
Numéro d’ordre: 177-2012 Année 2012

Université Claude Bernard Lyon 1

Laboratoire d’InfoRmatique en Image et Systèmes
d’information

École Doctorale Informatique et Mathématiques de Lyon

Thèse de l’Université de Lyon

Présentée en vue d’obtenir le grade de Docteur,

spécialité Informatique

par

Karim Benouaret

Advanced Techniques for Web Service

Query Optimization

Thèse soutenue le 09.10.2012 devant le jury composé de:

Rapporteurs: Mourad Chabane Oussalah – Professeur à l’Université de Nantes

Anne Laurent – Professeur à l’Université Montpellier 2

Examinateurs: Claude Godart – Professeur à l’Université de Lorraine

Juliette Dibie-Barthélemy – Maitre de Conférences à l’INRA de Paris

Directeur: Djamal Benslimane – Professeur à l’Université Lyon 1

Co-directeur: Allel Hadjali – Professeur à l’ENSMA – Poitiers

To my mother, Zahia.

To my father, Ahmed.

To my sister, Sonia.

To my brother, Idir.

Acknowledgments

It would not have been possible to write this dissertation without the help and

support of the kind people around me, to only some of whom it is possible to give

particular mention here.

First, I wish to express my deep gratitude to my advisor Prof. Djamal Bensli-

mane, for his excellent guidance, caring, patience, and providing me with an ex-

cellent atmosphere for doing research. I thank him for his continuous support and

encouragement on both my research and other matters of life during my PhD study.

As an advisor, he taught me practices and skills that will benefit my future academic

career. I am also grateful to my co-advisor Prof. Allel Hadjali for his consistent

supports and encouragements. His advice and cooperation are very helpful, despite

the distance. It has been a great fortune for me to work under the supervision of

Prof. Djamal Benslimane and Prof. Allel Hadjali.

I am very thankful to Dr. Dimitris Sacharidis. I thank him for the knowledge

and skills he imparted through our collaboration. He was always willing to help and

give his best suggestions. Working with him is so enjoyable. I also appreciate his

help to improve the quality of my dissertation.

Many thanks go to Dr. Mahmoud Barhamgi. I thank him for his collaboration.

We spent countless hours together discussing research and other fun part about life.

I would also like to thank my parents, my sister and my brother for their contin-

uous moral support and encouragement with their best wishes. Their love accom-

panies me wherever I go.

Finally, I would like to thank my friends at LIRIS Laboratory and Lyon 1 Uni-

versity. I would have been lonely without them.

v

Abstract: As we move from a Web of data to a Web of services, enhancing the

capabilities of the current Web search engines with effective and efficient techniques

for Web services retrieval and selection becomes an important issue.

In this dissertation, we present a framework that identifies the top-k Web service

compositions according to the user fuzzy preferences based on a fuzzification of the

Pareto dominance relationship. We also provide a method to improve the diversity

of the top-k compositions. An efficient algorithm is proposed for each method.

We evaluate our approach through a set of thorough experiments. After that, we

consider the problem of Web service selection under multiple users preferences. We

introduce a novel concept called majority service skyline for this problem based on

the majority rule. This allows users to make a “democratic” decision on which Web

services are the most appropriate. We develop a suitable algorithm for computing

the majority service skyline. We conduct a set of thorough experiments to evaluate

the effectiveness of the majority service skyline and the efficiency of our algorithm.

We then propose the notion of α-dominant service skyline based on a fuzzification

of Pareto dominance relationship, which allows the inclusion of Web services with a

good compromise between QoS parameters, and the exclusion of Web services with a

bad compromise between QoS parameters. We develop an efficient algorithm based

on R-Tree index structure for computing efficiently the α-dominant service skyline.

We evaluate the effectiveness of the α-dominant service skyline and the efficiency of

the algorithm through a set of experiments. Finally, we consider the uncertainty of

the QoS delivered by Web services. We model each uncertain QoS attribute using a

possibility distribution, and we introduce the notion of pos-dominant service skyline

and the notion of nec-dominant service skyline that facilitates users to select their

desired Web services with the presence of uncertainty in their QoS. We then develop

appropriate algorithms to efficiently compute both the pos-dominant service skyline

and nec-dominant service skyline. We conduct extensive sets of experiments to

evaluate the proposed service skyline extensions and algorithms.

Keywords: skyline, top-k, preferences, service selection, QoS, service composition

Contents

1 Introduction 1

1.1 Research Statement . 2

1.1.1 Web Service Query Optimization 2

1.1.2 Research Requirements . 3

1.1.3 Key Contributions . 4

1.2 Dissertation Organization . 6

2 Background 9

2.1 Overview of Web Services . 10

2.1.1 Web Services . 10

2.1.2 Web Service Model . 11

2.1.3 Web Service Standards . 12

2.2 Preferences . 13

2.2.1 Preference Representation . 13

2.2.2 Preference Aggregation . 14

2.2.3 Preference Query Processing 15

2.3 Fuzzy Sets . 15

2.3.1 Definition . 15

2.3.2 Practical Representation . 16

2.3.3 Fuzzy Operations . 16

2.3.4 Fuzzy Implications . 17

2.3.5 Fuzzy Inclusion . 18

2.3.6 Modeling Preferences . 18

2.4 Possibility Theory . 18

2.4.1 Possibility Distribution . 19

2.4.2 Possibility and Necessity . 19

2.4.3 Interpretation . 20

2.4.4 Possibility vs Probability . 20

2.5 Conclusion . 21

Contents

3 Top-k Web Service Compositions with Fuzzy Preferences 23

3.1 Introduction . 24

3.1.1 Motivating Example . 24

3.1.2 Contributions . 26

3.2 Preferences-Based Data Service Composition Model 27

3.2.1 Preference Queries . 27

3.2.2 Data Services . 29

3.2.3 Discovering Relevant Data Services 31

3.2.4 Problem Statement . 33

3.3 Fuzzy Dominance and Fuzzy Scores 33

3.3.1 Fuzzy Dominance vs Pareto Dominance 34

3.3.2 Associating Fuzzy Score with a Data Service 36

3.3.3 Associating Fuzzy Score with a Data Service Composition . . 37

3.4 Top-k Data Service Compositions . 37

3.4.1 Efficient Generation of Top-k Data Service Compositions . . . 37

3.4.2 Top-k Service Compositions Algorithm 39

3.4.3 Diversity-aware Top-k Data Service Compositions 41

3.5 System Architecture and Experimental Evaluation 44

3.5.1 System Architecture . 44

3.5.2 Experimental Evaluation . 46

3.6 Conclusion . 51

4 Majority-Rule-Based Web Service Selection 53

4.1 Introduction . 53

4.1.1 Motivating Example . 54

4.1.2 Contributions . 56

4.2 Problem Definition . 57

4.3 Computing the Majority Service Skyline 59

4.3.1 Observations . 59

4.3.2 Majority Service Skyline Algorithm 60

4.4 Experimental Evaluation . 63

4.4.1 Experimental Setup . 63

4.4.2 Effect of Number of Discovered Services 64

4.4.3 Effect of Number of Users . 65

x

Contents

4.4.4 Effect of Number of Preferences per User 65

4.5 Conclusion . 66

5 Computing Skyline Web Services using Fuzzy Dominance 67

5.1 Introduction . 67

5.1.1 Motivating Example . 68

5.1.2 Contributions . 70

5.2 Definitions and Analysis . 70

5.2.1 Fuzzy Dominance vs Pareto Dominance 71

5.2.2 α-Dominant Service Skyline vs Service Skyline 73

5.3 Computing the α-Dominant Service Skyline 76

5.3.1 Efficient Computation of the α-Dominant Service Skyline . . 76

5.3.2 α-Dominant Service Skyline Algorithm 79

5.4 Experimental Evaluation . 81

5.4.1 Experimental Setup . 81

5.4.2 Size of the α-Dominant Service Skyline 82

5.4.3 Performance and Scalability 84

5.5 Conclusion . 84

6 Selecting Skyline Web Services from Uncertain QoS 85

6.1 Introduction . 85

6.1.1 Motivation and Challenges . 86

6.1.2 Contributions . 87

6.2 Service Skyline on Uncertain QoS . 87

6.2.1 Example . 88

6.2.2 Service Skyline Extensions . 89

6.3 Computing the Service Skyline Extensions 91

6.4 Experimental Evaluation . 95

6.4.1 Size of the Service Skyline Extensions 96

6.4.2 Elapsed time . 98

6.5 Conclusion . 99

7 Related Work 101

7.1 Web Service Selection and Optimization 101

xi

Contents

7.2 Skyline Computation . 104

8 Conclusions an Future Work 107

8.1 Conclusions . 107

8.2 Future Work . 109

A Academic Achievements 111

Bibliography 113

xii

List of Tables

1.1 Mapping between Research Requirements and our Contributions . . 6

3.1 Example of Data Services . 25

3.2 Matching Degrees between Data Services’ Constraints and Preference

Constraints of Q1 . 33

3.3 Services’ Scores and Top-k Data Services 36

3.4 Compositions’ Scores and Top-k Ones 39

3.5 The Effects of the used Distance Measure 49

3.6 Effects of ε and λ on the Top-k Compositions 49

3.7 Effects of ε and λ on the Diversified Top-k Compositions 50

3.8 Top-5 Data Services using Pareto Dominating Score and Fuzzy Dom-

inating Score . 51

4.1 User Preferences . 54

4.2 Discovered Services . 55

4.3 Matching Degrees of Services with respect to Users Preferences . . . 55

4.4 Example of Cyclic Majority Dominance 60

4.5 Parameters and Examined Values . 64

5.1 Parameters and Examined Values . 81

6.1 The Summary of Notation . 88

6.2 Example of Web Services with Uncertain QoS 89

6.3 Parameters and Examined Values . 96

List of Figures

2.1 The Web Service Model . 12

2.2 Trapezoidal Membership Representation 16

3.1 Sample of Ontology . 28

3.2 Graphical Representation of the Fuzzy Query 29

3.3 Functionality of Data Services . 31

3.4 Graded Inequality Representation in terms of x− y 35

3.5 Data Service Composition Architecture 45

3.6 Performance Results; case of η1 =

⌊

√

|Sj |
k

⌋

and η2 =
⌊

|Sj |
k

⌋

. 47

4.1 Effects of n. 64

4.2 Effects of m. 65

4.3 Effects of d. 66

5.1 Example of Functionally Similar Web Services 68

5.2 Graphical Representation of µε,λ w.r.t. y − x 72

5.3 Effects of ε and λ . 75

5.4 An Example of R-tree . 77

5.5 Effects of Parameters on the Size of the α-dominant Service Skyline

an that of Traditional Service Skyline 82

5.6 Effects of Parameters on the time of α-DSSA and BLA 83

6.1 Effects of Parameters on the Size of the pos-dominant Service Skyline

and the nec-dominant Service Skyline 97

6.2 Effects of Parameters on the Elapsed Time for Computing the pos-

dominant Service Skyline and the nec-dominant Service Skyline . . . 98

List of Algorithms

3.1 TKSC . 40

3.2 DTKS . 43

4.1 MSA . 62

5.1 α-DSSA . 80

6.1 TSA . 92

6.2 posDominates(si, sj , pos) . 94

6.3 necDominates(si, sj , nec) . 95

Chapter 1

Introduction

Contents

1.1 Research Statement . 2

1.1.1 Web Service Query Optimization 2

1.1.2 Research Requirements . 3

1.1.3 Key Contributions . 4

1.2 Dissertation Organization . 6

Over the last decade, the Web has undergone a major transformation, changing

from a Web of data to a Web of services. This essentially allows organizations

across all spectra to offer their services and conduct their daily life. Web services

are self-describing, self-contained, modular software applications and are designed

to perform a specific task. Typical examples include services returning information

to the user, such as news or weather forecast services, or services altering the world

state, such as on-line booking or shopping services.

Nowadays, Web services are emerging to provide a systematic and extensible

framework for application-to-application interaction built on the top of existing

Web protocols and based on open XML standards. Major industry players took

a lead to set up crucial standards. This has greatly facilitated the adoption and

deployment of Web services [Lan03]. Three key XML-based standards have been

defined to support the Web services framework [CDK+02]: (i) the Simple Object

Access Protocol (SOAP), which enables communication among Web services; (ii) the

Web Services Description Language (WSDL), which provides a formal, computer-

readable description of Web services; and (iii) the Universal Description, Discovery,

and Integration (UDDI) directory, which is a registry of Web service descriptions.

While individual Web services usually fulfill the users’ needs, in some cases, users

need to compose different Web services to achieve a more complex task that cannot

Chapter 1. Introduction

be fulfilled by an individual Web service. Web service composition is a powerful

solution for building value-added services on top of existing ones [Sin01, MBE03].

Thus, Web service composition is a crucial aspect of Web services technology, which

gives us the opportunity to select new Web services and best suits our needs.

1.1 Research Statement

Consequently, it becomes apparent that the Web services paradigm rapidly gains

popularity constituting an integral part of many real-world applications. For this

purpose, several techniques for discovering Web services have been recently pro-

posed; e.g., keyword search and semantic search paradigms. However, as Web ser-

vices and service providers proliferate, there will be a large number of candidate

− most likely competing − Web services for fulfilling a desired task. According to

[AMM08], there has been a more than 130% growth in the number of published Web

services in the period from October 2006 to October 2007. In addition, the statis-

tics published by the Web services search engine Seekda!1 indicate an exponential

increase in the number of Web services over the last 72 months. Therefore, to select

a relevant Web service, users need to go through several trial-run processes. This

would be very painstaking, and the selected Web service is not necessarily among the

most interesting ones. Hence, enhancing the capabilities of the current Web search

engines with effective and efficient techniques for identifying and selecting the most

appropriate Web services or Web service compositions becomes an important issue.

1.1.1 Web Service Query Optimization

The purpose of Web service query optimization is to select optimal Web services

– among the discovered ones – since it is common that the result of the service

discovery contains a large number of Web services. Even for a composite Web

service consisting of many atomic Web services, the selection issue still needs to be

addressed as multiple Web services may be available for an atomic Web service. User

preferences play a key role during the selection process. Taking user preferences into

account allows to return Web services that best satisfy the user requirements. In

addition, as the number of Web services with similar functionality is expected to

1http://webservices.seekda.com/

2

1.1. Research Statement

be very large, it is crucial to select the best Web services – among the functionally

similar ones – based on quality of service (QoS), i.e., preferences are expressed on

the QoS parameters of Web services (e.g., price, response time, etc.) instead of the

data they manipulate.

The objective of this research is to devise advanced techniques for Web service

query optimization. We focus on giving users the flexibility to find the most appro-

priate Web services or Web service compositions. This will serve as a key block for

building tomorrow’s Web service search engines.

1.1.2 Research Requirements

We summarize the requirements that need to be dealt with when devising advanced

techniques for Web service query optimization as follows:

• R1: User preferences aware Web service query optimization – Web service

composition is a powerful means to answer users’ complex queries. Due to

the proliferation of Web services, selecting Web services from the massive

candidates plays a crucial role in the Web service composition world since a

large number of Web services may be used to answer the same query. It is thus

important to set up an effective framework that would identify and retrieve

the most relevant Web services, and return the best Web service compositions

according to the user preferences.

• R2: Web service query optimization for multiple users preferences – In many

practical situations, multiple users with different – possibly conflicting – pref-

erences need to make a group decision. For example, members of a family who

want to buy a car, or a group of friends who want to rent an apartment for the

holidays. However, this problem is not taken into account by the current Web

service optimization approaches. It is thus interesting to devise optimization

strategies for finding the most relevant Web services with respect to all users.

• R3: QoS aware Web service query optimization – The exploding number of

functionally similar Web services has led to a new challenge of selecting the

most relevant services using QoS aspects. Traditionally, the relevance of a Web

service is determined by computing an overall score that aggregates individual

QoS values, where users are required to assign weights over QoS attributes.

3

Chapter 1. Introduction

Users thus lose the flexibility to select their desired Web services. Computing

the skyline comes as a popular solution that overcomes this limitation. The

skyline consists of the set of Web services that are not dominated by any other

one. A Web service si dominates another Web service sj if and only if si is

better than or equal to sj in all QoS attributes, and strictly better in at least

one QoS attribute. However, the skyline often privileges Web services with

a bad compromise between different QoS attributes, i.e., Web services with

some very good and very bad QoS values, while users prefer Web services

with a good compromise between QoS attributes, i.e., Web services that are

(moderately) good in all QoS values. Therefore, there is a need to provide a

framework that allows users to select Web services with a good compromise

between different QoS attributes in a flexible way.

• R4: Web service query optimization over uncertain QoS – Current QoS-based

Web service selection approaches assume that the QoS does not change over

time. Whereas, the QoS values may not precisely reflect the actual perfor-

mances of Web services due to the dynamic Web service environment. For

example, the response time may vary with the quality of the network. In ad-

dition, Web service providers can still not supply according to their betrothed

QoS because of intentional deception. Therefore, the QoS delivered by Web

services is uncertain. Taking into account the uncertainty of QoS during the

selection process is thus an important issue.

1.1.3 Key Contributions

We address the above-mentioned requirements by providing optimization strategies

to enable users to select the most appropriate Web services or Web service compo-

sitions in a flexible way. More specifically, our major contributions are summarized

as follows:

• C1: Top-k Web service compositions with fuzzy preferences – We present an

approach to automatically compose Web services while taking into account

the user preferences. User preferences are expressed in a fuzzy linguistic way.

They are modeled using fuzzy sets then incorporated into the composition

query. We use an efficient query rewriting algorithm to determine the relevant

4

1.1. Research Statement

Web services that may be used to answer the composition query. The (fuzzy)

constraints of the relevant Web services are then matched to those of the query

to determine their matching degrees using a set of matching methods. We

rank-order Web services using a methodology based on a fuzzification of Pareto

dominance relationship, then compute the top-k Web service compositions.

We propose also a method to improve the diversity of returned compositions

while maintaining as possible the compositions with the highest scores. As the

problem of Web service composition is known to be NP-hard, we develop for

each method a suitable algorithm that prunes the search space. We evaluate

our approach through a set of thorough experiments.

• C2: Majority-rule-based Web service selection – We introduce a novel concept

called majority service skyline based on the majority rule. This allows users to

make a “democratic” decision on which Web services are the most appropriate.

We then developed an efficient algorithm for computing the majority service

skyline. We conduct a set of thorough experiments to evaluate the effectiveness

of the majority service skyline and the efficiency of the proposed algorithm.

• C3: Computing skyline Web services using fuzzy dominance – We propose a

skyline variant called α-dominant service skyline based on a fuzzification of

Pareto dominance relationship. The α-dominant service skyline allows the

inclusion of Web services with a good compromise between QoS parameters,

and the exclusion of Web services with a bad compromise between QoS pa-

rameters. It thus provides users with the most relevant Web services. The

α-dominant service skyline also gives users the flexibility to control the size

of the returned Web services. We then develop an efficient algorithm based

on R-Tree index structure for computing the α-dominant service skyline. We

evaluate the effectiveness of the α-dominant service skyline and the efficiency

of the algorithm through a set of experiments.

• C4: Selecting skyline Web services from uncertain QoS – We leverage possibil-

ity theory, and model each uncertain QoS attribute of a Web service using a

possibility distribution. We then introduce the notion of pos-dominant service

skyline and the notion of nec-dominant service skyline that facilitate users

to select their desired Web services with the presence of uncertainty in their

5

Chapter 1. Introduction

QoS. We then develop appropriate algorithms to efficiently compute both the

pos-dominant service skyline and nec-dominant service skyline. We evaluate

our approach through a set of experiments.

Table 1.1: Mapping between Research Requirements and our Contributions

Research requirement Contribution Chapter

R1 C1 Chapter 3

R2 C2 Chapter 4

R3 C3 Chapter 5

R4 C4 Chapter 6

Table 1.1 shows the mapping between the mentioned research requirements and

our contributions, and lists the chapters that cover the corresponding contributions.

1.2 Dissertation Organization

The rest of this dissertation is organized as follows.

In Chapter 2, we provide the necessary background, that we feel is needed to

understand the content of this dissertation. First, we present the key concepts

around the Web service technology. We then concentrate specifically on the area of

preferences. Finally, we introduce the reader to fuzzy sets and possibility theory.

In Chapter 3, we present a framework that identifies the top-k Web service com-

positions according to the user fuzzy preferences. A fuzzy dominance relationship is

proposed to better rank the results. We propose also a method to improve the diver-

sity of the top-k compositions. An efficient algorithm is proposed for each method.

We also conduct a set of experiments to evaluate the effectiveness of our methods

and the scalability of our algorithms.

In Chapter 4, we introduce a novel concept called majority service skyline based

on the majority rule to allow users to make a “democratic” decision on which Web

services are the most appropriate. We then develop an efficient algorithm to compute

the majority service skyline. This chapter also presents a set of experiments to show

the effectiveness of the majority service skyline and the efficiency of our algorithm.

6

1.2. Dissertation Organization

In Chapter 5, we present a new skyline variant called α-dominant service sky-

line based on a fuzzification of Pareto dominance. The α-dominant service skyline

provides users with Web service with a good compromise between QoS parameters,

and gives them the flexibility to control the size of the returned Web services. An

efficient algorithm is developed to compute efficiently the α-dominant service sky-

line. We also evaluate the effectiveness of the proposed concept and the efficiency

of the algorithm.

In Chapter 6, we present an approach to deal with QoS pervaded with uncer-

tainty. We model each uncertain QoS attribute using a possibility distribution, and

introduce two skyline extensions called pos-dominant service skyline and the nec-

dominant service skyline. These skyline extensions facilitate users to select their

desired Web services with the presence of uncertainty in their QoS. We then de-

velop appropriate algorithms to efficiently compute the skyline extensions. We also

evaluate our approach through a set of experiments.

In Chapter 7, we review the related work that are most related to our research.

This aims to position our work with respect to existing ones.

In Chapter 8, we provide concluding remarks and discuss some possible directions

for future research.

7

Chapter 2

Background

Contents

2.1 Overview of Web Services . 10

2.1.1 Web Services . 10

2.1.2 Web Service Model . 11

2.1.3 Web Service Standards . 12

2.2 Preferences . 13

2.2.1 Preference Representation . 13

2.2.2 Preference Aggregation . 14

2.2.3 Preference Query Processing 15

2.3 Fuzzy Sets . 15

2.3.1 Definition . 15

2.3.2 Practical Representation . 16

2.3.3 Fuzzy Operations . 16

2.3.4 Fuzzy Implications . 17

2.3.5 Fuzzy Inclusion . 18

2.3.6 Modeling Preferences . 18

2.4 Possibility Theory . 18

2.4.1 Possibility Distribution . 19

2.4.2 Possibility and Necessity . 19

2.4.3 Interpretation . 20

2.4.4 Possibility vs Probability . 20

2.5 Conclusion . 21

Chapter 2. Background

In this chapter, we first present the key concepts behind Web service technology

in Section 2.1. We then provide some basic notions around preferences in Sec-

tion 2.2, while, we focus on both fuzzy sets and possibility theory in Section 2.3 and

Section 2.4, respectively. Finally, Section 2.5 concludes this chapter.

2.1 Overview of Web Services

Various software architectures and technologies have been proposed over the last

years for easing the development and deployment of distributed systems; e.g., mid-

dleware for distributed objects [Emm00]. However, the generalization of the Internet

and the diversification of networked devices have led to the definition of a new com-

puting paradigm: the Service-Oriented Architecture (SOA), which allows developing

software as a service delivered and consumed on demand [PG03, EL04]. The use of

Web service technology allows applications at various locations on the World Wide

Web to be interconnected and integrated in a loosely-coupled manner as if they were

parts of a single, large information technology system.

2.1.1 Web Services

A variety of definitions about Web services are given in the literature. However,

that proposed by the Word Wide Web Consortium (W3C2) is considered as ref-

erence: “A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in

a machine-processable format (specifically WSDL). Other systems interact with the

Web service in a manner prescribed by its description using SOAP messages, typ-

ically conveyed using HTTP with an XML serialization in conjunction with other

Web-related standards.”3

This definition highlights the major technological and business benefits of Web

services, namely:

• Interoperability – This is the most important benefit of Web services. Web

services typically work outside of private networks, offering developers a non-

2http://www.w3.org/
3http://www.w3.org/TR/ws-arch/

10

2.1. Overview of Web Services

proprietary route to their solutions. Web services developed are likely, there-

fore, to have a longer life-span, offering better return on investment of the

developed Web service. Web services also let developers use their preferred

programming languages. In addition, thanks to the use of standards-based

communications methods, Web services are virtually platform-independent.

• Usability – Web services allow the business logic of many different systems to

be exposed over the Web. This gives your applications the freedom to chose

the Web services that they need. Instead of re-inventing the wheel for each

client, you need only include additional application-specific business logic on

the client-side. This allows you to develop services and/or client-side code

using the languages and tools that you want.

• Reusability – Web services provide not a component-based model of applica-

tion development, but the closest thing possible to zero-coding deployment of

such Web services. This makes it easy to reuse Web service components as

appropriate in other Web services. It also makes it easy to deploy legacy code

as a Web service.

• Deployability – Web services are deployed over standard Internet technologies.

This makes it possible to deploy Web services even over the fire wall to servers

running on the Internet on the other side of the globe. Also thanks to the use

of proven community standards, underlying security is already built-in.

2.1.2 Web Service Model

The Web service model is based upon interactions between three types of partic-

ipants including service provider, service registry and service client. Interactions

involve three basic operations: service publishing, finding and binding. Participants

and operations act upon the Web service artifacts encompassing the service im-

plementation and description. Figure 2.1 shows the different participants and the

interactions among them.

In a typical scenario, a service provider provides a network-accessible software

module, i.e., an implementation of a Web service, defines a service description for the

Web service and publishes it to a service registry so that the service client can find

it. The service description contains information such as the inputs/outputs of the

11

Chapter 2. Background

Figure 2.1: The Web Service Model

Web service, the address where the service is located and QoS. The service client

queries the service registry for a certain type of service and retrieves the service

description. Then it uses the information in the service description to bind with the

service provider and invoke the Web service implementation.

2.1.3 Web Service Standards

Standards are key enablers of Web services [CDK+02, VN02]. The service model

from above is realized via the following XML-based standards:

• Simple Object Access Protocol (SOAP4) – SOAP is a protocol specification

for exchanging structured information in the implementation of Web services

in computer networks. It relies on XML for its message format, and usually

relies on other application layer protocols, most notably HTTP, for message

negotiation and transmission.

• Web Services Description Language (WSDL5) – WSDL is an XML-based lan-

guage that is used for describing the functionality offered by a Web service.

A WSDL description of a Web service (also referred to as a WSDL file) pro-

vides a machine-readable description of how the service can be called, what

parameters it expects, and what data structures it returns.

4http://www.w3.org/TR/soap12
5http://www.w3.org/TR/wsdl

12

2.2. Preferences

• Universal Description, Discovery and Integration (UDDI6) – UDDI is a platform-

independent, XML-based registry by which businesses worldwide can list them-

selves on the Internet, and a mechanism to register and locate web service

applications. UDDI is an open industry initiative, sponsored by the Organiza-

tion for the Advancement of Structured Information Standards (OASIS), for

enabling businesses to publish service listings and discover each other, and to

define how the services or software applications interact over the Internet.

2.2 Preferences

The handling of user preferences is becoming an increasingly important issue in

present-day information systems [Cho03]. Motivations for such a concern are man-

ifold [HKP11]. First, it has appeared to be desirable to offer more expressive query

languages which can be more faithful to what a user intends to say. Second, the

introduction of preferences in queries provides a basis for rank-ordering the retrieved

items, which is especially valuable in case of large sets of items satisfying a query.

Third, on the contrary, a classical query may also have an empty set of answers,

while a relaxed (and thus less restrictive) version of the query might be matched by

items in the database.

2.2.1 Preference Representation

Preference representation approaches can be categorized as follows [SKP11]:

• Formulation – Preferences are formulated (i) quantitatively, i.e., specified us-

ing functions that associate a numerical score with each tuple. For example,

“my interest in sport cars is 0.6, in passenger car is 0.3 and in vans is 0.1”,

which implies that sport cars are more preferable than passenger cars, which

in turn are more preferable than vans; or (ii) qualitatively, i.e., defined as

binary relations between two tuples. For example, “I like sport cars better

than passenger cars or vans”, which implies that sport cars are preferred over

passenger cars and vans, but passenger cars and vans are indifferent;

• Granularity – Preferences can be expressed at different levels of granularity,

i.e., for tuples, sets, relations, attributes, and relationships. For example, “I

6http://www.uddi.org/pubs/uddi_v3.htm

13

Chapter 2. Background

want three cars, and prefer one of them to be a sport car” is a preference

expressed over a set;

• Context – Preferences can be context-free or can hold under specific conditions.

For example, “I like passenger cars when where accompanied with my family

for holidays”;

• Aspects – Preferences may vary based on their intensity, elasticity, complexity

and other aspects. For example, a preference may express a like “I like sport

cars” or dislike “I do not like vans”.

2.2.2 Preference Aggregation

Different aggregation mechanisms can be applied to combine, infer or override pref-

erences. Preference aggregation mechanisms can be grouped into the following cat-

egories [SKP11]:

• Quantitative aggregation – These mechanisms combine preferences by assign-

ing global scores to the tuples, which are thus ordered in a quantitative way.

For example, “I interest in sport cars is 0.7 and in petrol engine is 0.6”, then

a sport car with a petrol engine may have a score of 1.3, i.e., the sum of the

two weights or a score of 0.6, i.e., the minimum of the weights, and so on;

• Qualitative aggregation – These mechanisms combine preferences resulting in

a relative (i.e., qualitative) ordering of the tuples. The most popular quali-

tative aggregation is the Pareto preference composition, where the involved

preferences are considered equally important. For example, “I like sport cars

better than passenger cars, and petrol engine better than diesel engine”, then

a sport car with a petrol engine is preferred over a sport car with a diesel

engine, a passenger car with a petrol engine or a passenger car with a diesel

engine, but a sport car with a diesel engine and a passenger car with a petrol

engine are indifferent;

• Heterogeneous aggregation – These mechanisms are used to combine prefer-

ences of different granularity; e.g., using the Pareto preference composition.

14

2.3. Fuzzy Sets

2.2.3 Preference Query Processing

Preferences are used in query processing to provide users with customized results.

There are roughly two different lines of work on using preferences in query processing

[SKP11]:

• Expanding queries – These methods assume the existence of a number of user

preferences and appropriately rewrite regular queries to incorporate them.

This process is often referred to as query personalization. For example, de-

termining which preferences are related to a given query, and providing users

with a flexible way to express their preferences, then the query is expanded

with the selected preferences;

• Employing preference operators – These methods use special database op-

erators to explicitly express preferences within queries. The most popular

preference operators are: (i) the top-k operator, where the items in the result

are ranked according to a user defined scoring function and the results with

the k highest scores are returned to the user; and (ii) the skyline operator,

which comprises those items that are not dominated (in the sense of Pareto)

by any other item in the result; an item dominates another item, if the former

is as good as or better than the latter with regard to a set of preferences and

strictly better in at least one preference.

2.3 Fuzzy Sets

Fuzzy set theory was introduced by Zadeh [Zad65] to model sets whose boundaries

are not well defined. Typical examples are those described using adjectives of the

natural language, such as cheap, expensive, etc. For such sets, the transition between

full membership and full mismatch is gradual rather than crisp.

2.3.1 Definition

A fuzzy set F on a referential X is characterized by a membership function µF :

X → [0, 1] where µF (x) denotes the grade of membership of x in F . In particular,

µF (x) = 1 reflects full membership of x in F , while µF (x) = 0 means absolute

15

Chapter 2. Background

non-membership. When 0 < µF (x) < 1, x has partial membership in F . F is

normalized if ∃x ∈ X : µF (x) = 1.

2.3.2 Practical Representation

Two crisp sets are of particular interest when defining a fuzzy set F :

• The core C(F) = {x ∈ X | µF (x) = 1}, which gathers the prototypes of F ;

• The support S(F) = {x ∈ X | µF (x) > 0}, which contains the elements that

belong to some extent to F .

1

0

F

A-a A B B+b X

Figure 2.2: Trapezoidal Membership Representation

In practice, the membership function associated with F has often a trapezoidal

shape. Then, F is expressed by the quadruplet (A,B, a, b) where C(F) = [A,B]

and S(F) = [A− a,B + b] (cf. Figure 2.2). A regular interval [A, B] can be seen as

a fuzzy set represented by the quadruplet (A,B, 0, 0).

2.3.3 Fuzzy Operations

Given two fuzzy sets F and G in the universe (i.e., referential) X , the intersection,

union, and complement fuzzy operations are defined as follows [DP00]:

• Intersection – The membership function of the intersection of F and G is

defined by µF∩G = ⊤(µF (x), µG(x)) where ⊤ is a t-norm operator that gener-

alizes the conjunction operation (e.g., ⊤(x, y) = min(x, y) and ⊤(x, y) = x·y);

• Union – The membership function of the union of F and G is defined by

µF∪G = ⊥(µF (x), µG(x)) where ⊥ is a co-norm operator that generalizes the

disjunction operation (e.g., ⊥(x, y) = max(x, y) and ⊥(x, y) = x+ y − x · y);

16

2.3. Fuzzy Sets

• Complement – The membership function of the complement of F , denoted by

FC , is defined by µFC (x) = 1− µF (x).

As usual, the logical counterparts of the theoretical set operators ∩, ∪ and com-

plementation correspond respectively to conjunction ∧, disjunction ∨ and negation

¬. See [DP00] for more details.

2.3.4 Fuzzy Implications

A fuzzy implication is an operator →f defined from [0, 1]2 to [0, 1] satisfying the

following conditions [Yag80]:

• x →f 1 = 1;

• 0 →f x = 1;

• 1 →f x = x;

• if y ≥ z then x →f y ≥ x →f z, i.e., increasing with respect to the second

argument;

• if x ≤ z then x →f y ≥ z →f b, i.e., decreasing with respect to the first

argument.

Two families of fuzzy implications are studied in the fuzzy literature due to their

semantic properties and the fact that their results are similar with the ones of usual

implications, material implications, when the arguments are 0 or 1:

• R-implications – These fuzzy implications are defined by x →f y = sup{β ∈

[0, 1],⊤(x, β) ≤ y}, where ⊤ is a t-norm operator. The two most used R-

implications are (i) Godöl implication: x →God y = 1 if x ≤ y, 0 otherwise;

and (ii) Goguen implication: x →f IGogy = 1 if x ≤ y, y/x otherwise;

• S-implications : These fuzzy implications are defined by x →f y = ⊥(1−x, y),

where ⊥ is a co-norm operator. The two most popular S-implications are (i)

Kleene-Dienes implication: x →Kle y = max((1− x, y); and (ii) Lukasiewicz

implication: x →Luk y = min(1− x+ y, 1).

Note that Lukasiewicz implication is, also, an R-implication. For a complete

presentation on fuzzy implications, the reader is invited to see [DP00].

17

Chapter 2. Background

2.3.5 Fuzzy Inclusion

Given two fuzzy sets F and G in the universe X , F ⊆ G if and only if ∀x ∈

X , µF (x) ≤ µG(x). Moreover, if F is not included in G, there is two main approaches

to define an inclusion degree of F in G [BBP96]:

• Quantitative method – The inclusion degree of F in G is computed in the

following way: Deg(F ⊆ G) = |F∩G|
|F| =

∑
x∈X ⊤(μF (x),μG(x))∑

x∈X μF (x) where | F | stands

for the cardinality of F and defined by |F| =
∑

x∈X µF (x);

• Logic method – The degree of inclusion is given by the following expression:

Deg(F ⊆ G) = minx∈X(µF (x) →f µG(x)) where →f stands for a fuzzy

implication.

2.3.6 Modeling Preferences

Fuzzy sets provide a suitable tool to express user preferences. A fuzzy set-based

approach to deal with preference queries is founded on the use of the notion of

membership functions that describe the preference profiles of user for each attribute

domain involved in the query [DP96, HKP08].

The user does not specify crisp (Boolean) criteria, but gradual ones like afford-

able, very cheap and fairly expensive (for the attribute price), whose satisfaction

is a matter of degree. Individual satisfaction degrees associated with elementary

conditions are combined using a panoply of fuzzy set connectives, which may go

beyond conjunctive and disjunctive aggregations. Then, the result of a query is no

longer a flat set of elements but a set of discriminated elements according to their

global satisfaction with respect to the fuzzy criteria appearing in the query. So, a

complete pre-order is obtained. One can limit the number of answers by using a

quantitative calibration (e.g., return the top-k answers) or a qualitative calibration

(e.g., return the answers that satisfy the query with a degree above a threshold η).

2.4 Possibility Theory

Possibility theory was introduced by Lotfi Zadeh [Zad78] for dealing with some

facets of uncertainty due to incomplete state of knowledge where probability theory

is inappropriate. Possibility theory offers a qualitative model for uncertainty where

18

2.4. Possibility Theory

a piece of information is represented by means of a possibility distribution encoding

a complete pre-order over the possible situations [DP88]. A possibility distribution

is frequently attached to a variable v taking a single value, possibly not well known,

on a domain Ω.

2.4.1 Possibility Distribution

A possibility distribution of a variable v, on a domain Ω, is a function πv from Ω to

[0, 1], where πv(x) expresses the degree to which x (x ∈ Ω) is a possible value for v.

The normalization condition imposes that at least one of the values of the domain

“x0” is completely possible for any variable v, i.e., πv(x0) = 1 in case of consistent

information. When the domain is discrete, a possibility distribution of any variable

v of Ω can be written πv = {πv(x1)/x1, πv(x2)/x2, . . . , πv(xm)/xm} where xi is a

candidate value and πv(xi) is its possibility degree with respect to the variable v.

2.4.2 Possibility and Necessity

Whereas probability theory uses a single number, the probability, to describe how

likely an event is to occur, in possibility theory, an event e is characterized by two

measures: its possibility and its necessity. The possibility measure and necessity

measure are defined as follows:

• Possibility measure – The possibility measure is a function Π : 2Ω → [0, 1]

such that:

– Π(∅) = 0;

– Π(Ω) = 1;

– Π(e1 ∪ e2) = max(Π(e1),Π(e2)).

• Necessity measure – The necessity measure is defined by N(e) = 1 − Π(e)

where e is the event opposite to e. From this formula, it is straightforward to

show that:

– N(e) ≤ Π(e);

– Π(e1 ∩ e2) = min(N(e1), N(e2));

– Π(e) + Π(e) ≥ 1;

19

Chapter 2. Background

2.4.3 Interpretation

One can distinguish four cases to characterize the uncertainty of an event e:

• N(e) = 1 means that e is necessary, i.e., e is certainly true. It implies that

Π(e) = 1;

• Π(e) = 0 means that e is impossible, i.e., e is certainly false. It implies that

N(e) = 0;

• N(e) = 0 means that e is unnecessary. I would not be surprised at all if e does

not occur. It leaves Π(e) unconstrained;

• Π(e) = 1 means that e is possible. I would not be surprised at all if e occurs.

It leaves N(e) unconstrained.

2.4.4 Possibility vs Probability

It is worth to note that possibility and probability measures carry two distinct

semantics. A probability value provides a frequency of occurrence of an event,

which also allows ordering the different events depending on their frequency. A

value of possibility is purely ordinal in the sense that it is only intended to order the

different choices. For example, assume that the universe Ω = {red, black} represents

the results of a casino roulette, the probability p defined by p({red}) = 0.8 and

p({black}) = 0.2 indicates that the frequency of the event “red (resp. black) occurs”

is 8 (resp. 2) times out of 10. The event “red occurs” is four times more frequent

than the event “black occurs”. If we must bet on one of these two colors, red is

first class. If the result of the roulette is modeled by the possibilities, it is always

possible to classify the two possibilities but both event frequencies are not expressed.

Roughly speaking, possibility theory is adapted to the context where frequencies are

not available. For instance, the response time of a Web service si must be modeled

using a possibility distribution because no information is provided about the quality

of the network to determine the different frequencies (knowing that the response

time vary with the quality of the network).

20

2.5. Conclusion

2.5 Conclusion

In this chapter, we presented the main concepts around Web service technology

and preferences. We also introduced the reader to fuzzy sets and possibility theory.

Now, the reader should be able to understand our contributions described in the

next four chapters as well as the rest of this dissertation.

21

Chapter 3

Top-k Web Service Compositions

with Fuzzy Preferences

Contents

3.1 Introduction . 24

3.1.1 Motivating Example . 24

3.1.2 Contributions . 26

3.2 Preferences-Based Data Service Composition Model 27

3.2.1 Preference Queries . 27

3.2.2 Data Services . 29

3.2.3 Discovering Relevant Data Services 31

3.2.4 Problem Statement . 33

3.3 Fuzzy Dominance and Fuzzy Scores 33

3.3.1 Fuzzy Dominance vs Pareto Dominance 34

3.3.2 Associating Fuzzy Score with a Data Service 36

3.3.3 Associating Fuzzy Score with a Data Service Composition . . 37

3.4 Top-k Data Service Compositions 37

3.4.1 Efficient Generation of Top-k Data Service Compositions . . 37

3.4.2 Top-k Service Compositions Algorithm 39

3.4.3 Diversity-aware Top-k Data Service Compositions 41

3.5 System Architecture and Experimental Evaluation 44

3.5.1 System Architecture . 44

3.5.2 Experimental Evaluation . 46

3.6 Conclusion . 51

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

3.1 Introduction

Recent years have witnessed a growing interest in the use of Web services as a reliable

means for e-commerce, content publication and management. Thereby, enabling

users to perform several operations, like searches, purchases and data uploads. This

type of Web services is known as data-driven Web services [DSV04] or data services

for short, where Web services are typically powered by databases. Moreover, Web

users often need to compose different Web services to achieve a more complex task

that cannot be fulfilled by an individual Web service. Data Web Service Composition

is a powerful solution to answer the user’s complex queries by combining primitive

simple Data Web services to realize value-added services on top of existing ones.

Moreover, user preferences play a major role in the customization of the composition

process. A more general and crucial approach to represent preferences is based

on the fuzzy sets theory [DP00][HKP08]. Fuzzy sets are very appropriate for the

interpretation of linguistic terms, which constitute a convenient way for users to

express their preferences. For example, when expressing preferences about the price

of a car, users often employ linguistic terms like rather cheap, affordable and not

expensive.

One of the most challenging problems in data service composition is that due to

the proliferation of data services and service providers, a large number of candidate

data service compositions that would use different, most likely competing, data

services may be used to answer the same query. It is therefore important to set up

an effective data service composition framework that would identify and retrieve the

most relevant data services and return the top-k data service compositions according

to the user preferences.

The following example presents a typical scenario from the e-commerce domain

that clearly shows the different challenges involved in finding the top-k data service

compositions.

3.1.1 Motivating Example

Consider a set of car trading Web services in Table 3.1 (i.e., typical data services

that can be provided by systems like the e-Bay). The symbols “$” and “?” denote

inputs and outputs of data services, respectively. Data services providing the same

24

3.1. Introduction

functionality belong to the same service class. For instance, the data services s21,

s22, s23 and s24 belong to the same class S2. Each data service has its (fuzzy)

constraints on the data it manipulates. For instance, the cars returned by s21 are

of cheap price and short warranty.

Table 3.1: Example of Data Services

Data service Functionality Constraints

s11($x, ?y)
Returns the automakers

y in a given country x
–

–

s21($x, ?y, ?z, ?t) Returns the cars y

along with their prices

z and warranties t for

a given automaker x

z is cheap, t is short

s22($x, ?y, ?z, ?t) z is accessible, t is [12, 24]

s23($x, ?y, ?z, ?t) z is expensive, t is long

s24($x, ?y, ?z, ?t) z is [9000, 14000], t is [6, 24]

s31($x, ?y, ?z)
Returns the power y

and the consumption

z for a given car x

y is weak, z is small

s32($x, ?y, ?z) y is ordinary, z is roughly 4

s33($x, ?y, ?z) y is powerful, z is high

s34($x, ?y, ?z) y is [60, 110], z is [3.5, 5.5]

Let us now assume that a user, Bob, wants to buy a car. He sets his preferences

and submits the following query Q1: “return the French cars, preferably at an af-

fordable price with a warranty around 18 months and having a normal power with

a medium consumption”. Bob uses the services described in Table 3.1 to obtain

such information. He will have to invoke data service s11 to retrieve the French

automakers, then invoke one or more of the data services s21, s22, s23, s24 to retrieve

the French cars along with their prices and warranties. Finally, he will invoke one or

more of the data services s31, s32, s33, s34 to retrieve the power and the consumption

of retrieved cars.

To select the car that better satisfies his requirements, Bob needs to go through a

series of trial-run processes. If the number of available services is large, this manual

process would be very painstaking and raises the following challenges:

• How to understand the semantics of the published data services to select the

relevant ones that can contribute to answering the query at hand;

25

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

• How to retain the most relevant data services (several similar data services

offer the same functionality but are associated with different constraints) that

better satisfy the user’s fuzzy preferences (i.e., preferences based on fuzzy

terms);

• How to generate the best k data service compositions that satisfy the query.

3.1.2 Contributions

The first challenge is already tackled in [BBM10] by proposing a semantic annotation

of data services that describes the services functionality and an efficient RDF-based

query rewriting approach that generates automatically the data service compositions

for a given query (which does take into account any user preference). In this paper,

we focus on the second and third challenges. We leverages the RDF query rewriting

algorithm [BBM10] to find the relevant data services that can contribute to the

resolution of a given preference query. Since the number of candidate data services

for a composition may be still large, performing an exhaustive search, i.e., generate

all possible combinations, to find the best data service compositions is not practical

as the problem of composition is known to be NP-hard, i.e., any exact solution

to this problem has an exponential cost. Therefore, reducing the search space by

focusing only on the best data services of each service class is crucial for reducing the

computational cost. Our main contributions in this chapter include the following:

• As data services of the same class have the same functionality and only differ

in their constraints, the relevance of each service with respect to a given query

can be reduced to the relevance of their constraints with respect to the user

preferences. For this purpose, we investigate multiple methods for computing

the matching degrees between the preferences involved in the query and the

data services’ constraints;

• We present a method for further reducing the search space by examining only

the top-k data services of each service class. In particular, we define a ranking

criterion based on a fuzzy dominance relationship in order to select the top-k

data services in each service class, we then compose these data services and

return only the top-k data service compositions;

26

3.2. Preferences-Based Data Service Composition Model

• To avoid returning similar data service compositions, i.e., those returning sim-

ilar informations, we also propose a diversified top-k data service compositions

method that aims to both improve the diversity of top-k selection and maintain

as possible top-k highest ranked ones;

• We propose a comprehensive architecture of our composition system and eval-

uate our approach through a set of thorough experiments.

The rest of this chapter is organized as follows. In Section 3.2, we formally

define the studied problem. Section 3.3 describes the proposed fuzzy dominance re-

lationship and a ranking approach for data services. Section 3.4 is devoted to both

top-k and diversified top-k data service composition methods for answering prefer-

ence queries. Section 3.5 presents the architecture of our implemented composition

system for preference query answering and reports the results of a set of thorough

experimental evaluations. Finally, Section 3.6 concludes the chapter.

3.2 Preferences-Based Data Service Composition Model

Assume a preference query Q and a set S = {S1, · · · ,Sn} of service classes, which

classify the universe of available data services according to their functionality. Each

service class Si = {si1, ..., sini
}, Si ∈ S, consists of all data services that deliver

the same functionality but potentially differ in terms of constraints (see Table 3.1).

Individual data services of a service class Si may handle, i.e., are relevant to answer,

only a part (query component) qi of the query Q and each has its own constraints

that may partially match the user preferences.

3.2.1 Preference Queries

We adopt a declarative approach to Web services composition, i.e., instead of select-

ing and composing Web services manually, users formulate their composition queries

over domain ontologies. We consider conjunctive preference queries expressed over

domain ontologies using a slightly modified version of SPARQL7, the de facto query

language for the Semantic Web. Figure 3.1 depicts a portion of the mediated ontol-

ogy in an e-commerce domain, in particular the automobile domain.

7http://sparql.org/

27

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

Constructs
Automaker

Name

Country

Car

Warranty

Price

Name

ha
sN
am
e hasPricce

hasWarranty

m
a
d
e
In

Power

ha
sP
ow
er

Consumption

h
a
s
C
o
n
s
u
m
p
tio
n

hasN
am
e

Sport Car

Classe

Datatype

Property

SubClass/Sub Property

Figure 3.1: Sample of Ontology

Formally, a conjunctive preference query Q has the form Q(X):-<ϕ(X,Y),P>,

where:

• Q(X) is the head of Q, has the form of a relational predicate and represents

the result of the query.

• ϕ(X,Y) is the body of Q, contains a set of RDF triples where each triple is

of the form (subject.property.object). X and Y are called distinguished

and existential variables, respectively.

• P = {p1, ..., pd} is a set of preferences expressed using fuzzy sets on X and Y

variables.

Membership functions of fuzzy terms are implemented as Web services and can

be shared by users. They are used in the PREFERRING clause of the query where

the URL of the implementing Web service is mentioned. More details are provided

in Section 3.5. The head and body of Q are defined in SELECT and WHERE clauses,

respectively. For example, query Q1 given in Section 3.1 is expressed as follows:

URL=http://vm.liris.cnrs.fr:36880/MembershipFunctions/

SELECT ?n ?pr ?w ?pw ?co

WHERE {?Au rdf:type AutoMaker ?Au hasCountry ‘France’ ?Au makes ?C

?C rdf:type Car ?C hasName ?n ?C hasPrice ?pr

?C hasWarranty ?w ?C hasPower ?pw ?C hasConsumption ?co}

PREFERING {?pr is ‘URL/Affordables’, ?w is ‘URL/around(18)’,

28

3.2. Preferences-Based Data Service Composition Model

?pw is ‘URL/Normal’, ?co is ‘URL/Medium’}

Constructs

Automaker

rd
f:
ty
p
e

Car

rd
f:
ty
p
e

A

?a

French

C

?d

?c

?b

ha
sN
am
e hasPricce

hasWarranty
m
ad
eI
n

c affordable
d around 18

e normal

f medium

?e

h
a
sP
o
w
e
r

?f

h
a
sC
o
n
su
m
p
tio
n

hasN
am
e

Figure 3.2: Graphical Representation of the Fuzzy Query

For instance, ?w is ‘URL/around(18)’ means that the user prefers services that

provide cars with a warranty around 18 months. The semantics of around 18 is given

in URL = http://vm.liris.cnrs.fr:36880/MembershipFunctions/around(18).

SELECT and WHERE clauses define the head and body of Q, respectively. PREFERING

clause indicates the preferences in Q. Figure 3.2 gives the graphical representation

of query Q1. The ovals Automaker and Car are concepts in the ontology. The arcs

(e.g., Constructs, hasPrice, etc) are properties in the ontology. The ovals A and C

are existential variables, whereas a, b, c, d, e and f are distinguished variables.

3.2.2 Data Services

The functionalities of data services, as opposed to traditional Web services that en-

capsulate software artifacts, can be only captured when representing the semantic

relationship between inputs and outputs [BBM10, MBM+07]. Therefore, we mod-

eled data services as RDF Parameterized Views (RPVs) over domain ontologies.

Each view captures the semantic relationships between input and output sets of a

data service using concepts and relations whose semantics are formally defined in on-

tologies. Functionalities of data services are provided under some data constraints.

For example, z is cheap, t is short (for data service s21 in Table 3.1).

Formally, a data service sij of a service class Si is described as a predicate

sij($Xi, ?Yi):-<φi(Xi, Yi, Zi), Cij> where:

29

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

• Xi and Yi are the sets of input and output variables of sij , respectively. Input

and output variables are also called distinguished variables. They are prefixed

with the symbols “$” and “?”, respectively.

• φi(Xi, Yi, Zi) represents the functionality of the data service. This functional-

ity is described as a semantic relationship between input and output variables.

Zi is the set of existential variables relating Xi and Yi.

• Cij = {Cij1 , ..., Ciji} is a set of constraints expressed as intervals or fuzzy sets

on Xi, Yi or Zi variables.

Each data service requires a particular set of inputs (parameter values) to re-

trieve a particular set of outputs; i.e., outputs cannot be retrieved unless inputs are

bound. For example, one cannot invoke data service s31 without specifying the car

for which it need to know the power and the consumption. Inputs and Outputs are

prefixed with “$” and “?”, respectively in the head of the view (sij($Xi, ?Yi)). Xi

and Yi variables are defined in the WSDL description of data services. Functionality

φi of and constraints Cij over a data service sij are added to the standard WSDL

descriptions in the form of annotations. The annotations are represented in the

form of SPARQL queries. For instance, the following SPARQL query illustrates the

functionality of and constraints over the data service s21 in Table 3.1:

URL=http://vm.liris.cnrs.fr:36880/MembershipFunctions/

RDFQuery{

SELECT ?y ?z ?t

WHERE {?Au rdf:type AutoMaker ?Au name $x

?Au makes ?C ?C rdf:type Car ?C hasName ?y

?C hasPrice ?z ?C hasWarranty ?t}}

CONSTRAINTS{?z is ’URL/Cheap’, ?t is ’URL/Short’}

SELECT and WHERE clauses define the functionality of s21 and CONSTRAINTS clause

gives the fuzzy constraints of service s21 given in Table 3.1. Figure 3.3 gives the

graphical representation of the data services given in Table 3.1.

30

3.2. Preferences-Based Data Service Composition Model

Automaker

rd
f:
ty
p
e

A

?y $x

ha
sN
am
e m

adeIn

Constructs

Automaker

rd
f:
ty
p
e

Car

rd
f:
ty
p
e

A

$x

C

?t

?z
?y

ha
sN
am
e hasP

ricce

hasWarranty
s21 : z cheap

t short
s22 : z accessible

t [12, 24]
s23 : z expansive

t long
s24 : z [9000, 14000]

t [6, 24]

h
a
sN
a
m
e

Car

rd
f:
ty
p
e

C

s31 : y weak

z Small

s32 : y ordinary

z approximatly 4

s33 : y powerfull

z high

s34 : y [60, 110]

z [3.5, 5.5]
$x

?y

h
a
sP
o
w
e
r

?z

h
a
sC
o
n
su
m
p
tio
n

hasN
am
e

s11($x,?y) s21,s22,s23,s24($x,?y,?z,?t) s31,s32,s33,s34($x,?y,?z)

Figure 3.3: Functionality of Data Services

3.2.3 Discovering Relevant Data Services

Given a preference query Q, we use the RDF query rewriting algorithm described

in [BBM10] to discover the parts of Q that are covered by each data service – recall

that in the general case data services may cover only parts of Q. For simplicity,

assume a set of service classes S = {S1, . . . ,Sn} where each Si is a set of data

services that provide the same functionality. Each data service sij of the service

class Si can cover a part of Q referred to as qi. A data service sij ∈ Si covers a

part qi of Q if the functionality of sij completely matches qi and its constraints

match completely or partially the preference constraints involved qi. Therefore, to

differentiate the most relevant data services, we need to compute a matching degree

between the preference constraints involved in qi and the data services’ constraints.

To determine the matching degree of a service sij , traditional approaches assign

to each constraint which corresponds to a preference in qi, a matching degree. Then,

this degree can be computed as an aggregation of individual matching degrees (i.e.,

the matching degree of each constraint). One direction is to assign weights to

individual matching degrees [DHM+04]. However, users may not know how to set

trade-off between different relevancies using numbers and an imprecise specification

of weights could miss their desired services. They thus lose the flexibility to select

their desired services. Computing the skyline from services [ASR10, YB10b, YB10a,

YB12] comes as a natural solution to overcome this limitation. Skyline computation

has received significant consideration in database research; e.g., see [BKS01, TEO01,

KRR02, PTFS03, Cho03, GSG05a]. For a d-dimensional dataset, the skyline consists

31

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

of the set of points that are not dominated by any other point. A point u dominates

another point v if and only if u is at least as good as v in all dimensions and (strictly)

better than v in at least one dimension.

However, as shown in [SSS+09, SSSS10] considering a single matching method for

evaluating services is a very coarse metric. For this purpose, we investigate multiple

methods from the fuzzy set theory to compute the matching degrees between user

preferences and data services’ constraints, namely, constraints inclusion methods

that measure the to what extent the items returned by a given data service satisfy

the user preferences.

Let C ≡ x is F and C ′ ≡ x is G be two fuzzy constraints. From Section 2.3.5

two classes of constraint inclusion methods may be considered:

• Quantitative Method (QM) – The degree of inclusion is given by: Deg(C ⊆

C ′) =
∑

x∈X ⊤(μF (x),μG(x))∑
x∈X μF (x) . In our example, we use the “min” and “product”

t-norms. However, other t-norms can be used. The methods that rely on ⊤

=“min” and ⊤ = “product” are denoted by M-QM and P-QM, respectively.

• Logic Method (LM) – The degree of inclusion is given by: Deg(C ⊆ C ′) =

minx∈X(µF (x) →f µG(x)). In our example, we make use of two fuzzy implica-

tions: Gödel (a →G b = 1 if a ≤ b, 0 otherwise) and Lukasiewicz (a →L b = 1

if a ≤ b, 1 − a + b otherwise) implications; the methods based on these two

implications are denoted by G-LM and L-LM, respectively. Also, other fuzzy

implications like Goguen or Kleene-Dienes implications can be used.

Each relevant data service is then associated with a set of matching degrees.

Table 3.2 shows the matching degrees between each service sij in Table 3.1 and its

corresponding component qi (of the query Q1). Service s11 covering component q1

does not have a matching degree since there are no user preferences involved in q1.

However, each data service covering component q2 is associated with four (number of

methods) degrees. Each matching degree is formulated as a pair of real values within

the range [0, 1], where the first and second values are the matching degrees of the

constraints price and warranty, respectively. Similarly, for the matching degrees

of the data services covering component q3, the first and second values represent the

matching degrees of the constraints power and consumption, respectively.

32

3.3. Fuzzy Dominance and Fuzzy Scores

Table 3.2: Matching Degrees between Data Services’ Constraints and Preference

Constraints of Q1

sij qi M-QM P-QM G-LM L-LM

s11 q1 – – – –

s21

q2

(1, 0.57) (0.98, 057) (1, 0) (0.80, 0)

s22 (0.89, 1) (0.77, 1) (0, 1) (0.50, 1)

s23 (0.20, 0.16) (0.13, 0.13) (0, 0) (0, 0)

s24 (0.83, 0.88) (0.83, 0.88) (0.60, 0.50) (0.60, 0.50)

s31

q3

(0.50, 0.36) (0.46, 0.32) (0, 0) (0, 0)

s32 (0.79, 0.75) (0.69, 0.72) (0, 0.25) (0.40, 0.50)

s33 (0.21, 0.64) (0.17, 0.61) (0, 0) (0, 0)

s34 (0.83, 0.85) (0.83, 0.85) (0.50, 0.50) (0.50, 0.50)

3.2.4 Problem Statement

Given a preference query Q:-<q1, ..., qn> where each part (query component) qi is

a tuple (qi,Pqi); qi represents qi without its preferences Pqi . Given a set of services

classes S = {S1, · · · ,Sn} where a class Si regroups data services that are relevant to

a query part qi, and a set M = {M1, · · · ,Mm} of matching methods to compute the

matching degrees between the constraints on relevant data services and the user’s

preference. The problem to address is how to rank data services in each class Si to

select the most relevant ones and how to rank generated data service compositions

to select the top-k ones that can answer the preference query Q.

3.3 Fuzzy Dominance and Fuzzy Scores

In this section, we introduce the notion of fuzzy dominance relationship considered

between data services. To further motivate why the fuzzy dominance is needed, we

first investigate the difference between fuzzy dominance and Pareto dominance. We

then define the scores associated with both the data services and the data service

compositions based-on the fuzzy dominance relationship.

It is well known that under a single matching degree method (mono criteria), the

dominance relationship is unambiguous. When multiple methods are applied, result-

33

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

ing in different matching degrees for the same constraints, the dominance relation-

ship becomes uncertain. The model proposed in [PJLY07], namely probabilistic sky-

line overcomes this problem. Contrariwise, Skoutas et al. show in [SSS+09, SSSS10]

the limitations of the probabilistic skyline to rank services and introduce the Pareto

dominating score of individual services. There is, however, still some problems when

applying the Pareto dominance as shown bellow.

3.3.1 Fuzzy Dominance vs Pareto Dominance

We start by defining formally the Pareto dominance, then discuss the reasons that

motivate to make it fuzzy.

Definition 3.1 (Pareto Dominance)

Given two d-dimensional points u and v, we say that u dominates v, denoted by

u ≻ v, if and only if u is at least as good as v in all dimensions and (strictly) better

than v in at least one dimension, i.e., ∀ı ∈ [1, d] , uı ≥ vı ∧ ∃j ∈ [1, d] , uj > vj.

One can see that Pareto dominance does not allow discrimination between points

with a large variance, i.e., points that are very good in some dimensions and very

bad in other ones (e.g., (1, 0) and (0.80, 0) in Table 3.2) and good points, i.e.,

points that are (moderately) good in all dimensions (e.g., (0.89, 1) and (0.77, 1)

in Table 3.2). To further illustrate this situation, let u = (u1, u2) = (1, 0) and

v = (v1, v2) = (0.90, 1) be two matching degrees (or two points in general). In

Pareto order, we have neither u ≻ v nor v ≻ u, i.e., the instances u and v are

incomparable. However, one can consider that v is better than u since v2 = 1 is too

much higher than u2 = 0, contrariwise v1 = 0.90 is almost close to u1 = 1. This

is why it is interesting to fuzzify the Pareto dominance relationship to express the

extent to which a matching degrees vector (more or less) dominates another one.

We define below a fuzzy dominance relationship that relies on particular monotone

comparison function expressing a graded inequality of the type “strongly greater

than”, as the higher the value, the better is the matching degree.

Definition 3.2 (Fuzzy Dominance)

Given two d-dimensional points u and v, we define the fuzzy dominance to express

the extent to which u dominates v as:

deg(u ≻ v) =

∑d
ı=1 µ≫(uı, vı)

d
(3.1)

34

3.3. Fuzzy Dominance and Fuzzy Scores

Where µ≫ is a membership function of the fuzzy relation ≫ that expresses the

extent to which uı is more or less (strongly) greater than vı. The membership

function µ≫ can be defined in an absolute way (i.e., in terms of x− y) as follows:

µ≫(x, y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if x− y ≤ ε

1 if x− y ≥ λ+ ε

x−y−ε
λ

otherwise

(3.2)

Where λ > 0, i.e., ≫ is more demanding than the idea of “strictly greater”. We

should also have ε ≥ 0 in order to ensure that ≫ is a relation that agrees with the

idea of “greater” in the usual sense.

Figure 3.4 gives the graphical representation of µ≫ in terms of x−y where H is a

fuzzy parameter associated with the relation ≫ such that µ≫(x, y) = µH(x−y). One

can easily check that the trapezoidal membership function of H is (λ+ ε,+∞, λ, 0).

x-y

H

+0

1

Figure 3.4: Graded Inequality Representation in terms of x− y

One can explain the semantics of µ≫ in the following way:

• If x− y is less than ε, then x is not at all strongly greater than y;

• If x− y is larger than λ+ ε, then x is all much greater than y;

• If x− y is between ε and λ+ ε, then x is much greater than y to some extent.

Let us reconsider the previous instances u = (1, 0), v = (0.90, 1), with ε = 0

and λ = 0.2. We have deg(u ≻ v) = 0.25 and deg(v ≻ u) = 0.5. This is more

significant than u and v are incomparable provided by Pareto dominance.In the

following sections, we will use the defined fuzzy dominance to compute scores of

data services and their compositions.

35

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

3.3.2 Associating Fuzzy Score with a Data Service

We generalize the (Pareto) dominating score defined in [SSS+09, SSSS10] to fuzzy

dominance and propose the fuzzy dominating score (DSf) of a data service. The

DSf of a data service sij indicates the average extent to which sij dominates the

whole data services of its class Si.

Definition 3.3 (Fuzzy Dominating Score of a Data Service)

The fuzzy dominating score (DSf) of a data service sij in its class Si is defined as:

DSf (sij) =
1

(|Si| − 1)m2

m
∑

ı=1

∑

sik∈Si
k �=j

m
∑

j=1

deg(sıij ≻ sjik) (3.3)

where sıij is the matching degree of the data service sij obtained by applying the

ıth matching method and m stands for the number of matching methods applied.

The term (|Sj | − 1) is used to normalize the fuzzy dominating score and make it in

the range [0, 1].

Table 3.3 shows the fuzzy dominating scores of the data services of our running

example.

Table 3.3: Services’ Scores and Top-k Data Services

Data service Service class Score Top-k

s11 S1 – s11

�
�s21

S2

0.527

s22 0.657 s22

�
�s23 0.027 s24

s24 0.533

�
�s31

S3

0.083

s32 0.573 s32

�
�s33 0.187 s34

s34 0.717

36

3.4. Top-k Data Service Compositions

3.3.3 Associating Fuzzy Score with a Data Service Composition

Different data service compositions can be generated from service classes Si to an-

swer a user query. To rank such generated compositions, we extend the previous

defined score, i.e., the fuzzy dominating score (DSf) to data service composition

and associate each composition with a DSf . The fuzzy dominating score of a data

service composition CS is an aggregation of different DSf scores of its component

data services. It indicates the average number of possible compositions that CS

more or less dominates.

Definition 3.4 (Fuzzy Dominating Score of a Data Service Composition)

Let CS = {s1j1 , ..., snjn} be a composition of n services and d = d1 + ...+ dn be the

number of preference constraints in Q, where di is the number of constraints (resp.

preferences) involved in the service siji (resp. in the query component qi). The DSf

of CS is then computed as follows:

DSf (CS) =
1

d

n
∑

i=1

di ·DSf (siji) (3.4)

It is important to note that not all compositions are valid. A composition CS

of data services is valid if (i) it covers the user query Q; (ii) it contains one and

only one data service from each service class Si and (iii) it is executable. A com-

position is said to be executable if all input parameters necessary for the invocation

of its component data services are bound or can be made bound by the invocation

of primitive data services whose input parameters are bound. For example, the

composition {s11($x, ?y), s21($x, ?y, ?z, ?t), s31($x, ?y, ?z)}) is executable since the

inputs parameters of its component data services are all bound (the value of the

variable x is supplied by the user). More details are provided in [BBM10].

3.4 Top-k Data Service Compositions

3.4.1 Efficient Generation of Top-k Data Service Compositions

The problem of top-k data service compositions entails computing the scores of

each data service composition and returning the top-k highest ranked ones. A

straightforward method to find the top-k data service compositions that answer a

query is to generate all possible compositions, compute their scores, and return the

37

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

top-k ones. Clearly, this approach results in a high computational cost, as it needs

to generate all possible compositions, whereas, most of them are not in the top-k. In

the following, we provide an optimization technique to find the top-k data service

compositions. This technique allows eliminating data services from their classes

before generating the compositions, i.e., data services that we are sure that if they

are composed with others, the obtained compositions are not in the top-k. The

basic idea is to compute the score of each data service in its class, then only the

best ones in each class are retained. The retained data services are then composed,

and the scores of obtained compositions are computed; the top-k ones can be then

returned to users. To this end, we introduce the following Lemma and Theorem.

Lemma 3.1

Let CS = {s1j1 , ..., snjn , s} and CS ′ = {s1j1 , ..., snjn , s
′} be two similar data service

compositions that only differ in the data services s and s′. Then, the following

statement holds: DSf (s) > DSf (s
′) ⇒ DSf (CS) > DSf (CS

′).

Proof

Denoting by d′ the number of constraints contained in s and s′, we have: DSf (CS) =

1
d

∑n
i=1 di·DSf (siji)+

d′

d
·DSf (s) and DSf (CS

′) = 1
d

∑n
i=1 dj ·DSf (siji)+

d′

d
·DSf (s

′).

Then, DSf (CS) −DSf (CS
′) = d′

d
(DSf (s) −DSf (s

′)). Since d′

d
> 0 and DSf (s) −

DSf (s
′) > 0 (as DSf (s) > DSf (s

′)), we have DSf (CS) − DSf (CS
′) > 0. Hence,

DSf (CS) > DSf (CS
′). �

Lemma 3.1 indicates that the best data services in their classes will generate the

best data service compositions.

Theorem 3.1

Let CS = {s1j1 , ..., snjn} be a composition of n data services. Let top-k.Si and top-

k.CS be the top-k data services of the service class Si and the top-k data service

compositions, respectively. Then, ∃siji ∈ CS, siji /∈ top-k.Si ⇒ CS /∈ top-k.CS.

Proof

Assume that CS ∈ top-k.CS and ∃siji ∈ CS, siji /∈ top-k.Si. This means that

∃s′ij1 , ..., s
′
ijk

∈ Si such as DSf (s
′
ijℓ
) > DSf (siji). By replacing siji in CS with the

data services s′ij1 , ..., s
′
ijk

, we obtain k data service compositions CS1, ..., CSk such

38

3.4. Top-k Data Service Compositions

as DSf (CSi) > DSf (CS) according to Lemma 3.1. This contradicts our hypothesis.

Hence, CS /∈ top-k.CS. �

From Theorem 3.1, we can see that the top-k sets of the different service classes

are sufficient to compute the top-k data service compositions that answer the con-

sidered query.

The fourth column of Table 3.3 shows the top-k (k = 2) data services in each

service class according the fuzzy dominating scores. Thus, relevant data services

that are not in the top-k of their classes are eliminated. They are crossed out in Ta-

ble 3.3. The other data services are retained. The top-k data service compositions

are generated from different top-k.Si classes. Table 3.4 shows the possible compo-

sitions along with their fuzzy dominating scores, as well as the top-k compositions

(i.e., CS2, CS4) of our running example.

Table 3.4: Compositions’ Scores and Top-k Ones

Composition Composition score Top-k

CS1 = {s11, s22, s32} 0.615

CS2 = {s11, s22, s34} 0.687 CS2

CS3 = {s11, s24, s32} 0.553 CS4

CS4 = {s11, s24, s34} 0.625

3.4.2 Top-k Service Compositions Algorithm

The algorithm, hereafter referred to as TKSC, computes the top-k data service

compositions according to the fuzzy scores (see Algorithm 3.1). The algorithm

proceeds as the following steps.

Step 1 (lines 2-9): Find the relevant data services and compute their matching

degrees – Each service class Si whose data services cover a query com-

ponent, qi, is added to the list of relevant classes R. If its data services

touch the query’s user preferences, i.e., there is one or more preference

constraint involved in the query part covered by the data services of Si,

then compute its different matching degrees according to the number

of methods;

39

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

Algorithm 3.1: TKSC

Input: Q preference query; S = {S1, · · · ,Sn} set of service classes;

M = {M1, · · · ,Mm} set of matching methods; k ∈ N; ε ≥ 0;λ > 0;

Output: the top k compositions

1 begin

2 foreach Si in S do

3 s ← random(Si, 1);

4 if ∃qi ∈ Q; cover(s, qi) then

5 R ← R∪ Si;

6 if Pqi �= ∅ then

7 foreach sij in Si do

8 foreach Mℓ in M do

9 ComputeMatchingDegree(Cij ,Pqi ,M);

10 foreach Si in R do

11 if Pqi = ∅ then

12 top-k.Si ← random(Si, k);

13 else

14 foreach sij in Si do

15 ComputeServiceScore(sij);

16 top-k.Si ← top(k,Si);

17 CS ← ComposeServices(top-k.S1, · · · , top-k.Sn);

18 foreach CS in CS do

19 ComputeCompositionScore(CS);

20 return top(k,CS);

Step 2 (lines 10-16): eliminate less relevant data services – For each relevant ser-

vice class Si ∈ R whose data services do not touch the user preferences,

select randomly k services since they are all equal with respect to user

preferences. Otherwise, i.e., its data services touch the user preferences,

compute the score of its data services, and retain only the top-k ones;

Step 3 (lines 17-20): return top-k compositions – Compose the retained services,

i.e., the top-k in each relevant service class, then, compute the scores of

generated compositions. Finally, provide the user with the top-k ones.

40

3.4. Top-k Data Service Compositions

3.4.3 Diversity-aware Top-k Data Service Compositions

Different similar data services could exist in each class Si leading to similar data

services compositions. A little variety in the top-k data services compositions list

will probably lead to the user frustration. For this reason, it is crucial to provide

users with the data service compositions that are still relevant to their preferences

but less similar to each other, i.e., as diverse as possible. Diversification is thus

needed to improve user satisfaction. Diversification allows to find compositions that

cover many aspects of users information needs. Consider, for instance, a user who

wants to buy a car and submits the query Q1 given in Section 3.1.1. A diverse result,

i.e., a result that contains various prices and warranties with different horsepower

and other technical characteristics, is intuitively more informative than a result that

contains a homogeneous result containing only cars with similar features.

The diversity problem has attracted a lot of attention in the context of rec-

ommender systems, information retrieval and case-based reasoning systems. Some

research works highlight that the diversity can be considered as important as simi-

larity to the target query [McS02, ZMKL05]. Two main definitions of a set diversity

are introduced: (i) average dissimilarity of all pairs of elements and (ii) average rar-

ity of the elements in the set. Different similarity/dissimilarity and rarity measures

were defined and used in different heuristic algorithms for computing the diversified

set that maximizes the diversity without loss of similarity; e.g., see [DP10].

In the context of our top-k data service compositions approach, we challenge and

tackle the lack of top-k data service compositions variety by proposing a method

for maximizing the diversity of data service compositions while maintaining an ac-

ceptable satisfaction level (expressed in terms of fuzzy scores) of data service com-

positions. We propose to diversify the top-k data service compositions by firstly

diversifying the top-k data services of each class Si, and then by diversifying the

data service compositions themselves. The diversity of the top-k data services of a

class Si means that the data services should be dissimilar each other.

A principled way to improving diversity of the top-k data services of a class

Si, while at the same time maintaining satisfaction of data services, is to explicitly

use both diversity and satisfaction of data services during the top-k data services

selection. To this end, we make use of the following quality metric that combines

diversity and satisfaction:

41

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

Quality(sij) = DSf (sij)×RelDiv(sij , dtopk.Si) (3.5)

The quality of a data service sij in its class Si is proportional to its satisfaction,

and to its relative diversity to those diversified top-k data services so far selected

dtopk.Si. Initially, dtopk.Si is an empty set, and its first element will be necessary

one of the data services sij with higher DSf . The relative diversity of a data service

sij to the current set dtopk.Si is defined as the average dissimilarity between data

service sij and the so far selected data services [McS02] as described in the following

equation:

RelDiv(sij , dtopk.Si) =

⎧

⎨

⎩

1 if dtopk.Si = ∅
∑

Siℓ∈dtopk.Si
Dist(sij ,siℓ)

|dtopk.Si|
otherwise

(3.6)

The relative diversity of a data service sij to an initial empty set, i.e., |dtopk.Si| =

0, is set to 1. The quantity Dist(sij , siℓ) represents the distance (i.e., dissimilarity)

measure between the two data services sij and sjℓ. Recall that data services of the

same class have the same functionality and only differ in their constraints, therefore

the data services dissimilarity can be reduced to the dissimilarity of their constraints

to quantify the extent to which two data services have similar constraints on their

variables (i.e., they provide the same information about the same variable).

Given two data services sij , siℓ having constraints Cij = {x1 is F1, ..., xdi is Fdi}

and Ciℓ = {x1 is G1, ..., xdi is Gdi}, respectively. The distance between sij and siℓ

can be measured by Dist(sij , siℓ) = maxı∈{1,...,di}Dist(Fı,Gı), where Dist(Fı,Gı) =

maxx∈Xı |µFı(x)− µGı(x)| represents the distance between the fuzzy sets Fı and Gı

[DP00]. Of course, the distance between two fuzzy sets can be measured by others

distance metrics. We provide the effects of the distance metric in Section 6.

3.4.3.1 Diversified Top-k Data Services Computing

The above quality measure guides the construction of the diversified top-k data

services of each relevant service class Si. This construction is achieved in an incre-

mental way as described in Algorithm 3.2; refereed to as DTKS. During each step,

the remaining data services of a class Si are rank-ordered according to their quality

and the data service with the highest quality is added to dtopk.Si. The first data

42

3.4. Top-k Data Service Compositions

service of the diversified top-k of a service class Si to be selected is always the one

with the highest DSf . The initial service class Si can be bounded to a smaller size

equivalent to k · η (η > 1) to decrease the search space especially when Si is too

large. It is worth to note that for the service classes whose data services do not

meet the user preferences, we just select randomly one data service, as they are all

strictly similar.

Algorithm 3.2: DTKS

Input: k ∈ N; η ∈ N; Si service class;

Output: dtopk.Si diversified top-k data services of the class Si;

1 begin

2 S ′

j ← top(k · η,Si);

3 dtopk.Si ← ∅;

4 for i=1 to k do

5 ComputeQuality(S ′

i);

6 dtopk.Si ← dtopk.Si∪ {MaxQuality(S ′

i)};

7 S ′

i ← S ′

i−{MaxQuality(S ′

i)};

8 return dtopkSi;

3.4.3.2 Diversified Top-k Data Service Compositions Computing

The top-k data service compositions set is made more diverse (by applying a diversi-

fication on its component compositions) while maintaining acceptable compositions

scores. The quality of a data service composition CS is an aggregation of qualities

of its component services. Let CS = {s1j1 , ..., snjn} be a composition of n data ser-

vices and d = d1 + ...+ dn be the number of user preferences involved in the query,

where di is the number of constraints involved in the service siji . The quality of the

composition CS is then computed using a weighted average as follows:

Quality(CS) =
1

d

n
∑

i=1

di ·Quality(siji) (3.7)

The diversified top-k data service compositions algorithm referred as DTKSC is

obtained from TKSC (the top-k data service compositions algorithm) by applying

the following modifications:

43

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

• Line 17 – For relevant service classes whose data services do not meet user pref-

erence, select randomly one data service instead of k data services as motioned

above. So line 17 writes: top-k.Si ← random(Si,1);

• Line 22 – Instead of taking the top-k data services in each class based on their

scores, take them based on their qualities, i.e., take the diversified top-k ones,

by applying Algorithm 2, so line 22 writes: top-k.Si ← DTKS(k, η,Si);

• Line 27 – Compute the quality of the data service compositions instead of

their scores. This line writes: ComputeCompositionQuality(CS);

• Line 29 – Instead of returning the top-k data service compositions, i.e., the

top-k with the highest scores, return the diversified top-k ones, i.e., the ones

having the best qualities. So line 29 writes: return Diversifiedtop(k,CS).

3.5 System Architecture and Experimental Evaluation

3.5.1 System Architecture

In this section, we outline the basic components of our implemented system, describe

their roles and how they interact with each other. A high-level overview of our

system is presented in Figure 3.5.

The Fuzzy Membership Functions Manager is used to manage fuzzy linguistic

terms. It enables users and service providers to define their desired fuzzy terms along

with the associated fuzzy membership functions. The defined terms are stored in

a local fuzzy terms knowledge base which can be shared by users, and are linked

to their implementing Web services. Examples of fuzzy terms along with their

implementing services can be found on http://vm.liris.cnrs.fr:36880/FuzzyTerms.

Users and service providers can directly test the proposed membership functions on

that link and use the associated fuzzy terms. For each fuzzy term we provide a

shape that gives a graphical representation of the associated membership function,

a form that helps users to compute the degree to which a given value is in the fuzzy

set of the considered fuzzy term, and a WSDL description of the Web service that

implements the membership function.

The Service Annotator allows service providers to (i) define the functionalities

of their data services in the form of RDF parameterized views (RPVs) [BBM10],

44

3.5. System Architecture and Experimental Evaluation

Ontology

RDF Query

Rewriter

Top-k Service Composition Module

Service Locator
Execution

Engine

SPARQL

Query

Composite

Service

Service

Registry

WSDL-S

Users

Q

WSWS WSWS

WSDL-SWSDL-S

Service

Providers

SOAP Messages

Ontology

Manager

Fuzzy Constraints

Matcher

System Interface

Service Ranker

Fuzzy Terms

(KB)

Implementation

(Web Services)

Preference Query

Formulator

Service

Annotator

Fuzzy Membership

Functions Manager

Top-K

Composition

Diversification

Aware Top-K

Composition

Composition Plan

Generator

Figure 3.5: Data Service Composition Architecture

and specify the defined views with the desired fuzzy terms to represent the services’

constraints, and (ii) annotate the services description files (e.g., WSDL files) with

the defined views. This annotation is implemented by adding a new XML element

called “rdfQuery” to the “Operation” elements in the XML Schema of WSDL as in

the WSDL-S approach. The annotated WSDL files are then published to a service

registry. The ontology manager uses Jena API to manage domain ontology (i.e., to

add/delete concepts).

The Preference Query Formulator provides users with a GUI implemented with

Java Swing to interactively formulate their queries over a domain ontology. Users

are not required to have knowledge about SPARQL (or any specific ontology query

languages) to express their queries, they are assisted interactively in formulating

their queries and specifying the desired fuzzy terms.

The Top-k Service Composition Module consists of five components. The RDF

Query Rewriter implements an RDF query rewriting algorithm [BBM10] to identify

the relevant data services that match (some parts of) a user query. For that pur-

pose, it exploits the annotations that were added to the service descrition files (e.g.,

WSDls). The Service Locator feeds the Query Rewriter with data services that

45

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

most likely match a given query. The Top-k Composition component computes (i)

the matching degrees of relevant data services, (ii) the fuzzy dominating scores of

relevant data services, (iii) the top-k data services of each relevant service class, and

(iv) the fuzzy compositions scores to return the top-k data service compositions.

The diversification-aware Top-k Compositions component implements the pro-

posed quality metrics to compute the diversified top-k data service compositions.

The (diversified) top-k data service compositions are then translated by the compo-

sition plan generator into execution plans expressed in the XML Process Definition

Language (XPDL)8. They are executed by a workflow execution engine. In our

implementation, we use the Sarasvati9 execution engine from Google.

3.5.2 Experimental Evaluation

This section presents an extensive experimental evaluation of our approach, focusing

on : (i) the efficiency of our algorithms in terms of execution time, (ii) the effects of

the used distance measure on the retrieved diversified top-k data service composi-

tions, (iii) the effects of ε and λ on the top-k data service compositions/diversified

top-k data service compositions and the benefits in terms of diversity, resulting

from the use of the diversity aspect, and (iv) the effectiveness of the use of the fuzzy

dominating score for ranking data services.

3.5.2.1 Experiment Setting

Due to the limited availability of real data services, we implemented a Web service

generator. The generator takes as input a set of (real-life) model data services (each

representing a class of services) and their associated fuzzy constraints and produces

for each model service a set of synthetic data services and their associated synthetic

fuzzy constraints. The generated data services satisfy some fuzzy constraints on

the attributes of the implemented model service. The generation of the synthetic

data services is controlled by the following parameters: (i) the number of candidate

data services per service class, (ii) the number of service classes, (iii) the number

of max preferences in a service class, (iv) the number of matching methods and (v)

the values of the parameters k, ε and λ. The default values of these parameters are

8http://www.xpdl.org/
9http://code.google.com/p/sarasvati/

46

3.5. System Architecture and Experimental Evaluation

: 400, 4, 4, 4, 5, 0.02 and 0.2, respectively.

The service generator and the algorithms, i.e., TKSC and DTKSC, were imple-

mented in Java, and the experiments were conducted on a Pentium D 2:4GHz with

2GB of RAM, running Windows.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 200 400 600 800 1000

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

Number of services per class

TKSC
DTKSC; η=η1
DTKSC; η=η2

(a)

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 2 3 4 5 6

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

Number of service classes

TKSC
DTKSC; η=η1
DTKSC; η=η2

(b)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

Number of preferences in a service class

TKSC
DTKSC; η=η1
DTKSC; η=η2

(c)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 2 4 6 8 10

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

Number of matching methods

TKSC
DTKSC; η=η1
DTKSC; η=η2

(d)

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 3 4 5 6 7

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

k value

TKSC
DTKSC; η=η1
DTKSC; η=η2

(e)

Figure 3.6: Performance Results; case of η1 =

⌊

√

|Sj |
k

⌋

and η2 =
⌊

|Sj |
k

⌋

3.5.2.2 Performance vs Number of Services per Class

We measured the average execution time required to solve the composition problem

as the number of data services per class increases. We varied the number of data

services per class from 200 to 1000. The results of this experiment are presented in

Figure 3.6a. The results show that our framework can handle hundreds of services

in a reasonable time. The results also show that computing the diversified top-k

composition introduces an insignificant cost when the factor η is small (e.g., η =

η1); this cost increases as η increases (e.g., η = η2) since the search space for the

diversified services in each class becomes larger.

47

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

3.5.2.3 Performance vs Number of Classes

We measured the average execution time required to solve the composition problem

as the number of service classes increases. We varied the classes number from 1 to

6. The results of this experiment in Figure 3.6b show that the execution time is

proportional to the classes number.

3.5.2.4 Performance vs Number of Constraints per Service

We varied number of fuzzy constraints from 2 to 10. Figure 3.6c shows the time

required to compute the top-k/diversified top-k data service compositions. The

results show that when the factor η is small (e.g., η = η1) the cost incurred in

computing the diversified top-k data service compositions is insignificant as the

constraints number increases.

3.5.2.5 Performance vs Number of Matching Methods

We varied the number of matching methods from 1 to 10. The results of this

experiment are shown in Figure 3.6d. Once again the cost incurred in computing the

diversified top-k compositions remains insignificant as the methods number increases

if the factor η has a reasonable value (e.g., η = η1).

3.5.2.6 Performance vs k

The results in Figure 3.6e show that as k increases, the cost incurred in computing

the diversified top-k data service compositions increases slightly relative to the time

needed to compute the top-k data service compositions.

3.5.2.7 The Effect of the used Distance Measure

To compute the diversified top-k data service compositions we implemented all of

the three distance measures:

M(F ,G) =

⎧

⎨

⎩

0 ifF = G = ∅

1−
∑

x∈X min(μF (x),μG(x))∑
x∈X max(μF (x),μG(x))

otherwise
(3.8)

L(F ,G) = maxx∈X |µF (x)− µG(x)| (3.9)

48

3.5. System Architecture and Experimental Evaluation

N(F ,G) =

⎧

⎨

⎩

0 ifF = G = ∅
∑

x∈X |μF (x)−μG(x)|∑
x∈X(μF (x)+μG(x))

otherwise
(3.10)

The membership functions used in computing the distance measures were dis-

cretized with a step of the order (B + b−A+ a)/1000 (see Figure 2.2).

Table 3.5: The Effects of the used Distance Measure

Diversified Top-k Compositions

Composite Services Score
Quality

M L N

CS1: {s1356, s2372, s3285, s4214, s5183} 0.6919484 0.6919484 0.6919484 0.6919484

CS2: {s1356, s2372, s3283, s4214, s5183} 0.68804884 0.6744621 0.6615082 0.6780993

CS3: {s1356, s2372, s3360, s4214, s5183} 0.69165516 0.6713853 0.6594182 0.6809209

Changing the used distance measure may change the quality of a composition,

leading thus to its exclusion or inclusion to the diversified top-k compositions. Ta-

ble 3.5 shows the diversified top-3 compositions of a given query along with their

qualities when applying each of the previously seen distance measures. The com-

position CS2, for example, has a quality higher than that of CS3 if the distance

measures M and L were applied; however its quality is lower than that of CS3 if the

distance measure N was applied, thus leading to its exclusion if k was 2.

Table 3.6: Effects of ε and λ on the Top-k Compositions

(ε, λ)
Top-k Compositions

Component Services Score Diversity

(0.002, 0.05)

{s1318, s2292, s3154, s4154} 0.74703556

0.6121456{s1318, s259, s3154, s4154} 0.7441032

{s1318, s2152, s3154, s4154} 0.7441032

(0.02, 0.2)

{s1318, s2292, s3154, s4154} 0.6563174

0.59373885{s1318, s2132, s3154, s4154} 0.655371

{s1318, s259, s3154, s4154} 0.65328693

(0.1, 0.3)

{s1318, s2292, s3154, s4154} 0.53315574

0.62760955{s1318, s2132, s3154, s4134} 0.5312762

{s1318, s2292, s3154, s4154} 0.53008974

49

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

Table 3.7: Effects of ε and λ on the Diversified Top-k Compositions

(ε, λ)
Diversified Top-k Compositions

Component Services Quality Score Diversity

(0.002, 0.05)

{s1318, s2292, s3154, s4154} 0.74703556 0.74703556

0.6995363{s1318, s2292, s3154, s4134} 0.6972428 0.7426259

{s1318, s2134, s3154, s4154} 0.6972428 0.7426259

(0.02, 0.2)

{s1318, s2292, s3154, s4154} 0.6563174 0.6563174

0.6995363{s1318, s2292, s3154, s4134} 0.612067 0.6519956

{s1318, s2134, s3154, s4154} 0.6098658 0.6515922

(0.1, 0.3)

{s1318, s2292, s3154, s4154} 0.53315574 0.53315574

0.71135545{s1318, s2292, s3154, s4134} 0.49845165 0.5312762

{s1318, s2134, s3154, s4155} 0.49460968 0.5256555

3.5.2.8 The Effects of ε and λ

Changing the used values of the parameters ε and λ change the scores and the

qualities for both the top-k/diversified top-k data service compositions. This may

consequently lead to the inclusion or to the exclusion of a composition from top-

k/diversified top-k data service compositions. Table 3.6 and Table 3.7 show the

top-k/diversified top-k data service compositions for different values of ε and λ;

the higher the values of these parameters are, the higher the global diversity of the

diversified top-k compositions is. The global diversity of the diversified top-k com-

positions set described in Equation 3.11 is the average of the diversities between each

couple of compositions in the compositions set. Note that the global diversity of the

diversified top-k compositions is always higher than that of the top-k compositions

and the applicability of DTKSC produce an average gain of 9, 22%.

div(top-k) =

∑k
i=1

∑k
j=i+1Dist(CSi, CSj)

(k2 − k)/2
(3.11)

3.5.2.9 Effectiveness of the Fuzzy Dominating Score

To evaluate the quality of results returned by applying our approach, we have fo-

cussed on one service class S0 containing a small set of 100 data services. We have

considered 3 matching methods M1, M2 and M3 and 2 preferences involved in this

class of services. For comparison, we also computed the top-k data service in this

50

3.6. Conclusion

service class by applying the Pareto dominating score proposed in [SSS+09, SSSS10].

Table 3.8: Top-5 Data Services using Pareto Dominating Score and Fuzzy Domi-

nating Score

Data service
Matching degrees Rank

M1 M2 M3 DS DSf

s04 (0.6443, 0.7146) (0.5761, 0.8961) (0.7063, 0.8739) 3 2

s09 (0.8010, 0.6494) (0.6462, 0.8378) (0.7112, 0.9996) 2 1

s22 (0.0454, 0.4498) (0.7529, 0.9747) (0.8894, 0.8827) 4 –

s057 (0.8508, 0.9447) (0.3884, 0.1678) (0.9576, 0.9885) 1 5

s072 (0.8809, 0.9661) (0.3884, 0.1678) (0.9934, 0.3117) 5 3

s093 (0.8508, 0.9447) (0.8963, 0.8598) (0.7112, 0.9996) – 4

Table 3.8 lists the top-5 data services using Pareto dominating score (DS) and

fuzzy dominating score (DSf). Table 3.8 shows that almost all the top-5 with

respect to DS are also in the top-5 with respect to DSf except for s22 witch is

replaced by s093. This is because s22 is very bad according to M1, in particular for

the first constraint. In addition, Table 3.8 shows that the rank of the data services

s04, s09, s057 and s072 is different in the two top-5 sets. s057, the best data service

with respect to DS is ranked last (i.e., fifth) with respect to DSf . On the other side,

the data services s04, s09 and s072 are in the top-3 (with respect to. DSf). This is

because s057 is very bad according to M2, in particular, for the second constraint.

However, s04, s09 and s072 are good or moderately good according to all matching

methods. This is consistent with our motivation to fuzzify the Pareto dominance

relationship illustrated in Section 3.3.1.

3.6 Conclusion

In this paper, we have proposed an approach to compute the top-k data-driven Web

service compositions for the purpose of answering fuzzy preference queries. We have

introduced the concept of fuzzy dominance relationship, and proposed the fuzzy

dominating score to measure to what extent a data service dominates another one.

This new score allowed us to rank-order candidate services in their respective classes

and to compute the top-k compositions. An algorithm is developed for this purpose.

We have also proposed a new quality metric to assess the diversity of a composition

51

Chapter 3. Top-k Web Service Compositions with Fuzzy Preferences

relative to a set of compositions and an algorithm to select the diversified top-k

compositions based on the proposed quality metric. We have evaluated thoroughly

our proposed composition algorithms on a large set of data-driven Web services and

reported their performances.

52

Chapter 4

Majority-Rule-Based Web Service

Selection

Contents

4.1 Introduction . 53

4.1.1 Motivating Example . 54

4.1.2 Contributions . 56

4.2 Problem Definition . 57

4.3 Computing the Majority Service Skyline 59

4.3.1 Observations . 59

4.3.2 Majority Service Skyline Algorithm 60

4.4 Experimental Evaluation . 63

4.4.1 Experimental Setup . 63

4.4.2 Effect of Number of Discovered Services 64

4.4.3 Effect of Number of Users . 65

4.4.4 Effect of Number of Preferences per User 65

4.5 Conclusion . 66

4.1 Introduction

Web data services, as a key technology for the development, deployment and man-

agement of Web services-based access to information systems, promise to enable

maximal mashup, reuse, and sharing of structured data (e.g., relational tables),

semi-structured information (e.g., XML documents) and unstructured information

(e.g., commercial data from online business sources). Thereby, enabling users to

perform several operations, e.g., data analysis, searches, purchases.

Chapter 4. Majority-Rule-Based Web Service Selection

Consequently, it becomes apparent that the Web services paradigm rapidly gains

popularity constituting an integral part of many real-world applications. For these

reasons, several techniques for discovering Web services have been recently proposed.

However, as Web data services (or services for short) and service providers prolifer-

ate, there will be a large number of candidate, most likely competing, services for

fulfilling a desired task. Thus, service selection is becoming important for helping

users to identify desirable services. User preferences play a key role during the se-

lection process [WXL08]. However, in many practical situations, the responsibility

to decide which is the appropriate service is shared among multiple parties, e.g.,

among the department heads of a university.

The following running example illustrates such a scenario, where a university

decides to obtain a software license of a cloud-based data analytics service.

4.1.1 Motivating Example

Consider a set of cloud-based data analytics Web services, and assume that several

departments within a university wish to buy a license for one of them. The services

are described by their annual Cost, the number of allowed simultaneous Processes,

the level of data Redundancy, and the number of computing Nodes.

Table 4.1: User Preferences

User Budget Processes Redundancy Nodes

u1 [7000, 10000] [5, 10] – –

u2 – – [3, 5] –

u3 – [8, 12] – [80, 100]

The users, in this case the department heads, have different preferences with

respect to the service descriptions, as depicted in Table 4.1. User u1, has a budget of

[7000, 10000] and expects to run simultaneously [5, 10] processes; user u2 cares much

about data redundancy and expects a redundancy level of [3, 5]; user u3 expects to

run simultaneously [8, 12] processes requiring [80, 100] computing nodes.

The service selection process follows two phases. In the first, given the user’s pref-

erences on service description attributes, the degrees of match between a requested

and an available service (see e.g., [PKPS02, LH03, DHM+04]) are computed. In this

54

4.1. Introduction

work, we assume the Jaccard coefficient for matching service descriptions. If I1, I2

are two intervals, their Jaccard coefficient is J(I1, I2) =
|I1∩I2|
|I1∪I2|

, where |I| measures

the length of the interval [DH73].

Table 4.2: Discovered Services

Service Cost Processes Redundancy Nodes

s1 [7000, 11000] [7, 12] [3.5, 5.5] [60, 110]

s2 [5000, 10000] [5, 11] [4, 6] [70, 115]

s3 [6000, 12000] [1, 10] [4, 6] [70, 110]

s4 [8000, 12000] [2, 12] [3.5, 5] [75, 130]

s5 [9000, 15000] [9, 12] [4, 7] [90, 130]

Returning to our example, consider that the set of relevant Web services are

the ones depicted on Table 4.2. Each service is shown along with its description

attributes. For instance service s1 offers license plans that cost [7000, 11000] per

year, allows [7, 12] simultaneous processes, offers a redundancy level of [3.5, 5.5],

and allocates [60, 110] computing nodes.

Based on the set of relevant service in Table 4.2 and the user requirements in

Table 4.1, the service selection process computes the matching degrees between each

user’s specified preference and the corresponding service characteristic. Table 4.3

shows the matching degrees of discovered service with respect to users preferences.

For instance, the matching degree of service s1 with respect to the cost and processes

requirements of user u1 are |[7000,10000|]
|[7000,11000]| = 0.75 and |[7,10]|

|[5,12]| = 0.43, respectively.

Table 4.3: Matching Degrees of Services with respect to Users Preferences

Service u1: (Cost, Processes) u2: Redundancy u3: (Processes, Nodes)

s1 (0.75, 0.43) 0.62 (0.83, 0.41)

s2 (0.67, 0.86) 0.35 (0.57, 0.47)

s3 (0.57, 0.54) 0.35 (0.23, 0.51)

s4 (0.50, 0.54) 0.76 (0.45, 0.38)

s5 (0.57, 0.25) 0.27 (0.80, 0.27)

The second phase of service selection is to identify the most interesting services

55

Chapter 4. Majority-Rule-Based Web Service Selection

with respect to users preferences. Most of service selection approaches focus on

computing a score for each service as an aggregate of its individual matching degrees.

Various approaches for aggregating the matching degrees exist. A common direction

is to assign weights over different preference attributes; e.g., [LASG07]. However,

when multiple users are involved, it would be difficult to make tradeoffs between

different weights. The natural option is to use the skyline operator [YB10a, ASR10,

YB10b, YB12] to determine an objectively good set of services. We refer to this

set as the unanimous service skyline, and it contains all services which are not

unanimously dominated. A service unanimously dominates another, if the former

is higher than or equal to the latter in all users’ preferences and (strictly) higher in

at least one.

In our example, service s1 unanimously dominates service s5, as s1’s matching

degrees are higher. On the other hand, no other service is unanimously dominated.

Hence, the unanimous service skyline comprises services s1, s2, s3 and s4.

Computing the unanimous service skyline frees users from assigning relative

importance over different preference attributes. However, a major drawback is that,

when multiple parties are involved, the number of services in the skyline becomes

very large and no longer offers any interesting insights. The reason is that as the

number of users and preferences increase, for any services si, sj , it is more likely

that si and sj are incomparable, i.e., better than each other in different matching

degrees. It is thus crucial to further reduce the size of the service skyline.

4.1.2 Contributions

The core of the above drawback is in the definition of dominance, which requires a

unanimous verdict. To mitigate this, we choose to follow the majority rule. Infor-

mally, a service majority-dominates another, if the former is higher than or equal

to the latter in the majority of users’ preferences and higher in at least one (in

this majority of users’ preferences). Then, we naturally define the majority service

skyline, as the services which are not majority-dominated.

To compute the majority service skyline, we make the observation that conven-

tional skyline computation algorithms, with the exception of [CJT+06a], cannot be

adapted, due to the intransitivity of the majority-dominance relationship. There-

fore, an extension of the algorithms in [CJT+06a] can be used to compute the

56

4.2. Problem Definition

majority service skyline. However, we propose a novel algorithm for the service se-

lection problem and show that it most cases it outperforms the extended algorithms.

Our main contributions in this Chapter are summarized as follows:

• We introduce a new concept for service selection when multiple preferences

are involved, which is based on the majority rule, and is called the majority

service skyline;

• We extend existing algorithms and propose a novel algorithm to efficiently

compute the majority service skyline;

• We evaluate both the effectiveness of the proposed concept and the efficiency

of our algorithm through a comprehensive experimental study.

The rest of the Chapter is structured as follows. Section 4.2 introduces the

problem of majority service skyline. Section 4.3 describes the majority service sky-

line computation algorithm. Section 4.4 presents our experimental study. Finally,

Section 4.5 concludes the Chapter.

4.2 Problem Definition

In this section, we provide the basic notions used throughout this paper, and for-

malize the notion of majority service skyline.

We assume a set of users U = {u1, u2, . . . , um}, and a set of discovered services

S = {s1, s2, . . . , sn}. We use si.uk to denote the matching degrees of service si with

respect to user uk. For instance, the matching vector of service s1 with respect to

user u1 is s1.u1 = (0.75, 0.43).

Definition 4.1 (Weak Dominance)

Given a user uk, we say that service si weakly dominates service sj with respect to

uk, denoted as si.uk � sj .uk, if and only if si is better than or equal to sj on all

specified preference attributes.

Definition 4.2 (Dominance)

Given a user uk, we say that service si dominates service sj with respect to uk,

denoted as si.uk ≻ sj .uk, if and only if si is better than or equal to sj on all specified

preference attributes, and better on at least one.

57

Chapter 4. Majority-Rule-Based Web Service Selection

Definition 4.3 (Unanimous Dominance)

Given a set of users U , we say that service si unanimous-dominates service sj,

denoted as si ≻U sj, if and only if si weakly dominates sj with respect to all users,

i.e., ∀uk ∈ U : si.uk � sj .uk, and there exists one user, say uℓ, for which si

dominates sj, i.e., ∃uℓ ∈ U : si.uℓ ≻ sj .uℓ.

Definition 4.4 (Unanimous Service Skyline)

Given a set of a set of users U and discovered services S, the unanimous service

skyline of S with respect to U denoted as USS(S,U) comprises the set of services in

S that are not unanimous-dominated by any other service in S, i.e., USS(S,U) =

{si ∈ S | ∄sj ∈ S : sj ≻U si}.

In the following, we introduce the concept of majority rule in the service selection

process and alter the definitions of dominance and skyline.

Definition 4.5 (Majority Dominance)

Given a set of users U , we say that service si majority-dominates service sj, denoted

as si ≻M sj, if and only if (i) there exists a subset U ′ ⊆ U containing more than

half of the users such that si weakly dominates sj with respect to all users in this

subset, i.e., |U ′| > ⌊|U|/2⌋ and ∀uk ∈ U ′ : si.uk � sj .uk, and (ii) there exists one

user, say uℓ, for which si dominates sj, i.e., ∃uℓ ∈ U : si.uℓ ≻ sj .uℓ.

Definition 4.6 (Majority Service Skyline)

Given a set of a set of users U and discovered services S, the majority service skyline

of S with respect to U denoted as MSS(S,U) comprises the set of services in S that

are not majority-dominated by any other service in S, i.e., MSS(S,U) = {si ∈ S |

∄sj ∈ S : sj ≻M si}.

Returning to our running example, s2 majority-dominates services s3, s4 and s5,

while, services s1 and s2 are not majority-dominated by any other service. Thus,

services s1 and s2 form the majority service skyline. Recall that the unanimous

service skyline comprises services s1, s2, s3 and s4. Observe that the MSS has

smaller cardinality than the USS. Thus, users can make a good, quick, selection.

We now provide the formal definition for the service selection problem for mul-

tiple users.

58

4.3. Computing the Majority Service Skyline

Problem statement: Given a set of users U and a set of discovered services S,

compute the majority service skyline.

4.3 Computing the Majority Service Skyline

In this section, we first introduce some important observations regarding the problem

at hand. We then develop an algorithm based on these observations for efficiently

computing the majority service skyline.

4.3.1 Observations

Next, we make some observations regarding the majority dominance relationship.

Lemma 4.1

If service si unanimous-dominates service sj, then si majority-dominates sj, i.e.,

si ≻U sj ⇒ si ≻M sj.

Proof

Proof follows from Definition 4.3 and Definition 4.5, setting U ′ = U . �

Theorem 4.1

The majority service skyline is a subset of the unanimous service skyline, i.e.,

MSS(S,U) ⊆ USS(S,U).

Proof

Assume that there exists a service si, such that si ∈ MSS(S,U) and si /∈ USS(S,U).

Since si /∈ USS(S,U), there must exist a service sj , such that sj ≻U si. Thus, by

Lemma 4.1, we have sj ≻M si. Which leads to a contradiction, as si ∈ MSS(S,U).

�

Moreover, observe that the majority dominance relationship does not maintain

the transitive property of the unanimus dominance relationship, as discovered ser-

vices can exhibit a cyclic majority dominance relationship.

Theorem 4.2

It is possible to have a set of users U = {u1, u2, . . . , um} and a set of discovered ser-

vices S = {s1, s2, . . . , sn} such that s1 majority-dominates s2, s2 majority-dominates

59

Chapter 4. Majority-Rule-Based Web Service Selection

Table 4.4: Example of Cyclic Majority Dominance

Service u1: (Cost, Processes) u2: Redundancy u3: (Processes, Nodes)

sa (0.76, 0.69) 0.74 (0.58, 0.80)

sb (0.56, 0.64) 0.70 (0.78, 0.86)

sc (0.80, 0.88) 0.68 (0.72, 0.76)

sd (0.78, 0.86) 0.61 (0.75, 0.89)

s3, . . . , sn−1 majority-dominates sn and sn majority-dominates s1, i.e., forming a

cyclic majority dominance relationship.

Proof

The example in Table 4.4, where sa ≻M sb, sb ≻M sc, sc ≻M sd, and sd ≻M sa,

proves the claim. �

The above theorem shows that the majority dominance relationship shares the

cyclic property of the k-dominance relationship introduced in [CJT+06a]. Therefore,

a service cannot be discarded even if it is majority-dominated because it might

be needed for excluding other services. This justifies why the existing algorithms

for computing the skyline are not applicable for computing the majority service

skyline. However, the one scan algorithm (OSA) and two scan algorithm (TSA) of

[CJT+06a], can be adapted to compute the majority service skyline, by exchanging

k-dominance checks for majority dominance checks as defined in Section 4.2. In

the following, we denote as OSA and TSA the adaptations of the algorithms in

[CJT+06a] to computing the majority service skyline.

4.3.2 Majority Service Skyline Algorithm

Next, we introduce the Majority Service Skyline Algorithm (MSA), which improves

on OSA by employing the following properties.

Lemma 4.2

If service si unanimous-dominates service sj and sj majority-dominates service sk,

then si majority-dominates sk, i.e., si ≻U sj ∧ sj ≻M sk ⇒ si ≻M sk.

Proof

As si unanimous-dominates sj means that si weakly dominates sj with respect to all

60

4.3. Computing the Majority Service Skyline

users, and there exists a user for which si dominates sj ; and sj majority-dominates

sk means that sj weakly dominates sk with respect to more than half of users, and

there exists a user for which sj dominates sk, we have si weakly dominates sk with

respect to more than half of users, and there exists a user for which si dominates sk

since the dominance relationship is transitive. Hence, si majority-dominates sk. �

Lemma 4.3

Let f : S → R+ be a monotone function aggregating the matching degrees of service

si for all users. If si unanimous-dominates service sj, then f(si) > f(sj), i.e.,

si ≻ sj ⇒ f(si) > f(sj).

Proof

The fact that si unanimous-dominates sj means that si is better than or equal to sj

with respect to all preference attributes of all users. This implies that a monotone

aggregate function over the matching degrees of si has a greater value than that

function over the matching degrees of sj . Hence, f(si) > f(sj). �

From Lemma 4.1 and Lemma 4.2, we can see that it is sufficient to compare

each service against the unanimous skyline services to detect if it is part (or not) of

the majority service skyline. This essentially reduces the number of comparisons.

Specifically, if a service si is unanimous-dominated, then discard it as (i) it is not

part of the majority service skyline (Lemma 4.1), and (ii) it is unnecessary for

eliminating other services (Lemma 4.2).

Lemma 4.3 also helps reduce unnecessary comparisons. In fact, to exploit this

property, we sort the services in non-ascending order of the sum of their matching

degrees. Then, given a service si, searching for services by which si is unanimous-

dominated can be limited to the part of the service before si. This is the idea behind

the SFS algorithm [Cho03], which in this context we apply it for cyclic dominance

relationships.

The MSA algorithm leverages the observations made above to compute efficiently

the majority service skyline. Based on Lemma 4.1 and Lemma 4.2, MSA maintains

two sets R and T , containing respectively the set of intermediate majority skyline

services and the set of intermediate unanimous skyline services that are not in R.

Thus, R∪ T constitutes the intermediate unanimous skyline.

61

Chapter 4. Majority-Rule-Based Web Service Selection

Algorithm 4.1: MSA

Input: set of users U ; set of discovered services S;

Output: majority service skyline R;

1 begin

2 sort S in a non-ascending order of the sum of services’ matching degrees;

3 R ← ∅; T ← ∅;

4 while S is not empty do

5 extract the top service si from S;

6 if si is unanimous-dominated by any service in R∪ T then

7 discard si;

8 else

9 if si majority-dominates any service sj in R then

10 remove sj from R to T ;

11 if si is majority-dominated by any service in R∪ T then

12 insert si into T ;

13 else

14 insert si into R;

15 return R;

The details of MSA depicted in Algorithm 4.1 are as follows. First, services in

S are sorted in a non-ascending order of the sum of their matching degrees, and

both sets R and T are initialized to empty sets. Then, the top service (i.e., the

service with the maximum sum of matching degrees), say si, is extracted from S.

Service si is compared against services in R ∪ T , i.e., the set of services that may

unanimous-dominate si (as the other services cannot dominate si from Lemma 4.3).

If si is unanimous-dominated, then it is removed from S as it is not part of the

majority service skyline (Lemma 4.1) and it is unnecessary for eliminating other

services (Lemma 4.2). Otherwise, i.e., when si is not unanimous-dominated by any

service in R∪T , if si majority-dominates any service sj in R (i.e., sj is not part of

the majority service skyline), then sj is removed from R to T , as it is a unanimous

skyline service, thus useful for eliminating other services. For the same reason, if si

is majority-dominated by any service in R∪T , it is inserted into T as it is not part

of the majority service skyline. Else, si is an intermediate majority skyline service

62

4.4. Experimental Evaluation

and is thus inserted into R. Once all services in S have been examined, i.e., S is

empty, services in R form the majority service skyline, and R is returned.

Applying MSA on our example, services s1 and s2 will be inserted into R, while,

services s3 and s4 will be inserted into T since they are both majority-dominated by

service s1, but they are unanimous skyline services. On the other hand, service s5

is discarded as it is dominated by service s1. Thus, the algorithm correctly returns

services s1 and s2 as the majority service skyline.

4.4 Experimental Evaluation

In this section, we present an extensive experimental evaluation of our approach.

Our objective is to prove the effectiveness of the majority service skyline and the

efficiency of the proposed algorithm. More specifically, we focus on two issues: (i)

the size of the majority service skyline (denoted as MSS). To demonstrate that the

majority service skyline further reduces the size of the (traditional) service skyline,

we also compute the size of the unanimous service skyline (denoted as USS) to

compare how their sizes varies; and (ii) the performance of our algorithm in terms

of elapsed time for computing the majority service skyline. For comparison purposes,

we also implemented the adaptations of OSA and TSA [CJT+06a] for computing

the majority service skyline.

4.4.1 Experimental Setup

It is worth noting that, due to the limited availability of real-world service data, most

existing skyline-based service selection approaches, e.g., [YB10a, YB10b, YB12], use

synthetic datasets for their evaluation. For ease of comparison, we also follow this

direction. The service generator we use takes as input a (real-world) model service

and its associated constraints, representing the requested service and the multiple

users preferences, and produce a set of synthetic services, as well as their associated

constraints, representing the set of discovered services. The Jaccard coefficient is

used for computing the matching degrees between discovered service’ constraints

and users preferences. The generation of the sets of synthetic services is controlled

by the parameters in Table 4.5, which displays the parameters under investigation,

their corresponding ranges and their default values. In each experimental setup, we

63

Chapter 4. Majority-Rule-Based Web Service Selection

investigate the effect of one parameter, while setting the remaining ones to their

default values.

Table 4.5: Parameters and Examined Values

Parameter Symbol Range Default

Number of discovered services n [2, 10]K 5K

Number of users m [3, 7] 5

Number of preferences per user d [3, 7] 5

The service generator and the algorithms, i.e., MSA, OSA and TSA were im-

plemented in Java, and all experiments were conducted on a 2.3 GHz Intel Core i5

with 8GB of RAM, running Mac OS X.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

2 4 6 8 10

S
iz

e
 (

s
e
rv

ic
e
)

Number of discovered services (K)

MSS
USS

(a) Size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 2 4 6 8 10

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

Number of discovered services (K)

OSA
TSA
MSA

(b) Elapsed time

Figure 4.1: Effects of n.

4.4.2 Effect of Number of Discovered Services

Figure 4.1 depicts the effect of n. As shown in Figure 4.1a, the size of the majority

service skyline increases slightly with n. This is because as n varies, it is becoming

more difficult to find services which are majority-dominated. Figure 4.1a shows also

that the size of the majority service skyline is very smaller then that of the skyline,

which is almost equal to the number of discovered services, as the skyline cannot

discard all inappropriate services, while the majority service skyline includes only

the most interesting ones. On the other hand, Figure 4.1b shows that the execution

time of the algorithms increases with n. However, MSA consistently outperforms

64

4.4. Experimental Evaluation

OSA and TSA.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3 4 5 6 7

S
iz

e
 (

s
e
rv

ic
e
)

Number of users

MSS
USS

(a) Size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7

E
la

p
s
e
d
 t

im
e
 (

m
s
e
c
)

Number of users

OSA
TSA
MSA

(b) Elapsed time

Figure 4.2: Effects of m.

4.4.3 Effect of Number of Users

Figure 4.2 shows the effect of m. Figure 4.2a shows a fluctuation in the size of the

majority service skyline. The fluctuation is related to the definition of the majority

dominance relationship (Definition 4.5). Indeed, we can distinguish two trend. One

for the even values of m, and the second for the odd values of m; each trend increases

with the increase of m. This is because, if we have an odd value of m, say mo, and

an even value of m, say me, such that mo = me +1, then the percentage of most of

users for me is greater than that of mo. For example, for m = 4, the percentage is

3
4 = 0.75%, and for m = 5 the percentage is 3

5 = 0.60%. When this percentage is

large, small number of services is discarded, and vice versa. Also, note that the size

of the majority service skyline is very smaller then that of the unanimous service

skyline, which approximates the number of discovered services for m ≥ 4. As shown

in Figure 4.2b, when m increases, the performance of TSA deteriorates due to the

second scan performed. However, the execution time of OSA and MSA increases

slightly with m. Still, MSA is better.

4.4.4 Effect of Number of Preferences per User

Figure 4.3 shows the effect of d. As depicted in Figure 4.3a, the size of the majority

service skyline increases significantly with the increase of d. This is because as d

increases, a service has increased probability not to be dominated in all preference

65

Chapter 4. Majority-Rule-Based Web Service Selection

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3 4 5 6 7

S
iz

e
 (

s
e
rv

ic
e
)

Number of preferences per user

MSS
USS

(a) Size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7

E
la

p
s
e
d
 t

im
e
 (

m
s
e
c
)

Number of preferences per user

OSA
TSA
MSA

(b) Elapsed time

Figure 4.3: Effects of d.

attributes with respect to a given user. However, the size of the majority service

skyline remains smaller than that of the unanimous service skyline, which approxi-

mates the number of discovered services for d ≥ 4. As shown in Figure 4.3b, TSA is

better than OSA and MSA for d ≤ 4 since the size of the majority service skyline is

small, thus a large number of services can be eliminated in the first scan. However,

TSA does not scale with d as the size of the majority service skyline becomes large,

thus the second scan is very time consuming. The execution time of OSA and MSA,

on the other hand, increases slightly with d. Also, observe that MSA consistently

performs better than OSA.

4.5 Conclusion

In this chapter, we dealt with the problem of preference-based Web service selection

under multiple users preferences. We introduce a novel concept called majority

service skyline for this problem based on the majority rule. This allows users to

make a “democratic” decision on which Web services are the most appropriate.

We develop a suitable algorithm for computing the majority service skyline. Our

experimental evaluation demonstrates the effectiveness of the introduced concept

and the efficiency of the proposed algorithm.

66

Chapter 5

Computing Skyline Web Services

using Fuzzy Dominance

Contents

5.1 Introduction . 67

5.1.1 Motivating Example . 68

5.1.2 Contributions . 70

5.2 Definitions and Analysis . 70

5.2.1 Fuzzy Dominance vs Pareto Dominance 71

5.2.2 α-Dominant Service Skyline vs Service Skyline 73

5.3 Computing the α-Dominant Service Skyline 76

5.3.1 Efficient Computation of the α-Dominant Service Skyline . . 76

5.3.2 α-Dominant Service Skyline Algorithm 79

5.4 Experimental Evaluation . 81

5.4.1 Experimental Setup . 81

5.4.2 Size of the α-Dominant Service Skyline 82

5.4.3 Performance and Scalability 84

5.5 Conclusion . 84

5.1 Introduction

Recently, there has been a large flow of Web services deployed over the Web, due

to the acceptance of Service Oriented Architecture (SOA) as the solution to inter-

operation, reuse and globalization [PvdH07, YLBM08]. As outlined in Section 1.1

the statistics published by the Web services search engine seekda! indicates an ex-

ponential increase in the number of accessible Web services over the last 67 months,

Chapter 5. Computing Skyline Web Services using Fuzzy Dominance

and according to [AMM08], there has been more than 130% growth in the number

of published Web services between October 2006 and October 2007.

As the Web is populated with a large number of Web services, there may be

multiple service providers competing to offer the same functionality, but with dif-

ferent QoS (quality of service) such as latency, price and reputation. QoS is thus a

crucial criterion to select among functionally similar Web services.

The following example illustrates a typical scenario related to our discussion,

where users want to search an hotel and make an on-line reservation.

5.1.1 Motivating Example

Consider the common example in the literature concerning a set of Web services that

provide hotel search and on-line reservation. For each Web service, Figure 5.1 sets its

execution time and its price, where values of both QoS attributes are normalized in

the range [0, 1]; to allow for an uniform measurement of service qualities independent

of units.

Price

Execution time
0 1

1
S1

S3

S2

S14

S13S12

S11

S4 S5

S6

S7 S8

S9 S10

Figure 5.1: Example of Functionally Similar Web Services

To find satisfactory hotels, users need to go through several trial-run processes.

This would be very painstaking as the number of competing providers is expected

to be very large, and the selected Web services are not necessarily among the most

interesting ones. Therefore, optimization strategies are required for finding the best

services with respect to a set of QoS aspects desired by the users.

68

5.1. Introduction

Currently, most approaches that deal with Web service selection based on QoS,

compute a global QoS value for each service as an aggregate of the individual QoS

values. Various approaches for combining QoS exist. One direction is to assign

weights to individual QoS attributes. However, users may not know enough how to

make tradeoffs between different quality aspects using numbers. They thus lose the

flexibility to select their desired Web services.

Computing the service skyline [ASR10, YB10a, YB10b, YB12] comes as a pop-

ular solution that overcomes this limitation. The service skyline consists of a set of

services which are not dominated by any other one. A service Si dominates another

service Sj if and only if Si is at least as good as Sj in all QoS attributes and (strictly)

better than Sj in at least one QoS attribute. For instance, the Web service S3 in

Figure 5.1 is better than the Web services S1 and S2 since it is faster and cheaper.

The skyline of the set of services in Figure 5.1 comprises services S3, S12 and S14

since they are not dominated by any other service.

However, there are some inherent issues of applying the service skyline approach.

The first issue is related to the nature of retrieved services in the service skyline that

privileges services with some very good and very bad QoS values like the services

S3 and S14 in Figure 5.1. Such services are referred to as services with a bad com-

promise (between QoS attributes). Whereas, users usually prefer services that are

(moderately) good in all QoS attributes like the services S12 and S11 in Figure 5.1,

where the last one is unfortunately not returned by the service skyline approach.

The services of this type are referred to as services with a good compromise (between

QoS attributes). Clearly, the Web service S12 is better than S11. Furthermore, S12

may be currently unavailable or temporarily deprived of a functionality (e.g., on-

line reservation). Users thus have to choose between the services S3 and S14 while

several services like S11 and S13 may be more appropriate. The second issue con-

cerns the fact that the service skyline approach does not allow users to control the

size of the returned set of services. With the presence of a possibly large number

of skyline services, the full service skyline may be less informative. Thus, it may

be hard for users to make a good, quick selection by scanning the entire skyline

that consists of too many services. Also, with the presence of a small number of

skyline services, users may lose interesting dominated services; knowing that some

interesting services may be unavailable.

69

Chapter 5. Computing Skyline Web Services using Fuzzy Dominance

5.1.2 Contributions

In this chapter, we address the above mentioned issues by considering a fuzzy dom-

inance relationship between Web services based on their QoS attributes. Our main

contributions can be summarized as follows:

• We introduce a novel concept, called α-dominant service skyline, to tackle the

problem of QoS-based web service selection;

• We develop a suitable algorithm, which leverages pruning techniques to effi-

ciently compute the α-dominant service skyline;

• We evaluate both the effectiveness of the proposed concept and the efficiency

of the algorithm through a set of experiments.

The rest of this chapter is structured as follows. Section 5.2 provides the formal

definition and analysis of the α-dominant service skyline. Section 5.3 describes

the α-dominant service skyline computation algorithm. Section 5.4 presents our

experimental study. Finally, Section 5.5 concludes the chapter.

5.2 Definitions and Analysis

In this section, we introduce our terminology and notation. Then, we formalize

our concept, called α-dominant service skyline, based on a dominance relationship

defined in a fuzzy way. To motivate and justify our formulation, we also discuss

some related notions, namely Pareto-dominance and service skyline, showing that

our concept is more adequate for Web service selection.

Given a set S = {S1, . . . , Sn} of functionally similar Web services and a set Q =

{q1, . . . , qd} of QoS attributes. Each service Si is characterized by a vector Q(Si) =

(q1(Si), · · · , qd(Si)) where qı(Si) denotes the value of the ı-th QoS attribute of Si.

We consider quantitative QoS attributes (e.g., execution time, price, reputation,

etc). To allow for an uniform measurement of service qualities independent of units,

we normalize the different QoS values in the range [0, 1], such that the lower the

value, the higher the quality, as follows:

• For negative QoS parameters, i.e., the higher the value, the lower the quality

(e.g., response time, latency, etc): Nqk(si) =
qk(si)−minqk

maxqk
−minqk

;

70

5.2. Definitions and Analysis

• For positive QoS parameters, i.e., the higher the value, the higher the quality

(e.g., availability, reliability, etc.): Nqk(si) =
maxqk

−qk(si)

maxqk
−minqk

.

Where Nqk(si) is the normalized QoS value of the service si on the QoS parameter

qk and minqk (resp. maxqk) is the minimum (resp. maximum) value of the QoS

parameter qk.

5.2.1 Fuzzy Dominance vs Pareto Dominance

We start by defining the Pareto dominance, then discuss the reasons that motivate

to make it fuzzy.

Definition 5.1 (Pareto Dominance)

Given two services Si, Sj ∈ S, we say that Si dominates Sj, denoted by Si ≺ Sj, if

and only if Si is better than or equal to Sj in all attributes in Q and better in at least

one attribute in Q, i.e., ∀ı ∈ [1, d] : qı(Si) ≤ qı(Sj) ∧ ∃j ∈ [1, d] : qj(Si) < qj(Sj).

Pareto dominance does not allow for discriminating between Web services with

bad compromise and those with good compromise. To illustrate this issue, let

Q(S3) = (q1(S3), q2(S3)) = (0.1, 0.9) and Q(S12) = (q1(S12), q2(S12)) = (0.2, 0.2) be

the QoS vectors of S3 and S12, respectively. i.e., q1 and q2 represent respectively the

execution time and the price (see Figure 5.1). With Pareto order, we have neither

S3 ≺ S12 nor S12 ≺ S3, i.e., the services S3 and S12 are incomparable. However, one

can consider that S12 is better than S3 since q2(S12) = 0.2 is too much preferred

than q2(S3) = 0.9, contrariwise q1(S3) = 0.1 is almost close to q1(S12) = 0.2. For

this purpose, it is interesting to fuzzify the Pareto dominance in order to express

the extent to which a Web service (more or less) dominates another one.

We define below a fuzzy dominance relationship that relies on particular com-

parison function expressing a graded inequality of the type strongly smaller than.

Definition 5.2 (Fuzzy Dominance)

Given two services Si, Sj ∈ S, we define the fuzzy dominance to express the degree

to which Si dominates Sj as:

degμε,λ
(Si ≺ Sj) =

∑d
ı=1 µε,λ(qı(Si), qı(Sj))

d
(5.1)

71

Chapter 5. Computing Skyline Web Services using Fuzzy Dominance

Where µε,λ is a monotone comparison function that expresses the extent to which

qı(Si) is more or less (strongly) smaller than qı(Sj). The function µε,λ can be defined

in an absolute way as follows:

µε,λ(x, y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if y − x ≤ ε

1 if y − x ≥ λ+ ε

y−x−ε
λ

otherwise

(5.2)

Where λ > 0, i.e., µε,λ is more demanding than the idea of strictly smaller. We

should also have ε ≥ 0 in order to ensure that µε,λ agrees with the idea of smaller

in the usual sense. Figure 5.2, shows the graphical representation of the function

µε,λ in terms of the difference y − x.

0

1

y-x+

µ , (x,y)

Figure 5.2: Graphical Representation of µε,λ w.r.t. y − x

One can interpret the semantics of the function µε,λ as follows:

• if y − x is less than ε, then x is not at all strongly smaller than y;

• if y − x is larger than λ+ ε, then x is all much smaller than y;

• if y− x is between ε and λ+ ε, than x is much smaller than y to some extent.

Let us now reconsider the previous Web services S3 and S12, with ε = 0.1 and

λ = 0.2, we have degμ0.1,0.2
(S3 ≺ S12) = 0 and degμ0.1,0.2

(S12 ≺ S3) = 0.5. This is

more significant than S3 and S12 are incomparable – provided by Pareto dominance.

As can be seen, the fuzzy dominance relationship introduced favors Web services

with a good compromise.

72

5.2. Definitions and Analysis

5.2.2 α-Dominant Service Skyline vs Service Skyline

We first formally define the service skyline and the α-dominant service skyline, we

then investigate the difference between them showing that the latter is more robust.

Definition 5.3 (Service Skyline)

The service skyline of S, denoted by skyS comprises the set of services in S that are

not dominated by any other service, i.e., skyS = {Si ∈ S | ∄Sj ∈ S : Sj ≺ Si}.

In contrast to the service skyline which relies on Pareto dominance, the α-

dominant service skyline leverages a notion called α-dominance. Below, we define

both of the α-dominance and the α-dominant service skyline.

Definition 5.4 (α-Dominance)

Given two services Si, Sj ∈ S and α ∈ [0, 1], we say that Si α-dominates Sj (or Si

dominates Sj at a degree α) in the context of µε,λ, denoted by Si ≺
α
με,λ

Sj, if and

only if degμε,λ
(Si ≺ Sj) ≥ α.

For instances, in the context of µ0.1,0.2 service S12 0.7-dominates services S5 and

S6. In the same context, S12 0.8-dominates S5, but does not 0.8-dominates S6 as

degμ0.1,0.2
(S12 ≺ S6) = 0.75 < 0.8.

Definition 5.5 (α-Dominant Service Skyline)

The α-dominant service skyline of S with respect to µε,λ, denoted by α-skySμε,λ
,

comprises the set of services in S that are not α-dominated by any other service in

the context of µε,λ, i.e., α-skySμε,λ
= {Si ∈ S | ∄Sj ∈ S : Sj ≺

α
με,λ

Si}.

For example, with ε = 0.1, λ = 0.2 and α = 0.7 we have 0.7-skySμ0.1,0.2
=

{S3, S4, S11, S12, S13, S14}.

One can observe that, in contrast to the service skyline, the α-dominant service

skyline privileges Web services with a good compromise. Now if the Web service S12

fails, users can choose between a good deal of Web services with a good compromise

(e.g., S11 and S13).

Further, the following theorem provides another key property of the α-dominant

service skyline: all Web services selected by the service skyline can be also selected

by the α-dominant service skyline.

73

Chapter 5. Computing Skyline Web Services using Fuzzy Dominance

Theorem 5.1

If α > d−1
d

, then the service skyline is a subset of the α-dominant service skyline for

any comparison function µε,λ, i.e., α > d−1
d

⇒ skyS ⊆ α-skySμε,λ
(∀ε ≥ 0, ∀λ > 0).

Proof

Assume that α > d−1
d

, and prove that for any comparison function µε,λ skyS ⊆ α-

skySμε,λ
. Let Si ∈ skyS . According to Definition 5.3, ∄Sj ∈ S : Sj ≺ Si, i.e.,

∀Sj ∈ S, ∃k ∈ [1, d] : qk(Si) < qk(Sj). Therefore, for any comparison function

µε,λ we will have: ∀Sj ∈ S, ∃k ∈ [1, d] : µε,λ(qk(Sj), qk(Si)) = 0. Thus, ∀Sj ∈

S : degμε,λ
(Sj ≺ Si) ≤ d−1

d
since Si is better at least on the dimension k. Then

∀Sj ∈ S, degμε,λ
(Sj ≺ Si) < α, since α > d−1

d
. This means that Si is not α-

dominated by any other service Sj in S, i.e., ∄Sj ∈ S : Sj ≺α
με,λ

Si. Thus, Si ∈ α-

skySμε,λ
. Hence, skyS ⊆ α-skySμε,λ

(∀ε ≥ 0, ∀λ > 0). �

Theorem 5.1 shows that the α-dominant service skyline is appropriate for all

types of users. In other words, if a user prefers a Web service with a bad compromise

(e.g., he/she prefers a fast service although it is very expensive), the α-dominant

service skyline can include such kind of services.

In addition to the above observations, the α-dominant service skyline allows

users to control the size of the returned services by making changes on the pa-

rameter α, and possibly on ε and λ (whereas the service skyline’s size does not

change for the same set of services and the same query). For example, if users

find that the size of 0.7-skySμ0.1,0.2
is quite large (resp. small), they can reduce

(resp. expand) it by decreasing (resp. increasing) the value of α (e.g., α = 0.2

or α = 0.8). They will thus have 0.2-skySμ0.1,0.2
= {S11, S12} or 0.8-skySμ0.1,0.2

=

{S3, S4, S6, S9, S10, S11, S12, S13, S14}. Roughly speaking, the α-dominant service

skyline allows for taking the feedback of users into account. We show formally this

behavior below:

Lemma 5.1

If α′ < α, then the α′-dominant service skyline with respect to µε,λ is a subset of

the α-dominant service skyline with respect to µε,λ, i.e., α′ < α ⇒ α′-skySμε,λ
⊆ α-

skySμε,λ
.

74

5.2. Definitions and Analysis

Proof Let µε,λ be a comparison function. Assume that α′ < α and prove that

α′-skySμε,λ
⊆ α-skySμε,λ

. Let Si ∈ α′-skySμε,λ
. This means that Si is not α′-dominated

by any other service Sj in S, i.e., ∄Sj ∈ S : Sj ≺
α′

με,λ
Si. Thus, there is not a service

Sj in S such as degμε,λ
(Sj ≺ Si) ≥ α′, i.e., ∀Sj ∈ S : degμε,λ

(Sj ≺ Si) < α′. Then,

∀Sj ∈ S : degμε,λ
(Sj ≺ Si) < α, since α′ < α. Therefore, ∄Sj ∈ S : Sj ≺α

με,λ
Si.

This means that Si is not α-dominated , thus Si ∈ α-skySμε,λ
. Hence, α′-skySμε,λ

⊆ α-

skySμε,λ
. �

' + '
+

0

1

y-x 0

1

y-x+ '
+

(a) (b)

µ ', (x,y) µ , (x,y) µ , (x,y)µ , '(x,y)

Figure 5.3: Effects of ε and λ

Property 5.1

If ε′ ≤ ε and λ′ ≤ λ, then for any (x, y) ∈ [0, 1], µε′,λ′(x, y) ≥ µε,λ(x, y), i.e.,

(ε′ ≤ ε ∧ λ′ ≤ λ) ⇒ ∀(x, y) ∈ [0, 1] : µε′,λ′(x, y) ≥ µε,λ(x, y).

Proof

[ε′ ≤ ε ∧ λ′ = λ]: see Figure 5.3 (plot-a). . . . (⋆)

[ε′ = ε ∧ λ′ ≤ λ]: see Figure 5.3 (plot-b). . . . (∗)

[ε′ ≤ ε ∧ λ′ ≤ λ]: it is straightforward from (⋆) and (∗). �

Lemma 5.2

If µε′,λ′ ≥ µε,λ, then for any α ∈ [0, 1] the α-dominant service skyline with respect

to µε′,λ′ is a subset of the α-dominant service skyline with respect to µε,λ, i.e.,

µε′,λ′ ≥ µε,λ ⇒ α-skySμε′,λ′
⊆ α-skySμε,λ

.

Proof

Let α be a dominance degree. Assume that µε′,λ′ ≥ µε,λ and prove that α-skySμε′,λ′
⊆

α-skySμε,λ
. Let Si ∈ α-skySμε1,λ

. This means that Si is not α-dominated by any

75

Chapter 5. Computing Skyline Web Services using Fuzzy Dominance

other service Sj in S in the context of µε′,λ′ , i.e., ∄Sj ∈ S : Sj ≺α
με′,λ′

Si. Thus,

there is not a service Sj in S such as degμε′,λ′
(Sj ≺ Si) ≥ α′, i.e., ∀Sj ∈ S :

degμε′,λ′
(Sj ≺ Si) < α′. Then, ∀Sj ∈ S :

∑d
ı=1

με′,λ′ (qı(Sj),qı(Si))

d
< α. Thus, ∀Sj ∈

S :
∑d

ı=1
με,λ(qı(Sj),qı(Si))

d
< α (since µε′,λ′ ≥ µε,λ). Then, ∀Sj ∈ S : degμε,λ

(Sj ≺

Si) < α. Thus, ∄Sj ∈ S : Sj ≺α
με,λ

Si. This means that Si is not α-dominated in

the context of µε,λ, therefore Si ∈ α-skySμε,λ
. Hence, α-skySμε′,λ′

⊆ α-skySμε,λ
. �

Lemma 5.1 and Lemma 5.2 provide appropriate tools in order to adapt (by

contracting or expanding) the size of the retrieved services to users needs.

We now provide the formal definition for the service selection problem using

fuzzy dominance relationship.

Problem statement: Given a set of functional similar services S = {S1, . . . , Sn},

a set of QoS attributes Q = {q1, . . . , qd}, a comparison function µε,λ and a dominance

degree α. Return the α-dominant service skyline.

5.3 Computing the α-Dominant Service Skyline

Index structures are frequently used to reduce search space in large databases. To

this end, in our study we make use of R-trees structures [Gut84] due to their pop-

ularity and effectiveness in skyline computation. For the sake of illustration, let us

use the Web services given in Figure 5.1. These services can be organized in the

R-tree of Figure 5.4, with node capacity = 3. An intermediate entry ei corresponds

to the minimum bounding rectangle (MBR) of a node Ni at the lower level, while

a leaf entry corresponds to a Web service. Distances are computed according to L1

norm, i.e., the mindist of a point equals the sum of its coordinates and the mindist

of a MBR (i.e., intermediate entry) equals the mindist of its lower-left corner point.

5.3.1 Efficient Computation of the α-Dominant Service Skyline

Intuitively, a straightforward approach to compute the α-dominant service skyline

is to compare each Web service Si with every other one. If Si is not α-dominated,

then it belongs to the α-dominant service skyline. However, this approach results

in a high computational cost, as it needs to compare each Web service with every

others. It is thus crucial to quickly eliminate Web services that are α-dominated.

76

5.3. Computing the α-Dominant Service Skyline

price

Execution time
0 1

1
S1

S3

S2

S14

S13S12

S11

S4 S5

S6

S7 S8

S9 S10

e6

e2e1

e7

e5e4e3

S1 S3 S4 S2 S5 S8 S6 S7 S9 S11 S12 S13 S10 S14

N4

N7

N6

N5

N3

N2

N1

N1 N2 N3 N4 N5

N6 N7

R

Figure 5.4: An Example of R-tree

It is worth to note that contrary to Pareto dominance the α-dominance rela-

tionship is not asymmetric, i.e., it is possible to have two Web services Si and Si

such that Si α-dominates Sj and Sj α-dominates Si, for instance in the context of

µ0.1,0.2, S13 0.5-dominates S3 and also S3 0.5-dominates S13. Therefore, the pruning

process is far from being straightforward since it can lead to erroneous results. For

example, if S3 is pruned as it is α-dominated by S13 and there is no other service

that α-dominates S13 (the case of our running example, for ε = 0.1, λ = 0.2 and

α = 0.5), then S13 will be included in the α-dominant service skyline, whereas it is

α-dominated by S3. This justifies why the current R-tree-based skyline algorithms

are not suitable for computing the α-dominant service skyline.

In the following, we provide optimization techniques to address the above men-

tioned issues. The idea is to prune services that are both α-dominated and not

needed for pruning other services and to minimize the number of comparisons. The

optimization techniques follow an important concept called α-Pareto-dominance:

Definition 5.6 (α-Pareto-Dominance)

Given two services Si, Sj ∈ S, we say that Si α-Pareto-dominates Sj in the context

77

Chapter 5. Computing Skyline Web Services using Fuzzy Dominance

of µε,λ, denoted by Si ⊳
α
με,λ

Sj, if and only if Si ≺ Sj ∧ Si ≺
α
με,λ

Sj.

Lemma 5.3

Given two services Si, Sj ∈ S, if Si dominates Sj, then for any Sk ∈ S and for any

comparison function µε,λ: degμε,λ
(Si ≺ Sk) ≥ degμε,λ

(Sj ≺ Sk), i.e., Si ≺ Sj ⇒

∀Sk ∈ S : degμε,λ
(Si ≺ Sk) ≥ degμε,λ

(Sj ≺ Sk) (∀ε ≥ 0, ∀λ > 0).

Proof

Si ≺ Sj ⇔ ∀ı ∈ [1, d] : qı(Si) ≤ qı(Sj) ∧ ∃j ∈ [1, d] : qj(Si) < qj(Sj). Taking

only the implication ⇒, we will have, Si ≺ Sj ⇒ ∀ı ∈ [1, d] : qı(Si) ≤ qı(Sj).

Thus for any service Sk, ∀ı ∈ [1, d] : qı(Si) − qı(Sk) ≤ qı(Sj) − qı(Sk). Then,

∀ı ∈ [1, d] : qı(Sk)−qı(Si) ≥ qı(Sk)−qı(Sj). Therefore, for any comparison function

µε,λ, we will have, ∀ı ∈ [1, d] : µε,λ(qı(Si), qı(Sk)) ≥ µε,λ(qı(Sj), qı(Sk)). It fol-

lows that
∑d

ı=1
με,λ(qı(Si),qı(Sk))

d
≥

∑d
ı=1

με,λ(qı(Sj),qı(Sk))
d

. Hence, degμε,λ
(Si ≺ Sk) ≥

degμε,λ
(Sj ≺ Sk). �

Lemma 5.4

For α > d−1
d

, if a Web service Si is not α-Pareto-dominated by any Web service in

S in the context of a given comparison function µε,λ, then Si ∈ skySμε,λ

Proof

Assume that Si is not α-Pareto-dominated. This means that ∀Sj ∈ S : Sj ⊀

Si ∨ Sj ⊀α
με,λ

Si. [Sj ⊀α
με,λ

Si]: the proof is obvious as Si is not α-dominated.

[Sj ⊀ Si]: by adopting the same formality of the proof of theorem 1, we will have

∄Sj ∈ S : Sj ≺
α
με,λ

Si. Hence, Si ∈ skySμε,λ
. �

Lemma 5.3 shows that the skyline services are sufficient to decide if a service is

part (or not) of the α-dominant service skyline. This essentially reduces the number

of comparisons. Also, the combination of Definition 5.6 and Lemma 5.3 specifies

a key property that can be used to prune services: if a service Sj is α-Pareto-

dominated then prune it as (i) it is not part of the α-dominant service skyline (it

is α-dominated); and (ii) it is unnecessary for comparisons (it is dominated). In

addition, Lemma 5.4 helps to avoid any comparison after pruning all α-dominated

services, in the case where α > d−1
d

.

78

5.3. Computing the α-Dominant Service Skyline

5.3.2 α-Dominant Service Skyline Algorithm

The algorithm, hereafter referred to as α-DSSA (see Algorithm 5.1), leverages the

techniques presented above to compute the α-dominant service skyline, avoiding

an exhaustive comparison of each service with all other ones. More specifically, it

proceeds in two steps. The goal of the first step is to prune the α-Pareto-dominated

Web services. The remaining Web services will go into the second step, where the

α-dominant ones will be selected.

Step 1 (lines 1-17): Finding candidate services – It stars from the root node of

the R-tree R and inserts all its entries into the heap H , sorted in ascend-

ing order according to their mindist. The top entry e (i.e., the entry

with the minimum mindist) is extracted. If e is α-Pareto-dominated

by any service in Sky then discard it, since all the services obtained

from it (i.e., e) are α-dominated and not useful to prune other entries.

Otherwise (i.e., e is not α-Pareto-dominated), if e is an intermediate

entry, insert all its child entries that are not α-Pareto-dominated by

any service in Sky into the heap. Else (i.e., e is a service), there are

two cases: (i) If e is not dominated by any service in Sky (i.e., e is

a skyline service), it is inserted into Sky as it may be part of the α-

dominant service skyline and it is necessary for pruning other entries;

(ii) If e is dominated by any service in Sky , it is inserted into Dom as

it may be part of the α-dominant service skyline but it is not necessary

for pruning other entries. This step proceeds in the same manner until

the heap becomes empty;

Step 2 (lines 18-26): Computing and returning the α-dominant service skyline –

If α > d−1
d

, then the α-dominant service skyline comprises all services

of Sky and Dom, according to Lemma 5. Otherwise (i.e., α ≤ d−1
d

),

the algorithm proceeds by refining the lists Sky and Dom, keeping only

the services that are not α-dominated by any services in Sky , as they

are also not α-dominated by any services in Dom. Finally it provides

the user with the α-dominant service skyline.

Note that according to Lemma 5.1 and Lemma 5.2, once we compute the α-

dominant service skyline with respect to µε,λ, the α′-dominant service skyline with

79

Chapter 5. Computing Skyline Web Services using Fuzzy Dominance

Algorithm 5.1: α-DSSA

Input: R-tree R; dominance degree α; comparison function µε,λ;

Output: the α-dominant service skyline DSky;

1 begin

2 H ← ∅; Sky ← ∅; Dom ← ∅;

3 insert the root entries of R into H ;

4 while H �= ∅ do

5 extract the top entry e from H ;

6 if e is α-Pareto-dominated by some service in Sky then

7 discard e;

8 else

9 if e is an intermediate entry then

10 foreach child ei of e do

11 if ei is not α-Pareto-dominated by some service in Sky then

12 insert ei into H ;

13 else

14 if ei is not dominated by some service in Sky then

15 insert ei into Sky;

16 else

17 insert ei into Dom;

18 if α > d−1

d
then

19 DSky ← Sky ∪Dom;

20 else

21 foreach Si in Sky do

22 if Si is not α-dominated by some service in Sky then

23 insert Si into DSky;

24 if Si α-dominate a service Sj in Dom then

25 discard Sj;

26 DSky ← DSky ∪Dom;

27 return DSky ;

respect to µε,λ (α′ < α′) and the α-dominant service skyline with respect to µε′,λ′

(µε′,λ′ ≥ µε,λ) can be computed by only performing a simple search on the Web

services returned by the α-dominant service skyline with respect to µε,λ instead of

80

5.4. Experimental Evaluation

rerun the algorithm.

5.4 Experimental Evaluation

In this section, we present an extensive experimental study of our approach. More

specifically, we conduct two sets of experiments. First we focus on the size of the

α-dominant service skyline. We also compute the service skyline (refereed to as

TSS) to compare how the size of the the α-dominant service skyline (refereed to

as α-DSS) varies from that of the traditional service skyline. In the second set of

experiments, we study the computational cost of the proposed algorithm. In order

to prove the efficiency and the scalability of our algorithm (α-DSSA), we developed

also a base line algorithm (referred to as BLA) for comparison purpose.

The algorithms (i.e., α-DSSA and BLA) were implemented in Java. Datasets

are indexed with an R-tree. The experiments were conducted on a 2.00 GHz Intel

dual core CPU and 2 GB of RAM, running Windows.

Table 5.1: Parameters and Examined Values

Parameter Symbol Values

Number of services n 1K, 10K, 100K, 1M

QoS dimensions d [2, 5]d, 3d

Dominance degree α [0.2, 0.8], 0.5

Parameter correlation corr ind, cor, ant

5.4.1 Experimental Setup

In our experimental study we focus on synthetically generated datasets due to the

limited availability of real data. The QoS values of services are generated in three

different ways: independent (ind), where QoS values are assigned independently to

each QoS attribute; correlated (cor), where the QoS values of a service are positively

correlated, i.e., a good value in some QoS attribute increases the possibility of a

good value in the others; anti-correlated (ant), where the QoS values are negatively

correlated, i.e., good values (or bad values) in all QoS attributes are less likely

to occur. The involved parameters and their examined values are summarized in

81

Chapter 5. Computing Skyline Web Services using Fuzzy Dominance

Table 5.1. In all experimental setups, we investigate the effects of one parameter,

while we set the remaining ones to their default values, shown in bold in Table 5.1;

we used ε = 0.05 and λ = 0.2.

 10

 100

 1000

 10000

 100000

1 10 100 1000

S
iz

e
 (

s
e
rv

ic
e
)

Number of services (K)

α-DSS
TSS

(a) Effect of n

 10

 100

 1000

2 3 4 5
S

iz
e
 (

s
e
rv

ic
e
)

QoS dimension

α-DSS
TSS

(b) Effect of d

 1

 10

 100

 1000

 10000

0.2 0.4 0.6 0.8

S
iz

e
 (

s
e
rv

ic
e
)

Dominance degree

α-DSS
TSS

(c) Effect of α

 10

 100

 1000

 10000

ind cor ant

S
iz

e
 (

s
e
rv

ic
e
)

Correlation

α-DSS
TSS

(d) Effect of corr

Figure 5.5: Effects of Parameters on the Size of the α-dominant Service Skyline an

that of Traditional Service Skyline

5.4.2 Size of the α-Dominant Service Skyline

Figure 5.5a shows that the size of the α-dominant service skyline follows a similar

trends as the traditional skyline with the increase of n. With α set to 0.5, the

size of the α-dominant service skyline is larger than that of the traditional service

skyline. In addition, the difference between the two sizes is proportional to n, since

the number of services with a good compromise increases as n increases.

In contrast to the traditional service skyline whose size increases significantly as

d increases, d has no obvious effect on the size of the α-dominant service skyline

as shown in Figure 5.5b (the sizes can be regarded as in the same scale varying d).

82

5.4. Experimental Evaluation

Since the number of services with a good compromise is approximately the same

when d varies.

The dominance degree α has a significant effect on the size of the α-dominant

service skyline as shown in Figure 5.5c (the size of the traditional service skyline does

not change as it is not related to α). This is because the increase (resp. decrease)

of α leads to the inclusion (resp. exclusion) of services with a bad compromise.

Figure 5.5d shows that the α-dominant service skyline and the traditional service

skyline exhibit different behaviors w.r.t. corr parameter. Furthermore, the size of

the α-dominant service skyline is larger than that of the traditional service skyline

especially for the correlated and anti-correlated datasets. On the correlated datasets

many services with a good compromise occur. They are thus included in the α-

dominant service skyline. On the anti-correlated datasets, services with a good

compromise less likely to occur, thus there are not enough services which α-dominate

others.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

Number of services

α-DSSA
BLA

(a) Effect of n

 10

 100

 1000

 2 3 4 5

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

QoS dimension

α-DSSA
BLA

(b) Effect of d

 10

 100

 1000

 10000

 0.2 0.4 0.6 0.8

E
la

p
s
e
d
 t
im

e
 (

m
s
e

c
)

Dominance degree

α-DSSA
BLA

(c) Effect of alpha

 10

 100

 1000

 10000

 100000

ind cor ant

E
la

p
s
e
d
 t
im

e
 (

m
s
e

c
)

Correlation

α-DSSA
BLA

(d) Effect of corr

Figure 5.6: Effects of Parameters on the time of α-DSSA and BLA

83

Chapter 5. Computing Skyline Web Services using Fuzzy Dominance

5.4.3 Performance and Scalability

Figure 5.6a shows that α-DSSA is consistently more efficient than BLA and BLA

does not terminate successfully for n > 100K. The difference between α-DSSA and

BLA increases significantly as n increases. This is due to the high number of pruned

services by α-DSSA.

α-DSSA is consistently more efficient than BLA as shown in Figure 5.6b. The

difference between α-DSSA and BLA decreases as d increases. This is because the

size of the skyline increases significantly as d increases, thus the number of pruned

services by α-DSSA decreases. In other words, the number of services selected to

the second step of α-DSSA increases.

Figure 5.6c shows that α-DSSA is faster than BLA in a consistent manner and its

performance advantage over BLA becomes more obvious with increasing α. Since

the size of the α-dominant service skyline increases significantly as α increases.

Then, the number of comparison involved in BLA is significant.

α-DSSA is more efficient than BLA on all distributions as shown in Figure 5.6d.

In addition, α-DSSA is lower on anti-correlated datasets than correlated and in-

dependent datasets. This is because the size of the skyline is quite large on on

anti-correlated datasets, thus the number of pruned services decreases. Then, the

number of services selected to the second step of α-DSSA increases.

5.5 Conclusion

In this chapter, we have addressed the problem of QoS-based Web service selection.

We have introduced a new concept, called α-dominant service skyline, to overcome

the major issues of the current approaches: (i) requiring users to assign weights to

QoS attributes, (ii) privileging the services with a bad compromise between different

QoS attributes and (iii) not allowing users to control the size of the returned set

of services. Further, we have developed a suitable algorithm for computing the α-

dominant service skyline using pruning techniques. Our experimental evaluation

demonstrates the effectiveness of the α-dominant service skyline and the efficiency

of the proposed algorithm.

84

Chapter 6

Selecting Skyline Web Services

from Uncertain QoS

Contents

6.1 Introduction . 85

6.1.1 Motivation and Challenges 86

6.1.2 Contributions . 87

6.2 Service Skyline on Uncertain QoS 87

6.2.1 Example . 88

6.2.2 Service Skyline Extensions . 89

6.3 Computing the Service Skyline Extensions 91

6.4 Experimental Evaluation . 95

6.4.1 Size of the Service Skyline Extensions 96

6.4.2 Elapsed time . 98

6.5 Conclusion . 99

6.1 Introduction

The development of enabling technologies for Web services is expected to change

the way of conducting business on the Web. As Web services and service providers

proliferate, more and more functionally similar Web services are deployed over the

Web. Thus, there could be multiple Web services competing with each other to

offer the same functionality, but with different QoS (quality of service) such as

latency, price and response time. Moreover, QoS has been considered as a significant

criterion for selecting among functionally similar Web services. Many QoS-base Web

service selection approaches have been proposed. However, these approaches are not

Chapter 6. Selecting Skyline Web Services from Uncertain QoS

sufficient in a dynamic Web service environment where the delivered QoS by a Web

service is inherently uncertain.

6.1.1 Motivation and Challenges

Consider that a user wants to do an online payment on a given online shopping Web

site. Typically, multiple Web services may be available providing this functionality

(e.g., PayPal, WebMoney, etc.) but with different QoS values. Thus, finding the

perfect Web service, which is the best in all QoS attributes, is ideal for the user.

Unfortunately, such a Web service is seldom found. Moreover, computing the skyline

from Web services based on QoS comes as a popular solution for selecting among

functionally similar Web services [ASR10, YB10a]. A Web service si belongs to

the service service skyline if there is not another Web service sj such that sj is

better than si in all QoS attributes. In particular, the service skyline overcomes

the major limitation of traditional approaches that require users to assign weights

over different QoS attributes. However, current approaches that focus on computing

the service skyline assume that the QoS does not change over time. Specifically, the

QoS values are usually obtained from Web service descriptions. Whereas, these QoS

values may not precisely reflect the actual performances of Web services because the

performance of a Web service may vary due to the dynamic Web service environment.

For instance, the response time may vary with the quality of the network. Therefore,

the actual QoS delivered by a Web service is uncertain. Thus, computing the service

skyline from uncertain QoS becomes important and challenging.

In summary, given a set of functionally similar Web services, the presence of

uncertainty in their QoS raises the following challenges:

• Which is the more convenient way to model uncertain QoS?

• How can we capture the dominance relationship between Web services when

their different QoS values are uncertain? And what should be the service

skyline on those Web services?

• Can we provide optimization techniques to compute the service skyline from

uncertain QoS efficiently?

86

6.2. Service Skyline on Uncertain QoS

6.1.2 Contributions

In this chapter, we tackle the above-mentioned challenges with the following main

contributions:

• We leverage possibility theory, and model each QoS attribute of Web services

as a possibility distribution;

• Given two Web services, we calculate the possibility and the necessity that

each Web service dominates the other. Then, based on this dominance re-

lationships, we propose the notion of pos-dominant service skyline and the

notion of nec-dominant service skyline;

• We develop suitable algorithms for computing efficiently both the pos-dominant

service skyline and the nec-dominant service skyline;

• We perform an extensive experimental evaluation verifying the effectiveness

and the efficiency of the proposed service skyline extensions and algorithms.

The rest of this chapter is organized as follows. In Section 6.2, we formally

define the key concepts, including the dominance relationship on uncertain QoS and

the service skyline extensions, while in Section 6.3 we present our algorithms. An

experimental evaluation is reported in Section 6.4. We conclude in Section 6.5.

6.2 Service Skyline on Uncertain QoS

In this section, we present a set of key concepts used throughout this chapter and

two service skyline extensions on uncertain QoS. For reference, Table 6.1 contains

the frequently used notation and its meaning.

Assume a set of functionally similar Web services S = {s1, s2, . . . , sn} and a set

of QoS attributes Q = {q1, q2, . . . , qd}. Motivated by the example of Section 2.4.4 we

model each Web service si as a set of possibility distributions {πsi.q1 , πsi.q2 , . . . , πsi.qd}

where each possibility distribution πsi.qk comprises all possible QoS values of si.qk

and their possibility degrees. Note that the issue of measuring the QoS values

and their possibility degrees is out of the scope of our current study. Therefore,

we assume that such ill-known QoS values are provided by service providers; e.g.,

measured by experts based on historical, Web service environment, etc.

87

Chapter 6. Selecting Skyline Web Services from Uncertain QoS

Table 6.1: The Summary of Notation

Notation Definition

S a set of functionally similar Web services

Q a set of QoS attributes

si a Web service

qk a QoS attribute

si.qk the kth QoS value of si

πsi.qk the possibility distribution of si.qk

Π(si ≺ sj) the possibility that si dominates sj

Π(si.qk ≺ sj .qk) the possibility that si.qk dominates sj .qk

si ≺
Π
pos sj si pos-dominates sj

skyΠ(pos) pos-dominant service skyline

N(si ≺ sj) the necessity that si dominates sj

N(si.qk ≺ sj .qk) the necessity that si.qk dominates sj .qk

si ≺
N
nec sj si nec-dominates sj

skyN (nec) nec-dominant service skyline

si.q
−
k minimum of completely possible values of si.qk

si.q
+
k maximum of completely possible values of si.qk

The following example shows how to model QoS using possibility distributions.

6.2.1 Example

Consider two Web services s1 and s2 that offer online payment functionality. The

provider of each Web service can estimate the QoS delivered to users on different

QoS attributes and provide the QoS as a set of possibility distributions. Table 6.2

gives these possibility distributions with a focus on the price and the response time.

For example, the price of Web service s1 may occur with three possible values 1, 2 or

3. The possibility degrees of these values are 0.5, 0.7 and 1, respectively. Similarly,

the price of Web service s2 may occur with four possible values 1, 2, 3 or 4, and the

possibility degrees of these values are 0.7, 1, 0.8 and 0.3, respectively. We use this

example throughout the rest of the chapter.

88

6.2. Service Skyline on Uncertain QoS

Table 6.2: Example of Web Services with Uncertain QoS

Web service QoS (price and response time)

s1
πs1.price = {0.5/1, 0.7/2, 1/3}

πs1.responseT ime = {0.3/18, 1/24, 1/26, 0.6/28}

s2
πs2.price = {0.7/1, 1/2, 0.8/3, 0.3/4}

πs2.responseT ime = {0.2/9, 0.7/20, 1/25, 0.6/30}

6.2.2 Service Skyline Extensions

Now let us extend the dominance relationship to the case of uncertain QoS. Let

si, sj ∈ S, the possibility and the necessity that si dominates sj are given by:

Π(si ≺ sj) = min
qk∈Q

Π(si.qk ≺ sj .qk) (6.1)

N(si ≺ sj) = min
qk∈Q

N(si.qk ≺ sj .qk) (6.2)

Where Π(si.qk ≺ sj .qk) and N(si.qk ≺ sj .qk) are the possibility degree and the

necessity degree of the event “si.qk is better than (dominates) sj .qk", respectively

and defined by:

Π(si.qk ≺ sj .qk) =

⎧

⎨

⎩

0 if ∀x ∈ πsi.qk , ∀y ∈ πsj .qk : x ≥ y

maxx<y min(πsi.qk(x), πsj .qk(y)) otherwise
(6.3)

N(si.qk ≺ sj .qk) =

⎧

⎨

⎩

1 if ∀ x ∈ πsi.qk , ∀ y ∈ πsj .qk : x < y

1−maxx≥y min(πsi.qk(x), πsj .qk(y)) otherwise
(6.4)

For example, the possibility and the necessity that service s1 is better than ser-

vice s2 with respect to price are Π(s1.price ≺ s2.price) = 0.7 and N(s1.price ≺

s2.price) = 0, while those that s1 is better than s2 with respect to response

time are Π(s1.responseT ime ≺ s2.responseT ime) = 1 and N(s1.responseT ime ≺

s2.responseT ime) = 0.3. Then, the overall possibility and necessity that s1 domi-

nates s2 are Π(s1 ≺ s2) = min(0.7, 1) = 0.7 and N(s1 ≺ s2) = min(0, 0.3) = 0.

89

Chapter 6. Selecting Skyline Web Services from Uncertain QoS

Moreover, a Web service si is said to pos-dominates (resp. nec-dominates) an-

other Web service sj if and only if Π(si ≺ sj) ≥ pos (resp. N(si ≺ sj) ≥ nec). For

example, if pos = 0.6 and nec = 0.3, we have s1 pos-dominates s2 as Π(s1 ≺ s2) =

0.7 ≥ 0.6, while, s1 does not nec-dominates s2 as N(s1 ≺ s2) = 0 < 0.3.

We can now use these dominance relationships to define two service skyline

extensions. More specifically, possibility-based service skyline and necessity-based

service skyline. For a possibility (resp. necessity) threshold pos ∈ [0, 1] (resp.

nec ∈ [0, 1]), the pos-dominant service skyline (resp. nec-dominant service skyline)

is the set of Web services that are not pos-dominated (resp. nec-dominated) by any

other Web service. Formally:

skyΠ(pos) = {si ∈ S|∄sj ∈ S : sj ≺
Π
pos si} (6.5)

skyN (nec) = {si ∈ S|∄sj ∈ S : sj ≺
N
nec si} (6.6)

Next, we illustrate some important properties of both the pos-dominant service

skyline and the nec-dominant service skyline.

Theorem 6.1

If pos = nec then the pos-dominant service skyline is a subset of the nec-dominant

service skyline, i.e., pos = nec ⇒ skyΠ(pos) ⊆ skyN (nec).

Proof

Assume that there exists a Web service si, such that si ∈ skyΠ(pos) and si /∈

skyN (nec). Since si /∈ skyN (nec), there must exist a Web service sj , such that

sj ≺N
nec si. Thus, we have N(sj ≺ si) ≥ nec = pos. On the other hand, since

Π(sj ≺ si) ≥ N(sj ≺ si) (see Section 2.4.2), we have Π(sj ≺ si) ≥ N(sj ≺ si) =

nec = pos. Thus, sj ≺
Π
pos si as Π(sj ≺ si) ≥ pos. Which leads to a contradiction as

si ∈ skyΠ(pos). �

Lemma 6.1

If pos < pos′, then the pos-dominant service skyline is a subset of the pos′-dominant

service skyline, i.e., pos < pos′ ⇒ skyΠ(pos) ⊆ skyΠ(pos
′).

Proof

Assume that there exists a Web service si, such that si ∈ skyΠ(pos) and si /∈

90

6.3. Computing the Service Skyline Extensions

skyΠ(pos
′). Since si /∈ skyΠ(pos

′), there must exist a Web service sj , such that

sj ≺Π
pos′ si. Thus, we have Π(sj ≺ si) ≥ pos′. As pos < pos′, Π(sj ≺ si) ≥ pos.

Thus, sj ≺
Π
pos si. Which leads to a contradiction as si ∈ skyΠ(pos). �

Lemma 6.2

If nec < nec′, then the nec-dominant service skyline is a subset of the nec′-dominant

service skyline, i.e., nec < nec′ ⇒ skyN (nec) ⊆ skyN (nec′).

Proof

In a similar way as Lemma 6.1. �

Theorem 6.1 indicates that the size of the pos-dominant service skyline is smaller

than or equal to the size of the nec-dominant service skyline for the same threshold.

On the other hand, Lemma 6.1 shows that the size of the pos-dominant service

skyline is smaller than or equals to the size of the pos′-dominant service skyline if

pos < pos′, and the size of the nec-dominant service skyline is smaller than or equals

to the size of the nec′-dominant service skyline if nec < nec′.

Roughly speaking, from Theorem 6.1, Lemma 6.1 and Lemma 6.2, we can see

that the users have the flexibility to control the size of the returned services. Specif-

ically, by varying the thresholds pos and nec.

6.3 Computing the Service Skyline Extensions

In this section, we first describe a general algorithm for computing both the pos-

dominant service skyline and the nec-dominant service skyline. We then devise

efficient algorithms for minimizing the number of dominance tests.

TSA (shown in Algorithm 6.1) is similar in spirit to the two scan algorithm

[CJT+06a], computes the pos-dominant service skyline (nec-dominant service sky-

line) by scanning S twice. TSA proceeds as follows:

Step 1 (lines 1-10): First scan – In the first scan of S, a set of candidate Web ser-

vices, Sky , is computed by comparing each Web service si in S against

the computed Web service in Sky . If a Web service sj is pos-dominated

(resp. nec-dominated) by si, then sj is removed from Sky . At the end

91

Chapter 6. Selecting Skyline Web Services from Uncertain QoS

Algorithm 6.1: TSA

Input: a set of functionally similar Web service S;

possibility threshold pos; // necessity threshold nes

Output: the pos-dominant skyline Sky; // the nec-dominant skyline Sky

1 begin

2 Sky ← ∅; Boolean isSkyline;

3 foreach si ∈ S do

4 isSkyline ← true;

5 foreach sj ∈ Sky do

6 if posDominates(sj , si, pos) then // necDominates(sj , si, nec)

7 isSkyline ← false;

8 if posDominates(si, sj , pos) then // necDominates(si, sj , nec)

9 remove sj from Sky ;

10 if isSkyline then

11 insert si into Sky ;

12 foreach si ∈ S − Sky do

13 foreach sj ∈ Sky do

14 if posDominates(si, sj , pos) then // necDominates(si, sj , nec)

15 remove sj from Sky ;

16 return Sky ;

of the comparison against Sky , si is added into Sky if it is not pos-

dominated (resp. nec-dominated) by any Web service in Sky . After

the first scan of S, Sky contains a set of candidate Web services;

Step 2 (lines 11-14): Second scan – To keep only the pos-dominant (resp. nec-

dominant) Web services in Sky , a second scan of S is necessary. To

determine whether a Web service sj in Sky is indeed a pos-dominant

(resp. nec-dominant) Web service, it is sufficient to compare sj against

each Web service si in S − Sky .

Even if TSA can return the service skyline extensions, it results in a high

computational cost, as the dominance tests (posDominate and necDominate in

Algorithm 6.1) are very time-consuming. Specifically, to check if a Web service

92

6.3. Computing the Service Skyline Extensions

si pos-dominates (resp. nec-dominates) another a Web service sj , a straightfor-

ward method is to compare for each QoS attribute qk in Q, each possible value of

si.qk with all possible values of sj .qk. Then, the minimum Π(si.qk ≺ sj .qk) (resp.

N(si.qk ≺ sj .qk)) is compared with the possibility (resp. necessity) threshold pos

(resp. nec) to check if Π(si.qk ≺ sj .qk) ≥ pos (resp. N(si.qk ≺ sj .qk) ≥ nec).

Minimizing the number of dominance tests, is thus important to improve the

performance of TSA. In the following, we propose efficient functions that address

this issue using the minimum and maximum completely possible values. The min-

imum and the maximum of completely possible values of si.qk are respectively the

minimum and the maximum possible values of si.qk with possibility 1. They are

denoted by si.q
−
k and si.q

+
k , respectively. For example, s1.q

−
price = s1.q

+
price = 3,

s1.q
−
responseT ime = 24, and s1.q

+
responseT ime = 26. Next, we delve into some useful

lemmas that help us to improve the dominance tests.

Lemma 6.3

Assume two Web services si and sj in S. Then, given a possibility threshold pos, if

there exists a QoS attribute qℓ ∈ Q such that Π(si.qℓ ≺ sj .qℓ) < pos then sj is not

pos-dominated by si.

Proof

Assume that there exists qℓ ∈ Q such that Π(si.qℓ ≺ sj .qℓ) < pos and si ≺
Π
pos sj .

From si ≺
Π
pos sj we have: Π(si ≺ sj) ≥ pos, i.e., minqk∈QΠ(si.qk ≺ sj .qk) ≥ pos.

Which leads to a contradiction as Π(si.qℓ ≺ sj .qℓ) < pos. �

Lemma 6.4

Assume two Web services si and sj in S. Then, given a necessity threshold nec, if

there exists a QoS attribute qℓ ∈ Q such that N(si.qℓ ≺ sj .qℓ) < nec then sj is not

nec-dominated by si.

Proof

In a similar way as Lemma 6.3. �

Lemma 6.5

Consider two Web services si and sj in S, and a QoS attribute qk ∈ Q. If si.q
−
k <

sj .q
+
k then Π(si.qk ≺ sj .qk) = 1.

93

Chapter 6. Selecting Skyline Web Services from Uncertain QoS

Proof

If si.q
−
k < sj .q

+
k then min(πsi.q−k

, πsj .q+k
) = min(1, 1) = 1. Thus, Π(si.qk ≺ sj .qk) =

maxx<y min(πsi.qk(x), πsj .qk(y)) = 1. �

Lemma 6.6

Consider two Web services si and sj in S, and a QoS attribute qk ∈ Q. If si.q
+
k ≥

sj .q
−
k then N(si.qk ≺ sj .qk) = 0.

Proof

If si.q
+
k ≥ sj .q

−
k then min(πsi.q+k

, πsj .q−k
) = min(1, 1) = 1. Thus, N(si.qk ≺ sj .qk) =

1−maxx≥y min(πsi.qk(x), πsj .qk(y)) = 1− 1 = 0. �

To determine if a Web service si pos-dominates (resp. nec-dominates) another

Web service sj , Lemma 6.3 (resp. Lemma 6.4) implies that it is not necessary to

iterate all QoS attributes. On the other hand, Lemma 6.5 (resp. Lemma 6.6) allows

to avoid comparisons between the possible values of si.qk and those of sj .qk for any

qk ∈ Q, when si.q
−
k < sj .q

+
k (resp. si.q

+
k ≥ sj .q

−
k).

Based these Observations, we propose two efficient functions, posDominates

(Algorithm 6.2) and necDominates (Algorithm 6.3), for optimization purposes.

Algorithm 6.2: posDominates(si, sj , pos)

1 begin

2 float p ← 1;

3 foreach qk ∈ Q do

4 if si.q
−

k ≥ sj .q
+

k then

5 p ← Π(si.qk ≺ sj .qk);

6 if p < pos then

7 return false;

8 return true;

The details of posDominates are as follows. For each QoS attribute qk in Q,

si.q
−
k is first compared against sj .q

+
k . If si.q

−
k < sj .q

+
k , then the comparisons between

the possible values of si.qk and those of sj .qk are ignored as Π(si.qk ≺ sj .qk) = 1

(Lemma 6.5). Otherwise, i.e., si.q
−
k ≥ sj .q

+
k , each possible value of si.qk is compared

against all possible values of sj .qk, to compute Π(si.qk ≺ sj .qk). If Π(si.qk ≺

94

6.4. Experimental Evaluation

sj .qk) < pos , then return false as sj is not pos-dominated by si (Lemma 6.3). If

all QoS attribute have been iterated and Π(si.qk ≺ sj .qk) ≥ pos for any qk in Q,

then return true as si pos-dominates sj .

Algorithm 6.3: necDominates(si, sj , nec)

1 begin

2 float n;

3 foreach qk ∈ Q do

4 if si.q
+

k ≥ sj .q
−

k then

5 return false;

6 else

7 n ← N(si.qk ≺ sj .qk);

8 if n < nec then

9 return false;

10 return true;

necDominates proceeds as follows. For each QoS attribute qk in Q, si.q
+
k is

first compared against sj .q
−
k . If si.q

+
k ≥ sj .q

−
k , then return false because N(si.qk ≺

sj .qk) = 0 (Lemma 6.6); thus, sj is not nec-dominated by si (Lemma 6.4). Other-

wise, i.e., si.q
+
k < sj .q

−
k , each possible value of si.qk is compared against all possible

values of sj .qk, to compute N(si.qk ≺ sj .qk). If N(si.qk ≺ sj .qk) < nec, then return

false as sj is not nec-dominated by si (Lemma 6.6). If all QoS attribute have

been iterated and N(si.qk ≺ sj .qk) ≥ nec for any qk in Q, then return true as si

nec-dominates sj .

6.4 Experimental Evaluation

In this section, we report our experimental study. More specifically, we conduct two

sets of experiments. First, we focus on the size of our service skyline extensions, i,e.,

the pos-dominant service skyline and the nec-dominant service skyline. Second, we

study the elapsed time for computing the skyline extensions. To show the benefits

resulting from the use of posDominates and necDominates functions, we also de-

veloped baseline functions. Thus, we have four algorithms: pBTSA: TSA with a

baseline posDominates function; pOTSA: TSA with our proposed posDominates

95

Chapter 6. Selecting Skyline Web Services from Uncertain QoS

function; nBTSA: TSA with a baseline necDominates function; and nOTSA: TSA

with our proposed necDominates function.

The algorithms were implemented in Java and all experiments were conducted

on a core i5 with 8GB of RAM, running Mac OS X.

Table 6.3: Parameters and Examined Values

Parameter Symbol Values

Number of Web services n 2K, 4K, 6K, 8K, 10K

QoS dimensions d 2, 4, 6, 8, 10

possibility and necessity thresholds t 0.1, 0.3, 0.5, 0.7, 0.9

Parameter correlation corr cor, ind, ant

It is worth to note that due to the limited availability of real-world Web services

with QoS measurements, in our experimental study, we focus on synthetic data.

The uncertain QoS values of Web services are generated in three different ways:

correlated (cor), where the QoS values of a Web service are positively correlated,

i.e., a good value in some QoS attribute increases the possibility of a good value

in the others; independent (ind), where QoS values of a Web service are assigned

independently to each QoS attribute; and anti-correlated (ant), where the QoS

values of a Web service are negatively correlated, i.e., good values (or bad values) in

all QoS attributes are less likely to occur. Each QoS distribution of a Web service

contains 10 possible values and at least one possible value is associated with a

possibility 1, to ensure that all QoS distributions follow the normalization condition

described in Section 2.4.1.

In each experimental setup, we vary a single parameter while setting the remain-

ing to their default values. Table 6.3 displays the parameters under investigation

and their corresponding ranges; default values are shown bold.

6.4.1 Size of the Service Skyline Extensions

Figure 6.1 shows the size (i.e., the number of Web services returned) of our ser-

vice skyline extensions, i.e., the pos-dominant service skyline (pSky) and the nec-

dominant service skyline (nSky) with respect to n, d, t and corr. Constantly, pSky

96

6.4. Experimental Evaluation

is less than nSky. This is consistent with Theorem 6.1.

 100

 1000

 10000

2 4 6 8 10

S
iz

e
 (

s
e
rv

ic
e
)

Number of services (K)

pSky
nSky

(a) Effect of n

 10

 100

 1000

 10000

2 4 6 8 10

S
iz

e
 (

s
e
rv

ic
e
)

Number of dimensions

pSky
nSky

(b) Effect of d

 100

 1000

 10000

0.1 0.3 0.5 0.7 0.9

S
iz

e
 (

s
e
rv

ic
e
)

Threshold

pSky
nSky

(c) Effect of t

 1

 10

 100

 1000

 10000

cor ind ant

S
iz

e
 (

s
e
rv

ic
e
)

Correlation

pSky
nSky

(d) Effect of corr

Figure 6.1: Effects of Parameters on the Size of the pos-dominant Service Skyline

and the nec-dominant Service Skyline

Figure 6.1a shows that both pSky and nSky increase with the increase of n. This

is because more Web services have chances not to be dominated.

Figure 6.1b shows that both pSky and nSky increase significantly with higher d.

As a Web service has better opportunity not to be dominated in all dimensions.

As shown in Figure 6.1c both pSky and nSky increase with the increase of t.

This is because a pos-dominant service skyline (resp. nec-dominant service skyline)

contains pos′-dominant service skyline (resp. nec′-dominant service skyline) if pos >

pos′ (resp. nec > nec′), according to Lemma 6.1 and Lemma 6.2, respectively.

Figure 6.1d shows that both pSky and nSky are small for correlated data, while

pSky and nSky are very large for anti-correlated data. For independent data pSky

and nSky are somewhere in between. Since for correlated data, there is a few

dominating Web services, i.e., they are good in all QoS attributes, for discarding

97

Chapter 6. Selecting Skyline Web Services from Uncertain QoS

the other Web services, while for anti-correlated data, all Web service are very bad

in at least one QoS attribute, so, a Web service has better opportunity not to be

dominated. However, for independent data, where all QoS are uniformly distributed,

pSky and nSky are in between. This is similar to the service skyline on certain QoS.

 1

 10

 100

 1000

 2 4 6 8 10

E
la

p
s
e
d
 t

im
e
 (

s
)

Number of services (K)

pBTSA
pOTSA
nBTSA
nOTSA

(a) Effect of n

 1

 10

 100

 1000

 2 4 6 8 10

E
la

p
s
e
d
 t

im
e
 (

s
)

Number of dimensions

pBTSA
pOTSA
nBTSA
nOTSA

(b) Effect of d

 1

 10

 100

 1000

 0.1 0.3 0.5 0.7 0.9

E
la

p
s
e
d
 t
im

e
 (

s
)

Threshold

pBTSA
pOTSA
nBTSA
nOTSA

(c) Effect of t

 1

 10

 100

 1000

cor ind ant

E
la

p
s
e
d
 t
im

e
 (

s
)

Correlation

pBTSA
pOTSA
nBTSA
nOTSA

(d) Effect of corr

Figure 6.2: Effects of Parameters on the Elapsed Time for Computing the pos-

dominant Service Skyline and the nec-dominant Service Skyline

6.4.2 Elapsed time

Figure 6.2 investigates the runtime of the algorithms with respect to n, d, t and corr.

Overall, both pOTSA and nOTSA are better than pBTSA and nBTSA. Specifically,

pOTSA is faster than pBTSA and nOTSA is much faster than nBTSA. The results

indicate that the proposed functions, i.e., posDominates and necDominates sig-

nificantly save the cost of computing the pos-dominant service skyline and the nec-

dominant service skyline, respectively. Let us now compare pOTSA against nOTSA.

All experiments indicate that pOTSA in faster than nOTSA. This is because pSky

98

6.5. Conclusion

is less than nSky as shown in Figure 6.1. Therefore, the number of dominance tests

in the first and the second scan (see Algorithm 6.1) is less for pOTSA.

As shown in Figure 6.2a n does not have a great effect on pOTSA as pSky

increases slightly with the increase of n, while nSky increases significantly with the

increase of n.

Figure 6.2b shows that both pOTSA and nOTSA follow similar trends with

respect to d. This is because both pSky and nSky increase significantly with the

increase of d.

Figure 6.2c shows that both pOTSA and nOTSA follow similar trends with

respect to t. Also, Figure 6.2c shows that t does not have a great effect on both

pOTSA and nOTSA. This is because both pSky and nSky increase slightly with the

increase of t.

As shown in Figure 6.2d the elapsed time for computing the pos-dominant service

skyline and the nec-dominant service skyline is more greater for anti-correlated data.

However, it is reasonable for correlated and independent data. This is also related

pSky and nSky (see Figure 6.1d).

6.5 Conclusion

In this chapter, we introduced two extensions of the service skyline on uncertain

QoS to address the major limitation of the current approaches that assume that the

delivered QoS of a Web service does not change over time, and devised appropriate

skyline algorithms based on suitable dominance test functions. Our experimental

results demonstrates both the effectiveness of the service skyline extensions and the

efficiency of the proposed algorithms, and functions.

99

Chapter 7

Related Work

Contents

7.1 Web Service Selection and Optimization 101

7.2 Skyline Computation . 104

In this chapter, we give an overview of some work in the area of Web service

selection and optimization which are most closely related to our work in Section 7.1.

We then discus related work in the area of skyline computation in Section 7.2.

7.1 Web Service Selection and Optimization

During the last years, the problem of preference-based service selection has received

a lot of attention. The main objective is to provide users with the most relevant ser-

vices, i.e., that better satisfy their preferences, among those retrieved by service dis-

covery. Agarwal and Lamparter proposed in [AL05] an approach for an automated

selection of services for service composition. Service compositions can be compared

with each other and ranked according to the user preferences, where preferences are

modeled as a fuzzy IF-THEN rules. The IF part contains fuzzy descriptions of the

various properties of a service, while the THEN part is one of the fuzzy characteri-

zations of a special concept called Rank. A fuzzy rule describes which combination

of attribute values a user is willing to accept to which degree, where attribute val-

ues and degree of acceptance are fuzzy sets. In [LASG07], the authors indicate

that they model service configurations and preferences more compactly using utility

function policies, which allows drawing from multi-attribute decision theory meth-

ods to develop an algorithm for optimal service selection. The authors also present

the OWL ontology for the specification of configurable service offers and requests,

and a flexible and extensible framework for optimal service selection that combines

Chapter 7. Related Work

declarative logic-based matching rules with optimization methods, such as linear

programming. In [WXL08], the authors use a qualitative graphical representation

of preferences, CP-nets, to deal with services selection in terms of user preferences.

This approach can reason about user’s incomplete and constrained preferences. In

[WSZ+09], the authors propose a system for conducting qualitative service selec-

tion in the presence of incomplete or conflicting user preferences. The paradigm

of CP-nets is used to model user preferences. The system utilizes the history of

users to amend the preferences of active users, thus improving the results of service

selection. ServiceTrust [HYJY09] calculates reputations of services from users. It

introduces transactional trust to detect QoS abuse, where malicious services gain

reputation from small transactions and cheat at large ones. However, ServiceTrust

models transactions as binary events (success or failure) and combines reports from

users without taking their preferences into account. In [PCP09], a method to rank

semantic web services is proposed. It is based on computing the matching degree

between a set of requested NFPs (Non-Functional Properties) and a set of NFPs

offered by the discovered Web services. NFPs cover QoS aspects, but also other

business-related properties such as pricing and insurance. Semantic annotations are

used for describing NFPs and the ranking process is achieved by using some au-

tomatic reasoning techniques that exploit the annotations. ServiceRank [WIS+09]

considers the QoS aspects as well as the social perspectives of services. Services

that have good QoS and are frequently invoked by others are more trusted by the

community and will be assigned high ranks.

Due to the limitation of these approaches to retrieve the most appropriate Web

services, Skoutas et al. consider in [SSS+09, SSSS10] the dominance relationships

between Web services based on their degrees of match to a given requested service

in order to rank available services. Distinct scores based on the notion of dominance

are defined for assessing when a service is objectively interesting. This work is the

most related to our presented in Chapter 3. However, that work only considers

selection of single services, without dealing with the problem of composition nor the

user preferences.

Result diversification has recently attracted much attention as a means of in-

creasing user satisfaction in recommender system and Web research [DP10]. In

[SAN10], the authors propose a method to diversify Web service search results in

102

7.1. Web Service Selection and Optimization

order to deal with users on the Web that have different, but unknown, preferences.

The proposed method focuses on QoS parameters with non-numeric values, for which

no ordering can be defined. However, this method provides the same services to all

users without considering their personal preferences. In addition, the problem of

composition is not addressed. In our diversification approach presented in Chap-

ter 3 both the service composition with preferences and the result diversification

are considered. In [McS02], Mc Sherry proposes an approach to retrieval that incre-

mentally selects a diverse set of cases from a larger set of similarity-ordered cases.

The same principle is adapted in our work for the diversification of the top-k Web

service compositions but with different measurements.

Moreover, the problem of preference-based Web service selection under multiple

users preferences is not addressed in the cited works, while in our study presented

in Chapter 4 this problem is explicitly addresses.

On the other hand, the problem of QoS-based Web service selection has received

considerable attention in the service computing community during the last years. In

[LNZ04] the authors propose an extensible QoS computation model that supports

an open and fair management of QoS data by incorporating user feedback. Zeng

et al. [ZBD+03] [ZBN+04] propose a general and extensible model to evaluate QoS

of both elementary and composite services. The authors use linear programming

techniques to find the optimal selection of component services. Similar to this

approach, Ardagna et al. [AP07] extend the linear programming model to include

local constraints. In [YZL07] the authors studied the problem of service selection

with multiple QoS constraints. The authors propose two models for the QoS-based

service composition problem: (i) a combinatorial model and (ii) a graph model. A

heuristic algorithm is introduced for each model. Wang et al. [WVKT06] introduces

QoS-based selection of semantic web services, the authors present a QoS ontology

and selection algorithm to evaluate multiple qualities. However, these approaches

require the users to assign weights to QoS attributes. They thus suffer from lack of

flexibility, in particular when the number of QoS attributes is high.

To overcome this limitation, skyline computation is adopted in Web service

selection. The work in [ASR10] focuses on the selection of skyline services for QoS

based Web service composition. A method for determining which QoS levels of a

service should be improved so that it is not dominated by other services is also

103

Chapter 7. Related Work

discussed. In [YB10b], the authors propose a skyline computation approach for

service selection. The resulting skyline, called multi-service skyline, enables users

to optimally and efficiently access sets of service as an integrated service package.

The work presented in [YB10a] address the problem of uncertain QoS and compute

the skylines from service providers. The authors define a concept called p-dominant

skyline that contains the providers S that are not dominated with a probability p

by any other provider. The authors provide also a discussion about the interest of

p-dominant skyline with respect to the notion of p-skyline proposed in [PJLY07].

However, as shows in Section 5.2.2 these skyline-based approaches – based on the

Pareto dominance relationship – gives the privilege to Web service with a bad com-

promise between QoS attributes, while the α-dominant service skyline presented in

Chapter 5 privileges Web services with a good compromise between QoS attributes.

It also gives users the flexibility to control the size of the returned services. In ad-

dition, the problem of uncertainty of QoS is not addressed in these works, excepted

for [YB10a]. However, this approach is not suitable as it is based on probability

theory, while Section 2.4.4 shows that the use of possibility theory is a better choice

to tackle the problem of computing the service skyline from uncertain QoS. In our

work presented in Chapter 6 we addressed this problem using on possibility theory.

7.2 Skyline Computation

To the best of our knowledge, skyline analysis, which came from old research topics

like contour problem [McL74], maximum vectors [KLP75] and convex hull [PS85],

was introduced into database domain by Börzsönyi et al. [BKS01]. The skyline is

important for several applications involving multi-criteria decision making. Given

a d-dimensional dataset, a point p is said to dominate another point q if and only

if p is better than or equal to q in all dimensions and better than q in at least one.

The skyline comprises the set of points in the dataset that are not dominated by

any other point.

In [BKS01], Börzsönyi et al. develop three basic algorithms based on block

nested loops (BNL), divide-and-conquer and index scanning (B-tree). Since, sev-

eral algorithms have been developed to compute the skyline. Tan et al. [TEO01]

introduce techniques, which can output the skyline without having to scan the en-

104

7.2. Skyline Computation

tire dataset. The work in [Cho03] observes that examining points according to

a monotone (in all attributes) preference function reduces the average number of

dominance checks. Based on this fact, the authors propose the Sort-first Skyline

algorithm (SFS), which is similar to BNL but includes a presorting step. The SFS

algorithm was further improved in [GSG05b] [GSG07] [BCP08]. Morse et al. pro-

pose in [MPJ07] an algorithm called LS using a static lattice structure for the

special case of low-cardinality datasets. Recent works, propose partitioning-based

algorithms without pre-computed indices [ZMC09] [LwH10].

Other works exploit appropriate indexes to speed-up the skyline computation

process. In [KRR02], the authors present an improved algorithm, called NN due to

its reliance on nearest neighbor search, which applies the divide-and-conquer frame-

work on datasets indexed by R-trees. In the work [PTFS03], which also uses R-trees,

the authors propose an optimal and progressive algorithm for skyline computation

based on the Branch and Bound paradigm; our algorithm presented in Section 5.3

is also based on the Branch and Bound paradigm. In [LZLL07], Lee et al. propose

ZSearch using ZB-tree as a new variant of B-tree.

Several extensions and related concepts to the skyline query have been studied.

In [PTFS05], Papadias et al. propose the concept of k-dominating query, which

retrieves the k points that dominate the largest number of other points; and the

concept of k-skyband that contains the points dominated by less than k other points;

the skyline is the 1-skyband. However, both k-dominating query and k-skyband do

not always return skyline points. To resolve this, Lin et al. propose in [LYZZ07] the

top-k representative skyline, so that the k skyline points with the maximal number

of dominated points can be produced. However, this approach often return similar

points [TDLP09]. For diversifying the result, Tao et al. propose in [TDLP09] the

distance based representative skyline. The skycube query, proposed in [YLL+05],

returns the points that are not dominated in a specified set of dimensions. In

[CJT+06b], the authors propose the top-k skyline frequency. The skyline frequency

of a point p is the number of subspaces where p is a skyline point. In [XZT08],

Xia et al. introduce the ε-skyline that comprises the set of all points that are not

ε-dominated by any other point. A point ε-dominates another points if and only if

it is as good, better or slightly worse (up to ε) with regard to all dimensions and

better in at least one dimension.

105

Chapter 7. Related Work

In [CJT+06a], Chan et al. propose the notion of k-dominance. A point p is

said to k-dominate another point q if and only if there are k dimensions in which

p dominates q. The k-dominant skyline consists of a subset of points that are not

k-dominated. The authors develop three algorithm one scan algorithm (OSA); two

scan algorithm TSA); and sorted retrieval algorithm (SRA) for computing the k-

dominant skyline. This is the work the most related to ours presented in Chapter 4,

where we adapted and improved OSA for computing efficiently the majority service

skyline (Section 4.3.2); and that presented in Chapter 6, where we adapted and

improved TSA by efficient functions for computing both the pos-dominant service

skyline and the nec-dominant service skyline (Section 6.3).

In [BHP11], a variant of skyline queries over possibilistic relational databases is

introduced. It relies on the possible interpretations of each tuple for computing the

possibilistic degrees of dominance and no definition of uncertain skyline is proposed.

Our proposal in Chapter 6 leverages the compact representation of the uncertain

values of the services to define the skyline by using possibility and certainty de-

grees of dominance which are different from the degrees of the former approach,

semantically and computationally speaking.

Skyline computation has been also studied in other environments. These in-

clude computing the skyline in a distributed environment, e.g., [BGZ04, WZF+06,

WOTX07, VDKV07, CLX+08]; processing skyline queries over data streams, e.g.,

[LYWL05, TP06, SDKT08, ZLZ+09, ZLC09]; and skyline computation in mobile en-

vironment, e.g., [HJLO06, SCD09, QGLC10, LXH11, Lee11]. The works on skyline

in service selection are presented in Section 7.1.

106

Chapter 8

Conclusions an Future Work

Contents

8.1 Conclusions . 107

8.2 Future Work . 109

In this chapter, we first conclude this dissertation in Section 8.1. We then,

describe several directions for the future work in Section 8.2.

8.1 Conclusions

It has been recognized that the Web services paradigm rapidly gains popularity

constituting an integral part of many real-world applications. Due to the impor-

tance of Web service, many companies have invested very heavily in Web services

technologies; e.g., Microsoft’s .NET, IBM’s Websphere, SUN’s J2EE, to name just

a few. These efforts have resulted in an increasing number of Web services deployed

over the Web. Therefore, enhancing the capabilities of the current Web search en-

gines with effective and efficient techniques for Web services retrieval and selection

becomes an important issue.

In this dissertation, we provided optimization strategies to enable users to select

the most appropriate Web services in a flexible way based on either their preferences

or QoS. We summarize below our major contributions:

• Top-k Web service compositions with fuzzy preferences – We presented an

approach for composing Web services while taking into account the user’s

fuzzy preferences. The (fuzzy) constraints of the relevant Web services are

matched to those of the query to determine their degrees of match using a

set of matching methods. We proposed a novel ranking criterion based on a

fuzzification of Pareto dominance to select the most relevant services, then

Chapter 8. Conclusions an Future Work

compute the top-k Web service compositions. We propose also a method to

improve the diversity of returned compositions while maintaining as possible

the compositions with the highest scores. As the problem of Web service

composition is known to be NP-hard, we developed for each method a suitable

algorithm. We evaluated our approach through a set of thorough experiments.

• Majority-rule-based Web service selection – We dealt with the problem of

preference-based Web service selection under multiple users preferences. We

introduced a novel concept called majority service skyline based on the ma-

jority rule. This allows users to make a “democratic” decision on which Web

services are the most appropriate. We developed a efficient algorithm for

computing the majority service skyline. We conducted a set of thorough ex-

periments to evaluate the effectiveness of the majority service skyline and the

efficiency of our algorithm.

• Computing skyline Web services using fuzzy dominance – We proposed a sky-

line variant called α-dominant service skyline based on a fuzzification of Pareto

dominance. The α-dominant service skyline allows the inclusion of Web ser-

vices with a good compromise between QoS attributes, and the exclusion of

Web services with a bad compromise between QoS attributes. It thus provides

users with the most relevant Web services. It also gives user the flexibility to

control the size of the returned Web services. We then developed an efficient

algorithm based on R-Tree index structure for computing the α-dominant ser-

vice skyline. We evaluated the effectiveness of the α-dominant service skyline

and the efficiency of the algorithm through a set of experiments.

• Selecting skyline Web services from uncertain QoS – We modeled each uncer-

tain QoS attribute using a possibility distribution, and introduced the notion

of pos-dominant service skyline and the notion of nec-dominant service sky-

line that facilitates users to select their desired Web services with the presence

of uncertainty in their QoS. We then develop appropriate algorithms to ef-

ficiently compute both the pos-dominant service skyline and nec-dominant

service skyline. We evaluated our approach through a set of experiments.

108

8.2. Future Work

8.2 Future Work

This dissertation leads to various fertile grounds for future research. We identify

the following main directions for future work:

• In the current approaches, the selected Web services are returned to users

at the end of the execution of the Web service query. An interesting future

direction is to develop techniques so that the first selected Web services should

be reported to users almost instantly and the result size should gradually

increase. This essentially helps users to make a quick selection.

• The current approaches focus on all available Web service. However, users

may take more interest in the more recent Web services that more precisely

reflect the recent behavior of the corresponding service provider. Thus, an

interesting future direction is to focus only on the most recent Web services.

• Context is an important concept to customize the service selection. For exam-

ple, a user who looks for an online payment Web service prefers Web services

with a high security level, and a user who looks for a search engine Web service

may privileges Web services with a good response time. It is thus interesting

to consider the context in the service selection.

• The current QoS-based service selection approaches assume that all QoS values

of a Web service are provided. However, missing in QoS values may occur in

real-world scenarios. Therefore, it is interesting to consider this case in the

service selection.

• The current QoS-based service selection approaches relies on knowledge of

QoS information from Web services. As Web service providers can not supply

according to their betrothed QoS, an interesting extension is to develop a

mechanism that precisely report the QoS values of Web services, then use this

QoS values for the service selection.

109

Appendix A

Academic Achievements

1. Karim Benouaret, Dimitris Sacharidis, Djamal Benslimane, Allel Hadjali.

Majority-Rule-Based Web Service Selection. In the 13th International Con-

ference on Web Information System Engineering (WISE 2012) – Short paper.

2. Karim Benouaret, Djamal Benslimane, Allel Hadjali. WS-Sky: An Efficient

and Flexible Framework for QoS-Aware Web Service Selection. In the 9th

International Conference on Services Computing (IEEE SCC 2012).

3. Karim Benouaret, Djamal Benslimane, Allel Hadjali. Selecting Skyline Web

Services from Uncertain QoS. In the 9th International Conference on Services

Computing (IEEE SCC 2012).

4. Karim Benouaret, Djamal Benslimane, Allel Hadjali. Selecting Skyline Web

Data Services for Multiple Users Preferences. In the 19th International Con-

ference on Web Services (IEEE ICWS 2012) – Short Paper.

5. Soumaya Amdouni, Mahmoud Barhamgi, Djamal Benslimane, Allel Hadjali,

Karim Benouaret, Rim Faiz. A User Centric-System for Answering Fuzzy

Preference Queries Over Data Web Services. In the 12th International Con-

ference on Web Engineering (ICWE 2012) – Demo Paper.

6. Idir Amine Amarouche, Karim Benouaret, Djamal Benslimane, Zaia Ali-

mazighi, Michael Mrissa. Context-Driven and Service Oriented Semantic Me-

diation in DaaS Composition. In the 4th International Conference on Net-

worked Digital Technologies (NDT 2012).

7. Karim Benouaret, Djamal Benslimane, Allel Hadjali. A Fuzzy Framework

for Selecting Top-k Web Service Compositions. In Applied Computing Review.

Volume 11, Issue 3, August 2011 – Selected from ACM SAC 2011.

Appendix A. Academic Achievements

8. Karim Benouaret, Ranking Web Service Compositions in the Context of

User Preferences. In the 37th International Conference on Very Large Databases

(VLDB 2011) − PhD Workshop.

9. Karim Benouaret, Djamal Benslimane, Allel Hadjali, Mahmoud Barhamgi.

FuDoCS: A Web Service Composition System Based on Fuzzy Dominance for

Preference Query Answering. In the 37th International Conference on Very

Large Databases (VLDB 2011) Demo Paper.

10. Karim Benouaret, Djamal Benslimane, Allel Hadjali, Mahmoud Barhamgi.

Top-k Web Service Compositions Using a Fuzzy Dominance Relationship. In

the 8th International Conference on Services Computing (IEEE SCC 2011).

11. Karim Benouaret, Djamal Benslimane, Allel Hadjali. On the Use of Fuzzy

Dominance for Computing Service Skyline Based on QoS. In the 9th Interna-

tional Conference on Web Services (IEEE ICWS 2011).

12. Karim Benouaret, Djamal Benslimane, Allel Hadjali. Top-k Service Com-

positions: A Fuzzy Set-Based Approach. In the 26th Symposium On Applied

Computing (ACM SAC 2011).

112

Bibliography

[AL05] Sudhir Agarwal and Steffen Lamparter. User preference based auto-

mated selection of web service compositions. In Kunal Verma; Amit

Sheth; Michal Zaremba; Christoph Bussler, editor, ICSOC Workshop on

Dynamic Web Processes, pages 1–12, Amsterdam, Netherlands, Dezem-

ber 2005. IBM. (Cited on page 101.)

[AMM08] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on

the world wide web. In WWW, pages 795–804, 2008. (Cited on pages 2

and 68.)

[AP07] Danilo Ardagna and Barbara Pernici. Adaptive service composition in

flexible processes. IEEE Trans. Software Eng., 33(6), 2007. (Cited on

page 103.)

[ASR10] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. Selecting

skyline services for qos-based web service composition. In WWW, pages

11–20, 2010. (Cited on pages 31, 56, 69, 86 and 103.)

[BBM10] Mahmoud Barhamgi, Djamal Benslimane, and Brahim Medjahed. A

query rewriting approach for web service composition. IEEE T. Services

Computing, 3(3):206–222, 2010. (Cited on pages 26, 29, 31, 37, 44

and 45.)

[BBP96] Gloria Bordogna, Patrick Bosc, and Gabriella Pasi. Fuzzy inclusion in

database and information retrieval query interpretation. In SAC, pages

547–551, 1996. (Cited on page 18.)

[BCP08] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Efficient sort-based

skyline evaluation. ACM Trans. Database Syst., 33(4), 2008. (Cited on

page 105.)

[BGZ04] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. Efficient dis-

tributed skylining for web information systems. In EDBT, pages 256–

273, 2004. (Cited on page 106.)

Bibliography

[BHP11] Patrick Bosc, Allel Hadjali, and Olivier Pivert. On possibilistic skyline

queries. In FQAS, pages 412–423, 2011. (Cited on page 106.)

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline

operator. In ICDE, pages 421–430, 2001. (Cited on pages 31 and 104.)

[CDK+02] Francisco Curbera, Matthew J. Duftler, Rania Khalaf, William Nagy,

Nirmal Mukhi, and Sanjiva Weerawarana. Unraveling the web services

web: An introduction to soap, wsdl, and uddi. IEEE Internet Comput-

ing, 6(2):86–93, 2002. (Cited on pages 1 and 12.)

[Cho03] Jan Chomicki. Preference formulas in relational queries. ACM Trans.

Database Syst., 28(4):427–466, 2003. (Cited on pages 13, 31, 61 and 105.)

[CJT+06a] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung,

and Zhenjie Zhang. Finding k-dominant skylines in high dimensional

space. In SIGMOD Conference, pages 503–514, 2006. (Cited on

pages 56, 60, 63, 91 and 106.)

[CJT+06b] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung,

and Zhenjie Zhang. On high dimensional skylines. In EDBT, pages

478–495, 2006. (Cited on page 105.)

[CLX+08] Bin Cui, Hua Lu, Quanqing Xu, Lijiang Chen, Yafei Dai, and Yongluan

Zhou. Parallel distributed processing of constrained skyline queries by

filtering. In ICDE, pages 546–555, 2008. (Cited on page 106.)

[DH73] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene

Analysis. John Wiley & Sons, New York, NY, 1973. (Cited on page 55.)

[DHM+04] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun

Zhang. Simlarity search for web services. In VLDB, pages 372–383,

2004. (Cited on pages 31 and 54.)

[DP88] D. Dubois and H. Prade. Possibility theory. Plenum Press, New-York,

1988. (Cited on page 19.)

[DP96] Didier Dubois and Henri Prade. Using fuzzy sets in database systems:

Why and how? In FQAS, pages 89–103, 1996. (Cited on page 18.)

114

Bibliography

[DP00] Didier Dubois and Henri Prade, editors. Fundamentals of Fuzzy Sets

. The Handbooks of Fuzzy Sets Series. Kluwer, Boston, Mass., 2000.

(Cited on pages 16, 17, 24 and 42.)

[DP10] Marina Drosou and Evaggelia Pitoura. Search result diversification.

SIGMOD Record, 39(1):41–47, 2010. (Cited on pages 41 and 102.)

[DSV04] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verifica-

tion of data-driven web services. In PODS, pages 71–82, 2004. (Cited

on page 24.)

[EL04] Ahmed Elfatatry and Paul J. Layzell. Negotiating in service-oriented

environments. Commun. ACM, 47(8):103–108, 2004. (Cited on page 10.)

[Emm00] Wolfgang Emmerich. Engineering Distributed Objects. John Wiley &

Sons, Chichester, UK, April 2000. (Cited on page 10.)

[GSG05a] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Maximal vector com-

putation in large data sets. In VLDB, pages 229–240, 2005. (Cited on

page 31.)

[GSG05b] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Maximal vector com-

putation in large data sets. In VLDB, pages 229–240, 2005. (Cited on

page 105.)

[GSG07] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Algorithms and analyses

for maximal vector computation. VLDB J., 16(1):5–28, 2007. (Cited on

page 105.)

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial

searching. In SIGMOD Conference, pages 47–57, 1984. (Cited on

page 76.)

[HJLO06] Zhiyong Huang, Christian S. Jensen, Hua Lu, and Beng Chin Ooi. Sky-

line queries against mobile lightweight devices in manets. In ICDE,

page 66, 2006. (Cited on page 106.)

115

Bibliography

[HKP08] Allel Hadjali, Souhila Kaci, and Henri Prade. Database preferences

queries - a possibilistic logic approach with symbolic priorities. In

FoIKS, pages 291–310, 2008. (Cited on pages 18 and 24.)

[HKP11] Allel Hadjali, Souhila Kaci, and Henri Prade. Database preference

queries - a possibilistic logic approach with symbolic priorities. Ann.

Math. Artif. Intell., 63(3-4):357–383, 2011. (Cited on page 13.)

[HYJY09] Qiang He, Jun Yan, Hai Jin, and Yun Yang. Servicetrust: Support-

ing reputation-oriented service selection. In ICSOC/ServiceWave, pages

269–284, 2009. (Cited on page 102.)

[KLP75] H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On finding the

maxima of a set of vectors. J. ACM, 22(4):469–476, 1975. (Cited on

page 104.)

[KRR02] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars

in the sky: An online algorithm for skyline queries. In VLDB, pages

275–286, 2002. (Cited on pages 31 and 105.)

[Lan03] Christoph Schlueter Langdon. The state of web services. IEEE Com-

puter, 36(7):93–94, 2003. (Cited on page 1.)

[LASG07] Steffen Lamparter, Anupriya Ankolekar, Rudi Studer, and Stephan

Grimm. Preference-based selection of highly configurable web services.

In WWW, pages 1013–1022, 2007. (Cited on pages 56 and 101.)

[Lee11] Ken C. K. Lee. Efficient evaluation of location-dependent skyline queries

using non-dominance scopes. In COM.Geo, page 14, 2011. (Cited on

page 106.)

[LH03] Lei Li and Ian Horrocks. A software framework for matchmaking based

on semantic web technology. In WWW, 2003. (Cited on page 54.)

[LNZ04] Yutu Liu, Anne H. H. Ngu, and Liangzhao Zeng. Qos computation and

policing in dynamic web service selection. In WWW (Alternate Track

Papers & Posters), pages 66–73, 2004. (Cited on page 103.)

116

Bibliography

[LwH10] Jongwuk Lee and Seung won Hwang. Bskytree: scalable skyline compu-

tation using a balanced pivot selection. In EDBT, pages 195–206, 2010.

(Cited on page 105.)

[LXH11] Xin Lin, Jianliang Xu, and Haibo Hu. Authentication of location-based

skyline queries. In CIKM, pages 1583–1588, 2011. (Cited on page 106.)

[LYWL05] Xuemin Lin, Yidong Yuan, Wei Wang, and Hongjun Lu. Stabbing the

sky: Efficient skyline computation over sliding windows. In ICDE, pages

502–513, 2005. (Cited on page 106.)

[LYZZ07] Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. Selecting

stars: The k most representative skyline operator. In ICDE, pages 86–

95, 2007. (Cited on page 105.)

[LZLL07] Ken C. K. Lee, Baihua Zheng, Huajing Li, and Wang-Chien Lee. Ap-

proaching the skyline in z order. In VLDB, pages 279–290, 2007. (Cited

on page 105.)

[MBE03] Brahim Medjahed, Athman Bouguettaya, and Ahmed K. Elmagarmid.

Composing web services on the semantic web. VLDB J., 12(4):333–351,

2003. (Cited on page 2.)

[MBM+07] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci,

K. Sycara, D.L. Mcguinness, E. Sirin, and N. Srinivasan. Bringing se-

mantics to web services with owl-s. World Wide Web, 10(3):243–277,

2007. (Cited on page 29.)

[McL74] D. H. McLain. Drawing contours from arbitrary data points. Comput.

J., 17(4):318–324, 1974. (Cited on page 104.)

[McS02] David McSherry. Diversity-conscious retrieval. In ECCBR, pages 219–

233, 2002. (Cited on pages 41, 42 and 103.)

[MPJ07] Michael D. Morse, Jignesh M. Patel, and H. V. Jagadish. Efficient

skyline computation over low-cardinality domains. In VLDB, pages 267–

278, 2007. (Cited on page 105.)

117

Bibliography

[PCP09] Matteo Palmonari, Marco Comerio, and Flavio De Paoli. Effective

and flexible nfp-based ranking of web services. In ICSOC/ServiceWave,

pages 546–560, 2009. (Cited on page 102.)

[PG03] Mike P. Papazoglou and Dimitrios Georgakopoulos. Service-oriented

computing. Commun. ACM, 46(10), 2003. (Cited on page 10.)

[PJLY07] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. Probabilistic sky-

lines on uncertain data. In VLDB, pages 15–26, 2007. (Cited on pages 34

and 104.)

[PKPS02] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P.

Sycara. Semantic matching of web services capabilities. In International

Semantic Web Conference, pages 333–347, 2002. (Cited on page 54.)

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry

- An Introduction. Springer, 1985. (Cited on page 104.)

[PTFS03] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An opti-

mal and progressive algorithm for skyline queries. In SIGMOD Confer-

ence, pages 467–478, 2003. (Cited on pages 31 and 105.)

[PTFS05] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progres-

sive skyline computation in database systems. ACM Trans. Database

Syst., 30(1):41–82, 2005. (Cited on page 105.)

[PvdH07] Mike P. Papazoglou and Willem-Jan van den Heuvel. Service oriented

architectures: approaches, technologies and research issues. VLDB J.,

16(3), 2007. (Cited on page 67.)

[QGLC10] Zhefeng Qiao, Junzhong Gu, Xin Lin, and Jing Chen. Privacy-

preserving skyline queries in lbs. In MVHI, pages 499–504, 2010. (Cited

on page 106.)

[SAN10] Dimitrios Skoutas, Mohammad Alrifai, and Wolfgang Nejdl. Re-ranking

web service search results under diverse user preferences. In VLDB,

Workshop on Personalized Access, Profile Management, and Context

Awareness in Databases, pages 898–909, 2010. (Cited on page 102.)

118

Bibliography

[SCD09] Hailan Shen, Zhigang Chen, and Xiaoheng Deng. Location-based skyline

queries in wireless sensor networks. In Proceedings of the 2009 Interna-

tional Conference on Networks Security, Wireless Communications and

Trusted Computing - Volume 01, NSWCTC ’09, pages 391–395, Wash-

ington, DC, USA, 2009. IEEE Computer Society. (Cited on page 106.)

[SDKT08] Nikos Sarkas, Gautam Das, Nick Koudas, and Anthony K. H. Tung.

Categorical skylines for streaming data. In SIGMOD Conference, pages

239–250, 2008. (Cited on page 106.)

[Sin01] Munindar P. Singh. Being interactive: Physics of service composition.

IEEE Internet Computing, 5(3):6–, 2001. (Cited on page 2.)

[SKP11] Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. A sur-

vey on representation, composition and application of preferences in

database systems. ACM Trans. Database Syst., 36(3):19, 2011. (Cited

on pages 13, 14 and 15.)

[SSS+09] Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis, Verena Kantere,

and Timos K. Sellis. Top- dominant web services under multi-criteria

matching. In EDBT, pages 898–909, 2009. (Cited on pages 32, 34, 36,

51 and 102.)

[SSSS10] Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis, and Timos K.

Sellis. Ranking and clustering web services using multicriteria domi-

nance relationships. IEEE T. Services Computing, 3(3):163–177, 2010.

(Cited on pages 32, 34, 36, 51 and 102.)

[TDLP09] Yufei Tao, Ling Ding, Xuemin Lin, and Jian Pei. Distance-based repre-

sentative skyline. In ICDE, pages 892–903, 2009. (Cited on page 105.)

[TEO01] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive

skyline computation. In VLDB, pages 301–310, 2001. (Cited on pages 31

and 104.)

[TP06] Yufei Tao and Dimitris Papadias. Maintaining sliding window skylines

on data streams. IEEE Trans. Knowl. Data Eng., 18(2), 2006. (Cited

on page 106.)

119

Bibliography

[VDKV07] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Michalis

Vazirgiannis. Skypeer: Efficient subspace skyline computation over dis-

tributed data. In ICDE, pages 416–425, 2007. (Cited on page 106.)

[VN02] Steven J. Vaughan-Nichols. Web services: Beyond the hype. IEEE

Computer, 35(2):18–21, 2002. (Cited on page 12.)

[WIS+09] Qinyi Wu, Arun Iyengar, Revathi Subramanian, Isabelle Rouvellou, Ig-

nacio Silva-Lepe, and Thomas A. Mikalsen. Combining quality of service

and social information for ranking services. In ICSOC/ServiceWave,

pages 561–575, 2009. (Cited on page 102.)

[WOTX07] Shiyuan Wang, Beng Chin Ooi, Anthony K. H. Tung, and Lizhen Xu.

Efficient skyline query processing on peer-to-peer networks. In ICDE,

pages 1126–1135, 2007. (Cited on page 106.)

[WSZ+09] Hongbing Wang, Shizhi Shao, Xuan Zhou, Cheng Wan, and Athman

Bouguettaya. Web service selection with incomplete or inconsistent user

preferences. In ICSOC/ServiceWave, pages 83–98, 2009. (Cited on

page 102.)

[WVKT06] Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A qos-aware

selection model for semantic web services. In ICSOC, pages 390–401,

2006. (Cited on page 103.)

[WXL08] Hongbing Wang, Junjie Xu, and Peicheng Li. Incomplete preference-

driven web service selection. In IEEE SCC (1), pages 75–82, 2008.

(Cited on pages 54 and 102.)

[WZF+06] Ping Wu, Caijie Zhang, Ying Feng, Ben Y. Zhao, Divyakant Agrawal,

and Amr El Abbadi. Parallelizing skyline queries for scalable distribu-

tion. In EDBT, pages 112–130, 2006. (Cited on page 106.)

[XZT08] Tian Xia, Donghui Zhang, and Yufei Tao. On skylining with flexi-

ble dominance relation. In ICDE, pages 1397–1399, 2008. (Cited on

page 105.)

120

Bibliography

[Yag80] Ronald R. Yager. An approach to inference in approximate reasoning.

International Journal of Man-Machine Studies, 13(3):323–338, 1980.

(Cited on page 17.)

[YB10a] Qi Yu and Athman Bouguettaya. Computing service skyline from un-

certain qows. IEEE T. Services Computing, 3(1):16–29, 2010. (Cited

on pages 31, 56, 63, 69, 86 and 104.)

[YB10b] Qi Yu and Athman Bouguettaya. Computing service skylines over sets

of services. In ICWS, pages 481–488, 2010. (Cited on pages 31, 56, 63,

69 and 104.)

[YB12] Qi Yu and Athman Bouguettaya. Multi-attribute optimization in service

selection. World Wide Web, 15(1):1–31, 2012. (Cited on pages 31, 56,

63 and 69.)

[YLBM08] Qi Yu, Xumin Liu, Athman Bouguettaya, and Brahim Medjahed. De-

ploying and managing web services: issues, solutions, and directions.

VLDB J., 17(3), 2008. (Cited on page 67.)

[YLL+05] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu, and

Qing Zhang. Efficient computation of the skyline cube. In VLDB, pages

241–252, 2005. (Cited on page 105.)

[YZL07] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web

services selection with end-to-end qos constraints. TWEB, 1(1), 2007.

(Cited on page 103.)

[Zad65] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353,

1965. (Cited on page 15.)

[Zad78] L.A. Zadeh. Fuzzy sets as a basis for theory of possibility. Fuzzy Sets

and Systems, 1:3–28, 1978. (Cited on page 18.)

[ZBD+03] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant

Kalagnanam, and Quan Z. Sheng. Quality driven web services com-

position. In WWW, 2003. (Cited on page 103.)

121

Bibliography

[ZBN+04] Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon Dumas,

Jayant Kalagnanam, and Henry Chang. Qos-aware middleware for web

services composition. IEEE Trans. Software Eng., 30(5), 2004. (Cited

on page 103.)

[ZLC09] Ling Zhu, Cuiping Li, and Hong Chen. Efficient computation of reverse

skyline on data stream. In CSO (1), pages 735–739, 2009. (Cited on

page 106.)

[ZLZ+09] Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang, and Jeffrey Xu

Yu. Probabilistic skyline operator over sliding windows. In ICDE, pages

1060–1071, 2009. (Cited on page 106.)

[ZMC09] Shiming Zhang, Nikos Mamoulis, and David W. Cheung. Scalable sky-

line computation using object-based space partitioning. In SIGMOD

Conference, pages 483–494, 2009. (Cited on page 105.)

[ZMKL05] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg

Lausen. Improving recommendation lists through topic diversification.

In WWW, pages 22–32, 2005. (Cited on page 41.)

122

