
HAL Id: tel-00823559
https://theses.hal.science/tel-00823559

Submitted on 17 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for irreducible infeasible subset detection in
CSP - Application to frequency planning and graph

k-coloring
Jun Hu

To cite this version:
Jun Hu. Algorithms for irreducible infeasible subset detection in CSP - Application to frequency
planning and graph k-coloring. Computers and Society [cs.CY]. Université de Technologie de Belfort-
Montbeliard, 2012. English. �NNT : 2012BELF0187�. �tel-00823559�

https://theses.hal.science/tel-00823559
https://hal.archives-ouvertes.fr

����������	A	�BC

��������	ABC��BD��EF�����EBD�CE�A���EB���AE�

FE�E�����B��B���B�B�����������B��B

C�E��E���B��������B��FB�����B����������

������

����� ������	�� �������� ���	 AB��CD����	 �E F��	�E���������

DEF����F�� �� ����E����F� ����������E����F���

�� ��!��� ��E�EB��� !""���B#���B�
DC� ����	$�B#�%A&����A�'�(

�� ��!��� ����A����B��#D$�!�"�����A�)������)	B�
�E�������"�DC� ����	*�'���B+&B+��

�+,�� ��B�� ��E%��F�EB��&D'�(�"���B#���B�
DC� ����	*�'����)�CB&B-���'����&#B�	��BC	.*&�A�'

�B��+,�� ��B�� �������EB$� D'D!�"���B#���B�
�)B&���B&$	�)�C�/+��'���BC	�*A&

�0A1�C���
2�����'�C	�B#�3+�$4�

)���*��B��+"���B#���B��
DC� ����	*�'5�C-���

�0A1�C��� ��,�	B&�-!("��A6	���'���BC#*��C)��
DC� ����	*�'����AC)����B1	*

�0A1�C��� #��E���B(!.�D/"���������B7�)	�1ACA-���
����)	�BC��*C*�A&��'�����1*�������+8

9:�EB �1.���9;<9

To my mother

To my father

1

Acknowledgments

This work is a fruit of my cordial relationship with Alexandre CAMINADA as my advisor. His perpetual encourage-

ment and motivation have illuminated my graduate life. The immense time and the expertise he dedicated make this

research possible. His great personality and excellent professional attitude will always be an example for me to follow.

I am grateful to Professor Philippe GALINIER as my co-advisor, for his inspired discussions and invaluable comments

on my research.

I am deeply indebted for patience and generosity in the transmission of knowledge with Laurent MOALIC, Alexan-

dre GONDRAN, Hakim MABED and Mohammad DIB. I would give a special thank to Dr. Jean-Noël MATIN, who

enlightens me with the beauty of mathematics, for his patience and dedication to research.

My thanks goes also to the members in IRTES laboratory: Dr. Yan FEI, HuiDe ZHOU, You LI, Julien MOREAU,

Dr. Frédéric LASSABE and Stefan TEODORESCU, with whom, my journey become enjoyable.

I am immensely indebted to my parents for their unconditional and constant love, it would be impossible for me to

express my gratitude towards them in mere words. I dedicate this thesis to them.

2

Résumé

L’affectation de fréquences (AFP) consiste à attribuer des fréquences radio aux liens de communications d’un réseau

en respectant un spectre de fréquences donné et des contraintes d’interférence électromagnétique sur les liens. Vu la

limitation des ressources spectrales pour chaque application, les ressources en fréquences sont souvent insuffisantes

pour déployer un réseau sans interférence. Dans ce cas, le réseau est surcontraint et le problème est irréalisable.

Résoudre le problème consiste alors à identifier les zones surcontraintes pour en revoir la conception.

Le travail que nous présentons concerne la recherche d’une de ces zones surcontraintes avec une approche algo-

rithmique basée sur la modélisation du problème par un CSP. Le problème de l’affectation de fréquences doit donc

être modélisé comme un problème de satisfaction de contraintes (CSP) qui est représenté par un triplé : un ensemble

de variables (les liens radio), un ensemble de contraintes (les interférences électromagnétiques), et un ensemble de

domaines (les fréquences admises).

Sous forme de CSP, une zone perturbée peut être considérée comme un sous-ensemble irréalisable irréductible du

problème (IIS pour Irreductible Infeasible Subset). Un IIS est un sous problème de taille minimale qui est irréalisable,

c’est-à-dire que tous les sous-ensembles d’un IIS sont réalisables. L’identification d’un IIS dans un CSP se rapporte à

deux résultats généraux intéressants. Premièrement, en localisant un IIS on peut plus facilement prouver l’irréalisabilité

d’un problème donné car l’irréalisabilité d’un IIS, qui est supposé être petit par rapport au problème complet, est plus

rapidement calculable que sur le problème entier. Deuxièmement, on peut localiser la raison de l’irréalisabilité; dans

ce cas, sur un problème réel, le décideur peut proposer des solutions pour relâcher des contraintes de l’IIS, et peut-

être aboutir à une solution réalisable pour son problème. La recherche d’IIS consiste donc à résoudre un problème

fondamental qui fait partie des outils de prise de décision.

Ce travail propose des algorithmes pour identifier un IIS dans un CSP incohérent. Ces algorithmes ont été testés

sur des instances connues du problème de l’affectation des fréquences et du problème de k-coloration de graphe. Les

résultats ont montrés d’une grande amélioration sur des instances du problème de l’affectation des fréquences par

rapport aux méthodes connues.

3

Abstract

The frequency assignment (FAP) consists in assigning the frequency on the radio links of a network which satisfies

the electromagnetic interference among the links. Given the limited spectrum resources for each application, the fre-

quency resources are often insufficient to deploy a wireless network without interference. In this case, the network is

over-contrained and the problem is infeasible. Our objective is to identify an area with heavy interference.

The work presented here concerns the detection for one of these areas with an algorithmic approach based on

modeling the problem by CSP. The problem of frequency assignment can be modeled as a constraint satisfaction

problem (CSP) which is represented by a triple: a set of variables (radio links), a set of constraints (electromagnetic

interference) and a set of available frequencies.

The interfered area in CSP can be considered a subset of irreducible feasible subset (IIS). An IIS is a infeasible

subproblem with irreducible size, that is to say that all subsets of an IIS are feasible. The identification of an IIS in

a CSP refers to two general interests. First, locating an IIS can easily prove the infeasibility of the problem. Because

the size of IIS is assumed to be smaller compared to the entire problem, its infeasibility is relatively easier to prove.

Second, we can locate the reason of infeasibility, in this case, the decision maker can provide the solutions to relax the

constraints inside IIS, which perhaps leads to a feasible solution to the problem.

This work proposes algorithms to identify an IIS in the over-constrained CSP. These algorithms have tested on the

well known benchmarks of the FAP and of the problem of graph k-coloring. The results show a significant improve-

ment on instances of FAP compared to known methods.

4

Contents

Introduction . 13

1 Constraint satisfaction problems and resolution techniques . 17

1.1 Definitions for CSP . 17

1.2 Local consistency . 20

1.2.1 Definitions of consistency . 20

1.2.2 Arc-Consistency algorithms . 21

1.2.3 Other local consistency algorithms . 25

1.3 Deadend learning methods . 27

1.4 Search techniques for CSP . 30

1.4.1 Complete search - Backtracking and MAC . 30

1.4.2 Incomplete search - Heuristics . 32

1.4.3 Techniques in modern SAT solvers . 34

1.5 Conclusion . 35

2 Irreducible infeasible subset (IIS) . 37

2.1 Definitions of infeasible subset, irreducible infeasible subset and critical set . 38

2.2 Resolution techniques in the literature . 39

2.2.1 Satisfiability testing approach . 39

2.2.2 Hitting set approach . 43

2.2.3 Techniques analysis . 46

2.3 Motivation of this dissertation . 47

2.4 Conclusion . 51

5

3 IIS in frequency planning . 53

3.1 Introduction . 54

3.2 Benchmark description . 58

3.2.1 Radio Link Frequency Assignment Problem - CELAR and GRAPH . 59

3.2.2 RLFAP with polarization - ROADEF2001 . 61

3.2.3 RLFAP with polarization and n-ary constraints - SOES . 63

3.3 A 2-phase algorithm to identify IIS . 64

3.3.1 Construction phase . 66

3.3.2 Verification phase . 68

3.3.3 Technique of saturation . 68

3.3.4 Preliminary analysis . 69

3.4 A general routine for Infeasible Subset (IS) identification - LCV . 71

3.4.1 Locator routine . 74

3.4.2 Constructor routine . 76

3.4.3 Verificator routine . 78

3.5 IIS of variables and IIS of constraints . 80

3.5.1 IIS of variables detector . 81

3.5.2 IIS of constraints detector . 81

3.6 Experimental results . 82

3.6.1 Results for CELAR and GRAPH . 83

3.6.2 Results for ROADEF2001 challenge . 86

3.6.3 Results for SOES . 93

3.7 Conclusion . 94

4 IIS in graph k-coloring problem . 95

4.1 IIS and critical subgraph . 96

4.2 DIMACS instances . 97

4.3 Solution techniques for k-coloring problem . 99

4.3.1 Heuristic approaches . 100

4.3.2 Exact approaches . 105

4.4 Novel data structures to speed up TabuCol . 106

4.4.1 Gamma table for FAP and graph k-coloring . 107

6

4.4.2 Bounds list for FAP . 109

4.4.3 Summary of novel data structures . 110

4.5 Experimental results on critical subgraph identification . 110

4.6 Conclusion . 114

Conclusions and perspectives . 117

References . 123

7

List of Figures

1.1 AC on graph coloring problem . 21

1.2 Local consistencies . 26

1.3 Graph of Example 1 . 28

1.4 Backtracking process . 31

1.5 MAC implementation . 32

1.6 Resolution graph of Example 2 . 34

1.7 Implication graph of Example2 . 34

2.1 Resolution graph . 41

2.2 The k-coloring problem of Example 3 . 45

3.1 Radio spectrum for wireless communication in USA (Copyright c©radio-scanner-guide.com) 54

3.2 RLFAP (Copyright c©Exalt Comm. Inc,.) . 56

3.3 Topology scen02 in CELAR . 58

3.4 Topology graph03 in GRAPH . 58

3.5 Topology fapp16 in ROADEF2001 . 59

3.6 Topology scen20 in SOES . 59

3.7 Saturation . 69

3.8 Time consuming of first attempt on CELAR scen01 . 71

3.9 LCV general routine . 72

3.10 Comparison of LCV IIS search speed with and without AC3 . 75

3.11 Comparison of LCV processing time with hill climbing and TabuCol as localSearch() in BreakScan() . . 77

3.12 CELAR scen02 extension to centralization . 79

9

3.13 Time consuming between 2-phase and LCV . 79

3.14 Routine of IIS detectors . 80

3.15 LCV+IIS of constraints detector on average runtime compared to wcore . 86

3.16 LCV IIS of constraints size gain compared to wcore . 87

3.17 CELAR scen01 LCV profile . 87

3.18 CELAR scen08 LCV profile . 87

3.19 Overall performance on IIS size for ROADEF2001 . 88

3.20 Time and IS variable size on fapp05 for 10 levels . 92

3.21 Consuming time of the three components of LCV on fapp05 . 93

3.22 Consuming time of Arc-Consistency and local search algorithms inside locator component on fapp05 . 93

4.1 anna.col (undirected without duplicated edges) . 98

4.2 queen5 5.col . 98

4.3 le450 5a.col . 98

4.4 miles250.col . 98

4.5 fpsol2.i.2.col . 99

4.6 games120.col . 99

4.7 Crossover in HCA . 103

4.8 Several evolutionary algorithms for k-coloring . 104

4.9 Example 4 – connections and gamma table for node E . 107

4.10 Time comparison on DIMACS le450 5a with 4 colors . 108

4.11 Bounds list of Example 5 . 109

10

List of Tables

1.1 Time and space complexity of AC algorithms . 23

1.2 Time and space complexities of several Path Consistency algorithms . 26

2.1 Results of Insertion on CELAR benchmark . 50

3.1 Four Benchmarks of RLFAP . 57

3.2 Characteristics of CELAR and GRAPH . 60

3.3 ROADEF2001 . 62

3.4 SOES instances . 64

3.5 Results comparison between wcore and 2-phase . 70

3.6 Results on IS and IIS of variables obtained by LCV . 83

3.7 Results comparison between wcore and LCV on IIS of constraints . 85

3.8 IIS of variables and IIS of constraints detectors comparison . 86

3.9 Results classification of ROADEF2001 . 89

3.10 ROADEF2001 results . 90

3.11 ROADEF2001 results . 91

3.12 SOES results obtained by SSA and LCV . 93

4.1 Category of some local search algorithms . 102

4.2 Comparison for move evaluation and update between Hertz and Werra [97] and gamma table 108

4.3 Time and space complexity for both novel data structures . 110

4.4 DIMACS results comparison between Insertion+prefiltering [78] and LCV . 113

11

List of publications

Publications of International conference

• Jun HU, Philippe Galinier and Alexandre Caminada, Yet another breakout inspired infeasible subset detection in

constraint satisfaction problem, ICAI 2011, Las Vegas USA, July 18-21 2011.

• Jun HU, Philippe Galinier and Alexandre Caminada, On Identifying Infeasible Subsets in Constraint Satisfaction

Problems, ICAI 2010 page 615-619, Las Vegas USA, July 12-15 2010.

• Jun HU, Philippe GALINIER and Alexandre CAMINADA, Find perturbation zone in telecommunication network,

INFORMS Telecom 2010, Montreal Canada, May 5-7 2010.

• Jun HU, Alexandre CAMINADA and Hakim MABED, Simple value ordering heuristic in Frequency Assignment

Problem, The 39th International Conference on Computers Industrial Engineering, Troyes France, July 6-8 2009.

Publications of National conference

• Jun HU and Alexandre CAMINADA, Résolution itérative du Max-CSP, ROADEF 2010, Toulouse France, February

24-26 2010.

• Jun HU, Alexandre CAMINADA, Hakim MABED, Recherche de zone de blocage dans un graphe. ROADEF 2009,

Nancy France, February 10-12 2009.

• Mohammad DIB, Alexandre CAMINADA, Hakim MABED, Jun HU, Propagation de contraintes et gestion de

Nogood pour le CSP, ROADEF 2008, Clermond-Ferrand France, February 25-27 2008.

Seminars

• Jun HU, Une méthode hybride pour la recherche de zone de blocage dans le réseau télécommunication, Project

meeting with DGA/Silicom, Rennes France, 24 April 2008.

• Jun HU, Méthodes exactes et approchées pour la recherche de zone de blocage dans le réseau télécommunication,

Project meeting with DGA/Silicom, Belfort France, 29 November 2007

12

Introduction

In the human ecosystem, all the resources are limited. For example, the scale of the landscape for living, the resource

of drinkable water, etc. A crucial reality is that human beings always attempt to benefit themselves maximally without

respecting the natural laws. Such conflict between the human’s ”greed” and nature’s ”impracticability” leads to the

effect that many objectives cannot be achieved without increasing the indispensable resources, or reducing several

implied constraints and requests.

Let’s begin with a simple example in the real world which demonstrates the above conflict. Suppose that two

people named Tom and Jerry decide to open a bar. Tom is available during the week except Monday and Sunday, Jerry

is available during the week except Saturday and Sunday which represent the availability of human resources. Their

objective is to maintain the bar open during all days in a week except Monday. It is quite clear to see that such an

objective cannot be achieved without compromise, since both Tom and Jerry are not available on Sunday. Such human

resource shortage leads to the failure of promise. Imagine another academic example, a graph of a triangle consists of

three nodes and three arcs with 2 colors, the graph cannot be colored by assigning two adjacent nodes differently.

From these two very simple examples, it is easy to verify the unsatisfiability of the problems and to find the con-

flicts. In more complex cases, the unsatisfiability and the conflicts are not so visible. For example, a telecommunication

operator wants to assign available frequencies to the antenna in a city telecommunication network while satisfying in-

terference between adjacent antennae. Due to the network scale and the complexity of interference defined by the

physical laws related to radio communication, it is very difficult for a human to determine whether the given frequen-

cies is sufficient to avoid interference in the network without any computer aids.

In order to adopt the computer aids, the real world problems need to be described firstly in the form of mathematical

models. One convenient modeling technique is to define the real world problem as a constraint satisfaction problem.

Such a technique elegantly represents the problems by three basic components – the decision variables, the available

resources for each variable, and the constraints to satisfy while assigning resources to the variables.

13

Considering the above bar example, the staff assignment needs to be determined as a decision variable, the staff

availability is applied as a resource and the promise of bar opening can be considered as a constraint. Thus the problem

is interpreted as a constraint satisfaction problem. In the example in the telecommunication network, the antenna can

be considered as decision variables which need to be assigned with radio frequencies, the available frequencies are

the resources which can be distributed, and finally, the electromagnetic interference laws are the constraints which

guarantee the quality of communication service.

By representing them as constraint satisfaction problems, the above real world problems are formally expressed

by a set of variables, domains and constraints and many resolution techniques can be adopted to solve this kind of

problem which consist in satisfying the constraints while assigning the resources from the domains to the variables.

As mentioned before, the problem model may be unsatisfiable due to lack of resources. In that case the problem

is over-constrained and one objective may be to satisfy the maximum number of constraints instead of satisfying all

constraints. Another crucial interest of this kind of problems is to find out the reason for failure which causes the

unsatisfiability of the problem. Following the terminology proposed by Chinneck [1], such reasons can be interpreted

mathematically by an Irreducible Infeasible Subset.

At the beginning of the 1980’s in last century [2], the researchers from the linear programming community worked

on identifying the satisfiability of the linear programming models. A significant research result from this is the identi-

fication of a subsystem inside unsatisfiable linear programming system, which is unsatisfiable. By locating a smaller

size of unsatisfiable subsystem, the unsatisfiable reason may be concluded to a comprehensive scale. Following the

terminology defined by Chinneck, such subsystem can be named as an Infeasible Subset (Subsystem), the optimal

definition of Infeasible Subset is called Irreducible Infeasible Subset (IIS). The meaning is that the reduction of that

Infeasible Subset by removing one constraint or variable transforms the subset into a feasible one.

Beside the IIS identification in linear programming, the study also extended to solving SAT (boolean SATisfiability

problems). The SAT community heavily studies the MUC/MUS (Minimal Unsatisfiable Core/Subformula, the analo-

gous of IIS in SAT problems) detection in the recent decade and develops techniques which efficiently verify the SAT

system unsatisfiability.

In SAT problems, the MUC/MUS consists of a subset of clauses and the implied literals under such clauses. Under

the scope of more generalized constraint satisfaction problems, an IIS consists of a subset of constraints and a subset

of variables. It is unsatisfiable by itself [1], and impacts on modeling and reasoning about the real world problems

cannot be over stated but its practical and theoretical importance are highlighted in both Operational Research and

Artificial Intelligence communities.

14

In the bar opening example, the negotiation between the two people or the different objectives can be discussed

when the failure reason is located. Further action may be to improve the current conflict situation. The identification of

IIS not only provides a failure reason as the reference for the further actions, but also can be considered as a proof of

the problem unsatisfiability. In the more complex example of frequency assignment to a telecommunication network

discussed above, the unsatisfiability of a regional telecommunication network may be difficult to prove. After the

identification of one IIS inside the problem, the problem unsatisfiability can be proved through the unsatisfiability

proof of a relatively smaller size IIS which constitutes a sub-network of the global network.

As mentioned above, numerous resolution techniques were proposed to identify MUC/MUS in SAT problem or

IIS in CSP problems during the last decade. These techniques are dedicated to various applications and efficient

in particular domains. In this dissertation, a new method dedicated to the Frequency Assignment Problem, named

LCV (Locator, Constructor and Verificator), is proposed to identify a service blockage zone (interpreted by IIS) in

telecommunication network. Also the method is adopted to identify the critical subgraph, which is the IIS in the

context of the k-coloring problem.

This dissertation is organized as following. It begins with Chapter 1, the general introduction of Constraint Sat-

isfaction Problems modeling technique (CSP). The key components of CSP will be addressed and several important

definitions and properties will be given. Several CSP resolution techniques developed in recent decades from both

operational research and artificial intelligence communities will be illustrated.

The second chapter concentrates on the main topic of this dissertation, the Irreducible Infeasible Subset (IIS). The

important definitions of Infeasible Subset (IS) and its optimal form IIS will be explained. The important properties of

IIS will be demonstrated and IIS identification will be proven.

Based on these theoretical studies, the practical study on adopting the existing method on the IIS identification in

the Frequency Assignment Problem (FAP) will be illustrated and analyzed. It brings motivation in studying a new

method dedicated for such application.

Chapter 3 begins with the introduction of the Frequency Assignment Problem and how it can be formulated as a

Constraint Satisfaction Problem. The different topologies of CELAR and ROADEF2001 benchmarks used to evaluate

the performance of the proposed method are illustrated right after the problem introduction. A comparative analysis

between the method proposed by Galinier and Hertz [3] and the new method LCV will be given to demonstrate the

performance leverage carried by LCV on the FAP instances.

With the experience in the Frequency Assignment Problem, Chapter 4 attempts to extend the general proposed LCV

in identifying the critical subgraph in the k-coloring problem. The chapter begins with the definition of the k-coloring

15

problem and the famous DIMACS benchmarks. The comparison between the state of the art method and the general

LCV is illustrated by careful analysis and experimental results.

The general conclusion will be given at the end of this dissertation as the essential report of previous study and

experience and the perspective attempt to explore new research area in IIS detection.

16

Chapter 1

Constraint satisfaction problems and resolution techniques

The Constraint Satisfaction Problem is a convenient modeling technique to model many real world applications. For

example, assigning the frequencies on an antennae, allocating staff for airline crews, etc. Given a close look at these

real world applications, there are several common characteristics with them. These problems consist in assigning the

resources, the available frequencies or the human resources, on the decision variables, the antennae or crew scheduling,

and respecting the constraints, the electromagnetic interferences or staff availability.

A constraint satisfaction problem consists of three main components: variables, domains and constraints. In this

chapter, the important definitions, theorems and resolution techniques concerning constraint satisfaction problem will

be presented.

1.1 Definitions for CSP

A constraint satisfaction problem (CSP) consists in finding a legal assignment of values from the domains of variables

which satisfies all the constraints of the problem. The variables of CSP is defined as:

Definition 1 (Variable). A variable of CSP is a decision variable x which is waiting to be assigned with a value.

The constraint in CSP can be defined as:

Definition 2 (Constraint). A constraint c ∈ C is a relation Rc defined on a subset of variables X(c) ⊆ X , it regulates

the legal combination of values on X(c).

Where X(c) is the subset of variables under the constraint c, respectively the subset of constraints imposed on

same variable x is denoted as C(x), the relation Rc defines the permitted Cartesian product of values on the subset

of variables X(c). Following the terminology of arity of the mathematical relation, the arity of a constraint can be

described as:

17

Chapter 1. Constraint satisfaction problems and resolution techniques

Definition 3 (Arity of constraint). The arity of a constraint c indicates the number of variables involved in such a

constraint, denoted |X(c)|.

The un-ary constraint is such a constraint with arity of 1, the binary constraint is such a constraint with arity of 2

and the n-ary constraint is such a constraint with an arity of n, where n > 2. The domain of each variable is defined

as:

Definition 4 (Domain). A domain of variable x, denoted D(x), consists of a set of values which is available for

assignment on variable x.

With the definition of variables, constraints and domains of variables, a CSP can be essentially described as:

Definition 5 (Constraint Satisfaction Problem). A CSP is a 3-tuple P = (X,C,D), where X is a set of variables,

D is a corresponding set of domains, C is a set of constraints applied on X .

Let X ′ be a subset of X denoted X ′ ⊆ X , C(X ′) be a subset of constraints imposing exclusively the variables of

the subset X ′; or let C ′ be the subset of constraints where C ′ ⊆ C, X(C ′) ⊆ X be the subset of variables connected

by constraints of the subset C ′. A subproblem of a CSP can be presented as:

Definition 6 (Subproblem). A subproblem of a CSP is a tuple P ′ = (X ′, C ′, D), where C ′ = C(X ′) and C ′ ⊆ C

and X ′ = X(C ′) and X ′ ⊆ X .

An assignment A of a CSP can be written as:

Definition 7 (Assignment and Partial assignment). An assignment A = {a1, a2, . . . , am}, is a result obtained by

assigning one value ai ∈ Di to each variable xi ∈ Xm, where Xm is a subset of variables in X , denoted Xm ⊆ X . In

case Xm ⊂ X , the assignment A is a partial assignment.

Solving a CSP is to find a solution:

Definition 8 (Solution and Partial solution). A solution S of a CSP is an assignment which satisfies all the constraints

of this CSP. Respectively, a partial solution is a partial consistent assignment on X ′ which satisfies all the constraints

exclusively on a subset of variables X ′, where X ′ ⊂ X .

In both cases, the solution or partial solution, we say that the assignment is valid or consistent. If the assignment

does not satisfy all the constraints, it is invalid or inconsistent. Such assignment is not a solution of the CSP. A

satisfiable CSP is defined as:

18

Chapter 1. Constraint satisfaction problems and resolution techniques

Definition 9 (Satisfiable CSP). A CSP P is called satisfiable if and only if it exists at least one solution to this CSP,

otherwise it is unsatisfiable or over-constrained.

For over-constrained or unsatisfiable problems, it is also interesting to find out a compromised solution which

respects the maximal number of constraints. Freuder and Wallace declared such problem definition as Partial CSP or

Maximal Constraint Satisfaction Problem (Max-CSP) [4]:

Definition 10 (Max-CSP). A Max-CSP is an optimization problem for which the objective is to find one of the as-

signments that satisfy the maximal number of constraints.

Then we can define the following:

Definition 11 (Optimal solution of Max-CSP). An optimal solution of a Max-CSP is an assignment such that it does

not exist another assignment which satisfies more constraints, strictly.

There is a particular category of CSP which cannot be ignored. The boolean SATisfiability problem (SAT) plays an

important role in the study of CSP, it is a reference benchmark. It is commonly expressed as a propositional formula

which can be described as:

Definition 12 (Propositional formula). A propositional formula F in Conjunctive Normal Form (CNF) is the con-

junction of clauses from a set C = {c1, . . . , cm} involving the variable set X = {x1, . . . , xn}. Each clause ci ∈ C is

the disjunction of literals from a set Li. Each literal is either a variable x ∈ X or its negative ¬x. A CNF formula can

thus be expressed in the following way:

F =

m
∧

i=1

(
∨

l∈Li

l) (1.1)

A formula F is satisfiable if and only if there exists a truth assignment that satisfies all its clauses. The SAT consists

in finding a truth assignment for all the variables, such that the formula F is evaluated to be true, or showing that no

such assignment exist. As a particular case of CSP, the SAT inherits the properties of CSP. The clauses of SAT are

the constraints of CSP, the variables have the same definition of the variables of CSP and the available values for each

literal are two boolean values - true or false. As CSP with MaxCSP, the MaxSAT is the analogous in SAT problem.

In following sections, the three major techniques used to deal with CSP will be presented. They are constraint

propagation, learning system and resolution methods of CSP.

19

Chapter 1. Constraint satisfaction problems and resolution techniques

1.2 Local consistency

1.2.1 Definitions of consistency

The consistency or the satisfiability of an assignment refers to the constraints satisfaction or truth of the assignment.

Definition 13 (Local consistency). Local consistency concentrates the conditions for the consistency of subsets of

variables or constraints. They require that a partial solution can be extended to an assignment of another variable such

that the resulting assignment is consistent.

There are several levels of local consistency, mainly the Node-Consistency, the Arc-Consistency, the Path-

Consistency.

Node-Consistency only concerns a single variable, it may be considered as the single variable domain reduction.

Thus it can be directly interpreted as the domain definition of the CSP.

Definition 14 (Node-Consistency). A variable xi ∈ X is Node-Consistent if any value ai ∈ D(xi) is allowed by the

unary constraints on xi.

Mackworth [5] clearly defined the Arc-Consistency for binary CSP:

Definition 15 (Arc-Consistency). Given two variables xi, xj ∈ X under the same binary constraint cij . xi and xj

are Arc-Consistent if for any value ai ∈ D(xi), there exists a value aj ∈ D(xj), such that the values pair (ai, aj) is

allowed by the binary constraint cij on xi, xj . The value aj is called a supporter of the value ai and vice-versa.

The CSP itself is said Arc-Consistent if any couple of adjacent variables is Arc-Consistent. Montanari [6] proposed

Path-Consistency as a necessary condition for the pairs of values in binary CSP:

Definition 16 (Path-Consistency). A variable pair (xi, xj) is Path-Consistent if there exists an Arc-Consistent values

pair (ai, aj) satisfying all constraints forming the path between the variables xi and xj , where ai ∈ D(xi) and

aj ∈ D(xj).

Freuder generalized the notion of local consistencies to k-Consistency [7]:

Definition 17 (k-Consistency). A CSP is k-Consistent if for any k − 1 variables (x1, x2, . . . , xk−1), there exists a

consistent partial assignment on these k − 1 variables and a value a ∈ D(xk), such that the partial assignment of k

variable is consistent.

20

Chapter 1. Constraint satisfaction problems and resolution techniques

The k-Consistency generalizes all the local consistency which contains a subset of k variables, in particular, 1-

Consistency interprets the Node-Consistency, 2-Consistency interprets the Arc-Consistency and 3-Consistency inter-

prets the Path-Consistency.

In following sections, several local consistency algorithms will be presented and compared by their time and space

complexity.

1.2.2 Arc-Consistency algorithms

1.2.2.1 Global view on Arc-Consistency algorithms

Arc-Consistency (AC) algorithms are local consistency checking algorithms acting as variable domain reduction. The

main difference between Node-Consistency and Arc-Consistency is that Node-Consistency exclusively deals with a

single variable’s domain and Arc-Consistency deals with a pair of connected variables xi and xj which are under the

binary constraint cij . Bessière[8] concludes two important reasons to study Arc-Consistency: it is the basic mechanism

used in all solvers and the improvement made for Arc-Consistency can be applied to achieve other local consistencies

algorithms.

Briefly, all Arc-Consistency algorithms can be described as removing any value from a variable’s domain which is

Arc-Inconsistent. We use a graph coloring problem to demonstrate the AC verification. In Figure 1.1, node xi connects

with both nodes xj and xk, each node has its proper domain, {red, blue, green} for nodes xi and xk, {red} for xj .

����������	���AB

����B

����������	���AB

Fig. 1.1: AC on graph coloring problem

The color red in xi has its supporter in node xk, which is blue or green. But it has no supporter in xj’s domain.

With the Arc-Consistency checking, the color red will be pruned from xi’s domain.

Algorithm 1 illustrates the general routine of AC algorithms. The algorithm consists of a Q list which stores the

variables waiting for verification. When the domain of a variable xi is reduced, the constraint connected or neighbor

21

Chapter 1. Constraint satisfaction problems and resolution techniques

variables N(xi) of such variables are inserted into the Q list. Such mechanism avoids the repetitive variables and

constraints checking and guarantees that the consistency will be still held while the domain reduction happens. Given

a CSP P = (X,D,C), the AC algorithm either returns a CSP P ′ with a set of reduced domains respecting Arc-

Consistent P ′ = (X,D′, C) where D′ ⊆ D, or determines that the problem is not Arc-Consistent.

Algorithm 1: AC algorithm general routine

Input: A CSP P = (X,C,D)
Output: Return an Arc-Consistent P ′ = (X,C,D′) or P is not Arc-Consistent

Set Q← V ;1

while Q 6= ∅ do2

Pick a variable x ∈ Q;3

foreach a ∈ D(x) do4

Verify if a has a support value in each neighbor domain D(N(x));5

if a has no support in one of these domains then6

Remove a from x domain D(x);7

end8

end9

if D(x) = ∅ then return P is not arc-consistent;10

if x has any value a removed from D(x) then11

Set Q← Q ∪N(x);12

end13

end14

return P ′ = (X,C,D′);15

There are many AC algorithms proposed in the literature, their slight differences are the various implementations

in Line 5 of Algorithm 1. In the following sections, several well known AC algorithms will be essentially described in

two categories: coarse-grained and fine-grained which are defined by Zhang and Yap [9].

a) Fine-grained: AC4 and AC6

Classified as fine-grained algorithms, the AC4 [10] and AC6 [11] both remember the supporter values for each value

in the domain of variables. In case of AC4, all the supporter values for each value are recorded with a counter of

the number of supporters per value. The generation of supporters is done in a pre-processing step. The advantage of

such an approach is that the constraint checking is only executed once during pre-processing, it avoids the checking

overhead if the constraints checking is through variable assignment. During the procedure, the value will be removed

from the domain only if its supporters counter is reduced to zero. Slightly different from AC4, the AC6 abandons the

supporters counter and only records the first consistent supporter value for each value. By recording only one supporter

per value, it greatly reduces the space complexity while it may have the risk of increasing the number of constraints

22

Chapter 1. Constraint satisfaction problems and resolution techniques

checking since the number of the available supporters values are unknown. AC6 elegantly avoids such this risk by

fixing the values ordering in the domain, thus the values set before the recorded supporter value are inconsistent as

a supporter. If the supporter is pruned from the domain, only the values behind it have to be verified and AC6 will

choose the first consistent value as the new supporter.

b) Coarse-grained: AC3 and AC2001/AC3.1

Instead of recording all the supporter values, the coarse-grained algorithms only adapt the constraint checking by

brute force. The routine of AC3 [5] can be exactly described as Algorithm 1. The algorithm verifies all the values of a

variable to see if there is at least one supporter value in every adjacent (or neighborhood) variables’ domain. If a value

of xi has no supporter in one adjacent variable’s domain, it will be pruned from the domain D(xi). As such value

may be a supporter value, the adjacent variables’ consistency will be re-verified. The Q list is implemented to avoid

the repetitive checking of variables by only adding the variables which are not in the list. It is noticed that checking

the values for supporters always begins at the first value of the adjacent variable domain. AC2001 [9, 12] avoids such

repetitive supporter value checking by ordering the values in the domain and recording a pointer to the first supporter’s

position in the domain. When a supporter is pruned, the new supporter will be found only after such supporter in the

domain.

The AC algorithms usually act as the constraint propagator and are embedded in the CSP solvers. In order to choose

the right one to integrate inside solvers, it is necessary to compare the algorithms and to wisely implement them in an

efficient manner. Let n be the number of variables, e be the number of constraints and d be the maximal size of the

domain. The time and space complexities of above four AC algorithms are illustrated in Table 1.1.

Complexity AC3 AC4 AC6 AC2001

Time O(ed3) O(ed2) O(ed2) O(ed2)
Space O(e) O(ed2) O(ed) O(ed)

Table 1.1: Time and space complexity of AC algorithms

In Table 1.1, it is noticed that AC3 has the highest time complexity while other algorithms are similar in time

complexity. The AC3 and AC2001 have less space complexity than the fine-grained ones, notably AC4 and AC6.

Beside above four AC algorithms, there are also several other AC algorithms existing in the literature. The reader can

refer to [8], [13] and [14] for more details.

23

Chapter 1. Constraint satisfaction problems and resolution techniques

Alongside binary constraints, the AC algorithms can be also extended to deal with high arity constraints. Mack-

worth [15] proposes a general (multi-arity constraints) AC algorithm GAC3 based on the binary AC3 which has a time

complexity of O
(

er3dr+1
)

and a space complexity of O (er), where r is the greatest arity among all constraints.

1.2.2.2 Recursive implementation of AC3

Despite of the time complexity of AC3, its space complexity is less than both the fine-grained algorithms and AC2001.

Wallace [16] points out that AC3 computing performance in practice is better than the fine-grained algorithms in their

experiments. This evidence suggests that AC3 is an ideal constraint propagator embedded in CSP solvers due to its

simplicity and its acceptable worst case computational performance in practice.

Algorithm 2: recursive implementation of AC3

Input: A CSP P = (X,D,C)
Output: Return P is Arc-Inconsistent or an Arc-Consistent P ′ = (X,C,D′)
foreach x ∈ X do1

ArcConsistent(x);2

end3

/* ArcConsistent() function */

ArcConsistent(x)4

{5

Removed← false;6

foreach a ∈ D(x) do7

foreach y ∈ N(x) do8

if a has no supporter in D(y) then9

remove a from D(x);10

Removed← true;11

end12

end13

end14

if Removed = true then15

if D(x) = ∅ then return P is not Arc-Consistent;16

foreach y ∈ N(x) do17

ArcConsistent(y)18

end19

end20

}21

In [14], the authors present a recursive implementation of the AC algorithms which can be described in Algorithm 2.

The space complexity is reduced thanks to the recursive adoption of AC3 algorithm. The major drawback of recursive

approach is that it may cause the repetitive variable checking due to the lack of Q list. Our experiments conducted on

the CELAR benchmark (see Section 3.2.1 for detail information of benchmark) allow us to respond to this concern,

24

Chapter 1. Constraint satisfaction problems and resolution techniques

it shows an average computational time gain of 68.51% on the non Arc-Consistent instances and an average gain of

31.29% on the Arc-Consistent instances.

1.2.3 Other local consistency algorithms

Alongside the Arc-Consistency algorithms, there are also other local consistency algorithms existing in the literature.

Based on local consistency enforcement, these algorithms can be divided into two categories:

• The local consistency algorithms stronger than Arc-Consistency.

• The local consistency algorithms weaker than Arc-Consistency.

Under the first category, there are Restricted Path Consistency (RPC) [17], Path Inverse Consistency (PIC) [18] and

Max-Restricted Path Consistency (maxRPC) [19] algorithms.

In contrast to Arc-Consistency acting on the domain reduction, these algorithms do not remove the inconsistent

value from its domain. Instead, they only record the consistent tuples of values under the form of constraints or partial

assignments which may be extended to a solution.

Given a Arc-Consistent instance and two Arc-Consistent variables xi and xj , RPC guarantees that any unique Arc-

Consistent values pair (ai, aj) has a value ak ∈ D(xk) which holds the Arc-Consistency on (ai, ak) and (ak, aj)

separately, where xk is connected with both xi and xj .

PIC restricts that, for any variable xi, there exists at least a pair of variables xj , xk ∈ X , such that (ai, aj , ak) are

locally consistent for any ai ∈ D(xi) where ai ∈ D(xi), aj ∈ D(xj) and ak ∈ D(xk).

maxRPC respects not only PIC condition where (ai, aj , ak) is locally consistent, but also the Arc-Consistency on

(ai, aj) or (ai, ak).

The Table 1.2 shows the time and space complexity of different path consistency algorithms, where e is the number

of constraints, n is the number of variables, d is the maximum size of the domain and t is the number of triple

of variable (i, j, k) with cij , cik, cjk ∈ C . Comparing with the Arc-Consistency algorithms, these algorithms have

relatively higher time complexity. Thus in practice, these algorithms may not be ideal candidates to act as an embedded

constraint propagator in a CSP solver [8].

Under the category of the local consistency weaker than Arc-Consistency, it includes Directional Arc-Consistency

(DAC) [21], Full Look-ahead (FL), Partial Look-ahead (PL) [22] and Forward-Checking (FC) [22] algorithms.

25

Chapter 1. Constraint satisfaction problems and resolution techniques

Algorithms time space

RPC1 [17] O
(

end3
)

O (ed(n+ d))
RPC2 [19] O

(

end2
)

O (end)
maxRPC [19] O

(

en+ ed2 + td3
)

O (end)
PIC1 [18] O

(

en2d3
)

O (ed+ td)
PIC2 [20] O

(

en+ ed2 + td3
)

O (ed+ td)

Table 1.2: Time and space complexities of several Path Consistency algorithms

DAC maintains the Arc-Consistency between any two connected variables xi and xj by ordering xi ≺ xj . It means

that all the values authorized in the domain of variable xi need to find at least a supporter in domain of xj , but not

necessarily for the values in the domain of xj .

Given a variable ordering ≺ (x1, x2, . . . , xi, . . . , xn) of n variables and a partial assignment Ai on the subset

variables {x1, x2, . . . , xi}, FC filters the domains of non-assigned variables {xi+1, . . . , xn} by removing the values

which are not consistent with the partial consistent assignment Ai.

FL and PL offer stronger local consistency based on the pre-processing of FC. Given the same conditions of FC

mentioned above, PL applies DAC on variables subset {xi+1, . . . , xn} by the defined ordering. Based on PL, FL even

enforces the DAC from the variable xj ∈ {xi+1, . . . , xn} to the variable xk ∈ {x1, . . . , xi}.

All these algorithms with local consistency weaker than AC have the same time complexity of O
(

ed2
)

. Figure 1.2

illustrates the relationship among each local consistencies. The direction of the arrow indicates the relation from the

stronger consistency to the weaker consistency.

����

����	�AB��C

DEAF

����	�AB��C

�	�B�A	��E�

��������	�AB��C

����E���

�FB��	��

����

�����EFBE�

DE�A	E�

�����EFBE�

Fig. 1.2: Local consistencies

26

Chapter 1. Constraint satisfaction problems and resolution techniques

1.3 Deadend learning methods

Deadend learning is a search space reduction technique in solving CSP. Frost and Dechter [23] report several frequently

used learning techniques. Before the description of the learning techniques, two basic definitions need to be declared,

they are Deadend and Nogood.

Definition 18 (Deadend). A deadend is a state of a search node, it occurs when a partial consistent assignment cannot

be extended on one variable x. Such variable x is called deadend variable.

A nogood is defined as:

Definition 19 (Nogood). A nogood is a pair (Ai, Xi), where Ai is a partial assignment on the subset of variables

Xi ⊆ X , such that no solution of the CSP contains Ai.

A nogood is visible when a deadend occurs. Theoretically, the whole partial assignment causing the deadend can

be considered as a nogood. The size of such partial assignment may be very large, which adds the space complexity to

store it and the time complexity to verify its appearance during search. A minimal nogood is that for which by unas-

signing one of its variable, it is not a nogood anymore. Thus the deadend learning techniques are required to effectively

and efficiently generate the nogood. Frost and Dechter[23] compared four types of deadend learning techniques:

• Value-based shallow learning.

• Graph-based shallow learning.

• Jump-back learning.

• Deep learning.

Example 1 is used to demonstrate above learning techniques:

Example 1. Given a CSP P = (X,D,C), a variable ordering ≺ (x1, x2, . . . , x5) and a partial consistent assignment

A1...4 = {a1, a2, a3, a4} on variables subset {x1, x2, x3, x4}, a deadend occurs when the search attempts to find a

consistent value on x5 (see Figure 1.3).

a) Value-based learning

Suppose in Example 1 that the value a3 is consistent with all the values in the domain of the variable x5, while each

of the other values of D(x3) is inconsistent with several values in D(x5), and together, the values (a1, a2, a4) are

27

Chapter 1. Constraint satisfaction problems and resolution techniques

Fig. 1.3: Graph of Example 1

inconsistent with all values in D(x5). Since the value a3 is irrelevant in inconsistency, it can be removed from the

nogood by Value-based learning. The nogood becomes (a1, a2, a4) on the subset (x1, x2, x4). The time complexity of

Value-based learning is O (n) at each deadend.

b) Graph-based learning

Differing from Value-based learning, Graph-based learning will judge the relevance of the nogood by the connectivity

among the variables. Since all the variables (x1, x2, x3, x4) are connected with x5, the nogood is (a1, a2, a3, a4) on

variables (x1, x2, x3, x4). The complexity of learning at each deadend is O (n).

c) Jump-back learning

During the search of Backjumping algorithm [24], it maintains a conflict set for the variable involved in instantiation.

If such a variable is a deadend variable as x5, the conflict set is a nogood for the problem. The complexity of this

learning method is constant during the Backjumping search.

d) Deep learning

Deep learning literally analyzes the inconsistency between the permutation of values from a partial consistent assign-

ment and the values in the domain of the deadend variable. Suppose in Example 1 that (x3, a3) does not conflict with

any values in the current variable x5, (x1, a1) conflicts with the values subset I1 of variable x5, (x2, a2) conflicts with

the values subset I2 of variable x5, (x4, a4) conflicts with the values subset I4 of variable x5, where I1 6= I4,I1 6= I2

28

Chapter 1. Constraint satisfaction problems and resolution techniques

and D(x5) = I1 ∪ I2 = I1 ∪ I4. Two values permutations (x1, a1;x2, a2) and (x1, a1;x4, a4) are recorded as nogood.

Dechter[25] pointed out that its cost is exponential by the size of the initial conflict set.

Frost and Dechter mention that these learning techniques are very costly in practice. The techniques are only efficient

when the deadend occurs frequently during the search [23]. An effective objective of learning is to minimize the size

of the nogoods, in other words, to minimize the number of variable/value pairs forming a nogood. This phenomenon

can be explained with the lattice in group theory. Since the nogood represents the property of all combinations in the

search space, the smaller the property size is, the more combinations are represented. Thus the smaller size nogood

can cut larger space in the search space.

Katsirelos and Bacchus [26] suggest that an exponential number of nogoods and high arity of nogood have a

negative impact on the performance of deadend learning techniques. Thanks to clause learning in the SAT problem,

they proposed to generalize the nogood under the form of learned clauses of SAT. They concluded that even if such

approach has a positive impact on solving CSP instance, it is still not effective in the general case.

One significant problem of nogood learning is the number of nogood recorded. The constantly increasing number of

nogoods raises the time complexity of nogood matching and space complexity of nogood storing. Relevance-bounded

and size-bounded methods are two popular techniques to limit the number of nogoods recorded. The relevance-

bounded technique eliminates the irrelevant nogood which are defined by the number of common variables inside

nogood and appearing in the current assignment. The size-bounded technique records exclusively the nogood with

determined variables size.

Bayardo and Miranker [27] investigate the above deadend learning techniques with size-bounded and relevant-

bounded learning techniques. They conclude that the proposed relevant-bounded learning technique is more efficient

than the size-bounded technique.

From our knowledge, the adoption of learning techniques is not effective in solving general CSP instances. The

quantity of generated nogood and the arity of nogood need to be carefully defined, the constraint propagation tech-

niques need to be integrated with learning procedures to generate the nogood efficiently [28]. In the next section, the

resolution techniques of CSP will be explained.

29

Chapter 1. Constraint satisfaction problems and resolution techniques

1.4 Search techniques for CSP

The search techniques to solve CSP can be loosely divided into two categories: complete search and incomplete search.

The methods under the category of complete search explore all consistent solution and can check all solutions. The

main technique adopted is the backtracking algorithm. The methods under the category of incomplete search does not

explore the whole search space and may only carry out one solution, stochastic local search algorithms are the major

solvers to solve the CSP.

1.4.1 Complete search - Backtracking and MAC

Backtracking is the primary complete search algorithm for CSP, it explores the search space based on a partial instan-

tiation in a depth-first manner. The constraints are used to verify whether an extension of variables assignment may

lead to a feasible solution. During the search process, all the variables can be classified into three categories:

• Past variables: instantiated variables.

• Current variable: waiting to assign variable.

• Future variables: uninstantiated variables.

A backtracking algorithm consists of two phases: a forward phase and a backward phase. In the forward phase, one

of the future variables is selected which is so called the current variable. Thus the current partial solution is extended

by assigning a value on the current variable which is consistent with the partial assignment on past variables. The

backward phase occurs when there is no existing consistent assignment for the current variable; backtracking returns

to the previous last assigned variable in the past variables and try to re-assign another consistent value for such variable

(see Figure 1.4).

Maintaining Arc-Consistency during search (MAC) [29] is considered the most efficient backtracking method to

prove the satisfiability on the general CSP [30]. It embeds an Arc-Consistency propagator inside a chronological

backtracking routine. After a value is assigned on the current variable, it will verify if the future variables are Arc-

Consistent with the partial consistent assignment. If all the values of one of the future variable’s domain are wiped

out during Arc-Consistency checking, the current variable will unassign its value and attempt to find another available

value in its domain which is consistent with previous partial assignment. If no consistent value can be find, then the

backtrack occurs.

30

Chapter 1. Constraint satisfaction problems and resolution techniques

����������	AB�

CD�D�B������	AB�

ED��BF�������	AB

���B����F�

���

�����F�F�

�

�	��������

���B����F����F����BF����ADB�B�����

Fig. 1.4: Backtracking process

The major advantage of the MAC algorithm is that all the future variables’ domains are verified and reduced based

on the inference of the partial assignment on past variables. It dramatically reduces the search space in which there will

be no existence of feasible solutions containing the partial assignment. The longer the partial assignment is extended,

the more the search space is reduced.

There exists many implementations of MAC, here we propose a simple way to leverage the Arc-Consistency check-

ing. Instead of applying directly on all the variables, it is wiser to apply the Forward-Checking on the future variables

on the basis of the current partial consistent assignment before applying Arc-Consistency algorithm on future variables

exclusively.

Three approaches can be used to guide the process in an efficient way:

• Choose the lightweight coarse-grained AC algorithms.

• Use cache during search.

• Reduce space and time complexity while implementing AC algorithms in MAC.

The advantage of applying coarse-grained AC algorithms (like AC3, AC2001/3.1) is to avoid the maintenance of a

heavy and complex information database during search, then it can speed up the propagation process in general. Van

Dongen compared AC2001/3.1 version of MAC and his AC3d[31] version of MAC [32], he concluded that the AC3d

version of MAC is a lightweight MAC which is ideal for a cheap constraint check problem. He showed that the AC3d

version of MAC keeps the space complexity of O(e + nd), while AC2001 version of MAC has a space complexity of

O(edmin(n, d)), where min(n, d) indicates the smaller number between the number of variables n and the maximum

31

Chapter 1. Constraint satisfaction problems and resolution techniques

����������	AB� CD�D�B������	AB�

ED��BF�������	AB

��������E�BE��F�

����������	AB� CD�D�B������	AB�

ED��BF�������	AB

��E�E�F����BFE��E�BE��F�

Fig. 1.5: MAC implementation

size of the domains d. In [13], Mehta and van Dongen propose two variants of AC3d - AC3dl and AC3ds. They

conclude that the AC3dl has a better equilibrium between the memory space for recording supporter values and the

check saving.

Recently, Likitvivatanavong et al.[33] give us the detailed implementations of AC3 and AC2001/3.1 in MAC version.

They propose the cache technique to increase the efficiency of the MAC algorithms. They report the speed up of MAC3

by 30% on hard problems.

Reducing space complexity is recently introduced by Régin[34]. He proposes some improvements of MAC6 (based

on AC6) and MAC7 (based on AC7) which keep the space complexity of the original Arc-Consistency algorithms.

Alongside with MAC, the Backjumping method [24] including Graph-based Backjumping (GBJ), Conflict-directed

Backjumping (CBJ), and Dynamic Backtracking (DBT) [35, 36] are also frequently adopted in solving CSP.

1.4.2 Incomplete search - Heuristics

The 3-SAT problem is one of Richard M. Karp’s 21 classic NP-complete problems [37]. Its more general form as

CSP is not tractable due to its complexity. Regarding the sizes of real world problems, heuristics based resolution

techniques are more favorable as a compromise between solution quality and computational time.

Tracing the history between the artificial intelligence community and the operational research community, many

heuristics or meta-heuristics were proposed in the context of different applications. Local search algorithms play

an important role in solving constraint satisfaction problems [38] thanks to their efficiency and effectiveness. As

32

Chapter 1. Constraint satisfaction problems and resolution techniques

the numerous proposition of heuristics during the recent decades, we essentially intend to address several important

heuristic designs in the following text.

Variable Ordering [39, 40] and Value Ordering [21] heuristics are widely chosen to accelerate the search by speci-

fying the critical search space. Several Values Ordering heuristics in the literature are:

• Bayesian Networks based solution estimation [41], with the spanning tree decomposition of a CSP, the probabilities

on the values of variables are generated inherently.

• Look-Ahead based values selection [42], it makes the assumption on the values of the non-assigned variables with

maximal number of supporter values, which have more promise to be extended to a solution.

• Nogood learning based values selection [43], it judges the extensibility of values by the nogood learned during the

search.

Variable Ordering can be roughly divided into two categories: Promise and Fail-firstness [39]. Promise guides the

search toward the promise search space which may contain feasible solutions, while the latter cuts the search space by

telling the deadend variables to the search. In [44], the author gave a more comprehensive study on the performance

of various Variable Ordering heuristics.

MinConflict [45] is the primary technique in designing heuristics. This technique consists in assigning a value on

a new variable with Minimum Remaining domain Values (MRV). This mechanism attempts to reach a deadend at the

high level of the search tree, further to cut the search space with no feasible solutions inside. That is the reason such

an approach is also called fail-first, which always assigns next the most constrained variable.

Another strategy is to measure the next variable to assign by its degree which is the number of constraints implied

on it. Such an indicator gives a structure representation of the most constrained variables. Brelaz combined a degree

and MRV heuristic in solving graph coloring problems and reported great success despite its simplicity [46].

Statistic learning is also widely adopted in heuristic design. It associates the variables with the conflict value pairs

between each other. Such conflicts can be generated during the search routine, this indicator repeatedly reminds the

search to enforce the satisfaction on high score variables. The Breakout algorithm proposed by Morris [47] adopts

such an approach to indicate the subset of variables which are difficult to be satisfied together.

The successful of integrating local consistency algorithms into backtracking search inspires heuristic design as

well. The CN-Tabu [48] and NG-Tabu [49] both embed an Arc-Consistency algorithm inside Tabu Search and achieved

great performance leverage on the Frequency Assignment Problem. With the Arc-Consistency based inference, these

algorithms dramatically accelerate search speed by reducing the search space.

As numerous local search techniques are proposed by both the artificial intelligence and operational research com-

munities, the interested readers can also refer a comprehensive study of local searches on CSP resolution in [50].

33

Chapter 1. Constraint satisfaction problems and resolution techniques

1.4.3 Techniques in modern SAT solvers

The boolean SATisfiability problem has its particular characteristics which are significantly different from the general

form of CSP. There is a particular method of propagation technique named Unit Propagation (UP) which is cheaper

and more efficient than in case of local consistency algorithms in CSP [38]. Many modern SAT solvers embed the UP

in DPLL (Davis-Putnam-Logemann-Loveland algorithm [51]) procedure to accelerate the clause assignment during

search. Such a technique is applied on the clause whose literals are all determined except one literal. It consists in

assigning a true value on one literal of the clause whose other literals are assigned with false, thus the clause becomes

true. This technique is widely adopted thanks to its simplicity and effectiveness.

With the enforcement of UP, the learning from clauses can be generated effectively during the DPLL procedure.

The clause learning can be essentially demonstrated by the following example.

Example 2. Given a SAT instance in form of Conjunctive Normal Form (CNF) which contains three clauses, ω1 :

(¬x1 ∨ x2 ∨ ¬x3), ω2 : (¬x1 ∨ x3 ∨ x5), ω3 : (¬x2 ∨ ¬x3).

����� ���	A�

Fig. 1.6: Resolution graph of Example 2

����

����

����

����

����

����

�	A	BCD

EF�����	�

Fig. 1.7: Implication graph of Example2

34

Chapter 1. Constraint satisfaction problems and resolution techniques

Regarding the 1-UIP (Unique Implication Point) learning schema [38], the new clause ωl : (¬x1 ∨x4 ∨x5) will be

learned from the previous DPLL procedure through the resolution graph of this SAT instance (Figure 1.6). Figure 1.7

shows how the clause ωl is learned from ω1, ω2 and ω3 by applying UP with a partial assignment (x1 : 1, x4 : 0, x5 : 0).

With the given partial assignment, the UP procedure decides the variable x3 being 1 to keep the clause ω2 true. With

x3 assigning 1 and the clause ω1, x2 should be assigned with 1 to keep the clause true. While at the same time, the

variable x2 should be 0 to keep the clause ω3 as true. A conflict assignment on x2 occurs. Then by applying 1-UIP,

the conflict clause ωl : (¬x1 ∨ x4 ∨ x5) is learned.

The key observation here is that the cost of clause learning during DPLL is relatively cheap in SAT problem, and

the result of such learning can be smoothly integrated into DPLL procedure.

As a chain reaction, the more clauses are learned leads to even more learned clauses. Accompanying with the UP,

the satisfiability testing will be greatly accelerated. This is why satisfiability testing in SAT is relatively more efficient

and more effective than deadend learning in general CSP.

The description of above techniques adopted in SAT shows high efficiency and effectiveness in solving the SAT

problem. While it also proves that these techniques are particular in SAT, and they are very difficult to be adopted in

general CSP.

This section was dedicated to demonstrate the different characteristics and resolution techniques between SAT and

CSP in order to show that the direct adoption of SAT resolution techniques on CSP is difficult to be achieved without

significant modifications. For more information on SAT resolution methods, the reader can refer to the recent surveys

written by Gu et al. [52], Hirsch [53], Hoos and Stützle [54] and Lynce et al. [55].

1.5 Conclusion

The first section of this chapter introduces the basic definitions of CSP, also including the Max-CSP in case of over-

constrained CSP. A particular case of CSP named the SAT problem is also introduced as material needed to understand

its resolution techniques.

Also important resolution techniques like Arc-Consistency algorithms and backtracking algorithms are presented

and illustrated with their complexity. Several Arc-Consistency algorithms are compared based on their time and space

complexity. From such a comparison, we conclude that AC3 algorithm achieves a better compromise between compu-

tational performance and simplicity of implementation. A recursive implementation of AC3 algorithm is also proposed

and shows its performance improvement on over-constrained instances. Among the backtracking algorithms, MAC is

efficient to provide the unsatisfiability or satisfiability proof by using simple brute force of constraint propagation.

35

Chapter 1. Constraint satisfaction problems and resolution techniques

Beside the exact approach to solve the constraint satisfaction problem, there is also the heuristic approach whose

methods vary according to different applications.

Along with the algorithm to solve the general form of CSP, the specific resolution techniques devoted to the SAT

problem are also presented to demonstrate their efficiency and effectiveness on proving the satisfiability/unsatisfiability

of the SAT instances. In next chapter, we will focus on the main topic of this dissertation, the Irreducible Infeasible

Subset identification.

36

Chapter 2

Irreducible infeasible subset (IIS)

In the previous chapter, CSP as a convenient problem modeling technique is introduced. Its definition and several

classical resolution techniques are briefly described. This chapter will focus on the primary subject of this dissertation

- the Irreducible Infeasible Subset. As already mentioned in the general introduction, it provides an answer to a crucial

question: how we deal with the situation where the given problem is over-constrained?

Freuder and Wallace answer this question with their proposition of Partial CSP, or Maximal CSP (Max-CSP). The

objective of this model is to propose a solution which respects the maximal number of constraints. The maximal dedi-

cates itself on a specific measure objective. Such an objective can be measured by the number of satisfied constraints,

the sum of weights of satisfied constraints, etc.

Another possible response is to locate the unsatisfiability reason in an over-constrained CSP. The study on finding

such reason can be traced back to van Loon’s research paper [56] in 1980’s. He begins the studies on finding irreducible

inconsistent systems in linear inequality systems. He is followed by Chinneck [57] who develops the methods to deal

with infeasible subset in linear and mixed integer programming. Their works is further extended by Gleeson and

Ryan [58], Greenberg and Murphy [59] and others.

All this research inspire the studies on finding the infeasible set on SAT instances. Numerous methods have been

proposed during the decades to identify the Minimal Unsatisfiable Subformula/Core (MUS/MUC) in SAT which is

the Irreducible Infeasible Subset in SAT instances. Based on these studies, the IIS identification is also extended in

different applications which can be modeled as constraint satisfaction problem. In this chapter, we will focus on the

IIS identification of CSP. It begins with the definitions of IS (Infeasible Subset) and IIS (Irreducible Infeasible Subset).

The methods dedicated to the IIS identification in the literature will be classified and illustrated. Finally, the motivation

behind this dissertation will also be explained.

37

Chapter 2. Irreducible infeasible subset (IIS)

2.1 Definitions of infeasible subset, irreducible infeasible subset and critical set

Within an over-constrained or over-determined constraint satisfaction problem, it may exist one or several infeasible

subsets which represent the failure reason of finding a consistent complete solution. The definition of such infeasible

subset can be described as:

Definition 20 (Infeasible Subset). An Infeasible Subset (IS) is a subproblem of a CSP, for which there is no solution.

Since an over-constrained problem itself can be considered as an IS, which does not bring any contribution in

problem solving, a further definition dedicates to problem resolution can be described:

Definition 21 (Irreducible Infeasible Subset). An Irreducible Infeasible Subset (IIS) is an IS which becomes feasible

by removing any of its constraints or variables.

The above definition of IIS is based on the destructive view which indicates the state changing based on removing

a constraint or variable. The removed element brings the state change from infeasible to feasible. Thus the IIS can be

regarded as:

Definition 22 (Irreducible Infeasible Subset of variables). An infeasible set X of variables is said irreducible (IIS)

if any proper subset of X is feasible.

Definition 23 (Irreducible Infeasible Subset of constraints). An infeasible set C of constraints is said irreducible

(IIS) if any proper subset of C is feasible.

From the minimizing or optimal view, the definition of IIS can also be interpreted as:

Definition 24 (IIS in optimal view). If there is no IS strictly included inside one IS, then such IS is an IIS.

In contrast to the above terminology, in the SAT community the more frequently adopted terms for IS and IIS are

Unsatisfiable Core/Subformula (UC/US) and Minimum Unsatisfiable Core/Subformula (MUC/MUS).

A CSP can be conveniently represented as a graph. In the context of graph theory, the IIS holds the following

property:

Property 1. An IIS is a connected subgraph of a graph G = (V,E) which defines a CSP. There exists a path composed

by the connected constraints between any two variables in IIS.

If an IS is not a connected subgraph, there are potentially smaller IS inside it. By identifying one connected IS

inside it, we may take one step forward to an IIS. Along with IS and IIS definitions and their property, the following

notation will be introduced to ease the description of resolution techniques:

38

Chapter 2. Irreducible infeasible subset (IIS)

Definition 25 (Critical constraint). A critical constraint of a CSP P = (X,C,D) is a constraint violated under an

assignment which eventually becomes satisfied under another assignment thanks to a local search flip while other

constraints become violated [60].

Similarly, a critical variable can be defined as:

Definition 26 (Critical variable). The variable under the critical constraint is called critical variable.

From above definition, all critical constraints cannot be satisfied simultaneously. The critical constraints and the

other constraints eventually form an unsatisfiable subproblem of a CSP. It looks similar to the definition of IS (see

Definition 20). We consider:

Hypothesis 2.1 The critical constraints are the candidate constraints to form the IIS.

Based on the above hypothesis, the IIS identification can be accomplished through identifying the critical con-

straints of a CSP.

In order to simplify the method description, we define that the constraints subset of one IIS is a critical constraints

subset whose unsatisfiability has not yet been proven. Regarding the vocabulary consistency, the terms critical con-

straints subset and constraints subset of IIS will be used interchangeable and will be denoted H . In next section, the

resolution techniques to identify IS/IIS inside over-constrained or over-determined problems will be presented.

2.2 Resolution techniques in the literature

The contributions carried out by the SAT community cannot be ignored. During recent decades, many methods have

been proposed which can be roughly classified into two categories:

• Satisfiability testing approach based on the state change definition (see Definition 21).

• Hitting set approach inspired from the point of view of the hitting set (see Theorem 1).

In following section, we will essentially describe several existing methods by above classification.

2.2.1 Satisfiability testing approach

The significant feature of these methods is an adoption of a satisfiability testing solver which is executed iteratively.

On each iteration, it provides an unsatisfiability or satisfiability proof on a subproblem which is constructed (or de-

39

Chapter 2. Irreducible infeasible subset (IIS)

structed) by inserting (or removing) a constraint in (or from) the current subset of constraints. The satisfiability and

unsatisfiability phase transition [61] [62] will be identified during these iterations. The constraint removed or inserted,

which leads the transition between unsatisfiability and satisfiability, is defined as transition constraint:

Definition 27 (Transition constraint). In a CSP P = (X,C,D), c being a constraint in C, and Ci being any subset

of C, which holds Ci ⊆ C and c ∈ Ci. If Ci is unsatisfiable and Ci \ {c} is satisfiable, then c is called a transition

constraint.

Based on above definition, we also have:

Property 2. Each constraint belonging to an IIS is a transition constraint.

From above definition, it is noticed that the transition constraint is the passage from unsatisfiability to satisfiability

or satisfiability to unsatisfiability. By identifying such constraints, not necessary an IIS, but an IS can be generated.

In order to prove the unsatisfiability, the satisfiability testing is explicitly employed to provide the unsatisfiability or

satisfiability proof on a subset of constraints.

In [63] and [64], the authors give the time complexities for both inserting and removing constraints.

• O (m) for removing constraints.

• O (km) for inserting constraints.

• O (k logm) for inserting constraints with binary search.

Where m is the total number of constraints of the problem and k is the number of constraints belonging to an IS.

It is clear that the removing approach is more efficient than the others. For both removing or inserting methods, the

satisfiability testing solver runs iteratively during the IIS detection procedure. In order to accelerate the computation,

some heuristics may be adopted to propose the potential variables or constraints which are possibly belonging in an

IIS. The hybrids include either a collaboration or an integration mode.

In integration mode, the heuristic is charged to propose the next candidate variable or constraint to be processed

under the umbrella of the exact satisfiability testing solver. In case of exact tree search algorithm, it verifies the unsat-

isfiability of the subproblem at the top of the tree search.

In collaboration mode, an heuristic iteratively collects the critical constraints one by one until the heuristic cannot

find a partial consistent assignment on such subset of constraints, then the subproblem formed by such constraints

subset is injected into an exact solver. If the solver finds a consistent partial solution, the constraints subset will be

returned into the heuristic procedure and extended according to the connectivity property.

In following sections, several IIS identification algorithms introduced in recent decades will be essentially described

based on integration or collaboration modes.

40

Chapter 2. Irreducible infeasible subset (IIS)

2.2.1.1 Integration mode

These methods consist in embedding an heuristic in an exact satisfiability solver. The heuristic selects the constraints

and either inserts them into a satisfiable subproblem, or removes them from an unsatisfiable subproblem iteratively.

The satisfiability solver verifies the unsatisfiability on such extracted subproblem and attempts to detect the transition

between satisfiability and unsatisfiability.

Hemery et al. [61] propose an exact satisfiability testing approach to find the IIS in the frequency assignment prob-

lem. Under the umbrella of the MAC algorithm, the wcore heuristically selects the variables to insert in a backtracking

search tree according to the violation weights of variables. The violation weights of variables are generated heuristi-

cally and indicate the hardness of variables to be satisfied together with existing partial assignment found by MAC [65].

Based on this approach, Grégoire et al. [66] improved wcore by eliminating the occurrence of backtracks during MAC,

which yields better solutions in terms of IIS size and computational time.

In contrast to the above methods, zMinimal proposed by Zhang and Malik [67] is based on learning from a resolution

graph [68] generated during a DPLL [51] procedure to solve SAT instances. The resolution graph represents a directed

acyclic graph from the original clauses, through the clauses learned from processed clauses, to the empty clause which

indicates a MUS. During the procedure, the non-inference clauses are pruned and only the impliedly learned and

original clauses are studied to identify a MUC. Figure 2.1 represents a resolution graph generated during the DPLL

procedure, the black nodes ω1, ω2 and ω3 represent the original clauses, the red node ωl represents a learned clause

and the empty node is an empty clause. It indicates the relation between the learned clauses and the original clauses.

When the empty clause happens, the original clauses induced are identified and are considered as the clauses inside a

MUC. The algorithm cannot guarantee a MUC. While if the zMinimal is executed iteratively, it may identify a MUC

eventually.

����� ���	A�

Fig. 2.1: Resolution graph

41

Chapter 2. Irreducible infeasible subset (IIS)

Zhang and Malik, Oh et al. [69] propose the AMUSE algorithm for SAT problem. The algorithm implicitly defines

single critical literals of each clause. By doing so, it uses the critical variables in the search tree and enforces the

generation of learned clauses.

2.2.1.2 Collaboration mode

The methods in this mode consist in organizing a collaboration between an heuristic and an exact satisfiability solver

on the global unsatisfiable problem. The heuristic constitutes one or several subproblems on which we cannot find a

partial consistent solution, or on which we assume that there is no consistent partial solution through statistic learning.

Then the subproblem is input as an entity into satisfiability testing solver to verify its unsatisfiability.

Eisenberg and Faltings’s BOBT-SUSP [70] combines Morris’s breakout algorithm and the backtracking algorithm

to identify the IS. The algorithm employs the breakout [47] method to identify the IS. During each iteration of the

breakout algorithm, the weights on violated constraints are incremented. The objective function takes into account

the weights to guide the search towards the unsolvable subproblems. Depending on these weights on the violated

constraints, the problem is filtered and divided into several subproblems. Then backtracking algorithm is used to

verify the unsatisfiability of these subproblems.

Grégoire et al. [60] propose a local search named AOMUS to distinguish MUS from the unsatisfiable SAT instances.

The algorithm records the subsets of clauses on which a local search [71] fails to find a partial consistent solution.

During the search, the hardness of clauses is recorded by the scores. The algorithm iteratively removes the lowest

scores clauses from the formula, and records the last approximated unsatisfiable core in a stack until it finds a satisfiable

subset of clauses. Thus the algorithm works on adding the last removed clauses into the stack and attempts to verify

if it can identify the transition clause. When the subset of clauses in the stack forms an unsatisfiable core, the removal

procedure analyzes the scores of the clauses again, and prunes one lowest score clause each time to reduce the size of

unsatisfiable core. The procedure is stopped when it reaches again the transition clause. The Walksat [72] is employed

as the core local search to give an approximated unsatisfiability proof.

Instead of identifying only one critical constraint per iteration, van Maaren and Wieringa’s approach consists in

finding a bunch of critical constraints per iteration [73]. All processed constraints are sorted by their arities in increasing

order. They noted that if the MUC’s size is relatively small the exact approach will outperform the heuristic approach.

Banda et al. [74] reduce the computational time by reducing the size of the original problem. They noticed that the

transition constraint is strictly inside the IIS and a single IIS holds the connectivity property, while the identification

of the transition constraint is quite inconvenient without an efficient satisfiability testing solver.

42

Chapter 2. Irreducible infeasible subset (IIS)

Mazure et al. [71] adopt an heuristic to record the critical constraints which are violated during the heuristic search,

then those literals belonging to critical clauses are input into a branch-and-bound algorithm to verify the unsatisfiabil-

ity.

2.2.1.3 Summary

The development of the satisfiability testing approach consists in adopting heuristic techniques to either generate the

weights/scores of each violation of each constraints for statistical learning during the search, or loosely reduce the size

of the subproblem and keep the exact satisfiability solver concentrating on the subproblem which potentially forms an

IIS.

The weight/score system adopted in this approach provides important statistic learning material, which either can

be considered as the measurement of IIS-variable or IIS-constraints independently or guiding the search towards the

hard subproblem by integrating the weights into the objective function. The weight representing statistic learning still

plays an important role in indicating the subset critical constraints.

It is always fine that the problem can be reduced without losing the completeness of its IIS, thus the exact proof of

unsatisfiability is easier to achieve than working on the entire problem. Derived from above studies and experiences,

the general routine of this approach can be described as: a heuristic filters the problem and reduces its size, then

an exact method iteratively runs on the proof of unsatisfiability of such subproblem by removing or inserting the

constraints.

2.2.2 Hitting set approach

Recently, research has shown the relationship between IIS detection and hitting set problem [75, 76, 3]. The hitting

set approach is based on the relation between hitting set problem and IIS detection. The relation is clearly revealed by

Bruni from Università di Roma. In his paper [77], Bruni used plain English to describe the relationship and provided

the proof.

The significant difference between the hitting set approach and the previous approach is that the Max-CSP solver

is heavily employed instead of a satisfiability testing solver. A hitting set problem (also known as graph transversal

problem or set covering problem by different communities), is one of the key problems in the combinatorics of finite

sets and the theory of diagnosis. The problem is known as NP-complete, and it can be described as follows:

43

Chapter 2. Irreducible infeasible subset (IIS)

Definition 28 (Hitting set). Given a set M of elements, a collection L = {l1, l2, . . . , lm}, such that lj ⊆ M and

⋃

lj =M . A hitting set is the subset I ⊆M of elements that hits every set of L, for which I ∩ li 6= ∅ for every lj ∈ L.

Regarding the definition of the hitting set problem, the violated constraints subsets Cvi of a CSP can be modeled

as the nonempty subsets li thus an IIS is the hitting set of the collection of violated constraints subsets. Bruni [77]

pointed out that:

Theorem 1. Given any violated constraints subset Cv of a complete assignment in an over-constrained CSP, and any

constraints subset of IIS H , the intersection of these two subsets is not empty, denoted Cv ∩H 6= ∅.

The proof of above theorem is given as:

Proof. In order to prove that Cv ∩H 6= ∅, we can prove that Cv ∩H = ∅ is wrong.

Given any complete assignment A on an over-constrained CSP P = (X,C,D), we obtain a violated constraints

subset Cv based on such assignment. Under the assumption that the intersection between H and Cv is empty, denoted

Cv ∩H = ∅, we have H ⊆ C \Cv . Since all violated constraints are excluded from H , there is no violated constraint

in H under the assignment A. This conclusion breaks the IIS definition 20 – there is no consistent partial assignment

on the subset constraints H .

Based on the IIS definition, by removing exactly one constraint from each IIS of a CSP, the problem becomes

satisfiable. Thus the exact total number of violated constraints in an optimal Max-CSP solution can be determined

through the IIS detection. Example 3 gives an illustration of IS detection by the hitting-set approach.

Example 3. To color a graph as shown in Figure 2.2, the numbers represent the indices of the nodes and the letters

represent the indices of the arcs. The chromatic number of this graph is χ(G) = 3. The problem is infeasible with

only giving 2 colors. A collection L of violated constraints subsets can be described as: {a, f}, {a, g}, {b, f}, {b, g},

{c, f}, {c, g}, {d, f}, {d, g} and {e}. Two hitting sets of such collection can be described as {a, b, c, d, e}, {f, g, e}

which are also two IS (luckily the IIS) of the problem.

From above illustration, two IS are carried out by identifying two hitting sets on a collection of several violated

constraints subsets. The collection of violated constraints subsets is generated by iteratively executing a Max-CSP

solver. In contrast to the satisfiability testing approach, the Max-CSP solver is heavily employed.

Over-constrained problems, whose unsatisfiabilities are difficult to verify but the Max-CSP solutions can be easily

found by Max-CSP solvers, are suitable for such approach. For example, the unsatisfiability of the k-coloring problem

44

Chapter 2. Irreducible infeasible subset (IIS)

�

�

�

�

�

�

�

� 	

A

B

C D

Fig. 2.2: The k-coloring problem of Example 3

is difficult to prove when k is close to the chromatic number. In such a case, the hitting set approach shows its

dramatical performance increase [78].

Simply formulating the IIS detection into a hitting set problem will not ease our problem. First, the hitting-set

problem itself is NP-complete [37]. If the complexity of the problem cannot be reduced, there is no gain in re-modeling

the problem. Secondly, it is costly to enumerate the collection of all violated constraint subsets in different assignments

to identify only one IIS.

One idea is to generate a hitting set which has exactly one element in common with each subset in the collection. In

case that there is no intersection between any of two subsets, the elements of the hitting set will be exactly one element

from each subset. Due to the connectivity property of IIS, all these elements will form a connected component. There

are many IIS identification methods in the literature developed by following the above hitting set approach. In the

remaining part of this section, we will describe several of these methods.

Bruni and Sassano [75, 77] proposed an adaptive search to extract minimal unsatisfiable subformula (MUS) of an

unsatisfiable CNF instance. The hardness of clauses are approximately evaluated during the iterations of satisfiability

testing. During each iteration, it increments the rank of clauses which are violated during the testing. The ranking

system inherently represents the hardness of the clauses by the means of the heuristic. An adaptive core analyzes and

adaptively changes such ranks until a IIS is found.

Bailey et al. [79, 80] also addressed the dual relation between IIS and the complement sets of maximal satisfiable

subsets. When the complement sets are obtained approximately, the intersection between IIS and the complement sets

is guaranteed.

45

Chapter 2. Irreducible infeasible subset (IIS)

Liffiton et al. [81, 76] proposed an approach to find the complement of all the MSS (Maximum Satisfiable Sub-

formula). The MSS represents the maximal consistent subproblem which will become unsatisfiable by adding one

supplement constraint on it. Since the IIS is the hitting sets of all complement sets, CoMSS, of the MSS, by enumer-

ating all the MSS, the IIS can be identified. Their experimental results were not very impressive, as the computational

time of finding all CoMSS of the problem is costly. It becomes even worse by including the hitting set resolution

techniques.

Desrosiers et al. [82, 78] extend the methods proposed in [3] - Removal, Insertion and HittingSet on finding IIS in

SAT and k-coloring instances. The number of Max-CSP solver calls for their approach isO (k), where k is the number

of constraints inside an IIS. Alongside all these methods, the readers also can refer the survey in [83, 62] for other

propositions in same approach.

2.2.3 Techniques analysis

The common component of these two approaches is to iteratively execute a solver. The significant difference between

them is that the satisfiability approach iteratively executes an unsatisfiability testing solver, while the hitting set ap-

proach employs a Max-CSP solver to find assignments on CSP. Marques-Silva pointed out that the hitting set approach

is less efficient than the satisfiability testing approach on SAT instances because the Max-SAT solver is less efficient

when comparing their performance [62]. It is also addressed by Fu and Malik who construct a Max-SAT solver by

employing zChaff [84] to iteratively identify and eliminate the MUC in SAT instances [85].

Also the experimental results reported in [82], demonstrates that the hitting set approach loses its performance on

SAT instances. While the same authors shows the improvement in performance on identifying critical subgraph in

k-coloring problem when their hitting set approach was applied. These observations demonstrate that:

• For the satisfiability testing approach: if the problem’s satisfiability is relatively easy to prove, then adding/removing

or the learning embedded strategy can successfully obtain an IIS.

• For the hitting set approach: if the problem’s approximation solutions are relatively easy to obtain, then the itera-

tive execution of approximated Max-CSP solver is more efficient than the satisfiability testing solver.

46

Chapter 2. Irreducible infeasible subset (IIS)

2.3 Motivation of this dissertation

In previous sections, the essential definitions of IS and IIS were introduced and followed by important properties and

resolution techniques involving IS/IIS. The primary objective of this dissertation intends to adopt the concept and

resolution techniques of IIS in telecommunication networks, furthermore, to identify the most interfered zone in a

telecommunication network.

Since the number of the available frequencies is a limited resource for particular applications, before deploying a

communication network, it is worth to estimate the interference among the antennae to verify if there is any interfered

zone which causes service failure.

Such a problem can be modeled as the Frequency Assignment Problem (FAP), and its unsatisfiability/satisfiability

is difficult to be determined due to the sizes of problems and the high complexity of the FAP problem itself [86].

Satisfiability testing may not be suitable for this application, since the unsatisfiability testing solver acts as the core

engine during the search which will be executed a considerable number of times.

In paper [78], Desrosiers et al. adopted the methods proposed in [3] on detecting critical subgraphs in a graph. The

critical subgraph can be considered as an IIS in the context of k-coloring problem. Thanks to the similarity between the

k-coloring problem and the Frequency Assignment Problem, their approach may be considered as the ideal candidate

for IIS identification in FAP.

The methods described in [78] are Removal, Insertion and HittingSet. Let H be the subset of critical constraints

and C be the set of constraint of the problem. The Removal can be illustrated as in Algorithm 3. The algorithm

iteratively removes the constraint which does not change the unsatisfiability on C. Such unsatisfiability is judged by a

heuristic named MinConflict(). If by removing a constraint c, the constraints set C becomes satisfiable, the constraint

c will be added in critical constraints subset H . The algorithm continues to remove the constraint in C \ H and see

if the unsatisfiability state of C will be changed or not. The procedure stops when MinConflict() cannot find a partial

consistent solution on critical constraints subset H .

The MinConflict() is an approximate algorithm returning a subset of violated constraints Cv which are violated in

an assignment found. Such an assignment respects the constraint satisfaction on H a priori, and minimizes the number

of violated constraints in C. Regarding the similarity between k-coloring problem and the Frequency Assignment

Problem (FAP) [86], the MinConflict() can be implemented by a Tabu Search algorithm which is also suggested by

Desrosiers et al. [78].

47

Chapter 2. Irreducible infeasible subset (IIS)

Algorithm 3: Removal [78]

Input : a set of constraints C
Output: a subset of constraints H ⊆ C forming an IS

H ← ∅, Cv ← ∅;1

repeat2

choose a constraint c where c ∈ (C \H);3

C ← C − {c};4

Cv ←MinConflict(C,H);5

if Cv = ∅ then6

H ← H ∪ {c};7

C ← C ∪ {c};8

end9

until Cv ∩H 6= ∅ ;10

return H;11

Focusing on the Min-Conflict strategy, TabuCol adopts a very simple critical 1-move (or 1-exchange) [87] neigh-

borhood structure. The neighbor solutions are generated by only changing the color (or frequency) of one node among

all the conflict nodes.

Let f(A) be the fitness function of a complete assignmentA,A(xi) be the current value assigned on variable xi in

assignment A and (xi, ai) be a move by assigning the variable xi with the new value ai. TabuCol can be illustrated as

in Algorithm 4.

Algorithm 4: TabuCol

Input : a graph G = (V,E) and k number of colors

Parameters: MaxIter, L and λ
Output : a complete assignment A∗ on G with k colors

Create a random assignment A;1

set A∗ ← A and iter = 0;2

Set TabuList← ∅;3

repeat4

iter ← iter + 1;5

Choose a candidate 1-move (xi, ai) among all conflict variables with minimum violation;6

Add move (xi,A(xi)) into TabuList for L+ λ× Conflict(A) iterations;7

Set A ← A+ (xi, ai);8

if f(A) < f(A∗) then A∗ ← A9

until f(s) = 0 or iter =MaxIter ;10

The fitness function f() in line 9 measures the number of violated arcs in the current assignment A. Thanks to the

similarity between k-coloring problem and FAP, the neighborhood structure defined in TabuCol is suitable for the case

of FAP which changes the frequency value on one variable in conflict.

48

Chapter 2. Irreducible infeasible subset (IIS)

Based on its simple 1-move neighborhood structure, the algorithm exploits a relatively small part of the search

space. Such a strategy dramatically minimizes the runtime while at the same time, the promise on performance is kept.

In addition to the Removal algorithm, the same authors of [3] proposed another algorithm called Insertion. The

algorithm can be expressed as in Algorithm 5.

Algorithm 5: Insertion [3]

Input : a set of constraints C
Output: a subset of constraints H ⊆ C forming an IS

H ← ∅, Cv ← ∅;1

repeat2

if Cv 6= ∅ then3

C ← C \ Cv;4

choose one constraint c ∈ Cv;5

H ← H ∪ {c};6

end7

Cv ←MinConflict(C,H);8

if Cv = ∅ then return Fail to find IIS;9

until H ∩ Cv 6= ∅ ;10

In Algorithm 5, MinConflict() is the same approximated algorithm mentioned in Algorithm 3. The algorithm stops

when MinConflict() cannot find a solution respecting all constraints in H . The constraint set H increases its size at

each iteration by choosing a constraint c from the violated constraint set of MinConflict(). As in Removal, line 9 stops

the algorithm if it fails to find an IIS.

The primary difference between these two algorithms is that Removal removes the constraint one by one from C

per iteration, while the latter removes a set of constraints. In order to locate the first critical constraint in H , Removal

may involve a significant amount of iterations while Insertion processes only one iteration. The results reported in the

paper of Desrosiers et al. [78] prove the efficiency of Insertion compared to Removal on the k-coloring problem. After

a first constraint c is identified and added into the constraint set H , both algorithms will exclusively construct an IIS

on this initial constraint c.

Our experiments on the performance of Insertion are conducted on the CELAR benchmark (see Section 3.2.1

for detail information). Table 2.1 demonstrates the results obtained on the over-constrained instances in CELAR. The

second and third columns indicate the sizes of variables and constraints of the IIS found by Insertion. The final column

shows the number of successful runs in 10 executions, the N/A means that the unsatisfiability of subproblem identified

by Insertion cannot be proven in 30 minutes.

Analyzing the cause of the exponential verification time, we observe that the size of the subproblem identified by

Insertion is too big to verify its unsatisfiability in a reasonable time. It raises the need of a new algorithm to deal with

49

Chapter 2. Irreducible infeasible subset (IIS)

CELAR IIS variables size IIS constraints size Successful rate

Scen04 5 10 2/10

Scen05 5 10 2/10

Scen06 N/A N/A N/A

Scen07 9 26 2/10

Scen08 N/A N/A N/A

Scen09 7 19 1/10

Table 2.1: Results of Insertion on CELAR benchmark

the frequency assignment problem to find smaller IIS if it exists, or same size IIS within less time. In the next chapter,

a new hybrid algorithm will be proposed to improve IIS identification on FAP instances.

50

Chapter 2. Irreducible infeasible subset (IIS)

2.4 Conclusion

In this chapter, the main topic of this dissertation, IIS identification, is introduced. It begins with the basic definitions

and properties. There are two definitions based on different views, one is based on the key feature of Irreducible, the

other is derived from the Minimal form of IIS. The Irreducible indicates the state change between unsatisfiability and

satisfiability, the IIS becomes satisfiable if any one of its variable/constraint is removed. Minimal means there is no

strict inclusion between two IIS, that is the two IIS may intersect, but one IIS cannot contain another IIS.

Following basic definitions, an essential survey of algorithms in the literature is presented under two different

approaches can be identified. The satisfiability testing approach features a satisfiability testing solver, which iteratively

proves the unsatisfiability or satisfiability by removing (inserting, respectively) variable (constraint, respectively) from

the testing subproblem. The hitting set approach consists in iteratively executing a Max-CSP resolution algorithm to

generate a collection of violated constraint subsets. Thus the IIS can be identified by finding a hitting set of a collection

of constraint subsets. The theoretical knowledge behind this approach is that the subset of constraints belonging to an

IIS has an intersection with the violated constraints subsets found by Max-CSP algorithm.

We summarize these approaches, and conclude that the unsatisfiability of the instance is relatively easier to be

proven, then the satisfiability testing approach is suitable to solve such instance. When the maximal satisfaction of

constraints can be achieved conveniently, the hitting set approach is a right way.

At the end of this chapter, we conduct the examination of algorithm performance on one Frequency Assignment

Problem benchmark, CELAR. The candidate algorithm is Insertion algorithm proposed by Galinier and Hertz [3].

The experimental result carried out demonstrates the low-effectiveness on CELAR instances. The algorithm fails to

determine the small IIS and is not robust on CELAR instances.

Based on our analysis, we intend to propose a new approach which will achieve better performance than the existing

approach on telecommunication applications. The new approach is requested to be fast and robust on IIS detection.

The effectiveness and efficiency will be critical features in the new method.

In next chapter, we will concentrate on adopting existing resolution techniques on the applications of Frequency

Assignment Problem and k-coloring problem.

51

Chapter 3

IIS in frequency planning

The growing demands in radio communication networks and the spectrum rarity these days make radio frequencies

more precious than ever. Due to the frequency scarcity, the number of frequencies available is not sufficient to deliver

enough capacity to all systems and applications. The only solution to this problem is to maximize the frequency reuse

between them, but this strategy may generate interference zones or service perturbation zones inside the telecommu-

nication network, which is the nightmare for every network operator either for civil or for military usage. When it is

impossible to reuse the frequency without interference, it is still possible to ease the frequency planning and to reduce

interference by changing the network design or parameter settings. Then the question is ”which are those interference

constraints causing the service perturbation zone in the Frequency Assignment Problem (FAP), and how can we avoid

the creation of a perturbation zone at the network design step?”. If such constraints can be exactly detected then the

decision will be to change the parameter settings of the network transmitters involved in these constraints.

The main objective of this chapter is to propose an approach which is able to identify these infeasible interfering

constraints in a telecommunication network in the context of military applications. This approach delivers an effective

and efficient decision tool for the network operators to identify the service perturbation zone in the telecommunication

network which cannot be solved during the deployment step. Based on the CSP formulation of FAP, such zone can

be considered as an Irreducible Infeasible Subset which is over-constrained by the electromagnetic constraints issued

from the network parameters settings. So this chapter is devoted to the research on identifying the perturbation zone

in one network, an analogous to the IIS in the telecommunication application. This problem is quite new for FAP and

was firstly tackled by [61] as we will see in the next section.

The sections of this chapter will be organized as follows. In Section 3.1, the global properties of FAP and our

specific FAP are defined. The FAP benchmarks we used to evaluate our proposals are illustrated in Section 3.2 with

their topology and properties. Then our work is presented in two steps corresponding to two different algorithmic

approaches we developed. Section 3.3 will address the first algorithm which is directly derived from the method

53

Chapter 3. IIS in frequency planning

proposed in the literature. After that, by analyzing the advantage and drawback of this approach, a second and new

algorithm to detect an IIS in the FAP is presented in Section 3.4. The experimental results of the new method on the

FAP benchmarks will be demonstrated in Section 3.6. Finally, a general conclusion of this chapter will be given in

Section 3.7.

3.1 Introduction

Respecting physical law, the radio bandwidth and the number of frequencies are precious resources which are limited

for each communication system. The availability of radio spectrum is regulated by the International Telecommunica-

tion Union (ITU) at a world-wide level for each system and by the governments at nation level for each operational

usage of the system in the country. The operators are freely or economically licensed to use one or several frequency

bands to deploy services. The frequency band is mostly represented by [fmin, fmax] in which fmin is the lowest avail-

able frequency and fmax is the highest available frequency in the spectrum. As example, the Figure 3.1 shows the

frequency intervals of spectrum regarding the usages in USA up to 1GHz. Regarding the growing of radiocommuni-

cation demands, the efficient usage of radio spectrum is an important problem on which research teams are hugely

involved since the 1990’s.

Fig. 3.1: Radio spectrum for wireless communication in USA

(Copyright c©radio-scanner-guide.com)

Within a given system, when the number of required communications exceeds the available radio channel resources,

the frequencies are reused on several transmitters to deliver additional radio channel resources. Unfortunately the

interference generated by the different signals using the same channel or adjacent channels may globally decrease

the service quality and the expected network capacity. In such conditions frequency reuse creates service perturbation

zones in the network which correspond to zones with radio interference above a given threshold for each service.

The crucial question is whether it is possible to identify the existence of such zones before the network deployment

54

Chapter 3. IIS in frequency planning

to eventually modify the network parameters settings and avoid interference. Such a question may be answered by

modeling and solving the Frequency Assignment Problem (FAP).

The FAP [86] consists in assigning frequencies to the transmitters of a radio telecommunication network. The aim

is to benefit from the geographical separation of assigned frequencies to reuse the radio spectrum efficiently and to

minimize interference in the network. There are many version of the FAP, as many versions as the number of radio

systems, a summary is given in [88]. The version of the problem considered here is the fixed FAP whose assignment of

frequencies on transmitters are not changing with time, as opposed to the dynamic FAP where the available spectrum,

the number of frequency per transmitters and/or the frequency index may change [89]. In the fixed FAP the available

spectrum is initially defined and usually consists of a set of consecutive equally spaced channels, possibly with some

gaps of one or more channels which are unavailable for subsets of transmitters. This version of the FAP is still important

in a wide range of terrestrial and satellite based radio systems, both for civil and military applications.

The particular case of the Radio Link Frequency Assignment Problem (RLFAP) considers the network as a set of

radio stations equipped with antennae and the radio link among them. The station is both a transmitter and a receiver

and the interference arises on the receiving signals. The network can be illustrated by a directed constraint graph,

in which the stations are the nodes and the radio links are the directed arcs. The link (i, j) expresses a one way of

transmission from the station i to the station j. In RLFAP the frequencies are assigned to the radio links, while in some

other problems, like the FAP in cellular networks, the frequencies are assigned to the stations. In our RLFAP each

radio link requires only one frequency to carry the communications.

The radio link quality is measured at the receiver by the Signal-to-Interference-plus-Noise Ratio (SINR), or inter-

ference ratio, and several interfering signals may be received in the same time in addition to noise. In the case of single

interfering signal the SINR involves only two signals which are the carrier link and the single interfering link, then we

may express the SINR by a binary interference constraint between these links. Most of time, the constraint will define

a spectrum separation to respect between both frequencies assigned to the links; the separation value will depend on

the geographical proximity between the links or the difference of received power on each link. If there are several

interfering links, the constraint will be n-ary and involves simultaneously the carrier and all interfering links. In that

case, there is no specific frequency separation to respect but we define a threshold for the SINR and the frequency

assignment on all links will have to satisfy the global threshold. These constraints are very difficult to satisfy as they

involve more than two variables. Figure 3.2 shows one station with three different received signals, each one will be

successively the carrier and the other both the interfering signals for the selected carrier, the 3-ary constraint will have

to be satisfied for the 3 cases.

55

Chapter 3. IIS in frequency planning

Considering the constraints to satisfy, the objectives of RLFAP include to minimize the number of frequencies used,

to minimize the span between the lower and the higher frequency used in the spectrum, to minimize the number of

unsatisfied constraints for a given set of frequency, etc. There are many options as described in [90]. The main theo-

retical model to represent this set of problems is the class of graph coloring problems such as graph coloring, k-graph

coloring for k colors, T -coloring where T defines the forbidden channel separations, set-coloring problems where a

set of frequencies may be assigned to the variables, etc., where sometimes the graph is an hypergraph. References on

these problems can be found in [91].

Fig. 3.2: RLFAP

(Copyright c©Exalt Comm. Inc,.)

In addition to frequency assignment, the wave plane polarization also plays an important role in interference man-

agement. The plane polarization is a property of radio waves that describes the orientation of the wave plan, and can

be horizontal or vertical. In such a case, the wave plane assignment is an extension of the standard FAP, the separa-

tion between frequencies or the SINR threshold are various according to the polarity of the carrier and the interfering

signals. In practice, the constraints are easier to respect, i.e. a smaller frequency separation or lower SINR threshold,

if the polarities are different. Assigning simultaneously the polarity and the frequency brings more complexity to the

problem because we have more variables and the constraints difficultly depend on polarity choice.

Based on the nature of the problem characteristics, the RLFAP can be formulated as a CSP. It consists of a finite set

of available frequencies, the CSP domain, a finite set of radio links, the CSP variables, and a finite set of interference

constraints, the CSP constraints respectively. If the problem is feasible, the aim of RLFAP consists in assigning a fre-

quency to all radio links while satisfying the constraints and minimizing one of the standard FAP objective mentioned

above; if the problem is infeasible the aim is to minimize the number of unsatisfied constraints, and hence the residual

interference.

In order to solve the RLFAP problem as a CSP and evaluate the performance of the methods, many benchmarks

already described as CSP have been proposed by the telecommunication or operational research community mainly

56

Chapter 3. IIS in frequency planning

for military systems. Table 3.1 shows the characteristics of three sets of instances frequently used: CELAR, GRAPH,

ROADEF2001 and the original problem SOES. The rows Unary, Binary and N-ary indicate the categories of con-

straints involve in the benchmark. The row polarization indicates the benchmarks using polarity and frequency assign-

ment all together. The line data source indicates the simplified real world instances, the academic randomly generated

instances and the modified real world instances respectively.

The CELAR benchmark consists of 11 instances, the problem size is from 200 to 916 variables, with 1235 to 5744

constraints and the maximal number of available frequencies is 48. The GRAPH benchmark contains 14 instances

with 200 to 916 variables, 1134 to 5246 constraints and a maximum of 48 frequencies. CELAR and GRAPH instances

involve binary constraints exclusively.

The ROADEF2001 benchmark contains 40 instances with 200 to 3000 variables and 1108 to 41781 constraints.

The maximal number of frequencies is 998 which includes the two polarities. The density of the instances is higher

than the ones in CELAR and GRAPH. Also ROADEF2001 only contains binary constraints with or without polar-

ity. All information about these benchmarks can be collected on the well known web page dedicated to FAP (see

http://fap.zib.de/problems/).

The SOES benchmark is the most recent and contain more problem features. SOES has 20 instances with 16 to

2000 variables and 73 to 13669 constraints. The numbers of available frequencies is from 49 to 727.

Benchmark CELAR GRAPH ROADEF2001 SOES

Nb. instances 11 11 40 20

Nb. variables 200-916 200-916 200-3000 16-2000

Nb. constraints 1235-5744 1134-5246 1108-41781 73-13439

Nb. Freq 48 48 182-998 49-727

Density 0.01-0.07 0.01-0.06 0.01-0.6 0.006-1.22

Unary x

Binary x x x x

Polarization x x

N-ary x

Data source simplified academic modified modified

Table 3.1: Four Benchmarks of RLFAP

Comparing the four sets of instances, the number of variables and constraints, and the density, are relatively smaller

for CELAR and GRAPH. However the density is not sufficient to explain the structures of these benchmarks. With

the aid of graph visualization the differences among the benchmarks can be shown more clearly. The Figures 3.3 to

3.6 illustrate the difference in graph topology between these benchmarks on 4 particular instances. The topologies

of GRAPH, ROADEF2001 and SOES are quite similar but very different from CELAR which is really simplified.

Many CELAR instances are composed of branches with different densities in which there are several very dense

57

Chapter 3. IIS in frequency planning

subproblems. The visual graphs of GRAPH, ROADEF2001 and SOES instances look like nests, the nodes are strongly

connected with each other.

From these figures, we indicate for each instance one Infeasible Subset with bold lines. In higher density graphs

ROADEF2001 and SOES, the Infeasible Subsets are difficult to see due to the graph density. In the next section, we

present more details and a deeper analysis of each benchmark.

Fig. 3.3: Topology scen02 in CELAR Fig. 3.4: Topology graph03 in GRAPH

3.2 Benchmark description

The CELAR/GRAPH and ROADEF2001 are publicly available for all researchers. The reason for choosing CELAR/GRAPH

and ROADEF2001 for our work is that these benchmarks are widely adopted by the artificial intelligence and opera-

tional research communities to evaluate their algorithms. It provides an open platform to compare a new approach with

the existing approaches. The SOES benchmark is available privately during our research period. It is the evaluation

benchmark which allows us to compare the performance between DGA’s (Délégation Générale pour l’Armement) pre-

vious approach on Irreducible Infeasible Subset and our new proposal. In following sections, these four benchmarks

will be illustrated in detail.

58

Chapter 3. IIS in frequency planning

Fig. 3.5: Topology fapp16 in ROADEF2001 Fig. 3.6: Topology scen20 in SOES

3.2.1 Radio Link Frequency Assignment Problem - CELAR and GRAPH

The CELAR benchmark is a set of RLFAP instances defined in the framework of the European project EUCLID

CALMA (Combinatorial Algorithms for Military Applications) [92]. All problem instances have been built from an

unique real-life instance with 916 links and 5744 constraints (hard and soft).

The GRAPH instances (Generating Radio link frequency Assignment Problems Heuristically) have been proposed

by a group at Delft University of Technology. These instances are randomly generated by van Benthem [93], and hold

the same characteristics as CELAR instances. The GRAPH instances are similar to CELAR’s by their problem struc-

ture and their hardness but differ by further randomized constraints. Taking into account preliminary experimentation,

the author of GRAPH conjectures that instances generated by GRAPH are generally slightly harder to solve than the

CELAR ones.

The aim of both RLFAP benchmarks consist in assigning a limited number of frequencies to a set of radio links

defined between pairs of sites in order to minimize the number of frequencies used and the highest frequency used

if the problem is feasible, or to minimize a weighted sum of violated constraints if the problem is unfeasible [92].

The RLFAP is known to be very hard to solve, due to its close relation to the vertex coloring problem. Koster et al.

[94] prove (using a reduction from maximum satisfiability) that RLFAP is NP-hard. Each radio link is represented

by a variable whose domain is the set of all frequencies that are available for this link. Most constraints involve two

variables fi and fj such that:

59

Chapter 3. IIS in frequency planning

|fi − fj | > δij (3.1)

The two variables fi and fj represent two radio links with interference. The constant δij defines the spectrum

separation available for these links to avoid the interference, its value depends on the amount of interference between

them obtained by computing the SINR. In addition to these constraints there is an equality constraint for duplex links

between any couple of stations, the separation of frequency for duplex links must be exactly equal to 238.

Table 3.2 shows the characteristics of CELAR and GRAPH instances where Nb.V ar is the number of variables,

Nb.Ctr is the number of constraints, HighestFreq is the highest frequency used for each domain, AC column indi-

cates whether the instance is Arc-Consistent or not (C or INC) and density is the graph density. For our experiments,

the instances with the objective of minimum span have been converted to infeasible instances by removing several

upper frequencies from the domains, and the instance with minimum order are pruned from the benchmarks so we

only keep 9 GRAPH instances.

CELAR Nb. Var Nb. Ctr HighestFreq AC Density

scen01 916 5548 666 C 0.01

scen02 200 1235 380 C 0.06

scen03 400 2760 380 C 0.03

scen04 680 3967 666 INC 0.02

scen05 400 2598 666 INC 0.03

scen06 200 1322 792 INC 0.07

scen07 400 2865 792 INC 0.04

scen08 916 5744 792 INC 0.01

scen09 680 4103 792 INC 0.02

scen11 680 4103 666 C 0.02

GRAPH Nb. Var Nb. Ctr HighestFreq AC Density

graph03 200 1134 366 INC 0.06

graph04 400 2244 380 INC 0.03

graph05 200 1134 792 INC 0.06

graph06 400 2170 792 INC 0.03

graph07 400 2170 792 INC 0.03

graph10 680 3907 380 INC 0.02

graph11 680 3757 792 INC 0.02

graph12 380 4017 792 INC 0.06

graph13 916 5273 792 INC 0.01

Table 3.2: Characteristics of CELAR and GRAPH

60

Chapter 3. IIS in frequency planning

3.2.2 RLFAP with polarization - ROADEF2001

In the Frequency Assignment Problem with Polarization (FAPP), each radio link is assigned a frequency polarization

pair (fi, pi), where fi is the frequency on the transmitter i and pi is the polarity. The components of the pair repre-

sent the frequency carrying the transmitted signal and its wave polarization. Two signs +/- indicate the directions of

the polarization, which are the horizontal and vertical directions respectively. In the ROADEF2001 benchmark, the

constraints can be divided roughly into two categories - Imperative Constraints (IC) and Electromagnetic interference

Constraints (EMC) [95]. The IC constraints are regarded as constraints which should be absolutely satisfied. The IC

constraints can be classified into:

• Frequency equality or inequality constraint: fi = fj or fi 6= fj ,

• Interval equality or inequality constraint: |fi − fj | = εij or |fi − fj | 6= εij ,

• Polarity equality or inequality constraint: pi = pj or pi 6= pj .

Where εij is the authorized or non-authorized distance between two frequencies. In contrast to IC constraints,

the EMC constraints are considered as soft constraints which can be violated at a certain level. In the context of

ROADEF2001 challenge, the instances have 11 levels identified by an integer index k within a range [0, 10[. The level

0 indicates the strictest condition, and the level 10 means the most relaxed level.

|fi − fj | ≥











γ0ij ≥ γ1ij ≥ · · · ≥ γ10ij , if pi = pj

δ0ij ≥ δ1ij ≥ · · · ≥ δ10ij , if pi 6= pj

(3.2)

By introducing the polarization, each frequency has an option between two polarities, consequently, it increases

the complexity. Usually in the case of equality of polarities, the distance between two frequencies γkij defined by an

EMC constraint is larger than the case of the inequality distance δkij at the same level k. Two frequencies fi and fj

may not satisfy on an EMC constraint in the same direction of polarity, but may satisfy the condition in the case of a

polarities inequality. Based on Equation 3.2, if two frequencies polarization pairs (fi, pi) and (fj , pj) satisfy level k,

they also satisfy all relaxed levels from k, that is all levels greater than k. For example, if two pairs satisfy the level 7,

they strictly satisfy all the levels greater than 7, which are 8, 9 and 10.

An assignment of the FAPP problem consists of a set of the frequency and polarization pairs selected from the

available sets of frequencies and polarities of all radio links. An assignment is called a solution S, if it satisfies all the

imperative constraints. A solution S is said to be k-feasible, if S satisfies all the imperative constraints and all EMC

constraints at level k and all relaxed levels from k. A trivial level 11 is introduced in case that there is no consistent

solution at level 10. If there is no feasible solution at level 0 for an instance, ROADEF2001 defines three objectives

61

Chapter 3. IIS in frequency planning

in lexicographic order which are firstly to search for k∗, the smallest relaxation level for which a k∗-feasible solution

exists, secondly to minimize the number of EMC constraints not satisfied at level k∗ − 1 and lastly to minimize the

number of EMC constraints not satisfied at all levels lower than k∗ − 1.

The number of permutations for FAPP problem is
∏n

i |di| × |pi|, in which n is the number of transmitters, |di| is

the number of available frequencies for the transmitter i and |pi| is the number of polarities for the transmitter i. As

the k-coloring problem, the FAPP problem itself is NP-hard [86].

In Table 3.3, the basic characteristics of ROADEF2001 instances are presented. the columns 2,3 and 4 indicate the

size of instances with the numbers of variables, the numbers of constraints and the numbers of frequencies. The AC

level gives the highest level of Arc-Consistency for each instance, and Feasible level indicates the highest level of

instance for its feasibility (k feasible).

scen Nb. Var Nb. Ctr Nb. Val AC level Fea. level scen Nb. Var Nb. Ctr Nb. Val AC level Fea. level

fapp01 200 1108 190 3 4 fapp21 500 1589 242 4 4

fapp02 250 1636 210 2 2 fapp22 1750 16924 802 7 7

fapp03 300 2327 250 7 7 fapp23 1800 33337 302 9 9

fapp04 300 1799 270 1 1 fapp24 2000 14301 302 7 7

fapp05 350 2488 270 8 11 fapp25 2230 11974 302 3 3

fapp06 500 3478 290 5 5 fapp26 2300 12761 302 7 7

fapp07 600 4778 302 9 9 fapp27 2550 6231 242 5 5

fapp08 700 3834 282 5 5 fapp28 2800 12046 998 3 3

fapp09 800 4800 350 3 3 fapp29 2900 41781 998 6 6

fapp10 900 6071 362 6 6 fapp30 3000 33301 778 7 7

fapp11 1000 8005 362 8 8 fapp31 400 1644 700 3 5

fapp12 1500 13439 310 2 2 fapp32 550 5017 998 6 6

fapp13 2000 13669 190 3 3 fapp33 650 4631 498 5 5

fapp14 2500 21610 362 4 4 fapp34 750 4623 998 4 4

fapp15 3000 17754 182 5 5 fapp35 1500 11723 698 6 6

fapp16 260 2088 302 11 11 fapp36 2000 10067 454 7 7

fapp17 300 2056 302 4 4 fapp37 2250 22553 998 5 5

fapp18 350 2387 302 8 8 fapp38 2500 32622 698 3 3

fapp19 350 3114 802 6 6 fapp39 2750 12605 502 2 3

fapp20 420 2487 302 10 10 fapp40 3000 28313 698 4 4

Table 3.3: ROADEF2001

62

Chapter 3. IIS in frequency planning

3.2.3 RLFAP with polarization and n-ary constraints - SOES

SOES is the latest RLFAP benchmark proposed by the CELAR in 2008. These instances were delivered in the context

of a DGA (Délégation Générale pour l’Armement) project in which we were involved in a consortium (THALES,

SILICOM, ONERA, UTBM). The instances are based on real world problems modified to assess the performance of

operational research methods. The main novelty of this benchmark is that in addition to well-known unary and binary

RLFAP constraints, SOES contains also n-ary constraints. Polarization assignment is also included in the benchmark

in a different way from ROADEF2001 as the different polarities extend binary constraints in the form of:

|fi − fj | ∈















































∆++

ij , if the polarities of fi and fj are both vertical;

∆+−
ij , the frequency fi with vertical polarization, and the other with horizontal one;

∆−−
ij , if the polarities of fi and fj are both horizontal;

∆−+

ij , the frequency fi with horizontal polarization, and the other with vertical one;

(3.3)

If we only consider the equality and inequality of frequency polarities, the binary constraints are formulated as:

|fi − fj | ∈















∆=
ij , if equality of polarization;

∆ 6=
ij , if inequality of polarization;

(3.4)

Equations Equ 3.3 and Equ 3.4 describe the binary constraints with polarization in the SOES instances, accompa-

nying with the non-polarization variant (Equ. 3.5).

|fi − fj | ∈ ∆ij (3.5)

There are two types of n-ary constraints which are: the perturbation constraint (Equ. 3.6) and the intermodulation

constraint (Equ. 3.7),

∑

i

βipTip(|fi − fp|) 6 Bp (3.6)

|fp − (±αifi ± αjfj)| > ξ (3.7)

63

Chapter 3. IIS in frequency planning

where fp is the carrier frequency and fi and fj are used by the interfering signals. These constraints correspond to

a multiple interference case where the interfering signals generate a global interfering signal on the carrier. For pertur-

bation constraints, the threshold Bp indicates the expected reception quality, βip depends on the budget link between

the carrier and the interferer and Tip depends on the frequency separation between the carrier and the interferer. For

intermodulation constraints, the α coefficients generate intermodulation interference arising from two initial interfer-

ing frequencies. In this thesis, our objective in this benchmark is to find an Irreducible Infeasible Subset based on the

binary constraints exclusively, thus the n-ary constraints will not be used.

The sizes of SOES instances are shown in Table 3.4, where Nb.Fq is the number of available frequencies, V ars

is the number of variables and Ctrs is the number of constraints. The sizes of instances of SOES are largely different

from the ones in ROADEF2001 which are relatively smaller.

Scenario Nb. Fq Nb. Vars Nb. Ctrs Scenario Nb. Fq Nb. Vars Nb. Ctrs

SCEN 01 91 50 172 SCEN 11 100 770 4041

SCEN 02 123 47 185 SCEN 12 72 702 3623

SCEN 03 100 40 166 SCEN 13 700 182 3297

SCEN 04 143 16 73 SCEN 14 91 300 2593

SCEN 05 99 50 465 SCEN 15 155 1500 13439

SCEN 06 75 38 859 SCEN 16 727 121 840

SCEN 07 49 50 187 SCEN 17 71 568 4140

SCEN 08 49 50 197 SCEN 18 95 2000 13669

SCEN 09 50 48 229 SCEN 19 60 154 2928

SCEN 10 49 50 208 SCEN 20 577 249 2938

Table 3.4: SOES instances

3.3 A 2-phase algorithm to identify IIS

To best of our knowledge, the algorithm wcore proposed by Hemery et al. [61] is the first algorithm to detect an IIS

on CELAR and GRAPH instances. wcore adopts the satisfiability testing approach mentioned before, which embeds

a variable selection heuristic inside an exact satisfiability solver. The variables selection heuristic chooses the critical

variables during the MAC search and moves them toward the top of the search tree. The critical variables are measured

by the weights generated by a variable selection heuristic. An IIS is detected by proving the unsatisfiability on the

subset of selected variables.

This approach is very effective if the infeasibility of the instance is easy to prove. Thanks to the problem specific

techniques (unit propagation, clause learning, resolution graph) in SAT, the infeasibility of a SAT instance is relatively

64

Chapter 3. IIS in frequency planning

easier to be proven [62]. Unfortunately it is not always the case for RLFAP and FAPP, due to the complexity of the

instances.

In the previous chapter, we presented two algorithms as the candidates for identifying IIS in RLFAP and FAPP,

namely Removal and Insertion. Both algorithms are proposed by Galinier and Hertz [3] and adopted by Desrosiers et

al. [78] in detecting a critical subgraph of the k-coloring problem. They consist in iteratively executing an embedded

heuristic and identifying the critical constraints potentially belonging to an IIS. The embedded heuristic MinConflict()

is dedicated to minimize the sum of the violated constraints during the search.

The Removal algorithm removes the constraints one by one until the rest of the problem becomes feasible. The last

removed constraint causing the transition between the unsatisfiability to the satisfiability is recorded and put again into

the rest of problem as a critical constraint. During the iteration, MinConflict() will satisfy all the critical constraints a

priori by weighting them in its objective function. Removal stops when it fails to find a partial solution on all critical

constraints.

In contrast to Removal, Insertion considers one violated constraint as a critical constraint among all violated con-

straints found per iteration of MinConflict(). The rest of the violated constraints is directly pruned from the problem.

MinConflict() works in the same manner as in Removal. The procedure of Insertion stops when there is no partial so-

lution on all critical constraints. Theoretically, if MinConflict() fails to violate exactly one constraint per IIS, Insertion

has the risk to destroy the IIS by removing one more constraint from it.

Beside the Removal and Insertion algorithms, in the paper of Desrosiers et al. [78], the authors proposed another

algorithm called prefiltering. The algorithm can be illustrated as:

Algorithm 6: prefiltering [3]

input : a set of constraints C
output: a subset of constraints H ⊆ C forming an IS

H ← ∅, Cv ← ∅;1

repeat2

if Cv 6= ∅ then3

H ← H ∪ {Cv};4

Cv ← ∅;5

end6

Cv ←MinConflict(C,H);7

until H ∩ Cv 6= ∅ ;8

It is originally developed as a pre-procedure to reduce the size of instances. Comparing the pseudo-code of Insertion

and prefiltering algorithms, prefiltering puts all violated constraints Cv into the critical constraints set H and never

prunes the constraints from the whole constraint set C. With such a difference, prefiltering highlights all violated

65

Chapter 3. IIS in frequency planning

constraints found by MinConflict() and leverages their importance by converting them into the critical constraints set

H . By preserving all violated constraints per iteration, there is no risk to prune any constraints belonging to an IIS

from the problem. Thanks to such a feature, it has no risk to prune more constraints from IIS even with relatively poor

performance of MinConflict() on FAP instances.

Algorithm 7: 2-phase algorithm

input : a set of constraints C
output: a subset of constraints H ⊆ C forms an IS

H ← ∅, Cv ← ∅,WCv
← ∅;1

Given an initial solution on C;2

/* Construction phase */

repeat3

if Cv 6= ∅ then4

c← Select(Cv, H,WCv
);5

H ← H ∪ {c};6

H ← Saturate(H,C);7

end8

[WCv
, Cv]←MinConflict(C,H);9

until H ∩ Cv 6= ∅ ;10

/* Verification phase */

if MAC(H) infeasible then11

return subset constraints H;12

end13

We adopt the prefiltering algorithm and propose a 2-phase method to detect the IIS in CELAR instances [96]. The

algorithm (Algorithm 7) is composed by two phases - the construction phase and the verification phase. The construc-

tion phase will be mainly based on prefiltering algorithm which iteratively selects the violated constraint in Cv and

adds it into the critical constraint setH . Weights on violated constraintsWCv
will be generated by MinConflict() as the

indicator of the satisfaction difficulty [47]. The verification phase will consist in verifying the infeasibility/feasibility

of the constraints set H by an exact algorithm MAC(). Detailed information of these two phases will be presented in

following sections.

3.3.1 Construction phase

In the construction phase, MinConflict() stops when it cannot find a partial solution on the critical constraints set H .

It attempts to satisfy the constraints of H by introducing heavy weights on these constraints into its fitness function.

At same time, it minimizes the violation on the rest of constraints, denoted C \ H . The critical constraints set H is

66

Chapter 3. IIS in frequency planning

constructed iteratively by choosing one constraint per iteration from Cv which is the violated constraints subset found

by MinConflict(). The chosen constraint has the heavier weight in WCv
.

It is noticed that MinConflict() will be executed numerous times. Since only one constraint will be identified per

iteration, the number of executions of MinConflict() equals the number of critical constraints. It is evident that the

MinConflict() cannot be a costly procedure, otherwise the computational performance cannot be guaranteed.

In order to keep high performance on IIS identification, TabuCol [97] is chosen as a perfect candidate playing the

role of MinConflict(). TabuCol employs a critical 1-move neighborhood structure. In the FAP, we choose the same

strategy and only accept the move on the variables of violated constraints.

A slight difference from original TabuCol is that the MinConflict() need to respect the satisfaction on the constraints

in subset H . It appears that a dedicated objective function is needed for such purpose. The objective function needs to

distinguish the importance of critical constraints in H from constraints in C \H .

f = α× (|H|) + |Cv| (3.8)

In Equation 3.8, |H| is the number of violated critical constraints, |Cv| is the number of the violated constraints in

C except those in H , and α is a sufficient large constant which distinguishes the constraints in H from the constraints

in Cv . The value of α is set as the number of greatest node degree of the testing instance during the experiments, which

equals the maximal number of constraints involved on the same variable.

MinConflict() searches an assignment which has minimal cost on the above objective function and returns a violated

constraints subset Cv . The weights WCv
are generated by MinConflict() on all violated constraints Cv during the

search. The weights on violated constraints WCv
are carried out by measuring the difficulty of satisfaction during

search. The weight on each constraint will be initialized with zero and increased one unit in case that it is violated

during each iteration of Tabu. MinConflict() stops when the cost of the fitness function cannot be improved during a

given number of iterations. In our experiments, the maximal iteration is set to 1000.

Based on these weights, Select() chooses one violated constraint from Cv with the most weight in WCv
. Even

though is no direct evidence that the weighting system can identify correctly the constraints belonging to an IIS,

numerous studies show that the weighting system can guide the search toward the harder subproblem which may be

potentially an IIS [47], or indicate the subset of critical constraints which are hard to be satisfied together by heuristics

[65].

It is worth mentioning that the connectivity property of the IIS plays an important role in IIS identification. An

IIS is a connected subgraph in the context of constraint graph; if the construction of one IIS respects the connectivity

among the constraints, the construction will be effective instead of being misled by adding irrelevant constraints or

67

Chapter 3. IIS in frequency planning

constraints belonging to another IIS. When the first constraint of one IIS is identified, its adjacent constraints will be

considered during IIS construction.

3.3.2 Verification phase

The construction phase ends when MinConflict() cannot find a partial solution on the critical constraints subset H .

The constraint subset H will be handled by the verification phase for the unsatisfiability proof. MAC() sits within the

verification phase, and attempts to find a solution exclusively for the constraints subset H . If such solution does not

exist, we can conclude that the constraints in H form an IS.

Since the construction phase adopts an approximated approach, it is possible that the constraints in H may not

sufficiently form an IS. In such case, MAC() will carry out a consistent assignment on H and the 2-phase algorithm

will restart with the assignment as a partial solution for MinConflict() and enter again the construction phase.

3.3.3 Technique of saturation

In the construction phase, a specific procedure named Saturate() (Line 7) is adopted. It is an elegant technique which

forms an induced subproblem with little computational cost.

Essentially, the saturation procedure automatically completes the constraints among the critical variables. The sat-

uration technique travels all the critical variables and verifies its neighborhood variables to see if they are critical

variables or not. If there is a neighborhood critical variable found, the saturation will covert the constraints exclusively

on these critical variables into critical constraints.

The motivation is that there are a few Max-CSP solvers dealing with the minimization of variables violation instead

of the constraints violation in the literature. By completing the constraints among the critical variables, any constraint-

oriented Max-CSP solver can be loosely considered as a variable-oriented solver.

Another motivation is based on the fact that the constraints belonging to an IIS are identified one by one during

the executions of MinConflict(). Without any acceleration technique, ideally the number of MinConflict() executions

equals the number of constraints belonging to an IIS. With the saturation technique, the number of executions of

MinConflict() can be reduced substantially.

The Example 3.7 illustrates the mechanism of saturation. The graph contains 4 nodes {A,B,C,D} and 5 arcs

{a, b, c, d, e}. As mentioned before, the Selection() will select only one constraint per iteration as critical constraint.

68

Chapter 3. IIS in frequency planning

Suppose that after two iterations, the algorithm identifies two constraints a and b. With the saturation, the constraint

d linking the two variables {A,C} is converted to critical constraint automatically. Instead of three executions, the

saturation accelerates such procedure by requiring one less run of MinConflict(). In more complicated cases, the

number of executions can be reduced more quickly.

�
�

�

�

�

�

�

�

	

�
�

�

�

�

�

�

�

	

Fig. 3.7: Saturation

3.3.4 Preliminary analysis

The preliminary result of the above approach on the CELAR instances was reported in [96], accompanying with the

results of the wcore proposed by Hemery et al. [61]. The experiments were carried out on a computer with 3Gb of

memory and an Intel Core 2 Duo (T6300) 1.86GHz processor under Linux (Ubuntu 9.04) operating system. The

benchmark is the well known telecommunication instances set CELAR. Several highest frequencies in benchmark are

removed from the instances which makes the instances unsatisfiable. In Table 3.5, the first four columns describe the

detail information of examined instances. The HighestFreq indicates the highest available frequency for each instance.

The columns under wcore present the size of the IIS found by means of the number of variables and the number of

constraints, and the computational time. The columns under 2-phase indicate the minimal size of the IIS and minimal

execution time in 50 runs obtained by 2-phase algorithm, and the numbers in the parentheses are the maximal IIS size

and maximal execution time in 50 runs.

It is noticed that in the first five instances, the numbers of constraints in IIS obtained by the 2-phase are larger than

the one found by wcore. The reason is that 2-phase algorithm uses the saturation technique to complete all constraints

among the variables. Overall, 2-phase outperforms wcore by computational time on 3 instances for the same IIS of

variables set size. Regarding the IIS size, 2-phase found smaller IIS on 5 instances out of 10.

69

Chapter 3. IIS in frequency planning

Scenario description wcore 2-phase

CELAR Nb Vars Nb Ctrs Highest Freq IIS vars IIS ctrs Time(s) IIS vars IIS ctrs Time(s)

scen01 916 5548 666 10 25 828 10 (10) 44 (44) 102 (150)

scen02 200 1235 380 10 29 228 10 (10) 45 (47) 35 (45)

scen03 400 2760 380 9 28 208 9 (10) 35 (43) 59 (64)

scen04 680 3967 666 4 4 63 4 (5) 6 (11) 225 (292)

scen05 400 2598 666 4 4 40 5 (6) 6 (12) 162 (167)

scen06 200 1322 792 8 14 111 5 (5) 10 (12) 35 (55)

scen07 400 2865 792 9 16 112 5 (6) 10 (17) 98 (168)

scen08 916 5744 792 12 22 216 5 (8) 10 (25) 355 (480)

scen09 680 4103 792 9 21 150 5 (5) 10 (14) 210 (299)

scen11 680 4103 666 9 28 202 8 (10) 28 (57) 30 (70)

Table 3.5: Results comparison between wcore and 2-phase

Based on the comparison, despite the 2-phase algorithm detecting the smaller IIS in variable sizes, its computational

performance is not very impressive regarding Hemery et al.’s proposal. In this section, a computational consumption

analysis is presented to analyze the algorithm design problem in the 2-phase algorithm.

Our first step is to generate a performance profile of the two phases of the 2-phase algorithm which are construc-

tion and verification. MinConflict() is the main computation consumer in the construction phase, while MAC() plays

the same role on the verification phase. The time consumption of both procedures is illustrated in Figure 3.8. It is

quite obvious that the heuristic’s runtime consumption largely surpasses the exact one. Through analysis, two main

observations are revealed. Firstly, MinConflict() runs numerous times and always minimizes the fitness function on

all constraints C. The design choice is made on the theoretical analysis on Insertion mentioned at the beginning of

Section 3.3. Such a strategy avoids the risk of IIS destruction while it is a time consuming task. Further, comparing the

number of violated constraints found by MinConflict() and the total number of constraints in one IIS, it suggests that

there may exist more than one IIS inside the instance. The computation resource of the algorithm is used to search for

one IIS among all possibilities in the full problem.

Secondly, in case of satisfiability found by MAC, the solution on H will be preserved and considered as an initial

partial solution for the next run of the 2-phase algorithm. There are two reasons behind the consistency onH . First, the

constraints set H may intersect with or be included in an IIS. Second, the constraints set H may have no intersection

with an IIS at all. In the first case, the constraints in H are not sufficient to form an IIS. While in the second case, the

constraints in H have no interest in forming an IIS. By preserving the solution on H , the search efforts in both cases

are taken into account.

These observations suggest that the construction phase need to be divided into two parts specifically to emphasize

the location step: locating a constraint in one IS and constructing the IS around it. Instead of working on the entire

70

Chapter 3. IIS in frequency planning

98%

2%

MinConflict

MAC

Fig. 3.8: Time consuming of first attempt on CELAR scen01

problem with costly procedure, the IS construction will focus only on a small subproblem. In the next section, a new

general routine dedicated to IS identification on FAP instances will be introduced.

3.4 A general routine for Infeasible Subset (IS) identification - LCV

In this section, a general routine of IS identification will be introduced based on the drawbacks learned from previ-

ous experiments. The general routine consists of three independent components (see Figure 3.9) which are Locator,

Constructor and Verificator.

These three components cooperate sequentially to identify an IS inside an over-constrained problem. The sequence

can be described essentially as following: the locator scans the entire problem and attempts to locate a critical con-

straint potentially inside an IS; the constructor constructs a potential IS by adding one by one the adjacent constraints

around the constraint identified by locator; and finally, the verificator provides the proof of infeasibility of the sub-

71

Chapter 3. IIS in frequency planning

�������

���	��A����

BC�DE�����

F�A���

D��C�C��C��

���	D	�C��

	A������C�

�����C��D����

D����	D	�C��

�

�

�����	D	�C��

FD�	��

���	���D��

�

�����	D	�C��

Fig. 3.9: LCV general routine

problem built by the constructor. In order to ease the description of this approach, we introduce the notion of a core

which is a subproblem and potentially an IS.

It is noticed that when the unsatisfiability of core is proven, the core is an IS. The pseudo-code of LCV routine is

illustrated in Algorithm 8, where X and C are the variables set and the constraints set of the problem, C(x) and X(c)

indicate the constraints set on the variable x and the variables set under the constraint c, CCore and XCore denote the

subset of constraints and the subset of variables forming a core, Cv is the violated constraint set, WCv
is the weights

on the violated constraints Cv generated by BreakScan() algorithm (described later).

The general LCV routine is mainly an IS identification algorithm, also, there are two subroutines dedicated to

variables IIS and constraints IIS identification and they will be detailed in Section 3.5. In following sections, the three

components in LCV will be separately explained.

72

Chapter 3. IIS in frequency planning

Algorithm 8: LCV

input : a set of constraints C
output: an IS H
/* ===================== Locator */

if ArcConsistent(C) then1

[WCv
, Cv]← BreakScan(C);2

c← Select(WCv
, Cv);3

else4

x← FindDeadend(X,C);5

c← SelectCtr(C(x));6

end7

/* ===================== Constructor */

XCore ← X(c);8

repeat9

/* Extension */

ACore ← Assign(XCore);10

XCore ← Extend(XCore,ACore);11

if XCore is feasible then return XCore is a feasible problem;12

H ← ∅,Cv ← ∅;13

/* Centralization */

/* Extend() finds a deadend and fails to extend a partial solution */

CCore ← C(XCore);14

/* The following loop is the same as construction phase in 2-phase

algorithm */

repeat15

if Cv 6= ∅ then16

c← Select(Cv, H,WCv
);17

H ← H ∪ {c};18

H ← Saturate(H,CCore);19

end20

[WCv
, Cv,AH]←MinConflict(CCore, H);21

if Cv = ∅ then break; /* go to Line 31 */22

until H ∩ Cv 6= ∅ ;23

XCore ← X(H);24

ACore ← AH ;25

until H ∩ Cv 6= ∅ ;26

/* ===================== Verificator */

AH ←MAC(H);27

if AH infeasible then28

return subset constraints H;29

else30

XCore ← X(H);31

ACore ← AH ;32

Goto Line 11;33

end34

73

Chapter 3. IIS in frequency planning

3.4.1 Locator routine

At the end of Section 3.3.4, we have suggested that the IS search should be divided into two different procedures -

IS location and IS construction. The motivation behind is that the IS identification should exclusively deal with the

partial problem due to time consumption. In LCV, the locator sits right on the beginning of the routine to identify the

location of an IS. It is described by Algorithm 9.

Algorithm 9: Locator

input : a set of constraints C
output: one constraint c
if ArcConsistent(C) then1

[WCv
, Cv]← BreakScan(C);2

c← Select(WCv
, Cv);3

else4

x← FindDeadend(X,C);5

c← SelectCtr(C(x));6

end7

return c8

Based on above pseudo-code, the locator scans all constraints of the problem and identifies a specific constraint

potentially inside an IS. As in the 2-phase algorithm, such a constraint is selected among the violated constraints Cv

according to the weights WCv
(Select() in Line 3 of Algorithm 9). The weights WCv

are carried out by BreakScan()

which searches on entire problem. It is noticed that the Select() in the 2-phase algorithm accepts three parameters

Cv,WCv
, H , while the Select() in locator only accepts two parameters Cv,WCv

. These two functions will select the

first constraint c exclusively on its weight in WCv
. The difference is that after locating the first constraint c, 2-phase

starts to form H with the saturation process from c while locator stops immediately after finding c.

The slight difference is that after locating the first constraint, 2-phase continues forming H by selecting another

constraint c and locator stops to return directly the constraint c.

In the FAP instances, there may exist instances which are not consistent even at the Arc-Consistency level. Thus

an Arc-Consistency algorithm AC3 is deployed as a pre-filtering procedure. The integration of an AC algorithm is the

significant difference between locator and the construction phase in the 2-phase algorithm. Locator detects a deadend

(see Definition 18) by FindDeadend() in case that the instance is not consistent at the Arc-Consistency level. In theory,

a deadend variable is inside an IIS. The constraints which are adjacent with such a variable can be considered as a

candidate list for the IIS location. Heuristically, the constraint c pruning the last value in the domain of deadend

74

Chapter 3. IIS in frequency planning

variable will be chosen as the constraint potentially in an IIS by SelectCtr(). The AC3 domain filtering is exclusively

used in locator, and the domains of variables will be recovered after the location of the first constraint c.

For Arc-Consistent instances, the AC3 pre-processing procedure reduces the variables domains which may accel-

erate search in BreakScan() [98]. From Figure 3.10, the acceleration on searching the IIS on FAP instances with AC

pre-filtering is quite considerable.

��

���

���

���

���

����

����

����

�	AB��

�	AB��

�	AB�C

�	AB��

�	AB�D

�	AB��

�	AB�E

�	AB��

�	AB�F

�	AB��

������C

�������

������D

�������

������E

�������

�������

�������

������C

��
�
A
��
A
	
�

�	AB����

����������
��

Fig. 3.10: Comparison of LCV IIS search speed with and without AC3

If the instance is Arc-Consistent, the BreakScan algorithm will sit right after the AC3 algorithm to locate the first

constraint. Since in LCV only one constraint need to be located, it essentially requests the algorithm to scan all the

constraints and proposes a specific constraint which addresses the location of a potential IIS. Considering it is the only

component working on the entire problem, the locator algorithm should not be costly on time computing.

Algorithm 10 slightly changes the original approach of prefiltering by embedding a weighting system. The weights

WCv
on the violated constraints in Cv are generated by increaseOneUnitWeight() procedure during each iteration

of BreakScan with initialization to zero. The selected critical constraint c is the constraint with the maximal weight

in WCv
. Using a weighting system as a statistic learning technique is not a new idea in CSP resolution, despite its

simplicity, it intentionally guides the search toward the subset of critical constraints which are difficult to satisfy

together. The procedure stops when the localSearch() cannot find a solution satisfying all critical constraints in H .

The fitness function of localSearch() can be expressed as:

flocalSearch =
∑

i∈C

ψi ×Wi (3.9)

75

Chapter 3. IIS in frequency planning

Algorithm 10: BreakScan

input : a set of constraints C
output: a set of constraints Cv and a set of weights WCv

WCv
, H,Cv ← ∅;1

while H ∩ Cv = ∅ do2

if Cv 6= ∅ then3

WCv
← inceaseOneUnitWeight(Cv,WCv

);4

H ← H ∪ Cv;5

end6

Cv ← localSearch(C,WCv
, H);7

end8

Cv ← violatedCtrs(H);9

return Cv,WCv
10

where ψi is a boolean variable on the constraint ci, it equals 1 if the constraint ci is violated, 0 otherwise; Wi is

the weight of the constraint ci. By respecting the function, localSearch() attempts to minimize the violation on highly

weighted constraints. When localSearch() stops, it returns a set of violated constraints Cv which is equal to the final

set H . localSearch() stops after a given number of iteration fixed to 1000 without improvement. The local search

chosen to be embedded in BreakScan needs to be efficient.

As mentioned before, TabuCol can be considered as candidate for such role. It is interesting to compare it with an

even simpler local search and to see the impact between the quality of local search and the performance of BreakScan().

The simple local search we used for such comparison is a hill climbing local search which is created by simply remov-

ing the tabu list in TabuCol. The Figure 3.11 shows the results reported in [99], which demonstrates the performance

gains by replacing TabuCol by hill climbing. All the time consuming comparison is based on running entire LCV

algorithm with TabuCol or hill climbing heuristic as localSearch() in BreakScan() with same size of IS found.

The experiment is conducted without the AC3 pre-filtering procedure. It shows that the simple local search approach

has performance gains on 15 instances out of 19. We can conclude that even a simple Hill Climbing local search can

guarantee performance of LCV to search an IS under the guidance of the prefiltering algorithm. The future experiments

will be carried out exclusively with the Hill Climbing as localSearch() in locator.

3.4.2 Constructor routine

When the critical constraint c is identified by locator, the constructor is in charge of building a core around it. From

the experiment in [96], the 2-phase algorithm gave no impressive results in comparison with wcore approach. It may

be due to that wcore adopts a constructive approach in IIS construction while the 2-phase algorithm always works

76

Chapter 3. IIS in frequency planning

�

��

���

���

���

������

������

�����	

�����A

������

�����B

�����C

�����D

�����E

������

F�����	

F�����A

F������

F�����B

F�����C

F������

F������

F������

F�����	

��
�

�
��

�
�
�

��������

�������
���� �������F

Fig. 3.11: Comparison of LCV processing time with hill climbing and TabuCol as localSearch() in BreakScan()

on the entire problem. By dividing IS construction into locator and constructor, we may improve the performance.

Algorithm 11 is the routine of constructor which is a combination between an extension procedure and a centralization

procedure.

Firstly, we randomly assign the two variables of the initial constraint c with two consistent values to initialize

ACore. The extension Extend() works like DSatur, which attempts to assign one by one the variables adjacent with

the core XCore. The variable selection is based on MRV (Minimum Remaining Values) instead of DSatur’s color

saturation degree, and one available value in its domain will be assigned to the selected variable which is consistent

with the partial solution ACore on XCore. The procedure stops when Extend() finds a deadend variable, the deadend

variable will be added in XCore. Extend() returns the variables set XCore and the partial solution of the core. In case

Extend() finds a feasible core, constructor will return the core as a subproblem (see Line 5).

The centralization procedure is executed right after the extension to extract H from XCore issued from extension.

The centralization procedure uses the prefiltering algorithm in [78] to extract a critical constraint subset H from the

core constraints CCore. It stops when it cannot find a solution AH on H . i.e. there is at least one constraint violated

in H . In case that there is a feasible solution on CCore found during the centralization procedure, the constructor will

continue to extend the core by Extend().

Our preliminary analysis shows that the maximal constraint and variable size reduction reaches 80% on CELAR

and GRAPH instances with the centralization procedure. Comparing the bold lines in Figure 3.12, the first represents a

core CCore after the extension procedure and the latter is a critical constraint subset H processed by the centralization

procedure. We see that with the presence of the centralization procedure, the size of the core is greatly reduced to an

77

Chapter 3. IIS in frequency planning

Algorithm 11: Constructor

input : a set of constraints C, a located constraint c and a set of weights WCv

output: the core constraint set H
XCore ← X(c);1

repeat2

/* Extension */

ACore ← Assign(XCore);3

XCore ← Extend(XCore,ACore);4

if XCore is feasible then return XCore is a feasible problem;5

H ← ∅,Cv ← ∅;6

/* Centralization */

/* Extend() finds a deadend and fails to extend a partial solution */

CCore ← C(XCore);7

/* The following loop is the same as construction phase in 2-phase

algorithm */

repeat8

if Cv 6= ∅ then9

c← Select(Cv, H,WCv
);10

H ← H ∪ {c};11

H ← Saturate(H,CCore);12

end13

[WCv
, Cv,AH]←MinConflict(CCore, H);14

if Cv = ∅ then break; /* go to Line 17 */15

until H ∩ Cv 6= ∅ ;16

XCore ← X(H);17

ACore ← AH ;18

until H ∩ Cv 6= ∅ ;19

return H;20

acceptable scope for the unsatisfiability check. Comparing to the Algorithm 7, the new cooperation between locator

with constructor has significant performance gains even without the Arc-Consistency check in locator. Figure 3.13

shows the time consumption between the 2-phase algorithm and the LCV algorithm. The performance improvement

in time is significant on the CELAR instances, LCV outperforms the 2-phase algorithm on all 10 instances with the

same verification algorithm inside them. For the performance on IIS of variables size, LCV only found a larger IIS on

3 instances out of 10 in CELAR (see Table 3.5 and Table 3.6).

3.4.3 Verificator routine

The verificator is the final component in LCV which provides the infeasibility/feasibility proof of the critical constraints

subset H . The verificator is implemented by an exact search algorithm.

78

Chapter 3. IIS in frequency planning

���������	��	A���BCD�EC����

Fig. 3.12: CELAR scen02 extension to centralization

�

��

���

���

���

���

���

���

���

��	A��

��	A��

��	A��

��	A��

��	A��

��	A�B

��	A�C

��	A�D

��	A�E

��	A��

F�
�
	
��
	
�
�

��	A����

���
������	

Fig. 3.13: Time consuming between 2-phase and LCV

In Section 1.4, several exact algorithms were described and compared briefly. Among them, the MAC algorithm is

a good candidate to act as a verificator thanks to its effectiveness [30] and simplicity in implementation. It consists of

embedding an Arc-Consistency propagator inside a chronological backtracking routine. There is no overhead memory

management thanks to the effectiveness and efficiency of the propagator. As shown in Figure 3.9, the arrow from

verificator to constructor indicates the correctness routine if the feasibility on H is proven and the critical constraints

subsetH will be returned to constructor. A new core will be constructed aroundXCore. This routine is totally different

from the restart mechanism adopted in Algorithm 7, it guarantees that the previous effort will be used. Thanks to

79

Chapter 3. IIS in frequency planning

centralization in constructor, even if the core XCore grows, its size can still be reduced by the centralization process.

If verificator proves the unsatisfiability of H , LCV returns H as IS.

3.5 IIS of variables and IIS of constraints

In previous sections, we have presented LCV as an IS identification algorithm. Based on the result of LCV, we now

intend to identify an IIS inside the extracted IS. Following the definition of IIS, it is noticed that an IIS can be identified

as an IIS of variables or an IIS of constraints (see Definition 22 and Definition 23).

Based on IIS definition (see Definition 21), any IIS can be identified by removing one by one either the variable

or the constraint from an IS. We attempt to iteratively identify a smaller IS inside one IS until no smaller IS can be

found. The routine of IIS of variables and IIS of constraints detectors can be briefly described in Figure 3.14. The

two detectors iteratively consider the output IS of the previous stage as input IS for the current stage. The procedure

stops when the size of variables or constraints set cannot be reduced. In the next section, two detectors named IIS of

variables and IIS of constraints detector will be detailed.

�������������

		A�BC�DCEF������

		A�������CD���

AD������	A�

��������

	A

	A���������

���

��

		A

Fig. 3.14: Routine of IIS detectors

80

Chapter 3. IIS in frequency planning

3.5.1 IIS of variables detector

Based on the pseudo-code in Algorithm 12, the detector can be divided into two parts, the locate core and construct

core. The IIS of variables detector firstly locates a small critical constraint subset H inside the entering IS. The locate

core procedure is the implementation of prefiltering in [78] with the embedded saturation technique. The saturation

procedure (see Saturate()) is used to complete all the constraints among the critical variables.

Secondly, the detector iteratively adds one x into the located core formed by the critical variablesXH and the critical

constraints H . The variable selection is based on the MRV heuristic. The procedure stops when MAC() algorithm

proves that the core is unsatisfiable.

Since the algorithm uses heuristics to add the variables into the core, the final output can be only considered as

an approximated IIS. The detector will be executed iteratively until the variables set sizes of input IS and output

approximated IIS are equal.

Algorithm 12: IIS of variables detector

input : an IS Core
output: an approximated IIS of variables XH

H ← ∅,Cv ← ∅;1

/* locate core */

repeat2

H ← H ∪ Cv;3

H ← Saturate(H,Core);4

Cv ←MinConflict(Core,H);5

until Cv ∩H 6= ∅ ;6

XH ← X(H);7

/* construct core */

while MAC(H) feasible do8

if there is no c ∈ X(Core) \XH then return XH ;9

x←MRV (X(Core) \XH);10

XH ← XH ∪ {x};11

end12

return XH ;13

3.5.2 IIS of constraints detector

Following the strategy adopted in [78], the IIS of constraints will be identified on the basis of IIS of variables. When

IIS of variables identifies an approximated IIS, IIS of constraints detector will locate a core exclusively based on the

81

Chapter 3. IIS in frequency planning

critical constraintsH without saturation. After the core is located, the detector attempts to iteratively add one constraint

into the core until the core H becomes infeasible.

Regarding the pseudo-code in the locate core procedure of Algorithm 13, the slight difference from IIS of variables

detector is the absence of saturation. In construct core procedure, the constraint c is chosen among the constraints

set adjacent with the variable chosen by MRV (see MAC()). In order to minimize the size of the constraints set, the

saturation technique is not applied here.

Algorithm 13: IIS of constraints detector

input : an IS Core
output: an approximated IIS of constraints H
H ← ∅,Cv ← ∅;1

/* locate core */

repeat2

H ← H ∪ Cv;3

Cv ←MinConflict(Core,H);4

until Cv ∩H 6= ∅ ;5

/* construct core */

while MAC(H) feasible do6

if there is no c ∈ Core \H then return H;7

c←MRV (Core \H);8

H ← H ∪ {c};9

end10

return H;11

Both detectors can still provide high performance thanks to the size of critical constraints subset H , it is noticed

that MAC is heavily executed. In the next section, the experimental results conducted on IIS identification by LCV and

the two IIS detectors will be detailed and analyzed.

3.6 Experimental results

For both LCV, and wcore [61], proposed by Hemery et al., experimental results were carried out on an Intel Core

2 Due E5300 (2.6GHz) machine with 3.2Gb memory under linux (Ubuntu distribution). The proposed approach is

implemented in C++ and compiled by GCC. The reference method wcore proposed by Hemery et al. is coded in Java.

The minimum and average execution times on each instance are measured for 5 executions. All results presented as

IIS are an approximated IIS.

82

Chapter 3. IIS in frequency planning

3.6.1 Results for CELAR and GRAPH

All the results here are carried out on the CELAR and GRAPH benchmarks by LCV and wcore algorithm. The version

of wcore is the faster version found on the authors’ website which is different from the version used in Section 3.3.4.

Table 3.6 gives the results on IS and IIS of variables obtained by LCV. Table 3.7 compares the results of IIS of

constraints obtained by both algorithms. In Table 3.7, the computational time obtained by wcore is measured by one

run on each instance since it is a deterministic algorithm. For both Table 3.6 and Table 3.7, the computational times

obtained by LCV are indicated separately by minimum runtime and average runtime obtained in 5 runs for each

instance. In Table 3.7, wcore fails to find an IIS on graph03 and graph10 (represented by ”–”). The success rate of LCV

on CELAR/GRAPH is 100% for all instances.

LCV IS LCV+detector IIS Var

CELAR Var Ctr Min(sec) Ave(sec) Var Ctr Min(sec) Ave(sec)

scen01 10(12.4) 44(56.4) 17.16 18.77 10(10) 44(44) 17.9 20.62

scen02 10(12) 45(64.4) 4.38 5.39 10(11) 45(54.4) 7.01 7.61

scen03 10(10) 43(44.2) 6.05 6.08 10(10) 43(44.2) 6.82 7.72

scen04 4(4) 6(64.4) 0.36 0.36 4(4) 6(6) 0.55 0.59

scen05 4(4) 6(64.4) 0.36 0.36 4(4) 6(6) 0.59 0.63

scen06 5(5) 10(10) 1.73 1.94 5(5) 10(10) 2.04 2.41

scen07 8(8.4) 22(24.8) 2.12 3.99 8(8) 22(22) 3.19 5.81

scen08 9(12) 26(42.7) 4.69 5.33 7(7.7) 17(23) 7.39 9.24

scen09 7(9.4) 19(33.8) 1.22 3.02 5(6.5) 10(17) 3.85 4.81

scen11 8(8) 28(28) 11.48 12.23 8(8) 28(28) 12.43 13.54

LCV IS LCV+detector IIS Var

GRAPH Var Ctr Min(sec) Ave(sec) Var Ctr Min(sec) Ave(sec)

graph03 4(5.2) 4(7.4) 0.19 0.43 4(4) 4(44) 0.54 0.81

graph04 3(3) 2(24.8) 0.15 0.17 2(2) 1(10) 0.15 0.17

graph05 7(7.8) 9(12.2) 1.36 1.36 7(7.7) 9(9) 1.36 1.36

graph06 7(7.4) 17(23.2) 4.25 4.34 4(6.6) 6(8) 4.46 8.27

graph07 12(19) 28(29.2) 2.81 4.03 4(4.5) 6(8) 3.97 4.43

graph10 2(2) 1(10) 0.2 0.2 2(2) 1(10) 0.19 0.19

graph11 6(9.4) 15(23.6) 1.73 2.63 4(5.2) 6(11.2) 3 3.22

graph12 6(6.8) 11(11.4) 0.93 3.19 5(5) 9(9) 3.52 4.91

graph13 4(4) 6(64.4) 0.46 0.54 4(4) 6(6) 0.69 0.81

Table 3.6: Results on IS and IIS of variables obtained by LCV

In Table 3.6, the V ar and Ctr columns represent the minimal IS and IIS sizes for all instances on 5 runs, and the

average size of IS and IIS is in parentheses. For most of the instances in GRAPH, the LCV+IIS of variables detector

algorithm highlights its effectiveness on variables and constraints reduction.

83

Chapter 3. IIS in frequency planning

It is noticed that LCV alone is quite effective on IIS variables identification. LCV+detector only finds 7 instances

with smaller size of IIS than the IS found by LCV (see highlighted numbers under column sixth and seventh). Among

these 7 instances, only graph06 and graph07 have significant improvement on IIS size. The time consumption for

the IIS of variables detector is minor when we compare the average time of LCV alone and the average time of the

LCV+detector, the maximal time consumption of the detector occurs on instance scen01 with less than 2 seconds for

the same size between IS and IIS.

Table 3.7 shows the IIS of constraints size and computational time comparison between LCV+detector and wcore.

The minimal size of IIS of constraints found on 5 runs is shown under the columns V ar and Ctr and the average size

found on 5 run is shown in parentheses. Regarding the computational time, LCV outperforms wcore on all instances

except 2 (graph06 and graph07) on average time in 5 runs, its minimum time surpasses wcore on all instances. Re-

garding the number of constraints in the IIS of constraints, wcore obtains a smaller number of constraints on only 4

instances out of 19. Among them, two instances (graph06 and graph07) have larger variables numbers in the IIS of

constraints than the one found by LCV.

Table 3.8 extracts the results of the IIS of variables and the IIS of constraints obtained by LCV+detector from

Table 3.6 and Table 3.7. It is noticed that the IIS of constraints detector can still effect the results of IIS of variables.

For all 19 instances, the IIS of constraints detector reduces the number of constraints on 10 instances. On the other

hand, with the IIS of variables detector alone, we can always get an IIS with relatively small size.

Figure 3.15 shows LCV’s average runtime is very good comparing to the wcore approach except in two instances.

Referring to the minimal runtime in Table 3.7, the LCV’s performance surpasses the compared method on all instances

and the maximal gain reaches 95%.

In Figure 3.16, we plot the performance gains on the sizes of the IIS for the number of variables in red and the

number of constraints in green between LCV and wcore. The performance loss can only be found on 4 instances out of

19, particularly when we compare the constraints sizes. The sizes of variables in IIS obtained by LCV are either equal

or less than the one found by wcore.

Next we generate LCV algorithm profile of runtime on two CELAR instances. Figure 3.17 shows the runtime profile

of three components in LCV on instance scen01, Figure 3.18 shows the runtime profile on instance scen08. It needs to

notice that the scen01 is consistent at the Arc-Consistency level, while scen08 is inconsistent. Comparing Figures 3.17

and 3.18, it is obvious that locator consumes the major part of runtime on scen01, while on scen08, the constructor

is more involved. Since scen08 is not consistent at the AC level, the AC3 algorithm in locator can efficiently find

a deadend variable and locate an IIS, while on scen01, locator needs to call Breakscan to locate the IIS which is a

more time consuming procedure. In scen08, thanks to the location of the deadend variable, the unsatisfiability of IIS

84

Chapter 3. IIS in frequency planning

wcore IIS Ctr LCV+detector IIS Ctr

CELAR Var Ctr Time(sec) Var Ctr Min(sec) Ave(sec)

scen01 10 25 30.33 10(10) 27(27.2) 19.47 22.49

scen02 10 29 18.02 10(11) 18(23) 9.42 10.98

scen03 10 29 20.47 10(10) 18(19.2) 10.21 12.22

scen04 4 4 9.87 4(4) 4(5) 1.07 1.95

scen05 4 4 7.81 4(4) 5(5.2) 1.22 1.31

scen06 8 14 17.91 5(5) 7(7.2) 2.65 3.25

scen07 9 16 17.22 8(8) 16(17.3) 7.05 7.95

scen08 12 22 22.07 7(7.7) 13(17) 8.76 11.5

scen09 7 14 14.97 5(6.5) 10(14.7) 4.18 6.2

scen11 8 28 22.88 8(8) 28(28) 13.95 15.12

wcore IIS Ctr LCV+detector IIS Ctr

GRAPH Var Ctr Time(sec) Var Ctr Min(sec) Ave(sec)

graph03 – – – 4(4) 3(3.4) 0.85 0.95

graph04 4 3 5.27 2(2) 1(1) 0.19 0.21

graph05 8 11 10.96 7(7.8) 9(12.2) 1.36 1.36

graph06 5 5 9.6 4(4.3) 6(7.2) 5.8 10.33

graph07 5 5 9.53 4(4.3) 6(7) 5.15 10.25

graph10 – – – 2(2) 1(1) 0.22 0.23

graph11 6 6 11.43 4(5.2) 6(7.4) 3.24 3.83

graph12 7 8 12.04 5(5.2) 7(7.6) 4.25 5.79

graph13 10 17 20.79 4(4) 6(6) 0.94 1.05

Table 3.7: Results comparison between wcore and LCV on IIS of constraints

is not very difficult to prove. In scen01, verificator uses significant time to prove the unsatisfiability on a smaller over

constrained critical constraints subset.

From the comparison, the proposed LCV+detector algorithm surpasses the performance of wcore on both IIS size

and computational time. On the instances consistent at the AC level, as mentioned before, wcore consists of embed-

ding a variable selection heuristic inside a MAC (Maintaining Arc-Consistency during search). It suffers from the

ordering of assigned variables in its MAC backtracking algorithm. LCV adopts a totally different approach which

scans all constraints of the entire problem and proposes a critical constraint potentially inside an IIS which avoids the

impact of variables ordering during the search. For the instance inconsistent at AC level, LCV’s locator can efficiently

locate a deadend variable which is absolutely inside an IIS. Such a strategy dramatically improves the computational

performance.

85

Chapter 3. IIS in frequency planning

IIS Vars IIS Ctr IIS Vars IIS Ctr

CELAR Var Ctr Var Ctr GRAPH Var Ctr Var Ctr

scen01 10 44 10 27 graph03 4 4 4 3

scen02 10 45 10 18 graph04 2 1 2 1

scen03 10 43 10 18 graph05 7 9 7 9

scen04 4 6 4 4 graph06 4 6 4 6

scen05 4 6 4 5 graph07 4 6 4 6

scen06 5 10 5 7 graph10 2 1 2 1

scen07 8 22 8 16 graph11 4 6 4 6

scen08 7 17 7 13 graph12 5 9 5 7

scen09 5 10 5 10 graph13 4 6 4 6

scen11 8 28 8 28

Table 3.8: IIS of variables and IIS of constraints detectors comparison

���

�

��

��

��

��

���

���

�	AB��

�	AB��

�	AB�C

�	AB��

�	AB�D

�	AB��

�	AB�E

�	AB��

�	AB�F

�	AB��

�������

������D

�������

������E

�������

�������

������C

�
�
�B
��

�

�	AB����

���B
����

Fig. 3.15: LCV+IIS of constraints detector on average runtime compared to wcore

3.6.2 Results for ROADEF2001 challenge

In this section, we give the results on the instances of ROADEF2001 challenge which were carried out by our LCV

with both IIS variables and IIS of constraints detectors. We also used wcore on these instances but it failed to find any

IIS in 1000 seconds. Thus we will only present the computational results obtained by our approach.

86

Chapter 3. IIS in frequency planning

���

��

���

���

���

���

����

	ABC��

	ABC��

	ABC�D

	ABC��

	ABC�E

	ABC��

	ABC�F

	ABC��

	ABC��

	ABC��

�������

������E

�������

������F

�������

�������

������D

�
�
�C
��

�

	ABC����

���	
���	

Fig. 3.16: LCV IIS of constraints size gain compared to wcore

59%

8%

33%

locator

constructor

verificator

Fig. 3.17: CELAR scen01 LCV profile

35%

62%

3%

locator

constructor

verificator

Fig. 3.18: CELAR scen08 LCV profile

Regarding all the results based on minimum IIS found (see Figure 3.19), LCV fails to find an IIS on 4 instances

out of a total of 220 instances (N/A results represented by ”–”). The success rate of LCV on 216 instances is 100%

on 5 runs. On 77 of the 216 success instances, the IIS of variables detector extracts an IIS size less than the size of

IS found by LCV (orange part in left histogram). The right histogram presents the results of IIS constraints detector

on the basis of IIS of variables detector results on these 77 instances. For 18 of those 77 instances, IIS of constraints

detector reduces the constraints set size on the basis of IIS of variables found by IIS of variables detector (represented

by IIS constraints reduction). It is noticed also with IIS of constraints detector that there are 21 of those 77 instances

which even extract smaller IIS of variables set size from IIS of variables detector results. All improvements from the

87

Chapter 3. IIS in frequency planning

IIS constraints detector are highlighted in Tables 3.10 and 3.11. These 21 instances indicate that the IIS of variables

detector loses its effectiveness on IIS detection. Sometimes, the IIS of variables detector did not find an IIS, instead

it finds an IS. The strategy of adding variables to core in the IIS of variables detector is not always effective when

compared to the removing variables technique described in the literature [62].

�

��

���

���

���

���

��
��
�

	AB
CCDEF���E����F����

�����
CCDE����E���EF���E����F����

����ECDE���E��

CCDE���������

����F���

����ECCDE���������E

����F���E��ECCDE

F����������E����F���

Fig. 3.19: Overall performance on IIS size for ROADEF2001

Regarding all results on the 40 scenarios including different levels (from fapp01 to fapp40), they can be classified

into two categories (see Table 3.9). There are 16 scenarios in first class A, whose sizes of IIS are increasing with

the increasing restriction level despite a few exceptions. For the class B of 24 scenarios, the sizes of IIS are either

decreasing with the increasing restriction level, or not related to the level. Since restriction level 0 is the most strict one

and the variables are strongly under constrained, it explains that the situation happened in class A. The IIS grows its

size when the constraint relaxation is taking place. Class B contains the scenarios whose size of IIS decreases with the

increasing of level. This is mainly caused by locator. With the relaxation of restriction level, the search locates different

IIS inside these problems. So we can identify that there are different categories of problem property in ROADEF2001

instances for IIS identification.

Tables 3.10 and 3.11 show all results obtained by LCV on the ROADEF2001 instances at their infeasible levels.

Under the column ”instance level”, the name of the instances and the levels examined are listed. The three main

columns - IS, IISvars and IISctrs represent the results obtained by LCV alone, LCV with the IIS of variables

88

Chapter 3. IIS in frequency planning

Scenario Class Scenario Class Scenario Class Scenario Class

fapp01 A fapp11 A fapp21 B fapp31 B

fapp02 B fapp12 B fapp22 B fapp32 A

fapp03 B fapp13 B fapp23 B fapp33 A

fapp04 B fapp14 B fapp24 B fapp34 B

fapp05 A fapp15 B fapp25 A fapp35 A

fapp06 B fapp16 A fapp26 B fapp36 B

fapp07 B fapp17 B fapp27 A fapp37 B

fapp08 A fapp18 B fapp28 B fapp38 A

fapp09 A fapp19 A fapp29 B fapp39 A

fapp10 A fapp20 A fapp30 B fapp40 B

Table 3.9: Results classification of ROADEF2001

detector and LCV with IIS of constraints detector on the basis of IIS of variables. The column V indicates the number

of variables, C indicates the number of constraints and T the average computing runtime in seconds on 5 runs.

89

Chapter 3. IIS in frequency planning

IS IIS vars IIS ctrs

instance level V C T(sec) V C T(sec) V C T(sec)

fapp01 0 8 12 6.26 3 3 6.82 3 3 7.03

1 7 9 10.71 7 9 12.92 7 9 15.66

2 14 19 110.43 7 7 113.12 7 7 114.04

3 16 19 75.29 7 7 87.71 7 7 88.6

fapp02 0 3 3 1.6 3 3 1.83 3 3 1.98

1 3 3 2.94 3 3 3.08 3 3 3.31

fapp03 0 8 8 4.29 8 8 6.21 8 7 7.16

1 7 8 3.42 7 8 3.88 6 5 5.03

2 4 4 3.24 3 3 4.18 3 3 4.65

3 3 3 2.66 3 3 2.81 3 3 2.97

4 3 3 3.99 3 3 4.22 3 3 4.44

5 3 3 4.98 3 3 5.21 3 3 5.37

6 3 3 9.8 3 3 10.03 3 3 10.18

fapp04 0 3 3 5.05 3 3 5.46 3 3 5.89

fapp05 0 9 9 8.17 9 9 17.52 6 5 19.37

1 11 12 21.56 11 12 29.77 11 11 33.29

2 17 18 27.63 7 7 62.75 7 7 63.93

3 13 15 13.43 11 13 36.15 11 11 58.36

4 15 24 25.84 7 7 30.46 7 7 31.33

5 16 20 33.62 7 7 52.5 7 7 53.77

6 9 9 43.55 9 9 65.26 9 9 86.88

7 14 16 86.55 9 10 90.05 7 7 93.53

8 14 16 94.31 14 16 101.87 14 14 120.02

9 19 23 72.56 12 12 86.88 12 12 91.1

10 16 20 57.05 15 18 74.78 12 12 96.69

fapp06 0 4 4 4.77 3 3 5.28 3 3 5.44

1 3 3 8.87 3 3 9.03 3 3 9.27

2 4 4 10.89 3 3 11.45 3 3 11.68

3 3 3 15.31 3 3 15.46 3 3 15.7

4 10 10 73.75 3 3 75.9 3 3 76.52

fapp07 0 3 3 1.85 3 3 2.14 3 3 2.43

1 4 3 4.01 4 3 5.66 4 3 6.16

2 5 4 5.17 5 4 41.25 5 4 41.78

3 4 3 2.73 4 3 49.11 4 3 49.62

4 4 3 7.02 4 3 10.17 4 3 10.56

5 6 5 4.51 5 4 6.7 5 4 7.47

6 3 3 6.51 3 3 6.74 3 3 6.97

7 4 5 3.47 3 3 3.91 3 3 4.06

8 3 3 6.61 3 3 7.7 3 3 8.52

fapp08 0 3 3 6.84 3 3 7.24 3 3 7.4

1 3 3 5.88 3 3 6.03 3 3 6.18

2 3 3 5.68 3 3 5.83 3 3 5.98

3 6 6 21.5 5 5 26.71 5 5 29.38

4 7 7 52.41 7 7 52.99 7 7 53.47

fapp09 0 5 4 18.29 3 3 19.16 3 3 19.46

1 8 7 68.57 3 3 69.7 3 3 70.11

2 7 7 21.13 4 4 22.44 4 4 22.77

fapp10 0 5 4 11.91 5 4 13.27 5 4 13.97

1 5 5 13.29 5 5 13.72 5 5 14.33

2 3 3 17.53 3 3 17.69 3 3 17.94

3 4 4 8.29 4 4 10.01 4 4 10.36

4 5 5 37.71 5 5 37.94 5 5 38.25

5 8 8 32.13 6 6 32.89 6 6 33.33

fapp11 0 4 3 2.64 4 3 4.2 4 3 5.39

1 3 3 11.41 3 3 13.42 3 3 14.19

2 3 3 20.34 3 3 21.11 3 3 21.66

3 3 3 16.63 3 3 17.18 3 3 17.74

4 7 6 57.08 5 5 60.18 5 5 60.88

5 3 3 34.08 3 3 34.62 3 3 35.18

IS IIS vars IIS ctrs

instance level V C T(sec) V C T(sec) V C T(sec)

fapp11 6 3 3 30.85 3 3 31.87 3 3 32.42

7 6 6 51.82 6 6 52.46 6 6 53.1

fapp12 0 3 3 13.2 3 3 13.87 3 3 14.8

1 3 3 96.61 3 3 97.34 3 3 98.08

fapp13 0 9 10 7.93 3 3 8.77 3 3 8.97

1 3 3 10.72 3 3 11.04 3 3 11.35

2 3 3 9.73 3 3 10.05 3 3 10.27

fapp14 0 5 5 53.72 4 4 54.35 4 4 54.6

1 13 13 163.46 7 7 164.69 7 7 165.05

2 4 4 132.75 3 3 133.19 3 3 133.5

3 9 9 126.41 8 8 127.24 8 8 127.54

fapp15 0 3 3 25.5 3 3 25.64 3 3 25.78

1 5 5 35.38 5 5 35.62 5 5 35.94

2 4 4 57.24 3 3 57.74 3 3 57.93

3 3 3 25.26 3 3 25.45 3 3 25.72

4 6 6 64.46 5 5 65.12 5 5 65.28

fapp16 0 4 3 1.16 4 3 1.57 4 3 1.77

1 4 3 0.49 4 3 0.69 4 3 0.83

2 4 3 2.14 4 3 2.55 4 3 2.7

3 4 3 1.16 4 3 1.38 4 3 1.6

4 5 5 1.26 5 5 3.83 5 5 4.16

5 5 5 1.61 5 5 1.93 5 5 2.26

6 6 6 1.6 5 5 2.68 5 5 3

7 5 4 1.22 5 4 1.58 5 4 1.78

8 5 4 1.23 5 4 1.68 5 4 2.06

9 5 4 1.76 5 4 2.12 5 4 2.4

10 5 4 2.2 5 4 2.49 5 4 2.78

fapp17 0 6 6 4.03 4 4 5.25 4 4 5.58

1 5 5 7.44 4 4 8.65 4 4 8.92

2 5 5 5.4 5 5 6.14 5 5 6.9

3 4 4 8.54 4 4 9.92 4 4 10.46

fapp18 0 4 5 2.59 3 3 3.06 3 3 3.19

1 5 6 2.6 5 6 2.93 5 4 3.47

2 4 5 3.24 4 5 3.75 4 4 4.5

3 4 4 2.59 4 4 2.75 4 4 2.92

4 3 3 3.45 3 3 3.72 3 3 3.93

5 4 4 2.57 4 4 2.73 4 4 2.9

6 4 5 3.06 3 3 3.52 3 3 3.66

7 13 14 5.64 9 10 6.83 7 6 8.06

fapp19 0 5 5 7.57 5 5 10.49 5 4 16.58

1 5 5 7.83 5 5 14.43 5 4 20.5

2 5 5 11.41 5 5 21.13 5 4 27.43

3 5 5 23.82 5 5 29.4 5 4 34.68

4 5 5 8.4 5 5 13.33 5 4 19.57

5 11 16 13.26 7 8 30.29 6 5 36.66

fapp20 0 7 9 3.27 7 9 5.01 4 4 7.01

1 3 3 3.17 3 3 3.71 3 3 4.26

2 6 6 5.76 6 6 9.71 6 6 10.47

3 4 5 10.68 4 5 11.17 4 4 12.34

4 11 10 5.58 6 5 14.59 6 5 14.92

5 15 18 4.05 8 8 10.73 6 6 12.98

6 6 6 10.1 6 6 10.79 6 5 12.04

7 6 6 12.93 6 6 13.45 6 6 14.19

8 15 18 5.69 12 14 25.06 12 13 26.63

9 21 29 3.52 21 29 4.95 9 8 12.42

fapp21 0 3 3 5.81 3 3 6.07 3 3 6.25

1 3 3 5.69 3 3 5.86 3 3 6.04

2 3 3 10 3 3 10.21 3 3 10.35

3 3 3 10.11 3 3 10.32 3 3 10.46

Table 3.10: ROADEF2001 results

90

Chapter 3. IIS in frequency planning

IS IIS vars IIS ctrs

instance level V C T(sec) V C T(sec) V C T(sec)

fapp22 0 5 4 28.68 5 4 33.73 5 4 42.11

— 1 11 10 11.52 5 4 19.71 5 4 21.99

2 15 13 15.31 11 10 87.15 11 10 145.41

3 5 4 29.59 5 4 31.86 4 3 36.48

4 12 9 10.54 6 5 15.24 4 3 21.63

5 5 4 15.28 5 4 19.8 5 4 21.58

6 9 8 37.75 7 6 47.05 7 6 51.91

fapp23 0 10 9 7.71 4 3 10.33 4 3 11.09

1 15 14 6.98 4 3 8.41 4 3 9.17

2 9 8 7.03 4 3 9.55 4 3 10.44

3 7 6 10.29 4 3 12.87 4 3 13.64

4 3 3 5.55 3 3 6.23 3 3 6.93

5 3 3 6.75 3 3 7.43 3 3 8.13

6 3 3 5.56 3 3 6.26 3 3 6.95

7 3 3 5.55 3 3 6.26 3 3 6.95

8 3 3 5.55 3 3 6.22 3 3 6.9

fapp24 0 6 5 64.01 6 5 80.72 6 5 80.99

1 4 3 19.14 4 3 19.9 4 3 20.02

2 4 3 31.38 4 3 32.57 4 3 32.69

3 3 3 27.14 3 3 27.37 3 3 27.53

4 3 3 26.82 3 3 27.14 3 3 27.29

5 3 3 29.23 3 3 29.39 3 3 29.69

6 6 6 40.68 6 6 41.35 6 6 42.33

fapp25 0 3 3 12.03 3 3 12.19 3 3 12.35

1 3 3 12.06 3 3 12.2 3 3 12.44

2 11 9 28.37 4 4 29.73 4 4 30

fapp26 0 4 4 35.93 4 4 36.16 4 4 36.41

1 10 11 40.33 10 11 51.5 9 9 61.18

2 8 7 45.49 6 6 46.74 6 6 47.25

3 4 4 33.83 4 4 34.1 4 4 34.38

4 8 6 176.98 4 4 180.29 4 4 181.83

5 7 7 115.92 7 7 117.43 7 7 119.41

6 5 5 87.58 4 4 99.01 4 4 100.95

fapp27 0 3 3 30.02 3 3 30.3 3 3 30.59

1 5 5 31.84 4 4 32.78 4 4 33.17

2 8 8 75.89 6 6 76.54 6 6 76.83

3 18 17 133.65 6 6 134.91 5 5 135.4

4 19 19 59.14 9 9 66.44 7 6 68.64

fapp28 0 4 3 144.65 4 3 145.37 4 3 146.11

1 4 3 145.73 4 3 146.45 4 3 147.2

2 4 3 157.96 4 3 158.68 4 3 159.56

fapp29 0 4 3 27.16 4 3 31.65 4 3 32.14

1 5 4 17.71 5 4 18.89 5 4 19.57

2 6 6 65.04 3 3 70.28 3 3 71.61

3 6 5 22.69 6 5 23.67 4 3 24.94

4 6 5 24.35 6 5 25.71 6 5 27.13

5 5 4 28.68 5 4 29.62 4 3 30.87

fapp30 0 3 3 193.71 3 3 196.74 3 3 199.73

1 3 3 193.69 3 3 196.83 3 3 200.33

2 3 3 1016.52 3 3 1019.55 3 3 1022.62

3 4 4 67.91 4 4 71.28 4 4 74.34

IS IIS vars IIS ctrs

instance level V C T(sec) V C T(sec) V C T(sec)

fapp30 4 4 4 892.24 4 4 895.26 4 4 898.35

5 3 3 312.45 3 3 315.44 3 3 318.5

6 3 3 852.25 3 3 855.24 3 3 858.28

fapp31 0 4 3 40.21 4 3 45.24 4 3 50.4

1 6 6 60.78 6 6 121.7 6 6 183.07

2 5 5 231.51 5 5 301.41 5 5 371.32

3 - - - - - - - - -

4 - - - - - - - - -

fapp32 0 11 14 81.01 9 11 87.31 6 6 94.5

1 8 11 159.47 3 3 162.47 3 3 162.79

2 3 3 116.18 3 3 116.64 3 3 117.22

3 7 9 75.67 7 9 77.09 5 5 80.7

4 10 13 86.79 6 6 93.04 6 6 94.15

5 11 14 100.64 7 8 106.79 7 8 107.43

fapp33 0 4 4 28.06 4 4 29.73 4 4 30.84

1 9 10 34.05 9 10 41.38 6 5 44.3

2 4 4 52.75 4 4 53.26 4 4 53.7

3 10 10 38.36 7 7 45.15 7 7 49.57

4 7 7 45.03 7 7 65.08 7 7 69.5

fapp34 0 4 5 19.31 4 5 20.47 4 4 24.15

1 11 12 27.14 3 3 30.28 3 3 30.84

2 4 4 9.82 3 3 11.22 3 3 12.24

3 35 43 155.15 6 5 172 5 4 178.15

fapp35 0 5 5 48.38 3 3 48.98 3 3 49.26

1 8 8 37.17 3 3 40.15 3 3 40.43

2 6 6 39.22 4 4 40.1 4 4 40.47

3 8 8 38.03 4 4 42.75 4 4 43.12

4 11 12 59.12 3 3 66.47 3 3 66.75

5 14 14 761.61 6 6 769.21 6 6 772.78

fapp36 0 4 3 18.64 4 3 18.94 4 3 19.1

1 5 5 8.56 5 5 9.72 5 4 11.5

2 13 13 63.86 8 7 216.56 8 7 217.1

3 7 7 68.26 7 7 68.96 5 5 69.83

4 5 5 43.34 3 3 44.82 3 3 45.2

5 6 5 24.7 6 5 25.77 6 5 26.63

6 6 6 37.08 5 5 38.19 5 5 38.73

fapp37 0 3 3 123.32 3 3 123.69 3 3 123.84

1 3 3 104.08 3 3 104.22 3 3 104.36

2 3 3 172.27 3 3 172.48 3 3 172.63

3 10 9 784.08 3 3 785.81 3 3 786.78

4 - - - - - - - - -

fapp38 0 6 5 247.83 4 3 252.21 4 3 252.6

1 5 5 168.49 5 5 168.96 3 3 169.31

2 11 12 365 8 9 378.54 8 9 381.06

fapp39 0 4 3 172.35 4 3 175.4 4 3 178.38

1 6 5 290.13 6 5 293.65 6 5 298.86

2 - - - - - - - - -

fapp40 0 6 5 96.39 6 5 99.59 6 5 104.29

1 9 8 542.25 9 8 547.77 9 8 552.88

2 9 8 528.23 5 4 549.58 5 4 555.7

3 6 6 390.71 6 6 394.75 6 5 403.09

Table 3.11: ROADEF2001 results

91

Chapter 3. IIS in frequency planning

The scenario fapp30 was a very particular case during our test; at level 2 (Arc Inconsistent level), it found a size of

IS with 3 variables and 3 constraints while consuming about 1022.62 seconds on average. Since the level is not Arc-

Consistent, locator can easily find a deadend variable with AC3. Most time is consumed in runtime in the construction

and verification phases. With a detailed analysis, constructor finds a large critical constraints set on which verificator

gives a satisfiability proof. This means that at the first construction procedure, the MRV strategy in constructor fails to

find the right variable to form a critical constraints set. Despite this failure, the MRV strategy works well on all other

instances.

In Figure 3.20, two curves show the sizes of the IS at different levels found in fapp05 and the execution times to

obtain them. We observe that fapp05 is Arc-Consistent at level 8, 9 and 10, and the computing time reaches the peak

at 8 level. The computing time climbs according to the constraints levels, then decreases after the peak.

�

��

��

��

��

���

���

� � � � � � � 	 � A ��
�

��

��

��

B
C
D
E
F
�
B

F
�
�
�
C
�
E
�
�
�
��
�
�
�C
B

�C�C�

���C
�� ��������CB�

Fig. 3.20: Time and IS variable size on fapp05 for 10 levels

The computing time for the three components of LCV is relatively stable at different levels for fapp05 (see Fig-

ure 3.21). The locator occupies a large part of computational resource comparing to the other two. Inside the locator,

the Arc-Consistency algorithm occupies almost 100% of the time when the instances is not Arc-Consistent up to level

7. From level 7 the instance is Arc-Consistent, the embedded local search is effective and constantly increasing the

runtime percentage in locator. Therefore, we see that the problem properties highly influence the algorithm behavior,

and hence the algorithm is self-adaptive intending good results for all cases.

92

Chapter 3. IIS in frequency planning

�

��

��

��

��

���

� � � � � � � 	 � A ��

B
C
DE
C
F
��
�
C
�

�C�C�

��E���D
E�F��D���D
�CD��E���D

Fig. 3.21: Consuming time of the three components of

LCV on fapp05

�

��

��

��

��

���

� � � � � � � 	 � A ��

B
C
DE
C
F
��
�
C
�

�C�C�

��
��

Fig. 3.22: Consuming time of Arc-Consistency and local

search algorithms inside locator component on fapp05

3.6.3 Results for SOES

The performance comparison on the SOES benchmark is between our LCV algorithm and the in-house SSA algorithm

(by DGA). SSA is an algorithm based on simulated annealing developed by the CELAR. We do not have more details

about it, only its reference results are provided. The computational results are listed in Table 3.12, where V ars.

indicates the number of variables in the IIS found by both algorithms. The time limitation for both LCV and SSA

algorithms was 6 hours. From the table, LCV finds always smaller IIS size than the one found by SSA algorithm.

SSA LCV SSA LCV

scenario Vars. Vars. scenario Vars. Vars.

SCEN 01 50 6 SCEN 11 770 30

SCEN 02 47 3 SCEN 12 702 5

SCEN 03 40 3 SCEN 13 182 29

SCEN 04 16 4 SCEN 14 300 11

SCEN 05 50 13 SCEN 15 1500 2

SCEN 06 38 5 SCEN 16 121 10

SCEN 07 50 4 SCEN 17 568 13

SCEN 08 50 6 SCEN 18 2000 2

SCEN 09 48 7 SCEN 19 154 39

SCEN 10 50 4 SCEN 20 249 13

Table 3.12: SOES results obtained by SSA and LCV

93

Chapter 3. IIS in frequency planning

3.7 Conclusion

This chapter starts with a general introduction of the Frequency Assignment Problem (FAP), or more specifically,

the Radio Links Frequency Assignment Problem (RLFAP) and the Frequency Assignment Problem with Polarization

(FAPP). It is followed by detailed presentation of four related benchmarks - CELAR, GRAPH, ROADEF2001 and

SOES. An initial algorithm, called the 2-phase algorithm, to identify an IIS is presented and evaluated on the CELAR

and GRAPH instances to aid the analysis both on the characteristics of instances and evaluated weak points of the

algorithm design. From these preliminary results, two remarks surface:

1. The Arc-Consistency of instances needs to be verified as soon as possible, particularly in a FAP problem.

2. An IIS only represents a small part of the problem, the search need to focus exclusively on a small part of the

problem.

As several instances of the benchmarks are not Arc-Consistent, the verification of such consistency is computation-

ally cheap. When arc inconsistency is proven, the IIS is located immediately. The second remark is the key point to

reduce the computing time on IIS identification. As is well known, the IIS identification in FAP instances is NP-hard.

Based on the fact that an IIS is a connected component in the context of graph topology, it is wise to only work on

relatively small subproblems instead of the entire problem.

Based on these experiences gained from the preliminary analysis, a general IS identifying routine LCV is introduced.

The routine consists of three independent components - locator, constructor and verificator. The locator scans the

entire problem and proposes a constraint which is potentially inside an IIS. Around such a constraint, the constructor

forms a hard core by the means of connectivity. Finally, if the infeasibility of such a core is proven by the verificator,

the core is an IS.

With the identified IS at hand, two subroutines called detectors to identify the IIS of variables and the IIS of

constraints are detailed to detect an approximated IIS. First, an IIS of variables is identified on the proven IS. Then the

IIS of constraints is extracted from the IIS of variables by the IIS of constraints subroutine.

The results of LCV on all benchmarks demonstrate the effectiveness and efficiency even in comparison with other

approaches on CELAR/GRAPH and SOES problems. The general routine obtains smaller IIS and the speedup in

computing time is considerable. The sizes of entire problems and the sizes of IIS have a huge impact on performance.

The analysis on the results of ROADEF2001 shows that the locator is the most costly component among the three.

The improvement in computing time can be focused on accelerating the Arc-Consistency algorithm and decreasing the

consumption of embedded local search. On 5 runs, LCV found 100% success for CELAR/GRAPH, for 216 instances

in ROADEF2001 and SOES. It failed to find IIS only on 4 ROADEF2001 instances.

94

Chapter 4

IIS in graph k-coloring problem

When you are looking at a map, there is perhaps a crucial question: ”How many colors do we need to color the

countries of a map in such a way that adjacent countries are colored differently?”. Such question demonstrates a

classic example of the graph coloring problem. The Graph Coloring Problem (GCP) or more specifically in this chapter,

the Vertex Coloring Problem, consists in coloring any two adjacent nodes with different colors. It is a famous and

classic problem in operational research, the studies of such a problem and resolution techniques in the literature can

be traced back to 19th century1.

A graph G is not k-colorable if k is lower than G’s chromatic number. In such a case, there exists at least one

subgraph G′ ⊆ G which cannot be colored with k colors; if all strict subgraphs of G′ are k-colorable, the subgraph G′

is defined as a critical subgraph [78], which can be considered analogous of the IIS in the graph coloring problem.

This chapter is dedicated to identify the critical subgraphs in a graph coloring problem. It will be organized as fol-

lows: the definitions of the GCP and the IIS analogous to the GCP, the critical subgraph, will be described first. Several

instances from the DIMACS benchmark will be illustrated after the definitions. Before entering the experimental re-

sults on critical subgraph detection, the approximated and exact approaches to solving the k-coloring problem will be

summarized and two novel data structures to accelerate TabuCol will also be presented.

Finally, the LCV algorithm described in chapter 3 will be applied on critical subgraph identification in the k-coloring

problem. The experimental results carried out by LCV on the DIMACS instances will also be compared with the results

reported by Desrosiers et al. [78].

1 http://en.wikipedia.org/wiki/Graph coloring

95

Chapter 4. IIS in graph k-coloring problem

4.1 IIS and critical subgraph

A graphG = (V,E) consists of a set of nodes V and a set of edges E. The Graph Coloring Problem (GCP) consists in

coloring any two adjacent nodes differently; such coloration is legal. Let S be the collection of all the independent sets

of G; each independent set s ∈ S contains a set of vertices that share no edges. Each independent set s ∈ S contains

a variable xs whose value equals 1 if and only if the vertexes of s will be assigned the same color. Thus, the GCP can

be formulated mathematically through the following model [100]:

min
∑

s∈S

xs, (4.1)

s.t.
∑

s∈S:i∈s

xs > 1, i ∈ V, (4.2)

xs ∈ {0, 1} s ∈ S. (4.3)

The objective function (4.1) minimizes the number of independent sets (the number of colors respectively), the

constraint (4.2) guarantees that each node in the graph belongs to at least one independent set. The last constraint (4.3)

defines the variable xs as a binary decision variable.

The intention of the GCP is to find the minimal k number of colors which allows us to color all adjacent nodes

differently. Such a minimal number, k, for a graph G is called the chromatic number of G, denoted χ(G). The deter-

mination of χ(G) is NP-hard [101]. A graph G is k-colorable if χ(G) ≤ k. If a graph G is k-colorable, then all its

nodes can be divided into k independent sets.

Definition 29 (k-coloring). Given a graphG = (V,E) and a positive integer k such that k < |V |, the graph k-coloring

problem is to determine whether there exists a legal vertex coloring using k colors.

The k-coloring problem can be conveniently formulated as a CSP. The nodes are the variables of the CSP, the edges

between them form the constraints of the problem and the domain of the problem consists of the given k colors.

In case the given k is lower than the chromatic number χ(G), the graph G is not k-colorable. It raises the same

question from the previous chapter: can we identify an induced subgraph G′ which is not k-colorable, while all its

strict subgraphs are k-colorable? Such a subgraph G′ is named the critical subgraph:

Definition 30 (Critical Subgraph). A critical subgraph of graph G is an induced subgraph Gcritical ⊆ G, which

cannot be colored with k colors. It becomes k-colorable iff any of its nodes are removed.

96

Chapter 4. IIS in graph k-coloring problem

The critical subgraph has several important characteristics. Firstly, it is an induced subgraph:

Definition 31 (Induced Subgraph). An induced subgraph G′ = (V ′, E′) of a graph G is such a subgraph that G′

contains all the edges (x, y) ∈ E with nodes x, y ∈ V ′.

Considering the definition of an IIS in a CSP, the critical subgraph is an IIS of variables in a CSP. Secondly, it is

also a connected component of a graph G:

Definition 32 (Component). A maximal connected subgraph G′ = (V ′, E′) of G is called a component (also named

connected component) of G [102].

A subgraph which is a component also addresses the connectivity property of an IIS in a CSP. One important

application of finding critical subgraph in [102] is to determine the chromatic number of a given graph G. Since

the complexity of determining the chromatic number of the graph is exponential, if a small critical subgraph can be

identified, then the cost of verification on such a small size critical subgraph by a complete search is affordable.

In next section, the benchmark used to examine the performance will be illustrated and explained. All these in-

stances are from the well known DIMACS benchmark [103].

4.2 DIMACS instances

The DIMACS GCP instances is a set of instances proposed by different authors, which are dedicated to examine the

performance of algorithms. Regarding the range of results on this benchmark, it is an excellent benchmark to examine

critical subgraph identification algorithms. The instances files can be found at Carnegie Mellon University2. There are

several categories of graph which are illustrated as followings.

Book Graphs. This benchmark is based on the relations among the characters of several classic novels which in-

clude Tolstoy’s Anna Karenina (anna.col), Dicken’s David Copperfield (david.col), Homer’s Iliad (homer.col), Twain’s

Huckleberry Finn (huck.col), and Hugo’s Les Misérables (jean.col). In Figure 4.1, the graph shows the topology of

anna.col instance. Notice that there are duplicated edges in the instances.

Queen Graphs (queen* *.col). Given an n × n chessboard, a queen graph is a graph with n2 nodes, each corre-

sponding to a cell of the board. Two nodes are connected by an edge if the corresponding cells are in the same row,

column, or diagonal. Unlike some of the other graphs, the coloring problem on this graph has a natural interpretation:

given such a chessboard, is it possible to place n queens on the board such that two queens are not in the same row,

column, or diagonal? Figure 4.2 shows the graph topology of these Queen instances.

2 http://mat.gsia.cmu.edu/COLOR/instances.html

97

Chapter 4. IIS in graph k-coloring problem

Fig. 4.1: anna.col (undirected

without duplicated edges) Fig. 4.2: queen5 5.col

Fig. 4.3: le450 5a.col Fig. 4.4: miles250.col

Leighton Graphs (le*.col). These instances were generated randomly with a density lower than 0.25. The chro-

matic number of each instance is fixed. Figure 4.3 shows one graph topology, the instance has a very high density, and

each node is over-connected.

Game Graphs (game120.col). The games played in a college football season can be represented by a graph (see

Figure4.6) where the nodes represent each college team. Two teams are connected by an edge if they played each other

during the season. Knuth gives the graph for the 1990 college football season.

Miles Graphs (miles*.col). These graphs are similar to geometric graphs. The nodes represent a set of United

States cities and two nodes are connected if the cities are close enough on the basis of the distance between them

given by road mileage in 1947. Figure 4.4 shows that this instance is well structured and has several independent

components.

Register Graphs (fpsol*.col, inithx.i.*.col, mulsol.i.*.col, zeroin.i.*.col). These graphs come from the problem

based on register allocation for variables in real codes. The graph topology shown in Figure 4.5 indicates that such

instance has two subsets of nodes heavily connected.

98

Chapter 4. IIS in graph k-coloring problem

Fig. 4.5: fpsol2.i.2.col Fig. 4.6: games120.col

Beside above illustrated instances, there are also instances proposed with different purposes, including random

generated instances (DSJC*.col), geometric random graphs (DSJR*.col, r*.col), Quasi random graphs (flat*.col), etc.

The readers can refer the paper of Chiarandini et al. [104] or to the site of Carnegie Mellon University for further

information.

By referring to the above instances, the random generated instances are unstructured with high density, while the

real or semi-real world instances are well structured with particular graph topology. In the next section, several k-

coloring problem resolution techniques are briefly reviewed as k-coloring is not the main topic of this thesis.

4.3 Solution techniques for k-coloring problem

The k-coloring problem is a well studied classic combinatorial optimization problem. Many heuristic and exact solu-

tion techniques have been proposed in the literature. The challenge of finding more efficient and effective algorithms

always attracts researchers in the operational research community. The numerous methods dealing with k-coloring

problem can be roughly classified into two major categories, heuristic and exact approaches.

Recently Galinier and Hertz [87] and Malaguti and Toth [105] give a comprehensive survey of the solution tech-

niques for the GCP. Also Chiarandini and Gualandi maintain an excellent website concerning the solution techniques

of the graph coloring problem3. Interested readers can refer to these materials for detailed information.

3 http://www.imada.sdu.dk/∼marco/gcp/

99

Chapter 4. IIS in graph k-coloring problem

4.3.1 Heuristic approaches

Due to the NP-complete nature and the size of real world instances, many solution techniques of the k-coloring

problem have been proposed under the umbrella of heuristic methods. As an approximated approach, an heuristic

cannot guarantee the optimal solution since only a partial search space of the problem is explored and it may be

trapped in local optima.

The breakthrough of heuristic design for the GCP begins with the famous DSATUR algorithm proposed by Brélaz

[46] in 1979. In 1987, TabuCol [97] achieves a significant performance gain despite its simplicity. In 1999, the hybrid

evolutionary algorithm HCA by Galinier and Hao [106] gives another performance increase thanks to its elegant

crossover design and the replacement of mutation by a local search operator.

These algorithms illustrate the development from simple heuristics, to local search meta-heuristics and then to

evolutionary meta-heuristics. In the following sections, several approximation algorithms will be explained based on

such a classification.

4.3.1.1 Simple heuristics

DSATUR’s success is based on the use of saturation degree which is similar to the Minimal Remaining Value (MRV)

heuristic [107]. Even combined with a simple descent procedure it obtains good results [46]. Recently, it is considered

as a quick heuristic method to generate the initial solutions for meta-heuristics [108]. In contrast to the strategy adopted

by DSatur, Leighton’s RLF (Recursive Largest First) [109] firstly colors the maximal independent set and has better

average performance than DSatur [110]. Bollobás and Thomason [111] also address the importance of the maximal

independent set of uncolored nodes by means of a backtrack algorithm. Interested readers can refer the surveys [87,

105] for more information.

4.3.1.2 Stochastic local search

Stochastic local search begins with an initial solution and iteratively moves from a candidate solution in the search

space to another neighboring solution. The search space may contain partial candidate solutions (in construction meth-

ods) or complete candidate solution (in repair methods), the move decision is based on a limited amount of local in-

formation [112]. In this section, several well known algorithms under the category of stochastic local search will be

explained.

100

Chapter 4. IIS in graph k-coloring problem

Focusing on the Min-Conflict strategy, TabuCol adopts a very simple 1-move (or 1-exchange) neighborhood struc-

ture. The neighbor solutions are generated by only changing the color of one node among all the conflict nodes. Using

a tabu thresholding technique and a tabu list, the method achieves better performance than the Simulated Annealing ap-

proach [113, 114]. Algorithm 14 illustrates the routine of TabuCol. Its elegant critical 1-move neighborhood structure

reduces the number of neighborhood solutions, while at the same time, good solution quality is kept.

Algorithm 14: TabuCol

Input : a graph G = (V,E) and k number of colors

Parameters: MaxIter, L and λ
Output : a complete assignment A∗ on G with k colors

Create a random assignment A;1

A∗ ← A and iter = 0;2

TabuList← ∅;3

repeat4

iter ← iter + 1;5

Choose a candidate 1-move (xi, ai) among all conflict variables with minimum violation;6

Add move (xi,A(xi)) into TabuList for L+ λ× Conflict(A) iterations;7

A ← A+ (xi, ai);8

if f(A) < f(A∗) then A∗ ← A9

until f(s) = 0 or iter =MaxIter ;10

PartialCol, proposed by Blöchliger and Zufferey [115], extends the solution from a k-legal partial solution. It also

adopts a reactive tabu tenure Foo-scheme which adaptively corresponds to the fluctuation of the objective function.

Such a scheme avoids the unpromising part of the search space and helps the tabu tenure to escape from these areas.

However experimental results show that the construction method is only better on flat instances than the repair method

of TabuCol.

Avanthay et al. [116] adopt a VNS (Variable Neighborhood Search) [117] approach to solve the GCP, they propose

various neighborhood structures to diversify the neighborhood solutions and to explore different search spaces. Hertz

et al. propose the VSS (Variable Space Search) [118] algorithm which, not only switches among the neighborhood

structures, but also defines different objective function for each neighborhood structure. The algorithm uses cyclic

executions of three different heuristics which is derived from Formulation Space Search (FSS) [119]; also it is similar

to Hyper-heuristics introduced in [120]. Chiarandini and Stuetzle simplified VNS and proposed an ILS (Iterated Local

Search) [121] approach to solve the k-coloring problem. Devarenne et al. design a mechanism to avoid the local optima

by detecting the loop of visited nodes [122]. Dib et al. propose TabuNG [123] to reduce the search space by recording

the partial solution which cannot lead to the feasible solutions.

101

Chapter 4. IIS in graph k-coloring problem

In these approaches, different neighborhood structures are proposed to diversify the neighborhood solutions and

to exploit the different search space avoiding the local optima. In [124] and [116], the authors have proposed various

neighborhood structures for the k-coloring problem.

The stochastic local searches for k-coloring can be roughly classified into two categories: construction and repair

algorithms. The first consists in extending a partial consistent solution to a complete one, the latter attempts to repair

the current inconsistent or non-optimal solution to a consistent or improved solution. Recently, the hybridization of

these two manners was also adopted. Table 4.1 proposes a classification of algorithms mentioned in this section.

Heuristics Construction Repair Hybrid

[97]TabuCol x

[115]PartialCol x

[116]VNS x

[118]VSS x

[121]ILS x

[122]ALS x

[123]TabuNG x

Table 4.1: Category of some local search algorithms

In [87], Galinier and Hertz point out that stochastic local search is very efficient to solve graph coloring problem.

The experimental results shown in [104] compare several stochastic local search algorithms, the authors conclude

that TabuCol is robust and efficient despite its simplicity. Several algorithms surpass its performance but with higher

runtime or complicated algorithm designs. However such advantages are often visible for a subset of specific instances.

As suggested in [106], TabuCol is an ideal local search algorithm to integrate into other search algorithms thanks to

its elegant design and efficiency.

4.3.1.3 Evolutionary algorithms

In 1975, Holland proposed a nature inspired meta-heuristic, called the genetic algorithm [125]. Then, a specific cat-

egory of algorithms named Evolutionary Algorithm derived from these ideas has been developed. These algorithms

adopt both individual and population evolutions and natural selection and are applied to many optimization problems

[126].

102

Chapter 4. IIS in graph k-coloring problem

Galinier and Hao proposed HCA (Hybrid Coloring Algorithm) [106] which achieves better solution quality than

the simple adoption of a genetic algorithm on GCP [127]. HCA replaces the original mutation operator by TabuCol

and uses an elegant crossover operator. The Greedy Partitioning Crossover operator consists in selecting the maximal

cardinality color partition ignoring nodes already chosen from other parent. Such an offspring strategy creates one

individual with high stable independent sets from both parents.

Figure 4.7 illustrates three steps of crossover in HCA. In each generation of HCA, two individuals P1 and P2 are

selected from the population and considered as parents to form a new individual Child. Initially, the child inherits the

nodes in the biggest color partition from P1. Then, the duplicated nodes in P2 are removed (the shaded parts in P2)

and the largest next color partition is selected in P2, it is used as the second color partition of the child. Finally, another

partition of P2 is selected for the child. The procedure stops when the child has k independent sets and the nodes not

yet selected will be assigned randomly. After the crossover operator, the TabuCol algorithm is used to mutate the child

individual.

�� �� �� ��

����� �����

�� ��

�����

Fig. 4.7: Crossover in HCA

Glass and Pruegel-Bennett [128] modify HCA by replacing TabuCol with a less effective heuristic search (Vertex

Descent Algorithm) and by extending the size of the population. Their experimental results indicate that high quality

local search is more effective than the classical mutation operator.

Regarding the success of HCA even with small size population, AMACOL (Adaptive Memory Algorithm for the

k-COLouring) [129] is another algorithm which employs a central adaptive memory structure [130] to record parts

of solutions instead of the entire individual. The child is generated by processing a specific recombination operator

which respects the maximal stable sets from the central memory. Then the central adaptive memory updates itself with

the maximal stable sets of the child individual. The maximal stable set is generated by removing the conflict nodes

103

Chapter 4. IIS in graph k-coloring problem

and adding the non-adjacent nodes which share the maximal number of common neighbors with the nodes inside the

stable set.

MMT (Evolutionary Algorithm and Column Optimization) proposed by Malaguti et al. [131] adopts a two-phase

evolutionary approach. In the first phase, HCA is used to find a solution based on pre-defined lower and upper bounds.

In order to improve the results, the second phase, the independent sets found and recorded during the execution of

HCA are used by a Lagrangian heuristic algorithm, CFT, proposed by Caprara et al. [132] under the set covering

formulation.

Lu and Hao [108] proposed a memetic algorithm called MACOL (Memetic Algorithm for k-COLoring) which

combines a genetic algorithm with a tabu search procedure. They adopt a partition crossover instead of an assignment

crossover. A multi-parents crossover operator AMPaX improves the performance of the 2-parents crossover operator

[106], and shows that choosing a random number of parents provides more diversification in difficult instances. The

evaluation function of their approach consists in computing the number of conflict inside color partition.

Porumbel et al. [133] mention the impact of the population diversity on evolutionary algorithm performance. They

define a measurement distance to indicate the similarity between two individuals. By rejecting the similar individual,

diversity in population is guaranteed. Their experimental results show a good performance improvement by compari-

son with MACOL and MMT. They conclude that the distance between individuals in the population has more impact

on algorithm performance than the number of individuals.

Figure 4.8 illustrates the loose relation among several evolutionary algorithms for the k-coloring problem. The

improvement of solution quality carried out by evolutionary algorithms is visible by comparing with stochastic local

search algorithms. While at same time, the evolutionary approach often causes computational overhead.

���

�����

�	�ABC	

����DE

��F

��

�������������C����C��

���������������������

����CA��������C�������

��������������

����������C����������

����

���C� �C����������

����������������	��C�!�

����C��C�

������C�!��C��������

"�������C��C	C�����

#��������	����C���� �

��!��C���

Fig. 4.8: Several evolutionary algorithms for k-coloring

104

Chapter 4. IIS in graph k-coloring problem

4.3.1.4 Summary of heuristic methods

From the literature, the best solution quality is found using evolutionary algorithms as opposed to the stochastic

search algorithms. While the simple heuristics and several stochastic local search algorithms obtain acceptable solution

quality within shorter computational time, their solution quality on graph coloring instances based on real world

applications are quite good considering the runtime used, but poor performance is found on random or quasi-random

instances on which the quality of evolutionary approach is better.

Global intensification and diversification are two key cornerstones in the meta-heuristic process. Well dedicated

neighborhood structures may efficiently solve many real world problems thanks to the understanding of specific prob-

lem structures, but when facing academic problem instances, a more sophisticated diversity strategy is needed to avoid

local optima.

4.3.2 Exact approaches

Numerous exact algorithms dealing with the GCP have been proposed, such as Brown’s implicit enumeration algo-

rithm [134], Brélaz’s modification based on the Brown’s algorithm, Sewell’s improvement [135] of Brélaz’s approach,

Peemöller’s correction [136] on Brélaz’s modification, etc.

A Branch and Price column generation approach is proposed by Mehrotra and Trick [100] which is based on

the Set Covering model (see Equation (4.1)). The experimental results of such an approach show that it can solve

the random instances up to 70 vertices and the random geometric graphs up to 250 vertices. Hansen et al. adopt a Set

Packing model [137] and show an improvement on solving larger instances up to 80 vertices. Méndez-Dı́az and Zabala

improved Hansen et al.’s model by using the symmetry property of the model.

These methods have been proven to work well on small size instances [138, 139]. Herrmann and Hertz [138]

proposed an hybrid approach which significantly improves the algorithm effectiveness on relatively larger instances.

The algorithm can be essentially expressed as Algorithm 15, it is based on a very simple property:

Property 3. In GCP, if a subgraph G′ ⊆ G has the same upper bound as G, then such a subgraph G′ has the same

chromatic number as G, noted χ(G′) = χ(G).

Based on Property 3, the original graph G is reduced by iteratively removing the nodes which do not change its

upper bound. If removing a node changes the upper bound, the removal will be reversed (Line 4 of Algorithm 15).

Eventually, the algorithm will obtain a subgraph G′, whose upper bound will be changed by removing any of its

105

Chapter 4. IIS in graph k-coloring problem

node. Then the smaller subgraph G′ will be verified by a branch and bound algorithm proposed by Peemöller [136]

(ChomaticNumber() of Algorithm 15) which is a correction of Brélaz’s modification of Brown’s algorithm [46].

Even if the complexity of Peemöller’s approach is exponential, thanks to the reduced size of G′, the Herrmann and

Hertz’s approach has proven its effectiveness on larger instances than the previous exact methods in the literature.

Desrosiers et al. [78] adopt Herrmann and Hertz’s algorithm to verify the chromatic number of identified critical

subgraphs.

Algorithm 15: Simplified version of [138] without the correction procedure

input : a graph G = (V,E)
output: the chromatic number χ(G) of graph G
G′ ← G,µ← UpperBound(G);1

/* Reduce the graph G */

foreach v ∈ V do2

G′ ← G′ − {v};3

if UpperBound(G′) 6= µ then G′ ← G′ ∪ {v};4

end5

/* Determine the chromatic number */

return χ(G)← ChomaticNumber(G′);6

4.4 Novel data structures to speed up TabuCol

As we use TabuCol in the constructor routine of our LCV algorithm for IIS identification in FAP and graph k-coloring

problem, in this section we present two novel data structures to improve the performance of TabuCol. TabuCol can be

divided into two main procedures – move evaluation and move update. Based on its 1-move neighborhood structure,

the move evaluation is run for all colors on all violated nodes, which may occur thousands of times per iteration.

Comparing with the evaluation procedure, the move update procedure is run once per iteration on only one node.

Acceleration of TabuCol can be achieved by reducing the time consumption on the move evaluation.

Our proposal is to store the states of inconsistency, called the Tabling Strategy, on each color per node. Instead of

an exponential comparison procedure, a linear search algorithm can find the minimal inconsistency color. The first

structure, called gamma table, is applied for FAP and graph k-coloring problem, while the second structure, called

bounds list, is an additional structure and is very efficient for T -coloration constraints such as FAP constraints.

106

Chapter 4. IIS in graph k-coloring problem

4.4.1 Gamma table for FAP and graph k-coloring

In [87], Galinier and Hertz mentioned a n × k centralized γ-matrix to represent the state and level of inconsistency

for each color per node, where n is number of nodes and k is the number of given colors. Thanks to its elegant design,

a significant acceleration was achieved on the performance of TabuCol. Slightly different from the data structure

mentioned in [87], we propose a decentralized version of γ-matrix, called gamma table, to accelerate TabuCol on

solving both the FAP and the graph k-coloring problem. Example 4 gives an illustration of gamma table on the graph

k-coloring problem.

Example 4. Given 5 adjacent nodes A,B,C,D,E with connections as in Figure 4.9. Let the color assignment of four

nodes be {A : Red,B : Blue, C : Blue,D : Y ellow} and the current color on node E is Red, so we have one

violation.

� � �

� � � �

���		�AB�CDEF

��	���A��A�

�

�

�

�

�

���

���

���

���

���

Fig. 4.9: Example 4 – connections and gamma table for node E

Figure 4.9 shows the gamma table of node E in Example 4. Based on the color assignment of neighboring nodes of

E, the inconsistency states of colors in the domain of E are: Red on one edge, Blue on two edges and Y ellow on one

edge. The fourth color Green is consistent with the neighborhood assignment of E. In order to store this information

and eliminate the constraint verification, the inconsistency state can be stored in a table named the gamma table where

the gamma values are the number of inconsistencies per color per node.

Suppose now that we have such gamma table for each node. Using a linear search in the gamma table, we know

that Green is the best move for E since Green has the minimum inconsistency state in the domain of E. If the move

is accepted by TabuCol, the assignment on E is changed, so the gamma tables on E’s neighbors {A,B,C,D} need to

be updated. All gamma values of color Green in the domains of {A,B,C,D} will be increased with one unit which

107

Chapter 4. IIS in graph k-coloring problem

indicates the inconsistency of this color with node E and all the gamma values of Red are decreased with one unit.

Also the value of the objective function will be reduced with the difference between the two gamma values of E for

Green and Red.

The time complexity of the move evaluation and the move update procedures of our proposal and the original

TabuCol data structure designed by Hertz and Werra [97] is shown in Table 4.2, where e is the maximum degree of

the graph and k is the given number of colors. The space complexity to implement such a structure is O (nk), where

n is the total number of nodes. Comparing with [97], the complexity of move evaluation for each node per iteration

is significantly reduced. Despite the higher complexity of the move update with gamma table, we have a significant

runtime performance gain on TabuCol because during each iteration of TabuCol, the number of execution of the move

evaluation is much larger than the move update’s. Figure 4.10 shows the time variation according to the number of

TabuCol iterations on one DIMACS instance. The gamma table only consumes 38.3% of time in comparison with [97]

to complete the same task.

Complexity per node Hertz and Werra [97] Gamma table

Move evaluation O (ek) O (k)
Move update O (1) O (ek)

Table 4.2: Comparison for move evaluation and update between Hertz and Werra [97] and gamma table

�

���

���

���

���

���

���

���

	��

A��

����

� �� ���

B
CD

E
F�

E
�
�

��� ��E���C�� F���������

��DD� ��� E
!E��"#���#$E���

Fig. 4.10: Time comparison on DIMACS le450 5a with 4 colors

Our implementation only decentralizes the γ-matrix onto the node level. It shows no particular benefit in solving

the k-coloring problem, but in FAP instances such decentralized data structure can reduce the space complexity since

the domain sizes are various for each node.

108

Chapter 4. IIS in graph k-coloring problem

4.4.2 Bounds list for FAP

In addition to the decentralized gamma table, we propose another data structure for TabuCol, named bounds list, to

deal with FAP instances. Each bound in the bounds list consists of a bound value and a gamma value. Such a data

structure benefits from the properties of the FAP binary constraints which are:

|fi − fj | > δij ⇒











Eqa : fj < fi − δij

Eqb : fj > fi + δij

(4.4)

Equations Eqa and Eqb separate the domain of variable j into three parts: the values lower than fi− δij , the values

greater than fi+δij and the values in the interval [fi−δij , fi+δij [. Equation (4.4) creates two bound values (fi−δij)

and (fi + δij) that we put in a bounds list data structure. Thus the bounds list consists of two bound values bounding

the gamma values.

The difference between the gamma values in the bounds list for FAP and the gamma values in gamma table for

FAP is that in the bounds list the gamma values have plus and minus (+/−) signs to calculate the inconsistency state

of the values in the variable domain. Let us consider the following example:

Example 5. Let’s define a duplex communication with two radio links f1 and f2, the available frequencies for these

two links are {2, 4, 6, 8, 10, 12, 14} and the constraint to avoid interference is defined as |f1 − f2| > 3.

Firstly we sort the domain values from smaller to larger. If the link f1 is assigned frequency 6, then two bound

values of 3 and 9 are created for f2. The domain of f2 is separated by these two bounds into three intervals {2},

{4, 6, 8} and {10, 12, 14} (see Figure 4.11). The gamma values associated with the two bound values are +1 and −1.

Initialized with a zero inconsistency state, all values greater than bound 3 have the inconsistency state of 1 (obtained

by 0 + 1); all values greater than bound 9 have the inconsistency state of 0 (obtained by 0 + 1 − 1). It is noticed that

the inconsistency state of each value a in the domain equals the sum of all gamma values associated with bound values

smaller than a.

� � ��� �

��	ABC DECF

��D	�C�EA�B���EA

�

��

�

��

����� ��D	�

��	AB ��D	�

�� ��

������C��F

Fig. 4.11: Bounds list of Example 5

109

Chapter 4. IIS in graph k-coloring problem

In order to calculate the inconsistency state in such a manner, the bounds and values of the domain need to be

sorted in the same way. With the ordered bounds list and domain values, a merge sort is used to rapidly determine

the inconsistency states of all domain values. The space complexity of using a bounds list is O (mt), where m is

the total number of constraints and t is the upper number of bound values created for all constraints. Let d be the

maximal cardinality of the domains, the time complexity to evaluate all the values of each variable (move evaluation

in TabuCol) is O ((t+ d) log(t+ d)). Such complexity is obtained by the usage of Merge Sort. The time complexity

of using a bounds list for move update for the FAP is O (e), where e is the maximal number of constraints involved in

one variable; it is lower than the time complexity of using a gamma table (see Table 4.2).

4.4.3 Summary of novel data structures

Table 4.3 shows the evaluation and update time complexity and the space complexity for both novel data structures,

where e is the maximum degree of the graph, d is the total number of domain values, n is the number of nodes, m

is the total number of constraints, and t is the upper number of bound values created for all constraints. The choice

between the two approaches for the FAP problem, and more generally for the CSP with binary constraints, depends on

the number of bounds created from the constraints: if the number of bounds is small, it is worth choosing the bounds

list approach, otherwise, the gamma table is better because of its space and time complexity.

Gamma table Bounds list

Time complexity(move evaluation) O (d) O ((t+ d)log(t+ d))

Time complexity(move update) O (ed) O (e)
Space complexity O (nd) O (mt)

Table 4.3: Time and space complexity for both novel data structures

4.5 Experimental results on critical subgraph identification

In the previous chapter, we introduced a general routine to detect an IIS in the FAP named LCV. Thanks to the

similarity between the FAP and the k-coloring problem, we intend to apply LCV on DIMACS instances with minor

modifications. At first we present the state of the art of the methods in critical subgraph identification in the k-coloring

problem.

110

Chapter 4. IIS in graph k-coloring problem

Desrosiers et al. propose three algorithms to identify the critical subgraph [78], Removal, Insertion and Hittingset.

Among these three algorithms, Insertion shows the best performance. The authors also show that Insertion with pre-

processing of the prefiltering algorithm can achieve better performance than only using Insertion. Let’s first recall the

Insertion algorithm (see Algorithm 16).

Algorithm 16: Insertion [78]

Input : a set of constraints C
Output: a subset of constraints H ⊆ C forming an IS

H ← ∅, Cv ← ∅;1

repeat2

if Cv 6= ∅ then3

C ← C \ Cv;4

choose one constraint c ∈ Cv;5

H ← H ∪ {c};6

end7

Cv ←MinConflict(C,H);8

if Cv = ∅ then return Fail to find IIS;9

until H ∩ Cv 6= ∅ ;10

In the MinConflict() (Algorithm 16 Line 8), the satisfaction of the constraints in H is done by introducing all

constraints of H with significant heavy weights in its objective function. The objective of MinConflict is to minimize

the sum of the weights on constraints:

min
∑

c∈C

w(c)× x(c) (4.5)

w(c) ∈ {1,MAX} (4.6)

where x(c) = 1 if c is violated, x(c) = 0 if c is satisfied (4.7)

By minimizing Equation (4.5), the heavily weighted constraints are satisfied. MinConflict() is run iteratively until at

least one edge cannot be satisfied inH . TabuCol is adopted as the embedded local search in MinConflict(). Considering

Line 4 of Algorithm 16, it removes all the violated edges except the chosen constraint c. Thus the subproblem entering

MinConflict() will contain only one violated edge. Since TabuCol exclusively changes the color on violated nodes,

the edges with zero weight will be ignored and not be evaluated. That is the main reason why the Insertion algorithm

works very rapidly.

111

Chapter 4. IIS in graph k-coloring problem

It is worth mentioning that the prefiltering algorithm (Algorithm 17) is used to reduce the size of the graph in the

first step. From the authors’ observation, it dramatically accelerates the critical subgraph identification by providing a

smaller size graph for the Insertion algorithm, denoted H .

Algorithm 17: prefiltering [78]

input : a set of constraints C
output: a subset of constraints H ⊆ C forming an IS

H ← ∅, Cv ← ∅;1

repeat2

if Cv 6= ∅ then3

H ← H ∪ {Cv};4

Cv ← ∅;5

end6

Cv ←MinConflict(C,H);7

until H ∩ Cv 6= ∅ ;8

From the pseudo-code of prefiltering, the algorithm stops when at least one critical subgraph is included in the

output subgraph. At the same time, it destroys any critical subgraphs which have a larger size than the included one.

Table 4.4 shows the comparison between Desrosiers et al. Insertion+prefiltering approach and LCV approach. The

results of Insertion is obtained on using a computer with a Athlon 1.6Ghz CPU and 512Mb of RAM [78], the results

of LCV’s are carried out on a PC Intel Core 2 Duo 2.6Ghz with 3.8Gb RAM. LCV is implemented in C++ without

parallelization.

The k column indicates the number of colors available for each instance, and it is fixed such that each instance

is not k-colorable. The second, third and fourth columns list the sizes of the critical subgraphs and the minimum

computational time in 5 runs obtained by Insertion+prefiltering. The fifth and sixth columns give the size of critical

subgraphs found by LCV. The Success/5 column indicates the number of successes in 5 executions of LCV to get

the same critical subgraph size as Insertion+prefiltering. The last column indicates the minimum execution time in

seconds when the LCV algorithm is successful, without the execution time of the verificator routine.

From the comparison table, the results of LCV are notably worse than the ones carried out by Insertion in [78] for

the sizes of critical subgraphs and the computational times. There are 14 instances out of 37 for which LCV obtains

larger sizes than Insertion. For the rest of the instances, LCV finds the same size of critical subgraphs but with a longer

runtime and a lower success rate in 5 runs.

To explain the difference in the results, it is noticed that the collaboration between Insertion and TabuCol is a perfect

match for k-coloring. First, an effective heuristic such as TabuCol, may only violate a minor number of nodes in each

critical subgraph. With the help of an embedded weighting system [78], the heuristic may find the critical constraints

112

Chapter 4. IIS in graph k-coloring problem

Insertion+prefiltering [78] LCV

Instance k |V | |C| Min Time(sec) |V | |C| Success/5 Min Time(sec)

le450 5a 4 5 10 10.7 5 10 1 28.65

le450 5b 4 5 10 13.4 5 10 1 28.71

le450 5c 4 5 10 17.8 5 10 1 83.4

le450 5d 4 5 10 16.7 5 10 2 27.96

anna 10 11 55 0.3 11 55 2 1.09

david 10 11 55 0.3 11 55 1 3.15

homer 12 13 78 0.8 30 208 – 9.96

huck 10 11 55 0.2 11 55 5 5.48

jean 9 10 45 14.2 10 45 5 0.14

games120 8 9 36 0.4 9 36 5 0.57

miles250 7 8 28 0.2 8 28 5 0.06

miles500 19 20 190 0.9 20 190 5 16.47

miles750 30 31 465 2.1 31 465 – 191.52

queen5 5 4 5 10 0.5 5 10 5 0.02

queen7 7 6 7 21 0.5 7 21 3 0.44

queen8 12 11 12 66 1.9 12 66 2 3.59

queen10 10 11 10 45 3.8 12 45 1 1.03

queen11 11 10 11 55 2.5 11 55 2 31.86

queen12 12 11 12 66 3.5 21 113 – 75.6

queen13 13 12 13 78 2.6 16 89 – 216.17

queen14 14 13 14 91 6.8 26 149 – 39.46

queen15 15 14 15 105 6.4 15 105 2 281.36

queen16 16 15 16 120 6.7 27 188 – 27.92

fpsol2.i.1 64 65 2080 209.9 65 2080 2 640.15

fpsol2.i.2 29 30 435 20 30 435 1 1554.87

fpsol2.i.3 29 30 435 52.5 31 457 – 1618.02

inithx.i.1 53 54 1431 897.7 54 1431 3 554.71

inithx.i.2 10 11 55 0.3 11 55 1 3.15

inithx.i.3 30 31 465 14.2 45 721 – 147.88

mulsol.i.1 48 49 1176 4.4 50 1224 – 42.94

mulsol.i.2 30 31 465 6.4 35 578 – 123.85

mulsol.i.3 30 31 465 6.5 34 551 – 24.99

mulsol.i.4 30 31 465 6.8 31 465 1 38.21

mulsol.i.5 30 31 465 6.9 36 545 – 39.05

zeroin.i.1 48 49 1176 12.3 49 1176 3 72.91

zeroin.i.2 29 30 435 11.4 34 540 – 36.05

zeroin.i.3 29 30 435 5.6 31 462 – 26.53

Table 4.4: DIMACS results comparison between Insertion+prefiltering [78] and LCV

in one critical subgraph efficiently. After the identification of such a constraint, Insertion removes all violations con-

cerning other critical subgraphs. Thus the other critical subgraphs are destroyed and the search will exclusively focus

on the current located critical subgraph. Second, TabuCol’s neighborhood structure consists in changing the color on

the violated nodes exclusively. By removing all non-selected violated constraints on each iteration of Insertion, the

113

Chapter 4. IIS in graph k-coloring problem

number of neighborhood solutions to evaluate in TabuCol is dramatically reduced, then the time consumption for

TabuCol is very low.

The problem structure also has an important impact on the performance of LCV. In contrast to FAP instances, in

graph k-coloring the edge constraint and color domain are uniform for all nodes in the problems. The constructor

in LCV works in a Dsatur like constructive manner which may build a large and k-colorable subgraph. This is why

even with the centralization procedure which attempts to reduce the subgraph size, LCV is much less effective than

Insertion.

4.6 Conclusion

In this chapter, we describe the basic definitions and solution techniques for the graph k-coloring problem. Following

the description of the problem, the popular benchmark DIMACS is presented with different categories of instances.

Current solution methods for k-coloring are presented in two classes: heuristic and exact methods.

In the heuristic category, a roadmap of algorithm design in recent decades is introduced from DSatur [46] in

1979 to TabuCol [97] in 1987, HCA [106] in 1999 and EvoDiv [133] in 2010. This history shows that the algorithm

development from simple heuristic to stochastic local search algorithms and nature inspired evolutionary approach

improve the state-of-the-art for this problem.

Under the category of exact algorithms, due to the NP-hardness, the methods in the literature are still not very

efficient in dealing with larger instances. From our knowledge, the state of the art of these algorithms to determine the

k-colorability is proposed by Herrmann and Hertz. Their hybrid approach [138] achieves an impressive performance

improvement on relatively larger instances comparing to the previous proposals.

After the description of the state of the art methods in solving the k-coloring problem in the literature, two novel data

structures dedicated to accelerate the computational time of TabuCol for k-coloring and FAP problems are proposed.

Both structures adopt a so called Tabling Strategy which reduces the time complexity of the evaluation step in TabuCol

by remembering the current violation states. Our results show a significant speed gain using such an improvement. The

first structure, named gamma table, stores the inconsistency state for each domain value of each variable. The second

structure, named bounds list, is dedicated to the FAP; it allows TabuCol to accelerate the choice of the new resources

during a move.

The adoption of LCV on the critical subgraph identification in the k-coloring problem is evaluated by comparing

it to the performance of Insertion+prefiltering proposed by Desrosiers et al. The experimental results indicate no

performance improvement of the LCV approach on DIMACS instances. LCV suffers from a non-tailored algorithm

114

Chapter 4. IIS in graph k-coloring problem

design which is not dedicated to the k-coloring features. We conclude that the LCV is not suitable for a uniform

structure problem such as the k-coloring problem where the constraints and the nodes domains are too uniform for the

LCV process.

115

Conclusions and perspectives

In this dissertation, we have studied the problem of identifying on Irreducible Infeasible Subset in the context of a

constraint satisfaction problem, and more specifically, a binary constraint satisfaction problem. The thesis is organized

as follows: the first two chapters introduce the state-of-the-art, definitions and solution techniques, of the Constraint

Satisfaction Problem (CSP) and Irreducible Infeasible Subset (IIS). The third chapter introduces our contribution to IIS

identification with a new method called LCV for Locator-Constructor-Verificator, and its application to the Frequency

Assignment Problem (FAP). In the fourth chapter, we propose some enhancement on TabuCol data structure to speedup

the algorithm and we apply LCV method to identify critical subgraphs in the graph k-coloring problem. These chapters

are summarized as follows.

In the first chapter, we have introduced the definition of the constraint satisfaction problem (CSP) which is rep-

resented by a triple of a finite variables set, a finite constraints set and a finite domains set. Three local consistency

levels, namely Node-Consistency, Arc-Consistency and Path-Consistency, are introduced to identify the consistency

on a subset of variables and constraints of the problem. We have detailed several algorithms for Arc-Consistency,

and their time/space complexity are also compared. From the comparison, we have selected the AC3 algorithm to be

embedded in our method for IIS search thanks to its simplicity and effectiveness in domain filtering.

In addition to the Arc-Consistency algorithms, the deadend learning is also an effective technique to reduce the

search space. The definitions of deadend and nogood are given in the chapter to ease the description of learning

methods. The deadend learning technique generates supplementary constraints to cut the branches of the search tree

under which it is not possible to find feasible solutions. Despite of their knowledge generating capability, the learning

techniques still need to improve their time and space complexity to be used efficiently.

The solution techniques of the CSP are presented under exact and heuristic categories. Under the exact approach,

several backtracking algorithms are introduced as main players to solve the CSP. These methods can provide an exact

satisfiability/unsatisfiability proof of the problem. Among them, the MAC algorithm (Maintaining Arc-Consistency

117

during search) shows its simplicity and effectiveness by embedding domain filtering propagation inside the backtrack-

ing. It is chosen to provide the unsatisfiability proof in our method for IIS identification. Alongside the backtracking

algorithms, numerous heuristics have been also illustrated; they provide a compromise between computational time

and solution quality on large size instances.

The second chapter presents on the main topic of this dissertation - Infeasible Subset (IS) and Irreducible Infeasible

Subset (IIS). The definitions of IS and IIS are given at the beginning of the chapter and followed by important properties

of IS and IIS. We restate in this conclusion that an IS is a CSP subproblem for which there is no solution and an IIS

is an IS which becomes feasible by removing any of its constraints or variables. We have also defined the notion of a

critical variable and constraint. The solution techniques in dealing with IIS in the literature are described under two

approaches: satisfiability testing and hitting set approach.

The satisfiability testing approach consists of a satisfiability solver and adding/removing heuristic techniques. The

hitting set approach consists in iteratively generating the violated constraints subsets by a MaxCSP solver and finding

a hitting set on the basis of these violated constraints subsets. These two approaches share common iterative execu-

tion mechanisms and are distinguished by using a different embedded core solver. Our theoretical analysis concludes

that the hitting set approach is more suitable for applications for which the satisfiability is difficult to prove, and the

maximal satisfaction solutions are conveniently obtained. At the end of the chapter, we have detailed the Insertion al-

gorithm, which is proposed by Galinier and Hertz [3], and extended by Desrosiers et al. [78] to deal with the frequency

planning problem. We have shown the drawback of the Insertion algorithm on the FAP and explained the motivation

of a new method to deal with FAP instances.

The third chapter launches the study of IIS identification on our target operational research problem, the frequency

planning. The chapter starts with a brief introduction of the FAP and its CSP modeling. After clarifying the con-

nection between the FAP and CSP, the benchmarks used to evaluate our approach are illustrated by their charac-

teristics and topologies. We have used four benchmarks with several instances: CELAR (11 instances), GRAPH (9

instances), ROADEF2001 (40 instances with different levels of constraint relaxation i.e. 220 instances at all) and

SOES (20 instances). For CELAR and GRAPH we have converted the instances into infeasible ones by removing

some upper constraints from the variables domain. For ROADEF2001 we have kept the infeasible levels of relaxation,

and for SOES2008 the n-ary constraints are not used. All these problems are RLFAP based that is the Radio Link

Frequency Assignment Problem but ROADEF2001 and SOES2008 are frequency and polarization planning prob-

lems while CELAR and GRAPH do not include polarization planning. IIS results were already published on CELAR

and GRAPH; IIS results were given by the CELAR on SOES2008 instances; and there were no previous results for

ROADEF2001 when we did the work.

118

An initial algorithm, called the 2-phase algorithm, is conceived to address some important design aspects on search-

ing for an IIS on the FAP instances. The algorithm is based on a construction phase (the selection of a constraint to

detect the IIS) and a verification phase (verification of the infeasibility/feasibility of the set of selected constraints by

the exact algorithm MAC). Something quite important there is that the algorithm tries to build the IIS by exploiting

the connectivity property of the IIS. When the first constraint of one IIS is identified, its adjacent constraints are con-

sidered during IIS construction. Indeed, the IIS is a connected subgraph, so if the construction of one IIS respects the

connectivity among the constraints, the construction is more efficient by concentrating the search around some initial

constraints. In this procedure we have applied a technique of saturation which consists in completing the constraints

among the critical variables. Using the saturation technique, the number of executions of MinConflict() is reduced sub-

stantially. In comparison with Hemery et al. [61] on CELAR instances, the results were promising but the algorithm

was not efficient in the construction phase.

Based on the experimental analysis on the 2-phase algorithm, our new proposal of the LCV algorithm is described

for IS search. The LCV consists of three independent components which are named locator, constructor and verificator.

The routines of LCV can be described briefly as follows: locator scans the entire problem and attempts to locate a

critical constraint potentially inside an IS; constructor constructs a potential IS by adding one by one the adjacent

constraints around the constraint identified by locator; and finally, verificator provides the proof of feasibility or

infeasibility of the subproblem built by the constructor. The verificator routine still uses a MAC algorithm to check

the infeasibility of the constraint subset. Contructor uses several heuristics such as the saturation technique to introduce

new constraints, minimum conflict technique, and minimum remaining value to find a frequency assignment which

minimizes constraint violation. Locator uses the AC3 algorithm as a pre-filtering step, we have seen that it accelerates

the IIS search speed, and an embedded local search in the BreakScan routine to minimize the violations on highly

weighted constraints. A comparison between Hill Climbing and TabuCol is done as the local search procedure in

BreakScan and has emphasized the improved performance of Hill Climbing.

Then in order to iteratively identify a smaller IS inside one IS until no smaller IS can be found, two detector routines

for IIS of variables and IIS of constraints have also been introduced to extract the IIS on the basis of the IS found by

LCV. The IIS of variables detector firstly locates a small critical constraint subset H inside the entering IS. Secondly,

the detector iteratively adds one variable into the located core formed by the critical constraints H and its variables.

The variable selection is based on the MRV heuristic. The procedure stops when the MAC algorithm proves that the

core is unsatisfiable. The other detector is similar but it adds constraints to the core and does not apply a saturation

technique.

119

The new LCV+detector approach has shown a significant performance improvement when dealing with the CELAR

and GRAPH instances. From the comparison with Hemery et al. [61], the proposed LCV+detector algorithm surpasses

the performance of wcore on both IIS size and computational time. Also we have observed that LCV+detector of con-

straints offers the best performance. These results were confirmed on ROADEF2001 on which we compared the sizes

of IS (obtained with LCV), IIS of variables and IIS of constraints (obtained with LCV plus the respective detector). Fi-

nally concerning SOES2008 instances, we have compared our LCV results with the results given by the SSA algorithm

from DGA/CELAR and the performance of LCV was better for all cases.

In the fourth chapter, considering the existing results on FAP application, we apply the LCV algorithm on critical

subgraph identification to the graph k-coloring problem. The chapter of critical subgraph identification begins with

the definition of the k-coloring problem and the introduction of some exact and heuristic solution techniques in the

literature. We have observed that TabuCol is still a competitive candidate to provide an excellent compromise between

solution quality and computational time. By analysis the behavior of TabuCol, we have proposed two novel data

structures to accelerate performance on both FAP and k-coloring instances. These structures are called gamma table

and bounds list table. The gamma table stores the number of inconsistency values for each value of the variable

domain in a decentralized way. The second structure is dedicated to the FAP problem; it introduces bounds describing

the variable domain. The bounds come issued from the T -coloring constraints and they allow TabuCol to speedup the

inconsistency checking of each value by considering the value outside the bounds and inside the bounds of the interval

of the frequency spectrum. We evaluate formally the time and space complexity of the move evaluation and move

update of TabuCol with the proposed data structures.

At the end of the chapter, we have compared the results obtained by LCV and Desrosiers et al. Insertion+prefiltering

algorithm [78]. The results of LCV on several DIMACS instances were not impressive on runtime performance and

size of critical subgraph. We have underlined the problem for LCV with the uniform representation of constraints

and domains in the k-coloring problem, and further, the heuristic used in constructor to extend the subproblem. The

design of LCV cannot take advantage on the structure of the k-coloring problem, while Insertion can benefit from the

combination of its constraints pruning mechanism and embedded TabuCol in dealing with the same problem. We have

concluded that, currently, our proposed LCV is not efficient and effective for the critical subgraph identification in the

graph k-coloring problem.

After our current research on IIS detection on frequency planning and graph k-coloring, there is still the possibility

of exploring new solutions. As mentioned before, the results of LCV on the frequency planning application were very

impressive while the results on graph k-coloring cannot achieve the same performance as the state of the art method

Insertion+prefiltering. The preliminary analysis casts a doubt on the heuristic used in the constructor routine of LCV

120

for k-coloring. Thus, one possible research avenue will focus on the proposal of new heuristics to construct the critical

constraints subset effectively. Alongside constructor, locator also can be modified to improve IS detection. Instead of

locating one constraint, several constraints can be considered at same time.

Further, the research may concentrate on identifying all the IIS of a problem. All IIS detection may bring two

benefits. Firstly, since one IIS indicates the unsatisfiability of the problem and the constraint violation in a small part

of the problem, even with the relaxation of constraints in such an IIS, it still may not change the global unsatisfiability

of a problem in case that there exists several IIS. With the identification of all IIS and constraint relaxation, we may

propose a complete solution to modify the problem modeling. Secondly, all IIS detection may provide a compromise

MaxCSP solution. Regarding the relation between the IIS detection and MaxCSP solution, one MaxCSP solution can

be achieved by violating the constraints which form a minimum hitting set on the collection of all IIS.

The third research direction can be focused on the IIS detection in the problem with high-arity constraints. Such

objective attracts more attention recently in frequency planning application due to the fact that modern modeling

techniques of FAP involve high-arity constraints as described in Section 3.2.3. Such a challenge explores a different

domain and may bring the benefits on IIS detection with intermodulation and perturbation constraints. If this problem

is solved, the conversion between n-ary constraints and binary constraints will be unnecessary in IIS detection for

n-ary problems.

121

References

1. Chinneck, J.W.: Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods. 1st edn. Springer Publishing

Company, Incorporated (2007)

2. van Loon, J.N.M.: Irreducibly inconsistent systems of linear inequalities. European Journal of Operational Research 8(3) (November

1981) 283–288

3. Galinier, P., Hertz, A.: Solution techniques for the large set covering problem. Discrete Applied Mathematics 155(3) (2007) 312–326

4. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artifical Intelligence 58(1–3) (1992) 21–70

5. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8(1) (1977) 99–118

6. Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information Science 7 (1974)

95–132

7. Freuder, E.: A sufficient condition for backtrack-free search. Journal of the ACM 29(1) (Jan 1982) 24–32

8. C.Bessière: Constraint propagation. Technical report, LIRMM 06020, CNRS/University of Montpellier (March 2006)

9. Zhang, Y., Yap, R.: Making AC-3 an optimal algorithm. In: Proceedings IJCAI’01 Seattle WA. (2001) 316–321

10. Mohr, R., Henderson, T.: Arc and path consistency revised. Artificial Intelligence 28 (1986) 225–233

11. Bessière, C.: Arc-consistency and arc-consistency again. Artificial Intelligence 65 (1994) 179–190

12. C.Bessière, Régin, J.: Refining the basic constraint propagation algorithm. In: Proceedings IJCAI’01 Seattle WA. (2001) 309–315

13. Mehta, D., van Dongen, M.: Two new lightweight arc consistency algorithms. In: Proceedings of the CP’04 Workshop on Constraint

Propagation and Implementation, Toronto, Canada. (2004) 109–123

14. Boussemart, F., Hemery, F., Lecoutre, C.: Revision ordering heuristics for the constraint satisfaction problem. In: Proceedings of the

CP’04 Workshop on Constraint Propagation and Implementation, Toronto, Canada. (2004) 29–44

15. Mackworth, A.K.: On reading sketch maps. In: Proceedings of the 5th international joint conference on Artificial intelligence -

Volume 2, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1977) 598–606

16. Wallace, R.: Why AC-3 is almost always better than AC-4 for establishing arc consistency in csps. In: Proceedings IJCAI’93

Chambéry, France. (1993) 239–245

17. Berlandier, T.: Improving domain filtering using restricted path consistency. In: Proceedings IEEE Conference on Artificial Intelli-

gence and Applications CAIA ’95. (1995)

18. Freuder, E., Elfe, C.: Neighborhood inverse consistency preprocessing. In: Proceedings AAAI’96, Portland OR, USA (1996) 202–208

19. Debruyne, R., Bessière, C.: From restricted path consistency to max-restricted path consistency. In: Proceedings IJCAI’97, Linz,

Austria (1997) 312–326

123

20. Debruyne, R.: A property of path inverse consistency leading to an optimal PIC algorithm. In: Proceedings ECAI’00, Berlin,

Germany (2000) 88–92

21. Dechter, R., Pearl, J.: Network-based heuristics for constraint satisfaction problems. Artificial Intelligence 34 (1988) 1–38

22. Haralick, M., Elliot, G.: Increasing tree-search efficiency for constraint satisfaction problems. Artificial Intelligence 14 (1980)

263–313

23. Frost, D., Dechter, R.: Dead-end driven learning. In: Proceedings of the Twelfth National Conference on Artificial Intelligence

(AAAI-94). (1994) 294–300

24. Gaschnig, J.: Performance measurement and analysis of search algorithms. Technical report, CMU-CS-79-124, Carnegie Mellon

University (1979)

25. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning, and cutset decomposition. Artificial Intel-

lignece 41 (1990) 273–312

26. Katsirelos, G., Bacchus, F.: Unrestricted nogood recording in csp search. In: IN PRINCIPLES AND PRACTICE OF CONSTRAINT

PROGRAMMING, Springer (2003) 873–877

27. Bayardo, J.R.J., Miranker, D.P.: A complexity analysis of space-bounded learning algorithms for the constraint satisfaction problem.

In: Proceedings of the thirteenth national conference on Artificial intelligence - Volume 1. AAAI’96, AAAI Press (1996) 298–304

28. Dib, M., Caminada, A., Mabed, H.: Nogood recording with tabu search for csp (application to fap). In: Asia International Conference

on Modelling and Simulation. (2009) 218–223

29. Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfaction. In: Proceedings of ECAI’94. (1994) 125–129

30. Bessière, C., Régin, J.: MAC and combined heuristics : two reasons to forsake FC (and CBJ?) on hard problems. In: Proceedings of

CP’96. (1996) 61–75

31. van Dongen, M.: AC3d an efficient arc-consistency algorithm with a low space-complexity. Technical report, TR-01-2002, Cork

Constraint Computation Centre, CS Department, University College Cork, Cork, Ireland (2002)

32. van Dongen, M.: Lightweight MAC algorithms. Technical report, TR-02-2003, Cork Constraint Computation Centre, CS Department,

University College Cork, Cork, Ireland (April 2003)

33. Likitvivatanavong, C., Zhang, Y., Bowen, J., Freuder, E.: Arc consistency in MAC: A new perspective. In van Dongen, M., ed.:

Proceedings Constraint Propagation and Implementation, first International workshop Toronto, Canada. (September 2004) 93–108

34. Régin, J.: Maintaining arc consistency algorithms during the search with an optimal time and space complexity. In van Dongen,

M., ed.: Proceedings Constraint Propagation and Implementation, first International workshop Toronto, Canada. (September 2004)

125–138

35. Ginsberg, M.: Dynamic backtracking. Journal of Artificial Intelligence Research 1 (1993) 25–46

36. Jussien, N., Debruyne, R., Boizumault, P.: Maintaining arc-consistency within dynamic backtracking. In: Proceedings of Principles

and Practice of Constraint Programming. (2000) 249–261

37. Karp, R.M.: Reducibility among combinatorial problems. In Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank,

W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A., eds.: 50 Years of Integer Programming 1958-2008. Springer Berlin Heidelberg (2010)

219–241

38. Russell, S.J., Norvig, P., Candy, J.F., Malik, J.M., Edwards, D.D.: Artificial intelligence: a modern approach. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA (1996)

124

39. Beck, J.C., Prosser, P., Wallace, R.J.: Toward understanding variable ordering heuristics for constraint satisfaction problems. In: In:

Proceedings of the Fourteenth Irish Artificial Intelligence and Cognitive Science Conference. (2003) 11–16

40. Wallace, R.J.: Determining the principles underlying performance variation in csp heuristics. (2008) 857–880

41. Vernooy, M., Havens, W.S.: An examination of probabilistic value-ordering heuristics. In: Proceedings of the 12th Australian Joint

Conference on Artificial Intelligence: Advanced Topics in Artificial Intelligence. AI ’99, London, UK, Springer-Verlag (1999) 340–

352

42. Frost, D., Dechter, R.: Look-ahead value ordering for constraint satisfaction problems. In: Proceedings of International Joint Confer-

ence on Artificial Intelligence IJCAI-95. (1995) 572–578

43. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In: Proceedings of the 20th international joint conference

on Artifical intelligence. IJCAI’07, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (2007) 131–136

44. Wallace, R.: Analysis of heuristic synergies. In Hnich, B., Carlsson, M., Fages, F., Rossi, F., eds.: Recent Advances in Constraints.

Volume 3978 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2006) 73–87

45. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuristic repair method for constraint satisfaction and

scheduling problems. Artificial Intelligence 58(1-3) (1992) 161–205

46. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4) (1979) 251–256

47. Morris, P.: The breakout method for escaping from local minima. In: Proceceeding of the 11th National Conference on Artificial

Intelligence, Washington, DC (1993) 40–45

48. Dupont, A., Alvernhe, E., Vasquez, M.: Efficient filtering and tabu search on a consistent neighbourhood for the frequency assignment

problem with polarisation. Annals of Operations Research 130 (2004) 179–198 10.1023/B:ANOR.0000032575.38969.ab.

49. Dib, M., Caminada, A., Mabed, H.: Nogood recording with tabu search for csp (application to fap). In: Asia International Conference

on Modelling and Simulation. (2009) 218–223

50. Galinier, P., Hao, J.K.: A general approach for constraint solving by local search. J. Math. Model. Algorithms 3(1) (2004) 73–88

51. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7) (1962) 394–397

52. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) Problem: A survey. In Du, D.Z., Gu, J., Pardalos,

P., eds.: Satisfiability Problem: Theory and applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

American Mathematical Society (1997) 19–152

53. Hirsch, E.A.: SAT local search algorithms: Worst-case study. Journal of Automated Reasonning 24(1/2) (February 2000) 127–143

54. Hoos, H.H., Stützle, T.: Local search algortihms for SAT: An empirical evaluation. Journal of Automated Reasoning 24(4) (2000)

421–481

55. Lynce, I., Baptista, L., Marques-Silva, J.: Stochastic systematic search algorithms for satisfiability. Electronic Notes in Discrete

Mathematics 9(0) (2001) 190–204

56. van Loon, J.N.M.: Irreducibly inconsistent systems of linear inequalities. European Journal of Operational Research 8(3) (November

1981) 283–288

57. Chinneck, J.W.: Finding a useful subset of constraints for analysis in an infeasible linear program. Informs Journal on Computing

9(2) (1997) 164–174

58. Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequalities. ORSA Journal on Computing 2(1) (1990) 61–63

59. Greenberg, H.J., Murphy, F.H.: Approaches to diagnosing infeasible linear programs. INFORMS Journal on Computing 3(3) (1991)

253–261

125

60. Grégoire, É., Mazure, B., Piette, C.: Local-search extraction of MUSes. Constraints 12(3) (2007) 325–344

61. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from constraint networks. In: ECAI. (2006) 113–117

62. Marques-Silva, J.: Minimal unsatisfiability: Models, algorithms and applications (invited paper). In: Multiple-Valued Logic (ISMVL),

2010 40th IEEE International Symposium on. (May 2010) 9–14

63. Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of boolean clauses. In: Proceedings of the

2008 20th IEEE International Conference on Tools with Artificial Intelligence - Volume 01, Washington, DC, USA, IEEE Computer

Society (2008) 74–83

64. Piette, C., Hamadi, Y., Saı̈s, L.: Efficient combination of decision procedures for mus computation. In: Proceedings of the 7th

international conference on Frontiers of combining systems. FroCoS’09, Berlin, Heidelberg, Springer-Verlag (2009) 335–349

65. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI’04.

(2004) 146–150

66. Grégoire, É., Mazure, B., Piette, C.: On finding minimally unsatisfiable cores of CSPs. International Journal on Artificial Intelligence

Tools 17(4) (2008) 745–763

67. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean formula. In: Proceedings of Theory and

Applications of satisfiability Testing (SAT’03). (2003)

68. Zhang, L.: Searching for truth: techniques for satisfiability of boolean formulas. PhD thesis, Princeton, NJ, USA (2003) AAI3102236.

69. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: a minimally-unsatisfiable subformula extractor. In:

DAC. (2004) 518–523

70. Eisenberg, C., Faltings, B.: Using the Breakout Algorithm to Identify Hard and Unsolvable Subproblems. In: Proceedings of the

9th International Conference on Principles and Practice of Constraint Programming (CP-2003), Lecture Notes in Computer Science.

(2003)

71. Mazure, B., Saı̈s, L., Grégoire, É.: Boosting complete techniques thanks to local search methods. Annals of Mathematics and

Artificial Intelligence 22 (January 1998) 319–331

72. Kautz, H., Selman, B., McAllester, D.: Walksat in the sat 2004 competition. In: International Conference on Theory and Applications

of Satisfiability Testing (SAT’04). (2004)

73. Van Maaren, H., Wieringa, S.: Finding guaranteed muses fast. In: Proceedings of the 11th international conference on Theory and

applications of satisfiability testing. SAT’08, Berlin, Heidelberg, Springer-Verlag (2008) 291–304

74. de la Banda, M.G., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable subsets. In: PPDP ’03: Proceedings of the 5th ACM

SIGPLAN international conference on Principles and practice of declaritive programming, New York, NY, USA, ACM (2003) 32–43

75. Bruni, R., Sassano, A.: Finding minimal unsatisfiable subformulae in satisfiability instances. In: CP. (2000) 495–499

76. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In: in International Conf. on Theory and Appli-

cations of Satisfiability Testing, Springer-Verlag (2005) 173–186

77. Bruni, R.: Approximating minimal unsatisfiable subformulae by means of adaptive core search. Discrete Applied Mathematics

130(2) (2003) 85–100

78. Desrosiers, C., Galinier, P., Hertz, A.: Efficient algorithms for finding critical subgraphs. Discrete Appl. Math. 156 (2008) 244–266

79. Bailey, J., Manoukian, T., Ramamohanarao, K.: A fast algorithm for computing hypergraph transversals and its application in mining

emerging patterns. In: Proceedings of the Third IEEE International Conference on Data Mining. ICDM ’03, Washington, DC, USA,

IEEE Computer Society (2003) 485

126

80. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: In Proc. of the 7th

International Symposium on Practical Aspects of Declarative Languages (PADL05, Springer (2005) 174–186

81. Liffiton, M.H., Moffitt, M.D., Pollack, M.E., Sakallah, K.A.: Identifying conflicts in overconstrained temporal problems. In: Pro-

ceedings of the 19th international joint conference on Artificial intelligence, San Francisco, CA, USA, Morgan Kaufmann Publishers

Inc. (2005) 205–211

82. Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems.

Journal of Combinatorial Optimization 18(2) (2009) 124–150

83. Liffiton, M., Sakallah, K.: Algorithms for computing minimal unsatisfiable subsets of constraints. Journal of Automated Reasoning

40 (2008) 1–33

84. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient sat solver. In: Proceedings of the

38th annual Design Automation Conference. DAC ’01, New York, NY, USA, ACM (2001) 530–535

85. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: SAT. (2006) 252–265

86. Aardal, K., van Hoesel, S., Koster, A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems.

In: (Updated version of a paper appeared in 4OR 1, 261-317, 2003). (Jan 2007)

87. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33(9) (2006) 2547–2562

88. Gondran, A.: Modélisation et optimisation des réseaux locaux sans fil Wireless local area network modeling and optimization. PhD

thesis, Universite de Technologie de Belfort Montbeliard (2008)

89. Mabed, H., Caminada, A., Hao, J.K., Renaud, D.: A dynamic traffic model for frequency assignment. In: PPSN. (2002) 779–788

90. Dib, M.: Tabu-NG:hybridation de programmation par contraintes et recherche locale pour la résolution de CSP. PhD thesis, Universite

de Technologie de Belfort Montbeliard (2010)

91. Gondran, A., Baala, O., Mabed, H., Caminada, A.: Hypergraph t-coloring for automatic frequency planning problem in wireless lan.

In: PIMRC. (2008) 1–5

92. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assignment. Constraints 4(1) (1999) 79–89

93. van Benthem, H.: Graph: generating radiolink frequency assignment problems heuristically. (1995)

94. Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: The partial constraint satisfaction problem: Facets and lifting theorems. Oper.

Res. Lett. 23(3-5) (1998) 89–97

95. Defaix, T.: FAPP – problèmes d’allocation de fréquences avec polarisation. http://www.fap.ema.fr/Local/fap/dir/

documents/fapp_roadef-fr-rev3.pdf (november 2003)

96. Hu, J., Galinier, P., Caminada, A.: On identifying infeasible subsets in constraint satisfaction problems. In: ICAI. (2010) 615–619

97. Hertz, A., Werra, D.: Using tabu search techniques for graph coloring. Computing 39 (1987) 345–351

98. Galinier, P., Gendreau, M., Soriano, P., Bisaillon, S.: Solving the frequency assignment problem with polarization by local search

and tabu. 4OR: A Quarterly Journal of Operations Research 3(1) (2005) 59–78

99. Hu, J., Galinier, P., Caminada, A.: Yet another breakout inspired infeasible subset detection in constraint satisfaction problem. In:

ICAI. (2011)

100. Mehrotra, A., Trick, M.: A column generation approach for graph coloring. INFORMS Journal On Computing 8(4) (1996) 344–354

101. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

102. Diestel, R.: Graph Theory (Graduate Texts in Mathematics). Springer (August 2005)

127

103. In Johnson, D.S., Trick, M.A., eds.: Cliques, coloring, and satisfiability: 2nd DIMACS implementation challenge 1993. DIMACS

series in discrete mathematics and theoretical computer science. American Mathematical Society (1996)

104. Chiarandini, M., Dumitrescu, I., Stützle, T.: Stochastic local search algorithms for the graph colouring problem. In Gonzalez, T.F.,

ed.: Handbook of Approximation Algorithms and Metaheuristics. Computer & Information Science Series. Chapman & Hall/CRC,

Boca Raton, FL, USA (2007) 63.1–63.17

105. Malaguti, E., Toth, P.: A survey on vertex coloring problems. International Transactions in Operational Research 17(1) (2010) 1–34

106. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4) (1999) 379–397

107. Kumar, V.: Algorithms for constraint satisfaction problems: A survey. AI MAGAZINE 13(1) (1992) 32–44

108. Lu, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1) (2010) 241–250

109. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. Journal of Research of the National Bureau of Standards

84(6) (1979) 489–506

110. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: An experimental evaluation part

II, graph coloring and number partitioning. Operations Research 39(3) (1991) 378–406

111. Bollobás, B., Thomason, A.: Random graphs of small order. Annals of Discrete Mathematics 28 (1985) 251–256

112. Hoos, H., Sttzle, T.: Stochastic Local Search: Foundations & Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA (2004)

113. Chams, M., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring graphs. European Journal of Operational

Research 32(2) (1987) 260–266 Third EURO Summer Institute Special Issue Decision Making in an Uncertain World.

114. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part

ii, graph coloring and number partitioning. Oper. Res. 39 (May 1991) 378–406

115. Blöchliger, I., Zufferey, N.: A reactive tabu search usin gpartial solutions for the graph coloring problem. Computers and Operations

Research 35(3) (2008) 960–975

116. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. European Journal of Operational Research

151 (2003) 379–388

117. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers Operations Research 24 (1997) 1097–1100

118. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Applied Mathematics (156) (2002)

2551–2560

119. Mladenović, N., Plastria, F., Urošević, D.: Formulation space search for circle packing problems. In: Proceedings of the 2007 inter-

national conference on Engineering stochastic local search algorithms: designing, implementing and analyzing effective heuristics.

SLS’07, Berlin, Heidelberg, Springer-Verlag (2007) 212–216

120. Denzinger, J., Fuchs, M., Fuchs, M., Informatik, F.F., Munchen, T.: High performance ATP systems by combining several AI methods.

In: In Proc. Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 97, Morgan Kaufmann (1997) 102–107

121. Chiarandini, M., Stuetzle, T.: An application of iterated local search to graph coloring. In: Proceedings of the Computational

Symposium on Graph Coloring and its Generalizations, New York, USA (2002) 112–125

122. Devarenne, I., Caminada, A., Mabed, H.: Analysis of adaptive local search for graph coloring problem. In: MIC2005. (2005)

(1204)1–(1204)6

123. DIB, M., ABDALLAH, R., CAMINADA, A.: Tabu–NG : Une approche de résolution hybride pour la coloration de graphes. In:

ROADEF2011. (2011)

128

124. Morgenstern, C.: Distributed coloration neighborhood search. In: Second DIMACS Implementation Challenge, DIMACS series in

Discrete Mathematics and Theoretical Computer Science. (1996) 335–357

125. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge, MA, USA (1992)

126. Ashlock, D.: Evolutionary Computation for Modeling and Optimization. Springer (2004)

127. Davis, L.: Order-based genetic algorithms and the graph coloring problem. In: Handbook of Genetic Algorithms. Van Nostrand

Reinhold; New York (1991) 72–90

128. Glass, C.A., Prügel-Bennett, A.: Genetic algorithm for graph colouring: Exploration of galinier and hao’s algorithm. Journal of

Combinatorial Optimization 7 (2003) 229–236

129. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring problem. Discrete Applied Mathematics

156(2) (2008) 267–279

130. Rochat, Y., Taillard, E.: Probabilistic diversification and intensification in local search for vehicle routing. Journal Heuristics (1)

(1995)

131. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS Journal on Computing

20(2) (2008) 302–316

132. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Oper. Res. 47 (May 1999) 730–743

133. Porumbel, D.C., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity guarantee and well-informed grouping recombination

for graph coloring. Computers & Operations Research 37 (2010) 1822–1832

134. Brown, J.R.: Chromatic scheduling and the chromatic number problem. Management Science 19(4) (1972) 456–463

135. Sewell, E.: An improved algorithm for exact graph coloring. In: DIMACS Series in Discrete Mathematics and Theoretical Computer

Science. (1996) 359–373

136. Peemöller, J.: A correction to Brelaz’s modification of Brown’s coloring algorithm. Communications of the ACM archive 26(8)

(August 1983) 595–597

137. Hansen, P., Labbé, M., Schindl, D.: Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results.

Discrete Optimization 6(2) (2009) 135–147

138. Herrmann, F., Hertz, A.: Finding the chromatic number by means of critical graphs. ACM Journal of Experimental Algorithmics 7

(2002) 10

139. Gualandi, S., Malucelli, F.: Exact solution of graph coloring problems via constraint programming and column generation. INFORMS

Journal on Computing (2011)

129

� École doctorale SPIM - Université de Technologie Belfort-Montbéliard

F - 90010 Belfort Cedex � tél. +33 (0)3 84 58 31 39

� ed-spim@univ-fcomte.fr � www.ed-spim.univ-fcomte.fr

