Porosos Meios 
  
Dano Saturados 
  
Isotrópico 
  
Keywords: Saturated Porous Media, Isotropic Damage, Boundary Element Method. RESUMO Milieux Poreux Saturés, Endommagement Isotropique, Méthode des Éléments de Frontière

This work is devoted to the numerical analysis of saturated porous media, taking into account the damage phenomenon on the solid skeleton. The porous media is taken into poroelastic framework, in full-saturated condition, based on the Biots Theory. A scalar damage model is assumed for this analysis. An implicit Boundary element Method (BEM) formulation, based on time-independent fundamental solutions, is developed and implemented to couple the fluid flow and the elasto-damage problems. The integration over boundary elements is evaluated by using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is followed to carry out the relevant domain integrals. The non-linear system is solved by a Newton-Raphson procedure. Numerical examples are presented, in order to validate the implemented formulation and to illustrate its efficiency.

OVERALL CONSIDERATIONS AND OBJECTIVES

The complexity of the problems currently encountered in engineering leads to a growing demand for quality personnel, infrastructure and available analytical methods. In the field of structural engineering, there have been several initiatives to improve the theoretical and numerical representation of the behavior of structural parts and systems. The development of numerical models enables a more realistic evaluation of the in-service behavior of structures and failure modes, quantifying the deterioration of components and determining the loading threshold limits in projects.

Among the various topics of interest, the mechanical behavior of porous materials stands out. These are multiphase materials, composed of a deformable solid matrix and a porous space, which may contain liquid and gas fluids. The interaction between the solid and fluid phases defines the mechanical response of the medium to the external forces, through solid skeleton deformations and the fluid flow into the pores. This thesis addresses the porous media fully saturated by a single fluid.

The study of porous materials is relevant in several areas, such as soil and rock mechanics, diffusion of contaminants, biomechanics and petroleum engineering.

The cases in which a non-linear mechanical behavior of materials occurs, as for instance damage and plasticity, are of great interest to the mechanics of materials and structures. The rupture process of a body is progressive, starting with a state of micro-cracking that localizes and develops into a state of effective crack opening, which can in fact induce rupture. The phenomenon identified between the onset of microcracking and fracture is called damage.

The damage models predict the gradual loss of strength and stiffness of the material when loaded. In its constitutive law, it exhibits regions in which resistant strain levels decrease with increasing strain. Under a possible unloading condition, the stiffness loss remains constant, so that no residual strain accumulates.

Considering the increasing complexity of mechanical models developed for engineering problems, the constant search for robust numerical formulations is vital, which can provide reliable results with the least possible computational effort. Thus in this context, the Boundary Element Method (BEM) is an interesting choice to obtain numerical solutions in various applications.

The behavior of a saturated porous medium is sought to be understood from the interaction between the mechanical response of the solid phase and the fluid flow through the porous space. This work proposes to investigate the degradation of brittle and quasi-brittle materials from a known isotropic damage model. Thus, one of the objectives is to incorporate that damage law into the solid matrix of the porous medium, in order to analyze the influence of the dissipative phenomena in the global response of the system, including it in the mechanical properties. The main objective of this thesis is the development of a nonlinear BEM formulation that enables the application of the aforementioned model.

METHODOLOGY

The behavior of a saturated porous medium from the formulation presented in Coussy (2004) is described, which is derived from Biots work (1941,1955), taking as state variables the strain in the solid matrix and the pore pressure acting on the fluid. A laminar fluid flow is assumed, which is governed by Darcys law. The Lagrangian kinematic description is adopted here.

The loss of stiffness from the damage process is assessed using an isotropic model, applicable to brittle and quasi-brittle materials, proposed by [START_REF] Marigo Jj | Formulation dune loi dendommagement dun materiau élastique[END_REF]. The scalar state variable is introduced, which represents the deterioration level in the solid matrix.

The expression for the free energy potential of the poroelastic system is defined, with the internal variables as the strain in the solid skeleton and the porosity. The damage scalar variable is introduced into this expression, in order to incorporate the damage process to the problem.

A nonlinear transient BEM formulation is developed, by coupling the models of the method applied to the fluid diffusion and the plane elasticity in the presence of damage. The Bettis reciprocal theorem is used to obtain the integral equations, using time-independent fundamental solutions. The integration on the boundary elements is performed numerically, using a Gauss-type procedure and a semi-analytical scheme is used to evaluate the domain integrals of the problem.

The temporal integration of the constitutive equations is carried out implicitly. With the nonlinear damage law, the consistent tangent operator is deduced and the algebraic equilibrium equations are evaluated using the Newton-Raphson procedure. 1.3. BRIEF LITERATURE REVIEW 1.3.1. Poromechanics and Linear Poroelasticity The first studies on the subject are credited to Terzaghi (1923), who described the mechanism for transferring an axial load applied to a soil column. This one-dimensional model did not foresee the occurrence of lateral strains. In 1936, Rendulic generalized Terzaghis theory for a three-dimensional case. However, it was [START_REF] Biot | General theory of three-dimensional consolidation[END_REF] who presented the first well-accepted model for settlement, or consolidation, in three-dimensional media, considering isotropic and incompressible fluid. Biot proposes the analysis of a porous medium saturated by the superposition of two continuous media: the solid skeleton and the fluid phase that fills the pores. [START_REF] Biot | Theory of elasticity and consolidation for a porous anisotropic solid[END_REF] later improved his own model by extending it to compressible fluids, considering anisotropy for both the solid skeleton as well as for the fluid, formulating Darcys law in a generalized way. In 1956, Biot incorporated viscoelasticity of the solid medium into this theory.

Several studies emerged in the 1940s that proposed analytical solutions for particular geometry problems and loading conditions. Biot andClingan (1941, 1942), McNamee andGibson (1960, 1963), and [START_REF] Schiffman | Consolidation due to tangential loads[END_REF] can be cited. The behavior of underground aquifers was studied in [START_REF] Verruijt | Elastic storage of aquifers[END_REF]. [START_REF] Rice | Some Basic Stress-Diffusion Solutions for Fluid Saturated Elastic Porous Media with Compressible Constituents[END_REF] sought to relate the poroelastic parameters proposed by Biot, using concepts of soil and rock mechanics. In this work the response differences of a saturated porous medium under drained and undrained conditions are discussed.

Among the more recent works, we highlight those developed by Coussy, presented in a book that was published in 1995. In this publication, the poroelastic and poroplastic models are described and justified by the rigorous consideration of thermodynamic effects involved. [START_REF] Detournay | Fundamentals of Poroelasticity[END_REF], [START_REF] Coussy | From mixture theory to Biots approach for porous media[END_REF], [START_REF] Wang | Theory of linear poroelasticity: with applications to geomechanics and hydrogeology[END_REF] and Coussy (2004) should are also mentioned.

A study on saturated media, alternative to Biots work (1941,1955), was presented in [START_REF] Auriault | Etude du comportement macroscopique dun milieu poreux saturé déformable[END_REF]. From the hypothesis, inherent in the homogenization schemes, that the microscopic structure is periodically reproduced in the domain of the problem, the authors proposed a model for a media saturated by a viscous and incompressible fluid. Other authors have explored the theme from this micromechanical approach, citing [START_REF] Chateau | Approche micromécanique du comportement dun milieu poreux non saturé[END_REF] that addressed partially saturated media, and [START_REF] Lydzba | Study of poroelasticity material coefficients as response of microstructure[END_REF] that examined the role of microstructure to define the material properties. [START_REF] Kachanov | Time of rupture process under creep conditions[END_REF] was the first work that introduced the concept of damage. This work investigated a problem of uniaxial creep for metals subjected to high temperatures, and the damage variable was introduced to describe the ability of a cross section to transfer a load. The continuum damage mechanics (CDM) was formalized based on the thermodynamics of irreversible processes, in the works of [START_REF] Lemaitre | Mécanique des Matériaux Solides[END_REF] and [START_REF] Lemaitre | A Course on Damage Mechanics[END_REF]. In thermodynamics, a consistent physical meaning emerges for the variables that describe the material degradation, always associating them to an energetic process.

Strain Localization and Continuum Damage Mechanics

Materials that exhibit softening behavior are subject to the problem of strain localization.

From a mathematical point of view, this phenomenon leads to some drawbacks regarding the existence and uniqueness of a solution to the problem. The topic was addressed in [START_REF] Benallal | Some mathematical aspects of the damage softening rate problem[END_REF]. [START_REF] Comi | On localization in ductile-brittle materials under compressive loadings[END_REF] presented a study on the strain localization for pure compression in brittle materials (concrete). The different influences of the formulation of elasto-plastic damage model on the compression localization are analyzed. Pijaudier-Cabot and [START_REF] Pijaudier-Cabot | Strain Localization and Bifurcation in a Nonlocal Continuum[END_REF] described the localization conditions for a material following a non-local damage constitutive relationship. Theoretical studies on localization are also found in [START_REF] Benallal | Bifurcation and localization. Rateindependent materials, some general considerations[END_REF] and [START_REF] Jirásek | Objective modeling of strain localization[END_REF].

The traditional damage models, formulated under local theory, do not capture the effects introduced by the strain localization phenomenon. Thus, some strategies were proposed to regularize the solutions obtained with these local models, based on the concept of a characteristic length for each material. It is assumed that this length limits the range that is subject to localization.

More robust nonlocal damage theories have also been presented. [START_REF] Bazant | Why Continnum damage is nonlocal : micromechanics arguments[END_REF] argued, based on micromechanics concepts, that at a certain point the damage can be assessed by weighting the deformations measured in the vicinity of this point. [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF] discuss, regarding a simplified damage model, the influence of a non-local variable calculated as an integral over a representative volume of the same variable defined locally. The same authors in Pijaudier-Cabot and [START_REF] Bazant | Nonlocal continuum damage, localization instability and convergence[END_REF] present the same non-local integral, stating that other quantities should be considered besides the deformation, as for instance the damage measure.

Porous Media Subjected to Damage

Many authors have addressed the effects of micro-cracking and damage in porous media. As in damage models for solids, there are energy approaches (CDM) based on thermodynamic principles and micromechanical approaches, which usually rely on homogenization processes to express the properties of the material at a macroscopic scale. Some works that use both methods are mentioned, in addition to experimental studies. [START_REF] Cheng | Deformation and diffusion behaviour in a solid experiencing damage: a continous damage model and its numerical implementation[END_REF] proposed a model based on CDM and on Darcys law, and a damage evolution law from microscopic and macroscopic experimental results on rocks. Barys thesis (1996), on the study of concrete dams, presents an anisotropic damage model based on thermodynamics, and also a numerical analysis using finite elements, with an experimental calibration of material parameters. Shao et al. (1997) and [START_REF] Bart | Poroelastic behaviour of saturated brittle rock with anisotropic damage[END_REF] present a damage variable defined in terms of the density of distributed microcracks, using fracture mechanics results to assess the damage evolution. The expressions that measure the influence of damage on the material properties are also presented. [START_REF] Souley | Damage-induced permeability changes in granite: a case example at the URL[END_REF] experimentally measured the permeability changes induced by damage on sandstones, incorporating these findings into an anisotropic damage model. Numerical analyses related to the experiments of [START_REF] Souley | Damage-induced permeability changes in granite: a case example at the URL[END_REF] are presented in [START_REF] Rutqvist | Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada[END_REF]. Other experimental analyses on the occurrence of damage in porous media and the consequent alteration of its mechanical and hydraulic properties are found in [START_REF] Tang | Coupled analysis of flow, stress and damage (FSD) in rock failure[END_REF] and [START_REF] Ghabezloo | Evaluation of a permeability-porosity relationship in a low permeability creeping material using a single transient test[END_REF].

A viscoelastic model for the stable and unstable damage evolution is presented and validated, based on laboratory results of tests conducted on granite and sandstone, by [START_REF] Hamiel | Stable and unstable damage evolution in rocks with implications to fracturing of granite[END_REF]. [START_REF] Dormieux | Approche micromécanique du couplage perméabilitéendommagement[END_REF] analyzed changes in the permeability of a saturated medium from a self-consistent homogenization scheme. A critical value of microfissuration density parameter is defined, besides verifying a sudden increase in the permeability coefficient. [START_REF] Dormieux | A micromechanical analysis of damage propagation in fluid-saturated cracked media[END_REF] studied the evolution of anisotropic damage in saturated media, also from a micromechanical point of view. Another model regarding damage evolution that considers anisotropy is found in [START_REF] Zhou | Contribution à la modélisation de l'endommagement anisotrope et de la variation de la perméabilité des roches fragiles[END_REF].

A mixed model of anisotropic damage, based on energy principles and micromechanics results is presented in [START_REF] Arson | Etude théorique et numérique de lendommagement thermo-hydro-mécanique des milieux poreux non saturés[END_REF] and [START_REF] Arson | A mixed damage model for unsaturated porous media[END_REF], with applications on partially saturated media, considering temperature effects. 1.3.4. Integral Equations and BEM Applied to Poroelasticity and to Damage Mechanics Studies on integral equations are known to exist since the early nineteenth century, which are the basis for the Boundary Element Methods. However, the first classical theory of integral equations, in which the kernels were defined and integrable, is credited to [START_REF] Fredholm | Sur une classe d'equations fonctionelles[END_REF]. [START_REF] Fredholm | Solution dun problème fondamental de la theorie de lélasticité[END_REF] was a pioneer in the solution of boundary value problems in elastostatics using the linear integral formulation. From this work, the use of integral equations remained limited to theoretical formulations with an indirect approach. In these, the solution to the problem was obtained by fictitious sources applied to the contour, which after its determination, allowed calculating the physical variables of the problem. In 1967, Rizzo presented the first direct formulation for the numerical treatment of integral equations, in which the kernels contain the variables of the problem.

Based on the technique presented by [START_REF] Rizzo | An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics[END_REF], several authors addressed the problem, citing the works of [START_REF] Cruse | Numerical solutions in three-dimensional elastostatics[END_REF][START_REF] Cruse | Aplication of the boundary-integral equation method to three dimensional stress analysis[END_REF][START_REF] Cruse | An improved boundary-integral equation method for three dimensional elastic stress analysis[END_REF] that addressed the general problems of two and three-dimensional elasticity, and [START_REF] Rizzo | A Formulation and Solution Procedure for the General Non-Homogeneous Elastic Inclusion Problem[END_REF] that proposed to introduce subregions in the treatment of non-homogeneous areas.

The so-called boundary methods made headway after Lachats thesis, submitted to the University of Southampton in 1975, in which the author introduced the simplicity and elegance the method lacked, bestowing upon it a greater generality. With Lachats developments, the techniques for solving integral equations were then interpreted as a numerical method. It is reported that Brebbia (1978 a , 1978 b ) was the first to refer to the technique as Boundary Element Method in his works. In these studies, obtaining the integral equations was performed by using the Weighted Residual Method, with the appropriate choice of the weighting function. After the first book, published by Brebbia (1978 a ), the method began to be studied intensively in several research centers. Telles and Brebbia (1979, 1980 a , 1980 b ) showed BEM being used in elastic and viscoplastic problems, with the introduction of strain or stress fields in the equation. [START_REF] Venturini | Application of the boundary element formulation to solve geomechanical problems[END_REF][START_REF] Venturini | Boundary element methods in geomechanics[END_REF][START_REF] Venturini | Um estudo sobre o método dos elementos de contorno e suas aplicações em problemas de engenharia. São Carlos[END_REF] and Venturini andBrebbia (1983, 1988) applied the Boundary Element Method to geotechnical problems, including in the modeling of materials with discontinuities.

In the field of porous media, [START_REF] Cleary | Fundamental solutions for a fluid-saturated porous solid[END_REF] can be cited as a pioneering work, presenting the first integral equations for poroelasticity, based on the direct formulation, proposed by [START_REF] Rizzo | An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics[END_REF]. Time-dependent fundamental solutions for soil consolidation were presented in [START_REF] Aramaki | Applications of the boundary element method for axysymmetric Biots consolidation[END_REF] and [START_REF] Kuroki | Boundary Element Method in Biots Linear Consolidation[END_REF]. In 1984 a , Cheng and Liggett formulated an integral equation for poroelasticity applying the Laplace transform. The authors incorporated the propagation of cracks to the problem in Cheng and Liggett (1984 b ). Also in the 1980s and 1990s, there were other important works on the application of direct BEM formulations to the problem of poroelasticity, citing [START_REF] Cheng | Transient boundary element formulation for linear poroelasticity[END_REF], [START_REF] Nishimura | A Boundary Integral Equation Method for Consolidation Problems[END_REF], Dargush andBanerjee (1989, 1991) and [START_REF] Borba | Formulação direta do método dos elementos de contorno para tratamento do estado plano da poroelasticidade acoplada[END_REF]. A more complete treatise on the fundamental solutions and integral equations for the poroelastic problem was presented by [START_REF] Cheng | On singular integral equations and fundamental solutions of poroelasticity[END_REF].

Later, [START_REF] Park | Two-and three-dimensional soil consolidation by BEM via particular integral[END_REF] analyzed the three-dimensional problem of soils consolidation by developing particular integrals. [START_REF] Cavalcanti | Biots Consolidation Theory Application of BEM with time independent fundamental solutions for poro-elastic saturated media[END_REF] presented time independent fundamental solutions applied to the analysis of saturated media. As for works that address poroplasticity, [START_REF] Wutzow | Formulação do método dos elementos de contorno para materiais porosos reforçados[END_REF] can be cited, which incorporated stiffeners into the solid matrix. [START_REF] Kamalian | Time domain 3D fundamental solutions for saturated poroelastic media with incompressible constituents[END_REF] and [START_REF] Maghoul | Three dimensional transient thermo-hydromechanical fundamental solutions of unsaturated soils[END_REF] present fundamental solutions in time domain for media under saturated and unsaturated conditions.

Among the earliest known BEM formulations for the analysis of damage mechanics problems, [START_REF] Herding | A field boundary element formulation for damage mechanics[END_REF], [START_REF] Garcia R | A boundary element formulation for a class of non-local damage models[END_REF], [START_REF] Lin | Nonlocal strain-softening model of quasi-brittle materials using boundary element method[END_REF] and [START_REF] Sladek | Non-local boundary integral formulation for softening damage[END_REF] are cited. Also cited are [START_REF] Botta | BEM applied to damage models emphasizing localization and associated regularization techniques[END_REF], [START_REF] Venturini | Reinforced 2d domain analysis using BEM and regularized BEM/FEM combination[END_REF] and [START_REF] Benallal | On the description of localization and failure phenomena by the boundary element method[END_REF]. Several of these works incorporate strategies to deal with numerical instabilities associated with the problem of strain localization. Some studies on numerical analysis of porous media subject to damage, based on the Finite Element Method, should be cited. A damage evolution law for geomaterials was proposed in [START_REF] Cheng | Deformation and diffusion behaviour in a solid experiencing damage: a continous damage model and its numerical implementation[END_REF]. [START_REF] Selvadurai | On the mechanics of damage-susceptible poroelastic media[END_REF] incorporated isotropic damage to saturated porous media, presenting empirical expressions for permeability variation due to damage process. [START_REF] Selvadurai | The Fluid-filled Spherical Cavity in a Damage-susceptible poroelastic medium[END_REF] addressed the problem of a spherical cavity filled with fluid. [START_REF] Vasconcelos | Implementação de modelo de dano isotrópico aplicado a problemas acoplados hidro-geomecânicos[END_REF] incorporated an isotropic damage formulation to a FEM code applied to saturated geomaterials.

The solution to nonlinear problems from the Newton-Raphson method and the resulting use of consistent tangent operators is widespread in the scientific community and can be found in [START_REF] Simo | Consistent tangent operators for rate-independent elastoplasticity[END_REF] and Simo and Hughes (1992). Other works that address BEM versions for non-linear models are: [START_REF] Bonnet | Implicit BEM formulation for usual and sensitivity problems in elasto-plasticity using the consistent tangent operator concept[END_REF], [START_REF] Poon | Numerical implementation of a CTO-based implicit approach for the BEM solution of usual and sensitivity problems in elasto-plasticity[END_REF][START_REF] Fudoli | Formulação do método dos elementos de contorno e plasticidade com gradiente[END_REF] and [START_REF] Benallal | An implicit BEM formulation for gradient plasticity and localization phenomena[END_REF].

THESIS STRUCTURE

The items discussed in this thesis are arranged throughout the text as described below:

Chapter 2 presents a brief review of the poromechanics, showing how the heterogeneous medium is described, and also the problem formulation, which is based on the classical continuum mechanics. The continuum damage mechanics is considered briefly and the local damage model adopted in this work is presented. The strain localization phenomenon is commented and, although not addressed in this thesis, a non-local model able to deal with the problem is presented.

Chapter 3 presents the model developed for the damage on the solid matrix of the saturated porous media. Expressions to evaluate the influence of the damage process on the mechanical and flow properties of the material are proposed. These are some aspects of the boundary element method, and the nonlinear formulation of the method developed for the computational implementation of the model is presented. The algorithm of damage evolution is described, and also the deduction of the consistent tangent matrix is shown. Chapter 4 presents some numerical applications in order to validate the model and illustrate the operation of the code developed.

The equations in the text of the thesis are written in indicial or tensorial notation, using the one that is more illustrative, depending on the context in which it is inserted. Some equations are presented in both notations, when deemed necessary.

Chapter 2

Aspects on Poromechanics and

Continuum Damage Mechanics

OVERALL CONSIDERATIONS

The mechanics of porous media addresses materials whose mechanical behavior is significantly influenced by the presence of fluid phases. The response of the material is through its deformations when subject to external actions and pressure changes in the fluid. In rocks, for example, two mechanisms have a core importance in this interaction process between the phases [START_REF] Detournay | Fundamentals of Poroelasticity[END_REF]: An increase in the pore pressure induces the rock to dilate, whereas a compression in the rock results in increased pore pressure, in the case of confined fluid. Considering the non-confinement, the excess pore pressure, which is imposed by the compression of the rock, is gradually dissipated during the fluid diffusion process and a new deformation distribution is created in the body. Thus, it is observed that the rock is more deformable in drained conditions.

A basic idea to be considered in the study of porous media is that their response to certain external actions is not immediate. The deformations occur over time in the phenomenon known as settlement or consolidation. The observations and the need to explain this phenomenon propel further studies on porous media.

The damage mechanics predicts the loss of strength and stiffness of a solid, due to irreversible microscopic processes, such as: decohesion, relative slipping of crystal structure, phase changes, etc. Some of these processes are caused by existing microdefects or microcracks in the material, which provide a microstrain concentration in its neighbourhood. This chapter presents a brief description on poromechanics, mostly based on the works of Coussy (2004) and Wang (2008). Assuming that the solid matrix is subject to a damage process, some comments are made about the mechanics of continuous damage, specifying how it is considered in the mathematical formulation. For additional details, [START_REF] Lemaitre | Mécanique des Matériaux Solides[END_REF] and [START_REF] Voyiadjis | Damage Mechanics[END_REF] can be referenced.

DESCRIPTION OF A SATURATED POROUS MEDIUM

Let us assume a porous medium, composed of a solid matrix, and a porous space in which the pores are interconnected. It is through this connected porous space that the transport of fluid mass occurs. Any two points in its domain can be connected by a generic arc totally contained in it, so that the fluid phase in that space can be treated as a continuum. There may also be closed pores included in the solid matrix, in which the occurrence of flow is not considered, at least not in the timescale considered in this theory. Hence, from this point of the text, the term pore is applied to the effective pores of the connected space, while the disconnected pores will be treated as part of the solid matrix. Therefore, it is understood that the saturated porous medium is described by the superposition, temporal and spatial, of two continuous media: The first represents the solid skeleton and the second, the fluid phase. Usually, the deformation of the porous media is described in relation to the skeleton deformation, which can actually be observed and shows a more accessible physical meaning.

An infinitesimal volume of porous medium can be represented by the composition of two elementary material particles (Figure 2.1), one that is solid which also contains occlusions and disconnected pores and one that is fluid. Considering that the porous medium is heterogeneous at a microscopic level, its treatment as a continuous medium requires the choice of a macroscopic scale, in which the internal constitution of the material can be neglected, when analyzing the physical phenomenon of interest. Therefore, the continuity hypothesis admits the existence of an infinitesimal control volume of representative dimensions at a macroscopic scale, in the study of all phenomena involved in the intended application. This deformation is analyzed according to the classical theory foreseen in the continuum mechanics, whose main concepts are briefly described below.

Motion of a Continuum. Displacement. Deformation Gradient

Consider a solid body occupying a determined region of space, at a time t 0 ? . In this initial configuration, a particle is represented by its position vector X of components i X , in a

Cartesian coordinate system, of orthonormal basis i e (i 1, 2,3) ?

. After deforming, in time t , the body is in a current configuration, with its reference particle represented by the position vector x of components i j

x (X , t) as shown in Figure 2.2. One can then write: the displacement vector u of a particle is defined, from its initial position X to the current position x as:

?x X u (2.2) Supposing two particles, positions X and d X + X in the initial configuration. After the deformation, the infinitesimal material vector dX becomes dx , and connects the two particles in their current positions x and d x + x . Any vector material dX is transported to its corresponding deformed dx by a linear application called the deformation gradient F , as follows .

d d ? © x F X (2.3) i X ij j x ; F X • ? ı ? • F x (2.4) Figure 2.

-Initial and current configurations

Note that the operator refers X ı to the initial configuration. The inverse and transposed forms of tensor F are written as:

-1 T d d ; d d ? © ? © X F x x X F (2.5)
The deformation gradient is expressed in terms of displacement as follows.

i X ij ij j u ; F X • ? -ı ? f -• F u I (2.6) X X+dX x x+dx e3 e1 e2
The second-order identity tensor is represented by I , which is equivalent to the kronnecker delta ij f , in indicial notation.

Lagrangian and Eulerian kinematic descriptions.

A continuum deformation can be described in two ways. The first one, called Eulerian or spatial, takes the current position of a particle as reference, expressing the variables depending on x and t . In the Lagrangian, or material description, the particles are described as a function of the initial position X and time In order to quantify the degree of compactness of a porous material, an Eulerian variable is defined, the void ratio e . This is the relationship between the porous volume and the solid matrix volume:

1 n e n ? /

(2.8)

Strain Tensor

During the deformation, the infinitesimal vectors in the deformed configuration undergo changes in their lengths and angles. These changes can be measured by the Green-Lagrange strain tensor, identified by F . Take two vectors dX and dY , taken in dx and dy after deformation, respectively. The variation of their scalar product is written using (2.3), as follows,

d d d d 2d d © / © ? © © x y X Y X Y F
(2.9)

F can be defined in terms of the deformation gradient, based on equation (2.5):

* + T 1 2 ? © / F F I F
(2.10)

A system of main orthogonal directions is taken to its final configuration, rotated by a tensor called the rotation gradient R , which can be isolated in a polar decomposition of tensor F : (2.11) In this decomposition, tensor D contains all information necessary to measure the deformation, resulting in another expression of the Green-Lagrange deformation:

? © F D R
* + 2 1 2 ? / D I F (2.12)
Using the equation (2.6), tensor F can also be defined as a function of the displacement vector, as shown below.

* + j i k k X X X X ij j i i j u u u u 1 1 ; 2 2 X X X X V V Ã Ô • • • • ? ı -ı -ı ©ı F ? - - Ä Õ Ä Õ • • • • Å Ö u u u u F
(2.13)

In some problems, one can use a first order approximation, as long as the condition 1 ıu 2 of infinitesimal transformation is respected. Thus, the Green-Lagrange tensor is reduced to the linear strain deformation g : * +

j i X X ij j i u u 1 1 ; 2 2 X X V Ã Ô • • ? ı -ı g ? - Ä Õ Ä Õ • • Å Ö u u 0 F g (2.14)
Since tensor F has the same order as X ı u , the condition of infinitesimal transformation implies infinitesimal strains, expressed by 1 2 F . Note that the application of linear measure of strain results in some limitations. As for example, in a rigid body rotation, F is null, while X ı u can take any different order of magnitude.

Under the condition of infinitesimal transformation, the determinant of the deformation gradient, also called the Jacobian operator, is written as:

* + i ii i u det 1 ; 1 1 x • ? -ı © ? - ? -g • F u 0 J J (2.15)
In infinitesimal transformations, the trace of the linear deformation tensor ii g , represents the volumetric expansion of the porous medium, which is now defined by:

ii OE? g ? ı ©u

(2.16) In the development of constitutive equations for a porous medium, the description of the fluid motion in relation to the initial configuration of the skeleton is necessary.

Particle Derivative

As aforementioned in the previous section, the description of the skeletons deformation can be done as a function of time t and the position vector X , both referenced in the initial configuration of the particle. In this Lagrangian description, the skeletons strain kinematics is formulated by the derivatives in total time.

In some cases, it may be of interest to formulate the problem according to an Eulerian description, taking into account only the current configuration of the skeleton at a given time instant. In this type of approximation, it is necessary to define a velocity field ( t) r V x, of the particle, which can be either a fluid particle or a skeleton particle (indicated by f r ? or s r ?

, respectively). The particle derivative concept is shown below.

In a multiphase domain, the derivatives of any field defined for any domain can be taken in relation to one of the phases, separately. In the case of a porous medium, derivatives can be taken with respect to the skeleton or the fluid. d dt r X is defined as a particle time derivative of the field X related to the particle r ( s ? or f ).

For example, we can write the velocity for particle r localized by x :

d ( t) ; s f dt r r r ? ? x V x, ou (2.21)
The particle derivative of a material vector dx is calculated as:

* + * + d d d d ( d t) ( t) dt dt r r r r ? - / ? - / Ç É Ú x x x x V x x, V x, (2.22) * + * + i x x ij j V d d d ; dt x r r r r • ? ı © ı ? • x V x V (2.23)
For an arbitrary field ( , t)

X x , we write the particle derivative considering that x assumes successive positions (t) r x occupied by the particle:

* + x d d dt dt r r X X X ? -ı © V (2.24)
The acceleration of a particle r i can be obtained, for example:

* + i i x i j j dV dV d d ; V dt dt dt dx r r r r r r r r r r i ? ? -ı © ? ? V V V V i (2.25)
Taking the integral over the volume t dY of any given variable X , its particle derivative is

* + t t t t d d d d dt dt Y Y Y ? Y Ð Ð r r X X (2.26)
which can be rewritten as follows, according to (2.24):

t t t x t d d d d dt dt r r X X X Y Y Ã Ô Y ? -ı © Y Ä Õ Å Ö Ð Ð V (2.27)
or, equivalently: With dA as the surface defined by normal N , in the initial configuration, which corresponds to the surface da in the deformed state. Assuming that the flow of w through da is equivalent to the flow of M through dA , we can write:

* + t t t x t d d d d dt dt r r X X X Y Y Ã Ô Y ? -ı © Y Ä Õ Å Ö Ð Ð V (2.
1 i i j j i i x t X 0 i i X ; M w x w M d d ; x X / • ? © ? • • • ı © Y ? ı © Y ? • • M F w w M J J J (2.40)
The application of (2.38) and (2.40), and the use of the particle derivative of the volume t dY , given in (2.29), allows writing the fluid continuity equation (2.37) for a Lagrangian description: 

f f i i x i d (X , t) M 0 ; 0 dt t X • • -ı © ? - ? • • M m m (2.
( , t, )da f ? T T x n (2.46)
Note that T also depends on n , the outward unit normal to the surface da , at the point defined by x . It is assumed that the effects of surface forces acting on an infinitesimal region of t

•Y are noticeable in the vicinity of this restricted area. The hypothesis that surface forces have a local nature is known as Cauchys hypothesis.

Momentum Balance

In a given porous domain t Y , it follows that the result of all forces must equal to the rate of change of the linear momentum balance, that is:

* + * + t t t t s f s f s t f t t d d 1 d d , t d ( , t, ) da dt dt Y Y Y •Y / Y - Y ? Y - Ð Ð Ð Ð V V f x T x n n n t t t
(2.47)

The terms Similarly, we can write the angular momentum balance:

* + s s t 1 d t / Y V n and f f t d t Y V n
* + * + t t t t s f s f s t f t t d d 1 d d dt dt , t d ( , t, ) da Y Y Y •Y • / Y - • Y ? • Y - • Ð Ð Ð Ð x V x V x f x x T x n t t t n n (2.48) 2.6.3

. The Dynamic Theorem

The inertial forces generated in the volume t dY may be related to the external forces ff and fT, acting in them. Taking the particle derivatives in (2.47), and using the definitions (2.21), (2.25), (2.33) and (2.34), the following is written:

* + * + * + t t t s f s f t t 1 d , t d ( , t, ) da Y Y •Y / - Y ? Y - Ð Ð Ð t t t n n f x T x n i i (2.49)
The integrand on the left represents the inertial force related to the material contained in dS dS e dSn ? © ? n

Y Y •Y • / - Y ? • Y - • Ð Ð Ð t t t x x f x x T x n n n i i (2.
(2.51)

Applying the theorem (2.49) to the tetrahedron, the following is obtained:

* + * + s f s f j j i 1 3 hS O 1 ( )dS ( e )dS 3 t t t ? / - / - / Â f T n T @ 0 n n i i (2.52)
with h as the height of the tetrahedron, its volume is hS 3 . O( ) X represents the order of magnitude of the field X . Assuming the action-reaction principle ( )

( ) / ? / T n
T n , and replacing (2.51) in (2.52):

* + * + s f s f j j i 1 3 hS O 1 ( ) (e )n 3 t t t ? / - / / Â f T n T @ 0 n n i i (2.

53)

Letting h 0 › , the tetrahedron is degenerated at a point, canceling the term to the left of equation (2.53). The tensorial nature of tensor u is a direct consequence of the hypothesis of local contact forces, in item 2.6.1, expressed by ( , t, ) ? T T x n . 

j j i 1 3 ( ) (e )n ? ? Â T n T @ (2.
* + * + t t s f s f t 1 d da 0 Y •Y / / Y - © ? Ð Ð f n u t t / t n n i i (2.56)
The application of the divergence theorem to the surface integral given above allows to rewrite the equation as:

* + * + t s f x s f t 1 d 0 Y ı © -/ / Y ? Ð f u t t / t n n i i
(2.57)

The dynamic theorem, written above, should also be valid for any domain t

Y . Then we arrive to the local equation of equilibrium:

* + * + * + * + * + * + s f x s f ij s f s i i f i i j 1 0 ; 1 f f 0 x ı © - / / / ? •u - / / / ? • u t / t t i / t i f f n n n n i i (2.58)
Similarly, we can rewrite the dynamic moment theorem (2.50), as follows.

* + * + t t s f s f t 1 d da 0 t t / t Y •Y • / / Y - • © ? Ð Ð x f x n n n i i u (2.59)
Based on the divergence theorem, we have:

e3 e1 e2 n T(n) dS2 dS3 dS1 * + t t as x t da 2 d •Y Y • © ? • ı © - Y Ð Ð x n x u u u (2.60)
where as u is the anti-symmetric portion of the stress tensor, defined below in Cartesian coordinates. 

* + * + t s f as s f x t 1 2 d 0 t t / t Y Ç • / / -ı © - Y ? É Ú Ð x f n n i i u u (2.62)
The observation of the nullity in the equilibrium equation (2.58) allows to write:

t as t d 0 Y Y ? Ð u
(2.63) (2.64)

The symmetry is valid in the absence of external moments distributed in volume t Y .

PARTIAL STRESS TENSOR

The tensor u includes the stress related to the skeleton and the fluid, without any distinction. In order to identify their respective contributions, the hypothesis of local contact forces (2.46) for each phase is written, such as:

s s f f ( , t, )da ; ( , t, )da f ? f ? T T x n T T x n (2.65)
Equating the momentum balance separately, for the skeleton and for the fluid, one can define the partial stress tensors s u and f u , respectively.

s s f f ( , t, ) (1 ) ; ( , t, ) ? / © ? © T x n n T x n n n n u u
The symmetry defined in (2.64) should also be seen in the partial tensors, as well as satisfying the equilibrium equation, as follows:

* + * + * + * + s s s x s int f f f x f int 1 1 0 0 › › Ç ı © / - / / - ? É Ú Ç ı © - / - ? É Ú t t n n n n i i f f f f u u (2.66)
The volume strength int ›r f represents the interaction force experienced by the medium r , due to the other medium. The action and reaction principle foresees the balance of the interaction forces, that is;

s f int int 0 › › - ? f f
. The balance can be restored in its original form (2.58), from the sum of equations (2.66), resulting in:

s f s f ; (1 ) ? - ? / - T T T n n u u u (2.67)
At a mesoscopic scale, the partial tensors can be interpreted as the tensors which contain the average stress values, in each phase. For the fluid, it is reasonable to approximate the stresses through a spherical tensor, defined as a function of pore pressure to which the fluid is subject to. (2.69)

and the equilibrium equation of the fluid in (2.66) can be rewritten as:

* + * + f f x f int p 0 n n t › /ı - / - ? f f i (2.70) 2.

ASPECTS ON THE CONTINUUM DAMAGE MECHANICS

The rupture process of a body is progressive, starting with a microcracking state that localizes and develops into a state of effective opening of cracks, which can in fact induce to rupture. The phenomenon identified between the onset of micro-cracking and cracking is called damage.

Thus, the damage theory is no longer valid to the effective crack opening, a state described by fracture mechanics. According to [START_REF] Janson | Fracture mechanics and damage mechanics: a combined approach[END_REF] apud [START_REF] Proença | Elementos de Mecânica do Dano em Meios Contínuos[END_REF], one can differentiate the two theories as follows:

-In damage mechanics the strength of a loaded structure is determined by the evolution of a defects field (microcracks or microvoids) considered continuously distributed; -In the fracture mechanics, the strength of a loaded structure is determined by the evolution of a single defect, such as a pre-defined oriented crack in a sound medium.

In the continuum damage mechanics, the damage assessment is conducted by checking the strength or stiffness decrease in the solid. This is because one cannot directly quantify the damage, but can measure the damage undergone by their overall mechanical properties.

2.10. In the case of isotropic damage, the effective stress concept can be extended to twodimensional and three-dimensional problems, where it is valid to write the tensor ef u .

The effective stress concept is common to both the study of porous media and the study of damaged solid media. It represents the stress portion that effectively acts on the solid skeleton, excluding the stress portions associated with the fluid pore pressure (2.68), and with the dissipative damage process. This partition of the total stress tensor will become clearer in the presentation of the constitutive equations of the coupled problem, in the following chapter.

Isotropic Local Damage Model (Marigo, 1981)

Let us assume the free energy associated with a solid, written as:

* + jk jklm jk lm 1 ( , D) 1 D E 2 { g ? / g g t (2.74)
with jk g and jklm E

the elastic and strain tensors of the intact material, respectively. The mass density is indicated by t . Let D be the only internal scalar damage variable. It is understood that D assesses the state of degradation of the material, taking values between zero and one. The variable D that is null indicates intact material, while the unit value is associated with complete degradation.

One should note the correspondence between this energy expression and equation (3.1),

which represents the free energy potential associated with the saturated porous medium. Equation (2.74) shows only the dissipation portion related to the strain tensor in a solid, penalized by the damage variable.

The derivatives of the energy potential with respect to the state variables jk g and D lead to define the associated variables, which are the total stress

* + jk jklm lm jk 1 1 D E 2 •{ u ? ? / g •g t (2.75)
and the thermodynamic force Y conjugated to damage:

jklm jk lm 1 E D 2 •{ ? / ? g g • t Y
(2.76)

In addition to the state laws given above, it is necessary to define a damage criterion. In this model, it takes the form:

(Y, D) (D) ? / m F Y
(2.77) Mathematically, the ellipticity loss of the local equilibrium equations indicates the occurrence of strain localization. Thus, the boundary value problem becomes ill-posed, leading to the loss of solution uniqueness.

To avoid this problem, one can resort to the concept of the materials characteristic length. Some non-local damage theories take this concept into account. One of them is briefly described here.

The strategy presented here is based on the concept of non-local integral proposed by Pijaudier-Cabot and [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF], which consists in considering a non-local thermodynamic force Y . The value of the force Y is weighted with a function defined over the whole domain Y or in part of it, evaluated in the neighbourhood of the point of interest. This function l Y has a radial character, depending on the distance between the base point s and the mapped point q. The non-local force is defined by the integral:

* + 1 (s) s q (q) dq (s) Y ? l / Ð Y Y Y V (2.79) where (s) V is * + (s) s q dq Y ? l / Ð Y V (2.80)
The following weight function is chosen, for example:

* + 2 s q s q exp 2 Ã Ô / Ä Õ l / ? Ä Õ Å Ö Y 2 l (2.81)
With l as the characteristic length of the material. It is seen that, in the condition 0 › l the weight function tends to the Dirac distribution (s q) f / , which refers to the local model. The function takes higher values as the points s and q approximate each other, and tends to lower values for points further away from each other.

The damage criterion is rewritten as

( , D) (D) ? / m F Y Y
, and the evolution law results:

D Y A © ? $
(2.82)

Note that the stresses are still calculated locally, according to (2.75). The non-local thermodynamic variable is responsible for the evolution of the damage process, that is, there is the contribution of values Y(q) from the whole domain.

Chapter 3

Poro-damage Formulation and BEM Implementation

OVERALL CONSIDERATIONS

The concepts of poromechanics and continuum damage mechanics presented herein enable developing a formulation for poroelasticity taking into account damage in the solid matrix, a behavior that from this point of the text will be identified as poro-damage. The coupled problem is defined from the free energy potential in the system, from which the constitutive equations are obtained. The field equations, which complement the formulation, are those already defined in the previous chapter.

The damage process of the skeleton induces changes in the mechanical properties of the porous material. This chapter presents the expressions for the evolution of these parameters according to the deterioration level on the skeleton.

Given the difficulties in obtaining analytical solutions for modeling problems in general, the so-called numerical methods emerge, based on approximate solutions calculated at discrete points in the domain under analysis. Among the known methods, the boundary element method appears as a good alternative to obtain numerical answers to several problems.

The integral formulation of the coupled model is written, and the corresponding nonlinear BEM formulation is then developed, enabling the computational implementation of the referred model.

PORO-DAMAGE FORMULATION

Let us assume a poroelastic system, under quasi-static linear regime. The description of the mechanical behavior of this system requires the following set of equations:

-Constitutive laws for porous solid and for the fluid -Balance equation of the porous medium -Fluid continuity equation -Fluid transport law

The consideration of the damage process in the poroelastic system incurs changes at two points of the aforementioned equations. The constitutive law that governs the solid considers the gradual degradation undergone by the material, through the stress part associated with the damage, which leads to changes in the porous medium equilibrium.

Constitutive Laws

Let us assume the free energy potential per unit volume of a saturated porous medium subject to damage, written as:

* + * + * + * + 2 d 2 kj 0 kj kjlm lm kj 2 0 0 kj 1 1 (i , , D) (1-D)i : E : i Tr i 2 2 1 Tr i 2 t h h h h h h Ç { / ? - É Ú - / / / b M M bM (3.1)
in which the constants M and b represent the Biot modulus and the Biot coefficient of the effective stress, respectively. In saturated condition, the Lagrangian porosity h measures the variation of fluid content, that is, the variation of fluid volume per unit volume of porous medium. The mass density of the porous medium is described by t . The tensor kj g contains the solid skeleton strains. The internal damage variable, represented by D , assesses the deterioration state of the material, taking values between zero and one. The null variable D indicates sound material, while the unit value is associated with complete degradation.

d kjlm

E

represents the isotropic elastic tensor of the material under drained conditions, defined by:

d d kjlm kj lm kjlm 2G E K 2G 3 Ã Ô ? / f f - Ä Õ Å Ö I (3.2)
The bulk modulus d • u M ? / • g

* + * + d kj kjlm lm kj 0 kj kj (1 D)E i Tr i i t h h •{ Ç u ? ? / - / / f É Ú • bM b (3.3) * + * + * + * + 0 0 kj 0 p p Tr i t h h h h •{ Ç / ? ? / / É Ú • / M b (3.4) d kj kjlm lm 1 i E i D 2 t •{ ? / ? • Y (3.
• ? / • u B (3.8)
It is found that u K relates the volumetric strain with the hydrostatic stress, while B relates this stress to the pore pressure p . These parameters can be related to the ones defined in drained condition, as follows:

* + u d u 2 2 u u d M / M ? M M ? M / M b B B M (3.9) 3.2.2. Fluid Transport Law
The transport of a fluid in an interstitial space is described by a flow law, derived from the fluid dissipation equation. Let us consider the dissipation equation below:

* + f x f f p t ̈? /ı - / © Ç É Ú f i p (3.10)
Overall, it is written as:

f ̈? © k p (3.11) * + f s x f f ( ) ; p t ? / ? /ı - / V V f n p k i (3.12)
with p as the vector that represents the filtration -as defined in 2.4.2 and k the force that induces the filtration. Assuming a laminar flow of the fluid through the porous space, a linear relationship between the two quantities can be considered. Darcys Law, in its linear classic version, uses the permeability tensor k :

* + f s x f f ( ) p / ? /ı - / Ç É Ú n V V k f t i (3.13)
which is defined by

? o k k (3.14)
due to the intrinsic permeability of the skeleton k and to the fluid viscosity o . In the case of partially saturated domains, there is also the influence of relative permeability corresponding to each fluid phase in this value. Note that this coefficient is taken as the scale k ? k in this study, on account of the admitted isotropy. In a more general law, it is necessary to use the anisotropic permeability tensor.

In this work, we will use a Lagrangian description of the variables. In the Lagrangian description, the flow and filtration vectors result as:

f s f ; ( ) ? ? ? / t h M V V p p p lag lag (3.15)
Darcys linear Law, which relates the pore-pressure gradient and relative velocity of the fluid in relation to the skeleton, is written as:

* + f s x f f ( ) k p / ? /ı - / Ç É Ú V V f h t i (3.16)
From this point of the text, the total force over the fluid, including its acceleration, will be represented by

* + f f t ? / f i f . * + * + x k ,k k k p ; k p f ? /ı - p ? / - p f (3.17) 3.2.3. Fluid Continuity Equation
The lagrangian fluid continuity equation, neglecting a possible source of fluid is written as:

f x d 0 dt -ı © ? m M (3.18)
Applying the definition f f ? m t h and equation (3.15), another form is admitted for equation (3.18):

* + * + f f k ,k d 0 dt t h t -p ? (3.19)
The fluid mass density depends on the pressure and temperature. Considering an isothermal process, there is only the influence of pressure, which can be represented by

f f f K p t t • ? • ,
with the bulk modulus of the fluid represented by f K . The derivatives in (3.19) lead to the equation:

* + f k,k k ,k K p p h h p ? / / -p $ $ (3.20)
Inserting Darcys Law definition into equation (3.20), an function in terms of pore-pressure p is obtained:

* + f 2 k,k ,k k ,k K p k p p f h h Ç p ? / / -/ - É Ú $ $ (3.21)
The consideration of f K introduces a nonlinearity into the problem, associated with the term 2 ,k p . In the equation (3.21) this parameter is not taken into account. However, the fluid compressibility is implicitly (or partially) considered, using f K in the calculation for the mechanical properties of the material.

Equilibrium Equation

As presented in 2.8, the local equilibrium for the porous medium can be written as follows:

* + * + * + s f x s f 1 0 ı © - / / / ? n n f f t / t u i i (3.22)
From this point of the text, a simple notation will be used to represent the volume forces acting on the porous medium, with no distinction between forces in the fluid or solid phase.

This is to achieve greater clarity in the exposition of the integral formulations of the problem.

Therefore, we have the equilibrium written due to tensor b , as follows. 

* + * + X X kj k, j j,k 1 1 ; u u 2 2 V ? ı -ı g ? - u u g (3.24)
define the poro-damage problem, in a quasi-static regime.

Rates of the Variables

Given the transient nature of the problem, the following rates of the variables should be defined:

d kj kjlm lm lm kj 1 (1 D)E D bp 2 u ? / g / g / f $ $ $ $ (3.25) kj 1 Tr( ) p b M h ? g - $ $ $ (3.26) kj p Tr( ) M b h Ç ? / g É Ú $ $ $ (3.27)

INFLUENCE OF DAMAGE ON THE POROELASTIC PARAMETERS

The damage process evolution can be measured through the gradual deterioration in the mechanical properties of the solid skeleton. Thus, the mechanical parameters of the porous material, dependent on the parameters of the solid matrix, also undergo the influence of the damage. The Biot coefficient of the effective stress is defined by

d s K 1 K ? / b
(3.28) with s K as the bulk modulus of the solid constituent, with a value that is higher than the modulus d K . This latter is calculated with the values of modulus G and Poissons ratio w measured under a drained condition:

d 2G(1 ) K 3(1 2 ) -w ? / w (3.29)
Introducing the damage effect directly on the drained modulus, one obtains

d d 2G(1 ) K (D) (1 D) (1 D)K 3(1 2 ) -w ? / ? / / w (3.30)
which can be applied over time in expression (3.28). The Biot modulus M is calculated using the expression:

u d 2 K K / ? M b (3.31)
which can also be written with the damaged values. An expression to calculate the undrained modulus can be defined based on its drained equivalent [START_REF] Detournay | Fundamentals of Poroelasticity[END_REF]:

u u u 2G(1 ) K 3(1 2 ) -w ? / w (3.32)
in which Poissons undrained ratio u w is determined experimentally.

ASPECTS ON THE BOUNDARY ELEMENT METHOD

The numerical methods are alternatives for the mathematical solutions to study engineering problems. The latter are usually limited by difficulties in obtaining analytical solutions to more or less complex problems that include general geometries and non-linear behaviors.

One of the areas in engineering research is the development of suitable numerical methods to solve these problems. In the case of this work, the numerical method to be used is the boundary element method. This method applies, as the weighting function, an analytical solution of a problem that is similar to that which is sought to be resolved, but with particular boundary conditions. This function is called a fundamental solution.

When the physical properties of the domain, for which the fundamental solution was calculated, correspond exactly to the properties of the domain analyzed, it is not necessary to use any domain discretization. This usually occurs for linear problems. However, when there is some limitation in the fundamental solution, the domain discretization to consider the residual quantities is then necessary.

Nevertheless, the fact that many of the unknown variables, usually the most important, belong exclusively to the boundary, the mesh density used in the domain is considerably reduced when compared to the domain methods, as for instance the finite element method.

This section provides, in general, some principles of the method. The symbols used herein do not retain any correspondence with the variables already defined in previous chapters.

Boundary Elements and Discretization

Considering the integral formulation of a problem, written for the boundary points, its treatment depends on the clear description of this boundary. The main objective of BEM is, based on the integral formulation, the assembly of an algebraic system, which allows to directly determine the approximate boundary values and, from these, the other values of interest for the analysis. Clearly, there are endless possible equations to be written, since the integral formulation can be applied to the infinite points of the boundary of the domain or to the external points.

The equivalent representation of the boundary, in a finite dimension, is done by defining the nodes that delimit the so-called boundary elements. This boundary parametrization can result as exact or approximate, depending on the domain geometry under analysis and the type of parameterization used. Figure 3.1 illustrates the two situations, using linear elements.

Besides the geometric characterization of the element, the variables of interest to the problem must be evaluated from a finite number of values associated with the discretization nodes. It is common to use polynomial functions to interpolate the variables along the boundary elements, that is, between the discretization nodes.

Figure 3.1 Exact and Approximate Boundary Discretizations

The shape functions to approximate the boundary geometry and the variables involved can be chosen freely, depending on the type of problem studied and the required accuracy of the results. The combination of two equal interpolation functions gives rise to the isoparametric element. In this study, the linear isoparametric element is used, as illustrated below.

Figure 3.2 Linear Isoparametric Element

In which 1 l and 2 l are the functions that compose the linear distribution f ( ) z , defined on the local dimensionless coordinate [0,1] z ?

. Then, the coordinates of a point S or an unknown evaluated at this point can be written according to the same approximate form, (3.34)

The subscript m refers to the direction and n to the node considered in the element.

Based on equation (3.34), displacements and tractions on a generic element can be represented in a matrix form. For a two-dimensional problem, we have:

1 1 1 1 1 2 2 2 2 1 2 1 2 2 u u 0 0 u u 0 0 u u Ê Û Í Í l l Ê Û Ç Í Í ? ? Ë Ü Ë Ü È Ù l l Ì Ý É Ú Í Í Í Í Ì Ý u (3.35) 1 1 1 1 1 2 2 2 2 1 2 1 2 2 t t 0 0 t t 0 0 t t Ê Û Í Í l l Ê Û Ç Í Í ? ? Ë Ü Ë Ü È Ù l l Ì Ý É Ú Í Í Í Í Ì Ý t (3.36)
Similarly for the coordinates:

1 1 2 1 S f( ) 1 1 1 1 1 2 2 2 2 1 2 1 2 2 x x 0 0 x x 0 0 x x Ê Û Í Í l l Ê Û Ç Í Í ? ? Ë Ü Ë Ü È Ù l l Ì Ý É Ú Í Í Í Í Ì Ý x (3.37)
In some problems it is necessary to represent discontinuities on boundary conditions between adjacent elements. In such cases, one can apply the discontinuous element concept (Figure 3.3), together with the definition of double nodes, which are nodes with the same coordinates, but with different associated values. In order to write two different equations for these nodes, the collocation point is moved along the element axis, at a distance corresponding to 1/4 of its length, as suggested in [START_REF] Venturini | Um estudo sobre o método dos elementos de contorno e suas aplicações em problemas de engenharia. São Carlos[END_REF]. As will be seen in this section, the integrals over the domain, which are in the proposed formulation, can be subdivided into two basic classes. In the first one, the kernel, which consists of a fundamental solution or its derivatives, multiplies a term of known value over the domain (3.38), as in the case of body force integrals. Another situation is that in which the term multiplied is a system unknown, as in equation (3.39). In this section, the notations (3.39)

In the case of integrals (3.38), the objective is to transfer the domain integral to the boundary, so that it can be evaluated in the usual way, as well as the other terms over the boundary.

Let us assume the existence of a primitive of the fundamental solution:

1 1 2 1 double single 2 * ı ? L X (3.40)
The integral can then be rewritten as:

2 2 * 2 2 2 1 2 d d d x x Y Y Y Ã Ô • • Y ? ı Y ? - Y Ä Õ • • Å Ö Ð Ð Ð L L X T LT T (3.41)
Making an integration by parts, we have:

2 2 1 2 2 2 1 2 1 2 1 1 2 2 d d d x x x x x x x x Y I Y Ã Ô Ã Ô Ã Ô • • • • • • • • - Y ? j - j I / - Y Ä Õ Ä Õ Ä Õ • • • • • • • • Å Ö Å Ö Å Ö Ð Ð Ð L L L L L T L T T T (3.42)
A second integration by parts leads to

2 2 1 2 1 2 2 2 1 2 1 2 1 2 d d d x x x x x x I I Y Ã Ô Ã Ô Ã Ô • • • • • • j - j I / j - j I - - Y Ä Õ Ä Õ Ä Õ • • • • • • Å Ö Å Ö Å Ö Ð Ð Ð L L T T T T T L L (3.43)
Finally, the original integral in the domain results as:

2 2 d d d d Y I I Y Ã Ô Ã Ô • • ı © Y ? I / I -ı © Y Ä Õ Ä Õ •j •j Å Ö Å Ö Ð Ð Ð Ð L T L T T L T L (3.44)
Note that successive integrations can be made in order to cancel the remaining integral domain in the last term of the evolution. After two integrations, as shown above, it is possible to treat integrals whose term T has a constant or linear distribution, since its Laplacian is zero. This technique is known as multiple reciprocity.

One may use different methodologies to treat the type of domain terms (3.39). A semianalytical procedure to calculate these integrals is shown herein, from the definition of the variable of interest in discrete regions of the domain.

Consider a portion of the domain Y , discretized in cells m Y , as illustrated below. Approximating the value of f (q) in each cell m Y by a function l (q) l , we have:

m m l l f (q) (q)f ? l (3.45)
Thus, an integral containing the term in f (q) can be written as a sum of the integrals in each cell, for example:

cel m N * * m l m l m 1 u (S,q)f (q)d u (S,q) (q)d f ? Y Y Y ? l Y Â Ð Ð (3.46)
The integration of a domain term in the cells results in a matrix of coefficients, which represents the influence of the nodal values l f .

In this work, triangular cells with linear approximation are used for the variables. For the cells whose nodes belong to the boundary, a procedure to move the collocation point into the cell, along the corresponding bisector, is adopted.

The linear shape function is given by:

* + l 0 0 0 c 1 x y 2A l ? c -d -i (3.47) With c
A as the cell area, and the terms 0 c , 0 d and 0 i defined by cyclic notation, with i, j, k 1 3 ? @ , as follows: (3.48)

The approximations of the variables over the cell are integrated according to a semianalytical procedure, which can be found in [START_REF] Botta | Método dos Elementos de Contorno para Análise de Corpos Danificados com Ênfase no Fenômeno da Localização de Deformações[END_REF] and which is briefly described below. First, let us assume an integral domain, written as a sum of integrals over the cells:

cel m N * * m l m l m 1 u f d u d f ? Y Y Y ? l Y Â Ð Ð (3.49)
the summation is written in polar coordinates, obtaining:

cel N * m l l m 1 r u r dr d f ? s l s  РР(3.50)
Performing an analytical integration with respect to r , we arrive at the expression below. 

I is: cel m N m m l m 1 1 r d f r n ? I • Ã Ô [ I Ä Õ • Å Ö Â Ð (3.52)
Depending on the natural coordinates of the cell boundary, we obtain

cel m N m p m l m 1 1 r J d f r n ? I • [ z • Â Ð (3.53)
this expression can be integrated by any given numerical procedure.

BEM FORMULATION

Using the boundary element method requires developing the integral formulation of the problem in question. Also, it is necessary to define the fundamental solutions for the variables involved.

As already stated, the poroelastic system can be described by superposition of the fluid and solid phases. Thus, in the formulation there are equations related to the fluid pore-pressure, as well as the ones from elasto-damage problem, to which terms that reflect the effect of pore-pressures are incorporated. Thus, there is a set of integral equations that represent the coupling between the mechanical behaviors of the phases.

We seek herein to present the integral equations for both the solid and fluid phases.

Integral Formulation for the Solid Phase

Fundamental Solutions. To characterize the fundamental problem, an infinite domain * Y is considered subject to a unit force acting at point s (source point), in the direction i . The point where the effects due to that force are measured is called the field point and is represented by q . In order to represent the unit force of the fundamental problem, we consider the term k b (q) , from the equilibrium equation of elastostatics ef k kj, j b 0 u -? , as a Dirac delta distribution, weighted by a Kronnecker delta that establishes the directions i and k , as follows:

ik ik b (q) (s,q) ? f f (3.54)
The Dirac distribution, commonly used in the representation of concentrated loads in elasticity, assumes zero values or tends to infinite, as follows:

,s q (s,q) 0,s q

¢ ? Ê f ? Ë " Ì (3.55)
An important property of this function is the following:

(y) (x, y)d (y) (x) Y f Y ? Ð f f (3.56)
The equilibrium equation of elastostatics, for the purpose of a fundamental solution, can then be written as:

ef * ikj, j ik (s, q) (s, q) 0 u -f f ?

(3.57)

In which ef * ikj u is the effective stress tensor in the fundamental state. All the quantities in the text referring to the fundamental state are indicated with an asterisk ( * ).

Hookes Law, which is the constitutive relationship for only the solid phase, relates the strain tensor with the effective stress, as follows:

ef kj kjlm lm kj mm kj 2G (q) E (q) (q) 2G (q) (1 2 ) w u ? g ? f g -g / w

(3.58)

From the strain-displacement relation, Hookes Law is written in terms of displacements.

Differentiating it with respect to j

x , we obtain the first term of the equilibrium equation (3.57), which results as:

ij,kj * * ik, jj ik 1 1 u (s,q) u (s,q) (s,q) 0 1 2 G - -f f ? / w (3.59)
in which * u (s, q) represents the displacement field in the fundamental state.

The solution to equation (3.59), for the two-dimensional case is

* ik ik i ,k 1 u (s,q) (3 4 ) ln(r) r r 8 (1 )G Ç ? / / w f - É Ú r / w (3.60)
with r as the distance between the source and field points s and q , respectively.

Differentiating equation (3.60) with respect to j x , and using the strain-displacement relation, we obtain the strain tensor in the fundamental problem:

* ijk ,k ij , j ik ,i jk ,i , j ,k 1 (s,q) (1 2 )(r r ) r 2r r r 8 (1 )Gr Ç g ? / / w f -f / f - É Ú r / w (3.61)
From Hookes law, the fundamentals effective stresses can be written as follows:

ef * ijk ,k ij , j ik ,i jk ,i , j ,k 1 (s,q) (1 2 )(r r r ) 2r r r 4 (1 )r Ç u ? / / w f -f / f - É Ú r / w (3.62)
Also of interest is the fundamental solution for a Traction defined by the normal j, on a point Q of the boundary. From expression (3.62), and using Cauchys formula The total stress equation is written as

ef k jk j t (Q) (Q) ? u j (3.63) we arrive at } ' * ik ik ,i ,k , ,i k ,k i 1 t (s,q) ( 1 
d d kj kj mm ll kj kj kj 2G (s) (s) (s) 2G (s) (s) p(s) (1 2 ) b w Ç Ç u ? f g / g - g / g / f É Ú É Ú / w (3.67)
which can be written in terms of displacements:

kj kj m,m k, j j,k d d kj ll kj kj 2G (s) u (s) G u (s) u (s) (1 2 ) 2G (s) 2G (s) p(s) (1 2 ) b w Ç u ? f - - É Ú / w w / f g / g / f / w (3.68)
Applying the boundary element method to a particular body requires its equilibrium representation in the integral form, which can be obtained from weighted residual methods, defining as weighting function the fundamental solution to the basic variable of the problem.

Although the procedure via weighted residuals is well established, an alternative approach, proposed by Somigliana (1886), is used herein, based on Betti reciprocal theorem. The theorem is based on the principle of energy conservation and defines that for a solid volume V between any two states, exists the relationship:

1 2 1 2 V V
(q) (q)dV (q) (q)dV u g ? g u Ð Ð

(3.69)

It should be noted that for applying the principles of reciprocity, such as Bettis one, it is necessary that the two fields involved keep a linear and proportional relationship between them. Therefore, the theorem will be written in terms of effective stress, which is linear and proportional to the strain tensor. 

(q) (s, q)d (q) (s, q)d Y Y u g Y ? g u Y Ð Ð (3.70)
in which the definition of effective stresses can be inserted:

* + d * * kj kj kj ijk kj ijk (q) (q) p(q) (s, q)d (q) (s, q)d Y Y u -u -f g Y ? g u Y Ð Ð b (3.71)
From the strain-displacement relation, the expression (3.71) takes the form of

* + d * * kj kj kj ik, j k, j ijk (q) (q) p(q) u (s, q)d u (q) (s, q)d b Y Y u -u -f Y ? u Y Ð Ð (3.72)
Integrating it by parts, we get:

* * d * kj ik j kj, j ik kj ijk * * * kj ijk ijk k j ijk, j k (Q)u (s, Q) d (q)u (s, q)d (q) (s, q)d p(q) (s, q)d (Q)u (Q) d (q)u (s, q)d I Y Y Y I Y u j I / u Y -u g Y -f g Y ? u j I / u Y Ð Ð Ð Ð Ð Ð b (3.73)
Based on Cauchys formula, we can write

* * * k ik kj, j ik kj ijk d * * * kj ijk ik k ijk, j k T u (s, Q)d (q)u (s, q)d p(q) (s, q)d (q) (s, q)d T u (Q)d (q)u (q)d I Y Y Y I Y I / u Y -f g Y -u g Y ? I / u Y Ð Ð Ð Ð Ð Ð b (3.74)
The derivatives of the stresses that appear in the domain integrals can be replaced by the corresponding load values, according to equations (3.57) and (3.65), leading to:

* * * k ik k ik kj ijk d * * kj ijk ik k ik k T u (s, Q)d b (q)u (s, q)d p(q) (s, q)d (q) (s, q)d T u (Q)d (s, q) u (q)d I Y Y Y I Y I - Y -f g Y -u g Y ? I / f f Y Ð Ð Ð Ð Ð Ð b (3.75)
Using the Dirac delta property shown in equation (3.56), the equation above is organized as follows:

* * * i k ik ik k kj ijk d * * kj ijk k ik u (s) T (Q)u (s, Q)d T (s, Q)u (Q)d p(q) (s, q)d (q) (s, q)d b (q)u (s, q)d I I Y Y Y ? I / I -f g Y -u g Y - Y Ð Ð Ð Ð Ð (3.76)
Equation (3.76) defines the displacement field for any source point s within the domain, from the displacements and forces measured in the boundary points.

In order to use BEM, it is necessary to represent the displacement field for the points on the boundary. In this way, it is introduced a semi-circular complementary region, with radius y , around the placing point S (Figure 3.5), so that it can be treated as an internal point by the known equation (3.76). 

* * i k ik k ik ik k * * * ik k jk ijk jk ijk * * k ik k ik u (S) T (Q)u (S, Q)d T (Q)u (S, Q)d T (S, Q)u (Q)d T (S, Q)u (Q)d p(q) (S, q)d p(q) (S, q)d b (q)u (S, q)d b (q)u (S, q)d
/ I -f g Y -f g Y - Y - Y Ð Ð Ð Ð Ð Ð Ð Ð (3.77)
To characterize S as a boundary point, we evaluate the equation (3.77) considering the limit as y tends to zero. Applying the limit, the integral containing the fundamental solution * ik u over I / I is regular, however, the one that contains * ik T should be evaluated in a Cauchy principal value sense. The integrals over Y y and I y vanishe to zero, except the one that contains the displacements on the infinitesimal boundary, which has a singularity of 1 r and should be evaluated in the sense of Cauchy principal value. Thus, the Somigliana equation adapted to the boundary points results in

* * * ik k k ik ik k jk ijk d * * kj ijk k ik C u (S) T (Q)u (S, Q)d T (S, Q)u (Q)d p(q) (S, q)d (q) (S, q)d b (q)u (S, q)d I I Y Y Y ? I / I -f g Y -u g Y - Y Ð Ð Ð Ð Ð b (3.78)
The evaluation of the free-term ik C depends on the geometry of the boundary where the source point is located. Consider the possibilities of a soft boundary, defined by with a unique tangent through the point, and angular boundary (see Figure 3.6). The values are defined as: 

ik ik 1 C 2 ? f (soft) (3.79) ik cos(2 )sen( ) sen(2 )sen( ) 2 4 (1 ) 4 (1 ) C sen(2 )sen( ) cos(2 )sen( ) 4 (1 ) 2 4 (1 ) c i c i c Ç - È Ù r r / w r / w È Ù ? i c c i c È Ù / È Ù
] ̲ ij ijk k ijk k ijk k d d ijkl kl ij kl kl ijkl ij kl (s) S (s, Q)u (Q)d D (s, Q)T (Q)d D (s, q)b (q)d R (s, q) (q)d TL (s) R (s, q)p(q)d TL p(s) b b I I Y Y Y u ? / I - I - Y Ç - u Y - u -f Y - f É Ú Ð Ð Ð Ð Ð (3.
* + * + ' ijk ij ,k jk ,i ik , j ,i , j ,k 2 i , j ,k j ,i ,k k ,i , j i jk j ik k ij G r S 2 (1 2 ) r ( r r ) 4r r r 2 (1 )r n 2 r r r r (1 2 ) 2 r r (1 4 ) • Ê Ç ? / w f -w f -f / Ë É Ú r / w • Ì -w j -j -/ w j -j f -j f / / w j f (3.82) ijk ik , j jk ,i ij ,k ,i , j ,k 1 D (1 2 )( r r r ) 2r r r 4 (1 )r Ç ? / w f -f / f - É Ú r / w (3.83) ijkl il jk jl ik ij kl ij ,k ,l 2 ik , j ,l jl ,i ,k il , j ,k jk ,i ,l kl ,i , j ,i , j ,k ,l 1 R
(1 2 )( 2 r r ) 4 (1 )r 2 ( r r r r r r r r ) 2 r r 8r r r r

Ç ? / w f f -f f / f f -f É r / w -w f -f -f -f -f / Ú (3.84)
and the free terms are written as: It should be noted that the use of this proportional flow is associated to considering a homogeneous transport law, with the constant permeability coefficient k , for the sake of simplicity.

] ̲ ] ̲ } ' ij kl ij ij 1 TL p(s) 2 p(s) (1 4 ) 2p(s) 8(1 ) Ç f ? / f -f / w É Ú / w b (3.85) } ' d d d ij kl ij ij mm 1 TL (s) 2 (s) ( 1 
The reciprocity law is written as:

pr * * k ,k k ,k (q)p (s,q)d (s,q)p (q)d Y Y p Y ? p Y Ð Ð (3.92)
replacing the definition of the proportional flow, we have

] ̲ * * k k ,k k ,k k p (s, q)d (s, q)p (q)d f Y Y p / Y ? p Y Ð Ð (3.93)
in which proceeding the integration by parts, the following expression is reached:

* * * k k k k k,k * * k,k ,k k p (s, Q) (Q) d (s, Q)p(Q) d p (s, q) (q)d (s, q)p(q)d p (s, q)k (q)d 0 f I I Y I Y p j I / p j I / p Y -p I / Y ? Ð Ð Ð Ð Ð (3.94)
Considering the identity * k,k (s,q) p ? /f , and Diracs delta property given in (3.56), the integral equation of the pore-pressures is reached: 

* * * * k,k ,k k c(s)p(s) (s, Q)p(Q)d p (s, Q) (Q)d p (s, q) (q)d p (s, q)k (q)d I I Y Y ? / I - I / p Y / Y p p Ð Ð Ð Ð f (3.95)
* * * * k ,k c(s)p(s) (s, Q)p(Q)d p (s, Q) (Q)d p (s, q) (q)d k (q)p (s, q)d h I I Y Y ? / I - I - Y / Y p p Ð Ð Ð Ð $ f (3.97)
The term c(s) depends on the position of the source point s .

For sake of convenience, the problem is formulated in terms of the variables kj 

* + * * * * k ,k c(s)p(s) (s, Q)p(Q)d p (s, Q) (Q)d 1 p (s, q) p(q) Tr (q) d k (q)p (s, q)d I I Y Y ? / I - I Ç - - Y / Y È Ù É Ú p p Ð Ð Ð Ð $ $ b f M g
(3.100)

Time-dependent Integral Formulation

The system that defines the pore-damage problem is formed by equations (3.78), (3.81) and

(3.100). From this point on, the volume forces acting on the solid matrix and on the fluid are disregarded. Considering the transient nature of the problem, which is governed by the evolution of different variables over time, it is necessary to write the equations in rates, then we have: 

* * * ik k k ik ik k jk ijk d * jk ijk C u (S) T (Q)u (S, Q)d T (S, Q)u (Q)d p(q) (S, q)d (q) (S, q)d b I I Y Y ? I / I -f g Y -u g Y Ð Ð Ð Ð $ $ $ $ $ (3.101) ] ̲ d ij ijk k ijk k ijkl kl d ij kl kl ijkl ij kl (s) S (s, Q)u (Q)d D (s, Q)T (Q)d R (s, q) (q)d TL (s) R (s, q)p(q)d TL p(s) b b I I Y Y u ? / I - I - u Y Ç - u -f Y - f É Ú Ð Ð Ð Ð $ $ $ $ $ $ $ (3.102) * + * * * * c(s)p(s) (s, Q)p(Q)d p (s, Q) (Q)d 1 p (s, q)p(q)d p (s, q)Tr (q) d I I Y Y ? / I - I - Y - Y p p Ð Ð Ð Ð $ $ b M g (3.103)
(Q)u (S, Q)d dt T (S, Q)u (Q)d dt p(q) (S, q)d dt (q) (S, q)d dt b I I Y Y ? I / I - f g Y - u g Y Ð Ð Ð Ð Ð Ð Ð Ð Ð $ $ $ $ $ (3.104) ] ̲ 2 2 2 1 1 1 2 2 1 1 2 2 1 1 t t t ij ijk k ijk k t t t t t d d ijkl kl ij kl t t t t kl ijkl ij kl t t (s)dt S (s, Q)u (Q)d dt D (s, Q)T (Q)d dt R (s, q) (q)d dt TL (s) dt R (s, q)p(q)d dt TL p(s) dt b b I I Y Y u ? / I - I Ç - u Y - u É Ú - f Y - f Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð $ $ $ $ $ $ $ (3.105) * + 2 2 2 1 1 1 2 2 1 1 t t t * * t t t t t * * t t c(s) p(s)dt (s, Q)p(Q)d dt p (s, Q) (Q)d dt 1 p (s, q)p(q)d dt p (s, q)Tr (q) d dt I I Y Y ? / I - I - Y - Y p p Ð Ð Ð Ð Ð Ð Ð Ð Ð $ $ b M g (3.106)
C u (S) T (Q)u (S, Q)d T (S, Q) u (Q)d p(q) (S, q)d (q) (S, q)d b I I Y Y F ? F I / F I -f F g Y -Fu g Y Ð Ð Ð Ð (3.107) ] ̲ d ij ijk k ijk k ijkl kl d ij kl kl ijkl ij kl (s) S (s, Q) u (Q)d D (s, Q) T (Q)d R (s, q) (q)d TL (s) R (s, q) p(q)d TL p(s) b b I I Y Y Fu ? / F I - F I - Fu Y Ç - Fu -f F Y - f F É Ú Ð Ð Ð Ð (3.108) * + * * * * c(s)p(s) (s, Q)p(Q)d p (s, Q) (Q)d 1 1 1 p (s, q) p(q)d p (s, q)Tr (q) d t t I I Y Y ? / I - I - F Y - F Y F F p p Ð Ð Ð Ð b M g (3.109)
This system of equations results nonlinear, due to the presence of the damage correction term, which is calculated at each increment.

Algebraic System

For purposes of using the Boundary Element Method, the system presented above must be discretized, in order to obtain the approximate values of the variables in question at the boundary points and inside the domain.

Based on the concepts presented in the previous section, concerning the Boundary Element 

C u (S) u (S, Q) (Q) T d T (S, Q) (Q) u d (S, q) (q) p d (S, q) (q) d b ? ? I I ? ? Y Y F ? l F I / l F I - g l f F Y - g l Fu Y Â Â Ð Ð Â Â Ð Ð (3.
N n s kl ijkl n c ij kl c 1 (s) S (s, Q) (Q) u d D (s, Q) (Q) T d R (s, q) (q) d TL R (s, q) (q) p d TL p b b ? ? I I ? Y ? Y Fu ? / l F I - l F I Ç - l Fu Y - Fu É Ú Ç - f l F Y - f F É Ú Â Â Ð Ð Â Ð Â Ð ( 
c(s)p(s) (s, Q) (Q)p d p (s, Q) (Q) d 1 1 1 p (s, q) (q) p d p (s, q) (q)Tr d t t ? ? I I ? ? Y Y ? / l I - l I - l F Y - l F Y F F p p   РР  РРb M g (3.112)
The indices e and c are associated with the boundary elements and internal cells, respectively, so that 

] ̲ } ' ] ̲ } ' ] ̲ } ' ] ̲ ] ̲} ' n n n n n n n i n i i i i i d (i) 2N ,1 2N ,1 2N ,2 N 2 N ,2N 2N ,3N 2N ,3N 3N ,N N ,1 3N ,1 H u G T Q Q IK p F ? F - Fu - F b (3.113) Matrix ] ̲
IK corresponds to the Kronnecker delta.

The stress equations (3.111) give rise to i 3N algebraic equations, as follows:

} ' ] ̲ } ' ] ̲ } ' ] ̲} ' ] ̲ ] ̲} ' i n n i n i n i i i i i i i i d (i) 3N ,1 2N ,1 2N ,1 3N ,2N 3N ,2 N 3N ,3N 3N ,3N 3N ,N N ,1 3N ,1 HL u GL T QL QL IK p Fu ? / F - F - Fu - F b (3.114)
Additionally, i 2N equations of displacements in the internal points are written as:

} ' } ' } ' } ' ] ̲} ' n n i i i i n i n i i i i i i d (i) (i) (i) (i) (i) (i) 2N ,1 2N ,1 3N ,N 2 N ,1 2 N ,2 N 2N ,2N 2N ,3N 2N ,3N N ,1 3N ,1 u H u G T Q Q IK p Ç Ç Ç Ç F ? / F - F - Fu - F É Ú É Ú É Ú É Ú b (3.115)
With the inclusion of boundary conditions referring to } ' u F and } ' T F , it is convenient to rearrange the matrix of the three equations, so that the unknown and prescribed values are isolated. Rearranging the matrices columns, the equations can be rewritten as: 

] ̲ } ' } ' ] ̲ } ' ] ̲ ] ̲} ' n n n n n i n i i i i i d (i) 2N ,1 2N ,1 2N ,2N 2N ,3N 2N ,3N 3N ,N N ,1 3N ,1 A xu yu Q Q IK p F ? F - Fu - F b (3.116) } ' ] ̲ } ' } ' ] ̲} ' ] ̲ ] ̲} ' i n i i n i i i i i i i i d (i) 3N ,1 2N ,1 3N ,1 3N ,2N 3N ,3N 3N ,3N 3N ,N N ,1 3N ,1 AL xu ys QL QL IK p Fu ? / F -F - Fu - F b (3.117) } ' } ' } ' } ' ] ̲} ' n i i i i n i i i i i i i d (i) (i) (i) (i) (i) (i) 2 N ,1 3N ,N 2N ,1 2N ,2N 2N ,1 2N ,3N 2 N ,3N N ,1 3N ,1 u A xu yu Q Q IK p Ç Ç Ç F ? / F -F - Fu - F É Ú É Ú É Ú b (3.118)
} ' ] ̲ } ' ] ̲ ] ̲ } ' ] ̲ ] ̲ ] ̲} ' n n n n n n n i n n n i i i i i 1 1 1 d (i) 2 N ,1 2 N ,1 2 N ,2 N 2 N ,2 N 2 N ,3N 2 N ,2 N 2 N ,3N 3N ,N N ,1 3N ,1 xu A yu A Q A Q IK p / / / F ? F - Fu - F b (3.119)
which can be replaced in the other two equations, resulting in:

} ' ] ̲ ] ̲ } ' } ' ] ̲ ] ̲ ] ̲ ] ̲ } ' ] ̲ ] ̲ ] ̲ ] ̲ ] ̲} ' i n i i n n n i n n n n i i i i i n n n n i i i i i i 1 1 d 3N ,1 2N ,1 3N ,1 3N ,2N 2N ,2N 3N ,2N 2 N ,2N 2N ,3N 3N ,3N 3N ,1 1 (i) 3N ,2N 2N ,2N 2N ,3N 3N ,3N 3N ,N N ,1 AL A yu ys AL A Q QL AL A Q QL IK p / / / Ç Fu ? / F -F / / Fu È Ù É Ú Ç / / F È Ù É Ú b (3.120) } ' ] ̲ } ' } ' ] ̲ ] ̲ } ' ] ̲ ] ̲ ] ̲} ' n n n n n n i i i n i i n i i i n n n i i i i n i i i 1 1 d (i) (i) (i) (i) (i) 2N ,1 2N ,2N 2N ,2N 2N ,3N 2N ,1 2N ,2N 2N ,1 2N ,2 N 2N ,3N 3N ,1 1 (i) (i) (i) 2N ,2N 2N ,3N 3N ,N 2N ,2N 2 N ,3N N ,1 u A A yu yu A A Q Q A A Q Q IK p / / / Ç Ç Ç Ç F ? / F -F / / Fu È Ù É Ú É Ú É Ú È Ù É Ú Ç Ç Ç / / F È Ù É Ú É Ú È Ù É Ú b (3.121)
Simplifying equation (3.120), we obtain:

} ' } ' ] ̲} ' ] ̲ ] ̲} ' i i i i i i i i i i d (i) 3N ,1 3N ,1 3N ,3N 3N ,3N 3N ,N N ,1 3N ,1 Ns QS QS IK p Fu ? F - Fu - F b (3.122)
whose terms are: 

} ' ] ̲ ] ̲ } ' } ' ] ̲ ] ̲ ] ̲ ] ̲ ] ̲ i n i i n n n i i i n n n n i i i 1 3N ,1 2N ,1 3N ,1 3N ,2 N 2N ,2N 1 3N ,3N 3N ,2 N 2 N ,2 N 2 N ,
] ̲} ' ] ̲} ' ] ̲} ' ] ̲] ̲} ' n n i n n n n n i n i i i i (i) N ,1 N ,1 3N ,1 N ,N N ,N N ,N N ,N N ,3N N ,1 1 HP p GP V QP p QP Tr t t ? - F - Fg F F b M (3.124)
and for internal points,

} ' } ' } ' } ' ] ̲} ' n n i i i i i n i n i i i i i (i) (i) (i) (i) (i) (i) N ,1 N ,1 3N ,1 N ,3N N ,1 N ,N N ,N N ,N N ,1 N ,N 1 p HP p GP V QP p QP Tr t t Ç Ç Ç Ç ? / - - F - Fg É Ú É Ú É Ú É Ú F F b M (3.125) matrix ] ̲
Tr plays as the operator trace of a tensor.

Rearranging the columns of ] ̲

HP and ] ̲

GP in (3.124) and of

(i) HP Ç É Ú and (i) GP Ç É Ú in (3.125), leads to: ] ̲} ' } ' ] ̲} ' ] ̲] ̲} ' n n i n n n i n i i i i (i) N ,1 N ,1 3N ,1 N ,N N ,N N ,N N ,3N N ,1 1 AP xp yp QP p QP Tr t t ? - F - Fg F F b M (3.126) } ' } ' } ' } ' ] ̲} ' n i i i i i n i i i i i i (i) (i) (i) (i) (i) (i) N ,1 3N ,1 N ,3N N ,1 N ,N N ,1 N ,N N ,1 N ,N 1 p AP xp yp QP p QP Tr t t Ç Ç Ç ? / - - F - Fg É Ú É Ú É Ú F F b M
(3.127)

The vector ] ̲ xp can then be written as

} ' ] ̲ } ' ] ̲ ] ̲} ' ] ̲ ] ̲] ̲} ' n n i n n n n n i n n n i i i i 1 1 1 (i) N ,1 N ,1 3N ,1 N ,N N ,N N ,N N ,N N ,N N ,3N N ,1 1 xp AP yp AP QP p AP QP Tr t t / / / ? - F - Fg F F b M (3.128)
being replaced in the pore-pressure equation at the internal points (3.127):

} ' ] ̲ } ' ] ̲ ] ̲ } ' ] ̲ ] ̲ ] ̲} ' } ' n n n n n n i i i n i n i i i i n n n i i i i n i i i 1 1 (i) (i) (i) (i) (i) N ,1 N ,N N ,N N ,N N ,1 N ,N N ,N N ,N N ,1 1 (i) (i) (i) 3N ,1 N ,N N ,N N ,3N N ,N N ,N N ,1 1 p AP AP yp AP AP QP QP p t AP AP QP QP Tr yp t / / / Ç Ç Ç Ç ? / - / - F È Ù É Ú É Ú É Ú F È Ù É Ú Ç Ç Ç - / - Fg - È Ù É Ú É Ú F È Ù É Ú M b (3.129)
The condensation of the terms in equation (3.129) allows writing:

} ' } ' } ' ] ̲} ' i i i i i i i i i i (i) (i) (i) N ,1 N ,1 N ,1 N ,N (i) 3N ,1 N ,3N N ,N 1 p Np QP p t QP Tr t Ç ? - F É Ú F Ç - Fg É Ú F M b (3.130) with: } ' ] ̲ } ' } ' } ' ] ̲ ] ̲ i n n n i n i n n n i i n i i i i 1 (i) (i) N ,1 N ,1 N ,N N ,N N ,1 1 (i) (i) (i) N ,N N ,N N ,N N ,N N ,N Np AP AP yp yp QP AP AP QP QP / / Ç ? / - É Ú Ç Ç ? / - É Ú É Ú (3.131)
Thus, the poro-damage problem is defined by equations (3.122) and (3.130). Based on these, it is appropriate to explain the unknowns Fg and

p F , in order to condense the system into a single equation, which will done to follow.

The stress tensor of the problem, written algebraically in rates, is given by

} ' ] ̲ } ' ] ̲ ] ̲ ] ̲ ] ̲ } ' i i i i i i i i i i i i (i) 3N ,1 3N ,1 3N ,3N 3N ,3N 3N ,3N 3N ,1 3N ,N N ,1 E D E IK p Fu ? Fg / Fg / F b (3.132)
which is modified by defining the stress associated with damage:

} ' ] ̲ } ' } ' ] ̲ } ' i i i i i i i i d (i) 3N ,1 3N ,1 3N ,3N 3N ,N N ,1 3N ,1 E IK p Fu ? Fg / Fu / F b (3.133) Replacing this in (3.122) leads to ] ̲ } ' } ' ] ̲ ] ̲ } ' ] ̲ ] ̲ ] ̲} ' i i i i i i i i i i i i i i i i d (i) 3N ,1 3N ,1 3N ,3N 3N ,3N 3N ,3N 3N ,3N 3N ,3N 3N ,N N ,1 3N ,1 E Ns QS I QS I IK p b Ç Ç Fg ? F - - Fu - - F È Ù È Ù É Ú É Ú (3.134) the simplification ] ̲ ] ̲ i i i i i i 3N ,3N 3N ,3N 3N ,3N QS QS I Ç Ç ? - È Ù É Ú É Ú is introduced.
Using the time discretization, the equation of the fluid (3.130) takes the following form.

} ' } ' } ' ] ̲} ' (i) (i) (i) (i) n n n n n n 1 p Np QP p QP Tr t t Ç Ç ? - F - Fg É Ú É Ú F F b M (3.135)
The pore-pressure value in the previous step } ' (i) n 1 p / can be subtracted, on both sides of the equation:

} ' } ' } ' } ' } ' ] ̲} ' (i) (i) (i) n n n 1 n 1 (i) (i) (i) n n n n p p Np p 1 QP p QP Tr t t / / / ? / Ç Ç - F - Fg É Ú É Ú F F b M (3.136)
which allows to express the unknown of interest

(i) p F , as shown below: } ' } ' } ' ] ̲} ' i i i i i i i i i i (i) (i) (i) (i) 3N ,1 N ,3N N ,1 N ,1 N ,N N ,N N ,1 1 p Np QP p QP Tr t t Ç Ç F ? - F - Fg É Ú É Ú F F b M (3.137) being } ' } ' } ' i i i (i) N ,1 N ,1 N ,1 n 1 Np Np p / Ê Û Í Í ? / Ë Ü Í Í Ì Ý .
Rearranging equation (3.137), we arrive at:

] ̲ } ' } ' ] ̲} ' i i i i i i i i i (i) (i) (i) 3N ,1 N ,3N N ,1 N ,N N ,N N ,1 1 I QP p Np QP Tr t t Ç Ç Ç / F ? - Fg È Ù É Ú É Ú F F È Ù É Ú b M (3.138)
Finally, the system is composed by equations (3.134) and (3.138). It may be appropriate to formulate the problem in terms of a single equation, depending only on Fg and d Fu .

Substituting the definition of

(i) p F in (3.134). ] ̲ } ' } ' } ' i i i i i i i i d 3N ,1 3N ,1 3N ,1 3N ,3N 3N ,3N 3N ,1 E Ns Np QS Ç Ç Fg ? F - - Fu É Ú É Ú (3.139)
with the condensed terms defined below:

} ' ] ̲ ] ̲ } ' ] ̲ ] ̲ ] ̲ ] ̲ i i i i i i i i i i i i i i i i i i i i i i 1 (i) 3N ,N 3N ,3N N ,N N ,1 3N ,1 1 (i) (i) 3N ,3N 3N ,N N ,3N 3N ,3N 3N ,3N N ,N N ,N 1 Np QS IK I QP Np t 1 E E QS IK I QP QP Tr t t / / Ç Ç Ç ? / È Ù É Ú É Ú F È Ù É Ú Ç Ç È Ù Ç Ç Ç Ç ? / / È Ù É Ú É Ú É Ú É Ú È Ù F F È Ù É Ú É Ú 2 b M b M
(3.140) 3.5.5. Solution Procedure Equation (3.139) represents the balance of the body under analysis, also implicitly considering the compatibility conditions of the problem. The equation is written in terms of the rates of the variables involved, which should be evaluated over time t , by an incremental schema in terms of t F . Due to the presence of the correction terms associated with damage, the equation is non-linear at each increment t F . Thus, it is used an incremental-iterative solution procedure, based on a Newton-Raphson technique. It basically consists of successive prediction and correction stages, which aim to verify, in an approximate way, the body equilibrium in a time step:

} ' * + } ' } ' } ' } ' } ' i i i i i i i i d n n n 3N ,1 3N ,1 3N ,1 3N ,3N 3N ,3N 3N ,1 Y E Ns Np QS 0 Ç Ç Fg ? / Fg -F - - Fu ? É Ú É Ú (3.141)
Let us define the strain increment, for an iteration i +1, in the form:

} ' } ' } ' i 1 i i n n n - Fg ? Fg -fFg (3.142) The evaluation of } ' i n
fFg is done through a Taylor expansion about

} ' * + } ' i n Y Fg in equation
(3.141), truncated at the first-order term, in other words:

} ' * + } ' } ' * + } ' } ' } ' i n i i n n i n Y Y 0 • Fg Fg - fFg ? • Fg (3.143)
Calculating the first variation, we obtain

} ' * + } ' } ' } ' } ' i di n n i i n n Y E QS • Fg • Fu Ç Ç ? / - É Ú É Ú • Fg • Fg (3.144)
which allows writing the expansion (3.143) as follows:

} ' * + } ' } ' } ' } ' d i n i i n n i n Y E QS 0 • Fu Ç Ç Fg ? / fFg ? É Ú É Ú • Fg (3.145)
The matrix that multiplies } ' i n fFg is called consistent tangent operator. Usually, this is written with respect to i n

Fu . We decided to keep it explicitly written as a function of di n

Fu , which does not alter in any way its role in the equilibrium equation.

It can be seen that this operator contains the derivatives with respect to the strain increment

} ' } ' d i n i n
• Fu

• Fg

, and thus consistent with the algorithm of the problem, incremental in nature. This operator degenerates into a continuous tangent operator if

0 Fg › is considered, resulting in } ' } ' d i n i n • u • g .
Deduction of the Consistent Tangent Operator. From the incremental form of the constitutive damage model, the derivative of damage stress with respect to the strain increment can be obtained, as described below.

Let the total stress rate, written in algebraic form, be given by

} ' ] ̲} ' ] ̲} ' ] ̲} ' (i) (1 D) E D E IK p u ? / g / g / $ $ $ $ b (3.146)
from which the stress increment in n is defined as:

} ' ] ̲} ' ] ̲} ' ] ̲} ' ] ̲} ' n n n 1 n n 1 n n E D E E D IK p - - Fu ? Fg / Fg / g F / F b (3.147)
Considering an evolution in a finite step governed by

n +1 n ( ) = F ' ' / ' , we have: } ' ] ̲} ' ] ̲} ' ] ̲} ' ] ̲} ' n n n n n n n n n E (D D ) E E D IK p Fu ? Fg / -F Fg / g -Fg F / F b (3.148)
in which one can identify the increment of the stress associated to damage:

} ' ] ̲} ' } ' ] ̲} ' d n n n n E IK p Fu ? Fg / Fu / F b (3.149) } ' ] ̲} ' ] ̲ ] ̲ d n n n n n n n D E D E 2 D E Fu ? Fg -F g -F Fg (3.150)
The differentiation of (3.150) with respect to the strain increment leads to:

} ' } ' ] ̲ ] ̲ } ' ] ̲ ] ̲ } ' d n n n n n n n n n n D D D E E 2 D E 2 E • Fu •F •F ? - g -F - Fg • Fg • Fg • Fg (3.151)
The definition of n D F is obtained directly from the incremental equations obtained from Marigos model (1981). The damage evolution is defined by equation D ? $ $ Y A , which can be written as follows:

n n D F F ? Y A (3.152)
The increment of the thermodynamic force associated to damage can be calculated by the

variation n n 1 n - F ? / Y Y
Y , which leads to the following expression:

} '] ̲} ' } '] ̲} ' n n 1 n 1 n n 1 1 E E 2 2 - - F ? g g / g g Y (3.153)
whose expansion leads to the following result:

} '] ̲} ' } '] ̲} ' } '] ̲} ' n n n n n n n 1 1 1 E E E 2 2 2 F ? g Fg -Fg g -Fg Fg Y (3.154)
Considering the symmetry of the elastic tensor, due to isotropy, allows writing:

} '] ̲} ' } '] ̲} ' n n n n n 1 E E 2 F ? g Fg -Fg Fg Y (3.155)
The increment of the damage variable is then defined by (3.152), and its derivative with respect to n Fg is:

} ' ] ̲ } ' } ' * + n n n n D 1 E •F ? g -Fg • Fg A (3.156)
Thus, the difference in (3.151) can be explained as:

} ' } ' ] ̲ ] ̲ ] ̲} '] ̲} ' ] ̲} '] ̲} ' ] ̲} '] ̲} ' d n n n n n n n n n n 1 D E 2 D E E E 3 2 E E E E • Fu ? -F - g g • Fg - g Fg - Fg Fg A A A
(3.157) 3.5.6. Algorithm to Evaluate the Damage Level

The incremental-iterative procedure seeks, at every step of the analysis, a configuration in equilibrium with the damage level calculated in this step. In the case of the coupled model proposed herein, an analysis step of the damage model can be taken to correspond to a time step of the poroelastic problem, if deemed appropriate.

The algorithm calculates the variables in n +1 considering their known values from the previous step n . The variable that controls the algorithm is the strain increment } ' n Fg and, consequently, the strain in the current step}

' n 1 - g .
Table 3.1 Algorithm to evaluate the damage level

I. ELASTIC PREDICTION calculates } ' 1 n fFg } ' } ' * + } ' } ' } ' * + } ' 1 1 n 1 1 n n 1 n Y Y / Ã Ô • Fg Ä Õ fFg ? / Fg Ä Õ • Fg Ä Õ Å Ö from } ' * + } ' } ' } ' } ' 1 d n n 1 n n Y E QS • Fg • u Ç Ç ? / - É Ú É Ú • g • Fg , } ' * + } ' } ' } ' 1 n Y Ns Np Fg ? F - updates } ' 1 n Fg , } ' 1 n 1 - g II. DAMAGE MODEL VERIFICATION calculates n 1 F - n 1 n 1 0 n D F Y Y A - - ? / / tests if n 1 0 F -~n D 0 F ? if n 1 0 F -@ calculates n D F from * + n 1 n 1 0 n n D D 0 F Y Y A - - ? / / -F ? updates } ' d n Fu (3.150) III. EQUILIBRIUM VERIFICATION tests if } ' * + } ' n Y tol Fg ~(3.141) updates n 1 D -, } ' d n 1 - u , } ' n 1 - u end of step n +1 goes to I if } ' * + } ' n Y tol Fg @ (3.141) goes to IV IV. CORRECTION calculates } ' i 1 n - fFg } ' } ' * + } ' } ' } ' * + } ' 1 i 1 n i 1 i 1 n n i 1 n Y Y / - - - - Ã Ô • Fg Ä Õ fFg ? / Fg Ä Õ • Fg Ä Õ Å Ö from } ' * + } ' } ' } ' } ' i 1 di 1 n n i 1 i 1 n n Y E QS - - - - • Fg • Fu Ç Ç ? / - É Ú É Ú • Fg • Fg } ' * + } ' i 1 n Y - Fg (3.141) updates } ' i 1 n - Fg , } ' i 1 n 1 - - g goes to II
Chapter 4

Numerical Examples

OVERALL CONSIDERATIONS

This chapter presents some applications for the formulations developed and implemented computationally. First, some examples on poroelasticity and elasticity with damage are examined in order to validate the implementation carried out for the uncoupled problems.

Section 4.4 addresses the coupled problem, which is the objective of this work. It should be mentioned that this formulation was implemented in FORTRAN AE .

LINEAR POROELASTICITY EXAMPLES

The poroelastic model implemented in this work is applied to the analysis of classical problems of soil and rock mechanics with known analytical solution, in order to validate its operation. A verification of the model response under different loading conditions is also conducted.

One-dimensional Consolidation

Let us consider the classic problem of one-dimensional consolidation proposed by Terzaghi, which consists of a soil column on a rigid impermeable base (Figure 4.1). A constant heaviside-type unit load is applied to the upper drainage surface and maintained for 100 s.

Take a column of 10 m in height, consisting of Berea sandstone, completely saturated by water. The material parameters are defined in [START_REF] Detournay | Fundamentals of Poroelasticity[END_REF]. The discretization of the problem includes 60 boundary elements and 40 domain cells. 

Plane Consolidation

The problem consists of a semi-infinite plane, saturated by water, subject to a uniform load strip of width 2a. Due to the symmetry of the problem, only half of the domain is analyzed, as shown in Figure 4.6. 34 boundary elements are used, of which 12 are on the symmetry axis, and 161 cells. The loading is applied according to a heaviside function, at t=0, and maintained for 100 s. An analytical solution was proposed in [START_REF] Schiffman | An Analysis of Consolidation Theory[END_REF], in terms of an adjusted time factor, and of the dimensionless values of pore-pressure and total and effective stresses in both coordinate directions: Also during the early-time response, the occurrence of the Mandel-Cryer effect [START_REF] Mandel | Etude mathématique de la consolidation des sols[END_REF](Mandel, , 1953;;[START_REF] Cryer | A comparison of the three-dimensional consolidation theories of Biot and Terzaghi[END_REF] apud [START_REF] Schiffman | An Analysis of Consolidation Theory[END_REF] should be noted, characterized by an increased pore-pressure level, over the initial value. At this stage, the areas next to the surface are quickly drained, undergoing increase in the strain fields and effective stresses. Next are the response in displacement, effective stress and pore-pressure for the whole domain of the problem. In order to illustrate the distribution of these variables on the domain over time, take hypothetical values for some input parameters of the problem, as follows: Table 4.2 -Hypothetical parameters adopted in example 4. Note that the pore-pressure levels tend to remain close to zero in the region close to the draining surface, in agreement with the pore-pressure concept placed here, which is related to the differential pressure value compared to the ambient pressure.

f (1 ) 2Gk t ( 1 
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Notice that the poroelasticity formulation is not sensitive to the time step adopted. Choosing smaller increments only depends on the interest in quantifying the variables in the initial analysis times. However, this discretization over time does not influence the stability of the response. This confirms the fact that the poroelastic problem can be interpreted as a usual elastic problem, to which additional stiffness and damping are incorporated due to the presence of the fluid phase. This time discretization independence is verified under any loading conditions, either instantaneous or time-distributed, which will be presented in the following Section. The problem of poroelastic column is taken up with a load applied over 1 s, 10 s and 100 s, which is the total time of analysis. According to section 4.2.1, under the instantaneous loading condition, this time is sufficient to dissipate the pore-pressures and for the effective stress to reach its final value, equal to the total stress applied, over the entire domain. Figure 4.11 shows the responses for the different loading application times, compared with the instantaneous application case, at a point at the base of the column.

For the non-instantaneous loadings, the initial values of pore-pressure and effective stress are zero. For loading cases over 1 to 10 s, these values evolve over time, tending to the response for instantaneous loading. However, this is not true for the load distributed over the total time of 100s. In this situation, at the end of the loading process, the drainage is not yet completed, therefore there is residual pore-pressure along the column height, and the effective stress levels have not reached the value of the applied load, as shown in Figure 4.12. This behavior occurs regardless of the applied load value, of the application time or the permeability coefficient of the medium. The level of residual pore-pressure along the column is directly proportional to its height and inversely proportional to the time of application. when there is a change in the sign of the applied displacement, the damage variable evolves.

In the unloading cycles, the damage level remains stable.

Solid with Defect under Uniaxial Tension

The rectangular domain shown in Figure 4.20, which has 150 mm in width and 10 mm in height, is subjected to a horizontal displacement of 0.1 mm at its ends. The constituent material has a linear elastic behavior, except for the central region, 30 mm wide, whose material obeys the isotropic damage law. Table 4.3 presents the material parameters. This is a problem in which the phenomenon of localization occurs due to the presence of the defect. The discretization is performed with 64 boundary elements and 60 cells. As indicated in green in Figure 4.21, from the peak of the stress-strain curve related to the fault, an unloading process begins in the elastic region. This region is proportionally relieved, as the strains in the central defect grow governed by the occurrence of damage.

The loss of convergence of the algorithm can be associated with the localization occurrence, which was intentionally induced in this example, by the introduction of a weak region. Using the expressions proposed in Section 3.3, the influence of the material damage level in these parameters is evaluated. The re-analysis of the problem of column was carried out, taking into account the evolution of Biot parameters over the analysis. It was found that, for the levels of applied loads, with which about 30% of damage was reached, the response of the problem was not significantly affected.

In order to understand the small influence of this updating of Biot parameters over the damage process in the column response, a limiting case is regarded. Let us assume the values b=0.842 and M=7500 MPa, which are the critical values calculated (see Figure 4.32), as the fixed parameters for the whole domain. The analysis of the problem on the simple poroelastic regime, with monotonic loading, leads to conclude that the problem is in fact not The analyses presented from this point forward include the updating of poroelastic parameters according to the damage state, along the time.

Analysis of the problem under undrained conditions. Now the analysis of the problem initially presented is proposed, impeding the fluid flow at the top of the column, that is, under undrained conditions. In this situation, regardless of the behavior adopted for the material, the response is uniform throughout the domain.

This type of boundary condition corresponds to the situation in which one can rely on the fluid stiffness throughout the whole loading process.

Considering Figure 4.34, in which the evolution of vertical strains in the column is exhibited, it can be seen that the problem in the porodamage regime is developed up to the end of the 200 s analysis. That is, the critical load defined by the damage model was not reached. The poroelastic response in the presence of damage is significantly defined by the diffusion process, under this fluid containment condition inside the body. A second problem concerning to a deep foundation structure dug in Berea sandstone is also analyzed in order to compare the responses of rock mass in both situations. It is assumed that a single pile transmits the loading at 10 m deep. Analogously to the shallow foundation problem, the simulation is carried out over the half-space, due to the simmetry. A linear poroelastic modelling provides good results for the pore-pressure variation and accurately assesses the displacements in a porous medium, under instantaneous loading conditions. However, as shown in experimental studies of rocks and soils, in a loading condition over time (monotonic), the stress-strain relationship is not well represented in the linear poroelasticity theory. Thus, the interest arises to incorporate models of plasticity and/or damage on the poroelastic formulation.

A boundary element method formulation for the analysis of saturated porous media subject to an isotropic damage process was presented. Considering the abundant number of experimental and theoretical studies on the subject, it is understood that one of the contributions of this work was to develop a computational tool that can be applied to the simulation of various engineering problems.

The results show that the presence of fluid in a porous solid matrix subject to damage induces a degree of delay and attenuation in the evolution of the degradation levels.

However, considering the damage occurrence in the solid skeleton of the poroelastic problem substantiates increasing the pore-pressure values.

In this study, the damage process in the porous medium was dealt with in a simplistic way, in order to safely perform the coupling technique. Thus, the procedure of how to carry out the coupling between models for poroelasticity and isotropic damage in a BEM formulation was accurately illustrated.

According to the literature, the damage occurs quite differently in various porous materials.

For future works, studies on specific classes of materials are indicated, in order to better understand the mechanisms of deformation and rupture of these materials, adopting or proposing suitable nonlinear constitutive models. Throughout this text, some works that can serve as a basis for this purpose were listed, especially those relating to the experimental behavior of soils and rocks.

One of the important features to be explored is the variation of permeability observed during the occurrence of damage. Therefore, another line to be explored in future initiatives is the detailed study and implementation of evolution laws for permeability based on experimental results, giving rise to more complete coupled poro-damage models.

It should be noted that the code generated indicates interesting applications, such as the analysis of the mechanical behavior of building foundations, which are influenced not only by the stiffness of the skeleton, but also by the permeability of the support medium (soil or rock).

Figure 2 . 1

 21 Figure 2.1 Definition of the porous medium by the superposition of the fluid and solid phases

  represent the amount of linear momentum balance respectively related to the particles of the skeleton and the fluid contained in t dY . It is considered that the external forces act on all the matter contained in t Y , without any distinction between fluid and skeleton. Note the role of particle derivatives d dt r , which incorporate the effects of the different motions of the solid and fluid particles in the change of the global momentum balance.

  momentum balance, one can arrive at a definition of the stress tensor u . Let us assume an infinitesimal tetrahedron (Figure 2.4), whose three sides j dS are parallel to the plans coordinated and guided by j /e . The surfaces j dS are related to the surface base area dS of the normal n : j j j

Figure 2

 2 Figure 2.4 -Infinitesimal tetrahedron to define the stress tensor

K

  and the shear modulus G refer to the drained material and can be obtained experimentally. The fourth order identity tensor is represented by kjlm I . It can be observed that one of the possible sets of parameters for the characterization of porous material is formed by M , b , d K and G .The derivatives of the energy potential (3.1) with respect to the internal variables of the system, kj g , h and D give rise to its conjugate pairs, in other words, they define the associated variables, which are the total stress kj u , pore pressure p and the thermodynamic force associated with damage Y :

u

  the presence of initial fields of pore pressure and porosity, better defining the boundary value problem. Thus, the terms in brackets can be interpreted as the evolution of the variable along the loading process. Substituting (3.4) in (3.3), we arrive at the following expression: can be seen that the total stress tensor is composed of three parts. The first one depends on the elastic properties of the solid phase, called effective stress. The second, also related to the solid, includes the non-linear effects of the damage process. The last part is related to pore pressure p . Note that the p values are taken with a positive value, by convention. Then, equation (3.6) can be expressed as: as the stress part associated with damage.It can be seen that the pore pressure affects only the hydrostatic components of the total stress. It is known that at any point of a fluid, the pressure measured has a normal component, with the same value in all directions, and a tangential component, related to viscosity. For non-viscous fluid, an accepted condition in this work, that tangential part is neglected.With the stress and strain tensors, the material parameters under undrained condition, expressed by 0 ? h , are also defined. The undrained bulk modulus u K and the Skempton coefficient B are:

  7), (3.17), (3.21) and (3.23), complemented by the strain-displacement relation
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 33 Figure 3.3 Discontinuous adjacent elements, with double node; Interpolation functions in a discontinuous element
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  and T are used to represent a generic fundamental solution and any given variable, respectively. When the variable has its value known, a bar on its representation is used.

Figure 3 . 4

 34 Figure 3.4 Division of the domain into cells; linear approximation of variables in the cell

  , represented over the boundary of a cell m

Figure 3 . 5

 35 Figure 3.5 Inclusion of the infinitesimal complementary domain

g

  and p , for the solid and fluid, respectively. Then, using equation (3.4), we can write:

  Method, system (3.107) -(3.109) is written in a discrete way, on the boundary elements and the domain cells, as follows:

  e N and c N represent the number of elements and cells. The interpolations are made by the functions n l , for the node n of the element or cell. To follow, the algebraic representation of the aforementioned equations is presented. Let n N be the number of boundary nodes and i N the number of internal nodes. The dimensions of the matrices and vectors used are indicated. Considering the two degrees of freedom in displacements for the two-dimensional problem, we write n 2N algebraic equations based on (3.110), that is:

Figure 4 . 1 -

 41 Figure 4.1 -Problem definition, adopted cells mesh

  Figure 4.3 -Pore-pressure evolution at the base of the column

Figure 4

 4 Figure 4.5 -Pore-pressure evolution at the base of the column, for different heights

Figure 4

 4 Figure 4.6 -Problem definition, adopted cells mesh

  that the load has a unit value. The boundary mesh is refined, now containing 136 elements, in order to get a better view of the quantities shown in Figure4.9. The drainage process is well defined by the equilibrium between pore-pressures and effective stresses on the domain. The loading effects are manifested within a limited area, adjacent to it, in accordance with the Saint-Venant principle.
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 49 Figure 4.9 -Evolution of poroelastic and vertical effective stresses at 0.001s; 0.01s; 0.2s; 2s; 100s

Figure 4 .

 4 Figure 4.10 -Loading profiles

Figure 4 .

 4 Figure 4.12 -Pore-pressure and effective stress at the end of 100s

1 .

 1 Characterization and Parametric Analysis of the ModelAs presented in Chapter 2, Marigos model(1981) represents the behavior of a brittle or quasi-brittle material in the elastic regime subject to damage. The damage criterion is defined by two constants dependent on the material, with a scalar-valued variable that represents the degradation level. Moreover, the model is symmetric with respect to the type of solicitation,providing the same answer to each strain level, whether it is tensile or compressive.In order to describe the model, let us consider a hypothetical material with a unit longitudinal modulus of elasticity and nil Poissons coefficient. The damage parameters are taken with the values Y 0 =0.05 and A=0.3. Imposing any loading, which induces an evolution of strain at a point, the predicted constitutive answer for the damage model is presented in Figure4.13.
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 4 Figure 4.13 -Characteristic curve of the damage constitutive law
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  Figure 4.14 -Damage variable evolution
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 4 Figure 4.15 -Influence of Y0, on A=0.3
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 4 Figure 4.16 -Influence of A, on Y0=0,05
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 4 Figure4.17 -Problem definition, adopted cells mesh
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 4 Figure 4.19 -a) Total stress vs. strain, in vertical direction b) damage parameter evolution
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 4 Figure 4.20 -problem definition, adopted cells mesh
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 44 Figure 4.22 -Relationship between the displacement applied and the reaction at the end of the body
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 4 Figure 4.26 -Damage parameter evolution at the base of the column
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  Figure 4.28 -Pore-pressure evolution at the base of the column
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 4 Figure 4.30 -Damage and pore-pressure values (MPa) at 140 s, for different regimes

  Figure 4.31 -Evolution of poroelastic parameters with the damage at the top of the column

Figure 4 .

 4 Figure 4.32 -Distribution of the poroelastic parameters at the end of the analysis, considering damage

  the Biot parameter values. In the case of instantaneous loading, the influence of these parameters is somewhat more pronounced. This is illustrated in Figure4.33, for the poroelastic case, comparing the responses obtained with the nominal values of the parameters, and with the penalized values.
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 4 Figure 4.33 -Evolution of pore-pressures for a) monotonic loading and b) instantaneous loading

  Figure 4.34 -Vertical strain evolution in the column
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 4 Figure 4.35 -Evolution of the damage variable in the column
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 4 Figure 4.37 -Problem definition, adopted cells mesh
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 4 Figure 4.38 -Vertical strain evolution at the central point
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 4 Figure 4.39 -Vertical effective stress evolution at the central point
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 4 Figure 4.42 Horizontal strain evolution at the central point
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 4 Figure 4.43 Horizontal effective stress evolution at the central point
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  Figure 4.46 -Problem definition for a) shallow foundation and b) deep foundation
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 4 Figure 4.47 -damage evolution at the point A

  Figure 4.48 -damage evolution at the point B
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 4 Figure 4.47 -Damage evolution in deep and shallow foundations at 50 s; 80 s; 91.7 s

  

  

  1. Damage Variable and Effective Stress Consider a damaged solid body, from which an infinitesimal volume is isolated. Let dA be the surface area of this volume defined by the normal n . The microcracks and voids in this

	section occupy an area	d dA . Then, the effective resistant area is	dA dA dA ? /	d	. The
	representative damage variable is defined by:
	D	n	?	d dA dA	(2.71)
			?		/	?	/	(2.72)
	ef u ? u	dA dA 1 D u ? /	(2.73)

From a physical point of view, the damage variable n D is the relative value of the damaged section area, cut by a plane normal to n .

Note that by assuming isotropy, the variable has a scalar nature D .

Let u be the stress normal to the surface dA in the presence of any normal force applied. The resistant area of the section can be written as d dA dA dA dA

(1 D) 

which allows to define the effective portion of the stress:

  Comments on Strain LocalizationBrittle or quasi-brittle materials bones and rocks, for example in some parts of its deformation process, may show a progressive loss of strength, in a behaviour called softening. This is induced by the damage process. Depending on the materials constitutive model, this softening can also cause a loss of stiffness in the system. This is the case of the continuous damage models.The localization phenomenon occurs in materials that undergo softening, and is characterized by large discontinuities in the strain field. Small localized regions of the body dissipate more energy, hence showing much greater strain values than those measured in other parts of the body. The onset of localization can be caused by geometric imperfections, by the presence of heterogeneities of the material, by boundary conditions or by loading conditions.

	2.10.3	
	The term (D) m	stores the maximum value reached during the loading history, adopted in its
	linear form	(D) m	0 ? -Y A , where 0 D Y and A are material dependent. The damage evolution
	becomes from the consistency condition ( , D) 0 ? $ F Y	, resulting in
	D ? $ $ Y A			(2.78)

  Based on the calculated values on the boundary, the displacements and stresses at internal points can be evaluated. Equation (3.76) provides the displacement values at any given point in the domain. Substituting this integral definition of dislocations in Hookes law, the stress equation is obtained:

	Analysis at Internal points.		
					(angular)	(3.80)
	É	r / w	r	r / w	Ú
				S2	
					S1
		Figure 3.6 Points 1 S and 2 S in soft and angular boundary, respectively,

  In which r represents the distance between the points s and q . With the pore-pressure fundamental solution, we can write the corresponding solution to the flux:

	p (s,q)	1 2 k ? r	ln(r)	(3.88)
	p	* i	(s, q)	,i r 2 r / ? r		(3.89)
	Boundary Integral Equation. Similarly to what was presented in 3.5.1, we deduce the integral
	equation of the pore-pressures from the Betti's reciprocal theorem. The governing equation
	used is Darcys law,
	* k p p ? / -f k ,k	k	+	(3.90)
	which relates the relative flow with the pore-pressure gradient. It can be seen in the equation
	above that k p and ,k p have a linear but not proportional relationship, due to the presence of
	the part k kf . Then the proportional flow is defined pr k p :
	pr k p ? p / k	k f	k	? /	kp	,k	(3.91)
						Ç u É		Ú	? /	8(1 ) / w	u	4 ) -f / w u	(s)	(3.86)
			3.5.2. Integral Formulation for the Fluid Phase
			Fundamental Solutions. The equation that defines the problem of fluid conduction, written in
			the fundamental state, is as follows:
			* ,ii p	1 k ? f (s,q)	(3.87)

with k as the permeability coefficient, already defined in the previous chapter. The solution of equation (3.87) is given by: *