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Abstract 

 

Face to the growing awareness of environmental concerns issued from human activities, eco-design 

aims at offering a satisfying answer in the products and services development field. However when the 

considered products become complex industrial systems, there is a lack of adapted methodologies and 

tools. These systems are among others characterised by a large number of components and 

subsystems, an extremely long and uncertain life cycle, or complex interactions with their geographical 

and industrial environment. This change of scale actually brings different constraints, as well in the 

evaluation of environmental impacts generated all along the system life cycle (data management and 

quality, detail level according to available resources�) as in the identification of adapted answers 

(management of multidisciplinary aspects and available resources, players training, inclusion in an 

upstream R&D context�). So this dissertation aims at developing a methodology to implement eco-

design of complex industrial systems. A general methodology is first proposed, based on a DMAIC 

process (Define, Measure, Analyse, Improve, Control). This methodology allows defining in a structured 

way the framework (objectives, resources, perimeter, phasing�) and rigorously supporting the eco-

design approach applied on the system. A first step of environmental evaluation based on Life-Cycle 

Assessment (LCA) is thus performed at a high systemic level. Given the complexity of the system life 

cycle as well as the exploitation variability that may exist from one site to another, a scenario-based 

approach is proposed to quickly consider the space of possible environmental impacts. Scenarios of 

exploitation are defined thanks to the SRI (Stanford Research Institute) matrix and they include 

numerous elements that are rarely considered in LCA, like preventive and corrective maintenance, 

subsystems upgrading or lifetime modulation according to the economic context. At the conclusion of 

this LCA the main impacting elements of the system life cycle are known and they permit to initiate the 

second step of the eco-design approach centred on environmental improvement. A multidisciplinary 

working group perform a creativity session centred on the eco-design strategy wheel (or Brezet wheel), 

a resource-efficient eco-innovation tool that requires only a basic environmental knowledge. Ideas 

generated during creativity are then analysed through three successive filters allowing: (1) to pre-select 

and to refine the best projects; (2) to build a R&D projects portfolio thanks to a multi-criteria approach 

assessing not only their environmental performance, but also their technical, economic and customers� 

value creation performance; (3) to control the portfolio balance according to the company strategy and 

the projects diversity (short/middle/long term aspect, systemic level�). All this work was applied and 

validated at Alstom Grid on electrical conversion substations used in the primary aluminium industry. 

The methodology deployment has allowed initiating a robust eco-design approach recognized by the 

company and finally generating a portfolio composed of 9 eco-innovative R&D projects that will be 

started in the coming months. 

Key-words: Eco-design, Life-Cycle Assessment (LCA), Eco-innovation, Complex industrial system, 

Scenario-based LCA, Exploitation scenario, Eco-ideation, R&D projects portfolio, AC/DC conversion 

substation. 
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Résumé 

Face à l�émergence des problématiques environnementales issues des activités humaines, l�éco-

conception s�attache à offrir une réponse satisfaisante dans le domaine de la conception de produits et 

services. Cependant, lorsque les produits considérés deviennent des systèmes industriels complexes, 

caractérisés entre autres par un grand nombre de composants et sous-systèmes, un cycle de vie 

extrêmement long et incertain, ou des interactions complexes avec leur environnement géographique et 

industriel, un manque évident de méthodologies et d�outils se fait ressentir. Ce changement d�échelle 

apporte en effet des contraintes différentes aussi bien dans l�évaluation des impacts environnementaux 

générés au cours du cycle de vie du système (gestion et qualité des données, niveau de détail de 

l�étude par rapport aux ressources disponibles�) que dans l�identification de réponses adaptées 

(gestion de la multidisciplinarité et des ressources disponibles, formation des acteurs, inclusion dans un 

contexte de R&D très amont�). Cette thèse vise donc à développer une méthodologie de mise en 

�uvre d�une démarche d�éco-conception de systèmes industriels complexes. Une méthodologie 

générale est tout d�abord proposée, basée sur un processus DMAIC (Define, Measure, Analyse, 

Improve, Control). Cette méthodologie permet de définir de manière formalisée le cadre de la démarche 

(objectifs, ressources, périmètre, phasage�) et d�accompagner rigoureusement l�approche d�éco-

conception sur le système considéré. Une première étape d�évaluation environnementale basée sur 

l�Analyse du Cycle de Vie (ACV) à haut niveau systémique est ainsi réalisée. Etant donnée la 

complexité du cycle de vie considéré et la variabilité d�exploitation d�un système industriel d�un site à 

l�autre, une approche par scénario est proposée afin d�appréhender rapidement l�étendue possible des 

impacts environnementaux. Les scénarios d�exploitation sont définis à l�aide de la matrice SRI 

(Stranford Research Institute) et intègrent de nombreux éléments rarement abordés en ACV, comme la 

maintenance préventive et corrective, la mise à niveau des sous-systèmes ou encore la modulation de 

la durée de vie du système en fonction du contexte économique. A l�issue de cette ACV les principaux 

postes impactants du cycle de vie du système sont connus et permettent d�entreprendre la seconde 

partie de la démarche d�éco-conception centrée sur l�amélioration environnementale. Un groupe de 

travail multidisciplinaire est réuni lors d�une séance de créativité centrée autour de la roue de la 

stratégie d�éco-conception (ou roue de Brezet), un outil d�éco-innovation peu consommateur de 

ressources et ne nécessitant qu�une faible expertise environnementale. Les idées générées en 

créativité sont alors traitées par trois filtres successifs, qui permettent : (1) de présélectionner les 

meilleurs projets et de les approfondir ; (2) de constituer un portefeuille de projets de R&D  par une 

approche multicritère évaluant leur performance environnementale, mais également technique, 

économique et de création de valeurs pour les clients ; (3) de contrôler l�équilibre du portefeuille 

constitué en fonction de la stratégie de l�entreprise et de la diversité des projets considérés (aspects 

court/moyen/long terme, niveau systémique considéré�). L�ensemble des travaux a été appliqué et 

validé chez Alstom Grid sur des sous-stations  de conversion électrique utilisées dans l�industrie de 

l�aluminium primaire. Le déploiement de la méthodologie a permis d�initier une démarche solide d�éco-

conception reconnue par l�entreprise et de générer au final un portefeuille de 9 projets de R&D éco-

innovants qui seront mis en �uvre dans les prochains mois. 

 

Mots-clés : Eco-conception, Analyse du Cycle de Vie (ACV), Eco-innovation, Système industriel 

complexe, ACV par scénarios, scénario d�exploitation, Eco-idéation, Portefeuille de projets de R&D, 

Sous-station de conversion AC/DC. 
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Résumé étendu (extended summary in French) 

L�humanité est aujourd�hui plongée dans une crise multidimensionnelle dont l�aspect 

écologique n�est qu�une des multiples facettes. Les activités humaines ont pour la première 

fois dans l�histoire de l�humanité un tel impact sur l�environnement que celui-ci est peut-être 

irrémédiablement touché. Cependant, cette crise apparaît également comme une opportunité 

extraordinaire pour initier une transition vers une société durable (Morin, 2011). Cette 

transition, nommé par Rifkin troisième révolution industrielle (Rifkin, 2010) doit bien sûr être 

initiée par des décisions politiques, mais le secteur industriel y occupe une place 

prépondérante et peut dès maintenant engranger le processus.  

L�équation I=PAT, issue des travaux de Ehrlich et Holdren (Ehrlich and Holdren, 1971), 

illustre parfaitement cette problématique. Dans cette équation, I représente les impacts des 

activités humaines sur l�environnement, P la population humaine, A l�abondance matérielle, 

associée au revenu moyen par habitant, et T la technologie. Ainsi, I dépend directement des 

trois autres variables, et l�étude de différents scénarios à l�horizon 2050 montre que la société 

actuelle, centrée sur la croissance économique, est difficilement compatible avec la limitation 

des effets du réchauffement planétaire (Kempf, 2011; Da Costa and Iacona, 2012). Mais 

l�évolution des impacts des activités humaines est également directement liée à l�évolution 

des technologies, et un levier particulièrement intéressant pour limiter ces impacts consiste à 

accélérer l�amélioration de l�efficacité des technologies humaines. Ce constat touche donc 

directement au domaine de l�innovation dans la conception de produits. 

Dans cette perspective, l�éco-conception, c�est-à-dire l�intégration de la dimension 

environnementale dans la conception de produits, apparaît comme une réponse pertinente à 

cette problématique. Par ailleurs, et en dehors de ces considérations, les réglementations � 

Européennes en particulier � évoluent peu à peu vers cette prise en compte de 

l�environnement dans la conception, et de nombreuses entreprises sont maintenant 

convaincus de la nécessité de l�intégrer dans leurs processus pour préserver leur 

compétitivité face aux marchés globalisés. 

Cependant les démarches d�éco-conception existantes sont bien souvent conçues pour et 

appliquées sur des produits de grande consommation, de taille et complexité limitées. Les 

systèmes industriels complexes ont ainsi été rarement considérés, ou du moins les 

méthodologies et outils existants ne leur sont pas particulièrement adaptés. Cela est 

particulièrement valable pour l�Analyse du Cycle de Vie (ACV), dont les limites habituellement 

rencontrées sont amplifiées lorsque de tels systèmes sont considérés. Cette thèse s�intéresse 

donc au développement d�une méthodologie d�éco-conception adaptée aux systèmes 

industriels complexes, incluant à la fois une phase d�évaluation environnementale et une 

phase d�amélioration environnementale. 
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Positionnement de recherche 

Cette recherche a été financée par Alstom Grid et réalisée dans le cadre d�un contrat CIFRE 

(Conventions Industrielles de Formation par la REcherche) entre Alstom Grid et le 

Laboratoire Génie Industriel (LGI) de l�Ecole Centrale Paris, entre mai 2009 et mai 2012. Les 

préoccupations industrielles occupent donc une grande place dans ces travaux. C�est 

pourquoi cette recherche est bâtie sur un protocole de Recherche Action, ce qui signifie que 

nous sommes intervenus directement et activement dans l�entreprise. Ce positionnement 

apparaît comme un bon compromis entre les besoins industriels exprimés par Alstom Grid et 

le développement de méthodologies et outils génériques du côté académique. 

L�objectif de cette thèse est de développer une méthodologie adaptée à la mise en �uvre 

d�une démarche d�éco-conception de systèmes industriels complexes. Elle a été réalisée en 

suivante les 4 étapes proposées par Yannou et Petiot dans le cadre de la Recherche 

Action (Yannou and Petiot, 2011) : 

1. Observation des pratiques de conception industrielles pour réaliser un diagnostic 

terrain : pour cela, nous avons été pleinement intégrés au département R&D de 

l�unité Power Electronics Massy d�Alstom Grid, ainsi qu�au groupe de travail en éco-

conception d�Alstom Grid. Nous avons ainsi pu observer les pratiques industrielles en 

place chez Alstom Grid, ainsi que le cadre réglementaire et normatif, les 

méthodologies et outils d�éco-conception utilisés dans l�industrie. 

2. Généralisation du diagnostic terrain à des problématiques scientifiques et réalisation 

d�états de l�art : à l�issue du diagnostic terrain, trois questions de recherche ont été 

définies, qui ont permis de définir différents terrains de recherche sur lesquels des 

études bibliographiques ont été réalisées. 

3. Proposition d�un nouveau modèle : à l�issue de la précédente étape, trois axes de 

recherche ont été définis et mis en �uvre pour répondre aux questions de recherche 

à la lumière des études bibliographiques. 

4. Déploiement et validation dans le cadre industriel : enfin, les objets théoriques 

développés lors de l�étape précédente ont été appliqués dans le contexte industriel 

d�Alstom Grid, ce qui a permis de tirer des conclusions, d�identifier les limites de notre 

approche et les futurs développements possibles. 

A la lumière du diagnostic terrain et de l�étude des pratiques actuelles d�éco-conception en 

entreprise, les trois questions de recherche sont les suivantes : 

· Question de recherche n°1 : Comment gérer avec un temps et des ressources 

limités le déploiement d�une démarche d�éco-conception d�un système 

industriel complexe, sans compétences et connaissances environnementales 
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préalables ? 

· Question de recherche n°2 : Comment réaliser une ACV fiable d�un système 

industriel complexe à un haut niveau systémique et avec des ressources et un 

temps limités ? 

· Question de recherche n°3 : Comment générer et sélectionner un portefeuille 

adapté de projets de R&D éco-innovants pour des systèmes industriels 

complexes ? 

 

Figure 1. Positionnement des domaines bibliographiques explorés 

La définition de ces questions de recherche a permis d�identifier et d�investiguer différent 

domaines bibliographiques, représentés sur la Figure 1. A l�issue de cet état de l�art, trois 

axes de recherche ont été définis.
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Trois axes de recherche 

Les trois axes de recherche sont interdépendants et complémentaires. Ces liens sont 

explicités dans la Figure 2. Le premier axe permet de mettre en place, de suivre et de gérer 

de manière rigoureuse un processus complet d�éco-conception, comprenant une étape 

d�évaluation de la performance environnementale du système et une étape d�amélioration de 

cette performance. L�axe 2 s�intègre dans la phase d�évaluation environnementale en 

proposant un modèle d�ACV adaptés aux systèmes industriels complexes. A partir de 

l�identification des principaux postes impactants issus de l�ACV, l�axe 3 se positionne dans la 

phase d�amélioration environnementale en proposant un modèle d�éco-innovation adapté. Le 

contenu des modèles développés au sein de ces axes est résumé ci-dessous. 

 

Figure 2. Positionnement des trois axes de recherche dans un processus simplifié 

d�éco-conception 
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· Axe 1 : développement d�une méthodologie de gestion de la mise en �uvre 

d�une démarche d�éco-conception pour des systèmes industriels complexes 

Cette méthodologie est basée sur un processus DMAIC (en français : Définir, Mesurer, 

Analyser, Améliorer, Contrôler) issu du domaine du Lean 6 Sigma. Ce processus offre un 

cadre rigoureux et structuré pour gérer l�éco-conception de systèmes industriels complexes, 

de la réalisation d�une ACV à un haut niveau systémique à l�identification et la réalisation de 

projets d�amélioration. Ce processus est organisé autour de phases et livrables prédéfinis 

permettant d�optimiser la gestion de la complexité liée au système considéré. 

Cette méthodologie a fait l�objet d�une publication dans la revue Concurrent Engineering: 

Research and Applications, reproduite dans le chapitre 3. 

· Axe 2 : développement d�un modèle d�ACV basé sur des scénarios 

d�exploitation de systèmes industriels complexes 

Les systèmes industriels complexes sont caractérisés entre autres par un grand nombre de 

sous-systèmes et composants, ainsi qu�un cycle de vie extrêmement long et incertain. La 

réalisation d�une ACV, nécessitant des données fournies et précises, et donc rendue difficile. 

Pour pallier à cela, nous proposons un modèle d�ACV basé sur la modélisation de scénarios 

d�exploitation, permettant d�identifier des postes impactants du cycle de vie du système, 

habituellement rarement considérés en ACV, comme la maintenance, la mise à niveau ou la 

modulation de la durée de vie. Différents scénarios d�exploitation sont ensuite bâtis à partir 

d�une approche qualitative, et les impacts environnementaux associés à ces scénarios sont 

ensuite mesurés. Ce modèle offre un bon compromis entre la qualité des résultats obtenus et 

le temps et les ressources engagés sur l�étude. Il permet à la fois de fournir des informations 

précieuses en phase d�amélioration et de configuration du système dans un contexte donné, 

mais également d�engager avec les clients des échanges en vue d�optimiser conjointement 

l�exploitation du système. 

Ce modèle fait l�objet d�un projet de publication, soumis dans la revue the International 

Journal of Life Cycle Assessment et reproduit dans le chapitre 4. 

· Axe 3 : développement d�une démarche d�éco-innovation basée sur 

l�identification d�un portefeuille de projets de R&D éco-innovants pour des 

systèmes industriels complexes 

A partir des résultats d�ACV, l�identification de projets d�amélioration performants est une 

étape cruciale du processus d�éco-conception. La conception de systèmes industriels 

complexes est caractérisée par une organisation de la R&D amont sous forme de nombreux 

projets conjointement menés pour améliorer ou concevoir une partie précise d�un système. 

Les connaissances et compétences techniques sont donc détenus par de nombreux experts 
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qui n�ont pas forcément l�habitude de collaborer. Nous proposons un processus d�éco-

innovation basé sur un groupe de travail multidisciplinaire d�experts. Ce groupe est réuni lors 

de séances de créativité autour de la roue de la stratégie d�éco-conception, un outil d�éco-

innovation ne nécessitant que peu de connaissances environnementales. Les idées générées 

sont ensuite triées et évaluées grâce à trois filtres successifs et une grille d�évaluation 

multicritère, intégrant des critères environnementaux, mais également de faisabilité technique 

et économique ou de valeurs des clients. A l�issue de ce processus, un portefeuille équilibré 

de projets de R&D est identifié et proposé à la direction de l�entreprise. 

Ce modèle fait l�objet d�un projet de publication, soumis dans la revue Technovation et 

reproduit dans le chapitre 5. 

Applications chez Alstom Grid 

Les trois axes de recherche ont fait l�objet d�une application dans le contexte industriel de 

l�unité Power Electronics Massy (PEM) d�Alstom Grid, sur des stations de conversion AC/DC 

utilisés pour convertir l�énergie à l�entrée des usines d�aluminium primaire. 

Ces stations électriques sont composées de nombreux sous-systèmes conçus par des unités 

différentes (transformateurs, redresseurs, génie civil�), qui représentent environ 3000 tonnes 

de matière pour une durée de vie souvent supérieure à 30 ans. Ces stations sont implantées 

dans le monde entier, dans des conditions climatique et d�alimentation électrique très 

différentes. Il n�existe pas de conception standard, mais chaque sous-station est bâtie sur une 

architecture de base commune. La phase d�exploitation est caractérisée par de nombreux 

évènements difficilement prévisibles (pannes, accidents, mise à niveau ou allongement de la 

durée de vie en fonction du contexte économique�) et la fin de vie est extrêmement 

incertaine car temporellement très éloignée et à la charge des clients. 

La méthodologie générale issue de l�axe 1 a été déployée chez PEM. Elle a permis d�initier et 

d�organiser rapidement et rigoureusement le processus d�éco-conception dans l�unité avec 

peu de ressources et de temps disponibles. La réalisation de l�ACV a permis d�identifier dans 

les mêmes conditions et avec une précision satisfaisante les principaux postes impactants du 

cycle de vie d�une sous-station. Ces résultats ont ensuite servi de support à la démarche 

d�éco-innovation mise en �uvre autour d�un groupe de travail réunissant 9 experts. 109 idées 

ont été générées, puis groupées, et triées. L�évaluation multicritère de ces projets par le 

groupe de travail et 4 experts en éco-conception externes aux groupes a permis d�identifier 

finalement un portefeuille de 9 projets éco-innovants qui seront réalisés dans les prochains 

mois. 

Apports et perspectives 

A l�issue de ces travaux de thèse, les principales contributions de nos travaux sont les 

suivantes : 
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· Une méthodologie générique et générale de mise en �uvre de l�éco-conception de 

systèmes industriels complexes, bâtie autour de phases et livrables prédéfinis. 

· Un modèle d�ACV générique basée sur la modélisation de scénarios d�exploitation 

pour acquérir une meilleure connaissance des impacts environnementaux générés 

au cours du cycle de vie du système dans un contexte donné. 

· Un processus d�éco-innovation générique basé sur un outil reconnu et mettant en jeu 

un groupe de travail multidisciplinaire. La principale contribution sur ce processus est 

un protocole de tri de projets éco-innovants bâti autour de trois filtres structurés et 

une grille d�évaluation multicritère. 

· L�application et la validation de ces contributions théoriques sur un cas d�étude 

industriel dans une grande entreprise internationale. Cette application  a permis de 

souligner le caractère robuste et généralisable de nos travaux. 

Ce travail de recherche apparaît finalement comme une étape satisfaisante pour développer 

l�éco-conception de systèmes industriels complexes. Cependant, nous considérons qu�il s�agit 

d�une première contribution dans ce contexte particulier, et qu�une grande quantité de travail 

est cependant encore nécessaire afin de déployer cette approche à grande échelle dans de 

nombreuses entreprises. 

La principale perspective de nos travaux consisterait ainsi à déployer cette approche dans 

d�autres entreprises et sur d�autres systèmes afin de la tester dans d�autres contextes 

industriels. Par ailleurs, il serait également intéressant de tester la méthodologie sur le long-

terme, c�est-à-dire en y intégrant la réalisation des projets d�amélioration et plusieurs 

réitérations du cycle complet. Enfin, une plus grande automatisation des aspects techniques 

de nos travaux (liés à l�ACV et à l�évaluation multicritère des projets) permettrait de déployer 

plus facilement et plus rapidement notre approche. 
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General introduction 

Eco-design and complex industrial systems 

The current multidimensional crisis is a decisive period in human history. From an ecological 

point of view and for the first time in history, the human activities have so strong impacts on 

the ecosystems than his long-term future becomes very uncertain. But this crisis is also an 

extraordinary opportunity to initiate a total metamorphosis of our society towards a more 

moral, ethical, fair and ecological � in one word, sustainable � world (Morin, 2011). This hard 

transition, called Third Industrial Revolution by Jeremy Rifkin (Rifkin, 2010) needs of course to 

be initiated by political decisions, but the industrial sector is particularly involved in this 

challenging process. 

This point view is remarkably highlighted by the I=PAT equation, issued from the work of 

Ehrlich and Holdren in the 1970�s (Ehrlich and Holdren, 1971). In this equation, I represents 

the impacts of human activities upon the environment, P the world population, A the 

affluence, associated to the world income per human being, and T the technology. This 

equation shows that I strongly depends on the three other variables. However, P and A may 

hardly be modified at a short-term perspective, whereas T is directly linked to the innovation 

potential of the world industry, and its ability to develop more sustainable technologies. 

In this perspective, eco-design appears as a powerful answer to initiate this transition from an 

industrial point of view. The improvement of technologies needs of course to be combined 

with strong changes in the current mass consumer model, but the integration of 

environmental issues in product design becomes a real necessity. Out of these purely 

humanist considerations, the European regulations evolve more and more towards the 

deployment of eco-design in the industrial sector, and eco-innovation is now seen as a 

powerful way for companies to improve their competitivity in the globalized market. 

However the eco-design approaches performed in the last years are mainly focused on mass 

consumer products, and large industrial installations have not been deeply considered. The 

existing eco-design methodologies and tools are thus not particularly adapted to complex 

industrial systems. This statement includes in particular Life Cycle Assessment (LCA), whose 

limits are amplified when considering such systems. That is why this PhD thesis focuses on 

the development of an eco-design methodology for complex industrial system, including both 

the environmental evaluation and environmental improvement stages. 

Research positioning 

This research has been granted by Alstom Grid through a collaboration between Alstom Grid 

and the Industrial Engineering Laboratory (Laboratoire Génie Industriel, LGI) at Ecole 

Centrale Paris. It is thus based on industrial issues and the applicative steps take up an 
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important place. For these reasons this research is built on an Action Research protocol, 

meaning that we have been actively intervening in the industrial context. O�Hare offers an 

interesting state-of-the-art concerning research methodologies in design (O�Hare, 2010). He 

highlights the main characteristics of an Action Research methodology: 

· Suitability for studying industrial practice, 

· Supports active intervention within a research setting, 

· Participatory nature, 

· Participants as co-inquirers, 

· And cyclical nature of the research process. 

This protocol is indeed fully adapted to the industrial requirements expressed by Alstom Grid 

and the development of generic methodologies and tools from the academic side. 

The aim of the thesis is to develop methods and tools to implement eco-design in a company 

providing complex industrial systems. This approach has been performed following the four 

steps of an Action Research approach proposed by Yannou and Petiot (Yannou and Petiot, 

2011): 

1. Observation of design practices leading to a diagnostic analysis 

2. Generalization of the diagnosis to scientific issues and realization of state-of-the-art 

assessments 

3. New model proposition 

4. Deployment and validation in the industrial context 

Table 1 gives an overview of the actions that have been performed according to these four 

steps. The realization of such an approach offers excellent opportunities in terms of industrial 

validation. However one main risk is to provide too specific methodologies and tools that can 

hardly be generalized for other context. Following the different applications, this point is 

treated in the general discussion section. 

The realization of the first actions described in Table 1 gave us the possibility to define three 

research questions that are the basis of the model developments proposed in this 

dissertation. From both the results of the industrial diagnosis performed at Alstom Grid and 

the study of the scientific context about eco-design in companies, the three questions are 

expressed as: 
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· Research question 1: How to manage with limited time and resources the 

deployment of an eco-design approach in a complex system industry with no 

pre-existing knowledge and competences? 

· Research question 2: How to perform a reliable LCA of a complex industrial 

system at a high level and with limited time and resources? 

· Research question 3: How to generate and select an adapted portfolio of eco-

innovative R&D projects for a complex industrial system? 

Table 1. Overview of the research according to the Action Research protocol 

Action Research step Actions performed within this research 

1. Observation & diagnosis · Integration in the R&D department of Alstom Grid PEM 

· Involvement in the eco-design working group at the 

corporate level 

· Observation of industrial practices at Alstom Grid 

· Identification of the regulation and normative context, of 

existing methodologies and tools 

2. Identification of scientific 

issues 

· Identification of three research questions 

· Realization of state-of-the-art studies according to the 

identified research fields 

3. New model proposition · Identification of three research axes and their 

interdependencies 

· Development of a generic and general eco-design 

methodology for complex industrial systems 

· Development of an adapted scenario-based LCA model 

· Development of an adapted eco-innovation process 

4. Deployment & validation · Application of the three research axes at Alstom Grid 

· Conclusions and identification of limits and new possible 

developments 

Three research axes 

From this context and this research positioning, three research axes have been identified. 

They are represented in Figure 3. Each of these axes answers to one of the three research 

questions. 

In the first axis an adapted model has been developed to implement eco-design in complex 

system industries. This process is based on a DMAIC (Define, Measure, Analyse, Improve, 

Control) process, issued from the continuous improvement field. It offers a rigorous and 

structured framework from the management of eco-design for complex industrial systems 
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through the realization of a LCA at a high systemic level and with limited time and resources, 

to the identification and the realization of improvements projects. So it covers the whole eco-

design process. 

 

Figure 3. Positioning of the three research axes and links with the dedicated chapters 

and papers 
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environmental impacts generated all along the system life cycle, which is often extremely long 
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and characterised by great uncertainties. This LCA approach considers relevant parts of the 

life cycle of an industrial systems, such maintenance, life time or updates, to model a set of 

possible exploitation scenarios and thus to limit the resources and the time used to perform 

the study with acceptable results. 

The last axis focuses on the environmental improvement phases. As the knowledge of the 

complex industrial system is owned by company experts, they are involved in a creativity 

approach. After a short training, ideas are generated thanks to the eco-design strategy wheel 

(Brezet and Van Hemel, 1997). These ideas are then sorted out and assessed with an 

original qualitative and multi-criteria grid. The positioning of the candidate projects on the 

different dimensions (environmental benefits, technical and economic feasibility, customers� 

values�) allows identifying a portfolio of powerful R&D projects for the company. 

An application is proposed for each axis at Alstom Grid, on large electrical stations used in 

the aluminium industry. 

Dissertation structure 

This PhD dissertation is structured as a series of three scientific papers, complemented by 

several introducing and concluding chapters. 

The first chapter presents the general context of the work by focusing on the Sustainable 

Development perspective to introduce eco-design. The research and industrial contexts are 

then explored to define three research questions. 

Chapter 2 introduces the main lines of the literature review that has been performed to define 

the three research axes answering to the three questions. Each of these axes is then briefly 

exposed, as well as the applicative field at Alstom Grid. 

Chapter 3 reproduces a scientific paper recently published in Concurrent Engineering: 

Research and Applications, about the general methodology to implement eco-design in 

complex systems industries. 

Chapter 4 reproduces a scientific paper submitted in the International Journal of Life Cycle 

Assessment. This paper proposes a scenario-based LCA model to evaluate the 

environmental impacts associated with the exploitation of complex industrial systems. 

The last paper is proposed in Chapter 5. It has been submitted to Technovation, and it 

presents an eco-innovation approach adapted to complex industrial systems through the 

identification of a powerful portfolio of R&D projects. 

Chapter 6 proposes a general discussion about these three research axes, while conclusions 

and perspectives are drawn in a last section. 
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Chapter 1. Context and research questions 

This first chapter introduces the context of the thesis. The general context centred on the 

Sustainable Development perspective is presented to introduce the eco-design research field. 

Industrial considerations then allow highlighting some problems linked to the implementation 

of eco-design for complex industrial systems. Three research questions are finally proposed. 

1.1. General context 

1.1.1. The Sustainable Development perspective 

The human society undeniably meets a global crisis. The main aspects of this crisis are 

economic, social, environmental, but also political or moral (Morin, 2011). From the second 

part of the 20
th
 century and the coming of the mass-consumer society, new research fields 

have appeared face to the awareness of upcoming and hardly solvable difficulties. This 

awareness is well illustrated by the I=PAT equation, issued from the work of Ehrlich and 

Holdren in the 1970�s (Ehrlich and Holdren, 1971). 

The I=PAT equation is expressed in Formula (1): 

 I = P x A x T (1) 

Where I represents the human impacts on the environment, P the size of the human 

population, A the affluence, associated to the world income per human being, and T the 

technology. An interesting analysis of this equation is proposed by Kempf (Kempf, 2011) and 

Da Costa (Da Costa and Iacona, 2012). This analysis is synthetized below. 

If we simplify this equation by associating I with the worldwide CO2 emissions, and T with the 

CO2 intensity, i.e. the quantity of CO2 emission necessary to produce 1 $, it becomes possible 

to easily simulate some evolution scenarios. 

In 2010, 33 billion of CO2 tons were emitted, while the world population was 6.84 billion of 

inhabitants. The theoretical portion of gross national income was 9,136 $ and the CO2 

intensity was 530 g/$. These figures may be represented as in Formula (2): 

 33 = 6.84 x 9.1 x 0.53 (2) 

The question is now to study how these figures could evolve and what value they could reach 

in 2050. Several scenarios are highlighted below. 

First scenario: no change in the CO2 emissions 

This first scenario consists in preserving the actual CO2 emissions and studying the evolution 

of the average income. If we consider that the technology evolution follows the same trend as 
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in the last decades, T becomes 0.22, while P becomes 9 according to an UNO scenario. 

Following these hypothesis, the average income A becomes 16,700 $ in 2050, i.e. much 

higher than today, but still less than the 2010 European level (34,000 $). But the main 

hypothesis of this scenario, the preservation of the CO2 emissions, is too high to limit global 

warming according to the IPCC experts, leading to the second scenario. 

 

Second scenario: limitation of global warming 

If we try to limit global warming to 2°C according to the pre-industrial era, CO2 emissions need 

to be divided by two. Keeping the same hypothesis for T and P, A becomes 7,600 $, which is 

less than today� 

 

Third scenario: limitation of global warming and preservation of the average income 

Finally, if we try to limit global warming and preserve the current average income with the 

same hypothesis for P, T becomes 0.18, which require much more efforts to improve human 

technologies. 

These three simple scenarios highlight the difficulty to solve this equation. In all cases, some 

dead-ends appear: 

· It seems extremely hard to reach in 2050 and at a worldwide level the current 

European average income while at least preserving the current CO2 emissions. This 

is in contradiction with the humanist vision stating that every world inhabitant has the 

right to reach the same prosperity level than the others. Except of course if the richest 

countries accept to decrease their average income, which is clearly not topical as 

long as political decision-makers associate progress with economic growth. 

· The number of world inhabitants in 2050 is variable from one study to another, but it 

seems not very probable that it reaches less than 9 billion in 2050. 

· Another solution to this equation consists in increasing the income by increasing the 

CO2 emissions. This hypothesis is considered by Kempf as intolerable for the world 

environment (Kempf, 2011), and the consequences on human activities would be 

disastrous. 

· Finally the last parameter concerning the human technologies seems to be the 

easiest to improve. But the questions raised by Da Costa concerning the third 

scenario are the following: what would be the conditions to reach T = 0.18? What 

would be the required political decisions to reach this level? Da Costa underlines the 
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need to completely review the national R&D policies, as the current economic system 

does not offer sufficient incentives to innovation and technological changes. 

Anyway the solution � if it exists � would probably emerge from a global compromise on these 

different aspects. In this particular context, the notion of Sustainable Development (SD) 

appeared in the late 1980s. It is defined in the Brundtland report as a �development that 

meets the needs of the present without compromising the ability of future generations to meet 

their own needs� (World Commission on Environment and Development, 1987). Beyond this 

classical definition, the Sustainable Development notion aims at ensuring the development of 

the human society while preserving the natural resources and respecting the people. In other 

words, it consists in rationalizing the economic dimension by considering the social and 

environmental ones. 

 

Figure 4. Three graphical representations of Sustainable Development (Bürgenmeier, 

2004) 

The classical graphical representation of SD appears in Figure 4.c. It shows interaction zones 

between the economic, social and ecological dimensions. The SD concept is illustrated by the 

common and central zone. However, other graphical representations exist (Figure 4.a. and b. 

from (Bürgenmeier, 2004)). In the first one, the three dimensions are represented by stacked 

layers, where the economic dimension is preceded by the social one, itself preceded by the 

ecological one. In this vision, the economic relations exist only because social relations exist, 

and these social relations are part of the global ecosystem. The deterioration of the ecological 

dimension would necessarily impact the two other dimensions. For Morin, the ecological crisis 

becomes more marked with the increasing damage on the biosphere, leading to more 

economic, social and political crisis (Morin, 2011). This is also the point of view developed by 
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the representation by circles, where the environment is at the heart of the graph. 

The difficulty to reach such a compromise between the three dimensions is obvious. We have 

shown that a particular lever to contribute to this compromise is the improvement of human 

technologies. If this improvement follows the same trends than in the last decades, it has 

been shown that it would probably not be sufficient to limits the impacts on the environment. It 

is thus mandatory to go further by promoting specific approaches centred on environmental 

considerations. This observation brings us directly to the product development field. However 

this transition toward a more sustainable paradigm is only possible if the current mass-

consumer model is also deeply modified. 

1.1.2. Towards a reasoned consumption 

It is now admitted that if all the human beings follow the Western mass consumption model, 

there would not be enough resources on Earth to support it (Kempf, 2011). This is particularly 

problematic as the emerging countries such China and India represent several billions of 

people. But on the other hand these people have the right � and they want it � to pretend to 

better living conditions, which is often perceived as a right to consume more. This evolution is 

unavoidable, and trying to restrain it would be inequitable (as it would favour some people to 

the detriment of the others). But it would also be very dangerous, as it would probably be the 

source of generalized social troubles. 

It is thus mandatory to define and deploy a reasoned consumption model based on two key 

aspects. First, the population of the Western countries needs to quickly converge from the 

current mass-consumption model towards the new reasoned model. And second, the 

population of the emerging countries, representing � as said previously � several billions of 

people, need to converge directly towards this new model. 

Table 2. Example of proven reserves for some critical chemical elements (figures taken 

from (Sciences & Vie, 2012)) 

Chemical 

elements 

Proven resources 

(millions of tons) 

Annual production 

(millions of tons) 

Reserve 

(years) 

Copper 630 16 38 

Phosphorus 65,000 191 340 

Uranium 2.5 0.054 46 

Gold 0.051 0.0025 20 

Zinc 250 12 20 

 

If we focus on environmental concerns, the current situation is characterised by several main 
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issues that are closely intertwined: 

· Natural resources are over-exploited: renewable resources (animals, plants or water) 

or non-renewable resources (for example metal and fossil resources) are for number 

of them over-exploited by human activities. In the first case it means that the human 

needs on these resources exceed their natural regeneration power, while these 

resources are by essence limited in the second case. In the two situations, the 

process leads to endangered or depleted resources. Table 2 illustrates this critical 

situation with some resources. 

· Human activities are more and more impacting soils, air and water: the pollutions 

generated by the human activities have direct effects on the environment (see Figure 

5). The anthropological greenhouse gases emissions leading to an accelerated 

climate change are the most popular and worrying aspect of this issue. However it 

hides other aspects that may also have strong negative effects. Impacts on air 

concern for example the ozone layer depletion or particulate matter formation. 

Impacts on water concern for example eutrophication phenomenon. Impacts on soils 

concern for example soils acidification phenomenon, or the use of land due to human 

activities (through deforestation, urban sprawl�). Other aspects like the emission of 

ionising radiations (for example after the Fukushima disaster) may also concern air, 

water and soils. 

 

Figure 5. Impacts of human activities on air, water and soils 

· Human activities have negative effects on the biodiversity and the human health: the 

over-exploitation of animal and vegetal resources directly causes the disappearance 

of numerous species. But the environmental pollution also leads to decrease the 

biodiversity through ecotoxicity phenomenon. It also have negative effects on human 

health, for instance by the development of numerous diseases like cancers. 
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The transition from the current consumption model towards a more reasoned approach taking 

into account all these impacts requires a radical questioning. It becomes obvious that an end-

of-pipe approach is limited and that the problems need to be solved at source. That is why the 

field of product development is particularly concerned. 

1.1.3. Environment versus new product development: the 

legitimacy of eco-design 

New product development is the process of bringing a new product (good, service or process) 

to market. It is closely linked to the notions of ideation and innovation, that need to be 

conciliated with the quality, time and cost dimensions. In its traditional form the product 

development process includes technical and economic aspects, but no particular focus is 

made on environmental aspects. Eco-design gives an answer to this lack. 

Eco-design (also named Environmentally Conscious Design (ECD), Design for Environment 

(DfE), green design or sustainable design) is defined as the �integration of environmental 

aspects into product design and development with the aim of reducing adverse environmental 

impacts throughout a product�s life cycle� (ISO, 2011). Moreover the Areva definition of eco-

design specifies that this integration is performed �along with design parameters (technical 

feasibility, cost, quality, etc.)� (AREVA, 2006). The main mission of eco-design consists in 

considering environment as soon as possible in the design process in order to minimize the 

environmental impacts generated by the products all along its life cycle. This sharply 

contrasts with classical design methodologies where the life cycle phases incumbent upon the 

customers are not considered. 

Eco-design aims at designing new products that offer better environmental performance 

compared to the previous or equivalent ones. It is closely linked with the innovation field. In 

this way an eco-innovation is defined as �an innovation that improves environmental 

performance, in line with the idea that the reduction in environmental impacts (whether 

intentional or not) is the main distinguishing feature of eco-innovation� (Carrillo-Hermosilla et 

al., 2010). This definition includes in particular radical and incremental innovations. The 

deployment of an eco-design approach appears today as the best way to generate eco-

innovative products in a systematic manner. It is the best way to take into account the 

environmental concern previously expressed, and thus it represents the most powerful driver 

from an environmental point of view to support the transition of product development towards 

a more sustainable model. 

By considering more economic aspects, the necessity for the Western countries to preserve 

their employment and their competitivity is obvious face to the global crisis and the 

emergence of developing countries. That is why the ability to innovate becomes more than 

ever a key driver for companies in France, but also more generally in Europe. A recent study 

performed by a French think tank about innovation highlights these problems to promote 
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innovation (Association des Centraliens - Think Tank Innovation, 2011). It proposes some 

priorities, like the need to integrate long-term visions, to invest in R&D or to improve 

innovation processes or creativity methods. The inclusion of environmental concerns in the 

companies� innovation programs is then a strategic choice, but the elements previously given 

in this dissertation clearly show that it becomes beneficial for their competitivity as well as 

mandatory for the human society. 

The present dissertation focuses on these aspects by considering in particular complex 

industrial systems. The next sections explore these fields in terms of research and industrial 

context, in order to define the research questions that are treated from Chapter 2. 

1.2. Research context 

1.2.1. Eco-design 

Eco-design has become in the last decades an entire research field, at the crossroad 

between product design, project management and ecology. From the 1990s, several 

standards have been published to harmonize the different existing visions (see for example 

ISO 14006 (ISO 2011), ISO 14062 (ISO 2002) or IEC 62430 (IEC 2009)). Regulations are 

also little by little set up to promote eco-design deployment in companies, in particular in the 

European context with the WEEE, RoHS or EuP directives (European Union, 2003a, 2003b, 

2005) or the REACH regulation (European Union, 2006). 

 

Figure 6. The "four steps" model of eco-design (Charter and Chick, 1997) 

One main aspect of eco-design concerns the fact that multiple approaches exist. It can be 

initiated from different objectives, and it can be deployed at different levels. Charter and Chick 

distinguish for example four eco-design steps on Figure 6 that are more or less innovative 

according to the resulting environmental benefits and the time spent on the product (Charter 
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and Chick, 1997). Brezet proposes a similar approach with different designations (Brezet, 

1997). The Re-PAIR, Re-FINE, Re-DESIGN and Re-THINK steps respectively corresponds to 

a product improvement, a product redesign, a function innovation or a system innovation. 

These models show that a full eco-innovation approach is a long-term process, and it requires 

an important investment for companies, associated with the full support of the top 

management (McAloone, 1998). 

An eco-design approach is basically made of two main stages (Le Pochat, 2005). The first 

one concerns the evaluation of the environmental performance of the system, while the 

second one aims at identifying improvements according to this environmental performance. 

This simplified vision is considered in the next chapters to structure the research axes. 

Numerous eco-design tools have been developed through research works or industrial 

projects. We do not pretend to give an exhaustive overview of these existing tools. However 

some interesting references propose a classification of the main tools. For example, Janin 

distinguishes two main categories (Janin, 2000): 

· Environmental evaluation tools, that can be divided into two sub-categories: 

o Quantitative tools, such as Life Cycle Assessment (LCA), simplified LCA, 

eco-indicators, Material Input Per Service unit (MIPS) or Life Cycle Costing 

(LCC)� 

o Qualitative tools, like matrices, regulation-based assessments, check-lists, 

material lists� 

· Environmental improvement tools, such as standards, guidelines, check-lists, 

ecolabel approaches, software� We also include to these improvement tools the 

eco-innovation field, which aims at identifying new eco-friendly concepts and 

products. 

To these two main categories, Janin also adds other tools, i.e. strategic tools, awareness 

tools and communication tools (Janin, 2000). 

All these existing tools show that there is not one single eco-design process, but a multiplicity 

of eco-design tools and methods to perform the two general stages of evaluation and 

improvement. Standards exist to propose some guidelines to implement eco-design, but they 

stay at a theoretical level of recommendations and they are hardly applicable at an 

operational level. 

This tools classification also shows that environmental evaluation tools are a key element of 

an eco-design process. Life Cycle Assessment is today the most recognized and used in 

industry. Next section focuses on it. 
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1.2.2. Life Cycle Assessment 

Life Cycle Assessment is defined in the ISO 14040 standard as a �compilation and evaluation 

of the inputs, outputs and the potential environmental impacts of a product system throughout 

its life cycle� (ISO, 2006a). 

 

Figure 7. A typical life cycle of an industrial product 

A typical life cycle of an industrial product is presented on Figure 7. Raw materials are 

extracted and manufactured to assemble the final product. This product is then transported to 

its exploitation site. At the end of its life, the materials may have different paths, for example 

recycling, reuse or landfilling. 

A LCA process is divided into four main phases clarified in ISO 14040 (ISO, 2006a) and ISO 

14044 (ISO, 2006b). These four phases that are represented in Figure 8: 

· Goal and scope definition: the objectives of the study (application, reasons for 

carrying out the study, audience�) are clarified, and the scope (considered system, 

functions, functional unit, perimeter, data quality�) is defined. This stage requires a 

particular attention as it conditions the entire study, and the results are extremely 

dependent on the chosen hypotheses. 

· Life Cycle Inventory (LCI): this second stage aims at characterising the system life 

cycle and collecting all the data required to model this life cycle. Data are then related 

to the reference flow of the functional unit. Allocation of flows is also treated at this 

stage. Data quality management is a key aspect of the LCI stage. 

· Life Cycle Impact Assessment (LCIA): the impacts generated by the system life 

cycle are evaluated from the LCI data by considering environmental impact 

categories associated with relevant indicators. 
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· Interpretation: the interpretation stage is inter-related with the three previous one. 

Results of the LCI and LCIA stages are analysed according to the goal and scope 

definition, and conclusions and recommendations are drawn to support for example 

an improvement process. 

 

Figure 8. Stages of an LCA (from (ISO, 2006a)) 

Despite some limitations (see Section 1.3), LCA is certainly the most advanced environmental 

evaluation tool. As shown in Figure 9 taken from (Dewulf, 2003), it is the only eco-design tool 

that is able to feed all the other evaluation and improvement tools. However, it is also known 

that LCA can hardly be applied in the early design process, as it requires accurate data to 

provide acceptable results (Millet et al., 2007). 

Life Cycle Assessment has been mainly applied in the last years on mass-consumer 

products. But large industrial systems have been poorly considered. Several reasons may be 

expressed to explain that, like the lack of specific eco-design regulations or the lack of 

environmental awareness in the design departments of complex systems industries. The next 

paragraph focuses on these systems to then introduce particular problems when eco-

designing them. 
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Figure 9. Categorisation of eco-design tools according to type of feedback and time of 

application (Dewulf, 2003) 

1.2.3. Complex industrial systems 

This section focuses on complex industrial systems whose specificities have not really been 

taken into account by eco-design and Life Cycle Assessment: these are industrial systems 

where complexity induces major issues in terms of modelling, prediction or configuration. If 

we consider the systems engineering domain, Blanchard and Fabrycky (Blanchard and 

Fabrycky, 2011) characterise engineered systems as systems that achieve operational 

objectives; that operate over a complete life cycle; that are composed of a combination of 

resources (humans, materials, equipment, money�); that are composed of subsystems and 

components that interact with each other; that are influenced by external factors from larger 

systems and in interaction with the natural world. Adding an environmental dimension, we 

define a complex industrial system in the sense of eco-design as: 

· A large-scale system in terms of subsystems and components, mass and 

resource usage, 

· A system whose life cycle is hardly predictable at the design level in the long-

term, in particular its lifetime, upgrades, maintenance and end-of-life , 

· A system whose subsystems may have different life cycles and different 

obsolescence times, 

· A system in close interaction with its environment (super system, geographic 

site�), 

· A system supervised by human decisions and management. 
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Examples of such systems are Alstom Grid AC/DC conversion substations considered all 

along this dissertation (see in particular section 1.3.3). 

These systems have not been particularly considered in eco-design and LCA. Some complex 

systems companies like Alstom Grid have indeed initiated eco-design approaches, but they 

are mainly focused on products and they do not consider systemic aspects. However some of 

these companies now want or need to consider environmental concerns at a systemic level in 

their product development. This industrial context is explained in the next section. 

1.3. Industrial context 

1.3.1. Eco-design and LCA implementation in companies 

More and more companies integrate eco-design and LCA practices in their design processes. 

This implementation may be justified by two main visions: 

· A proactive vision: the company is aware of environmental concerns and its 

environmental policy has planed the deployment of eco-design to its products and 

systems. Out of pure environmental considerations, eco-design is often perceived 

also as an effective way to promote innovation through eco-innovation, and thus to 

gain a competitive advantage (AFNOR, 2008). 

· A reactive vision: the company implements eco-design to answer to new regulations, 

to customer needs or simply to follow its competitors developing a proactive approach 

(Janin, 2000; Le Pochat, 2005). 

In the same vein the success of eco-design implementation is conditioned by some factors, 

like top management commitment (McAloone, 1998), a clear strategic environmental vision 

and the deployment of an adapted approach (Le Pochat, 2005). 

The realization of such a successful eco-design approach offers numerous substantial 

benefits to the company (AFNOR, 2008), like: 

· Brand image improvement, 

· Competitive advantage, 

· Market share increasing, 

· Internal costs decreasing, 

· Future regulations compliance, 

· � 
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Numerous examples of successful eco-design deployment in France are given in (AFNOR, 

2005). However the actual regulations do not concern complex industrial systems such as 

large electrical stations. Eco-design integration in the concerned companies is thus often 

initiated with a proactive perspective, or to follow proactive competitors. But in reality a large 

majority of complex system industries are not involved in eco-design deployment. Some 

reasons may be contradictory economic drivers, or a poor environmental awareness (Le 

Pochat, 2005). Another one is the lack of adapted eco-design and LCA methods and tools for 

complex industrial systems. The next section focuses on this point. 

1.3.2. Limits related to complex industrial systems 

Numerous literature references highlight the limits associated with LCA. Reap et al. offer a 

pertinent literature review on this subject (Reap et al., 2008a, 2008b). Table 3 lists the main 

problems according to the LCA phases. 

When complex industrial systems are considered, some of these problems are amplified 

because of the amount of data to manage, the multiple possible perimeters, the uncertainties 

associated with the system life cycle, and so on. However, in many cases, such systems are 

simply considered as �classical� products (Macharey et al., 2007; Schmidt and Thrane, 2009), 

but no particular reflection is proposed to adapt the granularity of the study (the detail level to 

consider) to its objectives. 

The problems that seem for us the most important when specifically considering complex 

industrial systems appear in bold in Table 3: 

· Boundary selection: as previously explained, multiple boundaries exist and their 

choice needs to be carefully made; 

· Alternative scenario considerations: the uncertainties associated with the system life 

cycle make possible numerous life cycle scenarios; 

· Spatial variation and dynamics of the environment: the uniqueness of complex 

industrial systems (like the Alstom Grid substations), their worldwide geographical 

implantation and their customized exploitation management imply spatial and 

temporal variation from one site to another, while limited time and resources limit the 

ability to perform specific LCAs. 

· Data availability and quality: the system complexity clearly amplified this classical 

problem, and the question of the granularity of the study becomes essential. 

More generally when considering the entire eco-design process, it appears as essential to 

guide the designer from the LCA results to the identification of environmental improvements. 

Among the multiple eco-design approaches proposed in the literature, no particular attention 
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is given to the specific requirements of complex industrial systems, characterised by a global 

design process performed during a long cycle and in an upstream R&D context. Standards 

like ISO 14062 (ISO, 2002) propose some specifications, for example to involve a 

multidisciplinary team, but no operational procedure is given. 

Table 3. LCA problems by phase (Reap et al., 2008a) 

Phase Problem 

Goal and scope 
definition 

· Functional unit definition 
· Boundary selection 

· Social and economic impacts 
· Alternative scenario 

considerations 

Life cycle 
inventory analysis 

· Allocation 
· Negligible contribution (�cutoff�) 

criteria 
· Local technical uniqueness 

Life cycle impact 
assessment 

· Impact category and methodology 
selection 

· Spatial variation 

· Local environmental uniqueness 
· Dynamics of the environment 

· Time horizons 

Life cycle 
interpretation 

· Weighting and valuation 
· Uncertainty in the decision process 

All · Data availability and quality 

 

We propose to illustrate some of these limits in the next paragraph by considering the Alstom 

Grid context. 

1.3.3. The Alstom Grid example 

Alstom Grid PEM (Power Electronics Massy) designs, assembles and sells substations for the 

electrolysis of aluminium worldwide. These are electrical stations designed to convert energy 

from the high voltage network to energy that can be used for aluminium electrolysis, which is 

a particularly environmentally impacting and energy-consuming activity (Schmidt and Thrane, 

2009). An electrolysis substation represents thousands of tons of power electronics 

components and transformers, costing tens of millions Euros. 

It is made up of several modules (four in Figure 10) that are composed of a regulating 

transformer, a rectifier transformer and a rectifier. The groups are connected on one side to 

the high voltage network through an electrical substation and on the other side to a busbar 

that is directly connected to the electrolysis potline. All the groups are supervised by control 

elements that are connected to the electrolysis pots to regulate the process. The amount of 

energy consumed by a recent primary aluminium plant is comparable to the amount of energy 

delivered by a nuclear plant unit (more than 1 GW). 
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Figure 10. Example of an Alstom Grid AC/DC conversion substation (Aluar, Argentina) 

In this context, Alstom Grid PEM wishes to minimise the environmental impacts of its products 

to answer to the environmental policy of the company and to be differentiated from 

competitors. 

Such a substation is considered as a complex industrial system because: 

· The number of subsystems and components is considerable. Some subsystems 

could themselves be considered as complex industrial systems (like transformers or 

rectifiers); 

· The lifetime of a substation is really long, up to 35 or 40 years. Many uncertainties 

exist for the use and end-of-life phases, which depend on the plant management and 

the political and economic context. No end-of-life scenario is clearly known as it is 

supported by the clients. 

· The substation is only a part of the aluminium plant. Their processes are closely 

connected and interdependent; 

· No standard design exists: the substation is tailor-made for each customer, even 

though the general design is often the same. We consider substations as a product 

family. 

No eco-design approach was performed at PEM before the application of the work presented 

in this PhD dissertation. It also implies that no-one was really trained in eco-design and 

environmental considerations. A pre-existing eco-design group was however already present 
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at a corporate level, but it had no settling in the PEM unit and its work was clearly more 

focused on products aspects than systems aspects. 

The PEM design process is characterised by two main design departments. The R&D 

department is in charge of the global architecture of substations, the development of 

technological innovative bricks and the upstream research to these technological 

developments. The Engineering department is in charge of the instantiation of the global 

architecture for each projects and the detailed design. 

As the most efficient environmental improvements need to be performed very early in the 

design process (McAloone, 1998), the R&D department rapidly appeared to be the best place 

to act and to first implement eco-design. This department generally jointly performed projects 

that are then combined to propose new architectures and technologies for the designed 

systems. This portfolio-based approach is thus considered in the next sections and chapters. 

From this industrial context the main requirements were to introduce eco-design in a unit that 

has never considered environmental issues, with limited time and resources and benefiting 

from scarce and uncertain life cycle data. Combining the research and industrial contexts, 

three research questions have been defined. They are presented in the next section. 

1.4. Research questions and methodology 

The industrial and research context show methodological lacks about eco-design applied to 

complex industrial systems. From these observations three research questions have been 

defined. 

1.4.1. How to manage eco-design for complex industrial 

systems? 

We have highlighted the lack of an operational methodology to implement eco-design in 

complex systems industries. Specificities associated with complex industrial systems amplify 

the classical limitations of Life Cycle Assessment. Moreover the time and resources available 

in companies limit the ability to perform in-depth environmental evaluation and improvement 

processes. For these reasons we define the first research question as: 

Research question 1 

How to manage with limited time and resources the deployment of an eco-design approach in 

a complex system industry with no pre-existing knowledge and competences? 

 

1.4.2. How to assess the environmental performance of 



Chapter 1. Context and research questions  François Cluzel 

Eco-design implementation for complex industrial systems 

- 29 - 

complex industrial systems? 

Considering the problems specifically linked with the deployment of LCA for complex 

industrial system, one main question concerns the granularity level to choose in order to 

reach the best compromise between results quality and available time and resources. It has 

been noticed that performing a complete and in-depth LCA of such a system would probably 

take several years. However is it really necessary to perform this type of LCA to feed an 

internal environmental improvement process? We are actually convinced that the 

identification of the main impacting elements of the system life cycle is sufficient for that use. 

Consequently a detail level that permits distinguishing the subsystems and the main 

components seems to be a good compromise. However some difficulties quickly appear, like 

the modelling of the system life cycle, which is very long and uncertain. That is why we 

formulate the second research question as: 

Research question 2 

How to perform a reliable LCA of a complex industrial system at a high level and with limited 

time and resources? 

 

1.4.3. How to generate and select a powerful eco-innovative 

R&D projects portfolio for complex industrial systems? 

Once an effective environmental evaluation of the system has been performed, the question 

is now to provide environmental improvements based on LCA results. In the particular context 

of complex systems industries, the global system architecture is designed in the R&D 

department. The size and the complexity of the system does not permit simply identifying 

some improvements and performing them in a linear process. Thus it becomes necessary to 

introduce the notion of �R&D projects portfolio�. However this notion is rarely considered in 

the eco-design field. And the third research question is formulated as: 

Research question 3 

How to generate and select an adapted portfolio of eco-innovative R&D projects for a 

complex industrial system? 

 

1.4.4. Synthesis 

The three research questions are synthesized in Figure 11. The first question deals with the 

entire eco-design approach, including both the environmental assessment and environmental 

improvement stages, while the second and third questions are focused respectively on the 
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first and second eco-design stages. 

 

Figure 11. Positioning of the three research questions in a general eco-design process 

So the first questions aims at identifying a general methodology in which the answers to the 

two other questions will be inserted. These three questions are treated in the next chapter, 

first by performing a literature review of the main associated research fields, and secondly by 
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Chapter 2. Proposition of a general methodology 

From the context and the research questions expressed in the previous chapter, an overview 

of the literature in the different concerned research fields is proposed in Section 2.1 to 

introduce the general methodology in Section 2.2.  The applicative steps performed at Alstom 

Grid are presented in Section 2.3. The three main aspects of the methodology are treated in 

detail in Chapter 3, Chapter 4 and Chapter 5 as papers published or submitted in international 

journals. 

The role of this chapter is not to give detailed information and results, but to structure and to 

link in a logical way the research fields and axes treated in the three journals papers 

presented in the following chapters. 

2.1. Literature review overview 

 

Figure 12. Positioning of the three explored literature fields with the main associated 

concepts 
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With regard to the research questions, three main research fields have been defined and 

explored. They are represented in Figure 12. The main key elements of these three literature 

domains are given in the next paragraphs to introduce the methodology in section 2.2. 

2.1.1. Organisational aspects of eco-design for complex 

industrial systems 

Concerning the first research question that deals with organisational aspects of eco-design, 

related standards have been studied (the main one being the recent ISO 14006 standard 

(ISO, 2011)), as well as the research field known as Product-Oriented Environmental 

Management Systems, or POEMS. (Wuppertal Institute for Climate, Environment, Energy, 

2008) offers an interesting overview of the associated literature. Another interesting field that 

has been studied concerns Lean 6 Sigma and continuous improvement, and more particularly 

some works mixing environmental concerns and Lean 6 Sigma under the term Lean and 

Green (see for example (US Environmental Protection Agency, 2000)). 

This first literature axis is deepened in Chapter 3. 

2.1.2. Global LCA of complex industrial systems 

The second research question aims at offering environmental evaluation tools and methods 

adapted to complex industrial systems. We have chosen to only focus on Life Cycle 

Assessment as: 

· It is currently the most accurate environmental evaluation method, 

· It is standardised (ISO, 2006a, 2006b) and well recognized worldwide, 

· It is already deployed in other Alstom Grid unit, 

· The quantitative results were really useful in the Alstom Grid context. 

In the LCA field we have favoured qualitative approaches to consider uncertainties due to the 

lack of data and the complexity of the system life cycles. That is why we have rapidly 

converged toward scenario-based LCA (Pesonen et al., 2000; Weidema et al., 2004; Höjer et 

al., 2008; Zamagni et al., 2008) , and more generally scenario techniques (Tietje, 2005; 

Börjeson et al., 2006; Bishop et al., 2007). 

This second literature axis is deepened in Chapter 4. 

2.1.3. Eco-innovation of complex industrial systems 

Finally, the third research question deals with eco-innovation in an upstream R&D context. 

The field of eco-innovation has of course been explored, including eco-ideation and creativity 
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(Brezet and Van Hemel, 1997; Fussler and James, 1997; Jones et al., 2001; Pujari, 2006; 

Carrillo-Hermosilla et al., 2010; Collado-Ruiz and Ostad-Ahmad-Ghorabi, 2010; O�Hare, 

2010; Bocken et al., 2011; Tyl, 2011). However we have also focused on portfolio 

management techniques that appeared as really adapted to the industrial needs for complex 

industrial systems (Cooper et al., 1999; Mikkola, 2001; Apperson et al., 2005; Coldrick et al., 

2005; Lawson et al., 2006; Bitman and Sharif, 2008; Henriksen and Palocsay, 2008). 

This third literature axis is deepened in Chapter 5. 

2.2. General methodology 

2.2.1. General overview 

According to the three research questions and the three literature fields previously presented, 

three research axes have been defined to answer to the research questions. These axes are 

presented in Figure 13. Each axis is materialized by a scientific paper, reproduced in Chapter 

3, Chapter 4 and Chapter 5. 

Within the first axis an adapted process to implement eco-design in complex system 

industries in proposed. The second axis concerns the development of a scenario-based LCA 

model to consider uncertainties and variabilities related to the system life cycles. Finally an 

eco-innovative process is proposed within the third axis to define a promising portfolio of R&D 

projects for complex industrial systems. 

An overview of these propositions is performed in the next paragraphs. Moreover the 

coordination between the three axes is clarified in the next paragraph. But basically, as shown 

in Figure 13 the global methodology proposed in the first axis offers a complete framework to 

the eco-design of complex industrial systems, whereas the two other axes focus on more 

specific aspects, concerning respectively the environmental evaluation stage and the 

environmental improvement stage. 

The whole process is designed to be applied in a company producing complex industrial 

systems, with no particular eco-design or environmental prerequisites. A special attention is 

made to the saving of time and resources in the company, i.e. to define the best compromise 

between environmental gain and the ability of the organisation to absorb this new dimension 

without reviewing the usual design rules. 

So the inputs of the process are: 

· A company or a company unit designing complex industrial systems, 

· With only few environmental or eco-design competences and knowledge, 
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· But with a real ambition to introduce eco-design in its practices, which includes both 

the management support and the ability to occasionally mobilize technical experts for 

some hours to contribute to the data inventory or the eco-innovation process, 

· And an eco-design leader supporting the process deployment, who may come from 

the company or not (from a university or a consulting company for example). 

Once the process has been deployed and realized in the company, the expected outputs are: 

· A portfolio of eco-innovative R&D projects. These projects offer substantial 

environmental benefits, deal with different aspects of the system and the company 

(organisational, technical or methodological; short, middle, or long term�) and some 

elements are known to prove their feasibility from an economic and a technical point 

of view, 

· Eco-design is implemented in the company, meaning that people are aware of eco-

design, and some people are trained and act as eco-design ambassadors in their 

department, 

· The company knows the environmental performance of the studied systems, and may 

orient some design choices even out of the improvement projects, 

· And finally the company has the possibility to communicate about its eco-design 

organisation and results to promote ecological values and to improve its competitivity 

and its brand image. 

However the proposed methodology covers the steps from the introduction of eco-design into 

the company to the development of a set of eco-innovative R&D projects, but it does not 

cover the realization of these projects. In fact the time line of such an entire process would be 

too long for an industrial PhD thesis, and that is why we have preferred focusing on the 

details of the first steps. We estimate indeed that reliable and validated basis are essential to 

integrate eco-design on a long-term vision. However some guidelines are given for the 

realization of the projects, in particular through a structured framework in the first research 

axis. 

From these considerations, we can estimate that the benefits for the company would be much 

more substantial after the realization and the capitalization of the improvement projects, which 

implies a successful implementation of the steps leading to these projects. A quick 

introduction of the three research axes is proposed in the next paragraph, with some 

complementary information compared to the scientific papers, in order to clarify their links. 



Chapter 2. Proposition of a general methodology  François Cluzel 

Eco-design implementation for complex industrial systems 

- 35 - 

 

Figure 13. Positioning of the three research axes and links with the dedicated chapters 

and papers 

2.2.2. Axis 1: an adapted eco-design process for complex 

industrial systems 

Axis 1 answers to the first research question: how to manage eco-design for complex 
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reliable way the implementation of eco-design in complex system industries. This 

methodology considers the DMAIC (Define, Measure, Analyse, Improve, Control) approach 

from the Lean 6 Sigma field to structure the different steps of a classical eco-design approach 

centred on LCA. 

 

Figure 14. Overview of the main steps of the proposed eco-design process for complex 

industrial systems 

A first global approach is proposed to support a global environmental assessment of the 

system through the Define, Measure and Analyse steps. Then improvement projects are 

identified and selected during the Improve and Control steps. These projects are realized and 

validated separately in specific approaches supported by another DMAIC scheme. 

Once the projects have been realized, the whole process may be reiterated, in a continuous 

improvement perspective. The initial reference system is at that time replaced by the new 

system including the improvements validated at the conclusion of the projects. As complex 
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industrial systems are considered, an entire loop may take some years. 

As said previously, the application of this methodology only covers the global approach. The 

whole process is illustrated in Figure 14. 

Figure 13 illustrates the positioning of the three research axes on a classical and simplified 

eco-design approach (environmental evaluation followed by environmental improvements). 

Figure 15 illustrates, with the process previously described, the positioning of the second and 

the third research axes within the first axis. These two axes are quickly described in the next 

paragraphs. 

 

Figure 15. Positioning of research axes 2 and 3 in the global eco-design process 

(research axis 1) 
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2.2.3. Axis 2: a scenario-based LCA model for complex 

industrial systems 

 

Figure 16. Overview of the proposed scenario-based LCA model for complex industrial 

systems 

Axis 2 answers to the second research question: how to assess the environmental 

performance of complex industrial systems? It is materialized by the scientific paper 
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reproduced in Chapter 4, which has been submitted in the International Journal of Life Cycle 

Assessment. 

When performing a first global LCA of an Alstom Grid electrical substation as an application of 

the methodology proposed in the first research axis, it has been noticed that the methodology 

is helpful to rigorously define the objectives and the perimeter of the study, and to support the 

different steps of an LCA approach with a high amount of data. However it has also been 

noticed that the LCA methodology in itself hardly permits taking into account in a simple way 

the variabilities that may exist from one industrial site to another. To avoid tedious inventories 

of the system exploitation phase while the system in itself is almost the same from one project 

to another, it would be useful to have at one�s disposal an adapted LCA model. 

As only mainly qualitative, partial and uncertain data (without associated probabilities) are 

often available for complex industrial system like Alstom Grid substations, formal uncertainty 

methods have been quickly dismissed. Scenario-based LCA has on the other hand been 

carefully studied, as it encompasses all the needed characteristics. 

From the first LCA we have identified the key elements that were not or badly taken into 

account to integrate them into the scenario-based approach. So relevant elements such as 

preventive and corrective maintenance, updates and revampings, or life time modulation have 

been identified and compiled into coherent exploitation scenarios. 

From the geographical site, the electrical mix and the exploitation management associated to 

the system, scenarios are built to explore the space of possible environmental impacts, 

making the decisions issued from the LCA results more reliable. This process is represented 

in Figure 16. This scenario-based LCA model appears as being a good solution to make the 

eco-design decisions more reliable according to the possible exploitation scenarios. It is also 

a good way to initiate a dialog with the clients to generate good practices and 

recommendations in order to promote more cooperation and higher environmental benefits. 

2.2.4. Axis 3: an eco-innovation process based on R&D 

projects portfolio for complex industrial systems 

Axis 3 answers to the third research question: how to generate and select a powerful eco-

innovative R&D projects portfolio? It is materialized by the scientific paper reproduced in 

Chapter 3, which has been submitted in Technovation. 

LCA results from the previous research axis provide useful environmental information for 

decision-makers. However it does not ensure any environmental improvement, as LCA is 

mainly an evaluation tool. In the continuity of the general methodology developed in the first 

axis, the Improve phase aims at identifying improvement solutions to answer to the 

environmental problems detected thanks to the LCA results. 
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Figure 17. Overview of the proposed eco-innovation process for complex industrial 

systems 
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participation to the deployment of eco-design in the company is also a key aspect to ensure a 

long-term implementation of eco-design practices. 

From these considerations we propose an original eco-ideation and eco-selection 

methodology based on a working group of technical experts. The methodology is illustrated in 

Figure 17. A short eco-design training is performed and the main LCA results are 

communicated to prepare a creativity session based on a simple and resource-efficient eco-

innovation tool, the eco-design strategy wheel (Brezet and Van Hemel, 1997). Ideas are 

generated and then sorted out thanks to three structured filters and a multi-criteria 

assessment grid (an overview of this grid is proposed in Appendix 1, p 149). The most 

promising projects are selected and integrated into a R&D projects portfolio presented to the 

company management. 

The application and the validation of these three research axes have been performed at 

Alstom Grid on AC/DC conversion substations used in the primary aluminium industry. Some 

details are given in the next section. 

2.3. Applications and validation 

2.3.1. Deployment at Alstom Grid 

The deployment of the methodology has been realized in the PEM (Power Electronics Massy) 

unit of Alstom Grid, a global leader in medium and high voltage products and systems. After 

the first theoretical work, the different applicative steps have been realized from the beginning 

of 2010 to 2012. 

The author of this PhD dissertation has been directly leading the deployment of eco-design at 

PEM, as a full member of the R&D department. The work has been directly supported by the 

PEM R&D director and a senior sales manager from the commercial department. Some PEM 

members and some people from other Alstom Grid units have also been asked to contribute 

in the eco-design deployment at the different stages of the approach: 

· During the Life Cycle Inventory to provide data, 

· During the eco-innovation approach deployment to take part in the creativity working 

group, 

· During the eco-innovation approach deployment to assess the projects in order to 

identify the best projects portfolio. The assessors have been the working group 

members and some eco-design experts from other Alstom Grid units. 

The eco-design methodology has been deployed on AC/DC conversion substations, i.e. on 

the main electrical system provided by PEM. To provide accurate data to feed the substation 
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LCA, we have chosen to focus on one particular project. The project chosen is a substation 

under construction for a Hindalco aluminium smelter in India, with a capacity of 360,000 tons 

of aluminium per year and supplied by a captive coal power plant. As all the data are not 

available for this project, data from other close projects have also been used. 

The final deliverable for Alstom Grid is a portfolio including 9 eco-innovative and documented 

R&D projects, with the objective to implement them in the next months. Some details about 

this portfolio are given in the next paragraph. 

2.3.2. Identification of 9 eco-innovative R&D projects 

The implementation of the general eco-design methodology, the application of the scenario-

based LCA model and the realization of the eco-innovation process has finally led to the 

identification of a 9 R&D projects portfolio. These 9 projects have been chosen thanks to the 

evaluation performed by technical and eco-design experts. So they have been selected for 

their excellent performances in terms of environmental benefits, technical and economic 

feasibility and benefits for the clients. The 9 projects are listed below: 

1. Transformer optimization: this project consists in the implementation of eco-design 

in the design process of special transformers used in the substations. It includes 

organizational, methodological and technological aspects on a long term perspective. 

2. Choice of transformer oil: this project includes an in-depth analysis of the different 

transformer oils to develop more eco-friendly transformers. 

3. Design guidelines and tools: this projects aims at developing adapted design 

methods and tools to eco-design complex industrial systems at a more operational 

level (once the global architecture is fixed). 

4. Transformer oil end-of-life: the end-of-life of transformer oils is uncertain, and this 

project aims at documenting and providing recommendations for this particular stage. 

5. Use of recycled materials: the objective of this project is to promote the use of 

recycled materials in the substation subsystems. 

6. Components marking for the end-of-life: the substation end-of-life being highly 

uncertain, the goal of the project is to study the feasibility of specific marking on 

substation components to facilitate the end-of-life stage. 

7. End-of-life leaflets: in parallel with the previous project, this one aims at 

documenting the possible end-of-life routes for the different subsystems, to favour 

ecological treatments despite the high uncertainties existing at the design stage. 

8. Recyclability: the objective of this project is to promote the use of recyclable 
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materials in the substation subsystems.  

9. Transformer oil diagnosis: finally this last project deals with oil diagnosis to monitor 

the health of transformers and to optimize their life time. 

For confidentiality reasons, only few and general details are given about these projects. 

This portfolio represents the main operational deliverable for Alstom Grid. However other 

contributions are of course perceptible for the company. They are listed in the next paragraph. 

2.3.3. Contributions for the company 

The main industrial contributions of this research work and its applications at Alstom Grid are 

listed below: 

· A robust and iterative eco-design methodology: this methodology may easily be 

implemented in other units on other system with limited time and resources. 

· An efficient capitalization of knowledge: the last step of the adapted DMAIC 

process, Control, ensures a systematic capitalization of the produced knowledge, 

easily mobilizable for future projects. 

· A competitive advantage: as no environmental regulation currently focuses on 

complex industrial system such Alstom Grid substations, the implementation of eco-

design is voluntary and it provides a useful competitive advantage for the company. It 

is also particularly useful if clients ask for a guaranteed environmental performance. 

· A better knowledge of the systems: the LCA deployment implies an in-depth 

analysis of the system life cycle, and it provides detailed results, that permit 

developing and capitalizing new expert knowledge, potentially useful in other 

technical fields. 

· A new R&D positioning: the identification of the eco-innovative R&D projects 

portfolio offers a new vision centred on environmental concern that can feed and 

orient the R&D program for the next years. 

· An effective environmental communication: scientific publications issued from this 

PhD thesis ensure an interesting positioning of the company based on recognized 

eco-design results. 

· Internal cooperation: the eco-innovation process involves both a multidisciplinary 

working group and a panel of technical and eco-design experts. It is thus a 

stimulating tool to promote cooperation between different units, or even between 

members of the same unit that are not used to work together. 
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· External cooperation: the whole process highlights on many aspects the possible 

cooperation with clients and suppliers. The collaboration with suppliers is particularly 

underlined with the scenario-based LCA model to co-develop eco-friendly exploitation 

scenarios. 

The next chapters reproduce original papers published or submitted to international journals. 

They detail the methodologies and applications proposed in the current chapter. 
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Chapter 3. Paper #1:  Proposition for an adapted 

management process to evolve from an 

unsupervised Life Cycle Assessment of complex 

industrial systems towards an eco-designing 

organisation 

François Cluzel, Bernard Yannou, Yann Leroy, Dominique Millet 

This paper has been published in Concurrent Engineering: Research and Applications in June 

2012, under the following reference: 

Cluzel F., Yannou B., Leroy Y., Millet D., 2012, �Proposition for an Adapted Management 

Process to Evolve from an Unsupervised Life Cycle Assessment of Complex Industrial 

Systems Towards an Eco-Designing Organisation�, Concurrent Engineering: Research and 

Applications, 20 (2), pp 111-126. 

Foreword 

The first paper (Chapter 3) was chronologically written before the two other ones (Chapters 4 and 5). A 

first LCA is proposed concerning an Alstom Grid substation. This LCA is shown in the first paper as the 

application of the first steps of the methodology. But it was also a way to identify weak LCA 

methodological elements that are the base of the second paper (Chapter 4), i.e. a scenario-based LCA 

model. 

In a new and fictive implementation of the general methodology, the scenario-based LCA model would 

directly be applied instead of the classical LCA application proposed in the first paper, as it is proved to 

be more efficient and adapted to R&D strategic orientation than a classical LCA. 

Finally, the general methodology proposed in the first paper includes a step of generation and selection 

of eco-innovative R&D projects. No application of this process was proposed in it, as the paper was 

written before this application. The detailed process and its application are thus proposed in the third 

paper (Chapter 5). 

To synthetize, the first paper (Chapter 3) proposes a methodology in two steps: environmental 

evaluation and environmental improvement. The environmental improvement is applied in the first paper 

through a classical LCA study, but a more accurate and adapted model based on exploitation scenarios 

is then developed and applied in the second paper (Chapter 4). The environmental improvement step is 

detailed and applied in the third paper (Chapter 5). 
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Abstract: The integration of environmental concerns into the product design process is not 

trivial when dealing with complex industrial systems. Actually, environmental assessment 

methodologies like Life Cycle Assessments (LCA) reach, in this case, methodological and 

organisational limits. More generally, the complexity inherent in the design process may put 

off eco-design initiatives from a lack of organisational management, methods and tools. In this 

paper, we propose a project management methodology to facilitate the integration of eco-

design into the design process of complex industrial systems. This methodology is based on 

continuous improvement and a DMAIC process. It is then structured around precise team 

definition, precise milestones, deliverables and phases. A first stage ensures a reliable 

environmental assessment of the full system and the identification of environmental 

improvement projects. A second stage allows the independent execution of the most 

promising improvement projects. A first application is proposed on the Alstom Grid AC/DC 

conversion substations for the aluminium industry. A Life Cycle Assessment has been 

performed with limited resources and has provided rich findings and promising perspectives. 

It shows in particular that the best environmental configuration of such a complex industrial 

system depends on external parameters like the implantation site. 

Key words: Eco-design, Life Cycle Assessment (LCA), Product-oriented environmental 

management, Lean Six Sigma, complex industrial system, AC/DC conversion substation. 

3.1. Introduction 

Eco-design has become a major concern for many large companies in the last decade. 

Dealing first with mass consumer goods, B-to-B firms are now concerned. The constantly 

evolving regulations framework (particularly in the European Union with the WEEE [1], RoHS 

[2], EuP [3] directives or the REACH regulation [4]) and highly competitive markets are 

pushing the most innovative complex industrial systems producers towards a proactive eco-

design approach. However, substantial limitations are slowing down this deployment in the 

design process of such systems. Characterised by their complex architectures, complex life 

cycles or large-scale scope, these systems cannot be considered as �classical� products. 

Actually performing a Life Cycle Assessment (LCA) on a large energy system is an extremely 

hard task and the lack of resources (people, time, money) as well as the lack of accurate data 

quickly becomes unacceptable. 

It is thus necessary to find a way to perform environmental assessments of complex industrial 

systems with limited resources at an acceptable quality level. That is why this paper proposes 

an adapted eco-design project management methodology for complex industrial systems. 

This two-stage iterative methodology is based on a global environmental assessment of the 

system with a Lean Six Sigma approach, along with specific environmental improvement 

projects. This methodology naturally finds its place among the different environmental 

standards (in particular ISO 14006 [5], ISO 14062 [6] and ISO 14040 [7]) and methodologies 

proposed in the past, like Product-Oriented Environmental Management Systems (POEMS, 
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see [8]). Its main force is its compatibility with these standards, while being adaptable to 

company constraints; it allows adapting the study to the complexity of the system, thanks to a 

precise project charter. 

The application of the first steps of the methodology was performed on an Alstom Grid AC to 

DC conversion substation for the aluminium industry. This industrial system is characterised 

by a high level of complexity in terms of the number of components and life cycle. Its 

environmental impacts are extremely dependent on the implantation context and the choices 

made at the super system level (aluminium smelter). Thus, this is a good example of a 

complex industrial system. 

The results of this first LCA have provided with limited resources a strong basis to deploy eco-

design activities. They have also permitted the establishment of a working group to orient the 

future eco-design activities within the company. The application of these next steps will 

ensure the ability of the methodology to successfully design and configure complex industrial 

systems from an environmental perspective. 

The original methodology has undergone major improvements since its first version (see [9]) 

to permit its application in accordance to the company�s constraints. This paper includes the 

last evolutions and applicative steps, as well as a clear positioning among the standards and 

other existing approaches. 

Section 3.2 presents a definition of a complex industrial system and highlights the limits of 

eco-design and Life Cycle Assessments for such systems. This permits a clear positioning of 

the methodology among the different standards and previous approaches. The methodology 

is then detailed in Section 3.3 through the description of the different DMAIC steps. Section 

3.4 proposes an application on Alstom Grid AC/DC conversion substations, with a focus on 

the main LCA results obtained thanks to the methodology. It shows the importance of 

focussing the improvement projects on particular aspects (life cycle phase, subsystem, 

component or material) while always considering a global environmental vision of the system. 

Finally, some conclusions and perspectives are given, the next applicative steps are 

described and the concept of an �environmental configurator� is introduced. 

3.2. Methodological Positioning 

3.2.1. Context of the Study 

This paper focuses on complex industrial systems whose specificities have not really been 

taken into account by eco-design and Life Cycle Assessment: these are industrial systems 

where complexity induces major issues in terms of modelling, prediction or configuration. If 

we consider the systems engineering domain, Blanchard and Fabricky [10] characterise 

engineered systems as systems that achieve operational objectives; that operate over a 
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complete life cycle; that are composed of a combination of resources (humans, materials, 

equipment, money�); that are composed of subsystems and components that interact with 

each other; that are influenced by external factors from larger systems and in interaction with 

the natural world. Adding an environmental dimension, we define a complex industrial system 

in the sense of eco-design as: 

· A large-scale system in terms of subsystems and components, mass and resource 

usage 

· A system whose life cycle is hardly predictable at the design level in the long-term, in 

particular its lifetime, upgrades, maintenance and end-of-life  

· A system whose subsystems may have different life cycles and different 

obsolescence times 

· A system in close interaction with its environment (super system, geographic site�) 

· A system supervised by human decisions and management 

Examples of such systems are, in particular, energy systems like the Alstom Grid conversion 

substations described in Section 3.4. In such systems, the classical eco-design limitations are 

amplified by the internal system complexity. In addition, complementary issues appear. These 

limitations are explained in more detail in the next sections.  

3.2.2. Limits of Eco-Design for Complex Industrial Systems 

From this definition, this part first considers LCA limits encountered in complex industrial 

systems. Then, wider eco-design limits are detailed to introduce the requirement definitions. 

3.2.2.1. Technical LCA Limits 

Life Cycle Assessments of large-scale energy systems have already been performed (see for 

example [11,12]). However, they are considered as �classical� products. Local implantation in 

particular, due to the nature of electricity, seems crucial to approximate the real environmental 

impacts of these systems.  

Moreover, the current eco-design limits, in particular for LCA are a recurrent discussion topic. 

Reap [13,14] gave a list of LCA problems by phase (see Table 4). The problems that 

particularly concern us in this paper are in bold in Table 4. 

The boundary selection is hard to manage for complex industrial systems because the high 

number of subsystems and the interactions with surrounding systems make the boundaries 

fuzzy. Another problem concerns the inventory data granularity to choose, and more globally 

the data availability and quality [15]. Is it necessary to consider every screw or electrical 
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component to obtain significant LCA results? This problem is also taken into account by 

Leroy, who highlights the need for quantified data [16]. 

Table 4. LCA problems by phase (from [13]) 

Phase Problem 

Goal and scope 
definition 

· Functional unit definition 
· Boundary selection 

· Social and economic impacts 
· Alternative scenario considerations 

Life cycle 
inventory analysis 

· Allocation 
· Negligible contribution (�cutoff�) 

criteria 
· Local technical uniqueness 

Life cycle impact 
assessment 

· Impact category and methodology 
selection 

· Spatial variation 

· Local environmental uniqueness 
· Dynamics of the environment 
· Time horizons 

Life cycle 
interpretation 

· Weighting and valuation 
· Uncertainty in the decision process 

All · Data availability and quality 

 

The last problems raised by Reap that interest us, deal with the spatial dimensions, that 

means the variability that could exist for the same product on different geographical sites. 

Actually as it will be shown later in the paper, exogenous parameters such as electricity mix 

can have strong influences on the environmental impacts. We clearly need to manage the 

uncertainties about spatial dimensions to obtain significant results. 

These technical problems are well known to LCA practitioners. We do not pretend to solve 

them, but we are looking for a methodology that will help us to consider them systematically. 

3.2.2.2. Overall LCA and Eco-Design Limits 

Apart from technical limits, other problems of the eco-design process management will be 

considered in our study.  

The first one is that LCA is an evaluation tool and not an improvement tool. It is then only the 

first stage of an eco-design process. Dewulf shows in [17] that LCA is able to feed 

environmental improvement tools, but it needs to be based on an existing product. It is not 

adapted to a new product design [18]. 

Furthermore, ISO 14062 [6] specifies the need for a multi-disciplinary team throughout the 

eco-design process, but it does not specify how to build the team. The eco-design process is 

globally defined, but no standardised or systematic deliverables and milestones exist. As 

shown in the next section, the existing standards and methods stay at a requirement or 
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guidelines level. To complete them an operational level seems necessary to manage the 

complexity of complex industrial systems. 

Finally, there is no clear way to include the customer requirements that will orient the 

decisions throughout the process within the study. 

3.2.2.3. Methodology Requirements 

Following from the above, we need to define an operational methodology that: 

· Can systematically consider the technical LCA limits concerning complex industrial 

systems 

· Can be applied on different systems and subsystem levels 

· Considers a reference product to improve 

· Supports ISO standards for LCA 

· Covers both the environmental evaluation and improvement phases 

· Offers a rigorous framework with precise milestones and deliverables and a clearly 

defined team 

· Can take into account customer requirements 

The next section studies the pre-existing approaches in the literature to refine and position the 

methodology detailed in Section 3.3. 

3.2.3. Literature Study 

3.2.3.1. Normative Aspects 

The normative framework concerning environmental management and eco-design is 

constantly evolving. However, standards often stay at a high level of abstraction and are often 

difficult to apply directly in companies. We distinguish three normative levels in Figure 18. The 

requirements define the scope, the objectives and the global outline of the approach. The 

guidelines are more precise and propose general ways to attain the requirements. Finally, the 

operational methodologies, based on the guidelines, are directly applicable to the studied 

object. These three levels are represented on the Y-axis. The X-axis distinguishes the site-

oriented approaches from the product-oriented approaches. This distinction can also be made 

between site management and product design. The frames inside the diagram give a third 

dimension. The focus is on environmental management, and more precisely, eco-design. 
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Figure 18. Positioning amongst some pre-existing environmental standards. The 

arrows represent the connections between the standards. 

ISO 14062 [6] and IEC 62430 [19] standards are directly connected to eco-design by 

describing the main lines of the integration of the environment into product design. ISO 14006 

[5] gives guidelines to incorporate eco-design into the more general framework of 

environmental management systems (ISO 14001 [20]). NF E01-005 [21] (French standard) 

caters to eco-design in small and medium enterprises with an operational, but simplified 

approach. Finally, ISO 14005 [22] permits the easy application of environmental management 

practices (from ISO 14001) in SMEs, but it is not focused on eco-design.  

On the other hand, environmental tools like emissions accounting (ISO 14064 [23]), 

environmental labelling (ISO 14020 series [24�27]), or Life Cycle Assessment (ISO 14040 

series [7,28]) are clearly operational but only support a part of the eco-design process 

deployment. 

Therefore, this diagram highlights the lack of an operational eco-design methodology for 

complex industrial systems based on well-established standards and supported by well-

known environmental tools such as LCA. In these systems, the implementation stage is a real 

challenge and it has to be �precaution� driven. This is why the issue is also highlighted in the 

diagram. 
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Now that the proposed methodology is precisely positioned amongst the different 

environmental standards, in the next section we can focus on the multiple approaches that 

exist in the literature. 

3.2.3.2. Product-Oriented Environmental Management Systems 

Due to this lack of operational standards to support a complete eco-design process in 

companies, different approaches have been proposed in the past, under the acronym 

POEMS (Product-Oriented Environmental Management Systems). They are mainly based on 

the fact that the classical EMS proposed in ISO 14001 are focused on site environmental 

aspects and they do not easily consider environmental impacts of products. The CALCAS 

report (Co-ordination Action for innovation in Life Cycle Analysis for Sustainability: a project 

financed by the Sixth Framework Programme of the European Commission) states that 

�traditional EMSs (ISO 14001, EMAS) do not encompass products in their procedures and do 

not answer to the needs of firms to communicate the environmental quality of products� [8]. 

Moreover, classical approaches often display major weaknesses in the management aspects 

of eco-design [8]. Finally, a common definition of POEMS appeared recently: a POEMS is 

defined as �an EMS with a special focus on the continuous improvement of a product�s eco-

efficiency (ecological and economic) along the life cycle, through the systematic integration of 

eco-design in the company�s strategies and practices� [8,29�31]. 

Examples of POEMS are given in [29,30,32,33]. While these methodologies stay closely 

connected to academic works, other approaches, at Airbus for example [34], have been 

developed in major industrial companies. This particularly highlights the requirements of 

companies, namely to adapt POEMS to their own organisations [35]. This is mandatory to 

drive proactive eco-design activities successfully.  

From the previous section, a comparison can easily be made between POEMS and ISO 

14006, as these approaches aim at adapting EMS for eco-design. However, we consider that 

they stay at a guideline level, because they encompass all the eco-design activities of the 

company, starting at the environmental policy level. With a perspective of application to 

complex industrial systems, a methodological layer is clearly missing. 

Moreover an analogy is made in [36] between POEMS and TQM (Total Quality Management). 

This comparison with the fields of quality and continuous improvement is extremely 

interesting and will be explored in the next sections. Actually, the rigor, the organisational 

aspects and the adaptability of such methodologies appear promising for the application of 

eco-design to complex industrial systems in concrete terms. 

3.2.3.3. Lean & Green 

Lean & Green is a concept mixing Lean Six Sigma and environmental considerations in order 

to minimise the environmental impact of a product, service or process. It appeared in the last 
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decade. Several companies or organisms propose variants on Lean & Green approaches. 

The US Environmental Protection Agency has used this term since 2000, in a document 

called The Lean and Green Supply Chain [37]. The EPA has gone further since then and now 

proposes a structured and well-detailed approach called Lean Manufacturing and the 

Environment [38]. Different interesting toolkits are available:  

· Lean and Environment Toolkit [39], which is oriented towards the identification of the 

environmental wastes in a supply chain, 

· Lean and Energy Toolkit [40], whose aim is to identify energy losses in an industrial 

process to improve performance. 

Furthermore, for several years IBM has offered a consulting offer called Green Sigma. �This is 

a new solution offering, which merges IBM�s deep expertise in Lean Six Sigma with other 

robust green initiatives, resources and intellectual capital across the company� [41]. The 

Green Sigma project is divided into five stages: define key performance indicators, establish 

metering, deploy carbon dashboard, optimise processes and control performance - which is 

very close to the Six Sigma DMAIC approach (Define, Measure, Analyse, Improve, Control). 

Other approaches based on the same principles are described in [42] and [43]. These two 

books show several industrial case studies of Lean & Green approaches. As in the previous 

examples, these different Lean & Green approaches have advantages (use of the rigorous 

Lean Six Sigma framework to optimise complex systems), but we consider that they stay site-

oriented and are hardly applicable to products (we consider the whole product life cycle). 

They potentially offer powerful tools to assess the environmental quality of supply chains and 

organisations and, consequently, they are more oriented towards environmental management 

systems (see ISO 14001 [20]).  

3.2.4. Synthesis 

This literature study has shown that no existing methodology is really adapted to manage the 

eco-design of complex industrial systems. POEMS and ISO 14006 offer a promising 

methodological layer, but they are not easily applicable at an operational level. This could be 

deliberate in order to let companies customise POEMS to their own organisation. However, 

the specificities of complex industrial systems in terms of eco-design make it necessary to 

develop an additional layer. Lean & Green approaches are also useful to organisational 

aspects. That is why in the next section we will develop this additional layer on a DMAIC 

basis with close links to POEMS and ISO 14006. 

3.3. Model description 

The model proposed in this paper is based on two stages. The first is a �global approach� and 
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is focused on environmental assessments and the identification of methods of improvement. 

The second includes several �specific approaches� and is more focussed on environmental 

improvements. 

3.3.1. General Model 

The main objective of the methodology is to permit an easier integration of eco-design in a 

company unit designing complex industrial systems, where there was no pre-existing 

approach. The focus is particularly on operational implementation throughout the organisation 

by giving a concrete and generic detailed process. It is more precise than POEMS and ISO 

14006 that are focused on requirements and guidelines at a more strategic level. In the next 

section, we will present an application in a unit of Alstom Grid, where the strategic dimension 

of eco-design (environmental policy in particular) is pre-existing at the group level. The 

industrial needs are thus centred at the operational level in the unit. Therefore, the 

methodology is compatible with POEMS and ISO 14006 and complements them as a user-

friendly layer. 

A classical eco-design approach is divided into two main stages: environmental evaluation 

and environmental improvement. From an initial environmental assessment (often based on 

Life Cycle Assessment or simplified LCA), design recommendations emerge to improve the 

overall environmental performance of the product throughout its whole life cycle. 

 

Figure 19. Global versus specific approaches to manage the eco-design of complex 

industrial systems 

The proposed methodology maintains this global architecture, but the complexity highlighted 

in Section 3.2 makes the implementation of a classical eco-design process delicate. That is 

why the methodology is divided into a global environmental assessment on the one hand and 

specific improvement approaches on the other. It is designed to start from an expert approach 

(LCA) and evolve to an expert-assisted approach through a continuous rise in knowledge and 

competency and clearly defined deliverables. Figure 19 illustrates the iterative architecture of 

the methodology. This iterative nature ensures continuous improvement, a good capitalisation 
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of the results as well as an effective expertise transmission. The next sections detail these 

different approaches. 

3.3.2. About DMAIC 

In order to standardise and facilitate the deployment of this methodology in companies, it has 

been constructed on a Lean Six Sigma basis and, more precisely, on a DMAIC process. Lean 

Six Sigma is a continuous improvement approach, which gives competitive advantages and 

creates value for the stakeholders. Historically, increasing the performance of one dimension 

of the Quality, Cost, Time triangle meant decreasing the performance of the two other 

dimensions. In the continuous improvement paradigm (including Lean Six Sigma), all 

dimensions increase together. 

Lean Six Sigma is a mix of Lean Manufacturing and Six Sigma. Lean Manufacturing targets 

waste (waste increases costs and has no value for customers). It is a bottom-up approach. 

On the other hand, Six Sigma improves customer satisfaction by increasing quality and by 

killing variation. It is a top-down approach.  

Lean Six Sigma includes two main methodologies: PDCA (Plan, Do, Check, Act, also known 

as the Deming wheel) and DMAIC (Define, Measure, Analyse, Improve, Control). 

Environmental management systems such as POEMS are based on PDCA [20] (see next 

section). They allow daily and continuous improvement. Contrary to the PDCA approach that 

increases performance thanks to successive iterations, the DMAIC approach offers an 

incremental performance improvement. It is based on a rigorous methodology that is adapted 

to complex problems whose non-solution is known. A DMAIC project is supported by a multi-

disciplinary team and a project leader, who is an expert in Lean Six Sigma. It lasts from four 

to six months and is formalised by precise deliverables. The DMAIC project is structured in 

five stages: 

· Define: starts the project and formalises the problem. The main deliverables are a 

project charter, the voice of the customer and the team definition. 

· Measure: identifies the problem reference base and collects the data needed to know 

the fundamental causes. The main deliverables are the definition and the 

identification of the key factors, process flow diagrams, and measuring system 

analysis. 

· Analyse: the fundamental causes of the project are identified, representing the 20% 

of causes that produce 80% of the effects. The main deliverables are the 

identification of the potential causes, the estimation of the effects on the 

consequences and the validation of the causes and prioritisation. 

· Improve: allows the definition, deployment and validation of the solutions. The main 
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deliverables are the identification of innovative solutions, the validation of the solution 

impacts and the realisation of a pilot project. 

· Control: aims to preserve the benefits and to standardise the solution throughout the 

company. The main deliverables are poka-yoke (fool-proofing), procedures, training, 

standardisation� 

The methodology proposed in this paper is based on DMAIC. However, it is not an application 

of DMAIC to eco-design, but an adaptation of DMAIC for the eco-design of complex industrial 

systems. The goal is to take advantage of the forces of DMAIC to make the process of eco-

design for complex industrial systems more reliable, systematic and formalised. 

3.3.3. Integration in a POEMS or ISO 14006 Approach 

The good integration of this methodology in the POEMS or ISO 14006 approach is necessary. 

This issue is studied in this section. 

Actually the POEMS approach, as well as the ISO 14006 approach are based on a PDCA 

cycle. The content of the four PDCA stages may change from one reference to another but it 

globally stays the same. From the previous POEMS references [8,29�36] and the ISO 14006 

standard [5], it is possible to define the general processes linked to the PDCA stages (see 

Figure 20). 

 

Figure 20. Generic POEMS approach 

PLAN 
- Definition of an environmental 
policy 
- Legal requirements 
- Competitors� analysis 
- Review of the product design 
processes 
- Identification of the products 
environmental impacts 
- Definition of objectives and 

targets 

DO 
- Definition of roles and 
responsibilities 
- Training and knowledge 
management 
- Definition of eco-design 
procedures 
- Development of eco-innovative 
products 
- Documentation and internal 
communication 

CHECK 
- Progress evaluation 
- Projects and products validation 
 

ACT 
- Spreading of the new products 
- External communication 
- Standardization 
- Identification of new opportunities 
(link with a new PDCA process) 
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On Figure 20 the processes marked in bold represent the processes that are entirely 

managed by the proposed methodology, whereas the processes marked in italic are partially 

managed. The proposed methodology thus offered a concrete answer to the operational eco-

design actions of a POEMS approach. The following sections will explain this methodology in 

more details. 

3.3.4. Global Approach 

The global approach is devoted to a global environmental assessment of the system and to 

the identification of ways to improve this overall environmental performance. It gives concrete 

actions for the two PLAN processes in bold on Figure 20. It is implemented via an adapted 

DMAIC approach from the Six Sigma theory: 

· Define: via a project charter, including the goal and scope phase of LCA, the 

objectives, the team and sponsors, the project plan and the impacts of the project are 

stated. The project charter is presented in Table 5 below. It includes the information 

required by ISO 14040 [7] at the Goal and Scope stage. This charter is a fundamental 

document to structure the project, as it clarifies all that is often implied in classical 

projects. Moreover, as it is compatible with LCA standards, it is a useful tool to ensure 

the validity and the communication of the project. 

· Measure: this stage includes the Life Cycle Inventory (LCI) and the Life Cycle Impact 

Assessment (LCIA) phases of LCA. These two stages provide the data needed to 

identify the fundamental causes of the problem. During the Life Cycle Inventory, data 

is collected to model the system life cycle in the LCA software (mass, materials, 

energy, manufacturing processes, transport�). The potential environmental impacts 

associated with this life cycle are then calculated during the LCIA phase thanks to 

dedicated methods in the LCA software. 

· Analyse: this third stage includes the last LCA phase, the Life Cycle interpretation. 

Through an analysis of the previous phases, as well as sensitivity and uncertainty 

analysis, the main environmental impacts are identified. 

· Improve: the objective of this stage is to identify technological solutions to the 

fundamental causes. It is performed through the setting up of an internal and 

multidisciplinary working group. Creativity sessions based on the eco-design strategy 

wheel (also known as the Brezet wheel) [44] ensure the identification of the 

improvement projects, as well as the evaluation of their technical and economic 

feasibility thanks to a dedicated evaluation process based on maturity scale (not 

detailed in this paper). 

· Control: the project responsibility is then returned to the sponsors who are able to 
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choose the best improvement projects that will lead in the specific approaches. The 

results of the whole DMAIC project are communicated and capitalised. 

Table 5. The new project charter in line with the ISO standards dedicated to LCA. 

Business impact Problem/opportunity statement 

The material and immaterial expected benefits 
are listed, as well as the efforts needed to 
reach these benefits. 
 
For example, the expected benefits could be: 
· Environment: decreasing the 

environmental impact over the whole 
lifecycle 

· Cost: decreasing the Life Cycle Cost 
(LCC) 

· Quality: increasing the component quality 
(Lifetime extension, maintenance needs 
limitation, energy losses decreasing�) 

· Time: extension of the product lifetime 
 
These elements need to be precise and 
quantified. 

The environmental problem is described according 
to the Five Ws (and one H) formalism. 
 
An example applied to the electrical substations 
studied in Section 3.4 could be: Alstom Grid PEM 
(Who?) wishes to optimise the environmental 
impact of its conversion substations (What?) during 
the design process (When?). These substations 
are sold worldwide to primary aluminium plants 
(Where?) to convert energy from high voltage 
networks to energy that is usable for aluminium 
electrolysis. The study aims to minimise the 
environmental impacts throughout the product life 
cycle while still considering the technical and 
economic criterion (How?). It is a way for Alstom 
Grid PEM to be differentiated from the competitors 
(Why?). 

Key metrics Project scope 

The objectives are described according to ISO 
14040 [7]: 
· Intended application 
· Reasons for carrying out the study 
· Intended audience 
· Are the results intended to be used in 

public comparative assertions?  
The key indicators are the environmental 
indicators chosen for the study according to 
the objectives and the intended audience. 
Other indicators can be considered, such as 
technical or economical, or even social in a 
sustainable development perspective. 

The expected information asked by ISO 14040 to 
define the scope of the study is [7]: 
· Studied product system 
· Functions of the product system 
· Functional unit 
· System boundary 
· Allocation procedures 
· Selected impact categories and impact 

assessment methodology 
· Data requirements 
· Assumptions 
· Limitations 
· Initial data quality requirements 
· Type of critical review, if any 
· Type and format of the report 

Project plan Team selection 

The project milestones are defined. Each 
phase duration needs to be detailed. 

The members of the eco-design team are selected. 
The different roles are: 
· Sponsors, who ask for the project 
· Champion, who vouches for the rigorous 
application of the methodology 
· Project leader (Black belt in a classical Lean 
Six Sigma approach), who is responsible for the 
progress of the project 
· Team members, who are the human resources 
allocated to the project 

3.3.5. Specific Approaches and Closed Loop 

Then the specific approaches allow the realisation of projects that have been chosen by the 

decision makers during the Control phase of the first DMAIC. These improvement projects are 

defined as classical R&D projects of the companies with an added environmental follow-up at 

the different gate reviews. It answers to the DO and CHECK processes highlighted on Figure 
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20. 

The aim of such specific approaches is to classify the main and complex problems into sub-

problems with a more precise scope and lower complexity. The specific approaches are 

designed to give the company a high level of freedom to adapt the environmental 

considerations to its processes. The idea is not to bring a new design constraint, but to 

consider the environment as a new opportunity to improve products and processes, to 

improve the brand image and finally to be differentiated from competitors. 

In terms of implementation, a DMAIC approach also seems adapted to these projects. 

Nevertheless, it has to be differently adapted. Its objective is not to support the full project, but 

to ensure an environmental follow-up for the classical R&D projects of the company. The five 

stages are: 

· Define: a new project charter is defined based on the same model as Table 5. The 

difference with the global approach mainly concerns the scope and the objectives of 

the project. 

· Measure: the LCI and LCIA stages are extended according to the project charter (the 

focus is on the subsystem or life cycle phase targeted by the project objectives). 

· Analyse: the LCA results are analysed. Sensitivity and uncertainty analyses are 

sometimes performed.  

· Improve: the new technical solution is developed in detail. A comparative LCA 

identifies its environmental benefits (and the potential impact transfers). Economic 

and technical aspects are also considered. 

· Control: the project responsibility is returned to the sponsors, who are able to include 

the new technical solutions in the commercial offer. The results of the whole DMAIC 

project are communicated and capitalised. The sponsors can also plan further works, 

or launch a new global approach by updating the previous one. 

Once the specific approaches have been performed (after several months or years, 

depending on the considered system), a new iteration of the entire process may be launched. 

The global approach would then be implemented on the new and environmentally optimised 

system. This ensures a continuous improvement process, taking into account potential 

evolutions of the system�s environmental performance. 

The next section proposes an application of the first stage of the methodology (global 

approach) within a business unit of Alstom Grid. 
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3.4. Application of the Global Approach to Alstom Grid 

AC/DC Conversion Substations for the Aluminium 

Industry 

The conversion substations are briefly described, then an application of the global approach 

is detailed, as well as perspectives for the specific approaches. 

3.4.1. AC/DC Conversion Substations 

Alstom Grid PEM (Power Electronics Massy) designs, assembles and sells substations for the 

electrolysis of aluminium worldwide. These are electrical stations designed to convert energy 

from the high voltage network to energy that can be used for aluminium electrolysis, which is 

a particularly environmentally impacting and energy-consuming activity [11]. An electrolysis 

substation represents thousands of tons of power electronics components and transformers, 

costing tens of millions of Euros.  

It is made up of several groups (four in Figure 21) that are composed of a regulating 

transformer, a rectifier transformer and a rectifier. The groups are connected on one side to 

the high voltage network through an electrical substation and on the other side to a busbar 

that is directly connected to the electrolysis potline. All the groups are supervised by control 

elements that are connected to the electrolysis pots to regulate the process. The amount of 

energy consumed by a recent primary aluminium plant is comparable to the amount of energy 

delivered by a nuclear plant unit (more than 1 GW). 

 

Figure 21. Example of an Alstom Grid AC/DC conversion substation (Aluar, Argentina) 

In this context, Alstom Grid PEM wishes to minimise the environmental impacts of its products 

to answer to the environmental policy of the company and to be differentiated from 

competitors. 
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From the current substation�s design, the objectives are to evaluate the environmental 

impacts throughout the product life cycle and to identify design parameters/impacting factors 

whose variation could minimise the environmental impact, while preserving the other design 

aspects. It will permit to identify and conduct environmental improvement projects. Finally, the 

results need to be reusable in the future 

· The substations are considered to be complex industrial systems because: 

· The number of subsystems and components is considerable. Some subsystems 

could themselves be considered as complex industrial systems (like transformers or 

rectifiers) 

· The lifetime of a substation is really long, up to 35 or 40 years. Many uncertainties 

exist for the use and end-of-life phases. No end-of-life scenario is clearly known 

· The substation is only a part of the aluminium plant. Their processes are closely 

connected and interdependent 

· No standard design exists: the substation is tailor-made for each customer, even 

though the general design is often the same. We consider substations as a product 

family. 

It is easy to understand that the complexity of the considered system makes the study 

delicate. The next section details how the global approach has been applied to an example of 

a substation. 

3.4.2. The DMAIC Process Including LCA 

3.4.2.1.  Define 

First the project charter was defined by following the template presented in Table 5. The main 

objective of the study is the identification of the main environmental impacts of a substation in 

order to identify projects to improve its environmental performance. Therefore, its purpose is 

to orient future eco-design activities at Alstom Grid PEM. 

The study is focused on an Alstom Grid AC/DC conversion substation that has been designed 

and is currently under construction for the Hindalco Mahan aluminium smelter. The whole life 

cycle of the substation will be considered. The Hindalco Mahan aluminium smelter (under 

construction too) is located in central India (Bargawan, state of Madhya Pradesh). It is 

characterised by a captive coal power plant (900 MW) and is designed to produce 360,000 

tons of primary aluminium per year with modern electrolysis pots. 

Considering the constraints and characteristics of such a project, the following functional unit 
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is considered: �To ensure the conversion of 220 kVAC high voltage energy to energy usable 

for aluminium electrolysis (360 kADC, 1650 VDC) according to the Hindalco specifications for 30 

years, without interruption�. This functional unit is adapted to our needs, namely to feed 

internal eco-design works on substations. The substation lifetime is 30 years, which means 

that the reference flow is 1. 

The substation is broken down into eight subsystems: regulating transformers, rectifier 

transformers, rectifiers, busbars, filters, control, civil engineering, and other equipment. Each 

of these subsystems is itself divided into sub-assemblies and hundreds of components. 

Data granularity, that means the extent to which the system is broken down into small parts, 

is chosen to permit the identification of the main environmental impacts on the whole 

substation life cycle, without spending too much time in collecting the data. Limitations and 

weaknesses of the study are rigorously documented to facilitate the analysis and ensure the 

quality of future works. This means that a compromise has been found between the durations 

of the study and the quality of the results. By highlighting these constraints, the project charter 

has permitted to quickly define the data granularity and to make acceptable some 

simplifications as this LCA is performed for internal used only. 

The system is modelled using SimaPro 7.2 software. Apart from the specific data that are 

issued from Alstom Grid, the LCI data come from Ecoinvent V2.1 database [45]. The LCIA 

results are calculated with the ReCiPe 2008 midpoint (H) V1.03 methodology [46]. Data 

inventory and data quality are managed thanks to a procedure based on [15]. 

Concerning the organisational aspects, the three first phases of the study were planned in five 

months. About one month was necessary to structure the project and define the scope and 

objectives (Define), four months to collect the data (Measure), and one month to collect and 

analyse the LCIA results (Measure/Analyse). Considering the size and the complexity of the 

system, this particularly satisfactory. The two last phases (Improve and Control) are not 

detailed. 

3.4.2.2.  Measure 

Flow charts were built from a SIPOC analysis of each substation subsystem. SIPOC is a Six 

Sigma tool to identify the Suppliers, Inputs, Processes, Outputs and Customers of an 

industrial object. These analyses ensure the coverage of the life cycle of the substation.  

Different data sources were used: 

· Internal Alstom Grid data, 

· Data from suppliers, subcontractors or other units, 

· Generic data (from LCA databases or literature). 
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Specific data was collected in a large predefined Excel sheet. It mainly concerns the following 

elements: masses, distribution, energy consumptions and end-of-life. Materials extraction and 

production, energy production and distribution, as well as other data, are generic. 

The potential environmental impacts of the substations were calculated with the ReCiPe 2008 

method [46]. About 35 simulations were conducted with different substation breakdowns (by 

life cycle phases, by subsystems). Moreover, three other electrical mixes were considered in 

addition to the coal mix effectively used at the Hindalco Mahan smelter as a way to easily 

manage the geographical dimension of the substation site: natural gas, hydro and nuclear. 

3.4.2.3.  Analyse 

More details on the LCA results are given in [47]. We will only draw the main conclusions in 

this section. 

Figure 22 gives an overview of the potential environmental impacts of the substation�s whole 

life cycle, with a breakdown by life cycle phases. It appears that the use phase is responsible 

for more than 95 % of the total impacts, except for three impact categories: ozone depletion, 

ionising radiation, metal depletion. For these categories, the contribution of the materials 

phase is higher. This is mainly due to metal production (steel, copper, aluminium). 

 

Figure 22. Breakdown by life cycle phases of the substation life cycle impacts 

The domination of the use phase is clearly due to the production of electricity from coal, which 

is particularly impacting. Figure 22 also shows that the distribution phase is almost negligible. 

The end-of-life phase allows to reduce the impacts by a further 10% (see small bars below 

the horizontal axis) of the total impacts. 
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Figure 23. Breakdown by subsystems of the materials phase impacts 

Figure 23 presents the breakdown by subsystem of the impacts associated with the materials 

phase. The busbars (550 tons of primary aluminium) and the regulating and rectifier 

transformers are the most impacting subsystems. However, three impact categories present 

singular results: ozone depletion, agricultural land occupation and metal depletion. These are 

explained by the use of some materials, like PTFE or concrete. The total impact generated by 

the transformers, rectifiers, busbars and civil engineering reaches more than 95 % of the total 

impacts of the materials phase. The other subsystems (filters, control and other equipment) 

have negligible impacts. 

As the electricity used by these subsystems comes from the same source (a coal power 

plant), the contribution of the subsystems in the use phase is the same for every impact 

category and corresponds to their contribution to the electrical losses. Thus, the electrical 

losses of the rectifiers and transformers represent about 89 % of the total losses. The most 

impacting subsystem is the rectifier transformer, with 40 % of the impacts. 

Finally, Figure 24 shows the comparison of the environmental impacts for the four electricity 

sources. 100 % represents the highest value among the four levels. If the hydro scenario is 

clearly the best alternative, it is more difficult to separate the three other scenarios. For 

example, the nuclear scenario is the worst one in ionising radiation and (only just) in metal 

depletion. The coal scenario reaches the highest values for the other categories. The 

comparison between the breakdown by life cycle phases for the hydro scenario and the coal 
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scenario (the two �extreme� scenarios) gives the most interesting results. It appears that the 

contribution of the use phase has largely decreased in the hydro scenario. This means that 

the materials phase is now responsible for more than 50 % of the total life cycle impacts in 

most of the impact categories. This is an extremely important result, which shows that the 

eco-design activities or the configuration choice stemming from the analysis of these 

environmental profiles may be different from one substation to another. Actually, in the 

Hindalco Mahan case (electricity from coal), the lowering of the electrical losses is the best 

way to improve the overall environmental performance of the substation. Impact transfers 

from the use phase to the materials phase may be acceptable if the environmental benefits 

are significant. On the other hand, in a Canadian case (hydroelectricity), minimising weights 

and substituting materials can bring significant benefits. 

 

Figure 24. Comparison of four electricity sources scenarios for the whole substation 

life cycle. Only seven impact categories (in normalised results) are represented. 

All these conclusions were documented in a full internal LCA report. They constitute a strong 

basis to feed the Improve phase. 

3.4.2.4.  Improve 

The LCA results described in the previous part offered promising improvement methods to 

optimise the environmental performance of the substation, but it is clearly necessary to define 

them and to consider their technical and economic aspects. This knowledge is not owned by 

the eco-design experts, but by the substation designers. That is why the Improve phase was 

conducted via a working group and creativity sessions. 

Using the eco-design strategy wheel (also known as the Brezet wheel [44]), the working 

group generated in two hours more than 100 improvement ideas, identified the 16 most 

powerful improvement projects, that means the best compromises between environmental 

performance improvement, technical feasibility and costs. 16 projects were selected and 
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synthesised in predefined sheets (called �variant sheets�), and positioned thank to a 

dedicated assessment grid based on maturity scales and qualitative evaluations. Among 

these 16 projects, it was assumed that 50% would not have emerged without the creativity 

process deployed in the DMAIC framework. 

3.4.2.5. Control 

Once the Improve phase has been performed, the entire project has been be capitalised and 

precisely documented to be reusable in the future (for a new iteration of the global approach 

for example). Results have been communicated (internally and externally) and assigned a 

value. The responsibility of the project has now been given back to the sponsors (decision 

makers) who have chosen the improvement projects to perform in specific approaches. The 

general idea of this work is to build up a catalogue of eco-designed technological solutions. 

From a given context (country, electrical mix, customer specifications), it will be possible to 

define the best configuration of a substation from an environmental point of view. 

3.5. Perspectives and Conclusions 

In this paper, an adapted methodology has been presented to manage the eco-design of 

complex industrial systems. This methodology is based on a DMAIC approach and is 

integrated within the framework of ISO 14006 [5], ISO 14062 [6] and POEMS (Product-

Oriented Environmental Management Systems [8]) as an operational layer. It is composed of 

two main stages (global approach/specific approaches), corresponding to the environmental 

assessment and improvement stages of a classical eco-design approach, and mainly 

answering to the PLAN and DO stages of a POEMS process. The global approach integrates 

Life Cycle Assessment to identify the potential environmental impacts of the full system. From 

a predefined project charter, the DMAIC process offers precise deliverables and milestones to 

make the process of eco-design for complex industrial systems more reliable. It permits in 

particular to plan in a short time and with limited resources an environmental assessment that 

is sufficient to feed an internal eco-innovation process, by identifying a compromise between 

data availability, boundary selection and constraints in the company. Once the environmental 

impacts have been determined, a working group is set up to identify environmental 

improvement projects thanks to eco-innovation tools. The last phase of DMAIC assures the 

capitalisation of the benefits and offers the decision makers the ability to plan the realisation 

of the most promising improvement projects. These projects are performed via specific 

approaches, which are also based on a DMAIC process. However, these specific approaches 

are more focused on environmental improvement and technological solutions development. A 

specific approach only considers a small part of the initial system life cycle and the 

association of the different specific approaches ensures a significant improvement in the 

environmental performance of the system. Iterations of the whole process will ensure 

continuous improvement in the course of time and will steer the classical organisation towards 

becoming an eco-designing organisation. 
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The global approach has been successfully applied on Alstom Grid AC/DC conversion 

substations for the aluminium industry. The Define, Measure, and Analyse phases have given 

excellent results to feed the creativity sessions of the working group in the Improve phase. 

The LCA of a substation has allowed the identification of the main contributors to life cycle 

impacts, such as subsystems, life cycle phases or materials. The technical knowledge of the 

Alstom Grid designers has then offered significant ways to improve the overall substation�s 

environmental performance. 

On this basis, the decision makers at Alstom Grid PEM will be able to plan the most promising 

of the 16 improvement projects as R&D projects. An environmental follow-up will also be 

provided to ensure the validity of the environmental benefits. The following process will be 

performed by complementing the classical R&D project: 

· At the initiation review stage: definition of the environmental objectives and scope, 

identification of simplified environmental indicators and associated targets to easily 

monitor the project�s progress. Examples of such indicators are aluminium mass, 

electrical losses, transformer oil volume� these can easily be manipulated by people 

who are not experts in eco-design. This review matches the Define stage of DMAIC. 

· The other gate reviews (not detailed here for confidentiality reasons) assess the 

progress. They are set all along the Measure, Analyse and Improve stages of DMAIC. 

· The last gate review coincides with the end of the Control stage of DMAIC. It marks 

the end of the project. 

Following this process for different improvement projects will eventually generate a catalogue 

of eco-designed technical solutions available for future projects. After completing all the 

improvement projects (in maybe months or years, depending on the system), Alstom Grid 

PEM will be able to iterate the whole process by launching a new global approach.  

Besides those organisational considerations on the eco-design of complex industrial systems, 

other more technical issues appear. This methodology actually offers the possibility of 

constituting a portfolio of eco-designed technological solutions, but it does not propose the 

best environmental configuration (best compromise between environmental impacts, costs, 

reliability according to the customer requirements) of a complex industrial system in a given 

context. For example, the best environmental configuration of a substation would not be the 

same if the electricity in the use phase is produced from coal or from hydropower. The main 

extension of this methodology now consists in developing simulation models based on design 

of experiments. From an implantation context, such a tool could identify the best parameters 

to design the substation. This concept is currently under way. 
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Foreword 

The first paper (Chapter 3) was chronologically written before the two other ones (Chapters 4 and 5). A 

first LCA is proposed concerning an Alstom Grid substation. This LCA is shown in the first paper as the 

application of the first steps of the methodology. But it was also a way to identify weak LCA 

methodological elements that are the base of the second paper (Chapter 4), i.e. a scenario-based LCA 

model. 

In a new and fictive implementation of the general methodology, the scenario-based LCA model would 

directly be applied instead of the classical LCA application proposed in the first paper, as it is proved to 

be more efficient and adapted to R&D strategic orientation than a classical LCA. 

Finally, the general methodology proposed in the first paper includes a step of generation and selection 

of eco-innovative R&D projects. No application of this process was proposed in it, as the paper was 

written before this application. The detailed process and its application are thus proposed in the third 

paper (Chapter 5). 

To synthetize, the first paper (Chapter 3) proposes a methodology in two steps: environmental 

evaluation and environmental improvement. The environmental improvement is applied in the first paper 

through a classical LCA study, but a more accurate and adapted model based on exploitation scenarios 

is then developed and applied in the second paper (Chapter 4). The environmental improvement step is 

detailed and applied in the third paper (Chapter 5). 

 

Abstract: Purpose: This paper considers the variabilities that exist in the exploitation of a 

complex industrial system. Our scenario-based LCA model ensures the reliability of results in 

situations where the system life cycle is very uncertain, where there is substantial lack of data 

and/or where time and resources available are limited. It is also an effective tool to generate 

exploitation recommendations for clients.   

Method: Existing quantitative uncertainty methods in LCA require a huge amount of accurate 

data. These data are rarely available in simplified and upstream LCA for complex industrial 

systems. A scenario-based approach is the best compromise between acceptable quality of 

results and resources required. However, such methods have not yet been proposed to 

improve the environmental knowledge of the system in the case of exploitation scenarios. The 
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method proposed here considers a limited number of scenarios (3 or 4) that are defined using 

the Stanford Research Institute (SRI) matrix. Using results from past projects, relevant parts 

of the system are listed, and expert knowledge and parameters are associated with these 

parts and quantified. A classical LCA process then provides the results for the different 

scenarios. 

Results and discussion: The method was applied to an Alstom Grid AC/DC conversion 

substation for the primary aluminium industry. A previous study had limited scope, as the life 

cycle was poorly understood. Relevant parts were thus clearly identified: spare parts program, 

transport failures, preventive and corrective maintenance, updates and revampings, lifetime 

modulation and end-of-life. Four scenarios were considered: best case, worst case, baseline 

(expected future) and a highly different alternative. Results show the pertinence of 

considering several exploitation scenarios when the life cycle is not predictable, as the 

environmental impacts may vary widely from one case to another. A sensitivity analysis also 

shows that some relevant parts such as updates and revampings will need to be carefully 

considered in futures studies. 

Conclusions: The consideration of three exploitation scenarios (best case, baseline and worst 

case) appears to be extremely pertinent when considering simplified LCA of industrial 

systems with high uncertainties and limited time and resources. This model is also very useful 

to generate good practice and recommendations towards customers, thus initiating a dialog 

centred on eco-design and continuous improvement. 

Keywords: Life Cycle Assessment, Life Cycle Inventory, complex industrial system, scenario-

based LCA, exploitation scenario. 

4.1. Introduction 

In recent decades, Life Cycle Assessment (LCA) has become an essential tool for performing 

eco-design in companies. Indeed this normalised methodology (ISO 14040:2006, ISO 

14044:2006) is said to be the most effective quantitative environmental assessment tool 

(Millet et al. 2007) as it delivers the most accurate results (Dewulf 2003). The identification of 

the most environmentally impacting elements of a products system life cycle generates eco-

innovation insights to develop new products (Finnveden and Ekvall 1998). However, the 

results of such a process clearly require a large amount of high quality data (Reap et al. 

2008a, 2008b), and LCA is thus undeniably a time- and resource-consuming activity (Hur et 

al. 2005; Weckenmann and Schwan 2001). Even if eco-design is generally expected and 

supported by the top management of companies, it is often awkward to obtain complete data 

and the necessary allocation of human resources for satisfactory analysis. Consequently, life 

cycle scenarios of complex industrial systems are not sufficiently thought through or 

modelled, being at best an aggregate of factors. This also results in decorrelated life 

scenarios (along lifetime) and, ultimately, to non-representative environmental impact profiles 
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of real life. 

4.1.1. Specificities of complex industrial systems in LCA 

This opposition between the quality of LCA results and available resources is amplified in 

companies supplying complex technical and organizational industrial systems such as 

factories. Here, complexity induces major issues in terms of modelling, prediction or 

configuration. In the systems engineering domain, Blanchard and Fabricky (2011) 

characterise engineered systems as systems that achieve operational objectives; that operate 

over a complete life cycle; that are composed of a combination of resources (humans, 

materials, equipment, money, etc.); that are composed of subsystems and components that 

interact with each other; and that are influenced by external factors from larger systems and 

in interaction with the natural world. Adding an environmental dimension, we define a complex 

industrial system in the sense of eco-design as: 

· A large-scale system in terms of subsystems and components, mass and resource 

usage; 

· A system whose life cycle is difficult to predict at the design level in the long-term, in 

particular its lifetime, updates, maintenance and end-of-life; 

· A system whose subsystems may have different life cycles and different 

obsolescence times; 

· A system which is in close interaction with its environment (super system, geographic 

site etc.); 

· A system supervised by human decisions and management. 

But LCA is more convenient for relatively simple products than for complex systems (Millet et 

al. 2007). The application of LCA for such systems highlights particular needs not only in 

terms of time and resources, but also in terms of technical aspects such as goal and scope 

definition or data inventory. Thus, organizing the eco-design of complex industrial systems 

requires the conventional LCA process to be adapted. For instance, lean principles can be 

applied, as shown in (Cluzel et al. 2012). For this adapted eco-design approach to complex 

industrial systems, a first LCA is performed for a reference system and its corresponding 

environment. But difficulties quickly appear because there is currently no clear method to 

analyse impacts at different levels of complexity. This is why before being able to 

communicate LCA results (through product environmental profiles for example) that would 

lead to long term work, the first strategic step consists in identifying the potential 

environmental impacts, at a high level and in the most reliable way. Consequently, the 

primary need is to use the first system assessment to build a list of eco-innovative 

improvement projects that can feed the R&D program of the coming years. 
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Considering LCA for these types of system, the major issue concerns the availability and the 

quality of the system life cycle data (Cluzel et al. 2012). Indeed in many complex system 

industries, the use phase and the end-of-life phase only depend on the clients, and data are 

awkward to obtain where no client relationship management system exists. The Alstom Grid 

substations, for example (see Section 4.4), are characterised by their long life (more than 30 

or 40 years) or their uniqueness (each substation is customized to comply with a tender). 

Companies now consider that the realization of one specific LCA for each system design 

would require too much time and resources. However, the environmental impacts of a factory 

such as an electrical substation may differ markedly from one geographical site to another 

due, for example, to the electrical mix or the client management in terms of maintenance or 

updates. We include these issues in the more global notion of �industrial system exploitation�. 

4.1.2. Considering exploitation scenarios  

It is thus necessary to define a compromise between the simplification of the LCA model, the 

scientific validity of the results and the commercial use in answering specific tenders. Actually 

an over-simplified model would probably limit both the effectiveness of the results for a given 

system and the ability to meet clients� requirements. On the contrary, a very accurate model 

applied to complex industrial systems would not be easily appropriable by a company as it 

would need too much time and resources. Great accuracy is not necessary at an upstream 

level, where the objectives consist in defining first improvement directions (Leroy and Froelich 

2010). 

The ideal model would combine LCA, giving a high level global view of the product family, 

with the ability to customize studies for each specific project, thus taking into account 

uncertainties and system life cycle variables. The notion of scenario really fits this need to 

represent complex life cycles and to take into account the numerous associated factors in a 

simplified LCA approach. That is why it is preferred in this study to more mathematical 

uncertainty models (see for example (Huijbregts 1998)) that we consider too complex and 

poorly applicable (Ross et al. 2002). Indeed these methods offer accurate uncertainty data, 

and thus better decision support, but they require additional efforts (Ciroth 2003). Concerning 

Monte Carlo methods in particular, Huijbregts et al. describe the specification of uncertainty 

distributions as �a very difficult and time-consuming exercise [�] for the enormous amount of 

parameters involved in the inventory analysis� (Huijbregts et al. 2001). 

Two main objectives are targeted in the scenario-based model. The first one is to give more 

credence to the LCA results of complex industrial systems in order to generate appropriate 

eco-innovative R&D projects. The second one is to initiate productive discussions with clients, 

thus generating exploitation recommendations. 

Section 4.2 considers scenario development techniques and their application into the LCA 

field. This literature review allows us to choose an adapted technique and propose a 
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methodology to consider exploitation scenarios in LCA. This methodology is detailed in 

section 4.3 and applied in section 4.4 to an Alstom Grid AC/DC conversion substation for the 

aluminium industry. Finally, some concluding remarks and perspectives are proposed in 

section 4.5. 

4.2. Scenario development and use in LCA 

4.2.1. Scenario definition and categorization 

The notion of scenario in model-based approaches has received numerous definitions in the 

literature. Pesonen et al. (2000) give an overview of some of these definitions, including three 

basic elements: definition of alternative future circumstances, path from the present to the 

future, and inclusion of uncertainty about the future. 

In the same paper, which synthesizes the works of a SETAC working group on scenario 

development in LCA, the following definition is chosen: �A description of a possible future 

situation relevant for specific LCA applications, based on specific assumptions about the 

future, and (when relevant) also including the presentation of the development from the 

present to the future.� We adopt this definition in this paper. 

Different scenario types may be considered in prospective studies. A categorization of 

scenarios is proposed by Börjeson et al. (2006). This categorization distinguishes 3 main 

scenario categories, divided into 6 types: 

· Predictive scenarios answer the question What will happen? Predictive scenario 

types are forecast (the likely scenario occurs) and what-if (conditioned to some 

specific events). 

· Explorative scenarios answer the question What can happen? Explorative scenario 

types are external (considering external (exogenous) factors) and strategic 

(conditioned to some actions completed in a certain way). 

· Normative scenarios answer the question How can a specific target be reached? 

Normative scenario types are preserving (adjustments to current situation) and 

transforming (the prevailing structure blocks necessary changes). 

Earlier studies consider different scenario types, or rather different designations that could 

describe the same types. For example, Fukushima and Hirao (2002) consider forecasting and 

backcasting scenarios, while Pesonen et al. (2000) take what-if and cornerstone scenarios 

into account by considering time and complexity. What-if scenarios concern simple objects 

and short term studies, while cornerstone scenarios are more suited for complex objects and 

long term approaches.  
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A CALCAS report (Zamagni et al. 2008) states that these scenario types are included in 

Börjeson�s scenario categorization. Concerning the two different scenarios considered by 

Pesonen et al. (2000) and Weidema et al. (2004), it estimates that what-if scenarios belong 

logically to the predictive scenarios of Börjeson�s categorization, while the cornerstone 

scenarios belong to Börjeson�s explorative scenarios (Zamagni et al. 2008). 

4.2.2. Scenario development techniques 

Börjeson et al. distinguish three main steps to generate a set of scenarios (Börjeson et al. 

2006): 

· Generate ideas and knowledge about some parts of the future; 

· Integrate them into scenarios; 

· Check the consistency of the scenarios. 

Particular methods are used to perform these different steps. Scenario development 

techniques (covering the second step) enable the construction and use of a set of scenarios. 

Bishop et al. (2007) give an overview of numerous techniques, classified into eight categories: 

1. Judgment: based on the judgment of individuals describing the future. 

2. Baseline/expected: produces only one scenario, which could be the base for 

alternative scenarios (generated with other techniques). 

3. Elaboration of fixed scenarios: based on simple tools to generate a predefined 

number of scenarios. 

4. Event sequences: based on probability trees. 

5. Backcasting: based on a desirable future and the identification of the way to reach it. 

6. Dimensions of uncertainty: based on the identification of specific sources of 

uncertainty. 

7. Cross-impact analysis: based on probability matrices and the calculation of 

conditional probabilities. 

8. Modelling: based on simulations and the variation of the inputs or the structure of the 

model. 

Another interesting method is Formative Scenario Analysis (FSA), detailed by Tietje (2005). 

The method consists in identifying a small and reliable set of consistent scenarios with 

mathematical tools such as consistency analysis. It is a powerful method but it clearly needs 
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accurate quantified data. 

However these techniques concern scenario development in general. The next subsection 

particularly focuses on scenarios in Life Cycle Assessment. 

4.2.3. Scenarios in LCA 

Annex 2 of the CALCAS report D7 (Zamagni et al. 2008), concerning current research needs 

and limitations in LCA, gives a precise literature review of the use of scenarios in Life Cycle 

Assessment. 

The definition of the set of scenarios is performed in the goal and scope stage (ISO 

14040:2006), while the modelling of scenarios is performed in the LCI and LCIA phases. The 

results are discussed in the interpretation phase (Zamagni et al. 2008). But scenarios have 

received little attention in LCA, and two of the main questions raised by (Zamagni et al. 2008) 

are the following: How should scenarios be defined and categorized? And how should 

scenarios be developed? 

Höjer et al. (2008) consider the use of scenarios for environmental system analysis, including 

Life Cycle Assessment. The paper focuses on products with a long expected life. In this case 

external scenarios (in the sense of Börjeson et al. (2006)) are recommended to assess 

�different options for the foreground system under the influence of different external 

scenarios�. 

The working group �Scenario development in LCA� launched by SETAC-Europe (Pesonen et 

al. 2000; Weidema et al. 2004) focused on two main goals that are to find solutions for 

problems concerning prospective LCA, and to define a procedure to model uncertain parts of 

a product system, or parts with different possible alternatives. 

They propose a five-step approach (Weidema et al. 2004) that corresponds closely to 

Börjeson�s approach: 

· Identification of the relevant parts of the product systems, 

· Identification of the precision required, 

· Choice of an appropriate method, 

· Scenario development, 

· Consistency check. 

Concerning step 3, Weidema et al. highlight the use of extreme scenarios (e.g. a worst case 

scenario like the Bhopal disaster) (Weidema et al. 2004). They also identify 6 groups of future 
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research methods: 

1. Extrapolating methods: the future is an extension of the past, 

2. Exploratory methods focus on structuring possible futures, 

3. Dynamic modelling takes mechanisms of past events and causal connections among 

system elements into account, 

4. Cornerstone scenario methods : future is essentially unpredictable and several 

scenarios are helpful, 

5. Participatory methods use experts to identify one consensual scenario, 

6. Normative methods identify the scenario leading to one predefined goal. 

The number of scenarios to consider is an issue highlighted by Pesonen et al. (2000). A 

limited number of scenarios (less than four) is recommended, for example one base scenario 

and two others. Actually if more than four scenarios are proposed, �it becomes unmanageable 

for most decision makers� (Wack 1985). 

Some other research using scenario-based LCA has also been undertaken. For instance, 

Spielmann et al. apply Formative Scenario Analysis to prospective LCA of transport systems 

(Spielmann et al. 2004). They focus on strategic scenarios and the evolution of technologies. 

4.3. Methodology 

This section will put forward a methodology that meets the requirements expressed in section 

4.1.2. 

4.3.1. Global positioning 

The use of scenarios in LCA seems particularly well-adapted to model the exploitation of 

complex industrial systems. But the objectives of the existing studies we mentioned in section 

4.2.3 do not meet our own objectives. Actually these studies are mainly positioned at a more 

strategic level (Lloyd and Ries 2007): 

· To compare product alternatives when the future is unpredictable or may follow 

different trajectories (e.g. with future electrical mixes). This perspective is equivalent 

to the what-if scenarios. 

· To make the best choices in the development of (for example) public policies by 

minimizing the environmental impacts. This perspective is equivalent to the normative 

scenarios. 
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These two perspectives already focus on environmental impact optimisation, whereas in our 

case the objective is to make the LCA results more reliable because the operational 

exploitation (in particular the use phase and the end-of-life phase) of the current products is 

not known precisely enough and may vary from one industrial client to another. These needs 

concern explorative external scenarios in Börjeson�s categorization (Börjeson et al. 2006). 

This distinction is extremely important as it means that in the present case some data are 

simply missing, while the other data are uncertain, and no probability distribution is clearly 

known. Adding to this issue the need for a flexible and easily customizable scenario-based 

procedure, we propose the following methodological process adapted from (Weidema et al. 

2004): 

1. Identification of the relevant parts of the product systems: performed through surveys 

on past projects and meetings with experts in the company or clients. 

2. Identification of the level of precision required for results: the results must identify 

improvement projects at a high level, but as these results will not be communicated 

externally, a high degree of precision is not necessary. 

3. Choice of an appropriate method 

4. Scenario development 

5. Consistency check 

Steps 3, 4 and 5 imply the selection of one particular scenario development technique. 

Among the 8 categories proposed by Bishop et al., only a few seem adapted to our needs. 

Judgment techniques are considered too opaque and insufficiently formalized. Baseline 

techniques only include one scenario, which is clearly in contradiction with our needs. Event 

sequences, dimensions of uncertainty, cross-impact analysis and systems modelling 

techniques are mainly based on accurate quantified data (probabilities of occurrence for 

example) that are not available in our case. They are judged too complex and time-

consuming to be easily applied to a simplified LCA model. Backcasting techniques concern 

technology-related prospective analysis and they are thus not pertinent in our case. Finally, 

elaboration of fixed scenario techniques seem adapted to our needs, as they are easily 

applicable, they do not require accurate quantified data and they are fully compatible with 

exploitation scenarios. Two such techniques are proposed by Bishop et al. (2007): Incasting 

and SRI. The first of these, incasting, creates a set of scenarios using group creativity. It is 

more oriented towards strategic and surprising scenarios. It does not fully fulfil our needs. 

The SRI matrix is a simple tool developed at the Stanford Research Institute in the late 1970s. 

It is particularly adapted to exploitation scenarios based on past projects and fragmented 

information from clients. That is why this technique is used in this study. It generally considers 



Chapter 4. Paper #2  François Cluzel 

Eco-design implementation for complex industrial systems 

- 81 - 

four scenarios (expected future, worst case, best case, and a highly different alternative, i.e. a 

scenario including surprising or unusual events) (Bishop et al. 2007). An illustration of this low 

number of scenarios is given in Figure 25 and must allow environmental impacts to be framed 

in time. The highly different alternative is used in the current study to check the robustness of 

the model. 

 

Figure 25. Example of potential environmental impacts generated along four scenarios: 

best case, expected future, highly different alternative and worst case 

 Scenarios are listed in columns, while dimensions of the world (i.e. parameters linked to the 

�relevant parts of the product systems�) are recorded in rows (see Table 6). Cells are simply 

filled out by the users for each scenario and each parameter.  

The consistency check is performed manually: the maximum number of scenarios (four, 

including the best and worst cases) means that it is easy to check if a sufficient range of 

possible life cycles is being covered. The two next sections give more details about this 

process. 

4.3.2. Identification of the parameters 

By studying the life cycle of some Alstom Grid substations (see section 4.4), different relevant 

parts of the system that were not taken into account in the primary LCA have been identified. 

This process is not new in nature, as it is used in scenario-based approaches or in 

parameterized LCA (Ostad-Ahmad-Ghorabi and Collado-Ruiz, 2011). However even if these 

relevant parts are issued from expert knowledge and past project in the company, we 

consider that they may be reused for numerous applications on complex industrial systems. 

The relevant parts of the system may concern all the life cycle phases: 

· Spare part programs that may be planned at the design stage, 

· Transport failures may occur en route to the implantation site, leading to the loss of 

Time 

Environmental 

impacts 
Worst case 

Expected future 

Best case 

Highly 
different 
alternative(s) 
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equipments, 

· Preventive maintenance operations, 

· Corrective maintenance operations, 

· Updates and revampings (changing or adding of subsystems), 

· Lifetime extension or shortening, depending on the economic situation, the client 

choices, or political decisions 

· An end-of-life scenario that is often dependent on the implantation country. Transfer 

options may be included, i.e. the transfer of one healthy subsystem � ordered to stop 

� to another site to be reused for some years. 

For each study, parameters are associated with these relevant parts by company experts. 

These parameters are the so-called �dimensions of the world�, i.e. the rows of the SRI matrix. 

Some examples of parameters are listed in Figure 27. 

4.3.3. Scenario development 

The filling out of the SRI matrix allows formalizing the different life cycle scenarios.  

Table 6 proposes for example an overview of three scenarios. The best case scenario 

describes the events that would minimize environmental impact generated throughout system 

exploitation. The client preserves the equipment and favours a long-term vision. But this does 

not mean that all the parameters are optimized. For example, there is more preventive 

maintenance in this scenario than in the worst case, because preventive maintenance 

minimizes corrective maintenance, which is generally more impacting. The worst case 

scenario describes the events that maximize the environmental impacts of the exploitation of 

the system, trying to stay in a realistic perspective. The client favours profitability at all costs 

and has a short-term vision. The baseline scenario describes what could happen in a �normal� 

or expected life cycle. It is an intermediary scenario between the worst and the best case. The 

client follows the supplier recommendations but is not particularly proactive to preserve 

equipment. Other scenarios may be added to these three base scenarios, but they need to be 

tailor-made for each study. 

Values are then associated to each parameter and for each scenario according to company 

or client knowledge, expert estimations or hypothesis (depending on the uncertainty of these 

data). 
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Table 6. Simplified SRI matrix with three examples of possible scenarios 

Relevant parts Best case scenario Baseline scenario Worst case scenario 

Spare parts program Contractual quantities Contractual quantities Intensified quantities 
(more than the 
contractual quantities) 

Transport failures No failure No failure Some failures 

Preventive 
maintenance 

Intensified (the client 
is very reactive and 
exceeds the supplier 
recommendations) 

Normal (the client 
follows the supplier 
recommendations) 

Neglected (the client 
does not follow the 
supplier 
recommendations) 

Corrective 
maintenance 

Minimal (the 
preventive 
maintenance policy 
limits the corrective 
maintenance needs) 

Average Intensified (the 
neglected preventive 
maintenance leads to 
more frequent failures) 

Updates/revampings No update (the 
equipment is in good 
condition and does not 
need to be changed. It 
fits clients� needs). 

Average (some 
equipment becomes 
obsolete and needs to 
be changed). 

Intensified (some 
equipment is obsolete 
and in poor condition. 
New equipment is 
needed to improve 
service quality). 

Lifetime modulation Extension of initial 
lifetime (as the 
equipment is healthy) 

No extension or 
shortening (the initial 
lifetime corresponds to 
the reality.) 

Shortening of initial 
lifetime (some 
equipment is in poor 
condition, or the 
economic situation is 
unstable). 

End-of-life Optimized (with high 
recycling rates) + 
transfer of some 
subsystems to be 
used on another site 

Medium (medium 
recycling rates) + no 
transfer 

Minimalist (low 
recycling rates) + no 
transfer 

4.3.4. Results valuation 

The LCIA results then provide a set of data than can be used in two perspectives. 

The first perspective is internal to the company. It concerns the identification of a portfolio of 

eco-innovative R&D projects. The use of this model ensures that more reliable decisions are 

made by focusing on  environmental issues that are valid with a large number of clients, or in 

other words for a generic industrial system. This is in particular a powerful tool to guarantee 

the capability of the system to meet environmental objectives while these impacts largely 

depend on exogenous parameters for the system supplier. 

The second perspective is intended for the clients. For the Alstom Grid example it turns out 

that the substation designers have only few degrees of freedom. Indeed the clients� 

specifications are very detailed on technical aspects, which limit the ability to radically 

innovate, as only long-term proven technologies are used.  Continuous dialog with the clients 

is thus necessary to introduce new technologies and make them acceptable, despite the fact 

that the client would benefit from adopting a more proactive eco-design attitude towards its 

suppliers. The proposed scenario-based LCA supplies an interesting tool to support this 
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dialog. Indeed the LCIA results may reveal exploitation issues and enable the introduction of 

good practice, greener technologies and services (concerning maintenance and end-of-life for 

example), or improved strategies (reuse of components for example). 

The next section proposes to apply this model to an Alstom Grid conventional substation. We 

will see below that a poor preventive maintenance program may multiply the environmental 

impacts by a factor of two. 

4.4. Application to an Alstom Grid AC/DC conversion 

substation 

4.4.1. General purpose 

Alstom Grid PEM (Power Electronics Massy) designs, assembles and sells substations for the 

electrolysis of aluminium worldwide. These are electrical stations designed to convert energy 

from the high voltage network to energy that can be used for aluminium electrolysis, which is 

a particularly environmentally impacting and energy-consuming activity (Schmidt and Thrane 

2009; Liu and Müller 2012). An electrolysis substation represents thousands of tons of power 

electronics components and transformers, costing tens of millions of Euros.  

A substation is made up of several groups (four or five in numerous cases) that are composed 

of a regulating transformer, a rectifier transformer and a rectifier. The groups are connected 

on the one side to the high voltage network through an electrical substation and on the other 

side to a busbar that is directly connected to the electrolysis potline. All the groups are 

supervised by control elements that are connected to the electrolysis pots to regulate the 

process. The amount of energy consumed by a recent primary aluminium plant is comparable 

to the amount of energy delivered by a nuclear plant unit (greater than 1 GW). Some details 

of the flows associated with a substation life cycle are shown in Figure 26 to give an overview 

of the substation complexity. 

The substations are considered to be complex industrial systems for a number of reasons. 

First, the number of subsystems and components is considerable. For example a substation 

may include five rectifiers each containing 168 rectifier diodes (i.e. 840 diodes), all of which 

are large and massive semi-conductors consisting of several types of material. Some 

subsystems could themselves be considered as complex industrial systems (like transformers 

or rectifiers). Secondly, the lifetime of a substation is long, up to 35 or 40 years. Many 

uncertainties exist for the use and end-of-life phases. No end-of-life scenario is clearly defined 

beforehand. In addition, the substation is only a part of the aluminium plant. Their processes 

are closely connected and interdependent. Finally, no standard design exists: the substation 

is tailor-made for each industrial client, even though the general design is often the same. It is 

for these reasons that we consider substations as a product family.  
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Figure 26. Overview of the flows associated with a substation life cycle. Figures are 

voluntary rounded off for confidentiality reasons. 

In this context, a first LCA was performed on a substation to identify the potential 

environmental impacts throughout its life cycle, and then to generate improvements (Cluzel et 

al. 2012). 

However the life cycle modelled in this first study was considered as �frozen� as it was not 

adaptable to a specific case - the use phase, for instance, only considered electrical losses 

(maintenance, updates and lifetime modulation were not taken into account). Thus the model 

described in this paper has been applied to the initial study of a conventional substation, in 

order to make the results more reliable and adaptable to specific projects by taking into 

account several exploitation scenarios. 

4.4.2. Goal and scope 

The main objective of the present study is to assess in a reliable way the potential 

environmental impacts of an AC/DC conversion substation life cycle thanks to different 

exploitation scenarios. These scenarios enable the customization of the LCA modelling for a 

specific study. The results also show if the use of scenario is pertinent, and possible benefits 

for future studies in the company. The selection of adapted scenarios must allow eco-

innovative R&D projects to be better lead, and is a valuable tool to provide founded 

recommendations to clients for the future use and maintenance of their system. 
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Four main life cycle phases are considered, but the application of the model described in this 

paper has allowed new relevant parts to be added compared to the initial LCA (see (Cluzel et 

al. 2012)), detailed in Figure 27. The relevant parts are linked to the pre-existing life cycle 

phases. Some examples of parameters used in the study are associated with each relevant 

part. The dotted arrows highlight some consequential links between several relevant parts. A 

large part of the corrective maintenance is for instance determined by the client policy for 

preventive maintenance. 

The study focuses on an Alstom Grid AC/DC conversion substation that has been designed 

and is currently under construction for the Hindalco Mahan aluminium smelter (India), 

associated with a captive coal power plant. The following functional unit is chosen: �To 

provide without interruption the conversion of high voltage energy to energy usable for 

aluminium electrolysis (360 kADC, 1650 VDC) according to the Hindalco project specifications, 

considering the whole system life cycle normalized on one year.� This normalized duration 

(one year) has been chosen to compare alternatives with different life times. 

Previous results showed that the electrical mix has a strong influence on the one hand on the 

global substation impacts (as it is an energy system), and on the other hand on the relative 

contribution of the life cycle phase to global impacts. That is why two electrical mixes are 

considered in this study: electricity from coal (real Hindalco case) and hydroelectricity (from 

the regional grid, extrapolated from other smelters). 

The system is modelled using SimaPro 7.3 software. Beside the specific data from Alstom 

Grid, the LCI data come from Ecoinvent V2.1 database (in particular concerning electricity 

production). The LCIA results are calculated with the ReCiPe 2008 midpoint (H) V1.03 

method.  

Finally, a last case was considered to control the results of the study. It is called the �initial 

case�, as it corresponds to the �frozen� LCA modelling performed before this study. This case 

behaves as if no exploitation options have been taken into account (no new relevant parts 

such as maintenance or lifetime modulation have been added). 

The values allocated to each scenario have been identified thanks to past Alstom Grid 

projects and expert knowledge. 

A questionnaire included in an Excel file was used to configure the SRI matrix. This file 

automatically calculates the value of the parameters that are manually written in Simapro. 
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Figure 27. Description of the initial LCA model and the new elements considered 

through the scenario approach 
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4.4.3. General results 

 

Figure 28. Comparison of the potential environmental impacts of the four scenarios 

with a coal mix 

 

Figure 29. Comparison of the potential environmental impacts of the four scenarios 

with a hydro mix 

The LCIA results are presented in Figure 28 and Figure 29. The initial results are measured in 

Simapro without the eventual transfer cases (best case and marginal scenarios). Indeed we 
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considered that the Simapro reuse function is not adapted in our case as it considers that a 

reused product has the same efficiency as a new product, and all the impacts generated by 

this subsystem are allocated to the second life cycle (reuse loop). In the best case scenarios 

for example, 3 groups of the substation are reused for only 2 years, which does not justify this 

rule. We have preferred to manually allocate the materials phase impacts using a pro rata 

rule, according to the effective number of years of use in the two life cycles. The end-of-life 

impacts or benefits are allocated to the second life cycle. 

Only conclusions resulting from the use of scenarios are proposed in this paper. Other 

conclusions are presented in more detail in (Cluzel et al. 2012). In order to make the results 

easy to understand, the LCIA results have been restricted to eight mid-point impact 

categories that were considered relevant and showing different aspects of the system. 

Figure 28 and Figure 29 compare the potential environmental impacts of the four scenarios in, 

respectively, a coal and a hydro mix. The worst case scenario is chosen as a reference 

(100% on all impact categories). 

In all cases the worst case scenario is logically the one which has the impact on all the impact 

categories, whereas the best case is always the least impacting. The initial case scenario is 

always more impacting than the best case, but always less impacting than the baseline 

scenario. This is also in accordance with what was expected. 

However, the gap between the best case and the worst case scenarios, and the relative 

positioning of the baseline and the marginal scenarios, clearly depends on the electrical mix. 

For the coal mix, the gap between the best case and the worst case scenarios is always 

inferior to 20%, and the best case, baseline, marginal and initial case scenarios are quite 

similar, except for two impact categories where the materials phase dominates: ozone 

depletion and metal depletion. In these categories the best case, baseline and marginal 

scenarios are not close, and the worst case scenario is much more impacting. 

For the hydro mix there is a real distinction between all the scenarios, but the best case, the 

baseline and the marginal scenarios remain within a small range that never exceeds 20% of 

the worst case scenario impacts. On the other hand, the gap between this group of scenarios 

and the worst case scenario is always superior to 32%, except for the impact category natural 

land transformation. The gap between the baseline and the marginal scenario never exceeds 

10%, but neither of the two scenarios is better in all the categories. 

Finally this analysis shows that the results of the first LCA performed on this substation (initial 

case scenario) do not reveal all the potential environmental impacts generated all along the 

substation life cycle, because some relevant parts have not been taken into account. 

Moreover the large uncertainty existing on these data shows a large range of possible 
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impacts, in particular with a hydro mix, showing a great influence of material aspects. Even if 

the difference between all the scenarios is not really significant in a coal mix for most of the 

categories, the results on ozone depletion and metal depletion, as well as the results with a 

hydro mix justify in the future the use of several life cycle scenarios to make the decisions 

based on LCA results more reliable. These results could be refined thanks to an uncertainty 

analysis. It would consist in measuring uncertainty ranges for the four scenarios in order to 

determine if the results are significant. However this is not the aim of this paper, whose 

objective is to introduce the methodology and to propose a first implementation on a real and 

simplified case study. 

As the marginal scenario reveals itself close to the baseline scenario, we propose to consider 

in the next study at Alstom Grid three exploitation scenarios: best case, worst case and 

baseline. But within these scenarios the contribution of each relevant part may differ 

significantly. These contributions are studied in the next section through a sensitivity analysis. 

4.4.4. Sensitivity analysis 

The baseline scenario has been chosen as a reference and the sensitivity of the parameters 

linked to the relevant parts is assessed for the best case and the worst case scenarios. For 

the relevant parts Spare parts program and Transport failures, the values of the parameters 

are the same for the baseline and the best case scenarios (see Table 6), so the sensitivity of 

the parameters linked with the worst case scenario only are considered. The results appear 

on Tornado diagrams presented in Figure 30 for a coal mix and in Figure 31 for a hydro mix. 

The 8 previous impact categories (see Figure 28 and Figure 29) are considered. The relevant 

parts are presented in order of importance on the majority of the impact categories (this order 

is not true for some categories, but it is used on all graphs to simplify comparison): 

1. Updates/revampings 

2. Lifetime modulation 

3. End-of-life 

4. Transport failures 

5. Corrective maintenance 

6. Spare parts program 

7. Preventive maintenance 

With a coal mix, two cases may be distinguished. For all the impact categories except ozone 

depletion and metal depletion, the only significant results are obtained with the relevant part 

Updates/revampings. Indeed the use phase, and consequently the electrical losses, clearly 
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dominates the environmental impacts, and the only relevant part acting on these losses is 

Updates/revampings (only in the worst case scenario through the addition of a new group). 

For the two other impact categories, material aspects dominate, so the impacts are much 

more modulated by the best case or the worst case scenario. These last results involving 

material aspects concern all the impact categories with a hydro mix, except natural land 

transformation. 

 

Figure 30. Sensitivity analysis of the relevant parts associated with the best case and 

worst case scenarios, compared to the baseline scenario taken as a reference and for a 

coal mix. 
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Figure 31. Sensitivity analysis of the relevant parts associated with the best case and 

worst case scenarios, compared to the baseline scenario taken as a reference and for a 

hydro mix. 

The analysis of these results allows us to draw some conclusions: 

· The contribution of the relevant parts Preventive maintenance and Spare parts 

program is always negligible, so it may not be useful to consider them in future 

scenarios. 

· The major contributor in all cases is the relevant part Updates/revampings (the gap 

between the best case and the worst case scenarios goes from 7 to 90% of the 

baseline scenario impacts). 
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· The relevant parts Lifetime modulation, End-of-life and Transport failures are also 

major contributors when material aspects are involved. 

· The relevant part Corrective maintenance is only significant on ozone depletion 

because of the use of PTFE in a critical rectifier component. 

However this sensitivity analysis does not take into account the correlations between some 

relevant parts (for example those highlighted in Figure 27). A model based on the design of 

experiments theory would be useful but more complex to develop and apply. With this 

limitation, the current sensitivity analysis allows the scenarios to be refined by focusing on the 

most significant relevant parts. In this way Spare parts program and Preventive maintenance 

are not essential, whereas Updates/revampings is indispensable. If more time and resources 

are allocated to the study, attention needs to be focused on these aspects. This would then 

become particularly interesting for internal use. 

Concerning the external use of these results, the study of the most significant relevant parts 

such as Updates/revampings or Lifetime modulation may help identify recommendations and 

good practice for the clients. This particular point is illustrated in the following section. 

4.4.5. Proactive and interactive client-oriented use of the 

model 

Once the model is well implemented in the company, a more proactive and interactive use 

oriented towards clients may be considered. This process leads to recommendations and 

good practices to improve the environmental performance of the substation. 

 In this case the exploitation scenarios of the model are known by the aluminium producer 

and formalized thanks to a proactive dialog with him. The process is divided into three 

phases: 

1. The client exploits the substation in a certain way. A scenario of exploitation is built 

and implemented in the LCA model. 

2. A dialog with the aluminium producer identifies the existing degrees of freedom for 

this scenario. One or several alternative exploitation scenarios are built and 

implemented. 

3. The environmental benefits are measured according to the initial scenario on each 

impact category. Recommendations are generated by analysing the significant 

benefits. 

A simple example is proposed to illustrate this process. The aluminium smelter is supplied by 

hydroelectricity. A dialog with the aluminium producer enables the identification of the initial 
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exploitation scenario that is equivalent to the baseline scenario already used in the previous 

sections. One particular degree of freedom has been identified concerning the preventive 

maintenance. Indeed the producer admits that this maintenance may be intensified, and it has 

been estimated that it would lead to less corrective maintenance, and that the global life time 

of the substation could be lengthened by two years. All these elements have been quantified 

and implemented in the LCA model. As previously shown, the environmental impacts 

generated by reinforcing preventive maintenance are negligible compared to the potential 

impacts to be generated by a corrective maintenance. 

Table 7. Difference of the annual environmental impacts between the initial scenario 

and the alternative scenario 

Impact categories Unit Difference Benefits 

Climate change kg CO2 eq 4.26E+04 3.36% 

Ozone depletion kg CFC-11 eq 1.36E-02 11.76% 

Human toxicity kg 1,4-DB eq 2.07E+05 17.82% 

Particulate matter formation kg PM10 eq 2.37E+02 8.62% 

Terrestrial acidification kg SO2 eq 3.51E+02 9.39% 

Freshwater eutrophication kg P eq 1.22E+02 16.17% 

Natural land transformation m2 9.38E+00 0.13% 

Metal depletion kg Fe eq 2.16E+05 18.07% 

 

The comparison between the two scenarios leads to the environmental benefits presented in 

Table 7. For the metal depletion impact category for example, the annual potential impacts 

are decreased by 18.07 %, representing about 216 tons of Fe eq. These quantified results are 

a powerful driver for the clients to improve their practices. 

Used iteratively, they would permit the deployment of a continuous improvement approach 

centred on eco-design between the supplier and the client. The aim would be to evolve 

towards more sustainable exploitation scenarios, i.e. scenarios reaching the best compromise 

between environmental performance and economic requirements. Such a process may be fed 

by the internal eco-design projects and it may be reiterated in a regular way (every five years 

for example). 

4.5. Conclusions 

To quickly and accurately assess the environmental performance of complex industrial 

systems, we have proposed in this paper an LCA model including different exploitation 

scenarios. The main objective of this approach consists in assessing the potential impacts of 

generic industrial systems in a more reliable way compared to classical streamlined and 

upstream LCA, while preserving time and resources. A second interesting perspective 
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concerns the generation of exploitation recommendations to industrial clients in order to 

optimize the life cycle of the system from an environmental point of view. 

The exploitation scenarios consider exogenous parameters, i.e. parameters that are not 

controlled by the supplier of the system. This model is based on a set of external explorative 

scenarios and the SRI matrix, a simple and intuitive tool. Four scenarios are considered: best 

case, worst case, baseline (expected future) and a highly different alternative. After identifying 

relevant parts of the system to be included in the scenarios, values are associated with each 

parameter and each scenario. The scenarios are implemented in the LCA software and a 

classical LCA process is performed. 

A case study has been proposed concerning an Alstom Grid AC/DC conversion substation 

used to convert and supply power to aluminium electrolysis plants. We have shown that the 

consideration of different exploitation scenarios brings accurate and reliable knowledge about 

the potential environmental impacts generated throughout the life cycle of industrial systems. 

However this scenario-based LCA model needs to be manipulated by an LCA expert, or at 

least by a person familiar with LCA. Future research may consider a more automated and 

interactive approach through, for example, the generation of a software layer linked with the 

LCA software and easily manipulable by a non-expert. 
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Foreword 

The first paper (Chapter 3) was chronologically written before the two other ones (Chapters 4 and 5). A 

first LCA is proposed concerning an Alstom Grid substation. This LCA is shown in the first paper as the 

application of the first steps of the methodology. But it was also a way to identify weak LCA 

methodological elements that are the base of the second paper (Chapter 4), i.e. a scenario-based LCA 

model. 

In a new and fictive implementation of the general methodology, the scenario-based LCA model would 

directly be applied instead of the classical LCA application proposed in the first paper, as it is proved to 

be more efficient and adapted to R&D strategic orientation than a classical LCA. 

Finally, the general methodology proposed in the first paper includes a step of generation and selection 

of eco-innovative R&D projects. No application of this process was proposed in it, as the paper was 

written before this application. The detailed process and its application are thus proposed in the third 

paper (Chapter 5). 

To synthetize, the first paper (Chapter 3) proposes a methodology in two steps: environmental 

evaluation and environmental improvement. The environmental improvement is applied in the first paper 

through a classical LCA study, but a more accurate and adapted model based on exploitation scenarios 

is then developed and applied in the second paper (Chapter 4). The environmental improvement step is 

detailed and applied in the third paper (Chapter 5). 

 

Abstract: Eco-innovation methodologies and tools are applied in companies to an 

increasingly greater extent. None of them are however particularly adapted for complex 

systems industries, where the eco-design requirements are highly specific. These systems 

are characterised in particular by their large size and masses, and their relatively long and 

uncertain life cycle. We propose, in this paper, an adapted eco-innovation process based on 

the eco-design strategy wheel. We put together a working group of internal technical experts. 

A first phase involves generating a high number of potential eco-innovative R&D projects that 

are then analysed and assessed using an appropriate multi-criteria grid. Three formalized 

filters allow for an informed selection of the most promising projects that will then make up a 

balanced R&D projects portfolio. The whole process has been applied at Alstom Grid on large 
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electrical stations used in the primary aluminium industry. Within a limited time frame and 

resources over 100 ideas were generated and analysed. The first filter allowed for a pre-

selection of 16 ideas for further study, while the second filter led to a final portfolio involving 

12 projects. The third filter validated the portfolio in terms of global coherence. The quantity, 

variety, novelty and quality of the projects were satisfactory. The process then benefitted from 

further improvement with the contribution of external eco-design experts. 

Keywords: Eco-design, eco-innovation, complex industrials system, R&D project portfolio, 

creativity. 

5.1. Introduction 

Environmental concerns take on greater importance as the awareness of the impact human 

activities have on the environment increases. It results in companies manifesting a need to 

respond to new environmental requirements and regulations. From this perspective, eco-

design allows us to consider, manage and improve the environmental performance of 

products, processes and services. 

However if this approach is now recognized and well deployed in competitive mass-consumer 

goods producers (B to C), the situation is not so advanced in B to B industries, in particular for 

complex industrial systems. They are characterised by a long and uncertain life cycle, a high 

number of subsystems and components or strong interactions with their environment. The 

technological and regulatory constraints associated with these systems may slow down the 

ability to innovate, as reliable and long-term proven technologies are often favoured. 

Nevertheless the need for eco-innovation presents itself clearly as these systems are linked 

to substantial environmental impacts. 

Innovation is increasingly perceived as a solution for European industries to survive the 

emergence of developing markets (Association des Centraliens - Think Tank Innovation, 

2011). Within this vein, eco-innovation would appear to be an apt solution to the ecological 

and possibly even the financial global crisis. However eco-innovation on complex industrial 

systems is a challenging task. R&D projects in complex systems industries are often driven by 

technological and not environmental considerations. These projects need to be identified fairly 

early in the design process, with little information available. On the other hand it is generally 

agreed that environmental-oriented R&D projects are necessary, but the complexity of the 

products makes the initiation of an eco-innovation approach tricky. Furthermore only few are 

trained in eco-design or Life Cycle Assessment (LCA). This is why a simple and effective eco-

innovation method is necessary, with little preliminary environmental knowledge required. 

This would make the collaboration between multidisciplinary experts possible. 

Thus we propose in this paper one such intuitive eco-innovation process. From a classical 

ideas-generation phase, based on the eco-design strategy wheel, (Brezet and Van Hemel, 
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1997) it allows for identification of a powerful portfolio of eco-innovative R&D projects through 

three successive filters using limited resources. A first set of eco-innovative projects is 

identified and then analysed by the working group using an original hybrid R&D project 

portfolio selection model. This model is based on a simple scoring model and a mapping 

approach taking five dimensions into consideration, including potential environmental 

benefits. From this multi-criteria assessment a final set of projects is selected and its global 

coherence is tested in order to ensure a homogenous rising of eco-design competences in 

the company. The whole eco-innovation process is then deployed at Alstom Grid on complex 

electrical substations. 

Section 5.2 presents a literature study about eco-innovation and R&D projects evaluation and 

selection for complex industrial systems. It permits to introduce the adapted eco-innovation 

process in Section 5.3. Section 5.4 deals with the application of this process at Alstom Grid. 

Section 5.5 goes further to test the robustness of the model and discuss the validity of the 

results. Concluding remarks and perspectives are presented in section 5.6.  

5.2. Background literature on eco-innovation of 

complex industrial systems 

5.2.1. Complex industrial systems 

This paper focuses on complex industrial systems whose specificities have yet to be taken 

into account in eco-design and eco-innovation: these are industrial systems where complexity 

induces major issues in terms of modelling, prediction or configuration. If we consider the 

systems engineering domain, Blanchard and Fabricky (Blanchard and Fabrycky, 2011) 

characterise engineered systems as systems that achieve operational objectives; that operate 

over a complete life cycle, that are composed of a combination of resources (humans, 

materials, equipment, money�), that are composed of subsystems and components that 

interact with each other, that are influenced by external factors from larger systems and in 

interaction with the natural world. Adding an environmental dimension, we define a complex 

industrial system in the eco-design vein as: 

· A large-scale system in terms of subsystems and components, mass and resource 

usage, 

· A system whose life cycle is hardly predictable at the design level in the long-term, in 

particular its lifetime, upgrades, maintenance and end-of-life, 

· A system whose subsystems may have different life cycles and different 

obsolescence times, 

· A system in close interaction with its environment (super system, geographic site�), 
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· A system supervised by human decisions and management. 

A particular example of such systems is an energy system like the Alstom Grid conversion 

substations described in Section 5.4. Concerning eco-innovation, the main problem of such 

systems is that the customers� specifications or the regulations and standards largely limit the 

ability to radically innovate, as only long-term proven technologies are used. Thus the 

challenge associated with an eco-innovation approach is whether to identify a set of reliable 

incremental eco-innovative projects, and/or to be able to make possible radical eco-

innovations acceptable to the customers. 

To deploy an adapted and effective eco-innovation approach, a literature review is first 

performed on eco-innovation and R&D projects portfolio evaluation and selection. This 

facilitates the identification of the limits associated with the current practices and to select the 

most powerful methods and tools for complex industrial systems. 

5.2.2. Eco-innovation 

5.2.2.1. Definition 

Eco-innovation has been associated with numerous definitions in recent years. Carrillo-

Hermosilla et al. list for examples 16 definitions (Carrillo-Hermosilla et al., 2010). Taking these 

definitions into account, the authors propose the following: an eco-innovation is �an innovation 

that improves environmental performance, in line with the idea that the reduction in 

environmental impacts (whether intentional or not) is the main distinguishing feature of eco-

innovation�. This specifically includes innovations where the reduction in environmental 

impacts is a side-effect, and not the main or initial goal. More importantly, this also includes 

radical and incremental innovations. This distinction allows for a depiction of an eco-

innovation categorization shown on Figure 32.  

However, for other authors, an eco-innovation is necessarily radical. This is highlighted by Tyl 

(Tyl, 2011), and also clearly expressed by Collado-Ruiz (Collado-Ruiz and Ostad-Ahmad-

Ghorabi, 2010). But Pujari also shows that only few eco-innovations are really radical with 

regards to mass-consumer goods (Pujari, 2006). In some other definitions, an eco-innovative 

product is significantly less environmentally harmful than the existing ones, but O�Hare 

highlights the fact that �different companies may have different opinions as to what constitutes 

a �significant� improvement in environmental performance� (O�Hare, 2010). 

Considering the hierarchical nature of complex industrial systems, as well as the fact that 

radical changes are often hardly acceptable for customers in complex systems industries, we 

consider the eco-innovation framework defined by Carrillo-Hermosilla as well adapted to 

complex industrial systems: �Eco-innovations, particularly when they are radical and require 

techno-institutional system-level changes, are difficult to achieve because the prevailing 
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system may act as a barrier to the creation and diffusion of a new system� (Carrillo-Hermosilla 

et al., 2010). This is why we have chosen to work within Carrillo-Hermosilla et al.�s definition 

throughout the paper. 

 

Figure 32. Categorization of eco-innovations according to the radical or incremental 

nature of produced technological change and the level of impacts to the system (from 

(Carrillo-Hermosilla et al., 2010)) 

5.2.2.2. Eco-ideation 

An eco-innovation approach indicates two major activities: the identification of eco-innovative 

ideas (or eco-ideation), and the evaluation and selection of the most promising ideas (Jones 

et al., 2001). This paragraph studies eco-ideation and the associated methods and tools. 

Section 5.2.3 is devoted to the evaluation and selection of R&D projects, as we will see that it 

exceeds the field of eco-innovation. 

Bocken shows that eco-ideation has not been widely explored and proposes to separately 

study ideation and eco-design (Bocken et al., 2011). However, different tools have been 

designed to support an eco-innovation process. The most widely known are explained in 

details in the following paragraph. 

Regarding the eco-ideation process in itself, a distinction can be made between collective and 

individual eco-ideation processes. According to Bocken et al. (Bocken et al., 2011), �group 

ideation is generally less effective than individual creativity�. But few individual tools exist and 

their usage remains complicated. 

Apart from these few examples of individual eco-ideation process, experts groups are largely 
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used through creativity sessions (Bocken et al., 2011). Researches performed in the last 

decade have identified some best practices to perform an effective creativity session in eco-

innovation. Collado-Ruiz advises to diffuse only �soft� environmental information to the group 

because �hard� environmental information may restrict creativity (Collado-Ruiz and Ostad-

Ahmad-Ghorabi, 2010). Pujari shows that the multidisciplinarity in the working group is an 

eco-innovation success factor (Pujari, 2006). 

Finally, eco-ideation processes in companies are often performed as classical creativity 

sessions supported by an eco-innovation tool. These tools are studied in the next paragraph. 

5.2.2.3. Eco-innovation tools 

Different eco-innovation tools are well known or regularly used in the literature, like the eco-

design strategy wheel (Brezet and Van Hemel, 1997), also known as the LiDS wheel, Eco-

compass (Fussler and James, 1997), Product Ideas Tree (Jones et al., 2001) or TRIZ-based 

tools. 

The eco-design strategy wheel is a simple tool that proposes eco-design guidelines divided in 

8 axes on a graphic wheel. 7 axes cover the whole life cycle of the product, whereas the last 

one aims at identifying new concepts. According to Tyl, its appropriation is really easy. It does 

not imply specific knowledge and the graphic representation is very clear. It is ideal for a 

multidisciplinary working group in a company. But as a simple tool, the eco-design strategy 

wheel may become simplistic, and the pre-defined guidelines hardly allow to go further than 

product-level considerations (Tyl, 2011). The wheel is shown in Figure 33 with the axes 

labels. 

 

Figure 33. Illustration of the eco-design strategy wheel proposed in (Brezet and Van 

Hemel, 1997) 
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Eco-compass is another simple and graphical tool. It is composed of 5 axes that are less 

linear than the axes of the eco-design strategy wheel, because they mix life-cycle-oriented 

and impact-oriented considerations. But as the eco-design strategy wheel, it is often 

considered as an eco-design tool, limited to a product-level approach (Tyl, 2011). 

Product Ideas Tree (PIT) aims to structure eco-innovation creativity sessions using mind-

mapping techniques. It is thus more oriented on idea structure than ideation. The use of such 

a structure tool allows a reduction of destructive interactions in the group. However, it also 

shows that it can restrict the creativity potential (Jones et al., 2001).  

Finally, several examples of TRIZ-based tools for eco-innovation exist in the literature (Mann 

and Jones, 2002; Kobayashi, 2006; Yang and Chen, 2011). TRIZ is known as a highly 

effective ideation tool, but it is also perceived as a complex approach. Tyl also states that the 

TRIZ innovative principles do not adequately fit the eco-innovation principles and need to be 

reworked (Tyl, 2011). He proposes a TRIZ-based tool, EcoASIT, which offer good 

performance in the eco-ideation phase. However in this paper we focus more on the project 

selection phase and that is why we propose later to adopt a very simple and appropriable 

tool. 

These tools are able to support an eco-ideation process. However they do not ensure an 

effective and multi-criteria evaluation and selection step of the most promising ideas. 

Currently �there are more opportunities and concepts than can be supported with the funding 

available within the company� (O�Hare, 2010). The next section considers general methods in 

the field. 

5.2.3. Evaluation and selection of R&D projects 

5.2.3.1. Overview of the methods 

Once eco-innovation projects have been generated, it is then necessary to identify the optimal 

mix of R&D projects to undertake. Indeed the number of projects selected by a working group 

may be too high compared to the available resources in the company. It is crucial to feed the 

management decisions with accurate data and adapted tools to select an optimal R&D 

projects portfolio. 

This issue is related to the field of R&D projects evaluation and selection and R&D portfolio 

management. It has been under study for several decades and a significant panel of methods 

and tools have been produced. Mikkola precises that �portfolio techniques are powerful tools 

in that they allow products and R&D projects to be analysed in a systematic manner, 

providing an opportunity for the optimization of a company�s long term growth and 

sustainability� (Mikkola, 2001). 

Cooper proposes a classification of portfolio management techniques (Cooper et al., 1999). 
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The authors mainly distinguish financial models, strategic approaches, scoring models and 

checklists, analytical hierarchy approaches, behavioural approaches and mapping 

approaches (or bubble diagrams). Cooper also states that mathematical models are not really 

deployed in companies, because they need a large amount of precise data and they are 

difficult to manage and to use for managers. Another point highlighted by Bitman et al. 

(Bitman and Sharif, 2008) or Lawson et al. (Lawson et al., 2006) who have compared several 

approaches, is that the methods only based on financial aspects do not yield the best results. 

The relevance of a hybrid approach is also emphasized by Cooper et al. (Cooper et al., 

1999). 

Finally, Cooper et al. show that a sound method should allow for (Cooper et al., 1999): 

· Identifying the right number of projects, 

· Avoiding gridlocks in the portfolio, 

· Highlighting high values projects, 

· Ensuring a balanced portfolio (for instance long term versus short term), 

· Being aligned with the company strategy. 

Among all the methods, scoring models and mapping approaches are well-known and 

popular, mainly because they are easy to use and give acceptable results. They are also in 

line with the previous success criteria. We focus in the two next sections on these models. 

5.2.3.2. Scoring models 

The scoring models are simple, direct, effective and flexible (Bitman and Sharif, 2008). They 

show a balanced ratio between rigor and the time spent on the study (Henriksen and 

Palocsay, 2008). Projects are rated and scored according to several qualitative or quantitative 

indicators. Henriksen et al. define scoring as �the process of assigning ordinal scale value to 

R&D projects for the purpose of ranking the projects with respect to some criteria� (Henriksen 

and Palocsay, 2008). The weighting of the criteria enables a customization of the model for 

special needs (Cooper et al., 1999). 

One of the main forces of a scoring model is its ability to be easily implemented in companies. 

In fact and contrarily to mathematical or financial models, the use of qualitative scales allows 

a large diffusion of the tools, for example through an Excel sheet or a questionnaire. 

Examples of such approaches are given in (Henriksen and Palocsay, 2008) and in (Apperson 

et al., 2005). 

However, the success of a scoring approach is clearly linked to the selection of sound 

variables and indicators (Mikkola, 2001). References from the existing literature often propose 
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some categories to consider. For Coldrick et al., information concerning markets, customer 

needs, competitors and regulatory and environmental concerns need to be taken into account 

(Coldrick et al., 2005). In addition to �classical� financial factors, Apperson et al. also consider 

four general areas: external forces (including environmental impacts), marketing, company 

dynamics, and technical capabilities (Apperson et al., 2005). 

However among these different categories, environmental aspects are sometimes mentioned, 

but never analysed in depth. 

5.2.3.3. Mapping approaches 

Historically the BCG (Boston Consulting Group) and the McKinsey matrices are the most 

familiar mapping approaches (Mikkola, 2001). The BCG Matrix considers relative market 

share and industry growth rates as the two dimensions of success in a four-cell matrix. The 

McKinsey Matrix is built on a nine-cell matrix that takes into account competitive position of a 

company and industry attractiveness. 

 

Figure 34. The R&D Project Portfolio Matrix (Mikkola, 2001) 

Highlighting the particular needs for R&D projects selection, Mikkola puts forth the R&D 

Project Portfolio Matrix (Mikkola, 2001). Two dimensions are considered: competitive 

advantage and benefits to customer. The positioning of the candidate R&D projects (see 

Figure 34) permits to define four quadrants: 

· FLOP projects are unlikely to generate positive returns for the company, and they 

should be removed from the portfolio. 

· SNOB projects often characterise first generation innovations, as they combine a high 

competitive advantage with a low demand or high production costs. 

· FAD projects often characterise imitation or mass production of existing products, as 

they meet customer�s needs with a low competitive advantage. 
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· STAR projects are the best on the two dimensions, and characterise successful 

breakthrough innovations. 

Mikkola draws attention to the fact  that a balanced R&D project portfolio should naturally 

include STARs, but also SNOBs and FADs, and in some cases FLOPs �to achieve the growth 

and profit objectives associated with its corporate strategy without exposing the company to 

undue risk� (Mikkola, 2001). 

Nevertheless this matrix seems more adapted to B to C products, as the two axes may be 

associated with perceived quality (for competitive advantage) and real quality (for benefits to 

the customer). In complex systems industries, the number of customers is relatively limited, 

and the customers are able to assess global costs and quality. If these two dimensions do not 

seem adapted to our needs, we notice that this representation type involving two (or more) 

dimensions may be powerful. 

Moreover the addition of a third dimension on these 2D matrices is considered by Cooper 

under the term �bubble diagrams� (Cooper et al., 1999). 

As for scoring models, eco-innovation aspects, or more generally environmental concerns 

have not really been considered in the past. One single example is proposed by Millet to 

select areas of environmental improvement at the early stage of the design process (Millet et 

al., 2009). Three dimensions are considered: technico-economic feasibility, functional 

attractiveness (customers� values), and environmental impacts through an Environmental 

Improvement Rate (EIR). 

5.2.4. Requirements for an adapted eco-innovation process 

Considering the constraints associated to complex industrial systems, as well as the literature 

review in the field of eco-innovation and R&D projects evaluation and selection, an adapted 

and effective eco-innovation process should: 

· Consider the different system levels (components, subsystems, system�), as 

incremental innovations that are constantly made at a component or subsystem level, 

where radical innovations are more likely to appear at a system level (new 

unexpected architecture), 

· Be very simple, as multidisciplinary knowledge is mandatory to consider all the 

aspects of such a large scale system, i.e. the process mainly involves non-

environmental experts, 

· Be performed in a short time frame with limited resources, to be easily accepted by 

the management and the involved experts, as the introduction of eco-design is often 

perceived as a new constraint (Jacqueson et al., 2003), 
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· Be very efficient, to reach the best possible ratio between used resources and results, 

· Build a strong basis for future eco-design works, to maximize the success rate of the 

identified R&D projects, 

· Take into account multi-criteria aspects, by considering technical, economic and 

marketing dimensions, to be easily accepted; 

· Provide strong proofs in terms of feasibility and interest for the customers, to be 

successful on the markets. 

Considering these requirements and due to the fact that a significant number of  eco-design 

tools are built and not fully tested in real conditions (Baumann et al., 2002), we propose to 

base the approach on an already existing eco-ideation tool. However it does not seem 

possible to give to the working group in-depth training, whether it concerns eco-design or 

creativity tools. For this reason we do not consider TRIZ-based tools in this paper. The ideal 

tool to assist creativity should give predefined stimuli based on checklists or guidelines. Eco-

compass and the eco-design strategy wheel propose such stimuli. We estimate that the 

guidelines proposed by the eco-design strategy wheel are more detailed, so we will consider 

this tool in the next section. This choice is in line with the requirements summarized by 

O�Hare to increase the industrial adoption of design tools, as for instance �decrease the level 

of effort required to apply the tool or the complexity of the tool� (O�Hare, 2010). 

However the eco-design strategy wheel does not propose any post-processing treatment of 

the generated ideas, i.e. any process to evaluate and select the most promising ideas. The 

R&D projects associated with complex industrial systems may be long term studies and they 

would probably be too numerous according to the available resources. It is thus essential to 

build an adapted portfolio of R&D projects through a multi-criteria assessment of each project, 

even if it is mainly based on qualitative evaluations. The participation of a multidisciplinary 

working group appears to be the best way to obtain a complete knowledge of the system. 

Consequently we propose in the next section an adapted eco-innovation process for complex 

industrial systems, based on a multidisciplinary working group, supported by the eco-design 

strategy wheel and using a hybrid scoring/mapping model for R&D projects evaluation and 

selection. 

5.3. Proposition of an adapted eco-innovation 

methodology for complex industrial systems 

5.3.1. Prerequisites and general approach 

The eco-innovation process for complex industrial systems presented is this paper is part of a 



Chapter 5. Paper #3  François Cluzel 

Eco-design implementation for complex industrial systems 

- 109 - 

larger methodology described in (Cluzel et al., 2012). It is built on the following hypothesis: 

· Eco-innovation is deployed in a company providing complex industrial systems (as 

defined in section 5.2.1), but with no specific knowledge in eco-design/eco-

innovation, 

· The approach is supported by at least one eco-design expert, 

· An environmental evaluation (Life Cycle Assessment or simplified LCA) has permitted 

identification of highly impacting elements (materials, components, subsystems, life 

cycle phases�) of the complete system life cycle. 

Moreover, as expressed in numerous works of research, one major success factor is the 

support of the management of the company (McAloone, 1998; O�Hare, 2010). This ensures in 

particular the ability to build a multidisciplinary working group. 

The choice of a collaborative approach as opposed to an individual one is justified by the fact 

that the global vision of a complex industrial system is necessarily shared by several persons 

with different knowledge (product, life cycle, technical aspects, design process, customers�). 

That is why the main departments of the company need to be represented: R&D, engineering, 

commercial & marketing, sourcing�. 6 to 10 participants is generally perceived as the optimal 

number for an efficient creativity process. The eco-design expert is the animator. 

 

Figure 35. Overview of the global process including the three filters 

The objective of the eco-innovation process is to identify a set of pertinent environmental 

improvement projects (incremental or radical eco-innovations) ready to be assessed by the 

decision-makers. This portfolio needs to be composed of powerful individual projects, but also 

to have global coherence. This is also a way to prepare the company for the future and  

further extended eco-design works, as the members of the working group will be able to act 
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as eco-design �ambassadors� in their respective departments. 

Once the working group has been defined, the eco-innovation consists of two main steps: 

eco-ideation, and eco-innovation R&D projects evaluation and selection. The building of an 

adapted portfolio of eco-innovative projects is performed through three successive filters that 

cover these two steps. This process is described on Figure 35, and it is detailed in the next 

paragraphs. 

5.3.2. Eco-innovative projects generation and preselection 

The eco-ideation phase is divided in three sessions, supported by the eco-design strategy 

wheel from (Brezet and Van Hemel, 1997). 

The first session is called the �introduction session�. As the members of the working group are 

predominantly unfamiliar with environmental concerns and eco-design principles, it aims at 

introducing the main eco-design concepts, the previous environmental assessments as well 

as the eco-innovation approach (including the eco-design strategy wheel). As stated by 

Collado-Ruiz (Collado-Ruiz and Ostad-Ahmad-Ghorabi, 2010), the diffusion of �soft� 

environmental information is favoured. Collado-Ruiz has in fact highlighted a contradiction 

between the need for environmental information to focus on the impacting elements and the 

creativity limitation induced by data being too precise. Adding to this statement that most of 

the working group members are not experts in the environmental field, only general LCA data 

and high-level eco-innovation principles are communicated to them during a short meeting (1 

to 2 hours). 

The second session is called the �creativity session� and may be performed as a half-day 

meeting. A short introduction is first necessary to remind the objectives and the scope of the 

study. It also permits a short icebreaker game to foster a creative atmosphere. Then a 

divergent creativity phase is launched, following the classical creativity rules. During this 

phase, only environmental considerations are taken into account (technical, economic or 

customer aspects are voluntary omitted). Each of the 8 axes of the eco-design strategy wheel 

is separately considered during a short workshop (15 to 30 minutes) in a two-step approach: 

· A brainwriting phase, where each participant individually generates a maximum 

number of ideas in accordance with the considered axis (for example �Optimization of 

initial lifetime�) using Post-itÆ notes, 

· Following this, will be a common phase where all ideas are read by the animator and 

grouped. The participants are encouraged to orally propose new ideas. All the ideas 

are stuck on the wall on pre-defined supports. 

The divergent phase is followed by a convergent phase, where all ideas are discussed and 

sorted out. Technical, economic or customer aspects are now considered. The objective of 
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this phase is to identify a first set of promising ideas or ideas groups (composed of closed or 

complementary ideas) which are from now called eco-innovative projects.  

This convergent phase is illustrated in Figure 36. It represents the first filter that permits to 

preselect the most promising projects and to build a powerful R&D projects portfolio. Each 

project is discussed. If at least a working group member is opposed to the project rejection, it 

is selected for the next step. If the selected projects are too numerous (i.e. their number 

exceeds the number of projects N that can reasonably be deepened according to the 

available resources) they are analysed one more time to consensually reject the less powerful 

ones. This first filter is based solely on the members� expertise and experience to quickly 

identify a reasonable set of projects that will be deepened. The rejected projects are 

capitalized for future use. 

 
 

Figure 36. First filter: preselection of projects 

The chosen eco-innovative projects are then synthesised on standardised sheets (see Figure 
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· the potential environmental benefits, 

· the technical feasibility, 

· the economic feasibility. 

Such a sheet may be completed in a few hours based on expert knowledge and a short 

documentary study. This information remains unknown at this step, so only qualitative or 

estimated data are available. The standardised sheets are then deepened over a few weeks 

by sharing them out between the working group members according to their own 

competencies. The standardised sheets are then updated with the new information. 

 

Figure 37. Example of a standardised sheet for a project on the marking of the 

components for the end-of-life. 

The last session is called �synthesis session�. It consists of a discussion on each eco-

innovative project in order to clarify the different design aspects and to ensure that a common 

vision emerges for each project. 

At the end of this eco-ideation process, a first set of promising eco-innovative projects have 

been identified. But they are generally too numerous to be all considered as R&D projects, 

due to a lack of resources. Moreover and even if some qualitative elements have been 

synthesised in the standardised sheets, it remains hard to compare the projects to make an 

optimal choice. Thus the next step of the eco-innovation approach concerns the prioritization 

of the projects thanks to a multi-criteria assessment. 

5.3.3. Projects selection based on a multi-criteria 

assessment 

Thanks to Section 5.2.4, we have shown that scoring and mapping models are well adapted 

to our requirements, i.e. the upstream and multi-criteria selection of R&D projects in a very 
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simple and effective process, with little quantitative data and a special focus on environmental 

aspects. 

We propose in this paragraph an assessment grid based on four dimensions, that is 

assimilated to a simple scoring model without any prioritization of the projects and where no 

global score is calculated. Two other dimensions are taken into account in the decision 

process, but as they are not judged debatable and inherent in the contents of each project, 

they are not included in the assessment grid. As (Bitman and Sharif, 2008) showed that a 

two-level structure is preferable, each of these dimensions is divided into several indicators. 

They are issued from different literature or company sources: 

· Potential environmental benefits: the environmental benefits of the project are 

compared to the environmental performance of the existing solution thanks to the 

eco-design strategy wheel (Brezet and Van Hemel, 1997) on a six-level qualitative 

scale (0 to 5, see Table 8). The existing solution is arbitrarily positioned at 2 on each 

wheel axis and the relative position of the eco-innovative project is determined by the 

user thanks to the qualitative scale. A final score on 20 points is then calculated 

(average score on the eight axes), but the detail of the 8 axes is preserved, as the 

average score may hide important benefits on a particular life cycle aspect. 

Table 8. Example of a qualitative scale to measure potential environmental benefits on 

each axis of the eco-design strategy wheel. The scales used for the other dimensions 

are based on the same principle but not detailed in this paper. 

Score Description 

0 The project highly deteriorates the environmental performance of the current solution.  

1 The project significantly deteriorates the environmental performance of the current solution. 

2 The project does not bring any benefit or damage compared to the current solution. 

3 The benefits brought by the considered project are minimal. 

4 The benefits brought by the considered project are significant. 

5 The benefits brought by the considered project are very important. 

 

· Feasibility: this dimension explores both the technical and the economic feasibility 

with the use of 4 indicators issued from an expert discussion at Alstom Grid: ease of 

implementation in terms of time and resources, financial return of investment, 

technical feasibility in terms of knowledge, internal level of control (is the company 

able to internally manage the entire project?). Each indicator is assessed using a six-

level qualitative scale (0 to 5) that permits to obtain a final feasibility on 20 points, 

calculated as the sum of the four scores. 

· Customers� value: this dimension assesses the benefits for the customers 

associated with each project. It uses 4 indicators issued from (Kondoh et al., 2006): 
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cost reduction, avoidance of risks, improvement of service quality, improvement of 

image. Each indicator is assessed using a six-level comparative and qualitative scale 

(0 to 5), where 2 is a neutral score (the existing and the new solutions are 

equivalent). It permits to obtain a final customers� value on 20 points, calculated as 

the sum of the four scores. 

· Time horizon: this fourth dimension gives information concerning the term of the 

studies associated to each project (and so the term where the potential benefits could 

be perceived), which is often considered as important to get a balanced project 

portfolio (Cooper et al., 1999). It simply consists of a four-level textual indicator: short 

term, middle term, long term and prospective (i.e. at a very long term and with high 

uncertainties). 

· Project perimeter: this dimension concerns the system level considered in each 

project. It also consists of a four-level textual indicator inspired by Carrillo-

Hermosilla�s typology (Carrillo-Hermosilla et al., 2010): component, subsystem, 

system, super system (involving more than the system considered in the project). 

This dimension is not included in the assessment grid as we assume that each 

project is clearly linked to one level without ambiguity. 

· Project nature: this last dimension allows identifying the nature of projects: 

methodological, organisational, and/or technological, as a project may have several 

natures. This dimension is not included in the assessment grid as we assume that 

each project is clearly linked to one level without ambiguity. 

Moreover for each project an expertise level indicator, self-evaluated by the users, has been 

added with four possible levels (from non-expert to expert). The four first dimensions are 

represented in an evaluation sheet, and each member of the working group evaluates each 

eco-innovative project. By weighting each evaluation with the member�s level of expertise, we 

give more value to the assessments performed by an expert rather than by a non-expert. 

Finally an average score is obtained on the five dimensions and for each project. The process 

to calculate the global thematic (environmental, feasibility, customers� value) scores is 

detailed in Figure 38. 

The indices i correspond to the assessed projects, whereas the indices j correspond to the 

decision makers (members of the working group or external experts). 

Each decision maker first defines its expertise score (from 1 to 4) for each project, called 

Sexpi,j. As all the decision makers do not allocate the same number of expertise weights, 

these scores are then normalized on 50 points and they become NSexpi,j in formula (3): 
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(3) 

 

Figure 38. Calculation of the thematic (environment, feasibility, customers' value) 

scores in the multi-criteria assessments 

Next, it is also asked to the decision makers to compare themselves relatively to the other 

members in terms of global competence on the working group work. This assessment is 

performed through the use of a pairwise comparison approach. The process of pairwise 

comparisons (PC) starts with the filling of a PC matrix (see Figure 39a). Let us now consider 

that some decision makers (corresponding to rows) are compared with themselves 

(corresponding to columns) for their competence level. The subjects are asked to provide a 

number of competences pairwise comparisons, not necessarily all of them; it is tolerated that 

the PC matrix be scarce. These comparisons are qualitative assessments in a 7 levels scale 

(much less, less, slightly less, equal, slightly more, more, much more) noted (<<<, <<, <, =, >, 

>>, >>>) (see (Limayem and Yannou, 2002)). By instance, a �<� at the location (row #1, 

column #2) means �the competence of expert#1 is slightly less than the one of expert#2�. In 

practice, this symbolic scale is indexed onto a numerical scale (10%, 25%, 40%, 50%, 60%, 
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75%, 90%) corresponding to the estimation of the relative part of the score of expert i (on row 

i) over the sum of both scores of expert i and expert j (on column j). Let us note c
*
ij such a 

comparison on row i and column j. Then, c
*
ij is an estimation of the quantity wi/(wj+ wi), wi and 

wj standing for the scores for expert i and expert j. Let us operate a transformation into score 

ratios such that (see formula (4)):  

  (4) 

Then, one proceeds to a Least Squares Logarithmic Regression (LSLR) of the PC matrix 

such as that proposed by (De Graan, 1980) and (Lootsma, 1981). It consists in minimizing the 

cumulated square distance between the logarithmic terms of the estimation of the score ratio 

cij and of the actual score ratio wi/wj, The result of this process is the competence weight 

vector. But, as all the experts do not have the same evaluation of a given comparison 

between two experts, one rather considers a triangular distribution for each comparison  

limited by  and  and with a modal value . Then, we use the 

MCPC method (Monte Carlo Pairwise Comparison) as in (Limayem and Yannou, 2002) to 

result in a competence weight distribution Wcompj (see Figure 39b).  

 

Figure 39. Example of a pairwise comparison matrix (a) and the corresponding 

competence weights distributions (b) 
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Finally a competence score Scompi,j is calculated in formula (6) for each project and each 

decision maker, for the 10000 Monte Carlo runs: 

  
(6) 

The Scompi,j represent the expertise shared by each decision maker on each project. They 

are used to weight the thematic scores Sthi,j of each decision maker on each project, from the 

assessment grid. Thus the weighted and average thematic scores WASthi are expressed in 

formula (7): 

  

(7) 

Among the 10000 Monte Carlo runs, the minimum and maximum WASthi are identified, as 

well as the score issued from the modes of the triangular distribution (which corresponds to 

the most likely value), in order to rebuild the uncertainty distribution proposed in the graphical 

results (see for example Figure 45). So if two distributions overlap each other, there is a case 

of undecidability. 

The assessment grid involving the four first dimensions is filled by the working group 

members. Once the assessments have been performed, Figure 40 proposes a second 

selection filter based on the obtained scores. Threshold values are identified for each 

dimension according to the assessment scale, and the projects are examined dimension per 

dimension according to the following order: 

1. Feasibility, as it is unfruitful to consider unfeasible projects for longer, 

2. Customers� value, as it is useless to consider a project that deteriorates these values 

for longer, 

3. Environmental benefits: the global score is first considered, but also the detail of each 

Brezet wheel�s axis. Indeed a project may have for instance excellent benefits on 

end-of-life aspects and at the same time not bring benefits to the other axes, resulting 

in a poor global environmental score. 

This process results in a justified choice of a set of eco-innovative projects. However a good 

balance of the overall portfolio is not ensured. That is why a final step is proposed in the next 

paragraph.   
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Figure 40. Second filter: selection of projects 

5.3.4. Portfolio balance control 

The individual selection of R&D projects permits to build a portfolio. However it does not 

ensure that the combination of these projects is optimal. We have indeed shown in a previous 

part of this paper that the balance of such a portfolio is essential to ensure the success of the 

approach and to offer strong and sustainable improvements. 

As this eco-innovation approach aims at being easily applicable, we propose a third and final 

filter based on a qualitative assessment of the overall portfolio. This filter is described in 

Figure 41. The last three dimensions expressed in Section 5.3.3 are used to check that the 

combination of projects is well balanced. First the temporal horizon dimension is considered, 

as an ideal portfolio includes short-, middle- and long- term projects. Secondly the project 

nature is considered, in order to progress on the three axes of the dimension: organisational, 

methodological and technological. Finally, the distribution of the projects according to their 

perimeter is observed, in order to work on different levels: component, subsystem, system, 

and even super system. 

For each dimension it is necessary to ask whether or not the portfolio is well balanced. We 
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assume that this questioning clearly depends on the strategic positioning of the company and 

that there is neither a good nor bad answer. That is why we do not propose any general rule. 

If the portfolio is considered not to be well balanced on some aspects, a new one needs to be 

found by returning to the previous stages of the approach, with different and adjusted 

threshold values. If it is not possible to define a best portfolio, the current one is validated with 

its weakness borne in mind. 

 

Figure 41. Third filter: balance of the projects portfolio 

The final steps of the approach then consists in identifying the time and the resources that 

need to be associated with the R&D projects, as in a classical project management 

methodology. The final portfolio is proposed to the company top managers for a final 

validation, and then planned and realized.  

The management may of course limit the number of projects according to the available 

resources and the strategy of the company, and different graphical representations, from 

classical mapping models to more specific diagrams may be useful. It is indeed necessary to 

Projects inclusion in 
the portfolio 

Is the portfolio well 
balanced in terms 
of project nature? 

Is the portfolio wel
balanced in terms 
of project nature?

 

Identification of time 
and resources 

Projects planification 
and realization 

Yes 

No 
Is the portfolio well 
balanced in terms 

of temporal 
horizon? 

Is the portfolio wel
balanced in terms 

of temporal 
horizon?

 

Is the portfolio well 
balanced in terms 

of project 
perimeter? 

Is the portfolio wel
balanced in terms 

of project 
perimeter?

 

Strategic validation 
by top managers 

Yes 

Yes 

Return to the 
previous stage with 
different thresholds 

Is it possible to 
define a better 

portfolio? 

Is it possible to 
define a better 

portfolio?

 

No 

No 

No 

Yes 



Chapter 5. Paper #3  François Cluzel 

Eco-design implementation for complex industrial systems 

- 120 - 

give to the decision-makers the right information to ensure the best choices at an upstream 

level. 

At this step, the descriptive project sheets are transmitted to the decision makers. The 

presentation of the overall performance of the portfolio is performed through different possible 

diagrams: 

1. Bubbles diagrams (inspired by the R&D Project Portfolio Matrix (Mikkola, 2001)) are 

useful to consider at the same time the three most important dimensions 

(environmental benefits, feasibility, clients� value). This classical mapping vision 

ensures a good overview of the projects performance but uncertainty is not 

represented. 

2. Another useful visualization of the results may be realized thanks to semantic profiles 

inspired by the Semantic Differential Method (Osgood et al., 1957). This 

representation is for example a good way to quickly identify Pareto optima, but the 

information related to the uncertainty distributions is ignored. 

3. Monodimensional diagrams including the uncertainty ranges are also useful to easily 

visualize the positioning of the projects and its eventual overlaps. 

4. Finally, partial ordering graphs allow easily identifying if a project is outranked by 

another on the three dimensions (considering the uncertainty ranges). This is an 

alternative to the previous monodimensional diagrams, easier to read but the 

quantitative information is lost. 

These different diagrams basically present the same information. Furthermore propositions 3 

and 4 include uncertainty aspects, but several graphs are necessary. 

In the current approach, we propose to show to the decision makers these different 

visualization possibilities, as they all present pros and cons, and they may be more or less 

adapted to some people and situations. Considering these synthesis graphs and the projects 

sheets, we consider that the decision makers have the right amount of data to make the right 

decisions. 

5.3.5. Projects realization 

Once the projects portfolio has been selected by the decision-makers, and the projects 

planned as usual, they may be realized following the general eco-design process for complex 

industrial systems proposed in (Cluzel et al., 2012). 

The project realization may be spaced out over several months or years. Once the whole 

portfolio or the selected projects have been performed, the full approach may be reiterated by 

considering the new system as the system of reference. 



Chapter 5. Paper #3  François Cluzel 

Eco-design implementation for complex industrial systems 

- 121 - 

5.3.6. Validation criteria 

The validation of such a process is not easy, because it involves subjective and qualitative 

elements. In numerous papers from the literature, the performance of an ideation process is 

assessed by the quantity of generated ideas. In other sources, quality is also assessed, but 

this notion is highly subjective. 

We consider in this paper the four criteria proposed by Shah (Shah et al., 2003), who adds 

variety and novelty to quantity and quality. Novelty concerns what is unusual or unexpected. 

Variety measures the size of the explored solution space. Quantity is the total number of 

ideas generated. Finally, quality corresponds to the feasibility of an idea and its proximity to 

the initial requirements. We propose to validate our eco-innovation approach by associating 

the following indicators with those criteria: 

· Novelty: two questions are added in the assessment grid given for each project to 

the members of the working group: 1) Do you think that this project already exist 

before the eco-innovation approach in the mind of one or several persons in the 

company, in an underlying way? 2) Do you think that this project would have 

emerged, been formalized and seriously considered by the decision-makers without 

the eco-innovation process? 

· Variety: different indicators are considered: the balance between short/middle/long 

term and prospective projects, the balance between 

component/subsystem/system/super system related projects, and the balance of the 

nature of the projects (technical, organisational, methodological projects�). 

· Quantity is assessed by the total number of ideas generated during the divergent 

creativity phase and the total number of eco-innovative projects proposed after the 

convergent phase. The time spent on the different phases of the eco-innovation 

process is also considered. 

· Quality is assessed thanks to the three dimensions: potential environmental benefits, 

feasibility and customers� value. 

These four criteria will permit to assess the global performance of the eco-innovation process 

proposed in this paper. In the next section, we propose a case study performed at Alstom 

Grid on a complex industrial system. 
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5.4. A case study: application at Alstom Grid 

5.4.1. AC/DC conversion substations for the aluminium 

industry 

Alstom Grid PEM (Power Electronics Massy) designs, assembles and sells substations for the 

electrolysis of aluminium worldwide. These are electrical stations designed to convert energy 

from the high voltage network to energy that can be used for aluminium electrolysis, which is 

a particularly environmentally impacting and energy-consuming activity. An electrolysis 

substation represents thousands of tons of power electronics components and transformers, 

costing tens of millions of Euros.  

It is made up of several groups that are composed of a regulating transformer, a rectifier 

transformer and a rectifier. The groups are connected on one side to the high voltage network 

through an electrical substation and on the other side to a busbar that is directly connected to 

the electrolysis potline. All the groups are supervised by control elements that are connected 

to the electrolysis pots to regulate the process. The amount of energy consumed by a recent 

primary aluminium plant is comparable to the amount of energy delivered by a nuclear plant 

unit (more than 1 GW). Key elements of such a substation life cycle are given on Figure 42. 

 

Figure 42. Overview of the flows associated with a substation life cycle. Figures are 

voluntary rounded off for confidentiality reasons.
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· The number of subsystems and components is considerable. Some subsystems 

could themselves be considered as complex industrial systems (like transformers or 

rectifiers), 

· The lifetime of a substation is really long, up to 35 or 40 years. Many uncertainties 

exist for the use and end-of-life phases. No end-of-life scenario is clearly known, 

· The substation is only a part of the aluminium plant. Their processes are closely 

connected and interdependent, 

· No standard design exists: the substation is tailor-made for each customer, even 

though the general design is often the same. We consider substations as a product 

family. 

In this context, Alstom Grid PEM wishes to minimise the environmental impacts of its products 

to answer to Alstom�s environmental policy and to be differentiated from competitors. A first 

global Life Cycle Assessment has been performed on an entire substation (Cluzel et al., 

2011). This LCA is the basis for the eco-innovation process described in the next parts. 

5.4.2. Eco-innovation process deployment 

The eco-innovation approach was deployed at Alstom Grid following the time line described in 

Figure 43. The whole process lasted about 10 weeks. 

The working group included two persons from the R&D department, one person from the 

Engineering department, one person from the Commercial department, two persons from the 

R&D department of another Alstom Grid unit providing the transformers of the substations, 

and one academic eco-design expert. These persons were chosen in coordination with the 

department managers in order to have a complete knowledge of a substation. They are 

mainly junior experts on one specific substation aspect, or senior experts with a global vision 

of the system life cycle. 

The animation was managed by one junior eco-design expert assisted by one eco-design 

trainee, who were not proposing ideas during the creativity session. So the eco-innovation 

process involved in total 9 persons.  

Soft environmental information was given to the working group during the introduction 

session, in the form of a short description of the main environmental issues, certain eco-

design principles and examples, and the main conclusions of the first LCA study on 

substations. Three weeks were then given to the working group in order to �digest� the 

information. 

The creativity session was divided into three parts. First, some reminders of the introduction 
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session, the creativity rules and the eco-design strategy wheel were presented during a short 

introduction 

 

Figure 43. Time line of the eco-innovation process at Alstom Grid PEM  

Then during the divergent phase each axis of the eco-design strategy wheel was considered 
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during the creativity session (�Optimization of production techniques� and �Optimization of 

distribution system�) as the members do not have competencies in these fields and the 
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described in greater detail in Section 5.4.4. Some of the 16 preselected projects are first 

introduced to illustrate the results. 

5.4.3. Detail of some projects 

In the 16 projects issued from the creativity sessions, different project types were obtained in 

terms of project nature, perimeter and time horizon for example. In order to illustrate this 

diversity, some projects are briefly detailed below. Confidentiality reasons limit the ability to 

provide more information. 

5.4.3.1. Optimization of transformers 

The transformers used in electrolysis substations are massive electrical devices, of over 200 

tons, composed mainly of metals such as copper, steel and aluminium as well as transformer 

oil. They are designed and produced by another Alstom Grid unit. It has been noticed that no 

particular eco-design actions were performed on these particular transformers. However from 

the LCA results they are the elements who are mainly responsible for the environmental 

impacts of the substation life cycle, due to their mass, the materials used or the electrical 

losses in use. 

That is why this project aims at structuring eco-design in the transformer unit by introducing a 

dedicated organization with adapted methodologies. The collaboration between PEM and the 

transformer unit is also a key-success factor of this project. Some technological innovation 

ways have also been identified but they could be considered after the deployment of the 

organizational and methodological aspects. 

This project has received the following scores: 

· Environmental benefits: 11.75/20, meaning that interesting results may be obtained at 

the substation level, even if the transformers only are considered in this project. 

· Feasibility: 12.50/20, which shows a high feasibility rate even if organisational and 

methodological changes are needed. 

· Customer values: 11.63/20, which is a relatively satisfactory score, as the 

transformers are a key element of a substation, and they are thus particularly visible 

for the clients. 

5.4.3.2. End-of-life leaflets 

End-of-life issues are an important element of the potential environmental impacts of a 

substation. But little information is available at Alstom Grid, mainly because it depends on the 

clients, and with a deadline far in the future and it may vary significantly from one country to 

another. On the other hand the amount and the nature of the substation materials justify 
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taking these issues into account. 

As no information is easily available, the most adapted course of action would appear to be 

prevention.  The delivery of end-of-life leaflets to the customer seems to be an economic and 

credible way to inform him/her about the materials used in the system, the way to dismantle it 

or the existing and expected end-of-life options (recycling, reuse, remanufacturing�) of the 

components. Associated with a marking of the components according to their materials, it has 

been identified as a sound and economical way to improve the end-of-life stage before 

performing more in-depth actions in collaboration with the clients.  

This project has received the following scores: 

· Environmental benefits: 10.07/20. As this is a preventive action and because of the 

high uncertainties concerning the end-of-life of substations, the environmental 

benefits are necessarily limited, but the cost/benefit ratio is particularly interesting. 

· Feasibility: 14.75/20, which shows that this project is highly feasible with limited time 

and resources. 

· Customer values: 11.21/20, which is a relatively satisfactory score for such a �small� 

action. 

5.4.3.3. Heat losses recovery 

An AC/DC conversion substation may be seen as an energy transfer function between the 

electrical network and the energy generation unit from one side, and the aluminium smelter 

on the other side. But its efficiency is not 100% as heat losses are continuously generated on 

each subsystem during the conversion process. 

This project aims at identifying the amount of these losses that could be recovered and used 

to heat buildings or water, or to generate electricity. It particularly focuses on technological 

aspects and one first result consists in assessing the technical and economic feasibility of 

such a project. 

This project has received the following scores: 

· Environmental benefits: 9.31/20; the environmental benefits are uncertain or really 

limited. 

· Feasibility: 9.20/20. This project seems hard to deploy with limited time and resources 

and the technical feasibility has not been clearly proven. 

· Customer values: 9.34/20. The potential benefits for the customers are really limited 

compared to the losses that could be recovered from the electrolysis pots of the 
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aluminium smelter. 

The three projects briefly described in the previous paragraphs illustrate the diversity of the 

selected projects and their relative innovation potential. But the available resources in the 

company may not be in line with these 16 projects, and some of them may not appear as 

really feasible after a short deepening. That is why we propose in the next paragraph an 

example of a restricted and adapted portfolio of eco-innovative R&D projects. 

5.4.4. Choice of an optimized eco-innovative R&D projects 

portfolio 

At this stage 16 projects were selected, as shown on Figure 44. Then they were assessed by 

the working group members in order to restrict the portfolio to the most promising ones, some 

of them appearing indeed limited within some dimensions after the deepening. The 

assessment grid was filled out and the competence weights associated with each member 

and each project were calculated to obtain the final thematic average scores for each project. 

The diagrams presented in Section 5.3.4 were drawn to support the decision making. 

 

Figure 44. Evolution of the ideas number according to the process stages 

 

Figure 45. Positioning of the 16 projects and their uncertainty grade according to their 

global environmental score. The threshold value was fixed at 10 according to the 

strategy of the company and the global distribution of the projects. 

By running with consensual threshold values the second filter described in Section 5.3, a 

short process permitted to select twelve projects that were considered as the best 

compromises between environmental performance, feasibility and customer values. Figure 45 
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and Figure 46 show some graphical results from the same results, that are useful to assist the 

decision makers is the company. 

Once this portfolio including twelve projects was identified, the last step consisted in 

controlling the balance of the portfolio. The projects were judged as well balanced with 

regards to their time horizon (short/middle/long term), as well as their nature 

(organizational/methodological/technological). However regarding their perimeter, it was 

noticed that no project concerned component aspects. But in the initial set of preselected 

projects, only one concerned a component and it was clearly not feasible. That is why the 

proposed portfolio was deemed satisfactory by the decision makers and it was proposed to 

the company management for further planning and implementation.  

Next section gives some elements to validate the eco-innovation process according to the 

four criteria defined by (Shah et al., 2003). 

 

Figure 46. Outranking diagram of the 16 projects according to their feasibility grade. 

Project 2 dominates all the other ones, while it is not possible to determine if Project 16 

is better than Project 6 or Project 14. 

5.4.5. Methodology validation 

5.4.5.1. Quantity 

109 ideas were generated during the creativity sessions. Each axis of the eco-design strategy 

wheel provided between 10 and 23% of these ideas. Each active member of the working 

group proposed between 8 and 35 ideas. Relative to the time spent in the divergent session 

(1 hour and 45 minutes), this result is considered as really satisfactory. 

After the convergent session, 16 eco-innovative projects were identified, and a final portfolio 

comprised of 12 projects was proposed to the top management of the company. These 

numbers were consistent with the company requirements and it was also judged as 

satisfactory. 

5.4.5.2. Variety 

The variety of the final portfolio is ensured through the portfolio balance control step (third 

filter, see Figure 41).  
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Table 9 shows that the twelve selected projects are well balanced in terms of time horizon 

and project nature. Concerning the project perimeters, only projects dealing with systems, 

subsystems or super-systems are represented. No project concerns component aspects, 

which may be associated with the fact that the eco-innovation process considers the whole 

system at a high level, and it is therefore hard to manage component aspects at this step. But 

the realization of these projects may allow the emergence of components environmental 

issues that may be considered in the future. 

These results are considered as really satisfactory, as the portfolio including the 12 projects is 

relatively well balanced on all three criteria. All categories are represented. A consensus is 

almost always found for the �time horizon� criteria, which was the only one evaluated by the 

working group. 

Table 9. Synthesis of the time horizon, project perimeter and project nature aspects of 

the 12 final selected projects. For the project nature, M means methodological, T 

technological and O organizational. 

Project No. Time horizon Project perimeter Project nature 

3 Long term Subsystem M, T, O 

4 Middle term System T 

5 Short/middle term Subsystem T 

6 Long term Subsystem T 

7 Middle term System M, O 

8 Short term Subsystem M 

9 Short/middle term System M, T 

12 Middle term System M, T 

13 Short term System M 

14 Long term System M, T 

15 Middle/long term Subsystem T 

16 Middle/long term Super-system M, T 

5.4.5.3. Novelty 

For 7 of the 16 projects, a majority of the working group members considered that they did not 

have the projects in mind before initiating the eco-innovation process, whereas 7 other 

projects were predominantly considered as already present in their mind, but in an 

unstructured way, i.e. neither shared with other people nor written somewhere. For the three 

last projects it was not possible to determine the answer. 

Concerning the answer to the second question, 11 projects would not have emerged without 

the eco-innovation process, even if they were present is some people�s mind. Only 2 projects 

would have emerged without the process, and for 3 projects it was not possible to determine 

the answer. 
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These results clearly show that new ideas may emerge from the proposed eco-innovation 

process. They also show that this process seems to be an excellent way to formalize pre-

existing ideas that would not have emerged otherwise. The approach is thus satisfactory on 

the novelty potential too. 

5.4.5.4. Quality 

The quality of the process is assessed using the designer�s evaluation of the 16 projects 

according to three criteria (environmental benefits, feasibility, client�s value). 

The results for the environmental benefits shows that the average score is 10.8 (out of 20), 

but with a low standard deviation (0.98). It means that the 16 projects propose environmental 

improvements on some axes of the eco-design strategy wheel, but no generalized 

environmental improvements. This clearly characterises incremental eco-innovations. But it 

also shows that the environmental qualitative scales are not sensitive enough to accurately 

assess the differences between the projects. 

For the feasibility criteria, the average score is 12.1 and the standard deviation is 

considerably higher (2.76). The projects show a good range on the scale (from 4.1 to 15.9) 

showing that the proposed qualitative indicators are sufficient to distinguish the projects. 

Finally, the results for the client�s value criterion show that the average score reaches 11.0 

with a standard deviation at 1.42. As for environmental benefits, it is more difficult to 

distinguish between the 16 projects. But if we consider that only incremental eco-innovations 

have been identified, it could be explained by the fact that the projects would only bring little 

benefits for the client�s value. 

5.5. Discussion 

The definition and the use of the third formalized filters thus appear as a pertinent answer to 

ensure good performances of the process according to the four criteria proposed by Shah 

(quantity, variety, novelty and quality). But beyond the previous validation of the proposed 

eco-innovation process, it is useful to go further by testing the robustness of the model. 

Concerning the first filter, the discussion may concern the number of projects to preselect for 

the second filter. In the case study presented in this paper, if 32 projects would have been 

selected instead of 16, the amount of work to deepen these projects would have been too 

substantial for the capacity of the working group. This number of projects clearly needs to be 

defined by the company from the available resources and to be aligned with its strategy. This 

is the best way to adjust the process to the organisation. On the contrary if only 8 projects 

would have been selected whereas about 15 projects were wanted by the company, the 

problem would have again been different. Indeed it means that no consensus has been 

identified in the working, and it shows the poor quality of the initial ideas. One possible 
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answer here consists in adopting a more adapted and specific, but maybe more complex 

ideation tool than the eco-design strategy wheel, meeting one previous comment made in 

Section 5.2.4. 

We have also performed a second assessment of the environmental performance of the 

projects (corresponding to the second filter) with a group of four eco-design experts that were 

not part of the working group. They are Alstom Grid experts from units other than PEM, 

working on other large electrical systems and products. One of these experts is the 

sustainable development director of Alstom Grid, and another one the eco-design director of 

Alstom Grid. The two other experts are eco-design engineers. These four experts only 

assessed the environmental aspects of the 16 preselected projects as they do have a lot of 

available time and the assessment of the feasibility and customer aspects would have 

required a lot of additional information. 

Contrary to the first experiment with the working group, where the results obtained on the 

environmental dimension do not permit to clearly distinguish the project, the distribution of the 

16 preselected projects is with the external experts much more readable. The average score 

is 11.1, with a standard deviation reaching 1.95. The order of the projects is different from the 

working group results, but global tendencies are shared. We consider that the external 

experts have good eco-design skills but no specific knowledge of the technical aspects of 

substations. This is another point of view, which adds a richer dimension to the initial results. 

By running the third filters with the environmental assessments of the external experts instead 

of the assessments of the working group, we obtain, with the same rules, a portfolio of 9 

projects. These 9 projects are included in the first portfolio of 12 projects defined in Section 

5.4.4 from the working group results. For the 3 other projects, great differences were noticed 

between the two groups, but these projects were clearly not included in the first ones. As a 

conclusion to this test, the multi-criteria model shows a satisfactory robustness concerning the 

evaluation of the environmental performance of the project, which is the key objective of the 

eco-innovation process. But as the assessment of the environmental benefits of the project 

with the working group could be improved (see Section 5.4.5.4), we have proposed to the 

company to combine the evaluations of the working group with the evaluations of the external 

experts, leading to a final portfolio of 9 projects. The eco-innovation process has thus been 

improved with the contribution of an expert point of view. The environmental pertinence of the 

selected projects is justified by both internal and external decision makers, with a significant 

robustness of the approach.          

5.6. Conclusions & perspectives 

Starting from the statement that eco-innovation methods are not adapted to complex 

industrial and technological systems, we have proposed an adapted eco-innovation process 

based on a simple tool. This process includes two main stages: 
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· An eco-ideation phase involving a multidisciplinary working group and a creativity 

session based on the eco-design strategy wheel proposed in [Brezet 1997]. 

· A multi-criteria assessment phase performed by the working group, considering 

environmental, but also technical and economic feasibility, client�s value, project 

perimeter and time horizon. 

This process has been applied at Alstom Grid on large electrical substations. The results are 

very satisfactory as we have shown that this method permits to obtain a high number of ideas 

with limited time and resources. From these ideas a balanced eco-innovative R&D projects 

portfolio is identified, mainly composed of ideas that would not have emerged without the 

method, but also of some new ideas. The assessment grid seems satisfactory for the 

feasibility and client aspects. However the sensitivity of the environmental indicators does not 

seem sufficient to assess the projects, as the constraints associated with complex industrial 

systems favour incremental eco-innovations. 

That is why further works have been done to include the contribution of external eco-design 

experts in order to obtain more accurate results on the environmental aspects. A final portfolio 

of 9 projects has been proposed to the company management, and the first projects will 

probably be implemented in the coming months. 

Two perspectives may be considered for future works: 

· The focus of this paper was more on the overall eco-innovation process and the way 

to assess and select the best ideas, than on the ideation phase itself. The eco-design 

strategy wheel offers acceptable performance but it is not particularly adapted for 

radical innovations. That is why it could be useful to apply the proposed eco-

innovation process with other eco-ideation tools, like Eco-ASIT (Tyl, 2011). 

· It could also be interesting to go further in the robustness analysis by applying the 

approach in different companies and on different complex industrial system, for 

example in the aeronautic, automotive or energy generation industry. 
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Chapter 6. General discussion 

Each of the three research axes presented in this dissertation is discussed in the dedicated 

paper. However no discussion is proposed to ensure the coherence of the whole 

methodology. This is the aim of this last chapter. 

6.1. Robustness of the whole methodology 

One essential question when deploying a new methodology is the evaluation of its robustness 

face to changes in the applicative context. The question of the methodology application to 

other companies and systems is treated in the next section. In this section we only consider 

changes that may occur within one specific application. 

The main element that may change during the deployment of the methodology is the people. 

Changes may indeed occur in the company management or within the experts collaborating 

to the eco-innovation process. In the first case it may mean that the new management is not 

fully aware of environmental concerns and that it will not support the approach. The project 

charter, written and approved by all the involved persons (including the current management) 

during the Define phase of the DMAIC process, guarantees the initial commitments of the 

participants during all the projects. This formalized document is a strong element to ensure 

the project cohesion and we believe that it is a good way to overcome management changes 

in the company. 

Concerning the changes that may occur within the experts collaborating to the eco-innovation 

process, potential problems concern the possible variability of the results in the two phases: 

· In the eco-ideation phase, the emergence of ideas may differ according to the group 

line-up. That is why it needs to be very carefully chosen. The represented specialities 

and the number of members are key aspects of this choice. We consider that with 6 

to 10 working group members with well-balanced competences, this variability is 

limited. 

· In the projects assessment phase, the evaluations performed by the working group 

members may be extremely different if members are changed. This point has already 

been discussed in the dedicated paper, and we consider that with a sufficient number 

of assessors (13 persons in the case study), the average results are stable enough to 

generate a reliable portfolio of eco-innovative R&D projects. 

6.2. Results generalization 

One weakness of the Action Research protocol raised by O�Hare (O�Hare, 2010) concerns the 

generalizability of the methodology to other contexts than the application context proposed to 

validate the study. 
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The applications performed all along the three reproduced papers have been made only in 

one company � Alstom Grid PEM � and on one complex industrial system � AC/DC 

conversion substations �. One may argue that these applications are too limited to prove the 

generalizability of the work. But some elements may allow contradicting this assertion: 

· The existing organization at Alstom Grid PEM has no particular specificities. Other 

Alstom Grid units, as well as numerous companies providing complex industrial 

systems in different sectors (automotive, aeronautics, energy�) are built on the same 

model with a R&D department providing technologies to the engineering department. 

So we are convinced that our methodologies and tools are still valid in these 

companies. 

· The AC/DC conversion substations are of course a specific system. However the 

analysis of this system shows that it is �only� an assembly of subsystems and 

components and that its life cycle follows the classical phases of numerous large 

industrial systems. For these reasons we believe that our work is also still valid with 

other complex industrial systems. 

Of course the application of the work to other companies and systems would make the results 

very different. For example, the relevant elements that need to be listed to build the scenario-

based LCA are issued from Alstom Grid substations, and even if we consider them as easily 

applicable on numerous systems, they may not be valid on some particular systems. The 

uniqueness of such systems requires having a highly customizable methodology. In that way 

the implementation of the methodology is specific to the studied system (the scenarios may 

hardly be reused on other systems), while the theoretical methodology is generalizable to 

other systems. Out of this consideration we consider our methodologies and tools as highly 

generalizable. However it would be of course useful to test the proposed methodologies and 

tools on other systems and in other companies, in terms of performance and efficiency. 

6.3. Adaptation to other contexts 

More generally, the two previous points show that the proposed methods and tools have been 

designed with the ability to be easily adapted and generalized to another context in mind. 

More accurate indications concerning these adaptations may be useful for future uses. 

The general methodology, based on a DMAIC process, is in our mind easily deployable in any 

industrial context, as a classical DMAIC process. This is one particular reason that has 

motivated this methodological choice. 

Concerning the two other research axes, that focuses on particular aspects of the eco-design 

process, it is clearly different. We have proposed methodologies and tools that are adapted to 

complex industrial systems, but the requirements and the resources of the company may 
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differ from the ones observed at Alstom Grid. Even if the saving of time and resources has 

been a constant concern when developing these methodologies, we are aware that in some 

cases it can be very different. 

LCA is for example an expert tool and its use is very costly in terms of time and resources to 

collect high quality data. In the first chapter of this dissertation, we have quickly mentioned 

that numerous environmental evaluation tools exist, and that LCA is only one of them. In 

some industrial contexts, LCA may not be adapted to the organization, and the proposed 

DMAIC process is clearly able to integrate other evaluation tools than LCA, like for example 

qualitative environmental assessment tools. The transition with the environmental 

improvement phase (associated in this dissertation with the eco-innovation process) stays the 

same, as the identification of the environmental impacts of the system life cycle may not 

require to be issued from a LCA study. 

In the same perspective, we consider that the DMAIC process may be performed without 

necessarily performing the proposed eco-innovation approach for the Improve and Control 

stages. Actually other improvement methodologies may be more adapted for several reasons. 

For example all the R&D organizations are not based on portfolio management. 

Finally, the adaptation of the general methodologies to another context is for us easily 

possible with only minor changes in the DMAIC stages contents, the objective of each stage 

staying the same. 
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Conclusions and perspectives 

Summary 

Face to the growing environmental issues and in the current context of global crisis, it 

appears more and more essential to fundamentally revise the actual mass-consumer model. 

To quickly converge toward the Third Industrial Revolution proposed by Rifkin (Rifkin, 2010), 

technology management is a key lever. In this perspective companies need to integrate 

environmental concerns in their design processes in order to put on the markets more 

sustainable products. 

Eco-design answers to this challenge through multiple methods and tools. However mainly 

mass-consumer products have been considered so far, and the question of the adaptation of 

eco-design methods and tools to the heavy industry sector now appears. That is why we 

propose in this PhD dissertation to develop adapted methods and tools to implement eco-

design for complex industrial systems. 

Positioning our research in the Action Research paradigm, three research questions are 

identified from the Alstom Grid industrial context and the study of the eco-design field. These 

questions are then associated after literature reviews to three research axes. 

The first axis concerns the development of a global methodology to implement eco-design for 

complex industrial systems. Based on a DMAIC process issued from the Lean 6 Sigma field, 

this methodology permits structuring and managing the eco-design process from pre-defined 

deliverables and milestones. The methodology covers both the two basic stages of an eco-

design approach, namely the environmental evaluation stage and the environmental 

improvement stage. The two other axes are focused on them. 

The second research axis concerns the environmental evaluation of complex industrial 

systems. Assuming that a classical LCA approach reaches some important limitations face to 

those systems, we propose a LCA approach based on the modelling of exploitation scenarios. 

This model allows identifying relevant parts of the system that are rarely considered in LCA 

(like maintenance, upgrades or life time modulation). Then possible exploitation scenarios of 

the system are drawn to answer with limited resources to the lack of visibility on the system 

life cycle (lack of data, uncertain data�). The environmental impacts associated to these 

scenarios are finally analysed and they permit both to optimize design choices and to 

stimulate collaborations with clients. 

The third research axis aims at identifying a portfolio of eco-innovative R&D projects for 

complex industrial systems. From the previous LCA results and the expertise of the company 

designers, a multidisciplinary working group generates eco-innovative ideas during a 

creativity session supported by the eco-design strategy wheel (Brezet and Van Hemel, 1997). 
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The ideas are then sorted out and assessed thanks to three structured filters and an 

evaluation grid that takes into account the environmental performance of the projects as well 

as other aspects such feasibility and customers� values. The analysis of the results allows 

quickly identifying a set of powerful R&D projects. 

The three research axes have been applied at Alstom Grid on AC/DC conversion substations 

used in the primary aluminium industry. The results show a satisfactory implementation of 

eco-design in the company. The approach has got a good welcome. The LCA results have 

given a better knowledge of the substations and they have supplied accurate inputs to the 

eco-innovation process. A final portfolio of 9 projects has been proposed to the top 

management to be realized in the next months. 

Contributions and limits 

From this research, the main contributions of our work are: 

· A generic and general methodology to implement eco-design in complex systems 

industries with limited time and resources. Pre-defined deliverables have been 

supplied to structure and support the process. 

· A scenario-based LCA model that permits having a better knowledge of the 

environmental impacts generated during a system life cycle. This model is built on a 

qualitative approach to obtain a good compromise between results quality and 

available time and resources and it may be easily deployed on different systems. 

· A generic eco-innovation process based on a recognized tool, the eco-design 

strategy wheel, and involving a multidisciplinary working group. An original eco-

selection protocol based on three structured filters and a multi-criteria assessment 

grid to identify an optimized projects portfolio is the main contribution of this process. 

· The application and the validation of the theoretical contributions to a real and 

industrial case study in a large and international company. We have also highlighted 

the good robustness and generalization potential of our contributions. 

Of course, some limits need to be mentioned: 

· As this work has been performed in a 3-years PhD thesis (legal duration in France), 

we have not been able to implement the whole methodology proposed in the first 

research axis. Indeed the eco-innovative R&D projects, that have been identified and 

proposed to the company, have not been realized (each of these projects may last 

several years) and a complete iteration of the process has not been performed. For 

these reasons only the first part of the general methodology is validated. 
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· The applications have been realized only on one system and in one company. Even if 

we have highlighted the generalization potential of our work, it has not been proven 

that this work is easily applicable in another context. 

· The scenario-based LCA model is designed to be easily applied on another system. 

However the time necessary to adapt the model may be long and limit the 

implementation of the model. 

· The eco-innovation model uses the eco-design strategy wheel, whose radical 

innovation potential is often described as limited. Consequently only incremental eco-

innovations have been selected in the final portfolio, and the link between the eco-

innovation process and the tools used for the eco-innovation phase would need to be 

deepened. 

Perspectives 

This research work is a satisfactory stage to develop eco-design for complex industrial 

systems. However, this is only a first contribution to this particular context and a lot of work 

probably needs to deploy this approach in numerous companies. So several major 

perspectives may be sketched in order to improve its performances and its usability. 

The main perspective would consist in deploying the whole methodology to other companies 

and other complex industrial systems. The first application concern the energy sector, the 

next ones could concern the aeronautic or the automotive sector for example. 

The second main perspective to our mind would be to test the performances of the 

methodology on a long-term application. This application would include the stages that have 

already been validated at Alstom Grid, but also the realization of the eco-innovative projects 

and the reiteration of the whole process on several cycles. This long-term application could 

also be an ideal field to develop an extension of this approach, focused on the identification of 

the optimal environmental configuration of a complex industrial system in a given context 

(electrical mix, geographical situation, exploitation management�), taking into account the 

improvements brought by the eco-innovative projects. 

Last, but not least, we are convinced that adoption of new processes and tools by companies 

clearly depends on their usability. And that is why we consider that the deployment of our 

methodology would be easier in a more automated version. The scenario-based LCA model 

could be integrated in a software module with a direct communication with LCA software. The 

eco-innovation process could also been improved by automating the evaluation process and 

the data processing in a dedicated computer tool. 
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Appendices 

1. Overview of the multi-criteria assessment grid for eco-

innovative R&D projects 

Figure 47 and Figure 48 show an overview of the multi-criteria assessment grid (in French) for 

eco-innovative R&D projects. This grid is used in the second research axis to assess the pre-

selected project, in order to constitute the final R&D projects portfolio. A short notice 

introduces the grid to the user. Then the following points are evaluated for each project: 

· Expertise level of the user on the considered project, 

· Potential environmental benefits, thanks to the positioning of the project on the eco-

design strategy wheel axes, 

· Feasibility, through four qualitative indicators, 

· Customers� values, through four qualitative indicators, 

· Temporal horizon, 

· Evaluation of the eco-innovation process (to validate the theoretical approach), 

· Eventual comments. 
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Figure 47. Overview of the multi-criteria assessment grid (Part 1/2) 

L'évaluation s'effectue selon différentes catégories d'indicateurs :

Pour les catégories "Horizon temporel" et "Apport de la démarche d'éco-innovation", une liste déroulante de choix vous est proposée.

Note

1 Je ne suis pas du tout expert du le sujet traité. J'estime mon évaluation peu pertinente.

2 Je ne suis pas vraiment expert sur le sujet traité mais j'estime que mon évaluation est assez pertinente.

3 Je suis partiellement expert sur le sujet traité. J'estime que mon évaluation est pertinente.

4 Je suis expert sur le sujet traité. J'estime que mon évaluation est très pertinente. /4

La solution actuelle est positionnée à 2 sur chaque axe de la roue de Brezet ci-dessous. Le détail des axes vous a été fourni avec le document de présentation des projets d'amélioration.

La solution apportée par le projet d'amélioration considéré doit être positionnée sur chaque axe par rapport à la solution existante, en suivant l'échelle ci-dessous :

0 Le projet dégrade fortement le score environnemental de la solution actuelle sur l'axe considéré

1 Le projet dégrade significativement le score environnemental de la solution actuelle sur l'axe considéré

2 Le projet n'apporte aucun gain sur l'axe considéré par rapport à la solution actuelle

3 Les gains apportés par le projet sur l'axe considéré sont minimes

4 Les gains apportés par le projet sur l'axe considéré sont significatifs

5 Les gains apportés par le projet sur l'axe considéré sont très importants

Solution actuelle Solution proposée

@ Développement de nouveaux concepts 2

1 Sélection de matériaux à faibles impacts 2

2 Réduction de l'utilisation de matériaux 2

3 Optimisation des techniques de production 2

4 Optimisation du système de distribution 2

5 Réduction des impacts en phase d'utilisation 2

6 Optimisation de la durée de vie initiale 2

7 Optimisation du système de fin de vie 2

Total    16 0 /40

Au vu des gains environnementaux potentiels sur la roue de Brezet, la moyenne est calculée et ramenée sur 20. L'échelle ci-dessous est appliquée. Note totale

De 0 à 5 Le projet dégrade la performance environnementale de la solution actuelle.

De 6 à 10
Le projet n'améliore pas sensiblement, voire dégrade légèrement la performance environnementale de la solution actuelle. Des 

tranferts d'impacts importants peuvent apparaître.

De 11 à 15
Le projet améliore le bilan environnemental de la solution actuelle, mais l'amélioration n'est pas forcément perceptibles sur 

l'ensemble des axes.

De 16 à 20
Le projet améliore sensiblement, voire significativement le bilan environnemental de la solution actuelle sur l'ensemble des 

axes. /20

 peu de 

é 

orter 

sidéré 

Projet d'amélioration n°xx

- La catégorie "Commentaires"  permet de rentrer des commentaires si jamais vous le souhaitez.

- La catégorie "Apport de la démarche d'éco-innovation"  permet d'identifier si le projet aurait pu émerger sans la démarche. Cet indicateur sert à valider l'approche d'un 

point de vue scientifique.

- La catégorie "Horizon temporel"  permet d'évaluer à quelle échéance les bénéfices du projet seront perceptibles. Il s'agit d'un indicateur qualitatif.

- La catégorie "Valeurs des clients"  permet d'évaluer les gains attendus pour les clients (aluminier). Il s'agit d'une note sur 20 obtenues en sommant quatre notes sur 

- La catégorie "Faisabilité"  permet d'évaluer la faisabilité technique et économique du projet. Il s'agit d'une note sur 20 obtenues en sommant quatre notes sur 5.

Quel est votre niveau d'expertise sur le sujet considéré dans ce projet d'amélioration ?

- La catégorie "Potentiel de gain environnemental"  permet de mesurer les gains environnementaux obtenus en réalisant le projet. Il s'agit d'une note sur 20.

- La catégorie "Niveau d'expertise"  permet d'estimer votre connaissance du sujet traité. Cet indicateur sera utilisé pour pondérer votre évaluation lors de l'analyse des 

données.

Seules les cellules de cette couleur nécessitent d'être remplies (sauf la case "Commentaires"  à la fin de l'onglet, qui est facultative) :

Niveau d'expertise

tuée et 

Axe

Potentiel de gain environnemental

0

Attention, cette échelle reste valable si les notes sont assez homogènes. Si ce n'est pas le cas, une analyse plus fine doit être effectuée et 

la note peut être changée à la main.

Roue de la stratégie d'éco-conception [Brezet 1997]

Solution proposée Solution actuelle

@. Développement de 
nouveaux concepts

2. Rédution de 
l'utilisation de matériaux

1. Sélection de matériaux 
à faible impact

4.Optimisation du 
système de distribution

3. Optimisation des 
techniques de production

5. Réduction des impacts 
en phase d'utilisation

6. Optimisation de la 
durée de vie initiale

7. Optimisation du 
système de fin de vie
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Figure 48. Overview of the multi-criteria assessment grid (Part 2/2) 

Note

0 La mise en �uvre demande trop de ressources et/ou de temps (non réalisable en l'état actuel)

1 La mise en �uvre demande énormément de ressources et/ou de temps (difficilement réalisable en l'état actuel)

2 La mise en �uvre est longue et demande beaucoup de ressources

3
La mise en �uvre est rapide mais demande beaucoup de ressources, ou la mise en �uvre est longue mais demande peu de 

ressources

4 La mise en �uvre est rapide et demande assez peu de ressources

5 La mise en �uvre est extrêmement rapide et demande peu de ressources /5

Note

0 Le projet demande énormément de ressources financières pour un gain minime sur les affaires

1 Le projet demande énormément de ressources financières pour un gain très incertain sur les affaires

2 Le projet demande peu de ressources financières pour un gain minime sur les affaires

3 Le projet demande peu de ressources financières pour un gain très incertain sur les affaires

4 Le projet demande beaucoup de ressources financières pour un gain très significatif sur les affaires

5 Le projet demande très peu de ressources financière pour un gain très significatif sur les affaires /5

Note

0 Les connaissances nécessaires ne sont pas disponibles (personne ne sait faire)

1 Les connaissances nécessaires ne sont peut-être pas disponibles

2 Les connaissances nécessaires sont disponibles en dehors d'Alstom Grid (personne ne sait faire chez Alstom Grid)

3 Les connaissances nécessaires sont disponibles chez Alstom Grid

4 Les connaissances nécessaires sont disponibles chez PEM mais non mobilisables immédiatement

5 Les connaissances nécessaires sont immédiatement disponibles et mobilisables chez PEM /5

Note

0 L'ensemble du projet doit être délégué à un sous-traitant ou un fournisseur

1 L'ensemble du projet doit être délégué à une autre unité d'Alstom Grid

2 Une majeure partie du projet doit être déléguée à un sous-traitant, un fournisseur ou une autre unité d'Alstom Grid

3
Le projet peut être réparti de manière à peu près égale entre PEM et un sous-traitant, un fournisseur ou une autre unité 

d'Alstom Grid

4 Une partie mineure du projet doit être déléguée à un sous-traitant, un fournisseur ou une autre unité d'Alstom Grid

5 L'ensemble du projet est maîtrisable en interne /5

La note totale est calculée en sommant les notes des 4 indicateurs. La note totale de faisabilité est donc sur 20. L'échelle ci-dessous est appliquée. Note totale

De 0 à 5 Le projet est considéré comme très peu faisable en l'état actuel. Les risques sont très élevés.

De 6 à 10 Le projet est considéré comme difficilement faisable en l'état actuel. Les risques sont élevés.

De 11 à 15 Le projet est faisable. Les risques sont acceptables.

De 16 à 20 Le projet est extrêmement faisable. Les risques sont très faibles. /20

Note

0 Le projet dégrade fortement l'image de marque des clients

1 Le projet dégrade sensiblement l'image de marque des clients

2 Le projet n'apporte aucune amélioration de l'image de marque des clients

3 Le projet apporte une amélioration minime de l'image de marque des clients

4 Le projet apporte une amélioration sensible de l'image de marque des clients

5 Le projet apporte une amélioration significative de l'image de marque des clients /5

Note

0 Le projet augmente fortement les coûts des clients.

1 Le projet augmente sensiblement les coûts des clients.

2 Le projet de modifie pas les coûts des clients.

3 Le projet diminue légèrement les coûts des clients.

4 Le projet diminue sensiblement les coûts des clients.

5 Le projet diminue significativement les coûts des clients. /5

Note

0 Le projet augmente fortement les risques pour les clients.

1 Le projet augmente sensiblement les risques pour les clients.

2 Le projet de modifie pas les risques pour les clients.

3 Le projet diminue légèrement les risques pour les clients.

4 Le projet diminue sensiblement les risques pour les clients.

5 Le projet diminue significativement les risques pour les clients. /5

Note

0 Le projet dégrade fortement la qualité de service pour les clients.

1 Le projet dégrade sensiblement la qualité de service pour les clients.

2 Le projet de modifie pas la qualité de service pour les clients.

3 Le projet améliore légèrement la qualité de service pour les clients.

4 Le projet améliore sensiblement la qualité de service pour les clients.

5 Le projet améliore significativement la qualité de service pour les clients. /5

La note totale est calculée en sommant les notes des 4 indicateurs. La note totale de valeurs des clients est donc sur 20. L'échelle ci-dessous est appliquée. Note totale

De 0 à 5 Le projet dégrade les valeurs des clients.

De 6 à 10
Le projet n'améliore pas sensiblement, voire dégrade légèrement les valeurs des clients. Certains critères peuvent apporter 

des aspect négatifs notables.

De 11 à 15 Le projet améliore les valeurs des clients, mais l'amélioration n'est pas forcément perceptibles sur l'ensemble des critères.

De 16 à 20 Le projet améliore sensiblement, voire significativement les valeurs des clients sur l'ensemble des critères. /20

Note

Court terme Les résultats du projet seront perceptibles très rapidement (mois de 6 mois après le lancement des études)

Moyen terme Les résultats du projet seront perceptibles à moyen terme (entre 6 mois et 2 ans après le lancement des études)

Long terme Les résultats du projet seront perceptibles à long terme (plus de 2 ans après le lancement des études)

Prospectif Les résultats du projet seront peut-être perceptibles à très long terme (plus de 5 ans après le lancement des études)

Réponse

RéponsePensez-vous que ce projet d�amélioration aurait pu émerger, être formalisé et sérieusement considéré 

par la hiérarchie sans les travaux du groupe de travail et le processus d'éco-innovation ? 

Attention, cette échelle reste valable si les notes sont assez homogènes. Si ce n'est pas le cas, une analyse plus fine doit être effectuée et 

la note peut être changée à la main.

Commentaires

Avez des commentaires sur l'évaluation de ce projet d'amélioration ?

Apport de la démarche d'éco-innovation

Pensez-vous que ce projet d'amélioration était déjà présent avant le lancement de la démarche d'éco-innovation 

dans l'esprit d'une ou plusieurs personnes chez PEM/PTR, de façon non formalisée et/ou sous-jacente ?

Horizon temporel

0

Horizon temporel

Diminution des risques pour les clients

Amélioration de la qualité de service pour les clients

Réduction des coûts pour les clients

Degré de maîtrise en interne

0

Attention, cette échelle reste valable si les notes sont assez homogènes. Si ce n'est pas le cas, une analyse plus fine doit être effectuée et 

la note peut être changée à la main.

Faisabilité technique en termes de connaissances

Faisabilité

Facilité de mise en �uvre

Valeurs des clients

Amélioration de l'image de marque des clients

Retour sur investissement financier


