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Abstract

This thesis deals with the problem of estimating the probability of failure of a

system from computer simulations. When only an expensive-to-simulate model of

the system is available, the budget for simulations is usually severely limited, which

is incompatible with the use of classical Monte Carlo methods. In fact, estimating a

small probability of failure with very few simulations, as required in some complex

industrial problems, is a particularly difficult topic. A classical approach consists

in replacing the expensive-to-simulate model with a surrogate model that will use

little computer resources. Using such a surrogate model, two operations can be

achieved. The first operation consists in choosing a number, as small as possible,

of simulations to learn the regions in the parameter space of the system that will

lead to a failure of the system. The second operation is about constructing good

estimators of the probability of failure. The contributions in this thesis consist of

two parts. First, we derive SUR (stepwise uncertainty reduction) strategies from

a Bayesian-theoretic formulation of the problem of estimating a probability of fail-

ure. Second, we propose a new algorithm, called Bayesian Subset Simulation, that

takes the best from the Subset Simulation algorithm and from sequential Bayesian

methods based on Gaussian process modeling. The new strategies are supported

by numerical results from several benchmark examples in reliability analysis. The

methods proposed show good performances compared to methods of the literature.

Keywords: Computer experiments; Reliability analysis; Probability of failure;

Gaussian process model; SUR strategy; Subset Simulation

Résumé

Cette thèse aborde le problème de l’estimation de la probabilité de défaillance

d’un système à partir de simulations informatiques. Lorsqu’on dispose seulement

d’un modèle du système coûteux à simuler, le budget de simulations est générale-

ment très limité, ce qui est incompatible avec l’utilisation de méthodes Monte Carlo

classiques. En fait, l’estimation d’une petite probabilité de défaillance à partir de

simulations très coûteuses, comme on peut le rencontrer dans certains problèmes in-

dustriels complexes, est un sujet particulièrement difficile. Une approche classique

consiste à remplacer le modèle coûteux à simuler par un modèle de substitution
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nécessitant de faibles ressources informatiques. A partir d’un tel modèle de sub-

stitution, deux opérations peuvent être réalisées. La première opération consiste

à choisir des simulations, en nombre aussi petit que possible, pour apprendre les

régions de l’espace des paramètres du système qui conduisent à une défaillance du

système. La deuxième opération consiste à construire de bons estimateurs de la

probabilité de défaillance. Cette thèse propose deux contributions. Premièrement,

nous proposons des stratégies de type SUR (Stepwise Uncertainty Reduction) à

partir d’une formulation bayésienne du problème d’estimation d’une probabilité de

défaillance. Deuxièmement, nous proposons un nouvel algorithme, appelé Bayesian

Subset Simulation, qui prend le meilleur de l’algorithme Subset Simulation et des

approches séquentielles bayésiennes utilisant la modélisation du système par proces-

sus gaussiens. Ces nouveaux algorithmes sont illustrés par des résultats numériques

concernant plusieurs exemples de référence dans la littérature de la fiabilité. Les

méthodes proposées montrent de bonnes performances par rapport aux méthodes

concurrentes.

Mots-clés: Simulation; Analyse de fiabilité; Probabilité de défaillance; Pro-

cessus gaussien; Stratégie SUR; Simulation de sous-ensembles
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Chapter 1

Introduction

1.1 Context

1.1.1 Reliability analysis with numerical simulations

In engineering, the design of a system has to take into account the fact that some

design parameters are subject to variations during manufacturing and that the

conditions of operation of the system are not necessarily known in advance. The

sources of uncertainty may affect the safety of the system. Reliability analysis aims

at quantifying the chance that a system encounters a dangerous situation and the

main problem addressed in this domain is that of estimating the probability of failure

of a system.

Reliability analysis has been intensively explored in many domains, such as

safety studies for building structures (Schueremans, 2001), dam safety analy-

sis (Salmon and Hartford, 1995), seismic safety studies for nuclear power plants

(Kennedy et al., 1980), automobile safety designs (Zhang and Liu, 2002), etc. As

an example, consider the problem of testing car safety in case of a crash. To assess

the deformation of the structure of a car, engineers use complex physical models,

which are implemented under the form of resource-consuming computer programs.

Generally speaking, numerical simulations make it possible to assess the perfor-

mance of a system for a particular configuration of design parameters and conditions

of use of the system. One of the simplest approach to estimate the probability of

failure of a system is to use a Monte Carlo approach which consists in doing many

simulations for different design parameters and conditions of operation and approxi-

mating the probability of failure by the number of observed failures over the number

of simulations. However, when simulations are time-consuming, the total number

of simulations that can be used to assess the safety of a system can be very limited,

which prevents us from using a crude Monte Carlo approach.
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Figure 1.1: Black box view of a system.

1.1.2 Black box view of a system

In this work, we consider a system as a black box which has inputs and outputs.

In other words, we are “blind” to the internals of a system. The only concern is

the knowledge of how much the performance of the system changes when input

variables vary.

In order to introduce some notations, consider Figure 1.1. The input vector of

the system consists of two parts:

- the controllable factors xcon, also called design variables or design factors,

which are the parameters that the designer of a system can adjust to optimize

its performances.

- the environmental factors xenv, which cannot be controlled by the designer

and correspond to the operating conditions of the system and manufacturing

errors, for instance.

In what follows, we will focus on the environmental factors xenv and consider

the controllable factors xcon as fixed by the designer. To simplify our notations,

we denote by x the vector of environmental factors, which is assumed to take its

values in a set X ⊆ Rd. The output vector y denotes the quantities of interest

for the designer. For example, y can be a vector of numerical values quantifying

the performances or the cost of a particular design. In this work, we will only

investigate the cases where y is a scalar, and we will assume that the black box of

Figure 1.1 is a deterministic function f which maps the input variables to a scalar

performance or a cost.
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1.2 Problem statement

1.2.1 Probability of failure

Let f : X → R be a function which corresponds to a performance or a cost of the

system. To account for our uncertainty about the actual conditions under which a

system will operate during its life, we choose a probability distribution PX over the

factor space X. Note that choosing such a distribution PX can be a difficult task in

practice, but we consider that this issue is beyond the scope of our work. We will say

that a failure event happens when f exceeds a prescribed value. Mathematically,

the failure event is a set of points Γ written as

Γ = {x ∈ X : f(x) > u}, (1.1)

where u ∈ R is a threshold determined from the design requirements.

Given f , a probability distribution PX, which is assumed to have a probability

density function pX, and a threshold u, the probability of failure of the system can

be written as

α = PX(Γ)

=
∫

Γ
pX(x)dx

=
∫

X

1Γ(x)pX(x)dx, (1.2)

where 1Γ is the indicator function of Γ which takes value one if x ∈ Γ and zero

if x /∈ Γ.

Figure 1.2 illustrates the notion of probability of failure in a one dimensional

case. The failure region is indicated in shadow areas. In higher dimension, the

shape of Γ can be extremely complex.

The probability of failure in (1.2) is a multiple integral. When the input space

is high-dimensional, obtaining a numerical approximation of α becomes non-trivial.

1.2.2 Designing computer experiments to estimate α

This thesis deals with the problem of obtaining good approximations of α. Any

practical procedure to obtain a numerical approximation of α will be based on some

evaluations of the function f , which determines Γ. We often talk about choosing

a design of experiments, since each evaluation of f can be seen as an experiment.

Moreover, since evaluating f corresponds to running a computer program, we speak
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Figure 1.2: Illustration of a probability of failure in one dimension.

of computer experiments (see, e.g., Currin et al., 1991; Sacks et al., 1989; Santner

et al., 2003a; Welch et al., 1992). When computer experiments are expensive (be-

cause they are resource-consuming), it becomes very important to choose a good

design of experiments and to spend the budget of evaluations carefully in order to

obtain a satisfactory approximation.

Moreover, we can say heuristically that a good approximation procedure should

make evaluations in the neighborhood of Γ (otherwise, the location, the shape, and

above all the volume of the set, cannot be assessed). Looking at Figure 1.3, a bad

strategy would consist in choosing all evaluation points outside of Γ. If a Monte

Carlo method were used in this case, the estimated probability of failure would be

equal to zero.

As we see, the design of experiments plays a critical role to obtain satisfactory

probability of failure estimations. There exists two major categories: non adaptive

designs, and adaptive designs (also called sequential strategies). Sequential strate-

gies try to build the design of experiment by adaptively choosing the experiments

as a function of previous information. Typically, a new point is chosen to max-
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Γ

X

Figure 1.3: Illustration of Γ and input X.

imize/minimize some sampling criterion that represents the interest of making a

new evaluation for a given estimation objective. For instance, Sacks et al. (1989)

gives a sequential strategy to obtain a good approximation of a function from point-

wise evaluations. Jones et al. (1998) proposes a sequential strategy called EGO for

estimating the global optimum of a function.

The objective of this manuscript is twofold: 1) to provide a synthetic view about

sequential strategies aiming at solving the problem of estimating a probability of

failure; 2) to propose a new sampling strategy to estimate small probabilities of

failure.

1.3 Outline of the dissertation

This thesis is organized as follows:

Chapter 2 gives an overview of reliability methods that are available in litera-

ture. The state of the art of reliability methods is first reviewed from the point view

of probabilistic estimation. Among those approaches, variance reduction-based esti-

mation methods have obviously gained a lot interest in the past decades, especially,

importance sampling techniques have been very popular tools in reliability analysis.

The emphasis of this thesis however is on methods using multilevel dividing tech-

nique, such as Subset Simulation and Sequential Monte Carlo algorithms. These

techniques aim at estimating small probabilities of failure. However, the number of

evaluations of the performance function remains still quite high for those methods.

Global approximating methods, especially the estimation based on the Gaussian

processes modeling, are then investigated for the sake of efficiency.

Chapter 3 presents a synthetic viewpoint on the sequential strategies based

on a Gaussian process prior model and kriging predictor for the probability of fail-
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ure estimation when the corresponding performance function under consideration

is expensive-to-evaluate. This chapter starts with introducing an optimal strat-

egy for estimating a probability of failure, which is developed from a Bayesian

decision-theoretic framework aiming at minimizing a Bayesian risk. Realizing that

this optimal strategy is unable to be solved by computer programming, it focuses

on deriving several versions of sub-optimal strategies called stepwise uncertainty

reduction (SUR) strategies. The idea is to substitute the exact Bayesian risk with

an approximated risk which reflects the information gained from a new evaluation

about the probability of failure estimation. The new strategies are then compared

with other strategies in literature, such as the target IMSE criterion and criteria

based on the marginal distribution. Those strategies are eventually evaluated on

several numerical experiments.

In Chapter 4, we propose a new algorithm called Bayesian Subset Simulation,

which is derived from the original Subset Simulation. The goal is to estimate a

small probability of failure of a system smaller than 10−6. Subset Simulation has

been proved to be very efficient with a significant decreased number of evaluations

to achieve the estimation of such a small probability of failure. However, due to the

application of Monte Carlo sampling on the performance function, it still requires

thousands of evaluations. A natural solution is to substitute the performance func-

tion with a surrogate model. In this chapter, an original idea is given to improve the

efficiency of Subset Simulation algorithm, which combines the advantages of Subset

Simulation and kriging prediction technique. Starting with reviewing the original

Subset Simulation algorithm, it builds a Bayesian estimator and reformulates the

original formula for calculating probabilities of failure. A detailed algorithm is given

as well as some implementation issues. The effectiveness of this new algorithm is

illustrated on three benchmark examples.

Finally, main conclusions and achievements, as well as perspectives for future

research, are given in Chapter 5.
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2.1 Methods for estimating a probability of failure

Many people from different backgrounds have developed methods to estimate a

probability of failure. We sort them into three major categories, represented in

Figure 2.1:

- Geometric approximations of the failure region;

- Monte Carlo methods;

- Global approximations of f (surrogate models).

The purpose of this section is to provide an overview of existing methods in these

categories. Moreover, because our main contribution is based on a Gaussian pro-

cess (GP) approach, we focus on this category of methods in Section 2.4.4 (see

Figure 2.2).

2.2 Estimation based on geometrical approximations

2.2.1 General principles

This category of methods geometrically approximate the contour of the failure re-

gion Γ. This technique has been used in many domains. For instance, it was widely

used in structural safety (see, e.g., Madsen et al., 1986), and to assess the yield of

manufacturing of electronic circuits (see, e.g., De Gyvez and Pradhan, 1998). The

idea consists in choosing a set Γ̂ with a simple geometric shape to approximate the

failure region Γ. An approximation of the probability of failure can then be written

as

α̂Geo =
∫

Γ̂
pX(x)dx =

∫

X

1
x∈Γ̂

pX(x)dx. (2.1)

The estimator in (2.1) can then be computed using various techniques (for in-

stance, using Monte Carlo method). Once Γ̂ is determined, there is no need to

evaluate the performance function f . Therefore, the total number of evaluations

of f is equal to the number of evaluations to determine Γ̂.

There are several examples of methods for region approximation in the litera-

ture. FORM/SORM (see, e.g., Breitung, 1984; Hohenbichler et al., 1987) used a

hyper-plane or a paraboloid to approximate the limit state function in the standard

normal space, Abdel-Malek and Hassan (1991) proposed to generate a sequence of
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Reliability methods

Simple MC method

Directional Sampling (DS)

Most Probable Point (MPP) based

Variance reduction

Stratified Sampling

Sequential MC methods
Subset Simulation

Importance Sampling (IS)

Surrogate models

Neural networks

Support vector machine

Gaussian Process based methods

Polynomial response surface

FORM / SORM
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Geometric approximations

Latin Hypercube Sampling (LHS)

MC methods

Figure 2.1: Summary of reliability methods in literature.
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Figure 2.2: Summary of Gaussian process based methods.

ellipsoids of decreasing volume to approach Γ, Zhang and Styblinski (1995) intro-

duced a radial exploration approach, Ogrodzki and Styblinski (1980) used orthog-

onal search. Figure 2.3 shows examples of such approximation techniques. Notice

that the approximations in Figure 2.3(a) and 2.3(b) will lead to an over-estimation

of α, while in Figure 2.3(c) and 2.3(d) will result in an under-estimation of α.

Clearly, the success of this type of methods strongly depends on how close Γ̂ is

to Γ, which also indicates that we need to have some prior information about the

failure domain. If the failure region is very complex, or if Γ is not connected, the

approximation will become non-trivial or even wrong. In addition, these techniques

do not give information about the error of approximation.

In the next section, we will recall one of the most classical geometrical approx-

imation methods in literature, namely the first-order and second-order reliability

methods.

2.2.2 An example of geometrical approximation: FORM/SORM

methods

FORM and SORM stand for First Order Reliability Method and Second Order

Reliability Method.
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Γ

Γ̂

(a) Sequential ellipsoid approaching

Γ

Γ̂

(b) Outer approximation

Γ
Γ̂

(c) Radial exploration

Γ Γ̂

(d) Orthogonal searching

Figure 2.3: Examples of failure region approximation.

Definition 1. Let f be a real-valued function defined on a factor space X, and u ∈
R a threshold, such that a failure happens whenever f(x) > u. Then the func-

tion G = u − f is called the limit state function for the function f w.r.t. the

threshold u.

The classical point of view is to say that the limit state surface divides the factor

space into “safe” and “unsafe” (failure) regions. Consequently, the probability of

failure can be written as

α = PX(G(x) < 0) =
∫

G(x)<0
pX(x)dx, (2.2)

where pX is the probability density function as mentioned in (1.2).

FORM/SORM have four steps:

1. Transform the input space. Map the probability distribution of the in-
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put variables PX into a standard normal distribution1 by a transformation

operator T , which is a diffeomorphism from X to the d-dimensional stan-

dard normal space V (see, e.g., Hasofer and Lind, 1973; Lebrun and Dutfoy,

2009a,b; Nataf, 1962; Rosenblatt, 1952, and the references therein).

Correspondingly, we have the transformed limit state function G which is

defined by

G(v) = G(T −1(v)), ∀v ∈ V. (2.3)

Then, the probability of failure α can be rewritten as

α = PV(G(v) < 0) =
∫

V

1G(v)<0pV(v)dv, (2.4)

where pV is the standard normal density function, which is invariant by ro-

tation (this property indicates that pV is only a function of ||v||, where || · ||
denotes the euclidean distance).

Figure 2.4 shows the transformation from the original input distribution PX

to the distribution PV.

Integration region

Joint distribution

x1

x
2

G(x) = 0 G(x) > 0

G(x) < 0

(a)

T=⇒
−4 −2 0 2 4

−4

−2

0

2

4

Integration region
Isodensity contours

v1

v 2

G(v) = 0

G(v) < 0

G(v) > 0

(b)

Figure 2.4: Transform the input factors from X into the standard normal space V.

2. Search for the Most Probable Point (MPP). Let v∗ be the Most Probable

Point (MPP) on the limit state surface which is the nearest point to the origin

in the standard space V such that G(v∗) = 0. The distance β between the

1the input variables are assumed to be uncorrelated with N (0, 1) marginal distribution
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MPP and the origin of the standard space is called reliability index (see, e.g.,

Bjerager, 1990).

The tangent of the limit state surface at the MPP is orthogonal to the line

going from the origin to the MPP. Notice also that the MPP has a maxi-

mum probability density on the curve G(v) = 0. Figure 2.5(a) shows the

MPP and reliability index and Figure 2.5(b) shows the maximum probability

distribution density at the MPP.

−4 −2 0 2 4
−4

−2

0

2

4

Integration region

MPP

Isodensity
contours

Linearized surface

v1

v 2

G(v) = 0

G(v) < 0

G(v) > 0

β

(a)

MPP

v1

v2

G(v) = 0

PV

(b)

Figure 2.5: Left: The Most Probable Point and its corresponding reliability index;

Right: the probability distribution density at MPP.

Consequently, finding the MPP v∗ is a constrained optimization problem:

v∗ = arg min
v
||v||, (2.5)

subjected to the constraint

G(v) = 0.

There exists several optimization algorithms to solve (2.5). Among the most

used ones is a version of the gradient projection algorithm by Hasofer and

Lind (1973); Rackwitz and Flessler (1978).

3. Approximate the surface of the limit state function. Next we need to

approximate the limit state surface G(v) = 0 with a tangent surface at the
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MPP

FORM

SORM

0

β

v1

v2 G(v) = 0

Figure 2.6: Approximation of the limit state surface to the FORM and SORM.

point v∗. In the case of FORM, the tangent surface is a hyper-plane, while in

the case of SORM, a paraboloid is used (see Figure 2.6).

In general, SORM is more accurate than FORM because it has a higher order

of approximation.

4. Calculate the probability of failure. The approximation of the probabil-

ity of failure by FORM is

α̂F ORM = Φ(−β), (2.6)

where Φ(·) is the cumulative distribution function of the normal distribution.

Concerning SORM, the probability of failure is approximated using functions

of β and the curvature of the tangent surface at the MPP (see, e.g., Breitung,

1984; Hohenbichler et al., 1987; Tvedt, 1988).

Limit of the SORM/SORM approximations. The non-normal (X−space)

to normal transformation (V−space) is a nonlinear transformation. In some cases,

it tends to increase the non-linearity of the limit state function and may deteriorate

the accuracy of approximations. Secondly, the accuracy of the estimator depends on

the “quality” of the MPP. In fact, several problems can occur: a) the optimization

algorithm to search for the MPP may fail to converge to the global constrained

minimum of the distance function; b) FORM/SORM assumes that there is a unique
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MPP on the limit state surface, which may not be the case; c) FORM/SORM

assumes that the main contribution to α is concentrated in the vicinity of the MPP.

For example, the shape of the limit state surface may lead to under/over-

estimation of the probability of failure. In addition, geometrical approximation

methods cannot be used to quantify the approximation error. So there is no infor-

mation for deciding whether the estimator is satisfactory or not. Figure 2.7 shows

this phenomenon in the case of FORM. Due to our lack of information on the failure

domain, it is impossible to tell whether the estimator obtained from the approxima-

tion is over (see Figure 2.7(a)) or under (see Figure 2.7(b))-estimated. Moreover, if

there exists several points which have the minimum distance from the origin of the

standard space, FORM/SORM can not process. Figure 2.8 shows the non-unicity

problem in the simplest case of FORM.

Joint distribution

G(v) = 0

v1

v2

FORM

(a)

Joint distribution

G(v) = 0

v1

v2

FORM

(b)

Figure 2.7: Examples of the lack of confidence on FORM approximation. (a) over-

estimated; (b) under-estimated.

2.3 Monte Carlo (MC) methods

2.3.1 Simple Monte Carlo method

Monte Carlo technique is about invoking the law of large numbers to approximate

an expectation or an integral. Here, we want to approximate the multiple integral

in (1.2). The MC approach consists in drawing an independent and identically
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Joint distribution
G(v) = 0

v1

v2

FORM

Figure 2.8: If the shape of the limit state surface has multiple failure modes, neither

FORM nor SORM can provide a good approximation.

distributed (i.i.d.) sample X1, . . . , Xm according to the distribution PX. Then the

empirical average

α̂MC =
1
m

m∑

i=1

1Xi∈Γ (2.7)

is an estimator of the probability of failure α.

The law of large numbers tells us that α̂MC converges almost surely to α. In

other words, as long as the sample size m is large enough, it will be close to α. The

convergence rate can be assessed by the central limit theorem. We have

√
m(α̂MC − α)→ N (0, σ2), (2.8)

where σ2 = var(1Xi∈Γ), the variance of the indicator function. Therefore, the

convergence rate of this Monte Carlo estimator is O(1/
√

m). Another thing to

notice is that α̂MC is an unbiased estimator.

The mean squared error (MSE) of this estimator is

E
(
(α̂MC − α)2

)
=

α(1− α)
m

. (2.9)

Thus, if α is small, the standard deviation of α̂MC is approximately
√

α/m. To

achieve a given standard deviation δα, it requires approximately 1/(δ2α) evalua-

tions, which can be prohibitively high. For example, if α = 2×10−3 and δ = 0.1, we
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need a sample size m = 50000. If one evaluation of f takes, say, one minute, then the

entire estimation procedure will take about 35 days to complete. Thus, the simple

Monte-Carlo method is not practical in the case of time-consuming simulations.

2.3.2 Some classical Monte Carlo methods from the literature of

structural safety

A) Directional Sampling (DS). Directional sampling (see Ditlevsen and Bjer-

ager, 1989; Ditlevsen et al., 1988; Melchers, 1994) uses lines to probe the

failure domain which is quite similar to the line sampling technique (first pro-

posed by Feldmann and Director (1993) under the name of surface integrals)

as presented in Koutsourelakis (2004); Koutsourelakis et al. (2004). It is often

used in literature to estimate the structural reliability for high dimensional

problems (see, e.g., Schuëller et al., 2004).

The idea is to choose several appropriate directions of simulations to approx-

imate a sphere integration. Suppose we map the input space into a standard

space V by the same isoprobabilistic transformation as in Section 2.2.2. The

probability of failure in this case can be rewritten as a sphere integration.

Thus, if we choose l directions of simulations z1, . . . , zl (see Figure 2.9), the

sphere integration can be approximated by:

α̂DS =
1
l

l∑

i=1

pi, (2.10)

where pi is the probability obtained from direction zi, and can be computed

by finding the roots for the limit state function. If several roots exist, pi

becomes a sum of all contributions.

Remark 1. The directional sampling combined with directional simulation

is very efficient for the limit stage surface close to spheres centered at the

origin. It can be also used together with FORM/SORM method to approximate

the probabilities of failure for an exact value. Martinez (2008) presented a

directional simulation estimator in the original input space, in which case an

importance sampling method is used to guide the choice of directions.

B) Stratified Sampling (SS). Stratified sampling, sometimes also called quota

sampling, broadly refers to the approach that partitions the sample space X

into K disjoint sub-regions (or strata), S1, . . . ,SK , such that Si ∩ Sj = ∅ for
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Isodensity
 contours

.
.
.

z1

z2

z3

zl

v1

v2 G(v) = 0

Figure 2.9: Illustration of directional simulation.

i 6= j, and PX(∪K
i=1Si) = 1. Then the estimator (1.2) can be rewritten as:

α = PX{∪K
i=1Si ∩ Γ} (2.11)

=
K∑

i=1

PX(Si)PX(x ∈ Γ|x ∈ Si)

=
K∑

i=1

piPX(x ∈ Γ|x ∈ Si),

where pis are the probability that the sample lies in the strata Si, and

pi =
∫

Si

pX(x)dx. (2.12)

In each strata, i = 1, . . . , K, draw an i.i.d. sample Xij , j = 1, . . . , mi ac-

cording to the conditional distribution PX(·|Si). Apply a Monte Carlo sim-

ulation (notice that the total number of evaluations is N =
∑K

i=1 mi), the

stratified estimator can be written as

α̂Stra =
K∑

i=1

piα̂i, (2.13)

where α̂i = 1
mi

∑mi
j=1 1Xij∈Γ.

It is easy to prove that this estimator is unbiased, and the variance is given

by Dunn and Shultis (2011, page 109).

Compared with crude Monte Carlo method, the stratified estimator α̂Stra

eliminates sampling variability across strata without affecting sampling vari-

ability within strata. To achieve this, stratified sampling tries to allocate more
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points near the failure region. Figure 2.10 illustrates this sampling mechanic.

failure region

x1

x2

Γ
S1

S2 S3

S4

Figure 2.10: Illustration of the stratified sampling. Most points are allocated in the

strata S4, which also covers the failure region.

C) Latin Hyper-cube Sampling (LHS). The method of Latin Hyper-cube

sampling (LHS) was first introduced by McKay et al. (1979) and then further

systematically studied by Stein (1987). It is an extension of stratified sampling

but more efficient in high dimensional cases. For example, in a Stratified

Sampling method, if we draw only one point from K strata in each of the d-

dimension, the sample size will be Kd. LHS avoids this exponential growth of

sample size with the dimension by treating all coordinates equally and drawing

samples according to marginal distribution of a joint distribution for the input

variables. Thus, if we want to generate a sample of size m, X1, . . . , Xm in

dimension d with a LHS method. For each coordinate i = 1, . . . , d, we generate

a equiprobable strata S1
i , . . . ,Sm

i , each of which has a probability 1/m. Then,

we obtain a sample from the strata with probability 1/m. Consequently,

we have m realizations for each coordinate. Next, randomly permute the m

realizations for all coordinates (precisely it makes m! permutations equally

likely). Finally we obtain m points which form a LHS. Notice that if we

project the m points onto the ith coordinate, each strata S
j
i (j = 1, . . . , m)

will have only one point. This property of LHS is illustrated in Figure 2.11.

Owen (1997) pointed out that for any square integrable function and any
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x2

x1

Figure 2.11: Latin hypercube sampling of size m = 6 in dimension d = 2.

sample size m ≥ 2, the variance produced by a LHS scheme of size m is not

larger than the variance produced by an i.i.d. Monte Carlo sample of size

m− 1. This estimator is already studied by Olsson et al. (2003) in structural

reliability problems. Stein (1987) explained that LHS is most effective with

integrals that can be approximately separated into a sum of one-dimension

functions.

Conclusions. The MC methods in this section are all based on variance re-

duction. The performance of directional sampling depends on the choice of the

directions. A prior information or an expert may be needed as guidance in ad-

vance. In other words, this method usually works well in the cases when there is

complementary information available, which can help us choosing a good simula-

tion plan. Stratified sampling requires no knowledge of PX, instead, the variances

for each strata are required. It works well if good estimates of the variance in each

strata are available and if the strata can be constructed to efficiently separate failure

region from safe region. However in practice, this information is hardly known. So

we need additional evaluations to get a rough idea of the failure region in advance.

In addition, stratified sampling in high dimension is possible in principle but often

unfeasible in practice. Partitioning each coordinate into K strata for input space

in d dimension X ⊂ Rd will produce Kd strata, which will require a sample size of

at least Kd assuming each stratum is sampled once only. Thus for even moderately

large d, the sampling becomes prohibitive unless K is small, in which case strat-

ification provides little benefits. Latin Hyper-cube sampling tries to improve the
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efficiency of stratified sampling. In our work however, those Monte Carlo methods

are not applicable due to their requirement of large number of evaluations.

2.3.3 Importance Sampling (IS)

Let h be a proposal probability density function defined over X such that supp(h) ⊃
supp(pX) (supp defines the support function). Then, α can be written as:

α =
∫

X

1x∈ΓpX(x)dx =
∫

X

1x∈Γ
pX(x)
h(x)

· h(x)dx = Eh

(
1x∈Γ

pX(x)
h(x)

)
, (2.14)

where Eh denotes the expectation with respect to the density h. This gives an

importance sampling Monte Carlo estimator:

α̂IS =
1
m

m∑

i=1

1Xi∈Γ
pX(Xi)
h(Xi)

, (2.15)

where the Xis are i.i.d. from h. The estimator converges to (1.2) almost surely.

Optimal proposal density function. By minimizing the variance of α̂IS ,

it is easy to derive an optimal proposal density (see, e.g., Rubinstein and Kroese,

2008):

h∗ = arg min var(α̂IS) (2.16)

=
1x∈ΓpX∫

X
1x∈ΓpXdx

=
1x∈ΓpX

α
.

Notice that the optimal density h∗ depends on Γ, which is exactly what we

intend to identify in reliability analysis. Moreover, if there is only one sample X

drawn from h, we will get α̂IS = α using the optimal proposal density in (2.16),

and h = h∗. This is not true in real applications.

Conclusions. The success of an importance sampling technique to estimate a

probability of failure depends on the selection of an appropriate importance density

function: importance sampling requires a proposal distribution that approaches

the optimal distribution as much as possible. This can be achieved by building h

iteratively (see, e.g., the adaptive techniques which will be introduced in the next

sections).

2.3.4 Adaptive Importance Sampling (AIS)

The idea of adaptive importance sampling (AIS) was first given in Kloek and

Van Dijk (1978). An AIS algorithm consists in doing several intermediate Monte
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Carlo simulations with proposal densities hi, i = 1, . . . , S, which are computed to

resemble h∗ as much as possible. During each simulation, properties of h∗ are es-

timated based on past evaluations. Then the densities hi are modified such that

their properties match the estimated properties of h∗. In this iterative procedure,

the intermediate probability densities will gradually approach the optimal density

in its statistical properties.

A) Parametric AIS. In the parametric version of AIS, a finite vector of param-

eters is used to characterize the intermediate proposal densities hi. Bucher

(1988); Melchers (1990) proposed to use Gaussian density functions whose

parametric form for the proposal density function is written as hϑi
. Table 2.1

and Figure 2.12 describe the idea of the algorithm.

Table 2.1: Example of a parametric AIS method to estimate a probability of failure.

Initialization:

a) Take one value of x in the failure domain Γ as the initial mean µ0, iteration

i = 0.

b) Set the initial importance sampling density function hϑ0 = N (µ0, 1).

For i = 1, . . . , S:

1. Draw a Monte Carlo sample Xi
1, . . . , Xi

Ni
according to hϑi

, where Ni is the

number of evaluations at iterative i.

2. Estimate the mean µi of h∗:

µi =
Ni∑

j=1

wi
jXi

j , (2.17)

and covariance ki:

ki =
Ni∑

j=1

wi
j(Xi

j − µi)(Xi
j − µi)

T

, (2.18)

where wi
j ∝

pX(Xi
j)

hi(Xi
j
)
1Xi

j
∈Γ, and

∑Ni
j=1 wi

j = 1, update hϑi
= N (µi, ki).

3. Repeat [1] and [2] until it reaches a stop criterion.

4. Estimate the probability of failure using (2.15), with h = hϑS
.

B) Non-Parametric AIS. In the non-parametric case, instead of estimating
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pdf

x

h∗
hϑi

hϑ1hϑ2

hϑ3

Figure 2.12: Adaptive Importance Sampling. The solid line represents the optimal

density function h∗(x), the dashed lines are the estimated density function with the

number indicates iteration order.

some properties of the optimal density function h∗, the density function itself

is estimated. Ang et al. (1990) proposed to use a simple rectangular kernel

density, Au and Beck (1999) modified the it with a reduced Gaussian probabil-

ity density kernel, Karamchandani et al. (1989) suggested to identify several

modes representing the importance of the failure region by a preliminary sim-

ulation. The proposal density function is then constructed by replicating the

target density at every mode weighted by the importance. Algorithms of this

kind can be found in Melchers (1990).

Another form of non-parametric AIS technique, the so called two-stage surro-

gate based importance sampling strategy, will be introduced in Section 4.2.1.

Conclusions. The category of AIS methods tries to select a “good” importance

density function which iteratively approaches the optimal density in the sense of

the its statistical properties or modes. The method is more efficient compared to

original importance sampling. However, it is nontrivial to design a good proposal

distribution in high dimensional problems. In addition, in the parametric cases,

it becomes difficult to build an appropriate proposal distribution when the failure

region is highly concave (Melchers, 1991).
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2.3.5 Subset Simulation

When the probability of failure α is very small, Monte Carlo simulations as well

as most of the variance reduction methods mentioned before do not work well any

more. A natural idea is to decompose the rare event into several “not so rare” nested

events, and calculate the probability of failure by multiplying the corresponding

sequence of conditional probabilities.

To do this, we partition the output space into stages (the same as the levels

used in Glasserman et al., 1999) using a sequence of intermediate thresholds u0 =

−∞ < u1 < u2 < . . . < uT = u. Correspondingly, we have a sequence of nested

excursion sets Γ0 := X ⊇ Γ1 ⊇ · · · ⊇ ΓT := Γ (see Figure 2.13(a)). Thanks to

this multilevel dividing technique, we are able to deal with the problem in each

sub space (or subset in Au and Beck, 2001). From stage t to t + 1, the samples

that pass the intermediate threshold ut+1, have more importance than the others.

We reinforce and populate this partial sample (see Figure 2.13(b)) which is more

promising to reach the failure region, and discard the others by different techniques.

Methods in this section are all based on this multilevel dividing technique.

Γ3 = Γ

Γ2

Γ1

x

f(x)

u1

u2

u3 = u

(a) Three levels dividing

partial sample

x

f(x)

u1

u2

u3 = u

(b) Partial sample

Figure 2.13: Multilevel dividing technique.

Using conditioning, the probability of failure α can be rewritten as

α = PX(ΓT ) = PX(Γ1)
T −1∏

t=1

PX(Γt+1|Γt) =
T −1∏

t=0

pt, (2.19)

where PX(Γt+1|Γt) = pt.

Suppose we have a sampler which could generate an independent sample Xt =

{X1
t , . . . , XNt

t } according to the distribution PX(·|Γt) with sample size Nt and has a

probability pt to fall in Γt+1. At each iteration t, we keep the partial sample which
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locate in the next excursion set Γt+1, generate an i.i.d. sample with a sampler. We

can continue this process until t = T , and obtain a multilevel estimator:

α̂MulSplit =
T∏

t=1

∑Nt
i=1 1Xi

t∈Γt

Nt
(2.20)

and the total number of evaluations N =
∑T

t=1 Nt. If the intermediate thresholds

uts are set in advance, α̂MulSplit is unbiased.

To obtain the estimator in (2.20), we need to generate independent samples Xt.

There exists several methods based on multilevel dividing technique. This type of

methods can be seen as a particular case of sequential Monte Carlo (SMC) method.

To our knowledge, Au and Beck (2001, 2003) were the first to use multilevel dividing

technique for reliability analysis. In the standard rare event literature, a particle

system is adopted and a framework of Markov Chain Monte Carlo (MCMC) step

is developed to generate samples, which aims at restricting on smaller and smaller

excursion sets, with the smallest set being the failure region Γ (see, e.g., Cérou

et al., 2011, and the references therein). More recently, Botev and Kroese (2011)

reviewed different versions of sample population procedures for static rare event

estimation.

Fixed-level algorithm. Suppose the sequence of increasing intermediate

thresholds u0 = −∞ < u1 < u2 < . . . < uT = u is known in advance. At

each iteration t, the algorithm chooses the partial sample which is located in the

excursion set Γt+1, generating an appropriate conditional sample under the frame-

work of MCMC. In some applications, a modified Metropolis-Hastings approach is

used (see, e.g., Au and Beck, 2001). pt at each stage can be approximated by a

simple Monte Carlo estimator p̂t.

The Metropolis algorithm prescribes the transition rule for a Markov chain. It is

a very powerful technique to simulate samples as the states of a Markov chain such

that the limiting/stationary distribution of this chain is the target distribution.

The procedure of the Metropolis algorithm is as follows: starting from an initial

sample, proceeding iteratively, 1) a random perturbation of the current state is

made according to a probability transition function h(x′; x); 2) a ratio r reflecting

the “gain” resulting from the perturbation is calculated; 3) a random number is

generated independently; 4) accept the current state with probability min(1, r) and

reject it with the remaining probability 1−min(1, r).

Given the current state t, an example of Metropolis-Hasting algorithm can be

implemented by the iterations in Table 2.2.
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Table 2.2: Metropolis-Hastings Algorithm.

Initialize: Choose the proposal probability distribution function h(x̃t|xt).

Iterative: For t = 1, 2, . . . ,:

- Generate a candidate state x̃t according to h(x̃t|xt).

- Draw a random number C ∼ U(0, 1), and update

xt+1 =





x̃t if C ≤ r(x̃t, xt)

xt otherwise.

Table 2.3: Fix-level SMC algorithm.

Initialize:

1. Set the intermediate threshold ut (t = 0, . . . , T ).

2. Set the Monte Carlo sample size m, and draw an i.i.d. sample X0 ∼ PX.

3. Choose the proposal probability distribution function h(x̃t|xt).

Iterate: For t = 1, 2, . . . , T :

1. Compute p̂t = 1
m

∑m
i=1 1Xi

t−1∈Γt
.

2. Generate a conditional sample Xt:

2.1 Obtain a partial sample which locates in Γt;

2.2 Apply a Metropolis-Hasting algorithm in Table 2.2;

2.3 update sample Xt.

Estimate: The probability of failure is calculated by

α̂SMC1 =
T −1∏

t=0

p̂t. (2.21)
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An example of fix-level SMC algorithm is presented in Table 2.3. For fixed-level

algorithm, the estimator α̂SMC1 is unbiased even though the samples are dependent.

Del Moral (2004) studied the asymptotic feature of the conditional sample model

in a general framework as the number of particles goes to infinity. And the relative

variance given by Cérou et al. (2011) is lower bounded as

σ2(α̂SMC1) ≥
T∑

t=1

1− pt

pt
, (2.22)

where the equality holds only if the Markov chain goes to infinity. Then for a fixed

probability of failure α and a number T of levels, the problem becomes minimizing

(2.22) subject to the constrained
∏T

t=1 pt = α. Solving this optimization problem,

we get pt = p0 for t = 0, . . . , T − 1, and p0 = α1/T , correspondingly, we should

set the intermediate thresholds which evenly divide the input space X in terms of

conditional probabilities. In very few cases, the Markov chain may stop prematurely

because the two consecutive intermediate threshold are set too far apart, which make

the successful partial sample an empty set. The adaptive-level algorithm which we

will introduce next will fix this problem.

Adaptive-level algorithm. This method takes advantage of the knowledge

from performance function. At each level t, the algorithm sorts the values of f(Xi
t)

and i = 1, . . . , m, and set the next level intermediate threshold ut+1 to the (1− p0)

empirical quantile of f(Xi
t). The partial sample therefore is composed by the p0m

particles with the highest f(Xi
t). The iteration stops when ut ≥ u, correspondingly,

we have T levels. The intermediate probabilities p̂t = p0 for t = 0, . . . , T − 1, and

the probability of failure is estimated by

α̂SMC2 = p̂T −1pT −1
0 , (2.23)

where p̂T −1 is a Monte Carlo estimator at level T − 1.

There is no theoretical study for the optimal p0 so far. Clearly, the choice of p0 is

a trade-off between the Monte Carlo sample size at each stage and the total number

of stages, while the total number of evaluations is N = mT .

The algorithm is presented in Table 2.4. Figure 2.14 illustrates the adaptive

procedure for Subset Simulation method in Au and Beck (2001). We will also

introduce a similar adaptive method in Section 4.3.3.

The estimator given by the adaptive-levels algorithm is biased. However, Cérou

et al. (2011) proved that the bias is positive and of order 1/m, which is negligi-

ble compared to its standard deviation. In practice, it is always safer to have a

conservative estimator in reliability assessment.
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Table 2.4: Adaptive-level SMC algorithm.

Initialize: At t = 0,

1. Set the Monte Carlo sample size m, and draw an i.i.d. sample X0 ∼ PX,

where X0 = {Xi
0} (i = 1, . . . , m).

2. Choose the value for p0, set u0 = −∞.

Iterate: While ut < u (t← t + 1):

1. Set ut to the (1− p0)th quantile of f(Xt−1).

2. Start from the partial sample, generate a new sample Xt = {Xi
t} (i =

1, . . . , m) as in Table 2.3.

Estimate: Set ut = u, the probability of failure is calculated by

α̂SMC2 =
1
m

m∑

i=1

1Xi
T −1∈Γ pT −1

0 . (2.24)
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Figure 2.14: Illustration of Subset Simulation with adaptive threshold.
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Conclusions. Methods based on multilevel dividing technique are very efficient

in the estimation of small probabilities of failure. Multilevel diving technique de-

composes a complex problem into a sequence of easier problems. MCMC is a very

powerful tool to generate samples according to an arbitrary probability distribu-

tion. The number of evaluations needed by these methods is dramatically decreased

compared to MC methods. On the other hand, due to the use of MC simulation at

each stage, the number of evaluations is still quite high. In the case of expensive-

to-evaluate functions, Subset Simulation methods are not applicable. In Chapter 4

we will introduce our Bayesian Subset Simulation which modifies Subset Simulation

methods in order to deal with expensive-to-evaluate functions.

2.3.6 Summary of the Monte Carlo methods

In this section, we introduced several Monte Carlo methods aiming at decreasing the

variance of the estimator. Not like the methods based on geometric approximation,

several methods, such as importance sampling, can provide some information on

the confidence of the estimator.

It is well known that a sampling strategy is more efficient by integrating the

information of failure region. Stratified sampling uses strata to separate failure and

safe regions. More points are allocated in the strata which contains failure region.

This method works well in low dimensional case and needs a good estimation of

the variance in advance. LHS avoids the dimension problem by equally drawing

samples from marginal distribution. However, both methods need a large number

of evaluations.

Another category of methods, importance sampling and the related methods in

Section 2.3.3 and 2.3.4, try to allocate more points in the regions of more “impor-

tance” by sampling according to a proposal distribution close to the input distribu-

tion. The methods are quite efficient if the proposal distribution is appropriately

chosen. However, when the failure region is highly concave, it is very difficult to

build a good proposal distribution for a parametric adaptive importance sampling

method. The importance sampling related methods are quite successful in a lot

applications.

When the probability of failure is small, methods based on multilevel dividing

technique are able to break the rare event into a series of conditional events. The

output space is then divided by intermediate thresholds. The probability of failure

is then calculated by multiplying several conditional probabilities estimated from a
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Monte Carlo simulation. MCMC technique is used to generate new samples at each

stage. The essence of importance sampling is also used in a sequential Monte Carlo

approach. However, due to the direct use of a Monte Carlo estimation at each stage,

the number of evaluations remains still quite high. In Chapter 4 we will introduce

a new algorithm which takes advantage of this dividing idea and improves Subset

Simulation. Kriging prediction, which will be presented in the next section, can be

used to provide a global approximation of the performance function.

2.4 Estimation based on an approximation of f

To overcome the cost of computer experiments, a natural idea is to substitute the

expensive-to-evaluate computer programs with cheap surrogate models which are

built by fitting a set of observations of the system responses. By definition, a

surrogate model f̂ is an approximation of f . Once a surrogate model has been

constructed, the probability of failure can be estimated from f̂ , which is cheaper to

evaluate, instead of f . The method of surrogate modeling is in fact very similar to

that of geometrical approximation methods discussed in Section 2.2.

The plug-in estimator obtained from surrogate modeling can be written as

α̂ = PX{f̂ > u} (2.25)

= PX{Γ̂}

=
∫

Γ̂
pX(x)dx,

where Γ̂ is an approximation of the excursion set on the surrogate model which is

written as

Γ̂ = {x ∈ X : f̂(x) > u}. (2.26)

2.4.1 Polynomial response surface

The response surface method uses a polynomial response surface to approximate

the performance function. The coefficients of the response surface are generally

obtained by least square regression. The probability of failure can then be calculated

by applying FORM/SORM.

Response surface methods are very popular in the literature of reliability analy-

sis. Bucher and Bourgund (1990); El-Tawil et al. (1991); Faravelli (1989); Kim and

Na (1997) set up the early theoretical basis for response surface method; further de-

velopments can be found in Kaymaz and McMahon (2005); Zheng and Das (2000).
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Gayton et al. (2003) proposed a method called CQ2RS (Complete Quadratic Re-

sponse Surface with Re-Sampling) using a complete quadratic response surface to

take into account variable interactions. The surrogate model in the standard space

is then written as in Gayton et al. (2003):

Ĝ(v) = a0 +
d∑

i=1

aivi +
d∑

i=1

d∑

j≥i

ai,jvivj , (2.27)

where v = {v1, . . . , vd}; Ĝ is the quadratic response surface for the limit state in stan-

dard space; ai is the coefficient for direction vi, and ai,j is the coefficient of variable

interaction between vi and vj . The number of coefficients is then L = (d+1)(d+2)
2 .

This type of response surface was shown to be efficient. Gayton et al. (2003) used

a statistical formulation to obtain an empirical distribution of the MPP v∗ and

applied a resampling step to estimate the mean value for v∗.

Blatman (2009) proposed polynomial chaos representations using spectral ex-

pansions and approximated the unknown response function in a finite dimensional

basis. Their methods were applied in reliability analysis and sensitivity analysis.

Conclusions. Methods based on response surface approximation greatly de-

crease the number of evaluations. The surrogate model is a polynomial, and most

of the time, a quadratic response surface. One problem of this kind of methods

is, when the model of the system is complex, a simple quadratic function cannot

fit the model very well. An inappropriate surrogate model will introduce bias into

the estimator. In addition, finding a good MPP v∗ becomes nontrivial when the

response surface is complex.

2.4.2 Neural networks

Neural network models have found their way in the domain of reliability analysis.

The idea of this method is to build a neural network as a surrogate model for f .

The probability of failure can be approximated by a MC simulation on the cheap

surrogate model f̂ . This technique can be found in Hurtado and Alvarez (2000); Pa-

padrakakis and Lagaros (2002). Since neural network is not our focus in this thesis,

we will not present details concerning the training process. A general framework of

this kind of methods is as follows:

1. Select several training points in X, get their corresponding outputs.

2. Train the neural network (e.g., back-propagation networks) with the in-

put/output pairs, obtain the parameters for the network.
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Figure 2.15: A widely used three layers perception neural network structure. The

input x = {x1, . . . , xd}; wl1,l2s are the weights from the first layer to the second

layer; wl2,l3s are the weights from the second layer to the third layer.

3. Use the trained network as the surrogate model (see Figure 2.15), apply a

simple Monte Carlo simulation. The probability of failure can be approxi-

mated by a plug-in estimator as in (2.25).

Conclusions. The neural network method is similar to the response surface

method in the sense that both are aiming at using a cheap model to substitute

the expensive-to-evaluate performance function in a parametric form. The differ-

ence is that the response surface method uses a least square fitting of a polynomial

function (mostly in quadratic form), while neural network intends to estimate a

nonlinear mapping from the input to the output of a system. It is natural that neu-

ral network provides more flexibility to the surrogate model than response surface

method. However, building a neural network for a complex system, e.g., more than

three hidden layers involved, requires heavy computation efforts for the training

algorithms.

2.4.3 Support Vector Machine (SVM)

Support vector machine (SVM) is another very popular statistical learning tech-

nique. It is applicable both for classification and regression problems. Hurtado

(2004a, 2007) brought it to the structural reliability community; the technique was

then studied by Basudhar and Missoum (2008); Deheeger and Lemaire (2006); Li

et al. (2006); Piera-Martinez (2008); Piera-Martinez et al. (2007).

The basic idea of support vector machine in structural reliability analysis is to
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take advantage of its classification property. The method consists of two steps: 1)

set a binary classifier which separates failure events from safe events in X using

the maximum margin principle; 2) perform a Monte Carlo simulation and calculate

the probability of failure using the classifier instead of f to decide whether a given

point in X is in Γ or not.

In more details, consider a set of labeled training points {(x1, c1), . . . , (xp, cp)}
where the class label ci takes value +1 if xi ∈ Γ and −1 otherwise. Assume there

is a transformation which operates a projection of the original input space onto

a feature space, usually with a greater size. The classification problem becomes

equivalent to find a linearly separable classifier for the failure and safe events in the

transformed feature space (see Figure 2.16, also refer to the kernel trick in Deheeger

and Lemaire, 2006). Then the approach tries to maximize the distance between the

hyper-plane and the two classes. Figure 2.17 illustrates the approach.

Failure

Safe

Safe

Failure

x1

x2

T (x1)

T (x2)

T

Figure 2.16: Projection onto the feature space.

This linear classifier (or the hyper-plane) in the feature space can be written in

the following form:

∂Γ̂ = {x ∈ X; H(x) =
〈
T (w), T (x)

〉
H

+ u = K(w, x) + u = 0}, (2.28)

where H is the feature space, T (·) is a transformation such that the inner product

in the space H can be computed by a kernel function K(·, ·) in the original input

space. There are several usual kernel functions used in SVM theory, e.g., radial

basis kernels, polynomial kernels, etc. The parameter w is a weight vector that

defines the projection of input vector on the hyper-plane, and u is the threshold.

The probability of failure can be estimated by performing a Monte Carlo sam-

pling method and the classifier from the SVM method.
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Safe
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+1

-1 T (x1)
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Figure 2.17: SVM principle: the optimal hyperplane maximizes the margin between

two classes in the feature space.

Remark 2. Support vector machines can also be used in regression problems to

build a surrogate model for the performance function f .

Conclusions. The probability of failure obtained from SVM method is poten-

tially more accurate than FORM/SORM methods because the limit state function is

globally approximated instead of locally approximated near a most probable point.

The global approximation of the limit state function in the feature space is more

satisfactory for failure probability estimation. SVM is a useful tool for reliability

analysis.

2.4.4 Sequential strategies based on Gaussian processes modeling

This group of methods uses kriging technique, which considers a deterministic com-

puter code f as a realization of a random process ξ (in this thesis the random

process will always be a Gaussian process). This technique comes from the domain

of geostatistics (Krige, 1951; Matheron, 1963) and has been used in the domain

of computer experiments by Sacks et al. (1989). Kriging can be interpreted as a

Bayesian approximation method (Oakley and O’Hagan, 2002). Based on an assump-

tion of a prior probability distribution on f under the form of a Gaussian random

process ξ, as well as the knowledge of previous evaluations ξ(x1), . . . , ξ(xn), the

kriging predictor ξ̂n(x) is

ξ̂n(x) = E
(
ξ(x) | ξ(x1), . . . , ξ(xn)

)
, (2.29)

and the kriging variance is

σn(x)2 = E
(
(ξ(x)− ξ̂n(x))2 | ξ(x1), . . . , ξ(xn)

)
. (2.30)
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Figure 2.18: A one-dimensional illustration of kriging. Red squares indicate the

location of the observed data (from the function represented in blue dashed line).

The performance function is in dashed line. The kriging prediction is in solid red

line. The gray area indicates the 95% confidence region.

For more information about Gaussian processes and kriging prediction, see, e.g.,

Chilès and Delfiner (1999).

Figure 2.18 illustrates a simple one-dimensional example of kriging prediction

with four observations, where the gray region indicates confidence intervals. The

kriging predictor is also called the best linear unbiased predictor (BLUP).

Kriging predictor interpolates the observations in the input range such as illus-

trated in Figure 2.19.

Figure 2.20 illustrates the fact that the kriging prediction is the average value

of all possible trajactories conditioned on the observed data.

The reason we choose a Gaussian assumption for ξ is that it provides a con-

venient property to compute the probability of exceeding a threshold u at x ∈ X

given a set of n observations, pn(x) (see more detail in Chapter 3, section 3.2.4 ):

pn(x) = Pn{ξ(x) > u} = Φ
( ξ̂n(x)− u

σn(x)

)
, (2.31)

where Φ denotes the cumulative distribution function of the standard normal dis-

tribution.
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Figure 2.19: Illustration of the interpolation property of the best linear unbiased

predictor in a one-dimensional function f(x) = sin(πx) + sin(x2). The squares

indicate the n = 5 observations (x1, f(x1), . . . , xn, f(xn)).

All strategies in Chapter 3 are built on Gaussian process priors, e.g., the target

IMSE criterion in Picheny et al. (2010), and the criteria based on the marginal

distributions in Bichon et al. (2008); Echard et al. (2010a,b); Ranjan et al. (2008),

all of which will be reviewed in Chapter 3. The main ideas are as follows:

- Build a cheap approximation ξ̂n of f from n evaluations of f at design points

{x1, . . . , xn};

- If ξ̂n is a good approximation of f , α(ξ̂n) should be close to α(f) (see Fig-

ure 2.21);

- Estimate α(f) by a Monte Carlo estimator α̂MC(ξ̂n), with a large sample size,

α̂MC(ξ̂n) will be close to α(ξ̂n), thus, close to α(f).

The strategies in Chapter 3 will answer the questions of how to construct the

surrogate model ξ̂n and how to choose the design points {x1, . . . , xn}. In summary,

the essence of the strategies is to choose a Gaussian process prior for f which makes

it possible to:

1. Construct a surrogate model from n evaluations by kriging technique.



40 Chapter 2. Probabilities of failure estimation—literature review

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

Figure 2.20: A one-dimensional illustration of averaging property of kriging, with

95% confidence. Squares indicate the location of the observed data.The kriging

prediction is in solid line.The confidence intervals are in dash lines.
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2. Build a criterion that will refine the model by sequentially choosing evaluation

points to decrease the error of the estimation of α.

3. Estimate α by a Monte Carlo simulation.

More details about these strategies will be given in Chapter 3.

Conclusions. The strategies reviewed in this section are all based on a Gaus-

sian process model. Specifically, kriging technique as a powerful prediction tool is

widely used to build a surrogate model for the performance function. Sequential

step aims to refine the surrogate models focused in the failure region according to

some designed criteria. This group of methods are gaining more and more interests

in the reliability analysis regime. We will explain them in details in Chapter 3.

2.4.5 Summary of the methods based on global approximation

In this section we reviewed several methods based on building a surrogate model for

the performance function. When the performance function is expensive-to-evaluate,

such methods allow a significant reduction of the computational cost by substituting

the original mathematical model with a cheap surrogate model. The algorithms that

will be presented in the following Chapters are based on this idea.

2.5 Conclusions

This chapter reviewed several state-of-art reliability methods in literature.

Methods based on geometric approximation such as First Order and Second

Order (FORM/SORM) and other kinds of failure region approximations generally

do not require a large number of simulations, however, the results obtained may

be very inaccurate and it is difficult to assess the quality of the estimators. There

exist several approaches to enhance the accuracy of the estimators and improve the

performance of the FORM/SORM methods, but they will use more evaluations.

Simple Monte Carlo method is easy to implement. However, it generally requires

a large number of evaluations to reach an acceptable accuracy. Variance reduction

methods and importance sampling are popular in the literature of reliability anal-

ysis. When the probability of failure is small (down to 10−6 ∼ 10−12). Multilevel

dividing techniques become very powerful. The idea is to gradually refine the failure

domain.

When the performance function is very expensive to evaluate, most MC meth-

ods, including importance sampling and sequential Monte Carlo methods, become
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impracticable. The idea of approximation methods is to substitute the original

expensive-to-evaluate performance function with a much cheaper mathematical

model. Then classical reliability methods can be applied on this cheap surrogate

model. Such approaches may significantly reduce the number of evaluations of the

performance function.
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Abstract

This paper1 deals with the problem of estimating the volume of the excursion set

of a function f : Rd → R above a given threshold, under a probability measure on

Rd that is assumed to be known. In the industrial world, this corresponds to the

problem of estimating a probability of failure of a system. When only an expensive-

to-simulate model of the system is available, the budget for simulations is usually

severely limited and therefore classical Monte Carlo methods ought to be avoided.

One of the main contributions of this article is to derive SUR (stepwise uncertainty

reduction) strategies from a Bayesian-theoretic formulation of the problem of esti-

mating a probability of failure. These sequential strategies use a Gaussian process

model of f and aim at performing evaluations of f as efficiently as possible to in-

fer the value of the probability of failure. We compare these strategies to other

strategies also based on a Gaussian process model for estimating a probability of

failure.

3.1 Introduction

The design of a system or a technological product has to take into account the fact

that some design parameters are subject to unknown variations that may affect the

reliability of the system. In particular, it is important to estimate the probability

of the system to work under abnormal or dangerous operating conditions due to

random dispersions of its characteristic parameters. The probability of failure of

a system is usually expressed as the probability of the excursion set of a function

above a fixed threshold. More precisely, let f be a measurable real function defined

over a probability space (X,B(X), PX), with X ⊆ Rd, and let u ∈ R be a threshold.

The problem to be considered in this paper is the estimation of the volume, under

PX, of the excursion set

Γ := {x ∈ X : f(x) > u} (3.1)

of the function f above the level u. In the context of robust design, the volume α :=

PX(Γ) can be viewed as the probability of failure of a system: the probability PX

models the uncertainty on the input vector x ∈ X of the system—the components of

which are sometimes called design variables or factors—and f is some deterministic

1 J. Bect, D. Ginsbourger, L. Li, V. Picheny and E. Vazquez. Sequential design of computer

experiments for the estimation of a probability of failure. Statistics and Computing, Volume 22,

Number 3 (2012), 773-793, DOI: 10.1007/s11222-011-9241-4
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performance function derived from the outputs of a deterministic model of the

system2. The evaluation of the outputs of the model for a given set of input factors

may involve complex and time-consuming computer simulations, which turns f into

an expensive-to-evaluate function. When f is expensive to evaluate, the estimation

of α must be carried out with a restricted number of evaluations of f , generally

excluding the estimation of the probability of excursion by a Monte Carlo approach.

Indeed, consider the empirical estimator

αm :=
1
m

m∑

i=1

1{f(Xi)>u} , (3.2)

where the Xis are independent random variables with distribution PX. According

to the strong law of large numbers, the estimator αm converges to α almost surely

when m increases. Moreover, it is an unbiased estimator of α, i.e. E(αm) = α. Its

mean square error is

E
(
(αm − α)2) =

1
m

α
(
1− α

)
.

If the probability of failure α is small, then the standard deviation of αm is approx-

imately
√

α/m. To achieve a given standard deviation δα thus requires approxi-

mately 1/(δ2α) evaluations, which can be prohibitively high if α is small. By way

of illustration, if α = 2× 10−3 and δ = 0.1, we obtain m = 50000. If one evaluation

of f takes, say, one minute, then the entire estimation procedure will take about

35 days to complete. Of course, a host of refined random sampling methods have

been proposed to improve over the basic Monte Carlo convergence rate; for instance,

methods based on importance sampling with cross-entropy (Rubinstein and Kroese,

2004), subset sampling (Au and Beck, 2001) or line sampling (Pradlwarter et al.,

2007). They will not be considered here for the sake of brevity and because the

required number of function evaluations is still very high.

Until recently, all the methods that do not require a large number of evaluations

of f were based on the use of parametric approximations for either the function f

itself or the boundary ∂Γ of Γ. The so-called response surface method falls in the

first category (see, e.g., Bucher and Bourgund, 1990; Rajashekhar and Ellingwood,

1993a, and references therein). The most popular approaches in the second cate-

gory are the first- and second-order reliability method (FORM and SORM), which

are based on a linear or quadratic approximation of ∂Γ around the most proba-

ble failure point (see, e.g., Bjerager, 1990). In all these methods, the accuracy of

2Stochastic simulators are also of considerable practical interest, but raise specific modeling and

computational issues that will not be considered in this paper.
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the estimator depends on the actual shape of either f or ∂Γ and its resemblance

to the approximant: they do not provide statistically consistent estimators of the

probability of failure.

This paper focuses on sequential sampling strategies based on Gaussian pro-

cesses and kriging, which can been seen as a non-parametric approximation method.

Several strategies of this kind have been proposed recently in the literature by Ran-

jan et al. (2008), Bichon et al. (2008), Picheny et al. (2010) and Echard et al.

(2010a,b). The idea is that the Gaussian process model, which captures prior

knowledge about the unknown function f , makes it possible to assess the uncer-

tainty about the position of Γ given a set of evaluation results. This line of research

has its roots in the field of design and analysis of computer experiments (see, e.g.,

Bayarri et al., 2007; Currin et al., 1991; Oakley, 2004; Oakley and O’Hagan, 2002,

2004; Sacks et al., 1989; Welch et al., 1992). More specifically, kriging-based se-

quential strategies for the estimation of a probability of failure are closely related

to the field of Bayesian global optimization (Ginsbourger, 2009; Jones et al., 1998;

Mockus, 1989; Mockus et al., 1978; Villemonteix, 2008; Villemonteix et al., 2009).

The contribution of this paper is twofold. First, we introduce a Bayesian

decision-theoretic framework from which the theoretical form of an optimal strategy

for the estimation of a probability of failure can be derived. One-step lookahead

sub-optimal strategies are then proposed3, which are suitable for numerical eval-

uation and implementation on computers. These strategies will be called SUR

(stepwise uncertainty reduction) strategies in reference to the work of D. Geman

and its collaborators (see, e.g. Fleuret and Geman, 1999). Second, we provide a

review in a unified framework of all the kriging-based strategies proposed so far in

the literature and compare them numerically with the SUR strategies proposed in

this paper.

The outline of the paper is as follows. Section 3.2 introduces the Bayesian

framework and recalls the basics of dynamic programming and Gaussian processes.

Section 3.3 introduces SUR strategies, from the decision-theoretic underpinnings,

down to the implementation level. Section 3.4 provides a review of other kriging-

based strategies proposed in the literature. Section 3.5 provides some illustrations

and reports an empirical comparison of these sampling criteria. Finally, Section 3.6

presents conclusions and offers perspectives for future work.

3Preliminary accounts of this work have been presented in Vazquez and Piera-Martinez (2007)

and Vazquez and Bect (2009).
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3.2 Bayesian decision-theoretic framework

3.2.1 Bayes risk and sequential strategies

Let f be a continuous function. We shall assume that f corresponds to a computer

program whose output is not a closed-form expression of the inputs. Our objective

is to obtain a numerical approximation of the probability of failure

α(f) = PX{x ∈ X : f(x) > u} =
∫

X

1f>u dPX , (3.3)

where 1f>u stands for the characteristic function of the excursion set Γ, such that

for any x ∈ X, 1f>u(x) equals one if x ∈ Γ and zero otherwise. The approximation

of α(f) has to be built from a set of computer experiments, where an experiment

simply consists in choosing an x ∈ X and computing the value of f at x. The

result of a pointwise evaluation of f carries information about f and quantities

depending on f and, in particular, about 1f>u and α(f). In the context of expensive

computer experiments, we shall also suppose that the number of evaluations is

limited. Thus, the estimation of α(f) must be carried out using a fixed number,

say N , of evaluations of f .

A sequential non-randomized algorithm to estimate α(f) with a budget of N

evaluations is a pair (XN , α̂N ),

XN : f 7→ XN (f) = (X1(f), X2(f), . . . , XN (f)) ∈ X
N , α̂N : f 7→ α̂N (f) ∈ R+ ,

with the following properties:

a) There exists x1 ∈ X such that X1(f) = x1, i.e. X1 does not depend on f .

b) Let Zn(f) = f(Xn(f)), 1 ≤ n ≤ N . For all 1 ≤ n < N , Xn+1(f) depends

measurably4 on In(f), where In = ((X1, Z1) , . . . , (Xn, Zn)).

c) α̂N (f) depends measurably on IN (f).

The mapping XN will be referred to as a strategy, or policy, or design of experi-

ments, and α̂N will be called an estimator. The algorithm (XN , α̂N ) describes a

sequence of decisions, made from an increasing amount of information: X1(f) = x1

is chosen prior to any evaluation; for each n = 1, . . . , N − 1, the algorithm uses in-

formation In(f) to choose the next evaluation point Xn+1(f); the estimation α̂N (f)

of α(f) is the terminal decision. In some applications, the class of sequential algo-

rithms must be further restricted: for instance, when K computer simulations can
4i.e., there is a measurable map ϕn : (X × R)n → X such that Xn = ϕn ◦ In



3.2. Bayesian decision-theoretic framework 49

be run in parallel, algorithms that query batches of K evaluations at a time may

be preferred (see, e.g. Ginsbourger et al., 2010). In this paper no such restriction

is imposed.

The choice of the estimator α̂N will be addressed in Section 3.2.4: for now, we

simply assume that an estimator has been chosen, and focus on the problem of find-

ing a good strategy XN ; that is, one that will produce a good final approximation

α̂N (f) of α(f). Let AN be the class of all strategies XN that query sequentially N

evaluations of f . Given a loss function L : R×R→ R, we define the error of approx-

imation of a strategy XN ∈ AN on f as ε(XN , f) = L(α̂N (f), α(f)). In this paper,

we shall consider the quadratic loss function, so that ε(XN , f) = (α̂N (f)− α(f))2.

We adopt a Bayesian approach to this decision problem: the unknown function f

is considered as a sample path of a real-valued random process ξ defined on some

probability space (Ω,B, P0) with parameter in x ∈ X, and a good strategy is a strat-

egy that achieves, or gets close to, the Bayes risk rB := infXN ∈AN
E0 (ε(XN , ξ)),

where E0 denotes the expectation with respect to P0. From a subjective Bayesian

point of view, the stochastic model ξ is a representation of our uncertain initial

knowledge about f . From a more pragmatic perspective, the prior distribution can

be seen as a tool to define a notion of a good strategy in an average sense. An-

other interesting route, not followed in this paper, would have been to consider the

minimax risk infXN ∈AN
maxf E0 (ε(XN , ξ)) over some class of functions.

Notations. From now on, we shall consider the stochastic model ξ instead of

the deterministic function f and, for abbreviation, the explicit dependence on ξ

will be dropped when no there is no risk of confusion; e.g., α̂N will denote the

random variable α̂N (ξ), Xn will denote the random variable Xn(ξ), etc. We will use

the notations Fn, Pn and En to denote respectively the σ-algebra generated by In,

the conditional distribution P0 ( · | Fn) and the conditional expectation E0 ( · | Fn).

Note that the dependence of Xn+1 on In can be rephrased by saying that Xn+1

is Fn-measurable. Recall that En (Z) is Fn-measurable, and thus can be seen as a

measurable function of In, for any random variable Z.

3.2.2 Optimal and k-step lookahead strategies

It is well-known (see, e.g., Berry and Fristedt, 1985; Bertsekas, 1995; Mockus, 1989)

that an optimal strategy for such a finite horizon problem5, i.e. a strategy X⋆
N ∈ AN

5in other words, a sequential decision problem where the total number of steps to be performed

is known from the start
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such that E0 (ε(X⋆
N , ξ)) = rB, can be formally obtained by dynamic programming:

let RN = EN (ε(XN , ξ)) = EN

(
(α̂N − α)2

)
denote the terminal risk and define by

backward induction

Rn = min
x∈X

En
(
Rn+1 | Xn+1 = x

)
, n = N − 1, . . . , 0. (3.4)

To get an insight into (3.4), notice that Rn+1, n = 0, . . . , N−1, depends measurably

on In+1 = (In, Xn+1, Zn+1), so that En
(
Rn+1 | Xn+1 = x

)
is in fact an expectation

with respect to Zn+1, and Rn is an Fn-measurable random variable. Then, we have

R0 = rB, and the strategy X⋆
N defined by

X⋆
n+1 = arg min

x∈X

En
(
Rn+1 | Xn+1 = x

)
, n = 1, . . . , N − 1, (3.5)

is optimal6. It is crucial to observe here that, for this dynamic programming prob-

lem, both the space of possible actions and the space of possible outcomes at each

step are continuous, and the state space (X×R)n at step n is of dimension n(d+1).

Any direct attempt at solving (3.4)–(3.5) numerically, over an horizon N of more

than a few steps, will suffer from the curse of dimensionality.

Using (3.4), the optimal strategy can be expanded as

X⋆
n+1 = arg min

x∈X

En

(
min
Xn+2

En+1 . . . min
XN

EN−1 RN

∣∣∣ Xn+1 = x

)
.

A very general approach to construct sub-optimal—but hopefully good—strategies

is to truncate this expansion after k terms, replacing the exact risk Rn+k by any

available surrogate R̃n+k. Examples of such surrogates will be given in Sections 3.3

and 3.4. The resulting strategy,

Xn+1 = arg min
x∈X

En

(
min
Xn+2

En+1 . . . min
Xn+k

En+k−1 R̃n+k

∣∣∣ Xn+1 = x

)
. (3.6)

is called a k-step lookahead strategy (see, e.g., Bertsekas, 1995, Section 6.3). Note

that both the optimal strategy (3.5) and the k-step lookahead strategy implicitly

define a sampling criterion Jn(x), Fn-measurable, the minimum of which indicates

the next evaluation to be performed. For instance, in the case of the k-step looka-

head strategy, the sampling criterion is

Jn(x) = En

(
min
Xn+2

En+1 . . . min
Xn+k

En+k−1 R̃n+k

∣∣∣ Xn+1 = x

)
.

6Proving rigorously that, for a given P0 and α̂N , equations (3.4) and (3.5) actually define a

(measurable!) strategy X⋆
N ∈ AN is technical problem that is not of primary interest in this paper.

This can be done for instance, in the case of a Gaussian process with continuous covariance function

(as considered later), by proving that x 7→ En (Rn+1 | Xn+1(ξ) = x) is a continuous function on X

and then using a measurable selection theorem.
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In the rest of the paper, we restrict our attention to the class of one-step lookahead

strategies, which is, as we shall see in Section 3.3, large enough to provide very effi-

cient algorithms. We leave aside the interesting question of whether more complex

k-step lookahead strategies (with k ≥ 2) could provide a significant improvement

over the strategies examined in this paper.

Remark 3. In practice, the analysis of a computer code usually begins with an

exploratory phase, during which the output of the code is computed on a space-

filling design of size n0 < N (see, e.g., Santner et al., 2003b). Such an exploratory

phase will be colloquially referred to as the initial design. Sequential strategies such

as (3.5) and (3.6) are meant to be used after this initial design, at steps n0 + 1,

. . . , N . An important (and largely open) question is the choice of the size n0 of

the initial design, for a given global budget N . As a rule of thumb, some authors

recommend to start with a sample size proportional to the dimension d of the input

space X, for instance n0 = 10 d ; see Loeppky et al. (2009) and the references

therein.

3.2.3 Gaussian process priors

Restricting ξ to be a Gaussian process makes it possible to deal with the conditional

distributions Pn and conditional expectations En that appear in the strategies above.

The idea of modeling an unknown function f by a Gaussian process has originally

been introduced circa 1960 in time series analysis (Parzen, 1962), optimization

theory (Kushner, 1964) and geostatistics (see, e.g., Chilès and Delfiner, 1999, and

the references therein). Today, the Gaussian process model plays a central role in

the design and analysis of computer experiments (see, e.g., Currin et al., 1991; Sacks

et al., 1989; Santner et al., 2003b; Welch et al., 1992). Recall that the distribution of

a Gaussian process ξ is uniquely determined by its mean function m(x) := E0(ξ(x)),

x ∈ X, and its covariance function k(x, y) := E0 ((ξ(x)−m(x))(ξ(y)−m(y))),

x, y ∈ X. Hereafter, we shall use the notation ξ ∼ GP (m, k) to say that ξ is a

Gaussian process with mean function m and covariance function k.

Let ξ ∼ GP (0, k) be a zero-mean Gaussian process. The best linear unbiased

predictor (BLUP) of ξ(x) from observations ξ(xi), i = 1, . . . , n, also called the

kriging predictor of ξ(x), is the orthogonal projection

ξ̂(x; xn) :=
n∑

i=1

λi(x; xn) ξ(xi) (3.7)
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of ξ(x) onto span{ξ(xi), i = 1, . . . , n}. Here, the notation xn stands for the set of

points xn = {x1, . . . , xn}. The weights λi(x; xn) are the solutions of a system of

linear equations

k(xn, xn)λ(x; xn) = k(x, xn) (3.8)

where k(xn, xn) stands for the n × n covariance matrix of the observation vector,

λ(x; xn) = (λ1(x; xn), . . . , λn(x; xn))T, and k(x, xn) is a vector with entries k(x, xi).

The function x 7→ ξ̂(x; xn) conditioned on ξ(x1) = f(x1), . . . , ξ(xn) = f(xn), is

deterministic, and provides a cheap surrogate model for the true function f (see,

e.g., Santner et al., 2003b). The covariance function of the error of prediction, also

called kriging covariance is given by

k(x, y; xn) := cov
(
ξ(x)− ξ̂(x; xn), ξ(y)− ξ̂(y; xn)

)

= k(x, y)−
∑

i

λi(x; xn) k(y, xi) . (3.9)

The variance of the prediction error, also called the kriging variance, is defined as

σ2(x; xn) = k(x, x; xn). One fundamental property of a zero-mean Gaussian process

is the following (see, e.g., Chilès and Delfiner, 1999, Chapter 3) :

Proposition 1. If ξ ∼ GP (0, k), then the random process ξ conditioned on the σ-

algebra Fn generated by ξ(x1), . . . , ξ(xn), which we shall denote by ξ | Fn, is a Gaus-

sian process with mean ξ̂( · ; xn) given by (3.7)-(3.8) and covariance k ( · , · ; xn)

given by (3.9). In particular, ξ̂(x; xn) = E0
(
ξ(x) | Fn

)
is the best Fn-measurable

predictor of ξ(x), for all x ∈ X.

In the domain of computer experiments, the mean of a Gaussian process is

generally written as a linear parametric function

m( · ) = βTh( · ) , (3.10)

where β is a vector of unknown parameters, and h = (h1, . . . , hl)
T is an l-

dimensional vector of functions (in practice, polynomials). The simplest case is

when the mean function is assumed to be an unknown constant m, in which case

we can take β = m and h : x ∈ X 7→ 1. The covariance function is generally written

as a translation-invariant function:

k : (x, y) ∈ X
2 7→ σ2 ρθ(x− y) ,

where σ2 is the variance of the (stationary) Gaussian process and ρθ is the corre-

lation function, which generally depends on a parameter vector θ. When the mean
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is written under the form (3.10), the kriging predictor is again a linear combina-

tion of the observations, as in (3.7), and the weights λi(x; xn) are again solutions

of a system of linear equations (see, e.g., Chilès and Delfiner, 1999), which can be

written under a matrix form as

 k(xn, xn) h(xn)T

h(xn) 0




 λ(x; xn)

µ(x)


 =


 k(x, xn)

h(x)


 , (3.11)

where h(xn) is an l × n matrix with entries hi(xj), i = 1, . . . , l, j = 1, . . . , n, µ is a

vector of Lagrange coefficients (k(xn, xn), λ(x; xn), k(x, xn) as above). The kriging

covariance function is given in this case by

k(x, y; xn) := cov
(
ξ(x)− ξ̂(x; xn), ξ(y)− ξ̂(y; xn)

)

= k(x, y)− λ(x; xn)T k(y, xn)− µ(x)Th(y) . (3.12)

The following result holds (Kimeldorf and Wahba, 1970; O’Hagan, 1978):

Proposition 2. Let k be a covariance function.

If





ξ | m ∼ GP (m, k)

m : x 7→ βTh(x), β ∼ URl

then ξ | Fn ∼ GP
(
ξ̂( · ; xn), k( · , · ; xn)

)
,

where URl stands for the (improper) uniform distribution over Rl, and where

ξ̂( · ; xn) and k( · , · ; xn) are given by (3.7), (3.11) and (3.12).

Proposition 2 justifies the use of kriging in a Bayesian framework provided that

the covariance function of ξ is known. However, the covariance function is rarely

assumed to be known in applications. Instead, the covariance function is generally

taken in some parametric class (in this paper, we use the so-called Matérn covariance

function, see Appendix A). A fully Bayesian approach also requires to choose a prior

distribution for the unknown parameters of the covariance (see, e.g., Handcock

and Stein, 1993; Kennedy and O’Hagan, 2001; Paulo, 2005). Sampling techniques

(Monte Carlo Markov Chains, Sequential Monte Carlo...) are then generally used

to approximate the posterior distribution of the unknown covariance parameters.

Very often, the popular empirical Bayes approach is used instead, which consists

in plugging-in the maximum likelihood (ML) estimate to approximate the posterior

distribution of ξ. This approach has been used in previous papers about contour

estimation or probability of failure estimation (Bichon et al., 2008; Picheny et al.,

2010; Ranjan et al., 2008). In Section 3.5.2 we will adopt a plug-in approach as

well.
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Simplified notations. In the rest of the paper, we shall use the following

simplified notations when there is no risk of confusion: ξ̂n(x) := ξ̂(x; Xn), σ2
n(x) :=

σ2(x; Xn).

3.2.4 Estimators of the probability of failure

Given a random process ξ and a strategy XN , the optimal estimator that minimizes

E0
(
(α− α̂n)2

)
among all Fn-measurable estimators α̂n, 1 ≤ n ≤ N , is

α̂n = En (α) = En

(∫

X

1ξ>u dPX

)
=
∫

X

pn dPX , (3.13)

where

pn : x ∈ X 7→ Pn {ξ(x) > u} . (3.14)

When ξ is a Gaussian process, the probability pn(x) of exceeding u at x ∈ X given

In has a simple closed-form expression:

pn(x) = 1 − Φ

(
u− ξ̂n(x)

σn(x)

)
= Φ

(
ξ̂n(x)− u

σn(x)

)
, (3.15)

where Φ is the cumulative distribution function of the normal distribution. Thus, in

the Gaussian case, the estimator (3.13) is amenable to a numerical approximation,

by integrating the excess probability pn over X (for instance using Monte Carlo

sampling, see Section 3.3.3).

Another natural way to obtain an estimator of α given In is to approximate the

excess indicator 1ξ>u by a hard classifier ηn : X → {0, 1}, where “hard” refers to

the fact that ηn takes its values in {0, 1}. If ηn is close in some sense to 1ξ>u, the

estimator

α̂n =
∫

X

ηndPX (3.16)

should be close to α. More precisely,

En

(
(α̂n − α)2

)
= En

[(∫
(ηn − 1ξ>u)dPX

)2
]
≤
∫

En

(
(ηn − 1ξ>u)2

)
dPX .

(3.17)

Let τn(x) = Pn{ηn(x) 6= 1ξ(x)>u} = En

(
(ηn(x)− 1ξ(x)>u)2

)
be the probability of

misclassification; that is, the probability to predict a point above (resp. under) the

threshold when the true value is under (resp. above) the threshold. Thus, (3.17)

shows that it is desirable to use a classifier ηn such that τn is small for all x ∈ X. For

instance, the method called smart (Deheeger and Lemaire, 2007) uses a support

vector machine to build ηn. Note that

τn(x) = pn(x) + (1− 2pn(x)) ηn(x) .
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Therefore, the right-hand side of (3.17) is minimized if we set

ηn(x) = 1pn(x)>1/2 = 1ξ̄n(x)>u , (3.18)

where ξ̄n(x) denotes the posterior median of ξ(x). Then, we have

τn(x) = min(pn(x), 1− pn(x)).

In the case of a Gaussian process, the posterior median and the posterior mean are

equal. Then, the classifier that minimizes τn(x) for each x ∈ X is ηn = 1
ξ̂n>u

, in

which case

τn(x) = Pn

(
(ξ(x)− u)(ξ̂n(x)− u) < 0

)
= 1 − Φ

(∣∣ξ̂n(x)− u
∣∣

σn(x)

)
. (3.19)

Notice that for ηn = 1
ξ̂n>u

, we have α̂n = α(ξ̂n). Therefore, this approach to obtain

an estimator of α can be seen as a type of plug-in estimation.

Standing assumption. It will assumed in the rest of the paper that ξ is a Gaussian

process, or more generally that ξ | Fn ∼ GP
(
ξ̂n, k( · , · ; xn)

)
for all n ≥ 1 as in

Proposition 2.

3.3 Stepwise uncertainty reduction

3.3.1 Principle

A very natural and straightforward way of building a one-step lookahead strategy

is to select greedily each evaluation as if it were the last one. This kind of strategy,

sometimes called myopic, has been successfully applied in the field of Bayesian global

optimization (Mockus, 1989; Mockus et al., 1978), yielding the famous expected

improvement criterion later popularized in the Efficient Global Optimization (EGO)

algorithm of Jones et al. (1998).

When the Bayesian risk provides a measure of the estimation error or uncertainty

(as in the present case), we call such a strategy a stepwise uncertainty reduction

(SUR) strategy. In the field of global optimization, the Informational Approach

to Global Optimization (IAGO) of Villemonteix et al. (2009) is an example of a

SUR strategy, where the Shannon entropy of the minimizer is used instead of the

quadratic cost. When considered in terms of utility rather than cost, such strategies

have also been called knowledge gradient policies by Frazier et al. (2008).
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Given a sequence of estimators (α̂n)n≥1, a direct application of the above prin-

ciple using the quadratic loss function yields the sampling criterion

Jn(x) = En

(
(α− α̂n+1)2 | Xn+1 = x

)
. (3.20)

Having found no closed-form expression for this criterion, and no efficient numerical

procedure for its approximation, we will proceed by upper-bounding and discretiz-

ing (3.20) in order to get an expression that will lend itself to a numerically tractable

approximation. By doing so, several SUR strategies will be derived, depending on

the choice of estimator (the posterior mean (3.13) or the plug-in estimator (3.16)

with (3.18)) and bounding technique.

3.3.2 Upper bounds of the SUR sampling criterion

Recall that τn(x) = min(pn(x), 1 − pn(x)) is the probability of misclassification

at x using the optimal classifier 1
ξ̂n(x)>u

. Let us further denote by νn(x) :=

pn(x) (1− pn(x)) the variance of the excess indicator 1ξ(x)≥u.

Proposition 3. Assume that either α̂n = En (α) or α̂n =
∫

1
ξ̂n≥u

dPX. Define

Gn :=
∫
X

√
γn(y)dPX for all n ∈ {0, . . . , N − 1}, with

γn :=





νn = pn(1− pn) = τn(1− τn) , if α̂n = En (α) ,

τn = min(pn, 1− pn) , if α̂n =
∫

1
ξ̂n≥u

dPX .

Then, for all x ∈ X and all n ∈ {0, . . . , N − 1},

Jn(x) ≤ J̃n(x) := En

(
G2

n+1 | Xn+1 = x
)

.

Note that γn(x) is a function of pn(x) that vanishes at 0 and 1, and reaches

its maximum at 1/2; that is, when the uncertainty on 1
ξ̂n(x)>u

is maximal (see

Figure 3.1).

Proof. First, observe that, for all n ≥ 0, α− α̂n =
∫

Un dPX, with

Un : x ∈ X 7→ Un(x) =





1ξ(x)>u − pn(x) if α̂n = En (α) ,

1ξ(x)>u − 1
ξ̂n(x)>u

if α̂n =
∫

1
ξ̂n≥u

dPX .
(3.21)

Moreover, note that γn = ‖Un‖2n in both cases, where ‖ · ‖n : L2 (Ω,B, P) →
L2 (Ω,Fn, P), W 7→ En

(
W 2

)1/2. Then, using the generalized Minkowski inequality

(see, e.g., Vestrup, 2003, section 10.7) we get that
∥∥∥∫ Un dPX

∥∥∥
n
≤
∫
‖Un‖n dPX =

∫ √
γn dPX = Gn. (3.22)



3.3. Stepwise uncertainty reduction 57

Finally, it follows from the tower property of conditional expectations and (3.22)

that, for all n ≥ 0,

Jn(x) = En

(
‖α− α̂n+1‖2n+1 | Xn+1 = x

)

= En

(∥∥∫ Un+1 dPX

∥∥2

n+1

∣∣∣ Xn+1 = x
)

≤ En

(
G2

n+1 | Xn+1 = x
)

.
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Figure 3.1: γn as a function of pn (see Proposition 3). In both cases, γn is maximum

at pn = 1/2.

Note that two other upper-bounding sampling criteria readily follow from those

of Proposition 3, by using the Cauchy-Schwarz inequality in L2 (X,B(X), PX):

J̃n(x) ≤ En

(∫
γn+1 dPX

∣∣∣ Xn+1 = x

)
. (3.23)

As a result, we can write four SUR criteria, whose expressions are summarized in

Table 3.1. Criterion JSUR
1,n has been proposed in the PhD thesis of Piera-Martinez

(2008) and in conference papers (Vazquez and Bect, 2009; Vazquez and Piera-

Martinez, 2007); the other ones, to the best of our knowledge, are new. Each

criterion is expressed as the conditional expectation of some (possibly squared)

Fn+1-measurable integral criterion, with an integrand that can be expressed as a

function of the probability of misclassification τn+1. It is interesting to note that the

integral in JSUR
4 is the integrated mean square error (IMSE)7 for the process 1ξ>u.

7The IMSE criterion is usually applied to the response surface ξ itself (see, e.g., Box and Draper,

1987; Sacks et al., 1989). The originality here is to consider the IMSE of the process 1ξ>u instead.

Another way of adapting the IMSE criterion for the estimation of a probability of failure, proposed

by Picheny et al. (2010), is recalled in Section 3.4.2.
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Remark 4. The conclusions of Proposition 3 still hold in the general case when ξ

is not assumed to be a Gaussian process, provided that the posterior median ξ̄n is

substituted to posterior the mean ξ̂n.

Table 3.1: Expressions of four SUR-type criteria.
SUR-type sampling criterion How it is obtained

JSUR
1,n (x) = En

((∫ √
τn+1 dPX

)2
∣∣∣ Xn+1 = x

)
Prop. 3 with α̂n =

∫
1

ξ̂n>u
dPX

JSUR
2,n (x) = En

((∫ √
νn+1 dPX

)2
∣∣∣ Xn+1 = x

)
Prop. 3 with α̂n = En (α)

JSUR
3,n (x) = En

(∫
τn+1 dPX

∣∣∣ Xn+1 = x

)
Eq. (3.23) with α̂n =

∫
1

ξ̂n>u
dPX

JSUR
4,n (x) = En

(∫
νn+1 dPX

∣∣∣ Xn+1 = x

)
Eq. (3.23) with α̂n = En (α)

3.3.3 Discretizations

In this section, we proceed with the necessary integral discretizations of the SUR

criteria to make them suitable for numerical evaluation and implementation on

computers. Assume that n steps of the algorithm have already been performed and

consider, for instance, the criterion

JSUR
3,n (x) = En

(
∫ τn+1(y) PX(dy)

∣∣∣ Xn+1 = x
)
. (3.24)

Remember that, for each y ∈ X, the probability of misclassification τn+1(y) is

Fn+1-measurable and, therefore, is a function of In+1 = (In, Xn+1, Zn+1). Since In

is known at this point, we introduce the notation vn+1(y; Xn+1, Zn+1) = τn+1(y)

to emphasize the fact that, when a new evaluation point must be chosen at step

(n + 1), τn+1(y) depends on the choice of Xn+1 and the random outcome Zn+1.

Let us further denote by Qn,x the probability distribution of ξ(x) under Pn. Then,

(3.24) can be rewritten as

JSUR
3,n (x) =

∫∫

R×X

vn+1(y; x, z) Qn,x(dz) PX(dy) ,

and the corresponding strategy is:

Xn+1 = arg min
x∈X

∫∫

R×X

vn+1(y; x, z) Qn,x(dz) PX(dy) . (3.25)

Given In and a triple (x, y, z), vn+1(y; x, z) can be computed efficiently using the

equations provided in Sections 3.2.3 and 3.2.4.
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At this point, we need to address: 1) the computation of the integral on X with

respect to PX; 2) the computation of the integral on R with respect to Qn,x; 3) the

minimization of the resulting criterion with respect to x ∈ X.

To solve the first problem, we draw an i.i.d. sequence Y1, . . . , Ym ∼ PX and use

the Monte Carlo approximation:

∫

X

vn+1(y; x, z) PX(dy) ≈ 1

m

m∑

j=1

vn+1(Yj ; x, z).

An increasing sample size n 7→ mn should be used to build a convergent algorithm

for the estimation of α (possibly with a different sequence Yn,1, . . . , Yn,mn at each

step). In this paper we adopt a different approach instead, which is to take a

fixed sample size m > 0 and keep the same sample Y1, . . . , Ym throughout the

iterations. Equivalently, it means that we choose to work from the start on a

discretized version of the problem: we replace PX by the empirical distribution

P̂X,n = 1
m

∑m
j=1 δYj

, and our goal is now to estimate the Monte Carlo estimator

αm =
∫

1ξ>udP̂X,n = 1
m

∑m
j=1 1ξ(Yj)>u, using either the posterior mean En (αm) =

1
m

∑
j pn(Yj) or the plug-in estimate 1

m

∑
j 1

ξ̂(Yj ;Xn)>u
. This kind of approach has

be coined meta-estimation by Arnaud et al. (2010): the objective is to estimate

the value of a precise Monte Carlo estimator of α(f) (m being large), using prior

information on f to alleviate the computational burden of running m times the

computer code f . This point of view also underlies the work in structural reliability

of Hurtado (2004b, 2007), Deheeger and Lemaire (2007), Deheeger (2008), and more

recently Echard et al. (2010a,b).

The new point of view also suggests a natural solution for the third problem,

which is to replace the continuous search for a minimizer x ∈ X by a discrete

search over the set Xm := {Y1, . . . , Ym}. This is obviously sub-optimal, even in

the meta-estimation framework introduced above, since picking x ∈ X \ Xm can

sometimes bring more information about ξ(Y1), . . . , ξ(Ym) than the best possible

choice in Xm. Global optimization algorithms may of course be used to tackle

directly the continuous search problem: for instance, Ranjan et al. (2008) use a

combination of a genetic algorithm and local search technique, Bichon et al. (2008)

use the DIRECT algorithm and Picheny et al. (2010) use a covariance-matrix-

adaptation evolution strategy. In this paper we will stick to the discrete search

approach, since it is much simpler to implement (we shall present in Section 3.3.4

a method to handle the case of large m) and provides satisfactory results (see

Section 3.5).
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Finally, remark that the second problem boils down to the computation of a

one-dimensional integral with respect to Lebesgue’s measure. Indeed, since ξ is a

Gaussian process, Qn,x is a Gaussian probability distribution with mean ξ̂n(x) and

variance σ2
n(x) as explained in Section 3.2.3. The integral can be computed using

a standard Gauss-Hermite quadrature with Q points (see, e.g., Press et al., 1992,

Chapter 4) :

∫
vn+1(y; x, z) Qn,x(dz) ≈ 1√

π

Q∑

q=1

wq vn+1(y; x, ξ̂n(x) + σn(x)uq

√
2) ,

where u1, . . . , uQ denote the quadrature points and w1, . . . , wQ the corresponding

weights. Note that this is equivalent to replacing under Pn the random variable ξ(x)

by a quantized random variable with probability distribution
∑Q

q=1 w′
qδzn+1,q(x),

where w′
q = wq/

√
π and zn+1,q(x) = ξ̂n(x) + σn(x)uq

√
2 denote quadrature points.

Taking all three discretizations into account, the proposed strategy is:

Xn+1 = arg min
1≤k≤m

m∑

j=1

Q∑

q=1

w′
q vn+1 (Yj ; Yk, zn+1,q(Yk)) . (3.26)

3.3.4 Implementation

This section gives implementation guidelines for the SUR strategies described in

Section 3.3. As said in Section 3.3.3, the strategy (3.26) can, in principle, be

translated directly into a computer program. In practice however, we feel that

there is still room for different implementations. In particular, it is important to

keep the computational complexity of the strategies at a reasonable level. We shall

explain in this section some simplifications we have made to achieve this goal.

A straight implementation of (3.26) for the choice of an additional evaluation

point is described in Table 3.2. This procedure is meant to be called iteratively in

a sequential algorithm, such as that described for instance in Table 3.3. Note that

the only parameter to be specified in the SUR strategy (3.26) is Q, which tunes

the precision of the approximation of the integral on R with respect to Qn,x. In

our numerical experiments, it was observed that taking Q = 12 achieves a good

compromise between precision and numerical complexity.

To assess the complexity of a SUR sampling strategy, recall that kriging takes

O(mn2) operations to predict the value of f at m locations from n evaluation results

of f (we suppose that m > n and no approximation is carried out). In the procedure
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Table 3.2: Procedure to select a new evaluation point Xn+1 ∈ X using a SUR

strategy

Require computer representations of

a) a set In = {(X1, f(X1)), . . . , (Xn, f(Xn))} of evaluation results;

b) a Gaussian process prior ξ with a (possibly unknown linear parametric) mean

function and a covariance function kθ, with parameter θ;

c) a (pseudo-)random sample Xm = {Y1, . . . , Ym} of size m drawn from the distri-

bution PX;

d) quadrature points u1, . . . , uQ and corresponding weights w′
1, . . . , w′

Q;

e) a threshold u.

1. compute the kriging approximation f̂n and kriging variance σ2
n on Xm from In

2. for each candidate point Yj , j ∈ {1, . . . , m},

2.1 for each point Yk, k ∈ {1, . . . , m}, compute the kriging weights

λi(Yk; {Xn, Yj}), i ∈ {1, . . . , (n + 1)}, and the kriging variances

σ2(Yk; {Xn, Yj})

2.2 compute zn+1,q(Yj) = f̂n(Yj) + σn(Yj)uq

√
2, for q = 1, . . . , Q

2.3 for each zn+1,q(Yj), q ∈ {1, . . . , Q},

2.3.1 compute the kriging approximation f̃n+1,j,q on Xm from In ∪
(Yj , f(Yj) = zn+1,q(Yj)), using the weights λi(Yk; {Xn, Yj}), i =

1, . . . , (n + 1), k = 1, . . . , m, obtained at Step 2.1.

2.3.2 for each k ∈ {1, . . . , m}, compute vn+1 (Yk; Yj , zn+1,q(Yj)), using

u, f̃n+1,j,q obtained in 2.3.1, and σ2(Yk; {Xn, Yj}) obtained in 2.1

2.4 compute Jn(Yj) =
∑m

k=1

∑Q
q=1 w′

q vn+1 (Yk; Yj , zn+1,q(Yj)).

3. find j⋆ = arg minj Jn(Yj) and set Xn+1 = Yj⋆
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Table 3.3: Sequential estimation of a probability of failure

1. Construct an initial design of size n0 < N and evaluate f at the points of the

initial design.

2. Choose a Gaussian process ξ (in practice, this amounts to choosing a parametric

form for the mean of ξ and a parametric covariance function kθ)

3. Generate a Monte Carlo sample Xm = {Y1, . . . , Ym} of size m from PX

4. While the evaluation budget N is not exhausted,

4.1 optional step: estimate the parameters of the covariance function (case

of a plug-in approach);

4.2 select a new evaluation point, using past evaluation results, the prior ξ

and Xm;

4.3 perform the new evaluation.

5. Estimate the probability of failure obtained from the N evaluations of f (for

instance, by using EN (αm) = 1
m

∑
j pN (Yj)).
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to select an evaluation, a first kriging prediction is performed at Step 1 and then,

m different predictions have to performed at step 2.1. This cost becomes rapidly

burdensome for large values of n and m, and we must further simplify (3.26) to be

able to work on applications where m must be large. A natural idea to alleviate the

computational cost of the strategy is to avoid dealing with candidate points that

have a very low probability of misclassification, since they are probably far from

the frontier of the domain of failure. It is also likely that those points with a low

probability of misclassification will have a very small contribution in the variance

of the error of estimation α̂n − αm.

Therefore, the idea is to rewrite the sampling strategy described by (3.26), in

such a way that the first summation (over m) and the search set for the minimizer is

restricted to a subset of points Yj corresponding to the m0 largest values of τn(Yj).

The corresponding algorithm is not described here for the sake of brevity but can

easily be adapted from that of Table 3.2. Sections 3.5.2 and 3.5.3 will show that

this pruning scheme has almost no consequence on the performances of the SUR

strategies, even when one considers small values for m0 (for instance m0 = 200).

3.4 Other strategies proposed in the literature

3.4.1 Estimation of a probability of failure and closely related ob-

jectives

Given a real function f defined over X ⊆ Rd, and a threshold u ∈ R, consider the

following possible goals:

1. estimate a region Γ ⊂ X of the form Γ = {x ∈ X
∣∣ f(x) > u};

2. estimate the level set ∂Γ = {x ∈ X
∣∣ f(x) = u};

3. estimate f precisely in a neighborhood of ∂Γ;

4. estimate the probability of failure α = PX(Γ) for a given probability mea-

sure PX.

These different goals are, in fact, closely related: indeed, they all require, more

or less explicitly, to select sampling points in order to get a fine knowledge of

the function f in a neighborhood of the level set ∂Γ (the location of which is

unknown before the first evaluation). Any strategy proposed for one of the first
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three objectives is therefore expected to perform reasonably well on the fourth one,

which is the topic of this paper.

Several strategies recently introduced in the literature are presented in Sec-

tions 3.4.2 and 3.4.3, and will be compared numerically to the SUR strategy in

Section 3.5. Each of these strategies has been initially proposed by its authors to

address one or several of the above objectives, but they will only be discussed in

this paper from the point of view of their performance on the fourth one. Of course,

a comparison focused on any other objective would probably be based on different

performance metrics, and thus could yield a different performance ranking of the

strategies.

3.4.2 The targeted IMSE criterion

The targeted IMSE proposed in Picheny et al. (2010) is a modification of the IMSE

(Integrated Mean Square Error) sampling criterion (Sacks et al., 1989). While

the IMSE sampling criterion computes the average of the kriging variance (over a

compact domain X) in order to achieve a space-filling design, the targeted IMSE

computes a weighted average of the kriging variance for a better exploration of

the regions near the frontier of the domain of failure, as in Oakley (2004). The

idea is to put a large weight in regions where the kriging prediction is close to the

threshold u, and a small one otherwise. Given In, the targeted IMSE sampling

criterion, hereafter abbreviated as tIMSE, can be written as

J tIMSE
n (x) = En

(∫

X

(
ξ − ξ̂n+1

)2
Wn dPX

∣∣∣ Xn+1 = x

)
(3.27)

=

∫

X

σ2 (y; X1, . . . , Xn, x) Wn(y) PX(dy), (3.28)

where Wn is a weight function based on In. The weight function suggested by

Picheny et al. (2010) is

Wn(x) =
1

sn(x)
√

2π
exp

(
−1

2

(
ξ̂n(x)− u

sn(x)

)2
)

, (3.29)

where s2
n(x) = σ2

ε +σ2
n (x). Note that Wn(x) is large when ξ̂n(x) ≈ u and σ2

n(x) ≈ 0,

i.e., when the function is known to be close to u.

The tIMSE criterion operates a trade-off between global uncertainty reduction

(high kriging variance σ2
n) and exploration of target regions (high weight func-

tion Wn). The weight function depends on a parameter σε > 0, which allows to

tune the width of the “window of interest” around the threshold. For large values
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of σε, J tIMSE behaves approximately like the IMSE sampling criterion. The choice

of an appropriate value for σε, when the goal is to estimate a probability of failure,

will be discussed on the basis of numerical experiments in Section 3.5.3.

The tIMSE strategy requires a computation of the expectation with respect

to ξ(x) in (3.27), which can be done analytically, yielding (3.28). The computation

of the integral with respect to PX on X can be carried out with a Monte Carlo

approach, as explained in Section 3.3.3. Finally, the optimization of the criterion is

replaced by a discrete search in our implementation.

3.4.3 Criteria based on the marginal distributions

Other sampling criteria proposed by Ranjan et al. (2008), Bichon et al. (2008) and

Echard et al. (2010a,b) are briefly reviewed in this section8. A common feature

of these three criteria is that, unlike the SUR and tIMSE criteria discussed so far,

they only depend on the marginal posterior distribution at the considered candidate

point x ∈ X, which is a Gaussian N (ξ̂n(x), σ2
n(x)

)
distribution. As a consequence,

they are of course much cheaper to compute than integral criteria like SUR and

tIMSE.

A natural idea, in order to sequentially improve the estimation of the probability

of failure, is to visit the point x ∈ X where the event {ξ(x) ≥ u} is the most

uncertain. This idea, which has been explored by Echard, Gayton, and Lemaire

(2010a,b), corresponds formally to the sampling criterion

JEGL
n (x) = τn(x) = 1− Φ

(∣∣u− ξ̂n(x)
∣∣

σn(x)

)
. (3.30)

As in the case of the tIMSE criterion and also, less explicitly, in SUR criteria, a

trade-off is realized between global uncertainty reduction (choosing points with a

high σ2
n(x)) and exploration of the neighborhood of the estimated contour (where

∣∣u− ξ̂n(x)
∣∣ is small).

The same leading principle motivates the criteria proposed by Ranjan et al.

(2008) and Bichon et al. (2008), which can be seen as special cases of the following

sampling criterion:

JRB
n (x) := En

(
max

(
0, ε(x)δ − |u− ξ(x)|δ

))
, (3.31)

where ε(x) = κ σn(x), κ, δ > 0. The following proposition provides some insights

into this sampling criterion:
8Note that the paper of Ranjan et al. (2008) is the only one in this category that does not

address the problem of estimating a probability of failure (i.e., Objective 4 of Section 3.4.1).
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Proposition 4. Define Gκ,δ : ]0, 1[→ R+ by

Gκ,δ(p) := E
(
max

(
0, κδ −

∣∣Φ−1(p) + U
∣∣
))

,

where U is a Gaussian N (0, 1) random variable. Let ϕ and Φ denote respectively

the probability density function and the cumulative distribution function of U .

a) Gκ,δ(p) = Gκ,δ(1− p) for all p ∈ ]0, 1[.

b) Gκ,δ is strictly increasing on ]0, 1/2] and vanishes at 0. Therefore, Gκ,δ is

also strictly decreasing on [1/2, 1[, vanishes at 1, and has a unique maximum

at p = 1/2.

c) Criterion (3.31) can be rewritten as

JRB

n (x) = σn(x)δ Gκ,δ

(
pn(x)

)
. (3.32)

d) Gκ,1 has the following closed-form expression:

Gκ,1(p) = κ
(
Φ(t+)− Φ(t−)

)

− t
(
2Φ(t)− Φ(t+)− Φ(t−)

)

− (
2ϕ(t)− ϕ(t+)− ϕ(t−)

)
,

(3.33)

where t = Φ−1(1− p), t+ = t + κ and t− = t− κ.

e) Gκ,2 has the following closed-form expression:

Gκ,2(p) =
(
κ2 − 1− t2) (Φ(t+)− Φ(t−)

)

− 2t
(
ϕ(t+)− ϕ(t−)

)

+ t+ϕ(t+)− t−ϕ(t−),

(3.34)

with the same notations.

It follows from a) and c) that JRB
n (x) can also be seen as a function of

the kriging variance σ2
n(x) and the probability of misclassification τn(x) =

min (pn(x), 1− pn(x)). Note that, in the computation of Gκ,δ

(
pn(x)

)
, the quan-

tity denoted by t in (3.33) and (3.34) is equal to
(
u − ξ̂n(x)

)
/σn(x), i.e., equal to

the normalized distance between the predicted value and the threshold.

Bichon et al.’s expected feasibility function corresponds to (3.32) with δ = 1,

and can be computed efficiently using (3.33). Similarly, Ranjan et al.’s expected
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improvement9 function corresponds to (3.32) with δ = 2, and can be computed

efficiently using (3.34). The proof of Proposition 4 is provided in Appendix B.

Remark 5. In the case δ = 1, our result coincides with the expression given by

Bichon et al. (2008, Eq. (17)). In the case δ = 2, we have found and corrected a

mistake in the computations of Ranjan et al. (2008, Eq. (8) and Appendix B).

3.5 Numerical experiments

3.5.1 A one-dimensional illustration of a SUR strategy

The objective of this section is to show the progress of a SUR strategy in a simple

one-dimensional case. We wish to estimate α = PX{f > 1}, where f : X = R→ R

is such that ∀x ∈ R,

f(x) = (0.4x− 0.3)2 + exp
(
−11.534 |x|1.95

)
+ exp(−5(x− 0.8)2) ,

and where X is endowed with the probability distribution PX = N (0, σ2
X

), σX = 0.4,

as depicted in Figure 3.2. We know in advance that α ≈ 0.2. Thus, a Monte Carlo

sample of size m = 1500 will give a good estimate of α.

In this illustration, ξ is a Gaussian process with constant but unknown mean

and a Matérn covariance function, whose parameters are kept fixed, for the sake

of simplicity. Figure 3.2 shows an initial design of four points and the sampling

criterion JSUR
1,n=4. Notice that the sampling criterion is only computed at the points

of the Monte Carlo sample. Figures 3.3 and 3.4 show the progress of the SUR

strategy after a few iterations. Observe that the unknown function f is sampled so

that the probability of excursion pn almost equals zero or one in the region where

the density of PX is high.

3.5.2 An example in structural reliability

In this section, we evaluate all criteria discussed in Section 3.3 and Section 3.4

through a classical benchmark example in structural reliability (see, e.g., Borri

and Speranzini, 1997; Deheeger, 2008; Schueremans, 2001; Waarts, 2000). Echard

et al. (2010a,b) used this benchmark to make a comparison among several methods

proposed in Schueremans and Van Gemert (2005), some of which are based on the

9Despite its name and some similarity between the formulas, this criterion should not be con-

fused with the well-known EI criterion in the field of optimization (Jones et al., 1998; Mockus et al.,

1978).
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Figure 3.2: Illustration of a SUR strategy. This figure shows the initial design. Top:

threshold u = 1 (horizontal dashed line); function f (thin line); n = 4 initial eval-

uations (squares); kriging approximation fn (thick line); 95% confidence intervals

computed from the kriging variance (shaded area). Middle: probability of excursion

(solid line); probability density of PX (dotted line). Bottom: graph of JSUR
1,n=4(Yi),

i = 1, . . . , m = 1500, the minimum of which indicates where the next evaluation of

f should be done (i.e., near the origin).
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Figure 3.3: Illustration of a SUR strategy (see also Figures 3.2 and 3.4). This

figure shows the progress of the SUR strategy after two iterations—a total of n =

6 evaluations (squares) have been performed. The next evaluation point will be

approximately at x = −0.5

.
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Figure 3.4: Illustration of a SUR strategy (see also Figures 3.2 and 3.3). This

figure shows the progress of the SUR strategy after eight iterations—a total of

n = 12 evaluations (squares) have been performed. At this stage, the probability

of excursion pn almost equals 0 or 1 in the region where the density of PX is high.
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construction of a response surface. The objective of the benchmark is to estimate

the probability of failure of a so-called four-branch series system. A failure happens

when the system is working under the threshold u = 0. The performance function

f for this system is defined as

f : (x1, x2) ∈ R
2 7→ f(x1, x2) = min





3 + 0.1(x1 − x2)2 − (x1 + x2)/
√

2;

3 + 0.1(x1 − x2)2 + (x1 + x2)/
√

2;

(x1 − x2) + 6/
√

2;

(x2 − x1) + 6/
√

2





.

The uncertain input factors are supposed to be independent and have standard

normal distribution. Figure 3.5 shows the performance function, the failure domain

and the input distribution. Observe that f has a first-derivative discontinuity along

four straight lines originating from the point (0, 0).
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Figure 3.5: Left: mesh plot of the performance function f corresponding to the

four-branch series system; a failure happens when f is below the transparent plane;

Right: contour plot of f ; limit state f = 0 (thick line); sample of size m = 3× 103

from PX (dots).

For each sequential method, we will follow the procedure described in Table 3.3.

We generate an initial design of n0 = 10 points (five times the dimension of the

factor space) using a maximin LHS (Latin Hypercube Sampling)10 on [−6; 6] ×
[−6; 6]. We choose a Monte Carlo sample of size m = 30000. Since the true

probability of failure is approximately α = 0.4% in this example, the coefficient of

variation for αm is 1/
√

m α ≈ 9%. The same initial design and Monte Carlo sample

10 More precisely, we use Matlab’s lhsdesign() function to select the best design according to

the maximin criterion among 104 randomly generated LHS designs.
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are used for all methods.

A Gaussian process with constant unknown mean and a Matérn covariance

function is used as our prior information about f . The parameters of the Matérn

covariance functions are estimated on the initial design by REML (see, e.g. Stein,

1999). In this experiment, we follow the common practice of re-estimating the

parameters of the covariance function during the sequential strategy, but only once

every ten iterations to save some computation time.

The probability of failure is estimated by (3.13). To evaluate the rate of con-

vergence, we compute the number nγ of iterations that must be performed using a

given strategy to observe a stabilization of the relative error of estimation within

an interval of length 2γ:

nγ = min

{
n ≥ 0;∀k ≥ n,

|α̂n0+k − αm|
αm

< γ

}
.

All the available sequential strategies are run 100 times, with different initial designs

and Monte Carlo samples. The results for γ = 0.10, γ = 0.03 and γ = 0.01 are

summarized in Table 3.4. We shall consider that n0.1 provides a measure of the

performance of the strategy in the “initial phase”, where a rough estimate of α is

to be found, whereas n0.03 and n0.01 measure the performance in the “refinement

phase”.

The four variants of the SUR strategy (see Table 3.1) have been run with Q =

12 and either m0 = 10 or m0 = 500. The performance are similar for all four

variants and for both values of m0. It appears, however, that the criterions JSUR
1

and JSUR
2 2 (i.e., the criterions given directly by Proposition 3) are slightly better

than JSUR
3 and JSUR

4 ; this will be confirmed by the simulations of Section 3.5.3. It

also seems that the SUR algorithm is slightly slower to obtain a rough estimate of the

probability of failure when m0 is very small, but performs very well in the refinement

phase. (Note that m0 = 10 is a drastic pruning for a sample of size m = 30000.)

The tIMSE strategy has been run for three different values of its tuning pa-

rameter σ2
ε , using the pruning scheme with m0 = 500. The best performance is

obtained for σ2
ε ≈ 0, and is almost as good as the performance of SUR stragies

with the same value of m0 (a small loss of performance, of about one evaluation on

average, can be noticed in the refinement phase). Note that the required accuracy

was not reached after 200 iterations in 17% of the runs for σ2
ε = 1. In fact, the

tIMSE strategy tends to behave like a space-filling strategy in this case. Figure 3.6

shows the points that have been evaluated in three cases: the evaluations are less

concentrated on the boundary between the safe and the failure region when σ2
ε = 1.
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Finally, the results obtained for JRB and JEGL indicate that the corresponding

strategies are clearly less efficient in the “initial phase” than strategies based on JSUR
1

or JSUR
2 . For γ = 0.1, the average loss with respect to JSUR

1 is between approximately

0.9 evaluations for the best case (criterion JRB with δ = 2, κ = 2) and 3.9 evaluations

for the worst case. For γ = 0.03, the loss is between 1.4 evaluations (also for

(criterion JRB with δ = 2, κ = 2) and 3.5 evaluations. This loss of efficiency can

also be observed very clearly on the 90th percentile in the inital phase. Criterion JRB

seems to perform best with δ = 2 and κ = 2 in this experiment, but this will not

be confirmed by the simulations of Section 3.5.3. Tuning the parameters of this

criterion for the estimation of a probability of failure does not seem to be an easy

task.

Table 3.4: Comparison of the convergence to αm in the benchmark example Sec-

tion 3.5.2 for different sampling strategies. The first number (bold text) is the

average value of nγ over 100 runs. The numbers between brackets indicate the 10th

and 90th percentile.

criterion parameters γ = 0.10 γ = 0.03 γ = 0.01

JSUR
1 m0 = 500 16.1 [10–22] 25.7 [17–35] 36.0 [26–48]

m0 = 10 19.4 [11–28] 28.1 [19–38] 35.4 [26–44]

JSUR
2 m0 = 500 16.4 [10–24] 25.7 [19–33] 35.5 [25–45]

m0 = 10 20.0 [11–30] 28.3 [20–39] 35.3 [26–44]

JSUR
3 m0 = 500 18.2 [10–27] 26.9 [18–37] 35.9 [27–46]

m0 = 10 20.1 [11–30] 28.0 [20–36] 35.2 [25–44]

JSUR
4 m0 = 500 17.2 [10–28] 26.5 [20–36] 35.2 [25–45]

m0 = 10 21.4 [13–30] 28.9 [20–38] 35.5 [27–44]

J tIMSE σ2
ε = 10−6 16.6 [10–23] 26.5 [19–36] 37.3 [28–49]

σ2
ε = 0.1 15.9 [10–22] 29.1 [19–43] 50.5 [30–79]

σ2
ε = 1 21.7 [11–31] 52.4 [31–85] 79.5 [42–133](∗)

JEGL – 21.0 [11–31] 29.2 [21–39] 36.4 [28–44]

JRB δ = 1, κ = 0.5 18.7 [10–27] 27.5 [20–35] 36.6 [27–44]

δ = 1, κ = 2.0 18.9 [11–28] 28.3 [21–35] 37.7 [30–45]

δ = 2, κ = 0.5 17.6 [10–24] 27.6 [20–34] 37.1 [29–45]

δ = 2, κ = 2.0 17.0 [10–21] 27.1 [20–34] 36.8 [29–44]

(*) The required accuracy was not reached after 200 iterations in 17% of the runs
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Figure 3.6: The first 16 points (squares) evaluated using sampling criterion JSUR
1

(left), J tIMSE with σ2
ε = 0.1 (middle), J tIMSE with σ2

ε = 1 (right). Numbers near

squares indicate the order of evaluation. The location of the n0 = 10 points of the

initial design are indicated by circles.

Table 3.5: Size of the initial design and covariance parameters for the experiments

of Section 3.5.3. The parametrization of the Matérn covariance function used here

is defined in Appendix A.

d n0 σ2 ν ρ

1 3 1.0 2.0 0.100

2 10 1.0 2.0 0.252

3 15 1.0 2.0 0.363

3.5.3 Average performance on sample paths of a Gaussian process

This section provides a comparison of all the criteria introduced or recalled in this

paper, on the basis of their average performance on the sample paths of a zero-mean

Gaussian process defined on X = [0, 1]d, for d ∈ {1, 2, 3}. In all experiments, the

same covariance function is used for the generation of the sample paths and for the

computation of the sampling criteria. We have considered isotropic Matérn covari-

ance functions, whose parameters are given in Table 3.5. An initial maximin LHS

design of size n0 (also given in the table) is used: note that the value of n reported

on the x-axis of Figures 3.7–3.11 is the total number of evaluations, including the

initial design.

The d input variables are assumed to be independent and uniformly distributed

on [0, 1], i.e., PX is the uniform distribution on X. An m-sample Y1, . . . , Ym

from PX is drawn one and for all, and used both for the approximation of integrals

(in SUR and tIMSE criteria) and for the discrete search of the next sampling point

(for all criteria). We take m = 500 and use the same MC sample for all criteria in



3.5. Numerical experiments 75

a given dimension d.

We adopt the meta-estimation framework as described in Section 3.3.3; in other

words, our goal is to estimate the MC estimator αm. We choose to adjust the

threshold u in order to have αm = 0.02 for all sample paths (note that, as a

consequence, there are exactly mαm = 10 points in the failure region) and we

measure the performance of a strategy after n evaluations by its relative mean-

square error (MSE) expressed in decibels (dB):

rMSE := 10 log10




1

L

L∑

l=1

(
α̂

(l)
m,n − αm

)2

α2
m


 ,

where α̂
(l)
m,n = 1

m

∑m
j=1 p

(l)
n (Yj) is the posterior mean of the MC estimator αm after

n evaluations on the lth simulated sample path (L = 4000).

We use a sequential maximin strategy as a reference in all of our experiments.

This simple space-filling strategy is defined by Xn+1 = arg maxj min1≤i≤n |Yj −Xi|,
where the argmax runs over all indices j such that Yj 6∈ {X1, . . . , Xn}. Note that

this strategy does not depend on the choice of a Gaussian process model.

Our first experiment (Figure 3.7 ) provides a comparison of the four SUR strate-

gies proposed in Section 3.3.2. It appears that all of them perform roughly the same

when compared to the reference strategy. A closer look, however, reveals that the

strategies JSUR
1 and JSUR

2 provided by Proposition 3 perform slightly better than

the other two (noticeably so in the case d = 3).

The performance of the tIMSE strategy is shown on Figure 3.8 for several value

of its tuning parameter σ2
ε (other values, not shown here, have been tried as well).

It is clear that the performance of this strategy improves when σ2
ε goes to zero,

whatever the dimension.

The performance of the strategy based on JRB
κ,δ is shown on Figure 3.9 for several

values of its parameters. It appears that the criterion proposed by Bichon et al.

(2008), which corresponds to δ = 1, performs better than the one proposed by

Ranjan et al. (2008), which corresponds to δ = 2, for the same value of κ. Moreover,

the value κ = 0.5 has been found in our experiments to produce the best results.

Figure 3.10 illustrates that the loss of performance associated to the “pruning

trick” introduced in Section 3.3.4 can be negligible if the size m0 of the pruned

MC sample is large enough (here, m0 has been taken equal to 50). In practice, the

value of m0 should be chosen small enough to keep the overhead of the sequential

strategy reasonable—in other words, large values of m0 should only be used for very
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complex computer codes.

Finally, a comparison involving the best strategy obtained in each category is

presented on Figure 3.11. The best result is consistently obtained with the SUR

strategy based on JSUR
1,n . The tIMSE strategy with σ2

ε ≈ 0 provides results which

are almost as good. Note that both strategies are one-step lookahead strategies

based on the approximation of the risk by an integral criterion, which makes them

rather expensive to compute. Simpler strategies based on the marginal distribution

(criteria JRB
n and JEGL

n ) provide interesting alternatives for moderately expensive

computer codes: their performances, although not as good as those of one-step

lookahead criterions, are still much better than that of the reference space-filling

strategy.

3.6 Concluding remarks

One of the main objectives of this paper was to present a synthetic viewpoint

on sequential strategies based on a Gaussian process model and kriging for the

estimation of a probability of failure. The starting point of this presentation is a

Bayesian decision-theoretic framework from which the theoretical form of an optimal

strategy for the estimation of a probability of failure can be derived. Unfortunately,

the dynamic programming problem corresponding to this strategy is not numerically

tractable. It is nonetheless possible to derive from there the ingredients of a sub-

optimal strategy: the idea is to focus on one-step lookahead suboptimal strategies,

where the exact risk is replaced by a substitute risk that accounts for the information

gain about α expected from a new evaluation. We call such a strategy a stepwise

uncertainty reduction (SUR) strategy. Our numerical experiments show that SUR

strategies perform better, on average, than the other strategies proposed in the

literature. However, this comes at a higher computational cost than strategies

based only on marginal distributions. The tIMSE sampling criterion, which seems

to have a convergence rate comparable to that of the SUR criterions when σ2
ε ≈ 0,

also has a high computational complexity.

In which situations can we say that the sequential strategies presented in this

paper are interesting alternatives to classical importance sampling methods for esti-

mating a probability of failure, for instance the subset sampling method of Au and

Beck (2001)? In our opinion, beyond the obvious role of the simulation budget N ,

the answer to this question depends on our capacity to elicit an appropriate prior.

In the example of Section 3.5.2, as well as in many other examples of the litera-
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Figure 3.7: Relative MSE performance of several SUR strategies.
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Figure 3.8: Relative MSE performance of the tIMSE strategy for several values of

its parameter.
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Figure 3.9: Relative MSE performance of the JRB criterion, for several values of its

parameters.

rM
SE

(d
B

)

n

rM
SE

(d
B

)

n

rM
SE

(d
B

)

n

JSUR
1 full line

JSUR
3 mixed line

without pruning black

pruning m0 = 50 gray

ref. black dashed line

Upper-left: d = 1

Upper-right: d = 2

Lower-left: d = 3

20 40 60 80 100

20 40 60 8010 20 30

-25

-20

-15

-10

-5

-30

-20

-10

0

-40

-20

0
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Figure 3.11: Relative MSE performance the best strategy in each category.

ture using Gaussian processes in the domain of computer experiments, the prior is

easy to choose because X is a low-dimensional space and f tends to be smooth.

Then, the plug-in approach which consists in using ML or REML to estimate the

parameters of the covariance function of the Gaussian process after each new eval-

uation is likely to succeed. If X is high-dimensional and f is expensive to evaluate,

difficulties arise. In particular, our sampling strategies do not take into account

our uncertain knowledge of the covariance parameters, and there is no guarantee

that ML estimation will do well when the points are chosen by a sampling strat-

egy that favors some localized target region (the neighboorhood the frontier of the

domain of failure in this paper, but the question is equally relevant in the field

optimization, for instance). The difficult problem of deciding the size n0 of the

initial design is crucial in this connection. Fully Bayes procedures constitute a pos-

sible direction for future research, as long as they don’t introduce an unacceptable

computational overhead. Whatever the route, we feel that the robustness of Gaus-

sian process-based sampling strategies with respect to the procedure of estimation

of the covariance parameters should be addressed carefully in order to make these

methods usable in the industrial world.
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Software. We would like to draw the reader’s attention on the recently published

package KrigInv (Picheny and Ginsbourger, 2011) for the statistical computing

environment R (see Hornik, 2010). This package provides an open source (GPLv3)

implementation of all the strategies proposed in this paper. Please note that the

simulation results presented in this paper were not obtained using this package,

that was not available at the time of its writing.
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Appendix

A. The Matérn covariance

The exponential covariance and the Matérn covariance are among the most con-

ventionally used stationary covariances in the literature of design and analysis of

computer experiments. The Matérn covariance class (Yaglom, 1986) offers the pos-

sibility to adjust the regularity of ξ with a single parameter. Stein (1999) advocates

the use of the following parametrization of the Matérn function:

κν(h) =
1

2ν−1Γ(ν)

(
2ν1/2h

)ν
Kν

(
2ν1/2h

)
, h ∈ R (3.35)

where Γ is the Gamma function and Kν is the modified Bessel function of the

second kind. The parameter ν > 0 controls regularity at the origin of the function.

To model a real-valued function f defined over X ⊂ Rd, with d ≥ 1, we use the

following anisotropic form of the Matérn covariance:

kθ(x, y) = σ2κν




√√√√
d∑

i=1

(x[i] − y[i])2

ρ2
i


 , x, y ∈ R

d (3.36)

where x[i], y[i] denote the ith coordinate of x and y, the positive scalar σ2 is a

variance parameter (we have kθ(x, x) = σ2), and the positive scalars ρi represent

scale or range parameters of the covariance, i.e., characteristic correlation lengths.

Since σ2 > 0, ν > 0, ρi > 0, i = 1, . . . , d, we can take the logarithm of these scalars,

and consider the vector of parameters θ = {log σ2, log ν,− log ρ1, . . . ,− log ρd} ∈
Rd+2, which is a practical parameterization when σ2, ν, ρi, i = 1, . . . , d, need to be

estimated from data.

B. Proof of Proposition 4

a) Using the identity Φ−1(1− p) = −Φ−1(p), we get

∣∣U + Φ−1(1− p)
∣∣ =

∣∣∣U − Φ−1(p)
∣∣∣ d

=
∣∣∣U + Φ−1(p)

∣∣∣ ,

where d
= denotes an equality in distribution. Therefore Gκ,δ(1− p) = Gκ,δ(p).

b) Let Sp = max
(
0, κδ −

∣∣Φ−1(p) + U
∣∣). Straightforward computations show that

t 7→ P (|t + U | ≤ v) is strictly decreasing to 0 on [0, +∞[, for all v > 0. As a

consequence, p 7→ P
(
Sp < s

)
is strictly increasing to 1 on [1/2, 1[, for all s ∈ ]0, κδ

[
.
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Therefore, Gκ,δ is strictly decreasing on [1/2, 1[ and tends to zeros when p → 1.

The other assertions then follow from a).

c) Recall that ξ(x) ∼ N (ξ̂n(x), σ2
n(x)

)
under Pn. Therefore U :=

(
ξ(x) −

ξ̂n(x)
)
/σn(x) ∼ N (0, 1) under Pn, and the result follows by substitution in (3.31).

The closed-form expressions of Ranjan et al.’s and Bichon and al.’s criteria (asser-

tions d) and e)) is established in the following sections.

B.1 A preliminary decomposition common to both criteria

Recall that t = Φ−1(1− p), t+ = t + κ and t− = t− κ. Then,

Gκ,δ(p) = Gκ,δ(1− p) = E
(
max

(
0, κδ −

∣∣t− U
∣∣δ
))

=

∫

κδ−|t−u|δ≥0

(
κδ − |t− u|δ

)
ϕ(u) du

=

∫ t+

t−

(
κδ − |t− u|δ

)
ϕ(u) du

= κδ
(
Φ(t+)− Φ(t−)

)
−
∫ t+

t−

|t− u|δ ϕ(u) du
︸ ︷︷ ︸

Term A

. (3.37)

The computation of the integral A will be carried separately in the next two sections

for δ = 1 and δ = 2. For this purpose, we shall need the following elementary results:

∫ b

a
uϕ(u)du = ϕ(a)− ϕ(b) , (3.38)

∫ b

a
u2ϕ(u)du = aϕ(a)− bϕ(b) + Φ(b)− Φ(a) . (3.39)

B.2 Case δ = 1

Let us compute the value A1 of the integral A for δ = 1:

A1 =

∫ t+

t−

|t− u|ϕ(u)du =

∫ t

t−

(t− u)ϕ(u)du +

∫ t+

t
(u− t)ϕ(u)du

= t

(∫ t

t−

ϕ(u) du−
∫ t+

t
ϕ(u) du

)
−
∫ t

t−

uϕ(u) du +

∫ t+

t
uϕ(u) du

= t
(
2Φ(t)− Φ(t−)− Φ(t+)

)
+ 2ϕ(t)− ϕ(t−)− ϕ(t+) , (3.40)

where (3.38) has been used to get the final result. Plugging (3.40) into (3.37)

yields (3.33).
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B.3 Case δ = 2

Let us compute the value A2 of the integral A for δ = 2:

A2 =

∫ t+

t−

(t− u)2ϕ(u) du

= t2
∫ t+

t−

ϕ(u) du− 2t

∫ t+

t−

uϕ(u) du +

∫ t+

t−

u2ϕ(u) du

= t2
(
Φ(t+)− Φ(t−)

)
− 2t

(
ϕ(t−)− ϕ(t+)

)

+ t−ϕ(t−)− t+ϕ(t+) + Φ(t+)− Φ(t−) , (3.41)

where (3.38) and (3.39) have been used to get the final result. Plugging (3.40) into

(3.37) yields (3.34).
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Abstract

The estimation of small probabilities of failure from computer simulations is a clas-

sical problem in engineering, and the Subset Simulation algorithm proposed by Au

& Beck (Prob. Eng. Mech., 2001) has become one of the most popular method

to solve it. Subset simulation has been shown to provide significant savings in

the number of simulations to achieve a given accuracy of estimation, with respect

to many other Monte Carlo approaches. The number of simulations remains still

quite high however, and this method can be impractical for applications where an

expensive-to-evaluate computer model is involved.

We propose a new algorithm, called Bayesian Subset Simulation, that takes the

best from the Subset Simulation algorithm and from sequential Bayesian methods

based on kriging (also known as Gaussian process modeling). The performance of

this new algorithm is illustrated using three test cases from the literature. We are

able to report promising results. In addition, we provide a numerical study of the

statistical properties of the estimator.

Keywords: Computer experiments, Sequential design, Subset Simulation, Prob-

ability of failure, Stepwise Uncertainty Reduction

4.1 Introduction

In this paper1, we propose an algorithm called Bayesian Subset Simulation (BSS),

that combines the Bayesian decision-theoretic framework from our previous stud-

ies (see Vazquez and Bect, 2009, and Chapter 3 of this thesis) with the Subset

Simulation algorithm (Au and Beck, 2001).

Let Γ = {x ∈ X : f(x) > u} denote the excursion set of a function f : X → R

above a threshold u ∈ R, where X ⊆ Rd denotes the input space. PX stands

for the uncertainty on the input vector x ∈ X. We are interested in estimating

the probability α(u) := PX(Γ), which corresponds to the probability of failure of a

system for which f is a cost function (see Chapter 3). If the probability α(u) is small,

estimating it using the Monte Carlo estimator α̂MC
m = 1/m

∑m
i=1 1f(Xi)>u, Xi

i.i.d∼
PX, requires a large number of evaluations of f . If the cost function f is expensive

to evaluate, this leads to use a large amount of computational resources, and in

1Ling Li, Julien Bect, Emmanuel Vazquez (2012) Bayesian Subset Simulation : a kriging-based

subset simulation algorithm for the estimation of small probabilities of failure. In: Proceedings of

PSAM 11 & ESREL 2012, 25-29 June 2012, Helsinki, Finland
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some cases, it may be even impossible to proceed in reasonable time. Estimating

small probabilities of failure with moderate computational resources is a challenging

problem.

When α(u) is small, the main problem with the estimator α̂MC
m is that the sample

size m must be large in order to get a reasonably high probability of observing at

least a few samples in Γ. In the literature, importance sampling methods have been

considered to generate more samples in the failure region Γ. However, the success

of this kind of methods relies greatly on prior knowledge about the failure region Γ

and on a relevant choice for the proposal sampling distribution.

The idea of Subset Simulation is to decompose the difficult problem of simulating

a sample into a series of easier problems, by introducing intermediate failure events.

Let u0 = −∞ < u1 < u2 < . . . < uT = u be a sequence of increasing thresholds and

define a corresponding sequence of decreasing excursion sets Γ0 := X ⊇ Γ1 ⊇ · · · ⊇
ΓT := Γ, where Γt := {x ∈ X : f(x) > ut}, t = 1, . . . , T . Notice that Γt =

⋂t
i=1 Γi.

Then, using the properties




α(u0) = 1 ,

α(ut+1) = α(ut) PX(Γt+1|Γt) , t ≥ 0 ,
(4.1)

α(u) can be rewritten as a product of conditional probabilities:

α(u) = PX

(
ΓT

)
=

T −1∏

t=0

PX(Γt+1|Γt) . (4.2)

Thus, the idea of Subset Simulation is to replace the problem of estimating the small

probability α(u) by that of estimating the conditional probabilities PX(Γt+1|Γt),

0 ≤ t < T , which are larger and therefore easier to estimate.

In Au and Beck (2001), a standard Monte Carlo simulation method is used to

estimate PX(Γ1) = PX(Γ1|Γ0). For the other conditional probabilities, a Markov

Chain Monte Carlo method is used to simulate samples in Γt according to PX(·|Γt),

and then PX(Γt+1|Γt) is estimated using a Monte Carlo method. Due to the di-

rect use of a Monte Carlo approximation at each stage, the number of evaluations

needed still remains quite high. For many practical applications where the per-

formance function corresponds to an expensive-to-evaluate computer model, this is

not applicable. Note that the Subset Simulation algorithm has recently caught the

attention of the “rare event” community: using standard tools from the sequential

Monte Carlo (SMC) literature, Cérou et al. (2011) derived several theoretical results

about some algorithms which are very similar to the Subset Sampling algorithm.
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In this work, we propose an algorithm that takes advantage of a Gaussian process

prior about f in order to decrease the number of evaluations needed to estimate

the conditional probabilities PX(Γt+1|Γt). The Gaussian process model makes it

possible to assess the uncertainty about the position of the intermediate excursion

sets Γt, given a set of past evaluation results. The idea has its roots in the field of

design and analysis of computer experiments (see, e.g., Santner et al., 2003a, and

references therein). More specifically, kriging-based sequential strategies for the es-

timation of a probability of failure (see Chapter 3 for a review of such strategies) are

closely related to the field of Bayesian global optimization (see, e.g., Ginsbourger,

2009; Villemonteix et al., 2009, and the references therein).

The paper is organized as follows. In Section 4.2, we review two recent tech-

niques for estimating a small probability of failure using importance sampling or

Subset Simulation in conjunction with non-parametric meta-models. In Section 4.3,

we give a detailed presentation of our new Bayesian Subset Simulation algorithm.

In Section 4.4, we apply the algorithm on three examples from the literature, and

we perform numerical simulations to investigate the performance of the proposed

algorithm. A comparison with Subset Simulation and the 2SMART algorithm of

Deheeger and Lemaire (2007) is provided. Finally, we conclude in Section 4.5.

4.2 Literature review

In this section, we will review two kinds of hybrid techniques for probabilities of

failure estimation that involve importance sampling or Subset Simulation and the

use of meta-models.

4.2.1 Two-stage surrogate model based Importance Sampling (IS)

An algorithm involving kriging-based adaptive sampling and Importance Sam-

pling (IS) has been recently proposed by V. Dubourg and co-authors (Dubourg

et al., 2011a) to address the problem of surrogate model based IS strategy for rare

events probability of failure estimation. Auffray et al. (2011) also proposed a similar

two stage procedure, which uses a different importance density function.

Their methods consist in two stages: 1) build a kriging surrogate of the

expensive-to-evaluate cost function, with a number of evaluations N1; 2) use the

probabilistic prediction provided by the kriging model to propose an importance

sampling density, according to which draw an i.i.d. sample with sample size N2.
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The final probability of failure is then computed as the product of two terms, one is

the augmented failure probability (a rough estimator) estimated from the surrogate

model, and a correction factor (a refined term near the failure region) computed

from the original performance function.

The probability of failure can be written as:

α = PX(Γ) =

∫

X

1x∈ΓpX(x)dx, (4.3)

where pX is the input probability density function, and 1x∈Γ is the indicator function

taking value one if x ∈ Γ and zero otherwise. As discussed in section 2.3.3, the

optimal proposal density function for the estimation of α by importance sampling

is:

q∗(x) =
1x∈ΓpX∫

X
1x∈ΓpXdx

. (4.4)

However, in practice, this optimal importance distribution is not implementable

due to its requirement of the knowledge of the true probability of failure α. There

are several ways to approximate the optimal proposal density function (4.4) in

literature though. We can write the proposal probability density function as:

q(x) =
g(x)pX∫

X
g(x)pXdx

∝ g(x)pX, (4.5)

with

g(x) =





1
x∈Γ̂1

in Auffray et al. (2011),

PN1(ξ(x) > u) in Dubourg et al. (2011a),
(4.6)

where Γ̂1 is defined as

Γ̂1 = {x ∈ X : ξ̂N1(x) > u− κσN1(x)}, (4.7)

and κ is a constant such that Γ ⊂ Γ̂1 has a good confidence level. In other word, we

want all the failure points to be located in the approximated surrogate excursion

set.

Using the basic formula of importance sampling, (4.3) can be rewritten as:

α =

∫

X

1x∈ΓpXdx (4.8)

=

∫

X

1x∈ΓpX
q(x)

q(x)dx

=

∫

X

1x∈ΓpX
g(x)pX

q(x)dx

∫

X

g(x)pXdx

=

∫

X

g(x)pXdx
︸ ︷︷ ︸

α1

∫

X

1x∈Γ

g(x)
q(x)dx

︸ ︷︷ ︸
α2

,
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where α1 denotes the first stage estimator, also called the “rough estimator” in

Dubourg et al. (2011a), and α2 denotes the second stage estimator, or the correction

factor.

The first stage estimator α1 can be approximated by a Monte Carlo estimator:

α̂1 =
1

m

m∑

i=1

g(Xi
1), (4.9)

where X1
1 , . . . , Xm

1 are i.i.d. samples drawn according to pX.

Similarly, we can approximate α2 with a Monte Carlo estimator:

α̂2 =
1

N2

N2∑

i=1

1Xi
2∈Γ

g(Xi
2)

, (4.10)

where X1
2 , . . . , Xm

2 are samples according to g(x)pX ∝ q(x). In practice, Auffray

et al. (2011) used an accept-reject algorithm that randomly generates samples ac-

cording to pX, and keep the points located in Γ̂1, however, this is very inefficient

when PX(Γ̂1) is small; in Dubourg et al. (2011a), it proposed to use a Markov Chain

Monte Carlo simulation (MCMC) which makes use of the slice sampling technique

(see, e.g., Neal, 2003).

Finally, the estimator of the probability of failure is the production of the two

Monte Carlo estimators:

α̂metaIS = α̂1α̂2. (4.11)

Notice that the Monte Carlo simulation for approximating the augmented fail-

ure probability α1 is applied on the cheap surrogate model which is quite easy to

perform, thus m can be a very large number. The total number of evaluations N

thus consists of the number of evaluations needed for building the kriging surro-

gate model N1 and the number of evaluations needed to approximate the correction

factor α2, and N = N1 + N2.

Dubourg et al. (2011a) adopted a sequential strategy to adaptively refine the

kriging model during the first stage. In Auffray et al. (2011), a maximin design of

a preset number of evaluations is used to build the kriging predictor.

Although two-stage strategies take advantage of Gaussian process prior model-

ing technique (the same as our proposed algorithm) and importance sampling and

have shown some promising results in numerical examples, their capacities of esti-

mating small probabilities of failure are still quite limited. The major disadvantage

of both two-stage strategies is that the kriging model at the first stage is built tar-

geting a very high threshold, thus the prediction could be very inaccurate due to
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the lack of information near the threshold. In the case of dealing with a probability

as low as 10−12 or for high dimension problems, the two-stage strategies become

invalid.

Remark 6. In the recent work of Dubourg (2011); Dubourg et al. (2011b), a se-

quential procedure is proposed to update the proposal distribution function q(x) us-

ing MCMC and clustering techniques, which alleviate the problem mentioned above.

However, it is still targeting a very high threshold at the beginning. Due to the lack

of time, we could not compare their method in this work.

4.2.2 Combining Subset Simulation with SVM (2SMART)

Bourinet et al. (2011); Deheeger and Lemaire (2007) combined support vector ma-

chine (SVM) with Subset Simulation to propose a method called 2SMART, and

used it to assess small probabilities of failure. The approach aims at considering the

Subset Simulation technique from the viewpoint of support vector machine (SVM)

classification. The method was developed from the pioneering work of Hurtado

(2004a), which was the first to introduce SVM to reliability analysis.

Here, we assume that all the random variables are mapped to the standard space

by the transformation introduced in Chapter 2, Section 2.2.2. SVM classifiers are

constructed in this standard space.

The key idea of the 2SMART algorithm is to build a SVM classifier at each

intermediate threshold ut defined as in Subset Simulation (see Chapter 2), which is

much easier to tackle than the target threshold u. At each stage, a “coarse to fine”

sequential design strategy is used to refine the SVM classifier. The intermediate

probabilities PX(Γt+1|Γt) (for t = 0, . . . , T −1, and T is the total number of stages)

are then calculated from the evaluations on the cheap SVM surrogate models. Table

4.1 presents the general structure of the 2SMART algorithm.

The p0 in Table 4.1 denotes the intermediate probability at each stage, which

is usually set to p0 = 0.1. T denotes the number of stages needed for the Subset

Simulation procedure. Γ̂t is an approximation of Γt at stage t, provided by the

updated SVM classifier at intermediate threshold ut.

Evaluation resource needed for the 2SMART algorithm consists in the points to

setup and refine the SVM classifiers at each stage, which is a summary of the initial

training data Ninit and the sequential design Niter (see Table 4.1). Thus, the total

number of evaluations is N = T (Ninit + Niter).
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Table 4.1: 2SMART algorithm.

Initialize: (t = 0)

- Set initial threshold u0 = −∞, and p0;

- Generate a MC sample Y0 = {Y 1
0 , . . . , Y m

0 }, drawn according to the distri-

bution PX.

Iteration: For t = 1, 2, . . . , T (Subset Simulation loop):

- Choose Ninit initial training points.

→ Decide ut intermediate threshold;

→ Get initial SVM classifier at ut.

- For n = 1, . . . , Niter (Update SVM classifier loop):

→ Fine a new point according to the coarse to fine adjustment strategy;

→ Update learning database;

→ Train and update SVM classifier at ut.

- Evaluate intermediate probability:

P(Γ̂t+1|Γ̂t) =
1

m

m∑

i=1

1
Y i

t ∈Γ̂t+1
, (4.12)

where Γ̂t is obtained from the final SVM classifier at ut.

- Update MC sample Yt using MCMC.

Evaluate: Final probability of failure is:

α̂2SMART =
T −1∏

i=0

P(Γ̂t+1|Γ̂t). (4.13)
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The 2SMART algorithm shares a few common ideas with Bayesian Subset Sim-

ulation algorithm that will be proposed in the next section, however, the sequential

strategies used to build the surrogate models are quite different. Indeed, instead

of using SVM classifiers, a Gaussian process prior model and kriging predictor is

adopted, which provides us the information of confidence intervals and probabilities

of mis-classification on the prediction, thus our strategy is expected to gain further

efficiency by adaptively choosing the number of points needed at each stage. The

problem of applying the 2SMART algorithm is that it still requires thousands of

evaluations and the number of evaluations is fixed in advance, which makes it diffi-

cult to use in expensive-to-evaluate cost functions. We will compare the 2SMART

algorithm with both the original Subset Simulation and our proposed Bayesian

Subset Simulation algorithm in Section 4.4.

4.3 Bayesian Subset Simulation algorithm

4.3.1 Algorithm

Our objective is to build an estimator of α(uT ) from the evaluation results of f at

a number of points X1, X2, . . . , XN ∈ X. Let ξ be a random process modeling our

prior knowledge about f , and for each n ≥ 0, denote by Fn the σ-algebra gener-

ated by X1, ξ(X1), . . . , Xn, ξ(Xn). A natural Bayesian estimator of α(ut) using nt

evaluations is the posterior mean

α̂t = Ent (α(ut)) = Ent

(∫

X

1ξ>ut
dPX

)
=

∫

X

gt dPX, (4.14)

where gt : x ∈ X 7→ Pnt

(
ξ(x) > ut

)
, nt is the number of evaluations used until

stage t, and En (resp. Pn) denotes the conditional expectation (resp. conditional

probability) with respect to Fn. Note that, gt(x) can be readily computed for any x

using kriging (see Chapter 3).

Assume now that PX has a probability density function pX and consider the

sequence of probability density functions qt, 0 ≤ t ≤ T , defined by

qt(x) =
1

α̂t
pX(x) gt(x). (4.15)

We can write a recurrence relation similar to (4.1) for the sequence of Bayesian

estimators α̂t:

α̂t =

∫
gt(x) pX(x) dx = α̂t−1

∫
gt(x)

gt−1(x)
qt−1(x) dx. (4.16)
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The idea of our new algorithm, which we call Bayesian Subset Simulation, is to

construct recursively a Monte Carlo approximation ̂̂αT of the Bayesian estimator α̂t,

using (4.16) and sequential Monte Carlo (SMC) simulation (see, e.g., Del Moral

et al., 2006) for the evaluation of the integral with respect to qt−1 on the right-hand

side. More precisely, denoting by m the size of the Monte Carlo sample, we will use

the recurrence relation

̂̂αt = ̂̂αt−1 ×
1

m

m∑

i=1

gt(Y
i

t−1)

gt−1(Y i
t−1)

, 1 ≤ t ≤ T, (4.17)

where variables Y 1
t−1, . . . , Y m

t−1 are distributed according to2 the density qt−1, which

leads to

̂̂αT =
T −1∏

t=0

1

m

m∑

i=1

gt+1(Y i
t )

gt(Y i
t )

. (4.18)

The connection between the proposed algorithm and the original Subset Simu-

lation algorithm is clear from the similarity between the recurrence relations (4.1)

and (4.16), and the use of SMC simulation in both algorithms to construct recur-

sively a “product-type” estimator of the probability of failure (see also Del Moral

et al., 2006, Section 3.2.1, where this type of estimator is mentioned in a very general

SMC framework).

Our choice for the sequence of densities q1, . . . , qT also relates to the original

Subset Simulation algorithm. Indeed, note that qt(x) ∝ Ent

(
1ξ>ut

pX
)
, and recall

that q̃t ∝ 1ξ>ut
pX is the distribution used in the Subset Simulation algorithm at

stage t. (This choice of instrumental density is also used by Dubourg et al. (2011a)

in the context of a two-stage kriging-based adaptive importance sampling algorithm,

as explained in Section 2. This is indeed a quite natural choice, since q̃T ∝ 1ξ>u pX

is the optimal instrumental density for the estimation of α(u) by importance sam-

pling.)

4.3.2 Implementation

This section gives implementation details for our Bayesian Subset Simulation algo-

rithm. The pseudo-code for the algorithm is presented in Table 4.2.

The initial Monte Carlo sample Y0 = {Y 1
0 , . . . , Y m

0 } is a set of independent

random variables drawn from the density q0 = pX—in other words, we start with a
2By “distributed according to”, it is not meant that Y 1

t−1, . . . , Y m
t−1 are independent and iden-

tically distributed. This is never the case in sequential Monte-Carlo techniques. What we mean

is that the sample Y 1
t−1, . . . , Y m

t−1 is targetting the density qt−1 (in the sense of, e.g., Douc and

Moulines, 2008).
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classical Monte Carlo simulation step. At each subsequent stage t ≥ 1, a new sam-

ple Yt is produced from the previous one using the basic reweight/resample/move

steps of SMC simulation (see Del Moral et al., 2006, and the references therein). In

this article, resampling is carried out using a multinomial sampling scheme, and the

move step relies on a Metropolis algorithm with a Gaussian-random-walk proposal

distribution. We denote the corresponding Markov transition kernel by K.

A number Nt of evaluations of the performance function is done at each stage

of the algorithm. This number is meant to be much smaller than the size m of

the Monte Carlo sample, which would be the number of evaluations in the classical

Subset Sampling algorithm, and hopefully smaller than the number of evaluations

used by 2SMART algorithm. For the initialization stage (t = 0), we choose a space

filling set of points Y0 as usual in the design of computer experiments (Santner

et al., 2003a). At each subsequent stage t, we use Nt iterations of a SUR sampling

strategy (see Chapter 3) targeting a preliminary estimate ũt of the next threshold ut

to select the evaluation points (see Section 4.3.3). Adaptive techniques to choose

the sequence of thresholds uts and the number of points per stage are presented in

the following sections.

Remark 7. The resampling step could most certainly benefit from more elaborate

schemes, such as the residual resampling scheme (Bolic et al., 2003; Douc and

Cappé, 2005; Hol et al., 2006). The comparison of resampling schemes is left for

future work.

4.3.3 Adaptive choice of the thresholds ut

It can be proved that, for an idealized3 Subset Simulation algorithm with fixed

thresholds u1 < · · · < uT = u, it is optimal to choose the thresholds to make all

conditional probabilities PX

(
Γt+1|Γt

)
equal (see Cérou et al., 2011, Section 2.4).

This leads to the idea of choosing the thresholds adaptively in such a way that, in

the product estimate

α̂SubSamp
T =

T∏

t=1

1

m

m∑

i=1

1Γt

(
Y i

t−1

)
,

each term but the last is equal to some predefined constant p0. In other words, ut

is chosen as the (1 − p0)-quantile of Yt−1. This idea was first suggested by Au

and Beck (2001, Section 5.2), on the heuristic ground that the algorithm should

3assuming that Y 1
t , . . . , Y m

t are independent and identically distributed according to qt.
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Table 4.2: Algorithm of Bayesian Subset Simulation

a) Initialize (Stage t = 0):

1. Generate a MC sample Y0 = {Y 1
0 , . . . , Y m

0 }, drawn according to the distri-

bution PX, set the initial number of evaluations n = n0, and u0 = −∞.

2. Initial space-filling DoE In0 =
(
(X1, f(X1)), . . . , (Xn0 , f(Xn0))

)
.

3. Choose an appropriate kriging model, estimate covariance parameters.

b) While ut < u (t← t + 1):

1. Compute the kriging predictor ξ̂n, and choose a preliminary threshold ũt.

2. While the stopping criterion is not met (n← n + 1):

2.1 add a new point xnew using a SUR sampling criterion w.r.t. ũt.

2.2 update In =
(
In−1, (xnew, f(xnew))

)
, and re-estimate covariance pa-

rameters.

3. Calculate the intermediate threshold ut. If ut > u, go to step c).

4. Generate a new sample Yt:

4.1 reweight: calculate weights: wt
i ∝ gt(Y

i
t−1)/gt−1(Y i

t−1),

4.2 resample: generate a sample Ỹt−1,i according to weights,

4.3 move: for each i ≤ m, Y i
t ∽ K

(
Ỹt−1,i, ·

)
.

c) The final estimation of the probability of failure is calculated by

̂̂αT =
T −1∏

t=0

( 1

m

m∑

i=1

gt+1(Y i
t )

gt(Y i
t )

)
.
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perform well when the conditional probabilities are neither too small (otherwise

they are hard to estimate) nor too large (otherwise a large number of stages is

required). The asymptotic behaviour of the resulting algorithm, when m is large,

has been anayzed by Cérou et al. (2011, Section 3).

In Bayesian Subset Simulation, we propose to choose the thresholds adaptively

using a similar approach. More precisely, considering the product form of the

estimator (4.18), we suggest to choose ut in such a way that

1

m

m∑

i=1

gt(Y
i

t−1)

gt−1(Y i
t−1)

= p0. (4.19)

Equation (4.19) can be easily solved since the left-hand side is a strictly decreas-

ing function of ut.

As we have seen in the implementation in Table 4.2, we need to target a pre-

liminary threshold ũt to apply a SUR strategy. In practice, we calculate ũt using

an equation similar to (4.19):

1

m

m∑

i=1

Pnt−1(ξ(Y i
t−1) > ũt)

gt−1(Y i
t−1)

= p0. (4.20)

Remark 8. Note that Cérou et al. (2011) proved that choosing adaptive levels

in Subset Simulation introduces a positive bias of order 1/m, which is negligible

compared to the standard deviation.

4.3.4 Adaptive choice of the number Nt of evaluation at each stage

In this section, we propose a technique to choose adaptively the number Nt of

evaluations of the performance function that must be done at each stage of the

algorithm.

Let us assume that t ≥ 1 is the current stage number; at the beginning of

the stage, nt−1 evaluations of the performance function are available from previous

stages. After several additional evaluations, the number of available observations

of f is n ≥ nt−1. Then, for each i ∈ {1, . . . , m}, the probability of misclassification4

of x ∈ X with respect to the threshold ut is

τt,n(x) = min
(
pn(x, ut), 1− pn(x, ut)

)
,

where pn(x, u) = En

(
1ξ(x)>u

)
. We shall decide to stop adding new evaluations at

stage t when
1

m

m∑

i=1

τt,n

(
Y i

t−1

)
≤ η,

4See Section 3.4 for more information
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for some prescribed η > 0.

4.4 Numerical results

In this section, we apply the proposed algorithm on three examples from the struc-

tural reliability literature. In each example, the number of evaluations needed at

each stage are provided. The results obtained from Bayesian Subset Simulation are

then compared with a reference value from a brute force Monte Carlo simulation,

the classical Subset Simulation algorithm, as well as the 2SMART algorithm.

For all examples, a Gaussian process with constant unknown mean and a Matérn

covariance function is used as our prior information about f . The parameters of the

Matérn covariance functions are estimated on the initial design by REML (see, e.g.,

Stein, 1999). In our experiments, we follow the common practice of re-estimating the

parameters of the covariance function during the sequential strategy, and update the

covariance function after SUR strategy. The target conditional probability between

successive thesholds is set to p0 = 0.1.

4.4.1 Example 1: Four-branch series system

Our first example is the four-branch series system studied by Borri and Sper-

anzini (1997); Deheeger (2008); Schueremans (2001); Waarts (2000). Echard et al.

(2010a,b) used it recently to compare several methods proposed in Schueremans

and Van Gemert (2005), some of which are based on the construction of a response

surface. We also used it to evaluate the performance of SUR strategies (see, e.g.,

Bect et al., 2010; Li et al., 2011). In this work, however, we consider a higher

threshold for the failure event (hence, a smaller probability of failure).

The performance function f is defined as follows:

f : (x1, x2) ∈ R
2 7→ f(x1, x2) = min





3 + 0.1(x1 − x2)2 − (x1 + x2)/
√

2,

3 + 0.1(x1 − x2)2 + (x1 + x2)/
√

2,

(x1 − x2) + 6/
√

2,

(x2 − x1) + 6/
√

2





.

(4.21)

The uncertain input factors are supposed to be independent and have stan-

dard normal distribution. A failure happens when the system is working under the

threshold u. Figure 4.1 shows the failure domain and the input distribution. Ob-

serve that f has a first-derivative discontinuity along four straight lines originating
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from the point (0, 0).

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

f = u

f < u

f > u

Figure 4.1: Example 1: contour plot of f ; limit state f = u (thick red line); sample

of size m = 103 from PX (dots).

We use u = −4 as the threshold for the definition of the failure event. The

probability of failure, obtained using α̂MC
m with m = 1012, is approximately 5.49×

10−9 (with a coefficient of variation of about 1/
√

m α ≈ 1.4%).

The Bayesian Subset Simulation algorithm is initialized with a maximin LHS

(Latin Hypercube Sampling)5 design of size N0 = 10 on [−15; 15] × [−15; 15]. At

each stage, we choose a Monte Carlo sample of size m = 103 (or m = 104). The

proposal distribution qt in the random walk step is a normal distribution N (0, 1)

for each coordinate. The stopping criterion for the adaptive SUR strategy is set

to ηt = 5× 10−8 (for t = 1, . . . , T − 1) and ηT = 10−9.

Table 4.3 lists the total number of evaluations needed at each stage averaged

over 50 independent runs. A total of N =
∑T

t=0 Nt = 352 evaluations are needed for

our proposed algorithm with m = 1000, while for Subset Simulation, the number

is 1000 + 900× 8 = 8200.

To evaluate the statistical properties of the estimator, we consider the absolute

relative bias

κ =

∣∣∣∣
E(α̂)− α

α

∣∣∣∣ , (4.22)

5 More precisely, we use Matlab’s lhsdesign() function to select the best design according to

the maximin criterion among 104 randomly generated LHS designs.
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Table 4.3: Example 1: average number of evaluations at each stage with m = 1000.

t 1 2 3 4 5 6 7 8 9

Sub-Sim 1000 900 900 900 900 900 900 900 900

Bayesian Sub-Sim 46 42 44 40 37 33 31 30 39

Table 4.4: Example 1: comparison with Subset Simulation and 2SMART algo-

rithm (MCS estimator is a reference obtained from only one simulation).

Method m N E(α̂) (10−9) δ(α̂) (10−9) κ cov

MCS 1012 1012 5.49 0.074 0 1.4%

Sub-Sim 1000 8200 5.23 2.865 4.8% 54.8%

2SMART − [2753, 4279] 5.42 0.872 1.2% 15.9%

Bayesian Sub-Sim
1000 [325, 386] 5.39 1.438 1.9% 26.2%

104 [706, 773] 5.65 0.441 2.9% 8.0%

and the coefficient of variation

cov =
δ(α̂)

α
, (4.23)

where E(α̂) is the average and δ(α̂) is the standard deviation of the estimator α̂.

Table 4.4 shows the results of the comparison of our proposed Bayesian Subset

Sampling algorithm with the Subset Simulation algorithm (see Au and Beck, 2001)

and the 2SMART algorithm (see Bourinet et al., 2011; Deheeger and Lemaire, 2007).

The results for 2SMART are directly obtained from software package FERUM (see

the user’s guide in Bourinet, 2010). Crude Monte Carlo sampling is used as the

reference probability of failure. We run our Bayesian Subset Simulation algorithm

for both m = 103 and 104. For 2SMART algorithm, the parameters are set to be

the default as in FERUM. In addition, as there are several procedures of Monte

Carlo simulation in 2SMART, the single sample size m is not valid in this case. 50

independent runs are performed to evaluate the average of both methods. For

Bayesian Subset Simulation method and 2SMART algorithm, as N is different for

each run, we show the minimal and maximal of N from 50 runs.

Figure 4.2 shows the evaluation points selected at stages t = 1, 2, 9. It is observed

that the points that are chosen by the SUR strategy at each stage are close to the

frontier of the intermediate threshold ut. We also compare in Figure 4.3 – 4.5 the

predicted values versus the true values of the function f at stages all stages, both
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Table 4.5: Example 2: random input factors.

Variable Distribution Mean m Standard deviation σ

x1 N 0.001 0.0002

x2 N 250 37.5

before (left column) and after (right column) the addition of new samples to the

design. It appears clearly that the new evaluations allow to reduce efficiently the

prediction error in the neighborhood of the current threshold.

4.4.2 Example 2: deviation of a cantilever beam

In this section, we apply the proposed algorithm on another 2D test case from the

structural reliability literature. The problem under consideration is the deviation

of a cantilever beam, with a rectangular cross-section, and subjected to a uniform

load (Gayton et al., 2003; Rajashekhar and Ellingwood, 1993b). The cost function

is:

f(x1, x2) = 18.46154− 7.476923× 1010 x1

x2
3

. (4.24)

The uncertain factors are x1 and x2, which are supposed to be independent

and have normal distribution, as specified in Table 4.5. We use u = 17.8 as the

threshold for the definition of the failure event, and a failure happens when the cost

is larger than threshold. The probability of failure, which will be used as reference

estimator, obtained using α̂MC
m with m = 108, is approximately 3.85× 10−5 (with a

coefficient of variation of about 1/
√

m α ≈ 1.6%). Figure 4.6 shows the distribution

of the input factors along with a contour plot of f . Notice that the failure region is

quite far from the center region of the input distribution.

In the Bayesian Subset Simulation algorithm, we set an initial design of

size N0 = 10 which is equal to five times the dimension d of the input space (In

literature, very little is known about the problem of choosing N0, however some

authors recommend to start with a sample size proportional to the dimension d,

see Loeppky et al. (2009)). Concerning the choice of N0, we decide to apply a

greedy MAXMIN algorithm and sequentially choose the points which will maxi-

mize the minimal Euclidean distance between any two points in the initial Monte

Carlo sample Y0. At each stage, the Monte Carlo sample size keeps the same.

The intermediate threshold ut is chosen by the criterion (4.19). The proposal dis-

tribution qt for a random walk is a Gaussian distribution N (0, σ2), where σ is
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Figure 4.2: Example 1: the Design of Experiment (DoE) at stage 1, 3 and last

stage. The black line is the real threshold contour; the red line is the intermediate

threshold at stage t = 1, 3, 9; black spots are the Monte Carlo sample at stage t,

and green circles the evaluated points chosen by SUR strategy; blue crosses at the

stage 1 are the initial design n0.
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Figure 4.3: Example 1: predicted vs true value of the performance function, before

(left column) and after (right column) the addition of new evaluations, for stages

t = 1, 2, 3 (from top to bottom).
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Figure 4.4: Example 1: continuation of Figure 4.3. Predicted vs true value of the

performance function, before (left column) and after (right column) the addition of

new evaluations, for stages t = 4, 5, 6 (from top to bottom).
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Figure 4.5: Example 1: continuation of Figure 4.4. Predicted vs true value of the

performance function, before (left column) and after (right column) the addition of

new evaluations, for stages t = 7, 8, 9 (from top to bottom).
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Figure 4.6: Example 2: input distribution and contour plot of the performance

function.

Table 4.6: Example 2: average number of evaluations at each stage with m = 1000.

t 1 2 3 4 5

Sub-Sim 1000 900 900 900 900

Bayesian Sub-Sim 14 17 17 18 28

specified in Table 4.5. The stopping criterion for the adaptive SUR strategy is set

to ηt = 5× 10−3 (for t = 1, . . . , T − 1) and ηT = 10−3.

Figure 4.7 shows the Design of Experiment (DoE) selected by the algorithm

at stage t = 1, 2, 3 and the last stage for one run. Table 4.6 lists the average

number of evaluations (rounded to integer) at each stage over 50 runs. We can

see that an average total of evaluations N =
∑T

i=0 Nt = 104 are needed for our

proposed Bayesian Subset Simulation, while for Subset Simulation, the number

is 1000 + 900× 4 = 4600.

Table 4.7 shows the results of the comparison of our proposed Bayesian Subset

Sampling algorithm with the Subset Simulation algorithm in (Au and Beck, 2001).

Crude Monte Carlo sampling is used as the reference probability of failure. For the

same reason as in Example 1, we set the same intermediate probability p0 = 0.1,

and sample size m = 1000 and 104 for Bayesian Subset Simulation. 50 independent
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Figure 4.7: Example 2: evaluations selected by the Bayesian Subset Simulation

algorithm at stages t = 1, 2, 3 and the final Design of Experiment (DoE); blue

crosses indicate the initial design n0.

runs are performed to evaluate the average statistical properties of the estimators.

Table 4.7: Example 2: comparison with Subset Simulation and 2SMART algo-

rithm (MCS estimator is a reference obtained from only one simulation).

Method m N E(α̂) (10−5) δ(α̂) (10−5) κ cov

MCS 108 108 3.85 0.062 0 1.6%

Sub-Sim 1000 4600 3.90 2.470 1.5% 63.2%

2SMART − [1332, 1722] 3.74 0.097 2.6% 2.5%

Bayesian Sub-Sim
1000 [94, 109] 3.70 0.618 3.8% 16.7%

104 [325, 422] 3.77 0.223 2% 5.8%

Influence of the sample size m

In order to study the influence of the choice of the Monte Carlo sample size m on

the statistic properties of the estimator, we run 50 independent simulations with

sample size m = 50, 100, 1000 and 104. The results are presented in Table 4.8.
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As expected, the coefficient of variation of the estimator decreases as the sample

size increases. However, increasing m brings out a price: for m = 104, the cost

of running the Bayesian Subset Sampling algorithm is very high. Thus, the choice

of m is a trade-off between an acceptable coefficient of variation and the cost of

computational resources. From our experiments, we suggest that taking m = 1000

is a good choice for intermediate probabilities p0 = 0.1.

Table 4.8: Example 2: study the influence of different Monte Carlo sample size m

on the estimator.
Monte Carlo sample m 50 100 1000 104

κ 37.8% 31.2% 3.8% 2.6%

cov 113.4% 107.0% 16.7% 4.4%

Time 12s 40s 218s ∼ 3h

4.4.3 Example 3: response of a nonlinear oscillator

In this section, we consider an example about the dynamic response of a nonlinear

oscillator, which was taken from the literature of structural reliability (see, e.g.,

Bucher and Bourgund, 1990; Gayton et al., 2003; Rajashekhar and Ellingwood,

1993b). The problem deals with a nonlinear undamped single-degree-of-freedom

system as depicted in Figure 4.8.

In this example, the input variable is in dimension d = 6, and the cost func-

tion f : R6 → R is:

f : x = (x1, x2, x3, x4, x5, x6) 7→ 3x4 −
∣∣∣∣

2x5

x1w0
2

sin
(w0x6

2

)∣∣∣∣ (4.25)

where w0 =
√

x2+x3
x1

. The distributions of the factors are specified in Table 4.9.

A failure happens when the cost function is larger than the threshold u =

1.5. The reference probability of failure, obtained using α̂MC
m with m = 108, is

approximately 2.28×10−4 (with a coefficient of variation of about 1/
√

m α ≈ 0.7%).

The Monte Carlo sample size is m = 1000 for the Subset Simulation at each

stage, and m = 1000 or 104 for the proposed Bayesian Subset Simulation algorithm.

The initial design is set to N0 = 20. The intermediate threshold ut is chosen by

the criterion (4.19). The proposal distribution qt for a random walk is a Gaussian

distributed N (0, σ2), where σ2 is specified in Table 4.9. The stopping criterion for

the adaptive SUR strategy is set to ηt = 10−5 (for t = 1, . . . , T − 1) and ηT = 10−6.
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Figure 4.8: Example 3: non-linear oscillator.

Table 4.9: Example 3: random variables.

Variables Distribution Mean m Standard deviation σ

x1 Normal 1 0.05

x2 N 1 0.10

x3 N 0.1 0.01

x4 N 0.5 0.05

x5 N 1 0.20

x6 N 1 0.20
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Table 4.10: Example 3: average number of evaluations at each stage with m = 1000.

t 1 2 3 4

Sub-Sim 1000 900 900 900

Bayesian Sub-Sim 13 16 17 35

Table 4.10 lists the average number of evaluations (rounded to integer) at each

stage over 50 runs. We can see that an average total of evaluations N =
∑T

i=0 Nt =

101 are needed for our proposed Bayesian Subset Simulation, while for Subset Sim-

ulation, the number is 1000 + 900× 3 = 3700.

We compare our proposed algorithm with Subset Simulation and 2SMART al-

gorithm in Table 4.4.3. Still, Monte Carlo method provides a reference probability

of failure. The total number of evaluations N in Bayesian Subset Simulation algo-

rithm and 2SMART algorithm is a range of the minimal and maximal number of

evaluations from 50 runs.

Table 4.11: Example 3: comparison with Subset Simulation and 2SMART algo-

rithm (MCS estimator is a reference obtained from only one simulation).

Method m N E(α̂) (10−4) δ(α̂) (10−4) κ cov

MCS 108 108 2.280 0.015 0 0.7%

Sub-Sim 1000 3700 2.341 0.746 2.7% 31.9%

2SMART − [2028, 2535] 2.309 0.052 1.2% 2.2%

Bayesian Sub-Sim
1000 [84, 117] 2.286 0.384 0.3% 16.8%

104 [91, 118] 2.275 0.103 0.2% 4.5%

At last, we provide the predictions versus the true function values as well as

the probability of excursion versus the true values at the end of SUR strategy at

different stages in Figure 4.9 – Figure 4.12.

4.5 Conclusions

In this paper, we propose a new algorithm called Bayesian Subset Simulation for

estimating small probabilities of failure in a context of very expensive simulations.

This algorithm combines the main ideas of the Subset Simulation algorithm and

the SUR strategies developed in our recent work (Bect et al., 2010).

Our results show that the number of evaluations is dramatically decreased com-
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Figure 4.9: Example 3: the true value v.s. prediction and the probability of excur-

sion. Stage: t = 1.
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Figure 4.10: Example 3: the true value v.s. prediction and the probability of

excursion. Stage: t = 2.
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Figure 4.11: Example 3: the true value v.s. prediction and the probability of

excursion. Stage: t = 3.
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Figure 4.12: Example 3: the true value v.s. prediction and the probability of

excursion. Stage: t = 4.
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pared to the original Subset Simulation algorithm, while keeping a small bias and

coefficient of variation. Although 2SMART from FERUM provided an estimator

with smaller bias and coefficient of variation than our proposed algorithm, it still

requires thousands of evaluations. If we increase the Monte Carlo sample size for

our proposed algorithm, the coefficient of variation of our estimator from Bayesian

Subset Simulation decreases while keeps a smaller number of evaluations compared

to 2SMART algorithm.

Our future work will try to improve further the properties of our algorithm

regarding the bias and the variance of the estimator by getting a better under-

standing of the influence of the parameters m, p0 and η. Another concern is to

run our proposed Bayesian Subset Simulation algorithm with a larger Monte Carlo

sample size (e.g., m = 104 or 105) in a reasonable time, as it has been shown that

increasing m will decrease the coefficient of variation for the estimator. Chevalier

et al. (2011) proposed fast implementations for the SUR strategies which are able to

significantly speed up the algorithm. We shall also test and validate the approach

on more challenging examples.



Chapter 5

Conclusions and Perspectives

Summary and main contributions

The use of Gaussian processes prior modeling (or kriging prediction) is very effi-

cient and computationally attractive in the machine learning, design of engineering

systems, reliability analysis and optimization. The problem of reliability assessment

using a surrogate model is a challenging topic and also crucial to the success of the

design strategies.

The work presented in this thesis aimed at solving the problem of estimating a

probability of failure for a complex system, the model of which corresponds to an

expensive-to-evaluate function. There are two primary objectives of this thesis:

1) Propose a Bayesian decision-theoretic framework and use a cheap surrogate

model to substitute the expensive-to-evaluate function; develop several se-

quential criteria to adaptively choose the design of experiments within a lim-

ited budget;

2) Explore a new algorithm which combines Bayesian theory and Subset Simu-

lation for the estimation of small probabilities of failure.

First, it gave a quite exhaustive review of the reliability methods in literature

in Chapter 2. A summary of reliability methods was first presented. Among all the

different categories of methods, FORM/SORM are widely used in reliability anal-

ysis but they do not provide information on the estimator; Monte Carlo methods

try to reduce the variance of the estimator, however, they need a large number of

evaluations in order to obtain an acceptable estimator. During the past decades,

surrogate modeling has been gaining more and more attentions. The Gaussian

processes prior modeling was revealed as a useful surrogate modeling technique for

substituting the expensive-to-evaluate functions. Besides its calculation efficiency,

it could provide a local measurement of its estimation accuracy in a closed form in
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a probabilistic framework, based on which we can derive a determined confidence

intervals on the predictions. The ease of building the kriging predictor also allowed

sequentially refine of the surrogate model according to different design criteria,

such as reducing the Bayesian risk of the estimator in SUR strategy, or reducing

the target region IMSE.

Sequential design of computer experiments

Then, it followed one of the major contribution in this thesis: it investigated

a synthetic framework for the sequential design of computer experiments to

estimate a probability of failure in Chapter 3. The optimal solution under a

Bayesian risk framework is impractical. In this thesis, four different versions of

stepwise uncertainty reduction (SUR) strategies are derived from a sub-optimal

view. Compared to other strategies, SUR strategies have higher complexity in

implementation and demand more computation resources. In the meantime, SUR

strategies perform better concerning the number of evaluations in our experiments.

The choice of an appropriate strategy depends on the specific requirement of the

problem.

Bayesian Subset Simulation

Last but not the least, when the probability of failure is very small, it is natural

to resort to sequential Monte Carlo methods or Subset Simulation algorithm.

However, in the cases when only expensive-to-evaluate functions are available, the

required number of evaluations remains still too high. The need to increase simu-

lation efficiency leads to another contribution of this thesis, and a new algorithm

called Bayesian Subset Simulation was developed in Chapter 4. The Bayesian

theory provides a guidance to generate samples in the region of more interests at

each stage by a posterior distribution. Such samples were then generated by the

Markov Chain Monte Carlo sampling approach. Although the adaptive threshold

algorithm was known to introduce bias in the estimator, numerical experiments

have shown that this bias is negligible. Thanks to the use of surrogate modeling

technique, the new algorithm outperforms original Subset Simulation algorithm

and 2SMART in the section of numerical results.
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Perspectives

The use of kriging predictor has found great applications in reliability analysis,

especially in the case when the performance function is expensive-to-evaluate. Even

though this thesis has investigated the specific problem of reliability assessments

and provided a solution for rare probability failure estimation, there are some

aspects left to be cleared and future studies to be continued.

Issues related to Gaussian processes prior modeling

First of all, it has been shown that under a prescribed budget N , the success

of sequential strategies depends on our capacity to choose an appropriate prior

for the performance function. Although in all of our work, Gaussian process

priors are used which assumed that the input variable is in low dimension and the

performance function f tends to be smooth, it might be inappropriate in a lot

engineering applications. When f is discontinued or smooth in general but very

rough in some regions, we may need to resort to more complex priors. At this point,

we are unable to give an instruction on which kind of prior is the best for any kind

of applications. A possible solution is to choose non-stationary Gaussian processes,

while the number of parameters will be increased. Gramacy and Le Digabel (2011)

proposed an adaptive algorithm with treed Gaussian process surrogate models to

locally manage non-smooth optimization problems under constraints.

Difficulties related to high-dimensional problems

Secondly, in this thesis, the input space X is assumed to be not too high-

dimensional, the approaches used such as maximum likelihood (ML) or restricted

maximum likelihood (REML) are likely to give correct results. However, as di-

mension size increases, difficulties will arise. In such cases, there is no guarantee

that the likelihood related methods could work well any more. In particular, most

strategies try to select points concentrated in some local region (near the contour

of the failure region in our applications). The difficulties imposed by such behavior

are two sides: 1) the correlation matrix constructed is ill-conditioned and will bring

out mathematical inaccuracies in the inversion procedure in the computer calcula-

tion; 2) the likelihood function becomes inappropriate and the maximum likelihood

algorithm will become not applicable.
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The special issue that concerns is the choice of the initial design n0. As we

discussed before that the suggested number of initial design is five times of the input

dimension n0 = 5d. When d is very large, is this criterion still a good choice? In

order to obtain a good estimation of the parameters, a large number of evaluations

are needed for ML or REML algorithms, which will violate our purpose of budget

saving. Another difficulty in high dimension problems is the heavy computational

expenses. Lizotte et al. (2011) improved the performance of maximum likelihood

estimation using maximum a posteriori (MAP) when initial design n0 is small.

One natural idea is to remove redundant variables by applying a sensitivity

analysis before the reliability analysis, however, a traditional sensitivity analysis

needs a large number of evaluations. It is possible to apply both sensitivity and

reliability analysis at the same time and remove those variables which have few

contribution during the simulation. Another possible solution might resort to

substitute the maximum likelihood algorithm with a fully Bayesian optimization

for parameters estimation. A prior should be set in advance. The parameters will

be then calculated from multiple integration of a posterior probability distribution.

Markov Chain Monte Carlo method is needed to approximate the multiple

integration (see, e.g., Benassi et al., 2012). Due to the limit of time, we could not

realize fully Bayesian approach in this thesis, the work will be left for our future

research.

Applications to a broader scope of problems

Thirdly, the problems studied in this work exclusively aimed at the design of

computer experiments to estimate a probability of failure. We worked directly

on the computer codes f which strongly simplified real physical systems. There

are more aspects to be considered in the reliability analysis area though. Further

investigations are required in order to apply our proposed algorithms to the real

world applications.

It is well known that there is a strong link between the problem of global

optimization and probability failure estimation. It is in the author’s belief that

sequential strategies in this thesis can be easily modified and applied to both

constrained and unconstrained global optimization problems. Indeed, the famous

expected improvement (EI) criterion can be interpreted as looking for the location

of the minimum value of a probability density function, such as the famous
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efficient global optimization (EGO) algorithm. Instead of looking for a set of

failure region Γ, an optimization problem tries to identify the maximum value of

the function. The strategy of targeting a sequence of intermediate thresholds to

approach a small probability of failure can be easily transformed to sequentially

direct the exploration for a global optimization point, such as the fully Bayesian

expected improvement criterion in Benassi et al. (2011). Sequential Monte Carlo

method is needed to update particles. Rubinstein and Kroese (2004) proposed

a cross-entropy method for optimization, Monte Carlo simulation and machine

learning. It is also worth to mention that the so called quantile estimation shares

a lot in common with probability failure estimation.
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