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Chapter 1

Introduction

This thesis is dedicated to the study of structural properties of graphs and how they can be used to aid the design of efficient algorithms for problems arising in telecommunication networks. By structural properties, we mainly refer to properties that do not depend on the representation of the graph. Unfortunately, there is no common formal definition of a structural property of a graph. We can, however, illustrate this notion with some examples: one simple example structural property is the exclusion of cycles. That is, the family of graphs known as forests. Another important structural property is planarity, which gave rise to the notion of graph with bounded genus. In other words, graph structural properties are the ones that can be described by either excluding a pattern, for example forbidding the graph to have some other graph as minor or as a subgraph, or by enforcing the graph to have some underlying structure, for example be embeddable into a given surface, have some bounded parameter, or being connected. Note that, the properties of being embeddable into a given surface and excluding some other graphs as minors are equivalent.

Since there are little hopes in finding polynomial time algorithms for hard problems such as NP-complete or PSPACE-complete problems. One possible alternative to tackle them is to study their hardness when the inputs are restricted to a certain class. That is, in the case of problems in graph theory, sometimes it is possible to solve, efficiently, hard problems for some graph classes. For example, while vertex colouring is NP-complete when the input graph is arbitrary, it becomes trivial in the class of bipartite graphs. In other words, knowing that the input graph does not have odd cycles, the problem of computing a proper colouring with minimum number of colors becomes trivial. Another example can be found in the travelling salesman problem, that is, while this problem is APX-complete 1 for general graphs, it has a polynomial time approximation scheme when the graph is euclidean and planar.

Graph Decompositions

Graph decompositions are closely related to graph structural properties. Informally, a graph decomposition can be described as a family of subsets of vertices, or edges, of the graph that are organized in a particular manner. For example, in the tree decomposition [START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF], each subset in this family is a separator and the family is organized in a treelike manner. This decomposition allows us to prove properties or to run algorithms for general graphs using techniques somewhat similar to the ones used for trees. We give more details later in this section.

Another famous example of graph decomposition, the modular decomposition [START_REF] Gallai | Transitiv orientierbare graphen[END_REF], is based on the fact that maximal modules 2 of a graph can be organized into an hierarchical structure.

In general, the main purpose of graph decompositions is to split the graph into smaller pieces while some properties, depending on the decomposition used, are preserved. This can be of great help in order to apply techniques based on a divide and conquer paradigm.

One example of such technique is the dynamic programming method. This is a method for solving problems, by recursively breaking the problem one wants to solve into smaller sub-problems, solving each sub-problem and, then, combining up the solutions of these sub-problems. The key ingredients in dynamic programming are the existence of an efficient algorithm to combine the solutions for each of the sub-problems and a limit on the amount of different sub-problems.

To illustrate such method we show how to use dynamic programming to compute the maximum independent set 3 of a tree in polynomial time.

Let T = (V, E) be a tree and r ∈ V be any vertex of T . We root T in r. A maximum independent set of T either contains r, in which case it does not contain any children of r, or it does not contain r, in which case it can be obtained from the union of maximum independent sets for each subtree of T rooted on a child of r. The main idea is that we can combine the solutions for the maximum independent sets of subtrees rooted in each child of a given node i ∈ V to obtain a maximum independent set for the subtree rooted at i. The reason that these solutions can be combined is mainly due to the fact that they overlap only on a single vertex, the root of the subtree. Then, by combining the solutions for the children of r we have the maximum independent set of T .

There are plenty of other problems that can be approached by using dynamic programming "guided" by graph decompositions. For example, algorithms to solve the maximum independent set problem, the maximum dominating set problem and minimum vertex colouring problem were given in [AP89]. Without being extensive, there are also algorithms to solve the tour merging problem [CS03], the call routing problem [START_REF] Seymour | Call routing and the ratcatcher[END_REF] and the disjoint paths problem [START_REF] Robertson | Graph minors .xiii. the disjoint paths problem[END_REF]. In fact, every graph property definable in monadic secondorder logic can be decided in linear time on graphs of bounded tree-width [START_REF] Courcelle | The monadic second-order logic of graphs : Definable sets of finite graphs[END_REF]. Albeit the algorithms are, mostly, polynomial in the size of the input graph, they are exponential in a parameter of the decomposition of the graph used by the algorithm, namely, its width, which is, roughly speaking, the cardinality of the greatest subset of the family defining the decomposition. In other words, these algorithms are polynomial for classes of graphs which have a bounded width. Often, these algorithms are fixed parameter tractable (FPT) 4 where the parameter is the width of the graph. For example, outer-planar graphs have tree width equal two which is the minimum width among all their the tree decompositions.

Since many of the algorithms that use graph decompositions have either to be given the decomposition as input or to compute it, one of the main challenges on graph decompositions is computing a decomposition of a graph. Moreover, since the complexity of these algorithms, sometimes, depends on the width of the decomposition, it is important to compute a graph decomposition minimizing its width. Unfortunately, there are several graph decompositions in which finding such good decomposition is NP-hard. For example, finding a good tree decomposition [AP89], a good path decomposition [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF], a good branch decomposition [START_REF] Seymour | Call routing and the ratcatcher[END_REF], or a good linear decomposition [START_REF] Thilikos | Algorithms and obstructions for linear-width and related search parameters[END_REF] of a general graph is NP-hard. On the other hand, a modular decomposition of any graph can be found in linear time [START_REF] Tedder | Simpler linear-time modular decomposition via recursive factorizing permutations[END_REF].

Graph decompositions are not only important due to their relationship with dynamic programming methods to solve problems, but also as tools to prove important structural results in graph theory. As example, we can cite the crucial role of tree decompositions in the proof of Wagner's conjecture [RS04] as well the role of the modular decomposition in the proof of the strong perfect graph theorem [START_REF] Chudnovsky | The strong perfect graph theorem[END_REF]. Wagner's conjecture stated that the undirected graphs, partially ordered by the graph minor relationship, form a well quasi-ordering. Planarity, for example, is a structural property and can be characterized by a set of forbidden minors, which is also a consequence of the Wagner's conjecture. It is well known that graphs that are planar are exactly the ones that do not have neither K 3,3 , the complete bipartite graph with three vertices in each partition, nor K 5 , the complete graph with five vertices, as minors [START_REF] Kuratowski | Sur le probleme des courbes gauches en topologie[END_REF].

Due to their importance, one of our goals is to investigate the complexity of computing graph decompositions. In the literature, there are FPT-algorithms for computing tree, path, branch, linear, carving or cut decompositions of a graph where the parameter is the width of the decomposition. Most of these algorithms are based on the dynamic programming method, but with some technical differences. More precisely, we aim at investigating if it is possible to design an unified FPT-algorithm for computing all the aforementioned decompositions, while also including other graph decompositions that could benefit from such approach.

Pursuit-evasion Games

The second axis of our research, the pursuit-evasion games, is a collection of games played by two players, such that one that takes the role of a pursuer while the other takes the role of an evader. Pursuit-evasion games, often, have a close relationship with graph decompositions, which will be explained later in this section. In all these games, each player plays by moving, adding or removing tokens that are on vertices or edges of the graph. While most of the games share a similar set of rules on how these tokens are added, moved or removed and on how each of the players win the game, they can differ significantly.

A classical pursuit-evasion game is the one known as the Helicopter Search, or Node Search, defined in [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF]. In this game, cops and a robber occupy vertices of the graph. Both players, the cops and the robber, always know the other player's position. While the cops move by jumping from one vertex to the other in the graph, the robber moves by following paths free of cops. The objective of the cops is to capture the robber, by moving the size of the input and f (k) is an arbitrary function depending only on k.

to its current position while, at the same time, blocking its escape. The robber wins the game if it is able to avoid capture indefinitely. It is clear that n cops are sufficient to capture a robber on any graph of order n. If n cops are available, they win by occupying each vertex of the graph. For some graphs, this amount of cops can be rather excessive. For example, on any tree two cops are enough to guarantee the capture of the robber.

Hence, one main interest in these games is, usually, to determine the minimum amount of resources necessary to guarantee the victory for the pursuer, since it it usually trivial for a pursuer with unlimited resources to win against the evader. For example, in the case of the the Helicopter Search game, while n cops are able capture any robber in any graph of order n, two cops cannot guarantee the capture of a clever robber in a cycle. Unfortunately, answering computing the minimum amount of resources necessary to ensure the victory of the pursuer is a NP-hard problem for several pursuit-evasion games [KP86, MHG + 81, Thi00, GR95, FGP12] or even PSPACE-hard [START_REF] Mamino | On the computational complexity of a game of cops and robbers[END_REF].

These games have a wide variety of applications. Without being exhaustive, we mention some of them. One first example is the search for a deranged explorer in a maze of caves [START_REF] Parsons | Pursuit-evasion in a graph[END_REF]. This problem can be modelled as a pursuit-evasion game by considering the maze of caves as a graph, the deranged explorer as the evader and the searchers as the pursuers. This reasoning can also be used to model the problem of eliminating a virus from a computer network [START_REF] Alspach | Searching and sweeping graphs: a brief survey[END_REF], by considering the virus as the evader and "anti-virus programs" as the pursuers. A graph decomposition that can helps solving the problem of compact routing was designed with the help of a pursuit-evasion game [START_REF] Kosowski | k-chordal graphs: From cops and robber to compact routing via treewidth[END_REF]. Finally, we can also cite the Process game, which models the problem of routing reconfiguration in WDM networks [START_REF] Coudert | Rerouting requests in wdm networks[END_REF], and the Surveillance game, which models prefetching problems [FGJM + 12]. In particular, the Surveillance game was inspired by the problem of prefetching web-pages from the world wide web, in order to minimize the time a web-surfer waits for a web-page to be downloaded.

In addition to their applications, some pursuit-evasion games also have a close relationship with graph decompositions. For example, the minimum number of cops such that the cops can always guarantee the capture of a visible robber in the Helicopter Search game is equal to the tree-width of the graph plus one. This is mainly due to the monotonicity of some pursuit-evasion games. A pursuer playing monotonously is forbidden to put a token on a vertex of the graph after it has removed all its tokens from this vertex on a previous move. For example, in the Helicopter Search game, this means that once a cop leaves a vertex, no other cop can occupy this vertex for the remainder of the game. A pursuit-evasion game is said to be monotone if a pursuer playing in a monotone way does not need more resources to win against the evader than a pursuer without this constraint. For example, in the Helicopter Search game, k cops can capture the robber on a graph if, and only if, k cops playing monotonously can capture the robber on the same graph. Games that are monotone often have a close relationship with some graph decompositions [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF][START_REF] Seymour | Monotonicity in graph searching[END_REF][START_REF] Kirousis | Interval graphs and searching[END_REF]. This is due to (1) the equivalence between monotone strategies for the pursuer and the particular decomposition associated with the game and (2) the fact that restricting the game to be played only with monotone strategies does not increase the amount of resources necessary for the pursuer to win. In other words, monotone strategies for the pursuer are simply a different manner to represent a particular graph decomposition.

If, on the one hand, monotone games have often a close relationship with some particular graph decomposition, on the other hand, not all games are monotone. In particular, some pursuit-evasion games in directed graphs are not monotone [START_REF] Adler | Directed tree-width examples[END_REF][START_REF] Kreutzer | Digraph decompositions and monotonicity in digraph searching[END_REF], while other are [START_REF] Barát | Directed path-width and monotonicity in digraph searching[END_REF][START_REF] Yang | Directed searching digraphs: Monotonicity and complexity[END_REF].

In either cases, monotone strategies in pursuit-evasion games in directed graphs are often equivalent to some particular directed graph decomposition. One of the main challenges is to design graph decompositions for directed graphs that are as powerful as graph decompositions are to undirected graphs. Graph decompositions, to be considered "good", should have two main properties: (1) be algorithmically useful and (2) have nice structural properties, such as being closed under taking subdigraphs and some form of arc contractions [GHK + 10]. Unfortunately, non-monotone pursuit-evasion games are often associated with graph decompositions that are not closed under taking subdigraphs and some form of arc contractions.

Moreover, monotonicity provides a simple certificate to show that a pursuit-evasion problem is in NP, since a graph decomposition associated with the pursuit-evasion game can be the certificate, if it has a polynomial size.

We aim at investigating the property of monotonicity in the Process game and its relationship with directed graph decompositions. We are also interested in other pursuitevasion games related to problems in telecommunication networks such as the Surveillance Game. In particular, we aim at investigating the relationship between the Surveillance game and its connected version.

Convexity

In Euclidean spaces, a set S of points is convex if, for every a, b ∈ S, we have that all the points that lie on a straight line between a and b also belong to S. For example, all simple regular polygons are convex. Convexity allows us to describe infinite sets efficiently, or in a compact manner. For example, take any convex set S and let S ′ be the set of its vertices, then any point x in S can be described as a convex combination of points in S ′ and every convex combination of points in S ′ is a point in S. Hence, convex infinite sets can be represented by its set of vertices which, hopefully, is not infinite. The last axis of research studied in this thesis is the concept of convexity applied to graphs.

One classical example of the concept of convexity when applied to graphs is the geodetic convexity, or the shortest paths convexity. A subset S of the vertices of a graph is convex if all vertices in a shortest path between two elements of S also belong to S. A hull set S of a graph G = (V, E) is a subset S of V such that the minimum convex set S ′ that contains S is V , that is, S ′ = V . The (geodetic) hull number of a graph G = (V, E) is the minimum cardinality of a hull set of G.

The process to obtain a hull set of a graph can be seen as an iterative process as follows. Start with any subset S of vertices of the graph. Until no more vertices can be added to S, add to S the vertices of G that lie in any shortest path between any two vertices of S. S is a hull set of G if, and only if, at the end of this process, S is the vertex set of G.

One application related to graph convexities is the inference scheme in the normalization process of databases [START_REF] Kanté | Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs[END_REF]. If all functional dependencies, in a relational database, are of the type AB → C and these functional dependencies can be modelled as a graph where the vertex C is in the middle of a shortest path joining A to B, then every hull set of this graph is a candidate key5 for this database.

Another application related to graph convexities, namely the P 3 -convexity, is the spread of infection on a network [CDD + 10]. During the iterative process of obtaining a hull set in the P 3 -convexity, instead of adding vertices to S based on any shortest path, we only consider shortest paths of length 2. If we assume that the network is represented by a graph, then, in the spread of infection on a network, a node in the network becomes infected if at least two of its neighbours are infected. Therefore, the problem of knowing the minimum number of nodes of a network that are necessary and sufficient to infect all of its nodes is equivalent to computing the (P 3 )-hull number of the graph representing this network.

While the problem of computing the (geodetic) hull number of a graph is NP-hard [DGK + 09], for some particular well structured graphs, this problem can easily be solved. For example, there are algorithms to compute the hull number of a graph in polynomial time if the graph is either a cograph, a split graph, an unity interval graph [DGK + 09], a distance hereditary graph or a chordal graph [START_REF] Kanté | Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs[END_REF].

In this thesis, we aim at investigating how graph some structural properties of a graph affect the hardness of computing its hull number and how these properties can be used to obtain bounds for it. In particular, we investigate how some graph decompositions, such as the modular decomposition, can be used to aid in the computation of the hull number of some graphs.

Main Contributions and Outline

This thesis is divided in three parts. The first part, formed by Chapters 2, 3 and 4, studies some pursuit-evasion games, known as graph searching games, and graph decompositions. The second part of this thesis, formed by Chapters 5, 6 and 7, is dedicated to the study of turn-by-turn pursuit-evasion games. Lastly, the third part, formed by Chapters 8 and 9, studies the concept of convexity on graphs.

In Chapter 2, we deepen the study of some pursuit-evasion games, known as graph searching games, and graph decompositions, by formalizing these concepts and stating some of the most important results in this area.

Chapter 3 is dedicated to the study of a pursuit-evasion game known as the Process game. We first investigate the role of monotonicity in the Process game. We aim at answering how useful backtracking is in the problem of routing reconfiguration in WDM networks. We show that allowing recontamination does not help the searchers. In other words, we show that the Process game is monotone.

We also design a decomposition of the graph, the Process Decomposition, that is equivalent to monotone strategies for the Process game. Meaning that the problem of routing reconfiguration can be restated as the problem of computing a Process Decomposition. The results in Chapter 3 can be found in [START_REF] Nisse | On the monotonicity of process number[END_REF].

In Chapter 4, we proceed with the investigation of the problem of computing graph decompositions. We propose an unified FPT-algorithm to compute several graph decompositions (such as, tree decomposition, path decomposition, branch decomposition, linear decomposition, cut decomposition and carving decomposition). Moreover, this algorithm is the first to compute the special tree decomposition and any q-branched version of the aforementioned decompositions. This algorithm is based on the representation of these decompositions with partitioning functions and a dynamic programming approach based on an efficient representation of these partitioning functions.

The second part of this thesis starts with Chapter 5. In this chapter, we properly define turn-by-turn pursuit evasion games such as the cops and robbers game, the Angel Problem, the Eternal Dominating Set and the Eternal Vertex Cover, while also giving a brief survey about these games.

Then, in Chapter 6, we further investigate another pursuit-evasion game, related to prefetching problems, the Surveillance Game. This is a turn-by-turn game, where the pursuer plays by marking vertices of the graph and the evader plays by moving along at most one edge during its turn. The objective of the evader is to reach any vertex devoid of marks, while the pursuer wants to mark every vertex of the graph before the evader reaches any unmarked vertex. We define the Online variant of the Surveillance game, which models the problems of prefetching more realistically by imposing that the pursuer discovers the graph as the game progresses.

We continue by investigating the relationships between the "classical" Surveillance game, the Connected Surveillance game and the Online Surveillance game. More precisely, we aim at answering how big can be the gap between the number of marks per turn necessary to guarantee a victory for the observer between these games. We show that, unfortunately, the best online strategy is to mark neighbours of the evader's position at each step. For the connected variant, we improve known upper and lower bounds for this gap. Results in Chapter 6 can be found in [GMN + 13].

Then, in Chapter 7, we study general turn-by-turn pursuit-evasion games. We propose a framework to relax the constraint that tokens used by both players must be integral. In other words, we allow both players to move and use parts of a token. Pursuitevasion games that can be described using this framework includes, but is not limited to, several variants of the cops and robbers game, the Angel Problem game, the Eternal Dominating Set game and the Surveillance game. We aim at analysing the behaviour of such games when the integrality of the tokens for each player, or just for the pursuer, is relaxed.

We provide an algorithm to decide whether the pursuer has a winning strategy against the evader for any game that fit in this framework. This is achieved by considering the game as a convex game and applying linear programming techniques. These fractional games are also shown to give lower bounds to their integral versions. These lower bounds also allows us to develop the first approximability results for the Surveillance Game and the Angel Problem. Some results in Chapter 7 were presented in Algotel2013 [START_REF] Soares | Fractional combinatorial games on graphs[END_REF].

In the first chapter of the third part, Chapter 8, we give a brief survey on the concept of convexity when applied to graphs.

Then, in Chapter 9 we study the computational complexity of computing the hull number of a graph in an attempt to pinpoint where does the hardness of computing this parameter lies. We start by answering an open question in [DGK + 09] by showing that computing the hull number of a bipartite graph is NP-hard. We proceed to consider this question in other graph classes such as complement of bipartite graphs, (q, q -4)-graphs and {P 5 , K 3 }-free graphs. We propose polynomial algorithms to compute the hull number of any graph belonging to these classes. These algorithms are, usually, based on graph decompositions.

We also propose the first FPT-algorithm for computing the hull number of general graphs, where the parameter is either their minimum vertex cover or their neighbourhood diversity. Moreover, the techniques used to design this FPT-algorithm also allows us to characterize the hull number of the lexicographic products of graphs based on the hull number of its factors. The results in Chapter 9 are a compilation of the results found in [ACG + 11a], [AMS + 13] and [ACG + 11b].

Finally, in Chapter 10, we review the most important results in this thesis, while proposing directions for future work in these areas.

Basic Terminology

In this section, common definitions and notations of graph theory, necessary to properly understand this thesis, are recalled. For more definitions, we refer the reader to [START_REF] Bondy | Graph Theory[END_REF].

An undirected graph G = (V, E) is defined by a non-empty set, V (or V (G)) of elements called vertices, a set E (or E(G)) of edges and a function ρ G : E → (V × V ) that attributes a non-ordered pair of vertices of G to each edge in E. To simplify the notation, if e ∈ E and ρ G (e) = (u, v), then we write e = (u, v) or e = uv, in the case that there is no ambiguity. Two vertices u and v are adjacent or neighbours, if there exists an edge uv in E. The extremities of an edge uv ∈ E are u and v. If u and v are extremities of e, then e is incident to u and v. If uv ∈ E and u = v, we say that e is a loop. If there are more than two edges with the same extremities, we say that they are multiple edges. A graph G = (V, E) without loops or multiple edges and with finite V is called a simple graph. In this case, the function ρ G can be omitted from the description of the graph.

If the set of edges is formed by ordered pairs, we say that the graph is an oriented graph, a directed graph or, simply, a digraph.

The degree, d(v), of a vertex v is the number of edges that are incident to v, each loop being counted twice. The smallest (resp. biggest) degree of a vertex in G is denoted by δ(G) (resp. ∆(G)). The neighbourhood of a vertex v in G = (V, E) is the set

N (v) = {u | (u, v) ∈ E}. If S is a subset of V , then N (S) = v∈S N (v).
In a directed graph G = (V, E), the out-neighbourhood, N + (v), of a vertex v is given by {u | (v, u) ∈ E} and the in-neighbourhood, N -(v), of v is given by {u | (u, v) ∈ E}. The out-degree, d + (v), of a vertex v is given by d + (v) = |N + (v)|. Similarly, the in-degree, d -(v), of v is given by |N -(v)|.

A digraph G = (V, E) is symmetric, if for every edge (u, v) ∈ E there is an edge (v, u) ∈ E. The underlying graph of a directed graph G = (V, E) is the non-oriented graph G ′ = (V ′ , E ′ ) such that V ′ = V and E ′ = {(u, v) | u = v and either (u, v) ∈ E(G) or (v, u) ∈ E}.

Let G = (V, E) and G ′ = (V ′ , E ′ ) be two graphs. We say that A simple graph G = (V, E) is complete, if (u, v) ∈ E for all u, v ∈ V . For every n ≥ 1, K n denotes the complete graph with n vertices. A stable set, or independent set, is a subset V ′ of V such that there are no edges in G[V ′ ].

G ′ is a subgraph G, if V ′ ⊆ V and E ′ ⊆ E. If G ′ is a subgraph of G and V ′ = V , then we say that G ′ is a spanning subgraph of G. If V * is a subset of V , then G[V * ] = (V * , E * ), where E * = {(u, v) | u, v ∈ V * and (u, v) ∈ E}, is the subgraph of G induced by V * . Similarly, if E * is a subset of E, then G[E * ] = (V * , E * ), where V * = {v | (u, v) ∈ E * },
A simple path P = (v 1 , e 1 , v 2 , e 2 , . . . , e p-1 , v p ), in a graph G = (V, E), is an alternated sequence of vertices and edges of G with p ≥ 1 such that e i = (v i , v i+1 ), for all i ∈ [1, p-1], and no vertices nor edges are repeated in P . The length of a path P is the number of its edges. When G is a simple graph, P can be determined by its vertices. The extremities of a path P are its first and last vertices and all its other vertices are called internal. A cycle is defined in a similar manner to a path, with the exception that its extremities are adjacent. We say that G contains a P n (resp. C n ), if it contains a path (resp. cycle) of length n (resp. n -1) as subgraph.

In a graph G = (V, E), the distance, dist(u, v), between two vertices u and v is the minimum length of a path between u and v, when there are no paths between u and v, then dist(u, v) = ∞. The diameter of a graph G = (V, E) is given by max u,v∈V dist(u, v). The girth of a graph G = (V, E) is the minimum length of a cycle in G.

Two vertices u and v of G are said to be connected, if there is a path between u and v. A graph G is said to be connected, if all pairs of vertices are connected, that is, if diam(G) < ∞. A connected maximal subgraph of G is called a component of G.

To help the reader, more specific definitions will be given along the text as they become necessary.

Chapter 2

Pursuit-Evasion Games and Decompositions

In this chapter, we present some of the most important results concerning graph decompositions and pursuit-evasion games on graphs. We start by giving an overview on some graph decompositions, their applications and the hardness of computing graph decompositions. Then, we explain the relationship between some pursuit-evasion games, known as graph searching games, and graph decompositions. We finish this chapter by surveying motivations and hardness of problems related directed graph decompositions and pursuit-evasion games on directed graphs.

Graph Decompositions

As seen in Chapter 1, graph decompositions is a subject that has several of both algorithmic and theoretical applications. In this section, we give a brief survey on the computational complexity of computing graph decompositions for general graphs.

Tree/Path Decomposition

One of the most famous graph decomposition, due to its role in the graph minors theory developed by Robertson and Seymour [START_REF] Robertson | Graph minors. i. excluding a forest[END_REF]RS04] and its algorithmic applications, is the tree decomposition.

A tree decomposition (T, X ) of a graph G = (V, E) is a tree T together with a family X = (X t ) t∈V (T ) of subsets (or bags) of V , such that:

1. t∈V (T ) X t = V , 2. for any edge e = {u, v} ∈ E, there is t ∈ V (T ) such that u, v ∈ X t , and 3. for any v ∈ V , the vertices in S = {t | v ∈ X t } induce a subtree of T .

The width of (T, X ) is the value of max t∈V (T ) {|X t |} -1 and the tree width, tw(G), of a graph G is the minimum width among all its tree decompositions. Figure 2.1 shows an example of a tree decomposition of a graph.

If T is restricted to be a path, we say that (T, X ) is a path decomposition of G, and the path width, pw(G), of G is the minimum width among its path decompositions. One simple remark is that tw(G) ≤ pw(G), for any graph G, since any path decomposition of G is also a tree decomposition of G. On the other hand, in [START_REF] Bodlaender | A partial k-arboretum of graphs with bounded treewidth[END_REF], Bodlaender showed that pw(G) ≤ tw(G)O(log n) for any graph G of order n.

One of the main reasons to study tree and path decompositions is that many problems in graph theory which are NP-complete in general become tractable when restricted to graphs with bounded tree width. Typically, these algorithms are based on a dynamic programming approach guided by a given tree decomposition of the input graph with running time that is polynomial in size of the graph and, at least, exponential in the tree width of the given decomposition. Hence, if the family of graphs has tree width bounded by a constant, then these algorithms run in polynomial time for any graph of this family.

Most of these algorithms follow a similar pattern. In the case of algorithms guided by a tree decomposition, they are either given a tree decomposition (T, X ) of the graph as input or start by building a tree decomposition of the graph. Then, after choosing one vertex of the tree T as root, for each vertex v of the tree, let T v be the subtree of T induced by v and its children. These algorithms proceed to compute a table, for each v in T , representing solutions to the subgraph induced by the vertices in any bag of V (T v ). The solution of the problem, then, can be found by looking at the table of the root node.

By exploiting the fact that bags are separators of the input graph, the complexity of computing such tables are, often, polynomial (or even linear) in the number of vertices of the graph, but exponential on the width of the given tree decomposition or the tree decomposition constructed.

Thus, most of these algorithms are FPT where the parameter is either the tree width of the input graph, in the case the algorithm starts by computing the tree decomposition, or the tree width given as input to the algorithm. There are several problems that can be solved by this method such as the Hamiltonian circuit, the maximum independent set, the minimum dominating set problem or minimum vertex colouring problem [AP89].

In fact, a well celebrate result of Courcelle states that all problems which can be formulated in Monadic Second Order Logic (MSOL) can be solved in linear time on graphs of bounded tree width [START_REF] Courcelle | The monadic second-order logic of graphs : Definable sets of finite graphs[END_REF].

Thus, an important challenge consists in computing tree decompositions of graphs that have small widths. Unfortunately, deciding if tw(G) ≤ k [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF] and if pw(G) ≤ k [OMK + 79] are NP-complete problems.

If, on the one hand, the problem of deciding if tw(G) ≤ k or if pw(G) ≤ k is hard, on the other hand, in their seminal work on graph minors [RS83, RS04], Robertson and Seymour give a non-constructive proof of the existence of a O(n2 ) decision algorithm for the problems of deciding whether a graph belongs to some minor-closed class of graphs. An immediate consequence of this is the existence of polynomial time algorithms for deciding whether a graph has tree width or path width at most k, where k is a fixed parameter.

Bodlaender and Kloks [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF] proposed a FPT-algorithm to compute a tree decomposition or a path decomposition of a graph G with width tw(G) or pw(G) respectively. This algorithm is based on a dynamic programming approach from a tree decomposition of the input graph and runs in linear time on its number of vertices. However, its complexity is a function more than exponential1 on the tree width of the input graph and the width of the given tree decomposition. Due to this more than exponential function, this algorithm is rather impractical even for very small values of k.

Therefore, great efforts have been made to design good approximation algorithms for computing tree decompositions of small width [START_REF] Bodlaender | Approximating treewidth, pathwidth, frontsize, and shortest elimination tree[END_REF][START_REF] Kloks | Treewidth: Computations and Approximations[END_REF]. In particular, Feige et al. proposes a polynomial time algorithm that constructs a tree decomposition of the input graph with width O tw(G) log tw(G) [START_REF] Feige | Improved approximation algorithms for minimum-weight vertex separators[END_REF].

Special and q-branched Tree Decompositions

One of the consequences of the aforementioned result of Courcelle [START_REF] Courcelle | The monadic second-order logic of graphs : Definable sets of finite graphs[END_REF] is that there are finite deterministic automatas for checking monadic second-order sentences on graphs. However, these automatas have size hyper-exponential on the tree width of the graph.

Then, in an attempt to reduce the size of these automatas, the special tree decomposition was introduced by Courcelle in [START_REF] Courcelle | Special tree-width and the verification of monadic second-order graph properties[END_REF]. Special tree decompositions can be seen roughly as a mid-ground between path decompositions and tree decompositions.

Formally, the special tree decomposition (T, X ) of a graph G = (V, E) is a rooted directed tree 2 T together with a family X = (X t ) t∈V (T ) of subsets (or bags) of V , such that:

1. t∈V (T ) X t = V , 2. for any edge e = {u, v} ∈ E, there is t ∈ V (T ) such that u, v ∈ X t , and 3. for any v ∈ V , the vertices in S = {t | v ∈ X t } induce a directed path in T .

The width of (T, X ) is the value of max t∈V (T ) {|X t |} -1 and the special tree width, stw(G), of a graph G is the minimum width among all its special tree decompositions. Figure 2.2 shows an example of a special tree decomposition of a graph.

A simple remark is that tw(G) ≤ stw(G) ≤ pw(G), since any path decomposition can be transformed into a special tree decomposition with same width, and any special tree decomposition can be transformed into a tree decomposition with the same width.

The problem of deciding if stw(G) ≤ k is NP-complete, since, for any co-bipartite graph G, pw(G) = stw(G) = tw(G) [START_REF] Möhring | Triangulating graphs without asteroidal triples[END_REF] and deciding if tw(G) ≤ k is NP-complete [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF]. On the other hand, from the fact that the class of graphs with special tree width at most an integer k is minor-closed, there exists a FPT algorithm to compute stw(G) for any graph G, where the parameter is stw(G). Figure 2.2: An example of a special tree decomposition of a graph. Vertices of the directed tree and its corresponding set are represented by rectangles. Since the bag of the root has size four, the width of this decomposition is three.

Another variant of the tree decomposition, the q-branched tree decomposition, was introduced by Fomin et al. [START_REF] Fomin | Nondeterministic graph searching: From pathwidth to treewidth[END_REF]. This decomposition encompasses both path decompositions and tree decompositions as it will be latter explained in this section.

A node of a tree is said to be a branching node if it has degree at least three. A rooted tree T , with root r, is said to be q-branched if there are at most q branching nodes in each path between r and a leaf of T . A tree decomposition (T, X ) of a graph G is said to be q-branched if T is q-branched. Then, the q-branched tree width tw q (G) of a graph G is the minimum width of all its q-branched tree decompositions.

The concept of q-branched tree decomposition encompasses both the concept of path decomposition and tree decompositions. Path decomposition are exactly the 0-branched tree decompositions, while tree decompositions are ∞-branched tree decompositions. Therefore, tw 0 (G) = pw(G) and tw ∞ (G) = tw(G).

The hardness of deciding if a graph G has tw q (G) ≤ k is at least the same of deciding if a graph G has tw 0 (G) ≤ k or if tw ∞ (G) ≤ k, which are both NP-complete. However, for fixed q ∈ N * , it is unknown if this problem is NP-complete.

Similarly to the other parameters mentioned thus far, the class of graphs with qbranched tree width at most an integer k is minor-closed, hence there exists a FPTalgorithm for each q ∈ Z ∪ {∞} for computing tw q (G) where the parameter is tw q (G).

Albeit, the existence of FPT-algorithms for the decision problems related to the special tree width and the q-branched tree width is guaranteed, to the best of our knowledge there are no known explicit algorithms for that purpose.

Branch/Linear Decomposition

The notion of branch width has a close relationship to the one of tree width, since the branch width of a graph differs from its tree width by at most a multiplicative constant factor [START_REF] Bodlaender | Constructive linear time algorithms for branchwidth[END_REF]. From the algorithmic standpoint, a branch decomposition also reflects some optimal tree structure arrangement of the graph it decomposes, hence it is possible to have algorithmic applications analogous to those of the tree decomposition.

A branch decomposition of a graph G = (V, E) is a pair (T, σ), where T is a tree with vertices of degree at most 3 and σ is a bijection from the set of leaves of T to E. The width of an edge e in T is the number of vertices v in V such that there are leaves t 1 and t 2 in T which are in different components of T [E(T ) \ {e}] with σ(t 1 ) and σ(t 2 ) both incident with v. The width of (T, σ) is given by the maximum width over all edges of T . Then, the branch width, bw(G), of a graph G is the minimum width over all its branch decompositions. If |E(G)| ≤ 1, the branch width of G is zero by definition. In order to define linear width, let G = (V, E) be a graph with |E| = m. The linear width, lw(G), of G is defined to be the least integer k ≥ 0 such that the edges of G can be arranged in a linear ordering (e 1 , . . . , e m ) in such a way that for every i = 1, . . . , m -1, there are at most k vertices incident to edges that belong both to (e 1 , . . . , e i ) and to (e i+1 , . . . , e m ).

Linear orders over the edges of a graph and branch decompositions have a relationship that resembles the one between tree decompositions and path decompositions. A linear order (e 1 , . . . , e m ) of the edges of a graph G = (V, E), with m = |E|, can be described by a branch decomposition (T, σ) in the following manner. The tree T is obtained by starting with a path P = (v 1 , . . . , v m ) and then, for each i ∈ [1, m], we add a vertex v ′ i and an edge between v i and v ′ i . Then, for each i ∈ [1, m], map v ′ i to e i . Therefore, if lw(G) ≥ 2 the linear width of a graph G is equal to the minimum width over all branch decompositions (T, σ) of G such that T is a caterpillar3 . Figure 2.4 shows an example of a linear ordering over the edges of a graph represented by a branch decomposition.

As with tree decompositions, branch decompositions can be used as the basis of dynamic programming algorithms for many NP-hard optimization problems, one example being the travelling salesman problem [CS03]. Sometimes, the branch decomposition might work even better than the tree decomposition in the development of FPTalgorithms as argued in [START_REF] Fomin | Dominating sets in planar graphs: Branch-width and exponential speed-up[END_REF]. This happens because algorithms using the branch decomposition to solve a particular problem might have a better complexity which is partly based on the width of the branch decomposition than an algorithm, for this same problem, based on the tree decomposition.

Therefore, it is important to efficiently construct branch and linear decompositions. Unfortunately, the problems of deciding if bw(G) ≤ k [START_REF] Seymour | Call routing and the ratcatcher[END_REF] and lw(G) ≤ k [START_REF] Thilikos | Algorithms and obstructions for linear-width and related search parameters[END_REF] are NP-complete. However, for planar graphs, the branch width can be computed exactly in polynomial time [START_REF] Seymour | Call routing and the ratcatcher[END_REF], this in contrast with the tree width for planar graphs whose the complexity is an open problem.

Fortunately, since the classes of graphs with branch width or linear width at most k, for any k, are minor closed, we also have that polynomial time algorithms exist for deciding whether a graph has branch width or linear width at most k, where k is a fixed parameter. In fact, Bodlaender and Thilikos proposed linear time algorithms for deciding if the branch width [START_REF] Bodlaender | Constructive linear time algorithms for branchwidth[END_REF] and the linear width [BT04] of a graph is at most a constant k. Moreover such algorithms successfully constructs a branch decomposition or a linear ordering with width at most k, in case they exist. Techniques used in these algorithms are based on the ones used in the algorithms for computing the tree and path decomposition of Bodlaender and Kloks in [START_REF] Bodlaender | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF].

Carving/Cut Decomposition

The concepts of carving and cut decompositions are analogous to the concepts of branch and linear decompositions, when instead of mapping or ordering edges, we map or order vertices of the graph. Formally, a carving decomposition (T, σ) of a graph G = (V, E) is a pair (T, σ), where T is a tree with vertices of degree at most 3 and σ is a bijection from the set of leaves of T to V . The width of an edge e in T is the number of edges e ′ in E such that there are leaves t 1 and t 2 in T in different components of T [E(T ) \ {e}] with σ(t 1 ) and σ(t 2 ) both incident to e ′ . The width of (T, σ) is given by the maximum width over all edges of T . Then, the carving width, carw(G), of a graph G is the minimum width over all its carving decompositions.

To formally define the cut width of a graph, let G = (V, E) be a graph with |V | = n. The cut width cw(G) of G is defined to be the minimum integer k ≥ 0 such that the vertices of G can be arranged in a linear ordering (v 1 , . . . , v n ) in such a way that for every i = 1, . . . , n -1, there are at most k edges incident to vertices that belong both to (v 1 , . . . , v i ) and to (v i+1 , . . . , v m ).

Cut width and carving width share the same relationship as the linear width and the branch width. That is, for every graph G such that cw(G) ≥ 2, each linear order on the vertices of G can be represented by a carving decomposition (T, σ) of G, such that T is a caterpillar.

The decision problems related to cut width, commonly known as the Minimum Cut Linear Arrangement, and to the carving width are both NP-complete [START_REF] Monien | Min cut is np-complete for edge weighted trees[END_REF][START_REF] Seymour | Call routing and the ratcatcher[END_REF]. Fortunately, similarly to their counterparts, the classes of graphs with carving width or cut width at most k are minor-closed, which guarantees the existence of an FPT-algorithm to decide if a graph has carving width or cut width at most k where k is the parameter. In fact, Bodlaender et al. [START_REF] Bodlaender | Constructive linear time algorithms for small cutwidth and carving-width[END_REF] proposed an FPT-algorithm, with parameter k, that runs in linear time on the number of vertices of the input graph, to decide if the cut width or the carving width of said graph is at most k.

Relations Between Graph Widths

In this section we already mentioned relationships between some graph widths. Now, we further examine these relationships in Table 2.1. 

Inequality

Reference

tw(G) ≤ tw q (G) (By definition) tw(G) ≤ 3 bw(G)/2 [RS91] tw(G) ≤ stw(G) [Cou10] tw(G) ≤ 3 carw(G) [Thi00] tw(G) ≤ pw(G) (By definition) pw(G) ≤ O(tw(G) log |V (G)|) [Bod98] pw(G) ≤ cw(G) [Thi00] pw(G) ≤ lw(G) [BT04]
Since the tree width of a graph is at most its path width, Table 2.1 also indicates that all the aforementioned widths are upper bounds for the tree width.

Graph Searching Games and Decompositions

In this section, we present some pursuit-evasion games known as graph searching games. These games have a close relationship with graph decompositions as it will be explained further.

One common characteristic among most graph searching games is that the game is played simultaneously by the two players. Meaning that each player may make its moves at any point during the game.

We start by exploring the Node Search game and its relationship with the tree and path decompositions.

Node Search, Monotonicity and Graph Decompositions

The Node Search (or Helicopter Search), defined by Seymour and Thomas [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF], is one of the most famous graph searching games. This is mainly due to its close relationship to the tree decomposition as it will be further explained in this section.

In the Node Search game, the two players are the cops and the robber. The cops are tokens that stand at vertices of the graph while the robber is one token that also stands at vertices of the graph. Cops move by "boarding an helicopter" and flying from one vertex to another vertex of the graph. In other words, to move from one vertex to another vertex of the graph, a cop must remove itself from the graph for an amount of time that is not instantaneous. The robber can, at any time, move from its current position to another if there is a path between its current position and its destination that does not contain any cop. If the robber can move, its movement is considered instantaneous. The cops win, if a cop is able to land on the vertex the robber currently stands and the robber cannot escape. In other words, the cops win the game, if they are able to capture the robber. The robber wins, if it is able to avoid capture indefinitely. It is clear that n cops are sufficient to capture a robber in any graph of order n by occupying each vertex of the graph. Hence, the question is what is the minimum number of cops such that the cops can always guarantee the capture of the robber.

There are two main versions of the Node Search, depending on whether the cops have knowledge of the current position of the robber. In the visible Node Search the cops know the position of the robber at all times, while in the invisible Node Search the cops do not know the position of the robber, but when they capture it. Let ns v (G), the visible node search number, and ns i (G), the invisible node search number, be the minimum number of cops necessary to guarantee that the cops can always win against the robber in a graph G in the visible and invisible Node Search respectively. The first relation between graph searching games and graph decompositions is that, for any graph G, ns v (G) ≤ tw(G) + 1 and ns i (G) ≤ pw(G) + 1. The proofs for these inequalities are not very hard, since tree and path decompositions offer a natural way of searching a graph for the robber as can be seen in Figure 2.5.

A strategy for the cops is a sequence of movements, which may be based on the current position of the robber if the cops have such knowledge, that describes where each cop should move. A strategy is winning, if by following this strategy the cops are guaranteed to win the game against the robber. As defined in Chapter 1, strategies for the cops are monotone, if once a cop leaves a vertex, no other cop occupies this vertex for the remainder of the game. Equivalently, a strategy is monotone, if the area reachable by the fugitive never increases. One main characteristic of strategies designed by sequentially occupying bags of a tree/path decomposition is that these strategies are monotone as seen in Figure 2.5. Another main question in graph searching is if, by restricting the cops to play with only monotone strategies, we increase the number of cops necessary to capture the robber. If the answer is no, then we say that the graph searching game in question is monotone. Normally, monotonicity plays a major role in proving that a graph searching game is in NP, since a monotone strategy provides a certificate that can be checked in polynomial time. Another reason for the importance of monotonicity is that monotone games are, often, equivalent to some particular graph decomposition.

The invisible Node Search was first shown to be monotone in [START_REF] Kirousis | Searching and pebbling[END_REF]. Moreover, by combining this with the results in [START_REF] Kinnersley | The vertex separation number of a graph equals its pathwidth[END_REF][START_REF] Möhring | Graph problems related to gate matrix layout and pla folding[END_REF], we have that, for any graph G, ns i (G) = pw(G) + 1. As consequence, we have that computing ns i (G) is as hard as computing pw(G).

The visible Node Search is also monotone as it was shown by Seymour and Thomas in [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF]. In fact, they prove the monotonicity by showing a sequence of equivalences that results in ns v (G) = tw(G) + 1 for any graph G, which also proves that the decision problem associated with ns v (G) is NP-complete.

Other Searching Games and Graph Decompositions

There are several variants of graph searching games depending on conditions of capture, restrictions on the behaviours of players, whether the position of the robber is known for the cops, etc. These variants are mainly motivated by problems in practice or inspired by theoretical studies in Graph Theory such as graph decompositions.

The first graph searching game, the Edge Search game, was introduced by Parsons [Par78]. This game was motivated by the problem of finding a spelunker 4 who is lost and wandering unpredictably in a system of caves. The Edge Search game differs from the Node Search game by three factors: the placement of the robber, the rules for the movements of the cops and the condition of capture of the robber. The robber is able to stand either in vertices or edges of the graph. The cops along with being able placed on a vertex or removed from a vertex can also slide through an edge of the graph. That is if e = (u, v) is an edge and there is a cop currently standing at u, then it can move through edge e to v. The robber is captured, if cannot escape a cop landing or sliding through the position it currently stands. Let the invisible edge search number, es i (G), be the minimum number of cops necessary to guarantee the capture of an invisible robber in the Edge Search game on a graph G. One natural question that arises is if there is any relationship between the values es i (G) and ns i (G).

An answer to this question is due to Bienstok and Seymour [START_REF] Seymour | Monotonicity in graph searching[END_REF]. They showed that, for any graph G, ns i (G) -1 ≤ es i (G) ≤ ns i (G) + 1. Roughly, the reason behind this is that the rule of sliding through an edge (u, v) can be interchanged by adding an extra cop at v and then removing a cop from u. Examples showing that these inequalities are tight and can be found in complete graphs. For any complete graph of order n ≥ 2, ns i (G) = n and es i (G) = n -1.

The first proof that invisible Edge Search is monotone is due to Lapaugh [START_REF] Lapaugh | Recontamination does not help to search a graph[END_REF]. Then, in [START_REF] Seymour | Monotonicity in graph searching[END_REF], Bienstok and Seymour proposed a method that gives a succinct proof for the monotonicity of the invisible Edge Search. In order to show the monotonicity of the invisible Edge Search, they first introduced another variant of the graph searching problem, the Mixed Search. Then, they showed that the invisible mixed search is monotone, which implies the monotonicity of both the invisible Edge Search and the invisible Node Search.

The Mixed Search differs from the Edge Search only in the capture conditions of the robber. In the Mixed Search, the robber can be captured either if a cop lands on the vertex where the robber currently stands, if there are cops in both endpoints of the edge currently occupied by the robber, or if a cop slides through the edge currently occupied by the robber and it can not escape. That is, the robber is captured in the Mixed Search whenever it is captured in the Node Search game, in the Edge Search game, or if it stands on a vertex while both its endpoints are occupied by cops. Let invisible mixed search number, ms i (G), be the minimum number of cops necessary to guarantee the capture of an invisible robber in the Mixed Search game on a graph G.

Invisible mixed search has a close relationship with the invisible node search and the invisible edge search. In [START_REF] Seymour | Monotonicity in graph searching[END_REF], it was shown that ms i (G)

≤ es i (G) ≤ ms i (G) + 1 and that ms i (G) ≤ ns i (G) ≤ ms i (G) + 1.
The edge search numbers and the mixed search numbers have a close relationship to the path width and tree width, due to their correlation with the node search numbers. However, there are graph decompositions which are, sometimes, more closely related with these parameters.

In particular, for every graph G, the invisible mixed search number of G was shown to be "equivalent" to the proper path width of G [START_REF] Takahashi | Mixed searching and proper-pathwidth[END_REF]. A path decomposition (P, X ) of G is said to be proper if for every X i , X j , X k in X none of which are subsets of the other. Therefore, the proper path width ppw(G) of a graph G is the minimum width over all proper path decompositions of G. Then, ms i (G) = ppw(G) + 1 [START_REF] Takahashi | Mixed searching and proper-pathwidth[END_REF].

In the case of the Edge Search, Makedon and Sudborough showed a relationship between the cut width of a graph and its invisible edge search number. In other words, they showed that, for any graph G with maximum degree ∆, es i (G) ≤ cw(G) ≤ ⌊∆/2⌋(es i (G)-1) + 1 [START_REF] Makedon | On minimizing width in linear layouts[END_REF]. This implies that for any graph G with maximum degree 3 we have that es i (G) = cw(G).

The discussion up to now, implies that graph searching games are monotone in general. Is it true that requiring the cops to play in a monotone manner does not increase the number of cops for all graph searching games? The answer to this question is no for both the connected visible Node Search [START_REF] Fraigniaud | Monotony properties of connected visible graph searching[END_REF] and the connected invisible Edge Search [YDA09]. A connected graph searching game restricts the cops to play in such a way that the subgraph not reachable by the robber is connected in every step of the game. While the connected visible or invisible Node Search are not monotone, in [START_REF] Barrière | Connected and internal graph searching[END_REF], it was shown that the internal connected invisible Edge Search is monotone. An Edge Search game is said to be internal, if cops cannot be removed from a vertex. That is, once a cop first occupies any vertex it can only move to other vertices by "sliding" through edges of the graph. A cop cannot move by "boarding an helicopter" and latter "descending" on another vertex, it must move through the edges of the graph.

In [YDA09], Yang et al. investigated the cost of monotonicity in the connected invisible Edge Search. They show that restricting the cops to play monotonously can increase the number of cops by an arbitrary amount. Then, Fraigniaud and Nisse showed an infinite family of graphs where restricting monotonicity on the connected visible Edge Search increases the number of cops by one [START_REF] Fraigniaud | Monotony properties of connected visible graph searching[END_REF].

Often, one of the open questions regarding graph searching games that are not monotone is if the associated decision problems are in NP. Since winning strategies that are not monotone can take an arbitrary large, albeit finite, number of steps in order to capture the robber, these strategies cannot be used as a certificate to show that the graph searching problem in question is in NP.

Due to their close relationship to graph decompositions, graph searching games can be considered as another approach into designing powerful graph decompositions. However, all decompositions and graph searching games presented up to this point are concerned only with undirected graphs. Then, one natural question that arises is how can these concepts be extended to directed graphs.

In the next section we explore the challenges associated with extending the notion of graph decompositions and graph searching games to directed graphs.

Directed Graph Decompositions and Directed Graph Searching

During the last few years, an important research effort has been done in order to design graph decompositions for directed graphs that are as powerful as the path or the tree decompositions are for undirected graphs. A graph decomposition, to be considered powerful, should have two main properties: (1) be algorithmically useful and (2) have nice structural properties such as being closed under taking subdigraphs and some form of arc contractions [GHK + 10]. Because graph searching games are equivalent to path and tree decompositions in undirected graphs, several attempts have been done to define such games in directed graphs [Bar06, HK08, BDH + 12].

In this section we explore some well known directed graph decompositions and their relationship with graph searching games in directed graphs.

Directed Tree Decomposition

One of the first directed graph decompositions, the directed tree decomposition, was introduced by Johnson et al. in [JRST01].

An arborescence T is a rooted directed tree. Therefore, there is a directed path from the root of T to any leaf of T . For any r and r ′ in V (T ), we say that r ′ ≥ r if there exists a directed walk in T with initial vertex r and terminal vertex r ′ and we say that r ′ > r if r ′ ≥ r and r ′ = r. Similarly, for all e = (u, r) ∈ E(T ), we say that r ′ ≥ e if r ′ ≥ r.

Let D be a digraph and Z ⊆ V (D). We say that a set S ⊆ V (D) \ Z is Z-normal if there is no directed walk in D \ Z with first an last vertex in S and with internal vertex in D \ (Z ∪ S). That is, a set S is Z-normal if every path that leaves S must pass through a vertex in Z.

A directed tree decomposition of a directed graph D = (V, E) is a triple (T, X , W) where T is an arborescence

X = {X e | e ∈ E(T )} and W = {W v | v ∈ V (T )} are families of subsets of vertices of V (D) such that:
• W is a partition of V (D) into non empty sets, and

• if e ∈ E(T ), then {W v | v ∈ V (T ), r ≥ e} is X e -normal.
The width of (T, X , W) is max v∈V (T ) |W v ∪ {X e | e incident to v}|. Then, the directed tree width, dtw(D), of a directed graph D is given by the minimum width over all its directed tree decompositions.

Directed tree decompositions have a close relationship with tree decompositions. The directed tree width of a digraph is equal to the tree width of its underlying graph [START_REF] Johnson | Directed treewidth[END_REF].

The directed graph searching game associated with this decomposition is the Strongly Connected Components (SCC) Search. In this game, the cops play as in the Node search game for undirected graphs. In other words, each cop can be either placed on a vertex or removed from a vertex of the graph. The robber, however, is restricted to move through directed paths, but can only move if there is also a directed path from its intended destination back to its current position that is free of cops.

By following the same reasoning for building Node Search strategies from tree decompositions, a directed tree decomposition (T, X , W) can be used to build a winning strategy to capture a visible robber in the SCC Search game using a number of cops equal to the width of the directed tree decomposition. That is, cops are first placed onto W r ∪ e incident to r X e , where r is the root of T . Then, let v be the vertex of T such that there are cops on every vertex of W v ∪ e incident to v X e , the cops move from

W v ∪ e incident to v X e to W v ′ ∪ e ′ incident to v ′ X e ′
where v ′ is the child of v such that the robber is in a vertex of W u≥v until the robber is captured.

Hence, the directed tree width of a graph upper bounds the number of necessary cops to capture a visible robber in the SCC Search game. Albeit, strategies designed in this manner might not be monotone, meaning that cops might reoccupy vertices of the graph, they are "robber" monotone, meaning that the area reachable by the robber never increases. In [START_REF] Johnson | Directed treewidth[END_REF], it was shown that enforcing "robber" monotonicity might increase the number cops to capture a visible robber by a multiplicative factor of three. While the previous result does not guarantee the "robber" monotonicity of the game, it implies that the cost of requiring monotonicity is linear on the number of cops. It was unknown whether the visible SCC Search was "robber" monotone until Adler showed, in [START_REF] Adler | Directed tree-width examples[END_REF], that this game is not monotone by providing an example where 4 cops have a winning strategy, but 4 cops do not have a "robber" monotone winning strategy.

DAG Decomposition

The restriction that the robber have a returning path free of cops to move in the SCC Search game is rather unnatural. For this reason, Berwanger et al. proposed the visible Directed Node Search game which is the SCC Search where the robber does not have this restriction [BDH + 12]. In other words, in the visible Directed Node Search the robber can move if it has a directed path free of cops to its intended destination. They also propose a graph decomposition, the DAG decomposition that is closely related to monotone strategies in of the visible Directed Node Search.

In order to introduce the DAG decomposition we need to first state some definitions. Let G be a directed graph and W, Y ⊆ V (G). We say that W guards E) is a DAG, then let D be the partial order over V obtained by the reflexive transitive closure of E. That is, if there is a directed path from a vertex u to a vertex v in D then u D v.

Y if for all (u, v) ∈ E(G) with u ∈ Y we have that v ∈ W ∪ Y . If D = (V,
The DAG decomposition of a directed graph G is a pair (D, X ) where D is a DAG and

X = {X v | v ∈ V (D)} is a family of subsets of V (G) such that: • v∈V (D) X v = V (G), • for all vertices d, d ′ , d ′′ ∈ V (D) such that d D d ′ D d ′′ we have that X d ∩ X d ′′ ⊆ X d ′ , • for all edges (d, d ′ ) ∈ E(D) the set X d ∩ X d ′ guards d ′ D d ′′ X d ′′ , and • for any source d ∈ V (D) we have that d D d ′ X d ′ is guarded by ∅.
The width of (D, X ) is max d∈V (D) |X d | and the DAG width, dagw(G), of G is the minimum width over all DAG decompositions of G.

In [BDH + 12], it was shown that monotone strategies for the cops in the visible Directed Node Search game have a close relationship with DAG decompositions. Meaning that the minimum number of cops to guarantee the capture of the robber in a monotone way in this game is equal to the DAG width of the graph in which it is played. Similarly with the visible SCC Search, the visible Directed Node Search is monotone [START_REF] Kreutzer | Digraph decompositions and monotonicity in digraph searching[END_REF]. The family of graphs presented by Kreutzer and Ordyniak show that the cost of requiring monotonicity is at least a multiplicative factor. However, unlike the visible SCC Search, a non trivial upper bound on the cost of requiring monotonicity is still open.

From the fact that the robber is more powerful in the visible Directed Node Search compared to the visible SCC Search, it is easy to see that the number of cops necessary to guarantee the capture of the robber in the former is at least as big as in the latter. Hence, the dtw(G) ≤ dagw(G) for any directed graph G. Then, a natural question is how big can this gap be? In [BDH + 12], Berwanger et al. proposed a family of graphs such that the DAG width of any graph in this family can be arbitrarily large, while their directed tree width is one. Moreover, they also show that if a directed graph G is such that dagw(G) ≤ k then dtw(G) ≤ 3k + 1. Proving that having a small DAG width implies in having a small directed tree width.

Kelly Decomposition

A robber in a graph searching game is said to be inert if it is only able to move immediately before a cop moves to the vertex or through the edge it is currently occupying. In other words, the robber is lazy, only moving when it is in immediate danger of being captured.

In undirected graph searching games, the visible Node Search is equivalent to the inert invisible Node Search [START_REF] Dendris | Fugitive-search games on graphs and related parameters[END_REF]. That is, the same number of cops are necessary to capture a visible robber or an invisible and inert robber in the Node Search. In [START_REF] Hunter | Digraph measures: Kelly decompositions, games, and orderings[END_REF], Hunter and Kreutzer proposed the inert invisible Directed Node Search, which follows the same rules as the visible Directed Node Search with the exception that the robber is invisible and inert. Then, a natural question that arises is the equivalence between the visible Directed Node Search and inert invisible Directed Node Search in the same manner as the one between visible Node Search and inert invisible Node Search.

In [START_REF] Hunter | Digraph measures: Kelly decompositions, games, and orderings[END_REF], it was shown that these two games are not equivalent. More precisely, for all k ≥ 1, there are graphs where 4k cops are necessary to capture a robber in the visible Directed Node Search, while only 3k cops are necessary to capture a robber in the inert invisible Directed Node Search. This is true even if the cops are restricted to capture the robber using a "robber" monotone strategy in the inert invisible Directed Node Search.

Dendris et al. also proposed a directed graph decomposition, the Kelly decomposition, related with monotone strategies for the inert invisible Directed Node Search.

The Kelly decomposition of a directed graph

G is a triple (D, X , W) where D is a DAG, X = {X d | d ∈ V (D)} and W = {W d | d ∈ V (D)} are a family of subsets of V (G) such that: • X partitions V (G), • for all d ∈ V (D), W d guards d D d ′ X d ′ , and
• for all d ∈ V (D) there is a linear order on its children d 1 , . . . , d p such that for all In the same manner as DAG decompositions of G can be used to design monotone winning strategies for the cops in the visible Directed Node Search, Kelly decompositions can be used to design monotone winning strategies for the cops in the inert invisible Directed Node Search.

1 ≤ i ≤ p, W d i ⊆ X d ∪ W d ∪ j<i ( d j D u X u ). For all d ∈ V (D) such that d is a source,
Motivated by the equivalence between the inert invisible robber and the visible robber in the undirected Node search, we might wonder about the relationship between the Kelly width and the DAG width of a directed graph. In [START_REF] Hunter | Digraph measures: Kelly decompositions, games, and orderings[END_REF], it was also shown that, for any directed graph G, if kelly(G) = 1 or kelly(G) = 2, then kelly(G) = dagw(G). However, from the fact that the SCC Search and inert invisible Directed Node Search are not equivalent, we have that there are graphs such that kelly(G) = (3 dagw(G))/4. It is still an open question whether DAG width and Kelly width can be bounded within a constant factor of the other.

In the following, we study the relationship between the directed graph searching game where the robber is still invisible but not inert any more with directed graph decompositions.

Directed Path Decomposition

The directed path decomposition, proposed by Barát in [START_REF] Barát | Directed path-width and monotonicity in digraph searching[END_REF], is closely related with the invisible Directed Node Search.

A directed path decomposition of a directed graph G is a sequence W = (W 1 , . . . , W n ) of subset of vertices of V (G) such that:

• 1≤i≤n W i = V (G), • if i ≤ j ≤ k then W i ∩ W k ⊆ W j , and
• for all (u, v) ∈ E(G) we have that there exists 1

≤ i ≤ j ≤ n such that u ∈ W i and v ∈ W j .
The width of a path decomposition is given by max 1≤i≤n |W i | -1. Then, the directed path width, dpw(G), of G is given by the minimum width over all its directed path decompositions.

Unlike its visible version, the invisible Directed Node Search was "almost" shown to be monotone in [START_REF] Barát | Directed path-width and monotonicity in digraph searching[END_REF]. To show this, Bárat used a similar method as the one used by Bienstok and Seymour to show that the invisible Edge Search is monotone. That is, he defined the invisible Directed Mixed Search and by showing the monotonicity of the invisible Directed Mixed Search, Bárat was able to prove the monotonicity of the invisible Directed Edge Search and that the cost of enforcing monotonicity of the invisible Directed Node Search might be of one extra cop. Then, in [START_REF] Hunter | Losing the +1 or directed path-width games are monotone[END_REF], Hunter improved this result showing that the invisible Directed Node Search is, in fact, monotone. Moreover, this means that the minimum number of cops to capture the robber in the invisible Directed Node Search of a graph is equal to its directed path width plus one.

The directed path decomposition also has a relationship with the DAG decomposition similar to the one of tree decompositions and path decompositions. That is, directed path decompositions are DAG decompositions where the DAG is a directed path [BDH + 12]. Hence, for any directed graph G, we have dagw(G) ≤ dpw(G). Moreover, this gap can be arbitrarily large since, in [BDH + 12], a family of graphs with DAG width two and arbitrarily large directed path width was presented. The family presented is the family of symmetric directed graphs such that their underlying graph are complete ternary trees. This means that, for any graph G in this family dpw(G) ≤ O(dagw(G) log |V (G)|). However, it is unknown if this is true for every graph.

Objectives

As was stated in the beginning of this section, directed graph decompositions were proposed in an attempt to bring powerful results of graph decompositions from undirected graphs to directed graphs. Since graph decompositions can often be seen as particular pursuit-evasion games, namely graph searching games, we can approach the problem of designing powerful directed graph decompositions by studying directed graph searching games.

For these reasons, the next chapter is dedicated to the study of the monotonicity of the Process game and the design of a directed graph decomposition related to this game.

Another goal is to investigate the problem of computing graph decompositions. In Chapter 4, we propose a unified FPT-algorithm that can be used to compute any of the aforementioned widths. This algorithm is based on the representation of these decompositions with partitioning trees and a dynamic programming approach based on an efficient representation of these partitioning trees. This is the first FPT-algorithm for the special tree width and q-branched tree width. Moreover, the proposed algorithm is not restricted to compute only the widths of the Chapter 3

Monotonicity of The Process Game

In this chapter we study the monotonicity property of a graph searching game, known as the Process game, which is played on directed graphs. This graph searching game has been defined in the context of the problem of routing reconfiguration in WDM networks [START_REF] Coudert | Rerouting requests in wdm networks[END_REF]. We start the next section, Section 3.1, by briefly explaining the relationship between the routing reconfiguration problem and the Process game. Then, we proceed to show some known relationships between the Process game and other graph parameters. Section 3.2 is dedicated to the main result in this chapter, which states that the Process game is monotone. We propose a new directed graph decomposition, the Process Decomposition, and show an equivalence between this decomposition and the Process game in Section 3.3. Finally, in Section 3.4, we finish by proposing some future directions of research in this area.

Process Game and Routing Reconfiguration

The Process game and the routing reconfiguration problem have a very close relationship that is further explained in this section. We start this section by exploring this relationship. Roughly, solving any instance of routing reconfiguration problem is equivalent to solving the corresponding instance in the Process game.

In telecommunication networks such as wavelength division multiplexed (WDM) networks, due to the need of maintenance operations or simply a link failure, connections that are using these links must be rerouted. However, it might not be a simple task to reroute such connections, since other links on the network might be already at their full capacity. The goal of the routing reconfiguration problem, defined by Jose and Somani in [START_REF] Jose | Connection rerouting/network reconfiguration[END_REF], is to achieve such rerouting minimizing some criteria.

More formally, an instance of the routing reconfiguration problem, (N, C, I, F ), is defined by a network N , a set of connections C, an initial routing I and a final routing F . The network is represented by a directed graph N . The set of connections is given by C ⊆ V (N ) × V (N ). An initial routing of these connections, I, is given by a set of directed paths in N joining each pair (u, v) ∈ C, with the restriction that two different paths do not share an arc of N . That is, these paths are arc-wise disjoint. The final routing, F , is represented in the same manner as the initial routing. That is, the final routing, F is a set of arc-wise disjoint paths of N joining each pair (u, v) ∈ C.

Let P i a be the path joining two vertices of a connection a ∈ C in its initial routing I, and P f a be the path joining two vertices of a connection a in its final routing F . The objective of the routing reconfiguration problem is to change the routing of the connections from the initial routing, I, to the final routing, F , while minimizing some criteria. In order to do this, we are allowed to apply some operations, that are explained below, on the current routing of the network. However two different connections, after applying any of these operations, cannot share a same arc on the network. That is, the paths defining the connections on the current routing are all arc-wise disjoint at any point during the rerouting. In the following, we describe each of the allowed operations.

Interrupt: when applied to a connection a, the result of this operation is that a is interrupted. That is we remove the path P i a ∈ I joining the two nodes of a from the current routing on the network.

Re-establish: when applied to an interrupted connection a, it re-established the connection on its final routing. That is, we add the path P f a ∈ F to the current routing on the network. Switch: when applied to a connection a, the connection a is switched, instantaneously, from its initial routing to its final routing. That is, we remove the path P i a ∈ I joining the two nodes of a from the current routing on the network, whilst adding the path P i a ∈ F to the current routing. Note that it is always possible to change from the initial routing to the final routing by interrupting every connection and then re-establishing these connections in their final routing.

There are several criteria that can be used to measure how "good" is a sequence of operations used to change the initial routing of the network into the final routing. For example, the total number of interruptions was studied in [CCM + 11] and the maximum number of simultaneous interruptions during the rerouting was studied in [START_REF] Coudert | Rerouting requests in wdm networks[END_REF].

Inspired by the routing reconfiguration problem, Coudert et al. introduced the Process game in [START_REF] Coudert | Rerouting requests in wdm networks[END_REF]. In the Process game, a team of searchers aims at processing all nodes of a digraph. A node is said safe if all its out-neighbours are either occupied or already processed. Given a digraph D = (V, A) where initially all nodes are unoccupied and not processed, a monotone process strategy is a sequence (s 1 , . . . , s n ) of steps that results in processing all nodes of D, where each step s i is one of the following three moves.

M 1 : place a searcher (or agent) at node v ∈ V ; M 2 : process a safe unoccupied node v ∈ V ; M 3 : process a safe occupied vertex v ∈ V and remove the searcher from it.

Note that, once a vertex is processed, it never becomes "unprocessed" at a latter stage of the game. Hence, if X i is the set of vertices that are processed after step i, then X i ⊆ X i+1 for all 1 ≤ i ≤ n -1. For this reason, we say that this is a monotone process strategy. The minimum number of searchers such that there exists a monotone process strategy for D is the monotone process number, denoted by monpr(D).

The relationship between the Process game and the routing reconfiguration problem is mainly due to the dependency digraph defined by [START_REF] Jose | Connection rerouting/network reconfiguration[END_REF]. The dependency digraph D = (V, A) of an instance of the routing reconfiguration problem (N, C, I, F ) has one vertex for each connection in the routing reconfiguration instance and there is an arc e = (u, v) ∈ A, if the connection given by u in its final routing shares an arc in the network with the connection given by v in its initial routing. That is, V = C and [START_REF] Coudert | Rerouting requests in wdm networks[END_REF] a solution for the routing reconfiguration problem is equivalent to a solution to the Process game played on its dependency digraph. Here we roughly sketch how this is achieved. Consider an instance of the routing reconfiguration problem (N, C, I, F ) and its dependency digraph D. Then, whenever a connection a ∈ C is interrupted we use M 1 in a ∈ V (D) and vice versa. That is, a ∈ C is interrupted if, and only if, there is an agent on a ∈ V (D). Whenever a connection a ∈ C is re-established we use M 3 in a ∈ V (D) and vice versa. That is, a ∈ C is re-established if, and only if, the agent on a ∈ V (D) is removed and a ∈ V (D) is processed. Finally, whenever a ∈ C is switched we use M 2 in a ∈ V (D) and vice versa. That is, a ∈ C is switched if, and only if, a ∈ V (D) is processed without having an agent on it. Therefore, during a routing reconfiguration or during the processing of D, a connection a ∈ C is on its final routing if, and only if, the vertex a ∈ V (D) is processed. Consequently, the final routing is achieved on the rerouting problem if, and only if, all vertices of D are processed. Moreover, a connection a ∈ C is interrupted if, and only if, the vertex a ∈ V (D) is occupied by an agent.

E = {(u, v) | E(P f u ) ∩ E(P i v ) = ∅}. As observed in
Therefore, any monotone strategy for the Process game gives a corresponding strategy for the routing reconfiguration problem, in which the number of interrupted connections in any step is given by the number of occupied vertices in the Process game.

An important result is that, for any directed graph D, there is an instance of the reconfiguration problem such that D is its dependency digraph [CCM + 11]. This means that we can focus solely on the Process game in order to understand both problems.

Process Game and Other Parameters

While the process number of digraphs has been mainly studied for its applications in the rerouting problem in WDM networks [CHM + 09, Sol09, SP09], it is also related with some other graph parameters.

In [START_REF] Coudert | Rerouting requests in wdm networks[END_REF], Coudert et al. showed that pw( D) ≤ monpr(D) ≤ pw( D) + 1, for any symmetric digraph1 D, where D is the underlying graph of D. Moreover, the decision problem associated with the process number is NP-complete in general, but the process number can be computed in polynomial time in the class of (di)graphs D with monpr(D) ≤ 2 [START_REF] Coudert | Characterization of graphs and digraphs with small process number[END_REF] and in the class of trees [START_REF] Coudert | A distributed algorithm for computing the node search number in trees[END_REF].

In [CCM + 11], it was shown that the minimum feedback vertex set2 is an upper bound for the process number of a directed graph. However, it is true that there are graphs with process number two and arbitrarily large minimum feedback vertex set.

Note also that, in undirected graphs (seen as symmetric digraphs), the monotone processing game is equivalent to the graph searching game, where a invisible robber is captured if all the neighbours of its position are occupied, i.e., it is not required that a cop occupies the same node as the robber only its neighbourhood. It is important to notice that the Process game, when played on a symmetric digraph is not equivalent to the invisible graph searching game. Given a symmetric directed graph D, the following inequation is true: ns i ( D) -1 ≤ monpr(D) ≤ ns i ( D), where D denotes the underlying graph of D and ns i ( D) denotes the minimum number of cops necessary to capture an invisible robber in D. Moreover, these inequality are tight. Let K n be the complete directed graph with n vertices, then ns i ( Kn ) = monpr(K n ) + 1 and, for every directed graph D, let D ′ be the directed graph obtained from D by adding a loop to every vertex of D, then ns i ( D′ ) = monpr(D ′ ).

In the case that D is a directed graph that is not symmetric, the Process game is equivalent to capturing a robber in the Node Search that moves in the opposite direction of the arc and must always move with a monotone strategy, otherwise it also loses the game. That is, if at any point the robber is captured it loses the game, while also losing if it cannot move any more. For example, the robber loses on any DAG D even against zero cops, since, at some point, the robber must move to a source of D being unable to move afterwards. This equivalence is easy to see by considering processed and occupied vertices in the Process game as vertices that are unreachable by the robber in the aforementioned graph searching game. Let dns i (D) be the number of cops necessary to capture the robber in the invisible Directed Node Search of a directed graph D. Then, for any directed graph D, we have that dns i (D) -1 ≤ monpr(D) ≤ dns i (D). Again the same examples above are sufficient to show that this inequality is tight in both sides.

Our Results

In order to study if the Process game is monotone when seen as the graph searching game described above, we consider the more general variant of non necessarily monotone processing game in this chapter.

That is, we allow processed nodes to become unprocessed. More precisely, a process strategy for a digraph D is a sequence (s 1 , . . . , s n ) of steps that results in processing all nodes of D, where each step s i consists of a move M 1 or M 2 or M ′ 3 : process an occupied vertex v ∈ V and remove the searcher from it. If v was not safe then recontamination occurs. That is, successively, all processed vertices (including v) that have an unoccupied and unprocessed out-neighbour become unprocessed.

The minimum number of searchers such that there exists a process strategy for D is the process number, denoted by pr(D).

In [START_REF] Coudert | A distributed algorithm for computing the node search number in trees[END_REF], it was proved that pr(D) = monpr(D) for any symmetric digraph D. In this chapter, we prove that the result holds for any digraph. Moreover, our monotonicity result allows us to prove that pr(D) = pr( ← -D ) for any digraph D = (V, A), where

← - D = (V, ← - A ) and ← - A = {(a, b) | (b, a) ∈ A}.
Finally, we also propose a directed graph decomposition, the Process decomposition, that is equivalent to the Process game.

Recontamination Does Not Help to Process a Digraph

In this section, we prove that the process number is monotone. In other words, monpr(D) = pr(D) for any directed graph D. For this purpose, we use the techniques introduced in [ST93] and adapted for directed graphs in [START_REF] Barát | Directed path-width and monotonicity in digraph searching[END_REF]. More precisely, we first define the notion of a mixed processing game and show its monotonicity thanks to an intermediate result dealing with crusades. Then, from any mixed process strategy we construct a process strategy with the same number of agents in a way that monotonicity is preserved.

Preliminary Definitions

Throughout this section, we use the following notations. Let D = (V, A) be a digraph. For any v ∈ V , let N -(v) denote the set of in-neighbours of v. The border of a set X ⊆ A, denoted by δ(X), is the set of vertices that are the head of an arc in X and the tail of an arc in A \ X. For any X ⊆ A, X c denotes A \ X. First, we show that the border function δ is submodular.

Lemma 1. For any digraph D and any X, Y ⊆ A(D):

|δ(X ∩ Y )| + |δ(X ∪ Y )| ≤ |δ(X)| + |δ(Y )|.
Proof. We show that every vertex counted in the left side of the equation is counted at least the same amount of times in the right side of the equation.

Let v ∈ δ(X ∪ Y ) ∪ δ(X ∩ Y ). If v ∈ δ(X ∩ Y ), let e 1 = (u, v) ∈ X ∩ Y and e 2 = (v, w) ∈ X c ∪ Y c . Therefore, either (v, w) ∈ X c and v ∈ δ(X), or (v, w) ∈ Y c and v ∈ δ(Y ). If v ∈ δ(X ∪ Y ), let e 1 = (u, v) ∈ X ∪ Y and e 2 = (v, w) ∈ X c ∩ Y c . Therefore, either (u, v) ∈ X and v ∈ δ(X), or (u, v) ∈ Y and v ∈ δ(Y ). Finally, let us assume that v ∈ δ(X ∪ Y ) ∩ δ(X ∩ Y ). Because v ∈ δ(X ∩ Y ), there exists an edge e 1 = (u, v) ∈ X ∩ Y and because v ∈ δ(X ∪ Y ), there exists an edge e 2 = (v, w) ∈ X c ∩ Y c . Hence, v ∈ δ(X) ∩ δ(Y ).
Let D = (V, A) be a digraph in which no arcs are initially processed. A mixed process strategy of D is a sequence (s 1 , . . . , s n ) with the following actions that results in processing all arcs in A. R 1 (Place): place a searcher at an unoccupied node v ∈ V ; R 2 (Remove): remove a searcher from node v ∈ V ; if there were unprocessed arcs with tail v and v is now unoccupied, then recontamination occurs. That is, successively, any processed arc (u, w) ∈ A becomes unprocessed, if there is w which is unoccupied and an unprocessed arc (w, z). R 3 (Head): process an arc (u, v)

∈ A if v ∈ V is occupied;
R 4 (Slide): slide the searcher at u along (u, v) ∈ A if u is occupied, v is not occupied and all arcs e = (u, v) with tail u are already processed, this process the arc (u, v); R 5 (Extend): process an arc (u, v) ∈ A, if all arcs with tail v are already processed.

The number of searchers used by a mixed process strategy is the maximum number of occupied vertices over all steps of the strategy. The mixed process number, denoted by mpr(D), is the fewest number of searchers such that there exists a mixed process strategy of D. Moreover, in the mixed Process game, we say that a vertex, v, is processed if all edges with tail v are processed. A mixed process strategy is monotone if no recontamination occurs, i.e., once an arc has been processed, it must remain processed until the end of the strategy.

Next, we recall the definition of crusades used in [START_REF] Barát | Directed path-width and monotonicity in digraph searching[END_REF] and give these crusades an appropriate border function to work with the mixed Process game.

A crusade in D = (V, A) is a sequence (X 0 , X 1 , . . . , X n ) of subsets of A such that X 0 = ∅, X n = E, and |X i \ X i-1 | ≤ 1, for 1 ≤ i ≤ n. The crusade has border k if |δ(X i )| ≤ k for 0 ≤ i ≤ n. A crusade is progressive if X 0 ⊂ X 1 ⊂ . . . ⊂ X n . Hence, in a progressive crusade (X 0 , X 1 , . . . , X n ), |X i \ X i-1 | = 1 for all i ≤ n.
Intuitively, the elements of a crusade represent the set of edges that are processed, while the border represents the vertices that must be occupied by agents, in order to avoid the processed edges becoming unprocessed.

Note that the notion of mixed strategy and crusade are different from the ones defined in [START_REF] Barát | Directed path-width and monotonicity in digraph searching[END_REF], since the direction of the arcs and the border function are reversed in the Process game.

Monotonicity

We are ready to show our main result which states that the Process game is monotone.

Roughly, we do this by showing that, from any mixed strategy with k searchers, we can obtain a crusade with border k and that, from any crusade with border k, we can obtain a progressive crusade with border k. Then, we show that the existence of a progressive crusade with border k implies the existence of a monotone mixed process strategy with k searchers. Finally, we show how to obtain a monotone process strategy for a directed graph D from a monotone mixed process strategy of D (the graph obtained by adding a copy of every arc of D) that uses the same amount of agents. Proof. Let S = (s 1 , . . . , s n ) be a mixed process strategy of D = (V, A) that uses at most k searchers. For any 0 < i ≤ n, let A i be the set of processed arcs and Z i be the set of occupied vertices after the step s i . Moreover, let

A 0 = Z 0 = ∅.
By definition of a mixed process strategy, at most one arc is processed in each step s i (one arc is processed if s i corresponds to R 3 , R 4 or R 5 ), hence |A i \ A i-1 | ≤ 1 for any 1 ≤ i ≤ n. After the last step s n of S, all the arcs of the graph must be processed, hence A n = A. This proves that C = (A 0 , . . . , A n ) is a crusade.

It remains to show that δ(A i ) ≤ k for every 0 ≤ i ≤ n. To do so, we prove by induction that δ(A i ) ⊆ Z i for any 1 ≤ i ≤ n. It is clearly true for i = 0. Assume that δ(A i-1 ) ⊆ Z i-1 for some i, 0 ≤ i < n. We prove that δ(A i ) ⊆ Z i :

• If s i is R 1 (Place), then A i = A i-1 and thus δ(A i ) = δ(A i-1 ) ⊆ Z i-1 ⊆ Z i . • If s i is R 2 (Remove) at a vertex v, let u be a vertex of δ(A i ), hence there is an arc e 1 = (w 1 , u) ∈ A i and an arc e 2 = (u, w 2 ) ∈ A \ A i , therefore u ∈ Z i , otherwise e 1 would also become unprocessed in step i making u / ∈ δ(X i ), hence δ(A i ) ⊆ Z i . • If s i is R 3 (Head), then A i = A i-1 ∪ {(u, v)} and δ(A i ) \ δ(A i-1 ) ⊆ {v}. Since v must be occupied, we have v ∈ Z i = Z i-1 , by induction δ(A i-1 ) ⊆ Z i-1 , and therefore δ(A i ) ⊆ Z i . • If s i is R 4 (Slide) at an edge e = (u, v), then A i = A i-1 ∪ {(u, v)} and Z i = (Z i-1 \ {u}) ∪ {v}.
Since all arcs with tail u are processed after this step,

u / ∈ δ(A i ). Moreover, δ(A i ) \ δ(A i-1 ) ⊆ {v}. Hence δ(A i ) ⊆ Z i . • If s i is R 5 (Extend), then A i = A i-1 ∪ {(u, v)} and Z i = Z i-1
. Since all arcs with tail v must be already processed, δ

(A i ) = δ(A i-1 ) ⊆ Z i-1 = Z i .
Lemma 3. If there is a crusade of D = (V, A) with border k, then there is a progressive crusade with border k.

Proof. Let C = (X 0 , . . . , X n ) be a crusade of D with border k such that: n i=0 |δ(X i )| is minimum, and subject to this, n i=0 |X i | is minimum. We show that C is progressive. Let 0 < i ≤ n, we show that X i-1 ⊂ X i :

• Assume first that |X i \ X i-1 | = 0, then X i ⊆ X i-1 . Hence, (X 0 , . . . , X i-1 , X i+1 , . . . , X n ) is a crusade with border k, contradicting the minimality of n i=0 |X i |. Thus, |X i \ X i-1 | = 1. • Then assume that |δ(X i-1 ∪ X i )| < |δ(X i )|, hence (X 0 , . . . , X i-1 , X i-1 ∪ X i , X i+1 , . . . , X n ) is a crusade with at most k searchers, contradicting the minimality of n i=0 |δ(X i )|. Therefore |δ(X i-1 ∪ X i )| ≥ |δ(X i )|. • By Lemma 1, |δ(X i-1 ∩X i )|+|δ(X i-1 ∪X i )| ≤ |δ(X i-1 )|+|δ(X i )|. Hence, by previous item, |δ(X i-1 ∩ X i )| ≤ |δ(X i-1 )|. Therefore, (X 0 , . . . , X i-2 , X i-1 ∩ X i , X i , . . . , X n ) is a crusade with at most k searchers. From the minimality of n i=0 |X i | we have that |X i-1 ∩ X i | ≥ |X i-1 |, hence X i-1 ⊂ X i .
Lemma 4. If there is a progressive crusade of D = (V, A) with border k, then there is a monotone mixed process strategy using at most k searchers.

Proof. Let C = (X 0 , . . . , X n ) be a progressive crusade of D using at most k searchers. We build a a monotone mixed process strategy S = (s 1 , . . . , s n ′ ) of D with the following properties. For any 0 < i ≤ n ′ , let A i be the set of processed arcs and let Z i be the set of occupied vertices after step s i . Let A 0 = Z 0 = ∅. There are 0 = j 0 < j 1 < j 2 < • • • < j n = n ′ such that:

1. for any 0 ≤ i ≤ n, A j i = X i ; 2. for any 0 < i ≤ n and for any j i-1 < ℓ < j i , Z ℓ ⊆ δ(X i ) or Z ℓ ⊆ δ(X i-1 ), and

Z j i = δ(X i ).
Starting with S = ∅, the two above properties hold for i = 0. Let 0 < i ≤ n and let us assume that (s 1 , . . . , s j i-1 ) is a sequence of actions that satisfies the two above properties for any 0 ≤ j < i. We will build the next steps of the strategy until s

j i . Let X i \ X i-1 = {e i }, where e i = (u, v). Note that δ(X i ) \ δ(X i-1 ) ⊆ {v} and δ(X i-1 ) \ δ(X i ) ⊆ {u, v}.
We have several cases to consider:

• let us first assume that v ∈ δ(X i-1 ). Hence, v ∈ Z j i-1 and there is a searcher at v after step s j i-1 . We define the step s j i-1 +1 to be R 3 (Head) at e i , i.e., the arc e i is processed.

-If moreover v / ∈ δ(X i ) then we define the step s j i-1 +2 to be R 2 at v, i.e., we remove the searcher at v. Because v / ∈ δ(X i ) and (u, v) is processed, there are no unprocessed arcs with tail v and therefore, no recontamination occurs.

Let k = j i-1 + 3 if v / ∈ δ(X i ) and k = j i-1 + 2 otherwise.
-Finally, if u ∈ δ(X i-1 ) \ δ(X i ), then we define the step s k to be R 2 at u, i.e., we remove the searcher at u. Because u ∈ δ(X i-1 ), there is an arc with head u that was processed after step s j i-1 . Because u / ∈ δ(X i ) and (u, v) is processed, there are now no unprocessed arcs with tail u and therefore, no recontamination occurs.

Hence, j i-1 + 1 ≤ j i ≤ j i-1 + 3. Clearly, for any j i-1 + 1 ≤ ℓ ≤ j i-1 + 3, Z ℓ ⊆ δ(X i-1 ) and δ(X i ) = Z j i in all cases. Moreover, in all cases, no recontamination occurs. Therefore, A j i = X i .

• Now, let us assume that v / ∈ δ(X i-1 ). By induction, there was no searcher at v after step s j i-1 .

-First, let us consider the case when u ∈ δ(X i-1 ): * if v ∈ δ(X i ) and u ∈ δ(X i ): Let us define the step s j i-1 +1 to be R 1 at v, i.e., a searcher is placed at v, and the step s j i = s j i-1 +2 is defined as R 3 (Head) at e i , i.e., the edge e i is processed. Clearly,

A j i = A j i-1 ∪ {e i } and Z j i-1 +1 = Z j i = Z j i-1 ∪ {v} = δ(X i ). * if v ∈ δ(X i ) and u /
∈ δ(X i ): in that case, the only arc in A\X i-1 which has u as tail is e i , otherwise u ∈ δ(X i ). Therefore we define the step s j i-1 +1 = s j i to be R 4 through e i , i.e., the searcher at u slides to v processing e i . Note that no recontamination occurs and

A j i = A j i-1 ∪ {e i } = X i-1 ∪ {e i } = X i . The induction hypothesis holds since Z j i = (Z j i-1 \ {u}) ∪ {v} = (δ(X i-1 ) \ {u}) ∪ {v} = δ(X i ). * if v /
∈ δ(X i ) then there are no arcs with tail v that are in A \ X i-1 . Hence, we can define the step s j i-1 +1 to be R 5 (extend) at e i , i.e., e i is processed. If moreover u / ∈ δ(X i ), let s j i = s j i-1 +2 be defined as R 2 at u, i.e., the searcher at u is removed. Because u ∈ δ(X i-1 ) \ δ(X i ) and (u, v) is now processed, there are no unprocessed arcs with tail u and therefore, no recontamination occurs. Hence, j i-1 + 1 ≤ j i ≤ j i-1 + 2 and the induction hypothesis holds in both cases.

-Finally, consider the case when u / ∈ δ(X i-1 ). Note that, in that case, since u / ∈ δ(X i-1 ) and u is a tail of e i ∈ X i , then u / ∈ δ(X i ). * if v ∈ δ(X i ) then we define the step s j i-1 +1 to be R 1 at v, i.e., a searcher is placed at v, and s j i = s j i-1 +2 to be R 3 (Head) at e i , i.e., e i is processed. The induction hypothesis holds. * if v / ∈ δ(X i ), since e i ∈ X i , then there are no arcs with tail v that are in A \ X i-1 . Hence we can define the step s j i = s j i-1 +1 as R 5 (Extend) at e i , i.e., e i is processed. The induction hypothesis holds.

Therefore, S = (s 1 , . . . , s jn ) satisfies the two properties, and S is a monotone mixed process strategy using at most k searchers in D, since, for all 1 ≤ i ≤ j n , we have that

|Z i | ≤ k, for all 1 ≤ i < j n , A i ⊆ A i+1 , and A jn = X n = A.
In what follows, let mpr( D) be the digraph obtained from any digraph D = (V, A) by adding a copy of every arc of D. Proof. We first show that mpr( D) ≤ pr(D).

Let S p = (s 1 , . . . , s n ) be a process strategy for D using k searchers. We define a mixed process strategy S m = (m 1 , . . . , m j ) using at most k searchers for D. Let P i be the set of processed vertices at step i ≤ n in S p and let M j be the set of vertices u such that, at step m j in S m , all arcs with u as tail are processed. Also, let O p i (resp., O m i ) be the set of vertices occupied by a searcher at step s i in S p (resp., at step m i in S m ).

For any 0 < i ≤ n, we build a phase of S m according to s i . That is, depending on the type of rule applied in s i , we add a sequence of moves m j i-1 +1 , m j i-1 +1 , . . . , m j i in S m such that P i ⊆ M j i . Hence, at the last step all arcs are processed, since P n = V . To do this, assume that m 1 , . . . , m j i-1 are already defined based on (s 1 , . . . , s i-1 ) and that

P i-1 ⊆ M j i-1 . Moreover, assume that O p i-1 = O m j i-1 .
We define m j i-1 +1 , m j i-1 +1 , . . . , m j i depending on which rule is applied in s i :

• If s i is a place operation at vertex v (move M 1 ), then let us define the step m j i-1 +1 to be R 1 at vertex v, i.e., a searcher is placed at v. Then, let {e 1 , . . . , e r } be the set of arcs with head v. For any ℓ ∈ [2, r + 1], let us define the step m j i-1 +ℓ to be R 3 (Head) at e ℓ . That is, all arcs with head v are sequentially processed.

Hence, j i = j i-1 + r + 1. The claim holds since

P i = P i-1 ⊆ M j i-1 ⊆ M j i ,

and moreover, for any j

i-1 < ℓ ≤ j i , O m ℓ = O p i = O p i-1 ∪ {v}. • If s i consists in processing an unoccupied vertex v (move M 2 ), then after step s i-1
in S p , all vertices that are in the out-neighbourhood of v are already processed. Hence, by the construction of S m , after step s j i-1 in S m , all arcs with tail v are already processed. Moreover, because v / ∈ O p i-1 = O m j i-1 then v is also unoccupied at step j i-1 of S m . Hence, let {e 1 , . . . , e r } be the set of arcs with head v. For any 1 ≤ ℓ ≤ r, let us define m j i-1 +ℓ as R 5 (Extend) at e i . That is, all arcs with head v are sequentially processed.

In that case, j i = j i-1 + r. The claim holds, since, in particular, v ∈ M j i-1 .

• Now consider the case when s i consists in processing an occupied vertex v and removing the searcher at v (move M ′ 3 ). Let us define the step m j i-1 +1 = m j i to be R 2 at v, i.e., the searcher at v is removed. In the case of recontamination in S m , all vertices, v, in v ∈ M j i-1 \ M j i are tail of some arc e such that there is a path from v avoiding agents and passing through e that reaches an unprocessed arc in D. Therefore, v also becomes unprocessed in S p , i.e. v ∈ P i-1 \ P i . Hence, the claim holds.

Therefore, S m is a mixed process strategy for D using at most k searchers. Now, let us show that monpr(D) ≤ mpr( D). By Lemmas 2, 3 and 4, there exists a monotone mixed process strategy using mpr( D) searchers in D. Let S m = (m 1 , . . . , m n ) be such a strategy.

We first notice that if there is a step m i (1 ≤ i ≤ n) that applies a rule of type R 4 (Slide) through an arc e 1 = (u, v), then the second arc e 2 = (u, v) must be processed and there must be no searcher at v. Hence it is possible to replace the step m i by the following: first remove the agent from u, without re-contaminating any arc (since otherwise e 2 would have been re-contaminated before), place the agent at v and apply R 3 (Head) operation at e 1 . Therefore, we may assume that S m never applies moves of type R 4 .

Another remark is that, if the step m i consists in processing an arc (u, v) such that u is occupied and all arcs with u as tail are already processed, then we may assume that the step m i+1 applies the rule R 2 to u, i.e., the searcher at u is removed (and no recontamination occurs). Indeed, after step m i , the searcher at u is not used to preserve from recontamination because the strategy is monotone and all its outgoing arcs are processed. Moreover, if this searcher was used to process one in-coming arc of u at a step further, we can instead use the extend rule R 5 . Finally, by previous remark, this searcher is never used to apply rule R 4 .

Let M i be the set of unoccupied vertices u such that all arcs with tail u are already processed after step m i .

We now define a monotone process strategy S p = (s 1 , . . . , s n ) for D that uses at most mpr( D) searchers. Let P i be the set of processed vertices at step i ≤ n in S p and let M i be the set of unoccupied vertices u such that all arcs with tail u are already processed after step m i in S m . Also, let O p i , resp., O m i , be the set of vertices occupied by a searcher at step s i in S p , resp., at step m i in S m . Assume that (s 1 , . . . , s j i-1 ) is already defined such that O m i-1 = O p i-1 , and M i-1 ⊆ P i-1 or (M i-1 ⊆ P i-1 ∪ {v} and m i consists in removing a searcher from some node v). We define s i depending on m i :

• Assume first that m i consists in placing a searcher at vertex v (R 1 ). Then, let s i consist in placing a searcher at v (M 1 ). The claim holds, since M i ⊆ M i and

O p i = O p i-1 ∪ {v} = O m i-1 ∪ {v} = O m i . • If m i
consists in removing a searcher from a vertex v (R 2 ) then, since S m is monotone, recontamination does not happen. That is, there are no unoccupied directed path from a process arc to an unprocessed one. Note that v is occupied since

O m i-1 = O p i-1 .
In that case, let s i consists in processing v and removing the searcher at v (M 3 ), this is possible since all out-neighbours of v are either occupied or processed in S m .

The claim holds since P j i = P j i-1 ∪ {v} and M i = M i-1 ∪ {v}, and moreover,

O p i = O p i-1 \ {v} = O m i-1 \ {v} = O m i . • If m i consists in processing an arc e = (u, v) ∈ A(D) (R 3 or R 5 ).
Then, if e is the only unprocessed arc with tail u before m i :

-If u is occupied by the remark above, the next step m i+1 consists in removing the searcher at u. In that case, s i consists in doing nothing and we have

M i ⊆ P i ∪ {u} and O m i = O p i .
-Else, let s i consists in processing u (applying M 2 ). Again, the properties hold.

If m i consists in processing an arc (u, v) ∈ A(D) that is not the last unprocessed outgoing arc of u (in particular, we may assume it is the case for all arcs in A( D)\A(D)), then s i consists in doing nothing and the properties hold. Therefore, S p is a monotone process strategy for D using at most mpr( D) searchers.

Since, for any digraph D, pr(D) ≤ monpr(D), we obtain the next corollary: Corollary 1. recontamination does not help to process a digraph, i.e., for any digraph D:

pr(D) = monpr(D).

Corollary 1 shows that the Process game is monotone. That is, allowing vertices to become unprocessed does not help the agents to process the graph.

Process Decomposition

In this section we define a digraph decomposition that is equivalent to (monotone) process strategies. This allows us to prove that the process number is invariant when reversing all arcs of a digraph. Let D = (V, A) be a digraph.

A Process Decomposition of D is a sequence of pairs P = ((W 1 , X 1 ), . . . , (W t , X t )) such that:

• for any 1 ≤ i ≤ t, W i ⊆ V and X i ⊆ V ; • (X 1 , . . . , X t ) is a partition of V \ t i=1 W i ; • ∀i ≤ j ≤ k, W i ∩ W k ⊆ W j ;
• X i induces a Directed Acyclic Graph (DAG), for any 1 ≤ i ≤ t;

• ∀(u, v) ∈ A, ∃j ≤ i such that v ∈ W j ∪ X j and u ∈ W i ∪ X i .
The width of a Process Decomposition is given by max 1≤i≤n |W i |, and the process width, denoted by prw(D), of a digraph D is given by the minimum width over all Process Decompositions of D. A Scheme of a Process Decomposition can be found in Figure 3.1. A first result, shows that reversing the arcs of a digraph does not change its process width. Let ← -D be the digraph obtained by reversing the sense of the arcs of a digraph D = (V, A). Lemma 6. For any digraph D:

X 1 X 2 X 3 X 4 X 5 W 1 W 2 W 3 W 4 W 5
prw(D) = prw( ← - D ).
Proof. Let P = ((W 1 , X 1 ), . . . , (W t , X t )) be a Process Decomposition for D with width w. Let ← -P = ((W t , X t ), . . . , (W 1 , X 1 )). Clearly, the first three properties of Process Decomposition hold, and the width of ← -P is w. It remains to show that ∀(u, v) ∈ A( ← -D ), ∃i ≤ j such that u ∈ W i ∪X i and v ∈ W j ∪X j . To do that, consider an edge (u, v) ∈ A( ← -D ), since P is a Process Decomposition of D and (v, u) ∈ A(D), we have that for some j ≤ i, v ∈ W j ∪ X j and u ∈ W i ∪ X i , therefore

← - P is a Process Decomposition of ← - D .
Theorem 7. For any digraph D:

pr(D) = prw(D).
Proof. We have that pr(D) = monpr(D), by Theorem 1. Hence, we only need to show that monpr(D) = prw(D).

To show that prw(D) ≥ monpr(D) let P = ((W 1 , X 1 ), . . . , (W t , X t )) be a Process Decomposition of D with width w. We construct a monotone process strategy of D using at most w searchers. For any 1 ≤ i ≤ t, we define the sequence of moves (Phase i) from (W i , X i ), such that, after this sequence, the vertices of W i ∩ W i+1 are occupied by searchers and the vertices in i j=1 (W j ∪ X j ) \ W i+1 have been processed. At phase i+1, we first place searchers at the vertices of W i+1 \W i . Then, in the inverse of a topological ordering of the DAG induced by X i+1 , vertices of X i+1 are processed. This is possible because, for any vertex v in X i+1 , any out-neighbour u of v is in i+1 j=1 X j ∪ W j and so u is either already processed or occupied. Finally, searchers are removed from the vertices in W i+1 \ W i+2 and these vertices are processed. Again, this is valid since all out-neighbour of a vertex in W i+1 \ W i+2 belongs to i+1 j=1 X j ∪ W j (by the last property of the decomposition).

Clearly, such a strategy is monotone and uses at most w searchers, hence monpr(D) ≤ prw(D). Now, let us show that monpr(D) ≥ prw(D). Let S = (s 1 , . . . , s t ) be a monotone process strategy of D using k searchers. We remark that if a searcher is removed from a vertex v, this vertex is also processed during the same step. We construct a Process Decomposition of D with width at most k. For any 1 ≤ i ≤ t, let (W i , X i ) be defined as follows. Let (W 0 , X 0 ) = (∅, ∅):

M 1 : if s i consists in placing a searcher at vertex v, then W i = W i-1 ∪ {v} and X i = ∅; M 2 : if s i consists in processing an unoccupied vertex v, then W i = W i-1 and X i = {v};
M 3 : if s i consists in processing an occupied vertex v and removing the searcher at v, then

W i = W i-1 \ {v} and X i = ∅.
It is easy to see that (X 1 , . . . , X t ) is a partition of V \ t i=1 W i since all vertices are either occupied or processed (only once) without being occupied. Moreover, any X i being reduced to at most a singleton induces a DAG. By the rules of the monotone process strategy, any vertex is occupied at most once (i.e., there are no two steps of S that consist in placing a searcher at the same vertex), and so ∀i

≤ j ≤ k, W i ∩ W k ⊆ W j .
Finally, let (u, v) ∈ A and let i be the greatest integer such that u ∈ W i ∪ X i and let j be the smallest integer such that v ∈ W j ∪ X j . For purpose of contradiction, assume that j > i. Then, u is processed at step s i while its out-neighbour v is neither processed nor occupied at step i, since j > i, a contradiction.

Clearly, max i≤t |W i | ≤ k.

Remark 1. By the proof of Theorem 7, for any digraph D, there is an optimal Process Decomposition ((W 1 , X 1 ), . . . , (W t , X t )) of D such that X i has size at most one for any i ≤ t.

Corollary 2. Given a digraph D = (V, A) and ← -D , the graph obtained from D by reversing all the arcs, then:

monpr(D) = monpr( ← - D ) = pr(D) = pr( ← - D ).

Conclusion

One of the main results in this chapter is the monotonicity of the Process game. One consequence of this result is that, in the routing reconfiguration problem, allowing connections also to be re-established back into their initial routing does not help reroute the network. That is, the minimum number of maximum simultaneously interrupted connections does not change by allowing this rule. We also propose a directed graph decomposition, the Process Decomposition, that is equivalent to the Process game. Since finding good strategies for the searchers in the Process game is NP-hard in general, another focus could be to study the behaviour of the Process game into specific classes of directed graphs. Because the Process Decomposition gives us a global vision on how a strategy can process a graph, we expect it to be a major building block in the construction of strategies for the Process game in specific classes of graphs.

Another problem that arises with the introduction of the Process Decomposition is how to compute such decomposition of a graph. Is there an FPT-algorithm for computing a Process Decomposition of a digraph? Albeit this question will be left unanswered in this thesis, in the next chapter, we explore the problem of computing graph decompositions for undirected graphs.

Finally, both tree decompositions and path decompositions have the notion of a dual structure, brambles and blockages respectively. For instance, the tree width of a undirected graph G is equal to k -1 if, and only if, G has no bramble greater 3 than k [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF]. The monotonicity of a game plays an important role in the relationship between the width of a decomposition and its dual. Hence, it will be interesting to use our monotonicity result to define a dual for the process number.

In addition, the visible variant of the processing game appears to be an interesting candidate for providing a "tree like" decomposition for digraphs.

Chapter 4

Graph Width Measures

In this chapter, we aim at investigating the problem of computing undirected graph decompositions.

More precisely, this chapter aims at unifying and generalizing the FPT algorithms for computing various decompositions of graphs. As a particular application, our algorithm decides in linear time if the special tree width or the q-branched tree width is at most k, for q ≥ 0 and k ≥ 1 fixed and, hence, being the first explicit algorithm capable of computing these parameters.

We use the notions of partition function and partitioning-tree, defined in [AMNT09], in order to generalize these algorithm. Given a finite set A, a partition function Φ for A is a function from the set of partitions of A into the integers. A partitioning-tree of A is a tree T together with a one-to-one mapping between A and the leaves of T . Note that, every internal vertex v of T defines a partition of A where each part is composed by the leaves of T in one component of T [V (T ) \ {v}]. The Φ-width of T is the maximum Φ(P), for any partition P of A defined by the internal vertices of T , and the Φ-width of A is the minimum Φ-width of its partitioning-trees. Partition functions are a unified view for a large class of width parameters like tree width, path width, branch width, etc. In [AMNT09] is given a simple sufficient property that a partition function for A must satisfy to ensure that either A admits a partitioning tree of width at most k ≥ 1, or there exists a k-bramble (a dual structure), unifying and generalizing the duality theorems in [START_REF] Robertson | Graph minors. i. excluding a forest[END_REF]RS91,[START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF][START_REF] Fomin | On the monotonicity of games generated by symmetric submodular functions[END_REF].

We propose a simple set of sufficient properties and an algorithm such that, for any k and q fixed parameters, and any partition function Φ satisfying these properties, our algorithm decides in time O(|A|) if a finite set A has q-branched Φ-width at most k (Theorem 11). Since tree width, path width, branch width, cut width, linear width, and carving width can be defined in terms of Φ-width for some particular partition functions Φ that satisfy our properties (Theorem 12), our algorithm unifies the works in [Bod96, BT97, Thi00, BT04]. Our algorithm generalizes the previous algorithms since it is not restricted to width-parameters of graphs, but works as well for any partition function (not restricted to graphs) satisfying some simple properties. Moreover, we show how the special tree width [START_REF] Courcelle | Special tree-width and the verification of monadic second-order graph properties[END_REF] of a graph can be defined by a partition function that satisfy our properties. This implies that our algorithm can also be used to decide, in linear time, if the special tree width of a graph is not bigger than a constant k. Finally, it provides the first explicit linear-time algorithm that decides if a graph G can be searched, in a non-deterministic way, by k searchers performing at most q queries, for any k ≥ 1, q ≥ 0 fixed. Our decision algorithm can be turned into a constructive one by following the ideas of Bodlaender and Kloks [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF].

In Section 4.1, we formally define the notions of partition functions and partitioningtrees. Then, we present several width parameters of graphs in terms of partition functions (most of these results have been proved in [AMNT09]). Section 4.2 is devoted to the formal statement of our results. In Section 4.3, we show a method to describe all partitioning trees of Φ-width not bigger than k of a set A. Section 4.4 is dedicated to show how partitioning trees can be represented in an efficient manner. Then, in Section 4.5, we describe an algorithm that follows the method in Section 4.3, but using the efficient representation of partitioning trees of Section 4.4, to decide if a set A has Φ-width at most k, Φ being a partition function and k a fixed integer. Then, in Section 4.6, we briefly discuss the results in this chapter with some perspectives into future work.

Partition Functions and Partitioning Trees

In this section, we present the notions of partition function and partitioning tree of a set, as defined in [AMNT09].

Let A be a finite set. A partition of A is a set of non-empty pairwise disjoint subsets of A whose union equals A. Let Part(A) be the set of all partitions of A.

Let P = (A i ) i≤r and Q = (B i ) i≤p be two partitions of A. For any subset A ′ ⊆ A, the restriction P ∩ A ′ of P to A ′ is the partition (A i ∩ A ′ ) i≤r of A ′ , with its empty parts removed. Q is a subdivision of P if, for any j ≤ p, there exists i ≤ r with B j ⊆ A i .

Definition 1. A partition function Φ A for A is a function from Part(A) into the integers. A partitioning function Φ

A is monotone if, for any subdivision Q of a partition P of A, Φ A (P) ≤ Φ A (Q).
For the purpose of generalization, we would like a partition function to be defined independently from the set on which it is applied. In particular, we would like that a partition function, for some set A, to induce some partition functions for any subset of A.

From now on, A denotes a set of finite sets closed under taking subsets. In other words, ∀X ∈ A and ∀Y ⊆ X we have Y ∈ A.

Definition 2. A (monotone) partition function Φ over A is a function that associates a (monotone) partition function Φ

A for A to any A ∈ A.
Most of the results of the chapter do not depend on the set A. When this is the case, we simplify the notation of a partition function Φ by omitting the subscript.

Definition 3. A partition function Φ over A is closed under taking subsets if Φ associates a partitioning function Φ A ′ for any A ′ ⊆ A ∈ A and, for any partition

P of A, Φ A ′ (P ∩ A ′ ) ≤ Φ A (P), where Φ(A) = Φ A .
In what follows, we define partitioning trees. Definition 4. A partitioning tree (T, σ) of a set A is a tree T together with a one-to-one mapping σ between the elements of A and the leaves of T .

If T is rooted in r ∈ V (T ), the partitioning tree is denoted by (T, r, σ). Any internal (i.e. non leaf) vertex v ∈ V (T ) corresponds to a partition T v of A, defined by the sets of leaves of the connected components of T \v. Figure 4.1 shows an example of a partitioning tree. Similarly, any edge e ∈ E(T ) defines a bi-partition T e of A. The Φ A width of (T, σ) is the maximum Φ A (T ) where T is the partition defined by an internal vertex of T or an edge of T . Definition 5. Let Φ be a partition function over A. The Φ-width of a set A ∈ A is the minimum Φ A width of its partitioning trees.

A branching node of tree T rooted in r ∈ V (T ) is either r or a vertex of T with at least two children. A tree T is q-branched if there exists a root r ∈ V (T ) such that any path from r to a leaf contains at most q ≥ 0 branching nodes. For instance, T is 0-branched if and only if T is a path. Definition 6. The corpse cp(T ) of a tree T rooted in r ∈ V (T ) denotes the tree rooted in r obtained from T by removing all its leaves, but r if it is a leaf.

In Figure 4.1, a 2-branched partitioning tree (T, R, σ) of the elements a, b, . . . , k, l is represented. The vertex V ∈ V (T ) defines the partition T V with parts {abf ghijkl, c, de}, R ∈ V (T ) defines the partition T R = {abcde, f g, hijkl}, and the edge E ∈ E(T ) defines the bi-partition T E = {ab, cdef ghijkl}. The black vertices are the branching nodes of cp(T ). Definition 7. A partitioning tree (T, σ) is q-branched if the corpse cp(T ) of T is qbranched.

For instance, a partitioning tree (T, σ) is 0-branched if and only if T is a caterpillar 1 . The q-branched Φ-width of A is the minimum Φ A width of its q-branched partitioning trees.

Graph Decompositions and Partitioning Trees

The notions from Section 4.1 have been given for general sets. In the following, we recall that partition functions and partitioning trees are generalization of several decompositions of graphs and their related parameters [AMNT09]. We assume that the reader is familiar the width measures of graphs of Chapter 2.

Throughout this section, E contains all possible edge-sets of every graph, i.e. for any graph G = (V, E) we have E ∈ E and V contains all possible vertex-set of every graph, i.e. for any graph G = (V, E) we have V ∈ V.

It is sometimes necessary, depending on the width measure, to restrict the shape of the partitioning tree, to add some constraint to the mapping of the leaves of the partitioning tree or to use a special partitioning function in order to express graph width measures in terms of partitioning functions and partitioning trees. In what follows, we show which restrictions are necessary to represent the special tree width, branch width, linear width, cut width and carving width in terms of partitioning functions and partitioning trees. We start by reproducing how the q-branched tree width of a graph can be represented by partitioning functions as shown in [AMNT09].

Partition function and q-branched tree width

For any graph G = (V, E), let ∆ be the function that assigns, to any partition X = {E 1 , . . . , E r } of E, the set of the vertices that are incident to edges in E i and to edges in E j , with i = j. Definition 8. Let E ∈ E. The function δ E is the partition function for E that assigns |∆(X )| to any partition X of Part(E). Let δ be the partition function over E that assigns δ E to every E ∈ E.

Lemma 8. [AMNT09] For any graph

G = (V, E), the tree width tw(G) of G is at most k ≥ 1 if, and only if, the δ width of E is at most k + 1.
Proof. In other words, we aim at proving that for any graph G = (V, E), the tree width tw(G) of G is at most k if, and only if, there is a partitioning tree of E with δ width at most k + 1. Let (T, σ) be a partitioning tree of E with δ width at most k + 1, then it is easy to check that (cp(T ), (X t ) t∈V (cp(T )) ), with X t = ∆(T t ), is a tree decomposition of G of width at most k. Conversely, let (T, X ) be a tree decomposition of G with width at most k. Then, for any edge {x, y} ∈ E, let us choose an arbitrary bag X t that contains both x and y, add a leaf f adjacent to t in T , and let σ(f ) = {x, y}. Finally, let S be the minimal subtree spanning all such leaves. The resulting tree (S, σ) is a partitioning tree of E with δ width at most k + 1.

A similar proof leads to:

1 A caterpillar is a tree with a dominating path.

Lemma 9. [AMNT09] For any graph

G = (V, E), the path width pw(G) of G is at most k ≥ 1 if,
and only if, there is a 0-branched partitioning tree (T, σ) of E with δ width at most k.

More generally:

Lemma 10. For any graph G = (V, E) and any q ≥ 0, the q-branched tree width tw q (G) of G is at most k ≥ 1 if, and only if, there is a q-branched partitioning tree (T, σ) of E with δ width at most k.

The special tree width can be represented with the following restriction over the partitioning trees.

Special tree width:

The special tree width of a graph can be expressed in terms of the partition function δ, but with a restriction in the shape of the partitioning tree.

For any graph G = (V, E), instead of searching for the minimum δ E width over all partitioning trees of E, we restrict the partitioning trees to respect the following rule. Let (T, σ) be a partitioning tree of E, for each vertex v in V , let T ′ be the minimum subtree of (T, σ) spanning all the leaves of (T, σ) such that their corresponding edge in E has v as one extremity. We have that T ′ is a caterpillar.

Other Widths and Partition Functions

The branch width and the linear width of a graph may be expressed in terms of the following partition function:

Definition 9. Let maxδ E be the partition function for E ∈ E which assigns max i≤n δ(E i , E \ E i ) to any partition (E 1 , . . . , E n ) of E.
Let maxδ be the partition function over E that assigns maxδ E to any E ∈ E.

Branch width [BT97]:

By definition, the branch width of G, denoted by bw(G), is at most k ≥ 1, if and only if there is a partitioning tree (T, σ) of E with maxδ width at most k and such that the internal vertices of T have maximum degree at most three.

Linear width [BT04]:

The linear width of G, denoted by lw(G) is defined as the smallest integer k such that E can be arranged in a linear ordering (e 1 , . . . , e m ) such that for every i = 1, . . . , m -1 there are at most k vertices both incident to an edge that belongs to {e 1 , . . . , e i } and to an edge in {e i+1 , . . . , e m }. The linear width of G is at most k ≥ 2 if and only if there is a partitioning tree (T, σ) of E with maxδ width at most k, such that the internal vertices of T have maximum degree at most three, and (T, σ) is 0-branched. This result easily follows from the trivial correspondence between such a partitioning tree of E and an ordering of E, see Chapter 2. Note that this does not hold for k = 1 (a 3 edges path is a counterexample).

The carving width of a graph may be expressed in terms of the following partition function. For any partition X = {V 1 , . . . , V r } of V ∈ V, let Edgeδ be the function that assigns the cardinality of the set of the edges of the graph G = (V, E) that are incident to vertices in V i and V j , with i = j. Definition 10. Let maxEdgeδ V be the partition function for

V ∈ V that assigns max i≤n Edgeδ(V i , V \ V i ) to any partition (V 1 , . . . , V n ) of V .
Let maxEdgeδ be the partition function over V that assigns maxEdgeδ V to any V ∈ V.

Carving width [ST94, Thi00]: By definition, the carving width of G, carw(G), is at most k ≥ 1 if and only if there is a partitioning tree of V with maxEdgeδ width at most k, and such that the internal vertices of T have maximum degree at most three.

The cut width of G, denoted by cw(G), is defined as the smallest integer k such that V can be arranged in a linear ordering (v 1 , . . . , v n ) such that for every i = 1, . . . , n -1 there are at most k edges both incident to a vertex that belongs to {v 1 , . . . , v i } and to a vertex in {v i+1 , . . . , v n }.

The partition function maxEdgeδ also may express the cut width of a graph G = (V, E) when it is at least the maximum degree ∆ of G. Note that any 0-branched partitioning tree with maximum degree at most 3 is such that its maxEdgeδ-width is at least ∆. On the other hand, any 0-branched partitioning with maximum degree at most 3 of V can be seen as a linear ordering over the vertices of G, which implies that the maxEdgeδ-width of G is at least as big as cw(G). More precisely, the minimum maxEdgeδ width of the 0branched partitioning trees of V with maximum degree at most 3 equals max{cw(G), ∆}. In general, to express the cut width of a graph, we need a more restrictive partition function.

Definition 11. Let 3-maxEdgeδ V be the partition function for V ∈ V that assigns the function max{Edgeδ

(V 1 , V \V 1 ), Edgeδ(V 2 , V \V 2 )} to any partition (V 1 , V 2 , V 3 ) of V , with |V 3 | = 1. Let 3-maxEdgeδ be the partition function over V that assigns 3-maxEdgeδ V to any V ∈ V.

Cut width [Thi00]:

The cut width of G is at most k ≥ 1, if and only if there is a partitioning tree (T, σ) of V with 3-maxEdgeδ width at most k, and (T, σ) is 0branched. This result easily follows from the trivial correspondence between such a partitioning tree of V and an ordering of V .

Main Results

In this section, we define properties of a partition function Φ that are sufficient for Φ to admit a linear-time (in the size of the input set) algorithm that decides whether the Φ-width of any set is at most k, k being a fixed integer.

More precisely, we start by giving a set of sufficient conditions for our theorem. Then, we show that all aforementioned widths respect these conditions. This implies that the algorithm in Section 4.5 can be used to compute all the aforementioned widths, thus this algorithm generalizes the FPT-algorithms of [BK96, BT97, Thi00, BT04].

Sufficient Conditions For a Linear Time Algorithm

First, some definitions are made in this section in order to state the main theorem.

Since partitioning trees generalize the tree decomposition to any set (not only graphs), it is natural to extend the notion of nice tree decomposition [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF] to any set.

A nice decomposition (D, X ) of a finite set A is a O(|A|)-node rooted tree D, together with a family X = (X t ) t∈V (D) of subsets of A such that, ∪ t∈V (D) X t = A, for all a ∈ A the set {t | a ∈ X t } induces a subtree of D, and for any v ∈ V (D):

start node: v is a leaf, or introduce node: v has a unique child u, X u ⊂ X v and |X v | = |X u | + 1, or forget node: v has a unique child u, X v ⊂ X u and |X u | = |X v | + 1, or
join node: v has exactly two children u and w, and

X v = X u = X w .
The width of a decomposition (T, X ) is the max t∈V (T ) |X t |. For any v ∈ V (D), let D v denote the subtree of D rooted in v, and

A v = ∪ t∈V (Dv) X t .
Let Φ be a partition function. A nice decomposition (D, X ) of a set A is compatible with Φ if:

1. there exists a function F Φ that associates an integer F Φ (x, P, e) to any integer x, partition P of some subset of A and element e of A, such that, F Φ is strictly increasing in its first coordinate, and, for any introduce node v ∈ V (D) with child u, any partition

P of A v , Φ Av (P) = F Φ (Φ Au (P ∩ A u ), P ∩ X v , A v \ A u ).
2. there exists a function H Φ that associates an integer H Φ (x, y, P) to any pair of integers x, y, and partition P of some subset of A, such that, H Φ is strictly increasing in its first and second coordinates, and, for any join node v ∈ V (D) with children u and w, any partition

P of A v , Φ Av (P) = H Φ (Φ Au (P ∩ A u ), Φ Aw (P ∩ A w ), P ∩ X v ).
3. F Φ and H Φ have time complexity that does not depend on the size of A v . That is, they have constant time complexity with respect to the size of A v .

4. If v ∈ V (D) is an introduction node with u as children, then for every partition P of A v such that P ∩ X v is a partition of X v with only one part, then Φ Av (P) = Φ Au (P ∩ A u ).

If v ∈ V (D) is a join node with u and w as children, then for every partition P of A v such that P ∩ A w is a partition of A w with only one part we have that Φ Av (P) = Φ Au (P ∩ A u ). Respectively, if P ∩ A u is a partition of A u with only one part, then Φ Av (P) = Φ Aw (P ∩ A w ).

Intuitively, the existence of F Φ and H Φ means that it is possible to quickly compute the Φ-width of some partitions P without knowing explicitly P. By only knowing a restriction of P and the Φ-width of some restriction of P, these restrictions being defined by the decomposition (D, X ). Moreover, the last restriction over the function Φ means that changes on the width of a partitioning tree resulted from adding elements to the partitioning tree do not propagate long. They are contained to vertices of the partitioning tree that partition X v into at least two parts.

Main Theorem

This is the main theorem of this chapter: Theorem 11. Let Φ be a monotone partition function that is closed under taking subsets. Let k, k ′ ≥ 1 and q ≥ 0 be three fixed integers (q may be ∞). There exists an algorithm that solves the following problem in time linear in the size of the input set: input: a finite set A and a nice decomposition (D, X ), of width at most k ′ for A, that is compatible with Φ, output: decide if the q-branched Φ-width of A is at most k.

Corollary 3. Let Φ be a monotone partition function that is closed under taking subsets. Let k ≥ 1 and q ≥ 0 be 2 fixed integers (q may be ∞). Let A be a class of sets such that there exists a linear-time algorithm for computing a nice decomposition of width O(k) for any set A ∈ A, compatible with Φ, if it exists. There exists an algorithm that solves the following problem in time linear in the size of the input set:

input: a finite set A, output: decide if the q-branched Φ-width of A is at most k.
The proof of Theorem 11 is quite technical and most of the remaining part of this chapter is devoted to it. In order to explain such proof in a more didactic manner, we start with a simple algorithm to solve this problem, albeit not in linear time, and improve such algorithm in the following sections until we have a linear time algorithm.

Tractability of Width Parameters of Graphs

This section is devoted to present an application of Theorem 11 in terms of the width measures of graphs showed in Section 4.1.

Theorem 12. Let k and q be two fixed parameters. There exists an algorithm that solves the following problem in time linear in the size of the input graph.

input: A graph G with maximum degree bounded by a function of q and k, output: Decide if G has q-branched tree width, resp., branch width, linear width, carving width, cut width or special tree width at most k.

Proof. In Section 4.1, we explained that several width parameters of graphs (q-branched tree width, resp., branch width, linear width, carving width, cut width or special tree width) can be defined in terms of partition functions. Therefore, the proof of Theorem 12 roughly consists in proving that the partition functions corresponding to these width parameters satisfy conditions of Theorem 11. Bodlaender designs a linear-time algorithm that decides if the tree width of a graph G is at most k ′ (k ′ is a fixed parameter), and, if tw(G) ≤ k ′ returns a tree decomposition of width at most k ′ [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF]. Moreover, a nice tree decomposition of G can be computed in linear time from any tree decomposition of G, and without increasing its width [START_REF] Bodlaender | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF]. Moreover, from Lemma 14, any nice tree decomposition of G can be turned into a nice decomposition of E(G) with width at most dk ′ , where d is the maximum degree of G.

Note that from Lemmas 15, 16 and 17 we have that a nice decomposition is compatible with partitioning functions for q-branched tree width, branch width, linear width, carving width, cut width and special tree width. Therefore, in order to obtain a nice decomposition of E(G), we can use the algorithm in [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF] and Lemma 14. Since, by hypothesis, the maximum degree of G is bounded by a function of q and k, the width of the nice decomposition obtained is bounded by a function of q and k. Therefore, the hypothesis of Theorem 11 is satisfied for all the aforementioned widths, which proves Theorem 12.

First, the following lemma is straightforward and its proof is thus omitted.

Lemma 13. The partition functions δ, maxδ, Edgeδ and maxEdgeδ are monotone and closed under taking subsets.

Next three lemmas show the compatibility of some nice decomposition with the partition functions δ, maxδ and maxEdgeδ. Definition 12. [START_REF] Bodlaender | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF] A nice tree decomposition of a graph G = (V, E) is a tree decomposition of G that is a nice decomposition of V .

Lemma 14. Any nice tree decomposition

(T, Y) of a graph G = (V, E) with width k can be turned into a nice decomposition (D, X ) of E. Moreover, if G has bounded maximum degree d, the width of (D, X ) is at most d • k. Proof. For any v ∈ V (T ), let T v denote the subtree of T rooted in v, and A v = ∪ t∈V (Tv) Y t ,
and let E v be the set of edges belonging to the subgraph induced by the vertices contained in A v that are incident to a vertex in Y v . Any start node, resp., join node, Y t of (T, Y) corresponds to a start node, resp., join node, E t of (D, X ). For any introduce node Y t of (T, Y), let x ∈ V be the vertex such that Y t = Y t ′ ∪ {x}, where t ′ is the single child of t in T . Let e 1 , . . . , e r be the edges that are incident to x and to some vertex in

Y t ′ . Then, Y t is modified into a path of introduce nodes E(G[Y t ′ ]) ∪ {e 1 }, E(G[Y t ′ ]) ∪ {e 1 , e 2 }, . . . , E(G[Y t ′ ]) ∪ {e 1 , e 2 , . . . , e r } in (D, X ). Finally, any forget node Y t of (T, Y) is modified into a path of forget nodes E(G[Y t ′ ]) \ {e 1 }, E(G[Y t ′ ]) \ {e 1 , e 2 }, . . . , E(G[Y t ′ ]) \ {e 1 , e 2 , . . . , e r } in (D, X )
, where t ′ is the unique child of t in T , and e 1 , . . . , e r are the edges that are incident to x = Y t ′ \ Y t and to no other vertex in Y t . The obtained decomposition of E is a nice decomposition and its width (i.e. the maximum number of edges in each bag) is at most the width of the tree decomposition (T, Y) times the maximum degree of G.

Lemma 15. Let G be a graph with maximum degree deg. Given a nice tree decomposition (T, Y) of G with width at most k ′ ≥ 1, a nice decomposition (D, X ) of E, compatible with the partition functions corresponding to tree width (resp., path width and special tree width) and with max t∈V (D) |X t | ≤ k ′ • deg can be computed in linear time.

Proof. Recall that the tree width, the path width and the special tree width of a graph may be defined in terms of the partition function δ. First, let (D, X ) be the nice decomposition of E, with width at most k ′ •deg, obtained from (T, Y) as indicated in Lemma 14. We aim at proving that (D, X ) is compatible with δ. Let F δ be defined as follows.

Definition 13. Let x be an integer, P be a partition of a subset E ′ of E and an edge e

∈ E ′ . Let F δ (x, P, e) = x + |{v ∈ e | v ∈ ∆(P) \ ∆(P ∩ (E ′ \ {e}))}|.
That is, F δ adds to x the number of vertices incident to e that contribute to the border of the partition P because they are incident to e. F δ is obviously strictly increasing in its first coordinate. Moreover, F can be computed in constant time when |E ′ | is bounded by a constant.

For any v ∈ V (D), let D v denote the subtree of D rooted in v, and

A v = ∪ t∈V (Dv) X t .
Let v ∈ V (D) be an introduce node with child u, and let {e} = X v \ X u . Let P be a partition of A v . We need to prove that δ Av (P) = F δ (δ Au (P ∩ A u ), P ∩ X v , e). In other words, let us prove that δ Av (P) = δ Au (P

∩ A u ) + |{v ∈ e | v ∈ ∆(P ∩ X v ) \ ∆((P ∩ X v ) ∩ (X v \ {e}))}|.
δ Av (P) is the number of vertices in the subgraph induced by the set of edges A v that are incident to edges in different parts of P. This set of vertices can be divided into two disjoint sets: (1) the set S 1 of vertices that are incident to two edges f and h that are different from e and that belong to different parts of P, and (2) the set S 2 of vertices x incident to e and such that all other edges (different from e) incident to x belong to the same part of P that is not the part of e. S 1 is exactly the set of vertices belonging to

∆ Au (P ∩ A u ), therefore |S 1 | = δ Au (P ∩ A u ).
By definition of (D, X ), because it has been built from a tree decomposition, any edge of A u = A v \ {e} that has a common end with e belongs to X v . Therefore, any vertex in S 2 belongs to ∆

(P ∩ X v ). It is easy to conclude that |S 2 | = |{v ∈ e | v ∈ ∆(P ∩ X v ) \ ∆(P ∩ X v ∩ (X v \ {e}))}|.
Therefore, the function F δ satisfies the desired properties.

Definition 14. Let x and y be two integers, and let P be a partition of a subset

E ′ of E. Let H δ (x, y, P) = x + y -δ(P).
H δ is obviously strictly increasing in its first and second coordinates. Moreover, it can be computed in constant time when |E ′ | is bounded by a constant.

Let v ∈ V (D) be a join node with children u and w, and let P be a partition of A v , we must prove that δ

Av (P) = H δ (δ Au (P ∩ A u ), δ Aw (P ∩ A w ), P ∩ X v ). That is, we prove that δ Av (P) = δ Au (P ∩ A u ) + δ Aw (P ∩ A w ) -δ Xv (P ∩ X v ).
First, note that ∆ Au (P ∩A u )∪∆ Aw (P ∩A w ) ⊆ ∆ Av (P). Moreover, by definition of the nice decomposition (D, X ), an edge of A u \ X v and an edge of A w \ X v cannot be incident. Indeed, X v has been built by taking all edges incident to a vertex in a bag Y of the tree decomposition (T, Y). By the connectivity property of a tree decomposition, if a vertex x would have been incident to an edge in A u \ A w and to an edge in A w \ A u , then x ∈ Y which would have implied that both these edges belong to X v = A u ∩A w , a contradiction. Therefore, ∆ Av (P) ⊆ ∆ Au (P ∩A u )∪∆ Aw (P ∩A w ). To conclude showing that H δ is correct, it is sufficient to observe that ∆ Au (P ∩ A u ) ∩ ∆ Aw (P ∩ A w ) = ∆ Xv (P ∩ X v ). Now, we need to show that if v is an introduction node with u as children then for all partitions P of A v such that P ∩ X v is a partition of X v with only one part then ∆ Av (P) = ∆ Au (P ∩ A u ).

Assume that v is an introduction node and that A v \A u = {a}. Let P be a partitioning of A v such that P ∩ X v is a partition of X v with only one part.

Since (D, X ) is a nice decomposition of E, we have that a is not adjacent to any edge in A u \X v . Assume that ∆ Au (P ∩A u ) < ∆ Av (P). This means that there is an extremity of a that is incident to an edge of A u \X v , a contradiction. Therefore, ∆ Au (P ∩A u ) = ∆ Av (P).

Finally, we need to show that if v is a join node of (D, X ) with children u and w, then for all partitions P of A v such that P ∩ A u is a partition of A u with only one part then ∆ Av (P) = ∆ Aw (P ∩ A w ) or ∆ Av (P) = ∆ Au (P ∩ A u ) in the case that P ∩ A w is a partition of A w with only one part.

W.l.o.g. assume that P ∩ A w is a partition of A w with only one part. Since, (D, X ) is a nice decomposition of E, we have that no edges in A u \ A w share extremities with edges in

A w \ A u . Moreover, (A u \ A w ) ∩ (A w \ A u ) = ∅ and A u ∩ A w = X v .
∆ Av (P) is the number of vertices of G such that they are extremities for edges in different parts of P. Since, P ∩ A w is a partition with only one part and the edges of A w \ A u do not share any extremities with edges in A u \ A w . We have that ∆ Av (P) is the number of vertices that are extremities of edges in different parts of P ∩ A u . That is, ∆ Av (P) = ∆ Au (P ∩ A u ).

The case where P ∩ A u is a partition of A u with only one part is similar and thus omitted.

It is easy to see that the partition function Edgeδ behaves as the δ function but the role of vertices and edges being reversed.

First note that any nice tree decomposition (T, Y) of G is a nice decomposition of V . To prove that (T, Y) is compatible with the partition function Edgeδ, we follow the above proof of Lemma 15.

Definition 15. F Edgeδ and H Edgeδ are defined as follows:

• Let x be an integer, P be a partition of a subset V ′ of V and a vertex v ∈ V ′ . Then,

F Edgeδ (x, P, v) = x + |{e ∈ E | v ∈ e and e ∈ Edgeδ(P) \ Edgeδ(P ∩ (V ′ \ {v}))}|.
• Let x and y be two integers, and let P be a partition of a subset V ′ of V . Then, H Edgeδ (x, y, P) = x + y -Edgeδ(P).

Therefore, the partition function Edgeδ is compatible with any nice tree decomposition. To prove the compatibility of the partition function maxEdgeδ with any nice tree decomposition, we use the following claim.

Let f be any partition function and let maxf be the partition function that associates

max i≤n f (A i , A \ A i ) to any partition (A 1 , . . . , A n ) of A.

Claim 1. For any partition function f compatible with a nice decomposition of some set

A, the partition function maxf is also compatible. Remark 2. Claim 1 also serves to show that the partition functions for branch width and linear width are also compatible to a nice decomposition of the edges of a graph.

Because f is compatible with any nice decomposition of A, there exist two function F f and H f that satisfy the properties defining the notion of compatibility. We must have:

f Av (P) = F f (f Au (P ∩ A u ), P ∩ X v , A v \ A u ), and f Av (P) = H f (f Au (P ∩ A u ), f Aw (P ∩ A w ), P ∩ X v ).
The key point is that if P is a bipartition of some set A, then f A (P) = maxf A (P). Therefore, when considering a bipartition, the functions F maxf and H maxf can be defined similarly to F f and H f . The case that P is not a bipartition is more technical, hence we postpone the proof of this claim until Section 4.5 after showing how the algorithm works.

Hence with Claim 1 the partition functions corresponding to the branch width and linear width (carving width and cut width) are all compatible to nice decompositions of E (V ) of a graph G = (V, E). This gives us the following lemmas: Lemma 16. Any nice decomposition (D, X ) of G is a nice decomposition of E compatible with the partition functions corresponding to branch width (resp., linear width).

Lemma 17. Any nice tree decomposition (T, Y) of G is a nice decomposition of V compatible with the partition functions corresponding to carving width (resp., cut width).

Describing Partitioning Trees in a Dynamic Manner

In this section, we show the basic idea used to compute all the aforementioned widths.

Preliminary Definitions

Definition 16. Let (T, r, σ) be a rooted partitioning tree of a set A and A ′ ⊆ A, then the partitioning tree (T ′ , r ′ , σ ′ ) of (T, r, σ) restricted to A ′ is the minimum subtree of T ′ spanning all the leaves corresponding to elements of A ′ . r ′ is the vertex of T ′ that is closest to r in T and the function σ ′ is the restriction of σ to A ′ . Let (D, X ) be a nice decomposition of a set A and Φ a partitioning function of A that is compatible with (D, X ). Recall that for any v ∈ V (D), D v denotes the subtree of D rooted in v, and

A v = ∪ t∈V (Dv) X t .
In what follows, a full set of partitioning trees of a vertex v ∈ V (D), denoted by FSPT k,q (v), is the set of all labelled q-branched partitioning trees of Φ-width at most k of A v . If r is the root of (D, X ) then A r = A, hence FSPT k,q (r) is not empty if and only if the q-branched Φ-width of A is not bigger than k. Definition 17. A labelled partitioning tree, ((T, r, σ), ℓ) is a partitioning tree (T, r, σ) along with a label ℓ, a function from the edges or internal vertices of T to integers, the label of a vertex (or edge) t of T is such that ℓ(t) = Φ(A t ), where A t is the partition of A defined by t.

The role of the label is to store the values of the partitioning function Φ for fast access and update during the execution of the algorithm.

Main Idea

Let k and q be fixed integers. The main idea behind the algorithm in section Section 4.5 is to use dynamic programming to compute a full set of partitioning trees for A by using a nice decomposition (D, X ) of A. In other words, to decide if the q-branched Φ-width of A is not bigger than k. We start by computing a FSPT k,q (v) for all bags X v where v is a leaf of D. Then, for each vertex v ∈ V (D) such that for each child u of v we have already computed the set FSPT k,q (u), we compute FSPT k,q (v). Once FSPT k,q (r), where r ∈ V (D) is the root of D, is computed, then we can simply test if FSPT k,q (r) is empty to decide whether the q-branched Φ-width of A is not bigger than k.

In this section we show how to compute FSPT k,q (v) for vertices of V (D), for the moment, we do not focus on the complexity of this computation, rather we show the main idea behind each procedure introduced on Section 4.5. The computation of FSPT k,q (v) depends on the type of the node v. In the following subsections we show procedures for each kind of node in the nice decomposition (D, X ) (starting node, introduce node, forget node and join node).

We also state that it is possible that a full set of characteristics has infinite size, hence it is necessary to design a method to "compress" this set reducing its cardinality to something more manageable, i.e., a size given by a function bounded on k, the width of the nice decomposition and q. In Section 4.4 we show how this can be achieved.

Then, in Section 4.5, we show how to use this compression to design a linear time algorithm to decide if the Φ-width of a set A is not bigger than k, k being a fixed parameter.

Procedure Starting Node

If v is a starting node, i.e. a leaf of D. Then, procedure Starting Node consists of enumerating all q-branched partitioning trees for A v with Φ-width at most k.

That is, FSPT k,q (v) is the set of all possible labelled q-branched partitioning trees for A v with Φ-width at most k.

Lemma 18. Let (D, X ) be a nice decomposition of a set A. The procedure Starting Node computes a full set of q-branched partitioning trees of Φ-width not bigger than k for a starting node v of D.

Procedure Introduce Node

Assume that v is an introduce node of D and that we aim at computing FSPT k,q (v).

Let u be the only child of v in D and {a} = X v \ X u . Let FSPT k,q (u) be the full set of labelled q-branched partitioning trees of A u with width at most k. The set FSPT k,q (v) is obtained from FSPT k,q (u) by applying the following procedure to every labelled partitioning tree (T u , r u , σ u ) in FSPT k,q (u) and to every possible execution of the step "update T u into T v ".

Procedure Introduce Node. Starting with FSPT k,q (v) =, for all possible choices of step "update T u into T v " and for all elements(T u , r u , σ u ) ∈ FSPT k,q (u) do the following:

update T u into T v : To insert a corresponding vertex to a in ((T u , r u , σ u ), ℓ u ), choose some internal vertex v att of V (T u )
, add a leaf v leaf adjacent to v att . Moreover, let e new = {v att , v leaf }, we then proceed to subdivide e new a finite number of times.

Then, set σ v (v leaf ) = a. Let P new be the path joining v leaf to v att . If r u = v att then r v is one of the vertices in V (P new ) \ {v leaf }, otherwise r v = r u . Note that, at this point, T v is a partitioning tree of A v .
update of labels of new vertex(s) and edge(s): First, let P new be the path joining v leaf to v att . Then every internal vertex (or edge)

p of P new receives label ℓ v (p) = Φ Av ({A u , {a}}).

update of labels of other vertex(s) and edge(s):

For all e ∈ E(T v ) \ E(P new ), let T e be the partition of X v defined by e. ℓ v (e) ← F Φ (ℓ u (e), T e , a).

For all t ∈ (V (T v ) \ V (P new )) ∪ {v att }, let T t be the partition of X v defined by t, then ℓ v (t) ← F Φ (ℓ u (t), T t , a). update of FSPT k,q (v): If ((T v , r v , σ v ), ell v ) is q-branched, for every internal vertex t ∈ V (T v ) we have ℓ v (t) ≤ k and for every edge e ∈ E(T v ) we have ℓ v (e) ≤ k then FSPT k,q (v) ← FSPT k,q (v) ∪ {((T v , r v , σ v ), ℓ v )}, otherwise FSPT k,q (v) remains un- changed.
Lemma 19. Let (D, X ) be a nice decomposition of a set A compatible with the monotone partition function Φ and let v be an introduce node of D with a child u. The procedure Introduce Node computes a full set of q-branched partitioning trees of Φ-width not bigger than k from the set FSPT k,q (u) for the node v.

Proof. Let FSPT k,q (v) be the set computed by the procedure Introduce Node, we first show that any element ((

T v , r v , σ v ), ℓ v ) ∈ FSPT k,q ( 
v) is a q-branched partitioning tree with Φ-width not bigger than k for A v .

Let FSPT k,q (u) be a full set of q-branched partitioning trees of Φ-width not bigger than k for the node u and let (T u , r u , σ u ) be any element of FSPT k,q (u). Assume that ((T v , r v , σ v ), ℓ v ) is obtained through an execution of procedure Introduce Node on (T u , r u , σ u ).

From the step "update T u into T v ", since (T u , r u , σ u ) is a partitioning tree for A u and A v \ A u = {a}, taking (T u , r u , σ u ) adding a leaf v leaf to an internal vertex v att of T u and mapping v leaf to a results in a partitioning tree for A v . Moreover, the subdivision of {v att , v leaf } does not change the fact that (T v , r v , σ v ) is a partitioning tree for A v . Hence, (T v , r v , σ v ) is a partitioning tree for A v .

For any internal vertex (or edge) t of T v let A t be the partition of A v that it defines. It remains to show that (T v , r v , σ v ) is q-branched, has Φ-width not bigger than k and that after the execution of the procedure Introduce Node all labels are correct. In other words, for all internal vertices (or edges) t of T v , we prove that ℓ v (t) = Φ Av (A t ).

In the step "update of FSPT k,q (v)", ((T v , r v , σ v ), ℓ v ) is only added to FSPT k,q (v) if it is q-branched. Then, from the fact that there are only labelled partitioning trees in FSPT k,q (u), we have that ℓ u (t) = Φ Au (A t ∩ A u ) for any internal vertex (or edge) t of T u . Moreover, we have that Φ is compatible with the nice decomposition (D, X ). Therefore, from the description of the Introduce Node procedure for every internal node t (or any edge) of T v that is not in P new ∪ {v att }:

ℓ v (t) = F Φ (ℓ u (t), T t , a) = F Φ (Φ Au (A t ∩ A u ), A t ∩ X v , a) = Φ Av (A t ).
Furthermore, all edges and internal vertices of P new receive the label Φ Av ({A u , {a}}) from step "update of new vertex(s) and edge(s)", hence l v (t) = Φ Av ({A u , {a}}), where t is either an internal vertex of P new or an edge of P new . Lastly, again from the fact that Φ is compatible with (D, X ) and from step "update of labels of other vertex(s) and edge(s):

ℓ v (v att ) = F Φ (ℓ u (v att ), T v att , a) = F Φ (Φ Au (A v att ∩ A u ), A v att ∩ X v , a) = Φ Av (A v att ).
Hence, at step "update of FSPT k,q (v)", ((T v , r v , σ v ), ℓ v ) is a labelled partitioning tree of A v . Therefore, the step "update of FSPT k,q (v)" guarantees that ((T v , r v , σ v ), ℓ v ) is only added to FSPT k,q (v) if it is a labelled q-branched partitioning tree with Φ-width not bigger than k for A v . Thus, any element of FSPT k,q (v) is a labelled q-branched partitioning tree with Φ-width not bigger than k for A v .

We now show that any labelled q-branched partitioning tree with width not bigger than

k for A v is in FSPT k,q (v). Let ((T ′ v , r ′ v , σ ′ v ), ℓ v ) be any q-branched partitioning tree with width not bigger than k for A v . Let (T u , r u , σ u ) be (T ′ v , r ′ v , σ ′ v ) restricted to A u .
The partitioning tree (T u , r u , σ u ) is q-branched and its Φ-width is not bigger than k, since we only remove branches when restricting a partitioning tree and Φ is monotone. Thus,

((T u , r u , σ u ), ℓ u ) ∈ FSPT k,q (u). Let v leaf be the vertex of T ′ v that corresponds to a. Since T u is a subtree of T ′ v , let v att ∈ V (T u ) be the vertex that is closest to v leaf in T ′ v and P new be the path in T ′ v joining v leaf to v att . Since A u = A v \{a}, all internal vertices of P new have degree two in T ′ v . Hence, T ′
v can be obtained from T u in the step "update T u into T v " by attaching the vertex v leaf to v att and subdividing the edge e new an amount of times equal to

|V (P new \ {v leaf , v att })|.
Therefore, let ((T v , r v , σ v ), ℓ v ) be the labelled q-branched partitioning tree obtained from ((T u , r u , σ u ), ℓ u ) with the Introduce Node procedure by adding a vertex v leaf mapping a to v att and subdividing {v att , v leaf } an amount of times equal to |V (P new \ {v leaf , v att })|. In other words, T v and T ′ v are isomorphic. Since the root of the tree does not change with the Introduce Node procedure,

r ′ v = r v = r u . Moreover, σ ′ v and σ v are the same, i.e. σ ′ v = σ v = σ u ∪ (v att , a). Therefore ((T ′ v , r ′ v , σ ′ v ), ℓ ′ v ) = ((T v , r v , σ v ), ℓ v ).
Thus, for every q-branched partitioning tree ((T ′ v , r ′ v , σ ′ v ), ℓ v ) with width not bigger than k for A v there is an execution of process Introduce Node such that ((

T ′ v , r ′ v , σ ′ v ), ℓ v ) ∈ FSPT k,q (v).

Procedure Forget Node

Let v be a forget node of D, u be its child and FSPT k,q (u) be a full set of labelled qbranched partitioning trees of A u with width at most k. Then procedure Forget Node consists of copying FSPT k,q (u). In other words, FSPT k,q (v) = FSPT k,q (u).

Lemma 20. Let (D, X ) be a nice decomposition of a set A compatible with the monotone partition function Φ and let v be a forget node of D with a child u. The procedure Forget Node computes a full set of q-branched partitioning trees of Φ-width not bigger than k for a forget node v of D.

Since A v = A u we have that FSPT k,q (v) = FSPT k,q (u), therefore if v is a forget node this procedure produces a full set of labelled q-branched partitioning trees of A u with width at most k for the node v.

Procedure Join Node

Let v be a join node of D, u and w its children and FSPT k,q (u) a full set of labelled q-branched partitioning trees of A u with width at most k and FSPT k,q (w) a full set of labelled q-branched partitioning trees of A w with width at most k.

Let ((T u , r u , σ u ), ℓ u ) ∈ FSPT k,q (u) and ((T w , r w , σ w ), ℓ w ) ∈ FSPT k,q (w). The goal is to merge "compatible" partitioning trees. We recall that, by definition of a join node of a nice decomposition, X u = X w = X v . Hence, let (T r u , r r u , σ r u ) be (T u , r u , σ u ) restricted to X v , i.e. the minimum subtree of T u spanning all the leaves corresponding to elements of X v (r r u is the vertex of T r u closest to r u in T u ), and (T r w , r r w , σ r w ) be (T w , r w , σ w ) restricted to X v . Then, we do the following procedure for every pair of elements of ((T u , r u , σ u ), ℓ u ) ∈ FSPT k,q (u) and ((T w , r w , σ w ), ℓ w ) ∈ FSPT k,q (w) such that T r u and T r w are isomorphic, σ r u = σ r w and for every possible execution of step "Identifying T u and T w ".

Identifying T u and T w : T v is obtained by identifying all correspondent vertices of T r u and T r v . Then we remove from T v the double edges resulting from the identification process. The root of T v is obtained arbitrarily choosing an internal vertex of T v . The mapping σ v is obtained taking both mappings σ u and σ w , i.e. the leaves that are in T r u and T r w keep their correpondence to the elements of A. Since X u = X w = X v , leaves that correspond to elements of X v have the same mapping in σ u and σ w . Leaves that belong to A u \ A w or A w \ A u are only mapped by σ u or σ w respectively. Note that, at this point, (T v , r v , σ v ) is a partitioning tree of A v .

Updating the labels:

Let (T r v , r r v , σ r v ) be (T v , r v , σ v ) restricted to X v . Let t v be a vertex of T r
v and T tv be the partition of X v defined by t v . Let t u and t w be the vertices of T r u and T r w , respectively, used to create

t v . Then, ℓ v (t v ) ← H Φ (ℓ u (t u ), ℓ w (t w ), T tv )
. Let e v be an edge of T r v and T ev the partition of X v defined by e v . Let e u and e w be its correspondent edges in T r u and T r w respectively. Then, ℓ v (e v ) ← H Φ (ℓ u (e u ), ℓ w (e w ), T ev ). For all other vertex (or edge)

t of T v : ℓ v (t) ← ℓ u (t) if t is a vertex (or edge) of T u or ℓ v (t) ← ℓ v (t) if t is a vertex (or edge) of T w . Updating FSPT k,q (v): If ((T v , r v , σ v ), ℓ v ) is q-branched, for every internal vertex t ∈ V (T v ) we have ℓ v (t) ≤ k and for every edge e ∈ E(T v ) we have ℓ v (e) ≤ k then FSPT k,q (v) ← FSPT k,q (v) ∪ {((T v , r v , σ v ), ℓ v )}, otherwise FSPT k,q (v) remains un- changed.
Lemma 21. Let (D, X ) be a nice decomposition of a set A compatible with the monotone partition function Φ and let v be a join node of D with a child u and a child w. The procedure Join Node computes a full set of q-branched partitioning trees of Φ-width not bigger than k from the sets FSPT k,q (u) and FSPT k,q (w) for the node v.

Proof. Using the same scheme for the correctness of procedure Introduce Node, we first prove that all elements of FSPT k,q (v) described by the procedure Join Node are in fact labelled q-branched partitioning trees with width not bigger than k for A v . Let ((T u , r u , σ u ), ℓ u ) ∈ FSPT k,q (u) and ((T w , r w , σ w ), ℓ w ) ∈ FSPT k,q (w), be such that (T u , r u , σ u ) restricted to X u and (T w , r w , σ w ) restricted to X w satisfy the Join Node restrictions. In other words, let (T r u , r r u , σ r u ) and (T r w , r r w , σ r w ) be (T u , r u , σ u ) and (T w , r w , σ w ) restricted to X v respectively. Then, T r u and T r w are isomorphic and σ r u = σ r w . The step "Identifying T u and T w " can be applied on ((T u , r u , σ u ), ℓ u ) and ((T w , r w , σ w ),

ℓ w ). Since A v = A u ∪ A w , X v = X u = X w and (A u \ X u ) ∩ (A w \ X w ) = ∅, we have that (T v , r v , σ v ) obtained through step "Identifying T u and T w " is a partitioning tree of A v .
For any internal vertex (or edge) of T v let A v be the partition of A v that it defines. It remains to show that (T v , r v , σ v ) is q-branched, has Φ-width not bigger than k and that after the execution of the procedure Join Node all labels are correct. In other words, for all internal vertices (or edges) t of T v , we prove that ℓ v (t) = Φ Av (A t ).

In the step "update of FSPT k,q (v)", ((T v , r v , σ v ), ℓ v ) is only added to FSPT k,q (v) if it is q-branched. Lastly, we have that Φ is compatible with the nice decomposition (D, X ). Moreover, let A t , for any internal vertex (or edge) t of T v be the partition of A v defined by t. Then, from the fact that ((T u , r u , σ u ), ℓ u ) and ((T w , r w , σ w ), ℓ w ) are labelled partitioning trees, ℓ u (t u ) = Φ Au (A tu ∩ A u ) for any internal vertex (or edge) t u of T u and ℓ w (t w ) = Φ Aw (A tw ∩ A w ) for any internal vertex (or edge) t w of T w . Therefore, from the description of the Join Node procedure for every internal node (or any edge) of T v :

ℓ v (t) = H Φ (ℓ u (t), ℓ w (t), T t ) = H Φ (Φ Au (A t ∩ A u ), Φ Aw (A t ∩ A w ), A t ∩ X v ) = Φ Av (A t )
Hence, at step "update of FSPT k,q (v)", ((T v , r v , σ v ), ℓ v ) is a labelled partitioning tree of A v . Therefore, the step "update of FSPT k,q (v)" guarantees that ((T v , r v , σ v ), ℓ v ) is only added to FSPT k,q (v) if it is a labelled q-branched partitioning tree with Φ-width not bigger than k for A v .

We now show that any labelled q-branched partitioning tree with width not bigger than

k for A v is in FSPT k,q (v). Let ((T ′ v , r ′ v , σ ′ v ), ℓ v ) be any q-branched partitioning tree with width not bigger than k for A v . Let (T u , r u , σ u ) be (T ′ v , r ′ v , σ ′ v ) restricted to A u and (T w , r w , σ w ) be (T ′ v , r ′ v , σ ′ v ) restricted to A w .
The partitioning trees (T u , r u , σ u ) and (T w , r w , σ w ) are, by definition of restriction, q-branched and their Φ-width is not bigger than k, thus ((T u , r u , σ u ), ℓ u ) ∈ FSPT k,q (u) and ((T w , r w , σ w ), ℓ w ) ∈ FSPT k,q (w).

Let (T r u , r r u , σ r u ) and (T r w , r r w , σ r w ) be (T u , r u , σ u ) and (T w , r w , σ w ) restricted to X v respectively. Since X u = X w = X v we have that (T r u , r r u , σ r u ) and (T r w , r r w , σ r w ) are such that T r u and T r w are isomorphic and σ r u = σ r w . Therefore, the Join Node procedure is applied to (T u , r u , σ u ) and (T w , r w , σ w ).

Therefore, let ((T v , r v , σ v ), ℓ v ) be the labelled q-branched partitioning tree obtained from ((T u , r u , σ u ), ℓ u ) and ((T w , r w , σ w ), ℓ w ) with the Join Node procedure. Clearly, from the "Identifying T u and T v " step,

T v = T ′ v and σ v = σ ′ v .
Since the procedure Join Node chooses an arbitrary internal vertex as the root of the partitioning tree, there is an execution of this step where r v is chosen as the root of T v . Therefore, ((

T ′ v , r ′ v , σ ′ v ), ℓ ′ v ) = ((T v , r v , σ v ), ℓ v ).

Remarks on Width Measures

Given a graph G = (V, E) and a nice decomposition (D, X ) of E or V . Then, with FSPT k,q (r) where r is the root of (D, X ), it is possible to answer if the (tree, path, branch, linear, cut, carving) width of G is less or equal than k. For that, we iterate among all ((T, r, σ), ℓ) ∈ FSPT k,q (r) and search for one that obeys the "structural" restrictions given by the desired width, for example, partitioning trees for the branch width are such that every internal vertex has degree three, hence it is necessary to search FSPT k,q (r) for a labelled partitioning tree that respects such restriction. In the case that there are no labelled partitioning trees with the "structural" restrictions given, then the desired width of G is bigger than k, otherwise we found a partitioning tree that proves that the desired width of G is not bigger than k.

The following sections of the chapter address the fact that the number of elements of FSPT k,q (v) is possibly infinite. In Section 4.4 we show how to store FSPT k,q (v) in an efficient manner, by only storing "compressed" representatives for each "class" of partitioning tree. Lastly, in Section 4.5, we show how to manipulate these compressed representatives in order to design an algorithm for this problem. This manipulation is a direct extension of the procedures Start Node, Introduce Node, Join Node and Forget Node when applied to "compressed" representatives of FSPT k,q (v).

Good Representatives of Partitioning Trees

In this section we outline the ideas used in order to improve the space necessary to store the q-branched partitioning trees of a node in the nice decomposition of A. In other words, in this section, we reuse a method for "compressing" path decompositions and tree decomposition in [START_REF] Bodlaender | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF] this time applied to q-branched partitioning trees and partitioning functions. A "compression" of the set FSPT k,q (v) for a node v of the nice decomposition of A is such that the size of this compression is bounded by q, the Φ-width and the width of the nice decomposition of A. Hence, it does not depend on the size of A. Intuitively, this is achieved by keeping only "good" representatives, a.k.a. characteristics, for each q-branched partitioning tree with Φ-width at most k of A.

labelled Paths

Let Φ be a monotone partition function. As stated in Section 4.3, any partitioning tree (T, σ) can be viewed as a labelled graph, where any v ∈ V (T ) is labelled with Φ(T v ) and any e ∈ E(T ) is labelled with Φ(T e ). Because Φ is monotone, the label of an edge is not bigger than the label of its endpoints. In this section, we detail operations over labelled paths, that will serve as the basis of manipulating partitioning trees in the forthcoming sections.

A labelled path P is a path (v 0 , v 1 , . . . , v n ) where any vertex v i is labelled with an integer ℓ(v i ), and any edge e i = {v i-1 , v i } with an integer ℓ(e i ) such that the label of any edge is less or equal to the label of any of its endpoints.

A vertex v i ∈ V (P ) or an edge {v i , v i+1 } is smaller than v j ∈ V (P ) if i < j. Similarly v i (resp., {v i , v i+1 }) is smaller than {v j , v j+1 } if i < j. We define max(P ) as the maximum integer labeling an edge or a vertex of P . Similarly, we define min(P ).

Let e = {u, v} be an edge in which we do a subdivision, let e 1 = {u, x} and e 2 = {x, v} be the edges in the resulting path and x be the vertex created, then ℓ(e 1 ) = ℓ(e 2 ) = ℓ(x) = ℓ(e), i.e. edges and the vertex resulting from the subdivision are labelled with ℓ(e). An extension of a labelled path P is any path obtained by subdividing some edges of P an arbitrary number of times. Let P * be an extension of P . The originator of an edge e * ∈ E(P * ) is the edge e ∈ E(P ) such that e * is obtained in P * by the subdivision of e. Similarly, the originator of a vertex v * ∈ E(P * ) is the correspondent vertex of P , if v * is not the result of a subdivision, or is the edge e ∈ E(P ) that was subdivided to create v * .

For any function F : N → N, let F (P ) denote the path (v 0 , v 1 , . . . , v n ) where any label ℓ has been replaced by F (ℓ). If P = (v 1 , . . . , v n ) and Q = (w 1 , . . . , w m ) are two labelled paths with a common end, v n = w 1 , and vertex disjoint otherwise, their concatenation

P ⊙ Q is the labelled path (v 1 , . . . , v n = w 1 , w 2 , . . . , w m ).

Contraction of a labelled path

In this section, we define an operation on labelled paths that will be widely used in the next sections. This operation is used to compress the size of a q-branched partitioning tree. For this purpose, we revisit the notion of typical sequence of a sequence of integers [START_REF] Bodlaender | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF]. Roughly, the goal of the following operation is to contract some edges and vertices of P that are not "necessary" to remember the variations of the sequence

(ℓ(v 0 ), ℓ(e 1 ), ℓ(v 1 ), . . . , ℓ(e n ), ℓ(v n )).
First, let us recall the definition of the typical sequence of a sequence of integers [START_REF] Bodlaender | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF]. Let S = (s i ) i≤2n-1 be a sequence of integers. Its typical sequence τ (S) is obtained by iterating the following operations while it is possible: (1) if there is i < |S| such that s i = s i+1 , remove s i+1 from S, and (2) if there are i < j -1 < |S|, and either, for any i ≤ k ≤ j, s i ≤ s k ≤ s j , or, for any i ≤ k ≤ j, s i ≥ s k ≥ s j , remove s k from S for any i < k < j. Note that the order in which the operations are executed is not relevant, therefore τ (S) is uniquely defined.

The contraction Contr(P ) is the path obtained from P = (v 0 , . . . , v n ) with same ends by contracting some edges and vertices with the following operations until no more vertices or edges can be removed from the path, let e i = {v i-1 , v i }:

Operation 1: There exists 0 < i ≤ k ≤ n such that ∀ i≤j≤k ℓ(e i ) ≤ ℓ(e j ) ≤ ℓ(v k ) and ∀ i≤j≤k ℓ(e i ) ≤ ℓ(v j ) ≤ ℓ(v k ), then P becomes (v 0 , . . . , v i-1 , v k , . . . , v n ) and ℓ({v i-1 , v k }) = ℓ(e i ).
Operation 2: There exists 0

≤ i < k ≤ n such that ∀ i<j≤k ℓ(v i ) ≥ ℓ(e j ) ≥ ℓ(e k ) and ∀ i≤j<k ℓ(v i ) ≥ ℓ(v j ) ≥ ℓ(e k ), then P becomes (v 0 , . . . , v i , v k , . . . , v n ) and ℓ({v i , v k }) = ℓ(e k ).
It is important to note that any v ∈ V (Contr(P )) (resp. e ∈ E(Contr(P ))) represents a unique v * ∈ V (P ) (resp. e * ∈ E(P )), i.e. the vertex (resp. edge) in V (P ) (resp. E(P )) that originated v (resp. e) during the contraction operation. By this definition, if x represents x * then ℓ(x) = ℓ(x * ).

Figure 4.2 represents two labelled paths P and Q. The vertices of Contr(P ) and Contr(Q) are named as the vertices they represent in P and Q. We also illustrate an extension P * of P and an extension Q * of Q.

In the following, let e ′ i be the edge

{v ′ i-1 , v ′ i }. The crucial property of Contr(P ) = (v 0 = v ′ 0 , v ′ 1 , . . . , v ′ p-1 , v ′ p = v n ) is that the sequence S ′ = (ℓ(e ′ 1 ), ℓ(v ′ 1 ), . . . , ℓ(e ′ p-1 ), ℓ(v ′ p-1 ), ℓ(e ′ p )
) is "almost" the typical sequence τ (S) of S = (ℓ(e 1 ), ℓ(v 1 ), . . . , ℓ(e n )). More precisely, • if ℓ(e ′ 1 ) = ℓ(v ′ 1 ) and ℓ(e ′ p ) = ℓ(v ′ p-1 ), then S ′ = τ (S);

• if ℓ(e ′ 1 ) = ℓ(v ′ 1 ) and ℓ(e ′ p ) = ℓ(v ′ p-1 ), then S ′ = ℓ(e ′ 1 ) • τ (S); • if ℓ(e ′ 1 ) = ℓ(v ′ 1 ) and ℓ(e ′ p ) = ℓ(v ′ p-1 ), then S ′ = τ (S) • ℓ(e ′ p ); • if ℓ(e ′ 1 ) = ℓ(v ′ 1 ) and ℓ(e ′ p ) = ℓ(v ′ p-1 ), then S ′ = ℓ(e ′ 1 ) • τ (S) • ℓ(e ′ p )
. Lemma 22. Let P be a labelled path. 1. min(Contr(P )) = min(P ) and max(Contr(P )) = max(P ). 2. Given a labelled path P with max(P ) ≤ k, then the number of edges, or size, of Contr(P ) is at most 2k + 3.

Proof. Assume that P = (v 1 , v 2 , . . . , v n ). We recall that the labels of the edges are not bigger than the labels of their endpoints. Note that, the contraction operations do not change the labels of vertices or edges of P , they simply remove some vertices or edges of P . Hence, min(Contr(P )) ≥ min(P ) and max(Contr(P )) ≤ max(P ).

Assume that there exists P ′ such that P ′ is obtained after one contraction operation is applied to P and that max(P ′ ) < max(P ). W.l.o.g. assume that the contraction operation was applied between edge the edge e i = {v i-1 , v i } and the vertex v j , j > i.

In other words, P ′ = (v 1 , . . . , v i-1 , v j , . . . , v n ). Since, max(P ′ ) < max(P ) we must have removed a vertex with a big label, That is, there is v l ∈ V (P ), i ≤ l ≤ j, such that ℓ(v l ) > ℓ(v j ). Therefore, by definition of a contraction operation, we are not allowed to do a contraction operation between e i and v j . Hence, min(P ) = min(P ′ ).

Assume that there exists P ′ such that P ′ is obtained after one contraction operation is applied to P and that min(P ′ ) > min(P ). W.l.o.g. assume that the contraction operation was applied between edge the edge e i = {v i-1 , v i } and the vertex v j , j > i.

In other words, P ′ = (v 1 , . . . , v i-1 , v j , . . . , v n ). Since, min(P ′ ) < min(P ) we must have removed an edge with small label, That is, there is e l ∈ E(P ), i + 1 ≤ l ≤ j, such that ℓ(e l ) < ℓ(e i ). Therefore, by definition of a contraction operation, we are not allowed to do a contraction operation between e i and v j . Hence, min(P ) = min(P ′ ).

Let P = (v 0 , v 1 , . . . , v n ), e i = {v i-1 , v i } and S = (ℓ(e 1 ), ℓ(v 1 ), ℓ(e 2 ), ℓ(v 2 ), . . . , ℓ(v n )).
We have that the number of edges plus the number of vertices of Contr

(P ) = (v ′ 0 , v ′ 1 , . . . , v ′ p ) is at most the size of τ (S) plus two, since it is possible that ℓ(e ′ 1 ) = ℓ(v ′ 1 ) and ℓ(e ′ p ) = ℓ(v ′ p-1 )
, where

e ′ i = {v ′ i-1 , v ′ i }.
Therefore, we have that the number of edges in Contr(P ) is not bigger than 2k + 3, since the number of elements in τ (S) is not bigger than 2k + 1 [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF].

Lemma 23. Let P and Q be two labelled paths. Let P * be any extension of P . 1. Contr(P * ) = Contr(P ) = Contr(Contr(P )). 2. Let F : N → N be any strictly increasing function. F (Contr(P )) = Contr(F (P )).

Contr(P

⊙ Q) = Contr(Contr(P ) ⊙ Contr(Q)).
Proof. 1. From the definition of "Contr" we have Contr(P ) = Contr(Contr(P )).

Let P ′ be obtained from P by subdividing one edge e = {u, v} a k times resulting in e 1 = {u, t 1 }, e 2 = {t 1 , t 2 }, e 3 = {t 2 , t 3 }, . . . , e k = {t k-1 , t k } and e k+1 = {t k , v}. Then, for each 1 ≤ i ≤ k, the labels of e i and t i are given by ℓ(e) and ℓ(e k+1 ) = ℓ(e), i.e. P ′ is the extension of P where e is subdivided k times. Then, a contraction operation can be applied between e 1 and v, ℓ(e 1 ) ≤ ℓ(t

1 ) = ℓ(e 2 ) = ℓ(t 2 ) = • • • = ℓ(t k ) = ℓ(e k+1 ) ≤ ℓ(v).
The result of this contraction on path P ′ is P .

Then, by induction on the number of edges of P that were subdivided. Clearly, the result holds if zero edges are subdivided. Let P * be an extension of P that subdivides at most i ≥ 0 different edges. The above reasoning shows that it is possible to contract edges and vertices that are created through a subdivision of a single edge, i.e., if e = {u, v} is subdivided a finite amount of times, then it is possible to apply a contraction operation on the edge created by the subdivision that has u as endpoint and v. Let P ′ be obtained from P * by applying a contraction operation between v and e 1 . By induction hypothesis, Contr(P ′ ) = Contr(P ), since Contr(P * ) = Contr(P ′ ) we got the result. That is, Contr(P * ) = Contr(P ).

2.

In what follows we abuse the notation of a path to include the set of edges of P , i.e. a path P = (v ′ 1 , . . . , v ′ r ) becomes the path P = (v 1 , e 2 , v 3 , e 4 , . . . , e r-1 , v 2r-1 ) where

v 2i-1 = v ′
i and e i = {v i-1 , v i+1 }. Let P be equal to (v 1 , e 2 , v 3 , . . . , v i ) and P f be the labelled path obtained through P by applying F , that is, F (P ). We show that F (Contr(P )) = Contr(F (P )) by showing that a contraction operation can be performed in P if and only if it can be performed in F (P ).

W.l.o.g. assume that it is possible to do a contraction operation between the edge e i and vertex v j , j > i, in P . Hence, for all e k and v k , i < k < j we have that ℓ(e i ) ≤ ℓ(e k ) ≤ ℓ(v j ) and ℓ(e i ) ≤ ℓ(v k ) ≤ ℓ(v j ). Since, F is strictly increasing, we have that for all e k and v k

, i < k < j, F (ℓ(e i )) ≤ F (ℓ(e k )) ≤ F (ℓ(v j )) and F (ℓ(e i )) ≤ F (ℓ(v k )) ≤ F (ℓ(v j )).
Therefore, in F (P ) it is possible to apply a contraction operation between e i and v j .

Similarly, assume that it is possible to do a contraction operation between the edge e i and vertex v j , j > i, in F (P ). Hence, for all e k and v k , i < k < j we have that

F (ℓ(e i )) ≤ F (ℓ(e k )) ≤ F (ℓ(v j )) and F (ℓ(e i )) ≤ F (ℓ(v k )) ≤ F (ℓ(v j ))
. Since, F is strictly increasing, we have that for all e k and v k , i < k < j, ℓ(e i ) ≤ ℓ(e k ) ≤ ℓ(v j ) and ℓ(e i ) ≤ ℓ(v k ) ≤ ℓ(v j ). Therefore, in P it is possible to apply a contraction operation between e i and v j .

Hence, the paths Contr(P ) = {v c 1 , . . . , v c n } and Contr(F (P )) = {v f 1 , . . . , v f n } are composed of the same sequence of vertices and edges. That is, for all 1 ≤ i ≤ n we have that v c i and v f i represent the same vertex in P . Therefore, F (Contr(P )) = Contr(F (P )). 3. Comes directly from the fact that the order of contractions does not change the path obtained by applying "Contr" to a path.

Let P = (v 0 , . . . , v n ), a simple property of Contr(P ) is that: if v j is a vertex with a representative in Contr(P ) we have that Contr(P ) = Contr((v 0 , . . . , v j )) ⊙ Contr((v j , . . . , v n )).

A scheme of Lemma24 can be found in Figure 4.3. Lemma 24. Let P = (v 0 , . . . , v n ) be a labelled path and

Contr(P ) = (v c 0 , . . . , v c p ). Let i ≤ p. Let P c = (v c 0 , . . . , v c i-1 , x, v c i , . . . , v c p )

be the extension of Contr(P ) obtained by subdividing once the edge e

c i = {v c i-1 , v c i } ∈ Contr(P )
. Let e * i = {v j-1 , v j } be an edge of P represented by e c i , and P ′ = (v 0 , . . . , v j-1 , y, v j , . . . , v n ) be the extension of P obtained by subdividing once e * i . Let P c 1 = (v c 0 , . . . , x), P c 2 = (x, . . . , v c p ), P 1 = (v 0 , . . . , y) and P 2 = (y, . . . , v n ). Then, Contr(P 1 ) = Contr(P c 1 ) and Contr(P 2 ) = Contr(P c 2 ). Proof. Let v a be the vertex of P 1 represented by v c i-1 in Contr(P ) and v b the vertex of P 2 represented by v c i in Contr(P ). Therefore, from the definition of "Contr",

Contr((v 0 , . . . , v a )) = Contr((v c 0 , . . . , v c i-1 )) and Contr((v b . . . , v n )) = Contr((v c i , . . . , v c p )). Since ℓ({v j-1 , y}) = ℓ({y, v j }) = ℓ({v c i-1 , x}) = ℓ({x, v c i }) = ℓ({v c i-1 , v c i }) = ℓ({v j-1 , v j }),
we have that any contraction operation applied between v a and {v j-1 , v j } or between {v j-1 , v j } and v b in P can also be applied in P ′ between v a and {v j-1 , y} or, in the second case, between {y, v j } and v b .

Therefore, Contr((v a , . . . , y)) = Contr((v c i-1 , x)) and Contr((y, . . . , v b )) = Contr((x, v c i )). Then, from item 3 of Lemma 23 we have:

Contr(P 1 ) = Contr(Contr((v 0 , . . . , v a )) ⊙ Contr((v a , . . . , y))) = Contr(Contr((v c 0 , . . . , v c i-1 )) ⊙ Contr((v c i-1 , x))) = Contr(P c 1 )
The proof for Contr(P 2 ) = Contr(P c 2 ) is similar an thus omitted.

Merging of labelled paths

Now, we present an operation that merges two labelled paths P and Q with common ends and vertex-disjoint otherwise. This operation is used to aid in the computation of the full set of a join node in the algorithm. The assumption that the paths have common ends is a reflection of how this operation is used by the algorithm of Section 4.5, but it is not intrinsically necessary.

A merging M = (m 1 , . . . , m k ) of two labelled paths P = (p 1 , . . . , p n ) and Q = (q 1 , . . . , q m ) under a function F : N × N → N is a path obtained by constructing extensions P e = (p e 1 , . . . , p e k ) and Q e = (q e 1 , . . . , q e k ) of P and Q such that P e and Q e have the same length, k ≤ nm.

Then set ℓ({m i-1 , m i }) = F (ℓ({p e i-1 , p e i }), ℓ({q e i-1 , q e i })
), for all 2 ≤ i ≤ k, and ℓ(m i ) = F (ℓ(p e i ), ℓ(q e i )), for all 1 ≤ i ≤ k. Note that, the maximum size of the merging, k ≤ mn, is big enough to merge each edge on one path to each edge on the other path.

Figure 4.2 represents a merging of P and Q using the function F : (x, y) → x + y. When merging P and Q, we assume they have same ends, i.e. p 1 = q 1 and p n = p m .

Let P and Q be two labelled paths and M = (m 1 , . . . , m k ) be a merging of P and Q under a function F . Let P e = (p e 1 , . . . , p e k ) and Q e = (q e 1 , . . . , q e k ) be the extensions of P and Q used to create M .

We say that a vertex m i ∈ V (M ) matches p e i ∈ V (P e ) and q e i ∈ V (Q e ). Similarly, we say that an edge {m i , m i+1 } ∈ E(M ) matches {p e i , p e i+1 } ∈ E(P e ) and {q e i , q e i+1 } ∈ E(Q e ). Let m be a vertex or edge of M such that m matches p e and q e in P e and Q e respectively, then Orig(m) is the pair (p, q) such that p ∈ V (P ) ∪ E(P ) is the originator, the vertex or edge of P that originated p e , of p e and q ∈ V (Q) ∪ E(Q) is the originator of q e . We now list some simple but useful properties of "Orig":

• if e is an edge of M , then Orig(e) = (p, q) is such that p ∈ E(P ) and q ∈ E(Q);

• if v is a vertex of M and Orig(v) = (p, q) is such that p ∈ E(P ) and q ∈ E(Q) then, let e be any edge of M with v as extremity, Orig(e) = (p, q). That is, if v is obtained by merging two vertices that were obtained from the subdivision of an edge, then the edges incident to v are also originated from the same edges;

• for every vertex p ∈ V (P ) (resp. q ∈ V (Q)) there is only one v ∈ V (M ) such that Orig(v) = (p, x) (resp. Orig(v) = (x, q))
, where x is either a vertex or edge of Q (resp. P ). That is, since vertices of P and Q cannot be subdivided, they can only originate one vertex in M ;

• if M = (m 1 , . . . , m k ), then Orig(m 1 ) = (p 1 , q 1 ) and Orig(m k ) = (p n , q m ) where p 1 and p n are the extremities of P and q 1 and q m the extremities of Q.

Let P and Q be two labelled paths and M a merging of P and Q under a function F . Let P c (resp. Q c ) be path obtained from P (resp. Q) after some, possibly zero, contraction operations are applied to P (resp. Q). Let M c = (m c 1 , . . . , m c k ) be a merging of P c and Q c under the same function F .

Roughly, we say that a merging M of P and Q respects a merging M c of P c and Q c if the vertices and edges in M c are obtained by matching "correspondent" vertices or edges in P and Q. 

For any vertex or edge m

c of M c , if Orig(m c ) = (p c , q c ), then let p c ∈ V (P c ) ∪ E(P c ) and q c ∈ V (Q c ) ∪ E(Q c ) be the representatives of p ∈ V (P ) ∪ E(P ) and q ∈ V (Q) ∪ E(Q)
respectively. Formally, we say that M respects M c if the two following conditions are met:

• for all vertices m ∈ V (M ) with Orig(m) = (p, q) such that p has a representative p c in P c , we have that there is a vertex m c ∈ V (M c ) such that Orig(m c ) = (p c , q c ), where q c is any vertex or edge of Q c ;

• for all vertices m ∈ V (M ) with Orig(m) = (p, q) such that q has a representative q c in Q c , we have that there is a vertex m c ∈ V (M c ) such that Orig(m c ) = (p c , q c ), where p c is any vertex or edge of P c ;

• for all vertices m ∈ V (M ) with Orig(m) = (p, q) such that such that p has a representative p c in P c and q has a representative q c in Q c , we have that there is a vertex

m c ∈ V (M c ) such that Orig(m c ) = (p c , q c );
• for all edges e ∈ E(M ) with Orig(e) = (p, q) such that p has a representative p c in P c , we have that there is an edge e c ∈ E(M c ) such that Orig(e c ) = (p c , q c ), where q c is any vertex or edge of Q c ;

• for all edges e ∈ E(M ) with Orig(e) = (p, q) such that q has a representative q c in Q c , we have that there is an edge e c ∈ V (M c ) such that Orig(e c ) = (p c , q c ), where p c is any vertex or edge of P c ;

• for all edges e ∈ E(M ) with Orig(e) = (p, q) such that such that p has a representative p c in P c and q has a representative q c in Q c , we have that there is a an edge e c ∈ V (M c ) such that Orig(m c ) = (p c , q c ).

Lemma 25. Let F : N × N → N strictly increasing in both coordinates. Let P and Q be labelled paths. Let K p and K q be subsets of vertices of P and Q respectively. Let P c be obtained from P by applying some contraction operations, but without contracting any vertex in K p . Similarly, let Q c be obtained from Q by applying some contraction operations, but without contracting any vertex in K q . Let M c be a merging of P c and Q c under F and M be a merging of P and Q under F that respects M c .

Let r be the biggest integer such that

M c = M c 1 ⊙ • • • ⊙ M c r ,
where, for all i < r, the common end between M c i and

M c i+1 is a vertex v c i ∈ V (M c ) such that Orig(v c i ) = (p c i , q c i )
where either the vertex represented by p c i is in K p or the vertex represented by

q c i is in K q . Let M = M 1 ⊙ • • • ⊙ M r , where, for all i < r, the common end between M i and M i+1 is a vertex v i ∈ V (M ) such that Orig(v) = (p i , q i ) where either p i ∈ K p or q i ∈ K q .
Then, for all 1 ≤ i ≤ r we have Contr(M i ) = Contr(M c i ). Proof. In order to prove that Contr(M i ) = Contr(M c i ) for all 1 ≤ i ≤ r, we prove that we can obtain M c i from M i with some contraction operations. More precisely, let

M i = (m 1 , . . . , m h ) and M c i = (m c 1 , . . . , m c r ′ ). Consider a vertex m c ∈ V (M c i
) and an edge e c ∈ E(M c i ) such that m c is an extremity of e c . Let Orig(m c ) = (p c , q c ) and let Orig(e c ) = (p ′c , q ′c ). Since M respects M c , there is m ∈ V (M i ) such that Orig(m) = (p, q) with p and q being represented by p c and q c respectively and there is e ∈ E(M i ) such that Orig(e) = (p ′ , q ′ ) with p ′ and q ′ being represented by p ′c and q ′c respectively. Choose m and e such that the amount of internal vertices on the subpath of M from m to the extremity of e that is closest to m is the biggest. That is, if e "appears" after m in the path M , then m is the first vertex of M such that Orig(m) = (p, q) and e is the last edge of M such that Orig(e) = (p ′ , q ′ ). We show that, in M i , if m is not an extremity of e, then it is possible do a contraction operation between m and e. In what follows assume that m is not an extremity of e in M .

Since p c and p ′c are the originators of m c and e c respectively, either they are the same, meaning that m c and e c are originated from the subdivision of an edge of P c , or they are different, meaning that m c originated from a vertex (or edge) of P c and e c originated from an edge (or vertex) of P c . In the case that p c and p ′c are different, since m c is an extremity of e c in M c , it means that either p c is a vertex that is an extremity of p ′c in P c or that p c is an edge with p ′c as extremity in P c . Hence, if p c = p ′c , then, since p c represents p and p ′c represents p ′ , it is possible to contract all vertices and edges between p and p ′ in P .

With a similar reasoning we have that, if q c = q ′c , then it is possible to contract all vertices and edges between q and q ′ in Q.

There are four cases to consider: p c = p ′c and q c = q ′c ; p c = p ′c and q c = q ′c ; p c = p ′c and q c = q ′c ; p c = p ′c and q c = q ′c . 1. p c = p ′c and q c = q ′c : then, in P (resp. in Q), it is possible to contract all vertices between p and p ′ (resp. q and q ′ ). Then, from the fact that H is strictly increasing in both coordinates, it is possible to contract all vertices between m and e in M .

Formally, w.l.o.g. assume that p c = p ′c be such that ℓ(p c ) ≥ ℓ(p ′c ) and that q c = q ′c be such that ℓ(q c ) ≥ q ′c . Then, in P , all vertices or edges x p between p and p ′ are such that ℓ(p ′ ) ≤ ℓ(x p ) ≤ ℓ(p) and, in Q, all vertices or edge x q between q and q ′ are such that ℓ(q ′ ) ≤ ℓ(x q ) ≤ ℓ(q). Therefore, since H is strictly increasing in both coordinates, H(ℓ(p ′ ), ℓ(q ′ )) ≤ H(ℓ(x p ), ℓ(x q )) ≤ H(ℓ(p), ℓ(q)) for all vertices or edges x p and x q that are between p and p ′ in P and between q and q ′ in Q respectively. Hence, in M , it is possible to contract all vertices between m and e.

2. p c = p ′c and q c = q ′c : then, in Q, it is possible to contract all vertices between q and q ′ . Since p c = p ′c , it means that p = p ′ , therefore the vertex m, the edge e an all vertices or edge in between m and e are obtained from a subdivision of the same edge p in P . Then, from the fact that H is strictly increasing in both coordinates and the fact the first coordinate of H is the same when applying to all vertices and edges on the path between m and e, it is possible to contract all vertices between m and e in M . Formally, w.l.o.g. assume that p c = p ′c and that q c = q ′c be such that ℓ(q c ) ≥ q ′c . Then, in Q, all vertices or edge x q between q and q ′ are such that ℓ(q ′ ) ≤ ℓ(x q ) ≤ ℓ(q). Therefore, since H is strictly increasing in both coordinates, H(ℓ(p ′ ), ℓ(q ′ )) ≤ H(ℓ(p ′ ), ℓ(x q )) ≤ H(ℓ(p ′ ), ℓ(q)) for all vertices or edges x q that are between q and q ′ in Q. Hence, in M , it is possible to contract all vertices between m and e.

3. p c = p ′c and q c = q ′c : this case is similar to the case (p c = p ′c and q c = q ′c ) and thus omitted.

4. p c = p ′c and q c = q ′c : this means that m, e and all vertices and edges of M between m and e where obtained from the subdivision of an edge p in P and an edge q in Q, hence they all have the same label which is given by H(ℓ(p), ℓ(q)). Therefore, it is possible to do a contraction operation between m and e in M .

Then, let M ′ i be obtained from M i by applying the above reasoning for each edge e c ∈ E(M c ) and with both its extremities. The resulting path

M ′ i is M c i . Since Contr(M ′ i ) = Contr(M c i ) and Contr(M i ) = Contr(M ′ i ),
we have the result.

Characteristics -Good Representatives

In this section we introduce the notion of "characteristic" of a partitioning tree. The idea behind a characteristic is that, in order to compute a partitioning tree for a node v in the nice decomposition (D, X ), the "only" important information is given by elements of X v and the "structure" of the partitioning tree. Hence, it is possible to "forget" elements of A v \ X v from the partitioning trees for v.

Restriction of a partitioning tree

Let (T ′ , r ′ , σ ′ ) be partitioning tree of a set A and Φ A a monotone partition function over A. We assume that T ′ is not restricted to an edge, and r ′ is not a leaf of T ′ to avoid unnecessary simple cases. Therefore, the corpse cp(T ′ ) (T ′ without its leaves) can be rooted in r ′ . Let B ⊆ A, the restriction Char((T ′ , r ′ , σ ′ ), B) of (T ′ , r ′ , σ ′ ) to B is composed of the following structures:

• a rooted partitioning tree (T, r, σ) of B;

• an integer dist used to remember the number of branching nodes between r ′ and r;

• a subset K of vertices of T used to remember the set of branching nodes and parents of leaves; and

• labeling functions:

ℓ : V (cp(T )) ∪ E(T ) → N used to remember the width of the partitioning tree;

out : V (cp(T )) → N used to remember the number of branching nodes that were "forgotten";

branch : V (cp(T )) → {0, 1} used to remember if the node in question is a branching node;

father : V (cp(T )) → {0, 1} used to remember if the node in question is not yet a branching node, but can become one if another child is added to it.

Char((T ′ , r ′ , σ ′ ), B) is computed as follows. 1. Let T be the smallest subtree spanning the leaves of T ′ that map elements of B. Let r be the vertex of T that is closest to r ′ in T ′ . From now on, T is rooted in r. For any leaf f of T , let σ(f ) = σ ′ (f ). 2. Let dist be the number of branching nodes on the path between r ′ and r in cp(T ′ ) \ r. If r = r ′ , then dist = 0. 3. Let K be the set of vertices of T that are either a leaf of T , or the parent of a leaf of T , or a branching node of cp(T ′ ) in V (T ) (rooted in r ′ ), or a branching node of (T, r). The last condition seems redundant, but is necessary in case the root of the tree changes, that is, in the case that r ′ = r. 4. For any vertex v of V (cp(T )), branch(v) = 1 if v is a branching node of cp(T ′ ), and branch(v) = 0 otherwise.

For all v ∈ V (T ), let P v be the set of paths between v and a leaf in T ′ \ T all internal vertices of which are different from r and in T ′ \ T .

Let out(v) be the maximum number of branching nodes that are internal to a path in P v .

Let father(v) = 1 if v has a child that is not a leaf in T ′ , otherwise let father(v) = 0. 5. Any internal vertex v ∈ V (T ) (resp., any edge e ∈ E(T )):

ℓ(v) = Φ A (T v ) (resp., ℓ(e) = Φ A (T e )).
Where T v (T e ) denotes the partition of A defined by v (e) in T ′ . 6. Then, in T , for any two vertices v, w in K such that no internal vertices of the path P between v and w are in K, replace P by Contr(P ).

Remark 3. If q = ∞, we don't need to take the variables dist, out, branch and father into account. More precisely, the items 2, and 4 of the procedure Char can be removed and K is the set of vertices of T that are either a leaf of T , the parent of a leaf of T , or a branching node of (T, r).

We denote by C = Char((T, r, σ), B) the restriction of (T, r, σ) to B. Figure 4.5 illustrates the process Char when applied to a labelled partitioning tree of a set A. The key point for the understanding of the relationship between the partitioning tree (T ′ , r ′ , σ ′ ) of A and its restriction ((T, r, σ), ℓ, K, dist, out, branch, father) to B is based on the following. Any vertex of K represents a specific vertex of T ′ that is either a leaf of T ′ that maps an element of B, or the parent of such a leaf in T ′ , or a branching node of cp(T ′ ) or a vertex of T ′ that defines a partition of B with at least three parts. Any path P between two vertices v, w in K such that no internal vertices of P between v and w are in K, represents a path P (v, w) in T ′ the internal vertices of which have degree two in T ′ . Moreover, by definition of the operation P = Contr(P (v, w)), any vertex (resp., edge) of P represents a specific vertex (resp., edge) of T ′ . Beside, by Lemma 22, the maximum (minimum) label over the vertices and edges of T is the maximum (minimum) label over the vertices and edges of T ′ . In particular, if (T ′ , r ′ , σ ′ ) has Φ-width at most k, then ℓ(v) ≤ k and ℓ(e) ≤ k for any v ∈ V (T ) and e ∈ E(T ).

Let the br-height of v, denoted by brheight T (v), in cp(T ) be the maximum number of branching nodes in a path from v to a leaf of the subtree of cp(T ′ ) rooted in v, i.e. v union the component of T ′ \ v that does not contain r ′ . That is, brheight

T (v) = 0 if v is a leaf of T , otherwise brheight T (v) = max{out(v), max u child of v {brheight(u)}} + branch(v).
Lemma 26 shows that if a partitioning tree is q-branched then the brheight of the root of the restriction of this partitioning tree is not bigger than q.

Lemma 26. If (T ′ , r ′ , σ ′ ) is a q-branched partitioning tree for A, then Char((T ′ , r ′ , σ ′ ), B) = ((T, r, σ), ℓ, K, dist, out, branch, father) is such that brheight T (r) + dist ≤ q Proof. Let T ′′ be the subtree of T ′ obtained by taking the union of all paths P in T ′ such that one extremity of P is r ′ and P passes through r. Clearly T (before Step 6) is a subtree of T ′′ . Moreover, let r ′′ = r ′ and σ ′′ be the restriction of σ ′ over the leaves of T ′′ .

Then, the labels dist, out and branch are sufficient to remember if (T ′′ , r ′′ , σ ′′ ) is qbranched. By the definition of br-height, (T ′′ , r ′′ , σ ′′ ) is q-branched if and only if the br-height of r ′′ is at most q.

If v is a leaf of T , it is a leaf of T ′′ , then brheight T (v) = 0. Otherwise, the br-height of v ∈ V (T ) is given by max{out(v), height} + branch(v), where height is the maximum of the br-height among the children of v.

In particular, if (T ′′ , r ′′ , σ ′′ ) is q branched, out(v) ≤ q for any v ∈ K. Finally, the brheight T (r ′′ ) = brheight T (r) + dist ≤ q, since (T ′′ , r ′′ , σ ′′ ) is q branched.

Characteristic of A restricted to B

Let ((T, r, σ), ℓ, K, dist, out, branch, father) be such that (T, r, σ) is a rooted partitioning tree of B ⊆ A, ℓ : V (cp(T )) ∪ E(T ) → N, K ⊆ V (T ) that contains at least all leaves, parents of leaves, the root and vertices with degree at least three of T , dist ∈ N, out : V (cp(T )) → N, branch : V (cp(T )) → {0, 1}, father : V (cp(T )) → {0, 1} and for any v, w ∈ K such that no internal vertices of the path P between v and w are in K, P = Contr(Q) (i.e. P results from some contraction).

Definition 18. ((T, r, σ), ℓ, K, dist, out, branch, father) is a characteristic of A restricted to B if it exists a partitioning tree (T ′ , r ′ , σ ′ ) of A, such that ((T, r, σ), ℓ, K, dist, out, branch, father) = Char((T ′ , r ′ , σ ′ ), B). ((T, r, σ), ℓ, K, dist, out, branch, father) is a (k, q)- characteristic of A restricted to B if, moreover, ℓ : V (cp(T )) ∪ E(T ) → [0, k], and dist + brheight T (r) ≤ q.
Lemma 27. If it exists a q-branched partitioning tree (T ′ , r ′ , σ ′ ) of A with Φ-width at most k, such that C = Char((T ′ , r ′ , σ ′ ), B), then C = ((T, r, σ), ℓ, K, dist, out, branch, father) is a (k, q)-characteristic of A restricted to B Proof. This is a direct consequence of Definition 18 and Lemma 26.

Definition 19. The size of a (k, q)-characteristic of A restricted to B, ((T, r, σ), ℓ, K, dist, out, branch, father), is given by the expression |V (T )| + |K|.

Lemma 28. If q < ∞, then the number of (k, q)-characteristic of A restricted to B, with

|B| = b, is bounded by a function f (k, q, b) = O((60kqb) 45kqb ), otherwise the number of (k, ∞)-characteristic of A restricted to B is bounded by a function f (k, b) = O((15kb) 45kb ). Moreover, if q < ∞, then the size of a (k, q)-characteristic of A restricted to B is bounded by a function f ′ (k, q, b) = O(kqb), otherwise the size of a (k, ∞)-characteristic of A restricted to B is bounded by a function f ′ (k, b) = O(kb).
Proof. Let ((T, r, σ), ℓ, K, dist, out, branch, father) be a (k, q)-characteristic of A restricted to B. T is a tree with b leaves.

If q < ∞, i.e., q is bounded. Since (T, rσ) is q-branched, for each leaf there are at most q branching nodes between r and this leaf. Therefore, |K| ≤ bq + 2b + 1.

Any path between two vertices in K (that does not contain any other vertex in K) has at most 2k + 2 internal vertices (Lemma 22). Hence, among all these paths there are at most (bq + 2b)(2k + 2) vertices.

Let n = (bq + 2b)(2k + 3) + 1 ≤ 15kqb. The number of vertices in T is obtained by taking all vertices in K and all vertices that lies on a path between two vertices of K (that does not contain any other vertex in K). Thus, |V (T )| ≤ n.

We can bound the maximum number of non-isomorph trees on n vertices by

n n-2 [Cay89]. Let T(n) = n i=1 n n-2
. The value T(n) is the number of different trees that can be the "base" of the characteristic. There are at most n vertices that can be the root of the tree and at most b! (factorial) ways of mapping leaves of T to elements of B. Moreover, for each of these trees we can assign values for all the other variables, i.e., branch, out, dist, father, ℓ.

We have that dist ≤ q and for any vertex v ∈ V (cp(T )) and edge e ∈ E(T ), ℓ(v) ≤ k, ℓ(e) ≤ k, branch(v) ≤ 1, out(v) ≤ q and father(v) ≤ 1.

Then, the number of different characteristics is bounded by:

T(n)n(b!)q2 n q n 2 n k 2n-1 = 4 n q n+1 k 2n-1 (b!)nT(n).
Hence, the number of (k, q)-characteristic of A restricted to B is given by the function

f (k, q, |B|) = 4 n q n+1 k 2n-1 (b!)nT(n). Since n = O(15kqb), q n+1 = O(q 2n ), b! = O(b 2n ) and T(n) = O(n n ) with a coarse analysis we have that f (k, q, b) = O((60kqb) 45kqb ).
To measure the size of one (k, q)-characteristic of A restricted to B, we can use the function

f ′ (k, q, b) ≤ 2n, since |K| ≤ n. If q = ∞, then |K| ≤ 3b. Let n ′ = 3b(2k + 3) < 15kb and T ′ (n ′ ) = n i=1 n ′n ′ -2
. Using the same reasoning as for the proof of the case q < ∞, we have that the number of (k, ∞)-characteristic of A restricted to B is given by a function:

f (k, b) = k 2n ′ -1 (b!)T ′ (n ′ ). Since b! = O(b b ) = O(b kb ), n ′ < 15kb and T ′ (n ′ ) = O(n ′n ′ ) with a coarse analysis we have that f (k, b) = O((15kb) 45kb )
To measure the size of one (k, q)-characteristic of A restricted to B, we can use the function

f ′ (k, b) ≤ n ′ + 3b, since |K| ≤ 3b.
Definition 20. A set F of (k, q)-characteristics of A restricted to B is full if for all qbranched partitioning tree (T, r, σ) of A with Φ-width at most k, then Char((T, r, σ), B) ∈ F .

Algorithm Using Characteristic

This section is devoted to the presentation of Procedures used in the decision algorithm for the q-branched Φ-width of a set A. Notations are those defined in Sections 4.1, 4.2 for Theorem 11.

Let (D, X ) be a nice decomposition for A that is compatible with a monotone partition function Φ, such that max t∈V (D) |X t | ≤ k ′ . Recall that for any v ∈ V (D), D v denotes the subtree of D rooted in v, and

A v = ∪ t∈V (Dv) X t .
This section presents procedures that compute a full set FSC k,q (t) of (k, q)-characteristics of A t restricted to X t , for any t ∈ V (T ). The algorithm proceeds by dynamic programming from the leaves of D to its root.

Each procedure presented in this section takes as input a node v ∈ V (D) and, for each u that is a child of v, the sets FSC k,q (u). The output of each procedure is FSC k,q (v).

Procedure StartNode

If v is a leaf, i.e. a start node of D, A v = X v , and

|X v | ≤ k ′ . FSC k,q (v) consists of all (k, q)-characteristics of X v .
Procedure StartNode enumerates all (k, q)-characteristics of A v restricted to X v .

Trivially, the following statement holds:

Lemma 29. Procedure StartNode computes a full set of (k, q)-characteristics of A v re- stricted to X v .
Next lemma shows that the complexity of procedure StartNode does not depend on |A|.

Theorem 30. Procedure StartNode has constant time complexity. That is, if q < ∞ then procedure StartNode computes FSC k,q (v) in time O((60kqk ′ ) 46kqk ′ ), otherwise procedure StartNode computes FSC k,q (v) in time O((15kk ′ ) 46kqk ′ ).
Proof. By Lemma 28, | FSC k,q (v)| is bounded by the function f (k, q, k ′ ), if q < ∞, or by the function f (k, k ′ ), if q = ∞. Moreover, each element of FSC k,q (v) has a size bounded by the function by the function f ′ (k, q, k ′ ), if q < ∞, or by the function

f ′ (k, k ′ ), if q = ∞.
Therefore, the amount of memory needed to store FSC k,q (v) has size bounded by

f (k, q, k ′ ) • f ′ (k, q, k ′ ) in the case that q < ∞ or f (k, k ′ ) • f ′ (k, k ′ ) in the case that q = ∞. Since f (k, q, k ′ ) = O((60kqk ′ ) 45kqk ′ ) and f ′ (k, q, k ′ ) = O(kqk ′ ) we have that the char- acteristics in FSC k,q (v) can be enumerated in O((60kqk ′ ) 46kqk ′ ) in the case that q < ∞. Since f (k, k ′ ) = O((15kk ′ ) 45kqk ′ ) and f ′ (k, k ′ ) = O(kk ′ )
we have that the characteristics in FSC k,q (v) can be enumerated in O((15kk ′ ) 46kk ′ ) in the case that q = ∞.

Procedure IntroduceNode

Let v be an introduce node of D, u its child, and {a} = X v \ X u . Let FSC k,q (u) be a full set of (k, q)-characteristics of A u restricted to X u . For each characteristic C u = ((T u , r u , σ u ), ℓ u , K u , dist u , out u , branch u , father u ) ∈ FSC k,q (u), Procedure IntroduceNode proceeds as follows, repeating the five steps below, for any possible execution of Step 1. Roughly, it tries all possible ways to insert a into C u obtaining C v .

update of T u into T v :

There are two ways of inserting a in C u . Either choose an internal vertex v att of V (T u ), add a leaf v leaf adjacent to v att (Case 1 ), or choose an edge f = {v top , v bottom } (with v top closer to the root r u than v bottom ), subdivide it into e top = {v top , v att } and e bottom = {v att , v bottom } and add a new leaf v leaf adjacent to the new node v att (Case 2 ). In both cases, σ v keeps the same mapping as σ u for leaves that are not v leaf . We set σ v (v leaf ) = a. Note that, now, T v is a partitioning tree of X v .

update of labels of new vertex(ices) and edge(s):

In both cases of Step 1, e new = {v leaf , v att } receives label ℓ v (e new ) ← Φ Av ({A u , {a}}).

In Case 2 of Step 1, v att is a new vertex, then ℓ v (v att ) = ℓ v (e top ) = ℓ v (e bottom ) ← ℓ u (f ), and out v (v att ) = branch v (v att ) ← 0. If v bottom is not a leaf of T u , then father v (v att ) ← 1. Otherwise, father v (v att ) ← 0.

update of labels of vertex(ices) and edge(s):

For each e ∈ E(T v ), e = e new , let T e be the partition of X v defined by e. ℓ v (e) ← F Φ (ℓ u (e), T e , a).

For each t ∈ V (cp(T v )), let T t be the partition of X v defined by t. ℓ v (t) ← F Φ (ℓ u (t), T t , a). dist v ← dist u and, for all internal vertex x of T v , out v (x) ← out u (x), branch v (x) ← branch u (x) and father v (x) ← father u (x). In Case 2 of Step 1, father v (v top ) ← 1.

creation of a new branching node:

In Case 1 of Step 1, K v ← K u ∪ {v att , v leaf }.
In Case 2 of Step 1, if v bottom is the only child of v top in T u and father u (v top ) = 0 (this implies that v top belongs to K u only because it is the parent of a single leaf), then

K v ← (K u ∪ {v att , v leaf }) \ {v top }. Otherwise, K v ← K u ∪ {v att , v leaf }. In Case 2 of Step 1, if v bottom is a leaf of T u and father u (v top ) = 1, then branch v (v top ) ← 1.

contraction of paths:

∀x, y ∈ K v and path P between x and y such that no internal vertices of P are in K v , P ← Contr(P ).

6. update of FSC k,q (v): brheight T (r v ) is computable thanks to out v and branch v as seen in Lemma 26. If dist v + brheight T (r v ) ≤ q and ℓ v (t) ≤ k for any internal vertex t ∈ V (T v ), and

ℓ v (e) ≤ k for any edge e ∈ E(T v ), then FSC k,q (v) ← FSC k,q (v) ∪ {C v }.
The rest of this section is dedicated to show that procedure IntroduceNode computes FSC k,q (v) in constant time. We start by showing that the Procedure IntroduceNode computes a full set of (k, q)-characteristics of A v restricted to X v , then we analyse its complexity.

Lemma 31. Procedure IntroduceNode computes a full set of (k, q)-characteristics of A v restricted to X v .

Since Φ is closed under taking subset, A v admits a q-branched partitioning tree with Φ-width at most k only if A u does. Therefore, we can assume that FSC k,q (u) = ∅, otherwise, A v does not admit a q-branched partitioning tree with Φ-width at most k, and FSC k,q (v) = ∅. The proof of Lemma 31 is twofold. We first prove that the set FSC k,q (v) returned by Procedure IntroduceNode is a set of characteristics of A v restricted to X v in Lemma 32, then we prove it is full in Lemma 33.

(T • u , r • u , σ • u ) (T • v , r • v , σ • v ) C v = C s C u insertion of {a} Char((T • u , r • u , σ • u ), X u ) Introduce Node Char((T • v , r • v , σ • v ), X v )
Figure 4.6: Scheme of proof of Lemma 31.

To prove that the set FSC k,q (v) is a set of characteristics, we start from a partitioning tree (T

• u , r • u , σ • u ) of A u and its corresponding characteristic C u . The insertion of a into C u , from the IntroduceNode, results in C v . By inserting a into (T • u , r • u , σ • u ) mimicking the inser- tion of a into C u we obtain (T • v , r • v , σ • v ). Then, we show that C v = Char((T • v , r • v , σ • v ), X v ). A scheme can be found in Figure 4.6. Lemma 32. For all C v ∈ FSC k,q (v), we have that C v is (k, q)-characteristic of A v restricted to X v .
Proof. We introduce some notation in order to prove the lemma.

Let C u = ((T u , r u , σ u ), ℓ u , K u , dist u , out u , branch u , father u ) ∈ FSC k,q (u) be a characteristic used by procedure IntroduceNode to obtain C v . That is,

C v = ((T v , r v , σ v ), ℓ v , K v , dist v , out v , branch v , father v ) ∈ FSC k,q (v
) is an element of FSC k,q (v) constructed by applying the six steps of procedure IntroduceNode on C u ∈ FSC k,q (u).

We assume that C v is obtained from C u with Case 2 of Step "update T u into T v " of Procedure IntroduceNode. That is, C v is obtained from C u by adding v leaf as a neighbor of v att , where v att result from the subdivision of f = {v top , v bottom } ∈ E(T u ). Case 1 of Step 1 can be proved in a similar way, thus we omit the proof here.

By definition C u ∈ FSC k,q (u), hence it is a characteristic of a partitioning tree

(T • u , r • u , σ • u ) of A u restricted to X u , i.e. C u = Char((T • u , r • u , σ • u ), X u ). Since FSC k,q (u) is a full set of (k, q)-characteristics, we have that (T • u , r • u , σ • u ) is a q-branched partitioning tree for A u with Φ-width at most k.
Note that, by definition of Char((

T • u , r • u , σ • u ), X u ) and the "Contr" operation, f repre- sents an edge f • u ∈ E(T • u ). Let (T • v , r • v , σ • v ) be obtained from (T • u , r • u , σ • u ) by subdividing the edge f • u = {v • top , v •
bottom } one time, creating a vertex v att , and adding v leaf as neighbor of v att , make

σ • v (v leaf ) = a and r • v = r • u . By definition, (T • v , r • v , σ • v ) is a partitioning tree of A v . Let C s = ((T s , r s , σ s ), ℓ s , K s , dist s , out s , branch s , father s ) = Char((T • v , r • v , σ • v ), X v ), i.e. C s is the restriction of (T • v , r • v , σ • v ) to X v . We need to show that C v = C s .
In order to prove that C v = C s , we need to introduce some notation. For all t ∈ V (cp(T • v )), let A • t be the partition of A v defined by t. Similarly, for all e ∈ E(T • v ), let A • e be the partition of A v defined by e.

Recall that, from the Char procedure, T s is obtained by contracting all paths of T • v that have endpoints in K s and no internal vertex in K s . On the other hand, T v is obtained by adding a v leaf adjacent to v att in T u and then contracting all paths of T v that have endpoints in K v and no internal vertex in K v . We want to show that the result of the contractions in T • v and the contractions in T v are the same. That is, that after contractions T v and T s are isomorph having the same labels on its vertices.

Let P v (x, y) denote the labelled path between vertices x and y in T v with labels ℓ v (resp. P s (x, y) in T s with labels ℓ s ). In order to show these two properties, we show that for each pair of vertices x, y ∈ K v = K s (Claim 2) such that the path P v (x, y) has no vertex from K v as internal vertex then P v (x, y) = P s (x, y). In other words, the paths in T v and T s between two vertices of K v = K s have the same length and have the same sequence of labels defined by the functions ℓ v and ℓ s respectively. Let P ′ s (x, y) be the path between x and y in T ′ v . In other words, P ′ s (x, y) is the path P s (x, y) of C s along with labels given by ℓ s before Step 6 of Char((

T • v , r • v , σ • v ), X v ).
There are some cases to consider: (1) 

P s (x, y) = (v att , v leaf ); (2) P s (x, y) = (v att , v
(v att ) = Φ Av (A • v ). From the fact that Φ is compatible with (D, X ), we have that Φ Av (A • v ) = F Φ (ℓ u (f ), A • v ∩X v , a
). Finally, from the step "update of labels of vertices and edges" of procedure Intro-duceNode we have that

ℓ v (v att ) = F Φ (ℓ u (f ), A • v ∩X v , a)
. Taking all these inequalities we have that

ℓ s (v att ) = Φ Av (A • v ) = F Φ (ℓ u (f ), A • v ∩ X v , a) = ℓ v (v att ).

Case (2):

Now, let us assume that P s (x, y) = {v att , v leaf } and v att / ∈ {x, y}. Then, P s (x, y) represents a path P • u in T • u , and more precisely in

T ′ u . Each t ∈ V (P • u ) defines a partition T • t of A u such that Φ Au (T • t ) = Φ Av (A • t ) ∩ A u . Similarly, each e ∈ E(P • u ) defines a partition T • e of A u such that Φ Au (T • e ) = Φ Av (A • e ) ∩ A u .
Moreover, the labels in P • u are given by the function Φ Au applied to the partitions of A u defined by the vertices (or edges) of

P • u . When computing Char((T • u , r • u , σ • u ), X u ) to obtain C u , P • u is replaced by Contr(P • u )
. Each internal vertex and edge of Contr(P • u ) defines the same partition P of X v (where a is in the part correspondent to the component where edge f is), since these vertices are not in K u , hence they are not leaves, nor parent of leaves of X u , nor branching nodes of cp(T • u ) and f • u does not belong to P • u . To obtain P v (x, y), procedure IntroduceNode modifies the labels of edges and vertices of Contr(P • u ) by applying the strictly increasing function F Φ,P : x → F Φ (x, P, a) (Step "update of labels of vertex(s) and edge(s)" of Procedure IntroduceNode), then, let F Φ,P (Contr(P • u )) be the path obtained in this way, then it replaces F Φ,P (Contr (P • u )) by Contr(F Φ,P (Contr(P • u ))). Hence, Contr(F Φ,P (Contr(P • u ))) = P v (x, y). By Items 2 and 1 of Lemma 23,

P v (x, y) = Contr(F Φ,P (Contr(P • u ))) = Contr(Contr(F Φ,P (P • u ))) = Contr(F Φ,P (P • u )).

From the definition of T •

v and the fact that Φ is compatible with (D, X ), we have that F Φ,P (P

• u ) = P • v , hence, by Step 6 of Char((T • v , r • v , σ • v ), X v )
, Contr(F Φ,P (P • u )) = P s (x, y). Therefore, P v (x, y) = P s (x, y). Now, for every vertex t in cp(T v ), out v (t) is the maximum number of branching nodes on a path between t and a leaf in A u \ X u every internal vertices of which are different from r • u and in T ′ u \ T • u . It is also the maximum number of branching nodes on a path between t and a leaf in 

A v \ X v = A u \ X u every
(v top ) = 1. Claim 5. (T • v , r • v , σ • v
) is a q-branched partitioning tree for A v with Φ-width not bigger than k.

Therefore, we proved that

C v = Char((T • v , r • v , σ • v ), X v ). By Step "update of FSC k,q (v)" of Procedure IntroduceNode, we have that dist v + brheight T (r v ) ≤ q. Note that, since (T • u , r • u ) is q-branched, for every path P in cp(T • v ) from r • v to a leaf of cp(T • v
) such that P does not pass through r ′ v we have that P has at most q branching nodes. Hence, by Lemma 26 (T

• v , r • v , σ • v ) is q-branched. It remains to show that (T • v , r • v , σ • v ) has Φ width at most k. Consider any internal vertex t of V (T • v ) \ V (T ′ v )
. Let P t be the partition of A v defined by t. Since t is not in V (T ′ v ) the partition of X v it defines has only one part. That is, the partition P t ∩ X v defined by t has at most one part. From the fact that Φ is compatible with (D, X ) we have that Φ Av (P t ) = Φ Av (P t ) = Φ Au (P t ∩ A u ). Then, from the fact that (T

• v , r • v , σ • v ) has Φ width at most k we have that Φ Av (P t ) ≤ k.
Similarly, for any edge e of E(T

• v ) \ E(T ′ v )
we have that Φ Av (P e ) ≤ k, where P e is the partition of A v defined by e.

From the definition of "Contr", item 1 from Lemma 22 and the fact that ℓ v (t) ≤ k for any vertex t ∈ V (cp(T v )), and ℓ v (e) ≤ k for any edge e ∈ E(T v ), we have that (

T ′ v , r ′ v , σ ′ v ) has Φ-width at most k. Hence, (T • v , r • v , σ • v ) has Φ-width at most k. Therefore, (T • v , r • v , σ • v
) is a q-branched partitioning tree with Φ-width at most k. Thus,

C v = Char((T • v , r • v , σ • v ), X v ) is a (k, q)-characteristic of (T • v , r • v , σ • v ) restricted to X v . This concludes the proof, that is FSC k,q (v) is a set of (k, q)-characteristics restricted to A v .
To prove that the set FSC k,q (v) is full, we consider an arbitrary q-branched partitioning tree (T

• v , r • v , σ • v ) with Φ-width not bigger than k of A v and show that there is an execution of IntroduceNode on a characteristic C u ∈ FSC k,q (u) such that C v = Char((T • v , r • v , σ • v ), X v ) and C v ∈ FSC k,q (v). Lemma 33. The set FSC k,q (v), computed through the procedure IntroduceNode, is full. Proof. Let (T • v , r • v , σ • v ) be a q-branched partitioning tree of A v with Φ-width not bigger than k. Let v leaf be the leaf of T • v that maps {a} = X v \X u . Let v att be the parent of v leaf . Let (T • u , r • u , σ • u ) be the partitioning tree of A u such that (T • v , r • v , σ • v ) can be obtained from (T • u , r • u , σ • u ) by inserting a vertex correspondent to a as a neighbor of v att in T • u . Therefore, (T • u , r • u , σ • u ) is a q-branched partitioning tree for A u with Φ-width not bigger than k. Let C v be such that C v = Char((T • v , r • v , σ • v ), X v ). It remains to show that C v ∈ FSC k,q (v).
Since, in all these cases, we have that C v ∈ FSC k,q (v), this shows that FSC k,q (v) is a full set of (k, q)-characteristics for A v restricted to X v .

Theorem 34. Procedure IntroduceNode computes a full set of (k, q)-characteristics of A v restricted to X v in time that does not depend on |A|. That is the complexity of procedure IntroduceNode is bounded by a a function

f i (k, q, k ′ ) = O((60kqk ′ ) 45kqk ′ (kqk ′ ) 4 ), if q < ∞, or a function f ′ i (k, k ′ ) = O((15kk ′ ) 45kk ′ (kk ′ ) 4
) otherwise. Proof. From Theorem 31, procedure IntroduceNode computes a full set of (k, q)-characteristics of A v restricted to X v . It remains to prove that this can be done time that does not depend on |A|.

Assume that q < ∞, the case where q = ∞ is similar and thus omitted. From its definition, F Φ can be computed in constant time. Therefore, for each element Since the size and the number of elements in FSC k,q (u) is bounded by

C u = ((T u , r u , σ u ), ℓ u , K u , dist u , out u , branch u , father u ) ∈ FSC k,q (u)
f ′ (k, q, k ′ ) = O(kqk ′ ) and f (k, q, k ′ ) = O((60kqk ′ ) 45kqk ′ ) respectively, if q < ∞, or by f ′ (k, k ′ ) = O(kk ′ ) and f (k, k ′ ) = O((15kk ′ ) 45kk ′ ) if q = ∞
from Lemma 28, we get the result. That is, since there are at most O(|T u |) different executions for Step 1, the complexity of procedure IntroduceNode is bounded by, if q < ∞:

f i (k, q, k ′ ) = O f (k, q, k ′ ) • f ′ (k, q, k ′ ) 4 = O((60kqk ′ ) 45kqk ′ (kqk ′ ) 4 ).
In the case that q = ∞ the complexity of procedure IntroduceNode is bounded by:

f i (k, k ′ ) = O f (k, k ′ ) • f ′ (k, k ′ ) 4 = O((15kk ′ ) 45kk ′ (kk ′ ) 4 ).

Procedure ForgetNode

Let v be a forget node of D, u be its child and FSC k,q (u) be a full set of (k, q)characteristics of A u restricted to X u . For every characteristic

C u = ((T u , r u , σ u ), ℓ u , K u , dist u , out u , branch u , father u ) ∈ FSC k,q ( 
u), Procedure ForgetNode proceeds as follows.

Roughly, it restricts

C u to X v = X u \ {a} obtaining C v .

preparation:

Let v leaf be the leaf of T u that maps a, let v att be the vertex of T u with degree at least three that is closest to v leaf (if no such a vertex exists, T u is a path and v att is set to the only other leaf of the path). Let P be the path between v leaf and v att . Let w be the neighbor of v att in P . Let p be the number of vertices y ∈ V (T u ) \ {v att } with branch u (y) = 1 in the path between v att and r u .

removing a from T u :

T v is obtained by removing V (P ) \ {v att } and E(P ) from T u .

If r u = v att and r u belongs to the path P between v leaf and v att :

• r v ← v att ,
• dist v ← dist u +p, and

• out v (v att ) ← out u (v att ).
If r u = v att or r u does not belong to P :

• r v ← r u ,
• dist v ← dist u , and

• out v (v att ) ← max{out u (v att ), brheight T (w)}.
In either case:

• branch v (v att ) ← branch u (v att )
, and

• father v (v att ) ← father u (v att ).
For every vertex x ∈ cp(T v ) such that x = v att :

• out v (x) ← out u (x),
• branch v (x) ← branch u (x), and

• father v (x) ← father u (x).

updating K v :

If v att has degree two in T v , and v att is not the parent of a leaf neither the root in T v , and branch u (v att ) = 0, then

K v ← K u \ V (P ).
Otherwise, K v is obtained by removing V (P ) \ {v att } from K u .

contracting the paths:

∀x, y ∈ K v and path P between x and y such that no internal vertices of P are in K v , P ← Contr(P ).

5. updating FSC k,q (v):

Add C v to FSC k,q (v).
The rest of this section is dedicated to proving Lemma 35.

Since A v = A u , A v admits a q-branched partitioning tree with Φ-width at most k only if A u does. Therefore, we can assume that FSC k,q (u) = ∅, otherwise, A v does not admit a q-branched partitioning tree with Φ-width at most k, and FSC k,q (v) = ∅. A scheme of the proof of Lemma 35 can be found in Figure 4.7 T ′ v and it is not a branching node of (T ′ v , r ′ v ) it has degree two in T ′ v . Therefore, v att is not the parent of a leaf, different than v leaf , in T ′ u , the variable branch u (v) = 0, and v att has degree two in T ′ v . Consequently, by Step "updating

(T • u , r • u ) C u C v = C s Characteristic restricted to X v Characteristic restricted to X u Forget Node
K v ", v att / ∈ K v and K v = K u \ V (P u (v leaf , v att )), where P u (v leaf , v att ) is the path between v leaf and v att in T u . Hence, K s = K u \ V (P (v leaf , v att ) = K u \ V (P u (v leaf , v att )) = K v . Case (2): Assume that v att ∈ K s . That is, K s = (K u \ V (P (v leaf , v att )) ∪ {v att }). If v att belongs to K s , then it is the parent of a leaf in T ′ v ,
or it is a branching node of cp(T • ), or it is a branching node of (T ′ v , r ′ v ). In all these cases, from the Step "updating

K v ", v att ∈ K v and K v = K u \ V (P u (v leaf , v att )) ∪ {v att }, where P u (v leaf , v att ) is the path between v leaf and v att in T u . Hence, K s = K u \ V (P (v leaf , v att ) ∪ {v att } = K u \ V (P u (v leaf , v att )) ∪ {v att } = K v . Hence, K s = K v . Claim 7. r s = r v , dist v = dist s .
From the Char procedure, the root r s is the vertex of

T ′ v that is closest to r • in T • and the root r u is the vertex of T ′ u that is closest to r • in T • . Since, T ′ v is a subtree of T ′ u ,
r u is a vertex on the path between r • and r s .

There are two cases to consider: (1) r u is not an internal node on the path between v leaf and v att , or (2) r u is an internal node on the path between v leaf and v att .

Case (1): r u is not an internal node on the path between v leaf and v att . Then, since T ′ v is obtained from T ′ u by removing the internal vertices of P (v leaf , v att ) and the vertex v leaf , we have that r u = r s . Moreover, since r u = r s we have dist s = dist u . Therefore, from Step "removing a from T u ", r v = r u = r s and dist v = dist u = dist s .

Case (2): r u is an internal node on the path between v leaf and v att , then r v = v att .

The value dist u is the number of branching nodes of cp(T • ), excluding the root r • , between r • and r u .

From Char procedure, r s = v att . The value dist s is the number of branching nodes of cp(T • ), excluding the root r • , between r • and r s .

Let p ′ = dist s -dist u . p ′ is the number of branching nodes of cp(T • ), excluding the root r • , between r u and r s = v att . That is, p ′ is the number of branching nodes of cp(T • ) nodes in the path between r u and v att . Since, from the Char procedure to obtain C u , every branching node x of cp(T • ) receives label branch u (x) = 1, we have that p ′ is the number of nodes x in the path between r u and v att such that branch u (x) = 1. Therefore, p ′ = p, where p is the value obtained in step "preparation" of procedure ForgetNode. Therefore, from

Step "removing a from

T u ", dist v = p + dist u = p ′ + dist u = dist s .
Claim 8. T v and T s are isomorphic and the labels of correspondent vertices of T v and T s are the same. That is, ℓ v (t v ) = ℓ s (t s ) for all internal vertex or edge t v of T v that has a corresponding vertex or edge t s in T s .

Let P v (x, y) be a path of C v such that x and y belongs to K v and no other internal nodes of P v (x, y) belongs to K v . Since K v = K s , let P s (x, y) be the corresponding path of C s between x and y. Assume that the labels of P v (x, y) and the labels of P s (x, y) are given by the functions ℓ v and ℓ s respectively. Since K v ⊆ K u , let P u (x, y) be the corresponding path of C u between x and y and let P • (x, y) be the corresponding path in T • between x and y.

We want to show that P v (x, y) = P s (x, y). That is, the paths P v (x, y) and P s (x, y) have the same sequence of vertices and their labels, given by functions ℓ v and ℓ s , are the same. There are two cases to consider, (1) v att is not an internal node of P u (x, y) or (2) v att is an internal node of P u (x, y).

Case (1): Assume that v att is not an internal node of P u (x, y). From the Char procedure, P s (x, y) = Contr(P • (x, y)) and P u (x, y) = Contr(P • (x, y)). From the Step "contracting the paths" P v (x, y) = Contr(P u (x, y)). Then, from item 1 of Lemma 23 (i.e., for any path P , Contr(P ) = Contr(Contr(P ))) and P v (x, y) = Contr(P u (x, y)) = P s (x, y).

Case (2):

Assume that v att is an internal node of P u (x, y). Consequently,

K v = K s = K u \ {v att }.
From the Char procedure we have that P s (x, y) = Contr(P • (x, y)) and

P u (x, y) = Contr(P • (x, v att ) ⊙ P • (v att , y)). Then, from
Step "contracting the paths" P v (x, y) = Contr(P u (x, y)). From item 3 of Lemma 23 (i.e., for any path P 1 ⊙ P 2 we have that Contr(P 1 ⊙ P 2 ) = Contr(Contr(P 1 ) ⊙ Contr(P 2 ))) P v (x, y) = P s (x, y).

Therefore, for any pair of vertices x, y in K v = K s such that the path between x and y has no vertices in K v = K s we have that P v (x, y) = P s (x, y). Hence, T s is isomorphic to T v and the labels of correspondent vertices of T v and T s are the same.

Claim 9. σ v = σ s , branch v = branch s , out v = out s and father v = father s .
It is easy to check that σ v = σ s , since T s = T v and σ s can be obtained through σ u by removing the mapping of v leaf to a.

From

Step "removing a from T u " we have that branch v = branch u . Then, from the induction hypothesis, branch u (x) = 1 if an only if x is a branching node of cp(T • ) in

T ′ u . Since T ′ v is a subtree of T ′ u , branch u (x) = branch s (x) for all x ∈ V (T ′ v ).
Recall that out u (x) is the maximum number of branching nodes of cp(T • ) in T ′ u between x and a leaf of T • \ T ′ u that does not have any internal node belonging to the set of vertices of T ′ u and are not r ′ u . Since T ′ v is obtained from T ′ u by removing the vertices of V (P (v leaf , v att )) \ {v att }, for any x = v att we have that out s (x) = out u (x).

There are two cases to consider to show that

out v (v att ) = out s (v att ): (1) r ′ u is an internal node of P (v att , v leaf ) in T ′ u or (2) r ′ u is not an internal node of P (v att , v leaf ) in T ′ u .
Case (1): If r ′ u is an internal node of P (v att , v leaf ), then out u (v att ) = out s (v att ). Then, step "removing a from T u " ensures that out v (v att ) = out u (v att ).

Case (2): If r ′

u is not an internal node of P (v att , v leaf ), then out s (v att ) is given by max{ out u (v att ), brheight T w} where w is the neighbor of v att in P (v att , v leaf ). Then, step "removing a from T u " ensures that out v (v att ) = max{out u (v att ), brheight(w)}.

In both cases, we have out v (v att ) = out s (v att ).

For any vertex x ∈ T ′ u , father s (x) = 1 if and only if x has a non-leaf child in T • . Hence, father s (x) = father u (x). Therefore, from the Step "removing a from T u " we have father s (x) = father v (x).

This proves that C

v = C s . Hence, C v = Char((T • , r • , σ • ), X v ). Moreover, C v ∈ FSC k,q (v) from step "updating FSC k,q (v)".
Therefore this proves the lemma. For any q-branched partitioning tree (T

• , r • , σ • ) of A v with Φ-width at most k we have that C v = Char((T • , r • , σ • ), X v ) ∈ FSC k,q (V ).
In other words, FSC k,q (v) is a full set of (k, q)-characteristics of A v restricted to X v .

Theorem 36. Procedure ForgetNode computes a full set of (k, q)-characteristics of A v restricted to X v in time that does not depend on |A|. That is the complexity of procedure ForgetNode is bounded by a a function

f f (k, q, k ′ ) = O (kqk ′ ) 3 (60kqk ′ ) 45kqk ′ , if q < ∞, or a function f ′ f (k, k ′ ) = O (kk ′ ) 3 (15kk ′ ) 45kqk ′ otherwise.
Proof. From Theorem 35, procedure ForgetNode computes a full set of (k, q)-characteristics of A v restricted to X v . It remains to prove that this can be done time that does not depend on |A|. Assume that q < ∞, the case where q = ∞ is similar and thus omitted.

For each element

C u = ((T u , r u , σ u ), ℓ u , K u , dist u , out u , branch u , father u ) ∈ FSC k,q (u) steps 1 to 3 can be done in O(|T u |).
Contracting a path P can be done in O(|P | 3 ), by taking all possible pairs of vertices and edges verifying if a contraction operation can be done between them. Hence, step 4 can be executed in O(|T u | 3 ).

Lastly, step 5 can be executed in O(1).

Since the size and the number of elements in FSC k,q (u) is bounded by f ′ (k, q, k ′ ) = O(kqk ′ ) and f (k, q, k ′ ) = O((60kqk ′ ) 45kqk ′ ) respectively from Lemma 28, we get the result. That is, the complexity of procedure ForgetNode is bounded by, if q < ∞:

f f (k, q, k ′ ) = O f (k, q, k ′ ) • f ′ (k, q, k ′ ) 3 = O (kqk ′ ) 3 (60kqk ′ ) 45kqk ′ .
If q = ∞ then the complexity of procedure ForgetNode is bounded by:

f f (k, k ′ ) = O f (k, k ′ ) • f ′ (k, k ′ ) 3 = O (kk ′ ) 3 (15kk ′ ) 45kqk ′ .

Procedure JoinNode

Let v be a join node of D, let u, w be its children, let FSC k,q (u) be a full set of characteristics of A u restricted to X u , and FSC k,q (w) a full set of characteristics of A w restricted to X w .

Remark 4. Procedure JoinNode tries to merge the (k, q)-characteristics for X u and X w that share a same structure, in contrast with the procedure Join Node from Section 4.3 that merges labelled partitioning trees for A u and A w that are isomorphic.

The skeleton Sk(C) of C = ((T ′ , r ′ , σ ′ ), ℓ ′ , K ′ , dist ′ , out ′ , branch ′ , father ′
) is the tree obtained from T ′ by contracting all vertices that are not in K ′ (these vertices have degree two, thus the notion of contraction is well defined). Therefore, V (Sk(C)) = K ′ . Two partitioning trees (T, r, σ) and (T ′ , r ′ , σ ′ ) are isomorphic if there is an one-to-one function ϕ : V (T ) → V (T ′ ) preserving the edges, such that ϕ(r) = r ′ , and moreover, σ ′ (ϕ(f )) = σ(f ) for any leaf f of T .

The structure Struct(C) of a characteristic C is the partitioning tree obtained from Sk(C) by contracting all its vertices with degree two, different from the root. That is, we only keep branching nodes of T in Struct(C), while keeping the same root and the same mapping over the leaves of the tree. For any characteristic C u = ((T u , r u , σ u ), ℓ u , K u , dist u , out u , branch u , father u ) ∈ FSC k,q (u) and C w = ((T w , r w , σ w ), ℓ w , K w , dist w , out w , branch w , father w ) ∈ FSC k,q (w), with isomorphic structures and with dist w = 0 (if both have distance non-zero we do not do the procedure JoinNode with C u and C w , since the roots r u and r v come from different branches of the partitioning tree), Procedure JoinNode proceeds as follows, repeating the five steps below, for any possible execution of Step 2. Roughly, it merges C u and C w to obtain

C v = ((T v , r v , σ v ), ℓ v , K v , dist v , out v , branch v , father v ).

identifying the structures:

To obtain T v , we start by a copy of T u and a copy of T w .

Then, for any vertex t ′ ∈ V (Struct(C u )) = V (Struct(C w )), let t u be the corresponding vertex in T u , and t w be the corresponding vertex in T w .

In T v , we identify t u with t w .

Note that r u and r w are identified, let r v be the resulting vertex.

Then, since dist w = 0, we set dist v ← dist u .

merging the paths:

For any {x, y} ∈ E(Struct(C u )), let x and y be vertices of T u resulting of the identification of x u with x w and y u with y w respectively. Currently in T v , there are two paths between x and y, a path P u (initially a path of T u ) and a path P w (initially a path of T w ), these paths are vertex-disjoint except for x and y. Since internal vertices of P u and P w do not belong to V (Struct(C u ) nor to V (Struct(C w ), any internal vertex (resp., edge) of both these paths defines the same partition P of X v .

Then, we replace P u and P w in T v with a merging of P u and P w using the function F : (i, j) → H Φ (i, j, P).

update of K v :

Roughly, K v is obtained by taking K u ∪ K w and some other vertices. Formally, starting from K v = ∅.

For any vertex x v in T v that results from the identification of x u ∈ V (T u ) and

x w ∈ V (T w ) we set K v ← K v ∪ {x v }.
In other words, x u and x w are either leaves of T u and T w or they are branching nodes of T u and T w , consequently they x v is either a leaf or a branching node of T v .

For any other vertex x v in V (T v ), assume that x v is obtained through the merging o a path P u of T u and a path P w of P w , as described in the step "merging of paths". Let x u be the vertex of the extension of P u used to generate x v and x w be the vertex of the extension of P w used to generate x v during the merging of P u and P w . Then, if

x u ∈ K u or x w ∈ K w , then we set K v ← K v ∪ {x v }.

update of labels:

For any

x v ∈ V (cp(T v )): branch v (x v ) ← max{branch u (x u ), branch w (x w )}, out v (x v ) ← max{out u (x u ), out w (x w )}, father v (x v ) ← max{father u (x u ), father w (x w )}. For every x v ∈ V (cp(T v )), if branch u (x u ) = branch w (x w ) = 0 and father u (x u ) = father w (x w ) = 1, then branch v (x v ) ← 1. For every x v ∈ V (T v ) such that x v is a leaf, σ v (x v ) ← σ u (x u ).

contracting the paths:

∀x, y ∈ K v and path P between x and y such that no internal vertices of P are in K v , P ← Contr(P ). 6. update of FSC k,q (v): brheight T (r v ) is computable thanks to out v and branch v . If dist v + brheight T (r v ) ≤ q and ℓ v (t) ≤ k for any internal vertex t ∈ V (T v ), and ℓ v (e) ≤ k for any edge

e ∈ E(T v ), then FSC k,q (v) ← FSC k,q (v) ∪ {C v }.
The rest of this section is dedicated to proving Lemma 37.

Lemma 37. JoinNode computes a full set of (k, q)-characteristics of A v restricted to X v .

Proof. Since A v = A u ∪ A w , A v admits a q-branched partitioning tree with Φ-width at most k only if A u and A w do. Therefore, we can assume that FSC k,q (u) = ∅ and FSC k,q (w) = ∅, otherwise, A v does not admit a q-branched partitioning tree with Φwidth at most k, and FSC k,q (v) = ∅.

To prove that the set FSC k,q (v) is a full set of characteristics, we take any q-branched partitioning tree (T

• v , r • v , σ • v ) of A v
with Φ width at most k and show that after procedure JoinNode finishes we have that Char((

T • v , r • v , σ • v ), X v ) ∈ FSC k,q (v 
). Roughly, we show that there is there is a particular execution of step 2 of procedure JoinNode with two characteristics, C u ∈ FSC k,q (u) and C w ∈ FSC k,q (w), resulting in

C v such that C v = Char((T • v , r • v , σ • v ), X v ))
. A scheme of the proof of Lemma 37 can be found in Figure 4.8. 

(T • u , r • u , σ • u ) (T • w , r • w , σ • w ) (T • v , r • v , σ • v ) C u C w C v = C s Char to X u Char to X w JoinNode "Split" Char to X v

Let (T

• v , r • v , σ • v ) be any q-branched partitioning tree of A v with Φ width at most k. Let C s = Char((T • v , r • v , σ • v ), X v ). That is, C s = ((T s , r s , σ s ), ℓ s , K s , dist s , out s , branch s , father s ) is the (k, q)-characteristic of (T • v , r • v , σ • v ) restricted to X v . Let T ′ v be the smallest subtree of T • v spanning all leaves of T • v that map elements of X v . Let r ′ v be the vertex of T ′ v that is closest to r • v in T • v .
That is, T ′ v and r ′ v are the tree and the vertex obtained with the first step of procedure Char((T

• v , r • v , σ • v ), X v ). Let T • u (resp. T • w ) be the smallest subtree of T • v spanning all leaves of T • v that map elements of A u (resp. A w ) and let r • u (resp. r • w ) be the vertex of T • u (resp. T • w ) that is closest to r • v in T • v . Since (D, X ) is a nice decomposition of A we have that A u ∩ A w = X v . Therefore, we have that V (T • u ) ∩ V (T • w ) = V (T ′ v ) and E(T • u ) ∩ E(T • w ) = E(T ′ v ). Moreover, since following cases for x ∈ V (T ′ v ) \ {r ′ v }: (1) x / ∈ K u ∪ K w , (2) x ∈ K u \ K w , (3) x ∈ K w \ K u and (4) x ∈ K u ∩ K w .
Case 1: If x / ∈ K u ∪ K w then x has degree two in T ′ v and it is contracted to obtain T r u and T r w . Hence, x / ∈ V (T r u ) and x / ∈ V (T r w ). Case 2: If x ∈ K u \ K w , then x is not a leaf of T ′ v , is not the parent of a leaf in T ′ v , is not a branching node of T ′ v and it is not a branching node of cp(T • w ), otherwise x would be in K w . Therefore, x has degree two in T ′ v . Since, x is not r ′ v we have that x is contracted in the process to obtain T r u from Sk(C u ). In other words, x / ∈ V (T r u ). On the other hand, x / ∈ K w , hence x / ∈ V (Sk(C w )) and, consequently, x / ∈ V (T r w ). Case 3: This case is similar to Case 2 with the role of K u and K w reversed. If x ∈ K w \ K u , then x is not a leaf of T ′ v , is not the parent of a leaf in T ′ v , is not a branching node of T ′ v and it is not a branching node of cp(T • u ), otherwise x would be in K u . Therefore, x has degree two in T ′ v . Since, x is not r ′ v we have that x is contracted in the process to obtain T r w from Sk(C w ). In other words, x / ∈ V (T r w ). On the other hand, x / ∈ V (Sk(C u )) and, consequently x / ∈ V (T r u ). Case 4:

If x ∈ K u ∩ K w , then x ∈ Sk(C u ) and x ∈ Sk(C w ). Moreover, either x is a leaf of T ′ v , is the parent of a leaf in T ′ v , is a branching node of T ′ v , or is a branching node of cp(T • u ) and cp(T • w ). If x is a leaf of T ′ v , then x has degree one in T ′ v and, hence, x ∈ V (T r u ) and x ∈ V (T r w ). If x is not a leaf of T ′ v , then
x has degree two in Sk(C u ) if an only if x has degree two in Sk(C w ). This is due to the fact that, by contracting vertices of degree two of a tree, we do not change the degrees of the remainder vertices. This shows that V (T r u ) = V (T r w ). From the fact that T r u and T r w are both obtained from T ′ v by contraction of vertices of degree two we get the result. That is, Struct(C u ) and Struct(C w ) are isomorph.

Therefore, the there is an execution of procedure JoinNode were C u is merged with

C w . Let C v = ((T v , r v , σ v ), ℓ v , K v , dist v , out v , branch v , father v )
be the result of a particular execution of procedure JoinNode on C u and C w , that will be explained latter in this proof.

We want to show that

C v = C s . How C v is obtained.
We need to specify how procedure JoinNode merges the paths in T u with the paths in T w . That is, we need to specify how step "merging the paths" proceeds to merge the paths of T u and T w to obtain T v . In order to do that, we first show how paths in T • v with labels given by the function Φ can be seen as mergings of the corresponding paths in T • u and T • w . Let {x, y} be any edge in E(Struct(C u )) = E(Struct(C w )). We have that, in T ′ v , all the internal vertices and edges on the path P ′ v (x, y) between x and y define the same partition T of X v , since the vertices have degree two. Let P • v (x, y), P • u (x, y) and P • w (x, y) be the paths between x and y in T • v , T • u and T • w respectively. Note that the internal vertices and edges of these paths define the same partition T of X v .

For any internal vertex or edge x ′ of P • v (x, y) let P(x ′ ) be the partition of A v defined by x ′ . Then, in T • u and in T • w , the vertex or edge x ′ defines the partition P(x ′ ) ∩ A u of A u and P(x ′ ) ∩ A w of A w respectively. Since Φ is compatible with (D, X ), we have that there is a function H Φ such that for any partition P of A v it is true that Φ Av (P) = H Φ (Φ Au (P ∩ A u ), Φ Aw (P ∩ A w ), P ∩ X v ). Therefore, for any internal vertex or edge x ′ of P • v (x, y) we have that Φ Av (P(x ′ )) = H Φ (Φ Au (P(x ′ ) ∩ A u ), Φ Aw (P(x ′ ) ∩ A w ), T ). Hence, the labelled path P • v (x, y) with labels given by the function Φ can be obtained by the merging of the path P • u (x, y) and P • w (x, y), both with labels given by Φ, under the function F (i, j) = H Φ (i, j, T ). Since |V (P • u (x, y))| = |V (P • w (x, y))|, the extensions of P • u (x, y) and P • w (x, y) used in the merging are simply P • u (x, y) and P • w (x, y) themselves. In other words, we can merge the paths P • u (x, y) and P • w (x, y) under the function F to obtain the path P • v (x, y). Let P u (x, y) (resp. P w (x, y)) be the path between x and y in T u (resp. T v ). In step "merging the paths" of procedure JoinNode, the path P u (x, y) is merged with the path P w (x, y). From the Char procedure, we have that P u (x, y) (resp. P w (x, y)) is obtained from P • u (x, y) (resp. P • w (x, y)) by applying some contraction operations. Then, let P v (x, y) be a merging of P u (x, y) with P w (x, y) under the function F such that P • v (x, y) respects2 P v (x, y). Roughly, this means that the vertices and edges of P v (x, y), which is a merging of P u (x, y) and P w (x, y) under the function F , have "equivalent" vertices in P • v (x, y), which is a merging of P • u (x, y) and P • w (x, y) under the same function F . Since procedure JoinNode tries all possible ways of merging P u (x, y) and P w (x, y) for all {x, y} ∈ E(Struct(C u )), we have that there is an execution of procedure JoinNode where for all {x, y} ∈ E(Struct(C u )) the path P v (x, y) obtained through the merging of P u (x, y) and P w (x, y) under F is respected by P • v (x, y). Let T v be the tree obtained by such execution of procedure JoinNode.

To show that C v , obtained through this particular execution of procedure JoinNode, is equal to

C s = Char((T • v , r • v , σ • v ), X v )
, we start by showing that T v is isomorph to T s . Claim 11. T v and T s are isomorphic and the labels of correspondent vertices of T v and T s are the same. That is, ℓ v (t v ) = ℓ s (t s ) for all internal vertex or edge t v of T v that has a corresponding vertex or edge t s in T s .

In the following consider that the labels of a tree are given by either the associated function ℓ or by Φ if the tree has no associated function ℓ. That is, the labels of T u , T w , T s and T v are given by ℓ u , ℓ w , ℓ s and ℓ v , while the labels of T • v , T ′ v , T • u and T • w are given by the function Φ.

Note that from the fact that T v is obtained by merging paths P u (x, y) and P w (x, y) for every edge {x, y} ∈ E(Struct(C u )) we have that the tree obtained by contracting all vertices of degree two in T v is isomorph to the tree in Struct(C u ).

As explained above, for any edge {x, y} ∈ E(Struct(C u )) to obtain T v we first merge the paths P u (x, y) and P w (x, y) obtaining P v (x, y) and then we apply some contraction operations on P v (x, y) (step "contracting the paths") obtaining P c v (x, y). More precisely, let (x 1 , . . . , x z ) be the sequence of vertices in the path from x to y in the tree obtained immediately after step "merging the paths" of procedure JoinNode that are in K v . That is, P v (x, y) can be written as

P v (x, x 1 ) ⊙ P v (x, x 2 ) ⊙ • • • ⊙ P v (x z , y) where x i ∈ K v , for 1 ≤ i ≤ z. Then, P v (x, y) is replaced by Contr(P v (x, x 1 )) ⊙ Contr(P v (x 1 , x 2 )) ⊙ • • • ⊙ Contr(P v (x z , y)). Let P c v (x, y) = Contr(P v (x, x 1 )) ⊙ Contr(P v (x, x 2 )) ⊙ • • • ⊙ Contr(P v (x z , y)).
Hence, for each {x, y} ∈ E(Struct(C u )) we have that P c v (x, y) is the path in T v between x and y.

Note that, K s = K u ∪ K w . Since, the only case where x ∈ K s and x / ∈ K u is when x is not a leaf of T ′ v , nor the parent of a leaf of T ′ v , nor a branching node of cp(T • u ), but it is a branching node of cp(T • v ). Therefore, x is is a branching node of cp(T • w ) and, hence, x ∈ K w .

On the other hand, the path P s (x, y) between x and y in C s is obtained from P • v (x, y) by applying some contraction operations. That is, let (x s 1 , . . . , x s z ) be the sequence of vertices in the path from x to y in T • v that are in K s , then P s (x, y) can be written as

Contr(P • v (x, x s 1 )) ⊙ Contr(P • v (x s 1 , x s 2 )) ⊙ • • • ⊙ Contr(P • v (x s z , y)).
Then, this proof essentially follows from Lemma 25 when applied to P • v (x, y) and P v (x, y). That is, we consider P • v (x, y) as M where P and Q are P • u (x, y) and P • w (x, y), respectively. P v (x, y) takes the role as M c where P c and Q c are P u (x, y) and P w (x, y) respectively. Finally, we set K p as the set K u and K q as the set K w . Then, Lemma 25 guarantees that Contr(P v (x, x 1 )) = Contr(P

• v (x, x s 1 )), Contr(P v (x z , y)) = Contr(P • v (x s z , y)) and, for all 1 ≤ i ≤ z -1, Contr(P v (x i , x i+1 )) = Contr(P • v (x s i , x s i+1 )). Therefore, since P s (x, y) = Contr(P • v (x, x s 1 )) ⊙ Contr(P • v (x s 1 , x s 2 )) ⊙ • • • ⊙ Contr(P • v (x s z , y)) and P c v (x, y) = Contr(P v (x, x 1 )) ⊙ Contr(P v (x, x 2 )) ⊙ • • • ⊙ Contr(P v (x z , y)), we get the result. That is, P c v (x, y) = P s (x, y).
Therefore T v and T s are isomorph and for all internal vertices or edges t v of T v with a correspondent vertex or edge t s of T s we have that ℓ v (t v ) = ℓ s (t s ).

Since T v and T s are isomorph, for every vertex x s ∈ T s , let x v be its correspondent in T v . To make the rest of this proof easier to read, we abuse the notation to say that x s = x v . We now prove that r v = r s and that

K v = K s . Claim 12. r v = r s and K v = K s .
From step "identifying the structures" we have that r v = r u . We have that r u = r ′ v from step one of the Char procedure to obtain C u . Then, by the fact that r s = r ′ v from step one of the Char procedure to obtain C s , we have that r s = r v .

Let x s be a vertex of T s that is not the root of T s . Since T v is isomorph to T s , set x v be the corresponding vertex of x s in T v . To show that K s = K v , there are a few cases to consider: (1) x s is a leaf of T ′ v , (2) x s is a branching node of T ′ v , (3) x s is the parent of a leaf in T ′ v , (4) x s is a branching node of cp(T • v ), (5) otherwise. That is, cases (1) to (4) are all the cases when x s ∈ K s , while, in case (5), x s / ∈ K s . We want to show that

x s ∈ K s if and only if x v ∈ K v .
Case (1): If x s is a leaf of T ′ v , then x s has degree one in T ′ v . Therefore, x s is a vertex of Struct(C u ) and Struct(C w ). Then, during step "identifying the structures" x v is obtained through the identification of

x s ∈ V (Struct(C u )) and x s ∈ V (Struct(C w )). Hence, during step "update of K v " we have that x v is put into K v . That is, x v ∈ K v .

Case (2): If x s is a branching node of T ′

v , then x s has degree at least three in T ′ v . Therefore, x s is a vertex of Struct(C u ) and Struct(C w ). Then, during step "identifying the structures" x v is obtained through the identification of x s ∈ V (Struct(C u )) and x s ∈ V (Struct(C w )). Hence, during step "update of K v " we have that

x v is put into K v . That is, x v ∈ K v .

Case (3): If x s is the parent of a leaf in T ′

v and its not a branching node of T ′ v , then x s has degree two in T ′ v . Since x s has degree two in T ′ v we have that x s / ∈ V (Struct(C u )). Therefore, x v obtained during step "merging the path". That is, x v is obtained through the merging of two vertices x u ∈ T u and x w ∈ T w .

Let {x, y} ∈ E(Struct(C u )) be two vertices such that x s is an internal vertex on the path P • v (x, y) from x to y in T • v . Then, x v is obtained through the merging P u (x, y) and P w (x, y). Let P v (x, y) be the resulting path. Recall that P • v (x, y) can be written as a merging of the paths P • u (x, y) and P • w (x, y). From the construction of C v we have that P v (x, y) is respected by P

• v (x, y). Then, x s ∈ V (T • v ) is the result of matching the vertex x u = x s ∈ T • u with the vertex x w = x s ∈ T •
w . On the other hand, since P v (x, y) is respected by P • v (x, y), we have that x v is obtained through the merging of x u ∈ T u and x w ∈ T w .

From the Char procedure, since x s is the parent of a leaf in T ′ v , we have that x u ∈ K u and x w ∈ K w . Then, since x u ∈ K u and x w ∈ K w , step "update of K v " ensures that

x v ∈ K v .
Case (4): If x s is a branching node of cp(T • v ) and x s is not the parent of a leaf in T ′ v and its not a branching node of T ′ v , then x s has degree two in T ′ v and x s has a non leaf child in T ′ v . Since x s is a branching node of cp(T • v ) and has degree two in

T ′ v , x s has at least one non leaf child in V (T • v ) \ V (T ′ v ). Let x ′ s be this child. Therefore, from the fact that V (T • v ) = V (T • u ) ∪ V (T • w ) we have that x ′ s is either in V (T • u ) or in V (T • w ). W.l.o.g. assume that x ′ s ∈ V (T • u ), hence x ′ s is a branching node of cp(T • u )
. Consequently, from the Char procedure to obtain C v , x ′ s ∈ K u . Note that, from step "update of K v " if x v is obtained by merging (or matching) a vertex x u and x w , then x v ∈ K v if either x u ∈ K u or x w ∈ K w . Then, the rest of this proof is similar to Case (3) and thus omitted.

1. Hence, during step "update of labels", branch v (x v ) receives the value 1, since branch u (x u ) = branch w (x w ) = 0 and father u (x u ) = father w (x w ) = 1.

If branch s (x s ) = 0, then x s is not a branching node of cp(T • v ). Hence, x s is neither a branching node of cp(T • u ) nor a branching node of cp(T • w ). Moreover, x s has no non leaf children in T • u and no non leaf children in T • w . Therefore, branch u (x s = x u ) = branch w (x s = x w ) = 0 and father u (x s = x u ) = father w (x s = x w ) = 0. Then, during step "update of labels", branch v (x v ) = max{branch u (x u ), branch w (x w )} = 0.

Hence, we get the result. That is, for all x s ∈ V (cp(T s )), we have that branch v (x v ) = branch s (x s ). Now it remains to show that for all x s ∈ V (cp(T s )) we have that

father v (x v ) = father s (x s ).
This proof is similar to the proof that if branch s (x s ) = branch v (x v ) = 0, since father s (x s ) = 0 implies that x s has no non leaf children in

V (T • v ) \ V (T ′ v ). Hence, x s has no non leaf children in V (T • u ) \ V (T ′ v ) nor in V (T • w ) \ V (T ′ v ). If father s (x s ) = 0, then x s is not a branching node of cp(T • v )
. Hence, x s is neither a branching node of cp(T • u ) nor a branching node of cp(T • w ). Moreover, x s has no non leaf children in T • u and no non leaf children in T • w . Therefore, father u (x u ) = father w (x w ) = 0. Then, during step "update of labels", father v (x v ) = max{father u (x u ), father w (x w )} = 0.

If father s (x s ) = 1, then x s has either a non leaf child in

V (T • u ) \ V (T ′ v ) or a non leaf child in V (T • w ) \ V (T ′ v )
. Hence, father u (x u ) = 1 or father w (x w ) = 1. Then, during step "update of labels", father v (x v ) = max{father u (x u ), father w (x w )} = 1.

Hence, we get the result. That is, for all x s ∈ V (cp(T s )), we have that father v (x v ) = father s (x s ). This concludes the proof that C v obtained through this execution of procedure Join-Node on C u ∈ FSC k,q (u) and C w ∈ FSC k,q (w) is such that

C v = C s = Char((T • v , r • v , σ • v ), X v ).
It remains to show that C v is put in FSC k,q (v) by procedure JoinNode. By Lemma 27, C v is a (k, q)-characteristic of A v restricted to X v . Hence, brheight(r v ) + dist v ≤ q and for all internal vertex or edge x v of T v we have that ℓ v (x) ≤ k. Consequently, during step "update of FSC k,q (v)" we have that C v ∈ FSC k,q (v). Therefore, FSC k,q (v) is a full set of (k, q)-characteristics of A v restricted to X v .

Theorem 38. Procedure JoinNode computes a full set of (k, q)-characteristics of A v restricted to X v in time that does not depend on |A|. That is the complexity of procedure JoinNode is bounded by a function

f j (k, q, k ′ ) = O (60kqk ′ ) 45kqk ′ • 2 O √ kqk ′ •log(kqk ′ ) • (kqk ′ ) kqk ′ , if q < ∞,
or by a function

f ′ j (k, k ′ ) = O (15kk ′ ) 45kk ′ • 2 O √ kk ′ •log(kk ′ ) • (kk ′ ) kk ′ , if q = ∞.
Proof. From Theorem 37, procedure JoinNode computes a full set of (k, q)-characteristics of A v restricted to X v . It remains to prove that this can be done time that does not depend on |A|. Assume that q < ∞, the case where q = ∞ is similar and thus omitted. From the fact that Φ is compatible with (D, X ), H Φ can be computed in constant time.

For each pair of elements C u = ((T u , r u , σ u ), ℓ u , K u , dist u , out u , branch u , father u ) ∈ FSC k,q (u) and C w = ((T w , r w , σ w ), ℓ w , K w , dist w , out w , branch w , father w ) ∈ FSC k,q (w), discovering if their structures are isomorph can be done in 2 O( √ |Tu| log |Tu|) [START_REF] Babai | Canonical labeling of graphs[END_REF]. Then, for each pair of characteristics such that their structures are isomorph, r u is the vertex correspondent to r w and with dist u = 0 we apply steps 1 to 6 of the JoinNode procedure.

Step 

(max{|T u | |Tu| , |T w | |Tw| }). Note that, since max{|T u |, |T w |} ≤ f ′ (k, q, k ′ ), we have that O(max{|T u | |Tu| , |T w | |Tw| }) ≤ O(f ′ (k, q, k ′ ) f ′ (k,q,k ′ )) .
Since the size and the number of elements in FSC k,q (u) is bounded by f ′ (k, q, k ′ ) = O(kqk ′ ) and f (k, q, k ′ ) = O((60kqk ′ ) 45kqk ′ ) respectively from Lemma 28, we get the result.

That is, complexity of procedure JoinNode is bounded by

f j (k, q, k ′ ) = O f (k, q, k ′ ) • 2 O √ f ′ (k,q,k ′ )•log f ′ (k,q,k ′ ) • f ′ (k, q, k ′ ) f ′ (k,q,k ′ ) , f j (k, q, k ′ ) = O (60kqk ′ ) 45kqk ′ • 2 O √ kqk ′ •log(kqk ′ ) • (kqk ′ ) kqk ′ .
With a similar proof for the case that q = ∞, we have:

f ′ j (k, k ′ ) = O f (k, k ′ ) • 2 O √ f ′ (k,k ′ )•log f ′ (k,k ′ ) • f ′ (k, k ′ ) f ′ (k,k ′ ) . From Lemma 28, f ′ (k, k ′ ) = O(kk ′ ) and f (k, k ′ ) = O((15kk ′ ) 45kk ′ ), then f ′ j (k, k ′ ) = O (15kk ′ ) 45kk ′ • 2 O √ kk ′ •log(kk ′ ) • (kk ′ ) kk ′ .

Remarks and Structural Properties

Having shown the algorithm we can, now, provide the proof of Claim 1 which is: "For any partition function f compatible with a nice decomposition of some set A, the partition function maxf is also compatible".

Proof. Let (D, X ) be a nice decomposition of A with width not bigger than k ′ . Since f is compatible with (D, X ) we have that there are functions F f and H f such that for any partition P of A:

For each internal vertex t of P v (x, y), let E tu (E tw ) be the set of edges incident to t in T u (T w ) and let E • tu (E • tw ) be the set of edges incident to t in T • u (T • w ). Then, for each vertex t in P v (x, y) we set ℓ v (t) = H maxf (ℓ u (t), ℓ w (t), T t ) = max{ℓ u (t), ℓ w (t), max e∈Et ℓ v (e)}. From the induction hypothesis, max{ℓ u (t), ℓ w (t), max e∈Et ℓ v (e)} = max{max e∈E • tu maxf (T e ∩ A u ), max e∈E • tw maxf (T e ∩ A w ), max e∈Et ℓ v (e)} = maxf (T • t ). Since the degree of t in T v is bounded by k ′ , H maxf can be computed in constant time.

Lastly, we need to show how to take into account the "structural" properties of different width. Hence, it is necessary to guarantee that characteristics belonging to FSC k,q (v) of a node v in the nice decomposition correspond to partitioning trees that satisfy these structural properties. For example, partitioning trees for the branch width are such that every internal vertex has degree three, therefore for each node v of the nice decomposition FSC k,q (v) must contain only characteristics of partitioning trees for A v which have every internal vertex with degree three. We show how to modify the algorithm to take into account the structural properties for each width mentioned in Section 4.1. The procedure StartingNode is modified to compute only the characteristics that respects the "structural" properties of the width being computed. We show which changes to Intro-duceNode procedure and JoinNode procedure are necessary in order to achieve this. Let G = (V, E) be a graph and (D, X ) a nice decomposition of A = E given to the algorithm as input, in the case of carving width and cut width, (D, X ) is a nice decomposition of A = V .

Tree width and Path width: no changes are made to the procedures. Special tree width: in the IntroduceNode at after step "update of FSC k,q (v)", let a = (x, y) be the element of A v \A u mapped by v leaf and let X (Y ) be the set of all leaves of T v such that the edges of A v they map have x (y) as one of its endpoints. Then, if the minimum spanning tree of T v containing all vertices in X is not a caterpillar then the algorithm does not put C v into FSC k,q (v) or if the minimum spanning tree of T v containing all vertices in Y is not a caterpillar then the algorithm does not put C v into FSC k,q (v). Procedure JoinNode remains unchanged.

Branch width, Linear width, Carving width and Cut width: we do not allow the Case 1 in the step "update of T u into T v " in the IntroduceNode procedure. That is, we do not allow a leaf mapping a to be added as neighbour of an internal vertex of T u . In the JoinNode procedure during the step "merging the paths", we do not allow internal vertices of P v , the result of merging P u with P w , to have a pair of vertices as its originators. In other words, any vertex of P u must be "merged" with an edge of P w and any vertex of P w must be merged with an edge of P u .

Time Complexity

The complexity of the algorithm to decide if a set A has q-branched Φ-width not bigger than k is given by the amount of time needed to compute a full set of characteristics for each node in the nice decomposition times the number of nodes in the nice decomposition. Let (D, X ) be the nice decomposition of A given as input to the algorithm. From the definition of a nice decomposition, we have that 

i (k, q, k ′ ), f f (k, q, k ′ ), f j (k, q, k ′ )} • O(|A|).
Since the functions f i (k, q, k ′ ), f f (k, q, k ′ ) and f j (k, q, k ′ ) do not depend on |A|, if k, q and k ′ are given constants the algorithm has complexity bounded by O(|A|). Therefore, it is a linear time algorithm when k, q and k ′ are fixed and it is a linear FPT-algorithm where the parameters are k, q and k ′ .

Conclusion

In this chapter, we use a generalization of width parameters of graphs, the partition functions and partitioning trees, to design a unified FPT algorithm to decide if the qbranched tree width, special tree width, branch width, linear width, cut width and carving width of graphs are not bigger than an integer k.

Unfortunately, the algorithm presented only solves the decision problem. That is, it can be used to decide if the q-branched tree width, special tree width, branch width, linear width and cut width of a graph is not bigger than an integer k, but it does not compute the respective decomposition.

In [START_REF] Bodlaender | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF], Bodlaender and Kloks propose an algorithm that decides if the tree width of a graph is at most a given integer k and, if it is the case, it constructs a tree decomposition with this width. This algorithm, which in part inspired our algorithm, also makes use of the notion of "characteristic" of a tree decomposition and proceeds to compute these "characteristics" by a dynamic programming approach from a given tree decomposition of the graph. They also propose a second algorithm that constructs the tree decomposition from "characteristics" computed through the first algorithm.

In a current work, our algorithm was made constructive by following the same techniques used in their second algorithm, the one which constructs the tree decomposition for the input graph.

The algorithm we proposed in this chapter can compute several graph width measures, while not being restricted to only the aforementioned width measures. For example, since the rank width of graphs can be defined in terms of partition functions and partitioning trees [AMNT09], we wonder whether using this formalization, is it possible to design a FPT-algorithm computing the rank width.

We finish this part of the thesis with one question: are there other parameters of graphs that can be defined in terms of partition functions? We are specially interested in answering this question for directed graph decompositions, such as the Process Decomposition defined in Chapter 3 or the directed decompositions mentioned in Chapter 2 such as the directed tree decomposition, the Kelly decomposition or DAG decomposition. An answer to this question could be the first step into generalizing the results in this chapter to directed graph decompositions.

Chapter 5

Turn-by-Turn Pursuit-Evasion Games

In this part of the thesis, we focus on turn-by-turn pursuit-evasion games. One major difference between these games and the ones from the first part of the thesis is that the two players play alternately. That is, first one player plays while the other waits, then the other player plays while the first one waits.

In this chapter, we briefly survey some famous turn-by-turn pursuit-evasion games such as the Cops and Robbers, the Eternal Dominating Set, the Eternal Vertex Cover and the Angel Problem.

Along with the Surveillance game defined in the next chapter, these games can all be described with the framework proposed in Chapter 7. As a consequence, the results of Chapter 7 are valid for any of them.

Cops and Robbers

We start by describing the Cops and Robbers game due to its similarity with the Graph Searching games of the first part of this thesis.

The Cops and Robbers game can be roughly described as the Node Search game where both players play alternately, and the robber can move at most one single edge during its turn instead any path free of cops. As with the Graph Searching games, the Cops and Robbers game has several variations depending on the behaviours of the cops and of the robber. In this section, we explore some variations of the Cops and Robbers game. We start by defining the classical version of this game which was proposed by Nowakowski and Winkler [START_REF] Nowakowski | Vertex-to-vertex pursuit in a graph[END_REF] and, independently, by Quilliot [START_REF] Quilliot | Problèmes de jeux, de point Fixe, de connectivité de represésentation sur des graphes, des ensembles ordonnés et des hypergraphes[END_REF].

The classical version of the Cops and Robbers game has two players, the cop and the robber, playing on a graph. This is a turn-by-turn game with the first turn belonging to the cop. The game starts with the cop choosing a vertex of the graph to occupy followed by the robber who also chooses a vertex of the graph to occupy. Then, turn-by-turn, each player can move along an edge of the graph. The cop wins if, at any point during the game, it is able to occupy the same vertex as the robber. The robber wins if it can evade the cop indefinitely.

Nowakowski, Winkler and Quilliot were interested in a characterization of cop-win graphs, that is, graphs that the cop can win regardless of the moves of the robber. It is easy to see that trees are cop-win graphs. Let T be any tree where the game is played. At each step, let v be the vertex occupied by the cop. Then, the cop moves to the neighbour of v that belongs to the same component of T [V (T ) \ {v}] which has a vertex occupied by the robber. On the other hand, the cop cannot win against the robber in cycles of size at least four, since the robber can always move in the opposite direction of the cop, hence keeping its distance to the cop.

In the following, we reproduce the characterization of cop-win graphs given by Nowakowski and Winkler. Given a graph

G = (V, E), a vertex v ∈ V is irreducible if there is v ∈ V , v = u ∈ V , such that N [v] ⊆ N [u].
In other words, the neighbourhood of u covers the neighbourhood of v. A graph G is said to be dismantable if there is an ordering of the vertices of G, (v 1 , . . . , v n ), such that v i is irreducible in G[{v i , . . . , v n }]. In Figure 5.1, we show an example of dismantable graph. 

Theorem 39 ([NW83]). A finite graph is cop-win if and only if it is dismantable.

Nowakowski and Winkler also considered the problem of characterizing infinite graphs that are cop-win, giving a full characterization of such graphs by extending the notion of a dismantable graph to the infinite case. It seems unintuitive that a graph can be infinite connected and still be cop-win. However, it is easy to see that every infinite graphs with an universal vertex is cop-win. By occupying an universal vertex, the cop can ensure that it can capture the robber in its next turn. Moreover, there are also graphs that are cop-win, infinite and have no universal vertex. One example of such a graph can be seen in Figure 5.2. This graph is obtained by taking a path of size i, for each i ∈ N, and joining one of its extremities with a central vertex v. A simple strategy for the cop is to start by placing itself at vertex v and then, at each step, moving towards the end of the path where the robber lies. Since each path has a finite size, the cop can capture the robber in a finite number of turns. In [START_REF] Aigner | A game of cops and robbers[END_REF] the first polynomial time algorithm to decide if a graph is cop-win was described. This algorithm, essentially, computes an ordering of G that proves that G is dismantable. The complexity of this algorithm comes from a theorem in [START_REF] Aigner | A game of cops and robbers[END_REF] that states that a graph G is cop-win if, and only if, by sequentially deleting (in any order) irreducible vertices, the result is a single vertex.

A Cops and Robbers game, where there is more than one cop trying to capture the robber, was first proposed by Aigner and Frome [START_REF] Aigner | A game of cops and robbers[END_REF]. The minimum number of cops necessary to ensure the capture of the robber in a graph G is the cop number, denoted by cn(G). Clearly, for any graph G, cn(G) is at most the minimum domination number of G, since by placing one cop at each vertex of a dominating set the cops can capture the robber in their next move. On the other hand, if a graph G has minimum degree k and its girth is at least five, then cn(G) ≥ k [START_REF] Aigner | A game of cops and robbers[END_REF]. One natural question about this game is how big can be the cop number of a graph compared to the number of its vertices. Meyniel, in a personal communication with Frankl [Fra87] in 1987, stated the following conjecture:

. . . This conjecture, arguably the most important open problem in the topic of Cops and Robbers. For a long time the best known bound for the cop number of a graph with n vertices, given by Frankl [START_REF] Frankl | Cops and robbers in graphs with large girth and cayley graphs[END_REF], was O(n log log n log n ). This bound was further improved by Chinifooroshan [START_REF] Chiniforooshan | A better bound for the cop number of general graphs[END_REF] to O( n log n ). Currently, the best upper bound for the cop number of a general graph G of order n was independently proved by Lu and Peng [LP12], Frieze et al. [START_REF] Frieze | Variations on cops and robbers[END_REF] and Scott and Sudakov [START_REF] Scott | A bound for the cops and robbers problem[END_REF].

Theorem 40 ([LP12, FKL12, SS11]). For a any graph G with n vertices:

cn(G) = O n 2 (1-o(1)) √ log 2 n
Despite the improvement, this newer bound and Meyniel's conjecture are still far from each other. Some further evidence pointing towards the truthfulness of this conjecture is due to Bollobás et al. [START_REF] Bollobás | Cops and robbers in a random graph[END_REF]. They prove that for sparse random graphs the cop-number has order of magnitude n 1 2 +o(1) with high probability. Another important question is, given a graph G of order n, how small can be cn(G) compared to n. In other words, is it possible that, for every graph G with n vertices, we have cn(G) = o( √ n)? The answer to this question is no. There are graphs G of order n with minimum degree k and girth at least 6 such that k > √ 2n/2 and cn(G)

≥ k > √ 2n/2. Then, from the fact that cn(G) ≥ k [AF84], we have that cn(G) = Ω( √ n).
For more information about bounds and Meyniel's conjecture for the Cops and Robbers game, see [START_REF] Baird | Meyniel's conjecture on the cop number: A survey[END_REF]. Since a full characterization for graphs with cop number k > 1 is unknown, it is interesting to study the complexity of computing the cop number of a graph. Let cn s (G) be the minimum number of cops that are necessary to ensure the capture of a robber that can move through at most s edges during its turn, but it is unable to pass through a vertex that is occupied by a cop. It was shown by Fomin et Another complexity result due to Goldstein and Reingold [GR95] is that, assuming the initial positioning of the cops and the robber are given, that is, their positions are already defined before the game starts, then computing cn(G) is EXPTIME-complete. A more recent result due to Mamino [START_REF] Mamino | On the computational complexity of a game of cops and robbers[END_REF] shows that deciding if k cops can capture a robber in a graph G is PSPACE-hard, even when both players can choose their starting positions. That is, deciding if cn(G) ≤ k, for a general graph G and integer k, is PSPACE-complete.

Due to the hardness of computing cn(G) for a general graph G and the difficulty of proving (or disproving) Meyniel's conjecture, a natural step is to study the cop number of graphs that share some property, that is, that belong to the same class. As mentioned before, trees are examples of cop-win graphs and graphs with an induced cycle of size at least four are not cop-win. In Table 5.1 we show some of the known results about computing, or the value of, the cop number of some graph classes.

Table 5.1: Complexity of computing, or the value of, cn(G), when G is a graph of order n belonging to the indicated class. In this table, cn ≥s (G) denotes, for all s ′ ≥ s, cn s ′ (G) and cn 1,2 (G) denotes both cn(G) and cn 2 (G). The line with random graphs denotes binomial random graphs with probability p and the result essentially holds almost surely when pn > 1.

Graph Class

Value/Difficulty Reference

Trees cn(G) = 1 [AF84] Outerplanar cn(G) ≤ 2 [Cla02] Planar cn(G) ≤ 3 [AF84] Bounded Genus (g) cn(G) ≤ (3g/2) + 3 [Sch01] Series Parallel cn(G) ≤ 2 [The08] d-dimensional Grids cn(G) ≤ d [BPS10] Geometric cn(G) ≤ 9 [BDFM12] Random O(n 1 2 -o(1) ) [BKL13] Chordal polynomial time [Qui86] Interval polynomial for cn ≥1 (G) [FGK + 10] Split NP-hard for cn ≥2 (G) [FGK + 10] Bounded Clique-width polynomial for cn 1,2 (G) [FGK + 10] k-Chordal (k ≥ 3) cn(G) ≤ k -1 [KLNS12]
There are several variations of the Cops and Robbers games depending on the rules of the game and rules of capture. As mentioned before, one variation of the game allows the robber to move through more than one edge per turn.

In [START_REF] Hahn | A note on k-cop, l-robber games on graphs[END_REF], a version of the game where cops must capture several robbers was studied. If each robber can be captured as soon as a cop occupies its current vertex, then all robbers can be captured with cn(G) cops. The cops simply need to capture each robber sequentially, while ignoring the other robbers. Hence, in this version, robbers must be captured simultaneously, that is, the cops only wins the game when all vertices that are occupied by robbers are also occupied by cops. They reduced the problem of deciding if k cops can capture l robbers in a directed graph D to the the problem of deciding if a directed graph D * , obtained from D, is cop-win. However D * might have an exponential number of vertices compared to D.

In [START_REF] Chalopin | Cop and robber games when the robber can hide and ride[END_REF], it was introduced a version of the game where only one cop tries to capture a robber on a graph with both moving at, possibly, different speeds. Let CW(s, s ′ ) be the set of graphs such that one cop moving at most s ′ edges per turn can capture one robber moving at most s edges per turn, regardless of the robbers moves. They show that CW(2, 1) is exactly the class of dually chordal 1 graphs. Moreover, for all s ≥ 3 and s ′ ≥ 3, they show that CW(s ′ , 1) = CW(s, 1). This essentially shows that if a cop can capture a fast robber, then it can capture a faster robber. They also study a version of the game where the robber is invisible to the cop, but it becomes visible to the cop periodically after each k rounds. They tried to characterize cop-win graphs for this version of the Cops and Robbers game for each value of k, by generalizing the dismantling order given in [START_REF] Nowakowski | Vertex-to-vertex pursuit in a graph[END_REF]. Unfortunately, this characterization is not tight. That is, every k-dismantable graph is cop-win when the robber is visible every k rounds, but the contrary is not necessarily true.

In [START_REF] Fomin | Cops and robber game without recharging[END_REF], Fomin et al. studied a version of the game where each cop has a fuel constraint. The fuel is an integer determining the amount of edges a cop can move through. The amount of fuel each cop has is the same at the beginning of the game. When a cop runs out of fuel, it cannot move any more, but it can still capture the robber, if the robber moves to the vertex it is occupying. They showed that deciding if k cops can capture the robber in this version of the game is PSPACE-complete, if the amount of fuel is at least two. The amount of fuel each cop has is just one of the possible restrictions that can be attributed to the cops. Other possible restrictions are the cost and the time of capture. The cost is the maximum amount of edges traversed by all cops and the time is the maximum amount of rounds the game can last. Fomin et al. studied the hardness of Cops and Robbers games, when cops are constrained to capture the robber with a maximum cost or in a maximum amount of turns. Deciding if k cops can capture a robber in a graph when constrained to a maximum fixed cost s, is NP-complete [START_REF] Fomin | Cops and robber with constraints[END_REF]. If the cost is part of the input, but is still bounded by a polynomial on the size of the instance, this problem is PSPACE-complete [START_REF] Fomin | Cops and robber with constraints[END_REF].

The first hardness result concerning the capture of a robber with constrained time was due to Bonato et al. in [BGHK09]. They showed that it is NP-complete to decide if k cops can capture a robber, when the maximum number of rounds is constrained to a constant. If the time is part of the input, but is still restricted have a value bounded by a polynomial on the size of the instance, this problem is PSPACE-complete [START_REF] Fomin | Cops and robber with constraints[END_REF].

For more knowledge about Cops and Robbers games see the book "The Game of Cops and Robbers on Graphs" from A. Bonato and R. Nowakowski [BN11].

Eternal Dominating Sets and Vertex Cover

In this section, we explore the Eternal Dominating Sets and Eternal Vertex Cover. In these games, the pursuer wins by protecting vertices, in the case of Eternal Dominating Sets, or edges, in the case of Eternal Vertex Cover, from an intrusion of the evader. The evader, on the other hand, wants to enter the area protected by the pursuer while avoiding its guards.

More precisely, in the pursuit-evasion game known as Eternal Domination, or Eternal Security, we have two players, the army and the rioter, that play turn-by-turn on a graph, G = (V, E), with the army playing in the first turn. The army starts by choosing a dominating set, S 1 , of the graph and placing one guard at each vertex of this dominating set. The rioter plays by choosing a single vertex, v 1 / ∈ S 1 , of the graph. Then, at each subsequent round i > 1, the army must move one of the guards at a vertex u i in N [v i-1 ] to v i-1 and the rioter chooses a new vertex v i . In other words, after the initial placement of the guards, the rioter chooses a vertex v of G that is not occupied by a guard and the army must put one of its guards stationed at a neighbour of v at the vertex v. For each of G induces a subtree in T .

i > 1, let S i be the set of vertices occupied by guards after the move of the army during round i, that is, S i = (S i-1 \ {u i }) ∪ {v i-1 }. The rioter wins the game during round i, if at the end of round i the set S i is not dominating, while the army wins if the rioter never wins.

This game was first considered in [BCG + 04]. Let σ 1 (G) be the minimum number of guards that are necessary for the army to win regardless of the sequence chosen by the rioter in the Eternal Domination game. Burger et al. show that σ 1 (G) is at least as big as the independence number of G and that it is at most as big as the clique cover number of G. There is a simple explanation for both of these results. Since the army must win for any sequence chosen by the rioter, then the rioter simply keeps choosing vertices in a maximum independent set of G. For the second one, let S = {C 1 , C 2 , . . . , C k } be the set of cliques that covers G. Then by placing one guard at a vertex of each C i , we have that this guard is able to "defend" against attacks on all vertices of this C i . Burger et al. also provide formulas for the value of σ 1 (G) when G is a path, a cycle, a complete multipartite graph, hexagonal graph.

In [START_REF] Goddard | Eternal security in graphs[END_REF], Goddard et al. define a simple generalization of the game the m-Eternal Domination. In the m-Eternal Domination, the army can move all its guards independently along one edge of the graph with the restriction that at least one guard must be on the vertex chosen by the rioter after the movement. Let σ m (G) be the number of guards necessary to guarantee the victory of the army in the m-Eternal Domination game. The value of σ m (G) when G is complete, bipartite complete, a path or a cycle can be found in [START_REF] Goddard | Eternal security in graphs[END_REF]. They also show that the following holds for any graph G: σ m (G) ≤ γ 2 (G) and σ m (G) ≤ β(G), where γ 2 (G) is the 2-domination number2 and β(G) is the independence number of G. Note that in [START_REF] Goldwasser | Tight bounds for eternal dominating sets in graphs[END_REF] it was shown that there are graphs such that

β(G) 2
≤ σ 1 (G), hence proving that the gap between σ 1 (G) and σ m (G) can be high. One question that remains open is the complexity of computing σ 1 (G) and σ m (G) for a general graph G.

Another game closely related to the m-Eternal Domination game is the m-Eternal Vertex Cover game. This game plays similarly to the m-Eternal Domination. The differences are as follows. The army, instead of choosing an initial dominating set, chooses a vertex cover. The rioter, instead of choosing vertices of the graph, chooses an edge of the graph, forcing the army to move one of its guards through the chosen edge during its turn. The rioter wins the game, if at the end of some round the set of vertices occupied by guards is not a covering of the edges. This game was first defined in [START_REF] Klostermeyer | Edge protection in graphs[END_REF]. Let α m (G) be the minimum number of guards necessary for the army to win, regardless of the sequence of edges chosen by the rioter, in the m-Eternal Vertex Cover game.

A result relating m-Eternal Vertex Cover and m-Eternal Domination can be found in [START_REF] Klostermeyer | Graphs with equal eternal vertex cover and eternal domination numbers[END_REF]. Klostermeyer and Mynhardt showed that α m (G) ≥ σ m (G) for all G with minimum degree at least two. In [FGG + 10], the problem of computing α m (G) was shown to be NP-hard. 

The Angel Problem

The last pursuit-evasion game we approach, in this chapter, is the Angel problem.

In this game, the two players are the devil and the angel. Each player is associated with an integer that defines its power. The game starts with the angel occupying a given vertex of the graph. Then, they play turn-by-turn starting with the devil. The devil plays by eating some vertices of the graph that are not occupied by the angel during its turn. The maximum amount of vertices the devil can eat on its turn is given by its power. During its turn, the angel plays by moving along edges of the graph and it must move through at least one edge. Similarly, the maximum amount of edges the angel can traverse on its turn is defined by its power. The angel wins the game if it is able to perpetually avoid being on an eaten vertex at the end of its turn.

Conway proposed a first version of this problem in [START_REF] Conway | The angel problem[END_REF]. In this version, the game is played on an infinite diagonal-grid3 with both the angel and the devil having power one and. In other words, we can imagine the game being played on an infinite chessboard, where the moves of the angel are the moves of the king and the devil can mark one square of the chessboard at each turn. The objective is to know whether an angel with sufficient power can survive indefinitely. One first result shows that an angel of power one loses against any devil [START_REF] Conway | The angel problem[END_REF].

A first result of survivability for the angel was shown by Bollobás and Leader [START_REF] Bollobás | The angel and the devil in three dimensions[END_REF] and, independently, by Kutz [START_REF] Kutz | Conway's angel in three dimensions[END_REF]. They show that an angel with sufficient power wins against a devil with power one in a tree-dimensional diagonal-grid. While Bollobás and Leader proof is not optimal with regards to the power of the angel, their survivability result also holds for a version of the Angel problem where the devil can eat more than one vertex per turn, but it is restricted to eat vertices that are sufficiently far away from the angel. On the other hand, Kutz's proof shows that an angel with power 13 is always able to survive against a devil with power one. Unfortunately, both results fail to hold for the game when it is played in a two-dimensional diagonal-grid.

The question if an angel with sufficient power is able to survive against a devil with power one in a diagonal grid remained open up to 2007, when, independently, Máthé [Má07], Kloster [START_REF] Kloster | A solution to the angel problem[END_REF] and Bowditch [START_REF] Bowditch | The angel game in the plane[END_REF] showed that an angel of sufficient power can survive. Máthé and Kloster show that an angel of power two can survive against a devil of power one while Bowditch only shows that an angel of power four can survive against a devil of power one. Máthé and Bowdith, prove that an angel of power two can survive by showing that the angel can survive in a special variant of the game. Unfortunately, it is not obvious how one can use the strategies for the angel in the variants of the game defined by Máthé and Bowdith to construct a winning strategy for the angel in the original game. On the other hand, Kloster was able to construct a winning strategy for the angel. This strategy is mainly based on the fact that, if the angel chooses a direction and move as fast as possible in this direction, then a devil with power one is not able to eat enough vertices in order to build a trap for the angel. Therefore, the angel is able to evade such traps by updating its intended direction of movement.

More information about the Angel problem can be found in [Kut04].

Objectives

In the next chapter, we aim at studying another turn-by-turn pursuit evasion game, the Surveillance game. This game is played by two players: the observer and the surfer. While the surfer plays like an angel with power one, the observer plays like the devil of a power defined in the beginning of the game. The game, however, starts with the surfer placed on an "eaten" vertex. The objective of the surfer is to leave the "eaten" area, while the observer tries to avoid this happening. We aim at investigating the cost associated with enforcing the observer to keep the area marked connected.

Turn-by-turn games presented in this chapter, along with the Surveillance game, all share some similarities. Obviously these games are all played by two players in a turn-byturn manner. Moreover, both players play by moving tokens along the edges of the graph or by adding/removing tokens on the vertices of the graph. In Chapter 7, we propose a framework that can be used to describe all aforementioned turn-by-turn games. This framework allows us to define fractional versions of these games. In other words, instead of having a whole token on a vertex, for example a cop, we might have fractions of cops spread through several vertices. The same being true for tokens that are controlled by each of the players. That is, both players might move/add/remove, depending on the game, fractions of tokens. We aim at investigating a method to decide, for any game that can be described with this framework, if the player playing the role of pursuer has a winning strategy. Then, we try to answer some natural questions that arise with this framework such as what is the relationship between a fractional version of a turn-by-turn game and its integral version.

Chapter 6 Surveillance Game

This chapter is dedicated to the study of yet another turn-by-turn pursuit-evasion game, the Surveillance game. The Surveillance game is a two-player game which involves one player moving a mobile agent, called surfer, along the edges of a graph, while a second player, called observer, marks the vertices of the graph. The surfer wins if it manages to reach an unmarked vertex. The observer wins otherwise, i.e., if it manages to mark all nodes before the surfer "escapes". This game was introduced by Fomin et al. in [FGJM + 12] in order to model the problem of prefetching web-pages.

In the connected Surveillance game, the vertices marked by the observer must induce a connected component. One of the main goals of this chapter is to answer a question regarding the cost of connectivity which was introduced in [FGJM + 12]. That is, we are interested to know how big can be the gap between the number of marks needed by the observer in these two versions of the game.

This chapter is divided as follows. The definition of the Surveillance game along with a brief overview on related results can be found in Section 6.1. Section 6.2 is dedicated to answering how much is the cost of connectivity. Then, in Section 6.3, we introduce another variant of this game, the Online Surveillance game, which is a restriction of the connected variant where the observer discovers progressively the graph the game is played. This online variant has to main motivations, the first one is that it has a closer relationship with the prefetching web-pages problem and the second one is that it might also help in understanding the cost of connectivity between the connected variant and the "classical" one. In Section 6.4, we conclude this chapter with a discussion about the results found in it.

The Surveillance Game

We start this section by formally defining the Surveillance game [FGJM + 12]. Let G = (V, E) be an undirected simple n-node graph, v 0 ∈ V , and k ∈ N * . Initially, the surfer stands at v 0 , which is marked, and all other nodes are not marked. Then, turn-by-turn, the observer first marks k unmarked vertices and then the surfer may move to a neighbour of its current position. Once a node has been marked, it remains marked until the end of the game. The surfer wins if, at some step, it reaches an unmarked vertex, otherwise the observer wins. Note that the game lasts at most n/k turns. When the game is played on a directed graph, the surfer has to move following the direction of the arcs. A k-strategy for the observer from v 0 , or simply a k-strategy from v 0 , is a function σ : V × 2 V → 2 V . This function receives as input a vertex of the graph, representing the current position of the surfer and a set of vertices M of G, representing the set of marked vertices, returning a set M ′ of vertices of V \ M , representing the set of vertices that the observer should mark during its turn, such that |M ′ | ≤ k. We emphasis that σ depends implicitly on the graph G, i.e., it is based on the full knowledge of G. A k-strategy from v 0 is winning, if it allows the observer to win whatever be the sequence of moves of the surfer, when it starts in v 0 . The surveillance number of a graph G with initial node v 0 , denoted by sn(G, v 0 ), is the smallest k such that there exists a winning k-strategy starting from v 0 .

Let us define some notations that are used in this chapter. Let ∆ be the maximum degree of the nodes in G and, for any v ∈ V , let N (v) be the set of neighbors of v. More generally, the neighborhood N (F ) of a set F ⊆ V is the subset of vertices of V \ F which have a neighbor in F . Moreover, we define the closed neighborhood of a set F as

N [F ] = N (F ) ∪ F .
As an example, let us consider the following basic strategy: let σ B be the strategy defined by σ B (v, M ) = N (v) \ M for any M ⊆ V , v 0 ∈ M , and v ∈ M . Intuitively, the basic strategy σ B asks the observer to mark all unmarked neighbors of the current position of the surfer. It is straightforward, and it was already shown in [FGJM + 12], that σ B is a winning strategy for any v 0 ∈ V and it easily implies that sn(G, v 0 ) ≤ max{|N (v 0 )|, ∆ -1}.

Web-Page Prefetching, Connected and Online Variants

The Surveillance game has been introduced to model the web-page prefetching problem. This problem can be stated as follows. A web-surfer is following the hyper-links in the digraph of the web. The web-browser aims at downloading the web-pages before the websurfer accesses it. The number of web-pages that the browser may download before the web-surfer accesses another web-page is limited, due to bandwidth constraints. Therefore, designing efficient strategies for the Surveillance game would allow to preserve bandwidth while, at the same time, avoiding the web-surfer to wait the download of the web-page he wants to access.

By the nature of the web-page prefetching problem, in particular, because of the huge size of the web digraph, it is not realistic to assume that a strategy may mark any node of the network, even nodes that are "far" from the current position of the surfer. For this reason, [FGJM + 12] defines the connected variant of the Surveillance game.

A strategy σ is said connected if σ(v, M ) ∪ M induces a connected subgraph of G for any M , v 0 ∈ M ⊆ V (G).
Note that the basic strategy σ B is connected. The connected surveillance number of a graph G with initial node v 0 , denoted by csn(G, v 0 ), is the smallest k such that there exists a winning connected k-strategy starting from v 0 . By definition, csn(G, v 0 ) ≥ sn(G, v 0 ) for any graph G and v 0 ∈ V (G). In [FGJM + 12], it is shown that there are graphs G and v 0 ∈ V (G) such that csn(G, v 0 ) = sn(G, v 0 ) + 1. Only the trivial upper bound csn(G, v 0 ) ≤ ∆ sn(G, v 0 ) is known, and a natural question is how big the gap between csn(G, v 0 ) and sn(G, v 0 ) may be [FGJM + 12]. This chapter provides a partial answer to this question.

Still the connected Surveillance game seems unrealistic since the web-browser cannot be asked to have the full knowledge of the web digraph. For this reason, we define the Online Surveillance game. In this game, the observer discovers the graph while marking its nodes. That is, initially, the observer only knows the starting node v 0 and its neighbors. After the observer has marked the subset M of nodes, it knows M and the vertices that have a neighbor in M . The next set of vertices to be marked depends only on this knowledge and on the position of the surfer, i.e., the nodes at distance at least two from M are unknown. In other words, an online strategy is based on the current position of the surfer, the set of already marked nodes and on the subgraph H of the marked nodes and their neighbors (a more formal definition is postponed to Section 6.3). By definition, the set of nodes marked by such a strategy, at each step, must be known, i.e., adjacent to an already marked vertex. Therefore, an online strategy is also connected. We are interested in the competitive ratio of winning online strategies. The competitive ratio ρ(S) of a winning online strategy S is defined as

ρ(S) = max G,v 0 ∈V (G) S(G,v 0 ) sn(G,v 0 )
, where S(G, v 0 ) denotes the maximum number of vertices marked by S in G at each turn, when the surfer starts in v 0 . Note that, because any online winning strategy S is connected, csn(G, v 0 ) ≤ ρ(S) sn(G, v 0 ), for any graph G and v 0 ∈ V (G).

Related Work

The Surveillance game has mainly been studied in the computational complexity point of view. It is shown that the problem of computing the surveillance number is NP-hard in split graphs [FGJM + 12]. Moreover, deciding whether the surveillance number is at most 2 is NP-hard in chordal graphs, and deciding whether the surveillance number is at most 4 is PSPACE-complete. Polynomial-time algorithms that compute the surveillance number in trees and interval graphs are proposed in [FGJM + 12]. All previous results also hold for the connected surveillance number. Finally, it is shown that, for any graph

G and v 0 ∈ V (G), max |N [S]|-1 |S| ≤ sn(G, v 0 ) ≤ csn(G, v 0 )
, where the maximum is taken over every subset S ⊆ V (G) inducing a connected subgraph with v 0 ∈ S. Moreover, both previous inequalities turn into an equality in the case of trees. In [FGJM + 12], Fomin et al. ask for an example where these inequalities are strict.

In the literature, there are mainly three types of approaches in order to solve the webpage prefetching problem: server based hints prefetching [AEFP98, AZN99, Mog96], local prefetching [START_REF] Wang | How far can client-only solutions go for mobile browser speed?[END_REF] and proxy based prefetching [START_REF] Fan | Web prefetching between lowbandwidth clients and proxies: potential and performance[END_REF]. In local prefetching, the client has no aid from the server when deciding which documents to prefetch. In the server based hints prefetching, the server can aid the client to decide which pages to prefetch. Lastly, in the proxy based prefetching, a proxy that connects its clients with the server decides which pages to prefetch. Moreover, some studies consider that the prefetching mechanism has perfect knowledge of the web-surfer's behavior [START_REF] Padmanabhan | Using predictive prefetching to improve world wide web latency[END_REF][START_REF] Kroeger | Exploring the bounds of web latency reduction from caching and prefetching[END_REF]. In these studies, the objective is to minimize the waiting time of the web-surfer with a given bandwidth, by designing good prediction strategies for which pages to prefetch.

In the context of prefetching web-pages, the Surveillance game is a model to study a local prefetching scheme to guarantee that a web-surfer never has to wait a web-page to be downloaded, whilst minimizing the bandwidth necessary to achieve such a goal. For this, the web-surfer takes the role of the surfer, the browser takes the role of the observer and the graph the game is played is the digraph of the web.

Our Results

In this chapter, we study both the connected and online variants of the Surveillance game. First, we try to evaluate the gap between non-connected and connected surveillance number of graphs. We give a new upper bound, independent from the maximum degree, for the ratio csn / sn. More precisely, we show that, for any n-node graph G and any

v 0 ∈ V (G), csn(G, v 0 ) ≤ sn(G, v 0 ) • n.
Then, we describe a family of graphs G such that csn(G, v 0 ) = sn(G, v 0 )+2. Note that, contrary to the simple example that shows that connected and not connected surveillance number may differ by one, a larger difference seems much more difficult to obtain.

As mentioned, the online variant of the Surveillance game is a more constrained version of the connected game. We prove that any online strategy has competitive ratio at least Ω(∆). More formally, we describe a family of trees with constant surveillance number such that, for any online winning strategy, there is a step when the strategy has to mark at least ∆/4 vertices in order to win. Unfortunately, this shows that the best (up to constant ratio) online strategy is the one that simply marks the out-neighborhood of the current position of the surfer.

Unless otherwise stated, all graphs in this chapter are undirected simple and connected. Note that, in undirected graphs, the out-neighborhood and in-neighborhood of a vertex coincide.

Cost of Connectivity

In this section, we investigate the cost of enforcing connectivity. We prove the first nontrivial upper bound for the ratio csn / sn. More precisely, we show that for any n-node graph G, csn(G, v 0 ) ≤ sn(G, v 0 ) • n. Then, we improve the lower bound of [FGJM + 12]. That is, we show a family of graphs where csn(G, v 0 ) > sn(G, v 0 )+1. Finally, we disprove a conjecture in [FGJM + 12].

Upper Bound for the Cost of Connectivity

The next result is the first non-trivial upper bound (independent from the degree) of the cost of the connectivity in the Surveillance game.

Theorem 41. Let G be any connected n-node graph and v

0 ∈ V (G), then csn(G, v 0 ) ≤ sn(G, v 0 ) • n.
Proof. sn(G, v 0 ) = 1 if and only if G is a path with v 0 as one of the extremities. In this case, csn(G, v 0 ) = sn(G, v 0 ) and the result holds.

Assume that k = sn(G, v 0 ) > 1 and that n ≥ 2. We describe a connected strategy σ marking at most √ kn nodes per turn. Let M 0 = {v 0 } and let M t be the set of vertices marked after t ≥ 1 turns. Assume moreover that M t induces a connected graph of G containing v 0 . Finally, let v t be the vertex occupied by the surfer after turn t. The set σ(v t , M t ) of nodes marked by the observer at step t + 1 is defined as follows. If For purpose of contradiction, let us assume that the surfer wins against σ by following the path P = (v 0 , . . . , v t , v t+1 ). At its t + 1 th turn, the surfer moves from a marked vertex v t to an unmarked vertex v t+1 . Therefore, n > t √ kn, otherwise the observer marking √ kn nodes at each turn would have already marked every vertex on the graph by the end of turn t. Moreover, by definition of sigma, |N (v t ) \ M t | > √ kn Since, sn(G, v 0 ) = k, let S be any k-winning (non necessarily connected) strategy for the observer. Assume that the observer follows S against the surfer following P \ {v t+1 }. Since, S is winning, all vertices of N (v t ) must be marked after turn t, otherwise the surfer would win by moving to an unmarked neighbor of v t . Therefore, since S can mark at most k vertices each turn, |N (v t )| ≤ kt.

|V (G) \ M t | ≤ √ kn, then let σ(v t , M t ) = V (G) \ M t . Otherwise, let H ⊆ V (G) \ M t be such that |H| = √ kn,
Taking both inequalities, we have that

√ kn < |N (v t )| ≤ kt. Hence, √ n < t √ k. Since n > t √ kn and √ n < t √ k, we have that t 2 k < n < t 2 k, a contradiction.

Lower Bound for the Cost of Connectivity

This subsection is devoted to proving the following theorem.

Theorem 42. There exists a family of graphs G and

v 0 ∈ V (G) such that csn(G, v 0 ) > sn(G, v 0 ) + 1.
We use the following result proved in [FGJM + 12]. For any graph G = (V, E) and any vertex v 0 ∈ V , a k-strategy for G with initial vertex v 0 is winning if and only if it is winning against a surfer that is constrained to follow induced paths on G. In other words, the walk of the surfer is constrained to be an induced path.

In this section, by adding a path P = (v 1 , • • • , v r ) between two vertices u and v of G, we mean that the induced path P is added as an induced subgraph of G and the edges {u, v 1 } and {v r , v} are added.

Let x ≥ 4, α, β and γ be four strictly positive integers satisfying the following inequations.

max{β,

β 2 + γ + 1} < α < min{β + γ + 1, 2γ + 2} (6.1)

β < 2γ + 2 (6.2) α + β + 2γ + 12 ≤ 3x (6.3) 4 5 (α + β + γ) + 10 < x (6.4) 73 + β + 2γ ≤ 2α (6.5)
For instance, x = 250, α = 146, β = 73, γ = 73 are values that satisfy all the above inequalities.

For proving the main theorem in this section we mainly rely in the family of graphs built in the following the procedure described below.

Let G = (V, E) be a graph with 10 isolated vertices {v 0 , w 0 , w 1 , w 2 , w ′ 0 , w ′ 1 , w ′ 2 , s 0 , s 1 , s 2 }. Then, for all i ∈ {0, 1, 2} do the following:

1. 4x -9 vertices of degree one are added and made adjacent to s i ; 2. 3x -2 vertices of degree one are added and made adjacent to w i , respectively 3x -2 neighbors of degree one are added to w ′ i ; 3. two disjoint paths A i = (a i 1 , . . . , a i α ) and A ′i = (a ′i 1 , . . . , a ′i α ) are added between v 0 and s i ; 4. a path B i = (b i 1 , . . . , b i β ) is added between v 0 and w i , and a path B ′i = (b ′i 1 , . . . , b ′i β ) is added between v 0 and w ′ i ;

5. for any j ∈ {i, i + 1 mod 3} a path C i,j = (c i,j 1 , . . . , c i,j γ ) is added between s j and w i , and a path C ′i,j = (c ′i,j 1 , . . . , c ′i,j γ ) is added between s j and w ′ i ;

6. for any 1 ≤ j ≤ α, 3x -1 vertices of degree one are added and made adjacent to a i j , respectively 3x -1 neighbors of degree one are added to a ′i j ;

7. for any 1 ≤ j ≤ β, 3x -1 vertices of degree one are added and made adjacent to b i j , respectively 3x -1 neighbors of degree one are added to b ′i j ;

8. for any 1 ≤ j ≤ γ, ℓ ∈ {i, i + 1 mod 3}, 3x -1 vertices of degree one are added and made adjacent to c i,ℓ j , respectively 3x -1 neighbors of degree one are added to c ′i,ℓ j .

The shape of G is depicted in Figure 6.1. G has (30 + 18(α + β) + 36γ)x -29 vertices. For any i ∈ {0, 1, 2}, the node s i has 4x -3 neighbors, v 0 has 12 neighbors, and any other non-leaf node has degree 3x + 1.

Claim 14. If max{β, β 2 + γ + 1} < α < min{β + γ + 1, 2γ + 2} and β < 2γ + 2, the unique (up to symmetries) minimum Steiner-tree for S = N [v 0 ] ∪ {s 0 , s 1 , s 2 } in G has 15 + α + β +

2γ vertices and consists of the vertices of the paths

A 0 , B 1 , C 1,1 , C 1,2 and the vertices in S ∪ {w 1 }.
Proof. The subgraph induced by the vertices of the paths A 0 , B 1 , C 1,1 , C 1,2 and the vertices in S ∪ {w 1 } is a subtree spanning S and with 15 + α + β + 2γ vertices. Let us enumerate all the possible (up to symmetries) Steiner-trees for S. Consider the subgraph induced by the vertices of:

• A 0 , A 1 , A 2 and S. The number of vertices in this subgraph is 3α + 13.

• A 0 , A 1 , C 1,1 , C 1,2 and S ∪ {w 1 }. The number of vertices in this subgraph is 2α + 2γ + 15.

• A 0 , A 1 , B 1 , C 1,2 and S ∪ {w 1 }.
The number of vertices in this subgraph is 2α + β + γ + 14.

• A 0 , C 0,0 , C 0,1 , C 2,0 , C 2,2 and S ∪ {w 0 , w 2 }. The number of vertices in this subgraph is α + 4γ + 17.

• B 0 , B 1 , C 0,0 , C 1,1 , C 1,2 and S ∪ {w 0 , w 1 }. The number of vertices in this subgraph is 2β + 3γ + 16.

• B 1 , C 1,1 , C 1,2 , C 2,2 , C 2,0 and S ∪ {w 1 , w 2 }.
The number of vertices in this subgraph is β + 4γ + 17.

If the subgraph induced by the vertices of the paths A 0 , B 1 , C 1,1 , C 1,2 and the vertices in S ∪ {w 1 }, is the unique (up to symmetries) minimum Steiner-tree for S = N [v 0 ] ∪ {s 0 , s 1 , s 2 } in G, then we get the following inequalities:

α > β 2 + γ + 1 α > β α > γ + 1 β < 2γ + 2 α < β + γ + 1 α < 2γ + 2.
Thus max{β, β 2 + γ + 1} < α < min{β + γ + 1, 2γ + 2} and β < 2γ + 2. In Figure 6.1, the scheme of a minimum Steiner-tree for S = N [v 0 ] ∪ {s 0 , s 1 , s 2 } is depicted with dashed lines. For any i ∈ {0, 1, 2}, let

A i = N [v 0 ]∪N [A i ]∪N [s i ] (resp., A ′ i = N [v 0 ]∪N [A ′i ]∪N [s i ]). Note that |A i | = |A ′ i | = (3α + 4)x + 9 and that the A i and A j , i = j, pairwise intersect only in N [v 0 ].
For any i ∈ {0, 1, 2}, let

B i = N [v 0 ] ∪ N [B i ] ∪ N [w i ] ∪ N [C i,i ] ∪ N [C i,i+1 mod 3 ] ∪ N [s i ] ∪ N [s i+1 mod 3 ] and B ′ i is defined similarly. |B i | = |B ′ i | = (3β +6γ +11)x+5. Finally, for any i ∈ {0, 1, 2} and j ∈ {i, i + 1 mod 3}, let B i,j = N [v 0 ] ∪ N [B i ] ∪ N [w i ] ∪ N [C i,j ] ∪ N [s j ] and B ′ i,j = N [v 0 ] ∪ N [B ′i ] ∪ N [w ′ i ] ∪ N [C ′i,j ] ∪ N [s j ]. Lemma 43.
For any i ∈ {0, 1, 2} and j ∈ {i, i + 1 mod 3}, during its first step, any winning (3x + y)-strategy for G must mark at least

• x + 8 -y(α + 1) nodes in A i (resp., in A ′ i ), and • x + 8 -y(β + γ + 2) nodes in B i,j (resp., in B ′ i,j
), and

• 2x + 4 -y(β + 2γ + 3) nodes in B i (resp., in B ′ i ).
Proof. Let S be any winning (3x + y)-strategy and F be the set of nodes that S marks during its first step. Let M = F ∩ A 0 . The surfer goes to a 0 1 . We may assume that S had marked it since the strategy fails otherwise. Now, the surfer first goes to s 0 through A 0 unless, at some turn, its position has an unmarked neighbor. In the latter case, the surfer goes to this unmarked node and wins. During these (α + 1) steps, the strategy S can mark at most (α + 1)(3x + y) extra nodes in A 0 . Hence, in total, at most |M | + (α + 1)(3x + y) nodes have been marked in A 0 when the surfer is at s 0 and it is its turn. Because S is a winning strategy, all nodes in A 0 must have been marked since otherwise the surfer would have won. Therefore, |M | + (α + 1)(3x + y) ≥ |A 0 \ {v 0 }| = (3α + 4)x + 8 and |M | ≥ x + 8y(α + 1).

The proof is similar for B i,j . Now, let M = F ∩ B 0 and let

M ′ = F ∩ (N [v 0 ] ∪ N [B 0 ] ∪ N [w 0 ]) ⊆ M .
The surfer goes to b 0 1 . We may assume that S had marked it since the strategy fails otherwise. Now, the surfer first goes to w 0 through B 0 unless, at some turn, its position has an unmarked neighbor. In the latter case, the surfer goes to this unmarked node and wins. At the turn of the surfer when it is in w 0 , the strategy has marked |M | + (β + 1)(3x + y) and all nodes in

N [v 0 ] ∪ N [B 0 ] ∪ N [w 0 ] must have been marked. Therefore, at most |M | + (β + 1)(3x + y) -(12 + 3(β + 1)x) = |M | + y(β + 1) -12 nodes of B ′ 0 \ (N [v 0 ] ∪ N [B 0 ] ∪ N [w 0 ]
) are marked. Hence, w.l.o.g., there are at most |M |+y(β+1)-12

2 nodes that are marked in (N [C 0,0 ] ∪ N [s 0 ]) \ N [w 0 ].
The surfer now goes from w 0 to s 0 . During these steps, at most (γ + 1)(3x + y) new vertices are marked. Because S is a winning strategy, all nodes in (N [C 0,0 ] ∪ N [s 0 ]) \ N [w 0 ] must have been marked since otherwise the surfer would have won. Therefore,

|M | + y(β + 1) -12 2 + (γ + 1)(3x + y) ≥ |(N [C 0,0 ] ∪ N [s 0 ]) \ N [w 0 ]| ≥ 3γx + 4x -4.
Hence, |M | ≥ 2x + 4y(β + 2γ + 3).

Lemma 44. sn(G, v 0 ) = 3x.

Proof. First, let us show that sn(G, v 0 ) ≤ 3x. For this purpose, consider the following strategy. At the first step, the observer marks the 12 neighbors of v 0 and, for any i ∈ {0, 1, 2}, the observer marks x -4 one-degree neighbors of s i . Note that, all nodes in N (v 0 ) have exactly 3x unmarked neighbors and any vertex has at most 3x + 1 unmarked neighbors. Now, the strategy simply consists in marking at each step the neighbors of the current position of the surfer. Indeed, it is easy to prove by induction on the number of steps that, each time that the surfer arrives at a new node, this node is marked and has at most 3x unmarked neighbors. Now, let us prove that sn(G, v 0 ) > 3x -1. Let S be any (3x -1)-strategy and let F be the set of nodes that S marks during its first step. Clearly, N (v 0 ) ⊆ F since otherwise the surfer wins after its first move. Moreover, because the sets

A i \N [v 0 ] are pairwise disjoint, there must be i ∈ {0, 1, 2}, such that |F ∩ (A i \ N [v 0 ])| < x -4. Hence, |F ∩ A i | < x + 8
for some i. However, by Lemma 43, any winning (3x -1)-strategy must mark at least x + 8 + α + 1 > x + 8 nodes in each A i during the first step.

Lemma 45. csn(G, v 0 ) > 3x + 1.
Proof. For purpose of contradiction, let us assume that there is a winning connected 3x + 1-strategy. Let F be the set of vertices marked by this strategy during the first step. Clearly,

N (v 0 ) ⊆ F and |F | ≤ 3x + 1. For any 0 ≤ i ≤ 2, let f i = |F ∩ N [s i ]| and let f min = min i f i . Without loss of generality, f min = f 0 . We first show that f min > 3. By Lemma 43, for any i ∈ {0, 1, 2}, |F ∩ (A i \ N [v 0 ])| ≥ x -5 -α and, for any i ∈ {0, 2}, |F ∩ (B i,0 \ N [v 0 ])| ≥ x -6 -(β + γ) and |F ∩ (B ′ i,0 \ N [v 0 ])| ≥ x -6 -(β + γ). Therefore, 3x + 1 ≥ |F ∩ (A 0 ∪ A ′ 0 ∪ A 1 ∪ A 2 ∪ B 0,0 ∪ B 2,0 ∪ B ′ 0,0 ∪ B ′ 2,0 )| ≥ 12 + 4(x -5 -α) + 4(x -6 -(β + γ)) -5|F ∩ N [s 0 ]| ≥ 8x -4(α + β + γ) -32 -5f min
Hence, 5f min ≥ 5x -4(α + β + γ) -33, and f min ≥ x -4 5 (α + β + γ) -7 > 3 by the above inequality.

Therefore, by definition of f min , |F ∩ N [s i ]| ≥ 4 for any i ∈ {0, 1, 2}. By connectivity of the strategy, s i ∈ F ∩ N [s i ] for any i ∈ {0, 1, 2}. Hence, F must contain a subset of vertices inducing a subtree spanning S = N [v 0 ] ∪ {s 0 , s 1 , s 2 }. Let T be an inclusionminimal subset of F that induces a subtree spanning S. By Claim 14, |T | ≥ α+β+2γ+15.

Let T ′ = T \ (N [v 0 ] ∪ 0≤i≤2 N [s i ]). Then, |T ′ | ≥ α + β + 2γ -4.
Moreover, because of the symmetries, we may assume w.l.o.g., that

T ′ ⊆ 0≤i≤2 (A i ∪ B i ).
By Lemma 43 and because N (v 0 ) ⊆ F , for any 0

≤ i ≤ 2, |F ∩ (A ′ i ∪ B ′ i+1 mod 3 )| ≥ x + 8 -(α + 1) + 2x + 4 -(β + 2γ + 3) -12 = 3x -(α + β + 2γ) -4. Hence, |T ′ | + |F ∩ (A ′ i ∪ B ′ i+1 mod 3 )| ≥ 3x -8. Let W i = F \ (A ′ i ∪ B ′ i+1 mod 3 ∪ T ′ ). Since |F | ≤ 3x + 1, it follows that |W i | ≤ 9. Let f max = max i f i and assume w.l.o.g. that f max = f 2 . Since 0≤i≤2 f i ≤ |F \ T ′ |, we get that f 0 + f 1 ≤ 2 3 (5 + 3x -(α + β + 2γ) . To conclude, |F ∩ B ′ 0 | = |N (v 0 )| + f 0 + f 1 + |W 0 | ≤ 21 + 2 3 (5 + 3x -(α + β + 2γ) . On the other hand, Lemma 43 implies that |F ∩ B ′ 0 | ≥ 2x + 1 -(β + 2γ). Therefore, 22 + 2 3 (5 + 3x -(α + β + 2γ) > 2x + 1 -(β + 2γ
) and it follows 73 > 2αβ -2γ. This contradicts the inequalities.

Lemmas 44 and 45 are sufficient to prove Theorem 42. More precisely, it shows that there exist a family of graphs G and v 0 ∈ V (G) such that csn(G, v 0 ) ≥ sn(G, v 0 ) + 2. However, as shown in the next lemma, the family of graphs we described does not allow to increase more the lower bound on the cost of connectivity.

Lemma 46. csn(G, v 0 ) ≤ 3x + 2.
Proof. Consider the following strategy. At the first step, the observer marks the 12 neighbors of v 0 , all nodes of the paths A 0 , B 1 , C 1,1 and C 1,2 , the vertices w 1 , s 0 , s 1 and s 2 and finally Z = ⌊(3xαβ -2γ -12)/3⌋ one-degree neighbors of each s i . Note that Z ≥ 0 by Equation 6.3.

Then, the strategy goes on as follows. Let i ∈ {0, 1, 2}. When the surfer arrives at some node a i j (resp., a ′i j ), 1 ≤ j ≤ α, the observer marks the at most 3x unmarked neighbors of a i j and marks at least 2 unmarked neighbors of s i . When the surfer arrives at some node b i j (resp., b ′i j ), 1 ≤ j ≤ β, or at w i , the observer marks the at most 3x unmarked neighbors of this node and marks at least 1 unmarked neighbor of s i and at least 1 unmarked neighbor of s i+1 mod 3 . When the surfer arrives at some node c i,ℓ j (resp., c ′i,ℓ j ), 1 ≤ j ≤ γ, ℓ ∈ {i, i + 1 mod 3}, the observer marks the at most 3x unmarked neighbors of c i,ℓ j and marks at least 2 unmarked neighbors of s ℓ (if any) and, if all neighbors of s ℓ are already marked, the observer marks at least 2 unmarked neighbors of s k where {k} = {i, i + 1 mod 3} \ {ℓ}. Finally, when the surfer arrives at s i , the observer marks 3x + 2 unmarked neighbors of it.

To prove the validity of this strategy, it is sufficient to show that the surfer will loose for the following three different trajectories. This is sufficient, because the surfer is only able to win when moving from s 0 , s 1 or s 2 to one of its neighbors; and because α < 2γ, i.e., the amount of steps it takes for the surfer to move from s i to s j , with j = i is bigger than the amount of steps it takes it to move from v 0 to s j . Meaning that, if the fugitive wins it wins the first time it moves out of one of these three vertices.

First, let us assume that the surfer goes from v 0 to s i through A i (i ∈ {0, 1, 2}). Clearly, at each step before reaching s i , all neighbors of the current position of the surfer are marked. Now, when the surfer arrives at s i , there are at least 2(α + 1) + Z neighbors of s i that are already marked. To show that the observer wins, it is sufficient to note that

|N (s i )| -(2(α + 1) + Z) = 4x -3 -2α -2 - 3x -α -β -2γ -12 3 ≤ 3x -2α -5 + α + β + 2γ + 12 3 ≤ 3x -1 + β + 2γ -5α 3 ≤ 3x + 2 because 2α > β + 2γ + 1.
Second, let us assume that the surfer goes from v 0 to s i through B i , w i and C i,i (i ∈ {0, 1, 2}). When the surfer arrives at s i , there are at least β + 1 + 2γ + Z neighbors of s i that are already marked. To show that the observer wins, it is sufficient to note that

|N (s i )| -(β + 1 + 2γ + Z) = 4x -4 -β -2γ - 3x -α -β -2γ -12 3 ≤ 3x -β -4 -2γ + α + β + 2γ + 12 3 ≤ 3x + α -2β -4γ 3 ≤ 3x + 2 because α < β + γ + 1.
Finally, let us assume that the surfer goes from s i (all neighbors of which are already marked) to s i+1 mod 3 through C i,i , w i and C i,i+1 mod 3 (i ∈ {0, 1, 2}). When the surfer arrives at s i+1 mod 3 , there are at least 4γ + 2 + Z neighbors of s i+1 mod 3 that are already marked. To show that the observer wins, it is sufficient to note that

|N (s i+1 mod 3 )| -(4γ + 2 + Z) = 4x -3 -4γ -2 - 3x -α -β -2γ -12 3 ≤ 3x -5γ -4 + α + β + 2γ + 12 3 ≤ 3x -1 + α + β -10γ 3 ≤ 3x + 2 because β < α < 2γ + 1.
To conclude this section, we answer negatively a question asked in [FGJM + 12]. It is shown in [FGJM + 12] that in the case of trees both following inequalities turn into equalities. For any graph G and

v 0 ∈ V (G), max |N [S]|-1 |S| ≤ sn(G, v 0 ) ≤ csn(G, v 0 )
where the maximum is taken over every subset S ⊆ V (G) inducing a connected subgraph with v 0 ∈ S. Moreover, the authors of [FGJM + 12] ask whether the first inequality may be strict when the G is not restricted to be a tree.

First, let us notice that an equality might give new way to attack the question of the cost of the connectivity. However, such an equality is unlikely to hold since it would imply that the problem of computing the surveillance number of a graph is in co-NP while this problem is known to be PSPACE-complete in DAGs [FGJM + 12]. We actually show that there are graphs where the inequality is strict.

Let us build a graph as follows. Starting from the vertex set V = {a, b, c, ab, ac, bc, s} and E = {(s, a), (s, b), (s, c), (a, ab), (a, ac), (b, ab), (b, bc), (c, ac), (c, bc)}. Then, we add 11k-21-2x 6

leaves to each vertex ab, ac and bc, moreover, add 3 leaves to each vertex a, b and c, and, finally, add x leaves to s. A scheme of this family can be found in Figure 6.2. We moreover assume that k -5 ≡ 0 (mod 2), kx -3 ≡ 0 (mod 3), 11k -21 -2x ≡ 0 (mod 6), x ≤ k -36 and k ≥ 34. For instance, k = 105 and x = 42 are possible values for k and x.

Let G be the graph obtained by the above construction and where parameters satisfy the above constraints.

Theorem 47. sn(G, s) = k and max S⊆V (G) |N [S]|-1 |S| < k.
Proof. Throughout this proof, let M ⊆ V denote the set of (currently) marked vertices in G.

We show a strategy for the surfer that wins against an observer that can mark at most k -1 vertices per turn. Let

S a = (N [a] ∪ N [ab] ∪ N [ac]) \ {s, a, b, c}, S b = (N [b] ∪ N [ab] ∪ N [bc]) \ {s, a, b, c}, and S c = (N [c] ∪ N [bc] ∪ N [ac]) \ {s, a, b, c}.
In the first step and after the observer has used its marks, the surfer chooses to move to i where i = arg min i={a,b,c} |S i ∩ M |. Since the observer must mark the vertices in N (s) (including a, b, c) we have that

|S i ∩ M | ≤ 2 3 (k -1 -x -3).
Without loss of generality assume that i = a. In the second step, all neighbors of a must have been marked, otherwise the surfer wins by moving to an unmarked leaf of a. Let S ab = N [ab] \ {a, b, ab} and S ac = N [ac] \ {a, c, ac}, therefore, after all marks are spent in the second step, min j={ab,ac}

|S j ∩ M | ≤ k -1 -5 + 2 3 (k -1 -x -3) 2 .
The surfer then chooses to move to arg min i={ab,ac} |S i ∩ M |, w.l.o.g. assume that it is the vertex ab. In the third step, the observer might use all its available marks onto the leaves of ab, hence, after spending all the marks,

|S ab ∩ M | ≤ k -1 + k -1 -5 + 2 3 (k -1 -x -3) 2 = 11k -32 -2x 6 
which is less than |S ab |, hence there is an unmarked leaf of ab that the surfer can reach.

We consider now a winning strategy for the observer that marks k vertices per step. At the first step, the observer marks all vertices in N [s], with the remaining marks, k -x -3, being spread evenly among vertices in the sets N [ab] \ {a, b, ab}, N [ac] \ {a, c, ac} and N [bc] \ {b, c, bc}. Hence, there are at least k-x-3 3 = k-x-3 3 vertices marked in each of those sets. Without loss of generality assume that the surfer moves towards a. Then, the observer marks the vertices in N (a) and, with the remaining marks, proceeds to distribute them evenly among the vertices of the sets N (ab) and N (ac). When the surfer is about to move there are at least k-5

2 + k-x-3 3 = k-5 2 + k-x-3
3 vertices in (N (ab) \ {a, b}) ∩ M and in (N (ac) \ {a, c}) ∩ M . Without loss of generality assume that the surfer moves towards ab. Then the observer uses all its available marks on the unmarked vertices in N (ab) \ {a, b}. Therefore, after all marks are spent, there are k

+ k-5 2 + x-3 3 marked vertices in N (ab) \ {a, b}. It remains to show that k + k-5 2 + x-3 3 ≥ 11k-21-2x 6 . k + k -5 2 + x -3 3 ≥ 6k 6 + 3k -15 6 + 2x -6 6 -2 = 9k -21 + 2x 6 -2 9k -21 + 2x 6 -2 = 9k -33 + 4x -2x 6 ≥ 11k -21 -2x 6 .
Now we show that for all connected sets S such that s ∈ S we have that

|N [S]-1| |S| < k.
Claim 15. For all connected sets S such that s ∈ S, then

|N [S] -1| |S| ≤ k -1.
First we prove that if S contains a vertex v ∈ V with degree 1, then

|N [S]-1| |S| ≤ |N [S\{v}]-1| |S\{v}|
. Since S contains s and induces a connected subgraph, then

N (v) ⊂ S because |N (v)| = 1. Thus N [S \ {v}] contains v and so N [S \ {v}] = N [S].
In the rest of the proof, we consider sets S that do not contain a node with degree 1. Let L ab = N (ab) \ {a, b}, L ac = N (ac) \ {a, c}, and L bc = N (bc) \ {b, c}. By the previous assumption, if a node v ∈ L ab is such that v ∈ N [S], then all nodes in L ab are in N [S]. By symmetry, we have a similar property for L ac and L bc . Note that (N (s) \ {a, b, c}) ⊂ N [S] because s ∈ S by definition.

We have four different cases: This concludes the proof of Claim 15 and, therefore, the proof of Theorem 47 because we have proved that sn(G, s) = k.

1. Consider S such that N [S] ∩ (L ab ∪ L ac ∪ L bc ) = ∅. We get that |S| ≥ 1 and N [S] ≤ x + 16. Thus |N [S]-1| |S| ≤ x + 15 ≤ k -1 because x ≤ k -36. 2. Consider S such that N [S] ∩ (L ac ∪ L bc ) = ∅ and L ab ⊂ N [S]. We get that |S| ≥ 3 and N [S] ≤ x + 16 + 11k-21-2x 6 . Thus |N [S]-1| |S| ≤ 11k+4x+69 18 ≤ k -1 because x ≤ k -36 and k ≥ 34. The case N [S] ∩ (L ab ∪ L bc ) = ∅ and L ac ⊂ N [S] is similar and the case N [S] ∩ (L ab ∪ L ac ) = ∅ and L bc ⊂ N [S] is also similar. 3. Consider S such that N [S] ∩ L bc = ∅ and L ab ∪ L ac ⊂ N [S]. We get that |S| ≥ 4 and N [S] ≤ x + 16 + 11k-21-2x 3 . Thus |N [S]-1| |S| ≤ 11k+x+24 12 ≤ k -1 because x ≤ k -

Online Surveillance Number

In this section, we study the online variant of the Surveillance game. This variant is motivated by the web-page prefetching problem. In this variant, the observer does not know a priori the graph in which it is playing. That is, initially, the observer only knows v 0 , its degree and the identifiers of its neighbors. Then, when a new node is marked, the observer discovers all its neighbors that are not yet marked. Note that the degree of a node is not known before it is marked.

Another property of an online strategy that must be defined is if the observer must use all its marks simultaneously or in sequence. Assume that the set M of nodes have been marked and it is the turn of the observer. Either it first chooses the k nodes that will be marked among the set N (M ) \ M , the unmarked neighbors of the nodes that were already marked, and then the observer marks each of these k nodes and discover their unknown neighbors simultaneously; or the observer first chooses one node x in N (M )\M , marks it and discovers its unmarked neighbors, then it chooses a new node to be marked in N (M ∪ {x}) \ (M ∪ {x}) and so on until the observer finishes its turn after marking k nodes. We choose to consider the second model because it is less restricted, i.e., the observer has more power. Even in this case, our result is pessimistic since we show that the basic strategy, which marks the neighborhood of the current position of the surfer at each step, is the best one with respect to the competitive ratio.

Formal Definition of Online Strategy and Competitive Ratio

Now we are ready to formally define an online strategy. Let k ≥ 1, let G = (V, E) be a graph, v 0 ∈ V , and let G be the set of subgraphs of G.

Let M ⊆ V be a subset of nodes inducing a connected subgraph containing v 0 in G. Let G M ∈ G be the subgraph of G known by the observer when M is the set of marked nodes. That is,

G M = (M ∪ N (M ), E M ) where E M = {(u, v) ∈ E | u ∈ M }. For any u, v ∈ N (M ) \ M , let us set u ∼ M v if and only if N (u) ∩ M = N (v) ∩ M . Let X M be the set of equivalent classes, called modules, of N (M ) \ M with respect to ∼ M .
The intuition is that two nodes in the same module of X M are known by the observer but cannot be distinguished. For instance, X {v 0 } = {N (v 0 )} because initially all neighbors of v 0 look the same to the observer.

A k-online strategy for the observer starting from v 0 is a function σ : G × V × 2 V × {1, . . . , k} → 2 V such that, for any subset M ⊆ V of nodes inducing a connected subgraph containing v 0 in G, for any v ∈ M , and for any 1 ≤ i ≤ k, we have that σ(G M , v, M, i) ∈ X M . This means that, if M is the set of nodes already marked and v is the position of the surfer and it remains ki + 1 nodes to be marked by the observer before the surfer moves, then the observer will mark one node in σ(G M , v, M, i).

More precisely, we say that the observer follows the k-online strategy σ if the game proceeds as follows. Let M = M 0 be the set of marked nodes just after the surfer has moved to v ∈ M . Initially, M 0 = {v 0 } and v = v 0 . Then, the strategy proceeds sequentially in k steps for i = 1 to k. First, the observer marks an arbitrary node x 1 ∈ σ(G M 0 , v, M 0 , 1). Let M 1 = M 0 ∪ {x 1 }. Sequentially, after having marked 1 < i < k nodes at this turn, the observer marks one arbitrary node

x i+1 ∈ σ(G M i , v, M i , i + 1) and M i+1 = M i ∪ {x i+1 }.
When the observer has marked k nodes, that is after choosing

x k ∈ σ(G M k-1 , v, M k-1 , k),
it is the turn of the surfer, then it may move to a node adjacent to its current position and a new turn for the observer starts. Note that because we are interested in the worst case for the observer, each marked node

x i ∈ σ(G M i-1 , v, M i-1 , i) is chosen by an adversary.
The online surveillance number of a graph G with initial node v 0 , denoted by on(G, v 0 ), is the smallest k such that there exists a winning k-online strategy starting from v 0 . In other words, there is a winning k-online strategy σ starting from v 0 such that an observer following σ wins whatever be the trajectory of the surfer and the choices done by the adversary. Note that, since we consider the worst scenario for the observer, we may assume that the surfer and the adversary have full knowledge of G.

Online Surveillance Number vs Surveillance Number

Theorem 48. There exists a infinite family of rooted trees such that, for any T with root v 0 ∈ V (T ) in this family, sn(T, v 0 ) = 2 and on(T, v 0 ) = Ω(∆) where ∆ is the maximum degree of T .

Proof. We first define the family (T k ) k≥4 of rooted trees as follows. Let k ≥ 4 be a power of two and let i = 2 k and d = 2 k k . Let us consider a path P = (v 0 , v 1 , . . . , v i-1 ) with i nodes Let B be a complete binary tree of height h = 3k + 1 and rooted at some vertex v i , i.e., B has 2 h+1 -1 vertices. Let w 0 be any leaf of B. Finally, let Q = (w 1 , . . . , w k ) be a path on k nodes. Note that, P , B and Q depend on k.

v 0 w 0 v 1 v 2 v i-1 v i w k w 1 P B Q Q + h =3k +1 d = 2 k k i =2 k S 1 S 2 S k d = 2 k k d = 2 k k w 2
The tree T k is obtained from P , B and Q by adding an edge between v i-1 and v i , an edge between w 0 and w 1 . Finally, for any 1 ≤ j ≤ k, let us add an independent set, S j , with d vertices and an edge between each vertex of S j and w j (i.e., each node in S j is a leaf in the resulting tree T k ). T k is then rooted in v 0 .

Let Q + denote the union of vertices of Q and k j=1 S j . The maximum degree ∆ of T k is reached by any node w j , 1 ≤ j < k, and ∆ = d + 2 = 2 k k + 2. We first show that sn(T k , v 0 ) = 2. Clearly, sn(T k , v 0 ) > 1. Let us consider the following (offline) strategy for the observer. At each turn j ≤ i, the surfer marks the vertex v j and one unmarked vertex of Q + that is closest to the surfer. Note that the observer is allowed to mark nodes in Q + because, in an offline strategy, the observer knows the whole tree. Just after turn i, the surfer must occupy a node of P ∪ {v i }. Moreover, it cannot have reached an unmarked vertex so far since all nodes of P ∪ {v i } have been marked before the surfer can access them.

For each turn j > i and while the surfer does not occupy a node in Q + ∪ {w 0 }, the observer marks the neighbours of the current position of the surfer if they are not already marked. While the surfer remains on the nodes of B or P , this strategy clearly requires to mark at most 2 nodes per turn since B is a binary tree. Finally, if the surfer occupies a node in Q + ∪ {w 0 }, the observer marks two unmarked nodes of Q + that are closest to the surfer. It only remains to prove that the surfer cannot reach an unmarked node in Q + . When the surfer reaches w 0 , this node must be marked by the previous strategy. Moreover, by the strategy of the first i turns, the i nodes of Q + that are closest to w 0 have been marked. Hence, for any 1 ≤ j ≤ k, when the surfer reaches w j , at least the i + 2j nodes of Q + that are closest to w 0 are marked. Since

| 1≤p≤j N [w p ] ∩ Q + | ≤ j(d + 1) + 1 and because i = dk, we get that i + 2j = dk + 2j ≥ dj + j + 1 ≥ | 1≤p≤j N [w p ] ∩ Q + |
and therefore, the surfer never reaches a node with an unmarked neighbour.

Hence, sn(T k , v 0 ) = 2. Now it remains to show that on(T k , v 0 ) = Ω(∆). Let γ be any online strategy for T k and marking at most d 4 = 2 k-2 k nodes per turn. We show that γ fails. For this purpose, we model the fact that the observer does not know the graph by "building" the tree during the game. More precisely, each time the observer marks a node v, then the adversary may add new nodes adjacent to v or decide that v is a leaf. Of course, the adversary must satisfy the constraint that eventually the graph is T k . Initially, the observer only knows v 0 that has one neighbour v 1 . Now, for any 1 ≤ j < i, when the observer marks the node v j of P , then the adversary "adds" a new node v j+1 adjacent to v j , i.e., the observer discovers its single unmarked neighbour v j+1 . Now, let v be any node of B. Recall that h is the height of B. When the observer marks v, there are three cases to be considered: if v is at distance at most h -1 from v i , then the adversary adds two new nodes adjacent to v; if v is at distance h from v i and not all nodes of B have been marked then the adversary decides that v is a leaf; finally, if all nodes of B have been marked (v is the last marked node of B, i.e., B is a complete binary tree of height h), the adversary decides that v = w 0 and add one new neighbour w 1 adjacent to it. Note that we can ensure that the last node of B to be marked is at distance h of v i by connectivity of any online strategy. Now, let consider the following execution of the game. During the first i steps, the surfer goes from v 0 to v i . Just after the surfer arrives in v i , the observer has marked at most (di)/4 nodes and all nodes of P ∪ {v i } must be marked since otherwise the surfer would have won. Therefore, at most i(d/4 -1) + 1 = 2 2k-2 /k -2 k + 1 nodes of B are marked when it is the turn of the surfer at v i . Since B has 2 h+1 -1 = 2 3k+2 -1 nodes, at least one node of B is not marked.

From v i , the surfer always goes toward w 0 . Note that the observer may guess this strategy but it does not know where is w 0 while all nodes of B have not been marked.

Then let 0 ≤ t ≤ h and let v ′ t ∈ V (B) be the position of the surfer at step i + t and B t the subtree of B rooted at v ′ t . Note that, at step i, v ′ 0 = v i and B 0 = B. Let B t l and B t r be the subtrees of B rooted at the children of v ′ t . W.l.o.g., let us assume that the number of marked nodes in B t l is at most the number of marked nodes in B t r , when it is the turn of the surfer standing at v ′ t . Then, the surfer moves to the root of B t l . That is, v ′ t+1 is the child of v t whose subtree contains the minimum number of marked nodes. Let m t be the number of marks in the subtree of B rooted at v ′ t when it is the turn of the surfer at v ′ t . Since, at beginning of step i there are at most 2 2k-2 /k -2 k + 1 nodes of B that are marked and k ≥ 4,

m 0 ≤ 2 2k-2 /k -2 k + 1 ≤ 2 2k-2 /k. Note that, for any t > 0, m t ≤ (m t-1 -1 + d 4 )/2 ≤ (m t-1 + d 4 )/2.
Simply expanding this expression we get that, for any t > 0,

m t ≤ m 0 2 t + 2 k k t+2 j=3 2 -j ≤ 2 2k-(t+2) k + 2 k k t+2 j=3 2 -j .
Therefore, for any t ≥ 2k:

m t ≤ 1 k + 2 k k t+2 j=3 2 -j ≤ 2 k + 1 k .
In particular, at step i + 2k (when it is the turn of the surfer), the surfer is at v ′ 2k which is at distance k + 1 from w 0 . Hence, |B 2k | ≥ 2 k+1 -1 and at most 2 k +1 k < 2 k+1 -1 of its nodes are marked. Hence, neither w 0 nor any node in Q + are marked.

From this step, the surfer directly goes to w k unless it meets an unmarked node, in which case, it goes to it and wins. When the surfer is at w k and it is its turn, the observer may have marked at most (2k + 2)

d 4 ≤ kd 2 + d 2 ≤ 2 k-1 + 2 k-1 k nodes in Q + . Since |Q + | = (d + 1)k = 2 k + k and k ≥ 4,
at least one neighbour of w k is not marked yet and the surfer wins.

Theorem 48 implies that, for any online strategy S, ρ(S) = Ω(∆). Recall that the basic strategy B, that marks all unmarked neighbours of the surfer at each step, is an online strategy. B has trivially competitive ratio ρ(B) = O(∆). Hence, no online winning strategy has better competitive ratio than the basic strategy up to a constant factor. In other words: Corollary 4. The best competitive ratio of online winning strategies is Θ(∆), where ∆ is the maximum degree.

As mentioned in the introduction, any online strategy is connected and therefore, for any graph G and v 0 ∈ V (G) we have that csn(G, v 0 ) ≤ on(G, v 0 ). Moreover, we recall that, for any tree T and for any v 0 ∈ V (T ), csn(T, v 0 ) = sn(T, v 0 ) [FGJM + 12]. Hence, the previous theorem shows that there might be an arbitrary gap between csn(G, v 0 ) and on(G, v 0 ).

Conclusion

In this chapter, we studied the cost of connectivity of the Surveillance game. Despite our results, the main question remains open. Can the difference or the ratio between the connected surveillance number of a graph and its surveillance number be bounded by some constant? While we were unable to prove such question, designing examples where this is not true seems very challenging.

On the one hand, if the cost of connectivity is still open for the connected Surveillance game, on the other hand, we successfully showed that this gap can be arbitrarily large for the online variant even when compared to the connected variant. The family of trees given in Section 6.3 implicitly shows that, in order to guarantee that the observer wins the game every time, the best strategy is the basic one. While this is unfortunate since the basic strategy might use a lot of marks compared to the best non-online strategy, it is fortunate that the basic strategy can be computed in linear time.

• Let X C ⊆ R n and X R ⊆ R n be any two convex sets containing 0 n and defined by a polynomial (in n) number of constraints.

• Let ∆ G be a set of stochastic matrices defining by G as follows:

∆ G =      [α i,j ] 1≤i,j≤n ∀1 ≤ i, j ≤ n, α i,j ≥ 0, and ∀j ≤ n, 1≤i≤n α i,j = 1, and if {i, j} / ∈ E(G) then α i,j = 0     
Note that ∆ G is convex and contains the identity matrix.

To understand the intuition behind any matrix in ∆ G , assume that a player has put some tokens on the vertices of G and let x ∈ R n be the vector representing these tokens, i.e., x i is the amount of tokens on node v i ∈ V (G), 1 ≤ i ≤ n. Then, for any δ ∈ ∆ G , δx ∈ R n represents the state after some tokens have have moved (depending on δ) along edges of G. More precisely, for any 1 ≤ i, j ≤ n, δ i,j represents the fraction of tokens initially present in

v j ∈ V (G) that moved along {v j , v i } ∈ E(G) to reach v i ∈ V (G).
On the other hand, the vectors in X C and X R will be used to add or remove tokens from nodes of G. For any y ∈ X C (or y ∈ X R ), x + y represents the new state after some tokens have been added or removed to the configuration x. More precisely, for any 1 ≤ i, j ≤ n, y i is the variation of tokens on node v i (without considering the movement of the tokens along edges incident to v i ).

Now, let us define some particular configurations that will be used to precise a Fractional game:

• let V ⊆ R 2n
+ be a non empty polytope with number of facets polynomial in n. V is called the set of valid configurations;

• let I ⊆ V be any non empty set. I is the set of initial configurations;

• let W C ⊆ C be a polytope with number of facets polynomial in n. This is the set of winning configurations for C;

• let W R = R 2n + \ V. This is the set of winning configurations for R.

• Let F ∈ N be the maximum number of turns the game is allowed to last.

• Finally, let Last ∈ {C, R} be the player that wins if the game lasts more than F turns.

Note that if W C ∪W R is empty, then the game will always be won by player Last. Now, we are ready to formally define the general game with parameters {V, I, W C , X C , X R , ∆ G , F, Last}. Note that this is a perfect information game.

1. Initially, C chooses any vector c 0 ∈ R n + such that there exists r ∈ R n + with (c 0 , r) ∈ I. Then, R chooses any vector r 0 ∈ R n + such that (c 0 , r 0 ) ∈ I. (c 0 , r 0 ) ∈ I is then the initial configuration of the game.

• If (c 0 , r 0 ) ∈ W C , then player C wins and the game is over.

• Else, if F = 0, then player Last wins and the game is over.

Otherwise, at each turn t ≥ 1, there are two steps: 2. First, player C chooses δ ∈ ∆ G and x ∈ X C such that y = (δc t-1 + x, r t-1 ) ∈ V.

Then, player C moves to the configuration (c t , r t-1 ) = y.

• If (c t , r t-1 ) ∈ W C , then player C wins and the game is over after t turns.

3. Otherwise, R chooses δ ∈ ∆ G and x ∈ X R such that y = (c t , δr t-1 + x) / ∈ W C . Note that, because I n×n (identity matrix) is in ∆ G and 0 n ∈ X R , then there always exists such y. Then, player R moves to the configuration (c t , r t ) = y.

• if y / ∈ V, i.e., if y ∈ W R , then player R wins and the game is over after t turns.

• else, if t ≥ F , then player Last wins and the game is over.

• Else, the next turn t + 1 starts (GOTO 2).

Note that the game is not symmetric in the sense that the role of both players cannot be exchanged. In particular, the set of configurations W C in which C wants to enter is convex, while the set of configurations W R wants to go is the complementary of the convex set of the valid configurations for C. Moreover, only one player Last wins if it can avoid this during a sufficient number F of turns.

A winning strategy for player C consists of a vector c 0 and a function σ : R 2n → X C ×∆ G that allows player C to win whatever be the behaviour of player R. That is, player C chooses c 0 as initial vector, and then, at each turn t, it moves to (δc t-1 + x, r t-1 ) where (x, δ) = σ((c t-1 , r t-1 )). Following this process, player C must win in any execution of the game.

In the next section, Section 7.2, we propose an algorithm to decide if the pursuer wins for any game that can be described with this framework. In a semi-fractional game, only the pursuer is allowed to use fractions of tokens, while the evader must use whole integral tokens. We study the gap between semi-fractional and fractional games, in Section 7.3. We show that for some games the resources used by the pursuer are the same in the fractional or in the semi-fractional version. That is, given that the pursuer is playing in a fractional manner, allowing the evader to play in a fractional manner does not help the pursuer. Albeit the results in Section 7.3 are valid for any turn-by-turn pursuit-evasion games mentioned up to this point, they are not valid for every possible game that can be modelled with this framework. Then, in Section 7.4, we focus on some particular games by presenting some results for the Cops and Robbers game, the Angel Problem and the Surveillance game. Finally, in Section 7.5, we conclude this chapter with a discussion about the results found in it.

Algorithm to Compute a Winning Strategy for player C

In this section, we describe an algorithm that given a game {V, I, W C , X C , X R , ∆ G , F, Last}, decides whether there is a winning strategy for player C.

Roughly, this is done by starting with a set C of configurations which are winning for C in t turns, meaning that starting the game from any configuration in this set, the game can always be won by C in at most t turns, and computing a set C ′ ⊇ C. This set C ′ is such that any configuration in C ′ is winning for C in at most t + 1 turns. Then, we iterate this process until we get a set C * such that any configuration in C * is winning for C in at most F turns.

To formally state the algorithm, let us define the following sets.

• For any t ∈ N * , let C t ⊆ V be the set of configurations such that, for any configuration m ∈ C t , there is a strategy with initial configuration m that allows player C to win in at most t turns. That is, there is a winning strategy for C in the game

{V, C t , W C , X C , X R , ∆ G , t, Last}.
• Let R 0 = W C and, for any t ∈ N * , let R t ⊆ V be the set of configurations m such that for every move of player R from m to m ′ we have that m ′ ∈ C t . That is, even when the first player to play is R, we have that C wins if the starting configuration is one in R t .

Starting from R 0 = W C , our algorithm iteratively, for any 0 < t ≤ F , build C t from R t-1 and R t from C t . Then, the desired strategy exists if and only if there is c 0 ∈ R n such that for all r ∈ R n with (c 0 , r) ∈ I then (c 0 , r) ∈ C F .

The remaining part of this section is devoted to the formal description of the algorithm and its proof.

Lemma 49. For all t ∈ N:

C t+1 = {(c, r) ∈ V | ∃x ∈ X C , ∃δ ∈ ∆ G , (δc + x, r) ∈ R t }. Proof. Let R = {(c, r) ∈ R 2n | ∃x ∈ X C , δ ∈ ∆ G , (δc + x, r) ∈ R t } ∩ V.
For any m = (c, r) ∈ R ⊆ V, we show that there is a strategy for C to win the game in at most t + 1 turns starting from m. Indeed, by definition of R, there are x ∈ X C and δ ∈ ∆ G such that c ′ = δc + x with (c ′ , r) ∈ R t ⊆ V. Then, in configuration (c, r), player C moves to (c ′ , r). Since (c ′ , r) ∈ R t , for any move of player R, say it moves to (c ′ , r ′ ), then (c ′ , r ′ ) ∈ C t by definition of R t . Finally, by definition of C t , there is a strategy that allows C to win in at most t turns starting from (c ′ , r ′ ). Hence, R ⊆ C t+1 .

Reciprocally, let (c, r) ∈ C t+1 ⊆ V. By definition, there is a strategy σ that allows C to win in at most t + 1 turns starting from (c, r). Let (x, δ) = σ((c, r)) ∈ X C × ∆ G and c ′ = δc + x. Since σ is winning, whatever be the move (c ′ , r ′ ) of player R from (c ′ , r), player C wins in at most t turns starting from (c ′ , r ′ ). Hence, (c ′ , r) ∈ R t . Therefore, (c, r) ∈ R and C t+1 ⊆ R.

In Lemma 50, we describe how a system of linear inequalities describing C t+1 can be obtained through a system of linear inequalities describing R t . For that we first construct an intermediate system of linear inequalities R that is equivalent to C t+1 but which has several auxiliary variables and, then, we proceed to eliminate those variables obtaining the final set R ′ = C t+1 . This process, however, is very costly blowing the complexity of the algorithm. If, on the one hand, this elimination process seems rather unnecessary since it does help describing C t+1 , on the other hand, with the auxiliary variables we are unable to correctly construct R t+1 from C t+1 since one of the hypothesis of Lemma 52 is that R t+1 ⊆ R 2n + . Lemma 50. Let t ≥ 0 and assume that R t ⊆ R 2n + is a convex set described by ℓ linear inequalities and 2n variables. Then, there is an algorithm that computes a set of
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linear inequalities and 2n variables describing C t+1 , where p(n) is the maximum between the sizes of the system of linear inequalities describing V and X C .

Proof. Let us consider the following convex set R.

(c ′ , r) = (c ′ 1 , . . . , c ′ n , r 1 , . . . , r n ) ∈ R 2n + Subject to (c ′ , r) ∈ V (1) c i = x i + a i,i + 1≤j≤n,{i,j}∈E(G) a i,j ∀1 ≤ i ≤ n (2) (c 1 , . . . , c n , r 1 , . . . , r n ) ∈ R t (3) (x 1 , . . . , x n ) ∈ X C (4) c ′ i = a i,i + 1≤j≤n,{i,j}∈E(G) a j,i ∀1 ≤ i ≤ n (5.a) a i,j ≥ 0 ∀1 ≤ i, j ≤ n (5.c) a j,i = 0 ∀i = j ∈ [1, n] 2 , {j, i} / ∈ E(G) (5.b)
V and X C are convex sets defined by polynomial (in n) number of linear inequalities. Therefore, p(n) = O(n k ) for some fixed k.

By hypothesis, R t is a convex set defined by ℓ linear inequalities. Since there are at most O(n 2 ) linear equations ( 2) and (5) with O(n 2 ) new variables, the above linear program has a total of ℓ + O(max{p(n), n 2 }) linear inequalities and O(n 2 ) variables.

Moreover, given the set of inequalities defining V, X C and R t , the above set of inequalities can be computed in time O(ℓ + max{p(n), n 2 }). Note that if ℓ can be bounded by a polynomial in n and t then R can be constructed in polynomial-time (in n and t). Now, let us show that C t+1 can be described by the above system of linear inequalities by projecting R over the variables c ′ 1 , . . . , c n and r 1 , . . . , r n . That is, (c ′ , r) belongs to R projected into c ′ 1 , . . . , c n and r 1 , . . . , r n if and only if (c ′ , r) ∈ C t+1 . Indeed, (c ′ , r) belongs to R projected into c ′ 1 , . . . , c n and r 1 , . . . , r n if and only if there exist values of c i , x i and a i,j , for 1 ≤ i, j ≤ n, such that (c ′ , c, x, a, r) ∈ R.

⇔ (c ′ , r) ∈ V and there exist x = (x 1 , . . . , x n ) ∈ X C and A = [a i,j ] 1≤i,j≤n ∈ R + n×n such that (A1 n + x, r) ∈ R t , where 1 n = (1, . . . , 1) ∈ R n , and for all i ≤ n, a i,i + 1≤j≤n,{i,j}∈E(G) a j,i = c i and a j,i = 0 for any j = i, {j, i} / ∈ E(G).

⇔ (c ′ , r) ∈ V and there exist x ∈ X C and δ = [α i,j ] 1≤i,j≤n = [ a i,j c j ] 1≤i,j≤n ∈ ∆ G such that (δc ′ + x, r) ∈ R t .

⇔ (c ′ , r) ∈ C t+1 , by Lemma 49.

The set R, however, has several variables that are auxiliary. It is necessary to eliminate the variables c i , x i and a i,j for all 1 ≤ i, j ≤ n. For this we successively use the the Fourier-Motzkin elimination method [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF] on these variables. See Remark 5 for a brief discussion on how this method works. Since there are 2n + n 2 variables in total that we want to eliminate, R ′ obtained after eliminating all c i , x i and a i,j variables might have a number of linear inequalities equal to

O   4 ℓ + O(max{p(n), n 2 }) 4 2 2n+n 2    .
However, since there are only 2n variables in R ′ and that R ′ is a projection of R into c ′ 1 , . . . , c ′ n and r 1 , . . . , r n , we have that R ′ = C t+1 . Remark 5. For the sake of completeness we briefly illustrate the Fourier-Motzkin elimination method. Let A ℓ×n x ≤ b be a system of linear inequalities. Assume that we want to eliminate the last variable of the vector x from this system. Let x n be this variable. We first rewrite all inequalities such that a i,1 = 0 in order to isolate x n . That is, every inequality such that the coefficient x n is not 0 is rewritten as (Type 1) x n ≥ "something" or (Type 2) x n ≤ "something". Note that the coefficient of x n is 1. Then, there are two cases to consider:

• There are only inequalities of the form x n ≥ "something" or there are only inequalities of the form x n ≤ "something". In this case we simply remove all these inequalities from Ax ≤ b.

• If there are both types of inequalities, then we combine each inequality of (Type 1) with each inequality of (Type 2). That is, for each pair of inequalities x n ≤ "somethingA" and x n ≥ "somethingB", we add the inequality "somethingB" ≤ "somethingA" to Ax ≤ b. Then, we remove all inequalities such that the coefficient of x n is non-zero.

This method guarantees that, after eliminating a variable, the result is a system of inequalities

A ′ ℓ ′ ×n-1 x ′ ≤ b ′ such that A ′ x ′ ≤ b ′ has a solution if and only if Ax ≤ b has a solution. Moreover, if x ′ is a solution for A ′ ℓ ′ ×n-1 x ′ ≤ b ′ then there is x = (x 1 , . . . , x n ) with (x 1 , . . . , x n-1 ) = (x ′ 1 , . . . , x ′ n-1
) such that x is a solution to Ax ≤ b. In other words, we this process projects the set described by Ax ≤ b into its first n -1 variables.

While we remove some inequalities, a single execution of this method, however, might add ℓ 2 /4 new inequalities, where ℓ is the number of initial inequalities. Hence, in order to eliminate d variables, we might add 4(ℓ/4) 2 d inequalities.

The proof of next lemma is similar to the proof of Lemma 49, by exchanging the role of ∀ and ∃ and the role of both players.

Lemma 51. R t = {(c, r) ∈ R 2n | ∀x ∈ X R , ∀δ ∈ ∆ G , (c, δr + x) ∈ C t } ∩ V.
Let x • y denote the scalar product of x and y, and let x T denote the transpose of x.

Lemma 52. Let t ≥ 0 and assume that C t ⊆ R 2n + is a convex set described by ℓ linear inequalities and 2n variables. Then, there is a polynomial-time algorithm in ℓ and n that computes a set of at most ℓ linear inequalities and 2n variables describing R t .

Proof. By the hypothesis, there exist

A ∈ R ℓ×2n and b = (b 1 , . . . , b ℓ ) ∈ R ℓ such that C t = {m ∈ R 2n + | Am ≤ b}. For any 1 ≤ i ≤ ℓ, let (z i,1 , . . . , z i,n , a i,1 , . . . , a i,n ) be the i th row of A. Let A i = (a i,1 , . . . , a i,n ). • Let b ′ i = max x∈X R {A i x} and let X i ∈ argmax x∈X R {A i x}.
This is computable in polynomial-time in n since X R is a convex set defined by a polynomial number of constraints.

• For any u ∈ V (G), let u i ∈ argmax v∈N (u) {a i,v }. Let δ i = [α v,u ] 1≤u,v,≤n such that, for any 1 ≤ v, u ≤ n, α v,u = 1 if v = u i and α v,u = 0 otherwise. Clearly, δ i ∈ ∆ G .
Let us consider the following convex set R.

(c, r) = (c 1 , . . . , c n , r 1 , . . . , r n ) ∈ R 2n + Subject to (c, r) ∈ V (z i,1 , . . . , z i,n , A i δ i ) • (c, r) ≤ b i -b ′ i , ∀1 ≤ i ≤ ℓ
Since V is a convex set defined by a size polynomial in n and C t is a convex set described ℓ linear inequalities, the above linear system has size polynomial in ℓ and n and can be computed in polynomial-time (in ℓ and n).

It remains to show that:

Claim 16. R = R t .
Let (c, r) ∈ R t . By Lemma 51, (c, r) ∈ V and, for any δ ∈ ∆ G and x ∈ X R , (c, δr + x) ∈ C t . Then, for any 1

≤ i ≤ ℓ, (c, δ i r + X i ) ∈ C t . In other words, A(c, δ i r + X i ) T ≤ b. In particular, (z i,1 , . . . , z i,n , A i )•(c, δ i r+X i ) = (z i,1 , . . . , z i,n , A i δ i )•(c, r)+A i X i = (z i,1 , . . . , z i,n , A i δ i ) • (c, r) + b ′ i ≤ b i . Hence, (c, r) ∈ R. Let (c, r) ∈ R. Then, (c, r) ∈ V. Let δ = [α ′ i,j ] 1≤i,j≤n ∈ ∆ G and x ∈ X R . We show that (c, δr + x) ∈ C t . More precisely, we show that A • (c, δr + x) ≤ b. Let 1 ≤ i ≤ ℓ. Then, (z i,1 , . . . , z i,n , A i ) • (c, δr + x) = (z i,1 , . . . , z i,n )c + A i δr + A i x. Since X i ∈ argmax x∈X R {A i x}, we have b ′ i = A i X i ≥ A i x. Hence, (z i,1 , . . . , z i,n , A i ) • (c, δr + x) ≤ (z i,1 , . . . , z i,n )c + A i δr + b ′ i . Moreover, because (c, r) ∈ R, for any 1 ≤ i ≤ ℓ, (z i,1 , . . . , z i,n , A i δ i ) • (c, r) ≤ b i -b ′ i . Hence, (z i,1 , . . . , z i,n )c + A i δ i r ≤ b i -b ′ i . To show that (z i,1 , . . . , z i,n , A i ) • (c, δr + x) ≤ b i , it remains to prove that A i δr ≤ A i δ i r
On the one hand,

A i δr = 1≤j≤n a i,j 1≤k≤n α ′ j,k r k = 1≤k≤n r k 1≤j≤n a i,j α ′ j,k .
Since, for any 1 ≤ k ≤ n, 1≤j≤n α ′ j,k = 1 and for all 1 ≤ j, k ≤ n, α ′ j,k ≥ 0 and r k ≥ 0, we get that A i δr ≤ 1≤k≤n r k max 1≤j≤n a i,j .

On the other hand,

A i δ i r = 1≤k≤n r k 1≤j≤n a i,j δ j,k .
Recall that, by definition, there is exactly one 1 ≤ j ≤ n such that δ j,k = 1, and such that a i,j = max 1≤j ′ ≤n a i,j ′ , and δ j,k = 0 for all the (n -1) other values of j. Therefore, A i δ i r = 1≤k≤n r k max 1≤j≤n a i,j . Thus, we got the result, i.e., for any 1

≤ i ≤ ℓ, (z i,1 , . . . , z i,n , A i )• (c, δr + x) ≤ b i .
Therefore, A(c, δr + x) T ≤ b and, by Lemma 51, (c, r) ∈ R t . Hence, R = R t .

Hence, by applying Lemma 50 and Lemma 52 successively, we are able to construct C F from R 0 = W C . However, this construction might take more than polynomial time.

Semi-Fractional and Integral Games

In this section, we define the semi-fractional and integral games related to the general fractional game studied above. We then show that fractional games and semi-fractional games are equivalent under a weak hypothesis. In particular, this implies that when the game is related to an optimization problem, the fractional game provides a bound for the integral game.

Let G = {V, I, W C , X C , X R , ∆ G , F, Last} be a fractional game as defined in Section 7.1. We defined the corresponding integral game as

G int = {V, I ∩ N 2n , W C ∩ N 2n , X C ∩ N n , X R ∩ N n , ∆ G ∩ N n×n , F, Last},
where the rules of the game are exactly the same as before. That is, we restrict all configurations and moves to be integral. In particular, this means that the sets of configurations are not convex any more (actually, the set of valid configuration C is still convex but only configurations in C ∩ N 2n can be achieved) and that the algorithm of previous section does not apply any more.

Let us also denote the corresponding semi-fractional game by

G sf = {V, I ∩ (R n × N n ), W C , X C , X R ∩ N n , (∆ C G = ∆ G , ∆ R G = ∆ G ∩ N n×n ), F, Last}.

Note that we distinguished the two sets ∆ C

G and ∆ R G . Indeed, the game proceeds as before, but player R is constrained to move only on integral configurations. That is, a move for player R is to choose

δ ∈ ∆ R G = ∆ G ∩ N n×n and x ∈ X R ∩ N n such that m = (c, δr + x) /
∈ W C and then to move from (c, r) to m. On the other hand, player C is not constrained and its moves are still defined by δ ∈ ∆ C G = ∆ G and x ∈ X C . The next Lemma directly follows from the definition of the games.

Lemma 53. Let G be a fractional game.

• Player C has a winning strategy in G only if it has a winning strategy in G sf .

• Player C has a winning strategy in G int only if it has a winning strategy in G sf .

Proof. Indeed, any winning strategy in G (resp., in G int ) is a winning strategy in G sf . Indeed, the possible moves and initial configurations of C in G are still possible in G sf while the moves (and initial configurations) of R are more constrained in G sf . On the other hand, the possible moves and initial configurations of C in G int are still possible in G sf while the moves and initial configurations of R remains the same in G int and G sf .

We prove that under a small extra assumption, fractional and semi-fractional games are equivalent. Intuitively, assume that C can win against any integral strategy of X R . Now assume that X R can split each of its tokens into two half-tokens following two distinct strategies. Then, C will also use half-tokens to win against the strategy of the first half-tokens of X R , and the second half of the tokens of C will win against the strategy followed by the remaining half-tokens of X R . By convexity of the moves of C, this is a valid strategy. We propose here another proof, based on the algorithm defined in Section 7.2.

Theorem 54. If all the vertices of the polytopes X R , X C and W C have integral coordinates and if I ⊆ R n × N n , then:

Player C has a winning strategy in G if and only if it has a winning strategy in G sf .

Proof. By previous lemma, it is sufficient to prove that if C has a winning strategy in G sf then it has a winning strategy in G.

For any 1 ≤ t ≤ F , C t is defined as in Section 7.2 as the set of configurations from which C wins in at most t turns in the fractional game. Let C sf t ⊆ C t ∩ (R n × N n ) be the set of configurations from which C wins in at most t turns in the semi-fractional game.

Let

R sf 0 = W C ∩ (R n × N n ) = R 0 ∩ (R n × N n
) and, for any any 1 ≤ t ≤ F , let R t is defined as in Section 7.2 as the set of configurations from which player R can only enter we can limit F to be at most n k+1 , since there are at most n k+1 possible configurations for the integral game, we leave F undefined. That is, F = ∞.

For an easier presentation, let us give an alternative definition of the semi-fractional Cops and Robbers game. We consider the following game played with k cops. The cops are tokens that can split themselves and move them along edges. The robber is one un-splittable token that can move along edges.

First, the cops choose a position for themselves, i.e., they choose a vector C 0 = (c 1 , . . . , c n ) ∈ R n such that i≤n c i = k, where c i is the amount of cops at vertex i ∈ V .

Let I = {(c, r) ∈ R n+1 + | r ∈ V, c i = k}.
Then, the robber chooses a vertex R 0 ∈ V such that (C 0 , R 0 ) ∈ I. (C 0 , R 0 ) is called the starting configuration of the game.

The game is played turn-by-turn. After turn t ≥ 0, let (C t , R t ) be the current configuration of the game. Then, for any i ≤ n, the cops can move any portion of c i on any node j ∈ N (i), for any i ≤ n. Formally, the cops choose a left stochastic matrix A = [α i,j ] 1≤i,j≤n ∈ [0, 1] n×n (i.e., for any j ≤ n, i≤n α i,j = 1) such that, for any 1 ≤ i, j ≤ n, if {i, j} / ∈ E, then α i,j = 0. The new "cop-configuration" is C t+1 = A • C t (intuitively, a proportion of α i,j cops are moved from v j to v i ). Then, the robber may move itself to an adjacent node, i.e.,

R t+1 ∈ N [R t ].
The cops win the game if they eventually achieve (after their turn) a configuration (c 1 , . . . , c n , j) such that c j ≥ 1. The robber wins otherwise.

Let fcn(G) be the smallest k such that the cops have a finite winning strategy, i.e., they can win in a finite number of steps whatever the robber does.

Let fcn ∞ (G) be the smallest k such that the cops have an infinite winning strategy, i.e., there is a strategy for the cops, such that for any ǫ > 0 and whatever be the strategy of the robber, the cops can achieve (after their turn) a configuration (c 1 , . . . , c n , j) such that c j ≥ 1ǫ.

The following results were obtained by Mazauric, Lamprou and Nisse in personal communication.

Claim 17 (Mazauric et al.). For any graph

G, 1 ≤ fcn ∞ (G) ≤ fcn(G) ≤ fractional dominating number(G)
Proof. Clearly, from their definition, 1 ≤ fcn ∞ (G) ≤ fcn(G). To see that fcn(G) ≤ fractional dominating number(G), let S be a fractional dominating set of G. Assume that V (G) = {1, . . . , n}. Then, let s i be the amount of vertex v i that is on S. Hence, for all v ∈ V , i∈N [v] s i = 1. Therefore, by placing s i cops on each vertex i during its positioning, we have that the robber can be captured by the cops in their next move.

Lemma 55 (Mazauric et al.). There are graphs G such that fcn(G) > 1

Proof. Consider any graph containing a cordless cycle with four nodes. Consider any fractional strategy with one cop. The robber chooses first a node v such that N [v] contains less than 1 cop. Then, there is a node, not in N [v], where there is at least ǫ > 0 cops. During the next step and remaining on the cycle, the robber can maintain a distance at least one between itself and a proportion ǫ ′ > 0 cops of these ǫ cops.

Theorem 56 (Mazauric et al.). For any graph G, fcn ∞ (G) = 1, and for any β > 0, fcn(G) ≤ 1 + β. Moreover, there is a finite winning strategy that allows the cops to capture the robber in a linear number of turns.

Proof. If G = K n , the result is trivial so let us assume that G has minimum degree δ < n -1. Let us define the following strategy. First, the k = x 0 = 1 + β, in the case of fcn(G), or k = x 0 = 1, in the case of fcn ∞ (G), cops places themselves uniformly at each node (i.e., x 0 /n at each node). Then, the robber places itself at some node v. Then, δx 0 /n cops at the neighbours of v goes to v. At this step, there are y 1 = (1 + δ)x 0 /n cops at the same node v as the robber. The remaining amount of the cops is x 1 = x 0 -y 1 = (1-1+δ n )k. By induction on t ≥ 0, assume that y t = kx t cops occupy the same node v as the robber and it is the turn of the robber. Moreover, the remaining amount of cops is x t = (1 -1+δ n ) t k. Now, the robber moves to a node w adjacent to v. Then, the y t cops on v move to w and there are two cases to consider:

1. if the x t remaining cops are not uniformly placed (i.e., x t /n at each node), they move to achieve such a position. This can be done, in one step, by moving the cops along a spanning tree of G rooted in w, where each vertex moves to its parent an amount of cops that is proportional to the number of its descendants in the spanning tree.

2. else, δx t /n cops at the neighbours of w goes to w. Moreover, before this move, except the y t cops there are also x t /n cops at w. Therefore, after this step, there are y t+1 = (1 + δ)x t /n + y t cops at the same node w as the robber.

Hence,

x t+1 = x t - (1 + δ) x t n = x t 1 - 1 + δ n = k 1 - 1 + δ n t+1 and y t+1 = k -x t+1 .
The result follows, essentially, from the fact that lim t→∞ y t = 1 when β = 0 and that there exists t > 0 such that y t ≥ 1 + β when β > 0.

not win the game until it is able to escape the marked area, hence V shows that the game is not yet lost for the observer while the amount of marks on each vertex is at least the amount of surfer on the same vertex. The sets X C and ∆ C guarantees that the observer may not move its marks along edges of the graph. While the sets X R and ∆ R guarantees that the surfer moves by sliding, or splitting and sliding, itself along edges of the graph. Since at each step which is not the last the observer might mark at most k vertices, we have that the observer, if it wins the game at all, wins the game in at most ⌈n/k⌉ rounds. Finally, W C states that the observer only wins if it marks all vertices of the graph.

For the next theorem, let fsn(G, v) be the minimum k such that the observer has a winning strategy in the fractional Surveillance game.

Theorem 57. If C, the observer, wins the fractional Surveillance game with k marks in an n-node graph, then C wins the Surveillance game with high probability if it is allowed to use O(k log n) marks.

In other words, if C wins the fractional Surveillance game against a surfer following a random walk with k marks, then it has a high probability of winning against an integral surfer following the same random walk with O(k log n) marks.

Proof. The proof of Theorem 57 closely follows that of the log n approximation for set cover in [START_REF] Vazirani | Approximation Algorithms[END_REF].

Assume that C, the observer, and R, the surfer, play the integral Surveillance game on a graph G, that fsn(G, v) ≤ k, that V = {1, . . . , n} and that the initial vertex is vertex 1. The initial state of the game is (c ′ , r ′ ) such that: if i = 1 then c ′ i = r ′ i = 0 and if i = 1 then c i = r i = 1. Since, from Section 7.3, we have that the number of marks necessary for the observer does not change by restricting the surfer to play in an integral manner, assume, moreover, that the surfer moves in an integral manner. That is, in order to move, the surfer chooses a matrix in δ ∈ ∆ G ∩ N n . Since the initial state of the game we have the surfer entirely on vertex 1, this guarantees that the surfer remains integral during all the game.

In the following we describe the strategy of the observer. Let (c, r) be the current state of the game, which is (c ′ , r ′ ) on the first turn of the observer. During each turn t of the observer, let the vector x t ∈ X C be the the amount of marks used by the observer, in the fractional Surveillance game, when the initial state is given by (c, v). That is, x t = (x 1 , . . . , x n ) is the amount of marks the observer would place on the vertices of G in order to win against the surfer in the fractional Surveillance Game. Then, in the integral game, the observer marks a vertex i if among O(log n) independent random tests with probability x i at least one of them is a success.

We want to measure the probability that the observer loses, using this strategy, against any strategy for the surfer in the integral game. Let A t i be the event that r i > c i at step t of the game. In other words, A t i is the event that the observer has lost to the surfer because of vertex i at step t.

Then,

P (A t i ) ≤ (x 1 i ) c log n (x 2 i ) c log n • • • (x t i ) c log n . Since fsn(G, v) ≤ k we have that t i=1
x t i = 1. Therefore, from a simple calculus manipulation, P (A t i ) is minimum when

x 1 i = x 2 i = • • • = x t i = 1/t. Hence, P (A t i ) ≤ ( 1 t ) tc log n ≤ ( 1 e ) c log n
, where e is the base of the natural logarithm.

Then, the probability that the observer loses the game is given by P (

F t=1 n i=1 A t i ). Therefore, P ( F t=1 n i=1 A t i ) ≤ n 2 ( 1 e ) c log n . Let c ≥ 3, then P ( F t=1 n i=1 A t i ) ≤ 1 n .
Therefore, the observer wins the game with high probability.

Moreover, the expected cost of this strategy is given by fsn(G, v)c log n = O(k log n).

One question that remains open is how far can the gap between the fractional surveillance number and the "integral" surveillance number be.

Angel problem

In its original definition, the Angel problem game is played on an infinite grid. While it is possible to define vectors of infinite dimension in order to model configurations of this game, the results in this chapter do not apply in the sense that the algorithms might never finish. Hence, instead of considering the game as being played on an infinite grid we focus on it being played in any finite graph. Then, since at each turn the devil is allowed to mark, or "eat", vertices of the graph, the whole graph will be marked at some point in the game. This means that the angel is doomed to lose eventually. On the other hand, if we give a reasonable limit on the number of turns the game is allowed to last, then it does not seem obvious any more who wins.

Given a graph G, let ∆ a G be the set of matrices that can be obtained by multiplying any a-tuple of matrices in ∆ G and let N s (i) be the set of vertices of V (G) \ {i} that are at distance at most s from i. For example, ∆

2 G = {δ 1 δ 2 | δ 1 ∈ ∆ G , δ 2 ∈ ∆ G }.
The Angel problem game where a devil that can mark, or "eat", at most k vertices and an angel that can move along at most s edges at each turn can be modelled with the following sets, we assume that the game is played on a graph G = (V, E) with V = {1, . . . , n} and that the initial vertex is vertex 1:

I = {(c 1 , . . . , c n , r 1 , . . . , r n ) | c 1 = 0, r 1 = 1, ∀i ∈ V (G) \ {1}, c i = 0, r i = 0}, V = (c, r) ∈ R 2n + | r i = 1 , X C = x ∈ R n + | n i=1 x i ≤ k , X R = {(0, . . . , 0)}, ∆ C = {I n×n }, ∆ R = ∆ s G , F =?, Last = R, W C =    (c, r) ∈ R 2n + | ∀i ∈ V (G), j∈N s (i) c j ≥ r i  
 . One of the main questions when modelling this game is how big should F , the maximum number of turns, be. Clearly, if F ≥ k/n, then the whole graph is marked at turn F and the angel is doomed to lose. Therefore, we can assume that F is at most k/n. A smaller value of F might make the game harder for the devil, since it has a smaller amount of turns to "eat" the angel.

The proof of Theorem 58 is very similar with the proof of Theorem 57, since both games have a similar set of rules. The main difference being how the evader, the angel and the surfer, wins the game. The angel start in an unmarked area and tries to stay out of it, while the surfer starts in a marked area and wants to leave it. Let fang(G, v) be the minimum number of marks such that the devil has a winning strategy in the fractional Angel problem game.

Theorem 58. If C, the devil, wins the fractional Angel problem game with k marks in an n-node graph, then the devil wins the Angel problem game with high probability if it is allowed to use O(k log n) marks.

In other words, if the devil wins the fractional Angel problem against an angel following a random walk with k marks, then it has a high probability of winning against an integral angel following the same random walk with O(k log n) marks.

Proof. Assume that C, the devil, and R, the angel, play the integral Angel problem game on a graph G, that fang(G, v) ≤ k, that V = {1, . . . , n} and that the initial vertex is vertex 1. The initial state of the game is (c ′ , r ′ ) such that: if i = 1 then c ′ i = r ′ i = 0 and if i = 1 then c i = 0 and r i = 1. Since, from Section 7.3, we have that the number of marks necessary for the devil does not change by restricting the angel to play in an integral manner, assume, moreover, that the angel moves in an integral manner. That is, in order to move, the angel chooses a matrix in δ ∈ ∆ s G ∩ N n . Since the initial state of the game we have the angel entirely on vertex 1, this guarantees that the angel remains integral during all the game.

In the following we describe the strategy of the devil. Let (c, r) be the current state of the game, which is (c ′ , r ′ ) on the first turn of the devil. During each turn t of the devil, let the vector x t ∈ X C be the the amount of marks used by the devil, in the fractional Angel problem, when the initial state is given by (c, v). That is, x t = (x 1 , . . . , x n ) is the amount of marks the devil would place on the vertices of G in order to win against the angel in the fractional Angel problem. Then, in the integral game, the devil marks a vertex i if among O(log n) independent random tests with probability x i at least one of them is a success.

We want to measure the probability that the devil does not win at step t, using this strategy, against any strategy for the angel in the integral game. Let A t i,j be the event that, there is j ∈ N a (i) such that r i > c j at step t of the game. In other words, A t i,j is the event that the devil does not win against the angel because of the amount of angel at vertex i at step t.

Then, P (A t i,j ) ≤ j∈N a (i) (x 1 j ) c log n (x 2 j ) c log n • • • (x t j ) c log n . Since fang(G, v) ≤ k we have that t l=1 x l j = 1. Therefore, from a simple calculus manipulation, P (A t i,j ) is minimum when for all j ∈ N a (i) we have x

1 j = x 2 j = • • • = x t j = 1/t. Hence, P (A t i ) ≤ j∈N a (i) ( 1 t ) tc log n ≤ n( 1 t ) tc log n ≤ n( 1 e ) c log n
, where e is the base of the natural logarithm. Then, the probability that the devil loses the game is given by P

( F t=1 n i=1 A t i,j ). Therefore, P ( F t=1 n i=1 A t i,j ) ≤ n 3 ( 1 e ) c log n . Let c ≥ 4, then P ( F t=1 n i=1 A t i,j ) ≤ 1 n .
Therefore, the devil wins the game with high probability.

Moreover, the expected cost of this strategy is given by fang(G, v)c log n = O(k log n).

Conclusion

In this chapter, we studied a framework that models several turn-by-turn pursuit-evasion games. This framework allows us to naturally define fractional versions of these games. Moreover, we described an algorithm based on linear programming techniques that decides if the pursuer has a winning strategy for any game that can be modelled by this framework.

One disadvantage of our algorithm is that its complexity is more than exponential2 . However, from Lemma 50 and Lemma 52, the only obstacle to have a polynomial time algorithm in t and n for deciding if player C has a winning strategy is the complexity of projecting the system of linear inequalities R obtained in Lemma 50 into the 2n variables representing the correspondent set C i . Regrettably, the method we used, the Fourier-Motzkin, for this projection, does not have a running time that is polynomial on the number of linear inequalities of the input. We wonder if, with a finer analysis of the process of projecting or with a different method for projecting, we might decrease this complexity. In other words, the complexity of the decision problem associated with fractional turn-by-turn games is still open.

Nevertheless, while, potentially, the number of constraints can grow more than exponentially in the size of the input graph when computing projection of sets C i (Lemma 50), there seems to be several redundant constraints in this projection. For this reason, we are interested in measuring the performance of this algorithm in practice.

One advantage of our algorithm is that the system of linear inequalities constructed by it can be seen as linear relaxations of the "integral" versions of these games. Hence, it is possible to solve "directly" the "integral" version by enforcing the variables to be integrals.

Although the proof in this chapter are restrict to games where both players are allowed to slide and add tokens, the results also hold for games in which:

• players can not slide tokens (∆ G = {I n×n });

• ∆ G is different for each player (that is, one player may slide tokens along edges, while the other may not);

• several types of tokens for each player, or several cops/several robbers;

• both players can move more than once in their turn (for example, both cops and robbers with speed s > 1 in the Cops and Robbers game);

• tokens are on edges instead of vertices.

Despite of the fact that we were only able to prove some (non polynomial) approximation results for the Surveillance game and the Angel problem game, we think that such approach to turn-by-turn pursuit-evasion games can lead to approximation algorithms for other games compatible with this framework.

On the subject of Cops and Robbers, unfortunately, this approach does not seem to be helpful, since for every graph, 1 + ǫ, ǫ > 0, cops are enough to capture the robber in a linear number of steps. This is done by a strategy that uniformly spread the cops over the vertices of the graph, ensuring that at least a small amount of cops is on the same vertex as the robber and that this amount is able to follow it. One drawback of this strategy is that it does not work for a robber of speed two. Since a robber of speed two can move along two edges during its turn, a small amount of cops cannot "follow" the robber. It might be interesting to investigate the fractional Cops and Robbers when the robber has speed bigger than 1. We hope that this might lead to new insights into solving the Meyniel's conjecture (O( √ n) cops can capture one robber in any n-node graph, see

Chapter 5) for the Cops and Robbers game when the robber has speed s . We finish this part with the question whether this approach can be used for graph searching games.

Part III

Convexity

Chapter 8

Convexity in Graphs

In an effort to extend the concept of convexity, normally associated with Euclidean spaces, Farber and Jamison proposed the following general definition of convexity [START_REF] Farber | Convexity in graphs and hypergraphs[END_REF]. An alignment over finite set X is a family C of subsets of X that is closed under intersection and that contains both X and the empty set. The members of C are called the convex sets of X. The pair (X, C) is then called an aligned space. For any S ⊆ X, the convex hull of S is the smallest member of C containing S. For any S ∈ C, a hull set of S is a set S ′ ⊆ S such that S is the convex hull of S ′ .

The notion of convexity can be extended to graphs and more precisely to their set of vertices, as a specific alignment over it. Since the notion of convexity on a graph depends on the specific alignment over the set of vertices of the graph, there are several different parameters corresponding to different possible alignments. In this chapter, we survey some of the most important results concerning convexity in graphs. In Section 8.1, we show how different alignments over the set of vertices of a graph translates to different convexity measures. We focus on three types of convexity, the Geodesic Convexity, the Monophonic Convexity and the P 3 Convexity, which arguably translates the notion of a "straight line" from Euclidean spaces in a more natural manner. Then, in Section 8.2, we present some of the most important results concerning the hardness of computing parameters associated with these convexities. Finally, in Section 8.2, we survey some structural properties of these three types of convexities.

Alignments -Types of Convexity

In this section, we define the graph convexities that are explored in the rest of this chapter. Through the rest of this section, unless otherwise stated, let G = (V, E) be any simple and connected graph of order n.

Geodesic Convexity

We start by defining the Geodesic Convexity, which is related to shortest paths. Roughly, the concept of a straight line is translated as a shortest path.

Let the closed interval, or geodesic, I[u, v] be the set of vertices of G that lie on a shortest path between u ∈ V and v ∈ V . For any set S ⊆ V , let

I[S] = {u,v}⊆S I[u, v].
In the geodesic convexity [START_REF] Farber | Convexity in graphs and hypergraphs[END_REF] a set of vertices S is convex if, for all {u, v} ⊆ S such that w ∈ I[u, v], then w ∈ S. In other words, S is convex if, and only if, I[S] = S. Let the geodetic number, geo(G), of G be the minimum integer k such that there exists S ⊆ V with I[S] = V and |S| ≤ k. Simple examples of sets that are geodesically convex are the empty set and V . The (geodetic) convexity number, con geo (G), of a graph G = (V, E), defined in [START_REF] Chartrand | The convexity number of a graph[END_REF], is the maximum integer k such that there exists a convex set S ⊂ V with |S| ≤ k. That is, k is the maximum cardinality of a convex set that is a proper subset of V .

The geodetic convex hull, I h [S], of a set S ⊆ V is the smallest S ′ such that S ⊆ S ′ and S ′ is convex. A geodetic hull set, or simply hull set, S ⊆ V is such that I h [S] = V . The geodetic hull number, or simply the hull number, hn(G), of G is the minimum k ≥ 0 such that there is a hull set S with |S| ≤ k. As stated in Chapter 1. Given a graph G and S ⊆ V (G), the process to obtain I h [S] can be seen as an iterative process in the following manner. Starting with S ′ = S we repeat the following until no more vertices can be added to S ′ . For every {x, y} ⊆ S ′ , we add to S ′ the vertices in I[x, y]. Then, when no more vertices can be added to S ′ we have that I h [S] = S ′ . Moreover, S is a hull set of G if, and only if, S ′ = V (G). The hull number of G is the minimum cardinality S such that S ′ = V (G), where S ′ is obtained with this process when applied to S.

Monophonic Convexity

If induced paths are used in place of shortest paths in the definition of I[u, v], we get the monophonic convexity. Formally, let the monophonic interval J[u, v] be the set of vertices of G that lie on an induced path between u ∈ V and v ∈ V . For any set S ⊆ V , let

J[S] = {u,v}⊆S J[u, v].
In the monophonic convexity [START_REF] Farber | Convexity in graphs and hypergraphs[END_REF] a set of vertices S is monophonic convex, or mconvex, if, for all {u, v} ⊆ S such that w ∈ J[u, v], then w ∈ S. In other words, S is m-convex if, and only if, J[S] = S. Simple examples of sets that are monophonic convex are the empty set and V .

Let the monophonic number, mon(G), of G be the minimum integer k such that there exists S ⊆ V with J[S] = V and |S| ≤ k. The m-convexity number, con mon (G), of G is the maximum integer k such that there exists a m-convex set S ⊂ V with |S| ≤ k.

The monophonic convex hull, or simply the m-convex hull, J h [S] of a set S ⊆ V is the smallest S ′ such that S ⊆ S ′ and S ′ is m-convex. A monophonic hull set, or simply m-hull set, S ⊆ V is such that J h [S] = V . The monophonic hull number, or simply the m-hull number, mn(G), of G is the minimum k ≥ 0 such that there is a m-hull set S with |S| ≤ k. 

P 3 Convexity

The last convexity we define is the P 3 Convexity. This convexity is related to paths of length 2 in a similar way that the geodesic convexity is related to shortest paths.

Let the P 3 -interval, I 3 [u, v], between vertices u and v be defined as

N [u] ∩ N [v] if u = v, otherwise I 3 [u, v] = {u}.
In other words, I 3 [u, v] is the set of vertices of G that lie on any path of length exactly two between u ∈ V and v ∈ V . For any set S ⊆ V , let

I 3 [S] = {u,v}⊆S I 3 [u, v].
In the P 3 Convexity [CDS09] a set of vertices S is P 3 -convex if, for all {u, v} ⊆ S such that w ∈ I 3 [u, v], then w ∈ S. In other words, S is convex if, and only if, I 3 [S] = S. As with the other convexities, V and the empty set are examples of convex sets. Let the P 3 -geodesic number, geo 3 (G), of G be the minimum integer k such that there exists S ⊆ V with I 3 [S] = V and |S| ≤ k. The P 3 -convexity number, con geo 3 (G), of G is the maximum integer k such that there exists a P 3 -convex set S ⊂ V with |S| ≤ k.

The P 3 -convex hull I 3h [S] of a set S ⊆ V is the smallest S ′ such that S ⊆ S ′ and S ′ is P 3 -convex. A P 3 -hull set, S ⊆ V is such that I 3h [S] = V . The P 3 -hull number, hn 3 (G), of G is the minimum k ≥ 0 such that there is a P 3 -hull set S with |S| ≤ k. 

Algorithmic Aspect of Convexity

In this section, we explore the hardness of decision problems related to the aforementioned convexity parameters.

Geodesic Convexity

The difficulty of computing the geodetic number of a graph was first studied in [START_REF] Harary | The geodetic number of a graph[END_REF]. It was shown that deciding if the geodetic number of a graph is at most an integer k is NP-complete.

In [DGK + 09] Dourado et al. proved that deciding whether hn(G) ≤ k for an integer k and a general graph G is NP-complete by a reduction from the 3-SAT problem. They also proved that if G is a unit interval graph, a cograph or a split graph, then this problem can be solved in time polynomial on the number of vertices of the graph.

In particular, the algorithm for computing the hull number of a cograph proposed in [DGK + 09] takes advantage of the fact that a modular decomposition of a cograph is composed only of serial or parallel nodes. This is interesting because there are superclasses of cographs that also have a "well behaved" modular decomposition such as P 4sparse graphs for example. Hence, we expect that the problem of computing the hull number on these classes of graphs to be solvable in polynomial time; something that will be further explored on Chapter 9.

Recently, in [START_REF] Kanté | Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs[END_REF], it was shown that there is a polynomial time algorithm to compute hn(G) if G is a distance hereditary graph or a chordal graph. The algorithm proposed for computing the hull number of a distance hereditary graph runs in linear time and it is also able to compute the geodetic number of said graph. The main building block of this algorithm is the fact that the split decomposition of distance hereditary graphs is such that each of its blocks is either a clique or a star.

If techniques for computing the hull number can also be used to compute the geodetic number of distance hereditary graphs, can the techniques to compute the hull number of chordal graphs be used to help computing the geodetic number of chordal graphs? This seems unlikely, since, in [START_REF] Dourado | Some remarks on the geodetic number of a graph[END_REF], it was shown that deciding if geo(G) ≤ k, for a integer k and a chordal graph G, is NP-complete.

For a general graph G and integer k, the problem of deciding if con geo (G) ≤ k is NPcomplete [START_REF] Gimbel | Some remarks on the convexity number of a graph[END_REF]. Dourado et al. further improved this result in [START_REF] Dourado | On the convexity number of graphs[END_REF] by showing that the result still holds even if G is a bipartite graph. A linear time algorithm to compute con geo (G) for cographs G was proposed in [START_REF] Dourado | On the convexity number of graphs[END_REF].

Monophonic Convexity

If, on the one hand, the problem of computing the hull number of graphs is hard, on the other hand, computing mn(G) for an arbitrary graph G = (V, E) can be done in time O(|V | 3 |E|) [START_REF] Dourado | Complexity results related to monophonic convexity[END_REF]. The algorithm proposed by Dourado et al. starts by computing a clique decomposition tree [START_REF] Tarjan | Decomposition by clique separators[END_REF] of the graph. Then, the monophonic hull number of the graph can be obtained by, roughly, counting the number of its simplicial vertices and the number of "special" leaves of this decomposition.

Note that, for any distance hereditary graph G and for any {x, y} ⊆

V (G), J[u, v] = I[u, v].
Hence, for any distance hereditary graph, we have that hn(G) = mn(G), mon(G) = geo(G) and con geo (G) = con mon (G). Therefore, the previous algorithm to compute the m-hull number of of distance hereditary graphs also computes their hull number. Another consequence of this relation is that mon(G) and mn(G) can be computed in linear time for distance hereditary graphs from the previous mentioned result in [START_REF] Kanté | Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs[END_REF]. Dourado et al. showed in [START_REF] Dourado | Complexity results related to monophonic convexity[END_REF] that the decision problems associated with the monophonic number and the m-convexity number are NP-Complete for arbitrary graphs.

P 3 Convexity

The problem of deciding if hn 3 (G) ≤ k is NP-complete for a general graph G and integer k [CDP + 11]. A relationship resembling the one between monophonic convexity and 

O(n + m) 1 Computing I[u, v] O(m) [DGK + 09] NP-complete [DPS10] O(n) 2 Convex Hull of S O(nm) [DGK + 09] O(n 2 m) [DPS10] polynomial [DJR09] X Convexity Number NP-complete [DPRS10b] NP-complete [DPS10] NP-complete [CDD + 10] X Number NP-complete [DPRS12] NP-complete [DPS10] NP-complete [JP89] X Hull Number NP-complete [DGK + 09] O(n 3 m) [DPS10] NP-complete [CDP + 11]
geodesic convexity on distance hereditary graphs exists between the P 3 convexity and geodesic convexity. A simple consequence of a result in [START_REF] Sampaio | The convexity of induced paths of order three[END_REF] is that the concepts of P 3 convexity and geodesic convexity coincide in graphs that are distance hereditary and have an universal vertex. If G is a distance hereditary graph with an universal vertex, then

I 3 [u, v] = I[u, v] for any u, v ∈ V (G)
. Therefore, complexity results for distance hereditary graphs with an universal vertex are valid for all the aforementioned convexities.

Deciding if geo 3 (G) ≤ k, for some integer k, in a general graph G is also NP-complete. In order to see this, consider the following relationship with the 2-domination problem. For any graph G = (V, E) and a set S ⊆ V , we have that S is a 2-dominating set1 of G if and only if S is P 3 -convex and I 3 [S] = V . In other words, the complexity of deciding if geo 3 (G) ≤ k for some integer k is the same as the complexity of deciding if there is a set S such that |S| ≤ k and S is a 2-dominating set of V . The result follows from the fact that the minimum 2-dominating set problem is NP-complete [START_REF] Jacobson | Complexity questions for n-domination and related parameters[END_REF]. However, when G is restricted to be a tree or a cograph, then computing geo 3 (G) can be done in polynomial time [START_REF] Centeno | On the convexity of paths of length two in undirected graphs[END_REF].

In [CDD + 10], it was shown that it is NP-complete to decide for a split graph G and integer k, if con geo 3 (G) ≤ k. However, similarly to the P 3 -geodetic number, when G is restricted to be a tree or a cograph, then computing con geo 3 (G) can be done in polynomial time [START_REF] Centeno | On the convexity of paths of length two in undirected graphs[END_REF].

Table 8.1 summarizes some of the results presented in this section, by showing the difficulty of problems related to geodesic, monophonic and P 3 convexities on general graphs.

Structural Aspect of Convexity

Since the problem of computing the aforementioned convexity parameters is often hard, there is an interest in finding bounds for these parameters in order to better understand them.

Bounding the Convexity

Let diam(G) be the diameter,the length of the longest shortest path, of G. Several bounds for the hull number of graphs were shown in [START_REF] Dourado | On the hull number of triangle-free graphs[END_REF]. If G is a connected triangle-free on n vertices such that δ(G) ≥ 3 and diam(G) ≥ 4, then hn(G) ≤ n-diam(G)+3

3

. If we restrict G to be a connected cubic3 triangle-free graph on n vertices and diam(G) ≥ 4, then hn(G) ≤ 2 n-diam(G)+5

7

. For any connected graph G on n vertices such that girth(G) ≥ 5 and δ(G) ≥ 2, then hn(G) ≤ 2 + n-diam(G)-1 ⌈(girth(G)-1)/2⌉ . The idea behind how these bounds can be obtained on a graph G is, roughly, the following. Starting with S = S ′ = ∅. S is used to represent a hull set, while S ′ is used to represent I h [S]. Then, while S ′ = V (G) we do the following. If S ′ = I[S ′ ] we add to S ′ all vertices in I[S ′ ]. If S ′ = I[S ′ ], then all vertices that can be "generated" by vertices in S are already in S ′ , in other words, S ′ is convex. In this case, we need to choose another vertex to put in S in hopes that I h [S] = V (G). Then, we greedily choose the vertex of V (G) \ S ′ which is farther away than any vertex in S ′ and add this vertex to both S and S ′ . If after its addition to S, |I h [S] \ S ′ | ≥ k, this means that, by adding one vertex to S, we are able to "generate" k other vertices. Moreover, if we are always able to "generate" k other vertices when adding a vertex to S, then hn(G) ≤ n/k.

If G is a connected unit interval graph with s simplicial vertices, then geo(G) ≤ s + 2(diam(G) -1). If G is a triangle-free graph such that δ(G) ≥ 2, then geo(G) ≤ 2|M | where M is a maximal matching of G. Furthermore, the geodetic number of chordal and split graphs were fully characterized in [START_REF] Dourado | Some remarks on the geodetic number of a graph[END_REF].

A first result related to the (geodetic) convexity number of a graph is due to Chartrand et al.. It was shown in [START_REF] Chartrand | The convexity number of a graph[END_REF] that for any graph G of order n we have that con geo (G) = n -1 if and only if G has a simplicial vertex.

However, if G does not have a simplicial vertex, how small can the (geodetic) convexity number be? This question was answered in [Kim04]. Kim showed that for every pair of integers k and n with 2 ≤ k ≤ n -1, there exists a connected triangle-free graph of order n with con geo (G) = k. In [Kim04], Kim also proved a first upper bound for the (geodetic) convexity number of k-regular graphs. If 3 ≥ k + 1 < n and G is a k-regular graph of order n, then con geo (G) ≥ n n-k .

Products of Graphs and Convexity

In this section, we overview the known results related to convexity parameters of (lexicographic, cartesian or strong) products of graphs. Understanding how convexity parameters behave under a product operation might allows us to expand the convexity results for some graph classes into results for graphs that are obtained through the product of graphs in these classes.

In order to present these results, we first define each product operation. Let G and H be two graphs.

The lexicographic product, G ⊙ H, of G and H is the graph whose vertex set is V (G ⊙ H) = V (G) × V (H) and such that two vertices (g 1 , h 1 ) and (g 2 , h 2 ) are adjacent if, and only if, either {g 1 , g 2 } ∈ E(G) or we have that both g 1 = g 2 and {h

1 , h 2 } ∈ E(G). For a vertex g ∈ V (G), let its H-layer in G ⊙ H be the set H(g) = {(g, h) ∈ V (G ⊙ H) | h ∈ V (H)}.

Objectives

In the next chapter, Chapter 9, we aim at further investigating the question of how hard it is to compute the hull number of a graph even when we are restricted to specific classes of graphs. As a product of this investigation, we show that the problem of computing the hull number of an arbitrary graph is in FPT, by proposing several FPT-algorithms for it.

In Chapter 9, we also investigate how some structural properties of graphs could influence their Hull Number. As a result, we could provide new bounds for the hull number of some graph classes and obtain the hull number of the lexicographic product of two graphs based on the hull number of its factors. Although the main technique for obtaining these bounds is not different from the one presented in this chapter, the bounds we have found are not comparable with the ones presented in this chapter.

Chapter 9

On the Hull Number of Graphs

In this chapter, we mainly investigate the complexity of computing the hull number of a graph. We try to understand where the difficulty of this problem lies. In order to do that, we focus on some particular graph classes. We also propose FPT-algorithms for computing the hull number of general graphs, where the parameter can be either the number of its induced P 4 's, its vertex cover number, or its neighbourhood diversity.

A first preliminary section, Section 9.1, recalls important results and definitions used throughout this chapter. In Section 9.2, we answer an open question of Dourado et al. [DGK + 09] by showing that the decision problem associated with computing the hull number of a bipartite graph is NP-complete. Then, in Section 9.3, we show a polynomial time algorithm to compute the hull number in complement of bipartite graphs. Section 9.4, we extend the algorithm to compute the hull number of cographs in [DGK + 09] to the superclass of (q, q -4)-graphs. Section 9.5, is devoted to the study of the hull number of {P 5 , K 3 }-free graphs. In Section 9.6, we show some rules that can be applied to the graph in order to reduce its size while its hull number behaves in a controlled manner. With the help of these rules we are able to construct a FPT-algorithm to compute the hull number of a general graph where the fixed parameter can be either the neighbourhood diversity or the vertex cover number. We also show how these rules can also be employed to characterize the hull number of lexicographic product of graphs. Section 9.7, is dedicated to the study of the behaviour of the hull number of a graph by means of the hull number of its two connected components. This allows us to design a polynomial time algorithm to compute the hull number of cacti graphs. Finally, in Section 9.8, we prove tight upper bounds on the hull number some graphs.

Terminology and Tools

Otherwise stated, all graphs considered in this chapter are simple, undirected and connected

. Let G = (V, E) be a graph. A subgraph H of G is isometric if, for any u, v ∈ V (H), the distance dist H (u, v) between u and v in H equals dist G (u, v).
In order to avoid unnecessary backtracking we recall definitions of geodesic convexity. Given a connected graph G = (V, E), the closed interval I[u, v] of any two vertices u, v ∈ V is the set of vertices that belong to some u-v geodesic of G, i.e., some shortest (u, v)-path. For any S ⊆ V , let

I[S] = u,v∈S I[u, v]. A subset S ⊆ V is (geodesically) convex if I[S] = S. Given a subset S ⊆ V , the convex hull I h [S] of S is the smallest r c 8 c 7 c 6 c 5 c 4 c 3 c 2 c 1 u u ′ v 3 i v 2 i v 1 i b 4 i b 2 i b 1 i b 3 i a 4 i a 2 i a 1 i a 3 i a 5 i b 5 i y 8 i y 1 i y 2 i Figure 9
.1: Subgraph of the bipartite instance G(F) containing the gadget of a variable x i that appears positively in clauses C 1 and C 2 , and negatively in C 8 . If x i appears positively in C j , link a 5 i to c j through y j i . If it appears negatively, we use b 5 i instead of a 5 i .

the set of its boolean variables. We may assume that m = 2 p , for a positive integer p ≥ 1, since it is possible to add dummy variables and clauses without changing the satisfiability of F and such that the size of the instance is at most twice the size of the initial instance. Moreover, we also assume, without loss of generality, that each variable x i and its negation appear at least once in F (otherwise the clauses where x i appears can always be satisfied).

Let us construct the bipartite graph G(F) as follows. First, let T be a full binary tree of height p rooted in r with m = 2 p leaves, and let L = {c 1 , c 2 , . . . , c m } be the set of leaves of T . We then construct a graph H as follows. First, let us add a vertex u that is adjacent to every vertex in L. Then, any edge {w, v} ∈ E(T ) with w the parent of v is replaced by a path with 2 h(v) edges, where h(v) is the distance between v and any of its descendant leaves. Note that, in H, the distance between r and any leaf is Then, let H ′ be obtained by adding a one degree vertex u ′ adjacent to u in H. Finally, we build a graph G(F) from H ′ by adding, for any variable x i , i ≤ n, the gadget defined as follows.

p-1 i=0 2 i = 2 p -1 = m -1.
Let us start with a cycle {a 1

i , a 2 i , v 1 i , b 2 i , b 1 i , b 3 i , b 4 i , v 2 i , a 4 i , a 3 i } plus the edge {v 2 i , v 1 i }.
Then, add the vertex v 3 i as common neighbour of v 2 i and u. Add a neighbour b 5 i (resp., a 5 i ) adjacent to b 3 i (resp., a 3 i ) and a path of length 2 h(r) -3 = m -3 edges between b 5 i (resp., a 5 i ) and r. Let D be the set of internal vertices of all these 2n paths between a 5 i (resp., b 5 i ) and r, i ≤ n. Finally, for any clause C j in which x i appears, if x i appears positively (resp., negatively) in C j then add a common neighbour y j i between c j and a 5 i (resp., b 5 i ). See an example of such a gadget in Figure 9.1. Note that |V (G(F))| = O(m(n + log m)).

Lemma 68. G(F) is a bipartite graph.

Proof. Let us present a proper 2-colouring c of G(F). Let c(r) = 1, and for each vertex w in V (H), define c(w) as 1 if w is in an even distance from r, and 2 otherwise. Clearly, c is a partial proper colouring of G(F) and moreover we have c(u) = 1 and c(c j ) = 2, for any j ∈ {1, . . . , m} (Indeed, any c i is at distance m -1 (odd) of r in H). Let c(u ′ ) = 2. For every i ∈ {1, . . . , n} and for any j such that

x i ∈ C j , let c(y j i ) = 1. For any i ≤ n, for any x ∈ {b 5 i , a 5 i , v 3 i , b 4 i , a 4 i , b 1 i , v 1 i , a 1 i }, c(x) = 2.
Again, this partial colouring of G(F) is proper. One can easily verify that this colouring can be extended to {a

1 i , a 2 i , v 1 i , b 2 i , b 1 i , b 3 i , b 4 i , v 2 i , a 4 i , a 3 i } for any i ≤ n. Moreover, since c(r) = 1 and c(a 5 i ) = 2 (c(b 5 i ) = 2
), for every i ∈ {1, . . . , n}, and since the path that we add in G(F) between r and a 5 i (b 5 i ) is of odd length m -3, one can completely extend c in order to get a proper 2-colouring of G(F).

Claim 20. The set V (G(F)) \ {a 1 i , a 2 i , v 1 i , b 1 i , b 2 i } is convex, for any i ∈ {1, . . . , n}. Proof. Denote W i = {a 1 i , a 2 i , v 1 i , b 1 i , b 2 i }, for some i ∈ {1, . . . , n}, and W ′ i = {a 3 i , b 3 i , v 2 i }.
By contradiction, suppose that there exists an (x, y)-shortest path containing a vertex of W i , for some x, y ∈ V (G(F)) \ W i . Observe that it implies that that there are

x ′ , y ′ ∈ W ′ i such that I[x ′ , y ′ ] contains a vertex of W i , since W ′ i contains all the neighbours of W i in V (G(F)) \ W i .
However, it is easy to verify that for any pair x, y ∈ W ′ i , I[x, y] contains no vertex of W i . This is a contradiction.

Lemma 69. hn(G(F)) ≥ n + 1.

Proof. Let S be any hull set of G(F). Clearly u ′ ∈ S, because u ′ is a simplicial vertex of G(F) (Lemma 63). Furthermore, Claim 20 and Lemma 66 imply that S must contain at least one vertex w i of the set {a

1 i , a 2 i , v 1 i , b 1 i , b 2 i }, for every i ∈ {1, . . . , n}. Hence, |S| ≥ n + 1.
The main part of the proof consists in showing:

Lemma 70. F is satisfiable if and only if hn(G(F)) = n + 1.
First, consider that F is satisfiable. Given an assignment A that turns F true, define a set S as follows. For 1 We prove the sufficiency by contradiction. Suppose that G(F) contains a hull set S with n + 1 vertices and that F is not satisfiable.

≤ i ≤ n, if x i is true in A add a 1 i to S, otherwise add b 1 i to S. Finally, add u ′ to S. Note that |S| = n + 1. We show that S is a hull set of G(F). First note that a 5 i , c j ∈ I[a 1 i , u ′ ],
Recall that, by Lemma 63, u ′ ∈ S. For any i ≤ n, let W i as defined in Claim 20. Recall also that there must be a vertex w

i ∈ W i ∩ S, for any i ≤ n. Since v 1 i ∈ I[u ′ , a 1 i ], v 1 i ∈ I[u ′ , b 1 i ], a 2 i ∈ I[u ′ , a 1 i ] and b 2 i ∈ I[u ′ , b 1 i ],
we can assume, without loss of generality, that w i ∈ {a 1 i , b 1 i }, for every i ∈ {1, . . . , n} (indeed, if w i ∈ {v 1 i , a 2 i }, it can be replaced by a 1 i , and if w i = b 2 i , it can be replaced by b 1 i ). Therefore S defines the following truth assignment A to F. If w i = a 1 i set x i to true, otherwise set x i to false. As F is not satisfiable, there exists at least one clause C j not satisfied by A.

Using the hypothesis that F is not satisfiable, we complete the proof by showing that there is a non empty set U such that V (G(F)) \ U is a convex set and U ∩ S = ∅. That is, we show that I h [S] ⊆ V (G(F)) \ U for some U = ∅, contradicting the fact that S is a hull set.

For any clause C j , let us define the subset U j of vertices as follows. Let P j be the path in T between c j and r, let X j be the p vertices in V (T ) \ V (P j ) that are adjacent to some vertex in P j . Then, U j is the union of the vertices that are either in P j or that are internal vertices of the paths resulting of the subdivision of the edges {x, y} where x, y ∈ P j ∪ X j . Another way to build the set U j is to start with the set of vertices in the (unique) shortest path between c j and r in H and then add successively to this set, the vertices of V (H) \ (V (T ) ∪ {u}) that are adjacent to some vertex of the current set. Now, let U ′ = j∈J U j where J is the (non empty) set of clauses that are not satisfied by A. Note that r ∈ U ′ .

For any i ≤ n, let Z i be defined as follows. If w i = a 1 i (x i assigned to true by A), then Z i is the union of {b ℓ i | ℓ ≤ 5} with the set of the y k i that are adjacent to b 5 i . Otherwise, w i = b 1 i (x i assigned to false by A), then Z i is the union of {a ℓ i | ℓ ≤ 5} with the set of the y k i that are adjacent to a 5 i . Finally, let U = U ′ ∪ ( i≤n Z i ) ∪ D. In Figure 9.1, U is depicted by the white vertices, assuming that clause C 2 is false and that x i is set to false by A. Observe that U ∩ S = ∅.

It remains to prove that V (G(F)) \ U is a convex set. Consider the partition {A

1 , A 2 , A 3 } of V (G(F)) \ U where A 1 = V (H) \ (U ∪ {u}), A 2 = {u, u ′ } and A 3 = V (G(F)) \ (U ∪ A 1 ∪ A 2 ).
To prove that V (G(F)) \ U is convex, let w ∈ A i and w ′ ∈ A j for some i, j ∈ {1, 2, 3}. We show that I[w, w ′ ] ∩ U = ∅ considering different cases according to the values of i and j. Recall that V (H) \ {u} induces a tree T ′ rooted in r and that, if a vertex of T ′ is in A 1 , then, by definition of U ′ , all its descendants in T ′ are also in A 1 (i.e., if v ∈ U ∩ V (T ′ ), then all ancestors of v in T ′ are in U ). It is important to note that, for any vertex v in A 1 , the shortest path in G(F) from v to any leaf ℓ of T ′ is the path from v to ℓ in T ′ (in particular, such a shortest path does not pass through r and any vertices in D).

• The case i = j = 2, i.e., m, m ′ ∈ {u, u ′ }, is trivial; • First, let us assume that w ∈ A 1 = V (H) \ (U ∪ {u}) and w ′ ∈ A 2 = {u, u ′ }. If w ′ = u (resp., if w ′ = u ′ ) then I h [w, w ′ ]
consists of the subtree of T ′ rooted in w union u (resp., union u and u ′ ). Hence, I h [w, w ′ ] ∩ U = ∅ because no descendants of w in T ′ are in U .

• Second, let w, w ′ ∈ A 1 . If one of them, say w, is an ancestor of the other in T ′ , then I h [w, w ′ ] consists of the path between them in T ′ (remember that r ∈ U so w = r). Since no descendants of w in T ′ are in U , I h [w, w ′ ] ∩ U = ∅. Otherwise, there are three cases: (1) either I h [w, w ′ ] consists of the path P between w and w ′ in T ′ , or (2) I h [w, w ′ ] consists of the union of the subtree R of T ′ rooted in w, the subtree R ′ of T ′ rooted in w ′ and u, or (3)

I h [w, w ′ ] = R ∪ R ′ ∪ P ∪ {u}. Again, (R ∪ R ′ ∪ {u}) ∩ U = ∅
because no descendants of w and w ′ in T ′ are in U . Hence, it only remains to prove that when P ⊆ I h [w, w ′ ] then P ∩ U = ∅. It is easy to check that P ⊆ I h [w, w ′ ] only in the following case: there exist x, y, z ∈ V (T ) such that x is the parent of y and z in T , and w (resp., w ′ ) is a vertex of the path resulting from the subdivision of {x, y} (resp., {x, z}). In this case, it means that all clause-vertices that are descendants of y and z are not in U . Therefore x / ∈ U and hence no descendants of x are in U . In particular, P ∩ U = ∅.

• Assume now that w ∈ A 3 . Let i ≤ n such that w belongs to the gadget G i corresponding to variable x i . Let us assume that w i = b 1 i . The case w i = a 1 i can be handled in a similar way by symmetry. Then, by definition, U contains {a 1 i , . . . , a 5 i } and the y j i 's adjacent to a 5 i . With this setting, x i is set to false in the assignment A. If there is a vertex y j i adjacent to b 5 i , let C j be the other neighbour of j j i . By definition, it means that clause C j contains the negation of variable x i . Since x i is set to false, it means that clause C j is satisfied and so C j / ∈ U . Let x ∈ V (G i ) \ U . Then, any shortest path P from w to x either passes through V (G i ) \ U or, there is y j i adjacent to b 5 i such that P passes through y j i , C j , u and v 3 i (the latter case may occur if a ∈ {y j i , b 5 i } and b = v 3 i , or a = y j i and b ∈ {v 3 i , v 2 i } where {a, b} = {x, w}). Hence, such a path P avoids U , and the result holds if

x = w ′ ∈ A 3 ∩ G i .
Similarly, if x ∈ {u, u ′ }, then, any shortest path P from w to x either passes through V (G i ) \ U or through y j i , C j , u with y j i adjacent to b 5 i . In particular, if x = w ′ ∈ {u, u ′ } = A 2 , then the result holds. Now, let x = C j ′ be a leaf of T ′ that is not in U . Then, any shortest path P from w to x either passes through u or through y j i , C j and, if j = j ′ , through u. In any case, P avoids U . If w ′ ∈ A 3 \ G i , any path between w and w ′ passes through u or through one or two leaves that are not in U . Finally, if w ′ ∈ A 1 , let R be the subtree of T ′ rooted in w ′ . Note, V (R) ⊆ I h [w, w ′ ]. Moreover, any shortest path from w to w ′ contains a leaf of R, i.e., a leaf not in U . By previous remarks, in all these cases, the shortest paths between w and w ′ avoid u, and I h [w, w ′ ] are disjoint from U .

We conclude this section by showing one approximability result. Let IG(G) be the incidence graph of G, obtained from G by subdividing each edge once. That is, let us add one vertex s uv , for each edge {u, v} ∈ E(G), and replace the edge {u, v} by the edges {u, s uv } and {s uv , v}.

Proposition 1.

hn(IG(G)) ≤ hn(G) ≤ 2 hn(IG(G)).

Proof. Let IG(G) be the incidence graph of G. Observe that any hull set of G is a hull set of IG(G), since for any shortest path, P = {v 1 , . . . , v k } in G there is a shortest path 

P ′ = {v 1 , s v 1 v 2 , v 2 , . . . , s v k-1 v k , v k } in IG(G) (
∈ A. If i = r, then {v 1 , z, w} is a shortest (v 1 , w)-path and z ∈ I h [R]. Otherwise, recall that N (v r ) ∩ A ∩ C r = ∅ and, for any i < r, N (v i ) ∩ B ∩ C i = ∅ because v i is not simplicial for any i ≤ r. Let x ∈ N (v r ) ∩ A ∩ C r and y i ∈ N (v i ) ∩ B ∩ C i . Note that x ∈ I h [R] because {v 1 , x, v r } is a shortest (v r , v 1 )-path, and y i ∈ I h [R] because {v i , y i , v r } is a shortest (v r , v i )-path. Hence, since {x, z, y i } is a shortest (x, y i )-path, we have z ∈ I h [R].
As |R| = r, we conclude by Claim 22 that hn(G) = |S| + r. 

If

∈ N (z) ∩ C ∩ I h [S ∪ {v}]
. Moreover, we may assume w.l.o.g. that z ∈ A, and thus w ∈ B. In that case, since S A = ∅, there is v A ∈ S A and as {v A , w} / ∈ E(G) (indeed, any vertex in N (v A ) ∩ B must be universal because v A is simplicial, which is not the case since w is not universal because it belongs to C), z is generated by v A and w. 

b) If S

A = ∅ and S B = ∅, then hn(G) ≤ |S| + 2. Let v A ∈ A ∩ C be such that |N (v A ) ∩ B ∩ C| is maximum. Since v A is not universal in G, there exists x ∈ B such that {v A , x} / ∈ E(G). Note that x ∈ C since x is not universal and S B = ∅. Let R = {v A , x}. Observe that N (v A ) ∩ B ∩ C ⊆ I h [R ∪ S] since {v A , x} / ∈ E. By contradiction, assume V (G) \ I h [R ∪ S] = ∅. Let z ∈ V (G) \ I h [R ∪ S]. First, suppose that z ∈ A. Since C is connected in H, we may assume that z has a neighbour w ∈ I h [R ∪ S] ∩ B ∩ C. As S A = ∅,
∈ I h [R ∪ S] ∩ A ∩ C. Observe that I h [R ∪ S] ∩ B ⊆ N (w), otherwise z would be in I h [R ∪ S]. However, since N (v A ) ∩ B ∩ C ⊂ (N (v A ) ∩ B ∩ C) ∪ {x} ⊆ I h [R ∪ S] ∩ B, we get that N (v A ) ∩ B ∩ C ⊂ N (w) ∩ B ∩ C, contradicting the maximality of |N (v A ) ∩ B ∩ C|. c) If S A = ∅ and S B = ∅, then hn(G) ≤ 4. Let v A ∈ A∩C be such that |N (v A )∩B∩C| is maximum and v B ∈ B∩C be such that |N (v B ) ∩ A ∩ C| is maximum. Since v A is not universal in G and S B = ∅,
there exists y ∈ C ∩B \N (v a ), and similarly there exists 

x ∈ C ∩A\N (v B ). Let R = {v A , v B , x, y}. Observe that N (v A ) ∩ B ⊆ I h [R] and N (v B ) ∩ A ⊆ I h [R], since {v A , y} / ∈ E and v B x / ∈ E. By contradiction, assume V (G)\I h [R] = ∅. Let z ∈ V (G)\I h [R]. First, suppose that z ∈ A. As in the previous case, since C is connected in H, we may assume that z has a neighbour w ∈ I h [R] ∩ B ∩ C. Observe that I h [R] ∩ A ∩ C ⊆ N (w), otherwise z would be in I h [R]. However, since N (v B ) ∩ A ∩ C ⊂ (N (v B ) ∩ A ∩ C) ∪ {x} ⊆ I h [R] ∩ A ∩ C, we get that N (v B ) ∩ A ∩ C ⊂ N (w) ∩ A ∩ C,

Graphs with few P 4 's

As stated in Chapter 8, the hull number of a cograph can be computed in polynomial time [DGK + 09]. Since cographs are graphs that have no P 4 as induced subgraph, in this section we investigate the complexity of computing the hull number of a graph that has "few" induced P 4 .

A graph G = (V, E) is a (q, q -4)-graph, for a fixed q ≥ 4, if for any S ⊆ V , |S| ≤ q, then S induces at most q -4 paths on 4 vertices. Observe that cographs are the (4, 0)-graphs.

In this section, we generalize these results by proving that for any fixed q ≥ 4, computing the hull number of a (q, q -4)-graph can be done in polynomial time. Our algorithm runs in time O(2 q n 2 ) and is therefore a Fixed Parameter Tractable for any graph G, where the number of induced P 4 's of G is the parameter.

Definitions and brief description of the algorithm

The algorithm that we present in this section uses the canonical decomposition of (q, q-4)graphs, called Primeval Decomposition. For a survey on Primeval Decomposition, the reader is referred to [START_REF] Babel | On the p-connectedness of graphs -a survey[END_REF]. In order to present this decomposition of (q, q -4)-graphs, we need the following definitions.

Let G 1 and G 2 be two graphs. G 1 ∪ G 2 denotes the disjoint union of G 1 and G 2 . G 1 ⊕ G 2 denotes the join of G 1 and G 2 , i.e., the graph obtained from G 1 ∪ G 2 by adding an edge between any two vertices v ∈ V (G 1 ) and w ∈ V (G 2 ). A spider G = (S, K, R, E) is a graph with vertex set V = S ∪ K ∪ R and edge set E such that:

1. (S, K, R) is a partition of V and R may be empty; 2. the subgraph G[K ∪ R] induced by K and R is the join K ⊕ R, and K separates S and R, i.e., any path from a vertex in S to a vertex in R contains a vertex in K;

3. S is a stable set, K is a clique, |S| = |K| ≥ 2, and there exists a bijection f : S → K such that, either N (s)∩K = K -{f (s)} for all vertices s ∈ S, or N (s)∩K = {f (s)} for all vertices s ∈ S. In the latter case or if

|S| = |K| = 2, G is called thin, otherwise G is thick.
A graph G = (S, K, R, E) is a pseudo-spider if it satisfies only the first two properties of a spider. A graph G = (S, K, R, E) is a q-pseudo-spider if it is a pseudo-spider and, moreover, |S ∪ K| ≤ q. Note that q-pseudo-spiders and spiders are pseudo-spiders.

We now describe the decomposition of (q, q -4)-graphs.

Theorem 72 ([BO99]

). Let q ≥ 0 and let G be a (q, q -4)-graph. Then, one of the following holds:

1. G is a single vertex, or 2. G = G 1 ∪ G 2 is the disjoint union of two (q, q -4)-graphs G 1 and G 2 , or

3. G = G 1 ⊕ G 2 is the join of two (q, q -4)-graphs G 1 and G 2 , or 4. G is a spider (S, K, R, E) where G[R] is a (q, q -4)-graph if R = ∅, or 5. G is a q-pseudo-spider (H 2 , H 1 , R, E) where G[R] is a (q, q -4)-graph if R = ∅.
Theorem 72 leads to a tree-like structure T (G) (the primeval tree) which represents the Primeval Decomposition of a (q, q -4)-graph G. T (G) is a rooted binary tree where any vertex v corresponds to an induced (q, q -4)-subgraph G v of G and the root corresponds to G itself. Moreover, the vertices of subgraphs corresponding to the leaves of T

(G) form a partition of V (G), i.e., {V (G ℓ )} ℓ leaf of T (G) is a partition of V (G).
For any leaf ℓ of T (G), G ℓ is either a spider (S, K, ∅, E), or has at most q vertices. Moreover, any internal vertex v has its label following one of the four cases in Theorem 72 corresponds to G v . More precisely, let v be an internal vertex of T (G) and let u and w be its two children.

v is a parallel node if G v = G u ∪ G w . v is a series node if G v = G u ⊕ G w . v is a spider node if u is a leaf with G u is a spider (S, K, ∅, F ) and G v is the spider (S, K, R, E) where G v [R] = G w and G v [S ∪ K] = G u . Finally, v is a small node if u is a leaf with |V (G u )| ≤ q and G v is the q-pseudo-spider (S, K, R, E) where G v [R] = G w and G v [S ∪ K] = G u .
This tree can be obtained in linear-time [START_REF] Babel | On the p-connectedness of graphs -a survey[END_REF].

We compute hn(G) by a post-order traversal in T (G). More precisely, given v ∈ V (T (G)), let H v be an optimal hull set of G v and let H * v be an optimal hull set of G * v , the graph obtained by adding a universal vertex to G v . We show in the next subsection that we can compute (H ℓ , H * ℓ ) for any leaf ℓ of T (G) in time O(2 q n). Moreover, for any internal vertex v of T (G), we show that we can compute (H v , H * v ) in time O(2 q n), using the information that was computed for the children and grand children of v in T (G).

Theorem 73. Let q ≥ 0 and let G be a n-node (q, q -4)-graph. An optimal hull set of G can be computed in time O(2 q n 2 ).

Before going into the details of the algorithm in next subsection, we prove some useful lemmas. The next lemma is straightforward by the use of isometry.

Lemma 75. Let G be a graph which is not complete and that has a universal vertex. Let H be obtained from G by adding some new universal vertices. A set is a minimum hull set of G if, and only if, it is a minimum hull set of H.

Dynamic programming and correctness

In this section, we detail the algorithm presented in the previous section and we prove its correctness. Let v ∈ V (T (G)), which may therefore be either a leaf, a parallel node, a series node, a spider node or a small node. For each of these five cases, we describe how to compute (H v , H * v ), in time O(2 q n). Let us first consider the case when v is a leaf of T (G). If G v is a singleton {w}, then

H v = V (G v ) = {w} and H * v = V (G * v ).
If G v is a spider (S, K, ∅, E) then H v = S since S is a set of simplicial vertices (so it has to be included in any hull set by Lemma 63) and it is sufficient to generate G v . One may easily check that if G v is a thick spider, S is also a minimum hull set of G * v , i.e., S = H * v . However, in case G v is a thin spider, S does not suffice to generate G * v and in this case it is easy to see that this is done by taking any extra vertex k ∈ K, in which case we have H * v = S ∪ {k}.

Otherwise, if H 1 is a clique, by Lemma 74, any minimum hull set of G v contains a minimum hull set of G[H 1 ∪ R]. Moreover, by the same arguments as in Lemma 77, we can show that there is an optimal hull set for G v that can be obtained from H * r (minimum hull set of G[H 1 ∪ R]) and some vertices in H 2 .

If H 1 is not a clique, two non-adjacent vertices of H 1 can generate R. Thus, we conclude that there exists a minimum hull set of G v containing at most one vertex of R. Then, a minimum hull set of G v can be found in O(2 q n)-time, where n = |V (G v )|. 9.5 {P 5 , K 3 }-Free Graphs

In this section, we present a linear-time algorithm to compute hn(G), for any P 5 -free triangle-free graph G.

Recall that a dominating set S ⊆ V of a graph G is such that every vertex v ∈ V \ S has a neighbour in S. Theorem 80 is one of the main building blocks in order to prove the correctness of this algorithm.

Theorem 80 ([BT90]

). G is P 5 -free if, and only if, for every induced subgraph H ⊆ G either V (H) contains a dominating induced C 5 or a dominating clique.

As a consequence, we have that: Corollary 6. If G is a connected P 5 -free bipartite graph, then there exists a dominating edge in G.

Theorem 81. The hull number of a P 5 -free bipartite graph G = (A ∪ B, E) can be computed in linear time.

Proof. Assume that G has at least two vertices. By Corollary 6, G has at least one dominating edge. Observe that the dominating edges of a bipartite graph can be found in linear time by computing the degree of each vertex and then considering the sum of the degrees of the endpoints of each edge. For a dominating edge, this sum is equal to the number of vertices.

• Consider first the case in which G has at least two dominating edges. Let {u, v}, {x, y} ∈ E(G) be such dominating edges. Consider that u, x ∈ A and v, y ∈ B. If x = u and v = y, then we claim that {u, x} is a minimum hull set of G. An example of this case can be found in Figure 9.2. Indeed, since u and x are not adjacent and every vertex in B is a common neighbour of u and x, and then {u, x} generate all the vertices in B, particularly v and y. Similarly, all the vertices of A are in a shortest (v, y)-path. Thus, I h ({u, x}) = V (G). Therefore, {u, x} is a hull set for G and hn(G) = 2.

Assume now, w.l.o.g., that u = x and v = y. An example of this case can be found in Figure 9.3. Again, B ⊆ I h ({u, x}). Observe that, if there are simplicial vertices1 in V (G), they must all belong to A, since u and x are not neighbours, but they are adjacent to all vertices in B. In case |B| = 1, then all vertices in A are simplicial vertices, and therefore A is the minimum hull set of G.

Then, consider now that |B| ≥ 2.

In case there is no simplicial vertex in A, {u, x} is a minimum hull set, since B ⊆ I h ({u, x}) and every vertex in A has at least two neighbours in B. In case there are simplicial vertices in A, we claim that S ∪ {b} is a minimum hull set of G, where S ⊂ A is the set of simplicial vertices of G and b is a vertex in B distinct from v. Indeed, by Lemma 63, we know that S must be part of any hull set of G and observe that I h (S) = S ∪ {v} (the only neighbour of each simplicial vertex is exactly v). Consequently, since |B| ≥ 2, at least one more vertex must be chosen to be part of a minimum hull set of G. We claim that if we choose any arbitrary b ∈ B \ {v}, then S ∪ {b} is a minimum hull set of G. Indeed, let s ∈ S. Since {s, b} / ∈ E and {x, v}, {u, v} are dominating edges, x, u and v are generated by {s, b}. But then, as B ⊆ I h ({u, x}), B is generated. Finally, every vertex in A is either simplicial, in case it belongs to S, or is adjacent to two vertices in B and therefore is generated by its neighbours.

• Consider now that G has only one dominating edge {u, v} and that, w.l.o.g., u ∈ A and v ∈ B. Let H = G[V \ {u, v}]. An example of this case can be found in Figure 9.4.

The proof of this case uses the same techniques of Theorem 71. That is, we decompose G based on the connected components of some particular subgraph of G. We may assume H is not the empty graph, for otherwise G is just one edge. Let C 1 , . . . , C k , k ≥ 1, be the connected components of H. We claim that V \ C i is a convex set of G, for every i ∈ {1, . . . , k}.

Since C i is a connected component in H, the only vertices in V \ C i that may be adjacent to a vertex in C i are u and v. Suppose a shortest (s, t)-path P such that s, t ∈ V \ C i and containing at least one vertex of C i . It would pass through u and v. But there is an edge between u and v, so there is a contradiction because P would not be a shortest path. Therefore, V \ V (C i ) is convex.

Consequently, by Lemma 66, for each connected component C i of H at least one vertex of C i must be chosen to be part of a minimum hull set of G (observe that simplicial vertices are the particular case in which |C i | = 1).

If k = 1, observe that G is not a complete bipartite graph, as we are assuming there is exactly one dominating edge. Let w ∈ A and z ∈ B be two non-adjacent vertices of C 1 = H. In this case, we claim that {w, z} is a minimum hull set of G. By contradiction, suppose that there exists a vertex p / ∈ I h ({w, z}). First observe that u and v belong to I h ({w, z}). Then, w.l.o.g., we may assume that p has a neighbour q in I h ({w, z}) which is not in {u, v}, since C 1 is a connected component in H. However, since {u, v} is a dominating edge, either {q, p, u} or {q, p, v} is a shortest path between two vertices of I h [{w, z}] and p should belong to I h [{w, z}], a contradiction. Now, suppose that k > 1. Let W = {w 1 , . . . , w k } ⊆ V (G) be such that W ∩ A = ∅, W ∩ B = ∅ and w i ∈ C i , for every i ∈ {1, . . . , k}. We claim that W is a minimum hull set of G. By Lemma 66, hn(G) ≥ k, so it suffices to show that I h [W ] = V (G). Observe that u and v belong to I h (W ), since W ∩ A = ∅ and W ∩ B = ∅. Then, by contradiction, suppose that there exists a vertex p / ∈ I h [W ] and let C p be its connected component in H. Again, we may assume that p has a neighbour q in I h [{w, z}] Finally, observe that all these cases can be checked in linear time and thus hn(G) can be computed in linear time. Proof. By Theorem 80, G either has a dominating induced C 5 or a dominating clique of size at most two, since it is triangle-free.

In case it has a dominating C 5 = v 1 , . . . , v 5 , we claim that {v 1 , v 3 , v 5 } is a hull set of G. To prove this fact, first observe that I h [{v 1 , v 3 , v 5 }] ⊇ V (C 5 ). Moreover, since G is connected, and it has no induced P 5 and no triangle, we conclude that any vertex w ∈ V (G) \ V (C 5 ) has two non-adjacent neighbours in C 5 , and so w ∈ I h [{v 1 , v 3 , v 5 }]. Thus, if G has a dominating C 5 , we can test if there is a minimum hull set of size two in O(|V (G)| 2 |E(G)|). Otherwise, we have that hn(G) = 3 and {v 1 , v 3 , v 5 } is a minimum hull set of G.

If G has a dominating clique of size one, then G must be a star since it is triangle-free. Thus, hn(G) = |V (G)| -1.

Finally, if G has a dominating edge {u, v}, we claim that G is bipartite. Since G is triangle-free and {u, v} is a dominating edge, we have that N (u) and N (v) are stable sets and that N (u) ∩ N (v) = ∅. Thus, G is bipartite and, by Theorem 81, we can compute its hull number in linear time.

Considering all the cases, we have that either hn(G) 

Reduction Rules

In this section, we present three reduction rules to compute the hull number of a graph. We need to introduce some definitions.

Given a graph G, we say that two vertices v and v ′ are twins if N (v)\{v ′ } = N (v ′ )\{v}. If v and v ′ are adjacent, we call them true twins, otherwise we say that they are false twins.

Let G be a graph and v and v ′ be two of its vertices. The identification of v ′ into v is the operation that produces a graph G ′ such that V (G ′ ) = V (G) \ {v Lemma 82 (Rule 1). Let G be a graph and v and v ′ be non-simplicial and twin vertices. Let G ′ be obtained from G by the identification of v ′ into v. Then, hn(G) = hn(G ′ ). A scheme of this rule can be found in Figure 9.5.

Proof. Let u and w be two non-adjacent neighbours of v and thus also of v ′ in G. In order to show that hn(G) ≤ hn(G ′ ), let S be a minimum hull set of G ′ . Since G ′ is an isometric subgraph of G, V (G) \ {v ′ } ⊆ I h [S] by Lemma 65. Moreover, {v ′ } ⊆ I G [u, w], hence S is a hull set of G.

To prove that hn(G) ≥ hn(G ′ ), let S be a minimum hull set of G. We may assume that S does not contain both v and v ′ , because if there exists a minimum hull set containing both of them, then we can replace v and v ′ by u and w obtaining a hull set of same size, since v, v ′ ∈ I G [u, w].

Suppose first that v, v ′ / ∈ S. Let {x, y} = {v, v ′ } and let P be a shortest (x, y)-path. Observe that P cannot contain both v and v ′ . In case v ′ (resp. v) is contained in P , then one can replace it by v (resp. v ′ ) and obtain another shortest path, as v and v ′ have the same neighbourhood. In particular, this implies that the minimum k such that v ′ ∈ I Lemma 83 (Rule 2). Let G be a graph and v, v ′ , v ′′ be simplicial and pairwise false twin vertices. Let G ′ be obtained from G by the identification of v ′′ into v. Then, hn(G) = hn(G ′ ) + 1. A scheme of this rule can be found in Figure 9.6.

Proof. In order to show that hn(G) ≤ hn(G ′ )+1, observe that G ′ is an isometric subgraph of G and that v ′′ is simplicial. Consequently, any hull set S of G ′ is such that I h [S] = V (G) \ {v ′′ }, hence S ∪ {v ′′ } is a hull set of G, by Lemmas 63 and 65.

To show that hn(G) ≥ hn(G ′ ) + 1. Let S be a hull set for G and S ′ = S \ {v ′′ }. Since v, v ′ and v ′′ are simplicial, we know that {v, v ′ , v ′′ } ⊆ S. Any shortest (v ′′ , u)-path, with u ∈ V \ {v ′ , v ′′ } is still a shortest path if v ′′ is replaced by v ′ , so I[v ′′ , u] \ {v ′′ } = I[v ′ , u] \ {v ′ }. In the case of the shortest (v ′′ , v ′ )-path, replacing v ′′ by v is still a shortest path and I[v ′′ , v ′ ] \ {v ′′ } = I[v, v ′ ] \ {v}. Therefore I h [S ′ ] = I h [S] \ {v ′′ } and then S ′ is a hull set of G ′ .

Observe that we cannot simplify the statement of Lemma 83 to consider any pair of simplicial false twin vertices instead of triples. As an example, consider the graph obtained by removing an edge {u, v} from a complete graph with more than 3 vertices. Lemma 84 (Rule 3). Let G be a graph and v, v ′ be simplicial and true twin vertices. Let G ′ be obtained from G by the identification of v ′ into v. Then, hn(G) = hn(G ′ ) + 1. A scheme of this rule can be found in Figure 9.7.

Proof. In order to show that hn(G) ≤ hn(G ′ )+1, observe that G ′ is an isometric subgraph of G and that v ′ is simplicial. Let S be a hull set of G ′ . Then S ∪ {v ′ } is a hull set of G, by Lemmas 63 and 65. Now, we show that hn(G) ≥ hn(G ′ ) + 1. Let S be a hull set of G. Since v and v ′ are simplicial, by Lemma 63 we know that v, v ′ ∈ S. Observe that, for every w ∈ V (G ′ ), we have I G [v ′ , w] \ {v ′ } ⊆ I G ′ [v, w]. Thus, S \ {v ′ } is a hull set of G ′ and the result follows.

FPT-algorithm for the Hull Number

The neighbourhood diversity of a graph G = (V, E) is k, if its vertex set can be partitioned into k sets S 1 , . . . , S k , such that any pair of vertices u, v ∈ S i are twins. This parameter was proposed by Lampis [START_REF] Lampis | Algorithmic meta-theorems for restrictions of treewidth[END_REF], motivated by the fact that a graph of bounded vertex cover also has bounded neighbourhood diversity, and therefore the later parameter can be used to obtain more general results.

To see that a graph of bounded vertex cover has bounded neighbourhood diversity, let G be a graph that has a vertex cover S ⊆ V (G) of size k, and let I = V (G) \ S. Since S is a vertex cover, observe that I is an independent set. Therefore, vertices in I can be partitioned in at most 2 k sets (one for each possible subset of S), where each of these sets contains twin vertices, i.e. vertices having the same neighbourhood in S. Moreover, the vertices in S may be partitioned in k sets of singletons, what gives a partition of the vertices of the graph into k + 2 k sets of twin vertices. Then, the neighbourhood diversity of the graph is at most k + 2 k . Many problems have been shown to be FPT when the parameter is the neighbourhood diversity [Gan12]. Now, we use the concept of neighbourhood diversity to obtain the following result:

Theorem 85. Let G be a graph whose neighbourhood diversity is at most k. Then, there exists an FPT-algorithm that runs in O(4 k poly(|V (G)|))-time, where poly(x) = O(x q ) for some constant q, to compute hn(G).

Proof. Lampis proved that a neighbourhood partition of G can be constructed in time O(poly(|V (G)|)) [START_REF] Lampis | Algorithmic meta-theorems for restrictions of treewidth[END_REF]. Observe that each part is either an independent set of false twin vertices or a clique of true twin vertices. We now use Lemmas 82, 83 and 84 to reduce each of these parts to at most two vertices. First, in case there are parts of size greater than one consisting of non-simplicial vertices, we reduce these parts to a single vertex by the identification of its vertices. This procedure generates a graph G ′ whose hull number is equal to hn(G), by Lemma 82.

Observe that if a vertex is simplicial, then its part is composed of simplicial vertices. In the sequence, we reduce each part of size greater than two containing only independent simplicial false twins to two vertices, by applying Lemma 83. If c identifications are done in this procedure, then the hull number of the graph G ′′ obtained after this procedure is hn(G ′′ ) = hn(G ′ )c = hn(G)c.

Then, we reduce all the parts composed of pairwise adjacent simplicial true twins to one vertex, by applying Lemma 84. In the end of this procedure, we obtain a graph G ′′′ such that hn(G ′′′ ) = hn(G ′′ )-c ′ = hn(G)-c -c ′ , where c ′ is the number of identifications that were made in this last procedure.

Observe that G ′′′ has at most 2k vertices, since the neighbourhood partition is of size at most k and each part is reduced to at most two vertices. Finally, we can enumerate all the subsets of V (G ′′′ ) (there are at most 2 2k of them) and test for each of these sets whether it is a hull set. Hence, we obtain hn(G ′′′ ) and therefore hn(G).

Another consequence of this proof is to provide a kernelization algorithm and where G ′′′ is a kernel of linear size.

As pointed in Chapter 1, a graph of bounded vertex cover size has also bounded neighbourhood diversity, therefore the previous result also holds for this parameter, but without a linear kernel.

Hull Number of Lexicographic Product of Graphs

The reduction rules can also be applied the lexicographic product of graphs. More precisely, we use Lemma 82 and Lemma 84 to characterize the hull number of lexicographic product of two graphs. Let S(G) denote the set of simplicial vertices of G.

Observe that if G has a single vertex, then hn(G ⊙ H) = hn(H). Else, we have that:

Theorem 86. Let G be a connected graph, such that |V (G)| ≥ 2, and let H be an arbitrary graph. Then,

hn(G ⊙ H) =    2, if H is not complete; (|V (H)| -1)|S(G)| + hn(G), otherwise.
Proof. If H is not complete, since G is connected and it has at least two vertices, any two non-adjacent vertices in the same H-layer suffice to generate all the vertices of G ⊙ H.

We consider now that H is a complete graph on k vertices. First, observe that all the vertices in the same H-layer are all simplicial vertices or they are all non-simplicial vertices. Moreover, a vertex is simplicial in G if, and only if, its corresponding H-layer in G ⊙ H is composed of simplicial vertices.

First, we obtain from G ⊙ H a graph F by reducing each H-layer composed of nonsimplicial vertices to a single vertex. By Lemma 82, hn(G ⊙ H) = hn(F ). Then, we apply Lemma 84 to reduce each H-layer of simplicial vertices to a single vertex obtaining a graph F ′ . Observe that we have |V 

Hull Number via Two Connected Components

In this section, we introduce the generalized hull number of a graph. Let G = (V, E) be a graph and S ⊆ V . The generalized hull number, denoted by hn(G, S), is the minimum size of a set U ⊆ V \ S such that U ∪ S is a hull set for G. We prove that to compute the hull number of a graph, it is sufficient to compute the generalized hull number of its 2-connected components (or blocks). This extends a result in [START_REF] Everett | The hull number of a graph[END_REF].

Theorem 87. Let G be a graph and G 1 , . . . , G n be its 2-connected components. For any i ≤ n, let S i ⊆ V (G i ) be the set of cut-vertices of G in G i . Then, hn(G) = i≤n hn(G i , S i ).

Proof. Clearly, the result holds if n = 1, so we assume n > 1.

A block G i is called a leaf-block if |S i | = 1. Note that, for any leaf-block G i , G[V \ (V (G i ) \ S i )] is convex, so by Lemma 66, any hull set of G contains at least one vertex in V (G i ) \ S i . Moreover, for any minimum hull set S of G, S ∩ ( i≤n S i ) = ∅. To prove this fact, it is sufficient to observe that, for any cut-vertex v, there exist two vertices u and v in disjoint leaf-blocks such that v in a shortest (u, v)-path.

Claim 24. Let S be a hull set of G. Then S ′ = (S ∩ V (G i )) ∪ S i is a hull set of G i .

Claim 25. For purpose of contradiction, assume that I h [S ′ ] = V (G i )\X for some X = ∅. Then, there is v ∈ X ∩ I[a, b] for some a ∈ V (G) \ V (G i ) and b ∈ V (G) \ X. Then, there is a shortest (a, b)-path P containing v. Hence, there is u ∈ S i such that u is on the subpath of P between a and v. Moreover, let w = b if b ∈ G i , and else let w be a vertex of S i on the subpath of P between v and b. Hence, v ∈ I[u, w] ⊆ I h [S ′ ], a contradiction.

Let X be any minimum hull set of G. Since, X ∩ ( i≤n S i ) = ∅, hence we can partition X = i≤n X i such that X i ⊆ V (G i ) \ S i and X i ∩ X j = ∅ for any i = j. Moreover, by Claim 24, X i ∪ S i is a hull set of G i , i.e., |X i | ≥ hn(G i , S i ). Hence, hn(G) = |X| = i≤n |X i | ≥ i≤n hn(G i , S i ).

It remains to prove the reverse inequality. For any i ≤ n, let X i ⊆ V (G i )\S i such that X i ∪ S i is a hull set of G i and |X i | = hn(G i , S i ). We prove that S = ∪ i≤n X i is a hull set for G. Indeed, for any v ∈ S i , there are two leaf-blocks G 1 , G 2 such that v is on a shortest path between G 1 and G 2 or {v} = V (G 1 ) ∩ V (G 2 ). So, there exist x ∈ X 1 and y ∈ X 2 such that v is on a shortest (x, y)-path, i.e., v ∈ I[x, y] ⊆ I h [S]. Hence, i≤n S i ⊆ I h [S] and therefore,

V = i≤n I h [X i ∪ S i ] ⊆ I h [ i≤n (X i ∪ S i )] ⊆ I h [ i≤n (X i )] = I h [S].
A cactus G is a graph in which every pair of cycles have at most one common vertex. This definition implies that each block of G is either a cycle or an edge. By using the previous result, one may easily prove that: Corollary 8. In the class of cactus graphs, the hull number can be computed in linear time. It it important to remark that the second statement of Theorem 91 is closely related to a bound of Everett and Seidman proved in Theorem 9 of [START_REF] Everett | The hull number of a graph[END_REF]. However, the graphs they consider do not have simplicial vertices and, consequently, they do not have vertices of degree one, which is not a constraint for our result.

Conclusion

In this chapter, we simplified the reduction of Dourado et al. [DGK + 09] to answer a question they asked about the complexity of computing the hull number of bipartite graphs. Then, we presented polynomial-time algorithms for computing the hull number of co-bipartite graphs, (q, q -4)-graphs, cactus graphs and {P 5 , K 3 }-free graphs.

In particular, the complexity of the algorithm proposed to compute the hull number of any P 5 -free triangle-free graph is linear on the size of the input graph. However, the computational complexity of determining the hull number of a P 5 -free graph is still unknown. More generally, we propose the following open question: for a fixed k, what is the computational complexity of determining hn(G), for a P k -free graph G?

The algorithm presented in Section 9.4 is an FPT algorithm to compute the hull number of any graph where the parameter is the number of its induced P 4 's. Then, in Section 9.6, we introduced three reduction rules that we use to construct an FPT algorithm to compute the hull number of any graph, where the parameter is its neighbourhood diversity, and a characterization of the lexicographic product of any two graphs. However, the parameters of both of these algorithms do not seem to have a direct relationship with the hull number. Hence, we also propose the following question: given a graph G, is there an FPT algorithm to determine whether hn(G) ≤ k, for a fixed k?

Finally, in Section 9.8, we presented some upper bounds for the hull number of general graphs and for some graph classes. Albeit the proofs for the bounds proposed in this chapter use the same techniques as the ones in [START_REF] Dourado | On the hull number of triangle-free graphs[END_REF], they are not comparable between themselves.

Chapter 10 Conclusion

In this thesis, we studied three fundamental subjects in Graph Theory, namely, graph decompositions, pursuit-evasion games and convexity. In this chapter, we reiterate some important results of this thesis with a discussion about their shortcomings and perspectives of future work.

In Chapter 3, the first result presented was the monotonicity of the Process game. This property allowed us to design a directed graph decomposition, the Process decomposition, that is "equivalent" to the Process game. We proved that, for every directed graph G, if the directed path width of G is at most k, then there is a process decomposition ((W 1 , X 1 ), . . . , (W n , X n )) of G with width k such that every bag X i is a singleton. One consequence of this result is that, (W 1 ∪X 1 , . . . , W n ∪X n ) is a directed path decomposition of G with width at most k + 1. By consequence, the Process decomposition has a close relationship with the Directed Path Decomposition. This also means that, for every directed graph G, we have that dpw(G) -1 ≤ pw(G) ≤ dpw(G), once every path decomposition is a Process decomposition where bags inducing DAGs are empty. The DAG decompositions and the Directed path decomposition are related with the visible Directed Node Search and the invisible Directed Node Search respectively. Since visible Directed Node Search is not monotone, while invisible Directed Node Search is monotone, we wonder if the Process game is still monotone when the robber is visible. If it is, it could help us better understand what makes a directed graph searching game monotone.

In Chapter 4, we investigated the problem of computing several width measures of graphs. We proposed an FPT-algorithm with parameter k to decide if a graph has width at most k. This algorithm can be applied to several widths including the special tree width and the q-branched tree width for which no previous explicit algorithm was known. Since it can be used with any width, that can be represented in terms of partition functions and partitioning trees satisfying some restrictions explained in this chapter, we wonder if there are other width measures that can be computed by this algorithm. Furthermore, we also wonder if we could extend these results for directed graph decomposition, by having a common representation of different widths by some kind of directed partitioning tree.

The second part of this thesis focused on turn-by-turn pursuit-evasion games. In Chapter 6, we studied the cost of requiring connectivity on the Surveillance game, that is, we studied how big can be the difference between the connected surveillance number and the surveillance number. In despite of the fact that we have improved a previous result of Fomin et al. [FGJM + 12], by showing that there are graphs where this difference is of two, we were unable to construct any graph where this difference is at at least three. This leads us to believe that their conjecture of this difference being at most a constant is true. Moreover, we also showed the first upper bound, that is not trivial, for the cost of connectivity. That is, we showed that, for any graph G, csn(G) ≤ |V (G)| sn(G), which is still far from having a constant addictive factor.

In Chapter 6, we also defined the Online Surveillance game. In this game, the observer discovers the graph, on which the game is played, little-by-little, in an attempt to better model the web-page prefetching problem which originally motivated the Surveillance game. We show that there, for any k ∈ N, there exists a tree T k such that on(T k ) = O(∆) while sn(T k ) = 2. This is unfortunate for two reasons. The first one being that the best strategy for the observer, up to constant factors, is to simply mark the neighbourhood of the current vertex occupied by the surfer. The second one is that the difference between the Online surveillance number and the connected surveillance number might be arbitrarily large, since, in trees, the connected surveillance number is equal to the surveillance number. This implies that the Online Surveillance game is not a good candidate in order to study the cost of enforcing connectivity.

In Chapter 7, we studied fractional turn-by-turn pursuit-evasion games. We defined a framework for turn-by-turn pursuit-evasion games, in which tokens controlled by players can be split into fractions, that can model several turn-by-turn pursuit-evasion games. Based on this framework, we proposed an algorithm, that uses linear programming techniques, which decides if there is a winning strategy for the pursuer for any game modelled by this framework. On the bright side, several games such as the Cops and Robbers, Surveillance game, Angels problem, Eternal Dominating Set and Eternal Vertex Cover fit this framework and, thus, can be solved by our algorithm. However, the complexity of the algorithm proposed is exponential on the size of the input graph due to a step where we might create an exponential number of inequalities. Despite this, it seems that the number of redundant inequalities created in this step is rather large, implying that we might be able to construct a polynomial time algorithm with a closer analysis of how these inequalities are created.

In Chapter 7, we also showed that a fractional game's parameter is a lower bound for the correspondent integral game's parameter. Then, to answer how big can the gap be between these two parameters, we focused on particular turn-by-turn pursuit-evasion games. We showed that the number of fractional cops necessary to capture a fractional robber, in a number of turns linear on the number of vertices, is 1+ǫ, ǫ > 0. However, such strategy can only be applied if the robber has speed one, hence, it might be interesting to investigate the fractional Cops and Robbers when the robber has speed bigger than 1 in hopes that this might leads us to new insights into solving the Meyniel's conjecture for a faster robber. We also proved that winning strategies for fractional Surveillance game and for the fractional Angels problem game can be used to help the pursuer to win in the integral versions of these games.

Finally, the third part of this thesis was dedicated to the study of the hardness of computing the hull number in several graph classes. We first showed that the decision problem associated with the hull number of a bipartite graph is NP-complete, successfully answering an open question in [DGK + 09]. Additionally, we showed that there are polynomial time algorithms for computing the hull number of a co-bipartite graph, (q, q -4) graphs and {P 5 , K 3 }-free graph. The main technique used in the algorithms for co-bipartite graphs and for {P 5 , K 3 }-free graphs was to exclude some structure, either an edge or some vertices, and then decompose the remaining graph into connected components. We wonder if such approach might be useful when applied to other classes of graphs. On the other hand, the algorithm for (q, q -4)-graphs, which is a superclass of P 4 -sparse graphs, was mainly based on a dynamic programming approach guided by a modular decomposition of such graphs. Since all these algorithms use some kind of decomposition of the graph, we wonder if there is a more suitable decomposition for computing the hull number of graphs.

Another important result of Chapter 9 is an FPT-algorithm for computing the hull number of general graphs, where the parameter can be either the neighbourhood diversity or the minimum vertex cover number of the input graph. However, since these parameters do not seem to have a direct relation with the hull number, it would be interesting to have an FPT-algorithm for computing the hull number where the parameter is the hull number itself.

Future Work. In this thesis, we proposed several algorithms for solving different problems in the subjects of pursuit-evasion games, graph decompositions and convexity. Although the FPT-algorithm proposed for computing width measures of graphs might be impractical even for small parameters, we are interested in measuring the performance of the other algorithms proposed in this thesis in practice. We are also interested in investigating the monotonicity of a visible fugitive in the Process game. However, it is unlikely that this property holds, since the visible directed graph searching games studied in the literature lack this property. Finally, we aim at investigating the complexity of fractional turn-by-turn pursuit-evasion games. 

  is the subgraph induced by the edges E * .

Figure 2 . 1 :

 21 Figure 2.1: An example of tree decomposition of a graph. Vertices of the tree and its corresponding bag are represented by rectangles. Since each bag has size three, the width of this decomposition is two.
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 2 Figure 2.3: A graph and its branch decomposition. The width of each edge in this branch decomposition is two, hence the width of this decomposition is two.
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 24 Figure 2.4: The linear decomposition, defined by the ordering (a, b, c, d, e, f, g, i, j, k, l, m), of the graph in sub-figure (a) is represented by the branch decomposition shown in sub-figure (b).

  The cop in e moves to f, The robber cannot flee from f and its captured When moving from e to f, the robber cannot escape.

Figure 2 . 5 :

 25 Figure 2.5: This scheme shows how a robber in the Node Search game can be captured with the aid of a tree decomposition of the graph.

  there is a linear order on its children d 1 , . . . , d p such that for all 1 ≤ i ≤ p, j<i ( d j D u X u ). The width of (D, X , W) is max d∈V (D) |X d ∪ W d | and the Kelly width, kelly(G), of G is the minimum width over all Kelly decompositions of G.

Lemma 2 .

 2 Let D be a digraph. If mpr(D) ≤ k, then D admits a crusade with border k.

Theorem 5 .

 5 For any digraph D = (V, A): monpr(D) ≤ mpr( D) ≤ pr(D).

Figure 3 .

 3 Figure 3.1: A scheme of the Process Decomposition. Sets X i are disjoint with each inducing a DAG in the original graph. The sets W i behave in a similar manner as the bags in a directed path decomposition.

Figure 4

 4 Figure 4.1: A partitioning tree of {a, b, . . . , k, l} (a) and its corpse (b).

  Figure 4.2: labelled paths: contraction, extension and merging. The labels of first and last vertex are omitted, since they do not change with any operation.

  Figure 4.3: Scheme of Lemma 24.

  Figure 4.4 shows an example of paths P , Q, P c , Q c , a merging M c of P c and Q c and a merging M of P and Q that respects M c .

  extensions of P c and Q c M c : merging of P ce and Q ce under function + (a,a') ({a,b},b') (b, {b',c'}) (c,{b'c'}) (d,{b',c'}) (e,{b',c'}) ({e,f},c') ({e,f},d') (f,e') (g) M : merging of P and Q with function + respecting M c

Figure 4

 4 Figure 4.4: A representation of a merging of P and Q that respects the merging of its contractions. Only originators of vertices are shown to avoid overloading the figure. Note that, for each originator of a vertex of M c there is a vertex of M that has the same originator. Moreover, these originators appear in the same order in both paths M c and M .

  characteristic after contraction of paths, labels other than ℓ are omitted

Figure 4 . 5 :

 45 Figure 4.5: Partitioning tree (T, R, σ) of {a, b, . . . , l} and an execution of Char((T, R, σ), B) where B = {b, c, f }. Black nodes represent the branching nodes of T .

  steps 1 to 5 can be done in O(|T u |), for each possible execution of Step 1. Contracting a path P can be done in O(|P | 3 ), by taking all possible pairs of vertices and edges and verifying if a contraction operation can be done between them. Hence, step 5 can be executed in O(|T u | 3 ), for each possible execution of Step 1. Lastly, step 6 can be executed in O(|T u |), by traversing the tree T u in a bottom up order, for each possible execution of Step 1.
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 47 Figure 4.7: Scheme of proof of Lemma 35.
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 48 Figure 4.8: Scheme of proof of Lemma 37.
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 5 Figure 5.1: Example of a dismantable graph, with vertices numbered according to the ordering.
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 52 Figure 5.2: Example of cop-win graph that has no universal vertex. Conjecture 1. For every graph G of order n, cn(G) = O( √ n) and, for every n ∈ N * , there is a graph G of order n such that cn(G) = Ω( √ n).

  al. [FGK + 10] that, for all s ≥ 1, it is NP-hard to compute cn s (G) for a general graph G. Moreover, for a fixed value k and a general graph G of order n, deciding if cn(G) ≤ k, is W[2]-hard [FGK + 10]. It means that there are little chances of finding an algorithm with time complexity O(f (k)n O(1) ), where f (k) is a function depending only on the parameter k.

  Fomin et al. propose a 2-approximation algorithm with complexity O( √ nm), where n and m are the number of vertices and edges of the input graph respectively. It was also proposed in [FGG + 10] a FPT-algorithm to decide whether α m (G) ≤ k, with complexity O(2 O(k 2 ) + nm) where the parameter is k.
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 61 Figure 6.1: Graph Family Scheme. Here we show only one "layer" of the graph.

x

  Figure 6.2: Scheme of the graph family described in the proof of Theorem 47.

  36 and k ≥ 34. The case N [S] ∩ L ac = ∅ and L ab ∪ L bc ⊂ N [S] is similar and the case N [S] ∩ L ab = ∅ and L ac ∪ L bc ⊂ N [S] is also similar. 4. Consider S such that L ab ∪ L ac ∪ L bc ⊂ N [S]. We get that |S| ≥ 6 and N [S] ≤ x + 16 + 11k-21-2x 2 . Thus |N [S]-1| |S| ≤ 11k+9 12 ≤ k -1 because k ≥ 34.

Figure 6 . 3 :

 63 Figure 6.3: Tree T k described in the proof of Theorem 48.

  Figure 8.1 shows an example of a hull set of a graph G.

  Figure 8.1: Vertices in black represent a hull set of the graph.

  Figure 8.2 shows an example of a m-hull set of a graph G.

  Figure 8.2: Vertices in black represent a m-hull set of the graph.

  Figure 8.3 shows an example of a P 3 -hull set of a graph G.

  Figure 8.3: Vertices in black represent a P 3 -hull set of the graph.

  Moreover, it is easy to see that |V (H)| = O(m log m). The following claims are proved in [DGK + 09]. Claim 18. Let v, w ∈ V (T ) \ {r}. The closed interval of v, w in H contains the parents of v in T if and only if v and w are siblings in T . Claim 19. The set L is a minimal hull set of H.

  contradicting the maximality of |N (v B ) ∩ A ∩ C|. Whenever z ∈ B, one can use the same arguments to reach a contradiction on the maximality of |N (v A ) ∩ B ∩ C|. Since |S| + 1 ≤ hn(G) ≤ |S| + 4, S is included in any hull set of G and no vertices in U belong to some hull set, there exist a subset R of at most 4 vertices in C such that S ∪ R is a minimum hull set of G. There are O(|V | 4 ) subsets to be tested and, for each one, its convex hull can be computed in O(|V ||E|) time [DGK + 09]. This leads to the announced result.

Lemma 74 .

 74 Let G = (S, K, R, E) be a pseudo-spider with R neither empty nor a clique. Then any minimum hull set of G contains a minimum hull set of the subgraphG[K ∪ R]. Proof. Let H be a minimum hull set of G. Let H S = H ∩ S and H R = H \ H S . We prove that H R is a minimum hull set of G[K ∪ R]. Let H ′ be any minimum hull set of G[K ∪ R]. Note that H ′ ⊆ R because K is a set of universal vertices in G[K ∪ R] and by Lemma 64. Moreover, By Lemma 65, because G[K ∪ R] is an isometric subgraph of G, the convex hull of H ′ in G contains G[K ∪ R]. Hence, H S ∪ H ′ is a hull set of G and hn(G) ≤ |H S | + hn(G[K ∪ R]). Now it remains to prove that H R is a hull set of G[K ∪ R]. Clearly, if H R generate all vertices of R in G[K ∪ R] then H R is a hull set of G[K ∪ R]since there are at least two non adjacent vertices in R and any vertex in K is adjacent to all vertices in R. For purpose of contradiction, assumeH R does not generate R in G[K ∪ R].This means that there is a vertex v ∈ R, that is generated in G by a vertex in S ∪ K, i.e., v ∈ R is an internal vertex of a shortest path between s ∈ S ∪ K and some other vertex, which is not possible, since we have all the edges between K and R. Hence, hn(G[K ∪ R]) ≤ |H R |. Therefore, |H S | + |H R | = hn(G) ≤ |H S | + hn(G[K ∪ R]) ≤ |H S | + |H R |. So, hn(G[K ∪ R]) = |H R |, i.e., H R is a minimum hull set of G[K ∪ R] contained in H.

Figure 9

 9 Figure 9.2: Example of two dominating edges on a bipartite graph. Dominating edges are represented by thick edges.

Figure 9

 9 Figure 9.3: Example of two dominating edges on a bipartite graph that share one same endpoint. Dominating edges are represented by thick edges.

Figure 9 . 4 :

 94 Figure 9.4: Example of a bipartite graph with only one dominating edge. The dominating edge is represented by a thick edges. Two connected component of H are represented by colored edges.

  which belongs to C p , since C p is a connected component and C p ∩ W = ∅. However, since {u, v} is a dominating edge, either {q, p, u} or {q, p, v} is a shortest path in G and p should belong to I h [{w, z}], a contradiction. Therefore, |W | = k = hn(G).

For

  the next result, we mainly rely on the fact that the time complexity of finding the convex hull of a set of vertices S ⊆ V (G) of a graph G is O(|S||E(G)|), as described in [DGK + 09]. Corollary 7. If G is a P 5 -free triangle-free graph, then hn(G) can be computed in O(|V (G)| 3 |E(G)|).

  ≤ 3 or hn(G) = |V (G)| -1. Therefore, we can test in time O(|V (G)| 3 |E(G)|), for each subset of V (G) with at most 3 vertices, if it is a hull set for G. If there is no set S ⊆ V (G) with |S| ≤ 3 such that S is a hull set for G, then hn(G) = |V (G)| -1.

  ′ } and E(G ′ ) = (E(G) \ {{v ′ , w} | w ∈ N G (v ′ )}) ∪ {{v, w} | {v ′ , w} ∈ E(G) and w = v}.

Figure 9

 9 Figure 9.5: Twin vertices v and v ′ have their neighbourhood represented by the elipse. Vertices a and b are not adjacent. The vertex v ′ is identified into v after application of Rule 1.

Figure 9 . 6 :

 96 Figure 9.6: False twin vertices v, v ′ and v ′′ have their neighbourhood represented by the ellipse. The vertex v ′′ is identified into v after application of Rule 2.

Figure 9 . 7 :

 97 Figure 9.7: True twin vertices v and v ′ have their neighbourhood represented by the ellipse. The vertex v ′ is identified into v after application of Rule 3.

  (H)||S(G)| simplicial vertices in G ⊙ H and, thus, (|V (H)| -1)|S(G)| identifications are done in this procedure. Finally, since all the Hlayers were reduced to a single vertex, observe that F ′ is isomorphic to G and we have that hn(G ⊙ H) = hn(F ) = hn(F ′ ) + (|V (H)| -1)|S(G)| = hn(G) + (|V (H)| -1)|S(G)|.

Theorem 91 .

 91 Let G be a connected n-node graph with s simplicial vertices. All bounds below are tight:hn(G) ≤ max{1, s} + 3(n -max{1, s}) 5 ; If G is C 3 -free or k-regular (k ≥ 1), then hn(G) ≤ max{1, s} + n -max{1, s} 2 ;If G has girth at least 6, thenhn(G) ≤ max{1, s} + 1(n -max{1, s}) 3 .Proof. The first statement follows from Claim 26 and first statement in Lemma 90. The second statement follows from Claim 26 and Lemma 88 (the case where G is C 3 -free) and the second part of Lemma 90 (the case of regular graphs). The last statement follows from Claim 26 and Lemma 89. All bounds are reached in the case of complete graphs. In case with no simplicial vertices: the first bound is reached by the graph obtained by taking several disjoint C 5 and adding a universal vertex, the second bound is obtained for a C 5 , and the third one is reached by a C 7 . The first statement of the previous theorem improves another result in [ES85]: Corollary 9. If G is a graph with no simplicial vertex, then

Table 2 .

 2 1: Table showing relationships among graph width parameters. These are true for any simple graph G and any q ≥ 0.

  internal vertices of which are different from r • v and in T ′ s \ T • v , i.e. out s (t). For every vertex t in cp(T v ), branch v (t) = 1 if and only if branch u (t) = 1 or t is the parent-end of f and father u (t) = 1 (Step "creation of a new branching node" of Procedure IntroduceNode). That is, branch v (t) = 1 if and only if t is a branching node of cp(T • v ), i.e. branch v (t) = branch s (t). Now, for every vertex t in cp(T v )\{v top }, father v (t) = father u (t) and father v (v top ) = 1. In other words, father v (t) = 1 if and only if t is the parent of a non leaf node in T • v . Since, father u (t) = father s (t) for every vertex t ∈ cp(T u ), father v (t) = father s (t). Moreover, father s

  1 has complexity bounded by O(|T u |). Since the merging of two paths P and Q has size limited to O(|P ||Q|) by definition of merging, one execution of Step 2 takes at most O(|T u ||T w |) time. Steps 3 and 4, for each execution of Step 2, takes O(|T u ||T w |) time. Since contracting a path P can be done in O(|P | 3 ), by taking all possible pairs of vertices and edges verifying if a contraction operation can be done between them, Step 5 can be executed in O((|T u ||T w |) 3 ), for each execution of Step 2. Lastly, Step 6 can be executed in O(|T u ||T w |), for each execution of Step 2. For any pair of paths P and Q merged during step 2 (merging the paths), let p = max |P |, |Q|. Hence, there are at most O(p p ) different ways of merging P and Q. That is, for each edge of P there are at most |Q| edges in Q that is a possible match for P . Therefore, we can upper bound the amount of different possible executions of Step 2 by O

  H ∪M t induces a connected subgraph and |H ∩N (v t )| is maximum. Then, σ(v t , M t ) = H, i.e., the strategy marks √ kn new nodes in a connected way and, moreover, it marks as many unmarked nodes as possible among the neighbors of v t . In particular, if |N (v t ) \ M t | ≤ √ kn, then all neighbors of v t are marked after turn t + 1. By definition, σ is connected and marks at most √ kn nodes per turn. We need to show σ is winning.

Table 8 .

 8 1: Table comparing complexity of problems associated with monophonic and geodesic convexity on a graph G = (V, E) with |V | = n and |E| = m. The set S denotes any subset of V . u and v are vertices of V . The "X" can correspond to either Geodetic, Monophonic or P 3 -convexity depending on the column of the table.

	Problem	Geodetic	Monophonic	P 3 -Convexity
	Is S convex?	O(nm) [DGK + 09]	O(nm) [DPS10]	

  for every clause C j containing the positive literal of x i . Similarly, observe that b 5 i , c j ∈ I[b 1 i , u ′ ], for every clause C j containing the negative literal of x i . Since A satisfies F, it follows L ⊆ I h [S]. Therefore, H being an isometric subgraph of G(F), Lemma 65 and Claim 20 imply that V (H) ⊆ I h [S]. Furthermore, the shortest paths between r and u have length m, which implies that all vertices a 5 i , b 5 i , y j i (i ≤ n) and all vertices in D are included in I h [S]. It remains to observe that I h [a 5

i , b 5 i , w, u ′ ],

where w ∈ {a 1 i , b 1 i }, contains the variable subgraph of x i . Therefore we have that S is a hull set of G(F).

  v is not simplicial and has at least one neighbor in A. Hence, since U = ∅ or S b = ∅, u and v are at distance two. Consequently, P = {u, v i , v}. However, if v i ∈ A, v belongs to C i , because of the crossing edge {v i , v}, otherwise, u ∈ C i . In both cases we reach a contradiction. Now, two cases remain to be considered. We recall that U = ∅ or S B = ∅.1. If r ≥ 2, then hn(G) = |S| + r, and we can build a minimum convex hull by taking the vertices in S, one arbitrary vertex in A∩C i for all i < r and one arbitrary vertex in B ∩ C r .LetR = {v 1 , . . . , v r } such that v i ∈ C i ∩ A for any i < r and v r ∈ C r ∩ B.Proof. Since all vertices in U are generated by v 1 and v r (that are not adjacent, since they are in different components), it is sufficient to show that S ∪ R generates all the vertices in C i , for any i ∈ {1, . . . , r}. Actually, we show that R generates all the vertices in C i .By contradiction, suppose that there is a vertex z /∈ I h [R]. Let i ≤ r such that z ∈ C i .Because C i contains one vertex in R and is connected, we can choose z and w ∈ C i ∩ I h [R] linked by a crossing edge. We will show that z ∈ I h [R] (a contradiction), hence, w.l.o.g., we may assume that z

	Claim 23. S ∪ R is a hull set of G.

the edges were subdivided). Consequently, hn(IG(G)) ≤ hn(G). However, given a hull set S h of IG(G), one may find a hull set of G by simply replacing each vertex of S h that represents an edge of G by its neighbours (vertices of G). Thus, hn(G) ≤ 2 hn(IG(G)). and

  r = 1, then hn(G) ≤ |S| + 4, and any minimum convex hull contains at most 4 vertices not in S. Again, S is included in any hull set of G by Lemma 63, and no vertices in U belong to some hull set by Lemma 64. In this case, when H has just one connected component C 1 = C, one vertex of C may not suffice to generate this component, as in the previous case. However, we prove that at most 4 vertices in C are needed. a) If S A = ∅ and S B = ∅ (and thus U = ∅ because Claim 21 applies otherwise), then hn(G) = |S| + 1. By Claim 22, we know that hn(G) ≥ |S| + 1. Let v be an arbitrary vertex of C. We claim that S ∪ {v} is a minimum hull set of G. By contradiction, let z / ∈ I h [S ∪ {v}]. Since C is a connected component of H, we may choose z such that there is w

  there is v ∈ S A and as {v, w} / ∈ E(G) (because otherwise w would be universal in G and not in C), z is generated by v and w. Now suppose that z ∈ B, and now it has a neighbour w

A candidate key in a database is a set of attributes that can uniquely define a tuple of a table. They play an important role in the normalization process of a database.

A function f (x) is more than exponential in x, if f (x) = O(k x ) for any integer k.

A rooted directed tree T is a rooted tree such that every arc is directed from the root to the leaves of T .

A caterpillar is a 1-branched tree

A spelunker is someone who makes a hobby of exploring and studying caves.

Pursuit-Evasion Games and Decompositionsaforementioned graph decompositions, it can compute any width measure of a set that follows some restrictions further explained on Chapter 4.

A digraph D = (V, A) is symmetric if, for any (a, b) ∈ A, then (b, a) ∈ A.

A feedback vertex set is a set of vertices such that the result of their exclusion from the graph is a DAG.

For the definition of "respect" see "Merging of labelled Paths" in Section 4.4.

A graph G is dually chordal if, and only if, there is a spanning tree T of G, such that every maximal clique

Given a graph G, a set S ⊆ V (G) is said to be k-dominating if, for all v ∈ V \ S, |N (v) ∩ S| ≥ k.The k-domination number is the minimum cardinality of a k-dominating set in G.

An infinite diagonal grid is obtained through an infinite grid by adding edges between all vertices of a same face.

The pursuer is the observer, cops, devil or guards in the games mentioned in Chapters 5 and 6.

A function f (x) is more than exponential in x, if f (x) = O(k x ) for all k > 0.

Given a graph G, a set S ⊆ V (G) is k-dominating if, for every vertex v ∈ V (G) \ S, |N (v) ∩ S| ≥ k.1 A simple search for any vertex that is not on S, nor have two neighbours in S suffices.

This can be done by takingN [u] ∩ N [v], since I3[u, v] = N [u] ∩ N [v].

A cubic graph is such that every vertex has degree three.

Since G is bipartite, these vertices have degree one.

Acknowledgements

Part I

Pursuit-Evasion Games and Graph Decompositions

Let T ′ v be the smallest subtree of T • v the leaves of which map all elements of X v , and let r ′ v be the vertex in T ′ v that is closest to r • v . Similarly, let T ′ u be the smallest subtree of T • u the leaves of which map all elements of X u , and let r ′ u be the vertex in T ′ u that is closest to r • u . Note that, T ′ u and T ′ v are obtained in the first step of the procedure Char when applied to (T

For the remainder of this section, assume that V (T • v ) = {1, . . . , n}, where v leaf = n and v att = n -1. Then, from the definition of T

Moreover, from the Char procedure, V (T s ) ⊆ V (T • v ) and V (T u ) ⊆ V (T • u ) and, from the IntroduceNode procedure V (T v ) ⊆ V (T u ) ∪ {v leaf , v att }.

Claim 2. The sets K v and K s are the same, i.e. K v = K s .

By step 3 of the procedure Char, K s is the set of vertices that are leaves in (T ′ v , r ′ v ), parents of leaves, branching nodes of cp(T • v ) in V (T ′ v ), or branching nodes of (T ′ v , r ′ v ). T • v can be obtained from T • u by subdividing f • u and adding a new leaf v leaf adjacent to the new vertex v att and σ • v (v leaf ) = a, therefore T ′ v is obtained from T ′ u by subdividing f • u and adding a neighbor to the vertex created from the subdivision.

K s \ {v top } is composed by vertices that are leaves in (T ′ u , r ′ u ), or parents of leaves, or branching nodes of cp(T • u ) in V (T ′ u ), or branching nodes of (T ′ u , r ′ u ), or v att , or v leaf . In other words, K s \ {v top } = (K u ∪ {v att , v leaf }) \ {v top }.

There are 2 cases to consider: (1) v bottom is the unique child of v top in T u and father u (v top ) = 0; or (2) otherwise.

Case (1):

T u and father u (v top ) = 0, v top has only one child in T ′ u and it is not a branching node of T • u . From the construction of T • v , the only child of v top in T ′ v is v att which is not a leaf and v top is not a branching node of T • v . Hence, v top / ∈ K s . Therefore,

Case (2): either v top has more than one child in T u or father u (v top ) = 1. Then, K v = K u ∪ {v att , v leaf }, from step "creation of a new branching node" of IntroduceNode.

There are some sub-cases to consider:

• If v top has more than one child in T u , then v top is a branching node of (T ′ u , r ′ u ), hence v top ∈ K u . From the construction of

In both cases, we have

Claim 3. T v and T s are isomorphic and the labels of correspondent vertices of T v and T s are the same. That is, ℓ v (t v ) = ℓ s (t s ) for all internal vertex or edge t v of T v that has a corresponding vertex or edge t s in T s .

Case (3):

Let x and y be the vertices in K u such that the path P • u of T • u between x and y contains the edge f • u . It remains to prove that P v (x, v att ) = P s (x, v att ) and P v (v att , y) = P s (v att , y). Let C ′ u be obtained from C u by subdividing f resulting in new vertex v att . Moreover, let ℓ ′ u (v att ) = ℓ ′ u ({v top , v att }) = ℓ ′ u ({v att , v bottom }) = ℓ u (f ). From the procedure Intro-duceNode P v (x, v att ) is obtained from P ′ u (x, v att ) by applying the function F and then a contraction and P v (v att , y) is obtained from P ′ u (v att , y) by applying the function F and then a contraction. That is, P v (x, v att ) = Contr(F Φ,P (P ′ u (x, v att ))), where P is the partition of P is the partition of X v defined by vertices and edges in P v (x, v att ). Similarly, P v (v att , y) = Contr(F Φ,P ′ (P ′ u (v att , y))), where P ′ is the partition of X v defined by vertices and edges in P v (v att , y).

On the other hand, P s (x, v att ) is obtained by applying a contraction on the path from x to v att in T • v and P s (v att , y) is obtained by applying a contraction on the path from v att to y.

Let T ′′ u be the tree obtained from T • u by subdividing f • u resulting in new vertex v att , i.e. T ′′ u is the tree T • v without v leaf . Let P ′′ u (x, y) = P ′′ u (x, v att ) ⊙ P ′′ u (v att , y) be the path in T ′′ u between x and y. Then, y) has the same vertices as P ′′ u (x, y) but with different labels. Note that the partition of X v defined by the vertices and edges in P • v (x, v att ) is the same as the one defined by P v (x, v att ), that is, P. Similarly, the partition of X v defined by the vertices and edges in P • v (v att , y) is the same as the one defined by P v (v att , y), that is, P ′ . From the fact that the fact Φ is compatible with (D, X ), we have that P • v (x, v att ) = F Φ,P (P ′′ u (x, v att )) and that P • v (v att , y) = F Φ,P ′ (P ′′ u (v att , y)). Therefore, P s (x, v att ) = Contr(P • v (x, v att )) = Contr(F Φ,P (P ′′ u (x, v att ))) and P s (v att , y) = Contr(P • v (v att , y)) = Contr(F Φ,P ′ (P ′′ u (v att , y))). Then, taking all these inequalities, we have that:

Note that P ′ u (x, y) = Contr(P ′′ u (x, y)), then by Lemma 24:

Since K v = K s (Claim 2, and, in all cases, for each x, y ∈ K s , P v (x, y) = P s (x, y), we have that T v is isomorphic to T s and that ℓ v and ℓ s are equivalent, that is, correspondent vertices and edges in T v and T s have the same label.

By procedure IntroduceNode, dist v receives the value of dist u , i.e. the number of branching nodes in T • u between r • u and r ′ u . We have that dist u is the number of branching nodes in

From the induction hypothesis, there is

u). Then, there are three cases to consider: (1)

Cases (1) and (2): Then, v att is a vertex of T u , i.e. during the Step 6 of Char((T • u , r • u , σ • u ), X u ) the vertex v att does not suffer a contraction operation. Consider the execution of case 1 of procedure IntroduceNode on C u , where v leaf is added as a neighbor to v att , to obtain C v . In other words, T v can be obtained from T u by adding a vertex v leaf as a neighbor of v att . Hence, from the step "update of labels of vertices and edges" of IntroduceNode procedure and the fact that Φ is compatible with (D, X ), the labels ℓ v of C v obtained from the labels ℓ u of C u are such that for any internal vertex (or edge) t in T v :

Where T t and A t are the partitions of X v and A v defined by t respectively. From the Step "update of labels of new vertex(s) and edge(s)" of IntroduceNode procedure

We need to show that in step "update of FSC k,q (v)" we add

we have that brheight(r v ) ≤ q and that, for all internal vertices (or edges) t of T v , ℓ v (t) ≤ k (Lemma 27). Hence, during step "update of FSC k,q (v)" we have that C v is inserted into FSC k,q (v).

Case (3):

The vertex v att does not belong to K u nor has a representative on C u . This means that v att is contracted during the operation Char((

x, y) be the path between x and y in T ′ u (the subtree of T • u spanning leaves mapping elements of X u ) such that v att ∈ V (P ′ u (x, y)) and x, y ∈ K u . In other words, in Step 6 of Char((T • u , r • u , σ • u ), X u ) to obtain C u during the contraction of P ′ u (x, y) we have that v att is removed with a contraction operation. Let P u (x, y) = Contr(P ′ u (x, y)), i.e. the path in C u resulting from the contraction of P ′ u (x, y). Thus, there are vertices x ′ and y ′ in V (P u (x, y)) such that v att is an internal node of P ′ u (x ′ , y ′ ) and {x ′ , y ′ } is an edge of P u (x, y). In other words, v att is removed either by a contraction between {x ′ , y ′ } and x ′ or by a contraction between {x ′ , y ′ } and y ′ .

We want to show that C v , obtained through an execution of case 2 of IntroduceNode on C u where the edge {x ′ , y ′ } is subdivided, is such that

Consider the execution of procedure IntroduceNode on C u by applying case 2 on the edge {x ′ , y ′ }. In this execution of IntroduceNode, T v is obtained from T u by subdividing {x ′ , y ′ } creating a vertex v att and adding v leaf , mapping a, as a neighbor of v att .

Using the same argument as in "proof of cases (1) and (2)" we have that for any internal vertex (or edge) t in T v , ℓ v (t) = Φ Av (A t ) where A t is the partition of A v defined by t.

We need to show that in step "update of FSC k,q (v)" we add

) is q-branched and its Φ-width is not bigger than k and

, we have that brheight(r v ) ≤ q and that, for all internal vertices (or edges) t of T v , ℓ v (t) ≤ k (Lemma 27). Hence, during step "update of FSC k,q (v)" we have that C v is inserted into FSC k,q (v).

Lemma 35. ForgetNode computes a full set of (k, q)-characteristics of A v restricted to X v .

Proof. Let (T • , r • , σ • ) be any q-branched partitioning tree for A u with Φ-width at most k. Since A v = A u , we have that (T • , r • , σ • ) is a q-branched partitioning tree for A u with Φ-width at most k if an only if it is also a q-branched partitioning tree for A v with Φ-width at most k.

Since FSC k,q (u) is a full set of (k, q)-characteristics for A u restricted to X u , we have that there exists C u ∈ FSC k,q (u) which is a (k, q)-characteristic of (T • , r • , σ • ) restricted to X u . In other words, C u = Char((T • , r • , σ • ), X u ). Let C v be obtained through procedure ForgetNode when applied to C u , by removing the path P u (v leaf , v att ) from T u , where v leaf is the leaf of T u mapping a.

We want to show that

v). Since step "updating FSC k,q (v)" from procedure, we have that

In order to do that, let

To prove that C v = C s , we must introduce some notation. Let T ′ u (resp. T ′ v ) be the minimum subtree of T • that contains all leaves that maps elements of X u (resp. X v ).

From the Char procedure, we have that T u is a path if and only if

where T s is a single vertex. On the other hand, from the step "preparation" of procedure ForgetNode, if T u is a path, we have that T v is also a single vertex. Hence, it is easy to see that when T ′ v is a single vertex C v = C s . Therefore, assume that T ′ u is not a path and let v att ∈ T ′ u be the vertex with degree at least three that is closest to v leaf , the vertex mapping a.

For the remainder of this section, assume that V (T • ) = {1, . . . , n}. From the Char procedure, V (T s ) ⊆ V (T • ) and V (T u ) ⊆ V (T • ) and, from the ForgetNode procedure

Claim 6. The sets K v and K s are the same, i.e., K s = K v .

Let T ′ v be the minimum subtree of T • that contains all leaves that maps elements of

), or a branching node of (T ′ u , r ′ u ). Therefore, since T ′ v is a subtree of T ′ u and all leaves in T ′ v are leaves in T ′ u we have that K s ⊆ K u . Moreover, T ′ v is the tree obtained from T ′ u by removing the vertex v leaf and all internal vertices of P (v leaf , v att ), a path between v leaf and v att in T ′ u . Hence,

There are two cases to consider:

Case (1): Assume that the vertex v att does not belong to K s . That is, K s = K u \ V (P (v leaf , v att )). Then, v att is not the parent of a leaf in T ′ v , nor a branching node of cp(T • ), nor a branching node of (T ′ v , r ′ v ). Since, v att is not the parent of a leaf in

, where σ u is the restriction of σ v over A u , is a q-branched partitioning tree with Φ width at most k for A u and (T • w , r • w , σ w ), where σ w is the restriction of σ v over A w , is a q-branched partitioning tree with Φ width at most k for A w .

Let

w , σ w ) are q-branched and with Φ width at most k, we have that C u ∈ FSC k,q (u) and C w ∈ FSC k,q (w). We want to show that there is an execution of procedure JoinNode on C u and C w generating

In order to do that, we must first show that Struct(C u ) and Struct(C w ) are isomorph and that either dist u = 0 or dist w = 0.

Claim 10. Procedure JoinNode can be applied to C u and C w . That is, Struct(C u ) and Struct(C w ) are isomorph and either dist u = 0 or dist w = 0.

From the fact that X v = X u = X w , we have that, in the first step of Char((

We need to show that Struct(C u ) and Struct(C w ) are isomorph. From the definition of structure, Struct(C u ) is obtained from (Sk(C u ), r u , σ u ) by taking contracting all vertices of degree two that are different from the root from Sk(C u ). On the other hand, Sk(C u ) is the tree obtained from T u by contracting all vertices that are not in K u . Let Struct(C u ) = (T r u , r u , σ u ) and Struct(C u ) = (T r w , r w , σ w ), where T r u and T r w are the trees obtained by contracting all vertices of degree two different from the root (r u and r w respectively) from Sk(C u ) and Sk(C w ) respectively.

Since,

v cannot be contracted, since they have degree one, in order to obtain T r u and T r w . In other words, if x is a leaf of T ′ v we have that x ∈ T r u and x ∈ T r w . Therefore, from the step one of Char procedure we have that, for any leaf

. Now we only need to show that the trees T r u and T r w are isomorph. In fact, we shall show that T r u = T r w . Note that, from the steps one and six of the Char procedure, T u (resp. T w ) is obtained from T ′ v by applying some contraction operations on vertices that are not in K u (resp. K w ), since they have degree two this is well defined. On the other hand, Sk(C u ) (resp. Sk(C w )) is the tree obtained from T u by contracting all vertices with degree two that are not in K u (resp. K w ). Hence, Sk(C u ) (resp. Sk(C w )) can be obtained from T ′ v by contracting all vertices that are not in K u (resp. K w ). Then, T r u (resp. T r v ) is obtained from Sk(C u ) (resp. Sk(C w )) by contracting all vertices of degree two which are different from the root r u = r ′ v (resp. r w = r ′ v ). Since, both T r u and T r w are obtained from T ′ v by contracting some vertices with degree two, we only need to show that the same vertices of T ′ v are contracted to obtain T r u and T r v . That is, we only need to show that V (T r u ) = V (T r v ). In order to do that consider the

Hence, following the same reasoning in Case (3), we have that x v is obtained through the merging (or matching) of x u / ∈ K u and x w / ∈ K w . Therefore, from step "update of

Considering the previous claims, we only need to prove the following claim in order to show that

For all leaves x s ∈ V (T s ) we have that σ(x v ) = σ(x s ). For all vertices x s ∈ V (cp(T s )) we have that:

From step "identifying the structures" we have that dist

). On the one hand, we have that, from the fact that

Therefore, x v is obtained through the identification of

Then, during step "update of labels" of procedure JoinNode, σ v (x v ) is set to be σ u (x u = x s ). Hence, we get the result. That is, for every leaf x s ∈ V (T s ) we have that σ(x v ) = σ(x s ). Let x s be a vertex of cp(T s ). That is, x s is an internal vertex of T s . Let x v be its correspondent vertex in T v with x u and x w being the vertices of T u and T w used to create x v . In other words, x v is obtained from the merging of x u and x w or from the identification of x u with x w .

In C s , out s (x s ) is the maximum number of branching nodes in a path of T • v between x s and a leaf in

with no internal vertices belonging to V (T ′ v ). Then, let P (x s , l) be any path of T • v between x s and a leaf in

such that the number of branching nodes in this path is maximum and with no internal vertex of P (x s , l) belonging to T ′ v . We have that

) is a path of T • u that starts in x s does not pass through any vertex in T ′ v and ends in l, otherwise P (x s , l) is a path of T • w that starts in x s does not pass through any vertex in

Moreover, for all leaves l ∈ V (T

Similarly, for all leaves l ∈ V (T • u ) \ V (T ′ v ), the paths P (x s , l) in T • u such that P (x s , l) has no internal vertex in T ′ v are all paths in T • v that do not pass through any vertex in T ′ v . Hence, out w (x w ) ≤ out s (x s ). Therefore, from step "update of labels", we have that

x s has exactly one non leaf child in T • u and exactly one non leaf child in T • w .

Case 1:

To obtain T v we merge the paths in T u and T w in such a way that each path merged is respected by the corresponding path in T ′ v . Hence, x v is obtained through the merging of x u = x s and x w . Since, from Char((T

Case 2: Similar to case (1), by exchanging the roles of x u and x w , and thus omitted.

Case 3: If x s has exactly one non leaf child in T •

u and exactly one non leaf child in T • w . Therefore, by the Char procedure, we have that father u (x s = x u ) = 1 and father w (x s = x w ) = 1. Then, we have that father u (x u ) = 1 and father w (x w ) =

To show that maxf is compatible with (D, X ) we have to show that there are function F maxf and H maxf that play the same role as

Hence, for any bipartition P of A, the function F maxf takes the same value as F f and the function H maxf takes the same value as H f .

To show how to compute F maxf , during the processing of an introduce node v ∈ D with child u with A v \ A u = {a}, consider the step "update of labels of vertex(s) and edge(s)" of procedure IntroduceNode when applied to a characteristic

e ) be the partition of X v (A v ) that it defines. Similarly, for each vertex t of T v let T t (T • t ) be the partition of X v (A v ) that it defines. Since an edge of T v defines a bipartition of A v , we can update the labels of edges in T v using F f , i.e. we apply the instruction "ℓ v (e) ← F f (ℓ u (e), T e , a)" to edges of T v . After this instruction, ℓ v (e) = F f (ℓ u (e), T e , a) = F maxf (ℓ u (e), T e , a) = maxf (T • e ) for all edges of T v .

For each internal vertex t of T v , let E t be the set of edges incident to t in T v and let E • t be the set of edges incident to t in T • v . Assume, by induction, that ℓ u (t) = maxf (T • t ∩A u ). From the fact that T • v is a partitioning tree of A v , we have that

} and, from the definition of maxf , we have maxf (T • t ) = max

. Therefore, F maxf (maxf Au (t), T t , a) = F maxf (ℓ u (t), T t , a) and F maxf (ℓ u (t), T t , a) = max{ℓ u (t), max e∈Et ℓ v (e)}. Since the degree of t in T v is bounded by k ′ , F maxf can be computed in constant time.

To show how to compute H maxf , consider the step "merging the paths" of procedure JoinNode when applied to characteristics

be the partitioning tree for A v obtained from the "merging" of (T

), a partitioning tree for A w . For each edge e of T v let T e (T • e ) be the partition of X v (A v ) that it defines. Similarly, for each vertex t of T v let T t (T • t ) be the partition of X v (A v ) that it defines. Assume by induction that for any edge e of T u (T w ) we have ℓ u (e) = maxf (T • e ∩ A u ) (ℓ w (e) = maxf (T • e ∩ A w )) and that for any vertex t of T u (T w ) we have

). Let P u (x, y) be a path of C u that is merged with a path P w (x, y) of C w obtaining P v (x, y). Let P ′ u (x, y) and P ′ w (x, y) be the extensions used in the merging. We set ℓ v (e) = H f (ℓ u (e), ℓ v (e), T e ) to any edge of P v (x, y). From the fact that e defines a bipartition of A v , we have ℓ v (e) = maxf (T • e ).

Part II

Turn-By-Turn Pursuit-Evasion Games

Chapter 7

Fractional Turn-by-Turn Pursuit-Evasion Games

In this chapter, we propose a framework that models several turn-by-turn pursuit-evasion games. This framework, based on linear programming techniques, can be used to define fractional versions of these games. In a fractional version of a pursuit-evasion game, we allow players to play using fractions of tokens. For example, in the fractional version of the Cops and Robbers game, both cops and robbers can be split into fractions. That is, a vertex might be occupied by one third of a cop while another vertex might be occupied by two thirds of a cop. We also propose an algorithm, that can be used with any game fitting in this framework, to decide if the pursuer 1 has a winning strategy.

Description of a Turn-by-Turn Pursuit-Evasion Game

In this section, we present a general game that two players, denoted by C (the pursuer) and R (the evader), play on a directed graph G = (V, E) with n ∈ N nodes. Let V = {1, . . . , n}.

In order to formally describe a fractional turn-by-turn pursuit-evasion game, or simply combinatorial game, we need to introduce some notation. For any vector x ∈ R n and for any 1 ≤ i ≤ n, let x i be the i th coordinate of x, i.e., x = (x 1 , . . . , x n ). The concatenation of two vectors x, y ∈ R n is denoted by (x, y) = (x 1 , . . . , x n , y 1 , . . . , y n ) ∈ R 2n . The sum of two vectors x, y ∈ R n is denoted by x+y = (x 1 +y 1 , . . . , x n +y n ) ∈ R n . More generally, the (Minkowski) sum of two subsets A, B ⊆ R n is denoted by

The game involves two players, C and R, that play alternatively on an n-node graph. A configuration of the game is represented by a vector (c, r) ∈ R 2n + where c and r belong to R n + . Intuitively, the i th coordinate of c (resp., of r) represents the amount of tokens of player C (resp., of player R) on the node v i ∈ V (G), 1 ≤ i ≤ n. When it is its turn, one player can perform a move, that is, it can modify the current configuration of the game by following some rules described below. Given a configuration (c, r) ∈ R 2n + , player C (resp., of player R) can only modify c (resp., r).

Before formally describing the game, we introduce some definitions. The moves of the players will be defined by the following operators. in C t in the fractional game, i.e., in one (fractional) move. Let R sf t ⊆ V ∩ (R n × N n ) be the set of configurations from which player R can only enter in C sf t in the semi-fractional game, i.e., in one integral move.

Given X ⊆ R 2n , let CH(X) be the convex hull of X. We prove by induction on t that, for any 1 ≤ t ≤ F , C t = CH(C sf t ) and R t = CH(R sf t ). Let t ≥ 0, and assume for purpose of induction that R t = CH(R sf t ). This is true for t = 0 by definition and because the vertices of W C have integral coordinates. By a proof as the one of Lemma 49, Let t > 0, and assume for purpose of induction that C t = CH(C sf t ). This is true for t = 1 by above paragraph. By the same proof as the one of Lemmas 49 and 51,

The proof is then the similar as the one of Lemma 52. Recall that C t = {x ∈ R 2n + | Am ≤ b}, and A i = (a i,1 , . . . , a i,n ) where (z i,1 , . . . , z i,n , a i,1 , . . . , a i,n ) be the i th row of A, for any 1 ≤ i ≤ ℓ.

Note first that, because the vertices of

as defined in the proof of Lemma 52.

By the same proof as the one of Lemma 52, it can be proved that

. This is easy to conclude because I ⊆ R n × N n .

Applications in Combinatorial Games

In this section, we discuss how to model some of the turn-by-turn pursuit-evasion games mentioned in this thesis with the framework given in Section 7.1. Moreover, based on the fractional game we show how to construct strategies for the Angel Problem and the Surveillance game that are winning with high probability and are at most a factor of log n from the fractional strategy, where n is the order of the graph. On the other hand, for the fractional Cops and Robbers game we show that 1 + ǫ, ǫ > 0, cops are enough to capture the robber.

Cops and Robbers

The classical Cops and Robbers game fits our framework. Indeed, consider the Cops and Robbers game played with k > 0 cops on a graph G = (V, E) of order n. This game can be defined using the following sets:

Surveillance Game

The classical Surveillance game also fits our framework. Consider an observer that can mark at most k vertices at each turn and assume that the game is played on a graph G = (V, E) with V = {1, . . . , n} where the initial vertex is vertex 1. Then, the fractional Surveillance game can be defined with the help of the following sets:

The set I guarantees that the only possible initial state is the one where the initial vertex is completely marked and the surfer is entirely contained in it. The surfer does

The cartesian product, G×H, of G and H is the graph whose vertex set is V (G×H) = V (G) × V (H) and such that two vertices (g 1 , h 1 ) and (g 2 , h 2 ) are adjacent if, and only if, either g 1 = g 2 and {h 1 , h 2 } ∈ E(H); or h 1 = h 2 and {g 1 , g 2 } ∈ E(G).

Finally, the strong product, G ⊠ H, of G and H is the graph whose vertex set is V (G ⊠ H) = V (G) × V (H) and such that two vertices (g 1 , h 1 ) and (g 2 , h 2 ) are adjacent if, and only if, {g 1 , g 2 } ∈ E(G) or g 1 = g 2 ; and {h 1 , h 2 } ∈ E(H) or h 1 = h 2 .

In [START_REF] Canoy | Convex sets under some graph operations[END_REF], it was proved that if G is a connected graph of order n and m ≥ 1, then con geo (G ⊙ K m ) = mn -1 if, and only if, 1 ≤ n ≤ 2; or n ≥ 3 and G has a simplicial vertex. Canoy Jr. and Garces also showed that the geodesic convexity number of the cartesian product of two graphs can be fully characterized with the following theorem.

Theorem 59 ([CJG02]

). If G and H are two connected graphs, then:

In [START_REF] Cagaanan | On the hull sets and hull number of the cartesian product of graphs[END_REF], a full characterization of the hull number of cartesian products of graphs was proposed.

Theorem 60 ([CCJ04]

). If G and H are two connected graphs, then:

Then, in [START_REF] Brešar | On the geodetic number and related metric sets in cartesian product graphs[END_REF], a full characterization of the geodetic number of cartesian products of graphs was given.

Theorem 61 ([BKT08]

). If G and H are two connected graphs, then:

Let G and H be graphs with at least two vertices and Y be any proper subset of the vertices of the lexicographic product of G and H with the restriction that Y does not induce a complete graph. In [ACKP12], Anand et al. showed a set of conditions that are necessary and sufficient to decide if Y is (geodesic) convex or monophonic convex.

In [CHM + 10], Cáceres et al. studied the geodetic number and hull number of strong product of graphs. Let G and H be two graphs. A first result shows that if

and I[S H ] = V (H). Another result states that:

Theorem 62 ([CHM + 10]). For any two graphs G and H we have that:

Furthermore, both bounds are sharp.

Moreover, if G has no simplicial vertices then hn(G ⊠ H) ≤ hn(G). This last bound is also sharp.

We refer to [START_REF] Brešar | Geodetic sets in graphs[END_REF] and [START_REF] Changat | Convexities related to path properties on graphs[END_REF] for surveys on path convexities of graphs and related concepts. convex set that contains S.

We say that a vertex v is generated by a set of vertices

The size of a minimum hull set of G is the hull number of G, denoted by hn(G) [START_REF] Everett | The hull number of a graph[END_REF].

The rest of this section is devoted to basic lemmas on hull sets. These lemmas will serve as cornerstone of most of the results presented in this chapter.

Lemma 63 ([ES85]

). For any hull set S of a graph G, S contains all simplicial vertices of G.

Lemma 63 shows us that a simple lower bound for the hull number of a graph is the number of its simplicial vertices. Simplicial vertices must be on every hull set, since their neighbourhood is complete. It occurs because of, the shortest path between any two vertices of the graph does not have any internal vertex that is simplicial.

Lemma 64 ([DGK + 09]). Let G be a graph which is not complete. No hull set of G with cardinality hn(G) contains a universal vertex.

Lemma 64 allows us to disconsider universal vertices when trying to build a hull set a graph, unless it is complete. Since the only hull set of a complete graph is its set of vertices, this lemma provides us an useful tool to disconsider unnecessary vertices.

Lemma 65 ([DGK + 09]). Let G be a graph, H be an isometric subgraph of G and S be any hull set of H. Then, the convex hull of S in G contains V (H).

Lemma 65 provides us a tool to understand the behaviour of convex hulls when considering some particular subgraphs. This, sometimes, allows us to combine hull sets for subgraphs in order to obtain a hull set for the whole graph.

Lemma 66 ([DGK + 09]). Let G be a graph and S a proper and non-empty subset of V (G). If V (G) \ S is convex, then every hull set of G contains at least one vertex of S.

Lemma 66 can be seen as a generalization of Lemma 63, since for any simplicial vertex v ∈ V (G) the set V (G) \ {v} is convex. The proof and usefulness of Lemma 66 is similar to the one of Lemma 63. We choose to keep both lemmas in order to simplify some of proofs found in this chapter. Proof. To prove this theorem, we adapt the proof presented in [DGK + 09]. We reduce the 3-SATisfiability Problem to the problem of computing the hull number of a bipartite graph. Let us consider the following instance of 3-SAT. Given a formula in the conjunctive normal form, let F = {C 1 , C 2 , . . . , C m } be the set of its 3-clauses and X = {x 1 , x 2 , . . . , x n } Corollary 5. If there exists a k-approximation algorithm B to compute the hull number of bipartite graphs, then B is a 2k-approximation algorithm for any graph.

Bipartite Graphs

Complement of Bipartite Graphs

A graph G = (V, E) is a complement of a bipartite graph if there is a partition V = A ∪ B such that A and B are cliques. In this section, we give a polynomial-time algorithm to compute a hull set of G with size hn(G). We start with some notation.

Given the partition (A, B) of V , we say that an edge {u, v} ∈ E is a crossing-edge if u ∈ A and v ∈ B. Denote by S the set of simplicial vertices of G. Let S A = S ∩ A and by S B = S ∩ B. Let U be the set of universal vertices of G. Note that, if G is not a clique, U ∩ S = ∅. Let H be the graph obtained from G by removing the vertices in S and U , and removing the edges intra-clique, i.e., V (H) = V \ (U ∪ S) and

denote the set of connected components C i of H. Observe that, if G is neither one clique nor the disjoint union of A and B, H is not empty and each connected component C i has at least two vertices, for every i ∈ {1, . . . , r}. Indeed, any vertex in A \ S A (resp., in

Theorem 71. Let G = (A ∪ B, E) be the complement of a bipartite n-node graph. There is an algorithm that computes hn(G) and a hull set of this size in time O(n 7 ).

Proof. We use the notations defined above. Recall that, by Lemma 63, S is contained in any hull set of G. In particular, if G is a clique or G is the disjoint union of two cliques A and B, then hn(G) = n. From now on, we assume it is not the case. By Lemma 64, no vertices in U belong to any minimal hull set of G. Now, several cases have to be considered. Proof. Since G has no universal vertex, a simplicial vertex in S A (in S B ) has no neighbour in B (resp., in A). Since G is not the disjoint union of two cliques, every vertex u ∈ A\S A has a neighbour v ∈ B \ S B and vice-versa. Thus, {s a , u, v, s b } is a shortest (s a , s b )-path, for any s a ∈ A and s b ∈ B, and then u, v ∈ I h [S].

Hence, from now on, let us assume that U = ∅ or, w.l.o.g., S B = ∅. Again, if there is some simplicial vertex in G, i.e., if S A = ∅, all the vertices of S belong to any hull set of G and thus hn(G) ≥ |S|. In fact, for each connected component of H, we prove that it is necessary to choose at least one of its vertices to be part of any hull set of G.

Proof. Again, all vertices of S belong to any hull set of G. We show that, for any 1 ≤ i ≤ r, V \ C i is a convex set. Thus, by Lemma 66, any hull set of G contains at least one vertex of C i for any i ≤ r.

It is sufficient to show that no pair u, v ∈ V (G) \ C i can generate a vertex v i of C i . By contradiction, suppose that there exists a pair of vertices u, v ∈ V (G) \ C i such that there is a shortest (u, v)-path P containing a vertex v i of C i . Consequently, u and v must not be adjacent and we consider that u ∈ A and v ∈ B. If U = ∅, then, w.l.o.g., S B = ∅ Finally, if G v has at most q vertices, H v and H * v can be computed in time O(2 q ) by an exhaustive search. Now, let v be an internal node of T (G) with children u and w.

Proof. The fact that H u ∪H w is an optimal hull set for G v is trivial. The second part comes from the fact that H * u (resp., H * w ) is an isometric subgraph of H * v and from Lemma 65. Now, we consider the case when v is a series node.

). If G u and G w are both not complete, let x, y be any two non adjacent vertices in G u . Then, we claim that

x and y generate all vertices in V (G w ) (resp., of G * w ). In particular, two non adjacent vertices z, r ∈ V (G w ) are generated. Symmetrically, z, r generate all vertices in V (G u ) (resp., in V (G * u )). Without loss of generality, we suppose now that G u is a complete graph and that G w is a non-complete (q, q -4)-graph. First, observe that no vertex of G u belongs to any minimum hull set of G v , since they are universal (Lemma 64). Note also that, by Lemma 75 and since G v is not a clique and has universal vertices, we can make

Hence, in what follows, we consider only the computation of H v . Let us consider all possible cases for w in T (G).

• w is a series node. G w is the join of two graphs. We claim that H v = H w .

In this case, the graph G w is an isometric subgraph of G v . Thus, by Lemma 65, any minimum hull set of G w generates all vertices of V (G w ) in G v . Finally, since G w has two non-adjacent vertices they generate all vertices of G u in G v .

• w is a parallel node. G w is the disjoint union of two graphs. Let x and y be the children of

Clearly, if G x (resp., G y ) is a clique, all its vertices are simplicial in G v and then must be contained in any hull set by Lemma 63. Moreover, recall that, by Lemma 64, no vertex of G u belongs to any minimum hull set of G. Now, let z ∈ {x, y} such that G z is not complete. It remains to show that it is necessary and sufficient to also include any minimum hull set H * z of G * z , in any minimum hull set of G.

The necessity can be easily proved by using Lemma 74 to every G z that is not a complete graph.

The sufficiency follows again from the fact that G u is generated by two non adjacent vertices of G w and since, in all cases, X ∪ Y contains at least one vertex in G x and one vertex in G y , all vertices in G u will be generated.

• w is a spider node and G w is a thin spider (S, K, ∅, E ′ ). Then,

where k is any vertex in K.

All vertices in S are simplicial in G v , hence any hull set of G v must contain S by Lemma 63. Now, in G v , the vertices in S are at distance two and no shortest path between two vertices in S passes through a vertex in K, since there is a join to a complete graph. Therefore, S is not a hull set of G v . However, since |S| ≥ 2, it is easy to check that adding any vertex k ∈ K to S is sufficient to generate all vertices in G v . So S ∪ {k} is a minimum hull set of G v .

Note that, in that way,

• w is a spider node and G w is a spider (S, K, R, E ′ ) that is either thick or R = ∅ and R induces a (q, q -4)-graph. Then,

If R = ∅, then G w is thick. In this case, it is easy to check that the only minimum hull set of G w is S (because it consists of simplicial vertices) and it is also a minimum hull set for G v . Hence,

If R = ∅, then by Lemma 63 any minimum hull set of G w contains S. Moreover, by Lemma 74 any minimum hull set of G w contains a minimum hull set of K ∪ R which is composed by vertices of R.

By the same lemmas, a minimum hull set of G w is a minimum hull set of G v since, by Lemma 64, no vertex of G u belongs to any minimum hull set of G v and G u is generated by non-adjacent vertices of G w .

• w is a small node. G w is a q-pseudo-spider (H 2 , H 1 , R, E ′ ) and R induces a (q, q -4)graph.

If R = ∅, G v is the join of a clique G u with a graph G w that has at most q vertices. No vertex of G u belongs to any minimum hull set of G v , since they are universal. Thus, H v can be computed in time O(2 q ) by testing all the possible subsets of vertices of G w .

Similarly, if R is a clique, all vertices in R are simplicial in G v so they must belong to any hull set of G v . Moreover, no vertices in G u belong to any minimum hull set of G v . So H v can be computed in time O(2 q ) by testing all the possible subsets of vertices of H 1 ∪ H 2 and adding R to them.

In case R = ∅ nor a clique, two cases must be considered. By definition of the decomposition, there exists a child r of w in R,E) is a pseudo-spider that satisfies the conditions in Lemma 74. Hence, any minimum hull set of G v contains a minimum hull set of

So, we have shown that there exists a minimum hull set for G v that can be obtained from H * r by adding some vertices in

-In case G[H 1 ] is not a clique, let x and y be two non adjacent vertices of H 1 .

We claim in this case that there exists a minimum hull set of G v containing at most one vertex of R. Let S be a minimum hull set of G v containing at least two vertices in R. Observe that S ′ = (S \ R) ∪ {x, y} is also a hull set of G v since x and y are sufficient to generate all vertices in R. Consequently, |S ′ | ≤ |S| and S ′ is minimum. Since no hull set of G v contains a vertex in V (G u ), there always exists a minimum hull set of G v that consists of only vertices in H 1 ∪ H 2 plus at most one vertex in R. Therefore an exhaustive search can be performed in time O(2 q n). Now, we consider the case when v is a spider node or a small node. That is

Lemma 78. Let G v = (S, K, R, E) be a spider such that R induces a (q, q -4)-graph.

Then,

Proof. Since all the vertices in S are simplicial vertices in G v and in G * v , we apply Lemma 63 to conclude that they are all contained in any hull set of G v (resp., of G * v ). By the structure of a spider, every vertex of K (and the universal vertex in G * v ) belongs to a shortest path between two vertices in S and are therefore generated by them in any minimum hull set of G v (resp., of G

and also a minimum hull set of G v (resp., of G * v ). Finally, if R = ∅ and R is not a clique, then G v is a pseudo-spider satisfying the conditions of Lemma 74. Similarly, G * v is a pseudo-spider (by including the universal vertex in K). Then, by Lemma 74, any hull set of G v (resp., of G * v ) contains a minimum hull set of G[K ∪ R] (resp., of G * v \ S. Moreover, any hull set contains all vertices in S since they are simplicial. Hence, hn(

Then, H v and H * v can be computed in time O(2 q n).

Proof. All the arguments to prove this lemma are in the proof of Lemma 77. Moreover, the following arguments hold both for G v and G * v : they allow computation of both H v and H * v . If R = ∅, G v has at most q vertices, for a fixed positive integer q. Thus, its hull number can be computed in O(2 q )-time.

Bounds For the Hull Number of Graphs

In this section, we use the same techniques as presented in [START_REF] Everett | The hull number of a graph[END_REF] and in [START_REF] Dourado | On the hull number of triangle-free graphs[END_REF] to prove new bounds on the hull number of several graph classes. These techniques mainly rely on a greedy algorithm for computing a hull set of a graph and that consists of the following: given a connected graph G = (V, E) and its set S of simplicial vertices, we start with H = S or H = {v} (v is any vertex of V ) if S = ∅, and

For the rest of this section, we follow the notation used to describe the algorithm in the beginning of the section.

Claim 27. Let G be a connected graph. Then, before each step i ≥ 1 of the algorithm, for any

∈ E because G is triangle-free. This contradicts Claim 27.

Lemma 88. For any C 3 -free connected graph G and at step i ≥ 1 of the algorithm, either

Proof. If there is v ∈ V \ C i-1 at distance at least 2 from C i-1 , let X i = {v} and the result clearly holds. Otherwise, let v be any vertex in V \ C i-1 . By Claim 27, v has a neighbour u in V \ C i-1 . Moreover, because no vertices of V \ C i-1 are at distance at least 2 from C i-1 , v and u have some neighbours in C i-1 . Finally, u and v have no common neighbours because G is triangle-free. Hence, by taking X i = {v}, we have u ∈ C i and the result holds.

Recall that the girth of a graph is the length of its smallest cycle.

Lemma 89. Let G connected with girth at least 6. Before any step i ≥ 1 of the algorithm when

Proof. If there is v ∈ V \C i-1 at distance at least 3 from C i-1 , let X i = {v} and the result clearly holds. Otherwise, let v be a vertex in V \ C i-1 at distance two from any vertex of C i-1 . Let w ∈ V \ C i-1 be a neighbour of v that has a neighbour z ∈ C i-1 . Since v is not simplicial, v has another neighbour u = w in V \ C i-1 . If u is at distance two from C i-1 , let y ∈ V \ C i-1 be a neighbour of u that has a neighbour x ∈ C i-1 . In this case, since the girth of G is at least six, z = x and, there is a shortest (v, z)-path containing w and a shortest (v, x)-path containing u and y. Consequently, by setting X i = {v} we obtain the desired result. The same happens in case u has a neighbour x ∈ C i-1 . One may use again the hypothesis that the girth of G is at least six to conclude that, by setting X i = {v} we obtain that w, u ∈ C i .

Finally, we claim that no vertex remains in V \ C i-1 . By contradiction, suppose that it is the case and that there are in V \ C i-1 and all these vertices have a neighbour in C i-1 . Let v be a vertex in V \ C i-1 that has a neighbour z in C i-1 . Again, v has a neighbour u ∈ V \ C i-1 , since it is not simplicial. The vertex u must have a neighbour x in C i-1 . Observe that x and z are at distance 3, since the girth of G is at least six. Consequently, v and u are in a shortest (x, z)-path should not be in V \ C i-1 , that is a contradiction.

Lemma 90. Let G be a connected graph. Before any step i ≥ 1 of the algorithm when

Moreover, if G is k-regular (k ≥ 1), there exist

Proof. By Claim 27, all connected component of V \ C i-1 contains at least one edge.

• Now, assume all vertices in V \C i-1 are adjacent to some vertex in C i-1 . If there are two adjacent vertices u and v in V \ C i-1 such that there is z ∈ C i-1 ∩ N (u) \ N (v), then let X i = {v}. Therefore, u ∈ C i and |C i \ (C i-1 ∪ X i )| ≥ |X i |. So, the result holds.

• Finally, assume that for any two adjacent vertices u and v in V \C i-1 , N (u

We first prove that this case actually cannot occur if G is k-regular. Let v ∈ V \C i-1 . Because G is kregular, there is z ∈ N (x)\(N (v)∪C i-1 ). However, N (z)∩C i-1 = N (x)∩C i-1 = K. Hence, z ∈ N (w) \ A, a contradiction. Now, assume that G is a general graph. Let v be a vertex of minimum degree in V \ C i-1 . Recall that, by Claim 27, N (v) ∩ C i-1 induces a clique. Because any neighbour u ∈ V \ C i-1 of v has the same neighbourhood as v in C i-1 and because v is not simplicial, then there must be u, w ∈ N (v) \ C i-1 such that {u, w} / ∈ E. Now, by minimality of the degree of v, there exists y ∈ N (u) \ (N (v) ∪ C i-1 ) = ∅. Similarly, there exists z ∈ N (w) \ (N (v) ∪ C i-1 ) = ∅. Let us set X i = {v, z, y}. Hence, u, w ∈ C i \ (C i-1 ∪ X i ) and the result holds.