
HAL Id: tel-00842555
https://theses.hal.science/tel-00842555v1

Submitted on 8 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strengthening the heart of an SMT-solver : Design and
implementation of efficient decision procedures

Mohamed Iguernelala

To cite this version:
Mohamed Iguernelala. Strengthening the heart of an SMT-solver : Design and implementation of
efficient decision procedures. Other [cs.OH]. Université Paris Sud - Paris XI, 2013. English. �NNT :
2013PA112080�. �tel-00842555�

https://theses.hal.science/tel-00842555v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-SUD
ÉCOLE DOCTORALE D’INFORMATIQUE

Laboratoire de Recherche en Informatique

THÈSE DE DOCTORAT

Renforcement du Noyau d’un Démonstrateur SMT
Conception et Implantation de Procédures de Décisions Efficaces

soutenue le 10 juin 2013

par

Mohamed IGUERNELALA

Commission d’examen:

Frédéric BESSON - Examinateur

Alessandro CIMATTI - Rapporteur

Sylvain CONCHON - Encadrant, directeur de thèse

Évelyne CONTEJEAN - Co-encadrante

Florent HIVERT - Président du jury

Michaël RUSINOWITCH - Rapporteur

Ralf TREINEN - Examinateur

PHD THESIS

Strengthening the Heart of an SMT-Solver
Design and Implementation of Efficient Decision Procedures

Mohamed IGUERNELALA

[version 3 — compiled on July 6, 2013]

i

- Acknowledgments -

I wish to express my sincere thanks to my advisors, Sylvain

Conchon and Évelyne Contejean. Their help was very valuable

for the accomplishment of this work.

I would like to thank current and former members of TOCCATA

(previously PROVAL) team. It was very helpful for me to work in

a pleasant ambiance surrounded by friendly people.

Enormous thanks to my parents, my sisters and my wife. Their

encouragements and support helped me stay the course.

Contents

1 Introduction 1

1.1 Satisfiability Modulo Theories . 2

1.1.1 SAT solving . 3

1.1.2 Decision procedures and their combination 4

1.1.3 Handling quantifiers . 6

1.2 The SMT revolution . 6

1.3 Overview of the contributions . 8

1.3.1 Quantifier-free linear integer arithmetic 8

1.3.2 Preprocessing and SAT solving 9

1.3.3 Built-in AC reasoning modulo theories 9

1.3.4 Implementation in ALT-ERGO 10

1.4 Outline . 11

2 Background 13

2.1 Many-sorted first-order logic . 13

2.1.1 Syntax . 13

2.1.2 Semantics . 18

2.1.3 First-order theories and satisfiability modulo 20

2.2 Shostak theories . 21

2.3 Some interesting theories in SMT . 22

2.3.1 The free theory of equality . 22

2.3.2 Linear arithmetic . 23

2.3.3 Extensional functional arrays 26

2.3.4 Enumerated data types . 28

2.3.5 The AC theory . 29

3 On Deciding Quantifier-Free Linear Integer Arithmetic 33

3.1 Preliminaries . 34

3.1.1 Linear systems of constraints 34

3.1.2 The Fourier-Motzkin algorithm 36

3.1.3 Linear optimization and the simplex algorithm 38

3.2 Constant positive linear combinations of affine forms 44

3.2.1 Computing the combinations using Fourier-Motzkin 44

3.2.2 Computing the combinations using a simplex 45

iv Contents

3.2.3 Convex polytopes with an infinite number of integer points . 48

3.3 A new decision procedure for QF-LIA 50

3.3.1 The main algorithm . 50

3.3.2 Soundness, completeness and termination 53

3.4 Handling equality constraints . 53

3.4.1 Integer substitutions with slack variables 53

3.4.2 Intersection with an affine subspace 54

3.4.3 Rational substitutions with Gaussian elimination 56

3.5 Examples . 57

3.6 Implementation in CTRL-ERGO . 63

3.6.1 Preprocessing . 64

3.6.2 The SAT solver . 66

3.6.3 The decision procedure for QF-LIA 70

3.7 Experimental results . 72

3.8 Related and future works . 74

4 Ground AC Completion Modulo a Shostak Theory 77

4.1 Preliminaries . 78

4.1.1 Term rewriting . 78

4.1.2 Rewriting modulo AC . 79

4.1.3 Ground AC completion . 80

4.2 The ingredients of the combination . 82

4.2.1 Global canonization . 83

4.2.2 Canonized rewriting . 84

4.2.3 Solving heterogeneous equations 85

4.2.4 Ordering constraints . 85

4.3 The combination framework . 86

4.3.1 The inference rules of AC(X) 86

4.3.2 Example . 87

4.4 Correctness and termination proofs . 89

4.4.1 Soundness . 90

4.4.2 Completeness . 90

4.4.3 Termination . 102

4.5 Variable abstraction and multiset ordering 104

4.6 Implementation and evaluation . 108

4.6.1 Implementation . 108

4.6.2 Experimental results . 108

Contents v

4.6.3 Instantiation issues . 112

4.7 Prospective extensions . 113

4.7.1 Matching modulo AC and a set of ground equations 113

4.7.2 Reasoning in presence of non-linear multiplication 115

4.7.3 Extending AC(X) with a first order rewriting system 117

4.8 Related and future works . 122

5 Combination of Decision Procedures in ALT-ERGO 125

5.1 The Shostak-like combination framework 126

5.1.1 The interface of Shostak theories 128

5.1.2 The interface of the module AC 129

5.1.3 The interface and the implementation of ACX 129

5.1.4 The interface and the implementation of UFX 130

5.1.5 The interface and the implementation of CCX 133

5.2 The Nelson-Oppen-like combination framework 135

5.2.1 The interface of Nelson-Oppen like theories 136

5.2.2 The non convex part of enumerated data types 137

5.2.3 The theory of functional arrays 138

5.2.4 Inequalities of linear integer arithmetic 140

5.2.5 Implementation of the module CombineNS 141

5.3 The Combinator module . 142

5.3.1 Implementation of the module Combine 142

5.3.2 Implementation of the module CSA 143

5.4 Evaluation . 145

6 Conclusion 147

Bibliography 151

CHAPTER 1

Introduction

Computer systems are now used in various areas, such as medicine, transportation

and nuclear power plants. An error in these systems may have consequences that

range from occasional discomfort to financial or human loss. For instance, a design

bug [103] in PENTIUM 4 cost INTEL 500 million dollars. The explosion of ARIANE

5 due to a bug [87] in its navigation system, cost 370 million dollars. Moreover,

several patients died [86] after having received an abnormal dose of radiations,

because of a software bug in a radiotherapy machine.

In order to improve hardware and software reliability, several formal meth-

ods have been designed. These approaches include testing [119], model check-

ing [9, 52] and deductive verification [23, 63, 12]. Testing techniques are popular

in industry, because they are automatic and scale well in practice. Model checkers

are now used in hardware design [9, 100, 68] and deductive verification is used in

software development [115, 11].

The techniques mentioned above generate a large number of logical formulas.

In testing, these formulas are used to characterize feasible paths in control flow

graphs. In model checking, they encode states of systems and transition relations.

In deductive verification, they are generated from programs annotated with their

formal specifications.

In general, formulas issued from software verification contain dozens of ground

hypothesis and hundreds of quantified axioms. But, only few instances of some

axioms are needed to prove their validity. Furthermore, these formulas mix — in a

non-trivial way — boolean connectives with some specific theories, such as linear

arithmetic, the free theory of equality and the theory of arrays.

Interactive theorem provers [118, 71] can naturally be used to prove these for-

mulas, especially when the proofs require inductive reasoning. Nonetheless, these

tools are very tedious, as the user has to provide a lot of details and plenty of

time, which makes them not scalable in practice. Thus, automatic theorem provers

(ATPs) seem to be a good alternative, since they allow a high degree of automation

and scalability on large projects.

2 Chapter 1. Introduction

SAT solvers [58, 92, 112] designate a family of automatic tools that targets rea-

soning in propositional logic. These tools have made a spectacular progress and

reached a high level of maturity during the two last decades. However, they are

not really suitable for proving formulas coming from software verification, be-

cause they do not handle quantifiers and theories reasoning.

Conversely, TPTP1 provers [122, 91, 106] are a generic family of automatic tools

that handles reasoning in first-order logic. These ATPs are commonly based on

first-order resolution, tableaux methods or superposition calculus. Moreover, they

are refutationally complete and provide built-in support for some equational theo-

ries, such as the free theory of equality and the AC2 theory. Internally, they use

term rewriting, unification and completion as computation and inference tech-

niques. However, these provers have not succeeded in the context of software

verification. The main reason is the lack of efficient reasoning in a combination of

interesting theories, such as linear arithmetic.

Halfway between these two families, another technology, called Satisfiability

Modulo Theories (SMT), has emerged in the last decade. Logical formulas issued

from software verification are within the reach of these ATPs. In this thesis, we

will focus on this family of automatic provers.

1.1 Satisfiability Modulo Theories

SMT solvers handle formulas expressed in syntactic fragments of first-order logic

where some symbols are assigned additional meanings in some specific theories.

For instance, the formula

(a ≤ b + 0 ∧ a ≥ b) ⇒ f(a) = f(b)

is a mixture of boolean connectives (∧, ⇒), uninterpreted symbols (a, b, f), an

equality predicate (=) and arithmetic symbols (≤, ≥, +, 0). This formula is valid

in the combination of the free theory of equality and linear integer arithmetic.

Internally, SMT solvers combine specialized powerful “little engines of proofs”

to enable efficient propositional reasoning modulo interesting specific theories.

Furthermore, some of them support quantified formulas. The architecture of a

basic SMT solver is shown in Figure 1.1. The preprocessor includes operations,

such as parsing, type-checking, simplification, learning and CNF conversion. In

the rest of this section, we will describe the other components in more detail.

1Thousands of Problems for Theorem Provers [117]
2The theory of associative and commutative function symbols.

1.1. Satisfiability Modulo Theories 3

Figure 1.1: The basic architecture of an SMT solver

1.1.1 SAT solving

SAT solvers handle reasoning in propositional logic. They are used to determine

whether the propositional variables appearing in a given formula admit a boolean

assignment making this formula satisfiable. The main approaches used for that

purpose are BDDs [3], the resolution method [108], the DPLL algorithm [40] and

the CDCL procedure [112]. The two last techniques are the most popular in SMT.

They work on formulas in Conjunctive Normal Form (CNF).

DPLL is a backtracking search procedure that attempts to construct a boolean

model for a given formula by iteratively (1) fixing an unassigned variable to a truth

value and by (2) deducing all of its consequences. When a conflicting configuration

is encountered, backtracking is performed and the last assignment is flipped.

The CDCL algorithm improves DPLL in many ways. First, it uses new data

structures for clauses representation that dramatically speed up the deduction of

consequences. Second, the choice of the next variable to be assigned is guided by

a dynamic variables activity (VSIDS) heuristic [92]. Most importantly, an implied

clause is learned after each conflict and the backtracking process is entirely guided

by this clause. A very naive implementation of CDCL is sketched in Figure 1.2.

1 procedure naive_cdcl() =

2 while true do

3 propagate();

4 if conflict() then

5 begin

6 if no_decisions() then return UNSAT;

7 analyze_conflict();

8 learn_a_clause();

9 backjump(); // non-chronological backtrack

10 end

11 else

12 begin

13 if full_model() then return SAT;

14 decide();

15 end

16 done

Figure 1.2: The simplified CDCL procedure

4 Chapter 1. Introduction

The extension of an abstract DPLL/CDCL procedure with theory reasoning is

described in [98]. In earlier approaches, the decisions procedures were only asked

to check the satisfiability of full boolean models constructed by the SAT. Modern

integration schemes are much more tight. Figure 1.3 sketches such an integration

scheme: each time the boolean candidate model is augmented with some assign-

ments, the procedure checks its consistency modulo theory (line 4). Moreover, an

incomplete, but fast learning mechanism is used to deduce consequences that are

implied at the theory level by the current partial propositional model.

a 1 procedure propagate() =

2 while propagation_stack_not_empty() do

3 boolean_propagation();

4 theory_assume();

5 theory_learn();

6 done

Figure 1.3: Integration of theory reasoning in a DPLL/CDCL

1.1.2 Decision procedures and their combination

Decision procedures are designed to efficiently reason modulo specific theories.

These dedicated proofs engines are predictable compared to generic deduction

mechanisms. For instance, the congruence closure algorithm [97, 6] and the ground

completion procedure [114] are used to decide quantifier-free formulas modulo

the free theory of equality. The simplex algorithm [39] and the Fourier-Motzkin

method [76] are used to decide quantifier-free formulas modulo linear rational

arithmetic. The Omega-Test procedure [104] and various simplex extensions [110]

are used to solve linear integer arithmetic.

In many domains, formulas are expressed through a combination of several

theories. Consequently, reasoning in the union of these theories is mandatory to

decide such formulas. Given two theories T1 and T2 equipped with two decision

procedures D1 and D2 respectively, the combination problem of T1 and T2 consists

in building — if possible — a decision procedure D for the union T1 ∪ T2 using the

individual procedures D1 and D2.

Designing efficient frameworks to combine decision procedures is an active

research domain. The two historical algorithms for combining theories without

shared symbols are Nelson-Oppen’s framework [94] and Shostak’s method [111].

Nelson-Oppen’s framework is very generic. It combines decision procedures

for signature-disjoint theories that are stably infinite. For convex theories, it (1)

1.1. Satisfiability Modulo Theories 5

purifies the given mixed formula using variables abstraction; (2) solves each pure

formula using the corresponding decision procedure; (3) exchanges entailed equal-

ities between shared variables. The last point is crucial for completeness, as the in-

dividual procedures have to agree on equalities between shared variables to merge

their models.

The non-deterministic version handles non-convex theories. It works by guess-

ing implied equalities between shared variables instead of asking the procedures

to deduce them all. However, its complexity is much higher. Let us illustrate this

method on the following mixed formula:

0 ≤ a ∧ a ≤ 1 ∧ f(a) 6= f(0) ∧ g(a) 6= g(1)

The purification step yields the equivalent conjunction:

0 ≤ x ∧ x ≤ 1 ∧ y = 0 ∧ z = 1 (ϕ1)

∧

x = a ∧ f(x) 6= f(y) ∧ g(x) 6= g(z) (ϕ2)

where x, y and z are abstraction variables, ϕ1 is pure in linear integer arithmetic

and ϕ2 is pure in the free theory of equality. In the second step, we realize that

(0 ≤ x ∧ x ≤ 1) is equivalent to (x = 0 ∨ x = 1) modulo linear integer arithmetic.

But, if x = 0 (resp. x = 1), the equality x = y (resp. x = z) has to be propagated to

the decision procedure of the free theory of equality. This implies that f(x) = f(y)

(resp. g(x) = g(z)), which causes an inconsistency.

A substantial amount of work aims at improving this framework. For instance,

Delayed Theories Combination [27] delegates the combination task to the SAT solver.

Model Based Theories Combination [46] attempts to reduce the number of propagated

equalities while preserving completeness. These methods, are used in several SMT

solvers, such as CVC3 [19], CVC4 [14], MathSAT5 [66] and Z3 [43].

Shostak’s combination approach is a specific framework for reasoning in the

union of the free theory of equality with a signature-disjoint Shostak theory. That

is, an equational theory that admits a canonizer algorithm for computing normal

forms of terms modulo theory, and a solver routine that transforms equalities into

substitutions. For example, the equational parts of linear arithmetic, the theory of

records, and the theory of fixed-sized bit-vectors meet these criteria.

This approach handles formulas of the form (s1 = t1 ∧ · · · ∧ sn = tn) ⇒ s = t.

It interleaves canonization, solving equalities and rewriting, in order to transform

the conjunction (s1 = t1∧· · ·∧sn = tn) into a convergent rewriting system modulo

6 Chapter 1. Introduction

the Shostak theory. Then, it rewrites and canonizes s and t, to check whether s = t

follows. Let us illustrate this mechanism on the following example:

(x = 2y ∧ f(y)−
x

2
= 0) ⇒ f(x− f(y)) = y

Solving the first equality simply returns x 7→ 2y. The second equality is then

rewritten to f(y)− 2y
2 = 0 and canonized to f(y)− y = 0. Solving the last equality

returns f(y) 7→ y. Finally, rewriting and canonizing f(x− f(y)) yields y.

The initial formulation of Shostak’s framework [111] was neither complete nor

terminating. After several attempts, it was completely corrected in [109]. More-

over, Shostak claimed that it would be possible to combine individual canonizers

and solvers. While the first assertion was proved correct, it has been shown that

solvers do not combine in general [35]. This framework and its variants are used

in several tools, such as PVS [101], SVC [16], ICS [60] and our ALT-ERGO SMT

solver [21].

1.1.3 Handling quantifiers

Stricto sensu, SMT refers to the extension of a SAT solver with built-in decision

procedures to reason modulo theories. However, in many application domains,

formulas contain both ground and quantified parts. For instance, in deductive

software verification, quantified formulas are used to encode memory models of

programming languages and some properties assessed in programs specification.

In general, SMT solvers with quantifiers support use instantiation techniques.

These techniques are based on matching modulo ground equalities and the notion

of triggers. Furthermore, some SMT solvers integrate superposition calculus [44]

to overcome the limitations of matching techniques.

1.2 The SMT revolution

Satisfiability Modulo Theories is a young research topic. First developments date

back to Nelson’s PhD thesis [95] in late 1970s — early 1980s. During the last years,

we have witnessed an important improvement of this technology up to the present

time, at which SMT solvers are very popular. They are used in various domains,

such as hardware design, software verification, model-checking, symbolic execu-

tion, test-case generation, etc.

However, there are still a lot of challenges in SMT solving. For instance, these

include the design of new procedures for the theory of floating-point numbers and

1.2. The SMT revolution 7

set theory, the improvement of existing procedures, the enhancement of theories

combination schemes and a better handling of quantifiers.

There is an active community around SMT. In 2003, the SMT-LIB [105] initia-

tive was created to provide standard descriptions of some interesting theories, to

define a common language format, and to collect benchmarks. Moreover, SMT-

competition [15], SMT-workshop and the SAT/SMT summer school are yearly

events devoted to this topic. Figure 1.4 summarizes some advances in SAT solving,

SMT solving, and decision procedures design and combination.

Period Advances and tools Remarks

2010 The CVC4 SMT solver [14] Successor of CVC3

2010 The MathSAT5 SMT solver [29] Successor of MathSAT4

2007 The Z3 SMT solver [43]

2007 The MathSAT4 SMT solver [28] Successor of MathSAT3

2006 The CVC3 SMT solver [19] Successor of CVC

2006 The ALT-ERGO SMT solver [21] Shostak-based

2005 The Yices SMT solver [56]

2005 The MathSAT3 SMT solver [25]

2005 SMT-COMP [15] The first edition of the competition

2005 The Simplify SMT solver [51] Public release

2004 The CVC-Lite SMT solver [13] Successor of CVC

2003 The MiniSat SAT solver [58] Small and readable but powerful

2003 The SMT-LIB initiative Common language and benchmarks

2002 The Math-SAT solver [4]

2002 The CVC SMT solver [20] Successor of SVC, based on Chaff

2002 ESC/Java A static programs checker that uses Simplify

2001 The ICS solver [60] Shostak-based

2001 The Chaff SAT solver [92] The VSIDS decision heuristic

1998 ESC/Modula-3 A static programs checker that uses Simplify

1996 The SVC SMT solver [16] Shostak-based

1996 The GRASP SAT solver [112] Non chronological backtracking and clause learning

1992 The PVS verification system [101] Uses procedures combined with the Shostak method

1984 Shostak’s combination framework [111] Procedures combination framework

1980 Nelson-Oppen’s framework [96] Procedures combination framework

1979 The Standford Pascal Verifier [88] Program verification system that uses the Simplifier

1979 The Simplifier decision procedure [93] Based on the Nelson-Oppen’s framework

1962 The DPLL framework [40] SAT solving

Figure 1.4: A summary of some advances in the domains of decision procedures

design and combination, SAT solving and SMT solving.

8 Chapter 1. Introduction

1.3 Overview of the contributions

This thesis addresses the enhancement of our Alt-Ergo theorem prover to make it

effective and usable in the context of software verification. We summarize in this

section our main contributions.

1.3.1 Quantifier-free linear integer arithmetic

The theory of quantifier-free linear integer arithmetic (QF-LIA) is ubiquitous in

many domains, such as verification, linear programming, compiler optimization,

planning and scheduling. In particular, it constitutes — together with the free

theory of equality — a must-have in deductive software verification. Most of the

procedures implemented in state-of-the-art SMT solvers are extensions of either

the simplex algorithm [42, 14, 66, 45] or the Fourier-Motzkin method [19, 21]. Both

techniques first relax the initial problem to the rational domain and then proceed

by branching / cutting methods or by projection.

Simplex extensions, such as branch-and-bound and cutting-planes [110], are often

drowned in a huge search space, when they come to perform a case-split analysis.

Furthermore, they are not complete w.r.t. the deduction of all entailed equalities.

Conversely, Fourier-Motzkin extensions, such as Omega-Test [104], do not scale in

practice. In fact, they potentially introduce a double exponential number of inter-

mediate inequalities, which saturates the memory.

The first contribution of this thesis is a novel procedure for deciding QF-LIA.

Roughly speaking, given a conjunction of inequalities
∧

i

∑
j ai,j xj + bi ≤ 0 over

integers, our algorithm attempts to infer precise lower bounds for the affine forms

ai,j xj + bi, in order to cut down the search space. These bounds are computed

using a rational simplex to solve auxiliary linear optimization problems. These

problems simulate particular runs of the Fourier-Motzkin algorithm.

A key feature of our method is that we can safely deduce the satisfiability of

the original problem, if none of the affine forms have a lower bound. This is clearly

a positive point compared to traditional simplex-based extensions. Moreover, we

can infer all implied (disjunctions of) equalities for the affine forms ai,j xj + bi that

admit a lower bound. In addition, the use of a rational simplex in practice allows

us to circumvent the scalability issue of Fourier-Motzkin extensions.

Since our technique is based on bounds inference and maintenance, it is easily

extensible with intervals calculus. In practice, this allows us to incorporate non-

linear arithmetic reasoning. Note that equality constraints are eliminated using

solving and substitution techniques à la Omega-Test.

1.3. Overview of the contributions 9

1.3.2 Preprocessing and SAT solving

To validate our procedure for linear integer arithmetic, we have conducted some

experiments with ALT-ERGO, using the QF-LIA benchmark [18]. Unfortunately,

we were quickly faced with the complexity of certain formulas in this test-suite.

In fact, these formulas have a rich propositional structure and heavily use some

high level constructs, such as LET-IN and IF-THEN-ELSE. Although sufficient in the

context of deductive software verification, the preprocessor and the SAT solver of

ALT-ERGO are not suitable for this kind of formulas.

To circumvent this issue, we implemented a small SMT solver dedicated to

quantifier-free linear integer arithmetic. This prototype, called CTRL-ERGO, is

built upon an OCAML reimplementation of MINISAT [57]. Its preprocessor in-

corporates a new contextual simplification step to minimize formulas containing

LET-IN and IF-THEN-ELSE constructs. In addition, the QF-LIA procedure imple-

ments some features, such as theory propagation and dynamic clustering.

1.3.3 Built-in AC reasoning modulo theories

Many mathematical operators occurring in automated reasoning enjoy the asso-

ciativity and commutativity (AC) properties. Examples of such operators include

union and intersection of sets, boolean and bit-vectors operators (and, or, xor), and

arithmetic operators (addition, linear and non-linear multiplication).

The easiest way to handle these properties in an SMT solver is to add the ax-

ioms below in its instantiation engine for each function symbol u that is AC.

∀x.∀y.∀z. u(x, u(y, z)) = u(u(x, y), z) (A)

∀x.∀y. u(x, y) = u(y, x) (C)

Unfortunately, this method does not work in practice. Indeed, the mere addition

of these axioms to a prover will usually glut it with plenty of intermediate terms

and equalities which will strongly impact its performances.

While SMT solvers provide built-in support for some specific AC symbols,

such as linear arithmetic and boolean operators, they rather rely on axiomatiza-

tion to deal with generic user-defined AC symbols. Conversely, AC reasoning is

well investigated in the rewriting community. For instance, the AC completion

procedure, implemented at the heart of some TPTP provers, enables a powerful

generic treatment of AC symbols. Furthermore, when the input problem has no

variables, AC completion provides a decision algorithm [89] for the combination

of the free theory of equality and the AC theory.

10 Chapter 1. Introduction

In many application domains, AC is only a part of the automated deduction

problem. What we really need is to decide formulas combining AC symbols and

other theories. For instance, a combination of AC reasoning with linear arithmetic

and the free theory equality is necessary to prove the formula

u(a, c2 − c1) = a ∧ d = c1 + 1 ∧

u(e1, e2)− f(b) = u(d, d) ∧ e2 = b ∧

u(b, e1) = f(e2) ∧ c2 = 2 c1 + 1

 ⇒ a = u(a, 0)

where u is an AC symbol, the symbols +,−, 0, 1, 2 belong to the theory of linear

arithmetic, and the rest of the symbols are uninterpreted.

In this thesis, we have investigated the incorporation of generic built-in AC

reasoning in an SMT solver. For this purpose, we have designed a framework,

called AC(X), to reason in the combination of the free theory of equality, the AC

theory and an arbitrary signature-disjoint Shostak theory.

The AC theory cannot be directly combined using Shostak’s framework, since

it does not provide a solver routine. To circumvent this limitation, we have adopted

a slightly different approach: we followed Shostak’s combination technique and

extended the ground AC completion procedure with an arbitrary signature-disjoint

Shostak theory. This modular and non-intrusive extension rests on the integration

of the canonizer and the solver routines, provided by the Shostak theory in the

ground AC completion procedure.

Note that, at about the same period as our investigations, Tiwari has stud-

ied [120] the combination of AC reasoning with the free theory of equality and

the theory of polynomial rings in the Nelson-Oppen framework. However, no

implementation or experimentation were given. In addition, our philosophy in

ALT-ERGO is to rather favor Shostak-like methods to combine convex equational

theories.

1.3.4 Implementation in ALT-ERGO

ALT-ERGO [21] is an SMT solver used to discharge logical formulas issued from

deductive programs verification. It is currently used in tools, such as Why3 [61],

Caveat [115], Frama-C [63], Spark [11] and GNATprove [67].

During this thesis, we enhanced the core of ALT-ERGO in many ways. First, we

extended our solver with the AC(X) framework. Currently, AC(X) is used to han-

dle the associativity and the commutativity properties of both user-defined AC

symbols and non-linear multiplication. Moreover, a subtle interaction between

1.4. Outline 11

linear arithmetic and AC allows us to partially support the distributivity prop-

erty of non-linear multiplication over addition. Second, we have implemented

a state-of-the-art decision procedure [64] for the theory of functional arrays with

extentionality and a procedure for the theory of enumerated data types.

1.4 Outline

This dissertation is organized follows: Chapter 2 introduces some preliminaries

and background material that will be used in the rest of this thesis. In Chapter 3,

we describe our procedure for deciding the theory of quantifier-free linear inte-

ger arithmetic and provide some implementation details about the CTRL-ERGO

SMT solver. In Chapter 4, we present our AC(X) framework that enables reasoning

in the combination of the free theory of equality, the AC theory and a signature-

disjoint Shostak theory. We also describe some prospective extensions of AC(X)

and discuss the issues we encountered. Chapter 5 describes the core of ALT-ERGO

and the various extensions we have made to enhance it. Finally, in Chapter 6, we

review some interesting improvements and extensions of our work and conclude.

CHAPTER 2

Background

In this chapter, we first recall some notations and definitions about many-sorted

first-order logic, satisfiability modulo theories and Shostak theories. Then, we

present some interesting first-order theories in SMT.

2.1 Many-sorted first-order logic

2.1.1 Syntax

Signature

In many-sorted first-order logic, a signature Σ is a tuple (F ,P,S, τF , τP), where:

• F and P are two disjoint sets of function and predicate symbols, respectively

• S is a set of sort symbols

• τF : F → S+ associates to each symbol f ∈ F a tuple s1×· · ·×sn×s, usually

denoted s1 × · · · × sn → s

• τP : P → S∗ associates to each symbol p ∈ P a tuple s1 × · · · × sn

The tuple s1×· · ·×sn → s (resp. s1×· · ·×sn) is called the sort (arity) of the symbol

f (resp. p). A constant is a function (resp. predicate) symbol with arity s ∈ S .

In addition to the symbols in P , we dispose of a binary predicate ≈s of sort

s × s, for each s ∈ S . These predicates, that represent syntactic equality, will be

denoted ≈ when the sort information is irrelevant or deductible from the context.

Terms

Let Σ be a signature, X a set of variables disjoint from F and P , and τX : X → S a

mapping from variables to sorts. The set TΣ(X) of well-sorted terms is given by:

TΣ(X) =
⋃

s∈S

T s
Σ(X)

14 Chapter 2. Background

where T s
Σ(X) is the set of well-sorted terms of sort s defined as follows:

• x ∈ T s
Σ(X) if x ∈ X and τX (x) = s

• f(t1, · · · , tn) ∈ T
s
Σ(X) if f ∈ F and τF (f) = s1 × · · · × sn → s and

ti ∈ T
si
Σ (X), for each 1 ≤ i ≤ n

Atoms

We then define the set ATΣ(X) of well-sorted atoms as follows:

• t1 ≈s t2 ∈ ATΣ(X) if s ∈ S and t1, t2 ∈ T
s
Σ(X)

• p(t1, · · · , tn) ∈ ATΣ(X) if p ∈ P and τP (p) = s1 × · · · × sn and

ti ∈ T
si
Σ (X), for each 1 ≤ i ≤ n

Formulas

On top of atoms, we define the set FOΣ(X) of well-sorted formulas as follows:

• ATΣ(X) ⊆ FOΣ(X)

• (¬ ϕ) ∈ FOΣ(X) if ϕ ∈ FOΣ(X)

• (ϕ1 ⊲⊳ ϕ2) ∈ FOΣ(X) if ϕ1 ∈ FOΣ(X) and

ϕ2 ∈ FOΣ(X) and

⊲⊳ ∈ { ∧, ∨, ⇒, ⇔ }

• (Q x : s. ϕ) ∈ FOΣ(X) if x ∈ X and τX (x) = s and

ϕ ∈ FOΣ(X) and

Q ∈ { ∀, ∃ }

In the rest of this thesis, we will use (possibly with subscripts) the symbols

a, b, f, g, u to denote function symbols, p, q to denote predicate symbols, s, t, l, r to

denote terms, x, y, z to denote variables, and ϕ, ψ to denote formulas. Depending

on the context, we will also use a to denote atoms, l to denote literals and s to

denote sorts.

Sort annotations used for quantified formulas (i.e. Q x : s. ϕ) will be omitted

when they are irrelevant or deductible from the context. For instance, we simply

write ∀x. x ≈s x instead of ∀x : s. x ≈s x, where s ∈ S . We will also use the

abbreviation ∀x1, · · · , xn. ϕ to denote the formula ∀x1. · · · ∀xn. ϕ

2.1. Many-sorted first-order logic 15

Viewing terms as trees, subterms within a term s are identified by their posi-

tions. Pos(t) denotes the set of all positions of a term t. Given a position p, s|p
denotes the subterm of s at position p, and s[r]p the term obtained by replacement

of s|p by the term r. We will also use the notation s(p) to denote the symbol at

position p in the tree. The root position is denoted by Λ. Given a subset F ′ of F ,

a subterm t|p of t is a F ′-alien of t if t(p) 6∈ F ′ and p is minimal w.r.t the prefix

word ordering. Notice that, according to this definition, a variable is a F ′-alien.

The multiset of F ′-aliens of a term t will be denoted AF ′(t).

A literal is a formula of the form a or ¬a, where a is an atom. A clause is a

disjunction
∨
i li of literals. The variables appearing in a clause — if any — are

implicitly universally quantified. A formula in conjunctive normal form (CNF) is

a conjunction
∧

j(
∨
i lij) of clauses.

Variables

The set vars(t) of variables occurring in a term t is defined as follows:

• vars(x) = {x} if x ∈ X

• vars(f(t1, · · · , tn)) =
⋃n

i=1 vars(ti) if f ∈ F and

τF (f) = s1 × · · · × sn → s

A term t is ground if vars(t) = ∅. The set of all ground terms is denoted TΣ. The set

varsA(a) of variables occurring in an atom a is defined in a similar way. The set

Fvars(ϕ) of free variables occurring in a formula ϕ is defined by:

• Fvars(ϕ′) = varsA(ϕ
′) if ϕ′ ∈ ATΣ(X)

• Fvars(¬ ϕ′) = Fvars(ϕ′) if ϕ′ ∈ FOΣ(X)

• Fvars(ϕ1 ⊲⊳ ϕ2) = Fvars(ϕ1) ∪ Fvars(ϕ2) if ϕ1 ∈ FOΣ(X) and

ϕ2 ∈ FOΣ(X) and

⊲⊳ ∈ {∧,∨,⇒,⇔}

• Fvars(Q x. ϕ′) = Fvars(ϕ′) \ {x} if x ∈ X and

ϕ′ ∈ FOΣ(X) and

Q ∈ { ∀, ∃ }

16 Chapter 2. Background

The set Bvars(ϕ) of bounded variables occurring in ϕ is defined by:

• Bvars(ϕ) = ∅ if ϕ ∈ ATΣ(X)

• Bvars(¬ ϕ) = Bvars(ϕ) if ϕ ∈ FOΣ(X)

• Bvars(ϕ1 ⊲⊳ ϕ2) = Bvars(ϕ1) ∪ Bvars(ϕ2) if ϕ1 ∈ FOΣ(X) and

ϕ2 ∈ FOΣ(X) and

⊲⊳ ∈ {∧,∨,⇒,⇔}

• Bvars(Q x. ϕ) = Bvars(ϕ) ∪ {x} if x ∈ X and

ϕ ∈ FOΣ(X) and

Q ∈ { ∀, ∃ }

The formula ϕ is a sentence (or is ground) if Fvars(ϕ) = ∅. It is quantifier-free if

Bvars(ϕ) = ∅. Note that, quantifier-free sentences contain only ground terms. The

definitions of Vars, VarsA, Fvars and Bvars given above are generalized to sets

of terms, atoms and formulas in the usual way.

Substitutions

Let Σ be a signature and X a set of variables disjoint from F and P . A substitution

σ : X → TΣ(X) is a sort-preserving mapping such that σ(x) 6= x for finitely many

variables x ∈ X .

Let σ be a substitution. The domain of σ is the set Dom(σ) of variables defined by:

Dom(σ) = { x ∈ X | σ(x) 6= x }

The range of σ is the setRan(σ) of terms defined by:

Ran(σ) = { σ(x) | x ∈ Dom(σ) }

The variables range of σ is the set VRan(σ) of variables occurring in the terms of

σ’s range. It is given by:

VRan(σ) =
⋃

t∈Ran(σ)

Vars(t)

Given a substitution σ such that Dom(σ) = {x1, · · · , xn}, we usually write σ

as a partial mapping of the form { x1 7→ σ(x1), · · · , xn 7→ σ(xn) }. A variable

renaming over a subset X ′ of X is a substitution from variables to variables such

that x = y whenever σ(x) = σ(y), for each x, y ∈ X ′.

2.1. Many-sorted first-order logic 17

The application of a substitution σ on a term t is denoted tσ. It consists in

simultaneously replacing each variable x ∈ Vars(t) with σ(x). More formally:

• xσ = σ(x) if x ∈ X

• f(t1, · · · , tn)σ = f(t1σ, · · · , tnσ) if f ∈ F and

τF (f) = s1 × · · · × sn → s

Applying σ on a formula ϕ is also denoted ϕσ. It consists in simultaneously

replacing the occurrences of each variable x ∈ Fvars(ϕ) with σ(x). However, one

should pay attention to capture issues, as the intersection Fvars(ϕ) ∩ Bvars(ϕ) is

not necessarily empty. In fact, every occurrence of the variables introduced by the

application of σ should be free in ϕσ. More formally:

• (t1 ≈s t2)σ = (t1σ) ≈s (t2σ) if s ∈ S and t1, t2 ∈ T
s
Σ(X)

• p(t1, · · · , tn)σ = p(t1σ, · · · , tnσ) if p ∈ P and τP (p) = s1 × · · · × sn

• (¬ ϕ)σ = ¬ (ϕσ) if ϕ ∈ FOΣ(X)

• (ϕ1 ⊲⊳ ϕ2)σ = (ϕ1σ) ⊲⊳ (ϕ2σ) if ϕ1, ϕ2 ∈ FOΣ(X) and

⊲⊳ ∈ {∧,∨,⇒,⇔}

• (Q x. ϕ)σ = Q x. (ϕσ′) if x ∈ X and ϕ ∈ FOΣ(X) and

Q ∈ { ∀, ∃ } and

σ′ :

{
y 7→ σ(y) for each y 6= x

x 7→ x

x 6∈ VRan(σ′)

If x ∈ VRan(σ′), a variable renaming {x 7→ z}, where z 6∈ (Fvars(ϕ) ∪ Bvars(ϕ)),

is necessary before applying σ on Q x. ϕ to ensure the condition x 6∈ VRan(σ′).

The composition of two substitution θ and σ, denoted θ ◦ σ, is defined by:

θ ◦ σ : X → TΣ(X)

x 7→ (xσ)θ for each x ∈ X

A substitution σ is idempotent if σ and σ ◦ σ are identical. In this case, we have

Dom(σ) ∩ VRan(σ) = ∅.

18 Chapter 2. Background

2.1.2 Semantics

In this section, we assume given a signature Σ = (F ,P,S, τF , τP) , a set of variables

X disjoint from F and P and a mapping τX : X → S from variables to sorts.

Structure

A Σ-structure over X is a mapping that satisfies the following properties:

• each sort s ∈ S is associated with a nonempty domain As

• each variable x ∈ X of sort s is associated with an element xA ∈ As

• each constant symbol c ∈ F of sort s is associated with an element cA ∈ As

• each function symbol f ∈ F of sort s1 × · · · × sn → s, where n > 0, is

associated with a function fA : As1 × · · · ×Asn → As

• each predicate symbol p ∈ P of sort s1 × · · · × sn is associated with a subset

pA ⊆ As1 × · · · ×Asn

Let x ∈ X be a variable. We say that a Σ-structure A over X is an x-variant of

a Σ-structure B over X if the restrictions of A and B over X \ {x} are identical.

Interpretation

LetA be a Σ-structure over X and t ∈ T s
Σ(X) a term of sort s. The interpretation of

t under A is denoted A(t). It is the object tA ∈ As recursively defined by:

• A(x) = xA if x ∈ X

• A(c) = cA if c ∈ F and τF (c) = s

• A(f(t1, · · · , tn)) = fA(A(t1), · · · ,A(tn)) if f ∈ F and

τF (f) = s1 × · · · × sn → s

Let ϕ ∈ FOΣ(X) be a formula. The interpretation of ϕ under A is denoted A(ϕ).

It is a truth value in {true, false} recursively defined by:

2.1. Many-sorted first-order logic 19

• A(t1 ≈ t2) is true iff A(t1) = A(t2)

is false otherwise

• A(p(t1, · · · , tn)) is true iff (A(t1), · · · ,A(tn)) ∈ p
A

is false otherwise

where p ∈ P and τP (p) = s1 × · · · × sn

• A(¬ ϕ) is true iff A(ϕ) is false

is false otherwise

• A(ϕ1 ∧ ϕ2) is true iff A(ϕ1) is true and A(ϕ2) is true

is false otherwise

• A(ϕ1 ∨ ϕ2) is true iff A(ϕ1) is true or A(ϕ2) is true

is false otherwise

• A(ϕ1 ⇒ ϕ2) is true iff A(ϕ1) is false or A(ϕ2) is true

is false otherwise

• A(ϕ1 ⇔ ϕ2) is true iff A(ϕ1) and A(ϕ2) are identical

is false otherwise

• A(∀x. ϕ) is true iff B(ϕ) is true for every x-variant B of A

is false otherwise

• A(∃x. ϕ) is true iff B(ϕ) is true for some x-variant B of A

is false otherwise

Model, satisfiability and validity

Let ϕ ∈ FOΣ(X) be a formula. If there exists a Σ-structureA such that ϕ evaluates

to true under A, we say that A satisfies ϕ, and we write A |= ϕ. A model for ϕ is

any Σ-structure satisfying it.

A formula ϕ is satisfiable if it has a model. It is unsatisfiable if it is not satisfiable.

It is valid, denoted |= ϕ, if every Σ-structure is a model for ϕ. A formula ψ is a

logical consequence of ϕ if every model of ϕ is also a model for ψ.

The notions above generalize to sets of formulas as usual, by viewing a set

Φ ⊆ FΣ(X) of formulas as a conjunction
∧

ϕ∈Φ ϕ.

20 Chapter 2. Background

2.1.3 First-order theories and satisfiability modulo

A first-order theory T over a signature Σ is defined by a set of sentences inFOΣ(X),

called axioms. We usually use the symbol T to denote both the name of the theory

and its set of axioms.

A theory T is said consistent if its set of axioms is satisfiable, otherwise it is

inconsistent. In the rest of this thesis, we will use the symbol ⊥ to indicate that a

theory (or a logical formula) is inconsistent.

A formula ϕ is satisfiable in a theory T, or satisfiable modulo T, or T-satisfiable,

if there exists a model A that satisfies both T and ϕ. We then write A |=
T
ϕ. A

formula ϕ is valid modulo T, or T-valid, if it is a logical consequence of the set of

axioms T. In this case, we write |=
T
ϕ. In order to show that a formula ϕ is T-valid,

SMT solvers rather attempts to prove that ¬ϕ is T-unsatisfiable.

The decision problem modulo a theory takes as input a first-order formula and

outputs true if this formula is valid modulo the theory. We say that a first-order

theory is decidable if there exists an algorithm that solves the decision problem

modulo that theory, otherwise it is undecidable. The satisfiability problem modulo

a theory is defined is a similar way, except that we are interested in satisfiability

instead of validity.

Convexity. A theory T over a signature Σ is convex if, whenever a disjunction of

equalities is a logical consequence of a conjunction of literals, there exists a single

equality in this disjunction that is a consequence of the conjunction. More formally,

T is convex if the T-validity of any Σ-formula of the form (where li are Σ-literals)

|=
T
(

n∧

i=1

li ⇒
m∨

j=1

uj ≈ vj)

implies the T-validity of the formula below for some integer j such that 0 ≤ j ≤ m

|=
T
(

n∧

i=1

li ⇒ uj ≈ vj)

Stable infinity. A theory T over a signature Σ = (F ,P,S, τF , τP) is stably infinite

if every T-satisfiable formula admits a model A in which the cardinality of As is

infinite, for each sort s ∈ S .

2.2. Shostak theories 21

2.2 Shostak theories

Let Σ = (F ,P,S, τF , τP) be a signature, such that P = ∅. Let X be a set of variables

and T a first-order theory over Σ.

A canonizer for T is a function (algorithm)

canon : TΣ(X) → TΣ(X)

which returns for every term t1 a unique representative t2, called its canonical

form, such that t1 ≈ t2 is T-valid. Moreover, the canonizer enjoys the following

conditions, for any terms t1 and t2:

(1) canon(canon(t1)) = canon(t1)

(2) |=
T
t1 ≈ t2 iff canon(t1) = canon(t2)

(3) Vars(canon(t1)) ⊆ Vars(t1)

(4) if canon(t1) = t1 then canon(t1|p) = t1|p for every position p ∈ Pos(t1)

These proprieties mean that canon is (1) idempotent, (2) picks the same represen-

tative for the terms that are equal modulo T, (3) does not introduce new variables,

and (4) recursively canonizes subterms. T is canonizable if it admits a canonizer.

A solver for T is a function (algorithm)

solve : TΣ(X)× TΣ(X) → {⊥} ∪ (X × TΣ(X))∗

that returns, for every equality t1 ≈ t2:

• ⊥, if the formula t1 ≈ t2 is T-unsatisfiable

• a substitution {x1 7→ v1, · · · , xn 7→ vn} , where x1, · · · , xn are pairwise

distinct variables occurring in t1 ≈ t2 but not in v1, · · · , vn, otherwise. Such

a substitution have to comply with the following property:

|=
T
t1 ≈ t2 ←→ ∃y1, · · · , ym. (x1 ≈ v1 ∧ · · · ∧ xn ≈ vn)

where y1, · · · , ym are the variables occurring in v1, · · · , vn.

The theory T is solvable if it admits a solver function. We say that T is a Shostak

theory [111] if it is convex, canonizable and solvable. In the next section, we will

give examples of such theories.

22 Chapter 2. Background

2.3 Some interesting theories in SMT

The SMT library [105] initiative provides a description for some interesting theo-

ries, such as functional arrays, rational and integer numbers. In this section, we

present the axiomatization of these theories. We also provide the axioms of the

free theory of equality, the theory of enumerated data types and the AC theory.

In the following, we assume given a signature Σ = (F ,P,S, τF , τP), a set of

variables X disjoint from F and P and a mapping τX : X → S .

2.3.1 The free theory of equality

The free theory of equality with uninterpreted symbols is certainly one of the most

commonly used theories in SMT. It is defined by the set of well-sorted sentences

obtained from the axioms schemes given in Figure 2.1. For each sort s, we have

(1) the reflexivity axiom, (2) the symmetry axiom and (3) the transitivity axiom.

Moreover, we have (4) the congruence property for each function symbol and (5)

the congruence property for each predicate symbol.

E =

1. ∀x. x ≈s x for each s ∈ S

2. ∀x, y. x ≈s y ⇒ y ≈s x for each s ∈ S

3. ∀x, y, z.

x ≈s y ∧ y ≈s z ⇒ x ≈s z
for each s ∈ S

4. ∀x1, · · · , xn, y1, · · · , yn.
∧n

i=1 xi ≈si yi ⇒

f(x1, · · · , xn) ≈s f(y1, · · · , yn)

for each s ∈ S

for each f ∈ F

τF (f) = s1 × · · · × sn → s

5. ∀x1, · · · , xn, y1, · · · , yn.
∧n

i=1 xi ≈si yi ⇒

(p(x1, · · · , xn)⇔ p(y1, · · · , yn))

for each s ∈ S

for each p ∈ P

τP (p) = s1 × · · · × sn

Figure 2.1: The axioms schemes defining the free theory of equality

The identity function is a suitable canonizer for this theory. However, it does

not admit a solver function. This theory is widely used in software verification

2.3. Some interesting theories in SMT 23

to abstract the behavior of programs functions and sub-routines. The validity of

quantifier-free conjunctions of literals modulo this theory can be decided using

congruence closure algorithms or ground completion procedures [107, 97, 74, 8].

Example. Let Σ be a signature, such that F = {a, b, c, f, g}, P = ∅, S = {s1, s2},

where τF (a) = τF (b) = τF (c) = s1, τF (f) = s1 → s2 and τF (g) = s1 × s2 → s1. The

following formula is valid, because its negation ϕ is unsatisfiable modulo the free

theory of equality

|=E ¬ (b ≈s1 a ∧ b ≈s1 c ∧ ¬(g(a, f(a)) ≈s1 g(c, f(b)))︸ ︷︷ ︸
ϕ

)

In fact, the two first equalities of ϕ entail f(a) ≈s2 f(b) modulo E . They also

entail (with the intermediate fact) the equality g(a, f(a)) ≈s1 g(c, f(b)) modulo

E . The formula ϕ is unsatisfiable, because there is no model that satisfies both

(g(a, f(a)) ≈s1 g(c, f(b))) and its negation ¬(g(a, f(a)) ≈s1 g(c, f(b))).

2.3.2 Linear arithmetic

The theories of linear arithmetic over rationals and integers are defined over a

signature Σ of the form:

• F = {0, 1, +}

• P = {≤}

• S = {s
LA
}, where s

LA
∈ {rat, int, nat}

where 0 and 1 are constants of sort s
LA

, + is a function symbol of sort s
LA
× s

LA
→

s
LA

, and ≤ is a predicate symbol of sort s
LA
× s

LA
.

Linear rational arithmetic (LRA)

Linear rational arithmetic is defined over the sort s
LA

= rat. This theory is given

by the set LRA of axioms, such that:

LRA = E ∪ LRAS ∪ LRANS

24 Chapter 2. Background

where E contains the axioms schemes given in Figure 2.1. The set LRAS defines

the equational part of linear rational arithmetic as follows:

LRAS =

1. ∀x, y, z. x+ (y + z) ≈ (x+ (y + z)) associativity

2. ∀x, y. x+ y ≈ y + x commutativity

3. ∀x. x+ 0 ≈ x identity

4. ∀x.∃y. x+ y ≈ 0 inverse

5. ∀x. x+ · · ·+ x︸ ︷︷ ︸
n times

≈ 0⇒ x ≈ 0 torsion-freeness

6. ∀x.∃y. y + · · ·+ y︸ ︷︷ ︸
n times

≈ x divisibility

7. ¬ 1 ≈ 0 non-triviality

The axioms 1, 2, 3 and 4 are those of an abelian group. Axiom 4 allows to build

negative rationals and axiom 6 allows to construct rationals numbers, such as 1
2 .

Items 5 and 6 are axioms schemes that hold for every natural number n > 0. LRA

is not finitely axiomatizable, because of these two axioms schemes. In practice,

we use the abbreviation nx to mean “x added to itself n times” (i.e. x + · · · + x).

Axiom 7 says that the group contains at least one non-zero element. The set LRANS

contains the following axioms that define the total order ≤:

LRANS =

8. ∀x, y. (x ≤ y ∧ y ≤ x)⇒ x ≈ y antisymmetry

9. ∀x, y, z. (x ≤ y ∧ y ≤ z ⇒ x ≤ z) transitivity

10. ∀x, y. (x ≤ y ∨ y ≤ x) totality

11. ∀x, y, z. (x ≤ y ⇒ x+ z ≤ y + z) ordered

12. ¬ 1 ≤ 0 non-triviality

LRA is convex, stably infinite and canonizable. For instance, a canonizer is ob-

tained by viewing LRA-terms as sums
∑n

i=1 aixi+c of ordered monomials, where

the xi are pairwise distinct and each rational coefficient ai is different from zero.

This canonizer function simulates the axioms 1, 2, 3 and 4 of the abelian group.

Moreover, the equational part defined by LRAS is solvable. A solver function is

provided by the Gaussian elimination algorithm.

2.3. Some interesting theories in SMT 25

Linear integer arithmetic (LIA)

Linear integer arithmetic is defined over the sort s
LA

= int. This theory is usually

presented as a construction above Presburger arithmetic [80]. The latter theory

axiomatizes natural number and is given below.

The canonizer we defined for LRA is suitable for linear integer arithmetic.

Moreover, this theory is stably infinite and the equational part is solvable [104, 66].

However, it is not convex. In fact, the formula below is valid modulo LIA

|=LIA ∀x. 0 ≤ x ≤ 1⇒ x ≈ 0 ∨ x ≈ 1

but none of the formulas below are.

|=LIA ∀x. 0 ≤ x ≤ 1⇒ x ≈ 0

and

|=LIA ∀x. 0 ≤ x ≤ 1⇒ x ≈ 1

Presburger arithmetic (NAT)

Presburger arithmetic is defined over the sort s
LA

= nat. This theory is given by

the set of axioms below, plus the axioms schemes of Figure 2.1 and the axioms

defining the total order ≤.

NAT =

1. ∀x. ¬(x+ 1 ≈ x) zero

2. ∀x. x+ 0 ≈ x plus zero

3. ∀x, y. x+ 1 ≈ y + 1 ⇒ x ≈ y successor

4. ∀x, y. x+ (y + 1) ≈ (x+ y) + 1 plus successor

5.

(
ϕ {x 7→ 0} ∧

∀x. ϕ⇒ ϕ {x 7→ x+ 1}

)
⇒ ∀x. ϕ induction

where "induction" is an axiom scheme that holds for every Σ-formula ϕ such that

Fvars(ϕ) = {x}.

26 Chapter 2. Background

Deciding linear arithmetic

The main procedures used in state-of-the-art SMT solvers to decide quantifier-

free conjunctions of literals modulo LRA are the simplex algorithm, the Fourier-

Motzkin variables elimination method, or variants thereof [80, 110]. Moreover,

LRA admits quantifiers elimination. In fact, Fourier-Motzkin’s algorithm also de-

cides LRA-satisfiability of quantified conjunctions of literals.

In order to decide quantifier-free conjunctions of literals modulo LIA, most of

state-of-the-art SMT solvers implement extensions of the simplex algorithm, such

as branch-and-bound, cutting-planes and branch-and-cut [110]. Extensions of the

Fourier-Motzkin method, such as Omega-Test [104] and interval calculus are also

used for this purpose. However, the Fourier-Motzkin algorithm does not scale in

practice and saturates the memory even over rationals.

Example 1. The following formula is valid modulo LRA.

|=LRA ∀x, y. (x+ y︸ ︷︷ ︸
t1

≤ 0 ∧ −x+ y︸ ︷︷ ︸
t2

≤ 0 ∧ 0 ≤ 2y︸︷︷︸
t3

) ⇒ x ≈ 0

In fact, the validity can be shown as follows:

1. we first deduce that 2y︸︷︷︸
t3= t1+t2

≤ 0, because t1 + t2 ≤ t2 and t2 ≤ 0

2. we then deduce t3 ≈ 0, because t3 ≤ 0 and 0 ≤ t3. This implies y ≈ 0

3. from 1 and 2, we deduce t2 ≈ 0, because t3 = 0 ≤ t2 and t2 ≤ 0, and we conclude.

Example 2. The formula below is valid modulo LIA (resp. NAT), because its negation ϕ

is unsatisfiable. However, this formula is not LRA-valid, because ϕ is LRA-satisfiable.

|=LIA ¬ (∃x. x+ x ≈ 1︸ ︷︷ ︸
ϕ

)

2.3.3 Extensional functional arrays

The theory of extensional functional arrays (ARR) is defined over a signature Σ of

the form:

• F = { get, set }

• P = ∅

• S = {sa, si, sv}

2.3. Some interesting theories in SMT 27

where get is a binary function symbol of sort sa× si→ sv, set is a ternary function

symbol of sort sa× sv× si→ sa. Intuitively, sa is the sort of arrays, si is the sort of

indexes and sv is the sort of values stored in arrays cells. The symbol get is used to

read the values of an array at given indexes and set allows to update the content

of cells. More formally, this theory is defined by the set ARR of axioms given by

ARR = E ∪ ARRNS

where E are the axioms schemes given in Figure 2.1 and ARRNS is the set defined

as follows:

ARRNS =

1. ∀xa, xv, xi. get(set(xa, xv, xi), xi) ≈sv xv

2. ∀xa, xv, xi, xj . xi ≈si xj ∨ get(set(xa, xv, xi), xj) ≈sv get(xa, xj)

3. ∀xa, xb. (xa ≈sa xb) ∨ ∃ xi. ¬ (get(xa, xi) ≈sv get(xb, xi))

the first and the second axioms specify the meaning of get and set, as explained

above. The third one is called the (weak) extensionality axiom. It specifies the

meaning of the equality predicate ≈sa.

The theory of functional arrays is very useful in software verification. It is used

to specify memory models of programming languages and to abstract finite arrays

data structures. Note that, this theory is not convex. In fact, the formula below is

valid modulo ARR

|=ARR
∀xa, xi, xj , xv, xw.

xv ≈sv get(set(xa, xw, xi), xj) ⇒ (xv ≈sv xw ∨ xv ≈sv get(xa, xj))

but none of the following formulas are.

|=ARR
∀xa, xi, xj , xv, xw.

xv ≈sv get(set(xa, xw, xi), xj) ⇒ xv ≈sv xw

and

|=ARR
∀xa, xi, xj , xv, xw.

xv ≈sv get(set(xa, xw, xi), xj) ⇒ xv ≈sv get(xa, xj)

The quantifier-free fragment of ARR is decidable. During his thesis [95], Nel-

son has already considered the design of a decision procedure for the theory of

arrays without extensionality. Recent algorithms [75, 64, 47, 24, 116] use various

28 Chapter 2. Background

techniques, such as the reduction of the problem to the free theory of equality, the

use of axioms instantiation mechanisms to saturate the search space, the elimina-

tion of read or write operations, etc.

Example 3. The following formula is valid modulo ARR.

|=ARR
∀xa, xi, xj , xv, xw.

get(xa, xj) ≈sv xv ⇒ get(set(xa, xi, xv), xj) ≈sv xv

In fact, we conclude by axiom 1 if xi ≈si xj . Otherwise, we conclude using the hypothesis

get(xa, xj) ≈sv xv by axiom 2.

2.3.4 Enumerated data types

In order to define a particular theory (i.e. an instance) of enumerated data types,

one requires a signature Σ of the form:

• F = {C1, · · · , Cn}, where n is a fixed natural number

• P = ∅

• S = {s}

where the function symbols Ci are constants of sort s called constructors. This

theory is then defined by the set Enum of axioms, such that:

Enum = E ∪ EnumS ∪ EnumNS

where E is the set of axioms schemes given in Figure 2.1, the set EnumS contains

an axiom scheme saying that the constructors are pairwise distinct and EnumNS

has an axiom saying that a variable of sort s is necessarily equals to a constructor

EnumS =

{
1. ¬ (Ci ≈s Cj) for each constants Ci, Cj such that i 6= j

EnumNS =

{
2. ∀x. x ≈s C1 ∨ · · · ∨ x ≈s Cn

The identity function is a suitable canonizer for Enum. Moreover, we can easily

define a solver for the part EnumS. Given an equality t1 ≈s t2, such a solver

returns:

• the substitution {s 7→ t} if s is a variable, or

2.3. Some interesting theories in SMT 29

• the substitution {t 7→ s} if t is a variable but not s, or

• ∅ if s and t are syntactically equal constructors, or

• ⊥ if s and t are distinct constructors.

However, Enum is neither stably infinite nor convex as shown by the following

example.

Example. Consider the theory RGB of enumerated data types defined over the

signature Σ such that F = {red, green, blue}, P = {≈rgb} and S = {rgb}. Every

Σ-structure that is a model for RGB has a finite cardinality because of axiom 2.

Moreover, the following formula is valid modulo RGB

|=RGB ∀x. x ≈rbg red ∨ x ≈rbg green ∨ x ≈rbg blue

but none of the following formulas are.

|=RGB ∀x. x ≈rbg red

and

|=RGB ∀x. x ≈rbg green

and

|=RGB ∀x. x ≈rbg blue

2.3.5 The AC theory

Given a signature Σ, such that:

• F = {f1, · · · , fn}

• P = ∅

• S = {s1, · · · , sm}

where each fi is a function symbol of sort sj×sj → sj , with sj ∈ S . The AC theory

over this signature is defined by:

AC = E ∪ ACNS

30 Chapter 2. Background

Again, E is the set of axioms schemes given in Figure 2.1, whereas ACNS is the

set of axioms schemes defined below

ACNS =

1. ∀x, y, z. fi(x, fi(y, z)) ≈sj fi(fi(x, y), z) for each fi ∈ F

of sort sj × sj → sj

2. ∀x, y. fi(x, y) ≈sj fi(y, x) for each fi ∈ F

of sort sj × sj → sj

AC is not a Shostak theory, because one cannot provide a solver function for ar-

bitrary user-defined associative and commutative function symbols. For instance,

one can easily build the substitution {a1 7→ −2a2} from the equality a1 +2a2 = 0.

But, one cannot provide a substitution of the form {b1 7→ · · · } or of the form

{b2 7→ · · · } for the equality b1 ∩ b2 = ∅, where a1, a2, b1 and b2 are uninterpreted

well-sorted constants.

However, the AC theory is canonizable. The canonizer defined in [70] is based

on flattening and sorting techniques which simulate associativity and commuta-

tivity, respectively. We can then build sorted degenerate trees and use them as

canonical form of terms, to avoid the use of function symbols with variable arities.

Given a signature Σ, where F = FU ⊎ FAC is a disjoint union of uninterpreted

and AC function symbols, and a total orderingE on terms, the canonizer canonAC

we described above can be defined as follows:

canonAC(x) = x when x ∈ X

canonAC(f(~v)) = f(canonAC(~v)) when f ∈ ΣU

canonAC(u(t1, t2)) = u(s1, u(s2, . . . , u(sn−1, sn) . . .)) when u ∈ ΣAC

where t′i = canonAC(ti) for i ∈ [1, 2]

and {{s1, . . . , sn}} = A{u}(t
′
1) ∪ A{u}(t

′
2)

and si E si+1 for i ∈ {1, · · · , n− 1}

whereA{u}(t) is the multiset of the {u}-aliens of t. Note that, the function canonAC

is a canonizer for the union of the theories AC and E , since it traverse uninterpreted

functions (line 2). The lemma below states that canonAC solves the word problem

for the union of AC and E . Its proof follows directly from the one given in [37].

Lemma 4. Given two terms s and t over Σ, we have

|=E,AC s ≈ t ⇒ canonAC(s) = canonAC(t)

2.3. Some interesting theories in SMT 31

The use of a canonizer to handle the AC properties of function symbols is much

more efficient than an axiomatic approach. In fact, to prove that

|=AC u(c1, u(c2, . . . , u(cn, cn+1) . . .) ≈ u(u(. . . u(cn+1, cn) . . . , c2), c1)

is AC-valid when u is an AC symbol, the instantiation approach used in SMT

solvers may explicitly introduce the (2n)!
n! AC-equivalent terms in the context of

the prover, while the function canonAC simply flattens AC-terms, sorts them and

builds degenerate trees.

Example 5. Consider the following example, where ∪ is an AC function symbol.

|=AC ∀x1, x2, x3, x4. (x1 ∪ x4) ∪ (x3 ∪ x2) ≈ (x1 ∪ (x2 ∪ (x3 ∪ x4)))

The term (x1 ∪ (x2 ∪ (x3 ∪ x4))) is the canonical form of (x1 ∪ x4) ∪ (x3 ∪ x2) modulo

AC (using lexicographic order for sorting). Consequently, this formula is AC-valid.

CHAPTER 3

On Deciding Quantifier-Free

Linear Integer Arithmetic

Quantifier-free linear arithmetic over integers is a must-have in many domains.

State-of-the-art SMT solvers use extensions of either the simplex algorithm [42, 14,

66, 45] or the Fourier-Motzkin method [19, 21] to decide this theory. However,

simplex extensions are often drowned in a huge search space when they come to

perform a case-split analysis. In addition, they are not complete w.r.t. the deduc-

tion of all implied equalities. Conversely, Fourier-Motzkin extensions do not scale

in practice, because they potentially introduce a double exponential number of

intermediate inequalities, which saturates the memory.

In this chapter, we describe a new procedure, called FM-simplex, for deciding

conjunctions of quantifier-free linear integer arithmetic constraints. Our procedure

interleaves an exhaustive search for a model with bounds inference. New bounds

are computed by solving auxiliary rational linear optimization problems using the

simplex algorithm. Intuitively, each auxiliary problem simulates a run of Fourier-

Motzkin’s procedure that would eliminate all the variables simultaneously.

In Section 3.1, we first recall some preliminaries and results about linear sys-

tems of constraints. In particular, we introduce the notion of constant positive lin-

ear combinations of affine forms. We then recall the Fourier-Motzkin procedure,

linear optimization, and the simplex algorithm.

In Section 3.2, we first show that Fourier-Motzkin’s algorithm can be extended

to compute constant positive linear combinations of affine forms. Then, we explain

how to cast this problem into a linear optimization problem, which can hence be

solved by the simplex algorithm. After that, we characterize when the solution set

described by a conjunction of integer constraints can effectively be bounded along

some direction. If there is no such bound, we prove that the solution set contains

infinitely many integer solutions.

In Section 3.3, we present our new decision procedure for QF-LIA. FM-simplex

uses the techniques given in Section 3.2 to find bounds on the solution set. If there

34 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

are none, then the procedure stops since there are infinitely many integer solutions.

Otherwise, it performs a case-split analysis along the bounded direction and calls

itself recursively to solve simpler sub-problems.

In Section 3.4, we show that we can either use Omega-Test’s equalities solver

to handle equalities constraints, or Gaussian elimination with some additional

checks.

In Section 3.5, we illustrate the use of our procedure through simple examples

that show the different scenarios.

In Section 3.6, we describe the implementation of our decision procedure in

a small SMT solver, called CTRL-ERGO. This solver relies on an OCaml version

of MiniSAT and uses a new preprocessing phase to simplify LET-IN and IF-THEN-

ELSE constructs.

In Section 3.7, we measure the performances of our implementation on the QF-

LIA benchmark and compare it with some state-of-the-art SMT solvers. Finally,

we overview related and future works in Section 3.8.

Note that, the ideas developed in this chapter have been published in [22].

3.1 Preliminaries

3.1.1 Linear systems of constraints

In this section, we recall the usual notations and definitions for linear systems of

constraints. We also give some known mathematical results that will be used in

the proofs of some new theorems.

Ifm and n are integers then [|m,n|] denotes the interval of integers bounded by

m and n. Matrices are denoted by upper case letters like A and column vectors by

lower case letters like x. We use letters like a, b and c to denote vectors of constants.

We denote by At the transpose of the matrix A and by Ax the matrix product of

A by the vector x. Depending on the context, we use the symbol + to denote the

addition over vectors and matrices, respectively. If A is a m × n matrix then ai,j

denotes the element of A at position (i, j), ai denotes the i-th row vector of A of

size n, and Aj the j-th column vector of A of size m. If x is a vector, xi denotes

its i-th coordinate. If x and y are n-vectors of the same ordered vector space then

x ≥ y denotes the conjunction of constraints:

∀i ∈ [|1, n|], xi ≥ yi

3.1. Preliminaries 35

Affine form. An affine form on Qn is a function ψ : Qn → Q of shape ψ = φ+ tc,

where the φ : Qn → Q is a linear form and tc is a translation of direction c ∈ Qm.

For instance, the term −2x + 3y − 5 is an affine form. Its linear form is −2x + 3y

and its translation of direction is −5.

Closed convex. A closed convex K ⊂ Qn is defined using a linear system of

constraints over Q as follows:

K =

{
x ∈ Qn such that Ax+ b ≤ 0

}

where A ∈ Qm×n, b ∈ Qm. By definition, K is the convex polytope of the rational

solutions of the linear system Ax+ b ≤ 0.

Given a convex K, we are interested in this chapter in determining whether

K ∩ Zn is empty or not. In other words, we want to know whether the system

Ax+ b ≤ 0 of constraints has integer solutions.

Let us denote by Li the affine forms

Li : Qn −→ Q

x 7−→ (Ax+ b)i

where i ∈ [|1,m|]. FM-simplex relies on the computation of constants positive

linear combinations of affine form. This notion is defined as follows:

Definition 6 (Constant positive linear combination of affine forms). Let (ψi)i∈[|1,k|]

be a family of affine forms on Qn. An affine form ψ on Qn is a positive linear combination

of the (ψi)i∈[|1,k|] if there exists (λi)i∈[|1,k|] a family of nonnegative scalars such that:

ψ =

k∑

i=1

λiψi and
k∑

i=1

λi > 0

Moreover, if ψ is a constant affine form then it is called a constant positive linear combina-

tion of the (ψi)i∈[|1,k|].

We recall below the original formulation of Farkas’ lemma [110, 59] on rationals:

Theorem 7 (Farkas’ lemma). Given a matrix A ∈ Qm×n and a vector c ∈ Qn, then

∃x ∈ Qm, x ≥ 0 ∧ Ax = c ⇔ ∀y ∈ Qn, ytA ≥ 0⇒ ytc ≥ 0

36 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

In the proofs, we will rather use the following equivalent formulation:

Theorem 8 (Theorem of alternatives). Let A be a matrix in Qm×n and b a vector in

Qm. The system Ax + b ≤ 0 has no solution if and only if there exists λ ∈ Qm such that

λ ≥ 0 and Atλ = 0 and btλ > 0.

We also use the following reduction result on integer matrices [113].

Definition 9 (Smith Normal Form for Integers). A matrix A ∈ Zm×n is in Smith

normal form if any non diagonal coefficient of A is zero and

∀i ∈ [|1,min(n,m)|], ai,i divides ai+1,i+1

For instance , the matrix A given below is in Smith normal form. In fact, for all

i, j ∈ [|1, 3|] such that i 6= j, we have ai,j = 0. Moreover, a1,1 divides a2,2 and a2,2

divides a3,3.

A =

2 0 0

0 4 0

0 0 32

Theorem 10. Any matrix A in Zm×n is elementary equivalent to a matrix in Smith

normal form. Otherwise said, there exists U ∈ Zm×m and V ∈ Zn×n two matrices

invertible over Z and D a matrix in Smith normal form such that:

UAV = D

3.1.2 The Fourier-Motzkin algorithm

Let K := { x ∈ Qn | Ax+ b ≤ 0 } be a closed convex where A ∈ Qm×n and b ∈ Qm,

and C the set of the affine forms Li : x 7→ (Ax + b)i. In order to decide whether

K is empty in the rationals or not, the Fourier-Motzkin algorithm proceeds by

iteratively eliminating all the variables from the set of affine forms. More precisely,

the iteration k of the procedure consists in:

1. choosing a variable xk to eliminate,

2. partitioning the current set Ck of affine forms into a set C0
xk

without xk and

a set C+
xk

(resp. C−xk
) where xk has positive (resp. negative) coefficients,

3.1. Preliminaries 37

3. computing the set Ck+1 of new affine forms:

Ck+1 := C0
xk
∪ Π(C+

xk
× C−xk

)

where Π calculates a positive linear combination Li,j = αi,jLi+βi,jLj , where

xk has been eliminated for each Li ∈ C
+
xk

and Lj ∈ C
−
xk

. Notice that if either

C+
xk

or C−xk
is empty, then Π returns an empty set.

This iterative process terminates when all the variables are eliminated. It then

returns a possibly empty set Cf of constant affine forms. We say that K is unsatis-

fiable in Q if there exists c ∈ Cf such that c > 0. The example below illustrates a

run of the Fourier-Motzkin algorithm.

Example 11. Consider the following set of affine forms:

C1 :

{
L1 = 2x+ y, L2 = −2x+ 3y − 5, L3 = x+ z + 1,

L4 = x+ 5y + z, L5 = −x− 4y + 3, L6 = 3x− 2y + 2

}

Eliminating z from C1 is immediate since it only appears positively:

C2 :

{
L1 = 2x+ y, L2 = −2x+ 3y − 5, L5 = −x− 4y + 3,

L6 = 3x− 2y + 2

}

We eliminate the variable x and compute the set C3 below using the combinations: L7 =

L1 + L2, L8 = L1 + 2L5, L9 = 2L6 + 3L2, L10 = L6 + 3L5

C3 :

{
L7 = 4y − 5, L8 = −7y + 6, L9 = 5y − 11,

L10 = −14y + 11

}

Finally, the variable y is in turn eliminated thanks to the following combinations: L11 =

7L7 + 4L8, L12 = 7L7 + 2L10, L13 = 7L9 + 5L8, L14 = 14L9 + 5L10

The iterative process terminates and returns the set

C4 : { L11 = −11, L12 = −13, L13 = −47, L14 = −99 }

We notice that c ≤ 0, for all c ∈ C4. Consequently, we conclude that the convex defined by

the set { L1 ≤ 0, L2 ≤ 0, L3 ≤ 0, L4 ≤ 0, L5 ≤ 0, L6 ≤ 0 } of constraints is satisfiable

in the rationals.

The Fourier-Motzkin algorithm only provides a semi-decision procedure over

integers. For instance, the application of the process above on the example

−2x ≤ 0 ∧ 2x− 1 ≤ 0

yields the set Cf = {−1} of constants affine forms. However, this conjunction is

unsatisfiable over integers, because 2x ∈ [|0, 1|] has no integer solution.

38 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

3.1.3 Linear optimization and the simplex algorithm

Let A ∈ Qm×n be a matrix and b ∈ Qm, c ∈ Qn two vectors. A linear optimization

problem in standard form has the following shape:

maximize ct x

subject to Ax ≤ b ∧ x ≥ 0
(P)

where x ∈ Qn. The affine form ct x is called the objective function of the prob-

lem. Note that, problems with equalities constraints, unconstrained variables and

inequalities with greater-or-equal are straightforwardly convertible as linear opti-

mization problems in standard forms [38].

We say that P is unbounded if Ax ≤ b ∧ x ≥ 0 is satisfiable in Q, but the affine

form ct x has no upper bound. It is infeasible, if Ax ≤ b ∧ x ≥ 0 is unsatisfiable in

Q. A vector xs ∈ Qn is a solution of P if it satisfies

xs ≥ 0 ∧ Axs ≤ b ∧ (∀x′s ∈ Qn. (x′s ≥ 0 ∧ Ax′s ≤ b) ⇒ ct x′s ≤ ct xs)

This means that

• xs satisfies Axs ≤ b ∧ xs ≥ 0

• xs maximizes the value of the objective function ct xs

The simplex algorithm takes as input a linear optimization problem in standard

form. It returns an optimal solution when it exists, infeasible if the constraints have

no solution in Q or unbounded otherwise. It consists of three main steps:

Step 1. First, the simplex constructs an equivalent problem in slake form. For that,

a new vector s ∈ Qm is introduced and P is rewritten as follows:

maximize ct x

subject to s = −Ax+ b ∧

x ≥ 0 ∧ s ≥ 0

This is equivalent to the following formulation, if we expand the vectors c, b, x, s

and the matrix A

maximize c1 x1 + · · ·+ cn xn

subject to s1 = − a1,1 x1 − · · · − a1,n xn + b1 ∧

...

sm = − am,1 x1 − · · · − am,n xn + bm ∧
∧n

i=1 xi ≥ 0 ∧
∧m

i=1 si ≥ 0

3.1. Preliminaries 39

The variables on the left-hand side of the equality symbol are called basic variables.

Those on the right-hand side are non-basic variables.

The basic solution of the constraints in slake form is obtained by replacing non-

basic variables with 0, which forces each basic variable si to be equal to bi. This

solution is feasible if bi are non-negative. Note that, a basic feasible solution for the

conjunction of constraints does not necessarily maximize the value of the objective

function.

Pivoting. The next steps of the simplex are based on pivoting. Given a system of

linear equalities in slake form where the basic variable si is

si = ai,1 x1 + · · · + ai,j xj + · · · + ai,n xn + bi (1)

If the coefficient ai,j 6= 0, then the pivoting operation of si with xj is done as

follows:

1. first, the equality (1) is transformed as follows using Gaussian elimination

xj = −
ai,1

ai,j
x1 − · · · − −1

ai,j
xi − · · · −

ai,n

ai,j
xn −

bi

ai,j
(2)

2. second, the substitution of the form {xj 7→ · · · } obtained from (2) is applied

both on the other equalities and on the objective function. This yields a trian-

gular system where xj (resp. xi) becomes a basic (resp. a non-basic) variable.

Step 2. The second step of the algorithm consists in finding a basic feasible solu-

tion for the conjunction constraints:

1. the simplex checks if the basic solution of the current slake form is feasible

2. if so, the algorithm goes to Step 3 and tries to maximize the objective function

3. otherwise, it computes an initial feasible solution as follows:

(a) the algorithm constructs an auxiliary problem of the form:

Paux

maximize −x0

subject to s = vec(x0,m) − Ax + b ∧

x ≥ 0 ∧ s ≥ 0 ∧ x0 ≥ 0

where x0 ∈ Q and vec(x0,m) is the vector (x0, · · · , x0)t of size m. Note

that, Paux is not unbounded, since the maximum of objective function

is bounded by 0, as x0 ≥ 0.

40 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

(b) then, it performs a pivot between x0 and the basic variable xi for which

bi = min-comp(b), where min-comp returns the minimal component of a

given vector. Note that, the slake form we obtain after this pivot has a

feasible solution. In fact, bi is minimal and negative, and the coefficients

of x0 in Paux’s equalities are positive (+1).

(c) after that, it solves the slake form obtained in (b) using Step 3.

(d) let P end
aux be the final slake form of Step 3 and ν : {x0, x1, . . . , xn} → Q be

the substitution that maximizes −x0.

(e) if ν(x0) 6= 0 then, the original optimization problem is infeasible

(f) if ν(x0) = 0 then,

i. the simplex removes the variable x0 from the equalities of P end
aux

ii. then, it restores the original objective function and normalizes it

w.r.t. the system of linear equalities obtained from i.

iii. at this point, we obtain an equivalent slake form of the original

problem, where some pivot operation have been made. Moreover,

the basic solution of the current slake form is feasible. The simplex

thus moves to Step 3

Step 3. The third step is dedicated to the maximization of the objective function.

It works on problems in slake form having a feasible basic solution. For that, the

simplex repeatedly does the following:

1. it chooses a non-basic variable xj in the objective function which is associated

with a positive coefficient cj > 0

2. if such a variable does not exists then, the objective function is maximized by

the current feasible basic solution

3. otherwise, it chooses a basic variable xi in the system of linear equalities such

that the coefficient ai,j associated with xj is negative (ai,j < 0) and − bi
ai,j

is

minimal

4. if the coefficient ai,j does not exists then, the problem is unbounded

5. otherwise, perform a pivot operation between xi and xj

Note that, the choice of xi and xj in the description above have to comply with

a pre-determined order on variables, in order to avoid cycling. Otherwise, the

termination of the simplex is not ensured.

3.1. Preliminaries 41

Example 12. Let us apply the simplex algorithm on the following optimization problem,

where x1 ≥ 0 and x2 ≥ 0. We use the lexicographic order ≺lex on variables

maximize 2x1 − 3x2

subject to −2x1 − x2 ≤ −2 ∧

−x1 − 2x2 ≤ 1 ∧

3x1 − x2 ≤ 3

• We first construct the slake form as follows, where
∧3

i=1 si ≥ 0

maximize 2x1 − 3x2

subject to s1 = 2x1 + x2 − 2 ∧

s2 = x1 + 2x2 + 1 ∧

s3 = x2 − 3x1 + 3

• The basic solution is not feasible. In fact, if x1 = x2 = 0, then s1 = −2 < 0.

Thus, we have to find a feasible basic solution by the solving the following auxiliary

problem, where x0 ≥ 0

maximize −x0

subject to s1 = x0 + 2x1 + x2 − 2 ∧

s2 = x0 + x1 + 2x2 + 1 ∧

s3 = x0 + x2 − 3x1 + 3

• Pivoting on x0 in the first equality yields {x0 7→ s1− 2x1−x2+2}. Applying this

substitution on the problem above produces

maximize −s1 + 2x1 + x2 − 2

subject to x0 = s1 − 2x1 − x2 + 2 ∧

s2 = s1 − x1 + x2 + 3 ∧

s3 = s1 − 5x1 + 5

Note that, the basic solution for this problem is now feasible

• We use Step 3 to maximize the objective function of this auxiliary problem. The

simplex chooses the first equality and the variable x1 as a first pivot. Indeed, x1 ≺lex

42 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

x2, the coefficient of x1 in the objective function is 2 > 0 and − bi
ai,j

= 2
2 is minimal.

This pivot produces {x1 7→ −1
2x0+

1
2s1−

1
2x2+1}. Normalizing the problem above

with this substitution returns

maximize −x0

subject to x1 = −1
2x0 +

1
2s1 −

1
2x2 + 1 ∧

s2 = 1
2x0 +

1
2s1 +

3
2x2 + 2 ∧

s3 = 5
2x0 −

3
2s1 +

5
2x2

• At this point, Step 3 returns, because the objective function is maximized (all its

coefficients are non-positive). Furthermore, z is a non-basic variable. Thus, it is

evaluated to 0 by the feasible basic solution that maximizes −x0

• We go back to Step 2. The simplex algorithm removes the variable x0 from the

conjunction of equalities

x1 = 1
2s1 −

1
2x2 + 1 ∧

s2 = 1
2s1 +

3
2x2 + 2 ∧

s3 = −3
2s1 +

5
2x2

Then, it restores the original objective function 2x1 − 3x2 and normalizes it w.r.t.

the equalities above. This yields s1 − 4x2 + 2

• After that, it moves to Step 3 and tries to solve the initial problem. Note that, the

basic solution of its current slake form (shown below) is feasible

maximize s1 − 4x2 + 2

subject to x1 = 1
2s1 −

1
2x2 + 1 ∧

s2 = 1
2s1 +

3
2x2 + 2 ∧

s3 = −3
2s1 +

5
2x2

• The coefficient of s1 in the objective function is positive. Moreover,− bi
ai,j

is maximal

for the third equality and ai,j = −3
2 < 0. Pivoting on s1 in this equality yields

3.1. Preliminaries 43

{s1 7→ −2
3s3 +

5
3x2} and normalizing the problem with this substitution produces

maximize −3
2s3 −

7
3x2 + 2

subject to x1 = −1
3s3 +

1
3x2 + 1 ∧

s2 = −1
3s3 +

7
3x2 + 2 ∧

s1 = −2
3s3 +

5
3x2

• The objective function is now maximized, because all its coefficients are non-positive.

Its maximal value is 2. It is reached when x1 = 1 and x2 = 0

Duality in linear optimization

Given a linear optimization problem. It is sometimes more efficient to solve its

dual problem. The notion of duality in linear optimization is introduced by the

definition below:

Definition 13. Let A ∈ Qm×n be a matrix and b ∈ Qm, c ∈ Qn two vectors. The dual of

the following optimization problem

maximize ct x

subject to Ax ≤ b ∧ x ≥ 0

is defined by

maximize bt y

subject to At y ≥ c ∧ y ≥ 0

where x ∈ Qn, y ∈ Qm

The theorem below enunciates the relationship between a linear optimization prob-

lem and its dual.

Theorem 14. Let P be an optimization problem and Q its dual problem.

• If P is infeasible (resp. unbounded) then Q is unbounded (resp. infeasible).

• If P has a solution, let Pmax be an equivalent slake form of P in which that basic

solution is feasible and maximizes the objective function. Then, we can extract a

solution for Q from Pmax.

44 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

Deciding QF-LRA with the simplex algorithm

Let K := { x ∈ Qn | Ax+ b ≤ 0 } be a closed convex where A ∈ Qm×n and b ∈ Qm.

In order to decide whether K is empty, it suffices solve the following optimization

problem
maximize 0

subject to A (y − z) ≤ b ∧ y ≥ 0 ∧ z ≥ 0

where y, z ∈ Qn and x = y − z. This problem is not unbounded. If the simplex

returns infeasible then K is empty. Otherwise, it returns a valuation for y and z. In

this case, we can exhibit a model x = y − z for K.

In general, when the simplex algorithm exhibits a rational model for a given

problem, we cannot conclude that this problem in satisfiable in the integers, be-

cause the valuation of all the variables are not necessarily in Z. Consequently, the

simplex algorithm only provides a semi-decision procedure for QF-LIA.

3.2 Constant positive linear combinations of affine forms

In this section, we design an efficient technique for computing constant positive

linear combinations of affine forms. We build an oracle which takes as input a

set of affine forms (Li) (or equivalently, a matrix A and a vector b) and meets the

following specifications:

1. if there is no constant positive linear combination of the (Li), it says so;

2. otherwise, it returns such a combination
∑

i λiLi.

We first present a method based on the Fourier-Motzkin procedure. Then, we

describe an efficient implementation based on the simplex algorithm and prove its

soundness, completeness and termination.

3.2.1 Computing the combinations using Fourier-Motzkin

Let K := { x ∈ Qn | Ax+ b ≤ 0 } be a closed convex where A ∈ Qm×n and b ∈ Qm,

and C the set of the affine forms Li : x 7→ (Ax+ b)i. Let Cf be the set of constants

affine forms obtained by running the Fourier-Motzkin algorithm with the input C.

For every constant c ∈ Cf , we can easily retrieve a constant positive linear

combination of the initial affine forms of the shape
∑

i λiLi that is equal to c, where

λi are rational scalars. For that, we recursively unfold the definitional equalities

Li,j = αi,jLi + βi,jLj previously computed by Π in Fourier-Motzkin’s execution.

3.2. Constant positive linear combinations of affine forms 45

Using the constant positive linear combinations of the form c =
∑
λi Li, we can

refine the bounds of some initial affine forms as follows: since for any vector x ∈ K

and for any index j we have Lj(x) ≤ 0, we deduce that c =
∑
λi Li(x) ≤ λjLj(x),

and we obtain a lower bound c
λj

on Lj as soon as λj 6= 0.

Let us reuse the results of example 11 to illustrate this mechanism:

Example 15. Unfolding the equalities introduced by Π in example 11 yields the following

constant positive linear combinations

−11 = L11 = 7L7 + 4L8 = · · · = 11L1 + 7L2 + 8L5

−13 = L12 = 7L7 + 2L10 = · · · = 7L1 + 7L2 + 6L5 + 2L6

−47 = L13 = 7L9 + 5L8 = · · · = 5L1 + 21L2 + 10L5 + 14L6

−99 = L14 = 14L9 + 5L10 = · · · = 42L2 + 15L5 + 33L6

Using the linear combination 11L1 + 7L2 + 8L5 = −11, we can make the following

deductions in the rationals:

−1 ≤ L1 , −
11

7
≤ L2 , −

11

8
≤ L3

Furthermore, these deductions are refined as follows in the integers:

−1 ≤ L1 ,

⌈
−
11

7

⌉
= −1 ≤ L2 ,

⌈
−
11

8

⌉
= −1 ≤ L3

We deduce that every integer solution of the constraints defining K satisfies the bounds:

−1 ≤ L1 ≤ 0 , −1 ≤ L2 ≤ 0 , −1 ≤ L3 ≤ 0

3.2.2 Computing the combinations using a simplex

While the Fourier-Motzkin algorithm can be used to compute all the relevant con-

stant positive linear combinations of affine forms (modulo a multiplication by a

positive rational constant), it does not scale in practice. In the following, we de-

scribe an efficient simplex-based alternative and show its soundness, complete-

ness and termination. As opposed to Fourier-Motzkin, this new approach only at-

tempts to compute one particular constant positive linear combination. An heuris-

tic allows us to hopefully calculate the most interesting one.

Let K := { x ∈ Qn | Ax + b ≤ 0 } be a closed convex where A ∈ Qm×n and

b ∈ Qm. Let C be the set of m affine forms Li : x 7→ (Ax + b)i =
∑n

j=1 ai,j xj + bi.

46 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

Consider the linear combination
∑m

i=1 λi Li of these forms where λ1, . . . , λm are

rational scalars. This combination can be unfolded as follows:

λ1 (
n∑

j=1

a1,j xj + b1) + · · · + λm (
n∑

j=1

am,j xj + bm)

Factorizing the xi yields the following equivalent sum:

x1 (
m∑

i=1

ai,1 λi) + · · · + xn (
m∑

i=1

ai,n λi) +
m∑

i=1

bi λi

Since we are only interested in computing constant positive linear combinations,

we eliminate each variable xk for k ∈ [|1,m|] by requiring that
∑m

i=1 ai,k λi = 0.

Moreover, we heuristically look for a constant positive linear combination that

maximizes the value of the final constant
∑m

i=1 bi λi in order to hopefully improve

efficiency as this will be described in Section 3.3.

More formally, we try to compute such a constant positive linear combination

by solving the following linear optimization problem in the rationals:

maximize
∑m

i=1 bi λi

subject to Atλ = 0 ∧

∑m
i=1 λi > 0 ∧

∧m
i=1 λi ≥ 0

This problem reminds of the dual simplex input, but here we have equalities

Atλ = 0 instead of the usual inequalities and an extra constraint
∑m

i=1 λi > 0 that

discards the trivial solution assigning zero to each parameter λi.

In order to solve the optimization problem above, we first introduce a slack

variable s ∈ Q and a positive parameter ε to transform the strict inequality

m∑

i=1

λi > 0

into
m∑

i=1

λi − ε = s ∧ s ≥ 0

following Lemma 1 of [55]. Then, for sake of efficiency, we do not transform the

equalities into conjunctions of inequalities as done in the literature. We rather solve

them, modulo the constraints
∧m

i=1 λi ≥ 0 ∧ s ≥ 0. This returns unsat if this system

is inconsistent in Q modulo these non-negativeness constraints, or a conjunction

3.2. Constant positive linear combinations of affine forms 47

of equalities in slake form as shown below, where the variables λbi (resp. λnk
) are

basic (resp. non-basic).

λb1 = c1.1 λn1
+ c1.2 λn2

+ · · · + (d1 + e1 ε)

λb2 = c2.1 λn1
+ c2.2 λn2

+ · · · + (d2 + e2 ε)

...
...

...

After that, we initialize the simplex with this conjunction and try to maximize

the objective function. The algorithm returns unsat if the given system has no

solution, or unbound if the objective function has no upper bound, or a maximum

m and a valuation (substitution) ν for the vector λ.

If the simplex algorithm returns unsat, then the oracle answers that there is no

constant positive linear combination. If it returns unbound, the oracle just returns a

positive constant. The value of this constant is irrelevant for the deductions made

by the decision procedure in Section 3.3, as explained in Lemma 18 of Section 3.2.3

below. Otherwise, the simplex necessarily returns a solution with a non-positive

maximum for the objective function. Indeed, if the maximum were to be positive,

one could multiply coordinate-wise any solution λ by a constant larger than 1 and

obtain another solution with a larger objective value. The oracle then returns the

corresponding linear combination. Note that, as soon as the simplex exploration

discovers a positive value for the objective function, the answer will eventually be

unbound so it can exit immediately.

Soundness, completeness and termination

On top of the simplex algorithm we only added some substitutions, so the termi-

nation of this oracle follows directly from the one of the simplex algorithm.

We now justify that the introduction of the parameter ε does affect neither the

soundness nor the completeness of the oracle. Let us denote by P>0 the original

problem and by P≥ε the problem we send to the simplex algorithm. Remember

that for both problems, the answer is either unsat or unbound or a solution with a

non-positive evaluation of the objective function: indeed, if ν is a solution, so is αν

for any scalar α with the constraint α > 0 for P>0, and α > 1 for P≥ε, and the value

of the objective function is multiplied accordingly. Moreover, any solution of P≥ε
is obviously a solution of P>0. Let us now proceed with the proof by case analysis.

1. If P>0 is unsat, so is P≥ε by inclusion of solutions.

48 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

2. If P≥ε is unsat, let us assume by contradiction that P>0 is not unsat, hence

has a solution ν. Then ε∑
λi
ν is a solution of P≥ε, a contradiction.

3. If P≥ε is unbound, so is P>0 by inclusion of solutions.

4. If P>0 is unbound, we show that P≥ε is also unbound. Let M be an arbitrary

large value. By hypothesis on P>0, there is a solution ν of P>0 with an eval-

uation of the objective function greater than M . Then, if
∑
λi ≥ ε, ν is a

solution of P≥ε with an evaluation of the objective function greater than M .

Otherwise, ε∑
λi
ν is a solution of P≥ε, with an evaluation of the objective

function greater than ε∑
λi
M , hence greater that M since ε >

∑
λi .

5. If P>0 (resp. P≥ε) has a solution with a non-positive objective function, so

has P≥ε (resp. P>0), since the other cases are impossible as shown above.

3.2.3 Convex polytopes with an infinite number of integer points

In this section, we prove that if there is no constant positive linear combination

of a given set of affine forms (Li), then the convex K defined by these forms has

infinitely many integer solutions. This intermediate result is crucial for the sound-

ness of the decision procedure presented in Section 3.3.

We equip Qn with the usual scalar product associated with its canonical basis.

We measure distances using the supremum norm ‖ · ‖∞. We use B∞(x, r) to denote

the closed ball centered in x and of radius r for that norm.

Theorem 16. If there is no constant positive linear combination of the affine forms (Li),

then for all R ∈ Q+, there exists w ∈ Qn such that:

The convex K contains the ball B∞(w,R)

Proof. Assume that there is no constant positive linear combination of the affine

forms (Li). Let R ∈ Q+. We define a vector γ ∈ Qm as follows:

∀i ∈ [|1,m|]. γi = R ‖ai‖1 = R

n∑

j=1

|ai,j |

Consider the new convex K ′ defined by:

K ′ := { x ∈ Qn | Ax+ γ + b ≤ 0 }

3.2. Constant positive linear combinations of affine forms 49

Suppose for contradiction that K ′ is empty. Hence by Theorem 8, there exists a

vector λ ∈ Qm such that:

Atλ = 0

But, this implies that the linear combination λt(Ax + b) =
∑

i λiLi is a constant,

which contradicts the theorem’s hypothesis. Therefore K ′ is not empty and con-

tains a vector w ∈ Qn such that:

Aw + b+ γ ≤ 0

Now, we prove that B∞(w,R) ⊆ K. Let u ∈ Qn be a point in the ball. We have

‖u‖∞ ≤ R, and by triangular inequality we obtain:

∀i ∈ [|1, . . . ,m|] (Au)i ≤ |(Au)i| ≤ ‖ai‖1 ‖u‖∞ ≤ R ‖ai‖1 = γi

hence

A(w + u) + b = Aw + b+Au ≤ Aw + b+ γ ≤ 0

This proves that w + u belongs to the convex K. Thus, B∞(w,R) ⊆ K.

Corollary 17. If there is no constant positive linear combination of the (Li) then K ∩ Zn

contains infinitely many points, for n > 0.

Proof. For any N ∈ N, for any x ∈ Qn, the ball B∞(x,N) contains at least (2N)n

points with integer coordinates.

We now provide an algorithm that computes an integer solution for the system

of constraints defining the convex K, when there is no constant positive linear

combination. This algorithm relies on the proof of Theorem 16.

Computing an integer solution

• Let R = 1
2 . We define γ ∈ Qm as follows: ∀i ∈ [|1,m|]. γi =

1
2

∑n
j=1 |ai,j |,

• Let w ∈ Qn be a rational solution of the system Aw+ b+ γ ≤ 0. This solution

can for instance be computed using a rational simplex,

• We define ŵ ∈ Zn as follows: ∀i ∈ [|1, n|]. ŵi = round(wi), where round is

the usual rounding operator over rationals.

• By construction, we have ŵ ∈ B∞(w, 12) because |ŵi − wi| ≤
1
2 , for all i in

[|1, n|]. Thus, the integer point ŵ belongs to the convex K.

50 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

When there exists a constant positive linear combination of the affine forms

(Li), the following lemma will be used in our procedure:

Lemma 18. If c =
∑

i λiLi is a constant positive linear combination of the (Li), then

• if c is positive, then K is empty

• otherwise for every k such that λk 6= 0, and for any x ∈ K, Lk(x) is bounded by:

c

λk
≤ Lk(x) ≤ 0

Proof. For any vector x ∈ K, we have by definition of K and non-negativeness

of λi that λiLi(x) ≤ 0 . Hence
∑

i λiLi(x) ≤ 0, which concludes the first case.

Since
∑

i λiLi = c, then for all k such that λk 6= 0 and for any x ∈ K, we have

c − λkLk(x) =
∑

i 6=k λiLi(x) ≤ 0, which concludes the second case. Notice that, if

the constant c is zero, then all the inequalities Lk(x) ≤ 0 associated with a nonzero

λk are in fact equalities.

3.3 A new decision procedure for QF-LIA

In this section, we build a decision procedure for quantifier-free linear integer

arithmetic based upon an oracle that fulfills the interface given at the beginning

of Section 3.2.

3.3.1 The main algorithm

LetA ∈ Qm×n and b ∈ Qm. FM-simplex shall decide whether the systemAx+b ≤ 0

of linear inequalities has a solution x ∈ Zn. Let C = (Li)i∈[|1,m|] be the associated

family of affine forms. Figure 3.1 sketches the algorithm. It takes as input both

the system C of linear inequalities and an additional argument Eq representing

affine relations between variables, e.g. a set of equalities, or a substitution, etc.

This last argument is initially empty. The result of the decision procedure is stored

in the sols variable. It is a finite set of integer solutions, possibly empty, or an

indeterminate infinite set of integer solutions. The check functions at lines 6 and

10 compute the integer solutions of the given system and are intentionally kept

abstract in the procedure. The special shape of the systems they deal with are

detailed in Section 3.4.

The algorithm is recursive. Recursive calls are performed on smaller and smaller

systems C until complete resolution. Branching is caused by the loop on line 15.

3.3. A new decision procedure for QF-LIA 51

1. global sols← ∅

2. procedure LIA (C = (Li),Eq)

3. remove trivial inequalities c ≤ 0 with c constant from C

4. if some c was positive then return

5. if C = ∅ then

6. sols ← sols ∪ check1(Eq)

7. return

8. call oracle(C)

9. if there is no constant positive linear combination then

10. sols ← sols ∪ check∞(Eq ,C)

11. return

12. let
∑
λiLi = c be the linear combination found by the oracle

13. if c > 0 then return

14. choose k and µ > 0 s.t. λk 6= 0 and µLk has integer coefficients only

15. for all v from ⌈µ c
λk

⌉ to 0 do

16. create a substitution σ from µLk(x1, . . . , xn) = v

17. if there is no possible substitution then continue to next iteration

18. remove Lk from C

19. apply σ to C

20. call LIA(C,Eq ∪ {σ})

21. return

22. end-procedure

Figure 3.1: The main steps of the decision procedure

The results are merged along the various branches at lines 6 and 10. One can also

consider that there are implicit statements sols ← sols ∪ ∅ at lines 4, 13, and 17.

Note that the algorithm performs computations only when going from the root

to the leaves of the call tree. For the sake of clarity, we have described a simple

version of the algorithm. An actual implementation would likely be more compli-

cated. For instance, it would exit as soon as a branch finds an infinity of solutions

or even a single solution if one is only interested in satisfiability. It could also use

splitting on demand [17] at line 15.

52 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

From lines 3 to 7, the algorithm deals with degenerate systems that contain no

inequalities or only trivial inequalities. At line 8, it calls the oracle described in

Section 3.2 on C. It then does the following depending on the oracle’s answer:

1. If the oracle answers that no suitable combination of the affine forms exists,

Corollary 17 applies: there are infinitely many solutions with integer coor-

dinates, assuming Eq imposes no restriction (hence the call to check∞). The

decision procedure is done in this branch.

2. Otherwise, if the oracle returns a constant positive linear combination
∑

i λiLi

that is equal to a positive constant, the first case of Lemma 18 applies: the

system has no solution.

3. Otherwise, the oracle returns a constant positive linear combination
∑

i λiLi

that is equal to a non-positive constant c. The second case of Lemma 18 can

then be applied to infer lower bounds for some affine forms in C. Indeed,

we have c
λk
≤ Lk ≤ 0 for all k such that λk 6= 0. The decision procedure

chooses a value for k. Since the coefficients of µLk are in Z, for any point

x ∈ K ∩ Zn, µLk(x) is an integer between µ c
λk

and 0. For each integer v ∈

[|µ c
λk
, 0|], the procedure considers the equality µLk = v from which it infers

a substitution if possible, applies the result to all the other affine forms in C

and removes Lk from the system while updating Eq with the substitution. A

recursive call to the procedure is then performed. If no solution is found after

a complete exploration of all the possible integer values in [|µ c
λk
, 0|], then the

procedure returns at line 21 without updating sols . This is what happens if

C has rational solutions but no integer solutions. Notice that, if the constant

c is zero, then several implied equalities might appear at once. An optimized

procedure should therefore compute a substitution taking all of them into

account, rather than one after the other, as is done in Figure 3.1.

Producing explanations. When developing a decision procedure for an SMT

solver, it is important to provide the most precise explanations in order to improve

the backtrack level when branching. In our setting, the explanation of each lower

bound c
λk

inferred by the procedure is the explanations of the inequalities Li ≤ 0

such that λi 6= 0. If a constraint has not participated in the inference process, its

explanation is discarded.

3.4. Handling equality constraints 53

3.3.2 Soundness, completeness and termination

In this section, we assume that the oracle and the equalities handling mechanism

are sound, complete and terminating.

Termination of FM-simplex is obvious. Indeed, at each recursive call, one affine

form at least is removed from the system.

Soundness depends on the completeness of the oracle: if it does not find any

constant positive linear combination, there should be none. Theorems given in

Section 3.2.3 then cover all the possible cases. Completeness comes from termina-

tion and soundness.

While the oracle can return any constant positive linear combination, it should

strive to find the greatest one, for efficiency reasons: a positive constant if possi-

ble, and zero if not. This would — heuristically — prevent the algorithm from

branching too early.

3.4 Handling equality constraints

In this section, we describe two different techniques for handling equalities in our

decision procedure. The first technique is based on integer substitutions with slack

variables. The second one uses the Gaussian elimination algorithm. We also give

more details on the computations performed at the leaves of the call tree by the

check functions.

3.4.1 Integer substitutions with slack variables

We first consider the case where the substitution scheme introduces new slack

variables: some variables x1, . . . , xi of the affine form Lk are expressed as affine

combinations of the other variables xi+1, . . . , xn and of additional fresh variables

xn+1, . . . , xn+ℓ such that the integer solutions of Lk(x1, . . . , xn) = v are completely

parameterized by xi+1, . . . , xn, xn+1, . . . , xn+ℓ. Removing Lk from C, applying the

substitution on (Li)i 6=k and updating Eq with σ produces a system equisatisfiable

to C when Lk(x1, . . . , xn) is evaluated to v.

A possible technique to compute integer substitutions at line 16 is the well

known Generalized GCD test [10] with the approach given by Pugh in the Omega-

Test procedure [104]. Note that the substitution may have only one solution, e.g.

2x = 6. The substitution may also not exist, e.g. 5x = 2, in which case, the exit case

described line 17 applies. In this scenario, the functions check are implemented as

follows:

54 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

• For check1, the solutions are purely constrained by Eq . More precisely, the

set of integer solutions is parameterized by the set of variables that are never

the target of substitution in Eq . Moreover, the Eq system has been built

only from adding successively (cf. line 20) new substitutions not featuring

the variables previously substituted (cf. line 19), so it is never inconsistent.

Therefore, only two situations are possible when Eq is passed to check1: ei-

ther Eq involves all the variables of the system, in which case there is exactly

one solution, or it does not (some variables have not been substituted) and

there are infinitely many integer solutions.

• For check∞, the solutions are constrained by both Eq and the remaining

affine forms in C for which there is no constant positive linear combination

(cf. line 9). However, since Eq is never inconsistent and the substitutions

it contains are progressively applied on C at line 19, explicit solutions can

easily be computed thanks to the algorithm described in 3.2.3.

3.4.2 Intersection with an affine subspace

Before we present the second scenario, we introduce and prove, in this section, an

intermediate result related to the use of Gaussian elimination to handle equalities

in our decision procedure. In addition to the convex K defined by the system

Ax+ b ≤ 0, we consider another convex K ′ ⊂ Qn defined by ℓ equations

K ′ =

{
x ∈ Qn such that A′x+ b′ = 0

}

where A′ ∈ Zℓ×n, b′ ∈ Zℓ. We prove here a sufficient condition for the intersection

K ∩K ′ ∩ Zn to be infinite when K ∩ Zn is known to be infinite.

Let (e1, . . . , en) be the canonical basis of Qn. We suppose that there exists

i1, . . . , ij such that K is invariant by any translation of direction eik for k ∈ [|1, j|].

Hence, if we define E := 〈ei1 , . . . , eij 〉 to be the vector space generated by these

vectors, the convex K is invariant by any translation of direction e ∈ E. Let us

denote by π : Qn → Qn−j the orthogonal projection along E (on the orthogonal

complement E⊥ of E). Note that since we consider vectors as column matrices of

their coordinates on the canonical basis, computing the projection π(x) of a vector

x boils down to annihilating the coordinates i1, . . . , ij of x.

3.4. Handling equality constraints 55

Theorem 19. Assume that there are no constant positive linear combinations of the (Li)

and thatK ′∩Zn contains at least one point. Then if π(K) ⊆ π(K ′),K∩K ′∩Zn contains

infinitely many points.

Proof. Let us first calculate the Smith normal form of the matrix A′. This gives

U , D, and V , matrices over Z such that UA′V = D, where U and V are square

matrices invertible over Z, and D is diagonal (but not necessarily square).

Since U and V are invertible, we have:

{x ∈ Qn | A′x = 0} = {x ∈ Qn | UA′V (V −1x) = 0}

= {V x ∈ Qn | Dx = 0}

Similarly, and since V is invertible over Z, we have:

{x ∈ Zn | A′x = 0} = {V x | x ∈ Zn ∧Dx = 0}

= {V x | x ∈ kerD ∩ Zn}

By hypothesis, there exists x0 a point of K ′ ∩ Zn. For any point x of K ′, we have

A′(x− x0) = (A′x+ b′)− (A′x0 + b′) = 0. Therefore,

K ′ = {x0 + V x | x ∈ kerD}

K ′ ∩ Zn = {x0 + V x | x ∈ kerD ∩ Zn}

Let R = max(1,maxi(
∑

j |vi,j |)) = max(1,maxi ‖vi‖1) and N an arbitrary large

integer. By Theorem 16, there exists a ball B = B∞(w,R(N + 1)), of diameter

2R(N + 1), contained in K. The projection π(B) contains at least Nn−j points that

are at least at distance 2R from each other and at least at distanceR from its border.

Each of these points has at least one antecedent by π in K ′ since π(B) ⊆ π(K) ⊆

π(K ′). We call T ⊂ K ′ this set of points. The distance between any two points of

T is at least 2R since the coordinates of the vectors in T on E⊥ coincide with the

ones of their respective projections.

For any point y = x0 + V x ∈ K ′, there is a point of K ′ ∩ Zn at most at distance

R. Indeed, sinceD is diagonal and x ∈ kerD, any vector having the same non-zero

coordinates as x remains in kerD. Hence truncating the coordinates of x gives a

vector ⌊x⌉ ∈ kerD ∩ Zn. By definition of R, the distance between y and x0 + V ⌊x⌉

is at most R.

Hence for each t ∈ T , there exists u ∈ K ′ ∩ Zn such that the distance between t

and u is at most R. But the distance between π(t) and π(u) is also at most R since

56 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

the projection only annihilates some coordinates. Therefore we obtain a family U

of Nn−j distinct points of K ′ ∩ Zn that have a projection inside π(B). For each

u ∈ U , u = b+ e where b = π(u) ∈ π(B) and e ∈ E. Now since π(B) ⊂ π(K) there

exists e′ ∈ E such that b + e′ ∈ B ⊂ K. Hence u = b + e′ + (e − e′) belongs to

K since K is invariant by the translation of direction e′ − e ∈ E. Finally the Nn−j

points of U are in K ∩K ′ ∩ Zn, which concludes the proof when j < n.

In the degenerate case where j = n, K is either empty or the whole space. K

cannot be empty since by Theorem 8 this would imply the existence of constant

positive linear combination of the (Li), hence a contradiction. Now K cannot be

the whole space if there is no zero combination of the (Li) which again contradicts

the present hypothesis.

3.4.3 Rational substitutions with Gaussian elimination

Let us now investigate the use of rational substitutions obtained with a simple

Gaussian elimination algorithm on rational numbers at line 16. In this case, we

do not introduce any slack variables but the coefficients involved in the substitu-

tions are rationals, possibly non integers. The functions check are implemented as

follows:

• The function check1 has now to test whether the set of equalities in Eq ad-

mits some solutions in Z (contrarily to the first scenario) and to return them.

Indeed, we can have rational solutions for the relaxation problem we obtain

when using Gaussian elimination but no integer solutions. In this case, there

can be either zero integer solution, or one, or an infinite number of them.

• The function check∞ can take benefit of Theorem 19. The hypotheses of the

theorem are actually verified thanks to the Gaussian elimination; and the

vector space E of Theorem 19 is generated by the vectors of the canonical

basis associated with the variables already substituted. Since these variables

have been eliminated from C, the set of solutions of C is obviously invariant

by translation along these coordinates. By construction of Eq the hypothesis

of inclusion of the respective projections also holds. Therefore if the system

of equalities Eq admits at least one integer solution, then there are an infi-

nite number of integer solutions for the problem considered in the current

branch. Otherwise there is no solution for this branch.

3.5. Examples 57

3.5 Examples

To get a flavor of our procedure, we illustrate its use through simple examples. We

classify them into four categories regarding their satisfiability status and the way

they are proved by the procedure. In the following, we consider:

1. a satisfiable example not requiring case-split analysis (example 20),

2. an unsatisfiable example not requiring case-split analysis (example 21),

3. a satisfiable example requiring case-split analysis (example 22),

4. an unsatisfiable example requiring case-split analysis (example 23).

Example 20. Let us first consider the following inequalities where x and y are two integer

variables:

green : − 761x + 366y − 445︸ ︷︷ ︸
L1

≤ 0 ∧

red : 887x + 563y + 427︸ ︷︷ ︸
L2

≤ 0 ∧

blue : − 317x + 111y − 291︸ ︷︷ ︸
L3

≤ 0

They define the figure below. The gray part represents their rational solutions set. The

main steps to prove their satisfiability are:

Figure 3.2: Satisfiable example without case-split analysis

58 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

• The procedure calls the oracle with L1, L2 and L3 at line 8. Following the method

described in Section 3.2.2, the oracle attempts to find values for the rationals λ1, λ2

and λ3 that are solution of the optimization problem given below in order to compute

a particular constant positive linear combination of the affine forms L1, L2 and L3:

maximize − 445λ1 + 427λ2 − 291λ3

subject to (1) − 761λ1 + 887λ2 − 317λ3 = 0 ∧

(2) 366λ1 + 563λ2 + 111λ3 = 0 ∧

(3) λ1 + λ2 + λ3 > 0 ∧

(4)
∧3

i=1 λi ≥ 0

• The equality (2) necessarily implies that λ1 = λ2 = λ3 = 0 modulo the non-

negativeness constraints in (4). But, this solution is forbidden by (3). The oracle

consequently answers that there is no constant positive linear combination of L1, L2

and L3 and the initial problem is satisfiable.

Let us use the method described in 3.2.3 to exhibit a model for this example:

• We first define the vector γ ∈ Q3 as follows: γ1 =
1127
2 , γ2 = 725, γ3 = 214,

• We look for a vector w ∈ Q2 that is solution of Aw + b+ γ ≤ 0, i.e. such that:

green∗ : − 761w1 + 366w2 − 445 + 1127
2 ≤ 0 ∧

red∗ : 887w1 + 563w2 + 427 + 725 ≤ 0 ∧

blue∗ : − 317w1 + 111w2 − 291 + 214 ≤ 0

• We use a rational simplex to get a valuation forw. In our case, we obtain the solution

w1 = 0, w2 = −
1152
563 ,

• Finally, the integer point ŵ is defined by ŵ1 = 0, ŵ2 = −2. The figure below shows

the constraints defining K and K ′, and the ball B∞(12 , w) that is indeed a square in

a 2D Euclidian orthonormal space.

3.5. Examples 59

Figure 3.3: Satisfiable example without case-split analysis: model calculation

Example 21. In this example, we consider the following formula:

green : − 361x + 366y + 445︸ ︷︷ ︸
L1

≤ 0 ∧

red : − 887x − 563y − 427︸ ︷︷ ︸
L2

≤ 0 ∧

blue : 317x − 111y + 291︸ ︷︷ ︸
L3

≤ 0

There is no gray part in the figure below because the rational solutions set of these con-

straints is empty. The main steps to prove their unsatisfiability are:

• The procedure calls the oracle with L1, L2 and L3 at line 8. Then, the oracle attempts

to compute a particular constant positive linear combination of L1, L2 and L3. For

that, it tries to find values for the rationals λ1, λ2 and λ3 that are solution of the

60 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

Figure 3.4: Unsatisfiable example without case-split analysis

following optimization problem:

maximize 445λ1 − 427λ2 + 291λ3

subject to (1) − 361λ1 − 887λ2 + 317λ3 = 0 ∧

(2) 366λ1 − 563λ2 − 111λ3 = 0 ∧

(3) λ1 + λ2 + λ3 > 0 ∧

(4)
∧3

i=1 λi ≥ 0

• A slack variable s is introduced and the constraint (3) is replaced by:

(4) s = λ1 + λ2 + λ3 − ε ∧

(5) s ≥ 0

where ε is a positive rational parameter.

• The equalities are then solved in the rationals modulo the non-negativeness con-

straints (4) and (5). We obtain for instance the following solved form:

λ1 7→ 276928
527885 λ3

λ2 7→ 75951
527885 λ3

s 7→ 880764
527885 λ3 − ε

3.5. Examples 61

• Now, we initialize the simplex algorithm with this matrix and try to maximize the

objective function which is normalized to 244416418
527885 λ3,

• The simplex detects that the problem is unbounded and returns an arbitrary pos-

itive constant. The procedure consequently deduces that the initial conjunction is

unsatisfiable.

Example 22. Now, let us consider the following conjunction defining the gray triangle

shown in the figure below:

green : 361x − 366y − 445︸ ︷︷ ︸
L1

≤ 0 ∧

red : 887x + 563y + 427︸ ︷︷ ︸
L2

≤ 0 ∧

blue : − 317x + 111y − 291︸ ︷︷ ︸
L3

≤ 0

Figure 3.5: Satisfiable example with case-split analysis

The main steps to prove the satisfiability of this conjunction are:

• At line 8, the oracle tries to compute a particular constant positive linear combina-

62 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

tion of L1, L2 and L3 by solving the following optimization problem:

maximize − 445λ1 + 427λ2 − 291λ3

subject to (1) 361λ1 + 887λ2 − 317λ3 = 0 ∧

(2) − 366λ1 + 563λ2 + 111λ3 = 0 ∧

(3) λ1 + λ2 + λ3 > 0 ∧

(4)
∧3

i=1 λi ≥ 0

• The maximum of this problem is equal to −6432011
23178 ε. The corresponding valuation

of λ is:

λ1 = 69232
220191 ε, λ2 = 25317

293588 ε, λ3 = 527885
880764 ε

• These information allow us to deduce lower bounds for the initial affine forms:

−882 = ⌈−6432011
23178 · 22019169232 ⌉ ≤ L1 ≤ 0

−3218 = ⌈−6432011
23178 · 29358825317 ⌉ ≤ L2 ≤ 0

−463 = ⌈−6432011
23178 · 880764527885⌉ ≤ L3 ≤ 0

• Assume that the procedure performs a case-split analysis on L3. The values of L3

in [| − 463,−403|] lead to unsatisfiability. But, the value L3 = −402 satisfies

the conjunction. Indeed, solving this equality yields the substitution σ = {x 7→

−111k, y 7→ −317k − 1} which, when applied on L1 and L2, yields:

−882 ≤ +75951k − 79︸ ︷︷ ︸
L1σ

≤ 0 ∧

−3218 ≤ − 276928k − 136︸ ︷︷ ︸
L2σ

≤ 0

Now, the only value for k that satisfies these constraints is k = 0. We thus obtain

the model x = 0, y = −1 for this example.

3.6. Implementation in CTRL-ERGO 63

Example 23. Finally, consider the following formula:

green : 761x − 366y + 445︸ ︷︷ ︸
L1

≤ 0 ∧

red : 887x + 563y + 427︸ ︷︷ ︸
L2

≤ 0 ∧

blue : − 317x + 111y − 291︸ ︷︷ ︸
L3

≤ 0

Geometrically, these inequalities define the figure below. They are satisfiable in the rationals

but not in the integers. The gray triangle represents their solutions set.

Figure 3.6: Unsatisfiable example with case-split analysis

This formula is proved by the same reasoning used for example 22 except that no satis-

fying integer assignment will be found.

3.6 Implementation in CTRL-ERGO

In general, formulas that are sent to SMT-sovlers are not just conjunctions of lit-

erals. They mix boolean connectives and high-level constructs in a non-trivial

way. For instance, more than 50% of formulas in the QF-LIA benchmark of SMT-

LIB [18]. (e.g. NEC families) intensively use high level constructs such as LET-IN

and IF-THEN-ELSE. The preprocessor and the SAT solver of ALT-ERGO are not

tuned for this kind of formulas.

64 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

To measure the effectiveness of our simplex-based procedure, we implemented

it in a small prototype, called CTRL-ERGO. This SMT solver is based on an OCAML

imperative implementation of MINISAT. Furthermore, it integrates a home-made

simplification step for IF-THEN-ELSE and LET-IN constructs. In this section, we

provide some details about this implementation.

3.6.1 Preprocessing

In this section, we describe the technique used in CTRL-ERGO to simplify formu-

las containing LET-IN and IF-THEN-ELSE constructs. Note that, some SMT solvers

incorporate preprocessing techniques for such constructions [77].

Consider the example given in Figure 3.7, written in the syntax of the SMT-LIB-

2 language [18].

1 (let ((v1 (ite (= a 1) (ite (>= (+ a a) 3) 1 2) 3))) ;; in

2 (let ((v2 (ite (>= 1 0) (ite (= (+ v1 1) 2) a v1) 6))) ;; in

3 (let ((v3 (ite (not (= a 1)) (ite (>= (- v1 v2) 0) 2 4) v2))) ;; in

4 (= v1 (ite (= v1 2) v1 (ite (= v3 1) a v1))))))

Figure 3.7: A simple overview of the formulas in NEC families

This formula cannot be expressed in the language of many-sorted first-order

logic described in Chapter 2, because the imbrication of formulas in terms is not

allowed. However, it can be expressed using the grammar of Figure 3.8, where

τ produces terms, π produces non negated atoms, α produces literals, ϕ (resp. ψ)

produces formulas without (resp. with) LET-IN and ν (resp. ζ) produces integer

variables (resp. integer numerals).

τ ::= ν | ζ +
∑

(ζ · ν) | ITE(α, τ, τ)

π ::= TRUE | ν | τ ⊲⊳ 0

α ::= π | NOT (π)

ϕ ::= α | AND (ϕ∗) | OR (ϕ∗)

ψ ::= ϕ | LET-IN(ν, τ, ψ) | LET-IN(ν, ϕ, ψ)

ν ::= STRING

ζ ::= Z

⊲⊳ ::= ≈ | ≥

Figure 3.8: The grammar of terms, propositional variables, atoms and formulas

3.6. Implementation in CTRL-ERGO 65

The elimination of LET-IN and IF-THEN-ELSE occurrences in the example above,

before any other simplification1, yields the equivalent formula shown in Figure 3.9.

1 (and

2 (or

3 (and (not (= v1 1)) (= (+ v2 (- v1)) 0))

4 (and (= v1 1) (= (+ v2 (- a)) 0))

5)

6 (or

7 (and (not (= a 1)) (not (>= (+ v2 (- v1)) 1)) (= v3 2))

8 (and (not (= a 1)) (>= (+ v2 (- v1)) 1) (= v3 4))

9 (and (= a 1) (= (+ v3 (- v2)) 0))

10)

11 (or

12 (and (not (= a 1)) (= v1 3))

13 (and (= a 1) (= v1 2))

14)

15 (or

16 (= v1 2)

17 (not (= v3 1))

18 (and (= (+ v1 (- a)) 0) (not (= a 2)))

19)

20)

Figure 3.9: The result of a naive elimination of LET-IN and IF-THEN-ELSE

As illustrated by this example, a naive elimination approach blows up the size

of resulting formulas. We describe below a preprocessing step that simplifies input

formulas in order to limit the magnitude of this explosion.

Canonization

We put terms, predicates, literals and formulas in a canonical form. This allows

us to easily detect duplicates and complementary literals (resp. formulas). For

instance, the formula in Figure 3.7 is not in canonical form:

• at line 1, the predicate a+ a ≥ 3 can be simplified to a ≥ 2 modulo LIA

• at line 2, the predicate v1 + 1 ≈ 2 can be simplified to v1 ≈ 1 modulo LIA

• at line 2, 1 ≥ 0 is true modulo LIA. Thus, the ELSE branch can be pruned

• at line 3, the term of the form (ite (not p) a b) simplifies to (ite p b a)

1Replacement of LET-IN with equalities and IF-THEN-ELSE with combinations of AND and OR

66 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

All these simplifications yield the following “canonized” formula:

1 (let ((v1 (ite (= a 1) (ite (>= a 2) 1 2) 3))) ;; in

2 (let ((v2 (ite (= v1 1) a v1))) ;; in

3 (let ((v3 (ite (= a 1) v2 (ite (>= (- v1 v2) 0) 2 4)))) ;; in

4 (= v1 (ite (= v1 2) v1 (ite (= v3 1) a v1))))))

Figure 3.10: The canonization of the formula in Figure 3.7

Contextual simplification

Our simplification technique interleaves normalization with contextual learning

(theory learning and forward/backward propagation). A basic, incomplete but

fast, procedure for QF-LIA is used to transform assumed equalities into a term

rewriting system, and to perform a cheap interval/domain calculus on assumed

inequalities and disequalities. Contextual learning allows to deduce more precise

domains for intermediate variables. The normalization of terms, predicates, atoms

and formulas is performed modulo the current context provided by the state of

the procedure for QF-LIA. Using these techniques, the formula in Figure 3.10 is

reduced to true as follows:

1. Using a very basic arithmetic reasoning, we realize that v1 cannot be equal

to 1 because a ≈ 1 ∧ a ≥ 2 is inconsistent. Consequently, line 1 becomes

let ((v1 (ite (= a 1) 2 3))). Moreover, we can deduce that v1 ∈ { 2, 3 }.

2. Since v1 6≈ 1, the LET-IN construct at line 2 simply rewrites to v2 ≈ v1.

3. Now, we first use the equality v1 ≈ v2 to rewrite the third LET-IN as follows:

(let ((v3 (ite (= a 1) v1 2))). Then, when a ≈ 1 is true, v1 is equal to 2.

Consequently v3 is equal to 2 whatever the value of a.

4. The formula at line 4 first reduces to (= v1 (ite (= v1 2) v1 v1)) because

v3 6≈ 1. Then, it simplifies to true whatever the value of v1.

5. Finally, we throw away the declarations of the intermediate variables v1, v2
and v3 because they are not used in the formula true.

3.6.2 The SAT solver

We now describe our OCAML implementation of MINISAT using inference rules.

These rules are inspired by those present in the literature [48, 82, 98]. But, they are

sufficiently low level to reflect the actual implementation.

3.6. Implementation in CTRL-ERGO 67

Let ∆0 be a set of clauses, where each clause is represented by a set of literals.

The SAT solver attempts at constructing a model Γ for the CNF formula repre-

sented by ∆0. Recall that a set with an empty clause in unsatisfiable and an empty

set of clauses in satisfiable.

The model Γ is represented by a list of literals of the form l
n

C
:: l

m

D
:: · · · :: Empty.

It is thought of as a conjunction of literals. Every literal in Γ is implicitly assigned

to true2. It is annotated with a natural number called its decision/implication level

and a possibly empty clause explaining why the literal is assigned to true.

We use the following notations in the presentation below: given a literal l and

a clause C, undef(l,Γ) means that neither l nor ¬l are in Γ. We denote by lvl(l,Γ)

the current level of l or ¬l in Γ. It is equal to −1 if undef(l,Γ). The level of C,

denoted lvl(C,Γ), is the maximal level of its literals. We denote by lvl(Γ), the

level of the left-most literal in Γ. The level of Empty is equal to 0. The notation Γ|n

designates the sub-list of Γ containing literals of level at most n. The notation l ∈ ∆

is an abbreviation for: there is a clause C ∈ ∆ such that l ∈ C or ¬l ∈ C. We use

functions of the form xxx-heuristic to indicate that a side-condition depends on

an heuristic. The SAT solver works on configurations of the form Γ ⊢ ∆ in search

mode and of the form Γ 6⊢n ∆ : C in conflict mode, where n is the conflict level.

Search mode. The inference rules in search mode are given in Figure 3.11. The

first (resp. second) rule detects when a model (resp. an inconsistency) is found.

The third rule adds new literals to Γ thanks to function next-lit (see below). The

rule 4 removes clauses from ∆ when they are satisfied by Γ|0. The rule 5 removes

learned clauses from ∆ when some conditions are satisfied. The rule 6 restarts the

search from an empty model while keeping learned clauses. Finally, the algorithm

enters in conflict mode when a clause in ∆ is falsified by Γ (rule 7).

The behavior of the function next-lit is described in Figure 3.12. The inference

rules only apply on a literal l such that l ∈ ∆ and undef(l,Γ). We notice that

implied literals (rule 8) are annotated with Γ’s current level, whereas the level of

decided literals (rule 9) is incremented by 1. In practice, the choice of the next

literal to decide is guided by the dynamic variables activity (VSID) heuristic. Note

that, the list Γ is always sorted in decreasing order w.r.t. the level of literals.

The strategy used in search mode is sketched in Figure 3.13. The function

search-mode repeatedly propagates assigned facts, unless a restart is scheduled

(line 2) or a conflict is encountered (line 3). In the latter case, the function raises

the exception Unsat if the conflict is derived without any assumption or calls
2Hence, the negation of this literal is assigned to false.

68 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

name premise conclusion side conditions

1. sat Γ ⊢ ∆ Γ Γ |= ∆

2. unsat Γ 6⊢ ∆ : ⊥ ⊥

3. assume Γ ⊢ ∆ Γ′ ⊢ ∆ next-lit(Γ ⊢ ∆) = Γ′ 6= Γ

4. simplify Γ ⊢ ∆, C Γ ⊢ ∆ Γ|0 |= C

5. forget Γ ⊢ ∆, C Γ ⊢ ∆ C 6∈ ∆0 and rdb-heuristic(C)

6. restart Γ ⊢ ∆ Empty ⊢ ∆ restart-heuristic()

7. conflict Γ ⊢ ∆, C Γ 6⊢ ∆, C : C Γ |= ¬C

Figure 3.11: Computation rules in search mode

name premise conclusion side conditions

8. propagate Γ ⊢ ∆ ∪ {D ∨ l} l
|Γ|

D
:: Γ Γ |= ¬D

9. decide Γ ⊢ ∆ l
|Γ|+1

∅ :: Γ l = vsid-heuristic()

Figure 3.12: Assigning the next literal

1 let search_mode () =

2 while not !restart do

3 match propagate () with (* 8. propagate *)

4 | Some c ->

5 if decision_level() = 0 then raise Unsat; (* 2. unsat *)

6 conflict_mode c (* 7. conflict *)

7

8 | None ->

9 if all_variables_assigned () then raise Sat; (* 1. sat *)

10 if reduce_db_heuristic () then reduce_db (); (* 5. forget *)

11 if decision_level() = 0 then simplify (); (* 4. simplify *)

12 restart := restart_heuristic ();

13 if !restart then restart_search () (* 6. restart *)

14 else decide () (* 9. decide *)

15 done

16

17 let solve () =

18 while true do

19 search_mode ();

20 done

Figure 3.13: The strategy used is search mode

3.6. Implementation in CTRL-ERGO 69

conflict-mode, otherwise. When all the propagations of the current decision level

are done (line 8), the function raises the exception Sat if all the literals are assigned.

Otherwise, it heuristically removes some learned clauses from its database, and

removes the clauses that are valid at level 0. Then, it either schedule a restart or

assigns a new decision literal. The function solve consists of an infinite loop that

repeatedly re-calls search-mode after each restart, unless an exception is raised.

Conflict mode. The inference rules in conflict mode are shown in Figure 3.14.

The rule 10 applies a resolution step between the clause attached to the left-most

literal in Γ and the current conflicting clause. This rule is only applicable if there

exists another literal in C of level n. If not, or if resolution does not apply, the rule

11 is used to pop the top of Γ. The two other rules are used when the level of Γ is

lower than n. The rule 12 also pops literals from the top of Γ. It unassigns implied

and decided literals until the right backjump level is found. The rule 13 is then

applied to learn the clause C. This clause is of level m and contains exactly one

unassigned literal. The SAT solver then goes back to search mode. Note that, there

is one possible strategy for these rules, because the side conditions are mutually

exclusive. Moreover the activity of literals and learned clauses that are used in

conflict resolution is augmented.

name premise conclusion side conditions

10. resolve l
n

D
:: Γ 6⊢n ∆ : ¬l ∨ C Γ 6⊢n ∆ : C ∨D lvl(C,Γ) = n

11. skip l
n

D
:: Γ 6⊢n ∆ : C Γ 6⊢n ∆ : C ¬l 6∈ C or

lvl(C, Γ) < n

12. undo l
m

D
:: Γ 6⊢n ∆ : C Γ 6⊢n ∆ : C m < n and

lvl(C, l
m

D
:: Γ) 6= m

13. learn& Γ 6⊢n ∆ : C Γ ⊢ ∆ ∪ {C} m < n and
search lvl(C, Γ) = m

Figure 3.14: Computation rules in conflict mode

The rules given in Figure 3.15 integrate theory reasoning in the SAT solver. The

notation µ ⊆ Γ is thought of as set inclusion. The rule 7b detects theory conflicts:

when a subset µ of Γ is inconsistent modulo theory, the SAT solver enters in conflict

mode with the conflicting clause ¬µ. Moreover, the function next- lit is extended

with the rule 8b to enable the propagation of implied literals at the theory level.

70 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

name premise conclusion side conditions

7b. T-conflict Γ ⊢ ∆ Γ|n 6⊢
n ∆ : ¬µ ∃µ ⊆ Γ. µ |=T ⊥ and

n = lvl(¬µ,Γ)

8b. T-propagate Γ ⊢ ∆ l
|Γ|

¬µ :: Γ ∃µ ⊆ Γ. µ |=T l

Figure 3.15: Integration of theory reasoning

3.6.3 The decision procedure for QF-LIA

We now describe the implementation of our decision procedure for QF-LIA. The

simplified interface used by the SAT solver to interact with the procedure is shown

in Figure 3.16. The function assume is used to add assigned literals at the SAT level

to theory’s environment. This function raises the exception Inconsistent when

a theory conflict is detected. The function learn performs theory propagation.

The function case_split handles case-split analysis. Finally, the function empty is

used to construct empty theory environments.

1 type env

2 exception Inconsistent of atom list

3

4 val assume : env -> atom -> env

5 val learn : env -> atom

6 val case_split : env -> env

7 val empty : unit -> env

Figure 3.16: The simplified interface of the decision procedure

Actually, our implementation is much more complicated than the interface

above. It is made of the modules shown in Figure 3.17. The data structures used

in this part of the solver are persistent, except for the Simplex. Backtracking is

therefore immediate for persistent structures, and the Simplex’s environment is

reconstructed from scratch, since it is currently not incremental nor backtrackable.

The module Theory provides the interface shown in Figure 3.16. In addition,

it implements dynamic clustering as follows: Theory.env is a list of environments

(clusters) provided by Lia. These individual “clusters” do not share variables.

When a literal that involves variables appearing in different clusters is assumed,

these clusters are merged before the literal is treated.

Lia’s environment is a pair, where the first component is provided by Lia_eqs

and the second one by Lia_ineqs. Equalities are assumed in the first component.

Inequalities and disequalities are assumed in the second one. Lia implements

3.6. Implementation in CTRL-ERGO 71

�����������	A	BC�D

����E

������

FC	

FC	�CD��EFC	���E

�C�������	���

�C�����

�DB���	�E

Figure 3.17: The architecture of the decision procedure’s modules

case-split analysis as a recursive function with non-chronological backtracking and

uses a heuristic that privileges affine forms with smaller intervals. This technique

is similar to that described in Chapter 5.

The module Lia_eqs handles equalities using a rewriting system, encoded by

a persistent dictionary from variables to arithmetic terms. It relies on a solver that

builds substitutions with integer slack variables [80]. We have also a version that

uses a rational solver as described in Section 3.4. However, it is less efficient.

Inequalities and disequalities are handled by Lia_ineqs. They are added to a

dictionary associating affine forms to intervals of integers. The affine forms are

maintained in normal form w.r.t. the rewriting system provided by Lia_eqs. The

intervals of integers are handled by the module Intervals. The Simplex module

is used to infer new bounds as described in Section 3.2.2. Note that, our actual

implementation of the oracle is not incremental. To alleviate, we use memoization

techniques (module Simplex_cache) to reuse previously computed results at the

expense of a larger memory footprint.

Theory_propagation implements an incomplete, but fast, theory propagation

mechanism. The module Types provides data structures for representing terms,

literals, CNF formulas, etc.

Note that, in earlier implementations, we used linear optimization problems

similar to that presented in Section 3.2.2 to deduce refined bounds for the uninter-

preted constants appearing in the affine forms. However, we have deactivated this

extension because it does not scale on large problems.

72 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

3.7 Experimental results

In this section, we benchmark CTRL-ERGO and compare its performances with

state-of-the-art SMT solvers including MATHSAT5 [66] (v5.1.3), Z3 [42] (v3.2) and

YICES2 [41] (v2.0-prototype). We could not include the MISTRAL solver that imple-

ments the procedure of [53], because it was not possible to obtain it.

We have used the QF-LIA benchmark for our experiments. In particular, we

focused on a test suite containing 1070 composed of the families listed below. We

have selected these families because they are known to be well-suited for stressing

the integer-reasoning part of SMT solvers.

• CAV-2009: randomly-generated instances used in [53]. Most of them are sat-

isfiable. They are reported very hard for modern SMT solvers,

• SLACKS: reformulation of CAV-2009 instances used in [73] that introduces

slack variables to bound all variables,

• CUT-LEMMAS: crafted instances encoding the validity of cutting planes in Z,

• PRIME-CONE: crafted instances used in [73] that encode a tight n-dimensional

cone around the point whose coordinates are the first n prime numbers.

• PIDGEONS (sic): crafted instances encoding the pigeonhole principle. They

are reported hard for any solver not using cutting planes [73],

• PB2010: industrial instances coming from the PB competition (2010),

• MIPLIB2003: instances generated from some optimization problems in [2].

All measures were obtained on a 64-bit machine with a quad-core Intel Xeon

processor at 3.2 GHz and 24 GB of memory. Provers were given a time limit of 600

seconds and a memory limit of 2 GB for each test. The results of our experiments

are reported in Figure 3.18. The first two columns show the families we considered

and the number of their instances. For each prover, we report both the number of

solved instances within the required time for every family and the time needed for

solving them (not counting timeouts). The last rows summarize the total number

of solved instances and the accumulated time for each prover.

Although the first two families were reported very hard for modern SMT solvers,

our approach only requires 320 seconds to solve almost all the instances. Thus,

3The time limit is 180 seconds for the tests of the complete benchmark.

3.7.
E

xp
erim

en
talresu

lts
73

SMT SOLVERS CTRL-ERGO MATHSAT5 MATHSAT5+CFP YICES 2 Z3

families #inst. solved time solved time solved time solved time solved time

CAV-2009 591 590 253 588 4857 589 4544 386 11664 590 5195

SLACKS 233 233 67 166 3551 155 6545 142 6102 187 9897

CUT-LEMMAS 93 93 216 62 3424 59 2775 92 1892 67 3247

PRIME-CONE 37 37 0.4 37 1 37 2.2 37 2.3 37 14

PIDGEONS 19 19 2 19 0.16 19 0.16 19 0.01 19 0.28

PB2010 81 23 390 38 743 34 1540 25 8.3 64 1831

MIPLIB2003 16 2 34.7 12 432 12 501 11 145.4 12 241

total 1070 997 963.1 922 13008 905 15907 712 19814 976 20425

total QF-LIA3 5882 4410 68003 5597 47635 5524 50481 3220 71324 5597 54503

Figure 3.18: Experimental results. Underlined values are for tools that have proved the most instances. Bolded results are for tools

that have proved both the most instances and the fastest.

74 Chapter 3. On Deciding Quantifier-Free Linear Integer Arithmetic

it significantly outperforms the other solvers’ approaches. This observation also

applies for the third and the fourth families. From the results of the sixth and

the seventh families, we notice that our technique does not perform well on large

difference-logic-like problems compared to MATHSAT5 and Z3’s. We think this is

partly due to our naive implementation of the simplex algorithm which computes

on dense matrices while sparse matrices would be better suited for these problems.

The last row of Table 3.18 shows the results for the whole QF-LIA benchmark.

There are two reasons for the poor results. First, CTRL-ERGO has to be tuned for

parts other than the LIA solver. Second, some families, e.g. BOFILL, contain large

intervals that need splitting, and the decision procedure does not deal efficiently

with them. This would possibly require a combination of our approach with other

established techniques for integers to cut down the search space.

3.8 Related and future works

Related works

Designing efficient decision procedures for QF-LIA has been an active research

topic in the SMT community over the last decade. An efficient integration of the

simplex algorithm in the DPLL(T) framework has been proposed in [55]. This in-

tegration rests on a preprocessing step that enables fast backtracking and efficient

theory propagation. The contribution of [53] is seen as a generalization of branch-

and-bound. Using the notion of the defining constraints of a vertex, it derives addi-

tional inequalities that prune higher dimensional subspaces not containing integer

solutions. In our setting, the simplex algorithm is used on auxiliary problems to

refine the search space by bounds inference.

The approach described in [65] focuses on combining several existing tech-

niques using heuristics and layering to take advantage of each of them. We believe

that the ideas we described in this chapter can naturally be used to enhance this

combination approach. Another different contribution described in [73] consists

in extending the inference rules of the CDCL procedure with linear arithmetic rea-

soning. This tight integration naturally takes advantage of good CDCL properties,

such as model search, dynamic variable reordering, propagation, conflicts expla-

nation, and backjumping. Note that there has also been some works on this topic

in the constraint solvers community.

3.8. Related and future works 75

Future works

As reflected by our contribution, the simplex we use works on an auxiliary prob-

lem that simulates a run of the Fourier-Motzkin method, but not on the original

problem nor on its dual. Therefore, fast incrementality and efficient backtrack-

ing techniques developed for simplex-based approaches are not suitable for our

setting. We plan to investigate this issue in the future for a better integration of

our approach with DPLL(T). In fact, memoization techniques used in our actual

implementation are not satisfactory.

We also envisage to extend our method with a better conflict resolution/learn-

ing technique, and a cleverer case-split analysis mechanism. In particular, we think

that the extension of our framework with the ideas developed in [73] and in [79]

for the rationals would greatly improve it.

We believe that a combination of our approach with “well tuned” state-of-the-

art techniques, à la MATHSAT, would be very beneficial. Furthermore, the use of

advanced data-structures and algorithms such as sparse matrices and the revised

simplex method [110] would greatly enhance our implementation.

CHAPTER 4

Ground AC Completion Modulo a

Shostak Theory

In this chapter, we investigate the integration of Shostak theories in ground AC

completion. We present a new combination framework, called AC(X), that de-

cides ground conjunctions of equalities in the union of the free theory of equality

with user-defined AC symbols, uninterpreted symbols and an arbitrary signature-

disjoint Shostak theory X. Our combination technique relies on canonized rewriting,

a new rewriting relation reminiscent to normalized rewriting [90] that integrates

canonization in standard rewriting.

In Section 4.1, we first recall some notions about term rewriting systems and

rewriting modulo AC. Then, we recall the inference rules of ground AC comple-

tion and illustrate its use throughout an example.

In Section 4.2, we first consider the combination of individual canonizers to

handle mixed terms. Then, we define the notion of canonized rewriting. After

that, we tackle the problem of solving equalities on heterogeneous terms. Finally,

we pose some reasonable ordering restrictions on the canonizers and the solvers

to prove the termination of our combination framework.

In Section 4.3, we show how to extend, in a modular and non intrusive way,

the ground AC completion procedure with Shostak theories. The main ideas of

our integration are the substitution of standard rewriting with canonized rewrit-

ing and the replacement of the equalities orientation mechanism found in ground

AC completion with the solver for X. We then illustrate the AC(X) combination

framework on a simple example.

In Section 4.4, we establish the correctness and termination of AC(X). Note that,

our modular integration allows us to partly reuse the proofs of the ground AC

completion procedure.

In Section 4.5, we show that a simple preprocessing step à la Bachmair et al. [6]

enables the use a partial multiset ordering instead of an AC-compatible reduction

ordering.

78 Chapter 4. Ground AC Completion Modulo a Shostak Theory

In Section 4.6, we measure the performances of our framework and compare

it with axiomatization/instantiation based approaches. We also show that the in-

stantiation mechanism of our ALT-ERGO SMT solver have to be extended modulo

AC in order to fully integrate AC(X) at its core.

In Section 4.7, we discuss the most important extensions we have investigated

and the issues we have encountered.

In Section 4.8, we overview related works and summarize some further direc-

tions to investigate.

A substantial part of this chapter has been published in [31, 32, 33].

4.1 Preliminaries

In this section, we recall the standard notations and definitions of [5, 50] for term

rewriting systems. Let Σ = (F ,P,S, ar, τ) be a signature, where P contains only

equality predicate symbols. Let X be a set of variables disjoint from F and P .

4.1.1 Term rewriting

In rewriting community, a Σ-identity refers to an equality over Σ where all the free

variables are implicitly universally quantified. Let E be a set of Σ-identities. The

equational theory of E, denoted ≈E , is the set of all identities that can be obtained

by reflexivity, symmetry, transitivity, congruence and instances of identities in E.

More formally, ≈E is defined as follows:

≈E =

{
(s, t) ∈ TΣ(X)× TΣ(X) where |=E E ⇒ s ≈ t

}

Note that, the equational theory of the free theory of equality E , defined by the

empty set of equations, is simply denoted ≈ instead of ≈E .

Given two ground terms s and t over Σ, the word problem for E consists in

determining whether the equality s ≈ t belongs to the set ≈E . If so, we simply

write s ≈E t. We say that the word problem for E is ground when E contains only

ground identities. An equational theory ≈E is inconsistent when s ≈E t, for any

terms s and t in TΣ.

A rewriting rule is a pair of terms usually denoted by l → r. In addition, we

usually require that l is not a variable and that Vars(r) ⊆ Vars(l). A term rewriting

system (TRS) is a set of rewriting rules. The definition below introduces the notion

of term rewriting:

4.1. Preliminaries 79

Definition 24. We say that a term s rewrites to a term t at position p by the rule l → r,

denoted by s→p
l→r t, if and only if there exists a substitution σ such that

s|p = lσ and t = s[rσ]p

Let R be a term rewriting system. We write s→R t whenever there exists a rule

l → r in R such that s rewrites to t by l → r at some position. A normal form of a

term s w.r.t to R is a term t such that s →∗
R t and t cannot be rewritten by R. The

term rewriting system R is terminating if it does not admit any infinite reduction.

It is confluent if every term admits at most one normal form. It is convergent if it is

both terminating and confluent. In this case, every term admits exactly a unique

normal form.

A well-founded quasi-ordering [49] � on terms is a reduction quasi-ordering

if, for any substitution σ, for any term l and position p

s � t implies

1. l[s]p � l[t]p and

2. sσ � tσ

These conditions mean that � is (1) closed under context and (2) closed under

substitutions. A quasi-ordering � defines an equivalence relation ≃ as � ∩ � and

a partial ordering ≺ as � ∩ 6�. It has been shown [5] that a term rewriting system

R terminates if and only if there exists a reduction order≺ such that, for every rule

l→ r in R, we have r ≺ l.

The completion procedure [78] is an algorithm that aims at converting a given

set E of identities into a convergent rewriting system R such that the equational

theory ≈E and the set {s ≈ t | s ↓R= t ↓R} coincide. Given a suitable reduction

ordering on terms, it has been proved that the completion procedure terminates,

under a fair strategy, when E contains only ground identities [83].

In the rest of this section, we assume that F is a disjoint union FAC ⊎FU of AC

function symbols and uninterpreted function symbols, respectively.

4.1.2 Rewriting modulo AC

In rewriting community, the set of axioms defining the AC theory is usually given

by the equivalent set of identities:

AC =
⋃

u∈FAC

{
u(x, y) ≈ u(y, x) , u(x, u(y, z)) ≈ u(u(x, y), z)

}

80 Chapter 4. Ground AC Completion Modulo a Shostak Theory

Let ≈AC be the equational theory obtained from the set AC defined above.

Given a set E of identities over Σ, it has been shown that no suitable reduction

ordering allows the completion procedure to produce a convergent TRS for the

union E ∪AC in general. An alternative consists in in-lining AC reasoning both in

the notion of rewriting step and in the completion procedure. For instance, given

a rule u(a, u(b, c)))→ t, we would like the following reductions to be possible:

(1) f(u(c, u(b, a)), d)→ f(t, d) (2) u(a, u(c, u(d, b)))→ u(t, d)

Associativity and commutativity of u are needed in (1) for the subterm u(c, u(b, a))

to match the term u(a, u(b, c)), and in (2) for the term u(a, u(c, u(d, b))) to be seen

as u(u(a, u(b, c)), d), so that the rule can be applied. More formally, this leads to

the following definition of rewriting modulo AC in the ground case:

Definition 25 (Ground rewriting modulo AC). A term s rewrites to a term t modulo

AC at position p by the rule l→ r, denoted by s→p
AC\l→r t, iff

• (1) s|p =AC l and t = s[r]p or

• (2) l(Λ) = u and there exists s′ such that s|p =AC u(l, s′) and t = s[u(r, s′)]p

In order to produce a convergent TRS, the ground AC completion procedure

requires a well-founded reduction quasi-ordering� total on ground terms with an

underlying equivalence relation which coincides with ≈AC . Such an ordering will

be called a total ground AC-reduction ordering.

4.1.3 Ground AC completion

The inference rules for ground AC completion are recalled in Figure 4.1. The rules

describe the evolution of the state of a procedure, represented as a configuration

〈 E | R 〉, where E is a set of ground equations and R a ground set of rewriting

rules. The initial state is 〈 E0 | ∅ 〉 where E0 is a given set of ground equations.

The rule Trivial removes an equation u ≈ v from E when u and v are equal

modulo AC. Orient turns an equation into a rewriting rule according to a given to-

tal ground AC-reduction ordering�. R is used to rewrite either side of an equation

(Simplify), and to reduce right hand side of rewriting rules (Compose). Given a

rule l → r, Collapse either reduces l at an inner position, or replaces l by a term

smaller than r. In both cases, the reduction of l to l′ may influence the orientation

of the rule l′ → r which is added to E as an equation in order to be re-oriented. Fi-

nally, Deduce adds equational consequences of rewriting rules to E. For instance,

4.1. Preliminaries 81

Trivial
〈 E ∪ { s ≈ t } | R 〉

〈 E | R 〉
s ≈AC t

Orient
〈 E ∪ { s ≈ t } | R 〉

〈 E | R ∪ { s→ t } 〉
t ≺ s

Simplify
〈 E ∪ { s ≈ t } | R 〉

〈 E ∪ { s′ ≈ t } | R 〉
s→AC\R s′

Compose
〈 E | R ∪ { l→ r } 〉

〈 E | R ∪ { l→ r′ } 〉
r →AC\R r′

Collapse
〈 E | R ∪ { g → d, l→ r } 〉

〈 E ∪ { l′ ≈ r } | R ∪ { g → d } 〉

{
l→AC\g→d l

′

g ≺ l ∨ (g ≃ l ∧ d ≺ r)

Deduce
〈 E | R 〉

〈 E ∪ { s ≈ t } | R 〉
s ≈ t ∈ headCP(R)

Figure 4.1: Inference rules for ground AC completion

if R contains two rules of the form u(a, b) → s and u(a, c) → t, then the term

u(a, u(b, c)) can either be reduced to u(s, c) or to the term u(t, b). The equation

u(s, c) ≈ u(t, b), called critical pair, is thus necessary for ensuring convergence of

R. Head critical pairs of a set of rules are computed by the following function (aµ

stands for the maximal term w.r.t. size enjoying the assertion):

headCP(R) =

{
u(b, r′) ≈ u(b′, r)

∣∣∣∣∣
l→ r ∈ R, l′ → r′ ∈ R

∃ aµ : l =
AC

u(aµ, b) ∧ l′ =
AC

u(aµ, b′)

}

Note that, unlike non-ground AC completion, we do not need to compute internal

critical pairs in the ground case, because they are handled by the Collapse rule.

Example. To get a flavor of ground AC completion, consider a modified version

of the assertion given in the introduction, where the arithmetic part has been re-

moved (and uninterpreted constant symbols renamed for the sake of simplicity)

(
u(a1, a4) ≈ a1 ∧ a5 ≈ a4 ∧

u(a3, a6) ≈ u(a5, a5) ∧ a6 ≈ a2

)
⇒ a1 ≈ u(a1, u(a6, a3))

82 Chapter 4. Ground AC Completion Modulo a Shostak Theory

1 u(a1,a4)→ a1 Ori u(a1, a4) ≈ a1

2 u(a3, a6)→ u(a5, a5) Ori u(a3, a6) ≈ u(a5, a5)

3 a5 → a4 Ori a5 ≈ a4

4 u(a3, a6)→ u(a4, a4) Com 2 and 3

5 a6 → a2 Ori a6 ≈ a2

6 u(a3, a2) ≈ u(a4, a4) Col 4 and 5

7 u(a4,a4)→ u(a3,a2) Ori 6

8 u(a1, a4) ≈ u(a1, u(a3, a2)) Ded from 1 and 7

9 a1 ≈ u(a1, u(a3, a2)) Sim 8 by 1

10 u(a1,u(a3,a2))→ a1 Ori 9

Figure 4.2: Ground AC completion example

The precedence a1 ≺p · · · ≺p a6 ≺p u defines an AC-RPO ordering on terms [99]

which is suitable for ground AC completion. The table in Figure 4.2 shows the

application steps of the rules given in Figure 4.1 from an initial configuration

〈 {u(a1, a4) ≈ a1, u(a3, a6) ≈ u(a5, a5), a5 ≈ a4, a6 ≈ a2} | ∅ 〉 to a final configuration

〈 ∅ | Rf 〉, whereRf is the set of rewriting rules {1, 3, 5, 7, 10}. It can be checked that

a1 ↓Rf
and u(a1, u(a6, a3))↓Rf

are identical. Notice that, terms are not in canonical

form modulo AC, and the rule Trivial uses the symbol ≈AC instead of =.

From now on, we assume given a Shostak theory X over a signature ΣX. The

terms we will consider are now built from a signature Σ defined as the union of

the disjoint signatures ΣAC , ΣE and ΣX. Given a function symbol f , the notation

f ∈ Σi is an abbreviation for f ∈ Fi. We also assume given a total ground AC-

reduction ordering � defined on TΣ(X) used later on for completion.

4.2 The ingredients of the combination

According to the definition of Section 2.2, the canonizer and the solver routines of

a Shostak theory X only work on ΣX-pure terms. The two first steps toward the

combination of ground AC completion with a signature-disjoint Shostak theory X

are the definition of a global canonizer for the union of the free theory of equality,

4.2. The ingredients of the combination 83

the AC theory and X and a wrapper for the solver function capable of resolving

heterogeneous equations.

In this section, we first show how to construct such a canonizer. Then, we

extend standard rewriting — in the spirit of normalized rewriting — to incorporate

global canonization. After that, we consider the problem of solving heterogeneous

equations. Finally, we pose in the last part some reasonable ordering constraints

on the global canonizer and the extended solver, essential for the termination proof

of our combination framework.

The definitions of the global canonizer and the solver’s wrapper use a variable

abstraction mechanism. Let α : TΣ → X be a global one-to-one mapping and ρ

its inverse mapping. We define the variable abstraction which computes the pure

ΣX-part [[t]] of a heterogeneous term t as follows:

[[t]] = f([[~s]]) when t = f(~s) and f ∈ ΣX

[[t]] = α(t) otherwise

Example. Given a term t of the form 2u(b+0, a+1− 1)+ b− 2+ 3 where u is an

AC symbol and a, b are uninterpreted symbols. The abstracted value [[t]] of t is of

the form 2x+y−2+3 assuming α(u(b+0, a+1−1)) = x and α(b) = y. Notice that

the function [[·]] stops at maximal ΣX-aliens. The terms a and b in u(b+0, a+1− 1)

are not abstracted.

4.2.1 Global canonization

Combining canonizers for arbitrary signature-disjoint convex theories is not very

difficult. For instance, following the technique described in [81], we define a global

canonizer for the union of E , AC and X as follows:

Definition 26. Given a signature Σ = ΣAC ⊎ ΣE ⊎ ΣX, we define a canonizer canon

which combines canonAC and canonX by:

canon(x) = x when x ∈ X

canon(f(~v)) = f(canon(~v)) when f ∈ ΣE

canon(u(s, t)) = canonAC(u(canon(s), canon(t))) when u ∈ ΣAC

canon(f
X
(~v)) = canonX(fX([[canon(~v)]]))ρ when f

X
∈ ΣX

The proofs that canon fulfills standard properties required for a canonizer are

similar to those given in [81]. The only difference is that canonAC is capable of

84 Chapter 4. Ground AC Completion Modulo a Shostak Theory

working directly on the signature Σ, which avoids the use of a variable abstraction

step when canonizing a mixed AC headed term. The lemma below states that

canon solves the word problem for the union of E , AC and X.

Lemma 27. ∀s, t ∈ TΣ, s =E,AC,X t ⇒ canon(s) ≡ canon(t)

Example. Assuming X is the theory of linear integer arithmetic and using an AC-

RPO ordering based on a precedence such that a ≺p b, the application of canon on

2u(b+ 0, a+ 1− 1) + b− 2 + 3 yields 2u(a, b) + b+ 1.

4.2.2 Canonized rewriting

We now extend AC rewriting with the global canonizer. From rewriting point of

view, a canonizer behaves like a convergent rewriting system: it provides an effec-

tive way of computing normal forms of terms. Thus, a natural way for integrating

canon in ground AC completion is to adapt normalized rewriting [90] by replacing

normalization with canonization. Hence, the following definition:

Definition 28. Let canon be a canonizer. We say that a term s canon-rewrites to a term

t at position p by the rule l→ r, denoted by s p
l→r t, iff

s→p
AC\l→r t

′ and canon(t′) = t

The following lemma states the soundness of canonized rewriting. It can be easily

proved using the definition above and the soundness of the function canon.

Lemma 29. ∀ s, t. s l→r t⇒ s =AC,X,l≈r t

Example. Using the rewriting rule γ : u(a, b)→ b, the term f(b+2u(b, a)) canon-

rewrites to f(3 a) by γ as follows:

f(b+ 2u(b, a)) →AC\γ f(b+ 2 b)

and canon(f(b+ 2 b)) = f(3 b)

Intuitively, canonized rewriting simply applies global canonization after each AC

reduction step. Notice that, according to the definition, the term f(b + 2u(b, a))

does not canon-rewrites to f(3 a) by δ using the rule δ : u(a+ 0, b)→ b, because

u(a+ 0, b) does not match u(b, a) modulo AC. Fortunately, we can easily get rid of

this issue by requiring the terms manipulated in the combination framework to be

in canonized form.

4.2. The ingredients of the combination 85

4.2.3 Solving heterogeneous equations

We reuse the same mappings α, ρ and the same abstraction function [[·]] to define a

wrapper solve for the function solveX to resolve mixed equations. The definition

is very simple and is given below:

Definition 30. Given an equation s ≈ t ∈ TΣ × TΣ, we pose:

solve(s ≈ t) =

⊥ if solveX([[s]] ≈ [[t]]) = ⊥

{ xiρ→ tiρ } if solveX([[s]] ≈ [[t]]) = {xi≈ ti}

4.2.4 Ordering constraints

As it is already the case for ground AC completion, we have to impose some order-

ing constraints on the functions canon and solve in order to prove the termination

of our framework. More precisely, the global canonizer and the wrapper must be

compatible with the ordering � used by ground AC completion, that is:

Lemma 31.

∀t ∈ TΣ, canon(t) � t

∀s, t ∈ TΣ, if solve(s ≈ t) =
⋃
{pi → vi} then vi ≺ pi

We can prove that the above properties hold when the theory X enjoys the local

compatibility properties given below:

Axiom 32.

∀t ∈ TΣ, canonX([[t]]) � [[t]]

∀s, t ∈ TΣ, if solveX([[s]] ≈ [[t]]) =
⋃
{xi ≈ ti} then tiρ ≺ xiρ

In order to fulfill this axiom, the AC reduction ordering≺ can be chosen as an AC-

RPO ordering [99] based on a precedence relation ≺p such that ΣX ≺p ΣE ∪ ΣAC .

From now on, we assume that the theory X is locally compatible with �.

Example. To solve the equation 2u(a, b) + b + 1 ≈ 0, we use the abstraction α =

{u(a, b) 7→ x, b 7→ y} and call solveX on 2x + y + 1 ≈ 0. Since b ≺ u(a, b), the

solution y ≈ −2x − 1 is discarded because it does not comply with the second

requirement of axiom 32. The only solution which fulfills this axiom is:

∃k. {x ≈ k , y ≈ −2 k − 1}

86 Chapter 4. Ground AC Completion Modulo a Shostak Theory

We then apply ρ and obtain the following set of rewriting rules:

∃k. {u(a, b)→ k , b→ −2 k − 1}

Intuitively, the first solution is rejected because it would yield a rewriting rule of

the form b→ −2u(a, b)− 1 which will not terminate if applied on a term contain-

ing the left-hand-side b. The existentially quantified variable k introduced by the

solver can be skolemized and replaced by a fresh uninterpreted constant kfc such

that kfc ≺ b.

4.3 The combination framework

The definitions given in the previous section pave the way for a modular extension

of the ground AC completion procedure with a Shostak theory X. In this section,

we present the details of this extension and illustrate its use through an example.

4.3.1 The inference rules of AC(X)

The main idea of our combination framework is very simple. Indeed, the AC(X)

algorithm is obtained by:

1. replacing the rewriting relation in AC completion with canonized rewriting;

2. replacing the equation orientation mechanism with the wrapper solve.

These two modifications lead to the inference rules given in Figure 4.3. The state

of the procedure is a pair 〈 E | R 〉 of ground equations and ground rewriting

rules. The initial configuration is of the form 〈 E0 | ∅ 〉 where E0 is supposed to

be a set of equations between canonized terms (i.e. canon(E0) = E0). Notice that,

since AC(X)’s rules only involve canonized rewriting, the algorithm maintains the

invariant that terms occurring in E and R are always in canonized forms.

The rule Trivial thus removes an equation s ≈ t from E when s and t are

syntactically equal. The rule Deduce that computes AC critical pairs remains un-

changed. Indeed, since the theory X provides a solver, no additional critical pairs

modulo X are needed. A new rule Bottom is used to detect inconsistent equations.

Adding this rule is motivated by the fact that X is not necessarily an equational

theory. For instance, the theory of linear arithmetic knows disequalities such as

1 6≈ 2. Similarly to normalized completion, localized changes are made in the

4.3. The combination framework 87

Trivial
〈 E ∪ { s ≈ t } | R 〉

〈 E | R 〉
s = t

Bottom
〈 E ∪ { s ≈ t } | R 〉

⊥
solve(s, t) = ⊥

Orient
〈 E ∪ { s ≈ t } | R 〉

〈 E | R ∪ solve(s, t) 〉
solve(s, t) 6= ⊥

Simplify
〈 E ∪ { s ≈ t } | R 〉

〈 E ∪ { s′ ≈ t } | R 〉
s R s′

Compose
〈 E | R ∪ { l→ r } 〉

〈 E | R ∪ { l→ r′ } 〉
r R r′

Collapse
〈 E | R ∪ { g → d, l→ r } 〉

〈 E ∪ { l′ ≈ r } | R ∪ { g → d } 〉

{
l g→d l

′

g ≺ l ∨ (g ≃ l ∧ d ≺ r)

Deduce
〈 E | R 〉

〈 E ∪ { s ≈ t } | R 〉
s ≈ t ∈ headCP(R)

Figure 4.3: The inference rules of the AC(X) algorithm

other rules. In our setting, the rule Orient uses the wrapper solve to turn equa-

tions into rewriting rules, and the other rules use the relation R that integrates

global canonization instead of→AC\R.

4.3.2 Example

Let us now illustrate AC(X) on the example given at the beginning of this chapter.

i1. u(a, c2 − c1) ≈ a ∧

i2. u(e1, e2)− f(b) ≈ u(d, d) ∧

i3. d ≈ c1 + 1 ∧

i4. e2 ≈ b ∧

i5. u(b, e1) ≈ f(e2) ∧

i6. c2 ≈ 2 c1 + 1

⊢ a ≈ u(a, 0)

88 Chapter 4. Ground AC Completion Modulo a Shostak Theory

We apply the following strategy for processing an equality u ≈ v ∈ E:

Sim
∗ (Tri | Bot | (Ori (Com Col Ded)∗))

This means that u ≈ v is first simplified as much as possible by Simplify. Then,

if it is not proven to be trivially solved by Trivial or unsolvable by Bottom, it is

solved by Orient. Each resulting rule is added to R and then used to Compose

and Collapse the other rules of R. Critical pairs are then computed by Deduce.

1 u(a, c2 − c1)→ a Ori u(a, c2 − c1) ≈ a

2 u(e1, e2)→ u(d, d) + f(b) Ori u(e1, e2)− f(b) ≈ u(d, d)

3 d→ c1 + 1 Ori d ≈ c1 + 1

4 u(e1, e2)→ u(c1 + 1, c1 + 1) + f(b) Com 2 and 3

5 e2 → b Ori e2 ≈ b

6 u(b, e1) ≈ u(c1 + 1, c1 + 1) + f(b) Col 4 and 5

7 u(b, e1)→ u(c1 + 1, c1 + 1) + f(b) Ori u(b, e1) ≈ u(c1 + 1, c1 + 1) + f(b)

8 u(c1 + 1, c1 + 1) + f(b) ≈ f(b) Sim u(b, e1) ≈ f(e2) by 5 and 7

9 u(c1 + 1, c1 + 1)→ 0 Ori u(c1 + 1, c1 + 1) + f(b) ≈ f(b)

10 u(b, e1)→ f(b) Com 7 and 9

11 c2 → 2 c1 + 1 Ori c2 ≈ 2 c1 + 1

12 u(a, c1 + 1) ≈ a Col 1 and 11

13 u(a, c1 + 1)→ a Ori u(a, c1 + 1) ≈ a

14 u(0, a) ≈ u(a, c1 + 1) Ded from 9 and 13

15 u(0, a) ≈ a Sim 14 by 13

16 u(0,a)→ a Ori 15

Figure 4.4: AC(X) on the running example.

The table given in Figure 4.4 shows the application of the rules of AC(X) on the

example when X is instantiated by linear arithmetic. We use an AC-RPO ordering

based on the precedence:

1 ≺p 2 ≺p a ≺p b ≺p c1 ≺p c2 ≺p d ≺p e1 ≺p e2 ≺p f ≺p u

Running AC(X) on the equalities i1, . . . , i6 terminates and produces a convergent

rewriting system Rf = {3, 5, 9, 10, 11, 13, 16}. Using Rf , we can check that a and

u(a, 0) canon-rewrite to the same normal form.

4.4. Correctness and termination proofs 89

4.4 Correctness and termination proofs

We give in this section the detailed proofs for the correctness of AC(X). This prop-

erty is stated by the theorem below and its proof is based on three intermediate

theorems stating respectively soundness, completeness and termination.

Theorem 33. Given a set E of ground equations, the application of the rules of AC(X)

under a strongly fair strategy terminates and either produces ⊥ when E ∪ AC ∪ X is

inconsistent, or yields a final configuration 〈 ∅ | R 〉 such that:

∀s, t ∈ TΣ. s =E,AC,X
t⇔ canon(s)

R
= canon(t)

R

As usual, in order to enforce correctness, we cannot use any (unfair) strategy. This

is why we require a strongly fair one in the theorem above. It is defined as follows:

Definition 34. A strategy is strongly fair when no possible application of an inference

rule is infinitely delayed and Orient is only applied over fully reduced terms.

In the following, we shall consider a fixed run of the completion procedure

〈 E0 | ∅ 〉 → 〈 E1 | R1 〉 → . . .→ 〈 En | Rn 〉 → 〈 En+1 | Rn+1 〉 → . . .

starting from the initial configuration 〈 E0 | ∅ 〉. We denote R∞ (resp. E∞) the set

of all encountered rules (resp. equations) and Rω (resp. Eω) the set of persistent

rules (resp. equations). More formally, these sets are defined as follows:

R∞ =
⋃

nRn

E∞ =
⋃

nEn

Rω =
⋃

n

⋂
i≥nRi

Eω =
⋃

n

⋂
i≥nEi

Notice that, requiring a strongly fair strategy implies in particular that:

• headCP(Rω) ⊆ E∞,

• Eω = ∅,

• Rω is inter-reduced, that is none of its rules can be collapsed or composed by

another one.

90 Chapter 4. Ground AC Completion Modulo a Shostak Theory

In addition, due to the assumptions made over canonX and ≺, the following valid

properties will be continuously used in the proofs:

(P1) ∀t, canon(t) � t

(P2) ∀s, t, s ≃ t ⇐⇒ s =AC t

(P3) ∀s, t, s R∞ t =⇒ t ≺ s

4.4.1 Soundness

The soundness property of AC(X) is ensured by the following invariant:

Theorem 35. For any configuration 〈 En | Rn 〉 reachable from 〈 E0 | ∅ 〉,

∀ s, t, (s, t) ∈ En ∪Rn ⇒ s =AC,X,E0
t

Proof. The invariant obviously holds for the initial configuration and is preserved

by all the inference rules.

• The rules Simplify, Compose, Collapse and Deduce preserve the invariant

since for any rule l → r, if l =AC,X,E0
r then, for any term s rewritten into t

by l→r, we have s =AC,X,E0
t.

• If Orient is used to turn an equation s ≈ t into a set of rules {pi → vi},

by definition of solve, pi = xiρ and vi = tiρ, where solveX([[s]] ≈ [[t]]) =

{xi ≈ ti} . By soundness of solveX xi =X,[[s]]≈[[t]] ti. An equational proof of

xi =X,[[s]]≈[[t]] ti can be instantiated by ρ, yielding an equational proof pi =X,s≈t

vi. Since by induction s =AC,X,E0
t holds, we get pi =AC,X,E0

vi.

4.4.2 Completeness

Completeness is established in several steps using a variant of the technique in-

troduced by Bachmair et al. in [7] for proving completeness of completion. This

technique transforms a proof between two terms which is not under a suitable

form into a smaller one, and the smallest proofs are the desired ones.

The proofs we are considering are made of elementary steps, either equational

steps, with AC, X andE∞, or rewriting steps, withR∞ and the additional (possibly

infinite) rules Rcanon = {t → canon(t) | canon(t) 6= t}. Rewriting steps with R∞

can be either R∞ or→R∞
1.

1Here,s −→R∞
t actually means s −→AC\R∞

t′ and t = canonAC(t
′).

4.4. Correctness and termination proofs 91

The measure of a proof is the multiset of the elementary measures of its ele-

mentary steps. The measure of an elementary step is a 5-tuple of type

multiset(TΣ(X))× N× N× TΣ(X)× TΣ(X)

It takes into account the number of terms which are in a canonical form in an ele-

mentary proof: the canonical weight of a term t,wcanon(t) is equal to 0 if canon(t) =AC

t and to 1 otherwise. Notice that if wcanon(t) = 1, then canon(t) ≺ t, and if

wcanon(t) = 0, then canon(t) ≃ t. The measure of an elementary step between

t1 and t2 is performed thanks to

• an equation is equal to ({{t1, t2}}, _, _, _, _)

• a rule l→ r ∈ R∞ is equal to

({{t1}}, 1, wcanon(t1) + wcanon(t2), l, r)

if t1 l→r t2 (or t1 →l→r t2), and to

({{t2}}, 1, wcanon(t1) + wcanon(t2), l, r)

if t1

r←lt2 (or t1 ←r←l t2). In the case of a step, the measure is actually

({{ti}}, 1, wcanon(ti), l, r) since the reduct is always in a canonical form.

• a rule of Rcanon is equal to

({{t1}}, 0, wcanon(t1) + wcanon(t2), t1, t2)

if t1 →Rcanon
t2, and to

({{t2}}, 0, wcanon(t1) + wcanon(t2), t2, t1)

if t1 ←Rcanon
t2.

Elementary steps are compared lexicographically using the multiset extension

of� for the first component, the usual ordering over natural numbers for the com-

ponents 2 and 3, and � for last ones. Since � is an AC-reduction ordering, the

ordering defined over proofs is well-founded.

The general methodology is to show that a proof which contains some un-

wanted elementary steps can be replaced by a proof with a strictly smaller mea-

sure. Since the ordering over measures is well-founded, there exists a minimal

proof, and such a minimal proof is of the desired form.

92 Chapter 4. Ground AC Completion Modulo a Shostak Theory

Lemma 36. A proof containing an elementary step ←→s≈t, where s ≈ t ∈ AC ∪ X is

not minimal.

Proof. An elementary equational step using an equation s ≈ t of AC ∪ X under

the context C[_]p can be reduced: the subproof

C[s]p←→
s≈t

C[t]p

is replaced by

C[s]p
{0,1}
−→
Rcanon

canon(C[s]p) = canon(C[t]p)
{0,1}
←−
Rcanon

C[t]p

The measure strictly decreases, since for the first subproof it is equal to

{{({{C[s]p,C[t]p}}, _, _, _, _)}}, and for the second one, it is equal to

{{({{C[s]p}}, _, _, _, _){0,1}, ({{C[t]p}}, _, _, _, _){0,1}}}. The rewrite steps →{0,1}
Rcanon

only

occur on a term which is not AC-equal to a canonical form (which is denoted by

the {0, 1} exponent). The corresponding elementary measure occurs in the global

measure of the second subproof accordingly.

Lemma 37. A proof containing an elementary step ←→s≈t, where s ≈ t ∈ E∞ is not

minimal.

Proof. An elementary equational step using an equation s ≈ t of E∞ under the

context C[_]p can be reduced. Since Eω is empty, there is a completion state where

s ≈ t disappears, either by Simplify or Orient.

• If Simplify is used to reduce s into s′ by the rule l→ r of R∞, the subproof

C[s]p←→
s≈t

C[t]p

is replaced by

C[s]p →
l→r

C[s′]p←→
s′≈t

C[t]p

The measure strictly decreases, since for the first subproof it is equal to

{{({{C[s]p,C[t]p}}, _, _, _, _)}}, and for the second one, it is equal to

{{({{C[s]p}}, _, _, _, _), ({{C[s′]p,C[t]p}}, _, _, _, _)}}, and s ≻ s′.

• If the rule Orient turns s ≈ t into a set of rules π = {pi → vi}, by definition

of solve we have solveX([[s]] ≈ [[t]]) = {xi ≈ ti} (denoted as σ) with pi = xiρ

and vi = tiρ. Since solveX is complete, [[s]]σ =X [[t]]σ. Consider a variable x

of [[s]] or [[t]],

– if x ∈ {xi} then xρπ = piπ = vi and xσρ = tiρ = vi.

4.4. Correctness and termination proofs 93

– if x 6∈ {xi} then xρπ = xρ (since xρ 6∈ {pi}) and xσρ = xρ (since xσ = x).

In all cases, xρπ = xσρ. The equational step using s ≈ t can be recovered as

a compound step using π and Rcanon as follows:

C[s]p = C[[[s]]ρ]p
+
−→
π

C[[[s]]ρπ]p = C[[[s]]σρ]p
0,1
−→
Rcanon

0,1
←−
Rcanon

C[[[t]]σρ]p = C[[[t]]ρπ]p

+
←−
π

C[[[t]]ρ]p = C[t]p

The set of rules π belongs to R∞, and the measure of the new subproof is a

multiset containing only elements of the form ({{C[si]p}}, _, _, _, _), where si
is a reduct of a subterm s or t by an arbitrary number of steps of R∞ and

Rcanon. In any case, {{C[si]p}} ≺ {{C[s]p,C[t]p}}. The new subproof is strictly

smaller than the measure of the original subproof.

Lemma 38. A proof containing an elementary rewriting step truly of the form −→R∞ or

←−R∞ is not minimal.

Proof. Here, each elementary step s−→R∞ t is already a R∞ step if t = canonAC(t)

is in a canonical form w.r.t canon, or it can be replaced by

s
R∞

canon(t) ←−
Rcanon

t

The measure of the first subproof is equal to {{({{s}}, 1, wcanon(s) +wcanon(t), _, _)}},

and the measure of the second one is equal to {{({{s}}, 1, wcanon(s), _, _), ({{t}}, 0, _, _, _)}},

and t ≺ s. Since wcanon(t) = 1, the measure strictly decreases.

The case s←−R∞ t is symmetrical.

Lemma 39. A proof containing an elementary rewriting step of the form l→r or

r←l,

where l→ r ∈ R∞ \Rω is not minimal.

Proof. An elementary step using a rule l → r of R∞ \ Rω can be reduced. The

rule l→ r disappears either by Compose or by Collapse.

• If Compose reduces r to r′ = canon(r[d]) by the rule g → d of R∞, the

subproof

C[l]p
l→r

canon(C[r]p)

can be replaced by

C[l]p
l→r′

canon(C[r′]p) = canon(C[r[d]]p)

d←g
C[r]p

94 Chapter 4. Ground AC Completion Modulo a Shostak Theory

The identity canon(C[r′]p) = canon(C[r[d]]p) holds C[r′]p and C[r[d]]p are

equal moduloRcanon, that isAC ∪ X, and such terms have the same canonical

forms. The measure strictly decreases, since for the first subproof it is equal

to {{({{C[l]p}}, 1, wcanon(C[l]p), l, r)}}, and for the second one, it is equal to

{{({{C[l]p}}, 1, wcanon(C[l]p), l, r
′)), ({{C[r]p}}, 0, _, _, _)}}, and r′ ≺ r ≺ l.

• If Collapse reduces l to l′ = canon(l[d]) by the rule g → d inR∞, the subproof

C[l]p
l→r

canon(C[r]p)

is replaced by

C[l]p
g→d

canon(C[l[d]]p) = canon(C[l′]p) ←−
Rcanon

C[l′]p←→
l′≈r

C[r]p −→
Rcanon

canon(C[r]p)

The measure strictly decreases, since for the first subproof it is equal to

{{({{C[l]p}}, 1, wcanon(C[l]p), l, r)}}, and for the second one, it is equal to

{{({{C[l]p}}, 1, wcanon(C[l]p), g, d),

({{C[l′]p}}, _, _, _, _), ({{C[l′]pC[r]p}}, _, _, _, _), ({{C[r]p}}, _, _, _, _), }}

The last three elements of the second multiset are strictly smaller than the

element of the first multiset, since l′ ≺ l and r ≺ l. The first element of the

second multiset is strictly smaller than the element of the first multiset, since

either g ≺ l, and the fourth component decreases, or g ≃ l and d ≺ g. In

this case, l′ = d ≺ r. The first four components are identical, and the last one

decreases.

The case is symmetrical.

Lemma 40. A proof containing a peak s←Rcanon
t→Rcanon

s′ is not minimal.

Proof. All the terms s, t and s′ involved in the peak are equal modulo AC and X,

hence canon(s) = canon(s′). The subproof

s←Rcanon
t→Rcanon

s′

is replaced by

s→
{0,1}
Rcanon

canon(s) = canon(s′)←
{0,1}
Rcanon

s′

The measure strictly decreases, since for the first subproof it is equal to

{{({{t}}, 0, wcanon(t) + wcanon(s), _, _), ({{t}}, 0, wcanon(t) + wcanon(s
′), _, _)}}

4.4. Correctness and termination proofs 95

and for the second one, it is equal to

{{({{s}}, 0, wcanon(s), _, _){0,1}, ({{s′}}, 0, wcanon(s), _, _){0,1}}}.

s and s′ are smaller than or equivalent to t (s, s′ � t), and the second component

strictly decreases, since canon(s) and canon(s′) are in a canonical form and t is

not.

Lemma 41. A proof containing a peak s

Rω t Rω s
′ is not minimal.

Proof. We make a case analysis over the positions of the reductions.

• In the parallel case, the subproof

s
p

r←l
t

q

g→d

s′

can be seen as

s = canon(t[r]p[g]q) ←−
Rcanon

t[r]p[g]q←−
r←l

t[l]p[g]q −→
g→d

t[l]p[d]q −→
Rcanon

canon(t[l]p[d]q) = s′

The above subproof can be replaced by

s = canon(t[r]p[g]q)
{0,1}
←−
Rcanon

t[r]p[g]q
g→d

canon(t[r]p[d]q)

r←l
t[l]p[d]q

{0,1}
−→
Rcanon

canon(t[l]p[d]q) = s′

The measure strictly decreases, since for the first subproof it is equal to

{{({{t}}, _, _, _, _), ({{t}}, _, _, _, _)}}, and for the second one, it is equal to

{{({{t[r]p[g]q}}, _, _, _, _){0,1}, ({{t[r]p[g]q}}, _, _, _, _),

({{t[l]p[d]q}}, _, _, _, _), ({{t[l]p[d]q}}, _, _, _, _){0,1}}}

and both terms t[r]p[g]q and t[l]p[d]q are strictly smaller than t = t[l]p[g]q.

• If q is a strict prefix of p, this means that l → r can be used to collapse the

rule g → d, which is impossible since the strategy is strongly fair, and the

application of Collapse cannot be infinitely delayed.

• The case where p is a strict prefix of q is similar.

• If p and q are equal, this means that in both reductions, the extended rewrit-

ing has been used (second case of definition 25). Otherwise, again, one rule

could collapse the other. This means that l and g have the same AC top

function symbol u. When l and g do not share a common subterm, the rea-

soning is similar to the parallel case. Otherwise, if they share a common

96 Chapter 4. Ground AC Completion Modulo a Shostak Theory

subterm, since the strategy is fair, the head critical pair between l → r and

g → d has been computed. Let aµ the maximal common part between l and g,

l =
AC

u(aµ, b), and g =
AC

u(aµ, b′). The critical pair is u(b′, r) ≈ u(b, d). The

subterm t|p where both reductions occur is of the form u(aµ, u(b, u(b′, c))) (or

u(aµ, u(b, b′)) if it corresponds exactly to the critical pair).

The subproof can be replaced by

s = ←−
Rcanon

t[u(u(b′, r), c)]p ←→
u(b′,r)≈u(b,d)

t[u(u(b, d), c]p −→
Rcanon

s′

The measure strictly decreases, since for the first subproof it is equal to

{{({{t}}, _, _, _, _), ({{t}}, _, _, _, _)}}, and for the second one, it is equal to

{{({{t[u(u(b′, r), c)]p}}, _, _, _, _), {{t[u(u(b′, r), c)]p, t[u(u(b, d), c]p}}, _, _, _, _),

{{t[u(u(b, d), c]p}}, _, _, _, _)}}

and both t[u(u(b′, r), c)]p and t[u(u(b, d), c]p are strictly smaller than t.

Lemma 42. A proof containing a peak s

Rω t −→Rcanon
s′ is not minimal.

The proof of this lemma is partly made by structural induction over t, and we

need an auxiliary result in order to study how behave a proof plugged under a

context.

Definition 43. Given a context C[•]p, and an elementary proofP ,P plugged under C[•]p,

denoted as C[P]p is defined as follows:

• if P is an equational step s↔l≈r t, C[P]p is C[s]p ↔l≈r C[t]p.

• if P is a rewriting step s −→l→r t, C[P]p is C[s]p −→l→r C[t]p.

• if P is a rewriting step s l→r t, C[P]p is either

C[s]p l→r canon(C[t]p)←
Λ
Rcanon

C[t]p

if C[t]p is not in a canonical form, or C[s]p l→r canon(C[t]p) otherwise.

This definition is extended to a proof made of several steps, by plugging ele-

mentary each step under the context. Notice that if a proof P relates two terms s

and t, then C[P]p relates C[s]p and C[t]p.

4.4. Correctness and termination proofs 97

Lemma 44. Let P1 and P2 be two proofs which do not contain →R∞ nor ←R∞ . If P1 is

strictly smaller than (resp. equivalent to) P2, then C[P1]p is strictly smaller than (resp.

equivalent to) C[P2]p. Moreover if P2 is a step s l→r t, C[P1]p is strictly smaller than

C[s]p l→r C[t]p

Proof. It is enough to show the wanted result for elementary steps. Let P1 and P2

be two elementary steps such that P1 is strictly smaller than P2.

• If P1 and P2 are→Rcanon
steps, they are of the form

si −→
Rcanon

ti

and the corresponding measures are ({{si}}, 0, wcanon(si) + wcanon(ti), si, ti).

– if s1 ≺ s2, then C[s1]p ≺ C[s2]p.

– if s1 ≃ s2, and wcanon(s1) + wcanon(t1) < wcanon(s2) + wcanon(t2). Since

s1 ≃ s2, by the AC-totality of �, we know that s1 =AC s2, hence

wcanon(s1) = wcanon(s2). This means that wcanon(t1) = 0 and wcanon(t2) =

1. Hence t1 =AC canon(t1), t1 ≃ canon(t1) and t2 6=AC canon(t2) and

canon(t2) ≺ t2. Since s1 =AC s2, canon(t1) = canon(t2) holds, hence

t1 ≺ t2.

If we look at the plugged proofs, we haveC[s1]p ≃ C[s2]p,wcanon(C[s1]p) =

wcanon(C[s2]p), wcanon(C[t1]p) ≤ wcanon(C[t2]p) = 1 and C[t1]p ≺ C[t2]p.

The measure is even on the first component, and either strictly decreases

on the second component, or weakly decreases over the four first com-

ponents, and strictly decreases over the last one. In all cases, C[P1]p is

strictly smaller than C[P2]p.

– if s1 ≃ s2 andwcanon(s1)+wcanon(t1) = wcanon(s2)+wcanon(t2), this means

that t1 ≺ t2. The case wcanon(t1) = wcanon(t2) = 0 is impossible, since

this would imply t1 ≃ canon(t1) = canon(t2) ≃ t2. Hence wcanon(t1) =

wcanon(t2) = 1.

If we look at the plugged proofs, we haveC[s1]p ≃ C[s2]p,wcanon(C[s1]p) =

wcanon(C[s2]p), wcanon(C[t1]p) = wcanon(C[t2]p) = 1 and C[t1]p ≺ C[t2]p.

The measure is even on the first four components, and strictly decreases

over the last one. C[P1]p is strictly smaller than C[P2]p.

• if P1 is a -step, and P2 is a →Rcanon
step, necessarily, the first component

strictly decreases. The measure of C[P1]p is

{{({{C[s1]p}}, 1, wcanon(C[s1]p), l1, r1), ({{C[t1]}}, 0, _, _, _){0,1}}}

98 Chapter 4. Ground AC Completion Modulo a Shostak Theory

and the measure of C[P2]p is ({{C[s2]p}}, 0, _, _, _), where t1 ≺ s1 ≺ s2. C[P1]p

is strictly smaller than C[P2]p.

• if P1 is a →Rcanon
-step, and P2 is a step, necessarily, the first component

weakly decreases and the second component strictly decreases.

The measure of C[P1]p is ({{C[s1]p}}, 0, _, _, _) which is strictly smaller than

the measure ofC[s2]p l2→r2 C[t2]p, that is {{({{C[s2]p}}, 1, wcanon(C[s2]p), l2, r2)}}

since s1 � s2.

• if P1 and P2 are -steps, they are of the form

si
li ri

ti

and the corresponding measures are ({{si}}, 1, wcanon(si), li, ri). The measure

of C[P1]p is

{{({{C[s1]p}}, 1, wcanon(C[s1]p), l1, r1),

({{C[t1]p}}, 0, wcanon(C[t1]), C[t1]p, canon(C[t1]p))
{0,1}}}

and the measure ofC[s2]p l2→r2 C[t2]p is ({{C[s2]p}}, 1, wcanon(C[s2]p), l2, r2).

If s1 ≺ s2, since t1 ≺ s1, C[P1]p is strictly smaller than C[s2]p l2→r2 C[t2]p.

Otherwise, s1 ≃ s2 and s1 =AC s2. Hence wcanon(s1) = wcanon(s2) and the de-

crease occurs on the last two components. Therefore ({{C[s1]p}}, 1, wcanon(C[s1]p), l1, r1)

and ({{C[t1]p}}, 0, wcanon(C[t1]p), C[t1]p, canon(C[t1]p)) are strictly smaller than

({{C[s2]p}}, 1, wcanon(C[s2]p), l2, r2).

• When a step is an equational step, necessarily the decrease occurs on the

first component. Since ≺ is compatible with plugging terms under a context,

hence the wanted result.

We can now come to the proof of Lemma 42.

Proof. Let us denote by l → r the rule of Rω, and g → d the rule of Rcanon; since l

is in a canonical form (invariant of the completion run), the reduction using g → d

can only take place at a position q which is above or parallel to the position p of the

reduction using l → r. We prove by induction that there exists a proof between s

and s′ which is strictly smaller than the original peak.

4.4. Correctness and termination proofs 99

• In the parallel case, the subproof

s
p

r←l
t

q
−→
g→d

s′

can be seen as

canon(t[r]p[g]q) ←−
Rcanon

t[r]p[g]q←−
r←l

t[l]p[g]q −→
Rcanon

t[l]p[d]q

Notice that t[r]p[g]q and t[r]p[d]q are equal modulo AC,X, hence have the same

canonical form. The above subproof can be replaced by

canon(t[r]p[g]q) = canon(t[r]p[d]q) ←−
Rcanon

t[r]p[d]q←−
r←l

t[l]p[d]q

which is actually

s

r←l
s′

The measure strictly decreases, since for the first subproof it is equal to

{{({{t}}, 1, 1, l, r), ({{t}}, _, _, _, _)}}, and for the second one, it is equal to

{{({{s′}}, 1, wcanon(s
′), l, r)}}, and s′ � t.

• In the prefix case, we first prove the wanted result when the position q is

equal to Λ. Now we make an induction over p, in order the establish that

there is a proof between s and s′, with a measure (weakly) smaller than

s

r←lt, hence strictly smaller than the global measure of the peak. If p = Λ,

rewriting at top with a rule ofRω is impossible if it is not an extended rewrit-

ing, since l is in a canonical form. In the extended case, the subproof to be

replaced has the form

canon(u(r, l′))

r←l
t

Λ
−→
Rcanon

s′

where t =AC u(l, l′), and s′ = canon(u(l, l′)). By definition of canon and

since l is in a canonical form and u is an AC symbol, s′ is AC-equal to

u(l, canon(l′)). The subproof can be replaced by

canon(u(r, l′)) = canon(u(r, canon(l′)))

r←l
u(l, canon(l′)) =AC s′

where the identity canon(u(r, canon(l′))) = canon(u(r, l′)) holds since u(r, canon(l′))

and u(r, l′) are equal modulo AC, X. The measure strictly decreases, since for

the first subproof it is equal to {{({{t}}, 1, wcanon(t), l, r), ({{t}}, _, _, _, _)}}, and

for the second one, it is equal to {{({{s′}}, 1, wcanon(s
′), l, r)}}, and s′ ≺ t, or

s′ ≃ t with wcanon(s
′) = wcanon(t).

100 Chapter 4. Ground AC Completion Modulo a Shostak Theory

If p is of the form i · p′, t is of the form f(t1, . . . , ti−1, ti, ti+1, . . . , tn), and the

proof to be replaced

canon(f(t1, . . . , ti[r]p′ , . . . , tn))

r←l
f(t1, . . . , ti[l]p′ , . . . , tn)

Λ
−→
Rcanon

s′

We may assume without loss of generality that t1, . . . , ti−1, ti+1, . . . , tn are in

a canonical form, since

s′ = canon(t) =

canon(f(canon(t1), . . . , canon(ti−1), ti[l]p′ , canon(ti+1) . . . , canon(tn)))

canon(f(t1, ..., ti[r]p′ , ..., tn)) =

canon(f(canon(t1), ..., canon(ti−1), ti[r]p′ , canon(ti+1)..., canon(tn)))

We also denote as

s0 = f(t1, . . . , canon(ti[r]p′), . . . , tn)

and

s′0 = f(t1, . . . , canon(ti[l]p′), . . . , tn)

We know that canon(ti[l]p′) � ti[l]p′ , and we distinguish between two cases.

– If canon(ti[l]p′) ≺ ti[l]p′ , then by induction hypothesis, there exists a

proofP between canon(ti[r]p′) and canon(ti[l]p′) which is weakly smaller

than

canon(ti[r]p′)

r←l
ti[l]p′

The decreasing is actually strict since an equivalent proof should be in

one step, and the only possibility is a step of the form

canon(ti[r]p′)

r←l
canon(ti[l]p′)

However since canon(ti[l]p′) ≺ ti[l]p′ and wcanon(ti[l]p′) = wcanon(ti[l]p′)

cannot be not simultaneously true, such an equivalent step is not possi-

ble. Among all possible proofsP , we pick up a minimal one. By the pre-

vious lemmas,P does not contains→R∞ steps, hence f(t1, . . . ,P, . . . , tn)

is strictly smaller than

canon(s0)

r←l
t

If we consider the proof P ′

s
{0,1}
←−
Rcanon

s0
f(t1,...,P,...,tn)
←−−−−−−−−→ s′0

{0,1}
−→
Rcanon

s′

4.4. Correctness and termination proofs 101

all its elementary steps are strictly smaller than ({{t}}, 1, 1, l, r). We have

seen that this is true for the middle part, and also for the left part

({{s0}}, 0, 1, s0, s)
{0,1}, and the right part ({{s′0}}, 0, 1, s

′
0, s

′){0,1}.

P ′ is a proof between s and s′ which is strictly smaller than s

r←lt.

– If canon(ti[l]p′) ≃ ti[l]p′ , then by the AC-totality of �, canon(ti[l]p′) =AC

ti[l]p′ . Since s′ = canon(t), we know that s′ � t and we make a case

analysis:

∗ If s′ ≃ t then s′ is actually canonAC(t) which is AC-equal to t.

s′ contains ti[l]p′ as a subterm and can be reduced with l → r to

canon(s′[ti[r]p′]) which is AC-equal to t[ti[r]p′]i. Hence canon(s′[ti[r]p′]) =

canon(t[ti[r]p′]i) = s and the proof

s

r←l
s′

is equivalent to, hence weakly smaller than s

r←l t.

∗ If s′ ≺ t, then we can first see the peak as follows:

s←
{0,1}
Rcanon

s0 ←r←l t→Rcanon
s′ = canon(t)

We eagerly replace every occurrence of l by r in s0 and s′, getting

respectively s1 and s′′. Then s1 and s′′ are equal modulo AC and

X, because any proof modulo AC and X between t and s′ can be re-

played by replacing the σ-instances of AC and X used originally by

σ′-instances where xσ′ is xσ where every occurrence of l is replaced

by r. We get the new proof

s
{0,1}
←−
Rcanon

s0
∗
−→
l→r

s1
{0,1}
−→
Rcanon

canon(s1) = canon(s′′)
{0,1}
←−
Rcanon

s′ = canon(t)

Since s′ ≺ t, all terms in the above proof are strictly smaller than t,

hence the measure of this proof is strictly smaller than ({{t}}, 1, 1, l, r).

If the proof occurs under a context t[•]q, we know that there is a proof P

between s = canon(t[r]q·p′) and canon(t) which is weakly smaller than

({{t[l]q·p′}}, 1, 1, l, r) (case→Rcanon
at Λ). Hence

s
P
←→ canon(t)

{0,1}
←−
Rcanon

s′

is a proof between s and s′ which is weakly smaller than

{{({{t[l]q·p′}}, 1, 1, l, r), ({{s
′}}, 0, 1, s′, canon(t)){0,1}}}

102 Chapter 4. Ground AC Completion Modulo a Shostak Theory

whereas the measure of the original peak is

{{({{t}}, 1, 1, l, r), ({{t}}, 0, 2, t, s′)}}

Since s′ � t, the measure of the new proof is strictly smaller than the

measure of the original peak.

Theorem 45. If s and t are two terms such that s←→∗
AC,X,E∞,R∞

s′ then

canon(s)

Rω = canon(t)

Rω .

Proof. If s and s′ are equal modulo←→∗
AC,X,E∞,R∞

, so are canon(s) and canon(s′).

By the above lemmas, a minimal proof between canon(s) and canon(s′) is nec-

essary of the form canon(s)(Rω ∪ →Rcanon
)∗(

Rω∪ ←Rcanon
)∗canon(s′). This se-

quence of steps can also be seen as canon(s)→∗
Rcanon

(Rω→
∗
Rcanon

)∗(←∗
Rcanon

Rω)
∗ ←∗

Rcanon

canon(s′). By definition→Rcanon
cannot follow a Rω -step, and canon(s) and canon(s′)

cannot be reduced by→Rcanon
, hence the wanted result.

4.4.3 Termination

The proof of termination partly reuses some facts used for the termination proof

of AC-ground completion (based on Higman’s lemma), but also needs some inter-

mediate lemmas which are specific to our framework2. We shall prove that, under

a strongly fair strategy, Rω is finite and obtained in a finite time (by cases on the

head function symbol of the rule’s left-hand side), and then we show that Rω will

clean up the next configurations and the completion process eventually halts on

〈 ∅ | Rω 〉. In order to make our case analysis on rules, and to prove the needed in-

variants, we define several sets of terms (assuming without loss of generality that

E0 = canon(E0)):

T0 = {t | ∃t0, e1, e2 ∈ TΣ(X), e1 ≈ e2 ∈ E0 and t0 = ei|p and t0
∗
R∞

t}

T0X = T0 ∪ {fX(t1, . . . , tn) | fX ∈ ΣX and ∀i, ti ∈ T0X}

T1 = {t | t ∈ T0 and ∀p, t|p ∈ T0X}

T2 = {u(t1, . . . , tn) | 2 ≤ n and u ∈ ΣAC and ∀i, ti ∈ T1}

T0 is the set of all terms and subterms in the original problem as well as their

reducts by R∞. The set T0X moreover contains terms with X-aliens in T0. T1 is the

set of terms that can be introduced by X from terms of T0 (by solving or canoniz-

ing). T2 is a superset of the terms built by critical pairs.

2We assume that ⊥ is not encountered, otherwise, termination is obvious.

4.4. Correctness and termination proofs 103

Lemma 46. ∀γ, t, s, γ ∈ R∞ ∩ T 2
j ∧ t ∈ Ti ∧ t γ s⇒ s ∈ Ti, for i, j = 1, 2.

The proof is by structural induction over terms (for dealing with rewriting un-

der a context) and by case analysis over Ti when rewriting at the top level. It uses

the (quasi-immediate) fact that T0 ∩ T2 ⊆ T1.

Lemma 47. For all accessible configuration 〈 En | Rn 〉, En ∪Rn ⊆ T 2
1 ∪ T

2
2 .

The proof is by induction over n, and uses Lemma 46.

The first step of the termination proof is to show thatRω∩T
2
1 is finite (Lemma 50).

It is specific to our framework, due to the presence of X3.

Lemma 48. Under a strongly fair strategy, if l→ rn is created at step n inRn and l→ rm

at step m in Rm, with n < m, then rm is a reduct of rn by R∞ .

Proof. The proof is by induction over the length of the derivation, and by case

analysis over the rule which has been applied.

• Orient applied on s = t cannot create a new rule p → v with an already

present left hand side, because the strongly fair strategy implies that s and t

are fully reduced, and the new left hand side p is a subterm of s or t.

• Simplify, Collapse and Deduce do not create a new rule.

• Compose obviously preserves the invariant.

Corollary 49. Under a strongly fair strategy, R∞ is finitely branching.

Proof. If R∞ is not finitely branching, there exist an infinite sequence of rules

(l → rn)n where l → rn first appears in 〈 En | Rn 〉. Thanks to Lemma 48, since

R∞ is included in ≺, the sequence (rn)n is strictly decreasing w.r.t ≺. The well-

foundedness of ≺ contradicts the infinity of (rn)n.

Lemma 50. Under a strongly fair strategy, the set of rules inRω ∩ T
2
1 is finite.

Proof. If l→ r belongs to the setRω∩T
2
1 , l is reduct of a term l0 inE0 by R∞ . Since

 R∞ is terminating (because it is included in ≺), and finitely branching (above

corollary), any term has finitely many reducts by R∞ . In particular since E0 is

finite, there are finitely many possible left-hand side. Moreover since in Rω two

distinct rules have distinct left-hand sides,Rω ∩ T
2
1 is finite.

3
X may change the head function symbol of terms in an equational proof, which is not the case

of AC in standard ground AC completion.

104 Chapter 4. Ground AC Completion Modulo a Shostak Theory

Here is the second step of the termination proof, finiteness of Rω ∩ T
2
2 , which

is mostly the same as in the usual AC-ground completion:

Lemma 51. The set of persistent rules inRω which are in T 2
2 is finite.

Proof. The set Rω ∩ T
2
2 can be divided into a finite union of sets, according to the

top AC function symbol of the left hand-side of the rules. We shall prove that for

each u ∈ ΣAC , the corresponding subset is finite.

Let u be a fixed AC function symbol, and let u(l1, . . . , ln) → r be a rule of

Rω ∩ T
2
2 . By definition of T2, and by the soundness of R∞, each li is equal mod-

ulo ACX,E0 to a term l0i in E0. Since li is irreducible by Rω (otherwise the rule

u(l1, . . . , ln) → r would have collapsed), there is a rewriting proof li

 ∗
Rω
l0i .

Notice that two distinct rules in Rω have some distinct left-hand sides (other-

wise one would have collapsed the other) (this implies in particular that Rω is

finitely branching). Since Rω is included in a well-founded ordering, and is

finitely branching any term has a finite number of reducts. Since E0 is finite,

each li belongs to the finite set of reducts Red(E0) of E0 by Rω . By Higman’s

lemma, if there is an infinite number of rules where the left-hand side is of the form

u(t1, . . . , tn), there exist two rules l→ r and l′ → r′, such that the multiset of argu-

ments {{l1, . . . , ln}} of l is included in the multiset of arguments {{l′1, . . . , l
′
m}} of l′.

This would imply that the second rule collapses by the first one, which contradicts

its persistence. Hence the wanted result.

When Rω has been proven to be finite, we show that once it is obtained, Rω

will “clean up” the configuration within a finite number of steps, hence the termi-

nation:

Theorem 52. Under a strongly fair strategy, AC(X) terminates.

Proof. When the strategy is strongly fair, Rω is finite. Moreover each rule in Rω is

obtained within a finite number of steps. Once all persistent rules are present in

the rules of the configuration 〈 E | R 〉, the rule Orient always returns an empty

set of rules. If the measure of a configuration is the triple made of the number of

remaining critical pairs to generate, the multiset of terms in R (compared with ≺),

and the number of equations on E, it strictly decreases.

4.5 Variable abstraction and multiset ordering

Although AC-RPO orderings are suitable when proving termination of completion

procedures or of term rewriting systems modulo AC in general, they are not easily

4.5. Variable abstraction and multiset ordering 105

implementable in practice and can be a source of inefficiency. We show in this

chapter that a simple variable abstraction preprocessing step à la Bachmair et al.

allows AC(X) to use a partial multiset reduction ordering instead of a full AC-RPO

ordering. The principle of this step is similar to the Extension inference rule found

in Abstract Congruence Closure [6]. In order to enable the use of such ordering as

an input for AC(X), we have to transform the original set of ground equations E

to a simpler one containing only abstracted equations. Let K be a set of constant

symbols disjoint from Σ and X and ≺X be a total rewrite ordering on TΣX∪K . We

define two sets of terms T∅ and TAC as follows:

T∅ =

f(v1, · · · , vn)

∣∣∣∣∣∣∣∣∣∣

f ∈ Σ∅ ∧

arity(f) = n ∧
∧n

i=1 vi ∈ TΣX∪K

TAC =

u(v1, u(v2, . . . , u(vn−1, vn) . . .))

∣∣∣∣∣∣∣∣∣

u ∈ ΣAC ∧

n ≥ 2 ∧
∧n

i=1 vi ∈ TΣX∪K

Definition 53 (Abstracted equations). An equation s ≈ t is said to be abstracted if one

of the following statements holds:

1. s, t ∈ T (ΣX ∪K)

2. s ∈ (T∅ ∪ TAC) and t ∈ T (ΣX ∪K)

3. s, t ∈ TAC and s(Λ) = t(Λ)

The set of all abstracted equations is denoted by A.

Let π be an abstraction function from TAC∪T∅ toK such that if π(s) = π(t) then

s =AC,X t. Given a set E0 of ground equations, the term abstraction of E0 consists

in applying, as long as possible, the following inference rules, starting from the

initial configuration 〈 E0 | ∅ 〉.

106 Chapter 4. Ground AC Completion Modulo a Shostak Theory

Abstract1
〈 E ⊎ {s ≈ t} | EA 〉

〈 E | EA ∪ {s ≈ t} 〉
s ≈ t ∈ A

Abstract2
〈 E ∪ C[f(~v)] ≈ t | EA 〉

〈 E ∪ C[k] ≈ t | EA ∪ {f(~v) ≈ k} 〉
C[f(~v)] ≈ t 6∈ A

where,

1. f(~v) ∈ (T∅ ∪ TAC)

2. k = π(f(~v))

The propositions 54 and 55 state respectively the termination and the correct-

ness of the abstraction process.

Proposition 54. The application of the rules Abstract1 and Abstract2 terminates and

produces a configuration of the form 〈 ∅ | E∞A 〉, where E∞A ⊆ A.

Proof. The proof of termination is immediate using a decreasing measure. The

size of a configuration is equal to the total sum of the sizes of the terms in its first

component. Here, the size of a term is recursively defined in a standard way with

1 for the size of constants in K, and 2 for the size of other constants.

It remains to show that if a configuration is of the form 〈 E | EA 〉 and E 6= ∅,

at least one rule applies. Let s ≈ t be an equation in E. If s ≈ t ∈ A the Abstract1

applies. Otherwise, since s ≈ t 6∈ A, by condition 1. of Definition 53, there is a

minimal subterm of s or t which does not belong to TΣX∪K . This term thus has a

suitable form to fulfill condition 1. in the rule Abstract2 which applies.

Proposition 55. Let 〈 E0 | ∅ 〉 →∗ 〈 ∅ | E∞A 〉 be a fixed run of the abstraction process.

For any terms s, t ∈ TΣ, we have:

s =E0,X,AC t⇐⇒ s =E∞
A ,X,AC t

Proof. The direction ⇒ is immediate for Abstract1. For Abstract2, it rests on the

fact that a step using C[f(~v)] ≈ t can be replaced by two steps, the first one using

f(~v) ≈ k and the second one using C[k] ≈ t.

In order to prove⇐, we use the following invariant: if 〈 E | EA 〉 → 〈 E′ | E′A 〉,

s =E′,E′
A,X,AC t and s and t do not contain any constant in K, then s =E,EA,X,AC t.

This is immediate when the rule Abstract1 is applied. When Abstract2 replaces

4.5. Variable abstraction and multiset ordering 107

C[f(~v)] ≈ t by {f(~v) ≈ k, C[k] ≈ t}, we first replace every step using C[k] ≈ t by a

compound step using C[k] ≈ C[f(~v)] followed by C[f(~v)] ≈ t. Then all occurrences

of k are replaced by f(~v) in intermediate terms, and the now useless steps using

f(~v) ≈ f(~v) (former f(~v) ≈ k) are removed. The transformed proof is now in

=E,EA,X,AC , and since neither s nor t contain constants in K, they are not affected

by these transformations.

Once we have shown how to abstract the initial set of equations E, we will

define the reduction ordering ≺ that we will use in AC(X). We do not need this

ordering to be total on the terms in TΣX∪K ∪ T∅ ∪ TAC . We only need a partial

reduction ordering which allows us to get well oriented rewriting rules from the

abstracted equations.

Definition 56. Let ≺mset
X

be the multiset extension of ≺X. Our reduction ordering is

defined by:

1. ∀v1, v2 ∈ TΣX∪K , v1 ≺X v2 ⇒ v1 ≺ v2

2. TΣX∪K ≺ T∅

3. TΣX∪K ≺ TAC

4. ∀u(~v1), u(~v2) ∈ TAC , {{~v1}} ≺
mset
X

{{~v2}} ⇒ u(~v1) ≺ u(~v2)

After that, we have to show that AC(X) does not introduce non-abstracted

equations when collapsing rules, computing critical pairs, using canonized rewrit-

ing, and solving equations. Hence, the following lemma:

Lemma 57. For any configuration 〈 E∞n | Rn 〉 reachable from 〈 E∞A | ∅ 〉, we have:

∀(s, t) ∈ (E∞n ∪Rn), s ≈ t ∈ A

Proof. The lemma obviously holds for the initial state. For the induction step, we

can easily show that the abstracted form of equations is preserved by canonized

rewriting wrt an abstracted rule, hence so as when applying the inference rules

Simplify, Compose and Collapse. Concerning Deduce, we notice by inspecting the

definition of headCP, that when l→ r and l′ → r′ are abstracted oriented equations,

so is the resulting critical pair. The only subtle case is Orient, in particular when

solving an equation s ≈ t, with s ∈ T (ΣX ∪ K) and t ∈ T∅ ∪ TAC . Due to the

definition of ≺ and to the fact that the solver has to fulfill the ordering constraints

stated in Axiom 32, the solution of s ≈ t has to be t 7→ s.

108 Chapter 4. Ground AC Completion Modulo a Shostak Theory

Now, the last thing to do is to prove that the≺ ordering defined above is a suit-

able ordering for the AC(X) completion procedure. This is actually the case since,

on the equations in A, it coincides with the AC-RPO ordering based on a prece-

dence ≺p such that ΣX ≺p K ≺p ΣE ∪ΣAC , and we know by Lemma 57 that AC(X)

will only manipulates equations in A if initialized with abstracted equations.

4.6 Implementation and evaluation

4.6.1 Implementation

We implemented the AC(X) algorithm as well as a preprocessing step that enables

the use of a partial multiset reduction ordering at the heart of the ALT-ERGO the-

orem prover. The technical details of the implementation are given in Chapter 5.

Currently, X can be instantiated by the theories of linear integer arithmetic, linear

rational arithmetic, records, bit-vectors and enumerated datatypes. As described

in Section 4.3, the state of the procedure is a pair 〈 E | R 〉 of equations and rules.

Again, we apply the following strategy for processing an equality u ≈ v ∈ E:

Sim
∗ (Tri | Bot | (Ori (Com Col Ded)∗))

As in the example illustrating a run of AC(X), u ≈ v is first simplified as much as

possible by Simplify. Then, if it is not proven to be trivially solved by Trivial or

unsolvable by Bottom, it is solved by Orient. Each resulting rule is added to R

and then used to Compose and Collapse the other rules of R. Critical pairs are

then computed by Deduce.

The implementation of AC(X) is incremental i.e. is able to process new equali-

ties on the fly. It is backtrackable for free thanks to persistent data structures. It also

produces explanations: each encountered inconsistency is explained by a subset of

the assumed facts leading to this inconsistency.

4.6.2 Experimental results

We benchmark AC(X) and compare its performances with our own SMT solver

ALT-ERGO [30] and some state-of-the-art solvers (Z3 v2.8, CVC3 v2.2, SIMPLIFY

v1.5.4). All measures are obtained on a laptop running Linux equipped with a

2.58GHz dual-core Intel processor and with 4Gb main memory. Provers are given

a time limit of five minutes for each test and memory limitation is managed by the

system. The results are given in seconds; we write TO for timeout and OM for out of

memory.

4.6. Implementation and evaluation 109

Our test suite is made of crafted ground formulas which are valid in the com-

bination of the theory of linear arithmetic LA, the free theory of equality E and a

small part of the theory of sets defined by the symbols ∪,⊆, the singleton construc-

tor {·}, and the following axioms:

S∪

Assoc : ∀x, y, z. x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

Commut : ∀x, y. x ∪ y ≈ y ∪ x

S⊆

SubTrans : ∀x, y, z. x ⊆ y ∧ y ⊆ z ⇒ x ⊆ z

SubSuper : ∀x, y, z. x ⊆ y ⇒ x ⊆ y ∪ z

SubUnion : ∀x, y, z. x ⊆ y ⇒ x ∪ z ⊆ y ∪ z

SubRefl : ∀x. x ⊆ x

Figure 4.5: Axiomatization of a small part of the theory of sets

The theories E and LA are built-in for all SMT solvers we use for our experiments.

However, contrarily to AC(X) which also natively handles associativity and com-

mutativity, SMT solvers use a generic mechanism for instantiating the axioms S∪
to reason modulo the AC properties of ∪.

In order to get the most accurate information about AC(X), we first benchmark

a stand-alone version of our algorithm on ground formulas that can be proved

without S⊆. In a second step, we consider ground formulas that are only provable

with some axioms in S⊆. Since these axioms are not directly handled by AC(X),

we benchmark a modified version of ALT-ERGO (to benefit from its instantiation

mechanism) with AC(X) as its core decision procedure.

In the following, we use the standard mathematical notation
⋃d

i=1 ai for the

terms of the form a1 ∪ (a2 ∪ (· · · ∪ ad)) · · ·) and we write
⋃d

i=1 ai; b for terms of the

form a1 ∪ (a2 ∪ (· · · ∪ (ad ∪ b))) · · ·).

Benchmark of a stand-alone AC(X)

We consider two categories of formulas. The first category C1 is of the form

∧n
p=1({e} ∪

⋃d
i=1 a

p
i) ≈ bp ⇒

∧n−1
p=1

∧n
q=p+1

⋃1
i=d a

p
i ; b

q ≈
⋃1

i=d a
q
i ; b

p

︸ ︷︷ ︸
G

and the second category C2 is of the form

∧n
p=1({tp − p} ∪

⋃d
i=1 a

p
i) ≈ bp ∧

∧n−1
p=1 tp + 1 ≈ tp+1 ⇒ G

110 Chapter 4. Ground AC Completion Modulo a Shostak Theory

Notice that n is the number of hypothesis equations and d is the maximal depth

of AC terms.

Proving the validity of C1-formulas only requires the theory E and the AC

properties of the union symbol. These formulas are directly provable by AC(∅)

and the results for this instance are given in the first column of the table in Fig-

ure 4.6. In order to prove C1-formulas with SMT solvers, the axioms in S∪ have to

be put in their context. The last four columns of the table contain the results for

ALT-ERGO, Z3, CVC3 and SIMPLIFY.

n, d AC(∅) ALT-ERGO Z3 CVC3 SIMPLIFY

3, 3 0.01 0.19 0.22 0.40 0.18

3, 6 0.01 32.2 OM 132 OM

3, 12 0.01 TO OM OM OM

6, 3 0.01 11.2 1.10 13.2 2.20

6, 6 0.02 TO OM OM OM

6, 12 0.02 TO OM OM OM

12, 3 0.16 TO 5.64 242 11.5

12, 6 0.24 TO OM OM OM

12, 12 0.44 TO OM OM OM

Figure 4.6: The results for category C1

In order to prove the validity of C2-formulas, the theory E , the AC properties

of ∪ and the theory of linear arithmetic LA are required. These ground formulas

are directly provable by AC(LA) and the results are given in the first column of

the table in Figure 4.7. Similarly to category C1, the last four columns of the table

contain the results for the SMT solvers we considered. Again, the axioms S∪ have

to be provided in the context, whereas linear arithmetic is directly handled by the

built-in decision procedures of these provers.

Benchmark of ALT-ERGO with AC(X)

We now analyze the performances of AC(X) when it is used as the core decision

procedure of ALT-ERGO. For that, we consider a third category C3 of formulas of

4.6. Implementation and evaluation 111

n, d AC(LA) ALT-ERGO Z3 CVC3 SIMPLIFY

3, 3 0.01 1.10 0.03 0.11 0.19

3, 6 0.01 TO 3.67 4.21 OM

3, 12 0.01 TO OM OM OM

6, 3 0.02 149 0.10 2.26 2.22

6, 6 0.02 TO 17.7 99.3 OM

6, 12 0.04 TO OM OM OM

12, 3 0.27 TO 0.35 44.5 11.2

12, 6 0.40 TO 76.7 TO OM

12, 12 0.72 TO OM OM OM

Figure 4.7: The results for category C2

the form

∧n
p=1

⋃d
i=1{e

p
i } ≈ bp ∧

⋃d
i=1{e+ e

p
i } ≈ cp ∧ e ≈ 0⇒

∧n
p=1 c

p ⊆ (bp ∪ {epd}) ∪ {e}

Proving the validity of C3-formulas requires the theory E , the AC properties of

∪, the theory of linear arithmetic LA and additionally some axioms in S⊆. We thus

only provide the axioms S⊆ in the context of the modified version of ALT-ERGO,

whereas all the axioms in S⊆ and S∪ are given in the context of the other SMT

solvers. The results of this category are given in Figure 4.8.

Benchmarks analysis

The results in Figures 4.6 and 4.7 show that, contrary to the axiomatic approach,

built-in AC reasoning is little sensitive to the depth d of terms: given a fixed num-

ber n of equations, the running time is proportional to d. However, we notice a

slowdown when n increases. This is due to the fact that AC(X) has to process a

quadratic number of critical pairs generated from the equations in the hypothesis.

From Figure 4.8, we remark that ALT-ERGO with AC(X) performs better than the

other provers. The main reason is that its instantiation mechanism is not spoiled

by the huge number of intermediate terms the other provers generate when they

instantiate the AC axioms.

112 Chapter 4. Ground AC Completion Modulo a Shostak Theory

n, d ALT-ERGO

with AC(LA)

ALT-ERGO Z3 CVC3 SIMPLIFY

3, 3 0.02 3.16 0.09 10.2 OM

3, 6 0.04 TO 60.6 OM OM

3, 12 0.12 TO OM OM OM

6, 3 0.07 188 0.18 179 OM

6, 6 0.12 TO TO OM OM

6, 12 0.66 TO OM OM OM

12, 3 0.20 TO 0.58 OM OM

12, 6 0.43 TO TO OM OM

12, 12 1.90 TO OM OM OM

Figure 4.8: The results for category C3

4.6.3 Instantiation issues

Although AC(X) is effective on ground formulas, its integration as the core de-

cision procedure of ALT-ERGO suffers from a bad interaction between the built-in

treatment of AC and the axiom instantiation mechanism of ALT-ERGO which is

roughly done as follows:

• each axiom of the form ∀x̄.F(x̄) provided in the context comes with a pattern

P (also called trigger) which consists of a set of subterms of F that covers x̄;

• the solver maintains a set G of known terms extracted syntactically from the

ground literals that occur during its proof search;

• G is partitioned into a set of equivalence classes according to the ground

equalities currently known by the solver;

• new ground formulas Fσ are generated by matching P against G modulo the

equivalence classes.

Let us show how this mechanism is used to prove the following ground formula:

(F1) (e ≈ d ∪ a ∧ b ⊆ d ∧ c ≈ a ∪ d) ⇒ b ∪ a ⊆ c

4.7. Prospective extensions 113

For that, we only need to use the SubUnion axiom defined in Section 4.5:

SubUnion : ∀x, y, z. x ⊆ y ⇒ x ∪ z ⊆ y ∪ z

Let us assume that the pattern for this axiom is the term x∪ z ⊆ y ∪ z. This pattern

is matched against the term b ∪ a ⊆ c by looking for a substitution σ such that

(x ∪ z ⊆ y ∪ z)σ = b ∪ a ⊆ c modulo the set of equivalence classes {{e, d ∪ a, a ∪

d, c}, {a}, {b}, {d}, {b ∪ a}, {b ⊆ d}, {b ∪ a ⊆ c}}. Such a substitution exists and

maps x to b, z to a and y to d since the term c is in the same class as d∪a. The proof

of F1 follows from the ground instance b ⊆ d⇒ b ∪ a ⊆ d ∪ a of SubUnion.

Let us now explain the limitation of the interaction between AC(X) and the

instantiation mechanism. The hypothesis e ≈ d ∪ a is useless (from a logical point

of view) to prove b ∪ a ⊆ c. Hence, the following formula F2 is equivalent to F1:

(F2) (b ⊆ d ∧ c ≈ a ∪ d) ⇒ b ∪ a ⊆ c

However, the cooperation of ALT-ERGO and AC(X) fails to prove F2. The reason is

that, since the term d∪ a does not syntactically occur in F2, the equivalence classes

are just {{a∪ d, c}, {a}, {b}, {d}, {b∪ a}, {b ⊆ d}, {b∪ a ⊆ c}} and the matching

algorithm fails to match x ∪ z ⊆ y ∪ z against b ∪ a ⊆ c.

4.7 Prospective extensions

We have shown in the previous section that AC(X) is an efficient algorithm for

reasoning in the union of the free theory of equality, the AC theory and an ar-

bitrary signature disjoint Shostak theory X that fulfills some reasonable ordering

requirements. In this section, we report on three relevant extensions that we have

explored. We discuss for each of them the issues we have encountered and some

possible solutions that we plan to investigate in the future in order to get rid of

them.

4.7.1 Matching modulo AC and a set of ground equations

As shown in Section 4.6.3, extending ALT-ERGO’s axioms instantiation mechanism

modulo AC is mandatory to fully integrate AC(X) as its core decision procedure.

Consequently, we considered the combination of E-matching4 and AC-matching to

enable this integration. However, we realized — after a quick investigation — that

4a.k.a. matching modulo ground equalities

114 Chapter 4. Ground AC Completion Modulo a Shostak Theory

one could not design an E-AC-matching algorithm which combines E-matching

and AC-matching and that would terminate for any input. In this section, we give

a simple example which validates this affirmation and discuss a possible solution

to get rid of it.

Let T be a theory. Let t be a ground term and p a term. Matching t against p

modulo T, denoted p ≤?
T
t, consists in finding the set sbt of substitutions such that:

∀σi ∈ sbt.

1. t =
T
pσi ∧

2. ∀x ∈ Dom(σi). x 6∈ Vars(p)⇒ xσi = x ∧

3. ∀σj ∈ sbt. i 6= j ⇒ ∀x ∈ Dom(σi) ∩ Dom(σj). ¬(xσi =T
xσj)

The first condition makes t and pσi equal modulo T. The second one forces the

inclusion Dom(σi) ⊆ Vars(p). The third one eliminates redundancies modulo T.

The problem of matching modulo a given set of ground equalities E is de-

fined by instantiating T with the equational theory of E. AC-Matching is obtained

by instantiating T with the AC theory. The E-AC-matching problem is defined

by instantiating T with a combination of the equational theory of a set of ground

equalities and the AC theory.

We say that E-matching (resp. AC-matching) is finitary, because every match-

ing problem modulo a set E of ground equalities (resp. modulo AC) admits a

finite set sbt of solutions. However, E-AC-matching is infinitary. For instance, the

following problem where E = { u(a, b) = a }, u ∈ ΣAC and x, y are variables

u(x, u(y, y)) ≤?
AC,E

a

has an infinite number of solutions. In fact, the set below is a subset of sbt.

⋃

k∈N

x 7→ a, y 7→ u(b, u(b, u(. . .)))︸ ︷︷ ︸
term of depth k

Future works

We intend to explore alternative approaches in the future in order to overcome this

issue. For instance, this could consist in using AC-narrowing [121] and context-

free grammars to generate finite sets of substitutions schemes. We could then

enumerate the substitutions incrementally while interacting with the SAT solver

and the decision procedures. This would ensure a form of fairness between the

different parts of the SMT-solver and the search process would progress.

4.7. Prospective extensions 115

4.7.2 Reasoning in presence of non-linear multiplication

The theory of linear arithmetic handles multiplication by constants — which stands

for repeated additions — but not non-linear multiplication. However, we can

at least reason modulo the AC properties of non-linear multiplication using the

AC(X) framework. This allows us, for instance, to prove the following formula,

where ∗ denotes the non-linear multiplication symbol

(a ∗ b)− 2 ≈ γ ∧ a ∗ c ≈ β ⊢ (γ + 2) ∗ c ≈ β ∗ b (4.1)

In fact, consider the AC∗(LAS) instance of AC(X), where ΣAC = {∗} and X is

instantiated with the Shostak part of linear arithmetic. The AC terms a ∗ b and a ∗ c

are considered as aliens by LAS. Consequently, the two first equations simply yield

the rewriting rules a ∗ b→ γ + 2 and a ∗ c→ β. The conclusion is then deduced by

a straightforward critical pair computation.

Nevertheless, AC∗(LAS) fails to prove the formulas 4.2 and 4.3 given below.

The distributivity axiom of multiplication over addition is required to prove theses

examples. But, it is not handled neither by LAS nor by AC completion. Note that,

we also need to know that 2 ∗ c is a linear term and equal to 2 · c to discharge the

formula 4.3, where ” · ” stands for multiplication by constants.

(a ∗ b)− 2 ≈ γ ∧ a ∗ c ≈ β ⊢ γ ∗ c+ 2 ∗ c ≈ β ∗ b (4.2)

(a ∗ b)− 2 ≈ γ ∧ a ∗ c ≈ β ⊢ γ ∗ c+ 2 · c ≈ β ∗ b (4.3)

It is quite frustrating to realize that AC∗(LAS) is not able to discharge simple for-

mulas involving distributivity. In order to get rid of this limitation, we investigated

the design of a new procedure, called ACD*(LAS), that strengthen the AC∗(LAS) in-

stance in order to handle this property and to allow non-linear terms to become

linear when possible. We were able to achieve this strengthening via a minor ex-

tension of global canonization.

The new canonizer canonD∗ that we plugged in the AC∗(LAS) instance to obtain

ACD*(LAS) is defined as follows:

116 Chapter 4. Ground AC Completion Modulo a Shostak Theory

canonD∗(x) = x when x ∈ X

canonD∗(f(~v)) = f(canonD∗(~v)) when f ∈ ΣE

canonD∗(fX(~v)) = canonX(fX([[canonD∗(~v)]]))ρ when f
X
∈ ΣX

canonD∗(u(t1, t2)) = canonAC(u(t
′
1, t

′
2)) when u ∈ ΣAC \ {∗}

where t′i = canonD∗(ti)

canonD∗(t1 ∗ t2) = canon(t′)

where {{s1, . . . , sn}} = A{∗}(canonD∗(t1)) ∪ A{∗}(canonD∗(t2))

and κ = A{+}(s1)× . . .×A{+}(sn)

and t′ =
∑

τ∈κ monomial(τ)

where the function monomial simply builds the corresponding monomial from a

given tuple. For instance, applying this function on (−3, − b, a, b, 2) is expected

to return the term (−3)·2·(−1)·b∗a∗b. The constant (−1) that appears in the result

comes form the element (−b) of the tuple. Notice that the new canonizer coincides

with canon except when treating a non-linear term. In this case, we additionally

simulate the distributivity axiom. Let us clarify the mechanism underlying this

simulation through a simple example.

Example 58. The term t = (2 · a+ b− 3) ∗ (a− b+ 2) is canonized as follows:

1. The subterms of t are already in canonical form with respect to canonD∗ . Therefore,

we have s1 = 2 · a+ b− 3 and s2 = a− b+ 2.

2. Since [·] stand for repeated additions, The aliens parts of s1 and s2 with respect to +

are given by: A+(s1) = {{a, a, b,−3}} and A+(s2) = {{a,−b, 2}}.

3. We then compute the cartesian product as follows:

κ =

(a, a) , (a, a) , (a, b) , (a,−3) ,

(−b, a) , (−b, a) , (−b, b) , (−b,−3) ,

(2, a) , (2, a) , (2, b) , (2,−3)

4.7. Prospective extensions 117

4. After that, we compute the sum from the tuples in κ:

t′ =

a ∗ a + a ∗ a + a ∗ b + (−3) · a +

(−1) · b ∗ a + (−1) · b ∗ a + (−1) · b ∗ b + (−1) · (−3) · b +

2 · a + 2 · a + 2 · b + 2 · (−3)

5. Finally, we compute the canonical form of t′ w.r.t canon and obtain that:

canonD∗(t) = 2 · a ∗ a− a ∗ b− b ∗ b+ a+ 5 · b− 6

Termination issues

We noticed that ACD*(LAS) is not guaranteed to terminate for any input when LAS

reason modulo linear arithmetic over integers. For instance, solving the equation

2 · (a ∗ a) ≈ a in this framework would loop indefinitely. Indeed,

1. solving an equality of the form 2j ·(ai∗ai) ≈ ai (where j is an integer constant)

will yield a set of two rules { ai ∗ ai → ai+1 , ai → 2j · ai+1 }, where ai+1 is a

fresh existential variable;

2. applying the second rule on the left-hand-side of the first one will collapse it.

Consequently, the equality (2j · ai+1) ∗ (2
j · ai+1) ≈ ai+1 has to be replayed;

3. simplifying this equality as much as possible will yield 22j · (ai+1 ∗ ai+1) ≈

ai+1 which is solved similarly to the equality in 1. and the process loops

indefinitely.

Future works

In the near future, we plan to study whether ACD*(LAS) is correct and terminating

when LAS reasons modulo linear arithmetic over rationals. For the integer case, we

intend to explore the possibility of constraining the application of the distributivity

axiom in order to ensure the termination of our framework.

4.7.3 Extending AC(X) with a first order rewriting system

The combination of the ground AC completion procedure with Shostak theories

was a first step towards the integration of rewriting techniques in SMT. In a second

step, we considered the extension of AC(X) with a user-defined rewriting system.

118 Chapter 4. Ground AC Completion Modulo a Shostak Theory

For instance, we were interested in reasoning modulo the rewriting system made

of the following rule

m(p(x, y), z) → p(m(x, z),m(y, z))

where m, p are two AC function symbols, and x, y, z are universally-quantified

variables. This rule encodes the distributivity property of m over p.

Normalized completion [90] is a framework that extends the AC completion

procedure with a user-defined first-order convergent rewriting system. Our AC(X)

framework can be seen as an adaptation of ground normalized completion, when

the rewriting system is equivalent to a Shostak theory X. Consequently, in order

to extend AC(X) with a rewriting system, we explored the integration of Shostak

theories in normalized completion. In this section, we discuss the issues we have

encountered during our investigations.

Experimental extension of normalized completion

Figure 4.9 shows the “experimental extension” of normalized completion with a

Shostak theory. The main changes made in the original inference rules are:

1. the replacement of the relation ↓S by

S in the side-conditions of Orient and

Normalize. The relation S is expected to be the adaptation of canonized

rewriting for the non-ground case, since the rules in S may contain variables.

2. the use of a new rewriting relation, denoted • R/S , instead of normalized

rewriting in the side-conditions of Simplify, Compose and Collapse. This

new relation is expected to be the extension of normalized rewriting with

global canonization.

3. the adaptation of the functions Θ and Ψ that compute normalizing pairs and

the function CP that computes critical pairs to take the theory X into account.

A. Extending the rewriting relations. Once, the inference rules “extended”, we

tried to formally define canonized rewriting for the non-ground case (denoted)

and canonized-normalized rewriting (denoted •). The first relation should take

into account the variables that may occur in terms when rewriting modulo AC. We

came up with the following definition:

4.7. Prospective extensions 119

Orient
〈 E ∪ { s ≈ t } | R 〉

〈 E ∪Θ(s, t,X) | R ∪Ψ(s, t,X) 〉

{
solve(s, t) 6= ⊥ ∧

s = s

S ∧ t = t

S

Deduce
〈 E | R 〉

〈 E ∪ { s ≈ t } | R 〉
s ≈ t ∈ CP(R,X, T)

Normalize
〈 E ∪ { s ≈ t } | R 〉

〈 E ∪ { s′ ≈ t′ } | R 〉
s′ = s

S ∧ t′ = t

S

Trivial
〈 E ∪ { s ≈ t } | R 〉

〈 E | R 〉
s = t

Simplify
〈 E ∪ { s ≈ t } | R 〉

〈 E ∪ { s ≈ t′ } | R 〉
t • R/S t

′

Compose
〈 E | R ∪ { l→ r } 〉

〈 E | R ∪ { l→ r′ } 〉
r • R/S r

′

Collapse
〈 E | R ∪ {l→ r } 〉

〈 E ∪ { l′ ≈ r } | R 〉
l • R/S l

′ ∧ l 6= l′

Bottom
〈 E ∪ { s ≈ t } | R 〉

⊥
solve(s, t) = ⊥

Figure 4.9: Extending normalized completion with a Shostak theory X

Definition 59. Let canon be a canonizer. A term s canon-rewrites to a term t at position

p by the rule l→ r if there exists a substitution σ such that:

s→σ,p
AC\l→r t

′ and canon(t′) = t

We denote this reduction by s σ,p
l→r t (or simply by s t when it is not ambiguous).

The second relation interleaves S-normalization and canonized rewriting. We de-

fined it follows:

Definition 60. Let canon be a canonizer and its corresponding canonized rewriting

relation. Let S be an AC-convergent rewriting system. A term s S-canon-rewrites to a

120 Chapter 4. Ground AC Completion Modulo a Shostak Theory

term t at position p by the rule l→ r if there exists a substitution σ such that:

s′ = s

S and s′
σ,p
l→r t

We denote this reduction by s • σ,p
l→r/S t or simply by s • t.

B. Normalizing and critical pairs. Contrary to normalized completion, we have

in our setting additional function symbols that are interpreted in the theory X.

Reasoning modulo X is required when computing normalizing pairs and critical

pairs. This requirement clearly appears when computing complete sets of unifiers.

Thus, we extended the definitions of Θ and Ψ as follows:

Ψ(s, t,X) = solve(s, t)

Θ(s, t,X) =
⋃

ρ1∈Ψ(s,t,X)

⋃
ρ2∈S

(Θ1(ρ1, ρ2) ∪Θ2(ρ1, ρ2))

with

Θ1(g → d, l→ r) =

 gσ[rσ]q ≈ dσ

∣∣∣∣∣∣
q ∈ FPosAC(g) ∧

σ ∈ CSUAC,X(g|q, l)

Θ2(g → d, l→ r) =

lσ[dσ]q ≈ rσ

∣∣∣∣∣∣∣∣

q ∈ FPosAC(l) ∧

q 6= Λ ∧

σ ∈ CSUAC,X(l|q, g)

where CSUT denotes complete sets of unifiers modulo T and FPosAC denotes all the

positions, modulo AC, of a given term. Note that, the equalities we solve in this

new framework may contain variables. Thus, the wrapper of solveX should be

able to deal with terms with universally quantified variables.

Similarly, we adapted critical pairs computation as follows, to integrate X:

CP(R, X, T) =
⋃

CP=Λ(l1 → r1, l2 → r2, X, T) ∪

CP 6=Λ(l1 → r1, l2 → r2, X, T) ∪

CP 6=Λ(l2 → r2, l1 → r1, X, T)

∣∣∣∣∣∣∣∣∣∣∣

l1 → r1 ∈ R

l2 → r2 ∈ R

Λ(l1) = u ∈ ΣAC

Λ(l2) = u ∈ ΣAC

4.7. Prospective extensions 121

with

CP=Λ(l1 → r1, l2 → r2, X, T) =

r1σ ≈ r2σ,

r1σ ≈ u(r2, y)σ,

u(r1, x)σ ≈ r2σ,

u(r1, x)σ ≈ u(r2, y)σ

∣∣∣∣∣∣∣∣∣∣∣

σ ∈ CSUT ,X(l1, l2)

and

CP 6=Λ(l1 → r1, l2 → r2, X, T) =

r1σ ≈ l1[r2]qσ,

r1σ ≈ l1[u(r2, y)]qσ

∣∣∣∣∣∣∣∣

q ∈ FPosAC(l) ∧

q 6= Λ ∧

σ ∈ CSUT ,X(l1|q, l2)

Some encountered issues

A. Unification and matching issues. The experimental framework above requires

the combination of unification algorithms for the Shostak theory X and the AC

theory (resp. a theory T between AC and AC∪S). This combination is mandatory

when computing complete sets of unifiers in the definitions of normalizing pairs

and critical pairs. Unfortunately, combining unification algorithms is known to be

a hard task. For instance, unification in the combination of the AC theory and the

theory of linear arithmetic remains an open problem.

Beside that, the combination of matching algorithms is also required. Indeed,

the terms we manipulate in our setting are mixture of interpreted, uninterpreted

and AC symbols and may contain variables. Therefore, the substitutions used for

rewriting in definitions 59 and 60 have to be computed using pattern matching

techniques in the combination of the AC theory and the theory X, and eventually

in presence of uninterpreted function symbols.

Example 61. Let u, v be two AC symbols and a, b two uninterpreted functions symbols.

Assume that R = {v(2 · z + a, a − 1) → v(b − 2 · z + x, 0} and S = {u(a, a + y) →

v(a − 1, a + y + 1)}. Consider the instantiation of X with the theory of linear rational

arithmetic. The term s = u(u(a, b), a+x− 1) S-canon-rewrites to t = v(b, 0) as follows:

• the substitution σ1 = {y 7→ x − 1} is a solution of the matching problem u(a, a +

y) ≤?
AC,X u(a, a− 1 + x). Therefore s

S = v(a− 1, a+ x),

122 Chapter 4. Ground AC Completion Modulo a Shostak Theory

• the substitution σ2 = {z → 1
2 · x} is a solution of the matching problem v(2 · z +

a, a− 1) ≤?
AC,X v(a− 1, a+ x). Therefore, v(a− 1, a+ x) σ2,Λ

R v(b, 0).

B. Issues related to the solver. Even if the initial set E0 of equations is ground,

the functions Θ and CP may introduce non-ground equations that are not (easily)

solvable by the wrapper solve. The example below illustrates this assertion.

Example 62. Let f, g, a, b, c be uninterpreted function symbols. Assume that E0 =

{g(c) ≈ c} and S = {f(x, y, g(c)) → f(x, a, a) + f(y, b, b) + f(x, y, c)}. Solving

the equation g(c) ≈ c simply yields the rewriting rule g(c) → c. This rule is then used

by Θ to compute normalizing pairs. Consequently, the equation f(x, y, c) ≈ f(x, a, a) +

f(y, b, b) + f(x, y, c), which simplifies to 0 ≈ f(x, a, a) + f(y, b, b), is introduced by

Θ2. However, it cannot be directly solved because Vars(f(x, a, a)) 6∈ Vars(−f(y, a, a))

and Vars(f(y, a, a)) 6∈ Vars(−f(x, a, a)). A possible solution of this issue is to intro-

duce a fresh function symbol h of arity 2 and to transform the equations into the rules

{f(x, a, a)→ h(x, y) , f(y, a, a)→ −h(x, y)}.

4.8 Related and future works

Related works

AC completion has been studied for a long time in the rewriting community [84,

102]. A generic framework for combining completion with a generic built-in equa-

tional theoryE has been proposed in [72]. Normalized completion [90] is designed

to use a modified rewriting relation when the theory E is equivalent to the union

of the AC theory and a convergent rewriting system S . In this setting, rewriting

steps are only performed on S-normalized terms. AC(X) can be seen as an adap-

tation of ground normalized completion to efficiently handle the theory E when it

is equivalent to the union of the AC theory and a Shostak theory X. In particular,

S-normalization is replaced by the application of the canonizer of X. This modular

integration of X allows us to reuse proof techniques of ground AC completion [89]

to show the correctness of AC(X).

Tiwari [120] efficiently combined equality and AC reasoning in the Nelson-

Oppen framework. Kapur [74] used ground completion to demystify Shostak’s

congruence closure algorithm and Bachmair et al. [6] compared its strategy with

other ones into an abstract congruence closure framework. While the latter ap-

proach can also handle AC symbols, none of these works formalized the integra-

tion of Shostak theories into ground (AC) completion.

4.8. Related and future works 123

Future works

As illustrated in Section 4.6.3, the main concern for using AC(X) as a core decision

procedure in ALT-ERGO is that it does not saturate equivalent classes of known

ground terms modulo AC. A naive (and incomplete) solution would consist in

adding, for each known ground AC-term t, a few number of AC equivalent terms

(for instance by bounding the length of the AC equational proof between them).

We rather plan to investigate a more elaborate solution which would consist in

extending the pattern-matching algorithm of ALT-ERGO to exploit both ground

equalities and properties of AC symbols. Additional prospective extensions are

discussed in more details in Section 4.7. We also plan to extend AC(X) to handle

the AC theory with unit or idempotence. This will be a first step towards a decision

procedure for a substantial part of the finite sets theory.

CHAPTER 5

Combination of Decision

Procedures in ALT-ERGO

In this chapter, we describe the techniques used at the core of ALT-ERGO to enable

reasoning in a union of several background theories, such as linear arithmetic over

rationals and integers, the free theory of equality, the theory of arrays, the theory

of enumerated data types and the AC theory.

The general architecture of the prover, given in Figure 5.1, is similar to that of

Figure 1.1. It is composed of a preprocessor part, a SAT solver engine, a “decision

procedures” component and a “matching modulo ground equalities” module.

Figure 5.1: The general architecture ALT-ERGO

Reasoning in a combination of theories is handled by the “decision procedures”

part. This component constitutes the core of the SMT solver. Its architecture is

shown in Figure 5.2. It is built upon two combination approaches:

Figure 5.2: The simplified architecture ALT-ERGO’s core

126 Chapter 5. Combination of Decision Procedures in ALT-ERGO

1. Shostak-like combination approach: This method handles the combination

of theories that are equational and convex. These include the free theory of

equality, the AC theory, and the equational parts of the theories of linear

arithmetic and enumerated data types. In particular, AC(X) fits in this com-

ponent.

2. Nelson-Oppen like combination approach: This technique is used to com-

bine the theories that do not fit in the first approach, such as the theory

of arrays, the inequalities of linear arithmetic and the non-convex part of

enumerated data types. In particular, the FM-simplex procedure (except for

equalities resolution) is implemented in this component.

On top of that, the communication between these frameworks is delegated to the

Combinator module.

We show in the next sections the interfaces of these components and explain

how they are working in practice. Note that, the presentation is done “bottom-up”

in order to describe the interfaces of modules in the bottom of the hierarchy before

those on its top.

5.1 The Shostak-like combination framework

Figure 5.3 shows the architecture of the modules that constitute our Shostak-like

combination approach. It consists in extending the union-find data structure (UFX)

of a congruence closure algorithm (CCX) to reason in the union of convex equa-

tional theories, such as the theory of associative and commutative function sym-

bols (AC), the equational parts of linear arithmetic (ArithS) over rationals and inte-

gers, and the equational part of enumerated data types (EnumS). A key feature of

this combination approach is that, we only maintain a single union-find data struc-

ture for all the theories with green boxes. These theories have no internal state and

they don’t need to infer implied interface equalities, as in Nelson-Oppen’s frame-

work. Note that, the UF module also handles disequalities and partitions the terms

of the input problem into equivalence classes. The Shostak-like approach is built

upon two algorithms:

CC(X) + AC(X)

where,

5.1. The Shostak-like combination framework 127

• CC(X) is an extension of a congruence closure algorithm with a Shostak the-

ory X [34]. This algorithm was formally proved in COQ [118]

• AC(X) is the combination framework presented in Chapter 4

Figure 5.3: The architecture of the Shostak-like combination

The rest of this section is devoted to the description of these components. Note,

however, that our presentation omits a lot technical details, for sake of the clarity.

Sorts representation. We assume given an OCAML type, called sort, used to

represent sorts information. Its shape is given in Figure 5.4: a sort is either an

integer Sint, a rational Srat, an abstract Sabstract s, an enumeration Senum(s, l),

1 type sort =

2 | Sint

3 | Srat

4 | Sabstract of string

5 | Senum of string * string list

6 | Sarray of sort * sort

Figure 5.4: The minimal interface of sorts

or an array Sarray(s1, s2). The list l of an enumeration contains the list of its

constructors. The variables s1 and s2 of an array provide the sort information of

indices and values, respectively.

128 Chapter 5. Combination of Decision Procedures in ALT-ERGO

Terms representation. We also assume given an OCAML type, called term, used

to represent and manipulate terms. The shape of this type is shown in Figure 5.5. A

term is always decorated with its sort (line 2). Its head symbol is either arithmetic

(lines 4-6), an array access or update (lines 7-8), an AC function symbol (line 9), an

enumeration (line 10) or uninterpreted (line 11). We assume given a comparison

function term_compare, a set SetT and a map MapT over terms.

1 type term = { dsc : term_desc ; srt : sort }

2

3 and term_desc =

4 | Plus of term * term

5 | Minus of term

6 | Number of number

7 | Get of term * term

8 | Set of term * term * term

9 | AcApp of string * term * term

10 | Enum of string

11 | App of string * term list

Figure 5.5: The minimal interface of terms

5.1.1 The interface of Shostak theories

The minimal interface we require for Shostak theories is given in Figure 5.6. The

function is_mine tells whether the head symbol of the given term is owned by the

theory. The functions canon and solve implement the canonizer and the solver

routines. Finally, replace implements the replacement mechanism.

1 module type SHOSTAK_INTERFACE = sig

2 val is_mine : term -> bool

3 val canon : term -> term

4 val solve : term -> term -> (term * term) list

5 val replace : term -> term -> term -> term

6 end

Figure 5.6: The minimal interface required for Shostak theories

The module ArithS implements the canonizer routine described in Section 2.3.2.

For the solver, it implements Gaussian elimination for rationals and Omega-Test’s

equalities solver for integers. The canonizer function for the module EnumS is

the identity function. The solver follows the lines of the description given in Sec-

tion 2.3.4. Finally, the module CombineS implements a global canonizer using the

5.1. The Shostak-like combination framework 129

individual theories’ canonizers. The global solver is an experimental algorithm1 that

aims at combining solver routines for well-sorted Shostak theories.

5.1.2 The interface of the module AC

Figure 5.7 shows the simplified interface of AC. It is very similar to that of Shostak

theories, except that it does not provide a solver routine, but only a wrapper as de-

1 module type AC_INTERFACE = sig

2 val is_mine : term -> bool

3 val canon : term -> term

4 val w_solve : term -> term -> (term * term) list

5 val replace : term -> term -> term -> term

6 end

Figure 5.7: The simplified interface of AC

scribed in Section 4.2.3. The function replace implements the notion of canonized

rewriting defined in Section 4.2.2.

5.1.3 The interface and the implementation of ACX

Figure 5.8 shows the simplified interface of ACX. The environment is a dictionary

from terms to terms representing a rewriting system. The actual implementation

is inspired by AC(X). However, two major differences have to be pointed out:

• The environment contains only rules with AC-headed left-hand sides. In

fact, the equivalence properties2 of the free theory of equality are handled by

the module UFX.

• The congruence axioms of the free theory of equality is delegated to CCX.

1 module type ACX_INTERFACE = sig

2 type env

3 val empty : env

4 val normal_form : term -> env -> term

5 val assume : term -> term -> env -> (term * term) list * env

6 end

Figure 5.8: The simplified interface of ACX

1This is still an ongoing work !
2i.e. reflexivity, symmetry and transitivity

130 Chapter 5. Combination of Decision Procedures in ALT-ERGO

The function normal_form computes canonical normal forms of terms w.r.t a

given rewriting system. The function assume — sketched in Figure 5.9 — processes

new equalities. It implements the following strategy of AC(X):

Sim
∗ (Tri | Bot | (Ori (Com Col Ded)∗))

Given two terms s and t in canonical normal form, the equality s ≈ t is “solved”

using the wrapper function provided by AC. If this equality is neither trivial nor

inconsistent, a list of rewriting rules is returned. Following the strategy above,

Compose is applied to reduce right-hand sides of rules in the environment, and

Collapse is used to compute collapsing rules. The list l1 contains the collapsed

equalities that should be replayed. At line 5, the list of rules is partitioned as fol-

1 let rec assume s t env =

2 let rules = AC.w_solve s t in

3 let env = compose env rules in

4 let env, l1 = collapse env rules in

5 let ac, emp = partition_rules rules in

6 let l2 = head_cp env ac in

7 let env = append_rules env ac in

8 let emp2, env = replay_equalities env (l1 @ l2) in

9 emp @ emp2, env

Figure 5.9: The simplified implementation of assume_eq

lows: a rewriting rule l → r is put in the list ac (resp. emp) if and only if Λ(l)

is an AC (resp. uninterpreted) function symbol. The rules in ac are then used to

compute head critical pairs and added to ACX’s environment.

Deduced and collapsed equalities are recursively assumed at line 8. This yields

a new term rewriting system and a list emp2 of rules whose left-hand sides are

uninterpreted-headed terms. The function assume finally returns the concatena-

tion emp@ emp2 and a new AC environment. Note that @ stands for the list con-

catenation operator.

5.1.4 The interface and the implementation of UFX

Union-find efficiently handles the reflexivity, the symmetry and the transitivity of

the free theory of equality. UFX is an extension of a union-find with AC and a

Shostak theory. This is achieved via the integration of the AC(X) procedure in a

union-find data structure: instead of just merging the equivalence classes of equal

terms as done in union-find, the UFX module uses the rewriting system provided

5.1. The Shostak-like combination framework 131

by ACX to construct equivalence classes modulo both the equivalence properties

of the free theory of equality, the AC theory and the Shostak theory X. Note that

UFX is extended to additionally handle disequalities.

Figure 5.10 shows the interface of the module UFX. The type env represents

the environment of the data-structure. The value empty is the empty environment.

UFX is incremental: the function add_term is used to “register” the terms of the

problem in the environment on the fly.

1 module type UFX_INTERFACE = sig

2 type env

3 val empty : env

4

5 val add_term : term -> env -> env

6 val union : term -> term -> env -> env

7 val find : term -> env -> term

8

9 val distinct : term -> term -> env -> env

10 val are_equal : term -> term -> env -> bool

11 val are_distinct : term -> term -> env -> bool

12 val class_of : term -> env -> term list

13 end

Figure 5.10: The interface of the UF module

The functions union and distinct assume new equalities and disequalities,

respectively. The function find returns the canonical normal forms of terms w.r.t

a given environment. The function class_of returns the equivalence classes asso-

ciated to terms. Finally, the functions are_equal and are_distinct test whether

two terms are known to be equal or distinct in UFX, respectively. Note that, the

terms manipulated by these functions are supposed to be previously registered

using add_term.

The environment of UFX — shown in Figure 5.11 — is composed of four fields:

• repr is a map of terms that associates to each added term its current normal

form, called its representative

• ac is the rewriting system maintained by ACX. As stated in the previous

section, this field contains rules with AC-headed left-hand sides only.

• dis is a map of terms that associates to each representative the set of initial

terms from which it is known to be distinct

132 Chapter 5. Combination of Decision Procedures in ALT-ERGO

• cls is a map that associates each representative to a list of initial terms that

are equivalent modulo AC, X and the equivalence properties of the equality.

1 type env =

2 { repr : term MapT.t; (* map: term -> term *)

3 ac : ACX.env; (* AC’s environment *)

4 dis : SetT.t MapT.t; (* map: term -> Set(term) *)

5 cls : term list MapT.t (* map: term -> term list *) }

Figure 5.11: The environment of UFX

The implementation of add_term is shown in Figure 5.12. Given a term t not

in UFX, the function first computes its representative w.r.t. the fields repr and ac,

using the auxiliary function normal_form. The fields of the environment are then

updated. Note that, the sub-terms of t are supposed to be previously added.

1 let add_term t env =

2 if MapT.mem t env.repr then env

3 else

4 let r = normalize t env.repr env.ac in

5 let dis =

6 if MapT.mem r env.dis then env.dis

7 else MapT.add r SetT.empty env.dis

8 in

9 let cls_r = try MapT.find r env.cls with Not_found -> [] in

10 {env with

11 repr = MapT.add t r env.repr;

12 cls = MapT.add r (t::cls_r) env.cls;

13 dis = dis}

Figure 5.12: Implementation of the function add_term

The implementation of the function union is shown in Figure 5.13. Given two

terms s and t, this function starts by retrieving their respective representatives. If

these representatives are not known to be distinct (line 15) or equal (line 18), the

function assume of ACX is called on these representatives. If no theory inconsis-

tency is encountered, this function returns a new rewriting system and a set of

rewriting rules, where the left-hand sides are uninterpreted. The term rewriting

system and the rewriting rules are then used to update the other fields of UFX’s

environment at line 11, thanks to function update_env.

Finally, the implementation of the functions distinct and find are shown in

Figure 5.14. The first function starts by checking that the given terms have not the

5.1. The Shostak-like combination framework 133

1 let union s t env =

2 let rs = find s env in

3 let rt = find t env in

4 if term_compare rs rt = 0 then env

5 else

6 let dis_of_s = MapT.find rs env.dis in

7 let dis_of_t = MapT.find rt env.dis in

8 let inters = SetT.inter dis_of_s dis_of_t in

9 if SetT.is_empty inters then

10 let rules, ac = ACX.assume rs rt env.ac in

11 update_env {env with ac = ac} rules

12 else

13 raise Bottom (* s and t are known to be distinct *)

Figure 5.13: Implementation of the function union

same representative. Then, it updates the field dis thanks to the auxiliary function

add_to_distinct_of. The function find simply canonizes the given term and

looks for its representative in repr. Note that, the function MapT.find raises the

exception Not_found if the term was not already added to UFX’s environment.

1 let find t env = MapT.find t env.repr

1 let distinct s t env =

2 let rs = find s env in

3 let rt = find t env in

4 if term_compare rs rt = 0 then raise Bottom

5 else

6 let dis1 = add_to_distinct_of rs t env.dis in

7 let dis2 = add_to_distinct_of rt s dis1 in

8 {env with dis = dis2}

Figure 5.14: Implementation of the function distinct and find

5.1.5 The interface and the implementation of CCX

Congruence closure algorithms are very efficient for reasoning modulo the free

theory of equality. The CCX module follows the lines of CC(X). This framework

extends a congruence closure algorithm with a Shostak theory X. The extension

rests on the integration of the Shostak theory X in the union-find data structure,

used at the core of congruence closure algorithms. The detailed formalization of

CC(X) is given in [85], page 62. We recall here the main ideas.

134 Chapter 5. Combination of Decision Procedures in ALT-ERGO

The internal representation of CCX’s environment is shown in Figure 5.15. The

first field is the environment of UFX. The second one is a map from terms to set of

terms. An entry t 7→ {. . . , fi(t1, . . . , tn), . . .} of used_by means that: the term t is a

maximal alien of every representative of tj w.r.t. the field uf, where j ∈ [|1, n|].

1 type env =

2 { uf : UFX.env;

3 used_by : SetT.t MapT.t }

Figure 5.15: The environment of CCX

The interface of CCX is shown in Figure 5.16. This module is incremental: the

function add_term is used to register the terms of the problem on the fly. It may

deduce equalities by congruence, which are immediately assumed. The functions

assume_eq and assume_dis allow to assume equalities and disequalities, respec-

1 module type CCX_INTERFACE = sig

2 type env

3 val empty : env

4 val add_term : term -> env -> env

5 val assume_eq : term -> term -> env -> env

6 val assume_dis : term -> term -> env -> env

7 val ufx_of : env -> UFX.env

8 end

Figure 5.16: The simplified interface of CC

tively. Again, the function assume_eq may deduce equalities by congruence, which

are recursively assumed. The example below illustrates a run of CC(X):

Example 63. Let us show that the following formula is unsatisfiable:

a ≈ b ∧ f(a, c) ≈ 1 ∧ f(b, c) ≈ 2

where a, b, c are constants of sort int, and f is a function symbol of sort int×int→ int.

Scenario a. Suppose that equalities are treated from left to right. When the term f(b, c)

is added, UFX’s environment contains the following information:

uf.repr : a 7→ b, b 7→ b, f(a, c) 7→ 1, f(b, c) 7→ f(b, c)

used_by : a 7→ ∅, b 7→ {f(a, c), f(b, c)}, c 7→ {f(a, c), f(b, c)}

5.2. The Nelson-Oppen-like combination framework 135

Since the terms b and c are “used by” both f(a, c) and f(b, c), the function add_term tests

whether f(a, c) ≈ f(b, c) follows by congruence. This is actually the case, since a ≈ b.

The inconsistency (1 ≈ 2) is then derived.

Scenario b. Suppose that equalities are treated from right to left. Before the equality

a ≈ b is assumed, UFX’s environment contains the following information:

uf.repr : a 7→ a, b 7→ b, c 7→ c, f(a, c) 7→ 1, f(b, c) 7→ 2

used_by : a 7→ {f(a, c)}, b 7→ {f(b, c)}, c 7→ {f(a, c), f(b, c)}

At this point, it is not necessary to check whether f(a, c) ≈ f(b, c), because a and b are

not “used by” f(b, c) and f(a, c), respectively. However, when a ≈ b is treated, the new

environment contains the following information:

uf.repr : a 7→ b, b 7→ b, c 7→ c, f(a, c) 7→ 1, f(b, c) 7→ 2

used_by : a 7→ ∅, b 7→ {f(b, c), f(a, c)}, c 7→ {f(a, c), f(b, c)}

Consequently, the function assume_eq deduces that f(a, c) ≈ f(b, c) by congruence,

which allows us to conclude.

5.2 The Nelson-Oppen-like combination framework

When a theory cannot be integrated in the Shostak-like method, we use another

approach reminiscent of Nelson-Oppen’s framework. This approach allows us,

for instance, to combine the theory of arrays (ArrNS), the inequalities of linear

arithmetic (ArithNS) and the non convex part of enumerated data types (EnumNS).

Figure 5.17 shows the architecture of this combination framework. Contrarily

to the first technique, each single procedure maintains an internal environment.

We present in the rest of this section the interface we require for these theories and

sketch the implementation of some interesting functions for each module.

Figure 5.17: The architecture of the Nelson-Oppen-like combination

136 Chapter 5. Combination of Decision Procedures in ALT-ERGO

Literals representation. In the rest of this chapter, literals will be represented

using the OCAML types given in Figure 5.18. A literal is composed of two terms

and a kind. The kind indicates whether a literal is an equality Eq, a disequality

Dis, a large inequality Le or a strict inequality Lt. We assume given a comparison

function literal_compare over literals and a function literal_neg that returns

negations of literals. We also assume given a map, called MapL, over literals.

1 type literal_kind = Eq | Dis | Le | Lt

2 type literal = literal_kind * term * term

Figure 5.18: The minimal interface of literals

5.2.1 The interface of Nelson-Oppen like theories

Figure 5.19 shows the interface we require for the theories we combine using the

Nelson-Oppen like approach. As usual, the function add_term inserts the terms

of the problem in theories’ states. The function assume is used to assume literals.

Note that, this function takes UFX’s environment as argument and may return a

list of implied literals. The function case_split is used to ask the theory for a case-

split over finite domains. It returns a possible choice if it exists, or None otherwise.

1 module type NS_INTERFACE = sig

2 type env

3 val empty : env

4 val add_term : term -> env -> env

5 val assume : literal -> UFX.env -> env -> literal list * env

6 val case_split : env -> literal option

7 end

Figure 5.19: The required interface for non convex/non equational theories

We call the theories having this interface Nelson-Oppen like theories, because they

have to deduce all implied (disjunction) of literals. However, contrary to Nelson-

Oppen’s framework, we are not only interested in implied literals over shared

variables, as equality reasoning over convex theories is entirely delegated to the

Shostak-like combination approach.

5.2. The Nelson-Oppen-like combination framework 137

5.2.2 The non convex part of enumerated data types

The implementation of the main functions in EnumNS are given in Figures 5.20, 5.21

and 5.22. The environment is a dictionary that associates to each term t of sort

Senum(s, constrs), a sub-list of constrs that represent the possible values for t.

The function add_term simply fills the map with new entries.

1 type env = (string list) MapT.t

2

3 let add_term t env =

4 match t.srt with

5 | Senum (s,constrs) ->

6 if MapT.mem t env then env else MapT.add t constrs env

7 | _ -> env

Figure 5.20: The implementation of the function EnumNS.add_term

The function assume, sketched in Figure 5.21, uses two auxiliary functions that

are not hard to implement. For instance, assume_eq acts as follows when applied

on two terms t1 and t2 that are not owned by the theory of enumerated data types:

1. it retrieves the sets st1 and st2 of values associated to t1 and t2 respectively

2. it computes the intersection st = st1 ∩ st2

3. if st is empty, it raises the exception Bottom

4. otherwise, it updates the entries of t1 and t2 with st

5. if st = {c} is a singleton, it infers an entailed equality t1 ≈ c.

1 let assume (lit, s, t) uf env =

2 if has_enum_sort s then

3 match lit with

4 | Eq -> assume_eq (UFX.find s uf) (UFX.find t uf) env

5 | Dis -> assume_dis (UFX.find s uf) (UFX.find t uf) env

6 | _ -> [], env

7 else [], env

Figure 5.21: The implementation of the function EnumNS.assume

The function case_split, given in Figure 5.22, looks for a binding of the form

s 7→ {c1, c2, · · · } in env. If such a binding exists, it suggests a case-split s ≈ ci.

Note that, the cases s 7→ ∅ and s 7→ {c} are handled by the function assume.

138 Chapter 5. Combination of Decision Procedures in ALT-ERGO

1 exception Found of term * string

2

3 let case_split env =

4 try

5 MapT.iter

6 (fun s constrs ->

7 match constrs with

8 | [] | [_] -> assert false

9 | cons::_::_ -> raise (Found (s,cons))

10) env;

11 None

12 with Found (s,cons) ->

13 Some (Eq, s, {s with dsc = App (cons,[])})

Figure 5.22: The implementation of the function EnumNS.case_split

5.2.3 The theory of functional arrays

The decision procedure for the theory of functional arrays works by instantiation

of its set of axioms. It generates additional ARR-valid ground instances using:

• the axioms of the theory of extensional functional arrays (ARR) introduced

in Section 2.3.3

• the ground terms appearing in the problem

The quantified variables of these axioms are not instantiated for every possi-

ble well sorted terms, because a too permissive instantiation would saturates the

memory. One should be as restrictive as possible, when instantiating these ax-

ioms, while preserving completeness. In practice, ground instances are computed

using matching algorithms modulo equality. The restriction of the instantiation is

achieved using the mechanism of patterns (a.k.a. triggers). In other words, each

axiom of the set ARRNS given in Section 2.3.3 is instantiated as follows[64, 54]:

• Axiom 1 is instantiated with a substitution σ = {xa 7→ a, xv 7→ v, xi 7→ i} if

there exists a ground term set(a, v, i) in the problem’s context

• Axiom 2 is instantiated with σ = {xa 7→ a, xv 7→ v, xi 7→ i, xj 7→ j} if there

exists a ground term get(set(a, c, i), j) in the problem’s context

• Axiom 2 is instantiated with σ = {xa 7→ a, xv 7→ v, xi 7→ i, xj 7→ j} modulo

equality if there exists two ground terms get(a′, j) and set(a, v, i) such that a′

and set(a, v, i) (resp. and a) are in the same equivalence class.

5.2. The Nelson-Oppen-like combination framework 139

• Axiom 3 is instantiated with a substitution {xa 7→ a, xb 7→ b} for every

couple of arrays a and b that are known to be distinct.

The environment of the module ArrNS and the implementation of the functions

case_split and add_term are shown in Figure 5.23. The environment is a record.

The fields gets and sets are sets of terms. The field instances is a map from literals

to lists of literals. A binding a 7→ [a1; a2; . . . ; an] in this map represents the

implication a ⇒ (a1 ∧ a2 ∧ . . . ∧ an). The literal a is called the premise of the

binding and the ai are its conclusions. The function case_split simply returns a

1 type env =

2 { gets : SetT.t; sets : SetT.t; instances : literal list MapL.t }

3

4 let case_split env =

5 if MapL.is_empty env.instances then None

6 else let prem, concl = MapL.choose env.instances in Some prem

7

8 let add_term t env =

9 match t.dsc with

10 | Get _ -> {env with gets = SetT.add t env.gets}

11 | Set _ -> {env with sets = SetT.add t env.sets}

12 | _ -> env

Figure 5.23: The state and the functions case_split and add_term of ArrNS

premise from the map instances., while the function add_term fills the components

gets and sets with adequate terms.

The function assume handles the instantiation of the axioms in ARRNS (lines 8,

9, 10) as explained above. It also returns the list of literals that are consequences of

the assumed fact, thanks to the auxiliary function conclusions_of_premise.

1 let conclusions_of_premise env a =

2 try

3 let implied = MapL.find a env.instances in

4 implied, {env with instances = MapL.remove a env.instances}

5 with Not_found -> [], env

6

7 let assume a uf env =

8 let env = instanciate_axiom_1 env uf a in

9 let env = instanciate_axiom_2 env uf a in

10 let env = instanciate_axiom_3 env uf a in

11 conclusions_of_premise env a

Figure 5.24: The implementation of the function ArrNS.assume

140 Chapter 5. Combination of Decision Procedures in ALT-ERGO

5.2.4 Inequalities of linear integer arithmetic

The environment of the module ArithNS is shown in Figure 5.25. It consists of two

maps from terms to intervals. The first one is used to integers and the second one

for rationals.

1 type env = { ints: Interval.t MapT.t; rats: Interval.t MapT.t }

Figure 5.25: The environment of the module ArithNS

The minimal interface of the module Interval used in the environment of ArithNS

is given in Figure 5.26. The function size returns the size of the given interval and

the function min returns its minimal value.

1 module type INTERVAL_INTERFACE = sig

2 type t

3 val size : t -> int (* returns a negative integer if t is unbounded *)

4 val min : t -> number

5 end

Figure 5.26: The minimal interface of Interval

The implementation of the function case_split, given in Figure 5.27, is similar

to that of EnumNS. When some interval in the field ints is bounded and has at least

two possible values, a case-split analysis is suggested by the function.

1 exception Found of term * number

2

3 let case_split env =

4 try

5 MapT.iter

6 (fun s interv ->

7 if Interval.size interv > 1 then

8 raise (Found (s, Interval.min interv))

9) env.ints;

10 None

11 with Found (s,num) ->

12 Some (Eq, s, {s with dsc=Number num})

Figure 5.27: The implementation of the function ArithNS.case_split

The implementation of the function assume is sketched in Figure 5.28. It uses

two auxiliary functions to handle integers and rationals respectively. The function

5.2. The Nelson-Oppen-like combination framework 141

assume_int first updates the map ints by taking into account the assumed literal a.

Then, it attempts to infer better bounds for the terms used as keys of the map ints.

At this point, we can either used the Fourier-Motzkin algorithm or the simplex-

based approach described in Chapter 3. The equalities that may be implied at

lines 2 and 3 are extracted at line 4. The function add_term is not used by ArithNS.

It returns the given environment without modifying it.

1 let assume_int a uf env =

2 let ints = add_to_env a uf env.ints in

3 let ints = tighten_bounds ints in

4 let eqs = extract_inferred_equalities ints in

5 eqs, {env with ints = ints}

6

7 let assume a uf env =

8 if has_int_sort a then assume_int a uf env

9 else if has_rat_sort a then assume_rat a uf env

10 else [], env

Figure 5.28: The implementation of the function ArithNS.assume

5.2.5 Implementation of the module CombineNS

Figure 5.29 shows the implementation of some functions in CombineNS. Contrary

to CombineS, this module does not perform a subtle combination of the individual

theories. The function case_split simply asks each theory for a case-split. The

function assume (resp. add_term) propagates assumed literals (resp. added terms)

to individual theories.

1 type env = EnumNS.env * ArraysNS.env * ArithNS.env

2

3 let case_split (e1, e2, e3) =

4 match EnumNS.case_split e1 with

5 | (Some _) as cs -> cs

6 | None ->

7 match ArraysNS.case_split e2 with

8 | (Some _) as cs -> cs

9 | None -> ArithNS.case_split e3

10

11 let assume a uf (e1, e2, e3) =

12 let l1, e1 = EnumNS.assume a uf e1 in

13 let l2, e2 = ArraysNS.assume a uf e2 in

14 let l3, e3 = ArithNS.assume a uf e3 in

15 l1 @ l2 @ l3 , (e1, e2, e3)

Figure 5.29: The implementation of the dispatcher CombineNS

142 Chapter 5. Combination of Decision Procedures in ALT-ERGO

5.3 The Combinator module

Now, it remains to describe the implementation of the Combinator. This module

is made of two sub-components, as shown in Figure 5.30. The Combine module

deals with information exchange between the two main combination approaches

of ALT-ERGO. The CSA module implements the case-split analysis mechanism for

non-convex theories.

Figure 5.30: The architecture of the Combinator module

5.3.1 Implementation of the module Combine

The simplified interface of Combine is given in Figure 5.31. It is composed of value

empty which represents the empty environment, a function assume for assuming

literals, and a function case_split that asks non-convex theories for case-split

analysis.

1 module type COMBINE_INTERFACE = sig

2 type env

3 val empty : env

4 val assume : env -> literal -> env

5 val case_split : env -> literal option

6 end

Figure 5.31: The interface of the module Combine

Figure 5.32 shows the implementation of the main functions of this module.

The environment is a pair containing the state of CCX and the state of CombineNS.

Given a literal a, the function assume starts by recursively adding the terms and

the sub-terms of a in the environment. Then, a is passed to CCX.assume if this

literal is an equality or a disequality. After that, CombineNS propagates a to its

individual modules with the current state of UFX. The literals that CombineNS

may infer are recursively assumed.

5.3. The Combinator module 143

1 type env = { cc : CCX.env; ns : CombineNS.env }

2

3 let case_split env = CombineNS.case_split env.ns

4

5 let rec assume env a =

6 let cc, ns = add_terms_rec a env in

7 let cc = match a with

8 | (Eq, s,t) -> CCX.assume_eq s t cc

9 | (Dis, s,t) -> CCX.assume_dis s t cc

10 | _ -> cc

11 in

12 let uf = CCX.ufx_of cc in

13 let implied, ns = CombineNS.assume a uf ns in

14 let env = {cc=cc; ns=ns} in

15 List.fold_left assume env implied

Figure 5.32: The implementation of some functions in Combine

5.3.2 Implementation of the module CSA

In ALT-ERGO, the case-split analysis is not delegated to the SAT solver engine.

This task is performed by the CSA module, situated between the SAT and the

background decision procedures. The simplified interface of this module is shown

in Figure 5.33.

1 module type CSA_INTERFACE = sig

2 type env

3 val empty : env

4 val assume : env -> literal -> env

5 end

Figure 5.33: The interface of the module CSA

A basic implementation of this interface is given in Figure 5.34. The environ-

ment contains two fields of type Combine.env. The real field represents the actual

state of the decision procedure. The spec field is a speculative state. It is equal to the

real state, plus some case-split assumptions made during the search. Of course,

the SAT solver engine may contradict one of these assumptions during its search

for a model.

144 Chapter 5. Combination of Decision Procedures in ALT-ERGO

1 type env = { real : Combine.env; spec : Combine.env }

2

3 let rec cs_analysis spec =

4 match Combine.case_split spec with

5 | None -> spec

6 | Some a ->

7 try cs_analysis (Combine.assume spec a)

8 with Bottom -> cs_analysis (Combine.assume spec (literal_neg a))

9

10 let assume_spec real spec a =

11 let spec =

12 try Combine.assume spec a

13 with Bottom -> real

14 in

15 {real = real; spec = cs_analysis spec}

16

17 let assume env a =

18 let real = Combine.assume env.real a in

19 assume_spec real env.spec a

Figure 5.34: The implementation of some functions in CSA

When a literal a is assigned to true by the SAT solver, it is added to both real

and spec (lines 18 and 19). If the speculative state becomes inconsistent while as-

suming a, it is reset to real (line 13). After that, the case-split analysis is started in

order to find a satisfying assignment for the values that are in finite domains. The

implementation given below is very naive because we may redo the same case-

splits at line 15 each time we reset spec to real at line 13. A cleverer implementa-

tion can easily avoid this issue. Another source of inefficiency of the presentation

below lies in the function cs_analysis that explores all the branches when search-

ing for a model. The actual implementation of this function in ALT-ERGO is more

elaborated. In fact, it uses conflict analysis and non-chronological backtracking

to prune the search space. Note that we can safely reuse the state spec at line 8

when searching for a model in negative branches, because the data structures we

used in the internal modules are persistent. Consequently, we are sure they are not

modified by side-effects at line 7. Note that, we first perform case-split analysis on

values that are in smaller domains, in practice.

Our case-split analysis mechanism is completely hidden for the SAT solver.

When there in no possible case-split assignment for the real field, an uncaught

exception Bottom is raised by cs_analysis at line 8. Seeing that the background

decision procedure disagrees with its current boolean model, the SAT solver mod-

ule repairs it and prunes the search space, before continuing its exploration.

5.4. Evaluation 145

5.4 Evaluation

In order to measure the improvements made in ALT-ERGO during this thesis3, we

benchmark the current release of ALT-ERGO and compare its performances with:

• older releases of the prover, starting from version 0.9 published in July 2009

• some state-of-the-art SMT solvers with quantifiers support, such as CVC3

(v 2.4.1), YICES (v 1.0.38) and Z3 (v 3.2 and v 4.2)

For our experiments, we used logical formulas generated from WHY3’s gallery

of programs 4. This gallery contains 82 programs, from which WHY3 generated

1920 verification conditions. Almost all of them are valid. They are generated in

• the native polymorphic input language of ALT-ERGO

• the native input language of CVC3

• the native input language of YICES

• the SMT-LIB2 input language for Z3

The measures were obtained on a 64-bit machine with a quad-core Intel Xeon

processor at 3.2 GHz and 24 GB of memory. Provers were given a time limit of 30

seconds and a memory limit of 2 GB for each test.

Experiments’ results. The results of our experiments are reported in Figure 5.35

and Figure 5.36. The first column shows the provers we used with their versions.

In columns 2 and 3, we report the number of verification conditions that are proved

valid by each prover and the corresponding accumulated time. Columns 4 and 5

report the numbers of VCs for which the provers returned “unknown” and the

accumulated time, respectively. In column 6 (resp 7), we report the number of

VCs on which the provers timeout-ed (resp. encountered an error during their

execution, such as “out of memory”).

Results analysis. Figure 5.35 shows that ALT-ERGO has made a significant progress

since version 0.9. In particular, this observation holds for both the total number of

proved VCs, and the number of proved VCs per second. We also notice on Fig-

ure 5.36 that ALT-ERGO is performing better than other provers on our benchmark.

3Note that some enhancements have been made by other people
4http://toccata.lri.fr/gallery/why3.en.html

146 Chapter 5. Combination of Decision Procedures in ALT-ERGO

v 0.95.1 v 0.94 v 0.93 v 0.92.2 v 0.91 v 0.9

valid 1841 1811 1773 1737 1685 1306

time 362 465 411 527 555 290

unknown 20 25 24 22 21 233

time 13 31 25 33 45 59

timeout 59 83 99 128 175 328

errors 0 1 24 33 39 53

Figure 5.35: The comparison of different releases of ALT-ERGO using formulas

generated from WHY3’s gallery of programs.

ALT-ERGO CVC3 YICES Z3 Z3

v 0.95.1 v 2.4.1 v 1.0.38 v 3.2 v 4.2

valid 1841 1767 515 1592 1524

time 362 357 103 446 256

unknown 20 30 1029 3 1

time 13 134 1247 0.2 0.1

timeout 59 107 164 295 305

errors 0 16 212 30 90

Figure 5.36: The comparison of ALT-ERGO, Z3, CVC3 and YICES using formulas

generated from WHY3’s gallery of programs.

CHAPTER 6

Conclusion

An alternative simplex-based procedure for deciding QF-LIA

In Chapter 3, we have presented a novel algorithm for deciding the theory of

quantifier-free linear integer arithmetic. Our procedure is composed of two parts.

The master part handles equalities solving, the maintenance and the inference of

integers bounds for inequalities’ affine forms.

The inference of precise bounds for the affine forms is achieved by comput-

ing particular constant positive linear combination of them. These combinations

are encoded as rational optimization problems that simulate particular runs of

Fourier-Motzkin’s algorithm. The resolution of these problems is delegated to a

simplex-based oracle.

When some inequalities’s affine forms are bounded, a case-split analysis is

used to check whether there exists an integer solution in these bounds for the ini-

tial conjunction of literals. If none of the affine forms can be bounded, we deduce

that the given constraints admits a solution in the integers. To summarize, the

main scientific contributions of this work are:

1. A theorem stating that: if there is no constant positive linear combination of a

conjunction of constraints’ affine forms, then the convex polytope defined by

these constraints contains infinitly many integer points. As far as we know,

this theorem is not in the literature. Moreover, we can exhibit an integer

model in this case, as its proof is constructive.

2. An efficient simplex-based algorithm for computing constant positive linear

combinations of affine forms. This algorithm was initially inspired by the

Fourier-Motzkin method. However, it is more efficient and scales better in

practice. In addition, although it uses a rational simplex, our procedure is

not really a simplex extension, like branch-and-bound or cutting-planes.

Our framework is easily extensible with intervals calculus, since it is based on

bounds maintenance. This particularity allows us to additionally incorporate non-

linear arithmetic reasoning in practice.

148 Chapter 6. Conclusion

We believe that additional improvements can be made in our procedure. In

fact, the actual oracle in neither incremental nor backtrackable, which can be an-

noying in an SMT solver. In addition, our case-split analysis technique does not

behave well on very large bounded intervals. In the near future, we plan to to

address all these issues.

We think that our procedure is complementary with those extending a rational

simplex to decide linear integer arithmetic, such as branch-and-bound, cutting-

planes. We believe that the combination of these mature techniques with ours

would be an interesting idea to investigate.

Integrating rewriting techniques in SMT

In Chapter 4, we have presented a combination framework, called AC(X), that en-

ables reasoning in the union of the free theory of equality with uninterpreted sym-

bols, the AC theory and a Shostak theory X that fulfills reasonable ordering con-

straints. Our framework consists of a modular extension of ground AC completion

with the theory X. The key ideas of this extension are:

1. the use of the solver routine provided by the theory X to handle equalities

instead of just orienting them

2. the extension of rewriting modulo AC, used by ground AC completion, with

the canonizer function of X.

AC(X) can be seen as an adaptation of normalized completion: an extension

of AC completion with a first-order convergent rewriting system. However, our

framework is much more simpler and has the nice termination property, while

normalized completion may not terminate.

In order to fully integrate AC(X) in the ALT-ERGO SMT solver, we have shown

that the prover’s axioms instantiation mechanism — based on E-matching — has

to be extended modulo AC. Using a simple example, we have shown that this

extension is not immediate, because E-AC-matching is not finitary. We plan to

investigate incremental instantiation alternatives to get rid of this issue.

In order to integrate additional rewriting techniques in SMT solvers, we have

investigated the reuse of our combination technique to extend normalized comple-

tion with Shostak theories. This would allow us to handle user-defined first-order

convergent rewriting systems. Unfortunately, we were quickly faced to several

hard issues, such as the combination of unification algorithms for AC and Shostak

theories. In the future, we plan to explore whether some reasonable restrictions

149

on the rewriting system or on some interesting Shostak theories would allow us to

circumvent these issues.

Implementation

Satisfiability Modulo theories is a promising research topic. SMT solvers are now

used in various domains, such as software and hardware verification, SMT-based

model checking, test-case generation and compiler optimization.

In this thesis, we have considered the enhancement of our ALT-ERGO SMT

solver to make it usable in the context of software verification. In Chapter 5, we

have described the core decision procedures of our solver. In addition to FM-

simplex and AC(X), we have implemented two decision procedures for the theories

of enumerated data types and functional arrays, respectively.

The design of an efficient union-find data structure modulo theories — used

at the heart of our Shostak-like combination framework — would significantly

improve ALT-ERGO. We plan to explore this direction in the near future, as well as

the combination of solvers routines for certain classes of Shostak theories.

In the future, we also plan to integrate additional interesting theories in the

core of ALT-ERGO. For instance, these include the theory of recursive data types,

the theory of floating-point numbers [26, 36, 69] and set theory.

Bibliography

[1] 16th Annual IEEE Symposium on Logic in Computer Science, Boston, Mas-

sachusetts, USA, June 16-19, 2001, Proceedings. IEEE Computer Society, 2001.

(Cited on pages 162 and 163.)

[2] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research

Letters, 34(4):361–372, 2006. (Cited on page 72.)

[3] S. B. Akers. Binary decision diagrams. IEEE Trans. Comput., 27(6):509–516,

June 1978. (Cited on page 3.)

[4] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilow-

icz, and Roberto Sebastiani. A sat based approach for solving formulas over

boolean and linear mathematical propositions. In Andrei Voronkov, edi-

tor, CADE, volume 2392 of Lecture Notes in Computer Science, pages 195–210.

Springer, 2002. (Cited on page 7.)

[5] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge

University Press, 1998. (Cited on pages 78 and 79.)

[6] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. Jour-

nal of Automated Reasoning, 31(2):129–168, 2003. (Cited on pages 4, 77, 105

and 122.)

[7] Leo Bachmair, Nachum Dershowitz, and Jieh Hsiang. Orderings for equa-

tional proofs. In Proc. 1st IEEE Symp. Logic in Computer Science, Cambridge,

Mass., pages 346–357, June 1986. (Cited on page 90.)

[8] Leo Bachmair and Ashish Tiwari. Abstract congruence closure and special-

izations. In David A. McAllester, editor, CADE, volume 1831 of Lecture Notes

in Computer Science, pages 64–78. Springer, 2000. (Cited on page 23.)

[9] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin. Slam2:

Static driver verification with under 4% false alarms. In Roderick Bloem

and Natasha Sharygina, editors, FMCAD, pages 35–42. IEEE, 2010. (Cited

on page 1.)

[10] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-

lishers, Norwell, MA, USA, 1988. (Cited on page 53.)

152 Bibliography

[11] John Barnes. High Integrity Software: The SPARK Approach to Safety and Se-

curity. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2003. (Cited on pages 1 and 10.)

[12] Mike Barnett, Robert DeLine, Bart Jacobs, Bor-Yuh Evan Chang, and K. Rus-

tan M. Leino. Boogie: A Modular Reusable Verifier for Object-Oriented Pro-

grams. In FMCO, volume 4111 of LNCS, 2005. (Cited on page 1.)

[13] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the

cooperating validity checker. In Rajeev Alur and Doron A. Peled, editors,

Proceedings of the 16th International Conference on Computer Aided Verification

(CAV ’04), volume 3114 of Lecture Notes in Computer Science, pages 515–518.

Springer-Verlag, July 2004. Boston, Massachusetts. (Cited on page 7.)

[14] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, De-

jan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In

Proceedings of the 23rd international conference on Computer aided verification,

CAV’11, pages 171–177, Berlin, Heidelberg, 2011. Springer-Verlag. (Cited on

pages 5, 7, 8 and 33.)

[15] Clark Barrett, Morgan Deters, Leonardo de Moura, Albert Oliveras, and

Aaron Stump. 6 years of SMT-COMP. Journal of Automated Reasoning, 2012.

10.1007/s10817-012-9246-5. (Cited on page 7.)

[16] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combina-

tions of theories with equality. pages 187–201. Springer-Verlag, 1996. (Cited

on pages 6 and 7.)

[17] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

Splitting on demand in SAT modulo theories. In Miki Hermann and Andrei

Voronkov, editors, Proceedings of the 13th International Conference on Logic for

Programming, Artificial Intelligence, and Reasoning (LPAR ’06), volume 4246 of

Lecture Notes in Computer Science, pages 512–526. Springer-Verlag, November

2006. Phnom Penh, Cambodia. (Cited on page 51.)

[18] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Ver-

sion 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th Inter-

national Workshop on Satisfiability Modulo Theories (Edinburgh, England), 2010.

(Cited on pages 9, 63 and 64.)

Bibliography 153

[19] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Her-

manns, editors, 19th International Conference on Computer Aided Verification,

volume 4590 of Lecture Notes in Computer Science, pages 298–302, Berlin, Ger-

many, July 2007. Springer. (Cited on pages 5, 7, 8 and 33.)

[20] Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations

of First-Order Theories. PhD thesis, Stanford University, January 2003. Stan-

ford, California. (Cited on page 7.)

[21] François Bobot, Sylvain Conchon, Évelyne Contejean, Mohamed Iguer-

nelala, Stéphane Lescuyer, and Alain Mebsout. The Alt-Ergo automated

theorem prover, 2008. http://alt-ergo.lri.fr/. (Cited on pages 6,

7, 8, 10 and 33.)

[22] François Bobot, Sylvain Conchon, Evelyne Contejean, Mohamed Iguer-

nelala, Assia Mahboubi, Alain Mebsout, and Guillaume Melquiond. A

Simplex-based extension of Fourier-Motzkin for solving linear integer arith-

metic. In Bernhard Gramlich, Dale Miller, and Ulrike Sattler, editors, IJCAR

2012: Proceedings of the 6th International Joint Conference on Automated Reason-

ing, volume 7364 of Lecture Notes in Computer Science, pages 67–81, Manch-

ester, UK, June 2012. Springer. (Cited on page 34.)

[23] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume

Melquiond, and Andrei Paskevich. The Why3 platform. LRI, CNRS & Univ.

Paris-Sud & INRIA Saclay, version 0.64 edition, February 2011. http:

//why3.lri.fr/. (Cited on page 1.)

[24] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-

Carbonell, and Albert Rubio. A write-based solver for sat modulo the theory

of arrays. In Alessandro Cimatti and Robert B. Jones, editors, FMCAD, pages

1–8. IEEE, 2008. (Cited on page 27.)

[25] Marco Bozzano, Roberto Bruttomesso, Ro Cimatti, Tommi Junttila, Peter Van

Rossum, Stephan Schulz, and Roberto Sebastiani. The mathsat 3 system.

In Automated Deduction: Proceedings of the 20th International Conference, vol-

ume 3632 of Lecture Notes in Computer Science, pages 315–321. Springer, 2005.

(Cited on page 7.)

[26] Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, and Daniel

Kroening. Interpolation-based verification of floating-point programs with

154 Bibliography

abstract CDCL. In Static Analysis Symposium (SAS), volume 7935 of LNCS,

pages 412–432. Springer, 2013. (Cited on page 149.)

[27] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzen, Alberto Griggio,

and Roberto Sebastiani. Delayed theory combination vs. nelson-oppen for

satisfiability modulo theories: a comparative analysis. Annals of Mathematics

and Artificial Intelligence, 55(1-2):63–99, February 2009. (Cited on page 5.)

[28] Roberto Bruttomesso, Ro Cimatti, Anders Franzén, Alberto Griggio, and

Roberto Sebastiani. The mathsat 4 smt solver (tool paper), 2008. (Cited on

page 7.)

[29] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Se-

bastiani. The MathSAT5 SMT Solver. In Nir Piterman and Scott Smolka,

editors, Proceedings of TACAS, volume 7795 of LNCS. Springer, 2013. (Cited

on page 7.)

[30] Sylvain Conchon and Évelyne Contejean. The Alt-Ergo automatic theorem

prover. http://alt-ergo.lri.fr/, 2008. APP deposit under the num-

ber IDDN FR 001 110026 000 S P 2010 000 1000. (Cited on page 108.)

[31] Sylvain Conchon, Évelyne Contejean, and Mohamed Iguernelala. Ground

Associative and Commutative Completion Modulo Shostak Theories. In

Andrei Voronkov, editor, LPAR, 17th International Conference on Logic for Pro-

gramming, Artificial Intelligence and Reasoning, EasyChair Proceedings, Yo-

gyakarta, Indonesia, October 2010. (short paper). (Cited on page 78.)

[32] Sylvain Conchon, Évelyne Contejean, and Mohamed Iguernelala. Canon-

ized Rewriting and Ground AC Completion Modulo Shostak Theories. In

Parosh A. Abdulla and K. Rustan M. Leino, editors, Tools and Algorithms

for the Construction and Analysis of Systems, volume 6605 of Lecture Notes in

Computer Science, pages 45–59, Saarbrücken, Germany, April 2011. Springer.

(Cited on page 78.)

[33] Sylvain Conchon, Évelyne Contejean, and Mohamed Iguernelala. Canon-

ized rewriting and ground AC completion modulo Shostak theories : Design

and implementation. Logical Methods in Computer Science, 8(3):1–29, Septem-

ber 2012. Selected Papers of the Conference Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS 2011), Saarbrücken, Germany, 2011.

(Cited on page 78.)

Bibliography 155

[34] Sylvain Conchon, Évelyne Contejean, Johannes Kanig, and Stéphane Les-

cuyer. CC(X): Semantical combination of congruence closure with solvable

theories. In Post-proceedings of the 5th International Workshop on Satisfiability

Modulo Theories (SMT 2007), volume 198(2) of Electronic Notes in Computer

Science, pages 51–69. Elsevier Science Publishers, 2008. (Cited on page 127.)

[35] Sylvain Conchon and Sava Krstić. Strategies for combining decision proce-

dures. Theoretical Computer Science, 354(2):187–210, 2006. Special Issue of TCS

dedicated to a refereed selection of papers presented at TACAS’03. (Cited on

page 6.)

[36] Sylvain Conchon, Guillaume Melquiond, Cody Roux, and Mohamed Iguer-

nelala. Built-in treatment of an axiomatic floating-point theory for SMT

solvers. In Fontaine and Goel [62], pages 12–21. (Cited on page 149.)

[37] Évelyne Contejean. A certified AC matching algorithm. In Vincent van Oost-

rom, editor, 15th International Conference on Rewriting Techniques and Applica-

tions, volume 3091 of Lecture Notes in Computer Science, pages 70–84, Aachen,

Germany, June 2004. Springer. (Cited on page 30.)

[38] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiser-

son. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition,

2001. (Cited on page 38.)

[39] G. Dantzig. Linear Programming and Extensions. Princeton University Press,

1963. (Cited on page 4.)

[40] Martin Davis, George Logemann, and Donald Loveland. A machine pro-

gram for theorem-proving. Commun. ACM, 5(7):394–397, July 1962. (Cited

on pages 3 and 7.)

[41] L. de Moura and B. Dutertre. Yices: An SMT Solver. http://yices.csl.

sri.com. (Cited on page 72.)

[42] Leonardo de Moura and Nikolaj Bjørner. Z3, an efficient SMT solver. http:

//research.microsoft.com/projects/z3/. (Cited on pages 8, 33

and 72.)

[43] Leonardo de Moura and Nikolaj Bjørner. Z3, an efficient SMT solver. In

TACAS, volume 4963 of Lecture Notes in Computer Science, pages 337–340.

Springer, 2008. (Cited on pages 5 and 7.)

156 Bibliography

[44] Leonardo de Moura and Nikolaj Bjørner. Engineering dpll(t) + saturation.

In PROC. 4TH IJCAR, 2008. (Cited on page 6.)

[45] Leonardo de Moura and Bruno Dutertre. Yices: An SMT Solver. http:

//yices.csl.sri.com/. (Cited on pages 8 and 33.)

[46] Leonardo Mendonça de Moura and Nikolaj Bjørner. Model-based theory

combination. Electronic Notes in Theoretical Computer Science, 198(2):37–49,

2008. (Cited on page 5.)

[47] Leonardo Mendonça de Moura and Nikolaj Bjørner. Generalized, efficient

array decision procedures. In FMCAD, pages 45–52. IEEE, 2009. (Cited on

page 27.)

[48] Leonardo Mendonça de Moura and Dejan Jovanovic. A model-constructing

satisfiability calculus. In Roberto Giacobazzi, Josh Berdine, and Isabella Mas-

troeni, editors, VMCAI, volume 7737 of Lecture Notes in Computer Science,

pages 1–12. Springer, 2013. (Cited on page 66.)

[49] Nachum Dershowitz. Orderings for term rewriting systems. Theoretical Com-

puter Science, 17(3):279–301, March 1982. (Cited on page 79.)

[50] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan

van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,

pages 243–320. North-Holland, 1990. (Cited on page 78.)

[51] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover

for program checking. J. ACM, 52:365–473, May 2005. (Cited on page 7.)

[52] David L. Dill. A retrospective on murphi. In Orna Grumberg and Helmut

Veith, editors, 25 Years of Model Checking, volume 5000 of Lecture Notes in

Computer Science, pages 77–88. Springer, 2008. (Cited on page 1.)

[53] I. Dillig, T. Dillig, and A. Aiken. Cuts from proofs: A complete and practical

technique for solving linear inequalities over integers. In CAV 2009, Grenoble,

France, June 26 - July 2, 2009. Proceedings, volume 5643 of LNCS, pages 233–

247. Springer, 2009. (Cited on pages 72 and 74.)

[54] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Rea-

soning with triggers. In Fontaine and Goel [62]. (Cited on page 138.)

Bibliography 157

[55] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In

CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of

LNCS, pages 81–94. Springer, 2006. (Cited on pages 46 and 74.)

[56] Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. avail-

able at http://yices.csl.sri.com/tool-paper.pdf, 2006. (Cited

on page 7.)

[57] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico

Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of Lecture

Notes in Computer Science, pages 502–518. Springer, 2003. (Cited on page 9.)

[58] Niklas Een and Niklas Sörensson. An extensible sat-solver [ver 1.2], 2003.

(Cited on pages 1 and 7.)

[59] G. Farkas. Über die theorie der einfachen ungleichungen. Journal für die

Reine und Angewandte Mathematik, 124:1–27, 1902. (Cited on page 35.)

[60] Jean-Christophe Filliâtre, Sam Owre, Harald Rueß, and Natarajan Shankar.

ICS: Integrated Canonization and Solving (Tool presentation). In G. Berry,

H. Comon, and A. Finkel, editors, Proceedings of CAV’2001, volume 2102 of

Lecture Notes in Computer Science, pages 246–249. Springer, 2001. (Cited on

pages 6 and 7.)

[61] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs

meet provers. In Matthias Felleisen and Philippa Gardner, editors, Proceed-

ings of the 22nd European Symposium on Programming, volume 7792 of Lecture

Notes in Computer Science, pages 125–128. Springer, March 2013. (Cited on

page 10.)

[62] Pascal Fontaine and Amit Goel, editors. Manchester, UK, 2012. LORIA.

(Cited on pages 155 and 156.)

[63] The Frama-C platform for static analysis of C programs, 2008. http://

www.frama-c.cea.fr/. (Cited on pages 1 and 10.)

[64] Amit Goel, Sava Krstić, and Alexander Fuchs. Deciding array formulas with

frugal axiom instantiation. In Proceedings of the Joint Workshops of the 6th Inter-

national Workshop on Satisfiability Modulo Theories and 1st International Work-

shop on Bit-Precise Reasoning, SMT ’08/BPR ’08, pages 12–17, New York, NY,

USA, 2008. ACM. (Cited on pages 11, 27 and 138.)

158 Bibliography

[65] A. Griggio. A practical approach to satisability modulo linear integer arith-

metic. Journal on Satisfiability, Boolean Modeling and Computation, 8:1–27, 2012.

(Cited on page 74.)

[66] A. Griggio, B. Schaafsma, A. Cimatti, and R. Sebastiani. MathSAT 5: An

SMT Solver for Formal Verification. http://mathsat.fbk.eu//. (Cited

on pages 5, 8, 25, 33 and 72.)

[67] Jérôme Guitton, Johannes Kanig, and Yannick Moy. Why Hi-Lite Ada? In

Boogie 2011: First International Workshop on Intermediate Verification Languages,

pages 27–39, Wrocław, Poland, August 2011. (Cited on page 10.)

[68] Aarti Gupta, Malay K. Ganai, and Chao Wang. Sat-based verification meth-

ods and applications in hardware verification. In Marco Bernardo and

Alessandro Cimatti, editors, SFM, volume 3965 of Lecture Notes in Computer

Science, pages 108–143. Springer, 2006. (Cited on page 1.)

[69] Leopold Haller, Alberto Griggio, Martin Brain, and Daniel Kroening. De-

ciding floating-point logic with systematic abstraction. In Gianpiero Cabodi

and Satnam Singh, editors, FMCAD, pages 131–140. IEEE, 2012. (Cited on

page 149.)

[70] J.-M. Hullot. Associative commutative pattern matching. In Proc. 6th IJCAI

(Vol. I), Tokyo, pages 406–412, August 1979. (Cited on page 30.)

[71] The ISABELLE system. http://isabelle.in.tum.de/. (Cited on

page 1.)

[72] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules

modulo a set of equations. SIAM Journal on Computing, 15(4), November

1986. (Cited on page 122.)

[73] D. Jovanovic and L. de Moura. Cutting to the chase solving linear integer

arithmetic. In CADE-23, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings,

volume 6803 of LNCS, pages 338–353. Springer, 2011. (Cited on pages 72, 74

and 75.)

[74] Deepak Kapur. Shostak’s congruence closure as completion. In H. Comon,

editor, Proceedings of the 8th International Conference on Rewriting Techniques

and Applications, volume 1232. Springer-Verlag, 1997. (Cited on pages 23

and 122.)

Bibliography 159

[75] Deepak Kapur and Calogero G. Zarba. A reduction approach to decision

procedures, 2006. (Cited on page 27.)

[76] Leonid Khachiyan. Fourier-motzkin elimination method. In Christodou-

los A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization,

pages 1074–1077. Springer, 2009. (Cited on page 4.)

[77] Hyondeuk Kim, Fabio Somenzi, and HoonSang Jin. Efficient term-ite con-

version for satisfiability modulo theories. In Oliver Kullmann, editor, SAT,

volume 5584 of Lecture Notes in Computer Science, pages 195–208. Springer,

2009. (Cited on page 64.)

[78] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal

algebras. In J. Leech, editor, Computational Problems in Abstract Algebra, pages

263–297. Pergamon Press, 1970. (Cited on page 79.)

[79] K. Korovin and A. Voronkov. Solving systems of linear inequalities by bound

propagation. In CADE-23, Wroclaw, Poland, July 31 - August 5, 2011. Pro-

ceedings, volume 6803 of LNCS, pages 369–383. Springer, 2011. (Cited on

page 75.)

[80] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of

View. Springer Publishing Company, Incorporated, 1 edition, 2008. (Cited

on pages 25, 26 and 71.)

[81] Sava Krstić and Sylvain Conchon. Canonization for disjoint unions of the-

ories. Information and Computation, 199(1-2):87–106, May 2005. (Cited on

page 83.)

[82] Sava Krstic and Amit Goel. Architecting solvers for sat modulo theories:

Nelsonoppen with dpll. frontiers of combining systems, 2007. (Cited on

page 66.)

[83] Dallas S. Lankford. Canonical inference. Memo ATP-32, University of Texas

at Austin, March 1975. (Cited on page 79.)

[84] Dallas S. Lankford and A. M. Ballantyne. Decision procedures for simple

equational theories with permutative axioms: Complete sets of permuta-

tive reductions. Research Report Memo ATP-37, Department of Mathemat-

ics and Computer Science, University of Texas, Austin, Texas, USA, August

1977. (Cited on page 122.)

160 Bibliography

[85] Stéphane Lescuyer. Formalisation et développement d’une tactique réflexive pour

la démonstration automatique en Coq. Thèse de doctorat, Université Paris-Sud,

January 2011. (Cited on page 133.)

[86] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.

Computer, 26(7):18–41, July 1993. (Cited on page 1.)

[87] J. L. LIONS. Ariane 5 flight 501 failure. http://www.ima.umn.edu/

~arnold/disasters/ariane5rep.html. (Cited on page 1.)

[88] David C. Luckham, Steven M. German, Friedrich W. von Henke, Richard A.

Karp, P. W. Milne, Derek C. Oppen, Wolfgang Polak, and William L. Scherlis.

Stanford pascal verifier user manual. Technical report, Stanford, CA, USA,

1979. (Cited on page 7.)

[89] Claude Marché. On ground AC-completion. In Ronald. V. Book, editor, 4th

International Conference on Rewriting Techniques and Applications, volume 488

of Lecture Notes in Computer Science, Como, Italy, April 1991. Springer. (Cited

on pages 9 and 122.)

[90] Claude Marché. Normalized rewriting: an alternative to rewriting modulo a

set of equations. Journal of Symbolic Computation, 21(3):253–288, 1996. (Cited

on pages 77, 84, 118 and 122.)

[91] William McCune. Otter 3.3 reference manual. CoRR, cs.SC/0310056, 2003.

(Cited on page 2.)

[92] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient sat solver. In ANNUAL ACM

IEEE DESIGN AUTOMATION CONFERENCE, pages 530–535. ACM, 2001.

(Cited on pages 1, 3 and 7.)

[93] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-

cedures. ACM Trans. on Programming, Languages and Systems, 1(2):245–257,

October 1979. (Cited on page 7.)

[94] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence

closure. Journal of the ACM, 27:356–364, 1980. (Cited on page 4.)

[95] Greg Nelson. Techniques for Program Verification. PhD thesis, Stanford Univer-

sity, 1981. http://www.cs.washington.edu/education/courses/

cse599f/06sp/papers/NelsonThesis.pdf. (Cited on pages 6 and 27.)

Bibliography 161

[96] Greg Nelson. Techniques for program verification. Research Report CSL-81-

10, Xerox Palo Alto Research Center, 1981. http://research.compaq.

com/SRC/esc/Simplify.html. (Cited on page 7.)

[97] Robert Nieuwenhuis and Albert Oliveras. Fast Congruence Closure and Ex-

tensions. Inf. Comput., 2005(4):557–580, 2007. (Cited on pages 4 and 23.)

[98] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract dpll

and abstract dpll modulo theories. In In LPAR’04, LNAI 3452, pages 36–50.

Springer, 2005. (Cited on pages 4 and 66.)

[99] Robert Nieuwenhuis and Albert Rubio. A precedence-based total AC-

compatible ordering. In Claude Kirchner, editor, Proc. 5th Rewriting Tech-

niques and Applications, Montréal, LNCS 690. Springer, June 1993. (Cited on

pages 82 and 85.)

[100] John O’Leary. Theorem proving in intel hardware design. In Ewen Den-

ney, Dimitra Giannakopoulou, and Corina S. Pasareanu, editors, NASA For-

mal Methods, volume NASA/CP-2009-215407 of NASA Conference Proceed-

ings, page 5, 2009. (Cited on page 1.)

[101] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-

tem. In Deepak Kapur, editor, 11th International Conference on Automated

Deduction, volume 607 of Lecture Notes in Computer Science, pages 748–752,

Saratoga Springs, NY, June 1992. Springer. (Cited on pages 6 and 7.)

[102] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some

equational theories. Journal of the ACM, 28(2):233–264, April 1981. (Cited on

page 122.)

[103] Vaughan R. Pratt. Anatomy of the pentium bug. In Peter D. Mosses, Mo-

gens Nielsen, and Michael I. Schwartzbach, editors, TAPSOFT, volume 915

of Lecture Notes in Computer Science, pages 97–107. Springer, 1995. (Cited on

page 1.)

[104] W. Pugh. The Omega test: a fast and practical integer programming algo-

rithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE con-

ference on Supercomputing, Supercomputing ’91, pages 4–13, New York, NY,

USA, 1991. ACM. (Cited on pages 4, 8, 25, 26 and 53.)

162 Bibliography

[105] Silvio Ranise and Cesare Tinelli. The Satisfiability Modulo Theories Li-

brary (SMT-LIB). http://smtcomp.sourceforge.net/, 2006. (Cited

on pages 7 and 22.)

[106] Alexandre Riazanov and Andrei Voronkov. The design and implementation

of vampire. AI Commun., 15(2-3):91–110, 2002. (Cited on page 2.)

[107] Robert E. Shostak. An algorithm for reasoning about equality. Communica-

tions of the ACM, 21(2):583–585, july 1978. (Cited on page 23.)

[108] J. A. Robinson. A machine-oriented logic based on the resolution principle.

Journal of the ACM, 12(1):23–41, 1965. (Cited on page 3.)

[109] Harald Rueß and Natarajan Shankar. Deconstructing shostak. In LICS [1],

pages 19–28. (Cited on page 6.)

[110] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience

series in discrete mathematics and optimization. John Wiley & sons, 1998.

(Cited on pages 4, 8, 26, 35 and 75.)

[111] R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31:1–12,

1984. (Cited on pages 4, 6, 7 and 21.)

[112] Joso L Marques Silva. Grasp - a new search algorithm for satisfiability. pages

220–227, 1996. (Cited on pages 1, 3 and 7.)

[113] H. J. S. Smith. On systems of linear indeterminate equations and congru-

ences. Proceedings of the Royal Society of London, 11:86–89, 1860. (Cited on

page 36.)

[114] W. Snyder. Efficient completion: a o(n.log(n)) algorithm for generating re-

duced sets of ground rewrite rules equivalent to a set of ground equations e.

In N. Dershowitz, editor, Proc. 3rd Conf. on Rewriting Techniques and Applica-

tions. Springer-Verlag, 1989. Lecture Notes in Computer Science. (Cited on

page 4.)

[115] Jean Souyris and Denis Favre-Félix. Proof of properties in avionics. In Renè

Jacquart, editor, Building the Information Society, volume 156 of IFIP Interna-

tional Federation for Information Processing, pages 527–535. Springer US, 2004.

(Cited on pages 1 and 10.)

Bibliography 163

[116] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A deci-

sion procedure for an extensional theory of arrays. In LICS [1], pages 29–37.

(Cited on page 27.)

[117] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.

Journal of Automated Reasoning, 21(2):177–203, 1998. (Cited on page 2.)

[118] The Coq Development Team. The Coq Proof Assistant Reference Manual – Ver-

sion V8.3, 2010. http://coq.inria.fr. (Cited on pages 1 and 127.)

[119] Nikolai Tillmann and Jonathan De Halleux. Parameterized unit testing with

microsoft pex (long tutorial), 2010. (Cited on page 1.)

[120] Ashish Tiwari. Combining equational reasoning. In Silvio Ghilardi and

Roberto Sebastiani, editors, FroCos, volume 5749 of Lecture Notes in Com-

puter Science, pages 68–83, Trento, Italy, September 2009. Springer. (Cited on

pages 10 and 122.)

[121] Emanuele Viola. E-unifiability via narrowing. In Proceedings of the 7th Italian

Conference on Theoretical Computer Science, ICTCS ’01, pages 426–438, London,

UK, UK, 2001. Springer-Verlag. (Cited on page 114.)

[122] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,

Martin Suda, and Patrick Wischnewski. Spass version 3.5. In Proceedings

of the 22nd International Conference on Automated Deduction, CADE-22, pages

140–145, Berlin, Heidelberg, 2009. Springer-Verlag. (Cited on page 2.)

