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ABSTRACT 

There is high variability in response to cancer chemotherapies among patients. Its sources are 

diverse: genetic, physiologic, comorbidities, concomitant medications, environment, 

compliance, etc. As the therapeutic window of anticancer drugs is usually narrow, such 

variability may have serious consequences: severe (even life-threatening) toxicities or lack of 

therapeutic effect. Therefore, various approaches to individually tailor treatments and dosing 

regimens have been developed: a priori (based on genetic information, body size, drug 

elimination functions, etc.) and a posteriori (that is using information of measurements of 

drug exposure and/or effects). Mixed-effects modelling of pharmacokinetics and 

pharmacodynamics (PK-PD), combined with Bayesian maximum a posteriori probability 

estimation of individual effects, is the method of choice for a posteriori adjustments of dosing 

regimens. 

In this thesis, a novel approach to adjust the doses on the basis of predictions, given by a 

model for ordered categorical observations of toxicity, was developed and investigated by 

computer simulations. More technical aspects concerning the estimation of individual 

parameters were analysed to determine the factors of good performance of the method.  These 

works were based on the example of capecitabine-induced hand-and-foot syndrome in the 

treatment of colorectal cancer. Moreover, a review of pharmacodynamic models for discrete 

data (categorical, count, time-to-event) was performed. Finally, PK-PD analyses of 

hydroxyurea in the treatment of sickle cell anemia were performed and used to compare 

different dosing regimens and determine the optimal measures for monitoring the treatment.   
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RESUME 

Il existe une grande variabilité dans la réponse aux chimiothérapies anticancéreuses. Ses 

sources sont diverses: génétiques, physiologiques, comorbidités, médicaments associés, etc. 

La marge thérapeutique de ces médicaments étant généralement étroite, une telle variabilité 

peut avoir de graves conséquences: toxicités graves ou absence d'effet thérapeutique. 

Plusieurs approches pour adapter individuellement les posologies ont été proposées: a priori

(basées sur l'information génétique, la taille corporelle, les fonctions d'élimination, etc.) et a 

posteriori (sur les informations de mesures d'exposition au médicament et/ou effets). La 

modélisation à effets-mixtes de la pharmacocinétique et de la pharmacodynamie (PK-PD), 

combinée avec une estimation bayésienne des effets individuels, est la meilleure méthode 

pour individualiser des schémas posologiques a posteriori.  

Dans cette thèse, une nouvelle approche pour ajuster les doses sur la base des prédictions 

données par un modèle pour les observations catégorielles de toxicité a été développée et 

explorée par simulation. Les aspects plus techniques concernant l'estimation des paramètres 

individuels ont été analysés pour déterminer les facteurs de bonne performance de la méthode. 

Ces travaux étaient basés sur l'exemple du syndrome mains-pieds induit par la capécitabine 

dans le traitement du cancer colorectal. Une revue des modèles pharmacodynamiques de 

données discrètes (catégorielles, de comptage, de survie) a été effectuée. Enfin, des analyses 

PK-PD de l'hydroxyurée dans le traitement de la drépanocytose ont été réalisées pour 

comparer des différentes posologies et déterminer les modalités optimales de suivi du 

traitement. 
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RESUME SUBSTANTIEL EN FRANÇAIS 

Il existe une grande variabilité dans la réponse aux chimiothérapies anticancéreuses. Ses 

sources sont diverses: génétiques, physiologiques, comorbidités, médicaments associés, etc. 

La marge thérapeutique de ces médicaments étant généralement étroite, une telle variabilité 

peut avoir de graves conséquences: soit des toxicités graves, soit une absence d'effet 

thérapeutique. Plusieurs approches pour adapter les posologies au niveau individuel existent: 

a priori (basées sur l'information génétique, la taille corporelle, les fonctions d'élimination, 

etc.) et a posteriori (sur les informations de mesures d'exposition au médicament et/ou effets). 

La modélisation à effets-mixtes de la pharmacocinétique et de la pharmacodynamie (PK-PD), 

combinée à une estimation bayésienne des effets individuels, est la meilleure méthode pour 

individualiser des schémas posologiques a posteriori.  

Dans cette thèse, une nouvelle approche pour ajuster les doses sur la base des prédictions d’un 

modèle pour données catégorielles de toxicité a été développée et explorée par simulation 

(Article 2). Ce travail était basé sur l'exemple du syndrome mains-pieds induit par la 

capécitabine dans le traitement du cancer colorectal métastatique ou avancé. 

Plus de la moitié des patients traités par la capécitabine souffrent de cette toxicité 

dermatologique qui affecte la peau des paumes des mains et des plantes de pieds et peut aller 

jusqu'à des cloques avec des douleurs sévères et des difficultés dans les activités quotidiennes 

comme la marche et la manipulation des objets. Par conséquent, cette toxicité (aux grades 

supérieures 2 et 3) est dose-limitante et nécessite des interruptions de traitement et des 

réductions de doses. L'approche standard utilisée dans la pratique clinique est d'interrompre le 

traitement jusqu'à l’amélioration au moins jusqu’au grade 1, et ensuite de continuer le 

traitement avec des doses réduites de 25% ou de 50%, et finalement de l’interrompre si 

plusieurs événements de toxicités sévères sont apparus. 

Cette approche « rigide » n’est probablement pas optimale, et il est intéressant d'étudier la 

faisabilité d'une adaptation individualisée des doses, qui soit basée sur les prédictions données 

par un modèle de toxicité du patient, et de comparer sa performance à celle de la méthode 

standard, par simulation d'essais cliniques. 

Un modèle de population du syndrome mains-pieds (hand-foot syndrome, HFS) et un modèle 

de l'inhibition de la croissance tumorale (tumour growth inhibition, TGI) pour la capécitabine 

dans le traitement du cancer colorectal avancé ou métastatique ont été publiés récemment 
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[Henin09, Claret09]. Ces modèles ont été utilisés dans la présente étude. Les étapes de ce 

travail ont consisté à: 

- Développer le concept et les techniques numériques afin de déterminer la «meilleure»

prochaine dose sur la base de la prédiction du modèle individuel du risque d'HFS intolérable 

(grade 	2) au cours du prochain cycle de traitement; 

- Définir le protocole d'essai clinique, les modalités d'adaptation de dose cliniquement 

pertinentes, les critères de comparaison des différentes méthodes d'adaptation de dose, avec la 

consultation d'un oncologue clinique; 

- Implémenter les modèles HFS et TGI, ainsi que les différentes approches d'adaptation de 

dose, dans un code de simulation d'essais cliniques; 

- Effectuer les simulations avec différentes spécifications de la procédure de recherche de 

dose afin de déterminer par analyses de sensibilité le «calibrage» optimal de l'adaptation 

individuelle, c'est-à-dire celui aboutissant à la plus grande réduction de la toxicité HFS sans 

diminuer l’efficacité antitumorale par rapport à l'approche standard. 

Le meilleur résultat obtenu a été une réduction moyenne d'environ 10 jours de la durée totale 

de HFS de grade 	2, sur la durée d'essai de 30 semaines de traitement maximum + 4 semaines 

de suivi post-traitement. Il s’agit de la réduction maximale de toxicité obtenue tout en 

préservant la même efficacité antitumorale. 

Cette étude a montré que l'adaptation individualisée de dose sur la base des observations 

catégorielles de toxicité peut être faisable et bénéfique en termes de résultat clinique global.

Dans l'exemple utilisé du syndrome mains-pieds, l'impact a été limité par la faible sensibilité 

de la toxicité aux changements de dose. L'impact d'une telle méthode serait probablement plus 

élevé pour les toxicités réversibles avec une dynamique rapide (par exemple, gastro-

intestinales). 

Au cours du développement de l'approche d'individualisation de dose présentée ci-dessus, la 

qualité des estimations empiriques bayésiennes (EBEs) des effets aléatoires individuels 

(permettant d'ajuster le modèle de population pour le patient sur la base de ses observations 

précédentes) a été examinée. L’exactitude et la précision observées étant plutôt faibles, cela a 

motivé la recherche des facteurs potentiellement influents. La qualité des EBEs a un impact 

direct sur l'exactitude des prédictions de risque individuel de toxicité, et est donc une 

condition importante pour la bonne performance de la méthode basée sur les prédictions. 

Ainsi, ce travail (Article 3) a consisté à étudier l'influence de: 
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- L'estimateur (mode vs. moyenne de la distribution a posteriori des effets aléatoires); 

- L'algorithme d'optimisation, où des algorithmes de recherche optimale locaux (simplex, 

quasi-Newton) et global (recherche aléatoire adaptative) ont été comparés; 

- La quantité de données par patient; 

- Les distributions individuelles des catégories; 

- L'amplitude de la variabilité inter-individuelle;

- Les valeurs des paramètres du modèle d'effet. 

Dans cette étude, on a constaté que les principaux facteurs affectant la qualité des EBEs 

étaient les valeurs des paramètres qui régissent la relation dose-réponse et la distribution intra-

sujet des catégories. 

Dans l'exemple du modèle HFS, les valeurs de la variable qui produit l’effet étaient trop 

faibles pour permettre de bien identifier les paramètres de la fonction Emax, et les 

distributions intra-sujet des catégories était fortement non-uniforme. Les EBEs avaient un 

biais et une faible précision, l'impact sur les décisions cliniques concernant la prochaine dose 

à prendre était variable, mais considérable. Dans les cas extrêmes, l'impact de l’imprécision 

des EBEs sur le risque prédit de grade 	2 pouvait être de l’ordre de 4; les doses 

correspondantes calculées selon les risques vrai et estimé pouvaient varier 10 fois. Cependant, 

cela n’a pas eu d'impact sur la performance globale de la méthode d'adaptation de dose en 

raison de la faible sensibilité du HFS pour des changements de dose: les résultats étaient très 

semblables si les valeurs des effets aléatoires vraies (simulées) ou leurs EBEs étaient utilisées 

ou si elles n’étaient pas utilisées du tout (c'est-à-dire, avec uniquement le modèle de 

population pour le patient moyen). 

Les résultats cliniques sont souvent décrits en tant que données discrètes : événements (mort, 

accident vasculaire cérébral, crise d’épilepsie, lésions de sclérose en plaques, progression de 

la maladie, de graves effets secondaires), le temps jusqu’à leur apparition, leur fréquence et 

degré de sévérité. Ces données discrètes ont besoin de structures et méthodes de modélisation 

spécifiques. Une revue des approches de modélisation des données discrètes et des exemples 

de leurs applications dans l'analyse des données pharmacodynamiques fait partie de cette 

thèse (Article 1).   

Le quatrième article de cette thèse concerne l’hydroxyurée (HU), anticancéreux utilisé 

également dans le traitement de la drépanocytose, l'une des plus fréquentes maladies 

génétiques. Elle est due à une mutation dans le gène de l'hémoglobine et se caractérise par des 
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globules rouges rigides et en forme de faucille, ce qui peut conduire à des crises vaso-

occlusives avec diverses complications, telles que les crises douloureuses aiguës, l'ischémie et 

des lésions de différents organes, syndrome thoracique aigu ou accident vasculaire cérébral. 

Les objectifs de ce travail ont été: 

- De développer des modèles de population de PK-PD pour l'hydroxyurée dans le but de 

caractériser les relations dose-exposition-réponse et leur variabilités, de rechercher des 

covariables potentielles; 

- D'utiliser ces modèles pour comparer deux schémas posologiques (une quotidienne en 

continu et l'autre avec des interruptions de 2 jours après tous les 5 jours) par simulation; 

- De développer des recommandations pour le suivi du traitement. 

Comme aucune toxicité dose-limitante n’est survenue dans cette étude, aucun modèle de 

toxicité et aucun outil d’ajustement a posteriori des doses n’ont été développés. L'efficacité a 

été mesurée sur deux biomarqueurs: le pourcentage d'hémoglobine fœtale (HbF%) et le 

volume globulaire moyen (VGM). 

La dynamique de VGM a été plus rapide que celle de HbF%, mais la variabilité 

interindividuelle à l’état d'équilibre (EE) des valeurs de HbF% a été beaucoup plus grande que 

celle de VGM. Par conséquent, la valeur de VGM à EE à 3 mois n'était pas prédictive de la 

valeur de HbF% à l’EE au mois 26. Par conséquent, le niveau de HbF%, directement lié à 

l'allégement des symptômes de la drépanocytose, parait être un meilleur biomarqueur que 

VGM pour le suivi du traitement par HU. 

Concernant la comparaison des deux schémas posologiques, la différence était très petite pour 

les profils de VGM, mais plus grande pour les profils de HbF%, surtout pour les patients 

atteignant les plus hauts niveaux de HbF%. Pour ces patients répondant le mieux au 

médicament, la prise quotidienne de HU peut être plus avantageuse en termes d'augmentation 

de HbF% qu’avec des interruptions 2 jours par semaine. 

L'estimation de l'intensité de l'effet a suggéré une perspective intéressant: le niveau de HbF 

pourrait être encore accru par des médicaments plus puissants ou par des combinaisons de 

médicaments. 

Malheureusement, aucune covariable expliquant une partie significative de la variabilité n’a 

pu être identifiée à partir de ce jeu de données, et des informations concernant les 

polymorphismes génétiques associés à la réponse à HU n’étaient pas disponibles. Des 

informations sur les polymorphismes dans les gènes de régulation du métabolisme de HU, de 

ses transporteurs, de l'expression de HbF et de la prolifération des progéniteurs érythroïdes 

permettraient potentiellement d’ajuster la posologie a priori. 
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CI   confidence intervals 

CL (CL/F)   (apparent) clearance 

CLcr   creatinine clearance  

CML   chronic myeloid leukemia  

CR   complete response  

CV  coefficient of interindividual variability 

CYP   cytochrome P450  

DPD   dihydropyrimidine dehydrogenase 

EBE   empirical Bayes estimate 

EC50   concentration providing 50% of maximal effect 

ED50   dose providing 50% of maximal effect 

EGFR   epidermal growth factor receptor  

EE   état d'équilibre  

FOCE   first order conditional estimation 

G-CSF   granulocyte colony stimulating factor  

GFR   glomerular filtration rate 

GQ   Gaussian Quadrature 

Hb   hemoglobin 

HbF   fetal hemoglobin 

HbF%   percentage of fetal hemoglobin (of total hemoglobin) 

HFS   hand-foot syndrome 

HU   hydroxyurea 
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IIV   interindividual variability  

IPBDA   individual prediction-based dose adaptation  

IPPSE   individual PK parameter with imprecision (standard error) 

ka   the rate constant for absorption 

kcp   rate constant for transfer from central to peripheral compartment 

kpc   rate constant for transfer from peripheral to central compartment  

KPD   kinetic-pharmacodynamic 

LDH   lactate dehydrogenase   

LOQ   limit of quantification  

LV   leucovorin  

MAE   mean absolute error  

MAP   maximum a posteriori probability  

MCH   mean corpuscular haemoglobin 

MCMC   Markov chain Monte Carlo 

MCV   mean corpuscular volume  

NPDE   normalised predictive discrepancy errors 

OFV   objective function value  

OS   overall survival  

PC-VPC  prediction-corrected visual predictive check 

PD   pharmacodynamics  

PD   progressive disease  

PFS   progression-free survival 

PK   pharmacokinetics  

PMN   polymorphonuclear neutrophils  

PR   partial response  

RE   random effects  

RECIST   Response Evaluation Criteria In Solid Tumors  

RSE  relative standard errors 

SAEM   Stochatistic Approximation Expectation Maximisation  

SCA   sickle cell anemia  

SD   stable disease  

SD   standard deviation 

SE   standard error 
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SS   steady-state  

TDM   therapeutic drug monitoring 

TGI   tumour growth inhibition 

TK   tyrosine kinase 

TPMT   thiopurine methyltransferase  

TR   target risks 

TTE   time-to-event 

Vc (Vc/F)   (apparent) central volume of distribution 

VGM   volume globulaire moyen  

VPC   visual predictive check 

WGT   body weight 
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INTRODUCTION 

1. Variability in response to chemotherapy 

Clinical practice of drug therapy of many diseases is challenged by a large variability in the 

response and tolerance to treatment among (and within) individuals. It can lead to therapeutic 

failures or intolerable adverse effects, if not handled properly. Such risks are especially high 

for medicines with a narrow therapeutic index, that is a small difference between efficacious 

and toxic doses.  

This characteristic is particularly true for cancer chemotherapies, where the drug amounts that 

are big enough to affect cancer cells are harmful for normal cells too. And the “right” dose of 

cytotoxic drugs is considered to be the highest one that can be tolerated in terms of adverse 

effects. As the relationship between drug doses and anticancer effect is not well quantified, it 

is expected that the higher the drug exposure, the stronger the effect. The systemic exposure 

after fixed doses of cytotoxic drugs may vary between patients 4-10 times or even much more 

[Evans 1989, Masson 1997, Gurney 1996]. The average proportion of patients for whom 

anticancer drugs are ineffective is about 75% [Spear 2001]. 

Variations in many processes contribute to the overall variability in the individual response to 

the drug: at the pharmacokinetic level (absorption, distribution, metabolism, excretion), as 

well as at the pharmacodynamic level (mechanisms of the therapeutic and adverse effects) 

[Ratain 1990, Gibaldi 1992].  

The sources of heterogeneity are very diverse [Undevia 2005]: 

• genetic (germline or somatic mutations (in cancer tissues)), 

• demographic/physiologic (age, body size and composition, sex, ethnicity, performance 

status), 

• diseases (especially hepatic and renal) and special conditions (allergies and 

intolerancies, dehydration, pregnancy, age, etc.), 

• previous or concomitant medications, 

• environmental (smoking, alcohol consumption, diet, etc.), 

• circadian variation, 

• intrinsic or developed tolerance/resistance to the drug, 

• behavioural (compliance to the prescribed dosing regimen), etc. 
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2. “Personalized medicine” tools 

As the same dose of the drug may be too high (lead to unacceptable toxicity) for one patient 

and be too low (have no therapeutic effect) for another, there is a need to individually adjust 

doses for certain drugs. Advances in science and technology bring new (sophisticated) 

decision support tools for the practice/implementation of the “personalized medicine” to tailor 

the medical treatment to the individual characteristics to help achieve the therapeutic 

objectives without unacceptable toxic effects for each patient [The case for personalized 

medicine].  

2.1. Pharmacogenomics 

One of its branches is the new rapidly developing translational science of pharmacogenetics 

or pharmacogenomics, which consists of analyzing molecular determinants of response to 

medications at the gene, protein and metabolite levels. Such diagnostic tools are aimed to 

identify individuals likely to respond to treatment as well as those likely to have strong 

adverse effects and select treatments and tailor their doses accordingly.  

2.1.1. PK level 

A major area of pharmacogenetics application is germline mutations in genes coding the drug 

transporters or metabolizing enzymes, such as cytochrome P450 (CYP) family of liver 

enzymes, which are responsible for breaking down more than 30 different classes of drugs 

[Phillips 2001]. Individuals with absent or reduced activity of such enzymes risk severe 

toxicities due to overexposure to the drug, if doses are not reduced as compared to the 

population with normal activity of metabolizing enzymes. Examples of such 

pharmacogenetics applications to anticancer drugs include genetic testing for: 

- the UGT1A1*28 polymorphism to identify individuals with reduced UGT1A1 gene 

expression and decreased glucuronidation of the active metabolite SN38 and resulting 

increased risk of neutropenia and diarrhoea on treatment with irinotecan for colorectal cancers 

[Hoskins 2007, Iyer 2002]. Their doses are thus reduced to reduce the risk of toxicity [FDA 

Camptosar label];        

- the drug metabolizing enzyme thiopurine methyltransferase (TPMT) in the treatment by 

thiopurines (6-mercaptopurine, azathioprine) to avoid the risk of severe hematotoxicity [Black 

1998, Evans 2004, Bosch 2006]. The genetic test classifies the patients according to normal, 

intermediate and deficient TPMT activity [Relling 1999, McLeod 2002]. Doses are reduced 

for intermediate or deficient patients (about 10% of the population). 
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- genetic and/or phenotypic approaches to determine the dihydropyrimidine dehydrogenase 

(DPD) activity for candidates to treatment of solid tumours by 5-Fluorouracil (5FU) or its oral 

prodrugs (such as capecitabine) [Milano 1996, Milano 1999, Mercier 2006, Bocci 2008, 

Kaestner 2007b]. 

A dose individualisation method taking into account the CYP2C genotype has been developed 

for an investigational anticancer agent indisulam to avoid unacceptable neutropenia 

[Zandvliet 2009].  

2.1.2. PD level     

Targeted therapy 

Cancer treatment is furthermore challenged by high genetic and phenotypic heterogeneity at 

the pharmacodynamic level, including somatic mutations in the tumour tissue. Genetic and 

epigenetic perturbations in signal pathways drive cancer growth, survival, invasion and 

metastatic spread [Senzer 2005]. They may make malignant cells resistant to one treatment 

but sensitive to another specifically targeted agent.  

This leads to “personalized medicine” approach to use genetic and phenotypic biomarker tests 

to identify tumours having specific mutations making them susceptible to specially designed 

targeted treatment.  The first examples include: 

- testing for the BCR/ABL oncogene, caused by the so-called Philadelphia chromosome 

translocation, in chronic myeloid leukemia (CML) patients (positive in more than 90% of 

cases) to decide about treatment with tyrosine kinase (TK) inhibitors, that specifically target 

this TK protein.  The first such drug created by "rational drug design" was imatinib, named 

“the magic bullet” to cure cancer by TIME magazine [Saglio 2004]. Later second generation 

drugs, dasatinib and nilotinib, were developed to overcome imatinib resistance and to increase 

responsiveness to TK inhibitors; now they are also approved for first-line treatment of CML. 

- testing for HER2 oncogene overexpression in breast tumours (about 25-30% of cases) to 

identify those likely to respond to trastuzumab, a monoclonal antibody blocking HER2 

receptors [Piccart-Gebhart 2005, Romond 2005]. Overexpression of this receptor of epidermal 

growth factor is associated with a poor prognosis, increased tumour formation and metastasis, 

as well as resistance to chemotherapy [Nanda 2007].  

- measurements of epidermal growth factor receptor (EGFR) expression in lung and colorectal 

cancer patients to identify those susceptible to treatment by tyrosine kinase inhibitors 

(gefitinib for lung cancer [Paez 2004], erlotinib for non-small-cell lung cancer [Rosell 2009], 

cetuximab and panitumumab for colorectal cancer [Sartore-Bianchi 2007]).  Mutations that 



26

result in increased EGFR expression or activity are associated with uncontrolled cell division 

and therefore predisposition to cancer [Zhang 2007]. 

- testing for somatic KRAS gene mutations in tumour tissue before starting treatment with 

anti-EGFR monoclonal antibody drugs cetuximab and panitumumab indicated for metastatic 

colorectal cancer (activated in about 40% of cases) [Lievre 2006]. KRAS is a protein involved 

in many signal transduction pathways, its mutations are thought to be an essential step in the 

development of many cancers [Kranenburg 2005]. KRAS mutations may lead to increased 

activation of the Ras/Raf/MAPK pathway and result in a lack of activity of EGFR inhibitors 

[Lievre 2006, Amado 2008]. It is associated with shorter progression-free survival and overall 

survival [DiFiore 2007, Lievre 2008]. 

Screening for individuals at cancer development or recurrence risk  

The most common example is concerning BRCA1 and BRCA2 gene germline mutations that 

lead to inheritable high risks to develop breast and ovarian cancers [Nelson 2005]. Mutation 

carriers may choose to have a prophylactic surgery, preventive chemotherapy or at least close 

surveillance with the help of genetic counselling [Genetics]. 

A test has been developed that measures the expression of 21 genes in women with breast 

cancer to determine the risk of tumour return within 10 years [Silver 2009]. Such information 

may help decide on therapy strategy: hormone therapy alone or more aggressive 

chemotherapy.  

Biomarkers alerting for possible recurrence of cancer after treatment 

For some tumours, associated tumour markers circulating in blood have been identified that 

inform of possible cancer existence/regrowth before physical signs and symptoms. Elevated 

levels of tumour biomarkers would lead to more thorough examinations for cancer and allow 

to make clinical decisions sooner.  

2.2. Non-genetic bases to individualise dose a priori

However, the sources of between and within-subject variability of drug response are very 

diverse. Genetic determinants can explain only a part of it, and they were identified or are 

relevant for only a part of the drugs. Other individual patient characteristics may be used for 

adjusting doses if a clinically significant link could be identified between them and the drug 

exposure and/or response and if they explain a large part of the variability. 
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2.2.1. BSA, weight 

Traditionally, the standard dosing of cytotoxic drugs was based on body surface area (BSA) 

or body weight. The idea of BSA-based dosing was introduced for� cancer chemotherapy 

about 50 years ago [Kaestner 2007a] and has been very widely applied in clinical practice, 

despite that it lacks scientific grounds and the numerous clinical studies showing that it fails 

to reduce the variability in the systemic exposure for most of cytotoxic drugs as compared to 

one-size-fits-all dosing [Gurney 1996, Mathijssen 2007, Kaestner 2007a, Gao 2008].  Initially 

it was based on inter-species studies in the beginning of 20th century, where it was established 

that� the basal metabolic rate varied among various species as a function of weight (power 

function with the exponent of about 0.75), which approximately corresponds to the variation 

of BSA as a function of weight [Gao 2008]. BSA-based dosing does not take into account the 

possible physiologic changes in individuals with extreme weight (cachetic or obese). 

Moreover, many formulas exist for BSA estimation but they may all lack accuracy and 

precision [Kaestner 2007a]. BSA or weight scaling may have some relevance only for the 

prediction of the first-in-human dose from preclinical animal data by allometric scaling or the 

pediatric doses. 

  

2.2.2. Alternatives to BSA 

Considering the number of different factors of variability in drug response, it is unlikely that 

the dose can be well adjusted by body size measure only. This is especially true for various 

specific subgroups whose pharmacokinetic processes are significantly different from the 

“average normal” individual, such as children, elderly, patients with impaired renal or hepatic 

functions, low metabolising enzyme expression/activity, significantly decreased blood protein 

levels, concomitant interacting medications, poor disease and/or performance status. If a 

clinically relevant and significant relationship between covariates and PK parameters is 

identified and showed to explain a large part of variability in drug exposure, this knowledge 

may be used to adjust the dose before any drug is taken for individuals identified to be at risk 

(of severe toxicity or lack of response).   

If the drug elimination is mainly renal and a large part of the variability of its exposure is 

explained by glomerular filtration rate (GFR), it may be reasonable to adjust doses by GFR, 

once the target AUC is determined which would be optimal in terms of clinical response and 

toxicity risk. Such a method has first been developed and validated by prospective clinical 

trial for carboplatin [Calvert 1989]; it is now widely used in clinical practice [Mathijssen 

2007]. A simpler way to predict the carboplatin clearance without the need of isotopic 
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determination of GFR (as in Calvert’s formula) using body weight, age, sex, and blood 

creatinine level has been developed by Chatelut et al. [Chatelut 1995] and is used in practice 

[Tranchand 2003]. Similar carboplatin dosing equations have been developed and validated 

for pediatric patients also [Chatelut 1996, Thomas 2000]. However, even using these 

approaches, there may still remain a large variability in PK among patients [Kaestner 2007b, 

Ekhart 2006, Gao 2008].

Since many physiologic and pathologic changes, as well as common multiple medications, in 

elderly patients may make their drug exposure and response significantly different from the 

younger adults, special consideration of their conditions is needed to ensure safe dosing of 

cytotoxic drugs for them [Lichtman 2000, Tranchand 2003, Bach 2010]. 

Many population PK-PD analyses have been performed and identified covariates for PK 

and/or PD of anticancer agents, mostly descriptors/indicators of body size, protein binding, 

renal and hepatic functions, but few covariate-based a priori dosing recommendations have 

been proposed or prospectively validated and accepted in clinical practice [Tranchand 2003, 

de Jonge 2005, Zandvliet 2008, Bach 2010]. 

2.2.3. Phenotyping studies 

Attempts were made to use probe drugs or substrates to estimate a priori the individual 

exposure of some drugs that are predominantly eliminated by specific enzymes (such as 

CYP450 family members, DPD) or are concerned by particular transporters (ABCB1) [Gao 

2008, Mathijssen 2007]. The probes are ideally cheap, safe, and easily available and 

determined agents, whose metabolism, distribution and elimination are related to the 

pharmacokinetic behaviour of the anticancer drug in question [Mathijssen 2007]. These 

exploratory methods still need to be validated before use in clinical practice.  

A randomized prospective clinical trial comparing CYP3A phenotyping-based dose 

adaptation to standard BSA-based dosing of irinotecan demonstrated that individualization 

resulted in a substantially reduced interindividual variability of irinotecan and its active 

metabolite SN-38 AUCs, as well as of absolute neutrophil count nadir; the incidence of severe 

neutropenia was lower as well [Van der Bol 2008].  

�

2.3. a posteriori dose adaptation 

Drug disposition and effects involve too many processes that may be affected by numerous 

heterogeneous factors to allow an exact prediction of them for each individual by a few easily 

measurable covariates before the drug is taken. Even though a priori dose adjustment may be 
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useful to reduce the risk of severe toxicity of the first doses, subsequent dose modifications 

based on individual experience with the drug are likely to be needed to optimise the clinical 

outcome for drugs with a narrow therapeutic index and high inter-individual variability.  

2.3.1. Test dose 

A part of dose individualization strategy for drugs with linear pharmacokinetics may be to 

determine the patient’s PK after administering a test dose, generally smaller than therapeutic 

[Cano 1985, Plunkett 1985, Pignon 1994, Bolinger 2001, Bleyzac 2001]. The future doses can 

then be adapted according to the patient’s individual PK characteristics. 

2.3.2. Therapeutic drug monitoring 

Therapeutic drug monitoring (TDM) usually consists of measuring drug concentrations in 

biological fluids (mostly blood, but may be urine, saliva) in the course of the treatment in 

order to determine how the next doses should be adjusted for the patient [Moore 1987].  

In order to have benefit from pharmacokinetically guided dosing, the drug should meet 

several criteria [Rousseau 2002]:  

• a narrow therapeutic index; 

• a substantial interpatient PK variability; 

• relatively low interoccasion variability (i.e. among different occasions in the same 

individual) [Holford 1999]; 

• a clinically significant exposure-response relationship, so that the response would be 

sensitive to the changes in drug concentration. 

Moreover, rapid, accurate, precise and reproducible assays for drug concentration 

quantification must be developed and widely available and feasible in clinical care units by 

their personnel [Hon 1998, Bates 1998]. Finally, in order to be accepted in clinical practice, 

such individualized dosing strategies need to be first validated by large prospective 

randomized clinical studies, comparing them to standard dosing. However this step is rarely 

carried out.    

Due to their high risks and high interpatient variability, many anticancer agents have been 

identified as likely candidates for TDM [Van Den Bongard 2000]. However, a major 

limitation for many chemotherapy drugs is that a clinically important relationship between 

plasma drug concentrations and therapeutic effect or toxicity is hard to identify and thus 

establish a “therapeutic range”. Tumours are highly heterogeneous and drug concentrations in 

the target tissues are unknown and possibly poorly correlated to the plasma drug 
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concentrations. Moreover, there is a delay (days or weeks) between drug administration and 

clinical response. Exposure-toxicity relationships are usually more successfully established. 

Furthermore, chemotherapies frequently consist of combinations of drugs with overlapping 

therapeutic and toxic effects, making it difficult to identify the contribution of each drug. 

TDM is even harder to apply for drugs with nonlinear PK, as well as prodrugs and drugs with 

active metabolites [Oellerich 2001]. 

PK-based TDM 

Pharmacokinetically-guided TDM methods target a particular predefined drug exposure 

(AUC or steady-state concentration), which is associated with acceptable level of toxicities, 

more rarely with an optimum clinical outcome in terms of efficacy and toxicity [Gamelin 

1998]. The exposure target can be reached by modifying the dose or the inter-dose interval or 

both [Plunkett 1985, Ando 1996, Jodrell 1994]. 

Historical methods to determine the dose

Historically, the needed dose correction to reach the target was determined by taking one or 

several blood samples during or after administration of the drug and using simple formulas, 

nomograms or multilinear regressions [de Jonge 2005, Bach 2010]. Estimation of PK 

parameters by traditional noncompartmental methods (such as trapezoid for AUC) usually 

requires a large number of samples. To make it more feasible in clinical practice, limited 

sampling strategies have been developed to minimize the needed number of samples to one or 

a few at specific optimized time points [Loh 2007]. However, such strategies are sensitive to 

deviations from those optimum points and can only be used for the same dosing regimen 

[Kaestner 2007b]. They have been extensively reviewed by, for example, de Jonge [de Jonge 

2005].   

Bayesian TDM  

An alternative to these traditional analyses, the so-called population PK-PD modelling 

approach, has been introduced by Lewis Sheiner and Stuart Beal [Sheiner 1982, Sheiner 

1984]. This statistical method combines data from all study patients to estimate a population 

model where the main (“fixed”) parameters describe the typical population effect and the 

individual (“random”) parameters adjusts for the main parameters for each individual and 

account for correlation among observations in the same subject. The population approach 

allows to split the overall variability to the between-subject variability and the within-subject 
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(and residual) variability.�Some of between-subject variability may be explained by known 

individual factors (covariates), but the population models also include individual (“random”) 

parameters which represent unobservable individual sources of variability. The latter are 

estimated by so-called Bayesian maximum a posteriori probability (MAP) method, which 

combines both the knowledge of effects in other individuals (via the population model) and 

the individual measured data. This approach is more flexible for the times of measurements 

and generally requires less of them than the noncompartmental analysis. However, some time 

points are more informative than others [D’Argenio 1981, Panetta 2002], and the number of 

measurements per individual also has an impact on how good the individual estimates are 

[Savic 2009]. The quality of the population model is also of prime importance for the 

precision of individual predictions used to determine the dose adjustment.    

Many clinical studies have tested Bayesian PK-guided TDM for various chemotherapy drugs, 

only a few of them were prospective [Veal 2003, Rousseau 2002, de Jonge 2005, Kaestner 

2007b, Bach 2010, Zandvliet 2008]. Most of them aimed at increasing the part of patients 

having drug exposure closer to the target exposure. And often the results were quite 

satisfactory in terms of this objective [de Jonge 2005]. However, few studies have 

evaluated/showed the gain in clinical outcome in terms of anticancer efficacy and/or toxicity 

profiles [Evans 1998]. One of reasons is that such studies would require a large number of 

patients.  

PD-guided TDM 

The ultimate objective of dose individualization is a gain in terms of therapeutic outcome. 

PK-guided TDM is not likely to be optimal/sufficient to attain this, in cases where there is 

high between-patient variability at the pharmacodynamic level, such as disease and 

performance status, prior therapies, concomitant diseases and medications, different 

sensitivity of bone marrow and other healthy tissues, as well as high heterogeneity among 

tumours (acquired resistances etc.). There may be no universal target systemic drug exposure 

level.  

Therefore, PD-guided dose adaptation strategies are developed. Since for cytotoxic 

chemotherapies the “best” dose is traditionally defined as the highest that is tolerated by the 

patient, it is natural to base the dose on the most important (dose-limiting) toxicities. 

Reducing the occurrence of severe dose-limiting toxicity also allows to avoid the consequent 

dose delays and/or reductions, which may negatively affect the antitumour efficacy.  
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Another reason why PD-based dose adaptations are more often toxicity-based is that it is 

easier to identify the relationship between systemic drug exposure and adverse endpoint rather 

than the anticancer outcome.  

The explanations of the difficulty to identify a relationship between administered drug doses 

and anticancer effect include: 

- absence of data of effect site concentrations, their irrelevance to plasma 

concentrations; 

- delays between drug administration and clinical response; 

- high heterogeneity between and within the tumours; 

- many confounding factors (prior and combined anticancer treatments, concomitant 

diseases and their medications); 

- sparseness of data. 

Therapeutic effect models  

The primary clinical endpoints in cancer treatment are progression-free survival (PFS) and 

overall survival (OS). However, earlier (intermediate/surrogate) measures are needed to make 

early decisions both in drug development [Bruno 2009] and in the treatment of an individual 

patient. These are lesion size and count, as well as levels of various tumour markers (PSA, 

hCG, CEA, sKIT, sVEGFR-3, etc.). There are a growing number of studies having identified 

pharmacodynamic effect relationships between: 

- drug doses and tumour response [Claret 2006, Claret 2009, Tham 2008, Stein 2011, Frances 

2011],  

- systemic drug exposure and tumour response [Houk 2009, Lu 2010, Joerger 2010],  

- systemic drug exposure and survival [Houk 2009, Joerger 2010, You 2008], 

- change in tumour size (as well as tumour size baseline and performance status) and survival 

[Claret 2006, Claret 2009, Wang 2009, Lindbom 2009], 

- systemic drug exposure and efficacy biomarkers [Jadhav 2006, Tornoe 2007],  

- biomarker dynamics and response measures [You 2009, You 2010, Hansson 2011].  

It is expected that early assessment of treatment antitumour efficacy and prediction of 

expected survival, using tumour growth inhibition and survival models, will be beneficial in 

drug development (screening of candidate drugs, simulation of trials, optimization of trial 

designs) [Wang 2009, Bruno 2009, Claret 2010]. 

The model of Wang et al. has shown its good predictivity of survival in the investigation of 

carboplatin + paclitaxel regimen and erlotinib in the treatment of non-small cell lung cancer 

[Bruno 2009]. 
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Toxicity models 

Hematotoxicity models  

Neutropenia is the most threatening of the common adverse effects of chemotherapies, and 

therefore it is closely monitored and is the main dose-limiting toxicity for numerous cytotoxic 

agents. A relationship between drug exposure and neutropenia has been shown for many 

anticancer drugs. Simple empirical models were used to relate a summary variable of drug 

exposure and a summary variable of neutropenia (nadir, grade of neutropenia, percentage 

decrease in leukocytes or their count under a threshold) [Testart 2007]. 

However, myelosuppression is a complex transitional process (from the drug effect on bone 

marrow till reduction of the circulating blood cell count) and a static summary variable cannot 

describe its full dynamics. More mechanistic models reflecting the physiological processes 

have been developed lately, with good consistency among drugs [Friberg 2002, Sandstrom 

2005, van Kesteren 2005, Kloft 2006, Latz 2006]. Such an analysis of pemetrexed data lead to 

the suggestion that using folic acid, vitamin B6 and vitamin B12 supplementation may reduce 

the risk of severe neutropenia induced by pemetrexed [Latz 2006a, Latz 2006b]. The model 

has been extended to take into account the administration of granulocyte colony stimulating 

factor (G-CSF) [Sandstrom 2006], effective for the reduction and prevention of severe 

neutropenia [Aapro 2011]. Another extension of the model for a simultaneous analysis of 

leukocytes and neutrophils has been recently developed [Quartino 2010]. Improvements for 

these semi-physiologic myelosuppression models were proposed to better account for the 

sensitivity of the response to dose changes [Meille 2008]. 

Applications of hematoxicity models to individualize dosing regimens 

The early dose adaptation strategies targeted a chosen interval of a summary variable of 

hematotoxicity (usually nadir), using a regression of a summary drug exposure variable and 

other predictive factors, such as baseline neutrophil value, performance status, prior treatment, 

bone marrow function, etc. [de Jonge 2005, Kaestner 2007b]. 

Recently, Wallin et al have developed a neutrophil-guided dose adaptation tool in Excel based 

on a semimechanistic myelosuppression model and the Bayesian MAP technique to be used in 

clinical practice [Wallin 2009]. This tool uses the information of the neutrophil count after the 

first treatment cycle to select the subsequent doses. The authors did a simulation study to 

compare the neutrophil nadir after the second treatment course with either no dose adjustment 

after the first course, standard dose reduction by 25% if grade 4 neutropenia occurred at the 
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first cycle, or model prediction-based dose adjustment targeting a nadir of 109 cells/l with 

different types and amounts of information used to estimate the individual random effects of 

the neutropenia model [Wallin 2010]. 

Barbolosi and Iliadis used a model incorporating drug pharmacokinetics, antitumour and 

hematotoxic effects to develop an optimized dosing regimen by simulation studies [Iliadis 

2000, Barbolosi 2001, Barbolosi 2003]. This model was associated with constraints on the 

plasma concentrations, drug exposure, and leukopenia. The resulting recommended regimen 

for etoposide consisted of an initial high-dose chemotherapy up to saturation of constraints 

associated with hematotoxicity and a maintenance continuous infusion at a rate that keeps the 

leukocyte count at its lower limit while decreasing the tumour cell population.

A similar framework was developed for docetaxel and epirubicin plus G-CSF in the treatment 

of metastatic breast cancer; a simulation study was done to investigate optimal time and 

duration of G-CSF administration [Freyer 2005]. It was concluded that the regimen of 5 

consecutive injections starting at day 5 was not inferior to usual 10-15 injections schedule.  

The hematotoxicity model proposed by Meille et al. [Meille 2008] extended to take into 

account the effect of G-CSF was prospectively applied in a phase I trial to individualize 

densified docetaxel + epirubicin administration (dose rate and duration) in the treatment of 

metastatic breast cancer [You 2007]. This approach aimed to optimize the drug dosing 

schedule at different dose levels by respecting a priori fixed constraints on severity and 

duration of neutropenia and thrombocytopenia. Such a control was successful and allowed to 

safely increase the dosing density.   

Non-hematological toxicity models 

In contrast to numerous models for chemotherapy-induced hematotoxicity, there are very few 

published models of other toxicities [Xie 2002, Henin 2009, Keizer 2010]. Although not as 

dangerous as severe hematoxicity, other adverse effects (gastrotoxicites, dermatological, 

cardiovascular, neurotoxicities) may reach intolerable levels and lead to treatment delays, 

dose reductions and discontinuations. Standard empirical dose reductions by 25% or 50% 

after several events with severe toxicity may be not the best strategy to an optimal clinical 

outcome. Individual model prediction-based dose adaptation is expected to be more 

advantageous. Since the effect is observed without invasive sampling, and if a model relates it 

to drug doses (instead of systemic exposure), such methods do not impose the inconvenience 

of additional blood samples for patients and clinical teams.  
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CONTRIBUTIONS OF THIS THESIS 

1. Review of pharmacodynamic models for discrete data 

Clinical outcomes are often described as discrete data: events (death, stroke, epileptic seizure, 

multiple sclerosis lesions, disease progression, severe toxic side-effect, etc.), their time-to-

event, count (rate), and severity grade. Each type of discrete data requires specific modelling 

structures and methods. A part of this thesis was to review the most common modelling 

approaches for categorical, count and time-to-event data, together with published applications 

of such models to analyse pharmacodynamic data. Useful applications of pharmacodynamic 

modelling include identification of influential factors related to the clinical outcome, 

characterization and quantification of their impact, making better informed predictions and 

clinical decisions, assessments of efficacy of therapeutic interventions, optimising the 

individual treatments and drug development studies.   

2. A posteriori dose individualization of capecitabine based on ordered categorical 

toxicity model predictions 

One of such mixed-effects pharmacodynamic models for ordinal data has been applied in this 

thesis to individually adjust the doses of capecitabine in the treatment of metastatic or 

advanced colorectal cancer to reduce the frequency and duration of hand-and-foot syndrome 

(HFS). More than half of patients treated with capecitabine develop this dermatologic 

toxicity, which affects the skin of palm and soles and may develop to blisters, severe pain and 

difficulties in normal everyday activities like walking and handling objects (Table 1).  

Grade 0 1 2 3 

Pain None 
Tingling or 

burning 
Pain Severe pain 

Symptoms 
Skin 

damage 
None 

Minimal skin 
changes or 

dermatitis (e.g., 
erythema) 

Skin changes (e.g., 
peeling, blisters, 
bleeding, edema) 

Ulcerative 
dermatitis, 
interfering 

with function 
Table 1: Hand-and-foot syndrome severity grades. 

Therefore, even if not life-threatening, this toxicity (at the higher grades 2 and 3) is dose-

limiting and requires dose interruptions and reductions. The standard approach used in clinical 
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practice is to interrupt the treatment until recovery to at least grade 1 and then continue the 

treatment with reduced doses (Table 2).  

Number of events 
Grade 

1 2 3 4 

2 100% 75% 50% 0 
3 75% 50% 0 0 
Table 2: Dose reductions after events with intolerable grade of HFS. 

This “rigid” approach is probably not optimal and it was interesting to investigate the 

feasibility of a subject-specific dose adaptation based on predictions given by a toxicity 

model, and to compare its performance to that of the standard method by simulations of 

virtual clinical trials.  

Recently, population models for both the adverse effect HFS and the tumour growth 

inhibition (TGI) effect of capecitabine in the treatment of advanced or metastatic colorectal 

cancer were published [Henin 2009, Claret 2009]. These models were used in this simulation 

study concerning individual Bayesian a posteriori dose adaptations. The stages of this work 

were: 

- to develop the concept and numerical techniques to determine the “best” next dose on the 

basis of the individual model prediction of the risk of intolerable (grade 	2) HFS over the 

next treatment cycle (including the estimation of individual random effects of the HFS model, 

estimation of the average weekly toxicity risk over the next 3 weeks taking into account that 

each week’s risk is conditional on the previous week’s HFS grade, algorithms for the search 

of the dose whose risk is closest (without exceeding) to the targeted risk); 

- to define the clinical trial protocol, the clinically relevant modalities of dose adaptations, the 

criteria for comparison of the different dose adaptation methods, with the consultation of a 

clinical oncologist;            

- to implement the HFS and TGI models together with the different dose adaptation 

approaches into a clinical trial simulation code; 

- to perform the simulations with various specifications of the dose search procedure in order 

to determine by sensitivity analysis the optimal “calibration” of the individual prediction-

based dose adaptation, that is one that would result in the biggest reduction of HFS toxicity 

without affecting the antitumour efficacy as compared to the standard dose reduction 

approach.  

In order to individually adjust the capecitabine doses for a particular patient so that the risk of 

hand-and-foot syndrome can be reduced and/or the chances of anticancer effect increased, 
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predictions of his/her risks are required. Data gathered from other patients with the same 

disease taking the same drug were used to construct a so-called population model of the 

adverse effect HFS. A particular feature of such “population” models is that they contain 

“population” parameters, representing the common effects, and the parameters representing 

individual differences, which can be estimated from the population model and the patient’s 

data collected in the course of treatment. Those so-called empirical Bayes estimates (EBEs) of 

individual effects are used to adjust the population model for each particular patient. The 

individualized model can then be used to predict the patient’s risk of severe HFS during the 

next treatment cycle. The next dose to take can be calculated according to the predicted risk 

and predefined criteria of what level of risk defines the “optimal” dose.   

The model used to describe the HFS is a mixed-effects transitional proportional odds model 

for longitudinal ordinal data, i.e. it: 

- does not model the observed grades themselves but their probabilities; to be more exact it is 

the logit transformation of the probability of being in a cumulative set of categories which is 

modeled. The logit transformation assures that the predicted probability lies in the interval 

from 0 to 1; it is the log of odds, which is a ratio of the probability of the event (grade) and of 

the probability of the opposite event. Because of this required duality of the events, it is the 

cumulative probabilities that are modeled, that is an event is defined as 
 G (where G is a 

particular grade, one of 0, 1, 2,…), its opposite then is  > G. The probabilities of particular 

grades are then calculated by subtracting the probabilities of being in adjacent cumulative 

categories: P(Y = G) = P(Y 
 G) - P(Y 
 G-1), where G is a particular grade; 

- uses the assumption of proportional effects of predictive variables for all grades (therefore, 

proportional odds model);  

- assumes the probabilities of the next week’s observation to be dependent on the current 

week’s grade, therefore is called a transitional (or Markov) model; 

- contains typical (population) parameters and individual-specific effects (therefore, mixed-

effects model). 

The best achieved result was an average reduction of about 10 days in the total duration of 

grade 	2 HFS over the trial duration (max 30 weeks of treatment + 4 weeks post-treatment 

monitoring). It was a result of less frequent and shorter reoccurring events with intolerable 

HFS. Consequently, there were fewer dropouts due to toxicity. This was the best found result 

in terms of HFS reduction while preserving the same antitumour efficacy. 
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It would be worthwhile and interesting to investigate the possible correlation between the 

pharmacodynamics of the HFS and the antitumour effects; however, the efficacy data was not 

available for the HFS model authors and therefore such a relationship could not be investigated.  

In conclusion, it was shown that individualized dose adaptation on the basis of ordinal 

observations of toxicity can be feasible and beneficial in terms of overall clinical outcome. In 

the used example of HFS, the impact was limited by the low sensitivity of the syndrome to 

dose changes. It is expected that the impact of such a method would be higher for reversible 

toxicities with faster dynamics (e.g. gastrointestinal). 

A new pharmacogenetics-based perspective to optimize capecitabine dosing regimens arose 

recently, as polymorphisms in genes of enzymes involved in the transformation of 

capecitabine into 5-fluorouracil have been found to be significantly associated with efficacy 

and toxicity. A polymorphism in cytidine deaminase gene was associated to increased risk of 

severe HFS [Caronia 2011] and a carboxylesterase 2 gene polymorphism was identified as a 

predictor of capecitabine response and time to progression [Ribelles 2008]. Future work on 

dose adaptation should take into account these polymorphisms.

The only covariate identified in the HFS model by their authors from the data available to 

them was the creatinine clearance as calculated by Cockcroft-Gault formula [Henin 2009]. It 

has been tested on both of the interindividual variability parameters (K and baseline logit). As 

creatinine clearance reflects the renal function, it was expected that it would explain the 

variability in the kinetics parameter K. However, it was much more significant as a covariate 

of baseline logit (baseline risk of HFS), as discussed in [Henin 2009].  

In the KPD model, the parameter K governs both the drug accumulation and the rate of effect 

manifestation, so it is not a purely PK parameter. The relation of the creatinine clearance and 

the risk of HFS may be linked to the hypothesis about the endogenous substances implicated 

in the HFS; the renal function may determine the elimination of those endogenous substances 

and thus influence the development of HFS. The pathophysiology of HFS is not well 

understood yet. 

The HFS model predicts the risk of grade 	2 to be lower for a patient in grade 1 than for a 

patient in grade 0. Based on the observed data from Phase III studies used to build the model 

(cf. Figure 1), the G0�G2 transition rates were higher than G1�G2 transition rates (0.032 

vs. 0.014). (G0�G1 rate: 0.021) 
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Figure 1: Transitions between grades, as observed in 
600 patients in Phase III studies. The circles 
represent the HFS grades 0, 1, 	2.  The numbers 
beside arrows and circles represent the counts of 
observed transitions (once per week).  

In clinical practice, it is also observed that some patients develop the grade 2 toxicity 

apparently straight from grade 0 (no toxicity). One hypothesis is that there may be a 

subpopulation of patients more sensitive to capecitabine (5FU) due to deficiency of 

metabolising enzymes (DPD). In contrast, patients who remain in grade 1 for a longer 

(observable) time seem to be less likely to develop more severe HFS. This hypothesis was 

tested during model development (mixture of 2 populations: sensitive and non-sensitive), but 

the available data did not support it. 

Another issue may be concerning the grading of the HFS. Attribution of grade 1 or 2 to the 

intensities of redness, swelling, pain and interference with daily activities is highly subjective. 

Though physiologically the transition from grade 0 to 2 or higher must pass via grade 1, the 

duration of grade 1 may be very short and therefore not reported in the dataset. The HFS 

model assumed once weekly observation consisting of the highest grade during the week, 

therefore omission of grade 1 was likely. 

In case of such missing observations in the dataset, latent variable models might be useful. 

There a continuous latent (unobservable) response variable is assumed, which is then 

translated to observable categories via thresholds of its values [Hutmacher 2008, Skrondal 

2007]. This methodology should be investigated in the future research involving categorical 

data. 

3. Empirical Bayes estimates of random effects of mixed-effects models for ordinal data 

As a part of development of the above introduced dose individualization approach, the quality 

of empirical Bayes estimates (EBEs) of the individual random effects (that adjust the 

population model to the individual patient on the basis of their previous observations) was 

checked. As the observed accuracy and precision of EBEs were rather low, it motivated to 

investigate their potentially influential factors. The quality of EBEs has a direct impact on the 

correctness of the predictions of individual risk of severe HFS toxicity, and thus is an 

important condition for the performance of the prediction-based dose adaptation methods.   
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Therefore, this work consisted of investigating the influence of: 

-  the estimator (mode vs. mean of the a posteriori distribution of random effects);  

- the optimisation algorithm, where local (simplex, quasi-Newton) and global (adaptive 

random search) optimum search algorithms were compared; 

- the amount of data per patient; 

- the distribution of categories within patients;  

- the magnitude of the inter-individual variability; 

- the values of the effect model parameters.  

In this study, it was found that the main factors affecting the quality of EBEs were the values 

of parameters governing the dose-response relationship and the within-subject distribution of 

categories.  

In the HFS model example, the values of the effect-driving variable were too low to                  

well identify the Emax function parameters, the within-subject distributions of categories were 

far from uniform. The EBEs had some bias and low precision, the impact on the clinical 

decision concerning the next dose to take was variable but considerable. In extreme cases, the 

impact of incorrect EBEs on the predicted risk of grade 	2 can be 4-fold; the corresponding 

doses calculated according to the true and to the estimated risk prediction can differ 10-fold. 

However, this almost did not have any impact on the overall performance of the dose 

adaptation method due to low sensitivity of the HFS to dose changes: the results were very 

similar with the true (simulated) values of random effects, with their EBEs, and without 

random effects (that is using the population model for the average patient). 

In general, the practical interest of knowing how good the EBEs are, is their direct relation to 

the quality of predictions and thus dosage decision based on that individual prediction. For a 

real patient, the quality of his/her EBEs cannot be exactly known (because the true values of 

individual random effects are not known).  

An assessment of the quality of EBEs can be based on the information about the main factors 

known to influence the estimates: the range of individual’s predictor variable (dose, exposure, 

etc.), the number of repeated observations and distribution of observed toxicity grades. 

More precise evaluation of general/population EBE quality can be obtained by simulations 

from the model and comparison of EBEs and simulated random effect values. Awareness of 

the quality of EBEs can then help decide whether to use them for predictions and dosage 

decisions.  

Potential ways to influence the quality of EBEs and therefore individual predictions: 
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- make sure that all grades are recorded (�frequent enough observations) and no 

information is thrown away, e.g. by transforming the actual observations into one 

(maximal) per week; 

- investigate if a simpler model (with less parameters) would give better individual 

predictions, even if the fit is worse, since a model which best fits the data is not 

necessarily the one who gives best predictions; 

- in case the original dataset contains the times of grade changes (as opposed to one 

grade per time unit), investigate if a continuous-time transition model would be more 

predictive. 

4. Population PKPD of hydroxyurea in sickle cell anemia patients 

The fourth work of this thesis concerned the chemotherapeutic drug hydroxyurea (HU) in the 

treatment of sickle cell anemia, one of the most common genetic diseases. It is caused by a 

mutation in the hemoglobin gene and characterized by rigid sickle-shaped red blood cells, 

which may lead to vaso-occlusion with various complications, such as acute painful crises, 

ischemia and damage of various organs, acute chest syndrome or stroke. 

The objectives of this work were: 

- to develop population PK-PD models for hydroxyurea in order to characterize the 

dose-exposure-response relationships and their variability, investigate for possible 

covariates; 

- to use these models to compare two dosing regimens (one continuous daily and the 

other with interruptions of 2 days after every 5 days) by simulation;  

- to develop some recommendations for monitoring the treatment. 

Since no dose-limiting toxicity occurred in this study, no toxicity model and related a 

posteriori dose adjustment tool was developed. Efficacy was measured on two biomarkers: 

fetal hemoglobin percentage (HbF%) and mean corpuscular volume (MCV).  

The change in MCV was more rapid than that in HbF%, the interindividual variability of the 

steady-state (SS) values of HbF% was much greater than that of MCV. Consequently, the SS 

value of MCV at month 3 was not predictive of the SS HbF% value at month 26. Therefore, 

the HbF% level, which is also directly related to the relief of sickle cell disease symptoms, 

may be the better biomarker for monitoring HU treatment. 

Concerning the comparison of the two dosing regimens, the difference was very small for the 

MCV profile, but larger for the HbF% profile, especially for patients reaching the highest 
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levels of HbF%. For these patients who have the strongest response to the drug, continuous 

dosing may be more beneficial in terms of increase in HbF% than the intermittent schedule.     

The estimate of effect intensity suggested an exciting perspective that HbF could be further 

increased by more potent drugs or by drug combinations. 

Unfortunately, no covariates explaining a significant part of variability could be identified 

from this dataset, no data concerning compliance or genetic polymorphisms found to be 

associated with the response to HU was available. Information about polymorphisms in genes 

regulating HU metabolism or transporters, HbF expression and erythroid progenitor 

proliferation would potentially adjust the dosing schedule a priori.   
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DISCUSSION  

Cancer chemotherapy is a delicate balance between anticancer efficacy and toxicity on 

healthy tissues. In order to receive the highest benefit from the available treatments, the 

potentially high variability in response among patients has to be handled properly. Various 

“personalized medicine” approaches have been and are developed to individually tailor the 

treatments and their dosing regimens to patients: based on genetic and phenotypic markers, 

indicators of drug disposition functions, monitoring of drug exposure or effects, etc. 

Neither a priori, nor a posteriori methods are sufficient and optimal alone in all cases; they 

are complementary in their roles: a priori knowledge of high risk of severe toxicity or of lack 

of efficacy may help avoid these serious consequences, while a posteriori dose adjustments 

may allow to achieve the best possible clinical benefit from the treatment. For a priori

decisions, the role of pharmacogenomics is rapidly growing and promising. For a posteriori

dose adjustments, Bayesian method using population PK-PD analyses is the method of 

choice. A dosing scheme combining both a priori and a posteriori approaches has been 

proposed by [Gao 2008]. 

Dose-individualization strategies have been developed for many anticancer drugs. However, 

there is a gap between the research and the clinical practice; only a few examples are 

regularly used in clinical setting. Large prospective randomized clinical trials comparing the 

individualized and standard dosing approaches are needed to demonstrate whether 

individualized dosing results in a clinically significant therapeutic benefit (decreased toxicity 

and/or improved therapeutic outcome). Most of the reported prospective studies have been 

rather small, though useful in assessing the feasibility of individualized dosing protocols [de 

Jonge 2005, Zandvliet 2008].  

Moreover, as there may be increased costs in terms of assays, logistics, clinical staff training 

and work time, measurement related supplemental hospitalization, the clinical benefit has to 

be substantial enough to outweigh the additional costs and demonstrate cost-effectiveness of 

the individualized approach.    

Wide-spread implementation is likely to be further hindered by practical issues concerning 

technical feasibility, where required costly analytical equipment may not be available. 

Moreover, TDM may require special training (for assay analysis, specialised computer 

software and interpretation of results) and a considerable collaborative effort of the whole 

clinical service team (oncologists, pharmacists, nurses, laboratory technicians, etc.) [Hon 

1998]. 
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In some cases, TDM may lead to some inconvenience for the patients: more visits to the 

hospital, more blood samples (for PK or hematotoxicity-based), more care for compliance 

with orally taken drugs when dosing regimens are changing. There are also ethical issues 

concerning the handling and access to genetic data [Squassina 2010].  

Considering all the practical and economical constraints for launching large prospective 

randomized clinical trials to demonstrate the clinical benefit of individual dose adaptations, 

virtual studies by computer simulations offer a particularly useful assessment of possible 

impacts and constitute a valuable aid in planning and making decisions. It allows to compare 

different dosing regimens, determine the most influential factors by sensitivity analyses, 

determine the impact on various endpoints on different scales, evaluate and compare different 

trial designs (sample size, dosing regimens, measurement times, etc.), assess the impacts in 

special populations (pediatrics, hepatic or renal impairment, etc.), while taking into account 

the variabilities and uncertainties at various levels. An important benefit of clinical trial 

simulation is the necessity to explicitly state all the assumptions related to the trial. Therefore, 

it may help reduce risks, time and monetary costs, as well as ethical concerns. 

However, simulations require the specification of mathematical models which are a 

simplification of reality, representing only what we already know about the drug, disease and 

factors affecting variability, and thus reproduce only the known outcomes. While protocol 

violations such as dropout and non-compliance can be reproduced in the simulations, 

manifestation of unexpected rare events cannot. Therefore, simulations of clinical trials are 

not meant to replace real clinical studies, but to complement and to help optimize them. 

Population PK-PD analyses are strongly encouraged, as they may be highly beneficial in 

enabling: 

- to integrate information and knowledge from various sources (blood samples, tissue 

samples, imagery, animals, in vitro, genetics, knowledge about similar compounds), at 

various effect scales (cellular, tissue, organ, disease, survival); 

- to identify relevant relationships between drug doses, exposures, effects; 

- to quantify different types of variabilities in such relationships, identify factors useful 

in explaining them, and quantify their relevance for clinical outcome; 

- to investigate for drug interactions, optimal regimens for combined therapies common 

in oncology; 

- to make better predictions about future or unstudied situations (extrapolate); 

- to develop individual dose optimization strategies.
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More mechanistic models, better reflecting the physiology, are needed for in silico analyses 

more sophisticate than mere description of observed data.     

In order to be able to extract knowledge from data, they have to be extensive, precise and 

informative. Growing availability of advanced medical imaging techniques, such as PET or 

PET-CT scans, to measure malignant tissues, is expected to facilitate the identification of drug 

dose/exposure-efficacy relationships.  

To be able to identify well the dose/exposure-response relationship (therapeutic or toxic), a 

wide range of doses/exposures has to be tested, from those having weak (subtherapeutic) 

effect to (quasi)maximal effect (too toxic). 

Concerning the identification of relationships between doses/exposures and categorical 

toxicities, it is very important that all grades (including the “tolerable” grade 1) are rigorously 

reported to well inform the dynamics of the toxic effect. Hidden Markov models may be an 

interesting option to investigate, to account for possible imprecisions/heterogeneity in toxicity 

grade reporting. 

For the a posteriori dose modifications to be effective, the toxic endpoint has to be sensitive 

enough to dose changes. In addition, it must not to be much influenced by unknown 

(uncontrollable) factors (i.e. have low interoccasion variability), so that predictions of future 

risk are sufficiently accurate. Moreover, the model used for TDM has to be able to reproduce 

realistically that sensitivity to dose changes. Extensive validations of the models are needed. 

The EBE quality is an issue that may be difficult to overcome, especially for toxicities 

evaluated only by grades, since a wide range of drug exposures, high number of observations, 

uniform within-patient distributions of grades are required for good estimation but not very 

likely in clinical reality.   

Advances in science, technology, understanding of genetic and molecular mechanisms of 

cancer and effect of treatments on malignant and healthy tissues bring possibilities to better 

tailor treatments and their dosing regimens for individual patients, so that best possible 

therapeutic effect is attained with least of adverse effects. Various complementary 

“personalized medicine” tools have been and are developed to allow earlier and better 

informed clinical decisions. Many still are at exploratory stage, encountering diverse technical 

and practical difficulties on their way to clinical implementation, but promising significant 

improvements in optimizing healthcare of cancer patients.    
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ABSTRACT 

Clinical outcomes are often described as events: death, stroke, epileptic seizure, 

multiple sclerosis lesions, recurrence of cancer, disease progression, pain, infection and 

bacterial/viral eradication, severe toxic side-effect, resistance to treatment, etc. They may be 

quantified as time-to-event, counts of events per time interval (rates), their severity grade, or a 

combination of them. Such data are discrete and require specific modelling structures and 

methods. This article references the most common modelling approaches for categorical, 

count and time-to-event data, and reviews examples of such models applied in the analysis of 

pharmacodynamic data. Modelling is useful for identification of influential factors related to 

the clinical outcome, characterization and quantification of their impact, for making better 

informed predictions and clinical decisions, assessments of efficacy of therapeutic 

interventions, optimising the individual treatments and drug development studies.   

INTRODUCTION 

Clinical outcomes are often described as events: death, stroke, epileptic seizure, 

multiple sclerosis lesions, recurrence of cancer, disease progression, pain, infection and 

bacterial/viral eradication, severe toxic side-effect, resistance to treatment, etc. They may be 

quantified as time-to-event, counts of events per time interval (rates), their severity grade, or a 

combination of them. Specific modelling approaches required for each type of discrete data, 

as well as examples of their applications to study pharmacodynamic data, are reviewed in this 

paper. 

First, it reviews the potential explanatory variables and functions for quantification of 

their effect. Then, specific model structures for binary, categorical (ordered and nominal), 

count, time-to-event data are briefly described and referenced. Next, illustrations of those 

models with literature examples of applications in medical research are given. Finally, a brief 

discussion concludes the review. 
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MODELS 

Explanatory variables  

Any model consists of three main components: the response (dependent variable), the 

explanatory variables, and the link function that relates them.  

The usual explanatory variables for the pharmacodynamic responses are drug dose, 

steady-state concentration or AUC (area under the curve of concentration-time plot) of the 

drug, individual patient characteristics (age, gender, body size (weight, body surface area), 

ethnicity, renal and hepatic functions, genotypes, performance status, concomitant diseases 

and medications) and other external factors, such as time (diurnal fluctuations, seasonality).  

Explanatory variable functions 

The effect of explanatory variables can be described by various functions: linear, 

nonlinear (Emax, sigmoid Emax, exponential, power), they may assume interactions of 

predictors (particularly time). The main “typical” parameters describe the average population 

effects, the individual “random” effects adjust them to each individual and account for the 

correlation among observations of the same subject.     

Autocorrelation 

In some cases, special terms may be used to account for autocorrelation between 

subsequent observations. For categorical data modelled by discrete time models, probabilities 

of the next observation may be assumed to be dependent on the current category.  

Hidden states 

Sometimes, the observed response (symptom) may be related to a latent 

(unobservable) categorical variable, which more directly represents the disease state. The time 

course of the disease is described by a hidden Markov process (containing an assumed 

number of states), and the observed variable is related to the hidden disease state by some 

probabilistic model (depending on the type of the observed variable). The probabilities of 

transitions between the states of the hidden layer are described as a function of explanatory 

variables, including drug exposure.  
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Categorical data models 

A common example of categorical data is grades of severity of pain or adverse effects 

(“none”, “mild”, “moderate” and “severe”). The simplest case consists of only two  

categories: “presence” and “absence” of event (relapse, death, stroke, etc.). They are modelled  

by generalized (non)linear models using a link function between the probability of 

event and the function of explanatory variables: 

g(p) = f(B,X),  

where p – probability of event/presence, X – explanatory variables, B – coefficients of the 

explanatory variables function.

The most common link function is logit: 

f(B,X) = log (p/(1-p))

Alternative functions may be used: 

• Probit: f(B,X) = �-1(p), where � is the standard normal cumulative distribution 

function, 

• Complementary log-log:  f(B,X) = log(-log(1-p)).

The choices of link function correspond to different assumptions about the distribution of the 

underlying continuous variable [Raman 2005, Liu 2005, Lee 2003]: 

• Logistic for logit link, 

• Normal for probit link, 

• Extreme value (log-Weibull) for complementary log-log link. 

The binary data model can be naturally extended to categorical data: instead of two 

categories, there are K, and so K-1 probabilities are modelled instead of one. 

In case of ordered categorical (ordinal) data, the most common approach is to specify 

cumulative probabilities of categories not higher (or lower) than a certain value, so that the 

order of categories is taken into account:

p(Yt � k), k = 1, …, K-1. 

If an underlying continuous response variable is assumed, the values of k represent the 

threshold (cut-off) values for the separation into category intervals [McCullagh 1980, 

Anderson 1981].  

For interpretation of the results, single category probabilities may be later obtained by 

the following transitions: 

P(Y = 1) = P(Y � 1)

P(Y = k) = P(Y � k) - P(Y � k - 1)
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The explanatory variable function f(B,X) includes constants �k, which represent baseline 

probabilities of categories. For ordinal data, they are restricted to be ordered �1 <…< �K-1 (or 

in decreasing order, depending on the specification of the cumulative probabilities). 

Proportional odds models 

When the logit model assumes the same effects of explanatory variables for all 

cumulative probabilities, it is commonly referred to as “proportional odds” model 

[McCullagh, 1980]. This “parallel slopes” assumption states that the effect of changes in the 

predictor values X is homogenous for all the K – 1 cumulative probabilities. 

This assumption may not always be appropriate, especially when the ordinal data does 

not represent a categorization of a continuous scale, but composite ranks [Zingmark 2005 

thesis].  Many different ways to relax the proportional odds assumption have been proposed 

[Peterson 1990, McCullagh 1980, Zingmark 2005 thesis]. Some of the simplest approaches 

are, for example, to consider a separate vector of parameters �k for each response level, or to 

allow a heterogeneous effect for only some of the explanatory variables (that is assume partial 

proportional odds [Peterson 1990]).  

Continuation ratio models 

The probability of the ordinal response may be specified in other ways than the 

cumulative probability. Continuation ratio models specify the conditional probability of a 

particular grade given that the higher (or lower) grades are not possible:
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These models are therefore particularly suited for sequential irreversible processes (e.g. 

deterioration or growth). In the case of logit link, they are also referred to as proportional 

hazards models [Agresti 1999, Liu 2005].  

The continuation ratio models have the advantage over the cumulative link models that 

the intercept parameters in the latter have to be ordered (�1 <…< �K-1), while this restriction is 

not used in the continuation ratio models. Moreover, these models may be estimated by 

software dealing with binary mixed-effects regression models [Lindsey 1997]. 

Adjacent category models 

Adjacent category models are intended for cases where the response variable is 

perceived as truly categorical [Vermunt 2004] and one wants to describe the effects that apply 
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to pairs of adjacent categories rather than to cumulative probabilities [Hartzel 2001]. Here, the 

odds between two adjacent categories are modelled [Agresti 1999]:  
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This model is also invariant to changes in the definition of categories, in case of underlying 

continuous response variable and assumed proportional effect of explanatory variables 

[McCullagh 1980].  

Nominal data models 

In case of nominal (unordered) data, the most common approach is to specify one 

category as a reference/baseline, and model the ratio of probabilities of each other category to 

the probability of the “reference” category: 

p(Yt = k)/p(Yt = K), k = 1, …, K-1. 

Count data models 

Responses described as number of events per time interval (for example, number of 

epileptic seizures per week or month) constitute count data. This type of data is different from 

the ordinal data in that the number of categories is not definite.  

The simplest model for such data (n = 0, 1, 2, …) is the Poisson model: 

!
)(

n
e

nYP
n λλ −⋅

== ,  

where �>0 is a parameter (function of explanatory variables) corresponding to the event rate 

(a number of expected events per time interval) and to its variance: 

E(Y) = var(Y) = �.

Since � has to be a positive number, the effect of explanatory variables is modelled on its 

logarithm:

log(�)= f(B,X). 

However, its assumption of equidispersion may often be not valid. Alternative distributions 

are proposed to relax this assumption: 

• Generalized Poisson, 

• Zero-inflated Poisson (allows for high counts of zeros), 

• Zero-truncated Poisson (excludes zero values), 

• Negative Binomial (allows for overdispersion), 

• Zero-inflated Negative Binomial (allows for high counts of zeros and overdispersion), 
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• Zero-truncated Negative Binomial (excludes zero values and allows for 

overdispersion), 

• Hurdle model (Poisson-logit or Negative Binomial-logit), 

• Weibull (allows for both over- and underdispersion, nests both Poisson and negative 

Binomial as special cases). 

When there is more than one observation per subject, their correlation can be accounted for by 

including random effects (having Gaussian, Gamma or Beta distributions). 

Time-to-event data models 

TTE functions 

Rare or single events (relapse, stroke, death, etc.) are usually described using a 

different approach from frequent events: instead of modelling the number of events per unit of 

time, the time to event is modelled. Time-to-event (TTE, or survival) data are usually 

described and modelled by three related functions: the survivor, the hazard, and the 

cumulative hazard (risk) functions.  

The survivor function (or survival probability) S(t) describes the proportion of 

individuals in the population surviving beyond time t,�

sindividualofnumbertotal
ttimethanlongersurvivingsindividualofnumbertS =)( . 

At the individual level, it can be interpreted as the probability for the individual to survive 

beyond time t (or a cumulative probability of having no event up to time t). It is equal to 1 at 

t=0 and is monotonously decreasing to 0 as time goes to infinity. 

The hazard h(t) is the (instantaneous) death (event) rate at time t, conditional on 

surviving until time t: 
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It is also described as the instantaneous probability for the event to occur at time t, knowing 

that there was no event up to that time, or as the force of mortality, or the conditional failure 

rate, or as a function representing the change in the immediate future of an individual’s 

probability of death, given the survival up to the current time. From a life table, it is 

calculated as the fraction of those who died at time t out of the number alive at that time. The 

values of the hazard function are non-negative, but can vary in all directions over time. As the 

descriptor of event rate, it has units of 1/time.  
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The cumulative hazard function represents the risk of event over the time interval 

(from 0 to t), it is the integral of the hazard (or the area under the hazard function) over the 

interval: 

R(t) = �
t

duuh
0

)( . 

It can also be seen as the total number of subject’s events over the time interval.    

Mathematically, the three functions are simply different expressions of the same 

function: 

S(t) = P(T > t) = e-R(t) = 
�−
t

duuh
e 0

)(

. 

The probability of having an event at a particular time t is described by the probability density 

function, given by a product of survival and hazard functions:  

)()()( thtStpdf ⋅= . 

TTE analysis methods 

The most common approach of analysing survival data is the semiparametric (Cox) 

model, where no parametric form of the hazard function is specified. Parametric relation 

assumptions are only used to estimate the effect of explanatory variables on the baseline 

hazard function (i.e., the hazard for which all covariates are equal to zero). 

The survivor functions are estimated by nonparametric Kaplan-Meier method, as ratio 

of the number of deaths at a given death time to the number of individuals at risk at that time. 

However, efficiency (parameter precision) is gained when using parametric 

approaches, that is assuming a certain distribution for the survivor function:   

• exponential: h0(t) = �0

• Gompertz: teth ⋅⋅= 1
00 )( ββ

• Weibull: 1
00 )( −⋅⋅= γγβ tth    or reparameterized )ln(

00
1)( teth ⋅⋅= ββ

TTE: effect of explanatory variables 

Explanatory variables are commonly assumed to have a multiplicative/proportional 

effect on the hazard (this assures that hazard is always non-negative):   

),(
0 )()( Xfethth Β⋅= .

In the simplest analyses, the explanatory variables are independent of time (constant), their 

effects are assumed to be summed by a linear function (may include interactions). Such 
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models are called “proportional odds” models, and the coefficients B are used to calculate the 

hazard ratio between groups.   

Various extensions of this basic model are proposed to accommodate different more 

complex situations: 

-  different baseline hazards, 

- time-varying explanatory variables, 

- time-dependent effects, 

- repeated correlated events, 

- several possible causes of the event, etc.

Multistate (or continuous-time transitional/Markov) models 

Multinomial (multistate) data can be modelled by an extension of time-to-event 

models to model rates of transitions between various states (for example, stages of illness), 

instead of just from “no event” to “event” [Meira-Machado 2009].  

EXAMPLES 

Models for ordered categorical data 

Representative examples of drug evaluations based on ordered categorical data 

analysis are summarized in table I. Frequently, the categorical response studied was a toxic or 

an adverse effect (in 6 studies out of 17). This is because adverse effects, which are usually 

collected for qualitative or semi-quantitative assessment only, are frequently measured on a 

categorical scale. The number of grades in the scale was typically 4 and never greater than 6. 

A higher number of grades would not yield much more information but would result in large 

uncertainty on parameter estimates. In most cases, the measurements were repeated several 

times in each subject. 

Model structure 

In all cases, the link function was the logit. In almost all studies, at least one random 

effect (ηY) was introduced in the model to account for correlation between measurements of a 

same individual. In case of frequent measurements, serial correlation between successive 

measurements must be accounted for to avoid biased estimation of model parameters [Lunn 

2001]. One way to overcome this difficulty has been to condition each observation on the 

previous measurement via a Markov model [Lunn 2001, Zingmark 2005]. 
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In several studies, the effect of placebo was accounted for, using an empirical time 

function. The metrics for drug exposure was either dose, AUC, drug concentration profile in 

plasma or in the effect compartment. In a few studies, drug exposure was not measured but 

calculated using a population PK model. In this case, the population PK model was validated 

by VPC or external validation. The drug effect model was usually an Emax model unless the 

metrics for drug exposure was the dose and only one dose level was studied. Sometimes, the 

response or the dose-effect relationship appeared only in a subset of patients [Kowalski 2003]. 

In this case, the probability of the graded response had to be conditioned on the observation of 

a response, i.e. the logistic model was applied only to the subset of responders [Kowalski 

2003].  

Model building and validation 

Model building was rarely described in details. In all cases, the pharmacokinetic 

model, if any, and the logistic model were built separately. The building tools for the logistic 

model, when reported, were the residual plots (in the probability domain), the likelihood ratio 

test or Bayes factors, and the confidence or credibility intervals for parameter estimates. 

Validation of the model was more frequently reported. The main approach consisted in a 

visual comparison between observed frequencies and predicted probabilities of each grade, as 

a function of time or drug exposure. The predictions were based either on the typical values 

(all ηs set to zero) or on repeated simulations (by drawing in ηs distributions). The latter 

approach is a form of predictive check. This approach should be preferred for all models 

involving random effects, because it is general, flexible, easy to interpret, and takes into 

account all parts of the model. 

Main results 

The main result of the analysis was, in most cases, to identify the exposure measure 

best related to the response, and to describe the probability of each grade of response as a 

function of drug exposure and time. Some covariates influencing these relationships were 

sometimes identified, such as the effect of age for sildenafil [Claret 2006], or the number of 

courses of previous treatment with platinum-based regimens for topotecan [Mould 2002]. The 

effect of seasonality on the response to an anti-IgE antibody used for rhinitis could even be 

characterized [Lunn 2001]. These models ultimately allowed to reach conclusions of broader 

interest, such as the optimal dose for topotecan topotecan [Mould 2002] or the therapeutic 



64

index for oxybutynin [Gupta 1999]. In the latter case, however, two separate models had to be 

defined, one for the therapeutic effect, the other for the main side effect. 

Models for count data  

Model structure 

In the three studies (table II), a Poisson model was used to describe the frequency 

(count per unit time) of the event (incontinence episode or seizure episode). In these studies, 

the design included a placebo group and each patient received several doses. This design 

allowed the placebo effect to be accounted for, and the dose-response relationship to be 

identified. In all cases, the statistical analysis, based on the combination of several studies, 

was akin to meta-analysis. However, no statistical test for heterogeneity between studies was 

reported, i.e. comparability between studies was assumed.  

In the study on pregabalin (an antiepileptic drug) as add-on therapy, 25% of patients 

did not respond to the treatment, while the remaining 75% exhibited a dose-response 

relationship, reaching a maximal percentage of seizure reduction from baseline of 100% for 

women and 80% for men. The occurrence of these two populations (responders / non-

responders) was accommodated through a mixture model on η. The same team assessed the 

statistical performances of mixture modelling in the context of a Poisson model for count 

data, i.e. (1) what is the probability of concluding that a mixed population exists when there 

truly is a mixture, (2) what is the probability of concluding that two subpopulations exist 

when there is truly a mixed population, and (3) how well can the mixture be estimated, both in 

terms of the population parameters and the individual subject classification [Frame 2003]. 

When no mixture was present, the false positive probability was less than 0.078. When 

mixtures were present, they were characterized with varying degrees of success, depending on 

the nature of the mixture. As expected, when the difference between subpopulations was 

greater the mixtures became easier to characterize. The median proportion of subjects 

classified correctly ranged from 0.59 to 0.96. 

Model building and validation 

Model building was based on the likelihood ratio test and confidence intervals of 

estimated parameters. Validation was based on posterior predictive checks, using the 

percentage of responders or the decrease in event frequency at each dose level. 

Main results 
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Quoting Miller [2003], “The traditional binary approach of analyzing responder rate (> 

50% reduction in seizures) ignores the information implicit in a graded exposure-response 

relationship. Using seizure frequency as the basic unit of response permits the exploration of 

the full exposure-response relationship”. In turn, the influence of covariates on response is 

expected to be characterized with greater power.  

Time-to-event models 

Model structure 

The probability of time-to-event measures can be expressed as functions of the hazard. 

The log hazard may be modelled directly in terms of covariates, so that the time-varying 

nature of the hazard can be explained in part by time-varying covariates such as drug 

concentration. This approach was used to model the effect of ondansetron concentration on 

time to emesis after ipecac administration [Cox 1999], or the effect of docetaxel cumulative 

AUC on time to disease progression. In the absence of time-varying covariates, the 

expectation or the median of the time-to-event density may be modelled as a function of 

covariates.  

Model building and validation 

The tools used for building the model were rarely described. Cox [1999] described a 

number of “residuals”. These residuals involve comparison of observations and predictions 

for the typical individual (i.e. calculated by setting the fixed effect parameters to their 

maximum likelihood estimate and 
 to zero). The first two residuals are residuals for observed 

event times, the first on the time scale, and the second on the log probability scale. These 

residuals are defined only for subjects with at least one event. A third type of residual, based 

on the probability of being event-free for the entire experiment, is defined for all subjects. 

Validation was based on visual or posterior predictive checks in almost all studies. 

When only one event is recorded, the percentage of patients with or without event versus time 

may be used as a criterion for validation. This was the case in the study on time to anemia in 

patients treated by interferon and ribavirin for hepatitis C [Tod 2005]. When the event is 

measured repeatedly, other criteria may be used, such as minimal and maximal time to event, 

or maximal and median number of events. 

Main results 
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For a single event, time-to-event analysis is complementary with logistic regression. 

The latter deals with the probability of an event at a given time point, while the former looks 

at the time required to observe the event, if it happens. For repeated events, time-to-event 

analysis is complementary with count data analysis, which deals with the frequency of the 

event. Hence both types of methods are used, sometimes jointly, in the analysis of categorical 

data. This was the case for the study of sildenafil effect on female sexual activity, where both 

the satisfaction score and the time between sexual events were of primary interest to 

characterize drug effect. Time-to-event analysis is amenable to a number of evaluations that 

are relevant for pharmacological studies, such as ED50 or EC50 estimation, dose- or 

concentration-effect relationship and covariate analysis. For example, higher cumulative AUC 

of docetaxel, lower alpha-1 glycoprotein and fewer organs involved in cancer were associated 

with longer time to progression and time to death [Veyrat-Follet 2000]. 

Like any other statistical approach, time-to-event analysis may lead to inconsistent 

results which deserve an in depth exploration. For example, a Cox survival analysis was 

carried out to examine the relationship between capecitabine metabolites exposure and time to 

progression and death in cancer patients [Gieschke 2002]. By a univariate analysis, a negative 

association was found between the AUC of 5-FU (the active metabolite) in plasma and time to 

disease progression (hazard ratio = 1.626, P = 0.0056). The authors explained that (1) 5-FU 

concentration in plasma may not be predictive of 5-FU concentration in tumor, due to variable 

expression, in tumor tissues, of thymidine phosphorylase required to form 5-FU, and (2) 

patients with high 5-FU AUC in plasma had also a high level of serum alkaline phosphatase 

(ALP), which was associated with a shorter time to disease progression. In a bivariate analysis 

of time to progression versus 5-FU AUC and ALP, the relationship with 5-FU became non 

significant.  

Finally, survival data are less informative than continuous data, because intrasubject 

variability cannot be reduced beyond a certain level. As a result, there remains a large 

difference between observed time-to-events and their predictions. Simulation of the model 

allows to predict the typical survival curve, but not the time-to-event in a single individual. 

Transitional models 

Model structure 

The four examples in table IV describe a number of possible settings and usage. The 

first example deals with non-ordered categorical data. The hypnotic effect of temazepam was 

evaluated by recording every 30 s during sleep in which of 6 sleep stages were the patients 
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[Karlsson 2000]. The aim of the model was to estimate the probability of moving from one 

sleep stage to another, given the fact that the patient was in a different stage during the 

previous interval, and to determine what factors influence these probabilities. The transition 

probabilities were assumed to be the sum, in logit domain, of changes attributable to 

nighttime, stage time, and drug effect. 

The second example deals with the comparison of the effect of two drugs (naratriptan 

and sumatriptan) in acute migraine in a hidden Markov model with two layers [Maas 2006]. 

The model considers the time course of migraine as transitions between three disease states. 

The disease states are the first layer, while the headache scores are ascribed to the second 

layer. The first layer is non-observable (the hidden layer), while the second is observable. The 

hidden layer states are, by order of apparition, full migraine attack, pain relief and pain free 

status. Headache scores ranges from 0 to 3. The model focuses on the rate of transition 

between the disease states, given the measurements of headache scores at several occasions 

after drug administration for a migraine attack. The time spent in each state before moving in 

the previous or the next state is a random variable, which is assumed to follow an exponential 

distribution. The latter assumption is equivalent to assume a constant hazard for transition. 

Hence the rate of each transition is characterized by a single rate constant. In this formulation, 

the Markov model is akin to a time-to-event model. The log transition rates are assumed to be 

the sum of changes attributable to drug exposure and covariates.  

Model building and validation 

Model building may be carried out by using residual plots comparing the observed 

rates or frequencies of transitions with their predictions as goodness-of-fit plots, the likelihood 

ratio test to compare alternative models, and the confidence interval of parameter estimates. 

The way to obtain confidence intervals on response predictions has been described by 

Anisimov [2007] and these confidence intervals are important to assess the predictive 

performances of the model. Validation per se is most conveniently carried out by posterior 

predictive check based on outcomes such as the proportion of patients or the time spent in 

each state.  

Main results 

 The primary result of this kind of analysis is to describe the influence of drug exposure 

on the probability or the rate of transition between states, with respect to time. This may 

convey much information about drug action. For example, temazepam was shown to reduce 
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the time spent awake by four mechanisms: (1) facilitation of transition to “deeper” sleep, (2) 

inhibition of transition to “lighter” sleep, (3) regardless of sleep stage, inhibition of the 

transition to wake state, and (4) facilitation of return to sleep. This detailed assessment allows 

in turn to compare drugs. For example, naratriptan was shown to have greater potency than 

sumatriptan (EC50 ratio = 3.3) but lower maximal effect (Emax ratio = 0.74) for the first 

transition, leading to pain relief in headache. Ultimately, this kind of model may be used to 

find the optimal dosing schedule and/or the target exposure. 

Table I : models for ordered categorical data.  
Drug Response 

Nb of 

grades 
Pop size 

Nb 

occa-

sions 

Rando

m effect 

Exposure 

measure 
Validation Software Main result Comment 

Author 

year 

Investiga-
tional 

Toxicity 5 
3 groups of 6 

rats 
1 

Subject-
specific 

Dose and 
AUC 

none 
NONMEM 

and 
BUGS 

Probability of 
score vs dose 

or AUC 

Placebo effect 
accounted for 

Aarons 
2001 

Sildénafil 
Orgasm 

satisfaction 
score 

5 
614 women 

several doses 

Every 
day, 
12 

weeks 

Subject 
specific 

Dose PPC NONMEM 
Dose effect 
relationship 

vs age 

Placebo effect 
accounted for 

Claret 
2006 

Inolimomab Acute GVH 4 21 patients 9 to 28 
Subject 
specific 

Cumulated 
AUC 

VPC and PC NONMEM 

Identification 
of efficacy vs 

exposure 
relationship 

Dartois 
2007 

Hydrogen 
sulfide 

Toxicity 4 

6860 subjects 
several 

concentration 
and duration 

1 No 
Concen-

tration and 
duration 

none MCsim LC50 
Bayesian 

framework 
Diack 
2005 

Tramadol Pain relief 
5 items,  
3 grades 

each 
104 children 9 

Subject 
specific 

Ce(t) of 
tramadol 

and 
metabolite 

VPC NONMEM 

Probability of 
score vs time. 
EC95 for T 

and M1 

Garrido 
2006 

Fluvoxamine 
Inhibition 
of PCA 
effect 

3 items,  
4 grades 

each 

66 rats 
3 dose levels 

8 No C(t) 

Visual 
comparison of 
observed and 

predicted prob. 
vs conc. curves 

NONMEM 
EC50 for 

each item and 
grade 

Geldof 
2007 

Capecitabine 
Safety 

parameters 

4 items,  
2 grades 

each 
505 patients 1 No 

Cmax, 
AUC of 3 

active 
métabolites 

none 
(LR test 
and SE) 

NONMEM 
SAS 

Identification 
of 3 toxicity 
vs exposure 
relationships 

Gieschke 
2002 

Oxybutynin Dry mouth 4 187 patients 2 to 6 
Subject 
specific 

Dose 

Visual 
comparison of 
observed and 

predicted prob. 
vs dose 

NONMEM 

Probability of 
dry mouth is 
less with XR 
formulation 

Placebo effect 
accounted for 

Gupta 
1999 

Capecitabine 
Hand and 

foot 
syndrome 

4 595 patients 

Each 
week, 

30 
weeks 

Subject-
specific 

A(t) in 
biophase 

PPC and data 
splitting 

NONMEM 

HFS score is 
related to 

drug amount 
in biophase 

Markov 
component to 
account for 

previous 
observation 

Henin 
2007 

Propofol Sedation 6 20 patients 

4 
times / 

day 
2 to 5 

d 

Subject 
specific 
on EC50 

C(t) 

Visual 
comparison of 
observed and 

predicted prob. 
vs conc 

NONMEM 
EC50 for 

each score 
Knibbe  
2002 

Investiga-
tional 

Adverse 
event 

4 811 patients 4 
Subject 
specific 

Dose PPC NONMEM 
AE severity 

vs time, dose 
and age 

Bimodality + 
Placebo effect 
accounted for 

Kowalski 
2003 

Anti-IgE 
antibody 

Rhinitis 
Sneezing 

scores 
4 155 patients 

Daily 
12 

weeks 

Subject 
specific 

Dose VPC WinBUGS 
Score vs dose 

and 
seasonality 

Bayesian 
framework. 

Markov 
component 
accounts for 

serial 
correlation 

Lunn 
2001 

Ketorolac Analgesia 5 522 patients 6 
Subject 
specific 

Ce(t) VPC NONMEM 

Score vs dose 
and time. 

Percentage 
patients with 
adequate pain 
relief vs time 

Placebo effect 
accounted for 

Mandema 
1996 

Topotecan 
Neutro-
penia 

6 438 patients > 3 
Subject 
specific 

AUC VPC NONMEM 
Optimal dose 
according to 
covariates 

Mould 
2002 

Monoclonal 
antibody 

ATM-027 

Receptor 
expression 
on T cells 

3 73 patients 10 
Subject 
specific 

C(t) 

Visual 
comparison of 
observed and 

predicted prob. 
vs 

concentration 

NONMEM 
Score vs time 

or 
concentration 

Comparison 
with a 

continuous 
data model 

Zingmark 
2004 

Investiga-
tional 

CNS side-
effect 

3 
6 transi-

tions 

12 healthy 
subjects 

Every 
3 min, 
several 
hours 

Subject 
specific 

Ce(t) PPC NONMEM 

Time course 
and frequency 

of the side 
effect. 

Markov 
component 
accounts for 

serial 
correlation 

Zingmark 
2005 
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Table II: models for count data. 
Drug Response Pop size 

Nb occa-

sions 
Link model 

Exposure 

measure 
Validation Software Main result Comment 

Author 

year 

Oxybutynin 

Weekly urge 
urinary 

incontinence 
episodes 

187 
patients 

2 to 6 Poisson Dose 
LR test and 

SE 
NONMEM 

Same efficacy 
of IR and XR 
formulations 

Placebo effect 
accounted for. 
Evaluation of 
therapeutic 

index 

Gupta 
1999 

Pregabalin 
Monthly 
seizure 

frequency 

1042 
patients 

3 Poisson Dose PPC NONMEM 
ED50, 

covariates for 
response 

Mixture model. 
Placebo effect 
accounted for 

Miller 
2003 

Frame 
2003 

Levetiracetam 
Weekly 
seizure 

frequency 

958 
patients 

3 to 6 Poisson Dose PPC NONMEM 
Dose-effect 
relationship 

Placebo effect 
accounted for 

Snoeck 
2007 

Table III: models for time-to-event data. 
Drug Event Pop size 

Nb occa-

sions 

Hazard 

function 

Exposure 

measure 
Validation Software Main result Comment 

Author 

year 

Sildenafil 
Time between 
sexual events 

614 
women 

several Weibull dose PPC NONMEM 
Median time 

between events 
Claret 
2006 

Indinavir 
Time to 

nephrolithiasis 

282 
HIV 

patients 
1 

Non-
parametric 

(Cox) 

Cmax, Cres, 
AUC, CR 

cross-
validation 

NONMEM 
and SAS 

Higher risk for high 
Cres  

Collin 
2007 

Ondansetron 
Time to 

emesis after 
ipecac 

86 
healthy 

several 
Time 

dependent 
function 

C(t) 

Residuals on 
time and  

probability 
scales + PPC 

NONMEM 
CE50 for reduction 
of emesis hazard 

 Cox 1999 

Ciprofloxacin 
Time to 
bacterial 

eradication 

74 
patients 

1 

Non-
parametric 
(Kaplan-
Meier) 

2 ranges of 
AUC / MIC 

none ADAPT II 
Lower time for 

AUC/CMI > 250 
Forrest 
1993 

Grepafloxacin 
Time to 
bacterial 

eradication 

76 
patients 

1 

Non-
parametric 
(Kaplan-
Meier) 

3 ranges of 
AUC / MIC 

none ADAPT II 
Lower time for 

AUC/CMI > 190 
Forrest 
1997 

Capecitabine 
Time to 
disease 

progression 

481 
patients 

1 
Non-

parametric 
(Cox) 

Cmax or 
AUC of 3 

active 
metabolites 

Not stated SAS 
Negative correlation 

with FU AUC 

FU in 
plasma 

not 
relevant 

Gieschke 
2002 

Ribavirin 
Time to 
anemia 

88 
patients 

1 Weibull Dosing rate PPC NONMEM 
Median time to 
anemia vs dose 

 Tod 2005 

Docetaxel 

Time to 
disease 

progression, 
death 

151 
patients 

1 Weibull 
Cumulative 

AUC 
VPC and 

PPC 
NONMEM 

Identification of risk 
factors. Decision 
not to perform 

phase III 

Decision 
based on 

CTS 

Veyrat-
Follet 
2000 

Cariporide 
Time to death 
or myocardial 

infarction 

2840 
patients 

1 

Mixture of 
two 

Weibull 
functions 

C(t) 

Visual 
comparison 
of observed 

and predicted 
hazard rate 

vs dose 

NONMEM 
Estimation of the 
minimal effective 

concentration 

Placebo 
effect 

accounted 
for 

Weber 
2002 

Table IV: transitional models 
Drug Response 

Nb of 

transitions 
Pop size 

Nb 

occa-

sions 

Statistical 

model 

Exposure 

measure 
Validation Software Main result Comment 

Author 

year 

Temazepam 
Sleep 
stage 

transitions 

30 
transitions 

6 states 
non 

ordered 

21 
patients 

Every 
30 s 

during 
sleep 

Probability 
of 

transitions 
C(t) PPC NONMEM 

Fine characterization 
of hypnotic effect 

Placebo 
effect 

accounted 
for 

Karlsson 
2000 

Sumatriptan 
Naratriptan 

Migraine 

4 grades 
4 tran-
sitions 
3 states 

Sum : 
1180 

episodes 
Nara : 
1608 

7 to 11 
during 
24 h 

Hidden 
Markov : 

rate of 
transitions 

C(t) 

Visual 
comparison of 
observed and 

predicted 
prob. vs time 

S-plus 
Comparison of 

potency and 
maximal effect 

Placebo 
effect 

accounted 
for 

Maas 
2006 
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CONCLUSION 

This paper has reviewed the usual approaches used for modelling categorical, count and time-

to-event data, as well as their applications to analyse discrete pharmacodynamic endpoints. 

Pharmacometrics is a rapidly growing science and new model extensions, numerical 

techniques for their estimation are introduced. Consequently, the number of published 

applications is growing and showing how modelling and simulation can be useful for 

identification of influential factors related to the clinical outcome, characterization and 

quantification of their impact, for making better informed predictions and clinical decisions, 

assessments of efficacy of therapeutic interventions, optimising the individual treatments and 

drug development studies.   
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Abstract

Purpose Anticancer drugs often show a narrow thera-

peutic index and high inter-patient variability, which can

lead to the need to adjust doses individually during the

treatment. One approach to doing this is to use individual

model predictions. Such methods have been proposed to

target-specific drug concentrations or blood cell count, both

of which are continuous variables. However, many toxic

effects are evaluated on a categorical scale. This article

presents a novel approach to dose adjustments for reducing

a graded toxicity while maintaining efficacy, applied to

hand-and-foot syndrome (HFS) induced by capecitabine.

Methods A mixed-effects proportional odds Markov

model relating capecitabine doses to HFS grades was

individually adjusted at the end of each treatment cycle

(3 weeks) by estimating subject-specific parameters by

Bayesian MAP technique. It was then used to predict the

risk of intolerable (grade C 2) toxicity over the next

treatment cycle and determine the next dose accordingly,

targeting a predefined tolerable risk. Proof of concept was

given by simulating virtual clinical trials, where the stan-

dard dose reductions and the prediction-based adaptations

were compared, and where the therapeutic effect was

simulated using a colorectal tumor inhibition model. A

sensitivity analysis was carried out to test various specifi-

cations of prediction-based adaptation.

Results Individualized dose adaptation might reduce the

average duration of intolerable HFS by 10 days as com-

pared to the standard reductions (3.8 weeks vs. 5.2 weeks;

27% relative reduction) without compromising antitumor

efficacy (both responder rates were 49%). A clinical trial

comparing the two methods should include 350 patients per

arm to achieve at least 90% power to show a difference in

grade C2 HFS duration at an alpha level of 0.05.

Conclusions These results indicate that individual pre-

diction-based dose adaptation based on ordinal data may be

feasible and beneficial.

Keywords Capecitabine � Hand-and-foot syndrome �
Dose adaptation � Cancer chemotherapeutics � Computer

modeling and simulation � Pharmacometrics

Introduction

The management of anticancer therapies is complicated

by their narrow therapeutic indices (range between the

minimum effective and toxic doses) and high inter- and

intra-patient variability in pharmacokinetics (PK) and

pharmacodynamics (PD). Dose scaling to body surface

I. Paule � M. Tod � E. Hénin � B. You � G. Freyer � P. Girard
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area is used for most anticancer drugs, although this

approach reduces some of the PK-variability for only a few

drugs [1]. The overall objective for optimizing a dosing

regimen is that each patient obtains the maximum possible

anticancer effect without being subjected to an unaccept-

able risk of severe toxicities. To achieve this therapeutic

goal, strategies for dose adaptation before and/or during the

treatment are required. Because the dose reductions com-

monly applied after the occurrence of severe toxicity are

suspected to be less than optimal, individualized dose

adjustment alternatives are of high clinical relevance. The

population model-based dose adaptation approach was first

introduced by Sheiner [2]. The main idea is to individualize

a population model relating dosage to a pharmacokinetic or

pharmacodynamic outcome by Bayesian techniques, using

data from the patient’s previous responses to the drug. The

optimal dosage is then determined based on individual

response predictions given by the patient-specific model.

Bayesian dose adaptations are used widely to control the

plasma concentrations of various classes of drugs or their

active metabolites; a few examples have been developed

for anticancer drugs too [3–5]. This is reasonable only if

plasma concentration correlates strongly with the toxic

outcomes, which is seldom the case for anticancer drugs

[3]. In the absence of such direct relationships, PK-based

control is not adequate. The alternative is to investigate the

feasibility of dose adaptation based on toxicity predictions,

without compromising the efficacy. Moreover, because

toxicity is often measured on an ordinal and not a contin-

uous scale, the usual model-based adaptive control tech-

niques are not directly applicable and ordinal data-specific

criteria must be determined.

Capecitabine (Xeloda, Roche) is an oral prodrug of

5-fluorouracil (5FU), a chemotherapeutic agent commonly

used to treat solid tumors [6]. Because it is preferentially

metabolized to the active molecule 5FU in tumor tissues,

capecitabine is less toxic to healthy tissues [7], while having

non-inferior efficacy as compared to intravenously admin-

istered 5FU (commonly given in conjunction with leuco-

vorin (5FU/LV)) [8, 9]. However, hand-and-foot syndrome

(HFS) is experienced by much more patients treated with

capecitabine (60%) than with 5FU/LV (15%). This syn-

drome manifests as redness, swelling, numbness, or even

painful blisters and desquamation of palm and sole skin, and

often disturbs the daily activities of patients. HFS is mea-

sured on an ordinal scale of severity from grade 0 (none) to

grade 3 (severe). According to the National Cancer Institute

Common Terminology Criteria for Adverse Events v3.0

[10], grade 1 HFS is characterized by skin changes without

pain, grade 2 by skin changes with pain not interfering with

function, and grade 3 by skin changes with pain interfering

with function. Grade 1 toxicity is considered acceptable

within the context of cancer treatment and does not require

any dosage modification. According to manufacturer’s

prescription guidelines [11], the occurrence of grade 2 or

higher toxicity is considered intolerable and indicates

treatment interruption until remission or at least decrease to

grade 1 severity. Treatment is then reinitiated at a reduced

dose (reduced by 25 or 50%) depending on the number of

previous toxicity events. After the third event with grade 3 or

the fourth with grade 2, treatment with capecitabine is ter-

minated. However, the standard crude dose reductions may

not be optimal and the therapeutic benefitmight be improved

by making patient-specific dose adaptations using model-

based predictions. In addition, as with many anticancer

drugs, no direct relationship between occurrence of HFS and

plasma concentration of capecitabine or its metabolites has

been detected. Pathophysiology of HFS has not been

understood yet, and HFS is only suspected to be induced by

the accumulation of the drug in the skin [12]. Therefore, the

dosage of capecitabine should be based directly on the risk

of intolerable grade HFS while maintaining at least the same

efficacy in terms of tumor growth inhibition.

The present work aimed at developing an algorithm for

individual prediction-based dose adaptation (IPBDA)

based on a mixed-effects model for categorical endpoints.

It is a direct application of the capecitabine-induced hand-

and-foot syndrome model [13]. The method had to respect

the requirement not to reduce the antitumor efficacy of the

treatment, which was simulated using a colorectal tumor

inhibition model [14]. The proof of concept was given by

performing computer simulations of clinical trials that

compared the standard and IPBDA methods.

Methods

Population hand-and-foot syndrome model

A mixed-effects proportional odds Markov model for an

adverse effect called hand-and-foot syndrome (HFS)

caused by the anticancer drug capecitabine has been

described in [13], and we give only details relevant to the

present simulation study.

While capecitabine is taken twice a day at 1,250 mg/m2,

this model assumes a total daily dose of 2,500 mg/m2 is

administered once a day. Because capecitabine is available

in tablets of 150 and 500 mg and is taken twice per day, the

manufacturer recommends to round the doses to 3,000;

3,300; 3,600; 4,000; 4,300; …; 5,600 mg per day, so that

equal amounts can be taken in the morning and in the

evening [11]. The drug was administered on a 3 weeks cycle

basis: 2 weeks of treatment followed by 1 week of rest.

The severity of HFS is evaluated by grades from 0

(none) to 3 (severe). Since the frequency of grade 3 was

low, grades 2 and 3 were combined into a single category
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of grade C2 in the original model. HFS grade was evalu-

ated once each week. The probabilities of grades are con-

sidered dependent on the preceding grade, i.e., a first-order

Markov effect was incorporated in the population model.

The model predicts that the overall distribution of grades in

the treated population over 30 weeks (when standard dose

adaptation is used) is approximately 66, 18 and 16% for

grade 0, 1 and C2, respectively.

Due to the absence of pharmacokinetic data, the drug

effect was quantified by a kinetic-pharmacodynamic (KPD)

model [15], which relates the pharmacodynamic response

to the administered drug doses without specifying a phar-

macokinetic model. It is analogous to a PKPD model but

the letter P is omitted to emphasize that PK is not mea-

sured. The principal idea of a KPD model is to assume a

virtual compartment representing the biophase in which the

concentration is in equilibrium with the observed effect.

The elimination rate constant, K, from the virtual com-

partment governs the delay between the rate of dose

administration and the observed effect. The parameter

ED50 is the apparent in vivo potency of the drug at steady

state, equal to the product of EC50, the pharmacodynamic

potency, and clearance, the PK ‘‘potency’’ at steady state.

The drug effect on the log-odds (logit) of the cumulative

probabilities of grades is specified by an EMAX function.

The renal function (measured by creatinine clearance

(CLcr) calculated using the Cockcroft–Gault formula [16])

at baseline was found to explain some of the interindividual

variability and was included as an additive linear effect on

the intercept [13], which corresponds to the idea that the

better the renal function, the lower the patient’s risk is. The

full model is given below:

dQðtÞ

dt
¼ DoseðtÞ � K � eg1i � QðtÞ;

where Q(t) is the accumulated drug amount in the virtual

compartment at time t, Dose(t) is the amount of

capecitabine administered at time t, 0 otherwise.

logit P Yit � 0jYit�1 ¼ G�ð Þ½ � ¼ BG�

0 �
EG�

MAX � Qit � K � eg1ið Þ

ED50 þ Qit � K � eg1ið Þ

þ ðCLcri � 75:5Þ � hCLcr þ g2i

logit P Yit � 1jYit�1 ¼ G�ð Þ½ � ¼ BG�

0 þ BG�

1

�
EG�

MAX � Qit � K � eg1ið Þ

ED50 þ Qit � K � eg1ið Þ
þ ðCLcri � 75:5Þ � hCLcr þ g2i

where Yit is ith patient’s grade at week t, G� is the pre-

ceding grade (at week t–1); the baseline logit parameters,

BG�

0 and BG�

1 ; as well as the maximum effect parameter,

EG�

MAX; depend on G� (i.e., each has three different values

for G�
= 0, 1, C2); g1i and g2i are individual-specific

random effects, corresponding to the elimination rate

constant K and the intercept, respectively. g1i and g2i fol-

low a bivariate normal distribution with mean 0 and vari-

ance–covariance matrix X. g1i adjusts the K value as an

exponential multiplier (Ki ¼ K � eg1i ;) while g2i has an

additive effect on the intercept.

The grade probabilities are obtained by the following

transformations:

pit0 ¼ PðYit ¼ 0jYit�1 ¼ G�Þ ¼ PðYit � 0jYit�1 ¼ G�Þ

pit1 ¼ PðYit ¼ 1jYit�1 ¼ G�Þ ¼ PðYit � 1jYit�1 ¼ G�Þ

� PðYit � 0jYit�1 ¼ G�Þ

pit2 ¼ PðYit ¼ 2jYit�1 ¼ G�Þ ¼ 1� PðYit � 1jYit�1 ¼ G�Þ

The model parameter estimates (as published in [13]) are

given in Table 1.

Dose adaptation procedures

Standard dose adaptation was to reduce the initial dose by

25% after the second event with HFS grade[2 and by 50%

after the third event.

Individual prediction-based dose adaptation (IPBDA)

procedure consisted of: (1) estimating the individual ran-

dom effects using both the data of the patient’s past

observations of HFS and the population model (the esti-

mation step); (2) choosing the new dose so that the average

risk of HFS grade C2 over the next 3 weeks would be

closest to (but not greater than) the target risk (the dose

calculation step).

The estimation step

Empirical Bayes’ estimates (EBEs) of the individual ran-

dom effects were obtained by the maximum a posteriori

(MAP) method using the simplex optimization algorithm

Table 1 Hand-and-foot syndrome model parameter values [13]

Parameter Value

G�
= 0 G�

= 1 G�
= 2

BG�

0
4.14 0.855 1.47

BG�

1
0.626 7.24 0.33

EG�

MAX
3.17 6.65 8.92

K 0.102

ED50 12,900

hCLcr 0.0065

xg1 0.954

xg2 1.5

corrðg1; g2Þ 0.67

G� HFS grade at previous week, xg standard deviations of random

effects

Parameter significations are given in the text
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[17]. Population parameters were not reestimated but fixed

to their true value.

The distribution of gi ¼
g1i
g2i

� �
was assumed to be

bivariate normal N(0, X), where

X ¼
x2

g1
qxg1xg2

qxg1xg2 x2
g2

" #
;

q ¼ corrðg1; g2Þ ¼
covðg1; g2Þ

xg1xg2

:

The likelihood function for the HFS grade at week t was

denoted q YitjDit; Yit�1;H;CLcri; gið Þ; where Dit ¼ ðdosei1;
. . .; doseitÞ is the ith patient’s dosing history, and the total

set of population parameters was H ¼ B0
0;B

1
0;B

2
0;

�
B0
1;B

1
1;B

2
1;E

0
MAX;E

1
MAX;E

2
MAX;ED50;K; hCLcr;xg1 ;xg2 ; qÞ:

The indicator variable, zitg, was used to indicate the

toxicity grade of the ith patient at week t:

zitg ¼
1; if Yit ¼ G;

0; otherwise:

�
with G ¼ 0; 1; � 2f g:

The likelihood of a single observation for the ith patient

at week t, conditional on the individual parameter values gi,

was given by p YitjDit; Yit�1;H;CLcri; gið Þ ¼
Q2
g¼0

p
zitg
itg ; with

pitg as defined in the model description.

The likelihood of all observations of the ith patient till

week t was given by:

Yt
j¼1

pðYij
��Dij; Yij�1;H;CLcri; giÞ ¼

Yt
j¼1

Y2
g¼0

p
zijg
ijg :

The a posteriori distribution of gi was obtained by

applying Bayes’ rule:

pðgijHit;Dit;H;CLcriÞ

¼
pðgiÞ �

Qt
j¼1 pðYij

��Dij; Yij�1;H;CLcri; giÞ

pðHitÞ
;

where Hit ¼ ðYi1; . . .; YitÞ is the toxicity history for the ith

patient.

The estimates of ith patient’s random effects at

week t were given by the mode of their a posteriori

distribution:

ĝitMAP ¼ Arg max
gi

pðgiÞ �
Qt
j¼1

p Yij
��Dij; Yij�1;H;CLcri; gi

� �
pðHitÞ

2
6664

3
7775:

The calculation was performed using the simplex

optimization algorithm [17], coded in Fortran 77 adapted

from [18].

The dose calculation step

After the first appearance of HFS (any grade[0), the most

appropriate dose for the next treatment cycle was considered

to be the one with which the average predicted probability of

HFS grade C2 over the next cycle (3 weeks) was closest to

(but not higher than) the ‘‘target’’ risk of 4% (determined by

sensitivity analysis). The lower limit of reduction was 50%

of the nominal dose. The upper limit depended on the

patient’s HFS and tumor response history: if the patient was

still in stable disease, doses could be increased up to 150% of

the nominal dose after the first 4 cycles if the patient had no

HFS at all or if grade 1 lasted for at least 6 consecutive

weeks. If grade C2 had been observed at any time previ-

ously, the upper dose limit was the nominal dose (100%).

Before reduction, possible daily doses were from 3,000 to

5,600 mg, with increments of 300 or 400 mg (3,000; 3,300;

3,600; 4,000; 4,300; …), according to prescription guide-

lines [11]. For adapted doses, the lower limit was 1,600 mg

(closest to 50% of the minimal initial dose of 3,000 mg), the

upper limit was 5,600 mg (the highest dose recommended in

the prescription guidelines [11]). Once started, dose adap-

tation was made before starting each new cycle, after rees-

timation of the patient’s HFS model random effects.

Colorectal tumor model

The tumor growth inhibition model was developed using

phase II data capecitabine (n = 34) and phase III data of

fluorouracil (n = 252) in advanced and/or metastatic

colorectal cancer [14]. In our simulation study, we used

only the parameter values estimated on capecitabine data.

It describes tumor size (the sum of the longest diameters of

target lesions) as a function of time and drug exposure. It

accounts for the dynamics of natural tumor growth (kg) and

for the antitumor drug effect (kd), as well as development

of resistance to it (k). The model is described by the fol-

lowing differential equation:

dyðtÞ

dt
¼ kg � yðtÞ � kdðtÞ � ExposureðtÞ � yðtÞ;

yð0Þ ¼ baseline;

with kdðtÞ ¼ kd;0 � e
�k�t

; in which y(t) is the tumor size at

week t, Exposure(t) is the daily dose at week t. Inter-patient

variability in the model parameters (kg, kd and k) was

assumed to be lognormally distributed. The values of

parameters are given in Table 2.

Disease status

Dynamics of the disease was classified similarly to response

evaluation criteria in solid tumors (RECIST) 1.1. [19] to:
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• complete response (CR): observed sum of longest

diameters\10 mm;

• partial response (PR): observed[30% reduction from

baseline;

• progressive disease (PD):[20% and at least 5 mm

increase above lowest observed value;

• stable disease (SD): all other cases.

In silico clinical trial protocol

One treatment cycle corresponded to 2,500 mg/m2/day for

2 weeks, followed by 1 week rest. Treatment was inter-

rupted in case of grade C2 HFS, until recovery to gra-

de B1. Subsequent doses were modified according to the

corresponding protocol. Fifty thousand patients per arm

were simulated. Trial duration was 30 weeks. Patients were

assumed to drop out of the trial if grade C2 HFS lasted

more than 6 weeks or reoccurred for the 4th time, also if

disease progression was observed. If patients had a com-

plete response, they ended the treatment after 6 treatment

cycles had been completed. HFS was monitored for

4 weeks after the end of treatment.

Simulation of the clinical trial data

The HFS grades were generated at the end of each week by

simulation from the HFS model. Creatinine clearance

(CLcr) and body surface area (BSA) values were randomly

drawn from distributions estimated from a representative

dataset of 595 patients used for HFS model building: a

normal distribution with mean = 1.82 and standard devi-

ation (SD) = 0.227 for BSA, and a log-normal distribution

for CLcr with mean of log(CLcr) = 4.34 and SD of

log(CLcr) = 0.349. The ranges were limited to [1.19, 2.5]

for BSA and to [26.9, 218.5] for CLcr, according to the

extreme values observed in the mentioned dataset. Indi-

vidual random effects were drawn from a bivariate normal

distribution with parameter values given in Table 1. The

toxicity grades were obtained by random sampling

according to the probability model. Tumor size baseline

(base) observations were generated by sampling from a

lognormal distribution with mean(log(base)) = 4.25 and

SD(log(base)) = 0.5, with minimum accepted values equal

10 mm. This distribution corresponded to baseline data

from the dataset used to estimate the tumor model. Sub-

sequent observations were generated every 6 weeks by

integrating the differential equation and then ‘‘adding’’ the

measurement error: observation = true value * exp(error),

with error sampled from a normal distribution with

mean = 0 and SD = 0.25. Individual random effects were

drawn from normal distributions with parameter values

given in Table 2. The simulation of the trial was coded and

performed in Fortran.

Criteria for comparing dose adaptation methods

Dose adaptation methods were compared in terms of tox-

icity related criteria: % of patients having (one and reoc-

curring) events with grade C2 HFS, average number of

weeks with grade C2 HFS, average duration of reoccurring

events with grade C2 HFS, % of patients who dropout due

to HFS; as well as efficacy related criteria: % of patients

having tumor response (PR ? CR), % of patients who have

progression of disease, relative change from baseline of

tumor sizes.

Power analysis

In order to investigate the statistical power of the clinical

trial for demonstrating the superiority of individualized

dose adaptation versus the standard method, 100 replicate

trials with 300, 350 and 600 patients per arm were simu-

lated. The Wilcoxon rank sum test was used to test the

difference in the total duration of time spent in HFS gra-

de C2. The proportion of simulated studies with P B 0.05

gave the power for detecting a significant difference at

a = 0.05.

Results

Table 3 summarizes the main results of the virtual clinical

trial, which compared the standard dose adaptation

(reductions by 25 or 50%) and the individual prediction-

based one, which uses the patient’s HFS model to predict

the future risk of grade C2 HFS and determines the next

cycle dose accordingly. The overall dynamics of the

Table 2 Colorectal tumor

inhibition model parameter

values [14]

CV coefficient of interindividual

variability

Parameter Value Interindividual

variance

CV%

Tumor growth rate kg (week
-1) 0.021 0.499 80

Drug cell kill rate kd (week
-1) 0.025 0.388 69

Resistance appearance rate k (week-1) 0.053 1.260 159
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distributions of grades in the two adaptation arms are

shown in Fig. 1; a couple of examples of individual

changes in the dose and HFS grade are shown in Fig. 2.

The average total duration of grade C2 HFS was approx-

imately 10 days shorter when applying the IPBDA as

compared to the standard method (3.8 and 5.2 weeks,

respectively; 27% relative reduction). This was achieved

mainly by reduced frequency (from 13.6 to 12.6%) and

duration (from 5.7 to 5 weeks) of reoccurring events with

grade C2 HFS. Consequently, treatment discontinuation

due to grade C2 HFS was 7% less frequent with IPBDA

than with the standard approach (21.6 and 23.2%, respec-

tively). This gain in terms of HFS toxicity was achieved

with maintaining equivalent efficacy to the standard

method with 49.4% of responders with individualized

dosage regimen as compared to the 49.2% of the standard

regimen (Table 3). A clinical trial comparing the IPBDA

and the standard methods should include 350 patients per

arm to achieve at least 90% power to show a difference in

grade C2 HFS duration at an alpha level of 0.05.

Sensitivity analysis concerning IPBDA details has been

performed, investigating the impact of different target risks

Table 3 Results of the two

dose adaptation methods

IPBDA individual prediction-

based dosage adaptation,

HFS hand-and-foot syndrome,

CR complete response,

PR partial response

Criteria Standard IPBDA

Toxicity (HFS)

Average number of weeks with grade C2 5.2 3.8

Percentages of patients having grade C2 55.5 55.2

Percentages of patients having reoccurring events with grade C2 13.6 12.6

Duration of reoccurring events with grade C2 (weeks) 5.7 5.0

Percentages of patients who dropout due to HFS 23.2 21.6

Therapeutic efficacy

Percentages of responders (CP ? PR) 49.2 49.4

Percentages of patients who have disease progression 31.7 31.9

Relative change from baseline (median), % -23.3 -23.1

Fig. 1 Dynamics of the

distributions of hand-and-foot

syndrome grades with the

standard dose adaptation (left

panel) and the individual

prediction-based one (IPBDA)

(right panel)

Fig. 2 Examples of individual

changes in doses, HFS grades

and tumor sizes. Black dots

correspond to the dose amount

relative to the initial dose; red

dots correspond to the HFS

grades; green linked diamonds

correspond to tumor sizes

relative to the initial size
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(TR) (4, 5, 6%), of the lower limit for dose (25, 50% of the

nominal dose), of the upper limit for dose (100, 125,

150%). Different times of starting dose increases were

tested: after 2 or 4 cycles. As it is observed by clinicians

that if HFS remains at grade 1 for a long time, the risk to

develop to a higher grade is very low, so it was tested if

allowing dose increase after at least 6 consecutive weeks

with grade 1 would be beneficial. Other tried variations

were: lower TR for increases than for reductions (2, 3%),

lower TR for reductions if patient has tumor response (2,

3%) (only if 95th percentile of predicted tumor size at the

next measurement (in 6 weeks) does not correspond to

disease progression). The results of all these variations

were in smaller or bigger extent inferior to those of the

presented specification of IPBDA (data not shown).

Discussion

This work aimed at developing and investigating the

solutions for a rational individual adaptation of anti-cancer

drug doses according to side-effects evaluated on a cate-

gorical scale and at evaluating the impact of dose adjust-

ments in terms of antitumor efficacy. In particular, the

study dealt with the hand-and-foot syndrome induced by

capecitabine and its tumor growth inhibition action as

efficacy biomarker. An alternative to the standard empiri-

cal dose reduction protocol that would optimize the dos-

ages individually based on toxicity risk predictions given

by a longitudinal patient-specific HFS model was investi-

gated. Virtual clinical trials were simulated to compare the

different adaptation approaches and demonstrated that

individual prediction-based dose adaptation (even using

only grade-type data) was a feasible strategy for improving

toxicity control during chemotherapy, without compro-

mising the therapeutic efficacy. In comparison with the PK-

guided methods [3–5], the presented method of dose

adaptation based on toxicity grade has the advantages of

neither requiring costly and constraining invasive mea-

surements nor the assumptions about the relationships of

plasma concentrations and the observed toxic outcome.

In this particular example, the benefit was rather small,

but clinically significant. The statistical significance

(a = 0.05) is reached in at least 90% of studies with 350

patients per arm. The main obstacle for a stronger impact

was the lack of sensitivity of the grade probabilities to the

dose changes. HFS develops and reduces much slower than

doses change. The sensitivity analysis of the model

parameters indicated that due to the assumed accumulation

of capecitabine (through the KPD model), the doses

received during the preceding 3 weeks has a much lower

impact on toxicity risk than do the total accumulated doses

received, previous HFS grade, and individual random

effects. Therefore, some patients are predisposed to expe-

rience the HFS and the therapeutic index shrinks quickly

for them. In these cases, monitoring the toxicity risk serves

to indicate the time when treatment with capecitabine

should be discontinued and replaced by another therapy.

As dose adaptation can only be started after appearance

of HFS, IPBDA could only reduce the frequency of reoc-

curring events with grade C2 HFS, but not of the first

event. When a patient has grade 1 HFS, the predicted risk

of HFS developing to the grade C2 is lower than when in

grade 0, so dose reduction is less likely to be done.

In general, the rather low quality of empirical Bayes’

estimates (EBEs) of individual random effects may reduce

the efficacy of IPBDA. In studying this issue [20], it was

shown that unbiased and precise EBEs can be obtained

only in particularly favorable conditions, which were

impossible to meet in the HFS case. In particular, effect

saturation must be reached to correctly identify the Emax

function parameters, within-subject distribution of grades

should be close to uniform, and a high number of obser-

vations are needed as categorical data is information-poor.

The quality of EBEs influences the quality of prediction of

severe toxicity risk, and therefore the decisions concerning

the dose adaptation. In extreme cases of the HFS example,

the error in dose due to imprecision of EBEs could be

10-fold (data not shown). However, due to low sensitivity

of HFS to dose changes, the impact of poor EBEs on the

performance of dose adaptation was minimal (data not

shown).

Some other limitations imposed by the employed HFS

model may include not considering some possibly influ-

ential information about the pharmacokinetics, such as the

activity of dihydropyrimidine dehydrogenase (DPD), the

rate-limiting enzyme for 5FU degradation [21]. Therefore,

the approach presented here concerns only patients having

no DPD deficiency.

Polymorphisms in genes coding for enzymes involved in

transformation of capecitabine into 5FU have been asso-

ciated with increased risk of severe HFS (cytidine deami-

nase [22]) and with better response and time to progression

(carboxylesterase 2 [23]). Thymidylate synthase is a target

enzyme for 5FU (and capecitabine, as its oral prodrug),

polymorphisms in its gene have been associated with

response to capecitabine in advanced colorectal cancer

[24]. Methylenetetrahydrofolate reductase is a key enzyme

in folate metabolism; polymorphisms in its gene have been

related to toxicity rates with capecitabine [25]. Statistical

associations were observed between polymorphisms in the

transporter gene ATP-binding cassette B1 and a lower risk

of HFS in capecitabine-treated patients [26]. Moreover,

different amounts of folates in food were suggested as a

possible explanation of regional differences in capecitabine

tolerability [27]. The identified possible factors of
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variability in efficacy and tolerability of capecitabine need

further large well-designed studies to better determine their

impact, and then could possibly be taken into account in

dose adaptation schemes.

To enable extrapolation of the model-based dose adap-

tation algorithm to other dosing schedules, other cancer

types and specific populations (prior therapy, performance

status, age, sex, genotype, co-medications, etc.), mecha-

nistic (physiologically based) models are needed.

The drawback of the Markov proportional odds model is

that it is only a statistical description of dependence of the

current week’s toxicity grade on the previous week’s tox-

icity grade; it does not rely on a physiological ground.

Furthermore, taking into account the possible uncer-

tainty in grading might be suggested for future investiga-

tions in categorical data modeling, for example using

hidden Markov chain model [28].

The adaptation method presented here determined the

‘‘best’’ dose according to a single HFS toxicity. Clinical

benefit could be further improved by extending the method

to address all frequent dose-limiting toxicities once their

models are developed, and/or combined treatment proto-

cols. The highest benefit of dose adaptations is expected to

be achieved with reversible toxicities that have rapid

kinetics, such as gastrointestinal ones.

This work constitutes the first application of an indi-

vidualized dose adaptation of an anticancer drug based on a

longitudinal mixed-effects dose-toxicity model for cate-

gorical observations. The proof of concept by clinical trial

simulations represents the first step in the general approval

in clinical practice of such an approach. Such virtual trials

are particularly useful for assessing the possible impact of

an investigational protocol and can be a valuable aid in

decision-making concerning launching large, prospective,

randomized clinical trials to validate the approach.

This work demonstrated the feasibility of individualized

dose adaptation based on categorical endpoints and asses-

sed its potential superiority to the standard empirical dose

reductions via in silico clinical trials. Even in the case of

the rather inert hand-and-foot syndrome induced by cape-

citabine, this new approach may enable clinically signifi-

cant reduction in the duration of intolerable toxicity, as

well as earlier detection of patients intolerant to the drug,

without compromising drug efficacy on tumor shrinkage.
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a b s t r a c t

The objective of this work was to investigate the factors influencing the quality of empiri-

cal Bayes estimates (EBEs) of individual random effects of a mixed-effects Markov model

for ordered categorical data. It was motivated by an attempt to develop a model-based

dose adaptation tool for clinical use in colorectal cancer patients receiving capecitabine,

which induces severe hand-and-foot syndrome (HFS) toxicity in more than a half of the

patients. This simulation-based study employed a published mixed-effects model for HFS.

The quality of EBEs was assessed in terms of accuracy and precision, as well as shrink-

age. Three optimization algorithms were compared: simplex, quasi-Newton and adaptive

random search. The investigated factors were amount of data per patient, distribution of

categories within patients, magnitude of the inter-individual variability, and values of the

effect model parameters. The main factors affecting the quality of EBEs were the values

of parameters governing the dose–response relationship and the within-subject distribu-

tion of categories. For the chosen HFS toxicity model, the accuracy and precision of EBEs

were rather low, and therefore the feasibility of their use for individual model-based dose

adaptation seemed limited.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

For anti-cancer therapies, the occurrence of dose-limiting tox-
icities is a common event that often requires dose changes
during the course of treatment. Adapting the dose for each
individual, based on predictions of toxicity risk from a model
describing the patient’s toxicity–time course, is expected to
be superior to the standard method of reducing doses in
steps of 25% once severe toxicities are observed. A model-
based method requires obtaining the toxicity model for each

∗ Corresponding author at: EA3738 Ciblage thérapeutique en oncologie, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins, France.
Tel.: +33 426235959.

E-mail addresses: ines.paule@gmail.com, ines.paule@recherche.univ-lyon1.fr (I. Paule).

individual. Empirical Bayes estimates (EBE) of the individual
random effects (RE) are obtained by the relative weighting of
the patient’s toxicity data collected during treatment, and the
population toxicity model, for which the parameter values are
known.

Many non-haematological adverse effects are evaluated
on a graded scale with typically 4 or 5 ordered categories.
Such data are frequently described by ordered categorical
models, including the proportional odds model [1–3]. Cate-
gorical data contain less information than continuous data,
making it more difficult to estimate each patient’s toxicity

0169-2607/$ – see front matter © 2011 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.cmpb.2011.04.006
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parameters. To our knowledge, there has been no study
published on the feasibility to obtain unbiased and precise
estimates of individual parameters of ordinal categorical data
models.

The objective of this work was to investigate the estima-
tion of individual random effects of a mixed-effects Markov
ordered categorical data model, and the factors impacting on
the quality of the estimates. Insight into this issue should help
determine the feasibility of individual dose adaptation based
on ordinal categorical data models for adverse effects.

A simulation study comparing estimation methods for
ordered categorical data was published in [4]. They compared
estimation methods that employed different approximations
of the integral of the likelihood (the Laplacian and the Gaus-
sian Quadrature (GQ) methods). Savic et al. [5] have used the
same simulation study to investigate and compare the qual-
ity of population parameter estimates given by Stochatistic
Approximation Expectation Maximization (SAEM) method. In
[4], the distributions of the simulated REs and of the EBEs were
compared. The authors observed that the EBE distributions
are highly non-normal and non-symmetric when the observa-
tions are unevenly distributed in the categories. This leads to
bias in population parameter estimates when using the Lapla-
cian method (without centering option [6]) in NONMEM and
SAS NLMIXED, which conditions on EBEs of REs without tak-
ing into account their uncertainty. Since GQ methods allow
uncertainty around EBEs and SAEM method does not use them
at all, they produce population parameter estimates without
appreciable bias.

Estimation methods for binary data models were inves-
tigated in [7] and the authors have also observed that the
Laplacian method produced biased population parameter esti-
mates when the distribution of categories was highly uneven.

Kowalski et al. [3] looked at the distribution of EBEs in
which 82% of the individuals had only grades 0 and observed
a highly bimodal distribution, where EBEs of individuals with
only grades 0 were very close to 0 and the EBEs of the remain-
ing individuals where large positive values. They proposed a
two-part mixture model (where random effects were specified
only for individuals with toxicity) to improve the distribution
of EBEs, but did not perform a simulation study to allow com-
parison of true (simulated) and estimated values of random
effects.

Individual parameter estimates of PKPD mixed effects
models for continuous data were investigated in [8], where the
authors bring to attention the shrinkage of EBEs when there is
little data per individual. Categorical data contain less infor-
mation than continuous data; therefore it is suspected that
EBEs’ quality might be an even bigger issue than in continuous
data models.

This work presents a simulation study to assess the factors
influencing the quality of EBEs of random effects in ordinal
data mixed-effects models. The model used in this simulation
exercise was a mixed-effects proportional odds Markov model
for the hand-and-foot syndrome toxicity [9].

Several estimation algorithms were compared, and a sen-
sitivity analysis was carried out, investigating the possible
impact on the EBE quality of several factors, namely the
amount of data per patient, the distribution of categories
within individuals, the magnitude of the true variability of

random effects, and the values of population parameters
governing the dose–response relationship. The tested esti-
mation methods were: two local optimization algorithms,
quasi-Newton (as implemented in NONMEM software [6])
and simplex [10]; a global optimization algorithm, adaptive
random search (ARS) [11]; and MCMC sampling from the a
posteriori RE distribution (using WinBUGS software [12]). The
main reason to use 4 different algorithms was to make sure
that there is not some purely numerical problem specific to
this model. It is known that optimization algorithms are not
equivalently efficient for different problems. Global optimiza-
tion method ARS was tested to ensure that there was no
problem of local optimums in the estimates of simplex and
quasi-Newton. Estimation of means of a posteriori distributions
using WinBUGS was used to check if it would be a better esti-
mator than the mode. The performance of the methods was
investigated in terms of bias and precision of the estimates,
as well as approximate run time.

2. Methods

2.1. Population hand-and-foot syndrome model

A mixed-effects proportional odds Markov model for an
adverse effect called hand-and-foot syndrome (HFS) caused by
the anticancer drug capecitabine has been described [9] and
this was the model used for our own simulation study.

While capecitabine is taken twice a day at 1250 mg/m2, this
model assumes a total daily dose of 2500 mg/m2 is adminis-
tered once a day. The drug is taken intermittently: 2 weeks of
treatment followed by 1 week of rest, which corresponds to
one cycle of 3 weeks.

The severity of HFS is evaluated by grades from 0 (no
toxicity) to 3 (severe toxicity). However, because of the low
frequency of grade 3, grades 2 and 3 were combined into a
single category of grade ≥2 in the original model and used in
the same way in our simulations from it. The toxicity grade
was evaluated once each week. The probabilities of grades are
dependent on the preceding grade, i.e. a first-order Markov
model was incorporated in the population model. The model
predicted overall distribution of grades in the treated popu-
lation, over 30 weeks and when standard dose adaptation is
used, is approximately 66%, 18%, 16% for grade 0, 1 and ≥2
respectively.

Due to the absence of pharmacokinetic data, the drug effect
was quantified by a kinetic–pharmacodynamic (KPD) model
[13], which relates the pharmacodynamic response to the
administered drug doses without specifying a pharmacoki-
netic model. It is analogous to a PKPD model but the letter
P is omitted to emphasize that PK is not measured. The prin-
cipal idea of a KPD model is to assume a virtual compartment
representing the biophase in which the concentration is in
equilibrium with the observed effect. The elimination rate
constant, K, from the virtual compartment governs the delay
between the rate of dose administration and the observed
effect. The parameter ED50 is the apparent in vivo potency
of the drug at steady state, equal to the product of EC50, the
pharmacodynamic potency, and clearance, the PK “potency”
at steady state.
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The drug effect on the log-odds (logit) of the cumulative
probabilities of grades is specified by an Emax function. The
renal function (measured by creatinine clearance (CLcr) cal-
culated using the Cockcroft–Gault formula [14]) at baseline
was found to explain some of the interindividual variability
and was included as an additive linear effect on the intercept,
which corresponds to the idea that the better the renal func-
tion, the lower the patient’s risk is. The full model is given
below:

dQ(t)
dt

= Dose(t) − K · e�1i · Q(t),

where Q(t) is the accumulated drug amount in the virtual
compartment at time t, Dose(t) is the amount of capecitabine
administered at time t, 0 otherwise.

logit[P(Yit ≤ 0|Yit−1 = G∗)] = BG∗
0 −

EG∗
max · (Qit · K · e�1i )

ED50 + (Qit · K · e�1i )

+ (CLcri − 75.5) · �CLcr + �2i

logit[P(Yit ≤ 1|Yit−1 = G∗)] = BG∗
0 + BG∗

1 −
EG∗

max · (Qit · K · e�1i )
ED50 + (Qit · K · e�1i )

+ (CLcri − 75.5) · �CLcr + �2i

where Yit is ith patient’s grade at time t, G* is the preceding
grade (at time t − 1); the baseline logit parameters, BG∗

0 and
BG∗

1 , as well as the maximum effect parameter, EG∗
max, depend

on G* (i.e. each has three different values for G* = 0, 1, ≥ 2); �1i

and �2i are individual-specific RE, corresponding to the elimi-
nation rate constant K and the intercept respectively. �1i and
�2i follow a bivariate normal distribution with mean 0 and
variance–covariance matrix ˝. �1i adjusts the K value as an
exponential multiplier (Ki = K · e�1i ), while �2i has an additive
effect on the intercept.

The grade probabilities are obtained by the following trans-
formations:

pit0 = P(Yit = 0|Yit−1 = G∗) = P(Yit ≤ 0|Yit−1 = G∗)
pit1 = P(Yit = 1|Yit−1 = G∗) = P(Yit ≤ 1|Yit−1 = G∗) − P(Yit ≤ 0|Yit−1 = G∗)
pit2 = P(Yit = 2|Yit−1 = G∗) = 1 − P(Yit ≤ 1|Yit−1 = G∗)

The model parameter estimates (as published in [9]) are
given in Table 1.

Table 1 – HFS model parameter values (G*: HFS grade at
t − 1; ω�: standard deviations of RE).

Parameter Value

G* = 0 G* = 1 G* = 2

BG∗
0 4.14 0.855 1.47

BG∗
1 0.626 7.24 0.33

EG∗
max 3.17 6.65 8.92

K 0.102
ED50 12,900
�CLcr 0.0065
ω�1 0.954
ω�2 1.5
corr(�1, �2) 0.67

2.2. Simulation of data

The data were generated by simulation from the HFS model
described in Section 2.1. Creatinine clearance and body
surface area (BSA) values were randomly drawn from distribu-
tions estimated by HFS model authors from a representative
dataset of 600 patients used for model building: a normal dis-
tribution with mean = 1.82 and standard deviation (SD) = 0.227
for BSA, and a log-normal distribution for CLcr with mean of
log(CLcr) = 4.34 and SD of log(CLcr) = 0.349. The ranges were
limited to [1.19, 2.5] for BSA and to [26.9, 218.5] for CLcr, accord-
ing to the extreme values observed in the mentioned dataset.
Individual REs were drawn from a bivariate normal distri-
bution with parameter values given in Table 1. The toxicity
grades were obtained by random sampling according to the
likelihood.

In the simulations, the starting daily dose was 2500 mg/m2,
with an intermission of 1 week after every 2 weeks – the
approved standard regimen. If a patient experienced severe
toxicity (grade ≥2), treatment was stopped until recovery to at
least grade 1 and then continued with doses reduced accord-
ing to an individual model-based prediction of toxicity risk.
This calculation was performed in the following order: (1) esti-
mate �i from the current individual data; (2) calculate the dose
for the next treatment cycle so that the predicted probability
of grade ≥2 at the end of the following 2 weeks is equal to
1%. If the estimated “optimal” dose is lower than 50% of the
starting dose, no drug is given at all. Doses are not increased
above the starting dose. Seeking to prevent severe toxicity,
such reassessment of the “optimal” dose was also performed
before starting each 3-week cycle, once a grade 1 toxicity had
been observed. If the treatment had to be interrupted for more
than 6 weeks, it was definitely stopped. However, given the
model, there is still drug remaining in the body and the toxic
effect may continue. Therefore, HFS observations after the
treatment has been stopped were included in the EBE esti-
mation. 1500 virtual patients were simulated for 29 weeks,
corresponding to 10 standard treatment cycles. There was one
observation of toxicity grade per week. The simulation was
performed in Trial Simulator 2 [15].

2.3. Estimation of individual parameters

An empirical Bayes approach was used to estimate the individ-
ual RE estimates, given the patient’s simulated response data
during treatment and the population parameter values. For
estimation of individual parameters, the population parame-
ters were fixed to their true value (i.e. population parameters
were not estimated).

2.3.1. Distribution of random effects
The distribution of �i = (�1i, �2i) was assumed to be bivariate
normal N(0, ˝), where:

˝ =

[
ω2

�1
�ω�1 ω�2

�ω�1 ω�2 ω2
�2

]
, � = corr(�1, �2) =

cov(�1, �2)
ω�1 ω�2

.

2.3.2. Likelihood function
The likelihood function for the HFS grade at time t
was denoted p( Yit| Dit, Yit−1, �, CLcri, �i), where Dit = (dosei1,
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. . ., doseit) is the ith patient’s dosing history, and the
total set of population parameters is denoted by � =

(B0
0, B1

0, B2
0, B0

1, B1
1, B2

1, E0
max, E1

max, E2
max, ED50, K, �CLcr, ω�1 , ω�2 , �).

The indicator variable, zitg, was defined to indicate the tox-
icity grade of the ith patient at week t:

zitg =

{
1, ifYit = G,

0, otherwise.
with G = {0, 1, ≥ 2}

The likelihood of a single observation for the ith patient at
time t, conditional on the individual parameter values �i, was
given by:

p( Yit| Dit, Yit−1, �, CLcri, �i) =

2∏
g=0

pzitg
itg ,

with pitg as defined in Section 2.1.
The likelihood of all observations of the ith patient till time

t was given by:

t∏
j=1

p( Yij

∣∣Dij, Yij−1, �, CLcri, �i) =

t∏
j=1

2∏
g=0

pzijg
ijg

2.3.3. A posteriori distribution of individual random
effects
The a posteriori distribution of �i was obtained by applying
Bayes’ rule:

p( �i| Hit, Dit, �, CLcri) =

p(�i) ·

t∏
j=1

p( Yij

∣∣Dij, Yij−1, �, CLcri, �i)

p(Hit)
,

where Hit = (Yi1, . . ., Yit) is the toxicity history for the ith patient.

2.3.4. Empirical Bayes estimates
2.3.4.1. Maximum a posteriori estimates. Using the method of
maximum a posteriori (MAP), the RE estimates were given by the
mode of their a posteriori distribution:

�̂itMAP = Arg

⎡
⎢⎢⎢⎢⎢⎣

max
�i

p(�i) ·

t∏
j=1

p( Yij

∣∣Dij, Yij−1, �, CLcri, �i)

p(Hit)

⎤
⎥⎥⎥⎥⎥⎦

.

As the denominator p(Hit) does not depend on �i, it may be
neglected in the maximization procedure for �̂itMAP, so that

�̂itMAP = Arg

⎡
⎣max

�i

⎧⎨
⎩p(�i) ·

t∏
j=1

p( Yij

∣∣Dij, Yij−1, �, CLcri, �i)

⎫⎬
⎭
⎤
⎦ .

Taking the log of the a posteriori distribution, and given the
RE distribution function p(�i) = 1

(2�|˝|1/2)
exp

(
− 1

2 �T
i
˝−1�i

)
, the

MAP estimate is given by

�̂itMAP

= Arg

⎡
⎣max

�i

⎧⎨
⎩log

⎛
⎝ 1

2�|˝|1/2
exp

(
−

1
2

�T
i ˝−1�i

) t∏
j=1

2∏
g=0

pzijg
ijg

⎞
⎠
⎫⎬
⎭
⎤
⎦

The function to be maximized may be further simplified to

− 1
2 �T

i
˝−1�i + log

(∏t

j=1

∏2
g=0pzijg

ijg

)
, demonstrating that �̂itMAP

is a balance between the fit to the individual data and the
population fit.

2.3.4.2. Mean of a posteriori random effects distribution. The
mean of the a posteriori RE distribution can also be estimated as
an alternative to the mode. Here, the Bayesian modelling soft-
ware WinBUGS v1.4. [12] was used to draw samples from the a
posteriori distribution of � for each individual. Means of these
samples were compared to the modes obtained with simplex.

The used prior distribution for �i = (�1i, �2i) was a bivari-
ate normal distribution with parameter values as given
in the published model for the interindividual variabil-
ity matrix (Table 1). The total number of iterations was
100,000, with first 4000 discarded as “burnin”, therefore
the sample size per chain was 96,000. Convergence was

checked by the Gelman–Rubin statistic [16], defined as
√

R̂ =√
1 − (1/n) + (1/n)(B/W), where W is parameter within-chain

variance, B is parameter between-chain variance, n is the num-
ber of chains. It requires several chains to be run from different
initial values. The convergence is said to be achieved when the

value of
√

R̂ is close to 1, which corresponds to within-chain

variances being very close to between-chain variance. If
√

R̂

is not close to 1 then the chains have not converged to the
posterior distribution of the parameter. This statistic is based
on the assumption that the target distribution is normal.

The dispersion of the a posteriori distribution for each indi-
vidual � indicates the uncertainty in the estimate of each
individual’s �. To summarise the dispersion of the a posteri-
ori distribution of the individual �s, the median and the 90%
interval of SDs across the population (with at least one grade
>0) was given. The same summary statistics of standard errors
(SE) of individual �s given by NONMEM (PsN function [17]) were
also shown.

2.4. Optimization algorithms for MAP estimation

2.4.1. Simplex
This local optimization algorithm, which does not require
function derivatives, was introduced in [10]. Here it was coded
in Fortran 77 adapted from [18].

2.4.2. Quasi-Newton
This local optimization method, which uses the Hessian
matrix (second derivatives) of the objective function, was used
as implemented in NONMEM software [6].

2.4.3. Adaptive random search (ARS)
This global optimization algorithm is based on random sam-
pling with constant readjustment of sampling spaces. Here it
was adapted and coded in Fortran 77 according to a scheme
given in [11].
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Fig. 1 – Histograms of simulated � values (grey) and EBEs (striped). Black areas represent the EBEs of the subgroup of
patients with only grades 0.

2.5. Estimation quality criteria

Accuracy and precision of the estimation methods were com-
pared using bias and mean absolute error (MAE).

Bias =
1
N

N∑
i=1

(�̂i − �i) MAE =
1
N

N∑
i=1

∣∣�̂i − �i

∣∣
In order to facilitate the interpretation of the absolute val-

ues of bias and MAE, relative measures were obtained by
dividing those criteria by the true SD of �s (and then giving the
result in %). The approximate time needed was also recorded.

Shrinkage shows how much the individual parameter esti-
mates are “shrunk” to the population mean, due to the low
amount of data (per patient) to inform about the true individ-
ual values. It was calculated as 1 − (SD(�̂i)/SD(�i)) [8].

2.6. Sensitivity analysis

2.6.1. Magnitude of the true interindividual variability
The impact of the magnitude of the true interindividual vari-
ability (IIV) was assessed by simulating datasets from the
model with modified IIV: 10%, 50%, 200% and 300% of the orig-
inal SD. 5000 patients were simulated for 30 weeks applying
the individual model-based dose adaptation. Empirical Bayes
estimation was performed using the simplex method.

2.6.2. Amount of data per subject
To investigate the impact of the amount of data per patient,
10,000 virtual patients were simulated for 200 weeks applying
the individual model-based dose adaptation. REs were esti-
mated using the simplex method after 29, 100 and 200 weeks
for those patients who had at least one non-zero grade over
the corresponding periods.

2.6.3. Parameters of the effect model
In order to investigate the impact of the effect model param-
eters, the values of parameters K and ED50 were altered. 14

combinations of modified parameter values were tested, the
range of altered values was from *5 to *20 for K and from *1/2 to
*1/30 for ED50. For each case, 1500 virtual patients were simu-
lated for 29 weeks applying the individual model-based dose
adaptation. EBEs of patients with at least one non-zero grade
were obtained by simplex.

2.6.4. Within-patient distribution of categories
In order to assess a possible impact of the individual distri-
bution of grades, grades were counted for each individual and
related to the error of their EBEs. This analysis used a dataset
of 7652 virtual patients with at least one non-zero grade sim-
ulated for 29 weeks applying the individual model-based dose
adaptation.

3. Results

The histograms of RE estimates (obtained by ARS) showed a
high peak in a narrow interval for �1 and �2 (Fig. 1). It was found
that this corresponded to patients who had no toxicity (only
grades 0). Their response data bring the same information,
therefore their EBEs are close to each other, varying only due to
differences in doses and in CLcr. However, this is not a concern
from the clinical point of view, since these individuals do not
require dose reductions. Therefore, in order to have a more
precise evaluation of estimation quality for the patients at risk,
only the data of the first 1000 patients with at least one grade
higher than 0 were used in the subsequent analysis.

3.1. Comparison of optimization algorithms for MAP

All the three tested optimization algorithms gave similar
results (Table 2), those of the simplex and ARS were almost
identical, with a big advantage of simplex in terms of run time.
The EBEs had some bias and low precision (Fig. 2), especially
�1 corresponding to the elimination rate constant K.



Please cite this article in press as: I. Paule, et al., Empirical Bayes estimation of random effects of a mixed-effects proportional odds Markov
model for ordinal data, Comput. Methods Programs Biomed. (2011), doi:10.1016/j.cmpb.2011.04.006

ARTICLE IN PRESSCOMM-3227; No. of Pages 9

6 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e x x x ( 2 0 1 1 ) xxx–xxx

True ETA1
420-2-4

True ETA2
420-2-4

-4
   

   
   

  -
2 

   
   

   
  0

   
   

   
   

2 
   

   
   

  4

-4
   

   
   

   
   

-2
   

   
   

   
   

0 
   

   
   

   
   

2 
   

   
   

   
   

4
Si

m
pl

ex
 e

st
im

at
es

Fig. 2 – Simplex estimates vs. true values of �i. n = 1000 patients with at least one grade > 0.

3.2. Comparison of estimators (mode and mean)

For 161 of 1000 patients WinBUGS did not work well: there

was no convergence according to the
√

R̂ criterion, the chains
almost did not move from the initial values. Nothing particular
in the data of these patients could be found. The distributions
of their simplex MAP estimates were comparable to those of
other patients. Estimation with “over relax” did not improve
the result. “Over relax” option generates multiple samples at
each iteration and then selects one that is negatively corre-
lated with the current value. The within-chain correlations
should be reduced and hence fewer iterations may be neces-
sary [12].

The mean of the a posteriori distribution was a less biased
estimator than the mode (Table 3, the results are given for
839 patients for whom the estimation in WinBUGS worked
correctly).

Table 2 – Estimation quality of different optimization
algorithms. In parentheses: bias or MAE divided by the
true SD of �. n = 1000 patients with at least one grade >0.

Simplex NONMEM ARS

Bias �1 0.120 (13%) 0.102 (11%) 0.120 (13%)
Bias �2 0.086 (6%) 0.098 (7%) 0.085 (6%)
MAE �1 0.592 (62%) 0.608 (64%) 0.592 (62%)
MAE �2 0.595 (41%) 0.607 (40%) 0.595 (41%)
Time 5 s 21 s 5 min 40 s

Table 3 – Estimation quality of the mean and the mode.
In parentheses: bias or MAE divided by the true SD of �.

Mean (WinBUGS) Mode (simplex)

Bias �1 −0.029 (3%) 0.101 (11%)
Bias �2 −0.014 (1%) 0.076 (5%)
MAE �1 0.587 (62%) 0.586 (61%)
MAE �2 0.596 (40%) 0.605 (40%)
Time 7 h 52 min 4 s

3.3. Uncertainty of EBEs

The credible interval of the a posteriori distribution (from Win-
BUGS) of each individual � was typically wide: the median SD
of the 839 individual’s a posteriori distributions for �1 was 0.75
(the 90% interval of SDs of each individual’s a posteriori dis-
tribution was (0.54, 0.97)), the median SD of �2 was 0.7 with
90% interval (0.55, 1.01). Comparison of these values to the
size of population variance (SD(�1) = 0.954, SD(�2) = 1.5) clearly
indicates a high uncertainty of the EBEs.

The SEs of EBEs (median and 90% interval) from NONMEM
were close to the SDs from WinBUGS: 0.85 (0.51, 1.14) for �1

and 0.8 (0.54, 1.08) for �2.

3.4. Impact of the magnitude of the true
interindividual variability on the EBE quality

There was no clear tendency of the impact of the true IIV on
the quality of EBEs. However, some differences were observed:
with lower IIV of �1, its bias tended to be lower, shrinkage
higher, MAE of �2 slightly smaller; with lower IIV of �2, its
shrinkage tended to be higher, MAE of �1 slightly larger.

3.5. Impact of the amount of data on the EBE quality

The results in Table 4 showed that more individual data
improved the EBEs in terms of precision, and of bias to some
extent, but did not reduce it to 0 for �1. As expected, shrinkage
was decreasing with increasing amount of individual data.

3.6. Impact of the effect model parameter values on
the EBE quality

The best EBEs were obtained with ED50 divided by 20 and
K multiplied by 10. A comparison of the results with these
parameter values and with the original values in Table 5 and
Fig. 3 showed that the effect model parameter values have a
high impact on both bias and precision of EBEs.
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Table 4 – Estimation (simplex) quality with increased amount of data: 29, 100 and 200 weeks. In parentheses: bias or
MAE divided by the true SD of �.

29 weeks 100 weeks 200 weeks

Bias �1 0.159 (17%) 0.068 (7%) 0.061 (6%)
Bias �2 0.102 (7%) 0.003 (0.2%) −0.011 (0.8%)
MAE �1 0.616 (65%) 0.513 (54%) 0.498 (52%)
MAE �2 0.583 (39%) 0.383 (26%) 0.313 (21%)
Shrinkage �1 (all patients) 45% 24% 20%
Shrinkage �2 (all patients) 21% 8% 6%
Shrinkage �1 (excluding patients without toxicity) 40% 23% 20%
Shrinkage �2 (excluding patients without toxicity) 18% 8% 5%

Table 5 – Estimation (simplex) quality with a more reactive model and with the original one. In parentheses: bias or MAE
divided by the true SD of �.

Model with ED50/20 and K*10 Original model

Bias �1 0.005 (0.5%) 0.120 (13%)
Bias �2 −0.041 (3%) 0.086 (6%)
MAE �1 0.234 (25%) 0.592 (62%)
MAE �2 0.531 (35%) 0.595 (41%)
Shrinkage �1 (all patients) 9% 43%
Shrinkage �2 (all patients) 15% 22%
Shrinkage �1 (excluding patients without toxicity) 7% 39%
Shrinkage �2 (excluding patients without toxicity) 17% 20%

3.7. Impact of the within-patient distribution of
categories on the EBE quality

Results summarised in Table 6 show that the higher the pro-
portion of grades 1 and 2 (the closer to a uniform distribution),
the better the RE estimates.

4. Discussion

In this work, simulations were conducted to investigate what
were the potential factors influencing the quality of EBEs of
random effects in mixed-effects models for ordinal data. Com-
parison of the optimization methods showed that there was
almost no difference in the quality of the MAP estimates in
this study. The simplex method, a local optimization algo-
rithm, gave almost identical estimates to those of a global

Table 6 – Counts of grades according to the error of EBEs
(in patients with at least one grade >0 over 29 weeks).

Mean count
of weeks in
grade 2

Mean count
of weeks in
grade 1

Number of
patients

�1 error
[min = −3.2,−2) 2.1 2.7 24
[−2,1) 2.4 3.7 416
[−1,0) 4.6 5.1 2908
(0,1] 5.0 5.0 3241
(1,2] 4.2 4.7 957
(2, max = 3.08] 3.5 4.5 106

�2 error
[min = −3.91,−2) 0.7 1.1 38
[−2,1) 2.8 3.1 436
[−1,0) 4.5 5.0 2855
(0,1] 5.0 5.2 3503
(1,2] 4.1 4.5 784
(2, max = 2.96] 2.8 4.8 36
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Fig. 3 – Simplex estimates vs. true �i with altered values of K and ED50.
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optimization method, ARS, which ran approximately 60 times
longer.

The mean of the a posteriori random effects distribution was
a less biased estimate than the mode, which is consistent with
estimation theory [19]. However, the mean had the same low
precision as the mode.

EBEs obtained with larger amount of individual data had
better accuracy and precision. However, the bias of �1 did not
reduce to 0 with 200 observations per subject, but for nonlinear
models it may not do so even with infinite number of obser-
vations [20]. It is well known that the precision of estimates of
parameters depends on the amount of data per individual [21],
the same is true for shrinkage [8]. From a practical perspec-
tive, the large amount of data required to improve the quality
of EBEs could not be gathered in clinical practice. Hence this
is not a viable way to overcome the problem.

It was shown that the quality of EBEs depends highly on the
population parameter values. EBEs obtained from the same
amount of data but generated from a model with altered
parameter values (K*10 and ED50/20) had much better accuracy
and precision; their shrinkage was also lower. In this model,
the effect-driving variable is Q*K, so increased K corresponds
to faster kinetics (faster increase but also faster elimination,
shorter time to reach steady state, larger peak to trough ratios),
as well as higher average levels. Reduced ED50 means that
maximal achieved Q*K is much higher than ED50 so that the
effect reaches a plateau. In order to estimate the parameters of
the Emax model well, data covering the whole predictor-effect
curve (from the quasi-linear increase to the plateau) must be
available. Dutta et al. [22] have reported that “when the highest
measured effect intensity was less than 95% of Emax, Emax and
EC50 were poorly estimated”. Concentrations leading to 95%
of Emax are equivalent to concentrations 19 times higher than
EC50. In the HFS model used in our work, the effect-driving
variable is not concentration but Q*K; its value leading to 50%
of the maximal effect is the ED50. With the original values of
K and ED50, the Q*K values ranged approximately from 1000
(8% of ED50) to 12,000 (93% of ED50). With the K value multi-
plied by 10 and the ED50 value divided by 20, the median Q*K
values ranged approximately from 14 (2% of ED50) to 23,000
(3600% ED50). With the original parameter values, the satu-
ration of the effect is not achieved and this may prevent the
parameters from being estimated correctly.

A major determinant for the quality of EBEs is the individ-
ual distribution of categories. The problem of estimating the
REs for individuals with highly uneven distribution of grades
was observed in [4,7] and was also visible in our results. In the
context of dose adaptations to avoid severe toxicity (grade ≥2),
an approximately even distribution of grades might happen
only in exceptional cases (where there is a failure to control
severe adverse effects of the treatment). So in “clinically nor-
mal” cases, the distribution of grades would not be “optimal”
for estimating the individual REs.

Throughout all the scenarios studied in the sensitivity
analysis, �2 (the individual effect on the intercept) is better
estimated than �1. It may be due to the specific feature of
this model which is that �2 has a much higher impact on the
probabilities of grades than �1. Moreover, due to the correla-
tion between the two �s (67%), the estimate of �2 might “pull”
the estimate of �1 to the values of the same sign. This is par-

ticularly “visible” in the case of patients without any toxicity
(only grades 0). One would expect �s to be estimated to the
values that correspond to the toxicity risk being the lowest:
highly positive �2 (increased logit of grades ≤1) and highly
negative �1 (lowest value of Q*K). But the result is that both
�s are estimated to positive values (Fig. 1). As explained in the
first paragraph of results section, these patients without any
toxicity have been excluded from the analysis; but as the dis-
tribution of grades in most of the patients is dominated by
grade 0 (Table 6), the same effect may explain the positive bias
of EBEs.

In terms of impact on the clinical decision concerning the
next dose to take after some toxicity has been observed, the
impact is variable but considerable. In extreme cases, the
impact of incorrect EBEs on the predicted risk of grade ≥2 can
be 4-fold, and in the corresponding doses calculated according
to true and estimated risk prediction can differ 10-fold (data
not shown).
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Abstract

Background: Hydroxyurea (HU) is the first approved pharmacological treatment of sickle cell anemia (SCA). The

objectives of this study were to develop population pharmacokinetic(PK)-pharmacodynamic(PD) models for HU in

order to characterize the exposure-efficacy relationships and their variability, compare two dosing regimens by

simulations and develop some recommendations for monitoring the treatment.

Methods: The models were built using population modelling software NONMEM VII based on data from two

clinical studies of SCA adult patients receiving 500-2000 mg of HU once daily. Fetal hemoglobin percentage (HbF

%) and mean corpuscular volume (MCV) were used as biomarkers for response. A sequential modelling approach

was applied. Models were evaluated using simulation-based techniques. Comparisons of two dosing regimens

were performed by simulating 10000 patients in each arm during 12 months.

Results: The PK profiles were described by a bicompartmental model. The median (and interindividual coefficient

of variation (CV)) of clearance was 11.6 L/h (30%), the central volume was 45.3 L (35%). PK steady-state was

reached in about 35 days. For a given dosing regimen, HU exposure varied approximately fivefold among patients.

The dynamics of HbF% and MCV were described by turnover models with inhibition of elimination of response. In

the studied range of drug exposures, the effect of HU on HbF% was at its maximum (median Imax was 0.57, CV

was 27%); the effect on MCV was close to its maximum, with median value of 0.14 and CV of 49%. Simulations

showed that 95% of the steady-state levels of HbF% and MCV need 26 months and 3 months to be reached,

respectively. The CV of the steady-state value of HbF% was about 7 times larger than that of MCV. Simulations with

two different dosing regimens showed that continuous dosing led to a stronger HbF% increase in some patients.

Conclusions: The high variability of response to HU was related in part to pharmacokinetics and to

pharmacodynamics. The steady-state value of MCV at month 3 is not predictive of the HbF% value at month 26.

Hence, HbF% level may be a better biomarker for monitoring HU treatment. Continuous dosing might be more

advantageous in terms of HbF% for patients who have a strong response to HU.

Trial Registration: The clinical studies whose data are analysed and reported in this work were not required to be

registered in France at their time. Both studies were approved by local ethics committees (of Mondor Hospital and

of Kremlin-Bicetre Hospital) and written informed consent was obtained from each patient.
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Disease name
Sickle cell anemia.

Definition
Sickle cell anemia is an autosomal recessive genetic

blood disorder, caused by a mutation in the hemoglobin

gene and characterized by rigid sickle-shaped red blood

cells. Sickling decreases the cells’ elasticity and leads to

vaso-occlusion which may result in various complica-

tions, such as acute painful crises, ischemia and damage

of various organs, acute chest syndrome or stroke.

Background
The antineoplastic agent hydroxyurea (hydroxycarba-

mide) (HU) is the first approved pharmacological treat-

ment of sickle cell anemia (SCA). It inhibits the

production of the hemoglobin S that causes SCA and

favors the reactivation of fetal hemoglobin (HbF) expres-

sion [1]. In fact, a variety of mechanisms are believed to

be involved in HU beneficial effects in SCA, including

increased HbF synthesis by erythroid regeneration, NO-

related increases in soluble guanylate cyclase activity

and cyclic guanidine monophosphate (cGMP) that sti-

mulate HBG expression [2]. Other mechanisms may be

myelosuppression with a reduction of circulating neu-

trophils, increased erythrocyte water content, modified

erythrocyte endothelial cell interactions and altered vas-

cular tone by increasing NO bioavailability [3]. Recently,

Bartolucci et al. reported that HU could reduce abnor-

mal sickle cell adhesion to the vascular wall by regulat-

ing the activation state of adhesion molecules [4]. HU

treatment reduces the rate and severity of painful

attacks [5] and was shown to possibly increase survival

time [6].

The usual dosing of this oral treatment is daily doses

of 15-35 mg/kg (or less if there is renal insufficiency)

[7]. The most adequate individual dose is determined by

starting with 15 mg/kg and monitoring full blood cell

counts every two weeks. If after twelve weeks no cytope-

nia has developed, the dose is increased by 5 mg/kg.

Once their maximal tolerable dose is determined, the

patient can continue the treatment life-long, if no ser-

ious toxicities manifest or other issues arise.

Despite the widespread use of HU, only a few studies

have been reported in the literature, especially concern-

ing its use in the indication of SCA. Little is known

about the relationship between drug exposure and effi-

cacy, evaluated by fetal hemoglobin (HbF) and mean

corpuscular volume (MCV) measurements. Although a

number of genetic polymorphisms have been found to

be associated with response to HU [8-10], the variability

of this response remains poorly characterized. The opti-

mal dosing schedule, the best strategy for monitoring

and adjusting the treatment, and the impact that may

have the prior determination of candidate genotypes on

HU dosing remain open to discussion. Part of these

questions may be addressed through simulations from

pharmacokinetic (PK) and pharmacodynamic (PD) mod-

els of HU. Therefore, this study aimed to develop popu-

lation PK-PD models for HU in order to characterize

the exposure-efficacy relationships and their variability.

These models were then used (1) to compare two dos-

ing regimens (one continuous daily and the other with

interruptions of 2 days after every 5 days) by simulation,

and (2) to develop some recommendations for monitor-

ing the treatment.

Methods
Two datasets from two studies with different designs

were used in this analysis: one from a PK-PD study with

up to 9 samples taken per patient over a period of up to

30 months, and the other from a PK study with 10 sam-

ples per patient taken over 24 hours after drug

administration.

PKPD study design (sparse sampling)

Study design and patient population

This 30-month, open-label, noncomparative, prospec-

tive, observational study was conducted in 81 adult

patients with sickle cell anemia at the Centre de référ-

ence pour les syndromes drépanocytaires majeurs, AP-

HP, GH H. Mondor, Université Paris Est-Créteil, France

from 2007 to 2010. It focused on the benefits and risks

of HU, in particular the side effects in the short and

medium term, as well as the need for regular hematolo-

gical monitoring. The protocol was approved by the

local ethics committee of Mondor hospital, and written

informed consent was obtained from each patient. The

recruited SCA patients were of 18 years or older and

with Hb genotype HbSS (homozygous sickle Hb). In all

patients, SCA diagnosis was documented by standard

methods [7]. Patients who received erythropoietin or a

blood transfusion at a time that can interfere with the

results were excluded.

Treatment

HU treatment was started at a dose of 20 mg/kg orally

unless there was renal insufficiency (in this case it

started at 10 and 15 mg/kg). Since hematotoxicity is the

dose-limiting toxicity, the hematologic control was per-

formed every 15 days during the first month and then

every month; if needed, doses were adjusted to maintain

neutrophil counts higher than 3 × 109/L. In most cases,

the final dose of HU did not exceed 30 mg/kg.

Pharmacokinetics protocol

Blood was drawn from most patients on day 0 (D0),

D15, after 1 month (M1), M2, M4 and M6, as well as at

various later timepoints more sparsely (up to M30). It

was collected in heparinized tubes and centrifuged at
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2000 g for 10 minutes at room temperature to obtain

plasma. The plasma was then stored at -20°C until the

samples were assayed. Plasma samples were assayed

using high performance liquid chromatography (HPLC)

coupled with UV-detection at 449 nm [11]. The analyti-

cal method was linear between 5 to 1000 μM, precise

(coefficients of variation ranging from 1.7 to 9.9%),

accurate (97.7 to 103.9%). The limit of quantification

(LOQ) was 7 μM (0.532 mg/L).

The following biologic variables were measured during

this study: creatinine, urea, lactate dehydrogenase

(LDH), hemoglobin (Hb), fetal hemoglobin (HbF), mean

corpuscular volume (MCV), mean corpuscular hemoglo-

bin (MCH), ferritin, bilirubin, aspartate transaminase

(AST), alanine transaminase (ALT), neutrophils (PMN)

and platelets. Body weight, age and sex data were also

documented.

PK study design (rich sampling)

These rich PK data come from a bioequivalence study of

standard hydroxyurea capsules and a new formulation of

1000 mg coated breakable tablets in adults with homo-

zygous SCA or S/b-thalassemia. The complete study

protocol is given in a publication of the noncompart-

mental analysis of the PK data [12]. The assay validation

parameters were the same as for the sparse PK data

study [11].

These data contain 10 blood samples per patient, from

16 patients who took hydroxyurea doses ranging from

1000 mg to 2000 mg. The samples were taken at base-

line and 45, 90, 120, 150, 180, 240, 360, 480 minutes

after HU administration at the study center, as well as

trough samples after 24 hours.

Population PK-PD models

Population analyses were performed using NONMEM

software (version VII) [13]. PK model parameters were

estimated using the second order conditional estimation

(Laplacian) method with interaction between interindivi-

dual and residual variabilities. This estimation method is

more accurate than the standard first order conditional

estimation (FOCE) method. In this PK analysis it was

needed to correctly handle the concentrations below the

limit of quantification (BLQ) (see below). PD models

parameters were estimated using the FOCE method

with interaction between interindividual and residual

variabilities. Confidence intervals (CI) of parameter esti-

mates were obtained by nonparametric bootstrap (n =

1000) with stratification by study and dose.

Population pharmacokinetic model

First, the structural PK model was built using both

sparse and rich datasets. One, two and three-compart-

ment models with first-order absorption and elimination

were tested, as well as with saturable (Michaelis-

Menten) elimination. The most appropriate model was

chosen on the basis of the objective function value

(OFV) and simulation-based diagnostics such as normal-

ised predictive discrepancy errors (NPDE) [14]. The

NPDE analysis was performed with BLQ points

excluded.

In the two-compartment model, the parameters were

the elimination clearance (CL/F), the volume of the cen-

tral compartment (Vc/F), the rate constants for transfer

from central to peripheral (kcp) or peripheral to central

compartment (kpc), the rate constant for absorption (ka).

The BLQ measurements of the sparse data were

included in the data and modelled as censored observa-

tions using “method 3” described in [15].

The interindividual variability (IIV) for the PK para-

meters was described using exponential models:

Pi = θ · eηi, where h is a random variable with normal

distribution, zero mean and variance to be estimated, θ

is a typical value. The IIV was added in a stepwise man-

ner, firstly to clearance and central volume of distribu-

tion. The interindividual random effects were kept in

the model if their inclusion significantly reduced the

OFV and if their relative SE was <50%. A full interindi-

vidual variance-covariance matrix was estimated to

assess if there was any significant covariance in the IIV

structure.

To find the most appropriate residual error model,

additive, proportional and mixed error models were

tested. As data were collected from two quite differently

designed studies, separate residual error models for each

study were tested.

The variables that were investigated for their ability to

explain IIV in the PK of HU were body weight,

creatinine, age and sex. Scaling by body weight (for

clearance and central volume of distribution) as

Vc = θV ·
WGT

70
and CL = θCL ·

(
WGT

70

)0.75

, as well as

CL = θCL + f (covar), f (covar) =
(140 − age) · bodyweight · (1 − coeffsex · sex)

creatinine
(with sex = 0 for men and 1 for women, coeffsex esti-

mated), similar to the Cockroft-Gault formula for creati-

nine clearance [16], were the tested forms of

relationships. The conditions for the variable to be

retained as a covariate were to be biologically plausible,

and to decrease the OFV by at least 5 units, correspond-

ing to a p-value less than 2.5%.

Missing values of body weight were predicted by the

model: if the patient’s weight was known at other time-

point(s), it was predicted by using an interpolated or

adjacent value and an additive individual random effect

whose variance was fixed to the observed intraindividual

variance of the body weight of the dataset (1.5); if no

data of patient’s weight were available, it was predicted

by using the average weight of the dataset (62 kg for
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women, 65 kg for men) and an additive individual ran-

dom effect whose variance was fixed to the observed

interindividual variances of the dataset (92 for women,

40 for men).

The time to reach 95% of HU concentration steady-

state was determined by simulation of a typical patient

with 1000 mg dose every day for 6 months.

Population pharmacodynamic models

The PD responses to be described by the model were

HbF percentage and MCV. The observed level of both

these responses depends on the ratio of a production

rate to an elimination rate. Therefore, turnover models

[17] were chosen to fit the data. Models assuming either

stimulation of the production or inhibition of the elimi-

nation of response by HU were tested. The metrics of

HU exposure used as the input into the PD model was

mean drug concentration at steady state, calculated

using the individual posthoc estimates of HU clearance.

Therefore, a sequential modelling approach was used.

The uncertainty in the estimate of clearance was taken

into account by using the IPPSE method [18]. Linear,

Emax, sigmoid and power functions were tested for the

effect of the drug. The final model was chosen on the

basis of the OFV and diagnostic plots, stability and pre-

cision of parameter estimates. IIV and residual error

models were constructed in the same way as for the PK

model.

In addition to demographic variables, baseline mea-

surements of pharmacodynamic variables, as well as

their previous values, rate of change per day from base-

line to the previous value (�V =
Vt−1 − V0

days
), rate of change

per day between the two previous values

(�V =
Vt−1 − Vt−2

days
) were investigated as covariates. They

were included as additive or proportional to the drug

effect, production rate or elimination rate. Missing

values were predicted by the model by using the data

average and an individual random effect whose variance

was fixed to the value calculated from the data. The

conditions for covariate inclusion were the same as for

the PK model.

Model evaluation

The quality of models was assessed by goodness-of-fit

plots and simulation-based methods (using 1000 simula-

tions): visual predictive check (VPC) and NPDE. The

mean of prediction error distribution was compared to

zero by a Wilcoxon signed rank test, while its variance

was compared to unity by a Fisher test. For the VPC,

prediction corrections were used so that data of all dose

levels could be used in one plot [19]. BLQ points in the

observed and simulated PK data sets were assigned

values equal to LOQ/2. The VPC plots showed 80% pre-

diction intervals (PI) and medians of the observed and

of the predicted data, as well as 95% confidence areas

around the percentiles. For the PK, a VPC plot in log

scale was also given.

Simulation of alternative dosing regimens

The two simulated dosing regimens were: 1000 mg daily

doses 7 days a week (7/7) and 1000 mg daily doses 5

consecutive days a week (5/7) for the duration of 12

months; 10000 patients were simulated in each arm. For

each covariate, the average observed value was used.

The results were compared graphically by representing

the median profile and the 90% prediction interval of

the HbF% and MCV. In order to determine the steady-

state values of the HbF% and of the MCV and time to

reach 95% of them, such simulations with 7/7 dosing

were extended for 48 months.

Results
Pharmacokinetic data analysis

A summary of PK related patient characteristics is given

in Table 1. In the sparse data, 78% of last doses before

the concentration measurements were 1000 mg, 15%

were 1500 mg, and the rest were 500 mg, 1250 mg or

2000 mg. In the rich dataset, 44% were 1000 mg, 31%

were 1500 mg, and the rest were either 1250 mg or

2000 mg. The median number of measurements per

patient in the sparse dataset was 4 (range: 1 - 9); in the

rich dataset, 10 measurements were available for each

patient.

The PK profiles were best described by a two-com-

partment model (with first-order absorption and elimi-

nation). The NPDE diagnostics indicated that one-

compartment model could not adequately describe these

data. The OFV of the three-compartment model was

not lower than that of the two-compartment model. No

significant nonlinearity in absorption or elimination

could be detected in these data.

Significant interindividual variability was found for Vc,

CL, ka and kcp. Correlations were significant among the

individual values of Vc, CL and kcp. The mixed residual

error model was best for both datasets. The OFVs of PK

models with and without weight-scaling of Vc and CL

(as shown in methods section) were nearly significant,

but this covariate was kept in the model for the sake of

Table 1 Summary of patient characteristics

PKPD dataset Rich PK dataset

Characteristics Median (range) Median (range)

Age 30 (18 - 54) 32 (24 - 52)

Men/women 24/57 5/11

Weight (kg) 60 (45 - 163) 63 (42 - 71)

Creatinine (μM) 65 (27 - 558) 72 (47 - 129)

Urea (μM) 3.1 (0.8 - 10.5) 3.4 (2.4 - 7.7)

Paule et al. Orphanet Journal of Rare Diseases 2011, 6:30

http://www.ojrd.com/content/6/1/30

Page 4 of 12



coherence with clinical practice and possible application

of the model to children (where the effect of weight

would be much more perceptible). The allometric

model for clearance with power 0.75 was better than the

model with power 1 (p = 0.0016).

The final model estimates are given in Table 2. As the

bioavailability was not estimated here, the reported esti-

mates for CL and Vc represent apparent pharmacoki-

netic parameters CL/F and Vc/F. Their values in Table 2

are given for a patient of 70 kg weight, which is the

scaling base. To obtain values for patients of different

weight, the population value should be multiplied by

weight/70 for Vc and by (weight/70)0.75 for CL. The esti-

mate of the rate constant of transfer from the peripheral

to the central compartment (kpc) was very small and

unstable, so its value was fixed to 0.004 (h-1) (its best

estimate) and this resulted in lower estimate of IIV of

kcp and better stability of the model. With this model,

the time to reach 95% of the steady-state was typically

about 35 days.

Simulation-based diagnostics VPC (Figure 1) and

NPDE indicated that the model adequately described

the measured data. The mean of normalized prediction

errors was significantly different from zero (mean =

0.12, p = 0.016), but translated into HU concentrations,

the mean difference between observed and predicted

concentrations was only 0.08 mg/L. This difference was

not considered as relevant from a clinical point of view.

The variance of normalized prediction errors was not

significantly different from unity (0.893, p = 0.12).

Pharmacodynamic data analysis

The median number of HbF% measurements per patient

was 5 (range: 1 - 10); the total number of patients and

measurements was 77 and 391 respectively. The median

number of MCV measurements per patient was 6

(range: 3 - 10); the total number of patients and mea-

surements was 80 and 439 respectively. 43% of patients

with HbF% measurements and 49% of patients with

MCV measurements were followed for 6 months (med-

ian (range) for HbF%: 6 months (9 days - 30 months);

for MCV: 6 months (1 - 30 months)). Summary statis-

tics of the pharmacodynamic variables at the beginning

and after 6 months in the study are given in Table 3.

The treatment with HU induced an increase in HbF, its

percentage (Figure 2 shows its maximums) and in MCV,

as well as decreases in bilirubin and LDH, which were

indicative of decrease in the rate of hemolysis. Decreases

in neutrophils (PMN) and platelets were mild, not

reaching below normal levels.

Population PD model of the percentage of fetal hemoglobin

The turnover model with inhibition of the elimination

rate was found to describe best the HbF% data. However,

in this dataset, no relationship between HU concentra-

tion and HbF% could be identified, because all patients

were estimated to have the maximum drug effect. The

rate of change per day between the two last MCV obser-

vations (ΔMCV) was found to be a significant covariate

for the production rate, Kin (p < 0.00001). The median

(range) ΔMCV was 0.16 (-0.27 to 0.87). The final model

was (cf. parameter estimates in Table 4):

dHbF%
dt

= Kin, i − Kout, i ·
(
1 − Imax,i

)
· HbF%

where Kin,i = Kin,TV · eηKin ,i · eθ�MCV ·�MCV, Kout,i = Kout,TV · eηKout,i,

Imax,i =
eLImax,TV +ηImax,i

1 + eLImax,TV +ηImax,i
and LImax is the logit-transformed

Imax.

Table 2 Parameter estimates of the population PK model

Parameters Typical values (95% CI) Standard deviations of IIV (95% CI) Interindividual CV

Vc/F (L) (for a patient of 70 kg) 45.3 (38.9 - 50.5) 0.34 (0.23 - 0.46) 35%

Cl/F (L/h) (for a patient of 70 kg) 11.6 (10.4 - 12.9) 0.29 (0.22 - 0.40) 30%

ka (h
-1) 3.29

θka (h
-1) (ka = θka · eηka + α) 3.02 (2.25 - 4.19) 1.34 (1.16 - 1.65) 224%

kcp (h
-1) 0.027 (0.021 - 0.037) 0.57 (0.43 - 0.95) 62%

kpc (h
-1) (fixed) 0.004 - -

SD of the additive component of the residual error (mg/L)

- for densely sampled data 0.319 (0.197 - 0.492)

- for sparsely sampled data 0.353 (0.257 - 0.522)

SD of the proportional component of the residual error

- for densely sampled data 0.12 (0.083 - 0.154)

- for sparsely sampled data 0.435 (0.349 - 0.506)

Correlation (hVc, hCl) 0.71

Correlation (hVc, hkcp) -0.26

Correlation (hCL, hkcp) 0.37

CI: confidence intervals, obtained by bootstrap (n = 1000), IIV: interindividual variability, CV: the apparent coefficient of variation of interindividual variability.
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Significant interindividual variability was found for Kin,

Kout and LImax, with correlation between Kout and LImax.

A proportional residual error model was selected.

Simulation-based diagnostics VPC (Figure 3) and

NPDE indicated that the model adequately described

the observed HbF% data. The mean of NPDE was 0.03

(p = 0.3), the variance was 0.937 (p = 0.38). Concerning

the VPC, for the first 300 days, the difference between

the medians of HbF% observations and of its predictions

was approximately 2%, which was not clinically signifi-

cant. Only 14 patients out of 81 continued the treat-

ment longer than 300 days, therefore the percentiles at

later times may be imprecise. The NPDE versus time

plots did not indicate any prediction deficiencies (data

not shown).

In the simulation, median HbF% at steady-state was

about 18.6%, 95% of it was reached in about 26 months.

Population PD model of the mean corpuscular volume

The turnover model with inhibition of the elimination

rate was found to describe best the MCV data. The inhi-

bition was best described by a power function of average

concentration. The rate of change per day between the

two last HbF% observations (ΔHbF%) was found to be a

significant covariate on the parameter b (p < 0.00001).

Figure 1 PC-VPC for HU concentrations. The lines show the 10th, 50th and 90th percentiles of observed data (thick lines) and of predictions

(thin lines); the grey areas represent the 95% confidence areas around the percentiles. PC-VPC: prediction-corrected visual predictive check. Left

panel: linear scale, right panel: log scale.

Table 3 Summary statistics of PD variables

PD variables At baseline
Median (range)

Number of patients After 6 months of treatment
Median (range)

Number of patients

HbF% 6.3 (0.6 - 30.7) 65 15.7 (3.9 - 41.6) 46

HbF (g/dL) 0.48 (0.04 - 2.7) 63 1.59 (0.34 - 4.04) 46

Hemoglobin (g/dL) 8.8 (6.3 - 11.9) 73 9.6 (6.9 - 14.4) 55

MCV (fL) 90 (68 - 113) 74 111 (81 - 131) 55

MCH (pg) 30 (21 - 36) 73 37 (25 - 44) 55

PMN (109/L) 56 (25 - 80) 71 49 (26 - 86) 53

Platelets (109/L) 428 (122 - 995) 74 316 (109 - 528) 55

Bilirubin (μM) 43 (9 - 96) 75 30 (6 - 113) 53

LDH (UI/L) 355 (155 - 800) 73 317 (168 - 766) 52

Ferritin (μg/L) 346 (16 - 4500) 72 275 (14 - 2940) 52

AST (UI/L) 32 (17 - 79) 75 31 (12 - 81) 53

ALT (UI/L) 22 (7 - 84) 75 21 (7 - 83) 53

Creatinine (μM) 65 (38 - 142) 75 64 (35 - 137) 52

Urea (μM) 2.9 (1.2 - 13.3) 75 3.3 (1.5 - 9) 52
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The median (range) ΔHbF% was 0.047 (-0.278 to 0.653).

The final model was (cf. parameter estimates in Table 5):

dMCV
dt

= Kin,i − Kout, i ·
(
1 − βi · Concγ

)
· MCV

where Kin,i = Kin,TV · eηKin ,i, Kout,i = Kout,TV · eηKout,i,

βi = βTV · eηβ,i+θ ·�HbF%

Significant interindividual variability was found for Kin,

Kout and b, with correlations between all three para-

meters. A proportional residual error model was

selected.

Simulation-based diagnostics VPC (Figure 4) and

NPDE indicated that the model adequately described

the observed MCV data. The mean of NPDE was -0.02

(p = 0.87), the variance was 0.9 (p = 0.15). In the VPC,

the difference between the medians of MCV observa-

tions and of its predictions was approximately 5 fL,

which was not clinically significant. In the simulation,

median MCV level at steady-state was about 104 pL,

95% of it was reached in about 90 days.

Simulation of alternative dosing regimens

The simulated HbF% and MCV profiles with the two

dosing regimens are shown in Figures 5 and 6 respec-

tively. For MCV, the difference was very small. For HbF

%, continuous dosing led to more significantly stronger

response, especially for patients reaching the highest

levels of HbF%. It can be observed that HbF% required
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Figure 2 Maximum achieved HbF% and corresponding cumulative number of patients.

Table 4 Parameter estimates of the population HbF% model

Parameters Typical values (95% CI) SD of IIV (95% CI) Interindividual CV

Kin (%/day) 0.071 (0.055 - 0.094) 0.585 (0.472 - 0.681) 63%

Kout (day
-1) 0.013 (0.010 - 0.019) 0.486 (0.334 - 0.602) 52%

LImax (unitless) 0.276 (-0.081 - 0.644)
(Imax = 0.569 (0.48 - 0.656))

1.44 (1.07 - 1.97) 27%

θΔMCV (day
-1) 1.37 (0.95 - 1.76)

SD of proportional residual error 0.142 (0.119 - 0.162)

Correlation (hKout, hImax) 0.892

CI: confidence intervals, obtained by bootstrap (n = 1000), SD: standard deviation, IIV: interindividual variability, CV: the apparent coefficient of variation of

interindividual variability.
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a much longer time than MCV to reach the steady-state

(approximately 26 and 3 months for 95% of steady-state

levels respectively). The inter-individual variability of

steady-state of HbF% was higher than that of MCV: the

ratios of the 95th to the 5th percentile were approxi-

mately 10 and 1.5 respectively.

Discussion
In this study, population PK-PD models were developed

for the first time, in order to characterize the exposure-

efficacy relationships of HU and its variability.

The pharmacokinetics of HU was found to be linear.

Other studies in rats and in humans using doses ran-

ging between 10 to 800 mg/kg in patients with malig-

nancies identified parallel linear renal and saturable

non-renal elimination [20]. The latter could not be

detected in the studies reported here, probably because

the doses administered were not high enough to reach

saturation of non-renal elimination pathways (10 to 35

mg/kg per os in SCA). Otherwise, the presented model

was consistent with the results of previously reported

studies.

Figure 3 PC-VPC for HbF%. The lines show the10th, 50th and 90th percentiles of observed data (thick lines) and of predictions (thin lines); the

grey areas represent the 95% confidence areas around the percentiles. PC-VPC: prediction-corrected visual predictive check.

Table 5 Parameter estimates of the population MCV model

Parameters Typical values (95% CI) SD of IIV (95% CI) Interindividual CV

Kin (%/day) 3.71 (3.13 - 4.30) 0.191 (0.083 - 0.401) 19%

Kout (day
-1) 0.042 (0.035 - 0.048) 0.186 (0.044 - 0.415) 19%

b (L. mg-1)1/g 0.099 (0.064 - 0.135) 0.457 (0.336 - 0.599) 48%

g (unitless) 0.19 (0.02 - 0.46)

θΔHbF% (day
-1) 1.22 (-0.07 - 2.21)

SD of proportional residual error 0.036 (0.030 - 0.040)

Correlation (hKin, hKout) 0.87

Correlation (hKin, hb) -0.98

Correlation (hKout, hb) -0.95

CI: confidence intervals, obtained by bootstrap (n = 1000), SD: standard deviation, IIV: interindividual variability, CV: the apparent coefficient of variation of

interindividual variability.
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Figure 4 PC-VPC for MCV. The lines show the 10th, 50th and 90th percentiles of observed data (thick lines) and of predictions (thin lines); the

grey areas represent the 95% confidence areas around the percentiles. PC-VPC: prediction-corrected visual predictive check.
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Figure 5 Profiles of simulated HbF% with two dosing regimens. 90% prediction intervals and medians of simulated HbF% with HU 7/7

(solid lines) and 5/7 (dotted lines) (n = 10000).
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For a given dosing regimen, HU exposure varied

approximately fivefold among patients. Part of the varia-

bility of apparent clearance and apparent volume of the

central compartment was related to body weight. Clear-

ance was better correlated with body weight at a 0.75

power, according to allometric scaling laws [21]. Because

the maintenance dose of a drug to reach a desired aver-

age concentration is determined solely by its clearance,

this allometric relationship implies that the HU dosing

rate should be calculated with respect to body weight to

the power of 0.75, or equivalently, to free fatty mass

[22], in order to decrease the interindividual variability

in HU exposure. Finally, the time to reach 95% of the

pharmacokinetic steady-state was typically 35 days, in

contrast with the delay to reach the maximal effect of

HU, as discussed below.

The haematological results obtained in this study are

compatible with those previously reported [23]. Our

study brought further insight on the relationship

between exposure and efficacy.

First, from a kinetic point of view, if we expressed the

estimated Kout parameters as half-lives and then multi-

plied them by 5 to obtain approximate times to reach

steady-state before the drug is taken, we could see that

they are around 265 and 83 days for HbF% and MCV

respectively. HU is assumed to reduce Kout and

therefore extend this time to steady-state. The simula-

tions under a constant dosing rate at 1000 mg per day

show that 95% of the steady-state levels of HbF% and

MCV need 26 months and 3 months to be reached,

respectively. If the dosing regimen is modified, the same

delay is required to reach a new steady-state. Hence, the

variation of MCV is more rapid than that of HbF%. The

3 month delay for MCV is certainly related to the life

span of RBC of 120 days and corresponds to the time

needed to renew three quarters of RBCs.

Second, the effect of HU on HbF% was estimated to

be at its maximum independently of the exposure, in

the dose range of our study (500 to 2000 mg/day). How-

ever, the intensity of the effect (Imax) varied among

patients, with a typical value of 0.57 and a coefficient of

variation of 27%. None of the demographic and biologi-

cal indices was correlated with these variations. Part of

this variability might be explained by genetic poly-

morphisms in genes regulating HU metabolism or trans-

porters, HbF expression and erythroid progenitor

proliferation [8-10]. These polymorphisms might modu-

late the patient response to HU. In addition, the HU-

inducible small guanosine triphosphate-binding protein,

secretion-associated and RAS-related (SAR) protein has

been demonstrated to play a key role in HBG induction

and erythroid maturation by causing cell apoptosis and
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Figure 6 Profiles of simulated MCV with two dosing regimens. 90% prediction intervals and medians of simulated MCV with HU 7/7 (solid

lines) and 5/7 (dotted lines) (n = 10000).
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G1/S-phase arrest [24]. Some genetic polymorphisms

related to this pathway have been described such as

sar1a promoter polymorphisms [10] and may also con-

tribute to variability. Finally, patient compliance to treat-

ment might also be a source of variability in response,

but no information on compliance was available in this

study.

Third, HU increased HbF% by reducing HbF elimina-

tion rate constant by 57% (for a typical patient). Abso-

lute values of HbF per RBC (medians) at baseline and

after 6 months were 1.9 pg and 5.6 pg respectively,

which confirms that HU leads to a real increase in HbF

per cell. Theoretically, a full inhibitor could reduce the

elimination rate further, leading to a higher increase of

HbF%. Hence, there is room for improvement, e.g. by

looking for stronger inhibitors, or combining HU with

other drugs to be discovered.

Fourth, a relation between HU exposure and effect on

MCV could be identified, but this relation was flat as in

the studied range of drug exposure the effect was close

to its maximum. When the average HU concentration

was 2 or 9 mg/L (the extremes of this study), the MCV

decay rate constant (Kout) was multiplied by 0.88 or 0.84

respectively, with an interindividual coefficient of varia-

tion of 49%. Hence the inhibition of MCV “elimination”

by HU was less potent than that of HbF, and the inter-

individual variability was greater.

Regarding simulations, a close inspection of Figures 5

and 6 reveals that the interindividual variability of the

steady-state values of HbF% and MCV are different, the

ratio of the 95th to 5th percentile being approximately

10 and 1.5 respectively. Although the effects of HU on

MCV and HbF% variations are correlated, the steady-

state value of MCV at month 3 is not predictive of the

HbF% value at month 26. Hence, HbF% level, which is

also directly related to the relief of sickle cell disease

symptoms, may be the best biomarker for monitoring

HU treatment.

No dose-limiting toxicity occurred in this study, which

prevented a toxicity model from being developed.

Nevertheless, cytopenia may occur during HU treat-

ment, leading to dose reduction. We compared by simu-

lation two dosing regimens, one continuous daily and

the other with interruptions of 2 days after every 5 days.

The difference was very small regarding the MCV pro-

file, but larger for the HbF% profile, particularly for

simulated patients in the last quartile of HbF% distribu-

tion. For these patients, continuous dosing may induce a

clinically relevant increase of HbF% compared with the

discontinuous schedule. The limits of this simulation

exercise are that genetic polymorphisms were not

accounted for, and some other biomarkers (arginase,

NO enzymes, activated adhesion molecules, phosphati-

dylserine externalization [25,26]) were not evaluated.

Conclusions
The mode of action of HU on two clinically relevant

biomarkers of its efficacy was established. The high

variability of response to HU was related in part to

pharmacokinetics (HU exposure varied approximately

fivefold among patients), and to pharmacodynamics.

The steady-state of HbF% and MCV levels need 26

months and 3 months to be reached, respectively, and

the interindividual variability of the steady-state values

of HbF% is much greater than that of MCV. As a result,

the steady-state value of MCV at month 3 is not predic-

tive of the HbF% value at month 26. Hence, HbF% level

may be a better biomarker than MCV for monitoring

HU treatment. Simulations showed that continuous dos-

ing led to a stronger response than intermittent dosing

(5 days out of 7), especially for patients reaching the

highest levels of HbF%. Hence, a continuous dosing

should be prescribed. Finally, an exciting perspective

suggested by the model is that HbF could be further

increased by more potent drugs or by drug combina-

tions. In future studies, the model may allow to describe

quantitatively the impact of relevant polymorphisms on

the variability of response to HU, in order to refine the

simulations and to yield specific recommendations for

each genotype or haplotype.
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