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Abstract

In this thesis, we investigate the optimization of Raptor codes for various channels of

interest in practical wireless systems. First, we present an analytical asymptotic analy-

sis of jointly decoded Raptor codes over a BIAWGN channel. Based on the analysis, we

derive an optimization method for the design of efficient output degree distributions.

We show that even though Raptor codes are not universal on other channels than the

BEC, Raptor code optimized for a given channel capacity also perform well on a wide

range of channel capacities when joint decoding is considered. Then, we propose a

rate splitting strategy that is efficient for the design of finite length Raptor codes. We

next investigate the extension of the analysis to the uncorrelated Rayleigh-fading chan-

nel with perfect channel state information (CSI) at the receiver, and optimize Raptor

codes for quasi-static fading channels when CSI is available at the receiver but not at

the transmitter. Finally, we show that in presence of imperfect CSI at the receiver,

it is possible to improve the performance with no additional complexity, by using an

appropriate metric for the computation of the LLR at the output of the channel.

In the second part of this thesis, we investigate the construction of efficient finite length

LDPC codes. In particular, we present some improvements for the Progressive Edge-

Growth algorithm that allow to construct minimal graphs. The proposed algorithm

is used to construct protographs with large girth that perform well under iterative

decoding. Moreover, we propose an efficient structured search procedure for the design

of quasi-cyclic LDPC codes.
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Introduction

Context and historical background

In his landmark paper [Sha48], Shannon introduced information as a mathematical

framework for both the storage and the transmission of digital signals. He also in-

troduced the concept of redundant channel coding as a method to achieve reliable

communicaion on a noisy channel with known capacity. In particular, he proved that

for sufficiently long codes arbitrarily reliable communication is possible at any coding

rate below the capacity. But Shannon’s proof relies on random coding, which is im-

practical because of its complexity. Since then, the challenge of channel coding has

been to design practical codes that approach the channel capacity.

The algebraic approach to channel coding lead to the introduction of BCH and Reed

Solomon codes. These codes are linear Maximum Distance Separable (MDS) codes,

which means they achieve the largest minimum distance possible for any given codeword

length and coding rate. However, they are not decodable with maximum likelihood

(ML) algorithms and thus even though they have optimal error correction properties,

their decoding complexity remains prohibitive applications with large block lengths.

The discovery of turbo codes in 1993 has been a major breakthrough for the improve-

ment of coded transmission in real systems: the paper [BGT93] presents a practical

coding scheme that approaches the channel capacity within 1 dB at a bit error rate

(BER) of 10−6. More importantly the authors have showed the potential of iterative

decoding as a mean of approaching the channel capacity. Since then, there has been a

tremendous amount of research on codes that are iteratively decodable and generally

defined by graphs. These codes are decoded with iterative decoding algorithms that

have linear complexity with respect to the codeword length, and provide optimal max-

1



Introduction

imum a posteriori (MAP) decoding in the limit of infinite block length. Low-Density

Parity-Check (LDPC) codes were originally presented by Gallager in his PhD thesis

[Gal62] , but received little attention at that time. With the breakthrough of turbo

codes, they were rediscovered and regained more attention [Mac99].

We briefly highlight some key achievements in the field of iterative decoding of LDPC

codes. In [LMS97, LMS98], the authors analyzed the iterative decoder in the case of the

binary erasure channel (BEC). The so called concentration theorems [LMSS01b, RU01]

state that the performance of a code randomly chosen from a code ensemble converge

to the expected performance of the code ensemble as the codeword length increases,

which allows to study the performance of code ensembles rather than specific graph

instances, allowing more flexibility for the design of potentially good codes.

The first class of codes that provably achieve the capacity of the BEC using iterative

decoding are Tornado codes, presented in [LMSS01a]. Other distributions have been

proposed [OS01, OS02] since then. In [LMSS98, LMSS01b], the authors showed that

appropriately chosen irregular graphs can perform better than regular ones and pro-

posed an optimization technique for the irregularity profile. The optimization of the

irregularity profile has been since then extended for a variety of different channels, such

as the BIAWGN channel [RSU01, CFRU01], the uncorrelated Rayleigh fading channel,

[HSM01], the BIAWGN channel with erasures [HM03], OFDM channels [MDG04] or

multi-user channels [ADU02, RD07].

Motivation of the work

At this point, one is tempted to think that – since capacity achieving/approaching codes

have been proposed – the channel coding problem is solved. However, one important

constraint used in the aforementionned works is that point-to-point communication

is under consideration. Situations where a single source broadcasts data to multi-

ple receivers do not fall into the point-to-point paradigm. These situations arise in

video/audio streaming (e.g. Internet TV/radio), software update distribution (em e.g.

anti-virus update, operating system patch) or in peer to peer (P2P) applications. For

fixed rate schemes, where the coding rate must be chosen according to worst channel

conditions, the receivers with good channels suffer from information delay and rate

loss. Thus, there is an unavoidable trade-off between reliability (low coding rate) and

efficiency (high coding rate).

As a solution to this trade-off, we investigate the use of rateless coding schemes.

Whereas traditional block codes are characterized by their design rate and require

puncturing (resp. prunning) to achieve higher (resp. lower) rates, a rateless code gen-

erates as many coded symbols as necessary, and dynamically adapts the rate. Any

sufficiently large set of coded symbols allows to recover the data at the receiver. LT

codes, introduced in [Lub02], were the first efficient rateless codes, proved to be asymp-
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totically capacity achieving on the BEC but they suffer from an error floor phenomenon

when the decoding complexity is bounded Raptor codes, introduced in [Sho06] as an

extension of LT codes, are constructed from the concatenation of an LT code and a

high rate outer block code called precode.

Raptor codes have been extensively studied for the BEC [Sho06], and are used at the

application layer as an efficient protocol for multicast [V7.07]. However, it remains

unclear whether Raptor codes can be used on noisy channels, as a solution to the

multicast channel coding problem on the physical layer. In this thesis, we generalize

existing optimization methods to design Raptor codes for various channels of interest

in practical wireless systems.

The second objective of this thesis is related to small block length behaviors. Capacity

achieving (or approaching) codes only approach the capacity in the limit of infinite block

length. However, the design of efficient finite length LDPC or Raptor codes remains a

challenge. At small to moderate block lengths, random constructions perform rather

poorly, and the performance of a code is closely related to the girth of the graph,

which is defined as the size of the shortest cycle of the underlying Tanner graph. A

pseudorandom construction based on a progressive edge-growth (PEG) of the graph

was proposed in [HEA05], which results in graphs that have higher girths compared to

pre-existing random LDPC code construction techniques.

However, the PEG algorithm is based on a greedy approach, and suffers from many lim-

itations. We present some improvements in the PEG algorithm which greatly improve

the girth properties of the resulting graphs: given a graph size, they increase the girth

g achievable by the algorithm, and when the girth cannot be increased, our modified

algorithm minimizes the number of cycles of length g. Moreover, hardware implemen-

tation constraints require that the codes are highly structured such that (i) they have

a simple description and can be stored with minimum memory requirements, (ii) they

are efficiently encodable, (iii) the decoder can take advantage of the code structure for

parallel decoding. Quasi-cyclic (QC) LDPC codes have these three remarkable proper-

ties have attracted much attention because they are hardware friendly properties. We

present algorithms to construct QC-LDPC codes with good girth properties, and we

investigate both a structured search procedure and a PEG based approach.

Overview of contributions

Chapter 2 addresses the analysis and optimization of Raptor codes.

• We characterize jointly decoded Raptor codes on the BIAWGN channel, uncor-

related Rayleigh-fading channels, and quasi-static fading channels.

3
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• We derive an optimization method for the design of efficient Raptor codes and

present a thorough analysis of the main design parameters.

• We propose a rate splitting strategy that is efficient for the design of finite length

Raptor codes.

• We consider the design of LT codes as a special case of our joint decoding model,

and give new results on LT codes. In particular, we characterize the error floor

region of an LT code and propose an optimization method for the irregularity

profile of the precode.

• We investigate the performance of Raptor codes over higher order modulations,

and show that in presence of imperfect CSI at the receiver, it is possible to improve

the performance with no additional complexity, by using an appropriate metric

for the computation of the LLR at the output of the channel.

Chapter 3 deals with the construction of LDPC codes and includes the following original

contributions:

• An improved version of the PEG algorithm is propoed, called RandPEG, that

allows to construct minimal graphs of column-weight two, called cages. The Rand-

PEG is extended by enforcing a circulant constraint, and used to lift protographs.

• A structured construction of QC graphs with column-weight two and girth 8 is

presented. Remarkably, the structured search allows to near minimal graphs of

girth 8.. Extended results on a structured construction of QC cycle codes of girth

12 are reported in appendix C.
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Rateless coding for multicast communications

I
n this chapter, we introduce Raptor codes as a solution to the problem of channel

coding for wireless multicast transmissions. We introduce the parametrization of

Raptor codes and the associated decoding algorithms for the binary erasure channel

(BEC) and the binary input additive white Gaussian noise (BIAWGN) channel.

1.1 Channel coding for multicast transmissions

In a communication system, errors can occur at any layer of the system: physical, link,

network, transport or application layer. If an error can be detected and corrected by

reliability techniques at the layer at which the error occurred, then the error will not be

visible to the layers above. If not, then the error is usually presented to the layer above

as a packet loss, which the system may then attempt to correct at the layer above. The

allocation of the available resources for error correction between the different layers of

the system is therefore an important question for optimal operation of the system.

For link layers with an underlying network structure such as Ethernet, packet discards

may occur due to buffer overloads (i.e. congestion) or faults in link layer networking

equipment. Even in networks with low average utilization there can be wide variations

in the instantaneous traffic load, and it can be expected that “transient congestion”

events will be observed even in well-engineered networks. Moreover, device failures,

restarts and internal faults cause outages resulting in packet loss events at the network

level.

Such losses can only be addressed by end-to-end reliability mechanisms, and tradi-
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tional multicast protocols have the major drawback that they are based on best effort

approaches, i.e. message delivery is not guaranteed.

Automatic Repeat reQuest (ARQ) protocols detect lost packets and send a request to

the transmitter to repeat the packet. The most common example of this is Transport

Control Protocol (TCP). In general, the receipt of a repeat packet requires at least

one Round Trip Time (RTT) from the point at which the loss is detected and the

repeat request sent. If losses are at a level where the loss of a repeat request or the

repeated packet itself must be recovered, then somewhat more than two RTTs are

required. This is because the loss of the repeat request or repeated packet can only

be detected by expiration of a timer at the receiver. ARQ can also be applied to

multicast, again with the same disadvantage as described above. ARQ for multicast

also suffers from a number of scalability issues. At its simplest, clients simply request

repeat attempts to send a given packet from the multicast server. This places a load

on the server proportional to the number of clients multiplied by the number of losses.

Repeat attempts may be sent to the whole multicast group – generating load across

the whole network – or only by unicast to the clients that request them. However this

last option increases the load on the server because it must send packets in proportion

to the number of clients, not just process requests and send responses in proportion to

the number of losses. Finally, when the number of users increases the server can be

flooded with NACK packets, which is known as the “NACK implosion problem”.

Forward Error Correction (FEC) at the application/transport layers generally refers

to packet erasure correction techniques. In these techniques an amount of data is sent

which is in total greater than the stream to be communicated, with the property that the

stream can be reconstructed from any sufficiently large subset of the transmitted data.

The stream is thus resilient to a certain amount of loss (at most the difference between

the transmitted and the original data size). For fixed rate schemes, where the rate must

be chosen according to worst channel conditions, the receivers with good channels

suffer from information delay and rate loss. Thus, there is an unavoidable trade-off

between reliability (low coding rate) and efficiency (high coding rate). Alternative

strategies have been widely considered. Hybrid ARQ (HARQ) is an enhanced version

of ARQ where data is precoded with an error correcting code. This has two opposing

effects: (i) the code rate penalty decreases the throughput and (ii) the probability

that the transmission succeeds is increased. Incremental Redundancy HARQ (IR-

HARQ) adapts the error correcting rate to the channel conditions. The receiver asks

the transmitter for additional parity bits when decoding is not successful. IR-HARQ

scheme based on LDPC codes have been proposed (see e.g [SCV04, KHRM06]), but

one disadvantage is that such schemes cannot operate below a design rate which is the

rate of the mother code.

An alternative to IR-HARQ is the use of rateless coding. In a rateless setting, the

transmitter produces a potentially limitless number of independent symbols and the

receiver tries to decode the information block as it receives output symbols. When
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the receiver has collected enough output symbols to recover the message, then it can

disconnect, potentially saving transmission time and energy. Whereas, traditional block

codes are characterized by their design rate and require puncturing to achieve higher

rates [HM04, HKKM06], a rateless code achieves this very naturally by adapting the

number of output symbols. Indeed, all the output symbols are independent in a rateless

setting, and any sufficiently large set of output symbols allows to recover the data with

high probability. The rateless scheme can be practically implemented with Fountain

codes, which are a family of naturally rateless codes.

In [LF05], the authors show that a Fountain based protocol (FBP) performs better than

TCP on very congestionned networks for the delivery of large files. When hosts use TCP

but act in a selfish manner (i.e. they do not implement congestion control mechanisms

and transmit at the highest possible rate), the total throughput of the network drops.

Thus, the optimal strategy for each user (never reducing rates) is strongly suboptimal

for the network, which is a problem known as Tragedy of the Commons in economics.

With a simple model, the authors show that by using a FBP, a Nash equilibrium is

reached when all hosts use the FBP (and behave in a selfish manner), but that this

does not drive the network to collapse. The key idea is that with a FBP, all packets

arriving to destination are useful, and there are no duplicate packets.

1.2 Rateless coding for multicast wireless transmissions

A very challenging aspect in modern mobile wireless applications is the very strong

constraints on the energy consumption. To achieve low energy consumption, it is

necessary to make an efficient use of the transmission channels, i.e. transmit at the

highest possible rate given the channel conditions. One measure that is of particular

interest for a communication system is its throughput, defined as the average number

of data bits accepted at the receiver (or reliable transmitted) per time required for the

transmission of a single bit. Reliable transmission is obtained by using FEC techniques

that introduce redundancy in order to be robust to transmission errors, and therefore

reduce the throughput. Typically, a mobile receiver wants to minimize the transmission

time (i.e. the battery time), by receiving the information at the highest rate possible

for each channel realization.

Many physical layer systems, include some form of reliability mechanism within their

channel coding and modulation mechanisms. But in multicast scenarios each receiver

sees a different channel, leading to different maximal coding rates. Whether channel

coding schemes are best allocated to the physical layer mechanisms or divided between

physical layer and higher layer mechanisms is an important engineering decision and

there is often much to be gained from finding an appropriate balance between the two.

Raptor codes have proved to be a good transport/application layers FEC for commu-

nication on lossy channels or when no feedback channel is available. In this thesis, we
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will investigate the potential of Raptor codes as a solution to FEC on the physical link.

1.3 Raptor codes

1.3.1 A historical perspective

Fountain codes were originally introduced [BLMR98, BLM02] to transmit efficiently

over a binary erasure channel (BEC) with unknown erasure probability. LT codes are

the first class of efficient fountain codes, introduced by Luby [Lub02]. For a given

number K of input symbols, an LT code produces a potentially limitless number of

distinct output symbols according to an output degree distribution, and the receiver

recovers the input symbols from any set of (1 + ǫ)K output symbols, where ǫ is the

reception overhead, or overhead. High performance, i.e. small overhead, is achieved by

designing good output degree distributions, and LT codes are proved to be asymptoti-

cally capacity achieving on the BEC [Lub02], [Sho06]: they can recover with arbitrarily

high probability all the input symbols. However, in order to obtain arbitrary small

decoding failure probability, the average degree of the output symbols has to grow at

least logarithmically with K. Thus, performance is achieved at a decoding cost growing

in O(K log(K)). This complexity is too high to ensure linear encoding and decoding

time which is a desired property for practical codes.

Raptor codes are a class of fountain codes introduced by Shokrollahi in [Sho06] as an

extension of LT codes. A Raptor code is the concatenation of an LT code with an outer

code, called precode, which is a high rate error correcting block code: The LT code

must enable the receiver to recover a large enough proportion of input symbols, and

the precode is in charge of recovering the fraction of input symbols unrecovered by the

LT code. Thus, the error correction capability of the precode relaxes strong constraints

on the fountain design, and allows to design output degree distributions of constant

average degree i.e. with linear encoding and decoding time. In [May02], the author

independently presented the idea of precoding to obtain linear decoding time codes.

Recently in [ES06], the authors characterized Raptor codes on general binary memo-

ryless symmetric channels with information theoretic arguments. An important result

is that universal Raptor codes do not exist on general binary memoryless symmetric

(BMS) channels: if a Raptor code approaches the capacity of a BMS channel, then the

fraction of output nodes of degree 2 converges to a quantity that depends on the chan-

nel parameter. In the particular case of the BEC, this quantity is in fact a constant,

and therefore, Raptor codes are universal on the BEC: they can approach the capacity

of the channel arbitrarily closely, independently of the channel parameter.

In [PNF06], the authors propose the construction of “generalized Raptor codes”, i.e.

allow the output degree distribution to vary as the output symbols are generated.

This construction has the advantage that the resulting codes have the potential to
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approach the capacity of a symmetric channel, in a rate compatible way. However,

their arguments are essentially information theoretical, and they do not propose any

optimization method for this new construction.

1.3.2 Parametrization of Raptor codes

We call input symbols the information symbols to be transmitted and output symbols

the symbols produced by an LT code from the input symbols. A symbol can be reduced

to a bit, or more generally, an element of a finite field or a packet. The input symbols

are not transmitted over the channel, and the received output symbols are used at the

receiver to recover the input symbols.

Interleaver

input symbols

Precode

LT code

output symbols

Figure 1.1 – Description of a Raptor code. Tanner graph of an LT code + precode. The

black squares represent parity-check nodes and the circles are variable nodes associated

with input symbols or output symbols.

An LT code is described by its output degree distribution [Lub02]: to generate an

output symbol, a degree d is sampled from that distribution, independently from the

past samples, and the output symbol is then formed as the sum of a uniformly randomly

chosen subset of size d of the input symbols. This means that the d input symbols and

the output symbol satisfy a parity-check equation. We say that the output symbol is

of degree d.

A Raptor code can be represented by a Tanner graph, which is a bipartite representation

of a system composed of variable nodes and parity-check nodes. The Tanner graph

of a Raptor code is represented in Fig. 1.1. In a Tanner graph representation, the

corresponding check node is of degree d+ 1: it is connected to d input symbols and 1

output symbol.

Let Ω1,Ω2, . . . ,Ωdc be the distribution weights on 1, 2, . . . , dc so that Ωd denotes the

probability of choosing the value d under this distribution. We denote the output (node)

degree distribution using its generator polynomial:

Ω(x) =

dc∑

j=1

Ωjx
j
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Ω(x) is associated with the following edge degree distribution in the Tanner graph:

ω(x) =
Ω′(x)
Ω′(1)

=

dc∑

j=1

ωjx
j−1

Because the input symbols are chosen uniformly at random, their node degree dis-

tribution is binomial, and can be well approximated by a Poisson distribution with

parameter α [Sho06, ES06]. Thus, the input symbol node degree distribution is defined

as:

I(x) = eα(x−1)

Then, the associated input symbol edge degree distribution is:

ι(x) =
I ′(x)
I ′(1)

= eα(x−1)

Both distributions are of mean α. Technically, I(x) and ι(x) cannot define degree

distributions since they are power series and not polynomials. However, the power series

can be truncated to obtain polynomials that are arbitrarily close to the exponential

[ES06]:

I(x) =

dv∑

i=1

Iix
i

and

ι(x) =
I ′(x)
I ′(1)

=

dv∑

i=1

ιix
i−1

A Raptor code is an LT code concatenated with an outer code called precode, which is

a high rate error correcting block code. The input symbols of the LT code are formed

by a codeword of the precode. Although it has been suggested for practical construc-

tions [Sho06] to use a concatenation of Hamming codes and Low-Density Parity-Check

(LDPC) code as precode, we consider the general definition where any high rate error

correcting code can be considered as a precode, and focus on LDPC precoded Raptor

codes. We do not consider concatenation with Hamming codes for the precode, because

these constructions are specifically designed for the BEC case, and our results prove

that with our approach, the use of Hamming codes is not necessary. Moreover, we

restricted ourselves to regular LDPC precodes because for relatively high rates, regular

codes are known to have good thresholds, close to the irregular thresholds.

1.3.3 A posteriori rate and transmission overhead

Although fountain codes are rateless, we can define an a posteriori rate R of a fountain

code as follows:

R =
Nb input symbols

Nb output symbols needed for successful decoding
=

Ω′(1)

α
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For a channel capacity C, the rate R is associated to an overhead ǫ: C = R(1 + ǫ) An

overhead ǫ = 0 means that the fountain code achieves the capacity, and an overhead

of 0.1 means that it operates 10% away from the channel capacity. For the erasure

channel, the overhead is defined with C = 1, because only the received output symbols

appear in the decoding graph.

1.3.4 Packet based Fountain codes

In the general setting, the input/output symbols can be packets. Packet based fountains

(PBF) have several advantages from a practical point of view.

(a) symbols are bits (b) symbols are packets

Figure 1.2 – This figure represents the same decoding graph: symbols in (a) are bits,

whereas symbols in (b) are packets.

Using the same notations as defined in the 3GPP standard [V7.07], a symbol is defined

as a packet of size T bits, and the packet size T is fixed by the transport layer. Under

this setting, the Raptor code can encode a source of T KiB (1KiB = 8192 bits)1. For

example, the setting T = 512 and K = 8192 enables to encode a source file of 512 KiB,

and the setting T = 1024, K = 8192 enables to encode a source of 1 GiB. The symbol

operations are defined packet-wise and the AND/OR operations used in the decoder

recovery rule can be performed packet-wise. A Tanner graph of a PBF is represented

in Fig. 1.2. For a PBF, the channel of interest is the Packet Erasure Channel (PEC),

which is a realistic model for Internet communications.

Each recovered input symbol corresponds to a recovered packet. Similarly, all unre-

covered symbols are unrecovered packets. This means that the performance of such

Raptor codes is completely determined by the symbol error rate of the small decoding

graph. In fact, decoding a PBF can be seen as decoding T parallel fountains, where all

the fountain have the same decoding graph but with different data. A maximum value

of KMAX = 8192 is used for Raptor codes in the [V7.07] standard. This means that

1The term “kibibyte” (KiB) is recommended by the NIST Reference on Constants, Units, and

Uncertainty to design the quantity 1024 bytes, because of the ambiguity with the kilobyte (KB) that

designs the quantity 1000 bytes.
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1 2 3 . . . . . . . . . K

K + 1 K + 2 K + 3 . . . . . . . . . 2K

2K + 1 2K + 2 2K + 3 . . . . . . . . . 3K

. . . . . . . . . . . . . . . . . . . . .

T.K + 1 T.K + 2 T.K + 3 . . . . . . . . . T.K

Table 1.1 – The KT input bits are stored in a two dimensional (K ×T ) array in order to

form K input packets of packet-size T

the decoding graph remains relatively small even with a large source size (determined

by T ), which means that decoding complexity remains small.

An alternative to PBF is to use a bit-wise fountain and form the packets after the

fountain encoding. In that case, the decoding graph is much larger, hence the decoding

complexity is larger. However, a larger fountain operates closer to its asymptotic regime

and therefore exhibits better performance. Note that this discussion concerns iterative

decoding only, and that with ML decoding excellent performance can be achieved even

with small lengths.

Finally we point out that in a bit setting, it questionable to consider that bits arrive

one at a time, and if a fountain code of source size K = 1024 bits produces output that

arrive in a packets of, say, 256 bits, then the minimum overhead of practical interest

is 256/1024 = 0.25 %, which corresponds to 1 packet of overhead. However, in a PBF

each output symbol is an output packet. Considering that packets arrive one at a time,

it makes sense to consider in that case an overhead as small as 1 output symbol.

1.4 Decoding LT codes and Raptor codes

1.4.1 Decoding on the BEC

1.4.1.1 The Decoder Recovery Rule

At the receiver side, the output symbols are used to recover iteratively the input sym-

bols. The procedure for decoding LT codes over a BEC, called the decoder recovery rule

[Lub02], is an instance of the peeling decoder adapted to the decoding of LT codes. The

peeling decoder, originally introduced for decoding LDPC codes over a BEC [LMS97],

is an efficient implementation of the MP decoder that “peels off” one degree 1 check

node per decoding iteration – hence the name – and has a decoding time that grows

linearly with the number of edges in the decoding graph. As the variable nodes are

recovered, the corresponding outgoing edges are removed from the decoding graph, and

when the decoding procedure succeeds, there are no edges in the decoding graph.

When removing an edge from the graph at round (l), the degree of the associated output
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symbols is decreased. We call reduced degree at round (l) the number of neighbors in

the current setting. We call ripple the set of input symbols connected to at least one

output symbol of reduced degree 1. An output symbol is released at round (l) if its

reduced degree becomes 1 at round (l). When an output symbol is released, its neighbor

is added to the ripple.

When an input symbol is in the ripple (if it is connected to an output symbol of reduced

degree 1), then it can be recovered immediately since it is a copy of the output symbol.

The decoding procedure is described in Algorithm 1.

Algorithm 1: Decoder Recovery Rule

Ripple , { input symbols connected to at least one output symbol of degree 1. }
while Ripple 6= ∅ do

1. Pick an input symbol in the ripple

2. Recover its value

3. Process the input symbol:

- XOR the input symbol to all its remaining neighbors

- remove the input symbol and all its outgoing edges in the graph.

4. Update the ripple

1.4.1.2 Maximum Likelihood decoding for the BEC

The decoder recovery rule is a very simple algorithm that enables to recover iteratively

the input symbols in a computationally efficient way. Unfortunately, the decoder is not

very efficient for small to moderate codeword lengths, and many input symbols can

remain unrecovered if at some point of the decoding process the ripple vanishes.

However, the output symbols are defined as parity-check symbols of the input symbols,

and as long as there are slightly more output symbols than input symbols, then the

equation system that gives the input symbols as a linear function of the output symbols

is almost surely full rank. This means that an ML decoder can recover the input symbols

from the output symbols with Gaussian elimination.

Gaussian elimination is a computationally intensive task, and an efficient implementa-

tion of the ML decoding procedure as described in the 3GPP standard [V7.07] takes

advantage of iterative decoding. When the ripple is empty, an input symbol of reduced

degree 2 is marked as known and feeds the ripple, which enables the iterative process

to go on. Gaussian elimination is used to recover the subset of input symbols marked

as known, which form a system of linear equations, together with the parity-check
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equations that must be satisfied by the precode. This means that the complexity of

ML decoding reduces to the Gaussian elimination on a reduced subset of input sym-

bols that cannot be recovered iteratively (which would be a stopping set for the LDPC

case). This decoding algorithm is closely related to the Maxwell Decoder (M Decoder)

described in [MMU04, RU07].

ML decoding allows to recover the input symbols with very little overhead (typically 1-

2% overhead only), regardless of the codeword length since even with a small overhead,

the underlying system is almost surely full rank.

1.4.2 Decoding on a noisy channel

In the case of a noisy channel, only message passing decoding can be considered, since

there is no such algorithm as Gaussian elimination in the noisy case. The algorithm for

decoding graph based codes, namely the Sum Product Algorithm, gives a maximum a

posteriori (MAP) estimation of the transmitted codeword. MAP decoding of a graph

based code boils down to computing marginals of multivariate functions, namely

x̂i = arg max
xi

p(xi|y1 . . . yN )

where xi denotes the ith information bit and y1 . . . yN denote the N channel observa-

tions. In that context, factor graphs [KFL01] provide a natural graphical description

of the factorization of a global function into a product of local functions.

1.4.2.1 Factor graphs and the Sum-Product Algorithm (SPA)

Many problems can efficiently be described by a factor graph [FKLW97, KFL01]. For

instance, they can be used to represent graphical codes such as LDPC codes, Raptor

codes, convolutionnal or Turbo codes, but also estimation problems such as optimal

filtering.

A factor graph is a bipartite graph that expresses how a global function of several

variables factors into a product of local factors. The two types of vertices in the graph

are called variable nodes and function nodes. The variable nodes can represent the

value of a bit or a state in a Markov chain, whereas the function nodes represent the

interactions between variable nodes.

The Sum Product Algorithm (SPA) is a general algorithm for computing marginals of

the global function by distributed message passing (MP) in the corresponding factor

graph [FKLW97, KFL01]. In the case of a cycle-free factor graph (when the graph is

a tree), SPA is optimal in the sense that it produces the exact marginalization. When

there are cycles in the factor graph, there is no guarantee that the SPA will converge

at all. However, it has been observed that it actually does converge to densities that

are relatively close to the actual marginal distributions.
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Many well-known algorithms are in fact a particular instance of the SPA algorithm.

When the factor graph under consideration is the graph of a state-space hidden Markov

model, the corresponding instance of SPA used for MAP decoding of convolutionnal

codes is called the BCJR algorithm [BCJR74]. In statistical inference, it is known as the

“Forward-Backward” algorithm, and if all the probability distributions are Gaussian,

it is also known as the “Kalman Filter”.

With minor modification, by changing the “sum” operation to a “max” operation the

algorithm becomes “max-product” algorithm, which, implemented in the negative log

domain, is more widely known as the “min-sum algorithm”. The specific instance of

the min-sum algorithm on the factor graph of a state-space hidden Markov model is

commonly known as the Viterbi [Vit37] algorithm. We refer the reader to [KFL01] for

a detailed presentation of factor graphs and the SPA algorithm.

In this thesis, the function nodes under consideration are parity-check constraint nodes,

the factor graph is called a Tanner graph.

1.4.2.2 Finite Alphabet Message Passing decoders

We consider the case where the messages on the graph are defined over a finite alphabet

A. The case A = {-1, 1} gives rise to numerous bit flipping algorithms, amongst which

Gallager A and Gallager B [Gal62] are the most well-known representatives. These

decoding algorithms have been widely studied for the decoding of LDPC codes (see e.g.

[BRU04, AK05] and references therein) but cannot be used for decoding fountain codes,

because the input symbols being unknown (erased) at the beginning of the decoding

process, it is necessary to code for erasures in the decoder.

The Erasure Decoder, independently presented and analysed in [RU01] and [Mit98] can

be used to decode Raptor codes over a channel with errors such as the BSC [MS06b].

When used to decode over a BEC, the Erasure Decoder is equivalent to the Decoder

Recovery Rule decoder, presented in 1.4.1.1.

1.4.2.3 Belief Propagation

The belief propagation (BP) decoder is also a message passing decoder, where the

messages propagated on the decoding graph are the log density ratios (LDRs) of the

probability weights defined over R. At each node on the graph, the messages are locally

propagated according to Bayes rules.

15



1 Rateless coding for multicast communications

1.5 Fountain based protocols

Unlike block codes (LDPC, turbo ...) the Tanner graph of a Raptor code is random.

Therefore, the problem of constructing the graph at the decoder arises naturally because

the graph description cannot be sent to the receiver as this description would be larger

than the transmitted information itself ! A practical approach (used in 3GPP standard)

is to use a seed synchronization technique: the seed of the random generator is sent

within each packet header. Therefore, the receiver is able to use the same pseudorandom

generator with the same seed to construct the pseudorandom graph. The random

generator is standardized in [V7.07].

Fountain codes can be used in application layer or transport layer as an alternative to

the File Transfer Protocol (FTP) for example. They can be used for point-to-point,

point-to-multipoint (broadcast/multicast) or multipoint-to-multipoint communications

(peer to peer (P2P) applications). The communication protocols need not be syn-

chronous. New asynchronous multicast applications can be based on Fountain codes,

such as asynchronous video on demand (VoD), or multiple rate congestion control.

In [MM03], the authors present a Fountain based protocol for peer to peer (P2P) com-

munications, and show that Fountain codes are well adapted to multi-source download

because of an availability property, defined as the ability to recover information from

sources with partial knowledge of a file (which is the case when the source nodes with

complete knowledge of the file leave the network).

MBMS is a point-to-multipoint IP-based service carried by the 3G air interface of W-

CDMA (UMTS Terrestrial Radio Access Network or UTRAN) or the 2.5G air interface

of EDGE/GPRS (GSM EDGE Radio Access Network or GERAN). Raptor codes are

required as the sole mandatory application layer FEC protocol for multimedia broadcast

in 3GPP MBMS technical specification [V7.07] and IP datacast over DVB-H [DVB06].

In the 3GPP specification, Raptor codes operate above the User Datagram Protocol

(UDP) layer, and below the Real Time Protocol (RTP) layer. UDP does not guarantee

reliability or ordering in the way that TCP does. Datagrams may arrive out of order,

appear duplicated, or go missing without notice.

Fountain based coding schemes have been proposed in other different communication

setting. For instance in [YCLX08], the authors show that Raptor codes provide a good

solution for satellite communications, characterized by very long delays, high error

rates, little bandwidth for a feedback channel. In [HST08], the authors investigate the

potential of rateless codes for wireless reprogramming of a sensor network (Over-the-

Air (OAP) programming), with large network size and high packet loss. They show

that rateless coding is of great interest since it drastically reduces the need of packet

rebroadcasting.

Currently, codes are only used on transport/application layers. A natural question

that arises is whether or not Raptor codes are adapted for the use on a physical layer.
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1.5 Fountain based protocols

This is the problem that we tackle in this thesis. We will address the optimization

of Raptor codes for various channels of interest for wireless communications, namely

the BIAWGN channel, the uncorrelated Rayleigh fading channel, and the quasi-static

Rayleigh fading channel.
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2

Analysis and Design of

Jointly Decoded Raptor Codes

I
n the previous chapter, we presented Raptor codes and showed how they can be used

for efficient communication in a multicast scenario. In this chapter, we investigate

the analysis and optimization of Raptor codes.

We assume that the two code components (LT code and precode) are decoded jointly,

that is to say that the two component codes exchange extrinsic information at each

decoding iteration. We present an asymptotic analysis of the joint decoder for the

BIAWGN channel, the uncorrelated Rayleigh fading channel, and the quasi-static

Rayleigh fading channel. The analysis of the joint decoder for the BEC is reported

in appendix B. Based on the asymptotic analysis, we derive an optimization method.

The optimization of a Raptor code consists in optimizing the rateless part of the Raptor

code, namely its output degree distribution ω(x).

Finite length design is addressed with a rate splitting strategy. We show in particular

that with almost no asymptotic loss, it is possible to design Raptor codes that perform

very well at small to moderate lengths by using a relatively low rate precode.

Performance over higher order modulations is investigated for both the AWGN and the

uncorrelated Rayleigh fading channels, when perfect channel state information (CSI) is

available at the receiver. Then we show that in presence of imperfect CSI at the receiver,

it is possible to improve the performance with no additional complexity, by using an

appropriate metric for the computation of the LLR at the output of the channel.
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2 Analysis and Design of Jointly Decoded Raptor Codes

2.1 Asymptotic analysis of graph based codes

The purpose of this section is to briefly present the tools that we shall use in the

following sections for the asymptotic analysis of Raptor codes. We present the den-

sity evolution technique, and an efficient approximation of density evolution for the

BIAWGN channel, namely the density evolution under Gaussian approximation. In-

formation Content evolution is a monodimensional approach based on the Gaussian

approximation, that is used for the analysis of the BP decoder.

2.1.1 Code ensembles

Graph-based codes such as Turbo codes or Low-Density Parity-Check (LDPC) codes

have proved to operate very close to the channel capacity, when the codeword length

tends to infinity. In that context, characterizing the performance of an explicit code

is a dawning task. Consequently, a problem of great interest is to characterize the

performance of a code ensemble. Often, this characterization can be performed in the

asymptotic regime, i.e. as the codeword length increases to infinity.

A common characterization in channel coding is the minimum distance of a code,

which enables to give the performance of a finite length code decoded with a maximum

likelihood decoder. This characterization is no longer possible in the asymptotic regime.

In contrast, the quantity of interest is the decoding threshold, defined as the highest

noise level that can be handled by the code ensemble.

2.1.2 Density Evolution

The main tool for characterizing the performance of a given decoding algorithm defined

on graph-based codes in the asymptotic regime is called density evolution (DE). DE

consists in tracking the densities of the probability messages on the decoding graph

through the decoding iterations, hence the name “density evolution”.

The density evolution analysis mainly relies on the three following properties.

(a) Concentration theorem The “concentration around ensemble average” and the

“convergence of ensemble average to the cycle-free case” are two main results that

enable an asymptotic analysis. Roughly speaking, these results state that the perfor-

mance of a code randomly sampled from a code ensemble converges to the expected

performance of the code ensemble as the codeword length increases. The concentra-

tion theorems were stated in [LMSS01b], where transmission over the BEC and BSC

is investigated, and the decoder is a hard decision message passing algorithm. The

theorems was extended to the BIAWGN channel and BP decoding in [RU01].
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2.1 Asymptotic analysis of graph based codes

(b) Conditional Independence An asymptotic analysis is sometimes referred to as an

analysis under “treelike assumption”, because in the asymptotic regime, the decoding

graph of a node is locally a tree. More precisely, the local tree assumption states

that the girth of the graph is large enough so that the local neighborhood of any

variable node is a tree (there are no repeated nodes in the subgraph). When the local

neighborhood of a node is a tree, then all messages passed through the graph are

conditionally independent.

(c) Symmetry Let u be the random variable with probability density function (pdf)

fU (u). A variable is symmetric if fU (u) = fU (−u)eu. When the channel is output

symmetric, or equivalently when the channel output pdf is symmetric, which is true for

all binary-input symmetric memoryless channels, we say that the “symmetry condition”

is satisfied. One important property is that the symmetry is preserved through the

decoding iterations [RSU01, RU01], which means that when the pdf of the channel

LLR is symmetric, then the marginal probability distributions computed with the SPA

are symmetric.

It has been shown (see e.g. [RU01]) that when the symmetry condition is satisfied,

the bit error probability of the code ensemble does not depend on the transmitted

codeword. For all linear codes, the “all-zero word” is indeed a codeword and therefore

one can assume without of loss of generality that the all-zero codeword is transmitted.

This assumption greatly simplifies the density evolution analysis. Moreover, when the

symmetry condition is satisfied, the convergence of the bit error probability to zero is

equivalent to the convergence of the message density to the point mass at +∞ (δ∞).

2.1.3 Gaussian Approximation

Density Evolution has been derived for the general case of BMS channels including

the BIAWGN channel in [RU01, RSU01], Unfortunately, DE is no longer a monodi-

mensionnal approach in the case of the BIAWGN channel.1 Even with an efficient

implementation (Fast Density Evolution was proposed in [JR06]), DE remains compu-

tationally very challenging.

More importantly, DE and Fast DE do not provide any analytical characterization

of the decoder, and thus they do not provide a mean to optimize degree distribution

with linear programming. Rather, DE is used to compute exact thresholds of a code

ensemble, or it can be associated to more sophisticated optimization techniques such

as differential evolution or simulated annealing to optimize irregularity profiles.

A Gaussian approximation (GA) of DE is proposed in [CRU01]. It is shown to be a

1In the BEC case, DE is parametrized with the erase probability as a single parameter. For the

BSC case and bit flipping algorithms (Gallager A,B), the message density is also monodimensionnal

and is parametrized with the error probability as a single parameter.
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2 Analysis and Design of Jointly Decoded Raptor Codes

faithful surrogate to full DE with far lower computational requirements, and provides

a monodimensional characterization of BP decoder on the BIAWGN channel, without

much sacrifice in accuracy. The method is based on approximating message densities

as symmetric Gaussian densities. The messages on the decoding graph, namely the

log density ratios (LDR) of the probability weights, are modeled by a random variable

which is assumed to be Gaussian distributed with mean m. For a Gaussian distributed

variable, enforcing the symmetry condition imposes that the variance equals two times

the mean: σ2 = 2m [CRU01].

2.1.3.1 Mean evolution

With GA, the analysis of the BP decoder in [CRU01] becomes a monodimension-

nal problem, and consists in tracking the evolution of LDRs mean through the de-

coding iterations, which can be given as a recursion. Let v = log
(

p(y|c=0)
p(y|c=1)

)
and

u = log
(

p(y′|c′=0)
p(y′|c′=1)

)
denote the LDR messages at the output of a variable node and

at the output of a check node respectively.

In this section, we assume that all the incoming messages at a node are i.i.d., and in

particular, we do not distinguish the message from the channel.

u
(l−1)
1

u
(l−1)
k

i v
(l)
m

Figure 2.1 – Notations used for the message update rule at a variable node of degree i

The BP message update rule at a variable node of degree i is:

v(l)
m =

i∑

k=1,k 6=m

u
(l−1)
k , ∀m = 1 . . . i (2.1)

The BP message update rule at a parity-check constraint node of degree j is:

tanh
u

(l)
k

2
=

j∏

m=1,m6=k

tanh
v

(l)
m

2
, ∀k = 1 . . . j (2.2)

We denote the means of u and v by mu and mv respectively. Then taking the expec-

tation of eq. (2.1) gives:

m(l)
v = (i− 1)m(l−1)

u (2.3)
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v
(l)
1 v

(l)
m

j u
(l)
k

Figure 2.2 – Notations used for the message update rule at a parity-check constraint node

of degree j

and eq. (2.2) becomes

E
[
tanh

u(l)

2

]
= E

[
tanh

v(l)

2

]j−1
(2.4)

Let φ(·) be defined as follows:

φ(x) = 1− E
[
tanh

u

2

]

= 1− 1√
4πx

∫

R
tanh

u

2
e−

(u−x)2

4x du (2.5)

then eq. (2.4) can be written:

1− φ(m(l)
v ) =

[
1− φ(m(l−1)

u )
]j−1

(2.6)

Since φ(·) is continuous and monotonically decreasing on [0;∞], its inverse function

φ−1(·) is well defined and it is possible to explicitly express m
(l)
v as a function of m

(l−1)
u .

Therefore, by combining (2.3) and (2.6), m
(l)
v can be seen as a function of m

(l−1)
v , which

is given as a recursive functional (see [CRU01] for details).

2.1.3.2 IC evolution

We call information content (IC), the mutual information between a random variable

representing a transmitted bit and another one representing an LDR message on the

decoding graph. IC evolution is another monodimensionnal analysis of the BP decoder

that tracks the information content associated with the LDR messages on the decod-

ing graph through the iterations, under symmetric and Gaussian assumption of the

messages.

Similarly to [RGCV04], we define the binary-input symmetric-output capacity func-

tional J : Fsym → [0; 1], such that

J (F ) = 1−
∫

R

log2(1 + e−z)dF (z) (2.7)
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2 Analysis and Design of Jointly Decoded Raptor Codes

Namely, J maps any symmetric distribution F into the capacity of the binary-input

symmetric-output channel with transition probability pY |X(y|0) = F(y)

For a BIAWGN channel, F is Gaussian symmetric distribution of mean m, and the IC

associated to the LDR message is x = J(m), where J(·) is defined by:

J(m) = 1− 1√
4πm

∫

R

log2(1 + e−ν) exp

(
− (ν −m)2

4m

)
dν (2.8)

J(·) maps m to the capacity of a BIAWGN channel with output LLR distributed

N (m, 2m). Equivalently, the capacity of a BIAWGN channel with noise variance σ2

equals J
(

2
σ2

)
.

Recalling that u is a Gaussian and symmetric distributed random variable (u ∼ N (mu, 2mu)),

let x
(l)
u (resp. x

(l)
v ) denote the IC associated to a message u (resp v). The IC evolution

equations corresponding to eq. (2.1) are:

J−1(x(l)
v ) = (i− 1)J−1(x(l−1)

u ) (2.9)

Moreover, if F(·) denotes the Fourier transform then it can be shown that

F(U ⊗ V ) = F(U).F(V )

, which means that a check node acts in the Fourier domain as a variable node, which

is illustrated in Fig. 2.1.3.2. Moreover, a simple computation shows that xDFT(u) =

1− xu,2 then eq. (2.4) can be written as follows:

j

(a) Original flow

F F F

j

(b) Equivalent flow

Figure 2.3 – Message flow through a parity-check constraint node.

J−1(1− x(l)
v ) = (j − 1)J−1(1− x(l−1)

u ) (2.10)

IC evolution is a concurrent tool of mean evolution under GA, that has been proved to

be more accurate and robust for the optimization of LDPC/IRA codes [RGCV04]. In

2A similar statement on the BEC is called the “reciprocical channel” approximation

24



2.1 Asymptotic analysis of graph based codes

particular, the stability condition of an LDPC code derived from IC evolution model

is exactly the same condition as the one given with true density evolution [Pou04],

whereas the stability condition derived from mean evolution differs slightly [CRU01].

Moreover, thresholds of an LDPC code estimated with IC evolution are closer to the

actual thresholds computed with density evolution than the thresholds computed with

mean evolution [Dec03, Table 3.1].
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2 Analysis and Design of Jointly Decoded Raptor Codes

2.2 Analysis of Raptor codes over the BIAWGN channel

The performance of LT codes and Raptor codes on a BIAWGN channel was first inves-

tigated in [PY04]. The authors show that output degree distributions designed for the

BEC (from [Sho06]) perform reasonably well on a BIAWGN channel. In [ES06], the

authors proposed an optimization procedure for designing good output degree distri-

butions for the BIAWGN channel, based on mean evolution under a refined Gaussian

approximation that requires Monte Carlo simulations [AK04]. In fact, the authors show

that mean evolution under Gaussian approximation is not sufficient for the optimization

of efficient output degree distributions.

In this thesis, we consider the joint decoding of the two code components, that has

several advantages over the classical tandem decoding scheme, which we will show

throughout the chapter. We derive an asymptotic analysis of the joint decoder of

Raptor codes on a BIAWGN channel, presented from the fountain point of view. With

joint decoding, we assume that extrinsic information is exchanged between the precode

and the fountain at each decoding iteration. We will track the evolution of the IC of

the messages that are related to the fountain part of the Tanner graph. Thus, in the

same way that the optimization of LDPC codes boils down to the optimization of a left

irregularity profile λ(x), our objective is to optimize the output degree distribution of

the fountain part of the Raptor code, namely ω(x), taking into account the contribution

of the precode through its IC transfer function.

2.2.1 Joint decoder

The classical “tandem decoding” (TD) consists in decoding the LT code first and then

using the soft extrinsic information about the input symbols as a priori information for

the precode. With “joint decoding” (JD), one decoding iteration consists of alternating

Nlt decoding iterations on the LT code, and Np decoding iterations on the precode.

Thus, both code components of the Raptor code, LT code and precode, provide extrinsic

information to each other. In the sequel, we shall only consider the case where Nlt =

Np = 1, and where the precode is an LDPC code. When Joint Decoding is considered,

the Raptor code can be described by a single Tanner graph with two kinds of parity-

check nodes: check nodes of the precode, referred to as static check nodes and parity-

check nodes of the LT code, later referred to as dynamic check nodes [Sho06].

Although joint decoding has already been proposed as a practical decoding scheme, all

previous works rely on a tandem decoding scheme for the analysis and optimization of

Raptor codes. As we shall see, joint decoding has several advantages over the classical

tandem decoding scheme, and it is important to optimize the distributions for the joint

decoding of the two code components by taking into account the contribution of the

precode during the decoding process.
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2.2 Analysis of Raptor codes over the BIAWGN channel

2.2.2 Information Content evolution

Dynamic Check Node

Input symbol

Output symbol

x
(l−1)
ext T (x

(l−1)
ext )

x
(l)
u x

(l)
v

Figure 2.4 – Notations used for the asymptotic analysis of a Raptor code with IC evolu-

tion.

We denote x
(l)
u (resp. x

(l)
v ) the IC associated to messages on an edge connecting a

dynamic check node to an input symbol (resp. an input symbol to a dynamic check

node) at the lth decoding iteration. Moreover, we denote by x
(l−1)
ext the extrinsic in-

formation passed from the LT code to the precode, at the lth decoding iteration, and

T (·) : x 7→ T (x) the IC transfer function of the precode. The extrinsic information

passed by the precode to the LT code is then T (x
(l)
ext). The notations are summarized

in Fig 2.4. When accounting for the transfer function of the precode, the IC update

rules in the Tanner graph can be written as follows:

• Input symbol message update:

x(l)
v =

dv∑

i=1

ιiJ
(
(i− 1)J−1(x(l−1)

u ) + J−1
(
T (x

(l−1)
ext )

))
(2.11)

• Dynamic check node message update:

x(l)
u = 1−

dc∑

j=1

ωjJ
(
(j − 1)J−1(1− x(l)

v ) + f0

)
(2.12)

with: f0 , J−1
(
1− J

(
2
σ2

))
= J−1

(
1− C

)
where C is the channel capacity.

• Precode extrinsic information update:

x
(l)
ext =

∑

i

IiJ
(
iJ−1(x(l)

u )
)

(2.13)

27



2 Analysis and Design of Jointly Decoded Raptor Codes

Replacing (2.11) in (2.12) gives (2.15), the monodimensionnal recursive equation x
(l)
u =

F (x
(l−1)
u , σ2, T (·)) that describes the evolution through one joint decoding iteration of

the IC of the LDRs at the output of the dynamic check nodes (fountain part):

x(l)
u = F (x(l−1)

u , σ2, T (.)) (2.14)

= 1−
dv∑

j=1

ωjJ

(
(j − 1)J−1

(
1−

dc∑

i=1

ιiJ
(
(i− 1)J−1(x(l−1)

u ) + J−1
(
T (x

(l−1)
ext )

)))
+ f0

)

(2.15)

Note that for a given distribution ι(x), this expression is linear with respect to the

coefficients of ω(x), which is the distribution that we intend to optimize.

We point out here that (2.15) is general, since it reduces to the classical tandem decod-

ing case by setting the extrinsic transfer function to x 7→ T (x) = 0 ∀x ∈ [0; 1], thus

assuming that no information is exchanged between the precode and the fountain.

If the precode is an error correcting code that has a soft-input soft-output decoding

algorithm, then its transfer function x 7→ T (x) can be estimated with Monte Carlo

simulations. When the precode is an LDPC code, an analytical expression of the

transfer function can be given. Let λ(x) (resp. Λ(x)) denote the variable edge (resp.

node) degree distribution and ρ(x) the check edge degree distribution, then the IC

transfer function [Bri01] is given by:

T (x) =

dv∑

i=2

ΛiJ

(
iJ−1

(
1−

dc∑

j=2

ρjJ
(
(j − 1)J−1(1− x)

)))
(2.16)

Remark: we assume here a reinitialization of the decoder, which is a pessimistic

assumption. Indeed, we assume that the initial messages from static check nodes to

input symbol nodes are set to 0, which means that the values of the messages on the

LDPC graph are not kept from one global iteration to another. Naturally, the messages

in the LDPC decoder are not reinitialized from one iteration to another in a practical

decoder. However, this pessimistic assumption is crucial to lead to a linear optimization

problem, and proves sufficient for the design of efficient output degree distributions.

2.2.3 Fixed point characterization

In an IC evolution analysis, the convergence is guaranteed by F (x, σ2, T (.)) > x. Con-

vergence continues toward a fixed point of x 7→ F (x, σ2, T (.)). Unfortunately, there are

no trivial solutions for the fixed point of (2.15). However, using a functional analysis,

an upper bound on the fixed point can be given. Replacing x
(l−1)
u by 1 (its maximal

value) and using the fact that T (1) = 1 in (2.15), we obtain:
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lim
x→1

F (x, σ2, T (.)) = J
( 2

σ2

)
, x0 (2.17)

which means that, because x 7→ F (x, σ2, T (.)) is an increasing function, the fixed point

is necessarily less or equal than x0, which is the capacity of a BIAWGN channel with

parameter σ2. Thus, the IC is upper bounded through the decoding iterations by x0.

This gives some insights on the asymptotic behavior at the decoding convergence point:

the BP decoding of the LT part of a Raptor code is limited on a BIAWGN channel by

the capacity of the channel.

This result is not really surprising and can be interpreted as follows: the output symbols

have a constant contribution on each dynamic check node. As the iterative decoding

process goes on, the IC of the messages at the output of the dynamic check nodes is

limited by the reliability of the channel observations.

2.2.4 Starting condition

We now derive a simple condition for the beginning of the decoding process. If this

condition is not met, then the decoding of a Raptor code is not possible.

Lemma 2.1 (Starting condition). The decoding process can begin iff F (0, σ2, T (.)) > 0

and the following holds:

F (0, σ2, T (.)) > ε ⇐⇒ ω1 >
ε

J
(

2
σ2

) (2.18)

Proof. The decoding process can begin iff x
(1)
u > ε, for some arbitrarily small ε > 0.

At the first iteration, x
(0)
u = 0, and (2.15) gives: x

(1)
u = F (0, σ2, T (.)) = ω1J

(
2
σ2

)

Therefore, one must have ω1 > 0 for the decoding process to begin, and ε appears to be

a design parameter that will constrain the optimization problem, ensuring that ω1 6= 0.

In practice, the value of ε can be chosen arbitrarily small. Indeed, it has been proved

[ES06] that for a sequence of capacity achieving distributions ω(n)(x), limn→∞ ω
(n)
1 = 0.

Remark: as an illustration we point out that, for the “Ideal Soliton Distribution”

introduced by Luby [Lub02], Ω1 = 1/K, which is the smallest proportion possible with

K input symbols.

2.2.5 Lower bound on the edge proportion of degree 2 output symbols

In [ES06], an important bound on Ω2, the proportion of output symbols of degree 2,

is derived for sequences of capacity achieving distributions. Following steps of [ES06],

we derive a similar bound for the proportion ω2 of a capacity achieving distribution

ω(x), specifically for the IC evolution method. The IC evolution equations represent
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2 Analysis and Design of Jointly Decoded Raptor Codes

a dynamic system, where x = 0 is a fixed point for a capacity achieving distribution.

This bound is derived by considering that it must not be an attractive fixed point,

which is given by lemma 1.

Lemma 2.2. For an output degree distribution that is to be capacity achieving, we

have:

F ′(0, σ2, T (.)) > 1 (2.19)

Proof. For a sequence of capacity achieving output degree distributions indexed by n,

limn→∞ ω
(n)
1 = 0 [ES06], which means that limn→∞ F (n)(0, σ2, T (.)) = 0. Then, the

convergence condition F (x, σ2, T (.)) > x implies that limx→0 F
′(x, σ2, T (.)) > 1.

According to the following proposition, this inequality gives a lower bound on the

proportion of degree 2 output symbols:

Lemma 2.3. When considering IC evolution, eq (2.19) gives the following necessary

condition for a distribution ω(x) to be capacity achieving:

ω2 >
1

αe−f0/4
(2.20)

Proof. see Appendix A

This condition on the fraction of output nodes of degree 2 can be interpreted as a

counterpart of the stability condition for LDPC codes [RSU01]. The stability condition

for LDPC codes gives an upper bound on the fraction of variable nodes of degree 2,

such that x = 1 is a stable fixed point for the decoder, that is to say that once the

decoder is close enough to a successful convergence, then it will indeed converge to

its fixed point. Here, the lower bound on the output nodes of degree 2 for a capacity

achieving output degree distribution ensures that x = 0 is not an attractive fixed point

of the decoder, that is to say that the decoder successfully starts.

2.2.6 Threshold of a Raptor code

In this section, we discuss the threshold behavior with the IC evolution model of jointly

decoded Raptor codes, and compute numerically the exact thresholds of a Raptor code.

2.2.6.1 Threshold behavior of a Raptor code

Definition 2.1. The a posteriori rate is the rate below which the decoding is successful.

We define the threshold ǫ∗ of a Raptor code as the asymptotic overhead corresponding

to expectation of its a posteriori rate.
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2.2 Analysis of Raptor codes over the BIAWGN channel

We only consider the case such that the precode is a block error correcting code with a

threshold behavior (an LDPC code for example). For tandem decoding, it is clear that

the Raptor code has a threshold behavior: when LT code converges to its fixed point,

it is sufficient that this fixed point is such that the extrinsic information passed to the

precode is higher than the precodes threshold.

In the case of joint decoding, we adopt the same strategy, except that during the

convergence of the extrinsic information passed from the fountain to the precode to its

limiting value x
(∞)
u , we assume belief propagation decoding on the whole Raptor code

Tanner graph. The scheduling that we propose has then two steps: during the first

step, the Raptor code is decoded under joint decoding, and the LT part of the Tanner

graph converges to its fixed point. The convergence is guaranteed by eq. (2.15) under

Gaussian approximation. During the second step, the precode is decoded alone, and

the extrinsic information passed from the LT code is used as a priori information for

the precode.

Since the precode is assumed to have a threshold, the joint decoding of a Raptor code

with the proposed scheduling exhibits a threshold behavior.

2.2.6.2 Numerical estimation of thresholds

To estimate the threshold of a Raptor code, we use a numerical method that is an

instance of Density Evolution (DE) described in Algorithm 2.

At each decoding iteration, the Tanner graph of the Raptor code is randomly permuted,

and a new channel noise realization is considered. This instance of DE simulates an

infinite graph by “breaking” the correlation between messages in the decoding graph,

and ensuring that the channel is Gaussian distributed. When the decoding fails, we

decrease the rate of the code. When the decoding is successful, we increase the rate

of the code. This procedure is run several times and the consistency of the estimated

threshold is reached by averaging.
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2 Analysis and Design of Jointly Decoded Raptor Codes

Algorithm 2: Threshold estimation procedure

ǫmin = 0

ǫmax = 1

while (ǫmax − ǫmin > 0.01)

ǫ = (ǫmin + ǫmin)/2

Generate a random graph of a Raptor code

for i = 1 : maxIter

1. Permute the precode interleaver

2. Permute the fountain code interleaver

3. New channel noise realization

4. BP Data Node message update

5. BP Check Node message update

end for

if (decoding == successful)

ǫmax = ǫ

else

ǫmin = ǫ

end while

ǫ∗ = (ǫmax + ǫmin)/2
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2.3 Optimization of output degree distributions

for joint decoding

In this section, we explicit the optimization problem for the design of good output

degree distributions, and give some complementary results that we use for the choice

of the design parameters. We will assume that the channel parameter σ2 is given,

that is to say that the output degree distribution is optimized for a given channel

parameter. We will see that the optimization problem can be stated as a linear problem,

and therefore can easily be solved with linear programming by algorithms such as the

Simplex algorithm.

2.3.1 Optimization problem statement

The optimization of an output distribution consists in maximizing the a posteriori rate

of the corresponding LT code, i.e. maximizing Ω′(1) =
∑

i Ωii, which is equivalent to

minimizing
∑

i ωi/i. Moreover, according to the previous section, several constraints

must be satisfied.

[C1] Since ω(x) is a probability distribution, its coefficients must sum up to 1. We call

this the proportion constraint C1.

[C2] To ensure the convergence of the iterative process, we must have F (x, σ2, T (.)) >

x. However, this inequality cannot hold for each and every value of x: the

analysis in section 2.2.3 shows that the fixed point of F (x, σ2, T (·)) is smaller

than x0 = J
(

2
σ2

)
. Therefore, we must fix a margin δ > 0 away from x0, and then

by discretizing [0;x0 − δ] and requiring inequality to hold on the discretization

points, we obtain a set of inequalities that need to be satisfied: they define the

convergence constraint C2. The margin δ appears to be a design parameter, and

its choice is discussed in section 2.3.3.

[C3] The starting condition (proposition 2.1) must also be satisfied and defines the

starting constraint C3.

[C4] The edge proportion of output symbols of degree 2 is lower bounded by proposi-

tion 2.3, defining the stability constraint C4.

Finally, x 7→ T (x) is defined according to (2.16) for an LDPC code, or could be esti-

mated with Monte Carlo simulations if another component code is used as a precode.

The IC transfer function T (·) appears in the general IC evolution and therefore in

constraint [C2].

For a given value of α, and a given channel parameter σ2, the cost function and the

constraints are linear with respect to the unknown coefficients ωi. Therefore, the op-

timization of an output degree distribution can be written as a linear optimization
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2 Analysis and Design of Jointly Decoded Raptor Codes

problem that can be efficiently solved with linear programming. The optimization

problem can be stated as follows:

ωopt(x) = arg min
ω(x)

∑

j

ωj

j
(2.21)

subject to the constraints:

[C1] Proportion constraint:
∑

i ωi = 1

[C2] Convergence constraint: F (x, σ2, T (.)) > x ∀x ∈ [0;x0 − δ] for some δ > 0

[C3] Starting condition: ω1 >
ε

J
(
2/σ2

) for some ε > 0

[C4] Flatness condition: ω2 >
1

αe−f0/4
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Figure 2.5 – y = F (x, σ2, T (·)): EXIT function of an output degree distribution optimized

for a BIAWGN channel of capacity C = 0.5

2.3.2 Parameter α

The average degree of the input symbols α is the main design parameter. Indeed, for

increasing values of the design parameter α, we optimized output degree distributions

as explained in the previous section. The distributions are optimized for a BIAWGN

channel of capacity C = 0.5 (σ = 0.9786), with a regular (3,60) precode of rate Rp =

0.95. Fig. 2.7 shows that there is a value for α that maximizes the corresponding rate
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Figure 2.6 – Zoom on x = 0 of the EXIT chart of an output degree distribution optimized

for a BIAWGN channel of capacity C = 0.5. The value in x = 0 equals F (0) = ω1J(2/σ2)

of the LT code. Note that the total rate of the Raptor code is upper bounded by the

channel capacity:

RLTRp < C

which, for the setting used in Fig. 2.7, means that the inverse of the rate of the LT

code is lower bounded as follows:

R−1
LT >

Rp

C
=

0.95

0.5
= 1.9

We also show that there is a minimum value αmin under which it is not possible to

design zero error output degree distributions. Let us first assume that the fountain

part of the Tanner graph has converged to its asymptotic value x
(∞)
u < x0 < 1. The

extrinsic information content transmitted to the precode is upper bounded by:

xext ≤ J
(
αJ−1(x(∞)

u )
)

(2.22)

With the re-initialization assumption of the precode Tanner graph (see section 2.2.2),

we can assume that the precode is an LDPC code with asymptotic decoding threshold

xp. This means that if the precode is initialized with an information content - coming

from the fountain - greater than xp, then the information content of the precode alone

will converge to 1, and the Raptor code has a threshold behavior. It follows that the

minimum value of α is given by the condition xext > xp, which gives:

α ≥ σ2J−1(xp)

2
, αmin (2.23)
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2 Analysis and Design of Jointly Decoded Raptor Codes

Note that although this condition looks like we implied a tandem decoder, the value of

x
(∞)
u is effectively obtained with the joint decoder equations (2.15).
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2.1

α

R
LT−

1

Figure 2.7 – Asymptotic rate of an LT code : R−1
LT versus α. For increasing values of α,

we optimize a distribution to match a (3,60) regular LDPC precode of rate Rp = 0.95 on

a BIAWGN channel of capacity C = 0.5, and compute the a posteriori rate RLT = Ω′(1)
α

.

It appears that is an optimal value for α that minimizes R−1
LT i.e. that minimizes the

asymptotic overhead.

2.3.3 Parameter δ

The LT part of the Raptor code should be such that at some point of the decoding

process, the convergence point reached by the LT code is high enough for the precode

to converge, that is to say: xext becomes larger than the precode threshold xp. For a

given value of α ≥ αmin, δ should be such that J
(
αJ−1(x0 − δ)

)
≥ xp i.e.

δ ≤ x0 − J
(
σ2J−1(xp)

2

)
(2.24)

Fig. 2.8 shows the influence of the parameter δ in the optimization of a distribution.

We recall that δ represents a margin away from x0: the choice δ = 0 leads to an

overly stringent optimization problem. Moreover, the larger δ, the higher the achievable

asymptotic rate, because the optimization problem becomes less constrained when δ

becomes large. However, this inequality shows that δ cannot be chosen arbitrarily, and

it should be such that the LT codes reaches a convergence point that is high enough

for the precode to converge. In practice, δ can therefore be chosen large, provided that

the inequality (2.24) holds.
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Figure 2.8 – Influence of parameter δ in the optimization of an output degree distribution.

For each value of the parameter δ, we optimize a distribution for a BIAWGN channel of

capacity C = 0.5 with increasing values of α, and compute the rate R = Ω′(1)
α

. The plots

are for dc = 200.

2.3.4 Parameter dc

Fig. 2.9 illustrates the influence of the parameter dc in the optimization. Similarly to

the optimization of LDPC codes, it appears that when increasing the maximum degree

parameter dc, it is possible to approach asymptotically closer to the capacity of the

underlying channel. However, this comes at the expense of an increased computational

decoding complexity, since most of the decoding complexity is related to the update of

the outgoing messages of check nodes.

2.3.5 Simulation results

The simulation results are illustrated in terms of BER versus overhead ǫ. We used a

regular (3,60) LDPC precode of length N = 65000 generated randomly. We compare

the distribution ΩE(x) proposed in [ES06, p 2044] in both TD and JD schemes, to the

following distribution that we optimized for JD with our method:

ΩB(x) = 0.00428x+ 0.49924x2 + 0.01242x3 + 0.34367x4 + 0.04604x10

+ 0.06181x11 + 0.02163x22 + 0.01091x23 (2.25)

For the distribution ΩE(x) there is very little difference between TD and JD schemes.

This can be explained by the fact that the distribution has not been optimized to take

37



2 Analysis and Design of Jointly Decoded Raptor Codes

9 10 11 12 13 14 15

1.9

1.95

2

2.05

2.1

α

R
LT−

1

 

 

d
c
 = 30

d
c
 = 50

d
c
 = 100

d
c
 = 200

Figure 2.9 – Influence of parameter dc in the optimization of an output degree distribution,

in terms of asymptotic rate: R−1 versus α for various values of the maximum degree

parameter dc (dc = 10, 30, 50, 100). The plots are for δ = 0.01.

into account the information provided by the precode. Simulation results are presented

in Fig 2.10. Compared to the distribution ΩE(x), the distribution ΩB(x) appears to

operate closer to the channel capacity: the overhead is more that 10% in the first case

and less than 5% for our distribution. The thresholds of the corresponding codes are

also shown in the figure. This result shows that one can design better output degree

distributions by proper optimization with a joint decoder framework.

2.3.6 Robustness against channel parameter mismatch

The results in [ES06] show that Raptor codes are not universal on other channels than

the BEC: they cannot adapt to themselves to an unknown channel noise and approach

the capacity of the channel arbitrarily closely. It was already observed in [PY04] with

finite length simulations that Raptor codes designed for the BEC perform well on

noisy channels. We show here that a Raptor code that is designed for a given channel

performs well on other channels with joint decoding. We compute for different channel

capacities the thresholds of the distribution that we optimized for joint decoding, as

well as the thresholds of the distribution given in [ES06] with a (3,60) LDPC precode.

The results in Fig. 2.11 show that our optimization procedure produces output degree

distributions with good thresholds: at C = 0.4, the threshold is only 2% away from

the capacity of the channel. Fig. 2.12 illustrates the same phenomenon, in terms of

achievable rate of a Raptor code for different values of Es/N0.
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Figure 2.10 – BER versus overhead for a Raptor code defined with a regular (3,60) LDPC

precode. We compare ΩB(x), a distribution that we optimized for joint decoding, to ΩE(x)

proposed in [ES06] under tandem decoding (squares) and under joint decoding (stars). The

thresholds of the corresponding distributions are indicated with vertical arrows (c.f. section

2.2.6).

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C

ε*

Threshold ε versus channel capacity C

 

 
ΩE

ΩB

Figure 2.11 – Thresholds of two distributions optimized for C = 0.5, for different channel

capacities. We compare ΩB(x), a distribution that we optimized for joint decoding, to

ΩE(x) proposed in [ES06] decoded with joint decoding.
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channel of capacity C = 0.8.
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2.4 Finite length design

Finite length performance analysis of LT codes is addressed in [KLS04, MS06a]. In

[PS06], the authors propose a model to predict the performance of finite length Raptor

codes under iterative decoding, and outline a numerical procedure based on differen-

tial evolution to design Raptor codes that perform well at finite length over a Binary

Symmetric Channel (BSC).

In this section, we discuss some important points in the perspective of designing efficient

Raptor codes for small to moderate lengths. We show that the choice of a rate lower

than usually proposed for the precode enables to design Raptor codes that perform well

at small lengths, with almost no asymptotic loss. We show in particular that the error

floor can be greatly reduced by using a lower rate precode, and that there is almost

no asymptotic loss when the output degree distribution is optimized for joint decoding

(i.e. when the output degree distribution is matched to the precode).

2.4.1 The rate-splitting issue

In the literature, the rate of the precode is usually chosen very close to 1. Indeed,

the optimization of output degree distributions allows designing LT codes such that

the fraction of unrecovered input symbols is extremely low. Choosing a very high rate

precode is a valid strategy when the Raptor code is decoded sequentially, but could

be a suboptimal choice when we consider iterative joint decoding of the precode and

the LT code. In this latter case, if the output degree distribution is matched – with

proper optimization – to the EXIT chart of a lower rate precode, there is almost no

asymptotic loss i.e. no loss in the waterfall region. By lower rate, we mean rates that

are between R = 0.9 and R = 0.95, whereas typically in the existing literature, very

high rate codes, e.g. R = 0.98, are considered.

Then arises the natural question of the optimal repartition of the overall rate between

the LT code and the precode. The use of a lower rate precode can be very attractive in

practice, especially for the design of Raptor codes with short or moderate information

block lengths. For short to moderate lengths, the topology of the overall Tanner graph

in terms of short cycles and subsequent stopping/trapping sets needs to be considered.

The problem of using a very high rate LDPC precode is then that it introduces a large

number of length-4 cycles, resulting in error floors which are unacceptably high. More

precisely, the code length such that an LDPC code of girth 6 exists grows exponentially

with the check node degree dc[HEA05], hence with the code rate. Using a lower rate

precode has the main objective of improving the Raptor code in the error floor region

for finite block lengths.

We now explain why the use of a lower rate precode does not affect the overall rate of

the Raptor code. Let R be the rate of the Raptor code which is the concatenation of
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2 Analysis and Design of Jointly Decoded Raptor Codes

an LT code of rate RLT , and a precode of rate Rp. For a channel with capacity C, the

optimization for the sequential decoding scheme always gives RLT < C3. Since Rp < 1,

the total rate of the precode R = RpRLT is smaller than RLT , and therefore the rate

of the precode Rp appears to be a burden in terms of the total rate of the Raptor code.

However, in the case of the optimization for joint decoding the optimized output degree

distributions can have a rate RLT > C, which allows considering precodes with lower

rates and still have a total asymptotic rate R close to the capacity.

Therefore, jointly decoded Raptor codes allow to study the problem of the overall rate

distribution and its repartition between the LT code and the precode.

2.4.2 Cycle spectrum of finite length LDPC precodes

For our purpose, we will consider Raptor codes of size K = 1024, 2048, 4096 and 8192.

We restricted ourselves to regular LDPC precodes because for high rates, regular codes

are known to have good thresholds, close to the irregular thresholds. We considered

regular LDPC precodes with the following parameters:

• (dv, dc) = (3, 30) regular LDPC code of rate Rp = 0.9

• (dv, dc) = (3, 40) regular LDPC code of rate Rp = 0.925

• (dv, dc) = (3, 60) regular LDPC code of rate Rp = 0.95

• (dv, dc) = (3, 80) regular LDPC code of rate Rp = 0.9625

The different LDPC precodes (one for each rate and size) were constructed with the

RandPEG algorithm that minimizes the multiplicity of the girth, presented in chapter

3. We denote by X-cycle a cycle of length X. All the precodes of size K = 8192 are of

girth 6 (i.e. they have no 4-cycles in their associated Tanner graph). The other (dv, dc)

LDPC precodes have the following cycle spectrums:

K = 4096

(dv,dc) code rate (R) # 4-cycles # 6-cycles

(3,80) 0.9625 643 683392

(3,60) 0.95 0 259567

(3,40) 0.925 0 47157

(3,30) 0.9 0 9728

3In the case of the BEC, only the received packets are considered in the decoding graph, and

therefore it is convenient to consider that C = 1.
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K = 2048

(dv,dc) code rate (R) # 4-cycles # 6-cycles

(3,80) 0.9625 3536 693044

(3,60) 0.95 860 289392

(3,40) 0.925 0 70493

(3,30) 0.9 0 19982

K = 1024

(dv,dc) code rate (R) # 4-cycles # 6-cycles

(3,80) 0.9625 5356 716492

(3,60) 0.95 2328 295760

(3,40) 0.925 90 83869

(3,30) 0.9 0 31394

We emphasize that the 4-cycles codes do not result from a poor construction, but from

the fact that for the corresponding rates and sizes, it is not possible to construct regular

(3, dc) LDPC codes [HEA05] of girth 6 (no 4-cycles). To illustrate this fact, the upper

bound on the code rate such that a regular (3, dc) LDPC code of girth 6 and size N

exists is shown in Fig. 2.13. The coding rates and sizes of the 16 precodes that we

used are also shown in the figure. It appears that our constructions with 4-cycles all

correspond to a size and coding rate that do not permit the construction of graphs with

no 4-cycles [HEA05].
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Figure 2.13 – Upper bound on the code rate (Rate UB) such that a regular (3, dc) LDPC

code of girth 6 and size N exists
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2.4.3 “Asymptotic design” for finite length distributions

One might question whether the asymptotic analysis of the joint decoder is of any inter-

est for finite length design. In the asymptotic regime, the concentration theorem [RU01]

ensures that the performance of a randomly sampled code converges to the expected

performance as the codeword length increases. The x → F (x, σ2, T (·)) characterizes

the expected IC evolution of the decoder in the asymptotic regime. In the asymptotic

regime, i.e. when the codeword length is infinite, the decoding trajectory in the EXIT

chart will fit between the curves y = x and y = F (x, σ2, T (·)).
However, the concentration to the expected performance does not hold for the finite

length case, and one must account for a certain variance in the decoding trajectories.

Following the steps of [Sho06], we propose to use the following convergence constraint

in the optimization problem for finite length:

[C2] Convergence constraint:

F (x, σ2, T (.)) > x+
c

K

√
1− x ∀x ∈ [0;x0 − δ] for some δ > 0

where c is a (small) positive constant.

2.4.4 Simulation results

We optimized output degree distributions for 4 different precodes with different rates.

We restricted ourselves to regular LDPC precodes because for high rates, regular codes

are known to have good thresholds, close to the irregular thresholds. The optimized

output degree distributions are given in Tab. 2.1 to 2.4. Figures 2.14 to 2.17 show sim-

ulation results for Raptor codes of length K = 1024, 2048, 4096 and 8192 respectively,

constructed with precodes described in the previous section.

In fact, according to the cycle spectrum given in section 2.4.2, it appears that all

curves that exhibit an error floor are associated with a precode with cycles of length 4.

Furthermore, these results show that as long as joint optimization using the precode

transfer function is performed, a lower rate precode does not significantly impact the

performance of the Raptor code in the waterfall region.
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Figure 2.14 – Performance Raptor codes of size K = 1024 input bits over a BIAWGN

channel of capacity C = 0.5, for different precode rates.
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Figure 2.15 – Performance Raptor codes of size K = 2048 input bits over a BIAWGN

channel of capacity C = 0.5, for different precode rates.
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Figure 2.16 – Performance Raptor codes of size K = 4096 input bits over a BIAWGN

channel of capacity C = 0.5, for different precode rates.
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Figure 2.17 – Performance Raptor codes of size K = 8192 input bits over a BIAWGN

channel of capacity C = 0.5, for different precode rates.
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Ω(x) (3, 30) (3, 40) (3, 60) (3, 80)

Ω1 0.05501 0.05742 0.06449 0.06600

Ω2 0.49500 0.48435 0.45750 0.45103

Ω3 0.04632 0.02912 0.06250 0.06770

Ω4 0.26061 0.29748 0.20572 0.19956

Ω5 0.09380 0.09319

Ω9 0.13613

Ω10 0.00693 0.07668

Ω11 0.05495

Ω14 0.07155 0.04902

Ω15 0.04444 0.07350

Ω′(1) 3.52088 3.67465 4.12717 4.22413

Table 2.1 – Output degree distributions optimized for regular (3, 30), (3, 40),(3, 60) and

(3, 80) LDPC precodes of size K = 1024. Ω′(1) is the average degree of an output symbol.

Ω(x) (3, 30) (3, 40) (3, 60) (3, 80)

Ω1 0.03961 0.04133 0.04645 0.04762

Ω2 0.50402 0.49301 0.46664 0.46020

Ω3 0.02891 0.02055 0.05119 0.06513

Ω4 0.29747 0.31883 0.27663 0.24480

Ω6 0.05981

Ω7 0.06023 0.01283

Ω9 0.03914

Ω10 0.09085 0.01295

Ω11 0.11333

Ω15 0.03891 0.03517

Ω16 0.05995 0.07444

Ω′(1) 3.58502 3.74045 4.20428 4.30987

Table 2.2 – Output degree distributions optimized for regular (3, 30), (3, 40),(3, 60) and

(3, 80) LDPC precodes of size K = 2048. Ω′(1) is the average degree of an output symbol.
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Ω(x) (3, 30) (3, 40) (3, 60) (3, 80)

Ω1 0.02837 0.02959 0.03331 0.03415

Ω2 0.51053 0.49922 0.47330 0.46681

Ω3 0.02159 0.01733 0.06467 0.06265

Ω4 0.31599 0.32980 0.25761 0.26435

Ω7 0.05951 0.07194

Ω8 0.02819

Ω10 0.10546

Ω11 0.01806 0.10026

Ω12 0.02380

Ω16 0.04643

Ω17 0.08341 0.05367

Ω′(1) 3.63142 3.78768 4.26442 4.37197

Table 2.3 – Output degree distributions optimized for regular (3, 30), (3, 40),(3, 60) and

(3, 80) LDPC precodes of size K = 4096. Ω′(1) is the average degree of an output symbol.

Ω(x) (3, 30) (3, 40) (3, 60) (3, 80)

Ω1 0.02024 0.02111 0.02379 0.02440

Ω2 0.51517 0.50360 0.47807 0.47158

Ω3 0.01430 0.01536 0.06111 0.07156

Ω4 0.33116 0.33742 0.27302 0.25150

Ω7 0.08631

Ω8 0.08397

Ω9 0.00774

Ω10 0.06419

Ω11 0.05494 0.07331

Ω12 0.04920

Ω17 0.07981

Ω18 0.06297 0.01484

Ω19 0.00933

Ω′(1) 3.66436 3.82088 4.30749 4.4163

Table 2.4 – Output degree distributions optimized for regular (3, 30), (3, 40),(3, 60) and

(3, 80) LDPC precodes of size K = 8192. Ω′(1) is the average degree of an output symbol.
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2.5 New results on LT codes and Raptor codes under tandem

decoding

An LT code can be seen as a Raptor code with no precode. Thus, the convergence

analysis and optimization method described in the previous section allow to design LT

codes by assuming that T (x) = 0 ∀x ∈ [0; 1] in the IC evolution equations. First, we

will show that there is a trade-off in the design between the asymptotic error floor and

the achievable rate of an LT code, and that this trade-off can be directly controlled

with the design parameter α. For that purpose, we derive upper and lower bounds for

the average bit error probability in the error floor region. Then we present a model for

the equivalent channel seen by the precode in the case of the tandem decoding scheme

and derive an optimization method for the design of a precode.

2.5.1 Asymptotic error floor of an LT code

In the case of the BEC, the fact that the output degree distribution has a constant

average degree (not growing with the code length) implies that there will be a fraction

of unrecovered input symbols. In the case of the BIAWGN channel, it implies that

a fraction of input symbols will not be well estimated: an error floor phenomenon is

observed. In that context, our purpose in this section is to characterize the performance

of the output degree distributions in terms of residual bit error rate (BER), which we

define as the BER after an infinite number of iterations.

2.5.1.1 Characterization of the error floor region

Similarly to [CRU01], and assuming that the decoding process has reached its fixed

point x
(∞)
u , the error probability for an input symbol of degree i is given by:

P i = Q

(√
iJ−1(x

(∞)
u )

2

)
(2.26)

where Q(·) is the Gaussian complementary cumulative distribution function. The av-

erage error probability Pe is obtained by averaging over the input symbol degree dis-

tribution I(x):

Pe =
∑

i

IiP
i

The residual probability of error is a decreasing function of α, because I(x) is a Poisson

distribution with mean α. Thus, α appears to be a design parameter for controlling the

residual BER of an LT code. However, Fig. 2.7 shows that there is a value for α that

gives the best asymptotic performance. Therefore, a trade-off appears in the design of

49



2 Analysis and Design of Jointly Decoded Raptor Codes

an LT code: on the one hand, the value that gives minimizes the overhead corresponds

to a certain BER performance, but on the other hand, it is possible to have a lower

residual BER by increasing α, at the price of a higher asymptotic overhead.

Recalling that x
(∞)
u > x0− δ because of the convergence constraint and that x

(∞)
u < x0

(2.17), we get respectively an upper bound and a lower on the residual BER of the LT

code, given by:

∑

i

IiQ

(√
iJ−1(x0)

2

)
< Pe <

∑

i

IiQ

(√
iJ−1(x0 − δ)

2

)
(2.27)

For an output degree distribution Ω(x), the asymptotic rate is related to an asymptotic

overhead under Gaussian approximation by the following: RLT (1 + ǫ∗) = C. Thus, the

design parameter α is also related to an asymptotic overhead ǫ∗:

α =
Ω′(1)

RLT
=

(1 + ǫ∗)Ω′(1)

C

Then, for an overhead ǫ > ǫ∗, the actual average input degree α̃ is given by:

α̃ =
(1 + ǫ)Ω′(1)

C

Replacing I(x) by a Poisson distribution with parameter α̃ = f(ǫ) in eq (2.27) gives

the upper and lower bounds as a function of the overhead.

2.5.1.2 Simulation results

We have designed three output degree distributions, for different values of α. The

resulting output degree distributions are reported in Table 2.5, and Fig. 2.18 shows

the BER versus overhead for these distributions. The value α = 14 corresponds to the

lowest asymptotic overhead. With larger values for α, we designed distributions with

larger overhead but lower error floors, as predicted in the previous section. For each

distribution, the upper and lower bounds are also shown in the figure, and although

they are based on a Gaussian approximation, it appears that they are quite tight, and

thus, they provide a good tool for predicting the BER of an LT code in the error floor

region.

2.5.2 Design of a precode for tandem decoding

In this section, we consider the tandem decoding scheme, and propose an optimization

method for the left irregularity profile of an LDPC precode, based on IC evolution under

Gaussian approximation. The optimization method is based on the fact that, since the

input symbol node degree distribution is well approximated by a Poisson distribution,

the channel seen by the precode can be modeled by a mixture of Gaussian channels of

different capacities.

50



2.5 New results on LT codes and Raptor codes under tandem decoding

0 0.05 0.1 0.15 0.2 0.25 0.3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Overhead

B
E

R

 

 
α = 14
α = 17
α = 20

Figure 2.18 – BER versus overhead for LT codes designed with different values of the

parameter α. The upper and lower bounds for the BER (section 2.5.1) plotted in the

figure appear to be quite tight. All simulations were run for K = 65000 input symbols, on

a BIAWGN channel of capacity C = 0.5 (σ = 0.9787) with 600 decoding iterations.

2.5.2.1 IC evolution for a mixture of Gaussian channels

First, we present the optimization of an LDPC code for a channel that can be modeled

by a mixture of Nc Gaussian channels with known Channel State Information (CSI) at

the receiver.

We denote Nc the number of different channels involved in the mixture, σm the channel

parameter associated with the mth channel, and pm the probability associated with

channel parameter σ2
m in the mixture. Moreover, let λ(x) (resp. ρ(x) ) be the variable

(resp. check) edge degree distribution, and let x
(l)
up (resp. x

(l)
vp ) denote the IC associated

to the messages on an edge connecting a check node to a variable node (resp. a variable

node to a check node) at the lth decoding iteration of the precode. Using IC evolution,

the BP update equations are given by:

• Variable node message update:

x(l)
vp =

dv∑

i=2

λi

Nc∑

m=1

pmJ
( 2

σ2
m

+ (i− 1)J−1(x(l−1)
up )

)
(2.28)

• Check node message update:

x(l)
up = 1−

dc∑

j=2

ρjJ
(
(j − 1)J−1(1− x(l)

vp)
)

(2.29)
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α

Ω(x) 14 17 20

Ω1 0.00683 0.00825 0.00481

Ω2 0.44724 0.43883 0.43063

Ω3 0.07537 0.08077 0.11258

Ω4 0.27843 0.28034 0.24300

Ω9 0.04518 0.00194 0.08654

Ω10 0.06949 0.11672 0.02985

Ω16 0.03116

Ω21 0.03050

Ω22 0.02943

Ω23 0.01768

Ω35 0.01833

Ω36 0.02074

Ω44 0.02791

Ω80 0.02404

Ω81 0.00633

Ω200 0.01474 0.02236

Ω′(1) 6.8311 8.2508 9.3119

Table 2.5 – Coefficients of the output degree distributions of LT codes optimized with

different values of α. Ω′(1) is the average degree of an output symbol.

Replacing (2.29) in (2.28) gives the equation that describes the evolution through one

decoding iteration of the IC of the LDRs at the output of the check nodes of the precode,

given
(
{pm, σ

2
m}
)
m∈[1:Nc]

, which gives the monodimensionnal recursive equation: x
(l)
vp =

Fp(x
(l−1)
vp ). Note that for a given distribution ρ(x), this expression is linear with respect

to the coefficients of λ(x), which is the distribution that we intend to optimize.

As a straightforward generalization of the Gaussian case, the stability condition is given

by:

λ2

Nc∑

m=1

pme
− 1

2σ2
m <

1
∑dc

j=2 ρj(j − 1)
(2.30)

2.5.2.2 Application to the design of a precode

This model can be used for the design of a precode for Raptor codes. If we denote xf

the IC of the LDR messages on the edges connecting the dynamic check nodes to the

input symbols in the LT code, then the channel parameters σ2
m are directly related to

xf by the following relation:
2

σ2
m

= mJ−1(xf ) (2.31)
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where m is the degree of an input symbol of the LT code. It follows that the Nc

channel parameters are a function of the degrees m and a “global channel parameter”

xf . Moreover, due to the distribution of the input symbols of the LT code, pm is Poisson

distributed.

For a given xf and ρ(x), the optimization problem can finally be stated as follows:

λopt(x) = arg min
λ(x)

dv∑

i=2

λi

i
(2.32)

subject to the constraints:

[C1] Proportion constraint :
∑

i λi = 1

[C2] Convergence constraints: Fp(x) > x ∀x ∈ [0; 1]

[C3] Stability condition: see eq. (2.30)

For a concentrated ρ(x) distribution [CRU01], the optimization is finally done by thresh-

old maximisation, through the equivalent channel parameter xf : we intend to minimize

the parameter xf that allows convergence of the precode for a given target rate. In-

deed, because of eq (2.31), minimizing xf is equivalent to maximizing the channel noise

parameter.

2.5.2.3 Simulation results

The same distribution is tested with two different precodes of rate R = 0.95, with

tandem decoding on a BIAWGN channel of capacity C = 0.5. The first precode is

optimized for a mixture of Gaussian channels, and the second is the code with the best

threshold on a BIAWGN channel, optimized via density evolution [Lop]. The simulation

results in Fig. 2.19 show that for a given distribution, the optimization of the precode

allows to operate closer to the channel capacity. We used tandem decoding with 600

decoding iterations for the LT code and 600 decoding iterations for the precode.
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Figure 2.19 – The same distribution (Table 2.5, α = 14) decoded with classical tandem

decoding, with (i) a precode optimized for a mixture of Gaussian channels (MGCopt),

versus (ii) the LDPC code on [Lop] of rate 0.95, with the best threshold on a BIAWGN

channel (AWGNopt). Simulations where run on a BIAWGN channel of capacity C = 0.5

with K = 65000 input symbols. .
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2.6 Analysis of Raptor codes on uncorrelated fading channels

In this section, we propose an asymptotic analysis of jointly decoded Raptor codes for

an uncorrelated Rayleigh fading channel, also called fast Rayleigh fading channel. We

assume that CSI is available at the receiver but not at the transmitter. For the analysis,

we use IC evolution under Gaussian approximation. We show that with only a single

minor modification, the IC evolution equations for the BIAWGN channel remain valid

for the uncorrelated Rayleigh fading channel.

2.6.1 Channel model

We consider the uncorrelated flat Rayleigh fading channel, with perfect Channel State

Information at the Receiver (CSIR). This channel model is justified as follows. In

a wireless transmission, various phenomena such as multipath propagation, terminal

mobility and users interference, result in channels with time-varying parameters. One

important parameter is the channel coherence time, defined as the number of channel

uses where the channel can be considered as non varying. The coherence time is related

to the Doppler spread, and depends on many parameters such as the carrier frequency,

communication bandwidth (see e.g. [TV05]).

A realistic wireless communication model is the block fading model: during a com-

munication, the receiver will experience several channel conditions, corresponding to

different blocks of length the coherence time, over which one may assume that the re-

ceiver can estimate the channel parameter with pilot based estimation techniques for

example. This justifies that CSIR is available.

In a Raptor based communication scheme, all the output symbols are independent

and therefore it does not matter from which block they come from. Consequently,

all the received output symbols can be randomly permuted, provided that the graph

setting (i.e. information about how output symbols and input symbols are connected)

is preserved. If the number of transmitted blocks is sufficient (typically a few hundreds),

then block fading transmission with fully interleaved coded transmission can be modeled

by an uncorrelated fast fading transmission with CSIR.

Let us now review the channel model. At the output of the channel, we have:

Yi = aiXi +Ni

The input symbols Xi belong to a BPSK modulation and the energy per symbol is

normalized so that EX{|Xi|2} = 1, where E{·} denotes expectation, and Ni is a Gaus-

sian noise with variance σ2
b . We consider real inputs/outputs at the channel because a

perfect demodulation is possible when perfect CSIR is available.

Furthermore, the channel fading is a Rayleigh distributed random variableA normalized
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such that E[a2] = 1, with the following pdf:

p(a) = 2a exp (−a2)

When perfect CSIR is assumed, the a priori pdf based on the observations is given by:

p(y|x, a) =
1√
2πσ2

b

exp (−|y − ax|
2

2σ2
b

)

The log-likelihood ratios (LLR), associated with this pdf, are computed as follows:

LM (y) =
2

σ2
b

ay (2.33)

Conditioned to a and x, LM (y) is a consistent Gaussian random variable [HSM01] with

pdf N (2a2

σ2
b
, 4a2

σ2
b

). Thus, the information content of LLRs associated with the fading

coefficient a is given by x0(a) = J(m0(a)) with m0(a) = 2a2

σ2
b

.

The signal to noise ratio in dB is given by

Es

N0 dB
, 10 log10(

2

σ2
b

)

2.6.2 IC evolution for uncorrelated Rayleigh fading channels

We use the same notations as in section 2.2 for the IC evolution equations. We will

show in this section that the IC evolution equations of the analysis for the BIAWGN

channel remain valid for the uncorrelated Rayleigh fading channel provided that the

constant f0, that depends on the channel parameter σ2
b in the BIAWGN case, is properly

redefined.

For a given channel realization a, we have at the output of a dynamic check node of

degree j:

J−1(1− x(l)
v ) = (j − 1)J−1(1− x(l−1)

u ) + J−1

(
1− J

(2a2

σ2
b

))
(2.34)

Which gives:

x(l)
v = 1− J

(
(j − 1)J−1(1− x(l−1)

u ) + J−1
(
1− J

(2a2

σ2
b

)))
(2.35)

Since the channel gain a is a Rayleigh distributed variable, the expected value of the

IC at the output of a dynamic check node is computed as follows:

x(l)
v = 1−

∫

[0;∞]
J

(
(j − 1)J−1(1− x(l−1)

u ) + J−1
(
1− J

(2a2

σ2
b

)))
2ae−a2

da (2.36)
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Eq. (2.36) involves a computationally expensive integration. The integral depends

on the check node degree, the channel noise parameter, and the IC xu. Therefore,

contrary to the integral in eq. (2.8) that defines J(·) with m as a single parameter, it

is a computational burden to tabulate the corresponding integral for a Rayleigh fading

channel.

We propose to use the following approximation:

x(l)
v = 1− J

(
(j − 1)J−1(1− x(l−1)

u ) + J−1
(
1−

∫

[0;∞]
J
(2a2

σ2
b

)
2ae−a2

da
))

(2.37)

In order to test the validity of both approaches, we have tested for various check node

degrees the validity of eq. (2.36) and its approximation eq. (2.37) by simulating the

output of a dynamic check node. We used the following Monte Carlo approach to

simulate the output of an uncorrelated Rayleigh fading channel. First, the fading

coefficients are randomly sampled according to a normalized Rayleigh distribution.

Then the LLR messages, that are symmetric and Gaussian distributed [HSM01], and

where sampled according to the following law: N (2a2

σ2
b
, 4a2

σ2
b

)

The messages from variable nodes to a dynamic check node were sampled according

to a Gaussian symmetric distribution, and the output of the dynamic check node is

computed according to the BP update rule.

We used the following estimate for the IC at the output of a dynamic check node: Let

(mk)k=1:N denote N samples of a random variable. Let xMC denote the IC associated

to m, estimated with Monte Carlo:

xMC(mk) = 1− 1

N

∑

k=1:N

log2(1 + exp(−mk)) (2.38)

We present some simulation results in Fig. 2.20 to 2.21. The two plots corresponding

to eq. (2.36) and eq. (2.37) match perfectly, which indicates that eq. (2.37) can be

indeed used as an approximation of eq. (2.36). We do not report any results for the

output of a variable node, because the Gaussian approximation is already known to be

accurate at the output of a variable node [AK04].

We point out that

CRayleigh =

∫

[0;∞]
J
(2a2

σ2
b

)
2ae−a2

da

is the ergodic capacity of an uncorrelated Rayleigh fading channel. In the analysis for

the BIAWGN channel, the channel model appears through the channel capacity in the

constant f0. Therefore the study in this section shows that the important quantity in

the IC evolution equations is the channel ergodic capacity. It follows that the analysis

for a BIAWGN channel remains valid for the uncorrelated Rayleigh fading channel,
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Figure 2.20 – IC evolution at a dynamic check node of degree j = 2
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Figure 2.21 – IC evolution at a dynamic check node of degree j = 10

provided that the constant f0 is redefined as follows:

f0 , J−1
(
1−

∫

[0;∞]
J
(2a2

σ2
b

)
2ae−a2

da
)

= J−1
(
1− CRayleigh

)
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Figure 2.22 – IC evolution at a dynamic check node of degree j = 30

2.6.3 Simulation results

First we show that output degree distributions optimized for a given channel capacity

perform well over a wide range of channel capacities. Fig. 2.23 shows the asymptotic

overheads estimated with Algo. 2 of the output degree distribution optimized in section

2.3.6. The asymptotic overhead is less that 6% for capacities ranging from 0.1 to 0.9.

In Fig. 2.24 to 2.27 , we present finite length simulations are presented for an uncorre-

lated Rayleigh fading channel (BPSK input) of capacity C = 0.5 (Normalized fading,

σb = 0.81000). The simulation results are very similar to the simulations on the BI-

AWGN channel (Fig. 2.14 to 2.17) and confirm that the optimization for the BIAWGN

channel holds for the uncorrelated Rayleigh fading channel, as predicted with the IC

evolution analysis.
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Figure 2.23 – Overhead thresholds on uncorrelated Rayleigh fading channel. The distri-

bution is optimized for a channel capacity C = 0.5 and a (3,60) regular LDPC precode.

The thresholds on fast Rayleigh fading channels is evaluated with Algorithm 2
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Figure 2.24 – Performance, in terms of FER versus overhead, of Raptor codes of size

K = 1024 over an uncorrelated Rayleigh fading channel with BPSK input. The channel is

of capacity C = 0.5
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Figure 2.25 – Performance, in terms of FER versus overhead, of Raptor codes of size

K = 2048 over an uncorrelated Rayleigh fading channel with BPSK input. The channel is

of capacity C = 0.5
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Figure 2.26 – Performance, in terms of FER versus overhead, of Raptor codes of size

K = 4096 over an uncorrelated Rayleigh fading channel with BPSK input. The channel is

of capacity C = 0.5
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Figure 2.27 – Performance, in terms of FER versus overhead, of Raptor codes of size

K = 8192 over an uncorrelated Rayleigh fading channel with BPSK input. The channel is

of capacity C = 0.5
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2.7 Analysis of Raptor codes on quasi-static fading channels

In [SVW06, SVW05], the authors compare an IR-HARQ scheme based on punctured

LDPC codes, and a HARQ scheme based on Raptor codes [Sho06] for communication

over time-varying channels. They characterized the Maximum-Likelihood (ML) perfor-

mance of the two schemes by exhibiting for each one, bounds on the asymptotic left tail

of the code spectrum. They do not directly address the optimization of Raptor codes,

but rather their approach relies on a power allocation strategy. In [CM06b, CM06a], the

use of rateless codes for communication over Rayleigh fading channel is addressed. Nev-

ertheless, the authors use codes optimized for a BIAWGN channel of capacity C = 0.5,

resulting in a wide gap to the channel capacity in the high SNR regime.

In this section, we show how Raptor codes can be optimized for communication over

quasi-static fading channels under delay constraints, when CSI is available at the re-

ceiver but not at the transmitter. To that end, we extend the application of rateless

coding to non-ergodic memoryless channels. In particular, we investigate the capability

of Raptor codes to select their decoding time dynamically to match the rate of commu-

nication to the instantaneous channel capacity. We first introduce rateless coding for

non-ergodic channels and characterizes its ultimate performances. Based on the notion

of outage capacity we characterize the optimal trade-off between the coding rate and

the decoding time. Then, we propose an optimization method for Raptor codes on

quasi-static fading channels. Simulation results show that such codes efficiently adapt

in an opportunistic manner to the communication conditions, i.e., decoding in less time

when the channel is good and taking more time to decode when the channel is bad.

2.7.1 Channel model

From now on, we assume that the channel state, which is unknown at the transmitter is

constant within the transmission block. We consider perfect channel state information

at the receiver (CSIR); the case of imperfect CSIR is addressed in section 2.8.3. At the

output of the channel, we have:

Yi = aXi +Ni

The input symbols Xi belong to a BPSK modulation and the energy per symbol is

normalized so that EX{|Xi|2} = P , where E{·} denotes expectation. We consider real

inputs/outputs at the channel because a perfect demodulation is possible when perfect

CSIR is available.

Furthermore, the channel fading is a Rayleigh distributed random variableA normalized

such that E[a2] = 1, with the following pdf:

p(a) = 2a exp (−a2)
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2.7.2 The rateless paradigm for non-ergodic channels

Conditioned on the channel realization A = a, the instantaneous channel is a BIAWGN

channel with capacity

C(a) = max
PX

I(X;Y,A = a). (2.39)

Therefore, a quasi-static fading channel can be seen as an AWGN channel where the

capacity C(a) is a random variable. In the rateless setting, the inverse of the information

rate is proportional to the delay needed to correctly decode the information sent by

the encoder. Hence, the number of bits required to decode such code only depends on

the current channel draw, i.e. decoding in less time when the instantaneous channel

realization is good and taking more time to decode when the channel is bad. Thus, a

decoder might not support the maximal information delay ∆ tolerated and an outage

will occur with a certain probability.

We consider outage events induced by information delays (i.e. decoding time). Note

that with infinite delay, rateless codes guarantees no outage events. This follows from

the fact that if at some point the receiver has not recovered the transmitted message,

we do not consider that an outage occurs, but instead that the receiver must collect

more data in order to recover the message. In the sequel, we will not consider the

coding rate R, rather the delay given by its inverse ∆ = R−1.

2.7.3 Theoretical limits

We propose to measure the theoretical performances of rateless codes in terms of the

probability of decoding delay Pwait(∆), defined as the probability that the information

sent by the encoder at a given delay ∆ (or rate R = ∆−1) be not sufficient for the

instantaneous channel realization, and that the receiver must wait for more data.

Pwait(∆) = Pr{I(X;Y,A = a) < ∆−1}.

Given a system requirement for the delay probability pwait, we define ∆∗ as the min-

imum delay such that for any delay ∆ ≥ ∆∗ (≥ ∆min delay minimal) the probability

Pwait(∆) ≤ pwait,

∆∗(pwait) = inf{∆ ≥ ∆min : Pwait(∆) ≤ pwait}.

The mutual informations with Gaussian and BPSK inputs are

I(XG;Y,H = h) = log2

(
1 + a2SNR

)
, (2.40)

I(XBPSK;Y,A = a) = J

(
2a2

σ2
b

)
, (2.41)

where the signal to noise ratio is defined by SNR= P
σ2

b
and the function J(·) is defined

by eq. (2.15).
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2.7 Analysis of Raptor codes on quasi-static fading channels

The delay probability curves of a Rayleigh fading channel are represented in Fig. 2.28.

For a pwait = 10−2 and SNR=15dB the curve is approximately at ∆∗(pwait) = 2. This

means that, when the receiver has collected twice the amount of information bits, or

equivalently when the current coding rate equals 1/2, the probability that the decoder

has to collect more data to be able to decode is equal to 10−2.
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Figure 2.28 – Theoretical limits of rateless schemes over Rayleigh fading quasi-static

channels for three values of SNR (10dB, 15dB, 20dB)

2.7.4 Optimization of Raptor codes for quasi-static fading channels

Raptor codes are known not to be universal [ES06] on general binary input memoryless

channels other than the BEC, i.e. they cannot approach arbitrarily close the capac-

ity independently of the channel statistic. To address this issue “Generalized Raptor

codes” [PNF06] constructions allow the output degree distribution to be change as the

output symbols are sent over the channel. The authors show with information theo-

retic arguments that their construction has the potential to approach the capacity in a

rate compatible way, nevertheless no explicit construction or optimization methods is

proposed.

However, we will see that “classical” Raptor codes are good candidates to implement

rateless coding, since these can operate close to the instantaneous capacity over a wide

range of channel gains.

A Raptor code is entirely characterized by its output degree distribution. The optimiza-

tion of an output degree distribution arises from the characterization of the decoder.

Our concern in this section is to provide an optimal approach for the design of such
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2 Analysis and Design of Jointly Decoded Raptor Codes

codes for quasi-static fading channels. We define a cost function for the optimization of

the output degree distribution and derive an optimization method that can be stated

as a linear problem.

2.7.4.1 Cost function

We now assume that a system designer wants to guarantee a maximal delay for (1 −
pwait)% of users, which means that any information delay ∆ ≤ ∆∗(pwait) must be

tolerated (see Section 2.7.3). Thus, good codes must operate close to the instantaneous

capacity of the set of channel realizations Λ(pwait), which corresponds to the desired

range of information delays. An output degree distribution satisfying this can be found

as the solution to the following expression

Ωopt(pwait) = arg inf
Ω∈Ξ

sup
a∈Λ(pwait)

R−1(a,Ω)− C−1(a)

C−1(a)
(2.42)

where Ξ defines the ensemble of distributions such that the Belief Propagation (BP)

decoder can converge on the desired range of capacities. In other words, we search in

the class of output degree distributions that converge on the corresponding range of

capacities and minimize the rate overhead, i.e. the gap between the coding rate R and

the instantaneous capacity.

2.7.4.2 Optimization problem statement

Let us now formulate the optimization problem for a quasi-static fading channel. In

this scenario, the encoder sees a channel with random capacity. Hence, Raptor codes

that perform well on such channel must perform simultaneously well over different

BIAWGN channels corresponding to a wide range of capacities. In order to guarantee

the convergence of the decoder for such range of channel capacities [C0(pwait), 1), we

show how to write the IC evolution equations. In section 2.2, we developed a method

that enables to solve the constraint for one given channel capacity. We now rely on

such results to constrain the optimization problem simultaneously for different channel

capacities.

The equations of IC evolution in section 2.2 are only valid for a given value of the

average input symbol degree α, in the distribution ι(x). The α parameter is fixed in

order to deal with a linear problem and it is chosen to minimize the overhead. Moreover,

this parameter represents the average degree of an input symbol and, as the output

symbols are received the input symbols become more connected in the decoding Tanner

graph. More precisely, for a given distribution Ω(x), the quantity α depends on the

operating rate R = Ω′(1)/α, which can also be written as α = α0R
−1 where α0 is

the average degree when R = 1 (i.e. when the number of received output symbols

equals the number of input symbols). If we want to guarantee convergence for different
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2.7 Analysis of Raptor codes on quasi-static fading channels

capacities, we have to account for the fact that the average input degree α varies with

the instantaneous operating rate. To this end, we make the assumption that the Raptor

code operates close to the capacity, i.e R ≈ C. Consequently, given a capacity value

C, the parameter α writes as α = α0C
−1, where α0 becomes the design parameter. By

discretizing the range of capacities [C0, 1) into {Ci} the optimization problem is finally

written as follows:

ωopt(x) = arg min
ω(x)

∑

j

ωj

j
, (2.43)

subject to the constraints:

[C1]
∑

i ωi = 1,

[C2] F (x,Ci) > x ∀x ∈ [0;x0 − δC ] for Ci,

[C3] F (0, Ci) > ε for some ε > 0,

[C4] F
′(0, Ci) > 1.

Similarly to the optimization for the BIAWGN channel, it appears that there is an

optimal value for the parameter α0, i.e. there is a value such that the cost function is

minimized.

2.7.5 Simulation results

We now provide numerical results to analyze the performance of Raptor codes over

quasi-static Rayleigh fading channels under delay constraints. In particular, we opti-

mized an output degree distribution for a quasi-static fading channel with SNR=12dB

and outage probability pwait = 10−4. Fig. 2.29 shows that this leads to a maximum

delay ∆ = 10, or equivalently, a range of capacities equal to [0.1, 1). We optimized an

output degree distribution for this range and ran simulations. The overhead, defined

as the gap to the capacity (right-hand side of equation (2.42)) is computed with IC

evolution. The simulations in Fig. 2.29 show that, for the desired range of capacities,

the optimized distribution operates within 10% of the instantaneous capacity.
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Figure 2.29 – Asymptotic performance, in terms of pwait versus delay, of a Raptor code

optimized for a quasi-static Rayleigh fading channel (SNR=12dB) with perfect CSIR. The-

oretical limits are also reported.
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2.8 Raptor codes with higher order modulations

2.8 Raptor codes with higher order modulations

We first present some simulation results with a 16-QAM modulation for two channels

studied in the previous sections, namely the AWGN channel, and the uncorrelated

Rayleigh fading channel. We do not distinguish between well protected and bad pro-

tected bits, and consider here the average channel seen by the bits at the output of the

demapper. In that case, turbo demapping would bring no performance improvement

with a Gray mapping, and therefore the distributions are optimized for BPSK inputs.

Then, we also study the case where the receiver has only access to a noisy estimate of the

channel. A characterization of channel estimation errors is used in an optimal manner

to derive a consistent measure of information for decoding with imperfect CSI. Then

we show that the optimal consistent measure of information (using channel estimation

accuracy) for decoding with imperfect channel estimation is given by the log-likelihood

ratio (LLR) of the received bit via a composite (more noisy) channel. Finally, we

formalize the problem of decoding with imperfect channel estimation by deriving the

optimal LLRs.

2.8.1 Simulation results with 16-QAM input and AWGN channel

In this section, we consider an AWGN channel with output symbols mapped to 16-

QAM symbols. The channel is of capacity C = 0.5 (Es/N0 = 3.2503). The purpose

of this section is to evaluate how robust the distributions are when considering higher

order modulations. The simulation results in Fig. 2.30 to 2.33 present the perfor-

mance of Raptor codes of information length K = 1024, 2048, 4096 and 8192 input bits

respectively. The output degree distributions are the same as in section 2.4.

Even though the output degree distributions were not designed for high order modula-

tions, the simulation results show that the performance – in terms of FER vs. overhead

– over an AWGN with 16-QAM input alphabet is very similar to the performance over

the BIAWGN channel (Fig. 2.14 to 2.17) In particular, the use of lower rate precodes

is an efficient technique to design Raptor codes that perform well in the error floor

region, with no significant loss in the waterfall region.
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Figure 2.30 – Performance, in terms of FER versus overhead of Raptor codes of size

K = 1024 over an AWGN channel with 16-QAM input. The channel is of capacity C = 0.5
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Figure 2.31 – Performance, in terms of FER versus overhead of Raptor codes of size

K = 2048 over an AWGN channel with 16-QAM input. The channel is of capacity C = 0.5
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Figure 2.32 – Performance, in terms of FER versus overhead of Raptor codes of size

K = 4096 over an AWGN channel with 16-QAM input. The channel is of capacity C = 0.5
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Figure 2.33 – Performance, in terms of FER versus overhead of Raptor codes of size

K = 8192 over an AWGN channel with 16-QAM input. The channel is of capacity C = 0.5
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2.8.2 Simulation results with 16-QAM input and uncorrelated Rayleigh
fading channel

Simulation results in section 2.6.3 showed that for BPSK inputs, Raptor codes have

the same performance over AWGN channel and over an uncorrelated Rayleigh fading

channel. We now consider an uncorrelated Rayleigh fading channel with 16-QAM

inputs. The output degree distributions are the same as in section 2.4. The simulation

in Fig. 2.34 to 2.37 show that with channel inputs in a 16-QAM constellation, Raptor

codes have the same performance on an uncorrelated Rayleigh fading channel than with

an AWGN channel (previous section, Fig. 2.30 to 2.33 )
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Figure 2.34 – Performance, in terms of FER versus overhead of Raptor codes of size

K = 1024, over an uncorrelated Rayleigh fading channel with 16-QAM input. The channel

is of capacity C = 0.5 (Es/N0 = 4.937)
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Figure 2.35 – Performance, in terms of FER versus overhead of Raptor codes of size

K = 2048, over an uncorrelated Rayleigh fading channel with 16-QAM input. The channel

is of capacity C = 0.5 (Es/N0 = 4.937)
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Figure 2.36 – Performance, in terms of FER versus overhead of Raptor codes of size

K = 4096, over an uncorrelated Rayleigh fading channel with 16-QAM input. The channel

is of capacity C = 0.5 (Es/N0 = 4.937)
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Figure 2.37 – Performance, in terms of FER versus overhead of Raptor codes of size

K = 8192, over an uncorrelated Rayleigh fading channel with 16-QAM input. The channel

is of capacity C = 0.5 (Es/N0 = 4.937)
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2.8.3 Decoding Raptor codes with imperfect CSIR

In the previous sections, we assumed that perfect channel knowledge is available at

the receiver. However, this assumption is not longer valid in most of practical wireless

systems. This motivates us to study the design of optimal Raptor codes with imperfect

channel estimation. The main consequence of channel estimation errors is that perfect

coherent demodulation is not possible any more, which can severely affect the system

performance. Note that since it is impossible to perform a perfect demodulation, it is

necessary to use complex input and output alphabets in the channel model.

Let us review models for communications over memoryless channels with complex in-

put and output alphabets. A specific instance of the channel is characterized by the

transition probability density W (y|x,H) = CN (Hx, σ2
Z) with channel state H ∈ C:

Y = HX +N

Channel estimation: The transmitter, before sending the data, can teach the channel

to the receiver by sending a training sequence of NT symbols xT = (xT,1, . . . , xT,NT
)T .

For quasi-static fading, the coherence time of the channel is much longer than the

training time. Moreover, we denote the average energy of the training symbols by

PT = 1
N tr

(
xTx

†
T

)
. This sequence is affected by the channel gain H, allowing the

receiver to perform ML estimation of H from the observed signals yT = HxT + zT

and xT . This yields to Ĥ = H + E , where E denotes the estimation error of variance

σ2
E = SNR−1

T with SNRT = NT PT

σ2
Z

. The receiver only knows the estimate Ĥ and a

characterization of its accuracy in terms of the conditional pdf P
H| bH

. This pdf can be

obtained by using the likelihood function, the pdf W (y|x,H), and PH and is given by:

P
H| bH

= CN (δĤ, δσ2
E), with δ = σ2

H/(σ
2
H + σ2

E). (2.44)

In [PSD07] the authors used the estimation accuracy given by (2.44) to derive a ML

decoder that minimizes the average error probability over all channel estimation errors.

They also show that the mismatched ML decoder is not adapted to imperfect channel

estimation. Furthermore, their decoder achieves the capacity of a composite channel.

These ideas will serve as the basis to address the problem of the mismatched LLR in

Raptor codes. The mismatched LLR simply consists in replacing the unknown channel

gain by its estimate in the standard LLR expression. However, this operation does not

lead to a consistent measure of information, namely the LLR densities do not satisfy the

symmetry condition (see e.g. discussions in [HSM01]). We first review the mismatched

LLR to then derive a new LLR adapted to the channel estimation errors that leads to a

consistent measure of information, which is an important assumption for characterizing

the BP decoder under Gaussian approximation with IC evolution.
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2 Analysis and Design of Jointly Decoded Raptor Codes

2.8.3.1 Mismatched LLRs

For simplicity, the computations are given for QPSK modulation only. The mismatched

log-likelihood ratios, which consists of replacing H by its estimate Ĥ, are computed as

follows:

LM (y, ĥ) = log
W (Yi = y|Xi = 1, H = ĥ)

W (Yi = y|Xi = −1, H = ĥ)
=

4ĥ†y

σ2
Z

. (2.45)

This LLR is complex, and the LLR corresponding the to inphase (I) and quadrature (Q)

branches are respectively given by real(LM ) and imag(LM ). An LLR is said a consistent

measure of information if its conditional density is symmetric [RU01]. For a QPSK

modulation and a quasi-static fading channel, the symmetry condition implies that the

variance Var
(
LM (y, ĥ)|X = 1, Ĥ = ĥ

)
is equal to 4 E

Y |X bH

{
LM (y, ĥ)|X = 1, Ĥ = ĥ

}
.

It is not difficult to compute these quantities:

E
Y |X bH

{
LM (y, ĥ)|X = 1, Ĥ = ĥ

}
=

4 δ|ĥ|2
σ2

Z

,

Var
(
LM (y, ĥ)|X = 1, Ĥ = ĥ

)
=

42 |ĥ|2(σ2
Z + δσ2

E)

(σ2
Z)2

, (2.46)

which shows that in presence of imperfect channel estimation, the mismatched LLR

does not lead to a consistent measure of information.

2.8.3.2 LLRs using channel estimation accuracy

We now adapt the LLRs to the channel estimation errors. To this end, we compute

the log-likelihood ratio using the composite channel obtained by averaging the original

channel W (y|x,H), which depends on the unknown gain H, over the a posterior pdf of

H given Ĥ. After some algebra [PSD07], we obtain:

W̃ (y|x, Ĥ) = CN
(
δĤx, σ2

Z + δσ2
E |x|2

)
, (2.47)

where δ = 1
1+σ2

ǫ
. The averaged channel contains some additional noise related to the

estimation errors. Actually, we can derive the LLR expression corresponding to the

received bits via the composite channel:

Lopt(Yi = y, ĥ) = log
W̃ (Yi = y|Xi = 1, Ĥ = ĥ)

W̃ (Yi = y|Xi = −1, Ĥ = ĥ)
,

=
4 δĥ†y

σ2
Z + δσ2

E
. (2.48)

Hence, the variance and the mean of (2.48) satisfy the symmetry condition:

Var
(
Lopt(y, ĥ)|X = 1, Ĥ = ĥ

)
=

42 δ2|ĥ|2
σ2

Z + δσ2
E

= 4 E
Y |X bH

{
Lopt(y, ĥ)|X = 1, Ĥ = ĥ

}
. (2.49)
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which implies that (2.48) is Gaussian and defines a consistent measure of information.

2.8.3.3 Simulation results
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Figure 2.38 – Performance of Raptor codes with imperfect channel estimation at the

receiver on uncorrelated Rayleigh fading channel with 16-QAM modulation. Channel esti-

mation is performed with NT = 4, 8, 16 pilots. Codes decoded with a mismatched decoder

are labeled ’Mis’ (dashed lines), and codes decoded with the proposed metric are labeled

’Opt’ (solid lines).

In this setting, we consider that the fast fading model is the limit of a fully interleaved

bloc fading model, and that pilot based channel estimation is performed for each bloc.

Fig. 2.38 presents the performance of Raptor codes with information length K = 4096,

with the following parameters for the channel estimation: NT = 4, 8 and 16 pilots.

For the case of NT = 4 pilots, the mismatched decoder is unable to perform decoding,

whereas the decoder that used the proposed metric converges. The convergence occurs

for very large overhead, nevertheless this observation has to be balanced by the fact

that overheads are computed relatively to the channel capacity with perfect CSIR.

Therefore the channel capacity in presence of imperfect channel estimation is lower,

and in that case, the relevant capacity is the estimation induced capacity presented in

[Pia07, PMD]. For the case of NT = 8 pilots, the decoder that used the proposed metric

shows a performance improvement of 1 decade. For the case of NT = 16 pilots, both

decoders exhibit similar performance (the mismatched decoder is slightly degraded)

since with NT = 16 pilots the channel estimation is quite accurate.
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Fig. 2.39 shows the performance of Raptor codes with information length K = 8192,

and 16-QAM input alphabet, over a quasi-static Rayleigh fading channel, in the sce-

narios of: (i) imperfect CSIR by using the mismatched LLRs (expression (2.45)) and

(ii) imperfect CSIR by using the LLRs with channel estimation accuracy (expression

(2.48)). These results indicate that mismatched LLRs are sub-optimal for short train-

ing sequences, and confirmed the adequacy of the improved LLRs. This performance

improvement was obtained without introducing any additional complexity.
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Figure 2.39 – Finite length performance of Raptor codes with imperfect channel estima-

tion at the receiver (NT = 1 training symbol and PT = P ).
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2.9 Summary

In this chapter, we first presented an analytical asymptotic analysis of Raptor codes

over a BIAWGN channel. Based on the analysis, we derived an optimization method

for the design of efficient output degree distributions. The optimization problem is

linear with respect to the coefficients of the output degree distribution and therefore

it can efficiently be solved with linear programming. We analysed the main design

parameters by showing their influence in the optimization process. We showed – with

threshold computations and FER vs. overhead simulations – that even though Raptor

codes are not universal on other channels than the BEC, Raptor code optimized for a

given channel capacity also perform well on a wide range of channel capacities when

joint decoding is considered.

We addressed the issue of finite length design with a rate splitting strategy, and showed

that the use of lower rate precodes (Rp ≃ 0.9) is a valid strategy for designing Raptor

codes that perform well at small to moderate lengths. The rate splitting strategy is also

valid on the BEC. An asymptotic analysis of the joint decoder and the rate splitting

study for the BEC are presented in appendix B

Then, we investigated the extension of the analysis to the uncorrelated Rayleigh fading

channel with perfect CSIR. We showed that with IC evolution, the quantity of interest

in the channel model is the ergodic capacity. Therefore the analysis is not specific to the

BIAWGN, rather the IC evolution analysis is correct for a channel of a given capacity.

Consequently, the optimization method derived for the BIAWGN can be used for the

uncorrelated Rayleigh fading channel, and we showed with threshold computations

and finite length simulations that distributions optimized for a (BIAWGN) channel of

capacity C = 0.5 perform well on an uncorrelated Rayleigh fading channel of capacity

C = 0.5.

The optimization method for the BIAWGN channel served as a basis for the optimiza-

tion of Raptor codes for quasi-static fading channels, which consists in optimizing a

degree distribution that operates close to the channel capacity simultaneously for dif-

ferent channel capacities. We showed that it is possible to constrain the optimization

problem such that convergence of the decoder is enforced simultaneously for different

channel capacities.

Finally, we investigated the behavior of various distributions over higher order modula-

tions. Even though the degree distributions were optimized for BPSK modulation, we

showed with simulation results that they also perform well with higher order modula-

tions, for both the AWGN channel and the uncorrelated Rayleigh fading channel. We

showed that in presence of imperfect CSIR, it is possible to improve the performance

with no additional complexity, by using an appropriate metric for the computation of

the LLR at the output of the channel.
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3

Low-Density Parity-Check

construction algorithms

At small to moderate block lengths, randomly constructed LDPC codes perform rather

poorly because of shorts cycles in the associated Tanner graph. The performance of

a code is closely related to the girth of the graph, which is defined as the size of

the shortest cycle, and therefore, it is necessary to construct graphs with the largest

girth possible. In this chapter, we present some LDPC construction algorithms – both

pseudorandom constructions, and structured constructions – that can be used to design

efficient LDPC (pre)codes for small to moderate block lengths.

In the previous chapter, we presented some finite length simulations of Raptor codes.

The Low-Density Parity-Check (LDPC) were used as precodes were constructed with

an algorithm, namely the RandPEG, that we present in this chapter.

3.1 Introduction

LDPC codes, originally introduced by Gallager [Gal63, Gal62], are a class of linear block

codes described by a sparse parity-check matrix H and can be graphically represented

with a bipartite graph, also called Tanner graph: each line of the matrix is associated

to a constraint node, and each column of the matrix is associated to a variable node;

a variable node i and a check node j are connected by an edge in the Tanner graph iff

Hi,j = 1, i.e iff the is a ‘1’ in the corresponding column and line of the parity-check

matrix.
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3 Low-Density Parity-Check construction algorithms

Since their rediscovery by Tanner [Tan81] and by MacKay [Mac99] LDPC codes have

attracted a lot of attention since they are equipped with an iterative decoding algorithm,

namely the Belief Propagation (BP) decoder, that is asymptotically optimal: in the

limit of infinite codeword length, the BP decoder gives a maximum a posteriori (MAP)

estimation of the transmitted codeword. Moreover, LDPC codes can be optimized to

operate very close the the channel capacity [LMSS01b, RSU01]. We assume here that

the irregularity profile is given and focus on the construction of finite length codes.

Indeed, optimized codes approach capacity only in the asymptotic regime, i.e. only in

the limit of infinite block lengths. In that regime, the concentration theorem [RU01]

ensures that under iterative decoding, the performance of randomly constructed LDPC

codes is very close to the asymptotic behavior of the code ensemble. However, at

finite length, the local tree assumption1 is not valid anymore and consequently BP is a

suboptimal decoding algorithm. Indeed, the cycles in the Tanner graph which introduce

(i) correlation between messages (which give rise to a loss in the waterfall region) (ii)

local structures such as stopping sets [DPT+02] or trapping sets (which give rise to

decoding failures and introduce an error floor phenomenon [DPT+02] [Ric03]). More

complicated structures induce “pseudo codewords” or “near codewords” [MP03], which

are defined as fixed points of the iterative decoder that are not codewords.

Therefore, at small to moderate block lengths, random constructions perform rather

poorly because of shorts cycles in the associated Tanner graph, especially for irregular

codes, because the fraction of variable nodes with a large degree induce many short

cycles. At finite length, the performance of a code is closely related to the girth of the

graph, which is defined as the size of the shortest cycle. The motivation behind having

high girth LDPC codes is twofold. Firstly, the BP decoder tends to MAP decoder and

thus behaves better in the waterfall region. Secondly, an LDPC code with few short

cycles has less chances to exhibit decoding failures caused by pseudo-codewords than

an LDPC code with many short cycles. Therefore, a high girth tends to improve the

performance in the error floor region. Moreover, the importance of constructing graphs

with high girth is particularly important for non-binary (NB) LDPC codes. The BP

decoder and its simplified versions have shown to achieve very good performance on

non-binary GF(q)-LDPC codes with dv = 2 and with high order Galois fields [HE03,

DF05]. For these ultra-sparse codes, it is crucial to focus on the girth properties of the

underlying Tanner graph [PFD07].

Large girths are obtained by suitably constructing the underlying Tanner graph, and

there are two main approaches for the construction of Tanner graphs: pseudorandom

constructions and algebraic constructions. Let us now briefly review the two ap-

proaches.

1The local tree assumption states that the girth of the graph is large enough so that the local

neighborhood of any variable node is a tree (there are no repeated nodes in the subgraph)
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Pseudorandom constructions A pseudorandom construction based on a progressive

edge-growth (PEG) of the graph was proposed in [HEA05], which results in LDPC

codes that have higher girths compared to pre-existing random LDPC code construction

techniques. For the construction of irregular LDPC codes, an Extrinsic Message Degree

(EMD) metric and its approximation metric called Approximate Cycle EMD (ACE)

metric was introduced in [TJVW04a, TJVW04b]. The ACE graph construction consists

in putting the high degree nodes in the short cycles, thus eliminating small cycles

with low EMD, such that much extrinsic information is propagated through these

problematic cycles. The PEG algorithm has been extended to include the ACE metric,

which improves the performance of irregular LDPC codes in the error floor region

[XB04].

Structured constructions First we mention algebraic constructions include Euclidean

Geometry (EG) codes and Projective Geometry (PG) codes [KLF01]. The parity-check

matrices of EG (resp. PG) codes are defined with the points and lines of a euclidean

(resp. projective) geometry over finite fields. A full discussion on EG/PG codes is far

beyond the scope of this chapter, but one interesting property of EG/PG codes is that

they can be put in a cyclic or quasi-cyclic (QC) form, which is a structured construction

of interest. The Tanner graph of such codes is of girth 6 by construction. Some aspects

of the construction of QC LDPC codes will be discussed later in this chapter.

3.2 Randomized Progressive Edge-Growth

In this section, we propose some improvements in the PEG algorithm which greatly

improve the girth properties of the resulting graphs: given a graph size, they increase

the girth g achievable by the algorithm, and when the girth cannot be increased, our

modified algorithm minimizes the number of cycles of length g. As a main illustration,

we focus on regular column-weight two graphs (dv = 2), although our algorithm can

be applied to any graph connectivity. The class of dv = 2 graphs is often used for

non-binary low density parity check codes that can be seen as monopartite graphs: for

a given target girth gt, this new instance of the PEG algorithm, that we call RandPEG,

allows to construct cages, i.e. graphs with the minimal size such that a graph of girth

gt exists, which is the best result one might hope for.

3.2.1 Notations and definitions

A bipartite graph is denoted as (V,E) where V (resp. E) is the set of the vertices

(resp. edges). V = Vc ∪ Vs where Vc is the set of check nodes and Vs the set of symbol

nodes. Let N = |Vs| denote the total number of symbol nodes, which we will refer to

as the size of the graph. When the graph is the Tanner graph of an LDPC code, N is
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3 Low-Density Parity-Check construction algorithms

the codeword length. For a given graph setting, namely a 3-tuple (dv, dc, g), we denote

by N
(dv ,dc)
g the lower bound on N such that a (dv, dc) regular graph of girth g exists.

This lower bound can be easily computed by using the results of [HEA05, lemma 3],

and is known not to be tight when dv = 2, for g ≥ 18 [Big88].

The original PEG algorithm [HEA05] is a procedure for constructing a bipartite graph

in an edge by edge manner, where the selection of each new edge aims at minimizing

the impact on the girth: at each step the local girth is maximized. Let N l
sj

denote the

set of all check nodes reached by a tree spanned from symbol node sj within depth l,

and N̄ l
sj

denote the complementary set in Vc. We use the same definition as in [HEA05]

for the depth. At a given stage of the construction, only a subset of the check nodes

have reached a connectivity of dc, and we call candidates the check nodes in N̄ l
sj

whose

incident edges have not been all assigned. When a particular check node is selected

among the candidates, an edge is added in the graph between the node sj and that

check node.

For each node sj , the first edge is chosen randomly, and the other edges are chosen

in the set N̄ l
sj

, where l is such that N̄ l
sj
6= ∅ and N̄ l+1

sj
= ∅, i.e. among the nodes

that are at the largest depth from the symbol node sj . This maximizes the length

of the cycles created through this new edge. When multiple choices are possible, the

algorithm selects the candidate that has the smallest degree under the current setting.

Selecting a candidate that is at a depth l from node sj creates a cycle of length 2l+ 2.

Even though the original PEG algorithm produces only almost regular graphs, the

construction of strictly regular graphs can be easily enforced by discarding all candidates

where all the edges have already been assigned. In the sequel, we only consider the

construction of regular (dv, dc) graphs, in order to compare to the known bounds for

regular graphs. We emphasize the fact that this limitation concerns only our study,

not the RandPEG algorithm itself.

3.2.2 The RandPEG Algorithm

In this section, we describe our contributions in details. There are basically two dif-

ferences between the original PEG algorithm and the RandPEG algorithm that we

propose: firstly, the way we build and use the spanning tree is different, and secondly,

we introduce an objective function that we use for the edge selection. The RandPEG

algorithm is based on a randomization approach: given a target girth gt, we consider,

at each stage of the construction, the maximum number of possibilities when adding

an edge in a graph, and we use an objective function to discriminate among the nu-

merous edge candidates. Our goal is to actually reach a given target girth gt of the

bipartite graph, when all the edges of the graph have been assigned. Therefore, if at

some point of the construction there is no possibility to add an edge without creating
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3.2 Randomized Progressive Edge-Growth

a short2 cycle, then we consider that the algorithm fails. In that case, all the edges

in the graph are discarded and the algorithm starts from scratch. Similarly to Monte

Carlo approaches, the algorithm runs many times and stores the best graph.

3.2.2.1 Truncated spanning tree

Instead of spanning to the maximal possible depth, we span the tree only up to a

maximal depth lmax. This technique, which defines the nongreedy version of the al-

gorithm [HEA05], is suggested for the construction of long codes where it would be

computationally expensive to build the whole tree. Here, we argue that this is not only

a computational or speed-up enhancement of the algorithm, but that this technique

should be used when one wants to construct a graph that matches the lower bound

N
(dv ,dc)
g . We justify our argument with the following three points.

Diameter argument First, we give a justification on how deep the construction tree

should be spanned, based on a graph argument: for a given value of the target girth

gt, if the graph has minimum size N = N
(dv ,dc)
gt then the diameter of the graph equals

d = gt/2 [TSF01]. Therefore in that case, the tree must be spanned up to a maximal

depth lmax = (gt − 2)/2, so that the diameter is ensured to equal d = gt/2. Indeed, if

at some point the algorithm selects a node in N̄ l
sj

with l > gt, then the condition that

diameter of the graph equals gt/2 cannot hold, and the construction will fail.

The spanning of the tree at a given depth l = (gt − 2)/2 gives a set of candidates for

which we ensure that no cycle smaller than the target girth gt can be created if such a

candidate is selected.

The randomization approach We recall that our goal is to reach a given target girth

gt, when all the edges of the graph have been assigned. By spanning the tree less

deeply, the number of candidates at each step of the algorithm becomes much larger,

and each edge is selected among a very large number of candidates. Thus, the algorithm

is based on a certain amount of randomness in the construction: if at some point the

construction fails, then all the edges are discarded and the procedure restarts from

scratch. This justifies the name of “Randomized PEG”, and ensures that a wide variety

of solutions are explored.

Reduced probability of construction failure When spanning the tree to its maximal

depth, the first cycles that are created by the algorithm are locally optimal in the sense

that they are of the largest possible size. However, as the procedure progresses, the

construction problem becomes too constrained and eventually fails if the target girth

is relatively high compared to the graph parameters. Our extensive tests show that by

2by short cycle, we mean cycles that are shorter than the target girth.
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3 Low-Density Parity-Check construction algorithms

spanning the tree at a lower depth, we create smaller cycles at the beginning of the

procedure and thus the choice of the edge is not locally optimal, but nevertheless the

probability that the algorithm actually terminates is much higher.

3.2.2.2 The objective function

We consider in this section the general case where N ≥ N
(dv ,dc)
g , i.e. when the graph

size N is large enough such that a (dv, dc) graph of girth g may exist. The set of

candidates can be potentially very large, especially at the beginning of the graph con-

struction, and it becomes possible (and necessary) to discriminate among the multiple

candidates.

We describe here the objective function that we used, which minimizes the number of

created cycles. We would like to point out that other objective functions could be used

complementarily: the minimization of other topological structures such as the number

of created stopping sets, trapping sets etc. or the minimization of an ACE metric, as

done in [XB04] for the construction of irregular graphs.

When the construction tree is spanned up to a maximal depth lmax, the objective

function restricts the set of candidates N̄ lmax
sj

, as follows:

1- If there are candidates at depth lmax, then discard all the candidates that are not

exactly at the depth lmax. By doing so, we only create cycles of size exactly lmax, and

ensure that the diameter argument is fulfilled

2- For each candidate cj , compute nbCyclesj , the number of cycles that would be cre-

ated if cj is selected. Discard all candidates that would create more thanminj(nbCyclesj).

3- Compute dc
min, the lowest degree of all remaining candidates. Discard all candidates

with current degree dc > dc
min

At this point, the algorithm randomly samples among the remaining candidates.

3.2.2.3 Refinement for spanning the tree

For a given target girth gt, the diameter argument does not hold anymore for lengths

N such that N
(dv ,dc)
gt < N < N

(dv ,dc)
gt+2 . In that case, the diameter may be larger than

g/2, and we propose an alternative strategy by introducing a gap variable: we span the

tree up to a maximal depth lmax = (gt + gap− 2)/2.

At the beginning of the construction, cycles of size larger than gt + gap are created.

Each time that it is no longer possible to add any edge, we decrease the value of gap,

and therefore allow to create smaller cycles. At some point gap = 0, then we span

the tree only up to a depth l = (gt − 2)/2, and only at this point the algorithm starts

creating cycles of size gt.

This technique, coupled with the objective function described in the previous section,
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allows to minimize the multiplicity of the girth, i.e. the number of cycles length gt. A

typical value of gap = 2 is used for most constructions of regular codes.

Algorithm 3: RandPEG algorithm

Data: gt, N , {(dsj )j=1:N}, wmax, gap

Result: G = (V,E)

w ← 0; /* number of trials for the graph construction */

BEGIN E ←− ∅; gap← 2

for j ← 1 to N do

for k ← 1 to dv do

TRY SpanTree within maximal depth (gt + gap− 2)/2

if N̄ gt+gap
sj = ∅ then

if gap > 0 then
gap = gap− 2

goto try

else

if w < wmax then
w++

goto begin

else
Algorithm FAILS

else

Apply Objective Function (section 3.2.2.2)

Randomly select a candidate: Ek
sj
← edge (sj , cj)

StoreGraph

3.2.3 Performance of the RandPEG algorithm

3.2.3.1 Design of ultra-sparse graphs (dv=2)

For a given graph setting and a given target girth, there exists a minimal size for the

graph such that a graph of girth gt exists, which is often given in terms of a lower

bound. We call minimal graph a graph that has a size that achieves the lower bound.

In Table 3.4, we report the smallest value of N such that the RandPEG algorithm could

construct a regular (2, dc) graph of girth g, for different values of dc and g. When this

value achieves the lower bound N
(2,dc)
g , we indicate so by super-scripting with a star

(∗), thus indicating that the graph is minimal. Otherwise the value of the lower bound

N
(2,dc)
g is super-scripted with parenthesis. Some values are super-scripted with a dag,

which means that the RandPEG was initialized with a tree for these constructions. For

comparison, the value of N such that the standard PEG algorithm could construct the
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corresponding graph is reported in square brackets.

For all values of dc that we tested up to 50, the RandPEG successfully constructs

minimal graphs for target girths g = 6, 8. Moreover, for lower values of dc = 3, 4 the

algorithm successfully constructs graphs of girth up to 16 that achieve the lower bound.

The corresponding graphs can be found on [Dec].

3.2.3.2 Ultra-sparse graphs for NB-LDPC codes
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Figure 3.1 – Performance comparison for two non-binary LDPC codes: two codes whose

underlying Tanner graphs were constructed respectively with the PEG and RandPEG

algorithm are simulated over a BIAWGN channel. The ‘SP59’ label denotes the Sphere

Packing bound of 1959 [Sha59].

We now illustrate the interest of our algorithm for the design of ultra-sparse non-

binary LDPC codes, also called codes non-binary cycle Tanner-graph codes [HE03].

We designed two codes of rate one-half, with (2,4) graphs of size N = 160. For this

graph setting the standard PEG algorithm constructed a graph of girth 12, whereas

the RandPEG constructs a minimal graph of girth 16. For both graphs, the non-binary

coefficients in GF(64) were optimized according to the method described in [PFD07],

and the resulting codes were simulated over a BIAWGN channel with BP decoding.

Frame error rates are estimated with 100 frames in error, with a maximum of 1000

decoding iterations. The simulation results in Fig. 3.1 show that for ultra-sparse non-

binary LDPC codes, a graph with better girth properties performs better in the error

floor region, by inducing better spectrum and minimum distance properties [PFD07]

The cycle distributions are given in the following tables, and illustrate the importance

of the objective function.
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# 12-cycles # 14-cycles # 16-cycles # 18-cycles # 20-cycles

PEG 58 227 495 1152 3044

RandPEG 0 0 1620 0 5184

Table 3.1 – Cycle distribution for (2,4) column-weight two graphs of size N = 160

3.2.3.3 Regular (3,6) codes

The distribution of the stopping/trapping sets determines the behavior of LDPC codes

in the error floor region [DPT+02, SCRV06, Ric03], and by minimizing the girth multi-

plicity, the RandPEG algorithm tends to reduce the number of stopping/trapping sets,

and therefore, we expect the resulting LDPC codes to perform better in the error floor

region. We used the RandPEG algorithm to construct regular (3,6) LDPC codes, of

sizes N = 504 and N = 1008. The cycle distributions are given in the following tables,

and illustrate the importance of the objective function.

# 4-cycles # 6-cycles # 8-cycles

MacKay 169 1312 10052

PEG 0 808 11147

RandPEG 0 449 12027

Table 3.2 – Cycle distribution for (3,6) LDPC codes of size N = 504

# 4-cycles # 6-cycles # 8-cycles

MacKay 178 1297 10082

PEG 0 167 10775

RandPEG 0 31 11223

Table 3.3 – Cycle distribution for (3,6) LDPC codes of size N = 1008

The resulting codes were simulated on a Binary Symmetric Channel (BSC) and decoded

with BP decoding. We compared the PEG and RandPEG constructions to the codes

optimized by MacKay [Mac]. The results presented in 3.2 and 3.3 show that indeed

the minimization of the girth multiplicity improves the performance of LDPC codes in

the error floor region.

3.3 Review of structured LDPC constructions

Quasi-Cyclic codes are well adapted to hardware implementation since they have a

simple description that can be stored with minimum memory requirements. Moreover,

provided that the parity-check matrix is full rank, the generator matrix of a QC LDPC

code can be put in a QC form and in that case QC LDPC codes can be encoded
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Figure 3.2 – Peg/RandPEG comparison: performance of regular (3,6) LDPC codes of

size N = 504 simulated on a BSC channel, and decoded with BP decoding
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Figure 3.3 – Peg/RandPEG comparison: performance of regular (3,6) LDPC codes of

size N = 1008 simulated on a BSC channel, and decoded with BP decoding

in linear time with shift registers [PW72]. Finally, hardware decoders can efficiently

take advantage of the code structure with parallel decoding [LLT+04]. QC-LDPC have

attracted much attention because they are hardware friendly, and most standards that

rely on LDPC codes use QC-LDPC codes. Some examples include DVBS2 [DVB05],
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WiFi IEEE 802.11n [Wif06], WiMax IEEE 802.16e [WiM05], IEEE 802.3an (10BASE-

T) or GSFC-STD-9100 (used by NASA Goddard Space Flight Center) [GSF06]. We

first introduce protographs, and then present QC-LDPC codes as a particular form of

protograph-based LDPC codes. Then we investigate the potential of the RandPEG

algorithm to construct good QC-LDPC codes.

3.3.1 LDPC codes constructed from protographs

Protograph based codes, introduced in [Tho03] are a class of structured LDPC codes

(in opposition with random LDPC codes). A protograph (projected graph) is a very

small bipartite graph with few variable and check nodes, which is associated with a

very small adjacency matrix that can have integer coefficients, because parallel edges

are allowed in the protograph.

An LDPC code can be constructed by lifting the protograph. Lifting a protograph

by a factor m means that each element of the small ardency matrix is replaced by a

m×m matrix: a 0 is replaced by an all-zero m×m matrix, and a ‘1’ is replaced by a

permutation matrix. The lifted graph is also called an m-cover in graph theory. Lifting

the protograph is done in such a way that multiple edges are not allowed.

The protograph describes the structure of the code, and can be used as a detailed

representation of the lifted graph for an asymptotic analysis. Indeed, one important

property of protograph based codes not shared by other classes of irregular codes is

that the local neighborhood of a node is completely determined by the protograph.

Hence, one irregularity profile can have several protograph representations, and several

decoding thresholds associated. In fact, for a given irregularity profile, a protograph

based code is in a subset of the random ensemble code, since interleaver between variable

nodes and check nodes is not random, but constrained by the projected graph.

Moreover, the detailed representation allows to control the connectivity of degree 2

variable nodes, and therefore to design codes with good decoding thresholds and a

minimum distance that grows linearly with the block length. [DJDT05, DDJ06]. Sim-

ilarly, the authors give in [ASRD07] some asymptotic results that allow to determine

whether or not the typical smallest trapping set size grows linearly with codeword

length. The asymptotic results are derived from the finite-length results by letting the

block length go to infinity.

The protograph approach has enabled the design of very efficient rate compatible

codes well adapted to hardware implementation [Dol05] The design of short length

protograph-based codes is addressed in [DDJ07] by designing a protograph with very

low variable node degrees.
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3.3.1.1 Protograph structures

It is possible to impose a particular code structure to the protograph, and various accu-

mulator based structures where proposed: Repeat Accumulate [DJM98], Irregular Re-

peat Accumulate (IRA), introduced in [JKM00] and thoroughly studied in [RGCV04].

IRA protograph based codes are called Structured IRA (S-IRA) codes, and can be

encoded in linear time with respect to the codeword length. It is possible to intro-

duce a second accumulator (Accumulate Accumulate) which results in S-IRAA codes

[LSL+06]. Another structure is to accumulate first, which gives rise to the Accumulate

Repeat Accumulate (ARA) [ADY04a, ADY04b], and a structure with 3 accumulators

was proposed in [DDT04]. Depending on the place of the accumulator, these structures

have the advantage of a lower decoding threshold and/or a lower error floor (due to a

higher minimum distance). Moreover, some structures can be encoded in linear time

with respect to the codeword length. Often, the performance improvements in the

waterfall region (lower threshold) is obtained at the cost of a higher average number

of decoding iterations (slow decoding convergence). The reader is referred to [LSL+06]

and references therein for a detailed presentation of accumulator based structures and

their respective advantages and disadvantages.

3.3.1.2 Optimization of a protograph

The optimization of a protograph can be done by several means. One approach is based

on a simulated annealing algorithm [Tho03, TAD04, ADDT04]. First, the code rate

determines the number of variable nodes and check nodes, and a population of initial

protographs with random edges is generated. For each protograph, edges connect-

ing the vertices of the protograph are randomly added, removed or swapped, and the

corresponding threshold is computed with DE (under Gaussian approximation for com-

plexity issues). This algorithm converges to a protograph with an optimized decoding

threshold.

The second approach for optimizing a protograph based on the multi-edge approach

[RU04], which is discussed in the following section.

3.3.2 Multi-edge LDPC codes

The multi-edge is a detailed representation of an LDPC code. With detailed represen-

tation, it is possible to introduce a fraction of variable nodes of degree one, which has a

positive effect on the decoding threshold3and punctured nodes (hidden variable nodes).

Contrary to irregular LDPC codes, where all edges are statistically equivalent, there

are different edge types in a multi-edge approach: a node of degree d is assigned d

3degree one variable nodes are not possible with random (non structured) LDPC code constructions

since the corresponding codes are not stable
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sockets, and a type (color) is assigned to each socket . Let t denote the total number

of socket types. Each variable (check) node is associated to a vector D of length t, the

i-th element of which is the number of sockets of type i assigned to it, and the type of

a variable (check) node is determined by its vector D.

An example of a multi-edge structure taken from [RU04, Table 8] is presented in Fig.

3.4.

Figure 3.4 – Tanner graph of a multi-edge structure. Unfilled circles represent transmitted

variable nodes, filled circles represent hidden ones, and squares represent parity-check

nodes. There are 6 socket types (colors)

Let the vector D be blue, black, orange, red, purple, green. Then variable nodes in Fig.

3.4 have four types, namely:

{2, 0, 0, 0, 0, 0}, {0, 3, 0, 0, 0, 0} , {0, 0, 3, 2, 1, 0} and {0, 0, 0, 0, 0, 1}. Check nodes

have three types: {0, 0, 3, 0, 0, 1} , {2, 1, 0, 0, 1, 0} and. {2, 2, 0, 1, 0, 0}.
Note that the standard irregular LDPC code ensemble is a particular case of the mul-

tiedge structure when all variable nodes are transmitted over the channel and there is

only one edge type, i.e. any variable node can be connected with any check node when

the random permutation of edges is performed.

The protograph ensemble corresponds to a particular case of multi-edge LDPC ensem-

bles when the node and edge types are determined by nodes and edges in its protograph.

For a given code structure (the type of nodes and number of sockets is given), it is pos-

sible to optimize the proportion of each node type with a multi-edge approach.

3.4 Construction of QC-LDPC codes

A protograph, whether optimized with SA or with a multi-edge approach, must be lifted

to design an LDPC code. When lifting a protograph to obtain an LDPC code, one can

restrict the set of permutation matrices to the set of circulant permutation matrices,
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also called circulants4. The resulting code is then quasi-cyclic [Oka03, Fos04], and have

a very low desciptional complexity compared to randomly lifted codes.

EG/PG codes can be put in quasi-cyclic form. The parity-check matrix of such codes

is square (but not full rank !) and there are many redundant lines. As a consequence,

pseudo distance equals the minimum distance, which is a remarkable property.

In [Fos04], necessary conditions to have a QC-LDPC code of girth 6,8,10,12 are given,

and two different approaches are investigated for the construction of QC-LDPC codes:

a random search approach, and a structured search approach.

3.4.1 Structured search of QC-LDPC codes

In this section, we consider a class of regular QC LDPC codes. We are interested in

constructing QC-LDPC graphs of a given target girth gt. Let (dv, dc) denote a regular

LDPC of row weight dc and column weight dv, and N denote size of the code (codeword

length). Moreover, let m denote the size of the circulant permutation matrix used for

the lifting.

The parity-check matrix H can be written:

H =




I(p1,1) I(p1,1) . . . I(p1,dc)

I(p2,1) I(p2,1) . . . I(p2,dc)
...

. . .
...

I(pdv ,1) I(pdv ,1) . . . I(pdv ,dc)




where Ip denotes a circulant permutation matrix obtained by shifting the identity p

times to the right. Thus, I0 denotes the identity matrix.

In [Fos04], the shifting coefficients pi,j are determined with two different approaches.

The first is random assignment: all the coefficients are assigned at random, until a

graph of girth gt is found. This method not computationally efficient. The second

approach is a structured search, and consists of defining an application p : (i, j)→ pi,j ,

and three explicit structured search applications were proposed.

• pj,l = jq1 + lq2 modm

• pj,l = jl modm

• pj,l = qj
1 + ql

2 modm

3.4.2 Proposed structured search

We propose another structured search function that allows to construct QC-LDPC

codes of girth 8. For all the values of dc that we tested, a column-weight two QC-

4A circulant matrix is a shifted identity matrix
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LDPC graph (i.e. a (2, dc) graph, also called cycle Tanner graph) of girth 8 can be

constructed with the following parameters

• m ≥ dc + 1

• pj,l = (l − j)2

We point out that the value m = dc + 1 matches the lower bound given in [Fos04].

Specifically, it can be shown that (2, dc) graphs lifted with a circulant size m < dc + 1

cannot have girth 12. This means that, similarly to the RandPEG algorithm, this

construction with m = dc + 1 enables to design quasi-cyclic cages.

We used the same structured search to design QC-LDPC codes of girth 12. Only some

values of the circulant size give rise to a graph of girth 12. Such constructions are given

in appendix C.

3.4.3 QC-RandPEG

In [LK04], the authors propose to construct QC-LDPC codes based on a modified

PEG algorithm that adds a quasi-cyclic constraint in the construction algorithm. In

[ADDT04], the authors mention that the lifting of of QC graphs is achieved with

a modified version of the PEG algorithm that they call circulant PEG (cPEG), that

enforces the circulant condition. Similarly, it is possible to use the RandPEG algorithm

to construct QC-LDPC codes. We first discuss the importance of multiple-stage lifting.

3.4.3.1 Multiple-stage lifting

For large graphs, it is important to lift a protograph to the full graph in multiple stages,

that is to say by using the expansion algorithm recursively. Fig. 3.5 shows the parity-

check matrix of a SIRA code lifted in one stage with a lifting factor m = 1024. Fig.

3.6 shows the parity-check matrix of the same SIRA protograph lifted in two stages,

with respective lifting factors m1 = 4 and m2 = 256.

A first lifting will separate parallel edges. Let us now discuss two main arguments that

show the importance of multiple-stage lifting.

Number of configurations With multiple-stage lifting, the number of possible config-

urations is much larger, as pointed out with the following example. The fact that the

number of configurations is large is important for two reasons. First the probability

that a good configuration exists in the set is more important. Second, the probability

that the QC-RandPEG finds a good configuration is more important.

Let N be the number of non zero elements in the protograph matrix counted with

their multiplicity (i.e. the number of circulants to choose for the lifting). Let m =

95



3 Low-Density Parity-Check construction algorithms

Figure 3.5 – SIRA protograph with 1-stage lifting. Lift size m = 1024

Figure 3.6 – SIRA protograph with 2-stage lifting. Total lift size m = 1024 = 4× 256

m1m2 be the lifting parameter. Lifting the SIRA protograph with a single m-lift

gives mN different configurations, because for each lifted bloc, we choose 1 circulant

among m. With double lifting, say a first m1-lift followed by an m2-lift, we have

mN
1 configurations for the first lifting, which gives m

(mN
1 )

2 different configurations after

the second lift. When first lifting is not restricted to circulant permutations, then

the number of configurations is even larger because for each lifted bloc we choose 1

permutation among m1!.

Inevitable cycles It was shown in [Fos04] that when the base matrix has no zero

elements then the maximum girth for such a lifted graph is 12 (i.e. there are 12-cycles

in the lifted graph).

In [KNCS07a, KNCS07b] the authors generalized this result by showing that lifting a

protograph of girth 2g gives rise to a lifted graph of girth 6g, regardless from the shift
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values of the circulants.5 The cycles of length 6g are called inevitable cycles.

With multiple lifting, the first lifting can greatly reduce the number of inevitable cycles.

By lifting a first time, one can design a larger protograph with no 4-cycles, and therefore

the graph for the second lifting is no longer upper bounded by 12 [KNCS07b].

A graph lifted in one stage represented in Fig. 3.5. Graphs with a single lift are all

of girth 8, whereas it was possible to design a graph lifted in two stages of girth 14.

The corresponding graph is represented in Fig. 3.6. Extensive tests showed that a one

stage lifted graphs exhibit a catastrophic behavior, namely the FER in the error floor

is above 102 (!).

The simulation results for the two stage lifted graph are presented in Fig. 3.7. Simu-

lation results given in [LSL+06] are also reported for reference, and is labeled ’cPEG’.

Note that a direct comparison of these simulation results is not completely relevant

since in [LSL+06] the simulation conditions are not given (Decoding algorithm, max-

imum number of iterations). Nevertheless, it appears that the RandPEG is a good

algorithm for lifting protographs.
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Figure 3.7 – FER versus Eb/N0 for the SIRA codes in Fig. 3.6 on a BIAWGN channel

with a Corrected Min Sum decoding with 100 and 1000 maximum decoding iterations.

Results of [LSL+06] are also shown (label ‘cPEG’).

5In [Fos04] the protograph has a girth g = 4 = 2 × 2 and therefore the lifted graph will have

inevitable cycles of length 12 = 6× 2.
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3.5 Summary

In this chapter, we addressed the construction of LDPC graphs. We have presented

an enhanced version of the PEG algorithm, called RandPEG algorithm, based on: 1)

the introduction of a larger amount of randomness in the construction, 2) a different

manner for spanning and using the construction tree of the original PEG algorithm,

and 3) the introduction of an objective function that minimizes the girth multiplicity.

The RandPEG greatly improves the achievable girth for given graph parameters, es-

pecially for column-weight two graphs (dv = 2) where it allows to construct cages, i.e.

graphs with minimal size for a given girth. We showed the usefulness of the RandPEG

algorithm for constructing NB-LDPC codes.

We extended the RandPEG to construct QC-LDPC graph by lifting protographs. Our

simulation results show that the RandPEG algorithm enables to reproduce the results

reported in [LSL+06], where the protographs are lifted with an undocumented algo-

rithm.

Finally, we reported a structured search procedure to construct regular QC column-

weight two of girth 8. Remarkably, this search construction allows to construct cages.
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g\dc 3 4 5 6 7 8 9 10 · · · 50

6 6∗ [6] 10∗ [10] 15∗ [15] 21∗ [21] 28∗ [28] 36∗ [36] 45∗ [45] 55∗ [55] . . . ∗ 1275∗ [1275]

8 9∗ [9] 16∗[20] 25∗ [35] 36∗ [48] 49∗ [70] 64∗ [116] 81∗ [162] 100∗ [230] . . . ∗ 2500∗ [???]

10 15∗ [18] 38(34)[42] 90(65) [110] 189(111) [225] 385(175) [441] 728(260) [812]

12 21∗ [27] 52∗ [104] 105∗† [380] 186∗† [966]

14 36∗ [36] 260 [292]

16 45∗ [72] 160∗† [850]

18 114(69) [150]

20 201(93) [285]

22 447(141) [558]

Table 3.4 – For various values of girth g and various values checknode degree dc, we report the smallest graph size N such that the

RandPEG algorithm could construct a regular (2, dc) graph of girth g. When this value achieves the lower bound N
(2,dc)
g , we indicate

so by super-scripting with a star (∗), thus indicating that the graph is minimal. Otherwise the value of the lower bound N
(2,dc)
g is

super-scripted with parenthesis. Some values are super-scripted with a dag, which means that the RandPEG was initialized with a

tree for these constructions. For comparison, the value of N such that the standard PEG algorithm could construct the corresponding

graph is reported in square brackets.
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Conclusion and perspectives

Conclusions

We first presented an analytical asymptotic analysis of jointly decoded Raptor codes

over a BIAWGN channel, based on Information Content evolution. Based on the anal-

ysis, we derived an optimization method for the design of efficient output degree dis-

tributions, and thoroughly studied the influence of the optimization parameters. The

optimization problem is linear with respect to the coefficients of the output degree dis-

tribution and therefore can efficiently be solved with linear programming. We showed

that even though Raptor codes are not universal on other channels than the BEC, Rap-

tor codes optimized for a given channel capacity also perform well on a wide range of

channel capacities when joint decoding is considered. We also investigated the exten-

sion of the analysis to the uncorrelated Rayleigh fading channel with perfect CSIR. In

our rateless setting, the optimization of Raptor codes for quasi-static fading channels

consists in optimizing a degree distribution that operates close to the channel capac-

ity simultaneously for different channel capacities. We showed that it is possible to

constrain the optimization problem such that convergence of the decoder is enforced

simultaneously for different channel capacities. This allowed us to propose new distri-

butions, which show great robustness to channel variation.

We also investigated the design of efficient finite length Raptor codes. Specifically,

we proposed a rate splitting strategy and showed that the use of lower rate LDPC

precodes (Rp ≃ 0.9) is a valid strategy for designing Raptor codes that perform well

at small to moderate lengths on various channels. In particular, we did not consider

concatenation with Hamming codes for the precode, because these constructions are

specifically designed for the BEC case. Interestingly, our results show that with our
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approach, the use of Hamming codes is not necessary even for the BEC.

Finally, we investigated the behavior of various distributions over higher order modu-

lations. Even though the degree distributions were optimized for BPSK modulation,

we showed with simulation results that they perform well on higher order modulations,

for both the AWGN channel and the uncorrelated Rayleigh fading channel. We showed

that in presence of imperfect CSIR, it is possible to improve the performance with no

additional complexity, by using an appropriate metric for the computation of the LLR

at the output of the channel.

In the second part of this thesis, we proposed the RandPEG algorithm, which is an

enhanced version of the PEG algorithm. The proposed algorithm greatly improves

the girth properties of the resulting graphs: given a fixed graph size, the achievable

girth g is increased, or when the girth cannot be increased, our modified algorithm

minimizes the number of cycles of length g. The RandPEG algorithm was successfully

used to design efficient LDPC (pre)codes for the design of efficient Raptor codes. We

also presented both a structured search procedure and an extension of the RandPEG

algorithm to construct QC-LDPC codes with good girth properties,

Perspectives

Several points constitute interesting perspectives to the work presented in this thesis.

• In the rateless framework proposed in [CM06a], each early successful decoding

means that some extra channel uses become available for the next transmissions,

and the authors show that reliable communication is possible on quasi-static and

bloc fading channels. In that context, it is interesting to see to what extent

carefully optimized Raptor codes constitute an efficient rateless scheme for block

fading channels.

• Extension to the BSC has great potential from a practical point of view. Indeed,

rather that discarding packets with a faulty checksum at the physical/link layer,

the packets could be presented to the above layer, and errors corrected in the

layers above. Therefore, Raptor codes that perform well on a BSC when decoded

with a low complexity decoder (such as the Erasure Decoder) could advanta-

geously be used with a cross layer approach. The optimization for this specific

channel and decoder combination deserves further investigation.

• We have not optimized output degree distributions for high order modulations.

Taking into account the demapper and optimizing specifically for the density

of messages at the demapper output can bring some substantial performance

improvement.

Concerning the design of finite length LDPC codes
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• Even though the RandPEG is very efficient for the design of column-weight two

graphs, it remains strongly suboptimal for the design for graphs with column-

weight dv ≥ 3. An efficient algorithm for the design of dv ≥ 3 graphs with

optimal girth remains a challenge.

• The structured search proposed for the design of QC-LDPC codes has empirically

proved to be efficient for the design of column-weight two graphs of girth 8.

However, we have no mathematical evidence on the conditions under which the

construction indeed gives a graph of girth 8.
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A

Proof of proposition 2.3

Let F be defined by: F = (ψ◦φ), where φ is defined by equation (2.11) x
(l)
v = φ(x

(l−1)
u ):

φ(x) =

dv∑

i=1

ιiJ
(
(i− 1)J−1(x) + τ(x)

)
(A.1)

with

τ(x) = J−1

(
T
( dv∑

i=1

IiJ
(
iJ−1(x)

)))
(A.2)

and ψ is defined by the Check Node message update equation (2.12) x
(l)
u = ψ(x

(l)
v ):

ψ(x) = 1−
dc∑

j=1

ωjJ
(
(j − 1)J−1(1− x) + f0

)
(A.3)

It suffices to prove the following result: limx→0 F
′(x) = ω2αe

−f0/4

First we give mention that J(0) = 0, J ′(0) 6= 0. Moreover, T ′(0) = 0 for an LDPC

precode where ρ2 = 0 which is always true for practical codes, and simple calculus gives

τ ′(0) = 0. First we compute φ′(0):

φ′(x) =

dv∑

i=1

ιi
(
(i− 1)(J−1)′(x) + τ ′(x)

)
J ′[(i− 1)J−1(x)]

lim
x→0

φ′(x) = lim
x→0

dv∑

i=1

ιi(i− 1)
J ′((i− 1)J−1(x))

J ′(J−1(x))
=

dv∑

i=1

ιi(i− 1) = α
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Then, we compute ψ′(0): ψ′(x) =
∑dc

j=1 ωj(j−1)(J−1)′(1−x)J ′[(j−1)J−1(1−x)+f0]

Let µ be defined by µ = µ(x) = (J−1)(1− x). Then, we obtain:

ψ′(x) =

dc∑

j=1

ωj(j − 1)
J ′[(j − 1)µ+ f0]

J ′(µ)

Then, using the following approximation of J ′(µ) for µ given in [RGCV04]: J ′(µ) ∼
log2(e)

√
πe−µ/4

4
√

µ

lim
x→0

ψ′(x) = lim
µ→∞

dc∑

j=1

ωj(j − 1)
J ′[(j − 1)µ+ f0]

J ′(µ)

= lim
µ→∞

dc∑

j=1

ωj(j − 1)

√
µ

(j − 1)µ+ f0
e−

(j−2)µ+f0
4 = ω2e

−f0
4

Finally, φ(0) = 0, and F ′(x) = φ′(x)(ψ′ ◦ φ)(x) gives limx→0 F
′(x) = αω2e

−f0
4

�
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B

Asymptotic analysis of Raptor codes

on the BEC

B.1 Density evolution

Because raptor codes are linear codes and the BEC is a symmetric channel, we can

assume, without loss of generality, that the all-zero codeword has been transmitted.

In that case, the messages on the edges of the decoding graph are 1 and 0, where the

value 0 indicates an erasure: the value is 0 iff the corresponding edge is connected to

an input symbol that has not been recovered.

When the precode is an LDPC code with data node and check edge distributions Λ(x)

and ρ(x), its extrinsic transfer function [Bri01] is given by:

T (x) = 1− Λ
(
1− ρ(x)

)
(B.1)

Similarly to section 2, we assume the reinitialization of the decoder, which is a pes-

simistic assumption because we under-estimate the information provided by the pre-

code. However, this pessimistic assumption is crucial to lead to a linear optimization

problem, and proves sufficient for the design of efficient output degree distributions.

We denote p(l) (resp. q(l) ) the probability that an edge connecting a dynamic check

node to an input symbol (resp. an input symbol to a dynamic check node) carries the

value 1 at the lth decoding iteration. We denote by u(l) the extrinsic information passed

by the LT code to the precode, at the lth decoding iteration. As the input symbols are
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of average degree α, we have:

v(l) = T (u(l)) = T
(
1− e−αq(l−1))

(B.2)

The extrinsic information passed by the precode to the LT code is then v(l) = T (u(l)).

When accounting for the transfer function of the precode, the update rules for the

messages in the Tanner graph can be written as follows:

p(l) = 1− (1− v(l))e−αq(l−1)
(B.3)

1− q(l) = ω(p(l)) (B.4)

q(l) = F (q(l−1)) = ω

(
1− e−αq(l−1)

(
1− T

(
1− e−αq(l−1))))

(B.5)

Combining (B.3), (B.4) and (B.2) gives (B.5), that describes the evolution through one

joint decoding iteration of the probability of erasure at the output of the dynamic check

nodes. Note that for a given distribution ι(x), this expression is linear with respect

to the coefficients of ω(x), which is the distribution that we intend to optimize. We

point out that (B.5) is general since it reduces to the classical sequential decoding case

by setting the extrinsic transfer function to x 7→ T (x) = 0 ∀x ∈ [0; 1], thus assuming

that no information is propagated from the precode to the fountain.

B.2 Fixed point characterization

In a density evolution analysis, the convergence is guaranteed by F (x) > x, and the

convergence continues toward a fixed point of x 7→ F (x). Unfortunately, there are no

trivial solutions for the fixed point of (B.5). However, using a functional analysis, an

upper bound on the fixed point can be given. Replacing q by 1 and using the fact that

T (1) = 1 in (B.5), we obtain:

(B.6)

which means that because x 7→ F (x) is an increasing function, the fixed point is neces-

sarily less or equal than 1.

This result gives some insights why small decoding probability cannot be achieved with

a constant average degree Ω′(1), which is a well known fact [Lub02]. Loosely speaking,

if the distribution is capacity achieving, then we have a posteriori rate Ω′(1)
α = 1. A

decoding error probability δ, becomes arbitrarily small when α → ∞, meaning that

Ω′(1) also grows without bounds.

In fact, it can be shown that the average degree of the output symbols has to grow at

least logarithmically with K, the number of input symbols. More precisely, a reliable

decoding algorithm is a decoding algorithm that can decode K input symbols from
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any N collected output symbols, with an error probability that is at most 1/Kc for

some positive constant c. If the decoding has reached its fixed point, the the fraction

of unrecovered symbols is e−α. The result is then given by the fact that

e−α <
1

Kc
⇐⇒ α > c log(K)

and that

α = (1 + ǫ)Ω′(1)

B.3 Starting condition

At the first iteration, q(0) = 0. Therefore, according to (2.11), p(1) = 0. Reporting this

in (B.5) gives:

q(1) = F (0) = ω1

Lemma B.1. The decoding process can begin iff q(1) > ε, for some arbitrary ε > 0,

which gives:

ω1 > ε (B.7)

Therefore, one must have ω1 > 0 for the decoding process to begin, and ε appears to be

a design parameter that will constrain the optimization problem, ensuring that ω1 6= 0.

In practice, the value of ε can be chosen arbitrarily small.

As an illustration we point out that, for the “Ideal Soliton Distribution” introduced

by Luby [Lub02], Ω1 = 1/K, which is the smallest proportion possible with K input

symbols.

B.4 Lower bound on the edge proportion of degree 2 output

symbols

Following the same approach developed for the BIAWGNC case, we derive the following

lower bound on ω2:

Lemma B.2. For an output degree distribution that is to be capacity achieving, we

have:

ω2 >
1

α
(B.8)

Proof: by derivating x 7→ F (x) defined in (B.5), we get: limx→0 F
′(x, T (.)) = αω2.

Moreover, for a capacity achieving degree distribution, ω1 = 0 [ES06], which means that

F (0) = 0. Then, the convergence condition F (x, T (.)) > x implies that limx→0 F
′(x, T (.)) >

1, which gives the result.
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This inequality can also be written in terms of the node proportion of output symbols

of degree 2: Ω2 >
Ω′(1)
2α . Moreover, for a capacity achieving distribution the code rate

Ω′(1)
α would be equal to one, which gives the well known result: Ω2 ≥ 1

2 for a capacity

achieving distribution.

B.5 Optimization problem statement

The optimization of an output distribution consists in maximizing the a posteriori rate

of the corresponding LT code, i.e. maximizing Ω′(1) =
∑

i Ωii, which is equivalent to

minimizing
∑

i ωi/i. Moreover, according to the previous section, several constraints

must be satisfied.

[C1] Since ω(x) is a probability distribution, its coefficients must sum up to 1. We call

this the proportion constraint C1.

[C2] To ensure the convergence of the iterative process, we must have F (x, T (.)) > x.

However, this inequality cannot hold for each and every value of x: the fixed

point of F (x, T (·)) is smaller than 1. Therefore, we must fix a margin δ > 0 away

from 1, and then by discretizing [0; 1 − δ] and requiring inequality to hold on

the discretization points, we obtain a set of inequalities that need to be satisfied:

they define the convergence constraint C2.

[C3] The starting condition (lemma 2.1) must also be satisfied and defines the starting

constraint C3.

[C4] The edge proportion of output symbols of degree 2 is lower bounded by lemma

B.8, defining the stability constraint C4.

Finally, x 7→ T (x) is defined according to (B.1) for an LDPC code, or could be estimated

with Monte Carlo simulations if another component code is used as a precode. The IC

transfer function T (·) appears in constraint [C2].

For a given value of α, the cost function and the constraints are linear with respect to the

unknown coefficients ωi. Therefore, the optimization of an output degree distribution

can be written as a linear optimization problem that can be efficiently solved with

linear programming. The optimization problem can be stated as follows:

ωopt(x) = arg min
ω(x)

∑

j

ωj

j
(B.9)

subject to the constraints:

[C1] Proportion constraint:
∑

i ωi = 1
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[C2] Convergence constraint: F (x, T (.)) > x ∀x ∈ [0; 1− δ] for some δ > 0

[C3] Starting condition: ω1 > ε for some ε > 0

[C4] Flatness condition: ω2 >
1
α

B.6 Finite length design

B.6.1 “Asymptotic design” for finite length distributions

One might question whether the asymptotic analysis of the joint decoder is of any

interest for finite length design. In the asymtotic regime, i.e. when the codeword

length is infinite, the decoding trajectory in the EXIT chart will fit between the curves

y = x and y = F (xT (·)).
The x→ F (x, σ2, T (·)) characterizes the expectation of the decoder in the asymptotic

regime. In the asymptotic regime, the concentration theorem [LMSS01b] ensures that

the performance of a randomly sampled code converges to the expected performance

as the codeword length increases.

However, the concentration to the expected performance does not hold for the finite

length case, and one must account for a some variance in the decoding trajectories.

Following the steps of [Sho06], we use the following convergence constraint in the opti-

mization problem for finite length:

[C2] Convergence constraint:

F (x, σ2, T (.)) > x+
c

K

√
1− x ∀x ∈ [0;x0 − δ] for some δ > 0

B.6.2 Simulation results

We optimized output degree distributions for 4 different precodes with different rates.

We restricted ourselves to regular LDPC precodes because for high rates, regular codes

are known to have good thresholds, close to the irregular thresholds.

Figures B.6.2, B.6.2, B.6.2 and B.6.2 show simulation results for Raptor codes of length

K = 1024, 2048, 4096 and 8192 respectively, constructed with precodes described in

section 2.4.2.

In fact, according to the cycle spectrum given in section 2.4.2, it appears that all

curves that exhibit an error floor are associated with a precode with cycles of length

4. This shows that as long as joint optimization using the precode transfer function is

performed, a lower rate precode does not impact the performance of the Raptor code

in the waterfall region. Note hat none of our simulations with the lowest precode rate

Rp = 0.9 show error floors, despite the fact that we do not use Hamming codes.
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(3,XX) LDPC precoded Raptor codes over BEC (K=1024)
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(3,80) − R=0.9625

Figure B.1 – Performance over a BEC of LDPC precoded Raptor codes of size K = 1024.

Only the lowest considered rate R = 0.9 shows good performance. For all other precode

rates, the code exhibits an error floor behavior.
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Figure B.2 – Performance over a BEC of LDPC precoded Raptor codes of size K = 2048.

The lowest rates (R = 0.9 and R = 0.925) show good performance, whereas the Raptor

codes with precodes of higher rates exhibit an error floor.
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Figure B.3 – Performance over a BEC of LDPC precoded Raptor codes of size K = 4096.

Only the precode of highest rate R = 0.9625 exhibit an error floor behavior
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Figure B.4 – Performance over a BEC of LDPC precoded Raptor codes of size K = 8192.

For K = 8192, all precodes are of girth 6, the corresponding Raptor codes have similar

performance
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C

Structured constructions of (2, dc) QC-LDPC codes

of girth 12

We use the same notations as in section 3.4.1. Let (dv, dc) denote a regular LDPC

of row weight dc and column weight dv, and N denote the total length of the code.

Moreover, m denotes the size of the circulant permutation matrix used to construct a

QC-LDPC code.

Let G(dv ,dc)
g denote the lower bound on N such that a (dv, dc) code of girth g exists.

The bound is computed according to [HEA05]. The following design parameters where

found to construct column-weight two QC-LDPC codes of girth 12. The corresponding

construction parameters are graphically represented in Fig. C.1.

(2, 3) codes

The bounds are G(2,3)
12 = 21 and G(2,4)

14 = 33.

N = 21 (m = 7) and pj,l = (i+ j)27,28

N = 24 (m = 8) and pj,l = 0 if j = 0, l otherwise (∀m = 8− 20)

N = 27 (m = 9) and pj,l = (l + j){23,25,26}

N = 30 (m = 10) and pj,l = (l + j){23,26,27,29,31}

N = 33 (m = 11) and pj,l = (l + j){7,9,17,19,25−28,32−34} or (i− j)4,6,8,10,16,18,20,22,28,30

N = 36 (m = 12) and pj,l = (l + j){24,26,28−31}

N = 39 (m = 13) and pj,l = (l + j){3−5,7−9,11,15−17,19−21,23,26,29−31}

or (i− j)4,6,8,10,16,18,20,22,28,30
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C Structured constructions of (2, dc) QC-LDPC codes of girth 12

(2, 4) codes

The bounds are G(2,4)
12 = 52 and G(2,4)

14 = 106.

N = 52 (m = 13) and pj,l = (l + j)7,19

N = 60 (m = 15) and pj,l = 0 if j = 0, l2 otherwise

N = 68 (m = 17) and pj,l = (l + j)4,15,20,21 or (l − j)6,12,22,28

N = 76 (m = 19) and pj,l = (l − j)14 or (i+ j)17,21

N = 80 (m = 20) and pj,l = (i+ j)26

N = 84 (m = 21) and pj,l = 0 if j = 0, l{3,4} otherwise, or (i− j)4,10,16,22,28

N = 88 (m = 22) and pj,l = 0 if j = 0, l{2,3} otherwise

N = 92 (m = 23) and pj,l = (l + j){3,5,6,10,20,21,26,30} or (i− j)4,6,10,14,16,20,26,28

N = 100 (m = 25) and pj,l = (l + j){3,7,11,26}

N = 104 (m = 26) and pj,l = 0 if j = 0, l{2,3} otherwise or (i+ j)7,19,27,31

N = 108 (m = 27) and pj,l = 0 if j = 0, l2 otherwise or (i− j)4,14,16,22 or (i+ j)24

N = 116 (m = 29) and pj,l = (l + j){3,5,6,9,12,13,18,19}

N = 172 (m = 43) and pj,l = (l + j){3,4,7,8,9,12,16,17,18,19}

N = 212 (m = 53) and pj,l = (l + j){3,4,5,7,8,9,10,12,14,16,20}

(2, 5) codes

Bounds : G(2,5)
12 = 105 = 21× 5 and G(2,5)

14 = 255.

Tested parameters : (i[+−]j)q for q = 2 : 31 and m = 21 : 51

N = 115 (m = 23) and pj,l = (l − j)28 or (l + j)10

N = 125 (m = 25) and pj,l = (l + j)11

N = 145 (m = 29) and pj,l = (l + j)9

N = 155 (m = 31) and pj,l = (l + j)3,5

N = 165 (m = 33) and pj,l = (l − j)28
N = 175 (m = 35) and pj,l = (l + j)3,15

N = 185 (m = 37) and pj,l = (l − j)4,14,22 or (l + j)3,6

N = 195 (m = 39) and pj,l = (l + j)19,21

N = 205 (m = 41) and pj,l = (l − j)26 or (l + j)3,8

N = 215 (m = 43) and pj,l = (l − j)18,26 or (l + j)3

N = 220 (m = 44) and pj,l = (l + j)27

N = 225 (m = 45) and pj,l = (l + j)22

N = 230 (m = 46) and pj,l = (l − j)28 or (l + j)10,20,24

N = 235 (m = 47) and pj,l = (l − j)6,12,16,22,28 or (l + j)3,16,17,20
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N = 245 (m = 49) and pj,l = (l − j)4,8,16,20,26,28 or (l + j)3,9,16

N = 250 (m = 50) and pj,l = (l + j)11,23

(2, 6) codes

Bounds : G(2,6)
12 = 186 = 31× 6 and G(2,6)

14 = 561.

Tested parameters : (i+ /− j)q for q = 2 : 31 and m = 21 : 74

N = 222 (m = 37)) and pj,l = (l + j)16

N = 246 (m = 41) and pj,l = (l + j)8

N = 282 (m = 47) and pj,l = (l − j)16
N = 342 (m = 57) and pj,l = (l − j)14
N = 354 (m = 59) and pj,l = (l − j)10
N = 366 (m = 61) and pj,l = (l + j)7

N = 378 (m = 63) and pj,l = (l + j)22

N = 390 (m = 65) and pj,l = (l + j)19

N = 402 (m = 67) and pj,l = (l + j)8,9,13 or (i− j)4,24

N = 408 (m = 68) and pj,l = (l − j)28
N = 414 (m = 69) and pj,l = (l + j)8 or (i− j)18
N = 420 (m = 70) and pj,l = (l − j)28
N = 426 (m = 71) and pj,l = (l + j)4,18 or (i− j)6
N = 426 (m = 73) and pj,l = (l + j)7,15 or (i− j)22
N = 432 (m = 74) and pj,l = (l + j)16

(2, 7) codes

Bounds : G(2,7)
12 = 301 = 43× 7 and G(2,7)

14 = 1057.

Tested parameters : (i+ /− j)q for q = 2 : 31 and m = 43 : 75

N = 483 (m = 69)) and pj,l = (l − j)18

(2, 8) codes

Bounds : G(2,8)
12 = 456 and G(2,8)

14 = 1828.

N = 744 (m = 93) and pj,l = 0 if j = 0, l7 otherwise

N = 944 (m = 118) and pj,l = 0 if j = 0, l7 otherwise
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C Structured constructions of (2, dc) QC-LDPC codes of girth 12

N = 984 (m = 123) and pj,l = 0 if j = 0, l3 otherwise

N = 1016 (m = 127) and pj,l = (l − j)22 + 7jl

N = 1048 (m = 131) and pj,l = (l + j)16

N = 1096 (m = 137) and pj,l = (l − j)14
N = 1112 (m = 139) and pj,l = (l + j)9

(2, 9) codes

Bounds : G(2,9)
12 = 657 = 73× 9 and G(2,7)

14 = 2961.

Tested parameters : (i[+−]j)q for q = 2 : 31 and m = 73 : 185

N = 1629 (m = 181) and pj,l = (l + j)13

Girth = 8/10

N = 1395 (m = 155) and pj,l = (l + j)14

(2, 10) codes

Bounds : G(2,10)
12 = 910 and G(2,10)

14 = 4555.

g = 8/10 ∀p and pj,l = 0 if j = 0, l2 otherwise

N = 2830 (m = 283) and pj,l = (l + j)11 or (l + j)15

118



3 4 5 6 7 8 9 10 11 12
10

1

10
2

10
3

10
4

d
c

N
 (

co
de

w
or

d 
le

ng
th

)

QC graphs of girth 12

 

 

girth 12 lower bound

girth 14 lower bound

Figure C.1 – For each value of dc we plot the graph size for which we found constructions

cycle graphs (2, dc) of girth 12 with the structured search procedure. The lower bound on
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14 ) such that graphs of girth 12 (resp. 14) exist is plotted
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