R. De, L. M. Ball, J. Carr, O. [. Penrose, W. Becker et al., The Becker-Döring cluster equations : basic properties and asymptotic behaviour of solutions Kinetische behandlung der keimbildung in übersättigten dämpfen On the modeling of traffic and crowds : A survey of models, speculations, and perspectives, Commun. Math. Phys. Ann. Phys. (Leipzig) SIAM Rev, vol.104, issue.533, pp.657-692719, 1935.

P. [. Berthelin, M. Degond, M. Delitala, F. Rascle, P. Berthelin et al., A model for the formation and evolution of traffic jams Archive for Rational Mechanics and Analysis A traffic-flow model with constraints for the modeling of traffic jams Existence and weak stability for a two-phase model with unilateral constraint Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint, Golse, M. Pulvirenti, B. Perthame, and L. Desvillettes . Kinetic equations and asymptotic theory. Gauthier- Villars, pp.185-2201269, 2000.

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. V. Sugiyamabob82-]-a et al., Dynamical model of traffic congestion and numerical simulation The Chapman-Enskog and Grad methods for solving the Boltzmann equation A kinetic model for coagulation?fragmentation. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, RÉFÉRENCES DE L'INTRODUCTION Ph. Laurençot, and S. Mischler. On a kinetic equation for coalescing particles. Communications in Mathematical Physics, pp.1035-104271, 1964.

M. Escobedo, . Ph, S. Laurençot, B. P. Mischler, S. Fournier et al., A spatially homogeneous Boltzmann equation for elastic, inelastic and coalescing collisions Nonlinear followthe-leader models of traffic flow [Hel95] D. Helbing. Improved fluid-dynamic model for vehicular traffic [Hel01] D. Helbing. Traffic and related self-driven many-particle systems The Boltzmann equation : Global existence for a rare gas in an infinite vacuum Jabin and Ch. Klingenberg. Existence to solutions of a kinetic aerosol model A kinetic description of particle fragmentation Mathematical models for vehicular traffic The Boltzmann equation, Differential EquationsGra49] H. Grad. On the kinetic theory of rarefied gases. Communications on Pure and Applied MathematicsLam04] W. Lamb. Existence and uniqueness results for the continuous coagulation and fragmentation equation. Mathematical Methods in the Applied Sciences, pp.143-1741173, 1949.

H. Amann and C. , Local and global strong solutions to continuous coagulation???fragmentation equations with diffusion, Journal of Differential Equations, vol.218, issue.1, pp.159-186, 2005.
DOI : 10.1016/j.jde.2004.09.004

R. J. Diperna and P. L. , On the Cauchy Problem for Boltzmann Equations: Global Existence and Weak Stability, The Annals of Mathematics, vol.130, issue.2, pp.321-366, 1989.
DOI : 10.2307/1971423

R. J. Diperna, P. L. Lions, and Y. , Lp regularity of velocity averages, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.8, issue.3-4, pp.271-287, 1991.
DOI : 10.1016/S0294-1449(16)30264-5

P. B. Dubovski and I. W. , Existence, Uniqueness and Mass Conservation for the Coagulation-Fragmentation Equation, Mathematical Methods in the Applied Sciences, vol.18, issue.7, pp.571-591, 1996.
DOI : 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q

M. Escobedo, P. Laurençot, and S. Mischler, On a Kinetic Equation for Coalescing Particles, Communications in Mathematical Physics, vol.246, issue.2, pp.237-267, 2004.
DOI : 10.1007/s00220-004-1037-3

URL : https://hal.archives-ouvertes.fr/inria-00071839

M. Escobedo, S. Mischler, and M. Rodriguez-ricard, On self-similarity and stationary problem for fragmentation and coagulation models, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.22, issue.1, pp.99-125, 2005.
DOI : 10.1016/j.anihpc.2004.06.001

N. Fournier and P. , Existence of Self-Similar Solutions to Smoluchowski???s Coagulation Equation, Communications in Mathematical Physics, vol.57, issue.3, pp.589-609, 2005.
DOI : 10.1007/s00220-004-1258-5

P. Gérard, Solutions globales du problème de Cauchy pour l'équation de Boltzmann, Séminaire Bourbaki, issue.699, pp.257-281, 1987.

P. E. Jabin and J. , A KINETIC DESCRIPTION OF PARTICLE FRAGMENTATION, Mathematical Models and Methods in Applied Sciences, vol.16, issue.06, pp.933-948, 2006.
DOI : 10.1142/S0218202506001406

P. E. Jabin and C. , Existence to solutions of a kinetic aerosol model, Contemp. Math, vol.371, pp.181-192, 2005.
DOI : 10.1090/conm/371/06854

W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation, Mathematical Methods in the Applied Sciences, vol.27, issue.6, pp.703-721, 2004.
DOI : 10.1002/mma.496

P. Laurençot, Self-similar solutions to a coagulation equation with multiplicative kernel, Physica D: Nonlinear Phenomena, vol.222, issue.1-2, pp.80-87, 2006.
DOI : 10.1016/j.physd.2006.08.007

P. Laurençot and S. , Mischler : Global existence for the discrete diffusive coagulation-fragmentation equations in L 1, Rev. Mat. Iberoamericana, vol.18, issue.3, pp.731-745, 2002.

P. Laurençot and S. , From the discrete to the continuous coagulation???fragmentation equations, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.132, issue.05, pp.1219-1248, 2002.
DOI : 10.1017/S0308210500002080

P. Laurençot and S. Mischler, The Continuous Coagulation-Fragmentation??Equations with Diffusion, Archive for Rational Mechanics and Analysis, vol.162, issue.1, pp.45-99, 2002.
DOI : 10.1007/s002050100186

P. Laurençot and S. , Convergence to equilibrium for the continuous coagulation-fragmentation equation, Bulletin des Sciences Math??matiques, vol.127, issue.3, pp.179-190, 2003.
DOI : 10.1016/S0007-4497(02)00002-7

S. Mischler and M. Rodriguez-ricard, Existence globale pour l'??quation de Smoluchowski continue non homog??ne et comportement asymptotique des solutions, Comptes Rendus Mathematique, vol.336, issue.5, pp.407-412, 2003.
DOI : 10.1016/S1631-073X(03)00070-0

H. Müller, Zur allgemeinen Theorie ser raschen Koagulation, Kolloidchemische Beihefte, vol.17, issue.6-12, pp.223-250, 1928.
DOI : 10.1007/BF02558510

M. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik Zeitschr, vol.17, pp.557-599, 1916.

M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, pp.129-168, 1917.

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Mathematical Methods in the Applied Sciences, vol.18, issue.5, pp.627-648, 1989.
DOI : 10.1002/mma.1670110505

]. P. Bhatnagar, E. P. Gross, and M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Physical Review, vol.94, issue.3, pp.511-525, 1954.
DOI : 10.1103/PhysRev.94.511

G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flow, Oxford Engineering Science Series, vol.42, 1994.

A. V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation, Sov. Phys. Dokl, vol.27, issue.1, pp.29-31, 1982.

F. Brini, Hyperbolicity region in extended thermodynamics with 14 moments, Continuum Mechanics and Thermodynamics, vol.13, issue.1, pp.1-8, 2001.
DOI : 10.1007/s001610100036

Z. Cai, Y. Fan, and R. Li, Globally hyperbolic regularization of Grad???s moment system in one-dimensional space, Communications in Mathematical Sciences, vol.11, issue.2, 2012.
DOI : 10.4310/CMS.2013.v11.n2.a12

Z. Cai and R. Li, Numerical Regularized Moment Method of Arbitrary Order for Boltzmann-BGK Equation, SIAM Journal on Scientific Computing, vol.32, issue.5, pp.2875-2907, 2010.
DOI : 10.1137/100785466

Z. Cai, R. Li, and Y. Wang, An Efficient NRxx??Method for Boltzmann-BGK Equation, Journal of Scientific Computing, vol.120, issue.2, pp.103-119, 2012.
DOI : 10.1007/s10915-011-9475-5

S. Chandrasekhar, Stochastic Problems in Physics and Astronomy, Reviews of Modern Physics, vol.15, issue.1, pp.2-89, 1943.
DOI : 10.1103/RevModPhys.15.1

L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Archive for Rational Mechanics and Analysis, vol.5, issue.4, pp.387-404, 1993.
DOI : 10.1007/BF00375586

H. Grad, On the kinetic theory of rarefied gases, Communications on Pure and Applied Mathematics, vol.11, issue.4, pp.331-407, 1949.
DOI : 10.1002/cpa.3160020403

P. , L. Tallec, and J. P. Perlat, Numerical analysis of Levermore's moment system, 1997.

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, vol.23, issue.5-6, pp.1021-1065, 1996.
DOI : 10.1007/BF02179552

C. D. Levermore and W. J. Morokoff, The Gaussian Moment Closure for Gas Dynamics, SIAM Journal on Applied Mathematics, vol.59, issue.1, pp.72-96, 1999.
DOI : 10.1137/S0036139996299236

H. G. Othmer, S. R. Dunbar, and W. , Models of dispersal in biological systems, Journal of Mathematical Biology, vol.25, issue.3, pp.263-298, 1988.
DOI : 10.1007/BF00277392

B. Perthame, Boltzmann Type Schemes for Gas Dynamics and the Entropy Property, SIAM Journal on Numerical Analysis, vol.27, issue.6, pp.1405-1421, 1990.
DOI : 10.1137/0727081

J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Mathematics Monograph Series, vol.3, 2006.

H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows : Approximation Methods in Kinetic Theory, 2005.

H. Struchtrup and M. Torrilhon, Regularization of Grad???s 13 moment equations: Derivation and linear analysis, Physics of Fluids, vol.15, issue.9, pp.2668-2680, 2003.
DOI : 10.1063/1.1597472

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics -A practical introduction -3nd edition, 2009.

M. Torrilhon, Two???Dimensional Bulk Microflow Simulations Based on Regularized Grad???s 13???Moment Equations, Multiscale Modeling & Simulation, vol.5, issue.3, pp.695-728, 2006.
DOI : 10.1137/050635444

M. Torrilhon, Hyperbolic moment equations in kinetic gas theory based on multivariate Pearson-IV-distributions, Commun. Comput. Phys, vol.7, issue.4, pp.639-673, 2010.

D. and V. Widder, What is the Laplace Transform?, The American Mathematical Monthly, vol.52, issue.8, 1946.
DOI : 10.2307/2305640

G. M. Wing, An introduction to transport theory, 1962.

A. Aw, A. Klar, A. Materne, and M. Rascle, The previous computations show the following results : References [1] Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math, pp.63-259, 2002.

A. Aw and M. Rascle, Resurrection of "Second Order" Models of Traffic Flow, SIAM Journal on Applied Mathematics, vol.60, issue.3, pp.916-938, 2000.
DOI : 10.1137/S0036139997332099

M. Bando, K. Hesebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, vol.51, issue.2, pp.1035-1042, 1995.
DOI : 10.1103/PhysRevE.51.1035

N. Bellomo and C. Dogbe, On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives, SIAM Review, vol.53, issue.3, pp.409-463, 2011.
DOI : 10.1137/090746677

F. Berthelin, EXISTENCE AND WEAK STABILITY FOR A PRESSURELESS MODEL WITH UNILATERAL CONSTRAINT, Mathematical Models and Methods in Applied Sciences, vol.12, issue.02, pp.249-272, 2002.
DOI : 10.1142/S0218202502001635

F. Berthelin, Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.3, pp.479-494, 2003.
DOI : 10.1051/m2an:2003038

F. Berthelin and F. Bouchut, Weak solutions for a hyperbolic system with unilateral constraint and mass loss, Annales de l'Institut H. Poincaré, Anal, pp.20-975, 2003.

F. Berthelin, P. Degond, M. Delitala, and M. Rascle, A Model for the Formation and Evolution of Traffic Jams, Archive for Rational Mechanics and Analysis, vol.36, issue.2, pp.185-220, 2008.
DOI : 10.1007/s00205-007-0061-9

F. Berthelin, P. Degond, V. L. Blanc, S. Moutari, M. Rascle et al., A TRAFFIC-FLOW MODEL WITH CONSTRAINTS FOR THE MODELING OF TRAFFIC JAMS, Mathematical Models and Methods in Applied Sciences, vol.18, issue.supp01, pp.1269-1298, 2008.
DOI : 10.1142/S0218202508003030

URL : https://hal.archives-ouvertes.fr/hal-00634571

F. Bouchut, Y. Brenier, J. Cortes, and J. F. , A Hierarchy of Models for Two-Phase Flows, Journal of Nonlinear Science, vol.10, issue.6, pp.639-660, 2000.
DOI : 10.1007/s003320010006

Y. Brenier and E. Grenier, Sticky Particles and Scalar Conservation Laws, SIAM Journal on Numerical Analysis, vol.35, issue.6, pp.2317-2328, 1998.
DOI : 10.1137/S0036142997317353

R. M. Colombo, A 2 ?? 2 hyperbolic traffic flow model, Mathematical and Computer Modelling, vol.35, issue.5-6, pp.683-688, 2002.
DOI : 10.1016/S0895-7177(02)80029-2

C. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transportation Research Part B: Methodological, vol.29, issue.4, pp.29-277, 1995.
DOI : 10.1016/0191-2615(95)00007-Z

P. Degond and M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinetic and Related Models, vol.1, pp.279-293, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00635045

W. E. , Y. G. Rykov, and Y. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys, vol.177, issue.2, pp.349-380, 1996.

D. C. Gazis, R. Herman, and R. Rothery, Nonlinear Follow-the-Leader Models of Traffic Flow, Operations Research, vol.9, issue.4, pp.545-567, 1961.
DOI : 10.1287/opre.9.4.545

D. Helbing, Improved fluid-dynamic model for vehicular traffic, Physical Review E, vol.51, issue.4, pp.3164-3169, 1995.
DOI : 10.1103/PhysRevE.51.3164

D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, vol.73, issue.4, pp.1067-1141, 2001.
DOI : 10.1103/RevModPhys.73.1067

A. Klar, R. D. Kühne, and R. Wegener, Mathematical models for vehicular traffic, Surveys Math. Ind, vol.6, pp.215-239, 1996.

A. Klar and R. Wegener, Enskog-like kinetic models for vehicular traffic, Journal of Statistical Physics, vol.19, issue.1-2, pp.91-114, 1997.
DOI : 10.1007/BF02181481

M. J. Lighthill and J. B. Whitham, On kinematic waves. I : flow movement in long rivers. II : A theory of traffic flow on long crowded roads, Proc. Roy. Soc, pp.229-1749, 1955.

P. Nelson, A kinetic model of vehicular traffic and its associated bimodal equilibrium solutions, Transport Theory and Statistical Physics, vol.26, issue.1-3, pp.383-408, 1995.
DOI : 10.1287/opre.9.2.209

H. J. Payne, Models of Freeway Traffic and Control, Simulation Council, 1971.

H. J. Payne, FREFLO : A macroscopic simulation model of freeway traffic, Transportation Research Record, vol.722, pp.68-75, 1979.

]. I. Prigogine, A Boltzmann-like approach to the statistical theory of traffic flow, Theory of traffic flow, pp.158-164, 1961.

I. Prigogine and R. Herman, Kinetic theory of vehicular traffic, 1971.

P. I. Richards, Shock Waves on the Highway, Operations Research, vol.4, issue.1, pp.42-51, 1956.
DOI : 10.1287/opre.4.1.42

M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, vol.36, issue.3, pp.275-298, 2002.
DOI : 10.1016/S0191-2615(00)00050-3