Reliability Based Design Including Future Tests and Multi-Agent Approaches
Optimisation Fiabiliste - Prise en Compte des Tests Futurs et Approche par Systèmes Multi-Agent
Résumé
The initial stages of reliability-based design optimization involve the formulation of objective functions and constraints, and building a model to estimate the reliability of the design with quantified uncertainties. However, even experienced hands often overlook important objective functions and constraints that affect the design. In addition, uncertainty reduction measures, such as tests and redesign, are often not considered in reliability calculations during the initial stages. This research considers two areas that concern the design of engineering systems: 1) the trade-off of the effect of a test and post-test redesign on reliability and cost and 2) the search for multiple candidate designs as insurance against unforeseen faults in some designs. In this research, a methodology was developed to estimate the effect of a single future test and post-test redesign on reliability and cost. The methodology uses assumed distributions of computational and experimental errors with re-design rules to simulate alternative future test and redesign outcomes to form a probabilistic estimate of the reliability and cost for a given design. Further, it was explored how modeling a future test and redesign provides a company an opportunity to balance development costs versus performance by simultaneously designing the design and the post-test redesign rules during the initial design stage.The second area of this research considers the use of dynamic local surrogates, or surrogate-based agents, to locate multiple candidate designs. Surrogate-based global optimization algorithms often require search in multiple candidate regions of design space, expending most of the computation needed to define multiple alternate designs. Thus, focusing on solely locating the best design may be wasteful. We extended adaptive sampling surrogate techniques to locate multiple optima by building local surrogates in sub-regions of the design space to identify optima. The efficiency of this method was studied, and the method was compared to other surrogate-based optimization methods that aim to locate the global optimum using two two-dimensional test functions, a six-dimensional test function, and a five-dimensional engineering example.
Les premières étapes d'une conception fiabiliste impliquent la formulation de critères de performance et de contraintes de fiabilité d'une part, et le choix d'une représentation des incertitudes d'autre part. Force est de constater que, le plus souvent, des aspects de performance ou de fiabilité conditionnant la solution optimale ne seront pas connus ou seront négligés lors des premières phases de conception. De plus, les techniques de réduction des incertitudes telles que les tests additionnels et la reconception ne sont pas pris en compte dans les calculs de fiabilité initiaux. Le travail exposé dans ce manuscrit aborde la conception optimale de systèmes sous deux angles : 1) le compromis entre performance et coût généré par les tests supplémentaires et les reconceptions et, 2) l'identification de multiples solutions optimales (dont certaines locales) en tant que stratégie contre les erreurs initiales de conception. Dans la première partie de notre travail, une méthodologie est proposée pour estimer l'effet sur la performance et le coût d'un produit d'un test supplémentaire et d'une éventuelle reconception. Notre approche se base, d'une part, sur des distributions en probabilité des erreurs de calcul et des erreurs expérimentales et, d'autre part, sur une rêgle de reconception a priori. Ceci permet d'estimer a posteriori la probabilité et le coût d'un produit. Nous montrons comment, à travers le choix de politiques de prochain test et de re-conception, une entreprise est susceptible de contrôler le compromis entre performance et coût de développement.Dans la seconde partie de notre travail, nous proposons une méthode pour l'estimation de plusieurs solutions candidates à un problème de conception où la fonction coût et/ou les contraintes sont coûteuses en calcul. Une approche pour aborder de tels problèmes est d'utiliser un métamodèle, ce qui nécessite des évaluations de points en diverses régions de l'espace de recherche. Il est alors dommage d'utiliser cette connaissance seulement pour estimer un optimum global. Nous proposons une nouvelle approche d'échantillonnage à partir de métamodèles pour trouver plusieurs optima locaux. Cette méthode procède par partitionnement adaptatif de l'espace de recherche et construction de métamodèles au sein de chaque partition. Notre méthode est testée et comparée à d'autres approches d'optimisation globale par métamodèles sur des exemples analytiques en dimensions 2 à 6, ainsi que sur la conception d'un bouclier thermique en 5 dimensions.
Origine | Version validée par le jury (STAR) |
---|
Loading...