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Abstract

Multimode Collocated Vibration Control with  Multiple
Piezoelectric Transducers

In this thesis a new approach is presented to control vibrations for one-
and two-dimensional mechanical structures, as beam or thin plates, by means
of several piezoelectric transducers shunted with a proper electric network
system. The governing equations for the whole system are coupled to each
other through the direct and converse piezoelectric effect. The mechanical
equations are expressed in accordance with the modal theory considering n
vibration modes, that in need of control, and the electrical equations reduce
to the one-dimensional charge equation of electrostatics for each of n consid-
ered piezoelectric transducers. In this electromechanical system, a shunting
electric device forms an electric subsystem working as multi-degree of free-
dom damped vibration absorber for the mechanical subsystem. Herein, it is
introduced a proper transformation of the electric coordinates in order to
approximate the governing equations for the whole shunted system with n
uncoupled, single mode piezoelectric shunting systems that can be readily
damped by the methods reported in literature. A further numerical optimisa-
tion problem on the spatial distribution of the piezoelectric elements allows
to achieve an effective multi-mode damping. Numerical case studies of two
relevant systems, a double clamped beam and a fully clamped plate, allow
to take into account issues relative to the proposed approach for vibration
control. Laboratory experiments carried out in real time on a beam clamped
at both ends consent to validate the proposed technique.
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Preface

The immediate reason to draw up this thesis is the necessity to summarise
all the work done by me in three years of study, in accordance with my duty,
given that*:

“... non fa scienza,
sanza lo ritenere avere inteso.”

Two are criteria that have driven me to write this thesis: comprehensibil-
ity and synthesis | have chosen to provide both examples and explanations
in order to satisfy the rst criterion, albeit these involve a larger length of
this work. It is true that Abbot Terrasson tells us that if the size of a book were
measured not by the number of its pages but by the time required to understand
it, then we could say about many books that they would be much shorter if they
were not so shortExamples and explanations certainly make easier to under-
stand the written but they also involve some inopportune effects. In fact, if
we are concerned with the distinctness and the comprehensibility of a volu-
minous whole of speculative cognition that yet coheres in one principle, then
we could just as legitimately say that many books would have turned out much
more distinct if they had not been intended to be quite so distmat is, “clear”
in the popular sense —plenty of examples. For the aids to distinctness, while
helpful in parts of a book, are often distracting in the book as a whole. They
keep the reader from arriving quickly enough at an overview of the whole;
and with all their bright colours they do cover up and conceal the articula-
tion of the dissertation. However, if we are concerned with the synthesis, it
is worth saying that examples and explanations are necessary for a popular
publication but this report is written primarily for engineers, and they do not

1pante Alighieri  (1265-1321). La Divina CommediaPar., V, 41-42.

Vi
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need of these facilities. Hence, as good as always, | have tried to achieve a
right balance taking into account all these points of view.
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Introduction

iezoelectric  materials have been a great expansion in the engineering
P application of structural control. One reason for this is that it may be
possible to create certain types of systems capable of adapting to or correct-
ing for changing operating conditions. The advantage of incorporating these
special types of material into the structure is that the sensing and actuating
mechanism becomes part of the structure.

In the last years the employ of structures more and more thin had made
arise numerous issues regarding vibrations. The challenge of reliability and
durability of mechanical structures is an important task for engineers, the
design of systems leading to the ef cient control of structural vibrations in
order to reduce fatigue load, crack propagation and damage appears to be an
attractive opportunity. Then the object of this dissertation is to investigate the
possibility to reduce vibrations. Thus, the topics presented in this research
work are chie y concerned with application to mechanical vibrations, sys-
tem identi cation, automotive, railway and aerospace industries. To take into
account a possible effective control, piezoelectric transducers are employed.
This is primarily due to their abilities but also to the growing availability
of more ef cient piezoelectric ceramics. Smart structures using piezoelec-
tric material are successfully employed in reducing vibration [Alessandroni
et al., 2005 Dosch et al., 1992 Anderson and Hagood, 1994 Hollkamp and
Starchville, 1994 Badel et al.,2006 Wu, 1998 Tang and Wang, 2001; dell'lsola
and Vidoli, 1998 Thorp et al., 2001]. Piezoelectric materials produce a voltage
when strained and conversely strain when undergone to a voltage. This prop-
erty is very interesting, because a piezoelectric element can be indifferently
used either as a sensor or an actuator. Moreover, these piezoelectric element
skills can be simultaneously employed to obtain a collocated sensor-actuator
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control and to achieve with ease a stable control. The piezoelectric transduc-
ers coupled to mechanical structures can convey the mechanical energy ow
toward electric network systems where it is dissipated: it is a piezoelectric
shunt-damping. The use of the piezoelectric shunt dampintgchnique for vi-
bration reduction in one and two dimensional exible structures is a very
common practice because of the strong electromechanical coupling associ-
ated with currently available piezoelectric transducers. In this technique the
piezoelectric transducers, bonded on the exible structure, are shunted by
a passive electric network that acts as a damped vibration absorber for the
host mechanical structure. A classical application of this method is a single
resonant piezoelectric shunting system studied in [Hagood and Flotow, 1997
Wu, 1994. The damper is formed by a piezoelectric element shunted with an
inductor and a resistor. The external shunt circuit with the inherent piezo-
electric capacitance is aRLC circuit. Its natural frequency is imposed equal
to one natural frequency of the host mechanical structure by maximising the
energy exchange. The resistance role is to maximise the electric dissipation
of the energy coming from the mechanical structure. Its main drawback is
the requirement of high-value inductors, 10-1000H, working at high-voltage.
For this reason, passive components are simulated by active circuits, synthetic
impedances or alternatively admittances, which require an external feeding.
Subsequent applications involve one piezoelectric transducer coupled with
a multi-resonant electric network to damp a set of mechanical modes. Hol-
Ikamp's circuit is one of this kind [Hollkamp, 1994. The shunt circuit consists
of a set of branches whose main is anRL circuit. The other branches are RLC
shunts. The number of controlled mechanical modes is equal to the number
of the branches. An issue of this technique is the necessity of retuning the
circuit when a branch is added. Indeed, in [Hollkamp, 1994 is proposed no
closed-form tuning solution. Further approaches use multiple piezoelectric
transducers by shunting each of them to a proper multi-resonant electric net-
work [Moheimani et al., 2004. In practice, to account for the undesired cross
in uence of the shunt circuits on the mechanical modes to be controlled, a
ne-tuning is due.

In [dell'lsola and Vidoli, 1998 Andreaus et al., 2004 Maurini et al., 2004
Alessandroni et al., 2009 systems with periodically distributed piezoelectric
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transducers and modular shunting networks are considered. This approach
adopts homogenised continuum modelling and looks for periodic lumped
electric systems having, in the continuum limit, the same dynamic behaviour
of the mechanical structure to be controlled. The drawback of this “contin-
uum mechanics” approach is the requirement of a high number of piezoelec-
tric elements and complicated shunting networks, in order to approach the
continuum limit. Moreover, different types of structures, e.g.beams or plates,
demand the solution of speci ¢ design problems. The theoretical and numeri-
cal results provided optimal electric networks for damping exural vibrations

of beams [Andreaus et al., 2004 Maurini et al., 2004 and plates [Alessandroni
et al., 2009; in reference [dell'lsola et al., 2004 a rst experimental implemen-
tation is presented.

The interpretation of piezoelectric shunt damping systems as a feedback
control problem allows to employ this technique to realise collocated vibra-
tion active control in which piezoelectric transducers are used both as sensors
and actuators. In [Tang and Wang, 2001, it is proposed the use of “negative
capacitance” carrying out with an active devise op-amp based. Other appli-
cations perform active control systems no-collocated, as reported in [Rizet
et al., 200Q, where the implementation of a modal Iteringona DSP board
is proposed to control the exural vibrations of a beam.

Semi-active techniques [Badel et al.,2006 Niederberger and Morari, 2004
develop non-linear switching shunting to avoid the use of high-value induc-
tors and to obtain a wide-band damping, with reduced power requirements.
As showed in [Niederberger and Morari, 2006, the switch shunt is less per-
forming but more robust than the standard RL shunt.

In conclusion, as underlined in [Chopra, 2002 Moheimani, 2003, the de-
velopment of ef cient and reliable techniques for control with multiple pie-
zoelectric transducers remains an open problem.

The aim of this study is to extend the resonant shunting techniques to
control multiple modes with multiple piezoelectric transducers by an electric
network which connects the whole set of piezoelectric elements. The key idea
in this thesis is to make the whole shunted system equivalent to a set of
independent, single resonant piezoelectric shunting systems. Therefore, it is
possible to use the widely investigated methods presented in literature.

3 of 143
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A Brief Digression on Piezoelectricity

In 188Q the brothers Pierre and Jacques Curie predicted and demon-
strated piezoelectricity 2. They showed that crystals of tourmaline, quartz and
Rochelle salt (sodium potassium tartrate tetrahydrate) generate electrical po-
larisation from mechanical stress. Quartz and Rochelle salt exhibited the most
piezoelectricity. Converse piezoelectricity was mathematically deduced from
fundamental thermodynamic principles by Lippmann in 1881 The Curies
immediately con rmed the existence of the “converse effect”, and went on
to obtain quantitative proof of the complete reversibility of electro-elasto-
mechanical deformations in piezoelectric crystals. More exactly the piezo-
electricity is the aptitude of a material to show polarisation charges on cer-
tain faces as a result of the application of mechanical stress. This effect is
called direct piezoelectric or piezo-generator. It is reversible, indeed, if one
imposes an external electric- eld vector, the body will be strained in a way
that depends on the direction and magnitude of electric vector. This is in-
verse piezoelectric effect or piezo-motor. The deformation is of the order of
nanometres, nevertheless piezoelectric materials nd useful applications such
as the production and detection of sound, generation of high voltages, elec-
tronic frequency generation, microbalance, and ultra- ne focusing of optical
assemblies.

Necessary condition for existence of the piezoelectric phenomenon is the
anisotropy of the material. Piezoelectric materials are crystals not having a
crystallographic symmetric centre. Punctual groups not-centre-symmetric are
21 of the 32 crystallographic classes and, more exactly, if one represents them
by an international standard, are

11 2, 3! 41 6,
m, mm2, 3m, 4, 4mm, 42m, 6, 6mm, 62m, Z3m,
222 32,422 622 23, 432

The piezoelectric phenomenon is possible only for 20 of these because the432,
that belongs to the cubic system, even though not centre-symmetric, shows
characteristics of symmetry combining do not allow any piezoelectric effect.

2The word is derived from the Greek pi#z#w, which means | squeeze or press.
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1.1: Unloaded crystal. 1.2: Loaded crystal.

Figure 1 : The sub gure 1.1 shows a crystal having a ternary symmetry
axis with lack of external loads. In this crystal are depicted electric dipole

moments on a proper crystallographic plane. The vector sum of elec-
tric dipole moments is zero for each group of vectors. The sub gure 1.2

shows a crystal undergone a compression by force,¥, that generates a po-

larisation, P. The total vector sum of electric dipole moments is not more
zero.

The piezoelectric phenomenon can be explained by two different exam-
ples. The former is characterised by the presence of some electric dipole mo-
ments for each elementary cell, whose vector sum is zero. If one applies a
mechanical or electric load in a given direction, a polar moment not-null
arises. Figure 1 sketches a simpli ed illustration of this case. A hydrostatics
pressure does not allow the piezoelectric phenomenon because the load is the
same in all directions. The quartz (SiO,) is a member of this class. The latter
is distinguished, in lack of external perturbations, by an electric dipole mo-
ment not-null, and so by only one permanent polar axis. Figure 2 depicts a
sketch of this second mechanism. They have a related property known as py-
roelectricity. This property, known as early as the 19th century and named by
David Brewster in 1824 is the aptitude of certain mineral crystals to generate
electrical charge on their surfaces in case they undergo an uniform heating.
This electric charge is proportional to the difference of temperature and it
is the result of electric dipole magnitude variation. It is worth to note that
even crystals not pyroelectric can show a super cial electric charge if it is
heated not uniformly, as consequence of internal stress due to thermal ex-
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2.1: Unloaded crystal. 2.2: Loaded crystal.

Figure 2 : The sub gure 2.1 shows a crystal lattice having a permanent
polarisation, that is ferroelectric one in an undeformed state, where the
polarisation is due to the position not symmetric of the ion A*. The

sub gure 2.2 shows a lattice in presence of a compression force;¥, that

produced a variation of polarisation, DP, the piezoelectric induced polar-
isation.

pansion. Only 10 of the 20 not-symmetric-centre classes, written above, are
pyroelectric. These crystals, differently by those not having polar axis, shows
piezoelectric properties even in case of hydrostatics pressure. Examples of
pyroelectric crystals are the tourmaline 2 and zinc oxide (ZnO).

Ferroelectric materials are particular pyroelectric crystals which have got
the ability to invert own electric dipole moment through the application of
electric eld with appropriate strength. The presence of a dipole moment
not-null, however, is not suf cient to guarantee the ferroelectricity. Besides,
not all pyroelectric crystals can be ferroelectric; the electric eld necessary to
obtain the inversion of dipole could be too strong and cause the breaking of
material. The graph of induced polarization *, P, or of stored charge, Q, ver-
sus to applied voltage, V, in ferroelectrics has a hysteretic cycle, in contrast
to other dielectrics that show a linear relationship. There is in this cycle a
residual polarisation P, whose verse is depend on history of V, that is the

3Tourmaline have general formulae: AX3Yg(BO3)3SigO15(0, OH, F)4. In this A means cal-
cium or sodium; X means aluminium, iron, lithium or magnesium; Y means aluminium, and

less usually chrome or iron.
4The polarisation is a vector quantity de ned as the electric dipole moment per unit of

volume. Also called dielectric or electric polarisation.
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polarisation for V null. It occurs, moreover, to note a polarisation of satura-
tion, Ps, referring to high applied electric eld °. The ferroelectric property is
typical at low temperatures because enhancing the thermic agitation motion
the arrangement of dipoles is destroyed. Over a certain temperature, called
transition temperature or Curie point, T, the material has a paraelectric be-
haviour or, easier, not-ferroelectric. The symmetry of the paraelectric phase,
being stable over T, is centre-symmetric and the transition that turns out for
cooling implies easily a reduction of symmetry, passing to a punctual group
not-centre-symmetric. This transition occurring at T is, indeed, an example
of phase transition order-disorder. Into ferroelectric crystals there are regions
in which adjacent electric moments are uniformly arrayed. These regions are
called domains These have variable dimensions but usually are about tens or
a hundreds of angstroms; the thickness of boundary can be only one reticular
constant too. Inside each domain dipoles are arranged according to a unique
crystallographic axis. The total polarisation of a ferroelectric material is the
vector sum of polarisation of each domain. If one applies an external electric
eld, such a eld tries to align all dipoles in direction of the same eld. The
condition of saturation is achieved when the alignment is whole. The Rochelle
salt (KNaC4H406 - 4H,0), the lithium niobate ( LiNbO3) are examples of fer-
roelectric crystals. Often ferroelectric oxides are used in capacitors for their
high dielectric constants, in particular near to Te.

Very important in applications are piezoelectric ceramics made of ferro-
electric micro-crystals, each of them being organised in many domains. These
materials are turned arti cially piezoelectric; they are heated up to Curie
point and undergone, during the cooling, the high electric- eld vector, that
lines up dipoles producing a stable polarisation in limits of the mechanical,
thermic or electric load of the material. During the process of the polari-
sation, the ceramic is subjected to an expansion in the direction of electric
eld and a compression in the two orthogonal directions. Such variations
of dimension remain even after the removal of the electric- eld vector. The
orientation process of dipoles referred to as “poling”, is analogous to the pro-
cess by which a piece of soft iron can be magnetised by a magnetic eld.

5For instance the barium titanate (BaTiOs) has a saturation polarisation of 0.26C m 2 at
temperature of 296 K.
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When the ceramic reaches the Curie point, it loses utterly and permanently
its piezoelectric properties. The Curie point provides the upper limit of the
temperature that can be achieved by a piezo-ceramic. The polarisation pro-
cess of the piezo-ceramics is explained by its ferroelectric properties. In the
ceramics, as it is comprehensible, a perfect alignment will never be obtained,
because of mechanical stresses and of defects in grains of the material that
does not allow the shift of the polar axis in the direction more favourable.
At rst the piezo-ceramic was isotropic, owing to the random orientation of
micro-crystals; after the application of the electric eld such isotropy is de-
stroyed in the direction of the polarisation axis, but it is maintained in the
plane orthogonal to it. Such a material is called orthotropic. It is undeni-
able that materials naturally piezoelectric have not grains with preferential
directions of polarisation, and so they have reduced capacity of macroscopic
deformation. The advantages of ceramic materials are summarised, without a
doubt, in high ef ciency of transformation electro-mechanic, even above 50%,
in a good workable, in a lot of shapes obtainable, in a mass production. The
greater disadvantages are linked up to the possibility of depolarisation; cer-
tainly, signi cant electric elds in opposite directions to the polarisation, or
high alternating electric elds, or also important mechanical stresses, as well
as temperatures higher than Curie point involve the loss of the piezoelectric
property. It is important to note the phenomenon of the aging that is the
decrease of the piezoelectric properties with the pass of time from the polari-
sation. Solid solutions of lead titanate-zirconate Ph(Ti, Zr)Og3, usually pointed
out with short form PZT, is the most popular piezoelectric material in use.
The success of these alloys stays on remarkable inducible polarisation and
in a high transition temperature, 493-623K, that allows the variation of their
chemical composition by thermic treatments at high temperatures, changing
as a result also heavily any physic properties without a decay of piezoelectric
features. A PZT material shows strains of about 0.1% of the original dimen-
sion. They are divided into hard and soft PZT. The former has a narrow
hysteretic cycle, resists to high mechanical or electric loads, and besides ages
more slowly. It is suitable to be employed as generator and transducer with
high voltage or power. The latter has a large sensitivity and high dielectric
constants but the depolarisation and the heating turn out easy. It is used as

8 of 143



Introduction

sensor or transducer with high impedance.

Other materials with piezoelectric effect are piezo-polymers, as the poly-
vinyl di uoride, PVDF, and copolymers of vinylidene uoride, VDF, tri uo-
roethylene, TrFE, e tetra uoroethylene TeFE Even they undergo a process of
poling completely analogous to that of piezo-ceramics. They are used at high
frequencies, in contrast with piezo-ceramics that cannot be used because too
fragile. These materials have a wide range of frequency of employment, a
low acoustic impedance, a high elastic deformation, as well as a high dielec-
tric strength®. They have, however, low acting temperatures and a modest
ef ciency in the electro-mechanical conversion. In other words they are more
right as sensors rather than actuators. There are notable differences between
PVDF and PZT materials. For instance, on average, PZT is approximately
four times as dense, forty times stiffer, and has a permittivity one hundred
times as great as that of PVDF. Therefore, PVDF is much more compliant
and lightweight, making it more attractive for sensing applications, lessening
the insertion error. In contrast, PZT is often preferred as an actuator since it
exhibits a greater induced strain [Moheimani, 200d.

Finally there are piezo-composites too, or rather materials made of poly-
mers and piezo-ceramics.

Features of better consideration in a piezoelectric material are:
a) high ef ciency of electro-mechanical transformation;
b) wide range of frequency of employment;

¢) good stability at variation of environment conditions as the temperature
or the humidity;

d) easily workable;
e) several shapes obtainable.

Damages due to aging are typical of sensors and are negligible for ac-
tuators, because in actuators the material undergoes an electric- eld vector
with the same direction of the polarisation. A further issue in piezoelectrics

6The maximum electrical eld that a material can withstand without rupture; usually
speci ed in volts per millimetre of thickness. Also known as electric strength.
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is given by the creep. This last, however, is very small, at its maximum value
achieved in few hours it differs of 1% from last driven motion.

In the end, it is useful to note that electrostrictive materials are not pie-
zoelectric and possess no spontaneous polarisation. The electrostriction is a
form of elastic deformation of a dielectric induced by an applied electric eld,
associated with those components of strain which are independent of reversal
of eld direction, in contrast to the piezoelectric effect. It is found in all di-
electric materials although their deformations are usually too small, approxi-
mately between 10 % and 10 °% of the original dimension, to utilise practi-
cally. Electrostrictive ceramics, based on a class of materials known as relaxor
ferroelectrics, however, show strains comparable to piezoelectrics, 0.1% of the
original dimension, and have already found application in many commercial
systems. When correctly used they can be virtually loss free up to hundreds
of kilohertzs.
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CHAPTER |

Vibration Control Using Piezoelectric Transducers

Knowledge is of no value unless you put it
into practice.

Anton Chekhov (1860-1904
Russian playwright

tructural  vibration control is to implement energy dissipation devices
S or control systems into structures to reduce excessive vibration. Specif-
ically, this chapter deals with control of one- and two-dimensional structures
to reduce vibrations related to multiple mechanical modes by shunting sev-
eral piezoelectric transducers with a multi-port electric system. Since each
of the piezoelectric transducers integrate actuation and sensing capabilities
within a single transducer, a collocated control is obtained. The electric net-
work can be a passive electrical impedance system that acts to increase the
mechanical damping. In spite of the passive nature of this control, however,
this network is commonly made with an active electrical device that estab-
lishes a certain relationship between voltage and current at its terminals be-
cause of actualisation issues; in fact, it turns out that very large inductors,
even about hundreds henries, are required. This technique, called “virtual
passive approathimplements in an active manner the behaviour of passive
damping systems. It is possible for the collocated nature of the piezoelectric
transducers, see [Juang and Phan1997. Besides, it is argued in [Moheimani,
2003 that the shunt damping technique can be interpreted as a multi-variable
feedback control problem, in which the impedance, or alternatively the ad-
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mittance of the electrical multi-port shunt, constitutes the feedback controller.
Herein, following this approach the control signal is assumed the current
owing through each piezoelectric transducer and the measurement is as-
sumed the voltage on the same piezoelectric element. Thus, considering that
even for passive damping systems it is advantageous to mimic them with ac-
tive devices, the restriction of the passivity for the controller can be removed
by implementing also purely active control in which this arrangement is used
to obtain better performance.

I.1 Modal Approach to Modelling

Linearly elastic continua, such as beams or plates, can be modelled with
the same general formulation. Let w(x,t) be the displacement eld, de ned
for all point x over a domain A denoting the region occupied by system. The
partial differential equation describing the behaviour of these systems is

L [w(x, )] + 1'1”tD Wi D]+ M (x)m(x,t) = f(x1) (1)
in which L and M are linear homogeneous differential operators respectively
of orders 2k and 2m with k > m with respect to the spatial coordinate x;.
They constitute a model of the stiffness and the mass density of system. D
is a linear homogeneous differential operator of order 2k similar to L, used
to model a viscous damping. The term f describes an external distributed or
point load; in case of a point force, f is of type F(t)d(x x;) acting at point
Xj, with d the Dirac delta. The equation (I.1) is completed with the following
boundary conditions

B [w(x,)] =0 r=12...k (1.2)

which must be satis ed at every point of the boundary YA of the domain A .
In Egs. (1.2) B, are linear differential operators of orders ranging from zero
to 2k 1.

As above mentioned, piezoelectric devices can be used to reduce the vi-
brations of one or two dimensional systems and with the target of obtaining
a collocated control by means of a set of np piezoelectric transducers, they
can be used simultaneously as sensors and actuators. The Eq. (L) can be
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rewritten
2
Lp[w(x,t)]+ ;T”tDp[w(x,t)] + M p(x)ﬂTvzv(x,t) =
=t )+ & Pul (] S0 (3)
h=1

where fy(x,t) is the disturbance load to the structure; the second term on
the right hand side of Eq. (I. 3) involves that each of nj piezoelectric patches
applies a forcing input proportional to the time derivative of the ux linkage

f 1, i.e.the terminal voltage of the h-th transducer. In particular P is a linear
homogeneous differential operator and } ,(x) is a spatial function of piezo-
electric localisation that takes the value one where the piezoelectric element
is placed and zero everywhere else. As an example of Py, for two dimen-
sional bending problems, it can be considered proportional to the Laplacian
operator [Koshigoe and Murdock, 1993. Besides the subscript p in operators
Lp and M, and Dy, indicates the presence of the piezoelectric transducers
which cause a slight difference. As a rst order of approximation, each piezo-
electric transducer is, according to Norton's theorem, electrically equivalent
to a strain dependent charge generator in parallel with a capacitance C;, and
a resistance R, [Yang and Jeng, 1994. Dynamic equations for transducers,
implying the charge conservation, can thus be expressed as

df 1 z

Qn(t) = Ch (t) + 7f n(t) + A Phlw(x,t)]dA h=12.. Ny (1.9

in which Qjy, is the induced charge and each Py, that represents the piezo-
electric effect, is integrated on the region A}, occupied by the h-th transducer.
In ordinary applications, the internal resistance R; is very large and can be
neglected.

To simplify the theoretical analysis, a normalised ux linkage is de ned

Yh= Chfh h= 1,2,...np (|5)
Substituting (I. 5) in equation (1. 3) can then be obtained
1 -
Lp[w(x,t)] + .lTDp[W(X D]+ M p(X) e ()=

= fa(x,t) + a Pnl} h(X)] (t) (1.6)
h=1
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where Py, = (1/ P C)P . Besides, the Eq. (14) becomes

Z
d
Qn(t) = élth(t)+ Rhlchyh(t)+ | Palw(xDldAy  h= 12 (17

. p_—
being Qn(t) = ( 1/~ Cn)Qn(t).
The displacement, w, of the considered system may be expanded in the

series
w(x,t) = éwi(x) hi(t)  with i=12,... (1.8)

where W;(x) are the mode shapes of thei-th normal mode of the undamped
system removing excitation fy and under short circuit condition f, = 0 ,h =
f1,...npg%, i.e.the eigenfunctions that are obtained by solving the eigenvalue
problem

Lp[W(x)]= | M p(x)W(x) (19)

with its associated boundary conditions deduced from the (I. 2). In order to
make the decomposition unique, the eigenfunctions are normalised to one.

The coef cient h;(t) is the generalised coordinate describing the response of
the i-th normal mode. In accord with the procedures based on the modal

analysis, functions h;j(t)'s satisfy, taking n, normal modes into account, np,
ordinary differential equations that in matrix form can be written as

h+ Dh+ W2h Gy = f (1.10)

where, denoting each natural frequency of undamped oscillation under short
circuit condition with wj, the n,, np, matrix W is de ned as Wi, = w; dp

with dj, the Kronecker delta, the n,, nn, damping matrix D is given by

VA
Dih = A Wi(X) Dp [Wh(X)] dA (|11)

Note that the matrix D is symmetric if the operator D is self-adjoint. How-
ever a very typical case is light damping, in this situation, it is possible to
consider an approximate solution by neglecting the coupling of the normal
coordinates due to damping and, thus, ignore the off-diagonal elements in the
damping matrix D. The nn, np piezoelectric couplingatrix G whose entries

Gn represent the coupling coef cient between the i-th normal mode shape

1The superscript dot denotes the derivative with respect to t.
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and the h-th piezoelectric transducer, being the operator P, self-adjoint, is

de ned by
) Z z
Gn = . Wi(X) Ph[} n(X)]dA = . }r(x) Pr[Wi(x)] dA (1.12)
whilst the np-dimensional vector f, representing mode forces, is given by
VA
fi(t) = Wi(X) fd(X,t)dA (|.13)
A

In order to complete the description of considered electro-mechanic sys-
tem the Egs. (1.7) may be rewritten in compact form, using the expression (I. 8)
truncating higher frequency terms that lie out of the bandwidth of interest,
keeping in mind the de nition (I. 12) and differentiating with respectto t, as
follows

y + Xy +G'h= (1.14)

where the n, ny, matrix X is dened as Xj, = [1/ (R, C)] di. The super-
scripted T indicates the transpose of a matrix. The column represents the
np-dimensional vector of normalised currents owing through the piezoelec-
tric elements.

For future reference, it is convenient to introduce the unit-frequency nor-
malised coupling matrix G= W 1G, so that the governing equations for the

electro-mechanic system can be summarised in the form

8
<h+ Dh+ W2h WGy = f

) (1.15)
y +Xy + (WQ' h=

[.2 An Independent Modal-Space Shunt Damping Technique

It is indicated that the problem can be cast as a multi-variable feedback
control problem. The model of a exible structure integrating multiple pie-
zoelectric transducers is made up considering as control signal the current
owing through each piezoelectric transducer and the voltage on the same
piezoelectric element is the measurement. An alternative approach is to con-
sider as control signal the terminal voltages and as electric degree of freedom
to measure the charge. The chosen set up is primarily due to the following
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aspects: the easiness to measure high voltage and to supply current with re-
quired accuracy on a piezoelectric element, as well as the minor in uence of
the hysteretic phenomena of the piezoelectric transducers driven by current
source.

Introducing the problem, we made the assumption that the number of
piezoelectric transducers, ny, is different from the number of the modes, np,
in need of control. At this point we want to relax this assumption and so
consider n,, = np = n, in order to use each electric degree of freedom, yy, to
control one mechanical degree of freedom, h;.

It is signi cant to examine an undamped system. To this end, Egs. (I. 15)
become 8

<h+Wh WGy = f

J + WG h= (1.16)

Note that a small amount of mechanical damping is not relevant to design
a proper shunt network system because it does not produce a signi cant
change in the natural mechanica frequencies and modes. In addition, this
damping has bene cial effect both on control performance and stability prob-
lem. It is strongly recommended that the piezoelectric coupling matrix G is
not a singular matrix in order to avoid lack of controllability and observabil-
ity. In general Eqgs. (1.16) represent a set of 2n simultaneous linear second-
order ordinary differential equations with constant coef cients. The analysis
of such a set of equations is not a simple task, and we wish to explore means
of facilitating it. To this end, the system can be express in a different set of
generalised electric coordinates c(t) ,k = f1,...ng, such that any coordinate
yn(t) ,h = f1,...ng, is a linear combination of the new coordinates c(t).
Hence, let us consider the linear transformation

y = Uc (1.17)

in which U is a constant orthogonal square matrix, referred to as a trans-
formation matrix The matrix U can be regarded as an operator transforming
the vector ¢ into the vector y. The key idea is to obtain a set of equations
equivalent to Eqgs. (1.16), consisting of n single mode piezoelectric shunting
systems, that is to say n uncoupled systems of two coupled equations, each
pair constituted by a mechanical equation and an electrical one [Hagood and
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Flotow, 1991 Wu, 1994. It means that each component of ¢ in uences only
the corresponding component of h and vice versa. In this case the electric co-
ordinate transformation U is employed as a “mode- lter”, making possible
to control a single mechanical degree of freedom without any effect on the
others. This uncoupling, thus, allows to use a single-mode vibration control
very easy to realise by methods that have been widely investigated in the
literature [Hagood and Flotow, 1991, Tang and Wang, 2001].

BecauseU is constant it also connects the vector ¢ and the voltage vec-
tor y and in the same way the second derivatives. Inserting Egs. (1.17) into

Egs. (1.16), it can write
8
<h+Wh WQc

Uc¢ + G'Wh

1
—

(1.18)

Next, premultiplying both sides of the second equation by UT, the transpose

of U, and applying the orthogonal properties of U, it obtains?
8
<h+Wh WGc = f

(1.20)
¢+ (WG h=1z

where the matrix G = GU is the electro-mechanical coupling matrix the new
electric coordinates, and thus the notation for a matrix Gy has the row index
labelling the i-th mechanical degree of freedom h;(t) and the column labelling
the k-th electrical degree of freedom c(t). The n-dimensional vector

z=UT (1.22)

has for elements the new electric forcing terms associated with the coordi-
nates cy(t). Comparing Eqgs. (1.20) with (I. 16), it is possible to note that the
form of the system does not change for the orthogonality assumption of the
transformation matrix U. Besides, it is clear from equations (1.20) that if G
were diagonal, recalling that W is diagonal, it would be possible to identify

2The matrix UTU that multiplies the term ¢ can be interpreted in a more natural manner
by considering the electric energy stored in the inherent piezoelectric capacitances. Indeed,
this energy can be expressed in the form

17 117
= = Z 1.1
2yy 2cUU(: (1.19

where UTU is the capacitive matrix corresponding to the coordinates c(t).
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n single mode piezoelectric shunting systems. In view of this, the object of
the transformation (l. 17) is to produce a matrix G as diagonal as possible. In
other words, the purpose is thus to allow a satisfactory coordination in con-
trol actions of all piezoelectric transducers so that they work together in an
ef cient way to control at the same time all mechanical degrees of freedom of
interest, i.e.no control effort is used unnecessarily.

Remarkl.1. Generally the piezoelectric coupling matrix G, whose properties
depend on the con guration of piezoelectric transducers bonded on the host
structure, is not diagonal therefore the Egs. (I.16) are coupled through the
piezoelectric coupling actions. In spite of it, if G were diagonal it would be
possible to identify immediately n uncoupled systems of two coupled equa-
tions without recourse to transformation U. But there would be something
inef cient with this arrangement. The action of a piezoelectric transducer is
local and so, working each of them on only one mechanical degree of free-
dom, the global damping is very weak. In addition, it is dif cult to nd an
optimal pattern of the piezoelectric set that makes G diagonal.

Let M, denote the vector space of all square matrices of order n over real
eld R. Itis useful to endow M , with the habitual inner product

A -B = trace(AB") (1.22)

where A and B are any two elements of M. Accordingly, let us de ne the
Euclidean or Frobenius norm of A by the equations

NI
—oc<
1 le]
o Qo3
I Qo5
-

KAk = (A A% = jAj2 (.23)

It gives also the distance of any matrix A from the null one.

We state here and prove later that given any square matrix Gin M, and
a matrix U belonging to the orthogonal group Orth(n), the problem of diag-
onalising G = GU admits solution if and only if the rows of G are mutually
perpendicular. If it does not occur, an exact diagonalisation of G is not feasi-
ble, so that a different approach is desirable. Herein it is proposed to nd the
best transformation matrix U that makes G approximatively diagonal. Using
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the point of view of the set theory, let G be the set of all possible electro-
mechanical coupling matrithat is the set of the matrices GU as U varies over
the orthogonal group Orth(n) as well let D be the vector subspace of the
diagonal matrices of order n, the wanted U is the matrix which identi es the
Euclidean distance between these two sets. Such distanced(G,D,) between
the setsG and D, is de ned as the in mum of all distances between any two

of their respective elements, GU and D, and can be expressed as

d(G,Dp)= inf inf kGU Dk (1.24)
U20rth(n) D2Dj
where the expression inside the curly brackets de nes the orthogonal pro-
jection of GU onto D,, and indeed represents the closest diagonal matrix to
GU. Thus, for any matrix U, there exists a unique matrix Dgy that belongs
to D that attain the in mum as D varies in D,. Therefore, this in mum is a
minimum that can be written as

e= EgglgnkGU Dk = kGQU Dgyk (1.25)

The non-negative quantity e identied by kGU Dgyk represents the error
in the approximation of GU with a diagonal matrix.

To nd the orthogonal projection Dgy for a given matrix G and any or-
thogonal matrix U, let B = fD;:i = 1,2,...ng be the standard basis of D
consisted of n diagonal matrices with one in the ii-th entry and zero else-
where. Then, since the matrix Dgy can be written in the form

Deu = & 1, anDn (1.26)

the coef cients a; can be obtained by using the orthogonality of the projec-
tion (GU Dgy) -Dp = 0 and the orthonormality of the unit matrices of the
chosen basisDy, -Dy = dy to get a, = GU -Dy. Thus, the orthogonal projec-
tion of GU over D is the operation of taking the diagonal part of the matrix
GU.

The theorem of Weierstrass assures the existence of a matrixU that attain
the in mum of the expression (I. 24) asU varies in Orth(n), it states in fact that
the real valued continuous function of the matrix U, e, assumes a minimum
and a maximum value on the compact subset Orth(n) of M ,. Thus, the above
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optimisation problem equivalently expressed in terms of squared distance
becomes

d(G,D,)°= min kGU Dgk? 1.2
( n) U20rth(n) & ( 7)

Taking the properties of the above inner product for granted, one can expand
the cost function for the optimisation problem (I. 27) as follows

KGU Dgk?®= (U Dg) -(GU Dg) =

(1.28)
= GU-GU 2GU:-Dgy+ Dgy'Dey
Next, being the matrix U orthogonal, it is easy to check that
GU-GU=G:-G (1.29)

that is to say the norm of coupling matrix G = GU does not depend on
transformation matrix U. Once again taking into account the orthogonality of
the projection, it is possible to write

(GU Dga)Day=0 (1.30)
Therefore, introducing the Eqgs. (1. 29) and (1.30) into Eq. (I.28), it turns out that
kGU Dgyk’®= G-G Dg,-Day (1.31)

It is clear from the Eq. (l.31) that, for any xed matrix G, the optimisation
problem (1. 27) is equivalent to the problem

max kDgyk? (1.32)
U20rth(n)

It is appropriate to pause at this point and re ect on the last results. It
turns out that any matrix G is associated with the transfer of power through
the piezoelectric elements between the mechanical degrees of freedom,h;(t),
and the electric degrees of freedom, c(t), employed to control vibrations.
The relation (I.29) shows that this power depend only on the matrix G and
therefore the piezoelectric placement. The role of the transformation matrix
U is thus not to increase the whole transferred power but to improve the way
of exchanging energy between the two linked systems. In fact, the two equiv-
alent optimisation problems (1. 32) and (I.27) have the purpose to increase the
sum of squared on-diagonal entries of the coupling matrix G, i.e.to increase

200of 143



I.2. An Independent Modal -Space Shunt Damping Technique

the exchanged power between one mechanical mode and the corresponding
electric degree of freedom that will be used to control the same mode, and
simultaneously to decrease the sum of squared off-diagonal entries of G, i.e.
to decrease the exchanged power between a mechanical mode and the not
corresponding electric degrees of freedom.

It remains to prove that if and only if G has the rows mutually perpen-
dicular, there exists a matrix U that makes G exactly diagonal. First, suppose
that G has the rows mutually perpendicular. Then taking the matrix U with
unit columns aligned with the rows of G, it is easy to see the diagonality of
G = GU. Now, suppose that G is diagonal. Thus, it follows that the rows of
G are mutually perpendicular. Finally, since the matrix U is orthogonal, also
the rows of G are mutually perpendicular, indeed G' = UGT.

Solving the optimisation problem (I. 32), a matrix U that depends on a
given Gis obtained. Therefore, a further optimisation step can be performed
varying G consistent with the constraints, to obtain an electro-mechanical
coupling matrix G as close as possible diagonal. These two proposed step of
optimisation, on U and G, are discussed in the following sections.

[.2.1 Linear Transformation for Independent Control

The optimisation problem (I. 32) can be solved by using the method of
Lagrange multipliers. To this end, let J(U) the objective function

J(U) = Dg -Day (1.33)
subject to the orthogonal constraint
uut 1=0 (1.34)
where | is the identity matrix and O the zero matrix both of size n. Now,
de ne the Lagrangian, L, as

L(U,S)= Dgy-Day (UUT 1D):S (1.35)

where Sis a symmetric matrix of undetermined multipliers. Setting the par-
tial derivatives of L with respect to U and S equal to zero, it is possible to
write the system of equations

<sSU= G'Dg,

] (1.36)
uuT 1=0
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which solved yields the stationary values for the objective function (I. 33). In
detail, the Lagrange multiplier matrix S can be expressed as

S= G DgUT" (1.37)
Since the matrix S must be symmetric
S= G'DgyyU' = UDgG= S (1.38)
the rst equation of the (I. 36) becomes
(GU)"Day = DauGU (1.39)

Finally, taking only the signi cant equations of the (I. 39) and (l.34), the equa-
tion set that solved the problem (. 32) consists of the following equations

8
34 GG GG UpyUp=0 8i<]

fo’“ (1.40)
2 a UirUjr = d; 8i

r

that is a system of n? quadratic equations in n? unknown variables, Ujj. There
is a geometric interpretation of this system. Each equation is a quadric in
n2-dimensional space and hence, the solution set is the intersection of these
quadrics.

On the other hand, multiplying S by ST, or changing the order ST by S, it is
found a matrix symmetric and positive de nite  S? and thus S can be inter-
preted as the square root of this matrix, that is in a more compact form

1 1
S= GDgyyDwG ® or S=U DgyGGDg “UT (141

in which the orthogonal properties of the matrix U are used. Substituting the
expressions (141) into the rst equation of the (I. 36) an implicit formula for
U in terms of G can be expressed as follows

1
U= G'DgyDwG ‘G Dgy (1.42)

or equivalently

1
2

U= G'Dgy DayGGDay (1.43)
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These two matrix expressions are very interesting because can be interpreted
as the polar decomposition theorem but with a diagonal weighting matrix
Dgy which is not constant. Therefore, in view of a numerical solution the
starting guess can be advantageously initialised to the orthogonal factor of
G' in accordance with the polar decomposition theorem.

It is undeniable that this rst step of optimisation allows to obtain a ma-
trix G that is the best approximation of a diagonal matrix for a given matrix
G. Based on the above considerations, to improve the performance it is ap-
propriate a further step of optimisation for the matrix G.

1.2.2 Piezoelectric Placement for Independent Control

An additional optimisation problem can be performed varying  Gthrough
a placement modi cation of the piezoelectric transducers. This general pur-
pose can be accomplished by acting in two different directions. On the one
hand, we can improve the performance by a proper placement of the piezo-
electric elements increasing the transfer of power through the piezoelectric
elements, and on the other hand achieving a reasonable approximation for
uncoupling of the Egs. (I. 20). In particular, the former target is to enhance the
norm of the matrix G. The latter target is to diminish the error in the approxi-
mation of G with a diagonal matrix, see Eq. (. 25). It should be noted that such
error vanishes as the rows of Gtend to be mutually perpendicular, in this case
indeed the matrix G is absolutely diagonal. To this end, consider the matrix
GG can be uniquely decomposed into the sum of two matrices, its diagonal
part, Dgg and its non-diagonal part, Ngg?>. In fact, the diagonal entries of
Dgg are the squared lengths of the rows of G and each of them represents
the whole power transferred related to the corresponding mechanical degree
of freedom. Recall that the row indexes of G are associated with mechanical
degrees of freedom and the column indexes with the piezoelectric transduc-
ers. Furthermore, the entries below or above the main diagonal of Ngg are
all the dot products between any two different rows of G and vanish only if
they are perpendicular. Hence, a natural objective function can be introduced

3The matrix Ngg is symmetric and belongs to the orthogonal complement D? of D in
M n, that is the set of all matrices that are orthogonal to every matrix in D.
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Chapter I. Vibration Control Using Piezoelectric Transducers

as
mMG) = kDggk bkNggk (1.44)

where b is a proper positive real weight. Now, in accordance with the above,
the additional optimisation problem is to nd the matrix G that maximises
the objective function (I. 44), that is

rgzasx m(G) (1.45)

in which S is the set of all possible G. Thus, the goal here isto nd a matrix G
whose rows approach to be of maximum length and mutually perpendicular.
On the whole, these two proposed step of optimisation on U and Greduce the
error e decreasing the unnecessary control effort and simultaneously enhance
the transfer power.

Disturbing Output
force f(t) 4 _ 2\ h(t),h(t)
—_ > Mechanical L
Structure
Electric to g J Mechanical
mechanical to electric
coupling coupling
Gy Ve ~ G'h
S Piezoelectric le—
> Transducers
\ J
Control Actual
currents voltages

0] y ()
—

Figure 1.1: Block diagram of the electro-mechanical system.

.3 Two-Equation Systems Uncoupled

As indicated before, the idea of control is to impose certain currents on
the piezoelectric transducers bonded on the considered structure, with a law
that depends on the actual terminal voltages of the same transducers, so as to
cause the system to exhibit satisfactory reduction of vibrations. The collocated
feedback control system of Fig. I.1 can be regarded as representing such a sys-
tem. In particular, equations (l. 15) can be used to draw this block diagram.
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[.3. Two-Equation Systems Uncoupled

The reference inpuis absent because it represents the desired output,i.e.no vi-
bration. In Section 1.2.1, a change of the electric variable has been introduced
to obtain a set of n single mode piezoelectric shunting systems uncoupled.
Hence, the equations (1.20) can be used in place of the equations (1.15). Now,
recalling that G is quasi-diagonal and therefore neglecting its off-diagonal

entries, it is possible to set Gy = g; dy and, thus, the equations (1.20) can be

written in the scalar form

8
< RO+ wihi(t)  wigic(t) = fi(1)

. j=12..n (.46
¢(t) + wjgihi(t) = z(t)

In feedback control, it is suitable to assume the control action z; = u;- does
not depend explicitly on t but on the electric degrees of freedom given by ¢
and its derivatives. It is of great signi cance the case in which z; depends on
c; and its rst derivative alone, or in detail

Zj= Zj(Cj,Cj), j= 1,2,...n (|.47)

It should be noted that Egs. (I.47) do not restrict the functions z; to being lin-
ear in the generalised coordinates c; and c¢; and indeed this dependence can
be linear or not. The reduced systems (1.46) with two degrees of freedom and
the control laws (l. 47) represent closed-loop equationis contrast, Egs. (1.46), in
which the generalised action z; depends explicitly on the time t and not on
the generalised electric coordinates c; and/or cj, are referred to as open-loop
eguations The open-loop equations represent a set of n uncoupled systems
of two coupled equations. If the feedback control actions z; are de ned as in
(1.47), then their effect is not to recouple the reduced systems. Hence, even the
closed-loop equations are a set ofn uncoupled systems. As a consequence, the
design of the control laws (1. 47) can be carried out with methods based on two
degrees of freedom electro-mechanical systems. Before addressing this sub-
ject, it will prove convenient to calculate also the state equations equivalent to
the (1.46). To this aim, the identities h;(t)  h;(t) are adjoined to Egs. (1.46), so
that, introducing the j-th state vector w;(t) = [ h;(t), h(t), c;(t)]", Egs. (146)
assume the following aspect

Wj(t) = Ljo(t)+ ajfj(t)+ ijj(t), j=12,...n (1.48
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where
2 3 2 3 2 3
0 1 0 0 0
Lj:§ WJZ 0 wjgé,ajzglé,bjzgoé, ji=12,...n (.49
0 Wj g 0 0 1

are coef cient matrices. In feedback control, it is customary to consider even
the relationship between the state vector, wj(t), and the considered output,
vj(t), de ned as

vi(t) = ¢fwj(t), j=12...n (1.50)

in which assuming each variable c; as system output
¢ =[001, j=12...n (1.51)

At this point, it is worthy to recall the relation between the output  v; and
the actual electric output y , or in detail

Vj(t) = Cj(t) = Uy (t), j=1.2,...n (1.52

where u; is the j-th unit length column of the transformation matrix  U.

I.4 Controllability and Observability

In order to consider the controllability of the n systems (148) in need to

control, let us examine the controllability matrices
2 3
h i 0 O W;j g
G = bjiLjbj:L?b; =§o W g 0 é j=12,...n (.53
1 0 (wj gj)?

Equations (1.53) permit to state that the n reduced systems (1.48) are control-
lable if and only if each and every controllability matrix G is of full rank
3; this is clearly the case because the matrix G is invertible and, thus, each
element g; is different from zero.
Next, let us consider the concept of observability introducing for the gener-
alised voltage c; the observability matrices

2 3 2 3
¢ 0 0 1
O; = gchL,é = § 0 wj g 0 Z j=12...n (1.54)
oLt wig 0 (w; g)?
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I.5. Vibration Control witha  Single Piezoelectric Transducer

The n reduced systems (148) are observable if and only if each and every
observability matrix O;j is of full rank 3. Thus, each system (148) is clearly
observable.

1.5 Vibration Control with a Single Piezoelectric Transducer

Let us return to the problem design of the control law (I. 47). Each of the
systems (146) has the same form of the a single mechanical degree of free-
dom system with a single piezoelectric transducer having a unit inherent
capacitance. The problem of vibration control of these systems has been un-
der investigation for many years. The traditional approaches can be classify
in two way: one a passive approach in which the piezoelectric element are
integrated with an external shunt circuit, and the other an active approach
based on measured feedback signal and control actions. It is important to
note that shunting the piezoelectric in a passive way does not preclude the
use of shunted piezoelectric materials as active actuators allowing hybrid so-
lutions. This Section is dedicated to the available techniques for systems in
study adjusting classical results to the considered con guration.

.6 Generalised Passive Approach

The key idea of passive control is to shunt a piezoelectric transducer with
an electrical impedance, or admittance. The last is more adequate for the
planned beforehand purpose because, recalling the spirit of virtual passive
approach, it is assumed to supply currents and to measure voltages. As the
base structure vibrates, a voltage appears across the electrodes of the pie-
zoelectric transducer, which causes the ow of electric current through the
admittance. For a strictly passive admittance, it involves a loss of vibration
energy. Hence, the electric admittance can be interpreted as a means of ex-
tracting mechanical energy from the host structure thanks to the piezoelectric
transducer. The passive shunt circuit realised with a resistor and an inductor
connected in series or in parallel were rstly proposed in [Hagood and Flo-
tow, 1991 and in [Wu, 1994, respectively. It has been shown that with proper
design of these components, one can obtain an electrical damper.
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1.6.1 Parallel Con guration

In the case of a shunt circuit with a resistor, r;, and an inductor, “;, con-
nected in parallel, the control action (I. 47) is given by

1 1 .
z= —ci() <ci(),  j=12...n (159
j J

Wi g h|# .G C' i Fi

Figure 1.2: Equivalent circuit for a virtual passive shunt circuit in parallel
con guration.

Introducing the notation

1 1 Vi
S=v? Z=2vjz and bj= (1.56)
i T Wi
the closed-loop equations are written as follows
8
< ﬁj(t) + Wj2 hj(t) wjgjC j(t) = fj(t)

¢ () + 2v;zic;(t)+ vZc;(t) + wigihi(t) = 0 (57
In the second equation of (1.57), it can be recognised the electric subsystem
constituted by the parallel of rj, *; and a unit capacitance, whose eigenfre-
quency is v j, and loss factor is z;.

Laplace transforming (I. 57) and letting the initial condition be equal to
zero, it possible computing the mechanical mobility, de ned as the ratio be-
tween the transformed mode velocity, L[hj], and the transformed disturbing
modal force, L[f;], where the symbol L denotes the Laplace transform. Hence,
the closed-loop transfer function from modal disturbing force f; to mode ve-
locity h; is

s(s+ 2bjwjzjs+ bZw?)

st+ 2bjwjz; S+ w1+ b2+ gf)?+ 2byjwlzis+ bPw]
(1.58)

Mj(S;bj,Zj):

28 of 143



I.6. Generalised Passive Approach

where the complex variable s de nes the Laplace domain whilst b; and z;
are the tuning parameters. To deal with the problem of control efforts and
saturating actuators, it is opportune to introduce: the transfer function from
modal disturbing force f; to control action zj, de ned as the ratio between
their Laplace transforms, that is

w; g;s(2bjw; zjs+ b?w?)

st+ 2bjwjzj P+ wi(l+ bf + gf)s?+ 2bjwiz s+ bfw}

SZj(S) =

(1.59)

Herein two optimization way are showed. The former is based on the min-
imisation of the maximum value of the magnitude of the mobility. The latter
minimises the decay time of free oscillations by the proper assignment of the
closed-loop poles.

Optimal Control in the Frequency Domain: the Fixed Points Theory

The xed points method was developed by Den Hartog in [Hartog, 1954
for mechanical vibration absorbers. The theory can be used to determine the
optimal resonance circular frequency, v j, and damping ratio, z;j, of the electric
subsystem, that reduces, without any increase, the modal velocity amplitudes
of the mechanical structure in the neighbourhood of its natural frequency,
w;j. The underlying principle of the theory is that for a certain xed value
of v in the mobility (I. 58), of the composite system, primary structure and
shunt circuit, there exist two points that are common to all curves of the
mobility, regardless of the damping value in the shunt circuit. The locations
of the invariant points depend only on the inductance tuning, i.e.b; tuning.
Thus, it is possible to determine the optimum values of b; and z; one by
one. It is important to remark that, in general, such two xed points exist for
continuous structures with well separated natural frequencies; here, this is
clearly the case thanks to the transformation U above speci ed. In order to
calculate the locations of the xed points, setting s = ip, the magnitudes of
the mobility (I. 58), are equated for two comfortable different values of z;

b?w?p p?

4 w2(1+ b2+ g?) p2+ b2w? - 2
p WJ(l b] gl)p b] WJ z]—:O WJ p Zj! Y

(1.60)

solving the (1. 60) for the frequency p, the two xed points are given by
r

1 Y
PeT) = SWi (2+ 2b1.2+ gjz) (2+ 2b1.2+ gj?)2 16bj2 (1.62)
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where the subscript B is related to the minus and T to the plus. To calcu-

late the optimal ratio b, letting z; approach in nity, the magnitudes of the

mobility (I. 58) at these two xed points are equated
ij _ ij

sz ij2 sz ij2

(1.62)

Hence, the optimal ratio b; is

by = 1 (1.63)

Under the optimal ratio bj, the aforementioned two xed points are situated

at r
_ 1 2 - 2

Peri= 5w (4+g) g (8+g (1.64)

Finally, the optimal damping can be computed by taking the derivative of the
magnitude of the mobility with respect to the frequency p and equating such
derivative at the xed points to zero so that the magnitude of the mobility has
the minimum possible value for its peak amplitudes. The optimal damping is
p_
opt_ 6

z;" = v o] (1.65)
Obtained performances is characterised by small peak amplitudes; in partic-
ular, these peak amplitudes are the mobility magnitudes at xed points, or

J sz ijZ Wj2 ijz

(1.66)

An important index to evaluate the performance of this method is linked to
the relative distance between the xed points. Indeed, as this distance in-
creases, peak amplitudes decrease. In this case such index is

ij2 ijz 1

q___
— = >0 (8+¢) (1.67)
wi 2 J

Pole Allocation

The closed-loop pole locations have a direct impact on time response char-
acteristics such as transient oscillations. In pole allocation method, these poles
are selected in advance following the criterion of maximising all closed-loop
pole distances from the imaginary axis, remaining on the left part of the

300f 143



I.6. Generalised Passive Approach

complex plane. This means to obtain on the one hand a large gain margin
which guarantees asymptotic stability, on the other hand the largest decaying
of free oscillations. Now, the optimal tuning parameters, b; and z;, allowing
to reach the design speci cations for making the closed-loop poles equal in
pairs, as they are complex conjugates. A more extensive discussion is pre-
sented in [Hagood and Flotow, 1991]. Hence, denoting the closed-loop poles
associated with the j-th system by

Sj12~ g+ ibj, Sizga™ & by (1.68)

the related characteristic polynomial is

(s s)%(s s,)°=

= 4+ (6g+ 200 Ag(df+ ) s+(+ )7 (1.69

Next, equating (I.69) to the denominator of the mobility (I. 58) i.e. the char-
acteristic polynomial in s of the system (1.57), the optimal tuning parameters
can be found

t t
b}’p =1, zjOp = gj (1.70)

and the optimal real and imaginary part of the closed-loop poles are

1 1 4
&= Twg, b= lw (4 @) (1.7

whilst the optimal damping factor, equal for the four poles, is

VP = o =9 (.72)

On the Stability

At this point, it is possible to assemble the generalised control vector z
z= Rc Lc (1.73)

de ning the diagonal matrices Ry, = (1/rp)dy and L pe = (1/ )b Thus,
the actual control law, , assumes the form

= Ngry N .y (1.74)
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Figure 1.3: The root locus diagram shows the trajectories of the closed-
loop poles of the feedback system, with g; equal to 0.25, as z; varies
over a continuous range of values, unchanging the optimal value of b;.
The frequency are normalised with respect to w;

utilising de nitions (I. 17) and (I.21) and setting
Ng= URUT N_=uUL UT (1.75)

where Nr and N are control gain matrices. Becauser,, and ", are strictly pos-
itive and the matrix U is orthogonal, it follows that the gain matrices Ng and
N are symmetricand positive de nite These twon n matrices can represent
the inductive and the resistive part of a resistive-inductive network shunts to
the piezoelectric terminals. The column vectors uy's of the matrix U can be
interpreted as their common eigenvectors, and (1/ry)'s and (1/ "1)'s are the
corresponding eigenvalues. Besides, to assure their realization with purely
passive components, the control gain matrices should ful | other conditions
as well as being symmetric and positive de nite. A suf cient further condi-
tion is the property to be diagonally dominant matrices, see e.g.[Weinberg,
1967. In the preceding discussion, this additional condition has not been con-
sidered, therefore, obtained gain matrices can require active components for
their actualization.

Now, inserting the control law (I. 74) in the governing equations (l. 16), it
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I.6. Generalised Passive Approach

can be written

N 0O

h+ W2h Gy = f
) . (1.76)
y +Ngry + Ny +G'h=0
Next, multiplying on the left the rst equation of the (I. 76) by h" and the
second equation by y T and rearranging, one obtains

8

3 % %hTh+ %hTWZh = h'Gy
5d 1. (1.77)

I

<

Z
Py
<
<

9}

>

1 5
at éy y+§y Npy

On the left hand side of the rst equation it is possible identify the kinetic
energy expressed in terms of modal velocities and the potential energy ex-
pressed in terms of modal displacements; on the left hand side of the second
equation it is possible to recognise the electric energy stored in the piezo-
electric inherent capacitances and the electric energy associated to the “in-
ductive” gain matrix, N_. Last terms on the right hand side represent the
power through the piezoelectric elements toward the mechanical subsystem
in the rst equation, and toward the electric subsystem in the second equa-
tion. Hence, the balance of power through the piezoelectric elements yields

h&y y'Gh=0 (1.78)
Next, exploiting the (I. 78), Eqgs. (1.77) can be rearranged as follows

% %hTh+ %hTW2h+ %y Ty + %yTNLy = y 'NRry (1.79)

The expression inside the parentheses on the left hand side of Egs. (179)
can be identi ed as the total energy of the system, including the effect of
the “inductive” matrix, N_. The objective of the feedback control is to drive
the total energy to zero. Being the “resistive” matrix N g positive de nite, the
right hand side of Egs. (I. 79) is sure negative, except wheny vanishes. Thus,
the energy is being dissipated at all times until the whole structure is driven
to rest. Hence, in this case the electro-mechanical structure is guaranteed to
be asymptotically stable. Moreover, anyway being the gain matrices Ngr and
N positive de niteeven an unconditional stability is assured.
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Figure 1.4: Mobilities for a virtual passive shunt circuit realised with a
resistor and an inductor connected in parallel and with a generalised
coupling coef cient, g;j, equal to 0.25.

[.6.2 Series Con guration

Another possible kind of shunt circuit is constituted by a resistor, r;, and
an inductor, j, connected in series, as displayed in Fig. 15. It can be shown

to have the governing equation
I'J' 1 .
Zj(t)+ ij(t) = jCj(t), j=12,...n (1.80)
i i

consequently, the control action has the form

I

Zt i
Le 1 V% mdh  j=12..n (1.81)

Z; =
| 0]

Let us denote
I Vi

v 2 < =2vjz; and b= — (.82

1—
L . w
J J J

Before continuing, it is convenient to introduce the natural frequency of the
primary, mechanical structure under open circuit condition as

q —
Wj = Wi (1+ 912 (|83)
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Figure 1.5: Equivalent circuit for a virtual passive shunt circuit in series
con guration.

This expression is computed by imposing z; equal to zero in (1. 46).
In this case, the closed-loop transfer functions of interest are given by

s(s*+ 2bjwjzjs+ bZw?)

Mi(s b, z:) = _
i(S05.2) = 2bjwjzj S+ wA(1+ b2+ g?)+ 2bjwjW2 s+ b2 w?
(1.84)
b2w3g;s
Sy(9) = v (1.85)

st+ 2bjwjzj*+ wX(L+ b?+ gf)s2 + 2by WPz s+ b?w
Optimal Control in the Frequency Domain: the Fixed Points Theory

Going along the same procedure for the parallel connection again, the
magnitudes of the mobility (I. 84), are equated for two comfortable different

values of z;
bfwfp  p®
4 W2(1+J bJZ+ 2) p2+ b2wh = sz 2 (1.86)
PeW PGP L, PPy
to obtain the locations of the xed points
Vv
1 d i 3
pory = Jwit 202+ 21+ @) € [202+ 201+ @) 1607 1+
(1.87)

Next, letting z; approach in nity and equating the magnitudes of the mobil-
ity (I. 84) at these two xed points
ij _ ij

sz ijZ VVJ-Z ij2

(1.88)
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the optimal ratio b; is found to be

2

(1.89
J 2+ gjz
and the two optimal xed points are placed at
N h q i
1 ﬁ (2+2¢%) (4+39%) ¢ 8+59 .
PeT = SWi 2+ (1.90)

On the contrary of the parallel connection, nevertheless, under the opti-
mal ratio bj, imposing that the magnitude of the mobility (I. 84) has horizontal
tangents at two xed points, leads one to obtain two different values of the
optimal damping factor z;. This means that only one peak amplitude equates
the value of mobility magnitude at one xed point, whilst in the neighbour-
hood of the other xed point the other peak amplitude is a little greater.
Recalling it, the peak amplitudes of mobility (I. 84) are about the mobility
magnitudes at xed points, or

Ps; PT;
mMoPt= = ) (1.92)
’ sz ijZ sz ijz
and the before introduced performance index is

|

2 2 2°
PTi  Psj 1+ g 4 ——0rk

‘ L= 5 G (8+50) (1.92)

w? 2+ ¢f

Pole Allocation

The optimisation criterion used in the case of parallel connection is still
valid for the present case as the mobility (I. 84) has the same form of the (1.58).
Hence, equating the characteristic polynomial (I. 69) with the denominator of
the new mobility (I. 84), the optimal tuning parameters are

biP'=1+ ¢, "= P - (1.93)
(1+ g

and the optimal real and imaginary part of the closed-loop poles can be writ-
ten as

[EEN

q
t_ 1. t_ "
a]_Op = SWg, bj0p = LW (4 ng) (1.94)
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At the same time, the optimal damping factor, equal for the four poles, is

pt _ g _ 9
\/ja = % =5 (1.95
J

On the Stability

In this case, the generalised control vector z satis es the differential equa-
tion
Lz+Rz= ¢ (1.96)

de ning the diagonal matrices L = "ty and Ry = rpdh. The actual con-
trol law, , fulls

N +Nr =y (1.97)

utilising de nitions (I. 17) and (I.21) and setting
N_=UL U" Ng=URUT (1.98)

where Nr and N are control gain matrices. Because ', and ry, are strictly
positive and the matrix U is orthogonal, the gain matrices Ng and N are
symmetricand positive de nite Similar considerations can be made even in
this case for the network interpretation.

To examine the stability of the system, it is not adequate to work with
the governing equations (I. 16) that describe the system in terms of ux link-
age but the equivalent governing equations in terms of electric charge are
more easy. In these equations, each piezoelectric transducer is, according to
Thevenin's theorem, electrically equivalent to a strain dependent voltage gen-
erator in series with a capacitance. Under these considerations, the governing
eguations are 8

<H+Wh Lqg=f
(1.99)
' q LTh=y
where, denoting each natural frequency of undamped oscillation under open
circuit condition with  W; the matrix W is de ned as W, = W; dj, and L is the
n n piezoelectric coupling matrix, q(t) =[Qu1,...Qp,...Qn]" is the charge
vector and h is the n-dimensional vector of generalised coordinates describing
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the response of mechanical normal modes under open circuit condition, while
the n-dimensional vector f, represents the corresponding mode forces. Now,

considering the relation, g = , and inserting the control law (I. 97) in the
governing equations (1. 99), it can be written

8

< A+ W2R Lqg=f

(1.100
N g+ Nrg+q LTRA=0

Next, multiplying on the left the rst equation of the (I. 100) by A" and the
second equation by q" and rearranging, one obtains

8
3 9 Lerey Lanvien = h'L q

dt 2 2 (1101
2d 1 1 '
g 39'Niatsa’a = q'Neg+q'LTR

Last terms on the right hand side represent the power through the piezo-
electric elements toward the mechanical subsystem in the rst equation, and
toward the electric subsystem in the second equation. Hence, from the bal-
ance of power through the piezoelectric elements, one obtains

AlLg+q'LTh=0 (1.102

using the (1.102), Egs. (1101) can be rearranged as follows

d 1. 1onzpe 1+ 1+ T
[ + = + = + = = .
gt an N SAWR+ SaNLg+ Sa'q d'Nrq (1.103

Even in this case, the expression inside the parentheses on the left hand side
of Eqgs. (1.103) can be identi ed as the total energy of the system, including
the effect of the positive de nite “inductive” matrix, N . Being the “resistive”
matrix N g positive de nite, the right hand side of Egs. (I. 103 is sure negative,
except when g vanishes. Thus, the whole structure dissipates energy contin-
uously. In view of above discussion, it is clear that the electro-mechanical
structure is asymptotically stable.

1.6.3 Comparisons

The effect of introduced shunt circuits is compared using two different
judgement tools. On one hand the ratio between the maximum mobility mag-
nitudes of the series and parallel connection, for the xed points method; on
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Figure 1.6: Mobilities for a virtual passive shunt circuit realised with a
resistor and an inductor connected in series and with a generalised cou-
pling coef cient, g;, equal to 0.25.
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Figure 1.7: Comparison between Sensitivity functions, S, for the xed
points method with g; equal to 0.25.
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15

Parallel
— — - Series

magnitude dB

-25 :
0.5 1 2
normalised frequency p/wj

Figure 1.8: Comparison between Sensitivity functions, S, for the pole
allocation method with g; equal to 0.25.

the other hand the real part of the closed-loop poles, for the pole allocation
method.

The ratio between the optimal mobility peak amplitudes of the series and
of the parallel connection depends only on the generalised electro-mechanical
coupling coef cient g;. The plot of such ratio versus g; is shown in Fig. I.9.
Clearly, the series connection provides a greater reduction in the mobility
peak amplitude than the parallel one. Therefore, the performance of the series
connection is better than the other connection, even though the difference is
little.

Similar conclusions can be found comparing the aforementioned index

associated to the relative distance between the xed points, actuality
|
5!

1+ gi

. 2 . 2
2+ g (8+59) > 59 (8+ ¢?) (1.104

Series Parallel
The real part of the closed-loop poles promotes again the series connection

1. 1
> W;j g . > > w;j g (1.105
Series Parallel

But, even in this case, the difference has a slight evidence.
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Figure 1.9: Ratio between the optimal mobility peak amplitudes of the
series and of the parallel connection, for the xed points method.

In any case, it is impossible to change parameters so as to produce im-
provement in all performance indexes. Changes in parameters improving the
performance as measured by one criterion degrade the performance as mea-
sured by another criterion. The gures I. 4 and |.6 show that the mobilities
obtained with the pole allocation method, in both cases, series and parallel
connection, have peak amplitudes larger than those obtained with the xed
points method. Same result, but with roles reversed, occurs if the minimum
decay time is compared for two methods. On contrary, as regards the con-
trol effort, there are not differences of great signi cance, see Figs. |.7 and |.8.
Hence, there are limits to the performance improvement that can be achieved
by modifying parameters for the given con guration. In order to improve
further performances, it is advisable to redesign the control system.

I.7 Generalised Hybrid Approach

It is well known, in general, that the increase of the electro-mechanical
coupling coef cient improves performances of the passive damping. The rea-
son of it is clear, a larger electro-mechanical coupling allows a greater con-
version between vibration and electrical energy that is stored and dissipated
in the shunt circuit. Besides, a larger coupling coef cient implies a greater
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distance between two xed points, therefore, a larger vibration suppression
can be achieved on a broader range of frequencies. Hence, it would be desir-
able to examine the possibility of enhancing the electro-mechanical coupling
coef cient. As stated previously by several authors [Bondoux, 1996 Tang and
Wang, 2001 Behrens et al.,2003, a compensation of the piezoelectric capac-
itive reactance in a piezoelectric shunt can increase the electro-mechanical
coupling coef cient. The key idea, here, is to reduce as closely as possible the
electric response of the piezoelectric transducer by means of a compensating
current to obtain a greater weigh for the response related to the mechanical
dynamic. This compensation is clearly active, therefore, adding it to passive
shunt circuits before mentioned, a hybrid control is accomplished.

Let us return, now, to the reduced generalised systems (1.46) of second
order. Denoting the ratio of the compensating action by k; with fj= 1,2,...ng
and adding the further feedback control generalised current, 2,—, it can be

written
8

< hj(t) + WJ2 hj(t) wjgc j(t) = fj(t)
ffj(t) + Wj gj hj(t) = kjéj(t) + Zj(t)

(1.106)

in which the unit coef cient of ¢ ; on the left hand side of the second equa-
tion plays the role of a generalised piezoelectric capacitance. To evaluate the
effect of a total or partial compensation of generalised piezoelectric capaci-
tance, it is important to compute the change of the coupling coef cient as Kk
varies. To this end, it is possible to express, in general, the generalised electro-
mechanical coupling g; as function of natural frequencies of the mechanical
structure under short and open circuit conditions. From Eq.(l. 83), this func-

tion can be de ned as
~2 2
Wi W

2
Wi

<

g = (1.107)
Next, setting Z; equal to zero in the second equation of the (I.106) to calculate
the natural frequency of the mechanical structure under open circuit condi-
tion with the compensation, integrating respect to t and solving for c ;, one
obtains

Wi gj

0= gy N0 (108
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Substituting in the rst equation of the (I. 106), it can write
n #
2

2 1+

ﬁj(t) + W

9
——— hi(t) = fi(t) (1.209
(1 k) ' :

Thus, the natural frequency of the mechanical structure under open circuit
condition in presence of compensating action is

k m gz #

Wh2=w? 1+ — .11

In the end, observing that the natural frequency of the mechanical structure
under short circuit condition remains the same, the apparent coupling coef -
cient is v

U~k
P2 wi g

2
Wi

(1.111)

i =

Hence, with k; over the interval (0, 1), the apparent coupling coef cient is
more than when the compensation there is not. It should be remarked that
if k; is less than zero the coupling §; is still de ned but smaller than before;
however, in this case instead to compensate the capacitive reactance, a further
generalised capacitance is added. On the other hand, k; must not be greater
than one because the compensation makes the system unstable. In addition,
it is worthy of consideration that the further control action Z; does not need
to be a passive law.

Remarki.2. The capacitance compensation can be interpreted, roughly speak-
ing, as a “negative” capacitance that is added in parallel to the generalised
piezoelectric element. In [Tang and Wang, 2001] analogous considerations are
made with a “negative” capacitance connects in series, but with the differ-
ence that the “negative” capacitance increases the overall capacitance of the
shunt circuit. On contrary of the parallel connection, the compensation action
can not be totally because of a stability issue. Thus the apparent coupling
coef cient has an upper bound. In view of these considerations, then, it is
preferable to add “negative” capacitances in parallel, since the limitations for
the growth of the apparent coupling coef cient are less restrictive.
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I.7.1 A Passive Shunt Circuit with Compensating Action

To test the effectiveness of the compensation of the generalised piezo-
electric capacitance, it is used together with a shunt circuit constituted by a
resistor, rj, and an inductor, ‘j, connected in parallel. Similar discussion can
be made for the series connection.

Figure 1.10: Equivalent circuit for a virtual hybrid shunt circuit with com-
pensating action.

The further control action, therefore, is given by
5 1 1
Z = ch(t) jCj(t) (1.112
i i

Replacing the control law (I. 112) and the de nition (I. 111) in (I.106), one ob-
tains the closed-loop equations

2 Hj+Wj2hj ngj 1 ijj_

N 11 Jcp— (.113
; (1 kj)Cj+ erj"‘ 7Cj+ngj 1 kjhj 0

|
—h

In this case, it is better to work with the auxiliary variable, u;, de ned as

Uj = 1 kj Cj (|.114)

and substitutigg in (1. 113, it is possible to write
< hj(t) + WJ2 hj(t) Wi Qj Uj(t) = fj(t) (| 113

Cj (D) + 2vzu(t) + v () + wy §hi(t) = 0

where
5 _ 1 1

RN GRS Y 2vizj = N k) (.116
Comparing the equations (1. 115 with the (I. 57), it is clear that the application
of the xed points theory or pole allocation method yields similar results
but with a coupling coef cient greater. The gure I. 11 shows the mechanical
mobility with different values of  k;.

Vv
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On the Stability

Following the approach of section I. 6.1, the generalised control vector z
can be shown to have the form

z=K ¢ Rc Lec (1.127)

in which the matrices K , R and L are dened by Kp = Kpth Rpk =
(1/rp)dwand L nx = (1/ "p) dhi Thus, the actual control law, , can be speci ed
as

=Ncy NRry N Ly (1.118

where the control gain matrices, using de nitions (I. 17) and (1.21), are
Nc= UK UT Ng= URUT N =UL UT (1.119

Becauseky, ry, and ", are strictly positive and U is orthogonal, the gain matri-
ces are allsymmetricand positive de nite
Next, the power balance of the whole system whit the capacitance compen-

sation can be written as follows

& 2 ZhTWehs 2y TN Gy + 5y TNy =y INey (1120
The expression inside the parentheses on the left hand side of Egs. (1120
can be recognised as the total energy of the system, including the effect of
the compensating matrix, Nc and of the “inductive” matrix, N_. Hence, in
the case of compensating action, considering | as the identity matrix of order
n, the matrix (I N ¢) must be positive de nite to assure the asymptotic
stability as well as matrices N_ and Ng. Recalling the de nition of Ng, it is
possible to write

(I N¢g)=u(@ K)UT (1.121)

From which, it is clear that all diagonal elements of K must be less than one
to have the matrix (I N ¢) positive de nite, i.e. all its eigenvalues strictly
positive and so to ensure the stability of the whole system.

.8 Generalised Active Control

In Section 1.3, the state equations (148) for generalised reduced systems
have been introduced as

Wj(t) = Ljo(t)+ ajfj(t)+ ijj(t), j=1.2,...n (1.122
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Figure 1.11: Mobilities for a virtual hybrid shunt circuit with different
compensating actions and g; equal to 0.25for k; null.

Figure 1.12: Sensitivity functions, S with different compensating actions
and g; equal to 0.25for k; null.
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where wj(t) = [ hj(t), hj(t), c;(t)]T is the state vector. The system is subject
to the mechanical disturbance, f;(t), and is driven by the control generalised
current, zj(t). Now, let us consider the case in which the control action de-
pends on the state wj. Therefore, denoting the 3-dimensional feedback gain
vector with d;, the state-feedback law is of type

z(t) = d] wy(t) (1.123

Introducing Eqg. (I. 123 into (I1.122), it is possible to write for state feedback
control

Wj(t) = Lj bjdjr Wj(t)+ 8 fj(t) (|124)

From these equations it follows that the closed-loop poles depend on the
control gain vector djT whose entries are indicated by [dp, dy, dc;]. The closed-
loop poles, in fact, are the eigenvalues of (L ; bjdjT). On the other hand, they
also are poles of the closed-loop mobility from modal disturbing force f; to
modal velocity h;, or

S(S+ de)
2 2+ W o 2 g2 2 P
S+ do; &+ (Wf + Wy gjdn + WP g)s+ wide, + wj g dy

Mj(s) = (.125

and of the closed-loop transfer function from modal disturbing force fj to
control action z;, or

S(dn s+ dn, W gde))
S+ d; 2+ (Wl + wjgjdn + WP gf)s+ wide; + wj g dn

S;(s) = (1.126)
One of the most important objects of the control is to ensure the asymp-
totic stability, i.e.that the closed-loop poles lie in the left half of the complex
plane. Applying the RouthtHurwitz criterion on the characteristic equatioof
the closed-loop system (1.124), the asymptotic stability is guaranteed by the
conditions 8
5 de; > 0
h de; + Wjgjde;, dn >0 (1.227)
) szdcj + W g dhj >0
Two of the most widely used methods for calculating control gains are
optimal control and pole allocation. These methods are discussed in the fol-
lowing sections.
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[.8.1 Optimal Control in the Time Domain
The optimal control problem can be de ned as follows:

Determine an admissible control z(t) causing the system to
go to rest, as close as possible, in accordance with an admissible

trajectory in the state space that minimises the cost function
Z,,
Az)= h wj(t),z(1),t dt (1.128)
t

0
in which h is a given function, tg is the initial time and t; is the
nal time. An optimal control can not exist, and if it exists there is
no guarantee that it is unique. However, it is possible to de ne a
variety of cost functions for a given system by choosing different
function hin order to obtain a suited result.

The Linear Regulator Problem

The linear regulator problem is an optimal control in which the control ac-
tion is a linear function of the state. So, the state-feedback law is of type (1.123)

and minimises the quadratic cost function

1Zoh i
J(Zj): é : WJT(t)Hjo(t)+ Zj(t) g Zj(t) dt (|.129)

subject to the system dynamics (1.122). The weight matrix H; is real sym-
metric positive semi-de nite and g is a strictly positive scalar. The optimal
control problem characterised by the (1. 129 can be interpreted as the prob-
lem of driven the initial state as close as possible to zero and at the same time

inserting a penalty on the control effort. A suited choice for H; is

2 3
w?2

00
P = § 0 1 og (1.130
0 01

It should be noted that the rst term of the integrand in the quadratic cost

function (1. 129 represents, with the assumption (I. 130), the total generalised
energy of the reduced system, as a matter of fact

1 — 1 212 1 2 2
éij(t)Hj wi(t) = SW, h? + éhj t 3¢ (1.131)

=
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The optimal feedback control gain vector has the form
T— o 1T

where Kjisa3 3symmetric matrix that solves the Riccati equationBeing each
system (1.122) controllable and L , bj, Hj and g constant, the Riccati equation
has a solution that approaches a constant value as the nal time increases. In
this case the Riccati equation becomes

T 1,T —
L Kj + KjL Kjbjej bj Kj + Hj =0 (1.133

which is an algebraic equation, also called steady-state matrix Riccati equation

[.8.2 Pole Allocation with State Feedback Control

In pole allocation method, the closed-loop poles are chosen in advance
and the gains, [dhj O, dcj], are computed so as to produce these poles. In the
addressed case the characteristic polynomial is of third order, thus, it admits
of a real root and a pair of complex conjugate roots. Therefore, denoting the
closed-loop eigenvalues associated with the j-th system (1.124) by

Si1p= & ibj, Sj3 = Cj (1.139
the related characteristic polynomial is
(s s)(s s,)(s s3)=
= (2a+qg)S+(a&+ b+ 2a¢q)s ¢(a+h) (.13H

Next, equating (I. 135) to the denominator of the mobility (I. 125), i.e.the char-
acteristic polynomial of the system (1. 124), the control gains can be calculated.
To this end, it is worth assuming

g = bj Wi VJ (|.136)
&+ b’ = biw? (1137
G= aqw; (1.138

where aj, b; and Vj are strictly positive. These assumptions emphasise the
natural frequency of conjugate complex poles, b; w;, and their damping factor
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Vj. The real part of all poles are imposed to be strictly negative to guarantee
asymptotic stability. Finally, the control gains are

w2 h i
dn, = Ej aj(b> 1) 2bV (.139
j
dn, = g—’ bZ+ 2a;b;V;  (1+ ¢f) (1.140
)
dcj = ij WV, + aj w; (.14

In the way indicated, by tuning of the parameters bj, a; and V,, it is pos-
sible, on the basis of several criteria, to obtain a different performance of the
control system. For instance, a good choice for b; is 1 because it is not neces-
sary to alter the open-loop frequency w;.

Figure 1.13: Mobilities for active control and with  g; equal to 0.25. In pole
allocation method, parameters bj, a; and V; are xed equal to one.

1.8.3 State Estimation

In this section, the feedback controls discussed until now are based on the
assumption that the full state vector, w;(t), is available for measurement. But
under normal conditions, it is not practical to measure the full state vector.
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Figure 1.14: Sensitivity functions, S, for active control and with  g; equal
to 0.25and bj, a; and V; equalt to one in pole allocation method.

In order to provide more exibility and advantage, an estimated state is used
instead of the actual state. This estimate is obtained by means of a state esti-
mator, also known as observerA state estimate, W J-(t), can be provided by the
observer with equations

h [

Wj(t) = Ljo(t)+ ijj(t)+ Kj cj C}er(t) (1.142

where the 3-dimensional vector k; is the observer gainThe observer (1.142
uses the known input, z;(t), and the measurementc;(t) = u;-y (t) to gener-
ate the state estimatew’(t). A block diagram of the observer is depicted in
Figure 1.15. The use of an observer is possible thanks to theseparation princi-
ple It implies that the observer eigenvalues can be chosen independently of
the closed-loop poles of the system (1.124).

A deterministic approach allows to assign the observer poles. The ob-
server obtained in this way is usually known as a Luenberger observdn order
to compute a Luenberger observer, the characteristic polynomial associated
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Figure 1.15: Block diagram of the observer estimate.
with the matrix (L kjch) of the observer can be written in the form
det[sl Lj+ ijjT]z
= Ss+ k3j 82 + ( WJ2 + WJ2 gj2 Wi g kzj)S+ ng g klj + sz k3j (|.143)

where ki, kp; and ks; are the components of the observer gain vector k;.
Because the observer (1142 is a 3-dimensional system, it is suited setting the
observer poles in this parametric way

= i 2 —
Sio= MWsp Imw; 1S5 s = 0 mw; (1.144)

in which m, n; and s; are designing parameters real and positive. Hence,
imposing that the (l. 144) are roots of the polynomial (I. 143 and solving for
klj, kzj and kgj, one obtains

h i
1
kej = 5 n(nf 1) 2ms; (1.145
)
W, h i
k2j = g— (l+ gJZ ﬁf 2[T] nj Sj (|.146)
)
ksj = 2mw;js; + mw; (1.147)

[.9 Control and Observer Spillover

It is well known that a combination of control and observation spillover
due to the uncontrolled modes in a distributed parameter systems controlled
by a nite number of actuators and sensors can be cause of instability. In order
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to consider the effect of the control actions on the uncontrolled modes, refer-
ring to them as residual, they are denoted by the subscript R differently from

the controlled modes denoted by the subscript C. By separating the residual
modes from the controlled modes, the equations for the electro-mechanical
system has the matrix form

8
3 he+ Wehe &y = f¢
he+ Wahy, Gy = fg (1.148
y +(¥hc+éghR:

Next, it is possible to examine how the transformation U that solves the prob-
lem (I.32) affects the spillover. To this end, introducing U, the equations (1.148
can be rearranged as

hc+ Wah. GUc = f. (1.14%)
he+ Wahy GUc = fg (1.14%)
¢+ UG h.+ UGl h, = z (1.14%)

It is clear from (I. 14%) that there is control spillover in the residual modes
due to the matrix product GgU. The residual modes, usually at high frequen-
cies, are more dif cult to excite and therefore they generally can be ignored.
In the (I.14%) the term UTQ{ hg is responsible for the observation spillover
which clearly causes same performance degradation. In any case, observation
spillover can be greatly reduced by a proper design of control laws. Indeed,
if the control law affects only the frequency range in the neighbourhood of
the natural frequencies of controlled modes, as in the generalised passive
approach thanks to the tuning procedure, the spillover due to the residual
modes can be neglected. In the case of active control with state observer, this
last can be used as a lter in order to exclude the contribution of the resid-
ual modes. It is for this reason that the Luenberger observer has been used
instead of the more usual Kalman Iter. Moreover, distributed sensors, like
piezoelectric patches, have a natural cutoff wavelength due to their nite sur-
face, therefore, there is a nite and limited number of modes that are actually
measured. Besides, any structure has a small amount of mechanical damp-
ing that increases the stability margin to be often suf cient to overcome the
observation spillover.
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cHAPTER ||

Physical System Models

Everything should be made as simple as pos-
sible, but not simpler.

Albert Einstein (1879-1959
German physicist

review is presented here of the physical systems that are pertinent to

material in later chapters. In this chapter it is explained and discussed
the model of a full clamped rectangular thin plate. In order to provide the
necessary elements to develop the proposed subject, rst the model of thin
plate is introduced and soon afterward piezoelectric transducers employed
for control purposes are taken in consideration with the involving electro-
mechanical coupling with the plate.

II.1 First Order Theory of Thin Plates

I1.1.1 Introduction

This section is dedicated to provide the governing equation of a thin plate
with small de ections [Timoshenko and Woinowsky-Krieger, = 1959. A very
satisfactory approximate theory of plate bending can be developed by ne-
glecting the shear energwith respect to the bending energy

Let the no-strain con guration be the reference one for a rectangular plate
with boundary conditions completely clamped, see gure ll. 1. All introduced
vector valued functions or tensors, unless otherwise noted, are de ned into
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II.1. First Order Theory of Thin Plates

Figure 11.1: Reference con guration and reference frame.

domain P =[0,L;4] [0,Lo] [ h/2, h/2] and into C?(P ) that is the class
of continuous functions in P together with their derivatives up to order 2.
It is worth identifying between two sub-problems which are uncoupled each
other, when the deformation motion of a plate is examined: one the in-plane
problem and the other the out-of-plane problem. The former is regarded as a
stretching problem; the latter is regarded as a bending problem. Herein, the
bending problem will be dealt for its importance with regard to vibrations.

In order to write the plate equation, it is assumed all points constituting the
plate con guration have a perpendicular motion with respect to the plane
X1X2. This displacement is called w(xy, X2,t), considering it as the restriction
of the total displacement eld to the middle surface. The dependence by the
variable xz, that is to say the coordinate representing the distance with sign
between a certain point of the plate and the middle surface, is neglected
because one can assume the de ectionw reasonable constant along xs, in
the theory takes in account. Let the displacement w be much smaller than the
uniform thickness, h, and let us assume that points of the plate lying initially
on a normal-to-the-middle plane of the plate remain on the normal-to-the-
middle surface of the plate after bending. In addition, it is assumed negligible
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the rotational inertia. This is justi able, as to neglect the shear energy, only
at opportune low frequencies. That is to say an upper limit exists for the
range of interesting frequencies beyond that it is necessary to introduce into
model corrective contributions for both phenomena here neglected. These
assumptions are characteristic of the Kirchhoff modelAs for the external loads,
they are assumed uniformly distribute.

It is reasonable admit the following components of stress tensor, T, are

zero because of the plane-stress hypothesis for the external face$
8

< -
T3 = 0 8 X1,X2,X32 P
. 33 1, X2 37 (.1)
" Ti3= Tz= 0 8 X1,X2 2 A and x3 = h/2
where A =(0,L;) (0O,Ly).
Taking in account these assumptions, by easy geometric argumentations,

one nds
u(xg, X2,X3,t) = X3 Tw
X1
(1.2
V(Xq, X2, X3,t) = X w
1, A2, A3, 3 ﬂxz

where u and v are the displacement coordinates along x; and x, axes, respec-
tively. Made hypotheses for components of the small strain tensor, S, which

is symmetric, lead to

S ﬂiu = X ﬂ
T * e
v _ TPw
7 TXZ = X3 TXS
1 v u T°w
Sz 3 xq * e e (1.3)
s, w _ . D 2w 2w
e 1 n e 1@
1 9w fu
] P — + — = 0
RGP A
1 qw v
] P P — = 0
Sz3 2 fixo ¥ X3

where n is the Poisson ratio. The component Sz3 has been calculated utilising

the Hook's laws L
+n n
S; = ~ T v Tiid; (11.4)

1See the observation at pagel17 of the appendix A. 1.
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where Y indicates the Young's modulus and d; is the Kronecker symbol. The
repeated indexes, according to Einstein's convention, imply the sum.

Remarkil. 1. It could seem contradictory to consider the dependence of Sg3 by
x3 differently from w, recalling that this strain component is de ned as the
derivative of such displacement relative to xs. This apparent discrepancy can
be removed keeping in mind that the Sg3 series expansion has a zero constant
term and thus, it is not at all allowed to neglect the linear term, although it is
very small, with respect to zero. It is worth noting, on the other hand, that Sg3
is of the same order of magnitude as the S;; and S;». If one assumes it zero,
besides, a plane-strain hypothesis is made having yet considered a plane-
stress hypothesis. The two assumptions coexist if and only if the Poisson
ratio is zero.

[1.1.2 Hamiltonian Formulation

Analytical Considerations

After removed all doubts on the hypotheses and on the restrictions of the
used model to describe the plate by means of the strong formulation 2, the
governing equation of the plate will be derived by the Hamiltonian formula-
tion in view to add the piezoelectric transducers, that introduce discontinu-
ities in the stiffness and in the inertial term for which it is hard to consider a
law that describes appropriately the loads applied by them.

It is worth, however, before to go ahead recalling brie y some overture
elements. Assuming a motion M, known as true path then, synchronous varied
paths X, are all ctitious motions belong to the set of possible motions, F,
having a small variation with respectto M and coinciding with it at the limits
of an arbitrary, but given, range of time | = [to,t1]. In other words for any
generic instant t 2 | the assuming con guration of the system during the
true path is extremely close to that one of varied paths having introduced in
F an adapted metric. This small variation can be arbitrarily chosen, provided

2See appendix Al
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it is compatible with the constraints. De ning on F the functional S

z
S(X) = (K P+wW)dt (11.5)

to
where K represents the kinetic energy, P the elastic strain energy, and W the
work done by the not conservative external forces, one is able to state the
Hamilton's principle in the following form

dS = 0 (11.6)

It is signi cant to remark that the integral S calculated between the initial
instant, tp, and the nal one, t;, assumes a certain value for all the possible
motions, true or varied. The equation (ll. 6) expresses the circumstance that
the variation in path dS, passing from a generic true path to any synchronous
varied path between the same initial and nal con gurations, is zero, that is

to say X is a stationary point in F of the functional S if and only if coincide
with M.

Mechanical Energy of the Plate

In order to apply the Hamilton's principle, it is necessary the computation
of the mechanical energy for the system taken in account. The kinetic energy

of the plate occupying the domain P is given by
zZ
1 w 2
K—E Arhﬁ dA (I.7)

where r is the mass density and dA is the element of measure in A R2.
The elastic strain potential is

F = %Ti,- S; (1.8)
Using the (11. 4), it can be written in this fashion
- y h 2 2 2i
F= AT M) Si” t 0SSt Sp°+ 2(1 n) S (1.9)

considering the (Il. 3) and integrating along x3 from h/2 to h/2, one obtains
the two-dimensional elastic potential
Eh ﬂZW 2+ @ 2 ﬂZW ﬂZW ﬂZW zi

L +2n+——> ——+2(1 n
2 12 1x3 2 fx3 (tn Tx291x1

j = (11.10)
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where B is the exural modulus. Finally, the integration on the open set A of

j Yields the strain energy of the plate
Y4

P = i dA (I1.11)
A

Remarkll.2. Note that into (Il. 8) the components of stress tensorTi3 and To3
are different from zero as said in the remark A. 1 at page 117. In order to
obtain the (ll. 9), however, the terms corresponding to such components have
been neglected because, in spite of the fact that they are different from zero,
representing the effect of the shear energy, they are smaller than terms cor-
responding to the bending energy, provided that the frequency range taken
into account has not an upper limit too high.

The work of external forces, p, acting on A is given by

27
W = pw dA (.12
A

Calculating variations of these terms and introducing them into (Il. 6), the
equation of the plate is obtained with the boundary conditions 3. Summaris-
ing, the governing equation of the plate has the form

2
Br w(xy, Xo,t) + rhm(xl,xz,t) = p(xy,%X2,t) 8xy,%x2A  (11.13

1.2 Piezoelectric Transducers

[1.2.1 General Notices

The word transducer in this circumstance, is used with the meaning of a
device that can transfer energy between one system and another. In case that
such a ow of energy is turned towards the system to control and the purpose
is to make work on this, the transducer behaves as actuator; on contrary, if the
energy moves in opposite direction and the purpose is to bring information,
then it has a behaviour of a sensor.

3See the appendix A2.
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Piezoelectric materials can be used both as actuators and as sensors be-
cause of reversibility of the piezoelectric effect. Thanks to the direct effect a
piezoelectric patch is a sensor of strain, in a similar manner of a strain gauge,
or of a strain rate; for the converse effect it is able to impose local deforma-
tion by the application of suitable voltage or charge, that is to say it is an
actuator. Moreover, the piezoelectric element can be utilised even at the same
time in both the way, making it particularly attractive for many applications.
Here, piezoelectric transducers placed on the host plate in an antisymmetric
arrangement are employed as showed in gure Il. 2, in order to measure and
to induce only bending deformation. This arrangement is to avoid measuring
and exciting the in-plane motion, in order to reduce the observer or control
spillover.

Figure 11.2: Piezoelectric transducers in bending con guration.

Hypotheses made with regard to these transducers for the nature of pie-
zoelectric material involve two different points of view: the mechanical and
the electrical one. The mechanical assumptions are similar to these made for
the thin plate and they are summarised by the following hypotheses:

a) the piezoelectric patches are perfectly bonded on the upper and lower
surfaces of plate with an antisymmetric arrangement;

b) the “bres” of the piezoelectric items that are orthogonal to the middle
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surface of the plate in the no-strain reference con guration, keep remain-
ing orthogonal also in any other con guration, i.e.even for them are ne-
glected the shear deformations;

c) the thickness of piezoelectric transducers, hp, is assumed much less large
than the one of plate, h;

d) itis adopted a plane-stress hypothesis;

e) it is neglected rotational inertia.

As regards electrical assumptions, the full electromagnetic equations are
not needed under ordinary conditions. The quasi-electrostatic approximation
is adequate because the phase velocities of vibration waves are approximately
ve orders of magnitude less than the velocities of electromagnetic waves.
Under these circumstances, magnetic effects can be shown to be negligible
compared to electrical effects. The electric eld vector, E, is considered con-
stant along the x3 axis and only its Cartesian component on such axis, Eg, is
supposed signi cant on basis of geometric considerations.

Constitutive relations of the piezoelectric continuous poled in the thick-
ness direction according to the linear theory of piezoelectricity [ANSI/IEEE
Std 1761987 can be expressed, in agreement with summation convention, in
this way

Sj = Sy T + Oy Er (.14

s and d are the compliance tensor with constant electric eld and the piezo-
electric tensor, respectively. The (11.14) must be completed with the equation
concerning the electric displacement, D

where e is the dielectric tensor with constant stress.

In order to write the elastic and piezoelectric tensors in the compressed
matrix form, a different notation is introduced in place of the tensor one. This
matrix notation, referred to as Voigt, consists of replacing a couple of indexes
by one according to Table Il.1. It should be remarked that when the Voigt
notation is used, the transformation properties of the tensors become unclear.
Hence, the tensor indexes must be employed when coordinate transforma-
tions have to be made.
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Table II.1: Index correspondences between tensor and Voigt notation.

tensor notation Voigt notation

11

22

33
23o0r 32
3lor 13
120r 21

o O~ WODN B

Therefore, the constitutive relationships (II. 14) and (II. 15) in the new notation

can be simpli ed as

Sp

SpqTa + dipEr (1. 16a)

Di

Using this notation, thanks to the symmetry of tensors due to the transverse
isotropy of piezoelectric material #, the second order tensors of stress,T, and of
small strain, S, become 6-dimensional column arrays, the fourth order tensor
of compliance s a square matrix 6 6, and the three order piezoelectric tensor
a matrix 3 6. Besides, these matrices are not full, and can be typi ed in the

following way

2311 S, S35 0 0 0
Si» Sy S35 0 0 0
313 Sy3 S;3 0 0 0 (11.17)
0 0 sy O 0
0 0 0 s 0
0 0 0 0 (s 312)
0 0 ds
i=§0 0 0 du O oé (1.19

d3; O3 d3z O

4The piezoelectric material undergone the poling process, as this usually used, indeed, is

orthotropic.
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2 3
e, 0 O
e= § 0 €, 0 Z (||19)
0 0 ey

In order to derive a two dimensional theory from the three dimensional
one described above, the signi cant equations of the (. 16a), expressing the
components of s and recalling that Tz = 0 for the plane-stress hypothesis®, it

can be written 8 1
% S = Y—(Tl in2)+ d31E3
P
S2 = (T2 npTy)+ daoBs (11.20)
P
g _ (1+ np)
TS = TTG

where Y is the in-plane Young's modulus at constant electric eld and np
equal to s,/ s, is the Poisson ratio of piezoelectric material; dz; supposed
identical to dsp is the piezoelectric strain constant with electric eld along x3
axis and strain along x; or X, axes in the order given. Resolving the equa-
tions (l1. 20) for the variables T;, one nds

8

% T1 Kmm(Sy + npSZ) KmeEs

3 T Kmm(S2+ npS1)  KmeEs (I.21)
" Te = Knm(1 np)Se

The material constants Kymm and Kpe into (Il. 21) are given by

Y,
Kmm: 17pz
Mo (1.22)
Ko = dgg P
me — 311 np

The only signi cant component of the electric displacement, D, it yields
D3 = d31T1+ d32T2+ e33E3 (||.23)
using the (ll. 21) the equation (II. 23) can be rewritten as

D3 = KneS1+ $) + KeeEs (1.24)

51t should be noted that the same considerations made on T, and Ts for the plate, are still

valid.
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where v

p
1.2

T (11.25)

For more details the reader is referred to [Mitchell and Reddy, 1995 Alessan-

droni et al., 2004 Gopinathan et al., 2000 Fernandes and Pouget,2003.

Kee = 633 2 d312

[1.2.2 Equations of Plate with Transducers

The Hamilton's principle, used to obtain governing equations of plates
with the piezoelectric transducers in bending con guration, can be expressed
in the form z,,

d (K P+Lp+W)dt=0 (11.26)

to
The kinetic energy of the plate, K, and the strain energy, P, have been com-

puted above in section Il.1.2. The modi ed Lagrangian function, L, is de-
ned as the difference between the kinetic energy of piezoelectric patches,
Kp, and their electric enthalpy, H. The kinetic energy of a piezoelectric pair is
zZ qw 2

Kp = . rphp [ } dA (1.27)
where dA is the element of measure on open set,A = (0,L;) (O,Ly), the
constant r, is the mass density of the piezoelectric material and w has the
same meaning of above,i.e.the transverse displacement of the middle surface
of the plate. The function } (x1,x») de ned by

} =[Hu(xe x15) Hal(xa  xge)l[Ha(x2  X25)  Ha(xz2  Xa)]

being H1(x1) and Hx(x2) the Heaviside or unitary step functions, selects the
area,Ap = (X1j,X1f) (X2j,Xz,¢), occupied by the pair of the patches.

The density of electric enthalpy, returning to the tensor notation and tak-
ing the Einstein's convention in account, was de ned by Maugin in  1985as
follows

H (Sj,E) = %Tij Sij %DiEi (1.28)
Next, neglecting the shear energy compared to the bending energy and sub-
stituting into (ll. 28) constitutive relations (Il. 21) and (ll.24), the density of

electric enthalpy becomes

h i
1
H =§Kmm Si” + 2Mp S S + S0+ 2(1 mp) S +
) (11.29)
Kme(811+ S22) E3 éKeeEs2
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On the basis of a geometric analysis about transducers, the signi cant com-
ponents of the small strain tensor can be made explicit only inside of the area
delineated by the patches

°w B °w B Pw
e BT Mgg ST XN

S;p= (11.30)

recollecting that the electric eld vector, E, is conservative, it is possible to
describe it in terms of its potential, V (X1, X2,X3), obtaining €E = r V. Be-
sides, the voltage imposed at the electrodes of transducers is speci ed by
V = (Vix=hy+hz2 Vix=nz) and, in agreement with made hypotheses,
the only signi cant component of the electric eld is

\Y,

Es= —
3 hp

where the plus sign corresponds to the upper patch and the minus sign to
the lower one. Carrying out the due substitutions in the (Il. 29), it has

h q 2 20 €12 2 i
1 ffw 2 fw 2 Tew T°w w2,
H ==K — + — +t2ny——5+2(1 n x5+
2 (’"”‘ X2 %3 P X3 X3 )( N v
“w  T°w V 1. V2
+ Kme —mt 4o — X3 Kees
me ﬂxf ﬂX% hp 3 2 eehp2 }

(1.32)
Finally, integrating H on | w, = [ h/2 hp, h2][ [h/2, h/2 + hp] with
respect to the variable x3, the electric enthalpy can be written as

H(w,V) = 24 K hgew 2 2w 2 2w TPw
’ U % %3 P x2 X3
fw 2 h2h, hh hY
+ + + + ,
A1 ) oo . L+ L (1.32)
w 2w V2
+ T2+ 17 (h+ —

The last term of the (II. 26), dW, represents the sum of the virtual external
mechanical work, dWy, and the virtual external electrical work, dW. The

former is 77
dW, = pdw dA (11.33)
A
whilst the latter is 77
dW, = 29" dV } dA (11.34)
A
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where q is the density of the free electrical charge per unit of surface on the
electrodes of each patch. It should be noted that g is not the polarisation
charge showing on the opposite faces in the thickness direction of the piezo-
electric material. The superscripts “+” indicates the external electrodes of the
piezoelectric elements connected in parallel.

Elaborating the (Il. 26), the two governing equations for the plate equipped
with a double wafer transducer in bending con guration is given by

8 2w
2 Br ‘w+ rﬁW = p+ Kme(h+ hp) Vr 2}
(11.35)
3 _ Tw . TPw
2 2q" = 2CeV + Kme(h+ hp) —ﬂxi + —ﬂxg

The rst equation is de ned in A, whilst the second is de ned only on the
area covered by the pair of patches, in A, and both equations are valid for all
tin Rg . The constants appearing in the (l.35) are the capacitance per unit of
surface at null strain, Cee= Ked hp. The total bending stiffness B is the sum
of the plate bending stiffness B and the term due to the piezoelectric material
Kmm ﬁzhp + hh+ 3h3 }, similarly the total mass per unit of surface i is
the sum of r h and 2r hp} . In addition to the boundary conditions already
seen for the fully clamped plate (A. 13), the further conditions are to be taken

into account for the transducers

hes 3w | x=
I°w T°w " Xa= Xyt
2KomDH2 — +(2 np)— =0 11.36a
mm 2 ﬂxi ( p) ﬂxlﬂX% Xe= Xy, ( )
h 3 3 | =
T°w Tw ' X=Xzt
2KonymDH1, —= +(2 ny)— =0 11.36b
m:h ! 'ITX§ ( p) _ﬂXZﬂX%_XZZXZ,i ( )
2 Fxi=xg ¢! xo=x
Mpn(L 1) W TR (11.36c)

TX1TMX2 xa=x1; xo=xg;
Herein the notation [f(xl)]iif = f(xy¢) f(xy;) has been used. As forDH;
and DHy, they are [Hi(X1  X1;) Ha(xs xg¢)] and [Ha(xz  x2i)  Ha(xz
X2.1)], respectively. The rst two boundary conditions indicate a generalised
force along the x3 axis that is zero on all the perimeter of each transducer;
whilst the last correspond to a twisting moment null on the corners.

The rst equation of the (Il. 35) evidences the effect of piezoelectric trans-
ducers, i.e.an increase of the mass and of the bending stiffness placed on the
area covered by them, A ,, as well as a bending moment acting on the perime-
ter of the same area A, and proportional to the voltage, V, imposed to the

66 of 143



I.2. Piezoelectric Transducers

pair of patches connected in parallel. The second equation of the (11.35) repre-
sents the Coulomb's theorem at a dielectric-conductor interface, gsree= D -1,
where fi is the outward unit normal to the conductor surface. The free charge
per unit of surface on each external electrode is given by

q" = Dajx=nyttvz = Daixe= h, n2 (1.37)
thus, summing the second and the third term of the (Il. 37) the result is exactly
the second equation of the (l1.35), neglecting hy, with respect to h/2.

Remarkll. 3. The electric displacement vector D satis es the Maxwell's equa-
tion for an insulator, assuming zero the components D, and D»

@:0

T (11.38)

By the analysis of the constitutive relation (Il. 24), being the electric eld con-
stant, it is clear that the Maxwell's equation (Il. 38) can not be satis ed owing
to the linear dependence of the small strain tensor on x3. The equation (I1.38)
is valid if the electric potential, V, has a quadratic dependence onxs. Hence,
it should be written

V = ag(xq,X2) + a1(Xq, X2) X3+ a(Xq, X2) X3 (11.39)

where the relevant coef cients, a; and ap, can be estimated by the satisfaction
of the (II. 38) imposing the boundary condition given by the voltage, V. Thus,

it has
1 Kme TPwW  TPw

2 Kee T2 %3

a2 =
(I1.40)

a = a(h+ hp)

v
hp
The double sign in this last equation is correlated to the antisymmetric con-
guration of the patches. That upper is referred to the transducer on top and
that lower to the transducer on bottom. Moreover, in the usually applications

the coef cient a is negligible and thus V is considered linear in X3, like above.

Finally, it is possible to represent the dynamic of the plate with several

67 of 143



Chapter Il. Physical System Models

transducers attached with an appropriate pattern for the control of vibrations
8 n,

~ . df
% Br 4w+ m'ljﬂt = p+ & Kme(h+ hp)r 2}r d
r=1
Z
df ﬂzw TPw
EQr = crdf+ N Kme(h+ hp) 112 [T dA;, r=12...n,

(11.41)
in which electric equations are integrated on the area occupied by each pie-
zoelectric pair, np is the number of piezoelectric transducers bonded on the
plate, Q; is the induced charge on the r-th pair of patches and f , is the asso-
ciated ux linkage. Besides, C; = 2C.A is the overall inherent capacitance of
the r-th piezoelectric pair. The total bending stiffness and the total mass per

unit of surface are respectively
!

|§=5+ng hzhp+hh2+§h3 } (11.42)
o mm 2 o] 3 p r .
Np
Mm=rh+23 rphp}, (11.43)

r=1

II.3 Modal Analysis

Making the substitution (I. 5), equations (11.41) can be rewritten as follows

8
% Br w+m£_ p+a457|<me n+ hy) 2}rdyr
3

ft2 ) C

o = W, Knefhthy) fw  fow
' d A " C 'nx2 (%

(11.44)

dA;, r=12...np

In order to consider the eigenvalue problem (I. 9), assuming the boundary
conditions of fully clamped edges for the transverse displacement, w, and the
short circuit condition for normalised voltage, Yy, it is possible to write

= 0 alongx; = f0,L19

Tw _
X1
11TT = 0 along x, = f0,L»Q (11.49)
=1,.
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Let us assume that the eigenfunctions W(x4, x2) de ned by the relation (I. 8)
are orthogonal and normalised to unit modal mass, thus they satisfy the re-

lations
Z n, Z
rhWW, dA + 23 r o hpWiW; dA, = d; (11.46a)
ZA r=1 Ar
. Br “[wWi]w; dA +
2 W, ) 3! ) o (I1. 46D)
+ 21 N Kmm  —— + hhg + 3 T [WiIW, dA, = w?d;

Substituting the expression (l. 8) into the (llI. 44), the mode model of the smart

plate can be obtained 8
<h+W?h Gy = f
) L. (1.47)
y + G h=
where
0 z " z 0! 1
= Kme(h+ hp) @ Xgri w, X(lrz aw; i
= ﬁéf — dxo+ dx;, A .48
& Ce Xg,i) X1 0 ? X(lrl) ixz o ! ( )

1,

are entries of the electro-mechanical coupling matrix G and considering the
unit-frequency normalised coupling matrix G

_lg
G =G (I1.49)

whilst .
fi = p(Xl,Xz,t)Wi dA i=1,...n, (11.50)
A

are generalised forces per unit of surface.

II.4 Finite Element Model

Once xed the position of the piezoelectric elements, accurate estimate of
the natural frequencies and corresponding plate mode shapes, including ef-
fects of the piezoelectric transducers under short circuit condition, is obtained
by a nite element analysis. To this end, the commercial code ANSYS is em-
ployed to perform this analysis. The nite element model, here elaborated, is
based on the choice of brick elements for the discretization of piezoelectric
patches and of quadrilateral shell elements for modelling the plate given that
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they are designed to model ef ciently thin structures. Indeed, A nsys includes
3D solid elements with piezoelectric capabilities, but not piezoelectric plate or
shell elements. More in detail, the overall structure is modelled using elastic
shell elements, shell93 , for the plate and 3D solid elements, solid226 , with
piezoelectric capabilities for the transducers. The shell93 element is an eight
node structural shell element with six degrees of freedom at each node, three
for displacements and three for rotations. The solid226 element has twenty
nodes with four degrees of freedom per node, three for displacements and
one for the electric potential. It is clear that the connection between these
two kind of elements is a crucial problem for modelling overall structure.
The condition of bonding the piezoelectric material on the plate is realised
in Ansys by constraint equations, where node displacements of piezoelectric
element at the interface with the plate are imposed to make null the relative
displacement between the two types of element according to the hypothe-
ses of the Kirchhoff-Love model applied to the plate, as proposed in [Tliba
and Abou-Kandil, 2004. In order to use the Kirchhoff-Love hypotheses, the
element mesh must ensure that each nodal point of the solid element for pie-
zoelectric transducers matches the nodal point of the related shell element at
the interface, see the gure II. 3.

Figure 11.3: A frame detail of a plate modelled as shell elements and a
piezoelectric transducer modelled as solid elements.

The element mesh is suf ciently ne in order to have acceptable accuracy.
To assess accuracy, the mesh is re ned until the results shows little change.
For higher accuracy, the aspect ratio of the elements is assigned as close to
unity as possible. For this reason and to avoid excessively increasing the num-
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ber of elements and the time of computation, piezoelectric transducers are
modelled using solid elements with twenty nodes, speci cally consisting of
one element along the direction of minimum thickness.

The short circuit condition for the piezoelectric elements is modelled by
imposing a null voltage on both electrodes of each patch.
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cHAPTER |1

Numerical Simulations

For everything you have missed, you have
gained something else, and for everything
you gain, you lose something else.

Ralph Waldo Emerson (1803-1882
American Poet

merical case studies are considered in this chapter to determine features

of proposed vibration controls. At rst a numerical analysis is performed
on a thin beam with both ends clamped. To further illustrate characteristics
of these controls a second case is considered involving a rectangular fully
clamped plate. Herein, a most important assumption is to consider for each
mechanical mode in need of control two identical thin slice of piezoelectric
material bonded symmetrically onto either faces of the thin structures and
connected in parallel. They are bonded with inverted polarization directions
in order to produce opposite deformations and to induce pure bending. In
this way each transducer pair is associated to one electric degree of freedom
because of the parallel connection.

lll. 1 Clamped-Clamped Beam Case Study

The clamped-clamped beam is made of aluminium with a rectangular
cross section of height h equal to 29 10 *m and width 2 10 ?m and
having length L equal to 0.45m. Three pairs of piezoelectric elements are
bonded on the beam to implement the proposed technique on three mechan-
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ical modes. The modes of interest are the lowest because they are prominent
in the dynamics of interest. The piezoelectric transducers are assumed to be
of ceramic material with properties given in table Ill. 1. The example results
given below are for piezoelectric patches of width b, equal to 1.8 10 m
and thickness h, equal to 2.67 10 “m. Table IIl.2 displays lengths of the

piezoelectric transducers and their positions de ned as the distance of each

piezoelectric pair from the left end of the beam.

Table IlI. 1. Material characteristics of the piezoelectric transducers.

symbol value unit

Permittivity at constant Stress tas 3800#,

Piezoelectric Strain Constant ds3 650 1012 mv 1
ds1 320 102 mv 1!
Density Mass rpe 7800 kgm 3
Young Modulus Y3 50 10° Pa
Y1 62 10° Pa
Poisson's Ratio npe 031

The derivation of governing equations for the beam with piezoelectric patches
involves more discussion than is worthwhile here [Maurini, 2009. Indeed, a
mode model of the beam with piezoelectric transducers has the same form

presented in chapter |

8
<h+W?h WGy = f

J WO he (1. 1)

In agreement with classical results [Park, 2003 Maurini et al., 2004, the ex-
pression for the entries of the normalised piezoelectric coupling matrix Gare

)
_ Gz Ya(h+ hp)bp W A
Wi v a X1 %0

1i

Gr (11.2)

where the notation [f(xl)]ﬁ:if = f(xy¢) f(xg;) has been used,x&? and
x{") represent respectively the start and end of the r-th pair of transducers,
1.f

W;/ fix1 is the mode rotation function of the beam for the j-th mechanical
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mode under short circuit conditionand w; is the natural frequency associated
with it. These entries are also proportional to the average mode curvature of
the region covered by the piezoelectric patches. The r-th capacitance of the
two-element piezoelectric transducer, according to assumption of section Il. 2,
is
C = 2 #s 2d2Y; a’hbp (111.3)
p
Locations of piezoelectric transducers are important to ensure an accept-
able level of vibration reduction. This can be achieved by placing the two-
element piezoelectric transducers in order to enhance the coupling between
each transducer and the mechanical modes of interest. To this end, the expres-
sion (Il. 2) has been used to compute the piezoelectric coupling G, with the
approximation to use the mode shapes of the Euler-beam without changes

due to the piezoelectric mass and stiffness.

Table 1ll. 2: Speci cations of the piezoelectric transducers.

piezo length a (m) location x(lrl) (m)

1 0.036 Q003
2 0.07 0155
3 0.036 0411

Given any piezoelectric transducer, it is possible to calculate the piezoelectric
coupling with different modes and to display it as a function of the piezoelec-
tric length and the piezoelectric position on the beam. The obtained graphs
for each of the rst three mechanical modes are showed in the left hand
side of the gure Ill. 1. Also the mode rotations and curvatures of these three
modes, i.e.derivatives of mode shapes respectively of orders one and two, are
displayed at right hand side for their signi cance. The analysis performed on
these graphs justi es the chosen locations that are summarised in table Ill. 2.
Indeed two piezoelectric pairs are placed near to the clamps of the beam and
one is located close to, but not exactly, the middle section to sense or excite
even the second mode. The lengths are chosen to obtain coupling coef cients
with comparable values of wavelengths of modes of interest.

In previous sections the assumption that the system possesses negligible
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Figure 111.1: On the left hand side are depicted the plots of piezoelectric
coupling between one piezoelectric transducer and the rst three me-
chanical modes, as the length of piezoelectric element and its position
vary on the beam. On the right hand side are displayed rotations and
curvatures for the rst three modes.

mechanical damping is made. At this point the damping effect is included.
Introducing this effect and recalling the relation (I. 5) to make explicit the
electric ux linkage f , the governing equations for the whole system assume
the form 8
<h+Dh+Wh=Pf +f
) (1. 4)
Cf +@f = P h+T

in which W is the diagonal matrix of natural frequencies under the short-

circuit condition, f = 0; the matrix P de ned as
p_
P=WG C (111.5)

is the piezoelectric couplingnatrix; f is the modal mechanical forcing vector.
The vector h has as elements the modal coordinates. In this case the damping
is assumed of the proportional type. This implies that the matrix D is diagonal
and can be expressed as

Dij = 2x;w;d; (1. e)

where ¥; is the damping ratio of the j-th mode assumed equal to 4 10 3
for all modes and d; is the Kronecker symbol. The second equation is the
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current balance at the electrodes of the piezoelectric elements. The matrix
C is a diagonal positive de nite matrix of piezoelectric capacitances, whose
elements Cydy represent inherent capacitances of piezoelectric patches at
blocked modal de ections, h = 0, the matrix @) is a diagonal positive def-
inite matrix , whose entries are (1/ Ry)dn being Ry, the internal resistances
assumed all equal to 1I0MW: theterm 7T = = C represents the currents ow-
ing through the piezoelectric transducers. With the chosen electromechani-
cal state variables, the conservative piezoelectric coupling appears in a gyro-
scopic form. In the mechanical equation, the term Pf represents the mechan-
ical modal forces due to the piezoelectric voltages. In the electric equation, the
term PT h may be interpreted as a set of current generators in parallel con-
nection with the inherent piezoelectric capacitances whose current intensities

are proportional to the mechanical modal velocities.

Figure Ill.2: Smulink diagram of the studied system.

The system (lll.4) can be modelled in Simulink and the diagram IIl. 2
shows this model. A great care has been devoted to set up the model in or-
der to allow Simulink to execute it faster and more accurately. This numeric
scheme is based on two feedback loops that simulate the interaction between
the host mechanical system and the piezoelectric transducers and between
these and the control device, i.e. an electric admittance. The forcing input to
the mechanical system under short circuit condition is the sum of the me-
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chanical disturbing forces and the piezoelectric coupling actions. The electric
behaviour of each transducer is modelled by the inherent capacitance of the
piezoelectric patch in parallel with the internal resistance. To take account
of the spillover problem the system model is characterised by ve mechan-
ical modes instead of three. The Smulink model permits both to calculate
all frequency response functions, FRF, of interest and to predict the output
time history due to a known input like an impulse. The main objective in this
analysis is to estimate input-output relationships. A dual channel FFT anal-
ysis of the input and output of a system is performed to calculate a function
FRF which describes its dynamic behaviour, assuming the system is linear.
Indeed, this function characterises the system independent of the input sig-
nal. The locations used to excite the beam and to compute its response have
been chosen to avoid the nodes appearing for low frequency bending modes.
In the simulation the beam is exited by an impulse with a frequency spec-
trum covering a frequency range from near zero to fmax that is 1200Hz at
8 10 2m from one end of the beam. To model the impulse, the disturbance
force is a half sine. This force is characterised by its peak value /y, and time
duration t. The peak value is assumed equal to 1 N and the time duration
t is equal to 2.78 10 4s so that 1/t = 1.5 fymax. The time of simulation T
is equal to 10.49 s, thus the frequency analysis has a frequency resolution Df
equal to 0.1 Hz. A xed-step solver is considered because requires less mem-
ory to implement and is faster than the variable-step solver. The simulation
step size equal to the discrete sample time is 1/ 12500s to avoid computation
errors. The output is the velocity at the point x; equal to 0.333m.

[11.1.1 Numerical Results

The unit-frequency normalised coupling matrix G has been computed, ac-
cording to the formula (Ill. 2), using the mode shapes and natural frequencies
of the double clamped beam provided by a nite element model realised with
Ansis. The same assumptions of the plate in section 1.4 are used for the An-
sis model of the beam. The frame of the system is modelled with a uniform
mesh consisting in 153 7 shell elements for the beam,12 7 1 solid elements
for each piezoelectric patch at the beam ends and24 7 1 elements for the
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central piezoelectric patches. Therefore, the matrix Gis

2 3
0111 0133 0.112

G= 3 0.096 0.097 0.09
0.081 0102 0.083

(I1.7)

Solving the equation set (1.40) using the matrix (Ill. 7), it obtains a transforma-

tion matrix 2 3
0.404 Q642 0.65
U=9 0656 0293 069 (11.8)
0638 0709 0.302
that yields the new coupling matrix
2 3
0.202 0.032 0013
G= g 0.040 Q160 00352 (111.9)

0.018 Q037 Q149

Here, the second step of optimisation introduced in section |. 2.2 has not been
performed and the rows of G are not mutually perpendicular. In fact, the
angles J;; between the i-th row and the j-th row of Gare

Jip= 0.619p
Ji3= 0.455p (I11. 10)
Joz = 0369p

For this reason, the entries below and above the main diagonal of G are only
an order of magnitude less than the diagonal entries, so the undesired pie-
zoelectric cross actions decrease but do not vanish. In this case, the proposed
method exploits the fact that in vicinity of a natural frequency, the behaviour

of the beam is dominated by a single mode, as for most mechanical systems.
The piezoelectric shunting controller acts almost independently on the var-
ious modes in part by the effect of the transformation U and in part by a
proper designing that introduces damping in the near of the resonances of
interest without cross actions. Therefore, the controller is designed to affect
only those frequency ranges close to the resonances of mechanical modes in
need of control. Hence, even though it is impractical to make the rows of G
mutually perpendicular, a useful performance can be obtained for a most part
of mechanical systems whose poles are well spaced in frequency domain. On
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the contrary, this last feature is unnecessary if the rows of G can be made
mutually perpendicular.

Figures from IIl. 3to lll. 6 display the transfer mobilities of the uncontrolled
beam with short-circuited piezoelectric elements and the beam with the op-
timal shunts outlined in sections I. 6, .7 and 1.8. It is shown that at the rst,
second and third eigenfrequencies the controlled beam mobility decreases
of about 20 dB for the passive controllers and even 30 dB for active con-
trollers. Figures IIl. 7-111.9 shows the comparison between impulse response
of the controlled and uncontrolled beam. The controlled response decreases
faster than the uncontrolled one. In fact, at 0.15s the controlled response
reduces of about 99% for all cases, instead of the uncontrolled one that de-
creases 0f98% at 1 s.

The active controllers reach better performance than the passive controllers
but with a greater control effort. In other respect, the passive controllers are
unconditionally stable.

Figure 111.3: Mobility of the uncontrolled beam and the comparison with
proposed control for the passive approach in parallel con guration
implemented on the rst three modes.
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Figure 1l1.4: Mobility of the uncontrolled beam and the comparison with
proposed control for the passive approach in series con guration im-
plemented on the rst three modes.

Figure 111.5: Mobility of the uncontrolled beam and the comparison with
proposed control for the hybrid approach with capacitance compen-
sation (CC) of 30% and 60% applied on the rst three modes.
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Figure 111.6: Mobility of the uncontrolled beam and the comparison with
proposed control for the active approach implemented on the rst
three modes.

Figure 111.7: Impulse response of the uncontrolled beam and the com-
parison with proposed control for the passive approach in parallel
con guration.
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Figure lII.8: Impulse response of the uncontrolled beam and the compar-
ison with proposed control for the hybrid approach with capacitance
compensation (CC) of 30% and 60%.

Figure 111.9: Impulse response of the uncontrolled beam and the compar-
ison with proposed control for the active approach.
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lll. 2 Fully Clamped Plate Case Study

The plate investigated in this case study is a rectangular fully clamped alu-
minium plate with multiple piezoelectric transducer pairs in bending con g-
uration according to gure Ill. 10. In order to control ve mechanical modes,
the proposed control uses ve piezoelectric transducer pairs. Let the ve
transducer pairs be identical, consisting of thin rectangular laminae thickness
polarised, piezoelectric ceramic, covered by metal electrodes with negligible
mechanical properties. The model used below is based on that developed
in chapter Il. The domain A =[0,L;] [O,L;] denotes the region occupied
by the plate and Ay = [xg"‘i),x(l',?] [xg?,xg?] is the region occupied by the
k-th transducer pair. Tables Ill. 3 and Ill. 1 report the material and geometric
characteristics of the plate and of the piezoelectric elements.

Figure 111.10: Plate with ve piezoelectric transducer pairs in bending
con guration.

[11.2.1 Piezoelectric Transducer Allocation

This section presents an example that illustrates the optimisation prob-
lem of the transducer allocation on the plate using the procedure outlined
in section 1.2.2 based on the index (1.44), which reduces the error e of a G
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Table IlIl. 3: Geometric and material characteristics of the plate.

symbol  value unit
Length L, 0.297 m
Width Lo 0.210 m
Thickness h 0.001 m
Density mass r 2700 kgm 3
Young modulus Y 69 10° Pa
Poisson's ratio n 0.33

non-diagonal. To set up the problem, one piezoelectric pair out of ve, Aj,
is placed right in the middle of the plate a priori. The other four piezoelec-

tric pairs are located to form a symmetric pattern as shown in gure Ill. 10.
Lengths, a, and widths, b, of the piezoelectric laminae are xed equal and
comparable with wave lengths of the modes of interest. Thus, the edges of
the piezoelectric elements are3.6 10 2m, whilst the thickness h, is equal to
2.67 10 *m. These choices allow to make a parameterisation of the trans-

ducer arrangement by means of two scalar parameters [a;, az] which repre-

@ L2
10 X2,

A,. Holding their symmetry the positions of piezoelectric pairs from A, to

sent the coordinates of left lower corner, [x ], of the piezoelectric pair
A are dependent only on the position of A,. Thus, the goal in this example
is to nd a set of values [a1, 3,] that maximise the index (I. 44), that is

MG) = kDggk %kNng (111.11)

as parameters [a;, a], subject to the constraint to avoid overlap between
transducers, vary in a quarter of the plate. Remind that the matrix Gis related
to the distribution of the piezoelectric transducer pairs, indeed, it can write
G= G(a;, a2).

To solve this two-dimensional problem, it is necessary to calculate the
coupling matrix, G, which requires the computation of the mode shapes and
the natural frequencies of the plate under short circuit condition. The con-
sidered case study has not an eigenvalue problem that leads to closed-form
solutions, owing to boundary conditions as well as mass and stiffness distri-
butions that are non-uniform and non-linear for piezoelectric pairs. Thus, it
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is opportune to seek approximate solutions as for mode shapes and natural
frequencies. For this reason, the entries of G have been computed, according
to the formula (1. 49), using the mode shapes and natural frequencies of the
plate provided by nite element model realised with A nsis. The frame of the
system is modelled with a uniform mesh consisting in 75 53 shell elements
for the plate and 9 9 1 solid elements for each piezoelectric patch. The plate
is constrained at its border where displacements and rotations are zero, and
the piezoelectric electrodes are short-circuited that is their reference potential
is imposed equal to zero.

Figure 1ll.11 Piezoelectric placement objective function n{G) for a quar-
ter of plate.

This optimisation is iterative and requires the computation of the whole -
nite element model at each step, thus it is very expensive. For this reason,
a roughly analysis is previously performed using mode shapes and natural
frequencies of the plate without transducers. This analysis based on the pro-
cedure described in appendix A. 3, permits to make faster the following nite
element analysis using as initial guess for the parameter vector [a;, ay] the
optimal parameter vector obtained in this preceding step, see gure Ill. 11
Thus, the starting guess is initialised to [6.22, 5.50] 10 2 and the optimal
parameter vector obtained with the nite element model is

[31, ] =[6.76, 554 10 ? (.12
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which corresponds to the position of the piezoelectric elements represented in
gure Ill. 10. Note that the nite element analysis yields little different result
from the preliminary one, so it could be safely ignored.

[11.2.2  Numerical Results and Comparisons

The unit-frequency normalised coupling matrix G for the plate is given by

2 3
0.196 Q0849 (00849 Q0849 Q0849

0 0151 0151 0151 Q151
G=§ 0 0149 0149 0149 014 (I1.13)
0212 0121 0121 0121 0.121
0 0198 0198 0198  0.198

the transformation matrix U is

2
0754 O 0 0657 0

0328 05 05 0377 Q5

U=§0328 05 05 0377 05 (.14
0328 05 05 0377 05
0328 05 05 0377 05

and the coupling matrix in the coordinates c(t) becomes

2 3
0.250 0 0 975 104 0
0 0302 O 0 0
G= 0 0 0297 0 0 (.15
784 104 0 0 0323 0
0 0 0 0 0396

In this case the second step of optimisation introduced in section I. 2.2 has
been performed and the rows of G are all mutually perpendicular, although
the angle Ji4 between the rst row and the fourth row of G is a slightly
different, it is in fact 0.498p.

To validate damping performances of the proposed control, a S imulink
model with the same layout used for the beam is employed. In detail, the
plate is excited by an impulse with a frequency spectrum over a frequency
range from near zero to fax that is 2000Hz. The mobility is considered be-
tween the transversal force applied at the point P; shown in gure Ill. 10, and
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the transversal velocity calculated at the same point. The position of the point
Ps is chosen to excite and observe all modes in the frequency range of interest
by avoiding nodal lines as more as possible. The impulse has a peak value Ry
of 1 N and a time duration t of 3.33 10 *ssothat 1/t = 1.5 fyax The time
of simulation T is equal to 10.49 s, thus the frequency resolution Df is 0.1 Hz.
The simulation step size is set equal to 1/ 12500s to avoid computation er-
rors. To take into account the spillover problem the system model consists of
ten mechanical modes instead of ve. Figures from Ill. 12to Ill. 14 display the
point mobilities of the uncontrolled plate with short-circuited piezoelectric el-
ements and the controlled plate with the optimal shunting networks outlined

in sections 1.6, 1.7 and 1.8. It is shown that at the rst ve eigenfrequencies the
controlled plate mobility decreases of about 25 dB for the passive controllers
and even 26 dB for active controllers. The proposed control is equally effec-
tive on all modes acting simultaneously on ve picks. Similar considerations
to the ones presented for the beam can be made about the plate.

Figure 111.12: Mobility of the uncontrolled plate and the comparison with
proposed control for the passive approach in parallel con guration
implemented on the rst ve modes.
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Figure 111.13: Mobility of the uncontrolled plate and the comparison with
proposed control for the hybrid approach with capacitance compen-
sation (CC) of 30% and 60% applied on the rst ve modes.

Figure llIl. 14: Mobility of the uncontrolled plate and the comparison with
proposed control for the active approach implemented on the rst
ve modes.
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Figure 111.15; Impulse response of the uncontrolled plate and the com-
parison with proposed control for the passive approach in parallel
con guration.

Figure 111.16: Impulse response of the uncontrolled plate and the compar-
ison with proposed control for the hybrid approach with capacitance
compensation (CC) of 30% and 60%.
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Figure 111.17: Impulse response of the uncontrolled plate and the com-
parison with proposed control for the active approach.

Several authors extended the technique of the single shunt to damp multi-
ple mechanical modes [Hollkamp, 1994 Wu, 1998 Behrens et al.,2003. They
shunt a single piezoelectric element with a circuit including several resistors,
capacitors, and inductors, to obtain a multi-resonant behaviour.

Figure 111.18: A single shunt for multi-modal current owing control.

Among the different solutions, the current owing shunt circuit proposed
in [Behrens et al., 2003 seems the most ef cient thanks to the modular cir-
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cuital pattern and the reduced number of elements. The shunt has as many
parallel branches as the number of mechanical modes to be damped. Each
branch is a series composed of two inductors ﬂi, L, a capacitor K; and a re-
sistor R;. The seriesL;K; behaves as a passband lIter centred at the eigenfre-
guency w; of the i-th mechanical mode; in that frequency interval, the series
LiR; operates in a similar way as in a resistive-inductive single resonant cir-
cuit. Ideally, with this con guration each branch controls a single mechanical
mode, without affecting the others. With this assumption, the optimal induc-
tance for i-th mode would have the following expression

S 1 1

1
—+ — .16
Wiz Ki Ch ( )

where Cy is the capacitance of the piezoelectric transducer. To account for
the undesired cross in uence of the branches on the mechanical modes to be
controlled, a further numerical ne-tuning is applied. Also, the additional ca-

pacitancesK;'s are set approximately to 10% of the piezoelectric capacitance
C;, considering that additional capacitances worsen the electro-mechanical
coupling and smaller capacitances requires larger inductances. Finally, the

Table Ill. 4. Parameters of the ve current owing circuits identical used
for comparison.

| branch |l branch [ll branch IV branch V branch
Li H 89.61 3398 1397 1114 884
R, kW 45 35 17 15 15
Ki nF 146 146 146 146 146

performance of the proposed shunting controls is compared with this multi-
modal shunting technique. To make this method comparable with the pro-
posed shunting technique, the single-shunt approach is generalised for the
use of multiple piezoelectric patches. Consequently, the ve piezoelectric ele-
ments are shunted with ve identical multi-resonant current owing circuits.
Table 111.4 reports the corresponding numerical values for the circuital com-
ponents in gure lll. 18. The inductances of each shunt are chosen according
to (lll. 16), with a further numerical ne-tuning. The resistances R;'s are opti-
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mised numerically to minimise the maximum amplitude of the plate mobility
function around each natural frequency.

Figure 111.19: Mobility of the uncontrolled plate and the comparison be-
tween the proposed control for passive approach in parallel con gu-
ration and the current owing control on the rst ve modes.

Figure lll. 19 shows that with this approach the maximum reduction in the
magnitude of mobility is of about 15dB instead of 25dB. The main feature of
the proposed technique is to exploit the coupling of the different piezoelectric
transducers in an optimal way, by the maximisation of the transfer power and
improvement of the energy ux ef ciency between the mechanical and electri-
cal system. Furthermore, the proposed approach does not employ additional
capacitances which reduce the ef ciency of electromechanical coupling.
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cHAPTER |V

Laboratory Experiments

If we were not ignorant there would be no
probability, there could only be certainty. But
our ignorance cannot be absolute, for then
there would be no longer any probability at
all. Thus the problems of probability may be
classed according to the greater or less depth
of our ignorance.

Henri Poincaré (1854-1912
French physicist

xperimental results are presented in this chapter for a thin beam with
both ends clamped to illustrate the effectiveness of proposed controls.
First, a system parameter identi cation is accomplished for obtaining an ad-
equate understanding —both mechanical and electrical— of the laboratory
prototype through a multi-degree-of-freedom curve- tting. Comparison be-
tween numerical simulations and experimental measurements is shown. Fi-
nally, the proposed control is tested and proved to be reliable.

IV.1 Experimental Set Up

The test system is a uniform aluminium beam with rectangular cross sec-
tion and experimentally clamped boundary conditions at both ends. Great
attention has been devoted to x end points of the beam to ground, in order
to ensure that the whole assembly gives repeatable results. One of the tackled
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problems is the change in stiffness due to axial load caused by environment
temperature variations. To avoid this problem the axial displacement at one
end is allowed. Three pairs of piezoelectric ceramic rectangular patches are
bonded symmetrically to either side of the beam surface. Each pair is con-
nected in parallel. They are used as actuator to provide disturbing force, as
sensor and also as shunting layer. Experimental structure is displayed in g-
ure IV.1 and is the same described in chapter .

Figure 1V.1: Experimental beam.

IV.1.1 Mobility Estimations

To estimate mobilities of interest, the beam is excited by one piezoelec-
tric actuator with a random band-limited signal so as to excite four bending
modes with a frequency spectrum covering a range from near zero to 700Hz.
A power ampli er to drive the piezoelectric actuator with voltage is used.
The National Instruments PCI- 6711 board is used as an arbitrary waveform
generator. The analog outputs of this board have a resolution of 12 bits with
an update rate of 1 megasample per second, a maximum voltage range of

10V and a range accuracy of 8.62mV. It is well known that the piezoelec-
tric material presents a non-linear behaviour when the level of excitation is
very high. To check for non-linearity a particular mobility measurement has
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been repeated a number of times using different levels and types of excita-
tion. Thus, a level of excitation equal to 1V has been chosen to avoid non-
linearity. A Polytec scanning laser vibrometer PSV-400provides the output at
the point with a distance 0.33m from the left end of the beam. The National
Instruments PCI-4552board is the data acquisition device that have a reso-
lution of 16 bits with a frequency accuracy of 25 ppmand sampling rates
from 5 to 204.8 kilosample per second in increments of 190735 microsample
per second. The analysis is performed with a frequency resolution of about
195mHz and 64 averages. The sample frequency is3.2 kHz to avoid alias-
ing. The nominal estimate of the mobility function magnitudes, H(f) , and
phases, a(f), are shown in gures IV. 2-1V.4 using each of the three piezo-
electric transducers as actuator. The coherence data advise that the estimate
mobility magnitudes and phases involves random or bias errors. However,
it should be noted that the coherence is near unity at most frequencies and
there are signi cant notches also at frequencies that coincide with notches in
mobility magnitudes as it is expected.

In the gures, it is shown also the uncertainty regions at all frequencies.
Assuming 3 standard deviations of the normal distribution, there is a 99.6%
probability that the true response is within the uncertainty band. The random
error is directly related to the coherence function Qiy(f) and the number of
averages ngy used in calculations of the spectral density estimates. The nor-
malised random error of the mobility magnitude Fl(f) and the standard
deviation of the mobility phase &a(f), in accordance with [Bendat and Piersol,
198(Q, are given by
f

s
1 gg(f)

# H(f) = szjnd s[a(f)] = arcsinf# H(f) g (IV.1)

Speci cally, the magnitude jH(f)j and the phase a(f) can be expressed with
the 99.6% con dence interval by

jH(Hi= H(H) (1 3# H(f) )
a(f)= a(f) 3s[a(f)]

(IV.2)
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Figure 1V.2: Mobility function for beam experiment using as actuator the
rst piezoelectric double element.

Figure 1V.3: Mobility function for beam experiment using as actuator the
second piezoelectric double element.
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Figure 1V.4: Mobility function for beam experiment using as actuator the
third piezoelectric double element.

IV.2 System Identi cation

IV.2.1 Mechanical Parameters

The mobility functions estimated are collected as magnitude and phase
vectors depending on the frequency. Denoting the generic mobility measured
data with a complex vector I:I(V\/|) at each circular frequency W, of the mea-
sure, modal parameters, that is resonance frequencies, damping ratios and
modal constants, are extracted from the actual measured data by perform-
ing multi-degree of freedom curve ts. To this end, consider the following
mobility evaluated at the same frequencies

g iW PRW, i Wi
HW) = & — M P r(xam)  TW

IV.3
2 WZ WP H 2% Wi Wi Kres s

where the quantity Kgesis the residual stiffness due to the high frequency
modes, see [Ewins, 1984. The coef cients Py W, (X1m), Wr, Xr, Kresare all to
be determined as the index r varies over the modes of interest taking into
account the h-th piezoelectric actuator. The modal constant P, W, (X1 ) is the
product of the coupling matrix entry Py, and the mode shape of the beam
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evaluated at the measure point X m. This non-linear curve- tting problem is
solved in least-squares sense de ning the cost function

wi (W) H(W)  H(wW) > (IV.4)
1

E=
I

1 Qo=

in which w;(W,) is a weighting factor, and N is the number of the data points.
The curve t process has to determine the values of the unknown modal
parameters such that the error E is minimised.

After performing the curve ts, to evaluate the goodness of tthe R?indi-
cator has been examined separately for the magnitude and phase of mobility
functions. Indeed, R? can take on any value less than or equal to one, with
a value closer to one indicating a better t. In particular, the R? is adjusted
based on the residual degrees of freedom, V, de ned as the number of data
values N minus the number of tted coef cients F. Therefore, the degrees of
freedom adjusted R? is de ned as
SSE(N 1)

2 _
=1 —sstvy

(IV.5)

in which SSEis the sum of squares due to error and represents the total
deviation from the t to the response values whilst SSTis also called the sum
of squares about the mean and represents the total deviation from the mean
to the response values.

During the estimation process, uncertainty information is taken into ac-
count. The coherence function, Qiy(V\A), is chosen as weighting function w;.
In gures IV. 5-IV.10, it is shown the comparison between the measured mo-
bility functions and the regenerated curves obtained by the extracted modal
parameters. The obtained modal parameters of interest are summarised in
tables 1V.2 and IV.1. In table IV.2 are presented also the resonance frequen-
cies obtained by the nite element analysis for comparing experimental and
numerical results.

Table IV.1: Damping ratio of the bending modes.

mode 1 mode 2 mode 3 mode 4

(3.48 0.04)10 * (297 0.06)10 3 (230 0.06)10 3 (42 0.1)10 3

98 of 143



IV.2. System Identification

Figure IV.5: Comparison of measured mobility with the rst piezoelectric
actuator and curve t.

Figure IV.6: Nyquist plot of mobility with the rst piezoelectric actuator
and curve t.
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Figure 1V.7: Comparison of measured mobility with the second piezo-
electric actuator and curve t.

Figure IV.8: Nyquist plot of mobility with the second piezoelectric actu-
ator and curve t.
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Figure 1V.9: Comparison of measured mobility with the third piezoelec-
tric actuator and curve t.

Figure IV.10: Nyquist plot of mobility with the third piezoelectric actua-
tor and curve t.
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Table IV.2: Resonance frequencies of the beam.

experimental (Hz) numerical (Hz) discrepancy (%)

mode 1 752 0.2 746 0.8
mode 2 2103 0.3 2096 0.3
mode 3 4059 0.2 4056 0.08
mode 4 6610 0.7 6624 0.2

IV.2.2 Piezoelectric Parameters

Piezoelectric parameters can be extracted from electric impedances of
the piezoelectric transducers by performing multi-degree of freedom curve
ts. The piezoelectric impedances to be measured is obtained by applying a
broad-band random excitation current over a frequency range near zero to
700Hz and then measuring the resulting voltage response on the same pi-
ezoelectric transducer. This type of test requires a current source which is
voltage driven. By using a Fourier analysis, the electric impedance, Zh(vvl),
can be estimated as a complex vector for the h-th piezoelectric transducer at
each circular frequency W, of the measure. The analysis is performed with a
frequency resolution of 0.1 Hz and 15averages. Piezoelectric parameters, that
is capacitances and coupling coef cients, can be obtained directly by tting
the actual measured data with the following impedance

Gnm 1 N P2

Zn(W) = — Cu+ - +
n(Wi) i W, " TW Ry Slwrz W2+ 2x:wWri W

(IV.6)

where G, equal to 0.0065S, is the transconductanceé of the voltage controlled
current source and Ry is its Norton's equivalent resistance. The coef cients
P2 and Cy are all to be determined. This non-linear curve- tting problem
is solved in least-squares sense as made for the mobility functions. The nor-
malised piezoelectric coupling coef cients are computed by the following re-

lationship
Pih

Gh = whe (IV.7)

ITransconductance, also known as mutual conductance, is the ratio of the current at the
output port and the voltage at the input ports of certain electronic components.
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The obtained piezoelectric parameters are summarised in tables IV.3 and
IV.4. In gures IV. 11-1V.16, it is shown the comparison between the mea-
sured piezoelectric impedances and the regenerated curves obtained by the
extracted piezoelectric parameters.

Table IV.3: Curve- tting estimated piezoelectric coupling coef cients.

piezo 1 piezo 2 piezo 3

mode 1 0.093 0.005 0111 0.005 0.100 0.003
mode 2 0.075 0.002 0.084 0.003 0.090 0.002
mode 3 0.063 0.001 0084 0.002 0073 0.002
mode 4 0.042 0.001 0123 0.002 Q046 0.001

Table IV.4: Curve- tting estimated piezoelectric capacitances (nF).

pair 1 pair 2 pair 3

1004 05 204 2 96 04

Alternatively it is possible to perform an identi cation procedure based
on one-mode approximation to measure the piezoelectric coupling param-
eters exploiting the classical results based on the inductive-resistive single
resonant piezoelectric shunt circuit and the xed point theory. For further
details the reader is referred to the paper [Por riet al., 2007. The beam is ex-
cited through one piezoelectric transducer by a voltage source using a chirp
signal of amplitude 1V which rises linearly in frequency nearly to the me-
chanical eigenfrequency of interest for a time of 10s. A second two-element
piezoelectric transducer is used as sensor, to obtain the frequency response
function of the system. The last piezoelectric transducer is shunted with a
seriesRL tuned circuit where the inductor is a variable device op-amp based.
According with the xed point theory, the coupling parameters are calculated
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Figure 1V.11: Comparison of measured electric impedance of the rst pi-
ezoelectric transducer and curve t.

Figure V.12 Nyquist plot of impedance of the rst piezoelectric trans-
ducer and curve t.
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Figure 1V.13: Comparison of measured electric impedance of the second
piezoelectric transducer and curve t.

Figure 1V.14: Nyquist plot of impedance of the second piezoelectric trans-
ducer and curve t.
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Figure 1V.15: Comparison of measured electric impedance of the third
piezoelectric transducer and curve t.

Figure 1V.16: Nyquist plot of impedance of the third piezoelectric trans-
ducer and curve t.
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using the following relation

o<

o]

G = (IV.8)

bf + 1 b +
where bj is the ratio of the electric resonance of the RLC shunt circuit on
the r-th piezoelectric transducer and the mechanical eigenfrequency w;. The
frequencies ws and wy are the xed points as depicted in gure IV. 17. The
inductance is tuned to have a ratio bj, equal to one. The obtained results are
shown in table IV. 5. In table 1V. 6 are shown the coupling coef cients obtained
via a nite element model and the comparison between direct measurement

and prediction.

Table IV.5: Normalised piezoelectric coupling coef cients.

piezo 1 piezo 2 piezo 3

mode 1 0.095 0.007 Q12 0.02 0.105 0.007
mode 2 0083 0.005 0.09 001 0.090 0.009
mode 3 0.068 0.007 0.09 0.01 0.078 0.008
mode 4 005 0.01 0.14 0.03 006 0.01

Table IV.6: Predicted normalised piezoelectric coupling coef cients.

piezo1l D1(%) piezo2 D2 (%) piezo3 D3 (%)

mode 1 -0.1106 14 01327 9 -0.1105 5
mode 2 0.0965 14  -0.0973 7 -0.0987 9
mode 3 -0.0802 15 -0.1025 12 -0.0828 6
mode 4 -0.0637 21 -0.1417 1 00610 2

IV.3 Control Validation

IV.3.1 The Control System

To test the proposed control, laboratory experiments carried out in real
time. Speci cally, the MathWorks xPC Target is used to create a real-time
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Figure 1V.17: FRFof the beam with shunt circuit on the central piezoelec-
tric pair close to the rst beam mode to measure coupling coef cients
by xed points, wg and wr.

controller using a standard PC. The xPC Target is an environment that uses
a target PC, separate from a host PC, for running real-time applications. In
this environment a desktop computer is used as a host PC with M atlab and
Smulink to create a model using Smulink blocks. After creating this model
with I/O blocks, it is possible to use the host PC with a C/C++ compiler to
create executable code. It is downloaded from the host to the target PC run-
ning the xPC Target real-time kernel. Target applications created with xPC
Target run in real time on target PC without using a Windows operating sys-
tem. It should be noted that model size, complexity, and target PC hardware
affect maximum speed or minimal sample time of execution. The model em-
ployed, see gure IV. 18 can run with a sample time as fast as 33.3 s, i.e.
30kHz.

IV.3.2 Results

This section presents the results obtained applying the control technique
described in chapter I. To check the validity of control, a dual channel FFT
analysis is performed to calculate a transfer inertance function which de-
scribes the dynamic behaviour of the system. The disturbance actuator is the
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Figure 1V.18: Simulink diagram for the real-time application.

Figure 1V.19: Inertance function of the beam and comparison with pro-
posed control for the rst and the second modes.
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Figure 1V.20: Inertance function of the beam and comparison with pro-
posed control for the rst and the third modes.

Figure 1V.21: Inertance function of the beam and comparison with pro-
posed control for the second and the third modes.
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rst piezoelectric pairs driven by a linear chirp waveform with a frequency
range from 50 Hz to 800Hz and an amplitude equal to 3 V. This kind of exci-
tation is chosen instead of a random signal, because the real time application
is not stable for long time acquisition. Therefore, a random analysis, that re-
quired a long time to be representative, is not suitable for this experiment. The
National Instruments PCI- 6733board is used to imposed the forcing inputs.
The analog outputs of this board have a resolution of 16 bits with an update
rate of 1 megasample per second, a maximum voltage range of 10V and a
range accuracy of 2.24 mV. A Briel & Kjeaer accelerometer is used to measure
the response of the system and, therefore, to estimate inertances. The Na-
tional Instruments PCI- 6052 board is the data acquisition device that have a
resolution of 16 bits with a memory on board of 512 samples, a range accu-
racy of 4.747mV and a sampling rate of 333kilosample per second. The other
two piezoelectric transducers are utilised to control the beam vibrations. To
implement the shunt control network, voltage-controlled current sources are
employed in conjunction with the PCI- 6733 board as shown in gure IV. 18.
The measurement time is 10 s, hence the frequency analysis has a frequency
resolution Df = 0.1 Hz. The gures from IV. 19 to IV.21 shows the transfer
inertance functions and the comparison between the system without control
and with the control applied on two modes. It is shown also as the virtual
passive network systemmsed to control two modes acts over different pair of
modes attesting to be equally able to accomplish the purpose of reducing
vibrations.
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Conclusions

his research work is concerned with modelling and analysis of devices

for control of mechanical structure vibrations using piezoelectric trans-
ducers. It casts into the framework of advanced technology and engineering
science and a special attention is devoted to the control of vibrations of one or
two dimensional elastic continua as beam or plate equipped with piezoelec-
tric transducers connected to electric network systems. The main result of this
thesis is an extension of the known piezoelectric shunt damping techniques.

A speci ¢ technique has been presented for controlling a certain num-
ber of structural modes by an identical amount of piezoelectric transducers
shunted with a multi-terminal electric network system. The design of the sys-
tem for control vibrations is based on the intent to make the whole consid-
ered system equivalent to a set of independent, single resonant piezoelectric
shunting systems, referred to as generalised piezoelectric shunting systers
particular attention is devoted to a passive approach using different kinds
of generalised piezoelectric shunting system with resistive-inductive circuits,
parallel and series con gurations. Two methods are considered for optimis-
ing the generalised electrical circuit of control: (i) the xed points theory and
(ii) pole allocation. Comparisons of the results are discussed in details. Dif-
fering from existing approaches which consider several shunts separately, the
proposed shunting technique consider a multi-terminal network which inter-
connects the piezoelectric transducers for a spatial, simultaneous control of
different mechanical modes. In the case of the passive approach, the shunting
network forms, with the inherent piezoelectric capacitances at blocked modal
de ections, a multi-degrees of freedom electric system having the following
modal properties: (i) the same natural frequencies of the set of mechanical
modes to be controlled, (ii) optimal damping ratios to absorb the mechanical
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energy, (iii) eigenvectors that maximise the spatial coupling with the original
mechanical modes having the same eigenfrequency.

Two optimization problems were shown. By introducing a proper trans-
formation of electric coordinates, a one to one correspondence between the
modal mechanical and new electric degree of freedom is approximately at-
tained in order to regard the whole system as a set of the generalised piezo-
electric shunting systems. Further, the distribution of the piezoelectric trans-
ducers is improved to maximise the damping performance. Two numerical
cases, a double clamped beam and a fully clamped plate, was developed to
validate the technique. Speci cally, mobility functions are computed for the
mechanical systems with piezoelectric transducers connected to optimal elec-
tric shunt networks and comparisons to uncontrolled systems place the ef -
ciency of the control in evidence. The numerical simulations, performed with
Smulink , show that the damping performance is considerably increased
with respect to existing techniques for reducing vibrations in a wide range of
frequencies. This is mainly due to two reasons: the effective optimal use of
all the transducers for all the modes, the avoidance of the usage of additional
external capacitors, which decrease the electromechanical couplings.

Besides, an experimental test case was accomplished in order to test the
effectiveness of the proposed control: an aluminium double clamped beam
with rectangular cross section and equipped with three pairs of piezoelectric
elements. In experimental implementations, the required shunting network
was obtained by an active feedback control, measuring the voltages at pie-
zoelectric electrodes and using multiple voltage-controlled current sources to
impose the forcing signal in order to mimic the behaviour of the designed
network. This control was carried out on real time with the help of a desktop
computer and M atlab and Simulink software. The present damping tech-
nique can be classi ed as a virtual passive dampingn the sense of [Juang and
Phan, 1997. The main advantage with respect to purely active approaches
is the unconditionally stability of the system. The formulation is model-
independent in the sense that a very accurate knowledge of the system dy-
namics, linear or non-linear, is not an essential requisite in the design process,
therefore this approach is robust with respect to parameter variations. An im-
portant feature of this formulation is that the controller gains have physical
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interpretation. Therefore, one can visualise how the controller is removing
energy from the system and tune the controller gains accordingly. Since pi-
ezoelectric elements exhibit actuation and sensing abilities within a single
transducer, this approach is feasible considering it requires the collocation of
sensors and actuators.

Suggestions for Future Works

Herein most attention is devoted to a passive approach even for the pro-
vided advantages. On the other hand, the suggested technique can be applied
for active structural control which, in spite of a major control effort and stabil-
ity issues, allows to obtain better performance. In section Il numerical sim-
ulations involving active controllers are performed and comparisons of the
results are commented but now, to check the validity of this active approach
experimental test cases are needed.

The proposed technique for designing control systems reducing vibra-
tions is based on a good understanding of the mechanical structure endowed
with piezoelectric transducers and its environment. However, in a number
of instances, the structure to be controlled is too complicated and the basic
physical processes in it are not fully understood. Control design techniques
then need to be augmented with an identi cation technique aimed at obtain-
ing a progressively better understanding of the structure to be controlled. It
is, thus, intuitive to aggregate system identi cation and control. In this dis-
sertation, the two steps are taken separately. Therefore, | suggest as line of
approach for further development the use of adaptive controllers that is cen-
tred around a xed-structure controller of the same kind presented herein
but with adjustable parameters, i.e.controllers possess a mechanism for auto-
matically adjusting parameters based on system identi cation and posterior
information. The use of adaptive control is justi ed on complex systems ex-
hibiting non-linear and time-varying dynamics or when the use of a xed
controller cannot achieve a satisfactory compromise between robust stability
and performance.

Finally, as a further application, it is possible to consider the problem of
acoustic radiation. Noise reduction of panels is increasingly required in air-
crafts, cars, ships, buildings, etc, to provide a comfortable living environment.
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APPENDIX A

Rectangular Plates

A.1 Newtonian Formulation

In order to write the governing equation of the plate take a rectangular
element, ABCD, out of plate, whose sides are parallel to coordinate axes and
having lengths arbitrary small, respectively Dx; and Dx», and corner A with
coordinates (X1, X2). In this case the only signi cant loads are: the shear forces
Vi and Vy; the bending moments M; and My; the twisting moment M.
They are considered per unit of length. Single subscripts are representative
for the normal to side on which they act. See the gure A. 1 for agreements
with signs. Let f3 be an arbitrary load per unit of surface acting orthogonally
to middle surface. The basic tool in applying Newton's second law is the
free-body diagram. Free-body diagram allows to write the equilibrium of the

forces along the x3 axis for the element ABCD
zZ

Ko+ DXo
i [Vi(X1+ Dxq,x2,t)  Vi(Xq, X2, 1)] dxo +
X2
z )?1+ DX]_
+ y [V2(X1, X + DX2,t) V2(X1, )Zz,t)] dxq + (A.l)
X1
z Xo+ DX2Z X1+ Dxq
+ fa(x1, %2, t) dxqg dxz = 0
%o %y

taking in account the de nition of partial derivative and grouping together
the terms, it can be shown that

Z ¢ Z ¢
o+ Dxz= 2t DXa IV (Xq, X2, 1) N TVa(x1, X2, 1)
%2 % X1 X2

+ f3(xg, X2,1) dxgdx; = 0
(A.2)
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Figure A.1: Free-body diagram. Agreements with positive signs of load
per unit of length acting on arbitrary plate element.

owing to the arbitrary chosen of Dx; and Dx», and because the integrand
function is continuous the (A. 2) is equivalent to the equation at any point
into A
V1(X1q, Xo, t Vo( X1, Xo, 1
Mo xat) | Valaxat) g 020 8xux2A (A3
X1 %2

Equilibrium of the moments with respect to the pole A projected on the

X1 axis can be developed in this way
z

X1+ Dxq
3 [Mo(Xq, X2+ Dxo,t)  Ma(Xq, Xo,t)] dxq +
X1
V4 Ko+ DXo N N
+ [M12(X1 + DXy, X2,t)  Mya(Xg, X2,1)] dxo +
X2
z Xo+ Dxo
i Vi(Xy+ Dxg, X2, 1) (X2 X2) dxp +
X2
Z 3+ Dxy (A.4)
+ Vi(Xg, X2, )(x2 Xp) dxz +
X
h22i1+ DXl I
Vo(x1,X2 + Dxp,t) dxq Dxp +
2% 7

Xo+ DX~ X1+ Dxq
fa(X1, X2, t) (X2 X2) dxqdxp = O

X2 X1

using the (A. 3) and integrating by parts the last addend of the (A. 4) it obtains

Z %+ Def St Dxa M 2(Xq, X2, t) N M 12(X1, X2, 1)

Vo (X1, X2,t) dxidxo = 0
% % X, X, (X1, X2, 1) 10X2

(A.5)
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and likewise said for the (A. 3)

ﬂM 12(X11X2!t) + ﬂM 2(X1!X2!t)
X1 X2

V2(X1,X2,t) =0 8 X1, X2 2 A (A6)

Proceeding in the same way for the equilibrium of the moments along the x»
axis with respect to the pole A, it can be written

M 1(X1, X2, 1) RILY 12(X1, X2, t)
ﬂxl X2

Vi(X1,X2,t) = 0 8x1,x22 A (A7)

At this point differentiating the (A. 7) with respect to x4, the (A.6) with respect
to X2, summing term to term and using the (A. 3), the governing equation of
plate in terms of moment is

M, + 2'|T2|V|12 + °M;
x2 Txafx2 13

+ f3 = 0 8x,x22 A (A.8)

The relationships between considered loads and the stress tensor compo-
nents are given by

Z h z h
My, " T11 X3 dX3, Mo, , " Too X3 dX3
22 ’ (A.9)
M1z, zh T12 X3 dX3
2
Z Z
Vi, . T3 dxs, Va, N To3 dX3 (A. 10)

2 2

RemarkA.1. It is important to note from the (A. 10) that if T;3 and Ty3 are
identically null along the thickness, h, shear forces will be zero. It is absolutely
essential, however, to hold that they are different from zero for the above.
Actually, considering the (Il. 1), it is clear that the terms of order zero and
rst, in which it is possible to expand such components of the stress tensor in
a Taylor series, are null. Hence, it is necessary to consider the terms of higher
order, that, albeit small, it is not allowed to neglect with respect to zero. It
can establish by some elementary considerations that the quadratic term is,
on the contrary, different from zero.
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Using the (lI. 4) and the (ll. 3), the relationships between displacements and

moments can be written as

2 2
|\/|1 = B ﬂi\,;l + n ﬂiv;/
X3 x5
2 2
M= B H;’ + n'"i";’ (A.12)
2 2
Tw

M12: B(l n)

x1x2

where B is the exural modulus and it is de ned by

Yh3

B= @ m

In accord with the D'Alembert's principle, to obtain the motion equation
is suf cient to relate f3 with the inertial force per unit of surface. It is given

by
TPw
fa= r hW + p(Xq, X2, 1)
where r is the mass density, constant for the homogeneity and p(x1, X2,t) is
any external pressure. Substituting the (A. 11) into (A. 8), nally the governing

equation of the plate assumes the form

TPw

Br *w(xy,Xo,t) + rhW(xl,xz,t) = p(x1,x2,1) 8x,x2A (A.12
The boundary conditions are given by
8
2 W(Xg,X2,t)= 0 8x3,x22 JA and 8t O
W (A.13)

ﬂﬁ(xl,xz,t): 0 8x1,x22 YA and 8t O

and to complete the partial differential problem, the initial conditions take
the following form

8
2 W(Xq,X2,0) = Wo(X1,X2) 8 Xy, %22 A
W (A.14)

ﬁ(xl,xz,o) = Wo(X1,X2) 8X1,%x22 A

Into (A. 13) and (A. 14), the A indicates the normal to A , wg and wq represent
the initial con guration and the initial velocity, respectively.
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A.2 Hamiltonian Formulation

Hamilton's principle, so as many other equivalent principles, called of
minimum action, on the contrary of Newtonian formulation reduces dynamic
problems to the investigation of a scalar integral. Such approach, also hamed
weak not only are easier to employ, but are invariant with respect to the refer-
ence frame used. A variational principle, furthermore, provides the boundary
conditions compatible with made hypotheses. For instance, think with regard
to the generalised transverse shear force of the plate with the boundary con-
ditions completely free [Vasiliev, 2004. In some cases the Newtonian formu-
lation, also called strong, is not applicable because it is not at all easy to nd a
law that expresses correctly the acting force model. In the strong formulation,
if any term has discontinuities, it is not allowed to look for the solution that
satis es the problem at all points, because does not exist. On contrary, it is
allowed to search solutions for the weak problem, in which weaker properties
are required.

At this point, Hamilton's principle needs of greater investigation. In sec-
tion Il. 1.2, the expressions of the kinetic energy (lI1.7), the strain one (I1.11) and
the virtual work of external forces (Il. 12) for a exible thin plate are derived.
Maintaining the same meaning for symbols, if one introduces them into the
expression of the Hamilton's principle (Il. 6) obtains

ZynZZ g oa
. A r hﬁ d I dA +
2z g Pw, Pw _ fPw  fw
A TE T X2 ™®e x5
Zz 2 2 2 2
gn 1wy Two Twy TW g (A.15)
ZZA x5 X3 X3 x5
2 2
2B n) W g W gy
2 A o Xafxe X Tx2

+ pdwdA dt = O
A

Assuming the operator d and the derivatives, both spatial and temporal, are
commutative, that it is possible to interchange the integrations made with
respect to the time and these with respect to spatial variables, it can integrate
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by parts and obtain

2z Z, >
1 “w
| x = rho—dwdt dA (A.16)
A 1o It
where | ¢ indicates the rst addend of the (A. 15) related to the kinetic en-
ergy. Here, dw is assumed equal to zero att = tp and t = t; considering
synchronous varied paths. Indicating with | p, the ve terms of the (A. 15)

related to the strain energy, it can be written

Z,Z, 2 ) X1= L
o= oWy W T T G ket +
2 27 1 (A.17)
t1 1'[2 ﬂZW
o Br, dwdA dt
to A ﬂxl ﬂxl
Z,Z, 2 2 X2= L2
e, oWy W T BT G kgt
Z. 2Z o ) 2 (A.19)
E l w
w3 Boz dwdA dt
to A ﬂxz ﬂxz
Z.Z | 2 2 X1= Ly
o= oWy W T e W g dxedt +
to O T[Xz T[Xl T[Xl ﬂxz X1=0
Z, 2Z o >
' T el gwaa
to A ﬂxl ﬂxz
(A.19)
Z,Z, 2 2 X2= Lo
e,z By W T g W gy Tkt +
Z, 2Z o >
T Bl dwaa
(A.20)
Zy °w X1 = Ll#x2= L2
| p = 2B(1 n) dt +
to ﬂxlﬂxz X1= 0 Xp= 0
A tlZ Ly Bw X1= La
+ 2B(1 n) 5 dw dxo dt +
to 0 xafixs =0 (A.22)
z tlZ Ly PBw X2= Lo
+ 2B(1 n) - dw dx, dt +
to O ﬂxlﬂXZ Xp=0
z, 2z 4
B Y gwda dt
to A ﬂxlﬂxz
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where [f(xl)]g1 = f(Ly) f(0). Substituting the (A. 16)-(A.21) into (A. 15) and
remembering that they are de ned 8w 2 F , it leads to the equation

4 4 4 2
Tow,  fw | fw | fw
™ ENE Ixg it

=p (A.22)

this equation being de ned into open set A Rg. It also can be written

Z L 3 3, X1= L]_
B T2 ™ g dx=0 (A.233)

0 Tixy Tix1Tx3 X1=0

Z L 3, 3 Xo= L2
s W2 Y g dx, = 0 (A.23)

0 3 e o

Z L 2 2 X1= L]_
fp W Wy W dx, = 0 (A.2%)

0 Tixy Tix3 T =0

Z L 2 2 Xo= Lo
g TwW Wy w dx = 0 (A.23d)

0 X Tixy T2 =0

ﬂZW x1= L X2= L2

2B(L ) o dw - =0 (A.23e)

Xo= 0

from which all possible boundary conditions can be derived. It is opportune
to note that the equation (A. 23e), only de ned on the corners of the plate,
takes in account the twisting moment that is not important all times that on
the YA is zero dw, as in the case completely clamped.

A.3 Vibration of Fully Clamped Plates

The transverse vibrations of a thin plate have a behaviour described by
the equation (1. 13). This last, for free vibrations, assumes the form

2
Br Aw(xy,Xo,t) + 1 hm(xl,xz,t) = 0 8x;,X2P (A.24)
being P the open set equal to (0,L;) (0,L»). The boundary conditions on
all P , that is the border of P , are given by a clamped edges for all t in R}

and more precisely, they are

8
2 W(X1,X2,t) = 0
S w (A.25)

W
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where A represents the unit normal at the domain boundary P . The initial

conditions are
8
2 W(X1,X2,0) = Wo(X1,X2) 8X1,X22 P
(A.26)
> m(xl,xz,o) = wo(X1,X2) 8Xx1,%X22 P

With the intention to use the Fourier's method to solve the differential
problem (A.24), (A.25 and (A.26), let the generic stationary wave be ex-
pressed by

w = W(Xg, X2)h(t) (A.27)

Substituting the particular solution (A. 27) into the equation (A. 24), assuming
that w 6 0O there where w is de ned, one nds

() _ BT "Wl _ o

h(t) ~ rh W(x,x) (A28

where w? represents an eigenvalue of the problem obtained from the last
relation of the (A. 28)

8 B

% T W = wAW 8x1,X22 P

E W =0 8x1,%22 P (A.29)
aw

. T =0 8x1,x22 P

The operator r “is self-adjoint* and positive de nite 2 thus the problem (A. 29)
has the same properties and its eigenvalues are a numerable in nite spectrum
of values all positive, i.e.w?.

Exact solutions for the problem (A. 29) are not representable with an ele-
mentary closed form; only when at least one pair of opposite sides is simply

LA linear operator, L, is self-adjointin P if and only if 8u(xq,x2) and v(xy,X») functions

opportunely smooth is valid
zzZ Y4
vL(u) dxgdxp = u L(v) dxq dxp
P P

2A linear operator, L, is positive de nitein P ifand only if 8 u(xy, X2) opportunely smooth
is valid 77
uL(u)dx;dx, O
P

and the integral is equal to zero if and only if u is identically null.
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supported, it is suitable to look for exact solutions in closed form. For other
edge constrains approximate methods are to be employed which at least con-
sent to satisfy the geometric boundary conditions. It is crucial to note that if
eigenfunctions are representable only with proper series of the some orthogo-
nal and complete system, it is very hard to handle them for whatever purpose
though they are suitably truncated. In order to nd approximate solutions,
utilisable with ease, the Rayleigh's principle can be employed. It asserts: “ The
vibration frequency of a conservative system close to a con guration of stable equi-
librium has a stationary value in the neighbourhood of a natural rholdeother
words, given a harmonic motion in the form (A. 27), the rst variation of E,
computed as the difference between the maximum strain energy, P max, and
the maximum kinetic energy, Kmax, must be null 8 eigenfunction W, that is a
natural mode. More precisely, E has this aspect

ZZ n AN 2 AN 2 2N/ €2
E(W)=} w + w + 2 qu’
2 p X3 x5 X3 %5
ﬂZW 2 ) 2O
+2(1 n wrhw< dP (A.30
The equation
dge =0 (A.31)

is equivalent to the problem (A. 29), indeed, if the variational calculation is
developed, then the same problem is obtained. In order to determine an ap-
proximate solution, it is reasonable to search for the optimum separable so-
lutions of the type W(x1,%2) = a(xp)b(xz). The factor functions are called
plate characteristic functionsThis allows to write, from the equation (A. 31),
two ordinary differential equations to solve simultaneously, with consider-
able simpli cations because the linearity of the equations and the constancy
of their coef cients. For more details the reader is referred to [Rajalingham
et al., 1996 1997. In general, this factorisation is not at all allowed, here there
is the approximation. The variational formulation aids to understand what it

is doing. In truth, the solutions of these two ordinary equations are the best
approximations of the natural modes taking in account the constrain referred
to the factorisation. That is to say, de ning an appropriate distance into the
space of the considered functions, this approximation minimises the errors.
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In order to put the problem in dimensionless form, it needs execute a
proper chance of variables. Let the new variables be

X1 = X/ Ly Xo = Xof Ly (A.32

developing the (A. 31) with the new variables, as above speci ed, two ordinary

differential equations are obtained

8 1

> ﬁB(OO)aIV + 2B@3!l  (y2B(0) | 2B(09)5= 0

A.33

> | 2A000pIV 4 oA (0Dl 2,00 1 A8y = ( )
(v°A I—ZA )b=0

where v. = wLy Lo(r h/ B)Y2 is the dimensionless circular frequency, whilst
| = L4/ Ly is the aspect ratio and the coef cients are de ned by
Z1gmp b

BM = ==~ A.34
o Xy ax) 2 (A.39

Aty td"ad"a
0 de‘de

The boundary conditions become
8
<a0=0 a%0)=0 a@m=0 aYn=o0

(A.35)
b(O)=0 bY0)=0 b(1)=0 bYY=0

The general solution of the system (A. 33) is representable in the following

way

a(xy) = Cycoy(pixg) + Czsin(pixg) + Czcosh(pzxy) + Cyqsinh(p2xa) (A.36

b(xz) = Dicos(axz) + Dasin(gixz) + Dzcosh(gpxz) + Dasinh(dpxz)
The characteristic parameters, p1, p2, g1 and gy, can be calculated by the impo-
sition of the boundary conditions (A. 35) and by the congruence relations ob-
tained enforcing the (A. 36) to be solutions of the (A. 33) by means of the (A.34).
At this point, it is opportune to observe that for the symmetry of the plate and
of the boundary conditions, the two solutions (A. 36) can be subdivided each
in two subset: symmetric, (S), or antisymmetric, (A), with respectto x; = 1/2
and x, = 1/2. In other words, the solutions assume this shape

gcosh[pz(xl 12)]  codpy(xy 1/2)]

(S)
~ cosh(p,/2) coy(p1/2)
a(x) = 2 sinh[po(xs 1/2)]  sin[pi(xa  1/2)] A #-37
' sinh(p2/2) sin(p1/2) (A)
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along the x; axis. Similar expressions can be found for the solutions in the
variable x,, substituting p; and p, with ¢, and @, respectively. The integra-
tion constants C; and D; are been computed imposing the condition of null
displacement on all the perimeter of the plate, separating the odd and the
even terms in order to obtain the solutions (S) and (A). Keep in mind that
eigenfunctions are de ned unless of the multiplicative constant. Besides, im-
posing the conditions on the rst derivatives on all the perimeter of the plate,
one nds

P(p1,p2) = 0 (A.38)

where 8

<
p2tanh(p2/2 ) + pytan(pi/2) (S)
P(p1, p2) = . (A.39)
© pitanh(p2/2)  patan(pi/2)  (A)

The congruence relations, mentioned above, assume the appearance

p® P’ = 21 %B (01, %) (A.40)
in particular, it has
+ 1(q2 2
B (th, @) = B . 29-2 %) (A.41)
(% %) B 1
2q22q12
where 8
21 [1 pytanh(py/2))]? (S
B = 2 (A.42)
> P2
1l ann2) (A)

Operating in the same manner for b(x;), from the conditions on the rst
derivatives, it arrives to

Q(a1, )= 0 (A.43)

being, as it is easy to prove, Q(o, o) = P(m,dz). Moreover, the congruence
relations allow to write
2 2_ 2
%" &= ;3 A (PuP2) (A.44)
with A (p1, p2) = B (p1, p2). Again, from the congruence relations, it can be

written

1 1
vZ= 2 p2p.” + | 270y E(pzz P4 o) (A.45)
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From the equations (A.38) and (A.40) as well as from the (A.43) and (A.44), it
is possible calculate the characteristic parameters, and again, from these with
the (A.45), the approximate values for the natural circular frequencies can be
computed. It should be noted that if (f1,p2) are characteristic parameters,
even (P1, P2), ( P, P2) and ( P1, p2) are possible parameters; however,
the sign of these is not crucial considering the (A. 37). Thus, without loss of
generality, the characteristic parameters are assumed positive.
In order to computing the characteristic parameters it is possible to follow

the iterative scheme given below:

1) the equation (A.40) is solved with respect to py;

2) the expression of p; is introduced into the (A. 38), thus p; is calculated and
afterward py;

3) knowing the couple (p1,p2), it can compute A ;

4) the equation (A.44) is solved for o, that is substituted in the (A. 43) to
calculate the couple (g1, 3);

5) with this last B is calculated and then, the points 1) and 2) as well as 3)
and 4) are repeated up to convergence;

6) setting B equal to zero as rst step, the (A. 38) becomes equivalent to the
frequency equation of the fully clamped beam.

Characteristic functions of a rectangular plate having aspect ratio, |, a
suf cient difference from one denote a good approximation for the eigen-
functions of the problem (A. 29). On contrary, in the case in which the aspect
ratio is close to one, it should be remarked some detail in addition. The reader
more careful has, of course, seen that characteristic functions have nodal lines
straight and parallel to Cartesian axes; but there can be vibrational modes
having nodal lines very bending. This occurs because the square plate has
eigenvalues with algebraic multiplicity greater than one, hence, the eigen-
functions referred to these eigenvalues constitute a space with dimension
greater than one. In other words, modal shapes correlated to these eigen-
values can be de ned not in uniqgue manner, as a set of functions linearly
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dependent, but with whatever set of functions mutually orthogonal in hum-
ber equal to the dimension of the eigenfunction space. Linear combinations
of functions with nodal lines straight can have got nodal lines bending. On
the other hand, in these cases so as to improve the approximation, it possible
to use the Rayleigh-Ritz method proper with the characteristic functions, that
assure a faster convergence.

Table A.1: SS mode parameters for aspect ratiol = P 2.

mode P1 P2 Ch 7] v

1,1 40774 80738 44914 5652 39305
(31 10831 12774 38334 10638 10315
1,3 34834 20184 10952 11435 17807
5,1 1721 18442 35638 16629 22714
Table A.2: SA mode parameters for aspect ratiol = P 2.
mode P1 P2 Ch 7] v

1,2 3.651 14024 77688 84565 94447
(3,2 10533 17016 73615 12304 15424
5, 2 17046 21551 70412 17681 27497
1, 4 33974 26413 14111 14482 28968
Table A.3: AS mode parameters for aspect ratiol = P 2.
mode P1 P2 01 02 \Y

(2,1 75572 10213 41022 78794 63247
4,1 14.035 15548 36689 13593 15795
(2, 3) 6.9192 2102 1084 12667 19958
4, 3) 13599 23959 1055 16736 28737
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Table A.4: AA mode parameters for aspect ratio | = P 2.

mode P1 P2 o]} o)) v

(2,2 7.1614 15248 75733 10065 11662
4,2 13816 19156 71817 14895 20717
(2, 4) 6.7741 2704 1404 15472 31093
(6, 2) 20246 24123 69331 20579 35733

A.2.1: SS plate characteristic function with v = 39.305

A.2.2: AS plate characteristic function with v = 63.247.
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A.2.3: SA plate characteristic function with v = 94.447.

A.2.4: SS plate characteristic function with v = 10315.

A.2.5: AA plate characteristic function with v = 11662

Figure A.2: Plate characteristic functions with aspect ratio | = P 2.0n
the left hand side are exhibited the graph of the rst ve characteristic
functions. On the right hand side are displayed their isolines.
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A.4 Modal Analysis with the Finite Element Model

The following gures are the rst ve mode shapes of the plate intro-
duced in section lll. 2 computed with the nite element model of section IIl. 4.
Soon afterward the mode rotations around axes X and Y are showed for
their importance. They, speci cally, are used to determine the entries of the
coupling matrix G computing the integrals of the relation (ll. 48). Perform-
ing a modal analysis of an undamped plate with the nite element model
above mentioned, it is fairly straightforward to determine natural frequen-
cies and mode shapes. Besides, modal rotations around the axesx; and X,
respectively ROTX; and ROTY;, for each mode are available and given the

following relations 8
e ﬂ]\)’(\/‘ = ROTY,
1
‘ (A.46)
> Wi _ roTx,
ix2

it is possible, nally, to compute the above integrals numerically on the grid
of the nodal points.

Figure A.3: The rst mode shape for a plate in study.
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Figure A.4: The second mode shape for a plate in study.

Figure A.5: The third mode shape for a plate in study.
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Figure A.6: The fourth mode shape for a plate in study.

Figure A.7: The fth mode shape for a plate in study.
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Figure A.8: The rst mode rotation around the axis X.

Figure A.9: The second mode rotation around the axis X.
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Figure A.10: The third mode rotation around the axis X.

Figure A.11 The fourth mode rotation around the axis X.
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Figure A.12 The fth mode rotation around the axis X.

Figure A.13 The rst mode rotation around the axis V.
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Figure A.14: The second mode rotation around the axis Y.

Figure A.15: The third mode rotation around the axis Y.
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Figure A.16: The fourth mode rotation around the axis Y.

Figure A.17: The fth mode rotation around the axis Y.
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