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Chapter 1

Introduction

In this thesis, I study three problems of complex dynamics:

• Dynatomic periodic and preperiodic curve for polynomials fc(z) = zd + c. Such a

curve is a combination of parameter space and dynamical plane which is compatible

with dynamics. So it give us a chance to study the structure of the curve by means

of the method of dynamics.

• Core entropy of polynomials. It is a new field opened by William Thurston in recent

years to study the parameter space of polynomials. Many interesting and basic prob-

lems that seems true are to be resolved. We are following his idea and try to move as

far as possible.

• Wandering continuum of post critical finite rational map. It is also an example of

the common phenomenon in complex dynamics that the conclusion is well known for

polynomial but almost vacuity for rational map. Few existing tools and method can

be used to deal with this problem because it is very difficult to find a partition on

Julia set of rational map.

In this chapter, I will simply introduce the background, development and important

conclusion about these three problem respectively. At the same time, I will give the main

results of this thesis.
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1.1 Dynatomic periodic and preperiodic curve for polynomi-

als fc(z) = zd + c

Fix d ≥ 2. For c ∈ C, set fc(z) = zd + c. For p ≥ 1, define

X̌0,p :=
{

(c, z) ∈ C2 | fpc (z) = z and for all 0 < k < p, fkc (z) 6= z
}
.

X0,p := the closure of X̌0,p in C2 .

It is known that each X0,p is an affine algebraic curve. It is called the periodic dynatomic

curve. It has been the subject of several studies in algebraic and holomorphic dynamical

systems.

In case d = 2, Douady-Hubbard proved the smoothness of X0,p by the technique of

parabolic implosion. The irreducibility is proved by Morton [Mo] using a combinatorics of

algebraic arguments, by Bousch [B] using combiantion of algebraic and dynamical method

and by Lau and Schleicher [LS] [Sch] using dynamical arguments only. Bousch [B] also

calculated the Galois group and the genus of some kind of compactification of X0,p. Recently,

Buff and Tan Lei reproves the smoothness and irreducibility of X0,p with a different method

([BT]).

For the general case d ≥ 2, we generalized the method in [BT] and prove the following

theorem:

Theorem 1.1.1. For any p ≥ 1, the periodic dynatomic curve X0,p satisfies:

1. X0,p is an affine algebraic curve;

2. X0,p is smooth and irreducible;

3. The Galois group G0,p for the defining polynomial of X0,p consists of the permutations

on roots of the defining polynomial that commute with fc.

Next, we consider the preperiodic case.

Definition. For n ≥ 0, p ≥ 1, a point z is called a (n, p)-preperiodic point of fc if

f◦n+p
c (z) = fnc (z) and f l+kc (z) 6= f lc(z) for any 0 ≤ l ≤ n, 0 ≤ k ≤ p with (l, k) 6= (n, p).

Now, for any n ≥ 1, p ≥ 1, define

X̌n,p =
{

(c, z) ∈ C2
∣∣z is a (n, p)-preperiodic point of fc

}
8



Xn,p := the closure of X̌n,p in C2 .

In fact, as we shall see below, each Xn,p is also an affine algebraic curve. These curves

are called preperiodic dynatomic curves. There are much less studies about them. The

known results include the connectivity of X̌n,p and the computation of the Galois group of

its defining polynomial ([B], [Sch]) in case d = 2.

In Chapter 4, we will give a more detailed description of Xn,p (for any degree d) from

both algebraic and topology point of view. We summarize our main result below. This

result is to be compared with results on periodic dynatomic curves.

For νd(p) the unique sequence of positive integers satisfying the recursive relation

dp =
∑
k|p

νd(k)

and for ϕ(m) the Euler totient function (i.e. the number of positive integers less than m

and co-prime with m), set

gp(d) = 1 +
(d− 1)(p− 1)

2d
νd(p)−

d− 1

2d

∑
k|p,k<p

ϕ
(p
k

)
k · νd(k) .

gn,p(d) = 1 +
1

2
νd(p)d

n−2
[
(d− 1)(n+ p)− 2d

]
− 1

2
dn−2(d− 1)

∑
k|p,k<p

ϕ
(p
k

)
k · νd(k)

Theorem 1.1.2. For any d ≥ 2, n, p ≥ 1, the preperiodic dynatomic curve Xn,p has the

following properties :

1. The set Xn,p is an affine algebraic curve. It has d−1 irreducible components and each

one is smooth. Moreover, every pair of these components intersect transversally at the

singular points of Xn,p. The set X̌n,p has d− 1 connected components.

2. In particular, if d = 2, the curve Xn,p is smooth and irreducible, and the set X̌n,p is

connected.

3. The genus of the compactification of every irreducible component of Xn,p is gn,p(d).

Furthermore, all irreducible components are mutually homeomorphic.

4. The Galois group of the defining polynomial of Xn,p consists of all permutations on

its roots which commute with fc and d-th rotation.

9



Here is a tableau comparing these various curves :

periodic X0,p d = 2 d > 2

irreducible irreducible

smooth smooth

# ideal points ν2(p)/2 νd(p)/d

genus gp(2) gp(d)

Galois group sym(ν2(p)/p)n Zν2(p)/p
p sym(νd(p)/p)n Z

νd(p)/p
p

preperiodic Xn,p, n ≥ 1 d = 2 d > 2

irreducible d− 1 irreducible components

smooth each component is smooth

component-wise genus gn,p(2) gn,p(d)

Galois group Gn,p(2) Gn,p(d)

component-wise Galois group Gn,p(2) Gjn,p

pairwise intersection empty Cn,p,4

1.2 Core entropy of polynomais

A central theme of research in dynamical systems is the variation of dynamics along

parametrized families. There are many dynamical properties that are interesting to study

within a parameter family. We are mainly concerned with families of complex polynomials

or rational maps. In this case, each map induces a fractal set, the Julia set, on which the

dynamics behave chaotically. One may for example study the variation of the topology and

the geometry of the Julia set. On a more statistic level, the variation of the topological

entropy provides also important dynamical/parameter information.

For a continuous map f acing on a compact set X, we can define the topological entropy

h(X, f) (see Section 2.5 for its definition). Topological entropy is a quantity that measures

the complexity of the induced dynamical system.

The pictures in this Section are most due to Tiozzo and TanLei.

10



Core entropy of real polynomials

Let f : I → I continuous (I is denoted by the unit interval), by Misiurewicz-Szlenk

h(I, f) := lim
n→∞

log{#laps of fn}
n

where #laps of fn is the number of monotone intervals of fn, or equivalently, the number

of critical points of fn.

Now consider the quadratic family fc(z) = z2 + c. For c ∈ [−2, 1/4], fc has a invariant

interval Ic = [−βc, βc] where βc is the landing point of external ray Rc(0). The core

entropy of fc is defined by h(Ic, fc), the topological entropy of fc on Ic. A natural question

is:

how does it change with the parameter c?

Theorem. (Milonr-Thurston (77), Douady (93)) As c ∈ [−2, 1/4], h(Ic, fc) is continuous

and monotone decreasing from log 2 to 0.

Core entropy of complex polynomials

Thurston’s idea of core entropy: ( The entropy for a polynomial map acting on its

entire Julia set is always log d, where d is the degree. what’s tricky is figuring out the best

11



definition that filters out the way the polynomial acts on the tips of the leaves of the Julia

set, where the invariant measure for entropy is concentrated, filtering this behavior out and

leaving the action on the ”interior” of the Julia set in some sense.)

The “interior” of the Julia set are the points that at least two external rays land on,

these points will be finally attracted by the Hubbard tree (i.e. the convex hull of the

postcritical orbits within the (filled-in) Julia set) under the iteration of f . At the same

time, the Hubbard tree is a natural object to replace the real trace segment in the real case,

so it is reasonable to define the core entropy of a polynomial as the topological entropy of

f on its Hubbard tree (if it exists). In many cases, including the case that f is postcritical

finite, the Hubbard tree Hf is a finite tree and is forward invariant by f .

So for a polynomial f , if its Hubbard tree exists and is a finite tree, we define by h(Hf , f)

the core entropy of f . Note that this definition is compatible to the real case..

In parameter space of quadratic polynomials, the segment [−2, 0] can be homeomorphic

embedded to any limb of Mandelbrot set by Branner-Hubbard surgery. Its image is called

the main vein of this limb. In any main vein of Mandelbrot set, Hubbard trees Hc are

finite trees and have the same shape. For example, any polynomial fc which is on the main

vein of 1/3-limb has the Hubbard tree with a shape of “Y”.

Tiozzo generalizes the Theorem of Milnor-Thurston to any main vein:

Theorem.(Tiozzo) As c moves along a main vein from 0 to its tip, the core entropy h(Hc, fc)

is continuous and increasing.

Bill Thurston has made important progress in the study of core entropy during the last

two years of his life. He used a quite different approach to the computation of the core

12



entropy, by following an outer contour of the Mandelbrot set, as well as its higher degree

substitutes, as opposite to following the veins from inside. Such a contour can be seen

combinatorially as the space of critical portraits (or external angles of M), or analytically

as the space of polynomials all of whose critical points escape to infinity with the same rate.

Thurston established an effective algorithm computing the core entropy for the rational

critical portraits without proof (see the degree 2 plot below).

Figure 1-1: core entropy of quadratic polynomials

We will describe Thurston’s entropy algorithm and prove this algorithm in Section 5.1

Conjecture (Thurston): The core entropy is a continuous function on the boundary of

the Mandelbrot set.

To prove the continuity of core entropy, Thurston suggests the torus model of polyno-

mials (see Section 2.2.3 for the construction). Roughly speaking, the degree d polynomials

can be characterized combinatorially by the degree d critical portraits ( or called primitive

majors by Thurston). Stating from any degree d primitive major m, we can obtain a degree

d invariant lamination L(m) by pulling back m under the map τd. The set b∞(m) is exactly

the preimage of L(m) under the map ℘ from T2 to the set of all hyperbolic geodesics in D

by mapping (x, y) ∈ T2 to the geodesic xy ∈ D.

Definition. Let m = {Θ1, . . . ,Θs} be a primitive major. We say that m is a rational

primitive major, if all angles in ∪sj=1Θj are rational numbers.

Denote by F : T2 −→ T2 mapping (x, y) to (dx, dy). If m is a rational primitive major,

13



we can find a compact F -invariant set TH1(m) ⊂ b∞(m), called combinatorial Hubbard

tree. We define by h(TH1(m), F ) the core entropy of primitive major m.

Theorem 1.2.1. Let m be any rational primitive major.

1. h(TH1(m), F ) = log d ·H.dim (TH1(m)).

2. We can find a transition matrix M(m) such that

h(TH1(m), F ) =

 0 if M(m) is nilpotent

log ρ(M(m)) otherwise

3. If m can be realized by a postcritical finite polynomial f , then

h(TH1(m), F ) = h(Hf , f).

In fact, there is a strong dynamical background of torus model b∞(m) and combinatorial

Hubbard tree TH1(m). If m can be realized by a postcritical finite polynomial f , each point

in TH1(m) corresponds to a ray pair landing on the same point of Hf . One can see Section

5.2.4 for more details.

For any critical portrait, there exists a stretching ray R(m) in shift locus Sd of parameter

space of degree d polynomials realizing it. In other words, any polynomial in R(m) has m

as its critical portrait and all critical point have the same escaping speed. Denote the

stretching ray R(m) by {fm,t}t>0 where t is the escaping speed of the critical points of fm,t.

For any t > 0, we can define a continuous map

πm,t : b′∞(m) −→ J(fm,t)

mapping (x, y) to the common landing point of Rfm,t(x) and Rfm,t(y).

If m is a rational critical portrait, denote by Hm,t ⊂ J(fm,t) the image of TH1(m)

under πm,t. Then Hm,t is a compact fm,t-invariant set. We define by h(Hm,t, fm,t) the core

entropy of fm,t. It is not difficult to prove that for any t > 0,

h(Hm,t, fm,t) = h(TH1(m), F ).

So along a stretching ray of rational critical portrait, the core entropy of all polynomials

14



are equal. By term 3 of Theorem 1.2.1, if {fm,t}t>0 lands on a polynomial fm,0 with critical

portrait m, then h(Hfm,0 , fm,0) = h(Hm,t, fm,t) for any t > 0.

Applying the discussion above to the quadratic case, for any c ∈ C \ M2, c can be

labeled by (θ,R) where θ ∈ S1 is the angle of c and R > 1 is the potential of c. Then we

denote c ∈ C \M2 by cθ,R. If RM2(θ) lands, denote by cθ,1 the landing parameter of the

ray. Let θ be a rational angle, by the discussion above, we have that the core entropy of

fcθ,R with R ≥ 1 is unrelated with R. So the rational parameter rays that land on the same

parameter together with the landing parameter form a contour of core entropy.

Motived by term 1 of Theorem 1.2.1, we have an alternate definition of the core entropy

of primitive majors by Hausdorff dimension. For any primitive major m, the set b′∞(m)

contains the diagonal ∆ of T2. We define the core entropy of m by

log d ·H.dim (b∞(m)′ \∆).

Note that the preimage of ∆ in b′∞(m) \∆ under F is a countable set. So for a rational

primitive major, almost every point of b′∞(m) \∆ is mapped to TH1(m) by the iteration of

F , then we have

H.dim (b′∞(m) \∆) = H.dim (TH1(m))

According to term 1 of Theorem 1.2.1, in the case of rational primitive majors, the definition

of core entropy of primitive major by Hausdorff dimension is the same as that by the

topological entropy of F on TH1(m).

1.3 Wandering continuum of postcritical finite rational map

Let f be a rational map. By a wandering continuum we means a non-degenerate con-

tinuum K ∈ Jf (i.e. K is a connected compact set consisting more than one point) such

that fn(K) ∩ fm(K) = ∅ for any n > m ≥ 0.

For a polynomial, the existence or not of wandering continuum has been studied by

many authors. It is proved that for a polynomial without irrational indifferent periodic

cycles, there is no wandering continuum if and only if the Julia set is locally connected

([K]).

For a non-polynomial rational map, as far as I know, few results about the wandering
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continuum is known. Recently, Cui, Peng and Tan make a big progress about this problem

for postcritical finite rational map. They point out that for a postcritical finite rational map

f , there are two kinds of possible wandering continuum: full and separate (see definition

below). They prove that f admits a separate wandering continuum if and only if f has a

Contor multicurve ([CPT]). The remaining question is that

In what condition does f admit a full wandering continuum? (1)

Definition. (wandering continuum) Let f be a postcritical finite rational map, E be a

non-degenerate continuum in Ĉ. E is called full if Ĉ \ E is simply connected and called

separate if there is an annulus A ∈ Ĉ \ Pf (Pf means the postcritical set of f , see S2)

such that E ⊂ A and each components of Ĉ \A contains at least two points of Pf . We call

K a full wandering continuum of f if fn(K) is full for all n > 0 and call K a separate

wandering continuum if there exists an integer N > 0, such that fn(K) is separate for all

n > N .

In the study of postcritical finite rational map dynamics, the objective stable multic-

urve (Definition 2.3.4) plays a very important role. It was first used in complex dynamics

by Thurston to study the topological characterization of postcritical finite rational map

(see [DH2]). Then it is widely used to study the combinatorics of rational dynamics, see for

example [CPT], [CT1], [CT2], [Pil], [T]. A basic problem about stable multicurve is that

for a postcritical finite rational map f ,

In what condition does f admits a stable multicurve ? (2)

In this thesis, we answer questions (1) and (2) in the simplest case: f is a postcritical

finite non-polynomial rational map with parabolic orbiford (see Definition 2.3.1). Through-

out this thesis, we call such a map a rational map with parabolic orbiford for convenience.

Let f be a rational map with parabolic orbiford Of . The map f can be lifted to be

a holomorphic map between torus . Then we can study the dynamics of rational map by

means of the holomorphic dynamics on torus. Such a dynamics is very simple because the

holomorphic map between torus has the form z 7→ αz+β ( mod Λ) for some complex number

α, β and lattice Λ. In this case, the possible signature of Of are (2, 2, 2, 2), (3, 3, 3), (2, 4, 4),

or (2, 3, 6) (see 2.3.1 for details).
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Definition.(Lattes map) If Of has the signature (2, 2, 2, 2), the rational map f is called

Lattes map. For a Lattes map f , it is called flexible if Lf , the lift of f on torus, has the

form z 7→ mz + β(modΛ) for some m ∈ Z and called non-flexcible otherwise.

For a rational map with parabolic orbiford, #Pf = 4 if f is a Lattes map and #Pf = 3

otherwise. So if f has a stable multicurve, the multicurve contains only one curve.

Theorem 1.3.1. Let f be a rational map with parabolic orbiford, then

1. f admits a full wandering C1 arc K if and only if f is a flexible Lattes map and K

is a segment with irrational slop.

2. f has a stable multicurve if and only if f is a flexible Lattes map. Furthermore, if f

is a flexible Lattes map, any non-peripheral simple closed curve is stable.

The thesis is organized as follows:

In Chapter 2, we give some basic acknowledge and notations used in this thesis; In

Chapter 3, we study the periodic dynatomic curve for fc and prove Theorem 1.1.1; In

Chapter 4, we describe the preperiodic curve for fc and prove Theorem 1.1.2; In Chapter

5, we study the core entropy of polynomials from the view of primitive majors and prove

Theorem 1.2.1; In Chapter 6, we deal with the wandering continuum problem and prove

Theorem 1.3.1.
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Chapter 2

Basic knowledge and results

In this chapter, we will give some knowledge and results about complex dynamics and other

fields that will be used below. The pictures in Section 2.2.3 are due to W. Thurston and

TanLei.

2.1 General theory of complex dynamics

Let f : Ĉ −→ Ĉ be a rational map. That means f can be expressed as

f(z) =
P (z)

Q(z)
,

where P ,Q are two polynomials without common factor. Denote by degP the degree of

polynomial P , define

degf = max{degP, degQ}.

It is called the degree of f and is equal to the number of roots (counting with multiplicity)

of equation f(z) = a ∈ Ĉ

Throughout this thesis, we only consider the rational map with degf ≥ 2, because when

degf = 1, f is a Mobius transformation which has a simple dynamics.

Now, we give some notation used in this thesis:

Definition 2.1.1. Let f : Ĉ −→ Ĉ be a rational map and z0 ∈ Ĉ. We call sequence

{z0, z1 = f(z0), · · · , zn = fn(z0), · · · } the (post) orbit of z0 under f , denoted by O+(z0);

and call the set {z0, f
−1(z0), · · · , f−n(z0), · · · } the back forward orbit of z0 under f , denoted

19



by O−(z0).

Two kinds of important orbit are periodic orbit and preperiodic orbit, they are defined

as follows:

Definition 2.1.2. Let f : Ĉ −→ Ĉ be a rational map. For p ≥ 1, a point z ∈ Ĉ. is called

a p periodic point of f if fp(z) = z and fk(z) 6= z for any k < p; For n ≥ 0, p ≥ 1, a point

z is called a (n, p)-preperiodic point of fc if fn+p
c (z) = fnc (z) and f l+kc (z) 6= f lc(z) for any

0 ≤ l ≤ n, 0 ≤ k ≤ p with (l, k) 6= (n, p).

It is obviously that the orbit of a periodic point or preperiodic point is finite and all

points in a periodic orbit have the same period.

Definition 2.1.3. Let z0 be a p periodic point of f . We call λ = (fp)′(z0) the multiplier of

z0. If the orbit of z0 is denoted by O(z0) = {z0, z1, · · · , zp−1}, then λ =
p−1∏
j=0

f ′(zj).

In the following, we give the classification of periodic points:

Definition 2.1.4. Let z0 be a p periodic point of f with multiplier λ = (fp)′(z0), then

1. If 0 < |λ| < 1, the point z0 is called attractive periodic point;

2. If λ = 0, the point z0 is called super attractive periodic point;

3. If |λ| > 1, the point z0 is called repelling periodic point;

4. V??oe??? |λ| = 1, the point z0 is called indifferent periodic point. In this case, λ =

e2πiα, α ∈ R. Furthermore, if α is a irrational number, then z0 is called irrational

indifferent periodic point, otherwise z0 is called a parabolic point.

In complex dynamics, Fatou set and Julia set are two most important set. They are

disjoint and form the entire Riemann sphere together. The dynamics of a rational map in

the two set are quite different. In order to give the definition of these two sets, we will

introduce the theory of Montel normal family.

Definition 2.1.5. Let U ⊂ Ĉ be a domain and F is consisting of all holomorphic map from

U to Ĉ. If any sequence in F has a subsequence with local uniform convergence, then F is

called a normal family. Equivalently, F is compact under the compact-open topology.
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The definition of normal family is local. Let F be the family of holomorphic map from

U to Ĉ. We call F is normal at a point z ∈ U if there is a neighborhood Vz of z such that F
is a normal family on Vz. Obviously, if F is normal at any point of U , then F is a normal

family on U .

Now we can define the Fatou set and Julia set.

Definition 2.1.6. Let f : Ĉ −→ Ĉ be a rational map. If {fn} is normal at z0 ∈ Ĉ, then

z0 is called a normal point of f . The set of all normal point of f is called the Fatou set of

f , denoted by F (f). The complementary set of F (f) is called the Julia set of f , denoted

by J(f). By the definition, F (f) is open and J(f) is compact. A connected component of

F (f) is called a Fatou component.

Remark 2.1.7. According to the definition, it is not difficult to see that for any n ≥ 1,

F (f) = F (fn), J(f) = J(fn).

and F (f), J(f) are both completely invariant, that is

f−1(F (f)) = F (f) = f(F (f));

f−1(J(f)) = J(f) = f(J(f)).

Another important concept in complex dynamics is critical point.

Definition 2.1.8. Let f : Ĉ −→ Ĉ be a rational map and c ∈ Ĉ. If f ′(c) = 0, then c is called

a critical point of f . The image of a critical point v = f(c) is called a critical value. The

orbit of a critical point is called a post critical orbit. We denote by C = {c ∈ Ĉ | f ′(c) = 0}
the set of critical point of f , and by V = f(C) the set of critical value of f . We call

Pf =
⋃
n≥0

fn(C) the post critical set of f .

For more detail of Fatou set and Julia set, one can refers to [Mil3].

In the following, we state two important theorem that completely characterize the dy-

namics on Fatou set.

Definition 2.1.9. Let f : Ĉ −→ Ĉ be a rational map. A Fatou component D is called p

periodic if p is the smallest integer satisfying fp(D) = D. If there exists k ≥ 0 such that
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fk(D) is periodic, then D is called preperiodic. If D is preperiodic but not periodic, then D

is called strictly preperiodic.

A non-preperiodic Fatou component is called wandering. Equivalently, a wandering

Fatou compoent can be defined as for any i, j ≥ 0, i 6= j, f i(D) ∩ f j(D) = ∅.

Theorem 2.1.10. ([Mil2]) Let f be a rational map. Then each Fatou component is prepe-

riodic.

Figure 2-1: Five kinds of different Fatou component

Theorem 2.1.11. ([Mil2]) Let f be a rational map. If f(D) = D, then D is one of the

following 4 exclusive cases:( see Figure 2-1 )

1. ((super) attractive basin): There exists a attractive fixed point z0 ∈ D with multiplier

0 ≤ |λ| < 1. {fn} locally uniform converge to z0 in D.

22



2. (parabolic basin): There exists a parabolic fixed point z0 ∈ ∂D with multiplier λ = 1.

{fn} locally uniform converge to z0 in D.

3. (Siegel disk): D is conformal to the unit disk D and f conformally conjugate to an

irrational rotation in D;

4. (Herman ring): D is conformal to an annulus A = {z ∈ C | 0 < r < |z| < 1} and f

conformally conjugate to an irrational rotation in A.

2.2 Dynamics of polynomial

2.2.1 Filled in Julia set and Multibrot set

Let us recall some results about filled-in Julia set and Multibrot set that will be used

following. These can be found in [DH1], [Mil2] and [DE].

For c ∈ C, we denote by Kc the filled-in Julia set of fc, that is the set of points z ∈ C
whose orbit under fc is bounded. We denote by Md the Multibrot set for fc(z) = zd + c,

that is the set of parameters c ∈ C for which the critical point 0 belongs to Kc.

If c ∈Md, then Kc is connected. There is a conformal isomorphism φc : CrKc → CrD

which satisfies φc ◦ fc =
(
φc
)d

and φ′c(∞) = 1. The dynamical ray of angle θ ∈ T is

Rc(θ) :=
{
z ∈ CrKc | arg

(
φc(z)

)
= 2πθ

}
.

If θ is rational, then as r tends to 1 from above, φ−1
c (re2πiθ) converges to a point γc(θ) ∈ Kc.

We say that Rc(θ) lands at γc(θ). We have fc ◦ γc = γc ◦ τ on Q/Z. In particular, if θ is

periodic under τ , then γc(θ) is periodic under fc. In addition, γc(θ) is either repelling (its

multiplier has modulus > 1) or parabolic (its multiplier is a root of unity).

If c /∈ Md, then Kc is a Cantor set. There is a conformal isomorphism φc : Uc → Vc

between neighborhoods of ∞ in C, which satisfies φc ◦ fc =
(
φc
)d

on Uc. We may choose

Uc so that Uc contains the critical value c and Vc is the complement of a closed disk.

For each θ ∈ T, there is an infimum rc(θ) ≥ 1 such that φ−1
c extends analytically along

R0(θ) ∩
{
z ∈ C | rc(θ) < |z|

}
. We denote by ψc this extension and by Rc(θ) the dynamical

ray

Rc(θ) := ψc

(
R0(θ) ∩

{
z ∈ C | rc(θ) < |z|

})
.

23



As r tends to rc(θ) from above, ψc(re
2πiθ) converges to a point x ∈ C. If rc(θ) > 1, then

x ∈ CrKc is an iterated preimage of 0 and we say that Rc(θ) bifucates at x. If rc(θ) = 1,

then γc(θ) := x belongs to Kc and we say that Rc(θ) lands at γc(θ). Again, fc ◦ γc = γc ◦ τ
on the set of θ such that Rc(θ) does not bifurcate. In particular, if θ is periodic under τ

and Rc(θ) does not bifurcate, then γc(θ) is periodic under fc.

The Multibrot set is connected. The map

φMd
: CrMd 3 c 7→ φc(c) ∈ CrD

is a conformal isomorphism. For θ ∈ T, the parameter ray RMd
(θ) is

RMd
(θ) :=

{
c ∈ CrMd | arg

(
φMd

(c)
)

= 2πθ
}
.

It is known that if θ is rational, then as r tends to 1 from above, φ−1
Md

(re2πiθ) converges to

Figure 2-2: The parameter rays RM3(7/26) and RM3(9/26) land on a common root of a
primitive hyperbolic component while RM3(19/80) and RM3(11/80) land on a common root
of a satellite hyperbolic component. Only angles of rays are labelled in the graph.

a point of Md. We say that RMd
(θ) lands at this point. A dynamical ray or parameter ray
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is called (n, p)-preperiodic if its angle is (n, p)-periodic under τ : θ → dθ (modZ). There

are three kinds of important parameters:

• c is called a parabolic parameter if fc has a parabolic periodic point. Furthermore,

if the multiplier is 1, the parameter c is called a primitive parabolic parameter,

otherwise c is called a satellite parabolic parameter.

• c is called a hyperbolic parameter if fc has an attracting periodic point.

• c is called a Misiurewicz parameter if c is a (n, p)-preperiodic point of fc for some

n, p ≥ 1.

Parabolic parameters and Misiurewicz parameters lie on the boundary of Md.

The set of hyperbolic parameters forms an open and closed subset of the interior of

Md. Each connected component is called a hyperbolic component. Within a hyperbolic

component, the period of the attracting periodic point for any parameter is the same and

this number is called the period of the hyperbolic component.

If θ is periodic for τ of exact period n and if c0 := γMd
(θ), then the point γc0(θ) is

periodic for fc0 with period p dividing n (ps = n, s ≥ 1) and multiplier a s-th root of unity.

If the period of γc0(θ) for fc0 is exactly n then the multiplier is 1, c0 is called primitive

parabolic parameter, otherwise c0 is called satellite parabolic parameter.

Lemma 2.2.1 (near parabolic map). c0 is defined as above. When we make a small pertur-

bation to c0 in parameter space, If c0 is a primitive parabolic parameter, then the parabolic

orbit of fc0 is splitted into a pair of nearby periodic orbits of fc, both have length n; If c0

is a satellite parabolic parameter, then the parabolic orbit of fc0 is splitted into a pair of

nearby periodic orbits of fc, one has length p and the other has length sp = n.

This lemma was proved by Milnor in [Mil1] lemma 4.2 for the case d = 2, but we can

translate the proof word by word to the general case.

Let H be a p-periodic (p ≥ 1) hyperbolic component. For every parameter c ∈ H, the

polynomial fc has an attracting periodic orbit { z(c), . . . , fp−1
c (z(c)) }. Its multiplier defines

a map

λH : H → D, c 7→ ∂

∂z
f◦nc (z)

∣∣∣∣
z=z(c)

.

Then λH : H → D is a branched covering of degree d − 1 with only one branched point

which is the preimage of 0. This branched point is called the center of H. The map λH
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can be extended continuously to the closure H. Considering parameter c ∈ ∂H such that

λH(c) = 1, Eberlein proved the following results:

• For p ≥ 2, among these points, there is exactly one c which is the landing point of two

parameter rays of period p, this point is called the root of H. Any one of the other

d−2 points is the landing point of only one parameter ray of period p. They are called

the co-roots of H. The component H is said of primitive or satellite type according

to whether its root is a primitive or satellite parabolic parameter. All co-roots of H

are primitive parabolic parameters.

• For p = 1, any one of these d−1 points is the landing point of only one fixed parameter

ray and hence a primitive parabolic parameter.

Figure 2-3: Multibrot set M4. The parameter rays RM4(1/15) and RM4(4/15) land on the
root of some hyperbolic component. RM4(2/15) and RM4(1/5) land on two co-root of this
hyperbolic component respectively.

2.2.2 Hubbard tree

In the work [DH1], Douady and Hubbard suggested a combinatorial description of the

dynamics of a post critical finite polynomial using a tree-like structure. It is called Hubbard
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tree. In this section, we state some basic result without proof. One can refer to [DH1] for

the proof and more material of Hubbard tree.

Definition 2.2.2. A finite connected tree T is a topological space which satisfies the fol-

lowing to properties:

• For any two points of T , there exists unique Jordan arc in T connecting the two points.

• T is homeomorphism to the union of finite closed segments.

Let T be a finite connected tree. A point p in T is called endpoint of T if T \ p is

connected, p is called a branching point of T if the number of connected component of T \p
is no less than 3.

Let f be a critically finite polynomial. Its filled Julia Kf set is connected, locally con-

nected and arc connected. Given two points in the closure of a bounded Fatou component,

they can be joined in a unique way by a Jordan arc consisting of (at most two) segments

of internal rays. We call such arcs regulated (following Douady and Hubbard). Since Kf

is arc connected, given two points z1, z2 ∈ Kf , there is an arc γ : [0, 1] −→ Kf such that

γ(0) = z1 and γ(1) = z2. In general, we will not distinguish between the map and its image.

Such arcs can be chosen in a unique way so that the intersection with the closure of a Fatou

component is regulated. We still call such arcs regulated and denoted them by [z1, z2]Kf .

Definition 2.2.3. We say that a subset X ⊂ Kf is regulated connected if every z1, z2 ∈
X we have [z1, z2]Kf ⊂ X. We define the regulated hull [X]Kf of X ⊂ Kf as the minimal

closed regulated connected subset of Kf containing X.

Proposition 2.2.4. If z1, . . . , zn are points in Kf , the regulated hull [z1, . . . , zn]Kf of

{z1, . . . , zn} is a finite tree.

Definition 2.2.5. Let f be a post critical finite polynomial. The Hubbard tree Hf of f is

defined by [Cf ∪ Pf ]Kf .

The vertex set V (Hf ) of Hf is the union of Cf , Pf and all branching points of Hf . The

closure of a connected component of Hf \ V (Hf ) is called an edge.

Lemma 2.2.6. Hf is invariant under f (f(Hf ) ⊂ Hf ) and f maps each edge of Hf

homeomorphic to the union of some edges of Hf .
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2.2.3 Invariant lamination and torus model

Let f be a degree d polynomial with connected Julia set and Kf be its filled-in Julia set.

The Bottcher theorem give the commutative graph:

C \Kf
f−→ C \Kf

φ
y yφ

C \ D z 7→zd−→ C \ D

In addition that f is locally connected, the conformal map φ−1 can be extended continuously

to S1 and then each external ray land on a point in Jf . If we define a equivalent relation

λ(f) on S1 by

θ ∼ η iff θ = η or Rf (θ), Rf (η) land on the same point.

then φ−1/λ(f) : S1/λ(f) −→ J(f) is a homeomorphism and the dynamic of f on J(f) is

topologically conjugate to that of z → zd on S1/λ(f). It means that the dynamic on f on

its Julia set is completely characterized by equivalent relation λ(f).

We abstract the core properties that λ(f) satisfies:

(R1) λ(f) is a closed relation in S1;

(R2) Each equivalence class is a finite subset of S1;

(R3) If A is an equivalence class, then d ·A is an equivalence class;

(R4) The equivalence classes are un-linked, i.e the hull of any two equivalence classes in D

are disjoint.

Then we can imagine using this kind of equivalent relation, or more geometric view of the

equivalent relation called invariant lamination, as the combinatorial model of polynomials.

The following definitions about lamination are due to Thurston ([Th])

Definition 2.2.7 (lamination). A lamination is a set L of hyperbolic chords in the closed

unit disk D, called leaves of L, satisfying the following conditions:

(L1) elements of L are disjoint, except possibly at their endpoints;
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(L2) the union of L is closed.

A gap of a lamination L is the closure of a component of complement of ∪L.

Definition 2.2.8 (invariant lamination). A lamination L is a degree d invariant for the

map

τd : S1 −→ S1, τd(z) = zd,

if it satisfies the following conditions:

(L3) Forward invariant: If any leaf pq is in L, then either τd(p) = τd(q), or τd(p)τd(q) is

in L.

(L4) Backward invariance: if any leaf pq is in L, then there exists a collection of d disjoint

leaves, each joining a preimage of p to a preimage of q.

(L5) Gap invariant: for any gap G, the convex hull of the image of G0 = G ∩ S1 is either

a gap or a leaf or a single point.

Definition 2.2.9. Let L be a degree d invariant lamination. A gap G of L is called critical

if the restriction of τd on G0 is not injective; a leaf l ∈ L is called critical if the image of

its two endpoints are the same.

The major of a degree-d-invariant lamination is the set of critical leaves and critical

gaps.

We’ll say that the major of a lamination Is primitive if each critical gap is a polygon

whose vertices are all identified by z 7→ zd. Even without a predefined lamination, we can

define a primitive degree-d major to be a collection of disjoint leaves and polygons each

of whose vertices are identified under z 7→ zd, with total criticality d−1 (see right of Figure

2.2.3,2.2.3). Denote by PM(d) the space of all degree-d-primitive major.

In the following, we give a description of Thuston’s torus model to show how to construct

a degree-d-invariant lamination whose major is a given primitive major.

Denote by T = S1 × S1 the torus. For x, y ∈ S1, we use xy to represent the hyperbolic

geodesic in the unit disc linking e2πix and e2πiy. Each leaf xy is represented twice on the

torus, as (x, y) and (y, x).

If a lamination contains a leaf l = xy, then a certain set X(l) of other leaves are excluded

from the lamination because they cross xy. On the torus, if you draw the horizontal and
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vertical circles through the two points (x, y) and (y, x), they subdivide the torus into four

rectangles having the same vertex set; the remaining two common vertices are (x, x) and

(y, y). The leaves represented by points in the interior of two of the rectangles constitute

X(l), while the leaves represented by the closures of the other two rectangles are all com-

patible with the given leaf l = xy. We will call this good, compatible region G(l). The

compatible rectangles are actually squares, of sidelengths a − b mod 1 and b − a mod 1.

They form a checkerboard pattern, where the two squares of G(l) are bisected by the diag-

onal.

Figure 2-4: A leaf xy of a lamination can be represented by a pair of points {(x, y), (y, x)}
on a torus. Leaves that are excluded by xy because they intersect it are represented in two
shaded rectangles, and leaves compatible with it are represented in two squares of sidelength
b− a mod 1 and a− b mod 1.

Given a set S of leaves, the excluded region X(S) is the union of the excluded regions

X(l) for l ∈ S, and the good region G(S) is the intersection of the good regions G(l) for

l ∈ S. If S is a finite lamination, then G(S) is a finite union of rectangles that are disjoint

except for corners.

In the particular case of a primitive major lamination m ∈ PM(d), each region of the

disk minus m touches S1 in a union of one or more intervals J1 ∪ · · · ∪ Jk of total length

1/d. This determines a finite union of rectangles (J1 ∪ · · · ∪ Jk) × (J1 ∪ · · · ∪ Jk) of G(m)

whose total area is 1/d2 that maps under the degree d2 covering map (x, y) 7→ d · (x, y) to

the entire torus.
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Figure 2-5: On the left is a plot of showing the excluded region X(m), shaded, together
with the compatible region G(m) on the torus, where m ∈ PM(4) is a primitive degree-4
major. The figure is symmetric by reflection in the diagonal. The quotient of the torus by
this symmetry is a Moebius band. Note that G(m) is made up of three 1/4× 1/4 squares
(one of them wrapped around) corresponding to the regions that touch the circle in only
one edge, together with 3 ·3 = 9 additional rectangles with total area is 1/42, corresponding
to the region that touches S1 in 3 intervals. The 6 green dots represent the leaves of the
major, one dot for each orientation of the leaf.

Figure 2-6: Here is a primitive heptic (degree-7) major with a pentagonal gap, shown in a
variation of the torus plot, along with the standard Poincaré disk picture. On the left, half
of the torus has been replaced by a drawing that indicates each leaf of the lamination by a
path made up of a horizontal segment and a vertical segment. The lower right triangular
picture transforms to the Poincaré disk picture by collapsing the horizontal and vertical
edges of the triangle to a point, bending the collapsed triangle so that the it goes to the
unit disk with the collapsed edges going to 1 ∈ C, then straightening each rectilinear path
into the hyperbolic geodesic with the same endpoints.
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For m ∈ PM(d) we can now define a sequence of backward-image laminations bi(m).

Let b0(m) = m and inductively define bi+1(m) is the union of m with the preimages under

Fd of bi(m) that are in G(m). Then For each i, bi(m) is a lamination.

Growth = 1.96595

:
7

78
,

10

91
>

Growth = 1.96595

:
7

78
,

10

91
>

Figure 2-7: On the left is stage 1 (b1(m)) in building a cubic-invariant lamination for
m = {(10

91 ,
121
273), ( 7

78 ,
59
78)} ∈ PM(3). The two longer leaves of m subdivide the disk into 3

regions, each with two new leaves induced by the map f3. On the right is a later stage that
gives a reasonable approximation of b∞(m).

Note that this is an increasing sequence, bi(m) ⊂ bi+1(m). By induction, the good region

G(bi(m)) has area 1/dm. Set b∞(m) =
⋃
i≥0 bi(m), b′∞(m) is the cluster set of b∞(m) and

b∞(m) = b∞(m) ∪ b′∞(m) is the closure of b∞(m).

It follows readily that:

Theorem 2.2.10. The closure b∞(m) is a degree-d-invariant lamination having m as its

major.
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2.3 Orbiford and multicurve

Let f : Ĉ→ Ĉ be a rational map. We denote by degzf the local degree of f at z. We will

call

Ωf = {z| degf > 1}.

the critical set of f and

Pf =
⋃
n>0

fn(Ωf )

the postcritical set. The rational map f is called postcritical finite if # <∞.

Definition 2.3.1 (orbiford). Let f be a postcritical finite rational map. A map νf : Ĉ →
N ∪ {∞} is defined such that νf (z) us the least common multiple of the local degree degyf

n

for all n > 0 and y ∈ Ĉ with fn(y) = z. The map νf is called signature of f . We call

Of = (Ĉ, νf ) the orbiford of f .

Note that νf (z) > 1 if and only if z ∈ Pf . The Eular Characteristic of Of is given by

χ(Of ) = 2−
∑
z∈ ˆC

(1− 1

νf (z)
).

Definition 2.3.2. The orbiford Of is called ellipt, parabolic or hyperbolic according

to χ(Of ) > 0, χ(Of ) = 0 or χ(Of ) < 0.

The following theorem is a part of the Uniformization Theorem of orbiford. One can

refer to appendix A.1 in [Mc] and appendix in [Mil2] for more details.

Theorem 2.3.3. Let f be a rational map with parabolic orbiford, then we have

1. Of is parabolic orbiford if and only if the signature of f is (2, 2, 2, 2), (3, 3, 3), (2, 4, 4)

or (2, 3, 6).

2. The map f can be lifted to be a holomorphic map between torus along a branched

covering ℘f : Tτ → Ĉ for some τ ∈ H. That is

Tτ
Lf=αz( mod Λτ )−→ Tτ

℘f

y y℘f Tτ = C/(Z⊕ τZ)

Ĉ f−→ Ĉ
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3. There exists ρn : Tτ −→ Tτ , z 7→ e
2πi
n (z − z0) + z0(modΛτ ) (z0 is a fixed point of ρn

on Tτ ) such that

℘f (z1) = ℘f (z2) ⇐⇒ z2 = ρkn(z1) for some k ∈ Z

The possible numbers n are 2, 3, 4, 6 and there is a equation degz(℘f ) = νf (℘f (z)).

The set of critical values of ℘f is Pf . The relationship between n and the signature

of f are given by the following table:

signature of f (2, 2, 2, 2) (3, 3, 3) (2, 4, 4) (2, 3, 6)

n 2 3 4 6

The Deck transformation group of ℘f 〈ρ2〉 〈ρ3〉 〈ρ4〉 〈ρ6〉

degree of ℘f 2 3 4 6

Now we turn to the definition of stable multicurve.

Let f be a postcritical finite rational map. We say that a Jordan curve γ on Ĉ \ Pf is

non-peripheral if any component of Ĉ \ γ contains at least two points of Pf .

Definition 2.3.4. A multicurve of f is a finite non-empty collection of disjoint non-

peripheral Jordan curves on Ĉ \Pf such that any two of them are not homotopic rel Pf . A

multicurve Γ is called stable if each non-peripheral curve in f−1(γ) for γ ∈ Γ is homotopic

rel Pf to a curve in Γ.

Remark 2.3.5. Let S be any Riemann surface and γ1, γ2 be two curves in S. In this paper,

we denote by γ1 = γ2 (γ1 6= γ2) that the images of γ1 and γ2 in S are coincide (not coincide)

as sets.

2.4 Algebraic curve and Galois group

The objective here is to give some definition and notation about affine algebraic curve and

Galois group that will be used later. The material can be found in [G] and [H].
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2.4.1 Affine algebraic curve,singular points and tangent

Definition 2.4.1. An affine algebraic curve over C is defined as the set

C =
{

(a, b) ∈ C2
∣∣f(a, b) = 0

}
for a non-constant squrefree polynomial f(a, b) ∈ C[x, y].

The polynomial f is called the defining polynomial of C, the degree of f is called the

degree of C. We assume that all polynomials appearing in this section are squrefree.

If f =
∏m
i=1 fi, where fi are the irreducible factor of f , we say that the affine curve

defined by fi is a component of C. furthermore, the curve C is said to be irreducible if the

defining polynomial is irreducible.

Definition 2.4.2. Let C be an affine algebraic curve for C defined by f ∈ C[x, y], and let

P = (a, b) ∈ C. The multiplicity of C at P , denoted by multP (C), is defined as the order of

the first non-vanishing term in the Taylor expansion of f at P , i.e.

f(x, y) =
∞∑
s=0

1

s!

s∑
t=0

(
s

t

)
(x− a)t(y − b)s−t ∂sf

∂xt∂ys−t
(a, b).

If multP (C) = 1, the point P is called a smooth point of C. If multP (C) = r > 1, then we

say that P is a singular point of multiplicity r. We say that C or f is smooth if any point

on C is smooth.

The following theorem provides a topological interpretation of the irreducibility of poly-

nomials.

Theorem 2.4.3. The polynomial f is irreducible if and only if the set of smooth points of

f is connected.

Let P = (a, b) ∈ C be a point of multiplicity r (r ≥ 1). Then the first non vanishing

term in the Taylor expansion of f at P is

Tr(x, y) =

r∑
t=0

(
r

t

)
(x− a)t(y − b)r−t ∂rf

∂xt∂yr−t
(a, b).

Note that Tr(c, z) is a homogeneous polynomial about x− a and y− b, so all its irreducible

factors are linear and they will be called the tangents of C at P .
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Definition 2.4.4. Let C, P, Tr(c, z) be as above. Then the tangents of C at P are the

linear irreducible factors of Tr(x, y) and the multiplicity of a tangent is the multiplicity of

the corresponding factor.

For analyzing a singular point P on a curve C we need to know its multiplicity but also

the multiplicities of the tangents. If all the r tangents at the point P are different, then

this singularity is of well-behaved type.

Definition 2.4.5. A singular point P of multiplicity r on an affine plane curve C is called

ordinary if the r tangents to C at P are distinct, and non-ordinary otherwise.

Example. Considering the following three curve in C2. The pictures represent the projec-

tion of these curves to R2. (0, 0) is the unique singular point of A, B, C. For A, the origin

A : fA(x, y) = y2 − x3 − x2 B : fB(x, y) = y2 − x3 C : fC(x, y) = (x2 + y2)3 − 4x2y2

mult(0,0)(A) = 2 and there are two different tangents x ± y = 0 at (0, 0). So (0, 0) is a

double ordinary singular point of A, called a “node”. For B, mult(0,0)(B) = 2 and there is

only one tangent y = 0 at (0, 0) with multiplicity 2. So (0, 0) is a double non-ordinary sin-

gular point of B, called a “cusp”. For C, mult(0,0)(C) = 4. There are two different tangents

x = 0, y = 0 at (0, 0) with multiplicity 2 both. So (0, 0) is a non-ordinary singular point of

C with multiplicity 4. It can be seen as a mixing of node and cusp.

Definition 2.4.6. Let C1, C2 be any two affine algebraic curves and P is an intersecting

point of the two curves. We say that C1, C2 intersect transversally at P if P is a smooth

point for both C1 and C2 and the tangents of C1, C2 at P are distinct.
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2.4.2 The Galois group of a polynomial

Let M be a field, f(x) ∈M [x]. If all roots of f are simple, then the splitting field of f over

M , denoted by L, is called the Galois extension over M . The Galois group of f is

Gal(f) =
{
σ ∈ Aut(L)

∣∣σ|M = idM
}
.

Note that each σ ∈ Gal(f) can be seen as a permutation on the roots of f and it

is completely determined by this permutation, then Gal(f) can be seen as a subgroup of

sym(roots of f). Usually, Gal(f) doesn’t equal to the symmetric group on all roots of f , so

we can see some intrinsic structure and symmetry of polynomial f from its Galois group.

Now let M = K = C(c), and let P (c, z) ∈ K[z] be a polynomial about c and z. If P (c, z)

has no multiple roots in K[z], applying the statement above to P (c, z), we obtain a Galois

group Gal(P ) of P (c, z). In fact, the Galois theory admits an interpretation in terms of the

covering theory. Here we only state what we need as a theorem below.

Definition 2.4.7. Let X, Y be two topological spaces, X is connected. Let f : Y → X

be a covering. Fix any base point x0 ∈ X, then the monodromy action of the elements in

π1(X,x0) gives a group morphism

Φf : π1(X,x0) −→ sym(f−1(x0))

The image of π1(X,x0) under Φf is called the monodromy group of f , denoted by Mon(f).

Let P (c, z) ∈ C[c, z] ⊂ K(z) be a polynomial, monic in z, and C be the affine algebraic

curve defined by P (c, z) = 0. Denote by πP : C → C, (c, z) 7→ c be the projection to the

first parameter and by CP =
{

(c, z) ∈ C :
∂P

∂z
(c, z) = 0

}
the set of critical points of πP . If

CP 6= C, then C \ π−1
P (πP (CP )) is a covering of C \ πP (CP ). So for any c0 ∈ C \ πP (CP ), we

obtain a group morphism

ΦP : π1

(
C \ πP (CP ), c0

)
−→ sym

(
π−1
P (c0)

)
whose image is the monodromy group Mon(P ).

In fact, the monodromy action of π1(C \ πP (CP ), c0) on π−1
P (c0) under the covering

map πP is induced by analytic continuations. By the Implicit Function Theorem, for c0 ∈
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C \ πP (CP ), there exist deg(P (c0, z)) local holomorphic solutions for P (c, z) = 0 at c0.

These solutions accept analytic continuations along any curve in C \ πP (CP ). So analytic

continuations along the closed curves based on c0 give a group morphism

φP : π1

(
C \ πP (CP ), c0

)
−→ sym(ZP )

where ZP is the set of roots of P (c0, z) = 0 (note that π−1
P (c0) = {(c0, z) ∈ C|z ∈ ZP }). The

monodromy action of γ ∈ π1(C\πP (CP ), c0) under πP : C \π−1
P (πP (CP )) −→ C\πP (CP ) is

induced by the analytic continuation of local solutions of P (c, z) = 0 at c0 along γ, that is

ΦP (γ)(c0, z) =
(
c0, φP (γ)(z)

)
for all (c0, z) ∈ π−1

P (c0). So Mon(P ) is isomorphic to AC(P ) := φP (π1(C \ πP (CP ), c0)).

Theorem 2.4.8. The Galois group of P (c, z) is isomorphic to the monodromy group of

πP : C \ π−1
P (πP (CP ))→ C \ πP (CP ), that is , Gal(P ) ∼= Mon(P ).

This proposition is due to the correspondence between the Galois theory and the covering

theory. One can refer to [H] for its proof.

2.5 Topological entropy

Let X be a compact topological space. For any open cover U , let N(U) denote the minimal

cardinal of a sub cover of U . Since X is compact, there always exists a finite subcover. For

any two covers U ,V of X, define

U ∨ V =
{
U ∩ V

∣∣U ∈ U , V ∈ V}.
Let f be a continuous map of X into itself. If U is an open cover of X, we set

f−1(U) = {f−1(U)
∣∣U ∈ U}

and
n∨
U = U ∨ f−1(U) ∨ · · · ∨ f−n(U)
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For two covers U and V, We denote by U ⊂ V if U is a sub-cover of V. For the operators

f−1 and ∨, there are two basic properties that will be used later: let U , V, W be open

covers

If f is onto, then f−1(U ∨ V) ⊂ f−1(U) ∨ f−1(V) (2.5.1)

If U ⊂ V, then f−1(U) ⊂ f−1(V)andU ∨W ⊂ V ∨W. (2.5.2)

The entropy of f on X with respect to U is defined by :

h(X,U , f) = lim
n→∞

logN(
∨n U)

n
.

This limit exists and it is also the infimum because the sequence {N(
∨n U)} satisfy sub-

additive property. Finally, we define the topological entropy of f on X:

h(X, f) = sup
U , open cover of X

h(X,U , f).

We will give three basic properties of topological entropy that will be used in the following.

One can see [Do] for more details.

Let X be a compact set, f : X → X is a continuous map.

Proposition 2.5.1. ([Do]. Pro 2) If X = X1 ∪X2, with X1 and X2 compact, f(X1) ⊂ X1

and f(X2) ⊂ X2, then h(X, f) = sup
(
h(X1, f), h(X2, f)

)
.

Proposition 2.5.2. ([Do]. Pro 3) Let Y be a closed subset of X such that f(Y ) ⊂ Y .

Suppose that , for any x ∈ X, the distance of fn(x) to Y tends to 0, uniformly on any

compact set in X − Y . Then h(X, f) = h(Y, f).

Proposition 2.5.3. ([Do]. Pro 4) Let X,Y be compact sets, f : X → X, g : Y → Y

and π : Y → X continuous maps with π surjective, and such that f ◦ π = π ◦ g. Then

h(X, f) ≤ h(Y, g). Suppose all fibers π−1(x) have a cardinal bounded by a fixed finite

number m. Then h(X, f) = h(Y, g)

From the definition, if we want to compute the topological entropy of a continuous map

on a compact space, we should consider all the open covers of the space. It is very difficult

for a general compact space. But if the space is a compact metric space, then there is a

simpler method to compute the entropy.
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Let X be a compact metric space with metric d. It can be shown that the topological

entropy depends only on the topology induced by d.

Definition 2.5.4. The diameter d(U) of a cover U is defined by

d(U) = sup
U∈U

d(U)

where d(U) is the diameter of set U .

Definition 2.5.5. A cover V is said to be a refinement of a cover U if every member V
is a subset of some member of U . It is denoted by U ≺ V. Note that if U ≺ V, then

h(X, f,U) ≤ h(X, f,V).

Proposition 2.5.6. If {Uk} is a sequence of open covers such that

(1) Uk ≺ Uk+1,

(2) d(Uk)→ 0 as k →∞

Then h(X, f) = limk→∞ h(X,Uk, f).

Proof. This proposition mainly relies on the Lebesgue’s Covering Lemma:

Lebesgue’s Covering Lemma. For every open cover U of a compact metric space X,

there exists δ > 0 such that if V is a subset of X with d(V ) < δ, then V is contained in one

of the members of U . The supremum of all such numbers δ is called Lebesgue number of U .

For any ε > 0, there exists an open cover U of X such that

0 < h(X, f)− h(X, f,U) < ε.

Since d(Uk) → 0 as k → ∞, there is integer k0 such that d(Uk0) is less than the Lebesgue

number of U . By Lebesgue’s Covering Lemma and property (2), U ≺ Uk0 ≺ Uk for k > k0.

It follows that

0 ≤ h(X, f)− h(X, f,Uk) ≤ h(X, f)− h(X, f,U) < ε for k > k0.
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2.6 Matrices

LetM = {k× k square matrices}. M can be viewed as a vector space of dimension k2 and

it is isomorphic to the space {linear maps of Rk → Rk}.
An operator norm on M is defined as follows: Equip at first a norm on Rk: ||x||∗.

Define then ||D||∗ = sup||x||∗≤1 ||Dx||∗. This type of norm satisfies a multiplicative inequality

:

∀A,B ∈M, ||A ·B||∗ ≤ ||A||∗ · ||B||∗. (2.6.1)

In particular,

||Dn||∗ ≤ ||D||n∗ (2.6.2)

A general norm || · || does not necessarily satisfy (2.6.1). On the other hand,

Lemma 2.6.1. All norms in M are equivalent.

Lemma 2.6.2. (spectral radius) There exists a map ρ :M→ [0,+∞) so that for any norm

|| · || in M, any D ∈ M, ||Dn|| 1n → ρ(D) as n → ∞. Moreover, if ‖ · ‖∗ is an operator

norm, ρ(D) = infn ‖Dn‖
1
n
∗ = lim infn ‖Dn‖

1
n
∗ .

For any D ∈M, ρ(D) is called the spectral radius of D.

Proof. Denote the norm || · ||∗ be an operator norm. Then by (2.6.2), ||Dn|| is sub multi-

plicative. Therefore ||Dn||
1
n
∗ has a well defined limit, denoted by ρ(D), which is also equal to

infn ‖Dn‖
1
n
∗ and to lim infn ‖Dn‖

1
n
∗ . But by Lemma 2.6.1, C||Dn||∗ ≤ ||Dn|| ≤ C ′||Dn||∗.

Lemma 2.6.3. For any invertible matrix P ∈ M, any D ∈ M, ρ(PDP−1) = ρ(D), that

is to say ρ is a conjugacy invariant.

Proof. Choose ||·||∗ to be a norm of Type 1. SetA = PDP−1. Then ||An||∗ = ||PDnP−1||∗ ≤
||P ||∗ · ||Dn|| ∗ ·||P−1||∗. So ρ(A) = ρ(D). By symmetry, ρ(D) ≤ ρ(A). So ρ(A) = ρ(D).

Lemma 2.6.4. For any D ∈M, ρ(D) = max{ |λ| | λ is an eigenvalue of D}.

Proof. By Lemma 2.6.3, one can replace D by its Jordan Form. We may assume |λ1| =

max{ |λ| | λ is an eigenvalue of D}. Let ||D||∞ be the norm associated to ||x||∞ = maxi |xi|.
Then ||D||∞ = maxi{

∑
j |Dij |}, where Dij denote the element in D of the i-th row and the

j-th column. So ||Dn||∞ ≥ |λn1 | and ρ(D) ≥ |λ1|. Note that ||Dn||∞ ≤ |λn−k1 | · poly(n),
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where poly(n) denotes a polynomial about n whose coefficients depend on λ1, and k denotes

the maximal size of a Jordan block corresponding to λ1. So ρ(D) ≤ |λ1|.

We will state without proof the classical

Theorem 2.6.5. (Perron-Frobenius) Let D ∈ M and Dij denote the element in D of the

i-th row and the j-th column.

1. If D > 0 (i.e. for any pair (i, j) ∈ {1, · · · , k}, Dij > 0), then ρ(D) = λ(D) is itself

an eigenvalue. Moreover, λ(D) is a simple eigenvalue, there exists a unique (up to scaling)

v ≥ 0, such that Dv = λ(D)v and necessarily v > 0. Furthermore for any other either value

λ, we have |λ| < λ(D), and λ does not have an eigenvector u with u ≥ 0 and u 6≡ 0.

2. If D ≥ 0 (i.e. for any pair (i, j) ∈ {1, · · · , k}, Dij ≥ 0), then ρ(D) = λ(D) is itself

an eigenvalue. Moreover if ρ(D) > 0, there exists a v ≥ 0, v 6≡ 0 such that Dv = λ(D)v.

Theorem 2.6.6 (Due to TanLei). Denote by v = (1, . . . , 1) ∈ Rk. Let A be a non-nilpotent

k × k matrix whose entries are non-negative integers. Set vn = Anv. Then, for any norm

‖ · ‖ of Rk,

lim
n→∞

||vn||1/n
(||vn||+ · · ·+ ||v0||)1/n

= 1 .

Proof. The result is independent of the choice of the norm. We will use ‖ · ‖ to denote the

L1 norm on Rk, and again ‖ · ‖ to denote the corresponding operator norm in M.

In particular ‖A‖ is equal to the L∞ norm of Av. Set the spectral radius of A as λ. We

claim that λ ≥ 1. By the non-nilpotent assumption, for each n, An contains at least one

entry that is a strictly positive integer, and the other entries are non-negative. It follows

that ‖An‖ = ‖Anv‖∞ ≥ 1. So λ ≥ 1.

For any ε > 0, there is Cε > 0 such that

λn ≤ ‖An‖ ≤ Cε(λ+ ε)n, ‖vn‖ ≤ ‖An‖ · ‖v‖ ≤ kCε(λ+ ε)n .

Let ε > 0 be arbitrary. Denote by Dε the matrix obtained by by adding ε to every entry

of A. Denote by λε the leading eigenvalue of Dε.

Apply the Perron-Frobenius theorem to the transpose of D one sees that there is a

positive horizontal vector µε satisfying

µεD = λεµε . (2.6.3)
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One may normalize µε to have L1 norm equal to 1.

Letting ε → 0, and by compacity, a sequence of the triple (µε, Dε, λε) converges to

(µ,A, λ) with µA = λµ, ‖µ‖ = 1 and µ ≥ 0. Note that µv = ‖µ‖ = 1. So

λn = λnµv = µAnv ≤ ‖µ‖ · ‖Anv‖ = ‖Anv‖ = ‖vn‖ .

It follows from (2.6.3)

∀n, λn ≤ ‖vn‖ ≤ kCε(λ+ ε)n .

Thus, as λ ≥ 1,

lim sup
n→∞

( ‖vn‖
||vn||+ · · ·+ ||v0||

)1/n

≤ lim
n→∞

(
kCε(λ+ ε)n

λn + · · ·+ 1

)1/n

=
λ+ ε

λ

(to obtain the last equality one should treat separately the cases λ > 1 and λ = 1). But

the left hand side is independent of ε. Arguing symmetrically, one obtains

1 ≤ lim inf
n→∞

( ‖vn‖
||vn||+ · · ·+ ||v0||

)1/n

≤ lim sup
n→∞

( ‖vn‖
||vn||+ · · ·+ ||v0||

)1/n

≤ 1 .
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Chapter 3

Dynatomic periodic curve

In this chapter, we will give a description of the dynatomic periodic curve for the family of

unimodel polynomials, including the smoothness and irreducibility of this curve, and the

Galois group of the defining polynomial of this curve.

3.1 Defining polynomial of X0,p

In this section, we define the dynatomic periodic polynomial Q0,p ∈ C[c, z] and prove that

X0,p =
{

(c, z) ∈ C2| Q0,p(c, z) = 0
}

For p ≥ 1, let Φ0,p(c, z) = f◦pc (z) − z. Then the solutions of Φ0,p(c, z) = 0 is consisting

of all (c, z) ∈ C such that

z is a k periodic point of fc, k|p

. With an abusing of notations, we can consider a polynomial in C[c, z] as a polynomial in

K[z], where K = C(c) is the field of rational function about c.

Definition 3.1.1. A polynomial g(c, z) ∈ C[c, z] is called squrefree if it can’t be division by

h(c, z)2 for any non-constant h(c, z) ∈ C[c, z].

Lemma 3.1.2. There exists an unique sequence of square-free polynomials {Q0,p(c, z)}p≥1 ⊂
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C[c, z] ⊂ K[z] monic about z such that

Φ0,p(c, z) =
∏
k|p

Q0,k(c, z)

Proof. At first, we claim: for any c0 ∈ C \Md, p ≥ 1, all roots of Φ0,p(c0, z) are simple. (

proof: in this case, all periodic points of fc0 are repelling and the critical orbit converge to

∞. Then for any root z0 of Φ0,p(c0, z), we have

(∂Φ0,p/∂z)(c0, z0) = [f◦pc0 ]′(z0)− 1 6= 0

). By this claim and the fact that Φ0,p(c, z) is monic about z, if we find a sequence

of polynomials {Q0,p(c, z)}p≥1 satisfying the equation in the lemma, they are naturally

square-free.

We will define this sequence of polynomials by the induction on p. As p = 1, we define

Q0,1 = Φ0,1(c, z) = z2 − z + c.

The equation in Lemma 3.1.2 holds.

Now suppose for each 1 ≤ k < p, we have find the polynomial Q0,k(c, z) that satisfies the

requirement of the lemma. Let c0 be any parameter inC \Md. If z0 is a root of Q0,k(c0, z),

it is also a root of Φ0,k(c0, z). Then z0 is a m periodic point of fc0 with m|k. In fact, m

must be equal to k. Otherwise Q0,k(c0, z) ·
∏
m′|mQ0,m′(c0, z) would have a double root at

z0. But according to the assumption of induction, Qn,k(c0, z) ·
∏
m′|mQ0,m′(c0, z) divides

Φ0,k(c0, z), it is a contradiction to the claim above.

So we can conclude that: in { Q0,k(c0, z) }1≤k<p,k|p, any two polynomials have no com-

mon roots, and any polynomial divides Φ0,p(c0, z). Therefore,
∏
k|p,k<pQ0,k(c0, z) divides

Φ0,p(c0, z) in C[z]. Since c0 is any point of C\Md, the polynomial
∏
k|p,k<pQ0,k(c, z) divides

Φ0,p(c, z) in K[z]. So we can define

Q0,p(c, z) = Φ0,p(c, z)
/

[
∏

k|p,k<p

Q0,k(c, z)].

It satisfies the requirement of this lemma.
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From the definition of integer νd(p) and polynomial Q0,p(c, z), it is easy to see that

degz Q0,p = deg Q0,p = νd(p).

Now, for any parameter c0 ∈ C, we will study the properties of the roots of Q0,p(c0, z).

Proposition 3.1.3. Let p ≥ 1 be any integer and c0 ∈ C be any parameter. Then z0 ∈ C
is a root of Q0,p(c0, z) iff it satisfies the following 3 exclusive properties:

(1) z0 is a p periodic point of fc0 and [f◦pc0 ]′(z0) 6= 1, in this case z0 is a simple root of

Q0,p(c0, z);

(2) z0 is a p periodic point of fc0 and [f◦pc0 ]′(z0) = 1, in this case z0 is a double root of

Q0,p(c0, z);

(3) z0 is a k periodic point of fc0 where k is a proper factor of p and [f◦kc0 ]′(z0) is
p

k
-th

primitive root of unit, in this case z0 is a root of Q0,p(c0, z) with multiplicity
p

k
.

Proof. If Q0,p(c0, z0) = 0 then Φ0,p(c0, z0) = 0, so z0 is a k periodic point of fc0 with k|p.
On the contrary, if z0 is a k periodic point of fc0 , then Φ0,m(c0, z0) = 0 iff m is a multiple

of k. In particular, if m is not a multiple of k, then Q0,m(c0, z0) 6= 0. Since

0 = Φ0,k(c0, z0) =
∏
k′|k

Q0,k′(c0, z0)

we obtain Q0,k(c0, z0) = 0.

Case 1. If the multiplier ρ of z0 as a fixed point of f◦kc0 is not a root of unit, when p

is a multiple of k, z0 is a simple root of Φ0,p(c0, z). In this case, Q0,k(c0, z) is a factor of

Φ0,p(c0, z), so no other factors of Φ0,p(c0, z) vanish at z0. Then Q0,p(c0, z0) = 0 iff p = k.

Moreover, Q0,p(c0, z) ∈ C[z] has a simple root at z0.

If the multiplier ρ of z0 as a fixed point of f◦kc0 is a s-th root of unit, then the multiplier

of z0 as a fixed point of f◦kmc0 is ρm. It is equal to 1 iff m is a multiple of s. In this case, z0

is a root of Φ0,km(c0, z) with multiplicity s+1. In fact, fc0 has only one attractive petal cycle.

Case 2. If s = 1, when p is a multiple of k, z0 is a double root of Φ0,p(c0, z). As the

discussion above, Q0,p(c0, z0) = 0 iff p = k, but in this case Q0,p(c0, z) ∈ C[z] has a double
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root at z0.

Case 3. If s ≥ 2, when p is a multiple of k but not a multiple of ks, z0 is a simple root

of Φ0,p(c0, z); when p is a multiple of ks, z0 is a root of Φ0,p(c0, z) with multiplicity s + 1.

Therefore, Q0,p(c0, z0) = 0 iff p = k or p = ks; z0 is a simple root of Q0,k(c0, z) ∈ C[z] and

a root of Q0,ks(c0, z) with multiplicity s.

Remark 3.1.4. By the Propositon 3.1.3, we have

X̌0,p =
{

(c, z) ∈ C2
∣∣(c, z) satisfies the property (1) in Proposition 3.1.3

}
For α = 2, 3, define

C0,p,α =
{

(c, z) ∈ C2
∣∣(c, z) satisfies the property (α) in Proposition 3.1.3

}
Then C0,p,2, C0,p,3 are finite set and X0,p = X̌0,p ∪ C0,p,2 ∪ C0,p,3. So

X0,p =
{

(c, z)| Q0,p(c, z) = 0
}
.

3.2 The smoothness of periodic curve

In this section, we will prove the smoothness of X0,p. The idea is to prove that some partial

derivative of some defining function of Xn is non vanishing. Following A. Epstein, we will

express this derivative as the coefficient of a quadratic differential of the form (fc)∗Q−Q.

Thurston’s contraction principle gives (fc)∗Q − Q 6= 0, therefore the non-nullness of our

partial derivative.

3.2.1 Quadratic differentials and contraction principle

A meromorphic quadratic differential (or in short, a quadratic differential) Q on C takes

the form Q = q dz2 with q a meromorphic function on C.

We use Q(C) to denote the set of meromorphic quadratic differentials on C whose poles

(if any) are all simple. If Q ∈ Q(C) and U is a bounded open subset of C, the norm

‖Q‖U :=

∫∫
U
|q|
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is well defined and finite.

For example

‖ dz2

z
‖{|z|<R} =

∫ 2π

0

∫ R

0

1

r
r drdθ = 2πR .

For f : C → C a non-constant polynomial and Q = q dz2 a meromorphic quadratic

differential on C, the pushforward f∗Q is defined by the quadratic differential

f∗Q := Tq dz2 with Tq(z) :=
∑

f(w)=z

q(w)

f ′(w)2
.

If Q ∈ Q(C), then f∗Q ∈ Q(C) also.

The following lemma is a weak version of Thurston’s contraction principle.

Lemma 3.2.1 (contraction principle). For a non-constant polynomial f and a round disk

V of radius large enough so that U := f−1(V ) is relatively compact in V , we have

‖f∗Q‖V ≤ ‖Q‖U < ‖Q‖V , ∀Q ∈ Q(C).

Proof. The strict inequality on the right is a consequence of the fact that U is relatively

compact in V . The inequality on the left comes from

‖f∗Q‖V =

∫∫
z∈V

∣∣∣∣∣∣
∑

f(w)=z

q(w)

f ′(w)2

∣∣∣∣∣∣ |dz|2
≤
∫∫

z∈V

∑
f(w)=z

∣∣∣∣ q(w)

f ′(w)2

∣∣∣∣ |dz|2
=

∫∫
w∈U

∣∣q(w)
∣∣ |dw|2 = ‖Q‖U .

Corollary 3.2.2. If f : C→ C is a polynomial and if Q ∈ Q(C), then f∗Q 6= Q.

Remark 3.2.1. Thurston’s contraction principal says that if Q is a meromorphic quadratic

differential on P1 and f : P1 → P1 is a rational function, if one requires f∗Q = Q withQ 6= 0,

then f is necessarily a Lattès example.

The formulas below appeared in [L] chapter 2, we write them together as a lemma.
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Lemma 3.2.3 (Levin). For f = fc, we have



f∗

(
dz2

z

)
= 0

f∗

(
dz2

z − a

)
=

1

f ′(a)

(
dz2

z − f(a)
− dz2

z − c

)
if a 6= 0

f∗

(
dz2

(z − a)2

)
=

dz2

(z − f(a))2
− d− 1

af ′(a)

(
dz2

z − f(a)
− dz2

z − c

)
if a 6= 0.

(3.2.1)

3.2.2 The proof of smoothness

Lemma 3.2.4. Given z ∈ C, for n ≥ 0 and d ≥ 2, define zp : c 7→ f◦pc (z) and δp = f ′c(zp) =

dzd−1
p . Then

dzp
dc

= 1 + δp−1 + δp−1δp−2 + . . .+ δp−1δp−2 · · · δ1.

Proof. From zp = zdp−1 + c, d ≥ 2, we obtain

dzp
dc

= 1 + δp−1
dzp−1

dc
with

dz0

dc
= 0.

The result follows by induction.

The proof of smoothness of X0,p.

In section 3.1, we have seen X0,p = X̌0,p ∪ C0,p,2 ∪ C0,p,3. So we will check case by case

the smoothness of X0,p on the points of the three sets.

Case 1. Firstly, consider a point (c0, z0) ∈ X̌0,p.

By term 1 of Propostion 3.1.3,
∂Q0,p

∂z
(c0, z0) 6= 0. So X0,p is smooth at this point.

Case 2. Consider a point (c0, z0) ∈ C0,p,2.

By term 2 of Proposition 3.1.3,
∂Q0,p

∂z
(c0, z0) = 0, so we must prove

∂Q0,p

∂c
(c0, z0) 6= 0.

Since
Φ0,p

∂c
(c0, z0) =

∂Q0,p

∂c
(c0, z0) ·

∏
k|p,k<p

Q0,k(c0, z0)

and in this case
∏
k|p,k<pQ0,k(c0, z0) 6= 0, so we must prove:

∂Φ0,p

∂c
(c0, z0) 6= 0.
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For m ≥ 0, inductively define zm+1 = fc0(zm) and define δm := f ′c0(zm). By lemma

3.2.4, we have

∂Φ0,p

∂c
(c0, z0) =

d

dc
(f◦pc (z0)− z0)

∣∣∣
c0

= 1 + δp−1 + δp−1δp−2 + . . .+ δp−1δp−2 · · · δ1.

Now consider the following quadratic differential Q ∈ Q(C)

Q(z) :=

p−1∑
m=0

ρm
z − zm

dz2, where ρm = δp−1δp−2 · · · δm.

Applying Lemma 3.2.3, and let f := fc0 , we obtain

f∗Q(z) =

p−1∑
m=0

ρm
δm

(
dz2

z − zm+1
− dz2

z − c0

)
= Q(z)− ∂Φp

∂c
(c0, z0) · dz2

z − c0
.

By Corollary 3.2.2, we have f∗Q 6= Q. So

∂Φ0,p

∂c
(c0, z0) 6= 0.

Case 3. Finally, consider (c0, z0) ∈ C0,p,3.

By term 3 of Proposition 3.1.3,
∂Q0,p

∂z
(c0, z0) = 0, so we must prove

∂Q0,p

∂c
(c0, z0) 6= 0.

Let z0 be a k periodic point of fc0 (k < p, k|p), then the point (c0, z0) belongs to both X0,p

and X0,k. Therefore
∂Φ0,p

∂z
(c0, z0) =

∂Φ0,p

∂c
(c0, z0) = 0.

we can’t prove Q0,p has a non-trivial partial derivative at (c0, z0) by the partial derivative

of Φ0,p.

Now we write Φ0,p as

Φ0,p(c, z) = Φ0,k(c, z) · P (c, z). (3.2.2)

where P (c, z) =
∏
m|p,m 6|kQ0,m(c, z). On one hand, since Q0,p(c0, z0) = 0, we have

∂P

∂c
(c0, z0) =

∂Q0,p

∂c
·

∏
m|p,m 6|k,m<p

Q0,m(c0, z0).
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On the other hand, for all m < n,m 6= k, Q0,m(c0, z0) 6= 0, so we only need to prove

∂P

∂c
(c0, z0) 6= 0.

Note that at this time, ρ = [f◦kc0 ]′(z0) 6= 1. By the Implicitly Function Theorem, there

exists holomorphic germ ζ : (C, c0) → (C, z0) such that Q0,k

(
c, ζ(c)

)
= 0. In other words,

ζ(c) is a k periodic point of fc. Let ρc be the multiplier of fc at ζ(c) and set

ρ̇ :=
dρc
dc

∣∣
c0
.

Lemma 3.2.5. We have
∂P

∂c
(c0, z0) =

s · ρ̇
ρ(ρ− 1)

.

Proof. Differentiating the equation (??) with respect to z, and then evaluating at
(
c, ζ(c)

)
,

we get:

ρsc − 1 = (ρc − 1) · P
(
c, ζ(c)

)
+
(
fkc
(
ζ(c)

)
− ζ(c)

)︸ ︷︷ ︸
=0

· ∂P
∂z

(
c, ζ(c)

)
= (ρc − 1) · P

(
c, ζ(c)

)
.

Setting

R(c) := P
(
c, ζ(c)

)
=
ρsc − 1

ρc − 1
,

we have

R′(c0) =
∂P

∂c
(c0, z0) +

∂P

∂z
(c0, z0)︸ ︷︷ ︸
=0

· ζ ′(c0) =
∂P

∂c
(c0, z0).

Using ρs = 1 and ρs−1 = 1/ρ, we deduce that

∂P

∂c
(c0, z0) =

d

dc

(
ρsc − 1

ρc − 1

) ∣∣∣
c0

=

(
sρs−1

ρ− 1
− ρs − 1

(ρ− 1)2

)
dρc
dc

∣∣∣
c0

=
s · ρ̇

ρ(ρ− 1)
.

Therefore, we only need to prove ρ̇ 6= 0. The proof of this fact need to use a meromorphic

quadratic differential with double poles along the orbit of z0.

Set f := fc0 ,

zm := fm(z0), δm := dzd−1
m = f ′(zm), ζm(c) := fmc

(
ζ(c)

)
and ζ̇m := ζ ′m(c0).
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Then

ζm+1(c) = fc
(
ζm(c)

)
and ζk = ζ0.

Since

δ0δ1 · · · δk−1 = ρ 6= 0,

there is a unique k-tuple (µ0, . . . , µk−1) such that

µm+1 =
µm

dzd−1
m

− d− 1

dzdm
,

where the indices are considered to be modulo k.

Now consider the quadratic differential Q (with double poles) defined by

Q :=

k−1∑
m=0

(
1

(z − zm)2
+

µm
z − zm

)
dz2.

Lemma 3.2.6 (Compare with [L]). We have

f∗Q = Q− ρ̇

ρ
· dz2

z − c0
.

Proof. By construction of Q and the calculation of f∗Q in Lemma 3.2.3, the polar parts

of Q and f∗Q along the cycle of z0 are identical. But f∗Q has an extra simple pole at the

critical value c0 with coefficient

k−1∑
m=0

(
− µm

dzd−1
m

+
d− 1

dzdm

)
= −

k−1∑
m=0

µm+1.

We need to show that this coefficient is equal to − ρ̇
ρ .

Using ζm+1(c) = ζm(c)d + c, we get

ζ̇m+1 = dzd−1
m ζ̇m + 1.

It follows that

ζ̇m+1µm+1 − µm+1 = dzd−1
m ζ̇mµm+1 = ζ̇mµm −

(d− 1)ζ̇m
zm

.
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Therefore

k−1∑
m=0

µm+1 =
k−1∑
m=0

(
ζ̇m+1µm+1 − ζ̇mµm +

(d− 1)ζ̇m
zm

)
= (d− 1)

k−1∑
m=0

ζ̇m
zm

=
ρ̇

ρ
,

where last equality is obtained by evaluating at c0 of the logarithmic derivative of

ρc :=

k−1∏
m=0

dζd−1
m (c).

Lemma 3.2.7 (Epstein[E]). We have f∗Q 6= Q.

Proof. The proof rests again on the contraction principle, but we can not apply directly

Lemma 3.2.1 since Q is not integrable near the cycle 〈z0, . . . , zm−1〉. Consider a sufficiently

large round disk V so that U := f−1(V ) is relatively compact in V . Given ε > 0, we set

Vε :=

m⋃
k=1

fk
(
D(z0, ε)

)
and Uε := f−1(Vε).

When ε tends to 0, we have

‖f∗Q‖V−Vε ≤ ‖Q‖U−Uε = ‖Q‖V−Vε − ‖Q‖V−U + ‖Q‖Vε−Uε − ‖Q‖Uε−Vε .

If we had f∗Q = Q, we would have

0 < ‖Q‖V−U ≤ ‖Q‖Vε−Uε .

However, ‖Q‖Vε−Uε tends to 0 as ε tends to 0, which is a contradiction. Indeed, Q = q(z)dz2,

the meromorphic function q is equivalent to
1

(z − z0)
as z tends to z0. In addition, since

the multiplier of z0 has modulus 1,

D(z0, ε) ⊂ Uε − Vε ⊂ D(z0, ε
′) with

ε′

ε

ε→0−→ 1.

Therefor,

‖Q‖Vε−Uε ≤
∫ 2π

0

∫ ε′

ε

1 + o(1)

r2
rdrdθ = 2π(1 + o(1)) log

ε′

ε

ε→0−→ 0
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The fact ρ̇ 6= 0 follows from the above two lemmas.

Remark 3.2.8. Define a projection π0,p : X0,p −→ C mapping (c, z) to c. According to the

smoothness of X0,p, π0,p is a branched cover of degree νd(p). Proposition 3.1.3 tell us π0,p

has two kinds of critical points: C0,p,2 and C0,p,3. Each point in C0,p,2 is a simple critical

point of π0,p. Let (c, z) be a point of C0,p,3, where z is a k periodic point of fc (k|p, k < p).

Then (c, z) is a critical point of π0,p with multiplicity p
k − 1. Therefore, the set of critical

value V0,p of π0,p is consisting of roots and co-roots of all hyperbolic components of period

p.

3.3 The irreducibility of the periodic curves

Recall that fc denote the polynomial z 7→ zd + c, where d ≥ 2, and we have defined

X̌0,p :=
{

(c, z) ∈ C2 | z is a p periodic point of fc and [fpc ]′(z) 6= 1
}
.

The objective here is to prove:

Theorem 3.3.1. For every p ≥ 1, the set X̌0,p is connected.

It follows immediately that the closure of Xn in C2 is irreducible.

3.3.1 Kneading sequences

Set T = R/Z and let τ : T→ T be the angle map

τ : T 3 θ 7→ dθ ∈ T, d ≥ 2.

We shall often make the confusion between an angle θ ∈ T and its representative in [0, 1[.

In particular, the angle θ/d ∈ T is the element of τ−1(θ) with representative in [0, 1/d[ and

the angle (θ + (d− 1))/d is the element of τ−1(θ) with representative in [(d− 1)/d, 1[.
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Every angle θ ∈ T has an associated kneading sequence ν(θ) = ν1ν2ν3 . . . defined by

νk =



1 if τk−1(θ) ∈
]
θ

d
,
θ + 1

d

[
,

2 if τk−1(θ) ∈
]
θ + 1

d
,
θ + 2

d

[
,

.

.

.

d− 1 if τk−1(θ) ∈
]
θ + (d− 2)

d
,
θ + (d− 1)

d

[
,

0 if τk−1(θ) ∈ Tr
[
θ

d
,
θ + (d− 1)

d

]
,

? if τk−1(θ) ∈
{
θ

d
,
θ + 1

d
, ...,

θ + (d− 2)

d
,
θ + (d− 1)

d

}
.

For example,

• as d = 3, ν(
1

7
) = 12102? and ν(

27

28
) = 22200?;

θ = 1
7

θ
3 = 1

21

2
7

3
7

4
7

θ+2
3 = 5

7

θ+1
3 = 8

21

0

6
7

τ

τ

τ

τ

τ

τ

Figure 3-1: As d = 3, the kneading sequence of θ = 1/7 is ν(1/7) = 12102?

We shall say that an angle θ ∈ T, periodic under τ , is maximal in its orbit if its

representative in [0, 1) is maximal among the representatives of τ j(θ) in [0, 1) for all j ≥ 1.

If the period is n and the d-expansion (d ≥ 2) of θ is .ε1 . . . εp, then θ is maximal in its orbit

if and only if the periodic sequence ε1 . . . εp is maximal (in the lexicographic order) among

its shifts. For example, as d = 4,
5

31
= .02211 is not maximal in its orbit but

20

31
= .22110

is maximal in the same orbit.
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The following lemma indicates cases where the d-expansion (d ≥ 2) and the kneading

sequence coincide.

Lemma 3.3.2 (Realization of kneading sequences). Let θ ∈ T be a periodic angle which is

maximal in its orbit and let .ε1 . . . εp be its d-expansion (d ≥ 2). Then, εp ∈ {0, 1, 2, . . . , d−
2} and the kneading sequence ν(θ) is equal to ε1 . . . εp−1?.

For example,

• as d = 3
13

14
= .221001 and ν(θ) = 22100?.

• as d = 4
28

31
= .32130 and ν(θ) = 3213?.

××

×

×

0

1
4

1
2

3
4

θ
4 = 7

31

θ = 28
31

14
31

19
31 25

31

θ+1
4

θ+2
4

θ+3
4

τ

τ

τ

τ

τ

Figure 3-2: As d = 4, the kneading sequence of θ = 28/31 is ν(28/31) = 3213?

Proof. Since θ is maximal in its orbit under τ , the orbit of θ is disjoint from
]θ
d
,

1

d

]⋃ ]θ + 1

d
,

2

d

]
⋃
...
⋃]θ + (d− 2)

d
,
d− 1

d

]⋃ ]
θ, 1
]
. It follows that the orbit τ j(θ), j = 0, 1, . . . , n − 2

have the same itinerary relative to the two partitions T −
{

0,
1

d
,

2

d
, . . . ,

d− 2

d
,
d− 1

d

}
and

T −
{θ
d
,
θ + 1

d
, . . . ,

θ + (d− 2)

d
,
θ + (d− 1)

d

}
(see Figure 5-2). The first one gives the d-

expansion (d ≥ 2) whereas the second gives the kneading sequence. Therefore, the kneading

sequence of θ is ε1 . . . εp−1?. Since τp−1(θ) ∈ τ−1(θ) = {θ
d
,
θ + 1

d
, . . . ,

θ + (d− 1)

d
} and since

θ + (d− 1)

d
∈ ]θ, 1], we must have τp−1(θ) =

{θ
d
,
θ + 1

d
, . . . ,

θ + (d− 2)

d

}
<
d− 1

d
. So εp,

as the first digit of τp−1(θ), must be in {0, 1, 2, . . . , d− 2}.
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3.3.2 Cyclic expression of kneading sequence

X = {0, 1, . . . , d − 1}(d ≥ 2) is an alphabet. X? is the set of all sequence of symbols from

X with finite length, that is,

X? = {ν1 . . . νt|νi ∈ X, t ∈ N?}.

The element of X? is called word, its length is denoted by | · |. For any w ∈ X?, w can be

written as un := u . . . u︸ ︷︷ ︸
n

with u ∈ X? and n ≥ 1.

For example: 121212 = 123, 1234 = 1234.

Definition 3.3.3. A word is called primitive if it is not the form un for any n > 1, u ∈ X?.

The following lemma is a basic result about primitive words due to F.W.Levi. One can

refer to [KM] for the proof.

Lemma 3.3.4 (F.W.Levi). For each w ∈ X?, there exists an unique primitive word a(w)

such that w = a(w)n for some n ≥ 1.

a(w) is called the primitive root of w, this lemma means the primitive root of a word is

unique. Let w be a word, we denote by Lw the set of all words different from w only at the

last digit.

Lemma 3.3.5. If w is a non-primitive word, then any word in Lw is primitive.

Proof. As w is not primitive, then w = am where a is the primitive root of w and m > 1. w′

is any element of Lw, then w′ = am−1a′ for some a′ ∈ La. Now assume w′ is not primitive,

then w′ = zn where z is the primitive root of w′ and n > 1. Obviously |z| 6= |a|.
If |z| < |a|, then n > m ≥ 2 and a = zb for some b ∈ X?.

am−1a′ = zn =⇒ zam−1a′ = am−1a′z =⇒ zam−1a′ = zbam−2a′z =⇒

∃v ∈ X?, s.t a = bv, |v| = |z| =⇒ am−1bv′ = bam−2a′z(a′ = bv′) =⇒

v′ = z and am−1b = bam−2a′ =⇒ am−2bvb = bam−2a′ =⇒ a′ = vb.

It is a contradiction to a = zb.

If |z| > |a|, then there exists z′ ∈ Lz such that zn−1z′ = am = w with m > n ≥ 2. It

reduces to the case above.
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Now, let θ be a periodic angle with period p ≥ 2. ν(θ) is the kneading sequence of θ.

Definition 3.3.6. If there is a word w = ν1 . . . νt such that ν(θ) = ws−1w? := w . . . w︸ ︷︷ ︸
s−1

w?,

where w? = ν1 . . . νt−1? and t is a proper factor of p with ts = p, then ν(θ) is called cyclic,

otherwise ν(θ) is called acyclic.

Definition 3.3.7. ν(θ) = ws−1w? is cyclic. If w is a primitive word, we call ws−1w? a

cyclic expression of ν(θ).

The following proposition is a corollary of Lemma 3.3.4 and 3.3.5.

Proposition 3.3.8. If ν(θ) is cyclic, then its cyclic expression is unique.

Proof. Assume ws−1w? and ul−1u? are two cyclic expression of ν(θ) where w = ν1 . . . νt and

u = ε1 . . . εm. If νt = εm, then ws = ul. By Lemma 3.3.4, we have w = u. If νt 6= εm, then

ws = ul−1u′ with some u′ ∈ Lu, but this is a contradiction to Lemma 3.3.5.

3.3.3 Dynamics of parabolic unimodel polynomial

Let fc(z) = zd + c (d ≥ 2) and Md be the Multibrot set for this family of unimodel

polynomials (Section 2.2.1).

If c is the root of some hyperbolic component and c 6= γMd
(0), then two periodic pa-

rameter rays RMd
(θ) and RMd

(η) land on c, we say θ and η are companion angles, and

θ, η have the same period under τ . c is primitive if and only if the orbit of RMd
(θ) and

RMd
(η) under τ are distinct. In dynamical plane, the dynamic rays Rc(θ) and Rc(η)

land at a common point x1 := γc(θ) = γc(η). This point is on the parabolic orbit of

fc with its immediate basin containing the critical value. Rc(θ) and Rc(η) are adjacent

to the Fatou component containing c and the curve Rc(θ) ∪ Rc(η) ∪ {x1} is a Jordan

curve that cuts the plane into two connected components: one component, denoted by

V1, contains the critical value c; the other component, denoted by V0, contains Rc(0) and

all points of parabolic cycle except x1. Since V1 contains the critical value, its preimage

U? = f−1
c (V1) is connected and contains the critical point 0. It is bounded by the dynamical

rays Rc(θ/d), . . . , Rc
(
(θ + d − 1)/d

)
; Rc(η/d), . . . , Rc

(
(η + d − 1)/d

)
. Suppose θ > η, and

since each component of C \ U? is conformally mapped to V0 which is bounded by Rc(θ)
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and Rc(η), it is easy to see that Rc
(
(θ + m − 1)/d

)
and Rc

(
(η + m)/d

)
land on a com-

mon point which is one of the preimage of x1 for m ∈ Zd. Denote Um the component of

C \Rc
(
(θ+m− 1)/d

)
∪ {γc

(
(η+m)/d

)
} ∪Rc

(
(η+m)/d

)
disjoint with U?. See Figure 3-3

(primitive case) and Figure 3-4 (satellite case). Note that fc : Um → V0 is conformal.

Figure 3-3: The dynamical plane of fc0 . c0 := γM3(7/26) = γM3(9/26) is the root of some
primitive hyperbolic component as illustrated in Figure 2-2. The dynamical rays Rc0(7/26)
and Rc0(9/26) land on a common parabolic point of fc0 with period 3.

If c is a co-root of some hyperbolic component, then exactly one period parameter ray

RMd
(β) land on it (see Figure 2-3). In dynamical plane, Rc(β) is the unique dynamical

ray landing on a parabolic periodic point γc(β) := x1, whose immediate basin contains the

critical value c. The parameter c is a primitive parabolic parameter. Denote V1 the union

of Fatou component containing c and external ray Rc(β), V0 = C\V1, U? = f−1
c (V1). Ukm is

the component of f−1
c (V0) adjacent with Rc

(
(β+m−1)/d

)
and Rc

(
(β+m)/d

)
,m ∈ Zd.(see

Figure 3-5).

Remark: in our paper, if c is a parabolic parameter, then fc has unique parabolic orbit,

denoted by {x0, x1, . . . , xk−1}. x1 is the point whose immediate basin contains critical value

c.
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The following lemma provides a criterion for θ such that γMd
(θ) is a primitive parabolic

parameter.

Definition 3.3.9. Let θ be a periodic angle of period p and the d-expansion of θ be .ε1 . . . εp.

We call ε1 . . . εp the periodic part of the d-expansion of θ.

Figure 3-4: The dynamical plane of fc1 . c1 := γM3(11/80) = γM3(19/80) is the root of some
satellite hyperbolic component as illustrated in Figure 2-2. The dynamical rays Rc1(11/80)
and Rc1(19/80) land on a common parabolic point of fc1 with period 2.

Lemma 3.3.10. θ is periodic under τ with period p ≥ 2. If c0 := γMd
(θ) is the root of

some satellite hyperbolic component, then θ satisfies the following properties:

(1) ν(θ) is cyclic.

(2) Denote by ws−1w? the cyclic expression of ν(θ) where w = ν1 . . . νt, t is a proper factor

of n and ts = p. Then the last digit of the period part of the d-expansion of θ is νt or

νt − 1.

Moreover, if θ is maximal in its orbit, then ν(θ) also satisfies
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(3) t is the length of parabolic orbit and the last digit of the period part of the d-expansion

of θ must be νt − 1 ∈ [0, d− 2].

Figure 3-5: The dynamical plane of fc0 . c0 := γM4(1/5) is a co-root of the hyperbolic
component illustrated in Figure 2-3. Rc0(1/5) is the unique dynamical ray landing on
γc0(1/5) which is the parabolic point of fc0 with period 2.

Proof. Let η be the companion angle of θ, then in dynamical plane of fc0 , Rc0(θ) and Rc0(η)

land on x1 (see Figure 3-4). As V1 contains no points and external rays of the parabolic

orbit, then {x0, x1, . . . , xk−1} together with their external rays belong to
⋃d−1
m=0 Um.

For c0 is satellite parabolic parameter, the length p of parabolic orbit is a proper factor

of n and fc0 acts on the rays of the orbit transitively. Then we have, in ν(θ) = ν1 . . . νp−1?,

νj = νj(mod)k for 1 ≤ j ≤ p − 1, that is, ν(θ) = ul−1u? where u = ν1 . . . νk. By definition

of kneading sequence, we can see τ◦(k−1)(θ) ∈
(
(θ + νk − 1)/d, (θ + νk)/d

)
. It follows x0

together with its external rays belong to Uνk . Then τp−1(θ) is either (θ+ νk − 1)/d (θ > η)

or (θ + νk)/d (θ < η) (see Figure 3-6). So the last digit of d-expansion of θ is either

νk− 1 (θ > η) or νk (θ < η). Let w = ν1 . . . νt be the primitive root of u, then u = wk/t. We

have ws−1w? is the cyclic expression of ν(θ) (Proposition 3.3.8) and νt = νk, so θ satisfies

property (1) and (2).
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Figure 3-6:

Furthermore, if θ is maximal in its orbit, then θ > η, so the last digit of the period part

of the d-expansion of θ must be νt − 1. By lemma 3.3.2, θ = .ws−1ν1 . . . νt−1(νt − 1)

and 0 ≤ νt − 1 ≤ d − 2. Note that the angles of external rays belonging to x1 are

θ, τk(θ), . . . , τ (s−1)k(θ) with the order θ > τp(θ) > · · · > τ (s−1)p(θ). The maximum of θ

implies η is the second largest angle in orbit of θ, then η = τk(θ) = .ul−2ν1 . . . νk−1(νk − 1)u.

If u is not primitive, then k/t > 1. It follows τ t(θ) > τk(θ) = η, a contradiction to that η

is the second largest angle in orbit of θ. So u is a primitive word and hence t = k is length

of parabolic orbit.

Then once θ doesn’t satisfy the property in this lemma, we have γMd
(θ) is a primitive

parabolic parameter. The lemma below can be seen as a application of lemma 3.3.10.

Lemma 3.3.11. Assume θ = .ws−1ν1 . . . νt−1(νt − 1) is maximal in its orbit, where w =

ν1 . . . νt is primitive with νt ∈ [1, d− 1] and t is a proper factor of p with ts = p. Let

βvt−i = .ws−1ν1 . . . νt−1(νt − i) for 2 ≤ i ≤ νt

β−1 =


.ws−1ν1 . . . (νt−1 − 1)(d− 1) as t ≥ 2

.m . . .m(m− 1)(d− 1) as t = 1

Then γMd
(βνt−i) is a primitive parabolic parameter for any 2 ≤ i ≤ νt. γMd

(β−1) is a
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satellite parabolic parameter for θ = .(d− 1) · · · (d− 1)(d− 2) and a primitive parabolic

parameter for any other case.

Proof. Let β = .ws−1ν1 . . . νt−1j be any angle among {βνt−i}2≤i≤νt , then 0 ≤ j ≤ νt − 2.

The maximum of θ implies the maximum of β in its orbit. Since w is primitive, by lemma

3.3.2, we have ws−1w? is the cyclic expression of ν(β). As j ≤ νt − 2 < νt − 1, with the

maximum of β, the property (3) in lemma 3.3.10 is not satisfied. So γMd
(β) is a primitive

parabolic parameter.

For β−1, the maximum of θ implies β−1 is greater than τ(β−1), τ2(β−1), . . . , τp−2(β−1)

but less than τp−1(β−1). It follows ν(β) =


ws−1ν1 . . . νt−1? as t ≥ 2

m. . .mm? as t = 1

= ws−1w?. It is

the cyclic expression of ν(β), then if β satisfies the property in lemma 3.3.10, νt is either

0 or d − 1. Since 1 ≤ νt ≤ d − 1, we have νt must be d − 1, then the maximum of θ

implies θ = .(d− 1) · · · (d− 1)(d− 2). So γMd
(β−1) is a primitive parabolic parameter as

long as θ 6= .(d− 1) · · · (d− 1)(d− 2). In the case of θ = .(d− 1) · · · (d− 1)(d− 2), we will

see in lemma 3.3.13 that γMd
(θ) is the root of a hyperbolic component attached to the main

cardioid and β−1 is the companion angle of θ. In this case, γMd
(β−1) is a satellite parabolic

parameter.

Remark. In this lemma, we distinguish β−1 according to whether t ≥ 2 or t = 1. It is

because that we don’t find a uniform expression of β−1 for the two cases rather than the

case of t = 1 is special.

3.3.4 Itineraries outside the Multibrot set

If c ∈ CrMd, the Julia set of fc is a Cantor set. If c ∈ RMd
(θ) with θ 6= 0 not necessarily

periodic, then the dynamical rays Rc(θ/d) . . . Rc
(
(θ + d − 1)/d

)
bifurcate on the critical

point. The set Rc(θ/d) ∪ . . . ∪ Rc
(
(θ + d − 1)/d

)
∪ {0} separates the complex plane in

d connected components. We denote by U0 the component containing the dynamical ray

Rc(0) and by U1, . . . , Ud−1 the other component in counterclockwise (see Figure 3-7).

The orbit of a point x ∈ Kc has an itinerary with respect to this partition. In other

words, to each x ∈ Kc, we can associate a sequence in ZNd whose j-th entry is equal to k
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Figure 3-7: The regions U0, U1, U2, U3 for a parameter c belonging to RM4(1/15).

if f◦j−1
c (x) ∈ Uk . This gives a map ιc : Kc → ZNd . Moreover, ιc is a bijective for any

c ∈ C \Md.

In ZNd , we can define a shift which maps ε1ε2ε3 · · · to ε2ε3ε4 · · · . A sequence in ZNd is

called (n, p)-preperiodic if it is preperiodic under shift with preperiod n and period p. It is

known that for c outside Multibrot set Md, the dynamic of fc on Kc is conjugate to shift

on ZNd via the map ιc. In particular, z is a (n, p)-preperiodic point of fc if and only if ιc(z)

is a (n, p)-preperiodic sequence in ZNd .

Proposition 3.3.12. Let ε1 . . . εp−1? be the kneading sequence of a periodic angle θ with

period n ≥ 2. If c0 := γMd
(θ) is a primitive parabolic parameter and if one follows con-

tinuously the periodic points of period n of fc as c makes a small turn around c0, then

the periodic points with itineraries ε1 . . . εp−1m and ε1 . . . εp−1(m+ 1) get exchanged where

m ∈ Zd is the last digit of the period part of the d-expansion of θ.

Proof. Since c0 is a primitive parabolic parameter, then the periodic point x1 := γc0(θ) has

period n and multiplier 1. According to Case 2 in the proof of smoothness and lemma 2.2.1,

the projection from a small neighborhood of (c0, x1) in Xn to the first coordinate is a degree
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2 covering. So the neighborhood of (c0, x1) in Xn can be written as

{
(c0 + δ2, x(δ)), (c0 + δ2, x(−δ))

∣∣ |δ| < ε
}

where x : (C, 0)→ (C, x1) is a holomorphic germ with x′(0) 6= 0. In particular, the pair of

periodic points for fc which are splitted from x1 get exchanged when c makes a small turn

around c0. So, using analytic continuation on C \ (Md ∪RMd
(0)), it is enough to show that

there exists a c ∈ CrMd close to c0 such that x(±√c− c0) have itineraries ε1 . . . εp−1m and

ε1 . . . εp−1(m+ 1) where m ∈ Zd is the last digit of the period part of the d-expansion of θ.

Let us denote by V0(c0), V1(c0), U0(c0), . . . , Ud−1(c0) and U?(c0) the sets defined in the

previous section. For j ≥ 0, set xj := f jc0(x0) and observe that for j ∈ [1, n − 1], we have

xj ∈ Uεj (c0).

For c ∈ RMd
(θ), consider the following compact subsets of the Riemann sphere :

R(c) := Rc(θ) ∪ {c,∞} and S(c) := Rc(θ/d) ∪ . . . ∪Rc
(
(θ + d− 1)/d

)
∪ {0,∞}.

Denote by U0(c) the component of CrS(c) containing Rc(0) and by U1(c), . . . , Ud−1(c) the

other component in counterclockwise. From any sequence {cn} ⊂ RMd
(θ) converging to

c0, by extracting a subsequence if necessary, we can assume R(cn) and S(cn) converge

respectively, for the Hausdorff topology on compact subsets of C ∪ {∞}, to connected

compact sets R and S. Since S(c) = f−1
c

(
R(c)

)
, we have S = f−1

c0 (R). According to [PR,

Section 2 and 3], R ∩ (CrKc0) = Rc0(θ), the intersection of R with the boundary of Kc0

is reduced to {x1} and the intersection of R with the interior of Kc0 is contained in the

immediate basin of x1, whence in V1. It follows R ⊂ V1(c0) and S ⊂ U?(c0), that means

any compact subset of CrU?(c0) is contained in CrS(cn) for m sufficiently large .

For j ∈ [1, p− 1] and let Dj be a sufficiently small disk around xj so that

Dj ⊂ Uεj (c0) ⊂ CrU?(c0).

According to the previous discussion, if m is sufficiently large, we have

f j−1
cn

(
x(±√cn − c0)

)
⊂ Dj ⊂ Uεj (cn).
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So the first p−1 symbols of the itineraries of x(±√cn − c0) are all ε1, . . . , εp−1.As x(
√
cn − c0)

and x(−√cn − c0) are different p periodic points of fcn , their itineraries must be differ-

ent. It follows fp−1
cn

(
x(±√cn − c0)

)
, which are splitted from x0, lie in different component

of C \ S(cn). Combining with the fact that Rc0
(
(θ + m)/d

)
lands on x0 (m is the last

digit of the period part of the d-expansion of θ), we have fp−1
cn

(
x(±√cn − c0)

)
belong to

Um(cn) and Um+1(cn) respectively, then x(±√cn − c0) have itineraries ε1 . . . εp−1m and

ε1 . . . εp−1(m+ 1) respectively.

Lemma 3.3.13. For θ = 1−1/(dp−1) = .(d− 1) · · · (d− 1)(d− 2) (p ≥ 2), we have γMd
(θ)

is the root of some periodic p hyperbolic component attached to the main cardioid. If η is

denoted the companion angle of θ, then η = dθ − d+ 1.

Proof. Let c0 := γMd
(θ), then x1 := γc0(θ) is the parabolic periodic point of fc0 as previous.

By lemma 3.3.2, ν(θ) = (d− 1) · · · (d− 1)?, so (d− 1) · · · (d− 1)? is the cyclic expression of

ν(θ). If x0 6= x1, then the length of parabolic orbit is greater than 1. It implies the property

(3) in lemma 3.3.10 is not satisfied, so c0 is a primitive parabolic parameter. According to

proposition3.3.12, when c ∈ C \Md is close to c0, x1 splits into two n periodic point y, z

of fc with itineraries (d− 1) · · · (d− 1)(d− 2) and (d− 1) · · · (d− 1)(d− 1). It leads to a

contradiction to the period n of y and z. So x0 = x1 and then c0 is the root of some periodic

n satellite hyperbolic component attached to the main cardioid.

By the maximum of θ, we have Ud−1 is bounded by Rc0
(
(θ + d − 2)/d

)
and Rc0

(
(η +

d − 1)/d
)
. ν(θ) = (d− 1) · · · (d− 1)? implies Rc0(θ) ⊂ Ud−1, then θ ≤ (η + d − 1)/d and

x0 is on the boundary of Ud−1. On the other hand, (η + d − 1)/d is in the orbit of θ, so

θ ≥ (η + d− 1)/d. Then we have η = dθ − d+ 1.

Remark. The dynamical rays Rc0(θ) and Rc0(η) are consecutive among the rays landing

at x0. Lemma 3.3.13 implies Rc0(θ) is mapped to Rc0(η). It follows that each dynamical

ray landing at x0 is mapped to the one which is once further clockwise.

Proposition 3.3.14. Let θ = 1 − 1/(dp − 1) = .(d− 1) · · · (d− 1)(d− 2) be periodic with

period n ≥ 2. If one follows continuously the periodic points of period n of fc as c makes a
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small turn around γMd
(θ), then the periodic points in the cycle of ι−1

c ((d− 1) · · · (d− 1)(d− 2))

get permuted cyclically.

Figure 3-8: The dynamical plane of fc0 . c0 := γM3(θ) with θ = .2221

Proof. Set c0 := γMd
(θ). By Lemma 3.3.13, all the dynamical rays Rc0

(
τ j(θ)

)
land on

a common fixed point x0. This fixed point is parabolic and the companion angle of θ,

denoted by η, equals to dθ − (d− 1) ≡ dθ(mod Z). V1(c0) ⊂ Ud−1(c0) which is bounded by

Rc0
(
(θ + d− 2)/d

)
and Rc0(θ).

According to Case 3 in the proof of smoothness and lemma 2.2.1, we have the projection

from a small neighborhood of (c0, x0) in Xp to the parameter plane is a degree p covering.

Then the neighborhood of (c0, x0) in X0,p can be written as

{
(c0 + δp, x(δ)), (c0 + δp, x(ωδ)), . . . , (c0 + δp, x(ωp−1δ))

∣∣ |δ| < ε
}

where x : (C, 0)→ (C, x0) is a holomorphic germ satisfying x′(0) 6= 0. So, for c close to c0,

the set x{ p√c− c0)} is a cycle of period p of fc, and when c makes a small turn around c0,

the periodic points in the cycle x{ p√c− c0)} get permuted cyclically. So, combining with

analytic continuation on C \ (Md ∪RMd
(0)), it is enough to show there exists a c ∈ CrMd
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close enough to c0 such that the point ι−1
c ((d− 1) · · · (d− 1)(d− 2)) belongs to x{ p√c− c0}.

Equivalently, we must show that there is a sequence {cj} ⊂ CrMd converging to c0, such

that the periodic point yj := ι−1
cj ((d− 1) · · · (d− 1)(d− 2)) converges to x0.

Let {cj} ⊂ RMd
(θ) converge to c0 as j →∞. Without loss of generality, we may assume

that the sequence yj converges to a point z, R(cj) converges to R and S(cj) converges to

S in Hausdoff topology. The definition of R(c), S(c), U0(c), . . . , Ud−1(c) are in the proof

of proposition 3.3.12. As (c0, z) is on X0,p, then z is either the parabolic fixed point or

repelling p periodic point of fc0 .

Suppose z is a repelling p periodic point, set zi := f ic0(z). Now we will define a new

sequence of open domain
{
Wm(c0)

}
. Wm(c0) is the connected component of U?(c0)\ the

closure of Fatou component containing 0, adjacent with Um(c0), Um+1(c0) (see Figure 3-8).

According to [PR, Section 2 and 3], R ∩ (CrKc0) = Rc0(θ), the intersection of R with

the boundary of Kc0 is reduced to {x0} and the intersection of R with the interior of Kc0

is contained in the immediate basin of x0. It follows {z0, . . . , zp−1}
⋂
S = ∅. Then for j

sufficiently large, {z0, . . . , zp−1} ⊂ C \ Scj . As yj has itineraries (d− 1) · · · (d− 1)(d− 2),

we have {z0, . . . zp−2} ⊂ Ud−1(c0)
⋃
W d−1(c0), zp−1 ∈ Ud−2(c0)

⋃
W d−2(c0).

Claim 1. zp−1 /∈W d−2(c0).

Proof. In J(fc0), x0 is the unique periodic point with more than one external rays landing

on it (refer to [Poi2, proposition 3.3]). So there is exactly one external ray landing on zp−1

with period n. Its angle is denoted by
a

dp − 1
, a is a integer. If zp−1 ∈ W d−2, the angle of

external ray belonging to zp−1 satisfy

η + d− 2

d
<

a

dn − 1
<
θ + d− 2

d
( θ = 1− 1

dp − 1
, η = dθ − d+ 1 ).

by simple computation, we have

k(dp − 1)

d− 1
− dp−1 − 1 +

1

d
< a <

k(dp − 1)

d− 1
− dp−1,

a contradiction to a is an integer. This ends the proof of claim 1.

Claim 2. zp−1 /∈ Ud−2(c0).

Proof. If zp−1 ∈ Ud−2(c0), we label the sectors at x0 by Si(0 ≤ i ≤ p − 1) clockwise with
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S0 = V1(c0). The dynamics between these sectors satisfy

V1(c0) = S0
fc0−−→ S1

fc0−−→ · · · fc0−−→ Sp−2
fc0−−→ Sp−1 = C \ Ud−1(c0)

As {z0, . . . zp−2} ⊂ Ud−1(c0)
⋃
W d−1(c0), we have z0 = fc0(zp−1) belongs to the union of

Wd−1(c0) and
⋃p−2
i=1 Si. If z0 ∈ Si0 (1 ≤ i0 ≤ p − 2), then f

(p−2−i0)
c0 (z0) = zp−2−i0 ∈

f
(p−2−i0)
c0 (Si0) = Sp−2. It follows fc0(zp−2−i0) = zp−1−i0 must belong to W d−1(c0). So

zp−i0 ∈ S0 and f
(i0−1)
c0 (zp−i0) = zp−1 ∈ f (i0−1)

c0 (S0) = Si0−1, contradiction to zp−1 ∈ Ud−2.

If z0 ∈ W d−1(c0), then z1 ∈ S0. We have f
(p−2)
c0 (z1) = zp−1 ∈ f (p−2)

c0 (S0) = Sp−2, also a

contradiction to zp−1 ∈ Ud−2(c0). This ends the proof of claim 2.

The two claim imply the assumption that z is repelling p periodic point is false and then

z must be a parabolic fixed point of fc0 , that is z = x0.

3.3.5 Proof of Theorem 3.3.1

Fix n > 1 (the case n = 1 has been treated directly at the beginning). We proceed to show

that Xn is connected.

Set X := C \
(
Md ∪RMd

(0)
)

and Fp := C \V0,p Take any pair of points (a,w), (a′, w′) in

X̌0,p. By analytic continuation, we may assume a, a′ ∈ X. Again by analytic continuation

on simply connected open set X, we may assume a = a′. Thus it is enough to show that

there exists a loop in Fp based on a such that the analytic continuation along the loop

connects w and w′. We will give a algorithm to find such a loop.

Let z be any p periodic point of fa.

step 1 In the orbit of z, there is a point with maximal itineraries among the shift of ιa(z)

in the lexicograph order, denoted by ε1 . . . εp. Set θ = .ε1 . . . εp (θ is maximal in its

orbit). If θ satisfies the properties in lemma 3.3.10, do step 2 below. Otherwise,

γMd
(θ) is a primitive parabolic parameter. According to lemma 3.3.2 and proposition

3.3.12, when a makes a turn around γMd
(θ), the periodic point of fa with itineraries

ε1 . . . εp and ε1 . . . (εp + 1) get changed. Then z is connected to a new orbit containing

ι−1
a (ε1 . . . (εp + 1)). For this new orbit, repeat doing step 1.

step 2 θ = .ε1 . . . εp is maximal in its orbit and satisfies the properties in lemma 3.3.10.

If θ = .(d− 1) · · · (d− 1)(d− 2), step 2 ends. Otherwise, let ws−1w? be the cyclic

expression of ν(θ) where w = ν1 . . . νt, νt ∈ [1, d− 1]. As in lemma 3.3.11, we obtain
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a sequence of angles {βνt−2, . . . , β0, β−1} and know that γMd
(βνt−i) is a primitive

parabolic parameter with ν(θ) = ε1 . . . εp−1? for any i ∈ [2, νt+1]. Then by proposition

3.3.12 again, as a makes a turn around γMd
(βνt−i) (2 ≤ i ≤ νt + 1), the periodic

points of fa with itineraries ε1 . . . εp−1(νt − i) and ε1 . . . εp−1(νt − i+ 1) get changed.

Then let a makes turns around from γMd
(βνt−2) to γMd

(β−1) one by one, we have

ι−1
a (ε1 . . . εp−1εp) are connected with ι−1

a (ε1 . . . εp−1(d− 1)) by analytic continuation

through the points ι−1
a (ε1 . . . εp−1(εp − 1)), . . . , ι−1

a (ε1 . . . εp−10). For the new periodic

point ι−1
a (ε1 . . . εp−1(d− 1)), do step 1.

Every time a n periodic point of fa passes though step 1 or step 2, the sum of all digits

in the itineraries of the output periodic point is greater than that of the input one. For

fixed p, this sum is bounded
(
the bound is (d− 1)p− 1

)
, then each p periodic point z can

be connected to the orbit containing ι−1
a ((d− 1) · · · (d− 1)(d− 2)).

In our case, applying the procedure above to w and w′, we have w and w′ are connected

to two points of the periodic orbit containing ι−1
a ((d− 1) · · · (d− 1)(d− 2)). Proposition

3.3.14 tells us, by analytic continuation, any two point in this orbit can be connected as

long as a makes the appropriate number of turns around γMd
(1 − 1

dp−1). Thus w and w′

are connected.

3.4 The Galois group of Q0,p

We apply the discussion in Section 2.4.2 to polynomial Q0,p. The first term of Proposition

3.1.3 ensure that Q0,p(c, z), as a polynomial of K[z], has only simple roots. Then the

splitting of Q0,p(c, z) over K is a Galois extension over K. So we can define the Galois

group of Q0,p, denoted by G0,p.

It is easy to see that any element of G0,p commutes with fc. We want to prove no other

restrictive properties for G0,p, in other words,

Theorem 3.4.1. The Galois group G0,p of Q0,p(c, z) is consisting all permutations between

the roots of Q0,p(c, z) ∈ K[z] that can commute with fc.

Proof. It is enough to prove that any permutation between the roots of Q0,p(c, z) that

commute with fc must belong to G0,p. We will use the equivalent expression of G0,p stated
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in Section 2.4.2:

AC0,p := AC(fc0) ∼= G0,p. c0 ∈ C \Md

Let V0,p = {ci | 1 ≤ i ≤ νd(p)(d − 1)/d}. For 1 ≤ i ≤ νd(p)(d − 1)/d, denote by γi

a closed Jordan curve based at c0 which rotates around ci counter clockwise. If we don’t

distinguish a curve and the homotopy class of the curve, then

π1(C \ V0,p, c0) = 〈 γi | 1 ≤ i ≤ νd(p)(d− 1)/d 〉.

So by the notation and discussion in Section 2.4.2,

AC0,p = 〈 σγi0,p := φ0,p(γi) | 1 ≤ i ≤ νd(p)(d− 1)/d 〉.

Note that each element of AC0,p commute with fc0 , so each element of AC0,p can be seen a

permutation between the p periodic orbits of fc0 .

By Remark 3.2.8, Lemma 2.2.1 and analytic continuation, we can obtain

(a) If consider σγi0,p as the permutation between the p periodic orbits of fc0 , then as ci is

a primitive parabolic parameter, σγi0,p is a exchange of two orbits; as ci is a satellite

parabolic parameter, σγi0,p keep every orbit fixed.

From the proof of Theorem 3.3.1, we can see that

(b) The action of AC0,p on the p periodic orbits of fc0 is transitive.

with (a), (b), and by the following result in group theory (Lemma 3.4.2), we can obtain

Claim 1. AC0,p is the symmetric group of the p periodic orbits of fc0 .

Lemma 3.4.2. Let G be a subgroup of symmetric group Sn. If it is generated by exchanges

and acts transitively on {1, . . . , n}, then G = Sn.

By Proposition 3.3.14, there exists a permutation in AC0,p such that it cyclicly acts on

one p periodic orbit of fc0 and keep other p periodic points of fc0 fixed. Since also AC0,p is

the symmetric group of the p periodic orbits of fc0 , we can deduce

Claim 2. For any p periodic orbit of fc0 , there exists a permutation in AC0,p such that it

cyclicly acts on this p periodic orbit of fc0 and keep other p periodic points of fc0 fixed.

Now choose any permutation σ between the p periodic points of fc0 satisfying σ◦f = f◦σ.

Then σ can be seen firstly as a permutation between the p periodic orbits of fc0 , and then
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as a cyclic action on each orbit. According to Claim 1 and Claim 2, it is easy to deduce

σ ∈ AC0,p.
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Chapter 4

Dynatomic preperiodic curve

In this chapter, we will give a description of dynatomic preperiodic curve from the view of

algebraic and topology.In Section 4.1 , we will prove that every Xn,p is an affine algebraic

curve and find its defining polynomial Qn,p(c, z). In Section 4.2, we give the irreducible

factorization of Qn,p(c, z) and prove that each irreducible factor is smooth. Then each

irreducible component of Xn,p is a Riemann surface. We will show that these Riemann

surfaces intersect pairwisely transversally at the singular points of Qn,p(c, z). In Section

4.3, we will give a kind of compactification for each irreducible component of Xn,p by

adding some ideal boundary points such that it becomes a compact Riemann surface and

then calculate the genus of this compact Riemann surface. In Section 4.4, we will describe

Xn,p from the algebraic point of view by calculating the Galois group of Qn,p(c, z).

4.1 The defining polynomial for Xn,p

The objective of this section is to show that Xn,p is an affine algebraic curve and find its

defining polynomial.

Let Φn,p(c, z) = f
◦(n+p)
c (z)− f◦nc (z) (n ≥ 1, p ≥ 1). Then the solutions of the equation

Φn,p(c, z) = 0 consist of all (c, z) ∈ C2 such that z is a preperiodic point of fc with preperiod

l and period k where 0 ≤ l ≤ n and k|p. By abuse of notation, we will consider a polynomial

in C[c, z] as a polynomial in K[z] where K = C(c) is the field of rational functions about c.

Lemma 4.1.1. There exists a unique double indexed sequence of squrefree polynomials
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{Qn,p(c, z)}n≥1,p≥1 ⊂ C[c, z] ⊂ K[z] monic about z such that

Φn,p(c, z) = Φn−1,p(c, z)
∏
k|p

Qn,k(c, z) for all n ≥ 1, p ≥ 1.

Proof. Fix any n ≥ 1. We claim: for any c0 ∈ C \ Md, p ≥ 1, all roots of Φn,p(c0, z)

are simple. ( Demonstration: In this case, all periodic points of fc0 are repelling and

the critical orbit escapes to ∞. Then for any root z0 of Φn,p(c0, z), (∂Φn,p/∂z)(c0, z0) =

[f◦nc0 ]′(z0)
(
[f◦pc0 ]′(z0)− 1

)
6= 0 ). From this claim and the fact that Φn,p(c, z) is monic about

z, it deduce that if we can find a sequence of polynomials {Qn,p(c, z)}n≥1,p≥1 which satisfy

the equation in the lemma, they are naturally squrefree.

Let c0 ∈ C \Md be arbitrarily. The fact that z0 is a root of Φn−1,p(c0, z) implies z0 is a

root of Φn,p(c0, z). By the claim above, we have Φn−1,p(c0, z)
∣∣Φn,p(c0, z) in C[z]. Since c0

is any point of C \Md, we also have Φn−1,p(c, z)
∣∣Φn,p(c, z) in K[z].

We proceed by induction on p. For p = 1, we define Qn,1 = Φn,1(c, z)/Φn−1,1(c, z). It

satisfies the requirement of the lemma.

Assume now that for every 1 ≤ k < p, the polynomial Qn,k(c, z) is defined and satisfies

the requirement of the lemma. Let c0 be any parameter in C \Md. Note that for 1 ≤
k < p, the two polynomials (en z) Φn−1,k(c0, z) and Qn,k(c0, z) don’t have a common

root (by the claim above). Thus, if z0 is a root of Qn,k(c0, z), then it is a preperiodic

point of fc0 with preperiod n and period m (and m|k). In fact, m must be equal to k.

( Otherwise, Qn,k(c0, z) ·
∏
m′|mQn,m′(c0, z) would have a double root at z0 by induction,

but would at the same time divide Φn,k(c0, z), a contradiction to the claim above). Then

we can conclude that any two polynomials among { Φn−1,p(c0, z), Qn,k(c0, z) }1≤k<p have

no common roots and any one among { Φn−1,p(c0, z), Qn,k(c0, z) }1≤k<p divide Φn,p(c0, z).

Hence Φn−1,p(c0, z) ·
∏
k|p,k<pQn,k(c0, z) divides Φn,p(c0, z) in C[z]. As c0 is any point of

C \Md, the polynomial Φn−1,p(c, z) ·
∏
k|p,k<pQn,k(c, z) divides Φn,p(c, z) in K[z]. We can

then define

Qn,p(c, z) = Φn,p(c, z)
/

[Φn−1,p(c, z) ·
∏

k|p,k<p

Qn,k(c, z)].

It satisfies the requirement of the lemma.

Recall that {νd(p)}p≥1 is the unique sequence of positive integers satisfying the recursive

relation dp =
∑

k|p νd(k). It is easy to see that the degree of Q0,p is νd(p) and the degree of
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Qn,p is νd(p)(d− 1)dn−1 for n ≥ 1.

Remark 4.1.2. Note that Φn,p(c, z) = Φn−1,p(c, fc(z)) for any n ≥ 1, p ≥ 1. By the

definition of Qn,p, we have


∏
k|pQn−1,p(c, fc(z)) =

∏
k|pQn,p(c, z) n ≥ 2∏

k|pQ0,p(c, fc(z)) =
∏
k|pQ0,p(c, z)

∏
k|pQ1,p(c, z) n = 1

for any p ≥ 1. By induction on p, it follows


Qn−1,p(c, fc(z)) = Qn,p(c, z) n ≥ 2

Q0,p(c, fc(z)) = Q0,p(c, z)Q1,p(c, z) n = 1

for any p ≥ 1. This equation implies that we can obtain the properties of Qn,p by induction

on n.

Proposition 4.1.3. Let n ≥ 1, p ≥ 1 be any pair of integers and c0 ∈ C be any parameter.

Then z0 ∈ C is a root of Qn,p(c0, z) if and only if one of the following 5 mutually exclusive

conditions holds:

(0) z0 is a (n, p)-preperiodic point of fc0 such that f lc0(z0) 6= 0 for any 0 ≤ l < n and

[f◦pc0 ]′(f◦nc0 (z0)) 6= 1.

(1) z0 is a (n, p)-preperiodic point of fc0 such that f lc0(z0) = 0 for some 0 ≤ l < n.

(2) z0 is a (n, p)-preperiodic point of fc0 and [f◦pc0 ]′(f◦nc0 (z0)) = 1.

(3) z0 is a (n,m)-preperiodic point of fc0 such that m is a proper factor of n and [f◦mc0 ]′(f◦nc0 (z0))

is a primitive n/m-th root of unity.

(4) z0 is a (n− 1, p)-preperiodic point of fc0 and f
◦(n−1)
c0 (z0) = 0.

Proof. The proof goes by induction on n. As n = 1, Q0,p(c, fc(z)) = Q0,p(c, z) ·Q1,p(c, z).

For any c0 ∈ C, z0 is a multiplier root of Q0,p(c0, fc0(z)) ⇐⇒ (c0, fc0(z0)) ∈ C0,p,2 ∪ C0,p,3

(case 1) or z0 = 0 and c0 is the center of hyperbolic component with period p (case 2).

In case 1, if z0 is periodic, then z0 is a root of Q0,p(c0, z). Moreover, Q0,p(c0, fc0(z)) and

Q0,p(c0, z) have the same multiplicity at z0, so z0 is not a root of Q1,p(c0, z). If z0 is not

periodic, by Propostion 3.1.3 , z0 is not a root of Q0,p(c0, z). So z0 is not a common root
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of Q0,p(c0, z) and Q1,p(c0, z). In case 2, by (1) of Proposition 3.1.3 , z0 is simple root of

Q0,p(c0, z), hence z0 is also a root of Q0,p(c0, fc0(z)). In any other situation, Q0,p(c0, fc0(z))

only has simple root. Then z0 is a common root of Q0,p(c0, z) and Q1,p(c0, z) if and only

if z0 = 0 and c0 is the center of some hyperbolic component with period p (condition (4)).

Except this case, z0 is a root of Q1,p(c0, z) ⇐⇒ fc0(z0) is a root of Q0,p(c0, z) but z0 is not

a root of Q0,p(c0, z). Then Proposition 3.1.3 implies that z0 satisfies one of the conditions

(0), (1), (2), (3) in Proposition 4.1.3.

Assume that the proposition is established for 1 ≤ l < n. At this time, Qn,p(c, z) =

Qn−1,p(c, fc(z)). So for any c0 ∈ C, z0 is a root of Qn,p(c0, z) if and only if fc0(z0) is a

root of Qn−1,p(c0, z). Then by the inductive assumption, the point z0 satisfies one of the 5

exclusive conditions in Proposition 4.1.3.

Now we set

X̌n,p.0 =
{

(c, z) ∈ C2
∣∣(c, z) satisfies Condition (0) in Proposition 4.1.3

}
and for 1 ≤ α ≤ 4, set

Cn,p,α =
{

(c, z) ∈ C2
∣∣(c, z) satisfies Condition (α) in Proposition 4.1.3

}
It is easy to see that X̌n,p,0 ∪ Cn,p,1 ∪ Cn,p,2 = X̌n,p and Cn,p,1 ∪ Cn,p,2 ∪ Cn,p,3 ∪ Cn,p,4 is a

finite set. Then we have

Xn,p =
{

(c, z)
∣∣Qn,p(c, z) = 0

}
.

4.2 The irreducible factorization of Qn,p

In the periodic case (n = 0), we have proved that Q0,p is smooth and irreducible in Chapter

1. But in the preperiodic case (n ≥ 1), the polynomial Qn,p displays a very different

behavior: for d = 2, it is smooth and irreducible as the periodic case, however, for d ≥ 3, it

is neither smooth nor irreducible. In this section, we will find its irreducible factorization

and prove the smoothness for each irreducible component. We will also show that these

components pairwise intersect transversally at the singular points of Xn,p.
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4.2.1 Factorization of Qn,p and the behavior at its singular points

Fix any n ≥ 1, p ≥ 1. We have the following factorization result.

Lemma 4.2.1. (Algebraic version) There exists a unique sequence of monic polynomi-

als {qjn,p(c, z)}1≤j≤d−1 ⊂ C[c, z] ⊂ K[z] such that

Qn,p(c, z) =
d−1∏
j=1

qjn,p(c, z).

The degree of qjn,p is dn−1νd(p). All points in Cn,p,4 are the roots of qjn,p for any 1 ≤
j ≤ d−1, and there are no other common roots for qin,p and qjn,pwith 1 ≤ i 6= j ≤ d−1.

(Topological version) Let Vjn,p = {(c, z) ∈ C2
∣∣qjn,p(c, z) = 0} (1 ≤ j ≤ d − 1). Then

Cn,p,4 ⊂ Vjn,p for any 1 ≤ j ≤ d− 1 and
{
Vjn,p \ Cn,p,4

}
1≤j≤d−1

are pairwise disjoint.

Proof. Let K be a fixed algebraic closure of K. Set ω = e
2πi
d .

Let ∆ be a root of Q0,p(c, z) in K. Then ω∆, . . . , ωd−1∆ are roots of Q1,p(c, z) in K.

Let us factorize Q0,p(c, z) in K by

Q0,p(c, z) =

νd(p)∏
s=1

(z −∆s)

(∆s1 6= ∆s2 for s1 6= s2). Then Q1,p(c, z) can be expressed as

Q1,p(c, z) =

νd(p)∏
s=1

(z−ω∆s) · · · (z−ωd−1∆s) =
d−1∏
j=1

νd(p)∏
s=1

(z−ωj∆s) =
d−1∏
j=1

(ωj)νd(p)

νd(p)∏
s=1

(ω−jz−∆s)

Note that d|νd(p) so (ωj)νd(p) = 1. For 1 ≤ j ≤ d− 1, set

qj1,p(c, z) =

νd(p)∏
s=1

(z − ωj∆s) = Q0,p(c, ω
−jz) ∈ C[c, z] ⊂ K[z].

Then qj1,p(c, z) is a polynomial in (c, z) and is monic in K[z], satisfying

Q1,p(c, z) =

d−1∏
j=1

qj1,p(c, z).

This gives a factorization of Q1,p in K[z]. For n ≥ 2, we can define qjn,p(c, z) inductively by
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qjn,p(c, z) = qjn−1,p(c, fc(z)). As Qn,p(c, z) = Qn−1,p(c, fc(z)), we have

Qn,p(c, z) =

d−1∏
j=1

qj1,p(c, z).

This is a factorization of Qn,p(c, z) in K[z].

We are left to prove that each qjn,p(c, z) satisfies the remaining properties announced in

the lemma. For n = 1, since qj1,p(c, z) = Q0,p(c, ω
−jz), then (c0, z0) is a common root of

qi1,p(c, z) and qj1,p(c, z) for some 1 ≤ i 6= j ≤ d − 1 ⇐⇒ (c0, ω
−iz0) and (c0, ω

−jz0) are all

roots of Q0,p(c, z) ⇐⇒ (c0, z0) = (c0, 0) ∈ C1,p,4. For n ≥ 2, the conclusion can be deduced

from that of case n = 1 and the definition of qn,p(c, z).

From Lemma 4.2.1, we can see that Qn,p is reducible and non-smooth ( Cn,p,4 belongs

to the set of singular points of Qn,p) for d ≥ 3. Let us now concentrate our study on the

factors qjn,p(c, z), j ∈ [1, d− 1].

For n ≥ 2, qjn,p(c, z) is defined by qjn,p(c, z) = qjn−1,p(c, fc(z)). Interpret these equations

by topological view, we obtain a sequence of maps

{
℘jn,p : Vjn,p −→ Vjn−1,p , (c, z) 7→ (c, fc(z)) | n ≥ 2, p ≥ 1, 1 ≤ j ≤ d− 1

}
.

Note that for n = 1, we can also define a map ℘j1,p : Vj1,p → X0,p by ℘jn,p(c, z) = (c, fc(z)).

Lemma 4.2.2. For any p ≥ 1, 1 ≤ j ≤ d− 1,

• the map ℘j1,p : Vj1,p → X0,p is a homeomorphism.

• for n ≥ 2, the map ℘jn,p : Vjn,p → Vjn−1,p is of degree d with critical set

Dj
n,p =

{
(c, 0) ∈ Vjn,p | qjn,p(c, 0) = 0

}
.

Moreover, each critical point has multiplicity d− 1.

Proof. It can be deduced directly from the definition of qjn,p(c, z), n, p ≥ 1, 1 ≤ j ≤ d−1.

The following proposition is the core of this section.
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Proposition 4.2.3. For any n, p ≥ 1, 1 ≤ j ≤ d − 1, the polynomial qjn,p(c, z) is smooth

and irreducible.

The proof of this proposition will be postponed to 4.2.2 .

By Proposition 4.2.3, we can restate Lemma 4.2.2 as follows.

Lemma 4.2.4. For any p ≥ 1, 1 ≤ j ≤ d− 1,

• the maps ℘j1,p : Vj1,p → X0,p is a conformal homeomorphism.

• For n ≥ 2, the map ℘jn,p : Vjn,p → Vjn−1,p is a holomorphic branched covering of degree

d with critical set

Dj
n,p =

{
(c, 0) ∈ Vjn,p

∣∣qjn,p(c, 0) = 0
}

Moreover, each critical point has multiplier d− 1.

Remark 4.2.5. By the definition of qj1,p(c, z), we have qi1,p(c, z) = qj1,p(c, ω
i−jz) for any

1 ≤ i 6= j ≤ d − 1. Then we obtain a“rotation” rij between V i1,p and Vj1,p for any 1 ≤
i 6= j ≤ d − 1, defined by rij(c, z) = (c, ωi−jz). It is obviously a conformal map, then all

{Vj1,p}1≤j≤d−1 are conformal equivalent (also equivalent to X0,p). But unfortunately, the

map rij can’t be lifted along ℘i2,p and ℘j2,p because rij doesn’t map the critical values of ℘i2,p

to that of ℘j2,p, so we can not prove that V i2,p is conformal equivalent to Vj2,p by simply lifting

rij.

Q: Are
{
Vjn,p

}
1≤j≤d−1

conformal equivalent for fixed n ≥ 2, p ≥ 1?

Now, we will provide some discussion about the singular points of on Xn,p. Following

the definition and notation in 6.1.1, we have the proposition below.

Proposition 4.2.6. For n, p ≥ 1, each singular point of Xn,p is ordinary and has multi-

plicity d− 1.

Proof. For any (c0, 0) ∈ C1,p,4, 0 is a simple root of Q0,p(c0, z), then ∂Q0,p/∂z(c0, 0) 6=
0. By the Implicit Function theorem, there exists a local holomorphic function z(c) in a

neighborhood of c0 such that z(c0) = 0 and z(c) is the attracting p periodic point of fc.

Then as illustrated in section ??, we have a local holomorphic function

µ(c) = [f◦pc ]′(z(c)) = f ′c
(
f◦(p−1)
c (z(c))

)
· · · f ′c

(
f◦(p−1)
c (z(c)) (4.2.1)
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which has local degree d− 1 at c0.

Let z(c) = ak(c − c0)k + O
(
(c − c0)k+1

)
be the Taylor expansion of z(c) at c0. Note

that f◦p−1
c0 (0), . . . , fc0(0) are all distinct from 0. Then substitute the expansion of z(c) into

(5.2.10), we have

µ(c) = λ(c− c0)(d−1)k + higher order terms

in a small neighborhood of c0 with λ 6= 0. Thus k must be 1. Then Q0,p(c, z) can be

expressed as

Q0,p(c, z) = a0,p(c− c0) + b0,pz + higher order terms

at (c0, 0) with a0,p 6= 0, b0,p 6= 0. And hence

qj1,p(c, z) = Q0,p(c, ω
−jz) = a0,p(c− c0) + b0,pω

−jz + higher order terms

Therefore the tangents of {Vj1,p}1≤j≤d−1 at (c0, 0) are pairwise distinct.

Now assume that for 1 ≤ l < n, the tangents of {Vjl,p}1≤l≤d−1 are pairwise different

at each point of Cl,p,4. Let (c0, z0) be any point in Cn,p,4, then (c0, fc0(z0)) = (c0, w0) ∈
Cn−1,p,4. Denote the Taylor expansion of qjn−1,p(c, z) at (c0, w0) by

qjn−1,p(c, z) = ajn−1,p(c− c0) + bjn−1,p(w − w0) + higher order terms (4.2.2)

where bjn−1,p 6= 0 (w0 is a simple root of qjn−1,p(c0, z)). Since [∂fc/∂c](c0, z0) = 1, [∂fc/∂z](c0, z0) =

dzd−1
0 , the Taylor expansion of fc(z) at (c0, z0) is

fc(z) = w0 + (c− c0) + dzd−1
0 (z − z0) + higher order terms (4.2.3)

Substituting (4.2.3) into (4.2.2), we obtain

qjn,p(c, z) = (ajn−1,p + bjn−1,p)(c− c0) + dzd−1
0 · bjn−1,p(z − z0) + higher order terms

By the inductive assumption, the tangents of {Vjn,p}1≤j≤d−1 at (c0, z0) are pairwise distinct.

So for n, p ≥ 1 and any point (c0, z0) ∈ Cn,p,4, the first non vanishing term of Qn,p(c, z)

at (c0, z0) is
d−1∏
j=1

(
ajn,p(c− c0) + bjn,p(z − z0)

)
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with {(ajn,p, bjn,p) 6= (0, 0)}1≤j≤d−1 pairwise different. Then (c0, z0) is an ordinary singular

point with multiplicity d− 1.

Remark 4.2.7. Lemma 4.2.1, Proposition 4.2.3 and Proposition 4.2.6 provide us a clear

topological picture of Xn,p :

• Cn,p,4 is exactly the set of singular points of Qn,p;

• Xn,p is the union of the Riemann surfaces {Vjn,p}1≤j≤d−1 and any two of them intersect

transversally at the singular points of Xn,p.

4.2.2 Proof of the smoothness and the irreducibility of qjn,p

The objective here is to prove Proposition 4.2.3.

The approach to prove the smoothness is similar to that of proving the smoothness of

X0,p in Section smoothness.

The approach to the irreducibility is based on the connectivity of periodic curve X0,p.

Then we will show the connectivity of Vjn,p using the branched covering ℘jn,p by induction

on n.

Proof of Proposition 4.2.3. The proof goes by induction on n.

For n = 1, as qj1,p(c, z) = Q0,p(c, ω
−jz) and Q0,p(c, z) is smooth and irreducible, we

know that qj1,p(c, z) is smooth and irreducible for 1 ≤ j ≤ d − 1. Assume that for 1 ≤ l <

n, 1 ≤ j ≤ d − 1, the polynomial qjl,p(c, z) is smooth and irreducible. Then we will show

that qjn,p(c, z) is smooth and irreducible. Now fix any j0 ∈ [1, d− 1].

Smoothness of qj0n,p: As qj0n,p(c, z) = qj0n−1,p(c, fc(z)), for any (c0, z0) a root of qj0n,p(c, z), we

have 
∂qj0n,p
∂c

(c0, z0) =
∂qj0n−1,p

∂c
(c0, w0) +

∂qj0n−1,p

∂z
(c0, w0)

∂qj0n,p
∂z

(c0, z0) =
∂qj0n−1,p

∂z
(c0, w0) · f ′c0(z0)

(4.2.4)

where w0 = fc0(z0). Then if z0 6= 0, by assumption of induction of smoothness, [∂qj0n,p/∂c](c0

, z0) and [∂qj0n,p/∂c](c0, z0) can not equal to 0 simultaneously, it follows that qj0n,.p(c, z) is

smooth at (c0, z0). So we are left to prove that qj0n,p(c, z) is smooth at (c0, 0) ∈ Vj0n,p. In

this case, c0 is a Misiurewicz parameter with preperiod n − 1 and period p. Note that
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[∂qj0n,p/∂z](c0, 0) = 0, then we have to show [∂qj0n,p/∂c](c0, 0) 6= 0. Since

∂Qn,p
∂c

(c0, 0) =
∏

1≤j 6=j0≤d−1

qjn,p(c0, 0) · ∂q
j0
n,p

∂c
(c0, 0)

and by Lemma 4.2.1, the point (c0, 0) is not a root of
∏
j 6=j0 q

j
n,p(c, z), we only have to show

[∂Qn,p/∂c](c0, 0) 6= 0. Furthermore,

∂Φn,p

∂c
(c0, 0) = Φn−1,p(c0, 0) ·

∏
k|p,k<p

Qn,k(c0, 0) · ∂Qn,p
∂c

(c0, 0)

and it is known that Φn−1,p(c0, 0) · ∏k|p,k<pQn,k(c0, 0) 6= 0. So we only have to show

[∂Φn,p/∂c](c0, 0) 6= 0. We shall choose a meromorphic quadratic differential with simple

poles such that

(fc0)∗Q = Q+
∂Φn,p

∂c
(c0, 0) · dz2

z − c0
.

Then with Lemma ??, we obtain [∂Φn,p/∂c](c0, 0) 6= 0.

We shall use the following notations:

zk := f◦n+k
c0 (0), δk := f ′c0(zk) = dzd−1

k , 0 ≤ k ≤ p− 1

yl := f lc0(0), εl := f ′c0(yl) = dyd−1
l , 1 ≤ l ≤ n− 1

With these notations and a bit of calculations, we get

∂Φn,p

∂c
(c0, 0) =

∂f
◦(n+p)
c

∂c
(c0, 0)− ∂f◦nc

∂c
(c0, 0)

= (δ0 · · · δp−1 − 1)(εn−1 · · · ε1 + · · ·+ εn−1εn−2 + εn−1 + 1)

+ δp−1 · · · δ1 + · · ·+ δp−1 + 1

Denote (δ0 · · · δp−1 − 1)(εn−1 · · · ε1 + · · ·+ εn−1εn−2 + εn−1 + 1) by α. Let

Q =

p−1∑
k=0

ρk
z − zk

dz2 +

n−1∑
l=1

λl
z − yl

dz2

be a quadratic differential in Q(C). Here ρk (0 ≤ k ≤ p − 1), λl (1 ≤ l ≤ n − 1) are

undetermined coefficients (note that y1 = c0). Applying Lemma ?? and writing f for fc0 ,
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we have

f∗Q =

p−1∑
k=0

ρk
δk

(
dz2

z − z
k+1

− dz2

z − c0

)
+
n−2∑
l=1

λl
εl

(
dz2

z − y
l+1

− dz2

z − c0

)
+
λn−1

εn−1

(
dz2

z − z0
− dz2

z − c0

)
=

(
ρp−1

δp−1
+
λn−1

εn−1

)
dz2

z − z0
+
ρ0

δ0

dz2

z − z1
+ · · ·+ ρp−2

δp−2

dz2

z − zp−1

+

(
κ−

n−1∑
l=1

λl
εl

)
dz2

z − y1
+
λ1

ε1

dz2

z − y2
+ · · ·+ λn−2

εn−2

dz2

z − yn−1
−
(
α+

p−1∑
k=0

ρk
δk

)
dz2

z − c0

We want to choose Q so that

f∗Q−Q = −
(
α+

p−1∑
k=0

ρk
δk

)
dz2

z − c0

It amounts then to solve the following linear system on the unknown coefficient vector

(ρ0, . . . , ρp−1, λ1, . . . , λn−1) :



1
δ0
−1

· ·
· ·
· ·

1
δp−2

−1

−1 1
δp−1

1
εn−1

1 + 1
ε1

1
ε2

1
ε3
· · · 1

εn−2

1
εn−1

1
ε1

−1

· ·
· ·

· ·
1

εn−2
−1





ρ0

·
·
·

ρp−2

ρp−1

λ1

λ2

·
·
·

λn−1



=



0

·
·
·
0

0

α

0

·
·
·
0


Denote by A the coefficient matrix, we have

det(A) =
(−1)n−1α

δ0 · · · δp−1 · ε1 · · · εn−1

Then whether κ = 0 or not, this linear system has non-zero solutions, and one of its solutions
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is 

ρ0 = δ0 · · · δp−1

ρ1 = δ1 · · · δp−1

...

ρp−1 = δp−1

λ1 = (δ0 · · · δp−1 − 1) · εn−1 · · · ε1

...

λn−2 = (δ0 · · · δp−1 − 1) · εn−1εn−2

λn−1 = (δ0 · · · δp−1 − 1) · εn−1

(4.2.5)

Therefore, for (ρ0, . . . , ρp−1, λ1, . . . , λn−1) satisfies (4.2.5), we have

f∗Q−Q = −
(
α+

p−1∑
k=0

ρk
δk

)
dz2

z − c0
= −∂Φn,p

∂c
(c0, 0) · dz2

z − c0

As a conseqence [∂Φn,p/∂c](c0, 0) 6= 0.

Irreducibility of qj0n,p: By the smoothness of qjn,p(c, z) (n, p ≥ 1, 1 ≤ j ≤ d − 1) and the

inductive assumption of irreducibility, we know that ℘j0n,p : Vj0n,p → Vj0n−1,p is a branched

covering of degree d, Vj0n−1,p and each connected component of Vj0n,p is a Riemann surface.

Then it is easy to prove that the restriction of ℘j0n,p to any connected component of Vj0n,p is

also a branched covering. Since the set of critical points of ℘j0n,p

Dj0
n,p = {(c, 0)

∣∣qj0n,p(c, 0) = 0}

is non-empty and each critical point has multiplicity d− 1, the set Vj0n,p must be connected.

By Theorem 2.4.3 and the smoothness of qj0n,p, we conclude that qj0n,p(c, z) is irreducible in

C[c, z].

�

4.3 Genus of the compactification of Vjn,p
In the previous section, we have seen that Xn,p is the union of d − 1 Riemann surfaces

{Vjn,p}1≤j≤d−1 and any two of them intersect transversally at the singular points of Xn,p.
In order to give a complete topological description of Xn,p, we also need the topological

characterization of each Vjn,p.
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In fact, by adding an ideal boundary point at each end of Vjn,p, we obtain a compactifica-

tion of Vjn,p, denoted by V̂jn,p, such that V̂jn,p is a compact Riemann surface (in section 4.3.1 ).

We will also calculate the genus of V̂jn,p (in section 4.3.2). Topologically, Xn,p is completely

determined by he number of its singular points, the genus of V̂jn,p and the number of ideal

boundary points added on Vjn,p (or the number of ends of Vjn,p) for 1 ≤ j ≤ d − 1. So we

can give a complete topological description of Xn,p (Lemma 4.3.4).

4.3.1 Compactification of Vjn,p

Denote by πjn,p : Vjn,p → C the projection from Vjn,p to the parameter plane. It is easy to see

πjn,p = π0,p ◦ ℘j1,p ◦ · · · ◦ ℘jn−1,p ◦ ℘jn,p

where π0,p is the projection from X0,p to the parameter plane. By Theorem ?? and Lemma

4.2.4, the map πjn,p : Vjn,p → C is a degree νd(p)d
n−1 branched covering whose set of critical

points equals to Cjn,p,1 ∪ Cjn,p,2 ∪ Cjn,p,3, where Cjn,p,α := Cn,p,α ∩ Vjn,p for all n, p ≥ 1, 1 ≤
j ≤ d − 1, 0 ≤ α ≤ 4 (note that C1,p,1 = ∅). Let V j

n,p,α := πjn,p(C
j
n,p,α) (α = 1, 2, 3). Then

the critical value set of πjn,p, denoted by V j
n,p, is equal to V j

n,p,1 ∪ V j
n,p,2 ∪ V j

n,p,3.

Lemma 4.3.1. (1) For any 1 ≤ i 6= j ≤ d − 1, we have V i
n,p,1 ∩ V j

n,p,1 = ∅. The set⋃d−1
j=1 V

j
n,p,1 consists of all Misiurewicz parameters such that c is (l, p)-preperiodic point

of fc for some 0 < l ≤ n− 1.

(2) For any 1 ≤ j ≤ d − 1, V j
n,p,2 ∪ V j

n,p,3 consists of roots and co-roots of all hyperbolic

components of period p.

Proof. (1) By Proposition 4.1.3, the set
⋃d−1
j=1 V

j
n,p,1 consists of all Misiurewicz parameters

such that c is (l, p)-preperiodic point of fc for some 0 < l ≤ n− 1. If c0 ∈ V i
n,p1 ∩ V j

n,p,1 for

some 1 ≤ i 6= j ≤ d − 1, then c0 is a (l, p)preperiodic point of fc0 for some l ∈ [1, n − 1]

and there are two points (c0, z1), (c0, z2) belonging to V in,p and Vjn,p respectively. It follows

(c0, 0) ∈ V il+1,p ∩ V
j
l+1,p, a contradiction to Lemma 4.2.1.

(2) follows directly from πjn,p = π0,p ◦ ℘j1,p ◦ · · · ◦ ℘jn−1,p ◦ ℘jn,p and Remark 3.2.8.

Set
⋃mjn,p
i=1 E

j
n,p,i := (πjn,p)−1(C\Md), where Ejn,p,i is a connected component of (πjn,p)−1(C\

Md), called an end of Vjn,p. Fix any i0 ∈ [1,mj
n,p]. Since C \Md contains no critical values
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of πjn,p, the map

πjn,p
∣∣
Ejn,p,i0

: En,p,i0 → C \Md

is a covering whose degree is denoted by djn,p,i0 . Note that C \Md is conformal to C \D, it

follows that Ejn,p,i0 is also conformal to C \D. So if we add a point ∞j
n,p,i0

to the infinite far

boundary of Ejn,p,i0 , then we get a new set Êjn,p,i0 := Ejn,p,i0 ∪ {∞
j
n,p,i0
} and it is conformal

to Ĉ \D. The point ∞j
n,p,i0

is called the ideal boundary point of Ejn,p,i0 and djn,p,i0 is called

the multiplicity of Ejn,p,i0 . In this case, πjn,p
∣∣
Ejn,p,i0

can be extended to

π̂jn,p
∣∣
Êjn,p,i0

: Ên,p,i0 → Ĉ \Md

by setting π̂jn,p(∞j
n,p,i0

) =∞. This map becomes a branched covering of degree djn,p,i0 with

a unique branched point ∞j
n,p,i0

.

Adding the ideal boundary point at each end of Vjn,p, we obtain a compact Riemann

surface V̂jn,p := Vjn,p ∪ {∞j
n,p,i}

mjn,p
i=1 and an extended branched covering π̂jn,p : V̂jn,p → Ĉ. We

are left to calculate the number mj
n,pof ends for Vjn,p and the multiplicity djn,p,i of each end

of Vjn,p.

Lemma 4.3.2. For any n, p ≥ 1, 1 ≤ j ≤ d − 1, 1 ≤ i ≤ mj
n,p, we have djn,p,i = d and

mj
n,p = νd(p)d

n−2.

Proof. The map πjn,p
∣∣
Ejn,p,i

: Ejn,p,i −→ C\Md is a covering. Fix c0 ∈ C\(Md∪RMd
(0)), djn,p,i =

#
(
πjn,p

∣∣
Ejn,p,i

)−1
(c0). Since Ejn,p,i is connected, Mon

(
πjn,p

∣∣
Ejn,p,i

)
acts on

(
πjn,p

∣∣
Ejn,p,i

)−1
(c0)

transitively. Then fixing any point (c0, z0) ∈
(
πjn,p

∣∣
Ejn,p,i

)−1
(c0), the set

(
πjn,p

∣∣
Ejn,p,i

)−1
(c0)

is exactly the orbit of (c0, z0) under Mon
(
πjn,p

∣∣
Ejn,p,i

)
.

Let ct : [0, 1]→ C\Md be a oriented simple closed curve based at c0 such that ct intersects

RMd
(0) at only one point ct0 . Let zt be the (n, p)-preperiodic point of fct obtained from

the analytic continuation of z0 along ct. Note that as c varies in C \ (Md ∪ RMd
(0)), the

(n, p)-preperiodic points of fc, the dynamical rays Rc(0) and Rc
(
(θc + s)/d

)
(s ∈ Zd) move

continuously. Consequently, we have ιct(zt) = ιc0(z0) for t ∈ [0, t0)

ιct(zt) = ιc0(z1) for t ∈ (t0, 1]
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Furthermore, on one hand, zt and Rct(0) move continuously for t ∈ [0, 1]. On the other

hand, when ct passes through RMd
(0), the dynamical rays Rct

(
(θt + s)/d

)
(s ∈ Zd) move

discontinuously and jump from Rct−
(
(θt− + s)/d

)
to Rct+

(
(θt+ + s + 1)/d

)
, t− < t0 < t+.

So if ιc0(z0) = βn . . . β1ε1 . . . εp, then

ιc0(z1) = (βn + 1) . . . (β1 + 1)(ε1 + 1) . . . (εp + 1) (4.3.1)

Hence the map Φ
πjn,p

(ct) maps (c0, z0) to (c0, z1) with z1 satisfying (4.3.1). Since π1(C \
Md, c0) = 〈ct〉, then we have

(
πjn,p

∣∣
Ejn,p,i

)−1
(c0) =

{
(c0, z)

∣∣ιc0(z) = (βn + s) . . . (β1 + s)(ε1 + s) . . . (εp + s), s ∈ Zd
}

As a consequence, djn,p,i = d and mj
n,p = νd(p)d

n−2.

We can also use the itinerary to label the ends of Vjn,p. The open set W := C \ (Md ∪
RMd

(0)) is simply connected. Let Wj
n,p ⊂ Vjn,p be the preimage of W by πjn,p : Vjn,p → C.

Since W is simply connected, each connected component of W maps isomorphically to W

by πjn,p (so there are νd(p)d
n−1 components in Wj

n,p).

Define ιjn,p : Wj
n,p −→ ZNd by ιjn,p(c, z) = ιc(z). As c varies in W , the (n, p)-preperiodic

points of fc, the dynamical rays Rc(0) and Rc
(
(θc + s)/d

)
(s ∈ Zd) move continously. As

a consequence, the map ιjn,p : Wj
n,p −→ ZNd is locally constant, whence constant on each

connected component of Wj
n,p. Since ιc : Kc −→ ZNd is bijective, distinct components have

distinct itineraries, so each connected component of U jn,p,t of Wj
n,p can be labelled by its

itinerary ιjn,p(U jn,p,t).
According to the proof of Lemma 4.3.2, each end of Vjn,p contains d components of Wj

n,p

and they are labelled by

{
(βn + s) . . . (β1 + s)(ε2 + s) . . . (εp + s)(ε1 + s)

}
s∈Zd

for some (n, p)-sequence βn . . . β1ε2 . . . εpε1 ∈ ZNd . We define an equivalence relationship in

all (n, p)-preperiodic sequences in ZNd such that βn . . . β1ε2 . . . εpε1 ∼ β′n . . . β
′
1ε
′
2 . . . ε

′
pε
′
1 if

and only if

β′n . . . β
′
1ε
′
2 . . . ε

′
pε
′
1 = (βn + s) . . . (β1 + s)(ε2 + s) . . . (εp + s)(ε1 + s)
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for some s ∈ Zd. The equivalence class of βn . . . β1ε2 . . . εpε1 is denoted by [βn . . . β1ε2 . . . εpε1].

Then each Ejn,p,i can be labelled by [ιjn,p(U jn,p,i,s)] where U jn,p,i,s is a component of Wj
n,p con-

tained in Ejn,p,i.

Proposition 4.3.3. All ends of Vjn,p can be labelled by
{

[βn . . . β2(ε1 + j)ε2 . . . εpε1]
}

, where

βm ∈ Zd for 2 ≤ m ≤ n and ε2 . . . εpε1 ∈ ZNd is any p−periodic sequence under shift.

Proof. Let Ej1,p,i be any end of Vj1,p. Let (c0, w) be a point of Ej1,p,i with ιc0(w) = βε2 . . . εpε1.

By the following commutative graph, We have β1 = ε1 + j. Then for (c0, z) belonging to

X0,p Vj
1,p

X0,p

C

(c, ωjz)

(c, fc(z)) (c, fc(z))

π0,p

any end of Vjn,p,
ιc0(z) = βn . . . β2(ε1 + j)ε2 . . . εpε1

which is some (n, p)-sequence in ZNd . So each end of Vjn,p can be labelled by [βn . . . β2(ε1 +

j)ε2 . . . εpε1] for some (n, p)-preperiodic sequence βn . . . β2(ε1 + j)ε2 . . . εpε1. Besides, the

number of all equivalence classes with the form [βn . . . β2(ε1 + j)ε2 . . . εpε1] is νd(p)d
n−2, the

same with the number of ends on Vjn,p(Lemma 4.3.2). So all ends of Vjn,p are labelled by

{
[βn . . . β2(ε1 + j)ε2 . . . εpε1]

∣∣βn . . . β2(ε1 + j)ε2 . . . εpε1 is a (n, p)-preperiodic sequence
}

4.3.2 Calculation of the genus of V̂jn,p

Now, for any n, p ≥ 1, 1 ≤ j ≤ d−1, we have obtained a branched covering π̂jn,p : V̂jn,p → Ĉ of

degree νd(p)d
n−1 between two compact Riemann surface. By the Riemann-Hurwitz formula,
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we have

2− 2gjn,p + total number of critical points of π̂jn,p = 2νd(p)d
n−1.

where gjn,p denotes the genus of V̂jn,p. So in order to calculate the genus of V̂jn,p, we only

need to count the number of critical points of πjn,p counting with multiplicity. It is known

that the set of critical points for π̂jn,p is

Cjn,p,1 ∪ Cjn,p,2 ∪ Cjn,p,3 ∪ {∞j
n,p,i}

νd(p)dn−2

i=1

We will count the critical points class by class.

• Counting the points in Cjn,p,1.

By the definition of Cjn,p,1, we have

Cjn,p,1 =
n⋃
s=2

(℘jn,p)
−1 ◦ · · · ◦ (℘js+1,p)

−1(Dj
s,p).

Recall that Dj
s,p =

{
(c, 0) ∈ C2

∣∣qjs,p(c, 0) = 0
}

is the set of critical points of ℘js,p. Fix

any s ∈ [2, n]. Firstly, we claim #Dj
s,p = νd(p)d

s−2 : on one hand, qjs,p(c, 0) = 0 ⇐⇒
qjs−1,p(c, c) = 0. So deg(qjs−1,p(c, c)) = νd(p)d

s−2 implies #Cjs,p ≤ νd(p)d
s−2. On the

other hand, by the smoothness of Vjs,p at (c, 0) ∈ Dj
s,p, we have [∂qjs,p/∂c](c, 0) 6= 0. It

follows that each root of qjs,p(c, 0) is simple, and #Dj
s,p = νd(p)d

s−2.

Next, consider the map

hjn,s,p := ℘js+1,p ◦ · · · ◦ ℘jn,p : Vjn,p −→ Vjs,p

It is easy to see that the set of critical points of hjn,s,p is disjoint from (hjn,s,p)−1(Dj
s,p).

It follows that #(hjn,s,p)−1(Dj
s,p) = νd(p)d

s−2 · dn−s and each point in (hjn,s,p)−1(Dj
s,p)

is a critical point of π̂jn,p with multiplicity d−1. Therefore the total number of critical

points of π̂jn,p in Cjn,p,1 is equal to

n∑
s=2

νd(p)d
s−2 · dn−s · (d− 1) = (n− 2)νd(p)d

n−2(d− 1).

• Counting the points in Cjn,p,3
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By definition, Cjn,p,3 = (℘jn,p)−1◦· · ·◦(℘j1,p)−1(C0,p,3) = (hjn,0,p)
−1(C0,p,3). It is obvious

that C0,p,3 is disjoint from the set of critical values for hjn,0,p, then each point P in

C0,p,3 has exactly dn−1 pre-image under hjn,0,p and each pre-image of P , considered

as critical point of π̂jn,p, has the same multiplicity as that of P considered as critical

point of π0,p. So the total number of critical points of π̂jn,p in Cjn,p,3 is dn−1 times the

number of critical points of π0,p in C0,p,3. Now we are only left to count the number

of critical points of π0,p in C0,p,3.

Let C0,p,3,k =
{

(c, z) ∈ C0,p,3

∣∣z is k periodic point of fc
}

, then C0,p,3 is the disjoint

union of all C0,p,3,k with k|p, k < p. Fix any k0 satisfying k0|p, k0 < p. Note that

there are νd(k0)/d hyperbolic components in Md of period k0 and on the boundary

of any such component, there are (d − 1)ϕ(p/k0) parameters with their parabolic

periodic points satisfying the property of C0,p,3,k0 . (For any t ∈ N, ϕ(t) is the number

of all numbers among {1, · · · , t − 1} which are co-prime with t). Then #C0,p,3,k0 =

(νd(k0)/d)(d−1)ϕ(p/k0)k0. Moreover, each point in C0,p,3,k0 has multiplicity (p/k0)−1

as a critical point of π0,p. So the number of critical points of π0,p in C0,p,3 is equal to

∑
k|p,k<p

(νd(k)/d)(d− 1)ϕ(p/k)k(p/k − 1)

Hence, the number of critical points of π̂jn,p in Cjn,p,3 is

dn−1
∑

k|p,k<p

(νd(k)/d)(d− 1)ϕ(p/k)k(p/k − 1).

• Counting the points in Cjn,p,2

By definition, Cjn,p,2 = (℘jn,p)−1 ◦ · · · ◦ (℘j1,p)
−1(C0,p,2) = (hjn,0,p)

−1(C0,p,2). It is very

similar to the case above. With the same reason, we can also conclude that the total

number of critical points of π̂jn,p in Cjn,p,2 is dn−1 times of the number of critical points

of π0,p in C0,p,2.

Now we begin to count the number of critical points of π0,p in C0,p,2. By definition

of C0,p,2, the parameter set π0,p(C0,p,2) consists of co-roots and primitive roots of all

hyperbolic components of period p. From Section 2.2.1, the number of co-roots and

roots for all hyperbolic component of period p is (d − 1)νd(p)/d. Moreover, in the
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calculation of number of critical points in C0,p,3, we have actually got the number of

root of the satellite components with period p, that is
∑

k|p,k<p(νd(k)/d)(d−1)ϕ(p/k).

Then

#C0,p,2 = p[(d− 1)νd(p)/d−
∑

k|p,k<p

(νd(k)/d)(d− 1)ϕ(p/k)].

By Remark 3.2.8, each critical point of π0,p in C0,p,2 is simple, then the number of all

critical points of π0,p in C0,p,2 is

p
[
(d− 1)νd(p)/d−

∑
k|p,k<p

(νd(k)/d)(d− 1)ϕ(p/k)
]
.

Hence the number of all critical points of π̂jn,p in Cjn,p,2 is

dn−1p
[
(d− 1)νd(p)/d−

∑
k|p,k<p

(νd(k)/d)(d− 1)ϕ(p/k)
]
.

• Counting the points in {∞j
n,p,i}

νd(p)dn−2

i=1

By Lemma 4.3.2, there are νd(p)d
n−2 ideal boundary points on V̂jn,p and each one is a

critical point of π̂jn,p with multiplicity d − 1. So the number of critical points of π̂jn,p

in {∞j
n,p,i}

νd(p)dn−2

i=1 is equal to νd(p)d
n−2(d− 1).

By the Riemann-Hurwitz formula, we have

gjn,p = 1 +
1

2
νd(p)d

n−2
[
(d− 1)(n+ p)− 2d

]
− 1

2
dn−2(d− 1)

∑
k|p,k<p

kνd(k)ϕ(p/k).

From the formula of genus and Lemma 4.3.2, it is known that both gjn,p (genus of V̂jn,p)
and mj

n,p (the number of ends of V̂jn,p) are independent of j. So we can omit j for simplicity.

The following lemma implies a complete topological description of Vjn,p (j ∈ [1, d− 1]) and

Xn,p.

Lemma 4.3.4. (1) S1, S2 are two compact Riemann surface with the same genus. X1 ⊂
S1, X2 ⊂ S2 are two finite set with #X1 = #X2. Then there exists a homeomorphism

h : S1 → S2 such that h(X1) = h(X2).

(2) S is a compact Riemann surface and X ⊂ S is a finite set. Then for any σ ∈ sym(X),

there exist a homeomorphism h : S → S such that h(X) = X and h
∣∣
X

= σ.
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They are classical results of topology of surface, then we omit the proof.

Corollary 4.3.5 (Topological description of Xn,p). Topologically, Vjn,p is determined by gn,p

and mn,p. Xn,p is determined by gn,p, mn,p and #Cn,p,4.

Proof. It follows directly from Lemma 4.3.4 and remark 6.2.2.

4.4 The Galois group of Qn,p(c, z)

The objective here is to study Qn,p(c, z) from the algebraic point of view by calculating its

Galois group.

We apply the discussion in 4.4.1 to Qn,p (n, p ≥ 1). In proof of Lemma 4.2.1, we have

seen that Qn,p(c, z) has no multiplie roots as a polynomial in K[z]. So the splitting field of

Qn,p(c, z) over K is a Galois extension over K and then we obtain the Galois group of Qn,p,

denoted by Gn,p

Let πn,p : Xn,p → C be the projection from Xn,p to parameter space. From the previous

content, we know that πn,p =
⋃d−1
j=1 π

j
n,p and the set of critical points is

Cn,p := Cn,p,1 ∪ Cn,p,2 ∪ Cn,p,3 ∪ Cn,p,4.

The set of critical values Vn,p = πn,p(Cn,p) is equal to the union of
⋃d−1
j=1 V

j
n,p together with

the center of the hyperbolic components of period p (Lemma 4.3.1).

According to the discussion in 4.4.1 and Theorem 2.4.8, fixing any c0 ∈ C\Md ⊂ C\Vn,p,
we have two group morphisms:

Φn,p : C \ Vn,p → sym(π−1
n,p(c0)) and φn,p : C \ Vn,p → sym(Zn,p).

(Zn,p consists of all (n, p)-preperiodic points of fc0) and three kinds of expressions of the

Galois group of Qn,p ∈ K[z] :

Gn,p ∼= Monn,p ∼= ACn,p.

We will compute the Galois group of Qn,p(c, z) in terms of the expression ACn,p.
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Firstly, we will find some necessary properties that ACn,p should satisfy.

ACn,p =
{
σγn,p

∣∣σγn,p is the permutation on Zn,p induced by γ ∈ π1(C \ Vn,p)
}
.

Choose any σγn,p ∈ ACn,p. Note that γ can be seen as the element of π1(C \ Vl,p) for any

0 ≤ l ≤ n. Then by the monodromy theorem of analytic continuation, we have

fc0 ◦ σγn,p = σγn−1,p ◦ fc0 on Zn,p (4.4.1)

Now we turn to the expression Gn,p. For σ ∈ Gn,p, let ∆ be any root of Qn,p in K. If ω∆

is also a root of Qn,p, then σ(ω∆) = ωσ(∆) is a root of Qn,p, that is, σ commutes with d-th

rotation. (In case n ≥ 2, if ∆ is a root of Qn,p, then ω∆ is always a root of Qn,p. But this

fails in case n = 1). Interoperating of this property in term of the expression ACn,p, we

have

For any σγn,p ∈ ACn,p, z ∈ Zn,p, if ωz ∈ Zn,p, then σγn,p(ωz) = wσγn,p(z) (4.4.2)

So we have had two necessary properties that ACn,p should satisfy. What we would like

to prove is that no other restrictions are imposed on ACn,p. Set H0,p := AC0,p, consisting

of all permutations of Z0,p which commute with fc0 (5 of Theorem 3.4.1). For n ≥ 1, in-

ductively define by Hn,p the subgroup of sym(Zn,p) consisting of all permutations satisfying

(4.4.1) and (4.4.2), that is

• For each σ ∈ Hn,p, there is an unique σ′ ∈ Hn−1,p such that fc0◦σ = σ′◦fc0 (4.4.1′)

• For each σ ∈ Hn,p, z ∈ Zn,p, if ωz ∈ Zn,p, then σ(ωz) = ωσ(z) (4.4.2′)

σ′ is called the restriction of σ on Zn−1,p, denoted by σ|Zn−1,p
.

Proposition 4.4.1. For n ≥ 1, ACn,p = Hn,p, or equivalently, Gn,p consists of all permu-

tations on roots of Qn,p which commute with fc and the d-th rotation.

Proof. The inclusion “⊆” is obvious. We will show “⊇” by induction on n.

As n = 1, suppose Z0,p =
{
zs
}

1≤s≤νd(p)
, then Z1,p =

{
ωjzs

}1≤j≤d−1

1≤s≤νd(p)
.Choose any

σ1 ∈ H1,p, properties (4.4.1′) and (4.4.2′) imply that

σ1(ωjzs) = ωjσ0(zs). (4.4.3)
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where σ0 := σ|Z0,p
, j ∈ [1, d − 1], s ∈ [1, νd(p)]. Since H0,p = AC0,p, there exists γ0 ∈

π1(C \ V0,p, c0) with σγ00,p = σ0. We can find γ1 ∈ π1(C \ V1,p, c0) such that γ1|C\V0,p = γ0.

By the following commutative diagram

X0,p Vj
1,p

X0,p

C

(c, ωjz)

(c, fc(z)) (c, fc(z))

π0,p

we have σγ11,p = σ1, and hence G1,p = H1,p. From (4.4), we can also see AC1,p
∼= AC0,p.

Assume nowACl,p = Hl,p for 1 ≤ l < n (n ≥ 2). Denote κn := νd(p)(d−1)dn−2, Zn−1,p ={
wi
}

1≤i≤κn . Then Zn,p =
{
ωjzi

}1≤j≤d−1

1≤i≤κn , where fc0(ωjzi) = wi. Let σn be any element of

Hn,p. By property (4.4.1′) and assumption of induction,

σn−1 := σn|Zn−1,p
∈ Hn−1,p = ACn−1,p

Then there exists γn−1 ∈ π1(C \ Vn−1,p, c0) with σ
γn−1

n−1,p = σn−1. Consider γn ∈ π1(C \ Vn,p)
such that γn|C\Vn−1,p

= γn−1,p , then we have

σγnn,p|Zn−1,p
= σ

γn−1

n−1,p = σn−1.

Set δ = (σγnn,p)
−1 ◦ σn, then δ|Zn−1,p

= id and by properties (4.4.2), (4.4.2′),

δ =

κn∏
i=1

(
ji (ji + 1) · · · (d− 1) 1 · · · (ji − 1)

)
where (ji (ji+1) · · · (d−1) 1 · · · (ji−1)) is the cyclical permutation on {zi, ωzi, . . . , ωd−1zi}
mapping zi to ωji−1zi. To finish the proof of Proposition 4.4.1, we only need to find an

element λ ∈ π1(C \ Vn,p, c0) such that σλn,p = δ. In fact, we will show a stronger result: for

any i ∈ [1, κn], we can find λi ∈ π1(C \ Vn,p, c0) with σλin,p =
(
ji (ji + 1) · · · (ji − 1)

)
.

Fix any i0 ∈ [1, κn]. Suppose {zi0 , ωzi0 , . . . , ωd−1zi0} ⊂ Vj0n,p for some j0 ∈ [1, d − 1].
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Let (ĉ, 0) ∈ Vj0n,p be a critical point of πn,p. Then by the Implicit Function Theorem, a

neighborhood of (ĉ, 0) in X̌n,p can be written as

{
(c, zc) ∪ (c, ωzc) ∪ · · · ∪ (c, ωd−1zc)

∣∣|c− ĉ| < ε
}

where zc is a (n, p) preperiodic point of fc nearby 0 for c 6= ĉ and zĉ = 0. The map πn,p is a

degree d branched covering in a neighborhood of (ĉ, 0) with only one branched point (ĉ, 0).

As c make a small turn around ĉ, the set {zc, ωzc, . . . , ωd−1zc} gets a cyclical permutation

with ωjzc mapped to ωj+1zc and other (n, p) preperiodic points of fc get fixed. It follows

that for γ ∈ π1(C\Vn,p, c0) homotopic to ĉ, σγn,p = (2 · · · d 1) acts on some {zi? , . . . , ωd−1zi?}
such that {(c0, ω

jzi?)|0 ≤ j ≤ d − 1} ⊂ Vj0n,p. Now we connect (c0, zi0) and (c0, zi?) by a

curve from (c0, zi0) to (c0, zi?) on Vj0n,p \π−1
n,p(Vn,p) and denote its projection under πn,p by β.

With an abuse of notation of curves and their homotopy classes, we have β ∈ π1(C\Vn,p, c0).

Then

λi = β · γji0−1 · β−1

satisfies our requirement.

By Theorem 3.4.1, we have known the Galois group G0,p. Then with Proposition 4.4.1,

we can calculate Gn,p by induction on n. In the proof of this proposition, we obtain

G1,p = G0,p and a short exact sequence

0 −→ Zκnd −→ Gn,p −→ Gn−1,p −→ 0 n ≥ 2 (κn = νd(p)(d− 1)dn−2)

We will show that Gn,p can be expressed as the wreath product of Zκnd and Gn−1,p for n ≥ 2.

Definition 4.4.2. Let G be a group and Σ be a subgroup of sym(Zd). Denote by Σ n Gd

the wreath product of G and Σ. As a set, it consists of g = σg(g1, · · · , gd) where gi ∈ G and

σg ∈ Σ. The multiplication is defined by

g · h = σg(g1, · · · , gd) · σh(h1, · · · , hd) = σg ◦ σh(gσh(1) · h1, · · · , gσh(d) · hd).

Under this multiplicity, Σ n Gd is a group with g−1 = σ−1
g

(
g−1

σ−1
g (1)

, · · · , g−1

σ−1
g (1)

)
and unit

element (0, . . . , 0).
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Corollary 4.4.3. For n ≥ 2, Gn,p ∼= Gn−1,p n Z
νd(p)(d−1)dn−2

d .

Proof. A nice way to visualize the action of Gn,p on points Zn,p is to consider the following

table:

w1 w2 · · · wκn−1 wκn

z1 z2 · · · zκn−1 zκn

ωz1 ωz2 · · · ωzκn−1 ωzκn
...

...
...

...

ωd−1z1 ωd−1z2 · · · ωd−1zκn−1 ωd−1zκn

where Zn−1,p = {wi}κni=1, ω
jzi (0 ≤ j ≤ d − 1) are the preimages of wi under fc0 . An

element of Gn,p permutes the columns and within each column, it performs a cyclic shift.

Algebraically, let σ be any element of Gn,p, by Proposition 4.4.1, for 1 ≤ i ≤ κn,

σ(zi) = ωcσ(i)zsσ(i) where cσ ∈ Zκnd and sσ ∈ Gn−1,p

and σ is completely determined by cσ and sσ. We obtain a map

ψ : Gn,p → Gn−1,p n Zκnd with ψ(σ) = sσ
(
cσ(1), · · · , cσ(κn)

)
For any σ, τ ∈ Gn,p, i ∈ [1, κn].

σ · τ(zi) = σ(τ(zi)) = σ(ωcτ (i) · zsτ (i)) = ωcτ (i) · σ(zsτ (i))

= ωcτ (i) · ωcσ(sτ (i)) · zsσ(sτ (i)) = ωcσ(sτ (i))+cτ (i) · zsσ ·sτ (i)

Then we have

ψ(σ · τ) = sσ · sτ
(
cσ(sτ (1)) + cτ (1), · · · , cσ(sτ (κn)) + cτ (κn)

)
= sσ

(
cσ(1), · · · , cσ(κn)

)
· sτ
(
cτ (1), · · · , cτ (κn)

)
= ψ(σ) · ψ(τ).

Thus ψ is a group isomorphism. The injectivity is obvious and subjectivity is ensured by

proposition 4.4.1.

To end this manuscript, we will provide some simple remarks on the relationship between

98



the Galois group of Qn,p and the Galois group of qjn,p (1 ≤ j ≤ d − 1). For n ≥ 1, p ≥ 1,

denote by Gjn,p the Galois group of qjn,p. Note that the splitting field of qjn,p are all the same

as that of Q0,p, then

G0,p = Gj1,p = G1,p for 1 ≤ j ≤ d− 1.

For n ≥ 2, by the same reason as that of Proposition 4.4.1 and corollary 4.4.3, we have

Gjn,p ∼= Gjn−1,p n Z
νd(p)dn−2

d . There are two natural group morphisms:

Gn,p
sjn,p−−→ Gjn,p −→ 0 such that sjn,p(σ

γ
n,p) = σ

γj
n,p

where γj is the image of γ under the canonical map from π1(C \ Vn,p) to π1(C \ V j
n,p), and

0 −→ Gn,p
in,p−−→ G1

n,p × · · · ×Gd−1
n,p such that in,p(σ

γ
n,p) = (σγ1n,p, . . . , σ

γ1
n,p).

However, we have Gn,p � G1
n,p × · · · ×Gd−1

n,p for n ≥ 1, d ≥ 3. Note that for any n ≥ 2,

G1
n,p × · · · ×Gd−1

n,p
∼=

d−1∏
j=1

(
Gjn−1,p n Z

νd(p)dn−2

d

) ∼= (G1
n−1,p × · · · ×Gd−1

n−1,p)n Z
νd(p)(d−1)dn−2

d

and Gn,p ∼= Gn−1,p n Z
νd(p)(d−1)dn−2

d

By an induction on n, it reduces to show G1,p � G1
1,p × · · · × Gd−1

1,p . This is obvious

because

G1,p
∼= G1

1,p
∼= · · · ∼= Gd−1

1,p
∼= G0,p.
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Chapter 5

Core entropy of polynomials

In this chapter, we will study the core entropy of complex polynomials and primitive major.

In Section 5.1, we describe Thurston’s entropy algorithm and prove the correctness of this

algorithm. In Section 5.2, we give a algorithm of core entropy for rational primitive major

and prove Theorem 1.2.1.

5.1 Thurston’s entropy algorithm

Here we only discuss the algorithm for quadratic polynomial, the algorithm for polynomials

of higher degree is similar.

Let fc = z2 +c be a post critical finite quadratic polynomial. By the contents in Section

2.2.2, we obtain a Hubbard tree Hf and a dynamics fc|Hc : Hc −→ Hc. Moreover, fc

maps each edge of Hf homeomorphic to the union of some edges of Hf , so it induces an

incidence matrix Dc as follows:

Numerate the edges of H by γi , i = 1, · · · , k. Set Dc = (aij)k×k with aij = 1 if

fc(γj) ⊃ γi and aij = 0 otherwise.

We denote by ρ(Dc) the leading eigenvalue of Dc. By Perron-Frobenius theorem, ρ(Dc)

is a non-negative real number and it is also the growth rate of ‖Dn
c ‖ for any matrix norm.

5.1.1 Thurston’s entropy algorithm

Since fc(Hc) ⊂ Hc, we can define the topological entropy h(Hc, fc) as that defined in Section

2.5. It is well known that

h(Hc, fc) = log ρ(Dc).
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In this algorithm, we need to know the structure of Hubbard tree Hc and the action of fc

on Hc, so this algorithm can’t be realized in the computer. Thurston provides a method to

compute the topological entropy h(Hc, fc) only by the angle of a parameter ray landing on

c and draw a picture of entropy of quadratic polynomials with this algorithm in computer

(see Figure 1-1)

In the following, we will describe Thurston’s entropy algorithm and give a proof of this

algorithm. Firstly, we give some notation:

Definition 5.1.1. The map τ : R/Z −→ R/Z defined by τ(z) = 2z ( modZ). If a angle θ is

periodic (strictly preperiodic) under τ , we simply call θ periodic (strictly preperiodic). Let

θ be any rational angle, if θ is strictly periodic, then let c = γM (θ); if θ is periodic, then let

c be the center of the hyperbolic component which has γM (θ) as its root.

Let θ 6= 0 be any angle, we separate the circle into two halves by {θ
2
,
θ + 1

2
}, each half

is a closed segment in the circle (so the boundary belong to both halves). In the whole

algorithm, we assume the following two properties:

• All angles below are mod 1;

• If
θ + 1

2
is periodic, replace

θ

2
by

θ + 1

2
.

Thurston’s entropy algorithm: Define

Yθ =
{
{2nθ, 2lθ}

∣∣ l, n ≥ −1 and 2nθ 6= 2lθ
}

1. Let Σθ is the abstract linear space over R (real number field) generated by the elements

of Yθ.

2. Define a linear map Aθ : Σθ −→ Σθ : for any basis {2nθ, 2lθ} ∈ Yθ, if 2nθ, 2lθ in

the same half-circle, then Aθ maps {2nθ, 2lθ} to {2n+1θ, 2l+1θ}; otherwise Aθ maps

{2nθ, 2lθ} to {2n+1θ, θ}+ {θ, 2l+1θ}???

3. Denote by Aθ the matrix of Aθ under the basis Yθ. Compute the leading eigenvalue

ρ(Aθ) of Aθ.

Here is a variant algorithm that should be faster than the original Thurston’s entropy

algorithm, as the matrix is considerably smaller.
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Variant algorithm: Define

Y ′θ =
{
{2nθ, 2lθ}

∣∣ l, n ≥ −1, 2nθ, 2lθ in the same half-circle 2nθ 6= 2lθ
}

1′. Let Σ′θ is the abstract linear space over R generated by the elements of Y ′θ .

2′. Define a linear map A′θ : Σ′θ −→ Σ′θ : for any basis {2nθ, 2lθ} ∈ Y ′θ , if 2n+1θ, 2l+1θ in

the same half-circle, then A′θ maps {2nθ, 2lθ} to {2n+1θ, 2l+1θ}; otherwise A′θ maps

{2nθ, 2lθ} to {2n+1θ,
θ

2
}+ {θ

2
, 2l+1θ}.

3′. Denote by Aθ the matrix of A′θ under the basis Y ′θ . Compute the leading eigenvalue

ρ(A′θ) of A′θ.

Note that Aθ and A′θ are both non-negative matrix, so there leading eigenvalue are

non-negative real number.

Theorem 5.1.2. Let θ, c be defined as that in Definition 5.1.1, then log ρ(Aθ) = log ρ(A′θ)

is the core entropy of fc. More precise, the spectral radii ρ(Dc), ρ(Aθ) and ρ(A′θ) are all

equal and furthermore, the non-trivial eigenvalues of Dc, Aθ, A
′
θ off S1 are equal with

identical multiplicity.

Proof. For a quadratic polynomial fc = z2 + c, it has unique critical point 0 and unique

critical value c.

Denote by H+ the closure of the connected component of H \ {0} that contains c,

H− = H \H+. Let Ωc be the abstract linear space over R generated by the elements of

Lc =
{
lp,q
∣∣p, q ∈ Pf , p 6= q, lp,q is the unique road in Hc that connect p, q

}
and Ω′c be the abstract linear space over R generated by the elements of

L′c =
{
l′p,q
∣∣p, q ∈ Pf∩H+ or Pf∩H−, p 6= q, l′p,q is the unique road in Hc that connect p, q

}
By the action on the basis Lc and L′c, the map fc induce two linear maps on Ωc and Ω′c

respectively. Denote by Fc and F ′c the transition matrix of the two linear maps under the
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basis Lc and L′c respectively. Choosing an appropriate order of the basis, we have

Ac =

 Fc 0

0 Bc

 , A′c =

 F ′c 0

0 Bc

 , Bc =


Jc

Ic
. . .

Ic


where Ic is the tc × tc unit matrix, Jc is a tc × tc square matrix that has only one 1 at each

row and column, and has 0 at other positions (it is a so called permutation matrix). In

fact, the matrix Bc is the restrictive matrix of maps Ac and A′c to the invariant subspace

generated by

{
{2nθ, 2lθ}

∣∣Rf (2nθ) and Rf (2lθ) land on a same point
}

It is known that all eigenvalue of a permutation matrix are on S1, so we only need to prove

that the non-trivial eigenvalues of Dc, Fc and F ′c are equal with the identical multiplicity.

Now let {l1, · · · , ln} be the basis of linear space Ωc (resp. Ω′c). Following the previous

notation, γ1, · · · , γk is denoted by the edges of Hc. So we obtain a transition matrix C

(k × n matrix) such that

{l1, · · · , ln} = {γ1, · · · , γk}C

where cij = 1 if lj contains γi and cij = 0 otherwise.

Lemma 5.1.3. We have k ≤ n and rank C = k.

The poof of this lemma will be postponed to Section 5.1.2

Therefor, by adjusting the order of {lj} ?? {γi}, the matrix C can be written as
(
C1 C2

)
where C1 is a k × k invertible matrix. So C has a right inverse

(C−1
1
0

)
and {γ1, · · · , γk} =

{l1, · · · , ln}
(C−1

1
0

)
. Let fc act on {l1, · · · , ln}, we have

{l1, · · · , ln}Fc(resp. F ′c) = fc{l1, · · · , ln} = f{γ1, · · · , γk}C = {γ1, · · · , γk}DcC

= {l1, · · · , ln}

 C−1
1

0

Dc

(
C1 C2

)
= {l1, · · · , ln}

 C−1
1 DcC1 C−1

1 DcC2

0 0


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So we obtain Fc(resp. F ′c) =

 C−1
1 DcC1 C−1

1 DcC2

0 0

. It follows that the non-trivial

eigenvalues of Fc(resp. F ′c) and Dc are equal with identical multiplicity.

5.1.2 The proof of Lemma 5.1.3

Let T be a finite connected tree. Denote by E(T ) the set of end points of T , by B(T ) the set

of branching points of T . The set V (T ) = E(T )∪B(T ) is called the set of vertices of T . We

always assume #V (T ) ≥ 2 (otherwise T is a point). The closure of a connected component

of T \ V (T ) is called an edge. We numerate the edges of T by ei, i = 1, . . . ,m. For any

p, q ∈ E(T ), there is a unique road lp,q in T connecting p, q, it is called a path. Numerate

the paths by lj , j = 1, . . . , n. We obtain a transition matrix M = (aij)m×n, aij = 1 if lj

contains ei and aij = 0 otherwise. Therefore

(
l1, · · · , ln

)
=
(
e1, . . . , em

)
M

For this matrix, we have the following lemma:

Lemma 5.1.4. m ≤ n and rank M = m.

Proof. The proof goes by induction on the number of branching points.

b b b

b

bb

b

b

b

b

b

b

bb b b

#B = 0 #B = 1

1 2

1

2

κ0 − 1

κ0

e1 e2

eκ0−1

eκ0

e1

0

Figure 5-1:

If #B(T ) = 0, T is a segment with two points (left of Figure 5-1). The conclusion holds

obviously.
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If #B(T ) = 1, label the branching point by 0, label the end points by 1, . . . , κ0 (κ0 ≥ 3)

clockwise starting from any point of E(T ) (right of Figure 5-1). We can see m1 = κ0, n1 =(
κ0
2

)
= κ0(κ0−1)

2 ≥ κ0. If κ0 = 3,

(
l1,2 l2,3 l1,3

)
=
(
e1 e2 e3

)


1 0 1

1 1 0

0 1 1


Rank M1 = 3. If κ0 > 3,

( l1,2 l2,3 · · · lκ0,1 l2,κ0) = ( e1 · · · eκ0)



1 1

1 1 1

1
. . . ∗
. . . 1

1 1 1


= ( e1 · · · eκ0)

(
M ′1 ∗

)
M ′1 is a κ0 × (κ0 + 1) matrix, it is easy to see rank M ′1 = κ0.

Now suppose the conclusion is established for B(T ) ≤ s (s ≥ 1). Let Ts+1 be a tree

with #B(Ts+1) = s+ 1. Then Ts+1 can be obtained by adding κs (κs ≥ 2) edges on some

end point of a tree Ts with B(Ts) = s. Label the new branching point by α, the edge of

Ts containing α by ems , the new edges in Ts+1 by ems+1, . . . , ems+κs clockwise (see Figure

5-2). Then ms+1 = ms + κs, ns+1 > ns + κs +
(
κs
2

)
. Since ns ≥ ms (by the inductive

assumption), it follows ns+1 > ms+1. Let l1, . . . , lds be the paths of Ts that do not contain

ems .

(l1 · · · lds lds+1 · · · lns) = (e1 · · · ems)Ms

By the inductive assumption, rank Ms = ms. Note that l1, · · · lds are also paths of Ts+1.

Set

lij = lj ∪ ems+i (ds + 1 ≤ j ≤ ns, 1 ≤ i ≤ κs), lu,v = ems+u ∪ ems+v (1 ≤ u, v ≤ s)

Then {l1, · · · , lds} ∪ {lij} ∪ {lu,v} form the set of paths of Ts+1.
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b

b
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bb
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b

b

b

b

b

1
2

κs − 1
κs

ems+1

ems+2

ems+κs−1

ems+κs

ems

Ts

Ts+1 = Ts ∪ ems+1 ∪ · · · ∪ ems+κs

αbb

b

Figure 5-2:

In case κs = 2,

( l1 · · · lds l1ds+1 · · · l1ns l2ds+1 · · · l2ns l1,2) = ( e1 · · · ems+2)Ms+1

= ( e1 · · · ems+2)


Ms,1 Ms,2 Ms,2

1 · · · 1 1

1 · · · 1 1


where Ms,1 is a ms × ds matrix and

(
Ms,1 Ms,2

)
= Ms. A little argument shows that the

line vectors of Ms+1 are linear independence, so rank Ms+1 = ms + 2 = ms+1.

In case κs = 3,

( l1 · · · lds l1ds+1 · · · l1ns l1,2 l2,3 l1,3 · · · ) = ( e1 · · · ems ems+1 ems+2 ems+3)Ms+1

= ( e1 · · · ems ems+1 ems+2 ems+3)

 Ms ∗
∗ M ′s ∗



= ( e1 · · · ems ems+1 ems+2 ems+3)


Ms ∗

1 1

∗ 1 1 ∗
1 1


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Rank Ms+1 = rank Ms + 3 = ms + 3 = ms+1.

In case κs > 3,

( l1 · · · lds l1ds+1 · · · l1ns l1,2 l2,3 · · · lκs,1 l2,κs · · · )

= ( e1 · · · ems ems+1 · · · ems+κs)Ms+1

= ( e1 · · · ems ems+1 · · · ems+κs)

 Ms ∗
∗ M ′s ∗



= ( e1 · · · ems ems+1 · · · ems+κs)



Ms ∗
1 1

1 1 1

∗ 1
. . . ∗
. . . 1

1 1 1


M ′s is a κs × (κs + 1) matrix. It is easy to check that rankM ′s = s, then we have

rankMs+1 = rank Ms + rank M ′s = ms + κs = ms+1.

We will use this lemma to prove Lemma 5.1.3

Proof of Lemma 5.1.3. Here we only treat the case that {l1 . . . , ln} is the basis of linear

space Ωc. For the case that {l1 . . . , ln} is the basis of linear space Ω′c, the proof is completely

the same.

Numerate by Si, i = 1, 2, . . . , i0 the closure of connected components of H \ Pf such

that B(Si) ≤ B(Si+1). Set

Ji =
{
l ∈ LA

∣∣l connects two points of E(Si)
}

Γi =
{
γ ∈ {γj}1≤j≤k

∣∣γ ⊂ Si}
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with #Ji = ni and #Γi = mi. Then we have

( Ji · · · Ji0 · · · ) = ( Γ1 · · ·Γi0)


C1

. . . ∗
Ci0


where Ci is a mi × ni matrix. By lemma 5.1.4, rank Ci = mi, it follows

rank C =

i0∑
i=1

mi = k .

5.2 Core entropy of rational primitive major in torus model

The objective here is to prove Theorem 1.2.1. In Section 5.2.1 and 5.2.2, we establish

the linear relationship between Hausdorff dimension and topological entropy of a general

compact F -invariant set in torus. This implies term 1 of Theorem 1.2.1. In section 5.2.3, we

define the combinatorial Hubbard tree for rational primitive majors and provide a algorithm

to compute the core entropy for such a major. Finally, we give the dynamical explanation of

the invariant lamination and combinatorial Hubbard tree, then finish the proof of Theorem

1.2.1.

5.2.1 The Hausdorff dimension

Let A ⊂ T2. Its Hausdorff dimension is defined as follows:

Fix s > 0. Let U = {Bi, i ∈ N} be a countable cover (not necessarily closed or open) of

A. Denote by |Bi| the diameter of Bi and by |U| the supremum of |Bi|.
For each U , we consider

∑
Bi∈U |Bi|s as an approximation of the ’size’ of A in dimension

s. In order to be accurate, it’s better to refine the cover by taking smaller pieces.

Fix r > 0. We may thus consider U with |U| < r. Again to be accurate, it’s better to

throw away pieces in U that do not touch A, or better, it’s better to consider covers that

are as economic as possible. Thus we consider inf
U ,|U|<r

∑
Bi∈U

|Bi|s as a further approximation

of the ’size’ of A in dimension s.

When we let r ↘ 0, we have less choices of U , so the above quantity increases. We may
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then consider

Hs(A) := lim
r↘0

inf
U ,|U|<r

∑
Bi∈U

|Bi|s = sup
r>0

inf
U ,|U|<r

∑
Bi∈U

|Bi|s

as the actual ’size’ of A in dimension s. This is called ’the Hausdorff measure’ of A in

dimension s.

What is then the best dimension in which to measure A ? When s is too small, Hs(A) =

+∞ (a square has an infinite 1-dimensional length). When s is too big, Hs(A) = 0 (a line

has zero 2-dimensional area). It’s easy to prove that the transition from ∞ to 0 happens at

a single value of s, this is the Hausdorff dimension of A.

Replacing a random cover by a cover with closed squares.

For our A ⊂ T2, and U a countable cover with |U| < 1/2, note that if we replace each

Bi in U by the smallest closed square B̂i containing it, we have size(B̂i) ≤ |Bi| ≤ |B̂i| =
√

2size(B̂i), and Û = {B̂i, i ∈ N} is again a countable cover of A.

So ∑
B̂i∈Û

size(B̂i)
s ≤

∑
Bi∈U

|Bi|s ≤
√

2
s ∑
B̂i∈Û

size(B̂i)
s

So the quantity Ĥs(A) := sup
r>0

inf
Û ,|Û |<r

∑
B̂i∈Û

size(B̂i)
s satisfies Ĥs(A) ≤ Hs(A) ≤

√
2
s
Ĥs(A).

We may thus use the transition s-value of Ĥs(A) as the Hausdorff dimension of A. It is

denoted by H.dim (A).

The standard covers

Fix now an integer d. We will consider the torus expansion F : T2 → T2,

x
y

 7→ d

x
y

.

We want to measure ’sizes’ and dimensions of invariant subsets of F . We will adapt the

argument of Furstenberg to our situation ([Fu], Prop. III.1).

For each n, we will cover the torus by the standard level-n closed squares
[ p
dn
,
p+ 1

dn

]
×[ q

dn
,
q + 1

dn

]
with p, q ∈ {0, 1, · · · , dn − 1}. There are d2n such squares each of size 1/dn.

Fix A ⊂ T2. For each n, denote by ν(A,n) the number of standard level-n squares
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intersecting A and, whenever the limit exist,

C(A) := lim
n→∞

log ν(A,n)

n
, d(A) := lim

n→∞

log ν(A,n)

log
1

size(level-n square)

= lim
n→∞

log ν(A,n)

n log d
=
C(A)

log d

Proposition 5.2.1. If A ⊂ T2 satisfies that F (A) ⊂ A, then C(A), d(A) exist and d(A) ≥
H.dim (A). If furthermore A is closed, then d(A) = H.dim (A).

Proof. If Bn+m is a level-n + m standard square intersecting A, then Bn+m is contained

in a level-n square Bn intersecting A, the image Fn(Bn+m) =: Bm is a level-m square

intersecting Fn(A) ⊂ A, and Bn+m 7→ (Bn, Bm) is injective (as Fn : Bn → T2 is injective

in the interior). See the following schematic picture.

T2

↗Fn ∪
Bn Bm

∪ ↗Fn

Bn+m

So

ν(A,n+m) ≤ ν(A,n) · ν(A,m).

This submultiplicativity implies that C(A) therefore d(A) exist.

Let s > d(A) be arbitrary. Then for n large enough, we have

log ν(A,n)

log
1

size(level-n square)

=
log ν(A,n)

n log d
< s, so ν(A,n) < dns.

Let Un be the cover of A consisting of the set of level-n standard squares intersecting A.

Then
∑

Bi∈Un size(Bi)
s =

ν(A,n)

dns
< 1. It follows that

inf
Û , |Û |<1/dn

∑
B̂i∈Û

size(B̂i)
s < 1, therefore Ĥs(A) := sup

r>0
inf
Û ,|Û |<r

∑
B̂i∈Û

size(B̂i)
s ≤ 1.

Therefore the transition value of Ĥs(A) happens at at most s. So H.dim (A) ≤ s.

But s > d(A) were arbitrary, so H.dim (A) ≤ d(A).
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Let now δ < d(A) be arbitrary. We want to show H.dim (A) ≥ δ.

For n large enough, we have

log ν(A,n)

n log d
> δ, so ν(A,n) > dnδ and

∑
n

ν(A,n)

dnδ
= +∞ .

Geometrically, this means that the sum over n of the δ-dimensional volume of the level-n

standard cover of A is equal to the infinity. In other words,

∑
U a standard square, U∩A 6=∅

size(U)δ = +∞ . (5.2.1)

We need to show that, there is a constant c > 0, such that for any r > 0 sufficiently small,

and for any cover U of A with |U| < r, we have

∑
Bi∈U

|Bi|δ ≥ c > 0 .

By the discussion in the previous section we may assume Bi to be of square shape and

|Bi| to be size of Bi. For each Bi, let ni be maximal so that |Bi| < 1/dni . Then

1

dni+1
≤ |Bi| <

1

dni

and there are at most 4 level-ni standard squares whose union contains Bi in the interior.

Replacing each Bi by the collection of these standard squares, we get a new cover V of A.

Furthermore

A ⊂ interior(
⋃
B∈V

B) . (5.2.2)

This condition will play an important role in the following. Then

∑
B∈V

size(B)δ ≤ 4
∑
Bi∈U

(
1

dni
)δ = 4dδ

∑
Bi∈U

(
1

dni+1
)δ ≤ 4dδ

∑
Bi∈U

|Bi|δ .

It thus suffices to prove that, for any r > 0 sufficiently small, and for any cover V of A

by standard squares of various levels with |V| < r and satisfying (5.2.2) , we have

∑
B∈V

size(B)δ ≥ c′ = c/(4dδ) > 0 .
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We now assume that A is compact. It suffices then to show that, for any finite cover

V of A by standard squares satisfying (5.2.2) , the δ-dimensional volume of V must be at

least 1.

Choose now such a cover V, with pieces B1, · · · , Bk. Set λi = size(Bi)
δ, i = 1, · · · , k.

Suppose to the contrary that
k∑
i=1

λi < 1, then
∑
n

(
k∑
i=1

λi)
n <∞. So

∑
n

∑
(i1,...,in)∈{1,··· ,k}n

λi1λi2 · · ·λin <∞. (5.2.3)

Considering V as a depth-1 puzzle. For each Bi ∈ V, say of size
1

dni
, the map Fni sends

Bi affinely onto T2. The function system {(Bi, Fni)} generates puzzle pieces of deeper

levels. The ordered strings (i1, . . . , in) ∈ {1, · · · , k}n are in 1-1 correspondence with the

depth-n puzzle pieces. The δ-dimensional volume of the piece with string (i1, . . . , in) is

λi1λi2 · · ·λin . Note that we do not require that these deeper puzzle pieces all intersect A,

although the union of the pieces of the same depth contain A.

So the inequality (5.2.3) means that the δ-dimensional volume of the puzzle pieces sum

up to a finite value.

Let N be the highest level of the finitely many pieces in V. Let now U a standard

square intersecting A. We claim that if U is of level greater than N then U is contained in

a V-piece.

Proof. If there is x ∈ interior(U) ∩ A then x ∈ Bi ∈ V for some Bi. As size(U) <

size(Bi) we have U ⊂ Bi. Assume now x ∈ U ∩A ⊂ ∂U and no Bi in V contains U . Then

there is an arc in the interior of U ending at x and being outside of
⋃
iBi. It follows that

x ∈ (∂
⋃
iBi) ∩A, contradicting (5.2.2) . The claim is thus proved.

Let now U be a standard square intersecting A. Let us associate U to V , the smallest

puzzle piece of pullbacks of V such that V contains U . We claim then level(U)− level(V ) ≤
N . This is because F level(V ) maps V onto T2 and U to a square U ′ of level level(U) −
level(V ), and U ′ ∩A 6= ∅. Now U ′ is not contained in any puzzle piece of V. So it has level

at most N by the above claim.

There is thus an integer C > 0 such that the map U 7→ V is as most C to 1.
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It follows that

∑
U a standard square ,U∩A 6=∅

size(U)δ ≤ Cδ
∑

V a puzzle piece

size(V )δ
(5.2.3)
< ∞ .

This contradicts (5.2.1) .

5.2.2 Topological entropy

We will use Proposition 2.5.6 to prove the following dimension formula.

Proposition 5.2.2. Let F : T2 → T2,

x
y

 7→ d

x
y

. For A a closed subset of T2 such

that F (A) ⊂ A, then we have

h(A,F ) = C(A) = (log d) ·H.dim (A).

Proof. The right side equality is proved by Proposition 5.2.1. So what we need to prove is

h(A,F ) = C(A).

To prove this equation, we will construct a special sequence of open covers {Ul}l≥1 of A

such that it satisfies three properties:

1. This sequence of covers of A satisfies the two property of Proposition 2.5.6.

2. For any l ≥ 1, h(A,Ul, F ) = h(A,U0, F ).

3. There exists a constant C such that
1

C
N(
∨n U0) ≤ ν(A,n) ≤ C ·N(

∨n U0)

Then by Proposition 2.5.6, we obtain h(A,F ) = C(A). So in the following, we only need to

construct such a sequence of open covers of A and check that it satisfies the three properties

above.

The construction of {Ul}l≥1 and Property 1.

Now we construct a sequence of open covers {Ũl} of T2 such that Ũl consists of four

kinds of open sets:

•
(
p

dl
,
p+ 1

dl

)
×
(
q

dl
,
q + 1

dl

)
, 0 ≤ p, q ≤ dl − 1; these are the interior of level-l

standard squares;

•
(
p

dl
− 1

dl+1
,
p

dl
+

1

dl+1

)
×
(
q

dl
,
q + 1

dl

)
, 0 ≤ p, q ≤ dl−1; these are open rectangles

covering vertical open segments of the level-l grid;
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•
(
p

dl
,
p+ 1

dl

)
×
(
q

dl
− 1

dl+1
,
q

dl
+

1

dl+1

)
, 0 ≤ p, q ≤ dl−1; these are open rectangles

covering horizontal open segments of the level-l grid;

•
(
p

dl
− 1

dl+1
,
p

dl
+

1

dl+1

)
×
(
q

dl
− 1

dl+1
,
q

dl
+

1

dl+1

)
, 0 ≤ p, q ≤ dl − 1, these are

small open squares covering the nodes of the level-l grid.

From the construction of Ũl (l ≥ 1), it is easy to see that Ũl+1 ≺ Ũl and for any U ∈ Ũl+1,

F (U) ∈ Ũl.
For l ≥ 1, set

Ul = {U ∈ Ũl| U ∩A 6= ∅}

Then the sequence {Ul}l≥1 is just what we need. The property 1 follows directly from the

construction of {Ul}l≥1.

Check property 2.

Lemma 5.2.3. For each l ≥ 1, the open cover Ul of A satisfies the following properties:

(1) For any l ≥ 1, n ≥ 0, Ul+n ⊂ F−n(Ul) ∨ Ul.

(2) For n ≥ 0, let V be any member of
∨n Ul. Then V is a rectangle and the restriction of

Fn+l on V is injective.

Proof. (1) For any Un+l ∈ Ul+n with l ≥ 1, n ≥ 0, Fn(Un+l) ⊂ Ul and there exists Ul ⊂ Ul
such that Un+l ⊂ Ul. It implies Un+l ∈ F−n(Ul)∨Ul, and hence Un+l ⊂ F−n(Ul)∨Ul.

(2) Fix l ≥ 1. Any member of Ul is rectangle and according to the construction of Ul, the

restriction of F l to any component of Ul is injective. So the property (2) holds as

n = 0.

Now suppose the property (2) holds for n ≥ 0. Let V n+1
l be a member of

∨n+1 Ul.
Then there exist a member V n

l of
∨n Ul and a member V 0

l of Ul such that V n+1
l =

F−(n+1)(V 0
l )∩V n

l . By the inductive assumption, V n
l is a rectangle and the restriction

of F l+n to V n
l is injective. It follows that Fn+1(V n

l ) ∩ V 0
l is a rectangle and there is

a unique connected component U of F−(n+1)(V 0
l ) that intersects V n

l . Then V n+1
l =

U ∩ V n
l and Fn+1 : V n+1

l −→ V 0
l is injective. Since V 0

l is a member of Ul, the

restriction of F l to it is injective, the restriction of Fn+l+1 to V n+1
l is injective. Note

that U is a rectangle, thus V n+1
l = U ∩ V n

l is a rectangle.
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Lemma 5.2.4. For l ≥ 1, n ≥ 0, we have

(1) Ul+n ⊂
∨n Ul.

(2) There exists a constant K such that any member of
∨n Ul that intersects A intersects

at most K members of Ul+n.

Proof. (1) Fix l ≥ 1. Set Vl,0 := Ul, then Ul ⊂ Vl,0 ⊂
∨0 Ul. For n ≥ 1, We inductively

define Vl,n = F−1(Vl,n−1) ∨ Ul and suppose

Ul+n ⊂ Vl,n ⊂
n∨
Ul for some n ≥ 0.

Then by (2.5.2) we have

F−1(Ul+n) ∨ Ul ⊂ F−1(Vl,n) ∨ Ul = Vl,n+1 ⊂ F−1(
n∨
Ul) ∨ Ul.

According to term (1) of Lemma 5.2.3 and (2.5.2),

Ul+n+1 ⊂ F−1(Ul+n) ∨ Ul+n ⊂ F−1(Ul+n) ∨ Ul

and by (2.5.1),

F−1(

n∨
Ul) ∨ Ul ⊂

n+1∨
Ul

So we have

Ul+n+1 ⊂ Vl,n+1 ⊂
n+1∨
Ul

(2) We can choose an integer K such that any member of U0 intersects at most K members

of U0. For n ≥ 0, l ≥ 1, let

V n
l = F−n(V l,n) ∨ F−(n−1)(V l,n−1) ∨ · · · ∨ V l,0 where V l,n, . . . , V l,0 ∈ Ul

be a component of
∨n Ul intersecting A and set V n+l,1, . . . , V n+l,α are all members of

Un+l that intersect V n
l . Then each element of {Fn+l−1(V n+l,i)}αi=1 is a member of U0

and Fn+l−1(V n
l ) ⊂ F l−1(V l,n) intersects Fn+l−1(V n+l,i) for i ∈ [1, α]. By term (2) of

Lemma 5.2.3, Fn+l−1 : V n
l −→ Fn+l−1(V n

l ) is a homeomorphism, so the members of

{Fn+l−1(V n+l,i)}αi=1 are pairwise different. It follows α ≤ K.

116



Now for any l ≥ 1, n ≥ 1, denote by Vl,n a sub-cover of A belonging to
∨n Ul with

minimal cardinality. By Lemma 5.2.4, each member of Vl,n intersects at most K members

of Un+l. So the number of members of Un+l that intersect some element of Vl,n is less than

K · #Vl,n. Since each member of Un+l intersects A, each member of Un+l intersects some

member of Vl,n. By (1) of Lemma 5.2.4, the cover Ul+n is a sub-cover of A belonging to∨n Ul, thus we have

#Vl,n ≤ #Un+l ≤ K ·#Vl,n (5.2.4)

It follows that for any l ≥ 1

h(A,Ul, F ) = lim
n→∞

1

n
log(#Vl,n)

(5.2.4)
= lim

n→∞

1

n
log(#Ul+n)

= lim
n→∞

1

n+ l
log(#Un+l) · lim

n→∞

n+ l

n
= h(A,U0, F ). (5.2.5)

Check Property 3

On one hand, there are ν(A,n) level-n standard squares intersecting A, and each square

is covered by exactly 9 pieces in Un. The collection of these 9ν(A,n) (not necessarily

distinct) pieces covers A and contains every piece of Un, so #Un ≤ 9ν(A,n). On the other

hand, each U ∈ Un intersects at most four level-n standard squares. The collection of these

4#Un (not necessarily distinct) level-n standard squares covers A and contains all level-n

standard squares that intersect A, so ν(A,n) ≤ 4#Un. It follows that

1

4
ν(A,n) ≤ #Un ≤ 9ν(A,n), n ∈ N.

Combining also (5.2.4), we have

1

9
N(

n∨
U0) ≤ ν(A,n) ≤ 4KN(

n∨
U0)
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5.2.3 Rational primitive majors

Thurston gave a torus model to construct an invariant lamination from a given degree d

primitive major. Let

m = { Θ1, . . . ,Θs}

be any degree d primitive major (or critical portrait). Remembering the notation and

construction in Section 2.2.3, we obtain an increasing sequence of sets {bi(m)}i≥0 belonging

to the closed good region of m and a degree-d invariant lamination b∞(m) = b∞(m)∪b′∞(m).

The map ℘ defined in Section 1.2 maps b∞ to L(m) which is a degree d invariant lamination

having m as its major.

The objective of this section is to define a transition matrix whose leading eigenvalue

encodes the core entropy of L(m).

The combinatorial Hubbard tree

Assume that m is a rational primitive major of degree d. We will define a compact invariant

set TH(m) ⊂ b∞(m) corresponding to the status of the Hubbard tree of a postcritical finite

polynomial.

Set

P (m) = {dnθ| n ≥ 0, θ ∈
s⋃
j=1

Θj} and TP (m) = {(θ, θ)| θ ∈ P (m)}.

(These sets correspond to the postcritical set of a polynomial). The torus can be regarded

as the quotient of closed unit square by identifying (0, y) with (1, y) and (x, 0) with (x, 1)

where x, y ∈ [0, 1]. As m is a rational critical portrait, the set TP (m) is a finite F−forward

invariant set in the diagonal of the torus.

For any point (1, 0) 6= (x, y) ∈ T2, denote by lx,y the path made up of a horizontal

segment and a vertical segment connecting (x, y) to the diagonal points (x, x) and (y, y).

Define l1,0 = (1, 0).

For any point (x, y) ∈ T2 not on the diagonal, there are four horizontal and vertical

circles in T2 passing though (x, y) and (y, x). These circles partition T2 into four rectangles.

Two of them intersect the diagonal and they are squares. If (x, y) is not on the boundary

of unit square, only one of the above two squares can be seen in the closed unit square. It
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is denoted by S+
x,y and the other is denoted by S−x,y. If (x, y) is on the boundary of unite

square, both of the above two squares belong to the unit square. In this case, we denote

the left-lower square by S+
x,y and the other by S−x,y. The boundary curves of S+

x,y and S−x,y

are denoted by C+
x,y and C−x,y respectively. If (x, y) belongs to the diagonal of T2, we define

C+
x,y = C−x,y = (x, y).

For (x, y) ∈ T2, δ ∈ {±}, we say that Cδx,y separates TP (m) if both components of

T2 \ Cδx,y contains points of TP (m). It is obvious that Cδx,y separates or intersects TP (m)

iff C δ̄x,y separates or intersects TP (m), where δ̄ is the opposite symbol of δ. Now define

TH0(m) = { (x, y) ∈ b∞(m) | C+
x,y separates or intersects TP (m)} ∪ TP (m).

Denote by TH1(m) the cluster set of TH0(m) and TH(m) := TH0(m)∪TH1(m) = TH0(m).

Lemma 5.2.5. For any (x, y) ∈ TH1(m), C+
x,y also intersects or separates TP (m).

Proof. Choose a sequence of points {(xn, yn)} ⊂ TH0(m) such that lim
n→∞

(xn, yn) = (x, y).

It is equivalent that C+
xn,yn converge to C+

x,y in the Hausdorff topology as n→∞.

Assume at first that there is a sub-sequence, denoted also by {(xn, yn)}, such that each

C+
xn,yn intersects TP (m). Since TP (m) is finite, without loss of generalization, we may

assume that all C+
xn,yn contain a common point a ∈ TP (m). Since C+

xn,yn belongs to the

εn neighborhood of C+
x,y with εn → 0 as n →∞, the point a must belong to C+

x,y. So C+
x,y

intersects TP (m) as well.

Assume now that we are in the remaining case, i.e. for sufficiently large n, C+
xn,yn

separates but does not intersect TP (m). Since TP (m) is finite set, we can assume that

there exist two points a, b ∈ TP (m) such that every C+
xn,yn separates the points a and b. In

this case, C+
x,y must separate or intersect a, b. Otherwise, there exist sufficiently small ε such

that the ε neighborhood doesn’t separate nor intersect a, b. It follows that for sufficiently

large n, C+
xn,yn does not separate a, b. It leads to a contradiction.

Proposition 5.2.6. The sets TH(m) and TH1(m) are all compact F−forward invariant

sets.

Proof. The compactness of TH(m) and TH1(m) is obvious, so we only need to prove that

they are F−forward invariant.
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We treat the set TH0(m) first. Note that for any (x, y) ∈ TH0(m), (dx, dy) ∈ b∞(m) ∪
TP (m). So we are left to prove that Sdx,dy separates or intersects TP (m).

For any two points x, y ∈ S1, denote by xy the hyperbolic chord in D connecting x, y

(if x = y, xx means the point x). Consider the upper left triangle of T2 (containing the

diagonal). If we collapse the horizontal and vertical edges of the upper left triangle to a

point such that the the triangle goes to the unit disk with the collapsed edges going to 1

and straighten each path lx,y to the chord xy, then this right triangular picture transforms

to the Poincare disk picture. It follows that

C+
x,y separates or intersects TP (m) in T2

⇐⇒ lx,y separates or intersects TP (m) in the upper left triangle of unit square

⇐⇒ xy separates or intersects P (m) in D

If xy intersects P (m), the chord (dx)(dy) must intersect P (m); otherwise, xy belongs to a

component W of D \m. Notice that zd is injective on W ∩S1 and maps each boundary leaf

of W to a single point in P (m). Since xy separates P (m), either xy separates two boundary

leaves of W or separates a point of P (m) and a boundary leaf of W . In both cases (dx)(dy)

must separate P (m).

Second, we will show TH1(m) is F−forward invariant. Suppose {(xn, yn)} is a se-

quence of points in TH0(m) such that lim
n→∞

(xn, yn) = (x, y) ∈ TH1(m). According to the

F−invariant property of TH0(m) proved above, the sequence of points {F (xn, yn)} belong

to TH0(m). Since lim
n→∞

F (xn, yn) = F (x, y), we have F (x, y) ∈ TH1(m).

Finally, the F−forward invariant property of TH(m) follows directly from the F−forward

invariant of TH0(m) and TH1(m).

Since TH(m) and TH1(m) are compact F−forward invariant sets, we can define the

topological entropy h(TH(m), F ) and h(TH1(m), F ) as that in Section 3. Note that

TH0(m) is a countable set, so H.dim (TH(m)) = H.dim (TH1(m)). By Proposition 5.2.2,

we have

h(TH(m), F ) = log d ·H.dim (TH(m)) = log d ·H.dim (TH1(m)) = h(TH1(m), F )

We establish first a proposition computing h(TH1(m), F ).
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Invariant sets admitting a Markov partition

All intervals below are intervals in the natural numbers N.

Let A ∈ T2 be a compact F−forward invariant set satisfying the following property:

(?) There exists a finite collection of closed sets of T2 :

E1, · · · , Ep, Ep+1, · · · , Eq, Eq+1, · · · , Er

with p > 0 (but we allow q = p, or r = p or p < q = r) such that

(1) For i ∈ [1, p], Ei is a closed rectangle or a horizontal or vertical closed segment

and for s ∈ [p+ 1, r], Es is a point.

(2) {Et, t ∈ [1, r]} is a cover of A and A ∩ Et 6= ∅ for 1 ≤ t ≤ r;

(3) For any i ∈ [1, p] and any t ∈ [1, r] with t 6= i, the set Ei does not contain Et and

the interior of Ei is disjoint from Et. Furthermore, the points in {Es}rs=p+1 are

pairwise distinct.

(4) For t ∈ [1, r], F : Et −→ F (Et) is a homeomorphism. Moreover, for i ∈ [1, p],

t ∈ [1, r], either F (Ei) contains Et or the interior of F (Ei) is disjoint from Et.

For s ∈ [p + 1, q], F (Es) is a member of {Es}rs=p+1. For s ∈ [q + 1, r], F (Es) is

contained in Ei for some i ∈ [1, p].

(5) For i ∈ [1, p], F : Ei ∩A −→ F (Ei) ∩A is a homeomorphism.

The sequence of sets {Es}rs=1 does not form a Markov partition for (F,A) in the tra-

ditional sense. But we can still define a transition matrix M = (as,t)r×r as follows : For

s, t ∈ [1, r], ast = 1 if F (Es) contains Et and ast = 0 otherwise. Note that ast = 0 for any

s > q and any t, and for any s ∈ [p+ 1, q], there is a unique t ∈ [p+ 1, r] such that ast = 1.

Denote the spectral radius of M by ρ(M). Our main result here is :

Proposition 5.2.7. If a compact F−forward invariant set A ⊂ T2 satisfies Property (?),

then

h(A,F ) =

 0 if M is nilpotent

log ρ(M) otherwise

The proof of this proposition will go by 3 steps. At first, we construct a puzzle

Q = {Qn}n≥0 according to the property (?). Secondly, we use Proposition 5.2.2 to prove
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h(A,F ) = lim
n→∞

1

n
log(#Qn). Finally, we estimate #Qn by the modules of a sequence of

vectors {vn} in the normed vector space (Rr, | · |) for some norm | · | of Rr. After these three

steps, we can prove Proposition 5.2.7.

Step 1. Construction of puzzles P, Z, Q.

Puzzle P:

0-level puzzle P0 : E1, . . . , Er.

1-level puzzle P1 : It is the collection of the unique component of F−1(P ∗0 ) contained in

Es for any s, t ∈ [1, r] with ast = 1 and any 0-level puzzle piece P ∗0 in P0 contained

in Et.

...

n-level puzzle Pn : It is the collection of the unique component of F−1(P ∗n−1) contained

in Es for any s, t ∈ [1, r] with ast = 1 and any (n-1)-level puzzle piece P ∗n−1 in Pn−1

contained in Et.

...

Puzzle Z:

0-level puzzle Z0 : ∅.

1-level puzzle Z1 : Eq+1, . . . , Er.

2-level puzzle Z2 : It is the collection of the components of F−1(Z∗1 ) contained in
⋃q
s=1Es

where Z∗1 is a member of Z1.

...

n-level puzzle Zn : It is the collection of the components of F−1(Z∗n−1) contained in⋃q
s=1Es where Z∗n−1 is a member of Zn−1.

...

From the construction of P and Z, we can see that for any n ≥ 1, any n-level puzzle piece

of Z is a (n-1)-level puzzle piece of P. That is Zn ⊂ Pn−1.

Puzzle Q:
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0-level puzzle Q0 : E1, . . . , Er.

1-level puzzle Q1 : The unique component of F−1(Q∗0) contained in Es for any s, t ∈ [1, r]

with ast = 1 and any 0-level puzzle piece Q∗0 in Q0 contained in Et, together with

the puzzle pieces in Z1.

...

n-level puzzle Qn : The unique component of F−1(Q∗n−1) contained in Es for any s, t ∈
[1, r] with ast = 1 and any (n-1)-level puzzle piece Q∗n−1 in Qn−1 contained in Et,

together with the puzzle pieces in Z1.

...

By induction on n, it is not difficult to see

Qn = Pn ∪ Zn ∪ · · · ∪ Z1.

Lemma 5.2.8. For each n ≥ 0, Qn satisfies the following properties:

(1) If a point x ∈ A belongs to Es for some s ∈ [1, r], then there exists a puzzle piece Qn

in Un such that Qn ⊂ Es and a ∈ Qn. Consequently Qn is a cover of A.

(2) If Qn+1 is a puzzle piece in Qn+1 belonging to Es for some s ∈ [1, r], then there exists a

puzzle piece Qn in Qn such that Qn+1 ⊂ Qn ⊂ Es. Consequently, we have Qn ≺ Qn+1.

(3) Each puzzle piece in Qn contains some point of A.

Proof. (1) For n = 0, Q0 is a cover of A, so the result holds. Suppose for n ≥ 0, the term

(1) in Lemma 5.2.8 holds. Let x be a point of A belonging to Es for some s ∈ [1, r].

If s ∈ [q + 1, r], Es ∈ Z1 ⊂ Qn+1 contains x. If s ∈ [1, q], there exists t ∈ [1, r] such

that ast = 1 and F (x) ∈ Et. By the assumption of induction, there exists a puzzle

piece Qn in Qn contained in Et. The unique component of F−1(Qn) contained in Es

is a puzzle piece in Qn+1 and must contains x.

(2) For n = 1, the construction of Q1 shows that each puzzle piece in Q1 belongs to a

puzzle piece in Q0. So the result holds.

Now suppose for n ≥ 1, the term (2) in Lemma 5.2.8 holds. Let Qn+1 be a puzzle piece

in Qn+1 contained in Es. If s ∈ [q+ 1, r], by the construction of Q, Qn+1 = Es ∈ Qn.
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If s ∈ [1, q], then there exist t ∈ [1, r] with ast = 1 and a puzzle piece Qn in Qn such

that Qn ⊂ Et and Qn+1 is the unique component of F−1(Qn) that contained in Es.

By the assumption of induction, there exist a puzzle piece Qn−1 in Qn−1 that belongs

to Et and contains En. The unique component of F−1(Qn−1) belonging to Es is a

puzzle piece in Qn and contains Qn+1.

(3) For n = 0, the property (∗) shows that each puzzle piece in Q0 contains some point of

A and F : Q∗0 ∩A −→ F (Q∗0) ∩A is a homeomorphism, where Q∗0 is any puzzle piece

in Q0. Now for n ≥ 0, assume that each puzzle piece of Qn contains some point of A

and F : Q∗n ∩A −→ F (Q∗n)∩A is a homeomorphism, where Q∗n is any puzzle piece in

Qn.

Let Q∗n+1 be a puzzle piece in Qn+1. Since Qn ≺ Qn+1, there exists a puzzle piece

Q∗n of Qn with Q∗n+1 ⊂ Q∗n. By the assumption of induction, we have Q∗n ∩ A 6=
∅, F (Q∗n+1)∩A 6= ∅ and F : Q∗n∩A −→ F (Q∗n)∩A is a homeomorphism. It follows that

the homeomorphism F−1 : F (Q∗n)∩A −→ Q∗n ∩A maps F (Q∗n+1)∪A homeomorphic

to Qn+1∗ ∩ A. So we have Q∗n+1 ∩ A 6= ∅ and F : Q∗n+1 ∩ A −→ F (Q∗n+1) ∩ A is a

homeomorphism.

Step 2. h(A,F ) = limn→∞
1

n
log #Qn

In fact, this result follows from the following lemma and Proposition 5.2.2.

Lemma 5.2.9. There exists a constant K such that for n ≥ 0, each puzzle piece in Qn
intersects at most K level-(n+1) standard squares and each level-(n+1) standard squares

intersect at most K + n(r − q) puzzle pieces in Qn.

Proof. This proof is similar with that of term (2) of Lemma 5.2.4. For n = 0, we can choose

an integer K ≥ 4 such that each puzzle piece in Q0 (resp. each level-1 standard square)

intersects at most K level-1 standard squares (resp. puzzle pieces in Q0).

Suppose for n ≥ 0, each puzzle piece in Qn (resp. each level-(n+1) standard square)

intersects at most K level-(n+1) standard squares (resp. K+n(r− q) puzzle pieces in Qn).

Let Q∗n+1 (resp. B∗n+2) be any puzzle piece in Qn+1 (resp. level-(n+2) standard square) and
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B1
n+2, . . . , B

α
n+2 (resp. Q1

n+1, . . . , Q
β
n+1) are all level-(n+2) standard squares that intersect

Q∗n+1 (resp. puzzle pieces in Qn+1 that intersect B∗n+2).

If Q∗n+1 ∈ Z1, it intersect at most 4 ≤ K level-(n+2) standard squares. Otherwise,

F (Q∗n+1) is a puzzle piece inQn and F (B1
n+2), . . . , F (Fαn+2) are level-(n+1) standard squares

which intersect F (Q∗n+1). Since F : Q∗n+1 −→ F (Q∗n+1) is a homeomorphism, the level-

(n+1) standard squares F (B1
n+2), . . . , F (Fαn+2) are pairwise different. Then by the as-

sumption of induction, α ≤ K. (resp. If none of these puzzle pieces belong to Z1, then

F (Q1
n+1), . . . , F (Qβn+1) are puzzle pieces in Qn and they intersect F (B∗n+2) which is a level-

(n+1) standard square. Since F : B∗n+2 −→ F (B∗n+2) is a homeomorphism, the puzzle

pieces F (Q1
n+1), . . . , F (Qβn+1) are pairwise different. Then by the assumption of induction,

β ≤ K + (r − q)n. Since there are at most r − q members of Z1 ⊂ Qn+1 that can intersect

B∗n+2, we have β ≤ K + (r − q)(n+ 1)).

For n ≥ 1, denote by Bn the set consisting of all level-n standard squares that intersect

A, so #Bn = ν(A,n).

By Lemma 5.2.9, each member of Bn+1 (resp. puzzle piece in Qn) intersects at most

K + (r − q)n puzzle pieces in Qn (resp. K members of Bn+1). It means that the number

of puzzle pieces in Qn (resp. members of Bn+1) that intersect some member of Bn+1 (resp.

some puzzle piece in Qn) is less than [K + (r − q)n] · ν(A,n + 1) (resp. K ·#Qn). Since

each puzzle piece in Qn (resp. member of Bn+1) intersects some member of Bn+1 (resp. a

puzzle piece in Qn), we have

#Qn ≤ [K + (r − q)n] · ν(A,n+ 1) (resp. ν(A,n+ 1) ≤ K ·#Qn).

It follows
1

K
ν(A,n+ 1) ≤ #Qn ≤ [K + (r − q)n] · ν(A,n+ 1)

Then by Proposition 5.2.2,

h(A,F ) = C(A) = lim
n→∞

1

n
log(ν(A,n)) = lim

n→∞

1

n
log(#Qn). (5.2.6)

Step 3. Estimate #Qn

Since Qn = Pn ∪Zn ∪ · · · ∪ Z1, then #Qn can be estimated by means of #Pn and #Zj
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(j ∈ [1, n]). So we start to estimate #Pn, #Zn and #Qn.

Equip Rr a norm || · || so that for a vector v = (x1, . . . , xr)
T ∈ Rr,

||v|| = |x1|+ · · ·+ |xr|.

Denote by v0 = (1, . . . , 1)T ∈ Rr, vn = Mn · v0 = (vn,1, . . . , vn,r)
T . It is known that

Lemma 5.2.10. If M is nilpotent, then ρ(M)=0; otherwise log ρ(M) = lim
n→∞

log ||vn||
n

.

1. Estimate #Pn :

In the property (∗), consider each element of {Ep+1, . . . , Er} as a small square and keep

other properties invariant. Denote the new sequence of rectangles by {Ẽs}rs=1. With the

same definition as that of the transition matrix M and puzzle P, we obtain a transition

matrix M̃ and a puzzle P̃ corresponding to {Ẽ1, . . . , Ẽr}. It is easy to see M = M̃ .

For any n ≥ 1, the difference between Pn and P̃n lies that some puzzle piece E∗ in Pn
may belong to different puzzle pieces in Pn−1 (since any two puzzle piece of P with the

same level intersect at most at their boundary, this case happens only if E∗ is a point) but

any puzzle piece in P̃n belongs to the unique puzzle piece in P̃n−1.

For n ≥ 1, let E∗ be a puzzle piece in Pn. Denote by κ(E∗) the number of puzzle pieces

in Pn−1 that contain E∗. Since each puzzle piece in Pn−1 is a rectangle or a point and any

two members of Pn−1 intersect at most at their boundary, we have 1 ≤ κ(E∗) ≤ 4.

Lemma 5.2.11. For any n ≥ 0, #P̃n =
∑

E∗∈Pn κ(E∗) and consequently, #Pn ≤ #P̃n ≤
4#Pn.

Proof. For any n ≥ 0, we can denote a puzzle piece in Pn (resp. P̃n) by Es0···sn (resp.

Ẽs0···sn) such that

F j(Es0···sn) ⊂ Esj (resp. F j(Ẽs0···sn) ⊂ Ẽsj ) for 0 ≤ j ≤ n

Then

Pn = {Es0···sn | (s0, . . . , sn) ∈ In} (resp. P̃n = {Ẽs0···sn | (s0, . . . , sn) ∈ In})
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where the set of subscript

In = {(s0, . . . , sn) ∈ [1, r]n+1| asjsj+1 = 1 for j ∈ [0, n− 1]}

Note that for j ∈ [0, n − 1], F j : Es0···sn (resp. Ẽs0···sn) −→ Esj ···sn (resp. Ẽsj ···sn) is a

homeomorphism.

Since Ẽs0···sn 6= Ẽt0···tn as (s0, . . . , sn) 6= (t0, . . . , tn), we can define a surjection ℘n :

P̃n −→ Pn mapping Ẽs0···sn to Es0···sn . It is easy to see

℘n(Ẽs0···sn) = ℘n(Ẽt0···tn) ⇐⇒ (s0, . . . , sn) = (t0, . . . , tn) or Es0···sn = Et0···tn ⊂ Es0···sn−1∩Et0···tn−1

It follows that Es0···sn has κ(Es0···sn) preimages under ℘n. So #P̃n =
∑

E∗∈Pn κ(E∗)

Lemma 5.2.12. For n ≥ 0, #P̃n = ||vn||.

Proof. For any n ≥ 0, s ∈ [1, r], denote by P̃n,s the puzzle pieces in P̃n that are contained

in Ẽs. Since P̃n,s1 and P̃n,s2 don’t have a common puzzle piece, it is enough to prove that

#P̃n,s = vn,s for any n ≥ 0, s ∈ [1, r].

As n = 0, #P̃0,s = 1 = v0,s for s ∈ [1, r]. For n ≥ 0, suppose #P̃n,s = vn,s for s ∈ [1, r].

Then by the construction of puzzle P̃, for any s ∈ [1, r],

#P̃n+1,s = as1 ·#P̃n,1 + · · ·+ asr ·#P̃n,r = as1 · vn,1 + · · ·+ asr · vn,r = vn+1,s

The second “=” holds according to the assumption of induction.

By Lemma 5.2.11, 5.2.12, we obtain the estimation of Pn as

1

4
||vn|| ≤ #Pn ≤ ||vn|| (5.2.7)

2. Estimate #Zn: Since Zn ⊂ Pn−1, we have

#Zn ≤ #Pn−1 for n ≥ 1. (5.2.8)

3. Estimate #Qn:
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Since Qn = Pn ∪ Zn ∪ · · · ∪ Z1, we have

#Pn ≤ #Qn ≤ #Pn + #Zn + · · ·+ #Z1

By (5.2.7) and (5.2.8), we obtained that

1

4
||vn|| ≤ #Qn ≤ ||vn||+ ||vn−1||+ · · ·+ ||v0|| (5.2.9)

Now we have finished the preparation of three steps in the proof of Proposition 5.2.7.

Proof of Proposition 5.2.7. According to (5.2.6), we only need to prove

lim
n→∞

1

n
log(#Qn) =

 0 if M is nilpotent

log ρ(M) otherwise

If M is nilpotent, then ||vn|| = 0 for sufficiently large n, By (5.2.9), #Qn is bounded as

n→∞, so lim
n→∞

1

n
log(#Qn) = 0.

If M is not nilpotent, by Theorem 2.6.6,

lim
n→∞

( 1

n
log ||vn|| −

1

n
log(||vn||+ · · ·+ ||v0||)

)
= 0

Since M is not nilpotent, by Lemma 5.2.10, lim
n→∞

1

n
log ||vn|| = log ρ(M), so

lim
n→∞

1

n
log(||vn||+ · · ·+ ||v0||) = log ρ(M)

Then by (5.2.9), lim
n→∞

1

n
log(#Qn) = log ρ(M).

Computing the entropy of a combinatorial Hubbard tree

For computing the topological entropy h(TH(m), F ), we should generalize the property (?)

to property (?′) as

(?′) There exist two sequence of closed sets {Ei}pi=1 and {Es}rs=p+1 belonging to T2

such that

(1′) For any t ∈ [1, r], Et = E+
t ∪ E−t . Furthermore, as i ∈ [1, p], E+

i and E−i are two

closed rectangles or two horizontal or vertical segments that coincide or have disjoint
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interior; as s ∈ [p+ 1, r], E+
s and E−s are either the same point or different points.

(2′) {Et}rt=1 is a cover of A and A ∩ Eδtt 6= ∅ for any 1 ≤ t ≤ r and δt ∈ {±}.

(3′) For any i ∈ [1, p], t ∈ [1, r], δi, δt ∈ {±}, Eδii dosen’t contain Eδtt and the interior of Eδii

is disjoint with Eδt . Besides, the members of {Es}rs=p+1 are pairwise disjoint.

(4′) For any t ∈ [1, r], δ ∈ ±, F : Eδtt −→ F (Eδss ) is a homeomorphism. For i ∈ [1, p],

t ∈ [1, r], δi, δt ∈ {±}, either F (Eδii ) contains Eδtt or the interior of F (Eδi ) is disjoint

with Eδtt ; For s ∈ [p + 1, r], δs ∈ {±}, F (Eδss ) = Eδtt for some t ∈ [p + 1, r], δt ∈ {±}
or F (Es)

δs belongs to Eδii for some i ∈ [1, p], δi ∈ {±}.

(5′) For δ ∈ {±}, denote by δ̄ the opposite signal of δ. We require that for s ∈ [1, r], t ∈ [1, r],

F (Eδss ) contains Eδtt iff FE δ̄ss contains E δ̄tt and for s ∈ [p + 1, r], i ∈ [1, p], F (Eδss )

belongs to Eδii iff FE δ̄ss belongs to E δ̄ii .

(6′) For i ∈ [1, p], δi ∈ {±}, the map F : Eδii ∩A −→ F (Eδii ) ∩A is a homeomorphism.

With the property (?′), we can also define a transition matrix M = (ast)r×r according to

{Es}rs=1: For s, t ∈ [1, r], ast = 1 if F (Es) contains Et and ast = 0 otherwise. Denote the

spectral radius of M by ρ(M), by the same proof as that of Proposition 5.2.7, we have

Proposition 5.2.7′. If a compact F−forward invariant set A ⊂ T2 satisfies property (?′),

then

h(A,F ) =

 0 if M is nilpotent

log ρ(M) otherwise

Next, we will check that TH1(m) satisfies the property (?′) and then we can compute

h(TH1(m), F ) by Proposition 5.2.7′.

Denote by τd : S1 −→ S1, z 7→ zd. Let

m = {Θ1, . . . ,Θs1 ,Θs1+1, . . . ,Θs2 ,Θs2+1, . . . ,Θs}

be a degree d rational primitive major, indexed in a way so that Θj contains a periodic

angle iff j ∈ [1, s1], and Θi doesn’t contain a periodic angle but the orbit of the unique

angle in τd(Θi) passes through ∪s1j=1Θj iff i ∈ [s1 + 1, s2]. Set mp = {Θ1, . . . ,Θs2}, then we
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define a subset of TP (m) as

TP (mp) = {(θ, θ)| θ ∈ P (mp)} where P (mp) = {dnθ| n ≥ 0, θ ∈
s2⋃
j=1

Θj}.

Now we will divide TH0(m) into a finite number of subsets as follows: set

A(m) = {(x, y) ∈ TH0(m) | C+
x,y separates but doesn’t intersect TP (m)}.

and for α ∈ TP (m), set

Bα(m) = {(x, y) ∈ TH0(m)| C+
x,y intersects α}

Then TH0(m) = A(m) ∪
⋃

α∈TP (m)

Bα.

We can define an equivalence relation in A(m) : two points (x1, y1), (x2, y2) ∈ A(m) are

called parallel if either C+
x1,y1 and C+

x2,y2 coincide or C+
x1,y1 is homotopic to Cδx2,y2 relative

to TP (m) in T2. Note that C+
x1,y1 coincide with C+

x2,y2 iff (x1, y1) = (x2, y2) or (x1, y1) =

(y2, x2) ((x1, y1) (x2, y2) are symmetric relative the diagonal) and Cδ1x1,y1 is homotopic to

Cδ2x2,y2 relative TP (m) in T2 iff Cδ1x1,y1 is homotopic to Cδ2x2,y2 relative TP (m) in T2. Then it

is easy to check that the parallel relation is indeed a equivalence relation.

For any equivalence class A∗ of A(m), any (x, y) ∈ A∗, we can define γx,y = C+
x,y or C−x,y

such that all γx,y with (x, y) ∈ A∗ are homotopic relative to TP (m) in T2,. Then (x1, y1)

is parallel to (x2, y2) iff γx1,y1 is homotopic to γx2,y2 relative TP (m) in T2. Since TP (m)

is finite and each γx,y is the boundary of square, there are only finite equivalent classes of

A(m), denoted by A1(m),. . . ,Ap(m)

For i ∈ [1, p], denote by A′i(m) the set of accumulation points of Ai(m) and for α ∈
TP (mp), denote by B′α(m) the accumulation points of Bα(m). Without loss of generality,

we assume A′i 6= ∅ for i ∈ [1, p].

Lemma 5.2.13. (1) Bα is an infinite set iff α ∈ TP (mp) and in this case, B′α is a finite

set.

(2) TH1(m) =
⋃p
i=1A

′
i ∪
⋃
α∈TP (mp)Bα.

Proof. (1) It follows directly from the construction of b∞(m).
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(2) Choose any point (x, y) ∈ TH1(m) such that {(xn, yn)} ∈ TH0 and lim
n→∞

(xn, yn) =

(x, y). If there exist an infinite subsequence of {(xn, yn)}, also denoted by {(xn, yn)},
belonging to A(m), since the number of equivalent classes is finite, there exist t0 ∈ [1, t]

such that an infinite subsequence of {(xn, yn)} belong to At0(m), hence (x, y) ∈
At0(m); otherwise, for sufficient large n, (xn, yn) ∈ ∪α∈TP (mp)Bα(m). By the same

reason as above, (x, y) ∈ B′α(m) for some α ∈ TP (mp).

For i ∈ [1, p], (x, y) ∈ Ai(m), denote by S(γx,y) the unique square in T2 bounded by

γx,y. Then we can define an order on

Λi = {γx,y| (x, y) ∈ Ai(m)}

such that γx1,y1 ≥ γx2,y2 iff S(γx1,y1) contains S(γx2,y2). If a sequence of points {xn, yn} ⊂ Ai
such that lim

n→∞
(xn, yn) = (x, y), then γxn,yn converge to γx,y in Hausdorff topology and γx,y

is exactly C+
x,y or C−x,y. So we can also define an order on

Λ̄i = {γx,y| (x, y) ∈ Āi(m)}

as the same as that on Λi where Āi(m) = Ai(m) ∪ A′i(m). Since Λ̄i is compact, there is

a unique maximal curve γai,bi and a unique minimal curve γci,di in Λ′i. Here we always

require that (ai, bi) and (ci, di) are on the lower-right triangle of square S(γai,bi). Then all

the curves in Λ̄i are contained in

Ωi = S(γai,bi) \ the interior of S(γci,di)

We define

E+
i = [ci, ai]× [bi, di] and E−i = [bi, di]× [ci, ai]

Since we assume A′i 6= ∅ for i ∈ [1, p], then each Āi is an infinite set. For any (x, y) ∈ Āi,
γx,y ∈ Ωi implies (x, y) ∈ Ei. So we have A′i(m) ⊂ Āi(m) ⊂ Ei for i ∈ [1, p]. There are the

4 cases for the shape of E±i :

1. (ci, di) is in the interior of S(γai,bi) and ci 6= di. In this case, E±i are two disjoint

squares.
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2. (ci, di) is in the interior of S(γai,bi) and ci = di. In this case, E±i are two squares

intersecting at a point of the diagonal.

3. (ci, di) is on γai,bi and ci 6= di. In this case E±i are two disjoint segments.

4. (ci, di) is on γai,bi and ci = di. In this case E±i are two segments intersecting at a

point of the diagonal.

We have known that B′α is a finite set for α ∈ TP (mp), denote

⋃
α∈TP (mp)

B′α = {(ap+1, bp+1), (ap+1, bp+1); · · · ; (ar1 , br1), (ar1 , br1)}

where (ap+1, bp+1), . . . , (ar1 , br1) are points in the lower-right triangle of unit square. Then

for s ∈ [p+ 1, r1], we define

E+
s = (as, bs) and E−s = (as, bs)

In the beginning of this section, we define a map ℘ : b∞(m) −→ L(m) by mapping

(x, y) ∈ T2 to the chord xy ∈ D. A leaf of L(m) has two preimages symmetric relative to

the diagonal of T2 if it is not a point of S1 and one preimage on the diagonal of T2 otherwise.

When we equip the Hausdorff topology to L(m), the map ℘ is continuous. Moreover, we

have the commutative graph

b∞(m)
F−→ b∞(m)

℘
y y℘

L(m)
τd−→ L(m)

Now we can interpret the discussion above on the torus model to the unit disk model

by the language of lamination and prove the result about the torus model by means of

proving the corresponding result in the disk model. Usually, the proof in the disk model by

lamination is simpler and immediate.

Interoperation from torus model to unit disk model:

1. ℘(A(m)) consists of all leaves in L(m) that separate but do not intersect P (m).
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2. For i ∈ [1, p], all leaves of ℘(Ai(m)) are homotopic relative P (m) in D and for 1 ≤ i 6=
j ≤ p, (xi, yi) ∈ Ai(m), (xj , yj) ∈ Aj(m), the chord x1y1 is not homotopic to x2y2 (rel

P (m)). This conclusion follows directly from the fact that for any (x1, y1), (x2, y2) ∈
A(m) belonging to the lower-right triangle of the unit square,

(x1, y1), (x2, y2) are parallel

⇐⇒ lx1,y1 , lx2,y2 are homotopic (rel TP (m)) in the lower-right triangle of the unit square

⇐⇒ x1y1, x2y2 are homotopic(rel P (m)) in D

3. ℘(A′i(m)) consist of any leaf that is the Hausdorff limit of any sequence of leaves

{xnyn} ⊂ Ai(m) and ℘(Āi(m)) = ℘(Ai(m)) ∪ ℘(A′i(m)).

4. For any i ∈ [1, p], the points bi, di, ci, ai lie on S1 by the counter-clockwise order.

It is denoted by bi ≤ di ≤ ci ≤ ai where “=” holds if two adjacent points of “=”

coincide. The chords cidi and aibi divide D into 2 or 3 components. We denote

by D(ai, bi, ci, di) the closure of the component whose boundary contain both aibi

and cidi. The chords aibi, cidi are called the edges of D(ai, bi, ci, di). Then we have

℘(Āi(m)) ∈ D(ai, bi, ci, di), any leaf of ℘(Āi(m)) except aibi, cidi separate the two

edges of D(ai, bi, ci, di) and ∪℘(Ei) := ∪(x,y)∈Eixy = D(ai, bi, ci, di).

There are 4 cases for the shape of D(ai, bi, ci, di):

(a) bi < di < ci < ai, then D(ai, bi, ci, di) is a 4-gon with two opposite sides being

disc chords and the other two arcs in the unit circle

(b) bi < di = ci < ai, then D(ai, bi, ci, di) is a 3-gon with only one disc chord;

(c) bi = di < ci < ai or bi < di < ci = ai, then D(ai, bi, ci, di) is a 3-gon with exactly

two disc chords;

(d) bi = di = ci < ai or bi < di = ci = ai, then D(ai, bi, ci, di) is a 2-gon with only

one disc chord.

For i ∈ [1, p], β ∈ [1, 4], the map ℘ maps Ei of case β to D(ai, bi, ci, di) of case β

Lemma 5.2.14. (1) For i ∈ [1, p], the possible points of intersection of D(ai, bi, ci, di)

and P (m) are ai, bi, ci, di. If aibi (resp. cidi) contains point of P (m), then (ai, bi)

(resp. (ci, di)) belongs to A′i(m).
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(2) The case 4 of the shape of D(ai, bi, ci, di) never happen.

Proof. (1) Suppose there is a point θ ∈ P (m) such that θ ∈ D(ai, bi, cidi) but θ 6∈
{ai, bi, ci, di}. If aibi ∈ ℘(Ai(m)), we choose aibi as a objective leaf; otherwise

aibi ∈ ℘(A′i(m)), then we can choose a leaf of ℘(Ai(m)) that separates aibi and θ

as a objective leaf. We do the same thing for cidi. So we obtain two objective leaves

in ℘(Ai(m)) that are not homotopic relative P (m). It is a contradiction.

(2) If case 4 happens, we assume bi = di = ci < ai. Then bi = lim
n→∞

bixn with

{(bi, xn)} ⊂ Ai(m). If bi 6∈ P (m), bixn doesn’t separate P (m) for sufficiently n; if

bi ∈ P (m), all bixn contain the point of P (m). Both of the case lead to a contradiction

to the definition of A(m).

Lemma 5.2.15. If (x, y) ∈ ∪α∈TP (mp)Bα belongs to Ei for some i ∈ [1, p], then (x, y) ∈
A′i(m).

Proof. If (x, y) ∈ ∪α∈TP (mp)Bα, x = α or y = α for some α ∈ TP (mp). Assume x = α,

then (α, y) ∈ Ei implies αy ⊂ D(ai, bi, ci, di). By Lemma 5.2.14, one edge of D(ai, bi, ci, di)

contains α and there exist a sequence of points {(xn, yn)} ⊂ Ai(m) such that xnyn converge

this edge α from D(ai, bi, ci, di). Then αy must coincide with this edge, otherwise xnyn will

intersect αy transversally. So we have (x, y) ∈ A′i(m).

According to this lemma, if Ek belongs to Ei for some k ∈ [p + 1, r] and i ∈ [1, p], we

can remove Ek from {Es}r1s=1 without affecting the set TH1(m). Then after removing all

such members in {Es}r1s=p+1 and rearrangement of the index of the left members, we obtain

two sequences of sets {Ei}pi=1 and {Es}rs=p+1.

Lemma 5.2.16. The set TH1(m) ⊂ T2 and the two sequences of sets {Ei}ri=1 and {Es}rs=p+1

satisfy property (?′)

Proof. We will check case by case that the properties of (?′) are satisfied by TH1(m) and

{Et}rt=1.

(1′), (2′) follows from the construction of E±s (s ∈ [1, r]).
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(3′) It is enough to prove that for any i 6= j ∈ [1, p], δi, δ2 ∈ {±}, Eδii doesn’t contain E
δj
j

and the interior of Eiδi doesn’t intersect E
δj
j . Equivalently, we need to prove that for

any i 6= j ∈ [1, p], D(ai, bi, ci, di) doesn’t contain D(aj , bj , cj , dj) and the interior of

D(ai, bi, ci, di) doesn’t intersect D(aj , bj , cj , dj). This result is true, because otherwise,

by Lemma 5.2.14, there must exist a chord of ℘(Ai(m)) and a chord of ℘(Aj(m)) such

that they are homotopic relative P (m) on D. It is a contradiction to item 2 of the

interoperation to disk model.

(4′), (5′) For any i ∈ [1, p], D(ai, bi, ci, di) belongs to the closure of a component of D\m. It

implies |[bi, di]|+ |[ci, ai]| ≤
1

d
. Then F : Eδii −→ F (Eδii ) is a homeomorphism. Since

F (E+
i ) and F (E−i ) are symmetric relative the diagonal, we have F (E+

i ) contains Eδtt

iff F (E−i ) contains E δ̄tt for δt ∈ {±}, t ∈ [1, r]. So we are left to prove that for i ∈ [1, p],

t ∈ [1, r], δi, δt ∈ {±}, either F (Eδii ) contains Eδtt or the interior of F (Eδii ) is disjoint

with Eδtt .

Suppose this result is not true. Then there exist i, j ∈ [1, p] such that τd(D(ai, bi, ci, di)) 6=
D(aj , bj , cj , dj) and the intersection ofD(aj , bj , cj , dj) and the interior of τd(D(ai, bi, ci, di))

is not empty. In this case, we can find a chord zjwj ∈ ℘(Aj(m)) belonging to the

exterior of τd(D(ai, bi, ci, di)) such that zjwj is homotopic to a chord of τd(℘(Ai(m))).

Then one of the preimage of ziwi under τd is homotopic to a chord of ℘(Ai(m)) and

it must belong to the exterior of D(ai, bi, ci, di). It is a contradiction.

(6′) Since F : Eδii −→ F (Eδii ) is a homeomorphism, it is enough to prove that for (z, w) ∈
F (Eδii ) ∩ TH1(m), the unique preimage of (z, w) under F contained in Eδii , denoted

by (x, y), is in TH1(m).

correspondingly, in the unit disk model, the leaf xy ∈ D(ai, bi, ci, di) and the leaf

zw belongs to D(aj , bj , cj , dj) for some j ∈ [1, p] or coincides with ℘(Es) for some

s ∈ [p+ 1, r].

In case of zw ⊂ D(aj , bj , cj , dj) for j ∈ [1, p], τd(D(ai, bi, ci, di)) containsD(aj , bj , cj , dj).

There exists a sequence of chords {znwn} ⊂ ℘(Aj(m)) ⊂ D(aj , bj , cj , dj) such that

lim
n→∞

xnyn = zw. Denote by xnyn the preimage of znwn in D(ai, bi, ci, di), then

{xnyn} ⊂ ℘(Ai(m)) and lim
n→∞

xnyn = xy. It implies (x, y) ∈ A′i(m) ⊂ TH1(m).

In case of zw = ℘(Es) for some s ∈ [p+1, r], we can assume z = α for some α ∈ P (mp).
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Then there exist a sequence of leaves {αwn} ⊂ Bα such that lim
n→∞

αwn = αw. Denote

by xyn the preimage of αwn based at x. If x, y 6∈ P (m), then for sufficiently large

n, the leaf xyn is homotopic to some leaf of ℘(Ai(m)) relative P (m) in D. So once

removing finite leaves, {xyn} ⊂ ℘(Ai(m)). It follows that lim
n→∞

(x, yn) = (x, y) ∈ A′i.
If x or y = β ∈ P (m), then xy must be an edge of D(ai, bi, ci, di). For otherwise,

there exist a sequence of leaves {xnyn} ⊂ ℘(Ai(m)) that converge to an edge of

D(ai, bi, ci, di) containing β and these leaves intersect xy transversally. In this case,

by Lemma 5.2.14, (x, y) ∈ A′i(m) ⊂ TH1(m).

5.2.4 Hubbard trees for polynomials

In fact, the dynamical background of the invariant lamination generated by a primitive

major is the polynomial. So for a degree d rational primitive major m that can be realized

by a polynomial f , we can establish a correspond relationship between the points of b∞(m)

and the ray pair of f . This provides a dynamical interpret of the points in b∞(m) and

TH(m).

Let f be a postcritical finite polynomial, the degree of f is d. The Böttcher theorem

give the commutative graph:

C \Kf
f−→ C \Kf

φ
y yφ

C \ D z 7→zd−→ C \ D

(5.2.10)

and the conformal map φ−1 can be extended continuously to S1. Then each external ray

land on a point in Jf .

Let γ be a Jordan curve in complex plane. The point v ∈ γ is the unique possible critical

value of f . Set

f−1(v) = {c1, . . . , ck} and degci(f) = di, i = 1, . . . , k.

Then the connected component of f−1(γ) which contains ci is consisting of di Jordan curve

136



intersecting only at point ci pairwise. It can be seen as the union of 2di rays starting from

ci. We label these rays counter clockwise by l1i , . . . , l
2di
i starting from any such ray. Define

γmii = lmii ∪ lmi+1
i , 1 ≤ i ≤ k, 1 ≤ mi ≤ 2di.

Following the notation above, for any Jordan curve γ which contains at most one critical

value of f , we define

f∗(γ) = { γmii | 1 ≤ i ≤ k, 1 ≤ mi ≤ 2di }

It is easy to see that for any β ∈ f∗(γ), f : β −→ γ is a homeomorphism. If Γ = {γ1, . . . , γn},
where γ1, . . . , γn are Jordan curves (these curve maybe intersect mutually) containing at

most one critical value of f each, we define

f∗(Γ) =
n⋃
i=1

f∗(γi)

For a postcritical finite polynomial f of degree d, we can define a degree d primitive

major (or critical portrait)

mf = {Θ1, . . . ,Θs}

associated to f ( one can refer to [?] Chapter 1 for a concrete definition ). Now, we begin

to give the dynamical explanation of the points in b∞(mf )

Definition 5.2.17. Two rays Rf (θ) and Rf (η) are called ray pair if they land on the same

point. For simplicity, we also call {θ, η} a ray pair of f .

If {θ, η} is a ray pair of f , the curve Rf (θ) ∪ Rf (η) ∪ γf (θ) divide the complex plane

into two parts.

Definition 5.2.18. The ray pair {θ, η} is called adjacent if in one of the two parts, there

are no external rays landing on γf (θ). Such a part is called a wake of {θ, η} (there may be

two wake for an adjacent ray pair). A Fatou component is called bounded by an adjacent

ray pair if the component belongs to a wake of the ray pair and the ray pair land on the

boundary of this component.

Following the Böttcher Theorem, we can define the internal rays in each Fatou compo-
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nent of f such that the image of a internal ray under fc is also a internal ray. Now we will

define a kind of special Jordan curve in dynamical plane of f and then correspond a point

in b∞(mf ) to such a simple curve.

Definition of a simple curve Rf (x, y): If Rf (x) and Rf (y) land on the same point, set

Rf (x, y) = Rf (x) ∪ γf (x) ∪Rf (y).

In special,

Rf (x, x) = Rf (x) ∪ γf (x)

If Rf (x) and Rf (y) land on the same Fatou component U but do not land on the same

point, then there are two internal rays rU (α) and rU (β) that connect z0, γf (x) and z0, γf (y)

respectively (z0 is the center of U). In this case, we set

Rf (x, y) = Rf (x) ∪ γf (x) ∪ rU (α) ∪ rU (β) ∪ γf (y) ∪Rf (y)

According to the definition of mf , for each point (x, y) ∈ b0(mf ), the Jordan curve

Rf (x, y)) always exists. Let

Γ0(f) = { Rf (x, y) | (x, y) ∈ b0(mf ) }

Inductively define

Γi+1(c) = f∗c (Γi(f)) ∪ Γ0(f)

It follows easily that Γi(f) ⊂ Γi+1(f). According to the commutative graph (5.2.10)

(Böttcher Theorem), the construction of bi(mf ) and the definition of f∗, we have

• If (x, y) ∈ bi(mf ), then the simple curve Rf (x, y) exists and belong to Γi(f)

• We can define a sequence map li : bi(mf ) −→ Γi(f), mapping (x, y) to Rf (x, y). Every

such map is a 2 to 1 onto map.
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• There exist a sequence of commutative graph:

bi+1(θ)
F−→ bi(mf ) ∪ {(dθ, dθ)

∣∣ θ ∈ ∪sj=1Θj}

li+1

y yli
Γi+1(c)

fc−→ Γi(f) ∪ {Rf (θ)
∣∣ θ ∈ ∪sj=1Θj}

where

Rf (θ) =


Rf (θ) ∪ γf (θ) if dθ is strictly preperiodic

Rf (θ) ∪ γf (θ) ∪ rU (α) if dθ is periodic (U is the Fatou component containing critical value)

The sequence map {li} provide a interpret of the points of b∞(mf ) in the view of dynamics:

Proposition 5.2.19. a point (x, y) ∈ b∞(mf ) if and only if Rf (x, y) exists and there

is an integer n such that fn : Rf (x, y) −→ Rf (dnx, dny) is a homeomorphism, where

Rf (dnx, dny) ∈ Γ0(mf ).

In order to give an interpret of the points of b′∞(mf ), we consider the limit set of⋃∞
i=0 Γi(f) in Hausdorff topology. Suppose there existRf (xi, yi) ∈ Γi(f) such thatRf (xi, yi)→

R in Hausdorff topology as i→∞, then R must be one of the following cases:

1. R = Rf (x) ∪ γf (x) ∪ Rf (y) ∪ rU (α), where Rf (x) and Rf (y) is an adjacent ray pair,

U is a Fatou component bounded by Rf (x) and Rf (y) and rU (α) is the internal ray

in U landing at γf (x).

2. R = Rf (x)∪γf (x)∪rU (α), where Rf (x) lands on the boundary of a Fatou component

U and rU (α) is the internal ray in U landing at γf (x).

3. R = Rf (x) ∪ γf (x) ∪Rf (y),where Rf (x) and Rf (y) is an adjacent ray pair.

4. R = Rf (x) ∪ γf (x).

Note that if limi→∞(xi, yi) = (x, y), (xi, yi) ∈ bi(mf ), then limi→∞Rf (xi, yi) = R in

Hausdorff topology and R contains Rf (x) and Rf (y). So it is natural to image defining

a map l : b′∞(mf ) −→ Γ′(f), mapping (x, y) to R, where Γ̃′(f) is consisting of all sets R

which is one of the cases listed above. This map is not well defined because it depends on
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the choosing of a sequence {(xi, yi)}. However, if we forget the internal ray contained in R

for R ∈ Γ̃′(f), the map l is well defined. That is , set

Γ′(f) =
{
Ř
∣∣Ř = R \ the internal ray contained in R,R ∈ Γ̃′(f)

}
=

{
Rf (x, y)

∣∣{x, y} is an adjacent ray pair of f or x = y ∈ S1
}

The map

l : b′∞(mf ) −→ Γ′, mapping (x, y) to Rf (x, y)

is well defined. Moreover, it is not difficult to see that the map l is surjective; #l−1(Rf (x, y)) =

2 if x 6= y and #l−1(Rf (x, y)) = 1 if x = y. Thus, we can give a dynamical interpret of the

points of b′∞(mf ):

Proposition 5.2.20. A point (x, y) ∈ b′∞(mf ) if and only if x = y or {x, y} is an adjacent

ray pair of f .

In Thurston’s torus model, if we correspond a point (x, y) ∈ b∞(mf ) to a chord xy ∈ D,

then the set

L(mf ) = {xy
∣∣(x, y) ∈ b∞(mf )} (5.2.11)

is a degree d invariant lamination having mf as its major. Similarly, the set b′∞(mf ) gives

a sub-lamination of L(mf ) as

L1(mf ) = { xy
∣∣(x, y) ∈ b∞(mf )} (5.2.12)

Note that L1(mf ) is also a degree d invariant lamination, it is exactly the lamination defined

by f .

Now we can use Proposition 5.2.20 to give an dynamical interpret of the points in

TH1(mf ).

Let Hf be the Hubbard tree of f . Then for any z ∈ Hf ∩ Jf , there exists an adjacent

ray pair or a single ray landing on z that separates or intersects with Pf . On the contrary,

an adjacent ray pair which separates or intersects Pf must land on a point of Hubbard tree.

This separating property can be expressed by means of angles. For Θj ∈ mf , if it contains

a periodic angle, set Θ−j the set consisting of the unique periodic angle in Θj ; otherwise set
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Θ−j = Θj . Set

P−(mf ) = {dnθ| n ≥ 0, θ ∈
s⋃
j=1

Θ−j } and TP−(mf ) = {(θ, θ)| θ ∈ P−(mf )}.

Then it is easy to see that a ray pair {x, y} of f separates or intersects Pf if and only if the

chord xy separates or intersects P−(mf ) in D. If we set

TH−1 (mf ) = { (x, y) ∈ b′∞(mf ) | C+
x,y separates or intersects TP−(mf )},

Qf = {γf (x) | x ∈ TH−1 (mf ) ∩ diagonal of T2}.

then Qf ⊂ Hf is a f invariant finite set. By the proof of Proposition 5.2.6, the discussion

above and Proposition 5.2.20, we have

1. A point (x, y) ∈ TH−1 (mf ) if and only if x = yγf (x) ∈ Qf or x 6= y, the adjacent ray

pair {x, y} lands on a point of Hf and separates or intersects Pf ;

2. The set TH−1 (mf ) is also a compact F−invariant set;

3. TH−1 (mf ) ⊂ TH1(mf ) and TH1(mf ) \ TH−1 (mf ) is a finite set.

Thus, this result gives the dynamical explanation of the point in TH1(mf ).

Let λ be the leading eigenvalue of the transition matrix on its Hubbard tree. Then we

have

Proposition 5.2.21. h(TH(mf ), F ) = log λ.

Proof. Since TH−1 (mf ) is also a compact F−invariant set, we will compute h(TH−1 (mf ), F )

at first. According to the definition of TH−1 (mf ), we can define a map

π : TH−1 (mf ) −→ Hf

mapping (x, y) ∈ TH−1 (mf ) to the common landing point of Rf (x) and Rf (y). The image

of the map is exactly Hf ∩Jf . If {(xn, yn)} ⊂ TH−1 (mf ) converge to (x, y) as n→, then ray

pair {x, y} converges to {x, y} in Hausdorff topology, so the map π is continuous. Moreover,

it satisfies the following two properties:

• For any z ∈ Hf ∩ Jf , the fiber π−1(z) has a cardinal bounded by a fixed number M .
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• π is a semi-conjugate from F to f . That is

THf
F−→ TH−1 (mf )

π
y yπ

Hf ∩ Jf
f−→ Hf ∩ Jf

By Proposition 2.5.1, 2.5.2 and 2.5.3, we have

h(TH−1 (mf ), F )
Pro 2.5.3

= h(Hf ∩ Jf , f)
Pro 2.5.1,2.5.2

= h(Hf , f)

In [Do], Douady proves h(I, f) = log λ for postcritical finite real map. One can use the

completely same argument in complex case to prove h(Hf , f) = log λ for postcritical finite

polynomial f . Then it follows h(TH−1 (mf ), f) = log λ.

Since TH1(mf ) \ TH−1 (mf ) is a finite set and TH0(mf ) is a countable set, we have

H.dim
(
TH−1 (mf )

)
= H.dim

(
TH1(mf )

)
= H.dim

(
TH(mf )

)
.

Then by Proposition 5.2.2, we have

h(TH(mf ))
Pro.5.2.2

= log d ·H.dim (TH(mf )) = log d ·H.dim (TH−1 (mf ))

Pro.5.2.2
= h(TH−1 (mf )) = log λ.
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Chapter 6

Wandering C1 arc and stable

multicurve of p.f rational map with

parabolic orbiford

In this chapter, we study the wandering continuum problem for post critical finite rational

map with parabolic orbiford (see the definition in Section 2.3.1). In Section 6.1, we study

the holomorphic dynamics on torus and prove the wandering C1 arc theorem for map of

torus. In Section ??, we prove Theorem ?? by the results obtained in Section 6.1. In Section

6.3, we prove Theorem ??.

6.1 Wandering arc of holomorphic map on Tτ

The objective here is to prove the following proposition which is used to prove Theorem ??.

Proposition 6.1.1. Let L : Tτ → Tτ , L(z) = αz(modΛτ ) be a holomorphic map of torus.

An arc K is wandering under L if and only if α is an integer and K is a short line segment

with irrational slop.

6.1.1 Holomorphic dynamics on torus

Here we give some basic description of holomorphic dynamics on torus without proof. One

can refer to [Mil2] S6 for more details.
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A Riemann surface is called torus if it is compact and of genus one. Any torus is

conformal to Tτ = C/Λτ = C/(Z⊕τZ) with τ ∈ H = {z ∈ C
∣∣=z > 0}. A map L : Tτ → Tτ

is holomorphic if and only if

L(z) = αz + β(modΛτ ) with αΛτ ⊂ Λτ .

It is easy to see that for any τ ∈ H,m ∈ Z, α = m satisfies this condition. If α satisfies

this property, then α is either an integer or a complex number (=α 6= 0). The degree of L

is equal to |α|2. The Julia set J(L) is either the empty set or the entire torus according to

whether |α| ≤ 1 or |α| > 1.

If α 6= 1, note that L has a fixed point z0 = β/(1 − α) and hence is conjugate to the

map z 7→ L(z + z0) − z0 = αz. In this paper, we only consider the map with |α| > 1, so

without loss of generality, we can assume L(z) = αz(modΛτ ) and J(L) is the entire torus.

6.1.2 Wandering arc on torus

Let Tτ be a torus, L(z) = αz(modΛτ )(|α| > 1) be a holomorphic map on Tτ . We have the

commutative graph

C z 7→αz−→ C

π
y yπ
Tτ

z 7→αz( mod Λτ )−→ Tτ

The complex plane can be seen as a real linear space based on {1, τ}. So each point z ∈ C
has a coordinate (x, y) ∈ R2 corresponding to the basis {1, τ}, that is, z = x + yτ . where

x := <τz, y := =τz.
Let l be a line in C. A The slop of l (corresponding to τ), denoted by kl, is equal to

y2 − y1

x2 − x1
where x1 + y1τ, x2 + y2τ are any two points on the line l. It is well know that

• kl is a rational number or ∞ ⇐⇒ ∃z1, z2 ∈ l s.t z1 − z2 ∈ Λτ ⇐⇒ π(l) is a closed

curve.

• kl is a irrational number ⇒ π : l→ Tτ is injective and π(l) is density on Tτ .

Definition 6.1.2. Let l ⊂ C be a line. If l has irrational slop, we call π(l) a line on

Tτ . The set π(l) (a line or a closed curve on Tτ ) is called (p, q)−preperiodic under L

if Lp+q(π(l)) = Lp(π(l)) and Ls+t(π(l)) 6= Ls(π(l)) for any 0 ≤ s ≤ p, 0 ≤ t ≤ q with

144



(s, t) 6= (p, q). If p = 0, π(l) is called q periodic. A full connected compact set in π(l) is

called a segment. A segment K is called short segment of L if either π(l) is wandering

under L or π(l) is (p, q)−preperiodic and Lp(K) ∩ Lp+q(K) = ∅.

With these notation, we can write the obvious result:

Lemma 6.1.3. Let K be a line segment on Tτ . Then K is wandering under L if and only

if α is a integer and K is a short segment of L with irrational slop.

Proof. Let l ⊂ C be the line such that K ⊂ π(l).

“⇒” If K is wandering under L, then the argument of α is 0 and π(l) is a line in Tτ . It

follows α is an integer and K has the irrational slop. The property that K is wandering

also implies K is a short segment of L.

“⇐” In this case, π(l) is a line in Tτ . In order to prove K is wandering under L, we only

need to prove Lnp(K) ∩ Lmp(K) = ∅ for m 6= n ∈ N ∪ {0} in case that π(l) is p periodic

under L. For s, t ∈ Z, denote by ls,t the translation of l along the vector s + tτ in C. If

π(l) is p periodic, then there exist s0, t0 ∈ Z such that L̃p(l) = ls0t0 where L̃ is the lift of L

along the projection π.

Let E be any segment of π(l), Ẽ be the component of π−1(E) which belongs to l.

Denote by X(E) the projection of (̃E) to the x axle. Suppose X(K) = [x1, x2], then

X(Lp(K)) = [αpx1, α
px2]. The property that K is a short segment implies that x2 < αpx1

or x1 > αpx2. We assume x2 < αpx1. In this case, X(L(K)) > X(K) (that means all points

of X(L(K)) is on the right of X(K)). We have X(L2p(K)) = [αp(αpx1)−s0, α
p(αpx2)−s0].

The assumption x2 < αpx1 ⇒ αpx2 < αp(αpx1)− s0 ⇒ X(L2p(K)) > X(Lp(K)). With the

same reason, we can prove X(Lm(K)) < X(Ln(K)) for m < n. Similarly, if we assume at

the beginning that x1 > αpx2, we can prove X(Lm(K)) < X(Ln(K)) for m < n. In both

case, we have Lnp(K) ∩ Lmp(K) = ∅ for m 6= n ∈ N ∪ {0}.

Definition 6.1.4. Let S be any Riemann surface, The map λ : [0, 1] → S is called an C1

arc on S if λ is C1 and injective.

Now we will give a lemma which is very useful in proof of Proposition 6.1.1, a C1 arc λ

can be written as λ(t) = x(t) + y(t)τ, (t ∈ [0, 1]).

Lemma 6.1.5. Suppose λ ∈ C is an C1arc which is parameterized by x, that is λ =

x + y(x)τ (x1 ≤ x ≤ x2). Set z1 = λ(x1), z2 = λ(x2). Then there is a sequence integers
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{nj} such that <τ
(
Lnj (z2 − z1)

)
→ ∞, arg(αnj ) → 0+ and Lnj (λ) = x + ynj (x)τ for

<τ (Lnj (z1)) ≤ x ≤ <τ (Lnj (z2)).

Proof. • If α is an integer, the lemma is correct by choosing nj = j.

• If α is not an integer and arg(α) is a rational number, then there exists an integer k

such that αk is an integer. By choosing nj = kj, the lemma is correct.

• If α is not an integer and arg(α) is an irrational number, then the set {arg(αn)
∣∣n ∈

N} is density on S1. It follows there exists a sequence of integers {nj} such that

arg(αnj )→ 0 as j → 0. Set τ = τx + τyi, arg(α) = θ and

λnj := Lnj (λ) = {αnjz
∣∣z ∈ λ} = xnj (x) + ynj (x)τ (x1 ≤ x ≤ x2)

By simple computation, we obtain the concrete parameter expression of λnj as


xnj =

|α|nj
τy

[
cos(2πnjθ)τyx− sin(2πnjθ)(y(x)|τ |2 + τxx)

]
ynj =

|α|nj
τy

[
cos(2πnjθ)τyy(x) + sin(2πnjθ)(x+ y(x))τx

] (x1 ≤ x ≤ x2).

Since λ is an C1 arc, it follows that

dxnj
dx

=
|α|nj
τy

[
cos(2πnjθ)τy − sin(2πnjθ)(y

′(x)|τ |2 + τx)
]

Note that y′(x) is bounded for x1 ≤ x ≤ x2 and τy > 0, so we can choose a subseqence

of {nj}, denoted also by {nj} for simplicity such that
dxnj
dx

> 0 (x1 ≤ x ≤ x2). Then

x can be expressed as the function of xnj :

x = x(xnj ) <τ (Lnj (z1)) ≤ xnj ≤ <τ (Lnj (z2)). (6.1.1)

Substitution refformula into ynj (x), then the arc λnj can be parameterized by xnj as

λnj = xnj + ynj (x(xnj )), <τ (Lnj (z1)) ≤ xnj ≤ <τ (Lnj (z2))
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Proposition 6.1.6. If λ is an wandering C1arc under L, then λ must contains a segment

of line.

Proof. In fact, we will show that if λ is a arc that doesn’t contain any segment of line, then

there exists integer N such that L◦N (λ) intersects itself transversally.

Let λ(t) = x(t) + y(t)τ be a C1 arc on Tτ that doesn’t contain any segment of line.

If x′(t) = 0 for all t ∈ [0, 1], then λ is a line segment with direction τ . So there exists

t0 ∈ [0, 1] such that x′(t0) 6= 0. We can assume x′(t0) > 0 (otherwise we can change

the direction of parameter). By the Inverse Function Theorem, locally, we have t = t(x)

(x0− ε ≤ x ≤ x0 + ε, t(x0) = t0) and then y = y(t(x)) for x0− ε ≤ x ≤ x0 + ε. So there is a

sub-arc λ0 of λ that can be parameterized by x, that is λ0 = x+y(t(x))τ, x ∈ [x0−ε, x0 +ε].

Lift λ0 ⊂ Tτ to a arc λ̃0 ⊂ C. By Lemma 6.1.5, there exists n0 such that

1. Ln0(λ̃0) can be parameterized by x;

2. Under the translation, Ln0(λ̃0) intersects with two lines τR and 1 + τR at z1 and z2.

Without loss of generalization, we can assume =τz1 ≤ =τz2 and =τz1 ∈ [0, 1).

Now we denote by λ̃(x) = x+ y(x)τ (x ∈ [0, 1]) the sub-arc of Ln0(λ̃0) between τR and

1 + τR. Note that y(1) ≥ y(0). The projection of λ̃ to Tτ is also denoted by λ. Since λ̃

contains no segment, there exist minimal integer p, q such that p/2q + y(p/2q)τ 6∈ [z1, z2].

Without loss of generalization, we can assume this point is 1/2 + y(1/2)τ and above on the

segment [z1, z2]. Then we have

(y(1/2)− y(0))− (y(1)− y(1/2)) = ε0 > 0.

We choose a sequence integers {nj} as that in the proof of Lemma 6.1.5, then we have

• e2πnjθi → 1+ as j →∞, where α = |α|e2πθi;

• λ̃nj := L̃nj is parameterized by x as λ̃nj = x+ ynj (x), <τ (αnjz1) ≤ x ≤ <τ (αnjz2).

In the following, we will define three sequence of points {anj}, {bnj , } and {cnj}.
Define a′nj = τR ∩ λ̃nj = ynj (0)τ .

Since L is holomorphic on Tτ , we have

α

 1

τ

 = A

 1

τ

 for some A =

 d1,1 d2,1

d3,1 d4,1

 ∈ GL(2,Z)
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Set Anj =

 d1,nj d2,nj

d3,nj d4,nj

. Denote by m the minimal positive integer such that λ̃ belongs

to the parallelogram generated by 1 and mτ . Then

αnj (1 +mτ) = αnj (1,m)

 1

τ

 = (d1,nj +md3,nj , d2,nj +md4,nj )

 1

τ


Define

b′nj =


(d1,nj +md3,nj + τR) ∩ λ̃nj = d1,nj +md3,nj + ynj (d1,nj +md3,nj )τ if d1,nj +md3,nj is odd

(d1,nj +md3,nj − 1 + τR) ∩ λ̃nj = d1,nj +md3,nj − 1 + ynj (d1,nj +md3,nj − 1)τ otherwise

c′nj =
xb′nj

2
+ ynj

(xb′nj
2

)
.

Define

anj = L̃−nj (a′nj ) ∩ λ̃ = xanj + yanj τ

bnj = L̃−nj (b′nj ) ∩ λ̃ = xbnj + ybnj τ

cnj = L̃−nj (c′nj ) ∩ λ̃ = xcnj + ycnj τ

It is easy to see that xanj → 0 and xbnj → 1 as j →∞.

We have defined {anj}, {bnj}, {cnj}, λ̃nj , λnj
Since λ is wandering under L, the arc λnj doesn’t intersect itself. It follows that for any

j ≥ 1

arg( c′nj − (a′nj + τ) ) < arg(b′nj − c′nj ) < arg(c′nj + τ − a′nj )

⇐⇒ arg( αnjcnj − (αnjanj + τ) ) < arg(αnjbnj − αnjcnj ) < arg(αnjcnj + τ − αnjanj )

⇐⇒ argαnj + arg( cnj − (anj +
τ

αnj
) ) < argαnj + arg(bnj − cnj ) < argαnj + arg(cnj +

τ

αnj
− anj )

⇐⇒ arg( cnj − (anj +
τ

αnj
) ) < arg(bnj − cnj ) < arg(cnj +

τ

αnj
− anj )

As j →∞, it is easy to see that anj → z1, bnj → z2, <τ (cnj ) = (<τanj + <τ bnj )/2→ 1/2

and then cnj → 1/2 + y(1/2)τ =: c0. Let j →∞, we have

arg(c0 − z1) ≤ arg(z2 − c0) ≤ arg(c0 − z1)
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It implies that c0 is on the line segment [z1, z2]. With the same reason, we conclude that

for any q ≥ 1 and 1 ≤ p ≤ 2q, the point p/2q + y(p/2q)τ belongs to the segment [z1, z2]. It

follows λ = [z1, z2].

Proof of Theorem 6.1.1. It follows directly from Lemma 6.1.3 and Proposition 6.1.6.

6.2 Wandering arc of rational map with parabolic orbiford

In this section, we prove Theorem ?? with the help of Proposition 6.1.1

Let f be a rational map with parabolic orbiford, Lf : Tτ −→ Tτ be the lift of f . Recall

the two projections:

π : C −→ Tτ and ℘f : Tτ −→ Ĉ

Denote by C(℘f ) the set of critical points of ℘f . The composition map ℘f ◦ π : C −→ Ĉ

is a branched covering with the set of critical point C̃(℘f ) = π−1(C(℘f )). The Deck

transformation group of ℘f ◦ π is

Hn =

〈 γ1 : z → z + 1

γ2 : z → z + τ

ρn : z → e
2πi
n (z − z0) + z0

∣∣∣∣∣ ρn〈γ1, γ2〉 = 〈γ1, γ2〉ρn
〉

where n is determined by the signature of f .

Lemma 6.2.1. Let l ⊂ C\C̃(℘f ) be line with irrational slop. Then the map ℘f ◦π : l −→ Ĉ

is injective if and only if f is a Lattes map.

Proof. A little thought shows that If ℘f ◦ π : l −→ Ĉ is injective, then the orbit of l under

the group Gf = 〈ρn〉 is pairwise disjoint. It is only possible for some lines as n = 2. On the

other hand, when f is a Lattes map (n = 2), for any l ⊂ C \ C̃(℘f ) with irrational slop, we

have π(l) ∩ π(−l) = ∅ (otherwise l must pass through the points in C̃(℘f )). It follows the

map ℘f : π(±l) −→ Ĉ are all injective, then ℘f ◦ π : l −→ Ĉ is injective.

Remark 6.2.2. Let l be a line in C, f be a Lattes map, the following result is easy to check:

1. As the same as Definition 6.1.2, we can define the set ℘f ◦ π(l) preperiodic or wan-

dering under f and also define a segment in Ĉ and a short segment of f .
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2. The map ℘f : π(l) −→ Ĉ is injective⇐⇒ π(l) ∩ C(℘f ) = ∅ ⇐⇒ π(l) ∩ π(−l) = ∅.

3. If π(l) ∩ C(℘f ) = ∅ and the orbit of π(l) contains the line π(−l), then π(l) has the

period 2k (k ∈ N) under Lf . In this case, the line ℘f ◦ π(l) is k periodic under f .

4. In the case π(l)∩C(℘f ) 6= ∅. If l has a rational slop, the curve π(l) contains 2 points

of C(℘f ) and the image ℘f (π(l)) is a segment obtained by folding π(l) at the two points

of C(℘f ) ∩ π(l). If l has an irrational slop, the line π(l) contains 1 points of C(℘f )

and the image ℘f (π(l)) is a ray obtained by folding π(l) at the point of C(℘f ) ∩ π(l).

Proof of Theory ??. Let f be a rational map with parabolic orbiford, Lf : Tτ
z 7→αz−→ Tτ

be the lift of f and the Deck transformation group of ℘ ◦ π be n.

“⇒”. Suppose K is a full C1 wandering arc under f , then K ∩ Pf = ∅. It follows that

℘−1
f (K) is consisting of n pairwise disjoint full C1 arc on Tτ and ℘−1

f (K) is wandering under

Lf . By Proposition 6.1.1, the number α is an integer and each component of ℘−1
f (K) is a

short segment with irrational slop on Tτ . For any component K̃ of ℘−1
f (K), if f is not a

Lattes map, Lemma 6.2.1 shows that there exists a sufficient large positive integer j0 such

that ℘f (Lj0f (K̃)) intersects by itself, then f j0(K) intersects by itself. So f must be a flexible

Lattes map. By the wandering of ℘−1
f (K) and the definition of short segment in Ĉ, K must

be a short segment.

“⇐”. Let K be a short segment of a flexible Lattes map f . The definition of a short

segment in Ĉ and Remark 6.2.2 show that the two components of ℘f (K) are all short

segment of Lf in Tτ and ℘−1
f (K) is wandering under Lf . It follows K is wandering under

f .

6.3 Stable multicurve for rational map with parabolic orb-

iford

The objective here is to prove Theorem ??. Firstly, we study the stable multicurve on torus

and then use this result to prove the main theorem. All notation is the same as before.

Note that π(1), π(τ) are simple closed curve on Tτ and they are the generators of

the fundamental group of Tτ . With an abuse of the notations, we also use1, τ to denote
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these two curves. Then any simple closed curve γ ⊂ Tτ is homotopic to p + qτ for some

p, q ∈ Z, gcd(p, q) = 1 (greatest common divisor).

Lemma 6.3.1. Let L(z) = αz( mod Λτ ) be a holomorphic self map on Tτ and γ be a simple

closed curve on Tτ . Then the curves in  L−1(γ) are pairwise homotopic. The degrees of the

restriction of L on these curves are the same. The curves in  L−1(γ) are homotopic to γ if

and only if α is an integer.

Proof. The map L is holomorphic if and only if

α

 1

τ

 = A

 1

τ

 for some A =

 a11 a12

a21 a22

 ∈ GL(2,Z) (6.3.1)

If α is an integer, then A =

 α

α

, otherwise the eigenvalue of A are conjugate complex

numbers α, α.

Let γ be a simple closed curve homotopic to p+qτ on Tτ , then any connected components

of L−1(γ) is a simple closed curve. Choose one curve γ1 in L−1(γ). Suppose γ1 is homotopic

to s+ tτ and deg(L
∣∣
γ1

)=k. We have

sα+ tατ = k(p+ qτ) gcd(s, t, k) = 1. (6.3.2)

Substitution 6.3.1 into 6.3.2, we obtain

AT

 s

t

 = k

 p

q

 (6.3.3)

where AT is the transposition of A. It follows

 s

t

 =
k

|detA|

 a22 −a21

−a12 a11

 p

q

 =
k

a11a22 − a12a21

 a22p− a21q

−a12p+ a11q


Set ∆ = gcd(a11a22 − a12a21, a22p− a21q,−a12p+ a11q), we have

k =
a11a22 − a12a21

∆
, s =

a22p− a21q

∆
, t =

−a12p+ a11q

∆
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It deduce that k, s, t is only determined by the map L and the homotopic class of γ. So

all curves in L−1(γ) are pairwise homotopic and we can use dr to denote the degree of the

restriction of L to any curve in L−1(γ).

By Equation 6.3.3, the curve γ is stable on Tτ ⇐⇒ γ1 is homopotic to γ ⇐⇒ dr (i.e

k) is an eigenvalue of AT and (p, q)T is an eigenvector corresponding to dr ⇐⇒ α = dr.

Proof of Theorem ??. Let f : Ĉ −→ Ĉ be a Lattes map. By Theorem 2.3.3, the map

℘f : Tτ −→ Ĉ is a branched covering of degree 2 satisfying ℘f (z) = ℘f (−z). This map has

4 simple critical points. The set of critical points of ℘f is denoted by C(℘f ) and the set of

critical values of this map is Pf . For any non-peripheral simple closed curve γ ⊂ Ĉ \ Pf ,

each component of Ĉ \ γ contains two points of Pf . We claim that ℘−1(γ) is consisting of

two simple closed curves γ̃, γ̃′ ⊂ Tτ \ C(℘f ), these two curves are homotopic in Tτ and the

restriction of ℘f on either of the two curves is a homeomorphism to γ.

Proof of Claim 1: If ℘−1(γ) contains only one curve γ̃, then γ̃ must be trivial on Tτ

and deg(℘f
∣∣
γ̃
)=2. The restriction of ℘f on each component of Tτ \ C(℘f ) is a branched

covering of degree 2 to one component of Ĉ \ γ. By the Riemann-Hurwitz formula, the

simply connected component of Tτ contains 1 point of C(℘f ), so its image contains only

one point of Pf , contradiction to non-peripheral of γ. It follows ℘−1(γ){γ̃, γ̃′} and the

restriction of ℘f on γ̃ or γ̃′ is a homeomorphism to γ. With a similar reason as above,

neither γ̃ nor γ̃′ is trivial on Tτ , so γ̃ ∩ γ̃′ = ∅ ⇒ γ̃ and γ̃′ are homortopic on Tτ . Then the

two components of Tτ \ {γ̃ ∪ γ̃′} are both annulus. The rest of the Claim follows directly

from the Riemann-Hurwitz formula. This end the proof of the Claim.

Following the notation in Lemma 6.3.1, denoted by dγ the degree of the restriction of L

from a curve of L−1(γ̃) to γ̃. By Lemma 6.3.1, L−1(γ̃ ∪ γ̃′) is consisting of 2|α|2/dγ simple

closed curves on Tτ \C(℘f ) and they are pairwise homotopic in Tτ . These curve divide Tτ

into 2|α|2/dγ annuluses. According to the commutative graph in Theorem ??, any such a

annulus is a degree 1 or 2 branched covering under ℘f to a component of Ĉ \ f−1(γ). The

Riemann-Hurwitz fomula implies that each annulus contains 2 or no points of C(℘f ), then

there are exactly 2 annulus in Tτ \ L−1(γ̃ ∪ γ̃′), denoted by A0, Ar (r = |α|2/dr), which

contains 2 points of C(℘f ) each. Set U0 = ℘f (A0), Ur = ℘f (Ar). We have U0, Ur are

simply connected, #U0 ∩ Pf = #Ur ∩ Pf = 2 and deg(℘f
∣∣
A0

)=deg(℘f
∣∣
Ar

)=2. The other

components of Ĉ \ f−1(γ) are all annuluses disjointed with Pf . So the curves in f−1(γ) are
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pairwise homotopic in Ĉ \ Pf (see Figure).

Since ℘f : Tτ \ C(℘f ) −→ Ĉ \ Pf is a covering, the curve γ is stable under f ⇒ there

exists a curve in L−1(γ̃ ∩ γ̃′) which is homotopic to γ̃ or γ̃′ on Tτ \ C(℘f )⇒ there exists a

curve in L−1(γ̃ ∩ γ̃′) which is homotopic to γ̃ or γ̃′ on Tτ
Lemma6.3.1

=⇒ α is an integer (i.e f is

a flexible Lettes map).

Now we are left to prove that any non-peripheral simple closed curve is stable under a

flexible Lattes map f . We consider a class of special simple closed curves on Ĉ\Pf : for any

p, q ∈ Z, gcd(p, q) = 1, let l be a long in C \ π−1(C(℘f )) with slop kl = q/p. Define γ̃ =

π(l), γ̃′ = π(−l), then γ̃, γ̃′ are homotopic simple closed curve in Tτ and γ̃∩γ̃′ = ∅. It follows

℘f (γ̃) = ℘f (γ′)
4
= γ and the restriction of ℘f from either γ̃ or γ̃′ to γ is a homeomorphism.

A simple argument by Riemann-Hurwitz fomula shows that γ is a non-peripheral curve on

T \ Ĉ. In fact, the homotopic class of such γ is independent of the choosing of l. To prove

this, let l′ be another line with the same properties as l, δ̃ = π(l′), δ̃′ = π(l′). Suppose δ̃

doesn’t coincide with γ̃ and γ̃′ (it is equivalent to (δ̃ ∪ δ̃′)∩ (γ̃ ∪ γ̃′) = ∅), we claim that δ̃ is

homotopic to either γ̃ or γ̃′ on Tτ \ C(℘f ). It follows that δ is homotopic to γ on Ĉ \ Pf ,

so we define such kind of simple closed curve in Ĉ by γp,q. It is easy to see that γp,q is not

homotopic to γp′,q′ for (p, q) 6= (p′, q′).

Proof of Claim 2: Denote by A0, A1 the two annulus of Tτ (γ̃ ∪ γ̃′). By Claim 1, the

annulus Ai (i = 0, 1) contains 2 points of C(℘f ). Since δ̃ is disjoint from γ̃ ∪ γ̃′, we can

assume δ̃ ⊂ A0. If δ̃ is homotopic to neither γ̃ or γ̃′, then δ̃ must separate the points of

C(℘f )∩A0 (that is each of the two components A0\ δ̃ contains a point of C(℘f )∩A0). Since

the restriction of ℘f from A0 to a component of Ĉ is a branched covering of degree 2, the

curve δ (the image of δ̃ under ℘f ) must intersect by itself (see Figure). It is a contradiction.

Let f be a flexible Lattes map, the lift L(z) = mz(modΛτ ) By Lemma 6.3.1 and a

similar argument as proof of Claim 2, we can show that γ̃p,q is homotopic to a curve in

L−1(γ̃p,q ∪ γ̃′p,q) on Tτ \ C(℘f ). It follows that γp,q is homotopic to a curve f−1(γp,q) on

Ĉ Pf , that is, γp,q is stable.

Proposition 2.6 in [FM] says that {γp,q
∣∣p, q ∈ Z, gcd(p, q) = 1} are ?? of the homotopy

classed of non-peripheral simple closed curves in Ĉ Pf . So for any non-peripheral simple

closed curve γ ⊂ Ĉ \ Pf , we can choose γp,q homotopic to γ in Ĉ \ Pf . The stability of γp,q

deduces the stability of γ.
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(Deuxième partie), 1985.

[DH2] A. Douady and John Hubbard, A proof of Thurston’s topological characterization

of rational functions. Acta Math. 171 (1993), no. 2. 263-297

[Do] A. Douady, Topological entropy of unimodal maps: monotonicity for quadratic

polynomials, in Real and complex dynamical systems, NATO Adv. Sci. Inst. Ser.

C Math. Phys. Sci. 464, 65-87, Kluwer, Dordrecht, 1995.

155



[E] AL Epstein,Infinitesimal Thurston rigidity and the fatou-Shishikura inequality,

Stony Brook IMS Preprint 1999-1.

[FM] Benson Farb and Dan Margalit, A primer on mapping class groups Version 5.0,

PRINCETON UNIVERSITY PRESS.

[Fu] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in

Diophantine approximation, Math. Systems Theory 1 (1967), 1-49.

[G] Phillip A. Griffiths, Introduction to algebraic curves, Translations of mathematical

monographs, Volume 76.

[GO] Yan Gao and YaFei Ou, The dynatomic curve for polynomial z 7→ zd + c is smooth

and irreducible, accept by Chinese Science of Mathematics.

[H] Note on the deck transformations group and the monodromy group, Topological

Methods In Nonlinear Analysis, Journal of the Juliusz Schaunder Center, Volume

19, 2002, 237-256.

[K] J. Kiwi, Real laminations and the topological dynamics of complex polynomials,

Adv. in Math., 184 (2004), 207-267.

[KM] K.C.Lyndon, M.P.Schutzenberger, On the equation aM = bNcP is a free group,

Michigan Math. J, (1962) 289-298

[LS] E. Lau and D. Schleicher, Internal addresses in the Mandelbrot set and irreducibility

of polynomials, Stony Brook Preprint 19, 1994.

[L] G. Levin, On explicit connections between dynamical and parameter spaces, Journal

d’Analyse Mathematique, 91 (2003), 297-327.

[Mc] McMullen Complex Dynamics and Renormalization, Annals of Mathematics Stud-

ies, Number 135. Princeton University Press 1994.

[Mil1] J. Milnor, Periodic orbits, extenal rays and the Mantelbrot set: an expository ac-

count.

[Mil2] John. Milnor, Dynamics in One Complex Variable, Princeton University Press 2006.

156



[Mil3] John. Milnor, On Lattes Map, Dynamics on the Riemann Spheres, a Bodil Branner

festschrift, pp. 9-43.

[Mo] P. Morton, On certain algebraic curves related to polynomial maps. Compositio

Math. 103 (1996), no. 3, 319-350.

[MT] J. Milnor and W. Thurston, On iterated maps of the interval, Springer Lecture

Notes 1342 (1988), 465-563.

[Pil] K. Pilgrim, Combinations of complex dynamical systems. Springer Lecture Notes

in Mathematics No. 1827, 2003.

[Poi1] Alfredo Poirier, On Post Critically Finite Polynomials, Part One: Critical Portraits,

arXiv:math/9305207v1 [math.DS] 15 May 1993.

[Poi2] Alfredo Poirier, On Post Critically Finite Polynomials Part Two: Hubbard Trees.

[PR] C. L. Petersen and G. Ryd, Convergence of rational rays in parameter- spaces, in

‘The Mandelbrotset, Theme and Variations. edited by Tan Lei, London Mathemat-

ical Society, Lecture Note Series 274. Cambridge University Press 2000.

[Sch] D. Schleicher, Internal addresses of the Mandelbrot set and Galois groups of poly-

nomials, arxiv:math/9411238v2, feb. 2008.

[Sil] Silverman, The Arithmetic of Dynamical Systems, GTM 241.

[T] L. Tan, Matings of quadratic polynomials, Erg. Th. and Dyn. Sys., 12 (1992), 589-

620.

[Th] W.Thurston, On the Geometry and Dynamics of Iterated Rational Maps, in Com-

plex dynamics, families and friends, ed. D. Schleicher, A.K. Peters. 2009.

157







Thèse de Doctorat

YAN GAO
Dynatomic curve and core entropy for iteration of polynomia ls
Courbes dynatomiques et entiropie noyau de polynômes itérés

Résumé
Lorsqu’on étudie les systèmes dynamiques engendrés
par une famille de polynômes, il apparait naturellement
des courbes algébriques de type cyclotomique,
contenant des points périodiques ou prépériodiques.
Dans le cas périodique de la famille zd + c, le premier
chapitre de cette thèse montre, en collaboration avec
Ou, que ces courbes sont toutes lisses et
irréductibles, généralisant les résultats connus au cas
d=2. Dans le cas prépériodique de la même famille, le
deuxième chapitre de la thèse montre, contre tout
attendu, que ces courbes sont en général réductibles.
En plus, il y contient une caractérisation des
composantes irréductibles ainsi que leur relation
géométrique et analytique.
Le deuxième thème de cette thèse concerne un
nouveau sujet développé par W. Thurston, il s’agit
d’entropie noyau des polynômes. Thurston a donné un
algorithme, sans preuve, pour calculer ces entropies.
La thèse contient une preuve rigoureuse de cet
algorithme ainsi que des nouvelles méthodes pour
étudier la variation de ces entropies en jonglant
plusieurs points de vue.
Le dernier thème de cette thèse donne une condition
nécessaire et suffisante pour qu’une fraction
rationnelle possède un compact errant plein dans son
ensemble de Julia. On savait que dans le cas
particulier des polynômes ce genre de compact ne
pouvait pas du tout exister.

Abstract
When studying dynamical systems generated by a
family of polynomials, it arises naturally cyclotomic
type algebraic curves containing periodic or
preperiodic points. In the periodic case of the family
fc(z) = zd + c, the first chapter of this thesis shows
that all these curves are smooth and irreducible,
generalizing the known results to the case d = 2. In the
preperiodic case of the same family, the second
chapter of this thesis shows, against all expected that
these curves are in general reducible. In addition,
there contains a characterization of irreducible
components and their analytical and geometrical
relationship.
The second theme of this thesis a new topic
developed by W. Thurston, it is core entropy of
polynomials. Thurston gave an algorithm, without
proof, for compute these entropies. The thesis
contains a rigorous proof of this algorithm and new
methods to study the variation of these entropies from
several views.
The last topic of this thesis gives a necessary and
sufficient condition for a kind of rational map having a
C1-arc in its Julia set.

Mots clés
courbes dynatomiques, courbes irréductibles, itération
des fractions rationnelles, entropie topologique,
compact errant, ensemble de Julia.

Key Words
dynatomic curves, irreducible, iteration of rational
functions, topological entropy, wandering continuum.
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