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Chapter 1

Introduction

In this thesis, I study three problems of complex dynamics:

e Dynatomic periodic and preperiodic curve for polynomials f.(z) = 24+ ¢. Such a
curve is a combination of parameter space and dynamical plane which is compatible
with dynamics. So it give us a chance to study the structure of the curve by means

of the method of dynamics.

e Core entropy of polynomials. It is a new field opened by William Thurston in recent
years to study the parameter space of polynomials. Many interesting and basic prob-
lems that seems true are to be resolved. We are following his idea and try to move as

far as possible.

e Wandering continuum of post critical finite rational map. It is also an example of
the common phenomenon in complex dynamics that the conclusion is well known for
polynomial but almost vacuity for rational map. Few existing tools and method can
be used to deal with this problem because it is very difficult to find a partition on

Julia set of rational map.

In this chapter, I will simply introduce the background, development and important
conclusion about these three problem respectively. At the same time, I will give the main

results of this thesis.



1.1 Dynatomic periodic and preperiodic curve for polynomi-
als f.(z) =29+ ¢

Fix d > 2. For ¢ € C, set f.(z) = 24 + ¢. For p > 1, define
Xop:={(c,2) € C*| fP(2) = z and for all 0 < k < p, fr(2) # z}.

Xo p = the closure of /'\v.’o,p in C?.

It is known that each Aj ), is an affine algebraic curve. It is called the periodic dynatomic
curve. It has been the subject of several studies in algebraic and holomorphic dynamical
systems.

In case d = 2, Douady-Hubbard proved the smoothness of &, by the technique of
parabolic implosion. The irreducibility is proved by Morton [Mo] using a combinatorics of
algebraic arguments, by Bousch [B] using combiantion of algebraic and dynamical method
and by Lau and Schleicher [LS] [Sch] using dynamical arguments only. Bousch [B] also
calculated the Galois group and the genus of some kind of compactification of Xy ,. Recently,
Buff and Tan Lei reproves the smoothness and irreducibility of &p , with a different method
(BT)).

For the general case d > 2, we generalized the method in [BT] and prove the following

theorem:
Theorem 1.1.1. For any p > 1, the periodic dynatomic curve Xy, satisfies:

1. Xy, is an affine algebraic curve;
2. Xop 1s smooth and irreducible;

3. The Galois group Go p for the defining polynomial of Xy, consists of the permutations

on roots of the defining polynomial that commute with fe.

Next, we consider the preperiodic case.
Definition. For n > 0, p > 1, a point z is called a (n,p)-preperiodic point of f. if
fEP(2) = f(2) and fEPR(2) # fU(z) for any 0 <1 <n, 0 <k <p with (I,k) # (n,p).

Now, for any n > 1,p > 1, define

X p = {(c, z) € (C2‘Z is a (n, p)-preperiodic point of fc}



Xnp = the closure of ‘)En,p in C?.

In fact, as we shall see below, each X, , is also an affine algebraic curve. These curves
are called preperiodic dynatomic curves. There are much less studies about them. The
known results include the connectivity of é’?n,p and the computation of the Galois group of
its defining polynomial ([B], [Sch]) in case d = 2.

In Chapter 4, we will give a more detailed description of &, ,, (for any degree d) from
both algebraic and topology point of view. We summarize our main result below. This
result is to be compared with results on periodic dynatomic curves.

For v4(p) the unique sequence of positive integers satisfying the recursive relation

&’ =" va(k)

klp

and for ¢(m) the Euler totient function (i.e. the number of positive integers less than m
and co-prime with m), set
d—1)(p—-1 d—1 P
gy =1+ L=V ) LS (D))

2d
E|p,k<p

gopld) = 1+ Svap)d 2 [(d = V)(n+p) 2] — 2a" A1) Y o2k valh)
klp,k<p

Theorem 1.1.2. For any d > 2, n,p > 1, the preperiodic dynatomic curve X, , has the

following properties :

1. The set X, is an affine algebraic curve. It has d—1 irreducible components and each
one is smooth. Moreover, every pair of these components intersect transversally at the

singular points of X, ,. The set Xn,p has d — 1 connected components.

2. In particular, if d = 2, the curve X, , is smooth and irreducible, and the set /lv,’nvp 18

connected.

3. The genus of the compactification of every irreducible component of Xy, p is gnp(d).

Furthermore, all irreducible components are mutually homeomorphic.

4. The Galois group of the defining polynomial of X, ), consists of all permutations on

its roots which commute with f. and d-th rotation.



Here is a tableau comparing these various curves :

periodic Xy, d=2 d>2
irreducible irreducible
smooth smooth
# ideal points va(p)/2 vqa(p)/d
genus 9p(2) gp(d)
Galois group | sym(v2(p)/p) < Zy™'" | sym(va(v)/p) w 2"

preperiodic &), ,, n > 1 d=2 d>?2
irreducible | d — 1 irreducible components
smooth each component is smooth
component-wise genus Gnp(2) Gn.p(d)
Galois group Gnp(2) Gnp(d)
component-wise Galois group Gnp(2) Gﬁp
pairwise intersection empty Chpa

For a continuous map f acing on a compact set X, we can define the topological entropy

1.2 Core entropy of polynomais

A central theme of research in dynamical systems is the variation of dynamics along
parametrized families. There are many dynamical properties that are interesting to study
within a parameter family. We are mainly concerned with families of complex polynomials
or rational maps. In this case, each map induces a fractal set, the Julia set, on which the
dynamics behave chaotically. One may for example study the variation of the topology and
the geometry of the Julia set. On a more statistic level, the variation of the topological

entropy provides also important dynamical /parameter information.

h(X, f) (see Section 2.5 for its definition). Topological entropy is a quantity that measures

the complexity of the induced dynamical system.

The pictures in this Section are most due to Tiozzo and TanLei.

10



Core entropy of real polynomials

Let f: I — I continuous (I is denoted by the unit interval), by Misiurewicz-Szlenk

W, f) = lim log{#laps of f"}

n— 00 n

where #laps of f™ is the number of monotone intervals of f™, or equivalently, the number

of critical points of f".

Now consider the quadratic family f.(z) = 22 + ¢. For ¢ € [~2,1/4], f. has a invariant

interval I. = [/, Bc] where [, is the landing point of external ray R.(0). The core

entropy of f. is defined by h(I, f.), the topological entropy of f. on I.. A natural question

is:
how does it change with the parameter ¢?

Theorem. (Milonr-Thurston (77), Douady (93)) As ¢ € [—2,1/4], h(I, f.) is continuous

and monotone decreasing from log 2 to 0.

Core entropy of complex polynomials

Thurston’s idea of core entropy: ( The entropy for a polynomial map acting on its

entire Julia set is always log d, where d is the degree. what’s tricky is figuring out the best

11



definition that filters out the way the polynomial acts on the tips of the leaves of the Julia
set, where the invariant measure for entropy is concentrated, filtering this behavior out and
leaving the action on the ”interior” of the Julia set in some sense.)

The “interior” of the Julia set are the points that at least two external rays land on,
these points will be finally attracted by the Hubbard tree (i.e. the convex hull of the
postcritical orbits within the (filled-in) Julia set) under the iteration of f. At the same
time, the Hubbard tree is a natural object to replace the real trace segment in the real case,
so it is reasonable to define the core entropy of a polynomial as the topological entropy of
f on its Hubbard tree (if it exists). In many cases, including the case that f is postcritical

finite, the Hubbard tree H; is a finite tree and is forward invariant by f.

So for a polynomial f, if its Hubbard tree exists and is a finite tree, we define by h(Hy, f)
the core entropy of f. Note that this definition is compatible to the real case..

In parameter space of quadratic polynomials, the segment [—2, 0] can be homeomorphic
embedded to any limb of Mandelbrot set by Branner-Hubbard surgery. Its image is called
the main vein of this limb. In any main vein of Mandelbrot set, Hubbard trees H. are
finite trees and have the same shape. For example, any polynomial f. which is on the main
vein of 1/3-limb has the Hubbard tree with a shape of “Y”.

Tiozzo generalizes the Theorem of Milnor-Thurston to any main vein:
Theorem.(Tiozzo) As ¢ moves along a main vein from 0 to its tip, the core entropy h(H,, f;)
is continuous and increasing.

Bill Thurston has made important progress in the study of core entropy during the last

two years of his life. He used a quite different approach to the computation of the core

12



entropy, by following an outer contour of the Mandelbrot set, as well as its higher degree
substitutes, as opposite to following the veins from inside. Such a contour can be seen
combinatorially as the space of critical portraits (or external angles of M), or analytically
as the space of polynomials all of whose critical points escape to infinity with the same rate.
Thurston established an effective algorithm computing the core entropy for the rational

critical portraits without proof (see the degree 2 plot below).

A

B

B——

Figure 1-1: core entropy of quadratic polynomials

We will describe Thurston’s entropy algorithm and prove this algorithm in Section 5.1
Conjecture (Thurston): The core entropy is a continuous function on the boundary of
the Mandelbrot set.

To prove the continuity of core entropy, Thurston suggests the torus model of polyno-
mials (see Section 2.2.3 for the construction). Roughly speaking, the degree d polynomials
can be characterized combinatorially by the degree d critical portraits ( or called primitive
majors by Thurston). Stating from any degree d primitive major m, we can obtain a degree
d invariant lamination L(m) by pulling back m under the map 74. The set m is exactly
the preimage of L(m) under the map g from T? to the set of all hyperbolic geodesics in D
by mapping (z,y) € T? to the geodesic 77 € D.

Definition. Let m = {©1,...,0,} be a primitive major. We say that m is a rational

primitive major, if all angles in U7_,©; are rational numbers.

Denote by F : T2 — T? mapping (z,y) to (dz,dy). If m is a rational primitive major,

13



we can find a compact F-invariant set THj(m) C bs(m), called combinatorial Hubbard

tree. We define by h(T Hy(m), F') the core entropy of primitive major m.
Theorem 1.2.1. Let m be any rational primitive magjor.
1. h(THi(m),F) =logd-H.dim (THi(m)).

2. We can find a transition matriz M(m) such that

0 o M(m) is nilpotent
WTH,(m), F) = f M(m) is milp

log p(M(m)) otherwise

3. If m can be realized by a postcritical finite polynomial f, then

h(THy(m),F) = h(Hy, f).

In fact, there is a strong dynamical background of torus model m and combinatorial
Hubbard tree TH;(m). If m can be realized by a postcritical finite polynomial f, each point
in TH;(m) corresponds to a ray pair landing on the same point of Hy. One can see Section
5.2.4 for more details.

For any critical portrait, there exists a stretching ray R(m) in shift locus Sy of parameter
space of degree d polynomials realizing it. In other words, any polynomial in R(m) has m
as its critical portrait and all critical point have the same escaping speed. Denote the
stretching ray R(m) by {fm.}+>0 where ¢ is the escaping speed of the critical points of fy, .

For any ¢ > 0, we can define a continuous map

Tm,t - bgo(m) — J(fm7t)

mapping (z,y) to the common landing point of Ry, ,(v) and Ry, ,(y).
If m is a rational critical portrait, denote by Hp,; C J(fm+) the image of TH;(m)
under 7y, ;. Then H,,; is a compact f, ;-invariant set. We define by h(Hy, ¢, fm ¢) the core

entropy of f,, . It is not difficult to prove that for any ¢ > 0,
h(Hp t, fmt) = h(THi(m), F).

So along a stretching ray of rational critical portrait, the core entropy of all polynomials

14



are equal. By term 3 of Theorem 1.2.1, if { f,;, ¢ }+>0 lands on a polynomial f, o with critical
portrait m, then h(Hy,, o, fm,o0) = h(Hmt, fm,) for any ¢ > 0.

Applying the discussion above to the quadratic case, for any ¢ € C\ Mas, ¢ can be
labeled by (0, R) where 6 € S! is the angle of ¢ and R > 1 is the potential of c. Then we
denote ¢ € C\ My by cg.g. If Ra,(0) lands, denote by cp; the landing parameter of the
ray. Let 6 be a rational angle, by the discussion above, we have that the core entropy of
Jeo.r With R > 1 is unrelated with R. So the rational parameter rays that land on the same
parameter together with the landing parameter form a contour of core entropy.

Motived by term 1 of Theorem 1.2.1, we have an alternate definition of the core entropy
of primitive majors by Hausdorff dimension. For any primitive major m, the set b._(m)

contains the diagonal A of T2. We define the core entropy of m by
logd - H.dim (beo(m)" \ A).

Note that the preimage of A in b/ _(m)\ A under F is a countable set. So for a rational
primitive major, almost every point of b _(m)\ A is mapped to T'Hy(m) by the iteration of
F', then we have

H.dim (b (m)\ A) = H.dim (T H;(m))

According to term 1 of Theorem 1.2.1, in the case of rational primitive majors, the definition
of core entropy of primitive major by Hausdorff dimension is the same as that by the

topological entropy of F' on T'Hy(m).

1.3 Wandering continuum of postcritical finite rational map

Let f be a rational map. By a wandering continuum we means a non-degenerate con-
tinuum K € J; (i.e. K is a connected compact set consisting more than one point) such
that f*(K) N f™(K) =0 for any n > m > 0.

For a polynomial, the existence or not of wandering continuum has been studied by
many authors. It is proved that for a polynomial without irrational indifferent periodic
cycles, there is no wandering continuum if and only if the Julia set is locally connected
(IK)).

For a non-polynomial rational map, as far as I know, few results about the wandering

15



continuum is known. Recently, Cui, Peng and Tan make a big progress about this problem
for postcritical finite rational map. They point out that for a postcritical finite rational map
f, there are two kinds of possible wandering continuum: full and separate (see definition
below). They prove that f admits a separate wandering continuum if and only if f has a

Contor multicurve ([CPT]). The remaining question is that
In what condition does f admit a full wandering continuum? (1)

Definition. (wandering continuum) Let f be a postcritical finite rational map, E be a
non-degenerate continuum in C. E is called full if C \ E is simply connected and called
separate if there is an annulus A € C \ Py (Py means the postcritical set of f, see S2)
such that £ C A and each components of C \ A contains at least two points of Pr. We call
K a full wandering continuum of f if f"(K) is full for all n > 0 and call K a separate
wandering continuum if there exists an integer N > 0, such that f"(K) is separate for all
n > N.

In the study of postcritical finite rational map dynamics, the objective stable multic-
urve (Definition 2.3.4) plays a very important role. It was first used in complex dynamics
by Thurston to study the topological characterization of postcritical finite rational map
(see [DH2]). Then it is widely used to study the combinatorics of rational dynamics, see for
example [CPT], [CT1], [CT2], [Pil], [T]. A basic problem about stable multicurve is that

for a postcritical finite rational map f,
In what condition does f admits a stable multicurve ? (2)

In this thesis, we answer questions (1) and (2) in the simplest case: f is a postcritical
finite non-polynomial rational map with parabolic orbiford (see Definition 2.3.1). Through-
out this thesis, we call such a map a rational map with parabolic orbiford for convenience.

Let f be a rational map with parabolic orbiford Of. The map f can be lifted to be
a holomorphic map between torus . Then we can study the dynamics of rational map by
means of the holomorphic dynamics on torus. Such a dynamics is very simple because the
holomorphic map between torus has the form z — az+/ ( mod A) for some complex number
a, f and lattice A. In this case, the possible signature of Oy are (2,2,2,2), (3,3,3), (2,4,4),
or (2,3,6) (see 2.3.1 for details).

16



Definition.(Lattes map) If Oy has the signature (2,2,2,2), the rational map f is called
Lattes map. For a Lattes map f, it is called flexible if L, the lift of f on torus, has the
form z — mz 4+ S(modA) for some m € Z and called non-flexcible otherwise.

For a rational map with parabolic orbiford, #P; = 4 if f is a Lattes map and #P; =3

otherwise. So if f has a stable multicurve, the multicurve contains only one curve.
Theorem 1.3.1. Let f be a rational map with parabolic orbiford, then

1. f admits a full wandering C* arc K if and only if f is a flexible Lattes map and K

1s a segment with irrational slop.

2. f has a stable multicurve if and only if f is a flexible Lattes map. Furthermore, if f

is a flexible Lattes map, any non-peripheral simple closed curve is stable.

The thesis is organized as follows:

In Chapter 2, we give some basic acknowledge and notations used in this thesis; In
Chapter 3, we study the periodic dynatomic curve for f. and prove Theorem 1.1.1; In
Chapter 4, we describe the preperiodic curve for f. and prove Theorem 1.1.2; In Chapter
5, we study the core entropy of polynomials from the view of primitive majors and prove
Theorem 1.2.1; In Chapter 6, we deal with the wandering continuum problem and prove

Theorem 1.3.1.

17
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Chapter 2

Basic knowledge and results

In this chapter, we will give some knowledge and results about complex dynamics and other
fields that will be used below. The pictures in Section 2.2.3 are due to W. Thurston and
TanLei.

2.1 General theory of complex dynamics

Let f: C — C be a rational map. That means f can be expressed as

where P,Q) are two polynomials without common factor. Denote by degP the degree of
polynomial P, define
degf = max{degP, degQ}.

It is called the degree of f and is equal to the number of roots (counting with multiplicity)
of equation f(z) =a e C

Throughout this thesis, we only consider the rational map with degf > 2, because when
degf =1, f is a Mobius transformation which has a simple dynamics.

Now, we give some notation used in this thesis:

Definition 2.1.1. Let f : C — C be a rational map and zy € C. We call sequence
{z0,21 = f(20), " ,2n = f™(20), -} the (post) orbit of zo under f, denoted by O (zp);
and call the set {zo, f 1 (20), -, f""(20),--- } the back forward orbit of zy under f, denoted

19



by O~ (zp).

Two kinds of important orbit are periodic orbit and preperiodic orbit, they are defined

as follows:

Definition 2.1.2. Let f : C — C be a rational map. For p > 1, a point z € C. is called
a p periodic point of f if fP(2) = z and f*(2) # z for any k < p; Forn >0, p > 1, a point
z is called a (n,p)-preperiodic point of f. if f&TP(z) = f2(2) and fF(2) # fi(2) for any
0<i<n, 0<k<pwith (I,k) # (n,p).

It is obviously that the orbit of a periodic point or preperiodic point is finite and all

points in a periodic orbit have the same period.

Definition 2.1.3. Let zy be a p periodic point of f. We call X = (fP)'(20) the multiplier of
p—1

2. If the orbit of zy is denoted by O(z0) = {20, 21, -, 2p—1}, then X = ] f'(%).
i=0

In the following, we give the classification of periodic points:
Definition 2.1.4. Let zy be a p periodic point of f with multiplier X = (fP)'(z0), then
1. If 0 < |\| < 1, the point zy is called attractive periodic point;
2. If A= 0, the point zy is called super attractive periodic point;
3. If |A| > 1, the point zo is called repelling periodic point;

4. V2%20e227 |\| = 1, the point zy is called indifferent periodic point. In this case, A =
e?m o € R. Furthermore, if o is a wrrational number, then zy is called irrational

indifferent periodic point, otherwise zy s called a parabolic point.

In complex dynamics, Fatou set and Julia set are two most important set. They are
disjoint and form the entire Riemann sphere together. The dynamics of a rational map in
the two set are quite different. In order to give the definition of these two sets, we will

introduce the theory of Montel normal family.

Definition 2.1.5. Let U C C be a domain and F is consisting of all holomorphic map from
U to C. If any sequence in F has a subsequence with local uniform convergence, then F is

called a normal family. Equivalently, F is compact under the compact-open topology.

20



The definition of normal family is local. Let F be the family of holomorphic map from
U to C. We call F is normal at a point z € U if there is a neighborhood V, of z such that F
is a normal family on V,. Obviously, if F is normal at any point of U, then F is a normal
family on U.

Now we can define the Fatou set and Julia set.

Definition 2.1.6. Let f : C —» C be a rational map. If {f™} is normal at zg € C, then
zo s called a normal point of f. The set of all normal point of f is called the Fatou set of
f, denoted by F(f). The complementary set of F(f) is called the Julia set of f, denoted
by J(f). By the definition, F(f) is open and J(f) is compact. A connected component of

F(f) is called a Fatou component.

Remark 2.1.7. According to the definition, it is not difficult to see that for any n > 1,

B =F"), JU) =JIU").

and F(f), J(f) are both completely invariant, that is

Another important concept in complex dynamics is critical point.

Definition 2.1.8. Let f : C — C be a rational map and ¢ € C. If f'(c) = 0, then c is called
a critical point of f. The image of a critical point v = f(c) is called a critical value. The
orbit of a critical point is called a post critical orbit. We denote by C = {c € C | f'(c) = 0}
the set of critical point of f, and by V = f(C) the set of critical value of f. We call
Py = W the post critical set of f.
n>0
For more detail of Fatou set and Julia set, one can refers to [Mil3].
In the following, we state two important theorem that completely characterize the dy-

namics on Fatou set.

Definition 2.1.9. Let f : C — C be a rational map. A Fatou component D is called p
periodic if p is the smallest integer satisfying fP(D) = D. If there exists k > 0 such that

21



f¥(D) is periodic, then D is called preperiodic. If D is preperiodic but not periodic, then D

18 called strictly preperiodic.

A non-preperiodic Fatou component is called wandering. Equivalently, a wandering

Fatou compoent can be defined as for any i, j >0, i # j, f/(D) N f/(D) = 0.

Theorem 2.1.10. ([Mil2]) Let f be a rational map. Then each Fatou component is prepe-

riodic.

Figure 2-1: Five kinds of different Fatou component

Theorem 2.1.11. ([Mil2]) Let f be a rational map. If f(D) = D, then D is one of the

following 4 exclusive cases:( see Figure 2-1)

1. ((super) attractive basin): There exists a attractive fized point zo € D with multiplier

0 <Al < 1. {f"} locally uniform converge to zy in D.
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2. (parabolic basin): There exists a parabolic fized point zo € OD with multiplier A = 1.

{f™} locally uniform converge to zy in D.

3. (Siegel disk): D is conformal to the unit disk D and f conformally conjugate to an

irrational rotation in D;

4. (Herman ring): D is conformal to an annulus A={z€ C|0<r < |z| <1} and f

conformally conjugate to an irrational rotation in A.

2.2 Dynamics of polynomial

2.2.1 Filled in Julia set and Multibrot set

Let us recall some results about filled-in Julia set and Multibrot set that will be used
following. These can be found in [DH1], [Mil2] and [DE].

For ¢ € C, we denote by K. the filled-in Julia set of f., that is the set of points z € C
whose orbit under f, is bounded. We denote by My the Multibrot set for f.(z) = 2¢ + ¢,
that is the set of parameters ¢ € C for which the critical point 0 belongs to K..

If ¢ € M, then K. is connected. There is a conformal isomorphism ¢, : C\K. — C~D

which satisfies ¢. o f. = ((bc)d and ¢/.(00) = 1. The dynamical ray of angle 6 € T is

R.(0) := {z € C\K. | arg(¢c(2)) = 2m0}.

If 0 is rational, then as r tends to 1 from above, ¢! (re?™) converges to a point v.(6) € K...
We say that R.(0) lands at v.(f). We have f.o7. = .07 on Q/Z. In particular, if 6 is
periodic under 7, then ~.() is periodic under f.. In addition, v.(0) is either repelling (its
multiplier has modulus > 1) or parabolic (its multiplier is a root of unity).

If ¢ ¢ My, then K, is a Cantor set. There is a conformal isomorphism ¢. : U. — V,
between neighborhoods of co in C, which satisfies ¢, o f. = (gbc)d on U.. We may choose
U. so that U, contains the critical value ¢ and V, is the complement of a closed disk.
For each § € T, there is an infimum 7.() > 1 such that ¢_! extends analytically along
Ro(0) N {z € C|rc(9) <|z|}. We denote by v, this extension and by R.(f) the dynamical

ray

Ro(6) = e (RO(G) N{zeC|rd) < \zy}).
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As 7 tends to r.(6) from above, 1¥.(re*™) converges to a point x € C. If 7.(f) > 1, then
x € C\ K, is an iterated preimage of 0 and we say that R.(6) bifucates at x. If r.(0) = 1,
then v.(0) := z belongs to K. and we say that R.(f) lands at v.(6). Again, foov. =0T
on the set of § such that R.(6) does not bifurcate. In particular, if 6 is periodic under 7
and R.(0) does not bifurcate, then ~.() is periodic under f..

The Multibrot set is connected. The map

ér, : C\My > ¢+ ¢e(c) € C\D
is a conformal isomorphism. For § € T, the parameter ray Ry, (0) is
R, (0) := {c € C\My | arg(ou,(c)) = 276}

It is known that if € is rational, then as r tends to 1 from above, qb]\}ld (re?™) converges to

Figure 2-2: The parameter rays Ry, (7/26) and Rpz,(9/26) land on a common root of a
primitive hyperbolic component while Rz, (19/80) and Ry, (11/80) land on a common root
of a satellite hyperbolic component. Only angles of rays are labelled in the graph.

a point of M,;. We say that Rz, () lands at this point. A dynamical ray or parameter ray
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is called (n,p)-preperiodic if its angle is (n,p)-periodic under 7 : § — df (modZ). There

are three kinds of important parameters:

e ¢ is called a parabolic parameter if f. has a parabolic periodic point. Furthermore,
if the multiplier is 1, the parameter ¢ is called a primitive parabolic parameter,

otherwise c is called a satellite parabolic parameter.
e c is called a hyperbolic parameter if f. has an attracting periodic point.

e cis called a Misiurewicz parameter if c is a (n, p)-preperiodic point of f. for some

n,p > 1.

Parabolic parameters and Misiurewicz parameters lie on the boundary of M.

The set of hyperbolic parameters forms an open and closed subset of the interior of
M. Each connected component is called a hyperbolic component. Within a hyperbolic
component, the period of the attracting periodic point for any parameter is the same and
this number is called the period of the hyperbolic component.

If 6 is periodic for 7 of exact period n and if ¢y := yps,(#), then the point 7, (0) is
periodic for f., with period p dividing n (ps = n, s > 1) and multiplier a s-th root of unity.
If the period of 7, (0) for f., is exactly n then the multiplier is 1, ¢g is called primitive

parabolic parameter, otherwise ¢ is called satellite parabolic parameter.

Lemma 2.2.1 (near parabolic map). ¢q is defined as above. When we make a small pertur-
bation to cy in parameter space, If cy is a primitive parabolic parameter, then the parabolic
orbit of fe, is splitted into a pair of nearby periodic orbits of f., both have length n; If co
s a satellite parabolic parameter, then the parabolic orbit of f., is splitted into a pair of

nearby periodic orbits of f., one has length p and the other has length sp = n.

This lemma was proved by Milnor in [Mill] lemma 4.2 for the case d = 2, but we can
translate the proof word by word to the general case.

Let H be a p-periodic (p > 1) hyperbolic component. For every parameter ¢ € H, the
polynomial f, has an attracting periodic orbit { z(c), ..., f27*(z(c)) }. Its multiplier defines

a map

A H— D, c— Eiff”(z)

z=z(c)
Then Ay : H — D is a branched covering of degree d — 1 with only one branched point

which is the preimage of 0. This branched point is called the center of H. The map Ay
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can be extended continuously to the closure H. Considering parameter ¢ € OH such that

Am(c) = 1, Eberlein proved the following results:

e For p > 2, among these points, there is exactly one ¢ which is the landing point of two
parameter rays of period p, this point is called the root of H. Any one of the other
d—2 points is the landing point of only one parameter ray of period p. They are called
the co-roots of H. The component H is said of primitive or satellite type according
to whether its root is a primitive or satellite parabolic parameter. All co-roots of H

are primitive parabolic parameters.

e For p = 1, any one of these d—1 points is the landing point of only one fixed parameter

ray and hence a primitive parabolic parameter.

Figure 2-3: Multibrot set My4. The parameter rays Rz, (1/15) and Ry, (4/15) land on the
root of some hyperbolic component. Ry, (2/15) and Ry, (1/5) land on two co-root of this
hyperbolic component respectively.

2.2.2 Hubbard tree

In the work [DHI1], Douady and Hubbard suggested a combinatorial description of the

dynamics of a post critical finite polynomial using a tree-like structure. It is called Hubbard
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tree. In this section, we state some basic result without proof. One can refer to [DH1] for

the proof and more material of Hubbard tree.

Definition 2.2.2. A finite connected tree T is a topological space which satisfies the fol-

lowing to properties:
o For any two points of T', there exists unique Jordan arc in T connecting the two points.
e T is homeomorphism to the union of finite closed segments.

Let T be a finite connected tree. A point p in T is called endpoint of T if T \ p is
connected, p is called a branching point of T' if the number of connected component of 7'\ p
is no less than 3.

Let f be a critically finite polynomial. Its filled Julia Ky set is connected, locally con-
nected and arc connected. Given two points in the closure of a bounded Fatou component,
they can be joined in a unique way by a Jordan arc consisting of (at most two) segments
of internal rays. We call such arcs regulated (following Douady and Hubbard). Since K
is arc connected, given two points z1, 22 € Ky, there is an arc v : [0,1] — K such that
~v(0) = 21 and y(1) = z3. In general, we will not distinguish between the map and its image.
Such arcs can be chosen in a unique way so that the intersection with the closure of a Fatou

component is regulated. We still call such arcs regulated and denoted them by [z1, z2]k T
Definition 2.2.3. We say that a subset X C K is regulated connected if every 21, 22 €
X we have [21, 22]); C X. We define the regulated hull [X]k, of X C K as the minimal

closed regulated connected subset of Ky containing X.

Proposition 2.2.4. If 21,...,2, are points in Ky, the regulated hull [21,...,zn]Kf of

{z1,...,2n} is a finite tree.

Definition 2.2.5. Let f be a post critical finite polynomial. The Hubbard tree Hy of f is
defined by [Cy U Py, .

The vertex set V(Hy) of Hy is the union of Cf, Py and all branching points of H¢. The

closure of a connected component of Hy \ V(Hy) is called an edge.

Lemma 2.2.6. H; is invariant under f (f(Hy) C Hy) and f maps each edge of Hy

homeomorphic to the union of some edges of Hy.
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2.2.3 Invariant lamination and torus model
Let f be a degree d polynomial with connected Julia set and Ky be its filled-in Julia set.

The Bottcher theorem give the commutative graph:

C\K; L c\K;

0| |o

d

c\D =5 cC\D

In addition that f is locally connected, the conformal map ¢! can be extended continuously

to S! and then each external ray land on a point in J t. If we define a equivalent relation

A(f) on S! by
0 ~niff § =n or Rf(A), Rf(n) land on the same point.

then ¢~ 1/A(f) : SY/A(f) — J(f) is a homeomorphism and the dynamic of f on J(f) is
topologically conjugate to that of z — 2% on S!/A(f). It means that the dynamic on f on
its Julia set is completely characterized by equivalent relation A(f).

We abstract the core properties that A\(f) satisfies:
(R1) A(f) is a closed relation in S*;
(R2) Each equivalence class is a finite subset of S;
(R3) If A is an equivalence class, then d - A is an equivalence class;

(R4) The equivalence classes are un-linked, i.e the hull of any two equivalence classes in D

are disjoint.

Then we can imagine using this kind of equivalent relation, or more geometric view of the
equivalent relation called invariant lamination, as the combinatorial model of polynomials.

The following definitions about lamination are due to Thurston ([Th])

Definition 2.2.7 (lamination). A lamination is a set L of hyperbolic chords in the closed

unit disk D, called leaves of L, satisfying the following conditions:

(L1) elements of L are disjoint, except possibly at their endpoints;
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(L2) the union of L is closed.
A gap of a lamination L is the closure of a component of complement of UL.

Definition 2.2.8 (invariant lamination). A lamination L is a degree d invariant for the
map

1a:St— S m(z) = 24,

if it satisfies the following conditions:

(L3) Forward invariant: If any leaf pq is in L, then either 14(p) = 74(q), or ta(p)7a(q) is
in L.

(L4) Backward invariance: if any leaf pq is in L, then there exists a collection of d disjoint

leaves, each joining a preimage of p to a preimage of q.

L5) Gap invariant: for any gap G, the convex hull of the image of Gog = G NS is either
( yg g

a gap or a leaf or a single point.

Definition 2.2.9. Let L be a degree d invariant lamination. A gap G of L is called critical
if the restriction of 74 on Gy is not injective; a leaf l € L is called critical if the image of
its two endpoints are the same.

The major of a degree-d-invariant lamination is the set of critical leaves and critical

gaps.

We’ll say that the major of a lamination Is primitive if each critical gap is a polygon
whose vertices are all identified by z — z¢. Even without a predefined lamination, we can
define a primitive degree-d major to be a collection of disjoint leaves and polygons each
of whose vertices are identified under z — 2%, with total criticality d — 1 (see right of Figure
2.2.3,2.2.3). Denote by PM(d) the space of all degree-d-primitive major.

In the following, we give a description of Thuston’s torus model to show how to construct
a degree-d-invariant lamination whose major is a given primitive major.

Denote by T = S! x S! the torus. For z,y € S', we use Zy to represent the hyperbolic

iz and e?™. Each leaf @7 is represented twice on the

geodesic in the unit disc linking e
torus, as (x,y) and (y, z).
If a lamination contains a leaf | = Ty, then a certain set X (1) of other leaves are excluded

from the lamination because they cross Ty. On the torus, if you draw the horizontal and
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vertical circles through the two points (x,y) and (y, z), they subdivide the torus into four
rectangles having the same vertex set; the remaining two common vertices are (z,z) and
(y,y). The leaves represented by points in the interior of two of the rectangles constitute
X (1), while the leaves represented by the closures of the other two rectangles are all com-
patible with the given leaf | = Ty. We will call this good, compatible region G(I). The
compatible rectangles are actually squares, of sidelengths ¢ — b mod 1 and b — a mod 1.
They form a checkerboard pattern, where the two squares of G(1) are bisected by the diag-

onal.

Figure 2-4: A leaf Ty of a lamination can be represented by a pair of points {(x,y), (y,z)}
on a torus. Leaves that are excluded by Ty because they intersect it are represented in two
shaded rectangles, and leaves compatible with it are represented in two squares of sidelength
b—a mod1and a —b mod 1.

Given a set S of leaves, the excluded region X (S) is the union of the excluded regions
X(I) for I € S, and the good region G(S) is the intersection of the good regions G(I) for
[ €S.If S is a finite lamination, then G(S) is a finite union of rectangles that are disjoint
except for corners.

In the particular case of a primitive major lamination m € PM (d), each region of the
disk minus m touches S' in a union of one or more intervals J; U --- U J; of total length
1/d. This determines a finite union of rectangles (J; U--- U Jg) X (J1 U---U Jg) of G(m)
whose total area is 1/d? that maps under the degree d? covering map (z,y) — d - (z,y) to

the entire torus.

30



Figure 2-5: On the left is a plot of showing the excluded region X (m), shaded, together
with the compatible region G(m) on the torus, where m € PM(4) is a primitive degree-4
major. The figure is symmetric by reflection in the diagonal. The quotient of the torus by
this symmetry is a Moebius band. Note that G(m) is made up of three 1/4 x 1/4 squares
(one of them wrapped around) corresponding to the regions that touch the circle in only
one edge, together with 3-3 = 9 additional rectangles with total area is 1/42, corresponding
to the region that touches S' in 3 intervals. The 6 green dots represent the leaves of the
major, one dot for each orientation of the leaf.

Figure 2-6: Here is a primitive heptic (degree-7) major with a pentagonal gap, shown in a
variation of the torus plot, along with the standard Poincaré disk picture. On the left, half
of the torus has been replaced by a drawing that indicates each leaf of the lamination by a
path made up of a horizontal segment and a vertical segment. The lower right triangular
picture transforms to the Poincaré disk picture by collapsing the horizontal and vertical
edges of the triangle to a point, bending the collapsed triangle so that the it goes to the
unit disk with the collapsed edges going to 1 € C, then straightening each rectilinear path
into the hyperbolic geodesic with the same endpoints.
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For m € PM(d) we can now define a sequence of backward-image laminations b;(m).
Let bg(m) = m and inductively define b;1;(m) is the union of m with the preimages under

F,; of b;(m) that are in G(m). Then For each i, b;(m) is a lamination.

Growth = 1.96595 Growth = 1.96595
o
=
] |

7 10
(e

Figure 2-7: On the left is stage 1 (b1(m)) in building a cubic-invariant lamination for
m = {(§2, 32), (%, 2)} € PM(3). The two longer leaves of m subdivide the disk into 3
regions, each with two new leaves induced by the map f3. On the right is a later stage that
gives a reasonable approximation of boo(m).

Note that this is an increasing sequence, b;(m) C b;11(m). By induction, the good region
G(bi(m)) has area 1/d™. Set boo(m) = U;5( bi(m), b (m) is the cluster set of b (m) and
boo (M) = boo(m) U b, (m) is the closure of buo(m).

It follows readily that:

Theorem 2.2.10. The closure boo(m) is a degree-d-invariant lamination having m as its

major.
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2.3 Orbiford and multicurve

Let f: C — C be a rational map. We denote by deg. f the local degree of f at z. We will
call

Qp = {z] degy > 1}.

the critical set of f and
Pr=J ()

n>0

the postcritical set. The rational map f is called postcritical finite if # < co.

Definition 2.3.1 (orbiford). Let f be a postcritical finite rational map. A map vy : C—
NU {oo} is defined such that vy(z) us the least common multiple of the local degree deg, f"
foralln >0 and y € C with f"(y) = z. The map vy is called signature of f. We call
O; = (C,vy) the orbiford of f.

Note that vf(z) > 1 if and only if 2 € P;. The Eular Characteristic of Oy is given by

X(O0p) =2-) (1-

- vi(2)
2eC d

Definition 2.3.2. The orbiford Oy is called ellipt, parabolic or hyperbolic according
to x(Of) >0, x(Of) =0 or x(Of) < 0.

The following theorem is a part of the Uniformization Theorem of orbiford. One can

refer to appendix A.1 in [Mc| and appendix in [Mil2] for more details.
Theorem 2.3.3. Let f be a rational map with parabolic orbiford, then we have

1. Oy is parabolic orbiford if and only if the signature of f is (2,2,2,2), (3,3,3), (2,4,4)
or (2,3,6).

2. The map f can be lifted to be a holomorphic map between torus along a branched

covering @5 : Tr — C for some 7 € H. That is

Ly=az(mod A7)
—

T, T,
@fl l@f T, =C/(Z® 17Z)
e L ¢
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3. There exists pp : Ty — T, z+—en (2 — z9) + z0(modA;) (zo is a fixed point of py,

on T;) such that
pf(21) = pf(22) <= 2= pﬁ(zl) for some k € Z

The possible numbers n are 2,3,4,6 and there is a equation deg.(pf) = vi(ps(2)).
The set of critical values of @y is Pr. The relationship between n and the signature

of f are given by the following table:

signature of f (2,2,2,2) | (3,3,3) | (2,4,4) | (2,3,6)
n 2 3 4 6
The Deck transformation group of o (p2) (p3) (p4) (p6)
degree of oy 2 3 4 6

Now we turn to the definition of stable multicurve.
Let f be a postcritical finite rational map. We say that a Jordan curve v on C \ Py is

non-peripheral if any component of C \ 7 contains at least two points of Pr.

Definition 2.3.4. A multicurve of f is a finite non-empty collection of disjoint non-
peripheral Jordan curves on (@\Pf such that any two of them are not homotopic rel Py . A
multicurve T is called stable if each non-peripheral curve in f~1(v) for v € T' is homotopic

rel Py to a curve in T

Remark 2.3.5. Let S be any Riemann surface and v1,v2 be two curves in S. In this paper,
we denote by y1 = 2 (1 # Y2) that the images of v1 and 2 in S are coincide (not coincide)

as sets.

2.4 Algebraic curve and Galois group

The objective here is to give some definition and notation about affine algebraic curve and

Galois group that will be used later. The material can be found in [G] and [H].
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2.4.1 Affine algebraic curve,singular points and tangent

Definition 2.4.1. An affine algebraic curve over C is defined as the set
C = {(a,b) € C?|f(a,b) = 0}

for a non-constant squrefree polynomial f(a,b) € Clz,y].

The polynomial f is called the defining polynomial of C, the degree of f is called the
degree of C. We assume that all polynomials appearing in this section are squrefree.

If f =TI~ fi, where f; are the irreducible factor of f, we say that the affine curve
defined by f; is a component of C. furthermore, the curve C is said to be irreducible if the

defining polynomial is irreducible.

Definition 2.4.2. Let C be an affine algebraic curve for C defined by f € Clx,y], and let
P = (a,b) € C. The multiplicity of C at P, denoted by multp(C), is defined as the order of

the first non-vanishing term in the Taylor expansion of f at P, i.e.

_Ool ~ (s z—a)(y— sitia‘gf a
Foen =3 53 () - o= gptan.

If multp(C) = 1, the point P is called a smooth point of C. If multp(C) = r > 1, then we
say that P is a singular point of multiplicity r. We say that C or f is smooth if any point

on C is smooth.

The following theorem provides a topological interpretation of the irreducibility of poly-

nomials.

Theorem 2.4.3. The polynomial f is irreducible if and only if the set of smooth points of

f is connected.

Let P = (a,b) € C be a point of multiplicity » (r > 1). Then the first non vanishing

term in the Taylor expansion of f at P is

Ta) =3 () - a0 ),

t=0

Note that T, (c, z) is a homogeneous polynomial about  — a and y — b, so all its irreducible

factors are linear and they will be called the tangents of C at P.
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Definition 2.4.4. Let C, P, T,(c,z) be as above. Then the tangents of C at P are the
linear irreducible factors of T, (x,y) and the multiplicity of a tangent is the multiplicity of

the corresponding factor.

For analyzing a singular point P on a curve C we need to know its multiplicity but also
the multiplicities of the tangents. If all the r tangents at the point P are different, then
this singularity is of well-behaved type.

Definition 2.4.5. A singular point P of multiplicity v on an affine plane curve C is called

ordinary if the r tangents to C at P are distinct, and non-ordinary otherwise.

Example. Considering the following three curve in C2. The pictures represent the projec-

tion of these curves to R?. (0,0) is the unique singular point of A, B, C. For A, the origin

N

A falz,y) =y — 2 — a? B: fp(z,y) =y> — a3 C: folz,y) = (2% + y?)® — da?y?

mult)(A) = 2 and there are two different tangents » +y = 0 at (0,0). So (0,0) is a
double ordinary singular point of A, called a “node”. For B, mult ) (B) = 2 and there is
only one tangent y = 0 at (0,0) with multiplicity 2. So (0,0) is a double non-ordinary sin-
gular point of B, called a “cusp”. For C, mult ) (C) = 4. There are two different tangents
x =0,y =0 at (0,0) with multiplicity 2 both. So (0,0) is a non-ordinary singular point of

C with multiplicity 4. It can be seen as a mixing of node and cusp.

Definition 2.4.6. Let C1, Co be any two affine algebraic curves and P is an intersecting
point of the two curves. We say that Ci, Co intersect transversally at P if P is a smooth

point for both C1 and Co and the tangents of C1, Co at P are distinct.
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2.4.2 The Galois group of a polynomial

Let M be a field, f(x) € M|z]. If all roots of f are simple, then the splitting field of f over
M, denoted by L, is called the Galois extension over M. The Galois group of f is

Gal(f)={o € Aut(L)’0|M =idpm}.

Note that each o € Gal(f) can be seen as a permutation on the roots of f and it
is completely determined by this permutation, then Gal(f) can be seen as a subgroup of
sym(roots of f). Usually, Gal(f) doesn’t equal to the symmetric group on all roots of f, so
we can see some intrinsic structure and symmetry of polynomial f from its Galois group.

Now let M = K = C(c), and let P(c, z) € K|[z] be a polynomial about ¢ and z. If P(c, z)
has no multiple roots in K|[z], applying the statement above to P(c, z), we obtain a Galois
group Gal(P) of P(c, z). In fact, the Galois theory admits an interpretation in terms of the

covering theory. Here we only state what we need as a theorem below.

Definition 2.4.7. Let X, Y be two topological spaces, X is connected. Let f : Y — X
be a covering. Fix any base point xg € X, then the monodromy action of the elements in

m1 (X, xo) gives a group morphism
Oy :m (X, 20) — sym(f 1 (z0))

The image of (X, xg) under @y is called the monodromy group of f, denoted by Mon(f).

Let P(c,z) € Cle, 2] C K(z) be a polynomial, monic in z, and C be the affine algebraic
curve defined by P(c,z) = 0. Denote by np : C — C, (¢, 2) — ¢ be the projection to the
first parameter and by Cp = {(c,2) € C : g—]:(c, z) = 0} the set of critical points of wp. If
Cp # C, then C\ ' (mp(Cp)) is a covering of C\ mp(Cp). So for any ¢y € C\ 7p(Cp), we

obtain a group morphism
. -1
dp:m ((C \ WP(CP),C()) — Sym(ﬂ'P (co))

whose image is the monodromy group Mon(P).
In fact, the monodromy action of m1(C \ 7p(Cp),co) on 75" (cp) under the covering

map 7p is induced by analytic continuations. By the Implicit Function Theorem, for ¢y €
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C \ mp(Cp), there exist deg(P(co,z)) local holomorphic solutions for P(c,z) = 0 at co.
These solutions accept analytic continuations along any curve in C \ 7p(Cp). So analytic

continuations along the closed curves based on c¢g give a group morphism
op:m ((C \ WP(CP),C()) — sym(Zp)

where Zp is the set of roots of P(cg, z) = 0 (note that 75" (co) = {(co,2) € C|z € Zp}). The
monodromy action of y € 711 (C\ 7p(Cp), co) under 7p : C\ 75" (mp(Cp)) — C\7p(Cp) is

induced by the analytic continuation of local solutions of P(c, z) = 0 at ¢g along ~, that is

©p(7)(co,2) = (co. dp(7)(2))
for all (co,z) € 7' (co). So Mon(P) is isomorphic to AC(P) := ¢p(m1(C\ 7p(Cp), co))-

Theorem 2.4.8. The Galois group of P(c,z) is isomorphic to the monodromy group of
mp: C\7p (mp(Cp)) — C\ 7p(Cp), that is , Gal(P) = Mon(P).

This proposition is due to the correspondence between the Galois theory and the covering

theory. One can refer to [H] for its proof.

2.5 Topological entropy

Let X be a compact topological space. For any open cover U, let N(U) denote the minimal
cardinal of a sub cover of U. Since X is compact, there always exists a finite subcover. For

any two covers U,V of X, define
Uvy={UnVv|U eU,vev}
Let f be a continuous map of X into itself. If i/ is an open cover of X, we set
)= {1 O)|U euy

and

\n/u =UV fHU)Y V-V U
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For two covers U and V, We denote by U C V if U is a sub-cover of V. For the operators
f~! and V, there are two basic properties that will be used later: let &, V, WW be open
covers

If f is onto, then f~Y UV V) C f~HU) Vv (V) (2.5.1)
IfU CV, then f~1(U) C f1(V)andU VW CVVW. (2.5.2)

The entropy of f on X with respect to U is defined by :

. logN(V"U)
X, U, f) = lim —

n—oo

This limit exists and it is also the infimum because the sequence {N(\/"U)} satisfy sub-

additive property. Finally, we define the topological entropy of f on X:

h’(X7f): sup h(X7u7f)

U, open cover of X

We will give three basic properties of topological entropy that will be used in the following.
One can see [Do| for more details.

Let X be a compact set, f: X — X is a continuous map.

Proposition 2.5.1. ([Do]. Pro 2) If X = X; U Xy, with X1 and Xy compact, f(X1) C X1
and f(XQ) - X27 then h(Xv f) = Sup(h(Xla f)a h(X2> f))

Proposition 2.5.2. ([Do]. Pro 3) Let Y be a closed subset of X such that f(Y) C Y.
Suppose that , for any x € X, the distance of f"(x) to Y tends to 0, uniformly on any
compact set in X —Y. Then h(X, f) = h(Y, f).

Proposition 2.5.3. ([Do]. Pro 4) Let X,Y be compact sets, f : X - X, g:Y =Y
and ™ :'Y — X continuous maps with m surjective, and such that fom = mog. Then
h(X,f) < h(Y,g). Suppose all fibers m=1(x) have a cardinal bounded by a fired finite
number m. Then h(X, f) = h(Y, g)

From the definition, if we want to compute the topological entropy of a continuous map
on a compact space, we should consider all the open covers of the space. It is very difficult
for a general compact space. But if the space is a compact metric space, then there is a

simpler method to compute the entropy.
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Let X be a compact metric space with metric d. It can be shown that the topological

entropy depends only on the topology induced by d.

Definition 2.5.4. The diameter d(U) of a cover U is defined by

dU) = (S]Légd(U)

where d(U) is the diameter of set U.

Definition 2.5.5. A cover V is said to be a refinement of a cover U if every member V
is a subset of some member of U. It is denoted by U < V. Note that if U <V, then
h(X, f,U) < WX, [, V).

Proposition 2.5.6. If {Uy} is a sequence of open covers such that
(1) U < Up1,

(2) dUy) -0 ask — oo

Then h(X, f) = limg_,o0 h(X, Uy, f).

Proof. This proposition mainly relies on the Lebesgue’s Covering Lemma:

Lebesgue’s Covering Lemma. For every open cover U of a compact metric space X,
there exists 6 > 0 such that if V' is a subset of X with d(V) < ¢, then V is contained in one
of the members of ¢. The supremum of all such numbers ¢ is called Lebesgue number of .

For any € > 0, there exists an open cover U of X such that

0 < h(X,f)—h(X,fU)<e

Since d(Uy) — 0 as k — oo, there is integer ko such that d(Uy,) is less than the Lebesgue
number of U. By Lebesgue’s Covering Lemma and property (2), U < Uy, < Uy, for k > k.

It follows that

0 < h(X,f)—h(X,f,Us) <h(X,f)— X, f,U) <e fork> k.
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2.6 Matrices

Let M = {k x k square matrices}. M can be viewed as a vector space of dimension k? and
it is isomorphic to the space {linear maps of RF — Rk }.
An operator norm on M is defined as follows: Equip at first a norm on R¥: ||z]l,.

Define then || D|[. = sup|jy|, <1 [[Dz|[. This type of norm satisfies a multiplicative inequality

VA, Be M, ||A- B, < [|A]|+-||B|]s. (2.6.1)

In particular,

[ID" ||« < [IDI[% (2.6.2)
A general norm || - || does not necessarily satisfy (2.6.1). On the other hand,
Lemma 2.6.1. All norms in M are equivalent.

Lemma 2.6.2. (spectral radius) There exists a map p : M — [0, +00) so that for any norm
[|-|] in M, any D € M, HD"H% — p(D) as n — oo. Moreover, if || - ||« is an operator

1 1
norm, p(D) = inf, | D™||# = liminf, ||D"|.
For any D € M, p(D) is called the spectral radius of D.

Proof. Denote the norm || - ||« be an operator norm. Then by (2.6.2), ||D"|| is sub multi-
1
plicative. Therefore ||D"||# has a well defined limit, denoted by p(D), which is also equal to
1 1
inf,, | D"||# and to liminf, || D™||#. But by Lemma 2.6.1, C||D"||. < ||D"|| < C'||D"||«. O

Lemma 2.6.3. For any invertible matriz P € M, any D € M, p(PDP~') = p(D), that

15 to say p 1S a conjugacy invariant.

Proof. Choose ||-||« to be anorm of Type 1. Set A = PDP~!. Then ||A"||, = ||[PD"P~!||. <
IP{le- D1 -1P~"l.. S0 p(A) = p(D). By symmetry, p(D) < p(A). So p(A) = p(D). O

Lemma 2.6.4. For any D € M, p(D) =max{ |[\| | A is an eigenvalue of D}.

Proof. By Lemma 2.6.3, one can replace D by its Jordan Form. We may assume |\;| =
max{ |\| | Ais an eigenvalue of D}. Let ||D||~ be the norm associated to ||x||oc = max; |z;].
Then ||D|[e = max;{};[D;;|}, where D;; denote the element in D of the i-th row and the
j-th column. So ||D"||s > |A}| and p(D) > |A1|. Note that ||D"||oe < |AZ7F| - poly(n),
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where poly(n) denotes a polynomial about n whose coefficients depend on A, and k denotes

the maximal size of a Jordan block corresponding to A1. So p(D) < |\q]. O
We will state without proof the classical

Theorem 2.6.5. (Perron-Frobenius) Let D € M and D;; denote the element in D of the
i-th row and the j-th column.

1. If D > 0 (i.e. for any pair (i,7) € {1,--- ,k}, Dijj > 0), then p(D) = X(D) is itself
an eigenvalue. Moreover, A\(D) is a simple eigenvalue, there exists a unique (up to scaling)
v >0, such that Dv = A\(D)v and necessarily v > 0. Furthermore for any other either value
A, we have |\| < A(D), and X\ does not have an eigenvector u with uw > 0 and u # 0.

2. If D >0 (i.e. for any pair (i,j) € {1,--- ,k}, D;j; > 0), then p(D) = X(D) is itself
an eigenvalue. Moreover if p(D) > 0, there exists a v > 0, v # 0 such that Dv = \(D)v.

Theorem 2.6.6 (Due to TanLei). Denote by v = (1,...,1) € R¥. Let A be a non-nilpotent

k x k matriz whose entries are non-negative integers. Set v, = A™v. Then, for any norm

I of B, 1
[ _
n=00 (|[vn] + -+ + [|vol )1/
Proof. The result is independent of the choice of the norm. We will use || - || to denote the
L' norm on R*, and again || - || to denote the corresponding operator norm in M.

In particular || A|| is equal to the Lo, norm of Av. Set the spectral radius of A as \. We
claim that A > 1. By the non-nilpotent assumption, for each n, A™ contains at least one
entry that is a strictly positive integer, and the other entries are non-negative. It follows
that ||A"]| = ||A"v]|e > 1. So A > 1.

For any € > 0, there is C. > 0 such that

A< AT < Ce(A+2)", loall < [[A™]] - o]l < BCe(A+ )"

Let € > 0 be arbitrary. Denote by D, the matrix obtained by by adding € to every entry
of A. Denote by A the leading eigenvalue of D..
Apply the Perron-Frobenius theorem to the transpose of D one sees that there is a

positive horizontal vector p. satisfying

peD = e (2.6.3)
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One may normalize j. to have L' norm equal to 1.
Letting ¢ — 0, and by compacity, a sequence of the triple (e, D¢, \:) converges to

(1, A, \) with pA = A, [|p]| = 1 and p > 0. Note that pv = ||u|| = 1. So

A" = Nt = p A < lpll - [A"0]| = [A"0]} = Jloall -

It follows from (2.6.3)

vn, A" <loa|| SEC:(A+€)"

Thus, as A > 1,
limsup( ol ) < lim (kcf()‘m) _Ate
n—00 ||Un‘|+"‘+”110” n—oo \ A" +---+1 Y

(to obtain the last equality one should treat separately the cases A > 1 and A = 1). But

the left hand side is independent of €. Arguing symmetrically, one obtains

v ln v ln
1 < liminf < lim sup <1.
oo \ [[uall+ - + [[ool] oo \[[onll + -+ [[oo]]
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Chapter 3

Dynatomic periodic curve

In this chapter, we will give a description of the dynatomic periodic curve for the family of
unimodel polynomials, including the smoothness and irreducibility of this curve, and the

Galois group of the defining polynomial of this curve.

3.1 Defining polynomial of &),
In this section, we define the dynatomic periodic polynomial Qo , € Clc, z| and prove that
Xop = {(c,2) € C* Qoplc, 2) = 0}

For p > 1, let ®¢,(c, 2) = fe¥(z) — z. Then the solutions of ®,(c, z) = 0 is consisting
of all (¢, z) € C such that

z is a k periodic point of f., k|p

. With an abusing of notations, we can consider a polynomial in C[e, 2] as a polynomial in

K[z], where K = C(c) is the field of rational function about c.

Definition 3.1.1. A polynomial g(c, z) € Cle, 2] is called squrefree if it can’t be division by

h(c,2)? for any non-constant h(c, z) € Cle, 2].

Lemma 3.1.2. There exists an unique sequence of square-free polynomials {Qo p(c, ) }p>1 C
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Cle, z) € Klz] monic about z such that

Do p(c,2) = [ [ Qorle,2)

klp

Proof. At first, we claim: for any cg € C\ My, p > 1, all roots of ®g,(co, 2) are simple. (
proof: in this case, all periodic points of f,, are repelling and the critical orbit converge to

oo. Then for any root zy of ®gp(co, 2), we have
(0%0,,/02)(co, 20) = [foF]'(20) =1 # 0

). By this claim and the fact that ®g,(c,2) is monic about z, if we find a sequence
of polynomials {Qo,(c,2)}p>1 satisfying the equation in the lemma, they are naturally

square-free.

We will define this sequence of polynomials by the induction on p. As p = 1, we define
Qo1 =Po1(c,2) =2 —z+e.

The equation in Lemma 3.1.2 holds.

Now suppose for each 1 < k < p, we have find the polynomial Qg x(c, z) that satisfies the
requirement of the lemma. Let ¢y be any parameter inC \ My. If zj is a root of Qg x(co, 2),
it is also a root of ®q;(co,2). Then zy is a m periodic point of f., with m|k. In fact, m
must be equal to k. Otherwise Qo k(co,2) - [}, Qo,m’(co, ) would have a double root at
zp. But according to the assumption of induction, @, x(co, 2) - Hm,‘m Qo,m (co, z) divides

P 1 (co, 2), it is a contradiction to the claim above.

So we can conclude that: in { Qox(co,2) }i<k<pklps any two polynomials have no com-
mon roots, and any polynomial divides ® ,(co, z). Therefore, Hklp k<p Qo x(co, z) divides
®g,p(co, z) in C[z]. Since cg is any point of C\ My, the polynomial [ ]y, -, Qo.k(c, 2) divides

g p(c, z) in K[z]. So we can define

Qoplc,z) = Pop(c,2)/| H Qo x(c, 2)].

Elp,k<p

It satisfies the requirement of this lemma. O
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From the definition of integer v4(p) and polynomial Qo ,(c, 2), it is easy to see that

degz QO,p = deg QO,p = Vd(p)-

Now, for any parameter ¢y € C, we will study the properties of the roots of Qg p(co, 2).

Proposition 3.1.3. Let p > 1 be any integer and ¢y € C be any parameter. Then zg € C

is a oot of Qo p(co, z) iff it satisfies the following 3 exclusive properties:

(1) 20 is a p periodic point of fe, and [fef]) (20) # 1, in this case zo is a simple root of

Qo,p (CU ) Z) ;

(2) 20 is a p periodic point of f., and [fol)(20) = 1, in this case 2z is a double root of

QO,p(Coa Z);

(3) 2o is a k periodic point of f., where k is a proper factor of p and [fo¥](20) is %—th

primitive root of unit, in this case zy is a oot of Qo p(co, z) with multiplicity %
Proof. If Qo p(co,20) = 0 then ®q,(co,20) = 0, so zp is a k periodic point of f., with k|p.
On the contrary, if 2o is a k periodic point of f.,, then ®q,,(co, 20) = 0 iff m is a multiple

of k. In particular, if m is not a multiple of k, then Qo m(co, 20) # 0. Since

0 = Do x(co, 20) = [ [ Qo (co, 20)

K|k

we obtain Qg x(co, z0) = 0.

Case 1. If the multiplier p of 2y as a fixed point of fcook is not a root of unit, when p
is a multiple of k, 2o is a simple root of ®¢,(co,2). In this case, Qo x(co,2) is a factor of
P p(co, 2), so no other factors of ®¢,(co,z) vanish at zp. Then Qoyp(co,20) = 0 iff p = k.
Moreover, Qo (co, 2) € C[z] has a simple root at zp.

If the multiplier p of 2y as a fixed point of ffok is a s-th root of unit, then the multiplier
of zg as a fixed point of fcookm is p"™. It is equal to 1 iff m is a multiple of s. In this case, zg

is a root of ®q 1 (co, 2) with multiplicity s+1. In fact, f., has only one attractive petal cycle.

Case 2. If s = 1, when p is a multiple of k, 2y is a double root of ®¢p(co, z). As the

discussion above, Qo ,(co, 2z0) = 0 iff p = k, but in this case Qo p(co,2) € C[z] has a double
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root at zg.

Case 3. If s > 2, when p is a multiple of k but not a multiple of ks, zg is a simple root
of ®¢p(co, 2); when p is a multiple of ks, zy is a root of ® ,(cp, z) with multiplicity s + 1.
Therefore, Qo p(co,20) = 0 iff p = k or p = ks; 2 is a simple root of Qo x(co,2) € C[z] and

a root of Qg ks(co, z) with multiplicity s. d

Remark 3.1.4. By the Propositon 3.1.3, we have

Xop={(c,2) € Cz‘(c,z) satisfies the property (1) in Proposition 3.1.3}
For a=2,3, define

Copa={(c,2) € (C2|(c, z) satisfies the property (o) in Proposition 3.1.3}
Then Cop2, Cops are finite set and Xy, = Xo,p U Copa U Cops. So

Xo,p = {(C, Z)‘ QO,P@’ Z) = 0}'

3.2 The smoothness of periodic curve

In this section, we will prove the smoothness of Ay ;. The idea is to prove that some partial
derivative of some defining function of X,, is non vanishing. Following A. Epstein, we will
express this derivative as the coefficient of a quadratic differential of the form (f.).Q — Q.
Thurston’s contraction principle gives (f.)«Q — Q # 0, therefore the non-nullness of our

partial derivative.

3.2.1 Quadratic differentials and contraction principle

A meromorphic quadratic differential (or in short, a quadratic differential) Q on C takes
the form Q = ¢ dz? with ¢ a meromorphic function on C.
We use Q(C) to denote the set of meromorphic quadratic differentials on C whose poles

(if any) are all simple. If @ € Q(C) and U is a bounded open subset of C, the norm

Qo= [[ 1
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is well defined and finite.

dZ2 2 Rl
[ / / L drdg = 27R .
z oJo T

For f : C — C a non-constant polynomial and Q = ¢ dz? a meromorphic quadratic

For example

differential on C, the pushforward f,Q is defined by the quadratic differential

f.Q:=Tq dz> with Tq(z) == Z
flw)=z

If Q@ € Q(C), then f,Q € Q(C) also.

The following lemma is a weak version of Thurston’s contraction principle.

Lemma 3.2.1 (contraction principle). For a non-constant polynomial f and a round disk

V of radius large enough so that U := f~1(V) is relatively compact in V, we have
1fQllv < IQllu <IQllv, Ve Q(C).

Proof. The strict inequality on the right is a consequence of the fact that U is relatively

compact in V. The inequality on the left comes from

||f*Q|V://ev 3 fq,“;’g dz|?
= fw)=2

(w)
I, I

Sl | (W)

- //MGU‘Q(w)\ [dwl* = (|-

dzf?

Corollary 3.2.2. If f: C — C is a polynomial and if Q € Q(C), then f,Q # Q.

Remark 3.2.1. Thurston’s contraction principal says that if Q is a meromorphic quadratic
differential on P! and f: P! — P! is a rational function, if one requires f+Q = Qwith Q # 0,

then f is necessarily a Lattes example.

The formulas below appeared in [L] chapter 2, we write them together as a lemma.
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Lemma 3.2.3 (Levin). For f = f., we have

z

I <d—> = 7 ( —dff?(a> - d—) faz0 (321

(e 2) = = i (@ ime) Tero

3.2.2 The proof of smoothness

Lemma 3.2.4. Given z € C, forn >0 and d > 2, define z, : ¢+ fP(2) and §, = fi(zp) =

dzgfl. Then
dz,

% =1+ 5p71 + 5p715p72 +...+ 5p716p72 s 51.

Proof. From z, = zg_l + ¢, d > 2, we obtain

de dz —1 . dZ()

—L =146, 1—=F th =0.

de o de A de

The result follows by induction. O

The proof of smoothness of Aj,,.
In section 3.1, we have seen Xy, = /{)071) U Cop2 UCpp3. So we will check case by case

the smoothness of &j; on the points of the three sets.

Case 1. Firstly, consider a point (cg, 2z9) € /'?071,.

8@0,;0
0z

By term 1 of Propostion 3.1.3, (co,20) # 0. So &p,, is smooth at this point.

Case 2. Consider a point (cg, z0) € Cop,2.

8QO,p
0z

0
By term 2 of Proposition 3.1.3, (co,20) = 0, so we must prove %(co, 20) # 0.
c

Since

(I)O’p(co,zo) = 8Q0’p(00,2’0)' IT Qoxlco,20)

Oc Oc
klp,k<p

and in this case Hk‘p k<p Qo.k(co, 20) # 0, so we must prove:

0%o
Jdc

(co,20) # 0.
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For m > 0, inductively define zp11 = feo(2m) and define 6, := fi (2). By lemma

3.2.4, we have

8(2)2@(00,20) = (270 - 20)

de = 1+5p_1 +(5p_15p_2+...+5p_1(5p_2-"51.

co

Now consider the following quadratic differential Q@ € Q(C)

p—1
Qz)i= 3 P a4z, whete pu = 6,102 b

m=0

Applying Lemma 3.2.3, and let f := f,,, we obtain

p—1

m dz? dz? oo dz?
R0 = X (2 ) — 0 - ) S

Om \Z— Zm+1 2 —C zZ—

m=0
By Corollary 3.2.2, we have f,Q # Q. So

oo
827p (Co, Zo) 75 0.

Case 3. Finally, consider (¢, 29) € Cpp 3.

8QO,p

0
By term 3 of Proposition 3.1.3, T(co, z0) = 0, so we must prove go,p (co, 20) # 0.
2 c

Let zp be a k periodic point of f., (k < p, k|p), then the point (cp, z9) belongs to both Ap ),

and Xp . Therefore

0%, 0%, B
az (C(),Z()) = 80 (Co,ZQ) = 0.

we can’t prove (Qp, has a non-trivial partial derivative at (co, 29) by the partial derivative

of q)O,p-

Now we write ®¢ ,, as

Do p(c, z) = Poi(c, 2) - Ple, 2). (3.2.2)
where P(c,z) = Hmmm% Qo,m(c, z). On one hand, since Qo (co,20) = 0, we have

opP T

E(CO’ 20) = e Qo,m(co, 20)-

mlp,m|k,m<p
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On the other hand, for all m < n,m # k, Qo.m(co,20) # 0, so we only need to prove

oP
%(Co, Zo) 75 O

Note that at this time, p = | ffok]’ (z0) # 1. By the Implicitly Function Theorem, there
exists holomorphic germ ¢ : (C,cp) — (C, 29) such that Qo (c,((c)) = 0. In other words,
((c) is a k periodic point of f.. Let p. be the multiplier of f. at {(c) and set

. dp
p:: dCC‘CO‘

Lemma 3.2.5. We have
8P( ) s+ p
——(C0,20) = -
e plp—1)

Proof. Differentiating the equation (?7) with respect to z, and then evaluating at (c, ¢ (c)),

we get:
s k oP
Pec — 1= (pc - 1) ’ P(C7€(C>) + ( c (C(C)) - C(C)) : 5(07<(C)) = (Pc - 1) ' P(07C( ))
=0

Setting

pe—1

R(e) = Ple.C(0) = 2=,
we have

R'(co) = ({;]Z(Co,zo) + ((;]:(Coazo) -((co) = %];(CO;ZO)-
[

=0

Using p® = 1 and p*~! = 1/p, we deduce that
A A . 0 N R T e S N
dc T de w \p—1 (p—12) dc

Pc — 1
Therefore, we only need to prove p # 0. The proof of this fact need to use a meromorphic

s-p
=—. O
cw plp—1)

quadratic differential with double poles along the orbit of zg.

Set f:= fcoa

Zm = [™(20), Om = day = f(zm), Gnle) = fIM(C(0) and G = ¢(co).
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Then
Cmt1(e) = fe (Cm(c)) and  (x = (p-

Since

0001+ O0p—1 = p # 0,
there is a unique k-tuple (uo, ..., ug—1) such that

_ bm d—1
Mm+1 = dz,%_l dz% )
where the indices are considered to be modulo k.

Now consider the quadratic differential Q (with double poles) defined by

1

0=y

k- . p
((z—z )2+z—n; > dz’.
m=0 m m

Lemma 3.2.6 (Compare with [L]). We have

fo—g P ¥

p z—co

Proof. By construction of @ and the calculation of f,Q in Lemma 3.2.3, the polar parts
of @ and f.Q along the cycle of zy are identical. But f,Q has an extra simple pole at the

critical value ¢y with coefficient
k-1 k-1
Hm d— 1>
> (- ) == T
d—1 d
m=0 < dzm dzm m=0
We need to show that this coefficient is equal to —g.

Using (m1(c) = Gm(c)? + ¢, we get
ém—‘,—l = dszjlém + 1.

It follows that

¢m+1ﬂm+l — Hm+1 = dzgm_lém/‘m+l = ém,um - >
m
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Therefore

k—1

k=1 / . i1 .m b1 _m '
Hm+1 = Z <Cm+1,um+1 — CmMm + % =(d-1) Z 27 _Pr
0 =

- )
zZ

where last equality is obtained by evaluating at ¢g of the logarithmic derivative of

k—1
pe =[] ¢t (o). O
m=0

Lemma 3.2.7 (Epstein[E]). We have f,Q # Q.

Proof. The proof rests again on the contraction principle, but we can not apply directly
Lemma 3.2.1 since Q is not integrable near the cycle (2, ..., z,—1). Consider a sufficiently

large round disk V' so that U := f~1(V) is relatively compact in V. Given £ > 0, we set
Ve = U fk(D(zo,s)) and U, := f~ (V).
k=1
When ¢ tends to 0, we have
1+ Qllv—v. < l1Qllv-v. = I1«llv—v. = [IQllv—v + | Qllv.—v. — ILllv.—v--
If we had f,Q = Q, we would have
0 <[|Qllv-v < l2Qllv.-v.-

However, ||Q||v._v. tends to 0 as ¢ tends to 0, which is a contradiction. Indeed, Q = q(2)dz?,

as z tends to zgp. In addition, since

the meromorphic function ¢ is equivalent to ( ]
zZ— 2z
the multiplier of zy has modulus 1,

/
D(z0,€) C U. — V. C D(z9,€') with % =0,

Therefor,

2 pe’ 1 1 ,
1Qllv.~v. < / / +7Z()rdrd9 = 21(1 + o(1)) 1Og% =00
0 € r
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The fact p # 0 follows from the above two lemmas.

Remark 3.2.8. Define a projection mg )y : Xo,, — C mapping (c, z) to c. According to the
smoothness of Xy p, mop is a branched cover of degree vq(p). Proposition 3.1.3 tell us oy
has two kinds of critical points: Cypo and Cop3. Each point in Copo is a simple critical
point of o p. Let (¢, z) be a point of Cyp 3, where z is a k periodic point of f. (k|p,k < p).
Then (c,z) is a critical point of mo, with multiplicity ¥ — 1. Therefore, the set of critical
value Vo, of mop is consisting of roots and co-roots of all hyperbolic components of period

p-

3.3 The irreducibility of the periodic curves
Recall that f. denote the polynomial z — 2% + ¢, where d > 2, and we have defined

Xop = {(c,2) € C*| zis a p periodic point of f. and [fF]'(z) # 1}.

The objective here is to prove:

Theorem 3.3.1. For every p > 1, the set XO,p s connected.

It follows immediately that the closure of X, in C2 is irreducible.

3.3.1 Kneading sequences

Set T=R/Z and let 7: T — T be the angle map
7T:T20—dleT,d>2.

We shall often make the confusion between an angle § € T and its representative in [0, 1[.
In particular, the angle §/d € T is the element of 771(6) with representative in [0, 1/d[ and
the angle (0 + (d — 1))/d is the element of 771(6) with representative in [(d —1)/d, 1].
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Every angle 6 € T has an associated kneading sequence v(#) = v1vav3 . .. defined by

( 0 0+1
e k1 v
1 if 7°7(0) € g |
0+1 0+2
2 if 75=1(9 _
e |2

Ve =

d1 i) 0+ (d—2) 0+(d—1)[’

d ' d
0 if 7%-1(9) € T~ [Z,QHZ—D ,
e e 6 6+1 O+(d—2) 0+ (d—1)
k—1 z
* if 7 (H)E{d, 7 p , y )

For example,

| S — 2 —
e as d =3, 1/(§) = 12102« and V(z—;) = 22200%;

Figure 3-1: As d = 3, the kneading sequence of § = 1/7 is v(1/7) = 12102x

We shall say that an angle 6 € T, periodic under 7, is mazimal in its orbit if its
representative in [0, 1) is maximal among the representatives of 77() in [0, 1) for all j > 1.
If the period is n and the d-expansion (d > 2) of 6 is .21 ... ¢, then 6 is maximal in its orbit
if and only if the periodic sequence g7 ...¢, is maximal (in the lexicographic order) among
its shifts. For example, as d = 4, 3% = .02211 is not maximal in its orbit but g—? = .22110

is maximal in the same orbit.
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The following lemma indicates cases where the d-expansion (d > 2) and the kneading

sequence coincide.

Lemma 3.3.2 (Realization of kneading sequences). Let 0 € T be a periodic angle which is
mazimal in its orbit and let .g1...€, be its d-expansion (d > 2). Then, ¢, € {0,1,2,...,d—

2} and the kneading sequence v(0) is equal to €1 ... €p_1*.

For example,

e asd=3

e asd=4

4

Figure 3-2: As d = 4, the kneading sequence of § = 28/31 is v(28/31) = 3213x

01

Proof. Since 0 is maximal in its orbit under 7, the orbit of 6 is disjoint from ] 7 g] U] —_ =

0+ (d—-2) d—1
U-u)e =2
have the same itinerary relative to the two partitions T — {0,
0 0+1 0+ (d—2) 6+ (d—1)
da d 7 d ’ d
expansion (d > 2) whereas the second gives the kneading sequence. Therefore, the kneading
0 6+1 0+ (d-1)

]U]G, 1]. It follows that the orbit 77(), j = 0,1,...,n — 2
1 2 d—2 d—1
g,g,...,T,T} and

} (see Figure 5-2). The first one gives the d-

T—{

sequence of 0 is €1 ... &,_1*x. Since 7P71(0) € 771(0) = {E’ R } and since
-1 1 -2 -1

0_’_%) € 10, 1], we must have 7°71(f) = {2,9; ,...,9+(Z )} < dd . So ¢p,

as the first digit of 7P~1(6), must be in {0,1,2,...,d — 2}. O
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3.3.2 Cyclic expression of kneading sequence

X ={0,1,...,d —1}(d > 2) is an alphabet. X* is the set of all sequence of symbols from
X with finite length, that is,

X*={wn...njy,e X,t € N}

The element of X* is called word, its length is denoted by | -|. For any w € X*, w can be

written as 4" ;= w...u with v € X* and n > 1.
——

n

For example: 121212 = 123, 1234 = 1234.
Definition 3.3.3. A word is called primitive if it is not the form u™ for anyn > 1,u € X*.

The following lemma is a basic result about primitive words due to F.W.Levi. One can

refer to [KM] for the proof.

Lemma 3.3.4 (F.W.Levi). For each w € X*, there exists an unique primitive word a(w)

such that w = a(w)™ for some n > 1.

a(w) is called the primitive root of w, this lemma means the primitive root of a word is
unique. Let w be a word, we denote by L., the set of all words different from w only at the

last digit.

Lemma 3.3.5. If w is a non-primitive word, then any word in L., is primitive.

Proof. As w is not primitive, then w = a™ where a is the primitive root of w and m > 1. w’
is any element of L., then w' = a™ 'a’ for some a’ € L,. Now assume w’ is not primitive,
then w’ = 2™ where z is the primitive root of w’ and n > 1. Obviously |z| # |al.

If |z| < |al], then n > m > 2 and a = zb for some b € X*.

m—1 1./ m—1 —1

/ — / — !
a a =72"= 2a"""d =a a'z = za™ m=2,

a' = zba z —>

Jv e X*, 5.t a=bv,|v] = |z] = a™ b = ba™ %d 2(d = b)) =

v =z and a™1b = ba™ 20 = o™ 2bvb = ba™ 24’ = a/ = vb.
It is a contradiction to a = zb.
If |2| > |al, then there exists 2’ € L, such that 2" 12/ = ™ = w with m >n > 2. Tt

reduces to the case above.
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Now, let 6 be a periodic angle with period p > 2. v(#) is the kneading sequence of 6.
Definition 3.3.6. If there is a word w = vy ...y such that v(0) = wslw, := W. . wWwy,
1
P
where wy = vy ... v—1x and t is a proper factor of p with ts = p, then v(0) is called cyclic,

otherwise v(0) is called acyclic.

Definition 3.3.7. v(0) = wslw, is cyclic. If w is a primitive word, we call wslw, a

cyclic expression of v(0).
The following proposition is a corollary of Lemma 3.3.4 and 3.3.5.

Proposition 3.3.8. If v(0) is cyclic, then its cyclic expression is unique.

Proof. Assume w3~ 1w, and u!~1lu, are two cyclic expression of v(#) where w = v ...1; and
U=¢€1...6n. If y =€, then w® = u!. By Lemma 3.3.4, we have w = u. If v; # €,,, then

s -1

w® = v~ with some v’ € L,, but this is a contradiction to Lemma 3.3.5. O

3.3.3 Dynamics of parabolic unimodel polynomial

Let f.(2) = 22+ ¢ (d > 2) and My be the Multibrot set for this family of unimodel
polynomials (Section 2.2.1).

If ¢ is the root of some hyperbolic component and ¢ # 7, (0), then two periodic pa-
rameter rays Ry, (0) and Rag,(n) land on ¢, we say 6 and n are companion angles, and
6,71 have the same period under 7. c¢ is primitive if and only if the orbit of Ry, (6) and
Rpyr,(n) under 7 are distinct. In dynamical plane, the dynamic rays R.(f) and R.(n)
land at a common point x; = 7.(0) = 7.(n). This point is on the parabolic orbit of
fe with its immediate basin containing the critical value. R.(f) and R.(n) are adjacent
to the Fatou component containing ¢ and the curve R.(6) U R.(n) U {z1} is a Jordan
curve that cuts the plane into two connected components: one component, denoted by
V1, contains the critical value ¢; the other component, denoted by Vp, contains R.(0) and
all points of parabolic cycle except x1. Since Vj contains the critical value, its preimage
U, = f71(V1) is connected and contains the critical point 0. It is bounded by the dynamical
rays R.(0/d),...,R.((0 +d—1)/d); Re(n/d),...,Rc((n+d—1)/d). Suppose § > 7, and
since each component of C \ Uy is conformally mapped to Vy which is bounded by R.(f)
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and R.(n), it is easy to see that R.((§ +m — 1)/d) and R.((n + m)/d) land on a com-
mon point which is one of the preimage of x; for m € Z;. Denote U, the component of
C\R((0+m—1)/d) U{v.((n+m)/d)} UR.((n+m)/d) disjoint with U,. See Figure 3-3

(primitive case) and Figure 3-4 (satellite case). Note that f. : Uy, — Vj is conformal.

Figure 3-3: The dynamical plane of fe,. co := v, (7/26) = yar5(9/26) is the root of some
primitive hyperbolic component as illustrated in Figure 2-2. The dynamical rays R, (7/26)
and R,(9/26) land on a common parabolic point of f,, with period 3.

If ¢ is a co-root of some hyperbolic component, then exactly one period parameter ray
Ry, (B) land on it (see Figure 2-3). In dynamical plane, R.(3) is the unique dynamical
ray landing on a parabolic periodic point v.(8) := x1, whose immediate basin contains the
critical value c. The parameter c is a primitive parabolic parameter. Denote V7 the union
of Fatou component containing ¢ and external ray R.(3), Vo = C\ Vi, Ux = f-1(V1). U is
the component of f;!(Vp) adjacent with R.((8+m—1)/d) and Rc((8+m)/d), m € Zq.(see
Figure 3-5).

Remark: in our paper, if c is a parabolic parameter, then f. has unique parabolic orbit,
denoted by {x¢, z1,...,2k_1}. x1 is the point whose immediate basin contains critical value

C.
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The following lemma provides a criterion for 6 such that vz, () is a primitive parabolic

parameter.

Definition 3.3.9. Let 0 be a periodic angle of period p and the d-expansion of 0 be €1 ... €.
We call €1 ... €, the periodic part of the d-expansion of 0.

Figure 3-4: The dynamical plane of f.,. ¢1 := a5 (11/80) = vas,(19/80) is the root of some
satellite hyperbolic component as illustrated in Figure 2-2. The dynamical rays R, (11/80)
and R, (19/80) land on a common parabolic point of f., with period 2.

Lemma 3.3.10. 0 is periodic under T with period p > 2. If ¢y := v, (0) is the root of

some satellite hyperbolic component, then 0 satisfies the following properties:
(1) v(0) is cyclic.

(2) Denote by ws~lw, the cyclic expression of v(0) where w = vy ...y, t is a proper factor
of n and ts = p. Then the last digit of the period part of the d-expansion of 0 is vy or

Vg — 1.
Moreover, if 0 is mazximal in its orbit, then v(0) also satisfies
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(3) t is the length of parabolic orbit and the last digit of the period part of the d-expansion
of @ must be vy —1 € [0,d — 2].

Figure 3-5: The dynamical plane of f.,. co := ~var,(1/5) is a co-root of the hyperbolic
component illustrated in Figure 2-3. R, (1/5) is the unique dynamical ray landing on
Yeo (1/5) which is the parabolic point of f., with period 2.

Proof. Let n be the companion angle of 6, then in dynamical plane of f.,, Re,(0) and R, (n)
land on z; (see Figure 3-4). As Vi contains no points and external rays of the parabolic
orbit, then {xg,z1,...,xr_1} together with their external rays belong to Ufn;lo Upn.

For ¢ is satellite parabolic parameter, the length p of parabolic orbit is a proper factor
of n and f,, acts on the rays of the orbit transitively. Then we have, in v(0) = V1. . vp_1%,
Vj = Vjimod)k for 1 < j < p—1, that is, v(0) = ul=Tu, where u = vy ...v;. By definition
of kneading sequence, we can see 71 (0) € (0 + vy, — 1)/d, (6 + vy)/d). It follows x
together with its external rays belong to U,,. Then 7P~1(8) is either (0 + vy —1)/d (8 > n)
or (0 +vg)/d (6 < n) (see Figure 3-6). So the last digit of d-expansion of @ is either
ve—1(0>n)or v (8 <n). Let w = vy ... be the primitive root of u, then u = w*/*. We
have w*~lw, is the cyclic expression of v() (Proposition 3.3.8) and v; = vy, so § satisfies

property (1) and (2).
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Figure 3-6:

Furthermore, if 8 is maximal in its orbit, then 6§ > 7, so the last digit of the period part

of the d-expansion of 6 must be 14 — 1. By lemma 3.3.2, § = w vy ... vp_1(1p — 1)
and 0 < »y — 1 < d— 2. Note that the angles of external rays belonging to x; are
0, 7%(0),...,76"Vk(9) with the order § > 72(0) > --- > 7(6=DP(h). The maximum of 4

implies 7 is the second largest angle in orbit of #, then n = 7%(0) = w!=2vy ... vp_1 (vp — 1)u.
If w is not primitive, then k/t > 1. It follows 7¢(f) > 7%(8) = 1, a contradiction to that 7
is the second largest angle in orbit of 6. So u is a primitive word and hence ¢ = k is length

of parabolic orbit.

O

Then once 6 doesn’t satisfy the property in this lemma, we have 7y, () is a primitive

parabolic parameter. The lemma below can be seen as a application of lemma 3.3.10.

Lemma 3.3.11. Assume 0 = .ws lvy...vi_1(vy — 1) is maximal in its orbit, where w =

V1 ... is primitive with vy € [1,d — 1] and t is a proper factor of p with ts = p. Let

Bui—i = ws vy ooy (e — i) for2<i<uy

8 w v (e = 1)(d—=1) ast>2
1=

m...m(m—1)(d-1) ast=1
Then v, (Bu,—i) s a primitive parabolic parameter for any 2 < i < vy. vy, (B-1) is a
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satellite parabolic parameter for 6 = (d—1)---(d—1)(d —2) and a primitive parabolic

parameter for any other case.

Proof. Let f = w1y ...14_1j be any angle among {f,,_i}2<i<y,, then 0 < j < 1y — 2.
The maximum of # implies the maximum of 3 in its orbit. Since w is primitive, by lemma
3.3.2, we have wslw, is the cyclic expression of v(B). As j <y —2 < 1y — 1, with the
maximum of 3, the property (3) in lemma 3.3.10 is not satisfied. So yar,(5) is a primitive
parabolic parameter.

For 3_1, the maximum of # implies 3_; is greater than 7(8_1), 72(8_1),...,7P72(B_1)

wslyy v gx ast > 2
but less than 7P71(8_1). Tt follows v(B) = = wslw,. Tt is

m...mmx ast=1

the cyclic expression of (), then if 3 satisfies the property in lemma 3.3.10, v is either

Oord—1. Since 1 < 1y < d—1, we have vy must be d — 1, then the maximum of 6

implies § = .(d—1)---(d—1)(d —2). So var,(S-1) is a primitive parabolic parameter as
long as @ # .(d—1)---(d—1)(d —2). In the case of 0 = .(d —1)---(d — 1)(d — 2), we will

see in lemma 3.3.13 that vz, (6) is the root of a hyperbolic component attached to the main
cardioid and _; is the companion angle of #. In this case, v, (5-1) is a satellite parabolic

parameter.

Remark. In this lemma, we distinguish 5_; according to whether ¢ > 2 or t = 1. It is
because that we don’t find a uniform expression of §_; for the two cases rather than the

case of t = 1 is special.

3.3.4 Itineraries outside the Multibrot set

If ¢ € C\ My, the Julia set of f, is a Cantor set. If ¢ € Ry, (0) with 6 # 0 not necessarily
periodic, then the dynamical rays R.(6/d)... R.((6 + d — 1)/d) bifurcate on the critical
point. The set Rc(0/d) U ... U R.((0 +d — 1)/d) U {0} separates the complex plane in
d connected components. We denote by Uy the component containing the dynamical ray
R.(0) and by Uy,...,Ug4—1 the other component in counterclockwise (see Figure 3-7).

The orbit of a point x € K, has an itinerary with respect to this partition. In other

words, to each x € K., we can associate a sequence in ZdN whose j-th entry is equal to k
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Figure 3-7: The regions Uy, U;, Uz, Us for a parameter ¢ belonging to Ry, (1/15).

if fcoj_l(as) € U . This gives a map ¢, : K. — le Moreover, t. is a bijective for any
ce C\ M.

In ZSI, we can define a shift which maps €jesez--- to esezeq---. A sequence in ZE\; is
called (n,p)-preperiodic if it is preperiodic under shift with preperiod n and period p. It is
known that for ¢ outside Multibrot set My, the dynamic of f. on K. is conjugate to shift
on Z§ via the map ¢.. In particular, z is a (n, p)-preperiodic point of f. if and only if ¢.(z)

is a (n, p)-preperiodic sequence in ZS‘.

Proposition 3.3.12. Let 1...€,_1% be the kneading sequence of a periodic angle 0 with
period n > 2. If co := v, (0) is a primitive parabolic parameter and if one follows con-

tinuously the periodic points of period n of f. as ¢ makes a small turn around cg, then

the periodic points with itineraries €1 ...ep—1m and €1 ...ep—1(m + 1) get exchanged where

m € Zgq s the last digit of the period part of the d-expansion of 6.

Proof. Since ¢y is a primitive parabolic parameter, then the periodic point z1 := 7., (6) has
period n and multiplier 1. According to Case 2 in the proof of smoothness and lemma 2.2.1,

the projection from a small neighborhood of (¢g, 1) in X, to the first coordinate is a degree
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2 covering. So the neighborhood of (cp,x1) in X,, can be written as
{(Co + 62, 2(8)), (co + 62, 2(=0)) ’ |0] < 5}

where z : (C,0) — (C, z1) is a holomorphic germ with z/(0) # 0. In particular, the pair of
periodic points for f. which are splitted from x; get exchanged when ¢ makes a small turn
around cp. So, using analytic continuation on C\ (Mg U Ry,(0)), it is enough to show that

there exists a ¢ € C\My close to ¢y such that x(++/c — ¢o) have itineraries &1 ... ¢,_1m and

€1...€p—1(m+ 1) where m € Zg is the last digit of the period part of the d-expansion of 6.

Let us denote by Vy(co), Vi(co), Uo(co),- .., Us—1(co) and Uy(co) the sets defined in the
previous section. For j > 0, set x; := fcjo (xz0) and observe that for j € [1,n — 1], we have

YIS Ue]- (C()).

For ¢ € Ry, (0), consider the following compact subsets of the Riemann sphere :
R(c) := Re(0) U{c,00} and S(c):= Re(0/d)U...UR:((0+d—1)/d)U{0,00}.

Denote by Up(c) the component of C~\.S(c) containing R.(0) and by Ui (c),...,Us—1(c) the
other component in counterclockwise. From any sequence {c,} C Rz, () converging to
co, by extracting a subsequence if necessary, we can assume R(c,) and S(c,) converge
respectively, for the Hausdorff topology on compact subsets of C U {oco}, to connected
compact sets R and S. Since S(c) = f7(R(c)), we have S = fi}(R). According to [PR,
Section 2 and 3], RN (C\K.,) = R, (0), the intersection of R with the boundary of K,
is reduced to {1} and the intersection of R with the interior of K., is contained in the
immediate basin of 21, whence in V;. It follows R C Vi(cp) and S C Uy(cp), that means

any compact subset of C\Uy(co) is contained in C~\.S(¢,) for m sufficiently large .

For j € [1,p — 1] and let D; be a sufficiently small disk around z; so that
ﬁj C Ugj (Co) C (C\U*(CO).
According to the previous discussion, if m is sufficiently large, we have

fg;l(:n(:lz\/cn — co)) C Dj C Ug,(cn).
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So the first p—1 symbols of the itineraries of z(£v/c,, — ¢o) are all ey, ..., ep—1. As z(y/cn — o)
and z(—+/c, — co) are different p periodic points of f., , their itineraries must be differ-
ent. It follows ffnfl (m(:lq/ﬁ)), which are splitted from xzg, lie in different component
of C\ S(c,). Combining with the fact that Re,((6 + m)/d) lands on zg (m is the last
digit of the period part of the d-expansion of ), we have fn_l(x(i\/m» belong to

Um(cn) and Up11(cp) respectively, then x(%+/c, — co) have itineraries 7...¢,_1m and

€1...€p—1(m + 1) respectively.

O]

Lemma 3.3.13. Forf =1—-1/(d?—1)=.(d—1)---(d —1)(d — 2) (p > 2), we have vy, (6)
is the root of some periodic p hyperbolic component attached to the main cardioid. If n is

denoted the companion angle of 6, thenn=df —d+ 1.

Proof. Let ¢ := v, (0), then z1 := 7, () is the parabolic periodic point of f,, as previous.

By lemma 3.3.2, v(f) = (d —1)---(d — 1)x, 80 (d — 1) - - - (d — 1)« is the cyclic expression of
v(6). If zy # x1, then the length of parabolic orbit is greater than 1. It implies the property
(3) in lemma 3.3.10 is not satisfied, so ¢g is a primitive parabolic parameter. According to
proposition3.3.12, when ¢ € C\ My is close to cp, 1 splits into two n periodic point y, z

of f. with itineraries (d —1)---(d—1)(d —2) and (d —1)---(d—1)(d —1). It leads to a

contradiction to the period n of y and z. So x¢g = z1 and then ¢y is the root of some periodic
n satellite hyperbolic component attached to the main cardioid.

By the maximum of ¢, we have Uy_; is bounded by Re,((0 +d — 2)/d) and Re,((n +
d—1)/d). v(#) = (d—1)---(d— 1)* implies Rey(f) C Uq—1, then 6 < (n+d —1)/d and

xo is on the boundary of Uz_1. On the other hand, (n+ d — 1)/d is in the orbit of 6, so
0> (n+d—1)/d. Then we have n =df —d + 1.
]

Remark. The dynamical rays R.,(f) and R.,(n) are consecutive among the rays landing
at 9. Lemma 3.3.13 implies R.,(f) is mapped to R.,(n). It follows that each dynamical

ray landing at xg is mapped to the one which is once further clockwise.

Proposition 3.3.14. Let 0 =1—1/(d? —1) = .(d—1)---(d — 1)(d — 2) be periodic with

period n > 2. If one follows continuously the periodic points of period n of f. as ¢ makes a
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small turn around v, (0), then the periodic points in the cycle of 17 ((d — 1) -+ (d — 1)(d — 2))

get permuted cyclically.

Wi
TR

Figure 3-8: The dynamical plane of f.,. co := var,(0) with 6 = .2221

Proof. Set ¢y := v, (). By Lemma 3.3.13, all the dynamical rays R, (77(6)) land on
a common fixed point xg. This fixed point is parabolic and the companion angle of 6,
denoted by 7, equals to df — (d — 1) = df(mod Z). Vi(cy) C Uyz—1(cp) which is bounded by
Re, (0 +d—2)/d) and R, (9).

According to Case 3 in the proof of smoothness and lemma 2.2.1, we have the projection
from a small neighborhood of (¢g, xg) in X, to the parameter plane is a degree p covering.

Then the neighborhood of (cg, o) in &, can be written as
[(co + 8, 2(8)), (co + 87, 2(wd), ... (co + 0¥, (P 18)) | 13] < e}

where z : (C,0) — (C, x0) is a holomorphic germ satisfying 2/(0) # 0. So, for ¢ close to cg,
the set x{{/c — cp)} is a cycle of period p of f., and when ¢ makes a small turn around ¢y,
the periodic points in the cycle z{¢/c — cp)} get permuted cyclically. So, combining with

analytic continuation on C\ (Mg U Rjz,(0)), it is enough to show there exists a ¢ € C\My
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close enough to ¢y such that the point ¢ *((d — 1) --- (d — 1)(d — 2)) belongs to z{¥/c — co}.

Equivalently, we must show that there is a sequence {¢;} C C\ M, converging to ¢g, such

that the periodic point y; := Lc_]_l((d —1)---(d—1)(d — 2)) converges to zg.

Let {c;} C R, (0) converge to ¢y as j — co. Without loss of generality, we may assume
that the sequence y; converges to a point z, R(c;) converges to R and S(c;j) converges to
S in Hausdoff topology. The definition of R(c), S(c), Uo(c),...,Uq—1(c) are in the proof
of proposition 3.3.12. As (cg, z) is on &p,, then z is either the parabolic fixed point or

repelling p periodic point of f,.

Suppose z is a repelling p periodic point, set z; := féo(z). Now we will define a new
sequence of open domain {Wm(co)}. Win(co) is the connected component of U,(cp)\ the
closure of Fatou component containing 0, adjacent with U, (co), Un+1(co) (see Figure 3-8).
According to [PR, Section 2 and 3], RN (C\K,,) = R (0), the intersection of R with
the boundary of K., is reduced to {zo} and the intersection of R with the interior of K,

is contained in the immediate basin of x¢. It follows {zp,...,2p—1}()S = 0. Then for j

sufficiently large, {20,...,2p-1} C C\ S¢;. As y; has itineraries (d —1)---(d — 1)(d — 2),
we have {Zo, . Zp_g} C Udfl(C[)) UWd71<CO)7 Zp—1 € Ud,Q(Co) UWd,Q(CQ).

Claim 1. Zp—1 ¢ Wd_Q(CO).

Proof. In J(f,), xo is the unique periodic point with more than one external rays landing

on it (refer to [Poi2, proposition 3.3]). So there is exactly one external ray landing on 2,1

with period n. Its angle is denoted by a is a integer. If z,_1 € W,_o, the angle of

a
a —1’
external ray belonging to z,_1 satisfy

n+d—2 a 0+d—2 1
0=1—— n=dd—d+1).
i a1 a ! 1" 1)
by simple computation, we have
k(dP —1) . 1 k(dP —1) -1
ME T gl 1 ME g
d—1 TaSeS a1 ’

a contradiction to a is an integer. This ends the proof of claim 1.
Claim 2. z,_; ¢ Ug_2(co).
Proof. If z,_1 € Uj_a(cp), we label the sectors at z¢ by S;(0 < i < p —1) clockwise with

69



So = Vi(cp). The dynamics between these sectors satisfy

feq

fe fe
Vi(co) = So — 51 = Spa = Spo1 = C\ Ug-1(co)

As {z0,...2p—2} C Ug—1(co) UWa—1(co), we have 29 = fe,(2p—1) belongs to the union of
Wai(co) and U7 S;. If 29 € Sy (1 < dp < p—2), then f& 77 () = 2,04, €
55_2_“)(51'0) = Sp_o. It follows fo)(zp—2-iy) = 2p—1—i, must belong to Wy_1(cp). So
Zp—io € So and fcZO 1)(zp i) = Zp—1 € fcl0 1)(50) = Siy—1, contradiction to z,_1 € Ug_s.
If 29 € Wy_1(co), then z; € Sy. We have fc(éD*Q (21) = zp—1 € fcp 2)(So) = Sp_2, also a
contradiction to zp—1 € Ug_2(cp). This ends the proof of claim 2.
The two claim imply the assumption that z is repelling p periodic point is false and then

z must be a parabolic fixed point of f.,, that is z = zo. O

3.3.5 Proof of Theorem 3.3.1

Fix n > 1 (the case n = 1 has been treated directly at the beginning). We proceed to show
that X, is connected.

Set X :=C\ (MgURp,(0)) and F, := C\ Vj,, Take any pair of points (a,w), (a/,w’) in
/?O,p- By analytic continuation, we may assume a,a’ € X. Again by analytic continuation
on simply connected open set X, we may assume a = a’. Thus it is enough to show that
there exists a loop in Fj, based on a such that the analytic continuation along the loop
connects w and w’. We will give a algorithm to find such a loop.

Let z be any p periodic point of f,.

step 1 In the orbit of z, there is a point with maximal itineraries among the shift of ¢,(2)
in the lexicograph order, denoted by € ...€,. Set § = .€1...€, (¢ is maximal in its
orbit). If 6 satisfies the properties in lemma 3.3.10, do step 2 below. Otherwise,
v, (0) is a primitive parabolic parameter. According to lemma 3.3.2 and proposition
3.3.12, when a makes a turn around -z, (), the periodic point of f, with itineraries
€1...€ and m get changed. Then z is connected to a new orbit containing

tal(e1...(ep +1)). For this new orbit, repeat doing step 1.

step 2 0 = .€1...€, is maximal in its orbit and satisfies the properties in lemma 3.3.10.

If =.(d-1)---(d—1)(d—2), step 2 ends. Otherwise, let ws~lw, be the cyclic

expression of v(0) where w = vy ...1, vy € [1,d — 1]. As in lemma 3.3.11, we obtain
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a sequence of angles {f,,—2,...,00, f-1} and know that v, (5,,—i) is a primitive
parabolic parameter with v(6) = € ... €,_ for any 7 € [2,14+1]. Then by proposition

3.3.12 again, as @ makes a turn around Y, (5y,—i) (2 < i < vy + 1), the periodic

points of f, with itineraries €; ...€ep—1(y — @) and €1 ...€p—1(vy — i + 1) get changed.

Then let a makes turns around from ~as,(8,,—2) to var,(5—1) one by one, we have

1 (61 T€p=16,) are connected with 13 1(€1...€y—1(d — 1)) by analytic continuation

through the points t; (€1 ... ep—1(€p — 1)), ..., 15 (€1 ... €p—10). For the new periodic

point ¢y (€1 ... €p—1(d — 1)), do step 1.

Every time a n periodic point of f, passes though step 1 or step 2, the sum of all digits
in the itineraries of the output periodic point is greater than that of the input one. For

fixed p, this sum is bounded (the bound is (d — 1)p — 1), then each p periodic point z can

be connected to the orbit containing t;1((d — 1) ---(d — 1)(d — 2)).

In our case, applying the procedure above to w and w’, we have w and w’ are connected

to two points of the periodic orbit containing ¢;1((d —1)---(d — 1)(d — 2)). Proposition
3.3.14 tells us, by analytic continuation, any two point in this orbit can be connected as
long as a makes the appropriate number of turns around s, (1 — ﬁ) Thus w and w’

are connected. O

3.4 The Galois group of @,

We apply the discussion in Section 2.4.2 to polynomial Qg ,. The first term of Proposition
3.1.3 ensure that Qop(c,2), as a polynomial of K[z], has only simple roots. Then the
splitting of Qo p(c, z) over K is a Galois extension over K. So we can define the Galois
group of Qo p, denoted by G p.

It is easy to see that any element of G, commutes with f.. We want to prove no other

restrictive properties for G p, in other words,

Theorem 3.4.1. The Galois group Gy of Qo p(c, 2) is consisting all permutations between

the roots of Qo p(c,z) € K[z] that can commute with f..

Proof. It is enough to prove that any permutation between the roots of Qo p(c,z) that

commute with f. must belong to Gg,. We will use the equivalent expression of G, stated
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in Section 2.4.2:
ACO’p = AC(fCO) = Gojp. coeC \ My

Let Vop = {ci | 1 <1 < wvg(p)(d—1)/d}. For 1 < i < yy(p)(d —1)/d, denote by ~;
a closed Jordan curve based at ¢y which rotates around ¢; counter clockwise. If we don’t

distinguish a curve and the homotopy class of the curve, then

m(C\ Vop,co) = (i [ 1 <@ <wvalp)(d—1)/d ).

So by the notation and discussion in Section 2.4.2,

ACop = (05", = dop(vi) | 1 < i <wa(p)(d—1)/d ).

Note that each element of ACy, commute with f.;, so each element of ACj, can be seen a
permutation between the p periodic orbits of f,.
By Remark 3.2.8, Lemma 2.2.1 and analytic continuation, we can obtain

Vi

(a) If consider o',

as the permutation between the p periodic orbits of f.,, then as ¢; is

Yi

0.p 18 a exchange of two orbits; as ¢; is a satellite

a primitive parabolic parameter, o

parabolic parameter, Ugfp keep every orbit fixed.
From the proof of Theorem 3.3.1, we can see that
(b) The action of ACy, on the p periodic orbits of f, is transitive.

with (a), (b), and by the following result in group theory (Lemma 3.4.2), we can obtain
Claim 1. ACy is the symmetric group of the p periodic orbits of f,.

Lemma 3.4.2. Let G be a subgroup of symmetric group Sy. If it is generated by exchanges

and acts transitively on {1,...,n}, then G = S,,.

By Proposition 3.3.14, there exists a permutation in ACy, such that it cyclicly acts on
one p periodic orbit of f., and keep other p periodic points of f, fixed. Since also ACy ), is
the symmetric group of the p periodic orbits of f.,, we can deduce
Claim 2. For any p periodic orbit of f,,, there exists a permutation in ACjy, such that it
cyclicly acts on this p periodic orbit of f., and keep other p periodic points of f., fixed.

Now choose any permutation o between the p periodic points of f., satisfying cof = foo.

Then o can be seen firstly as a permutation between the p periodic orbits of f.,, and then
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as a cyclic action on each orbit. According to Claim 1 and Claim 2, it is easy to deduce

o€ ACy,. m
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Chapter 4

Dynatomic preperiodic curve

In this chapter, we will give a description of dynatomic preperiodic curve from the view of
algebraic and topology.In Section 4.1 , we will prove that every A, , is an affine algebraic
curve and find its defining polynomial @, p(c,2). In Section 4.2, we give the irreducible
factorization of @y p(c,z) and prove that each irreducible factor is smooth. Then each
irreducible component of A, ;, is a Riemann surface. We will show that these Riemann
surfaces intersect pairwisely transversally at the singular points of @, (¢, 2). In Section
4.3, we will give a kind of compactification for each irreducible component of &, , by
adding some ideal boundary points such that it becomes a compact Riemann surface and
then calculate the genus of this compact Riemann surface. In Section 4.4, we will describe

Xy.p from the algebraic point of view by calculating the Galois group of @y, ,(c, 2).

4.1 The defining polynomial for X, ,

The objective of this section is to show that X, , is an affine algebraic curve and find its
defining polynomial.

Let @, ,(c, 2) = ff(nﬂo)(z) — f&"(2) (n > 1, p>1). Then the solutions of the equation
®,,,(c, 2) = 0 consist of all (¢, z) € C? such that z is a preperiodic point of f. with preperiod
[ and period k where 0 <[ < n and k|p. By abuse of notation, we will consider a polynomial

in Clc, 2] as a polynomial in K[z] where K = C(c) is the field of rational functions about c.

Lemma 4.1.1. There exists a unique double indexed sequence of squrefree polynomials
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{Qnp(c, 2) tn>1p>1 C Cle, 2] C K[z] monic about z such that

D, (e, 2) = Opo1p(e, 2) H Qni(c, z) foralln >1, p>1.
klp

Proof. Fix any n > 1. We claim: for any ¢g € C\ My, p > 1, all roots of @, ,(co, 2)
are simple. ( Demonstration: In this case, all periodic points of f., are repelling and
the critical orbit escapes to co. Then for any root zy of @, ,(co,2), (0P, /02)(co,20) =
(£ (20) ([fed) (20) — 1) # 0 ). From this claim and the fact that ®,;(c, z) is monic about
z, it deduce that if we can find a sequence of polynomials {Qy (¢, 2) }n>1,p>1 Which satisfy
the equation in the lemma, they are naturally squrefree.

Let ¢y € C\ My be arbitrarily. The fact that zg is a root of ®,_1 p(co, 2) implies zp is a
root of @, ,(co,z). By the claim above, we have ®,_1,(co, 2)|®np(co, 2) in C[z]. Since ¢
is any point of C\ Mg, we also have ®,_1,(c, 2)|Pnp(c, 2) in K[z].

We proceed by induction on p. For p = 1, we define Q1 = Pp1(c, 2)/Pr_11(c, ). It
satisfies the requirement of the lemma.

Assume now that for every 1 < k < p, the polynomial @, x(c, 2) is defined and satisfies
the requirement of the lemma. Let ¢y be any parameter in C \ My. Note that for 1 <
k < p, the two polynomials (en z) ®,_;x(co,2) and @, (co,2) don’t have a common
root (by the claim above). Thus, if 2z is a root of @, x(co,2), then it is a preperiodic
point of f., with preperiod n and period m (and m|k). In fact, m must be equal to k.
( Otherwise, Qn x(co, 2) - Hm,‘m Qn.m (o, 2) would have a double root at zp by induction,
but would at the same time divide ®,, ;(co, 2), a contradiction to the claim above). Then
we can conclude that any two polynomials among { ®,_1,(co,2), Qnk(co, 2) }1<k<p have
no common roots and any one among { ®,_1,(co, 2), Qn (o, 2) }<i<p divide @, y(co, 2).
Hence ®n—1,5(co, 2) - [ 11 n<p @nk(co, 2) divides @y p(co, 2) in C[z]. As ¢ is any point of
C\ Mg, the polynomial ®n_1,(c,2) - [T5) 5<p @nk(c, 2) divides @y (e, 2) in K[z]. We can
then define

Qup(€,2) = Pup(c,2)/[@nrp(e.2) - [ Quale 2]

Elp,k<p

It satisfies the requirement of the lemma. O

Recall that {v4(p)}p>1 is the unique sequence of positive integers satisfying the recursive

relation d? =3~ va(k). It is easy to see that the degree of Qo is v4(p) and the degree of
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Qnp is va(p)(d — 1)d" ! for n > 1.

Remark 4.1.2. Note that ®,,(c,2) = Pp_1,(c, fe(2)) for any n > 1, p > 1. By the

definition of Qn p, we have

Hk’|p QH*LP(C? fC(Z)) = Hk\p Qn,p(cv Z) n > 2
[Lip Qop(e, fe(2)) = Ik Qople, 2) [Ty, Quple,2) n=1

for any p > 1. By induction on p, it follows

anlyp(ca fC(Z)) = Qn,p(c, Z) n>2
Qop(c, fe(2)) = Qople,2)Q1p(c,2) n=1

for any p > 1. This equation implies that we can obtain the properties of @y p by induction

on n.

Proposition 4.1.3. Letn > 1, p > 1 be any pair of integers and cog € C be any parameter.
Then zy € C is a root of Qn p(co, 2) if and only if one of the following 5 mutually exclusive

conditions holds:

(0) 2o is a (n,p)-preperiodic point of fe, such that fl (z) # 0 for any 0 < 1 < n and
[fea V' (f&' (20)) # 1.

(1) 20 is a (n,p)-preperiodic point of fe, such that féo (z0) =0 for some 0 <1 <n.

(2) 20 is a (n,p)-preperiodic point of fe, and [fe3]'(for(20)) = 1.

(3) 20 is a (n, m)-preperiodic point of fe, such that m is a proper factor of n and [f"]'(for'(20))

is a primitive n/m-th root of unity.

(4) z0 is a (n — 1,p)-preperiodic point of f., and ffo(n_l)(zo) =0.

Proof. The proof goes by induction on n. As n =1, Qoup(c, fe(2)) = Qoplc, 2) - Qip(c, 2).
For any ¢g € C, %y is a multiplier root of Qo p(co, feo(2)) <= (co, feo(20)) € Cop2U Cops
(case 1) or zp = 0 and ¢ is the center of hyperbolic component with period p (case 2).

In case 1, if 2y is periodic, then zj is a root of Qg ,(co, z). Moreover, Qo ,(co, fe,(2)) and
Qo,p(co, z) have the same multiplicity at 2o, so zg is not a root of Q1 ,(co,2). If 2o is not

periodic, by Propostion 3.1.3 , zg is not a root of Qg ,(co, z). So zp is not a common root
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of Qop(co,2) and Q1 p(co,2). In case 2, by (1) of Proposition 3.1.3 , 2o is simple root of
Qo,p(co, 2), hence zj is also a root of Qo ,(co, feo(2)). In any other situation, Qo ,(co, feo(2))
only has simple root. Then zj is a common root of Qo p(co,2) and Q1 ,(co, 2) if and only
if zp = 0 and ¢y is the center of some hyperbolic component with period p (condition (4)).
Except this case, z is a root of Q1,(co, 2) <= fe(20) is a root of Qo p(co, z) but zg is not
a root of Qo (co,z). Then Proposition 3.1.3 implies that z, satisfies one of the conditions
(0),(1),(2),(3) in Proposition 4.1.3.

Assume that the proposition is established for 1 < I < n. At this time, Q, (c,2) =
Qn—1p(c, fe(2)). So for any ¢y € C, 2y is a root of Qpp(co,2) if and only if fe,(z0) is a
root of Qp—1p(co,2). Then by the inductive assumption, the point zy satisfies one of the 5

exclusive conditions in Proposition 4.1.3. O

Now we set
Xnpo = {(c,z) € C?|(c, z) satisfies Condition (0) in Proposition 4.1.3}
and for 1 < a <4, set
Crpa ={(c,2) € (C2|(c, z) satisfies Condition () in Proposition 4.1.3}

It is easy to see that Xn,p,O UChp1UChp2 = Xn,p and Cp, p1 UCyp2UC,3UCH,4 18 a
finite set. Then we have

Xn,p = {(Cv Z)|QH,P(C’ Z) = 0}'

4.2 The irreducible factorization of (@),

In the periodic case (n = 0), we have proved that Qg is smooth and irreducible in Chapter
1. But in the preperiodic case (n > 1), the polynomial @, displays a very different
behavior: for d = 2, it is smooth and irreducible as the periodic case, however, for d > 3, it
is neither smooth nor irreducible. In this section, we will find its irreducible factorization
and prove the smoothness for each irreducible component. We will also show that these

components pairwise intersect transversally at the singular points of X}, .
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4.2.1 Factorization of (),, and the behavior at its singular points
Fix any n > 1, p > 1. We have the following factorization result.

Lemma 4.2.1. (Algebraic version) There exists a unique sequence of monic polynomi-

als {q (c, 2)h<j<d—1 C Cle, 2] C K[z] such that
Qnp(c, 2) H qnp ¢, 2)

The degree of qfhp is d"tvg(p). All points in Cy 4 are the roots of qfl,p for any 1 <

j < d—1, and there are no other common roots for qfl’p and q,{,pwith 1<i#j5<d-1.

(Topological version) Let Vi, = {(c,z) € C2|q%7p(c, z) =0} (1 <j<d—-1). Then

Crpa C Vﬂ;,p forany1<j<d—1 and {V%,p \ C'n’p,4}1<j<d_1 are pairwise disjoint.
Proof. Let K be a fixed algebraic closure of K. Set w = =

Let A be a root of Qg p(c,2) in K. Then wA, ..., w4 1A are roots of Q1 ,(c,2) in K.

Let us factorize Qo p(c, 2) in K by

va(p)

Qople,2) =[] (-4

s=1

(As, # Ay, for s1 # s2). Then Q1 (¢, 2) can be expressed as

va(p) d—1va(p) d—1 va(p) '
Qiple,z) = H (z—wAy) - (z—wT A, = H H (z—w A) H(wj)”d(p) H (w7 z—Ay)
s=1 J=1 s=1 j=1 s=1
Note that d|ry(p) so (w/)¥®) =1, For 1 <j <d—1, set
' va(p) ' .
q{’p(c, z) = H (z —wAg) = Qoplc,w 7 2) € Cle, 2] C K[z].
s=1

Then q{’p(c, z) is a polynomial in (¢, z) and is monic in K[z], satisfying

Qiplc,z) = qupcz

This gives a factorization of )1, in K[z]. For n > 2, we can define qﬁ;,p(c, z) inductively by

79



Ghp(c, ) = Qifl,p(ca fe(2)). As Qnp(c,2) = Qn-1,p(c, fe(2)), we have

d—1
Qn,p(c> z) = H Q{,p(cv Z)
j=1

This is a factorization of @ ,(c, z) in K]z].

We are left to prove that each qﬁp(c, z) satisfies the remaining properties announced in
the lemma. For n = 1, since q{’p(c, z) = Qoplc,w™2), then (co, 29) is a common root of
qip(c, z) and q{'vp(c, z) for some 1 <i#j<d—1 <= (co,w ‘20) and (co,w 7 z) are all
roots of Qo p(c,z) <= (co,20) = (¢0,0) € C1pa. For n > 2, the conclusion can be deduced
from that of case n = 1 and the definition of ¢, ,(c, 2).

O]

From Lemma 4.2.1, we can see that @, is reducible and non-smooth ( Cj, ;4 belongs
to the set of singular points of @) for d > 3. Let us now concentrate our study on the
factors qﬁp(c, z), je€l,d—1].

For n > 2, q%,p(c, z) is defined by q%,p(c, z) = qi_lvp(c, fe(2)). Interpret these equations

by topological view, we obtain a sequence of maps
{pg;p VI,V (e e (e flz) n=2 p2 1, 1< j<d- 1}.

Note that for n = 1, we can also define a map pji,p : V{‘,p — Xp,p by p%,p(c, z) = (¢, fo(2)).
Lemma 4.2.2. Foranyp>1, 1 <j<d-1,
o the map pip : V{,p — Xop s a homeomorphism.
e forn > 2, the map p%,p : V%,p — Vifl’p is of degree d with critical set
D], ={(c,0) €V}, | d,(c0) =0}
Moreover, each critical point has multiplicity d — 1.
Proof. 1t can be deduced directly from the definition of q%,p(c, 2,np>1,1<j<d-1. O

The following proposition is the core of this section.
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Proposition 4.2.3. For anyn,p > 1, 1 < j <d — 1, the polynomial qﬁ;,p(c, z) is smooth

and irreducible.

The proof of this proposition will be postponed to 4.2.2 .

By Proposition 4.2.3, we can restate Lemma 4.2.2 as follows.
Lemma 4.2.4. Foranyp>1, 1 <j<d-1,
e the maps pip : Vf,p — Xop 15 a conformal homeomorphism.

e Forn > 2, the map p%,p : V?L,p — Vﬁ;fl’p is a holomorphic branched covering of degree
d with critical set

D}, ={(c,0) € Vi, |d},(c, 0) = 0}
Moreover, each critical point has multiplier d — 1.

Remark 4.2.5. By the definition of q{7p(c, z), we have qip(c, z) = q{"p(c, w'Iz2) for any
1 <i#j<d-1. Then we obtain a“rotation” r;; between V{"p and V{,p for any 1 <
i #j <d-—1, defined by r;j(c,z) = (c,w7z). It is obviously a conformal map, then all
{V{,p}lgjgd—1 are conformal equivalent (also equivalent to Xy,). But unfortunately, the
map ri; can’t be lifted along pé’p and pip because r;; doesn’t map the critical values of pé’p
to that of piP, so we can not prove that Vé',p is conformal equivalent to Vip by simply lifting
Tij-

Q: Are {W;vp}1<j<d—1 conformal equivalent for fixred n > 2, p > 17

Now, we will provide some discussion about the singular points of on &}, ,. Following

the definition and notation in 6.1.1, we have the proposition below.

Proposition 4.2.6. For n,p > 1, each singular point of X, is ordinary and has multi-

plicity d — 1.

Proof. For any (cg,0) € Cyp,4, 0 is a simple root of Qo p(co,2), then 9Qq,/02(co,0) #
0. By the Implicit Function theorem, there exists a local holomorphic function z(c) in a
neighborhood of ¢y such that z(cy) = 0 and z(c¢) is the attracting p periodic point of f..
Then as illustrated in section ?7?, we have a local holomorphic function

£ (=(0)) (4.2.1)

C

(o) = [fP (2(0) = fo(£2PV(2(e))) - fe
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which has local degree d — 1 at cg.

Let z(c) = ax(c — co)® + O((c — co)**!) be the Taylor expansion of z(c) at ¢y. Note
that fo7~1(0),..., feo(0) are all distinct from 0. Then substitute the expansion of z(c) into
(5.2.10), we have

1(c) = Ac — o) D* 4+ higher order terms

in a small neighborhood of ¢y with A % 0. Thus k£ must be 1. Then Qq,(c,2) can be
expressed as

Qo p(c, 2) = app(c — co) + bopz + higher order terms

at (co,0) with agyp # 0, bop # 0. And hence
q{vp(c, 2) = Qoplc,w™2) = agplc — co) + bopw 7z + higher order terms

Therefore the tangents of {V{,p}lgg‘gd—l at (cp,0) are pairwise distinct.
Now assume that for 1 < [ < n, the tangents of {VZJ p}lggd,l are pairwise different
at each point of Cj,4. Let (co,20) be any point in Cj, p4, then (co, feo(20)) = (co,wo) €

Cp—1p4. Denote the Taylor expansion of qZLfl’p(c, z) at (cp,wo) by
qfhlvp(c, z) = aifl’p(c —¢p) + bf'%l’p(w — wp) + higher order terms (4.2.2)

where bZL_Lp # 0 (wy is a simple root of qfl_l’p(co, z)). Since [0f./0c|(co, 20) = 1, [0fc/0z](co, 20) =

dz3™1, the Taylor expansion of f.(z) at (co, 20) is
fe(2) =wo + (¢ — o) + dzgfl(z — 20) + higher order terms (4.2.3)
Substituting (4.2.3) into (4.2.2), we obtain
q%7p(c, z) = (afl_Lp + bfz_Lp)(c —co) +dzt bﬁ;_lm(z — zp) + higher order terms

By the inductive assumption, the tangents of {Vﬂ;,p}lgjgd,l at (co, z0) are pairwise distinct.
So for n,p > 1 and any point (cg, 29) € Cy p.4, the first non vanishing term of @y, ,(c, 2)

at (co, z0) is



with {(al, p, b)) # (0,0)}1<j<a—1 pairwise different. Then (co, 29) is an ordinary singular
point with multiplicity d — 1.
O

Remark 4.2.7. Lemma 4.2.1, Proposition 4.2.3 and Proposition 4.2.6 provide us a clear
topological picture of X,y

o (U p4 15 exactly the set of singular points of Qnp;

o X, , is the union of the Riemann surfaces {Vﬁp}lgjgd_l and any two of them intersect

transversally at the singular points of X, .

4.2.2 Proof of the smoothness and the irreducibility of qfhp

The objective here is to prove Proposition 4.2.3.

The approach to prove the smoothness is similar to that of proving the smoothness of
Xo,p in Section smoothness.

The approach to the irreducibility is based on the connectivity of periodic curve Xj .
Then we will show the connectivity of V,]l'yp using the branched covering p%,p by induction
on n.

Proof of Proposition 4.2.3. The proof goes by induction on n.

For n = 1, as qip(c, 2) = Qop(c,w™2) and Qp,(c,2) is smooth and irreducible, we
know that q{’p(c, z) is smooth and irreducible for 1 < j < d — 1. Assume that for 1 <[ <
n, 1 <j <d-—1, the polynomial qu’p(c, z) is smooth and irreducible. Then we will show
that q%,p(c, z) is smooth and irreducible. Now fix any jo € [1,d — 1].

Smoothness of ¢/%: As ¢l (c,z) = qZLOpr(c, fo(2)), for any (co, z9) a root of ¢l (c, z), we

have , '
70 0, 9q;
P (g, 20) L2 (g, wo) + —22 (cg, wp)
Oc oc 0z (4.2.4)
8‘1%?17 aquo—l,p ' -
W( Oazo) Iz (007w0) ' fCO(ZO)

where wg = fu,(20). Then if 2y # 0, by assumption of induction of smoothness, [9¢g22,/d¢](co
,20) and [0¢)y/0¢](co, z0) can not equal to 0 simultaneously, it follows that ¢l ,(c, z) is
smooth at (co, 20). So we are left to prove that ¢i(c, z) is smooth at (c,0) € V2%. In

this case, ¢g is a Misiurewicz parameter with preperiod n — 1 and period p. Note that
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[0¢2°,/07)(co,0) = 0, then we have to show [Dgi%,/dc](co,0) # 0. Since

aQn, ; aquo,
S0 = [ dhple0,0) =5 (e0,0)

1<j#jo<d—1

and by Lemma 4.2.1, the point (co,0) is not a root of ], @.p(c, z), we only have to show

[0Qn p/0c](co,0) # 0. Furthermore,

0Py,
Oc

aQn,p
Jdc

(c0,0) = Pp1p(c0,0) - J] @nilco,0)-

klp,k<p

(007 0)

and it is known that ®n_1,(co,0) - [Tgpp<p @nk(co,0) # 0. So we only have to show
(0D, /0c](co,0) # 0. We shall choose a meromorphic quadratic differential with simple

poles such that

0P, dz?
Oc (c0,0) z—co

(fco)*Q == Q+

Then with Lemma ??, we obtain [0®,, ,/Jc](co,0) # 0.
We shall use the following notations:

2= forR0), Ok = fl(zk) =det, 0<k<p-1

co

yi=fL0), &= fly)=dylt,  1<i<n-—1

With these notations and a bit of calculations, we get

o fco(n-‘rp)

a on
Co, 0) = T(CO, O) — gcc (CO, 0)

= (0o - 0p-1—1)(ep—1-e1+ - +en_16n—2+epn_1+1)

0Py, (
oc

+0p-1-01+ -+ 01+ 1

Denote (0p - 0p—1 — 1)(€p—1---€1+ -+ ep—1En—2 +n—1+ 1) by a. Let

n—1

p—1
Pk 2 Al 9
=N Pk g d
Q kzzoz_zkz—i-; z

Z_
1 Ui

be a quadratic differential in Q(C). Here pr, (0 < k <p—-1), ;3 (1 <1 <n-—1) are

undetermined coefficients (note that y; = ¢p). Applying Lemma ?? and writing f for f,,
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we have

ro _ p_lpk< 2 2 >+”22Al< =2 d2? >+)\n_1< =2 dz:2>
k zZ—Z zZ—C l:lal

Z—yl_’_1 zZ—C En—1 Z— 20 Z—C

_ <pp1+)\n—1> dz? +p0 dz? o, Pp—2 dz?

5p71 En—1 Z— 20 50 z— 21 5p72 Z — Zp—1
n—1 p—1
A dz? A\ dz? Ap— dz? dz?
+{r=>2 += . T
—ea)z-y1 e12- 2 En—2 7= Yn—1 P ok | z2—co

We want to choose Q so that

[+Q—Q=— (onrp_l pk) dz*

k=0

It amounts then to solve the following linear system on the unknown coefficient vector

(pUa s 7pp717)‘17 .. '7)\77,71) :

1
5 L po 0
1
5, L Py 0
1 1
-1 5, 1 €1 Pp-1 _ 0
1 1 1 1 1
1+ €1 g2 & €n2  Ep_1 M “
1
- —1 )\2 0
1
En—2 _1 >\n—1 0

Denote by A the coefficient matrix, we have

(-1 "a

det(A) =
et(A) S0 Op1 €1 En1

Then whether £ = 0 or not, this linear system has non-zero solutions, and one of its solutions
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is

po = bo---dp

Pt = Opm (4.2.5)
AL = (0 0pq—1)-gp1--e

A2 = (00 0p—1—1) - epn_16n_2

)\nfl = (50 s (57,71 - 1) cEn—1

Therefore, for (po, ..., pPp—1, A1, ..., An—1) satisfies (4.2.5), we have

p—1 2 2
d od,, d
Q-9 = —(a—l— pk) i :—7”)(00,0)- i

As a conseqence [0®y, ;,/0c](co, 0) # 0.

Irreducibility of q%?p: By the smoothness of q%7p(c, z) (n,p>1,1<j<d-—1) and the
inductive assumption of irreducibility, we know that @2, : Vi% — Vf;ofl,p is a branched
covering of degree d, ijw‘O—Lp and each connected component of V%?p is a Riemann surface.
Then it is easy to prove that the restriction of gJZ'LO,p to any connected component of Vﬁ?p is

also a branched covering. Since the set of critical points of pf{’yp

Dity = {(,0)] @y, 0) = 0}

is non-empty and each critical point has multiplicity d — 1, the set Vﬁ?p must be connected.
By Theorem 2.4.3 and the smoothness of ¢7%, we conclude that ¢/(c, z) is irreducible in

Cle, z].

4.3 Genus of the compactification of Vﬂ@

In the previous section, we have seen that &, , is the union of d — 1 Riemann surfaces
{V%7p}1§jgd_1 and any two of them intersect transversally at the singular points of &}, .
In order to give a complete topological description of A}, ,, we also need the topological

characterization of each Vi, .
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In fact, by adding an ideal boundary point at each end of W;,p, we obtain a compactifica-
tion of V%,p, denoted by 17%713, such that )7%7,, is a compact Riemann surface (in section 4.3.1 ).
We will also calculate the genus of ]7%7,) (in section 4.3.2). Topologically, X, ,, is completely
determined by he number of its singular points, the genus of Vfl,p and the number of ideal
boundary points added on V%,p (or the number of ends of V%,p) for1 <j<d-—1. So we

can give a complete topological description of &, , (Lemma 4.3.4).

4.3.1 Compactification of V] |

Denote by Wflwz Vﬂ;,p — C the projection from V%,p to the parameter plane. It is easy to see

R Y '
Thp = T0.p O 91 © "0 Pn_1,° Fnp

where 7, is the projection from Aj; to the parameter plane. By Theorem 7?7 and Lemma
4.2.4, the map 71'% p° Vﬁp — C is a degree v4(p)d™~! branched covering whose set of critical

points equals to C? npl U c? np2 U c’ where C’j,p,a = Chpal Vn’p foralln,p>1, 1<

n,p,3’
j<d-—1, 0 <a<4 (note that Cy 1 = 0). Let Vnpa = W%p(C%,p@) (e =1,2,3). Then

the critical value set of m];,p, denoted by V{p, is equal to V,ip,l U Vﬁj,p Vn 3

Lemma 4.3.1. (1) For any 1 < i # j < d— 1, we have V’pl N VT{ 1= (0. The set
U p L consists of all Misiurewicz parameters such that c is (I, p)-preperiodic point

offcforsome()<l§n—1.

(2) Forany 1 <j<d-1, Vjp2 U V]p3 consists of roots and co-roots of all hyperbolic

components of period p.

Proof. (1) By Proposition 4.1.3, the set Ud ! VJ np1 consists of all Misiurewicz parameters

such that ¢ is (I, p)-preperiodic point of f. for some 0 <1 <n — 1. If ¢cg € V! ap1 N V for

n,p,1
some 1 < i # j < d—1, then ¢ is a (I, p)preperiodic point of f,, for some [ € [1,n — 1]
and there are two points (co, z1), (co, z2) belonging to Vi , and W@ respectively. It follows

(c0,0) € V], pN Vl a contradiction to Lemma 4.2.1.

+1,p?
(2) follows directly from 71'%4, = T0,p O p{’p 0---0 p{l_l’p o p%,p and Remark 3.2.8. O
Set Um" v gl i = (1) "1 (C\My), where £ p.i 18 @ connected component of ()" H(C\

My), called an end of V4, . Fix any ig € [1,mJ,,]. Since C\ My contains no critical values
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of 7r,]~;7p, the map

: gn,p,z’o —C \ Md

J }.
Tnplel .o

is a covering whose degree is denoted by dﬁL,p’iO. Note that C\ My is conformal to C\ D), it
follows that &’ flyp’io

n,D,%0 to the infinite far

is also conformal to C\ D. So if we add a point co

boundary of & J

npige then we get a new set g =8 U {odd o} and it is conformal

n,p,i0 n,p,i0 n,p;i
to C \ D. The point oo’ is called the ideal boundary point of &l and dfl’p’io

A piio is called

In this case, 7T¥L7p‘ & can be extended to
n,D,%0

the multiplicity of &l

n,p,io”

: gn,p,io — @ \ Md

=J }A.
Tnplel o

) = oo. This map becomes a branched covering of degree & with

. ~] 7
by setting 7y, p(co n,p;io

nzpaiO
a unique branched point co’, . .
D520

Adding the ideal boundary point at each end of Vﬁp, we obtain a compact Riemann

. . . j . . R
surface Vi, p := Vip U {oo] . },-7" and an extended branched covering 75,,: Vip — C. We
are left to calculate the number mﬁpof ends for V,{p and the multiplicity df‘%p’i of each end

of Vi .

Lemma 4.3.2. Foranyn,p>1, 1 <j<d—-1,1<1:< mﬁ;,p, we have d =d and

n7p7l

mhp = va(p)d 2,

n,p,t n,p,t
: . . . —1
# (ﬂ%p‘ j ) (co). Since & . is connected, Mon (W%p’ j ) acts on (Tr%p’ j ) (co)
P gn,p,i Py ’ gn,p,i ’ g”vpai

Proof. The map W%J)‘gj E g —5 C\Myis a covering. Fix ¢y € C\(MqURM,(0)), &’
n,p,i

transitively. Then fixing any point (cg, 20) € (W%’p‘gﬁ;,p,i>_l (co), the set (ﬂ%,p‘gi’p’) o (co)
is exactly the orbit of (co, z9) under Mon (W%,p’gi%).

Let ¢t : [0, 1] — C\ M, be a oriented simple closed curve based at ¢ such that ¢; intersects
Ry, (0) at only one point ¢;,. Let z; be the (n,p)-preperiodic point of f., obtained from
the analytic continuation of zy along ¢;. Note that as c varies in C\ (Mg U R, (0)), the
(n, p)-preperiodic points of f, the dynamical rays R.(0) and R.((0. + s)/d) (s € Z4) move

continuously. Consequently, we have

te,(2t) = teo(20) for t € [0, to)
te,(2t) = teo(21) for t € (to, 1]
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Furthermore, on one hand, z; and R, (0) move continuously for ¢t € [0,1]. On the other
hand, when ¢; passes through Ry, (0), the dynamical rays R, ((Ht + s)/d) (s € Zg) move
discontinuously and jump from R, ((6;_ + s)/d) to Re,, ((6¢, +s+1)/d), t— <ty < t;.

So if tey(20) = Bn ... Bi€1- - - €, then

Ct+

teo(21) = Bu+1) ... B+ D)l + 1) (e +1) (4.3.1)

Hence the map ®_; (c;) maps (co,20) to (co, 21) with 21 satisfying (4.3.1). Since 71 (C \
n,p

My, co) = (¢t), then we have

(7holes )*1 (c0) = {(c0,2)|tes(2) = (Bu+8) . (Br+ )(e1 + 8) - (ep T 5), s € Zy}

n,p,t

As a consequence, d” = d and mj, , = vg(p)d" 2. O

n,p,t

We can also use the itinerary to label the ends of V{;,p. The open set W := C\ (Mg U
Ryz,(0)) is simply connected. Let WY, C Vi, be the preimage of W by ., : Vi, — C.
Since W is simply connected, each connected component of YW maps isomorphically to W
by 7, (so there are vg(p)d" ! components in W%,p).

Define Lﬁ;,p : W%vp — ZS] by L%7p<c, z) = te(2). As c varies in W, the (n,p)-preperiodic
points of f., the dynamical rays Rc(0) and Re((6c + s)/d) (s € Zq) move continously. As
a consequence, the map wa : Wﬁ;,p — ZL is locally constant, whence constant on each
connected component of W%,p. Since ¢, : K, — Z§ is bijective, distinct components have
distinct itineraries, so each connected component of Llip,t of W'ﬂ;,p can be labelled by its
itinerary d;,p(ugm).

According to the proof of Lemma 4.3.2, each end of V%J) contains d components of W,%,p

and they are labelled by

{(Bn +5)...(Bi+s)(e2+5)...(ep+5)(e1+s) }seZd

for some (n,p)-sequence 3, ... 1€ .. €1 € Zd We define an equivalence relationship in
all (n, p)-preperiodic sequences in Z} such that B,...0& - 6e ~ B, ...05 . ey if

and only if

Bl ﬁ162 cep€y = (Bn+8)... (Br+s)(ea+8)...(p+5)(e1+5)
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for some s € Zg. The equivalence class of 3, ... f1€2 ... €,€1 is denoted by [5,, ... B1€2 ... €p€q)-

Then each 8j . can be labelled by [1,,(U? . )] where U7 is a component of WY, con-

n,p,1,8 n,p,1,S

J
tained in & it

Proposition 4.3.3. All ends of Vﬂ;,p can be labelled by {[Bn . Bale +j)m}}, where

Bm € Zq for 2 <m <n and €. .. €p€1 € ZdN is any p—periodic sequence under shift.

Proof. Let & . be any end of V . Let (co, w) be a point of &l

1,p,i 1,p,i with LCO( ) fez el - Ep€l.

By the following commutative graph, We have 51 = €1 + j. Then for (cp, z) belonging to

(e,wiz)

XU P

T0,p

any end of V%,p,

teo(2) = B ... Baler + j)ez - &e1

which is some (n, p)-sequence in ZY. So each end of Vﬂ;’p can be labelled by [, ... B2(e1 +
J)ez - €pe1) for some (n,p)-preperiodic sequence f3y,...[H2(e1 + j)ea .. €p€1. Besides, the
number of all equivalence classes with the form [8,, ... B2(e1 + 7)€z - 6pe1] is va(p)d™ 2, the

same with the number of ends on Vj, ,(Lemma 4.3.2). So all ends of VY, are labelled by

{[Bn o Ba(er+g)Ee €p61]‘ﬂn ... Pa(e1 + j)&a - €per is a (n, p)-preperiodic sequence }
]

4.3.2 Calculation of the genus of 92,17

Now, for any n,p > 1, 1 < j < d—1, we have obtained a branched covering 7?%71): 17%71, — Cof

degree v4(p)d" ! between two compact Riemann surface. By the Riemann-Hurwitz formula,
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we have

2— Qg%m + total number of critical points of %th = 2uy(p)d™ 1.

where gi;,p denotes the genus of 9%,13. So in order to calculate the genus of 9%71,, we only
need to count the number of critical points of W%,p counting with multiplicity. It is known

that the set of critical points for 7, , is

J J vg(p)d™—2
C pluC pQUC p3U{oonpl}Zi1

We will count the critical points class by class.

e Counting the points in CZLP 1

By the definition of c’ we have

n,p,1?

n

Crp = U @hp) ™ o0 (0hi1,)7HDL,).
s=2
Recall that D%, = {(c,0) € C2‘qg,p(c, 0) = 0} is the set of critical points of ol . Fix
any s € [2,n]. Firstly, we claim #D7, = v4(p)d*~2 : on one hand, qs,p(c 0)=0 <~
qg 1p(c;¢) = 0. So deg(qg 1p(650)) = va(p)d®™ 2 implies #CZ, < vg(p)d*~2. On the
other hand, by the smoothness of V2, at (¢,0) € DI, we have [dql,,/¢](c,0) # 0. It
follows that each root of qs,p(c, 0) is simple, and #Ds,p = vy(p)d*~2.

Next, consider the map

J ) .. Y] J
Whsp = Fsq1p© 0 Fhp  Vip — Vip

It is casy to see that the set of critical points of hi, ,, is disjoint from (k)" (D1,).
It follows that #(hi, s,)  (DL,) = va(p)ds2 - d"* and each point in (h?, s ,) " H(Dl,)
is a critical point of 7 p with multiplicity d — 1. Therefore the total number of critical
points of %ﬁ;,p in C’ 1 18 equal to

n

Y vap)d - dv - (d = 1) = (n - 2)wa(p)d"2(d - 1).

s=2

e Counting the points in Ci,p,s
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By definition, €% 5 = (phyp)~o---0(p] )" (Cops) = (H]

nyoyp)_l(C'Qp,g). It is obvious

that Cpp 3 is disjoint from the set of critical values for h‘;,OJD, then each point P in

J

7.0, and each pre-image of P, considered

Cop.s has exactly d"~! pre-image under h
as critical point of ir\%,p, has the same multiplicity as that of P considered as critical
point of 7 . So the total number of critical points of %%,p in Ci,p,s is d"~! times the
number of critical points of 7y, in Cp, 3. Now we are only left to count the number

of critical points of my, in Co p 3.

Let Copar = {(c, z) € C’O,p,g‘z is k periodic point of fc}, then Cpp 3 is the disjoint
union of all Cy,, 3 with k|p, k < p. Fix any kg satisfying ko|p, ko < p. Note that
there are v4(ko)/d hyperbolic components in My of period kg and on the boundary
of any such component, there are (d — 1)¢(p/ko) parameters with their parabolic
periodic points satisfying the property of Cpp 3k, (For any t € N, ¢(t) is the number
of all numbers among {1,---,¢ — 1} which are co-prime with ¢). Then #Cp 3%, =
(va(ko)/d)(d—1)¢(p/ko)ko. Moreover, each point in Cp ;, 3 1, has multiplicity (p/ko)—1

as a critical point of 7 ,. So the number of critical points of 7, in Cp 3 is equal to

> (valk)/d)(d — 1)p(p/k)k(p/k — 1)

Eklp,k<p

Hence, the number of critical points of %,{,p in C’fl 03 is

A"y (valk)/d)(d = 1) (p/k)k(p/k = 1).

Elp,k<p

Counting the points in Cg;,,p,Q

By definition, C » = (php) ™" o0 (9] )" (Cop2) = (M), 0,) " (Cop2). It is very
similar to the case above. With the same reason, we can also conclude that the total
number of critical points of %%,p in Ciw is d"~1 times of the number of critical points

of T0,p in C()7p72.

Now we begin to count the number of critical points of 7, in Cp,2. By definition
of Cp p,2, the parameter set g ,(Cp p,2) consists of co-roots and primitive roots of all
hyperbolic components of period p. From Section 2.2.1, the number of co-roots and

roots for all hyperbolic component of period p is (d — 1)v4(p)/d. Moreover, in the
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calculation of number of critical points in Co p 3, we have actually got the number of
root of the satellite components with period p, that is 3y, -, (va(k)/d)(d—1)p(p/k).
Then

#Cop2 = pl(d = Vva(p)/d = Y (va(k)/d)(d = 1) (p/k)].

klp,k<p
By Remark 3.2.8, each critical point of 7, in Cp 2 is simple, then the number of all

critical points of my,, in Cop p 2 is

pl(d—Dvg(p)/d— > (va(k)/d)(d— 1)p(p/k)].

klp,k<p

Hence the number of all critical points of %%71, in C 2 1S

d"'p[(d = Dva(p)/d = D (va(k)/d)(d = 1)g(p/k)].

Elp,k<p

n—2
e Counting the points in {oonp 1};’2(17)”

By Lemma 4.3.2, there are v4(p)d™ 2 ideal boundary points on 9%4, and each one is a
critical point of %%,p with multiplicity d — 1. So the number of critical points of %ﬁl’p

in {oonm}»;’i(lp)dw2 is equal to vy(p)d"~2(d — 1).

By the Riemann-Hurwitz formula, we have

. 1 - " —
Gl =1+ gral)d 2 [(d = D0+ p) —2d] — > ~1) Y hva(k)p(o/b).
klp,k<p

From the formula of genus and Lemma 4.3.2, it is known that both g, ,, (genus of Vi )
and m%,p (the number of ends of 17%7;,) are independent of j. So we can omit j for simplicity.
The following lemma implies a complete topological description of Vi, (j € [1,d — 1]) and
K.

.

Lemma 4.3.4. (1) Si, S are two compact Riemann surface with the same genus. X7 C
S1, Xo C Ss are two finite set with #X1 = #Xo. Then there exists a homeomorphism
h:S1 — S such that h(X1) = h(X3).

(2) S is a compact Riemann surface and X C S is a finite set. Then for any o € sym(X),

there exist a homeomorphism h: S — S such that h(X) = X and h|, =
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They are classical results of topology of surface, then we omit the proof.

Corollary 4.3.5 (Topological description of &, ;). Topologically, V%,p is determined by gnp

and My, p. Xnp s determined by gnp, Mpp and #Cp pa.

Proof. 1t follows directly from Lemma 4.3.4 and remark 6.2.2. O

4.4 The Galois group of Q, ,(c, 2)

The objective here is to study @y p(c, z) from the algebraic point of view by calculating its
Galois group.

We apply the discussion in 4.4.1 to @, (n,p > 1). In proof of Lemma 4.2.1, we have
seen that @, p(c, z) has no multiplie roots as a polynomial in K[z]. So the splitting field of
Qn,p(c, z) over K is a Galois extension over K and then we obtain the Galois group of @y, p,

denoted by G,

Let m,, : X, — C be the projection from X, , to parameter space. From the previous

content, we know that m, , = U;l;% W%m and the set of critical points is

Cnvp = Cn7p71 U Cn7p72 U Cn7p73 U Cnap74'

The set of critical values V}, , = mp, ,(Cp p) is equal to the union of U;-l;% Vi, together with

the center of the hyperbolic components of period p (Lemma 4.3.1).

According to the discussion in 4.4.1 and Theorem 2.4.8, fixing any ¢y € C\ My C C\V,,,

we have two group morphisms:
Dpp: C\Vip — Sym(ﬂﬁé(CO)) and ¢np 1 C\ Vi p — sym(Zpp).

(Zyp consists of all (n,p)-preperiodic points of f,,) and three kinds of expressions of the

Galois group of @, € K[z] :
Gnp = Mony, , = AC) ).

We will compute the Galois group of @, (¢, z) in terms of the expression AC, .

94



Firstly, we will find some necessary properties that AC), , should satisfy.
AC, , = {ag,plagm is the permutation on Z,;, induced by v € m1(C\ Vo )}

Choose any o, € AC,,,. Note that v can be seen as the element of m(C \ V) for any
0 <1 < n. Then by the monodromy theorem of analytic continuation, we have

v

-
fCO o0 - O-nfl,p

n,p © fco on Zn,p (441)

Now we turn to the expression G, . For o € G, let A be any root of @, in K. If wA
is also a root of @y, p, then o(wA) = wo(A) is a root of @y, p, that is, o commutes with d-th
rotation. (In case n > 2, if A is a root of @y, p, then wA is always a root of Q. But this
fails in case n = 1). Interoperating of this property in term of the expression AC), ,, we

have
For any o), € ACyp, 2 € Znp, if wz € Zy, then o) (w2) = wo,) (2) (4.4.2)

So we have had two necessary properties that AC), ;,, should satisfy. What we would like
to prove is that no other restrictions are imposed on AC,, ;. Set Hy ) := ACy,p, consisting
of all permutations of Zj, which commute with f., (5 of Theorem 3.4.1). For n > 1, in-
ductively define by H,, , the subgroup of sym(Z,, ,) consisting of all permutations satisfying
(4.4.1) and (4.4.2), that is

e Foreach o € Hyp, there is an unique o’ € H,,_1 ;, such that f,,00 = o’of, (4.4.1)
e Foreacho € Hy, ), 2 € Zy,p, ifwz € Zy, 5, then o(wz) = wo(z) (4.4.2")
o’ is called the restriction of o on Z,_1 ;,, denoted by 0|Z7171 )

Proposition 4.4.1. Forn > 1, AC, , = H,,, or equivalently, Gy, consists of all permu-

tations on roots of Q. p which commute with f. and the d-th rotation.

Proof. The inclusion “C” is obvious. We will show “D” by induction on n.

_ _ o 1<i<d—1 )
As n =1, suppose Zy ) = {Zs}lgsgud(p)’ then Z1, = {wjzs 1§SSVd(p).ChOObe any
o1 € Hy p, properties (4.4.1") and (4.4.2') imply that
o1(wzs) = wiop(zs). (4.4.3)
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where o := O'|Zop, Jje[l,d—1], s € [1,v4(p)]. Since Hy, = ACy ), there exists yg €
m1(C \ Vop, co) with o, = 00. We can find v € m1(C\ Vi, o) such that Ylevy, , = 70-
» P

By the following commutative diagram

To.p

7
1p

Assume now AC), = H;, for 1 <1< n(n > 2). Denote ky, := v4(p)(d—1)d""2, Zp_1, =

LN 1<<d—1
. — L i VSIS
{w’}lgignn' Then Z,,, = {w Zif1<i<ny,

we have 0] = o1, and hence G, = Hi ;. From (4.4), we can also see AC} ), = ACy,,.
, where fe,(w'2;) = w;. Let o, be any element of
H, . By property (4.4.1') and assumption of induction,

On—1 = O-n|Z7L71,p

1

Then there exists v,—1 € 1 (C\ Vj,—1p, co) with aZ’fl »

= 0y—1. Consider 7, € m(C\ V,,)

such that v, =,_1,, then we have

‘C\Vn—l,p

Yn—
Yn _ n—1 __
n,p anl,p - ’I’L*l,p - O-n_l'

Set § = (o77) " 0 0y, then 0|4, ,, = id and by properties (4.4.2), (4.4.2),

Kn

o=1[0G: Gi+1)--(d=1) 1+ (ji — 1))
i=1
where (j; (ji+1)---(d—1) 1---(j; —1)) is the cyclical permutation on {z;, wz;,...,w% 12}
mapping z; to wii—lz;. To finish the proof of Proposition 4.4.1, we only need to find an
element A\ € m1(C\ V;, 5, co) such that a,’)’p = 9. In fact, we will show a stronger result: for
any i € [1, ky), we can find A; € 71 (C\ Vyp, co) with o) = (i (ji + 1) -+ (ji — 1)).

Fix any ig € [1,k,]. Suppose {zi,, wziy,...,w? 1z} C V%?p for some jg € [1,d — 1].
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Let (¢,0) € Wfp be a critical point of m,,. Then by the Implicit Function Theorem, a

neighborhood of (&,0) in X}, , can be written as
{(c,2¢) U (c,wze) U+ U (c,wdilzc)Hc — & <€}

where z. is a (n,p) preperiodic point of f. nearby 0 for ¢ # ¢ and z; = 0. The map 7, is a
degree d branched covering in a neighborhood of (¢,0) with only one branched point (¢, 0).
As ¢ make a small turn around ¢, the set {z., wz,... ,wd_lzc} gets a cyclical permutation
with w’z. mapped to w/t1z. and other (n,p) preperiodic points of f. get fixed. It follows
that for v € 71 (C\ V;,,p, co) homotopic to ¢, o5, = (2---d 1) acts on some {2, ,...,w? 12, }
such that {(co,w’z;,)|0 < j <d—-1} C V%?p. Now we connect (co, zi,) and (co, z;,) by a
curve from (co, zi,) to (co, 2, ) on W;?p\w;;,(vn,p) and denote its projection under 7, , by 8.
With an abuse of notation of curves and their homotopy classes, we have 8 € w1 (C\V}, , o).

Then
A\i=p-qliet. g1

satisfies our requirement.

O]

By Theorem 3.4.1, we have known the Galois group Ggj,. Then with Proposition 4.4.1,
we can calculate Gy, by induction on n. In the proof of this proposition, we obtain

G1, = Gop and a short exact sequence
0—2Z" — Gnp —Gno1p —0 n>2 (k, =rq(p)(d— 1)d"?%)

We will show that G, , can be expressed as the wreath product of Z)" and G,,—1, for n > 2.

Definition 4.4.2. Let G be a group and ¥ be a subgroup of sym(Zgy). Denote by ¥ x G¢
the wreath product of G and ¥. As a set, it consists of g = 04(g1,- -+ , ga) where g; € G and
og € Y. The multiplication is defined by

g- h = 09(917 U 7gd) : Jh(hl) T ahd) =0y ogh(goh(l) : h’17 U agcrh(d) : h’d)

Under this multiplicity, ¥ x G? is a group with ¢g~' = J_l(g(;l

1 .
g Sy ’gagl(l)) and unit

element (0,...,0).
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Corollary 4.4.3. Forn > 2, Gpp, = Gpo1, X sz(p)(dfl)dn_?

Proof. A nice way to visualize the action of G, ;, on points Z,, , is to consider the following

table:
w1 w9y <o Wi, —1 Wk,
21 zZ2 tee Zin—1 Zkn
w21 w29 e W2k, 1 W2k,
Wi lzy | wh e | oo | w2, 1 | w2,

where Z,_1, = {wi}", wiz (0 < j < d—1) are the preimages of w; under f.,. An
element of G, permutes the columns and within each column, it performs a cyclic shift.

Algebraically, let o be any element of G, ,, by Proposition 4.4.1, for 1 <1i < &y,

co(i)ZsU(i) where ¢, € Z)" and s, € Gp_1y

o(z) =w
and o is completely determined by ¢, and s,. We obtain a map

(S Gn,p — anl,p X an with w(U) = So (60(1)7 t 7CG(Kn))

For any o, 7 € Gy p, © € [1,Ky).

o-7(z) = o(r(z) = oW Dz ;) =wT D o(z, )
— wCT(i) . wCJ(ST(i)) . ZSg(ST(’i)) — wCU(ST(i))+CT(i) . ZSg'Sq—(i)
Then we have
Y(o-7) = 54 S‘r( co(57(1)) +cr(1), -+, co(57(kn)) + cr(kn) )
= 50(60(1)7 SR CG(Kn)) 'ST(CT(I), Ty CT(”H))

= ¥(0) (7).

Thus v is a group isomorphism. The injectivity is obvious and subjectivity is ensured by

proposition 4.4.1. O

To end this manuscript, we will provide some simple remarks on the relationship between
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the Galois group of @, and the Galois group of q%,p (1<j<d-1). Forn>1, p>1,
denote by Gﬁ;,p the Galois group of qfw. Note that the splitting field of q%vp are all the same
as that of Qo p, then

Gop=G|,=Gipfor 1<j<d-—1.

For n > 2, by the same reason as that of Proposition 4.4.1 and corollary 4.4.3, we have

. . m—2
Ghp =G, » X st(p )" There are two natural group morphisms:

j
S . - .
Gnp —= G, , — 0 such that s, (o)) ) = oy

where 7, is the image of 7 under the canonical map from 71 (C\ V;, ) to m1(C\ Vi), and

inp 1 d—1 : _
0 — Gnp — Gpp, X -+ x Gy osuch that iy p(0y) ) = (07, - -

However, we have G, , G}%p X oo X Gﬁ;} for n > 1, d > 3. Note that for any n > 2,

d—1
1 d—1 ~ j va(p)d" 2\ ~ (1 d—1 va(p)(d—1)dm—2
Gpp X x Gy = (Gn_Lp X Zy ) = (Groip X x Gry ) X Zy
i=1
~ vq(p)(d—1)d™—2
and Gnp = Gpo1p X de( )(d—1)
By an induction on n, it reduces to show G, 2% G% p X X Gcll;l. This is obvious

because

~ ol o~ ~ d—1 ~
Gl7p - Gl,p == Gl,p - G07p'
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Chapter 5

Core entropy of polynomials

In this chapter, we will study the core entropy of complex polynomials and primitive major.
In Section 5.1, we describe Thurston’s entropy algorithm and prove the correctness of this
algorithm. In Section 5.2, we give a algorithm of core entropy for rational primitive major

and prove Theorem 1.2.1.

5.1 Thurston’s entropy algorithm

Here we only discuss the algorithm for quadratic polynomial, the algorithm for polynomials
of higher degree is similar.

Let f. = 2% +c be a post critical finite quadratic polynomial. By the contents in Section
2.2.2, we obtain a Hubbard tree H; and a dynamics f.|ng, : H. — H.. Moreover, f.
maps each edge of Hy homeomorphic to the union of some edges of Hy, so it induces an
incidence matrix D, as follows:

Numerate the edges of H by ~; , i = 1,--- k. Set D, = (aij)kxr with a;; = 1 if
fe(vj) D i and a;; = 0 otherwise.

We denote by p(D,) the leading eigenvalue of D.. By Perron-Frobenius theorem, p(D.)

is a non-negative real number and it is also the growth rate of || D?|| for any matrix norm.

5.1.1 Thurston’s entropy algorithm

Since f.(H.) C H., we can define the topological entropy h(H,, f.) as that defined in Section
2.5. It is well known that

h(H., fc) = log p(D.).
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In this algorithm, we need to know the structure of Hubbard tree H. and the action of f.
on H, so this algorithm can’t be realized in the computer. Thurston provides a method to
compute the topological entropy h(H,, f.) only by the angle of a parameter ray landing on
c and draw a picture of entropy of quadratic polynomials with this algorithm in computer
(see Figure 1-1)

In the following, we will describe Thurston’s entropy algorithm and give a proof of this

algorithm. Firstly, we give some notation:

Definition 5.1.1. The map 7 : R/Z — R/Z defined by 7(z) = 2z (mod Z). If a angle 0 is
periodic (strictly preperiodic) under T, we simply call 0 periodic (strictly preperiodic). Let
0 be any rational angle, if 0 is strictly periodic, then let ¢ = vypr(0); if 0 is periodic, then let

¢ be the center of the hyperbolic component which has vy (0) as its root.

0 0+1
Let 6 # 0 be any angle, we separate the circle into two halves by {5, %}, each half

is a closed segment in the circle (so the boundary belong to both halves). In the whole

algorithm, we assume the following two properties:

e All angles below are mod 1;

0+1 0 0+1

o If 5 is periodic, replace 3 by 2

Thurston’s entropy algorithm: Define
Yy = {{2"0,2'0}| I,n > —1 and 2"0 # 2'0}
1. Let Xg is the abstract linear space over R (real number field) generated by the elements

of Yy.

2. Define a linear map Ay : Xy — ¥y : for any basis {270,2!0} € Yy, if 270,2'0 in
the same half-circle, then Ag maps {276, 2!} to {2716, 2!710}; otherwise Ag maps
{270,2'9} to {2"110,0} + {0,216} 777

3. Denote by Ay the matrix of Ay under the basis Yy. Compute the leading eigenvalue
p(Ap) of Ap.

Here is a variant algorithm that should be faster than the original Thurston’s entropy

algorithm, as the matrix is considerably smaller.
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Variant algorithm: Define
Yy = {{2"0,2'0}| I,n > —1, 2"0,2'0 in the same half-circle 2"¢ # 26}
1'. Let X is the abstract linear space over R generated by the elements of Y.

2. Define a linear map Aj : £, — ¥ : for any basis {270, 20} € Yy, if 2"710,2!710 in
the same half-circle, then Aj, maps {2"0,2'0} to {2"710,2710}; otherwise Aj maps
0 0
{270, 20} to {27110, 5} + {5, 2101,

3'. Denote by Ag the matrix of Aj under the basis Y;. Compute the leading eigenvalue
p(Ay) of Ap.

Note that Ap and Aj are both non-negative matrix, so there leading eigenvalue are

non-negative real number.

Theorem 5.1.2. Let 6, c be defined as that in Definition 5.1.1, then log p(Ay) = log p(Ap)
is the core entropy of f.. More precise, the spectral radii p(D.), p(Ag) and p(Ap) are all
equal and furthermore, the non-trivial eigenvalues of D., Ag, A} off S are equal with

tdentical multiplicity.

Proof. For a quadratic polynomial f. = 2% + ¢, it has unique critical point 0 and unique
critical value c.
Denote by H* the closure of the connected component of H \ {0} that contains c,

H~ = H\ H*. Let €, be the abstract linear space over R generated by the elements of

L. = {lp,q P.q € Pr,p # q, lpq is the unique road in H,. that connect p, q}
and Q. be the abstract linear space over R generated by the elements of

L= {l;,q‘p, q€ PfﬂH+ or PrNH™,p # q, l;,q is the unique road in H, that connect p,q}

By the action on the basis L. and L, the map f. induce two linear maps on 2. and (2,

respectively. Denote by F. and F the transition matrix of the two linear maps under the
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basis L. and L/, respectively. Choosing an appropriate order of the basis, we have

F. 0 F' 0 I

where I, is the t. x t. unit matrix, J. is a t. X t. square matrix that has only one 1 at each
row and column, and has 0 at other positions (it is a so called permutation matrix). In
fact, the matrix B, is the restrictive matrix of maps A. and A, to the invariant subspace

generated by
{{2"0, 219}‘Rf(2"9) and Rf(2') land on a same point }

It is known that all eigenvalue of a permutation matrix are on S', so we only need to prove
that the non-trivial eigenvalues of D., F. and F. are equal with the identical multiplicity.

Now let {l1,---,l,} be the basis of linear space Q. (resp. .). Following the previous
notation, ~1, -+ ,7k is denoted by the edges of H.. So we obtain a transition matrix C

(k x n matrix) such that

{l17'” 7ln} = {717"' 77"3}0

where ¢;; = 1 if [; contains 7; and ¢;; = 0 otherwise.
Lemma 5.1.3. We have k < n and rank C = k.

The poof of this lemma will be postponed to Section 5.1.2
Therefor, by adjusting the order of {{;} ?? {v}, the matrix C can be written as (C; Cj)
where C is a k x k invertible matrix. So C has a right inverse (Cgl) and {y1,-- , W} =

071
{la,--- ,ln}( B ) Let f. act on {ly,---,l,}, we have

{l17"' 7ln}Fc(reSp' Fc,):fC{lla >ln} = f{’}/la 771&‘}0 = {717"' a’yk‘}DCC
C—l
= {l, b | | De(Cr Co)
0
C;'D.Cy C7'D.Cy
0 0

= {l, I}

104



_ Ci'D.Cy Cy'D.Cy L
So we obtain F.(resp. F) = . It follows that the non-trivial
0 0

eigenvalues of Fi(resp. F) and D, are equal with identical multiplicity.

5.1.2 The proof of Lemma 5.1.3

Let T be a finite connected tree. Denote by E(T') the set of end points of T', by B(T') the set
of branching points of 7. The set V(1) = E(T)UB(T) is called the set of vertices of T. We
always assume #V (T') > 2 (otherwise T is a point). The closure of a connected component
of T\ V(T) is called an edge. We numerate the edges of T by e;, « = 1,...,m. For any
p,q € E(T), there is a unique road [, , in T" connecting p, ¢, it is called a path. Numerate
the paths by l;, j = 1,...,n. We obtain a transition matrix M = (aij)mxn,ai; = 1 if [;

contains e; and a;; = 0 otherwise. Therefore

(ll,~-- ,ln) = (61,...,6m)M

For this matrix, we have the following lemma:

Lemma 5.1.4. m <n and rank M = m.

Proof. The proof goes by induction on the number of branching points.

Ko

€1

H()—l

#B =0 #B =1

Figure 5-1:

If #B(T) = 0, T is a segment with two points (left of Figure 5-1). The conclusion holds

obviously.
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If #B(T) = 1, label the branching point by 0, label the end points by 1,..., ko (ko > 3)
clockwise starting from any point of E(T) (right of Figure 5-1). We can see mj = kg, ni =

(i) = molro=l) > o Tf ko = 3,

1 0 1
(hologlig)=(erezes) | 1 1 0
0 1 1
Rank M7 = 3. If kg > 3,
1 1
11 1
(hiplog - lugilon,) = (€1 - -ex) 1 . *
1
1 1 1

= (e ) (M] %)

M is a ko X (ko + 1) matrix, it is easy to see rank M| = ko.

Now suppose the conclusion is established for B(T) < s (s > 1). Let Ts41 be a tree
with #B(Ts+1) = s+ 1. Then Tsy; can be obtained by adding ks (ks > 2) edges on some
end point of a tree Ty with B(Ts) = s. Label the new branching point by «, the edge of
Ts containing « by e,,,, the new edges in Tsy1 by €m. 11, -+, €m.+x, clockwise (see Figure
5-2). Then mgsy1 = ms + Ks, Ngp1 > Mg + ks + (”25) Since ng > mg (by the inductive
assumption), it follows ns11 > mgy1. Let ly,...,14, be the paths of Ty that do not contain

€m -

(ll lds lds-‘rl lns):(el emS)Ms

By the inductive assumption, rank My = m,. Note that [1,-- -1y, are also paths of T .

Set
l; = lj U eémg+i (ds +1<j<ns 1<:i< K/S)v lu,v = €metu Y emtov (1 <u,v < 5)

Then {l1,---,lg,} U {l;} U {ly,»} form the set of paths of T ;.
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\ Cmotr—1
\

! emtrs

. Rs »
Ks — 1

T9+1 - Ts U €ms+1 U---u Cmotrs

Figure 5-2:
In case ks = 2,
(bl b by W B i) = (er oo emga2) Mo
Ms71 MS,Q Ms,2
= (e1 - emyt2) 1---1 1

where M1 is a ms X d, matrix and (Ms,l Ms’g) = M,. A little argument shows that the

line vectors of M4 are linear independence, so rank Mgy1 = mg + 2 = mgy1.

In case ks = 3,

1 1 — e
s s s s - s s s s
(holag lgoq o by g loz lize o) (€1 €m, Emyt1 Emyt2 €my+3) Moy
My *
= ( €r - 'ems 6m5+1 ems+2 6ms+3)
* Mé *
M *
1 1
= ( €r - 'ems 6m5+1 ems+2 ems+3)
* 1 1 *
1 1

107



Rank Mgy = rank Mg+ 3 =ms+ 3 = mgy1.

In case ks > 3,

(-1, lclls+1"' lrlzs liolos et l2,ns"')

= ( €1 " €my; Emg+1" " ems“!‘ffs)MS‘f‘l

M, *
= (€1 em, Emet1 """ Cmytr,)
* M;, *

M *

= (€1 €em, €myt1 " Emytrs)

M is a ks X (ks + 1) matrix. It is easy to check that rank M/ = s, then we have

rank M, 1 = rank Mg + rank M; = Mg+ Ks = Mgt1-

We will use this lemma to prove Lemma 5.1.3

Proof of Lemma 5.1.3. Here we only treat the case that {l;...,l,} is the basis of linear
space Q.. For the case that {l; ...,[,} is the basis of linear space 2., the proof is completely

the same.

Numerate by S;, ¢ = 1,2,...,4o the closure of connected components of H \ Py such

that B(Sl) < B(Sz-i-l) Set

J, = {l € LA‘Z connects two points of E(SZ)}
r, = {ye {VJ}lg]’gkh C Si}
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with #J;, = n; and #I'; = m;. Then we have

Cy
(Ji-Jig--) = (T Ti) .
Cio

where C; is a m; X n; matrix. By lemma 5.1.4, rank C; = m;, it follows

10
rankC:Zmi:k.
i=1

5.2 Core entropy of rational primitive major in torus model

The objective here is to prove Theorem 1.2.1. In Section 5.2.1 and 5.2.2, we establish
the linear relationship between Hausdorff dimension and topological entropy of a general
compact F-invariant set in torus. This implies term 1 of Theorem 1.2.1. In section 5.2.3, we
define the combinatorial Hubbard tree for rational primitive majors and provide a algorithm
to compute the core entropy for such a major. Finally, we give the dynamical explanation of
the invariant lamination and combinatorial Hubbard tree, then finish the proof of Theorem

1.2.1.

5.2.1 The Hausdorff dimension

Let A C T2. Its Hausdorff dimension is defined as follows:

Fix s > 0. Let U = {B,,i € N} be a countable cover (not necessarily closed or open) of
A. Denote by |B;| the diameter of B; and by |U| the supremum of |B;]|.

For each U, we consider ) 5, |B;|® as an approximation of the 'size’ of A in dimension
s. In order to be accurate, it’s better to refine the cover by taking smaller pieces.

Fix r > 0. We may thus consider U with || < r. Again to be accurate, it’s better to
throw away pieces in U that do not touch A, or better, it’s better to consider covers that

are as economic as possible. Thus we consider inf E |B;|® as a further approximation
u,lu|<r Beu
7

of the ’size’ of A in dimension s.

When we let r N\ 0, we have less choices of U, so the above quantity increases. We may
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then consider

H?(A) :=lim inf B;|° =sup inf B;l®
(4) N0 Z/{,|M<7‘Bz€:u| il >0 u,u<rBZ€u| il
as the actual ’size’ of A in dimension s. This is called 'the Hausdorff measure’ of A in

dimension s.

What is then the best dimension in which to measure A 7 When s is too small, H*(A) =
+00o (a square has an infinite 1-dimensional length). When s is too big, H*(A) = 0 (a line
has zero 2-dimensional area). It’s easy to prove that the transition from oo to 0 happens at

a single value of s, this is the Hausdorff dimension of A.
Replacing a random cover by a cover with closed squares.

For our A C T?, and U a countable cover with || < 1/2, note that if we replace each
B; in U by the smallest closed square B; containing it, we have size(B;) < |B;| < |Bi| =
V2size(B;), and U = {B;, i € N} is again a countable cover of A.

So
Z size(B;)® < Z 1B;|* < V2 Z size(B;)®
Biell BieU Biell
So the quantity H*(A) := sup _inf size(B;)* satisfies H*(A) < H5(A) < V2 H5(A).
r>0 U, JU|<r 5~
B;eUd

We may thus use the transition s-value of H *(A) as the Hausdorff dimension of A. It is

denoted by H.dim (A).

The standard covers

x x
Fix now an integer d. We will consider the torus expansion F : T2 — T2, —d

Y Y
We want to measure ’sizes’ and dimensions of invariant subsets of F'. We will adapt the

argument of Furstenberg to our situation ([Fu], Prop. IIL.1).

1
For each n, we will cover the torus by the standard level-n closed squares [d%’ pc_l: } X
1
[c;i"’ q;; } with p,q € {0,1,---,d" — 1}. There are d*" such squares each of size 1/d".

Fix A C T2, For each n, denote by v(A,n) the number of standard level-n squares
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intersecting A and, whenever the limit exist,

logv(A,n)

1 A 1 A A

C(A) = lim —————*, d(A):= lim o ¥/ 1,n) = lim og (A, n) = ¢(4)

n—oo n n—oo log n—o0 n lOg d log d
size(level-n square)

Proposition 5.2.1. If A C T? satisfies that F(A) C A, then C(A),d(A) exist and d(A) >
H.dim (A). If furthermore A is closed, then d(A) = H.dim (A).

Proof. If Byt is a level-n + m standard square intersecting A, then B,4,, is contained
in a level-n square B, intersecting A, the image F"(Bptm) =: By is a level-m square
intersecting F"*(A) C A, and Bpym — (By, By) is injective (as F™ : B® — T? is injective

in the interior). See the following schematic picture.

T2
S e U
By, B
u e
Bn+m

So
v(A;n+m) <v(A,n)-v(A,m).

This submultiplicativity implies that C(A) therefore d(A) exist.
Let s > d(A) be arbitrary. Then for n large enough, we have
logv(A,n) _logv(A,n)

1 ~ nlogd
g —
size(level-n square)

<s, sov(A,n)<d*.

lo

Let U,, be the cover of A consisting of the set of level-n standard squares intersecting A.

A
Then Y g o size(B;)® = V(dn’sn) < 1. It follows that
_inf size(B;)® <1, therefore H®(A) :=sup _inf Z size(B;)® < 1.
U, [d|<1/dn S r>0 U, JU|<r S
Bieu Bieu

Therefore the transition value of H*(A) happens at at most s. So H.dim (A) < s.

But s > d(A) were arbitrary, so H.dim (A4) < d(A).
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Let now 0 < d(A) be arbitrary. We want to show H.dim (A4) > 6.

For n large enough, we have

logv(A,n)
nlogd

A,n)
nd

d =400 .

>0, sov(A,n)>d” and Z i
n
Geometrically, this means that the sum over n of the d-dimensional volume of the level-n

standard cover of A is equal to the infinity. In other words,

Z size(U)? = 400 . (5.2.1)
U a standard square, UNA#)
We need to show that, there is a constant ¢ > 0, such that for any r» > 0 sufficiently small,

and for any cover U of A with [U| < r, we have

Y Bl =e>0.
B;eU

By the discussion in the previous section we may assume B; to be of square shape and

|B;| to be size of B;. For each B;, let n; be maximal so that |B;| < 1/d™. Then

1 1
gt SIBil < g

and there are at most 4 level-n; standard squares whose union contains B; in the interior.
Replacing each B; by the collection of these standard squares, we get a new cover V of A.

Furthermore

A C interior( | | B) . (5.2.2)
Bey

This condition will play an important role in the following. Then

> size(B)’ <4 ) (d}”)ﬁ =4d’ > (dnjﬂ ) <4d® > B’

Bey B;eU B;eU B;eUd

It thus suffices to prove that, for any r > 0 sufficiently small, and for any cover V of A

by standard squares of various levels with |V| < r and satisfying (5.2.2) , we have

Z size(B)? > ¢ = ¢/(4d°) > 0 .
Bey
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We now assume that A is compact. It suffices then to show that, for any finite cover

V of A by standard squares satisfying (5.2.2) , the 6-dimensional volume of V must be at

least 1.
Choose now such a cover V, with pieces By,--- , By. Set \; = size(B;)’, i=1,--- ,k.
k k
Suppose to the contrary that Z A < 1, then Z(Z Ai)" < oo. So
i=1 no =1

Z Z )\il >\i2 s )\in < Q. (5.2.3)

T (i1,000) €{1, - k™

Considering V as a depth-1 puzzle. For each B; € V, say of size ﬁ, the map F™ sends
B; affinely onto T2. The function system {(B;, F™)} generates puzzle pieces of deeper
levels. The ordered strings (i1,...,i,) € {1,---,k}" are in 1-1 correspondence with the
depth-n puzzle pieces. The d-dimensional volume of the piece with string (i1,...,iy) is

Ais iy -+ - Ai, . Note that we do not require that these deeper puzzle pieces all intersect A,

although the union of the pieces of the same depth contain A.

So the inequality (5.2.3) means that the §-dimensional volume of the puzzle pieces sum

up to a finite value.

Let N be the highest level of the finitely many pieces in V. Let now U a standard
square intersecting A. We claim that if U is of level greater than N then U is contained in

a V-piece.

Proof. If there is x € interior(U) N A then z € B; € V for some B;. As size(U) <
size(B;) we have U C B;. Assume now x € UN A C 9U and no B; in V contains U. Then
there is an arc in the interior of U ending at = and being outside of | J; B;. It follows that

x € (0, B;) N A, contradicting (5.2.2) . The claim is thus proved.

Let now U be a standard square intersecting A. Let us associate U to V, the smallest
puzzle piece of pullbacks of V such that V' contains U. We claim then level(U) —level(V') <
N. This is because F'*(V) maps V onto T? and U to a square U’ of level level(U) —
level(V), and U' N A # (). Now U’ is not contained in any puzzle piece of V. So it has level

at most N by the above claim.

There is thus an integer C' > 0 such that the map U — V is as most C' to 1.
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It follows that

5.2.3
Z size(U)? < C° Z size(V)? ( < : 00 .

U a standard square ,UNA#Q V' a puzzle piece

This contradicts (5.2.1) .

5.2.2 Topological entropy

We will use Proposition 2.5.6 to prove the following dimension formula.

x x
Proposition 5.2.2. Let F : T? — T2, —d . For A a closed subset of T? such

that F(A) C A, then we have
h(A,F) =C(A) = (logd) - H.dim (A).

Proof. The right side equality is proved by Proposition 5.2.1. So what we need to prove is
h(A, F)=C(A).
To prove this equation, we will construct a special sequence of open covers {U;};>1 of A

such that it satisfies three properties:

1. This sequence of covers of A satisfies the two property of Proposition 2.5.6.
2. For any [ > 1, h(A,U;, F') = h(A, Uy, F).

1
3. There exists a constant C' such that 6]\7(\/" Up) <v(A,n) <C-N(\"U)

Then by Proposition 2.5.6, we obtain h(A, F') = C(A). So in the following, we only need to
construct such a sequence of open covers of A and check that it satisfies the three properties
above.
The construction of {{/};>; and Property 1.

Now we construct a sequence of open covers {Z:Il} of T? such that U, consists of four

kinds of open sets:

1 1
(;,ﬁ) X (c(lll’ q;;) , 0 < pqg< d — 1; these are the interior of level-1

standard squares;

d gt gt d’d
covering vertical open segments of the level-1 grid;

1 1 1
<p P + ) X ( 4 H) , 0 < p,q <d —1; these are open rectangles
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1 1 1
(5[, pc—li_l) X (31 plwEsy % + le) , 0 < p,q < d —1; these are open rectangles

covering horizontal open segments of the level-1 grid;

P 1 p 1 q I gq 1 !
<cil_cllﬂ’cil+cll“>x<cll_cll+1’cll+ailﬂ » 0= pg<d—1 these are

small open squares covering the nodes of the level-1 grid.
From the construction of U/ (I > 1), it is easy to see that Z:{Hl < U, and for any U € L~(l+1,
F (U ) € ﬁ 1-
For l > 1, set

U={Ucl| UnA+ 0}

Then the sequence {U;};>1 is just what we need. The property 1 follows directly from the
construction of {U};>1.

Check property 2.
Lemma 5.2.3. For each | > 1, the open cover U; of A satisfies the following properties:
(1) Foranyl>1,n>0, Uy, CF™(U)VU.

(2) Forn >0, let V be any member of \/" U;. Then V is a rectangle and the restriction of

Ftloon V ois injective.

Proof. (1) For any U4 € Upyy, with 1 > 1,n > 0, F™"(Uy,41) C U and there exists U; C U]
such that U,,.; C U;. It implies U, +; € F~"(U;) VU;, and hence U,y C F~™(U;) VU;.

(2) Fix [ > 1. Any member of I is rectangle and according to the construction of U, the
restriction of ' to any component of U is injective. So the property (2) holds as

n = 0.

Now suppose the property (2) holds for n > 0. Let Vl”Jrl be a member of \/nJrl U.
Then there exist a member V" of \/" U, and a member V,° of I; such that Vl”'H =
F~(n+1) (Vlo) NV;". By the inductive assumption, V}" is a rectangle and the restriction
of F*" to V™ is injective. It follows that F" ™1 (V") N V% is a rectangle and there is
a unique connected component U of F*(”H)(VZO) that intersects V,". Then V}”H =
UnV" and Frtl . Vl”Jrl — VZO is injective. Since Vlo is a member of U, the
restriction of F! to it is injective, the restriction of F"+*+1 to V"™ is injective. Note

that U is a rectangle, thus V}"'H =UNV" is a rectangle.
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Lemma 5.2.4. Forl > 1, n >0, we have
(1) Uy V" U;.

2) There exists a constant K such that any member of \/"" U; that intersects A intersects
Y

at most K members of U1y, .
Proof. (1) Fix 1 > 1. Set Vo := U, then Uy C Vi C \/OUZ. For n > 1, We inductively

define V;,, = F~1(V,,—1) VU, and suppose

n
Uiyn C Vi C \/Ul for some n > 0.

Then by (2.5.2) we have

Fﬁl(ul+n) VU C Fﬁl(vlm) VU = Vl,n+1 C Fﬁl(\/ul) VY.
According to term (1) of Lemma 5.2.3 and (2.5.2),
Urini1 CF 7 Upn) VUipn C F7H Upn) VU

and by (2.5.1),
n+1

F_l(\n/ul) VU, C \/ U

So we have
n+1

Upint1 C Vg1 C \/ U

(2) We can choose an integer K such that any member of Uy intersects at most K members

of Uy. For n > 0,1 > 1, let
V= Fr by y Frm bty vy VR where VIR, L VR e iy

be a component of \/™ U intersecting A and set Vb1 . Ve are all members of
Uy 4, that intersect V;". Then each element of { F"H=1(Vn+i)}e | is a member of Uy
and FPH=L(Vn) € YV intersects FR =L (VnHhd) for i € [1,a]. By term (2) of
Lemma 5.2.3, F*H=1 . y» — Frti=1(Vn) is a homeomorphism, so the members of

{FrAi=1(yntliyla  are pairwise different. It follows a < K.
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Now for any I > 1,n > 1, denote by V;, a sub-cover of A belonging to \/"U; with
minimal cardinality. By Lemma 5.2.4, each member of V;,, intersects at most K members
of Up4;. So the number of members of U, 1; that intersect some element of V , is less than
K - #V,,. Since each member of U, ; intersects A, each member of U, ; intersects some
member of V;,. By (1) of Lemma 5.2.4, the cover U, is a sub-cover of A belonging to

\/" U;, thus we have

#FVin < FUnp1 < K -3FV1p (5.2.4)
It follows that for any [ > 1
MAULF) = lim ~log(#Vi) 2V lim * log(#440)
n—oo n, n—oo 1,
= lim nlﬂ log(#2,11) 'JLIEO”TH — (AU, F).  (5.2.5)

Check Property 3

On one hand, there are (A, n) level-n standard squares intersecting A, and each square
is covered by exactly 9 pieces in U,. The collection of these 9v(A,n) (not necessarily
distinct) pieces covers A and contains every piece of U, so #U, < 9v(A,n). On the other
hand, each U € U,, intersects at most four level-n standard squares. The collection of these
4#U,, (not necessarily distinct) level-n standard squares covers A and contains all level-n

standard squares that intersect A, so v(A,n) < 4#U,. It follows that
1
ZV(A’n) < #U, <9Yv(A,n), neN.
Combining also (5.2.4), we have

éN(\/L{O) <v(A,n) < 4KN(\/UO)
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5.2.3 Rational primitive majors

Thurston gave a torus model to construct an invariant lamination from a given degree d

primitive major. Let

m:{@l,...,@s}

be any degree d primitive major (or critical portrait). Remembering the notation and
construction in Section 2.2.3, we obtain an increasing sequence of sets {b;(m)};>o belonging
to the closed good region of m and a degree-d invariant lamination bu, (m) = bso (m) UL, (m).
The map @ defined in Section 1.2 maps by, to L(m) which is a degree d invariant lamination
having m as its major.

The objective of this section is to define a transition matrix whose leading eigenvalue

encodes the core entropy of L(m).

The combinatorial Hubbard tree

Assume that m is a rational primitive major of degree d. We will define a compact invariant
set TH(m) C by (m) corresponding to the status of the Hubbard tree of a postcritical finite
polynomial.

Set

s
P(m)={d"0|n>0, 0| JO;} and TP(m)={(0,0) 0 € P(m)}.
j=1
(These sets correspond to the postcritical set of a polynomial). The torus can be regarded
as the quotient of closed unit square by identifying (0,y) with (1,y) and (z,0) with (z,1)
where x,y € [0,1]. As m is a rational critical portrait, the set TP(m) is a finite F'—forward
invariant set in the diagonal of the torus.

For any point (1,0) # (z,y) € T?, denote by I, the path made up of a horizontal
segment and a vertical segment connecting (x,y) to the diagonal points (z,x) and (y,y).
Define 1 o = (1,0).

For any point (x,y) € T? not on the diagonal, there are four horizontal and vertical
circles in T? passing though (x,y) and (y, z). These circles partition T? into four rectangles.
Two of them intersect the diagonal and they are squares. If (x,y) is not on the boundary

of unit square, only one of the above two squares can be seen in the closed unit square. It
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is denoted by S;y and the other is denoted by S, . If (z,y) is on the boundary of unite
square, both of the above two squares belong to the unit square. In this case, we denote
the left-lower square by S; y and the other by S, . The boundary curves of S; y and S
are denoted by C’; , and C - respectively. If (z,y) belongs to the diagonal of T2, we define
Cly = Cry = (,9),

For (z,y) € T%,§ € {£}, we say that Ciy separates T'P(m) if both components of
T2\ Cg‘;y contains points of TP(m). It is obvious that Cg‘;y separates or intersects T'P(m)

iff Ciy separates or intersects T'P(m), where ¢ is the opposite symbol of . Now define

THo(m) = { (z,y) € boo(m) | Cyf, separates or intersects TP(m)} UTP(m).

Denote by T'H;(m) the cluster set of THy(m) and TH (m) := T Ho(m)JUT Hy(m) = T Ho(m).

Lemma 5.2.5. For any (x,y) € THy(m), C}, also intersects or separates TP(m).

Z,

Proof. Choose a sequence of points {(zn,yn)} C T'Ho(m) such that nlLIr;o(xn, Yn) = (z,y).
It is equivalent that ijyn converge to Cj’ , in the Hausdorff topology as n — oo.

Assume at first that there is a sub-sequence, denoted also by {(xy,y,)}, such that each
Cy . intersects TP(m). Since TP(m) is finite, without loss of generalization, we may
assume that all C;f  contain a common point a € TP(m). Since C; , belongs to the
€, neighborhood of C;f ) with ¢, — 0 as n — oo, the point a must belong to C;f . So Cf
intersects T'P(m) as well.

Assume now that we are in the remaining case, i.e. for sufficiently large n, C’jmyn
separates but does not intersect TP(m). Since T'P(m) is finite set, we can assume that
there exist two points a,b € TP(m) such that every C; ,yn Separates the points a and b. In
this case, C; , must separate or intersect a, b. Otherwise, there exist sufficiently small € such

that the € neighborhood doesn’t separate nor intersect a,b. It follows that for sufficiently

large n, C’jmyn does not separate a,b. It leads to a contradiction. ]

Proposition 5.2.6. The sets TH(m) and THyi(m) are all compact F—forward invariant

sets.

Proof. The compactness of TH(m) and T'H;(m) is obvious, so we only need to prove that

they are F'—forward invariant.
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We treat the set THp(m) first. Note that for any (x,y) € THo(m), (dz,dy) € bso(m) U
TP(m). So we are left to prove that Sy, 4, separates or intersects T'P(m).

For any two points x,y € S!, denote by Zy the hyperbolic chord in I connecting x,y
(if = y, T% means the point ). Consider the upper left triangle of T? (containing the
diagonal). If we collapse the horizontal and vertical edges of the upper left triangle to a
point such that the the triangle goes to the unit disk with the collapsed edges going to 1
and straighten each path [, , to the chord Zy, then this right triangular picture transforms

to the Poincare disk picture. It follows that

C;f , separates or intersects T'P(m) in T?

<= l;, separates or intersects TP(m) in the upper left triangle of unit square
<= Ty separates or intersects P(m) in D

If 77 intersects P(m), the chord (dz)(dy) must intersect P(m); otherwise, Zy belongs to a
component W of D\ m. Notice that z¢ is injective on W N S! and maps each boundary leaf
of W to a single point in P(m). Since Ty separates P(m), either Ty separates two boundary
leaves of W or separates a point of P(m) and a boundary leaf of W. In both cases (dz)(dy)
must separate P(m).

Second, we will show T'Hi(m) is F—forward invariant. Suppose {(x,,yn)} is a se-
quence of points in T'Hy(m) such that Jgrgo(xn,yn) = (z,y) € THi(m). According to the
F—invariant property of T'Hy(m) proved above, the sequence of points {F(zy, y,)} belong
to T'Hp(m). Since nh_)rglo F(zyn,yn) = F(z,y), we have F(x,y) € THi(m).

Finally, the F'—forward invariant property of T'H (m) follows directly from the F'—forward
invariant of THo(m) and T Hy(m). O

Since T'H(m) and T'Hy(m) are compact F'—forward invariant sets, we can define the
topological entropy h(T'H(m),F) and h(THi(m),F) as that in Section 3. Note that
THy(m) is a countable set, so H.dim (T'H(m)) = H.dim (T'H;(m)). By Proposition 5.2.2,

we have
h(TH(m),F) =logd-H.dim (TH(m)) =logd-H.dim (THy(m)) = h(THi(m), F)

We establish first a proposition computing h(T'H;(m), F).
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Invariant sets admitting a Markov partition

All intervals below are intervals in the natural numbers N.

Let A € T? be a compact F—forward invariant set satisfying the following property:

(%) There exists a finite collection of closed sets of T? :
Ei,--  EpEpir, By By, , By

with p > 0 (but we allow ¢ = p, or r = p or p < ¢ = r) such that

(1) For i € [1,p], E; is a closed rectangle or a horizontal or vertical closed segment

and for s € [p+ 1,7], Es is a point.
(2) {E,tel,r]}isacover of Aand ANE; # 0 for 1 <t <r;

(3) For any ¢ € [1,p] and any ¢ € [1,r] with ¢ # i, the set E; does not contain F; and
the interior of F; is disjoint from F;. Furthermore, the points in {Es}g:p_i_1 are

pairwise distinct.

(4) For t € [1,7], F : By — F(FE}) is a homeomorphism. Moreover, for i € [1,p],
t € [1,7], either F(E;) contains F; or the interior of F(E;) is disjoint from Ej.
For s € [p+1,q], F(Es) is a member of {Es}_, . For s € [¢+ 1,7], F(E;) is

contained in E; for some ¢ € [1,p].

(5) Fori e [l,p], F: E;NA— F(E;) N A is a homeomorphism.

The sequence of sets {Es}._; does not form a Markov partition for (F, A) in the tra-
ditional sense. But we can still define a transition matrix M = (as¢),x, as follows : For
s, t € [1,7], ase = 1 if F(Fs) contains F; and ag = 0 otherwise. Note that as = 0 for any
s > q and any t, and for any s € [p+ 1, ¢|, there is a unique t € [p + 1, 7] such that as = 1.

Denote the spectral radius of M by p(M). Our main result here is :

Proposition 5.2.7. If a compact F—forward invariant set A C T? satisfies Property (%),

then

0 o M is nilpotent
namy = O A

log p(M) otherwise

The proof of this proposition will go by 3 steps. At first, we construct a puzzle
Q = {Q,}n>0 according to the property (x). Secondly, we use Proposition 5.2.2 to prove
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1
h(A,F) = li_)m —log(#9Q,). Finally, we estimate #Q,, by the modules of a sequence of
n—oo N
vectors {v,} in the normed vector space (R",|-|) for some norm |- | of R". After these three
steps, we can prove Proposition 5.2.7.

Step 1. Construction of puzzles P, Z, Q.

Puzzle P:
0-level puzzle Py : FEi,..., E,.

1-level puzzle P; : It is the collection of the unique component of F~1(P§) contained in
E; for any s,t € [1,7] with as = 1 and any 0-level puzzle piece Pj in Py contained

in Et.

n-level puzzle P, : It is the collection of the unique component of F~!(P*_,) contained
in Ey for any s,t € [1,r] with  as = 1 and any (n-1)-level puzzle piece P}_; in Pp_1

contained in Ej}.

Puzzle Z:
0-level puzzle Z; : (.
1-level puzzle Z, : Ejyq,..., E,.

2-level puzzle 2, : It is the collection of the components of F~1(Z}) contained in J?_, Es

where Z7 is a member of Z;.

n-level puzzle Z, : It is the collection of the components of F~1(Z*

*_1) contained in

U!_, B where Z}_, is a member of Z,_;.

From the construction of P and Z, we can see that for any n > 1, any n-level puzzle piece
of Z is a (n-1)-level puzzle piece of P. That is Z,, C Py_1.
Puzzle O:
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0-level puzzle Qy: F1,..., E,.

1-level puzzle Q; : The unique component of F_I(QE;) contained in Ej for any s,t € [1,7]
with  ag =1 and any O-level puzzle piece Q) in Qg contained in F;, together with

the puzzle pieces in Z;.

*

n-level puzzle Q, : The unique component of F~1(Q*

) contained in Es for any s,t €
[1,r] with as = 1 and any (n-1)-level puzzle piece Q) _; in Q,,_; contained in E,

together with the puzzle pieces in Z;.

By induction on n, it is not difficult to see
Q’I’L:PnUZnU"'UZ:[.

Lemma 5.2.8. For each n > 0, Q, satisfies the following properties:

(1) If a point x € A belongs to Eg for some s € [1,r], then there exists a puzzle piece Qy,
in Uy, such that Q, C Fs and a € Q,,. Consequently Q,, is a cover of A.

(2) If Qui1 is a puzzle piece in Q41 belonging to Es for some s € [1,r], then there exists a

puzzle piece Q. in Qy such that Qn11 C Qn C FEs. Consequently, we have Qp < Qpi1.

(3) Each puzzle piece in Q,, contains some point of A.

Proof. (1) For n =0, Qy is a cover of A, so the result holds. Suppose for n > 0, the term
(1) in Lemma 5.2.8 holds. Let = be a point of A belonging to E; for some s € [1,7].
If seg+1,r], Es € 21 C Qpuy1 contains z. If s € [1,¢], there exists t € [1,r] such
that ass = 1 and F(z) € E;. By the assumption of induction, there exists a puzzle
piece @, in Q,, contained in E;. The unique component of F~1(Q,,) contained in Fj

is a puzzle piece in Q1 and must contains z.

(2) For n = 1, the construction of Q; shows that each puzzle piece in Q; belongs to a
puzzle piece in Qp. So the result holds.
Now suppose for n > 1, the term (2) in Lemma 5.2.8 holds. Let @Q),,+1 be a puzzle piece

in Q41 contained in Es. If s € [¢+ 1, 7], by the construction of Q, Q41 = Es € Q.
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If s € [1,q], then there exist ¢ € [1,7] with ass = 1 and a puzzle piece @, in Q,, such
that Q, C F; and Q41 is the unique component of F~1(Q,,) that contained in FE.
By the assumption of induction, there exist a puzzle piece Q)1 in Q,,_1 that belongs
to E; and contains E,. The unique component of F~1(Q,_1) belonging to E; is a

puzzle piece in Q,, and contains Q1.

(3) For n =0, the property (%) shows that each puzzle piece in Qy contains some point of
Aand F:QiNA— F(Qj) N A is a homeomorphism, where Qf is any puzzle piece
in Qg. Now for n > 0, assume that each puzzle piece of Q,, contains some point of A
and F': QF N A — F(Q})N A is a homeomorphism, where Q) is any puzzle piece in
Q.

Let Q;, 1 be a puzzle piece in Qp11. Since Q, < Quy1, there exists a puzzle piece
Q;, of Q, with Q) ., C Q;. By the assumption of induction, we have Q;, N A #
0, F(Q5 1)NA# Dand F : Q;,NA — F(Q;)NA is a homeomorphism. It follows that
the homeomorphism F~!: F(Q}) N A — Q) N A maps F(Q} ;) UA homeomorphic
to Qny1+ NA. So we have Q1 NA# D and F:Qy  NA — F(Q; )NAisa

homeomorphism.

1
Step 2. h(A, F) = lim, oo — log #Q,,
n

In fact, this result follows from the following lemma and Proposition 5.2.2.

Lemma 5.2.9. There exists a constant K such that for n > 0, each puzzle piece in Q,
intersects at most K level-(n+1) standard squares and each level-(n+1) standard squares

intersect at most K + n(r — q) puzzle pieces in Q.

Proof. This proof is similar with that of term (2) of Lemma 5.2.4. For n = 0, we can choose
an integer K > 4 such that each puzzle piece in Qp (resp. each level-1 standard square)
intersects at most K level-1 standard squares (resp. puzzle pieces in Q).

Suppose for n > 0, each puzzle piece in Q,, (resp. each level-(n+1) standard square)
intersects at most K level-(n+1) standard squares (resp. K +n(r — q) puzzle pieces in Q,,).

Let Q| (resp. B ) be any puzzle piece in Q11 (resp. level-(n+2) standard square) and
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Bl o, ....,B%, (resp. Qp 1, .. ,Qgﬂ) are all level-(n+2) standard squares that intersect
Qy41 (resp. puzzle pieces in Q1 that intersect By ).

If Qf ., € 21, it intersect at most 4 < K level-(n+2) standard squares. Otherwise,
F(Q} ) is a puzzle piece in @, and F (B}, ), ..., F(F2_,) are level-(n+1) standard squares
which intersect F(Q}, ;). Since F': Q5 ; — F(Q}_) is a homeomorphism, the level-
(n+1) standard squares F(B}.,),...,F(FS,,) are pairwise different. Then by the as-
sumption of induction, o < K. (resp. If none of these puzzle pieces belong to Zi, then
F(QLq),.--, F(QQH) are puzzle pieces in Q,, and they intersect F'(B ,) which is a level-
(n+1) standard square. Since F : B} , — F(B}_,) is a homeomorphism, the puzzle
pieces F(QL 41)s F (Qﬁ 1) are pairwise different. Then by the assumption of induction,
B < K + (r — q)n. Since there are at most r — ¢ members of Z; C Q,,4+1 that can intersect

B o, we have 8 < K + (r — q)(n + 1)). =

For n > 1, denote by B,, the set consisting of all level-n standard squares that intersect
A, so #B, = v(A,n).

By Lemma 5.2.9, each member of B, (resp. puzzle piece in Q,) intersects at most
K + (r — ¢)n puzzle pieces in Q,, (resp. K members of B,4+1). It means that the number
of puzzle pieces in Q,, (resp. members of B,,11) that intersect some member of B, (resp.
some puzzle piece in Q) is less than [K + (r — ¢)n] - v(A,n + 1) (resp. K - #Q,). Since
each puzzle piece in Q,, (resp. member of B,,1) intersects some member of B, (resp. a

puzzle piece in Q,,), we have
#O, <[K+ (r—qg)n]-v(A,n+1) (resp. v(A,n+1) < K- -#Q,).

It follows
1
EV(A,H—F 1) <#9,<[K+ (r—q)n]-v(A,n+1)

Then by Proposition 5.2.2,

h(A, F) = C(A) = lim ~log(v(A,n)) = Tim %log(#Qn). (5.2.6)

n—oo N

Step 3. Estimate #9,,

Since @, = P, UZ, U---U Zq, then #9,, can be estimated by means of #P,, and #Z;
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(7 € [1,n]). So we start to estimate #P,,, #Z, and #Q,,.

Equip R” a norm || - || so that for a vector v = (z1,...,z,)’ € R",
ol = fza| + - + |2 .

Denote by vo = (1,..., )T € R", v, = M™ - vy = (vn1,-..,Vnr) . It is known that

1
Lemma 5.2.10. If M is nilpotent, then p(M)=0; otherwise log p(M) = lim M.
n—oo n
1. Estimate #P,, :
In the property (x), consider each element of {Ep41, ..., E,} as a small square and keep

other properties invariant. Denote the new sequence of rectangles by {Es}gzl. With the
same definition as that of the transition matrix M and puzzle P, we obtain a transition
matrix M and a puzzle P corresponding to {E‘l, . ,ET}. It is easy to see M = M.

For any n > 1, the difference between P, and P, lies that some puzzle piece E, in P,
may belong to different puzzle pieces in P,_1 (since any two puzzle piece of P with the
same level intersect at most at their boundary, this case happens only if E, is a point) but
any puzzle piece in P, belongs to the unique puzzle piece in P,_;.

For n > 1, let E, be a puzzle piece in P,. Denote by x(E,) the number of puzzle pieces
in Pp_1 that contain E,. Since each puzzle piece in P,_1 is a rectangle or a point and any

two members of P,,_ intersect at most at their boundary, we have 1 < k(E,) < 4.

Lemma 5.2.11. For any n > 0, #P, = > op.ep, K(Ex) and consequently, #P, < #P, <
44#P,,.

Proof. For any n > 0, we can denote a puzzle piece in P, (resp. Pp) by Es,...s,, (resp.

E,,..s,) such that
FI(Egy.s,) C By, (resp. FI(Egy..s,) C Ey;) for0<j<mn
Then

Pp=A{Fs.s,| (50,...,50) € I,} (resp. Pp={Es..s,| (50,-..,50) € I,})
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where the set of subscript

I, ={(s0,...,8n) € [1,T]”+1| Gs.

JSj+1

=1for j € [0,n—1]}

Note that for j € [0,n — 1], F7 : Eg..q, (vesp. Eg.s,) — Es;.s, (vesp. E,..s,) is a
homeomorphism.

Since Eyy..s, # Eigt, 85 (50,...,8n) # (to,...,tn), we can define a surjection @, :
75n — P, mapping ESO...Sn to Egg...s,,. It is easy to see

pn(Eso---sn) = pn(Eto---tn) <~ (80, ... ,Sn) = (t(], ... ,tn) or ESO"'Sn = Eto"-tn C ESO"'snflﬂEtO"'tnfl

It follows that E,..s, has k(Fs,..s,) preimages under p,. So #P, = > oE.cp, K(Ex) O
Lemma 5.2.12. Forn >0, #P, = ||v.||.

Proof. For any n > 0,s € [1,r], denote by 75,175 the puzzle pieces in P,, that are contained

in E’s. Since 75n,s1 and 75n,52 don’t have a common puzzle piece, it is enough to prove that
#75”75 = vy, for any n >0, s € [1,7].

Asn =0, #75075 =1=wy, for s € [1,7]. For n > 0, suppose #75”75 = vy, s for s € [1,r].

Then by the construction of puzzle P, for any s € [1,7],
#7571+1,s = Qs1 * #7571,1 + ot asy #ﬁn,r =Gs] " Unl+ - -+ Qs Unyr = Uptls

The second “=" holds according to the assumption of induction. O

By Lemma 5.2.11, 5.2.12, we obtain the estimation of P, as
1
Zllenll < #P0 < ol (527)
2. Estimate #Z2,,: Since Z,, C P,_1, we have
H#Z, < #P,_q for n > 1. (5.2.8)

3. Estimate #Q,:
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Since @, =P, U Z,U---U Zq, we have
#PnS#QnS#Pn+#Zn++#Zl
By (5.2.7) and (5.2.8), we obtained that
1
lvall = #Qn < lon[l + llon—1ll + -+ |Jvoll (5.2.9)

Now we have finished the preparation of three steps in the proof of Proposition 5.2.7.

Proof of Proposition 5.2.7. According to (5.2.6), we only need to prove

1 0 if M is nilpotent
lim - log(#0,,) =
neon log p(M) otherwise

If M is nilpotent, then ||v,|| = 0 for sufficiently large n, By (5.2.9), #Q,, is bounded as
1
n — 00, so lim —log(#9,) = 0.
n—oo n

If M is not nilpotent, by Theorem 2.6.6,
. 1 1
tim (S 1og Joal] — ~1og(llval| + -+ + [lvo])) =0
n—oo \n n
. . . o1
Since M is not nilpotent, by Lemma 5.2.10, lim —log ||v,|| = log p(M), so
n—oo N
.1
Jim Llog(lfual] + -+ [feol) = log p(M)
1
Then by (5.2.9), lim — log(#9,) = logp(M). O
n—oo n

Computing the entropy of a combinatorial Hubbard tree

For computing the topological entropy h(TH (m), F'), we should generalize the property (%)
to property (*') as
(¥')  There exist two sequence of closed sets {E;};_; and {E }[_,,, belonging to T?

such that

(1') For any t € [1,7], E; = E;f U E; . Furthermore, as i € [1,p], E;” and E; are two

)

closed rectangles or two horizontal or vertical segments that coincide or have disjoint
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interior; as s € [p+ 1,7r], Ef and E; are either the same point or different points.
(2) {E;}7_, is a cover of A and AN E% # () for any 1 <t <r and §; € {£}.

(3') For any i € [1,p],t € [1,7],0;,01 € {£}, Efi dosen’t contain EX* and the interior of Ef"

is disjoint with E?. Besides, the members of {Es}s—py1 are pairwise disjoint.

(4) For any t € [1,r],6 € +, F : B — F(E%) is a homeomorphism. For i € [1,p),
€ [1,7], 8;,0; € {£}, either F(Efl) contains E% or the interior of F(E?) is disjoint
with E; For s € [p+1,7], 8 € {£}, F(E%) = E* for some t € [p+1,7], & € {£}

or F(E)% belongs to Efl for some i € [1,p], 0; € {£}.

(5') For & € {£}, denote by & the opposite signal of §. We require that for s € [1,7],t € [1,7],
F(E?%) contains EX iff FE% contains Ef‘ and for s € [p+ 1,7],i € [1,p], F(E%)
belongs to Efi iff FEES belongs to Efl

(6') For i€ [1,p], §; € {}, the map F : Ef’ NA— F(Efl) N A is a homeomorphism.

With the property (¥'), we can also define a transition matrix M = (ast)rx, according to
{Es}i_q: For s,t € [1,7], ass = 1 if F(Es) contains E; and ag = 0 otherwise. Denote the
spectral radius of M by p(M), by the same proof as that of Proposition 5.2.7, we have

Proposition 5.2.7. If a compact F—forward invariant set A C T? satisfies property (+'),

then

0 if M is nilpotent
h(A,F) =

log p(M) otherwise

Next, we will check that T'Hy(m) satisfies the property (¥') and then we can compute
h(THy(m), F) by Proposition 5.2.7’.

Denote by 74 : St — S, 2z +— 2¢. Let
m = {91,...,@51,651+1,...79527952+1,...7@5}

be a degree d rational primitive major, indexed in a way so that ©; contains a periodic
angle iff j € [1,s1], and ©; doesn’t contain a periodic angle but the orbit of the unique

angle in 74(©;) passes through UJL,0; iff i € [s1 + 1, s2]. Set m, = {O1,...,05,}, then we
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define a subset of TP(m) as

TP(my) ={(6,0)| 6 € P(mp)} where P(m,)={d"8|n>0, 0¢ Ej O,}.
j=1

Now we will divide T'"Hy(m) into a finite number of subsets as follows: set
A(m) = {(z,y) € THo(m) | C;y separates but doesn’t intersect T'P(m)}.
and for a € TP(m), set
By (m) = {(z,y) € THo(m)| C;, intersects o}

Then THy(m) = A(m) U U B,.
a€TP(m)
We can define an equivalence relation in A(m) : two points (z1,y1), (x2,y2) € A(m) are

called parallel if either C;" . and C . coincide or C.f

. . 5 .
- oy 21,41 18 homotopic to C' relative

x2,Y2

to TP(m) in T2. Note that C;\ , coincide with Cohyu 1 (x1,91) = (32,2) or (z1,91) =

z1,Y1

. . . 5 . .
(y2,72) ((z1,91) (w2,y2) are symmetric relative the diagonal) and C3!  ~is homotopic to

C22 ,, relative TP(m) in T? iff C3! ,  is homotopic to C92 ,, relative TP(m) in T2. Then it
is easy to check that the parallel relation is indeed a equivalence relation.

For any equivalence class A, of A(m), any (z,y) € A, we can define v, = C;f, or C;,
such that all v, , with (z,y) € A, are homotopic relative to TP(m) in T?,. Then (21, y1)
is parallel to (z9,y2) iff 74,4, is homotopic to Yz, ., relative TP(m) in T2. Since TP(m)
is finite and each v, , is the boundary of square, there are only finite equivalent classes of
A(m), denoted by Aq(m),...,Ap(m)

For ¢ € [1,p], denote by A}(m) the set of accumulation points of A;(m) and for a €
TP(m,;), denote by B, (m) the accumulation points of B, (m). Without loss of generality,

we assume A # () for i € [1, p).

Lemma 5.2.13. (1) B, is an infinite set iff o« € TP(my,) and in this case, B, is a finite

set.
(2) THi(m) = U;_; A} UUaerp(m,) Ba-

Proof. (1) It follows directly from the construction of b (m).
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(2) Choose any point (z,y) € TH;(m) such that {(zn,yn)} € THp and T}Ln;o(xn, Yn) =
(x,y). If there exist an infinite subsequence of {(xy, yn)}, also denoted by {(zn,yn)},
belonging to A(m), since the number of equivalent classes is finite, there exist ¢y € [1, t]
such that an infinite subsequence of {(x,,yn)} belong to A (m), hence (z,y) €
Ay, (m); otherwise, for sufficient large n, (2n,yn) € Uaerp(m,)Ba(m). By the same
reason as above, (z,y) € B (m) for some o € TP(my).

O]

For i € [1,p], (x,y) € A;i(m), denote by S(vs,) the unique square in T? bounded by

Va,y- Then we can define an order on

Ai = {yayl (z,y) € Ai(m)}

such that vz, 41 > Vao,ye HE S(V2, 4, ) contains S(vz, 4, ). If a sequence of points {zp, yn} C A;
such that li_>m (n,yn) = (x,y), then 7, 4, converge to 7, in Hausdorff topology and 7, ,
n oo

is exactly C’; y or C, . So we can also define an order on

]\i = {'Y:v,y| (337y) € Al(m)}

as the same as that on A; where A;(m) = A;(m) U AL(m). Since A; is compact, there is
a unique maximal curve 7,,p, and a unique minimal curve 7., 4, in A,. Here we always
require that (a;,b;) and (c¢;,d;) are on the lower-right triangle of square S(7q4,,). Then all

the curves in A; are contained in
Qi = S(Ya,b;) \ the interior of S(7, q;,)

We define
E+ = [ci,ai] X [bz,dl] and El_ = [bz,dz] X [ci,ai]

)

Since we assume A’ # () for i € [1,p], then each A; is an infinite set. For any (z,y) € 4;,
Yo,y € i implies (z,y) € E;. So we have Ai(m) C A;(m) C E; for i € [1,p]. There are the

4 cases for the shape of EZlL

1. (ci,d;) is in the interior of S(ya,,) and ¢; # d;. In this case, Eif are two disjoint

squares.
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2. (¢i,d;) is in the interior of S(v4,,) and ¢; = d;. In this case, EZjE are two squares

intersecting at a point of the diagonal.
3. (ci,d;) is on 74, p, and ¢; # d;. In this case EZi are two disjoint segments.

4. (¢;,d;) is on 74, p, and ¢; = d;. In this case EZlL are two segments intersecting at a

point of the diagonal.

We have known that B, is a finite set for a € TP(m,), denote

U B(,x = {(G‘P+17 bp+1)7 (G‘P+17 bp+1); Ty (aTlabT’l): (a'l’lvb’l’l)}
a€TP(mp)
where (ap+1,bpt1), ..., (ar,, by, ) are points in the lower-right triangle of unit square. Then
for s € [p+ 1,r1], we define

Ef = (as,bs) and E; = (as,bs)

s

In the beginning of this section, we define a map g : boo(m) — L(m) by mapping
(x,y) € T? to the chord Ty € D. A leaf of L(m) has two preimages symmetric relative to
the diagonal of T? if it is not a point of S' and one preimage on the diagonal of T? otherwise.
When we equip the Hausdorff topology to L(m), the map g is continuous. Moreover, we

have the commutative graph

L(m) <% L(m)

Now we can interpret the discussion above on the torus model to the unit disk model
by the language of lamination and prove the result about the torus model by means of
proving the corresponding result in the disk model. Usually, the proof in the disk model by
lamination is simpler and immediate.

Interoperation from torus model to unit disk model:

1. p(A(m)) consists of all leaves in L(m) that separate but do not intersect P(m).
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2. For i € [1,p], all leaves of p(A;(m)) are homotopic relative P(m) in D and for 1 < i #
J <p, (xi,y:) € Ai(m), (zj,y;) € Aj(m), the chord Z1y7 is not homotopic to Zays (rel
P(m)). This conclusion follows directly from the fact that for any (z1,y1), (z2,y2) €

A(m) belonging to the lower-right triangle of the unit square,

(x1,41), (x2,y2) are parallel

< ly1 1) las,y, are homotopic (rel TP(m)) in the lower-right triangle of the unit square
<~

T191, T212 are homotopic(rel P(m)) in D

3. p(A}(m)) consist of any leaf that is the Hausdorff limit of any sequence of leaves

{Znyn} C Ai(m) and p(Ai(m)) = p(Ai(m)) U p(Aj(m)).

4. For any i € [1,p], the points b;,d;,c;,a; lie on S! by the counter-clockwise order.
It is denoted by b; < d; < ¢; < a; where “=” holds if two adjacent points of “="
coincide. The chords c¢;d; and a;b; divide D into 2 or 3 components. We denote
by D(a;,b;,c;i,d;) the closure of the component whose boundary contain both a;b;
and c¢;d;. The chords a;b;, c;d; are called the edges of D(a;, b, ci,d;). Then we have
o(A;(m)) € D(aj,bi,ci,d;), any leaf of p(A;(m)) except a;b;,c;d; separate the two
edges of D(ai, b, ci,d;) and Up(E;) == Uy \ep, @Y = D(ai, bi, ¢, d;).

There are 4 cases for the shape of D(a;, b;, ¢;,d;):
(a) b; < d; < ¢ < aj, then D(a;, b, ¢, d;) is a 4-gon with two opposite sides being
disc chords and the other two arcs in the unit circle
(b) b; < d; = ¢; < ay, then D(a;,b;, ¢;,d;) is a 3-gon with only one disc chord;
(c) bi=d; < ¢ <a;orb; <d; <c;=a;, then D(a;,b;,c;,d;) is a 3-gon with exactly
two disc chords;
(d) b; =d; =¢; <a; or b; <d; =c; = a;, then D(ai,bi,ci,di) is a 2-gon with only
one disc chord.
For i € [1,p], B € [1,4], the map o maps E; of case § to D(a;,b;,c;, d;) of case
Lemma 5.2.14. (1) For i € [1,p], the possible points of intersection of D(a;,b;,c;,d;)

and P(m) are a;,b;,c;,d;. If a;b; (resp. cid;) contains point of P(m), then (a;,b;)
(resp. (ci,d;)) belongs to Ai(m).
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(2) The case 4 of the shape of D(a;,b;,ci,d;) never happen.

Proof. (1) Suppose there is a point § € P(m) such that 6 € D(a;, b;,c;d;) but 6 &
{a;,b;,ci,d;i}. If a;b; € p(A;(m)), we choose a;b; as a objective leaf; otherwise
ab; € p(AL(m)), then we can choose a leaf of p(A;(m)) that separates a;b; and
as a objective leaf. We do the same thing for c;d;. So we obtain two objective leaves

in p(A;(m)) that are not homotopic relative P(m). It is a contradiction.

(2) If case 4 happens, we assume b; = d; = ¢; < a;. Then b; = nh_)ngo b;x, with
{(bi,zn)} C Ai(m). If b; & P(m), bjzy, doesn’t separate P(m) for sufficiently n; if
b; € P(m), all b;z,, contain the point of P(m). Both of the case lead to a contradiction
to the definition of A(m).

O

Lemma 5.2.15. If (7,y) € Userp(m,)Ba belongs to E; for some i € [1,p], then (z,y) €
Al(m).

Proof. If (x,y) € Uaerp(m,)Ba, = a or y = « for some a € TP(my). Assume r = «,
then («a,y) € E; implies ay C D(a;, b;, ¢;,d;). By Lemma 5.2.14, one edge of D(ay, b;, ¢;,d;)
contains « and there exist a sequence of points {(zy,yn)} C A;(m) such that Ty, converge
this edge a from D(ay, b;, ¢;, d;). Then @y must coincide with this edge, otherwise 7,7, will
intersect ay transversally. So we have (x,y) € Al(m).

O

According to this lemma, if Ej belongs to E; for some k € [p+ 1,7] and i € [1,p], we
can remove Ej from {E,}.!, without affecting the set TH;(m). Then after removing all
such members in {Es}(L ; and rearrangement of the index of the left members, we obtain

two sequences of sets {£;};_) and {Es}i_, .

Lemma 5.2.16. The set TH1(m) C T? and the two sequences of sets {E;}_, and {Es}Yompia

satisfy property ()

Proof. We will check case by case that the properties of (x') are satisfied by T'Hy(m) and
{Etti-1-

(1), (2') follows from the construction of EF (s € [1,7]).

134



(3') Tt is enough to prove that for any i # j € [1,p], §;, 92 € {£}, E?i doesn’t contain Ejj
and the interior of F;d; doesn’t intersect E;-Sj . Equivalently, we need to prove that for
any @ # j € [1,p], D(as,b;,c;,d;) doesn’t contain D(aj,bj,cj,d;) and the interior of
D(a;, b;, ¢;,d;) doesn’t intersect D(aj, b;, ¢j,d;). This result is true, because otherwise,
by Lemma 5.2.14, there must exist a chord of p(A;(m)) and a chord of p(A;(m)) such
that they are homotopic relative P(m) on D. It is a contradiction to item 2 of the

interoperation to disk model.

(4", (5") For any i € [1,p|, D(a;, b;, ¢;,d;) belongs to the closure of a component of D\ m. It
implies |[b;, d;]| + |[ci, ai]| < % Then F : Ef’ — F(E’f’) is a homeomorphism. Since
F(E;") and F(E; ) are symmetric relative the diagonal, we have F(E;") contains B
iff F(E; ) contains Eft for 6, € {£},t € [1,7]. So we are left to prove that for i € [1, p],
t € [1,7], 6,0 € {£}, either F(Ef‘) contains E% or the interior of F(Ef’) is disjoint
with E%*.

Suppose this result is not true. Then there exist 4, j € [1, p] such that 74(D(a;, b;, ¢, d;)) #
D(aj,bj,cj,d;) and the intersection of D(a;, bj, ¢j,d;) and the interior of 74(D(a;, bs, ¢;, d;))
is not empty. In this case, we can find a chord Z;w; € p(A;(m)) belonging to the
exterior of 74(D(as, b, ¢;, d;)) such that Zjw; is homotopic to a chord of 74(p(A4;(m))).
Then one of the preimage of Z;w; under 74 is homotopic to a chord of p(A4;(m)) and

it must belong to the exterior of D(ay, b, c;,d;). It is a contradiction.

(6') Since F : Efi — F(Efl) is a homeomorphism, it is enough to prove that for (z,w) €
F(Efl) NTH;(m), the unique preimage of (z,w) under F contained in Ef *, denoted
by (z,y), is in THy(m).
correspondingly, in the unit disk model, the leaf 7y € D(a;,b;, ¢, d;) and the leaf
zw belongs to D(aj,bj,cj,d;) for some j € [1,p] or coincides with p(Fs) for some
selp+1,r.

In case of Zw C D(a]’, bj, Cj, dj) forj € [1,])], Td(D(ai, b;, c;, dl)) contains .D(CL]'7 bj, Cj, d])
There exists a sequence of chords {Z,w,} C p(A4;(m)) C D(aj,bj,cj,d;) such that

lim Z,y, = zZw. Denote by T,y, the preimage of Z,w, in D(a;,b;,c;,d;), then

n—oo

{Znun} C p(Ai(m)) and li_>m Tpyn = 7y. It implies (z,y) € Aj(m) C TH;(m).
n—oo

In case of Zw = p(E) for some s € [p+1, 7], we can assume z = « for some o € P(m,).
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Then there exist a sequence of leaves {aw,} C B, such that HIEEO aw,, = aw. Denote
by Ty, the preimage of aw, based at x. If x,y ¢ P(m), then for sufficiently large
n, the leaf Ty, is homotopic to some leaf of p(A;(m)) relative P(m) in D. So once
removing finite leaves, {Zy,} C p(A;(m)). It follows that nlgrolo (z,yn) = (z,y) € AL
If x or y = p € P(m), then Ty must be an edge of D(a;,b;,c;,d;). For otherwise,
there exist a sequence of leaves {ZT,7,} C p(A;(m)) that converge to an edge of

D(a;, b;, ci,d;) containing B and these leaves intersect Ty transversally. In this case,

by Lemma 5.2.14, (z,y) € Aj(m) C THi(m).

5.2.4 Hubbard trees for polynomials

In fact, the dynamical background of the invariant lamination generated by a primitive
major is the polynomial. So for a degree d rational primitive major m that can be realized
by a polynomial f, we can establish a correspond relationship between the points of be (1)
and the ray pair of f. This provides a dynamical interpret of the points in by (m) and
TH(m).

Let f be a postcritical finite polynomial, the degree of f is d. The Bottcher theorem

give the commutative graph:

C\K; L c\k;

¢l l‘b (5.2.10)

d

C\D =5 C\D

and the conformal map ¢~! can be extended continuously to S!. Then each external ray
land on a point in Jy.
Let v be a Jordan curve in complex plane. The point v € ~ is the unique possible critical

value of f. Set
) ={c1,...,cx} and deg.(f)=di, i=1,... k.

Then the connected component of f~!(y) which contains ¢; is consisting of d; Jordan curve
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intersecting only at point ¢; pairwise. It can be seen as the union of 2d; rays starting from
1%

ci. We label these rays counter clockwise by I}, ..., 7% starting from any such ray. Define

W= U 1<i <k, 1<m; < 2d;.

Following the notation above, for any Jordan curve v which contains at most one critical

value of f, we define
) ={7"11<i<k 1<m;<2d; }

It is easy to see that for any 8 € f*(v), f : B — v is a homeomorphism. If I' = {~1,..., 7},
where 71, ...,v, are Jordan curves (these curve maybe intersect mutually) containing at

most one critical value of f each, we define

For a postcritical finite polynomial f of degree d, we can define a degree d primitive
major (or critical portrait)

mf:{@l,...,@s}

associated to f ( one can refer to [?] Chapter 1 for a concrete definition ). Now, we begin

to give the dynamical explanation of the points in be(m )

Definition 5.2.17. Two rays R¢(0) and Ry(n) are called ray pair if they land on the same
point. For simplicity, we also call {0,n} a ray pair of f.

If {0,n} is a ray pair of f, the curve Rf(0) U R¢(n) U v¢(6) divide the complex plane

into two parts.

Definition 5.2.18. The ray pair {6,n} is called adjacent if in one of the two parts, there
are no external rays landing on v¢(0). Such a part is called a wake of {8,n} (there may be
two wake for an adjacent ray pair). A Fatou component is called bounded by an adjacent
ray pair if the component belongs to a wake of the ray pair and the ray pair land on the

boundary of this component.
Following the Bottcher Theorem, we can define the internal rays in each Fatou compo-
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nent of f such that the image of a internal ray under f. is also a internal ray. Now we will
define a kind of special Jordan curve in dynamical plane of f and then correspond a point

in boo(my¢) to such a simple curve.

Definition of a simple curve R¢(z,y): If Rs(z) and R¢(y) land on the same point, set

Ry(z,y) = Ry(z) Uryp(z) U Ry(y).

In special,

Ry(z,2) = Ry(z) Uvys(2)

If Rf(x) and Ry(y) land on the same Fatou component U but do not land on the same
point, then there are two internal rays r, (o) and 7, () that connect zg, vs(x) and 29, v¢(y)

respectively (zp is the center of U). In this case, we set

Ry(x,y) = Ry(x) Ung(z) Ury, () Ur, (B) Uvs(y) U Ry (y)

According to the definition of my, for each point (x,y) € bo(my), the Jordan curve

Ry(z,y)) always exists. Let

FO(f) = { Rf(xvy) | (xay) € bO(mf) }

Inductively define
Liyi(c) = fo(Ti(f)) UTo(f)

It follows easily that T';(f) C Tit1(f). According to the commutative graph (5.2.10)

(Béttcher Theorem), the construction of b;(my) and the definition of f*, we have

o If (x,y) € b;(my), then the simple curve R¢(z,y) exists and belong to T';(f)

e We can define a sequence map ; : b;(my) — T;(f), mapping (z,y) to R¢(x,y). Every

such map is a 2 to 1 onto map.
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e There exist a sequence of commutative graph:

bia(6) = bi(my) U{(d0,d0)| 0 € Ui, 0;}

li—&-ll lli

Tiri(e) 25 Ti(f)U{R0)| 6 € U3_,0;}

where

o R (0) U~s(0) if df is strictly preperiodic
Ry (0) =
R (0)U~s(0)Ur,(a) if df is periodic (U is the Fatou component containing critical value

The sequence map {l;} provide a interpret of the points of by (m ) in the view of dynamics:

Proposition 5.2.19. a point (x,y) € bss(my) if and only if Ry(z,y) exists and there
is an integer n such that f" : Ry(z,y) — Ry(d"x,d"y) is a homeomorphism, where

Rf(dnl‘, d”y) S F()(mf) .

In order to give an interpret of the points of bl (my), we consider the limit set of
U3, Ti(f) in Hausdorff topology. Suppose there exist Ry (i, y;) € I';(f) such that Ry(z;,y;) —

R in Hausdorff topology as i — oo, then R must be one of the following cases:

1. R= Ry¢(x) Uys(x) URs(y) Ur, (), where Ry(x) and Ry(y) is an adjacent ray pair,
U is a Fatou component bounded by R¢(x) and R(y) and r, («) is the internal ray
in U landing at vs(z).

2. R = Ry(x)Uvs(x)Ur,(a), where Ry(x) lands on the boundary of a Fatou component
U and r, () is the internal ray in U landing at v¢(z).

3. R=Ry(x)Uvys(x) URs(y),where Rs(x) and R¢(y) is an adjacent ray pair.
4. R= Ry¢(x) Uvy(z).

Note that if lim; oo (4, vi) = (2,y), (i, yi) € bi(my), then lim; oo Rf(xi,y;) = R in
Hausdorff topology and R contains R¢(x) and Ry(y). So it is natural to image defining
a map [ : b (my) — I'(f), mapping (z,y) to R, where I'(f) is consisting of all sets R

which is one of the cases listed above. This map is not well defined because it depends on
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the choosing of a sequence {(z;,y;)}. However, if we forget the internal ray contained in R

for R € f”(f), the map [ is well defined. That is , set

I'(f) = {R|R= R\ the internal ray contained in R, R € I'(f)}

{Ef(:c,y)‘{x, y} is an adjacent ray pair of f or z =y € Sl}

The map
l: bgo(mf) — I, mapping (z,y) to Rf(x,y)

is well defined. Moreover, it is not difficult to see that the map [ is surjective; #/ 1 (Rs(z,y)) =
2if x #y and #17Y(R¢(z,y)) = 1 if = y. Thus, we can give a dynamical interpret of the

points of b (my):

Proposition 5.2.20. A point (z,y) € b, (my) if and only if x =y or {x,y} is an adjacent

ray pair of f.

In Thurston’s torus model, if we correspond a point (z,y) € boo(my) to a chord 7y € D,

then the set

Limy) = {#|(2,) € bou(my)} (5.2.11)

is a degree d invariant lamination having my as its major. Similarly, the set b._(my) gives

a sub-lamination of L(my) as

Li(myp) = { 79 (2.y) € baolm)} (5.2.12)

Note that Li(my) is also a degree d invariant lamination, it is exactly the lamination defined
by f.

Now we can use Proposition 5.2.20 to give an dynamical interpret of the points in
THi(my).

Let Hy be the Hubbard tree of f. Then for any z € Hy N Jy, there exists an adjacent
ray pair or a single ray landing on z that separates or intersects with Py. On the contrary,
an adjacent ray pair which separates or intersects Py must land on a point of Hubbard tree.
This separating property can be expressed by means of angles. For ©; € my, if it contains

a periodic angle, set @; the set consisting of the unique periodic angle in ©;; otherwise set
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@j_ = @j. Set
P~ (mg)={d"0|n>0,0c|JO;} and TP (my)={(6,0) 0 € P~ (my)}.
j=1

Then it is easy to see that a ray pair {z,y} of f separates or intersects Py if and only if the

chord 7y separates or intersects P~ (my) in D. If we set
THy (my) ={ (z,y) € bl (my) | C;f, separates or intersects TP~ (my)},

Qf ={vs(x) | x € TH; (my) N diagonal of ’]1‘2}.

then QQy C Hy is a f invariant finite set. By the proof of Proposition 5.2.6, the discussion

above and Proposition 5.2.20, we have

1. A point (z,y) € TH; (my) if and only if = yy¢(z) € Q¢ or x # y, the adjacent ray

pair {z,y} lands on a point of Hy and separates or intersects Pr;
2. The set TH{ (my) is also a compact F'—invariant set;
3. TH{ (my) C THi(my) and THy(my) \ TH; (my) is a finite set.

Thus, this result gives the dynamical explanation of the point in T Hq(my).
Let A be the leading eigenvalue of the transition matrix on its Hubbard tree. Then we

have

Proposition 5.2.21. h(TH(my), F') = log .
Proof. Since TH; (my) is also a compact F'—invariant set, we will compute h(T'H{ (my¢), F)
at first. According to the definition of TH, (my), we can define a map

m:TH{ (ms) — Hy

mapping (z,y) € TH; (my) to the common landing point of R¢(x) and R¢(y). The image
of the map is exactly HyNJs. If {(xn,yn)} C TH; (my) converge to (z,y) as n —, then ray
pair {x,y} converges to {x,y} in Hausdorff topology, so the map 7 is continuous. Moreover,

it satisfies the following two properties:

e For any z € Hy N Jy, the fiber 771(2) has a cardinal bounded by a fixed number M.
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e 7 is a semi-conjugate from F' to f. That is

TH;, - TH] (my)

wl lw
HfﬁJf i) HfﬁJf

By Proposition 2.5.1, 2.5.2 and 2.5.3, we have

Pro 2.5.3 Pro 251252

T Hy (my), F) h(Hy N Jy, f) (Hy, f)

In [Do], Douady proves h(I, f) = log A for postcritical finite real map. One can use the
completely same argument in complex case to prove h(Hy, f) = log A for postcritical finite
polynomial f. Then it follows h(TH (my), f) = log .

Since THy(my) \ THy (my) is a finite set and T'Ho(my) is a countable set, we have
H.dim (THy (my)) = Hdim (THy(my)) = H.dim (TH (my)).

Then by Proposition 5.2.2, we have

Pro.5.2.2

h(TH(my)) logd - H.dim (TH(my)) = logd - H.dim (T'Hy (my))

Pro222  p(TH; (my)) = log A.
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Chapter 6

Wandering C! arc and stable
multicurve of p.f rational map with

parabolic orbiford

In this chapter, we study the wandering continuum problem for post critical finite rational
map with parabolic orbiford (see the definition in Section 2.3.1). In Section 6.1, we study
the holomorphic dynamics on torus and prove the wandering C! arc theorem for map of
torus. In Section 77, we prove Theorem 77 by the results obtained in Section 6.1. In Section

6.3, we prove Theorem 77.

6.1 Wandering arc of holomorphic map on T
The objective here is to prove the following proposition which is used to prove Theorem 77.

Proposition 6.1.1. Let L : T, — T,;, L(z) = az(modA,) be a holomorphic map of torus.
An arc K is wandering under L if and only if « is an integer and K is a short line segment

with irrational slop.

6.1.1 Holomorphic dynamics on torus

Here we give some basic description of holomorphic dynamics on torus without proof. One

can refer to [Mil2] S6 for more details.
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A Riemann surface is called torus if it is compact and of genus one. Any torus is
conformal to T, = C/A, = C/(Z&7Z) withT € H= {2 € C|Sz > 0}. Amap L: T, — T,

is holomorphic if and only if
L(z) = az + B(modA;) with aA; C A;.

It is easy to see that for any 7 € H, m € Z, a = m satisfies this condition. If « satisfies
this property, then « is either an integer or a complex number (Sa # 0). The degree of L
is equal to |a|?. The Julia set J(L) is either the empty set or the entire torus according to
whether || <1 or |a] > 1.

If & # 1, note that L has a fixed point zg = §/(1 — «) and hence is conjugate to the
map z — L(z + z9) — 20 = az. In this paper, we only consider the map with |a| > 1, so

without loss of generality, we can assume L(z) = az(modA;) and J(L) is the entire torus.

6.1.2 Wandering arc on torus

Let T, be a torus, L(z) = az(modA,)(Ja| > 1) be a holomorphic map on T,. We have the

commutative graph

@

IS
L
@

3

<_

=
3

z—az( mod Ar)
—

T,

T

The complex plane can be seen as a real linear space based on {1,7}. So each point z € C
has a coordinate (z,y) € R? corresponding to the basis {1, 7}, that is, 2 = x + y7. where
=Rz, y =Sz

Let [ be a line in C. A The slop of | (corresponding to 7), denoted by k;, is equal to
Y2 — Y1
ro — I

where x1 + y17, x2 + y27 are any two points on the line [. It is well know that

e k; is a rational number or co <= Jzj,20 €1l 8.t 21 — 29 € A; < w(l) is a closed

curve.
e k; is a irrational number = 7 : | — T is injective and 7 (/) is density on T.

Definition 6.1.2. Let | C C be a line. If l has irrational slop, we call (1) a line on
T,. The set w(l) (a line or a closed curve on T;) is called (p,q)—preperiodic under L

if LPY9(w(l)) = LP(w(l)) and L*TY(w(l)) # L*(w(l)) for any 0 < s < p, 0 < t < q with
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(s,t) # (p,q). If p =0, w(l) is called q periodic. A full connected compact set in w(l) is
called a segment. A segment K is called short segment of L if either w(l) is wandering

under L or n(l) is (p,q)—preperiodic and LP(K) N LPTI(K) = (.
With these notation, we can write the obvious result:

Lemma 6.1.3. Let K be a line segment on T,. Then K is wandering under L if and only

if a is a integer and K is a short segment of L with irrational slop.

Proof. Let | C C be the line such that K C «(1).

“=” If K is wandering under L, then the argument of o is 0 and 7(l) is a line in T,. It
follows « is an integer and K has the irrational slop. The property that K is wandering
also implies K is a short segment of L.

“<” In this case, 7(l) is a line in T,. In order to prove K is wandering under L, we only
need to prove L"P(K) N L™P(K) = 0 for m # n € NU {0} in case that «(l) is p periodic
under L. For s,t € Z, denote by [,; the translation of [ along the vector s +t7 in C. If
m(l) is p periodic, then there exist sg,ty € Z such that Zp(l) = lsyt, Where L is the lift of L
along the projection 7.

Let E be any segment of n(l), E be the component of 7~ *(E) which belongs to L.
Denote by X(E) the projection of (E) to the x axle. Suppose X(K) = [z1,xs], then
X(LP(K)) = [aPz1, aPxs]. The property that K is a short segment implies that z3 < aPzy
or x1 > aPxy. We assume z3 < aPx;. In this case, X (L(K)) > X (K) (that means all points
of X(L(K)) is on the right of X (K)). We have X (L*(K)) = [ (aPz1) — 50, &P (aPx2) — S0].
The assumption x9 < aPx1 = aPre < aP(aPzy) — 5o = X (L*(K)) > X (LP(K)). With the
same reason, we can prove X (L™(K)) < X(L"(K)) for m < n. Similarly, if we assume at
the beginning that z1 > aPxs, we can prove X (L™(K)) < X(L"(K)) for m < n. In both
case, we have L"P(K) N L™P(K) = () for m # n € NU{0}. O

Definition 6.1.4. Let S be any Riemann surface, The map X : [0,1] — S is called an C*

arc on S if A is C' and injective.

Now we will give a lemma which is very useful in proof of Proposition 6.1.1, a C! arc A

can be written as \(t) = z(t) + y(t)7, (¢t € [0,1]).

Lemma 6.1.5. Suppose A € C is an Clarc which is parameterized by x, that is A\ =

x+y(z)r (r1 < x < x9). Set 21 = Nx1), 22 = AM(x2). Then there is a sequence integers
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{n;} such that R, (L™ (22 — z1)) — oo, arg(@™) — 07 and L™(X) = = + yn, ()7 for
R (L (21)) < @ < Rp (LM (22)).

Proof. e If v is an integer, the lemma is correct by choosing n; = j.

e If o is not an integer and arg(«) is a rational number, then there exists an integer k

such that o is an integer. By choosing n; = kj, the lemma is correct.

e If o is not an integer and arg(a) is an irrational number, then the set {arg(a™)|n €
N} is density on S'. It follows there exists a sequence of integers {n;} such that

arg(a™) — 0 as j — 0. Set 7 = 7, + 71, arg(e) = 6 and
An, 1= L"(A) = {az|z € A} = 2, (@) + yn, (@)7 (21 < 2 < 29)

By simple computation, we obtain the concrete parameter expression of A, as

o]

Tn, = [ cos(2mn;0)Tyx — sin(27n;0) (y(z)|7|* + To2) |
|oj]%j (r1 <z < x9).
Yy = [ cos(2mn;0)Tyy(x) + sin(2mn;0)(z + y(2)) 7z |
y

Since A is an C' arc, it follows that

dxy,, nj
% - |Cj—|yj|: COS(27Tnj0)Ty - Sln(27TnJ0)(y’(x)|7-|2 + Tx) j|

Note that 3/(x) is bounded for 1 < z < x9 and 7, > 0, so we can choose a subsegence

dy,
of {n;}, denoted also by {n;} for simplicity such that i S0 (x1 <z < x2). Then
x
x can be expressed as the function of z,;:
= x(1y,) (L™ (21)) < 2y < N (L (22)). (6.1.1)

Substitution refformula into yy,, (), then the arc A,; can be parameterized by w,; as

)\nj = Tn; + Yn; (x(xnj))7 %T(Lnj (Zl)) < Ln; < 8%7'(Lnj (ZQ))
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Proposition 6.1.6. If \ is an wandering C'arc under L, then X\ must contains a segment

of line.

Proof. In fact, we will show that if X is a arc that doesn’t contain any segment of line, then
there exists integer N such that L°Y ()\) intersects itself transversally.

Let A(t) = z(t) + y(t)7 be a C! arc on T, that doesn’t contain any segment of line.
If 2/(t) = 0 for all ¢ € [0,1], then A is a line segment with direction 7. So there exists
to € [0,1] such that 2'(tg) # 0. We can assume a’(tg) > 0 (otherwise we can change
the direction of parameter). By the Inverse Function Theorem, locally, we have t = ¢(x)
(ro—e <z <zp+e, t(xg) =to) and then y = y(t(z)) for xg —e < x < zp+e€. So there is a
sub-arc Ag of A that can be parameterized by z, that is A\g = z+y(t(z))7, = € [xo—€, zo+€].

Lift \g C T, to a arc \g C C. By Lemma 6.1.5, there exists ng such that

1. L™ ()\g) can be parameterized by x;

2. Under the translation, L™ ()\N(]) intersects with two lines 7R and 1 + 7R at z; and zs.

Without loss of generalization, we can assume ;21 < Sr29 and 721 € [0, 1).

Now we denote by A(z) = = + y(x)7 (z € [0,1]) the sub-arc of L™ (X\g) between 7R and
1 + 7R. Note that y(1) > y(0). The projection of A to T is also denoted by . Since X
contains no segment, there exist minimal integer p, ¢ such that p/27 + y(p/29)7 & [21, 22].
Without loss of generalization, we can assume this point is 1/2 +y(1/2)7 and above on the

segment [z1, z2]. Then we have

(y(1/2) —y(0)) = (y(1) —y(1/2)) = € > 0.

We choose a sequence integers {n;} as that in the proof of Lemma 6.1.5, then we have

o ¢2™i% 4 1% as j — 0o, where a = |a|e?™;

o )\,

;= L™ is parameterized by z as )\;j =2+ yn,; (2), Rr(a™21) <z <N (a'29).
In the following, we will define three sequence of points {an;}, {bn;, } and {cp,}.
Define a;,, = TR N an = Y, (0)7.

Since L is holomorphic on T, we have

1 1 d d
« =A for some A = Lol

T T d3q da

€ GL(2,Z)
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din. don. ~
Set A™ = " "™ | Denote by m the minimal positive integer such that A belongs
dS,nj d4,nj

to the parallelogram generated by 1 and m7. Then

a™(1+m7) =a" (1,m) = (din; +mdsp;, d2n; +mdyp;)

Define
y (di,n; +mds p, +TR) N S\n]— = d1n; +md3pn; + Yn;(din; +mds ;)T if dip; +mds,, is odd
TL]' ~
(din; +mdzn; =14+ TR) O Ay = din; +mdzn; — 1+ yn,(din,; +mdsp; —1)7  otherwise
. Ty, Lo,
_ j J
y = g T <2> '
Define
an, = L7%(an,)NA=2a, +Ya, T
bn, = L7(by) A=y, +yb, 7
cnj = ‘Zinj (C;’Lj) N 5\ = $an + ycan

It is easy to see that Ta,, = 0 and Ty, = 1as j— oc.
We have defined {an,}, {bn;}, {cn,; }> Anjs A,

Since A is wandering under L, the arc A, doesn’t intersect itself. It follows that for any

j>1
arg( c;j - (a;j +7))< arg(b;lj - c;lj) < arg(c;lj +7— aﬁlj)
= arg( aep; — (@ap; + 7)) <arg(a"b,, —acy) < arg(a™e,, + 7 —a"ay,)
_ T . , T
< arga™ +arg( cp; — (an; + E) ) < arga™ +arg(bn; — cn;) < arga™ +arg(c,, + P an;)
T T
— arg( Cn; — (anj + %) ) < arg(bnj - an) < arg(cnj + E - anj)

As j — oo, it is easy to see that an; — 21, by, — 22, Rr(cn,) = (Rran, +RNrby;)/2 — 1/2

and then c,; — 1/2+y(1/2)7 =: ¢o. Let j — oo, we have

arg(co — z1) < arg(ze — co) < arg(co — z1)
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It implies that co is on the line segment [z7, 2z9]. With the same reason, we conclude that
for any ¢ > 1 and 1 < p < 29, the point p/29 + y(p/29)T belongs to the segment [z1, z2]. It

follows A = [z1, 22]. O

Proof of Theorem 6.1.1. It follows directly from Lemma 6.1.3 and Proposition 6.1.6. [

6.2 Wandering arc of rational map with parabolic orbiford

In this section, we prove Theorem 7?7 with the help of Proposition 6.1.1
Let f be a rational map with parabolic orbiford, L; : T, — T; be the lift of f. Recall
the two projections:

7:C—T, and g;:T, —C

Denote by C(py) the set of critical points of p;. The composition map pfom: C — C
is a branched covering with the set of critical point C(p;) = 7~ '(C(ps)). The Deck

transformation group of pf o is

T1:z—z+1
Hy, = < Yoz 24T Pr{V1,72) = (71,72)Pn>

2mi

pniz—en (z—2)+ 20
where n is determined by the signature of f.

Lemma 6.2.1. Let I C C\C(py) be line with irrational slop. Then the map prom : 1 — C

1s injective if and only if f is a Lattes map.

Proof. A little thought shows that If pyom: 1 — C is injective, then the orbit of I under
the group Gy = (p,) is pairwise disjoint. It is only possible for some lines as n = 2. On the
other hand, when f is a Lattes map (n = 2), for any I C C\ C(py) with irrational slop, we
have 7(1) N 7(—1) = 0 (otherwise | must pass through the points in C(p;)). It follows the

map g : (xl) — C are all injective, then pfFom:l — C is injective. O
Remark 6.2.2. Let ! be a line in C, f be a Lattes map, the following result is easy to check:

1. As the same as Definition 6.1.2, we can define the set pf o m(l) preperiodic or wan-

dering under f and also define a segment in C and a short segment of f.
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2. The map p; : w(l) — C is injective <= (1) N C(ps) =0 <= =) N7(~1) = 0.

3. If (1) N C(pyf) = O and the orbit of n(l) contains the line w(—l), then w(l) has the
period 2k (k € N) under Ly. In this case, the line pf o w(l) is k periodic under f.

4. In the case 7(1)NC(py) # 0. If 1 has a rational slop, the curve w(l) contains 2 points
of C(pf) and the image p¢(m(l)) is a segment obtained by folding w(l) at the two points
of C(py) Nm(l). If I has an irrational slop, the line w(l) contains 1 points of C(py)
and the image p¢(m(l)) is a ray obtained by folding 7(l) at the point of C(pys) N7(l).

zZ—az

Proof of Theory ?7. Let f be a rational map with parabolic orbiford, Ly : T, —" T
be the lift of f and the Deck transformation group of g o 7w be n.

“=”  Suppose K is a full C' wandering arc under f, then K N Py = . It follows that
pj?l (K) is consisting of n pairwise disjoint full C* arc on T, and p}l (K) is wandering under
Ly. By Proposition 6.1.1, the number « is an integer and each component of pj?l(K) is a
short segment with irrational slop on T,. For any component K of p;l(K ), if f is not a
Lattes map, Lemma 6.2.1 shows that there exists a sufficient large positive integer jg such
that o f(Li;O (K)) intersects by itself, then f7°(K) intersects by itself. So f must be a flexible
Lattes map. By the wandering of p}l(K ) and the definition of short segment in C, K must
be a short segment.

“«<”. Let K be a short segment of a flexible Lattes map f. The definition of a short
segment in C and Remark 6.2.2 show that the two components of pf(K) are all short
segment of Ly in T and p}l(K ) is wandering under L. It follows K is wandering under
f.

O

6.3 Stable multicurve for rational map with parabolic orb-

iford

The objective here is to prove Theorem ??. Firstly, we study the stable multicurve on torus
and then use this result to prove the main theorem. All notation is the same as before.
Note that 7(1), m(7) are simple closed curve on T, and they are the generators of

the fundamental group of T,. With an abuse of the notations, we also usel, 7 to denote
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these two curves. Then any simple closed curve v C T, is homotopic to p + g7 for some

p,q € Z, ged(p,q) = 1 (greatest common divisor).

Lemma 6.3.1. Let L(z) = az(mod A;) be a holomorphic self map on T and v be a simple
closed curve on T.. Then the curves in L_l('y) are pairwise homotopic. The degrees of the
restriction of L on these curves are the same. The curves in L=1(7) are homotopic to v if

and only if o is an integer.

Proof. The map L is holomorphic if and only if

1 1 ail ail2
o' =A for some A = € GL(2,Z) (6.3.1)
T T az1 a2
. . a . . .
If « is an integer, then A = , otherwise the eigenvalue of A are conjugate complex
o

numbers «, a.

Let v be a simple closed curve homotopic to p4¢7 on T, then any connected components
of L~1(7) is a simple closed curve. Choose one curve ; in L~!(v). Suppose 71 is homotopic

to s + t7 and deg(L’,yl):k. We have
sa+tar = k(p+ qr) ged(s,t, k) = 1. (6.3.2)

Substitution 6.3.1 into 6.3.2, we obtain
AT =k (6.3.3)

where AT is the transposition of A. It follows

S B k aze  —a1 p k a2p — a214q

ai11a92 — a12a
—ai2  an q 1822 = 212821\ —a19p + ang
Set A = ged(aiiaz — ai12a21, azep — a21q, —a12p + a11q), we have

ai1Gz22 — 12021 _ G22p — G219 —ai2p + aiq

b= A I N A
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It deduce that k,s,t is only determined by the map L and the homotopic class of v. So
all curves in L~!(y) are pairwise homotopic and we can use d, to denote the degree of the

restriction of L to any curve in L™1(v).

By Equation 6.3.3, the curve = is stable on T, <= ~; is homopotic to v <= d, (i.e

k) is an eigenvalue of AT and (p, q)T is an eigenvector corresponding tod, <— a=4d,. O

Proof of Theorem ?7. Let f : C — C be a Lattes map. By Theorem 2.3.3, the map
pr: T — C is a branched covering of degree 2 satisfying #(2) = pf(—2). This map has
4 simple critical points. The set of critical points of g is denoted by C(ps) and the set of
critical values of this map is P;. For any non-peripheral simple closed curve v C C \ P,
each component of C \ 7y contains two points of Py. We claim that p~!(v) is consisting of
two simple closed curves 7,5 C T, \ C(gpy), these two curves are homotopic in T, and the
restriction of p; on either of the two curves is a homeomorphism to .

Proof of Claim 1: If p~!() contains only one curve 7, then 4 must be trivial on T,
and deg(pf{&)zz The restriction of p; on each component of T, \ C(py) is a branched
covering of degree 2 to one component of C \ 7. By the Riemann-Hurwitz formula, the
simply connected component of T, contains 1 point of C(py), so its image contains only
one point of Py, contradiction to non-peripheral of . It follows p~!(7){,7'} and the
restriction of pf on 4 or 4’ is a homeomorphism to 7. With a similar reason as above,
neither 4 nor 4/ is trivial on T,, so § N4 = = 5 and 4’ are homortopic on T.. Then the
two components of T, \ {§ U4’} are both annulus. The rest of the Claim follows directly
from the Riemann-Hurwitz formula. This end the proof of the Claim.

Following the notation in Lemma 6.3.1, denoted by d, the degree of the restriction of L
from a curve of L71(%) to 4. By Lemma 6.3.1, L™1(3 U #¥') is consisting of 2|a|?/d, simple
closed curves on T \ C(py) and they are pairwise homotopic in T,. These curve divide T
into 2|a|?/d, annuluses. According to the commutative graph in Theorem ??, any such a
annulus is a degree 1 or 2 branched covering under p; to a component of C \ f~Y(v). The
Riemann-Hurwitz fomula implies that each annulus contains 2 or no points of C'(py), then
there are exactly 2 annulus in T, \ L~'(7 U ¥), denoted by Ag, A, (r = |a|?/d,), which
contains 2 points of C(pf) each. Set Uy = py¢(Ao), U, = pr(A4,). We have Uy, U, are
simply connected, #Uy N Py = #U, N Py = 2 and deg(pf‘Ao):deg(pﬂAr):Q. The other

components of C\ f~1(v) are all annuluses disjointed with Py. So the curves in f~1(v) are
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pairwise homotopic in C \ Py (see Figure).
Since py : T, \ C(py) — C\ Py is a covering, the curve v is stable under f = there
exists a curve in L=1(§ N4’) which is homotopic to 4 or 4" on T, \ C(ps) = there exists a

Lemma6.3.1 . . . .
=" ais an integer (i.e f is

curve in L=Y(¥N#4) which is homotopic to 7 or 4" on T,
a flexible Lettes map).

Now we are left to prove that any non-peripheral simple closed curve is stable under a
flexible Lattes map f. We consider a class of special simple closed curves on C \ Py: for any
p,q € Z, ged(p,q) = 1, let I be a long in C\ 77 1(C(py)) with slop k; = g/p. Define 7 =
7(l),5 = 7(—1), then 4,4 are homotopic simple closed curve in T, and N3 = (). Tt follows
er(7) = () 2 7 and the restriction of p¢ from either 4 or 4’ to 7 is a homeomorphism.
A simple argument by Riemann-Hurwitz fomula shows that - is a non-peripheral curve on
T\ C. In fact, the homotopic class of such v is independent of the choosing of [. To prove
this, let I/ be another line with the same properties as I, 6 = w(I'),8' = =(I'). Suppose o
doesn’t coincide with 4 and 7' (it is equivalent to (6 Ud") N (FUA) = 0), we claim that & is
homotopic to either 4 or 4" on T, \ C(py). It follows that ¢ is homotopic to v on C\ Py,
so we define such kind of simple closed curve in C by vp.q- It is easy to see that v, is not
homotopic to v, 4 for (p,q) # (', ¢').

Proof of Claim 2: Denote by Ay, A; the two annulus of T, (¥ U4). By Claim 1, the
annulus A4; (i = 0,1) contains 2 points of C(py). Since ¢ is disjoint from 7 U 7', we can
assume 0 C Ag. If § is homotopic to neither 4 or 4/, then 6 must separate the points of
C(ps)NAp (that is each of the two components Ag\d contains a point of C'(p;)NAp). Since
the restriction of py from A to a component of C is a branched covering of degree 2, the
curve ¢ (the image of 6 under @ £) must intersect by itself (see Figure). It is a contradiction.

Let f be a flexible Lattes map, the lift L(z) = mz(modA;) By Lemma 6.3.1 and a
similar argument as proof of Claim 2, we can show that 7, , is homotopic to a curve in
L™ (Apq UAp,) on T\ Clpy). It follows that -, 4 is homotopic to a curve f~1(v,4) on
C Py, that is, v, 4 is stable.

Proposition 2.6 in [FM] says that {’yp,q‘p, q € Z, ged(p,q) = 1} are 77 of the homotopy
classed of non-peripheral simple closed curves in C Ps. So for any non-peripheral simple
closed curve v C C \ Py, we can choose 7, , homotopic to v in C \ Py. The stability of 7,4
deduces the stability of . d
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Dynatomic curve and core entropy for iteration of polynomia Is
Courbes dynatomiques et entiropie noyau de polynémes itérés

Résumé

Lorsqu’on étudie les systéemes dynamiques engendrés
par une famille de polynémes, il apparait naturellement
des courbes algébriques de type cyclotomique,
contenant des points périodiques ou prépériodiques.
Dans le cas périodique de la famille z¢ + ¢, le premier
chapitre de cette these montre, en collaboration avec
Ou, que ces courbes sont toutes lisses et
irréductibles, généralisant les résultats connus au cas
d=2. Dans le cas prépériodique de la méme famille, le
deuxiéme chapitre de la thése montre, contre tout
attendu, que ces courbes sont en général réductibles.
En plus, il y contient une caractérisation des
composantes irréductibles ainsi que leur relation
géométrique et analytique.

Le deuxiéme théme de cette thése concerne un
nouveau sujet développé par W. Thurston, il s’agit
d’entropie noyau des polynémes. Thurston a donné un
algorithme, sans preuve, pour calculer ces entropies.
La thése contient une preuve rigoureuse de cet
algorithme ainsi que des nouvelles méthodes pour
étudier la variation de ces entropies en jonglant
plusieurs points de vue.

Le dernier théme de cette thése donne une condition
nécessaire et suffisante pour qu’'une fraction
rationnelle posséde un compact errant plein dans son
ensemble de Julia. On savait que dans le cas
particulier des polynémes ce genre de compact ne
pouvait pas du tout exister.

Mots clés

courbes dynatomiques, courbes irréductibles, itération
des fractions rationnelles, entropie topologique,
compact errant, ensemble de Julia.

Abstract

When studying dynamical systems generated by a
family of polynomials, it arises naturally cyclotomic
type algebraic curves containing periodic or
preperiodic points. In the periodic case of the family
fe(2) = 2% + ¢, the first chapter of this thesis shows
that all these curves are smooth and irreducible,
generalizing the known results to the case d = 2. In the
preperiodic case of the same family, the second
chapter of this thesis shows, against all expected that
these curves are in general reducible. In addition,
there contains a characterization of irreducible
components and their analytical and geometrical
relationship.

The second theme of this thesis a new topic
developed by W. Thurston, it is core entropy of
polynomials. Thurston gave an algorithm, without
proof, for compute these entropies. The thesis
contains a rigorous proof of this algorithm and new
methods to study the variation of these entropies from
several views.

The last topic of this thesis gives a hecessary and
sufficient condition for a kind of rational map having a
Cl-arcin its Julia set.

Key Words
dynatomic curves, irreducible, iteration of rational
functions, topological entropy, wandering continuum.
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