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1
Introduction

Over the last decade, the electricity use of Information Technology and Communication (ITC) has
surprisingly increased. Koomey estimated that the electricity use due to data centers worldwide
has doubled from 2000 to 2005 [Koo07]. In a report published by the the U.S. Environmental
Protection Agency (EPA), it was estimated that only the U.S. data centers were responsible for
the consumption of 61 billion kilowatt-hours (kWh) in 2006, which corresponds to 1.5% of the
nation’s total electricity use. In a recent report [Koo11], Kommey estimated that the electricity use
of data centers increased at a rate of 54% worldwide and at 36% in the U.S. from 2006 to 2010.
Apart from the environmental impacts deriving from that level of consumption, energy consump-
tion becomes a major concern, since energy costs are becoming more and more predominant in
data centers total costs [BH07].

There are many reasons for that growth. The popularization of Internet, started in late 1990’s,
has motivated the migration of local softwares to remote, online and 24/7 available services. More
recently, the dissemination of cloud computing [AFG+09, BYV+09, Mon12] has also pushed
users to consume services in the cloud in a pay-as-you-go fashion. As as consequence, we have
seen an explosion in the number of new data centers worldwide.

Paradoxically, cloud computing models [Pet11] can be seen as a very powerful tool to face
the issue of energy consumption. From the infrastructure provider point of view, techniques like
virtualization [SN05] enable the mutualization of a physical machine’s (PM) resources between
several virtual machines (VMs). As a result, the workload of several applications can be concen-
trated in a minimum number of PMs, which allows the unused ones to be shutdown and hence
reduce the energy consumption [HLM+09].

From the application provider point of view, cloud computing permits to precisely request/re-
lease resources on the fly. It means that the infrastructure provider can deliver computational and
storage resources in a flexible and elastic manner, while charging the applications only for what
they actually consume. This is particularly interesting for applications that need to cope with a
highly variable workload, so they can dynamically adjust the right amount of resources needed to
deliver the desired level of Quality of Service (QoS).

The necessity of cloud based systems to be more responsive and autonomous to environment
changes is one of the main reasons for the great adoption of Autonomic Computing [KC03]. In
point of fact, Autonomic Computing makes applications capable of reacting to a highly variable
workload by dynamically adjusting the amount of resources needed to be executed while keeping
its QoS [KCD+07, VTM10, APTZ12, CPMK12, YT12], whereas from the infrastructure provider
point of view, it also makes the infrastructure capable of rapidly reacting to context changes
(e.g. increase/decrease of physical resource usage) by optimizing the allocation of resources and

11
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thereby reduce the costs related to energy consumption [HLM+09, LLH+09, BB10, FRM12].

1.1 Problem Statement

In spite of the recent efforts in providing more energy-proportional hardware [Bar05], nowadays
PMs still consume a lot of power even when they are inactive [BH07]. Hence, the way appli-
cations are deployed in VMs may indirectly interfere on the infrastructure energy consumption.
Indeed, application providers perform actions such as for requesting/releasing computing/storage
resources with the purpose to optimize the trade-off QoS and cost due to resource usage. These
actions may lead the infrastructure to a state that lowers the infrastructure utilization rate and by
consequence the energy efficiency. In other words, QoS-driven decisions taken at the application
level may indirectly interfere in the energy consumption of the underlying infrastructure. For ex-
ample, following a decreasing demand, an application may decide to release part of the computing
resources allocated to it. As a consequence, instead of decreasing the energy consumption in the
same proportion (energy-proportional limitation), this action (release resources), taken at the ap-
plication level, may lead the infrastructure to a less energy efficient state, since the number of
free spots in the physical infrastructure increases for nearly the same amount of energy consumed.
Similarly, the infrastructure provider may face constrained situations such as an energy shortage,
which would consequently require the shutdown of part of the physical infrastructure. As a result,
this event at the infrastructure level may drastically interfere in the guest applications’ QoS. There-
fore, the lack of synergy between cloud systems may lead both applications and infrastructures to
undesired states.

As a further matter, in order for the synergy between applications and infrastructure to be ef-
fective, it is necessary that applications are flexible enough to react to events produced not only
by the application itself (e.g. increasing/decreasing number of clients), but also by the infrastruc-
ture (e.g. renting fees changes and/or resource constraints). That way, a reconfigurable capability
would make applications more sensitive to infrastructure changes and therefore more adaptable
to a wider range of situations. For instance, in scenarios of resource constraints imposed by the
infrastructure (e.g. energy shortage), a video-on-demand application would be able to seamlessly
cope with this restriction by degrading a video-specific quality attribute (e.g. resolution, frame
rate, etc.). In the other sense, the application can be encouraged by the infrastructure provider
to occupy a certain part of the infrastructure so as to improve the infrastructure utilization rate
(and consequently the energy efficiency) as well as to enable the application to re-increase the
video-specific quality attribute.

1.2 Contributions

This thesis focuses on the autonomic management of applications and infrastructure to improve
the QoS and the energy efficiency in cloud environments.

We believe that managing each application along with the infrastructure in a single autonomic
system is a very hard task. Each application may have its own goals and requirements, which
consequently impacts the way their manager should be conceived (e.g. with respect to the reac-
tivity time scale). Moreover, it is common for cloud applications and infrastructure to belong to
different organizations, which implies that applications details should not necessarily be visible at
the infrastructure. In the same way, application providers should not neither be aware of the in-
frastructure details. For these reasons, we advocate a multiple autonomic management approach,
in which each application is equipped with its own autonomic manager in charge of determining
the minimum amount of computing resources necessary to deliver the best QoS possible. Another
autonomic manager autonomously manages the physical resources at the infrastructure level in an
energy aware manner.

In order to manage the lack of synergy between applications and infrastructure, we propose an
approach for the synchronization and coordination of multiple autonomic managers. The objective
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is to promote a synergy between applications and infrastructure so the information of one manager
can more easily be taken into account by the others so as to avoid negative interferences.

Last but not least, we extend the usual resource elasticity capability (request/release of com-
puting/data resources) by considering applications as white boxes. In other words, we assume that
the way applications are composed (i.e. which components are used and how they are connected)
may lead to different architectural configurations with different needs in terms of resources. As
a result, applications become more sensitive and reactive to changes in the environment, no mat-
ter whether these changes occur in the application itself (e.g. a drastic workload increase with a
limited budget) or in the infrastructure (e.g. resource restriction due to energy constraints).

This thesis’ contributions are summarized as follows:

• Architectural Elasticity Capability. We propose a Component-based Software Engineer-
ing (CBSE) approach in which applications are deployed on the cloud as white boxes. Thus,
the way applications internals are bound as well as their domain-specific QoS criteria are
taken into consideration to configure them. Complementary to the resource elasticity prop-
erty, in which the adaptation to the environment is performed only by adding or removing
resources, the architectural elasticity promotes the management of applications that are
more flexible, more reactive to environment changes and therefore more suitable for a wider
range of runtime contexts. As a result, applications become more susceptible to energy
constraints and optimization issues.

• A Novel Autonomic Model. In order to accommodate multiple autonomic managers, we
propose a model for synchronization and coordination of autonomic managers, which con-
sists of a coordination and a synchronization protocols. The former defines communica-
tion interfaces based on autonomic managers’ actions and events. The latter defines a way
to enable consistent interactions between managers. More precisely, we propose a shared
knowledge-based synchronization pattern. Hence, decisions taken by one manager may take
into consideration some information provided by the others.

• Application and Infrastructure Managers for the Cloud. Based on the model mentioned
on the previous paragraph, we specified and implemented an Application Manager and an
Infrastructure Manager. The former is an autonomic manager whose objective is to make
applications self-manageable. It listens for events on the managed application (e.g. the
workload) and from the Infrastructure Manager. According to these data, the Application
Manager decides whether to reconfigure the managed application. For example, a deci-
sion should be made to find the amount of resources needed to meet the QoS requirements
while keeping a certain architectural configuration or whether to degrade the architectural
configuration (change the internal configuration) in order to cope with resource constraints
imposed by the infrastructure provider. Finally, if a reconfiguration is applicable, a set of
actions is dynamically performed on the managed application (e.g. deploy, start, stop, bind
component) or onto other managers such as the infrastructure manager (e.g. request/re-
lease computing resource). The latter is also an autonomic manager whose objective is to
make the infrastructure self-manageable. It listens for events on the managed infrastructure
(e.g. PMs utilization rate) and from the Application Manager (e.g. requests on comput-
ing resources by means of VMs). According to the collected data, it decides whether or
not to reconfigure. For instance, a decision should be made in order to find where new
VMs requested by applications should be placed so that the infrastructure utilization rate
is optimized. The result is a set of actions performed on the managed infrastructure (e.g.
create/destroy VM) and/or onto other autonomic managers (e.g. notify VMs creation).

• Synergy between Applications and Infrastructure. We promote a synergy between In-
frastructure and Application Managers with the purpose to mitigate negative interferences
of one manager in another. Hence, we define communication interfaces based on the co-
ordination protocol previously mentioned. They can be used by a manager to inform other
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managers about important changes that may affect them. For example, in periods of energy
shortage, the Infrastructure Manager may warn Application Managers that part of the in-
frastructure must be shutdown and that some of the allocated resources will be temporarily
unavailable. It should be noticed that applications equipped with architectural elasticity are
more likely to cope with that kind of situation. Apart from the communication interface
based synergy, we also propose a more implicit synergy mechanism. It consists in imple-
menting the renting fees due to computing resources in a variable manner, meaning that they
can be dynamically adjusted by the Infrastructure Manager (e.g. by creating promotions)
in order to encourage Application Managers to request more resources and thus optimize
the infrastructure utilization rate. We rely on the autonomic model previously mentioned to
define the renting fees as a shared knowledge so several autonomic managers can access it
in a synchronized way.

• Constraint Programming Model to Solve Optimization Problems. We provide a set Con-
straints Satisfaction and Optimization Problems (CSOP) that models the decisions at both
managers. The solutions for these problems are implemented with Constraint Programming
(CP) [RVBW06] techniques.

1.3 Outline

This section describes how the rest of this document is organized. Chapter 2 is dedicated to the
technical background necessary for the understanding of this thesis work. Chapter 3 discusses
a selection of recent and relevant scientific work related to the issues addressed in this thesis.
In Chapter 4, we provide some discussion about how the flexibility inherent to cloud computing
along with the flexibility achieved by component-based software engineering can assist applica-
tion and infrastructure providers to cope with dynamic environments. Based on these levels of
flexibility, we present an overview of a multi-level self-management approach for QoS and energy
optimization in cloud environments. Chapter 5 presents the autonomic model for coordination
and synchronization of multiple autonomic managers and details the application and infrastruc-
ture managers. Chapter 6 describes the implementation details of the research prototype used to
validate this thesis work. In Chapter 7, some results obtained from a set of experiments on the re-
search prototype are presented and discussed. These experiments were performed on Grid’5000, a
real physical infrastructure testbed. Finally, Chapter 8 summarizes the contributions of this thesis
and presents the perspectives on the topic by outlining the on-going and future work.
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2
Background

The goal of this chapter is to present some concepts and technologies that are necessary for the
good comprehension of the remainder of this thesis.

Firstly, we present some concepts related with cloud computing by providing a discussion
about its definition, models and technologies used to implement it. In addition, we highlight the
main advantages and drawbacks. Then, we give a short introduction on autonomic computing,
by briefly defining it. Also, we describe the self-management properties and present the auto-
nomic computing architectural reference models. Then, we present the main concepts related to
component-based software engineering. We provide a discussion about the definitions of compo-
nent as well as about the support for dynamic reconfiguration in some component models. We
point out some limitations of component-based architectures and how they meet service-oriented
architecture to overcome these limitation while supporting dynamic adaptation. Finally, we briefly
describe constraint programming, which is used in this work to perform constraint satisfaction and
optimization analysis. We provide a definition of constraint programming as well as with an in-
troduction on how problems are modeled and solved. Lastly we provide a discussion about some
drawbacks and outcomes of constraint programming.
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2.1 Cloud Computing

This section presents the main concepts of cloud computing. First, we provide a definition of cloud
computing. Then, we describe the service and deployment models of cloud computing. Finally,
we give a brief introduction on virtualization, which is a technology widely adopted to implement
cloud computing in a feasible and cost effective way.

2.1.1 Definition

According to the U.S. National Institute of Standards and Technology (NIST) [Pet11], cloud com-
puting is a model for enabling on-demand network access to a shared, and often virtualized, pool
of resources. Although cloud computing has received a lot of attention over the last years, the
concepts involved are not entirely new [AFG+10, AFG+09, BYV+09]. Indeed, grid computing
also aims at the data and computing resources provisioning in a geographically distributed, stan-
dardized, network-accessible way with the objective to meet a specific task or goal [FK04]. Utility
computing, in turn, is about delivering computing as utility, just like electricity does for electrical
power [BYV+09]. Hence, consumers of computing services are charged in a pay-per-use basis,
that is, they pay only for what they actually use, instead of a flat and fixed price. Furthermore,
software as utility is also a similar model to the one offered by the application service providers
(ASPs) [Fac02], which are third-party organizations providing software applications that can be
accessed 24/7 via Internet. In short, cloud computing can be thought as the convergence of lots of
concepts (e.g. ASP, grid and utility computing) that have been proposed for a while, but thanks to
the recent technological advance only now became viable [Mon12].

2.1.2 Service and Deployment Models

Service Models

Cloud computing is based on the service-consumer model, which means that resources (no mat-
ter if it is a software, hardware, infrastructure or anything else) are delivered to consumers as
services. Generally, the acronym XaaS is used to designate anything-as-a-service or everything-
as-a-service. The most emblematic service models of cloud computing are Software-as-a-Service,
Platform-as-a-Service and Infrastructure-as-a-Service. These models are detailed as follows:

• Software as a Service (SaaS): the capability to deliver Internet accessible applications de-
ployed on a cloud infrastructure to consumers. It means that SaaS consumers does not
control the software application neither the underlying platform or infrastructure used to de-
ploy it the application. There are many examples of SaaS provides such as Salesforce.com 1

which is a suit of business applications, Office 365 2, which is a suit of office tools (e.g. text
processing and spreadsheet application) provided by Microsoft, and Google Apps 3, which
is a productivity suite application provided by Google.

• Platform as a Service (PaaS): the capability to deliver a means to facilitate the deploy-
ment of applications on the underlying cloud infrastructures to consumers. Like the SaaS

1http://www.salesforce.com
2http://www.microsoft.com/office365/
3http://www.google.com/Apps

http://www.salesforce.com
http://www.microsoft.com/office365/
http://www.google.com/Apps
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model, the PaaS consumer does not control the operating system (OS), the storage nor the
underlying infrastructure. Examples of PaaS include Google AppEngine 4 and CloudBees 5.

• Infrastructure as a Service (IaaS): the capability to deliver processing (e.g. CPU and
RAM), storage and network resources to consumers. The consumers do not control the
physical infrastructure but it may control the OS, storage and deployed applications. Ex-
amples of IaaS include Amazon Elastic Compute Cloud (Amazon EC2 6), Amazon Simple
Storage Service (Amazon S3 7), and Microsoft Azure 8.

Figure 2.1 depicts the cloud computing stack, in which the interaction among service providers
and consumers for the SaaS, PaaS and IaaS service models are illustrated. As it can be seen,
services are accessed via application programming interfaces (APIs) which are available over the
Internet (e.g. Webservices). Although the cloud stack in Figure 2.1 is presented in a layered
fashion, it might be possible that consumers situated on uppermost layers consume services offered
by providers situated on lowermost layers. For example, a SaaS consumer may consume a SaaS
service deployed on a platform/infrastructure leased to him/her (the SaaS consumer). Therefore,
the SaaS consumer would have a relationship not only with the SaaS provider but also with the
PaaS and/or IaaS provider.

The rights and obligation of both service consumer and provider involved in service purchase
might be formalized by a Service Level Agreements (SLA) [WB11]. For example, at the SaaS
level, the SLA established by Google Apps 9 and their consumers states that Google’s obligation
is to offer a service availability of 99.9% (i.e. the monthly uptime percentage). In case of contract
violation, i.e. if Google does not meet its obligations (the monthly uptime percentage inferior to
99.9), the consumer will be eligible to receive service credits according to the level of violation.
In the same sense, SLAs can also be defined at the PaaS (e.g. for Google AppEngine 10) and IaaS
(e.g. for Amazon EC2 11) so as to give consumers compensations in case of contract violation.

Infrastructure-as-a-Service Provider

Platform-as-a-Service Provider

Software-as-a-Service Provider

SaaS Consumer

Internet Accessible SaaS API

Internet Accessible PaaS API

Internet Accessible IaaS API

S
L

A
S

L
A

S
L

A

Figure 2.1: Cloud Computing Stack.

Although basic concepts of SLA is applicable to real world applications, there are several
issues regarding the SLA management and cloud computing [BGC11, KL12]. Indeed, the dy-
namism of cloud environments along with the lack of access to metrics on the provider side make
it hard to monitor and audit the QoS metrics and hence be able to detect violations.

4http://cloud.google.com
5http://www.cloudbees.com/
6http://aws.amazon.com/ec2/
7http://aws.amazon.com/s3/
8http://www.windowsazure.com/
9http://www.google.com/apps/intl/en/terms/sla.html

10http://developers.google.com/appengine/sla
11http://aws.amazon.com/ec2-sla/

http://cloud.google.com
http://www.cloudbees.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://www.windowsazure.com/
http://www.google.com/apps/intl/en/terms/sla.html
http://developers.google.com/appengine/sla
http://aws.amazon.com/ec2-sla/
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Deployment Models

The cloud computing deployment models are defined as follows:

• Private Cloud: the cloud infrastructure is dedicated exclusively to the needs of a single
organization and it may be owned, managed or operated by the organization itself, a third-
party organization or a combination of them.

• Community Cloud: the cloud infrastructure is dedicated to the needs of a community of
organizations with common concerns. It may be owned, managed or operated by the orga-
nizations themselves, a third-party organizations or a combination of them.

• Public Cloud: the cloud infrastructure is owned, managed or operated by business, aca-
demic, government organizations, or a combination of them; and it is open to serve the open
public.

• Hybrid Cloud: it is a combination of the three previous models.

2.1.3 Platform Virtualization

According to Smith and Nair [SN05], virtualization is a way of getting around constraints imposed
by the interface specificities of each system component. The objective is to provide more flexi-
bility for software systems by mapping “its interface and visible resources onto the interface and
resources of underlying, possibly different, real systems.”. Singh [Sin04] defines virtualization as
“a framework or methodology of dividing the resources of a computer into multiple execution en-
vironments[. . . ]”, meaning that it enables the mutualization of resources by sharing them among
several virtual machines (VMs) in an isolated manner. The most known form of virtualization
is the platform virtualization, in which platform refers to the hardware platform and its physical
resources such as CPU, memory, disk and network.

Virtualization (or platform virtualization) is particularly interesting for IaaS providers, since
it brings more flexibility to the on-demand provision of resources. Indeed, in a single physical
machine (PM), an IaaS can simultaneously serve several consumers in an isolated way, as if for
each consumer was given a small single PM. A result of this physical resource mutualizaton is a
better management of the resources utilization, which consequently may be more cost effective.

The virtualization is controlled by a system called virtual machine manager (VMM), also
known as hypervisor (Figure 2.2). It is in charge of controlling several guest VMs that are hosted
by the PM in which the hypervisor is installed. Each VM manages its own OS and applications.
The hypervisor can be of two types: bare-metal hypervisor, which lays directly on the hardware
and can serve as a host OS; and hosted hypervisor, which depends on a host OS.

A VM is nothing but a file, in which the modifications can be written (snapt-shotted), and
which can be easily copied so as to create another VM instance (cloned) or transferred (migrated)
to another PM. With this regard, most of hypervisors are equipped with VMs live migration capa-
bility, which allows migrating a running VM from one PM to another without having to switch it
off before. This is particularly interesting to perform VM load balancing or server consolidation,
that is, to concentrate the maximum number of VMs in fewest number of PMs so as to optimize
the energy consumption of PMs [VAN08a, HLM+09]. However, if this feature is not used with
moderation, due to its high overhead, it may cause serious problems of performance and thus affect
the guest applications’ QoS [VKKS11, Str12].

There are several kinds of virtualization, such as OS-based virtualization [KW00] 12, appli-
cation virtualization 13 14 15 and desktop virtualization 16. In this thesis, we make use of server

12http://linux-vserver.org/
13http://www.vmware.com/products/thinapp/overview.html
14http://www.winehq.org/
15http://www.cygwin.com/
16http://www.realvnc.com/

http://linux-vserver.org/
http://www.vmware.com/products/thinapp/overview.html
http://www.winehq.org/
http://www.cygwin.com/
http://www.realvnc.com/
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Figure 2.2: Platform Virtualization.

virtualization and thus we focus on the main virtualization models for this purpose, namely full
virtualization and para-virtualization.

The full virtualization permits that a guest OS runs without any special adaptation for the
hypervisor. Although it seems to be the ideal approach, mainly if the guest OS and applications
are prepared without knowing in advance the target platform, it may be very costly in terms of
performance. In fact, the full virtualization requires that every important characteristic of the
hardware are emulated in details as if the guest OS were executed natively. Example of hypervisors
that supports full virtualization include VMware 17 , Xen 18, VirtualBox 19 from Oracle, Hyper-
V 20 from Microsoft and KVM 21 from RedHat.

The para-virtualization overcomes the full virtualization performance issues by making VMs
aware of the virtualization. The hypervisor instead of emulating all the main hardware devices,
provides an API to access them. While it may turn the hypervisor more lightweight and thereby
more performance effective, it comes at the expense of the needful for guest OS modification.
There are implementations of para-virtualization by VMware, Hyper-V, Xen, KVM, among others.

2.1.4 Advantages and Drawbacks

The service utility model upon which cloud computing is based brings many advantages. Cloud
computing may free consumers from the burden of maintenance at all levels, e.g. software, plat-
form and infrastructure. This is particularly interesting when the business focus, although depen-
dent on, is not related to IT, since the consumers become free to focus exclusively on their business
rather than on other issues related to IT. Another advantage concerns the elasticity of cloud ser-
vices. Because of its on-demand service model supported by techniques like virtualization, IaaS
consumers are capable of easily scaling up and down so as to cope with very dynamic demands.
Moreover, thanks to the pay-as-you-go philosophy of cloud service models, cloud consumers are
given the chance to scale while paying only for what they actually consume, which can be more
cost effective.

It is straightforward that all these advantages come at a price. Indeed, the lack of guarantees
on data privacy and security [SK11] are examples of issues that arise in cloud systems. In fact,
since consumers have no idea how their data are stored in cloud infrastructure or how safe the
leased SaaS/PaaS/IaaS is, it becomes difficult to be assured about those attributes. The lack of

17http://www.vmware.com
18http://xen.org/
19http://www.virtualbox.org/
20http://www.microsoft.com/hyper-v
21http://www.linux-kvm.org/
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customization may also pose some problems. For instance, consumers’ special requirements on
hardware (e.g. a specific processor model) that may not be met by IaaS providers. Another
example is the lack of customization in the context of multi-tenant SaaS applications (applications
that are leased to multiple consumers at the same time). There might be a problem when some
specific features that is desired by one consumer is not implemented on a SaaS [GTAB12].

2.2 Autonomic Computing

In order to cope with a variable environment which is intrinsic to cloud computing systems (cf.
Section 2.2), it becomes imperative to rely on models that allows the system to react to the exe-
cution context so as to keep it running in an optimized way (in terms of QoS and cost). For this
purpose this thesis relies on autonomic computing.

In this section, we describe the main concepts related to autonomic computing. Firstly, we
introduce the term “autonomic computing”, then we provide some discussion about some proper-
ties inherent to autonomic systems. Finally, we describe the widely adopted autonomic computing
reference model.

2.2.1 Definition

Autonomic Computing emerged from the necessity to autonomously manage complex systems,
in which the manual human-like maintenance becomes infeasible. The term was first introduced
in 2001 by IBM [Hor01] as a reference to the ability of the human autonomic nervous system
to govern vital functions such as heart beat, body temperature, among many others, and hence
discharging the human conscious brain of managing these tasks. The counterpart of the human
autonomic nervous system in computing systems is therefore defined by IBM as systems that are
able to manage themselves according to high-level goals provided by administrators [KC03].

2.2.2 Self-management

Self-management is the main characteristics of autonomic computing systems. It refers to the abil-
ity of systems to avoid human intervention by freeing administrators from details on the operation
and maintenance to keep systems continuously running. The main properties of self-management
evoked by IBM are self-configuration, self-optimization, self-healing and self-protection [KC03].
Following, we provide a brief definition of each one of them:

• Self-configuration: this property makes autonomic computing systems capable to config-
ure themselves according to high-level goals based on the system and/or user needs. These
high-level goals specifies which future states are desired, but not necessarily specifying how
the transition from the current state to the desired one should be accomplished.

• Self-optimization: this property indicates that autonomic systems are able to constantly
and/or pro-actively be in quest of optimizing the use of resources so as to improve the
performance and QoS while minimizing costs.

• Self-healing: this property makes autonomic computing system capable of detecting, di-
agnosing and repairing localized problems. These problems may result from bugs in both
software or hardware. An example of self-healing could be the replacement of a software
component that does not work properly by another providing the same functionality but
implemented differently.

• Self-protection: this property makes an autonomic system able to protect itself from mali-
cious attack or cascading failures not repaired by the self-healing strategies. In addition, an
autonomic system may be capable of anticipating problems in a proactive fashion by taking
into consideration previous sensor data.
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2.2.3 Autonomic Computing Reference Model

Figure 2.3 depicts the reference model proposed by IBM to realize autonomic computing [KC03].
Autonomic systems are defined as a collection of autonomic elements that communicate with each
other. An autonomic element consists of a single autonomic manager that controls one or many
managed elements.

A managed element is a software or hardware resource similar to its counterpart found in
non-autonomic systems, except for the fact that it is adapted with sensors and effectors so as to
be controllable by autonomic managers. Sensors gathers data from the managed elements, which
allow the autonomic manager to monitor and perform changes on them via effectors.

Autonomic Element

Managed Element

Autonomic Manager

Monitor

Analyze

Execute

Plan

Knowledge

Sensors Effectors

Figure 2.3: Autonomic Computing Reference Architectural Model Proposed by IBM [KC03].

According to [HM08], an autonomic manager is defined as a software component that, based
on high-level goals, uses the monitoring data from sensors and the internal knowledge of the
system to plan and execute actions on the managed element in order to achieve those goals. It is
also known as a MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) loop, as a reference to
the main architectural aspects of the IBM’s reference model (Figure 2.3).

We now detail each task of the autonomic manager.

Monitoring

As previously stated, the monitoring task is in charge of observing the data collected by software
or hardware sensors deployed in the managed element. The monitoring activity can be either
passive or active. The passive monitoring gets information from the monitored system in a non-
intrusive fashion. It means that there is no need for internal changes in the monitored system
such as by adding or modifying the code (instrumenting it) to provide monitoring capabilities. On
the contrary, the active monitoring refers to instrumenting the monitored system by for instance
modifying the code to intercept function and/or system calls.

Analysis

The analysis task is in charge of finding a desired state for the managed element by taking into con-
sideration the monitored data, the current state of the managed element, and adaptation policies.
Policies are usually specified in terms of event-condition-action (ECA), goals and/or utility func-
tions. ECA policies are defined by a set of tripled rules (when a given event occurs, and a given
condition holds, then execute a certain action). This kind of policy does not require a planning
task to effect the changes on the managed element. Goal based policies specify the characteristics
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of desired states, but not how to perform the transition from the current state to them, which is
done by the planning task. Finally, the utility function based policies allows one to quantify the
level of usefulness of possible future states.

Planning

The planning task takes into consideration the current state and the desired state resulting from
the analysis task to produce a set of changes to be taken effect on the managed elements. These
changes may be organized in a ordered and constrained manner. For instance, there might be a set
of changes that should be executed after the termination of other changes. Moreover, there might
be changes that should be executed in a timely manner.

Execution

The execution task is responsible for effecting changes on the managed element, within the desired
time and respecting the reconfiguration plan generated by the planning task. The execution is
performed by relying on low-level actions which may impact several managed elements and may
involve several machines.

Knowledge

The knowledge in an autonomic system assembles information about the autonomic element (e.g.
system representation models, information on the managed system’s states, adaptation policies,
and so on) and can be accessed by the four tasks previously described. This information may
come from diverse sources such as history of execution, observation on the system behaviour, log
data, or even information added by human (domain experts, system administrators, etc).

2.3 Component-based Software Engineering

In environments that demand constant changes such as those of autonomic computing (cf. Section
2.2.3), it becomes imperative the programming language and architectural models support to per-
form changes on managed elements in a seamlessly way. Moreover, it is very important to have
architectural support for dynamic reconfiguration, i.e., the reconfiguration performed at runtime.
Hence, to this effect, this thesis presumes that SaaS applications are defined and constructed based
on a component-based software engineering principles.

In this section we present the main concepts related to component-based software engineering.
Then, we discuss how component-based architectures are appropriated for dynamic adaptation.
Finally, we bridge the component-based software engineering and service-oriented architecture
by presenting service component architecture, a component model whose objective is to support
the construction, description, deployment and maintenance of service-oriented architecture based
applications.

2.3.1 Definitions

Component-based software engineering (CBSE) is a branch of software engineering that seeks to
provide means for the development of software as a composition of pre-fabricated and/or COTS
(commercial off the shelf) software components [HC01].

Component Model

There are many definitions of component in the literature. In [SP97] a software component is
defined as “a unit of composition with contractually specified interfaces and explicitly context
dependencies only.[. . . ] A software component can be deployed independently and is subject to
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composition by third parties”. A similar definition is given in [SGM02], where software com-
ponent is defined as “a unit of independent deployment and third-party composition”. Another
definition by [HC01] states that component is “a software element that conforms to a compo-
nent model and can be independently deployed and composed without modification according to a
composition standard”. From the software reuse perspective [JGJ97a] defines components as “a
type, class or any other workproduct that has been specifically engineering to be reused. (. . . ) A
component is cohesive and has stable interfaces”.

All the definitions above converge towards the same characteristics. In order to be indepen-
dently deployable, the component should be well separated from other components and encapsu-
late its implementation. In order to be third-party composable (or reusable), it should come with
clear definitions (contracts) about what it provides and requires, that is, its interactions with the
environment should be done via clear definitions of interfaces. The explicit context dependencies
must specify the component’s needs so that it can work properly. It refers to the context of com-
position and deployment, that is, the rules of composition and rules of deployment, installation,
activation of components. In short, a component must conform to a component model, which
specifies how the component should be constructed, how it should be deployed and how it should
interact. COM/DCOM/COM+ (Component Object Model) 22 and .Net component model 23 are
examples of component models by Microsoft with the purpose to enable software components
within Windows-Family OS to communicate. Sun has developed JavaBeans 24 and Enterprise
JavaBeans (EJB) 25 to allow the componentization in both standalone and server-based Java pro-
grams. Finally, CORBA Component Model (CCM) 26 is a component model maintained by the
Object Management Group (OMG) 27 that allows the implementation of distributed objects, in
which services can be invoked regardless the object location, programming languages, operating
system, communication protocols or hardware.

More recently, some component models with focus on the development of service-oriented
architecture based applications have been proposed, such as open services gateway initiative
(OSGi) 28 and service component architecture (SCA) 29.

Component-based Architecture

A software architecture defines the high-level structure of a software system, by describing how
it is organized as a means of a composition of components [JGJ97a]. Generally an architecture
description language (ADL) [MT00] is used to describe the architecture of a system. Although
the diversity of ADLs, the architectural elements proposed in almost all of them follow the same
conceptual basis [GMW00]. The main architectural architectural elements are defined as follows:

• Component. A component is the most elementary processing or data storage unit. It may be
simple (composed of only one component) or composite (composed of other components).
It consists of two parts: the implementation and the interfaces. The implementation de-
scribes the internal behaviour of the actual component, whereas the interfaces defines how
the component should interact with the environment.

• Connector. A connector corresponds to interactions among components. Roughly, it medi-
ates an inter-component communication in diverse forms of interactions, such as procedure
call or event broadcasting.

22http://www.microsoft.com/com
23http://www.microsoft.com/net
24http://download.oracle.com/otndocs/jcp/7224-javabeans-1.

01-fr-spec-oth-JSpec/
25http://www.oracle.com/technetwork/java/ejb-141389.html
26http://www.omg.org/spec/CCM/
27http://www.omg.org/
28http://www.osgi.org
29http://www.oasis-opencsa.org/sca
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• Configuration. A configuration describes the structure and/or the behaviour of the component-
based application. It corresponds to a directed graph of components and connectors describ-
ing the application’s structure. The behavioural description describes how the interaction
among components and properties evolve over the time.

It should be noticed that other elements like properties, constraints or architectural styles may
also often appear in ADLs [GMW00]. For sake of scope limitation and brevity we omit further
description on this regards.

2.3.2 Architectural-based Dynamic Reconfiguration

Dynamic architectures allows the modification of systems during their execution. It is particularly
applicable in the domain of self-adaptive systems (cf. Section 2.2.3) in which systems should
adapt to some context change while mitigating the interferences on their execution.

Reflection and Reflective Architectures

Reflective systems can be seen as good basis for dynamic architectures. Indeed, reflective systems
are systems capable of reasoning on and modifying their own structure and/or behaviour [Smi84].
They are characterized by two capabilities: introspection and intercession. The first allows a
system to observe itself, that is, to observe a representation of its structure and behaviour. The
second capability corresponds to the possibility to change itself, that is, to modify its own structure
and/or behaviour. According to [Mae87], a reflective system comprises two levels: (i) the base
level, which corresponds to the implementation of what the system is actually indented to do; and
(ii) the meta level, which reflects the base level implementation for parts of the system that are
reified.

Reflective architectures act in a similar way to provide reflection capabilities (introspection
and intersection) of software architectures [CSST98]. In a reflective component model, the base
level consists of the actual components (with their provided and required interfaces). At the meta
level, the components are equipped with control interfaces, which allow the introspection (e.g.
observation of components, assembly, interfaces, connectors, and so forth) and intersection (e.g.
creation/suppression of components, creation/suppression of connectors, etc).

Examples of reflective component models include FORMWare [MBC01, MBC03], OpenRec
[WSKW06], Fractal [BCL+04], and its extensions Grid Component Model (GCM) [BCD+09]
and JADE [BPG+09], for supporting distributed components in grid/cluster environments.

Dynamic Reconfiguration

Dynamic reconfigurations are reconfigurations in which it is not necessary to stop the system ex-
ecution or to entirely redeploy it in order for the modification to take effect. As a consequence,
the number interferences on the system execution is reduced and the availability is increased.
Component-based architectures are very suitable for dynamic reconfigurations. Indeed, thanks to
its native characteristics of modularity and encapsulation, it is possible to isolate the modifications
so that the interference on the system execution is mitigated. However, in some cases, the dynamic
evolution of system may not be achievable due to reliability reasons, meaning that dynamic recon-
figurations may lead systems to inconsistent states and thus may not be able to deliver systems’
expected functionality during all their life-cycle. In this regard, recent research work [LLC10]
propose an transaction-based approach to address the reliability issue in dynamic and distributed
component-based systems.

2.3.3 Component-based Software Engineering for Service-Oriented Architectures

This section discuss some limitations of CBSE when applied to nowadays software development
and how it can be complemented by service-oriented architectures. Then we briefly describe Ser-



2.3. Component-based Software Engineering 29

vice Component Architecture, a component model that focuses on the development of applications
based on the service-oriented architecture.

Component-based Software Engineering versus Service-oriented Architecture

While CBSE is a very handy discipline that focus on the reuse, deployment and maintenance of
software systems, it does not address a number of problems of nowadays software development
such as interoperability, platform and protocol diversity, and distributed environments over the
Internet [Has03]. Service-Oriented Architecture (SOA) aims at cope to these limitations. SOA
is an architectural style in which services are the smallest functional/composition unit [Pap03],
that is, SOA is an architectural style where applications are conceived as composition of loosely
coupled, coarse grained, technology agnostic, remotely accessed, and interoperable (i.e. accessed
via standardized protocols) services. In the other sense, SOA requires appropriate infrastructure
to conceive, deliver and manage distributed applications based on the SOA principles [SMF+09].
Therefore, CBSE and SOA can be seen as complementary approaches.

Service Component Architecture

Service Component Architecture (SCA) is a component model for building applications based on
the SOA principles. The first version of the SCA specification was published by a consortium
of companies like BEA, IBM, IONA, Oracle, SAP, Sun and TIBCO. Since 2007, SCA has been
maintained by the OASIS’ Open Composite Services Architecture (CSA) section 30.

SCA provides means for constructing, assembling and deploying software components regard-
less the programming language or protocol used to implement and make them communicate. To
this end, the SCA specification consists of four main specifications: assembly model, component
implementation, binding and policy framework.

The component implementation specification specifies how a component can be actually im-
plemented in a certain programming language (e.g. another SCA component definition, Java, C,
C++, Cobol, Spring, Business Process Execution Language).

The assembly model specification specifies how components should be defined and structurally
composed. A component is specified in terms of implementation, services, references and prop-
erties (cf. Figure 2.4). The implementation points to the code that actually implements the com-
ponent (e.g. Java Class). A service refers to a business function implemented by the component.
A reference corresponds to a functional dependency on a service provided by another component.
A reference and a service are wired together through a wire and they are both specified by either
Java Interfaces or a WSDL description files. The component implementation may have properties
whose values can be set within the component definition. A component can be defined as simple
or composite, that is, composed of other components. In order for a service be accessible from
outside the composite, it should be defined as a service promoted to composite service. Similarly,
in order to access a service offered by a component located outside the composite boundaries, the
reference in question should be promoted to composite reference.

The binding specifications specify how services are provided and/or how references are satis-
fied by describing which access methods or transport are allowed such as Java Connector Architec-
ture (JCA) 31, Java Message Service (JMS) 32 and Simple Object Application Protocol (SOAP) 33.

The policies framework specifications specify how components can deal with non-functional
components in a transparent way. For example, in order for a service to be executed, it is required
that the income arguments are first logged in the database. Instead of treating the logging service

30http://www.oasis-opencsa.org/
31http://download.oracle.com/otn-pub/jcp/connector_architecture-1.

6-fr-oth-JSpec/connector-1_6-final-spec.pdf
32http://www.oracle.com/technetwork/java/jms/index.html
33http://www.w3.org/TR/soap/
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Figure 2.4: Service Component Architecture Concepts.

as a functional dependency (i.e. reference to a functional component), it is rather defined as a
policy and therefore it does not change the way the component is implemented.

Deployment. Composites and components are deployed within a domain, which specifies an ap-
plication provider boundary. That is, the details of composites defined in another domain are not
visible. As a consequence, in order to guarantee interoperability, the communication between
components located in different domains should be done in standardized ways such as Web Ser-
vices. Nevertheless, two components of the same application may be executed in different SCA
runtimes, or even in different machines, as long as they belong to the same domain.

SCA Dynamic Reconfiguration. There are a number of implementations of SCA such as Fab-
ric3 34, Tuscany 35 and FraSCAti [SMF+09]. In this thesis, we rely on FraSCAti SCA runtime
implementation, since it provides mechanisms for runtime reconfiguration. FraSCAti is developed
on top of Fractal Component Model [BCL+04] and thus benefits of the reflexivity capability which
allows dynamic reconfiguration of SCA application.

2.4 Constraint Programming

In the context of autonomic computing systems (cf. Section 2.1), in order to manage the dy-
namism of cloud systems (cf. Section 2.2) by self-optimizing their executions, it becomes neces-
sary a method to concretely implement the ECA rules, goals or utility functions. ECA rules can
be easily implemented with event listeners or well-known design patterns such as the observable
pattern [GHJV95]. For goals and utility functions used to optimize the behaviour of the managed
system, in terms of constrained (or limited) resource usage and performance, it is needful some
times that the analysis or planning tasks is defined in terms of constraint satisfaction and/or opti-
mization problems (CSPs/CSOPs). For this purpose, we rely on constraint programming (CP) for
the modeling and solving of these kind of problems, which is a high-level, powerful, extensible

34http://www.fabric3.org/
35http://tuscany.apache.org/
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and flexible paradigm for solving this kind of problems. This section presents the main concepts
concerning CP by firstly providing a definition of CP. Then, we briefly describe how problems
are modeled in CP and some search strategies used to solve the modeled problems. Finally, we
provide some discussion about the drawbacks of CP and how they can be overcome.

2.4.1 Definition

Constraint Programming (CP) is a paradigm that aims to solve combinatorial search problems
based on the definition of decision variables and constraints over them [RVBW06, RvBW07]. The
basic idea is that the end-user states a set of variables and imposes a set of constraints and a general
purpose solver tries to find a solution that meets these constraints. Examples of CP solvers include
Choco [Tea10] and IBM CP Optimizer 36.

2.4.2 Modeling a CSP

In [CHO], a CSP is defined as a tuple (X,D,C), where X = {X1, X2, . . . , Xn} is the set of
decision variables of the problem. D refers to a function that maps each variable Xi ∈ X to the
respective domainD(Xi). A variableXi can be assigned to integers values (i.e. D(Xi) ⊆ Z), real
values (i.g. D(Xi) ⊂ R) or a set of discrete values (i.e. D(Xi) ⊆ P(Z)). Finally, C corresponds
to a set of constraints {C1, C2, . . . , Cm} that restrain the possible values assigned to variables. So,
let (v1, v2, . . . , v

j
n) be a tuple of possible values for subsetXj = {Xj

1 , X
j
2 , . . . , X

j

nj} ⊆ X . A con-

straint Cj is defined as a relation on set Xj such that (v1, v2, . . . , v
j
n) ∈ Cj

⋂

(D(Xj
1) x D(Xj

2) x
. . . x D(Xj

nj )).
For example, let us suppose that one wants to construct a rectangle whose perimeter is less than

16cm. In order to model this as a CSP problem, we need to specify two variables X = {H,W}
representing respectively the rectangle’s height and width. A priori, these variables can be assigned
to any positive integers, that is, D(H) = D(W ) = N

+. Finally, in order to assure that the
perimeter is lower than 16cm, the following constraint should be defined 2H + 2W ≤ 16.

2.4.3 Solving a CSP with CP

In CP, the user provides a CSP problem and a CP solver takes cares of solving it. Solving
a CSP (X,D,C) is about finding a tuple of possible values (v1, v2, . . . , vn) for each variable
Xi ∈ X such that all the constraints Cj ∈ C are met. For example, {(1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 2), (2, 3), · · · , (4, 4)} are possible solutions for the rectangle CSP presented in the pre-
vious section. In the case of a CSOP, that is, when an optimization criterion should be maxi-
mized or minimized, a solution is the one that maximizes or minimizes a given objective function
f : D(X) 7→ R. An objective function for the rectangle CSP could be maximize f(H,W ) =
H ∗W , which means that the solution found must be the one that maximizes the rectangle’s area.

CSP are usually solved with search algorithmic approaches, which can be either complete
(systematic) or incomplete (non-systematic). The former performs systematic search (e.g. back-
tracking or branch-and-bound) that guarantees that a solution is found, if there exists at least one,
whereas the latter performs a sort of local search and therefore should not be used to show that
such a solution does not exist or to find an optimal solution. Nonetheless, non-systematic might
take less time to find a solution (if there is any) and an approximation of the optimal solution.

2.4.4 Drawbacks and Overcomes

It is straightforward that the main advantage of CP is its declarative characteristics, i.e. users
states constraints and an engine solves it. Hence, users are freed of the burden of thinking on
and building solvers for the each CSPs. However, it may be a very hard task to correctly model a

36http://www-01.ibm.com/software/integration/optimization/cplex-cp-optimizer/
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CSP in a way that it can be solved in an efficient fashion, since CSPs are generally NP-Complete
[RvBW07]. Moreover, CSP can be over-constrained.

Therefore, it becomes imperative to know how to take advantage of CP features so as to be
able to solve problems in polynomial time. Symmetry prevention and soft constraints are example
of such features. Symmetry may be introduced along with the model (e.g. allowing order per-
mutation in a set of variables) and may make the search waste a lot of time visiting symmetric
solutions. This kind of problem can be avoided in the model itself (e.g. by adding constraints to
avoid symmetric solutions)[FFH+02] or internally in the search implementation [CGLR96]. Soft
constraints [Sch92], in turn, allows one to specify preferences instead of hard constraints as well
as ways for finding optimal solutions according to them.

Moreover, classical search approaches like backtracking or branch and bound might also be
mixed with other techniques from operation research or artificial intelligence in order to decrease
the solving time. For instance, one can design a heuristics that helps the solver ordering variables
so as to outperform the backtracking search [GMP+96]. Finally, CP solvers can also benefit of
inference, by propagating information from one constraint to others [RVBW06]. As a result, the
search tree can be pruned and consequently the search time can be reduced.

2.5 Summary

This chapter presents the main concepts and technologies related to this thesis work. We first
discourse shortly on cloud computing, which can be thought as a on-demand provisioning model
for computing resources that is convergence of old concepts like grid and utility computing. Also,
the main cloud service models (Infrastructure-as-a-Service, Platform-as-a-Service and Software-
as-a-Service) and the way they interact were described. In addition, we described the deployment
models of cloud computing, namely private, community, public and hybrid followed by an in-
troduction on virtualization, an important technology that enables the implementation of flexible
cloud infrastructure, Lastly, we provided some discussion about advantages (e.g. the flexibility in
terms of scalability), and drawbacks (lack of guarantees of privacy and security).

Secondly, we gave an introduction on autonomic computing, which provides a reference model
to enable software systems to be self-manageable. In other words, it fits very well the dynamic
systems such as those based on cloud computing. We presented the four properties of a self-
manageable system, namely self-configuration, self-optimization, self-healing and self-protection.
Finally, we described the autonomic reference model which is based on a MAPE-K (Monitor,
Analyze, Plan, Execute, Knowledge) loop.

Then, we briefly described component-based software engineering, which refers to a sub-
discipline of software engineering with a focus on the construction of application as a composition
of pre-fabricated components. We provided a short introduction on dynamic reconfiguration based
on software architectures, which is particularly interesting for systems that needs to constantly
adapt to environment changes, such as self-manageable cloud systems. At last, we pointed out
some limitations of component-based models for some kinds of scenarios and how components
meet service-oriented architectures to overcome such limitations.

Finally, we gave a very short introduction on constraint programming, which is a tool for
solving constraint satisfaction and optimization problems based on variables and constraints. In
this work, it is used to perform the analysis task of the autonomic reference model so as to try
to find out the optimal state for a managed system’s runtime context. We presented which are
the elements of a constraint programming problem model as well as some discussion about the
solving strategies. Lastly, we highlighted some disadvantages of constraint programming while
providing some overcome elements.



3
Related Work

The objective of this thesis work is to deal with the problem of energy consumption in cloud in-
frastructures by taking into consideration not only the way the infrastructures are configured but
also the application-level architectures and how they impact the applications’ Quality of Service
(QoS) and functionalities. This chapter presents a selection of publications which are related to
the energy or resource management at infrastructure and application layers in isolation or as single
cross-layered management unit. In addition, we provide some discussion about some approaches
that consider the coordination of autonomic managers distributed across layers. Finally, we sum-
marize the presented approaches by comparing them with regards to a set of qualitative attributes.
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3.1 Energy/Resource/QoS Management at Application Level

In this section we present a body of work related to the QoS or energy/resource management
in distributed applications. More precisely, in this section, we discuss about some work dealing
with energy consumption from the application point of view. We consider those work in which
either the energy consumption itself or the incurred resource consumption (and by transitivity
the energy) is taking into consideration as a counterbalance to the QoS. First, we focus on some
work in the context of multi-tier web applications, which are applications following a client-server
architectural style segregated into several tiers. That is, components from one tier communicate
with components in subsequent tier in a client-server manner. Then we provide some discussion
about some work in the context of component or service based applications.

33
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3.1.1 QoS and Energy Management in Multi-tier Web Applications

Adaptive internet services through performance and availability control [AB10]

Description: The work propose MoKa, an approach to improve the performance in multi-tiered
applications (cf. Figure 3.1.1). It takes into account two levels of configuration (architectural and
local) in order to improve the system performance under charge. The architectural configuration
means the cost in terms of physical machines (PMs) and the local configuration means the Multi-
programming Level to define the maximum number of concurrent clients the servers can admit.
The approach makes use of Mean Value Analysis (MVA) [RL80] queuing model to model the
performance (i.e. the latency and abandon rate) in each tier. Based on those parameters and on the
configuration cost, an objective function is provided (cf. Figure 3.2). Two algorithms are therefore
provided: (i) one to implement the model which is used to predict the latency, cost and abandon
rate based on a given configuration and workload; (ii) and other to find the optimal solution based
on the objective function. The adaptation may occur in two levels: (i) degrade the application
QoS by increasing the abandon rate (admission control); (ii) or by adding and suppressing PMs,
resulting in energy savings.

web tier business tier data tier

client

client

client

...

Figure 3.1: Multi-tiered Web Application [AB10].

Model

local/architectural 
configurations

workload

performance

cost

Figure 3.2: The MoKa Web Applica-
tion Model [AB10].

Discussion: By suppressing useless PMs, it is indeed possible to save energy. However, in re-
source sharing environment such as in cloud computing, that is, when several applications share
the same computational infrastructure, it becomes hard to estimate the exact amount of resources
necessary to host each application. An extension of this work for cloud environments was pro-
posed in [KL12], in which case, a virtualized environment is considered to enable the resource
mutualization in single PMs. There are a number of approaches for dynamic resource scaling
based on Service Level Agreements (SLAs) [WB11, CMKS09]. The problem still remains due to
the lack of visibility of the underlying infrastructure. In fact, one does not know how VM instances
are placed on the infrastructure and because of that it is difficult to know how the decisions at the
application level will impact the underlying infrastructure.

Energy-aware scheduling of service requests in multi-tier environment: Analysis and evalu-
ation [Fer11]

Description: The work proposes an energy and QoS-aware scheduling algorithm for multi-
tiered web applications. It also relies on MVA to model the scheduling problem. To this end,
it is proposed a number of Key Performance Indicators (KPI), such as response time, and Green
Performance Indicators (GPI), such as service energy efficiency. The indicators’ threshold values
are defined within a SLA. In order to define the KPI and GPI, a server power model is proposed,
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in which there are three server classes: slow, medium and fast. For each class, it is considered
five server power states: idle, low normal, normal, high normal and heavy. Hence, in order to
estimate the service response time, the resource capacity as well as the workload are taken into
consideration, whereas the service energy efficiency is given by the service time and the current
server power state. Finally, the algorithm aims at maximizing the service response time while
maximizing the service energy efficiency.

Discussion: The approach is similarly to MoKa. What distinguishes them is that in here the
focus is on the energy consumption and QoS whereas in MoKa is on the minimization of resource
usage and maximization of QoS. Apart from that, the limitations remain the same, that is, to
transpose the approach in a cloud-based environment (virtualized), in which VMs can be created,
destroyed at any time. As a consequence, the energy consumption issue should be tackled also at
the infrastructure layer, since it might depend on how the applications are deployed on the PMs.

3.1.2 QoS and Energy Management in Component/Service-Based Applications

Energy-Aware Design of Service-Based Applications [MFKP09]

Description: The authors proposed an approach for developing service-based applications in
an energy-aware manner. First, a characterization of the service energy consumption takes place
along with other classical QoS dimensions such as response time and price (which is calculated
based on the values of response time and energy efficiency). This characterization is based on a
previous classification of the server in which the services will be executed. Specifically, a server
can be slow, average and high with respect to their power of processing. In addition, servers can be
running on idle (0-12%), normal (13-67%) or burst (68-100%) states at a given period of time. For
each combination server class/state, there is a different power consumption value associated. The
energy efficiency dimension is then proposed based on the ratio of the energy consumption of the
service executing on normal state and the total energy consumed by the service. The objective is
to choose the most appropriate service for each process activity in a business process that satisfies
a set of local (task-level) and global (process-level) constraints. The model and the solver used
were extended from those proposed in [AP07].

Discussion: Although the approach proposed in that work is able to dynamically choose a ser-
vice implementation that is at the same time QoS and energy compliant, it is not clear how the
choices made at selection time may impact the underlying infrastructure over the time. In fact,
because a service execution time may vary according to the number of clients, it is hard to en-
sure a static response time for any workload. Moreover, the approach provides a way of choosing
services’ implementation during runtime, however, it does not tackle the dynamic deployment at
application level nor resource management at the infrastructure which is imperative for highly
dynamic environments such as in cloud-based systems.

Self-adapting Service Level in Java Enterprise Edition [PDPBG09]

Description: The work proposes a QoS/resource-aware self-managing approach for component-
based Java Enterprise Edition applications. It basically consists of an implementation of an auto-
nomic manager, which is composed of two thresholds (under-load and overload) for each resource.
The adaptation system works in two modes: regulation and calibration mode (cf. Figure 3.3) . In
the regulation mode, the autonomic system reacts to overload situations by choosing the most
effective adaptation not yet applied. Upon under-load situations, it selects among the already
adaptations applied the most effective one to unapply. After each regulation, the system goes to
the calibration mode, which measures the impacts on resource usage of the just-applied adaptation
and then returns again to the regulation mode or re-applies an adaptation in the case of severe
overload. The adaptations are chosen based on the efficiency of applying the adaptation, which
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is given based on QoS level values provided by designers and based on observed values of past
regulations, also called adaptation gains. The adaptation gains are estimated during the calibra-
tion mode and calculated based on the ratio of the resource usage before the calibration mode
to the usage during the calibration mode. In order to isolate only the tasks whose execution are
involved in the adaptation, the approach relies on a profiling technique called statistical sampling
[GKM82]. It consists in periodically capturing stack calls in active threads in the system. In this
case, component stacks are captured from call stacks and an execution pattern is established along
with the corresponding resource consumption, for each resource. That way, it is possible to have
more refined estimations on the resource consumption.
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Adaptation

Regulation Calibration

adaptation

calibration delay
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severe 
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Figure 3.3: Autonomic Adaptation Design [PDPBG09].

Discussion: Although it is possible to estimate the impact on the resource consumption due to
application execution, the approach relies on a static resource allocation. Indeed, the objective is
to cope with underloaded and overloaded situations by respectively upgrading or degrading the
application service level. It would be interesting to see how such a work could work in a resource
elastic environment such as a virtualized one, in which both the service-level and the resource
capacity could be self-adapted.

Enhancing a QoS-based Self-adaptive Framework with Energy Management Capabilities
[PPMM11]

Description: This paper proposes a self-adaptive framework based on the trade-off QoS and
energy consumption of service-based applications. The adaptation plans correspond to degrad-
ing/upgrading the servers frequencies or switching on/off servers to accommodate the workload
or to reduce the energy waste. For this purpose, an off-line Stochastic Petri Nets (SPN) [Haa02]
model on servers transient states was proposed. The objective is to analyze some variables such as
the servers frequencies and power consumption for each phase (startup, shutdown, standby, maxi-
mum) and to produce as output the number of requests the server is able to respond as well as the
calculated energy consumption for the corresponding number of servers and frequencies. Another
SPN models the adaptation plan behavior by showing each possible configurations previously
generated and the transitions allowed from the current configuration to another.

Discussion: Although the model seems to be complete, the work does not present any validation.
Furthermore, the approach does not take into consideration a multiple application environment,
which would require multiple autonomic managers and the appropriate management of them.
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Composite SaaS Placement and Resource Optimization in Cloud Computing using Evolu-
tionary Algorithms [YT12]

Description: The work proposes an approach that copes with the context variability at the ap-
plication level, by considering the Software-as-a-Service (SaaS) application as an aggregation of
computing and data components that can be spread out in different hosting units (VMs) or con-
solidated so as to minimize the number of VMs, as illustrated in Figure 3.4. In fact, it makes an
analogy between the VM placement problem, in which VMs are placed onto PMs, and the com-
ponent placement problem, in which computational and data components are placed onto VMs.
The objective is two-fold: (i) to determine the initial component placement based on the estimated
execution time; and (ii) to optimize the resource usage. Both problems are instances of well-know
combinatorial problems in the context of resource management and automation and thus a solu-
tion based genetic algorithms is presented. The solution outperforms in comparison to a classical
heuristic based approach (FFD).

Compute Servers Compute Servers Storage Servers

VM VM VM VM VM VM

Data

SaaS1
SaaS2

SaaS3

Geometric shapes = compute components

Figure 3.4: Illustration of Three Composite SaaS [YT12].

Discussion: Although the proposed work is capable of dealing with applications based on com-
ponents, it does not mention anything about functional/non-functional adaptation in order to cope
with resource restrictions or to fit in an energy compliant context. Moreover, despite the adaptation
regarding the placement of components takes into consideration the resource usage, the impact on
resource usage and consequently on the energy consumption at the infrastructure level may depend
on how components/VMs are hosted on PMs.

3.2 Energy/Resource/QoS Management at the Infrastructure Level

This section presents some discussion about a selection of publications related to the management
of QoS, energy or resource at cloud infrastructures. As the hardware management is out of scope
of this thesis, we briefly cover some performance/energy management approaches that can be
carried on at the hardware level. Then, we present some work that leverages virtualization to
achieve energy efficiency in cloud data centers.

3.2.1 Hardware Tuning

One of the main challenges in making software systems more energy efficient is to face the lack
energy proportionality inherent to nowadays hardware [BH07]. Modern hardware mitigates this
problem by providing multiple configurable execution states (often known as c-states). For in-
stance, power savings are achieved by applying techniques like Dynamic Voltage/Frequency Scal-
ing (DVFS)[LWYH09]. The basic idea is to establish a trade-off between the processor perfor-
mance and the current processor frequency and activated cores. That means that the lowest the
processor speed (frequency) the lowest is the power consumption and performance. In DVFS-
enabled machines, it is possible to dynamically change frequency (or power) states so as to adapt
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to the current workload. Similarly, in [GWBB07] some power gains are obtained by turning-off
components of hard disks.

3.2.2 Virtualization

EnaCloud: An Energy-saving Application Live Placement Approach for Cloud Computing
Environments [LLH+09]

Description: EnaCloud is a framework to manage VM workloads with a focus on the energy
efficiency by performing dynamic VM placement in cloud environments. The approach deals with
three kinds of events: (i) a workload arrival, that is, a new VM creation; (ii) workload departure,
i.e. a VM suppression; and (iii) workload resizing, which corresponds to a VM’s resource resizing.
Upon the occurrence of any of the above mentioned events, an heuristic-based algorithm generates
a placement scheme containing a set of workload insert/pop (VM creation/suppression) and VM
migration actions in a way the number of migrations are minimized and total number of PMs
necessary to host the VMs are minimized, which may consequently improve the energy efficiency.
The problem is an instance of a bin packing problem and is solved by an heuristic-based algorithm
that relies on a composition of first-fit decreasing (FFD) and best fit decreasing (BFD) bin packing
algorithms [JGJ97b]. The work shows that the heuristics outperforms these two algorithms when
used in isolation with regards to number of migrations, number of PMs and energy consumption.

Discussion: Dynamically replacing VMs any time an event of the type VM arrival, departure or
resizing occurs is certainly in theory the most energy efficient approach. However, technically, it
may increase a lot the management time when several VM arrivals events occurs or if a number of
migrations should be performed to accommodate the new incomer VMs.

Entropy: a Consolidation Manager for Clusters [HLM+09]

Description: Entropy is a virtualization-based resource manager for homogeneous clusters. More
precisely, it relies on the consolidation technique to reduce the number of active PMs. The man-
ager consists of a MAPE-K loop to autonomously and dynamically react to changes in the context
(e.g. the resource usage of VMs). So, the monitoring task periodically gathers information about
VM resource consumption such as the percentage of CPU utilization. The analysis task is in charge
of solving the virtual machine placement problem, whereas the planning task is responsible for the
virtual machine replacement problem. The first problem is an instance of the multi-dimensional
bin-packing problem [JGJ97b] and it takes the running VMs with their respective resource usages
and tries to pack them in the fewest number of active PMs so that the inactive ones can be after-
wards switched off. The second problem tries to find a replacement plan for those VMs that should
be migrated from one PM to another. This plan takes into consideration the dependencies among
VMs and their respective migration cost, which is basically in function of the amount of memory
allocated to the VM. Finally, the execution task executes the plan produced by the planning task.
Both problems are modeled and solved with constraint programming [RVBW06].

Discussion: Although Entropy does not focus directly on the energy consumption of PMs, it is
straightforward that by dynamically placing the VMs in a way the number of PMs can be mini-
mized, it is possible to turn off the unused PMs and therefore save energy. However, optimizing
the infrastructure by dynamically migrating (performing live migration) can be really costly in
terms of performance [VKKS11, Str12] and hence can seriously degrade the QoS of applications
hosted on the infrastructure.

Energy Efficient Resource Management in Virtualized Cloud Data Centers [BB10]

Description: The work proposes an approach whose objective is to optimize the trade-off be-
tween energy consumption and performance. The basic idea is to provide mechanisms of energy
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efficiency by continuously optimizing the VM placement, while keeping a certain level of QoS
and therefore honor the SLAs previously established. The approach relies on an hierarchical ar-
chitecture (cf. Figure 3.5), which is composed of three kinds of components: dispatcher, global
managers and local managers. The local manager reside on each PM along with the hypervisor.
Based on monitored data on the resource consumption, it chooses VMs that should be migrated
(6). It sends information about the PM’s resource utilization and the VMs chosen to be migrated
to the global manager (4). In addition, it performs commands to resize VMs, apply DVFS or
turn on/off the PM. The global manager, in turn, it manages a set of PMs and processes their re-
spective local managers’ messages (5). Also, it applies a distributed version of an heuristic-based
multi-dimensional bin packing algorithm (3). Finally, the dispatcher is responsible for dispatching
the new clients requests (1) on VMs among the global managers (2), which shares the informa-
tion about the VMs to be allocated. The VM placement optimization takes place in three stages:
reallocation of VM considering the computational resources (e.g. CPU and RAM), the virtual net-
work topology optimization, and the thermal optimization (based on PMs temperatures). These
optimizations are computed separately and combined for a global solution. For the first stage,
the choice for VMs to be migrated is based on upper and lower CPU utilization thresholds on the
hosting PMs. If the current utilization exceeds the upper threshold, a VM is chosen to be migrated,
whereas if the current utilization is lower than the lower threshold, all the VMs are chosen to be
migrated. This information is sent to the global manager which issues the migration commands.
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Figure 3.5: Hierarchical Architecture of Virtual Machine Management System.

Discussion: The approach shows important gains in energy consumption due to the server con-
solidation. However, similarly to [HLM+09], the live migration may significantly affect the sys-
tem performance, which may result in QoS degradation. Although one of the objectives presented
is to minimize QoS degradation and consequently SLA violations due to excessive number of mi-
grations, the approach considers SLA violation failures in the requests for VMs (an Infrastructure-
as-a-Service consumer that does not succeed in getting a new VM), instead of performance degra-
dation on the running VMs. Moreover, no details about the strategies for minimizing migration
operations is provided.
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Snooze: A Scalable and Autonomic Virtual Machine Management Framework for Private
Clouds [FRM12]

Description: The work presents Snooze, a framework for VM management whose focus is on
the scalability, fault-tolerance and energy efficiency. Scalability because the authors claim to be
capable of managing a huge number of VMs and PMs. Faut-tolerance because it is built based
on a decentralized and hierarchical model and thus avoiding single points of failure. And energy
efficiency because it considers the energy footprint of each possible configuration instead of only
the amount of inactive PMs. The placement is also modeled as a multi-dimension bin-packing
problem and is implemented by an algorithm based on ant colony optimization [FRM11] and
outperforms classical greedy algorithms such as FFD and has potential to be solved in a distributed
manner. The energy efficiency is achieved by packing the VMs in the fewest number of PMs and
decreasing the power states of underload PMs. Similarly to [BB10], the framework architecture is
composed of three main distributed and hierarchically-organized components: (i) local controllers,
which are presented at the physical layer, i.e. each one is deployed in the PM which it is in charge
of controlling. (ii) group managers, which are presented at the hierarchical layer, i.e. it is in
charge of guaranteeing the fault-tolerance of a group of local controllers. It is also in charge of
scheduling the new incoming VMs via diverse policies (e.g. round robin) as well as optimizing
and planning periodically the VM placement; and (iii) group leaders which encompass a subset
of group managers by keeping a summary of their information. It is also in charge of dispatching
client requests on VMs. All the components are equipped with failure recovery based on heartbeat
messages exchanged in a hierarchical way so as to achieve fault-tolerance.

Discussion: Unlike Entropy, Snooze is able to manage the existing VMs as well as to schedule
the incoming ones, while guaranteeing fault-tolerance of management components, which is par-
ticularly interesting. However, like Entropy, the energy optimization relies on the consolidation,
which may result in several VM migrations actions, followed by PMs shutdowns. As previously
remarked, migrations may impact the hosted applications QoS and thus should be performed in a
sparse fashion.

Other related work

There are countless work on the energy consumption in data centers by leveraging virtualization
technologies. However, for brevity reasons we discussed only about some of them. Other work on
the dynamic placement of VMs were proposed in [BKB07, VAN08b, SKZ08, RJQ+10, SZwL+11,
DSV+11, GBF+12]. In [LBMN09], it was proposed a energy-aware cross-data center approach
for load distribution. In [QLS12], the authors proposed a collaborative and decentralized extension
of Entropy [HLM+09] to allow to support the management of tens of thousands of VMs. Likewise,
[BDNDM10] proposed an algorithm nature-inspired to provide scalability and energy efficiency
in large-sized data centers.

3.3 Cross-layered Energy/QoS-aware Management

In this section we discuss some work related to the management of energy/QoS in both levels of the
cloud stack: infrastructure and application. We consider works whose self-management decisions
are taken from several perspectives and impacts several layers of the software/infrastructure stack.
We first discuss some work in which the cross-layered management is performed by a single
management unit. Then we discuss some work that utilizes multiple management units that need
to be synchronized and coordinated in order to achieve their goals.
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3.3.1 Single Autonomic Management

Energy-Aware Autonomic Resource Allocation in Multi-Tier Virtualized Environments
[APTZ12]

Description: The work proposes an energy-aware resource allocation approach for multi-tier
web systems. The objective is to provide web services that achieve their SLA-based QoS require-
ments while tackling at the same time a varying workload and the energy consumption due to the
infrastructure. To this end, the authors propose an autonomic framework that deals with several
energy-related sub-problems across multiple layers of the IT infrastructure. In fact the work ex-
tends the cross-layered idea from a previous work [ACL+08] by dealing with several problems
in an unified way. The approach assumes that the application follows a multi-tiered architec-
tural style, in which each tier component communicates with a subsequent tier component in a
client-server way (cf. Figure 3.1.1). A partition of physical resources (CPU and RAM) capacities,
distributed over several VMs, can be allocated to components (capacity allocation) so they can be
executed in parallel for load balancing and scalability purposes (load balancing problem). VMs
instances are placed in PMs so as to reduce the number of PMs necessary to host all VMs (place-
ment problem). Finally PMs can be switched on/off or have their CPU frequencies adjusted so as
to save energy (i.e. frequency scaling or server switching problems). These problems are solved
in two different time scales: short-term and long-terms. Short-terms refers to low-overhead recon-
figurations and thus can be performed quite often (e.g. every 5 minutes). Load balancing, capacity
allocation and frequency scaling are example of low-overhead problems and thus are considered
as a short-term planning. Long-term planning, instead, deals with problems whose impact on the
system is very high, such as switching on/off PMs. All the variables involved in those problems
are considered together as they were the same optimization problem. In order to solve it in an
efficient manner, a heuristic is proposed.

Discussion: Although the authors mention the possible utilization of a hierarchical model for
controlling several managers, the proposed framework is a centralized controller in which vari-
ables of problems across several layers are shared. For that reason, it becomes difficult to apply
this solution in the multi-vendor context such as in cloud computing environments, where each
SaaS vendor may have its own autonomic manager which, in turn, may interact with Platform-
as-a-Service (PaaS) or Infrastructure-as-a-Service (IaaS) autonomic manager in a seamlessly way.
Moreover, as the number of different application providers (in a multi-application scenario) in-
creases, it may become difficult to deal with all applications specificities within a single autonomic
manager in a feasible manner.

Performance and Power Management for Cloud Infrastructures [VTM10]

Description: The authors propose a multi-application approach for the performance and power
optimization in cloud infrastructures. The objective is to determine how much resource should
be allocated to each application and how these applications should be placed in the infrastructure
so as to optimize the energy consumption. To this end, a two-level framework is proposed, in
which at the application level, for each application, a performance model along with an utility
function are defined to express the degree of usefulness of a given response time. In addition, an
application scaler is used to distribute the application requests over several VMs instances. At
the infrastructure level, the global resource manager is basically composed of a VM provisioning
manager and a VM placement manager, which are both modeled with constraint programming
(CP) techniques. The former is in charge of determining the right amount of resources (in terms
of VMs) for each application, whereas the latter takes as input the new provisioned VMs resulting
from the first manager to optimize the placement of all VMs so as to minimize the number of
required PMs and thus the power consumption. These two managers are periodically executed
in a sequential way, i.e. the VM placement manager is executed only if there is a difference
between the current number of VMs and the number of VMs resulting from the provisioning
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manager. Hence, the result of the execution of the VM provisioning manager is a set of VMs to be
requested/release. The VM placement manager, in turn, produces a set of create/destroy/migrate
VMs and power on/off PM.

Discussion: The approach is considered multi-layer since it considers details about each applica-
tion (performance models/utility functions) as well as about the infrastructure (current placement
VM/PM) to take a global decision that involves both the application (in terms of amount of re-
sources allocated) and the infrastructure (the new placement VM/PM). In this case, applications
and infrastructure definitions are tightly-coupled, which is not very applicable to (public/hybrid)
cloud infrastructures, in which applications does not have any details about the infrastructure and
vice-versa. Another issue is due to the fact that it deals with all applications and infrastructure
specifications to solve the same optimization problem may be not be feasible in as the number of
applications increases. In that regard, the validation shows only a small experiment with three ap-
plications over an infrastructure with three PMs. Finally, migration operations may be performed
any time the provisioning manager requests more VMs. We believe that this kind of operation
should be performed in higher time scales, on pain of affecting applications’ QoS.

SAFDIS: A Framework to Bring Self-Adaptability to Service-Based Distributed Applica-
tions [GDA10]

Description: SAFDIS (Self-Adaptation for DIstributed Services) is a framework for self-adaptation
in multi-level distributed applications. The problem of adaptation is dealt in a traversal way, from
the application to the infrastructure, in the sense that applications and infrastructure are monitored
and thereafter the adaptation takes place at the upper level (applications) considering the current
state of lower levels (infrastructure). It relies on a MAPE-K control loop which is implemented
in a component-based architectural way. The monitoring gathers information provided by probes
that are deployed along with the distributed system components. The analysis task is able to take
short-term and long-term decisions as well as to distribute the analysis function, which may im-
prove the performance of the analysis task. Given an adaptation strategy produced by the analyzer,
the planning task may utilize several planning algorithms to generate the schedule of actions to be
executed in a cross-layered manner. The actions are defined in an abstract way, that is, not consid-
ering the target technologies. The execution engine matches concrete actions that corresponds to
the abstract ones, the execution context and imposed constraints. In [DPM12], the framework was
applied to perform adaptations in the context of SOA-based applications hosted by SOA-based
operating systems. The authors also showed how the framework can be used in the context of
cloud computing [DAB11]. In that case, the adaptations may take place in the three main layers
of the cloud stack, namely software, platform and infrastructure (cf. Section 2.1.2). For instance,
at the SaaS level, a sensor may detect that an application hosted by a given resource is overloaded.
The framework then tries to migrate the application from one resource to a more powerful one,
which may involve monitored data and actions at all levels.

Discussion: The work proposes a cross-layered approach to adapt applications and infrastruc-
ture. However, dealing with all adaptation problems in a single autonomic manager may lead
to some issues regarding the inter-layer isolation and loose-coupling characteristic, which is so
common in cloud systems. For instance, details about the infrastructure is often hidden to the
IaaS consumers in the case of a public/hybrid cloud. The same happens at PaaS and SaaS levels.
Furthermore, as the number of managed applications/platforms increases, it becomes more and
more difficult (in terms of performance) to manage applications, platforms and infrastructure via
a unique cross-layered autonomic manager.

Optimized Management of Power and Performance for Virtualized Heterogeneous Server
Clusters [PCL+11]
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Description: The authors proposed an approach to optimize the energy consumption in a multi-
application heterogeneous cluster environment. They rely on both DVFS and server consolidation
techniques to reduce the power consumption in a cluster. The objective is to determine the number
of VMs needed for each application under a given workload in a way the overall energy consump-
tion is minimized. For this purpose, the performance of an application hosted by a given PM is
modeled as a function of the application workload, the PM’s CPU frequency and utilization. The
workload of each application is indirectly inferred by the runtime CPU usage and frequency in
all PM in which the application is deployed. The power consumption of a PM, in turn, is mod-
eled as a function of the CPU frequency and the CPU utilization. Applications are deployed in
several VMs, which, in turn are deployed in PM. The performance and power models are used
by a Mixed-Integer Programming (MIP) [WN99] based optimization model to determine whether
a PM hosts an application (encompassed by a VM) at a given CPU frequency while minimizing
the cost due to power consumption of all PMs in the cluster. The optimization model is used by
an autonomic manager to periodically optimize the performance and power consumption in the
cluster.

Discussion: The work is not really multi-layer since the information about the applications
(workload) is inferred rather than obtained directly from applications. Even though, it takes into
consideration information about application so as to globally optimize not only the power con-
sumption but also the performance. With respect to the loose-coupling characteristic of cloud
environment, the work would fit perfectly in this context (e.g. in a IaaS manager), since it does not
explicitly require any information of other layers. However, regarding the scalability, the valida-
tion was performed only over three applications and five PMs, which may be not enough to show
the feasibility for a great number of PMs and applications/VMs.

CloudPack: Exploiting Workload Flexibility Through Rational Pricing [ISBA12]

Description: CloudPack is a framework based on game theory that allows rational pricing. It
is composed of two main group of services: backend and frontend services. Backend services
correspond to services utilized by IaaS providers to optimize the infrastructure. It comprises three
components: (i) migration, which permits to eliminate hotspots and thus optimize the infrastruc-
ture utilization rate; (ii) allocation, which manages the placement of VMs from several customers
in the same pool of physical resources; and (iii) profiling or monitoring, which provides customers
raw data that allows them to adjust their resource reservation as well as visibility to resource uti-
lization and performance. Frontend services correspond to services exposed to IaaS customers and
consist of two components: (i) workload specification, where a language is provided to customers
so that they can define how workloads are defined in terms of virtual resource requirements and
dependencies among them over the time; and (ii) pricing, which attributes rational cost across
customers in a game-theoretic way. For the workload specification, CloudPack proposes a XML-
based language which enables customers to define their workload in term of a Direct Acyclic
Graph (DAG). A node corresponds to a task (i.e. a VM) to be mapped to a resource (PM) and
edges correspond to temporal dependencies in time between tasks. Each node is specified with
the resource dimensions required (CPU, RAM, disk, etc.) and the amount of timeslots necessary.
According to the authors, this language is able to express any kind of workload requirements. The
DAG specified by the customers are used by the allocator component to instantiate the VMs ac-
cordingly so as to minimize the hosting costs (i.e. the energy consumption). To this end, a MIP
model and a heuristic-based greedy solving algorithm are proposed. The pricing component is in
charge of rationally distributing the total costs across customers according to the contribution of
each customer. To this end, CloudPack relies on the concept of Shapley [NRTV07], which is a
concept of game theory that allows fair cost sharing among players (in this case customers).

Discussion: The main contributions of CloudPack is a language for workload description as well
as the pricing characterization approach based on game theory that allows a fair repartition of the
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total cost amongst clients. However, the approach does not deal with the lack of synergy between
the application and infrastructure levels, which may cause negative interferences from one level to
another. Indeed, the CloudPack is focused at the IaaS provider. More particularly, in the definition
of jobs (workloads) and how they are fairly priced according to their hosting costs.

3.3.2 Multiple Autonomic Management

Coordinating Multiple Autonomic Managers to Achieve Specified Power-Performance Trade-
offs [KCD+07]

Description: The work proposes a framework for coordinating the management of power and
performance in a data center. The approach relies on a joint utility function, in which one can
express the degree of usefulness of both performance and power consumption together. This is
particularly done by a performance-based utility subtracted by a linear power cost. This frame-
work is composed of two separate agents that respectively manage performance and power. After
receiving state information from the performance manager, which has its own power-unaware pol-
icy, the power manager tries to optimize the joint utility by applying its power policy to manage
the trade-off between performance and power. The performance manager does not need to be
modified except for the fact that it needs to be informed about the dynamic changes in the CPU
frequency. Indeed, the power manager performs adjustments in the CPU frequency settings to
cope with power caps. That is, whenever the PM uses less energy than the power cap it runs at
maximum speed, whereas when it wants to use more energy than the power caps, the power man-
ager reduces the CPU frequency so as to meet the power constraint. The performance manager,
in turn, relies on monitoring data to adapt the resource allocation for each application. Based on
an off-line estimation on the number of CPU cycles/seconds a given request requires, the perfor-
mance manager is able to determine the number of concurrent servers (PMs) aiming at having
90% of utilization for each server. Eventual conflicts are avoided by informing the performance
manager the correct CPU frequencies which are managed by the power manager.

Discussion: The approach allows that two autonomic managers developed independently, even-
tually by different vendors, work in collaboration to manage at the same time power and perfor-
mance. However, some details about one manager (in this case the performance manager), must
be provided in order for the power manager to take it into consideration in the joint utility function.
In the other sense, the power manager should also provide details about the CPU frequency, which
requires modification on the performance manager. Therefore, this tight-coupling characteristic
makes the approach not straightforward to be applied to multiple-vendors or service-consumer
architectures such as in cloud computing.

No ’Power’ Struggles: Coordinated Multi-level Power Management for the Data Center
[RRT+08]

Description: The authors proposed a coordination approach to deal with the power autonomic
management in several levels of the data center architecture (e.g. VM, PM, rack). The idea is that
the output provided by one manager may be useful to other managers to produce a result which is
globally more appropriate. The coordination architecture consists of five autonomic managers with
different objectives which are coordinated via an application protocol interface (API), as it can be
seen in Figure 3.6. The efficiency controller (EC) is a per-server power consumption optimizer.
It is responsible for adapting the actual resource utilization to a reference value of utilization
(provided as output from a higher level manager) by adjusting the power mode states (P-states) on
the server. The server manager (SM) is in charge of regulating the thermal power of a given server
by monitoring the actual power consumption and comparing it with a reference value (provided as
output from a higher level manager or limited to a server level budget). As a result, the controller
updates the utilization reference value used as input for the EC. The enclosure manager (EM)
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implements the power capping at the enclosure servers (or rack) level also by comparing the actual
power consumption across a set of servers with a reference value (the minimal value between an
enclosure level power budget reference value and a reference value provided as output from a
higher level manager). The result of this comparison is used to re-provision the power by updating
the power budget for each server individually. The group manager (GM) is responsible for the
power capping at the rack/data center level. Similarly, it monitors the actual power consumption
and compares it with a reference group power budget. The result is used to assign the power
budget of the enclosure of server. Finally, the VM controller (VMC) is in charge of reducing
the average power consumption of a set of servers by consolidating VMs so that it is possible to
turn off unused servers. Basically, it monitors the VMs’ resource utilization and proposes a new
mapping VMs/servers that optimizes the power consumption. It takes into account the current
power state of servers in order to have the real server resource utilization which may influence the
VMC decisions. Moreover, the VMC is aware of power budget caps and power budget violations
at several levels so as to avoid conflicts among controllers. For example, with no constraints on
the VMC optimization, the VMC may aggressively pack workloads, which may lead to an excess
of local power consumption, which in turn can lead to performance throttling. The VMC may
interpret this as more free room for consolation, which results in a vicious cycle.

GM

EM EC

VMC

+

group 
budget

+

enclosure 
budget

min
SM+

server 
budget

min +

S
e

rv
e

r 
1

power

resource

.

.

.

ECSM+ +
S

e
rv

e
r 

n

power

resource
min

server 
budget

DVFS

DVFS

reference

power group

p
o

w
e

r 
e

n
c
lo

s
e

d.

.

.

.

.

.

Figure 3.6: Coordinated Power Management Architecture for Datacenters [RRT+08].

Discussion: The work proposes an approach for the coordination of several autonomic man-
agers, each one responsible for a specific resource in each level of the data center architecture.
Although the approach has potential to be extended to other scenarios, it is focused on and restrain
to the data center domain. That is, it does not cross the organization boundaries as it would be if
a SaaS or PaaS providers were considered. In this case a more loose-coupled solution would be
required to manage the lack of visibility between parts/layers.

Semantic-less coordination of power management and application performance [KLS+10]

Description: The authors propose an interface-based coordinated method for multiple applica-
tions and system layer. The idea is that only semantic-less numbers (i.e. integers that can be
increased or decreased) representing performance and power are shared among applications and
system so that shared values cannot be compared to other values, and a management module does
not know whether a higher or lower values is better. Hence, the application has no information
about the system power management modules, and similarly, the system has no details about the
application performance levels. The coordination interface is composed of performance levels
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(QoS levels), power levels, a signal variable (C) and a lock. Each application publishes its QoS
levels (QoS(i)) (also called A-states) in terms of semantic-less integers (an integer set), on which
only the concerning application writes. Similarly, each power management module publishes its
power settings (P (j)) in terms of semantic-less integers, which are writable only by the concern-
ing module. These settings may internally signify P-states, sleep modes, throughput cap levels,
and so on. For the rest of the system it means only integer values. The system also publishes a
signal value (C = {−1, 0, 1}) indicating that the energy should be reduced (−1), or that energy
is available (1) or should it remain constant (0). This signal is only writable by the system mod-
ule that understand the constraints on energy consumption. Any system module or application that
wants to change the settings should acquire the lock first so as to avoid simultaneous uncoordinated
actions that lead to undesirable states. The challenge is to choose a power management settings
(e.g. P-states) such that the QoS of all applications approximates the optimal one. A coordination
approach is provided to combine all applications needs in terms of QoS and energy requirements.
This approach consists of two algorithms (cf. Figure 3.7): one for each system management mod-
ule (a) and (b) another for each application. The algorithm for application management checks for
a signal to reduce energy and if it is not yet in the lowest level of the A-states, it tries to get the
lock, switches to the next lower A-state (if it is necessary), publishes it and releases the lock. The
system management modules checks if the resource controlled by it is under-utilized, acquires the
lock, changes the power settings and publishes it. It then monitors the QoS level of all applications
in order to see if the power settings change produced any changes in the QoS levels. If that is the
case, it undoes the power settings change and releases the lock, otherwise, it releases the lock and
starts the process over again. That way, power levels will only be lowered if QoS levels in all
applications remain the same.

1. Set state M = ACTIV E.
2. Acquire lock.
3. Change power knob to next lower setting.
4. IF this causes any QoS(i) to change

(a) Revert setting to previous value
(b) Set M = INACTIV E and release lock.

5. ELSE

(a) publish new P (j), release lock, and goto
Step 2.

6. Monitor shared interface. If any QoS(i) or P (j)
values change, go to step 1.

(a)

1. Continue to check if C = −1 or user requested
to save power. If need to reduce power, and not
already in deepest A-state:

(a) Acquire lock.
(b) Switch to next lower A-state.
(c) Publish new QoS(i) and release lock.

(b)

Figure 3.7: Semantic-less Coordination Algorithm for (a) Sytem/Infrastructure and (b) Applica-
tion [KLS+10].

Discussion: The authors propose a signal-based coordination approach for several managers that
aim to establish a trade-off between performance at the application level and power consumption at
the infrastructure level while avoiding undesired changes. The approach can be easily scaled due
to the fact that it relies on power management modules performing low-overhead operations (such
as DVFS). While those power management modules enable a PM to improve its energy efficiency,
it is far from a good solution for a more global scenario, say, a data center or a IaaS provider
in which the average utilization rate is very low [Vog08]. In fact, more sophisticated techniques
such as virtualization could have been used to improve the flexibility of the management of hosted
applications in a way to mutualize physical resources to enable PMs to be turned off when they
are needless rather than just adjusting their CPU frequency.
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An Economic Approach for Application QoS Management in Clouds [CPMK12]

Description: The authors propose an economic model to manage the resource provisioning in
a multi-application scenario so as to meet applications QoS goals while reducing costs. The ar-
chitecture consists of several per-application managers which request resources to the resource
manager by submitting bids that express their intention in paying for resources. The resource
manager relies on a proportional-share rule [LRA+05] to provision resources according to the ap-
plications bid. The idea of having a fluctuating price policy is to provide differentiating services
according to the bids, while the resource proportion is to optimize the resource utilization. More
precisely, application managers specify the virtual cluster size (group of VMs), the minimum re-
source allocation that should be ensured by the resource manager and the spending rate. In order
to scale up/down applications so as to meet their QoS goals, application managers should adjust
their bids, by either changing the spending rate or the virtual cluster size. The resource manager
periodically evaluates the new requests as well as the current allocation and slices the total infras-
tructure capacity proportionally among applications. This is done by occupying first the physical
nodes with less utilization rate with the group of VMs with highest bid. As a consequence, allo-
cations failures are minimized and the resource utilization is maximized. Similarly, in [NB10], a
market-based QoS-based approach for web service composition was proposed. The idea is similar,
but in that case the marketplace is for software services instead of computing physical resources.

Discussion: Although this approach does not deal directly with the problem of energy con-
sumption, its results may indirectly impact positively the energy consumption on the underlying
infrastructure by optimizing the resource utilization. Moreover, it provides an interesting multi-
level approach in which the infrastructure details are not visible at the application level, meaning
that the willingness and expectations at each level are expressed by the economic model. The ap-
proach seems also to be attainable in terms of scalability, since it performs local searches instead
of global ones. However, it does not guarantee optimal allocations i.e. optimal placement VM/PM.
In addition, it is not clear what happens when a virtualized cluster of a request fails in fitting in
all existing nodes. More precisely, it is not clear if a cluster can be split into several groups and
how it would impact on the rest of the allocation process. Furthermore, the approach does not take
into consideration the fact that PMs may remain a long time without being used, which depends
on applications’ activity. In which case, there are no policies of resource utilization optimization
such as migration or other based on the synergy with applications.

Coordinating Power Control and Performance Management for Virtualized Server Clusters
[WW11]

Description: The work presents Co-Con: an approach for the coordination of multiple managers
in order to manage power and application-level performance in data centers. More precisely,
it considers a multiple application scenario, in which each application corresponds to one VM
(cf. Figure 3.8). The data center is composed of several PMs and each PM can host several VMs.
There is a cluster-level power controller, which is responsible for dynamically adjusting PMs’ CPU
frequency according to a reference value. To this end, the cluster-level power monitor periodically
observes the actual power consumption of each PM and sends it to the power controller. The
power controller, based on the difference between the actual power consumption and desired power
consumption, computes the new frequency levels for each one of the PMs in the cluster. These
levels are sent to the frequency modulators which are placed within the hypervisor of each PM
in the cluster. For each VM there is an autonomic manager which controls the VM performance
by dynamically adjusting a fraction of the CPU where the VM is hosted. This per-VM manager
is composed of a performance monitor, which measures the actual VM average response time.
Based on that value, the performance control calculates the amount of CPU necessary to improve
the performance and sends it to the CPU resource allocator. The CPU resource allocator tries to
(re)allocate the desired fraction of the CPU where the VM is hosted. If the requested resource
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is more than the available, low-priority VMs will be given less resources than required and if the
situation continues for a certain period of time, the resource allocator requests the cluster-level
controller to migrate these VMs. In order to deal with interferences of one manager over the
others, they claim that a higher level manager, i.e. the primary manager has to have a control
period longer than the settling time of the other manager, i.e. the secondary one. That way, the
secondary manager can always achieve its steady state within the control period of the primary
one. The impact of the primary manager on the secondary one is considered as variation in the
system model, whereas the interference of the primary manager on the secondary one is considered
as system noises. So, the power manager is designed as the primary one and the performance
manager as the second one. This is because the DVFS has a more significant impact on the
performance than the impact of the CPU resource allocation on the power consumption. So, it is
preferable to model it as model variation than a system noise.
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Figure 3.8: Coordinated Power and Performance Control Architecture [WW11].

Discussion: Co-Con presents a theory control based coordination approach of autonomic man-
agers, in which managers can be designed independently, that is, there is no need for previous
knowledge on the other managers. Although Co-Con has shown to be effective in terms of system
stability there are some drawbacks that should be pointed out. The performance manager does
not consider VM replication so as to make applications more elastic and thus cope with a varying
workload. Contrary to a simple VM sizing (changing in the CPU allocation), a VM replication
may significantly impact the power consumption, which may affect the way it should be modeled
(model variation instead of system noise). Moreover, although CPU DVFS may have lower over-
head than turning on/off PMs, its impact on the energy efficiency of an idle PM is also much less
than the one of a turned off PM.

Business Process Co-Design for Energy-Aware Adaptation [CFF+11]

Description: The work proposes E-BP, an energy-aware business process. E-BP is an extension
of regular BP model that takes into consideration the energy consumption incurred by the execu-
tion of business tasks. Services implementing the constituent tasks in the BP are hosted by VMs
which in turn are hosted by PMs. The energy consumption along with other information about
resource consumption are constantly monitored at all levels, that is, at the infrastructure (physical
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devices), middleware (VMs) and application (services implementing business tasks). These mea-
surements are associated with Green Performance Indicators (GPIs) and QoS dimension, based
upon which a set of constraints are imposed. GPIs include measures on the CPU load or number
of transactions per energy unit, for instance [FPP12a]. Given that, a set of adaptation strategies
are proposed according to the following classification: less quality, less functionality and resource
allocation strategies. less quality corresponds to non-functional requirements reduction or degra-
dation (turn off a service of a task if there is more than one service available for the same task).
The less functionality strategy refers to a computational or data degradation (e.g. skip a task or
task functionality). The resource allocation strategy changes how or which the resources are used
by the process (e.g. VM configuration or replication, enable the possibility to turn-off servers and
disks). Also, it may happen that a triggered adaptation can be enacted along with other adaptations
at the three layers (application, middleware and infrastructure). In that case, the approach relies
on an inter-dependency model among indicators so as to avoid cascading negative effects upon an
adaptation strategy.

Discussion: One of the limitations of the work is about the energy metering, since it is not
easy to measure the energy consumption in several layers while isolating the impact of concurrent
processes. For instance, the energy footprint of a service in isolation may be different than when it
executes along with another service in a virtual environment. Another limitation of the approach is
regarding the single application restriction, since the approach deals with a single process running
several instances. So, it does not take into consideration multiple applications/processes sharing
the same resources, as it would be the case in a public/hybrid cloud infrastructure. In addition, this
limitation may result in serious problems with respect to the constraint management resolution.
As the number of applications increases, the number of constraints and dependencies among GPIs
may proportionally increase which may lead to an over-constrained rule definitions.

Coordinating Energy-aware Administration Loops Using Discrete Control [MKGdPR12]

Description: The work proposes a synchronization model of autonomic managers where a global
coordination manager in a upper layer orchestrates other autonomic managers in a underlying
layer. The model is applied to a scenario of energy efficiency in data centers whose objective
is to coordinate two controllers: (i) optimization controller, which dynamically adapt the degree
of server replication for load balancing purposes so as to cope with the application load; and (ii)
CPU-frequency controller, which controls servers power consumption by dynamically adjusting a
PM frequency (by relying on DVFS) according to the PM resource utilization. The optimization
controller observes the average CPU utilization of the whole cluster and if it exceeds a certain
upper/lower threshold, a PM is turned-on/off. Similarly, the CPU-frequency controllers increas-
es/decreases the CPU frequency of a given PM if it exceeds an upper/lower resource utilization
threshold and if it is not in the lowest/highest CPU frequency. The idea of having a coordina-
tion manager aware of states and decision of each controller is to prevent that actions performed
by one controller impact negatively the management of the other one. For instance, an overload
situation may trigger actions from both controllers such as turning on PMs and increasing the fre-
quency of PMs. However, maybe only increasing the PMs frequency would be enough to cope
with the increasing load. In order to tackle this synchronization issue, the approach relies on syn-
chronous programming and discrete controller synthesis. For this purpose, the authors rely on
BZR [DMR10], a language that allows the definition of reactive systems by means of generalized
Moore machines. Thus, both the optimization and CPU-frequency controllers are defined in terms
of automata machines along with a coordination controller. A set of control variables are also
defined to help the synchronization of the two controllers. For instance, a variable that forbids the
optimization controller to turn on a PM until all PMs frequencies are not set as the highest ones.

Discussion: The approach allows the coordination of autonomic managers by relying on the syn-
chronization model-based technique. However, the scenario to which the approach was applied
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considers a single application management that allows or not the instantiation of new servers for
load balancing purposes with respect to the power management and the application load. In addi-
tion, controllers are defined at the same level within a same organization boundaries. Hence, it is
not clear how it could eventually be applied in the context of cloud computing, for instance, where
multiple SaaS applications may be managed independently of the IaaS management, without any
hierarchical relationship between SaaS and IaaS providers.

Other Related Work

There are other work about multiple autonomic management that go far from the scope of this
work. [Lem13] identifies five different patterns of interacting autonomic managers in self-adaptive
systems where each pattern can be considered as a particular way to orchestrate the managers.
[FDD12] goes further and proposes a collection of architectural design patterns addressing differ-
ent classes of integration problems focusing on the possibly conflicting goals. [VWMA11] extends
autonomic managers with support for two types of coordination: intra-loop (intra-manager) and
inter-loop (inter-manager) coordinations, but restrained to a self-healing use case.

3.4 Summary

This chapter presented a selection of relevant work related to the topic of this thesis work. The
work were grouped by application and infrastructure layers and cross-layered approaches. Ap-
proaches at the application layers take into consideration the applications characteristics (Quality
of Service or functionality) to build strategies to reduce the energy consumption (or the resource
usage and by transitivity the energy) at the underlying infrastructure. Approaches at the infrastruc-
ture layer consider the flexibility provided by hardware tuning like Dynamic Voltage Frequency
Scaling (DVFS) or virtualization techniques at the infrastructure (virtual machine placement, con-
solidation, etc.) so as to improve the resource consumption and consequently the energy efficiency.
Cross-layered approaches take into account both the infrastructure and application aspects to pro-
vide a global solution in terms of Quality of Service (QoS) (at the application level) and energy
efficiency at the infrastructure level. Finally, multi-autonomic management approaches rely on
several autonomic managers that may (or not) be coordinated to achieve their goals. In our case,
the goals are to improve the QoS at the application level while optimizing the energy efficiency at
infrastructure level. All those previously mentioned related work areas are summarized in Figure
3.9.

In order to concisely evaluate the work previously described, we define some qualitative com-
parison attributes:

• Functional Adaptation: this attribute indicates that at the application level, applications
are capable of changing their architecture so as to adapt to changes in the environment.
This architectural changes may impact their functionality. As a consequence, the degree of
desirability of each possible functionality should be taken into account.

• Non-functional Adaptation (QoS): there might be changes (architectural or not) at the
application level that may impact QoS attributes such as response time, throughput, etc.
For example, decisions taken at application level to increase the resources allocated to it
may lead to performance improvements. Conversely, the QoS may be degraded if resources
shrinks.

• Multi-application: this attribute refers to the possibility to deal with several Software-
as-a-Service (SaaS) applications sharing the same public infrastructure Infrastructure-as-a-
Service (IaaS). Since our focus is on cloud environments, it is imperative that the solution
takes into consideration the management of multiple applications.
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Figure 3.9: Intersection of the State of the Art Areas.

• Cross-layered: this attribute indicates that the approach takes into consideration aspects of
both applications and infrastructure layers to deal with the problem of QoS and resource/en-
ergy consumption. For instance, an approach that performs QoS-based resource allocation
(at application level) and server consolidation (at infrastructure level) is considered as being
cross-layered.

• DVFS/Switch on-off PM: for approaches at the infrastructure-level, energy or resource
saving strategies can be materialized by either DVFS, switching Off PMs or a combination
of them. On the one hand, DVFS offers the possibility to reduce the energy consumption
with a low system overhead by adjusting the CPU voltage and frequency. On the other hand,
due to the lack of proportionality of hardware systems [BH07], this approach still remains
limited when no work at all is required for a given set of PMs, which is the case in many
data centers [Vog08]. Therefore, although the high overhead (in comparison to DVFS) of
switching off / on a PM, the gains in energy can be much higher if well done. The ideal
solution would be to combine the two options.

• Multi-Autonomic Management: this attribute refers to the ability of systems to be man-
aged by relying on several autonomic managers, which may require some kind of coordina-
tion between them to achieve the desired result.

• Loose-coupling: sometimes, in a cross-layered approach, details of one layer is considered
to solve problems of another layer, no matter if it is a single of multi-autonomic management
approach. Since this thesis focus on cloud environments in which actors interact in a loose-
coupling manner via well defined interfaces, we consider the loose-coupling as an important
characteristic for comparison.

Table 3.1 summarizes the related work with regards to the above mentioned comparison at-
tributes, whereX ,− and n/a correspond respectively to a feature implemented, not implemented,
and not applicable to/by the approach in question.

From the work that takes into consideration only the application aspects, all of them are able to
adapt the non-functional aspects (QoS) according to the environment. However, only [PDPBG09]
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and [YT12] present a multi-application approach in which iapplications are capable of chang-
ing their functionality with alternative configurations to cope with environment changes. From
the work that perform energy optimization only at the infrastructure level, only [BB10] performs
both DVFS and PM switching, the rest [LLH+09, HLM+09, HLM+09] relies on consolidation
and therefore PM switching off. From the body of work that consider both application and in-
frastructure aspects to optimize applications’ QoS and infrastructure energy consumption, all of
them are able to adapt the QoS (non-functional aspects) so as to utilize less resources and con-
sequently less energy. Only [GDA10, DAB11] provide means to adapt the applications so as to
provide alternative configurations. Regarding the energy strategies, only [PCL+11] and [ISBA12]
allow both DVFS and PM switching off, whereas the others rely only on PM switching. Finally,
from the work that are cross-layered and multi-autonomic manager, [RRT+08] is considered a
multi-autonomic approach within the data center boundaries (e.g. VM, PM or rack level). Mean-
ing that the approach does not consider explicitly any aspect of applications in order to optimize
the energy consumption in the data center. [KLS+10] and [CFF+11] provide cross-layered and
multi-autonomic management solutions in which applications are capable of adapting both their
functionalities and their non-functional aspects. While [KLS+10] is also able to deal with multiple
applications, [CFF+11] considers a single application scenario. However, the energy saving strate-
gies in [KLS+10] as well as in other approaches [MKGdPR12, WW11, KCD+07] is based only
on DVFS, which can be relatively limited. Finally, concerning the loosely-coupling character-
istics, only [KLS+10],[CPMK12] and [WW11] provide solutions in which autonomic managers
work in a loosely-coupled fashion. This is particularly interesting because in the context of cloud
computing, the details of a manager running at a given layer might not be visible to some other
manager located at a different layer.

In order to overcome the previously mentioned limitations this thesis presents a cross-layered
optimization approach for applications’ QoS and infrastructure energy efficiency in the context
of cloud computing. The optimization is achieved thanks to the coordination of a multiple auto-
nomic managers that communicate in a loosely-coupled manner. At the application level, each
application is equipped with its own manager which is able to adapt not only the application
non-functional aspects (QoS) but also its functionality so as to be more flexible to changes in the
environment. At the infrastructure level, another manager tries to reduce the number of PMs (and
consequently their implied energy consumption) necessary to attend all applications’ requests.
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4
Cloud Computing and
Component-based Software
Engineering: Elasticity in Many Levels

This chapter discusses about how the flexibiliby of the on-demand provisioning model of cloud
computing along with the flexibility made by component-based applications may contribute to
cope with dynamic environments in many levels.

Firstly, we present an overview of the context in which this thesis takes place, by presenting the
main actors involved and by briefly providing some discussion on how applications and infrastruc-
ture flexibilities can help the optimization of the Quality of Service (QoS) and the resource/energy
usage. Then, we detail, through an example, how state-of-the-art solutions benefit of that flexibil-
ity to reduce the energy consumption at the infrastructure level. We then detail, also through an
example, how current solutions benefit of application-level flexibility to improve the application
QoS so as to face with changing environments and how it may impact the resource usage on the
underlying infrastructure. In addition, we provide some discussion about how applications can
become even more flexible and able to be more energy compliant. Finally, we introduce an multi-
level autonomic approach that aims to make both applications and infrastructure self-manageable
with respect to the infrastructure energy efficiency and applications’ QoS.
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4.1 Context Overview

This section provides an overview of the context in which this work takes place. First we present
the cloud actors involved in our solution. Then we revisit some state-of-the-art solutions for ener-
gy/resource usage and QoS optimization at both infrastructure and application levels. Finally, we
overview how to improve the level of flexibility at the application level, which can be interesting
to make applications more energy compliant.

4.1.1 Cloud Actors

We leverage cloud computing software stack (cf. Figure 2.1) to define the actors considered in
this thesis work. Hence, there are three main actors who interact with each other in a producer-
consumer fashion, that is, actors at lower layers offer services that are consumed by the actors
at upper layers. At the lowest layer, the infrastructure provider offers computing resources to
application providers in a Infrastructure-as-a-Service (IaaS) way. Thus, there is a Service-Level
Agreement (SLA) stating that the application provider pays a financial cost to the infrastructure
provider corresponding to the amount of usage time and resources. The infrastructure provider,
in turn, must ensure a certain Quality of Service (QoS) such as the service availability. At the
middle layer, the application providers offer application functionalities to clients in a Software-
as-a-Service (SaaS) manner. There are SLAs stating the financial cost clients have to pay for
the offered services and the QoS guaranteed by the application providers. Every time a SLA is
violated, the service provider (application or infrastructure) provider is penalized. In which case,
the service client does not pay the full price or does not pay at all for the service. Therefore, it is
important that service providers avoid as much as possible service degradation which may cause
SLA violations and thereby a drop on their incomes.

Although the management of SLA is extremely important to formalize the commercial rela-
tionship between providers and consumers, it is out of the scope of this thesis work. Hence, the
SLAs are not explicitly nor formally taken into account, which means that there is no formal state-
ment describing the parts, roles, rights, obligations and penalties. On the other hand, even if we
do not take into consideration a formal statement or special treatment for the eventual violations,
the SLAs may help in the definition of service level objectives that should guide the management
of each service (e.g. SaaS or IaaS) in the whole system.

4.1.2 Elasticity in Many Levels: From Infrastucture to Software Architecture

As previously mentioned in Chapters 2 and 3, the issue of energy/resource consumption and QoS
optimization can be directly or indirectly addressed at several levels. At a lowermost level, the flex-
ibility of virtualized infrastructure inherent to cloud computing systems along with consolidation
or optimal placement/scheduling techniques enable a better utilization of the physical resources,
which consequently allows a part of the physical infrastructure to be shutdown. This flexibility in
the virtual resource provisioning allows application providers to dynamically scale up and down,
which results in a more reasonable resource (and consequently energy usage) for the maintenance
of applications’ QoS.

However, dealing with applications as black-boxes (i.e. as if the internal application compo-
sition was unknown) may not be enough to cope with highly dynamic environments, in which
constrained situations as for instance to meet energy requirements may emerge. Therefore, we
claim that in order to increase their flexibility, applications could be considered as white boxes in
the sense that their internals are visible from the outside so that it is possible to configure them
to fit a certain situation. In this context, component-based software engineering (CBSE) [HC01]
along with reflection capabilities [Smi84] play an important role, since they provide means for
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modular and dynamic (runtime) adaptation. As a result, it enables the management of even more
flexible applications which are able to enable/disable functionalities or non-functional aspects in
order to face resource/energy issues or other kinds of constrained situations.

To sum up, we propose a multi-level elastic approach in which adaptation can be seamlessly
performed thanks to the flexible nature of applications and infrastructure. The infrastructure elas-
ticity refers to the capability of the infrastructure provider to readily provision computing re-
sources by allocating them in a way to optimize the infrastructure utilization. The application
elasticity can be divided into capacity elasticity and architectural elasticity. The former refers to
the capability of application providers to dynamically adjust their applications’ resource capacity
so as to cope with a varying environment (e.g. workload) while maintaining the QoS. The latter
refers to the capability of application providers to internally adapt their corresponding applications
(by enabling/disabling functionalities or non-functional aspects) in order to be even more able to
fit non-anticipated environment changes (e.g. more energy compliant).

The next sections details these three levels of elasticity through a set of example scenarios.

4.2 Energy-aware Elastic Infrastructure

This section aims at describing the infrastructure and how it can be elastic with regards to the
energy consumption.

The infrastructure corresponds to a pool of physical resources expressed by means of phys-
ical machines (PM), which are defined in terms of computing resource capacity, namely CPU
and memory (RAM). The infrastructure provider relies on virtualization [SN05] to be able to
concentrate several workloads in a single PM and thereby optimize the resource usage. Hence,
the physical resources are offered to application providers in terms of virtual machines (VMs).
Likewise, VMs are defined in terms of computing resource capacity (CPU and RAM) and can be
dynamically created, destroyed and migrated from one PM to another. Lastly, each PM is able to
simultaneously host one or several VMs according to their resource capacity (CPU and RAM).

The infrastructure provider may benefit of the virtualization to improve the resource utilization
rate and thereby the energy efficiency [HLM+09, LLH+09, FRM12]. Actually, it is possible to
place new VMs in a way the number of PMs necessary to hosts all the VMs is minimized. The
following section details through an example how this can be done.

4.2.1 Example Scenario: Virtual Machine Placement

This scenario illustrates how the placement can be performed so as to use less PMs and by conse-
quence less energy.

In this scenario, the infrastructure is composed of four PMs (PM1, . . . , PM4), as it is illus-
trated in Figure 4.1. Each PM has a resource capacity of four units of CPU (y-axis) and RAM
(x-axis). VMs are offered in two types: small (1 unit of CPU and 1 unit of RAM) and large (2
units of CPU and 2 units of RAM).

At time t1 all the PMs are unoccupied and PM3 and PM4 are powered-off. At time t2 upon
requests of new VMs (namely VM1, . . . , V M5), the infrastructure provider creates these VMs by
placing them in a way to use as less PMs (turned-on) as possible. It is important to mention that,
due to resource constraints, if new request for VMs, it would be necessary to turn-on either PM3
or PM4 to place the requested VMs.

Besides, the VM placement, the infrastructure provider might rely on mechanisms like VM mi-
gration to dynamically to pack VMs by reposition them in a minimum number of PMs [HLM+09].
Although this kind of technique might lead to higher utilization rates and therefore to high effi-
ciency in terms of energy consumption, we claim that it should be performed carefully and in
moderation. Migration operations performed within a short period of time may cause interruption
in the VM services, which may interfere the application QoS [VKKS11, Str12].
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Figure 4.1: Energy-aware Placement Example Scenario.

4.3 QoS-aware and Energy-compliant Elastic Applications

In this section, we describe how applications are defined, how they are deployed on the under-
lying infrastructure and how they can scale up/down by dynamically stretching or shrinking the
amount of resources (capacity elasticity). Then we describe how applications have been architec-
turally modified (architectural elasticity) and thus be more energy compliant. We then present a
motivation scenario to ease the understanding of these resource and architectural elasticities. We
conclude this section by providing some discussion about how these two elasticity mechanisms
can turn the application more flexible and consequently more energy compliant.

Before providing the details on the application-level types of elasticity, it is noteworthy that
we relied on the service component architecture (SCA)1 (cf. Section 2.3.3) as component model
to support the applications’ definitions.

4.3.1 Capacity Elasticity

As presented in Section 4.2, the flexibility provided by virtualization allows application to seam-
lessly request and release computing resources in an on-demand manner. As result, application
providers can estimate the amount of resources necessary to host the application so as to face the
current workload (i.e. the number of simultaneous clients).

In this context, we rely on virtualization to provide computing resources to applications com-
ponent. Each component has one or several component instances which are deployed each one in
a different VM. It means that a VM must host at most one component instance. This can be inter-
esting to scale up/down a particular component, since only instances for a particular component
have to be created or destroyed. Figure 4.2 shows an example on how component instances of a
given component c are deployed in VMs. By relying on techniques of load balancing [LL05], the
applications’ load can be balanced so as to able to deal with the all incoming requests and thereby
meet the requirements in terms of QoS.

It is straightforward that application providers can benefit of this elasticity to reduce its energy
footprint. In fact, this approach allows them to finely adjust the amount of resource necessary to

1http://www.oasis-opencsa.org/

http://www.oasis-opencsa.org/
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Figure 4.2: Example of Component Scaling Up and Down.

execute the application in a given context, which avoids resource over allocation.

This kind of scaling presented in Figure 4.2 is also known as scale out (or horizontal scaling).
It distinguishes from the scale in (or vertical scaling) by the fact the former allows to increase/de-
crease the resource capacity by adding or removing VM instances, whereas the latter allows to
increase/decrease by re-dimensioning the physical resources (e.g. CPU and RAM) allocated to a
single VM instance [CRMDM12]. Currently, in virtualized infrastructures, the scale in technique
is done by destroying a VM (or at least shutting it down) and re-creating (or re-launching) it with
a bigger capacity. Consequently, there is a non-neglected and undesired service interruption time.
For this reason, this work does not take into consideration the scale in scaling.

4.3.2 Architectural Elasticity

As previously said, we assume that applications are developed in a modular component-based
manner and that they can be introspected and interceded to allow dynamic reconfigurations.

Applications can therefore operate in different configurations depending on which components
are running, their properties, and how these components are bound to each other. Moreover, appli-
cations can switch from one configuration to another at runtime. Two or more configurations may
provide the same functionalities while providing different levels of QoS. For instance, there could
be a configuration that comprises a non-functional component (e.g. a logger), which is disabled in
another configuration. The application configurations may also provide different functionalities
that might impact the QoS. For instance, an application could have a configuration that contains a
component implementing one functionality (e.g. a 2D map viewer). In another configuration the
component is replaced by another component that implements another functionality (e.g. 3D map
viewer). Supposing that 3D map viewer is a more desired functionality than the 2D one, this com-
ponent change may end up by affecting application overall QoS. So, the QoS for the configuration
comprising the 2D map viewer is functionally degraded in comparison to the other configuration.

Since components might have different requirements in terms of resources, applications may
impact differently the resource usage and therefore the energy consumption, according to the
configurations. Thus, applications are able to lower their energy footprint or cope with a given
restriction by degrading their QoS. And the other way around, they can upgrade their QoS and
thus increasing their energy footprint on the underlying infrastructure.

In short, this architectural elasticity characteristics promoted by a runtime CBSE approach are
very appropriated to highly dynamic environment such as in cloud computing. The next section
illustrates an example that eases the understanding of this kind of elasticity.
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4.3.3 Motivation Scenario: Advertisement Management Application

The motivation scenario application consists of a 2-tier web-application in the domain of internet
advertisement. The application behaves in an autonomous manner by choosing the appropriate
advertisement type (video, image or text) according to the runtime context, namely the current
workload, the advertisement quality, the performance and the energy compliance. As shown in
Figure 4.3, the application is composed of four components:

• Frontend (FE). It is the presentation tier of the application which is implemented by a web
container. Upon a client HTTP request, the web container encapsulates the advertisement
media retrieved either from components Video Ad Server, the Image Ad Server or the Text
Ad Server, and returns it.

• Video Ad Server (VAS). It chooses randomly one advertisement video file and returns it to
the FE.

• Image Ad Server (IAS). This component also randomly picks an advertisement image file
and returns it to the the FE.

• Text Ad Server (TAS). Similarly, it chooses randomly an advertisement text and returns it
to the FE.

Publicity Campaign Manager

Frontend
Text Ad 
Server

Image Ad 
Server

Video Ad 
Server

HTTP

Alternative Configuration

Figure 4.3: Advertisement Manager Architecture Overview.

The application provider establishes a SLA with his/her clients stating that they are charged
for each advertisement exhibited on time, that is the advertisement should not exceed a certain
amount of time to be exhibited. Thus, the type of advertisement along with the response time
constitute the application’s QoS criteria for which clients pays more the higher they are. Similarly,
the application provider also establish a contract with the infrastructure provider stating that the
application provider must pay a certain amount of money according to the amount of resources
required.

Table 4.1 presents the resource requirements (in terms of CPU and RAM) for each compo-
nent. There are two levels of workload: high and low. For each one it is specified the resource
requirements for a given performance level (namely bad or good). Components FE and TAS
are the less resource consuming components. In fact, only one unit of CPU and RAM is enough
to guarantee a “good” service under a heavy workload. With regards to components IAS, that
amount of resources guarantees a “bad” service under a light workload. Two units of CPU and
RAM are required to guarantee a “good” service under a light workload or a “bad” service under a
heavy workload. In order to guarantee a “good” service under a heavy workload, it requires three
units of CPU and RAM. Finally, component V AS is the most resource consuming component. It
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requires two units of CPU and RAM to guarantee a “bad” service under a light workload, whereas
it requires three units of CPU and RAM for a “good” service under a light workload or a “bad”
service under a heavy workload. For a “good” service under a heavy workload it requires four
units of CPU and RAM.

Hence, the application provider can benefit of the flexibility provided by the infrastructure
provider to request the exact amount of resources needed to execute the application under a certain
workload.

Component Workload Performance CPU Units RAM Units

FE heavy good • •
TAS heavy good • •

IAS
light

bad • •
good • • • •

heavy
bad • • • •

good • • • • • •

V AS
light

bad • • • •
good • • • • • •

heavy
bad • • • • • •

good • • • • • • • •

Table 4.1: Resource Requirements for the Advertisement Management Application.

Apart from the resource elasticity, the application provider also benefits of the architectural
elasticity provided by the CBSE approach. To this end, Table 4.2 shows three possible configura-
tions for the application and their respective QoS (in terms of responsiveness and advertisement
quality) as well as the energy compliance (based on the resources usage). These criteria are ex-
pressed in terms of stars, that is, the more stars, the better is the criterion. It should be mentioned
that in order to facilitate the comparison of configurations, the performance and energy compliance
criteria are for a fixed amount of allocated resources under a constant workload.

Configuration 1 (k1) is the configuration with best performance and worst advertisement qual-
ity, because it is composed of one FE, like the others, and one TAS whose requirements in terms
of resources are lower than those of components IAS and VAS. As a consequence, it also has a best
energy compliance. On the other hand, the advertisement quality is the worst in comparison to the
quality of the other advertisement server components (IAS and VAS).

Configuration 2 (k2) is an intermediate configuration in which the advertisement quality and
performance criteria are of average quality. The component IAS is more resource consuming than
component TAS and less resource consuming than component VAS, meaning that this configuration
is able to handle more/less requests for the same amount of resources in comparison to components
TAS and VAS, respectively. That way, its the level of energy compliance is average in comparison
to these two components.

In Configuration 3 (k3), the advertisement quality is better than the other configurations, since
it is composed by components FE and VAS. As the latter is not able to manage the as many number
of client requests as components TAS and IAS, the performance and energy compliance are lower
than those of the other configurations.

4.3.4 Conclusion

By considering the application as a white box, it is possible to harness the possible configurations
of components which allows the application to be more elastic in an architectural fashion. Hence,
it is possible to take into consideration the domain-specific criteria (e.g. advertisement quality)
and under which situations it is pertinent to degrade/upgrade (i.e. switch from one configuration
to another) by considering the impact in terms of resource consumption. In short, it increases
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Configuration Trade-off

k1
FE  TAS

Ad Quality ⋆

Performance ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Energy Compliance ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

k2
FE  IAS

Ad Quality ⋆ ⋆ ⋆

Performance ⋆ ⋆ ⋆

Energy Compliance ⋆ ⋆ ⋆

k3
FE  VAS

Ad Quality ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Performance ⋆

Energy Compliance ⋆

Table 4.2: Possible Architectural Configurations for the Advertisement Management Application.

applications flexibility and allows application providers to find the best trade-off between QoS
and the resources needed to execute the application by adapting the application to changes in the
context, be it regarding the application incoming workload or related to changes on the underlying
infrastructure (e.g. energy shortages).

4.4 Autonomic Architecture to Optimize Energy Consumption

This section describes firstly a two-level autonomic architecture whose objective is to make ap-
plications and infrastructure self-adaptable with regards to QoS and energy consumption. Then,
we discuss some issues regarding the lack of coordination and synergy presented in this kind of
system.

4.4.1 Architecture

It is important to recall that cloud environments are highly dynamic. Indeed, the workload of this
kind of cloud applications may fluctuate substantially within the same business day and the flexible
resource provisioning of infrastructure providers may also make the infrastructure very instable.
As a consequence, it becomes infeasible the manual intervention to rapidly react to changes so
as to: (i) maintain the desired level of applications’ QoS while internally configuring applications
and adjusting the amount resources necessary; and (ii) arrange VMs in PM so as reduce as much
as possible the energy consumption at the infrastructure level.

For this purpose, we rely on autonomic computing [KC03] to conceive a system consisting of
two kinds of autonomic managers: the application manager (AM) and the infrastructure manager
(IM). As it is depicted in Figure 4.4, each application and infrastructure is managed individually,
which means that there is one AM per application and one IM for the infrastructure. The choice for
several autonomic managers (one per application) instead of only one is justified by many reasons.
As the number of applications increases, it becomes infeasible to manage several applications, at
the same time, with different objectives parameters. In addition, applications may have different
characteristics and because this the autonomic tasks (monitoring, analysis, planning and execution)
may differ significantly from one application to another. For instance, the reaction time (i.e. the
time interval between the end of one loop round and the start of another) of an application that
performs scientific calculation might be different than for a web application. Furthermore, in cloud
environments, for organizational boundaries reasons, it might not be desirable to have applications
and infrastructure belonging to different vendors being managed together by the same entity. That
is, the management details on a given organization may not be shared with other organizations.
For those reasons, we advocate a multiple autonomic manager architecture in which applications
and infrastructure are independently managed.
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It is also important to remember that violations on the SLAs established between providers
and consumers may lead to additional costs and consequently to a reduction of the providers’
revenues. That way, application providers should always try to increase as much as possible their
applications QoS while reducing as much as possible the costs due to resource allocation. The
infrastructure provider, in turn, should try to sell as much resource as possible while minimizing
the costs due to the infrastructure energy consumption.

So, the AM’s main objective is to optimize the application QoS while adjusting the amount of
resources necessary to host the application. It takes into consideration the incoming workload to
decide which architectural configuration is more appropriate for the current context. For example,
in order to cope with an increasing workload, the AM may decide to request more resources and
maintain the same level of QoS. Alternatively, the AM may decide to switch from one configura-
tion to another by degrading its QoS (e.g. switching from video to image advertisement) instead
of requesting more resources. As a consequence, the application provider does not need to pay
more for resource renting fees. This choice should be driven by the QoS degradation specification.

At the lower level, the IM is in charge of autonomously responding to AMs’ requests on com-
puting resources (VMs) while optimizing the placement of just-created VM. To put it another way,
the IM tries to place the new incoming VMs in way the number of used PMs are minimized. As
a result, the unused PMs may be turned off, leading to an improvement of the energy efficiency.
Eventually, the IM may also try to pack the running VMs so as to minimize the number of running
PMs. However, this operation should be done in moderation, since this is a very costly and sus-
ceptible to service interruptions [VKKS11, Str12], which may impact the QoS at the application
level.

4.4.2 Coordination and Synergy Issues

It is noteworthy that due to the strong dependency among the component instances and the hosting
VMs, the executions at both levels must be coordinated. For example, the VM that hosts one
component instance cannot be stopped before the component has been removed from the rest of
the application. Also, a component instance cannot be deployed until the VM that will host it has
not been created.

Furthermore, autonomic decisions are taken in a independent way, that is, autonomic man-
agers are not aware of the current state of the other autonomic managers’ managed systems. Thus,
decisions taken by one autonomic manager may affect (negatively or positively) a system managed
by another autonomic manager. For example, let us suppose that the AM for the advertisement
management application decides to request a large VM to the IM in order to face an increasing
workload while keeping the best architectural configuration (video). Supposing that the infras-
tructure has only two PMs turned on and two PMs turned off, and that there is only one spot left
to accommodate a small VM instance. That is, the IM should turn on a new PM in order to place
a large VM, which globally would not be very optimal solution in terms of energy efficiency. Al-
ternatively, the AM could decide to degrade the QoS by switching from configuration k1 to k2,
which would require one small VM instead of a large one. Hence, the impact on the underlying
infrastructure would be more positive, since utilization rate would be increased without needing
to turn on any PM. Nonetheless, as the AM is not aware of the current state of the managed infras-
tructure, it would be impossible for the AM to take such a decision in an independent manner. In
short, the lack of synergy between autonomic managers may lead the global system to undesired
states.

Likewise, let us suppose that the infrastructure provider faces a constrained situation such
as an energy shortage, which force him/her to shutdown part of the physical infrastructure. If
this is done without any coordination with the guest applications, they will likely have their QoS
drastically affected. Instead, the infrastructure provider could warn guest applications about the
situation so applications have the chance to cope with before the shortage actually takes place.
Moreover, it is preferable that this is done in a way that mitigates the interference on applications.
Still, the infrastructure is not aware of the details at the application level in order to be able to take
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such an application QoS-aware decision. Therefore, the lack of synergy between the infrastructure
and application may encumber the seamlessly adaptation to such a kind of constraint.

4.5 Summary

This chapter presented an architecture overview of a multi-level self-management approach for
cloud applications and infrastructure. It relies on autonomic computing to make applications and
infrastructure self-adaptable and able to optimize the Quality of Service (QoS) and the energy
efficiency, respectively.

We claim that elasticity can be achieved at many levels and may significantly contribute to
cope with dynamic environments while meeting QoS requirements and optimizing the energy
efficiency.

Firstly, we defined an elastic infrastructure by means of virtual machines (VMs) deployed on
physical machines (PMs). That way, it is possible to mutualize the computing physical resources
by deploying several VMs in a single PM. Through an illustrative example, we showed how to
optimize the placement of new virtual machines and also how virtual machines can be rearranged
so as to minimize the number of physical machines needed.

Secondly, we relied on component-based software engineering to define elastic applications.
Along with the resource capacity elasticity property of cloud applications, we are able to con-
ceive applications that are capable of reconfiguring to suit the runtime context. We presented a
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motivation scenario to show the importance of such a flexibility.
At last, we presented an autonomic approach that considers both the applications and the in-

frastructure. At the application level, an autonomic manager tries to increase the application’s QoS
while minimizing the costs due to resource allocation. At the infrastructure level, an autonomic
manager seeks for increasing the infrastructure utilization rate and by transitivity improving the
energy efficiency.

Due to the absence of information from the infrastructure at the application level and from the
application to the infrastructure level, there is a lack of synergy between layers which may lead
the system to undesired (or non-optimal) states. This issue is addressed in the following chapter.





5
Synchronization and Coordination of
Multiple Autonomic Managers to
Improve Energy Efficiency

When dealing with multiple autonomic managers, it might happen that actions performed by one
manager interfere in the managed system of the other one. These interferences exist because of a
lack of synergy between autonomic managers, which results in completely independent behaviour
although with side-effect consequences. This is an issue in the domain of cloud computing, in
which the energy consumption is a concern reserved to the infrastructure provider. In fact appli-
cation providers are not aware about how application components are deployed on the underlying
infrastructure. For example, application providers may request a large piece of resource (virtual
machine), which may require a physical machine to be switched on, instead of requesting several
small fractions of resources so as to better occupy the infrastructure. This synergy-less behaviour
may lead to an energy consumption increase or to a less energy efficient state, which is not de-
sirable for the infrastructure provider. On the other way around, infrastructure providers may be
obliged to shutdown part of the infrastructure to cope with energy constraints. Doing that without
warning the guest applications could cause serious problems of Quality of Service (QoS) at the
application level.

This chapter describes an approach for the synchronization and coordination of multiple auto-
nomic mangers to improve the synergy between applications and infrastructure. Firstly, we present
a model for synchronization and coordination of multiple autonomic managers. This model helps
to understand how autonomic managers communicate and how decisions taken by one manager
may interfere in a system managed by another manager. Then, we apply this autonomic model
to the context of cloud computing. More precisely, we define an autonomic manager in charge of
managing one application (one per-application) and another autonomic manager that is in charge
of managing the infrastructure. We describe these two autonomic managers by providing details
about their objectives, their autonomic tasks, how they communicate, how they are synchronized
and coordinated so as to optimize at the same time the applications QoS and the infrastructure
energy efficiency, while mitigating the negative interferences.
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5.1 Synchronization and Coordination of Multiple Autonomic Man-
agers

Autonomic computing [Hor01] aims at providing self-management capabilities to systems. The
managed system is monitored through sensors, and an analysis of this information is used, in com-
bination with knowledge about the system, to plan and execute reconfigurations through actuators
(or effectors). Classically, an autonomic manager internal structure is implemented by a MAPE-K
(monitoring, analysis, planning and execution tasks over a knowledge base) control loop [KC03].
Bottom-up interactions between the managed system and the autonomic manager are realized via
events whereas top-down interactions via actions.

Our approach aims to provide synchronized and coordinated autonomic managers by intro-
ducing a synchronization of the access to a knowledge shared among the autonomic managers and
a coordination protocol.

5.1.1 Multiple Autonomic Managers Architecture Model

According to state-of-the-art work on self-adaptive architectures [Lem13], interacting autonomic
managers can follow a set of patterns:

• Hierarchical: in this pattern, complete MAPE-K control loops (with monitoring, analysis,
planning, execution and knowledge) are organized in a hierarchy, in which autonomic man-
agers at lower levels operate at short time scales to solve local problems, whereas the ones
at higher levels work at long time scales and have a more global vision of the problems,
which is obtained from messages passed from the lower level managers. Examples of this
kind of architecture has been used in [MKGdPR12] and [APTZ12].

• Master/slave or Regional: in the master/slave pattern, autonomic managers are also orga-
nized in a hierarchy, in which, at a lower level, many slaves control loops are responsible
only for the monitoring and execution tasks of their respective managed systems, whereas a
single master centralizes the analysis and planning tasks of all managed systems. Regarding
the regional pattern, only the planning task is centralized at the master. One example of the
use of this kind of architectural pattern can be found in [GDA10].

• Decentralized: in this pattern, each autonomic task (monitoring, analysis, planning, execu-
tion) is coordinated with its counterpart in the peer autonomic manager. It requires a flexible
sharing of information among managers so as to allow the coordination in every single task.

• Information Sharing: in this pattern, each system is managed by a complete MAPE-K
control loop, but they communicate only via the monitoring and execution tasks. The in-
formation gathered on the managed system is shared among all the monitors, whereas the
analysis and planning is performed without any coordination between peers.

In the context of this thesis work, we are interested in architectures that fulfill the requirements
imposed by the cloud service/consumer architecture. The hierarchical pattern does not fit in this
kind of architecture, since autonomic managers at higher levels detain a global view (information)
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of the whole system. This is not desirable in cloud environments since autonomic managers may
belong to different vendors (e.g. in hybrid/public clouds).

The master/slave and regional patterns requires a unique decision module (analysis and plan-
ning) for all the autonomic managers, i.e. for all applications and for the infrastructure. It implies
in a lack of flexibility in the autonomy of each autonomic manager (e.g. applications that are
managed at different time scales) as it requires that all autonomic managers are created by the
same vendor, which is not very suitable for cloud environments. Moreover, the concentration of
analysis and planning in only one autonomic manager may lead to serious problems of scalability.
That is, dealing with several problems (for each one of the managed systems) with a large number
of variables at the same time may not be feasible.

The decentralized pattern requires that every autonomic task from one autonomic manager co-
ordinates with its counterpart in the peer manager. It leads to a high level of information sharing
in all autonomic tasks (monitor, analysis, planning and execution). While it may be very interest-
ing to cope with conflicting behaviours, it fails in guaranteeing information hiding, which is so
important in multi-vendor environments and more specifically in cloud environments.

The information sharing pattern improves the lack of information hiding observed in the de-
centralized pattern, since it allows communication between autonomic managers only via the mon-
itors and executors. However, it allows a sharing of monitoring data among all monitors, which
may not be applicable to cloud environments. For example, it not envisaged that applications are
aware about the details of placement of virtual machines (VMs) in physical machines (PMs).

Considering those limitations, we claim that it is necessary a novel autonomic architecture
model for cloud systems or systems with similar requirements. Firstly, as in the information
sharing pattern, the communication should be done only through the monitoring and execution
tasks, but the monitoring data is not shared among all monitors. Instead, only a small fraction
of an autonomic manager’s knowledge may be shared with others and this sharing may require
special synchronization treatment to avoid inconsistent data.

Given these requirements, we define three types of autonomic managers, as follows:

• Independent: this type of autonomic manager is completely independent from the others.
The source of the received events is always the managed system and the actions are executed
only on the concerned system. There is no communication between other managers and the
knowledge is entirely internal (private) to the manager in question. Figure 5.1(a) illustrates
this kind of autonomic manager.

• Coordinated: this type of autonomic manager communicates with the others, as it can be
seen in Figure 5.1(b). Detected events may be originated from other managers and actions
may trigger notifications on other managers. To this end, a message-based protocol is used
to perform the communication among multiple managers. The kinds of events and actions
used for that is domain-specific and therefore depends on the managed systems.

• Synchronized: sometimes, it is needful to share some information for a collective activity.
That is to say that all the autonomic managers may take into consideration that information
so as to promote a synergy among them and therefore avoid negative interferences. As
the access to shared data may lead to concurrency and consistency problems, managers
should be able to access the information in a synchronized manner. Figure 5.1(c) illustrates
three synchronized autonomic managers which share some information through a public
knowledge.

It is important to remember that our objective is to improve the QoS and the energy efficiency
in cloud systems by creating a synergy between them (i.e. among autonomic managers). There-
fore, we focus on coordinated and synchronized autonomic managers.
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Figure 5.1: Autonomic Manager Types: (a) Independent Autonomic Managers; (b) Coordinated
Autonomic Managers; and (c) Synchronized and Coordinated Autonomic Managers.

Public and Private Knowledge Model.

Regarding the information sharing we separate the knowledge base of each autonomic manager
into two parts: the private knowledge, which stores the internal information needed by the au-
tonomic tasks, and the public knowledge, which is shared among other managers. The public
knowledge base may have to be synchronized if the actions executed by the autonomic managers
require to modify the shared information (directly or indirectly). Indeed, the simultaneous actions
of multiple autonomic managers may lead to changes at the public knowledge at the same time
(concurrency problem) and may lead to non-logical global results (consistency problem). In our
approach, we consider that the autonomic manager that makes the knowledge public is the only
one eligible to modify it directly, which restrain the concurrency problem.

Autonomic Actions

In order to clarify the interactions between several autonomic managers, it is important to differ-
entiate actions and events which are part of the managed system and those which are part of the
multi-autonomic managers system model. Figure 5.2 depicts a hierarchy of the different types of
events and actions.

Actions can be executed on the actual managed system, within the MAPE-K control loop
(intraloop) or over another MAPE-K control loop (interloop).

The actions on the managed system and the interloop actions are always executed by the
execution task of the MAPE-K control loop. An interloop action may notify another autonomic
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Figure 5.2: Autonomic Actions and Events Hierarchy.

manager as if it was asking for a service and waiting for the response. In this case, the planning
task creates and schedules a handler that contains all the other actions that have to be executed in
response to this interloop action. This interloop action is therefore a notifying action, which is
taken as an interloop event at the target control loop.

Finally, intraloop actions can be Change Public Knowledge, Schedule Handler or Fire Event
actions. The Change Public Knowledge is an action that modifies the content of a public knowl-
edge. As previously said, the Schedule Handler action schedules a handler containing a set of
actions that depend on a future object to be executed. Finally, the Fire Event action is an action
that triggers an endogenous event on the same autonomic manager. It may be instantaneous or
timed (i.e. triggered after a given time interval).

Autonomic Events

As it is shown in Figure 5.2, an event can be either endogenous or exogenous. The source of
endogenous events is always the managed system. The source of exogenous events is another
control loop. For the exogenous events, there are the interloop events - created by the interloop
action - and the Public Knowledge Changed - created by the Change Public Knowledge action.

5.1.2 Synchronization and Coordination

Coordination Protocol

Considering the coordinated case with multiple autonomic managers, we take into consideration
what we call the collaboration problem, where two control loops have to communicate in order
to accomplish a global activity together. Indeed, the execution task of one MAPE-K control loop
may ask another autonomic manager a service and waits its completion. However, in order to
avoid blocking states, autonomic managers must communicate in an asynchronous manner. So,
the action performed by the first autonomic manager will trigger an interloop event at the second
manager. At the same time, the first manager creates a handler containing all the actions (as future
objects [EFGK03]) that have to be executed after the service has terminated. The interloop event is
detected by the monitoring task of the second MAPE-K control loop. Once the event is processed,
another interloop event is sent back to the caller manager.

Figure 5.3 illustrates this interloop communication. We rely on a message-oriented middle-
ware (MOM) [Mah04], in which messages are exchanged through a message broker. So, the
interloop communication can be either peer-to-peer, in which one autonomic manager sends a
message to another manager; or one-to-many, where one autonomic manager sends a message to
one or several. More concretely, the “sends” and “published” arrows in Figure 5.3 corresponds to
an interloop action, whereas the “receives” arrow represents an interloop event.

Hence, each autonomic manager has a queue registered in the message broker. Any manager
willing to send a message to another manager should use the broker and the respective queue to
mediate the communication. In the case of message broadcasting, we rely on a publish/subscribe
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(PubSub) model [EFGK03], where a manager may create a topic and publish on it, whereas others
managers can subscribe to topics so as to be notified every time another manager publishes on it.
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Token Protocol for Synchronizing the Public Knowledge

The public knowledge is composed of critical and non-critical sections. The first corresponds to
fractions of information that are rarely changed and do not compromise the consistency of the
system, whereas the other one refers to pieces of information that may be frequently changed and
therefore may interfere in the system consistency. Thus, while the synchronization is dispensable
for accessing non-critical sections, it is mandatory for accessing critical ones.

For that reason, we introduce a simple token protocol in order to synchronize the access to
the critical sections among multiple autonomic managers. As for transactions in databases, this
synchronization protocol ensures that only one autonomic manager can access a critical section.
Each critical section is associated with a token, meaning that in order to access a given critical
section, managers must request the corresponding token. A manager can get the token by either
asking for it explicitly with a TOKEN REQUEST message (active token request) or it can receive
the token from another manager through a TOKEN TRANSFER message (passive token reception).
Whenever a manager does not need the token anymore it releases it with a TOKEN RELEASE
message. Whenever a token is requested, the requester has to wait for a TOKEN ACQUIRED
message. Each autonomic manager having a public knowledge with critical sections implements
a token manager which is in charge of managing the token protocol.

Timing MAPE-K Control Loops

All the MAKE-K control loops evolve in a dynamic environment where multiple events may occur
simultaneously. The arrival rate of these events may vary according to the autonomic manager and
are stored in a waiting queue. In order to manage the arrival of these events, the monitoring task
of each MAPE-K control loop has a scheduling process. This scheduler may implement different
policies, some of them may take into account the events priorities. In our approach and for the sake
of simplicity, for endogenous events, we consider a FIFO (First-In First-Out) scheduling policy
without priorities. However, interloop events that result in handlers execution, i.e. events that are
response for interloop actions, have higher priority. Indeed, handlers contain actions that have
to be executed in response to a service request and need to be treated in priority in order for the
source event to be considered as treated as soon as possible. Therefore, one event is considered to
be treated only if the entire MAPE-K control loop is finished, including the eventual handlers. In
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order to formalize the timings, we introduce some notations in Equations 5.1, 5.2 and 5.3. These
notations are explained in Table 5.1.

T ji = Tlock + µji (5.1)

µji = T jAi + ρi(modif) ∗ (T jPi + T jEi ) (5.2)

T jEi = T jEactions

i + ρi(interloop) ∗ (T j
′

i′ + T jEhandler

i ) (5.3)

Symbol Description

T ji Time needed to treat event i for control loop j
Tlock Waiting time for the token to be acquired
µji Service time for control loop j for event i

ρi(modif) Probability to start a planning and execution task (modification of the
managed system required)

T jAi Analysis task duration for event i and control loop j
T jPi Planning task duration for event i and control loop j
T jEi Execution task duration for event i and control loop j

T jEactions

i Duration of the first part of the execution task for event i and control loop
j

ρi(interloop) Probability to ask another control loop a service with an interloop event

T j
′

i′ The duration for another control loop j′ to treat the interloop event i′

T jEhandlers

i Duration to execute the handlers for event i in control loop j

Table 5.1: MAPE-K Control Loop Timing Notation.

Figure 5.4 presents a sequence diagram to illustrate how two autonomic managers would use
the token synchronization protocol and the coordination protocol. The M-1 to E-1 vertical lines
are the tasks of the first MAPE-K control loop, whereas M-2 corresponds to the monitoring task
of the second MAPE-K control loop. The TOKEN vertical line shows how managers obtain the
token to access one critical section of the public knowledge of the second manager.

The monitoring tasks are continuously listening for events. As we can see, a first endogenous
event arrives for MAPE-K control loops 1 and 2. The control loop 1 acquires the token (TReq and
TA), launches the analysis (INTRA) and releases the token straight after the event is treated (TRel).
The same goes for control loop 2 which acquires the token as soon as it is released by control loop
1. A second endogenous event is treated by control loop 1 which requires a coordination between
control loop 1 and control loop 2. First, the loop 1 acquires the token and launches the analysis A-
1, the planning P-1 and the execution task E-1. As we can see, control loop 1 sends an exogenous
event to control loop 2 (first INTER, exogenous event 2) along with the token (TT). This allows
control loop 2 to eventually modify the public knowledge, which is managed by it. As soon as
control loop 2 finishes to treat this event, it sends back an exogenous event to control loop 1
(second INTER, exogenous event 4), which allows control loop 1 to execute the handler (INTRA
invoke handler) and to finish treating the event 2.

It is noteworthy that the coordination and synchronization approach presented in this chapter
has been quantitatively validated through an experimental evaluation (cf. Section 7.2.1).

5.2 Synchronization and Coordination of Application and Infrastruc-
ture for Energy Efficiency in Cloud Computing

The cloud computing architecture is typically defined as a stack of several inter-dependent sys-
tems, in which systems on lowermost layers are service providers to systems on uppermost lay-
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Figure 5.4: Autonomic Managers Coordination and Token Synchronization Protocols and Tim-
ings.

ers. Our autonomic architecture in the context of cloud computing consists of two types of inter-
dependent managed systems: applications and infrastructure.

The infrastructure consists of a set of physical machines (PMs), whose computing resources
(CPU and RAM) are made available by means of virtual machines (VMs). There might be one
or several classes of VM, each one with a different CPU or RAM capacity. The use of each VM
instance is chargeable according to the amount of resources allocated to it and the usage amount
of time. Finally, the infrastructure provider may give a limited number of discounts on VMs in
order to attract application providers to occupy portions of resources that are not being utilized
and therefore improve the infrastructure utilization rate.

An application is defined as a set of components. Each component offers a set of services,
which, in turn, might depend on a set of references to services offered by other components.
Services are bound to references through bindings. The application may thus operate in different
architectural configurations (architectural elasticity, cf. Section 4.3.2), which are determined by
the subset of components used and how they are linked to each other. In addition, for scalability
purposes, application providers may deploy the same application component on one or more VMs,
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that is, for each component there might be one or several instances which are used in a load
balancing manner (capacity elasticity, cf. Section 4.3.1) to scale in. Finally, applications’ QoS are
evaluated in terms of performance, i.e. the application responsiveness when dealing with a given
number of simultaneous requests; and architecturally, i.e. a quality degree referred to the current
architectural configuration.

The rest of this section is organized as follows: first, we present an overview of our cloud com-
puting multi-autonomic management architecture. Then, we provide details about each autonomic
manager that takes part of this architecture, namely the application manager and the infrastructure
manager.

5.2.1 Architecture Overview

This section presents an architecture overview of our approach. The approach is composed of two
type of autonomic managers: one dealing with the infrastructure, namely infrastructure manager
(IM); and another dealing with the applications (per-application), namely application manager
(AM), as it is shown in Figure 5.5.

AMs aim at minimizing the amount of VMs needed to keep the level of QoS as high as possible
(capacity elasticity). Furthermore, AMs are able to adapt their application’s architecture (archi-
tectural elasticity) in order to cope with resource restriction imposed by the IM or other restriction
concerning the application itself. More precisely, AMs monitor/listen for events that come either
from the application itself or from the IM; analyze whether or not it is necessary to reconfigure
the application by considering the runtime context (e.g. the workload, the current architectural
configuration, the current mapping of components to VMs, etc.); elaborate a reconfiguration plan;
and execute actions corresponding to the reconfiguration plan.

Regarding the IM, apart from dealing with requests sent by AMs on VMs, its objective is to
optimize the placement of these incoming VMs in the PMs so that it is possible to reduce the
number of PMs switched on and consequently reduce the energy consumption. To this end, the
IM monitors/listens for events that come either from the infrastructure itself (e.g. PMs utilization
rate) or from the AMs; analyzes whether or not it is necessary to replace or to change its current
configuration by considering the runtime context (e.g. the current mapping VMs to PMs); plans
and executes the reconfigurations.

As previously mentioned, the lack of synergy among multiple autonomic managers may result
in negative interferences or side-effect actions. In this context, in order to improve the synergy, we
can apply the coordination and synchronization protocols presented in Section 5.1. The coordina-
tion protocol defines a set of messages exchanged by autonomic managers which are transformed
into actions and events, and used for instance by the IM to inform AMs about energy shortage at
the infrastructure level. The synchronization protocol defines a set of public knowledge (critical)
sections that are shared with autonomic managers. For instance, the IM can change the VMs rent-
ing fees by putting some VMs in promotion. The shared knowledge is used by AMs to take into
consideration those changes in order to globally take better decisions.

5.2.2 Infrastructure Manager

This section describes the IM by detailing each one of its autonomic tasks. Firstly, we present
the knowledge model which is divided into a public and a private parts. Then, we present the set
of events and actions used by the IM. We present how the analysis task is modeled by detailing
each analyzer used by the IM. Finally, we show how reconfigurations take place by detailing the
planning task.

Knowledge Model

Public Knowledge. The public knowledge is composed of critical and non-critical sections. In
the case of the IM, there is one non-critical section corresponding to the rental fees. It is expressed
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Figure 5.5: Multi-control loop Architecture for Cloud Computing.

by the set of VM classes M = {mi | i ∈ [1, q]}, where each element mi ∈M is defined in terms
of CPU capacity (mcpu) , RAM capacity (mram) and renting cost (mcost).

The IM may decide to create promotions in PMs whose utilization rate is lower than a given
threshold so as to stimulate applications to occupy this piece of under-utilized resource. The ob-
jective is to establish a synergy between applications and infrastructure so as to increase the infras-
tructure utilization rate, i.e., the ratio of the amount of resources used to the amount of resources
available. To this end, we define the set Pr = {pri | i ∈ [1, ξ]} as the set of available promotions,
in which each promotion pri ∈ Pr is defined as a tuple (prpacki , prvmsi , prpricei , prtokeni ). prpacki

corresponds to a pack of offered VMs prpacki = {packij | j ∈ [1, q]}, where packij ∈ N
∗ corre-

sponds to the number of VMs of classmj in the pack. prvmsi ⊂ V is a set of the actual VMs taking
part of promotion pri, that is, these VMs are instantiated in the model, but not actually created in
the infrastructure. This is done in order to make the model aware that the PMs in which the pro-
motions are created are actually occupied with those (not yet launched VMs). prpricei corresponds
to the global discount price for the promotion pri and is determined according to a fixed discount
rate (δ) of the regular price, as it is defined in Equation 5.4.

prpricei = (1− δ) ∗

q
∑

j=1

mcost
j ∗ packij : ∀i ∈ [1, ξ] (5.4)

For example, let us suppose that one PM with four CPU units and four RAM units capacity
is half occupied, that is, it has 2 CPU units and 2 RAM units available. The IM may decide
to create a promotion in this PM so as to fill it up and thus increase the utilization rate. Let us
also suppose that VM class m1 is available and that mcpu

1 = 1,mram
1 = 1 and mcost

1 = 0.18.
So, supposing a discount rate δ = 0.3 (30% percent), a promotion pr would be composed of a
pack prpack containing two VMs of class m1, a unique and randomly created token prtoken and a
reduced price prprice = (1− 0.3) ∗ 2 ∗ 0.18 = 0.252, instead of prprice = 0.36 (regular price).

The IM might manage several critical sections, each one corresponding to a different promo-
tion pri ∈ Pr. In fact, as each promotion can be given to only one client, the access to promotions
should be synchronized. So the token manager generates a token prtokeni every time an AM wants
to access a promotion pri (TOKEN REQUEST message). Once the promotion is available (in
an exclusive manner), the token manager responds back with a TOKEN ACQUIRED message
containing the generated token prtokeni . The AM can either release the token (TOKEN RELEASE
message) if the promotion is no longer useful for the concerned application, or transfer the token
(TOKEN TRANSFER message) if the AM wants to get the promotion.
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Private Knowledge. The private knowledge is composed of an infrastructure model and the run-
time context, which are used internally by the analysis and planning tasks.

The infrastructure model consists of a set of PMs P = {pmi | i ∈ [1, p]}. Each element
pmi ∈ P is a tuple (pmcpu

i , pmram
i , pmon

i ), where pmcpu
i and pmram

i corresponds to the CPU and
RAM capacities of PM pmi, and pmon

i ∈ {true, false} indicates whether the PM is powered on.

Runtime Context. The infrastructure runtime context is define as a tuple C = (P, V,A,H, Pr),
where:

• P is the set of the infrastructure PMs.

• V = {vmi | i ∈ [1, v]} represents the set of VMs currently executing in the infrastruc-
ture. Each element vmi ∈ V corresponds to a tuple (vmcpu

i , vmram
i , vmapp

i ), where vmcpu
i

and vmram
i corresponds respectively to the CPU and RAM capacities of vmi, and vmapp

i

corresponds to the application owner vmapp
i ∈ A of the VM.

• A = {ai | i ∈ [1, ψ] represents the set of guest applications. Each element ai ∈ A
corresponds to an unary tuple (arri ), where arri corresponds to the resource reduction rate
application ai agrees to be subject to. This information is useful when the infrastructure
is facing shortage situations such as energy brownouts or programmatic energy efficiency
policies. Hence, the IM can benefit of that information to choose the right parts of the
infrastructure to shutdown and meet while meeting the resource/energy constraints.

• Hp x v is an incidence matrix where

Hij =

{

1 if vmj is hosted by pmi

0 otherwise
(5.5)

• Pr is the set of available promotions.

Events and Actions

This section presents the possible events and actions for the IM according to the hierarchy illus-
trated in Figure 5.2. We present also the possible scenarios that maps events to actions. That is,
upon the detection of an event, which actions can be performed.

VMs Requested. It is an interloop event that happens when some AM performs a Request VMs
interloop action (cf. Section 5.2.3). This event comprises a set of requested VMs Rvm = {rvmi |
i ∈ [1, q]}, where each element rvmi corresponds to the number of requested VMs of class mi;
and a set of requested promotions Rpr ⊆ Pr. For every requested promotion pr ∈ Rpr, there
must be a corresponding token that is transferred (TOKEN TRANSFER) within the message.
So, it might happen that one of these sets is empty, i.e., if there is only request for promotions
(Rvm = ∅) or if there is no promotions in the request (Rpr = ∅). This event triggers the analysis
task that evaluates the placement of the requested VMs on the PMs so as to minimize the number of
PMs needed. The planning task takes the result of the analysis and translates it into a set of Switch
On PM, Create VM and Activate Promotion actions on the infrastructure. Finally, it notifies the
AM that requested the VMs by executing a Notify VMs Created interloop action (Figure 5.6 (a)).

VMs Released. It is also an interloop event that happens when some AM performs a Release
VMs interloop action (cf. Section 5.2.3). It contains a list of VMs that should be destroyed
Rvms ⊆ V . As there is no special analysis for this kind of event, the planning task is directly
triggered from the monitoring. The planning task translates the list of VMs to be released into a
set of Destroy VM actions on the infrastructure (Figure 5.6 (b)).
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Figure 5.6: Infrastructure Manager Events and Actions.

Energy Shortage. It is an endogenous event that comes from the infrastructure context data (e.g.
power meters or an announcement of energy unavailability). It comprises the power consumption
availability W which the IM must cope with or the number of PMs to shutdown P#. Following
this event, the IM triggers the analysis task to pack the running VMs in as less PMs as possible
as well as to determine which PMs should be switched off. The planning task takes the result of
the analysis task and translates it into a set of Notify Scale Down interloop actions to notify the
concerned AMs about the constraints on the infrastructure (Figure 5.6 (c)). Finally, the planning
task creates a Fire Event action, whose objective is to trigger the endogenous event Timeout Ex-
pired in a timely manner, that is, after a given timeout. This event contains the PMs to shutdown
(P off ⊆ P ). Once this event is detected, i.e. after the timeout has expired, the planning task takes
the list of PMs to shutdown and translate it into a set of Switch Off PM actions on the infrastructure
(Figure 5.6 (e)).

Low PM Utilization. It is also an infrastructure endogenous event which is detected anytime
a PM pmi has been under-utilized (when its utilization rate is lower than Umin) during a certain
period of time tl, as it is formalized in Equation 5.6. As it can be seen in Figure 5.6(d), the detection
of this event triggers directly the planning task that creates, for each concerned PM, a set of
actions Create Promotion (Change Public Knowledge), followed by a NotifyRentingFeesChanged
interloop action, which notifies the subscribed AMs that the public knowledge has been changed.

min(

∑v
j=1Hij ∗ vm

ram
j

pmram
i

,

∑v
j=1Hij ∗ vm

cpu
j

pmcpu
i

) < Umin holds during tl (5.6)

Likewise, Unused PM is an infrastructure endogenous event which is detected anytime a PM
has not hosted any VM during a certain period of time tu, as expressed by Equation 5.7. Upon the
detection of this event, the involved PMs (P off ⊆ P ) are directly switched off. That way, there
is no need for an analysis task. The IM directly triggers the planning task, which creates a set of
Switch Off PM actions on the infrastructure (Figure 5.6 (e)).
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min(

∑v
j=1Hij ∗ vm

ram
j

pmram
i

,

∑v
j=1Hij ∗ vm

cpu
j

pmcpu
i

) = 0 holds during tu (5.7)

Analysis

Upon the detection of an event in the monitoring task, the IM may trigger the analysis task or di-
rectly the planning or execution task, if no analysis is required. The analysis task aims at solving a
specific problem regarding the current state of the infrastructure by proposing a new infrastructure
configuration. In the IM, the analysis task consists of two different analyzers, which aim at solving
three different problems separately, according to the event detected in the monitoring task. All the
analyzers (VM Placement Analyzers and Energy Shortage Analyzers) model their problems as a
constraint satisfaction and optimization problems (CSOP) and relies on constraint programming
(CP) [RVBW06, RvBW07] to solve them.

VM Placement Analyzer. This analyzer is triggered upon the detection of a VMs Requested event
and aims at solving a VM placement problem, that is, its objective is to place the requested VMs
in the PMs so as to minimize the number of PMs needed. It is modeled in a similar way as in
[HLM+09] and in [VTM10], except for the fact that in those approaches, the existing VMs can be
migrated from one PM to another so as to optimize the infrastructure utilization, whereas in this
work we avoid migration operations.

One can make an analogy between this analyzer and a restaurant host service, whose role is
to place arriving clients in their respective tables while minimizing the number of regions within
the restaurant so as to reduce the number of waiters needed. The restaurant corresponds to the
infrastructure, the regions to PMs and tables to VMs. It may be considered annoying for clients
to be re-allocated another table during the meal in order to allow the restaurant to minimize the
number of regions. Likewise, it might be considered annoying for applications providers to have
their VMs migrated to another host PM if it impacts the QoS of applications. This analyzer is
modeled as follows. Let V ′ = {vmi | i ∈ [0, v′], v′ =

∑q
j=1 rvmj} be the set of new requested

VMs (Rvms), collapsed in a set of instantiated VMs. That is, Rvms corresponds to a set containing
the number of requested VMs of each class, whereas V ′ corresponds to the VMs themselves
instantiated.

First, we define the decision variable hij , where D(hij) ∈ {0, 1}.∀i ∈ [1, p] and ∀j ∈ [1, v′]
which indicates whether PM pmi hosts VM vmj .

Secondly, we define a set of constraints over variable hij . The constraints 5.8 and 5.9 state
that the CPU and RAM demands of VMs hosted in one PM should not exceed its available CPU
and RAM capacities. It is noteworthy that this analyzer aims at placing the new requested VMs in
the minimum number of PMs by meeting the resource constraints. However, it is not intended to
pack VMs on PMs by rearranging running VMs in other PMs.

pmcpu
i −

v
∑

j=1

Hij ∗ vm
cpu
j ≥

v′
∑

j=1

hij ∗ vm
cpu
j : ∀i ∈ [1, p] (5.8)

pmram
i −

v
∑

j=1

Hij ∗ vm
ram
j ≥

v′
∑

j=1

hij ∗ vm
ram
j : ∀i ∈ [1, p] (5.9)

(5.10)

Finally, the objective is to minimize the number of PMs necessary to host the VMs instances
(V ′), as it can be seen in Equation 5.11.

minimize(

p
∑

i=1

(ui)), where ui =

{

1,∃j ∈ [1, v′] | hij = 1
0, otherwise

(5.11)
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Energy Shortage Analyzer. This analyzer is triggered upon the detection of an Energy Shortage
event and aims at finding a set of PMs to be shutdown so as to cope with an energy shortage
situation. The solution should meet the constraints in terms of resource reduction rate stated by
each application and minimum number of PMs to shutdown, while minimizing the impact of
resource restriction imposed to applications.

First, we define the decision variable zi, where D(zi) ∈ {0, 1}.∀i ∈ [1, p] which indicates
whether or no a PM pmi ∈ P should be shutdown.

The second part consists of a set of constraints over the decision variables zi. Equations 5.12
and 5.13 are auxiliary expressions used to represent the current amount of resource allocated to a
given application ak and the amount of resources to be released after shutting off the PMs specified
in variables z. Equation 5.14 states that for each application ak ∈ A the amount of resources to
release (RRk) must not exceed the current amount of resources allocated to it (CRk) reduced
by the resource restriction rate (arrk ). Lastly, Equation 5.15 states that at least P# PMs must be
shutdown in order to cope with the energy shortage.

CRk =
v

∑

j=1

uj where uj =

{

vmcpu
j , ⇐⇒ vmapp

j = ak
0, otherwise

(5.12)

RRk =

v
∑

j=1

uj where uj =







vmcpu
j , ∃i ∈ [1, p](Hij = 1 ∧ zi = 1)∧

vmapp
j = ak

0, otherwise
(5.13)

CRk ∗ (1− arrk ) ≥ RRk.∀i ∈ [1, ψ] (5.14)
p

∑

i=1

zi ≥ P
# (5.15)

The objective is to minimize the resource restriction imposed to applications, as formalized in
Equation 5.16. In other words, the analyzer tries to choose the PMs to be shutdown by minimizing
the amount of resources to be released by applications (VMs).

minimize(

ψ
∑

i=1

RRi) (5.16)

Notice that in this model, we use the number of PMs to be shutdown (P#) as the input pa-
rameter. In order to be able to deal with other parameters (e.g. the power consumption reduction),
it is necessary to re-design the Equation 5.15 so as to accommodate the correct unit (e.g. power
consumption of each PM) instead of the number of PMs.

Planning

The planning task can be triggered after the execution of the analysis task or directly after the
detection of an event by the monitoring task. This task takes into consideration the infrastructure’s
current state and the desired state resulting from the monitoring or analysis task to create the IM
autonomic actions (see Section 5.2.2) in a meaningful fashion.

According to Figure 5.6, there are five different planners, each one to deal with a different
event. All of them take as input a set of variables and returns a plan (object of type Plan). The
object plan aggregates a set of activities, each one containing one or several other activities or
autonomic actions. These activities can be executed in sequence (object of type Sequence) or in
parallel (an object of type Fork).

Algorithm 1 presents the VM Placement Planner, that is, the planning triggered after VM
Placement Analyzer, which is used to deal with VMs Requested events. The algorithm takes as
input the requested promotions (Rpr), the current runtime context (C), new mapping VMs/PMs
(h), and the set of new VMs (V ′). The algorithm can be split into two parts: the creation of
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isolated VMs (lines 5-11) and the activation of promotions (lines 12-18), that is, the creation of
VMs within promotions.

Firstly, the algorithm creates the plan (line 1) and the activity objects for VMs and promotions
creation (lines 2 and 3). The first part of the algorithm iterates the vector of PMs P (lines 5-11)
and the vector of VMs V ′ (lines 6-10) in order to create CreateVM actions and add them to a
sequence of actions (seqP lan). In addition, it adds all the created VMs to a set of VMs (line 10)
that is going to be sent to the requesting AM as a notification. It then adds this sequence to a fork
activity (line 11) to be executed in a parallel way along with the other sequences.

The second part of the algorithm iterates over the set of requested promotions Rpr (lines 12-
18) and over the vector of VMs prvms that each promotion aggregates (lines 14-16). Similarly,
it creates a sequence of actions CreateVM (line 15) and adds each created VM to the list of
created VMs vms (line 16). An ActivatePromotion action is created and added to the sequence
(line 17), which in turn, is added to a fork activity (line 18) that is in charge of executing all the
promotion activations in parallel. Finally, the algorithm adds both fork activities to the plan (line
19 and 20) and creates a NotifyVMsCreated action, which is also added to the plan (line 21).

Algorithm 1: Virtual Machine Placement Planner.
Input: Rpr: requested promotion.
Input: C: the current runtime context.
Input: h: the new mapping VMs/PMs.
Input: V ′: the new set of VMs.
Result: plan : the resulting plan

1 plan← new instance of Plan
2 vmsCreationFork new instance of Fork
3 promoCreationFork new instance of Fork
4 vms← ∅ // iterates over the set of PMs

5 for i← 1 to p do
6 seqP lan← new instance of Sequence

// iterates over the set of incoming VMs

7 for j ← 1 to t do
// if vmj will be hosted by pmi

8 if hij = 1 then
// creates the VM in the physical infrastructure

9 add(CreateVM(vmj), seqP lan)
10 vms← vms

⋃

vmj

11 add(seqP lan, vmsCreationFork)

// iterates over the set of requested promotions

12 foreach pr ∈ Rpr do
13 seqP lan←new instance of Sequence
14 foreach vm ∈ prvms do

// creates each VM in the promotion

15 add(CreateVM(vm), seqP lan)
16 vms← vms

⋃

vm

17 add(ActivatePromotion(pr), seqP lan)
18 add(seqP lan, promoCreationFork)

19 add(vmsCreationFork, plan)
20 add(promoCreationFork, plan)
21 add(NotifyVMsCreated(vms), plan)

Algorithm 2 describes the VM Release Planner, which is triggered directly upon the detection
of a VMs Released event. It takes as input the set of VMs that have to be released Rvms and the
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current runtime context C. It starts by creating the plan and a fork activity objects (lines 1 and 2).
Then it iterates over Rvms while creating a set of DestroyVMs actions that should be executed in a
parallel way (line 4). Lastly, the algorithm adds to the plan the fork activity (line 5).

Algorithm 2: Virtual Machine Release Planner.
Input: Rvms: the VMs to be released
Input: C: the current runtime context.
Result: plan : the resulting plan

1 plan← new instance of Plan
2 releaseFork ← new instance of Fork
3 foreach vm ∈ Rvms do
4 add(DestroyVM(vm), releaseFork)

5 add(releaseFork, plan)

Algorithm 3 describes the Promotion Planner, which is triggered directly upon the detection
of Low PM Utilization events. The algorithm takes as input the set of PMs P pr in which the
promotions should be created, the runtime context C, the VM renting fees M and the promotion
reduction rate δ. The algorithm starts by creating a plan and an activity objects (lines 1 and 2). It
then finds the smallest VM class among the renting fees (line 4). We presume that several small
VMs costs more than a single big one with the same amount of resources and therefore can be
more rental to the infrastructure provider. The algorithm iterates over the set of PMs (lines 5-22)
and over the existing VMs (lines 10-13) in order to calculate the remaining amount of resource
in each PM. It then calculates the number of VMs to be created by dividing the available amount
of resources by the resource capacity of the smallest VM class (line 14). It instantiates the VMs
while adding them to a set of VMs (lines 15-16). It fills the promotion pack of VMs, which is
zero for all VM classes except for msmall (line 17). Then, it calculates the discount price, based
on the regular price of this pack of VMs and the discount rate of δ (line 19). The new promotion
is then created (lines 21), and the CreatePromotion actions are added to the fork activity to
be executed in parallel (line 22). Finally, the fork activity is added to the plan (line 23), along
with a NotifyRentingFeesChanged action (line 24), which publishes the promotions so the
subscribed AMs can be notified.

Algorithm 4 describes the PM Shutdown Planner, which is triggered directly upon the detec-
tion of an Unused PM or an Timeout Expired event. It takes as input the vector of PMs to be
switched off P off and the current runtime context (C). It starts by creating a plan and fork objects
(lines 1 and 2). It then iterates over the set of PMs while creating a set of SwitchOffPM actions
that are added to the fork activity to be executed in parallel (lines 3-4). Lastly, the fork activity is
added to the plan (line 5).

Algorithm 5 describes the Energy Shortage Planner, which is triggered after the Energy Short-
age Analyzer, which in turn, is triggered upon the detection of an Energy Shortage event. It takes
as input the set of PMs (P off ) to shutdown, the timeout after which they should be shutdown
(timeout), and the runtime context C. It starts by creating a plan and a fork objects (lines 1 and
2). It then iterates over the set of applicationsA while gathering the set of affected VMs belonging
to the applications in question (line 4). This set is used by the NotifyScaleDown action (line 5) to
inform applications which VMs should be released. Then it adds this set of notification actions
to the plan (line 6), creates an action that will fire the Timeout Expired containing the PMs to be
shutdown after the timeout (line 7) and add it to the plan. It is important to recall that the detection
of the Timeout Expired will trigger a Physical Machine Shutdown Planner, which is described in
Algorithm 4.
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Algorithm 3: Promotion Planner.
Input: P pr: the PMs in which promotions should be created.
Input: C: the current runtime context.
Input: M : infrastructure rental fees.
Input: δ: promotion reduction rate.
Result: plan : the resulting plan

1 plan← new instance of Plan
2 creationFork ← new instance of Fork
3 newPromos← ∅
4 small← j | j ∈ [1, q] ∧ ∀mi ∈M(max(mcpu

i ,mram
i ) ≥ max(mcpu

j ,mram
j ))

// iterates over the sub set of PM in which promotions should

be created

5 for i← 1 to ξ do
6 if pmi ∈ P

pr then
7 vms← ∅
8 availableCPU ← pmcpu

i

9 availableRAM ← pmram
i

// iterates over the set of VMs to calculate the

remaining capacity of pmi

10 for j ← 1 to v do
11 if Hij > 0 then
12 availableCPU ← availableCPU − vmcpu

j

13 availableCPU ← availableRAM − vmram
j

// calculates how many VMs of type small fits in pmi

14 nbVMs← min(availableCPU
m

cpu

small

, availableRAM
mram

small

)

// for each new VM instantiate an object VM

15 for k ← 1 to nbVMs do
16 vms← vms

⋃

new instance of VM of class msmall

// zero for all classes except for msmall

17 prpack ← {packj | ∀j ∈ [1, q]} where
packj = nbVMs if small = j, packj = 0 otherwise

18 prvms ← vms
19 prprice ← nbVMs ∗mcost

small ∗ (1− δ)
20 prtoken ← ∅
21 newPromos← newPromos

⋃

{(prpack, prvms, prprice, prtoken)}
22 add(CreatePromotion((prpack, prvms, prprice, prtoken), pmi), creationFork)

23 add(creationFork, plan)
24 add(NotifyRentingFeesChanged(newPromos), plan)

5.2.3 Application Manager

This section describes the AM by detailing each one of its autonomic tasks. First, we present the
knowledge model. Then we present the set of events and actions used by the AM. We describe
the analysis task by detailing the model of each analyzer used by the AM. Finally, we detail how
reconfigurations take place by describing the planning task and the algorithms that implement it.

Knowledge Model

Unlike the IM, the AM has only a private knowledge, which is composed of the application model
and the runtime context.
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Algorithm 4: Physical Machine Shutdown Planner.

Input: P off : PMs to be switched off.
Input: C: the current runtime context.
Result: plan : the resulting plan.

1 plan← new instance of Plan
2 switchOffFork ← new instance of Fork
3 foreach pm ∈ P off do
4 add(SwitchOffPM(pm), switchOffFork)

5 add(switchOffFork, plan)

Algorithm 5: Energy Shortage Planner.

Input: P off : PMs to be switched off.
Input: timeout: timeout to shutdown PMs.
Input: C: the current runtime context.
Result: plan : the resulting plan.

1 plan← new instance of Plan
2 notificationFork ← new instance of Fork
3 foreach app ∈ A do

// VMs affected by the PMs to be shutdown

4 vms← {vmj | vm
app
j = app ∧ ∀i ∈ [1, p](∀j ∈ [1, v](Hij = 1 ∧ pmi ∈ P

off ))}

5 add(NotifyScaleDown(app, vms), notificationFork)

6 add(notificationFork, plan)
7 add(FireEvent(TimeoutExpired(P off ), timeout), plan)

Application Model. The application is composed of a set of components C = {ci | i ∈ [1, n]}.
Each component ci corresponds to a tuple (cri , c

s
i ). c

r
i corresponds to set of references, i.e. func-

tional dependencies on other components services. csi is the set of services offered by the compo-
nent.

The application might have one or several architectural configurations K = {ki | i ∈ [1,m]}.
Each configuration ki ∈ K is composed of a tuple (kci , k

deg
i , kbindi ), where kci ⊆ C corresponds

to the components involved in the configuration, kdegi ∈ [0, 1] corresponds to the QoS degradation
due to architectural configuration ki. kbindi is a set of pairs {(r, s) | r ∈

⋃

i∈[1,n] c
r
i , s ∈

⋃

i∈[1,n] c
s
i}

that represents the set of binding between references and services.
For each component ci ∈ C, there is a function perfi : Λ x N

∗ x N
∗ 7→ N

∗ : ∀i ∈ [1, n]
that maps the workload, amount of CPU and RAM to the service response time, where Λ =
{λ1, . . . , λu} is a set of workload thresholds.

The application provider establishes a Service Level Agreement (SLA) with the application
consumer. It states that there are two levels of response time: (i) an ideal one (rtideal), under
which the service is not considered degraded; and (ii) a acceptable one rtacc under which the
service is considered degraded at the rate rtdeg ∈ [0, 1] and above which the service is considered
not available. The performance degradation is illustrated in Figure 5.7.

The SLA also states that for each configuration ki ∈ K there is also a degradation associated
kdegi ∈ [0, 1].

It is important to remember that the SLA management concerning the penalties, that is, how
those degradations are liked to penalties, is out of the scope of this thesis work. Instead, it is used
as indicators for goals and objectives in the analysis task (cf. Section 5.2.3).

Finally, variable budget represents the application expenditure rate, which corresponds to the
maximum amount of money the application is intended to spend in renting fees at each analysis
execution.
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Figure 5.7: Performance Degradation Levels.

Runtime Context. The application runtime context is defined as a tuple C = (k, λL, λU , Y, V, CPR),
where:

• k ∈ K is the current architectural configuration.

• λL, λU ∈ Λ is the current lower and upper workload thresholds, respectively.

• V = {vmi | i ∈ [1, v]} is the set of VMs allocated to the application.

• Yn x v is an incidence matrix where

Yij =

{

1 if ci is deployed on vmj

0 otherwise
(5.17)

• CPR = {cpri | i ∈ [1, t]} is the set of promotions currently used by the application, where
each element cpri is a tuple (cprpricei , cprpacki ) composed of a discount price cprpricei ∈ R

+

and a set of VMs cprpacki ∈ V .

Events and Actions

This section describes the AM events and actions definition based on the hierarchy presented in
Figure 5.2. In addition, we present also which actions can be performed followed by the detection
of each event.

Workload Increased/Decreased. These are endogenous events which happen whenever the cur-
rent average workload λavg (the average workload within the last tw time units) reaches either
the current workload lower threshold λL (Workload Decreased) or workload upper threshold λU
(Workload Increased), as it is formalized in Equation 5.18. The event contains the new workload
upper threshold (Equation 5.19) and the new workload lower threshold (Equation 5.20).

λavg < λL ∨ λavg ≥ λU holds during tw seconds (5.18)

λnextU =

{

{minλ ∈ Λ | λ > λU} if λavg > λU
λL if λavg < λL

(5.19)

λnextL =

{

λU if λavg > λU
{maxλ ∈ Λ | λ < λU} if λavg < λL

(5.20)

As shown in Figure 5.8 (a), before triggering the analysis task, the AM requests the tokens of
the available promotions. The analysis task determines which is the best architectural configura-
tion and the minimal amount of resources (VMs) for the new workload thresholds and releases the
tokens of promotions that are not useful for the application in question. It means that if there are
more promotions available than what the application actually needs, the AM releases the tokens
of the useless ones, if there are any. The planning task generates a different plan according to
the result produced by the analysis, i.e. whether there is a need for more VMs or not. At the
end, planning task produces a Request VMs interloop action along with a TOKEN TRANSFER
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(if that is the case), followed by a Schedule Handler action. The handler, in this case, contains all
the actions on the managed system that will be executed when the requested VMs are available
(Figure 5.8 (d)). Alternatively, the planning task generates a set of Stop/Start Component, Bind
Component, Deploy/Remove Component actions on the application (managed system), followed
or not by a Release VMs interloop action.

Renting Fees Changed. It is a Public Knowledge Changed event that happens whenever the
IM creates a new promotion. This kind of event triggers the analysis task that behaves similarly
to when a Workload Increased/Decreased event is detected. The only difference is that it only
requests VMs and never releases, as it can be seen in Figure 5.8 (b).

Scale Down. It is an interloop event (exogenous) whose objective is to notify the AM (from the
IM) that it should meet some resource constraints. Concretely, the event contains the list of VMs
V̆ that should be immediately released by the application. This event triggers an analysis task
to reallocate the components on a smaller number of VMs. To this end, it might be necessary
to change the application architectural configuration (e.g. to replace components that are more
resource consuming). As a result, a set of Stop Component,Remove Component, Deploy Com-
ponent, Bind Component and Start Component actions on the application, followed by a Release
VMs interloop action are executed (Figure 5.8 (c)).

Promotion Expired. It is an endogenous event that happens whenever an existing promotion
becomes expired. This kind of event triggers the analysis task that behaves similarly to when a
Workload Increased/Decreased event is detected, except for the fact that it may only release VMs
(for those that are no longer in promotion) and never request, as it is shown in Figure 5.8 (d).

VMs Created. It is an interloop event whose objective is to notify the AM (from the IM) that
the Requested VMs are ready for use. It directly triggers the execution task that does nothing
but executes the handler by passing as argument the future object (list of requested VMs) needed
to execute the handler actions (Figure 5.8 (e)). The executor deploys the components on the
created VMs, binds those components to others (existing or new ones) and starts the just-deployed
components. In addition, in the case of new promotions, the handler also contains a Fire Event
action so as to trigger a Promotion Expired event after the promotion has been expired.

It should be noticed that some issues concerning the synchronization mechanisms may arise
between the acquisition and release of the promotion tokens. For example, let us suppose that there
are two promotions available and that applications A and B managed to get only one promotion
each. If both applications wait until all the promotions get available the system gets deadlocked.
This is an instance of the classical problem of the dining philosophers [Hoa78]. A workaround
for this problem would be to consider all available promotions as a big critical section. Hence,
in order to have access to promotions (all of them), applications should wait a token acquisition,
but this could increase the waiting time for token acquisition (cf. Section 7.2.1). In a different
way, in order to avoid waiting a long time to acquire a token, the AM gets only those which are
currently available (i.e. not given to other AMs). Moreover, AMs could set a timeout, after which
it gives up of trying to get the promotion. All of these solutions are interesting to avoid deadlocks,
but they do not guarantee fairness and thus may cause starvation. Another workaround could be
the implementation of a controller whose role would be to distribute tokens according to a given
scheduling policy. In this thesis work, for simplicity reasons, we take into consideration only the
promotions that are currently available. The starvation issue is left as future work (cf. Section 8).

Analysis

Upon the detection of an event at the monitoring task, the AM might trigger the analysis task or
directly the execution task, in case of handler execution.
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Figure 5.8: Application Manager Events and Actions.

The AM analysis task consists of two different analyzers, which solves separately two prob-
lems according to the kind of event detected. Similarly to the IM analyzers, the AM analyzers
model the these problems as CSOPs and rely on CP to solve them.

Architecture and Capacity Analyzer. This analyzer is triggered upon the detection of a Workload
Increased/Decreased, Renting Fees Changed or Promotion Expired event. Its objectives are to
determine:

• the best possible architectural configuration (i.e. the components and bindings) so as to
minimize the architectural configuration degradation;

• the amount of resources (i.e. number of VMs of each class) necessary so as to minimize the
performance degradation and costs due to resource renting fees.
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The first part of the CP model for this analyzer is a set of decision variables, which are defined
along with the respective domains as follows:

• x, where D(x) ∈ [1,m]: variable indicating the architectural configuration.

• yij , where D(yij) ∈ [1, budget
mcost

j

].∀i ∈ [1, n] and ∀j ∈ [1, q]: variable indicating the number

of VMs of class mj allocated to component ci

• ui, where D(ui) ∈ {0, 1}.∀i ∈ [1, n]: variable indicating whether the component is used
by the architectural configuration x.

• pi, where D(pi) ∈ {0, 1}.∀i ∈ [1, ξ]: variable indicating whether the promotion pri is used.

The second part of this CP model consists of a set of constraints. Equation 5.22 states that the
application total cost due to resource rental cost cannot exceed its budget. Equation 5.21 defines
an expression variable that stores the discount obtained from promotions. Similarly, Equation 5.23
states a constraint that defines a cost expression variable by taking into consideration the discounts
(Equation 5.21) and the decision variable yij . The cost is normalized (cost ∈ [0, 1]) in function of
the application budget.

disc =

ξ
∑

i=1

(

q
∑

j=1

(mcost
j ∗ packij)− pr

price
i ) ∗ pi +

t
∑

i=1

(
∑

∀vm∈cprpack
i

vmcost)− cprpricei (5.21)

budget ≥
n

∑

i=1

q
∑

j=1

yij ∗m
cost
j − disc (5.22)

cost =

∑n
i=1

∑q
j=1 yij ∗m

cost
j − disc

budget
(5.23)

We assume that the AM cannot request and release VMs at the same time. Thus, the amount of
VMs for all classes can either increase or decrease, but never increase for one class and decrease
for another. In this regard, Equation 5.24 states that if there is at least one VM class, in which
the number of allocated VMs increases, it is implied that the number of allocated VMs stays the
same or increases, for all the VM classes. Conversely, Equation 5.25 states that if there is at least
one VM class, in which the number of allocated VMs decreases, it is implied that the number of
allocated VMs stays the same or decreases, for all the VM classes. It also implies that the number
of allocated VMs should be at least the number of VMs currently in promotion, for all the VM
classes. Finally, it implies also that no new promotions should be requested.

∃j ∈ [1, q].
∑n

i=1 yij >
∑v

i=1 ei =⇒
∀j ∈ [1, q].

∑n
i=1 yij ≥

∑v
i=1 ei

(5.24)

∃j ∈ [1, q].
∑n

i=1 yij <
∑v

i=1 ei =⇒
∀j ∈ [1, q].

∑n
i=1 yij ≤

∑v
i=1 ei∧

∀j ∈ [1, q].
∑n

i=1 yij ≥
∑v

i=1 epi ∧
∑ξ

i=1 pi = 0

(5.25)

where ei =

{

1 if vmcpu
i = mcpu

j ∧ vmram
i = mram

j

0 otherwise

epi =

{

1 if vmcpu
i = mcpu

j ∧ vmram
i = mram

j ∧ vmi ∈
⋃t
l=1 cpr

pack
l

0 otherwise

Equation 5.26 defines a constraint indicating that if a configuration is chosen, the correspond-
ing components should be “checked” as used (variable ui), and the expression variable degarch
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must be equal to the corresponding architectural degradation. With respect to the constraint ex-
pressed by Equation 5.27, it indicates that if a component is not used by the configuration, there is
no VMs allocated to it.

x = l =⇒ (ui = 1 ⇐⇒ ci ∈ k
c
l ) ∧ deg

arch = kdegl where l ∈ [1,m] (5.26)

ui = 0 =⇒

q
∑

j=1

yij = 0 : ∀i ∈ [1, n] (5.27)

Equation 5.28 expresses a constraint stating the impact of chosen promotions on the allocated
resources (yij). For each new promotion pl, if it is taken by the application, the number of VMs of
each class mj should be greater or equal to the current number of VMs of that class allocated to
the application (ej) plus the number of VMs (packlj) of the same class offered by the promotion
prl.

∀j ∈ [1, q](
n

∑

i=1

yij ≥ ej +

ξ
∑

l=1

pl ∗ packlj) where packlj ∈ pr
pack
l : ∀l ∈ [1, ξ] (5.28)

The constraints expressed by Equations 5.29 and 5.30 defines respectively the expressions for
CPU and RAM requirements for component ci.∀i ∈ [1, n].

cpui =

q
∑

j=1

yij ∗m
cpu
j : ∀i ∈ [1, n] (5.29)

rami =

q
∑

j=1

yij ∗m
ram
j : ∀i ∈ [1, n] (5.30)

The constraint expressed by Equation 5.31 defines the performance degradation expression
in function of previously defined SLA conditions. If the response time is above the accepted
threshold, the degradation is equal to 1 (i.e. 100% of degradation). If it is between the acceptable
and the ideal threshold, it is equal to rtdeg. Otherwise, it is equal to zero, i.e. there is no degradation
if the response time is inferior or equal to the ideal threshold.

degperf =







1 if
∑n

i=0 ui ∗ perfi(λ
next
U , cpui, rami) > rtacc

rtdeg if rtideal <
∑n

i=0 ui ∗ perfi(λU , cpui, rami) ≤ rt
acc

0 otherwise
(5.31)

The last part of the CP model is the objective function. It is important to recall that the objective
of this analyzer and consequently the CP model is to find the best architectural configuration while
minimizing costs due to resource renting fees. Hence, Equation 5.32 defines an objective function
that minimizes the performance and architectural degradations as well as the cost due to resource
renting fees.

minimize(αperf ∗ deg
perf + αarch ∗ deg

arch + αcost ∗ cost) (5.32)

Where αarch+αperf +αcost = 1 and αarch, αperf , αcost ∈ [0, 1]. αarch, αperf and αcost corre-
spond to weights for the architectural degradation, performance degradation and cost, respectively.
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Scale Down Analyzer. This analyzer is very similar to the Architecture and Capacity Analyzer,
since the objectives are the same. The only difference is that the available resources are more
constrained in the sense that some VMs may be suppressed. Let V̄ = V − V̆ , that is, the differ-
ence between the vector of running VMs and the vectors of VMs to be released. Therefore, the
constraint expressed in Equation 5.33 must hold.

∀j ∈ [1, q].
n

∑

i=1

yij ≤

|V̆ |
∑

i=1

ei, where ei =

{

1 if vmcpu
i = mcpu

j ∧ vmram
i = mram

j

0 otherwise
(5.33)

Planning

The planning task is triggered after the execution of the analysis task. It takes into consideration
the managed application’s current state (e.g. architectural configuration and mapping compo-
nents/VMs) and the desired state (e.g. a new architectural configuration and/or a new mapping
components/VMs) resulting from the analysis task, to create the AM autonomic actions (cf. Sec-
tion 5.2.3) in a meaningful way.

According to Figure 5.8, there are four possible planners, each one is supposed to deal with
a different event. However, as they have the same objectives and the same inputs and outputs,
they can be implemented as a single planner (hereby called Architecture and Capacity Planner).
In order to ease the understanding, we divide the description into two parts: (i) one describing
the plan when there is a need for new VMs; and (ii) when there is no need for new VMs. The
difference between the two cases is that in the first one it is necessary to encapsulate a set of
actions in a handler that is executed upon the arrival of a future object, whereas in the second case
the entire plan is executed without waiting for anything.

Algorithm 6 describes the planning steps when it is necessary to request VMs. The algorithm
starts by creating the plan object (line 1). Then it initializes the variables that are used to store the
VMs and promotions to be requested (lines 2 and 3). Then, it adds to the set of VMs to be requested
the number of required VMs for each VM class mj (lines 4-5). Similarly, it adds the desired
promotions to the set of promotions to be requested (6-8). Finally, it adds theRequestV Ms action
(line 9) and a ScheduleHandler action to the plan (line 10) . The action ScheduleHandler takes
as argument the handler to be registered and executed in the future. The procedure Handle defines
the handler that deals with the arrival of the requested VMs. It starts by defining the set of new
VMs V ′ and the new mapping components/VMs (lines 2-4). Then, it creates the objects for the
plan and the fork activities that are responsible for the execution in parallel of StopComponent,
StartComponent, RemoveComponent, DeployComponent, and BindComponents actions
(lines 5-10). These objects are then added to the plan (lines 12-16). A Fire Event is created to
trigger a Promotion Expired after the promotion duration promoDuration have reached its term.
Then it is added to the plan (line 17). Finally the plan is then executed (line 18).

It should be noticed that all these fork activities are executed in sequence, that is, all the actions
added to stopFork executes in parallel, but the actions added to removeFork starts the execution
only when all the actions of stopFork have terminated.

The code omitted in line 11 of the procedure Handle is split into six parts:

1. Stopping Components: the components that depend on the components that will be re-
moved are stopped;

2. Removing Components: the component instances that are no longer useful are removed
from their respective VMs;

3. Deploying Components: deployment of new component instances;

4. Binding Components: existing components’ references are bound to new components’
services, and new components’ references are bound to existing components;
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Algorithm 6: Architecture and Capacity Planner (when it is necessary to request new VMs).
Input: C: the current runtim context.
Input: kx: the new architectural configuration.
Input: λnextU : the new upper workload threshold.
Input: λnextL : the new lower workload threshold.
Input: yij : the mapping of components to number of VMs for each class.
Input: pi: the promotions to be requested.
Input: M : the VM rental fees.
Input: promoDuration : duration of promotions.
Result: Plan : the resulting plan

1 plan← new instance of Plan
2 Rvms ← ∅
3 Rpr ← ∅
4 for j ← 1 to q do
5 Rvms ← Rvms

⋃

{(
∑n

i=1 yij)−|{vmi | i ∈ [1, v], vmcpu
i = mcpu

j ∧vm
ram
i = mram

j }|}

6 for i← 1 to a do
7 if pi = 1 then
8 Rpr ← Rpr

⋃

pri

9 add(RequestV Ms(Rvms, Rpr), plan)
10 add(ScheduleHandler(handle), plan)

1: procedure HANDLE(vms)
2: v′ ← v + |vms|
3: V ′ ← V

⋃

vms
4: Y ′

ij ← Yij : ∀i ∈ [1, p],∀j ∈ [1, v′]
5: plan← new instance of Plan
6: stopFork ← new instance of Fork
7: removeFork ← new instance of Fork
8: deployFork ← new instance of Fork
9: bindFork ← new instance of Fork

10: startFork ← new instance of Fork
11: . . .
12: add(stopFork, plan)
13: add(removeFork, plan)
14: add(deployFork, plan)
15: add(bindFork, plan)
16: add(startFork, plan)
17: add(FireEvent(PromotionExpired(Rpr), promoDuration)
18: execute(plan)
19: end procedure

5. Starting Components: the components stopped in item 1 are re-started.

The first part of the handler execution is pseudo-coded in Algorithm 7. The objective is to
create autonomic actions to stop all component instances that depend on the components to be
removed. So, the algorithm iterates over the set of components by filtering the components that is
in the current architectural configuration k but not in the new one kx (lines 1-10), that is, compo-
nents that should be removed. For each component ci, the algorithm iterates over the set of offered
services csi (lines 3-10) by searching the references which each service s is bound to (lines 4-10).
Then, the algorithm searches the components (lines 5-10) containing each reference r (lines 6-10).
Then, it iterates over the set of VMs (lines 7-10) by picking up those hosting instances of compo-
nent cl (8-10), that is, the components that depend on the components to be removed. Finally, it
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creates a StopComponent action which is added to the fork activity stopFork.

Algorithm 7: Stopping Components in the Handler Execution.

// iterates over the set of components

1 for i← 1 to n do
// checks if component ci belongs to the current

configuration k but not to the new one kx
2 if ci 6∈ kcx ∧ ci ∈ k

c then
// iterates over the set of services of component

offered by component ci
3 foreach s ∈ csi do

// iterates over the set of references which the

service s is bound to

4 foreach r ∈ {r | (r, s) ∈ kbind} do
// iterates again over the set of components

5 for l← 1 to n do
// filters the components having the reference r

and belonging to the new architectural

configuration kx
6 if r ∈ crl ∧ cl ∈ k

c
x then

// iterates over the set of VMs

7 for j ← 1 to v do
// Picks up the VMs hosting an instance of

component cl
8 if Y ′

lj = 1 then
9 add(StopComponent(cl, vmj),

10 stopFork)

The second part of the handler execution aims to create autonomic actions to remove the com-
ponents that are no longer useful from their respective VMs. As it is detailed in Algorithm 8, it
iterates over the set of components and VM classes (lines 1-9). It calculates the current number of
VMs of class mj allocated to the concerned component ci (nbVMs) (line 3). Based on the differ-
ence between current and future number of VMs of classmj allocated to the concerned component
ci (nbVMs−yij), the algorithm iterates over the set of VMs (V , lines 5-8) by searching VMs of a
given class mj that host the concerned component ci (line 6). Once a VM is found, the algorithm
creates a RemoveComponent action (line 8) to remove the instance of component ci from the
VM.

The third part of the handler execution is detailed in Algorithm 9. It aims at creating autonomic
actions to deploy components in VMs, according to the analysis task result. It also iterates over
the sets of components and VM classes, while searching for components whose number of VMs
of a given class mj allocated to it should be increased (lines 2-9). Hence, for each new VM to
be assigned to a component ci in question (yij − nbVMs, lines 5-9), the algorithm iterates over
the new set of VMs (V ′, lines 5-8) by searching VMs of a given class mj which are not assigned
to any component (line 7). Once a VM is found, the algorithm creates the DeployComponent
action and add it to the fork activity deployFork (line 9).

The fourth part of the handler execution (Algorithm 10) aims at creating the autonomic ac-
tions for binding the previously deployed components. From lines 1 to 12 the algorithm creates
BindComponents actions from existing components to the new ones. It iterates over the set of
services csi of each component ci that belongs to the new configuration kx but not to the current
one k (lines 1-10), then over the set of references which the service s is bound to (4-10). It iden-
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Algorithm 8: Removing Components in the Handler Execution.

// iterates over the set of components

1 for i← 1 to n do
// iterates over the set of VM classes

2 for j ← 1 to q do
// calculates the number of VMs of class mj currently

allocated to component ci
3 nbV ms←

∑v
k=1 ek, where

ek =

{

1 if Yik = 1 ∧ vmcpu
k = mcpu

j ∧ vmram
k = mram

j

0 otherwise
// iterates as many times as the difference between

nbVMs and future number of VMs of class mj (yij)
allocated to ci

4 for k ← 1 to (nbV ms− yij) do
// iterates over the set of VMs

5 for l← 1 to v do
// Picks up the first VM of class mj allocated to

ci
6 if Yil = 1 ∧ vmcpu

l = mcpu
j ∧ vmram

l = mram
j then

7 Y ′
il ← 0

8 add(RemoveComponent(ci, vml), removeFork)

Algorithm 9: Deploying Components in the Handler Execution.

1 newInstances← ∅
// iterates over the set of components

2 for i← 1 to n do
// iterates over the set of VM classes

3 for j ← 1 to q do
// calculates the number of VMs of class mj currently

allocated to component ci
4 nbV ms←

∑v
k=1 ek, where

ek =

{

1 if Yik = 1 ∧ vmcpu
k = mcpu

j ∧ vmram
k = mram

j

0 otherwise
// iterates as many times as the difference between

future number of VMs of class mj (yij) allocated to ci
and nbVMs

5 for k ← 1 to (yij − nbVMs) do
// iterates over the set of VMs

6 for l← 1 to v′ do
// Picks up the first VM of class mj which is not

used

7 if Y ′
gl = 0.∀g ∈ [1, n] ∧ vmcpu

l = mcpu
j ∧ vmram

l = mram
j then

8 Y ′
il ← 1

9 add(DeployComponent(ci, vml), deployFork)
10 newInstances← newInstances

⋃

{vml}



96
Chapter 5. Synchronization and Coordination of Multiple Autonomic Managers to Improve

Energy Efficiency

tifies which components the reference r belongs to (lines 5-10) as well the VMs in which they
are deployed (line 7-10). Finally, it creates the BindComponents actions and adds it to the fork
activity bindFork (line 9).

From lines 11-18, the algorithm creates BindComponents actions from the new component
instances to other components on which they depend. It iterates over the set of components (lines
11-18) belonging to the new architectural configuration kx, then over the set of new VMs (lines
13-18). The algorithm iterates over the set of VMs by filtering the VMs which are also presented
in set newInstances (lines 14-18) (created in Algorithm 9). Then, for each component ci, it
iterates over the set of references (lines 15-18) while searching which services are bound to each
references r (lines 16-18). Finally, for each reference, the algorithm creates BindComponents
actions and adds them to the fork activity bindFork.

Algorithm 11 aims to create autonomic actions to start the components that were stopped in the
beginning of the handler execution (Algorithm 7). That way, the algorithm proceeds identically
to Algorithm 7, except line 9, in which the StopComponent action creation is replaced by a
StartComponent action.

Algorithm 12 describes the planning steps when it is not needful to request VMs. The content
of line 9 is identical to the content of the handler execution. The algorithm starts by instantiating
the objects that are responsible for executing actions in parallel (Fork) or in sequence (Sequence)
(lines 1-6). It then starts a variable which stores the VMs to be released (line 7) and defines a
variable which corresponds to the temporary mapping components/VMs (line 8). This variable is
used similarly to Algorithm 6, i.e. to reestablish a new mapping components/VMs. The difference
in this case is that there might be VMs in V that are no longer useful. So, the algorithm iterates
over the VMs in order to identify the VMs to be released (lines 10-12). Finally, the algorithm
arranges the set of actions in a sequence way, that is, first a set of StopComponent actions
are executed in parallel (line 13), then also in parallel a set of RemoveComponent actions are
executed (line 14), followed by the parallel execution of a set of DeployComponent actions (line
15). This followed by a set ofBindComponents actions, which are executed in parallel (line 16).
StartComponent actions are then executed in parallel (line 17), followed by a ReleaseVMs
action (line 18).

5.3 Summary

This chapter presented our approach for coordination and synchronization of multiple autonomic
managers with the purpose to improve the Quality of Service (QoS) at the application level and
the energy efficiency at the infrastructure level.

Firstly, we presented an autonomic model for multiple autonomic managers, which basically
consists of a coordination and a synchronization protocols. The coordination protocol is based on
a message oriented middleware and promotes asynchronous one-to-one or one-to-many interloop
communication. The interaction between two autonomic managers is performed by means of
actions and events. To this end, we define a general hierarchy of autonomic events and actions that
was then extended with cloud-specific actions and events. The synchronization protocol is based
on a token protocol and it is used to guarantee exclusive access to critical sections in the public
knowledge.

Secondly, we applied the autonomic model to the context of cloud computing. More precisely
we defined two kinds of autonomic managers: the infrastructure and the application manager. The
infrastructure manager aims at responding the application manager requests by placing the new
incoming virtual machines so as to optimize the infrastructure utilization rate, and consequently
the energy efficiency. The application manager aims to improve the managed application QoS
while reducing costs due to resource renting fees. For each autonomic manager, we provide details
on their knowledge model, events and actions. The analysis tasks of both managers are identified
as Constraint Satisfaction and Optimization Problems and Constraint Programming [RVBW06,
RvBW07] is used to model and solve those problems.
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Algorithm 10: Binding Components in the Handler Execution.

// iterates over the set of components

1 for i← 1 to n do
// check if component ci belongs to the new configuration

but not the current one

2 if ci ∈ kcx ∧ ci 6∈ k
c then

// iterates of the set of services offered by ci
3 foreach s ∈ csi do

// iterates over the set references to whom service s
is bound

4 foreach r ∈ {r|(r, s) ∈ kbindx } do
// iterates again over the set of components

5 for l← 1 to n do
// checks if the reference r belongs to

component cl
6 if r ∈ crl then

// iterates over the set of VMs

7 for j ← 1 to v′ do
// checks if vmj hosts an instance of

component cl
8 if Y ′

lj = 1 then
9 add(BindComponents(cl, vmj , r1, s1),

10 bindFork)

// iterates over the set of components

11 for i← 1 to n do
// checks if component ci belongs to the new configuration

12 if ci ∈ kcx then
// iterates over the set of VMs

13 for j ← 1 to v′ do
// checks if vmj hosts an instance of component ci and

if it is a new instance

14 if Y ′
ij = 1 ∧ vmj ∈ newInstances then
// iterates over the set of references of

component ci
15 foreach r ∈ cri do

// iterates over the set of services which

reference r is bound to

16 foreach s ∈ {s | (r, s) ∈ kbindx } do
17 add(BindComponents(ci, vmj , r, s),
18 bindFork)

Finally, in order to promote a synergy between applications and infrastructure managers, we
define a public knowledge at the infrastructure level. It consists of a variable renting fees, in which
the objective is to improve the infrastructure utilization rate. In other words, the infrastructure
manager can decrease the renting fees of certain virtual machines by creating promotions. That
way, application managers may take these promotions into account to perform their analysis and
benefit of them. As a result, this may impact positively on the infrastructure, since the promotions
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Algorithm 11: Starting Components in the Handler Execution.

1 for i← 1 to n do
2 if ci 6∈ kcx ∧ ci ∈ k

c then
3 foreach s ∈ csi do
4 foreach r ∈ {r | (r, s) ∈ kbind} do
5 for l← 1 to n do
6 if r ∈ crl ∧ cl ∈ k

c
x then

7 for j ← 1 to v do
8 if Y ′

lj = 1 then
9 add(StartComponent(cl, vmj),

10 startFork)

Algorithm 12: Architecture and Capacity Planner (when it is not necessary to request VMs).
Input: C: the current runtime context
Input: kx: the new architectural configuration.
Input: yij : the mapping of components to number of VMs for each class.
Input: M : the VM rental fees.
Output: plan : the resulting plan.

1 plan← new instance of Plan
2 stopFork ← new instance of Fork
3 removeFork ← new instance of Fork
4 deployFork ← new instance of Fork
5 bindFork ← new instance of Fork
6 startFork ← new instance of Fork
7 Rvms ← ∅
8 Y ′

ij ← Yij : ∀i ∈ [1, p],∀j ∈ [1, v]

9 . . .
10 for j ← 1 to v do
11 if

∑n
i=1 Y

′
ij = 0 then

12 Rvms ← Rvms
⋃

{vmj}

13 add(stopFork, plan)
14 add(removeFork, plan)
15 add(deployFork, plan)
16 add(bindFork, plan)
17 add(startFork, plan)
18 add(ReleaseVMs(Rvms), plan)

are created intentionally to stimulate applications to occupy a given free slot of resource and
therefore improve the infrastructure utilization rate.

In addition, the coordination protocol also provides event/action based interfaces (namely in-
terloop actions and events) that can be used by autonomic managers to explicitly communicate.
They can be used to inform other managers about a situation that may impact them. For exam-
ple, every time the infrastructure faces an energy shortage situation, its IM uses the coordination
protocol to warn the affected AMs that part of the infrastructure will be shutdown within a given
time. Hence, AMs have the chance to adapt the concerned applications (e.g. through architectural
elasticity) before the shortage takes place. Therefore, this kind of synergy contributes to mitigate
the impacts of an energy shortage (at the application level) on the affected applications.
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6
Research Prototype

This chapter aims at describing the prototype resulting from the concepts and models proposed
in Chapter 5. The prototype is composed of two distributed Java sub-systems, namely Applica-
tion Manager (AM) and Infrastructure Manager (IM). Firstly, we present the common autonomic
framework, upon which both sub-systems rely. Secondly, for each sub-system, we provide details
on: (i) the managed application’s meta-model, (ii) the technical aspects of the managed applica-
tion; and (iii) the autonomic tasks (monitoring, analysis, planning, execution and knowledge).

Finally, we depict the autonomic managers lifetime by showing how objects within the same
and from different autonomic managers interact to each other over the time.
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6.1 Common Autonomic Framework

Based on the autonomic model presented in Chapter 5, we implemented a common autonomic
framework which is reused for both types of autonomic managers: AM and IM.

Most of the meta-models presented in this Chapter follows the Unified Modeling Language
(UML)1 standards, which is maintained by the Object Management Group (OMG) 2. Before start-
ing the description, it is important to precise the semantics of the arrows used in the meta-model
diagrams presented in this Chapter, as it is depicted in Figure 6.1.

1http://www.uml.org/
2http://www.omg.org
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Assynchronous Message

Figure 6.1: Meta-model Arrows Semantics.

As it can be seen in Figure 6.2, an autonomic manager basically consists in the execution of
a sequence of autonomic tasks (generalized by the abstract class AutonomicTask) [KC03], which
are triggered upon the detection of a given event and taking into consideration the current values
of the knowledge. The knowledge can be either private (abstract class PrivateKnowledge) or
public (abstract class PublicKnowledge). A knowledge is private if the autonomic manager that
maintains the knowledge is the only one that has the rights to access the values stored in it. The
public knowledge, on the contrary, can also be accessed from other managers. Besides, the public
knowledge also contains a list of critical objects (abstract class CriticalSection), which, due to
concurrency problems, should be accessed/modified upon the acquisition of a token. Therefore,
critical objects aggregates a semaphore to control the distribution of tokens.

Interlocutors (class Interlocutor) are other autonomic managers to which the autonomic man-
ager communicates and are maintained by the private knowledge. The public knowledge also
maintain the list of interlocutors that are subscribed to it.

Regarding the events, they are implemented by the abstract class AutonomicEvent and fol-
low the hierarchy proposed on the model (cf. Section 5.1.1). That is, the class AutonomicEvent
represents the most generic event and it is specialized by classes EndogenousEvent and Exogenou-
sEvent, which, in turn, is specialized by classes InterloopEvent and PublicKnowledgeChanged.

The class AutonomicManager is a realization of the interface AutonomicEventListener so it
may subscribe to listen for the events detected by the monitor (abstract class Monitor). The mon-
itor is composed of two objects: one for managing the endogenous events, i.e. the events created
based on the monitoring data on the managed system (abstract class ManagedSystemSensorMan-
ager), and another for managing the exogenous events (abstract class InterloopSensorManager),
i.e. the events resulting from interloop actions. Basically, classes InterloopSensorManager and
ManagedSystemSensorManager are in charge of monitoring data and managing more fine-grained
events from different sources (managed system and other autonomic managers) and generates
events that are used by Monitor to notify the listeners subscribed to it, including the autonomic
manager.

The analysis task is performed by an analyzer (abstract class Analyzer ). It may take into
account the knowledge and some other information contained in the emitted event and produces
a result that is stored in an object of class AnalysisResult. The planning task is performed by a
planner (abstract class Planner). It may take also into account some information presented in the
knowledge as well as the result from the analysis task, and produces a plan (abstract class Plan)
as result.

At last, the execution task is performed by an executor (class Executor) that takes the plan
generated by the planner and executes it. To this end, the executor relies on the Java Executor
Framework 3, since it provides an efficient way (based on a pool of threads) to address performance
issues due to the use of big number of threads in Java applications.

Figure 6.3 shows the implementation of a plan. It follows the composite design pattern
[GHJV95], which means that a plan may be composed of a single (ElementaryTask) or a com-
posite (SequenceTask and ForkTask) tasks. A composite task may contain one or several plans,
each one implemented as a single or a composite task, and so forth. A composed task can be

3http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executor.html

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executor.html
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Figure 6.2: Common Autonomic Framework Meta-model.

executed in sequence (SequenceTask) or in parallel (ForkTask), which waits the termination of all
the tasks inside it to terminate its execution.

The resulting plan is a set of autonomic actions (abstract class AutonomicAction extended from
abstract class ElementaryTask), organized in the form of dependence graph, in which a task should
not start its execution while all the tasks upon which it depends have not terminated.

Similar to the events hierarchy, the actions hierarchy follows the autonomic model proposed in
Section 5.1.1. The class AutonomicAction is extended by classes InterloopAction, ActionOnMan-
agedSystem and IntraloopAction. The class InterloopAction performs actions on other autonomic
managers by delegating this to the abstract class InterloopActuatorManager. The class Autonomic-
Manager also relies on InterloopActuatorManager to access others autonomic managers’ public
knowledge. The class ActionOnManagedSystem performs actions on the managed system and
delegates them to the abstract class ManagedSystemActuatorManager. Finally, actions performed
inside the autonomic manager (intraloop actions) are performed by classes ChangePublicKnowl-
edge,FireEvent and ScheduleHandler, which are both specialization of class IntraloopAction. In
class FireEvent, the attribute timeout indicates a time interval after which a given event should be
triggered.

It is important to recall that the proposed approach is conceptually designed on a message-
oriented fashion. That is, autonomic managers communicate to each other via asynchronous mes-
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Figure 6.3: The Plan Meta-model of the Common Autonomic Framework Meta-model.

sages via specific queues or broadcasting topics. Generally, the message management task is done
by a message broker (e.g. ActiveMQ 4), in which queues and topics can be created, and which
every message should pass through. For sake of simplicity, in this prototype implementation,
autonomic managers communicate directly to their corresponding peers via HTTP asynchronous
messages without passing through a intermediate broker. Regarding the public knowledge, the
access is also performed directly via HTTP synchronous messages. A broker-oriented implemen-
tation based on Java Message Service (JMS)5 is an ongoing work (cf. Chapter 8).

6.2 Application Manager

This section details the implementation of the AM MAPE-K control loop. First, the application
meta-model is presented in order to give a concrete idea about how the managed application is
modeled within the AM. Then, we discuss the technical details about the managed system (the
application). Finally, the implementation of each autonomic task (monitor, analysis, planning,
execution and knowledge) is detailed by means of class diagrams.

4http://activemq.apache.org
5http://www.oracle.com/technetwork/java/docs-136352.html

http://activemq.apache.org
http://www.oracle.com/technetwork/java/docs-136352.html
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6.2.1 Application Meta-model

Figure 6.4 presents the application meta-model of the prototype implementation. An application
(class Application) is composed of a set of components (class Component). Each component
consists of a set of services (class Service) and references (class Reference). A service is a set
of functionalities provided by the component, whereas a reference corresponds to a functional
dependency on a service provided by another component. Services and References are connected
by bindings (class Binding). An application may have several configurations (class Configuration),
which are defined by a sub-set of components and the way their services and references are bound.
Configurations also maintain a list of promoted services, that is, the services that are externally
accessed from the outside. According to the architectural configuration, the application may be
degraded (attribute degradation) in a functional or nonfunctional way. The degradation degree is
determined at design time based on the impacts of such an architectural change.

For scalability purposes, a component can be replicated into several component instances
(class ComponentInstance). That way, requests are dispatched to the different instances through
a component frontend (class ComponentFrontend), which is a specialized component instance.
Each component instance is hosted by one virtual machine (class VirtualMachine), which has its
computing capacity and price attributes (cpu, ram and price) defined by a virtual machine class
(class VirtualMachineClass). The renting fees (class RentingFees) is a piece of information main-
tained by the IM’s public knowledge. It consists of the set of virtual machine classes offered by
the IM. The promotions are implemented by class Promotion and represent a group of VMs that
are offered together for a lower price. It is also a piece of information kept by the IM public
knowledge. However, as they are part of a critical section, it is required to acquire a token every
time the AM needs to request a promotion. A promotion is defined by a price (attribute price)
and an offer, which corresponds to a map of virtual machine classes, and the respective number
of virtual machines offered. Finally, each component may have several performance requirements
(class PerformanceRequirement), defined in terms of cores of CPU and MB of RAM (attributes
cpu and ram), necessary for dealing with a given number of simultaneous requests within a given
period of time (attributes workload and responseTime).

6.2.2 Managed System Technical Details

As previously mentioned, we assume that managed applications are developed in a component-
based manner so that it is possible to perform internal reconfiguration by seamlessly replacing,
adding or removing components. To this end, we rely on Service Component Architecture (SCA)
as reference model to conceive applications. The prototype utilizes FraSCAti [SMF+09], an SCA
runtime implementation based on the Fractal component model [BCL+04].

So, every VM provided by the IM is created containing a FraSCAti runtime started with a
remote API, as shown in Figure 6.5. This API allows the remote deployment, introspection, and
reconfiguration of SCA components via a RESTful interface. The deployment consists in upload-
ing a contribution archive that contains the SCA component description file with the respective
implementation (e.g. a jar file). The introspection and reconfiguration APIs relies on FraSCAti
Script, a Domain Specific Language (DSL) for introspection and reconfiguration of SCA com-
ponents. This DSL was built on top of FScript [DLLC08], a reconfiguration DSL for Fractal
components.

Apart from a FraSCAti runtime, the VMs are delivered with pre-installed load balancer called
Nginx 6. This tool was chosen for many reasons such as the possibility to dynamically reconfigure
it (e.g. changing its configurations without having to stop it) and low CPU and memory overheads.
Ngnix provides a web page where the AM can retrieve basic statistics on the load balancing (e.g.
number of current accesses, amount of data processed, etc).

Each component instance is deployed in a different VM, and one VM is arbitrarily chosen to
play also the role of the component frontend, i.e. the load balancer. The component frontend is

6http://nginx.org/en/

http://nginx.org/en/
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Figure 6.4: Application Meta-model.

wrapped by a FraSCAti component which is used to control the frontend (add/remove instances)
through the FraSCAti Remote API. Hence, the AM is able to dynamically and remotely add or
remove instances while performing scaling up/down of the application without needing to stop the
load balancer.

6.2.3 Autonomic Tasks

As it can be seen in Figure 6.6, the AM (class ApplicationManager) is implemented as an exten-
sion of the class AutonomicManager and implements the method init() to retrieve the renting fees
and available promotions from the IM’s public knowledge, and to perform the managed application
initial deployment. The access to the public knowledge is performed by class HttpClientCompo-
nent, which relies on Restlet 7, a RESTful Java library that includes an HTTP Server. As HTTP
and RESTful are respectively standard protocol and architectural style, the technical details of this
part of the prototype implementation is not described in this document.

The initial deployment is a classical scaling up case from zero amount of resources to the min-
imum amount of resources needed to run the application (i.e. the first workload upper threshold,
cf. Section 5.2.3). In order to know which is the minimum amount of resources necessary to run
the application, the AM observes the resource requirements (class PerformanceRequirement in
Figure 6.4) for lowest workload and perform a complete MAPE-K loop based on that.

The knowledge is implemented by the class ApplicationManagerKnowledge and aggregates
the managed application, the current configuration, the available promotions and the ones that
are currently being used, the renting fees, and a queue of scheduled handlers that are ready to
be executed. In addition, it maintains the current workload threshold (attribute currentWorkload-
Threshold), which is used to know in which range of workload is the managed application.

7http://www.restlet.org

http://www.restlet.org
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Figure 6.5: Managed Application Technical Details.

Monitoring

The AM monitoring task is performed by a monitor, which is implemented by the class Monitor
(Figure 6.7) that is provided by the common autonomic framework. It aggregates two objects: one
of class WildCATManager and another of class HttpServerComponent. The former is an extension
of ManagedSystemSensorManager which is equipped with a complex event processing tool to be
able to monitor data from the managed system and to generate endogenous events. The latter
extends InterloopSensorManager by creating an HTTP server to listen for messages sent by the
IM and convert it into interloop or public knowledge changed events.

The AM’s autonomic events are implemented as Java classes (WorkloadIncreased, Workload-
Decreased, Promotion Expired, RentingFeesChanged, VirtualMachinesCreated and ScaleDown).
Classes WorkloadIncreased and WorkloadDecreased contains the current managed application’s
workload (attribute workload). The class PromotionExpired contains a list of expired promotions.
The class RentingFessChanged aggregates the renting fees and promotions, whereas the class
VirtualMachinesCreated aggregates the list of VMs and promotions created. Finally, the class
ScaleDown aggregates a list of VMs that should be released and the timeout given by the IM to
the reconfiguration take effect.

As stated before, an application has one or several promoted services that are offered by some
components. That way, there is one frontend sensor (class FrontendSensor) per component that of-
fers a promoted services. More precisely, every component frontend (class ComponentFrontend)
has a sensor, and those whose components offer promoted services are added to the WildCATMan-
ager.

For complex event processing, we rely on WildCAT [DL05], a Java framework for context-
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Figure 6.6: Application Manager Autonomic Meta-model.

aware applications that allows the deployment of sensors for monitoring large applications. The
application is defined as a hierarchy of resources (cf. Figure 6.8), where circles represent resources
and squares represent resources’ attributes. The hierarchy root (self:// ) contains the resource
self://application (representing the application itself), which contains the resource self://applicati
on/frontends. The latter may contain several attributes self://application/frontends#frontend_*,
each one representing the component frontend subscribed to the monitor. These attributes are
used to store the monitoring data from the respective component frontends.

Attributes can be of three types: basic attributes, which hold static values; active attributes,
which are fed by sensors deployed on the target application; and synthetic attributes, resulting from
expressions on other attributes. That way, each attribute self://application/frontends#frontend_*
(Figure 6.8) is implemented as a sensor (represented by class FrontendSensor), which is in charge
of retrieving the statistical values from the running component frontend and updating the resource
hierarchy with the just-retrieved values. Any Plain-Old-Java-Object (POJO) is allowed to be stored
in the hierarchy. At last, a poller is created and attached to the sensor in order to retrieve the data
in a periodic manner.

The WildCAT event model consists of two types of events: WHierarchyEvents, which report
events related to the hierarchy (e.g. creation of an attribute or a resource in the hierarchy); and
WAttributeEvents, which are emitted every time an attribute value is changed.

In order to process events, WildCAT relies on Esper 8, an engine for complex event process-
ing. In Esper, one can define queries on events by using Event Query Language (EQL), a language
whose syntax is similar to Structured Query Language (SQL), which is used for querying database
tables. Listing 6.1 defines a query in EQL to detect the events WorkloadIncreased and Workload-
Decreased on the managed system (application).

8http://esper.codehaus.org/

http://esper.codehaus.org/
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Figure 6.7: Application Manager Monitoring Task Meta-model.
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SELECT avg ( c u r r e n t . va lue ( ’ work load ’ ) ) as avgWorkload
FROM W A t t r i b u t e E v e n t ( s o u r c e = ’@PATH_TO_ATTRIBUTE@ ’ ) .

win : t i m e _ b a t c h ( "@TIME_BATCH@ min " ) AS c u r r e n t
HAVING avg ( c u r r e n t . va lue ( ’ work load ’ ) )

<= @LOWER_WORKLOAD_THRESHOLD@
OR avg ( c u r r e n t . va lue ( ’ work load ’ ) )

> @UPPER_WORKLOAD_THRESHOLD@

Listing 6.1: Workload Increased/Decreased EQL Query.

Basically, it selects the average of field workload from attribute ‘@PATH_TO_ATTRIBUTE@’
within a time window of ‘@TIME_BATCH’ minutes in which the average is less or equal a given
‘@LOWER_WORKLOAD_THRESHOLD@’ or greater than a given ‘ @UPPER_WORKLOAD
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_THRESHOLD@’. In order words, it retrieves the average workload when the current average
workload exceeds an lower/upper bound. The query is registered along with an action that is
executed every time a record is retrieved. Lastly, the action creates the endogenous (Workload
Increased or Workload Decreased) according to the exceeded boundary.

Analysis

The analysis task is performed by an analyzer, which may behave differently according to the de-
tected event. In the AM, there are two possible scenarios: a workload variation and scale down sce-
nario. The first scenario occurs whenever the endogenous events Workload Increased/Decreased
or Promotion Expired are detected. In this case, the AM launches the analysis implemented by the
class ArchitectureCapacityAnalyzer, as depicted in Figure 6.9. This analysis is modeled as a con-
straint satisfaction and optimization problem (CSOP) [RVBW06], as described in Section 5.2.3.
To solve this problem, class ArchitectureCapacityConstraintSolver takes as input the current work-
load, the renting fees, the application definition, the current configuration, the current promotions
allocated to the application, and returns as result the most suitable architectural configuration and
the resource allocation to each component of this configuration. The class ArchitectureCapacity-
AnalysisResult aggregates the information resulting from the solver.

The second scenario happens when the AM detects an event Scale Down. It is similar to the
first scenario, except for the fact that the IM imposes a constraint on the resources. Hence, the
application can only shrink and never stretch. The AM launches the analyzer which is imple-
mented by class ScaleDownAnalyzer. It is also modeled as a CSOP problem that is solved by
class ScaleDownSolver. Similarly, it takes as input the same arguments as in ArchitectureCapac-
ityConstraintSolver as well as the VMs that should be released and also returns the most suitable
architectural configuration and the resource allocation to each component of this configuration.
The class ScaleDownAnalysisResult gathers the information resulting from the solver.

It is noteworthy that both solvers (classes ArchitectureCapacityConstraintSolver and Scale-
DownConstraintSolver) rely on Choco [Tea10], a constraint programming library implemented in
Java.

Planning

Figure 6.10 presents the AM planning task meta-model. The planning task is performed by single
planner implementation (class ArchitectureCapacityPlanner) regardless the preceding analyzer.
This implementation corresponds to the Architecture and Capacity Planner, which is described in
Algorithms 6, 7, 8, 9, 10 and 11. The result of both of them is an object of class Plan that contains
a set of autonomic actions described in Section 5.2.3. The next section details the implementation
of such actions.

Execution

The AM execution task is performed by an executor, which is implemented by the class Execu-
tor (cf. Figure 6.2). It takes as input the plan resulting from the planning task and executes it.
This plan (class Plan in Figure 6.3) is composed of several tasks, which in turn, are composed of
autonomic actions. Figure 6.11 presents the AM interloop actions. The action implemented by
the class RequestVirtualMachines aggregates a map of objects of the class VirtualMachineClass to
the respective desired number of virtual machines, and a list of desired promotions (class Promo-
tion). The action implemented by the class ReleaseVirtualMachines aggregates the list of virtual
machines to be released (class VirtualMachine). Both classes extend from the abstract class Inter-
loopAction which relies on the abstract class InterloopActuatorManager to communicate with the
IM and to perform the action. So, this class is specialized by class HttpClientComponent, which
relies on Restlet to act an HTTP client and access web resources offered by the IM in a RESTful
manner.
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Figure 6.9: Application Manager Analysis Meta-model.
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Figure 6.10: Application Manager Planning Meta-model.

Figure 6.12 depicts the actions on the managed system. The classes implementing these ac-
tions extend from the class ActionOnManagedSystem, which relies on the abstract class Man-
agedSystemActuatorManager to perform the actions on the managed system. In this context, the
class FraSCAtiAPIManager extends from class ManagedSystemActuatorManager by relying on
the FraSCAti Remote API to perform the deployment, introspection and reconfiguration of FraS-
CAti applications via RESTful interfaces.
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Figure 6.11: Application Manager Execution Meta-model (Interloop Actions).
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Figure 6.12: Application Manager Execution Meta-model (Actions on the Managed System).

The class DeployComponent aggregates classes VirtualMachine and Component and makes
use of the deployment interface to perform the deployment. It consists in uploading a compressed
file that contains the component definition and the respective implementation. For the rest of the
actions, the AM relies on the reconfiguration interface. Listing 6.2 show how those actions are
implemented in FraSCAti Script. Basically, the script updates the value of the wrapper property
instances, which is a string value that contains the list of component instances that should be
added to the component frontend. In order to remove an instance (class RemoveComponent), it is
necessary to regenerate the list without the undesired instance.
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# a d d i n g t o / removing from f o n t e n d
s e t−v a l u e ( $domain / s c a c h i l d : : wrapper / s c a p r o p e r t y

: : i n s t a n c e s , ’@INSTANCES@’ ) ;

# removing component
sca−remove ( ‘ ‘@COMPONENT_NAME’ ’ ) ;

Listing 6.2: FraSCAti Script Definition for Adding/Removing Component Instances to/from Com-
ponent Frontend

The classes StartComponent and StopComponent aggregates class ComponentInstance. They
consists in starting/stopping a given component instance. These actions are performed by the
FraSCAti Script defined in Listing 6.3. It simply calls the FraSCAti Script action start/stop with
the targeted component as parameter. This works for both components instances and component
frontends. Indeed, once a fronted wrapper is stopped, it stops the associated component frontend
(ngnix component).

# s t a r t i n g component
s t a r t ( $domain / s c a c h i l d : :@COMPONENT_NAME@) ;

# s t o p i n g component
s t o p ( $domain / s c a c h i l d : :@COMPONENT_NAME@) ;

Listing 6.3: FraSCAti Script Definition for Starting/Stoping a Component

The action BindComponents links one component’s reference to another components’ service.
The FraSCAti Script implementation for this action is presented in Listing 6.4. First, it retrieves
the first and single SCA binding of reference @REFERENCE_NAME@ of component @COM-
PONENT_NAME@. Then the binding is stopped, its value is updated with a new URI pointing
to the service (of the target component frontend) that it should be linked to, and started again.

b i nd = $domain / s c a c h i l d : :@COMPONENT_NAME@/ s c a r e f e r e n c e
: : @REFERENCE_NAME@/ s c a b i n d i n g : : * [ 1 ] ;

s e t−s t a t e ( $bind , " STOPPED " ) ;
s e t−v a l u e ( $b ind / a t t r i b u t e : : u r i , ’@SERVICE_URI@ ’ ) ;
s e t−s t a t e ( $bind , " STARTED " ) ;

Listing 6.4: FraSCAti Script Definition for Binding Component Instances to Other Components’
Frontends

It is important to mention that, since the AM does not have any public knowledge, it does not
implement any action of class ChangePublicKnowledge.

6.3 Infrastructure Manager

This section details the implementation of the IM. We firstly present the infrastructure meta-model
and technical details in order to ease the understanding of the managed system. Then, we present
a set of class diagrams which depicts the implementation of each autonomic task.

6.3.1 Infrastructure Meta-model

Figure 6.13 presents the infrastructure meta-model. The infrastructure consists of a set of physical
machines (PMs) which are implemented by the class PhysicalMachine. A PM can host one or
several VMs. A VM is represented by the class VirtualMachine and is composed of a VM class
(implemented by the class VirtualMachineClass) and the application to which it is leased. Promo-
tions are implemented by the class Promotion and each promotion has an attribute tokenId, which



114 Chapter 6. Research Prototype

is used for synchronization purposes. In addition, it is associated to an application to which the
promotion is sold. Renting fees are implemented by the class RentingFees that aggregates a list
of VM classes and a list of promotions. VirtualMachineRequest is a class that implements the
requests sent by the AM on VMs and promotions. Hence, it aggregates a mapping of number of
VMs desired of each VM class, and a list of desired promotions.
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Figure 6.13: Infrastructure Meta-model.

6.3.2 Managed System Technical Details

In order to manage VMs, the IM relies on Xen 9, a Virtual Machine Monitor (VMM), also known
as hypervisor. Basically, it allows the simultaneous execution of several guest VMs on the same
PM. It runs directly on top of a PM (bare metal hypervisor) instead of relying on an operating
system to interface the hardware. Xen guest VMs are known as domains. dom0 is a special
domain which is in charge of controlling the hypervisor and starting/stoping new guest VMs.

Figure 6.14 illustrates the managed infrastructure. We assume that the PMs are equipped with
Xen hypervisor and that the xen-hyper script is placed in the domain dom0 of each PM. xen-
hyper is script written in Shell Script [Mic08] that eases the management of VMs on top of Xen.
Apart from that, there must exist one or several reference disk image and one reference Xen-based
configuration file. The reference image disk should be suitable to the hypervisor and must contain
an operating system installed. So, we have generated a Xen-based reference image disk with
Debian Lenny linux distribution and FraSCAti installed. The reference configuration file is used
as a template file every time a VM is created.

xen-hyper consists of two main procedures: create and destroy. The procedure create performs
the following tasks:

1. Make a copy of the image reference.

9http://xen.org

http://xen.org
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Figure 6.14: Managed Infrastructure Technical Details.

2. Configure the network inside the image

3. Generate a Xen configuration file with all the VM specification: name, CPU and RAM
requirements, and network specification (IP and MAC addresses).

4. Execute the Xen Tools command to create the VM based on the configuration file

5. Waits until the VM reboots

6. Launch FraSCAti Runtime in the VM

The procedure destroy behaves as follows:

1. Check if the VM really exists

2. Execute the Xen Tools command to destroy the VM.

3. Delete the image file.

Listing 6.5 shows the way these two procedures should be used. @VM_NAME@ corresponds
to the name of the VM that is being created, @CPU@ represents the number of CPU cores required
for the VM, @RAM@ corresponds to the amount of RAM required for the VM, @IP@ means the
VM IP address, @PORT@ represents the port that the FraSCAti runtime should listen on.

#vm c r e a t i o n
xen−hyper c r e a t e −v @VM_NAME@ −c @CPU@ −r @RAM’ \

− i @IP@ −p @PORT@

#vm s u p r e s s i o n
xen−hyper d e s t r o y −v @VM_NAME@

Listing 6.5: Virtual Machine Creation/Destruction Command.
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In order to execute xen-hyper, the IM performs a simple Java system call that remotely exe-
cutes the command via SSH protocol.

It is important to mention that the choice for Xen as hypervisor is due to compatibility reasons,
meaning that until the time this work was being validated, Xen was the most suitable hypervisor
in the testbed environment used for the validation, namely Grid5000 10. Even though, the support
for other hypervisors can be easily implemented. It is necessary however to generate the reference
images and configuration file for the target hypervisor. Besides, the script xen-hyper should also
be adapted to suit the target hypervisor.

6.3.3 Autonomic Tasks

Figure 6.15 depicts the IM autonomic meta-model. Similar to the AM, the IM is implemented as
an extension of the class AutonomicManager. However, it does not do anything special inside the
method init(). It aggregates a private knowledge, which is implemented by the class Infrastruc-
tureKnowledge, which in turn, extends from the class PrivateKnowledge; and a public knowledge,
which is implemented by the class InfrastructurePublicKnowledge, which in turn, extends from
the class PublicKnowledge. The latter relies on the abstract class InterloopSensorManager to lis-
ten for requests from other autonomic managers. The class HttpServerComponent extends the
class InterloopSensorManager by creating an HTTP server to listen for requests from other auto-
nomic managers willing to access the public knowledge. The private knowledge is composed of
the current promotions, that is, the sold promotions, and the list of PMs (class PhysicalMachines).
From this list, it is possible to know which VMs are hosted by each PM. The public knowledge is
composed of the renting fees (class RentingFees) and a list of available promotions (class Promo-
tion). As promotions should have concurrency control, each promotion is considered as a critical
section and for this reason class Promotion extends from class CriticalSection.
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Figure 6.15: Infrastructure Manager Autonomic Meta-model.

10https://www.grid5000.fr

https://www.grid5000.fr
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Monitoring

The IM monitoring task is implemented in a very similar way to the AM. It relies on the class
Monitor, which is provided by the common autonomic framework. As it is shown in Figure 6.16,
the monitor also aggregates two objects: one implemented by the class WildCATManager and
another implemented by the class HttpServerComponent, both objects play the same role as in the
AM implementation.

The IM autonomic events are also implemented as Java classes (LowPhysicalMachineUtiliza-
tion, PhysicalMachineUnused, EnergyShortage, TimeoutExpired, VirtualMachinesRequested and
VirtualMachinesReleased). The classes PhysicalMachineUnused, TimeoutExpired and LowPhysi-
calMachineUtilization aggregate a list of PMs (class PhysicalMachine) that should be powered off
(for the two first events) or receive promotions (for the last one). The class EnergyShortage has an
attribute to indicate the number of PMs that should be powered off. This is an endogenous event
that can be triggered either mannually by the administrator or based on data obtained from power
measurements. The way this event is triggered is out of the scope of this work. The class Virtual-
MachinesRequested aggregates a mapping that indicates the number of VMs desired of each VM
class, and the list of desired promotions. Lastly, the class VirtualMachinesReleased is composed
of a list of VMs to be released (class VirtualMachine).
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Figure 6.16: Infrastructure Manager Monitoring Meta-model.

Figure 6.17 shows the WildCAT resource hierarchy for the infrastructure. It consists of a
resource representing the infrastructure itself (self://infrastructure), followed by another resource
that represents the set of PMs (self://infrastructure/pms). Finally, this resource may have several
attributes, each one containing the monitoring data of a specific PM.
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Figure 6.17: Infrastructure WildCAT Resource Hierarchy.

The IM implements two EQL queries: one for creating and firing the event LowPhysicalMa-
chineUtilization (described in Listing 6.6); and another that creates and fires the event Physical
Machine Unused.

The query described in Listing 6.6 retrieves any attribute in self://infrastructure/pms (any PM)
whose emitted events follow a specific pattern. That is, it takes every PM that is powered on and
whose utilization is lower than a certain value (@UTILIZATION_RATE@) and remains lower for
a certain amount of time (@TIME@).

s e l e c t a . s o u r c e from p a t t e r n [
e v e r y a= W A t t r i b u t e E v e n t (

s o u r c e l i k e ’ s e l f : / / i n f r a / pms#pm%’ and
va lue ( ’ on ’ )= t rue and
va lue ( ’ u t i l i z a t i o n ’ ) < @UTILIZATION_RATE@)

−> ( t i m e r : i n t e r v a l (@TIME@ min ) and not
W A t t r i b u t e E v e n t ( s o u r c e = a . s o u r c e and
va lue ( ’ u t i l i z a t i o n ’ ) > @UTILIZATION_RATE@ ) ) ]

Listing 6.6: Low Physical Machine Utilization EQL Query.

The EQL query described in Listing 6.7 is a particular case of the one described in Listing 6.6.
In fact, it retrieves any attribute in self://infrastructure/pms (any PM) that is powered on and whose
utilization is equal to zero and remains equal to zero for a certain period of time (@TIME@).

s e l e c t a . s o u r c e from p a t t e r n [
e v e r y a= W A t t r i b u t e E v e n t (

s o u r c e l i k e ’ s e l f : / / i n f r a / pms#pm%’ and
va lue ( ’ on ’ )= t rue and
va lue ( ’ u t i l i z a t i o n ’ ) = 0)

−> ( t i m e r : i n t e r v a l (@TIME@ min ) and not
W A t t r i b u t e E v e n t ( s o u r c e = a . s o u r c e and
va lue ( ’ u t i l i z a t i o n ’ ) > 0 ) ) ]

Listing 6.7: Physical Machine Unused EQL Query.

Both queries are registered along with an action that creates and fires the respective autonomic
event: Low Physical Machine Utilization or Physical Machine Unused.

Analysis

Figure 6.18 shows the IM analysis task meta-model. In the IM, the analysis task is launched only
when the autonomic events Virtual Machines Requested or Energy Shortage are detected. For all
the other IM autonomic events, the analysis task is dispensable, as already explained in Section
5.2.2. Every time the event Virtual Machines Requested is detected, the IM launches the analy-
sis implemented by the classVirtualMachinePlacementAnalyzer. The analyzer is instantiated with
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information sent along with the event such as the number of VMs of each class, the desired pro-
motions and the requesting application. This information is encapsulated by the request message
(class VirtualMachineRequest). Like the AM analysis task, this analyzer is also modeled as a
CSOP, as detailed in Section 5.2.2. In order to solve this problem, the analyzer relies on the solver
implemented by the class VirtualMachinePlacementConstraintSolver. It takes as input all the PMs
and the just-requested VMs. The solver returns the optimal mapping VMs hosted on PMs, which
is then encapsulated in an object of the class VirtualMachinePlacementAnalysisResult.

When the IM detects the event Energy Shortage, the IM launches the analyzer implemented
by the class EnergyShortageAnalyzer. The analyzer is created with the number of PMs (attribute
nbPMs) that should be shutdown as well as the list of existing PMs. Again, this analyzer is also
modeled as a CSOP, which is solved by the solver implemented by the class EnergyShortageCon-
straintSolver. It takes as input all the existing PMs and returns the PMs that should be switched
off. This result is encapsulated by the class EnergyShortageAnalysisResult.
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Figure 6.18: Infrastructure Manager Analysis Meta-model.

Like the AM solvers, the implementation of the IM solvers (VirtualMachinesPlacementCon-
straintSolver, and EnergyShortageConstraintSolver) rely on Choco.
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Planning

The planning task can be performed by five different planners: one for each autonomic event.
Figure 6.19 shows the meta-model for the IM analysis task. The class VirtualMachinePlacement-
Planner implements the homonym planner, which is described by Algorithm 1. It takes as input
the knowledge (public and private), and the list of VMs that should be created (class VirtualMa-
chines). The class PromotionPlanner implements the Promotion Planner, which is described in
Algorithm 3. It also takes as input the public knowledge and the PMs in which promotions should
be created (class PhysicalMachines). The class PhysicalMachineUnusedPlanner implements the
homonym planner, which is described in Algorithm 4. It takes as input the private knowledge and
the list of PMs that should be switched off (PhysicalMachine). The class EnergyShortagePlanner
implements the Energy Shortage Planner, which is described in Algorithm 5. It also takes as input
the public knowledge and the list of PMs that should be switched off so as to cope with the energy
shortage condition. Finally, the classVirtualMachinesReleasePlanner implements the Virtual Ma-
chine Release Planner, which is described in Algorithm 2. It takes as input the private knowledge
and the list of VMs that should be released (class VirtualMachine).

The result of all those planners is an object of the class Plan, which is composed of a set of
autonomic actions. The next section details the implementation of those action and how they are
executed.
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Figure 6.19: Infrastructure Manager Planning Meta-model.

Execution

Similar to the AM implementation, the IM execution task is performed by an executor imple-
mented by the class Executor (Figure 6.3). Figure 6.20 shows the IM interloop actions NotifyVir-
tualMachinesCreated, NotifyScaleDown and NotifyRentingFeesChanged. The first two actions
aggregate each one a list of VMs (class VirtualMachine) which represents respectively either the
just-created or the to-be-released VMs. The third one aggregates a list of promotions (class Pro-
motion) which correspond to the just-created promotions. They are specialization of the abstract
class InterloopAction which relies on the abstract class InterloopActuatorManager to communi-
cate with the AMs (represented by the class Interlocutor). Like the AM implementation, the class
HttpClientComponent extends the class InterloopActuatorManager by relying on Restlet to act as
an HTTP client and access web resources offered by the AM in a RESTful manner.
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Figure 6.20: Infrastructure Manager Execution Meta-model for Interloop Actions.

Figure 6.21 presents the Change Public Knowledge actions implemented by classes Cre-
atePromotion and ActivatePromotion. Each class extends from the abstract class ChangePub-
licKnowledge by aggregating the class Promotion, which represents the promotion to be created
or activated on the public knowledge.

<<class>>

ChangePublicKnowledge
commons.autonomic.execution.actions

<<class>>

CreatePromotion

im.autonomic.execution.actions

<<class>>

ActivatePromotion

im.autonomic.execution.actions

<<class>>

Promotion

im.model

0..10..1

Figure 6.21: Infrastructure Manager Execution Meta-model for Change Public Knowledge Ac-
tions.

The IM actions on the managed system are shown in Figure 6.22. The objective is to perform
actions on the existing PMs of the infrastructure. To this end, the IM relies on SSH to perform
these actions remotely on the target PMs.

The actions implemented by the classes SwitchPhysicalMachineOn and SwitchPhysicalMa-
chineOff both extend from the class ActionOnManagedSystem by aggregating the class Physical-
Machine, which corresponds the PM that should be switched on or off. The implementation of
the class SwitchPhysicalMachineOff is very simple, since only a system call (e.g. ’shutdown’ on
Linux based operating systems) on the PMs side is needed. However, the implementation of the
class SwitchPhysicalMachineOn depends whether or not a wake-on-lan mechanism is supported
and/or enabled on the target hardware/platform (i.e. the network interface controller and/or oper-
ating system). That means, whether a PM is capable of being powered on via its network interface.
If that is the case, the implementation of SwitchPhysicalMachineOn would consist simply in a sys-
tem call to wake the PM up via its network interface (e.g. ’wakeonlan network_interface_address’
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in Linux based operating systems).
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ActionOnManagedSystem
commons.autonomic.execution.actions
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im.autonomic.execution.action

<<class>>

CreateVirtualMachine
im.autonomic.execution.actions

<<class>>

DestroyVirtualMachine
im.autonomic.execution.actions

<<class>>

XenSSHManager
im.system

SSH
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0..1
0..1

0..1
0..1 0..1

0..1

Figure 6.22: Infrastructure Manager Execution Meta-model for Actions on the Managed System.

The action implemented by the class DestroyVirtualMachine extends from the class ActionOn-
ManagedSystem by aggregating the class VirtualMachine, which represents the VM that should
be destroyed. Regarding the action implemented by the class CreateVirtualMachine, it also ex-
tends from the class ActionOnManagedSystem by aggregating the class VirtualMachine, which
corresponds to the VM that should be created. In addition this action also aggregates class Physi-
calMachine, which corresponds to the PM where the VM should be deployed in.

Finally, the actions implemented by the classes CreateVirtualMachine/ DestroyVirtualMachine
perform a system call to remotely execute (via SSH) the procedures create of destroy of the xen-
hyper script (cf. Section 6.3.2).

6.4 Autonomic Managers Lifetime

This section describes how autonomic managers interact with other objects (internal objects and
other autonomic managers) over the time. For this purpose, we present a set of sequence diagrams
which objective is to ease the understanding of autonomic managers progression over a period of
time.

Figure 6.23 describes how events are created and managed over the time. It is important to
recall that events can be either endogenous or exogenous. Endogenous events are fired based upon
fine-grained events from the managed system. Once those fine-grained events are detected by the
managed system sensor (object of the class WildCATManager), an endogenous event is created
with some monitoring data (e.g. the current application workload), and fired. This makes the
manager (object of the class ApplicationManager) be notified on the event creation.
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With respect to exogenous events, an interloop actuator (object of class HttpClientComponent)
from the IM side sends an HTTP message to the AM. This message is received by an interloop
sensor (object of the class HttpServerComponent), which interprets the content of the message by
creating some event-specific objects, creates the autonomic event object and fires it. At last, the
AM is notified of the event reception.

It is noteworthy that although the diagram in Figure 6.23 shows the autonomic events creation
only for the AM, it is also applicable for IM.
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Figure 6.23: Autonomic Events Creation Over the Time.

Figure 6.24 depicts the process of action creation and execution over the time. Autonomic
actions in the AM can be performed either on the managed system or on the IM (interloop). Both
kinds of actions are executed by an executor (object of the class Executor), which is instantiated
by the manager (AM). Actions on the managed system relies on an object of the class FraSCA-
tiAPIManager to perform the action, whereas interloop actions relies on an object of class Http-
ClientComponent to send an HTTP message to the IM. This message is received by an object of
the class HttpServerComponent on the other side (IM).

By replacing the class FraSCAtiAPIManager by the class XenSSHManager, the same se-
quence could also be applied to IM objects.

For the token acquisition there might be two different possible implementations: (i) a blocking
one, that is, the AMs stays blocked waiting for the token acquisition; and a (ii) non-blocking one,
meaning that every time a token is not possible the AM gives up on it so there is no waiting time.
The first approach has all the promotions as a big critical section, which means that an AM with a
token has access to all the promotions and can freely choose which ones to take. Meanwhile the
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Figure 6.24: Autonomic Actions creation over the time.

other AMs wait for their turn. While it may optimize the use of promotions, it may, on the other
hand, impact the performance of the global system as the number of AMs increase (cf. Section
7.2.1). The second approach considers that there is one critical section per available promotion,
which means that there is one token per available promotion. In order to avoid deadlock scenarios,
AMs should not stay blocked until it succeeds in acquiring a token. Indeed, it may happen that
two AMs succeed in acquiring one token each one and stays blocked waiting for each other to
release the remaining tokens. In this implementation, we considered the second implementation,
although the impacts of the first one is evaluated in Section 7.2.1.

Figure 6.25 shows how the tokens are acquired and released over the time. In the prototype, the
public knowledge is implemented as an object of the class InfrastrucutreManagerPublicKnowl-
edge, which is maintained by the IM and can be accessed from outside via an HTTP server (object
of class HttpServerComponent). The AM willing to acquire a token for a given promotion should
rely on an HTTP client (an object of class HttpClientComponent) to send an HTTP get message
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that is received by the HTTP server on the IM side. The IM finds the desired promotion and tries
to acquire the token. If the token is not available, it returns an error message to the AM so it can
try again later. Similarly, in order to release a token, the AM relies on the HTTP client to send an
HTTP put message which is received by the HTTP server on the IM side. It finds the concerned
promotion in the public knowledge and releases the token.

The token transfer operation, as described in Section 5.1, is implemented along with the VM
requested event scenario. In fact, promotions are requested along with the interloop actions/events
Request Virtual Machines / Virtual Machine Requested and are accepted upon the verification (on
the IM side) of the tokens transmitted inside the interloop action/event message.
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Figure 6.25: Token Acquisition / Release Over the Time.

The autonomic managers extending the class AutonomicManager should implement the ab-
stract method init() which is the autonomic manager’s bootstrap method. The IM does not need
any special task to be performed during the initialization. The AM, on the contrary, needs to
subscribe to the IM public knowledge so as to be notified when promotions are created. It is
necessary also to get the renting fees and the existing promotions from the IM public knowledge.
Moreover, it has to deploy the managed application on the infrastructure. Figure 6.26 describes
the bootstrap process of the AM. As it can be seen, the execution of the method init() triggers
the public knowledge subscription and a request for the renting fees, which is performed by an
object of the class HttpClientComponent. This object sends an HTTP get message that is received
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by an object of the class HttpServerComponent on the IM side. This object proceeds with the
subscription and gathers the renting fees and available promotions, and encapsulates them in the
response to the HTTP get message. The AM updates the renting fees and available promotions
values in the knowledge (object of the class ApplicationManagerKnowledge). Next, it creates an
object of the class WorkloadIncreased by setting the value of attribute workload to the minimum
workload possible in the performance requirements (class PerformanceRequirement). At last, the
AM notifies itself of the creation of this event. As a consequence, the AM starts an analysis to find
the optimal configuration and amount of resources suitable for the current workload. This process
is detailed in the next paragraph.
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Figure 6.26: Application Manager Initialization Procedure.

Figure 6.27 depicts the behavior of the AM over the time upon the detection of an autonomic
event. It should be noticed that the AM acts differently according to the event. The scenario
presented in Figure 6.27 corresponds to the detection of an Workload Increased event. However, it
could be also applicable for the events Workload Decreased, Renting Fees Changed or Promotion
Expired.

Once the event is detected, the first thing the AM does is to try to acquire the token of all
available promotions, so they can be taken into account in the CSOP. The promotions that the AM
failed in acquiring the token are ignored. So, an object of the class ArchitectureCapacityAnalyzer
is created. Inside the method analyze(), the analyzer creates an object of the class Architecture-
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CapacityConstraintSolver to solve the CSOP. After the analysis task, the IM releases the token
of the promotions that are not going to be used. The next step is to create a planner (an object
of the class ArchitectureCapacityPlanner) and to generate a plan to be executed by an executor
(object of class Executor). The plan is composed of a set of actions that should be executed in
a specific order, as described in Section 5.2.3. So, if there is more VMs to be requested to the
IM, the action implemented by the class RequestVirtualMachines should be executed first and the
rest of actions should be encompassed by a handler (interface Handler) which is scheduled on the
knowledge (object of the class ApplicationManagerKnowledge) to be executed afterwards. Upon
the detection of an event of class VirtualMachinesCreated, the scheduled handler is retrieved and
executed.

The diagram shown in Figure 6.27 assumes that new VMs will be requested to the IM and that
is why there is a need for the handler. However, if no new VMs are needed or even if some VMs
needs to be released (which is the case also of a scale down scenario), all the actions in the plan
could be executed in a roll and there would be no need for a handler.

Due to readability reasons, we have omitted several objects that should be created in a real
usage. For instance, objects of classes Plan and its child classes, and ArchitectureCapacityAna-
lyzerResult. In fact, the objective of the diagram presented in Figure 6.27 is to give a high level
description of how some of the main objects created during the execution of the AM are used.
Therefore, the lack of these objects in the diagram should not interfere with the overall under-
standing.

Figure 6.28 describes how the IM interacts with other objects over the time upon the arrival
of a Virtual Machines Requested event (object of the class VirtualMachinesRequested). Assuming
that the AM requested some promotions among other VMs with regular price. So, the first thing
the IM does is to get the promotions from the public knowledge (object of the class Infrastructure-
PublicKnowledge) and checks for each promotion requested if the token sent corresponds to the
actual promotion token. Then, it creates an analyzer (object of the class VirtualMachinePlacemen-
tAnalyzer). Inside the method analyze(), the analyzer creates a solver to solve the CSOP. After the
analysis task, the IM creates a planner (object of the class VirtualMachinePlacementPlanner) that
generates a plan for the solution found by the analyzer. The IM then creates an executor (object of
the class Executor) and executes the plan generated by the planner. Among other things, the result
is a set of actions on the managed system (more precisely CreateVirtualMachine), performed by
an object of the class XenSSHManager and one interloop action to notify the AM of the VMs
creation.

Likewise the diagram of Figure 6.27, we have omitted some objects (e.g. of the classes Plan
and its child classes, and VirtualMachinesPlacementAnalysisResult) for readability reason. As the
objective is to explain the interactions between the IM and some of the main objects over the time,
the missing objects do not interfere with the global comprehension.

6.5 Summary

This chapter presented the implementation details of concepts and models of the multiple auto-
nomic manager approach proposed in Chapter 5. The research prototype conceived was imple-
mented in Java and consists of two sub-systems: the application manager (AM) and the infrastruc-
ture manager (IM).

First, we described the common autonomic framework, which is a set of Java classes that are
used by both the AM and IM. Then, we detailed the implementation of both AM and IM by pre-
senting the technical details on the managed systems (application and infrastructure, respectively)
and the meta-models for each autonomic tasks (i.e. monitoring, analysis, planning and execu-
tion). The meta-models show how the concepts and models presented in the previous chapters are
implemented in Java classes.

We assume that managed applications are developed in a component-based architectural man-
ner. Hence, a Service Component Architecture model implementation, namely FraSCAti, was



128 Chapter 6. Research Prototype

monitor manager analyzer

new

solver

new

solve

analyze

planner

new

generatePlan

executor

new 

execute

M
o

n
it
o

r

A
p

p
lic

a
ti
o

n
M

a
n

a
g

e
r

A
rc

h
it
e

c
tu

re
C

a
p

a
c
it
y

A
n

a
ly

z
e

r

A
rc

h
it
e

c
tu

re
C

a
p

a
c
it
y

C
o

n
s
tr

a
in

tS
o

lv
e

r

A
rc

h
it
e

c
tu

re
C

a
p

a
c
it
y

P
la

n
n

e
r

E
x
e

c
u

to
r

client

H
tt
p

C
lie

n
tC

o
m

p
o

n
e

n
t

acquirenToken

releaseToken

[e
 i
n

s
ta

n
c
e

o
f 
V

ir
tu

a
lM

a
c
h

in
e

s
C

re
a

te
d

]
e

v
e

n
tR

e
c
e

iv
e

d
(e

)

k

A
p

p
lic

a
ti
o

n
M

a
n

a
g

e
r

K
n

o
w

le
d

g
e

handler

H
a

n
d

le
r

scheduleHandler 

.

.

.

requestVirtualMachines 

.

.

.

getScheduledHandlers 

execute 

.

.

.

[e
 i
n

s
ta

n
c
e

o
f 
W

o
rk

lo
a

d
In

c
re

a
s
e

d
]

e
v
e

n
tR

e
c
e

iv
e

d
(e

)

loop 

loop 

Figure 6.27: Application Manager Interactions Over the Time.

used to ease the deployment and reconfiguration of application components. In order to enable
scalability, components can be replicated in several instances which are managed by Ngnix, a
lightweight load balancing software. Finally, in order to facilitate the monitoring of the managed
systems, the AM relies on WildCAT, a context-aware framework. Regarding the infrastructure, we
relied on Xen hypervisor to manage the creation/destruction of virtual machines (VM), which can
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Figure 6.28: Infrastructure Manager Interactions Over the Time.

be done remotely via SSH. The IM also relies on WildCAT to ease the monitoring of the managed
infrastructure.

At last, we depict the interactions among autonomic managers’ objects over the time. The
idea was to show the interactions between objects within the same autonomic manager as well as
between objects from different autonomic managers in some of the main scenarios of execution.





7
Experiments and Evaluation

This chapter presents the a set of experiments performed over the research prototype presented in
Chapter 6 with the purpose to validate this thesis work.

First, we present a qualitative evaluation analysis, whose objective is to evaluate the effective-
ness of the approach via a set of experimental scenarios. To this end, we relied on a real experi-
mental grid infrastructure to play the role of the infrastructure and a service-based application that
was implemented to serve as the application.

Finally, we present a quantitative evaluation analysis, which aims at evaluating the critical
parts of the proposed solutions such as algorithms and protocols in an simulation-based way.
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7.1 Qualitative Evaluation

This section presents the qualitative experiments carried out to evaluate this thesis work. The
objective of this evaluation is to show the effectiveness of the proposed approach in improving the
Quality of Service (QoS), at the applications level, and energy consumption, at the infrastructure
level. First we describe the experimental testbed, which corresponds to a service/component-based
application that was implemented specifically for the evaluation, a real physical infrastructure
upon which the experiments took place and a client simulation framework. Then we present the
results obtained from the three scenarios executed to evaluate the approach: (i) a budget-driven
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architectural elasticity, in which applications benefit of the architectural elasticity to cope with an
increasing workload, while meeting the budget constraints; (ii) a scale down scenario, in which
applications also benefit of the architectural elasticity to cope with a period of resource restriction
caused by an energy shortage at the infrastructure level; and (iii) a promotion scenario in which
the infrastructure provider tries to establish a synergy with application providers by stimulating
their behaviour in terms of consumption. It results sometimes in an improvement of the resource
utilization and consequently the energy efficiency. Finally, we provide some discussion on the
obtained results.

7.1.1 Experimental Testbed

The qualitative experiments relies on a testbed environment composed of a synthetic application
and a real physical infrastructure in which one or several applications instances are deployed. By
synthetic we mean that the application was implemented especially with the purpose to evaluate
this thesis work. We first describe this application, by detailing its characteristics in terms of
composition and performance requirements. Then we survey the physical infrastructure platform
used to run the experiments.

Synthetic Application

We developed a Service Component Architecture (SCA) based application, in which the compo-
nents were implemented in Java 6. As SCA runtime, we relied on FraSCAti [SMF+09], since
it allows architectural reflection, which enables dynamic reconfiguration of the applications de-
scribed in FraSCAti.

Components and Architectural Configurations. As depicted in Figure 7.1, the application is
composed of three components C = {c1, c2, c3}, where cr1 = {r1}, cs1 = {s1}, which means that
component c1 offers a service s1, has a functional dependency r1. Regarding the others compo-
nents, cr2 = ∅ and cs2 = {s2}. Similarly, cr3 = ∅ and cs3 = {s3}. It means that components c2 and c3
offer each one a service (s2 and s3, respectively), whereas they do not have any functional depen-
dency. The application has two architectural configurations K = {k1, k2}, where kc1 = {c1, c2},
kdeg1 = 0, kc2 = {c1, c3}, k

deg
2 = 0.50, kbind1 = {(r1, s2)}, kbind2 = {(r1, s3)} meaning that config-

uration k1 has no architectural degradation, components c1 and c2 are bound via reference r1 and
service s2, whereas in configuration k2 there is a degradation of 50% and components c1 and c3 are
bound via reference r1 and service s3. This degradation percentage value was chosen since it had
to be significant enough to, when multiplied by its respective weight (αarch), prevent the solver
tending to choose always a degraded configuration so as to consume less resources while reducing
the costs regarding the renting fees. To make an analogy with the motivation scenario presented
in Section 4.3.3, the configuration k1 would be equivalent to a configuration with a Video Adver-
tisement Server, whereas the configuration k2 would correspond to a configuration with a Image
or Text Advertisement Server component.

c1 c2

r1s1 s2

c1 c3

r1s1 s3

(a) (b)

Figure 7.1: Synthetic Application Architectural Configurations: (a) k1 and (b) k2.

Performance Profile. Each component performs some CPU intensive operation, more pre-
cisely they execute a function to find the fibonacci number for a given input. In order to emulate



7.1. Qualitative Evaluation 133

Component Workload Response Time (ms) CPU Cores RAM (GBs)

c1/c2

30 200 • •

55
600 • •
300 • • • •
100 • • • • • •

80

900 • •
550 • • • •
300 • • • • • •
100 • • • • • • • •

170

1200 • •
700 • • • •
450 • • • • • •
300 • • • • • • • •
100 • • • • • • • • • •

c3

30 100 • •
55 200 • •

80
250 • •
50 • • • •

170
350 • •
100 • • • •

Table 7.1: Synthetic Application Resource Requirements.

two different levels of resource consumption we pseudo-randomly choose a uniformly distributed
input value for that function varying from 20 to 40 for components c1 and c2 ; and from 10 to
20 for component c3. The components were calibrated in order to profile the application’s perfor-
mance requirements. Table 7.1 shows the requirements of each component in terms of resources
in order to ensure a certain level of QoS under a given workload. This calibration was performed
in a specific hardware of the testbed physical infrastructure (cf. Section 7.1.1). That way, it is
straightforward that components c1 and c2 are more resource consuming than component c3. As
a consequence, although the imposed degradation, the architectural configuration k2 can be an
alternative so as to consume less resources, when necessary.

Based on the performance profile in Table 7.1, we define the set of workload threshold Λ =
{0, 30, 55, 80, 170}. The thresholds are used to detect workload variation events, which may lead
to reconfigurations at the application level.

Optimization Variables Weighting. We fixed the weights for each optimization variable as
follows: αperf = 0.6, αarch = 0.3 and αcost = 0.1. These values were chosen such that αperf >
(αarch + αcost), that is, the performance criterion is always privileged with respect to the others.
Also, the cost criterion should never be privileged in comparison to the other criteria. That way,
it is certain that the analysis tries first to find a configuration without architectural degradation, in
which the response time is inferior to the thresholds (rtideal and rtacc), and minimizes the cost. If
it is not possible, then it seeks for a solution in which the architecture is degraded. Also, it prevents
the solver engine to find a solution that does not respect the performance thresholds (rtideal and
rtacc) or degrades the architecture configuration in order to minimize the costs.

Physical Infrastructure

Grid’5000. For the physical infrastructure, we relied on Grid’5000, which is a French grid for
experimental testbed. It is composed of ten geographically distributed sites: Bordeaux, Grenoble,
Lille, Luxembourg, Lyon, Nancy, Reims, Rennes, Sophia and Toulouse. Each site comprises
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one or more clusters, which are characterized by a set of physical machines (PMs) with similar
characteristics in terms of resources (e.g. CPU, memory and disk). Some of the Grid’5000 clusters
are equipped with devices for power measurements. Reims, Nancy and Rennes sites are equipped
with power distribution unit (PDU) with power monitoring capabilities. This kind of monitoring is
not very precise, since the information collected is shared by several PMs, which may interfere in
the results. The site of Lyon, on the other hand, is the only one which is equipped with more precise
and per-PM wattmeters1. The site of Lyon is composed of only one cluster, namely sagittaire 2.
This cluster is composed of 79 PMs Sun Fire V20z, which have single CPU/dual core (AMD
Opteron 250) with 2048MB of DRAM and 65GB of storage space.

Infrastructure Settings. For these experiments, the set of PMs P of our infrastructure consists
of a sub-set of the PMs of sagittaire. Hence, for each pmi ∈ P pmcpu

i = 2 and pmram
i = 2.

We do not precise the exact number of PMs, since it may vary from one scenario to another.
Thus, it is specified in the experimental setup of each scenario. We also defined two classes of
virtual machines (VMs) (e.g. small and large) M = {m1,m2}, where mcpu

1 = 1, mram
1 = 1,

mcost
1 = 0.18, mcpu

2 = 2, mram
2 = 2 and mcost

2 = 0.27. The pricing values correspond to the
hourly use cost for small/medium and large VM instance, respectively. Notice that the cost of a
large VM instance is not the double of that of the small/medium. Instead, we reduce a little bit its
price (per CPU/RAM unit) in order to privilege the leasing of large instances.

Client Simulation and Managers

Clif. In order to simulate clients so as to produce a real incoming charge, we relied on Clif 3, a
load testing framework. With Clif, it is possible to define experimental scenarios in terms of client
behaviour and population over the time. We define the behavior of a client as a request followed
by a thinking time such that one client can perform only one request per second. That way, the
desired number of requests per second is achieved by increasing the population of simultaneous
clients. As a result of a scenario execution, Clif provides log files from which one can extract
important information about the performance of the system under test. The system architecture
basically consists of one registry server and one or several code server. In our experiments, we
deployed a code server for each application to be evaluated. In order to avoid interferences, we
deployed each server and the registry in a separate VM, with one CPU core and 1GB of DRAM
capacity.

Application and Infrastructure Managers. Similarly, in order to avoid interference, we re-
served a VM with one CPU core and 1GB of DRAM capacity for each application manager (AM)
or infrastructure manager (IM).

7.1.2 Budget-driven Architectural Elasticity Scenario

This scenario consists in deploying one application and evaluate how it responds to an increasing
workload while having its budget constrained. The objective is to show how the AM can benefit
of the architectural elasticity under a constrained situation.

Experimental Setup

For this scenario we deployed one application and performed several runs while changing the
budget threshold. Each run took about one hour long. In addition, we also enabled / disabled

1Some nodes of Toulouse are also equipped with wattmetters, but by the time the experiments were performed, these
wattmeters were unavailable.

2There is another cluster in the site of Lyon, but by the time these experiments were carried out the cluster was
inoperative.

3http://clif.ow2.org/

http://clif.ow2.org/
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Run Arch. Configurations Budget

1 {k1, k2} 0.7

2 {k1} 0.7

3 {k1} 0.9

4 {k1} 1.0

Table 7.2: Application Settings for the Budget-driven Architectural Elasticity Scenario.

the alternative architectural configuration (k2 in the case of the application described in Section
7.1.1) so as to evaluate the impact of the architectural elasticity. More precisely, we performed
four different runs for the same application while changing its settings: (i) with budget fixed at
0.7 and with the two architectural configurations available; (ii) with the budget fixed at 0.7 and
with only one architectural configuration available; (iii) with the budget fixed at 0.9 and only one
architectural configuration available; and (iv) with the budget fixed at 1 and only one architectural
configuration available. These settings are summarized in Table 7.2.

Figure 7.2 presents the application workload defined for this scenario. As it is shown, we
defined an increasing workload (from 0 to 95 requests per second) so as to observe how the ap-
plication copes with the workload variation by performing either resource capacity elasticity or
architectural elasticity according to the budget variation.
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Figure 7.2: Workload for the Budget-driven Architectural Elasticity Scenario.

Lastly, with respect to the infrastructure, we utilized a sub-set of ten PMs from cluster sagit-
taire. Two PMs to host the managers’ and Clif servers’ VMs and eight that were used to host the
VMs containing the application components.

Results

Figure 7.3 shows the average response time (y-axis) of the application described in Section 7.1.1
under a certain workload (dashed line) over the time (x-axis). As it can be seen, as long as the
application does not reach the budget threshold, it is capable of coping with an increasing work-
load by requesting more VMs to the infrastructure provider. That is, the higher budget the lower
is the response time (i.e. the QoS). It should be observed, however, that thanks to the architectural
elasticity (both configurations k1 and k2 enabled, and referred as AE in the chart), the applica-
tion tuned with the lowest budget (0.7) manages to keep the response time at an acceptable level
(approximately the same response time as it had 0.9 of budget). The switching between architec-
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tural configurations can be seen in Figure 7.4. By the time of 10 minutes of execution, the AM
detects a workload increased event, which is triggered because the current workload exceeds the
upper threshold (30). With a budget greater or equal to 0.9, the AM manages to request more
VMs to cope with the workload. For a budget constrained at 0.7, the application in the current
configuration is not able to maintain the acceptable level of response time (800ms). Alternatively,
the application may degrade its architecture so as to consume less resource and thereby meet the
budget constraints while coping with the workload. It keeps the ideal response time (500ms) until
30 minutes of execution. By that time, the workload sharply increases, although the response time
stays below the acceptable level (800ms).
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Figure 7.3: Average Response Time for the Budget-driven Architectural Elasticity Scenario.
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Figure 7.4: Switch Between Architectural Configurations.

Although the architectural degradation allows the application to cope with imposed constraints
on budget or resources, this flexibility comes at a price. Indeed, the architectural degradation cor-
responds to a lower level of a specific QoS or functionality, which may lead to financial penalties
according to the Service Level Agreements (SLAs) between application providers and their con-
sumers4. It is then necessary to evaluate this degradation along with the actual monitored response
time and the cost implied by the VMs leasing.

For this purpose, Figure 7.5 shows the ratio of the normalized values (between 0 and 1) of
QoS to the cost due to VMs leased to the application operating with and without architectural
elasticity. The QoS is given by the arithmetic mean of the normalized measured response time
and the complement of the current architectural degradation (1 − kdegi ). It is noteworthy that we
considered the measured response time instead of the estimated one that is used in the optimization

4As already stated, the management of SLA and more precisely between application providers and end users is out
the scope of this work.
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problems (cf. Section 5.2.3, Equation 5.31). Hence, the value of the normalized response time is
equal to 1 if the measured response time is lower or equal than 500 (rtideal), 0.5 (rtdeg) if it is
between 500 and 800 (rtacc), and 0 otherwise. The cost, in turn, is given by the ratio of the current
cost due to VMs rental to the application budget (cf. Equation 5.23). Equation 7.1 summarizes
the y-axis function for a given measured response time (x), current architectural configuration (y)
and the total cost (z). α and β are weights valuing between 0 and 1. In this case, since it is an
arithmetic mean the values for these variables are determined as follows α = β = 0.5.

f(x, y, z) =
α ∗ (1− degperf (x)) + β ∗ (1− ydeg)

z
budget

(7.1)

As shown in Figure 7.5, the interval from the beginning of the experiments to 10 minutes of
execution the ratio is similar, since there is no difference in terms of architectural configuration
between the two runs. By the time of 10 minutes, we can observe a difference between the two
curves (with and without architecture elasticity (AE in the chart)), which can be explained by
the switching between architectural configuration in the application with architectural elasticity
enabled (cf. Figure 7.4). This can be explained by the difference between response time degrada-
tions in comparison to the architectural degradations. Moreover, when the application runs with
architectural configuration k2 (degraded mode) it consumes less resources with respect to config-
uration k1, which reduces the cost and thus increases the ratio. Figures 7.6(a) and 7.6(b) show the
effects taken by varying the values of α and β (weighted average) for the response time and archi-
tectural degradation. As expected, the higher the weight for the architectural QoS (complement of
architectural degradation) the lower the ratio, in the case of the run with architectural elasticity in
comparison to the run without architectural elasticity.
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Figure 7.5: Ratio of the Arithmetic Mean of Quality of Service to Cost.

7.1.3 Scale Down Scenario

This scenario consists in triggering an Energy Shortage event at the infrastructure level and observe
its impacts on the energy consumption as well as on the applications QoS. The objective is to
evaluate how applications (thanks to the architectural elasticity) and infrastructure are capable of
reacting to energy restriction situations.



138 Chapter 7. Experiments and Evaluation

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  10  20  30  40  50  60
 0

 50

 100
R

at
io

 Q
oS

 / 
C

os
t

W
or

kl
oa

d 
(r

eq
ue

st
s/

s)

Time (minutes)

With AE
Without AE
Workload

(a)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  10  20  30  40  50  60
 0

 50

 100

R
at

io
 Q

oS
 / 

C
os

t

W
or

kl
oa

d 
(r

eq
ue

st
s/

s)

Time (minutes)

With AE
Without AE
Workload

(b)

Figure 7.6: Ratio of Application Weighted Average Quality of Service to Cost for (a) α = 0.4 and
β = 0.6; and (b) α = 0.3 and β = 0.7.

Instance Name Arch. Configurations Budget

App1 {k1, k2} 1.5

App2 {k1} 1.5

Table 7.3: Application Settings for the Scale Down Scenario.

Setup

For this scenario we deployed two instances of the application described in Section 7.1.1. For one
instance we enabled both architectural configurations (k1 and k2) and for the other we enabled only
one (k1). For both instances the budget was fixed at 1.5, as shown in Table 7.3. This value was
defined to enable applications to request as much resource as necessary to cope with a workload
increase before receiving a scale down event. The duration of the experiment was of one hour,
during which the workload increases from 0 to 140 request per second, as depicted in Figure 7.7.
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Figure 7.7: Workloads for the Scale Down Scenario.

With respect to the infrastructure, we used a sub-set of 13 PMs of cluster sagittaire. Three
PMs to host the VMs for the managers’ and Clif servers’ and ten that were used to host the VMs
containing the applications themselves.

We performed several runs by changing the energy shortage degree, that is, the number of
PMs to be shutdown: 1, 3 and 5. The Energy Shortage event was scheduled to be triggered at
45 minutes of execution for all the three runs. The timeout before the IM shutdown the PMs was
fixed to 10 minutes.



7.1. Qualitative Evaluation 139

The objective is to observe both the reduction in the energy consumption as well as the capabil-
ity of applications adapting to a scenario of resource shrink. In order to evaluate both applications
(with and without architectural elasticity) in equal conditions, we modified the Energy Shortage
Analyzer (cf. Section 5.2.2) so that both applications had the same amount of resources shrank
instead of relying on the resource restriction rate (arrk ) of each application to determine which PMs
should be shutdown and consequently which VMs have to be released. Otherwise, one application
could have a bigger reduction rate in comparison to the other and the evaluation would thus be
compromised.

Results

Figure 7.8 presents the results of all the three runs. The first run (a), that is, when an Energy
Shortage event is triggered aiming at shutting down only one PM. More precisely, the chart shows
the average response time for the two application instances previously described (with and without
architecture elasticity (AE in the chart)). Not surprisingly, it does not affect the applications,
because the PM chosen does not host any VM and consequently no application components.

When three PMs have to be shutdown (Figure 7.8(b)), it is already possible to see the impacts
on the QoS. In fact, the application with architectural elasticity (AE in the chart) is able to adapt
itself in order to support the resource shrink and keep the ideal level of response time. However,
for the application without architectural elasticity, it does nothing but releasing the VMs required
by the IM to be released. As a result, the response time sharply increases from the moment the
Scale Down event is detected, even though it stays between the ideal and acceptable levels.

For the shutdown of five PMs (Figure 7.8(c)), on the other hand, the impacts on the applica-
tions’ QoS are more visible. Upon the detection of a Scale Down event, the application without
architectural elasticity exceeds by almost 100% the acceptable level of response time, while the
application with architectural elasticity remains on the borderline of the acceptable level.

Finally, Figure 7.9 shows the total power consumption of the infrastructure, before and after
the Energy Shortage event, for all the three runs (1, 3 and 5 PMs shutdown). It should be noticed
that the interval between the event detection (vertical line) and the decrease in the power con-
sumption is due to the timeout between the Scale Down notification to applications and the actual
shutdown of PMs, which corresponds to 10 minutes. With respect to the power consumption, it is
straightforward that the more PMs shutdown the lower the power consumption.

To sum up, this scenario is important to show how architectural elasticity can improve the
synergy between AMs and IM. As it is shown in Figures 7.9 and 7.8, it allows the IM to seam-
lessly cope with extreme situation at the infrastructure level (energy constraints) by minimizing
the negative side-effects at the application level (QoS).

7.1.4 Promotion Scenario - With Architectural Elasticity

This scenario consists in stimulating the creation of promotions over the infrastructure and observe
how they impact the current infrastructure incomes and power consumption. That is to say that the
objective is to evaluate how promotions are effective in improving the synergy between application
and infrastructure layers.

Setup

For this scenario we deployed four instances of the application described in Section 7.1.1, all of
them with both architectural configurations (k1 and k2) enabled, as it is shown in Table 7.4. For
two of them (App1 and App3) we restrained the budget to 2.0 whereas for App2 and App4, the
budget was restrained to 0.8. By doing so, we can force instances App2 and App4 to degrade its
architecture due to budget restriction (as shown in the budget-driven scenario in Section 7.1.2).
This is particularly interesting in this scenario, since those applications, under a certain work-
load, can only be upgraded (in terms of architecture) if a promotion that fits their budget is made
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Figure 7.8: The Average Response Time upon a Scale Down event for: (a) 1 Physical Machines,
(b) 3 Physical Machines and (c) 5 Physical Machines to Shutdown.
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Figure 7.9: Power Consumption upon an Energy Shortage Event.

available.

Instance Name Arch. Configurations Budget

App1 and App3 {k1, k2} 2.0

App2 and App4 {k1, k2} 0.8

Table 7.4: Application Settings for the Promotion Scenario (with Architectural Elasticity).

As it can be seen in Figure 7.10, we defined a different workload for each application. For
App1 and App3, it starts by increasing until it reaches its peak at 100 requests per second. After
few minutes, the workload of application App1 decreases to 65 requests per second, whereas the
one of App3 drops to 40 requests per second. Then, both of them stay like that until the end of the
experiment. The workload of applications App2 and App4, in turn, grows up to 35 requests per
second and stay constant until the end of the experiment. The intentions behind these variations
is to, in the case of applications App1 and App3, initially occupy spots in the infrastructure and
then release them in order to allow the creation of promotions. Regarding applications App2 and
App4 is to make them degrade their architectures forced by the budget constraints. Hence, they
can benefit of the promotions to upgrade their architecture as long as the promotions are valid.

With respect to the infrastructure, we used a sub-set of 20 PMs from cluster sagittaire. Five
PMs to host the VMs for the managers and Clif servers and 15 that were used to host the appli-
cations themselves. The condition to activate a promotion is expressed in Equation 5.6, which
states that the utilization rate of the given PM should be lower then a threshold Umin during tl
units of time. Thus, we fixed Umin to 0.6 and tl to 10 minutes. According to Equation 5.7, a PM
is shutdown if the resource utilization rate is equal to zero during at least tu units of time. We
then assigned tu to 25 minutes. That way, if one PM hosts at least one VM of class vm1 during
at least 15 minutes, a promotion will be created in that PM. If the PM is empty during at least 25
minutes, it will be shutdown. These parameters values allow that both the creation of promotions
and shutting down of PMs take place within the experiment time.

The experiment consists in performing several runs by varying some parameters related with
the promotion. First, we ran the scenario once with the promotions disabled, then run the scenario
several times by varying the discount rate (0.4, 0.5 and 0.6) given by the promotions. These runs
are summarized in Table 7.5. For all runs, we ran set up promotions to last 45 minutes. Hence,
there is enough time to observe what happens when a promotion is expired.

To sum up, the objective is to evaluate the impacts of the promotions on the infrastructure
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Figure 7.10: Workloads for the Promotion Scenario (with Architectural Elasticity).

Run Discount (%) Promotion Duration (minute)

1 w/o -
2 0.4 45
3 0.5 45
4 0.6 45

Table 7.5: Promotion Settings for the Promotion Scenario (with Architectural Elasticity).

provider incomes and energy consumption, while varying those parameters.

Results

This section describe the results obtained from the execution of the scenario detailed in the previ-
ous section.

Figure 7.11 shows the percentage of infrastructure income increase (y-axis) over the time (x-
axis). The percentage of income is determined through the ratio of each run with promotion to the
income obtained from the run without promotion. For all the runs, until 80 minutes of execution,
the incomes do not have any (positive or negative) difference in comparison to the run without
promotion. This can be explained by the fact that there is nothing different in the behavior (e.g.
promotions created) in all the runs. From 80 minutes on, it can be noticed an increase in the
incomes from 4.5% (for the run with discount rate 0.6) to 7% (for the run with discount rate 0.4),
which is explained by promotions taken by the applications App2 and App4 in order to upgrade
their architectural configurations. These promotions are created to fill up the free spots left by
applicationsApp1 andApp3, that is, after a workload increase (from 0 to 45 minutes of execution)
and a workload decrease (from 45 to 55 minutes of execution) and a time of inactivity, promotions
are created and thereby taken by applications App2 and App4. It should be also observed the
inverse relation between discount rate and income, which is to say that the more discount given
the less is the income.

Figure 7.12 shows the total power consumption (y-axis) over the time (x-axis). As all the
PMs are previously shutdown, the power consumption is near null at the beginning of the exper-
iment. Similar to the incomes, the power consumption increases (between 0 and 50 minutes) in
the same proportion as the applications’ workload (Figure 7.10). Also following the workloads,
after few minutes, it slightly decreases. Then, for all runs, the power consumption stays constant
until 90 minutes of execution and then it decreases again, which can be explained by PMs that
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Figure 7.11: Infrastructure Income Increase (%) with Respect to the Promotion-disabled Run (with
Architectural Elasticity).

are shutdown due to non-utilization. The power consumption stays constant until the end of the
experiment. Therefore, there is no difference of power consumption between runs, since there is
no PMs that are shutdown or started in one run which are not in another run. This is particularly
interesting because the power consumption stayed almost the same, while the incomes increased.
Furthermore, the created promotions allowed applications app2 and app4 to upgrade their archi-
tectures.
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Figure 7.12: Total Infrastructure Power Consumption (with Architectural Elasticity).

7.1.5 Promotion Scenario - Without Architectural Elasticity

The previous scenario is useful to show a situation in which both application and infrastructure
providers benefit of the promotion strategies. Indeed, degraded applications have the chance to
upgrade their architectures and infrastructure leases more VMs by optimizing the overall infras-
tructure utilization rate. However, there might be also situation in which no degraded applications
are ready to take a promotion. Moreover, there might happen that another application requests
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VMs regardless whether the VMs are on promotions or not. As a consequence, the infrastruc-
ture provider may waste money by giving promotions. On the other hand, the consumption of a
promotion for a non-architecturally-degraded application may also have a positive impact on the
infrastructure, since it may guide applications by proposing the kinds of VMs that are more suit-
able to the current state of the infrastructure. Thus, this scenario aims at evaluating the promotion
strategy without applications architecturally degraded and its impact on the VM placement and
consequently on the infrastructure power consumption.

Setup

For this scenario we deployed four instances of the application described in Section 7.1.1 (App1,
App2, App3 and App4), all of them with both architectural configurations (k1 and k2) enabled
and budget of 2.0.

In Figure 7.13, we define the workload for all the four applications. As it can be noticed,
applications App1 and App3 have the same workload, which starts with a positive ramp up to 100
requests per second. It stays constant for a short time before dropping to 60 requests per second,
where it stays until the end of the execution. The workloads of applications App2 and Apps4
start with a positive ramp until 35 requests per second. The workload of App4 remains constant
until the end of the execution, whereas the one of App2 increases at 65 minutes of execution to
60 requests per second, where it stays until the end of the execution. The reason for this varying
workloads is to promote the creation of promotions (triggered by workload decreases) as well as
their consumption by other AMs (triggered by workload increases).
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Figure 7.13: Workloads for the Promotion Scenario (without Architectural Elasticity).

With respect to the infrastructure, we used a sub-set of 20 PMs of cluster sagittaire. Four PMs
to host the VMs for the managers and Clif servers and 15 that were used to host the applications
themselves. The time and the condition to activate a promotion or to shutdown a PM are defined
identically to the scenario described in the previous section.

Similar to the previous scenario, in this scenario, we also performed several runs by varying
the discount rate given by promotions, namely 0.4, 0.5 and 0.6. The promotion duration was fixed
to 45 minutes.

Results

This section describes the results obtained from the execution of the promotion scenario without
architectural elasticity.
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In this context, Figure 7.14 shows the infrastructure income decrease (y-axis) over the time (x-
axis). The income decrease is determined by the ratio of the income obtained from the run without
promotion to the income obtained from each run with promotion. As expected, until 80 minutes of
execution, there is no difference of income among all the runs, since there is no special event (such
as a promotion created) to distinguish one run to the other. From 80 minutes on, however, there
is a decrease in the incomes of 2% (for the run with discount rate 0.4) and 3% (for the run with
discount rate 0.6). The decrease is due to the promotion on some VMs given by the infrastructure
provider to some applications. In fact, as the workload of applications App1 and App3 decreases
(by the time of 45 minutes), VMs are released and consequently free spots are left. In order to
fill up those resource free spots, the IM creates some promotions after a couple of minutes. The
promotions are taken by App2, when its workload increases (between 70 and 85 minutes). The
rest of the runs stay constant until the end of the experiment. It is noteworthy that the run with
promotion rate 0.4 behaves in a similar manner than the run without promotion. This is because a
discount rate at 0.4 for few number of VMs may lead to a price that is close to the regular price.
For example, two VMs of class m1 will cost 0.18 ∗ 2 ∗ 0.6 = 2.16, whereas a single VM of class
m2 costs 2.27.
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Figure 7.14: Infrastructure Income Decrease (%) with Respect to the Run without Promotion
(Without Architectural Elasticity).

Unlike in previous scenario, where the promotions make the IM have an income increase, in
this scenario, the IM have an income decrease (cf. Figure 7.14). In fact, in the previous scenario,
a set of architecturally degraded applications take promotions in order to be upgraded. Without
those applications, these promotions would never been taken. As a consequence, the IM leases
more VMs, even though for a lower price. In the case of this scenario (without architectural
elasticity), all applications have potential to get promotions due to their workload fluctuation.
Instead of taking promotions because they are degraded, they get them after a workload increase
and they would get VMs even if they were not in promotions (that is why we fixed the budget at
2.0). Therefore, the difference between VMs with and without promotion will make the IM have
a decrease in the incomes (due to the given discounts). On the other hand, promotions can be
useful to guide applications’ decisions in terms of class of VMs, that is, the IM can influence on
applications choice so as to have requests that are more appropriated for the infrastructure, that is,
that improves the utilization rate.

Figure 7.15 shows the total power consumption (y-axis) over the time (x-axis). The power
consumption is equal to zero at the beginning of the experiment, since all the PMs are previously
shutdown. Due to the workload increase of all the applications (between 0 and 50 minutes) and the
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decrease (at 60 minutes), the power consumption increases in the same proportion and few minutes
later decreases. By the time of 80 minutes, the power consumption differs according to the run,
which is to say that for the run without promotion and that with discount rate 0.4 (which does
not affect the promotions), it increases by following the workload of application App2 (Figure
7.13) and stays constant until the end of the experiment. For the rest of the runs, the power
consumption stays constant until the end of the experiment, which is explained by PMs that are
not switched on to accommodate the new requested VMs. Instead, applications are encouraged to
request VMs whose dimensions fit in the existing free spots in the infrastructure, avoiding more
PMs to be turned on. Figure 7.16 shows the difference between the total energy consumed by
the infrastructure with and without promotion during the almost 45 minutes of promotion. Not
surprisingly, there is almost no difference in the energy consumed by the run without promotion
and the run with 0.4 of discount rate, whereas in comparison to the runs with discount rates of 0.5
and 0.6 there is an energy saving of as much as 550kJ in the 45 minutes of promotion duration.
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enabled Runs.

It is straightforward that there is a trade-off between the best placement of VMs (and conse-
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quently a reduction on the power consumption) and the discount given by promotions. For that
reason, Figure 7.17 shows the normalized ratio of incomes (Figure 7.14) to the power consump-
tion (Figure 7.16). What is important to notice in this chart is the difference between runs, even if
it is small. More precisely the difference between the run without promotions and the ones with
promotion. During a good part of the experiment, the ratios of all runs have almost no difference
between them, except during the period of promotions (between 80 and 130 minutes). As it can
be seen, the difference increases as the discount rate decreases, apart from the run with discount
rate 0.4 in which applications behave exactly as if there were no promotions. It is also important
to remark a small increase of the ratio in the runs with promotion, by the time of 130 minutes,
which is due to the end of the promotions, when VMs on promotion become at full price again,
increasing the incomes and thereby the ratio.
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7.1.6 Discussion

This section provides some discussion regarding the results obtained from the experiments de-
scribed in the previous sections, whose main objective is to evaluate the effectiveness of the ap-
proach proposed in this thesis work in terms of QoS at application levels and energy efficiency at
the infrastructure level.

The budget-driven architectural elasticity scenario focused at the application level. More pre-
cisely, it was used to exploit the capability of adaptation of applications when faced to constrained
situation (such as a budget constraint) to cope with the runtime context (increase in the workload).
The results show that the architectural elasticity is very effective to make the application more flex-
ible and therefore more able to adapt to that kind of situation. Moreover, it succeeds in keeping a
better ratio of the QoS to the cost due to renting fees. Indeed, the architectural elasticity becomes
an alternative of adaptation other than just a resource capacity elasticity (request and release of
virtual resources).

Likewise, the scale down scenario also focused at the application level as well as at the infras-
tructure level. In fact, the idea was to observe the synergy between levels, which are promoted
by the event-based autonomic protocol proposed in Chapter 5. As the results showed, the archi-
tectural elasticity plays an important role in this kind of scenario, where applications are faced
to extremely constrained situations in terms of resources. In fact, the resource capacity elasticity
alone is not able to cope with those restrictions so as to keep a certain level of performance QoS
for all the existing application users. At the infrastructure level, the synergy enables the IM to



148 Chapter 7. Experiments and Evaluation

nicely communicate with AMs. As a result, the IM may cope with an energy shortage period
while mitigating the impacts at the application level.

With respect to the existing work, some focus only at the infrastructure level [FRM12, HLM+09,
LLH+09, BB10] by optimizing the placement of VMs, whereas in this thesis work we take into
account both levels: application and infrastructure. Other work proposes resource elasticity ap-
proaches to cope with varying workload [AB10, Fer11, VTM10, APTZ12, PCL+11]. Some of
them [APTZ12] try to establish a trade-off between response time and rejected requests (by us-
ing admission control techniques). Others [VTM10, PCL+11, Fer11], take into consideration the
Service-Level Agreement to degrade the performance of applications whenever it is possible to
improve the energy consumption. However, only admission control may not be enough when
applications need to keep a desired level of performance, which is to say that it could be more in-
teresting to answer all the requests but with a certain functionality or even a non-functional aspect
of the application disabled. In this case, the architectural elasticity is imperative to accomplish
such a level of flexibility. Existing works, such as [MFKP09, GDA10], consider applications as a
composition of services that can be reconfigured at anytime so as to adapt to a certain situation. In
both cases, applications and infrastructure are managed together as if they were part of the same
system, which is not applicable to a cloud scenario, if we assume that cloud infrastructure and
applications are managed by different actors, as we assume in this thesis work. That way, the ben-
efits of the architectural elasticity along with the resource elasticity can be fully exploited thanks
to the synergy provided by the event-based coordination protocol.

Regarding the promotion scenarios, the focus was more at the infrastructure level, since the
promotion strategies aim to optimize the placement of new requested VMs so as to make the
infrastructure more energy efficient. The results showed that this kind of strategy may be very
interesting to have some control on applications’ behaviour in terms of requests on resources.
Promotions may give degraded applications the opportunity to upgrade their architectures, while
making the infrastructure more energy efficient. Furthermore, the interleave of workload variation
phases may lead to the creation and consumption of promotions, which in turn, leads to AM
decisions in terms of resources that are more appropriated to the IM. Although the results showed
that it is possible to gain in energy efficiency, while applying promotion strategies, this thesis
work does not go further into an economical model for pricing VMs. Moreover, we do not rely
in any specific model to determine when, for how long, and for how which price promotions
should be created. We believe that this involves more advanced studies in the domain of revenue
management such as yield management [TvR05] in which a service provider tries to maintain
a certain level of control on consumers behaviour according to the demand and some pricing
policies. We provide further discussion about this in Section 8. Recent work [CPMK12, ISBA12]
deal with the cloud infrastructure from the perspective of a marketplace, in which prices may
also fluctuate. Generally, the objective is to fairly determine the price of VMs according to some
variable costs such as the energy consumption. In this thesis work, instead, the promotion strategy
is adopted in order establish a synergy between applications and infrastructure and thus make
applications to take better decisions for the infrastructure’s current state. Hence, decisions taken
at one level may impact positively at the other level.

7.2 Quantitative Evaluation

This section presents and discusses some results obtained from simulation-based experiments to
show the feasibility of our approach in terms of scalability. First, we present the simulation results
for the synchronization and coordination protocol of the multi-autonomic management approach
proposed in this work (see Section 5.1). Then we present the results from experiments on the
optimization problems modeled in constraint programming (CP)[RVBW06] in Sections 5.2.3 and
5.2.2.
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7.2.1 Synchronization and Coordination Protocols

The main objective is to show the feasibility of our approach in terms of number of autonomic
managers working simultaneously and interacting with each other. Firstly, we describe the exper-
iment setup in terms of environment, autonomic manager configurations. Then, we present the
results obtained from the simulations and finally we provide some discussion about them.

Experimental Setup

The experiments were performed on a machine with the following configuration: Intel Core 2 Duo
processor, 4GB DRAM, Mac OS X Lion operating system. In order to simulate the autonomic
manager, we implemented a simplified version of the prototype presented in Chapter 6. The idea
was to build a lightweight piece of software able to simulate locally the coordination and synchro-
nization of autonomic managers. In other words, the common autonomic framework presented
in Section 6.1 was extended with the same events and actions defined for the AM and IM. Each
autonomic task consists of a sleep command that simulates its execution time. The programming
language used to implement it was Java 6.

The execution time for each task of each MAPE-K control loop j was fixed as follows: T jA =
2 ∗ T jP and T jE = 3 ∗ T jP , that is, the execution time for the analysis task is twice that of
the planning task, whereas the execution time of the execution task is three times the one of the
planning task. For sake of simplicity we assigned the same execution time values for all the
autonomic tasks. More precisely, for all AMs and IM T amA = T imA = 200ms ± ǫA, T

amP =
T im

P
= 100ms± ǫP and T amE = T imE = 300ms± ǫE , where ǫA, ǫP and ǫE means a variation

of more or less at most 20% of the value.
We chose those proportions because we understand that execution task is the most time con-

suming, since it requires to communicate with the managed system. Actions for deploying com-
ponents, creating a VM, among others, may indeed take a lot of time to execute. The analysis task
often involves combinatorial optimization and may also take a long time. The planning task may
also involve some combinatorial optimization, but less costly than the analysis task, since it often
works with a more restrained search space (already restrained in the analysis task). In fact, those
values in isolation are not necessarily important. The most important is the timing configuration
of the entire autonomic manager, since the timings can determine the rate a given manager is able
to treat a given event.

We generate the arrival rates for the endogenous events based on a Poisson distribution. Table
7.6 shows two classes of arrival rates used in the experiments: high and low. As it can be seen,
we assigned higher probability values for Workload Increased, Workload Decreased and Low PM
Utilization in comparison to Unused PM and Energy Shortage. This is because the three first
events are more likely to happen in comparison to the two last ones. The event Promotion Expired
was omitted in these settings, since its behaviour is similar to a Workload Decreased event.

Workload Workload Low PM PM Energy
Class Increased Decreased Util. Unused Shortage

High 0.1 0.1 0.1 0.05 0.01
Low 0.05 0.05 0.05 0.025 0.01

Table 7.6: Arrival Rates for Endogenous Events.

When the AMs detect a Workload Increased event, the probability that the result of the anal-
ysis task requires a Request VMs interloop action is fixed to 70% (i.e. ρwi(modif) = 1 and
ρwi(interloop) = 0.7). Idem for a Workload Decreased event, i.e. the probability that the
analysis tasks results in a Release VM interloop action is fixed at 70% (ρwd(modif) = 1 and
ρwd(interloop) = 0.7). That way, we stimulate more the communication inter autonomic man-
agers, instead of simulating more actions on the managed system, which does not have a significant
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impact on the global system. Similarly, when they receive a Renting Fees Changed event, the prob-
ability that the result of the analysis task requires a Request VMs interloop action was fixed at 30%
(i.e. ρrfc(modif) = 0.3 and ρrfc(interloop) = 1), that is, in 70% of the cases the autonomic
manager processes this kind of event and terminates in the analysis task, because AMs rejects the
proposed promotions. The others events are treated in a deterministic way (i.e. ρi(modif) and
ρi(interloop) are equal either to 0 or 1) according to the sequence of autonomic tasks and actions
resulting from a given event (cf. Figures 5.8 and 5.6).

Regarding the public knowledge, we defined a single public knowledge referring to the renting
fees, and a single critical section corresponding to all the promotions. Moreover, AMs request
tokens in a blocking way before the analysis for processing Workload Increased and Renting Fees
Changed events. We define a single critical section with the purpose to evaluate the cost of the
synchronization on the overall autonomic managers performance and as a consequence the system
scalability.

We perform several runs while varying the number of AMs: 10, 20, 30, 50 and 70. The idea
is to observe how the variation of the arrival rates and number of AMs can affect the system
performance (e.g. the token waiting time and events processing time). The objective was to
performe simulation-based evaluations regarding the system stability and scalability when dealing
with an increasing number of autonomic managers.

7.2.2 Results

Stability

Figure 7.18 shows the average token waiting time Tlock evolution in time. Each line corresponds
to one run regarding a different number of AMs in the system. When dealing with low arrival rates
(Figure 7.18 (a)), for 50 and 70 AMs, Tlock increases until it reaches a peak and stabilizes after-
wards. It means that the token manager waiting queue reaches its longest size, and keeps serving
at a more or less constant rate. For 10, 20 and 30 AMs, Tlock remains always under 10000ms.
When dealing with high arrival rates (Figure 7.18 (b)), we can observe a similar behavior for all
the curves. Notice that Tlock rapidly increases for the highest numbers of AMs (i.e. 30, 50, 70)
and stabilizes afterwards.

Scalability

Figure 7.19 presents the evolution of the event processing time (T ji , for autonomic manager j and
event i) when varying the number of AMs in the system. Not surprisingly, Workload Increased,
Renting Fees Changed, Scale Down and Workload Decreased trigger the most time consuming
processes, since the two first ones might be followed by a token request, which may lead to a
sharp increase of the token manager queue. The two last ones may stay stuck waiting until the
others have finished.

Discussion

With respect to the stability, there might be high token waiting times as the arrival rates approach
the service rate (frequency in which an autonomic manager can process an event). For instance,
a high rate of the Workload Increased event along with a high number of concurrent AMs may
produce a token arrival rate that might exceed the token manager service, leading to an infinite
growth of the token manager queue. However, as long as the arrival and service rates are well
balanced, the token waiting time always tend to stabilize. Alternatively, as mentioned in Section
5.2.3, another solution is to partition the public knowledge in several critical sections, each one
requiring a different token, which are requested in an opportunistic (i.e. in a non-blocking way).
Given that there is no blocking calls, there is no waiting time.

Conversely, the number of AMs along with high arrival rates may have a negative impact on
the system scalability. For instance, for events that depend on a token, a long token waiting time



7.2. Quantitative Evaluation 151

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  20  40  60  80  100A
ve

ra
ge

 T
ok

en
 W

ai
tin

g 
T

im
e 

(m
s)

Time

10 20 30 50 70

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  20  40  60  80  100A
ve

ra
ge

 T
ok

en
 W

ai
tin

g 
T

im
e 

(m
s)

Time

10 20 30 50 70

(b)

Figure 7.18: Average Token Waiting Time for (a) Low and (b) High Arrival Rates.

may lead to long event processing time. Thus, the more AMs the longer the token waiting times
and consequently the event processing times. Again, by adjusting the arrival rates and the number
of AMs in the system properly, the system can be scaled with respect to the number of AMs and the
frequency of requests produced by them (resulting from the coordination). Although the control
of exceeding arrival rates has not been tackled in this work, we believe that admission control
techniques [WKGB12], along with event prioritization / preemption policies, can be effective to
implement it (cf. Chapter 8).

Existing work proposed the use of multiple autonomic managers in the context of cloud com-
puting [KCD+07, RRT+08, KLS+10, MKGdPR12]. In [RRT+08], the autonomic managers are
restrained to the infrastructure management, whereas in our proposal the autonomic managers are
associated to both applications and infrastructure. In [KCD+07], there is a tight-coupling informa-
tion sharing which makes the problem management in each layer very dependent to each other. In
this work, instead, we proposed an event-based coordination protocol and a synchronized public
knowledge that shares only the essential information without giving any details about the infras-
tructure runtime context. In [KLS+10], a synchronization algorithm and a coordination protocol is
proposed to make several autonomic managers (at both application and infrastructure levels) work
together to reduce the power consumption at the infrastructure and improve the QoS of applica-
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Figure 7.19: Per-Event Processing Time for (a) Low and (b) High Arrival Rates.

tions. The power management, as in other works [WW11], consists in adjusting the right level
of Dynamic Voltage Frequency and Scaling (DVFS) of PMs, whereas in this work it supposed
that the entire PMs can be shutdown, which can be more effective in terms of energy savings.
However, in our work, the idea of consensus among autonomic managers to decrease their QoS
and then decrease the power consumption is not taken into account. Instead, we suppose that the
power consumption is decreased either as a consequence of an unexpected event (energy shortage)
or by the creation of promotions that guide applications decision. In [MKGdPR12] a synchroniza-
tion model is proposed to avoid conflicting actions (such as performance and power consumption)
in a multi autonomic manager environment. However, in that work, as in other works such as
[CFF+11], the scenario presented consists in only one application and one infrastructure. In this
thesis work, we consider a multi-application environment, each one equipped with its own au-
tonomic manager. This is more suitable in multi-vendor/clients environments such as in cloud
computing. Although conflicting actions or events can be sometimes avoided because of the syn-
ergy created either by the coordination protocol (e.g. energy shortage) or by the public knowledge
(e.g. promotion strategies), in order for the proposed approach to be effective in resolving con-
flicts, it would be necessary more advanced scheduling policies and transactions mechanisms so
as to allow to preempt current event treatment in MAPE-K control loops. These issues are left as
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future work (cf. Chapter 8).

7.2.3 Optimization Problems

In this section, we present the performance evaluation of the solvers implemented to deal with the
optimization problems of each autonomic managers’ analysis task. The objective is to show how
they scale by exposing the limitations of CP. First, we describe the experimental setup, then we
present the results obtained from all executions and finally we provide some analytical discussion
about them.

Setup

Execution Environment. We performed the experiments on a machine equipped with an Intel
Core 2 Duo processor, 4GB DRAM and Mac OS X Lion operating system. As previously men-
tioned in Chapter 6, all the solvers were implemented in Java 6 and Choco 2.0 [Tea10] was used
as CP solver engine.

Infrastructure. For this evaluation, we consider that the infrastructure is composed of a set of
homogeneous PMs P such that pmi ∈ P pmcpu

i = 4 and pmram
i = 4. With respect to the

VM classes, we defined the set M = {m1,m2,m3}, where mcpu
1 = 1, mram

1 = 1,mcost
1 =

0.18,mcpu
2 = 2, mram

2 = 2, mcost
2 = 0.27, mcpu

3 = 4, mram
3 = 4 and mcost

3 = 0.45.

Application. Regarding the application definition, which is used for the Architecture and Ca-
pacity Planning Problem, we defined it several times by varying the number of components. We
specified the needs of the application in terms of resources and the budget in a way that it could be
possible to fix a number of VMs of each class that a component can be assigned to. We defined the
number of architectural configurations at one, since it does not change the algorithm performance.
On the contrary, the decision variable for the configuration propagates the constraints associated
to the constituent components, which may restrain the search space. Idem for the promotions.

Problems. In this experiment, we focus on the optimization problems that were modeled and
solved with CP (cf. Sections 5.2.3 and 5.2.2). Other analysis problems that does not rely on
CP such as the planning algorithms were not evaluated since they are not related to optimization
and can be solved (although not optimally) in polynomial time. More precisely, we focus on the
following problems:

• Virtual Machine Placement Problem. The VM placement problem is implemented as a
VM packing problem, in which a number of VMs should be placed in a number of PMs so
that the number of PMs is minimized. The idea is to run the solver several times by varying
the number of VMs to be placed and the number of hosting PMs. The VMs were created
according to the following proportion: 50% of class m1, 35% of class m2 and 15% of class
m3. Hence, since the great majority of VMs are from class m1 (smallest) and m2 (middle),
we stimulate a high consolidation rate of VMs in PMs while keeping the heterogeneity in
terms of VM class (3, in this case). It is important to say that the consolidation rate interferes
directly in the search space size and consequently the solving time.

• Energy Shortage Problem. The energy shortage problem consists in, given a number of
PMs to shutdown, determining which ones should actually be shutdown. It is important to
mention that the choice for the PMs to be shutdown and consequently their hosted VMs
is done in a way all applications have their resources shrank while meeting their resource
restriction rate (cf. Section 5.2.2). The experiment consists in running the solver several
times by varying the number of PMs that need to be shutdown, the number of clients and
the total number of PMs (500, 1000, 2000 and 4000). For this purpose, we define four
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runs (Table 7.7) that specifies the value of each parameter (number of clients and number
of PMs to shutdown) in function of the total number of PMs in the infrastructure. That
means that for 500 PMs, the run r1 will evaluate the solver for 50 PMs to be shutdown and
5 applications. The infrastructure was created to be fully utilized with 50% of VMs of class
m1, 35% of VMs of class m2 and 15% of VMs of class m3. Lastly, the resource constraint
rate are assigned equally to all the applications according to the percentage of PMs to be
shutdown. In addition, we add a small positive margin (Table 7.8) to the resource restriction
rate according to the number of applications so as to avoid over-constrained problems and
consequently very long execution times. In other words, we leave a margin between the
percentage of resource each application accepts to release and the amount of resources that
has to actually be shutdown.

Run Shortage Percentage Applications Percentage

r1 0.05 0.01

r2 0.1 0.02

r3 0.2 0.05

r4 0.5 0.1

Table 7.7: Energy Shortage Parameters.

• Architecture and Capacity Planing Problem. This problem consists in determining the
minimum amount of resource necessary to host the application’s component so as to min-
imize its degradations in terms of both performance and architecture. (cf. Section 5.2.3).
The experiment consists in running several times the solver by varying the number of com-
ponents (from 2 to 30) as well as the number of VMs of each type that each component can
be assigned to (10, 20 and 30).

Results

This section presents the results obtained from the execution of the experiment described in the
previous section. In order to avoid inconsistent results, we performed ten executions for each
experiment and calculated the average of the value resulting from each execution. The rest of the
section presents the evaluation results for each problem mentioned in the previous section.

Virtual Machine Placement Problem. Figure 7.20(a) shows the execution time (y-axis) for the
VM packing problem when varying the number of VMs to be placed and hosting PMs (x-axis).
Not surprisingly, the execution time grows exponentially according to the number of VMs and
PMs, although some useful optimizations techniques such as symmetry (cf. Section 2.4) are inter-
nally implemented and shipped within Choco. The results are expected because the VM packing
problem is an instance of the NP-hard bin-packing problem [JGJ97b]. However, the VM packing
problem is useful when migration is taken into account during the adaptation process, otherwise

Number of Applications Margin

5 0.01

10 0.02

20 0.03

50 0.05

100 0.06

200 0.07

Table 7.8: Energy Shortage Constraint Margins.
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the VMs can only be removed from their original hosting PMs to be destroyed. Thus, the VM
placement problem can be seen as a more restrictive instance of the VM packing problem, in
which the existing VMs cannot be removed from its original place. As consequence it reduces
significantly the search space and thereby the solving time. Figure 7.20 (b) shows the solving time
for the virtual machine placement problem when increasing by 50 the number of placed VMs in
1000, 2000 and 4000 PMs. As it can be noticed, the solving time decreases as the number of
placed VMs increases. Although these delays can be accepted for small or medium-sized infras-
tructures, it becomes infeasible for huge (tens of thousands of PMs and VMs). One alternative
can be to partition the infrastructure in a hierarchical way so as to reduce the number of PMs to
be managed for each partition [FRM12, BB10]. Alternatively, a decentralized and collaborative
approach [QLS12] seems to be very promising for this kind of problem.
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Figure 7.20: The Solving Time for (a) the Virtual Machine Packing Problem and (b) The Solving
Time for the Virtual Machine Placement Problem.

Energy Shortage Problem. Figure 7.21 shows the solving time (y-axis) for the energy shortage
problem, when executing the runs specified in Table 7.7 (x-axis). As it can be seen, the solver for
the energy shortage problem sharply grows as the number of PMs involved also increases, which
is logical since the number of PMs is proportional to the search space. Regarding the number of
PMs to shutdown and the number of clients, we can notice that the solving time also grows when
those parameters increase. In fact, the more clients more difficult it is to find a solution that meets
the resource constraint rate of each client. Similar to the VM placement problem, the solving
time can be considered acceptable for small and medium-sized infrastructures, even with a drastic
shortage (e.g. that requires 50% of PMs to be shutdown). One alternative to outperform these
results can be to loose (decrease) more and more the resource constraint rates associated to each
application. In other words, to always try to have resource constraint rate that gives a good margin
of difference (bigger) from the amount of resources that should be shutdown. As a consequence,
more solutions will be available and thus reducing the solving time.

Architecture and Capacity Planning Problem. Figure 7.22 shows the solving time for the
component and capacity planning problem (y-axis) when varying the number of components (x-
axis) and the number of possible VMs of each type per component. Given that this problem is
also an variant of the NP-hard bin-packing problem, the solving time grows exponentially as the
number of components increases. In fact, every additional component corresponds to q (number
of VM classes) more variables to take into account in the problem solving process. Moreover,
when increasing the number of VMs (of each class) a component can be assigned to, there is an
increase in the domains of each decision variable of the problem, which consequently leads to an
explosion of the search space size. Although some of the delays may seem too long, for small and
mid-sized applications (15 to 20 components), a solving time of 20 seconds or even more can be
considered acceptable in some cases, depending on the reactivity frequency of the AM required
by the managed application.
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Discussion

This section showed some performance results of the CP solvers in terms of performance. Many
of problems dealt by CP are related to combinatorial optimization and thus are difficult to solve in
a reasonable time for large inputs. Even though, for the three problems presented in this section,
thanks to some optimizations implemented internally in the solver engine (e.g. symmetry and
propagation) or externally (e.g. domain restrictions), we obtained acceptable results for small
and medium-sized applications and infrastructure, while taking the advantage of not bothering
about the solution process. Indeed, the declarative way in which the problems are expressed (in
terms of variables and constraints) eases the maintainability and extensibility of the solvers. As
a consequence, common problems in optimization solutions such as side-effects can be avoided.
Other advantages of CP such as reuse and composition of constraints should also be highlighted.

With respect to existing work, [FRM12, HLM+09, LLH+09, BB10] proposed solutions to
perform multi-dimensional bin-packing to perform server consolidation and therefore make the
infrastructure more energy efficient. As showed in the virtual machine placement problem evalua-
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tion, we perform VM placement, instead of a pure VM packing. Although a VM packing allows a
higher degree of energy efficiency, we decided not performing it in order to avoid VMs migration
overheads. Instead, we rely on promotion strategies (see Sections 7.1.4 and 7.1.5) so as to increase
the synergy between applications and infrastructure and consequently improve the infrastructure
utilization rate.

Concerning the architecture and capacity planning problem, we extended the constraint pro-
gramming model proposed in [VTM10] so as to take into account several architectural configura-
tions as well as promotions.

7.3 Summary

This chapter presented two experimental evaluations on the approach proposed in this thesis work.
Firstly, we presented a qualitative evaluation, whose objective was to show the effectiveness

of the approach at both the application and infrastructure levels. To this end, we implemented
a dynamic and reconfigurable service/component-based application equipped with architectural
and resource capacity elasticity. The application was deployed on a real experimental infrastruc-
ture and exercised with a load injector to simulate the clients’ behaviour. In order to evaluate the
approach effectiveness in terms of quality of service and energy consumption, the experiments
were driven by three scenarios. The first one aimed at showing the benefits of the architectural
elasticity when dealing with constrained configurations, more precisely with a budget-constrained
situation. The second scenario is also related with the capability of applications to adapt them-
selves to constrained environments. More precisely, applications are faced to energy shortage, in
which part of the infrastructure should be switched off. For both scenarios, the results showed the
importance of the architectural elasticity to cope with both budget and energy constraints, since
applications equipped with architectural elasticity manages to maintain the performance quality
of service for the same workload in comparison to applications without architectural elasticity.
Hence, the coordination protocol along with the architectural elasticity may significantly con-
tribute for an improvement in the synergy between applications and infrastructure providers, since
the infrastructure providers succeeds in dealing with constrained situations (energy shortage) while
mitigating the impacts at the application level.

The third scenario aimed to show the effectiveness of the public knowledge and promotions at
the infrastructure manager in improving the synergy between applications and infrastructure. The
results showed that this strategy can improve the synergy in the sense that applications’ behaviour
in terms of resource request may be driven by the creation of promotions. As a consequence, the
decisions in terms of computing resources to request are more suitable for the infrastructure’s cur-
rent state with respect to the optimality of resource utilization and consequently energy efficiency.

At last, we presented a quantitative evaluation, in which we showed how some critical algo-
rithms and protocols scale in terms of time. For that purpose, we performed two kinds of exper-
iments: one to evaluate the multi-autonomic management model and its protocols and another to
evaluate the optimization problems related to the analysis task of both application and infrastruc-
ture managers. Regarding the multi-autonomic management approach proposed in this work, we
implemented a simulator in order to evaluate the system scalability and stability when varying
the number of application managers. As in any synchronized system, there is a non-neglect cost
implied by the control of the concurrent access to critical sections of the public knowledge. Even
though, the system stabilizes after sometime and depending on the arrival rates of events (in both
managers), the delays for acquiring a token or to treat an event can be considered acceptable. Fi-
nally, with respect to the optimization solvers, we executed several times the solvers implemented
with constraint programming while varying the input data. Although the limitations related to
scalability of NP-hard problems such as bin-packing problem as well as the limitations of generic
and declarative approaches like constraint programming, the experiment yielded acceptable de-
lays for small and medium-sized infrastructures (number of physical and virtual machines) and
applications (number of components and virtual machines).
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In conclusion, this chapter showed the feasibility of the approach proposed by this thesis work
not only with respect to the improvement of the synergy between applications and infrastructure
providers, and its consequences on the quality of service and energy efficiency, but also with
respect to the scalability, although the complexity of the problems tackled.



8
Conclusion

This chapter concludes this thesis work by firstly revisiting the problem statement, then by sum-
marizing the main contributions yielding from this research and finally by pointing out some per-
spectives emerged from these contributions.

8.1 Problem Statement Revisited

Over the past years it has been noticed a drastic increase of the energy consumption due to infor-
mation technology (IT) infrastructures, which can be explained in part by the popularization of
internet and the wide adoption of recent internet-based service models like cloud computing. On
the one hand, cloud models relies on 24/7-available and limitless resource provisioning principle,
which may lead to high levels of consumption, even if there is no need for that i.e. if the demand
for a given service is way lower than its capacity. On the other hand, the flexibility of the on-
demand provisioning made by cloud services can also contribute for a better service dimensioning
and consequently the reduction of energy consumption. In fact, the mutualization of physical
resources, which is possible thanks to techniques like virtualization, along with autonomic com-
puting concepts enable not only infrastructures to self-manage so as to improve their utilization
rate, but they also allow applications to self-manage by dynamically adjusting their needs in terms
of resource according to their demands. In spite of that, autonomic decisions taken in isolation at
one level may impact negatively systems running at other levels. For example, due to energy con-
sumption purposes, an autonomic manager at the infrastructure level may decide (or be obliged)
to shutdown part of the physical infrastructure. It is straightforward that this behaviour may affect
the applications hosted on it. In fact, the lack of explicit synergy between managers along with
the lack of flexibility of managed systems may compromise managed systems’ QoS. For instance,
in extreme cases such as energy shortage at the infrastructure level, applications may be asked or
even forced to release part of the resources allocated to it. Scenarios like that may dramatically
impact the running systems if there is no proper interface to promote a synergy between managers
nor if the system is not capable of self-adapting in order to absorb that level of restriction.

8.2 Summary of Contributions

This thesis proposes a multi-autonomic management approach to improve QoS in cloud applica-
tions and the energy efficiency in cloud infrastructures. This section summarizes the main contri-
butions made by this approach.
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Architectural Elasticity for Cloud Application. Besides the resource capacity elasticity en-
abled by cloud infrastructure in which cloud applications are able to dynamically scale up and
down, we also proposed another level of flexibility, namely architectural elasticity. The architec-
tural elasticity refers to the capability of cloud applications to dynamically change its architectural
structure in order to cope with a given constraint in terms of budget or computing resources. This
flexibility was achieved due to two main factors: (i) the inherent modularity nature of component-
based applications, in which one can define applications in terms of modular pieces of software
that can be easily deployed, replaced and composed along with other pieces; and (ii) reflective
techniques, which enable application to introspect (to navigate through) and intercede on (to mod-
ify) their own structure at runtime. That way, cloud applications are defined in terms of com-
ponents that can be dynamically, deployed, bound or replaced with the purpose to face runtime
changes.

We validated this contribution over a budget constraint and a resource/energy shortage ex-
perimental scenarios. The results showed the importance of the architectural elasticity to keep a
certain level of performance QoS during such extreme situations.

Autonomic Model for Multiple Autonomic Managers. In order to get several autonomic man-
agers working in a coordinated and synchronized fashion, we proposed a multiple autonomic
management model, in which several MAKE-K-like control loops are able to communicate in a
synchronized way. The model consists of a coordination and a synchronization protocols. The
coordination protocol is a message-oriented protocol based on events and actions in the context
of the managed system as well as exchanged among several autonomic managers. This protocol
prevents managers to stay blocked waiting for other managers’ responses. The synchronization
protocol is necessary to keep data consistency in public knowledge critical sections. So, we relied
on a token-based protocol in which one token per critical section is distributed at a given time in
order to control the concurrent access to it.

Simulation-based results have shown that this model can be feasible (in terms of stability and
performance) for a reasonable number of autonomic managers. However, the synchronization
mechanism comes at a price: when the number of autonomic managers increases the token ac-
quisition waiting time and consequently the management reaction time (time during which events
are processed) also increases in the same proportion. This problem was tackled by adopting an
opportunistic approach, that is, instead of waiting for a token, autonomic managers rather get it
only if it is available. As a result, there is no more waiting times and the system becomes more
scalable.

Application and Infrastructure Managers for the Cloud. Following the autonomic model
described in the previous item, we proposed a multiple autonomic management architecture in the
context of cloud computing. This architecture is composed of several application managers (AMs)
and one infrastructure manager (IM). At the infrastructure level, the IM is in charge of managing
the resource lease of a set of physical machines (PMs). It relies on virtualization techniques
to deal with AMs requests on resources in a dynamic manner. Meaning that virtual machines
(VMs) are requested and released on the fly while the IM takes care of placing them in a way
the infrastructure utilization rate and consequently the energy efficiency are optimized. At the
application level, a per-application AM is responsible for managing a set of existing components
and the way they can be composed (architectural elasticity) as well as the required amount of
resources (resource capacity elasticity) for them to maximize the application QoS. To this end, it
relies on the flexibility made by both the architectural and resource elasticity so that to not only
reconfigure the application’s internal structure (e.g. components, bindings) but also to request and
release VMs to/from the IM as needed.

We implemented a research prototype encompassing both managers. This research prototype
has been used to qualitatively and quantitatively evaluate this thesis work.
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Synergy between Applications and Infrastructure. The proposed autonomic model mentioned
before relies on an information sharing approach in order to facilitate the synergy among auto-
nomic managers. In the context of the AMs and IM, we defined a public knowledge that refers
to the resource renting fees. More precisely, we proposed two kinds of renting fees, a static one,
that is, they do not change over the time; and a dynamic one, that may vary according to the in-
frastructure context. The dynamic renting fees, in this thesis called promotions, are created with
the purpose to stimulate AMs to consume this resource and consequently occupy a portion of the
infrastructure that is not being used. The promotion strategy enables a certain level of influence of
the IM over the decisions taken by the AMs, even if those autonomic managers manage systems
from different vendors or located in different layers of the cloud stack. As a consequence, the
actions performed by the AMs may be more suitable to the infrastructure.

Apart from the public knowledge based synergy, autonomic managers can also benefit of the
coordination protocol to establish a more explicit synergy by means of communication interfaces
(actions and events). For example, in periods of energy shortage, the IM asks some AMs to release
a certain amount of resources, which, thanks to the architectural elasticity, may be manageable by
the concerning AMs. As a result, the explicit synergy along with the architectural elasticity make
the IM flexible enough to cope with extreme situation in a seamless way.

The proposed synergy approaches were experimentally evaluated. In the case of the public
knowledge based synergy (promotion), it was noticed a gain in either the infrastructure utiliza-
tion rate or the infrastructure total energy consumption. In the case of the synergy based on the
communication interfaces, it was observed an improvement in the seamlessness of adaptations. In
fact, because of this level of synergy between AMs and IM, applications involved in an extreme
scenario (e.g. energy shortage) were able to cope with this scenario while minimizing the impacts
on their QoS.

Constraint Programming Based Solvers for Optimization Problems. The analysis task of
each autonomic manager is implemented by one or more optimization problems. We proposed
a constraint programming (CP) model and solver for each problems above mentioned. CP is a
technique to model Constraint Satisfaction and Optimization Problems, in which a problem is
described in terms of variables, domains and constraints on these variables. Given a problem
description, a general purpose solver engine takes care of solving it. The descriptive way in which
problems are modeled frees modelers from the burden of developing a specific solver for each
problem. Furthermore, this loose coupling between solver and description besides of allowing the
re-use and composition of existing constraints, also improves maintainability and extensibility of
existing models.

Nevertheless, that level of generality and descriptiveness to model and solve optimization
problems comes at the expense of scalability limitations. For this reason, we performed scalability
experiments on each one of the proposed solvers in order to expose their limits. The results showed
that solvers are able to provide reasonable solving time for small and mid-sized applications and
infrastructures.

8.3 Perspectives

This research work has succeed in addressing the issues already pointed out all over this docu-
ment. Some of the previously presented contributions arose interesting and promising research
perspectives. This section provides some discussion on them.

Message-oriented Middleware Implementation. In this thesis work, we implemented a message-
oriented autonomic framework in order to allow the communication among several autonomic
managers. Although it was conceptually defined to rely on a message-oriented middleware (MOM),
the communication protocol was implemented in a ad-hoc manner over Hypertext Transport Pro-
tocol (HTTP). We believe that a MOM broker would ease the communication management in the
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sense that it would make the communication details transparent for autonomic management peers.
The implementation of a broker-based communication is an on-going work.

Adoption of Other Component-based Framework. This thesis work relied on Service Com-
ponent Architecture (SCA) to implement component-based cloud applications and thus enable
architectural elasticity. More specifically, we relied on FraSCAti [SMF+09], a SCA runtime de-
veloped on top of the Fractal component model [BCL+04]. Although the many advantages of
FraSCAti such as the support for dynamic reconfigurations, there are still some limitations regard-
ing the suitability for grid or even cloud application definitions. For instance, there is no support
in FraSCAti for the definition of components in different domains (physical or virtual machines),
even if they belong to the same application. This is disappointing since it is not possible to build
distributed component-based applications while having a single model representation. For these
reasons, it becomes necessary to investigate more grid-focused component models such as Grid
Component Model (GCM) [BCD+09]. GCM is a component model with a focus on distributed
and grid computing. It seems to be an interesting track to investigate, since it provides support
for both dynamic reconfiguration (also based on the Fractal component model) and component
distribution in the context of grid computing.

Fairness and Starvation-aware Token Management. We proposed a token protocol to manage
the concurrent access to critical sections, in particular promotions, in public knowledges. Given
that there is no control in the way those tokens are distributed, it might happen that the same
requester gets always a token, whereas the others never have the chance to get it. This fairness/s-
tarvation issue should be addressed as a future work.

Economics-based Pricing Model. This thesis work proposes a public knowledge approach for
improving the synergy between application and infrastructure managers which is based on pro-
motion strategies. However, promotions are created in an ad-hoc manner, meaning that we do
not precise when, for how long and how (with how much discount) those promotions should be
created to optimize the infrastructure utilization and consequently the energy efficiency. Work on
the management field such as in the domain of yield management [TvR05] have been studied in
order to apply real economics models based on statistical data to determine prices dynamically.
This kind of approach is particularly interesting for establishing a synergy between infrastructure
and application providers since it focuses on the prediction of consumers behaviour. Alternatively,
advanced theoretical models such as game theory [NM44] are also very promising to find an equi-
librium in a win-win fashion (in terms of price) among conflicting participants (applications and
infrastructure providers).

Application-level Reconfiguration Patterns. In this thesis work, we relied on a load balanc-
ing mechanisms to perform scale up/down and on component-based dynamic reconfiguration to
perform architectural elasticity. However, there are other reconfiguration patterns that could be
applied according to the application context and constraints [NBF+12]. For instance, an adapta-
tion pattern could be to turn the application into a multi-tenant application so as to consume less
resources and cope with a given resource/energy restriction. The challenge is to determine which
patterns can be applied and whether they can be applied together. This is an on-going work in col-
laboration with a Ph.D. student from ASCOLA Research Group at the École des Mines de Nantes
and Sigma, an IT French company.

Service Level Agreement (SLA) Support. In the optimization problems presented in this thesis
work, we considered some degradation criteria (in terms of performance and architecture) that can
be seen as objectives (or Service Level Objectives) or guides to avoid Service Level Agreements
(SLAs) violations. Despite that, those criteria might not be enough to precisely express contracts
(or agreements) as it is required in real world applications. We are currently working on the
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incorporation of the SLAs in each layer of the cloud stack to our approach. To this end, work like
[KL12] and [FPP12b] (at application and platform levels) and [BMDC+12] (at the infrastructure
levels) are certainly good sources of inspiration for extending our approach to accommodate SLA
definitions. This is an on-going work which is done in collaboration with another Ph.D student
also from ASCOLA Research Group at the École des Mines de Nantes, in the context of the French
Research Agency (Agence Nationale de la Recherche) funded project MyCloud.

Reconfiguration Reliability and Transactions. The reliability of operations becomes a critical
issue when dealing with concurrent but interdependent autonomic managers. In particular, in the
context of this thesis work, there is no guarantees that the actions performed by all autonomic
managers involved in a given reconfiguration process actually take effect. Moreover, in case of
failure, there is no roll back mechanisms that undo the already performed actions, which lead
involved managed systems to inconsistent states. This issue has been already addressed in the
context of dynamic reconfiguration of component-based architectures [LLC10] and seems to be a
good start point for addressing this issue in the context of this thesis work.

Extension in the Interface between Application and Infrastructure Managers. Currently in
this work, the interface between AMs and IM is limited to request/release VMs actions, without
giving more details regarding the requested VMs such as the application-level constraints on them.
We envision several situations in which only request/release operations are not enough and some
requirements specific to each application should be translated into constraint at the infrastructure
level. For instance, it would be reasonable to think that one VM should never be co-hosted (in the
same PM) along with another VM (for replication purposes), or even the opposite (for network
latency reasons). To this end, we believe that BtrPlace [HLM13] can be a good start point, since it
proposes an approach for high level and flexible constraint definitions in terms of VM placement
that can be done at application level and applied at the infrastructure level.

Stability and Reconfiguration Cost. In this thesis work, the cost implied by the execution of a
reconfiguration was not taken into account for the decision making. While some actions, such as
for binding or removing components, may have low cost in terms of execution time and overhead,
others like for deploying a component or creating a VM can have non neglected cost and should
vary according to the component’s or VM’s size. As a result, it may happen that by the time
the reconfiguration takes effect it is no longer useful or that at the meantime another (conflicting)
event arrives, requiring that the autonomic manager undo the previous reconfiguration. There are
many tracks that could be investigated to mitigate this instability. First, a reconfiguration cost
model should be taken into consideration in the optimization problem formulation. This is impor-
tant because based on such a model one can analyze whether or not it is advantageous to perform
the reconfiguration for a given runtime context. Also, a predictive approach would be necessary
to profile the activity of managed systems (e.g. workload) in order to ease the identification of
periods of instability. The event prioritization along with the expiration of out-dated events seems
also to be needful, since it would allow the autonomic managers to choose for instance the newest
one among two or several conflicting events (e.g. one detecting a workload increase and another
workload decrease). Finally, autonomic managers preemption during an event processing could
enable the countermand of a reconfiguration upon the arrival of a conflicting event, which can
avoid undesirable future states or instability. For this purpose, a transactional approach, as previ-
ously discussed, would be of a great utility. All of these possible tracks should be investigated as
future work.
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A
Resumé

A.1 Introduction

Au cours de ces dernières années, la consommation d’électricité liée à la technologie de l’information
et de la communication (TIC) a remarquablement augmenté [Koo07, Koo11]. Il y a plusieurs
raisons pour cette croissance. La démocratisation de l’Internet aussi bien que la popularisation
de l’informatique en nuage [AFG+09, BYV+09, Mon12] ont motivé la migration des logiciels lo-
caux vers les services accessibles à distance, disponible 24/24 et 7/7, et facturés à l’usage. Par con-
séquent, nous avons assisté à une croissance du nombre de nouveaux centres de données partout
dans le monde.

Paradoxalement, les modèles de l’informatique en nuage [Pet11] peuvent être vus comme un
outil très puissant pour faire face à la question de la consommation d’énergie. Du point de vue
du fournisseur d’infrastructures, des innovations techniques telles que la virtualisation [SN05]
permettent la mutualisation des ressources d’une machine physique (PM) en plusieurs machines
virtuelles (VMs). En conséquence, la charge de travail de plusieurs applications peut être concen-
trée dans un nombre minimum de PMs, ce qui permet d’arrêter celles qui sont sous-utilisées et ainsi
de réduire la consommation d’énergie [HLM+09]. Du point de vue du fournisseur d’applications,
l’informatique en nuage permet de demander / relâcher des ressources à la volée. Cela signifie que
le fournisseur d’infrastructures peut fournir des ressources de calcul et de stockage d’une manière
souple et élastique, tandis que les applications sont facturées uniquement pour ce qu’elles con-
somment. Cela est particulièrement intéressant pour les applications qui doivent faire face à une
charge de travail très variable, car elles peuvent ajuster dynamiquement la quantité de ressources
nécessaires pour fournir le niveau désiré de qualité de service (QdS).

Le besoin de rendre les systèmes en nuage plus réactifs et autonomes aux modifications de
l’environnement est l’une des principales raisons de l’adoption de Autonomic Computing [KC03].
En effet, l’Autonomic Computing rend les applications capables de réagir à une charge de travail
très variables en ajustant dynamiquement la quantité de ressources nécessaires pour s’exécuter
tout en gardant sa QdS [KCD+07, VTM10, APTZ12, CPMK12, YT12], alors que du point de
vue du fournisseur d’infrastructures, l’Autonomic Computing permet à l’infrastructure de réagir
rapidement aux changements de contexte (par exemple l’augmentation / diminution de l’utilisation
des ressources physiques) en optimisant l’allocation des ressources et ainsi réduire les coûts liés à
la consommation d’énergie [HLM+09, LLH+09, BB10, FRM12].
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A.1.1 Problématique

Malgré les efforts récents pour la fabrication de matériels informatiques plus efficaces en termes de
consommation énergétique [Bar05], au jour d’aujourd’hui les PMs consomment encore beaucoup
d’énergie même quand elles sont inactives [BH07]. Par conséquent, la façon dont les applications
sont déployées sur les VMs peuvent interférer indirectement sur la consommation d’énergie de
l’infrastructure. En effet, les fournisseurs d’applications effectuent des actions telles que de de-
mander/libérer de ressources informatiques/stockage dans le but d’optimiser le compromis entre la
QdS et le coûts attribués à l’utilisation des ressources. Ces actions peuvent mettre l’infrastructure
dans un état qui réduit le taux d’occupation des infrastructures et par conséquent de l’efficacité én-
ergétique. En d’autres termes, les décisions guidées par la QdS, prises par les applications peuvent
indirectement interférer dans la consommation d’énergie de l’infrastructure sous-jacente.

Pour que la synergie entre les applications et infrastructure soit efficace, il est nécessaire que
les applications soient assez flexibles afin de réagir aux événements produits non seulement par
l’application elle-même (par exemple, augmentation/diminution de la charge client), mais aussi
par l’infrastructure (par exemple les changements de frais de location de ressources et/ou des
contrainte de ressource). De ce fait, équiper les applications des mécanismes de reconfiguration
leur permettrait d’être plus sensibles aux changements d’infrastructure et donc plus adaptable à
un plus large éventail de situations. Dans l’autre sens, les applications peuvent être encouragées
par le fournisseur d’infrastructure à occuper une certaine partie de l’infrastructure de manière à
améliorer le taux d’occupation (et par conséquent l’efficacité énergétique).

A.1.2 Contributions

Cette thèse porte sur la gestion autonome des applications et des infrastructures pour améliorer les
QdS et de l’efficacité énergétique dans l’informatique en nuage.

Nous croyons que la gestion de chaque application ainsi que l’infrastructure dans un seul
système autonome est une tâche très difficile. Chaque application peut avoir ses propres objectifs
et exigences, ce qui affecte par conséquent la façon dont leur gestionnaires doivent être conçus
(par exemple en ce qui concerne l’échelle de temps de réactivité). Par ailleurs, il est courant
dans l’informatique en nuage que les applications et l’infrastructure appartiennent à différentes
organisations, ce qui implique que les détails des applications devraient pas nécessairement être
visible au niveau de l’infrastructure. De la même manière, les applications ne devraient pas non
plus être au courant des détails de l’infrastructure. De ce fait, nous proposons une approche pour la
gestion de plusieurs gestionnaires autonomes, dans laquelle chaque application est équipée de son
propre gestionnaire en charge de déterminer la quantité des ressources informatiques nécessaires
pour offrir la meilleure QdS possible. Un autre gestionnaire, au niveau de l’infrastructure, gère les
ressources physiques selon la consommation d’énergie.

Afin de gérer le manque de synergie entre les applications et l’infrastructure, nous proposons
une approche pour la synchronisation et la coordination des gestionnaires autonomes. L’objectif
est de promouvoir une synergie entre les applications et l’infrastructure pour que l’information
d’un gestionnaire puisse être pris en compte plus facilement par d’autres gestionnaires de manière
à éviter les interférences négatives.

Enfin, nous étendons les capacités de l’élasticité des ressources (demande/libération des ressources
de calcul ou de données) en traitant les applications comme des boîtes blanches. Autrement dit,
nous supposons que la façon dont les applications sont composés (c’est à dire les composants
utilisés et comment ils sont connectés) peut conduire à différentes configurations architecturales
ayant des besoins différents en termes de ressources. En conséquence, les applications deviennent
plus sensibles et réactives à l’évolution de l’environnement d’exécution, peu importe si les change-
ments se produisent dans l’application elle-même (par exemple, une augmentation considérable
de la charge de travail avec un budget limité) ou dans l’infrastructure (par exemple, une restriction
des ressources en raison de contraintes énergétiques).
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A.2 État de l’art

Cette section présente une sélection des travaux pertinents liés au thème de cette thèse. Les
travaux ont été classifiés en quatre catégories. Les approches liées à la couche applicative pren-
nent en considération les caractéristiques des applications (QdS ou fonctionnalité) afin d’élaborer
des stratégies pour réduire la consommation d’énergie (ou l’utilisation de ressources et par tran-
sitivité l’énergie) au niveau de l’infrastructure sous-jacente. Les approches liées à la couche
d’infrastructure profitent de la flexibilité offerte par le réglage du matériel possible grâce à des
techniques telles que la mise a l’échelle dynamique de la fréquence et tension (Dynamic Voltage
Frequency Scaling (DVFS)) ou la virtualisation des serveurs (placement de la machine virtuelle,
consolidation, etc) de manière à améliorer la consommation de ressources et par conséquent
l’efficacité énergétique. Les approches transversales prennent en compte à la fois les aspects
de l’infrastructure et ainsi que ceux des applications afin d’avoir des solutions globales en ter-
mes de qualité de service (QdS) (au niveau de l’application) et l’efficacité énergétique au niveau
de l’infrastructure. Enfin, les approches de gestion multi-autonomes comptent sur plusieurs ges-
tionnaires autonomes qui peuvent (ou non) être coordonnés pour atteindre leurs objectifs. Dans
notre cas, les objectifs sont d’améliorer la QdS au niveau de l’application, tout en optimisant
l’efficacité énergétique au niveau de l’infrastructure. Tous les domaines de travail connexes men-
tionnés précédemment sont résumées dans la figure A.1.
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Figure A.1: Intersection des travaux connexes.

Afin d’évaluer de façon concise les travaux décrits précédemment, nous définissons certains
attributs de comparaison:

• Adaptation fonctionnelle : cet attribut indique qu’au niveau applicatif, les applications
sont capables de modifier leurs architectures de manière de s’adapter aux changements dans
l’environnement d’exécution. Ces modifications architecturales peuvent avoir un impact sur
leurs fonctionnalités. En conséquence, le degré d’utilité de chaque fonctionnalité possible
doit être pris en compte.

• Adaptation non-fonctionnelle : il peut y avoir des changements (architectural ou non)
au niveau applicatif qui peut avoir un impact sur les attributs de QdS tels que le temps de
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réponse, débit, etc. Par exemple, les décisions prises par une application afin d’augmenter
les ressources allouées pour elle peut conduire à l’amélioration des performances. Inverse-
ment, la QdS peut être dégradée si les ressources diminuent.

• Multi-application : cet attribut fait référence à la possibilité de traiter avec plusieurs
applications Software-as-a-Service (SaaS) partageant la même infrastructure Infrastructure-
as-a-Service (IaaS). Comme nous nous concentrons sur les environnements en nuage, il est
impératif que la solution tienne compte de la gestion des multiples applications.

• Transversale : cet attribut indique que l’approche prend en considération les aspects à
la fois des applications et de l’infrastructure afin de traiter le problème de la QdS et la
consommation de ressources / de l’énergie. Par exemple, une approche qui effectue à la
fois l’allocation de ressources guidé par la QdS (au niveau applicatif) et la consolidation des
serveurs (au niveau de l’infrastructure) est considéré comme étant transversale.

• DVFS/Arrêt (On-off ) de PM : pour les approches au niveau de l’infrastructure, les straté-
gies d’économie d’énergie ou de ressources peut être matérialisée soit par DVFS, en éteignant
des PMs ou une combinaison des deux. D’une part, DVFS offre la possibilité de réduire la
consommation d’énergie avec une faible surcharge du système par ajuster la tension et la
fréquence du processeur. D’autre part, en raison du manque de proportionnalité énergétique
des systèmes matériels [BH07], cette approche reste encore limitée en l’absence de charge
de travail dans un ensemble de PMs donné, ce qui est le cas dans de nombreux centres de
données [Vog08]. Par conséquent, bien qu’il soit coûteux (par rapport à DVFS) d’arrêter
/ d’allumer une PM, les gains en énergie peuvent être beaucoup plus élevés. La solution
idéale serait de combiner les deux options.

• Multi-autonome : cet attribut correspond à la capacité des systèmes de s’administrer en
s’appuyant sur plusieurs gestionnaires autonomes, ce qui peut exiger une sorte de coordina-
tion entre eux pour atteindre le résultat souhaité.

• Couplage lâche : parfois, dans une approche transversale en couches, les détails d’une
couche sont pris en compte par d’autres couches, peu importe si l’approche a un seul ou
plusieurs gestionnaires autonomes. Comme cette thèse se concentre sur les environnements
en nuage, dans lequel les acteurs interagissent d’une manière indirectement via des inter-
faces bien définies, nous considérons le couplage lâche comme une caractéristique impor-
tante pour la comparaison.

Le tableau A.1 résume le travaux connexes à l’égard des attributs de comparaison mentionnés
ci-dessus, où X , − et n/a correspondent respectivement à une caractéristique mise en œuvre, pas
mis en œuvre, et qui ne s’applique pas à l’approche en question.

Parmi les travaux qui prennent en considération uniquement la couche applicative, tous sont en
mesure d’adapter les aspects non-fonctionnels (QdS) en fonction des changements dans l’environnement.
Cependant, seulement [PDPBG09] et [YT12] présentent une approche multi-application dans
laquelle les applications sont capables de changer leur fonctionnalité via des configurations al-
ternatives pour faire face aux changements dans l’environnement. Parmi les travaux qui font de
l’optimisation de l’énergie seulement au niveau de l’infrastructure, uniquement [BB10] effectue
à la fois DVFS et arrêt de PMs, le reste des travaux [LLH+09, HLM+09, HLM+09] s’appuient
sur la consolidation des VMs et donc l’arrêt de PMs. Parmi les travaux qui tiennent compte à la
fois les détails des applications et de l’infrastructure afin d’optimiser la QdS des applications et la
consommation d’énergie des infrastructures, tous sont en mesure d’adapter la QdS (aspects non-
fonctionnels) de façon à utiliser moins de ressources et par conséquent moins d’énergie. Seule-
ment [GDA10, DAB11] fournissent des moyens d’adapter les applications afin de fournir d’autres
configurations. En ce qui concerne les stratégies énergétiques, seulement [PCL+11] et [ISBA12]
permettent d’effectuer les deux : DVFS et l’arrêt de PM, tandis que les autres ne comptent que
sur l’arrêt de PM. Enfin, parmi les travaux qui sont transversaux et multi-autonome, [RRT+08]
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est considéré comme une approche multi-autonome au sein d’un centre de données pour avoir
un contrôle à plusieurs niveaux : des VM, des PM ou des tiers. Cela signifie que l’approche ne
tient pas compte explicitement des aspects du niveau applicatif afin d’optimiser la consommation
d’énergie dans le centre de données. [KLS+10] et [CFF+11] fournissent des solutions de gestion
inter-couches et multi-autonome dans lequel les applications sont capables d’adapter leurs fonc-
tionnalités ainsi que leurs aspects non-fonctionnels. Alors que [KLS+10] est aussi capable de gérer
plusieurs applications, [CFF+11] considère des scenárii avec une seule application. Cependant,
la stratégie d’économie de l’énergie dans [KLS+10] ainsi que comme dans d’autres approches
[MKGdPR12, WW11, KCD+07] est uniquement basée sur DVFS, qui peut être relativement lim-
itée. Enfin, concernant le couplage lâche, seulement [KLS+10], [CPMK12] et [WW11] four-
nissent des solutions dans lesquelles les gestionnaires autonomes travaillent en couplage lâche.
C’est particulièrement intéressant parce que, dans le contexte de l’informatique en nuage, les dé-
tails d’un gestionnaire d’une couche donnée ne doit pas être visible à un autre gestionnaire situé à
une couche différente.

Afin de surmonter les limitations mentionnées précédemment, cette thèse présente une ap-
proche inter-couches pour l’optimisation de la QdS des applications et l’efficacité énergétique
de l’infrastructure dans le cadre de l’informatique en nuage. L’optimisation est obtenue grâce à
la coordination de multiple gestionnaires autonomes qui communiquent en couplage lâche. Au
niveau de l’applicatif, chaque application est équipée de son propre gestionnaire qui est capa-
ble d’adapter non seulement les aspects non-fonctionnels (QdS), mais aussi ses fonctionnalités
de manière à être plus souple aux changements dans l’environnement d’exécution. Au niveau de
l’infrastructure, un autre gestionnaire cherche à réduire le nombre de PMs (et par conséquent la
consommation d’énergie) nécessaire pour répondre aux demandes de toutes les applications.

A.3 Un modèle multi-autonome pour l’informatique en nuage

Cette section présente un modèle de coordination de plusieurs gestionnaires autonomes, qui est
composé d’un protocole de coordination et d’une base de connaissance publique qui nécessite un
mécanisme de synchronisation. Tout d’abord, nous présentons le modèle architectural en mettant
en évidence les principales exigences imposées par des modèles de services de l’informatique en
nuage et comparons avec les modèles de l’état de l’art. Ensuite, nous décrivons le modèle de
base de connaissance et le mécanisme de synchronisation sur lesquelles nous nous appuyons.
Enfin, nous décrivons le protocole de coordination qui est basé sur un ensemble d’actions et
d’événements inter-gestionnaires.

A.3.1 Modèle architectural

Les services en nuage permettent un accès facile aux ressources de calcul (par exemple des appli-
cations logicielles ou de l’infrastructure) d’une manière encapsulée et transparente, ce qui signifie
que les détails internes sur l’état ou le comportement de ces ressources sont cachés aux consom-
mateurs de services. C’est pourquoi, nous nous intéressons à des modèles architecturaux pour
l’interaction entre gestionnaires autonomes qui répondent aux contraintes inhérentes des modèles
de services en nuage à l’égard du partage d’information et le couplage lâche.

Selon l’état de l’art sur les architectures auto-adaptatives [Lem13], l’interaction entre gestion-
naire autonomes peut suivre un ensemble de patrons, comme il est illustré dans la figure A.2.

Dans le patron hiérarchique, des boucles de contrôle MAPE-K [KC03] (de l’anglais monitor-
ing, analysis, planning, execution et knowledge) complètes sont organisées dans une hiérarchie,
dans laquelle les boucles (ou gestionnaires) à des niveaux inférieurs fonctionnent à des échelles de
temps courts pour résoudre des problèmes locaux, alors que celles des niveaux supérieurs travail-
lent à des échelles de temps longs et possèdent une vision globale des problèmes grâce à des mes-
sages passés depuis les boucles aux nivaux inférieurs. Cette vision globale n’est pas souhaitable
dans l’informatique en nuage en raison de limites organisationnelles, c’est à dire que les gestion-
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[MFKP09] - X n/a - n/a 2009
[PDPBG09] X X n/a - n/a 2009

MoKa [AB10] - X n/a - n/a 2010
[PPMM11] - X n/a - n/a 2011

[Fer11] - X n/a - n/a 2011
[YT12] X X n/a X n/a 2012
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EnaCloud [LLH+09] n/a n/a On-off X n/a 2009
Entropy [HLM+09] n/a n/a On-off X n/a 2009

[BB10] n/a n/a On-off / DVFS X n/a 2010
Snooze [FRM12] n/a n/a On-off X n/a 2012
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ue [VTM10] - X On-off / DVFS X - 2010

SAFDIS [GDA10, DAB11] X X - X - 2010/2011
[PCL+11] - X On-off / DVFS X - 2011
[APTZ12] - X On-off / DVFS - - 2012

CloudPack [ISBA12] - X On-off X - 2012
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[KCD+07] - X DVFS - - 2007
[RRT+08] - - Both - - 2008
[KLS+10] X X DVFS X X 2010
[CPMK12] - X - X X 2011

Co-Con [WW11] - X DVFS X X 2011
[CFF+11] X X On-off / DVFS - - 2011

[MKGdPR12] - X DVFS - - 2012

Table A.1: Sommaire des travaux connexes.

naires risquent être déployés pour gérer les systèmes appartenant à différents fournisseurs (par
exemple dans les nuages hybrides / public).

Les patrons maître / esclave ou régionaux nécessitent un module de décision unique (analyse
et/ou planification) pour toutes les boucles, c’est à dire pour toutes les applications et l’infrastructure.
Ce modèle implique un manque de flexibilité dans l’autonomie de chaque gestionnaire (par exem-
ple, les applications qui sont gérées des échelles de temps différentes) car tous les gestionnaires
sont créés par / déployé par le même fournisseur, ce qui n’est souvent pas le cas dans les environ-
nements en nuage.

Le patron décentralisé exige que chaque tâche autonome d’un gestionnaire soit coordonnées
avec son homologue dans le gestionnaire paire. Alors qu’il peut être très intéressant pour faire
face avec des comportements contradictoires, ce modèle ne parvient pas à fournir un couplage
lâche, car le nombre de points de communication entre les gestionnaires est plus grand que dans
les autres patrons, ce qui rend par conséquent les gestionnaires plus enchevêtrés.

Le patron partage d’information améliore l’absence de dissimulation d’information observée
dans le modèle décentralisé, car il permet la communication entre gestionnaires seulement via les



A.3. Un modèle multi-autonome pour l’informatique en nuage 173

M

A P

E M

A P

E

M

A P

E M E...
M

A P

E

M

A P

E M

A P

E

Système SystèmeSystème Système

Système Système

SystèmeSystème Système

Décentralisé

Hiérarchique Maître/esclave or  Régional

Partage d’information

Figure A.2: Patrons de coordination de gestionnaires autonomes.

moniteurs et les exécuteurs. Cependant, il permet un partage des données de surveillance parmi
toutes les tâches de surveillance, ce qui peut ne pas être applicables dans des environnements en
nuage. Par exemple, il n’est pas concevable que les applications soient au courant des détails de la
mise en place des VMs dans les PM.

Compte tenu de ces limitations, nous proposons un modèle d’architecture autonome (cf. figure
A.3) pour la coordination des multiples gestionnaires qui répond aux contraintes architecturales
de l’informatique en nuage en termes de couplage lâche et la dissimulation de l’information. Dans
ce modèle, les gestionnaires communiquent strictement via leurs interfaces naturelles (tâches de
surveillance et d’exécution), ce qui permet de restreindre les points d’interaction (inter-gestionnaires)
et d’augmenter ainsi le couplage lâche entre les tâches autonomes. En ce qui concerne le dissimu-
lation d’information, contrairement aux modèles précédents dans lesquels les données de surveil-
lance sont partagées entre les moniteurs de tous les gestionnaires, dans le modèle proposé, la visi-
bilité sur le contexte d’exécution d’un système administré quelconque est limitée au gestionnaire
autonome correspondant. En effet, un gestionnaire peut partager une partie de sa connaissance
avec d’autres gestionnaires afin qu’ils puissent prendre des décisions qui sont plus adéquates à
l’état actuel des gestionnaires impliqués. Par exemple, les fournisseurs des IaaS peuvent s’appuyer
sur une approche axée sur les prix afin d’influencer le comportement des consommateurs (par ex-
emple, les fournisseurs de SaaS ou PaaS), c’est à dire que des promotions (soldes) peuvent être
créées pour stimuler les consommateurs à occuper une certaine zone de l’infrastructure et ainsi
améliorer le taux d’utilisation. Cette information dynamique quant aux changement de prix de
locations de ressources doit être partagée entre les gestionnaires impliqués, notamment ceux qui
contrôlent les IaaS/PaaS et ceux qui contrôlent les SaaS/PaaS.

A.3.2 Protocole de synchronisation pour l’accès à la base de connaissance publique

La dissimulation d’information est une caractéristique importante des modèles à base de services,
et plus particulièrement des modèles de services dans le nuage. Néanmoins, le manque visibil-
ité globale du contexte d’exécution des services peut conduire les gestionnaires à prendre des
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Figure A.3: Modèle architectural proposé pour la coordination des multiples gestionnaires au-
tonomes.

décisions qui en quelque sorte impactent négativement les systèmes administrés par d’autres ges-
tionnaires.

Afin d’avoir une analyse mieux contextualisée et à respecter le principe de dissimulation
d’information, la base de connaissance de chaque gestionnaire est divisé en deux parties: la
connaissance privé (private knowledge), qui stocke les informations internes nécessaires pour
les tâches autonomes, et la connaissance du publique (public knowledge), qui est partagée avec
d’autres gestionnaires. La base de connaissance publique peut être synchronisée si les actions exé-
cutées par les gestionnaires nécessitent de modifier (directement ou indirectement) l’information
partagée. En effet, les actions simultanées de multiples gestionnaires peuvent conduire à des
changements dans la base de connaissance en même temps (problème de concurrence) et peut
conduire à des résultats globaux non-logiques (problème de cohérence). Dans notre approche,
nous considérons que le gestionnaire ayant une base de connaissance publique est le seul qui a le
droit de la modifier directement, ce qui évite les problèmes de concurrence.

La base de connaissance publique est composée de sections critiques et non critiques. Le pre-
miers correspondent à des éléments d’informations qui sont rarement modifiées et ne qui ne com-
promettent pas la cohérence du système, tandis que l’autre se réfère à des éléments d’information
qui peuvent être changés fréquemment, donc qui peuvent interférer dans la cohérence du système.
Ainsi, alors que la synchronisation est facultative pour accéder aux sections non critiques, elle est
obligatoire pour accéder à celles qui sont critiques.

Pour cette raison, nous introduisons un protocole à base de jetons afin de synchroniser l’accès
aux sections critiques entre plusieurs gestionnaires. Comme pour les transactions dans les bases
de données, ce protocole de synchronisation assure que seul un gestionnaire peut accéder à une
section critique à la fois. Chaque section critique est associé à un jeton, ce qui signifie que, pour
accéder à une section critique donnée, les gestionnaires doivent demander le jeton correspondant.
Un gestionnaire peut obtenir le jeton soit en demandant explicitement via un message TOKEN
REQUEST (demande active de jeton), soit via un message de transfert de jeton (TOKEN TRANS-
FERT) d’un gestionnaire vers un autre (réception passive de jeton). Chaque fois qu’un gestion-
naire n’a plus besoin de jeton, il le libère via un message TOKEN RELEASE. Chaque fois qu’un
jeton est demandé, le demandeur doit attendre un message de jeton acquis TOKEN ACQUIRED.
Chaque gestionnaire autonome ayant une connaissance publique avec des sections critiques met
en œuvre un gestionnaire de jetons qui est en charge de la gestion du protocole de jeton.

A.3.3 Protocole de coordination dirigé par des évènements

L’objectif du protocole de coordination est de fournir des moyens pour les gestionnaires autonomes
de communiquer afin que les actions soient exécutées de façon coordonnée et de mettre en place
une synergie entre les gestionnaires. Dans le modèle architectural proposée, la communication
entre les gestionnaires est achevée à travers des tâches de surveillance et d’exécution, qui sont
déjà utilisées comme interfaces avec le système administré. Par conséquent, ces gestionnaires
sont moins enchevêtrés les uns avec les autres et donc plus faiblement couplés.
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Afin de clarifier les interactions entre plusieurs gestionnaires, il est important de différencier
les actions et les événements qui font partie du système administré et ceux qui font partie du
modèle architectural multi gestionnaires. La figure A.4 illustre la hiérarchie des différents types
d’événements et d’actions.

Actions

On the
Managed System

Intraloop Interloop

Change Public
Knowledge

Events

Endogenous Exogenous

Interloop Public Knowlege
Changed

Schedule 
Handler

Fire Event

Figure A.4: Hiérarchie d’actions et d’évènements autonomes.

Les actions peuvent être exécutées sur le système administré (Action on the managed system),
dans la boucle de contrôle MAPE-K (intraloop) ou sur une autre boucle de contrôle MAPE-K
(interloop). Les actions sur le système administré et les actions interloop sont toujours exécutées
par la tâche d’exécution de la boucle de contrôle MAPE-K. Une action interloop peut notifier un
autre gestionnaire autonome comme s’il demandait un service et attendait la réponse. Toutefois,
afin d’éviter les états de blocage, les gestionnaires doivent communiquer de manière asynchrone.
Dans ce cas, la tâche de planification crée un conteneur (handler) avec toutes les autres actions
qui doivent être exécutées en réponse à cette action interloop. Cette action interloop est donc
une action de notification, qui est considéré comme un événement inter-boucle (interloop) pour la
boucle de contrôle destinataire.

Enfin, les actions intraloop peuvent être pour modifier le contenu de la base de connaissance
publique ( Changer Public Knowledge), pour programmer les actions d’un conteneur (Schedule
Handler) qui dépend d’un ou plusieurs objets futurs [EFGK03], ou pour déclencher un événement
endogène (Fire Event) sur le même gestionnaire autonome. Cette action peut être instantanée ou
temporisée (soit déclenchée après un intervalle de temps donné).

Comme il est illustré dans la figure A.4, un événement peut être soit endogène ou exogène. La
source d’événements endogènes est toujours le système administré. Alors que la source d’événements
exogènes est un autre gestionnaire autonome. Pour les événements exogènes, il y a les événe-
ments inter-boucle (interloop) - créés par les actions inter-boucle (interloop) - et les évènements
qui indique qu’une base de connaissance publique a été modifiée (Public Knowledge Changed) -
déclenché suite à une action Change Public Knowledge.

A.4 Une approche pour la gestion multi-autonome pour l’informatique
en nuage

Cette section détaille l’approche proposée pour l’auto-adaptation des services en nuage. Nous
présentons d’abord un aperçu de l’architecture globale, qui englobe les couches SaaS et IaaS de
la pile classique des service en nuage. Ensuite, nous fournissons plus de détails sur la façon dont
l’auto-adaptation a été réalisée dans chaque couche.

A.4.1 Vue architecturale globale

Basé sur le modèle proposé dans la section précédente, nous introduisons une approche composé
de multiple gestionnaires autonomes mis en œuvre avec la boucle de contrôle MAPE-K pour per-
mettre l’auto-adaptation des applications et des infrastructures en nuage. Comme on peut le voir
sur la figure A.5, chaque application est équipée de son propre gestionnaire (Application Manager
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- AM), qui est responsable de la gestion de l’élasticité architecturale et des ressources, ce qui sig-
nifie qu’il détermine la meilleure configuration architecturale (composition des composants (C)
parmi d’autres configurations) et le montant minimum de ressources informatiques (en terme de
machines virtuelles - VM) nécessaires pour offrir la meilleure qualité de service (QdS) possible
pour une certaine charge de travail. Au niveau de l’infrastructure, un autre gestionnaire (Infras-
tructure Manager - IM) gère les ressources (machines physiques - PM et VM) d’une manière
consciente en termes de consommation de ressources / énergie. Plus précisément, ce gestionnaire
est responsable du placement optimal des VMs (avoir le nombre maximum de VMs sur le nombre
minimum de PMs).

Infrastructure

Application 1

C1 C2

C3

Application 2

C1

C2

C3

Machine Physique 1

VM VM VM

C4

Machine Physique 3

VM VM VM

Machine Physique 2

Deployé sur Configuration Alternative

(2) Placement de VM guidé par la consommation d'énergie 

(1) Planification de capacité et d'architecture
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Action on the Managed SystemEndogenous Event

Schedule Handler / 
Fire Event

Endogenous Event
Action on the 
Managed System

Change Public Knowledge
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Interloop EventInterloop Action

Action on the 
Managed System

Endogenous 
Event

boucle MAPE-K

Interloop Event

Interloop Action

Change Public 
Knowledge Action

Public Knowledge 
Changed Event

Schedule Handler /
Fire Event

Figure A.5: Vue globale de l’architecture.

Le problème de la dépendance entre les systèmes est clairement définie : les composants logi-
ciels (C) sont déployés sur des VMs, qui à leur tour, sont déployés sur l’infrastructure physique.
Ainsi, les décisions prises par les gestionnaires AMs peuvent interférer avec l’infrastructure sous-
jacente et par conséquent les décisions prises par le gestionnaire IM.

Pour résoudre ces problèmes, les gestionnaires doivent être capables de communiquer les uns
avec les autres via des actions / événements inter-boucle (interloop). Ces actions / événements sont
envoyés aux gestionnaires destinataires grâce à un bus de messages ( message-oriented middleware
- MOM). Les détails sur ces événements / actions ainsi que les modèles d’analyse utilisés pour
déterminer les actions qui doivent être exécutées en réponse à un événement donné sont présentés
dans les sections suivantes.
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A.4.2 Gestionnaire d’infrastructure

L’IM est construit sur le modèle de référence MAPE-K dans le but de rendre l’infrastructure en
nuage auto-administrable. En plus de la structure MAPE-K classique, l’IM se compose également
d’une base de connaissance publique, qui partage certaines informations telles que les prix de loca-
tion de VMs. Le reste de cette section détaille le modèle de connaissance, les interface en termes
d’événements et d’actions (détecté et exécutés par les tâches de surveillance et exécution) et la
tâche d’analyse qui est modélisée comme un ensemble de problèmes de satisfaction de contraintes
(Constraint Satisfaction Problem - CSP).

Modèle de base de connaissance

La base de connaissance de l’IM est défini comme suit:

• P = {pmi | i ∈ [1, p]} : l’ensemble de PMs.

• pmi = (pmcpu
i , pmram

i ) : les capacités de CPU et RAM de pmi ∈ P .

• A = {ai | i ∈ [1, ψ]} : l’ensemble d’applications.

• arri : le taux de réduction de ressource que l’application ai accepte.

• V = {vmi | i ∈ [1, v]} : l’ensemble de VMs en train d’exécuter.

• vmi = (vmcpu
i , vmram

i , vmapp
i ) : les capacités de CPU et RAM de vmi.

• vmapp
i ∈ A : l’application propriétaire de la VM.

• Hp x v la matrice d’incidence, où Hij = 1 signifie pmi héberge vmj , Hij = 0 sinon.

• M = {mi | i ∈ [1, q]} : l’ensemble de types/classes de VM offertes.

• mi = (mcpu
i ,mram

i ,mcost
i ) : les capacités de CPU et RAM, et les prix de location pour la

classe de VM mi ∈M .

L’IM peut décider de promouvoir des soldes (promotions Pr dans un laps de temps donné)
pour les PMs dont le taux d’occupation est inférieur à un seuil donné de manière à stimuler les
demandes pour occuper une partie des ressources sous-utilisées. Comme une promotion doit être
appliquée à une seule application, elle doit être traitée comme une section critique. Par conséquent,
le base de connaissance publique est composé d’une section non-critique contenant le prix de
location de VM M et plusieurs sections critiques, chacun correspondant à une promotion Pr,
comme suit:

• Pr = {pri | i ∈ [1, ξ]} : l’ensemble des promotions.

• pri ∈ Pr = (prpacki , prpricei , prtokeni )

• prpacki = {packij | j ∈ [1, q] : un pack de VMs pour la promotion pri.

• packij ∈ N
∗ : le nombre de VMs de classe mj dans le pack.

• prpricei = (1− δ) ∗
∑q

j=1m
cost
j ∗ packij : ∀i[1, ξ] : le prix global pri basé sur un taux fixe

de réduction δ du prix normal de chaque VM du pack.

Événements et actions

La figure A.6 illustre les patrons événements-actions possibles pour le gestionnaire IM.
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VMs Requested : c’est un événement du type interloop survenant quand un gestionnaire AM
effectue une action du type interloop Request VM. Cet événement comprend un ensemble de VMs
demandées au prix normal et éventuellement les promotions. Pour chaque promotion demandé,
le jeton correspondant est transféré (TOKEN TRANSFERT) dans le message de telle sorte qu’un
accès exclusif est garanti, ce qui signifie que l’AM avait déjà demandé et acquis un jeton (TO-
KEN REQUEST / TOKEN ACQUIRED) pour chaque promotion. Cet événement déclenche une
tâche d’analyse qui évalue le placement des VMs demandées sur les PMs de manière à min-
imiser le nombre de PMs allumées nécessaires. La tâche de planification prend le résultat de
l’analyse et traduit en un ensemble d’actions Switch On PM, Create VM et Active Promotion
sur l’infrastructure. Enfin, il informe en retour l’AM que les VMs demandées sont prêtes par
l’exécution de l’action Notify VMs Created, du type interloop.

M E

(a)

A P

(4) Notify VMs 
     Created

(c)

(1) Swtich on PMs
(2) Create VM

M E

(b)

M EA P

Energy 
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(1) Notify Scale
     Down

M EP

(1) Create Promotion

(d)

VMs 
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VMs 
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Destroy VM

M EP

Switch off PM

(e)

Unused PM /

Timeout Expired  

P

(3) Activate Promotion

(2) Fire Event

(2) Notify Renting
     Fees Changed

Figure A.6: Actions et événements du gestionnaire IM.

Release VMs : est aussi un événement du type interloop qui se produit lorsque un AM effectue
une action Release VM, du type interloop (cf. section A.4.3). Ce événement contient la liste
des VMs qui doivent être détruites. Comme il n’y a pas d’analyse particulière pour ce genre
d’événement, la tâche de planification est déclenchée directement à partir de la surveillance. La
tâche de planification traduit la liste des VMs à être libérées à travers d’un ensemble d’actions
Destroy VM sur l’infrastructure.

Energy Shortage : c’est un événement du type endogène qui vient des données du contexte
d’exécution de l’infrastructure (par exemple des sondes de consommation électrique). Cet événe-
ment comprend le nombre de PMs à arrêter P#. Suite à cet événement, l’IM déclenche la tâche
d’analyse pour déterminer quelles PMs doivent être éteintes. La tâche de planification prend le
résultat de la tâche d’analyse et le traduit en un ensemble d’actions Notify Scale Down, du type in-
terloop afin d’informer les AMs concernés sur les contraintes qui pèsent sur l’infrastructure. Enfin,
la tâche de planification crée une action Fire Event dont l’objectif est de déclencher l’événement
endogène Timeout Expired de manière temporisée, c’est à dire après un délai donné. Cet événe-
ment contient l’ensemble de PMs à arrêter (P off ⊆ P ). Une fois que cet événement est détecté,



A.4. Une approche pour la gestion multi-autonome pour l’informatique en nuage 179

c’est à dire après le délai expiré, la tâche de planification prend la liste des PMs à arrêter et la
traduit en un ensemble de d’actions Switch Off PM sur l’infrastructure (e).

Low PM Utilization : c’est un événement endogène de l’infrastructure qui est détecté chaque
fois qu’une PM pmi a été sous-utilisé (lorsque le taux d’occupation est inférieur à Umin) au cours
d’une certaine période de temps tl, comme il est formalisé dans l’équation A.1. Comme on peut le
voir sur la figure A.6, la détection de cet événement déclenche directement la tâche de planification
qui crée, pour chaque heure concernée, un ensemble d’actions Create Promotion qui crée des
promotions (du type Change Public Knowledge), suivie par une action NotifyRentingFeesChanged
(du type interloop, qui notifie les AMs souscrites que la base connaissance publique a été changée.

min(
Pv

j=1
Hij∗vm

ram
j

pmram
i

,
Pv

j=1
Hij∗vm

cpu
j

pm
cpu
i

) < Umin

est vrai pendant tl
(A.1)

PM Unused : c’est un événement endogène de l’infrastructure qui est détecté quand une PM
n’a hébergé aucune VM pendant un certain temps tu, tel qu’il est exprimé par l’équation A.2.
Lors de la détection de cet événement, les PMs concernés (P off ⊆ P ) sont directement arrêtées.
Comme il n’est pas nécessaire d’avoir une tâche d’analyse, la tâche de planification est directement
déclenchée. Elle crée un ensemble d’actions Switch PM Off sur les infrastructures.

min(
Pv

j=1
Hij∗vm

ram
j

pmram
i

,
Pv

j=1
Hij∗vm

cpu
j

pm
cpu
i

) = 0

est vrai pendant tu
(A.2)

Analyse

Les tâches d’analyse sont constitués des CSPs et sont modélisés et résolus avec de la programma-
tion par contrainte (Constraint Programming - CP)[RVBW06]. Un modèle CP est composé d’un
ensemble de variables (de décision), un ensemble de domaines (valeurs possibles pour chaque
variable), et des contraintes sur ces variables. Dans le cas des problèmes d’optimisation, une
fonction objectif est également définie.

Lors de la détection d’un événement dans la tâche de surveillance, l’IM peut déclencher la
tâche d’analyse ou directement la tâche de planification ou de l’exécution, si aucune analyse n’est
requise. Comme on peut le voir sur la figure A.6, la tâche d’analyse est déclenchée soit par un
événement VMs Requested ou un événement Energy Shortage. Les tâches d’analyse utilisent soit
l’analyseur VM Placement Analyzer ou Energy Shortage Analyzer.

Energy Shortage Analyzer : cet analyseur est utilisé lors de la détection d’un événement Energy
Shortage et vise à trouver un ensemble de PMs à arrêter pour faire face à une situation de pénurie
d’énergie. La solution doit répondre aux contraintes en termes de taux de réduction des ressources
(Arrk ) déclaré par chaque application (ak) et le nombre minimum de PMs à arrêter P#, tout en
minimisant l’impact de la restriction des ressources imposée aux applications.

Premièrement, nous définissons la variable de décision zi, dont le domaineD(zi) ∈ {0, 1}∀i ∈
[1, p]. Cette variable indique si une PM pmi ∈ P doit être arrêté. La deuxième partie est constituée
d’un ensemble de contraintes sur les variables de décision zi. CRk et RRk sont des expressions
auxiliaires correspondant respectivement à la quantité actuelle de ressources allouée à une applica-
tion ak et le montant des ressources à être libéré après arrêter les PMs spécifiées dans les variables
z. L’équation A.3 indique que pour chaque application ak ∈ A le montant des ressources à libérer
(RRk) ne doit pas dépasser le montant des ressources actuellement allouées à cette application
(CRk) réduit de la ressource taux de restriction (arrk ). L’équation A.4 indique qu’au moins P#

PMs doivent être arrêtées afin de faire face à la pénurie d’énergie. Enfin, l’objectif est de minimiser
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la restriction de ressources imposée aux applications (cf. équation A.5).

CRk ∗ (1− arrk ) ≥ RRk.∀i ∈ [1, ψ] (A.3)
p

∑

i=1

zi ≥ P
# (A.4)

minimize(

ψ
∑

i=1

RRi) (A.5)

L’analyseur VM Placement Analyzer est déclenché suite à la détection d’un événement VMs
Requested et son objectif est de placer les VMs demandées (à prix normaux ou réduits) dans les
PMs de sorte que le nombre de PMs allumées nécessaires soit minimisé. Pour des raisons de place,
nous ne détaillons pas le fonctionnement de cet analyseur dans ce résumé.

Planification

La tâche de planification peut être déclenchée après l’exécution de la tâche d’analyse ou directe-
ment après la détection d’un événement lors de la surveillance. La planification prend en consid-
ération l’état actuel de l’infrastructure et l’état désiré résultant de la surveillance ou de l’analyse
pour créer actions de reconfigurations (voir la section A.4.2) de manière structurée.

Selon la figure A.6, il existe cinq planificateurs différents, chacun pour faire face à un événe-
ment différent. Tous prennent aussi en entrée un ensemble de variables et en sortie un plan (objet
de type Plan). L’objet Plan agrège un ensemble d’activités, chacune contenant un ou plusieurs
autres activités ou actions autonomes. Ces activités peuvent être exécutées en séquence (objet de
type Sequence) ou en parallèle (un objet de type Fork).

L’algorithme 13 décrit le planificateur Energy Shortage Planner, qui est déclenché après la
l’analyse effectuée par le Energy Shortage Analyzer, qui, à son tour, est déclenchée lors de la
détection d’un événement Energy Shortage. Il prend en entrée l’ensemble des PMs (P off ) à
arrêter, le délai au terme duquel celles-ci doivent être arrêtés (timeout), et le contexte d’exécution
C. Il commence par créer les objets plan et fork (lignes 1 et 2). Il parcourt ensuite l’ensemble des
applications A tout en recueillant l’ensemble des VMs impliquées appartenant à la application en
question (ligne 4). Cet ensemble est utilisé par l’action NotifyScaleDown (ligne 5) afin d’informer
les applications qui devront libérer des VMs. Puis l’algorithme ajoute au plan des actions de
notification (ligne 6), crée une action (FireEvent) qui va déclencher l’événement TimeoutExpired
contenant les PMs à arrêter après le délai donné (ligne 7) et l’ajoute au plan. Lors de la détection de
cette événement, le planificateur Shutdown PM Planner est déclenché. est décrit dans l’algorithme

Algorithm 13: Energy Shortage Planner.

Input: P off : les PMs à arrêter.
Input: timeout: le temps après lequel les PMs devront être arrêtées.
Input: C: le contexte d’execution de l’infrastructure.
Result: plan : le plan résultant.

1 plan← new instance of Plan
2 notificationFork ← new instance of Fork
3 foreach app ∈ A do

// les VMs hébergées dans les PMs à arrêter.

4 vms← {vmj | vm
app
j = app ∧ ∀i ∈ [1, p](∀j ∈ [1, v](Hij = 1 ∧ pmi ∈ P

off ))}

5 add(NotifyScaleDown(app, vms), notificationFork)

6 add(notificationFork, plan)
7 add(FireEvent(TimeoutExpired(P off ), timeout), plan)
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Virtual Machine Release Planner ce planificateur est déclenché lors de la détection d’un événe-
ment VMs Released. Il prend en entrée l’ensemble de VMs qui doivent être libérées (Rvms) et
produit en sortie un ensemble d’actions qui vont effectivement détruire ces VMs.

Virtual Machine Placement Planner ce planificateur est utilisé pour faire face à des événements
VMs Requested et déclenché après l’analyse Virtual Machine Placement Analyzer. Il prend en
entrée l’ensemble de nouvelles VMs (V ′), l’ensemble promotions demandées (Rpr) et la nouvelle
matrice d’incidence VMs / PMs (h). Le planificateur produit comme sortie un ensemble d’actions
qui vont créer les nouvelles VMs sur les PMs respectives et notifier l’AM demandeuse.

Promotion Planner ce planificateur est déclenché directement lors de la détection d’un événe-
ment Low PM Utilization. Il prend en entrée l’ensemble des PMs (P pr) dans lesquelles les promo-
tions doivent être créées, les prix de location de VMs (M ) et le taux de réduction des promotions
(δ). Le planificateur produit en sortie un ensemble d’actions qui créent les promotions dans la base
de connaissance publique.

Physical Machine Shutdown Planner ce planificateur est déclenché directement lors de la dé-
tection d’un événement Unused PM ou d’un événement TimeouExpired. Cela prend en entrée le
vecteur des PMs à arrêter P off et produit en sortie un ensemble d’actions sur l’infrastructure pour
éteindre les PMs en question.

Pour des raisons de simplicité, les algorithmes de ces planificateurs ne sont pas détaillés dans
ce résumé.

A.4.3 Gestionnaire d’application

Semblable à l’IM, l’AM est également basé sur une boucle de contrôle MAPE-K. Mais, contraire-
ment à l’IM, l’AM ne comprend qu’une base de connaissance privée et aucune base de connais-
sance publique. Cette section détaille cette base de connaissance, qui est composée d’un modèle
d’application et le contexte d’exécution. Ensuite, nous décrivons les patrons événements-actions,
les modèles CSP utilisés par les tâches d’analyse. Enfin, nous présentons les tâches de planifica-
tions utilisées dans ce gestionnaire.

Modèle de base de connaissance

La base de connaissance privé de l’AM est définie comme suit:

• C = {ci | i ∈ [1, n]} : l’ensemble des composants applicatifs

• ci = (cri , c
s
i ). cri : les dépendances fonctionnelles (references) et les services offerts du

composant ci

• K = {ki | i ∈ [1,m]} : l’ensemble des configurations architecturales

• ki = (kci , k
deg
i , kbindi )

• kci ⊆ C : les composants figurant dans une configuration ki

• kbindi = {(r, s) | r ∈
⋃

i∈[1,n] c
r
i , s ∈

⋃

i∈[1,n] c
s
i} : l’ensemble des connections (bindings)

qui lient la référence d’un composant à un service offert par un autre composant.

• kdegi ∈ [0, 1] : la dégradation architecturale, c’est à dire la dégradation de la QdS due à la
configuration architecturale actuelle (les composants et connections utilisés)

• perfi : Λ x N
∗ x N

∗ 7→ N
∗ : la fonction performance pour un composant ci sous une charge

client donnée, et un montant de ressources CPU et RAM allouées au composant.
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• Λ = {λ1, . . . , λu} : l’ensemble de seuil de charge client

• V = {vmi | i ∈ [1, v]} : l’ensemble de VMs allouées à l’application administrée

• rtideal, rtacc : les seuils désirable et acceptable de temps de réponse

• rtdeg ∈ [0, 1] : la dégradation de la performance, i.e. la dégradation de la QdS liée au critère
de performance quand le temps de réponse actuel vaut entre rtideal et rtacc

• CPR = {cpri | i ∈ [1, t]} : l’ensemble des promotions pris par l’application

• cpri = (cprpricei , cprpacki ) : le prix total (avec réduction) de la promotion et le pack de VMs
faisant partie de cette promotion.

• budget : le budget de l’application (ou taux de dépense)

Événements et actions

La figure A.7 montre comment chaque événement est relié aux actions à la fois sur le système
administré ou sur un autre gestionnaire tel que l’IM.

Workload Increased/Decreased : ces sont des événements endogènes (endogenous event) qui
se produisent lorsque la charge de travail moyenne actuelle λavg (la moyenne charge de travail dans
un intervalle de temps donné) atteint soit un seuil inférieur λL (Workload Decreased) ou un seuil
supérieur λU (Workload Increased). Cet événement contient les nouvelles limites (supérieure et
inférieure) de charge de travail (λUnext ,λLnext ∈ Λ). Avant le déclenchement de la tâche d’analyse,
l’AM demande les jetons des promotions disponibles afin d’y obtenir un accès exclusif. Afin
d’éviter des états de blocage (deadlock), nous avons adopté une stratégie opportuniste pour ex-
ploiter les promotions. Un AM tente d’obtenir le jeton, si ceci n’est pas disponible, il abandonne
et va à l’analyse comme s’il n’y avait pas de promotions disponibles. La tâche d’analyse déter-
mine la meilleure configuration architecturale et le minimum quantité de ressources (en termes de
VMs) pour les nouveaux seuils de charge de travail et libère jetons inutiles, i.e. des promotions qui
n’intéressent pas aux applications. La tâche de planification génère un plan différent en fonction
du résultat produit par l’analyse, à savoir s’il y a un besoin pour plus de VMs ou non. A la fin, la
tâche de planification produit une action Request VM (interloop) avec un transfert de jeton (si c’est
le cas), suivie d’une action Schedule Handler pour programmer un conteneur d’actions (objet fu-
tur). Le conteneur contient toutes les actions sur le système administré qui seront exécutées quand
les VMs demandées seront disponibles (cf. figure A.7 (d)). Alternativement, la tâche de plan-
ification génère un ensemble d’actions de manipulation des composants relatives à l’application
(système administré) (Stop / Start Component, Bind Composant, emph Deploy / Remove Compo-
nent), suivie ou non d’une action VM Created (interloop) afin de notifié l’AM que les VMs sont
prêtes.

Renting Fees Changed : c’est un événement exogène du type Public Knowledge Changed. Il
se produit chaque fois que l’IM crée une nouvelle promotion. Ce genre d’événement déclenche
la tâche d’analyse qui se comporte comme quand il y a des événements Workload Increased/De-
creased. Dans ce cas, l’analyseur peut seulement demander de nouvelles VMs (celles des promo-
tions).

VMs Created : il s’agit d’un événement interloop dont l’objectif est d’informer l’AM (depuis
l’IM) que les VMs demandées sont prêtes à l’emploi. Cela déclenche directement la tâche d’exécution
qui ne fait rien qu’exécuter les actions dans le conteneur programmé précédemment en passant
comme argument l’objet futur (liste des VMs demandées) nécessaire à l’exécution des actions du
conteneur. L’exécuteur déploie les composants sur les VMs créées, connecte ces composants à
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Figure A.7: Événements et actions du gestionnaire applicatif.
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d’autres (existants ou nouveaux) et démarre les composants juste déployés. Il convient de rappeler
que chaque promotion a une durée déterminée, après laquelle ces VMs redeviennent à prix régulier.
Ainsi, dans le cas de nouvelles promotions, le conteneur contient aussi une action FireEvent afin
de déclencher un événement Promotion Expired quand la promotion est expirée (i.e. après un délai
donné).

Scale Down : c’est un événement du type interloop dont l’objectif est d’informer l’AM (depuis
l’IM) qu’il doit répondre à certaines contraintes de ressources. Concrètement, l’événement con-
tient la liste des VMs V̆ qui devrait être immédiatement libérée par l’application en question.
Cet événement déclenche une tâche d’analyse pour réaffecter les composants sur un plus pe-
tit nombre de VMs. À cette fin, il peut être nécessaire de modifier la configuration architec-
turale de l’application (par exemple en remplaçant les composants qui consomment davantage de
ressources). En conséquence, un ensemble d’actions de manipulation de composants (ex: Stop
Component, Remove Component, Deploy Component, Bind Component et Start Component) sont
effectuées sur le système administré (l’application en question), suivie d’une action inter-boucle
(interloop) Release VM pour libérer les VMs.

Promotion Expired : c’est un événement endogène déclenché par une action FireEvent, qui à
son tour, est exécuté lors du traitement de l’événement VMs Created. Il indique qu’une promotion
existante arrive à terme. Cet événement déclenche la tache d’analyse afin de décider si l’AM
maintient les VMs, même à prix régulier. A cet effet, l’analyse se comporte de manière similaire
à quand il y des événement Workload Increased / Decreased.

Analyse

La tâche d’analyse AM est composé de deux analyseurs différents, qui permettent de résoudre
séparément deux problèmes en fonction de la nature de l’événement détecté. Ainsi comme pour
les analyseur de l’IM, les analyseurs de l’AM sont modélisés en CSP et basés sur la programmation
par contrainte pour les résoudre.

Architecture and Capacity Planning Analyzer : cet analyseur est déclenchée lors d’un événe-
ment Workload Increased / Decreased, Renting Fees Changed ou Promotion Expired. Ses objectifs
sont de déterminer: (i) la configuration architecturale optimale (c’est à dire les composants et con-
nections) de manière à minimiser la dégradation architecturale, et (ii) le montant des ressources
(nombre de VMs de chaque type alloué à chaque composant) nécessaire de façon à minimiser la
dégradation de la performance et les coûts liés aux frais de location des ressources.

La première partie du modèle CP est définie par un ensemble de variables de décision: x, dont
le domaineD(x) ∈ [1,m], est une variable indiquant configuration architecturale de l’application;
yij , où D(yij) ∈ [1, budget

mcost
j

].∀i ∈ [1, n],∀j ∈ [1, q], est une variable indiquant le nombre de VMs

de classe mj alloué au composant ci; ui, où D(ui) ∈ {0, 1}.∀i ∈ [1, n], est une variable indiquant
si le composant est utilisé par la configuration architecturale x; et pi, oùD(pi) ∈ {0, 1}.∀i ∈ [1, ξ],
est une variable indiquant si la promotion pri est utilisée.

La deuxième partie de ce modèle CP se compose d’un ensemble de contraintes auxquelles les
variables sont soumises. Nous affirmons que le coût total de la demande en raison des prix de
location de ressources ne peuvent pas dépasser le budget (budget ≥

∑n
i=1

∑q
j=1 yij ∗m

cost
j ).

L’équation A.6 définit une expression qui stocke la réduction obtenue à partir des promotions
de rabais disponibles. L’équation A.7 indique le coût en tenant compte des réductions (l’équation
A.6) et la variable de décision yij . Le coût est normalisé (cost ∈ [0, 1]) par rapport au budget de
l’application. L’équation A.7 correspond à une contrainte qui indique que le coût total ne peut pas
dépasser le budget.
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disc =

ξ
∑

i=1

(

q
∑

j=1

(mcost
j ∗ packij)− pr

price
i ) ∗ pi +

t
∑

i=1

(
∑

∀vm∈cprpack
i

vmcost)− cprpricei (A.6)

cost =

∑n
i=1

∑q
j=1 yij ∗m

cost
j − disc

budget
budget ≥

n
∑

i=1

q
∑

j=1

yij ∗m
cost
j − disc (A.7)

(A.8)

L’équation A.9 définit une contrainte indiquant que si une configuration est choisie, les com-
posants correspondants devraient être marqués “utilisé” (variable ui) et la variable auxiliaire degarch

doit être égale à la dégradation architecturale correspondante. En ce qui concerne la contrainte ex-
primée par l’équation A.10, cela signifie que si un composant n’est pas utilisé par la configuration,
il n’y a pas de VMs attribuées. L’équation A.11 exprime une contrainte indiquant l’impact des
promotions choisies sur les ressources alloués (yij). Pour chaque nouvelle promotion pl, si elle est
prise par l’application en question, le nombre de VMs de chaque classe mj doit être supérieure
ou égale au nombre actuel de VMs de même classe affectés à l’application(ej) plus le nombre de
VMs (packlj) de la même classe offerte par la promotion prl.

x = l =⇒ (ui = 1 ⇐⇒ ci ∈ k
c
l ) ∧deg

arch = kdegl

où l ∈ [1,m]
(A.9)

ui = 0 =⇒

q
∑

j=1

yij = 0 : ∀i ∈ [1, n] (A.10)

∀j ∈ [1, q](
∑n

i=1 yij ≥ ej +
∑ξ

l=1 pl ∗ packlj) où packlj ∈ pr
pack
l : ∀l ∈ [1, ξ] (A.11)

Il y a aussi une contrainte précisant que si le temps de réponse (perfi(λnextU , cpui, rami))
est au-dessus du seuil acceptable, la dégradation (degperf ) est égale à 1 (c’est à dire 100% de
dégradation de performance). S’il est compris entre les seuils acceptable et idéal,la dégradation
est égale à rtdeg. Dans le cas contraire, elle est égal à zéro, c’est à dire il n’y a pas de dégradation
si le temps de réponse est inférieur ou égal au seuil idéal. Où cpui =

∑q
j=1 yij ∗m

cpu
j et rami =

∑q
j=1 yij ∗m

ram
j sont les quantités de CPU et RAM allouées au composant ci.

La dernière partie du modèle CP est la fonction objectif. L’objectif de cette analyseur et par
conséquent du modèle CP est de trouver la meilleure configuration architecturale tout en min-
imisant les coûts liés aux prix de location des ressources. L’équation A.12 définit une fonction
objectif qui minimise les dégradations architecturale et de performance ainsi que le coût dû à la
location des ressources.

minimize(αperf ∗ deg
perf + αarch ∗ deg

arch + αcost ∗ cost) (A.12)

Où αarch + αperf + αcost = 1 et αarch, αperf , αcost ∈ [0, 1]. αarch, αperf correspondent aux
poids des dégradations architecturale et de performance, et αcost correspond au poids relatif à la
location de ressources.

Scale Down Analyzer : cet analyseur est très similaire à l’analyseur Architecture and Capacity
Planning Analyzer, puisque les objectifs sont les mêmes. La seule différence est que les ressources
disponibles sont plus limitées dans le sens que certaines VMs doivent être supprimées. Soit V̄ =
V − V̆ , c’est la différence entre le vecteur de VMs en cours d’exécution et le vecteur de VMs à
libérer. La contrainte exprimée par l’équation A.13 doit être vraie, où ei = 1 si vmi est une VM
de classe mi. Sinon, ei = 0.

∀j ∈ [1, q].

n
∑

i=1

yij ≤

|V̆ |
∑

i=1

ei (A.13)
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Planification

La tâche de planification est déclenché après l’exécution de la tâche d’analyse. Elle prend en
compte l’état actuel de l’application administrée (par exemple configuration architecturale et l’affectation
composants / VMs) et l’état souhaité (par exemple, une nouvelle configuration architecturale et /
ou une nouvelle affectation composants / VMs) résultant de la tâche d’analyse, pour créer les
actions autonomes (cf. section A.4.3) de manière logique.

Selon la figure A.7, il y a quatre planificateurs possible, chacun est censé faire face à un événe-
ment différent. Cependant, comme ils ont les mêmes objectifs et les mêmes entrées et sorties, ils
peuvent être mis en œuvre dans un seul planificateur (ci-appelé Architecture and Capcity Planner).
Afin de faciliter la compréhension, nous divisons la description dans deux parties: Le planificateur
se comporte différemment selon la sortie de l’analyseur : (i) lorsqu’il y a un besoin de nouvelles
VMs, et (ii) lorsqu’il n’y a pas besoin de VM. La différence entre les deux cas est que dans le
premier, il est nécessaire d’encapsuler un ensemble d’actions dans un conteneur handler qui est
exécuté à l’arrivée d’un objet futur (les VMs demandées), alors que dans le second cas, l’ensemble
du plan est exécutée sans attendre quoi que ce soit. Comme résultat, à part d’une action (interloop)
pour demander / libérer de ressources (Request / Release VMs), le planificateur produit des actions
sur l’application administrée (telles que Stop / Start Component, Remove / Deploy Component et
Bind Component) pour manipuler les composants sur les VMs allouées à l’application en question.

Afin de rester le plus concis possible, nous ne détaillons pas l’algorithme qui met en œuvre ce
planificateur.

A.5 Évaluation

Cette section présente les résultats obtenus à partir d’un scénario expérimental utilisé pour évaluer
le protocole de coordination proposé. Le scénario consiste à déclencher un événement Energy
Shortage au niveau de l’infrastructure et en observant ses effets sur la consommation d’énergie
ainsi que sur la QdS des applications (SaaS hébergés). L’objectif est de montrer un cas réel
d’utilisation du protocole de coordination (avec des événements et actions interloop) ainsi que
d’évaluer comment se comportent les applications (lorsque elles sont équipées de l’élasticité ar-
chitecturale) et l’infrastructure, capable de réagir à des situations extrêmes telles que la pénurie
d’énergie. Il est à noter que nous avons évalué l’impact de la base de connaissance publique dans
le cadre d’un scénario de promotion. De plus, nous avons également évalué l’évolutivité des mod-
èles analytiques. Pour des raisons de place, nous omettons les analyses d’évaluation qui résultent
de ces expériences.

A.5.1 Banc d’essai

Les expériences ont été effectuées sur un environnement de banc d’essai composé des applications
basées sur le modèle architectural à base de composants (Serivce Component Architecture - SCA) 1

et une infrastructure matérielle réelle, dans lequel un ou plusieurs instances d’application sont
déployées.

Application : L’application SCA est composée de trois composants C = {c1, c2, c3} et dispose
de deux configurations architecturales K = {k1, k2}, où kc1 = {c1, c2}, k

deg
1 = 0, kc2 = {c1, c3},

kdeg2 = 0, 50. Cela signifie que la configuration k1 n’a pas de dégradation architecturale et c1 est
lié à c2, alors que dans la configuration k2 il y a une dégradation de 50% et c1 est lié à c3.

Chaque composant effectue des opérations intensives sur la CPU et a été calibré afin de profiler
les exigences de performance de l’application. Les composants c1 et c2 consomment davantage
des ressources que le composant c3. En conséquence, bien que la dégradation soit imposée, la
configuration architecturale k2 peut être une alternative afin de consommer moins de ressources, si

1http://oasis-opencsa.org/sca

http://oasis-opencsa.org/sca
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nécessaire. Basé sur un profil de performance, nous définissons l’ensemble des seuils de charge de
travailΛ = {0, 30, 55, 80, 170}. Comme dit précédemment, les seuils sont utilisés pour détecter
événements de variation de charge de travail, ce qui peut conduire à des reconfigurations dans
l’application.

Infrastructure : Pour l’infrastructure physique, nous nous sommes appuyés sur Grid’5000, qui
est un réseau français pour banc d’essai expérimental. Il est composé de dix sites géographique-
ment distribué fournissant un ou plusieurs grappes, qui sont caractérisés par un ensemble de PMs
équipées de dispositifs de mesure de puissance. Nous avons utilisé la grappe sagittaire, ] qui est
composé de 79 PMs Sun Fire V20z une seule CPU / dual core (AMD Opteron 250) avec 2048 Mo
de DRAM et 65GB d’espace de stockage. Nous avons également défini deux catégories de VMs
M = {m1,m2} (par exemple, petits et grands), où mcpu

1 = 1,mram
1 = 1,mcost

1 = 0.18 and
mcpu

2 = 2,mram
2 = 2,mcost

3 = 0.27.

Client : Enfin, afin de simuler les clients de manière à produire une charge réelle, nous nous
sommes appuyés sur Clif 2, un framework de test de charge.

A.5.2 Protocole d’expérience

Pour ce scénario, nous avons déployé deux instances de l’application décrite dans la section précé-
dente. Pour une instance, nous avons autorisé les deux configurations architecturales (k1 et k2) et
pour l’autre, nous n’avons autorisé qu’une seule (k1). Pour les deux instances, le budget a été fixé
à 1, 5. La durée de l’expérience était d’une heure, pendant laquelle la charge de travail augmente
de 0 à 140 requêtes par secondes. La charge de travail de l’application est décrite dans la figure
A.9.

En ce qui concerne l’infrastructure, nous avons utilisé un sous-ensemble de 13 PMs de la
grappe sagittaire. Nous avons effectué plusieurs essais en changeant le degré de pénurie d’énergie,
c’est-à-dire le nombre de PMs à arrêter: 1, 3 et 5. L’événement Energy Shortage est programmé
pour être déclenché à 45 minutes d’exécution pour toutes les trois exécutions. Le délai d’attente
(timeout) avant l’arrêt des PMs par l’IM a été fixé à 10 minutes.

A.5.3 Résultats

La figure A.8 montre la consommation d’énergie totale de l’infrastructure, avant et après l’événement
Energy Shortage, pour les trois exécutions (arrêt de 1, 3 et 5 PMs). Il convient de noter que
l’intervalle entre la détection de l’événement (ligne verticale) et la diminution de la consomma-
tion d’énergie est dû au délai entre l’exécution de l’action Notify Scale Down (notification) sur les
AM et l’arrêt effective des PMs. Ce délai correspond à 10 minutes. En ce qui concerne la con-
sommation d’énergie, il est évident que plus les nombre PMs arrêtées est important moins grande
est la consommation d’énergie.

La figure A.9 présente les résultats des trois exécutions en termes d’impact sur la QdS des
applications. Plus précisément, le graphique montre la moyenne de temps de réponse pour les
deux instances de l’application décrite précédemment (avec et sans élasticité de l’architecture (EA
dans la figure). Sans surprise, l’arrêt de seulement 1 PM (cf. figure A.9 (a)) n’affecte pas les
applications, car la PM choisie n’héberge aucune VM et par conséquent, aucun des composants
des applications.

Lorsque trois PMs doivent être arrêtées (cf. figure A.9 (b)), il est déjà possible de remarquer
les impacts sur la QdS des applications. En effet, l’application avec élasticité architecturale est
capable de s’adapter afin de supporter la restriction de ressources et maintenir le niveau idéal de
temps de réponse. Toutefois, pour l’application sans élasticité architecturale, son gestionnaire
autonome ne fait que libérer les VMs requises par l’IM. En conséquence, le temps de réponse

2http://clif.ow2.org

http://clif.ow2.org
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Figure A.8: Consommation de puissance lors d’une pénurie d’énergie.

augmente fortement à partir du moment où l’événement Scale Down est détecté, même s’il reste
entre les niveaux idéal et acceptable.

Pour l’arrêt de cinq PMs (cf. figure A.9 (c)), l’impact sur la QdS des applications est plus vis-
ible. Lors de la détection d’un événement Scale Down, l’application sans élasticité architecturale
dépasse de près de 100% le niveau acceptable de temps de réponse, tandis que l’application avec
l’élasticité d’architecturale reste dans les limites de l’acceptable.

Pour résumer, ce scénario est important pour montrer comment élasticité architecturale ainsi
que le protocole de coordination peuvent améliorer la synergie entre les gestionnaires AMs et IM.
Comme c’est montré dans les figures A.9 et A.8, l’IM est capable de faire face à une situation
extrême de façon transparente au niveau de l’infrastructure (contraintes d’énergie) en minimisant
les effets secondaires négatifs sur les applications (par exemple, une dégradation de QdS).

A.6 Conclusion

Au cours des dernières années, il a été constaté une augmentation drastique de la consommation
d’énergie des infrastructures de technologie de l’information, ce qui peut être expliqué en partie
par la dissémination de l’Internet et l’adoption à grande échelle des modèles de services récents
basés sur Internet tels que l’informatique en nuage. D’une part, les modèles de l’informatique en
nuage s’appuient sur le principe d’approvisionnement des ressources illimitées et disponible 24/24
7/7, ce qui peut conduire à des niveaux élevés de consommation, même si il n’est pas nécessaire.
D’autre part, la flexibilité de l’approvisionnement à la demande caractéristique des services dans le
nuage peut également contribuer à un meilleur dimensionnement de capacité et par conséquent à la
réduction de la consommation d’énergie. En fait, la mutualisation des ressources physiques, ce qui
est possible grâce à techniques telles que la virtualisation, ainsi que les concepts d’informatique
autonome permettent non seulement aux infrastructures de se gérer elles-mêmes afin d’améliorer
leur taux d’utilisation, mais ils permettent également aux applications de gérer elles-mêmes en
ajustant dynamiquement leurs besoins en termes de ressources en fonction de leurs exigences.

A.6.1 Récapitulatif de la problématique

Malgré cela, les décisions autonomes prises isolément à un niveau peuvent avoir un impact né-
gatif sur les systèmes fonctionnant à d’autres niveaux. Par exemple, due à des restrictions de
consommation d’énergie, un gestionnaire autonome au niveau de l’infrastructure peut décider (ou
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Figure A.9: Le temps de réponse moyen lors d’un événement Scale Down pour l’arrêt de: (a) 1,
(b) 3, et (c) 5 PMs.



190 Appendix A. Resumé

être obligé à) arrêter une partie de l’infrastructure physique. Il est évident que cette opération
peut affecter les applications hébergées sur l’infrastructure en question. En effet, le manque de
explicite de synergie entre les gestionnaires ainsi que le manque de flexibilité des systèmes admin-
istrés peuvent compromettre la QdS des ceux-ci. Par exemple, dans les cas extrêmes tels qu’une
pénurie d’énergie au niveau de l’infrastructure, les applications peuvent être sollicitées ou même
contraintes de libérer une partie des ressources qui leur sont attribuées. Les scénarios de ce genre
peuvent considérablement influer les systèmes exécutant s’il n’existe pas d’interface propre pour
favoriser une synergie entre les gestionnaires, ni si le système n’est pas capable d’auto-adaptation,
afin d’absorber ce niveau de restriction.

A.6.2 Sommaire des contributions

Cette thèse propose une approche de gestion multi-autonome dans le but d’améliorer la QdS des
applications et l’efficacité énergétique des infrastructures dans le nuage. Cette section résume les
contributions principales de cette approche.

Élasticité architecturale pour des applications dans le nuage. Au delà de l’élasticité de ressource
typique des infrastructures en nuage, dans lequel les applications sont en mesure de s’agrandir ou
de se contracter (en termes de ressource) selon la demande, nous avons également proposé un
autre niveau de flexibilité : l’élasticité architecturale.

L’élasticité architecturale adresse la capacité des applications de changer dynamiquement leur
structure architecturale afin de faire face à une contrainte donnée en termes de budget ou de
ressources informatique. Cette flexibilité est obtenue grâce à deux facteurs principaux: (i) la
modularité inhérente aux applications à base de composants, dans lesquelles on peut définir des
applications en termes de pièces modulaires de logiciel qui peuvent être facilement déployées,
remplacées et composées avec d’autres morceaux, et (ii) les techniques de réflexion qui perme-
ttent aux applications d’introspecter (naviguer) et intercéder (modifier) leur propre structure à
l’exécution. De cette façon, les applications dans le nuage sont définies en termes de composants
qui peuvent être dynamiquement, déployés, connectés ou remplacés dans le but de faire face aux
changements à l’exécution.

Nous avons validé cette contribution via un scénario de contrainte budgétaire et un scénario
de pénurie d’énergie. Les résultats ont montré l’importance de l’élasticité architecturale pour
maintenir un certain niveau de QdS face à des situations extrêmes.

Modèle autonome pour plusieurs boucles de contrôle. Afin de faire fonctionner ensemble
plusieurs gestionnaires autonomes , nous avons proposé un modèle de gestion autonome dans
lequel plusieurs boucles de contrôle sont capables de communiquer de manière synchronisée. Le
modèle est composé d’un protocole de coordination et d’un protocoles de synchronisation. Le
protocole de coordination est un protocole orienté message basé sur des événements et des actions
échangés dans le cadre du système administré, ainsi que entre plusieurs gestionnaires autonomes.
Ce protocole empêche les gestionnaires de rester bloqués en attentent des réponses d’autres ges-
tionnaires. Le protocole de synchronisation est nécessaire pour maintenir la cohérence des données
dans des sections critiques des bases de connaissance publique. À cet effet, nous nous sommes
appuyés sur un protocole à base de jetons afin de contrôler les accès simultanés aux sections cri-
tiques.

Des résultats obtenus via des simulations ont montré que ce modèle peut être réalisable (en
termes de stabilité et de performance) pour un nombre raisonnable de gestionnaires autonomes
concurrents. Cependant, le mécanisme de synchronisation a un prix: lorsque le nombre de ges-
tionnaires autonomes augmente, le temps d’attente pour l’acquisition d’un jeton et par conséquent
le temps de réaction (temps pendant lequel des événements sont traités) augmentent dans la même
proportion. Ce problème a été résolu par l’adoption d’une approche opportuniste, c’est-à-dire
qu’au lieu d’attendre jusqu’à que tous les jetons soient disponibles, les gestionnaires autonomes
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n’essaie d’obtenir que ceux qui sont disponibles en moment donné. En conséquence, il n’y a pas
de temps d’attente et ainsi le système peut passer à l’échelle.

Un gestionnaire autonome applicatif et un gestionnaire autonome pour l’infrastructure dans
le nuage. En se basant sur le modèle autonome décrit dans le paragraphe précédent, nous avons
proposé une architecture pour la gestion de plusieurs boucles de contrôle dans le contexte de
l’informatique en nuage. Cette architecture est composée de plusieurs gestionnaires d’applications
(AMs) et un gestionnaire de l’infrastructure (IM). Au niveau de l’infrastructure, l’IM est en charge
de la gestion d’allocation de ressources d’un ensemble de machines physiques (PM). Il s’appuie
sur des techniques de virtualisation pour traiter les demandes des ressources en provenance des
AMs de manière dynamique, ce qui signifie que les machines virtuelles (VMs) sont demandées et
libérées à la volée pendant que l’IM prend soin de les placer de sorte que le taux d’utilisation des
infrastructures et par conséquent l’efficacité énergétique soient optimisés.

Au niveau applicatif, un AM par application est responsable de la gestion de l’ensemble des
composants constituant l’application en question et la façon dont ceux-ci peuvent être connectés
(élasticité architecturale) ainsi que la quantité de ressources nécessaires (l’élasticité des ressources)
pour maintenir la QdS. À cette fin, les AMs s’appuient sur la flexibilité apportée par à la fois
l’élasticité architecturale et l’élasticité des ressources de sorte à non seulement reconfigurer la
structure interne de l’application (par exemple les composants, les connecteurs), mais aussi de-
mander et libérer les machines virtuelles auprès de l’IM au besoin.

Nous avons mis en œuvre un prototype de recherche englobant à la fois les deux types de
gestionnaires. Ce prototype a été utilisé pour évaluer qualitativement et quantitativement ce travail
de thèse.

Synergie entre les applications et l’infrastructure. Le modèle autonome mentionné précédem-
ment repose sur le partage d’information afin de faciliter la synergie entre gestionnaires autonomes.
Dans le contexte des AMs et l’IM, nous avons défini une base de connaissance publique qui
fait référence aux prix de location de ressource. Plus précisément, nous avons proposé deux
types de prix de location, un statique, c’est à dire qu’il ne change pas avec le temps, et un dy-
namique, qui peut varier selon le contexte de l’infrastructure. Les prix de location dynamiques,
dans cette thèse appelé promotions, sont créés dans le but de stimuler les AMs à occuper une par-
tie de l’infrastructure qui n’est pas utilisée. La stratégie de promotion permet à l’IM à un certain
niveau d’influencer les décisions prises par l’AMs, même si ces gestionnaires autonomes gèrent
des systèmes appartenant à différents fournisseurs ou situés dans différentes couches de la pile
de l’informatique de nuage. En conséquence, les actions réalisées par les AMs peuvent être plus
appropriées pour l’infrastructure.

En plus de la synergie fondée sur la base de connaissance publique, les gestionnaires au-
tonomes peuvent également bénéficier du protocole de coordination pour établir une synergie plus
explicite par l’intermédiaire d’interfaces de communication (actions et événements). Par exemple,
dans les périodes de pénurie d’énergie, l’IM demande à quelques AMs de libérer une certaine
quantité de ressource, ce qui, grâce à l’élasticité architecturale, peut être réalisable par les AMs
concernées. Ainsi, la synergie explicite avec l’élasticité architecturale rendent l’IM suffisamment
flexible pour faire face à des situations extrêmes d’une manière transparente.

Les approches de synergie proposées ont été évaluées expérimentalement. Dans le cas de la
synergie via une base de connaissance publique (promotion), il a été constaté un gain soit dans
le taux d’utilisation ou dans la consommation totale d’énergie de l’infrastructure. Dans le cas
de la synergie basée sur les interfaces de communication, il a été observé une amélioration de la
souplesse des adaptations. En effet, en raison de ce niveau de synergie entre les AMs et l’IM, les
applications impliquées dans un scénario extrême (par exemple, lors d’une pénurie d’énergie) ont
été capable d’y faire face, tout en minimisant les impacts sur leur QdS.
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Modèles basés sur la programmation par contraintes pour les problèmes d’optimisation.
La tâche de l’analyse de chaque gestionnaire autonome est mis en œuvre par un ou plusieurs
problèmes d’optimisation. Nous avons proposé un modèle de programmation par contraintes (CP)
pour chaque problème mentionné ci-dessus. CP est une technique de modélisation de problèmes
de satisfaction de contraintes et d’optimisation, dans lequel un problème est décrit en termes de
variables, domaines et des contraintes sur ces variables.

Compte tenu de la description du problème, un moteur général prend soin de le résoudre. La
façon descriptive où les problèmes sont modélisés libère les développeurs du fardeau de l’élaboration
d’un solveur spécifique pour chaque problème. Par ailleurs, ce couplage lâche entre le solveur et la
description permet la réutilisation et la composition des contraintes existantes, et améliore égale-
ment la maintenabilité et l’extensibilité des modèles existants.

Néanmoins, ce niveau de généralité et de description pour modéliser et résoudre les problèmes
d’optimisation se fait au détriment des limitations liées au passage à l’échelle. Pour cette raison,
nous avons réalisé des expériences de passage à l’échelle sur chacun des modèles afin d’exposer
leurs limites. Les résultats ont montré que les solveurs sont en mesure de résoudre les problèmes
respectifs dans un temps raisonnable pour les petites et moyennes applications et infrastructures.

A.6.3 Perspectives

Ce travail de recherche a réussi à régler les problèmes déjà soulignés au long de ce document. Une
partie des contributions présentées précédemment ont faire émerger des perspectives de recherche
intéressantes et prometteuses.

Mise en œuvre d’un middleware orienté message. Dans cette thèse, nous avons mis en place
un framework autonome orienté message afin de permettre la communication entre plusieurs ges-
tionnaires autonomes. Bien qu’il était conceptuellement défini pour s’appuyer sur un middleware
orienté message (MOM), le protocole de communication a été appliqué d’une manière ad-hoc sur
Hypertext Transport Protocol (HTTP). Nous croyons qu’un courtier MOM faciliterait la gestion
de la communication dans le sens où il rendrait les détails de communication transparente pour les
gestionnaires autonomes. La mise en œuvre d’une tel communication est un travail en cours.

Adoption d’autres frameworks à base de composants. Ce travail de thèse s’est appuyé sur
Service Component Architecture (SCA) afin de mettre en œuvre des applications (dans le nuage)
à base de composants et de permettre ainsi l’élasticité architecturale. Plus précisément, nous nous
sommes appuyés sur FraSCAti [SMF+09], un environnement d’exécution SCA développé au-
dessus du modèle de composant Fractal [BCL+04]. Malgré des nombreux avantages de FraSCAti
tel que le support aux reconfigurations dynamiques, il y a encore quelques limitations en ce qui
concerne l’aptitude aux grille de calcul ou les définitions d’applications dans le nuage. Ainsi, il n’y
a pas de support à Frascati pour la définition des composants dans différents domaines (machines
physiques ou virtuelles), même si elles appartiennent à la même application. C’est décevant car il
n’est pas possible de construire des applications à base de composants distribués tout en ayant un
modèle unique de représentation. Pour ces raisons, il devient nécessaire d’étudier d’autres modèles
de composants plus axés sur la grille comme Grid Component Model (GCM) [BCD+09]. GCM
est un modèle de composant avec un accent sur l’informatique répartie. Il semble être une piste
intéressante à étudier, car elle offre le support à la fois à la reconfiguration dynamique (également
basé sur le modèle de composants Fractal) et à la distribution de composants dans le cadre de la
grille de calcul.

Gestion de jetons sensible à l’équité et famine. Nous avons proposé un protocole à base de je-
tons pour gérer l’accès simultané aux sections critiques dans les bases de connaissance publiques,
en particulier les promotions. Étant donné qu’il n’y a pas de contrôle dans la façon dont ces jetons
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sont distribués, il peut arriver que le même demandeur obtient toujours un jeton, alors que les
autres n’ont jamais la chance de l’obtenir. Cette question doit être traitée en travaux futurs.

Modèle de prix basé sur l’économie. Cette thèse propose une approche qui s’appuie sur
une base de connaissance publique (plus précisément sur la forme de promotions) dans le but
d’améliorer la synergie entre les application et l’infrastructure. Toutefois, les promotions sont
créés d’une manière ad-hoc, ce qui signifie que nous ne précisons pas où, pour combien de
temps et comment (avec combien de remise) les promotions devraient être créées pour optimiser
l’utilisation des infrastructures et par conséquent l’efficacité énergétique. Les travaux sur le do-
maine d’Yield Management (gestion fine) [TvR05] ont été étudié afin d’appliquer de véritables
modèles économiques basés sur des données statistiques pour pouvoir déterminer des prix dy-
namiquement. Ce type d’approche est particulièrement intéressante pour établir une synergie entre
le fournisseur d’infrastructure et les fournisseurs d’applications, car il met l’accent sur la prévi-
sion de comportement des consommateurs. Alternativement, les modèles théoriques avancées
telles que la théorie des jeux [NM44] sont également très prometteurs afin de trouver un équili-
bre dans un mode gagnant-gagnant (en termes de prix) entre les participants contradictoires (les
applications et l’infrastructure fournisseurs).

Patrons de reconfiguration au niveau applicatif. Dans ce travail de thèse, nous nous sommes
appuyés sur un mécanisme de répartition de charge pour effectuer le passage à l’échelle et sur
une reconfiguration dynamique basée sur des composants pour effectuer élasticité architectural.
Cependant, il existe d’autres modèles de reconfiguration qui pourraient être appliquées selon le
contexte de l’application et des contraintes [NBF+12]. Par exemple, un modèle d’adaptation
pourrait être de transformer une application dans une application multi-locataire afin de consom-
mer moins de ressources ainsi que faire face à une contrainte de ressources/d’énergie donnée. Le
défi consiste à déterminer quels modèles peuvent être appliquées et s’ils peuvent être appliqués
ensemble.

Support au Service Level Agreements (SLA). Dans les problèmes d’optimisation présentés
dans ce travail de thèse, nous avons pris en compte des critères de dégradation (en termes de
performance et architecture) qui peuvent être considérés comme des objectifs (ou Service Level
Objectives) ou les guides afin d’éviter des violation de Service Level Agreements (SLA). Malgré
cela, ces critères ne pourraient pas être suffisant pour exprimer précisément les contrats comme
il faut dans les applications du monde réel. Nous travaillons actuellement sur l’incorporation des
SLA dans chaque couche de la pile logicielle de l’informatique en nuage à notre approche. À
cette fin, des travaux comme [KL12, FPP12b] (au niveau de l’application et de la plateforme)
et [BMDC+12] (au niveau des infrastructures) sont certainement de bonnes sources d’inspiration
pour étendre notre approche pour intégrer la définition de SLA.

Fiabilité des reconfigurations et transactions. La fiabilité des opérations devient une question
cruciale lorsqu’il s’agit de gestionnaires autonomes à la fois concurrents et interdépendants. En
particulier, dans le contexte de cette thèse, il n’y a aucune garantie que les actions effectuées par
l’ensemble des gestionnaires autonomes impliqués dans un processus de reconfiguration donné
sont effectivement exécutée. En outre, en cas de échec, il n’y a pas de mécanismes de rollback
(reprise) qui annulent les actions déjà effectuées , ce qui peut conduire les systèmes gérés im-
pliqués à des états incompatibles. Cette question a déjà été traitée dans le cadre de la reconfigu-
ration dynamique des architectures à base de composants [LLC10] et semble être un bon point de
départ pour aborder cette question dans le cadre de ce travail de thèse.

Extension de l’interface entre les applications et l’infrastructure. Actuellement, dans ce tra-
vail, l’interface entre les AMs et l’IM est limitée aux actions pour demander/libérer de VMs, sans
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donner plus de détails concernant les VM demandées tels que les contraintes au niveau des applica-
tions. Nous envisageons plusieurs situations dans lesquelles seules les opérations de libération/de-
mande ne suffisent pas et des exigences spécifiques à chaque application doivent être traduites en
des contraintes au niveau de l’infrastructure. Par exemple, il serait raisonnable de penser qu’une
VM ne devrait jamais être hébergée dans la même PM avec une autre VM (pour des raisons de
réplication), ou même le contraire (à fin de réduire la latence réseau). À cette fin, nous croyons
que BtrPlace [HLM13] peut être un bon point de départ, car il propose une approche flexible pour
la définition haut niveau des contraintes en termes de placement des VMs qui peut être fait à la
demande au niveau applicatif et appliquée au niveau de l’infrastructure.

Stabilité et coût de reconfiguration. Dans ce travail de thèse, le coût associé à l’exécution
d’une reconfiguration n’est pas pris en compte au moment de la prise de décision. Bien que cer-
taines mesures, comme connecter ou supprimer de composants, peuvent avoir un faible coût en
termes de temps d’exécution, d’autres comme le déploiement d’un composant ou la création d’une
machine virtuelle peut avoir un coût non négligeable et devrait varier en fonction du composant ou
de la taille des VMs. Par conséquent, il peut arriver qu’au moment où la reconfiguration prend ef-
fet elle ne soit plus utile ou qu’entre temps un autre événement (contradictoire) arrive, exigeant du
gestionnaire autonome l’annulation de la reconfiguration précédente. Il y a des nombreuse pistes
qui pourraient être étudiées pour atténuer cette instabilité. Tout d’abord, un modèle de coûts de re-
configuration doivent être pris en considération dans la formulation des problèmes d’optimisation.
Ceci est important parce qu’en se basant sur un tel modèle, on peut analyser quand il est avan-
tageux d’effectuer la reconfiguration étant donné un contexte d’exécution. En outre, une approche
prédictive serait nécessaire pour établir le profil d’activité des systèmes administrés (par exem-
ple charge de travail) afin de faciliter l’identification des périodes d’instabilité. La hiérarchisation
des événements avec l’expiration d’événements périmés semblent également être nécessaire, car
cela permettrait aux gestionnaires autonomes de choisir par exemple le plus récent entre deux ou
plusieurs événements contradictoires (par exemple une détection d’une augmentation suivie d’une
diminution de la charge de travail). Enfin, la préemption des gestionnaires autonomes lors du
traitement d’un événement pourrait permettre la révocation d’une reconfiguration lors de l’arrivée
d’un événement contradictoire, ce qui peut éviter des états futurs indésirables ou l’instabilité. A
cet effet, une approche transactionnelle, comme indiqué précédemment, serait d’une grande utilité.
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Gestion multi autonome pour l’optimisation de la consommation énergétique
sur les infrastructures en nuage

Multi Autonomic Management for Optimizing Energy Consumption in Cloud
Infrastructures

Résumé
Conséquence directe de la popularité croissante des
services informatique en nuage, les centres de données se
développent à une vitesse vertigineuse et doivent
rapidement faire face à des problèmes de consommation
d’énergie. Paradoxalement, l’informatique en nuage permet
aux infrastructure et applications de s’ajuster
dynamiquement afin de rendre l’infrastructure plus efficace
en termes d’énergie et les applications plus conformes en
termes de qualité de service (QdS). Toutefois, les décisions
d’optimisation prises isolément à un certain niveau peuvent
indirectement interférer avec (voire neutraliser) les décisions
prises à un autre niveau, par exemple, une application
demande plus de ressources pour garder sa QdS alors
qu’une partie de l’infrastructure est en cours d’arrêt pour des
raisons énergétiques. Par conséquent, il devient nécessaire
non seulement d’établir une synergie entre les couches du
nuage, mais aussi de rendre ces couches suffisamment
souples et sensibles pour être en mesure de réagir aux
changements d’exécution et ainsi profiter pleinement de
cette synergie. Cette thèse propose une approche
d’auto-adaptation qui prend en considération les
composants applicatifs (élasticité architecturale) ainsi que
d’infrastructure (élasticité des ressources) pour réduire
l’empreinte énergétique. Chaque application et
l’infrastructure sont équipées d’une boucle de contrôle
autonome qui leur permet d’optimiser indépendamment leur
fonctionnement. Afin de créer une synergie entre boucles de
contrôle autour d’un objectif commun, nous proposons un
modèle pour la coordination et la synchronisation de
plusieurs boucles de contrôle. L’approche est validée
expérimentalement à la fois qualitativement (amélioration de
QdS et des gains d’énergie) et quantitativement (passage à
l’échelle).

Abstract
As a direct consequence of the increasing popularity of
Internet and Cloud Computing services, data centers are
amazingly growing and hence have to urgently face energy
consumption issues. Paradoxically, Cloud Computing allows
infrastructure and applications to dynamically adjust the
provision of both physical resources and software services
in a pay-per-use manner so as to make the infrastructure
more energy efficient and applications more Quality of
Service (QoS) compliant. However, optimization decisions
taken in isolation at a certain level may indirectly interfere in
(or even neutralize) decisions taken at another level, e.g. an
application requests more resources to keep its QoS while
part of the infrastructure is being shutdown for energy
reasons. Hence, it becomes necessary not only to establish
a synergy between cloud layers but also to make these
layers flexible and sensitive enough to be able to react to
runtime changes and thereby fully benefit from that synergy.
This thesis proposes a self-adaptation approach that
considers both application internals (architectural elasticity)
and infrastructure (resource elasticity) to reduce the energy
footprint in cloud infrastructures. Each application and the
infrastructure are equipped with their own autonomic
manager, which allows them to autonomously optimize their
execution. In order to get several autonomic managers
working together, we propose an autonomic model for
coordination and synchronization of multiple autonomic
managers. The approach is experimentally validated
through two studies: a qualitative (QoS improvements and
energy gains) and a quantitative one (scalability).

Mots clés
Autonomic Computing, Informatique en Nuage,
Informatique Verte, Architecture Logicielle à Base
de Composants

Key Words
Autonomic Computing, Cloud Computing,
GreenIT, Component-based Software
Engineering.
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