], is derived from the
Jacobian projective representation to which a fourth coordinate is added for computation
convenience. In this representation, a point on the curve E is represented by (X :Y :Z :

aZ4), where (X :Y :Z) stands for the Jacobian representation.

Modified Jacobian projective coordinates provide a particularly efficient doubling
formula. Indeed, the double of a point (X1 : Y1 :Z1 :W1) is given by (X2 : Y2 :Z2 :W2)

such that:


X2 = A2 − 2C

Y2 = A (C −X2)−D
Z2 = 2Y1Z1

W2 = 2DW1

with

A = 3X1
2 +W1

B = 2Y1
2

C = 2BX1

D = 2B2

(1.15)

Hence, a doubling requires only 4M+ 4S+ 12A for all a values. On the other hand,
addition is less efficient compared to Jacobian projective representation: by applying
formula (1.10), we need to compute the fourth coordinate, thus adding an overhead of
1M + 2S.

1.1.2.5 Comparison

Jacobian projective coordinates provide faster formulas than homogeneous ones, except
in the case of the general addition of two points. On the other hand, modified Jacobian
coordinates allow an even faster doubling than regular Jacobian coordinates, but suffer
from a less efficient addition formula.

Tables 1.4 and 1.5 summarize the costs of addition, readdition, mixed affine-projec-
tive addition, doubling and fast doubling formulas for the different point representations.
The affine coordinate representation is denoted by A, the projective homogeneous co-
ordinate by H, the projective Jacobian coordinate by J and the modified Jacobian
coordinate by Jm.
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Table 1.4: Cost of addition formulas depending on the point representation

Coord. Addition Readdition Mixed addition

A I + 2M + S + 6A I + 2M + S + 6A –

H 12M + 2S + 7A 12M + 2S + 7A 9M + 2S + 7A

J 12M + 4S + 7A 11M + 3S + 7A 8M + 3S + 7A

Jm 13M + 6S + 7A 12M + 5S + 7A 9M + 5S + 7A

Table 1.5: Cost of doubling formulas depending on the point representation

Coord. Doubling Fast doubling

A I + 2M + 2S + 8A I + 2M + 2S + 8A

H 7M + 5S + 10A 7M + 3S + 11A

J 4M + 6S + 11A 4M + 4S + 12A

Jm 4M + 4S + 12A 4M + 4S + 12A

1.1.3 Unified Addition Formulas

Classical point arithmetic on Weierstraß curves requires to distinguish point additions
(i.e. P1 + P2, P1 6= P2) from point doublings (P1 + P1) which may lead to side-channel
leakages. In this section we explore the possibility of computing a scalar multiplication
taking place on a standard curve using a unified addition formula, i.e. a formula handling
both point additions and doublings, thus preventing side-channel leakages.

1.1.3.1 Weierstraß Curves

We recall hereafter the affine and homogeneous projective unified addition formulas
presented by Billet and Joye [BJ03].

The sum of two points P1 = (x1, y1) and P2 = (x2, y2) given in affine representation,
with y1 6= −y2, is the point (x3, y3) such that:

{
x3 = λ− x1 − x2

y3 = λ(x1 − x3)− y1
with λ =

x1
2 − x1x2 − x2

2 + a

y1 + y2
(1.16)

This formula requires I + 2M + 2S + 8A.



18 CHAPTER 1. ELLIPTIC CURVE CRYPTOGRAPHY

The sum of two points P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) given in
homogeneous projective representation, with Z1, Z2 6= 0 and P1 6= −P2, is the point
(X3 :Y3 :Z3) such that:


X3 = 2F I

Y3 = E (H − 2I)− G2

Z3 = 2F 3
with

A = X1Z2, B = X2Z1, C = A+ B

D = Y1Z2 + Y2Z1

E = C2 − AB + a(Z1Z2)2

F = DZ1Z2, G = DF, H = CG

I = E2 −H

(1.17)

This formula requires 13M+ 5S+ 7A in the general case, 12M+ 5S+ 9A if a = −3,
or 13M + 3S + 8A if a = −1 by setting E = (C − Z1Z2)(C + Z1Z2)− AB.

Note that no efficient unified addition formula using Jacobian coordinates on general
Weierstraß curves has been reported so far.

1.1.3.2 Edwards Curves

Some particular classes of elliptic curves over prime fields provide more efficient unified
addition formulas than general Weierstraß curves, for example Hessian curves7 [JQ01]
and extended Jacobi curves [LS01].

Recently, Edwards proposed a new class of curves [Edw07] provided with a unified
addition formula among the fastest published in the literature [EFD]. Also, he provides
an efficient doubling formula which can be used when side-channel indistinguishabil-
ity is not required. Such curves being of the utmost interest for scalar multiplication
implementors, an intensive survey has followed these publications.

We recall hereafter the best addition formulas proposed for Edwards curves. We
study in Section 1.4 whether they can be used to perform scalar multiplication over
general Weierstraß curves, in particular the standardized curves.

Equation and Group Law Edwards [Edw07] presents a unified addition law for elliptic
curves over a field K of characteristic different from 2, given by an affine equation:

x2 + y2 = c2(1 + x2y2) (1.18)

where c ∈ K∗, c4 6= 1. Bernstein and Lange generalize this law to a larger group of
curves [BL07b], given by an equation:

x2 + y2 = c2(1 + dx2y2) (1.19)

where c, d ∈ K∗, dc4 6= 1. These cover about 1/4 of all the elliptic curves over
non-binary finite fields [BL07b].

7Contrary to the other unified formulas mentioned in this section, the Hessian unified addition [JQ01]
is not strongly unified, i.e. it requires a particular processing to handle doublings.
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The sum of (x1, y1) and (x2, y2) is the point (x3, y3) such that:
x3 =

x1y2 + y1x2

c(1 + dx1x2y1y2)

y3 =
y1y2 − x1x2

c(1− dx1x2y1y2)

(1.20)

This addition law is unified, it is moreover complete if d is not a square in K [BL07b].
Completeness means that denominators are never zero and there is thus no exceptional
case. Note also that c can always be chosen equal to 1.

Projective Representation The point (x, y) is represented in projective coordinates
by (X :Y :Z) such that x = X/Z and y = Y/Z, with Z 6= 0.

The sum of (X1 :Y1 :Z1) and (X2 :Y2 :Z2) is given by (X3 :Y3 :Z3) such that:
X3 = AF ((X1 + Y1) (X2 + Y2)− C −D)

Y3 = AG (D − C)

Z3 = cFG

with

A = Z1Z2, B = A2

C = X1X2, D = Y1Y2

E = dCD

F = B − E, G = B + E

(1.21)

This operation requires 10M + 1S + 1Cc + 1Cd + 7A, where Cc , resp. Cd , denotes
the cost of a multiplication by the constant c , resp. d , which can be chosen small. If
Z2 = 1, this cost drops to 9M + 1S + 1Cc + 1Cd + 7A.

Inverted Coordinates As introduced by Bernstein and Lange [BL07c], the inverted
coordinates of a point (x, y) are (X : Y : Z) such that x = Z/X and y = Z/Y , with
X, Y 6= 0.

The sum of (X1 :Y1 :Z1) and (X2 :Y2 :Z2) is given by (X3 :Y3 :Z3) such that:
X3 = c(E + B)F

Y3 = c(E − B)G

Z3 = AFG

with

A = Z1Z2, B = dA2

C = X1X2, D = Y1Y2

E = CD, F = C −D
G = (X1 + Y1)(X2 + Y2)− C −D

(1.22)

This operation requires 9M+ 1S+ 2Cc + 1Cd + 7A. If Z2 = 1, this cost boils down
to 8M+1S+2Cc +1Cd +7A. However, note that this addition formula is not complete
contrary to the previous one.

1.1.3.3 Twisted Edwards Curves

Equation and Group Law Bernstein, Birkner, Joye, Lange, and Peters presented the
twisted Edwards [BBJ+08] curves over a field K of characteristic different from 2 of
equation:

ax2 + y2 = 1 + dx2y2 (1.23)

where a, d ∈ K∗, a 6= d . This equation covers more curves than Edwards curves and
has a comparable addition cost.
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The sum of P = (x1, y1) and Q = (x2, y2) is the point P +Q = (x3, y3) such that:


x3 =

x1y2 + y1x2

1 + dx1x2y1y2

y3 =
y1y2 − ax1x2

1− dx1x2y1y2

(1.24)

As with Edwards curves, this addition law is unified. It is complete if a is a square
in K and d is not.

Projective Representation The point (x, y) is represented in projective coordinates
by (X :Y :Z) such that x = X/Z and y = Y/Z, with Z 6= 0.

The sum of (X1 :Y1 :Z1) and (X2 :Y2 :Z2) is given by (X3 :Y3 :Z3) such that:


X3 = AF ((X1 + Y1) (X2 + Y2)− C −D)

Y3 = AG (D − aC)

Z3 = FG

with

A = Z1Z2, B = A2

C = X1X2, D = Y1Y2

E = dCD

F = B − E, G = B + E

(1.25)

Similarly to Edwards curves, this unified addition requires 10M+1S+1Ca+1Cd+7A,
where Ca, resp. Cd , denotes the cost of a multiplication by the constant a, resp. d ,
which can be chosen small. If Z2 = 1, this cost drops to 9M + 1S + 1Ca + 1Cd + 7A.

Inverted Coordinates As for Edwards curves, the inverted coordinates of a point
(x, y) are (X :Y :Z) such that x = Z/X and y = Z/Y , with X, Y 6= 0.

The sum of (X1 :Y1 :Z1) and (X2 :Y2 :Z2) is given by (X3 :Y3 :Z3) such that:


X3 = (E + B)F

Y3 = (E − B)G

Z3 = AFG

with

A = Z1Z2, B = dA2

C = X1X2, D = Y1Y2

E = CD, F = C − aD
G = (X1 + Y1)(X2 + Y2)− C −D

(1.26)

This operation requires 9M+ 1S+ 1Ca + 1Cd + 7A. If Z2 = 1, this cost boils down
to 8M + 1S + 1Ca + 1Cd + 7A.

Extended Coordinates This representation is introduced by Hisil, Wong, Carter, and
Dawson [HWCD08]. The so-called extended coordinates of a point (x, y) are (X : Y :

T :Z) such that x = X/Z, y = Y/Z, and xy = T/Z, with Z 6= 0. In the following, this
representation is denoted by Ee .
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The sum of (X1 :Y1 :T1 :Z1) and (X2 :Y2 :T2 :Z2) is given by (X3 :Y3 :T3 :Z3) such
that: 

X3 = EF

Y3 = GH

T3 = EH

Z3 = FG

with

A = X1X2, B = Y1Y2

C = dT1T2, D = Z1Z2

E = (X1 + Y1)(X2 + Y2)− A− B
F = D − C, G = D + C

H = B − aA

(1.27)

This operation requires 9M + 1Ca + 1Cd + 7A. If Z2 = 1, this cost boils down to
8M + 1Ca + 1Cd + 7A. As previously, the formula is complete if a is a square and d is
not.

In the special case a = −1, the formula may be rewritten as follows:


X3 = EF

Y3 = GH

T3 = EH

Z3 = FG

with

A = (Y1 −X1)(Y2 −X2)

B = (Y1 +X1)(Y2 +X2)

C = 2dT1T2, D = 2Z1Z2

E = B − A, F = D − C
G = D + C, H = B + A

(1.28)

This operation now requires 8M + 1C2d + 9A. If Z2 = 1, this cost boils down to
7M + 1C2d + 9A.
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1.2 Scalar Multiplication Algorithms

As already stated, scalar multiplication is the key operation of ECC. Therefore, strong
efficiency and security requirements are attached to its implementation, especially in the
context of embedded devices.

Scalar multiplication in additive groups is algorithmically analogous to exponentiation
in multiplicative groups. However, some differences justify that scalar multiplication
be studied on its own. For instance, the cheap point inversion within the group of
points on an elliptic curve allows some algorithmic optimizations. Besides, the numerous
point addition formulas require to consider both the scalar multiplication and the point
arithmetic levels to design an efficient implementation. Section 1.2.1 presents classical
algorithms and evaluates their efficiency depending on the underlying device.

Then, we take into account the threat of the simple side-channel analysis, cf. Sec-
tion 2.2.1. Since its introduction, this technique has required to revisit the design of
scalar multiplication schemes — and exponentiation schemes as well — to exhibit a
regular structure to an adversary monitoring the sequence of performed operations.
Section 1.2.2 recalls most of the techniques that have been proposed in this aim and
evaluates their efficiency with regard to the device properties.

1.2.1 Efficient Algorithms for Embedded Devices

We present in the following classical algorithms that may be used in embedded devices
to compute the scalar multiplication if the calculation is not threatened by side-channel
attacks (e.g. public computation, secure environment, etc.)

We start with simple binary methods, also known as double-and-add algorithms.
Then we recall how the use of a signed scalar representation such as the NAF can improve
the efficiency of binary algorithms. Finally, we present the sliding window methods that
use time-memory trade-offs to speed up the scalar multiplication if extra memory is
available.

To assess the cost of algorithms presented in this section, it is generally assumed
that the base point is provided in affine coordinates, which allows some improvements
when using left-to-right algorithms. We deem this assumption reasonable in our context
since affine coordinates are standard in most protocols.

Though recent works [DI06; LM08c; LG09] improve the theoretical cost of the scalar
multiplication using various multi-base representations, we consider that they do not fit
the embedded context due to the cost of precomputing a scalar representation in odd
bases. Besides, it is not possible to store scalar precomputations for some protocols
such as the Elliptic Curve Digital Signature Algorithm (ECDSA) [ANSI05] where the
scalar is randomly generated before each scalar multiplication. For this reason such
techniques are not mentioned in our study.
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1.2.1.1 Simple Binary Algorithms

The two formulas (1.30) and (1.29) yield two ways to compute the scalar multiplication
from the binary decomposition of the scalar. The corresponding algorithms are similar
to the classical square-and-multiply exponentiation algorithms and are called double-
and-add due to the additive group structure.

kP = k0P + k12P + . . .+ kl−12l−1P (1.29)

kP = k0P + 2 (k1P + 2 (. . .+ 2 (kl−1P ) . . .)) (1.30)

Algorithm 1.1 scans the scalar bits from the most significant to the least significant
and is thus said left-to-right while Algorithm 1.2 scans the scalar bits in the opposite
direction and is said right-to-left.

Algorithm 1.1 Left-to-right double-and-add scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)2

Output: kP
Uses: P and Q

1: Q← O
2: for i = l − 1 to 0 do
3: Q← 2Q . doubling of Q from the group law
4: if ki = 1 then
5: Q← Q+ P . addition of P and Q from the group law
6: return Q

Algorithm 1.2 Right-to-left double-and-add scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)2

Output: kP
Uses: Q and R

1: Q← O
2: R← P

3: for i = 0 to l − 1 do
4: if ki = 1 then
5: Q← Q+ R

6: R← 2R

7: return Q

Denoting A, resp. D, the cost (running time) of an addition, resp. a doubling, and
considering an l-bit random scalar, the average cost of Algorithms 1.1 and 1.2 is:

l

2
A + lD
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Though the complexity of the two algorithms is identical in terms of point operations,
they have different costs in terms of field multiplications. On one hand, the left-to-right
variant allows to use the mixed affine-projective addition formula if the input point is
provided in affine coordinates. On the other hand, with the right-to-left algorithm we
can express the point Q in Jacobian coordinates and the point R in modified Jacobian
coordinates in order to use the Jacobian addition formula at step 5 and the modified
Jacobian doubling formula at step 6 as observed by Joye [Joy08]. This trick is called
mixed Jacobian and modified Jacobian coordinates and denoted J/Jm in the following.

Mixed Jacobian and modified Jacobian coordinates have been initially introduced to
speed up the computation of consecutive doublings in left-to-right scalar multiplication
algorithms [CMO98]. Cohen et al. distinguish three types of operations in left-to-right
scalar multiplication: intermediate doublings, final doublings and additions. A final dou-
bling is a doubling preceding an addition, all the other doublings being intermediate dou-
blings. Observing that the fourth modified Jacobian coordinate is not used in additions,
their method consists in using modified Jacobian coordinates for intermediate doublings,
and Jacobian coordinates as output of final doublings, which saves 1M+1A in the mod-
ified Jacobian doubling formula. This way, a final doubling costs only 3M + 4S + 11A.
In the following, we denote this strategy by Jm/J .

The average computation cost of Algorithm 1.1, resp. Algorithm 1.2, is given in
Table 1.6, resp. Table 1.7, depending on the cost of a modular multiplication (M),
a modular squaring (S), and a modular addition or subtraction (A) for the different
projective coordinate systems introduced previously.

Table 1.6: Average cost per scalar bit of Algorithm 1.1 depending on the point repre-
sentation

Coord. Cost for any a Cost for a = −3

H 11.5M + 6S + 13.5A 11.5M + 4S + 14.5A

J 8M + 7.5S + 14.5A 8M + 5.5S + 15.5A

Jm/J 8M + 6.5S + 15A

Table 1.7: Average cost per scalar bit of Algorithm 1.2 depending on the point repre-
sentation

Coord. Cost for any a Cost for a = −3

H 13M + 6S + 13.5A 13M + 4S + 14.5A

J/Jm 10M + 6S + 15.5A

The detailed computation costs of Algorithms 1.1 and 1.2 are given in Table 1.16
(p. 35), depending on the ratios S/M and A/M for Jacobian and modified Jacobian
representations. The homogeneous projective representation is discarded since its per-
formances are always worse than the Jacobian ones.
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Remark 2. The first loop iteration of Algorithm 1.1 can be saved if the most significant
bit of k is 1. In this case, step 1 becomes Q ← P and i is initialized to l − 2 instead
of l − 1 at step 2. Similarly, the first addition of Algorithm 1.2 can be avoided by
setting Q ← k0P and R ← 2P at steps 1 and 2, and initializing i to 1 in the for
loop. Furthermore, the last doubling can be skipped if kl−1 = 1 by leaving the loop
before i takes l − 1 and adding a step Q← Q+R before the return statement. These
tricks are useful in practice to save a few operations and may be applied to most scalar
multiplication algorithms. However, we do not include them in most of the following
descriptions for readability reasons.

Using Composite Operations One can note that in the left-to-right algorithm, the
point Q is updated by 2Q + P when a 1 bit is processed. The main loop can thus be
rewritten as:

for i = l − 1 to 0 do
if ki = 0 then

Q← 2Q

else
Q← 2Q+ P

Using the Jacobian composite addition described in 1.1.2.3, the average cost of Al-
gorithm 1.1 becomes 8.5M + 5.5S + 12A or 8.5M + 4.5S + 12.5A if a = −3. The
corresponding detailed computation costs are given in Table 1.16 (p. 35) on the row
labelled (c.o.). The average speed-up is about 9 – 11% in the general case and about
4 – 7% if a = −3.

1.2.1.2 Simple NAF Algorithms

Considering that the inversion operation P → −P is almost free, it is interesting to
use signed representations in order to decrease the number of additions in the scalar
multiplication.

A base b signed representation of k is (klb−1klb−2 . . . k0) such that:

k =

lb−1∑
i=0

kib
i with |ki | < b

Among them the binary Non-Adjacent Form (NAF) is defined as follows. The NAF
representation of an integer k ∈ N∗ is (kl−1kl−2 . . . k0)NAF with ki ∈ {−1, 0, 1}, 0 ≤
i < l − 1 and kl−1 = 1 such that for all pairs of consecutive digits ki and ki+1, we have
kiki+1 = 0.

The NAF representation has the following properties:

(i) Given k ∈ N∗, (k)NAF is unique.

(ii) The length of the NAF representation of k is blog2(k)c+ 1 or blog2(k)c+ 2, i.e. it
has the same length or one more digit than the binary representation of k .
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(iii) The Hamming weight — the number of non-zero digits — of (k)NAF is always
minimal among base 2 signed representations for a given k .

(iv) The average Hamming weight of l-digit NAF representations is approximately l/3.

The computation of the NAF representation of a positive integer is described in
Algorithm 1.3. This algorithm runs in O(l) and involves only cheap operations.

Algorithm 1.3 NAF representation computation
Input: k ∈ N∗
Output: (k)NAF

1: i ← 0

2: while k ≥ 1 do
3: if k mod 2 = 1 then
4: ki ← 2− (k mod 4)

5: k ← k − ki
6: else
7: ki ← 0

8: k ← k/2

9: i ← i + 1

10: return (kl−1kl−2 . . . k0)

Algorithm 1.4 presents how to compute the left-to-right scalar multiplication given
the NAF decomposition of the scalar. Algorithm 1.5, first presented by Joye [Joy08], is a
right-to-left variant including on-the-fly computation of the scalar NAF representation.
One may note that left-to-right on-the-fly computation of the NAF representation is
possible as well using a lookup table [Mui04].

Algorithm 1.4 Left-to-right binary NAF scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)NAF

Output: kP
Uses: P and Q

1: Q← O
2: for i = l − 1 to 0 do
3: Q← 2Q

4: if ki = 1 then
5: Q← Q+ P

6: if ki = −1 then
7: Q← Q+ (−P )

8: return Q

Considering an l-bit random scalar, the average cost of Algorithms 1.4 and 1.5 is:

l

3
A + lD
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Algorithm 1.5 Right-to-left on-the-fly binary NAF scalar multiplication
Input: P ∈ E(Fq), k ∈ N∗
Output: kP
Uses: Q and R

1: Q← O
2: R← P

3: while k ≥ 1 do
4: if k mod 2 = 1 then
5: u ← 2− (k mod 4)

6: k ← k − u
7: if u = 1 then
8: Q← Q+ R

9: else
10: Q← Q+ (−R)

11: k ← k/2

12: R← 2R

13: return Q

For the same reasons as previously stated, the left-to-right and right-to-left variants
have different costs. The average computation cost of Algorithm 1.4, resp. Algo-
rithm 1.5, is given in Table 1.8, resp. Table 1.9.

Table 1.8: Average cost per scalar bit of Algorithm 1.4 depending on the point repre-
sentation

Coord. Cost for any a Cost for a = −3

H 10M + 5.7S + 12.3A 10M + 3.7S + 13.3A

J 6.7M + 7S + 13.3A 6.7M + 5S + 14.3A

Jm/J 6.7M + 5.7S + 14A

Table 1.9: Average cost per scalar bit of Algorithm 1.5 depending on the point repre-
sentation

Coord. Cost for any a Cost for a = −3

H 11M + 5.7S + 12.3A 11M + 3.7S + 13.3A

J/Jm 8M + 5.3S + 14.3A

The detailed computation costs of Algorithms 1.4 and 1.5 are given in Table 1.16
(p. 35), depending on the ratios S/M and A/M for Jacobian and modified Jacobian
representations.
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Using Composite Operations As for the binary algorithm, Algorithm 1.4 can use the
composite operation 2Q+P to speed-up the computations. In that case the main loop
should be rewritten as:

for i = l − 1 to 0 do
if ki = 0 then

Q← 2Q

else if ki = 1 then
Q← 2Q+ P

else
Q← 2Q+ (−P )

Using the Jacobian composite addition, the average cost of Algorithm 1.4 becomes
7M + 5.7S + 11.7A or 7M + 4.3S + 12.3A if a = −3. The average speed-up is about
6 – 8% in the general case and about 3 – 5% if a = −3, cf. Table 1.16 (p. 35).

1.2.1.3 Classical m-ary Algorithms

The double-and-add algorithms can easily be extended to radices m > 2, and are so-
called m-ary scalar multiplication [Gor98]. In the context of embedded devices, m is
generally a power of 2 for efficiency reasons. If m = 2t these algorithms scan t scalar
bits at a time and require the precomputation of 2P, 3P, . . . , (m − 1)P .

We do not detail this class of algorithms as they require to precompute more points
than the window methods presented hereafter and have worse performances.

1.2.1.4 Window NAF Algorithms

It is possible to enhance the efficiency of scalar multiplication by precomputing some
odd multiples of the input point. For example when processing bits 11, the left-to-right
double-and-add algorithm performs 2(2Q+ P ) + P . Observe now that an addition can
be saved if 3P is known by computing 2(2Q) + 3P . This idea can be generalized to
larger blocks of bits — larger window sizes — and NAF representation [KT93; Gor98].
Moreover, if the base point is constant or known in advance these precomputations can
be run off-line.

A comparable strategy is possible with right-to-left algorithms: in that case we store
several intermediate results during the scalar multiplication and combine them in the
end [Yao76; Möl03] — what we call postcomputations.

Two families of window algorithms — i.e. algorithms scanning several bits at a
time — are described by Hankerson, Menezes, and Vanstone [HMV03]: the sliding win-
dow NAF and the window width-w NAF algorithms. Each of them can be implemented
in left-to-right or right-to-left directions. Algorithm 1.6 hereafter is the left-to-right slid-
ing window NAF method and takes the binary NAF representation of the scalar as input.
Algorithm 1.7 presents window width-w NAF method using the right-to-left strategy
and computes on-the-fly the width-w NAF representation of k .
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Algorithm 1.6 Left-to-right sliding window NAF scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)NAF, w ≥ 2

Output: kP
Uses: Q, P1, P3, . . . , and Pm with m = 2(2w − (−1)w )/3− 1

1: Q← O
2: i ← l − 1

Precomputations
3: for i = 1 to m by 2 do
4: Pi ← iP

Main loop
5: while i ≥ 0 do
6: if ki = 0 then
7: Q← 2Q

8: i ← i − 1

9: else
10: s ← max(i − w + 1, 0)

11: while ks = 0 do
12: s ← s + 1

13: u ← (ki . . . ks)NAF

14: for j = 1 to i − s + 1 do
15: Q← 2Q

16: if u > 0 then
17: Q← Q+ Pu

18: if u < 0 then
19: Q← Q+ (−P−u)

20: i ← s − 1

21: return Q
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Algorithm 1.7 Right-to-left on-the-fly window width-w NAF scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)2, w ≥ 2

Output: kP
Uses: R, Q1, Q3, . . . , and Qm with m = 2w−1 − 1

1: R← P

2: Q1, Q3, . . . , Qm ← O
Main loop

3: while k ≥ 1 do
4: if k mod 2 = 1 then
5: t ← k mod 2w . where k mod 2w is in [−2w−1, 2w−1 − 1]

6: if t > 0 then
7: Qt ← Qt + R

8: if t < 0 then
9: Q−t ← Q−t − R
10: k ← k − t
11: R← 2R

12: k ← k/2

Postcomputations
13: for i = 3 to m by 2 do
14: Q1 ← Q1 + iQi

15: return Q1

The cost of Algorithm 1.6, omitting the precomputations step, for an l-bit random
scalar is [HMV03]:

l

w + v(w)
A + lD with v(w) =

4

3
−

(−1)w

3× 2w−2

The cost of Algorithm 1.7, omitting postcomputations step, for an l-bit random scalar
is:

l

w + 1
A + lD

The sliding window NAF algorithm requires the storage of (2w −(−1)w )/3−1 extra
points compared to the simple NAF method, while the window width-w NAF algorithm
requires an additional storage of 2w−2 − 1 points. Table 1.10 gives a comparison of
the extra memory required to store points — i.e. #{P3, . . . , Pm} in Algorithm 1.6 or
#{Q3, . . . , Qm} in Algorithm 1.7 — for values of w up to 5.

These two window methods have a similar efficiency but allow different trade-offs
between the number of saved additions and the cost of pre/postcomputations. In prac-
tice, the optimal strategy depends on the available memory — more memory allows
larger window width — and on the scalar length — for a given a window width, the cost
of pre/postcomputations should not cancel out the benefit of saved additions.
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Table 1.10: Comparison of the number of extra points required by window algorithms
for pre/postcomputations

w 2 3 4 5

Sliding window NAF (Algorithm 1.6) 0 2 4 10

Window width-w NAF (Algorithm 1.7) 0 1 3 7

As in the context of embedded devices a little memory is generally available, we
restrict the following study to values of w — or windowing strategies — requiring at
most 3 additional points to be stored. Namely, a windowing strategy of 1 extra point
refers to the window width-w NAF algorithm with w = 3, a windowing strategy of 2
extra points refers to the sliding window NAF algorithm with w = 3, and a windowing
strategy of 3 extra points refers to the window width-w NAF algorithm with w = 4.

Remark 3. Möller generalizes the sliding window and window NAF techniques with the
signed fractionnal window representation [Möl03]. This representation allows the use
of any set of consecutive odd digits {±1,±3,±5, . . .} such that the exact amount
of available storage can be used to optimize the efficiency of a scalar multiplication
algorithm using a window width w ≥ 4.

Remark 4. The trick described in Remark 2 can be used as well in Algorithms 1.6 and
1.7. In left-to-right window algorithms, the processing of the second scalar bit kl−2

can also be skipped since 2P and 3P are already computed. If 2 or 3 extra points are
used, the processing of the third scalar bit kl−3 can be skipped or replaced by a single
group addition or doubling, e.g. 6P = 2(3P ). In some cases, one more bit may be
processed using a single point operation, for instance 10P = 2(5P ) but 11P requires
two operations.

Comparing the Cost of Left-to-Right and Right-to-Left Algorithms
In Algorithm 1.6, mixed affine-projective addition formulas can be used if extra points
are precomputed in affine coordinates. Thus, an inversion is required during the precom-
putation stage, which increases significantly its cost. An alternative solution is to use
general addition or readdition formulas. Besides, if the input point is fixed and known
in advance, then affine coordinates of P3, . . . , Pm can be precomputed off-line.

The average computation cost of left-to-right window algorithms such as Algo-
rithm 1.6 using mixed additions, resp. readditions, is given in Table 1.11, resp. Ta-
ble 1.12, depending on the available memory. The average computation cost of right-
to-left variants such as Algorithm 1.7 is given in Table 1.13. These costs omit pre/post-
computations.

The detailed computation costs of left-to-right window algorithms such as Algo-
rithm 1.6 using mixed additions, resp. readditions, are given for representations J and
Jm/J in Table 1.17 (p. 35), resp. Table 1.18 (p. 36), depending on the ratios S/M
and A/M and on the available memory. The detailed computation costs of right-to-left
window NAF algorithms such as Algorithm 1.7 are given for J/Jm in Table 1.19 (p. 36).
All results presented in tables 1.17, 1.18, and 1.19 omit pre/postcomputations.
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Table 1.11: Average cost per scalar bit of left-to-right window algorithms using mixed
affine-projective additions depending on the point representation and on the window
strategy (the number of extra points)

Extra pts. Coord. Cost for any a Cost for a = −3

1

J 6M + 6.8S + 12.8A 6M + 4.8S + 13.8A

J (c.o.) 6.3M + 5.8S + 11.5A 6.3M + 4.3S + 12.3A

Jm/J 6M + 5.3S + 13.5A

2

J 5.8M + 6.7S + 12.6A 5.8M + 4.7S + 13.6A

J (c.o.) 6M + 5.8S + 11.4A 6M + 4.2S + 12.2A

Jm/J 5.8M + 5.1S + 13.3A

3

J 5.6M + 6.6S + 12.4A 5.6M + 4.6S + 13.4A

J (c.o.) 5.8M + 5.8S + 11.4A 5.8M + 4.2S + 12.2A

Jm/J 5.6M + 5S + 13.2A

Using Composite Operations As with previous left-to-right algorithms 1.1 and 1.4,
the implementation of left-to-right window algorithms can be improved using composite
operations if Jacobian coordinates are utilized. Experiments show that replacing the
additions of Algorithm 1.6 with w = 3 by composite additions 2Q±P±u brings a speed-
up of about 4 – 6% in the general case and about 2 – 4% if a = −3. The corresponding
costs are given in tables 1.11 and 1.12 on rows labelled (c.o.).

Left-to-right window algorithms could also take advantage of the Jacobian consec-
utive doubling trick, especially with large window sizes.

Precomputations Cost in Left-to-Right Algorithms In this section, we state the
precise cost of precomputations for left-to-right algorithms using Jacobian or modified
Jacobian coordinates.

Since the base point P is given in affine coordinates, 3P = 2P +P can be computed
using a doubling with Z = 1, which costs 2M+ 4S+ 11A, and a mixed affine-projective
addition. Then, 5P = 3P + 2P requires an additional readdition, as well as 7P =

5P + 2P .

To use mixed affine-projective additions during the scalar multiplication, these points
have to be scaled to obtain Z = 1. Scaling one point from the Jacobian to the affine
representation requires I + 3M + S. Using the “Montgomery’s trick”, each additional
scaling costs 6M + S [BL07a]. On the other hand, if readditions are used during the
scalar multiplication, Z2 and Z3 must be precomputed for the extra points.

We summarize in Table 1.14 the cost of these precomputations depending on the
number of extra points.
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Table 1.12: Average cost per scalar bit of left-to-right window algorithms using readdi-
tions depending on the point representation and on the windowing strategy

Extra pts. Coord. Cost for any a Cost for a = −3

1

J 6.8M + 6.8S + 12.8A 6.8M + 4.8S + 13.8A

J (c.o.) 7M + 5.8S + 11.5A 7M + 4.3S + 12.3A

Jm/J 6.8M + 5.3S + 13.5A

2

J 6.4M + 6.7S + 12.6A 6.4M + 4.7S + 13.6A

J (c.o.) 6.7M + 5.8S + 11.4A 6.7M + 4.2S + 12.2A

Jm/J 6.4M + 5.1S + 13.3A

3

J 6.2M + 6.6S + 12.4A 6.2M + 4.6S + 13.4A

J (c.o.) 6.4M + 5.8S + 11.4A 6.4M + 4.2S + 12.2A

Jm/J 6.2M + 5S + 13.2A

Table 1.13: Average cost per scalar bit of right-to-left window algorithms depending on
the point representation and on the windowing strategy

Extra pts. Coord. Cost

1 J/Jm 7M + 5S + 13.8A

2 J/Jm 6.7M + 4.9S + 13.6A

3 J/Jm 6.4M + 4.8S + 13.4A

Table 1.14: Cost of precomputations for left-to-right algorithms using Jacobian or
modified Jacobian coordinates

Extra pts. Additions cost Optional scaling cost Optional Z2, Z3

1 10M + 7S + 18A 1I + 3M + 1S 1M + 1S

2 21M + 10S + 25A 1I + 9M + 2S 2M + 2S

3 32M + 13S + 32A 1I + 15M + 3S 3M + 3S
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Postcomputations Cost in Right-to-Left Algorithms In this section, we state the
precise cost of postcomputations for right-to-left algorithms using mixed Jacobian and
modified Jacobian coordinates.

The computation of Q1 ← Q1 +3Q3 requires a point tripling and a general addition.
Longa and Miri [LM08a, Section 4.4] show how to compute efficiently a tripling using
Jacobian coordinates. Unfolding S–M trade-offs, it costs 7M+ 9S+ 21A in the general
case, or 7M + 7S + 22A if a = −3.

If two extra points are used, an additional Q1 ← Q1 + 5Q5 is performed, which
requires a point quintupling and a general addition. Again, Longa and Miri [LM08c,
Appendix C] give an efficient formula to compute a quintupling using Jacobian coor-
dinates. Unfolding S–M trade-offs, it costs 13M + 11S + 19A in the general case, or
13M + 9S + 20A if a = −3.

If three extra points are used, we further compute Q1 ← Q1 + 7Q7, which requires a
point septupling and a general addition. Applying Longa and Miri’s methodology, point
septupling can be computed as 7Q7 = 2Q7 + (2Q7 + (2Q7 + Q7)) where the three
additions use the co-Z formula. With this method, point septupling costs 19M+ 12S+

32A in the general case, or 19M + 10S + 33A if a = −3.

We sum up in Table 1.15 the cost of these postcomputations depending on the
number of extra points.

Table 1.15: Cost of postcomputations for right-to-left algorithms using mixed Jacobian
and modified Jacobian coordinates

Extra pts. Cost for any a Cost for a = −3

1 19M + 13S + 28A 19M + 11S + 29A

2 44M + 28S + 54A 44M + 24S + 56A

3 75M + 44S + 93A 75M + 38S + 96A

1.2.1.5 Detailed Cost Comparison

The following tables summarize the cost of the algorithms presented in this section
depending on the cost of field squarings and additions. Label (c.o.) denote the use of
Jacobian composite operations dP1 + P2.
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Table 1.16: Detailed average cost of binary and NAF algorithms expressed as field
multiplications per scalar bit

Algorithm Coord. a
S/M = 1 S/M = 0.8

A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

1.1 Jm/J any 17.5 16.0 16.2 14.7

1.1 J (c.o.) any 16.4 15.2 15.3 14.1

1.2 J/Jm any 19.1 17.6 17.9 16.4

1.4 Jm/J any 15.1 13.7 14.0 12.6

1.4 J (c.o.) any 15.0 13.8 13.9 12.7

1.5 J/Jm any 16.2 14.7 15.1 13.7

1.1 J (c.o.) −3 15.5 14.3 14.6 13.4

1.4 J (c.o.) −3 13.8 12.6 12.9 11.7

Table 1.17: Detailed average cost of left-to-right window algorithms such as Algo-
rithm 1.6 using mixed affine-projective additions expressed as field multiplications per
scalar bit

Extra
Coord. a

S/M = 1 S/M = 0.8

pts. A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

1
Jm/J any 14.0 12.6 12.9 11.6

J (c.o.) any 14.3 13.2 13.2 12.0

2
Jm/J any 13.6 12.2 12.5 11.2

J (c.o.) any 14.1 12.9 12.9 11.8

3
Jm/J any 13.2 11.9 12.2 10.9

J (c.o.) any 13.9 12.7 12.7 11.6

1 J (c.o.) −3 13.0 11.7 12.1 10.9

2 J (c.o.) −3 12.7 11.4 11.8 10.6

3 J (c.o.) −3 12.4 11.2 11.6 10.4
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Table 1.18: Detailed average cost of left-to-right window algorithms such as Algo-
rithm 1.6 using readditions expressed as field multiplications per scalar bit

Extra
Coord. a

S/M = 1 S/M = 0.8

pts. A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

1
Jm/J any 14.7 13.4 13.7 12.3

J (c.o.) any 15.1 13.9 13.9 12.8

2
Jm/J any 14.2 12.9 13.2 11.9

J (c.o.) any 14.7 13.6 13.6 12.4

3
Jm/J any 13.8 12.5 12.8 11.5

J (c.o.) any 14.5 13.3 13.3 12.2

1 J (c.o.) −3 13.7 12.5 12.9 11.6

2 J (c.o.) −3 13.3 12.1 12.5 11.3

3 J (c.o.) −3 13.0 11.8 12.2 11.0

Table 1.19: Detailed average cost of right-to-left window algorithms such as Algo-
rithm 1.7 using mixed coordinates expressed as field multiplications per scalar bit

Extra
Coord. a

S/M = 1 S/M = 0.8

pts. A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

1 J/Jm any 14.8 13.4 13.8 12.4

2 J/Jm any 14.3 12.9 13.3 11.9

3 J/Jm any 13.9 12.5 12.9 11.6
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Cost Comparison We compare hereafter the costs of the most efficient scalar mul-
tiplication techniques identified in the previous study. We include the left-to-right NAF
algorithm as a matter of comparison. Costs are computed as:

(l − [offset])× [cost per scalar bit] + [optional pre/postcomputation cost]
l

The offset parameter refers to the tricks described in remarks 2 and 4. It is fixed to 1
for NAF and right-to-left window algorithms, to 2 for left-to-right window algorithms
using one extra point and to 3 for left-to-right window algorithms using two or three
extra points.

Considering S/M = 0.8, A/M = 0.2, and I/M = 100, Figure 1.3 compares the cost
per scalar bit of these algorithms depending on the scalar length in the general case
(any a). Figure 1.4 gives a similar comparison assuming a = −3. For a fair comparison
between methods, remember that left-to-right window NAF algorithms using readditions
require the storage of five coordinates X, Y , Z, Z2, Z3 per extra point (including the
base point).

Both figures show that left-to-right window NAF algorithms outperform other meth-
ods under our assumptions.
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1.2.2 Algorithms Immune to Simple Side-Channel Analysis

Since the emergence of Simple Side-Channel Analysis (SSCA) (see Section 2.2.1) several
countermeasures have been proposed. All of them intend to turn the execution of
an algorithm into a regular succession of operations independent from the scalar bits.
However, we see in the following that they differ in the level at which this regularity is
applied.

As in the previous section, we assume in the following that the input base point of
scalar multiplication algorithms is given in affine coordinates.

1.2.2.1 Regular Algorithms

Regular algorithms ensure the regularity property at the highest level: they yield a
constant sequence of additions and doublings whatever the scalar.

Double-and-Add-Always The first countermeasure proposed against SSCA was to
perform a dummy point addition in the double-and-add algorithm when 0 bits are pro-
cessed [Cor99]. This method is called double-and-add-always, a left-to-right, resp. right-
to-left, variant is presented in Algorithm 1.8, resp. Algorithm 1.9, where a dummy
addition is added at step 7.

Algorithm 1.8 Left-to-right double-and-add-always scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)2

Output: kP
Uses: P , Q, and T

1: Q← O
2: for i = l − 1 to 0 do
3: Q← 2Q

4: if ki = 1 then
5: Q← Q+ P

6: else
7: T ← Q+ P

8: return Q

Considering an l-bit random scalar, the average cost of double-and-add-always al-
gorithms is:

lA + lD

As previously, the left-to-right and right-to-left variants have a different cost. The
average computation cost of the left-to-right, resp. right-to-left, double-and-add-always
algorithms is given in Table 1.20, resp. Table 1.21. In Table 1.20, we see that modified
Jacobian coordinates are always less attractive than Jacobian ones.

Note that Algorithm 1.8 cannot be optimized using the Jacobian composite opera-
tion 2Q+P . Indeed, observe that a 1 scalar bit requires the computation of 2Q which is
not computed using the composite operation 2Q+P . Thus, the regularity requirement
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Algorithm 1.9 Right-to-left double-and-add-always scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)2

Output: kP
Uses: Q, R, and T

1: Q,T ← O
2: R← P

3: for i = 0 to l − 1 do
4: if ki = 1 then
5: Q← Q+ R

6: else
7: T ← T + R

8: R← 2R

9: return Q

of the double-and-add-always is incompatible with the use of a composite operation in
the left-to-right algorithm. On the other hand, the mixed coordinates strategy Jm/J
used to speed-up left-to-right algorithms in the previous section cannot be applied either
as no consecutive doublings occur in Algorithm 1.8.

Table 1.20: Cost per scalar bit of Algorithm 1.8 depending on the point representation

Coord. Cost for any a Cost for a = −3

H 16M + 7S + 17A 16M + 5S + 18A

J 12M + 9S + 18A 12M + 7S + 19A

Jm 13M + 9S + 19A

Table 1.21: Cost per scalar bit of Algorithm 1.9 depending on the point representation

Coord. Cost for any a Cost for a = −3

H 19M + 7S + 17A 19M + 5S + 18A

J/Jm 16M + 8S + 19A

The detailed computation costs of the double-and-add-always algorithms are given
in Table 1.34 (p. 63) depending on the ratios S/M and A/M for Jacobian and modified
Jacobian representations.

Remark 5. These algorithms are immune to SSCA but introduce another weakness:
they become subject to safe-error attacks as detailed in Section 2.4.2. Indeed, if one is
able to introduce a fault during a point addition (which can be performed at step 5 or 7
in both algorithms), it is possible to deduce the corresponding bit value by checking the
output of the algorithms: a correct result implies that a dummy addition was performed,
so that ki = 0 while an erroneous result indicates that ki = 1. However the right-to-left
method provides a simple way to check for faults: at the end of the algorithm there
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should be Q = kP , T = (2l−k−1)P , and R = 2lP . Therefore an easy countermeasure
is to check that Q+ T + P = R.

Montgomery Ladder A second option with similar complexity to the double-and-
add-always algorithm is the so-called Montgomery ladder [Mon87] presented in Algo-
rithm 1.10.

Algorithm 1.10 Montgomery ladder scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)2 with kl−1 = 1

Output: kP
Uses: Q0 and Q1

1: Q0 ← P

2: Q1 ← 2P

3: for i = l − 2 to 0 do
4: Q1−ki ← Q0 +Q1

5: Qki ← 2Qki

6: return Q0

Although this algorithm has the same theoretical complexity as the double-and-add-
always, it was originally introduced to speed-up the scalar multiplication on a specific
class of curves [Mon87]. This result has been generalized to general elliptic curves over
fields of large characteristic [BJ02; IT02; FGKS02]. This technique can be used to
accelerate the scalar multiplication if the y coordinate of the result is not needed, which
is the case in most cryptographic protocols (e.g. ECDSA).

Noticing that Q1 − Q0 = P all along the scalar multiplication, one deduces the
following formulas computing the homogeneous projective coordinates X and Z of points
Q1 +Q2 and 2Q1 given XQ1

, ZQ1
, XQ2

, ZQ2
, curve parameters a, b, and xP :

XQ1+Q2
= 2 (XQ1

ZQ2
+XQ2

ZQ1
) (XQ1

XQ2
+ aZQ1

ZQ2
) + 4bZQ1

2ZQ2

2

− xP (XQ1
ZQ2
−XQ2

ZQ1
)2

ZQ1+Q2
= (XQ1

ZQ2
−XQ2

ZQ1
)2

X2Q1
=
(
XQ1

2 − aZQ1

2
)2 − 8bXQ1

ZQ1

3

Z2Q1
= 4

(
XQ1

ZQ1

(
XQ1

2 + aZQ1

2
)

+ bZQ1

4
)

As a result, steps 4 and 5 of Algorithm 1.10 require only 14M+ 5S+ 14A in the general
case, or 12M + 5S + 18A (i) if a = −3 (the detailed operations scheme is available in
the work by Fischer, Giraud, Knudsen, and Seifert [FGKS02]).

Another cost of 9M+7S if a = −3 is reported by Goundar et al. [GJM10]. However,
it is obtained using 33 field additions (counting 2 additions for a multiplication by a).
Removing the S-M trade-offs (cf. Section 1.1.2.1) yields a cost of 11M+ 5S+ 24A (ii)
which is better than our formula if A/M = .1, but worse if A/M = .2.

The detailed computation cost of Algorithm 1.10 is given in Table 1.34 (p. 63)
depending on the ratios S/M and A/M for the homogeneous projective representation
without recovering the y coordinate. We keep the lowest cost of the two formulas (i)
and (ii) depending on A/M.
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Remark 6. The Montgomery ladder is naturally immune to safe-error attacks as no
dummy operation is performed. Besides, it provides a convenient way to detect faults
by checking that Q1 − Q0 = P , possibly at each iteration of the main loop. However,
this check — as the check that the output point belongs to the original curve described
in Section 2.4.1 — cannot be performed in the x-only variant presented above.

Finally, it is worth noticing that Montgomery ladder algorithm is well suited for
parallelization as demonstrated by Fischer et al. [FGKS02].

Joye Double-Add Ladder The following algorithm is presented by Joye [Joy07].

Algorithm 1.11 Double-add scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)2

Output: kP
Uses: Q0 and Q1

1: Q0 ← O
2: Q1 ← P

3: for i = 0 to l − 1 do
4: Q1−ki ← 2Q1−ki +Qki

5: return Q0

To understand how this algorithm operates, observe that after each loop iteration i
we have Q0 =

∑i
j=0 (kj2

j)P and Q1 =
(

2i+1 −
∑i
j=0 (kj2

j)
)
P . This property is stable

after the processing of the (i + 1)-th bit.

As the double-and-add-always and Montgomery ladder, this algorithm performs a
doubling and an addition for every scalar bit. Since right-to-left algorithms are generally
preferable to left-to-right ones in regard to side-channel analysis, cf. Section 2.2.2, its
interest is to provide a right-to-left method naturally immune to safe-errors.

The cost per scalar bit of Algorithm 1.11 depending on the point representation
is detailed in Table 1.22. The Jacobian cost is computed assuming the use of the
composite operation 2P1 + P2 at step 4.

Table 1.22: Cost per scalar bit of Algorithm 1.11 depending on the point representation

Coord. Cost for any a Cost for a = −3

H 19M + 7S + 17A 19M + 5S + 18A

J (c.o.) 17M + 6S + 13A

Jm 17M + 10S + 19A

The detailed cost per scalar bit of Algorithm 1.11 for the Jacobian representation is
detailed in Table 1.34 (p. 63).
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Joye m-ary Ladders Joye presents m-ary regular algorithms [Joy09]. We recall in
Algorithm 1.12, resp. Algorithm 1.13, the general description of left-to-right, resp.
right-to-left, variants of these algorithms.

Algorithm 1.12 Regular left-to-right m-ary scalar multiplication
Input: P ∈ E(Fq), k = (klm−1klm−2 . . . k0)m (k > 0)
Output: kP
Uses: Q, R0, R1, . . . , and Rm−1

1: Q← −P
Precomputations

2: for i = 0 to m − 1 do
3: Ri ← (m + i − 1)P

Main loop
4: for i = lm − 1 to 0 do
5: Q← mQ+ Rki . t doublings and one addition if m = 2t

Final correction
6: Q← Q+ P

7: return Q

Algorithm 1.13 Regular right-to-left m-ary scalar multiplication
Input: P ∈ E(Fq), k = (klm−1klm−2 . . . k0)m (k > 0)
Output: kP
Uses: R, Q0, Q1, . . . , and Qm−1

1: R← P

2: Q0, Q1, . . . , Qm−1 ← O
Main loop

3: for i = 0 to lm − 1 do
4: Qki ← Qki + R

5: R← mR . t doublings if m = 2t

6: R← −R
Postcomputations

7: for i = 0 to m − 1 do
8: R← R + (m + i − 1)Qi

Final correction
9: R← R + P

10: return R

The cost of Algorithms 1.12 and 1.13 with m = 2t , omitting the pre/postcompu-
tations stage, for an l-bit scalar is:

l

t
A + lD

In the following, we detail the performances of these algorithms for m = 2, 4,
and 8. The computation cost of Algorithm 1.12, resp. Algorithm 1.13, is given in
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Table 1.23, resp. Table 1.24, depending on the available memory. Though m = 8

requires a prohibitive amount of memory in the context of embedded devices, we include
this configuration in the comparatives below.

These costs omit pre/postcomputations. In Table 1.23, readdition formulas are used
as ZRi

2 and ZRi
3, 0 ≤ i < m can be precomputed once for all. Also, Jacobian costs

are computed using composite operations mP1 + P2 in Table 1.23.

Table 1.23: Cost per scalar bit of Algorithm 1.12 depending on the radix m and on the
point representation

m Coord. Cost for any a Cost for a = −3

2

H 19M + 7S + 17A 19M + 5S + 18A

J (c.o.) 16M + 5S + 13A

Jm 16M + 9S + 19A

4

H 13M + 6S + 13.5A 13M + 4S + 14.5A

J (c.o.) 10M + 5.5S + 12A

Jm 10M + 6.5S + 15.5A

8

H 11M + 5.7S + 12.3A 11M + 3.7S + 13.3A

J (c.o.) 8M + 5S + 12A

Jm 8M + 5.7S + 14.3A

Table 1.24: Cost per scalar bit of Algorithm 1.13 depending on the radix m and on the
point representation

m Coord. Cost

2 J/Jm 16M + 8S + 19A

4 J/Jm 10M + 6S + 15.5A

8 J/Jm 8M + 5.3S + 14.3A

The detailed computation costs of Algorithm 1.12 and 1.13 are given in Table 1.35
(p. 63) depending on the ratios S/M and A/M and the available memory — the number
m of points to be stored — for Jacobian and modified Jacobian representations. These
costs omit pre/postcomputations.

Remark 7. It is worth noticing that Algorithm 1.12 and Algorithm 1.13 with m = 2 are
very similar to Montgomery ladder and to Joye ladder [Joy09]. Therefore it makes sense
to compare their performances: the x-only Montgomery ladder is the fastest method.
Besides, Algorithm 1.12 with m = 2 has better performances than the double-add
ladder, which is due to the use of readdition formulas. Finally, Algorithm 1.13 is slower
than the other methods in spite of the use of mixed Jacobian and modified Jacobian
coordinates allowed by its right-to-left structure.
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Pre/postcomputations Cost Considering Algorithm 1.12 with m = 2, R0 and R1

are respectively set to P and 2P . It requires only a doubling from affine to Jacobian
coordinates, which costs 2M + 4S + 11A. An extra 1M + 1S allows readditions of R1.

If m = 4, then R0 = 3P , R1 = 4P , R2 = 5P , and R3 = 6P must be computed,
which requires a tripling from affine coordinates, which costs 6M+ 7S+ 21A, and three
mixed affine-projective additions. An extra 4M + 4S allows readditions of these four
points.

Considering Algorithm 1.13 with m = 2, the postcomputations are R + Q0 + 2Q1,
which requires a doubling and two additions. If m = 4, the algorithm perform R+3Q0 +

4Q1 + 5Q2 + 6Q3. Postcomputations cost amounts to three doublings, two triplings,
one quintupling and four additions — a tripling followed by a doubling computes 6Q3.
As stated in Section 1.2.1.4, a tripling costs 7M + 9S + 21A in the general case, or
7M + 7S + 22A if a = −3. A quintupling costs 13M + 11S + 19A in the general case,
or 13M + 9S + 20A if a = −3.

We summarize in Table 1.25, resp. Table 1.26, the cost of these precomputations,
resp. postcomputations, depending on m.

Table 1.25: Cost of precomputations for Algorithm 1.12 using J with m = 2 or 4

m Cost

2 3M + 5S + 11A

4 34M + 20S + 42A

Table 1.26: Cost of postcomputations for Algorithm 1.13 using J/Jm with m = 2 or 4

m Cost for any a Cost for a = −3

2 28M + 14S + 25A 28M + 12S + 26A

4 87M + 63S + 122A 87M + 51S + 128A

Co-Z Ladders A new scalar multiplication method based on the Jacobian co-Z arith-
metic is presented by Goundar et al. [GJM10] one one hand, and Venelli and Das-
sance [VD10] on the other hand. These works have then be completed by other stud-
ies [Riv11; GJM+11].

Montgomery and Joye ladders can be rewritten in order to take advantage of the
Jacobian co-Z addition formulas ZADDU and ZADDC. The former is presented below
in Algorithm 1.14 and the latter in Algorithm 1.15.

Each iteration of the main loop of these algorithms costs 11M + 5S + 18A us-
ing the formulas presented in Section 1.1.2.3. Another formula mixing ZADDU and
ZADDC [GJM+11] requires 9M + 7S+ 25A, which is worse than the former one when-
ever A/M ≥ 0.1.
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Algorithm 1.14 Montgomery ladder scalar multiplication using J with co-Z addition
Input: P = (x, y) ∈ E(Fq), k = (kl−1kl−2 . . . k0)2 with kl−1 = 1

Output: kP
Uses: Q0 and Q1

1: Q1 ← (X2P :Y2P :Z2P ) . Jacobian representation of 2P

2: Q0 ← (xZ2P
2 :yZ2P

3 :Z2P ) . Jacobian representation of P
3: for i = l − 2 to 0 do
4: (Q1−ki , Qki )← ZADDC(Qki , Q1−ki )

5: (Qki , Q1−ki )← ZADDU(Q1−ki , Qki )

6: return Q0

Algorithm 1.15 Joye’s double-add ladder scalar multiplication using J with co-Z addi-
tion

Input: P = (x, y) ∈ E(Fq), k = (kl−1kl−2 . . . k0)2 with k0 = 1

Output: kP
Uses: Q0 and Q1

1: Q1−k1
← (X3P :Y3P :Z3P ) . Jacobian representation of 3P

2: Qk1
← (xZ3P

2 :yZ3P
3 :Z3P ) . Jacobian representation of P

3: for i = 2 to l − 1 do
4: (Qki , Q1−ki )← ZADDU(Q1−ki , Qki )

5: (Q1−ki , Qki )← ZADDC(Qki , Q1−ki )

6: return Q0

Algorithm 1.16 Montgomery ladder scalar multiplication using J with (X : Y )-only
co-Z addition

Input: P = (x, y) ∈ E(Fq), k = (kl−1kl−2 . . . k0)2 with kl−1 = 1

Output: kP
Uses: Q0 and Q1

1: Q1 ← (X2P : Y2P )

2: Q0 ← (xZ2P
2 : yZ2P

3)

3: for i = l − 2 to 1 do
4: (Q1−ki , Qki )← ZADDC′(Qki , Q1−ki )

5: (Qki , Q1−ki )← ZADDU′(Q1−ki , Qki )

6: (Q1−k0
, Qk0

)← ZADDC′(Qk0
, Q1−k0

)

7: Z ← xYQk0
(XQ0

−XQ1
)

8: λ← yXQk0

9: (Qk0
, Q1−k0

)← ZADDU′(Q1−k0
, Qk0

)

10: return (λ2XQ0
:λ3YQ0

:Z)
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Meloni observes that an (X : Y )-only formula of ZADDU, denoted ZADDU’ in
the following, can be used in scalar multiplication algorithms [Mel07]. Indeed, the Z
coordinate can generally be recovered at the end with a few extra field operations.
The same trick applies to the co-Z Montgomery ladder algorithm [VD10; GJM+11],
presented in Algorithm 1.16. It uses an (X : Y )-only formula of operation ZADDC,
denoted ZADDC’.

The cost of the operation ZADDU’, resp. ZADDC’, being 4M + 2S + 7A, resp.
5M+3S+11A, each iteration of the main loop of Algorithm 1.16 costs 9M+5S+18A.
Another formula mixing ZADDU’ and ZADDC’ [GJM+11] requires 8M+6S+33A, which
is worse than the former one whenever A/M ≥ 0.1.

The detailed computation cost of Algorithms 1.14, 1.15, and 1.16 is given in Ta-
ble 1.34 (p. 63), depending on the ratios S/M and A/M.

1.2.2.2 Atomicity

In a nutshell, the original SSCA is enabled by the difference of processing between 0 and
1 scalar bits (or group of bits considering window methods). This difference is mainly
observable because of the dissimilar addition and doubling patterns that may reveal a
consumption or radiation trace. Regular algorithms thus perform a regular sequence of
operations regardless the scanned bits. However, classical scalar multiplication optimiza-
tions relying on performing as few point additions as possible — the number of doublings
is fixed —, the efficiency of regular algorithms precisely suffers from this strategy.

The atomicity principle introduced by Chevallier-Mames, Ciet, and Joye [CMCJ04]
tends to smooth the execution of non-regular algorithms in such a manner that the
processing of bits of the scalar — or groups of bits — is indistinguishable. As a conse-
quence, atomic algorithms produce a regular sequence of operations, but this regularity
is achieved at a lower level than in the previous regular algorithms.

Double and Add Using Unified Formulas A first step towards SSCA immunity is to
render an addition indistinguishable from a doubling. This property is easily achieved
if a unified addition formula is available (see Section 1.1.3), since the same portion of
code performs both operations. Furthermore, the bit processing of the main loop of the
scalar multiplication algorithm must be rearranged to smoothen the processing of the
scalar bits.

Algorithm 1.17 presents how the scalar multiplication can be performed in an SSCA
resistant manner using a unified addition formula and an atomic loop processing. Using
this algorithm, one may observe the number of operations but cannot differentiate
between the processing of scalar bits, assuming that a doubling and an addition are
indistinguishable. If the length of the scalar is known, an attacker can at most deduce
its Hamming weight, which is not a threat for a random scalar of hundreds of bits.

Denoting A the computation timing of the unified addition and considering an l-bit
random scalar, the average cost of this algorithm is:

3

2
lA
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Algorithm 1.17 Left-to-right atomic double-and-add scalar multiplication using a unified
addition

Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)2

Output: kP
Uses: R0 and R1

1: R0 ← O
2: R1 ← P

3: i ← l − 1

4: t ← 0

5: while i ≥ 0 do
6: R0 ← R0 + Rt . addition using a unified formula
7: t ← t ⊕ ki . ⊕ stands for the bitwise X-or
8: i ← i − 1 + t

9: return R0

The average computation cost of Algorithm 1.17 is given in Table 1.27, resp. Ta-
ble 1.28, for a Weierstraß curve using the homogeneous projective addition formula,
resp. a twisted Edwards curve using the extended coordinates (Ee) addition formula,
presented in Section 1.1.3.

Table 1.27: Average cost per scalar bit of Algorithm 1.17 for Weierstraß curves using
homogeneous unified additions

Coord. Cost for any a Cost for a = −3

H 19.5M + 7.5S + 10.5A 18M + 7.5S + 13.5A

Table 1.28: Average cost per scalar bit of Algorithm 1.17 for twisted Edwards curves
using twisted Edwards unified additions

Coord. Cost for any a, d Cost for a = −1, any d

Ee 13.5M + 1.5Ca + 1.5Cd + 10.5A 12M + 1.5C2d + 13.5A

The detailed average computation costs of Algorithm 1.17 for Weierstraß curves,
resp. twisted Edwards curves, using the homogeneous projective addition formula, resp.
the extended coordinates addition formula, are given in Table 1.36 (p. 64).

These tables show that the unified addition formula of twisted Edwards curves pro-
vides better performances than the expensive Weierstraß unified addition.

Besides, we emphasize that Algorithm 1.17 can further be improved using NAF and
window optimizations presented in Section 1.2.1.
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Original Atomicity for ECC It is depicted in Algorithm 1.17 how atomicity can smooth
the computation of non-regular algorithms to hide the processing of scalar bits by us-
ing unified addition formulas. However, Chevallier-Mames et al. [CMCJ04] propose a
more efficient technique for smoothing the processing of classical addition and doubling
formulas.

Indeed, if the addition and doubling formulas are decomposed in sequences of an
identical atomic pattern, and if all the loop processing and conditional branching between
the iterations of this pattern are performed in an atomic manner, any scalar multiplica-
tion algorithm can theoretically be made SSCA resistant using classical formulas.

The atomic pattern (1) proposed by Chevallier-Mames et al. [CMCJ04] is depicted
below, with Ru(i), 0 ≤ i ≤ 9 denoting an arithmetic coprocessor register, and (u(i))0≤i≤9

a vector defining a pattern iteration.

(1)


Ru(0) ← Ru(1) × Ru(2)

Ru(3) ← Ru(4) + Ru(5)

Ru(6) ← −Ru(6)

Ru(7) ← Ru(8) + Ru(9)

This choice relies on the observation that during the execution of point additions and
doublings, no more than two additions and one negation are required between two
multiplications. Atomicity consists then of expressing point additions and doublings as
sequences of this pattern — as many as the required number of field multiplications
(including squarings).

Algorithm 1.18 presents the original atomic scalar multiplication using atomic pattern
(1) and Jacobian coordinates presented by Chevallier-Mames et al. From the execution
of this algorithm, one may observe the number of performed atomic patterns but cannot
distinguish the processing of scalar bits. As previously, if the length of the scalar is
known, an attacker can read its Hamming weight, which is not an interesting leakage
in practice.

The effective atomic pattern of Algorithm 1.18 includes the whole content of the
while loop. However, steps 7, 8, and 13 consisting in the scalar bits and loop processing,
we denote by atomic pattern the sequence of field operations only, i.e. steps 9 to 12,
here performed over Fq.

The point operations to be performed are not given in Algorithm 1.18, but are moved
to the matrix M, where each row defines a pattern iteration. Note that rows 0 to 9
correspond to the point doubling (R1 : R2 : R3) ← 2(R1 : R2 : R3), and that rows 10
to 25 correspond to the addition (R1 : R2 : R3)← (R1 : R2 : R3) + (R7 : R8 : R9). In
other words, a point doubling is carried out using 10 iterations of pattern (1) because
of the 10 field multiplications to be performed in the Jacobian general doubling formula,
and a point addition is computed using 16 iterations of pattern (1) because of the 16
field multiplications of the Jacobian general addition formula.
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Algorithm 1.18 Left-to-right atomic double-and-add scalar multiplication using J and
pattern (1)

Input: P = (X1 :Y1 :Z1) ∈ E(Fq), k = (kl−1kl−2 . . . k0)2 with kl−1 = 1

Output: kP
Uses: 10 l-bit registers R0 to R9

1: R0 ← a

2: (R1, R2, R3)← (X1, Y1, Z1)

3: (R7, R8, R9)← (X1, Y1, Z1)

4: i ← l − 2

5: s ← 1

6: while i ≥ 0 do
7: t ← (¬s)(t + 1) . ¬ stands for the bitwise negation
8: s ← ki(t ÷ 25) + (¬ki)(t ÷ 9) . ÷ stands for the Euclidean quotient
9: RMt,0

← RMt,1
× RMt,2

10: RMt,3
← RMt,4

+ RMt,5

11: RMt,6
← −RMt,6

12: RMt,7
← RMt,8

+ RMt,9

13: i ← i − s
14: return (R1 : R2 : R3)

M =



4 1 1 5 4 4 3 4 4 5

5 3 3 1 1 1 3 1 1 3

5 5 5 1 1 3 3 1 1 3

5 0 5 4 4 5 3 5 2 2

3 3 5 1 1 3 3 1 1 3

2 2 2 2 2 2 4 1 1 3

5 1 2 1 1 5 5 1 1 5

1 4 4 1 1 5 4 1 1 5

2 2 2 2 2 2 3 5 1 5

4 4 5 2 2 4 2 4 4 5

4 9 9 5 1 5 5 5 1 5

1 1 4 5 1 5 5 5 1 5

4 4 9 5 1 5 5 5 1 5

2 2 4 5 1 5 5 5 1 5

4 3 3 5 1 5 5 5 1 5

5 4 7 2 2 5 5 5 1 5

4 3 4 2 2 5 6 6 5 6

4 4 8 6 5 6 4 4 2 4

3 3 9 6 5 6 6 6 5 6

3 3 5 6 5 6 6 6 5 6

6 5 5 6 3 6 3 6 3 6

1 1 6 1 1 4 4 1 1 4

5 5 6 6 1 2 2 6 2 6

1 4 4 1 1 5 6 1 1 6

2 2 5 1 1 6 3 6 1 6

4 4 6 2 2 4 6 6 1 6



R4 ← R1 × R1 ; R5 ← R4 + R4 ; R3 ← −R3 ; R4 ← R4 + R5

R5 ← R3 × R3 ; R1 ← R1 + R1 ; R3 ← −R3 ; R1 ← R1 + R3

R5 ← R5 × R5 ; R1 ← R1 + R3 ; R3 ← −R3 ; R1 ← R1 + R3

...

R4 ← R9 × R9 ; R5 ← R1 + R5 ; R5 ← −R5 ; R5 ← R1 + R5

R1 ← R1 × R4 ; R5 ← R1 + R5 ; R5 ← −R5 ; R5 ← R1 + R5

R4 ← R4 × R9 ; R5 ← R1 + R5 ; R5 ← −R5 ; R5 ← R1 + R5

...
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This algorithm induces two kinds of cost overhead:

(i) field squarings are performed as field multiplications. This approach is costly on
embedded devices provided with a dedicated hardware modular squaring operation,
i.e. when S/M < 1, cf. Section 1.1.1.6,

(ii) dummy additions and negations are introduced. Although their cost is generally
neglected, we have seen in Section 1.1.1.6 that it must be taken into account in
our context.

Denoting P(1) the computation timing of pattern (1) and considering an l-bit ran-
dom scalar, the average cost of this algorithm is:(

16

2
+ 10

)
lP(1) = 18lP(1)

The average cost per bit of Algorithm 1.18 is thus 18M + 36A+ 18N, N being the
cost of a field negation. The detailed average computation cost is then 27.0M, resp.
23.4M, per scalar bit if A/M = 0.2, resp. A/M = 0.1, assuming N/M = 0.1.

We know that using mixed affine-projective additions improves the efficiency of
classical left-to-right algorithms. To apply this optimization here, rows 10 to 25 of
matrix M have to we replaced by 11 rows performing a Jacobian mixed affine-projective
addition [Lon07, App. B3]. In this case, the average cost of Algorithm 1.18 becomes
15.5lP(1), i.e. 15.5M + 31A + 15.5N per scalar bit. If a = −3, the fast doubling
formula can be expressed [Lon07, App. B1] using 8 instances of pattern (1) — which
replace rows 0 to 9 of matrix M. The average cost of the scalar multiplication drops to
13.5lP(1), i.e. 13.5M + 27A+ 13.5N per scalar bit.

Though we do not detail the algorithm, a NAF variant of Algorithm 1.18 reduces
the cost per bit of a scalar multiplication. In addition, windowing strategy can be used
to further improve efficiency as shown in Table 1.29. The detailed computation costs
of these methods are given in Table 1.37 (p. 64) depending on A/M and assuming
N/M = 0.1.

Table 1.29: Average cost per scalar bit of left-to-right window NAF atomic algorithms
using pattern (1) and mixed affine-projective additions depending on the windowing
strategy

Extra pts. Coord. Cost for any a Cost for a = −3

NAF J 13.7M + 27.3A+ 13.7N 11.7M + 23.3A+ 11.7N

1 J 12.8M + 25.5A+ 12.8N 10.8M + 21.5A+ 10.8N

2 J 12.4M + 24.9A+ 12.4N 10.4M + 20.9A+ 10.4N

3 J 12.2M + 24.4A+ 12.2N 10.2M + 20.4A+ 10.2N
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Another option is to use the Jacobian readdition formula to avoid costly precompu-
tations. The decomposition of this formula using 14 iterations of the atomic pattern (1)
is given in Figure 1.5. Under these assumptions, the average cost per bit of a window
NAF atomic algorithm using Jacobian coordinates is given in Table 1.30 depending on
the windowing strategy. The detailed computation cost of such a method is given in
Table 1.38 (p. 65) depending on A/M and assuming N/M = 0.1.

The cost of precomputations is the same as described in Section 1.2.1.4.

Input: (X1 :Y1 :Z1 :Z1
2 :Z1

3), (X2 :Y2 :Z2)

Output: (X3 :Y3 :Z3)

Uses: 7 registers R1 to R7

1


R1 ← Y2 × Z1

3

?

?

?

8


R2 ← R2 × R5

R6 ← R2 + R2

?

?

2


R2 ← Y1 × Z2

?

?

?

9


R5 ← R5 × R3

?

?

?

3


R3 ← Z2 × Z2

?

?

?

10


R3 ← Z2 × R3

?

?

?

4


R4 ← R2 × R3

?

R1 ← −R1

R4 ← R4 + R1

11


R7 ← R4 × R4

?

?

?

5


R2 ← X2 × Z1

2

?

R1 ← −R1

?

12


Z3 ← R3 × Z1

R7 ← R7 + R6

R5 ← −R5

X3 ← R7 + R5

6


R3 ← X1 × R3

?

R2 ← −R2

R3 ← R3 + R2

13


R3 ← R1 × R5

R2 ← R2 +X3

R2 ← −R2

?

7


R5 ← R3 × R3

?

?

?

14


R1 ← R2 × R4

Y3 ← R1 + R3

?

?

Figure 1.5: Decomposition of a readdition using J and atomic pattern (1)
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Table 1.30: Average cost per scalar bit of left-to-right window NAF atomic algorithms
using pattern (1) and readditions depending on the windowing strategy

Extra pts. Coord. Cost for any a Cost for a = −3

NAF J 14.7M + 29.3A+ 14.7N 12.7M + 25.3A+ 12.7N

1 J 13.5M + 27A+ 13.5N 11.5M + 23A+ 11.5N

2 J 13.1M + 26.2A+ 13.1N 11.1M + 22.2A+ 11.1N

3 J 12.8M + 25.6A+ 12.8N 10.8M + 21.6A+ 10.8N

Table 1.31: Average cost per scalar bit of right-to-left window NAF atomic algorithms
implemented using pattern (1) and mixed J/Jm coordinates, depending on the window-
ing strategy

Extra pts. Coord. Cost for any a

NAF J/Jm 13.3M + 26.7A+ 13.3N

1 J/Jm 12M + 24A+ 12N

2 J/Jm 11.6M + 23.1A+ 11.6N

3 J/Jm 11.2M + 22.4A+ 11.2N

Right-to-Left Variant As suggested by Joye [Joy08], Algorithm 1.5 — the right-
to-left NAF scalar multiplication using mixed Jacobian and modified Jacobian coordi-
nates — can be protected against SSCA using atomic pattern (1). Note in this case
that NAF digits computation must also be performed atomically. We present in Fig-
ure 1.6 the modified Jacobian doubling formula expressed using 8 atomic patterns (1).
Dummy operations are denoted by ?.

The average cost of this protected algorithm is 13.3lP(1). Applying a window
method yields the average cost per scalar bit detailed in Table 1.31 whatever the value
of a. The corresponding detailed average cost per bit is given in Table 1.39 (p. 65)
depending on A/M and assuming N/M = 0.1.

The cost of postcomputations is the same as described in Section 1.2.1.4.

Longa’s Atomic Patterns To reduce the costs induced by Algorithm 1.18, Longa
proposes in his Master’s thesis [Lon07, Chap. 5] the following two atomic patterns in
the context of Jacobian coordinates:

(2)



Ru(0) ← Ru(1) · Ru(2)

Ru(3) ← −Ru(4)

Ru(5) ← Ru(6) + Ru(7)

Ru(8) ← Ru(9) · Ru(10)

Ru(11) ← −Ru(12)

Ru(13) ← Ru(14) + Ru(15)

Ru(16) ← Ru(17) + Ru(18)

(3)



Ru(0) ← Ru(1)
2

Ru(2) ← −Ru(3)

Ru(4) ← Ru(5) + Ru(6)

Ru(7) ← Ru(8) · Ru(9)

Ru(10) ← −Ru(11)

Ru(12) ← Ru(13) + Ru(14)

Ru(15) ← Ru(16) + Ru(17)
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Input: (X1 :Y1 :Z1)

Output: (X2 :Y2 :Z2)

Uses: 6 registers R1 to R6

1


R1 ← X1 ·X1

R2 ← Y1 + Y1

?

?

5


R3 ← R1 · R1

?

?

?

2


Z2 ← R2 · Z1

R4 ← R1 + R1

?

?

6


R4 ← R6 ·X1

R5 ← W1 +W1

R4 ← −R4

R3 ← R3 + R4

3


R3 ← R2 · Y1

R6 ← R3 + R3

?

?

7


W2 ← R2 · R5

X2 ← R3 + R4

R2 ← −R2

R6 ← R4 +X2

4


R2 ← R6 · R3

R1 ← R4 + R1

?

R1 ← R1 +W1

8


R4 ← R6 · R1

?

R4 ← −R4

Y2 ← R4 + R2

Figure 1.6: Decomposition of a doubling using Jm and atomic pattern (1)

The atomic pattern (2) slightly reduces the number of field additions — gain of one
addition every two multiplications — compared to pattern (1). Moreover, using atomic
pattern (3) instead of (2) in a scalar multiplication implementation allows to replace one
multiplication out of two by a squaring. This option should be considered on devices
providing a dedicated squaring operation.

Longa expresses [Lon07, Appendices] mixed affine-Jacobian addition formula as 6
atomic patterns (2) or 6 patterns (3) and fast doubling formula as 4 atomic patterns
(2) or 4 patterns (3). Since Longa does not investigate general doubling nor readdition,
we present in Figure 1.7, resp. Figure 1.8, the decomposition of Jacobian readdition
using 7 atomic patterns (2), resp. Jacobian doubling using 5 atomic patterns (2) or (3).
It allows left-to-right scalar multiplication using either mixed affine-projective Jacobian
additions with atomic pattern (2) or (3), or Jacobian readdition with atomic pattern
(2). General or fast doubling can be used in both cases depending on a.

The average computation cost per bit of a left-to-right window NAF scalar mul-
tiplication using mixed affine-projective additions and pattern (2) or (3) is detailed in
Table 1.32. The corresponding detailed computation costs are given in Table 1.37
(p. 64) depending on A/M and assuming N/M = 0.1.

Using the Jacobian readdition formula, the average cost per bit of a window NAF
atomic algorithm using pattern (2) is given in Table 1.33 depending on the windowing
strategy. The detailed computation costs of this method are given in Table 1.38 (p. 65)
depending on A/M and assuming N/M = 0.1.
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Input: (X1 :Y1 :Z1 :Z1
2 :Z1

3), (X2 :Y2 :Z2)

Output: (X3 :Y3 :Z3)

Uses: 7 registers R1 to R7

1



R1 ← Y2 × Z1
3

?

?

R2 ← Y1 × Z2

?

?

?

5



R5 ← R5 × R3

?

?

R3 ← Z2 × R3

?

?

?

2



R3 ← Z2 × Z2

?

?

R4 ← R2 × R3

R5 ← −R1

R4 ← R4 + R5

?

6



R7 ← R4 × R4

?

?

Z3 ← R3 × Z1

R5 ← −R5

R7 ← R7 + R6

X3 ← R7 + R5

3



R2 ← X2 × Z1
2

?

?

R3 ← X1 × R3

R5 ← −R2

R3 ← R3 + R5

?

7



R3 ← R1 × R5

R1 ← −X3

R2 ← R2 + R1

R1 ← R2 × R4

?

Y3 ← R1 + R3

?

4



R5 ← R3 × R3

?

?

R2 ← R2 × R5

R6 ← −R2

R6 ← R6 + R6

?

Figure 1.7: Decomposition of a readdition using J and atomic pattern (2)
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Input: (X1 :Y1 :Z1)

Output: (X2 :Y2 :Z2)

Uses: 4 registers R1 to R4

1



R1 ← X1
2

?

R3 ← R1 + R1

R2 ← Z1 × Z1

?

R1 ← R1 + R3

R4 ← X1 +X1

4



R2 ← R1
2

?

?

R4 ← R4 × R3

R4 ← −R4

R2 ← R2 + R4

X2 ← R2 + R4

2



R2 ← R2
2

?

?

R2 ← a × R2

?

R1 ← R1 + R2

R2 ← Y1 + Y1

5



R3 ← R3
2

R1 ← −R1

R4 ← X2 + R4

R1 ← R1 × R4

R3 ← −R3

R3 ← R3 + R3

Y2 ← R3 + R1

3



R3 ← Y1
2

?

?

Z2 ← Z1 × R2

?

R3 ← R3 + R3

?

Figure 1.8: Decomposition of a general doubling using J and atomic pattern (3) — or
(2) by replacing squarings by multiplications

Table 1.32: Average cost per scalar bit of left-to-right window NAF atomic algorithms
using pattern (2) or (3) and mixed affine-projective Jacobian additions, depending on
the windowing strategy

Extra pts. Pattern Cost for any a Cost for a = −3

NAF
(2) 14M + 21A+ 14N 12M + 18A+ 12N

(3) 7M + 7S + 21A+ 14N 6M + 6S + 18A+ 12N

1
(2) 13M + 19.5A+ 13N 11M + 16.5A+ 11N

(3) 6.5M + 6.5S + 19.5A+ 13N 5.5M + 5.5S + 16.5A+ 11N

2
(2) 12.7M + 19A+ 12.7N 10.7M + 16A+ 10.7N

(3) 6.3M + 6.3S + 19A+ 12.7N 5.3M + 5.3S + 16A+ 10.7N

3
(2) 12.4M + 18.6A+ 12.4N 10.4M + 15.6A+ 10.4N

(3) 6.2M + 6.2S + 18.6A+ 12.4N 5.2M + 5.2S + 15.6A+ 10.4N
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Table 1.33: Average cost per scalar bit of left-to-right window NAF atomic algorithms
using pattern (2) and Jacobian readditions depending on the windowing strategy

Extra pts. Pattern Cost for any a Cost for a = −3

NAF (2) 14.7M + 22A+ 14.7N 12.7M + 19A+ 12.7N

1 (2) 13.5M + 20.3A+ 13.5N 11.5M + 17.3A+ 11.5N

2 (2) 13.1M + 19.7A+ 13.1N 11.1M + 16.7A+ 11.1N

3 (2) 12.8M + 19.2A+ 12.8N 10.8M + 16.2A+ 10.8N

The efficiency improvement brought by Longa’s patterns (2) and (3) over pattern (1)
can be seen in tables 1.37 and 1.38 in Section 1.2.2.4. We present in Section 1.3 a new
atomic pattern for the right-to-left atomic algorithm that brings better performances
than those presented above in most cases.

1.2.2.3 Euclidean Addition Chains

Let us consider a binary sequence c = (ci)1≤i≤m, ci ∈ {0, 1}, and the sequence v =

(vi)−2≤i≤m defined by v−2 = 1, v−1 = 2, v0 = 3 and for 1 ≤ i ≤ m:

vi = vi−1 + vji with


ji = i − 2 if ci = 0 (big step)
ji = ji−1 if ci = 1 (small step)
j0 = −2.

The sequence v is called an Euclidean Addition Chain (EAC) and is completely
defined by the binary sequence c . As the purpose of c and v is to compute vm, we
consider that c is a (non unique) representation of vm, and denote vm = χ(c). By abuse
of language, we will say that c is an EAC computing vm. We will see in the following
that every integer greater than 3 can be computed by an EAC.

For example, let c = (0110100) be an EAC, one can compute χ(c) = 62 as follows:

i 1 2 3 4 5 6 7

vi 1 2 3 5 7 9 16 23 39 62
ci 0 1 1 0 1 0 0
vji 2 2 2 7 7 16 23

Remark that by construction of the sequence v , computing v1, v2, . . . , vm involves
only additions of different terms. As a consequence, the sequence v1P, v2P, . . . , vmP

can be computed using point additions only, assuming that vm is less than8 the order
of P . Meloni observes that a scalar multiplication algorithm evaluating an EAC can
perform all point additions using the co-Z Jacobian formula [Mel07], as presented in
Algorithm 1.19.

8Note that, even if vm is greater than n = ord(P ), the probability that vi ≡ vj (mod n), with
0 < i, j < m, and i 6= j , and thus that a doubling possibly occurs in the addition chain, is negligible in
cryptographic applications where n is large.
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Algorithm 1.19 Euclidean addition chain scalar multiplication using ZADDU

Input: P = (x, y) ∈ E(Fq), c = (ci)1≤i≤m a binary sequence with χ(c) = k

Output: kP
Uses: U0 and U1

1: U0 ← (X2P :Y2P :Z2P ) . Jacobian representation of 2P

2: U1 ← (xZ2P
2 :yZ2P

3 :Z2P ) . Jacobian representation of P
3: for i = 1 to m do
4: (U0, U1)← ZADDU(Uci , U¬ci )

5: return U0 + U1

This method both provides SSCA immunity and benefits of the efficiency of the
co-Z Jacobian addition. Moreover, Algorithm 1.19 is easy to implement and fits the
memory constraints of embedded devices.

Meloni [Mel07] observes that an x-only variant of this algorithm can be devised
using ZADDU’ operation as presented in Algorithm 1.20. This method saves one field
multiplication per loop iteration. The overhead of the final x coordinate recovery is
11M + 4S + 8A.

Algorithm 1.20 Euclidean addition chain (X : Y )-only scalar multiplication using
ZADDU′

Input: P = (x, y) ∈ E(Fq), c = (ci)1≤i≤m a binary sequence with χ(c) = k ,
λ = 2b/a

Output: x coordinate of kP
Uses: U0, U1, and R

1: U0 ← (X2P :Y2P )

2: U1 ← (xZ2P
2 :yZ2P

3)

3: for i = 1 to m do
4: (U0, U1)← ZADDU′(Uci , U¬ci )

5: (R,T )← ZADDU′(U0, U1) . T is discarded
6: A← Y0

2 − Y1
2 +X1

3 −X0
3 . with U0 = (X0 :Y0) and U1 = (X1 :Y1)

7: B ← XR + 2Y0Y1 −X0X1(X0 +X1)

8: C ← B(X0 −X1)− A(X0 +X1)

9: x ← λXRA(C(X1 −X0)2)−1 . (X1 −X0)2 is computed at step 5
10: return x

Using algorithms 1.19 or 1.20 to compute a scalar multiplication kP requires the
knowledge of an EAC computing k . This question is discussed by Meloni [Mel07], we
just recall hereafter some key points.
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EAC Arithmetic First, note that an EAC v of length m ≥ 1 can be recovered from
the last two terms vm and vm−1 using Euclid’s algorithm, for instance:

62− 1× 39 = 23

39− 1× 23 = 16

23− 1× 16 = 7

16− 2× 7 = 2

7− 3× 2 = 1

2− 1× 1 = 1

1− 1× 1 = 0

Let q0, q1, . . . , qs denote the successive quotients of Euclid’s algorithm as presented
above. We define κ′(vm, vm−1)i the binary sequence such that:

κ′(vm, vm−1) = 11 . . . 1︸ ︷︷ ︸
qs−1

0 11 . . . 1︸ ︷︷ ︸
qs−1−1

. . . 0 11 . . . 1︸ ︷︷ ︸
q0−1

Then, let κ(vm, vm−1) the sequence obtained by dropping the first and last bits of
κ′(vm, vm−1). Given vm > vm−1 ≥ 3 and gcd(vm, vm−1) = 1, the sequence κ(vm, vm−1)

is the binary EAC computing vm with penultimate term vm−1. Alternatively, the bits
of κ(vm, vm−1) can be computed one by one using the subtractive form of Euclid’s
algorithm [Mel07].

As a consequence, the EACs evaluating an integer k can be enumerated by browsing
integers g < k coprime to k . Remark that κ(k, g1) = κ(k, g2) if and only if g1 = g2 or
g1 = k − g2. Assume k > 2, since g1 = k − g2 implies g1 6= g2 — otherwise k = 2g2,
and gcd(k, g2) = 1 implies k = 2 —, we have Theorem 1.

Theorem 1. Let k > 2 be an integer, there are ϕ(k)/2 different EACs evaluating k ,
where ϕ is Euler’s totient.

Now, let us call the reverse of an EAC c = (ci)1≤i≤m the EAC c = (c i)1≤i≤m such
that ci = cn−i+1 for 1≤i≤n. As stated by Theorem 2, it is remarkable that two reversed
EACs evaluate the same integer, e.g.:

i 1 2 3 4 5 6 7

vi 1 2 3 5 8 11 19 27 35 62
ci 0 0 1 0 1 1 0
vji 2 3 3 8 8 8 27

Theorem 2. Let c be an EAC, then χ(c) = χ(c). Besides, if c = κ(k, g) then
c = κ(k, h) with h = ±g−1 mod k .
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Proof. Let us consider two integers k and g, and the binary sequence c = κ(k, g),
such that k > g ≥ 3, and gcd(k, g) = 1. Furthermore, let q0, q1, . . . , qs denote the
successive quotients of Euclid’s algorithm run on k and g. We have:(

q0 1

1 0

)(
q1 1

1 0

)
. . .

(
qs 1

1 0

)
=

(
k u

g v

)
where u and v are Bézout coefficients of (k, g) such that gu − kv = (−1)s . If we
transpose both sides of this equation, we have:(

qs 1

1 0

)(
qs−1 1

1 0

)
. . .

(
q0 1

1 0

)
=

(
k g

u v

)
Thus κ(k, u) = c , with u = (−1)sg−1 mod k , and, since χ(κ(k, u)) = χ(κ(k, g)) = k

by definition, then χ(c) = χ(c).

Considering k = (kl−1kl−2 . . . k0)2 Meloni explores [Mel07] ways to find a short EAC
evaluating k , where short means a length m ≤ 2l . A basic method consists in picking at
random g’s coprime to k and applying Euclid’s algorithm. For l = 160, Meloni reports
that a few tens of g should be tried to find an EAC of length 320, and thousands of g’s
should be tried to find a very short EAC of length 270.

Obviously, such computations are prohibitive for a use in the context of embedded
devices using a random scalar — as required for example in the ECDSA protocol. This
conclusion has led other works to study the use of random EACs in scalar multiplication
as presented in the rest of this section.

Random EAC Generation A different approach from finding a small EAC evaluating
a random integer k consists in randomly generating a small length EAC c and using it
directly as input of Algorithm 1.19 — note that χ(c) is inexpensive to compute. Such
a method raises two points: (i) what is the expected length of χ(c), and (ii) is the
distribution of χ(c) compatible with key generation security requirements regarding the
discrete logarithm problem ?

Two families of EACs with good properties towards these two points are studied by
Herbaut, Liardet, Meloni, Teglia, and Véron [HLM+10].

- Family M0
l Let M0

l denote the set of EAC of length m = 2l beginning with l
zeros. First, the authors prove that the restriction of χ toM0

l is injective, and second
prove sharp bounds:

χ(M0
l ) ⊂ [(l + 1)Fl+2 + Fl+3, F2l+4]

where Fi is the i th Fibonacci number. Moreover, the mean value is
(

3
2

)l
Fl+4.

Thus, 2l distinct scalars can be generated using chains from M0
l . However, since

F2l+4 > 2l , with l ∈ N, if we consider a random EAC c ∈ M0
l to be used for scalar

multiplication κ(c)P on an l-bit curve where # 〈P 〉 = nP ≈ 2l , the output is (κ(c) mod

nP )P , and c → κ(c) mod nP is not injective in general.
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Nevertheless, experiments presented by Herbaut et al. [HLM+10] seem to show that
the average distribution of κ(c) mod n, c ∈ M0

l , n ≈ 2l into [0, n] is close enough to
uniform distribution to be used for cryptographic purposes.

Under this assumption, we compute the cost of using this family of chains for scalar
multiplication on an l-bit curve. One co-Z addition costs 5M + 2S + 7A and the main
loop of Algorithm 1.19 involves 2l of them if c ∈M0

l , which yields an equivalent cost per
scalar bit of 10M+ 4S+ 14A. This cost drops to 8M+ 4S+ 14A using Algorithm 1.20.
The corresponding detailed costs are given in Table 1.40 (p. 66), depending on ratios
S/M and A/M.

- FamilyM 3l
2
, l

2
LetM 3l

2
, l

2
denote the set of EACs of length m = 3l

2 of Hamming

weight l
2 . This choice is motivated by the fact that, given a chain length, EACs with a

low Hamming weight have more big steps and thus produce bigger integers.

This family does not have the injectivity property ofM0
l . Nevertheless, Herbaut et

al. conjecture that the cardinality of χ(M 3l
2
, l

2
) is close to 2l . Thus, under the same

assumption as previously — i.e. the distribution of χ(c) mod nP is close enough to
uniform distribution — this family of chains would lead to faster scalar multiplication
thanM0

l .

Under these assumptions, we compute the cost of using this family of chains for
scalar multiplication on an l-bit curve. These results are similar to family M0

l with a
factor 3

4 corresponding to the length ratio. The corresponding detailed costs are given
in Table 1.40 (p. 66).

1.2.2.4 Detailed Cost Comparison

The following tables summarize the cost of the algorithms presented in this section
depending on the cost of field squarings and additions. Label (c.o.) denote the use of
Jacobian composite operations dP1 + P2.
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Table 1.34: Detailed cost of regular algorithms expressed as field multiplications per
scalar bit

Algorithm Coord. a
S/M = 1 S/M = 0.8

A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

1.8 J any 24.6 22.8 22.8 21.0

1.9 J/Jm any 27.8 25.9 26.2 24.3

1.10 H, x-only any 21.8 20.4 20.8 19.4

1.11 J (c.o.) any 25.6 24.3 24.4 23.1

1.14 J any 19.6 17.8 18.6 16.8
1.15

1.16 J , (X :Y )-only any 17.6 15.8 16.6 14.8

1.8 J −3 22.8 20.9 21.4 19.5

1.10 H, x-only −3 20.6 (i) 18.4 (ii) 19.6 (i) 17.4 (ii)

Table 1.35: Detailed cost of regular m-ary ladders* depending on the radix m, expressed
as field multiplications per scalar bit

Algorithm m Coord. a
S/M = 1 S/M = 0.8

A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

1.12 2 J (c.o.) any 23.6 22.3 22.6 21.3

1.13 2 J/Jm any 27.8 25.9 26.2 24.3

1.12 4 J (c.o.) any 17.9 16.7 16.8 15.6

1.13 4 J/Jm any 19.1 17.6 17.9 16.4

1.12 8 J (c.o.) any 15.4 14.2 14.4 13.2

1.13 8 J/Jm any 16.2 14.8 15.1 13.7

* Radix m = 8 requires a prohibitive amount of memory in our context.
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Table 1.36: Detailed average cost of Algorithm 1.17 using Weierstraß and twisted
Edwards unified additions expressed as field multiplications per scalar bit

Model Coord. Param.
S/M = 1 S/M = 0.8

A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

Weierstraß H any a 29.1 28.1 27.6 26.6

Weierstraß H a = −3 28.2 26.9 26.7 25.4

Twisted Ed. Ee any a, d 18.6 17.6 18.6 17.6

Twisted Ed. Ee a = −1, 16.2 14.9 16.2 14.9
any d

Table 1.37: Detailed average cost of left-to-right window NAF atomic algorithms using
pattern (1), (2) or (3) and mixed affine-projective additions, expressed as field multipli-
cations per scalar bit and assuming N/M = 0.1

Extra
Coord. Pattern a

S/M = 1 S/M = 0.8

pts. A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

NAF
J (1) any 20.5 17.8 - -

J (2) or (3) any 19.6 17.5 18.2* 16.1*

1
J (1) any 19.1 16.6 - -

J (2) or (3) any 18.2 16.3 16.9* 15.0*

2
J (1) any 18.7 16.2 - -

J (2) or (3) any 17.7 15.8 16.5* 14.6*

3
J (1) any 18.3 15.9 - -

J (2) or (3) any 17.4 15.5 16.1* 14.3*

NAF
J (1) −3 17.5 15.2 - -

J (2) or (3) −3 16.8 15.0 15.6* 13.8*

1
J (1) −3 16.1 14.0 - -

J (2) or (3) −3 15.4 13.8 14.3* 12.7*

2
J (1) −3 15.7 13.6 - -

J (2) or (3) −3 14.9 13.3 13.9* 12.3*

3
J (1) −3 15.3 13.3 - -

J (2) or (3) −3 14.6 13.0 13.5* 12.0*

* Using pattern (3)
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Table 1.38: Detailed average cost of left-to-right window NAF atomic algorithms using
pattern (1) or (2) and readditions, expressed as field multiplications per scalar bit and
assuming N/M = 0.1

Extra pts. Coord. Pattern a A/M = 0.2 A/M = 0.1

NAF
J (1) any 22.0 19.1

J (2) any 20.5 18.3

1
J (1) any 20.3 17.6

J (2) any 18.9 16.9

2
J (1) any 19.7 17.0

J (2) any 18.4 16.4

3
J (1) any 19.2 16.6

J (2) any 17.9 16.0

NAF
J (1) −3 19.0 16.5

J (2) −3 17.7 15.8

1
J (1) −3 17.3 15.0

J (2) −3 16.1 14.4

2
J (1) −3 16.7 14.4

J (2) −3 15.6 13.9

3
J (1) −3 16.2 14.0

J (2) −3 15.1 13.5

Table 1.39: Detailed average cost of right-to-left window NAF atomic algorithms using
pattern (1) and mixed J/Jm coordinates, expressed as field multiplications per scalar
bit and assuming N/M = 0.1

Extra pts. Coord. Pattern a A/M = 0.2 A/M = 0.1

NAF J/Jm (1) any 20.0 17.3

1 J/Jm (1) any 18.0 15.6

2 J/Jm (1) any 17.3 15.0

3 J/Jm (1) any 16.8 14.6
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Table 1.40: Detailed average cost of algorithms 1.19 and 1.20 using EAC familiesM0
l

andM 3l
2
, l

2
, expressed as field multiplications per bit of an equivalent l-bit scalar

Algorithm
EAC

Coord. a
S/M = 1 S/M = 0.8

family A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

1.19 M0
l J any 16.8 15.4 16.0 14.6

1.20 M0
l J , x-only any 14.8 13.4 14.0 12.6

1.19 M 3l
2
, l

2

* J any 12.6 11.6 12.0 11.0

1.20 M 3l
2
, l

2

* J , x-only any 11.1 10.1 10.5 9.5

* The distribution of scalars generated using EAC familyM 3l
2
, l

2
is not proven to be

safe for cryptographic applications.
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Cost Comparison We compare hereafter the costs of the most efficient scalar multipli-
cation techniques immune to SSCA presented above. As previously, costs are computed
as:

(l − [offset])× [cost per scalar bit] + [optional pre/postcomputation cost]
l

Offset is fixed to 1 for most algorithms, except those listed below:

• Algorithms 1.11 and 1.15 have offset set to 2 using the tripling trick described
in Algorithm 1.15. The cost of a tripling from affine to Jacobian coordinates is
therefore added to the final cost. This trick assumes the scalar least significant bit
to be 1, which requires an addition with −P at the end of the scalar multiplication
one time out of two, thus the cost of a mixed affine-projective addition is added
to the final cost.

• Left-to-right window NAF algorithms using 1 extra point have offset set to 2.

• Left-to-right window NAF algorithms using 2 or 3 extra points have offset set to
3.

• Algorithm 1.19 used for EAC evaluation has offset set to 0 and an overhead of
one fast doubling from affine coordinates and one co-Z addition. Algorithm 1.20
has the same properties with an additional overhead of 11M + 4S + 8A.

Considering S/M = 0.8, A/M = 0.2, and I/M = 100, Figure 1.9 compares the cost
per scalar bit of these algorithms depending on the scalar length in the general case (any
a). Figure 1.10 gives a similar comparison assuming a = −3. For a correct comparison
between methods, remember that left-to-right window NAF algorithms using readditions
require the storage of five coordinates X, Y , Z, Z2, Z3 per extra point (including the
base point).

Considering general elliptic curves and our cost assumptions, both figures show that:

i) (X :Y )-only co-Z Montgomery ladder algorithm (1.16) and x-only EAC-based scalar
multiplication algorithm (1.20) are the most efficient regular algorithms,

ii) left-to-right atomic window NAF scalar multiplication using mixed affine-projective
additions and pattern (3) is the most efficient atomic technique.
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Figure 1.9: Comparison of SSCA-protected scalar multiplication algorithms cost depending on scalar length for any a, assuming I/M =

100, S/M = 0.8, and A/M = 0.2
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1.3 Improved Atomic Pattern for Right-to-Left
Algorithms

In this section, we present our contribution to the implementation of the atomicity
principle [GV10]. Namely, we propose a new atomic pattern for Algorithm 1.5 using
mixed Jacobian and modified Jacobian representations.

We propose hereafter a twofold atomicity improvement method. First, we show in
Section 1.3.1 how to take advantage of the efficiency of a dedicated squaring when it is
available. Secondly, in Section 1.3.2 we reduce the number of additions and negations
used in atomic patterns.

In Section 1.3.3 we evaluate the theoretical improvement provided by our technique
and we present some practical results in Section 1.3.4. Interestingly, our method provides
some of the best efficiency results of all the techniques presented so far. Note that this
method has been the subject of a patent deposit while at Oberthur Technologies [GV09].

1.3.1 Atomic Pattern Extension

Let O1 and O2 be two atomically written operations such that they require m1 and m2

atomic patterns respectively. Let us assume that a sub-operation o1 from the atomic
pattern could sometimes be replaced by another preferred sub-operation o2. Let us
eventually assume that O1 requires at least m′1 sub-operations o1 (along with m1 −m′1
sub-operations o2) and that O2 requires at least m′2 sub-operations o1 (along with
m2 −m′2 sub-operations o2).

Then, if d = gcd(m1, m2) > 1, let e be the greatest positive integer satisfying:

e ·
m1

d
≤ m1 −m′1 and e ·

m2

d
≤ m2 −m′2 . (1.31)

If e > 0 we can now apply the following method. Let a new pattern be defined with
d−e original atomic patterns followed by e atomic patterns with o2 replacing o1 — the
order can be modified at convenience.

It is now possible to express operations O1 and O2 withm1/d andm2/d new patterns
respectively. Using the new pattern in O1, resp. O2, instead of the old one allows
replacing e ·m1/d , resp. e ·m2/d , sub-operations o1 by o2.

Applying this method to Algorithm 1.5 yields the following result: O1 being the
Jacobian projective addition, O2 the modified Jacobian projective doubling, o1 the field
multiplication and o2 the field squaring, then m1=16, m′1=11, m2 = 8, m′2 = 3, d = 8

and e = 2. Therefore we define a new temporary atomic pattern composed of 8 patterns
(1) where 2 multiplications are replaced by squarings. We thus have one fourth of the
field multiplications carried out as field squarings. This extended pattern would have to
be repeated twice for an addition and once for a doubling.

We applied this new approach in Figure 1.11 where atomic general Jacobian addition
and modified Jacobian doubling are rewritten in order to take advantage of the squarings.
As previously, the dummy field additions and negations are denoted by ? .
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Add. 1



R1 ← Z2
2

?

?

?

R2 ← X1 × R1

?

?

?

R1 ← R1 × Z2

?

?

?

R3 ← Y1 × R1

?

?

?

R1 ← Z1
2

?

?

?

R4 ← R1 ×X2

?

R4 ← −R4

R4 ← R2 + R4

R1 ← Z1 × R1

?

?

?

R1 ← R1 × Y2

?

R1 ← −R1

R1 ← R3 + R1

Add. 2



R6 ← R4
2

?

?

?

R5 ← Z1 × Z2

?

?

?

Z3 ← R5 × R4

?

?

?

R2 ← R2 × R6

?

R1 ← −R1

?

R5 ← R1
2

?

R3 ← −R3

?

R4 ← R4 × R6

R6 ← R5 + R4

R2 ← −R2

R6 ← R6 + R2

R3 ← R3 × R4

X3 ← R2 + R6

?

R2 ← X3 + R2

R1 ← R1 × R2

Y3 ← R3 + R1

?

?

Dbl.



R1 ← X1
2

R2 ← Y1 + Y1

?

?

Z2 ← R2 × Z1

R4 ← R1 + R1

?

?

R3 ← R2 × Y1

R6 ← R3 + R3

?

?

R2 ← R6 × R3

R1 ← R4 + R1

?

R1 ← R1 +W1

R3 ← R1
2

?

?

?

R4 ← R6 ×X1

R5 ← W1 +W1

R4 ← −R4

R3 ← R3 + R4

W2 ← R2 × R5

X2 ← R3 + R4

R2 ← −R2

R6 ← R4 +X2

R4 ← R6 × R1

?

R4 ← −R4

Y2 ← R4 + R2

Figure 1.11: Extended atomic pattern applied to J addition and Jm doubling
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1.3.2 Atomic Pattern Cleanup

In a second step we aim at reducing the number of dummy field operations. In Fig-
ure 1.11, we identified by ? the operations that are never used in Add.1, Add.2, and
Dbl. These field operations may then be removed saving up 5 field additions and 3 field
negations per pattern occurrence.

However, we found out that field operations could be rearranged in order to maximize
the number of rows over the three columns composed of dummy operations only. We
then merge negations and additions into subtractions when possible. This improvement
is depicted in Figure 1.12.

This final optimization saves 6 field additions and removes the 8 field negations per
pattern occurrence. One may note that no more dummy operation remains in modified
Jacobian doubling. We thus believe that our atomic pattern (4) is optimal for this
algorithm:

(4)



Ru(0) ← Ru(1)
2

Ru(2) ← Ru(3) + Ru(4)

Ru(5) ← Ru(6) × Ru(7)

Ru(8) ← Ru(9) + Ru(10)

Ru(11) ← Ru(12) × Ru(13)

Ru(14) ← Ru(15) + Ru(16)

Ru(17) ← Ru(18) × Ru(19)

Ru(20) ← Ru(21) + Ru(22)

Ru(23) ← Ru(24) + Ru(25)

Ru(26) ← Ru(27)
2

Ru(28) ← Ru(29) × Ru(30)

Ru(31) ← Ru(32) + Ru(33)

Ru(34) ← Ru(35) − Ru(36)

Ru(37) ← Ru(38) × Ru(39)

Ru(40) ← Ru(41) − Ru(42)

Ru(43) ← Ru(44) − Ru(45)

Ru(46) ← Ru(47) × Ru(48)

Ru(49) ← Ru(50) − Ru(51)

1.3.3 Results

We give in Table 1.41 the average cost of Algorithm 1.5 and of similar algorithms using
window NAF methods protected with atomic pattern (4) given the amount of available
extra memory. Table 1.42 presents the corresponding detailed average costs depending
on ratios S/M and A/M, postcomputations are not taken into account.

The gain of our atomic pattern (4) over the original pattern (1) is constant whatever
the window size and ranges from 13.5% to 20.0%9 (cf. Table 1.39).

9Assuming S/M = 0.8, the precise theoretical gain is 20.0%, resp. 17.3%, if A/M is 0.2, resp. 0.1.
Assuming S/M = 1, the gain is 16.7%, resp. 13.5%.
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Add. 1



R1 ← Z2
2

?

?

?

R2 ← Y1 × Z2

?

?

?

R5 ← Y2 × Z1

?

?

?

R3 ← R1 × R2

?

?

?

R4 ← Z1
2

?

?

?

R2 ← R5 × R4

?

?

R2 ← R2 − R3

R5 ← R1 ×X1

?

?

?

R6 ← X2 × R4

?

?

R6 ← R6 − R5

Add. 2



R1 ← R6
2

?

?

?

R4 ← R5 × R1

?

?

?

R5 ← R1 × R6

?

?

?

R1 ← Z1 × R6

?

?

?

R6 ← R2
2

?

?

?

Z3 ← R1 × Z2

R1 ← R4 + R4

?

R6 ← R6 − R1

R1 ← R5 × R3

X3 ← R6 − R5

?

R4 ← R4 −X3

R3 ← R4 × R2

?

?

Y3 ← R3 − R1
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Figure 1.12: Improved arrangement of field operations in extended atomic pattern from
Figure 1.11
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Table 1.41: Average cost per scalar bit of right-to-left window NAF atomic algorithms
using pattern (4) and mixed J/Jm coordinates, depending on the windowing strategy

Extra pts. Coord. Cost for any a

0 (NAF) J/Jm 10M + 3.3S + 16.7A

1 J/Jm 9M + 3S + 15A

2 J/Jm 8.7M + 2.9S + 14.4A

3 J/Jm 8.4M + 2.8S + 14A

Table 1.42: Detailed average cost of right-to-left window NAF atomic algorithms using
pattern (4) and mixed J/Jm coordinates, as field multiplications per scalar bit

Extra pts. Coord. Pat. a
S/M = 1 S/M = 0.8

A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

0 (NAF) J/Jm (4) any 16.7 15.0 16.0 14.3

1 J/Jm (4) any 15.0 13.5 14.4 12.9

2 J/Jm (4) any 14.4 13.0 13.9 12.4

3 J/Jm (4) any 14.0 12.6 13.4 12.0

Figures 1.14 and 1.15 depicts the comparison of the fastest scalar multiplication
techniques protected against SSCA updated with our new atomic pattern (4) and tak-
ing account of pre/postcomputations. The fixed point strategy for the left-to-right
algorithm is not presented in these comparisons, since Differential Side-Channel Anal-
ysis (DSCA) countermeasures generally require to randomize the input point or its
coordinates.

For the considered scalar lengths, our method provides the best efficiency results
of all methods in the general case (any a). Using the three extra points windowing
strategy, it even outperforms the x-only EAC scalar multiplication algorithm usingM0

l .
If a = −3, the left-to-right algorithm using mixed affine-projective additions and pattern
(3) is faster than our method if no extra point is used10. If extra points are used, our
method outperforms the left-to-right algorithm due to the costly inversion in required
in precomputations.

1.3.4 Implementation

We have implemented Algorithm 1.5 — without any window method — protected with
the atomic pattern (1) on one hand and with our improved atomic pattern (4) on the
other hand. We used a smart card provided with an 8-bit CPU running at 30 MHz

10This comparison assumes that no inversion is required in the left-to-right algorithm; if it were the
case — e.g. using input point projective coordinates randomization — an overhead of I should be added
to the cost of the left-to-right method.
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and a 32-bit arithmetic coprocessor running at 50 MHz. In particular, this coprocessor
provides a dedicated modular squaring, i.e. S/M ≈ 0.8, and the modular addition cost
ratio A/M for the considered key size is about 0.2. The two implementations required
a comparable amount of code (3–4 kB) and RAM (about 400 B).

On the NIST P-192 curve [NIST06] we obtained a practical speed-up of about
14.5% to be compared to the predicted 20%. This difference can be explained by
the extra software processing required in the scalar multiplication loop management,
especially the on-the-fly NAF decomposition of the scalar in an SSCA-resistant way.

When observing the electromagnetic leakage of our implementation we obtained the
signal presented in Figure 1.13. The atomic pattern iterations comprising 8 modular
multiplications and several additions/subtractions can easily be identified.

(4) (4) (4) (4)

Figure 1.13: Side-channel leakage observed during the execution of our scalar multipli-
cation implementation showing a sequence of iterations of the atomic pattern (4)
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1.4 Using Edwards Addition Law on Standard Curves

The efficiency of Edwards curves unified addition and doubling formulas makes them
particularly interesting for cryptographic purpose in embedded devices. However, it is
generally required in industrial applications to use standardized curves, and all of them
have a generic Weierstraß form, cf. Section 1.1.1.5. Therefore, we study in this section
the possibility of using Edwards addition law on general curves considering Theorem 3.

Theorem 3. Let E be an elliptic curve defined over a field Fq of odd characteristic,
then:

(i) E is birationally equivalent to an Edwards curve over Fq if and only if E(Fq) has a
point of order 4,

(ii) if E(Fq) has three points of order 2, then E(Fq) is isogenous to an Edwards curve.

Proof. Statement (i) is proven by Bernstein et al. [BBJ+08, Theorem 3.3] and Morain
proves [Mor09, Theorem 17] (ii).

In the following, Section 1.4.1 describes a method to switch from a standard curve
to an Edwards curve considering an extension of the base field following Bernstein
and Lange’s construction. Similarly, Section 1.4.2 shows that an isogeny may be used
to switch from a standard curve to a twisted Edwards curve. Finally, Section 1.4.3
discusses the minimal extension field degree to build isogenous Edwards curves over an
odd characteristic field.

1.4.1 Standard Fp Curves to Edwards Form

Since all NIST and Brainpool curves over a prime field Fp have cofactor 1, building a
birationally equivalent Edwards curve requires to find a point of order 4 over an extension
of Fp.

Assume that a point P = (x1, y1) lies on a standard curve E1/Fp such that E1(Fp)

has prime cardinality n > 2 and:

E1 : y2 = x3 + ax + b

Theorem 4. The minimal extension field to find a point of order 4 is Fp6 for all NIST
and Brainpool curves over Fp.

Proof. The roots of the polynomial ψ∗4 = x6 + 5ax4 + 20bx3−5a2x2−4abx −a3−8b2

give the x coordinates of the points of order 4 of E1. Since this polynomial has no root
in Fp for the standard curves, we need to consider an extension field Fpe to find them.
The degree of ψ∗4 ensures that e ≤ 6. More precisely if ψ∗4 is irreducible over Fp then
e = 6. This is the case for all NIST and Brainpool curves, except NIST P-224 for which
ψ∗4 splits in two polynomials of degree 3.
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Consider an irreducible polynomial A(t) of degree e and r a root of ψ∗4 in Fp[t]/A(t).
Notice that ψ∗4 is a suitable choice for A in most cases, in which case we can take
r = t mod ψ∗4. Then compute s a square root of r3 + ar + b. If s /∈ Fpe it is necessary
to consider an extension field of degree 2e instead of e, this is the case with the curve
NIST P-224. Thus the required point (r, s) of order 4 is in Fp6 for all NIST and Brainpool
curves.

We recall in the following the construction given by Bernstein and Lange [BL07b,
Section 2] and completed by Bernstein et al. [BBJ+08, Section 3] to obtain an Edwards
model from a Weierstraß form. Let (r2, 0) denote the double of (r, s); it has order 2.
We translate the curve E1 to ensure that the point (0, 0) belongs to it. This is done
by considering the isomorphic curve obtained with the map (x, y) 7→ (x − r2, y). This
gives:

E2 : y2 = x3 + λ1x
2 + λ2x

on which lies (r1, s1) = (r − r2, s) the point of order 4, and (x2, y2) = (x1 − r2, y1) the
point corresponding to P . We have λ1 = s1

2/r1
2 − 2r1 and λ2 = r2

1 .

Let d = 1− 4r1
3/s1

2 and consider the Edwards curve E3:

E3 : x2 + y2 = 1 + dx2y2

Bernstein et al. show that E2 — and therefore E1 — is birationally equivalent to E3.
The point corresponding to P is given by (x3, y3) = (s1x2/r1y2, (x2 − r1)/(x2 + r1)).

Let k be a positive integer. It is now possible to compute (u3, v3) = k(x3, y3) using
Edwards addition formula in Fp6 . Note that d is a square for all NIST and Brainpool
curves, thus Edwards addition law is not complete.

The corresponding result on E2 is obtained as:

(u2, v2) =

(
r1(1 + v3)

1− v3
,
s1(1 + v3)

u3(1− v3)

)
Finally (u2 + r2, v2) = kP .

This method allows to perform scalar multiplications on the 5 NIST curves and the 7
Brainpool curves defined over Fp using Edwards addition law. However it implies handling
coordinates in Fp6 during the scalar multiplication and thus increases operations cost by
a factor at least 6 — which is optimistic. On the other hand, the speed-up provided
by Edwards formula depends on the exact context but cannot reasonably exceed 50%.
Consequently the cost of handling coordinates in Fp6 clearly overtakes the gain of using
Edwards addition law.

1.4.2 Standard Fp Curves to Twisted Edwards Form

Using the same notations E1, a, b, P , k as previously, we aim at building, for each of
the aforementioned standard curves, a 2-isogenous twisted Edwards curve. We use in
the following the construction presented by Bernstein et al. [BBJ+08].
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Theorem 5. The minimal extension field to find three points of order 2 is Fp3 for all
NIST and Brainpool curves over Fp.

Proof. The required points of order 2 are the (ri , 0), where r0, r1, r2 the roots of the
polynomial x3 + ax +b. As this polynomial is irreducible over Fp for all standard curves,
r0, r1, r2 all generate Fp3 .

As previously we translate the curve E1 to ensure that the point of order 2 (0, 0)

belongs to it. Again, this is done by considering the isomorphic curve obtained by
applying (x, y) 7→ (x − r0, y). This yields

E2 : y2 = x3 − (r1 + r2)x2 + (r1r2)x

on which lies (x2, y2) = (x1 − r0, y1) the point corresponding to P .

Then we consider the isogenous curve E3 given by

E3 : y2 = x3 + 2(r1 + r2)x2 + (r1 − r2)2x

on which lies (x3, y3) = (y2
2/x2

2, y2(r1r2 − x2
2)/x2

2).

Then we consider the Montgomery curve E4, isomorphic to E3, given by:

E4 :
1

r1 − r2
y2 = x3 +

2(r1 + r2)

r1 − r2
x2 + x

on which lies (x4, y4) = (x3/(r1 − r2), y3/(r1 − r2)).

Bernstein et al. have shown that every Montgomery curve is birationally equivalent
to a twisted Edwards curve, in particular E4 is birationally equivalent to

E5 : 4r1x
2 + y2 = 1 + 4r2x

2y2

on which lies (x5, y5) = (x4/y4, (x4 − 1)/(x4 + 1)) the point corresponding to P .

The scalar multiplication kP on E5 becomes (u5, v5) = (k × 2−1 mod n)(x5, y5).
The twisted Edwards addition law is complete if r1 is a square in Fp3 but not r2. It
means that among the three roots of x3 + ax + b at least one has to be a square and
at least one a non-square. This property is always fulfilled except for NIST P-224.

The corresponding results on E4, E3 and E2 are respectively recovered as:

(u4, v4) =

(
1 + v5

1− v5
,

1 + v5

u5(1− v5)

)
(u3, v3) = (u4(r1 − r2), v4(r1 − r2))

(u2, v2) =

(
v3

2

4u3
2
,
v3((r1 − r2)2 − u3

2)

8u3
2

)
Finally (u2 + r0, v2) = kP .

This method allows to perform scalar multiplications on the 12 NIST and Brainpool
curves over Fp using the twisted Edwards addition law. However, it implies computations
in Fp3 , whose cost still overtakes the gain of using twisted Edwards formulas.
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1.4.3 General Case of Elliptic Curves over Fq

Let E be an elliptic curve over an odd characteristic field Fq. The following theorem
generalizes the preceding observations on standard curves.

Theorem 6. If E(Fq) has prime cardinality n > 2, there is an Edwards curve isogenous
to E over Fq3 . The field Fq3 is the extension of minimal degree with this property.

Proof. Let t be the trace of E such that n = q + 1− t. Now consider τ ∈ C such that
τ + τ̄ = t and ττ̄ = q. From Hasse-Weil theorem, we have:

#E(Fq2 ) = q2 + 1− (τ2 + τ̄2)

= q2 + 1− (t2 − 2q)

≡ −t2 (mod 4)

since q is odd, and (q + 1)2 ≡ 0 (mod 4). Furthermore, since n and q are odd, then
t is odd too, thus #E(Fq2 ) ≡ 3 (mod 4). Therefore, no elliptic curve isogenous to E
over Fq2 can have a subgroup of order 4.

Now, consider the cardinality of E on Fq3 :

#E(Fq3 ) = q3 + 1− (τ3 + τ̄3)

= q3 + 1− (τ + τ̄)
(

(τ + τ̄)2 − 3ττ̄
)

= q3 + 1− t(t2 − 3q)

≡ (q + 1)(1− t) (mod 4)

≡ 0 (mod 4)

since for any odd integer x , we have x2 ≡ 1 (mod 4). It follows that there is an elliptic
curve isogenous to E over Fq3 having a subgroup of order 4. Thus, by Theorem 3, there
is an Edwards curve isogenous to E over Fq3 .

Theorem 7. If E has a single 2 torsion rational point on Fq, then E has an isogenous
Edwards curve over Fq2 .

Proof. As previously we have #E(Fq2 ) ≡ −t2 (mod 4). If n is even, then t is even,
and consequently #E(Fq2 ) ≡ 0 (mod 4).

In other words, there is an elliptic curve isogenous to E over Fq2 having a subgroup
of order 4. Thus, by Theorem 3, there is an Edwards curve isogenous to E over Fp2 .
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Chapter 2

Physical Cryptanalysis and
Countermeasures on Embedded
Devices

The side-channel attacks where first put in the spotlight in 1996 when Kocher showed
that state-of-the-art public-key cryptosystem implementations where prone to timing
attacks [Koc96]. These attacks are possible when execution timings of operations
involving secret bits depend on their value, thereby leaking information. Two years
later, Kocher, Jaffe, and Jun presented the simple and differential side-channel anal-
ysis [KJJ98; KJJ99], which can exploit various kinds of leakages such as the power
consumption or the electromagnetical radiation. These attacks require a stronger phys-
ical access to the targeted device than timing attacks but can be devastating.

Since most of the literature dealing with side-channel analysis on public-key algo-
rithms target RSA/DSA/Diffie-Hellman modular exponentiation, we recall in Section 2.1
how this operation is implemented on embedded devices.

Although timing attacks are nowadays circumvented using constant time implemen-
tations, simple and differential side-channel analysis have been refined year after year
to bypass the first countermeasures in an exciting security race between implementors
and attackers. In the following, Section 2.2 focuses on simple side-channel analysis, and
Section 2.3 puts emphasis on differential techniques.

On the other hand, fault attacks belong to the family of active attacks as they consist
in physically tampering with the processing of an operation. They were introduced in
1997 by Boneh, DeMillo, and Lipton [BDL97; BDL01]; many other works have followed
since then. Some refinements even include a combination of side-channel analysis and
fault attacks as described in Section 2.4.

All these attacks can be performed using various access and control levels to the
targeted devices. Accordingly, attacks are said to be non-invasive, semi-invasive, or
invasive. Non-invasive attacks are limited to monitoring the external behavior of a
device and use its regular inputs and outputs. On the contrary, invasive techniques
provide physical access to the different components of a chip and allow powerful reverse
engineering of its design, but require high skill and expensive equipment. Since these

83
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experimentation matters are not the subject of our study, we refer the interested reader
to the numerous works published on the matter [KK99; Nohl; Tar10].

Exponentiation algorithms designed to resist the simple side-channel analysis gener-
ally perform a regular sequence of multiplications and squarings, or use multiplications
only. We found out that using squarings only in an exponentiation scheme brings a new
side-channel analysis countermeasure. The so-called square always exponentiation is
detailed in Section 2.5.

Considering the multi-precision multiplication implementation, we propose a new
side-channel attack in Section 2.6. We call it horizontal analysis since it may succeed
using a single side-channel trace whereas most previous attacks require acquiring sev-
eral traces. This work brings new recommendations for implementors to design secure
exponentiation or scalar multiplication implementations.

Since our horizontal analysis operates at the modular multiplication level, we also
design a new countermeasure consisting in blinding and shuffling internal operands of
the multi-precision multiplication. Section 2.7 details how this may be implemented in
classical algorithms.

Eventually, we show in Section 2.8 that side-channel collision analysis can threaten
implementations considered secure until now. This work is presented on two different
protected implementations of the AES block cipher.

2.1 Background on Exponentiation

Although ECC is gaining ground over RSA due to the shorter key lengths, the latter is
still one of the most used public-key cryptosystems in security devices. DSA [NIST06]
and Diffie-Hellman key agreement protocol [DH76] are also present in many applications,
and, as RSA, require the computation of modular exponentiations with a secret expo-
nent. Thus the problem of protecting the exponentiation against side-channel analysis
in an efficient manner is worth of interest.

Since many of the side-channel analysis and countermeasures presented in the rest of
this study target RSA/DSA/Diffie-Hellman exponentiations, we recall in Section 2.1.1
some classical exponentiation algorithms. Considering that the underlying implementa-
tion of the modular multiplication is also a key point to assess the security of exponenti-
ation methods towards some side-channel analysis, we recall some basics about modular
multiplication in Section 2.1.2.

2.1.1 Exponentiation Algorithms for Embedded Devices

We first recall in this section the well-known square-and-multiply algorithms — multi-
plicative equivalents of the double-and-add used for the elliptic curve scalar multiplica-
tion. Then we present some classical algorithms protected against the original SSCA.
Many exponentiation algorithms have been proposed in the literature, among the numer-
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ous references an interested reader can refer for instance to the Handbook of Applied
Cryptography [MOV97] or the work by Bernstein [Ber02] on Pippenger’s algorithm for
details.

We emphasize that exponentiation algorithms and countermeasures are very similar
to scalar multiplication. Regarding the state-of-the-art presented in Section 1.2, the
most significant difference between these two contexts relates to signed representations
which are not used in the modular exponentiation context due to the cost of the inver-
sion. We briefly present the simplest exponentiation algorithms and refer the reader to
Section 1.2 for algorithmic optimizations such as the various windowing methods.

2.1.1.1 Square-and-Multiply Algorithms

Algorithms 2.1 and 2.2 are two variants of the square-and-multiply method:

Algorithm 2.1 Left-to-right square-and-multiply exponentiation
Input: m, n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n

1: a← 1

2: for i = k − 1 to 0 do
3: a← a2 mod n

4: if di = 1 then
5: a← a ×m mod n

6: return a

Algorithm 2.2 Right-to-left square-and-multiply exponentiation
Input: m, n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n

1: a← 1

2: b ← m

3: for i = 0 to k − 1 do
4: if di = 1 then
5: a← a × b mod n

6: b ← b2 mod n

7: return a

These algorithms require on average 1S + 0.5M per bit of exponent to perform an
exponentiation.

As double-and-add, these algorithms are no longer used in embedded devices for
security applications since the emergence of side-channel analysis. Countermeasures
consist of use regular algorithms or apply the atomicity principle, as detailed hereafter.
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2.1.1.2 Regular Exponentiation Algorithms

Regular exponentiation algorithms include the well-known square-and-multiply-always
and Montgomery ladder [Mon87; JY03]. Square-and-multiply-always uses dummy op-
erations similarly to double-and-add-always. A multiplicative variant of Montgomery
ladder is presented below in Algorithm 2.3. It is generally preferred over square-and-
multiply-always since it does not involve dummy multiplications which makes it naturally
immune to safe-error analysis, cf. Section 2.4.2.

Algorithm 2.3 Montgomery ladder exponentiation
Input: m, n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n

Uses: R0 and R1

1: R0 ← 1

2: R1 ← m

3: for i = k − 1 to 0 do
4: R1−di ← R0 × R1 mod n

5: Rdi ← Rdi
2 mod n

6: return R0

Such regular algorithms perform one squaring and one multiplication at every itera-
tion and thus require 1M + 1S per exponent bit.

2.1.1.3 Exponentiation Using the Atomicity Principle

This method, presented by Chevallier-Mames et al. [CMCJ04], protects square-and-
multiply algorithms against SSCA. It yields a multiply-always algorithm, where all squar-
ings are performed as classical multiplications. We present left-to-right multiply-always
in Algorithm 2.4.

Algorithm 2.4 Left-to-right multiply-always exponentiation
Input: m, n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n

Uses: R0 and R1

1: R0 ← 1

2: R1 ← m

3: i ← k − 1

4: t ← 0

5: while i ≥ 0 do
6: R0 ← R0 × Rt mod n

7: t ← t ⊕ di
8: i ← i − 1 + t

9: return R0

The multiply-always algorithm is faster than regular ones: it performs an exponen-
tiation using on average 1.5M per exponent bit.



2.1. BACKGROUND ON EXPONENTIATION 87

2.1.2 Modular Multiplication Implementation

All of the exponentiation algorithms presented above perform a sequence of modular
long-integer multiplications. Heavy efficiency constraints thus lie on this operation, es-
pecially in the context of embedded devices. Several methods have been devised to avoid
costly modular reductions (i.e. integer divisions): Montgomery, Barrett, Quisquater, etc.
A detailed review of these techniques is provided by Dhem in his PhD thesis [Dhe98].
A modular multiplication x × y mod n generally consists in two steps: first the regu-
lar multiplication x × y , and second the reduction modulo n according to one of the
aforementioned methods. These two steps may also be interleaved for memory savings.

2.1.2.1 Independent Multiplication and Reduction

In embedded devices, the long-integer multiplication x × y generally involves a multi-
precision multiplication implemented using the schoolbook method. This method is
described in Algorithm 2.5 with one (or more) smaller hardware multiplier(s) operating
on t-bit words — i.e. giving a 2t-bit result. The decomposition of an l-bit integer x in
t-bit words is denoted by x = (xlb−1xlb−2 . . . x0)b with b = 2t and lb = blogb(x)c + 1.
Other long-integer multiplications techniques may also be used such as Comba [Com90]
and Karatsuba [KO62] algorithms.

Algorithm 2.5 Schoolbook long-integer multiplication
Input: x = (xlb−1xlb−2 . . . x0)b, y = (ylb−1ylb−2 . . . y0)b
Output: x × y
Uses: w = (w2lb−1w2lb−2 . . . w0)

1: w ← (00 . . . 0)

2: for i = 0 to lb − 1 do
3: c ← 0

4: for j = 0 to lb − 1 do . w ← w + bixi × y
5: (uv)b ← wi+j + xi × yj + c

6: wi+j ← v

7: c ← u

8: wi+lb ← c

9: return w

The 2l-bit result of the long-integer multiplication is then reduced modulo n, de-
pending on the chosen method. For instance, Montgomery reduction [Mon85] replaces
divisions by shifts. Considering an odd modulus n, take R = 2i such that R > n (in
general i = l). Given 0 ≤ w < 22i , Montgomery reduction computes 0 ≤ r < n such
that r ≡ wR−1 (mod n). Now, for an operand 0 ≤ u < n, let the residue uR mod n

be called the Montgomery representation of u with respect to R and n. The compu-
tation of uv mod n thus requires to perform the long-integer multiplication x × y with
x = uR mod n by y = vR mod n which yields uvR2. Montgomery reduction is applied
to compute uvR mod n, the Montgomery representation of uv with respect to R and
n. Montgomery reduction is outlined in Algorithm 2.6 and a detailed implementation
using single-precision multiplications only is presented in Algorithm 2.7.
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Algorithm 2.6 Montgomery modular reduction (high level)

Input: w < 22l , n < 2l , R = 2l , n′ = −n−1 mod R with gcd(R, n) = 1 and
w < nR

Output: wR−1 mod n

1: s ← w mod R . ignore bits from the l-th one upwards
2: q ← n′ × s mod R

3: r ← (w + q × n)/R . the division is an l-bit shift
4: if r ≥ n then
5: r ← r − n
6: return r

Algorithm 2.7 Montgomery modular reduction implementation
Input: w = (w2lb−1w2lb−2 . . . w0)b, n = (nlb−1nlb−2 . . . n0)b, with gcd(2l , n) = 1

and w < n2l

Output: w2−l mod n

1: n′0 ← −n0
−1 mod b

Main loop
2: for i = 0 to lb − 1 do
3: q ← w0 × n′0 mod b . q ← −w0/n0

4: c ← 0

5: for j = 0 to lb − 1 do . w ← w + q × n
6: (uv)b ← wj + q × nj + c

7: wj ← v

8: c ← u

9: for j = lb to 2lb − i − 1 do . carry propagation
10: (uv)b ← wj + c

11: wj ← v

12: c ← u

13: w2lb−i ← c

14: (w2lbw2lb−1 . . . w0)b ← (0w2lbw2lb−1 . . . w1)b . (w)b ← (w)b � 1

Final subtraction
15: if w > n then
16: w ← w − n
17: return w
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All variables are manipulated using the Montgomery representation until all modular
computations are performed. Eventually, an extra reduction step removes the R factor
and outputs the final result. Such a modular multiplication method is efficient when
many successive modular operations have to be computed, as in modular exponentiation
algorithms. An interested reader can refer to the article by Koç and Acar comparing
different implementations of the Montgomery multiplication [KA96].

Remark 8. Side-channel analysis can target the final subtraction step of Montgomery
reduction [Sch00; WT01]. For example, Walter and Thompson report that it occurs
with different probability depending on whether the multiplication being performed is a
square or not. To address this issue, Walter shows that final subtractions can be avoided
in implementations if enough multiplications are iterated [Wal99; Wal02]. We refer the
reader to these works for details.

2.1.2.2 Interleaved Multiplication and Reduction

Performing long-integer multiplication and modular reduction as two independent steps
has a drawback: the intermediate result x × y has to be stored using 2l bits. Therefore,
many embedded implementations make use of algorithms interleaving multiplication and
reduction steps. Indeed, interleaved algorithms perform a reduction of each t + l bits
intermediate result of the inner loop of the multiplication algorithm — i.e. every t × l
multiplication xi × y is reduced to l bits before the following multiplication xi+1 × y .
This method thus never requires more than t + l bits for the storage of intermediate
multiplication results. Algorithm 2.8 is the interleaved Montgomery multiplication of x
and y modulo n using a t-bit multiplier.
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Algorithm 2.8 Interleaved Montgomery modular multiplication and reduction
Input: x = (xlb−1xlb−2 . . . x0)b, y = (ylb−1ylb−2 . . . y0)b, n = (nlb−1nlb−2 . . . n0)b
Output: xy2−l mod n

Uses: w = (wlbwlb−1 . . . w0)

1: n′0 ← −n0
−1 mod b

2: w ← (00 . . . 0)

Main loop
3: for i = 0 to lb − 1 do
4: c ← 0

5: for j = 0 to lb − 1 do . w ← w + xi × y
6: (uv)b ← wj + xi × yj + c

7: wj ← v

8: c ← u

9: wlb ← c

10: q ← w0 × n′0 mod b . q ← −w0/n0

11: c ← 0

12: for j = 0 to lb − 1 do . w ← w + q × n
13: (uv)b ← wj + q × nj + c

14: wj ← v

15: c ← u

16: wlb ← wlb + c

17: (wlbwlb−1 . . . w0)b ← (0wlbwlb−1 . . . w1)b . (w)b ← (w)b � 1

Final subtraction
18: if w > n then
19: w ← w − n
20: return w
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Figure 2.1: Square-and-multiply side-channel leakage
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2.2 Simple Side-Channel Analysis

Simple and differential side-channel analysis rely on the following physical property: a
microprocessor is physically made of thousands of logical gates switching differently
depending on the executed operations and on the manipulated data. Therefore power
consumption and electromagnetic radiation reflect and may leak information on both
instructions and data. By monitoring a device performing cryptographic operations, an
observer may infer information on the implementation of the program executed and on
the secret data involved.

Simple Side-Channel Analysis (SSCA) include Simple Power Analysis (SPA), resp.
Simple ElectroMagnetic Analysis (SEMA), if the measured leakage is the power con-
sumption, resp. electromagnetic radiation. However, SPA is often used as a synonym
for SSCA by abuse of language.

In the following, Section 2.2.1 presents the original SPA, Section 2.2.2 recalls further
refinements when the input message can be chosen by an adversary, and Section 2.2.3
briefly describes some attacks requiring a preliminary characterization phase.

2.2.1 Original Simple Side-Channel Analysis

The simple side-channel analysis, introduced by Kocher et al. [KJJ99], consists in moni-
toring and acquiring a trace of some side-channel activity of a device performing a cryp-
tographic operation or any computation involving sensitive data. Then, the attacker
uses this measurement to observe the performed operations. If conditional branching in
the code depends on secret data and can be detected, the secret value can be recovered.
Such a leakage can possibly lead to the recovery of the whole key with a single trace
and a single execution.

This attack assumes that the attacker has full knowledge of the performed algo-
rithms. Note that even if this were not the case, a side-channel leakage can be used
first to perform reverse engineering and guess how an operation is implemented.

SPA was first presented on an RSA square-and-multiply exponentiation. This al-
gorithm is particularly prone to SSCA when implemented on a device where a modular
multiplication and a modular squaring have different patterns that can be observed on
some side-channel leakage. Devices provided with an arithmetic coprocessor using a
fast dedicated squaring fall into this category since the coprocessor activity is generally
easy to spot on power or electromagnetic leakage traces. In this case, the duration (the
size on the trace) of each operation indicates if it is a squaring (short pattern) or a
multiplication (longer pattern) as depicted on Figure 2.1.

Recovering the secret exponent bits from the sequence of operations is straight-
forward: considering the left-to-right implementation (cf. Algorithm 2.1), a squaring
followed by a multiplication corresponds to a 1 bit, and a squaring followed by another
squaring corresponds to a 0 bit. For instance, the sequence of operations of Figure 2.1
corresponds to the sequence of exponent bits 0110010. Two countermeasures prevent-
ing SSCA on the exponentiation are presented in Section 2.1.1: regular algorithms and
atomic algorithms.
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Regular algorithms perform a sequence of operations that do not depend on the
exponent. To achieve this property, the maximal number of operations that can be
required per exponent bit — one squaring and one multiplication in our case — is always
performed. Square-and-multiply-always and Montgomery ladder (cf. Algorithm 2.3)
belong to this category. Figure 2.2 depicts the typical side-channel leakage of such
algorithms.

On the other hand, atomic algorithms also perform a regular sequence of operations,
but apply the opposite strategy: they always perform the minimal number of operations
that may be required within a loop iteration — one multiplication here. Consequently
several loop iterations may be necessary to the processing of an exponent bit. The
most used atomic method is multiply-always (cf. Algorithm 2.4) which perform one loop
iterations for a 0 exponent bit and two for a 1. Figure 2.3 depicts the typical side-channel
leakage of this algorithm. We present in Section 2.5 another atomic exponentiation
algorithm using squarings only.
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Figure 2.2: Square-and-multiply-always or Montgomery ladder side-channel leakage

M M M M M M M M M

po
w
er

time

. . .

Figure 2.3: Atomic multiply-always side-channel leakage

The same applies to double-and-add scalar multiplications methods: algorithms 1.1
and 1.2 are subject to SSCA if an addition can be distinguished from a doubling using
some side-channel leakage. For instance, Figure 2.4, resp. 2.5, presents electromagnetic
measurements obtained for the execution of a point doubling, resp. a point addition, on
a SmartMX chip provided with an arithmetic coprocessor. Large amplitude blocks show
the coprocessor activity, which exposes the sequence of arithmetic operations. The two
patterns are easily distinguishable (identifying the patterns is even easier when looking
at the lower part of the traces). The sequence of performed operations on Figure 2.6
is “doubling, addition, doubling, doubling, addition”, which yields three scalar bits 1, 0,
and 1 if Algorithm 1.1 is used.

Countermeasures preventing the SSCA on elliptic curve scalar multiplication —
which are similar to those presented for exponentiation — are detailed in Section 1.2.2.
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Figure 2.4: Doubling electromagnetic
leakage trace

Figure 2.5: Addition electromagnetic
leakage trace

Dbl. Add. Dbl. Dbl. Add.

Figure 2.6: Scalar multiplication electromagnetic leakage trace extract
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2.2.2 Chosen Message Simple Side-Channel Analysis

Intense attention has been paid to the original SSCA since its introduction, as evidenced
by the numerous countermeasures published in the literature, cf. sections 1.2.2 and 2.5.
However, other attacks than the simple analysis of conditional branchings may threaten
protected implementations, as evidenced by Mayer-Sommer [MS00]. This is even more
manifest when the attacker is able to control some input of the cryptographic algorithms.
The following attacks are considered to belong to SSCA category since they use a single
— or a very few number of — side-channel traces to recover information on the secret
key.

2.2.2.1 Collision Analysis

In public-key cryptography, basic operations are generally arithmetic operations involving
long operands. For instance, both in ECC and RSA, the base operation is the modular
multiplication between operands of hundreds or thousands of bits. Since these operations
are performed in most embedded devices using t-bit multipliers, t ≤ 64, many clock
cycles are needed to perform each of them.

Moreover, on most devices — for instance those using the CMOS technology —
power consumption depends on manipulated data, which makes it possible to detect
when an operation is performed twice with same operands, what we call a collision. We
recall hereafter some attacks based on this observation.

Doubling Attack Fouque and Valette present an attack on regular left-to-right ECC
scalar multiplication and RSA exponentiation algorithms [FV03]. In the most favorable
case, only two power traces with chosen inputs yield the whole secret key.

This attack relies on the assumption that an adversary can detect collisions of side-
channel trace segments if a same operation is performed twice by the device. Note that
these segments can come from a single or more traces, and that the attacker does not
need to identify which values are manipulated. For instance, an adversary is supposed
to distinguish a collision between the processing of 2× P and 2×Q if P = Q, but not
to guess any coordinate of P . The practical validity of this assumption is demonstrated
by experiments by Fouque and Valette.

Suppose that a scalar multiplication is performed using the left-to-right double-and-
add-always with an input point P and a scalar k = 151 = (10010111)2. We show in
Table 2.1 the sequence of operations performed by the algorithm and the sequence of
operations performed with input point 2P . One can observe that, when a 0 scalar bit is
processed at step i , the doubling of the scalar multiplication k(2P ) and the doubling of
kP at the next step (i−1) are the same operation. Thus, under the previous assumption,
an attacker can distinguish 0 bits from 1 bits using this leakage if he is able to control
the input of the scalar multiplication, at least for the second execution.

A similar attack is possible on Montgomery ladder (cf. Algorithm 1.10) and other
left-to-right regular algorithms. On Montgomery ladder for instance, a collision between
a doubling at step i in the processing of k(2P ) and a doubling at step i − 1 in the
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processing of kP indicates that ki = ki−1, as shown in Table 2.2. When no collision
occurs, an attacker infers that ki 6= ki−1. In the end, this yields a relation between all
scalar bits, thus only two scalar values have to be checked by the attacker.

Table 2.1: Doubling attack on the left-to-right double-and-add-always algorithm with
scalar k = 151 = (10010111)2

i ki
Computation Computation

of kP of k(2P )

7 1
2×O 2×O
O + P O + 2P

6 0 2× P 2× 2P
2P + P 4P + 2P

5 0 2× 2P 2× 4P
4P + P 8P + 2P

4 1
2× 4P 2× 8P

8P + P 16P + 2P

3 0 2× 9P 2× 18P
18P + P 36P + 2P

2 1
2× 18P 2× 36P

36P + P 72P + 2P

1 1
2× 37P 2× 74P

74P + P 148P + 2P

0 1
2× 75P 2× 150P

150P + P 300P + 2P

= 151P = 151(2P )

Defending against the doubling attack requires either the use of right-to-left algo-
rithms which do not present this leakage, or scalar or point randomization counter-
measures, cf. Section 2.3.2. However, the efficiency of such countermeasures heavily
depends on their practical implementation [FV03].

Indeed, scalar randomization prevents the previous attack to succeed with only 2
queries, but if the adversary can perform a large number of execution for both inputs P
and 2P , he can still look for a collision between two traces. If the scalar randomization
process uses 2α random bits, a collision should occur after about 2α many queries due
to the birthday paradox. The practicality of the attack against this countermeasure thus
depends on the number of available queries and the number of random bits used in the
randomization process.
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Table 2.2: Doubling attack on the Montgomery ladder algorithm with scalar k = 151 =

(10010111)2

i ki
Computation Computation

of kP of k(2P )

6 0 P + 2P 2P + 4P

2× P 2× 2P

5 0 2P + 3P 4P + 6P

2× 2P 2× 4P

4 1
4P + 5P 8P + 10P

2× 5P 2× 10P

3 0
9P + 10P 18P + 20P

2× 9P 2× 18P

2 1 18P + 19P 36P + 38P

2× 19P 2× 38P

1 1 37P + 38P 74P + 76P

2× 38P 2× 76P

0 1
75P + 76P 150P + 152P

2× 76P 2× 152P

← 151P ← 151(2P )
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Regarding the input point randomization countermeasure, this method is expensive
unless the input and output blinding points are generated (or updated) in an efficient
manner. The scheme proposed to this purpose by Coron [Cor99] (see Section 2.3.2) is
vulnerable to the doubling attack as it updates the input blinding point R by 2R one
time out of two — in other words, the doubling attack applies exactly as presented
above half the time.

The doubling attack is presented above on the point scalar multiplication, but also
applies to similar exponentiation algorithms used, for instance, in RSA and ElGamal
cryptosystems.

Exponentiation Internal Collisions A refinement of the doubling attack on RSA is
proposed by Yen, Lien, Moon, and Ha [YLMH05]. The authors observe that if the input
message of a left-to-right exponentiation is set to m = n − 1, with n = p × q being
the RSA modulus, then the algorithm handles only two different values depending on
exponent bits. Indeed, as (n − 1)2 = 1 mod n, each squaring of a left-to-right square-
and-multiply algorithm outputs a 1, and each multiplication outputs n − 1. Thus any
squaring after the first one is 12 if the previous exponent bit was 0 or (n−1)2 otherwise.

Assuming that an adversary is able to distinguish the waveforms corresponding to
the computation of 12 mod n from those corresponding to the computation of (n −
1)2 mod n, he can recover the scalar exponent bits using a single trace. Moreover, the
authors show that the BRIP countermeasure presented in Section 2.3.2 is of no effect
against this analysis.

An obvious countermeasure to this attack is to check that input messages are dif-
ferent from n − 1. In this case, Yen et al. show that the analysis can yet be performed
using two traces: one obtained with any input message m and the second obtained with
the input message m(n−1) mod n = n−m. This refinement is then very similar to the
doubling attack.

A similar attack applies to scalar multiplications performed on an elliptic curve E
over Fq if E(Fq) has elements of order 2, for instance on an Edwards curve. In this
case, implementations must verify that input points belong to the required subgroup of
E(Fq). Note that this issue is not present when using current standard Fp curves which
all have a prime order.

Generating Arbitrary Collisions Homma, Miyamoto, Aoki, Satoh, and Shamir gen-
eralize the two previous attacks by showing that squaring collisions depending on an
unknown exponent bit di can be generated using well chosen input messages [HMA+08].
Their attack consists in finding two messages m1 and m2 such that m1

α = m2
β mod n,

for arbitrary pairs (α, β) depending on the known exponent bits dl−1dl−2 . . . di+1, resp.
di−1di−2 . . . d0, considering a left-to-right, resp. right-to-left, exponentiation algorithm.
A similar attack can be devised on the scalar multiplication in an additive group.

This analysis can thus target any exponentiation or scalar multiplication algorithm,
including m-ary, sliding window and ladder methods. Note however that it requires two
traces with chosen inputs to be acquired per key bit whereas the doubling and Yen et
al. attacks recovers the whole secret key with two traces in total.
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2.2.2.2 Power Signature Analysis

Since the consumption/radiation of embedded devices depends on the manipulated data,
it is sometimes possible to distinguish the computation or the manipulation of particular
values on a side-channel trace. It is generally considered that power consumption of
processors is correlated with the Hamming weight of manipulated variables or the Ham-
ming distance of successive variables. This is due to the energy consumption required
to flip the processors internal registers bits. Thus, values with particularly low or high
Hamming weight can sometimes be directly identified on side-channel traces.

For instance, in the attack from Yen et al. presented above, operands computations
12 and (n−1)2 may be directly identified on a trace due to the very low Hamming weight
of the former. Indeed the handling of the value 1 by a multi-precision multiplication
algorithm using a t-bit multiplier, t ∈ {8, 16, 32} involves the manipulation of many null
t-bit words. These manipulations have generally a lower consumption than others and
may be identified on a power trace.

Courrege, Feix, and Roussellet [CFR10] explore this analysis and point out that the
chosen message model is not always necessary. Indeed, if a single null t-bit word can be
distinguished on a side-channel trace, the random message model is enough to mount
the attack by triggering exponentiation execution until a message with a null word is
manipulated. It is interesting to notice that the longer the exponent and the smaller
the word size t, the higher is the attack success probability. Courrege et al. note that
the message/modulus randomization technique — i.e. computing (m + r1n)d mod r2n,
with r1, r2 two random values such that r1 < r2 — is not efficient against their attack
in the random message model, and may even provide the required message variability.

Goubin presents a differential chosen message attack [Gou02] against the coordi-
nates randomization countermeasure, cf. Section 2.3.2. Though it is presented as a
differential analysis, this attack uses an input point with one null coordinate to defeat
the multiplicative blinding. As a consequence, this attack may be combined with power
signature analysis to threaten an implementation using a left-to-right double-and-add
scalar multiplication algorithm and projective coordinates randomization.

Remark 9. Note also that, as all attacks performed on a single trace, power signa-
ture analysis is not prevented by scalar or exponent randomization techniques (cf. Sec-
tion 2.3.2). Indeed, a randomized private scalar or exponent, if recovered, can be used
for signature and decryption as well as the original one.

2.2.3 Template Analysis

Template attacks, introduced by Chari, Rao, and Rohatgi [CRR03], form a particular
class of attacks requiring that the targeted device (or a similar one) can be studied in a
white box context prior to the attack.

This first phase allows a fine characterization of the chip and generally targets a
particular operation or sequence of operations. In order to identify during the attack
phase a value manipulated during the targeted computation, the attacker acquires one
(or several) side-channel trace(s) per possible value. By doing this, the attacker con-
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structs a dictionary, i.e. a set of template side-channel traces corresponding to possible
manipulated values. Obviously, averaging as many traces as possible for each value can
be used to reduce the influence of the device and experimental noise.

The attack phase then consists in acquiring a side-channel trace of the device when
the secret data is manipulated by the targeted operation. The attacker uses his dic-
tionary to find the template that matches best with the acquired trace. The value
associated to the template reveals the secret manipulated with a probability depending
on the device and experimental conditions.

Since this class of attacks only applies in a very specific context — having a full
access and control on an experimental device identical to the attacked one —, our
study does not focus on this threat. The interested reader can refer, for instance, to
the following references [CRR03; ARRS05; APSQ06]. Nevertheless, we briefly recall
hereafter a powerful template analysis presented in [MO09] by Medwed and Oswald
on the ECDSA protocol, as we think that developers should keep it in mind when
implementing this protocol.

A Template Attack on ECDSA Though most of the literature about template analy-
sis deals with symmetric ciphers, Medwed and Oswald present [MO09] a withering attack
on an implementation of the ECDSA [ANSI05] protocol protected against conventional
SSCA by using the double-and-add-always scalar multiplication.

We recall the ECDSA signature computation in Algorithm 2.9 and the verification
process in Algorithm 2.10. Recovering the ephemeral scalar k from the signature al-
gorithm yields the private key d by computing (sk − H(m))/r . However, since a fresh
random scalar k is generated for each signature (step 1), it seems that a differential
side-channel analysis cannot be mounted against the scalar multiplication (step 2). It
would thus be natural not to apply the randomization countermeasures described in
Section 2.3.2.

Algorithm 2.9 ECDSA signature
Input: Public point P ∈ E(Fq), nP = ordE(P ), private key d , hash function H, and
message m
Output: Signature (r, s)

1: Pick at random k in [1, nP − 1]

2: P1 ← kP

3: r ← x1 . with P1 = (x1, y1)

4: if r mod nP = 0 then
5: go to step 1
6: s ← k−1(H(m) + dr) mod nP
7: if s mod nP = 0 then
8: go to step 1
9: return (r, s)
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Algorithm 2.10 ECDSA verification
Input: Public point P ∈ E(Fq), nP = ordE(P ), public key Q = dP , hash function
H, message m, and signature (r, s)

Output: valid or not valid
1: if r or s /∈ [1, nP − 1] then
2: return not valid
3: s ′ ← s−1 mod nP
4: P1 ← (s ′H(m))P + (s ′r)Q

5: if P1 = O then
6: return not valid
7: if xP1

6≡ r (mod nP ) then
8: return not valid
9: return valid

Medwed and Oswald observe that:

(i) as demonstrated by Nguyen and Shparlinski [NS03], recovering completely the
scalar k from a single execution is not necessary to retrieve the private key: a
few bits of several ephemeral scalars and the associated ECDSA signatures are
sufficient to determine the secret key via lattice attacks,

(ii) the base point involved in the scalar multiplication is fixed, thus the number of
different intermediate points computed after a few bits of the scalar is small and
a template attack can be used to identify them.

Therefore the attack proceeds as follows: to identify the first s bits of the random
scalars, a dictionary of the traces associated to the 2s first multiples of the base point
P is build. Then traces are acquired from the targeted device and the corresponding
signatures are stored. Matching the templates with the recordings enables to recover
the first s bits of each ephemeral scalar, and finally an off-line lattice reduction extracts
the private key d .

Furthermore, Medwed and Oswald notice that not all randomization countermea-
sures are efficient against this attack. For example, the scalar randomization only in-
creases the size of the lattice, and point blinding may be targeted by a template analysis
as well. The best countermeasures are the ones providing the randomization of the
coordinates of the input point, assuming that large enough random numbers are used
in this aim.
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2.3 Differential Side-Channel Analysis

Introduced along with SSCA by Kocher et al. [KJJ98; KJJ99], Differential Side-Channel
Analysis (DSCA) exploits the slight consumption leakages of a device depending on the
data values it manipulates. Due to the loss of information of used side-channels, the
experimental noise, hardware countermeasures, etc. practical attacks exploiting such a
leakage require the acquisition of many execution traces — from hundreds to millions —,
and possibly some sophisticated signal and statistical processing.

Similarly to simple analysis, DSCA are called Differential Power Analysis (DPA),
resp. Differential ElectroMagnetic Analysis (DEMA), if the measured leakage is the
power consumption, resp. the electromagnetic radiation. As well, DPA is sometimes
used in the general meaning by abuse of language.

The original DPA has known several refinements among which the well-known Corre-
lation Power Analysis (CPA) and Mutual Information Analysis (MIA) which are detailed
in Section 2.3.1. Many countermeasures have been studied as exposed hereafter, it is
generally considered that the more efficient of them rely on blinding techniques. We
present some of those designed for the scalar multiplication and the exponentiation in
Section 2.3.2.

2.3.1 Differential Side-Channel Analysis: From DPA to MIA

Differential side-channel analysis basically consists in acquiring many leakage traces
T1, . . . , TN of executions in which a constant secret key is manipulated, but some other
known input is variable — say, the message to sign or decrypt mi , with 1 ≤ i ≤ N.
These traces are stored along with the known input value. Then, a guess G is made on
some bits of the secret key, and a statistical processing between some temporary value
xi computed according to G and mi , on one hand, and the traces Ti , on the other hand,
is performed. Reproducing this processing for all possible guesses reveals the correct
one, i.e. the value of the targeted key bits, if N is big enough with regard to the leakage
model and experimental conditions. This process is eventually iterated on the remaining
unknown key bits until all of them are recovered, or until the last ones can be found by
exhaustive search.

Note that the previously said known input mi is only necessary to compute the
internal temporary value xi manipulated by the algorithm, that depends on both mi and
the targeted secret key bits. Thus, in the context of an attack against a symmetric
block cipher, resp. in the context of ECC/RSA, xi is an internal variable of the first
round, resp. an internal variable depending on the first scanned scalar/exponent bits.

By the way, the output of a symmetric algorithm can be used instead of its input.
In this case, it is used to reverse the last operations performed by the algorithm until
some key bits are involved in the computation of a variable xi . This strategy is also
possible with ECC by reversing the process of a scalar multiplication algorithm, but it
does not apply to RSA since square roots modulo n cannot be extracted efficiently when
the factorization of n is unknown.
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As a consequence, first and last rounds of symmetric algorithms are more subject
to differential analysis than others. This is different in the case of the scalar multiplica-
tion/exponentiation since only one scalar or exponent bit (or a few ones) is used at a
time, which enable an adversary to target these key bits one after another.

2.3.1.1 Original Differential Power Analysis

The original differential power analysis presented by Kocher et al. [KJJ98; KJJ99]
proceeds as follows: the attacker chooses a binary decision function D such that
D(xi) ∈ {0, 1} related to the leakage model used for the device. Usual choices for
D include returning a bit of xi , or returning 1 if the Hamming weight of (a group of bits
of) xi reaches a given threshold and 0 otherwise. Such decision functions assume that
the device leakage follows a Hamming weight model. The Hamming distance model
between successive values stored in registers is sometimes also used.

Then, for a given guess G, the traces T1, . . . , TN are sorted in two sets S0 and S1

such that Sb = {Ti | D(xi) = b}, for b ∈ {0, 1}. Finally, the attacker computes the
differential trace corresponding to G as ∆G = 〈S0〉−〈S1〉, where 〈·〉 denotes the average
function. A differential trace is computed for each possible G. If the decision function
D is well chosen and N is big enough, among all differential traces one presents some
differential spikes, while the others show only noise. The former one corresponds to the
correct guess.

The reason why this processing reveals the correct guess is the following. If the
leakage model used for building the decision function is close to reality, D(xi) is correlated
to the leakage if G is correct and uncorrelated otherwise. Hence, D outputs the correct
bit with probability P ≈ 1/2 if the guess G is incorrect. As a consequence, {S0, S1} is a
random partitioning of the set of traces, and ∆G approaches zero as N tends to infinity.
Besides, if G is correct, xi is actually manipulated by the device, and the partitioning of
the traces corresponds to a real difference of consumption between the averages of the
traces in S0 and in S1, at the moments when xi is manipulated. Thus, the differential
trace ∆G shows noise, except when xi is manipulated which is revealed by the spikes.

Kocher et al. [KJJ99] present a successful DPA on a DES implementation using
the following parameters: the targeted value xi is an output bit of a given S-box in the
last round, and the decision function D returns the bit of L15 which corresponds to xi
after the permutation P , cf. Figure 2.7. The value D(xi) can be computed as the X-or
between xi and a known ciphertext bit. Since xi depends on the input of the considered
S-box, xi depends on 6 bits of the last round subkey K15 and on the right input R15.
From the ciphertext, an adversary deduces R15 and makes a guess G on the six involved
subkey bits, i.e. 0 ≤ G ≤ 63. The correct guess reveals 6 bits of K15. Iterating this
process on the 8 S-boxes yields the whole value of K15, i.e. 48 bits of the actual DES
key. The remaining 8 key bits can be recovered using exhaustive search — or possibly
by analyzing the second last round. The number of used traces is N = 103 or N = 104

but highly depends on the targeted device and experimental conditions. The reader
interested to learn more about DSCA may refer to the following references [MDS99a;
CCD00; GMO01].
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Figure 2.7: Outline of DES final round

The first differential analysis on a public-key algorithm was published by Messerges,
Dabbish, and Sloan [MDS99b]. They attack an RSA exponentiation using the left-to-
right square-and-multiply (cf. Algorithm 2.1). In this case, key bits are recovered one
by one, from the most to the least significant bit. For each iteration of the main
loop, the targeted value is the result of the modular multiplication a × m mod n of
step 5. The decision function returns 0 if a given byte of xi has a low Hamming weight
and 1 otherwise. If the differential trace shows spikes, an adversary infers that the
multiplication result is actually handled, thus the exponent bit ki is a 1, otherwise ki is
a 0.

Messerges et al. also study the cases of chosen message and chosen exponent attacks
which are even more practical than the one detailed above, since less knowledge on the
implementation is required. They report that a few hundreds of traces per exponent
bit are enough for the attack to be successful. An attack against RSA with Chinese
Remainder Theorem (CRT) implementation, targeting the preliminary reduction step,
has been presented by den Boer, Lemke, and Wicke [BLW03].

DSCA on ECC scalar multiplication can be mounted in a similar way. Note that the
smaller number of key bits to be recovered and the larger number of intermediate results
that may be targeted by the analysis tend to make it easier. However, a better knowledge
of the implementation is required, since many more algorithmic choices can affect the
manipulated data, e.g. the internal point representation, the way addition formulas are
implemented, and the various possible optimizations presented in Section 1.2.
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2.3.1.2 The Big Mac Attack

We present hereafter Walter’s Big Mac attack, which may be seen as a live template
analysis and lays the foundations of our horizontal analysis presented is Section 2.6.

Walter presents an attack [Wal01] against left-to-right sliding window and m-ary
exponentiation schemes. This technique is at the border between SSCA, DSCA, and
template analysis. Though it may ideally reveal information on the secret key using a
single power trace as SSCA, it performs some statistical processing between different
segments, which may be regarded as a DSCA operating on trace segments instead
of whole traces. However, it does not use guesses on unknown key bits, contrary
to a DSCA, but computes templates from a few power trace segments where known
operations are performed. These templates are then compared to other operations
manipulating unknown operands to identify them, which can be seen as a template
analysis with a live characterization phase.

Walter observes that, during the precomputation step of a sliding window exponen-
tiation, the computation of the first powers of m, say mi = mi mod n, can be easily
identified and may be used to identify the operands of the multiplications performed
in the exponentiation loop. Besides, these multi-precision multiplications are gener-
ally computed using the schoolbook method described in Algorithm 2.5. Thus, using
notations from this algorithm, a multiplication x × y involves lb2 successive t-bit mul-
tiplications xi × yj , with 0 ≤ i , j ≤ lb − 1, which can be identified on a side-channel
trace T . Walter’s idea consists in averaging the trace segments corresponding to the
processing of xi × yj for a given i , i.e. computing C(xi) = 1

lb

∑lb−1
j=0 Ti ,j , where Ti ,j is the

segment of T corresponding to the single-precision multiplication xi×yj . Assuming that
y is a random operand (first assumption) and that lb is big enough (second assumption),
C(xi) provides an average pattern of the t-bit multiplication by xi . An adversary then
computes C(x) = C(x0) | C(x1) | · · · | C(xlb−1), the average pattern of the long-integer
multiplication by x , where | stands for the concatenation.

Let us denote by Ci = C(mi) the template corresponding to the multiplication by
mi computed from the precomputation step or from a known multiplication. Walter as-
sumes in his analysis that squarings are already identified using SSCA. Then, considering
an unknown multiplication a × x , where a is the algorithm accumulator and x is one
of the mi , the Big Mac attack proceeds by computing the Euclidean distance between
C(x) and the templates Ci . The smallest distance reveals the corresponding digit i .
If squarings cannot be easily distinguished using SSCA, this technique may be used to
identify them, fixing an experimental distance threshold below which a multiplication is
supposed to be a squaring.

Walter notes that the pseudo-random behavior of the accumulator a during the
execution of a left-to-right exponentiation such as Algorithm 2.1 fulfills the first as-
sumption. The second assumption requires lb to be large enough, which depends on
both the targeted device and cryptographic parameters. Indeed, the efficiency of the
attack increases with the key length l and decreases with the multiplier size t. Besides,
the attack defeats many blinding countermeasures since (i) it succeeds using a single
power trace, thus exponent blinding does not help, and (ii) it does not require to know
any manipulated intermediate value, which circumvents some message and modulus
blinding schemes.
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Finally, Walter observes that, due to message variability, the attack may have a
variable success for different exponentiation executions. This is not an issue if an adver-
sary can acquire many exponentiation traces. In this case it is enough that the attack
succeeds on one of them.

2.3.1.3 Correlation Power Analysis

Den Boer et al. [BLW03] are the first to compute a correlation coefficient between
sample values and key hypothesis to improve the efficiency of the original DPA. This
idea is generalized with the introduction of Correlation Power Analysis (CPA) by Brier,
Clavier, and Olivier [BCO03; BCO04]. In this refined DSCA, the Pearson correlation
coefficient is used instead of a binary decision function to compare the traces to the
predicted leakages.

Brier et al. assume a Hamming distance leakage model, such that the power con-
sumption W of a device manipulating a data D is:

W = aHW(D ⊕ R) + b (2.1)

where R is the prior state of the register in which D is stored, HW(D ⊕ R) is the
Hamming distance between D and R, the factor a is a gain coefficient, and b encloses
the independent power consumption of the device and the noise.

Hence, assuming that the leakage model is valid, W should fit the leakage traces
for a correct guess on D ⊕ R and differ otherwise. When D is known — for instance
it may be the output of an algorithm —, this is equivalent to guessing R. An attacker
may thus target an R depending on a few key bits. Finally, taking R = 0 yields the
Hamming weight model, which is often used in practice.

The Pearson correlation factor ρWH between W and H = HW(D ⊕R), considering
H and W as random variables, measures the linear interdependence between H and W
and is given by:

ρWH =
cov(W,H)

σWσH
=

E(WH)− E(W ) E(H)

σWσH

Note that the correlation factor is bounded by: −1 ≤ ρWH ≤ 1 and tends to ±1 as the
noise variance tends to zero [BCO04].

Given a set of N power traces Ti and N corresponding internal variables xi com-
puted according to a guess G on some key bits, let us denote Hi = HW(xi ⊕ R) the
predicted Hamming distance between xi and a reference state R. An estimate ρ̂WH of
the correlation factor ρWH is given by:

ρ̂WH(G) =
N
∑N
i=1 TiHi −

∑N
i=1 Ti

∑N
i=1Hi√

N
∑N
i=1 Ti

2 − (
∑N
i=1 Ti)

2

√
N
∑N
i=1Hi

2 − (
∑N
i=1Hi)

2
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Computing ρ̂WH(G) for all possible guesses G yields a set of correlation traces among
which one should show higher correlation values than the others — i.e. correlation values
close to ±1. These correlation peaks correspond to the correct guess and indicate the
time samples where xi is manipulated. Note that the number of traces required to
distinguish the correct guess increases with the processor word size and the noise level.

Brier et al. present CPA results on a DES implementation and show that a hundred
traces are enough for the attack to succeed. Amiel, Feix, and Villegas [AFV07] report
the first CPA on public-key algorithms by attacking an RSA exponentiation and an
ECDSA multiplication.

Many studies report that CPA significantly reduces the number of traces required by
the original DPA. This is due to the use of the linear correlation factor which extracts
more information from the leakage traces than the difference of means. Note however
that CPA involves a leakage model, which may require a preliminary characterization
step. Though it may argue in favor of DPA which does not assume any specific model,
the classical Hamming distance model seems relevant when considering CMOS devices.

Note also that, though the Pearson correlation factor is mostly used in practice, some
works use other correlation formulas. For instance, Spearman and Kendall coefficients
have been proposed [BGLR08].

2.3.1.4 Higher-Order Differential Power Analysis

Higher-Order Differential Power Analysis (HODPA) is defined by Kocher et al. [KJJ99]
to be a DPA that combines multiple samples from within a trace. In other words,
an HODPA targets sensitive information split up into several time samples, generally
by masking techniques, and combines the leakages of the different samples to infer
information about the targeted variable. It is called Second Order Differential Power
Analysis (2ODPA) if it makes use of two different samples per trace, or, more generally,
d-th Order DPA if d time samples are combined.

The implementation of a 2ODPA has been investigated first by Messerges [Mes00]
and many other works have followed. As it is not the core subject of our study, we only
detail a few aspects of HODPA in the following. The interested reader can refer for
instance to the following references [WW04; JPS05; SPQ05; CPR07; PRB09].

Considering a variable xi masked by a random variable ui , the classical strategy of a
2ODPA is to target two time samples corresponding to the manipulations of the masked
variable x ′i = xi � ui and of the mask ui only, where � denotes a group operation, e.g.
the X-or or the modular addition. The analysis thus requires the use of a combining
function f such that f (x ′i , ui) is correlated to xi . A classical DSCA is then performed
using f (L(x ′i ), L(ui)) instead of a real leakage on xi , where L(t) denotes a leakage
corresponding to the manipulation of t. A general d-th order DPA follows the same
method, except that a d-th order secret sharing scheme xi �u(1)

i �· · ·�u
(d−1)
i requires

to combine d different time samples.
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A first issue when implementing an HODPA is to determine the best combining
function f in such a way that the output is highly correlated to the sensitive variable.
Among the various possibilities, the product and the absolute difference are mostly used
as combining functions. Prouff, Rivain, and Bévan prove that, under the Hamming
weight leakage model, the normalized product is optimal among all combining func-
tions[PRB09].

Another issue when dealing with higher-order analysis is to find the time samples
corresponding to the handling of the different secret shares on the power traces. Indeed,
while the first-order DPA or CPA can be performed without knowing exactly where
sensitive variables are manipulated, using a combining function between two samples
from within a trace requires to identify them precisely.

Finally, the effect of the device and experimental noise, and thus the difficulty of an
HODPA, increases exponentially with its order. Therefore, d-th order analysis for d > 3

are generally considered to be infeasible in practice, in particular in the context of black
box attacks because of the difficulty of identifying the time samples of interest.

2.3.1.5 Mutual Information Analysis

We denote by distinguisher of a DSCA the statistical processing that allows the ranking
of key guesses depending on the measured leakages and known data. For instance, we
have seen that the distinguisher of the original DPA is the difference of means and that
the distinguisher of the CPA is the Pearson correlation estimation.

Gierlichs, Batina, Tuyls, and Preneel introduce Mutual Information Analysis (MIA)
which is a generic DSCA based on an information-theoretic distinguisher [GBTP08].
This more generic distinguisher estimates the mutual information between leakage mea-
surements and hypothetical manipulated values. The main motivation leading to this
new analysis is to avoid the leakage and measurement assumptions, on which CPA highly
depends. Indeed, their information-based distinguisher can exploit arbitrary relationships
between leakages and measurements — that is, other noise models than the classical
Gaussian one —, and can detect non-linear relationships between manipulated data and
leakages contrary to CPA.

MIA is intended to provide analysis tools for attack contexts differing significantly
from the usual assumptions, for instance attacks on devices designed to resist DSCA
using the dual rail precharge logic, and more generally devices not using the standard
CMOS technology. As a consequence, when applied to CMOS devices, experiments
show that MIA gives worse results than CPA in terms of number of required traces.

We do not detail MIA in this study as we restrict ourselves to the classical context
of CMOS devices, and focus more on identifying leakages in algorithms than on the
attack experimental setup. We refer the interested reader to the abundant literature
covering this subject [VCS09; PR09; Ven11; Ven10].
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2.3.1.6 Distinguishing Squarings from Multiplications

Amiel, Feix, Tunstall, Whelan, and Marnane [AFT+09] present a specific differential
analysis aimed at distinguishing multiplications from squarings in the multiply-always
algorithm.

They observe that the average Hamming weight of the output of a multiplication
x × y has a different distribution whether:

• the operation is a squaring performed using the multiplication routine, i.e. x = y ,
x uniformly distributed in [0, 2l − 1],

• or the operation is an actual multiplication, i.e. x and y independent and uniformly
distributed in [0, 2l − 1].

Thus, considering a device with a Hamming weight side-channel leakage and a single
long-integer multiplication routine used to perform either x × x or x × y , a set of
N multiplication traces with random operands can be distinguished from a set of N
squaring traces, if N is big enough with respect to the SNR. This attack can thus
target an atomic implementation such as Algorithm 2.4 where many exponentiations
with random messages and a fixed exponent can be executed.

The attack by Amiel et al. proceeds as follows. First, many exponentiation traces
using a fixed exponent but variable data are acquired and averaged. Then, considering
the average trace, an adversary aims at revealing if two consecutive operations are
identical — i.e. two squarings — or different — i.e. a squaring and a multiplication.
Remember that, as in the classical SSCA, two consecutive squarings reveal that a 0 bit
has been manipulated whereas a squaring followed by a multiplication reveals a 1 bit.
This information is obtained using the above-mentioned leakage by subtracting the parts
of the average trace corresponding to two consecutive operations: peaks occur if one
is a squaring and the other is a multiplication while subtracting two squarings produces
only noise. It is worth noticing that no particular knowledge on the underlying hardware
implementation is needed, which increases the practicality of this analysis.

A classical countermeasure against this attack is to randomize the exponent, cf. Sec-
tion 2.3.2. Notice however that randomizing either the message and/or the modulus
has no effect on this attack, and even makes it easier by providing the required data
variability.

2.3.2 Countermeasures for Elliptic Curve Scalar Multiplication

In this section, we present some classical countermeasures used for protecting scalar
multiplication implementations against DSCA. All of them consist in blinding, i.e. ran-
domizing, the internal variables of the computation using arithmetic properties at dif-
ferent levels: group arithmetic, point representation, and modular arithmetic. This
generally breaks the repeatability requirement of the classical DSCA framework. Along
with the following ECC countermeasures, we provide, when they exist, the corresponding
techniques used to protect an RSA exponentiation.
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Also, we detail the cases when some of these countermeasures can be circumvented
and thus require the implementation of a combination of them. In the following, we
consider only first-order masking countermeasures, since HODPA seems less applicable
to ECC and RSA computations than to symmetric block ciphers. This is mainly due
to the fact that secret shares obtained with multi-precision arithmetic blinding counter-
measures are more difficult to combine than shares resulting from logical or arithmetic
blinding on single words1.

We use in the sequel of this section the following notations: a scalar multiplication
Q = kP takes place on an elliptic curve E defined by the equation y2 = x3 + ax + b

over a field Fq of characteristic p > 3. The affine coordinates of the base point P are
denoted by (x, y), and the cardinality of E(Fq) is denoted by n.

2.3.2.1 Scalar Blinding

This countermeasure is introduced by Coron [Cor99]. It consists in computing the scalar
multiplication k ′P instead of kP where k ′ = k + rn for some α-bit random value r .
From the group law we have k ′P = kP .

The cost of this countermeasure is the consequence of the extension of the scalar.
It thus depends on α and on the key size as shown in Table 2.3.

Table 2.3: Theoretical cost of the scalar blinding countermeasure for common ECC key
lengths

α (in bits)
Cost for Cost for Cost for Cost for
l = 192 l = 256 l = 384 l = 512

24 12.5% 9.4% 6.3% 4.7%
32 16.7% 12.5% 8.3% 6.3%
48 25% 18.8% 12.5% 9.4%
64 33.3% 25% 16.7% 12.5%

While this countermeasure is efficient in the general case, Ciet shows that when
p is a pseudo-Mersenne prime number, this countermeasure should be used with cau-
tion [Cie03]. Indeed, pseudo-Mersenne numbers of the form 2l − ε where ε < 2l/2 is
sometimes chosen because it allows a fast modular reduction. For instance, we recall
below the prime numbers selected for the NIST standard curves [NIST06]:

P192 = 2192 − 264 − 1

P224 = 2224 − 296 + 1

P256 = 2256 − 2224 + 2192 + 296 − 1

P384 = 2384 − 2128 − 296 + 232 − 1

P521 = 2521 − 1

1To our knowledge, the only reported HODPA on ECC scalar multiplication is an attack from
Joye [Joy04] on F2n elliptic curves. This second-order analysis exploits a flaw of an additive randomization
countermeasure in F2n
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According to Hasse bounds, considering an elliptic curve over Fp, we have:

p − 2
√
p + 1 ≤ n ≤ p + 2

√
p + 1

Thus, denoting l the bit length of p, the order n of the group has its l/2 most significant
bits identical with p. Due to the construction of the NIST prime numbers, these bits
are all 1, except for P256.

Construction of N192, N224, N384, and N521 :

11111111111111 . . . 1︸ ︷︷ ︸
l/2

. . . miscellaneous . . .︸ ︷︷ ︸
l/2

It follows that with an r of length α < l/2, the product rn has the structure :

[r − 1]︸ ︷︷ ︸
α

11111111111 . . . 1︸ ︷︷ ︸
l/2−α

. . . miscellaneous . . .︸ ︷︷ ︸
l/2+α

Therefore, the blinded scalar k ′ = k + rn has l/2− α bits complementary to those
of k whatever the value of r . Thus a DSCA can recover almost half of a private key if
α is small.

Remark 10. This countermeasure is similar to the RSA exponent blinding: md
′

mod n

with d ′ = d + rϕ(n) and ϕ(n) = (p − 1)(q − 1).

2.3.2.2 Projective Coordinates Blinding

This countermeasure is known as the third Coron’s countermeasure [Cor99]. It con-
sists in applying a multiplicative blinding to the point coordinates using the projective
representation redundancy.

We mentioned in Section 1.1.2 that a point represented by (X : Y :Z) in homoge-
neous coordinates, resp. Jacobian coordinates, is also represented by (λX : λY : λZ),
resp. (λ2X :λ3Y :λZ), for every λ 6= 0. Thus, at the beginning of the scalar multiplica-
tion, one can pick at random a scalar λ and apply a multiplicative blinding to the input
point, and possibly to other points manipulated by the algorithm. Furthermore, this
blinding can be performed again during the computation of the scalar multiplication.

This countermeasure has a very low cost since only a few multiplications are required
— 3M for the homogeneous representation and 4M+1S for the Jacobian representation.
Due to the final inversion, the blinding is naturally removed at the end of the scalar
multiplication.

However, Goubin [Gou02] shows that, since null coordinates are not affected by a
multiplicative blinding, a DSCA can be mounted in spite of this countermeasure if the
input point can be chosen by an adversary. Indeed, most standard curves have a special
point with a null coordinate which is not affected by the blinding. Goubin’s differential
attack thus consists in choosing the input point such that the special point is computed
at some point of the algorithm depending on a few unknown key bits. This attack
is refined by Akishita and Takagi [AT03] by considering that null intermediate results
of doubling and addition formulas can also be detected. The so-called zero-value point
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attack does not require that a point with a null coordinate is computed during the scalar
multiplication process, but only that a register used in the computation is set to zero
at some point of the computation. This condition is less restrictive than the previous
one and enables the attack in most cases, yet it requires a detailed knowledge of the
targeted implementation.

The scalar or input point blinding countermeasures are recommended in contexts
where zero-value point attacks can be applied.

2.3.2.3 Random Curve Isomorphism

This countermeasure is introduced by Joye and Tymen [JT01]. It consists in performing
the scalar multiplication on a curve isomorphic to E .

Algorithm 2.11 details how to implement this countermeasure using projective ho-
mogeneous coordinates. Note that, if Jacobian coordinates are used, step 6 should
compute the affine point (XQ′ × (αZQ′)

−2, YQ′ × (αZQ′)
−3).

Algorithm 2.11 Random curve isomorphism countermeasure using H
Input: P ∈ E(Fq), a, b, k ∈ N∗
Output: kP

1: Pick at random α ∈ Fq∗
2: P ′ ← (α2x :α3y :1)

3: a′ ← α4a

4: b′ ← α6b . optional: b is not used in most cases
5: Q′ ← (XQ′ :YQ′ :ZQ′) = kP ′

6: Q← (XQ′ × (α2ZQ′)
−1, YQ′ × (α3ZQ′)

−1)

7: return Q

In practice, this countermeasure has a moderate cost and an effect comparable to
the projective coordinate randomization, with some slight differences however. First, the
randomization of the input point applies to the affine coordinates, thus its Z coordinate
is not randomized. This allows using mixed affine-projective addition formulas in left-
to-right scalar multiplication algorithms, contrary to the projective coordinates blinding
countermeasure. Second, the curve parameter a is randomized, thus doubling formulas
will be randomized also, which may provide a better DSCA protection. However, this
property also implies that fast doubling formulas for a = −3 cannot be used.

Finally, this countermeasure has the same weakness as the projective coordinates
blinding against zero-value point attacks [Gou02; AT03].

2.3.2.4 Input Point Blinding

This countermeasure is known as the second Coron’s countermeasure [Cor99]. Since
most DSCA require that input points are known or chosen by the adversary, this coun-
termeasure consists in blinding the input point by computing k(P + R) − kR where R
is a randomly generated point.
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Obviously, applying the countermeasure this way is very costly since two scalar mul-
tiplications must be performed instead of one. To address this issue, Coron shows that
it may be implemented efficiently if k is fixed: the system is initialized by choosing a
random point R ∈ E(Fq) and S = kR is computed and stored. Then, each scalar
multiplication is computed according to Algorithm 2.12.

Algorithm 2.12 Coron’s input point blinding
Input: P ∈ E(Fq), (R, k , and S = kR stored)
Output: kP

1: P ← P + R

2: Q← kP

3: Q← Q− S
4: Pick at random α ∈ {0, 1}
5: R← (−1)α2R . store the new R

6: S ← (−1)α2S . store the new S

7: return Q

Note however that this implementation has some weaknesses due to the basic update
process. For instance, it does not prevent the doubling attack, cf. Section 2.2.2.

Another implementation of this countermeasure is known as Basic Random Initial
Point (BRIP) [MMM04]. It consists in computing kP + R = kP + 11̄1̄ . . . 1̄R using
Algorithm 2.13 before subtracting R.

The cost of BRIP algorithm is comparable to the double-and-add-always algorithm.
Note however that point readdition formulas should be used instead of mixed affine-
projective formulas at steps 8 and 10 since Q2 is not likely to be computed in affine
coordinates. The cost per bit of Algorithm 2.13 using Jacobian coordinates is thus
15M + 9S+ 18A in the general case or 15M + 7S+ 19A if a = −3. The corresponding
detailed cost with respect to S/M and A/M is given in Table 2.4.

Algorithm 2.13 BRIP scalar multiplication
Input: P ∈ E(Fq), k = (kl−1kl−2 . . . k0)2

Output: kP
Uses: Q0, Q1, and Q2

1: Pick at random R ∈ E(Fq)

2: Q0 ← R

3: Q1 ← −R
4: Q2 ← P − R
5: for i = l − 1 to 0 do
6: Q0 ← 2Q0

7: if ki = 0 then
8: Q0 ← Q0 +Q1

9: else
10: Q0 ← Q0 +Q2

11: Q0 ← Q0 +Q1

12: return Q0
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Table 2.4: Detailed cost of BRIP algorithm using J expressed as field multiplications
per scalar bit, label (c.o.) denote the use of composite operations

Algorithm Coord. a
S/M = 1 S/M = 0.8

A/M = 0.2 A/M = 0.1 A/M = 0.2 A/M = 0.1

2.13 J any 27.6 25.8 25.8 24.0

2.13 J −3 25.8 23.9 24.4 22.5

2.13 (c.o.) J any 23.6 22.3 22.6 21.3

Using Composite Operations The main loop of Algorithm 2.13 can be rewritten to
make use of the composite operation 2P1 + P2 as:

for i = l − 1 to 0 do
Q0 ← 2Q0 +Q1+ki

Considering the Jacobian composite addition formula described in 1.1.2.3 using read-
ditions of Q0, the average cost of the algorithm becomes 16M + 5S + 13A. The
corresponding detailed computation costs are given in Table 2.4.

This countermeasure may be generalized to the RSA exponentiation. Note however
that an attack against the BRIP exponentiation is presented by Yen et al. [YLMH05],
cf. Section 2.2.2.

Remark 11. The RSA countermeasure corresponding to input point blinding is generally
known as message blinding. Given that an RSA public exponent e is chosen small, it
consists in a multiplicative randomization: m′ = r em mod n where r is a random value
and m is the message to sign or the ciphertext. At the end of the exponentiation, the
result is recovered as md mod n = r−1(m′)d mod n.

Alternatively, message blinding can be achieved using an extended modulus, that is
computing: (m + rn)d mod kn where k is a constant and r is a random number from
[0, k − 1]. The result is reduced modulo n at the end of the exponentiation.

2.3.2.5 Field Arithmetic Blinding

While the previous countermeasures perform blinding at the curve arithmetic or point
representation level, a randomization of the computation is possible at the field arith-
metic level. For instance, Joye and Tymen show how to use random field isomor-
phisms [JT01] to implement a DSCA resistant scalar multiplication over F2n .

Another technique is proposed considering the underlying implementation of modular
arithmetic [DV11]. As we mentioned in Section 2.1.2, modular multiplications are gener-
ally implemented using one of the following methods: Montgomery, Barrett, Quisquater,
etc. We briefly present hereafter the blinded Montgomery method using notations from
Section 2.1.2.

First of all, Montgomery representation of operands u and v are blinded by adding
a small multiple of the modulus, say x = uR + r1n mod cn and y = vR + r2n mod cn

where 2i−1 ≤ c < 2i , and r1, r2 are random values from [1, c − 1]. Considering the
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new constant R′ = 2l+2i , they define the modified Montgomery reduction presented in
Algorithm 2.14. This algorithm adds a random multiple of the modulus to the result
while maintaining its size to l+ i bits. A final normalization step at the end of the scalar
multiplication or exponentiation yields a result modulo n.

Algorithm 2.14 Blinded Montgomery modular reduction
Input: w < 22l+2i , n < 2l , R′ = 2l+2i , n′ = −n−1 mod R′ with gcd(R′, n) = 1 and
w < nR′

Output: r < (wR′−1 mod n) + (k + 1)n, s.t. r mod n = xR−1 mod n

1: Pick at random k ∈ [0, 2i − 1]

2: s ← w mod R′

3: q ← n′ × s mod R′

4: q ← q + k × R′
5: r ← (w + q ×m)/R′

6: return r

The cost of this countermeasure depends on the size i allowed for the randomization
process. For instance, i = 16, 24, or 32 may be used depending on the targeted security
level. The cost of the blinding process thus depends on the operands expansion factor
(l + i)/l and on the implementation of the random generation of step 1.
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2.4 Fault Analysis

Fault analysis is a class of physical attacks relying on a stronger assumption regarding the
adversary: he is now able to perturb the targeted device during instruction processing.
Thus, fault analysis are said to be active attacks.

Two kinds of perturbations are generally considered: faults induced in computations
and faults induced in memories. The former are said to be transient, since they impact a
single computation result, whereas the latter permanently modify data in memory — or
modify data for the duration of the current session considering faults induced in volatile
memories.

Boneh, DeMillo, and Lipton [BDL96] on one hand, and Anderson and Kuhn [AK96]
on the other hand, report that various means can be used to induce faults on embedded
devices such as smart cards. For instance, power spikes or glitches which consist in very
short perturbations on the power supply of the device may lead to wrong operations.
Similarly, external clock glitches can affect the circuitry of smart cards and make the
CPU execute wrong instructions or cause errors in memories. More invasive techniques
require the depackaging of the chip through mechanical and/or chemical means. This
allows using a wide range of physical perturbations directly on the chip instead of tam-
pering with its inputs. Focusing radiations, such as UV light, on the chip is an interesting
solution to generate faults [BECN+06; GT04; Sko05]. Nowadays, most security evalu-
ation labs use lasers which enable a precise control of where to induce a fault. Such
techniques makes it possible to target a particular area of a chip: CPU, coprocessors,
memories, buses, etc.

Different fault models may be considered when studying fault analysis depending
on the presumed ability of the adversary to control the effect of his perturbation. For
instance, it may be assumed that an attacker can tamper with a computation so that it
returns a random result. With a stronger adversarial model, it may be assumed that an
attacker can modify some data bytes or bits only. Besides, the effect on the targeted
bits may be random, fixed, or causing bit flips. This latter point requires generally to
take into consideration the targeted chip design and technology.

The remainder of this section is organized as follows. Section 2.4.1 presents classical
fault analysis on ECC algorithms. Then Section 2.4.2 focuses on a particular class of
fault analysis: the safe-errors. Finally, the recent combined attacks which use both
faults and classical side-channel analysis are presented in Section 2.4.3.

2.4.1 Fault Analysis on Elliptic Curve Cryptosystems

The first practical fault attack on a cryptosystem is presented in 1997 by Boneh, De-
Millo, and Lipton [BDL97]. They recover the private exponent of an RSA exponentiation
using the CRT implementation with a single faulty signature. The same year, Biham
and Shamir [BS97] show another attack known as Differential Fault Analysis (DFA) on
the DES block cipher that may potentially apply to any secret key cryptosystem. Their
attack requires a few tens of pairs of correct and faulty ciphertexts and analyses the
differences induced by the fault in each pair — therefore the term differential.
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The first fault analysis on an ECC implementation is reported by Biehl, Meyer, and
Müller [BMM00]. The two different kinds of attacks described in this paper are presented
hereafter.

2.4.1.1 Weak Curve Fault Attack

First of all, Biehl et al. present an attack on the EC ElGamal cryptosystem [BMM00].
The EC ElGamal encryption, resp. decryption, is described in Algorithm 2.15, resp.
Algorithm 2.16, where d is a private key such that 1 ≤ d < n and Q = dP is the
corresponding public key.

Algorithm 2.15 EC ElGamal encryption
Input: Public point P ∈ E(Fq), n = ordE(P ), public key Q, and message m
Output: Ciphertext (R, c)

1: Pick at random k in [1, n − 1]

2: Pk ← kP

3: Qk ← kQ

4: c ← xQk ⊕m
5: return (Pk , c)

Algorithm 2.16 EC ElGamal decryption
Input: Private key d and ciphertext (R, c)

Output: Plaintext m
1: Qk ← dR

2: m ← xQk ⊕ c
3: return m

Biehl et al. observe that the EC Elgamal decryption routine may be seen as a blackbox
function taking as input any point P and returning the x coordinate of dP . Obviously,
implementations should first check that the input point belong to the curve E . Consid-
ering a “buggy” implementation that does not perform this verification, Biehl et al. show
a very simple attack. One first observes that the curve parameter b is not involved in
point addition and doubling formulas. Therefore it is possible to find a point P belonging
to a curve E ′ : y2 = x3 + ax + b′ such that r = ordE ′(P ) is small enough to be able to
compute discrete logarithms in the subgroup of E ′(Fq) generated by P .

The remainder of the attack is straightforward: the attacker inputs such a point
P to the decryption function and recovers the x coordinate of dP computed on E ′.
Then he computes the discrete logarithm to get d mod r — note that recovering the
y coordinate of dP , if necessary, demands a guess on a single bit knowing a and b′ —,
and repeats these operations for other points with different small orders until having
enough relations to compute d using the CRT.

This simple attack highlights how checking the validity of inputs of cryptographic
algorithms may be important. In a context sensitive to fault analysis, Biehl et al. show
that checking the validity of outputs is important as well. Indeed, if an implementation of
Algorithm 2.16 checks the input point R, but not the result of the scalar multiplication
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dR, an adversary can use fault injection to tamper with the value of R at the very
beginning of the scalar multiplication and conduct an attack similar to the previous one.
However, the attack is significantly more difficult in this case since neither b′ nor the y
coordinate of the result are known to the attacker. Nevertheless, Biehl et al. prove that
the attack remains possible if one can use faults to modify the value of single bits. They
show also that a similar fault analysis is possible on the ECDSA signature algorithm.

Ciet and Joye improve this attack [CJ05a] by considering random errors and fault
injection in curve parameters. Both of these works therefore recommend to check the
result of scalar multiplications involving a sensitive scalar before returning or using it.

Remark 12. Fouque, Lercier, Réal, and Valette [FLRV08] show that Montgomery ladder
(Algorithm 1.10) x-only implementation — i.e. without y coordinate computation — is
unsafe towards fault analysis. Indeed, since the y coordinate is not computed, the check
that a point (x, y) belongs to a curve of parameters a and b consists only in verifying
that x3 + ax + b is a square in the base field. Fouque et al. prove that this check is too
weak to prevent fault analysis.

Remark 13. Bernstein [Ber06] include in the design of Curve25519 for high-speed Diffie-
Hellman the security requirement that the curve is twist-secure. It consists in choosing
the curve such that a change moving a point of the curve to the quadratic twist does
not succeed in breaking the discrete logarithm problem.

2.4.1.2 Differential Fault Analysis on ECC

Biehl et al. [BMM00] also present a DFA on a fixed-scalar multiplication such as the
one from Algorithm 2.16 when no result check is implemented. We sketch this attack
on the right-to-left double-and-add method. Note however that the principle of this
differential analysis applies to any kind of scalar multiplication algorithm, regular or not.
In the following, let us denote by Qi the value of register Q at the end of the i-th loop
iteration of Algorithm 1.2, 0 ≤ i < l .

Being a differential analysis, this attack requires both a correct and an erroneous
result. We assume that an adversary is able to induce a 1-bit fault on the x coordinate of
Qi , for l − s ≤ i < l , i.e. during the processing of the s last bits of the scalar, where s is
be small enough to exhaust 2s computations. We denote Q̃i the corresponding altered
value of Qi . Given Q̃l−1 the faulty output of the scalar multiplication and Ql−1 the
correct one, let define Q(u)

i = Ql−1− u2iP and Q̃(u)
i = Q̃l−1− u2iP , where 0 ≤ u < 2s

and P is the base point of the scalar multiplication. An exhaustive search for u — i.e. on
the s most significant bits of the scalar — leads to at least one — and only one with
high probability — value of u for which Q(u)

i and Q̃(u)
i differ from one bit only. Thus

the s most significant bits of the scalar are revealed, and the attack can be repeated on
the following s bits, and so on until the whole scalar is recovered.

An obvious countermeasure against this kind of analysis is again to check for con-
sistency the output of every scalar multiplication involving a sensitive scalar, namely to
check that coordinates of the result are valid with respect to the curve equation.
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Nevertheless, Blömer, Otto, and Seifert have proven that such countermeasures
are circumvented by a so-called sign change attack [BOS06]. This attack consists in
inducing a fault in the sign of the Y projective coordinate of a register during the
computation of the scalar multiplication. It allows a similar analysis than previously but
is undetectable by checking that point coordinates verify the curve equation. Indeed, on
an elliptic curve in short Weierstraß form, changing the sign of the Y coordinate results
in replacing a point by its negative, which is still on the curve. Blömer et al. show that
algorithms taking advantage of the signed NAF representation are particularly prone to
the sign change attack.

Countermeasures As presented by Rivain on the RSA exponentiation [Riv09], two
main directions have been investigated to prevent DFA.

First, some countermeasures use an extended modulus to add redundancy in the
computation and check the consistency of data at the end of an exponentiation. This
is the case with Shamir’s countermeasure [Sha98; ABF+03; CJ05b] and Vigilent’s
scheme [Vig08]. In the ECC scalar multiplication context, Blömer et al. [BOS06] and
Baek and Vasyltsov [BV07] propose to perform computations in the ring Z/rpZ instead
of Fp, with r a random number whose size depends on the targeted security level. This
way, results may be checked modulo r and intermediate values are randomized which
also prevents DSCA.

Second, other proposals consist in using self-secure algorithms, i.e. algorithms pro-
vided with consistency properties that may be checked during or at the end of com-
putations. For instance, Giraud [Gir06] proposes to check the invariant provided by
Montgomery ladder, namely Q1 −Q0 = P using notations from Algorithm 1.10. Simi-
larly, Boscher, Naciri, and Prouff [BNP07] propose to verify that Q+T +P = R at the
end of the right-to-left double-and-add-always, see Algorithm 1.9. We note also that
the Joye ladder, cf. Algorithm 1.11, has the invariant Q0 + Q1 = 2i+1P after process-
ing the i-th scalar bit. Finally, in RSA exponentiation context, Rivain [Riv09] uses a
multi-exponentiation algorithm to compute both md and mϕ(n)−d and checks that their
product equals 1 modulo n. Considering ECC, an equivalent solution is to compute both
kP and (n − k)P , which sum to O. Rivain shows that this method is more efficient
than other self-secure algorithms.

Yen, Kim, Lim, and Moon note that all these proposals rely in the end on a compar-
ison which is itself prone to faults [YKLM01b]. The publication by Kim and Quisquater
of a successful second-order fault analysis [KQ07] demonstrates the importance of this
issue. Therefore, Yen et al. devise a third strategy to circumvent DFA that does not
rely on a comparison: the infective computation technique which intrinsically corrupts
the result of a computation if an error occurs. More details about this solution are given
in Section 2.4.3.

2.4.2 Safe-Error Analysis

Safe-error analysis denotes a particular class of fault attacks in which an adversary
induces a fault on a device and observes if it has a consequence on its output. Most of
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the time, the exact effect of the fault does not matter much, the only used leakage is
the correctness of the result.

Safe-error analysis has been introduced by Yen and Joye [YJ00] on an RSA square-
and-multiply-always exponentiation. It straightforwardly extends to ECC double-and-
add-always algorithms. For instance, considering Algorithm 1.9, the attack consists in
perturbing the computation of a point addition to identify if it corresponds to the step 5
or to the step 7. Indeed, if correctly implemented, these two steps are indistinguishable
from an SSCA point of view. However, perturbing the computation of step 5 yields an
incorrect result at the end of the algorithm, whereas tampering with the computation
of step 7 has no influence on the output. This is due to the use of dummy additions in
the double-and-add-always algorithm. By definition, the result of a dummy operation is
not used for computing the output of an algorithm, contrary to other operations. Thus,
any operation that is either a regular one or a dummy one depending on a secret key
bit may be targeted by a safe-error.

The literature [YKLM01a; JY03] distinguishes between two different kinds of safe-
errors: C and M safe-errors. C safe-errors, also called transient safe-errors, perturb the
result of a targeted operation only. This is the kind of error considered in the above
attack description. M safe-errors are faults injected on a value in the memory. This
model is stronger than the C safe-errors model. Observe for example that an adversarial
M safe-error model allows at least the same attacks as the C safe-error model since
each error induced in a computation may also be induced in the memory where its result
is stored.

The previous countermeasures consisting in checking outputs and intermediate re-
sults are ineffective here. However, note that performing such an analysis reveals scalar
bits one by one and therefore requires that the scalar be fixed. As a consequence, a
possible countermeasure for the double-and-add-always algorithm is the scalar blinding
presented in Section 2.3.2. A more general guidance is to avoid algorithms involving
dummy operations. For instance Montgomery and Joye ladders should be preferred to
double-and-add-always algorithms.

2.4.3 Combined Fault and Side-Channel Analysis

Recently, Amiel, Feix, Marcel, and Villegas [AFMV07] have introduced the principle of
Passive and Active Combined Attacks (PACA or combined attacks for short) using both
faults and classical side-channel analysis. They show that using these two techniques to-
gether can break an RSA implementation provided with countermeasures against these
threats considered separately. The same year, Robisson and Manet [RM07] have pre-
sented the differential behavioral analysis which combines classical DPA and safe-errors.

Amiel et al. present a simple attack on an atomic RSA exponentiation using Al-
gorithm 2.4. A fault attack is used to bypass step 2 such that register R1 is left
uninitialized, which is expected to give R1 = 0 in most cases. Equivalently, the fault
may tamper with the value of R1 or the value of R1 pointer to yield a similar result.
Then, a power signature analysis (cf. Section 2.2.2.2) is conducted on the power trace
assuming that the manipulation of a whole zero register can be distinguished from the
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manipulation of a balanced one. This attack straightforwardly extends to ECC scalar
multiplication [STA+10].

Classical side-channel and fault analysis countermeasures have no effect against this
attack since the detection of an erroneous result happens at the end of the computation,
which is too late. Indeed, in this attack an adversary needs the power trace only, not the
faulty output. Thus, countermeasures implemented independently against side-channel
and fault analysis do not prevent the combined analysis in general.

Amiel et al. propose a so-called detect and derive countermeasure based on the
principle of infective computation introduced by Yen et al. [YKLM01b]. This solution
consists in masking the exponent/scalar using a check value computed on the inputs to
be protected against faults. Then, the exponent/scalar is unmasked on the fly during
the computation, such that a fault induced on one of the inputs yields a wrong check
value and consequently corrupts the exponent/scalar.

This countermeasure is refined by Schmidt, Tunstall, Avanzi, Kizhvatov, Kasper,
and Oswald [STA+10]. They combine the use of an extended modulus rn for RSA, or
computations in a ring Z/rpZ in the case of ECC over Fp, and the infective computation
strategy, such that the check value is an intermediate value modulo r . The size of r is
thus a security parameter on which depends the probability of a fault to be detected on
one hand and the cost of the countermeasure on the other hand.
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2.5 Square-Always Exponentiation

An exponentiation is generally computed using a sequence of multiplications, some of
them having different operands and some of them being squarings. We presented in
Section 2.1.1 the two main options for implementing the exponentiation in an SSCA
resistant manner: the regular algorithms where the sequence of multiplications and
squarings does not depend on the secret exponent, and the atomic multiply-always
algorithm which performs multiplications only and smoothens their processing in order
to hide the processing of exponent bits.

Amiel et al. [AFT+09] show that an intrinsic difference between multiplications
and squarings can provide exploitable side-channel leakages to an attacker, cf. Sec-
tion 2.3.1.6. This leakage enables an attack on the atomic implementation. In spite
of the possibility to apply the exponent randomization, this attack brings into light an
intrinsic flaw of the multiply-always algorithm: the fact that at some instant a multi-
plication performs a squaring (x × x) or not (x × y) depending on the exponent. On
the other hand, regular exponentiation algorithms are naturally immune to this kind of
analysis, but have a higher cost.

Our contribution is to propose a new exponentiation scheme using squarings only,
which removes the former leakage and is faster than using regular algorithms. The
principle of our method and several algorithms are presented in Section 2.5.1. Also,
we introduce in Section 2.5.2 new algorithms having a particularly low cost when two
squarings can be parallelized. Finally, some practical results are given in Section 2.5.3.
This research has been published [CFG+11g] and has been the subject of a patent
application [CFG+11d].

2.5.1 Square-Always Countermeasure

We present in this section new exponentiation algorithms which simultaneously bene-
fit from efficiency of the atomicity principle and immunity against the aforementioned
weakness of the multiply-always method.

2.5.1.1 Principle

As far as we know, all atomic exponentiation algorithms proposed in the literature use
multiplications only to perform both squarings and “actual” multiplications. It is well
known however that a multiplication can be computed using two or more squarings, for
instance using expression (2.2) or (2.3). Therefore, we propose in the following new
atomic algorithms using squarings only to perform all multiplications in an exponentia-
tion.

In characteristic different from 2, we have :

x × y =
(x + y)2 − x2 − y2

2
(2.2)

x × y =

(
x + y

2

)2

−
(
x − y

2

)2

(2.3)
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Our countermeasure completely prevents the attack described in Section 2.3.1.6
since only squarings are performed. Moreover, applying the atomicity principle prevents
SSCA as well. As a matter of comparison with other SSCA countermeasures (see
Section 2.2.1), Figure 2.8 depicts the side-channel leakage of an atomic algorithm using
squaring only.
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Figure 2.8: Atomic square-always side-channel leakage

At first glance, expression (2.2) requires three squarings to perform a multiplica-
tion whereas expression (2.3) requires only two. Further analysis reveals however that
using (2.2) or (2.3) in algorithms 2.1 and 2.2 has always the cost of replacing multiplica-
tions by twice more squarings. Indeed, in the multiplication a← a×m of Algorithm 2.1
m is a constant operand. Therefore, we need to compute m2 mod n only once at the
beginning of the exponentiation, then (2.2) computes a ×m using only two squarings.

This trick does not apply to Algorithm 2.2 since no operand is constant in step 5.
However b ← b2 is the following operation. Using equation (2.2) in Algorithm 2.2 we
can store t ← y2 and save the following squaring: b ← t. The resulting cost is again
equivalent to trading one multiplication for two squarings.

Remark 14. In our context, (2.2) or (2.3) refer to operations modulo n. Notice however
that divisions by 2 in these equations require neither inversion nor multiplication, only
a shift. For example, assuming that n is odd, we recommend computing z/2 mod n in
the following atomic way:

t0 ← z

t1 ← z + n

α← z mod 2

return tα/2

2.5.1.2 Atomic Algorithms

Trading multiplications for squarings in Algorithms 2.1 and 2.2 just requires to apply
formula (2.2) or (2.3) at step 5 in Algorithm 2.1 or step 5 in Algorithm 2.2. However
the resulting algorithms would still present a leakage since different operations would be
performed when processing a 0 or 1 bit. Hence it is necessary to apply the atomicity
principle on these algorithms.

This step is achieved by identifying a minimal pattern of operations to be performed
on each loop iteration, then rewriting the algorithms using this pattern. For the con-
sidered algorithms, the minimal pattern should obviously contain a single squaring since
it is the only operation required by the processing of a 0 bit and performing dummy
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squarings would slow down the algorithm. An addition, a subtraction and a division by
2 should also be present to compute formulas (2.2) or (2.3). Finally some additional
operations are required to manage the loop counter and the pointer on exponent bits.

Algorithm 2.17 presented hereafter details how to implement atomically the square-
always method in a left-to-right exponentiation using equation (2.2). As Chevallier-
Mames et al. [CMCJ04], we use a matrix for a more readable and efficient implemen-
tation:

M =


1 1 1 0 2 1 1 1 2 1

2 0 1 2 2 2 2 2 3 0

1 1 3 0 0 0 0 2 0 0

3 3 3 0 3 3 1 1 3 1



Algorithm 2.17 Left-to-right atomic square-always exponentiation with (2.2)
Input: m, n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n

Uses: R0, R1, R2, and R3

1: R0, R2 ← 1

2: R1 ← m

3: R3 ← m2/2 mod n

4: j ← 0

5: i ← k − 1

6: while i ≥ 0 do
7: RMj,0

← RMj,1
+ RMj,2

mod n

8: RMj,3
← RMj,3

2 mod n

9: RMj,4
← RMj,5

/2 mod n

10: RMj,6
← RMj,7

− RMj,8
mod n

11: j ← di(1 + (j mod 3))

12: i ← i −Mj,9

13: return R0

The main loop of Algorithm 2.17 can be viewed as a four state machine where each
row j of M defines the operands of the atomic pattern, cf. Figure 2.11. The atomic
pattern itself is given by the content of the loop, i.e. steps 7 to 12. An exponent bit di
is processed by the state j = 0 (resp. j = 3) if the previous bit di+1 is a 0 (resp. a 1).
This state is followed by the processing of the next bit if di = 0, or by the states j = 1

and j = 2 if di = 1. For the sake of clarity, we present below the four sequences of
operations corresponding to each state. The dummy operations are identified by a ?.
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j = 0

(di = 0 or 1)
R1 ← R1 + R1 mod n ?

R0 ← R0
2 mod n

R2 ← R1/2 mod n ?

R1 ← R1 − R2 mod n ?

j ← di [? if di = 0]
i ← i − (1− di) [? if di = 1]

j = 2

(di = 1)
R1 ← R1 + R3 mod n ?

R0 ← R0
2 mod n

R0 ← R0/2 mod n

R0 ← R2 − R0 mod n

j ← 3

i ← i − 1

j = 1

(di = 1)
R2 ← R0 + R1 mod n

R2 ← R2
2 mod n

R2 ← R2/2 mod n

R2 ← R2 − R3 mod n

j ← 2

i ← i ?

j = 3

(di = 0 or 1)
R3 ← R3 + R3 mod n ?

R0 ← R0
2 mod n

R3 ← R3/2 mod n ?

R1 ← R1 − R3 mod n ?

j ← di
i ← i − (1− di) [? if di = 1]

Figure 2.9: Detailed states of Algorithm 2.17

We also present in Algorithm 2.18 a right-to-left variant of the square-always expo-
nentiation using equation (2.3). This algorithm uses the following matrix:

M =


0 0 2 0 0 0 2 1

2 1 2 2 1 0 1 0

0 2 1 1 0 0 2 0

0 0 0 0 1 2 1 1



Algorithm 2.18 Right-to-left atomic square-always exponentiation with (2.3)
Input: m, n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n

Uses: R0, R1, and R2

1: R0 ← m

2: R1, R2 ← 1

3: i , j ← 0

4: while i ≤ k − 1 do
5: j ← di(1 + (j mod 3))

6: RMj,0
← RMj,1

+ R0 mod n

7: RMj,2
← RMj,3

/2 mod n

8: RMj,4
← RMj,5

− RMj,6
mod n

9: RMj,3
← RMj,3

2 mod n

10: i ← i +Mj,7

11: return R1



2.5. SQUARE-ALWAYS EXPONENTIATION 125

j = 0

(di = 0)

j ← 0 [? if j was 0]

R0 ← R0 + R0 mod n ?

R2 ← R0/2 mod n ?

R0 ← R0 − R2 mod n ?

R0 ← R0
2 mod n

i ← i + 1

j = 2

(di = 1)
j ← 2

R0 ← R2 + R0 mod n ?

R1 ← R1/2 mod n

R0 ← R0 − R2 mod n ?

R1 ← R1
2 mod n

i ← i ?

j = 1

(di = 1)
j ← 1

R2 ← R1 + R0 mod n

R2 ← R2/2 mod n

R1 ← R0 − R1 mod n

R2 ← R2
2 mod n

i ← i ?

j = 3

(di = 1)
j ← 3

R0 ← R0 + R0 mod n ?

R0 ← R0/2 mod n ?

R1 ← R2 − R1 mod n

R0 ← R0
2 mod n

i ← i + 1

Figure 2.10: Detailed states of Algorithm 2.18

As for the previous algorithm, the main loop of Algorithm 2.18 has four states.
Here, the state j = 0 corresponds to the processing of a 0 bit and the sequence j = 1,
j = 2, and j = 3 corresponds to the processing of a 1 bit, as detailed below. The state
machine is thus similar to the one of Algorithm 2.17, cf. Figure 2.11.

j = 0 j = 1

j = 2j = 3

di = 1

di = 0 di = 1

di = 0

Figure 2.11: State machine of Algorithm 2.17

2.5.1.3 Performance Analysis

Algorithms 2.17 and 2.18 are mostly equivalent in terms of operations realized in a
single loop. The number of dummy operations (additions, subtractions and halvings)
introduced to fill the atomic blocks are the same in the two versions — we considered
that the cost of these operations is negligible compared to multiplications and squarings
for operands of thousands of bits. Both algorithms require 2S per exponent bit on
average or 1.6M if S/M = 0.8 which represents a theoretical 11.1% speed-up over Al-
gorithm 2.3 which is the fastest known regular algorithm immune to the attack by Amiel
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et al. [AFT+09]. Table 2.5 compares the efficiency of the multiply-always, Montgomery
ladder, and square-always algorithms when S = M and S/M = 0.8.

In addition, our algorithms can be enhanced using the window techniques presented
in Section 1.2.1.4 for the scalar multiplication, while the Montgomery ladder cannot.
These techniques provide a substantial speed-up over Algorithm 2.4 when extra memory
is available. Though we did not investigate this path, we believe that a comparable time-
memory trade-off can be expected.

Table 2.5: Comparison of the expected cost per exponent bit of SSCA protected ex-
ponentiation algorithms (* multiply-always is not immune to the attack by Amiel et
al. [AFT+09])

Algorithm Cost S = M S/M = 0.8 Nb. regs

Multiply-always* (2.4) 1.5M 1.5M 1.5M 2

Montgomery ladder (2.3) 1M + 1S 2M 1.8M 2

L.-to-r. Square-always (2.17) 2S 2M 1.6M 4

R.-to-l. Square-always (2.18) 2S 2M 1.6M 3

2.5.1.4 Security Considerations

Our algorithms are protected against SSCA by the implementation of the atomicity prin-
ciple. The analysis by Amiel et al. [AFT+09] cannot apply either since only squarings
are involved. As a matter of comparison, notice that the exponent blinding countermea-
sure does not fundamentally remove the leakage but only renders this attack practically
infeasible. Embedded implementations should also be protected against the differential
analysis, cf. Section 2.3. This can be achieved using classical DSCA countermeasures,
like exponent or modulus randomization.

We recommend implementing Algorithm 2.18 rather than Algorithm 2.17 since left-
to-right algorithms are vulnerable to the chosen message SPA and doubling attack as
discussed in Section 2.2.2, and more subject to combined attacks [AFMV07]. Besides,
Algorithm 2.18 requires one less register than Algorithm 2.17.

It is well known that algorithms using dummy operations generally succumb to safe-
error attacks, cf. Section 2.4.2. Immunity to C and M safe-errors can be easily obtained
by applying the exponent randomization technique, which also prevents DSCA. Never-
theless, special care has been taken in our algorithms to ensure that inducing a fault in
any of the dummy operations would produce an erroneous result. For instance, in the
following sequence of dummy operations from Algorithm 2.18 (j = 0), no operation can
be tampered with without corrupting R0 and thus the result of the exponentiation:

R0 ← R0 + R0 mod n

R2 ← R0/2 mod n

R0 ← R0 − R2 mod n
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Only operations i ← i and j ← 0, appearing in some instances of algorithms 2.17
and 2.18 patterns, have not been protected for readability reasons. It is easy to fix these
points: perform i ← i ±Mj,· + α instead of i ← i ±Mj,· in these algorithms and add a
step i ← i − α in the loop. The j ← di(1 + . . . ) operation should be protected in the
same manner. In the end, our algorithms are immune to C safe-error attacks.

Further work may focus on implementing on our algorithms the infective computation
strategy presented by Schmidt et al. [STA+10] in order to counter combined attacks.

2.5.2 Parallelization

It is well known that Montgomery ladder algorithm is well suited for parallelization. It is
thus natural to ask if the square-always algorithms have the same property. For example
the two squarings needed to perform a classical multiplication using equation (2.3) are
independent and can therefore be performed simultaneously. The same strategy applies
for equation (2.2).

We believe that the interest of this section extends beyond the scope of embedded
systems. Nowadays most computers, and even recent mobile devices, are provided with
several processors which enable parallelizing algorithms to speed-up computations.

2.5.2.1 Parallelized Algorithms

We noticed that right-to-left exponentiations are more suited for parallelization than
their left-to-right counterpart since more operations are independent. For example in
Algorithm 2.2 one can first perform all squarings (step 6), store all values corresponding
to a di = 1, and then perform the remaining multiplications. We present in Algo-
rithm 2.19 a right-to-left square-always algorithm using (2.3) and two parallel squaring
blocks (i.e. two 1-operand multipliers). For a better readability, this algorithm is not
atomic. In the following, two operations o1 and o2 performed simultaneously are denoted
o1 || o2.

Algorithm 2.20 is an atomic version of Algorithm 2.19. It requires two extra registers
compared to the non atomic one and the following matrices:

M =


1 1 5 6 5 5 5 0 1

0 6 4 3 0 1 3 1 1

2 5 3 1 5 5 5 0 0

2 5 0 6 0 1 5 0 1

 N =

(
1 1 0

5 2 2

)

It is possible to further enhance the efficiency of these algorithms if more mem-
ory is available by storing more free squarings when 1’s sequences are processed. This
observation yields Algorithm 2.21 which allows the storage of extramax simultaneous
precomputed squarings using extra registers R3, R4, . . .Rextramax +2. Algorithm 2.21
with extramax = 1 is thus equivalent to algorithms 2.19 and 2.20. Though Algo-
rithm 2.21 is not atomic for readability reasons and because of the difficulty to write
an atomic algorithm depending on a variable (here extramax), it should be possible to
write an atomic version for each extramax value in the same way as we proceeded for
Algorithm 2.19.
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Algorithm 2.19 Right-to-left parallel square-always exponentiation with (2.3)
Input: m, n ∈ N, m < n, d = (dk−1 . . . d0)2

Output: md mod n

Uses: 5 k-bit registers a, b, R0, R1, R2

1: a← 1

2: b ← m

3: extra← 0

4: for i = 0 to k − 1 do
5: if di = 1 then
6: if extra = 0 then
7: R0 ← (a − b)2 mod n || R1 ← b2 mod n

8: a← (a + b)2 mod n || R2 ← R1
2 mod n

9: a← (a − R0)/4 mod n

10: b ← R1

11: R1 ← R2

12: extra← 1

13: else
14: R0 ← (a − b)2 mod n || a← (a + b)2 mod n

15: a← (a − R0)/4 mod n

16: b ← R1

17: extra← 0

18: else
19: if extra = 0 then
20: b ← b2 mod n

21: else
22: b ← R1

23: extra← 0

24: return a
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Algorithm 2.20 Right-to-left atomic parallel square-always exp. with (2.3)
Input: m, n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n

Uses: 7 k-bit registers R0 to R6

1: R0 ← 1

2: R1 ← m

3: v ← (0, 0, 0) . v0 is i and v1 is extra from Alg. 2.19
4: u ← 1

5: while v0 ≤ k − 1 do
6: j ← dv0 (v1 + u + 1)

7: R5 ← (R0 − R1)/2 mod n

8: R6 ← (R0 + R1)/2 mod n

9: RMj,0
← RMj,1

2 mod n || RMj,2
← RMj,3

2 mod n

10: RMj,4
← R0 − R2 mod n

11: RMj,5
← R3

12: RMj,6
← R4

13: v1 ← Mj,7

14: u ← Mj,8

15: t ← 1− v1(1− dv0+1)

16: RNt,0 ← R3

17: vNt,1 ← 0

18: vNt,2 ← vNt,2 + 1

19: v0 ← v0 + u

20: return R0
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Algorithm 2.21 Right-to-left generalized parallel square-always exp. with (2.3)
Input: m, n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2, extramax ∈ N∗
Output: md mod n

Uses: extramax +4 k-bit registers a, R0, R1, . . .Rextramax +2

1: a← 1

2: R1 ← m

3: extra← 0

4: for i = 0 to k − 1 do
5: if di = 1 then
6: if extra < extramax then
7: R0 ← (a − R1)2 mod n || Rextra+2 ← Rextra+1

2 mod n

8: a← (a + R1)2 mod n || Rextra+3 ← Rextra+2
2 mod n

9: a← (a − R0)/4 mod n

10: (R1, R2, . . . Rextramax +1)← (R2, R3, . . . Rextramax +2)

11: extra← extra+1

12: else
13: R0 ← (a − R1)2 mod n || a← (a + R1)2 mod n

14: a← (a − R0)/4 mod n

15: (R1, R2, . . . Rextramax +1)← (R2, R3, . . . Rextramax +2)

16: extra← extra−1

17: else
18: if extra = 0 then
19: R1 ← R1

2 mod n

20: else
21: (R1, R2, . . . Rextramax +1)← (R2, R3, . . . Rextramax +2)

22: extra← extra−1

23: return a

Remark 15. Notice that multiple assignments of steps 10, 15, and 21 may be traded for
a cheap index increment if registers R1, R2, . . . , Rextramax +2 are managed as a cyclic
buffer.

2.5.2.2 Cost of Parallelized Algorithms

We demonstrate hereafter that, as the length of the exponent tends to infinity, the cost
per exponent bit of Algorithm 2.21 tends to:

(
1 +

1

4 extramax +2

)
S

It yields a cost of 7S/6 for algorithms 2.19, 2.20, and 2.21 with extramax = 1, 11S/10

for extramax = 2, 15S/14 for extramax = 3, etc. The difference between this limit and
costs actually observed in our simulations is negligible for 1024-bit or longer exponents.
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It is remarkable that if S/M = 0.8 these costs become respectively 0.93M, 0.88M,
0.86M, etc. per exponent bit. We believe that such performances cannot be achieved
by binary algorithms using two parallelized 2-operands multiplication blocks. Indeed at
least k multiplications have to be performed sequentially, which requires at least 1M per
exponent bit. Moreover when extramax tends to infinity, the cost of Algorithm 2.21
tends to 1S, which we believe to be the optimal cost of an exponentiation algorithm
based on the binary decomposition of the exponent since k squarings at least have to
be performed sequentially.

Table 2.6 summarizes the theoretical cost of parallelized algorithms cited in this
study.

Table 2.6: Comparison of the expected cost per exponent bit of parallelized exponenti-
ation algorithms (exponent length tending to infinity)

Algorithm General cost S/M = 1 S/M = 0.8

Parallelized Montgomery ladder 1M 1M 1M

Alg. 2.19, 2.20,
7S/6 1.17M 0.93M

and 2.21 with extramax = 1

Alg. 2.21 with extramax = 2 11S/10 1.10M 0.88M

Alg. 2.21 with extramax = 3 15S/14 1.07M 0.86M

...
...

...
...

Alg. 2.21 with extramax →∞ 1S 1M 0.8M

Proof. We first recall the principle of Algorithm 2.21: since 3 squarings are required to
process a 1 bit, a fourth squaring slot is available at the same cost (2S). Thus, the
algorithm scans the exponent from the right to the left and computes one squaring in
advance at each 1 bit (↗ in the following), within the limit of extramax . Then, as 0’s
are processed, the free squarings are consumed (↘) at null cost (0S). Two other cases
may happen: first, a 1 bit can be processed but extramax squarings are already stored
in registers, then one free squaring is consumed (↘) and 1S is enough to perform the
two other squarings. Second, a 0 bit can be processed with no free squaring in registers
(extra = 0). Only in this latter case one squaring is performed at the cost of 1S and
the parallel squaring slot is wasted (→).

We can consider the evolution of extra as exponent bits are processed using a diagram
as below. For example, we have represented here the evolution of extra for the 5 first
bits of an exponent d = (dk−1 . . . 00110)2 with extramax ≥ 2. The cost of the first 0
bit is 1S since extra = 0 at the beginning of the exponentiation, the cost of two next
1 bits is 2S each and extra is incremented, finally the two last 0 bits have cost 0S and
extra is decremented. The total cost of the 5 bits is 5S.
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0
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...
extramax

bit: 0 1 2 3 4 5 . . . k − 1
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cost (S): 1 2 2 0 0

Observe now that the same bits have a higher cost if extramax = 1: as previously
the two first bits 01 cost 1S and 2S respectively. However, the next 1 bit cannot lead to
the computation of a second free squaring since extramax = 1. So the bit is processed
at the cost of 1S and the free squaring is lost. Finally, the two last 0’s cost 1S each
since no free squaring is stored anymore. The cost of the sequence is 6S.

0

extramax = 1

bit: 0 1 2 3 4 5 . . . k − 1

-0 �
���1 @

@@R
1

-0 -0

cost (S): 1 2 1 1 1

For a given exponent and extramax , let’s call a c-cycle a sequence of bits starting
with extra = c , ending with extra = c , and inside which extra > c . In particular, we
can decompose any exponent as a sequence of 0-cycles, except that the last one may
be unterminated with extra > 0.

Then, let Bec stand for the expected number of bits of a c-cycle when extramax = e

and Cec its expected cost.

- extramax = 1 For a random exponent and extramax = 1, a 0-cycle is “0” with
probability 1/2 and “1x ”, x ∈ {0, 1} otherwise. The cost of a 0-cycle “0” is 1S and the
cost of a 0-cycle “1x ” is 2S if x = 0 which happens with probability 1/2, or 3S if x = 1.

B1
0 = 1/2× 1 + 1/2× 2 = 3/2

C1
0 = 1/2× 1S + 1/2× (1/2× 2S + 1/2× 3S) = 7S/4

The expected cost of a 0-cycle with extramax = 1 is then C1
0/B

1
0 = 7S/6 per

bit. As the length of the exponent tends to infinity, the contribution of the possibly
unterminated last 0-cycle becomes negligible. Therefore the cost per bit of a random
exponent tends to the cost per bit of a 0-cycle as its length tends to infinity. So we
can approximate the cost of algorithms 2.19, 2.20 and 2.21 to 7S/6 for exponents of
thousands of bits.
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- extramax = e > 1 A 0-cycle starts with a 0 with probability 1/2 and with a 1
otherwise. In the first case its cost is 1S as previously. Let B̃ec , respectively C̃

e
c , denote

the expected length, respectively the expected cost, of a c-cycle starting with a 1 bit
when extramax = e.

Be0 = 1/2× 1 + 1/2× B̃e0 (2.4)

Ce0 = 1/2× 1S + 1/2× C̃e0 (2.5)

First we demonstrate that B̃e0 = 2e. As depicted below, one can observe that
B̃e0 = B̃e+1

1 .
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...
e

bit: i . . . i + B̃e0
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As depicted hereafter, the length B̃e+1
0 of a 0-cycle with extramax = e + 1 and

starting by a 1 bit is sB̃e+1
1 + 2 where s is the number of inner 1-cycles starting by a 1

bit. Note also that s = i with probability 2−(i+1), which gives:

B̃e+1
0 = 2 +

∞∑
i=0
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(B̃e0)e≥1 is thus an arithmetic progression with common difference 2 and B̃1
0 = 2.

This yields B̃e0 = 2e.

In a same manner, we can observe that:

C̃e+1
0 = 2S +

∞∑
i=0

i C̃e+1
1

2(i+1)
= 2S + C̃e+1

1 = 2S + C̃e0

Since C̃1
0 = 5S/2 we obtain that C̃e0 = (1/2 + 2e)S.
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Using the above results in equations (2.4) and (2.5), we obtain finally:

Be0 = 1/2× 1 + 1/2× 2e = 1/2 + e

and Ce0 = 1/2× 1S + 1/2× (1/2 + 2e)S = (3/4 + e)S

The expectation of the cost per bit of a 0-cycle is then:

Ce0
Be0

=

(
3/4 + e

1/2 + e

)
S =

(
1 +

1

4e + 2

)
S

Therefore the expectation of the cost of Algorithm 2.21 with extramax = e tends
to (1 + 1

4e+2 )S as the length of the exponent tends to infinity.

2.5.3 Practical Results

We briefly present below practical implementation results of the non-parallelized square-
always algorithm. As discussed previously we focus on the right-to-left version.

We implemented this algorithm and Montgomery ladder on an Atmel AT90SC smart
card chip. This component is provided with an 8-bit AVR core and the AdvX coprocessor
dedicated to long-integer arithmetic. We used Barrett reduction [Bar87] to implement
modular arithmetic.

We present in Table 2.7 the memory (code and RAM) and timing figures obtained
with the chip and the AdvX running at 30 MHz. The observed speed-up of the square-
always algorithm over the Montgomery ladder is 5% on average. This is less than the
predicted 11% but the difference can be explained by the neglected operations of the
atomic pattern. Keep in mind that such results highly depend on the considered device
and its hardware capabilities.

Table 2.7: On-chip comparison of Montgomery ladder and square-always

Algorithm Key length (b) Code (B) RAM (B) Timing (ms)

Montgomery ladder
(Alg. 2.3)

512 360 128 30

1024 360 256 200

2048 360 512 1840

Square-always
(Alg. 2.18)

512 510 192 28

1024 510 384 190

2048 510 768 1740

We performed careful SPA on both implementations and observed no leakage on
power traces.
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2.6 Horizontal Correlation Analysis on Exponentiation

In this section, we introduce a correlation analysis using only one execution side-channel
trace during an RSA exponentiation to recover the whole secret exponent manipulated
by a chip. It uses the fact that long-integer multiplications are performed using multi-
precision algorithms, and consequently that the side-channel leakage of only one of
them can provide enough information to an adversary to mount a correlation analysis.
Therefore, similarly to the Big Mac attack, longer keys facilitate this attack and its
success depends on the arithmetic coprocessor characteristics.

Our technique uses a single exponentiation trace and thus cannot be prevented
by exponent blinding. Moreover, contrarily to the Big Mac attack, it applies even in
the case of regular implementations such as the square-and-multiply-always and Joye
or Montgomery ladders. We also point out that DSA and Diffie-Hellman exponenti-
ations are no more immune against the differential analysis. This research has been
published [CFG+10] and led to patent registration [CFG+11f; CFG+11e].

In the following, we introduce the idea of our attack in Section 2.6.1. Section 2.6.2
presents its theory and evaluates the efficiency of classical countermeasures. Some
practical successful results on an embedded device are given in Section 2.6.3, and the
consequences of our work for implementation of common cryptosystems is discussed in
Section 2.6.4.

2.6.1 Introduction to the Horizontal Analysis

Our horizontal analysis is inspired by many prior works. First of all, in their seminal
paper [MDS99b], Messerges et al. were the first to use cross-correlation techniques be-
tween trace segments to identify the performed operations. However, their experiments
were not successful. Then, as already stated, the Big Mac attack is the first successful
attack using trace segments where known operations are used to identify others. Finally,
a key observation from Amiel et al. [AFV07] aroused our curiosity.

In this latter paper, a CPA is performed to recover the secret exponent of public-key
implementations. In accordance with what one may expect, their practical results show
that the number of traces necessary for an attack is much lower compared to DPA:
less than one hundred traces are sufficient. More interestingly, Amiel et al. observe that
the correlation is highest when computed on t bits, t being the bit size of the device
multiplier. They show the details [AFV07, Fig. 8] of the correlation factor obtained for
every multiplicand t-bit word xi during the squaring operation x × x using a hardware
multiplier. It is worthwhile noticing that a correlation peak occurs for HW(xi) each time
a word xi is involved in a multiplication xi × xj .

The horizontal correlation analysis presented in the next section takes advantage of
this observation.

Horizontal vs. Vertical Analysis We refer to the techniques analyzing time samples
corresponding to a same moment in several execution traces as vertical side-channel
analysis. Such analysis is depicted in Figure 2.12 where an operation starting at instant
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t and of length ω is targeted on N execution traces. The classical DPA and CPA tech-
niques thus fall into this category. We also categorize here the various collision analyses
presented in Section 2.2.2.1 since two traces at least are needed in these attacks. Ver-
tical analysis is classically circumvented using arithmetic blinding countermeasures, such
as exponent/scalar randomization which breaks the basic requirement of these attacks
that several executions with a fixed exponent/scalar may be monitored.

T 1

t t + ω

T 2

t t + ω...

TN

t t + ω

Figure 2.12: Vertical side-channel analysis on exponentiation

We call horizontal side-channel analysis the attack techniques using a single trace.
In this respect, the first known horizontal power analysis is the original SSCA. Single
trace cross-correlation and Big Mac attacks are also horizontal techniques. Our attack
computes the correlation factor between many trace segments extracted from within a
single consumption/radiation trace as depicted in Figure 2.13, therefore we call it hori-
zontal correlation analysis. It contrasts with classical DSCA which targets a particular
instant of the execution in several traces.
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Figure 2.13: Horizontal side-channel analysis on exponentiation

Remark 16. The exponent/scalar blinding countermeasure is not efficient against hor-
izontal attacks since, once recovered, blinded exponents/scalars may be used by an
adversary to sign or decrypt messages.



2.6. HORIZONTAL CORRELATION ANALYSIS ON EXPONENTIATION 137

2.6.2 Horizontal Correlation Analysis

We present hereafter our attack on an atomically protected RSA exponentiation where
the modular arithmetic is performed using the schoolbook multi-precision multiplica-
tion and a distinct modular reduction such as the Montgomery method presented in
Section 2.1.2.

2.6.2.1 Recovering a Secret Exponent Using a Single Known Message
Exponentiation Trace

As in vertical DPA and CPA on modular exponentiation, the horizontal correlation anal-
ysis reveals the bits of the private exponent d one after another. Considering an ex-
ponentiation implemented using Algorithm 2.4, each exponent bit di is recovered by
determining whether the processing of this bit involves a multiplication by m or not.
The difference with classical vertical analysis lies in the way we build and check our
hypothesis test.

Given an exponentiation trace T , let T k denote the portion of the waveform corre-
sponding to the k-th long-integer multiplication. Computing x × y using Algorithm 2.5
requires lb2 t-bit multiplier calls. We denote T ki,j the trace segment corresponding to
the internal multiplication xi×yj in T k . As illustrated in Figure 2.13, these lb2 segments
are generally easy to identify by an attacker on a leakage trace with some knowledge of
the underlying hardware, in particular the bitsize t and the implemented multi-precision
multiplication algorithm.

Assuming that the first s bits dl−1dl−2 . . . dl−s of the exponent are already known,
an adversary is able to compute the value R(s)

0 of the accumulator in Algorithm 2.4 after
processing the s-th bit. Observe that the processing of the first s bits corresponds to
the first s ′ long-integer multiplications with s ′ = s + HW(dl−1dl−2 . . . dl−s) since 0 bits
involve a single loop iteration, 1 bits require two loop iterations, and each loop iteration
performs a multiplication. Therefore, the value of the unknown (s + 1)-th exponent bit

is 1 if and only if the (s ′ + 2)-th long-integer multiplication is
(
R

(s)
0

)2
×m as illustrated

below.
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At this point there are several ways of determining whether the multiplication by m
is performed or not.

First, one may show that the series of consumption values in the set of lb2 trace
segments is consistent with the series of operand values mj presumably involved in each
of these segments. To this purpose the attacker simply computes the correlation factor
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between the series of Hamming weights HW(mj) and the series of trace segments T s
′+2
i ,j

— i.e. taking D = mj and R = 0 in the leakage model formula (2.1). In other words the
trace segments are used as they would be in a vertical analysis if they were independent
aligned traces. A correlation peak reveals that m is actually handled in this long-integer
multiplication, and consequently that dl−s−1 = 1.

Alternatively, the correlation factor can be computed between the traces segments
and the intermediate results of each t-bit multiplication xi × yj , cf. Algorithm 2.5, with
x = R

(s)
0 and y = m, or in other words take D = R

(s)
0,i × mj , where R

(s)
0,i denotes the

i-th word of R(s)
0 . This method may also be appropriate since the words of the result

are written in registers at the end of the operation. In this case lb2 different values are
available for correlating the trace segments instead of lb previously. This diversity of
data may be necessary for the success of the attack when lb is small. Note that other
intermediate values may also lead to better results depending on the hardware leakages.

Another method consists in using trace segments T s
′+3
i ,j of the next long-integer

multiplication and estimating their correlation with the Hamming weight of the words xi
of the product x =

(
R

(s)
0

)2
×m. Indeed, if the (s ′ + 2)-th operation is a multiplication by

m, then R(s+1)
0 = x and the (s ′ + 3)-th operation is a squaring

(
R

(s+1)
0

)2
, manipulating

the words of x .

As pointed out by Walter with the Big Mac attack [Wal01], the longer the integer
manipulated and the smaller the size t of the multiplier, the larger the number lb2 of trace
segments. Thus longer keys are more at risk with respect to horizontal analysis. For
instance in an RSA 2048 bit encryption, if the long-integer multiplication is implemented
using a 32-bit multiplier we obtain (2048/32)2 = 4096 segments T ki,j per trace T k .
Table 2.8 shows examples of values for lb and lb2 for different key lengths l and multiplier
sizes t. Considering that 500 trace samples may be enough to perform a correlation
analysis with an average SNR — see the next section for practical results —, many
implementations may be subject to this attack.

Table 2.8: Examples of values l , t (in bits), and lb together with the number of available
segments lb2 for horizontal correlation analysis

Key length l Mult. size t lb lb
2

2048 64 32 1024

2048 32 64 4096

1024 64 16 256

1024 32 32 1024

1024 16 64 4096

512 32 16 256

512 16 32 1024
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2.6.2.2 Comparing Horizontal and Big Mac Attacks

Let us now compare the horizontal correlation analysis on exponentiation with the Big
Mac attack which is another generic horizontal analysis circumventing exponent ran-
domization.

Since the Big Mac attack deals with long-integer multiplication templates, it aims
at differentiating multiplications from squarings, and fails on regular algorithms such
as square-and-multiply-always and ladders methods. On the other hand, the horizontal
correlation analysis targets the manipulation of intermediate results which is a more
generic approach and applies to all kinds of algorithms.

Besides, the limitation of the Big Mac analysis — its ignorance of the intermediate
results — is precisely the cause of its noticeable property to be applicable also when
the base of the exponentiation is not known to the attacker. The Big Mac attack
thus applies when the message is randomized and/or in the case of a CRT implementa-
tion of RSA. While the horizontal correlation technique does not intrinsically deal with
message randomization, we explain in the next section how to break those protected
implementations when the random bit-length is not sufficiently large.

2.6.2.3 Horizontal Analysis on a Blinded Exponentiation

To protect public-key implementations from differential analysis, developers usually in-
clude blinding countermeasures in their cryptographic codes, cf. Section 2.3.2. The
most popular ones on RSA exponentiation are:

• additive randomization of the message/ciphertext: m′ = m + rn mod kn with
k ∈ [2α−1, 2α − 1] and r being an α-bit random value,

• multiplicative randomization of the message/ciphertext: m′ = r em mod n with r
being an α-bit random value and e the public exponent,

• additive randomization of the exponent: d ′ = d + rϕ(n) with r being a random
value and ϕ(n) = (p − 1)(q − 1).

All these countermeasures prevent classical vertical side-channel analysis but efficiency
is penalized as the exponent and modulus are extended by the randomization processes.

Guessing the Blinded Message Let us now consider an implementation using both
an SSCA resistant algorithm, the (additive or multiplicative) message randomization
method, and the secret exponent blinding. It is generally assumed in the literature
that such an implementation applies state-of-the-art countermeasures. We analyze its
security with regard to the horizontal correlation analysis.

As previously discussed, exponent blinding has no effect since we analyze a single
trace and recovering d ′ is considered to be successful for an adversary. Then, assuming
that the entropy of the message blinding random value r is α bits, there are 2α possible
values for m′ knowing m and n. Attacking this implementation first requires to recover
the value of r . This is achieved by performing a horizontal correlation analysis for each
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possible r on the very first multiplication which computes m′. Since this multiplication
is necessarily computed, the value of r is retrieved as the one showing a correlation peak
— or the highest correlation peak. Once r is known by the adversary, the randomized
message m′ is revealed and a classical horizontal analysis can be conducted to recover
the blinded exponent d ′ similarly to the non blinded case, except that m′ should be used
instead of m. Consequently, the entropy of r must be large enough (e.g. α ≥ 32) to
make the number of guess unaffordable or to make it difficult in practice to distinguish
the correct one.

2.6.3 Practical Results

This section presents the successful experiments we conducted to demonstrate the ef-
ficiency of the horizontal correlation analysis technique. We use here a 16-bit RISC
microprocessor on which we implemented a software schoolbook long-integer multipli-
cation based on a 16 × 16 bits multiplier to simulate the behavior of a coprocessor.
We aim at correlating a single long-integer multiplication with one or both operands
manipulated — i.e. yj or xi × yj .

The measurement bench is composed of a Lecroy Wavepro oscilloscope, and home-
made software and electronic cards are used to acquire the power traces and process
the attacks.

We first performed a classical vertical correlation analysis to characterize our imple-
mentation and measurement bench, and to validate the correlation model; then we pro-
ceeded with the horizontal correlation analysis previously described. Figure 2.14 shows
a power trace segment corresponding to the beginning of a long-integer multiplication,
where we identify the single-precisions multiplications using vertical lines.

Figure 2.14: Beginning of a long-integer multiplication power trace, vertical lines delin-
eate each T ki,j
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2.6.3.1 Vertical Correlation Analysis

Considering an operation x×y , this analysis succeeds in two cases. We obtain correlation
peaks by computing the correlation between a trace segment Ti ,j and operands values
xi and yj , or value of the product xi × yj . Figures 2.15 and 2.16 show the correlation
traces obtained in both cases with 500 power consumption traces.

Figure 2.15: Vertical CPA on value yj Figure 2.16: Vertical CPA on value xi × yj

These results suggest that a horizontal correlation analysis can be performed, as
explained previously, either using operand values yi or using product values xi × yj for
estimating the correlation with segment traces of the long-integer multiplication.

2.6.3.2 Horizontal Correlation Analysis

We present results of our attack on a 512-bit long-integer multiplication. This yields
1024 trace segments T ki,j of 16-bit multiplications to mount the analysis, which should
be enough for the success of our attack regarding the vertical analysis results. From
the single acquired power trace, we processed the signal in order to detect the set of
cycles corresponding to each 16-bit multiplication xi × yj and divided the single power
trace in 1024 segments T ki,j as depicted in Figure 2.14.

Then we performed a horizontal correlation analysis as explained in Section 2.6.2 for
the two options D = R

(s)
0,i ×mj and D = mj . In both cases, the operation executed is

successfully identified as shown in figures 2.17 and 2.18. In each figure, the gray trace
shows a greater correlation than the black one and corresponds to the correct guess on
the operands.

Our results show that the horizontal correlation analysis can be used to recover a
secret exponent using a single exponentiation trace when the input message is known.
Although the attack is tested on a software implementation, results obtained by Amiel
et al. [AFV07, Fig. 8] prove that correlation techniques are efficient on hardware co-
processors (with multiplier size larger than or equal to 16 bits), and enable the attacker
to locate each single-precision multiplication involved in a long-integer multiplication.
We thus believe that our attack also threatens exponentiation implementations using
hardware coprocessors.
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Figure 2.17: Horizontal correlation analy-
sis on value ai ×mj .

Figure 2.18: Horizontal correlation analy-
sis on value mj .

It should also be noted that all SSCA resistant algorithms that can be used to im-
plement the exponentiation — either those protected with atomicity principle or regular
ones as square-and-multiply-always and Montgomery ladder — may be threatened by
the horizontal analysis. Therefore, we recommend to implement a resistant and effi-
cient blinding method on the data manipulated, for instance by using additive message
randomization with random values larger than or equal to 32 bits.

2.6.4 Concerns for Common Cryptosystems

We presented our analysis on straightforward implementations of the RSA signature and
decryption algorithms which essentially consists of an exponentiation with the secret
exponent. In the case of an RSA exponentiation using the CRT method our technique
cannot be applied since the operations are performed modulo p and q which are unknown
to an adversary. On the other hand, DSA and Diffie-Hellman exponentiations were until
now considered immune to DSCA because the exponents are chosen at random before
each execution. Although this naturally protects these cryptosystems from vertical
analysis, horizontal correlation analysis can recover a secret exponent using a single
side-channel trace. Thus, DSA and Diffie-Hellman exponentiations are prone to this
attack and additional countermeasures must be used in embedded implementations.

It is worthwhile noticing that ECC cryptosystems are theoretically also concerned
by horizontal correlation analysis. However, since key lengths are considerably shorter
very few traces per scalar multiplication will be available for the attack. Besides, scalar
multiplication involves point doublings and point additions instead of field multiplications
and squarings. Each point operation requires about 10 modular multiplications, thus
correlation computation could take advantage of all the corresponding trace segments.
Nevertheless, a factor of about 10 should not balance the key length reduction which
has a quadratic influence on the number of available trace segments.

Our contribution enforces the necessity of using sufficiently large random numbers
for blinding in secure implementations and highlights the fact that increasing the key
lengths in the next years could improve the efficiency of some side-channel attacks.
Our attack threatens implementations which have been considered secure up to now.
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Therefore, this new potential risk should then be taken into account when developing
embedded products.

Further work could target the use of other values and distinguishers in the horizontal
correlation analysis to improve its efficiency. Possible ideas include: using more interme-
diate values, guessing simultaneously many bits of the secret exponent to increase the
number of available traces for the analysis, and using different models like the bivariate
one for correlation factor computation.
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2.7 Long-Integer Multiplication Blinding and Shuffling

In this section, we address the issue of implementing side-channel analysis counter-
measures within the multi-precision multiplication algorithm. It is well known that two
different directions can be chosen when preventing differential side-channel analysis:
blinding and shuffling sensitive operations [RPD09]. Surprisingly, shuffling arithmetic
operations in public-key algorithms has been little studied up to now.

Therefore, we propose new countermeasures for modular multiplication implemen-
tation using either both blinding and shuffling, or shuffling only. Although the following
techniques were designed to circumvent the horizontal analysis presented in Section 2.6,
we believe that they should prevent various kinds of side-channel analysis, such as col-
lision analysis. The content of this section has been partially published [CFG+10] and
led to patent registration [CFG+11c; CFG+11a].

Our countermeasures are first presented on the classical schoolbook multiplication
algorithm in Section 2.7.1 and then on the modular Montgomery multiplication in Sec-
tion 2.7.2.

2.7.1 Schoolbook Multiplication

In the following, we first consider using blinding on operands words inside the main
loop of the schoolbook multiplication. Then we propose trading partially or completely
operands blinding for shuffling, in order to speed-up the multiplication.

2.7.1.1 Operands Blinding

A full blinding countermeasure on the words xi and yj consists in replacing in step 5 of
Algorithm 2.5 the operation

(wi+j + xi × yj) + c

by a blinded computation, for instance:

(wi+j + (xi − r1)× (yj − r2)) + r1 × yj + r2 × xi − r1 × r2 + c

with r1 and r2 two t-bit random values. For efficiency purposes, the values r2 × xi ,
r1 × yj , r1 × r2 should be computed once and stored2.

Such a blinded schoolbook multiplication requires lb2 + 2lb + 1 single-precision mul-
tiplications, i.e. 2lb + 1 extra multiplications compared to the non-blinded version. Note
also that 2(t+ 2l) additional bits are required to store the aforementioned precomputed
values.

In the following we improve this countermeasure by mixing data blinding and internal
loops shuffling.

2These precomputations must also be protected from side-channel analysis. For instance, it is
possible to shuffle their processing, which allows (2lb + 1)! different sequences.
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2.7.1.2 Shuffling Rows and Blinding Columns

This method consists in randomizing the way the words xi are processed by the algo-
rithm. In other words, it shuffles the sequence of rows in the schoolbook multiplication
— i.e. the processing of words xi in Algorithm 2.5. On the other hand it remains nec-
essary to blind the words of y since columns are still processed in the regular sequence.
Algorithm 2.22 details this countermeasure.

Algorithm 2.22 Schoolbook long-integer multiplication with rows shuffling and columns
blinding

Input: x = (xlb−1xlb−2 . . . x0)b, y = (ylb−1ylb−2 . . . y0)b
Output: x × y
Uses: w = (w2lb−1w2lb−2 . . . w0) and 4t extra bits to store r and z

1: Pick at random a permutation vector α = (αlb−1 . . . α0) in [0, lb − 1]

2: w ← (00 . . . 0)

3: for h = 0 to lb − 1 do
4: i ← αh
5: Pick at random r in [1, b − 1]

6: z ← r × xi
7: c ← 0

8: for j = 0 to lb − 1 do . w ← w + bαhxαh × y
9: (uv)b ← wi+j + xi × (yj − r) + c + z

10: wi+j ← v

11: c ← u

12: for j = lb to 2lb − i − 1 do . carry propagation
13: (uv)b ← wi+j + c

14: wi+j ← v

15: c ← u

16: return w

Considering the horizontal correlation analysis, an attacker has to know precisely the
way operands words are manipulated in the algorithm to compute the correlation esti-
mate. Shuffling the processing of words xi thus protects from an adversary performing
a correlation between the series xi and T ki,j if the size of the random permutation is big
enough to deter an exhaustive search.

The random permutation provides lb! different sequences for the execution of the
loop on multiplication rows. For example, using a 32-bit multiplier, the number of
possible execution sequences for a 1024-bit long-integer multiplication amounts to 32! >

2117 possibilities, which we believe to be more than enough.

Compared to the previous countermeasure, Algorithm 2.22 requires only l2 + l t-bit
multiplications — i.e. l extra multiplications compared to Algorithm 2.5 and 4t bits of
additional storage. Note also that an additional carry propagation loop is required due
to the randomization effect. The cost of this extra processing is not straightforward
to evaluate and depends on the implementation. For instance, considering a hardware
device, it may induce a negligible timing overhead, but may increase the chip area.
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Remark 17. As written above, Algorithm 2.22 is subject to a timing analysis on the
carry propagation loop, since the number of iterations depends on i . Observing this
number of iterations allows an adversary to recover the random permutation and then
apply another analysis. Although we leave the algorithm as is for readability purposes,
an implementation should always perform 2lb iterations in the carry propagation loop to
withstand timing analysis. This observation holds for the following algorithms as well.

Remark 18. One may argue that in the case of very small lb values such a counter-
measure would not be efficient due to the small number of different random sequences.
Remember here that if lb is very small, the horizontal correlation analysis is not efficient
either because of the small number of trace segments.

2.7.1.3 Shuffling Rows and Columns

We propose a variant of the previous countermeasure in which the execution sequences
of both internal loops of the algorithm are randomized. This means randomizing both
rows and columns of the schoolbook multiplication. The main advantage of this method
is that operand words do not have to be blinded anymore to prevent horizontal analysis.
It is detailed in Algorithm 2.23.

Algorithm 2.23 Schoolbook long-integer multiplication with rows and columns shuffling
Input: x = (xlb−1xlb−2 . . . x0)b, y = (ylb−1ylb−2 . . . y0)b
Output: x × y
Uses: w = (w2lb−1w2lb−2 . . . w0) and l extra bits to store c = (clb−1clb−2 . . . c0)

1: Pick at random two permutation vectors α, β in [0, lb − 1]

2: w ← (00 . . . 0)

3: for h = 0 to lb − 1 do
4: i ← αh
5: c ← (00 . . . 0)

6: for k = 0 to lb − 1 do . w ← w + bαhxαh × y
7: j ← βk
8: (uv)b ← wi+j + xi × yj
9: wi+j ← v

10: cj ← u

11: u ← 0

12: for j = 1 to lb do . carries addition
13: (uv)b ← wi+j + cj−1 + u

14: wi+j ← v

15: for j = lb + 1 to 2lb − i − 1 do . carry propagation
16: (uv)b ← wi+j + u

17: wi+j ← v

18: return w

Using this method, the number of random sequences of lb2 single-precision multi-
plications is increased to (lb!)2. For instance, a 512-bit integer multiplication using a
32-bit multiplier can be processed in (16!)2 > 288 different ways.
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Unlike the two previous countermeasures, Algorithm 2.23 requires no extra single-
precision multiplication compared to Algorithm 2.5. On the other hand, it requires an
extra vector of l bits for carry propagation, which is more than Algorithm 2.22.

2.7.2 Montgomery Modular Multiplication

Considering that algorithms using interleaved modular multiplication and reduction are
often used in practice for memory savings, we present hereafter different implemen-
tations of the multiplication rows/columns shuffling on the interleaved Montgomery
modular multiplication.

Unfortunately, Montgomery reductions cannot be interleaved in a straightforward
manner between rows computations in Algorithms 2.22 and 2.23. Indeed, a reduction
step requires the carry propagation to complete before taking place. Thus, all rows have
to be computed before starting to reduce the result, which is precisely a non interleaved
method.

We propose the following compromise: the long-integer multiplication is divided into
σ stages such that σ | lb, each stage i comprising the computation of rows xiδ × y to
xiδ+δ−1×y where 0 ≤ i < σ, and δ = lb/σ. Subsequently, an interleaved reduction takes
place at the end of each stage and the intermediate results are limited to δt + l bits.
This method is presented in Algorithm 2.24 with the rows shuffling and the columns
blinding, and in Algorithm 2.25 with the rows and columns shuffling. The reduction
substages are protected as well using blinding, resp. shuffling, in Algorithm 2.24, resp.
Algorithm 2.25.

Note that in algorithms 2.24 and 2.25, we do not perform the conditional final
subtraction since it should be avoided in practice to prevent timing analysis [Wal02].

These algorithms provide a low-level countermeasure against various side-channel
analysis, including horizontal correlation analysis and some SSCA such as collision anal-
ysis. However, it is still necessary to apply some other countermeasures such as expo-
nent/scalar blinding when an implementation is exposed to DSCA.
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Algorithm 2.24 Interleaved Montgomery modular multiplication with rows shuffling and
columns blinding

Input: x = (xlb−1xlb−2 . . . x0)b, y = (ylb−1ylb−2 . . . y0)b, n = (nlb−1nlb−2 . . . n0)b
Output: xy2−l mod n

Uses: w = (wlb+δwlb+δ−1 . . . w0)b and 4t extra bits to store r and z
1: n′0 ← −n0

−1 mod b

2: w ← (00 . . . 0)

3: for s = 0 to lb − 1 by δ do
Multiplication substage

4: Pick at random a permutation vector α = (αδ−1 . . . α0) in [0, δ − 1]

5: for h = 0 to δ − 1 do
6: i ← αh
7: Pick at random r in [1, b − 1]

8: z ← r × xs+i

9: u ← 0

10: for j = 0 to lb − 1 do . w ← w + bαhxαh × y
11: (uv)b ← wi+j + xs+i × (yj − r) + u + z

12: wi+j ← v

13: for j = lb to lb + δ − i − 1 do . carry propagation
14: (uv)b ← wi+j + u

15: wi+j ← v

Reduction substage
16: for i = 0 to δ − 1 do
17: q ← w0 × n′0 mod b . q ← −w0/n0

18: Pick at random r in [1, b − 1]

19: z ← (r � t)− r . z ← (b − 1)r

20: u ← r

21: for j = 0 to lb − 1 do . w ← w + q × n
22: (uv)b ← (wj + z) + q × nj + u

23: wj ← v

24: for j = lb to lb + δ − i − 1 do . carry propagation
25: (uv)b ← (wj + z) + u

26: wj ← v

27: wlb+δ−i ← u − r
28: (wlb+δwlb+δ−1 . . . w0)b ← (0wlb+δwlb+δ−1 . . . w1)b . (w)b ← (w)b � 1

29: return w
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Algorithm 2.25 Interleaved Montgomery modular multiplication with rows and columns
shuffling

Input: x = (xlb−1xlb−2 . . . x0)b, y = (ylb−1ylb−2 . . . y0)b, n = (nlb−1nlb−2 . . . n0)b
Output: xy2−l mod n

Uses: w = (wlb+δwlb+δ−1 . . . w0)b and l extra bits to store c = (clb−1clb−2 . . . c0)

1: n′0 ← −n0
−1 mod b

2: w ← (00 . . . 0)

3: for s = 0 to lb − 1 by δ do
Multiplication substage

4: Pick at random a permutation vector α = (αδ−1 . . . α0) in [0, δ − 1]

5: for h = 0 to δ − 1 do
6: i ← αh
7: Pick at random a permutation vector β = (βlb−1 . . . β0) in [0, lb − 1]

8: c ← (00 . . . 0)

9: for k = 0 to lb − 1 do . w ← w + bαhxαh × y
10: j ← βk
11: (uv)b ← wi+j + xs+i × yj
12: wi+j ← v ; cj ← u

13: u ← 0

14: for j = 1 to lb do . carries addition
15: (uv)b ← wi+j + cj−1 + u

16: wi+j ← v

17: for j = lb + 1 to lb + δ − i − 1 do . carry propagation
18: (uv)b ← wi+j + u

19: wi+j ← v

Reduction substage
20: for i = 0 to δ − 1 do
21: q ← w0 × n′0 mod b . q ← −w0/n0

22: Pick at random a permutation vector β = (βlb−1 . . . β0) in [0, lb − 1]

23: c ← (00 . . . 0)

24: for k = 0 to lb − 1 do . w ← w + q × n
25: j ← βk
26: (uv)b ← wj + q × nj
27: wj ← v ; cj ← u

28: u ← 0

29: for j = 1 to lb do . carries addition
30: (uv)b ← wj + cj−1 + u

31: wj ← v

32: for j = lb + 1 to lb + δ − i − 1 do . carry propagation
33: (uv)b ← wj + u

34: wj ← v

35: wlb+δ−i ← u

36: (wlb+δwlb+δ−1 . . . w0)b ← (0wlb+δwlb+δ−1 . . . w1)b . (w)b ← (w)b � 1

37: return w
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2.8 CoCo (Side-)Channel Analysis on AES

We already mentioned in Section 2.2.2.1 a specific approach for side-channel analysis
that consists in using information leakages to detect collisions between data manipulated
in algorithms. While the rest of this thesis deals with public-key cryptography, this
section focuses on side-channel collision attacks on block ciphers. In the following, we
refine some known collision techniques and illustrate our analysis on the widespread AES
algorithm. This work has been published [CFG+11b].

A side-channel collision attack against a block cipher is presented by Schramm,
Wollinger, and Paar in 2003 [SWP03]. This attack uses differential analysis to exploit
collisions in adjacent S-Boxes of the DES algorithm. Schramm, Leander, Felke, and
Paar [SLFP04] then propose an attack against AES to detect collisions in the output
of the first round MixColumns. Later, Bogdanov [Bog07] improved this attack by
looking for equal S-Box inputs in several AES executions. He then studied statistical
techniques to detect collisions between power traces [Bog08]. Finally, Moradi, Mischke,
and Eisenbarth [MME10] proposed a correlation based collision attack to defeat an AES
implementation using masked S-Boxes.

In this section, we present two Collision-Correlation (CoCo) attacks on software
AES implementations protected against first-order side-channel analysis using masked
S-Boxes and practical results on both simulated and real power traces. Our attacks
are much more efficient and more generic compared to the one presented by Moradi et
al. [MME10]. Moreover we believe our techniques to be applicable to other embedded
implementations of symmetric block ciphers.

The remainder of this study is organized as follows: Section 2.8.1 presents the two
AES first-order protected implementations targeted by our study. Then in Section 2.8.2
we present our attacks and practical results on simulated power traces and on a physical
integrated circuit. Finally, Section 2.8.3 deals with possible countermeasures.

2.8.1 Targeted Implementations

AES is the well-known block cipher algorithm selected in 2001 by the NIST [NIST01],
as the candidate designed by Daemen and Rijmen, in order to replace the DES. It is
probably the currently most used symmetric encryption algorithm.

For the sake of simplicity, we focus on AES-128 which includes 10 rounds, each one
comprising four functions: AddRoundKey, SubBytes, ShiftRows, and MixColumns.
It encrypts a 128-bit message M = (m0, . . . , m15) using a 128-bit secret key K =

(k0, . . . , k15) and produces a 128-bit ciphertext C = (c0, . . . , c15). Note however that
the techniques presented hereafter are easily applicable to AES-192 and AES-256.

The only non-linear function in the AES is SubBytes (also referred to as the S-Box
S in the following) which is a substitution function defined by the pseudo-inversion I in
F28 and an affine transformation. In this work, we consider the two following solutions
that have been proposed to protect this function against first-order attacks.
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2.8.1.1 Blinded Lookup Table

The first targeted implementation uses a masked substitution table as proposed by
Kocher et al. [KJJ98], and Akkar and Giraud [AG01]. This masked table S′ is defined
by S′(xi ⊕ ui) = S(xi)⊕ vi , with ui (resp. vi) the mask of the i-th input byte xi (resp.
output byte) of function SubBytes, xi , yi , ui , vi ∈ F28 , 0 ≤ i ≤ 15. This table is usually
computed before the AES execution and stored in volatile memory.

We further consider that the same masks u and v are applied on all S-Boxes during
one execution (or a round at least) of the algorithm, i.e. ui = u and vi = v for
0 ≤ i ≤ 15. We believe that this hypothesis is realistic for embedded security products
considering that an expensive recomputation of the 256-byte substitution table S′ is
necessary for each new pair (u, v) and that the storage of many masked tables is not
conceivable in memory constrained devices.

2.8.1.2 Blinded Inversion Calculation

An alternative solution has been proposed by Oswald, Mangard, Pramstaller, and Rij-
men [OMPR05] and improved by Canright and Batina [CB08]. It consists in computing
the inversion in F28 using a multiplicative mask. To do this efficiently it is proposed to
decompose the computation using inversions in the subfield F24 (and possibly in F22).
Such a masking method is well suited for hardware implementations.

We recall some properties of the masked inversion. Let I ′ denote the masked pseudo-
inversion such that I ′(xi ⊕ ui) = I(xi)⊕ ui . The element xi ⊕ ui in F28 is mapped to a
pair (xi ,h ⊕ ui ,h, xi ,l ⊕ ui ,l) in F24 × F24 such that xi ⊕ ui = (xi ,h ⊕ ui ,h)X + (xi ,l ⊕ ui ,l),
for some X in F28 \ F24 . As detailed by Oswald et al. [OMPR05] many calculations
occur on these subfield elements to compute the masked inversion of xi ⊕ ui . In these
formulas, neither xi ,h nor xi ,l is directly inverted in F24 but the following value:

di ⊕ ui ,h = x2
i ,h × p0 ⊕ (xi ,h × xi ,l)⊕ x2

i ,l ⊕ ui ,h ,

where p0 depends on the field polynomial used to define the quadratic extension of F24 .
Then the masked inversion in F24 of di ⊕ ui ,h gives d−1

i ⊕ ui ,h and is used to compute
I ′(xi ⊕ ui).

The 16 input bytes of SubBytes are blinded using different masks ui , but one can
notice that input and output masks of the inversion stage are identical. Therefore
another threat to take into consideration is the zero value power analysis. This tech-
nique has been introduced by Golić and Tymen [GT03], and Mangard, Oswald, and
Popp [MOP07], and implemented against masked inversion by Moradi et al. [MME10].
It also applies to the improved version of Canright and Batina [CB08] when input and
output of the inversion are masked with the same value.

2.8.1.3 Measurements and Validation of Implementations

Trace Acquisition We have developed software implementations on a contact smart
card using a 16-bit RISC CPU with low power consumption. Two different methods
were used to validate our attacks.
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First, we used simulated traces: a proprietary tool was used to simulate power traces
based on the chip architecture and the code executed. This tool generates ideal power
consumption traces without any noise which allows to validate in practice the resistance
of an implementation to a set of side-channel attacks leaving aside the acquisition and
signal processing problems.

Second, we used real traces: we made physical measurements on the chip itself
using a MicroPross MP100 reader and a Lecroy WavePro numerical oscilloscope.

First-Order Resistance Validation Since our aim is to present techniques able to
defeat first-order protected devices, we performed classical first-order differential and
correlation analysis on the two implementations presented above before testing our
collision attacks.

We applied DPA and CPA to the AddRoundKey, SubBytes, and MixColumns func-
tions at the first and the last rounds of our implementations. We also performed detailed
SPA for each input byte value using many average traces to detect any noticeable (bi-
ased) power traces that would reveal a potential leakage: no leakage has been observed.
We also verified that both implementations were immune to zero value power analysis
and to the attack presented by Moradi et al [MME10].

We have thus verified that, to the best of our knowledge, both considered AES
implementations are resistant to known first-order attacks. Nevertheless we present in
the next section two new collision techniques which jeopardize these implementations.

2.8.2 Description of our CoCo Attacks

In this section, we present the general principle of CoCo attacks and then detail how it
can be applied to the two considered AES implementations.

Collision based analysis is also known as cross-correlation attacks [WWM11] and
multiple-differential collision attacks [Bog08]. We prefer the term collision-correlation
attacks since cross-correlation may be ambiguous depending on the context, and we
deem multiple-differential collision too generic for our method.

2.8.2.1 The CoCo Recipe

The principle of the attacks presented in this section is to detect internal collisions
between data processed in blinded S-Boxes on the first round of an AES execution. We
demonstrate in the following that if (i) we are able to detect that the same data is
processed at instants t0 and t1, and (ii) the S-Boxes are blinded such that either the
same mask is applied to all message bytes or the mask is identical at the input and the
output of each S-Box, then it is possible to infer information on the secret key with very
few traces.

In the following, we denote by (T n)1≤n≤N a set of N power traces captured from
a device processing N encryptions of the same message M. Then we consider two
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instructions3 whose processing starts at times t0 and t1 and denote by ω the number
of samples acquired per instruction processing. As depicted in Figure 2.19 we finally
consider Θ0 = (T nt0 )n and Θ1 = (T nt1 )n the two series of power consumptions segments
at instants t0 and t1.

T 1

t0 t0 + ω t1 t1 + ω

T 2

t0 t0 + ω t1 t1 + ω...

TN

t0 t0 + ω t1 t1 + ω

Θ0 Θ1

Figure 2.19: Overview of the collision-correlation attack

Note that in practice the N power traces should start at the same instant of the
encryption and be perfectly aligned. Such conditions generally require signal processing
to be performed first. Note also that as the sampling rate is usually such that ω > 1

points are acquired per instruction, we can generalize the definition of Θ0 and Θ1 as
being series of ω-sample trace segments instead of series of single power consumption
samples.

The final stage of the attack consists in applying a statistical treatment to (Θ0,Θ1)

in order to identify if the same data was involved in T nt0 and T nt1 for 1 ≤ n ≤ N. Let
Collision(Θ0,Θ1) denote a decision function returning true or false depending on
whether this property is presumed to be fulfilled or not. Such a decision function would
usually compare the value of a synthetic criterion with an experimentally determined
threshold. Possible examples of such a criterion include the mean squared difference
— the mean being taken over the N traces as well as over the ω samples —, the least
squared difference with binary or ternary voting [Bog08], and the Pearson correlation
factor.

We used this latter criterion in our study. However, contrary to the classical CPA
presented in Section 2.3.1.3, we do not compare a consumption value computed using
a theoretical model to an experimental measurement sample. Instead, we estimate the
correlation factor between the two series of trace segments Θ0 and Θ1 at time offset t

3In our attacks we consider only the correlation between two identical instructions, but it may even
be possible to detect that two different instructions manipulate identical data, e.g. by spotting a data
bus using eletromagnetic analysis.
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(0 ≤ t ≤ ω − 1) to identify similarities between waveform pairs T nt0 and T nt1 . Thus the
estimation of the correlation factor is expressed as:

ρ̂Θ0,Θ1
(t) =

N
∑

(T nt0+tT
n
t1+t)−

∑
T nt0+t

∑
T nt1+t√

N
∑

(T nt0+t)
2 − (

∑
T nt0+t)

2
√
N
∑

(T nt1+t)
2 − (

∑
T nt1+t)

2

where summations are taken over 1 ≤ n ≤ N, and Θi(t) = (T nti+t)n for i ∈ {0, 1}.
Collision(Θ0,Θ1) thus consists in comparing max0≤t≤ω−1(ρ̂Θ0,Θ1

(t)) to a given
threshold. In our experiments a preliminary characterization of the targeted device
enabled us to find proper values for ω and the threshold.

Note that with the CoCo technique we compute the correlation factor between a set
of real power consumptions Θ0 with another set of real power consumptions Θ1, rather
than with model dependent estimates. As Bogdanov already described about binary
and ternary voting techniques [Bog08], an interesting property of this method is that,
unlike Hamming weight based CPA, our criterion does not rely on a particular leakage
model. The consequences of this are that (i) the attack is more generic and requires
less knowledge of the targeted device, and (ii) secret S-Boxes may be attacked as well
as known ones.

As said above, correlating two moments (time segments) on different traces has
already been applied by Moradi et al. [MME10] on a particular AES implementation.
However they collect many traces obtained by encrypting random messages and aver-
age them according to the value of an S-Box input byte. This results in 28 averaged
traces for each byte position, from which they try to detect collisions between two bytes.
They successfully carried out this attack on their implementation of the Canright and
Batina [CB08] first-order protected implementation. However as indicated by the au-
thors their implementation presented a remaining first-order leakage based on zero-value
attacks. We applied Moradi et al. attack to the first-order protected implementations
considered in this study without success. We thus consider that this attack is not
applicable to most first-order protected implementations. Indeed averaging different
traces implies the use of new random mask values which should spoil the influence of
the unmasked data and make the collision of intermediate values undetectable. The
technique we develop in this section improves on Moradi et al. attack in order to detect
data collisions by comparing two moments on the same trace and repeating it on many
executions without the destructive averaging process. In the following we detail two
applications of our attack on two different implementations.

2.8.2.2 Attack on the Blinded Lookup-Table Implementation

First, we present an application of the CoCo principle on the implementation described in
Section 2.8.1.1. This attack targets the execution of the first round SubBytes function.
Each of the 16 masked input bytes x ′i = xi ⊕ u is replaced by a masked output byte
y ′i = yi⊕v where y ′i = S′(x ′i ). We try to detect when two SubBytes inputs (or outputs)
are equal within the first AES round as depicted on Figure 2.20.
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m4 ⊕ k4 ⊕ u m9 ⊕ k9 ⊕ u=

x ′0 x ′1 x ′2 x ′3 x ′4 x ′5 x ′6 x ′7 x ′8 x ′9 x ′10 x ′11 x ′12 x ′13 x ′14 x ′15

S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′

y ′0 y ′1 y ′2 y ′3 y ′4 y ′5 y ′6 y ′7 y ′8 y ′9 y ′10 y ′11 y ′12 y ′13 y ′14 y ′15

Figure 2.20: Collision between the computation of two S-Boxes on bytes 4 and 9 on
the blinded lookup-table implementation

Detecting a collision in the first AES round between bytes i1 and i2 yields xi1 ⊕ u =

xi2 ⊕ u and considering that xi = mi ⊕ ki ⊕ u implies the following relation of the two
involved key bytes:

ki1 ⊕ ki2 = mi1 ⊕mi2 . (2.6)

Practically, we encrypted N times the same message M and collected the N traces
corresponding to the first AES round. For each of the N traces we identified the 16

instants ti corresponding to the beginning of the computation S′(xi ⊕ u). This allowed
us to extract 16 segments from each trace and construct the series Θi used for collision-
correlation as explained in Section 2.8.2.1.

Performing Collision(Θi1 ,Θi2 ) for all the 120 possible pairs (i1, i2) yields a set
of relations (i1, i2, mi1 ⊕ mi2 ) given by Eq. (2.6). By repeating this process for several
random messages M one can accumulate enough relations so that the secret key is
recovered up to a guess on one key byte only.

Based on 10 000 simulations we observed that on average 59 random messages
(each one being encrypted N times) provide enough relations to retrieve the key up to
an unknown byte.

Practical Results on Simulated Traces The threshold of Collision was fixed to
having at least one point equal to 1 among the ω points of the correlation trace. Under
this condition our attack was successful for N = 16. Since a mean of 59 different
messages is required, then 16 × 59 = 944 traces are sufficient on the average for the
attack to succeed on simulated traces were S-Boxes are performed sequentially.

Figures 2.21 and 2.22 show the correlation traces obtained for two different mes-
sages. Both figures present the 120 outputs of ρ̂Θi1

,Θi2
(t), i1 < i2 for each message.

The black trace on Figure 2.21 corresponds to a collision found for the first message
between the computation of two S-Boxes, while other traces in grey reveal that no
other collision occur. One can observe on Figure 2.22 that the second message yields
no collision.
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Figure 2.21: Correlation obtained using
simulated traces for a message giving a
collision (in black)
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Figure 2.22: Correlation obtained using
simulated traces for a message giving no
collision

Practical Results on Real Traces The attack was successful using N = 25 so that
less than 1 500 traces allow to recover the key. Notice how few traces are needed to
detect a collision by correlation. This confirms that the CoCo technique is more efficient
than classical model-based CPA which would not obtain high correlation levels with only
25 traces. Figure 2.23 shows an example of a correlation peak when an equality between
two S-Box outputs occurs, while Figure 2.24 shows the correlation trace when all S-Box
outputs are different.
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Figure 2.23: Correlation peak obtained us-
ing real traces when a collision occurs (in
black)
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Figure 2.24: No correlation peak occurs
in [130, 160] using real traces when data
differ

Note that in the case of real traces the threshold is slightly different. To identify
a clear relation between two S-Box outputs the correlation trace must be greater than
0.8 in the interval [130, 160]. So only these ω = 30 points must be considered when
computing Collision(Θ0,Θ1).

Attack Improvement The method for obtaining information about the key as de-
scribed above basically exploits collision events where a pair (i1, i2) of indices gives a
high correlation between Θi1 and Θi2 revealing the value of ki1 ⊕ ki2 . While very infor-
mative, such collision events occur much less frequently than non-collision ones, that
is when Θi1 and Θi2 show no significant correlation between each other. Non-collision
events individually bring little information — namely that ki1 ⊕ ki2 is different from
mi1⊕mi2 — but they are so numerous that it appears worth trying to exploit them also.
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This improvement halves the number of required traces. However we do not de-
velop this point here for a sake of simplicity but refer the interested reader to our full
paper [CFG+11b].

2.8.2.3 Attack on the Blinded Inversion Implementation

The previous attack cannot be applied to the blinded inversion implementation described
in Section 2.8.1.2 since the different S-Box input and output bytes are masked with
different values ui . However there may exist a possible leakage leading to what we may
call a zero & one values attack.

One can notice that values 0 and 1 produce a collision between the input and the
output of the masked pseudo-inversion stage I ′ as depicted on Figure 2.25. This is due
to the following properties of the pseudo-inversion:

I(0) = 0 ⇒ I ′(0⊕ ui) = 0⊕ ui
I(1) = 1 ⇒ I ′(1⊕ ui) = 1⊕ ui

0⊕ u3

x ′0 x ′1 x ′2 x ′3 x ′4 x ′15
. . .

I ′ I ′ I ′ I ′ I ′ I ′. . .

y ′0 y ′1 y ′2 y ′3 y ′4 y ′15
. . .

0⊕ u3

or

1⊕ u3

x ′0 x ′1 x ′2 x ′3 x ′4 x ′15
. . .

I ′ I ′ I ′ I ′ I ′ I ′. . .

y ′0 y ′1 y ′2 y ′3 y ′4 y ′15
. . .

1⊕ u3

Figure 2.25: Collision between the input and the output on byte 3 of the blinded inversion
I ′ (values 0 and 1 lead to a collision)

The two cases leading to a collision are indistinguishable from one another. De-
tecting a collision between the input and the output of a blinded inversion gives either
x ′i = 0⊕ ui or x ′i = 1⊕ ui which reveals a key byte up to one single bit:

ki = mi or ki = mi ⊕ 1 .

Assume we want to recover the 7 most significant bits of k0. For every even byte
value g we encrypt N times a single message M with m0 = g and collect the cor-
responding power consumption traces T n,g, 1 ≤ n ≤ N. Note that in this attack
we need to guess the 7 most significant bits only, because the least significant one is
indistinguishable. Let’s denote t0 and t1 the instants when x0 ⊕ u0 is loaded before
the pseudo-inversion I, and when the result is stored respectively. For each of the N
traces we extract the two segments T n,g

[t0,t0+ω−1]
and T n,g

[t1,t1+ω−1]
, and construct the se-

ries Θg
0 = (T n,g

[t0,t0+ω−1]
)n and Θg

1 = (T n,g
[t1,t1+ω−1]

)n. For this step of our attack it is
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helpful to have some experience on the targeted implementation to identify precisely
where these two segments are located.

Applying the decision function Collision(Θg
0,Θg

1) for all the 128 possible values g
will reveal two possibilities for k0. Repeating this step for all key bytes allows the key
space to be reduced to 216 values only. Note that a trick which allows to considerably
reduce the number of traces is to encrypt the messages Mg = (g, g, . . . , g) with all
bytes equal.

Results on Simulated Traces As for the previous attack on simulated traces, a rela-
tion is established when at least one point within the ω-sample correlation trace is equal
to 1. As previously, the attack is successful using N = 16 traces for each key guess.
Figure 2.26 shows the 128 correlation traces for all possible guesses on k0. The black
trace corresponds to the correct guess for k0.
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Figure 2.26: Correlation obtained using simulated traces on the pseudo-inversion of the
first byte in F28

The attack on this second implementation has thus been validated on simulated
traces. Regrettably, we did not acquired real traces for this implementation due to
a lack of time. Based on what has been observed on the previous attack (successful
results obtained using simulations have led to successful results on the chip in practice),
we believe that the attack would be successful on the real chip too, using a value for N
of the same order to what was necessary for the first attack.

2.8.3 Countermeasures and Concerns for Practical
Implementations

The attacks presented in this section defeat first-order protected implementations. We
highlight the fact that this kind of attack is more powerful and practical than previous
second-order power analyses and increases the risk of these implementations being bro-
ken in practice. This confirms the necessity for developers to take into account how
collisions of masked data may be unsafe in cryptographic implementations. A possible
countermeasure could be the use of second (or higher) order resistant schemes. To
the best of our knowledge, the best solution should be the countermeasure presented
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by Rivain and Prouff [RP10]. It allows the implementation of proven d-th order DPA
resistant AES for any d ≥ 1.

Another countermeasure against our first attack may simply consist in executing
the SubBytes function in a random sequence. Even if this method is not theoretically
perfect, it may be enough to resist second-order attacks in practice. Considering the
second implementation, its main weakness is the use of the same mask before and after
each byte pseudo-inversion. If the result is masked with a different value then the CoCo
attack is no longer feasible.

It should also be noted that, depending on the quality of the hardware countermea-
sures provided by the device, these attacks can become more complicated in practice.

Though we presented practical results on software implementations, we believe that
this technique may also be a threat for hardware coprocessors. Therefore the colli-
sion threat should be taken into consideration by developers and designers during their
embedded cryptographic design.
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Conclusion

In the first chapter of this thesis, we provide a comprehensive overview of the options
available to implement ECC scalar multiplication in embedded devices with industrial
constraints. We review most of known techniques suitable for low-resources devices
and emphasize on the different solutions to protect them against the simple side-channel
analysis. In our survey, all field operations are taken into account, including additions
and subtractions, as we show that, on most smart cards equipped with an arithmetic
coprocessor, every field operation has a non-negligible minimal cost. This study high-
lights that some classical optimizations may not be suited to this context such as the
S–M trade-off strategy.

This careful comparison of existing solutions leads us to propose our own imple-
mentation of the right-to-left scalar multiplication using a new atomic pattern. We
demonstrate that this option has one of the lowest costs among all techniques suitable
for general curves over Fp with respect to our specific constraints.

In the second chapter, we focus on physical cryptanalysis. In this aim, we recall
how modular multiplication is generally implemented in embedded devices. Then, we
give an overview of existing side-channel and fault analyses, together with common
countermeasures, with emphasis on ECC and RSA.

We propose a new exponentiation scheme for RSA in which all multiplications are
traded for squarings, thus ensuring immunity against various side-channel attacks. Our
algorithms use the atomicity principle to resist simple-side channel analysis and yield
faster exponentiation than classical regular algorithms on devices provided with a dedi-
cated squaring operation. Besides, we show that our technique provides better results in
the context of parallelized operations than previous algorithms. This observation is not
limited to the scope of embedded devices and may be worthwhile for everyone interested
into high-speed RSA implementation.

While the first side-channel attacks are mostly based on the structure of exponen-
tiation and scalar multiplication algorithms, we point out that new attacks should also
consider the underlying implementation of arithmetic operations. With respect to the
classical implementation of modular multiplication, we devise the horizontal side-channel
analysis on the exponentiation, which recovers a secret key using a single execution
trace, while differential side-channel analysis generally requires many of them. This at-
tack highlights the necessity to consider cryptographic implementations as a whole when
designing countermeasures. Extending this study to ECC scalar multiplication requires
further investigation.

161
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We propose new modular multiplication algorithms to prevent attacks such as the
horizontal analysis at a lower level than most of previous countermeasures by shuffling
the internal sequence of single-precision multiplications. Further work is necessary to
assess the chip area and timing overhead induced by this solution.

Finally, we study how collision-correlation analysis may threaten AES implementa-
tions protected against first-order differential analysis when the same mask is used in
several S-Boxes, or when the same mask is used to blind the input and the output of
an S-Box. This work demonstrates how sound countermeasures may not be as efficient
as initially thought when efficiency trade-offs are made in implementations.
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