Professor Andrés L Medaglia

This research project would not have been possible without the help and support of many people, in particular my two very complimentary

Michael 1 , Paula, Saia, who made me feel at home when missing Colombia. On the Colombian side, many thanks also go to the Copa team and in particular to current and former members Agar, Agon, Jaime, Jorge, José Luis, Juan David, Leonardo, and Maria Isabel. Outside the University, life would not have been possible without the support of Catalina, the hospitality of Guillermo and Martha, and the good friendship of David (a.k.a the French ambassador) and the franco-colombian alliance who were always ready to go for a hike, share a good meal and a good laugh, and made me feel home when missing France. Finally, all my gratitude goes to my all time friends Alex, Anneso, Christophe, Gwendal, Julie, Kevin, Perrine, Romain, and Yann for all the good moments shared together, for always being here, and for quietly listening to my complaints during these three years.

I gratefully acknowledge the nancial support provided by the EMN, the CPER Vallée du Libre, the Excellence Center for the Modeling and Simulation of Complex Phenomena and Processes (CEIBA), and the Department of Industrial Engineering at Uniandes. Finally, I would like to dedicate this thesis to my parents Jacky and Dominique and my sister Julie for their love and support throughout my studies and life, and to Paul, Louis, and Ana Paula, to which I wish to grow in happiness and to live a life full of opportunities.

Introduction

Within the wide scope of logistics management, transportation plays a central role and is a crucial activity in the delivery of goods and services. Among others, it allows for the timely distribution between suppliers, production units, warehouses, retailers, and nal customers. Transportation also has an important footprint in the trade economy and on the environment. According to [START_REF] Hesse | The transport geography of logistics and freight distribution[END_REF], the total logistic costs in the year 2000 in the United States (US) represented 10% of the GDP (Gross Domestic Product), while transportation on its own accounted for 5.9% of the GDP.

In addition, a recent report from the Energy Information Administration (EIA, 2011) indicates that transportation was responsible for 27% of the greenhouse gas emissions in the US in 2009, while the European Environment Agency estimates this share to be 24% in the European Union (EEA, 2011).

Therefore, improving the e ciency of transportation activities is a critical step to increase competitiveness and reduce the environmental impact of organizations. In this sense, operating a eet of vehicles is a cornerstone problem that arises both in the service industry, with, among others, the transportation of less-able people, the scheduling of school buses, or the on-site maintenance activities; and in the goods industry, with, for instance, the transport of raw materials between suppliers and factories, the relocation of trucks in carrier companies, or the pickup and delivery of goods in the retail industry.

More speci cally, Vehicle Routing Problems (VRPs) deal with the design of a set of minimal-cost routes that serve the demand for goods or services of a set of geographically spread customers, satisfying a group of operational constraints. Since its rst de nition by Dantzig and Ramser (1959), the INTRODUCTION applications. Among the most common extensions are those that include time-window constraints that enforce the visit of each vertex within a given time interval; the pickup and delivery constraints that require the commodity to be picked-up at certain vertices before being delivered to others; the distance constraints that limit the total distance traveled by a vehicle; and accessibility constraints that limit the set of vehicles allowed to visit a given vertex. On the other hand, common variants of the original problem statement include multiple depots, from which vehicles can start and end their routes; the possibility to split customer deliveries; and heterogeneous and/or limited eets. Finally, related problems consider multi-period horizons; the combination of routing with inventory management; multiple levels of routing with trucks feeding hubs from which smaller vehicles start delivery routes (Nguyen et al., 2012a,b); vehicles with trailers that can be detached to visit customers with accessibility constraints; and arc-routing problems in which the demand is located on the arcs (Belenguer et al., 2010;Corberán and Prins, 2010).

Parallel to the myriad of variants, a number of optimization approaches have been proposed to tackle routing problems. We refer the interested reader to the surveys by Baldacci et al. (2007); Cordeau et al. (2007); Laporte (2009), and [START_REF] Toth | The vehicle routing problem, volume 9 of Monographs on Discrete Mathematics and Applications[END_REF] for a complete review of both exact and approximate approaches.

Recent exact approaches for the VRP are based on three base formulations: vehicle ow, commodity ow, and set partitioning. Vehicle ow formulations (Lysgaard et al., 2004;Naddef and Rinaldi, 2002) de ne an integer variable for each arc that counts the number of times a vehicle travels through it. Commodity ow formulations (Baldacci et al., 2004) are based on a continuous variable for each arc that models the ow of commodities between vertices. Finally, set partitioning formulations (Baldacci et al., 2010(Baldacci et al., , 2007;;Feillet, 2010;Feillet et al., 2005Feillet et al., , 2004;;Fukasawa et al., 2006;Rousseau et al., 2007) consider the set of all feasible routes and select a subset of routes of minimal cost such that all the constraints are satis ed. As it is often impossible to enumerate the whole set of feasible solutions, such approaches generally rely on a column generation scheme that iteratively generates feasible routes for the set covering model.

INTRODUCTION

out violating the vehicle capacity, and then solving a TSP for each cluster. The RC heuristics start by designing a giant tour visiting all customers that is then split into feasible routes. [START_REF] Prins | A simple and e ective evolutionary algorithm for the vehicle routing problem[END_REF] demonstrated that properly-designed RC heuristics can bring signi cant improvements when embedded in more complex methods [START_REF] Mendoza | A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands[END_REF](Mendoza et al., , 2011;;Prins, 2009b;Prins et al., 2009;[START_REF] Villegas | GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots[END_REF]Villegas et al., , 2011a)). Finally, improvement heuristics attempt to improve a solution by considering moves that alter the sequence of customers within a route and/or exchange customers between di erent routes. Each type of move de nes a neighborhood of the considered solution. Among the most widely used neighborhoods are swap, 2-opt, 3-opt (Lin, 1965), Or-opt (Or, 1976), and string exchange. The e ciency of improvement heuristics depends to a great extent on the implementation of the neighborhood exploration. For instance, Irnich et al. (2006) propose a decomposition scheme, namely sequential search, and report speedup factors of up to 10 4 for the exploration of the 3-opt neighborhood against a naive implementation.

Metaheuristics are optimization paradigms which main objective is to overcome limitations of the classical heuristics, in particular, their tendency to get trapped in local optima and their lack of robustness. Among the most popular single-solution metaheuristics are Tabu Search (TS) (Gendreau et al., 1994;Glover, 1986;Taillard, 1993;Toth and Vigo, 2003), Simulated Annealing (SA) (Kirkpatrick et al., 1983;[START_REF] Osman | Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem[END_REF], Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Resende, 1989;Hashimoto et al., 2011;Prins, 2009a;[START_REF] Villegas | GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots[END_REF], and Large Neighborhood Search (LNS) (Bent and Van Hentenryck, 2004;Pisinger andRopke, 2007, 2010;Shaw, 1998). Population-based metaheuristics include Genetic Algorithms (GA) (Holland, 1975), Memetic Algorithms (MA) (Bontoux et al., 2010;El-Fallahi et al., 2008;Labadi et al., 2008a,b;[START_REF] Mendoza | A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands[END_REF]Prins, 2009b;Vidal et al., 2011), and Ant Colony Optimization (ACO) (Bontoux and Feillet, 2008;Reimann et al., 2004). We refer the interested reader to the work by Bräysy and Gendreau (2005); Cordeau et al. (2005Cordeau et al. (, 2002)); [START_REF] Villegas | GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots[END_REF], and Gendreau et al. (2002) for an in-depth analysis of the latest advances in metaheuristics in the eld of vehicle routing.

Finally, a recent trend combines heuristics with exact approaches, in what is commonly referred to as matheuristics (Maniezzo et al., 2009). In their review, Puchinger and Raidl (2005) make a distinction between collaborative and integrative matheuristics. In collaborative approaches, heuristics and exact algorithms exchange information to build a solution. This is for instance the case of the Lagrangean relaxation granular TS introduced by Prins et al. (2007), or the approach proposed by Archetti et al. (2008) for the VRP with split deliveries. More recently, researchers have used mixed integer programming as a post-optimization procedure to aggregate partial solutions explored in a metaheuristic. For instance, Villegas et al. (2011b) tackled the Truck and Trailer Routing Problem by rst generating solutions using a GRASP based approach, and then solving a set-covering problem (SC) using the routes generated during the search. [START_REF] Pillac | A parallel matheuristic for the technician routing and scheduling problem[END_REF] applied a similar approach using the solutions generated by an Adaptive Large Neighborhood Search. Finally, Mendoza andVillegas (2011, 2012) propose a simple yet e ective matheuristic for the VRP with Stochastic Demands (VRPSD) that generates a large number of routes using randomized constructive heuristics and then solves a SC to build a solution, reporting state-of-the-art results. On the other hand, integrative matheuristics embed one technique into another. A sample of integrative heuristics include the Large Neighborhood Search algorithms in which an exact approach (either Integer Programming or Constraint Programming) is used to optimally ex-

INTRODUCTION

plore the neighborhood of a solution (De Franceschi et al., 2006;Mouthuy et al., 2012;[START_REF] Prescott-Gagnon | A branch-and-price-based large neighborhood search algorithm for the vehicle routing problem with time windows[END_REF]Rousseau et al., 2002); the hybrid TS proposed by Ngueveu et al. (2010), which solves a b-matching problem to guide a TS procedure; or the heuristic column generation proposed by Massen et al. (2012).

Despite the development of e cient optimization algorithms that produce high quality solutions, Sörensen et al. (2008) point out that commercial routing software does not take full advantage from state-of-the-art algorithms but instead embed a large toolbox of simpler heuristics. The gap between academic research and industrial practice can be explained by the fact that the two communities face diverging incentives. Academia is driven by the publication of ground-breaking results on well-known sets of instances, or alternatively by the de nition of novel optimization problems. Therefore, research is biased toward highly specialized methods able to solve a particular problem with optimal or nearlyoptimal results. In contrast, industry requires that the resources invested on the development of a new decision support system (DSS) translate in signi cant gains once the system is operational. In this perspective, it is more e cient to develop and maintain a set of simple optimization components that t a variety of problems and produce relatively good results, than to invest resources in the development of complex approaches tailored for a speci c problem that will only bring marginal improvements.

Nonetheless, a thriving trend in the routing community attempts to develop methods able to tackle a variety of practical problems. This trend follows two main streams: rich vehicle routing (Doerner and Schmid, 2010;Schmid et al., 2012), which focuses on routing problems that simultaneously consider features from several VRP variants; and uni ed optimization approaches, which are designed to account for a variety of business constraints, like the Adaptive Large Neighborhood Search introduced by Pisinger and Ropke (2007) or the Uni ed Hybrid Genetic Search proposed by Vidal et al. (2012).

An alternative approach to foster technology transfer from academia to industry is the release of state-of-the-art algorithms as open source projects. Successful stories at the intersection of the operations research and computer science communities include the COIN-OR project 2 , which puts together a variety of frameworks from metaheuristics to linear and non-linear solvers; GLPK 3 , a solver for linear and mixed integer programming; Paradiseo 4 , a framework for the design of metaheuristics; and Choco 5 , a Constraint Programming solver implemented in Java. There exists a limited number of open-source projects that provide optimization frameworks for vehicle routing. As surveyed by Lodi and Punnen (2004), most of these initiatives are devoted to the resolution of the TSP, and to the best of our knowledge, the remaining focus on the CVRP. For instance, SYMPHONY (Ralphs et al., 2012;[START_REF] Ralphs | On the capacitated vehicle routing problem[END_REF][START_REF] Ralphs | On the capacitated vehicle routing problem[END_REF] and CVRPSD (Lysgaard et al., 2004) tackle the optimal resolution of the CVRP using mathematical programming. Other projects include VRPH (Groër et al., 2010), a C/C++ framework based on local search; jCW (Mendoza et al., 2008), an object oriented implementation in Java of generalized saving heuristics; and jSplit (Villegas et al., 2008), a Java framework for the rapid development of cluster-rst, route-second heuristics.

Most routing algorithms and software often rely on the assumption that all the information is known with certainty. However, in many applications, part or all the information is uncertain. An

INTRODUCTION

obvious example are travel times that uctuate greatly depending on tra c or weather conditions, especially in urban areas. These problems are referred to as static and stochastic, and common examples include: stochastic customers, where a customer needs to be serviced with a given probability [START_REF] Bertsimas | Probabilistic combinatorial optimization problems[END_REF]Waters, 1989); stochastic times, in which either service or travel times are modeled by random variables [START_REF] Kenyon | Stochastic vehicle routing with random travel times[END_REF][START_REF] Laporte | The vehicle routing problem with stochastic travel times[END_REF]Verweij et al., 2003); and lastly, stochastic demands (Christiansen and Lysgaard, 2007;Dror et al., 1989;[START_REF] Laporte | An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands[END_REF]Mendoza et al., 2011Mendoza et al., , 2009;;[START_REF] Secomandi | Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands[END_REF]Secomandi and Margot, 2009) where customer demands are known as probability distributions. Further details on the static stochastic vehicle routing can be found in the reviews by [START_REF] Bertsimas | A new generation of vehicle routing research: robust algorithms, addressing uncertainty[END_REF]; Cordeau et al. (2007), and [START_REF] Gendreau | Stochastic vehicle routing[END_REF].

In addition, recent advances in communication and geolocation technologies now allow companies to economically track their eet in real time. These new technologies lead to the development of Intelligent Transport Systems (ITS), and more precisely Advanced Fleet Management Systems (AFMS), that combine hardware and software solutions to provide real time information on the eet, customers, and road networks. The development of ITS and AFMS creates new challenges and opportunities for operations research. Vehicle routing is no longer limited to the design of a-priori routes that cannot be altered once the vehicles have departed the depot. Instead, it can now consider real-time reoptimization of routes, leading to what is referred to as dynamic vehicle routing problems. Nonetheless, [START_REF] Crainic | Intelligent freight-transportation systems: Assessment and the contribution of operations research[END_REF] point out that while the hardware part of ITS has considerably evolved, the corresponding Decision Support Systems (DSS) and optimization models have not yet reached their maturity.

Therefore, the advent of such systems require the development of a new class of e cient optimization algorithms able to manage eets in real time.

The purpose of this dissertation is to review the state-of-the-art in the area of dynamic routing, design new algorithms for this class of problems; implement general-purpose software components that are both reusable and adaptable to a wide range of variants; apply the proposed algorithms to a realworld routing application; and nally, to release the proposed components as open-source packages to accelerate technology transfer from academia to industry.

INTRODUCTION

in which new customers appear during the execution of routes, requiring updates in the routing plan.

We propose a fast re-optimization approach, namely parallel Adaptive Large Neighborhood Search (pALNS), which produces high quality routing in limited computational time. We then illustrate its performance on a set of Dynamic Vehicle Routing Problem with Time Windows (D-VRPTW) instances derived from the Solomon (1987) benchmark. Noting that the common assumption that vehicle drivers do not know their next destination until they nish serving their current customer may not be desirable from a practical perspective, we introduce the notion of driver inconvenience and de ne a bi-objective optimization problem that minimizes the routing cost while maintaining its consistency throughout the day. We consider a context in which vehicles have an initial routing plan at the beginning of the day, that is then periodically updated by a decision maker. We introduce a measure of the driver inconvenience resulting from each update, and propose a bi-objective approach based on pALNS, namely pBiALNS, that is able to produce a set of non-dominated solutions in reasonable computational time. These solutions o er di erent tradeo s between cost e ciency and consistency, and can be used by the decision maker to update the vehicle routing introducing a controlled number of changes. Our computational experiments study the tradeo between cost e ciency and route consistency, and show that pBiALNS is able to produce a variety of alternative solutions in a few seconds. This chapter was published as a technical report (Pillac et al., 2012b), and an earlier version was presented at the ROADEF 2012 conference [START_REF] Pillac | Route stability in dynamic vehicle routing: a bi-objective approach[END_REF]. Details on the implementation of the pALNS and pBiALNS algorithms are presented in Appendix C.

In dynamic and stochastic problems part or all the input is unknown and revealed dynamically during the execution of the routes, yet exploitable stochastic knowledge is available on the dynamically revealed information. Chapter 3 presents an event-driven framework based on a multiple scenario approach called jMSA. This framework is exible, parallelized, and easily embeddable in a decision support system. It can cope with a wide variety of dynamic vehicle routing problems and may be extensible to other dynamic combinatorial optimization problems. jMSA generates and maintains a pool of scenarios, each containing a realization of the random variables modeling the dynamically revealed data. This pool is then used to take the routing decisions whenever required. We illustrate the exibility of the framework by solving the VRP with Stochastic Demands and show that our approach is competitive against the state-of-the-art algorithms. This chapter was accepted for publication in Decision Support Systems (Pillac et al., 2012a), an earlier version of this work was published as a technical report [START_REF] Pillac | An event-driven optimization framework for dynamic vehicle routing[END_REF], while preliminary results were presented at the ALIO-INFORMS 2010 and the ROADEF 2011 conferences [START_REF] Pillac | Solving the vehicle routing problem with stochastic demands with a multiple scenario approach[END_REF][START_REF] Pillac | A dynamic approach for the vehicle routing problem with stochastic demands[END_REF]. Appendix C presents the implementation of the algorithm used to optimize scenarios, namely Adaptive Variable Neighborhood Search (AVNS).

In Chapter 4, we formally introduce the Technician Routing and Scheduling Problem (TRSP), which is motivated by the optimization problem faced by an industrial partner. The TRSP consists in routing a crew of technicians to serve a set of requests. Distinctive features of this problem are: the fact that technicians start and end their tour at their home; the consideration of skills, tools, and spare parts that restricts the set of technicians that can serve a speci c request; the possibility for technicians to pick up additional tools and spare parts at a central depot; and nally, the objective function that considers the minimization of the total working time and the balancing of tours. The rst paper in this chapter proposes a parallel adaptive large neighborhood search coupled with a set-covering INTRODUCTION BIBLIOGRAPHY post-optimization, namely pALNS+SC, used to tackle the static TRSP. We illustrate the performance of pALNS+SC on the Solomon (1987) VRPTW instances, then we introduce a new set of instances for the TRSP, generated from the Solomon (1987) instances as described in Appendix D, and solve them using pALNS+SC. This paper was submitted to Optimization Letters [START_REF] Pillac | A parallel matheuristic for the technician routing and scheduling problem[END_REF] and preliminary results were presented at the MIC 2011 conference (Pillac et al., 2011e). The second paper tackles the dynamic TRSP and proposes two solution methods. The rst is an adaptation of the fastreoptimization approach presented in Chapter 2. The second is a multiple plan approach, which is a In this chapter we present a thorough review of the current state of the art in dynamic vehicle routing applications and approaches.

The full reference of the paper presented in this chapter is:

-Pillac, V., Gendreau, M., Guéret, C., and Medaglia, A. L. (2011) A review of dynamic vehicle routing problems

European Journal of Operational Research, Accepted manuscript, doi:10.1016/j.ejor.2012.08.015.

Two previous versions of this work were published as technical reports:

-Pillac, V., Gendreau, M., Guéret, C., and Medaglia, A. L. (2011) A review of dynamic vehicle routing problems Technical report, CIRRELT. CIRRELT-2011-62.

-Pillac, V., Guéret, C., and Medaglia, A. L. (2010) Dynamic Vehicle Routing: State of the Art and Prospects Technical report, École des Mines de Nantes, France. Report 10/4/AUTO.

Introduction

The Vehicle Routing Problem (VRP) formulation was rst introduced by Dantzig and Ramser (1959), as a generalization of the Traveling Salesman Problem (TSP) presented by Flood (1956). The VRP is generally de ned on a graph G = (V, E, C), where V = {v 0 , ..., v n } is the set of vertices; E = {(v i , v j)|(v i , v j) ∈ V 2 , i = j} the arc set; and C = (c ij) (v i ,v j)∈E a cost matrix de ned over E, representing distances, travel times, or travel costs. Traditionally, vertex v 0 is called the depot, while the remaining vertices in V represent customers (or requests) that need to be serviced. The VRP consists in nding a set of routes for K identical vehicles based at the depot, such that each of the vertices is visited exactly once, while minimizing the overall routing cost.

Beyond this classical formulation, a number of variants have been studied. Among the most common are the Capacitated VRP (CVRP), where each customer has a demand for a good and vehicles have nite capacity; the VRP with Time Windows (VRPTW), where each customer must be visited during a speci c time frame; the VRP with Pick-up and Delivery (PDP), where goods have to be picked-up and delivered in speci c amounts at the vertices; and the Heterogeneous eet VRP (HVRP), where vehicles have di erent capacities. Routing problems that involve moving people between locations are referred to as Dial-A-Ride-Problem (DARP) for land transport; or Dial-A-Flight-Problem (DAFP), for air transport.

In contrast to the classical de nition of the vehicle routing problem, real-world applications often include two important dimensions: evolution and quality of information (Psaraftis, 1980). Evolution of information relates to the fact that in some problems the information available to the planner may

1.1. INTRODUCTION
change during the execution of the routes, for example, with the arrival of new customer requests.

Quality of information re ects possible uncertainty on the available data, for instance, when the demand of a customer is only known as a range estimate of its real demand. In addition, depending on the problem and the available technology, vehicle routes can either be designed statically (a-priori) or dynamically. For instance, the VRP with Stochastic Demands (VRPSD), can be seen from both perspectives. From a static perspective, the problem is to design a set of robust routes a-priori, that will undergo minor changes during their execution [START_REF] Bertsimas | A new generation of vehicle routing research: robust algorithms, addressing uncertainty[END_REF][START_REF] Gendreau | Stochastic vehicle routing[END_REF]. From a dynamic perspective, the problem consists in designing the vehicle routes in an online fashion, communicating to the vehicle which customer to serve next as soon as it becomes idle (Novoa and Storer, 2009;Secomandi, 2001;Secomandi and Margot, 2009). Based on these dimensions, Table 1.1 identi es four categories of routing problems.

Information quality

Deterministic input Stochastic input

Information evolution

Input known beforehand Static and deterministic Static and stochastic

Input changes over time Dynamic and deterministic Dynamic and stochastic Table 1.1: Taxonomy of vehicle routing problems by information evolution and quality.

In static and deterministic problems, all input is known beforehand and vehicle routes do not change once they are in execution. This classical problem has been extensively studied in the literature, and we refer the interested reader to the recent reviews of exact and approximate methods by Baldacci et al. (2007); Cordeau et al. (2007b); [START_REF] Laporte | What you should know about the vehicle routing problem[END_REF]Laporte (, 2009)), and [START_REF] Toth | The vehicle routing problem, volume 9 of Monographs on Discrete Mathematics and Applications[END_REF].

Static and stochastic problems are characterized by input partially known as random variables, which realizations are only revealed during the execution of the routes. Additionally, it is assumed that routes are designed a-priori and only minor changes are allowed afterwards. For instance, allowable changes include planning a trip back to the depot or skipping a customer. Applications in this category do not require any technological support. Uncertainty may a ect any of the input data, yet the three most studied cases are (Cordeau et al., 2007b): stochastic customers, where a customer needs to be serviced with a given probability [START_REF] Bertsimas | Probabilistic combinatorial optimization problems[END_REF]Waters, 1989); stochastic times, in which either service or travel times are modeled by random variables [START_REF] Kenyon | Stochastic vehicle routing with random travel times[END_REF][START_REF] Laporte | The vehicle routing problem with stochastic travel times[END_REF]Verweij et al., 2003); and lastly, stochastic demands (Christiansen and Lysgaard, 2007;Dror et al., 1989;[START_REF] Laporte | An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands[END_REF]Mendoza et al., 2011Mendoza et al., , 2009;;[START_REF] Secomandi | Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands[END_REF]Secomandi and Margot, 2009).

Further details on the static stochastic vehicle routing can be found in the reviews by [START_REF] Bertsimas | A new generation of vehicle routing research: robust algorithms, addressing uncertainty[END_REF]; Cordeau et al. (2007b), and[START_REF] Gendreau | Stochastic vehicle routing[END_REF].

In dynamic and deterministic problems, part or all of the input is unknown and revealed dynamically during the design or execution of the routes. For these problems, vehicle routes are rede ned in an ongoing fashion, requiring technological support for real-time communication between the vehicles and the decision maker (e.g., mobile phones and global positioning systems). This class of problems are also referred to as online or real time by some authors (Jaillet and Wagner, 2008a).

Similarly, dynamic and stochastic problems have part or all of their input unknown and revealed dynamically during the execution of the routes, but in contrast with the latter category, exploitable stochastic knowledge is available on the dynamically revealed information. As before, the vehicle routes can be rede ned in an ongoing fashion with the help of technological support.

Besides dynamic routing problems, where customer visits must be explicitly sequenced along the routes, there are other related vehicle dispatching problems, such as managing a eet of emergency vehicles [START_REF] Brotcorne | Ambulance location and relocation models[END_REF][START_REF] Gendreau | A dynamic model and parallel tabu search heuristic for real-time ambulance relocation[END_REF][START_REF] Haghani | Real-time emergency response eet deployment: Concepts, systems, simulation & case studies[END_REF], or the so-called dynamic allocation problems in the area of long haul truckload trucking (Godfrey and Powell, 2002;[START_REF] Powell | An adaptive dynamic programming algorithm for the heterogeneous resource allocation problem[END_REF][START_REF] Spivey | The dynamic assignment problem[END_REF]. In this paper, we focus solely on dynamic problems with an explicit routing dimension.

The remainder of this document is organized as follows. Section 1.2 presents a general description of dynamic routing problems and introduce the notion of degree of dynamism. Section 1.3 reviews di erent applications in which dynamic routing problems arise, while Section 1.4 provides a comprehensive survey of solution approaches. Finally, Section 1.5 concludes this paper and gives directions for further research.

Dynamic vehicle routing problems 1.2.1 A general de nition

The rst reference to a dynamic vehicle routing problem is due to Wilson and Colvin (1977). They studied a single vehicle DARP, in which customer requests are trips from an origin to a destination that appear dynamically. Their approach uses insertion heuristics able to perform well with low computational e ort. Later, Psaraftis (1980) introduced the concept of immediate request: a customer requesting service always wants to be serviced as early as possible, requiring immediate replanning of the current vehicle route.

A number of technological advances have led to the multiplication of real-time routing applications. With the introduction of the Global Positioning System (GPS) in 1996, the development and widespread use of mobile and smart phones, combined with accurate Geographic Information Systems (GIS), companies are now able to track and manage their eet in real time and cost e ectively. While traditionally a two-step process (i.e., plan-execute), vehicle routing can now be done dynamically, introducing greater opportunities to reduce operational costs, improve customer service, and reduce environmental impact.

The most common source of dynamism in vehicle routing is the online arrival of customer requests during the operation. More speci cally, requests can be a demand for goods [START_REF] Attanasio | Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem[END_REF]Goel and Gruhn, 2008;Hvattum et al., 2006[START_REF] Hvattum | A branch-and-regret heuristic for stochastic and dynamic vehicle routing problems[END_REF]Ichoua et al., 2006;[START_REF] Mes | Comparison of agent-based scheduling to lookahead heuristics for real-time transportation problems[END_REF]Mitrović-Minić and Laporte, 2004;Van Hemert and Poutré, 2004) or services (Beaudry et al., 2010;[START_REF] Bent | Online stochastic and robust optimization[END_REF][START_REF] Bertsimas | A stochastic and dynamic vehicle-routing problem in the Euclidean plane[END_REF]Gendreau et al., 1999;[START_REF] Larsen | The a priori dynamic traveling salesman problem with time windows[END_REF]Thomas, 2007). Travel time, a dynamic component of most real-world applications, has been recently taken into account (Attanasio et al., 2007;Barcelo et al., 2007;[START_REF] Chen | Dynamic column generation for dynamic vehicle routing with time windows[END_REF]Fleischmann et al., 2004;[START_REF] Güner | Dynamic routing under recurrent and nonrecurrent congestion using real-time its information[END_REF]Haghani and Jung, 2005;[START_REF] Lorini | Online vehicle routing and scheduling with dynamic travel times[END_REF][START_REF] Potvin | Vehicle routing and scheduling with dynamic travel times[END_REF][START_REF] Tagmouti | A dynamic capacitated arc routing problem with time-dependent service costs[END_REF]Taniguchi and Shimamoto, 2004;Zeimpekis et al., 2007a); while service time has not been explicitly studied (but can be added to travel time). Finally, some recent work considers dynamically revealed demands for a set of known customers (Novoa and Storer, 2009;Novoa, 2005;[START_REF] Secomandi | Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands[END_REF]Secomandi and Margot, 2009) and vehicle availability (Li et al., 2009a,b;[START_REF] Mu | Disruption management of the vehicle routing problem with vehicle breakdown[END_REF], in which case the source of dynamism is the possible breakdown of vehicles. In the following we use the pre x "D-" to label problems in which new requests appear dynamically.

To better understand what we mean by dynamic, Figure 1.1 illustrates the route execution of a single vehicle D-VRP. Before the vehicle leaves the depot (time t 0), an initial route plans to visit the currently known requests (A, B, C, D, E). While the vehicle executes its route, two new requests (X and Y) appear at time t 1 and the initial route is adjusted to ful ll them. Finally, at time t f the executed route is (A, B, C, D, Y, E, X).

Di erences with static routing

In contrast to their static counterparts, dynamic routing problems involve new elements that increase the complexity of their decisions (more degrees of freedom) and introduce new challenges while judging the merit of a given route plan.

In some contexts, such as the pick-up of express courier (Gendreau et al., 1999), the transport company may deny a customer request. As a consequence, it can reject a request either because it is simply impossible to service it, or because the cost of serving it is too high. This process of acceptance/denial has been used in many approaches [START_REF] Attanasio | Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem[END_REF]Fagerholt et al., 2009;Gendreau et al., 1999;Ichoua et al., 2000Ichoua et al., , 2003Ichoua et al., , 2006;;Li et al., 2009a) and is referred to as service guarantee (Van Hentenryck and Bent, 2006).

In dynamic routing, the ability to redirect a moving vehicle to a new request nearby allows for additional savings. Nevertheless, it requires real-time knowledge of the vehicle position and being able to communicate quickly with drivers to assign them new destinations. Thus, this strategy has received limited interest, with the main contributions being the early work by [START_REF] Regan | Improving e ciency of commercial vehicle operations using real-time information: potential uses and assignment strategies[END_REF][START_REF] Regan | Evaluation of dynamic eet management systems -simulation framework[END_REF][START_REF] Regan | Dynamic decision making for commercial eet operations using real-time information[END_REF], the study of diversion issues by Ichoua et al. (2000), and the work by [START_REF] Branchini | Adaptive granular local search heuristic for a dynamic vehicle routing problem[END_REF].

Dynamic routing also frequently di ers in the objective function [START_REF] Psaraftis | Dynamic vehicle routing: Status and prospects[END_REF]. In particular, while a common objective in the static context is the minimization of the routing cost, dynamic routing may introduce other notions such as service level, throughput (number of serviced requests), or revenue maximization. Having to answer to dynamic customer requests also introduces the notion of response time: a customer might request to be serviced as soon as possible, in which case the main objective may become to minimize the delay between the arrival of a request and its service.

Dynamic routing problems require making decisions in an online manner, which often compromises reactiveness with decision quality. In other words, the time invested searching for better decisions, comes at the price of a lower reactiveness to input changes. This aspect is of particular importance in contexts where customers call for a service and a good decision must be made as fast as possible.

Measuring dynamism

Di erent problems (or instances of a same problem) can have di erent levels of dynamism, which can be characterized according to two dimensions (Ichoua et al., 2007): the frequency of changes and the urgency of requests. The former is the rate at which new information becomes available, while the latter is the time gap between the disclosure of a new request and its expected service time. From this observation three metrics have been proposed to measure the dynamism of a problem (or instance). Lund et al. (1996) de ned the degree of dynamism δ as the ratio between the number of dynamic requests n d and the total number of requests n tot as follows:

δ = n d n tot (1.1)
Based on the fact that the disclosure time of requests is also important [START_REF] Psaraftis | Dynamic vehicle routing problems[END_REF][START_REF] Psaraftis | Dynamic vehicle routing: Status and prospects[END_REF], Larsen (2001) proposed the e ective degree of dynamism δ e . This metric can be interpreted as the normalized average of the disclosure times. Let T be the length of the planning horizon, R the set of requests, and t i the disclosure time of request i ∈ R. Assuming that requests known beforehand have a disclosure time equal to 0, δ e can be expressed as:

δ e = 1 n tot i∈R t i T (1.2)
Larsen (2001) also extended the e ective degree of dynamism to problems with time windows to re ect the level of urgency of requests. He de nes the reaction time as the di erence between the disclosure time t i and the end of the corresponding time window l i , highlighting that longer reaction times mean more exibility to insert the request into the current routes. Thus, the e ective degree of dynamism measure is extended as follows:

δ e T W = 1 n tot i∈R 1 - l i -t i T (1.3)
It is worth noting that these three metrics only take values in the interval [0, 1] and all increase with the level of dynamism of a problem. Larsen et al. (2002Larsen et al. (, 2007)) use the e ective degree of dynamism to de ne a framework classifying D-VRPs among weakly, moderately, and strongly dynamic problems, with values of δ e being respectively lower than 0.3, comprised between 0.3 and 0.8, and higher than 0.8.

Although the e ective degree of dynamism and its variations have proven to capture well the time-related aspects of dynamism, it could be argued that they do not take into account other possible sources of dynamism. In particular, the geographical distribution of requests, or the traveling times between requests, are also of great importance in applications aiming at the minimization of response time. Although not considered, the frequency of updates in problem information has a dramatical impact on the time available for optimization.

A review of applications

Recent advances in technology have allowed the emergence of a wide new range of applications for vehicle routing. In particular, the last decade has seen the development of Intelligent Transport Systems (ITS), which are based on a combination of geolocation technologies, with precise geographic information systems, and increasingly e cient hardware and software for data processing and operations planning. We refer the interested reader to the study by [START_REF] Crainic | Intelligent freight-transportation systems: Assessment and the contribution of operations research[END_REF] for more details on ITS and the contributions of operations research to this relatively new domain.

Among the ITS, the Advanced Fleet Management Systems (AFMS) are speci cally designed for managing a corporate vehicle eet. The core problem is generally to deliver (pick-up) goods or persons to (from) locations distributed in a given area. While customer requests can either be known in advance or appear dynamically during the day, vehicles are dispatched and routed in real time, potentially, by taking into account changing tra c conditions, uncertain demands, or varying service times. A key technological feature of AFMS is the optimization component. Traditionally, vehicle routing relies on teams of human dispatchers, meaning a critical operational process is bound to the competence and experience of dispatchers, as well as the management costs that are directly linked to the size of the eet (Attanasio et al., 2007). Advances in computer science have allowed a technological transfer from operational research to AFMS, as presented in the studies by Attanasio et al. (2007);Du et al. (2007); Godfrey and Powell (2002); Powell and Topaloglu (2005); [START_REF] Roy | Recent trends in logistics and the need for real-time decision tools in the trucking industry[END_REF]; Simao et al. (2009), and[START_REF] Slater | Speci cation for a dynamic vehicle routing and scheduling system[END_REF].

The remainder of this section presents applications where dynamic routing has been or can be implemented. The interested reader is also referred to the work by [START_REF] Gendreau | Dynamic vehicle routing and dispatching[END_REF] and Ichoua et al. (2007) for complementary reviews.

Services

In this category of applications, a service request is de ned by a customer location and a possible time window; while vehicle routes just ful ll service requests without considering side constraints such as capacity. Perhaps the simplest, yet most illustrative case in this category is the dynamic traveling salesman problem [START_REF] Larsen | The a priori dynamic traveling salesman problem with time windows[END_REF].

A common application of dynamic routing can be found in the area of maintenance operations.

Maintenance companies are often committed by contract to their customers, which specify periodical or planned visits to perform preventive maintenance, and may also request corrective maintenance on short notice. Therefore, each technician is rst given a route with known requests at the beginning of the day, while new urgent requests are inserted dynamically throughout the day. An interesting feature of this problem is the possible mix of skills, tools, and spare part requirements, which have to be matched in order to service the request. This problem has been studied by Borenstein et al. (2010) with an application to British Telecom.

Another application of dynamic routing arises in the context of the French non-pro t organization SOS Médecins. This organization operates with a crew of physicians, who are called on duty via a call center coordinated with other emergency services. When a patient calls, the severity of the case is evaluated, and a visit by a practitioner is planned accordingly. As in other emergency services, having an e cient dispatching system reduces the response time, thus improving service level for the society.

On the other hand, it is important to decide in real-time whether or not to send a physician, so that it is possible to ensure a proper service level in areas where emergencies are likely to appear.

Dynamic aspects can also appear on arc routing problems. This is for instance the case in the study by [START_REF] Tagmouti | A dynamic capacitated arc routing problem with time-dependent service costs[END_REF] on the operation of a eet of vehicles for winter gritting applications.

Their work consider a network of streets or road segments that need to be gritted when a ected by a moving storm. Depending on the movements of the storm, new segments may have to be gritted, and the routing of vehicles has to be updated accordingly.

Transport of goods

Due to the fact that urban areas are often characterized by highly variable traveling times, transport of goods in such areas have led to the de nition of a speci c category of applications known as city logistics. City logistics can be de ned as an integrated vision of transport activities in urban areas, taking into account factors such as tra c and competition or cooperation between transport companies (Taniguchi and Thompson, 2002). Barcelo et al. (2007) developed a general framework for city logistics applications. They describe the di erent modules ranging from modeling the city road network and acquiring real-time tra c data to the dynamic routing of a eet of vehicles. Zeimpekis et al. (2007a) proposed a Decision Support System (DSS) for city logistics which takes into account dynamic travel and service times.

A typical application in city logistics is the courier service present in most urban areas. Couriers are dispatched to customer locations to collect packages, and either deliver them to their destination (short haul) or to a unique depot (long haul). Depending on the level of service paid by the customer, couriers may consolidate pick-ups from various customers, or provide an expedited service. Companies o ering courier services often have an heterogeneous eet composed of bicycles, motorbikes, cars, and small vans. The problem is then to dynamically route couriers, taking into account not only the known requests, their type, pick-up and delivery locations, and time windows, but also considering tra c conditions and varying travel times. A case study by Attanasio et al. (2007) outlines the bene ts of using an optimization-enabled AFMS at eCourier Ltd, a London based company o ering courier services. The authors illustrate that aside from the improvements in service quality, response time,

and courier e ciency, the use of an automated system allows decoupling the eet size from the need for more dispatchers. Further results motivated by a similar application can be found in [START_REF] Gendreau | Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries[END_REF] and [START_REF] Ghiani | Anticipatory algorithms for same-day courier dispatching[END_REF].

The delivery of newspapers and magazines is a domain in which customer satisfaction is of rst importance. When a magazine or newspaper is not delivered, a subscriber contacts a call center and is o ered to choose between a voucher or a future delivery. In the latter case, the request is then forwarded to the delivery company, which assigns it to a driver that will do a priority delivery. Traditionally, this process relies on an exchange of phone calls, faxes, and printed documents, that ultimately communicate the driver about the pending delivery, once he/she comes back to the depot. As an alternative, Bieding et al. (2009) propose a centralized application that makes use of mobile phones to communicate with drivers and intelligently perform the routing in real time, reducing costs and improving customer satisfaction. More recently, Ferrucci et al. (2011) developed an approach that makes use historical data to anticipate future requests.

Another application in which customer requests need to be answered with short delays can be found in companies with a direct service model, such as grocery delivery services. In general, the customer selects products on a website, and then chooses a time frame for the delivery at his home.

Traditionally, the vendor de nes an arbitrary number of customers that can be serviced within a time window, and the time window is made unavailable to customers as soon as the capacity is reached. [START_REF] Campbell | Decision support for consumer direct grocery initiatives[END_REF] de ned the Home Delivery Problem, in which the goal is to maximize the total expected revenue by dynamically deciding whether or not to accept a customer request within a speci c time window. In comparison with the traditional approach, this means that the time windows available for a customer are dynamically de ned taking into consideration the possible future requests.

The authors propose a Greedy Randomized Adaptive Search Procedure (GRASP) and compare di erent cost functions to capture the problem uncertainty. Later, Azi et al. (2011) proposed an Adaptive Large Neighborhood Search (ALNS) that take into account uncertainty by generating scenarios containing possible demand realizations.

Apart from classical routing problems, related operational problems also arise in many organizations. The review by [START_REF] Stahlbock | Operations research at container terminals: a literature update[END_REF] on operations research applications in container terminals describes the dynamic stacker crane problem (Balev et al., 2009;[START_REF] Berbeglia | Dynamic pickup and delivery problems[END_REF], which considers the routing of container carriers loading and unloading ships in a terminal. Other applications include transport of goods inside warehouses [START_REF] Smolic-Rocak | Time windows based dynamic routing in multi-agv systems[END_REF], factories, and hospitals, where documents or expensive medical instruments must be transferred e ciently between services [START_REF] Fiegl | Online scheduling of pick-up and delivery tasks in hospitals[END_REF].

Transport of persons

The transport of persons is in general-and by many aspects-similar to the transport of goods, yet it is characterized by additional constraints such as regulation on waiting, travel, and service times.

Taxis are arguably the most common on-demand individual transport systems. Requests are composed of a pick-up location and time, possibly coupled with a destination. They can be either known in advance, for instance when a customer books a cab for the next day, or they can arrive dynamically, in which case a taxi must be dispatched in the shortest time. When customers cannot share a vehicle, the closest free taxi is generally the one which takes the ride, leaving limited space for optimization. The study by [START_REF] Caramia | Routing a eet of vehicles for dynamic combined pick-up and deliveries services[END_REF], generalized by Fabri and Recht (2006), focuses on a multi-cab metropolitan transportation system, where a taxi can transport more than one passenger at the same time. In this case the online algorithms minimize the total traveled distance, while assigning requests to vehicles and computing the taxi routes. This multi-cab transportation system can be generalized as an on-demand or door-to-door transport service.

Many applications involve the transport of children, the elderly, disabled people, or patients, from their home to schools, place of work, or medical centers. Xiang et al. (2008) studied a DARP with changing travel speeds, vehicle breakdowns, and tra c congestion; while Dial (1995), followed by Horn (2002aHorn (,b, 2004)), studied demand-responsive transport systems. An extensive review of this class of problems can be found in the studies by Cordeau et al. (2007a) and [START_REF] Berbeglia | Dynamic pickup and delivery problems[END_REF].

A singular application of on-demand transportation systems can be found in major hospitals, with services possibly spread across various buildings on several branches. Depending on the medical procedure or facility capacity, a patient may need to be transferred on short notice from one service to another, possibly requiring trained sta or speci c equipment for his/her care. This application has been studied by Beaudry et al. (2010); [START_REF] Kergosien | A tabu search heuristic for the dynamic transportation of patients between care units[END_REF][START_REF] Melachrinoudis | A dial-a-ride problem for client transportation in a healthcare organization[END_REF].

Air taxis developed as a exible response to the limitations of traditional airlines. Air taxis o er passengers the opportunity to travel through smaller airports, avoiding waiting lines at check-in and security checks. Air taxi companies o er an on-demand service: customers book a ight a few days in advance, specifying whether they are willing to share the aircraft, stop at an intermediate airport, or have exible traveling hours. Then, the company accommodates these requests, trying to consolidate ights whenever possible. The underlying optimization problems have not been subject to much attention, except in the studies by Cordeau et al. (2007a);Espinoza et al. (2008a,b);Fagerholt et al. (2009), andYao et al. (2007). Similar problems arises in helicopter transportation systems, typically used by oil and gas companies to transport personnel between o shore petroleum platforms [START_REF] Gribkovskaia | A tabu search heuristic for a routing problem arising in servicing of o shore oil and gas platforms[END_REF][START_REF] Romero | A genetic algorithm for the pickup and delivery problem: An application to the helicopter o shore transportation[END_REF].

Solution Methods

Few research was conducted on dynamic routing between the work of Psaraftis (1980Psaraftis () in 1980 and the late 1990s. However, the last decade has seen a renewed interest for this class of problems (Eksioglu et al., 2009), with solution techniques ranging from linear programming to metaheuristics.

This section presents the major contributions in this eld, and the reader is referred to the reviews, books, and special issues by Gendreau andPotvin (1998, 2004); Ghiani et al. (2003); [START_REF] Goel | Fleet Telematics: Real-time management and planning of commercial vehicle operations[END_REF]; [START_REF] Ichoua | Problèmes de gestion de ottes de véhicules en temps réel[END_REF]; Ichoua et al. (2006Ichoua et al. (, 2007)); [START_REF] Jaillet | Online vehicle routing problems: A survey[END_REF]; Larsen et al. (2008), andZeimpekis et al. (2007b), to complement our review.

Dynamic and deterministic routing problems

This section presents approaches that have been successfully applied to dynamic routing, in the absence of stochastic information. In this context, critical information is revealed over time, meaning that the complete instance is only known at the end of the planning horizon. As a consequence, exact methods only provide an optimal solution for the current state, but do not guarantee that the solution will remain optimal once new data becomes available. Therefore, most dynamic approaches rely on heuristics that quickly compute a solution to the current state of the problem. Approaches for dynamic and deterministic vehicle routing problems can be divided into two categories: those based on periodic reoptimization, and those based on continuous reoptimization.

Periodic reoptimization

To the best of our knowledge, the rst periodic reoptimization approach is due to Psaraftis (1980), with the development of a dynamic programming approach. His research focuses on the DARP and consists in nding the optimal route each time a new request is known. The main drawback of dynamic programming is the well-known curse of dimensionality (Powell, 2007, Chap. 1), which prevents its application to large instances.

More generally, periodic reoptimization approaches start at the beginning of the day with a rst optimization that produces an initial set of routes. Then, an optimization procedure periodically solves a static problem corresponding to the current state, either whenever the available data changes, or at xed intervals of time -referred to as decision epochs [START_REF] Chen | Dynamic column generation for dynamic vehicle routing with time windows[END_REF] or time slices [START_REF] Kilby | Dynamic VRPs: a study of scenarios[END_REF]. The advantage of periodic reoptimization is that it can be based on algorithms developed for static routing, for which extensive research has been carried out. The main drawback is that all the optimization needs to be performed before updating the routing plan, thus increasing delays for the dispatcher. [START_REF] Yang | Real-time multivehicle truckload pickup and delivery problems[END_REF] addressed the real-time truckload PDP, in which a eet of trucks has to service point-to-point transport requests arriving dynamically. Important assumptions are that all trucks can only handle one request at a time, with no possible preemption, and they travel at the same constant speed. The authors propose MYOPT, a rolling horizon approach based on a linear program (LP) that is solved whenever a new request arrives. Along the same line of linear programming, [START_REF] Chen | Dynamic column generation for dynamic vehicle routing with time windows[END_REF] designed a dynamic column generation algorithm (DYCOL) for the D-VRPTW. The authors propose the concept of decision epochs over the planning horizon, which are the dates when the optimization process runs. The novelty of their approach relies on dynamically generating columns for a set-partitioning model, using columns from the previous decision epoch. The authors compared DYCOL to a traditional column generation with no time limit (COL). Computational results based on the Solomon benchmark (Solomon, 1987) demonstrate that DYCOL yields comparable results in terms of objective function, but with running times limited to 10 seconds, opposed to the various hours consumed by COL. Montemanni et al. (2005) developed an Ant Colony System (ACS) to solve the D-VRP. Similar to [START_REF] Kilby | Dynamic VRPs: a study of scenarios[END_REF], their approach uses time slices, that is, they divide the day in periods of equal duration. A request arriving during a time slice is not handled until the end of the time bucket, thus the problem solved during a time slice only considers the requests known at its beginning. Hence, the optimization is run statically and independently during each time slice. The main advantage of this time partition is that similar computational e ort is allowed for each time slice. This discretization is also possible by the nature of the requests, which are never urgent, and can be postponed. An interesting feature of their approach is the use of the pheromone trace to transfer characteristics of a good solution to the next time slice. A similar approach was also used by Gambardella et al. (2003) and Rizzoli et al. (2007).

Continuous reoptimization

Continuous reoptimization approaches perform the optimization throughout the day and maintain information on good solutions in an adaptive memory (Taillard et al., 2001). Whenever the available data changes, a decision procedure aggregates the information from the memory to update the current routing. The advantage is that the computational capacity is maximized, possibly at the expense of a more complex implementation. It is worth noting that because the current routing is subject to change at any time, vehicles do not know their next destination until they nish the service of a request.

To the best of our knowledge, the rst continuous reoptimization approach is due Gendreau et al. Their approach maintains a pool of good routes-the adaptive memory-which is used to generate initial solutions for a parallel TS. The parallelized search is done by partitioning the routes of the current solution, and optimizing them in independent threads. Whenever a new customer request arrives, it is checked against all the solutions from the adaptive memory to decide whether it should be accepted or rejected. This framework was also implemented for the D-VRP (Ichoua et al., 2000(Ichoua et al., , 2003)), while other variations of TS have been applied to the D-PDP (Barcelo et al., 2007;Chang et al., 2003) and the DARP [START_REF] Attanasio | Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem[END_REF]Beaudry et al., 2010). Bent and Van Hentenryck (2004b) introduced the Multiple Plan Approach (MPA) as a generalization of the TS with adaptive memory (Gendreau et al., 1999). The general idea is to populate and maintain a solution pool (the routing plans) that are used to generate a distinguished solution. Whenever a new request arrives, a procedure is called to check whether it can be serviced or not; if it can be serviced, then the request is inserted in the solution pool and incompatible solutions are discarded. Pool updates are performed periodically or whenever a vehicle nishes servicing a customer. This pool-update phase is crucial and ensures that all solutions are coherent with the current state of vehicles and customers.

The pool can be seen as an adaptive memory that maintains a set of alternative solutions.

In an early work, Benyahia and Potvin (1998) studied the D-PDP and proposed a Genetic Algorithm (GA) that models the decision process of a human dispatcher. More recently, GAs were also used for the same problem (Cheung et al., 2008;Haghani and Jung, 2005) and for the D-VRP (Van Hemert and Poutré, 2004). Genetic algorithms in dynamic contexts are very similar to those designed for static problems, although they generally run throughout the planning horizon and solutions are constantly adapting to the changes made to the input.

Dynamic and stochastic routing problems

Dynamic and stochastic routing problems can be seen as an extension of their deterministic counterparts, where additional (stochastic) knowledge is available in the dynamically revealed input. Approaches for this class of problems can be divided in two categories: those based on sampling and those based on stochastic modeling. As their name suggests, sampling strategies incorporate stochastic knowledge by generating scenarios based on realizations drawn from random variable distributions.

Each scenario is then optimized by solving the static and deterministic problem they de ne. On the other hand, approaches based on stochastic modeling integrate stochastic knowledge analytically. The advantage of sampling is its relative simplicity and exibility on distributional assumptions, while its drawback is the massive generation of scenarios to accurately re ect reality. Alternatively, stochastic modeling strategies formally capture the stochastic nature of the problem, but they are highly technical in their formulation and require to e ciently compute possibly complex expected values. Examples of these two strategies follow.

Stochastic modeling

Powell et al. (1988) formulated a truckload PDP as a Markov Decision Process (MDP). Later, MDPs were used by Thomas and White (2004) and Thomas (2007) to solve a VRP in which known customers may ask for service with a known probability. [START_REF] Kim | Optimal vehicle routing with real-time tra c information[END_REF] also used MDPs to tackle the VRP with dynamic travel times. Unfortunately, the curse of dimensionality and the simplifying assumptions make this approach unsuitable in most real-world applications. Nonetheless, it allowed new insights in the eld of dynamic programming.

To cope with the scalability problems of traditional dynamic programming, Approximate Dynamic Programming (ADP) steps forward in time, approximates the value function, and ultimately avoids the evaluation of all possible states. We refer the interested reader to Powell (2007[START_REF] Powell | What you should know about approximate dynamic programming[END_REF] for a more detailed description of the ADP framework. ADP has been successfully applied to freight transport [START_REF] Powell | Dynamic models for freight transportation[END_REF][START_REF] Powell | Stochastic programming in transportation and logistics[END_REF] and eet management problems (Godfrey and Powell, 2002;Powell and Topaloglu, 2005;Simao et al., 2009). In particular, Novoa and Storer (2009) propose an ADP algorithm to dynamically solve the VRPSD.

Linear programming has also been adapted to the dynamic and stochastic context. The OPTUN approach, proposed by [START_REF] Yang | Real-time multivehicle truckload pickup and delivery problems[END_REF] as an extension of MYOPT (see § 1.4.1.1), considers opportunity costs on each arc to re ect the expected cost of traveling to isolated areas. Consequently, the optimization tends to reject isolated requests, and avoids traversing arcs that are far away from potential requests. Later, Yang et al. (2005) studied the emergency vehicle dispatching and routing and proposed a mathematical formulation that was later used by [START_REF] Haghani | Real-time emergency response eet deployment: Concepts, systems, simulation & case studies[END_REF] The Multiple Scenario Approach (MSA) is a predictive adaptation of the MPA framework discussed in § 1.4.1.2. The idea behind MSA is to take advantage of the time between decisions to continuously improve the current scenario pool. During the initialization, the algorithm, generates a rst set of scenarios based on the requests known beforehand. Throughout the day, scenarios are then reoptimized and new ones are generated and added to the pool. When a decision is required, the scenario optimization procedure is suspended, and MSA uses the scenario pool to select the request to service next. MSA then discards the scenarios that are incompatible with the current routing, and resumes the optimization. Computational experiments on instances adapted from the Solomon benchmark (Solomon, 1987) showed that MSA outperforms MPA both in terms of serviced customers and traveled distances, especially for instances with high degrees of dynamism (Bent and Van Hentenryck, 2004b). [START_REF] Flatberg | Dynamic and stochastic vehicle routing in practice[END_REF] adapted the SPIDER commercial solver to use multiple scenarios and a consensus algorithm to tackle the D-VRP, while Pillac et al. (2012) implemented an event-driven optimization framework based on MSA and showed signi cant improvements over state-of-the-art algorithms for the D-VRPSD.

An important component of scenario based-approaches such as MSA is the decision process, which de nes how the information from the scenario pool is used to reach upon a decision regarding the next customer to visit. The most common algorithms used to reach a decision in MSA are: consensus, expectation, and regret. The consensus algorithm (Bent and Van Hentenryck, 2004b,c) selects the customer appearing rst with the highest frequency among scenarios. Expectation (Bent and Van Hentenryck, 2004a,c;[START_REF] Chang | On-line scheduling via sampling[END_REF] consists in evaluating the cost of visiting each customer rst by forcing its visit in all scenarios and performing a complete optimization. Finally, regret (Bent and Van Hentenryck, 2004a) approximates the expectation algorithm and avoids the reoptimization of all scenarios.

Even though these algorithms were initially designed for the routing of a single vehicle, they can be extended to the multi-vehicle case (Van Hentenryck and Bent, 2006). Hvattum et al. (2006) developed the Dynamic Sample Scenario Hedge Heuristic (DSHH), an approach similar to the consensus algorithm for D-VRP. This method divides the planning horizon into time intervals. At the beginning of each interval, DSHH revises the routing by assigning a subset of promising requests to the vehicles, depending on the frequency of their assignment over all scenarios.

DSHH later led to the development of the Branch and Regret Heuristic (BRH), where scenarios are merged to build a unique solution.

Various local search approaches have been developed for the stochastic and dynamic problems. Tabu search has also been adapted to dynamic and stochastic problems. Ichoua et al. (2006) and Attanasio et al. (2007) tackled with tabu search the D-VRPTW and the D-PDP, respectively.

Other strategies

In addition to the general frameworks described previously, the use of stochastic knowledge allows for the design and implementation of other strategies that try to adequately respond to upcoming events.

The waiting strategy consists in deciding whether a vehicle should wait after servicing a request, before heading toward the next customer; or planning a waiting period on a strategic location. This strategy is particularly important in problems with time windows, where time lags appear between requests. Mitrović-Minić et al. (2004) proved that in all cases it is better to wait after servicing a customer, but a more re ned strategy can lead to further improvements. The problem is in general to evaluate the likelihood of a new request in the neighborhood of a serviced request and to plan a waiting period accordingly. The waiting strategy has been implemented in various frameworks for the D-VRP [START_REF] Branke | Waiting strategies for dynamic vehicle routing[END_REF]Thomas, 2007), D-VRPTW [START_REF] Bent | Waiting and relocation strategies in online stochastic vehicle routing[END_REF][START_REF] Branchini | Adaptive granular local search heuristic for a dynamic vehicle routing problem[END_REF]Ichoua et al., 2006;Van Hentenryck and Bent, 2006), D-PDP [START_REF] Ghiani | Anticipatory algorithms for same-day courier dispatching[END_REF]Mitrović-Minić et al., 2004), and Dynamic and Stochastic TSP [START_REF] Ghiani | Waiting strategies for the dynamic and stochastic traveling salesman problem[END_REF]. The strategy has shown good results, especially in the case of a limited eet facing a high request rate (Van Hentenryck and Bent, 2006).

Aside from the waiting after or before servicing a customer, a vehicle can be relocated to a strategic position, where new requests are likely to arrive. This strategy is the keystone of emergency eet deployment, also known as Emergency Vehicle Dispatching-or Redeployment-Problem [START_REF] Gendreau | A dynamic model and parallel tabu search heuristic for real-time ambulance relocation[END_REF][START_REF] Haghani | Real-time emergency response eet deployment: Concepts, systems, simulation & case studies[END_REF]. The relocation strategy has also been applied to other vehicle routing problems, such as the D-VRP (Larsen, 2001),D-VRPTW [START_REF] Bent | Waiting and relocation strategies in online stochastic vehicle routing[END_REF][START_REF] Branchini | Adaptive granular local search heuristic for a dynamic vehicle routing problem[END_REF]Ichoua et al., 2006;Van Hentenryck and Bent, 2006), D-TSPTW [START_REF] Larsen | The a priori dynamic traveling salesman problem with time windows[END_REF], D-PDP [START_REF] Ghiani | Anticipatory algorithms for same-day courier dispatching[END_REF][START_REF] Pureza | Waiting and bu ering strategies for the dynamic pickup and delivery problem with time windows[END_REF], and the Resource Allocation Problem (RAP) (Godfrey and Powell, 2002).

Request bu ering, introduced by [START_REF] Pureza | Waiting and bu ering strategies for the dynamic pickup and delivery problem with time windows[END_REF], consists in delaying the assignment of some requests to vehicles in a priority bu er, so that more urgent requests can be handled rst.

Performance evaluation

In contrast to static problems, where measuring the performance of an algorithm is straightforward (i.e., running time and solution quality), dynamic problems require the introduction of new metrics to assess the performance of a particular method. [START_REF] Sleator | Amortized e ciency of list update and paging rules[END_REF] introduced the competitive analysis (Jaillet and Wagner, 2008a;Larsen et al., 2007). Let P be a minimization problem and I the set of all instances of P . Let z * (I off) be the optimal cost for the o ine instance I off corresponding to I ∈ I. For o ine instance I off , all input data from instance I, either static or dynamic, is available when building the solution. In contrast, the data of the online version I is revealed in real time, thus an algorithm A has to take into account new information as it is revealed and produce a solution relevant to the current state of knowledge. Let z A (I) = z(x A (I)) be the cost of the nal solution x A (I) found by the online algorithm A on instance I. Algorithm A is said to be c-competitive, or equivalently to have a competitive ratio of c, if there exists a constant α such that

z A (I) ≤ c • z * (I off) + α , ∀ I ∈ I (1.4)
In the case where α = 0, the algorithm is said to be strictly c-competitive, meaning that in all cases the objective value of the solution found by A will be at most of c times the optimal value. The competitive ratio metric allows a worst-case absolute measure of an algorithm performance in terms of the objective value. We refer the reader to [START_REF] Borodin | Online Computation and Competitive Analysis[END_REF] for an in-depth analysis of this measure, and to Jaillet and Wagner (2008a) and [START_REF] Fink | New lower bounds for online k-server routing problems[END_REF] for results on various routing problems.

The main drawback of the competitive analysis is that it requires to prove the previously stated inequality analytically, which may be complex for real-world applications. The value of information proposed by Mitrović-Minić et al. (2004) constitutes a more exible and practical metric. We denote by z A (I off) the value of the objective function returned by algorithm A for the o ine instance I off . The value of information V A (I) for algorithm A on instance I is then de ned as

V A (I) = z A (I) -z A (I off) z A (I off) (1.5)
The value of information can be interpreted as the gap between the solution returned by an algorithm A on a instance I and the solution returned by the same algorithm when all information from I is known beforehand. In contrast with the competitive ratio, the value of information gives information on the performance of an algorithm based on empirical results, without requiring optimal solutions for the o ine instances. It captures the impact of the dynamism on the solution yield by the algorithm under analysis. For instance, Gendreau et al. (1999) report a value of information between 2.5% and 4.1% for their tabu search algorithm for the D-VRPTW, while [START_REF] Tagmouti | A dynamic capacitated arc routing problem with time-dependent service costs[END_REF] reports values between 10% and 26.7% for a variable neighborhood search descent applied to a dynamic arc routing problem.

Benchmarks

To date, there is no reference benchmark for dynamic routing problems. Although, it is worth noting that various authors based their computational experiments on adaptations of the Solomon (1987) instances for static routing (Bent and Van Hentenryck, 2004a,b;[START_REF] Chen | Dynamic column generation for dynamic vehicle routing with time windows[END_REF][START_REF] Chen | Dynamic column generation for dynamic vehicle routing with time windows[END_REF]Gendreau et al., 1999). Van Hentenryck and Bent (2006, Chap. 10) describe how the original benchmark by Solomon (1987) can be adapted to dynamic problems.

The interested reader is referred to the website of [START_REF] Pankratz | Benchmark data sets for dynamic vehicle routing problems[END_REF] for an updated list of publicly available instances sets for dynamic vehicle routing problems.

Conclusions

Recent technological advances provide companies with the right tools to manage their eet in real time. Nonetheless, these new technologies also introduce more complexity in eet management tasks, unveiling the need for decision support systems adapted to dynamic contexts. Consequently, during the last decade, the research community have shown a growing interest for the underlying optimization problems, leading to a new family of approaches speci cally designed to e ciently address dynamism and uncertainty. By analyzing the current state of the art, some directions can be drawn for future research in this relatively new eld.

First, further work should aim at creating a taxonomy of dynamic vehicle routing problem, possibly by extending existing research on static routing (Eksioglu et al., 2009). This would allow a more precise classi cation of approaches, evaluate similarities between problems, and foster the development of generic frameworks.

Second, there is currently no reference benchmark for dynamic vehicle routing problems. Therefore, there is a strong need for the development of publicly available benchmarks for the most common dynamic vehicle routing problems.

Third, with the advent of multi-core processors on desktop computers, and low-cost graphical processing units (GPU), parallel computing is now readily available for time-consuming methods such as those based on sampling. Although early studies considered distributed optimization (Gendreau et al., 1999), most approaches reviewed in this document do not take advantage of parallel architectures. The development of parallel algorithms is a challenge that could reduce the time needed for optimization and provide decision makers with highly reactive tools.

Fourth, our review of the existing literature revealed that a large fraction of work done in the area of dynamic routing does not consider stochastic aspects. We are convinced that developing algorithms that make use of stochastic information will improve the eet performance and reduce operating costs.

Thus this line of research should become a priority in the near future.

Finally, researchers have mainly focused on the routing aspect of the dynamic eet management.

However, in some applications there is more that can be done to improve performance and service level. For instance, in equipment maintenance services, the call center has a certain degree of freedom in xing service appointments. In other words, it means that the customer time windows can be de ned, or in uenced, by the call center operator. As a consequence, a system in which aside from giving a yes/no answer to a customer request, suggests convenient times for the company would be highly desirable in such contexts.

2

Dynamic and deterministic routing

In dynamic and deterministic problems, part or all of the input is unknown and revealed dynamically during the design or execution of the routes. This class of problems are also referred to as online or real time by some authors (Jaillet and Wagner, 2008).

In this chapter we present a fast re-optimization approach able to produce high quality routing in limited computational time, then we introduce a bi-objective dynamic routing problem and study the trade-o between route consistency and cost e ciency in dynamic routing.

The full reference of the paper presented in this chapter is:

-Pillac, V., Guéret, C., and Medaglia, A. L. (2012)

A fast re-optimization approach for dynamic vehicle routing While the vehicles execute their route, two new customers (X and Y) appear at time t 1 (2.1b.). At this stage, the dispatcher must decide whether or not it should accept or reject the new requests. In this case, Y is far from the current routes and vehicles, therefore its service may not be feasible or may be too costly. Customer Y is thus rejected and a penalty is paid. On the other hand, X is accepted and inserted in the second route. Finally, at time t f the executed route are (A, B, C) and (D, X, E) (2.1c.). This example reveals how dynamic routing inherently adjusts routes in an ongoing fashion, which requires real-time communication between vehicles and the dispatching center. In this context, the problem is rst to design an initial set of routes, visiting all the static customers. Then, each time a new customer appears, the problem is to decide whether it can be served or not, and eventually, to reoptimize the vehicle routes. We assume that by rejecting customers we incur a penalty that can be interpreted as an outsourcing cost. Dynamic routing problems introduce new challenges as they require to react quickly to changes in the available data. According to Ichoua et al. (2007), the level of dynamism of a problem can be characterized according to two dimensions: the frequency of changes and the urgency of customer requests. The former is the rate at which new information becomes available, while the latter is the period of time between the disclosure of a new customer and its expected service time.

From this observation di erent metrics have been proposed to measure the dynamism of a problem (or instance). Lund et al. (1996) de ned the degree of dynamism δ as the ratio between the number of 2.1. INTRODUCTION dynamic customers n d and the total number of customers n tot : δ = n d ntot . Larsen (2001) extended the degree of dynamism to take into account the disclosure date and the time windows of the dynamic customers.

To the best of our knowledge, the rst application of an optimization technique to dynamic routing is due to Psaraftis (1980) with the development of a dynamic programming approach. His research focuses on the Dial A Ride Problem (DARP) and consists in nding the optimal route each time a new customer is known. The main drawback of dynamic programming is the well-known curse of dimensionality (Powell, 2007, Chap. 1), which often prevents its application to large instances. Few research was conducted on dynamic routing between Psaraftis (1980) and the late 1990s. However, the last decade has seen a renewed interest in dynamic routing, with numerous approaches tackling a variety of problems. This section classi es the major contributions in this eld in two categories: 1) periodic reoptimization and 2) continuous reoptimization. The reader is referred to the reviews, books, and special issues by Gendreau and Potvin (2004); Ghiani et al. (2003); Ichoua et al. (2007); Larsen et al. (2008); Pillac et al. (2011), andZeimpekis et al. (2007), to complement our review.

Figure 2.1 presents an overview of periodic reoptimization approaches: the algorithm starts at the beginning of the day and a rst optimization produces an initial solution S 0 . Then, the procedure waits for an update in the available data, or for a xed period of time, followed by a new optimization trigger that leads to an updated solution S t+1 . The advantage of periodic reoptimization approaches is that they can be based on algorithms developed for static routing, for which extensive research has been conducted. Their main drawback is that all the optimization has to be performed before updating the solution, which can increase the delays for the dispatcher, while the computational power is unused during waiting times. for each time slice. The novelty of their approach relies on dynamically generating columns for a set-partitioning model, using columns from the previous decision epoch. The authors compared DY-COL to a traditional column generation with no time limit (COL). Computational results based on the Solomon benchmark (Solomon, 1987) demonstrate that DYCOL yields comparable results in terms of objective function, but with running times limited to 10 seconds, opposed to the various hours consumed by COL. Using a notion similar to decision epochs, Montemanni et al. (2005) developed an Ant

Colony System (ACS) to solve the D-VRP. An interesting feature of their approach is the use of the pheromone trace to transfer characteristics of a good solution to the next time slice. ACS was also used by Gambardella et al. (2003) and Rizzoli et al. (2007). Other heuristic approaches, such as Tabu Search (TS), were also used to tackle the Dynamic Pickup and Delivery Problem (D-PDP) (Barcelo et al., 2007;Chang et al., 2003) and the Dynamic Dial-a-Ride Problem (D-DARP) [START_REF] Attanasio | Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem[END_REF]Beaudry et al., 2010).

In contrast, continuous reoptimization approaches perform the optimization throughout the day in an optimization loop and store information on good solutions in an adaptive memory (see Figure 2.1). In parallel, a decision loop aggregates the information from the memory whenever needed. The advantage of such approaches is that the computational power utilization is maximized, at the price of possibly cumbersome implementation. press courier services, which can be seen as a D-VRPTW. The general idea is to maintain a pool of good routes-the adaptive memory (Taillard et al., 2001)-which is used to generate initial solutions for a parallel tabu search. The parallelized search is done by partitioning the routes of the current solution and optimizing them in independent threads. Whenever a new customer request arrives, it is checked against all the solutions from the adaptive memory to decide whether it should be accepted or rejected. This framework was also implemented for the D-VRP (Ichoua et al., 2000(Ichoua et al., , 2003)). Bent and Van Hentenryck (2004) generalized this framework and introduced the Multiple Plan Approach (MPA) to tackle the D-VRPTW. The general idea is to populate and maintain a solution pool (the routing plans)

Decision loop Optimization loop

Start

that are used to generate a distinguished solution. Whenever a new customer arrives, a procedure is called to check whether it can be served or not; if it can be served, then the customer is inserted in the solution pool and incompatible solutions are discarded. Pool updates are performed periodically or whenever a vehicle nishes servicing a customer. This pool-update phase is crucial and ensures that all solutions are coherent with the current state of vehicles and customers. The pool can be seen as an adaptive memory that maintains a set of alternative solutions. Following a di erent approach, Benyahia and Potvin (1998) studied the D-PDP and proposed a Genetic Algorithm (GA) that models the decision process of a human dispatcher. More recently, other GAs were also used for the same problem (Cheung et al., 2008;Haghani and Jung, 2005) and for the D-VRP (Van Hemert and Poutré, 2004). Genetic algorithms in dynamic contexts are very similar to those designed for static problems, except that they run throughout the planning horizon and solutions are constantly adapting to the changes made to the input.

In this work we propose two parallelized periodic reoptimization approaches. Section 2.2 presents a parallel adaptive large neighborhood search to tackle the D-VRPTW; Section 2.3 introduces a biobjective extension of the D-VRPTW and proposes a reoptimization approach; nally, Section 2.4 concludes this work and gives directions for further research.

Fast reoptimization for dynamic routing

The proposed approach is based on a parallel Adaptive Large Neighborhood Search (pALNS) algorithm which is used to compute an initial solution, and then, to reoptimize the solution whenever a new customer request arrives. In the remainder of this section we present the original Adaptive Large Neighborhood Search (ALNS) algorithm, discuss the proposed parallelization scheme and the reoptimization approach, and present computational results on the D-VRPTW.

The Adaptive Large Neighborhood Search

The ALNS algorithm, originally proposed by Pisinger and Ropke (2007), is an extension of the Large Neighborhood Search (LNS) algorithm (Shaw, 1998). LNS works by successively destroying (removing customers) and repairing (inserting customers back) a current solution, using destroy and repair operators. ALNS adds an adaptive layer that randomly selects operators depending on their past performance, automatically tting the algorithm to the instance at hand. We refer the interested reader to Pisinger and Ropke (2010) for a detailed description of LNS, ALNS, and related methods.

Algorithm 2.1 presents the outline of the ALNS approach. ALNS starts with an initial solution Π 0 .

Then for I iterations, the algorithm selects destroy and repair operators (line 4) with a roulette wheel that re ects their past performance. Destroy operators remove a subset of customers from the current solution, while repair operators reinsert them using heuristics that are known to perform well on the

d ← select (Θ -) ; r ← select (Θ +)
Select destroy/repair 5:

Π ← r (d (Π)) Generate a neighbor 6: if accept (Π , Π) then Π is accepted as current solution 7: Π ← Π Update current solution 8: end if 9: if z(Π) < z(Π *) then
An improvement has been found 10:

Π * ← Π Update best solution 11: end if 12:
updateScore (d, r, Π) Update scores 13: end for 14: return Π * problem at hand (line 5). The resulting new solution is conditionally accepted as current solution according to a simulated annealing criterion (line 6). At the end of each iteration, the scores of the destroy and repair operators are updated depending on the solution they generated (line 12).

Parallel Adaptive Large Neighborhood Search

We propose pALNS, an extension of the Adaptive Large Neighborhood Search (ALNS) algorithm that includes a novel parallelization scheme that e ciently spreads the computational e ort among independent processors. Algorithm 2.2 presents the outline of pALNS. The algorithm maintains a pool P of N promising solutions that are optimized in K subprocesses (note that N ≥ K). For each master iteration, a subset of K promising solutions is selected randomly (line 2) and distributed among independent subprocesses. Each subprocess performs I p ALNS iterations (lines 3-14) by destroying and repairing the current solution Π p as in the original ALNS algorithm. The nal current solution of each subprocess is added to the pool of promising solutions (line 13) and a ltering procedure ensures that the pool contains at most N solutions, including the best solution found so far (line 15). The algorithm stops after I m master iterations, which corresponds to I = I m × I p ALNS iterations. Note that the implementation of pALNS ensures that no synchronization is required between subprocesses to avoid deadlocks. The following paragraphs present in more detail the di erent components of the algorithm.

Destroy

Destroy operators remove a random fraction ξ ∈ [ξ min , ξ max] of the customers from the current solution. We denote R the set of customers served in the solution, and U the set of customers that are not served. We used three destroy operators originally proposed by Pisinger and Ropke (2007): random, related, and critical.

Algorithm 2.2 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm Input: P initial solutions, z evaluation function, Θ -/Θ + set of destroy/repair operators, N maximum size of the solution pool, K number of subprocesses, I m number of master iterations, I p number of iterations performed in parallel. Output: Π * , the best solution found 1: for I m iterations do 2:

P ← selectSubset (P, K) Select a subset of K solutions 3:

parallel forall Π in P do 4:

Π p ← Π Current solution for this subprocess 5:

for I p iterations do 6:

d ← select (Θ -) ; r ← select (Θ +) Select destroy/repair 7: Π ← r (d (Π p))
Destroy and repair current solution 8:

if accept (Π , Π p) then 9: P ← retain (P, N) Retain at most N solutions in the pool P 16: end for 17: return Π * = arg min Π∈P {z(Π)}

Π p ← Π Π is
The random destroy operator selects customers randomly and removes them from their actual tours.

The related destroy attempts to remove customers that share some characteristics. Let the relatedness r ij of customers i and j be a measure of how related two customers are (the lower the r ij , the more related i and j). The procedure starts by randomly removing a seed customer i (U = {i}), then it iteratively selects a customer i ∈ U, and removes the most related customer j * :

j * = arg min j∈R {r ij } (2.1)
There are di erent ways to measure the relatedness. We propose a new metric that can be precalculated, namely a-priori relatedness, that does not depend on the actual position of customers in tours:

r s ij = 1 + c ij M c θc 1 + |b i -b j | M t θt (2.2)
Where c ij is the distance between i and j, b i and b j are the end of the time windows of customers i and j, M c and M t are scaling constants, θ c and θ t de ne the weight given to the geographic distance between the two customers, and the di erence between due dates respectively.

On the other hand, time-oriented relatedness (Pisinger and Ropke, 2007) measures the di erence be-tween the current times of service A i and A j of customers i and j:

r t ij = |A i -A j | (2.3)
Finally, critical destroy consists in removing the customer i * such that the cost of the resulting solution is minimal:

i * = arg max i∈R {c i-1,i+1 -c i-1,i -c i,i+1 } (2.4)
Where i -1 and i + 1 are the predecessor and successor of i.

In practice related and critical operators are randomized and the y p |R| -th best customer is selected, where y is a random number in [0, 1) and p ≥ 1 is a parameter that controls the level of randomness (the lower the p, the more randomness is introduced).

Repair

Repair operators attempt to insert customers that are currently unserved. Our implementation is based on regret-q heuristics (Potvin and Rousseau, 1993): at each iteration the algorithm inserts (at the best position) the customer with the lowest regret value. The regret-q value r q i of customer i is a measure of how desirable it is to insert i in the current iteration assuming that the best insertion will no longer be feasible in the next iteration. It is de ned as:

r q i = q h=2 ∆z h i -∆z 1 i (2.5)
Where ∆z q i is the cost of the q-th best insertion of customer i ∈ U. Note that ties are resolved by selecting the customer with the lowest ∆z 1 i value, and therefore regret-1 corresponds to the classical best insertion heuristic. We used three regret levels: regret-1, regret-2, and regret-3.

Adaptive layer

At each iteration, the pALNS algorithm selects a destroy and a repair operator using a selection roulette, such that operator θ ∈ Θ is selected with probability w θ , where Θ is either the set of destroy (Θ -) or repair (Θ +) operators. Probabilities are initialized with value 1 |Θ . | , and then updated every l iterations (a segment) as follows:

w θ ← (1 -ρ)w θ + ρ s θ θ∈Θ . s θ (2.6)
Where ρ ∈ [0, 1] is the reaction factor which de nes how quickly probabilities are adjusted, and s θ is the score of operator θ in the last l iterations. The scores s θ are reset to 0 every l iterations and updated at the end of each iteration depending on the new solution: a score of σ 1 is granted for a new best solution, σ 2 for an improving solution, σ 3 for a non-improving but accepted solution, and σ 4 for a rejected solution. It is worth noting that in contrast with the adaptive scheme originally proposed by Pisinger and Ropke (2007), this formula ensures that θ∈Θ w θ = 1 at all time, which makes it easier to interpret the relative weight of each component.

Objective function

The initial solution or the solution resulting from the destroy operator can leave some customers unserved (U = ∅). Therefore we need to be able to evaluate a partial solution Π to account for the unserved customers. Given an evaluation function z and an initial solution Π 0 , Pisinger and Ropke (2007) de ne the cost of partial solution Π as follows:

z φ (Π) = z(Π) + φ|U|z(Π 0) (2.7)
Where φ is a parameter that controls the unserved customer penalty.

Acceptance criterion

As in the original ALNS, the pALNS algorithm relies on a simulated annealing acceptance criterion which accepts a new solution Π with probability e

z(Π)-z(Π) T
, where T is the temperature parameter.

The temperature is initialized with the value T 0 and it is reduced at each iteration by a cooling factor c. The two parameters T 0 and c are set depending on the initial solution and the target number of iterations [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF]. Given an initial solution Π 0 , T 0 is de ned such that a solution with value (1 + w)z(Π 0) is accepted with probability p, and c is set such that the temperature after n iterations is equal to αT 0 .

Computation of an initial solution

The pALNS algorithm requires an initial solution which is computed with a regret-3 constructive heuristic: starting with empty routes for each vehicle, the algorithm iteratively inserts the customer with the lowest regret value as described in §2.2.2.2.

Solution pool

The solution pool acts as a shared memory and allows subprocesses to collaborate e ciently. In the original algorithm, the simulated annealing acceptance criterion results in a search scheme that starts from a diversi cation phase, in which poor solutions may be accepted as current solutions, and progressively switch to an intensi cation phase, in which only improving solutions are accepted.

The use of a solution pool that would contains the N best solutions found so far tend to break this scheme, as poor solutions may never be kept in the pool and will therefore not be exploited properly.

To overcome this limitation we propose to maintain a pool of diverse solutions that are promising in terms of cost.

This is achieved by the retain method (line 15) which ensures that P contains at most N solutions:

if |P| > N then the method retains the N best solutions according to the tness function f :

f (Π) = (1 -λ)rank z (Π) + λrank d (Π) (2.8)
Where λ is a weight between 0 and 1, rank z (Π) is the rank of solution Π according to its objective value, and rank d (Π) is the rank of Π according to its average broken-pairs distance (Prins, 2009) relative to the other solutions from P. The broken pairs distance counts the number of arcs that differ between two solutions. This tness function is inspired by the biased tness introduced by Vidal et al. (Vidal et al., 2011) in a genetic algorithm with diversity management. The weight λ can either be xed a-priori, or adjusted throughout the search to switch from diversi cation (λ = 1) to intensi cation (λ = 0). Note that we ensure that P always contains the best solution found so far. It is important to note that the immediate commitment of idle vehicles to customers may lead to di culties when new customers appear. Figure 2.5 illustrates this with a single vehicle. Suppose that at time t a vehicle is assigned to a customer i, if the vehicle is dispatched immediately to i (upper left time line), it will travel to i then wait at its destination until the start of the time window (black brackets). On the other hand, if a waiting strategy is used (lower left time line), the vehicle will remain idle until the latest moment such that it will not wait at i. If at time t + 1 a new customer j appears, in the rst case j cannot be served as the vehicle is already waiting at i, while in the second case a visit to j can be inserted right before i. As a consequence, vehicles are considered to remain idle at their current location until the latest departure time such that it will not wait at the next customer, leaving time for further insertions.

Parallel reoptimization approach for the D-VRPTW

Computational results

To assess the e ect of parallelization we tested our algorithm on the static instances for the VRPTW proposed by Solomon (1987) on a quad-core desktop computer 1 . For the detailed parameter setting of the algorithm please refer to Appendix 2.A. Table 2.1 presents aggregated values over the 53 instances, with ten run per instance and 25,000 ALNS iterations 2 . The rst column corresponds to the original sequential (Seq.) implementation of the ALNS, and the following to the parallel implementation with 1 to 8 threads. The rst and second rows contain the mean and standard deviation of the gap value relative to either the optimal or the best known solution. Finally, the third and fourth rows show the mean and standard deviation of the CPU times. Note that increasing the number of threads has a limited impact on the gap to the best known solutions, which is consistently around 0.6%, but it allows a reduction of running times by a factor 3.3.

Figure 2.6 presents the box plot of the distribution of the gap and CPU times for the sequential (S) and parallel implementations with 1, 2, 4, and 8 threads. A graphical analysis shows that the median gap and variance slightly decrease with the number of threads. In contrast, the median running time and variance decreases sharply with the number of threads. Therefore, we selected the con guration with 8 threads as it o ers the best compromise between speed and quality. Note that the processor used is a quad-core with Intel hyper-threading technology which allows two threads per core. This partially explains the relatively small reduction of CPU times when switching from 4 to 8 threads.

1. CPU: Intel i7 860 (4x2.8GHz), RAM: 6GB DDR3, OS: Ubuntu 11.10 x64, Java 7 2. To ensure that We tested the pALNS algorithm on the instances proposed by Lackner (2004) and based on the Solomon (1987) benchmark, in which a fraction of the customers is revealed dynamically. The instances contain 100 customers located randomly (R), in clusters (C), or combining both (RC); while the planning horizon is either short (type 1) or long (type 2); and the number of dynamic customers (or degree of dynamism, δ) is either 10, 30, 50, 70, or 90. These instances are organized combining location, horizon length, and degree of dynamism. We consider the minimization of the traveled distance. For each instance, we performed 10 simulations in which pALNS is initially run for 25,000 iterations to produce an initial solution. Then, each time a new customer appears, pALNS is run for 5,000 iterations to produce a solution that will be used until the next customer is revealed. Finally, pALNS is run for 50,000 iterations to solve the a-posteriori problem, in which all the accepted customers are assumed to be known beforehand.

I = I m × I p × K 25000, we used I m = 25000 40×K S 1 2 4 8 • • • • • • • • • •• •• • • • • • • • • 0 1 2 3 4 5 Gap Threads a. Gap (%) vs. number of threads S 1 2 4 8 • • • • • • • • • • • • • •• • • •• •• • • • • • • • • • • • • • • • 10
Table 2.2 presents the Value of Information (VI) (Lund et al., 1996) for each instance group and degree of dynamism (δ). The value of information for instance I is de ned as the ratio z(I)-z(I off)

z(I off)
where z(I) is the value of the solution found by the algorithm for the dynamic instance, and z(I off)

is the value of the solution for a-posteriori instance I off . As expected, results indicate that the VI increases with the degree of dynamism, which can be explained by the fact that suboptimal routing decisions add up over time, and more decisions are made in highly dynamic instances. However, even when 90 out of 100 customers appear dynamically, the VI is of just 11% on average, which means that the algorithm is still able to produce a nal routing that is very close to what would have been done if all the customers were known from the beginning of the day.

Table 2.3 presents a comparison of approaches for the Lackner (2004) instances. The rst and second columns present the traveled distance and number of rejected customers for pALNS, averaged over 10 runs and for each group and degree of dynamism. The third and fourth columns report the average distance, relative average additional distance (in parenthesis), and number of rejected customers for the Large Neighborhood Search (LNS) approach proposed by Hong (2012), while the fth and sixth columns report the same values for the Genetic Algorithm (GA) developed by Lackner (2004). Note that the experimental setting of the two cited studies is not explicitly presented, which limits the rele- Table 2.2: Average value of information for the Lackner (2004) instances vance of direct comparisons. Nonetheless, gures show that our approach is competitive both in terms of traveled distance and number of rejected customers. In addition, average running times are of just 5.3s for the initial optimization, and 2.0s for subsequent reoptimizations, which is signi cantly less than the 33s and 47s reported by Hong (2012) and Lackner (2004) respectively.

Route consistency in dynamic routing: a bi-objective approach

Most studies on dynamic routing consider that routes are designed online, which means that vehicle drivers do not know their next destination until they nish serving their current customer. Although this assumption is theoretically appealing and allows a better optimization of the cost function, it may not be desirable if drivers are used to know their routes from the beginning of the day.

In practice, having a set of routes known a-priori that are then changed may be desirable over purely dynamic routing. Hence there is a need for approaches able to maintain consistency in the vehicles routes throughout the day while ensuring cost e ciency.

To the best of our knowledge, all studies on dynamic routing focus on the optimization of a single criterion, such as the minimization of the total traveled distance or the maximization of the number of served customers. On the other hand, and as surveyed by Jozefowiez et al. (2008), a growing number of studies on static routing consider multiple objectives in an attempt to better t operational contexts. In this section we present a preliminary study that takes into account driver inconvenience. The proposed approach is an adaptation of the pALNS algorithm that simultaneously minimizes a cost function and maximizes the route consistency throughout the day.

Measuring consistency

Assuming that an initial set of routes are handed to the drivers at the beginning of the day, it seems natural to consider them as the reference routes for each driver. To prevent multiple and unnecessary changes in routes, we assume that drivers will only be informed of changes in their routes at the last possible moment. As a consequence, a change will take e ect only when necessary. From the driver's perspective, four types of changes can be made to the route: one or more customers may be a) inserted between existing customers; b) removed; c) swapped within the same route; d) substituted by a customer previously unvisited. In this context, minimizing inconvenience is therefore equivalent to minimizing the number of changes communicated to the driver. We use the edit distance (or Levenshtein distance) as a proxy for the driver's inconvenience. The edit distance between two routes is de ned as the minimum number of insertions, removals, or substitutions of customers that have to be applied to transform one route into the other. Therefore the inconvenience of a new solution relative to a reference solution is equal to the sum of edit distances between each vehicle's reference and new routes. The advantage of this metric is that it is e ciently computed and models accurately the changes described above, and it can be adapted to give weights to each type of change. The main limitation of this proxy is that it does not necessarily re ect the e ective number of changes communicated to the driver as sections of the route may be changed later.

Figure 2.7 illustrates the evaluation of the edit distance between a reference and a new route.

The gray nodes correspond to the portion of the route that has already been executed. The distance between the reference and new route is 3, with 1 substitution (SUB), 1 insertion (INS), and 1 removal (REM).

The proposed approach

The proposed approach, namely parallel Bi-objective Adaptive Large Neighborhood Search (pBiALNS), is an extension of the pALNS algorithm described in Section 2.2, and it is inspired by the bi-objective LNS proposed by [START_REF] Schmid | Large neighborhood search for solving the Bi-Objective Capacitated m-Ring-Star Problem[END_REF]. In a nutshell, the central idea is to maintain and optimize a set of non-dominated and possibly infeasible solutions. In addition, our approach introduces a parallelization scheme that improves performance and allows its use in a dynamic context.

The adaptation of the pALNS algorithm to deal with the bi-objective case is straightforward: the algorithm maintains the set P of non-dominated solutions that are optimized in K subprocesses. For I m master iterations, a subset of K non-dominated solutions is selected randomly and distributed among independent subprocesses. Each subprocess performs I p ALNS iterations by destroying and repairing the current solution, considering only the main objective (cost). In contrast to the original pALNS algorithm, each temporary solution is considered for inclusion in the set of non-dominated solutions, and the number of solutions stored in P is not limited. Finally, the algorithm returns the whole set of non-dominated solutions P, from which the decision maker selects a single solution.

It is important to note that the optimization itself, which takes place in the ALNS iterations, only considers the minimization of the cost. Therefore, there is an implicit lexicographic ordering of the objectives, the maximization of the consistency being handled implicitly with the set of non-dominated solutions. This choice is motivated by the fact that at each ALNS iteration the algorithm needs to introduce changes in the current solution by removing and inserting customers, and introducing the consistency at this level would steer the approach away from cost-e ective solutions.

Note that pBiALNS may visit infeasible solutions that do not visit all customers. Therefore, we de ne a dominance relation that ensures that no feasible solution will be dominated by an infeasible solution:

De nition 1 (Dominance). A solution Π dominates (denoted ≺) a solution Π if and only if Π is as good as Π in both objectives, and strictly better in one objective, and either Π is feasible or both Π and Π are infeasible.

Computational results

We tested the pBiALNS approach on the Lackner (2004) instances described in §2.2.4 with a similar experimental setting. pALNS is rst run for 25,000 iterations to produce the reference (initial) solution; then, each time a new customer appears pBiALNS is run for 5,000 iterations to produce a set of candidate new solutions to choose from; nally, pALNS is run for 50,000 iterations to produce the a-posteriori solution to the problem.

Figure 2.8 represents the objective space explored by pBiALNS after 5,0000 iterations for one instance, at a given step of the simulation (ie., after a new customer appeared). The graph illustrates the diversity of solutions o ered to the decision maker, ranging from the least-cost solution (upper left)

to the most similar to the reference solution (lower right). For the purpose of benchmarking and to assess the tradeo between the two objectives, we de ne a threshold selection policy and select the nondominated solution that is closest to the reference, allowing a deviation in cost of at most γ percent from the least-cost solution (green diamond). This policy models the behavior of an expert dispatcher who would select one solution among the non-dominated set. Table 2.4 presents (a) the average edit distance between the nal solution and the reference solution, and (b) the average gap between the cost of the nal solution and the cost of a solution evaluated a-posteriori and the average number of rejected requests, for di erent values of γ and degree of dynamism (δ). Running times are of 2.5 seconds on average at each decision. As expected, the edit distance relative to the reference solution is negatively correlated to γ, and is minimal for γ = ∞. In this case we always choose the solution which is the closest to the reference solution, in other words we simply insert new customers in the current solution, which leads to a distance equal to the number of accepted dynamic customers. It is important to note that the quality of the routing, measured by the gap to the static solution, is positively correlated to γ. This con rms the intuition that poor routing decisions tend to add up over time and can lead to larger deviations at the end of the day. Our results also indicate that, for problems with low degree of dynamism, it can be worth sacri cing quality of solution to gain route stability. For instance, with δ = 10, the value γ = 5% leads to a gap of 6% versus 2% with γ = 0%, but it reduces the number of required changes by a factor 3. However, this statement no longer holds for instances with higher degrees of dynamism where numerous changes are necessary to insert all customers. In this case it is better to focus on optimizing the routing, as it does not lead to excessive instability in routes.

(

Conclusions

In this work we proposed an e cient parallelization scheme for an Adaptive Large Neighborhood Search, namely pALNS. This algorithm distributes the optimization of promising solutions across multiple processors, resulting in factor 3.3 speedups on a quad-core desktop machine. The e ciency of pALNS relies on the presence of a promising solution pool with diversity management, which prevents deadlocks between optimization threads, and improves the exploration of the search space. We illustrated the e ciency of pALNS on the Solomon (1987) CVRPTW instances, for which it produces solutions in average 0.7% away from the optimal/best known solution in just 12s.

We also introduced a fast-reoptimization approach based on pALNS to tackle the dynamic VRPTW.

This approach consists in running pALNS to produce an initial solution at the beginning of the day, and then running it for a limited number of iterations whenever a new customer appears. We tested our approach on the instance set proposed by Lackner (2004). Computational results show that pALNS is capable of achieving state of the art results in competitive time, bringing improvements of up to 12% over previous approaches.

Finally, we presented a preliminary bi-objective extension of the classical D-VRPTW that attempts to captures the drivers inconvenience resulting from dynamic routing. It is based on the notion of having a reference routing plan handled to the drivers at the beginning of the period, that will then undergo changes as new customers arrive. We introduced an inconvenience metric that measures the consistency between an updated routing plan and the reference plan. We proposed a fast bi-objective optimization approach based on pALNS, namely pBiALNS, which maintains and optimizes in parallel the set of non-dominated solutions.

This optimization algorithm was used coupled with a threshold policy modeling an expert dispatcher to tackle the D-VRPTW instances proposed by Lackner (2004). Our results indicate that there is a clear tradeo between minimizing the traveled distance and maintaining consistency in routes.

Furthermore, it appears that for problems with a low degree of dynamism it can be worth sacri cing cost e ciency to maintain consistency. In contrast, in highly dynamic problems the priority should be given to the minimization of the cost, as it does not lead to excessive inconsistency in routing.

Future research should focus on the development of a continuous reoptimization approach based on pALNS that runs throughout the day and maintains a pool of alternative promising solutions as adaptive memory. In addition, pALNS could be improved by having completely independent subprocesses that pull their starting solution from the pool, and push their nal solution, without waiting for other subprocesses to nish. pBiALNS could be re ned to better approximate the Pareto front, rst in the selection of the non-dominated solutions to optimize, then by applying a local search or a path relinking between non-dominated solutions.

Acknowledgements 5, 10, 20, 30, 40, 50}. We also tested two schemes for the solution pool, the rst with a xed value of 0.5 for λ, the second using an adaptive scheme starting with λ = 0.5

and decreasing its value using the same process as the one used to decrease the simulated annealing temperature. Over all our experiments the combination of an adaptive diversity management with I p = 50 and N = 40 showed the best results for 25,000 pALNS iterations, and I p = 100 and N = 10 for 5,000 pALNS iterations.

3

Dynamic and stochastic routing

In dynamic and stochastic problems, part or all the input is unknown and revealed dynamically during the execution of the routes, and exploitable stochastic knowledge is available on the dynamically revealed information. Vehicle routes can be rede ned in an ongoing fashion with the help of technological support.

Our focus being on developing software components that can be used for a wide range of applications, we chose to develop an event-driven framework based on the Multiple Scenario Approach proposed by Van Hentenryck and Bent (2006). In this chapter we present the general framework and its implementation, and then illustrate the validity of this approach by tackling the Dynamic Vehicle Routing Problem with Stochastic Demands (D-VRPSD).

The full reference of the paper presented in this chapter is:

-Pillac, V., Guéret, C., and Medaglia, A. L. (2012)

An event-driven optimization framework for dynamic vehicle routing Decision Support Systems, Accepted manuscript doi:10.1016/j.dss.2012.06.007.

A previous version of the paper was published as a technical report:

-Pillac, V., Guéret, C., and Medaglia, A. L. (2011)

An event-driven optimization framework for dynamic vehicle routing Technical report, École des Mines de Nantes, France. Report 11/2/AUTO.

Preliminary results of this work were presented two conferences:

-Pillac, V., Guéret, C., and Medaglia, A. L. (2011)

A dynamic approach for the vehicle routing problem with stochastic demands

In ROADEF 2011, St Etienne, France.

-Pillac, V., Guéret, C., and Medaglia, A. L. (2010)

Solving the vehicle routing problem with stochastic demands with a multiple scenario approach

In ALIO-INFORMS 2010, Buenos Aires (Argentina).

Introduction

The problem of operating a eet of vehicles arises in many contexts, from pickup and delivery of goods to relocation of trucks in carrier companies. More speci cally, Vehicle Routing Problems (VRP) deal with the design of a set of minimal-cost vehicle routes that serve the demand for goods or services of a group of geographically spread customers, satisfying operational constraints. From an information perspective, such problems generally include two dimensions: evolution and quality of information (Psaraftis, 1980). Information evolution relates to the fact that in some problems the information available to the planner may change during the execution of the routes, for example with the arrival of new customer requests. Information quality re ects possible uncertainty on the available data, for instance, when the demand of a customer is only known as a range estimate of its real demand. In addition, depending on the problem and the available technology, vehicle routes can either be designed a-priori or online. Based on these dimensions, Table 3.1 identi es four categories of routing problems.

The static and deterministic category includes the classical Vehicle Routing Problem (VRP) as dened by Dantzig and Ramser (1959) in which all information is known beforehand and with certainty.

In contrast, problems from the static and stochastic class are characterized by input partially known as random variables, which realizations are only revealed during the execution of the routes. Additionally, it is assumed that routes are designed a-priori and only minor changes are allowed afterward. and Laporte (2009) for a recent review of these two classes of problems.

In dynamic and deterministic problems, also referred to as online problems, part or all of the input is unknown and revealed dynamically and unpredictably during the design or execution of the routes. On the other hand, dynamic and stochastic problems include partial stochastic knowledge on the dynamically revealed information. For these problems, vehicle routes are rede ned in an ongoing fashion, requiring technological support for real time communication between the vehicles and the decision maker (e.g., mobile phones and global positioning systems). Techniques for both classes are reviewed in the studies by Ichoua et al. (2007) and Pillac et al. (2011).

Dynamism in routing can emerge from di erent aspects of the problem. The most common source of dynamism is the arrival of new customers with a demand for goods or services. Other researchers consider dynamically revealed demands for a set of known customers, dynamic travel times, and vehicle availability. Finally (at time t f), the executed route is (A, B, C, D, Y, E, X). This example reveals that dynamic routing requires to adjust the routes in an ongoing fashion, which implies real-time communication between vehicles and the dispatching center.

! " From a practical perspective, we can identify the following desirable characteristics of a dynamic routing DSS:

-Event-driven. Organizations are expected to react quickly to changes in their environment. Having a DSS which is periodically updated implies longer reaction delays. Thus, a DSS should be driven by the same transactional events that keep the business operating (e.g., customer requests).

-Parallelized. As dynamic routing requires fast decisions, the underlying optimization algorithms should be parallelized, taking advantage of the now ubiquitous parallel (and distributed) computing architectures able to perform several tasks concurrently.

-Flexible. The landscape of vehicle routing problem variants is vast. Thus, a DSS should be easily extensible to account for operational constraints in a continuously evolving environment.

In this paper, we propose an application-oriented optimization framework for dynamic and stochastic vehicle routing that is event-driven, parallelized and exible. The rest of this document is organized as follows. Section 3.2 reviews the literature on dynamic routing optimization techniques and related decision support systems. Section 3.3 describes the proposed framework, Section 3.4 illustrates its application to the dynamic VRPSD, and Section 3.5 presents experimental results. Finally, Section 3.6 concludes this paper and discusses how the framework can be generalized and extended to other dynamic optimization settings.

Literature review

A growing body of research has been carried out on dynamic routing, leading to new optimization techniques and innovative DSS. In this section we will review some of the most signi cant contributions in the dynamic routing eld.

Dynamic routing

A wide range of techniques have been developed to address the dynamic nature of routing problems. Dynamic methods can be divided in two categories: non-anticipative, which only react to updates in the problem data; and anticipative, which take into account knowledge on the dynamically revealed information to anticipate the future. Non-anticipative methods are designed for dynamic and deterministic problems. They generally are a direct adaptation of static methods such as integer programming [START_REF] Yang | Real-time multivehicle truckload pickup and delivery problems[END_REF], large neighborhood search (Goel and Gruhn, 2008), tabu search (Beaudry et al., 2010;Gendreau et al., 1999;Ichoua et al., 2003), genetic algorithms (Benyahia and Potvin, 1998;Haghani and Jung, 2005), or ant colony optimization (Montemanni et al., 2005). Conversely, anticipative methods often make better decisions by using stochastic information available in the form of probability distributions. Anticipative methods are further classi ed into one of two families: stochastic modeling or sampling.

Anticipative methods based on stochastic modeling accurately describe the problem's stochasticity.

In an early work, [START_REF] Powell | A comparative review of alternative algorithms for the dynamic vehicle allocation problem[END_REF] formulated the D-VRP as a Markov Decision Process (MDP). Nevertheless, the exponential growth of the state and action spaces causes traditional MDP to stall. This problem has led to the development of Approximate Dynamic Programming (ADP). The main idea behind ADP is to decompose the time in decision epochs. At each decision epoch the goal is to minimize the current deterministic cost plus an approximation of the expected future cost. This technique has been successfully applied to di erent dynamic eet management problems (Godfrey and Powell, 2002;Powell and Topaloglu, 2005;Simao et al., 2009) and vehicle routing with stochastic demands (Novoa and Storer, 2009). The strength of ADP is that it accurately encapsulates stochastic information in the model, but at the expense of a higher complexity and stronger assumptions on the probability distributions.

On the other hand, anticipative methods based on sampling are to some extent simpler, but require more e ort to capture the problem's stochasticity. These methods sample the probability distributions to generate scenarios that are used to make decisions. Such approaches include the dynamic sample scenario hedge heuristic proposed by Hvattum et al. (2006), the tabu search heuristics proposed by Ichoua et al. (2006) and Attanasio et al. (2007), and the Multiple Scenario Approach (MSA) proposed by Van Hentenryck and Bent (2006).

Among the anticipative methods based on sampling, MSA is unique in the sense that it provides a more general framework for dynamic problems. More speci cally, MSA maintains a pool of scenarios with realizations of the problem random variables and a solution to the corresponding deterministic problem. A distinctive feature of MSA is that the next customer to visit is selected based on the whole scenario pool by means of a decision process. The algorithm starts by initializing the scenario pool based on the currently known information. Periodically, MSA updates the scenario pool to re ect the current environment state, selects the next customer, and optimizes the scenarios. As new information is disclosed, some scenarios might become obsolete and are removed from the pool, leaving space for new ones.

The strength of MSA is that optimization is performed on scenarios and only requires to solve a static and deterministic problem. Therefore this approach is very exible as it can virtually be adapted to any problem, provided an optimization algorithm for its static and deterministic version. Nonetheless, its integration in a real-world context is far from trivial, especially considering communication between the method and its environment. Additionally, the fact that it relies on time steps induces delays between the arrival of new information and its processing.

Decision support systems for dynamic routing

There exists a wide range of DSS for the operation of a eet of vehicles, as surveyed by [START_REF] Zak | Decision support systems in transportation[END_REF].

In the following paragraphs we will focus on dynamic routing DSS and review the body of research in this area.

The operation of a eet of vehicles in an urban area is a key component of city logistics [START_REF] Taniguchi | City Logistics: Network Modelling and Intelligent Transport Systems[END_REF], and the core subject of various DSS developments. Dynamic DSS generally rely on speci c technology to ensure the communication between vehicles and the dispatching center (Zeimpekis et al., 2007). In contrast Bieding et al. (2009) propose a DSS based on a WAP (Wireless Application Protocol) server and mobile phones to manage the delivery of newspapers. The use of web technologies for DSS is promising, as highlighted by the study by [START_REF] Bhargava | Progress in web-based decision support technologies[END_REF], especially for dynamic routing, as it allows users to access the DSS with mobile devices such as cell phones or tablet computers.

As pointed out by [START_REF] Crainic | Intelligent freight-transportation systems: Assessment and the contribution of operations research[END_REF], there is a gap between state-of-the-art optimization techniques and the optimizers embedded in real-life DSS. This may be explained by the complexity and level of specialization of certain approaches, that render di cult their extension and integration in an application-oriented context. To address this issue, we propose a exible optimization framework, based on MSA, easily embeddable in any DSS for dynamic routing.

Proposed framework

The framework, called jMSA, is a exible, parallel, and event-driven Java implementation of the multiple scenario approach. The proposed framework has been designed to facilitate and accelerate the development and deployment of MSA-based algorithms embeddable in DSS. This section presents the proposed framework in detail.

Scenarios and decisions

Scenarios capture uncertainty in MSA. Each scenario contains a realization of the random variables, and a solution to the static and deterministic problem de ned by this realization. For instance, in the Dynamic VRPSD (D-VRPSD), in which vehicles can be dynamically rerouted, each scenario contains a realization of the customer demands; while in the D-VRP, it contains a set of sampled (potential) customers, aside from the known customers. An optimization algorithm is used to solve the static and deterministic routing problem de ned by both actual and sampled data. Virtually, any optimization algorithm can be used to optimize scenarios. Nonetheless, it should be fast enough to be able to optimize the whole scenario pool between two events. Additionally, as the same scenario may be optimized more than once, it should be capable of escaping from local optima to further improve the solution. Another key element in MSA is the decision process, which de nes how to select the next customer to serve based on the information of the scenario pool. MSA's accuracy relies to a great extent on the decision process, being the most common algorithms expectation, consensus, and regret. The expectation algorithm [START_REF] Chang | On-line scheduling via sampling[END_REF] evaluates the cost of visiting each customer rst, by forcing its visit and reoptimizing each scenario. The consensus algorithm (Bent and Van Hentenryck, 2004b) selects the customer appearing rst with the highest frequency. Finally, the regret algorithm (Bent and Van Hentenryck, 2004a) approximates the cost of visiting each customer rst.

The jMSA framework uni es these decision processes in the generic Algorithm 3.1, in which a subset of candidate customers (line. 1) is evaluated against the scenario pool (line. 6) to select the best one (line. 9). The evaluation of each customer re ects how desirable it is to serve it rst depending on the objective. In most routing problems, the customer with the highest evaluation should be the one that ensures the lowest expected routing distance when visited rst.

Algorithm 3.1 A general algorithm for the decision process in jMSA

Input: scenario pool P, set of pending customers R Output: r * the next customer to serve 1: C ← selectCandidates (R, P) Select a subset of candidate customers 2: f * ← -∞, r * ← ∅ 3: for all r ∈ C do 4:

f ← 0 5:
for all s ∈ P do 6:

f ← f + evaluateRequestProfit (r, s) 7: end for 8: if f > f * then 9: f * ← f, r * ← r 10:
end if 11: end for 12: return r *

Event-driven interaction

The original description of MSA is implicitly based on the discretization of time in intervals. This implies a time lag between an update in the problem data, such as the arrival of a new customer, and the response of the system, corresponding to the time before the next time interval. Consequently, in jMSA we propose a description of MSA from an event-driven perspective, suitable for its integration as a component of a real-world decision support system. The environment refers to the real-world, the DSS is assumed to be based on the MSA algorithm, and active (idle) times are represented with a continuous (dotted) segment. While the vehicle is parked at the depot, the MSA procedure initializes a scenario pool based on the currently known customers.

Once the vehicle is ready (rst dotted arrow), MSA analyzes the scenario pool and instructs the vehicle to service customer A (rst double-headed arrow). While the vehicle is traveling towards customer A, MSA generates and reoptimizes the scenario pool. When the vehicle reaches its destination, an event is sent to the system (second dotted arrow) and triggers an update of the scenario pool. The remaining service time is used by MSA to reoptimize the pool until the vehicle is ready to depart. This event (third dotted arrow) triggers the decision procedure, which recommends visiting customer B (second double-headed arrow). At some point in time while the vehicle is traveling to B, an event (last dotted arrow) triggers an update of the scenario pool. Such event could be the arrival of a new customer in the D-VRP, or an update in the tra c information in the case of routing with dynamic travel times.

The main advantage of this event-driven interaction between the environment and the system is that it increases the responsiveness of the DSS by feeding real-time information to the system and communicating decisions without delay.

Framework design

As illustrated in Fig. 3.4, the proposed framework is divided in two layers: a kernel, common to all dynamic combinatorial optimization problems; and a problem layer, with problem-speci c components. The central component of the kernel is the MSAProcedure, which contains the logic of the algorithm and instantiates all other components. The MSAProcedure is con gured via the Global-Parameters that can be set programmatically or via a con guration le.

The event-driven behavior is modeled using two elements: events and event handlers. Fig. 3.5 shows how events drive the framework. The MSA procedure continuously dequeues events from the event queue, and then processes them by using the corresponding event handler in the event handler manager.

Events are designed to increase the framework responsiveness. To ensure that important events are handled rst, events are prioritized and the event queue is sorted accordingly. Additionally, some events are preemptive, meaning that the handling of a non-preemptive event is always aborted in favor of a preemptive event.

MSA procedure The component manager contains references to all components and acts as an interface between event handlers and problem-speci c implementations.

Fig. 3.6 illustrates how event handlers and components interact for the ScenarioGeneration event. First, GenerateHandler calls the generateScenario method of the ComponentManager that internally uses the registered ScenarioGenerator. Then it calls the optimizeScenario method, delegated to the instance of ScenarioOptimizer in use, and adds the scenario to the pool. The process repeats until the pool is full, moment when the event handling terminates by raising a Scenario-Optimization event that is further pushed to the event queue.

The framework includes a callback system that provides users with further control over the MSA procedure. Users may implement a callback simply by extending the Callback interface provided in the framework, and registering it in the MSA procedure. User-de ned callbacks are automatically invoked at speci c points of the procedure and allow customized uses such as logging to a le or dynamic parameter tunning.

Tied, yet decoupled to the kernel, the jMSA framework o ers a problem-speci c layer containing components that provide ready-to-use functionalities for common dynamic combinatorial optimization problems. Fig. 3.4 illustrates some components that could be combined for the D-VRP. Consensus is an implementation of the consensus algorithm that is common to many dynamic problems solved under MSA; VRPScenario is an implementation of Scenario for routing problems containing a set of routes; VRPScenarioOptimizer is a generic solver for the VRP; and nally DVRPScenarioGenerator is the only component speci c to the D-VRP that is responsible for the generation of new scenarios.

This two-layer architecture ensures exibility and extensibility. While kernel elements are de ned at a high level and are designed to be problem independent, the problem layer provides implementations for speci c problems. Thus, users only have to de ne or extend components, in particular for scenario generation and optimization, without worrying how they will be integrated in the MSA procedure.

Parallelization via multi-threading

The ubiquitous presence of multi-core processors can be exploited in parallelizable algorithms such as MSA. Nevertheless, parallelization often comes at the price of a higher implementation complexity.

The jMSA framework o ers multi-threaded parallelization of the most time-consuming tasks, hiding it from the user. That is, under jMSA, users do not have to explicitly write a parallel algorithm, but simply rely on the ComponentManager which internally distributes tasks among di erent threads.

Fig. 3.7 illustrates how threads interact within the jMSA framework. At time t 0 the MSA thread dequeues an OptimizePool event, and processes it with the corresponding OptimizeHandler. In parallel to the MSA thread, two other threads are started by the ComponentManager to optimize the scenarios of the pool. At t 1 , a preemptive NewCustomer and a Decision event are pushed by the environment, causing the MSA thread to prematurely abort the optimization. To avoid inconsistencies, the main thread waits for the pool executor to terminate, sends a signal to the callback thread to notify that the OptimizePool event was handled, and raises a GenerateScenarios event. Finally, the procedure dequeues the NewCustomer event, which has a higher priority than the Decision event, and processes it.

It is worth noting that aside from time-consuming tasks such as scenario generation and optimization, parallelization is also used to execute callbacks. Callbacks can be particularly useful when

Q(t 2) Q(t)
Figure 3.7: Multiple threads interacting in jMSA writing les or updating the state of a user interface as it does not a ect the performance of the main algorithm. This behavior can be overridden using synchronous callbacks.

Application to the dynamic VRP with stochastic demands

This section illustrates the exibility of the jMSA framework on the Dynamic VRP with Stochastic Demands, and we illustrate how under the proposed approach we can easily relax the assumptions on the demand distributions required by state-of-the-art approaches, thus leading us to the solution of a more general problem with jMSA.

Problem description

The fundamental di erence between the classic VRP and the VRP with Stochastic Demands (VRPSD) is that in the latter customer demands are known as random variables. The randomness in the VRPSD implies that a customer demand realization might exceed the vehicle remaining capacity, leading to a route failure that requires a recourse action. An intuitive recourse action is for the vehicle to go back to the depot to restore its initial capacity and then resume its route (Mendoza et al., 2009), or to allow the service of additional customers before returning to the depot (Novoa, 2005). It is important to stress that in this context all customers are known beforehand and the only dynamically revealed information is the realization of the customer demands.

Uncertainty in the VRPSD has been addressed by various solution approaches, of which the two most studied are the Chance Constrained Programming (CCP) and the Stochastic Programming with Recourse (SPR). Both methods are based on a two-stage approach: the rst phase builds a robust routing plan; while the second phase takes recourse (corrective) actions as the realizations of the customer demands are unveiled. The conceptual di erence between the two approaches lies in the objective of the rst-stage optimization: in CCP, the goal is to ensure an upper bound on the probability of a failure, regardless of the expected cost of the second phase; while SPR seeks the minimization of the total expected cost, including recourse actions.

The Dynamic VRPSD (D-VRPSD) is an extension of the VRPSD in which it is possible to freely reroute vehicles upon new demand realizations, allowing more complex recourse actions. Literature on the D-VRPSD is scarce, with the main contributions being the work by Novoa (2005), Novoa and Storer (2009), Secomandi (2001), and Secomandi and Margot (2009). The only publicly available instances for the D-VRPSD are those from Novoa (2005), therefore we will use the same problem de nition de ned therein to allow a fair comparison between algorithms. In our work, as in all studies on the D-VRPSD, we consider the single-vehicle case with discrete and uniformly distributed demand distributions. If at some point the realization ξ of the demand of a customer exceeds the vehicle remaining capacity Q, the vehicle serves the quantity Q, and returns to the depot to restore its capacity. Afterwards, a subsequent visit to the customer is planned to serve the remaining demand ξ -Q.

Scenarios and decisions

In the context of the D-VRPSD, scenarios contain di erent realizations of the customer demands, along with a feasible routing for these values. Given that the vehicle can go back to the depot during its service, a scenario can contain di erent routes that will be executed in a sequential order by the same vehicle.

The fact that customer locations are identical across scenarios suggests that di erent scenarios might have similar routes. Therefore, we use the consensus algorithm to select the next customer to visit. Let us consider the scenario pool of Fig. 3.8. The customers who have already been served (4 and 1) appear rst in all scenarios, while customers 2, 3, 5, and 6, appear in varying order depending on the scenario sampled demands. Considering that customer 2 appears rst in 2 out of 4 scenarios, by consensus it is selected as the next customer to visit. With the notations from Algorithm 3.1, the function selectCandidates (line 1) returns the set of unserved customers while evaluateRequest-Profit (line. 6) returns 1 if customer r appears rst in the scenario; 0, otherwise. It is worth noting that the consensus decision might recommend the vehicle to return to the depot for a preventive replenishment, that is, before the vehicle runs out of capacity.

Optimization

To optimize scenarios we use an Adaptive Variable Neighborhood Search (AVNS), which is an extension of the Variable Neighborhood Search (VNS) (Mladenovic and Hansen, 1997). The main difference between AVNS and VNS is that neighborhoods are not explored sequentially, but randomly selected with a bias depending on their previous performance. Our implementation uses an average ratio of the improvement to time as a metric of neighborhood performance, and maintains this information between calls to the optimization procedure. Neighborhoods with a better performance are more likely to be explored rst, leading to a self-tuning algorithm. Our MSA scheme bene ts from this automatic self-tuning behavior as the optimization procedure is called numerous times on similar instances (i.e., scenarios). Algorithm 3.2 presents an outline of the AVNS algorithm. The algorithm initializes with the whole set of neighborhood structures (line. 2), then it selects a neighborhood (line. 4) to randomly perturb the current solution (line. 5), and improves it by applying a local search procedure (line. 6). If the new solution is improving (line. 8) then it becomes the current solution (line. 9), and the set of active neighborhood structures is reset (line. 10). Otherwise, the current neighborhood is removed from the set of active neighborhoods (line. 12). At each iteration, the performance of the current neighborhood is updated (line. 7). This process iterates until all neighborhoods have been explored with no improvement.

In our experiments we used the two neighborhoods structures Or-opt and string-exchange for the perturbation, and a Variable Neighborhood Descent (VND) based on swap and 2-opt as local search (line. 6). A more detailed description of these neighborhoods can be found in the paper by Irnich et al. (2006). The initial solution is obtained by a Clarke and Wright (CW) heuristic (Clarke and Wright, 1964) in which the saving list is randomized, as presented in [START_REF] Mendoza | A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands[END_REF], leading to the CW+AVNS algorithm.

Algorithm 3.2 The Adaptive Variable Neighborhood Search algorithm

Input: feasible solution x, evaluation function z , and set of neighborhood structures N = {N 1 , .., N K } Output: best solution found x * 1:

x * ← x 2: N c ← N Initial neighborhood set 3: while N c = ∅ do 4: N ← selectNeighborhood (N c)
Select neighborhood 5:

x ← shake (N, x) Generate a neighbor from neighborhood N 6:

x ← localSearch (x) Local search to improve x 7:

updatePerformance (N , x, x)

8: if z(x) < z(x) then
x is accepted as current solution 9:

x ← x Update current solution if z(x) < z(x *) then An improvement has been found

15:

x * ← x Update best solution 16:

end if 17: end while 18: return x *

Failure handling

A route fails when a customer demand exceeds the vehicle's remaining capacity. Thus, the MSA procedure becomes aware of a route failure as soon as a Resource event is raised upon the arrival at the customer location. As a consequence, the route failure handling must be de ned at the event handler level, by checking if the demand of the current customer is larger than the vehicle remaining capacity, and updating the scenario pool accordingly.

User interface

To illustrate the use of callbacks we developed a user interface shown in Fig. 3.9. The main panel (right) presents in real time the unserved (white) and served (dark gray) customers, the vehicle destination (light gray), and the executed route (arrows). The left panel displays a log of events of jMSA and echoes the con guration settings. By means of a callback registered in the MSA procedure, all the information in the interface is updated in real time.

Computational experiments on the D-VRPSD

The benchmark instances for the D-VRPSD used in this work were initially proposed by Novoa (2005) and later used in Novoa and Storer (2009). In this work we consider the larger problems with 30, 40, and 60 customers uniformly distributed in a 1 × 1 square grid with discrete uniform demands. For each problem size, there are ten combinations of ve di erent client locations and demand distributions Figure 3.9: A graphical user interface for jMSA by two vehicle capacities, leading to a complete testbed of 30 instances. Optimal values where obtained using the COIN-OR Symphony VRP solver [START_REF] Ralphs | SYMPHONY user manual[END_REF][START_REF] Ralphs | On the capacitated vehicle routing problem[END_REF].

To assess the optimization component in isolation, we conducted an experiment on 100 di erent demand realizations for all 30 instances. Fig. 3.10 presents the distribution of gaps to optimal values for CW+AVNS and a CW+2-opt heuristic used for comparison. Note that CW+AVNS clearly dominates CW+2-opt, with 90% of all instances solved with a gap of less than 4%. Additionally, CW+AVNS runs relatively fast, with average CPU times between 50 ms and 650 ms for the larger instances. To facilitate the comparison between approaches for the D-VRPSD, we report the results in terms of value of information (Mitrović-Minić and Laporte, 2004). The value of information for instance I, namely V(I), is the gap between the cost of the nal solution returned by the algorithm z(I) and the a-posteriori optimal solution z * (I), and it is calculated as follows:

V(I) = z(I) -z * (I) z * (I) (3.1)
As in Novoa and Storer (2009), we ran 100 simulations with di erent demand realizations for each instance, using the jMSA framework as a black box. This means that an external simulator was used to send events to the MSA procedure simulating the vehicle route execution. The results reported by Novoa and Storer (2009) being aggregated, we report the average value of information by using average solution values in Eq. 3.1. gap of 3.3% against 4.8% for 2s_stostat_r, 5.8% for 1s_stostat, and 13.6% for 1s_n2_r. Aside from the performance in terms of value of information, it is important to stress that MSA runs continuously, and the next customer to visit is selected in a fraction of a second, while the other algorithms can take up to several minutes to make such decision, limiting their deployment and applicability in a real-world online DSS.

Aside from direct numerical comparison, the strength of our approach relies on the lack of strong assumptions on demand distributions. To illustrate this point, we adapted the testbed instances by changing the demand distribution from a discrete uniform distribution to a left-truncated normal distribution (N LT ≥0) as follows:

U int (a, b) → N LT ≥0 a + b 2 , b -a + 2 6 (3.2)
Note that Eq. 3.2 ensures that the demand will be between a -1 and b + 1 with probability 0.997, and truncates negative values. only change required was to use a di erent random number generator, which illustrates the exibility of our approach. Other approaches based on stochastic modeling (Novoa and Storer, 2009;Novoa, 2005;Secomandi, 2001) are not as exible and depend on distributional assumptions, thus limiting their application scope.

Conclusions

In this paper we presented the design and implementation of jMSA, an object-oriented event-driven framework for the Multiple Scenario Approach (MSA). By doing a high-level abstraction of MSA to a problem independent level, we modeled it as an event-driven process that allows high reactivity to changes occurring in online and highly dynamic operational environments. We implemented jMSA as a exible framework that is easily embeddable in decision support systems. By design, jMSA includes a callback system that gives the user further control over MSA and allow complex interactions with third party components. Additionally, we integrated into the framework the parallelization of time consuming tasks with no compromise for the framework user, which is a key aspect considering the wide availability of multi-core personal computers.

We illustrated the use of jMSA on the Dynamic Vehicle Routing Problem with Stochastic Demands (D-VRPSD). The optimization of scenarios is performed by an Adaptive Variable Neighborhood Search (AVNS) which improves an initial solution generated with a randomized Clarke and Wright heuristic.

The strength of AVNS is that it automatically adjusts its search scheme depending on the problem's structure by keeping track of the neighborhood performance throughout the execution of the MSA procedure. Computational experiments show that our approach is competitive with state-of-the-art algorithms that take full advantage of the stochastic aspects, while it provides a more exible scheme that can be used to tackle problems with di erent demand distributions.

4

Case study: the Technician Routing and Scheduling Problem

The two papers presented in this chapter are motivated by a real-world optimization problem submitted by an industrial partner. This company provides software solutions for organizations that have to route a crew of technicians to service geographically distributed customer requests that can be either static or dynamic. Static requests are known in advance and correspond to appointments with customers or preventive maintenance operations. On the other hand, dynamic requests appear dynamically throughout the day and are, for instance, emergencies or corrective maintenance operations. Requests may require a technician with di erent skills, a certain set of tools, and a number of spare parts to be serviced. In addition, technicians generally start and end their day at their home, and may visit a central depot to pickup tools and spare parts. Finally, the objectives include the minimization of the traveled distance, the minimization of the working time, the balancing of the workload between technicians, and the minimization of the constraints violations.

From this practical application, we introduced a new optimization problem, namely, the Technician Routing and Scheduling Problem (TRSP), which deals with a limited crew of technicians that serves a set of requests. In the TRSP, each technician has a set of skills, tools, and spare parts, while requests require a subset of each. The problem is then to design a set of tours of minimal total duration such that each request is visited exactly once, within its time window, by a technician with the required skills, tools, and spare parts.

A distinctive feature of this problem is that it introduces several compatibility constraints between technicians and requests. While skills are intrinsic attributes, technicians may carry di erent tools and spare parts over the planning horizon. Technicians start their tour from home, with a set of tools (renewable resources) and spare parts (consumed once the technician serves a request) that allow them to serve an initial set of requests. Technicians may have the opportunity to replenish their tools and spare parts at a central depot at any time to service more requests.

The TRSP naturally arises in a wide range of applications, including telecoms, public utilities, and maintenance operations. However technician routing and scheduling problems have received limited attention until recently, and to the best of our knowledge there is no work that considers simultaneously skills, tools, spare parts, and the arrival of new requests, three important components of real-world applications. The paper in Section 4.1 introduces a parallel matheuristic able to solve the static TRSP, while the paper in Section 4.2 presents two approaches to tackle the dynamic TRSP.

The static TRSP

The paper presented in this section proposes a parallel matheuristic to solve the static TRSP. From a practical perspective, this algorithm can be used either to design an initial solution to the problem considering only static requests, or to compute an a-posteriori solution to a dynamic problem that can be used to assess the performance of a dynamic approach.

The full reference of the paper presented in this section is:

-Pillac, V., Guéret, C., and Medaglia, A. L. (2011)

A parallel matheuristic for the technician routing and scheduling problem

Optimization Letters, Accepted manuscript, doi:10.1007/s11590-012-0567-4.

Preliminary results were presented in MIC 2011 international conference:

-Pillac, V., Guéret, C., and Medaglia, A. L. (2011

Introduction

The Technician Routing and Scheduling Problem (TRSP) deals with a limited crew of technicians K that serves a set of requests R. In the TRSP, each technician has a set of skills, tools, and spare parts, while requests require a subset of each. The problem is then to design a set of tours of minimal total duration such that each request is ful lled exactly once, within its time window, by a technician with the required skills, tools, and spare parts. It is important to note that the departure of technicians may be delayed to minimize the waiting time at each visited request, thus reducing the duration of tours.

The TRSP naturally arises in a wide range of settings, including telecoms, public utilities, and companies planning maintenance operations. The TRSP can be seen as an extension of the Vehicle Routing Problem with Time Windows (VRPTW), where technicians play the role of vehicles and requests are made by clients. Thus, it belongs to the class of NP-Hard problems.

A distinctive feature of this problem is the presence of compatibility constraints between technicians and requests. While skills are intrinsic attributes, technicians may carry di erent tools and spare parts over the planning horizon. Technicians start their tour from their home, with a set of tools and spare parts that allows them to serve an initial set of requests. They also have the opportunity to replenish their tools and spare parts at a central depot at any time to serve more requests. Tools can be seen as renewable resources, while spare parts are non-renewable and consumed once the technician serves a request.

The remainder of this paper is organized as follows: Section 4.1.2 reviews the literature on problems related to the TRSP; Section 4.1.3 introduces the proposed matheuristic; Section 4.1.4 presents experimental results; and nally, Section 4.1.5 concludes this work and outlines directions for future research.

Literature review

The technician scheduling problem is closely related to the TRSP, but does not consider the routing aspects, nor the tool and spare part constraints. It was featured in the 2007 French Operational Research Society (ROADEF) challenge. We refer the reader to the work by Cordeau et al. (2010) and Hashimoto et al. (2011) for two solution approaches to a multi-day variant in which teams are assembled to serve requests. [START_REF] Kovacs | Adaptive large neighborhood search for service technician routing and scheduling problems[END_REF] studied an extension of this problem, namely, the Service Technician Routing and Scheduling Problem (STRSP), which considers routing costs, skills, and team building. [START_REF] Bredström | Combined vehicle routing and scheduling with temporal precedence and synchronization constraints[END_REF] present a generic mixed integer programming formulation for a Vehicle Routing and Scheduling Problem with Time Windows (VRSPTW) in which some clients must be visited simultaneously by two or more vehicles. The authors do not explicitly consider skills, but the proposed model accounts for compatibility constraints between vehicles and requests. [START_REF] Parragh | Solving a real-world service technician routing and scheduling problem[END_REF] also tackled a variant with synchronization between technician visits.

A practical consideration in technician routing is that it may not be possible or desirable to serve all requests. Xu and Chiu (2001) studied a variant of the TRSP in which the objective is to maximize the number of requests served while accounting for skill constraints and request urgency. Tang et al. (2007) also considered requests with di erent urgency levels. The authors use a multi-period maximum collection problem formulation with time-dependent rewards modeling customer preferences. Tsang and Voudouris (1997) solved a problem faced by British Telecom where technician skills a ect the time required to serve a request.

Finally, home care routing and scheduling problems are related to the TRSP in the sense that they consider patients that need to be visited by sta with speci c skills and within a given time frame. We refer the interested reader to the case studies by [START_REF] Bertels | A hybrid setup for a hybrid scenario: combining heuristics for the home health care problem[END_REF], [START_REF] Eveborn | LAPS CARE -an operational system for sta planning of home care[END_REF], and [START_REF] Akjiratikarl | Pso-based algorithm for home care worker scheduling in the uk[END_REF].

In summary, technician routing problems have received limited attention and to the best of our knowledge, no work considers tools or spare parts, two important components of real-world applications. The present work, based on a real problem, addresses this aspect and proposes a parallel matheuristic approach for the TRSP.

The proposed matheuristic

This section outlines the proposed matheuristic that comprises a fast constructive heuristic, a parallel adaptive large neighborhood search, and a mathematical programming based post-optimization.

Regret constructive heuristic

Regret heuristics (Potvin and Rousseau, 1993) are constructive heuristics that incorporate a look ahead component. At each iteration the algorithm inserts the request with the greatest regret value at the best position, where the regret value is an estimation of the additional cost incurred if a request is not inserted at its best position.

More formally, let U be the set of requests to be inserted and δ k i be the cost of inserting request i at its best position in its k-th best route. The regret-q heuristic inserts at its best position request

i * = arg max i∈U q k=2 δ k i -δ 1 i
(ties are broken by choosing the request with the lowest δ 1 i value). It is worth noting that regret-1 corresponds to the well-known best insertion heuristic.

When evaluating the insertion of a request in a tour we need to consider the possibility to plan a trip to the main depot to pick up additional tools and spare parts. The procedure rst checks for the best feasible insertion without considering trips to the depot. If no feasible insertion is found, it then considers each possible combination of request and main depot insertions. Insertion feasibility and cost are evaluated in constant time using the concepts of waiting time and forward time slack introduced by Savelsbergh (1992).

We use a regret-3 heuristic to design an initial set of K solutions that will then be improved by the parallel adaptive large neighborhood search.

Parallel Adaptive Large Neighborhood Search

Shaw (1998) introduced the Large Neighborhood Search algorithm (LNS), which works by successively destroying and repairing a current solution. Pisinger and Ropke (2007) extended LNS by using several destroy and repair operators and adding an adaptive layer to select them, leading to the Adaptive LNS algorithm (ALNS). In this work, we propose a parallel version of ALNS, namely pALNS, that takes advantage of parallel architectures to achieve signi cant speedups. Algorithm 4.1 presents the outline of pALNS. The algorithm maintains a pool P of N promising solutions that are optimized in K subprocesses (note that N ≥ K). For each master iteration, a subset of K promising solutions is selected randomly (line 4) and distributed among independent subprocesses. Then for I p iterations, each subprocess selects destroy and repair operators with a roulette wheel mechanism that adaptively re ects their past performance (line 8). The current solution is then successively destroyed and repaired, producing a temporary solution (line 9). The temporary solution is either accepted as the subprocess current solution or rejected according to a simulated annealing criterion (line 10) The weights of the destroy and repair operators are updated depending on their performance (line 16) and the tours from the solution are stored for the post-optimization (line 17). The nal current solution of each subprocess is added to the pool of promising solutions (line 19). When all subprocesses have terminated, a ltering procedure ensures that the pool contains at most N solutions, including the best solution found so far (line 21). The algorithm stops after I m master iterations, which corresponds to I = I m × I p × K ALNS iterations. What follows is a detailed description of the main components of pALNS. P ← retain (P, Π * , N) Retain at most N solutions in the pool P 22: end for 23: return Π * , Ω Destroy Destroy operators remove a random number of requests from the current solution. We used three destroy operators originally proposed by Pisinger and Ropke (2007): random, critical, and related.

The random destroy operator removes requests randomly from their current tours; the critical destroy operator removes requests that are among the most costly in the current solution; nally, the related destroy removes requests that share common characteristics by rst selecting a seed request, and then removing related requests. It is important to note that all three destroy operators are randomized.

We propose two relatedness metrics tailored for the TRSP that de ne two new destroy operators.

The a priori relatedness is a precalculated metric that does not depend on the current position of the requests in the tours and combines three components: geographic distance, di erence of due dates, and number of technicians that can serve both requests. On the other hand, time relatedness measures the di erence between the service time of two requests in the current solution.

Repair Repair operators attempt to insert requests that are currently unserved. If requests cannot be reinserted, a penalty proportional to the number of unserved requests is added to the objective function. This penalty approach allows infeasible solutions to be considered as the current solution during the search, and can be interpreted as the possible outsourcing of some requests. Our implementation is based on three repair heuristics: best insertion, regret-2, and regret-3.

Adaptive layer At each iteration, the pALNS algorithm selects a destroy and a repair operator using a roulette wheel mechanism. Operator θ is selected with probability w θ . Let Θ be either the set of destroy (Θ -) or repair (Θ +) operators. As in the original ALNS algorithm, probabilities are initialized with value 1 |Θ | . However, they are then updated every l iterations as follows: w θ ← (1 -ρ)w θ + ρ s θ θ∈Θ s θ , where ρ ∈ [0, 1] is the reaction factor which de nes how quickly probabilities are adjusted, and s θ is the score of operator θ in the last l iterations. Note that this formula ensures that θ∈Θ w θ = 1 at all time. The scores s θ are maintained at the master level. They are reset to 0 every l iterations and updated at the end of each iteration depending on the new solution Π : a score of σ 1 is granted for a new best solution, σ 2 for an improving solution, σ 3 for a non-improving but accepted solution, and σ 4 for a rejected solution.

Acceptance criterion

The pALNS algorithm relies on a simulated annealing acceptance criterion: a new solution Π is accepted with probability e z(Π)-z(Π) T

, where T is the temperature parameter. T is initialized with value T 0 and reduced at each iteration by a cooling factor c. Parameters T 0 and c are xed depending on the initial solution and the target number of iterations (Pisinger and Ropke, 2007).

Promising solution pool

The solution pool acts as a shared memory and allows subprocesses to collaborate e ciently. The method retain ensures that P contains at most N solutions: if |P| > N then the method retains the N best solutions according to the tness function f (Π) = rank z (Π) + rank d (Π), where rank z (Π) is the rank of solution Π according to its objective value and rank d (Π) is the rank of Π according to a diversity metric. For the latter metric, we use the average broken pairs distance (Prins, 2009) to measure the diversity of solution Π relative to the other solutions in P. This tness function is inspired by the biased tness introduced by Vidal et al. (2011) in a genetic algorithm with diversity management. It allows the preservation of solutions that are both diverse and promising in terms of cost. In addition, we ensure that P always contains the best solution found so far.

Set-covering based post-optimization

The pALNS algorithm generates one solution per ALNS iteration, but only keeps the best one.

However, good solutions may contain poor tours, and conversely poor solutions may contain good tours. The proposed approach overcomes this limitation by solving a Set Covering model (SC) that combines the tours generated throughout the search to assemble a better solution. Note that a similar approach was for instance used by [START_REF] Villegas | Vehicle routing problems with trailers. 4OR[END_REF] to solve the Truck and Trailer Routing Problem (TTRP) showing excellent results.

Tour pool Throughout the pALNS algorithm, we store in a pool Ω the tours π that make up the temporary solutions Π found by the algorithm (see Algorithm 4.1, line 17). Tours are either stored in a single hash table when solving the CVRPTW, or in a separate hash table per technician for the TRSP.

We associate a 32-bit integer to each tour using the hash function hash

(π) = ⊕ i∈π R[i],
where R is an array associating a random 32-bit integer to each request and ⊕ is the XOR bit-wise operator. It is important to note that this hash function only considers the subset of requests in tour π, ignoring their sequence which is not relevant for the set-covering model. Preliminary experiments revealed that the probability of having a hash collision was under 10 -3 . Therefore, we ignore hash collisions and always keep the tour with the lowest cost, without checking if tours actually contain the same requests.

Mathematical model

Let Ω k ⊆ Ω be the subset of tours associated with technician k, c t be the duration of tour t, and a ti a binary parameter that takes the value of 1 if tour t visits request i and 0 otherwise. We denote by x t a decision variable that takes the value of 1 if tour t is selected, and 0 otherwise. We can then formulate the TRSP on the subset Ω of all feasible tours as follows:

min t∈Ω c t x t (4.1) s.t., t∈Ω a ti • x t ≥ 1 ∀i ∈ R (4.2) t∈Ω k x t ≤ 1 ∀k ∈ K (4.3) x t ∈ {0, 1} ∀t ∈ Ω (4.4)
where the objective (4.1) minimizes the total routing duration, constraints (4.2) ensure that each request is served at least once, and constraints (4.3) guarantee each technician performs at most one tour.

Considering that requests must be served exactly once, one could argue that a set-partitioning formulation ts better. However, our model only contains a reduced subset of tours (columns), and therefore, we might not be able to nd a good combination of tours that visit all requests exactly once.

The drawback of this formulation is that the solution may visit a request more than once. In such event, the solution is repaired by removing the most costly duplicated visits.

Computational results

In this section we report computational results for the proposed matheuristic. All experiments were run using Java 7 and Gurobi 4.60 on an Ubuntu 11.10 64-bit machine, with an Intel i7 860 processor (4 × 2.8GHz) and 6GB of RAM, using K = 8 subprocesses. The pALNS algorithm was run for 25600 iterations (I p = 100, I m = 32) and a time limit of 30 minutes was enforced for the set-covering model.

Because the destroy operators are randomized, pALNS is a non-deterministic algorithm, therefore we run it 10 times for each instance. The detailed parameter settings are shown in Pillac et al. (2011).

Validation on the VRPTW

The TRSP being a natural extension of the VRPTW, we validate our matheuristic on the 56 VRPTW instances from the Solomon benchmark (Solomon, 1987). The instances contain 100 requests located randomly (R), in clusters (C), or combining both (RC); with either a short (type 1) or long (type 2) planning horizon. These instances are organized combining location and horizon (i.e., C1, C2, R1, R2, RC1, and RC2), each group containing between 8 and 12 instances. For the VRPTW, we consider the minimization of the traveled distance1 and replace constraints (4. Table 4.1: Computational results for the Solomon (1987) instances (average over 10 runs).

Table 4.1 summarizes the average results for each instance group. The rst column de nes the instance group, the second column contains the relative improvement between the initial solution and the solution returned by pALNS (∆ pALN S), the third column reports the relative improvement between the pALNS solution and the pALNS+SC solution (∆ SC). The fourth and fth columns contain the average gap to the optimal or best known solution for pALNS and pALNS+SC. The sixth column reports the number of optimal solutions found (Opt.) over the number of known optimal solutions, while the seventh column reports the number of best known solutions (BKS) found over the number of heuristic BKS. Columns eight and nine show the average computational times for the pALNS and SC, and the last column reports the average size of the tour pool.

The overall average gap for pALNS+SC is just 0.23%, while Pisinger and Ropke (2007) report a value of 0.36% using an ALNS with a larger number of destroy and repair operators 2 . This illustrates the importance of the post-optimization step of the matheuristic, which is able to divide the gap by a factor of 3.4 in 10s on average. On the other hand, the parallelization of the algorithm allowed for speedups of 3.5 times relative to a sequential implementation, leading to running times of 19s on average.

Results on the TRSP

After validating our algorithmic building blocks on the VRPTW, in this section we analyze the performance of our matheuristic on randomly generated instances of the TRSP. Our testbed is composed of 56 instances of the TRSP based on the Solomon (1987) benchmark. For each instance, we considered a crew of 25 technicians with di erent home locations, skills, initial set of tools and spare parts. In addition, we generated requests by adding skill, tool, and spare part information to each customer.

These instances and our detailed solutions are publicly available at Pillac et al. (2011). Table 4.2 reports our results for the six groups of instances. Note that in this case we do not report the improvement of pALNS over the initial solution as the regret heuristic is not always able to insert all requests. In addition, the third and fourth columns report average gap to the best solution found in our experiments.

Improvement
The SC post-optimization improves by 1.5% the pALNS solution, which is larger than the 0.38% improvement found for the VRPTW. This can be explained by the fact that the TRSP is harder for pALNS than the VRPTW, so further improvements can be found in the post-optimization phase. It is worth noting that on average the tour pool contains twice as many tours as in the VRPTW experiments.

This can be explained by the fact that in the TRSP identical tours may be associated with di erent technicians. However the problem being overly constrained, it expectedly admits fewer feasible tours.

In terms of running times, the post-optimization engine requires 20 times more computational e ort to solve the TRSP than the VRPTW. This is due to the larger size of the tour pool and the presence of resource constraints (4.3) that destroy the set-covering structure, thus demanding more e ort from the linear optimization engine which is likely to embed speci c heuristics for pure set-covering models.

Conclusions and research perspectives

In this study we introduced a new challenging routing problem with numerous applications, namely the Technician Routing and Scheduling Problem. Distinctive features of this problem are the presence of compatibility constraints between technicians and requests; an initial set of tools and spare parts available to the technicians; the possibility for technicians to visit a main depot to pick up additional tools and spare parts; and the scheduling aspects introduced by the objective of minimizing the total tour duration.

We proposed a parallel matheuristic, which comprises three components: a regret constructive heuristic, a parallel adaptive large neighborhood search (pALNS), and a set-covering post-optimizer (SC). The parallelization of the ALNS allows a speed increase by a factor of 3.4 on a quad-core computer, while the post-optimization phase assembles a better solution by using tours gathered during the search. The resulting matheuristic maintains the exibility of the ALNS, while improving its performance and reducing the need for complex operators.

We validated and measured the performance of the proposed matheuristic on the Solomon VRPTW benchmark, showing a negligible gap of 0.23% to the optimal and best known solutions (BKS), and nding 44 of the 55 optimal solutions in under 30s. Results on randomly generated instances of the TRSP illustrate the improvement that pALNS and SC bring over a constructive heuristic solution.

Future work will focus on the extension of the problem to a dynamic setting, in which unexpected delays and new requests may occur. To this end, we are focusing our research e orts on developing fast optimization procedures able to react in real time to changes in the problem information.

Introduction

The Technician Routing and Scheduling Problem (TRSP) deals with a limited crew of technicians K that serves a set of requests R. The TRSP can be seen as an extension of the Vehicle Routing Problem with Time Windows (VRPTW), where technicians play the role of vehicles and requests are made by clients. In the TRSP, each technician has a set of skills, tools, and spare parts, while requests require a subset of each. The problem is then to design a set of tours such that each request is visited exactly once, within its time window, by a technician with the required skills, tools, and spare parts. The TRSP naturally arises in a wide range of applications, including telecoms, public utilities, and maintenance operations.

This problem introduces compatibility constraints between technicians and requests. While skills are intrinsic attributes, technicians may carry di erent tools and spare parts over the planning horizon.

Technicians usually start their tour from their home with an initial set of tools and spare parts that allows them to serve an initial set of requests. They also have the opportunity to replenish their tools and spare parts at a central depot at any time to serve more requests. Tools can be seen as renewable resources, while spare parts are non renewable and consumed once the technician serves a customer. The static de nition of the TRSP was introduced by the authors in Pillac et al. (2012b). In this work, we tackle a dynamic variant of the problem, namely the D-TRSP, in which new requests appear while the technicians are executing their routes. In this context, two types of decisions have to be taken in real time. First, whenever a technician nishes serving a request, it must be decided what will be the next request to visit. Second, whenever a request appears, the algorithm must decide whether it is possible or desirable to accept it or not. If not the request is said to be rejected, it leads to a cost penalty corresponding to the outsourcing/postponing of the request.

Despite its numerous practical applications and its challenging features, static technician routing and scheduling problems have received limited attention until recently, and to the best of our knowledge, no study simultaneously considers skills, tools, and spare parts. For instance, Xu and Chiu (2001) studied the Field Technician Scheduling Problem (FTSP) seen as a variant of the VRPTW, in which the objective is to maximize the number of requests served while accounting for skill constraints, request priorities, multiple depots, and overtime. The authors describe a mixed integer formulation and develop three heuristics including a GRASP algorithm. Similarly, [START_REF] Weigel | Applying gis and or techniques to solve sears technician-dispatching and home delivery problems[END_REF] Borenstein et al. (2010) extended this problem accounting for dynamic requests and skill compatibility constraints. They cluster the requests using a k-mean algorithm followed by a heuristic that assigns technicians to areas. Finally, they propose a rule-based system that assigns and sequences the requests.

They conclude their study by assessing the impact of soft clustering and show that it can increase sys-tem performance under certain assumptions.

Maintenance operations planning is a problem closely related to the TRSP. [START_REF] Blakeley | Optimizing periodic maintenance operations for schindler elevator corporation[END_REF] present the optimization of periodic maintenance operations for Schindler Elevator Corporation in North America, a company that manufactures, installs, and maintains elevators and escalators. The problem faced by this company consists in designing a set of routes for technicians to perform periodic maintenance and repairs taking into account travel times, working regulations, and skill constraints.

A similar application was studied by Tang et al. (2007) who formulate the problem as a multi-period maximum collection problem in which time-dependent rewards are granted for the completion of a request. This approach allows the modeling of soft constraints such as the desirability of performing a task in a given day (job-to-time penalties). The authors propose a Tabu Search (TS) algorithm that yields near-optimal solutions on real instances in reasonable time.

In Search procedure (GRASP) approach to tackle this problem.

Work regulation is an important aspect of technician routing and scheduling. [START_REF] Tricoire | Optimisation des Tournées de Véhicules et de Personnels de Maintenance : Application à la Distribution et au Traitement des Eaux[END_REF] presents a technician routing problem faced by Veolia, a water distribution and treatment company. In this application, technicians have the skills to perform all requests that are divided in two categories: user requested interventions and company scheduled visits. As new requests appear on a daily basis, the routing of technicians is performed on a rolling horizon, taking into account work regulations and customer service standards. The main contributions are a column generation approach and a memetic algorithm [START_REF] Bostel | Multiperiod planning and routing on a rolling horizon for eld force optimization logistics[END_REF]. Their approaches take advantage of partial solutions from previous plans in the rolling horizon framework to reduce computational times.

A number of technological advances have led to a renewed interest in dynamic vehicle routing problems, leading to the development of new optimization approaches. Pillac et al. (2011a) classify dynamic routing problems in two categories: deterministic and stochastic. In both cases the information available to the stackholder changes over time. In stochastic setting, data is available on the dynamically revealed information in the form of known probability distributions, while in deterministic problems, changes are simply unpredictable. The present work falls in the dynamic and deterministic category, for which approaches are based either on periodic reoptimization or continuous reoptimization.

Periodic reoptimization approaches start at the beginning of the day by producing an initial set of routes that are communicated to the vehicles. As the available information is updated along the day, or at given intervals of time, an optimization is performed using the currently available information to update the routing. Such approaches can be based on algorithms developed for static problems and are therefore relatively easy to implement, however, they may introduce delays between the update of the information and the routing plan. Such approaches include the Ant Colony Systems (ACS) proposed by Montemanni et al. (2005) to solve the Dynamic VRP (D-VRP). A novel feature of their approach is the use of the pheromone trace to transfer characteristics of a good solution between reoptimizations. ACS was also used by Gambardella et al. (2003) and Rizzoli et al. (2007). Other heuristic approaches, such as Tabu Search (TS), were also used to tackle the Dynamic Pickup and Delivery Problem (D-PDP) (Barcelo et al., 2007;Chang et al., 2003) and the Dynamic Dial-a-Ride Problem (D-DARP) [START_REF] Attanasio | Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem[END_REF]Beaudry et al., 2010).

Continuous reoptimization approaches run throughout the day and are generally based on an adaptive memory (Taillard et al., 2001) that stores alternative solutions. The adaptive memory is then used to react to changes in the available information, thus avoiding a complete reoptimization of the problem. Gendreau et al. (1999) developed a parallel TS with adaptive memory to tackle a Dynamic VRPTW (D-VRPTW), that was later applied to the D-VRP (Ichoua et al., 2000(Ichoua et al., , 2003)). Bent and Van Hentenryck (2004) generalized this framework and introduced the Multiple Plan Approach (MPA) to tackle the D-VRPTW. Following a di erent approach, Benyahia and Potvin (1998) studied the Dynamic Pickup and Delivery Problem (D-PDP) and proposed a Genetic Algorithm (GA) that models the decision process of a human dispatcher. More recently, GAs were also used for the same problem (Cheung et al., 2008;Haghani and Jung, 2005) and for the D-VRP (Van Hemert and Poutré, 2004).

To the best of our knowledge, no work considers simultaneously skills, tools, spare parts, and dynamically arriving requests, four important components of technician routing and scheduling. The present work addresses this aspect and proposes two optimization approaches for the dynamic version of the problem, noted D-TRSP, where new requests arrive during the execution of the routes.

Section 4.2.2 introduces a fast reoptimization approach based on a parallel adaptive large neighborhood search; then Section 4.2.3 introduces a continuous reoptimization algorithm based on a multiple plan approach; nally, Section 4.2.4 presents the computational results and Section 4.2.5 concludes this paper and draws directions for future research.

A fast reoptimization approach

The proposed approach is based on the parallel Adaptive Large Neighborhood Search (pALNS) reoptimization algorithm introduced by Pillac et al. (2012a), which is used to rst compute an initial solution, and then to reoptimize the solution whenever a new customer request arrives. The pALNS extends the Adaptive Large Neighborhood Search (ALNS) algorithm (Pisinger and Ropke, 2007), which in turn is an extension of the Large Neighborhood Search (LNS) algorithm (Pisinger and Ropke, 2010;Shaw, 1998). LNS works by successively destroying (removing customers) and repairing (inserting customers back) a current solution, using destroy and repair operators. ALNS adds a layer that randomly selects operators depending on their past performance, allowing a self-adaptive version of the algorithm to the instance at hand. Algorithm 4.2 presents the outline of pALNS as introduced in Pillac et al. (2012a). The algorithm maintains a pool P of N promising solutions that are optimized in K subprocesses (note that N ≥ K).

For each master iteration, a subset of K promising solutions is selected randomly (line 3) and distributed among independent subprocesses. Then for I p iterations, each subprocess selects destroy and repair operators with a roulette wheel that adaptively re ects their past performance (line 7). The resulting new solution is either accepted as the subprocess current solution or rejected according to a simulated annealing criterion (line 9), the weights of the destroy and repair operators are updated depending on their performance (line 15 P ← retain (P, Π * , N) Retain at most N solutions in the pool P 20: end for 21: return Π * the pALNS algorithm uses three destroy operators (random, related, and critical), and three repair operators (regret-1, regret-2, regret-3). The promising solution pool P maintains the N best solutions according to a tness function that considers both the cost of the solution and its diversity relative to the other solutions in the pool. The interested reader is referred to the work by Pillac et al. (2012a) and Pillac et al. (2012b) for more details on the approach.

To tackle the D-TRSP, we modi ed the related destroy operator, which attempts to remove a subset of requests that share some characteristics. We de ne the relatedness r ij of requests i and j as a measure of how related two requests are (the lower the r ij , the more related i and j). The procedure starts by randomly removing a seed request i (U = {i}), then it iteratively selects a request i ∈ U, and removes the most related request j * = arg min j∈R {r ij } from the set of unserved requests R .

In practice the selection process is randomized and the y p |R | -th most related request is selected, where y is a random number in [0, 1) and p ≥ 1 is a parameter that controls the level of randomness (the lower the p, the more randomness is introduced). For the D-TRSP we introduced the a-priori relatedness, which is a precalculated metric that does not depend on the actual position of requests in the tours:

r s ij = 1 + c ij M c θc 1 + |b i -b j | M t θt 2 - |K i ∩ K j | min {|K i |, |K j |} θs (4.5)
Where M c and M t are scaling constants, and θ c , θ t , and θ s are factors that de ne the weight given to each metric component. The rst component, measures the geographic distance between the two requests (c ij). The second is the di erence of due dates b i and b j . The third measures the number of technicians that can serve both requests, which is modeled by the intersection of the sets K i and K j of technicians that can serve request i and j respectively.

The second major adaptation focuses on the objective function that considers the minimization of the total working time (i.e., the sum of traveling times, service times, and waiting times). We used the concept of forward time slack introduced by Savelsbergh (1992) to e ciently evaluate the minimal duration of a tour and the cost of inserting a request in a tour.

A Multiple Plan Approach

The second proposed approach for the D-TRSP is based on the Multiple Plan Approach (MPA)

introduced by Bent and Van Hentenryck (2004) to tackle the D-VRPTW. MPA is a generalization of the tabu search with adaptive memory proposed by Gendreau et al. (1999). The general idea is to populate and maintain a solution pool (the routing plans) that are used to generate a distinguished solution.

Whenever a new request arrives, a procedure is called to check whether it can be served or not; if it can be served, then the request is inserted in each plan of the solution pool and incompatible solutions are discarded. Pool updates are performed periodically or whenever a vehicle nishes serving a customer.

This pool-update phase is crucial and ensures that all solutions are coherent with the current state of vehicles and customers. The pool can be seen as an adaptive memory that maintains a set of alternative solutions.

The present work is based on the event-driven optimization framework for dynamic vehicle routing proposed by the authors, namely jMSA (Pillac et al., 2011b) system is idle, i.e., when no decision is required. On the other hand, the event loop reacts to events from the environment, which can be of two types: a) a customer calls in and requests a service; b) a technician nishes serving a request and becomes idle. In the rst case, the algorithm looks for a feasible insertion of the new request in all the solutions in the pool. If at least a given fraction of the solutions can accommodate the request, then it is accepted, otherwise it is rejected. In the second case, the algorithm selects a solution from the pool and assigns a request to all idle technicians. The event loop is also responsible for updating the pool and ensuring that all plans are coherent with the current state of the environment.

Plan generation

The goal of the plan pool is to maintain a set of diverse solutions for the current routing problem that could be used later to cope with the arrival of new requests. It is therefore necessary to have a randomized constructive heuristic that will produce a set of solutions that are both diverse and of good quality.

Our implementation is based on a randomized regret-3 heuristic (Potvin and Rousseau, 1993) which iteratively inserts requests at their best position. More formally let U be the set of requests that are currently not visited in the solution and let ∆z k i be the cost of insertion of request i ∈ U in its k-th best route. The regret-q value r q i associated with request i is a measure of how desirable it is to insert i in the current iteration assuming that the best insertion will no longer be feasible in the next iteration.

It is de ned as:

r q i = q k=2 ∆z k i -∆z 1 i (4.6)
The randomized regret-3 algorithm iteratively selects the next request to insert using a roulette wheel in which each request is given a probability p i :

p i = r 3 i j∈U r 3 j (4.7) 4.2.3.2 Optimization procedure
The optimization procedure continuously optimizes the pool of solutions. The fact that a solution might go through the optimization process more than once requires an algorithm able to escape from local optima to further improve a solution. Therefore, we implemente an Adaptive Large Neighborhood Search (ALNS) similar to the pALNS presented in Section 4.2.2. Note that the choice of having a sequential optimization algorithm is motivated by the fact that jMSA will optimize various plans in parallel.

Algorithm 4.3 outlines the ALNS algorithm. ALNS starts with an initial solution Π. Then for I iterations, the algorithm selects destroy and repair operators (line 4) with a roulette wheel that re ects their past performance. The destroy operator removes a subset of requests from the current solution that are then reinserted by the repair operator (line 5). The resulting new solution is accepted as current solution according to a simulated annealing criterion (line 6). At the end of each iteration, the scores of the destroy and repair operators are updated depending on the solution they generated (line 12).

d ← select (Θ -) ; r ← select (Θ +)
Select destroy/repair updateScore (d, r, Π) Update scores 13: end for 14: return Π *

Interactions with the decision maker

The decision maker interacts with MPA by raising events. In the context of the D-TRSP, there are two major events: the arrival of a new request and the end-of-service of a request.

Arrival of new requests

Whenever a new request appears, a procedure attempts to insert it in all the plans in the pool. The procedure starts by trying to insert the request directly, if it fails, it removes a fraction of the requests and uses regret-3 to attempt to reinsert all requests. If at least a given fraction of the plans can accommodate the new request then it is accepted and the plans are updated accordingly, otherwise the request is marked as rejected.

Real-time routing decisions When a technician nishes serving a request and becomes idle, a decision needs to be taken on what will be his/her next assignment. To this end we use the consensus algorithm (Van Hentenryck and Bent, 2006) which aggregates the information contained in the plans from the pool to select a distinguished solution and assign requests to idle technicians. The intuition behind consensus is to assign to each technician the requests that appear rst with the highest frequency across plans. As multiple technicians are involved, the consensus algorithm selects a solution from the pool that maximizes the consensus across all technicians. Algorithm 4.4 presents the details of the algorithm. Consensus starts by counting the number of times each request appears rst in a tour across all solutions from the pool (lines 1 to 6). Then the algorithm evaluates each solution by summing the evaluations of the rst request of each of its tours (line 11). Finally, the solution Π * with the highest evaluation is returned, and the rst unserved request of each tour in Π * is the next assignment of the corresponding technician. if s > s * then 14:

Π * ← Π 15:
end if 16: end for 17: return Π * Waiting strategy It is important to note that the immediate commitment of idle technicians to requests may lead to di culties when new requests appear. Figure 4.5 illustrates this with a single technician. Suppose that at time t a technician is assigned to a request i, if the technician is committed immediately to i, it will travel to i then wait at its destination until the start of the time window (black brackets). On the other hand, if a waiting strategy is used, the technician will remain idle until the latest moment such that it will not wait at i. Assume now that at time t + 1 a new request j appears, in the rst case j cannot be served as the technician is already waiting at i (the hashed section is already executed), while in the second case it can be inserted right before i. The proposed waiting strategy is implemented as follows: rst, the procedure evaluates the latest departure time so that the technician will not have to wait at its next request. If this departure time is within a given range, then it is assumed there is not enough time to change the technician's route and the technician is committed to the next request. Otherwise, the technician remains in an idle state for a given time, after what a new decision is taken, leaving time for further changes in assignments.

Preliminary results

We tested the pALNS and MPA approaches on a set of 56 randomly generated instances based on the Solomon (1987) testbed. The instances contain 100 requests located randomly (R), in clusters (C), or combining both (RC); while the planning horizon is either short (type 1) or long (type 2). These instances are organized combining location and horizon (i.e., C1, C2, R1, R2, RC1, and RC2). We considered 5 skills, 5 tools, and 5 types of spare parts. For each request, we selected 1 skill, and between 0 and 2 tools and spare part types. Each of the 25 technicians has between 2 and 4 skills, and an initial set of 0 to 5 tools, and 2 to 5 spare parts. In addition, we generated release dates for either 10, 30, 50, 70, or 90 requests, leading to a complete testbed of 280 dynamic instances.

We compare the two proposed approaches with a regret-3 heuristic. This simple approach starts with the same initial solution as pALNS. Each time a new request appears, it attempts to insert it in the current solution using a regret heuristic, rejecting it if it cannot be inserted. The parameter setting for the pALNS reoptimization approach is identical to the one presented in Pillac et al. (2012a), we allowed for 25,000 iterations for the calculation of the initial solution, and 5,000 for subsequent reoptimizations. The maximum pool size for MPA was set to 50 plans, while the ALNS algorithms used the same parameters as in Pillac et al. (2012a), with a maximum of 5,000 iterations per optimization.

The same simulation procedure was used to test the three approaches. First, the simulator allows them time to either design an initial solution (pALNS and regret-3) or initialize the pool of plans (MPA). Then the procedure simulates the routing of the technicians using an average traveling speed and taking into account waiting times. Whenever a technician becomes idle, the simulator uses the current solution (pALNS and regret-3) or distinguished plan (MPA) to select the next assignment for this technician. The simulator handles the new requests and depending on the approach response it marks them as accepted or rejected. Finally, it nds an a-posteriori solution to the problem de ned by all the accepted requests using pALNS with 50,000 iterations.

Minimizing the total working time

The static TRSP problem (Pillac et al., 2012b) considers the minimization of the total working time.

In a dynamic setting, this objective leads to the premature ending of tours: technicians are sent home as soon as possible to reduce the duration of their tour, ignoring the fact that additional requests may appear in the future. To prevent this behavior we de ne a cuto policy that ensures for an instance I that technicians will no be sent back to their home until time t c (I). Considering that each instance have a di erent horizon [0, T (I)], we de ne the relative cuto α(G) for instance group G. The value of α(G) is de ned such that all requests of instance I ∈ G will be known before α(G)T (I) with a certain probability. In our experiments, α(G) corresponds to the 90-percentile of the distribution of

rd I max T (I) I∈G
where rd I max is the last release date for instance I 3 . A direct consequence of this policy is that the minimal tour duration for instance I is either 0 (if the technician is not used), or α(G)T (I). Therefore the total duration at the end of the day is signi cantly longer than the one found when solving the static problem. 4.3: Average gap to a-posteriori solution and number of rejected requests for the D-TRSP instances minimizing the total duration.

pALNS MPA regret-3 δ Gap (%) R Gap (%) R Gap (%)
Table 4.3 reports the results for the 56 instances and 5 degrees of dynamism when minimizing the total duration. The rst column contains the degree of dynamism (δ) de ned as the number of dynamic requests. The second and third columns report the average gap to an a-posteriori solution 4

and the average number of rejected requests (R) for the pALNS. The fourth and fth columns contain these statistics for the MPA, and the seventh and eighth columns for the regret-3 heuristic. Note that running times for pALNS are of 12s on average for the calculation of the initial solution and 2.8s for subsequent reoptimizations, while decision times are negligible for both MPA and regret-3.

3. With this de nition: α C1 = 0.380, α C2 = 0.509, α R1 = 0.357, α R2 = 0.419, α RC1 = 0.321, α RC2 = 0.400 4. The gap for instance I is de ned as the ratio z(I)-z(I)

z(I)
where z(I) is the value of the solution found by the algorithm for the dynamic instance, and z(I) is a lower bound obtained by solving the static a-posteriori instance with 50,000 iterations of the pALNS algorithm.

Firstly, it can be observed that gaps are large regardless of the approach. This is due to the fact that the a-posteriori solution does not consider the cuto strategy enforced in the dynamic context. Therefore the gap should not be interpreted as an absolute performance metric, but instead as a metric that allows comparisons between approaches. Secondly, the results show that, as expected, both the gap and number of rejected requests increase with the degree of dynamism. Finally, they indicate that the pALNS approach leads to better solutions both in terms of quality of the routing (measured by the gap) and ability to cope with new requests (measured by R). In contrast, MPA performs poorly and is dominated by the simpler regret-3 reoptimization approach. This can be explained by the fact that the decision process in MPA does not take into account the cost (total duration) of plans to select the distinguished plan, while the other two approaches explicitly focus on the cost. In addition, our experiments show that MPA tends to use more technicians, starting more tours than pALNS and regret-3. Considering that technicians then have to wait until the cuto time, this leads to a greater total duration. On the other hand, the higher number of rejected requests can be explained by the fact that MPA is more conservative than the other approaches, as it requires that a fraction of the plans can accommodate the new requests, while the other approaches only require a feasible insertion in the current solution.

Minimizing the total distance

The cuto policy forces technicians to wait at their current location before returning home. Thus, the minimization of the working time may not be as relevant in a dynamic context as it is for the static case. To assess the validity of this objective, we performed the same experiments with the minimization of the traveled distance. 4.4: Average gap to a-posteriori solution and number of rejected requests for the D-TRSP instances minimizing the total distance.

pALNS MPA regret-3 δ Gap (%) R Gap (%) R Gap (%) R 10
Table 4.4 compares the di erent approaches when the objective only considers the minimization of the traveled distance. As before, the gap and number of rejected requests generally increases with the degree of dynamism. These results show that pALNS consistently outperforms the two other approaches, both in terms of gap and number of rejected requests. However, in this case MPA is the second best-performing approach in terms of gap, but it remains third with respect to the number of rejected requests. As before, our experiments show that MPA uses more technicians on average.

However, what was a disadvantage when minimizing the total duration helps MPA in reducing the total distance. Nonetheless, the remark regarding the number of rejected requests remains valid: the approach seems to be overly conservative. Table 4.5: Di erence in total working time and distance when minimizing the total distance instead of the total working time (in %).

pALNS MPA regret-3 δ ∆ WT ∆ WT ∆ WT ∆ Dist ∆ Dist ∆ Dist ∆ WT ∆ WT ∆ WT ∆ Dist ∆ Dist ∆ Dist ∆ WT ∆ WT ∆ WT ∆ Dist ∆ Dist ∆ Dist 10 -8
Finally, Table 4.5 presents the e ect of the change in the objective function in both total working time (∆ W T) and traveled distance (∆ Dist) for the three approaches. As expected, minimizing the distance instead of the working time leads to a reduction of the total traveled distance by 45%, 55%, and 32% for pALNS, MPA, and regret-3, respectively. More surprisingly, it also leads to a reduction of the total working time by 15%, 13%, and 8%. This can be explained by the cuto policy that is contradictory with the minimization of the working, which mainly focuses on minimizing waiting times. In contrast, focusing on the minimization of the traveled distance always leads to a reduction of the travel time, which in turn reduces the duration of tours.

Conclusions

In this paper we introduced a new dynamic optimization problem, namely the Dynamic Technician

Routing and Scheduling Problem (D-TRSP). This problem arises in numerous practical contexts such as public utilities, telecoms, and maintenance operations.

We propose two solution methods to tackle the D-TRSP. The rst is a periodic reoptimization approach based on a parallel Adaptive Large Neighborhood Search (pALNS) that produces a new routing plan each time a new request appears. The second is a continuous reoptimization approach based on the Multiple Plan Approach (MPA) that continuously optimizes a pool of routing plans that are then use to take routing decisions.

Our preliminary computational results indicate that the pALNS based reoptimization approach dominates MPA and a simpler regret-3 heuristic, by yielding high quality results in limited time. In addition, its relative simplicity makes it a good candidate for practical applications. MPA results were disappointing, but this can be attributed to the decision process which does not takes into account the plan costs, and an overly conservative request acceptance criterion.

In addition, we have demonstrated that the minimization of the total working time, although perfectly sound in a static context, does not t well in a dynamic environment. In particular, we have shown that minimizing the total distance ultimately leads to solutions that are better both in terms of total distance and duration.

Further work will focus on improving MPA to take better decisions and reject less requests. In addition, we are testing the proposed approach on real world data from an industrial partner. Finally, the uncertainty should be modeled to better anticipate the arrival of new requests and improve the quality of the decisions.

Conclusions

Recent technological advances provide companies with the right tools to manage their eet in real time. Nonetheless, these new technologies also introduce more complexity in eet management tasks, unveiling the need for decision support systems dedicated to dynamic vehicle routing. In this context, the contributions of this Ph.D. thesis are threefold: rst, we presented a comprehensive review of the literature on dynamic vehicle routing; second, we designed, implemented, and made publicly available exible optimization frameworks that can cope with a wide variety of dynamic vehicle routing problems; and third, we de ned a new vehicle routing problem faced by an industrial partner and introduced new sets of instances.

In the literature review, we introduced a new taxonomy dividing vehicle routing problems in four categories, depending on whether they are static or dynamic, and deterministic or dynamic. Further, we presented several real-world applications and surveyed the current state-of-the-art solution techniques for dynamic routing. We classify approaches for dynamic and deterministic routing problems into periodic and continuous reoptimization, depending on whether the optimization algorithm is run periodically or throughout the planning horizon. Similarly, we identi ed two categories of approaches for dynamic and stochastic problems: stochastic modeling approaches which model accurately the stochasticity of the problem, and sampling based approaches, that rely on the generation of scenarios to capture the uncertainty of the problem at hand. Finally, we outline promising research directions for dynamic routing. In particular, we stressed the need for both parallel algorithms that make use of modern computer architectures to reduce running times, and exible approaches able to capture the uncertainty of dynamic routing problems. In this thesis, we developed parallel and exible approaches for both dynamic and deterministic and dynamic and stochastic vehicle routing problems.

We tackled dynamic and deterministic routing problems with a parallel Adaptive Large Neighborhood Search (pALNS). The proposed pALNS inherits the exibility of ALNS and is therefore able to cope with a wide variety of side constraints, while its parallel architecture improves running times by a factor of 3.5 on a regular desktop machine. The proposed algorithm relies on a promising solution pool for which we designed a diversity management scheme that allows the e cient exploration of the solution space. We demonstrated the e ciency of pALNS on the reference benchmark introduced by Solomon (1987) for the Vehicle Routing Problem with Time Windows (VRPTW), achieving gaps to best known and optimal solutions of 0.5% under 12s. Then, we proposed a simple yet e ective reoptimization approach for the Dynamic-VRPTW that makes use of pALNS to reoptimize the routing whenever a new customer appears, and illustrated its performance on the Lackner (2004) benchmark instances, leading to improvements of up to 12% relative to state-of-the-art approaches.

We presented a bi-objective optimization problem that arises in the context of dynamic vehicle routing. It is generally assumed that routes can be designed in an online fashion, implying that drivers do not know their next destination until the very last moment. We proposed to consider the driver inconvenience resulting from the online routing of vehicles by accounting for the route consistency throughout the planning horizon. The approach we proposed, namely pBiALNS, is an extension of the pALNS framework that maintains the set of non-dominated solutions according to the minimization of the cost function, and the minimization of the edit distance relative to a reference solution which re ects the number of changes made to the routes. Our computational results indicate that pBiALNS is able to quickly produce a set of alternative solutions for the decision maker to choose from, and illustrate the tradeo between the two objectives, revealing that under certain conditions it may be worth sacri cing quality of routing to gain route consistency.

We addressed dynamic and stochastic routing problems with a exible event-driven optimization framework, namely jMSA, that e ciently captures uncertainty. It is based on a multiple scenario approach and it is easily embeddable in decision support systems. One of its key features is that it intrinsically handles the parallelization of time consuming tasks without any intervention from the user. Besides, the fact that it is event-driven makes it reactive and application-oriented. We illustrated the exibility and accuracy of our approach by tackling the Dynamic Vehicle Routing Problem with Stochastic Demands (D-VRPSD), producing state-of-the-art results on the Novoa (2005) benchmark instances with average gaps of 3.3%, compared to the 4.8% reported in Novoa and Storer (2009) with a speci cally tailored algorithm.

Finally, we de ned a novel optimization problem inspired from a real-world application, namely the Technician Routing and Scheduling Problem (TRSP). The TRSP considers the routing of a eet of technicians that serve a set of requests, considering skills, tools, spare parts, and time windows. The TRSP objectives include the minimization of the total working time and tour balancing. We introduced two sets of instances for the TRSP, one based on the Solomon (1987) benchmark, and the other derived from real-world data 5 . To tackle the static version of the problem, we designed a parallel matheuristic (pALNS+SC) that combines the pALNS algorithm with a set-covering post-optimization. Our computational experiments indicate that pALNS+SC is competitive with state-of-the-art approaches for the VRPTW: it solves instances from the Solomon (1987) benchmark at 0.23% of the optimal or best known solution in under 30s, and is able to nd 44 out of 55 optimal solutions. In addition, it solves the TRSP instances with 100 customers in under 240s. We proposed two approaches for the dynamic TRSP, the rst based on the pALNS algorithm, and the second on a Multiple Plan Approach (MPA) implemented within the jMSA framework.

An important contribution of this work is the release as open-source software of the components and algorithms developed to support the presented results 6 . It represents 55000 lines of codes and includes a generic library for the modeling of vehicle routing problems; an implementation of commonly used heuristics such as ALNS, VNS, GRASP, and the algorithms proposed in this thesis; and the jMSA framework. We hope that this initiative will foster the development of other open-source projects dedicated to vehicle routing, and that it will facilitate technology transfer to industry. To summarize, the present thesis brings the following contributions with respect to the current state of the art: rst, pALNS is the rst parallel periodic-optimization algorithm able to cope with a wide variety of D-VRP variants; second, jMSA is the rst event-oriented description of the Multiple Scenario Approach, and we hope it will constitute a reference point for application-driven optimization frameworks for dynamic routing; third, we introduced a dynamic bi-objective routing problem that takes into account driver inconvenience and attempt to maintain route consistency throughout the day; fourth, we de ned the TRSP, a new optimization problem with numerous applications; and fth, we published a new open-source library for static and dynamic vehicle routing.

From our experience, periodic reoptimization approaches such as pALNS represent a good alternative for practical applications as they are relatively simple to implement and provide satisfactory results. In that sense, it is worth noting that pALNS is currently used by the industrial partner that motivated the de nition of the TRSP. However, they su er from two limitations: rst, they transfer the computational e ort at decision time, which induces potentially long response times when the size of the problem grows; second, they do not keep information on good solutions from one run to the other.

Consequently, we consider that optimization algorithms for dynamic vehicle routing problems should focus on event-driven continuous-reoptimization approaches. Although their implementation may be more complex, they are the best t to take full advantage of modern multi-core architecture as the optimization can be spread over multiple threads. Moreover, they allow for faster interactions with the decision maker when a decision is required. Whenever possible, stochastic information should be used to better anticipate the future. In our opinion, the generation of scenarios by sampling is a promising and practical direction. In contrast to stochastic modeling approaches, sampling-based optimization handles stochasticity decoupled from the optimization algorithms, thus they are able to cope with a wider scope of business constraints.

Future work should focus on the development of simple and exible continuous reoptimization frameworks for dynamic and deterministic routing. Such framework could be based on pALNS and optimize a set of promising and diverse solutions throughout the planning horizon. It could then be extended to include stochastic knowledge by generating scenarios. An interesting direction of research would be to nd smart ways to limit the computational complexity of the resulting optimization problem, which could be achieved by putting emphasis on capturing the uncertainty on the near future, or by avoiding very unlikely scenarios. In addition, new e cient ways to aggregate information from scenarios should be developed as this appear to be a key component in such approaches.

The dynamic management of a eet of vehicles raises numerous theoretical and practical problems that require the development of e cient and accurate algorithms. Although it has received an increasing interest in the last decades, there is still room for innovation and we hope that the present thesis will bring signi cant insights for further research.

Bibliography Lackner, A. (2004). Dynamische Tourenplanung mit ausgewählten Metaheuristiken. PhD thesis, Georg-August-Universität Göttingen. Appendices A

E cient implementation

This appendix provides details on the implementation of the data structures used for the VRPTW and TRSP experimentations.

A.1 Tour representation

A tour π is represented by a doubly linked list. This choice is motivated by the fact that it is generally not required to have constant time access to a node at a given index, while the majority of operations on tours consist in removing and inserting nodes, or truncating and concatenating subtours.

More speci cally:

π = [k, π 0 , π l , π π π -, π π π +]
With:

k the technician id π 0 (π l) the rst (last) node visited by the tour π π π -(π π π +) the predecessor (successor) array

For convenience, we will use the notations i -1 = π π π - i (i -1 is the predecessor of i) and i + 1 = π π π + i (i + 1 is the successor of i). π π π -(π π π +) are implemented with two integer arrays of dimension |R| + 2|K|, initialized with an arbitrary value (noted , for instance -1), and are then updated to represent the tour. For instance, tour π = (0, 3, 4, 2, 5) associated with technicien 3 will be represented as follows: , 4, 0, 3, 2] π π π + = [3, , 5, 4, 2,] (A.1)

π =                    k = 3 π 0 = 0 π l = 5 π π π -= [,
In addition, a tour contains the following information:

Main depot visited For each node in the tour we store a boolean ag that states whether the main depot was visited before or not.

Remaining number of spare parts For each node in the tour we store the number of spare parts for each type that are still available after its service. If the main depot is visited before then this value is considered as in nite.

Earliest arrival date

The earliest time at which the technician can arrive to the node.

A π 0 = a π 0 (A.2)

A i+1 = max {A i , a i } + s i + c i,i+1 ∀i ∈ π, i = π 0 (A.3)
Earliest departure time Using the earliest arrival date, we can evaluate the earliest departure time D i at node i:

D π 0 = a π 0 + s π 0 (A.4) D i = max{A i , a i } + s i ∀i ∈ π, i = π 0 (A.5)
Latest feasible arrival time The latest feasible arrival time de nes the latest arrival time that ensures that the rest of the tour will remain feasible:

l π l = b π l (A.6) l i = min {b i , l i+1 -s i -c i,i+1 } ∀i ∈ π, i = π l (A.7)
Waiting time The time the technician has to wait between the earliest arrival date and the start of the time window.

W i = max {0, a i -A i } ∀i ∈ π (A.8)
Cumulated waiting time The cumulated waiting time between a node and the end of the tour.

W π l i = π l j=i W j ∀i ∈ π (A.9)
Forward time slack The forward time slack F i , introduced by Savelsbergh (1992), measures how much the departure from node i can be delayed without causing the route to become infeasible. By extension, F j i (also noted F i,...,j i

) is the forward time slack at node i relative to the path (or subtour) (i, . . . , j) (Note that F i = F π l i and F i i = +∞):

F j i = min i<q≤j    b q -   D i + i≤p<q c p,p+1 + i<p<q s p      (A.10)
Note that b q is the latest feasible arrival at node q, while D i + i≤p<q c p,p+1 + i<p<q s p is the earliest arrival time at q when departing at time D i from i. Using the theorem presented by Savelsbergh (1992), we can derive the following recursive de nition for F j i :

F i i = +∞ (A.11) F j+1 i = min F j i , b j+1 -A j+1 + W j i+1
∀i, j ∈ π, i < j (A.12)

Proof. Theorem 1 (Savelsbergh, 1992) states that .13) With respect to the original de nition and notations, we replace the time windows end l i by b i + s i and the travel times c ij with the sum of travel time and service time c ij + s j . This leads to the following:

F (i 1 ,...,j 1 ,i 2 ,...,j 2) i 1 = min    F j 1 i 1 , F j 2 i 2 + i 1 <q≤j 1 W q + D i 2 -(D j 1 + c j 1 i 2)    (A
F (i 1 ,...,j 1 ,i 2 ,...,j 2) i 1 = min    F j 1 i 1 , F j 2 i 2 + i 1 <q≤j 1 W q + D i 2 -(D j 1 + c j 1 i 2 + s i 2)    (A.14)
Therefore: , 2, 3, 4, 5, 6, 19) (green), (1, 7, 8, 9, 11, 12, 20) (blue), and (2, 18, 17, 16, 15, 14, 21) (red). Nodes 10 and 13 are not visited.

F j+1 i = F (i,...,j,j+1...,j+1) i 1 = min    F j i , F j+1 j+1 + i<q≤j W q + D j+1 -(D j + c jj+1 + s j+1)    = min F j i , b j+1 + s j+1 -D j+1 + W j i+1 + D j+1 -D j -c jj+1 -s j+1 = min F j i , b j+1 -A j+1 + W j i+1

A.2 Cost of a solution

Depending on whether we are solving the VRPTW or the TRSP, the cost of a solution is either de ned as the total traveled distance z dis , or the total working time z wt .

A.2.1 Total distance

The total distance z dis measures the total distance traveled by all vehicles:

z dis (Π) = π∈Π z dis (π) = π∈Π |π| i=2 c π i-1 ,π i (A.15)

A.2.2 Total working time

The total working time z wt evaluates the total duration of all tours, including travel, service, and waiting times. It is de ned as:

z wt (Π) = π∈Π z wt (π) (A.16) z wt (π) = A π l -(a π 0 + min{F π 0 , W π l π 0 }) (A.17)
Where (a π 0 + min{F π 0 , W π l π 0 }) models the fact that the start of tour π may be delayed to reduce its total duration. Algorithm A.1 presents the detail of the evaluation of z wt . An important di erence with z dis is that we need to take into account waiting times and the possible delay at the beginning of the tour. A ← a π 0 3:

F ← b π 0 -a π 0 4: W ← 0 5: for i = 2 to |π| do 6: A ← max{A, a π i -1 } + sπ i + c π i-1 ,π i 7: W ← W + max{0, a i -A} 8: F ← min {F, b i -A i + W } 9:
end for 10:

return A -(a π 0 + min{F, W }) 11: end function

A.3 Node insertion evaluation

The e ciency of the adaptive large neighborhood search algorithms presented in this thesis depends on the ability to evaluate the cost and feasibility of an insertion in constant time. This section details how this can be achieved.

A.3.1 Simple insertion

We consider the insertion or r between i and j in tour π = (π 0 , . . . , i, j, . . . , π l), which would lead to tour π = (π 0 , . . . , i, r, j, . . . , π l).

A.3.1.1 Total distance insertion cost

The cost of a simple insertion in terms of total distance ∆z dis (π, r, i, j) is straightforward: ∆z dis (π, r, i, j) = c i,r + c r,j -c i,j (A.18)

A.3.1.2 Working time insertion cost

The evaluation of the cost of an insertion in terms of working time is more complicated as it will impact the arrival time at the successors and may require an earlier departure from the depot.

Nonetheless, Savelsbergh (1992) points out that it can be achieved in constant time using precalculated data as the waiting and forward time slack.

Arrival time at the last node We start by evaluating the arrival time and the waiting time at the inserted request r:

A r = D i + c ir W r = max{0, a r -A r } (A.19)
Then, we evaluate the arrival time at the successor j:

A j = max{A r , a r } + s r + c rn (A.20)
Finally, we calculate the resulting arrival time at the last node: .21) where ∆ = A j -A j is the change in arrival time at j, and W π l j is the cumulated waiting time between j and π l that will possibly absorb the delay.

A π l = A π l + max 0, ∆ -W π l j (A

Cumulated waiting time

The new cumulated waiting time is:

W π l π 0 = W i π 0 + W r + max{0, W π l j -∆} (A.22)
Forward time slack The new forward time slack F π 0 is:

F π 0 = min F i π 0 , b r -A r + W i π 0 , F (j,...,π l) j + W i π 0 + W r + max{A j , a j } -A j (A.23)
Cost of the insertion Finally, the cost of the insertion is:

∆z wt (π, r, i, j) = z wt (π) -z wt (π) = (A π l -(a k + min{F π 0 , W π l π 0 })) -(A π l -(a k + min{F π 0 , W π l π 0 })) = max 0, ∆ -W π l j -min{F π 0 , W π l π 0 } + min{F π 0 , W π l π 0 } (A.24) A.3.1.3 Feasibility
If the inserted node is a request, the technician must have the required skills, tools, and spare parts to service it. In addition, the insertion must not violate time window constraints. This can be checked

And the new arrival time at the last node: .33) Where ∆ j = A j -A j .

A π l = A π l + max{0, ∆ j -W π l j } (A
Total waiting time Similarly to the analysis made for the single insertion case, the new total waiting time can be computed as follows:

W π l π 0 = W m π 0 + W r + max{0, W i n -∆ n } + W q + max{0, W π l j -∆ j } (A.34)
Note that max{0, W i n -∆ n } is the waiting time on the path (n, . . . , i), which absorbs the change in arrival time at n, and max{0, W π l j -∆ j } is the waiting time on the path (j, . . . , π l) which will absorb the change in arrival time at j.

Forward time slack

We consider ve paths: (π 0 , . . . , m), (r), (n, . . . , i), (q), and (j, . . . , π l).

From Equation (A.23): ...,m,r,n,...,i)

F (π 0 ,
π 0 = min F m π 0 , b r -A r + W m π 0 , F (n,...,i) n + W m π 0 + W r + max{A n , a n } -A n (A.35)
And for the whole new path:

F π 0 = min                F i π 0 , b r -A r + W m π 0 , F (n,...,i) n + W m π 0 + W r + max{A n , a n } -A n , b q -A q + W i π 0 , F (j,...,π l) j + W i π 0 + W q + max{A j , a j } -A j (A.36)
Where W i π 0 is the new waiting time between π 0 and i:

W i π 0 = W m π 0 + W r + max{0, W i n -∆ n } (A.37)
Cost of the insertion The cost of the insertion is equal to

∆z wt (π, r, m, n, q, i, j) = z wt (π) -z wt (π) = (A π l -(a k + min{F π 0 , W π l π 0 })) -(A π l -(a k + min{F π 0 , W π l π 0 })) = max 0, ∆ j -W π l j -min{F π 0 , W π l π 0 } + min{F π 0 , W π l π 0 } (A.38)
Special case A special case of the simultaneous insertion is when the second node is the successor of the rst (i = r and n = q)). The resulting tour would then be (π 0 , . . . , m, r, q, j, . . . , π l), and this case must be treated separately. We chose to merge r and q into a single node R and to adapt the formulas from the single insertion case. In particular the waiting time at R is W R = W r + W q , and the second term of Equation (A.23) becomes min{b r -A r + W n π 0 , b q -A q + W n π 0 + W r }.

B

A library for the modeling of vehicle routing problems

VroomModeling is a exible library that has been developed to model a wide range of instances of vehicle routing problems. The general idea is to clearly separate the problem information (nodes, locations, eet, requests) from the routing logic (cost calculation, route optimization); but also to ensure a high exibility in the model. This is achieved with the de nition of node, request and vehicle objects as a combination of base properties (e.g. a node necessarily has a geographic location) and attributes that are mapped to attribute keys. For instance in this representation a node can also have a time window or a compatibility constraint with vehicles (some vehicles may not be able to access the node).

An important design characteristic is the separation between the node, which represents a physical location, for instance a client, and a request which is associated with one (pickup/delivery) or two nodes (pickup and delivery), and represent a request for service. and a list of requests (Request). It is important to note that the calculation of distances and costs is delegated to an instance of CostCalculatorDelegate, separating this logic from the representation of routes. On the other hand, a solution (Solution) contains a reference to an instance, and a set of routes (Route). A route is associated with a vehicle, and contains a sequence of node visits (Node-Visit) that model the visit of a node associated with a given request. It is worth noting that the three classes Vehicle, Node, and Request, inherits from ObjectWithAttributes which allows for the de nition of any number of additional attributes such as time windows or compatibility constraints. π i ← (0, i, 0) Associate a singleton route with node i 3: end for

4: M ← []
The list of candidate mergings 5: for all (i, j) ∈ A do 6:

s ij ← c 0i + c 0j -c ij
The saving for arc (i, j)

7: M ← M + (i, j, s ij)
Append to the list of mergings 8: end for 9: S ← sort(M)

Sort the merging list in decreasing savings value 10: for all (i, j, s ij) ∈ M do 11:

if mergingFeasible (π i , π j , (i, j)) then 12:

π i ← merge (π i , π j , (i, j))
Merge the two routes with arc (i, j)

13:

π j ← π i 14:
end if 15: end for 16: Π ← {π i } i∈V

The solution contains all the nal routes 17: return Π saving algorithms use instances of IJCWArc to represent candidate savings and instances of Route-MergingMove to model the corresponding merging of two routes. The framework provides two concrete savings algorithm implementations: BasicSavingHeuristic that corresponds to Algorithm C.1, and RandomizedSavingsHeuristic which introduces some randomization while sorting the merging list.

The Clarke and Wright savings heuristic was used to generate scenarios in the multiple scenario approach presented in Chapter 3.

C.2 Adaptive Variable Neighborhood search

In this section we propose an extension of Variable Neighborhood Search (VNS) (Mladenovic and Hansen, 1997), namely Adaptive Variable Neighborhood Search (AVNS), that was used as optimization component of the multiple plan approach for the DVRPSD presented in Chapter 3. The original VNS iteratively improves a solution by exploring sequentially neighborhoods of increasing complexity or size. AVNS in contrast does not impose any order on the exploration of neighborhoods, leading to a higher level of modularity. while N c = ∅ and stop condition not met do It is worth noting that the following variants [START_REF] Hansen | Busqueda de entorno variable[END_REF] while the tendency reverses for SEQ-Rev. This last observation can be explained by the fact that this last strategy will explore rst the more complex neighborhoods (string-exchange and Or-opt), which are of complexity O(k 2 n 2) and O(kn 2), thus requiring a quadratically increasing time to explore. As expected, we can note that preserving the performance information from one run to another (R vs.

NR) slightly improves the performance.

Finally, Table C.3 shows that the EFF-NR strategy also have a lower CPU time standard deviation, meaning that it is the most stable in terms of running times. A similar analysis has been done for the gap standard deviation but no tendency can be drawn.

C.3 Versatile Local Search

The Versatile Local Search package (VLS) contains an implementation of the Greedy Randomized Adaptive Search Procedure (GRASP) with multi-start evolutionary local search proposed by Prins (2009) and [START_REF] Villegas | GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots[END_REF]. This approach is an hybrid between GRASP, Iterated Local Search We tested this approach on the TRSP but it appeared that pALNS+SC was clearly dominating both in terms of objective function and computational time. Our intuition is that the presence of time windows makes it more di cult to generate good routes during the split procedure. However this method has shown very good results on the VRPSD and its simplicity makes it a good candidate for problems without time windows.

C.4 Adaptive Large Neighborhood Search

f ← isFeasible π[i,j]
Check route feasibility 10:

if f and L i + z(π [i,j]) < L j then
We found an improving feasible arc 11:

L j ← L i + z(π [i,j]) Update

C.5.4 Heuristic concentration

The heuristic concentration consists in selecting a subset of routes that constitutes a minimal cost feasible solution of the problem at hand. This can be modeled as the following set-covering problem:

Min t∈P c t x t (C.1) s.t. t∈P x t a ti ≥ 1 ∀i ∈ R (C.2) x t ∈ {0, 1} ∀t ∈ P (C.3)
Where P is the set of generated routes and a ti a parameter taking the value of 1 if route t visits node i.

Constraint C.2 ensures that each customer is visited at least once. Considering that customers must be visited exactly once, one could argue that a set-partitioning formulation would t better our purpose. Nonetheless, our model only contains a limited subset of columns, and therefore we may not be able to nd a good combination of columns that ensures the unique covering of all customers. As a result, the nal solution may visit a customer more than once. This is easily dealt with by removing the most costly visits. In all cases we are ensured that the repaired solution x * SC+rep , is at least as good as the optimal solution x * SC of the set-covering, and by transitivity of the set-partitioning x * SP ,

D

An instance generator for the TRSP

We adapted the VRPTW instances proposed by Solomon (1987) by adding skills, tools, and spare parts information. The instances contain 100 requests located randomly (R), in clusters (C), or combining both (RC); while the planning horizon is either short (type 1) or long (type 2). These instances are organized combining location and horizon (i.e., C1, C2, R1, R2, RC1, and RC2). For all instances the crew size is xed, and the traveling speed of technicians is assumed to be unitary.

D.1 Parameters

The parameters of the generator are the following:

D.6 Generated instances

The parameters used to generate instances are recapitulated in En conséquence, améliorer l'e cacité des activités de transport est une étape critique pour augmenter la compétitivité et réduire l'impact environnemental des organisations. Dans ce sens, l'opération d'une otte de véhicules constitue un problème clef qui apparaît autant dans les entreprises de services, avec entre autres le transport de personnes handicapées, la plani cation des tournées de bus scolaires, ou les activités de maintenance sur site, que dans l'industrie avec, par exemple, le transport de matières premières entre fournisseurs et usines, le repositionnement de camions dans les sociétés de transport longue distance, ou la collecte et la livraison de produits dans les societés de vente par correspondance.

Plus particulièrement, les problèmes de tournées de véhicules (Vehicle Routing Problems -VRPs) considèrent la conception d'un ensemble de tournées de coût minimal servant les demandes en produits ou services d'un ensemble de clients distribués géographiquement, tout en respectant un ensemble de contraintes opérationnelles. Depuis sa dé nition par Dantzig and Ramser (1959), le nombre de publications sur le VRP a augmenté exponentiellement. L'étude récente de Eksioglu et al. (2009) est une preuve de cette évolution : elle reporte environ 1500 publications indexées traitant des tournées de véhicules (à la date de la rédaction de l'article). Le volume de publications est intimement lié à la grande diversité de problèmes de tournées, et la variété des approches proposées pour les traiter.

La formulation originale du problème de tournées de véhicules avec capacité (CVRP ou simplement VRP) est une généralisation du problème du voyageur de commerce (Travelling Salesman Problem -TSP) proposé par Flood (1956). Le VRP est dé ni sur un graphe G = (V, , C, q), où V = {v 0 , . . . , v n } est l'ensemble des noeuds, est l'ensemble des arcs, C = (c e) e∈ est une matrice de coûts dé nie sur les arcs, et q = (q i) i∈V est un vecteur de demandes pour un certain produit. Traditionnellement, le noeud v 0 est appelé dépôt, alors que les noeuds restants représentent des clients qui requièrent une certaine quantité du produit considéré. Le VRP consiste à concevoir un ensemble de tournées de coût minimal pour une otte illimitée de véhicules de capacité Q, commençant et nissant au dépôt, de telle sorte que chaque client soit visité exactement une fois, tout en respectant la capacité des véhicules.

Cette dé nition a été étendue sous diverses formes pour modéliser une variété d'applications pratiques. Parmi les contraintes additionnelles les plus étudiées se trouvent la prise en compte de fenêtres de temps qui imposent de visiter un client durant une certaine période ; la prise en compte simultanée des opérations de collecte et de livraison qui impose qu'un produit soit d'abord collecté à une certaine position pour être ensuite livré à une autre, les contraintes de distances ou durées maximales qui limitent le nombre de clients visités dans une tournée ; ou les contraintes d'accessibilité qui réduisent l'ensemble des véhicules pouvant desservir un client. Par ailleurs, les variantes communes de la dé nition originale du problème incluent la prise en compte de multiples dépôts, avec des véhicules pouvant commencer et terminer leur tournées à des dépôts distincts ; des ottes de véhicules hétérogènes et/ou limitées. Finalement, d'autres problèmes proches considèrent des horizons multi-périodes ; la prise en compte simultanée de la gestion de stocks ; les tournées à niveaux multiples dans lesquelles certains véhicules alimentent des hubs desquels partent d'autres tournées de livraison ; des véhicules avec une remorque pouvant être détachée pour servir des clients avec des contraintes d'accessibilité ; et des problèmes de tournées sur les arcs dans lesquels la demande est localisée sur les arcs.

En parallèle de cette multitude de variantes, de nombreuses méthodes d'optimisation ont été proposées pour résoudre les problèmes de tournées de véhicules. Nous renvoyons le lecteur vers les études de la littérature de Baldacci et al. (2007), Cordeau et al. (2007), Laporte (2009), et Toth and[START_REF] Toth | The vehicle routing problem, volume 9 of Monographs on Discrete Mathematics and Applications[END_REF] pour un panorama complet des méthodes exactes et approchées. La majorité des algorithmes et logiciels de tournées de véhicules reposent sur l'hypothèse que toute l'information est connue avec certitude. Cependant, dans certaines applications, une partie ou l'ensemble des informations sont incertaines. Un exemple fréquent est l'incertitude sur les temps de transport qui varient grandement, en fonction des conditions météorologiques et de tra c, en particulier dans les zones urbaines. Ces problèmes sont quali és de statiques et stochastiques et des exemples communs incluent des clients présents avec une certaine probabilité, des temps de trajet et de service stochastiques, et en n des demandes stochastiques lorsque la demande des clients n'est connue que sous forme de probabilité.

Par ailleurs, les avancés récentes des moyens de communication et de géolocalisation permettent aux entreprises de suivre et d'interagir avec leur otte en temps réel. Ces nouvelles technologies ont amené à la création des systèmes de transport intelligents (Intelligent Transport Systems -ITS), et plus précisément des système de gestion avancée de otte (Advanced Fleet Management Systems -AFMS), qui combinent des solutions matérielles et logicielles pour présenter en temps réel l'information dis-ponible sur la otte, les clients, et les réseaux routiers. Le développement des ITS et AFMS crée de nouveaux dé s et opportunités pour la recherche opérationnelle. Les tournées de véhicules ne sont plus limitées à une conception a-priori de tournées ne pouvant être modi ées par la suite. À l'inverse, les véhicules peuvent désormais être orientés en temps réel, dé nissant une nouvelle catégorie de problème de tournées dynamiques. Les problèmes de la catégorie statique et déterministe correspondent aux variantes de la dé nition originale du VRP dans lesquelles l'ensemble de l'information est connue de façon certaine a-priori.

G.1.1 Mesures de dynamisme

Di érentes mesures ont été proposées pour évaluer le degré de dynamisme d'un problème. Lund et al. (1996)

Degré de dynamisme

δ e T W = 1 n tot i∈R 1 - l i -t i T (G.3)
Il est à noter que ces trois mesures prennent leurs valeurs dans l'intervalle [0, 1] et augmentent avec le niveau de dynamisme d'un problème. Larsen et al. (2002Larsen et al. (, 2007))

G.2 Tournées dynamiques et déterministes

Dans ce chapitre nous proposons une méthode de réoptimisation rapide pour les tournées de véhicules dynamiques et nous étudions des aspects bi-objectifs liés à la prise en compte de la constance des tournées au cours de la journée. updateScore (d, r, Π) Update scores 13: end for 14: return Π * di érentes heuristiques (ligne 5). La solution obtenue est acceptée comme solution courante en fonction d'un critère de recuit simulé (ligne 6). À la n de chaque itération, les scores des opérateurs de destruction et de réparation sont mis à jour en fonction de la solution qu'ils ont générée (ligne 12).

G.2.1 Méthode de réoptimisation rapide

Cet algorithme a montré d'excellentes performances sur une grande variété de problèmes de tournées (Pisinger and Ropke, 2010), le rendant particulièrement intéressant dans l'optique de développer des approches génériques. Cependant, son caractère séquentiel fait qu'il n'utilise qu'une fraction des ressources disponibles sur la majorité des ordinateurs modernes. Par conséquent, nous proposons un schéma de parallélisation permettant d'utiliser au mieux ces ressources et de réduire ainsi les temps de calcul. L'algorithme proposé, ou recherche adaptive parallèle à voisinages larges pALNS, repose sur l'utilisation d'un ensemble de solutions prometteuses.

L'algorithme G.2 présente les grandes lignes de pALNS. L'algorithme maintient un ensemble P de N solutions prometteuses qui sont optimisées par K sous-processus (notez que N ≥ K). Pour chaque itération maître, un sous-ensemble de K solutions prometteuses est choisi au hasard (ligne 2) et répartis entre les sous-processus indépendants. Chaque sous-processus exécute I p ALNS itérations (lignes 3- Notez que l'augmentation du nombre de threads a un impact limité sur l'écart avec les meilleures solutions connues, lequel est toujours autour de 0,6%, mais elle permet une réduction des temps d'exécution par un facteur 3,3.

G.2.2 Constance des tournées -une approche bi-objective

La plupart des études sur les tournées dynamiques considèrent que les tournées sont conçues en temps réel, ce qui signi e que les conducteurs de véhicules ne connaissent leur prochaine destination qu'à la n du service du client actuel. Bien que cette hypothèse permette une meilleure optimisation de la fonction de coût, elle peut ne pas être souhaitable si les conducteurs sont habitués à connaître leurs itinéraires au début de la journée. Dans la pratique, avoir un ensemble de tournées connues a priori et ensuite modi ées peut être souhaitable. Il y a donc un besoin pour des approches capables de maintenir une cohérence dans les tournées des véhicules tout au long de la journée, tout en minimisant le coût total.

Les études sur les tournées dynamiques considèrent l'optimisation d'un critère unique, comme la minimisation de la distance totale parcourue ou la maximisation du nombre de clients desservis.

D'autre part, un nombre croissant d'études sur les tournées statiques prend en compte des objectifs multiples dans le but de mieux répondre aux di érents contextes opérationnels (Jozefowiez et al., 2008).

Dans cette section, nous présentons une étude préliminaire qui prend en compte la gêne des conducteurs. L'approche proposée est une adaptation de l'algorithme pALNS qui minimise simultanément une fonction de coût et maximise la constance des tournées tout au long de la journée. Les résultats expérimentaux préliminaires montrent que pour les instances faiblement dynamiques il semble intéressant de favoriser la constance des tournées, alors que pour les instances fortement dynamiques il est plus pro table de ne considerer que la minimisation de la fonction de coût.

Référence de l'article présenté dans ce chapitre :

-Pillac, V., Guéret, C., and Medaglia, A. L. (2012 Une fois un nombre su sant de scénarios généré, une procédure de décision est utilisée pour agréger l'information contenue dans chacun des scénario a n de prendre des décisions qui tiennent compte de la stochasticité du problème. Un aspect important du framework est la parallélisation transparente des opérations les plus exigeantes en temps de calcul. La gure G.7 illustre les interactions entre threads (ls d'exécution) dans le framework jMSA. À l'instant t 0 , le thread MSA dé le un évènement OptimizePool, et le traite avec le handler OptimizeHandler correspondant. En parallèle du thread MSA, deux nouveaux threads sont créés par le ComponentManager pour optimiser les scénarios. À l'instant t 1 , un évènement préemptif NewCustomer et un évènement Decision sont en lés par l'environnement, causant l'arrêt prématuré de l'optimisation. En n, la procédure dé le et traite l'évènement NewCustomer, lequel a une priorité plus élevée que l'évènement Decision.

G.3.3 Résultats expérimentaux

G.4.2 Cas dynamique

Nous avons traité le cas dynamique du TRSP avec trois approches : la réoptimisation rapide basée sur pALNS proposée dans la section G.

G.5 Conclusions

Les progrés technologiques récents fournissent aux organisations les outils adaptés pour gérer leur otte en temps réel. Cependant, ces nouvelles technologies introduisent également plus de complexité dans la gestion des ottes de véhicules, révélant un besoin pour des systèmes d'aide à la décision dédiés aux problèmes de tournées de véhicules dynamiques. Dans ce contexte, les contributions de la présente thèse sont les suivantes : premièrement, nous avons présenté une étude exhaustive de la littérature ; deuxièmement, nous avons conçu, implémenté, et rendu publiques des frameworks d'optimisation à la fois exibles et extensibles capables de traiter une grande variété de problèmes de tournées dynamiques ; et troisièmement, nous avons dé ni et attaqué un problème de tournées rencontré par un partenaire industriel.

Nous estimons que les travaux futurs devraient se centrer autour du développement d'approches de réoptimisation continue simples et exibles, par exemple en étendant l'algorithme pALNS présenté dans cette thèse. Il serait également intéressant de trouver des stratégies pour limiter la complexité des problèmes d'optimisation sous-jacents, par exemple en mettant plus d'e ort sur l'optimisation du futur proche, ou en éliminant des scénarios trop pessimistes. En n, une attention particulière devrait être mise sur la conception de nouvelles procédures permettant de consolider l'information contenue dans un ensemble de scénarios pour prendre de meilleurs décisions en un temps plus court.

La gestion en temps réel d'une otte de véhicules soulève de nombreux problèmes, tant théoriques que pratiques, et nécessite le développement d'algorithmes rapides et e caces. Bien que ce domaine ait reçu un intérêt croissant au cours des dernières décennies, il existe toujours de nombreuses opportunités de recherche et nous espérons que la présente thèse sera une source de ré exion pour des travaux futurs.

Thèse de Doctorat Victor Pillac

Dynamic vehicle routing: solution methods and computational tools Méthodes de résolution et outils informatiques pour les tournées de véhicules dynamiques Résumé Les activités de transport jouent un rôle crucial autant dans le domaine de la production que dans celui des services. En particulier, elles permettent d'assurer la distribution de biens et de services entre fournisseurs, unités de production, entrepôts, distributeurs, et clients finaux. Plus spécifiquement, les problèmes de tournées de véhicules (VRP) considèrent la mise au point d'un ensemble de tournées de coût minimal servant la demande en biens ou en services d'un ensemble de clients distribués géographiquement, tout en vérifiant un ensemble de contraintes opérationnelles. Alors qu'il s'agissait d'un problème statique, des avancées technologiques récentes permettent aux organisations de gérer leur flotte de véhicules en temps réel. Cependant, ces nouvelles technologies introduisent également une plus grande complexité dans les tâches de gestion de flotte, révélant une demande pour des outils d'aide à la décision dédiés aux problèmes de tournées de véhicules dynamiques. Dans ce contexte, les contributions de la présente thèse de doctorat s'organisent autour de trois axes : (i) elle présente un état de l'art détaillé des problèmes de tournées dynamiques ; (ii) elle introduit des frameworks d'optimisation génériques adaptés à une grande variété de problèmes ; (iii) elle définit un problème de tournées novateur et aux nombreuses applications.

Abstract

Within the wide scope of logistics management, transportation plays a central role and is a crucial activity in both production and service industry. Among others, it allows for the timely distribution of goods and services between suppliers, production units, warehouses, retailers, and final customers. More specifically, Vehicle Routing Problems (VRPs) deal with the design of a set of minimalcost routes that serve the demand for goods or services of a set of geographically spread customers, satisfying a group of operational constraints. While it was traditionally a static problem, recent technological advances provide organizations with the right tools to manage their vehicle fleet in real time. Nonetheless, these new technologies also introduce more complexity in fleet management tasks, unveiling the need for decision support systems dedicated to dynamic vehicle routing. In this context, the contributions of this Ph.D. thesis are threefold : (i) it presents a comprehensive review of the literature on dynamic vehicle routing ; (ii) it introduces flexible optimization frameworks that can cope with a wide variety of dynamic vehicle routing problems ; (iii) it defines a new vehicle routing problem with numerous applications.

Mots clés

 .(1976). Traveling salesman-type combinatorial optimization problems and their relation to the logistics of regional blood banking. PhD thesis, Department of Industrial Engineering and Management Science, Northwestern University.

Figure 1 . 1 :Figure 1

 111 Figure 1.1: Example of dynamic vehicle routing

(1999)

 1999 with the adaptation of the parallel Tabu Search (TS) framework introduced by Taillard et al. (1997) to a D-VRPTW problem arising in the local operation of long distance express courier services.

Figure 1 . 3 :

 13 Figure 1.3: Scenario generation in sampling approaches.

 [START_REF] Ghiani | Anticipatory algorithms for same-day courier dispatching[END_REF] developed an algorithm for the D-PDP that only samples the near future to reduce the computational e ort. The main di erence with MSA is that no scenario pool is used and the selection of the distinguished solution is based on the expected penalty of accommodating requests in the near future. Azi et al. (2011) developed an Adaptive Large Neighborhood Search (ALNS) for a dynamic routing problem with multiple delivery routes, in which the dynamic decision is the acceptance of a new request. The approach maintains a pool of scenarios, optimized by an ALNS, that are used to evaluate the opportunity value of an incoming request.

 Figure 2.1: Illustration of a typical dynamic vehicle routing problem.

Figure 2 .

 2 Figure 2.1 illustrates the routing of two vehicles in a dynamic context. Before the vehicles leave the depot (2.1a.), two routes are designed to visit the currently known customers: (A, B, C) and (D, E).

Figure 2 . 2 :

 22 Figure 2.2: Overview of periodic reoptimization approaches

Figure 2 . 3 :

 23 Figure 2.3: Overview of continuous reoptimization approaches

Figure 2 .Figure 2 . 4 :

 224 Figure2.4 illustrates the proposed reoptimization approach: the algorithm starts by producing an initial solution S 0 by using a constructive heuristic coupled with the pALNS described in the previous section. Then each time a new customer appears, it xes the currently executed portion of the routes, and re-runs the pALNS for a limited number of iterations to produce an updated solution S t . If pALNS is able to insert the new customer request, then the customer is accepted and S t becomes the new current solution, otherwise the customer is rejected and S t remains as the current solution.

Figure 2 . 5 :

 25 Figure 2.5: Illustration of the waiting strategy.

 Figure 2.6: Impact of the number of threads on the gap and CPU time.

Figure 2

 2 Figure 2.7: Example of the edit distance between two routes.

Figure 2

 2 Figure 2.8: Objective space for instance R101 and illustration of the threshold policy.

Fig. 3 .

 3 Fig. 3.1 illustrates the Dynamic Vehicle Routing Problem (D-VRP), in which new customers appear while the vehicle is executing its route. Before the vehicle leaves the depot (at time t 0), an initial route plans to visit the currently known customers(A, B, C, D, E). While the vehicle executes its route, two new customers (X and Y) appear (at time t 1) and the initial route is adjusted to accommodate them.

Figure 3 .

 3 Figure 3.1: Example of dynamic vehicle routing

 For instance, Fleischmann et al. (2004) presented an event-based DSS that takes into account changing travel times and the arrival of new customers in the context of a local area courier service. The framework continuously optimizes a single routing plan in which new customers are inserted either with an assignment model or insertion algorithms. A similar problem was addressed byAttanasio et al. (2007) who showed that the proposed DSS allows for an e cient operation (low administrative cost) as the eet size (number of couriers) increases, a key competitive advantage in this sector. Comparable conclusions were drawn by[START_REF] Petrakis | On the impact of real-time information on eld service scheduling[END_REF] for the dynamic routing and scheduling of eld technicians. Likewise,Barcelo et al. (2007) presented a exible DSS for vehicle routing and scheduling in city logistics and its application to the delivery of goods in two Italian cities. Their DSS includes a real time tra c simulator, connection to common GIS systems, and various routing models and optimization modules.[START_REF] Dahl | Cooperative planning in express carrier networks -an empirical study on the e ectiveness of a real-time decision support system[END_REF] studied the e ectiveness of a DSS that allows for cooperation between carriers, increasing the utilization of vehicles. In a di erent context,Zeimpekis et al. (2007) developed a DSS that takes into account unexpected events such as tra c conditions or vehicle breakdowns to re-optimize an existing distribution schedule.[START_REF] Li | A decision support system for the single-depot vehicle rescheduling problem[END_REF] also studied vehicle breakdowns in an application to waste collection in Brazil.

Fig. 3 .Figure 3 . 2 :

 332 Fig. 3.2 illustrates how scenarios are generated for the D-VRP. Solely based on the actual customers, the optimal tour would be (A, B, E, D, C), which ignores two zones (gray areas) where customers are likely to appear. By sampling the customer spatial distributions, customers X, Y and Z are generated, and the new optimal tour is(C, X, Y, B, A, Z, E, D). Removing the sampled customers leads to the tour (C, B, A, E, D) which is sub-optimal based on a myopic cost evaluation, but leaves room to accommodate new customers at a lower cost.

Figure 3 . 3 :

 33 Figure 3.3: Time line of events for the dynamic routing of a single vehicle

Figure 3 . 4 :

 34 Figure 3.4: Design overview of the jMSA framework

Figure 3 . 5 :

 35 Figure 3.5: Event-driven MSA framework

Figure 3 . 6 :

 36 Figure 3.6: Interaction between the GenerateHandler and the di erent components.

Figure 3 . 8 :

 38 Figure 3.8: Example of the decision process by consensus in a 4-scenario pool. Each scenario contains customers who have been visited (in white) and customers yet to be visited (in gray).

!Figure 3 .

 3 Figure 3.10: Optimal gap distribution of the CW+AVNS algorithm vs. CW+2-opt for all Novoa (2005) instances

)

 On the technician routing and scheduling problemIn Di Gaspero, L., Schaerf, A., and Stützle, T., editors, Proceedings of the 9th Metaheuristics Conference (MIC 2011), pages 675-678. Università degli Studi di Udine.

Figure 4 .

 4 Figure 4.1 illustrates an instance of the TRSP with two technicians and six requests. Technician Ahas the green skill, while B has both green and blue skills. Technician A starts its tour at home (gray diamond) with a hammer and a screwdriver, then serves requests 1, 2, and 3, before returning home.Technician B rst serves 4, then goes to the central depot (black square) to pick up a drill that allows him/her to serve request 6 after serving request 5. Note that although request 5 is close to the tour of

 present a software solution developed for Sears, a US retailer that serves its customers with home delivery and on-site technical assistance. The proposed solution works by rst assigning technicians to requests, and then optimizing technician routes individually. Tsang and Voudouris (1997) studied the technician workforce scheduling problem faced by British Telecom. Their study does not consider skill constraints, but uses a pro ciency factor that reduces the service time depending on the technician experience. They propose a Fast Local Search and a Guided Local Search to solve this problem.

 2007 the French Operations Research Society (ROADEF) organized a challenge based on a problem submitted by France Telecom. The problem consists in nding a schedule for technicians to execute a set of tasks on a multiple-day horizon. Each task requires one or more skills with di erent minimum pro ciency levels, while technicians can have multiple skills with a given pro ciency. An important aspect is the creation of teams that work together during one day, combining the skills of their members, and the possibility to outsource the execution of a task. However, this problem ignores the routing aspects.Cordeau et al. (2010) proposed a mathematical model and an Adaptive Large Neighborhood Search (ALNS), whileHashimoto et al. (2011) proposed a Greedy Randomized Adaptive

Figure 4 . 2 :

 42 Figure 4.2: Overview of the proposed fast reoptimization approach

Figure 4 . 3 :

 43 Figure 4.3: Design overview of the jMSA framework

Figure 4 .

 4 Figure4.4 presents a conceptual overview of the MPA procedure as implemented in the jMSA framework. jMSA starts two subprocesses: a main loop and an event loop. The main loop is responsible for continuously generating and optimizing a set of alternative solutions (the routing plans) stored in the plan pool. This main loop maximizes the utilization of the computational resources when the

Algorithm 4. 3

 3 Adaptive Large Neighborhood Search (ALNS) algorithm Input: Π 0 initial solution, z evaluation function, Θ -/Θ + set of destroy/repair operators, I number of iterations Output: Π * the best solution found 1: Π * ← Π 0 Initialize best solution 2: Π ← Π 0 Initialize current solution 3: for I iterations do 4:

Algorithm 4. 4 3 :

 43 The consensus algorithm Input: P a pool of alternative solutions Output: Π * a distinguished solution 1: e ← [0] i∈R Initialize the evaluation of all requests 2: for all Π ∈ P do For each solution in the pool for all π ∈ Π do For each tour in the solution 4: e[π 0] ← e[π 0] + 1 Increment the evaluation of the rst unserved request π 0

Figure 4 . 5 :

 45 Figure 4.5: Advantage of a waiting strategy.

and service time are equal to 5 .

 5 The forward time slack at node 2 F 2 is equal to 5 as delaying the departure for more than 5 time units will cause the violation of the time window of node 3. F 1 is equal to 15: if we delay the departure of 15, W 2 becomes 0 and D 2 becomes 35, which will allow for the arrival at 3 at the end of its time window. Finally, F 0 is equal to 5 as delaying the departure any longer will cause the violation of the time window at 1.Compact representationFigure A.1 illustrates the compact representation of a solution with a single array describing 3 di erent tours. The use of such representation is particularly useful when solutions have to be cloned often as it minimizes the memory footprint and the time required to copy the arrays.

Figure A. 1 :

 1 Figure A.1: Representation of 3 tours with a unique matrix. Tours are (0, 2,[START_REF]5 -Comparaison des valeurs d'information moyennes[END_REF] 4,[START_REF] Novoa | 8% 2s_stostat_r[END_REF] 6, 19) (green),(1, 7, 8, 9, 11, 12, 20) (blue), and (2, 18, 17, 16, 15, 14, 21) (red). Nodes 10 and 13 are not visited.

Algorithm A. 1

 1 Algorithm for the evaluation of z wt 1: function ZWT(π) 2:

Figure B. 1 :

 1 Figure B.1: Overview of the VroomModeling library.

Figure B. 1

 1 Figure B.1 presents an overview of the VroomModeling library. The root object is the instance (Instance), it contains a reference to a problem de nition (VehicleRoutingProblemDefinition), a planning period (PlanningPeriod), a eet (Fleet) composed by one or more vehicles (Vehicle),

Figure B. 2 :

 2 Figure B.2: Illustration of a possible use of the VroomModeling library.

Figure

 Figure B.2 illustrates how a complex VRP problem could be modeled using the VroomModeling library. In this example, vehicles have trailers, nodes have a time window and compatibility constraints with vehicles, and requests have a time window and a stochastic demand.

 Algorithm C.2 presents an overview of the AVNS procedure. The algorithm starts with an initial solution Π and generates a neighbor Π from the current neighborhood (shake line 6), which is then improved by a local search procedure (line 7). If the new solution is accepted (line 8), it replaces the current solution and a new iteration is performed using the whole set of neighborhoods (line 10); otherwise, the neighborhood is marked as explored (line 12) and a new iteration is done with the unchanged current solution. Iterations are performed until either all neighborhoods have been explored or a stop criterion is met (usually a maximum time or number of iterations). The key di erence with respect to the original VNS algorithm is the call to the selectNeighborhood function at line 5. It allows for non-sequential exploration of neighborhoods, with the goal of exploring the best neighborhoods rst. Algorithm C.2 The Adaptive Variable Neighborhood Search algorithm. Input: Π a feasible solution, z an evaluation function and N = {N 1 , .., N K } a set of neighborhood structures Output: Π * the best solution found 1: function VNS(

Figure C. 3

 3 Figure C.3 presents a UML diagram of the VNS implementation. The key classes are the following: VariableNeighborhoodSearch is the class containing the implementation of Algorithm C.2, where the shake, local search and neighborhood selection are delegated to instances of other classes (template method pattern); ILocalSearch is the generic de nition of local search, an instance of this class is responsible for the local search in the VNS algorithm (ls line 7); INeighborhood is a generic de nition of a neighborhood structure. IComponentHandler is an interface for classes responsible of the neighborhood selection strategy.

(

 ILS), and Evolutionary Local Search (ELS), and was initially designed as optimization component for the jMSA framework.Algorithm C.3 presents the outline of the approach which comprises three nested loops. The GRASP loop (lines 1-20) builds a solution with a randomized constructive heuristic (line 2) and then improves the solution with a local search (line 3). The resulting solution is passed to the ILS loop (lines 4-16), and the ELS loop (lines 6-12). The ELS randomly modi es the current solution (line 5) and then apply a local search to it (line 6). The best solution from the ELS iteration is then taken as current solution for the next ILS iteration.

Figure C. 4

 4 Figure C.4 illustrates the implementation of the VLS algorithm withing the VroomHeuristics framework. The central component is the VersatileLocalSearch class which is con gured via VLS-GlobalParameters and contains a reference to an initialization (IInitialization), local search (ILocalSearch), and perturbation (IVLSPerturbation).

Figure C. 5

 5 Figure C.5 presents an overview of the implementation of the Adaptive Large Neighborhood Search (ALNS) and parallel ALNS (pALNS) algorithms described in Chapter 2. The main component is the AdaptiveLargeNeighborhoodSearch class, which is con gured via (ALNSGlobalParameters). It relies on two component handlers (ALNSComponentHandler) that are responsible for the evaluation and selection of the destroy and repair operators (IDestroy and IRepair). ParallelALNS provides the parallel implementation and uses an abstract de nition of a solution pool (IPALNSSolutionPool) to manage the pool of solutions.The pALNS and ALNS algorithms were used in Chapter 2 and 4 to tackle both static and dynamic routing problems.

5

 5 The split procedure Input: π a giant tour of length n, z an evaluation function Output: P the optimal splitting of π into a set of routes 1: P ← ∅ 2: L ← [+∞] i=1..n Initialize labels to +∞ 3: L 1 ← 0 Initialize labels of the rst node to 04: P ← [∅] i=1..nInitialize the predecessor array 5: for i = 1 to n do

Figure D. 1 :

 1 Figure D.1: Illustration of the le format used to store Solomon based instances.

F

 List of contributionsGRésumé en françaisLes activités de transport jouent un rôle crucial tant dans le domaine de la production que dans celui des services. En particulier, elles permettent d'assurer la distribution de biens et de services entre fournisseurs, unités de production, entrepôts, distributeurs, et clients naux. Le transport a également un fort impact sur l'économie et sur l'environnement. Selon[START_REF] Hesse | The transport geography of logistics and freight distribution[END_REF], le coût total des activités logistiques était de 10% du Produit Intérieur Brut (PIB) aux États Unis en 2010, et le transport à lui seul représentait 5.9% du PIB. Par ailleurs, un rapport récent de la la Energy Information Administration (EIA, 2011) indique que le transport était responsable de 27% des émissions de gaz à e et de serre en 2009 (toujours aux États Unis), alors que la European Environment Agency estime cette part à 24% pour l'Union Européenne(EEA, 2011).

 Illustration d'un problème de tournées de véhicules dynamique.

 Les problèmes statiques et stochastiques sont caractérisés par des données partiellement connues sous forme de variables aléatoires dont la réalisation est révélée lors de l'exécution des tournées. Par ailleurs, ils supposent que seules des modi cations mineures peuvent être apportées aux tournées une fois les véhicules partis, avec par exemple un retour anticipé au dépôt ou le non-service d'un client.Les problèmes dynamiques et déterministes considèrent qu'une partie ou l'ensemble des données est inconnu et révélé dynamiquement et de façon non-prévisible lors de l'exécution des tournées. Pour ces problèmes, les tournées sont dé nies en temps réel, ce qui suppose la possibilité de communiquer en temps réel avec les véhicules. Les problèmes dynamiques et stochastiques supposent eux qu'il est possible de prévoir les changement dynamiques, par exemple en les modélisant sous forme de variables aléatoires avec des distributions connues.Ce chapitre se focalise sur les problèmes dynamiques et déterministes et dynamiques et stochastiques. Dans un premier temps, nous étudions les di érences avec les tournées de véhicules statiques ainsi que di érentes mesures pour évaluer le dynamisme d'un problème, et nous listons les applications les plus communes dans les domaines du transport de personnes, transport de marchandises, et les services. Dans un second temps, nous dressons l'inventaire des méthodes proposées pour les problèmes dynamiques ainsi que des mesures de performance permettant leur comparaison. En n nous concluons sur le panorama général de ce domaine et dessinons des directions de recherche.

d

 14) en détruisant et en réparant la solution actuelle Π p comme dans l'algorithme original ALNS. La solution nale actuelle de chaque sous-processus est ajoutée à l'ensemble de solutions prometteuses (ligne 13) et une procédure de ltrage assure que cet ensemble contient au plus N solutions, y compris la meilleure solution trouvée jusqu'alors (ligne 15). L'algorithme s'arrête après I m itérations maitres, ce qui correspond à I = I m × I p itérations ALNS. Notez que l'implémentation de pALNS assure qu'aucune synchronisation n'est nécessaire entre les sous-processus pour éviter les deadlocks. Le tableau G.2 présente les valeurs agrégées sur les 53 instances, avec dix tests par instance et 25000 itérations ALNS 1 . La première colonne correspond à l'algorithme séquentiel original (SEQ), et les suivantes aux implémentations parallèles avec de 1 à 8 threads. Les première et deuxième lignes 1. Pour que I = I m I p K 25000, nous avons utilisé I m = 25000 40K Algorithm G.2 Parallel Adaptive Large Neighborhood Search (pALNS) Input: P initial solutions, z evaluation function, Θ -/Θ + set of destroy/repair operators, N maximum size of the solution pool, K number of subprocesses, I m number of master iterations, I p number of iterations performed in parallel. Output: Π * , the best solution found 1: for I m iterations do ← select (Θ -) ; r ← select (Θ +) retain (P, N) Retain at most N solutions in the pool P 16: end for 17: return Π * = arg min Π∈P {z(Π)} contiennent la moyenne et l'écart-type des écarts aux meilleures solutions connues ou solutions optimales. En n, les troisième et quatrième lignes indiquent la moyenne et l'écart type des temps de calcul.

) A fast re-optimization approach for dynamic vehicle routing Technical report, École des Mines de Nantes, France. Report 12/6/AUTO. Des résultats préliminaires sur le cas bi-objectifs ont été présentés à la conférence ROADEF 2012 :-Pillac, V.,Guéret, C., and Medaglia, A. L. (2012) Route stability in dynamic vehicle routing : a bi-objective approach In ROADEF 2012, Angers, France.G.3 Tournées dynamiques et stochastiquesDans les problèmes de tournées dynamiques et stochastiques, tout ou partie des données n'est pas connue initialement et est révélée dynamiquement au cours de l'exécution des tournées. Cependant, à la di érence des problèmes dynamiques et déterministes, des informations stochastiques exploitables sont disponibles et permettent de prévoir les changements. Notre accent étant mis sur le développement de composants logiciels qui peuvent être utilisés pour une large gamme d'applications, nous avons choisi de développer un framework (jMSA) orienté évènements basé sur l'approche multiples scénarios MSA (Multiple Scenario Approach) proposé parVan Hentenryck and Bent (2006). Dans ce chapitre, nous présentons le framework jMSA, son implémentation, puis nous illustrons la validité de cette approche en abordant le problème de tournées dynamiques avec demandes stochastiques (D-VRPSD).G.3.1 Multiple Scenario ApproachMSA est une méthode de réoptimisation continue qui capture l'incertain en générant des scénarios ensuite utilisés pour prendre les décisions. La gure G.5 illustre la génération d'un scénario. En ne considérant que les clients connus actuellement (G.5a.) la tournée optimale a-priori s'éloigne d'une région où des clients sont susceptibles d'apparaître en début de matinée (zone verte). L'échantillonnage (G.5b.) génère des clients ctifs dans cette zone et permet d'orienter l'optimisation vers une tournée qui visite en premier cette région (G.5c.).

 La gure G.6 présente une vue d'ensemble du framework proposé. Le composant central est MSA-Procedure qui contient la logique générale de la méthode, et dont les paramètres sont dé nis dans GlobalParameters. Notre implémentation repose sur une le d'évènements EventQueue. La procédure principale extrait le premier évènement de la le et sélectionne le handler correspondant dans le EventHandlerManager. Le handler contient la logique nécessaire au traitement de l'évènement à un niveau indépendant du problème considéré. A n d'assurer la généricité du framework, la logique spéci que à un problème est déléguée aux implémentations des di érents composants, lesquels sont gérés par le ComponentManager. Dans cet exemple, la logique relative à la génération d'un scenario est dé nie par la classe concrète DVRPScenarioGenerator, qui implémente l'interface Scenario Generator. En n, un système de callbacks permet à l'utilisateur d'interagir avec la méthode sans devoir modi er le code du framework, via le CallbackManager et des implémentations de l'interface Callback.

 La di érence fondamentale entre le VRP classique et le VRP avec demandes stochastiques (VRPSD) est que dans ce dernier les demandes des clients sont modélisées par des variables aléatoires. Le caractère aléatoire du VRPSD implique que la réalisation de la demande des clients peut dépasser la capacité restante du véhicule, conduisant à l'échec de la tournée. Il est important de souligner que, dans ce contexte, tous les clients sont connus à l'avance et la seule information révélée dynamique est la réalisation de la demande des clients. Le VRPSD dynamique (D-VRPSD) est une extension du VRPSD dans laquelle il est possible de rediriger les véhicules librement suivant la réalisation des demandes.Des résultats préliminaires ont été présentées dans deux conférences :-Pillac, V., Guéret, C., and Medaglia, A. L. (2011) A dynamic approach for the vehicle routing problem with stochastic demands In ROADEF 2011, St Etienne, France.-Pillac, V., Guéret, C., and Medaglia, A. L. (2010) Solving the vehicle routing problem with stochastic demands with a multiple scenario approach In ALIO-INFORMS 2010, Buenos Aires (Argentina).G.4 Application au problème de tournées de techniciensLes deux articles présentées dans ce chapitre sont motivés par un problème d'optimisation réel présenté par un partenaire industriel. Cette société fournit des solutions logicielles à destination d'organisations gèrant une équipe de techniciens pour servir un ensemble de requêtes distribuées géographiquement. Ces requêtes peuvent être soit statiques soit dynamiques. Les requêtes statiques sont connues à l'avance et correspondent aux rendez-vous avec des clients ou des opérations de maintenance préventive. Les demandes dynamiques apparaissent dynamiquement tout au long de la journée et sont, par exemple, les situations d'urgence ou des opérations de maintenance corrective. Les requêtes peuvent nécessiter un technicien avec des compétences di érentes, un certain ensemble d'outils, et un certain nombre de pièces de rechange. En outre, les techniciens commencent et terminent généralement leur journée à leur domicile, et peuvent visiter un dépôt central pour récupérer des outils et des pièces de rechange. En n, les objectifs comprennent la minimisation de la distance parcourue, la minimisation du temps de travail, l'équilibrage de la charge de travail entre les techniciens, et la minimisation des violations de contraintes. A partir de cette application pratique, nous avons introduit un nouveau problème d'optimisation, à savoir, le problème de plani cation de tournées de technicien (TRSP -Technician Routing and Scheduling Problem) qui considère une équipe de techniciens K qui sert un ensemble de requêtes R. Le TRSP peut être vu comme une extension du problème de tournées de véhicules avec fenêtres de temps (VRPTW), où les techniciens jouent le rôle de véhicules et les requêtes sont faites par les clients. Comme illustré par la gure G.8, dans le TRSP, chaque technicien dispose d'un ensemble de compétences, d'outils et de pièces de rechange, tandis que les requêtes nécessitent un sous-ensemble de chaque. Le problème est alors de concevoir un ensemble de tournées tels que chaque requête soit visitée dans sa fenêtre de temps, par un technicien ayant les compétences, outils, et pièces de rechange requises. Un trait distinctif de ce problème est qu'il introduit plusieurs contraintes de compatibilité entre les techniciens et les demandes. Si les compétences sont des attributs intrinsèques, les techniciens peuvent disposer de di érents outils et pièces de rechange sur l'horizon de plani cation. Les techniciens commencent leur tournée à leur domicile, avec un ensemble d'outils (ressources renouvelables) et de pièces de rechange (consommées une fois que le technicien sert une requête) qui leur permettent de servir une première série de requêtes. Les techniciens ont alors l'opportunité de renouveler leurs outils et pièces de rechange dans un dépôt central à tout moment pour servir plus de requêtes.Le TRSP se pose naturellement dans une large gamme d'applications, avec entre autres les télécommunications, les services publics, et les opérations de maintenance. Cependant ce problème n'a également à noter que les temps de calcul pour la post-optimisation (SC) sont nettement supérieurs à ceux observés pour le VRPTW, ce qui peut être attribué à des contraintes additionnelles dans le problème de recouvrement.

T G. 7 -

 7 Résultats expérimentaux pour 56 instances générées aléatoirement. Référence de l'article présenté dans ce chapitre : -Pillac, V., Guéret, C., and Medaglia, A. L. (2011) A parallel matheuristic for the technician routing and scheduling problem Optimization Letters, Accepted manuscript, doi :10.1007/s11590-012-0567-4. Des résultats préliminaires de ce travail ont été présentés à la conférence MIC 2011 : -Pillac, V., Guéret, C., and Medaglia, A. L. (2011) On the technician routing and scheduling problem In Di Gaspero, L., Schaerf, A., and Stützle, T., editors, Proceedings of the 9th Metaheuristics Conference (MIC 2011), pages 675-678. Università degli Studi di Udine.

G. 5

 5 . CONCLUSIONS Le tableau G.8 présente une comparaison de ces trois méthodes. Il apparaît que pALNS domine clairement les deux autres approches tant en termes d'écart avec la solution a-posteriori, qu'en termes de nombre de requêtes rejetées. Il est à noter cependant que les résultats de MPA sont à un stade préliminaire, et donc perfectibles. Référence de l'article présenté dans ce chapitre : -Pillac, V., Guéret, C., and Medaglia, A. L. (2011) On the dynamic technician routing and scheduling problem Technical report 12/5/AUTO. Des travaux préliminaires ont été présentés aux conférences suivantes : -Pillac, V., Guéret, C., and Medaglia, A. L. (2012) A Multiple Plan Approach for the Dynamic Technician Routing and Scheduling Problem In 25th European Conference on Operational Research (EURO 2012), Vilnius, Lithuania. -Pillac, V., Guéret, C., and Medaglia, A. L. (2012) On the dynamic technician routing and scheduling problem In Proceedings of the 5th International Workshop on Freight Transportation and Logistics (ODYSSEUS 2012), Mykonos, Greece.

 Algorithm 2.1 Adaptive Large Neighborhood Search (ALNS) algorithm Input: Π 0 initial solution, z evaluation function, Θ -/Θ + set of destroy/repair operators, I number of iterations Output: Π * the best solution found 1: Π * ← Π 0

		Initialize best solution
	2: Π ← Π 0	Initialize current solution
	3: for I iterations do	
	4:	

Table 2

 2

.1: Comparison of gap to the best known solutions and running times for di erent levels of parallelization.

Table 2 .

 2

3: Comparison of approaches for the

Lackner (2004)

instances.

Table 2 .

 2

4: Evolution of the distance to reference solution and gap to a-posteriori solution for di erent degrees of dynamism and values of γ

Table 2 .

 2 5 presents the detail parameter setting used in the pALNS algorithm. The number of parallel iterations and the maximum size of the pool where selected after running experiments with values I p ∈ {10, 50, 100, 500, 1000} and N ∈ {1,

 The remaining parameters were directly derived from the work byPisinger and Ropke (2007).

	Parameter	Value Description
	K	8 Number of threads
	I p	50 (100) Number of parallel iterations
	N	40 (10) Maximum promising solution pool size
	φ	0.10 Penalization for unserved customers
	ξmin	0.10 Minimum proportion of customers to be removed
	ξmax	0.40 Maximum proportion of customers to be removed
	w	0.05 Reference objective degradation
	p	0.5 Initial probability of accepting a degrading solution
	α	0.002 Fraction of the initial temperature to be reached at the end
	ρ	0.40 Reaction factor
	σ1	1.00 Score for new best solution
	σ2	0.25 Score for improving solution
	σ3	0.40 Score for non-improving accepted solution
	σ4	0.00 Score for rejected solution
	l	100 Operator probability (w

θ) update frequency

Table 2 .

 2

5: Detailed parameter setting for the pALNS algorithm for 25,000 iterations, values in parenthesis indicate adjusted values for 5,000 iterations.

Table 3 .

 3 1: Taxonomy of vehicle routing problems by information evolution and quality.A common example is the VRP with Stochastic Demands (VRPSD), in which customer demands are uncertain. We refer the interested reader to the surveys byCordeau et al. (2007),Baldacci et al. (2007),

Problem layer Kernel MSA Procedure

	jMSA framework						
			Event Queue					Global Parameters
			Event Handler Manager			Component Manager		Scenario Pool	Callback Manager
	Generate Handler	Optimize handler	Decision Handler	Scenario Generator	Scenario Optimizer	Decision	Scenario	Callback
					DVRP Scenario Generator	VRP Scenario Optimizer	Consensus	VRP Scenario
	Legend:	Core component	Interface	Component	Inheritance	Association

Table 3 .

 3

2: Comparison of average value of information, bold values indicate the best performing algorithm for a subset of instances.

Table 3

 3

.2 presents results for the 30 benchmark instances, each column representing 500 runs (100 runs for each of the 5 instances with the same size and capacity). MSA dominates the algorithm proposed by

Secomandi (2001) (1s_n2_r)

, and outperforms the best performing algorithms reported by

Novoa and Storer (2009) (1s_stostat_r, 2s_stostat_r)

for instances with 30 and 60 customers, and a vehicle capacity of 137 and 175. Additionally, MSA shows better overall results with an average

Table 3 .

 3 3 highlights the robustness of MSA which shows consistent performance when demand

			Instance set (size,capacity)			
	Algorithm (30,137) (30,87) (40,183) (40,116) (60,274) (60,175) Average
	Uniform	0.9%	3.9%	3.5%	6.3%	2.9%	2.0%	3.3%
	Normal	0.7%	3.6%	3.4%	6.2%	2.2%	1.9%	3.0%

distributions are changed from uniform (discrete) to normal (continuous). Furthermore, the results are as expected slightly better, with a reduction of 0.3% in the overall average value of information, which is due to the smaller variance. It is important to stress that to conduct this experiment in jMSA the

Table 3 .

 3 3: Comparison of average VI for discrete uniform and normal distributions.

 Algorithm 4.1 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm Input: P, initial solutions; z, evaluation function; Θ -/Θ + , set of destroy/repair operators; N , maximum size of the solution pool; Km number of subprocesses; I m , number of master iterations; I p , number of iterations performed in parallel. Output: Π * , the best solution found; Ω, the pool of tours for the post-optimization.

	11:	Π p ← Π	Π is accepted as current solution
	12:	end if	
	13:		
	14:	Π * ← Π	Π is the best solution found so far
	15:	end if	
	16:		
	18:	end for	
	19:	P ← P ∪ {Π p }	Add Π p to the pool P
	20:	end forall	
	21:		

1: Ω ← ∅ 2: Π * ← arg min Π∈P {z(Π)} 3: for I m iterations do 4: P ← selectSubset (P, K) Select a subset of K solutions 5: parallel forall Π in P do 6: Π p ← Π Current solution for this subprocess 7: for I p iterations do 8: d ← select (Θ -) ; r ← select (Θ +) Select destroy/repair 9: Π ← r (d (Π p)) Destroy and repair current solution 10: if accept (Π , Π p) then if z(Π) < z(Π *) then updateScore (d, r, Π) Update d and r scores 17:

Ω ← Ω ∪ {π} π∈Π Add tours from Π to the set-covering tour pool Ω

 3) from the set covering model by

		Improvement	Gap to BKS/Opt	Best known solutions	Time (s)		
	Group	∆ pALN S	∆ SC	pALNS pALNS+SC	#Opt.	#BKS	pALNS	SC	|Ω|
	C1	37.89%	0.00%	0.00%	0.00%	9/9	-	14.6	0.4	11550
	C2	26.41%	0.02%	0.02%	0.00%	8/8	-	26.5	0.2	3479
	R1	24.28%	0.44%	0.59%	0.14%	10/12	-	13.1	27.2	27303
	R2	32.21%	0.25%	0.76%	0.51%	5/10	1/1	24.5	2.1	14161
	RC1	25.06%	1.21%	1.38%	0.15%	6/8	-	12.6	25.1	25327
	RC2	36.56%	0.43%	0.99%	0.55%	6/8	-	21.3	1.3	11822
	All	30.20%	0.38%	0.62%	0.23%	44/55	1/1	18.6	10.1	16293

t∈Ω x t ≤ 25 to model the 25-vehicle homogeneous eet de ned in the

Solomon (1987)

instances.

Table 4

 4

.2: Computational results for 56 randomly generated TRSP instances.

). The nal current solution is added to the pool of promising solutions (line 17) and a ltering procedure ensures that the pool contains at most N solutions, including the best solution found so far (line 19). The algorithm stops after I m master iterations, which corresponds to I = I m × I p ALNS iterations. Parallel Adaptive Large Neighborhood Search (pALNS) algorithm Input: P, initial solutions; z, evaluation function; Θ -/Θ + , set of destroy/repair operators; N , maximum size of the solution pool; Km number of subprocesses; I m , number of master iterations; I p , number of iterations performed in parallel. Output: Π * , the best solution found 1: Π * ← arg min Π∈P {z(Π)} 2: for I m iterations do

	Algorithm 4.2 3: P ← selectSubset (P, K)	Select a subset of K solutions
	4:	parallel forall Π in P do	
	5:	Π p ← Π	Current solution for this subprocess
	6:	for I p iterations do	
	7:		
	10:	Π p ← Π	Π is accepted as current solution
	11:	end if	
	12:		
	13:	Π * ← Π	Π is the best solution found so far
	14:	end if	
	15:	updateScore (d, r, Π)	Update d and r scores
	16:	end for	
	17:	P ← P ∪ {Π p }	Add Π p to the pool P
	18:	end forall	
	19:		

d ← select (Θ -) ; r ← select (Θ +)

Select destroy/repair 8:

Π ← r (d (Π p))

Destroy and repair current solution 9:

if accept (Π , Π p) then if z(Π) < z(Π *) then

 . By design, jMSA is a exible, parallel, and event-driven Java implementation of the Multiple Scenario Approach (MSA) (Van Hentenryck andBent, 2006), which is an extension of MPA for dynamic and stochastic routing problems. The proposed framework is designed to facilitate and accelerate the development and deployment of MSA-based algorithms embeddable in decision support systems.

	MPA				
	procedure	Event	Handler	Plan
		queue	manager	pool
		Events	Handlers	
	Kernel				
			Components	Plan
	Callback				
	Problem layer	Plan generator	Plan optimizer	Plan updater	…

 Table

						R	
	10	65.7	0.0	152.8	1.5	59.9	0.4
	30	79.5	0.1	160.1	3.2	84.6	0.6
	50	93.0	0.1	150.6	4.6	100.4	1.0
	70	100.3	0.2	153.9	6.3	113.8	1.4
	90	102.8	0.4	154.0	6.0	122.3	1.8
	Avg.	88.3	0.2	154.3	4.4	96.2	1.0

 Table

		2.4	0.1	9.1	1.9	10.5	0.3
	30	5.4	0.1	11.0	4.6	30.5	0.4
	50	10.8	0.3	14.4	5.6	44.1	1.0
	70	11.8	0.2	21.3	8.7	57.5	1.2
	90	17.9	0.4	23.9	8.1	64.1	1.4
	Avg.	9.7	0.2	16.1	5.9	41.3	0.8

 Novoa, C. and Storer, R. (2009). An approximate dynamic programming approach for the vehicle routing problem with stochastic demands. European Journal of Operational Research, 196(2):509-515, doi:10.1016/j.ejor.2008.03.023. Novoa, C. M. (2005). Static and dynamic approaches for solving the vehicle routing problem with stochastic demands. PhD thesis, Lehigh University, Pennsylvania, United States. AAT 3188502.

	Solomon, M. M. (1987). Algorithms for the vehicle-routing and scheduling problems with time window con-
	straints. Operations Research, 35(2):254-265.		
	LUNAM -EMN -Uniandes	126/192	Pillac V. -Ph D. Dissertation

Table A .

 A 1 illustrates the concept of forward time slack for a tour with 4 nodes, in which traveling

 IInitialization and ILocalSearch. The rst de nes algorithms that will design a solution (ISolution) from scratch, while the second take an initial solution as input and attempt to improve it. We implemented two initialization procedure: a Clarke and Wright (CW) savings algorithm (ClarkeAndWrightHeuristic), and a Versatile Local Search (VLS) algorithm that combines GRASP, ELS, and ILS (VersatileLocalSearch). The main local search component is the LocalSearchBase class, which contains a reference to both a stopping and acceptance criterion (IStoppingCriterion and IAcceptanceCriterion). The library contains two local search algorithms: Variable Neighborhood Search (VNS -VariableNeighborhoodSearch), and Adaptive Large Neighborhood Search (ALNS -AdaptiveLargeNeighborhoodSearch). The library also provide a generic de nition of a neighborhood (INeighborhood) that can either be used to nd a move (IMove) that will lead to a neighbor of a solution, or as a local search procedure to nd the local optima starting with a given solution. In addition, VroomHeuristics contains a generic de nition of a component handler (IComponentHandler) that can be used to handle components such as neighborhoods in VNS or destroy/repair operators in ALNS. Finally, constraints are de ned and handled separately with the interface IConstraint and the class ConstraintHandler. All constraint implementations should be able to check the feasibility of both a solution and a move relative to a solution. Outline of the Clarke and Wright savings heuristic Input: V a set of vertices, A a set of arcs, 0 the central depot Output: Π a feasible solution 1: for all i ∈ V do

	C A library of heuristics for vehicle routing problems VroomHeuristics is a library of common heuristics and metaheuristics. Although they were implemented to tackle vehicle routing problems, the design of the algorithms in this library is exible enough to solve other optimization problems. Figure C.1 presents an overview of the library. There are two top-level interfaces that de ne two types of heuristics: Algorithm C.1 Initialize routes 2:
	LUNAM -EMN -Uniandes	141/192	Pillac V. -Ph D. Dissertation

Table C .

 C 1: Average gap to the optimal solution (in %). The Versatile Local Search algorithm. Input: I an instance, initialization a randomized constructive heuristics, localSearch a local search procedure, perturbation a randomized perturbation procedure., z an evaluation function. Output: Π * the best solution found 1: for i = 1 to n s do This section describes an approach based on the work of[START_REF] Mendoza | A space biased-sampling approach for the vehicle routing problem with stochastic demands[END_REF], namelyMultiple Space Sampling with Heuristic Concentration (MSSHC), which generates feasible routes using randomized constructive heuristics, and then builds a solution by solving a set-covering problem.

		Size	SEQ SEQ-Rev	FRE-R	FRE-NR	EFF-R	EFF-NR	RAN-R
		5	2	0	1	0	0	0	0
		8	4	1	1	1	1	1	1
		20	18	58	22	14	20	15	19
		40	142	575	232	273	190	120	212
		60	485	2385	861	603	656	430	812
			Table C.2: Average CPU running times (ms).
		Size	SEQ-R SEQ-Rev	FRE-R	FRE-NR	EFF-R	EFF-NR	RAN-R
		5	64.6	140.7	92.2	67.8	61.7	37.9	56.3
		8	4.5	0.7	0.9	0.7	0.6	0.5	1.3
		20	0.8	0.8	0.8	0.8	0.8	0.8	0.8
		40	64.6	140.7	92.2	67.8	61.7	37.9	56.3
		60	135.8	674.5	362.8	157.6	187.5	158.3	193.6
			Table C.3: Standard deviation of CPU running times (ms).
	C.5 Multi-space sampling with heuristic concentration
	Algorithm C.3 GRASP loop
	2:	Π ← initialization(I)				Build a new solution
	3:	Π ← localSearch(S)					Apply a local search
	4: 5: Algorithm C.4 The MSSHC algorithm for j = 1 to n i do Π ← Π				ILS loop Starting solution for the ELS
	6: Input: H a set of constructive heuristics, I number of iterations for k = 1 to n c do 7: Π ← perturbation(Π) Output: Π * the best solution that can be built from the generated routes Randomly perturb the solution ELS loop
	8: 1: P ← ∅	Π ← localSearch(Π)			Apply a local search Initialize route pool
	9: 2: I H ← I |H| if z(Π) < z(Π) then				Number of samples per heuristic
	10: 3: for all H ∈ H do Π ← Π				Store the best solution produced by ELS
	11: 4:	end if for i = 1 to I H do					
	12: 5:	end for π ← generateGiantTour (H)			Generate a giant tour
	13: 6:	if z(Π) < z(Π) then P ← split (π)		Split the giant tour into multiple feasible routes
	14: 7:	Π ← Π P ← P ∪ P			Update the current solution with the best ELS solution Add the routes to the pool
	15: 8:	end if end for					
	16: 9: end for end for					
	17: 10: Π * ← solveSC (P) if z(Π) < z(Π *) then					Solve the set covering problem
	18: 11: return Π * Π * ← Π					Update the overall best solution
	19:	end if						
	20: end for						
	21: return Π *						

Algorithm C.4 presents an overview of the method. For each constructive heuristic, the algorithm generates a number of giant TSP-like tours (line 5), that are then split into a set of feasible routes (line 6). Finally, a set-covering model is solved to select a subset of routes conforming a solution of minimal cost (line 10).

 |S|, |T |, |P| number of skills, tools, and spare parts types;Release dates For the dynamic instances we generate release date for a proportion δ of the requests. The release date for request r is selected randomly in the interval [0, b r -1.5c 0r], where b r is the time window end for request r, and c 0r is the travel time between the central depot and r. The interval upper bound is an estimate of the latest feasible time for a technician to start traveling to the request. Figure D.1 illustrates the le format used which is an extension of the original Solomon's format.The rst line contains the instance name; then follows a description of the instance with the number of technicians, skills, tools and spare part types; and the rest of the le contains a list of nodes. The rst corresponds to the main depot, while the |K| following are a description of each technician with its home depot, set of skills, tools and available spare parts (from node 1 to 25 in this example). Finally, the remaining lines describe the instance requests (from node 26 to 125 in this example). Filename follows the pattern |R|-name_|S|-|T |-|P| where name is the name of the original instance.

	Dt S Dt T Dt P Dt P C Dr S Dr T D.5 File format distribution of the number of skills per technician; distribution of the number of tools available to each technician; distribution of the number of di erent spare part types available to each technician; distribution of the number of spare parts of any available type available to each technician; distribution of the number of skills required by each request; distribution of the number of tools required by each request; 100-C101_5-5-5 INFO CREW COUNT SKILLS TOOLS SPARE PARTS 25 5 5 5 DEPOT TECHNICIANS AND REQUESTS ID X Y TWS TWE Serv SKILLS TOOLS SPARE PARTS 0 40 50 0 1236 0 [] [] [] 1 51 19 0 1236 0 [2,3,4] [3,4] [0,0,2,5,0] 2 16 73 0 1236 0 [0,1,2] [2] [0,3,2,3,5] ... 26 45 68 912 967 90 [4] [1] [0,1,0,1,0] 27 45 70 825 870 90 [1] [2] [0,0,0,0,0] ... Dr D.5. FILE FORMAT 125 60 85 561 622 90 [1] [] [0,0,0,1,0]

P distribution of the number of di erent spare part types required by each request;

Dr P C

distribution of the number of spare parts of any required type required by each request.

We then numerate skills, tools and spare parts in a natural order (e.g., S = {0, 1, ..., |S| -1}).

Table D

 D

	E Best known solutions for the TRSP
	Parameter Value	
	|S|	5	
	|T |	5	
	|P|	5	
	Dt S	U int (2, 4)	
	Dt T	U int (0, 5)	
	Dt P	U int (2, 5)	
	Dt P C	U int (2, 5)	
	Dr S	1	
	Dr T	U int (0, 2)	
	Dr P	U int (0, 2)	
	Dr P C	1	
	Table D.1: Parameter setting for the instance generation
			.1
	Bibliography		
	Solomon, M. M. (1987). Algorithms for the vehicle-routing and scheduling problems with time window con-
	straints. Operations Research, 35(2):254-265.	
	LUNAM -EMN -Uniandes	160/192	Pillac V. -Ph D. Dissertation

This appendix presents the value of the best known solutions for the TRSP instances introduced in this thesis.

E.1 Summary of best known solutions

Tables E.1, E.2, and E.3 present a summary of the best known solutions for instances from group C, R, and RC respectively. Note that the objective function only considers the minimization of the duration, the distance is reported for reference only.

The interested reader is referred to the webpage http://hdl.handle.net/1992/1152 for the detailed solutions.

 quatre catégories de problèmes identi és dans le tableau G.1.

				Qualité de l'information
				Données déterministes	Données stochastiques
			Données connues à	Statique et	Statique et
	Évolution de	l'avance	déterministe	stochastique
	l'information	Données	Dynamique et	Dynamique et
			changeantes	déterministe	stochastique
	T	G.1 -Classi cation des problèmes de tournées de véhicules suivant l'évolution et la qualité de
	l'information.		
		Le but de cette thèse est d'étudier l'état de l'art des approches dédiées aux tournées dynamiques ;
		de concevoir des algorithmes innovants pour cette catégorie de problèmes ; d'implémenter des com-
		posant logiciels génériques à la fois réutilisables, extensibles, et applicables à un grand nombre de
		variantes ; d'appliquer les algorithmes proposés à un cas d'étude réel ; et, nalement, de rendre pu-
		blique l'ensemble des contributions sous forme de librairies open-source pour accélérer les transferts
		de technologies entre l'académie et l'industrie.
		G.1 État de l'art sur les tournées dynamiques

La gure G.1 illustre le routage dynamique de deux véhicules. Initialement (G.1a.), deux tournées sont dé nies pour servir l'ensemble des clients actuellement connus : (A, B, C) et (D, E). À l'instant t 1 et alors que les véhicules ont commencé leurs tournées (G.1b.), deux nouveaux client X et Y apparaissent. A ce stade, deux décisions doivent être prises : la première consiste a décider si les nouveaux clients doivent être acceptés ou rejetés, la seconde a pour but d'insérer les clients acceptés dans les tournées. Par exemple, le client X est proche de la seconde tournée et peut donc être accepté et inséré entre D et E. En revanche, le client Y est éloigné des tournées et de la position actuelle des véhicules, il est donc potentiellement impossible de le servir, ou son service impliquerait un coût trop important (détour). En conséquence, la décision est prise de le rejeter. En n, les tournées nales sont (A, B, C) et (D, X, E) (G.1c.). La qualité du routage dynamique des véhicules peut se mesurer en comparant les tournées nales avec les tournées qui auraient pu être conçues en supposant connu l'ensemble des clients acceptés. Cette solution, dite statique, est obtenue en résolvant le problème de tournées dé ni par les clients A, B, C, D, E, et X.

Dans ce premier chapitre nous présentons une étude détaillée de la littérature traitant des problèmes de tournées de véhicules dynamiques. Dans un premier temps nous dé nissons une classication des problèmes de tournées suivant deux axes : l'évolution et la qualité de l'information, ce qui conduit aux

 dé nissent le degré de dynamisme (degree of dynamism) δ comme le ratio entre le nombre de clients dynamiques n d et le nombre total de clients n tot : Degré de dynamisme e ectif Remarquant que la date à laquelle les nouveaux clients apparaissent est également important,Larsen (2001) propose le degré de dynamisme e ectif (e ective degree of dy-namism) δ e . Soit T la longueur de l'horizon de plani cation, R l'ensemble des clients, et t i l'heure d'apparition du client i ∈ R. En supposant que les clients connus à l'avance ont une heure d'apparition égale à 0, δ e peut s'exprimer de la façon suivante : Dynamisme et urgenceLarsen (2001) a également étendu le degré e ectif de dynamisme à des problèmes avec fenêtres de temps a n de re éter le niveau d'urgence des demandes. Il dé nit le temps de réaction comme la di érence entre la date d'apparition t i et la n de la fenêtre de temps correspondante l i , soulignant que les temps de réaction plus longs introduisent une plus grande exibilité pour insérer la demande dans les tournées actuelles. Ainsi, le degré de dynamisme est étendue comme suit :

		δ e =	1 n tot i∈R	t i T	(G.2)
	δ =	n d n tot		(G.1)

 Réoptimisation continue Les approches dites de réoptimisation continue sont basées sur un algorithme d'optimisation qui s'execute tout au long de la journée. Comme l'illustre la Figure G.1.2, la boucle d'optimisation stocke ses résultats dans une mémoire adaptative. En parallèle, une seconde boucle utilise les données de la mémoire adaptative pour prendre des décisions, par exemple pour décider si un nouveau client peut être servi ou non, ou pour sélectionner le prochain client à a ecter à Les approches pour cette classe de problèmes peuvent être divisées en deux catégories : celles basées sur l'échantillonnage et celles basées sur la modélisation stochastique. Comme leur nom l'indique, les stratégies d'échantillonage incorporent les informations stochastiques en générant des scénarios basés sur une réalisation possible des variables aléatoires. Chaque scénario est ensuite optimisé par la résolution du problème statique et déterministe qu'il dé nit. Les ap-

				Start
				Optimize	Initial solution S 0
				Wait for update
	proches basées sur la modélisation stochastique intègrent quant à elles les informations stochastiques
	Optimize analytiquement. L'avantage de l'échantillonnage est sa relative simplicité et sa exibilité, tandis que Updated solution S t+1
	son inconvénient est qu'il peut requérir de générer un grand nombre de scénarios pour re éter dèle-
	End of day? ment la réalité. Alternativement, les stratégies de modélisation stochastique saisissent formellement la NO
	nature stochastique du problème, mais leur formulation et les algorithmes d'optimisation sous-jacents
	sont plus complexes.	YES End
	F Référence de l'article présenté dans ce chapitre : G.2 -Approches de réoptimisation périodique
	Start -Pillac, V., Gendreau, M., Guéret, C., and Medaglia, A. L. (2011) A review of dynamic vehicle
	routing problems European Journal of Operational Research, Accepted manuscript,
	Optimize doi :10.1016/j.ejor.2012.08.015.	Initial solution S 0
	Des versions précédentes de cet article ont été publiées comme rapports techniques avec réfé-
	rences :	Optimization loop	Decision loop
			Update		Wait for update
			Optimize	Adaptive memory	Make decision	Updated solution S t+1
		NO	End of day?		of day? End	NO
			YES		YES
			End		End
			F	G.3 -Approches de réoptimisation continue
	Réoptimisation périodique La gure G.1.2 présente un aperçu des approches réoptimisation pé-
	riodique : l'algorithme commence au début de la journée par première optimisation produisant une un véhicule. L'avantage de ces approches est que l'utilisation de la puissance de calcul est maximisée,
	solution initiale S 0 . Ensuite, la procédure attend soit jusqu'au prochain changement dans les données au prix d'une implémentation plus complexe.
	disponibles, soit pour une période de temps déterminée, puis réalise une nouvelle optimisation qui
	conduit à mise à jour de la solution S t+1 . L'avantage des approches de réoptimisation périodiques est G.1.3 Approches pour les problèmes dynamiques et stochastiques
	qu'elles peuvent être basées sur des algorithmes développés pour les problèmes de tournées statiques.

utilisent le degré e ectif de dynamisme pour classer les D-VRP entre problèmes faiblement, moyennement et fortement dynamiques, avec des valeurs de δ e inférieures à 0.3, comprise entre 0.3 et 0.8, et supérieures à 0.8 respectivement.

G.1.2 Approches pour les problèmes dynamiques et déterministes

Cette section présente les approches qui ont été appliquées avec succès au routage dynamique, en l'absence d'information stochastique. Dans ce contexte, des données critiques sont révélées au l du temps, ce qui signi e que l'instance complète n'est connue qu'à la n de l'horizon de plani cation. En conséquence, les méthodes exactes ne fournissent une solution optimale que pour l'état actuel, mais ne garantissent pas que la solution reste optimale lorsque de nouvelles données deviennent disponibles.

Par conséquent, la majorité des approches dynamiques s'appuient sur des heuristiques qui permettent de calculer rapidement une solution à l'état actuel du problème. Les approches pour les problèmes dynamiques et déterministes peuvent être divisés en deux catégories : celles basées sur une réoptimisation périodique, et celles basées sur une réoptimisation continue des tournées.

Leur principal inconvénient est que l'optimisation doit être e ectuée avant la mise à jour de la solution, ce qui peut augmenter les délais pour le preneur de décision, tandis que la puissance de calcul est inutilisée pendant les temps d'attente.

Les problèmes de tournées dynamiques et stochastiques peuvent être vus comme une extension de leurs homologues déterministes, dans lesquels les données dynamiquement révélées peuvent être modelées comme un processus stochastique.

-Pillac, V., Gendreau, M., Guéret, C., and Medaglia, A. L. (

2011

) A review of dynamic vehicle routing problems Technical report, CIRRELT. CIRRELT-2011-62. -Pillac, V., Guéret, C., and Medaglia, A. L. (2010) Dynamic Vehicle Routing : State of the Art and Prospects Technical report, École des Mines de Nantes, France. Report 10/4/AUTO.

 Adaptive Large Neighborhood Search (ALNS) Input: Π 0 initial solution, z evaluation function, Θ -/Θ + set of destroy/repair operators, I number of iterations Output: Π * the best solution found 1: Π * ← Π 0 Initialize best solution 2: Π ← Π 0 Initialize current solution 3: for I iterations do

	4:	d ← select (Θ -) ; r ← select (Θ +)	Select destroy/repair
	5:	Π ← r (d (Π))	Generate a neighbor
	6:	if accept (Π , Π) then	Π is accepted as current solution
	7:	Π ← Π	Update current solution
	8:	end if	
	9:	if z(Π) < z(Π *) then	An Amélioration has been found
	10:	Π * ← Π	Update best solution
	11:	end if	
	12:		
		La méthode de réoptimisation proposée est basée sur l'algorithme de recherche adaptative à voisi-
		nage large ALNS (Adaptive Large Neighborhood Search) proposée par Pisinger and Ropke (2007), lui
		même une extension de la recherche à voisinages larges LNS (Large Neighborhood Search) introduite
		par Shaw (1998). LNS consiste a successivement détruire puis réparer une solution courante. ALNS ra-
		joute une couche adaptive qui sélectionne aléatoirement les opérateurs de destruction et de réparation
		en fonction de leur performance antérieure.	
		L'algorithme G.1 présente l'approche ALNS. ALNS part d'une solution initiale Π 0 , puis, pour I ité-

rations l'algorithme choisit un opérateur de destruction et un opérateur de réparation (ligne 4) avec une roulette qui re ète leur performance passée. Les opérateurs de destruction enlèvent un sous-ensemble de clients de la solution courante, alors que les opérateurs de réparation les réinsèrent en utilisant Algorithm G.1

 Comparaison de l'écart avec les meilleurs et temps de calcul pour di érents niveaux de parallélisation. La gure G.4 illustre l'approche de réoptimisation proposée : l'algorithme commence par produire une solution initiale S 0 en utilisant une heuristique constructive couplé avec l'algorithme pALNS décrit dans la section précédente. Ensuite, chaque fois qu'un nouveau client apparaît, il xe la partie en cours d'exécution des tournées, et réexécute pALNS pour un nombre limité d'itérations pour produire une solution mise à jour S t . Si pALNS est capable d'insérer la demande de nouveaux clients, le client est accepté et S t devient la nouvelle solution courante, sinon le client est rejeté et S t est maintenue comme solution actuelle.Le tableau G.3 présente l'écart moyen entre la solution produite par la méthode de réoptimisation Approche de réoptimisation proposée proposée et la solution optimale a-posteriori. Par ailleurs, le tableau G.4 compare l'approche proposée avec la méthode proposée parLackner (2004) et celle présentée parHong (2012). Ces résultats expérimentaux montrent que l'approche proposée produit des résultats proches de la solution optimale a-posteriori et meilleurs que ceux rapportés par les études précédentes.

	Parallèle -Nombre de Threads 3 4 5 0.69% 0.54% 0.70% 0.52% 6 0.89% 0.70% 0.86% 0.74% 17.60 14.70 14.69 13.39 3.17 2.72 2.57 2.50 Updated solution S t+1 Initial solution S 0 Select new current 2 0.55% 0.76% 22.07 4.06 solution Candidate solution S t ' RC1 1 0.72% 0.88% 37.32 6.33 Wait until a new Seq. 0.74% 0.87% 36.58 6.27 pALNS End of day? NO YES pALNS End NO customer appears Accept? YES F G.4 -δ Ecart Ecart (dev. st.) Temps (s) Temps (s, dev. st.) T R1 C1 R2 C2 RC2 10 2.05% 2.89% 3.06% 1.70% 1.66% 1.61% 30 4.67% 5.83% 5.83% 4.34% 1.74% 4.70% 50 6.41% 9.28% 9.03% 8.15% 2.82% 5.38% 70 8.29% 11.18% 10.24% 10.17% 5.41% 8.60% 90 9.33% 12.49% 11.84% 11.83% 6.51% 12.33% G.2 -Start T G.3 -Valeur de l'information moyenne pour les instances Lackner (2004)	7 0.66% 0.82% 12.37 2.27 Moy. 2.14% 4.54% 6.93% 9.03% 10.71%	8 0.48% 0.66% 11.32 2.15

 Comparaison des approches pour les instancesLackner (2004).

			pALNS		Hong (2012)		Lackner (2004)	
	Groupe	δ	Dist.	Rej.	Dist.	Rej.	Dist.	Rej.
	R1		1197.4	0.25	1257.1 (4.99%)	0.17	1278.1 (6.74%)	0.47
			1212.9	0.80	1286.6 (6.08%)	0.58	1337.9 (10.30%)	0.72
			1225.0	1.25	1295.8 (5.78%)	0.67	1330.0 (8.57%)	0.78
			1237.3	1.71	1331.3 (7.60%)	1.75	1336.1 (7.98%)	0.94
			1230.1	2.55	1335.9 (8.60%)	2.33	1278.3 (3.92%)	0.75
	C1		850.6	0.11	895.8 (5.31%)	0.22	996.4 (17.14%)	0.00
			874.9	0.11	962.1 (9.97%)	0.33	1066.9 (21.95%)	0.00
			903.4	0.11	1001.2 (10.82%)	0.22	1236.1 (36.82%)	0.00
			919.1	0.11	1031.7 (12.25%)	0.22	1261.3 (37.24%)	0.00
			929.9	0.11	1039.8 (11.81%)	0.22	1479.6 (59.11%)	0.00
	RC1		1389.4	0.04	1436.2 (3.37%)	1.13	1426.9 (2.70%)	0.46
			1421.5	0.28	1492.2 (4.98%)	1.13	1439.7 (1.28%)	0.42
			1463.4	0.23	1514.7 (3.50%)	1.38	1448.1 (-1.05%)	0.46
			1470.1	0.58	1511.3 (2.80%)	1.88	1488.4 (1.25%)	0.58
			1495.5	0.51	1513.9 (1.23%)	2.00	1475.2 (-1.36%)	0.42
	R2		893.0	0.00	950.0 (6.39%)	0.09	1052.9 (17.90%)	0.03
			915.6	0.00	985.5 (7.63%)	0.00	1085.4 (18.54%)	0.15
			948.6	0.00	1016.5 (7.17%)	0.00	1138.8 (20.05%)	0.21
			967.7	0.00	1032.0 (6.65%)	0.09	1116.9 (15.42%)	0.30
			981.7	0.00	1047.8 (6.73%)	0.09	1193.3 (21.55%)	0.52
	C2		597.2	0.00	594.7 (-0.42%)	0.00	629.1 (5.35%)	0.00
			597.6	0.00	651.4 (9.01%)	0.00	632.3 (5.81%)	0.04
			604.0	0.00	605.0 (0.17%)	0.00	689.3 (14.12%)	0.13
			619.2	0.00	636.5 (2.79%)	0.00	743.8 (20.12%)	0.21
			625.7	0.00	636.8 (1.78%)	0.00	792.5 (26.66%)	0.29
	RC2		1024.4	0.00	1103.3 (7.70%)	0.00	1220.9 (19.18%)	0.00
			1053.1	0.00	1166.0 (10.73%)	0.25	1244.9 (18.21%)	0.04
			1060.5	0.00	1190.5 (12.26%)	0.13	1244.9 (17.38%)	0.00
			1091.4	0.00	1239.5 (13.57%)	0.00	1269.3 (16.30%)	0.00
			1130.3	0.00	1257.2 (11.23%)	0.13	1346.8 (19.16%)	0.13
	Moyenne			0.29	(+6.75%)	0.50	(+15.61%)	0.27
		T	G.4 -					

 2.1 ; une approche par plans multiples MPA (Multiple Plan Approach), qui est une réduction au cas déterministe de MSA, implémentée dans le framework jMSA ; et une heuristique simple (regret-3) permettant de modéliser le comportement d'un preneur de décision humain. Ecart moyen avec la solution a-posteriori et nombre de requêtes rejetées (Rej.) pour les instances du D-TRSP en minimisant la distance totale.

			pALNS		MPA		regret-3
		δ Ecart (%)	Rej.	Ecart (%)	Rej.	Ecart (%)	Rej.
		10	2.4	0.1	9.1	1.9	10.5	0.3
		30	5.4	0.1	11.0	4.6	30.5	0.4
		50	10.8	0.3	14.4	5.6	44.1	1.0
		70	11.8	0.2	21.3	8.7	57.5	1.2
		90	17.9	0.4	23.9	8.1	64.1	1.4
		Moy.	9.7	0.2	16.1	5.9	41.3	0.8
	T	G.8 -					

 Tournées de véhicules dynamiques ; optimisation bi-objectif ; optimisation combinatoire en temps réel ; tournées de techniciens

	Key Words Dynamic vehicle routing ; bi-objective
	optimization ; online combinatorial optimization ;
	optimization framework ; technician routing and
	scheduling ; open source

LUNAM -EMN -Uniandes

Pillac V. -Ph D. Dissertation

The problem of operating a eet of vehicles arises in many contexts, from pickup and delivery of goods to the transportation of patients in hospitals. More speci cally, Vehicle Routing Problems (VRP) deal with the design of a set of minimal-cost vehicle routes that serve the demand for goods or services of a group of geographically spread customers, satisfying operational constraints. From an information perspective, such problems generally include two dimensions: evolution and quality of information(Psaraftis, 1980). Information evolution relates to the fact that the data available to the planner may change during the execution of the routes, for example with the arrival of new customer requests. Information quality re ects possible uncertainty on the available data, for instance, when the demand of a customer is only known as a range estimate of its real demand, or when the geographical distribution of customers can be forecasted. Based on these dimensions,Pillac et al. (2011) classify vehicle routing problems in four categories depending on whether the problem is static/dynamic and deterministic/stochastic. Dynamism in routing can emerge from di erent aspects of the problem. The most common source of dynamism is the arrival of new customers with a demand for goods or services. Other sources of dynamic include dynamically revealed demands for a set of known customers, LUNAM -EMN -Uniandes

Note that we truncate the distances to one decimal, as it is common practice when solving theSolomon (1987) instances with the distance minimization as solely objective.

In addition, it is important to note that 7 optimal solutions were not known at the time of their study, using the same values the average gap for our approach is of 0.16%.

LUNAM -EMN -Uniandes 123/192 Pillac V. -Ph D. Dissertation

Acknowledgements Financial support for this work was provided by the CPER (Contrat de Projet Etat Region) Vallée du Libre; and the Centro de Estudios Interdisciplinarios Básicos y Aplicados en Acknowledgements Financial support for this work was provided by the CPER (Contrat de Projet État Region) Vallée du Libre; and the Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad (CeiBA, Colombia). This support is gratefully acknowledged. The authors would also like to thank Olivier Péton from the École des Mines de Nantes for his insightful comments. Finally, the constructive comments of the Editor-in-Chief, Dr. Andrew B. Whinston, and the review process of DSS led us to an improved paper.

Bibliography

Attanasio, A., Bregman, J., Ghiani, G., and Manni, E. (2007). Real-time eet management at Ecourier Ltd. In Zeimpekis, V., Tarantilis, C. D., Giaglis, G. M., and Minis, I., editors, Dynamic Fleet Management, volume 38 of Operations Research/Computer Science Interfaces, chapter 10, pages 219-238. Springer US. Acknowledgements Financial support for this work was provided by the CPER (Contrat de Projet Etat Region) Vallée du Libre (France); and the Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad (CEIBA, Colombia). This support is gratefully acknowledged. The authors would also like to thank Olivier Péton from the Ecole des Mines de Nantes and the anonymous reviewers for their insightful comments and suggestions. Acknowledgements Financial support for this work was provided by the CPER Vallée du Libre (Contrat de Projet Etat Region, France); and the CEIBA (Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, Colombia). This support is gratefully acknowledged.

Financial support for this work was provided by the CPER (Contrat de Projet Etat Region) Vallée du Libre; and the Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad (CEIBA, Colombia). Vallée du Libre is an open platform aiming to connect research laboratories with the needs of industry via the development of open source software. CEIBA is an excellence research center funded by the Colombian Administrative Department of Science, Technology and Innovation (COL-CIENCIAS) and participating universities and institutions, Universidad de Los Andes being among them. The present dissertation is composed by an introductory chapter, ve research papers, -Ph D. Dissertation 2. http://coin-or.org 3. gforge.inria.fr 5. http://www.

The dynamic TRSP

The technical report presented in this section introduces the dynamic TRSP and proposes two optimization approaches to tackle it. The rst is based on the fast reoptimization framework presented in Chapter 2, and the second is an adaptation of the jMSA framework described in Chapter 3.

The full reference of the paper presented in this section is:

-Pillac, V., Guéret, C., and Medaglia, A. L. (2011) On the dynamic technician routing and scheduling problem Technical report 12/5/AUTO. Preliminary results were presented in two international conferences:

-Pillac, V., Guéret, C., and Medaglia, A. L. (2012

A.3.2 Simultaneous insertion

We consider the insertion of r between m and n and q between i and j in tour π = (π 0 , . . . , m, n,-. . . , i, j, . . . , π l), which would lead to tour π = (π 0 , . . . , m, r, n, . . . , i, q, j, . . . , π l). This case is useful when considering the simultaneous insertion of a request and a visit to the main depot.

A.3.2.1 Total distance insertion cost

Similarly to the simple insertion case, the cost of the insertion is:

In the case in which q is inserted immediately after r (n = q and i = r), the cost of the insertion is:

Working time insertion cost

Arrival time at the last node We rst evaluate the arrival and waiting time at the inserted node r:

Then we evaluate the new arrival time at n:

Next we evaluate the new earliest departure time at i:

Where ∆ n = A n -A n is the change in the arrival time at n. We can then evaluate the arrival time at q:

And the new arrival time at j A j = max{A q , a q } + s q + c qj (A.32)

A.4. PREPROCESSING

A.3.2.3 Feasibility

The feasibility of a simultaneous insertion is similar to the single insertion case, in particular, we ensure that time windows are not violated by making sure that the solution veri es:

A.4 Preprocessing

The algorithms can be speed up by performing some preprocessing on the data. This section details the main procedures used.

A.4.1 Infeasible arcs

During the preprocessing we remove from the graph A the edges (i, j) such that j cannot be visited after i without violating time window constraints. This is achieved by ensuring that:

C.1 Clarke and Wright

The savings algorithm, or Clarke and Wright heuristic (CW) (Clarke and Wright, 1964), is a constructive heuristic for vehicle routing problems. It starts by creating one route for each customer, and then iteratively merges routes using the notion of savings.

Algorithm C.1 presents an outline of the CW heuristic. The algorithm starts by initializing a list of candidate mergings, which savings are calculated line 6 and correspond to the decrease in cost resulting from the removal of arcs (0, i) and (0, j) while adding arc (i, j). Then the algorithm considers all possible mergings between routes in order of decreasing savings. For each candidate merging (i, j), the mergingFeasible function (line 11) checks if i) both nodes i and j are either rst or last in their routes π i and π j ; ii) the route that would result from the merging satisfy all constraints. The latter is achieved within the VroomHeuristics framework using a ConstraintHandler and modeling the merging as a move (IMove). If the merging is feasible, then it is executed and route π j is appended to π i (line 12). The algorithm terminates when there is no additional feasible merging.

C.2.2 Neighborhoods

We implemented four neighborhoods for the VRP, all considering intra and inter-route moves: swap, 2-opt, Or-opt, and string-exchange. The swap neighborhood swaps two nodes from possibly di erent routes; 2-opt removes two non-adjacent edges and reconnect the segments; Or-opt relocates a segment of 1 to k nodes, possibly by reversing its order, in the best possible position (in our implementation k = 3); and nally string-exchange exchanges two segments of length 1 to k, possibly by reversing their orders (we set k = 4). We refer the interested reader to the paper by [START_REF] Irnich | The shortest-path problem with resource constraints and k-cycle elimination for k ≥ 3[END_REF] for a more detailed description of these neighborhoods.

We provide a general purpose implementation of INeighborhoodHandler in the class Generic-NeighborhoodHandler which de nes 4 strategies: sequential (SEQ), frequency-based (FRE), e ciency based (EFF) and random (RAN). The simplest selection strategy (FRE) explores neighborhoods sequentially, as in the original VNS algorithm. FRE stores the success count for each neighborhood, i.e. the number of times that its exploration yields an improvement in the objective function. The selection of the next neighborhood is then performed using a roulette wheel based on the success count. EFF uses a e ciency metric equal to the average ratio improvement time to select the next neighborhood with a roulette wheel. Finally, RAB is used as a comparison basis and select any neighborhood with equal probability.

C.2.3 Computational experiments

The AVNS was designed to tackle the Vehicle Routing Problem with Stochastic Demands (VRPSD) within the jMSA framework. Therefore, we tested it on the Novoa (2005) testbed, later used in [START_REF] Novoa | A set-partitioning-based model for the stochastic vehicle routing problem[END_REF] and Novoa and Storer (2009). The customer demands are given as probability distributions, however, the routing problems solved in the MSA procedure are deterministic, thus we used the expected value of the demands. The benchmark contains instances of 5, 8, 20, 40 and 60 customers, randomly distributed on a 1 per 1 square, the depot being at the origin (0,0). There are 10 instances of each size

We tested the four strategies presented above, in two variants: for the sequential strategy we used an increasing complexity ordering of neighborhoods (swap, 2-opt, Or-opt, string-exchange), denoted SEQ, as well as a reversed order, denoted SEQ-Rev; for the frequency (respectively e ciency) we did a set of run in which the neighborhood handler is reset between each run, denoted FRE-R (EFF-R), and a second where the performance information (success count or e ciency) is kept between runs, noted FRE-NR (EFF-NR).

Each strategy was run 10 times on each instance, each run starting with the initial solutions obtained by running a randomized savings based heuristic. We used a Variable Neighborhood Descent variant in order to have a better understanding of the neighborhood selection impact on performance.

Table C.1 presents the average gaps to the optimal solutions for the di erent strategies. It can be noted that there is apparently no di erence between strategies at this point, although SEQ-Rev appears to perform slightly better.

C.5.2 Constructive heuristics

Giant tours are generated using a randomized variant of four well known heuristics for the TSP, that draw a random number χ between 0 and the number of unvisited customers. Random Nearest Neighbor (RNN) selects the χ-th closest customer to the last customer of the tour and appends it to the tour. Random Nearest (Furthest) Insertion (RNI/RFI) selects the χ-th closest (furthest) customer to any of the customers currently in the tour and inserts it in the best position. Random Best Insertion (RBI) selects and inserts the χ-th best insertion for all unserved customers.

C.5.3 Split procedure

Algorithm C.5 presents the split procedure as introduced by [START_REF] Prins | A simple and e ective evolutionary algorithm for the vehicle routing problem[END_REF], which is basically a labeling algorithm that nds the shortest path on an auxiliary graph representing all the feasible partitions of the giant tour into routes.

BIBLIOGRAPHY as illustrated in Equation

D.2. TOOLS AND SPARE PARTS

D.2 Tools and spare parts

To ensure a certain coherence between skills and spare parts, we de ne for each skill a subset of associated tools/spare parts. For instance the skill screw will be associated with the tools (drill, screw driver) and spare parts (screw, rawplug). We therefore have:

Technicians

We associate to each vehicle of the original instance a technician k, and generate additional information to match the TRSP de nition.

Home depot

We randomly generate a home depot h k for each technician k in a 100 × 100 square.

Skills

We sample the Dt S distribution to generate a random number η s , and then pick η s skills from the skill set S to form S k , the skill set of technician k.

Tools We sample the Dt T distribution to generate a random number η t , and then pick η t tools from the union of the tool subsets s∈S k T s .

Spare parts

We sample the Dt P distribution to generate a random number η p , and then pick η p spare part types from the union of the spare part types subsets s∈S k P s ; then for each selected spare part type p we generate the number of parts of type p available to the technician by sampling the Dt P C distribution.

D.4 Requests

We associate to each customer of the original instance a request i, and generate additional information to match the TRSP de nition.

Skills

We sample the Dr S distribution to generate a random number η s , and then pick η s skills from the skill set S to form S i , the skill set of request i.

Tools We sample the Dr T distribution to generate a random number η t , and then pick η t tools from the union of the tool subsets s∈S i T s .

Spare parts

We sample the Dr P distribution to generate a random number η p , and then pick η p spare part types from the union of the spare part types subsets s∈S i P s ; then for each p we generate the number of parts of type p required by the request by sampling the Dr P C distribution.

F.5. SOFTWARE LIBRARIES

F.5 Software libraries

We released the libraries under the GNU General Public License version 3 (GPL3) 1 to allow their use in non-commercial applications only. This choice is motivated by two aspects: rst, the libraries depend to a certain extent on the Stochastic Simulation in Java (SSJ) 2 which is itself released under GPL 3; second the libraries may be included in the near future in an open-source project with a broader scope and a more permissive license, therefore we wanted to restrict the use of the present libraries in favor of the broader project. All the cited libraries are publicly available at: http://victorpillac.wordpress.com/libraries-for-the-vrp présente des résultats expérimentaux sur les instances du VRPTW de Solomon (1987), et illustre la performance de l'approche proposée qui est capable d'atteindre un écart de seulement 0,23% en moins de 30s en moyenne. T G.6 -Résultats expérimentaux pour les instances de Solomon (1987) (moyenne sur 10 essais), MSC : meilleures solutions connues, Opt : solutions optimales.. Par ailleurs, le tableau G.7 présente les résultats expérimentaux pour un ensemble de 56 instances du TRSP générées aléatoirement à partir des instances de Solomon (1987). Les résultats mettent en évidence l'apport de la post-optimisation (SC) qui permet de réduire l'écart de 1.7% en moyenne. Il est